

OOL

j,EY, C - 93945-5002

NAVAL POSTGRADUATE SCHOOL
Monterey, California

d5Dfo7

AN EXPERT SYSTEM INTERFACED WITH A DATABASE
SYSTEM TO PERFORM TROUBLESHOOTING OF AIRCRAFT

CARRIER PIPING SYSTEMS

by

Irving B. Clayton III and Patsy R. Boozer

December 1988

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

T2418A3

Unclassified

Security Classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification Unclassified 1 b Restrictive Markings

2a Security Classification Authority

2b Declassification/Downgrading Schedule

3 Distribution Availability of Report

Approved for public release; distribution is unlimited.

4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)

6a Name of Performing Organization

Naval Postgraduate School
6b Office Symbol

(If Applicable) 37
7a Name of Monitoring Organization

Naval Postgraduate School

6c Address (city, state, and ZIP code)

Monterey, CA 93943-5000
7 b Address (city, state, and ZIP code)

Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization 8b Office Symbol

(If Applicable)

9 Procurement Instrument Identification Number

8c Address (city, state, and ZIP code) 1 Source of Funding Numbers

Program Element Number I Project No I Task No | Work Unit Accession No

1 1 Title (include Security Classification) An Expert System Interfaced with a Database System to Perform
Troubleshooting of Aircraft Carrier Piping Systems

12 Personal Author(s) Clayton III, Irving B. and Boozer, Patsy R.

13a Type of Report

Master's Thesis
13b Time Covered

From To

14 Date of Report (year, month.day)

December 1988
15 Page Count

169

1 6 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government.

17 Cosati Codes

Field Group Subgroup

1 8 Subject Terms (continue on reverse if necessary and identify by block number)

Expert System, Database, Modeling

1 9 Abstract (continue on reverse if necessary and identify by block number

Maintaining and troubleshooting aircraft carrier through tank piping systems is a labor intensive, operational fleet

problem. There is a clear need for a useful database and expert system to aid in fault isolation and repair planning

for these systems. The multiple extensive piping systems of an aircraft carrier create an intimidating modelling
problem for implementation in a database. The interface of an expert system to a large database to obtain

improved execution speed, exploit a useful data model, reduce memory requirements, and enhance total system
capability is examined and implemented. A flexible model for representing a large ship's piping systems in a

database is presented.

20 Distribution/Availability of Abstract

|X| unclassified/unlimited same as report DTIC users

21 Abstract Security Classification

Unclassified

22a Name of Responsible Individual

C. Thomas Wu
22b Telephone (Include Area code)

(408)646-3391
22c Office SymbolT.

52Wq
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

security classification of this page

Unclassified

Approved for public release; distribution is unlimited.

An Expert System Interfaced with a Database System to Perform

Troubleshooting of Aircraft Carrier Piping Systems

by

Irving B. Clayton III

Commander, United States Navy
B.S., University of Virginia, 1972

and

Patsy R. Boozer

Lieutenant, United States Navy
B.S., University of South Carolina, 1979

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1988

ABSTRACT

Maintaining and troubleshooting aircraft carrier through tank piping systems

is a labor intensive, operational fleet problem. There is a clear need for a useful

database and expert system to aid in fault isolation and repair planning for these

systems. The multiple extensive piping systems of an aircraft carrier create an

intimidating modelling problem for implementation in a database. The interface of

an expert system to a large database to obtain improved execution speed, exploit a

useful data model, reduce memory requirements, and enhance total system

capability is examined and implemented. A flexible model for representing a large

ship's piping systems in a database is presented.

in

O- &•<—'W f

6,1

TABLE OF CONTENTS

I. INTRODUCTION 1

II. BACKGROUND 3

A. INTERNAL ARRANGEMENT 3

B. TROUBLESHOOTING 5

III. DESIGN AND IMPLEMENTATION 8

A. MODELLING THE PIPING SYSTEM 8

B. EXPERT SYSTEM 10

C. SOFTWARE 12

D. SCOPE OF PROTOTYPE 13

1. Damage Control Void 14

2. Fuel Oil Service Tank 14

3. Fuel Oil Storage Tank 14

4. Contaminated Tank 15

5. JP-5Tank 15

E. IMPLEMENTATION OF THE RELATIONAL MODEL 15

F. PROTOTYPE DEMONSTRATION 20

1. Database System Operation 20

2. Expert System Operation 23

IV. CONCLUSIONS 28

A. DATABASE SYSTEM/EXPERT SYSTEM CONNECTION 28

B. REFINING THE PROTOTYPE 29

C. POTENTIAL EXPERT SYSTEMS 30

IV

APPENDIX A. DECISION TREES 31

APPENDIX B. RELATIONAL DIAGRAM 41

APPENDIX C. PROGRAM LISTING 42

LIST OF REFERENCES 159

INITIAL DISTRIBUTION LIST 160

LIST OF FIGURES

Figure 1. Through Tank Piping Arrangement for No. 4. MMR 4

Figure 2. Basic Relation Diagram 17

Figure 3. Contains Relation 17

Figure 4. Pipesystem Relation 17

Figure 5. Adjacent Relation 18

Figure 6. Compartment Relation 18

Figure 7. String 119S Compartments 19

Figure 8. Pipes Database Menu 21

Figure 9. Database Query Menu 21

Figure 10. Piping System Queries 22

Figure 11. Compartment Prompt 22

Figure 12. System Response to Query 23

Figure 13. All Pipes Contained in 8-119-9-V 23

Figure 14. Expert System Menu 24

Figure 15. Problem Analysis Menu 24

Figure 16. Fuel Oil Service Tank Problem Menu 25

Figure 17. Prompt for Compartment Number 26

Figure 18. Action Prompt 26

Figure 19. Troubleshooting Solution 27

Figure A.l D. C. Void Will Not Pump 31

Figure A.2 D. C. Void Pumps but Refills with Water 32

Figure A.3 Damage Control Void Will Not Flood 33

Figure A.4 Damage Control Void Overflowing 34

Figure A.5 Water in a Fuel Oil Service Tank 35

Figure A.

6

Fuel Oil Service Tank Overflowing 36

Figure A.7 Fuel Oil Service Tank Losing Fuel 37

Figure A.

8

Fuel Oil Storage Tank Overflowing 38

VI

Figure A.9 Large Contaminated Tank Overflowing 39

Figure A. 10 Fuel/Oil in a Damage Control Void 40

Figure B.l Relational Diagram 41

vu

I. INTRODUCTION

The failure of aircraft carrier through tank piping was identified in the mid

1970's as a difficult management problem. The deterioration of carbon steel

piping, from continuous immersion in salt water, allowed the intercommunication

of the ship's fuel tanks and damage control voids. The potential detriment of inter-

communicating tanks includes:

loss of boiler fires due to water in the fuel oil casualties

inadvertent overboard discharge of fuel when pumping a contaminated D.C.

void

increased draft

reduction in ability to counter flood

lost reserve buoyancy

The complexity of CV's, intense operating schedules, and advancing ship age

has made dealing with piping casualties time consuming and frustrating. Hours

spent tracing piping diagrams and making false starts in resolving a problem has

pointed out that a formalized approach to the problem would be worthwhile. The

system developed in this thesis is directly applicable to CV's 59/60/61/62/63/64,

and is readily adaptable to CV's 41/43 and CVN-65. The CV-67 and CVN-68 class

side protection systems, construction materials(copper-nickel piping), and pipe

joining techniques(socket couplings) do not experience the same failures and hence

these ships would derive minimal benefit from this system.

The development of an expert system interfacing a large database to aid in

troubleshooting aircraft carrier piping systems is divisible into three areas of

emphasis:

• the model for the database system

• the design of the interface to the database

• the expert system itself

This thesis examines each of these issues and implements the recommended

solution in an operable database interfaced expert system.

The implementation of the expert system is designed to be operated by

Engineering Department personnel at sea on a micro computer likely to be readily

available. The hardware limitations therefore are considered to be those of the

Z-248, widely purchased for operating forces, and readily available as a GSA

catalog item.

CDR Clayton developed the decision trees and provided the expertise with

respect to aircraft carrier design and construction. The data model and user

interface to the system were also designed by CDR Clayton.

LT Boozer developed the expert system, the interface to the data base, and the

data base system.

II. BACKGROUND

The following are Naval terms which may need to be defined to assist in the

comprehension of this paper:

• "through tank" refers to long sections (40 - 50 feet) of pipe which run in the

bottom of the ship through several adjacent compartments. These

compartments are frequently other tanks, hence the label "through tank".

• "string" refers to a group of tanks and voids all located side by side at the

same frame number and on the same side of the ship. For example, string

119S refers to five adjacent voids and tanks all located at frame 119 on the

starboard side of the ship.

• "frame" is a relative location along the length of the ship starting at the

forward end of the ship. Aircraft carrier frames are spaced at an interval of

four feet, and are numbered sequentially bow to stern.

• "wing tank" is a tank or void, outboard of the holding bulkhead, away from

the center of the ship and in close proximity to the side of the ship. They are

typically long (20 feet), narrow (5 feet), and very deep (37 feet).

A. INTERNAL ARRANGEMENT

Understanding the internal compartment and system arrangement in a

FORRESTAL/KITTY HAWK class aircraft carrier is fundamental to

comprehending the database model utilized by the expert system. An illustration of

a typical arrangement [Ref. 1 :p. 10] appears as Figure 1.

Piping emanating in the engineering spaces passes through several

compartments before reaching its termination point. Aircraft carriers built prior

to 1965 were constructed with mild carbon steel fuel oil transfer, fuel oil service,

and fuel oil recirculating piping systems. The deterioration of these systems in

service due to corrosion has resulted in leaks which are not readily apparent

because they are inside of other tanks. This internal leakage is thus difficult to

132 127

8-I27-I-W
FW

123

8-I23-I-W
FW

8-II9-I-W
RFW

8-127-3-F
FO

8-123-3-W
FW

8-II9-3-W
RFW

ai

1

ffi
7TOTO <W

rT

8-123-5-V
CD

8-II9-S-V
CD I

8-127-3-V
DC

2^

8-I24-I-V
DC

8*.

8-II9-7-V
DC

2>

8-127-7-V
DC

a
2i
8-124-3-V

DC

2i

8-119'9-V
DC

J-

4

i 8-127-9-F
FOS 12

b

2 U,
4 •*-

8-124-5-F
COST

X 8-II9-II-F ,

* 2J^ FOS

8-127-ll-F
FOB ,5

.4 15
-124-7-F

FOB "ft

8-II9-I3-F
FOB

l*i

8-I27-I3-V *-

DC

1
8-124-9-F S

FOOB
8-II9-I3-V

DC

Figure 1. Through Tank Piping Arrangement for No. 4. MMR

diagnose. Other factors which contribute to the difficulty of diagnosing a problem

are improper system operation by personnel, inoperative or leaking valves, foreign

object blockage, and cracks in structure. Multiple combinations of the above factors

can mask one problem from another and further complicate troubleshooting. This

latter case presents the most difficult challenge to the expert system: successfully

identifying more than one problem when multiple problems are present. The

design of the expert system can accommodate this type of scenario with multiple

independent user sessions, but careful decision tree structure can minimize these

instances and identify more than one cause to a problem in a single session.

B. TROUBLESHOOTING

The initial identification of a tank/void system problem can come from:

soundings

tank level indicators

water at the boiler front

water paste tests

requirement to strip excessively

requirement to pump excessively

overflowing air escapes/sounding tubes

discharge from overboard piping

excessive draft

unable to pump

The decision making process in troubleshooting a piping system casualty

begins with an input of what system is disrupted and what the initial symptom of the

problem is. This information is brought to the attention of the Engineering Officer

of the Watch in Central Control, the work center supervisor in the oil/water lab, or

the Damage Control Assistant.

The trouble shooting process begins based on the experience and intuition of

the individual to whom the problem is addressed. This, of course, is not a constant.

The approach to solving a problem can vary widely between individuals, some who

may have experienced a similar casualty and remembered a prior successful

solution to that problem.

A methodical process of elimination is the best approach to a solution, but

thorough knowledge of the systems involved, the ship's construction, and accurate

responses to questions are required to produce a least effort path to a solution. This

is critical in an operating aircraft carrier because the demands of operating the ship

in a normal state alone taxes the crew, correcting casualties quickly exhausts them.

Because of this last condition, the first step in troubleshooting is to get as much

accurate information as possible, with as little physical effort as possible. Simply

put, you conserve energy. Actions which fall in this category are:

taking soundings

examining logs

making water paste tests

reading tank level indicators

reading drawings and system technical manuals

The next step, based on the above information, is to make simple tests using

accessible equipment. These are:

• verify the correct line up of installed pumping/stripping systems in the

machinery spaces

• verify use of remote operating stations

• disassemble small valves (4 inch or smaller) in machinery spaces/pump

rooms

• listen to systems in operation

• inspect equipment/systems in compartments which are readily entered (no

bolted access covers).

Further escalation of troubleshooting should only begin when a problem has

been isolated to a likely set of causes. Action at this point is one of the following

categories:

• open and gas free and inspect voids/tanks

• open and pump tanks/voids using portable equipment

• pump contaminated fuel/water out of the ship within the governing

regulations for the location of the ship

• disassemble large heavy valves (greater than 4 inches) pumps, or other

complex equipment

This sequence of actions is driven by conservation of assets and the need to

minimize disruption of operating systems. The multiple possible paths to solving a

unique problem, the varying level of experience of operators, and the importance

of conserving assets, both time and personnel, clearly point to the need for an

expert system capable of managing a complex object requiring a large number of

facts stored in an organized database.

III. DESIGN AND IMPLEMENTATION

The design and implementation of the total "PIPES" system involved the

investigation of multiple alternatives of how to structure the system to maximize its

performance with respect to:

model design and utility

storage of data

database query

modification/update of database

expert system power

memory requirements

speed

connection of software

The following sections describe the evolution of the initial concept and

understanding of the problem, through the decisions made in the development

process, to the final configuration of the functional prototype system.

A. MODELLING THE PIPING SYSTEM

The initial concept of system design was to utilize a database management

program to perform central program functions. This was primarily driven by the

feeling that the difficulty in building the system would center around the details of

the configuration of the model. The problem was viewed as a challenging database

problem. This conclusion was drawn from the intimidating size and multiple

attributes thought felt to be required to deal with a large object such as an aircraft

carrier. There was also a defined set of queries which were clearly of the DBMS

type. The intent was to solve the model problem, build a corresponding database

system, and then utilize an expert system to return troubleshooting problem

solutions to the database system. The final configuration of the system, after

evolving through the development cycle, is discussed in the Conclusions chapter.

In making the choice of how to build the database model, consideration was

given to traditional database structures. A hierarchical system offered no apparent

utility in exploiting the construction of the ship since there is no hierarchy among

piping systems or the pieces of a piping system. The compartments within a ship

could be hierarchically arranged by deck and by position from forward to aft in the

ship but this did not provide any apparent advantage in dealing with the piping

systems, so a hierarchical system was rejected. A network system appeared to be

feasible but while attempting to establish the links in the data structure diagram for

such a system it became clear that it would be easier to implement a relational

model.

The alternative of implementing the relational model in the expert system

could have been accomplished, but would have required using an unmanageable

number of facts in a Prolog system. This was judged to be prohibitive in terms of

both memory requirement and speed of execution. Building a similar system in

Pascal would have required an even larger quantity of code and would have again

been a poor design choice for memory and speed reasons.

A design decision was made to implement the database in a DBMS language to

attempt to exploit the relational model which had been developed and which was

thought to offer considerable potential because of its simplicity and apparent

flexibility.

B. EXPERT SYSTEM

The expert system function of the "PIPES" system is required to return

solutions for specific problems selected by the operator. This meant that at least

one fact is known at the outset of the session. One control structure for this type of

rule based system is referred to as forward chaining. Essentially the expert system

is given a fact and it then attempts to find a chain of facts which lead to a definitive

conclusion. Control structures for expert systems are often combined to take

advantage of the characteristics of each structure while compromising on the

limitations brought with both structures. One form of such a combined control

structure is called rule-cycle hybrid. Strictly defined, rule-cycle hybrid structures

cycle through rules, in order, as in backward chaining, however, as facts are

asserted they are added for use in the next cycle through the rules, as in forward

chaining. [Ref. 2:p. 105]

The nature of the problem solving done in troubleshooting shipboard piping

systems led to the development of a system which employed a decision tree design

where the entry point to a unique tree was a user selected problem. After entry into

the tree, the user is directed to carry out troubleshooting action and then respond to

questions as to the outcome of his investigations. In this manner virtual facts are

established, as in forward chaining, through a series of user actions and responses

which lead down the tree to a conclusion. Each rule which succeeds (establishing a

virtual fact) thus leads to another rule which in turn must succeed (establishing

another fact) to reach a conclusion. The design decision of how to connect the

expert system to the database system presented the most difficult challenge in

building the system. The available database programs provide no capability to

make a call to another program, and return to the database program. A major

10

design change in the structure of the system was forced at this point of

development. The details of this decision follow. The interface of a expert system

to DBMS files can be accomplished by calling a specific data file from within the

expert system. This would mean that none of the DBMS functions would be

available for query or file modification without quitting the expert system and

loading the DBMS. The alternative of loading the DBMS each time it was needed,

and then reloading the expert system, though feasible, was regarded as an

undesirable degradation, from an operator's performance perspective.

An obvious alternative was to utilize a more advanced machine and run the

expert system and DBMS simultaneously with a multi-processor, allowing queries

to the DBMS without terminating the expert system. This method was judged

unsatisfactory because of the requirement to be able to operate the system on

shipboard available equipment, which at best would be 80286 processor based.

Because the expert system can make calls to external data files, the feasibility of

calling compiled DBMS program queries was examined. A limited number of

software routines which would perform some DBMS functions were identified but

not used because of the limitations on the nature of queries and prohibitive dollar

cost. The potential performance improvement offered by this approach was a

significant increase in speed over DBMS commands due to the machine language

configuration of the already compiled routines. A further option was to write

drivers in the DBMS program language to perform all of the required calls and

returns from DBMS. By essentially duplicating explicit DBMS functions, the

DBMS files could be queried and/or manipulated to return a response without the

need to carry all of the DBMS's operating overhead and memory requirements.

The drivers would, as compiled routines also did, significantly speed the response

11

of the database side of the system. Decomposing DBMS program code and writing

appropriate routines was not in the scope of this thesis. The final design choice was

a compromise to obtain the desirable modelling and data storage of the DBMS

system and the efficiency of a Prolog expert system. The connection of the expert

system to the DBMS was made by running the system from the DBMS system

program and accessing the expert system by calling the already compiled

executable Prolog file. The key to making this choice was recognition that the full

Turbo-Prolog program was a compiled executable program [Ref. 3:p. 160] which

could be run inside the d-BASE III program [Ref. 4:p. 208] and not exceed the

640K resident memory limitations of the hardware. An additional design decision

was made to allow queries in the DBMS side of the system to be made both by using

functions built for the DBMS program, and by a program feature provided to allow

user built queries in d-BASE III, enabling full exploitation of the large database.

This meant that some operator involvement was accepted to allow more complex

DBMS queries to be made.

C. SOFTWARE

D-base III was selected as the database implementation software because it

supports the relational database design. The use of the relational database was

fundamental to the development of a useful model of the ship and its internal

systems. D-base III is readily available to the potential users of the system and is

relatively inexpensive. Prolog was chosen for the expert system because it was

designed for artificial intelligence applications. Prolog solutions are arrived at by

logically inferring one thing from something that is already known. A Prolog

program is not a sequence of actions, but a collection of facts together with the

rules for drawing conclusions from those facts. Prolog more closely follows

12

thinking than procedural programming languages, because it is a declarative

language. A Prolog program for a given application will typically require only

one tenth as many program lines as the corresponding Pascal program.

Turbo-Prolog (Version 2.0) was selected for use in the implementation of the

expert system because it was the latest and apparently best product available for use

on the mandated IBM compatible hardware. It is a fifth generation language and,

like d-BASE III, is both economical to purchase and readily available to potential

users of the system developed in this thesis.

D. SCOPE OF PROTOTYPE

The development of the expert system to do troubleshooting of through tank

piping system problems first required a problem statement of those casualties

which the system must be able to solve.

A decision was made to limit the scope of the expert system to those casualties

experienced in the CV side protection system (wing tanks). Although the

troubleshooting solution to these types of problems often extends into the

machinery spaces and pump rooms, the initial problem areas dealt with by the

expert system are those found among the menu items below as choices which are

presented to the user:

Damage Control Voids

Fuel Oil Service Tanks

Fuel Oil Storage/Ballast Tanks

Contaminated Tanks

JP-5 Tanks

All of these menu selection tanks are wing tanks. This selection is the first

decision a user is required to make in operating the program.

13

The development of the logic for initial symptoms of casualties is done in

decision trees which are then coded in Prolog. Appendix A contains the logic

decision trees for the implemented casualties.

The menu items below appear depending on the selection of the tank type

problem from the list of tanks above. Thus, the casualties handled by the system

are:

1. Damage Control Void

Will not pump

Pumps but refills with water

Will not flood

Overflowing

Oil in a void

Sewage in a void

2. Fuel Oil Service Tank

Water present

Overflowing

Foreign particles

Losing fuel

Gaining fuel

3. Fuel Oil Storage Tank

Water present

Overflowing

Foreign particles

Losing fuel

Gaining fuel

14

4. Contaminated Tank

overflowing

will not pump

5 . JP-5 Tank

water present

overflowing

losing fuel

will not strip

will not pump

E. IMPLEMENTATION OF THE RELATIONAL MODEL

Modelling a complex physical object is a principle challenge in designing many

database systems. The creation of a satisfactory model of the multiple and extensive

piping systems in an aircraft carrier was a primary area of research for this thesis.

At the outset of implementing the expert system, one approach would have

been to have used individual Prolog facts to describe the components of each system

down to the requisite level of detail required to accomplish troubleshooting. This

approach, while feasible, was judged to be unacceptably costly in memory

requirements and execution speed. Simply stated, the number of facts was too

large.

The power of a database language was needed to structure, manipulate, and

query the database in a manner which would take advantage of the properties of the

system being modeled.

Initial examination of Entity/Relationship models appeared to require

considerable complexity to successfully model the system and its attributes. The

requirements were to be able to uniquely identify each section of pipe within the

15

ship, to include location, system, and physical properties such as size and material

composition. Because the troubleshooting function of the expert system is

concerned with through tank piping, a model was developed which could be

reduced to just four relationships, many fewer than was anticipated. All the

requirements could be met by careful placement of the attributes with the right

relationship in the model, enabling the use of a surprisingly simple scheme.

Although the model employed is fully adequate for this expert system, as

implemented, it would require additional refinement to be expanded to model a

machinery space or pump room. Because of the size of a main machinery room,

simply identifying a pipe as being in the compartment is insufficient detail to be

able to constructively utilize the model. An additional attribute is needed, for

example "piping segment number" (piece number). This new attribute would be

made up of the forward most frame number of a pipe within a compartment

coupled to a port/starboard sequence number thus accommodating multiple pipe

segments within a large compartment.

The relational database developed and implemented in dBASE, uniquely

identifies each pipe in the ship by the compartment number it is contained in, and

the system that it is a part of.

Thus the relation diagram (Figure 2) reduces to just four relations.

16

COMPARTMENT ADJACENT

CONTAINS

PIPESYSTEM

Figure 2. Basic Relation Diagram

The CONTAINS relation (Figure 3) is keyed by compartment number to each

pipe within that compartment.

COMPARTMENT SYSTEM NUMBER
FOS 8-119-11-F

FOT 8-119-13-F

FOT 8-119-11-F

8-119-9-V

8-119-9-V

8-119-9-V

Figure 3. Contains Relation

represents a portion of the database describing which pipes are actually physically

located in compartment 8-119-9-V. The PIPESYSTEM relation (Figure 4)

System Number Pipe System Size Material Couplings

FOS 8-119-11-F

FOT 8-119-11-F

FOT 8-119-13-F

Fuel Oil Service 4

Fuel Oil Transfer 5

Fuel Oil Transfer 5

steel N/A

steel N/A

steel N/A

Figure 4. Pipesystem Relation

depicts the noun name of the system, the size (diameter) of a pipe in inches, the

material composition, and the type of joint make up used. These attributes are used

17

to maintain a current database for the configuration of the ship to support long

term maintenance planning. The repairs include the replacement of deteriorated

carbon steel piping, hence the material attribute, with copper nickel piping and the

change of troublesome sleeve couplings with those of socket design, thus the

coupling attribute. The size aids in the identification of a pipe when a tank/void is

opened and inspected.

The ADJACENT relation (Figure 5) locates

Compartment Forward Aft Starboard Port Above

8- 11 9-9-V 8-1 14-9-V 8-124-3-F 8-1 19-1 1-F 8-11 9-7-V 4-119-5-V

Figure 5. Adjacent Relation

locates the compartment in the ship with respect to the other compartments and is

used in troubleshooting logic and in maintenance planning to predict access and gas

free requirements.

The COMPARTMENT relation (Figure 6)

String Usage Compartment Date Paint Date Completed

119S Void 8- 11 9-9-V 4-83 4-85

Figure 6. Compartment Relation

identifies the string which a compartment is a member of, and records historical

maintenance data pertinent to the entire compartment. The complete relational

diagram appears in Apopendix B.l.

Thus an apparently complex modeling problem was reduced to its fundamental

relationships in a powerful relational database. The central relationship in this

model and the basis for its power is the Contains relation. By subdividing the

18

aircraft carrier down to compartments, the common building block of the model, it

becomes possible to depict the entire ship or only an area of the ship in which you

are interested. In this thesis, for example, we only are interested in the fourth deck

and below compartments. Thus everything above 45 feet above the keel (the height

of the fourth deck) is not present in the database, because it is not relevant to

through tank piping.

By utilizing the Adjacent relation and the Contains relation it is possible to

trace a pipe through the entire ship. For example, if compartment 8-1 19-9-V is a

suspected problem void, the Adjacent relation tells us that there are compartments

8-1 19-7-V and 8-1 19-1 1-F inboard and outboard respectively of the problem void.

The Contains relation then tells us that pipe system FOT 8-1 19-13-F (actually a

section of pipe) is contained in each of three voids/tanks. We can thus trace this

pipe through at least 3 compartments. If we look at the Pipe_System relation we

find that FOT 8- 1 19-13-F is a fuel oil transfer pipe, 5 inches in diameter, and made

of carbon steel. The Compartment relation tells us that 8-1 19-9-V, the original

problem void, is in string 119S. Other compartments in string 119S appear in

Figure 7.

8-119-1-W 8-1 19-9-V

8-119-3-W 8-119-11-F

8-119-5-F 8-119-13-F

8-1 19-7-V 8-119-15-V

Figure 7. String 119S Compartments

A check of Contains for these compartments reveals that pipe system FOT 8-

1 19-13-F originates in 8-119-5-F, passes through 7-V, 9-V, 1 1-F, and terminates

in 13-F. The value of the compartment relation is that it identifies the

19

compartments in a string. From a given compartment, a string could be built by

multiple calls to adjacent. Providing the relation minimizes repetitive manipulation

of the database to obtain a frequently needed and useful fact. The relationship that

may not be apparent is that most piping runs, run athwartship within the boundary

of a string. The database design takes advantage of this property easing the

modeling of a piping system by speeding the location of other compartments

containing a section of pipe belonging to a specific system. Summarizing, the four

relations contribute to the utility of the model as follows:

• CONTAINS: identifies unique pipes in a compartment by pipe system

• ADJACENT: locates a compartment within its surrounding compartments
providing the mechanism for the building block concept in the model

• COMPARTMENT: identifies the string a compartment is in, useful in that it

relates a small group of compartments adjacent to each other within the ship

• PIPE SYSTEM: allows the attributes of an entire system to be carried in a

single tuple, rather than repeated for each compartment

F. PROTOTYPE DEMONSTRATION

The initial step in operating the system is to start "PIPES". The following

screen displays will provide a demonstration of the steps required to operate both

the d- BASE III portion of the system and how to enter the troubleshooting mode of

operation performed by the expert system side of the system.

1 . Database System Operation

The first menu (Figure 8) presented to the operator from the database

offers a choice system functions.

20

PIPES DATABASE

Add/Edit Database Record A
Query Database Q
Print Database Records P

Backup Database B

PIPES - Expert System E

Select Option

Press ESC to EXIT

Figure 8. Pipes Database Menu

If the user desires to query the database, for an example, he would type

'Q", which would bring up the database query (Figure 9) menu

PIPES SYSTEM QUERIES

Compartment Access C Strings S

Pipe Systems P Tanks by type T

Adjacent tanks A Inboard Tanks I

List of paint dates L Unlisted Query Q
Select Option A
Press ESC to EXIT

Figure 9. Database Query Menu

From the database menu the user presses the appropriate letter key. If he

desired for example, to know the pipes in a compartment he would press "P". The

piping system query menu (Figure 10) would appear:

21

PIPE SYSTEM QUERIES

Pipes passing through compartment P

Compartments containing pipe system C

Specific pipe system material S

List of pipe systems by material M
Select Option:

Press ESC to EXIT

Figure 10. Piping System Queries

If it is desired at this point to know the specific pipes in a compartment,

the user presses "P", which prompts him for the compartment number desired

(Figure 11).

COMPARTMENT TO QUERY

Compartment No 8-1 19-9-

V

Press ESC to EXIT

Figure 11. Compartment Prompt

The compartment number is entered by the user, as in the example above,

"8-1 19-9-V" has been entered. The d-BASE III program at this point has sufficient

input to conduct the query and respond. (Figure 12)

22

PIPE SYSTEMS PASSING THROUGH COMPARTMENT 8-119-9-V

System Number: FOS 8-1 19-1 1-F

Press <- to BROWSE
Press ESC to EXIT

Press HOME to Print

Figure 12. System Response to Query

The "Press <- to BROWSE" option allows the user to individually view

the database contents for that query. The "Press HOME to Print" option is

provided to print out all the pipes contained in the database for that query, as in

Figure 13.

Pipes Passing Through 8-119-9-V

FOS 8-1 19-1 1-F

FOT 8-1 19-1 1-F

FOT8-119-13-F

BAL8-119-13-F

STR 8-1 19-1 1-F

VOID 8-1 19-1 5-

V

FOR 8-1 19-1 1-F

Figure 13. All Pipes Contained in 8-119-9-V

2. Expert System Operation

The expert system is entered from the database system by selecting

"PIPES-Expert System" from the top level database menu (Figure 8), by pressing

the "E" key. The expert system will be activated and the PIPES-Expert System

Menu (Figure 14) will appear.

23

TROUBLESHOOTING AiwfT? apt PARRrFR THwnnr.H-TAN*: ptpinp, <;y<;tpm<;

Tutorial

Graphics

Problem Analyzer

Query Database

Esc:Quit — Use arrow keys to select - Enter to activate

Figure 14. Expert System Menu

The operator must select "Problem Analyzer", using the arrow keys, if he

desires to use the system for troubleshooting. If the "Problem Analyzer" is

selected, the screen appears as in Figure 15.

-TROUBLESHOOTING AIRCRAFT CARRIER THROUGH-TANK PIPING SYSTEMS

— Problem Analysis

Void
Fuel Oil Service

Fuel Oil Storage

Contaminated

JP-5

Esc:Quit — Use arrow keys to select - Enter to activate

Figure 15. Problem Analysis Menu

24

From the above menu the user must select the type of tank in which the

problem is being experienced. For example, if the problem is in a fuel oil service

tank the user uses the arrow keys to select "Fuel Oil Service". The fuel oil service

tank problem menu (Figure 16) will prompt the user to narrow the problem

definition by selecting the nature of the casualty from the menu.

•TROUBLESHOOTING AIRCRAFT CARRIER THROUGH-TANK PIPING SYSTEMS

Action

— Problem Analysis 1

Water in the tank

Overflowing

Foreign particles

Losing fuel

Gaining fuel

Esc:Quit — Use arrow keys to select — Enter to activate

Figure 16. Fuel Oil Service Tank Problem Menu

If the problem is "water in the tank", the user selects this menu item with

the arrow keys, and is prompted in the screen below for the compartment number

of the problem tank.(Figure 17)

25

TROUBLESHOOTING AIRCRAFT CARRIER THROUGH-TANK PIPING SYSTEM

What is the compartment number of the problem tank? 8-1 19-1 1-F

ESC: Quit --F1-- Print Action Block

Figure 17. Prompt for Compartment Number

The user must type in the correct compartment number of the problem

tank, as for example, 8-1 19-1 1-F. Prompts will appear (Figure 18) directing the

user to take action as indicated in the upper box labelled "ACTION", and then ask

the user to respond to a question as to the outcome of the action taken. An example

of such a screen is:

TROUBLESHOOTING AIRCRAFT CARRIER THROUGH-TANK PIPING SYSTEMS

Action

Pump down fuel oil service tank 8-1 19-1 1-F and inspect 2 1/2 inch

void suction line in service tank for cracked or leaking couplings

Problem Analysis

Are there any leaks in the 2 1/2 inch void suction line?

Esc: Quit --F1-- Print Action Block

Figure 18. Action Prompt

26

After performing the action requested, the user responded with a "yes",

as indicated above, to the question asked by the system. The answer in this case is a

conclusive one, and thus the system responds with the solution to the problem

(Figure 19).

TROUBLESHOOTING AIRCRAFT CARRIER THROUGH-TANK PIPING SYSTEMS

Solution

The void suction line to the outboard void 8-1 19-1 5-V is ruptured in

8-19-1 1-F. Empty, clean, gas free, and repair the break in the 2.5 inch

void suction line in 8- 11 9-1 1-F

Esc: Quit —F1-- Print Action Block

Figure 19. Troubleshooting Solution

27

IV. CONCLUSIONS

A. DATABASE SYSTEM/EXPERT SYSTEM CONNECTION

The development of an expert system which operates efficiently by employing

a database system for data storage, retrieval, queries, and update has significant

advantages. By using readily available software and hardware a valuable tool for

fleet use can readily be built. The combination of d-BASE III and Turbo-Prolog,

both popular economical software products, and a minimum 8086 or 80286 based,

IBM compatible microcomputer produced a reliable, useful tool for assisting

decision making in a complex environment. The advantages of combining the

power of the database system and an expert system are:

employment of relational data model by the expert system

higher speed of execution for the expert system

reduced memory requirements

greater total system capability/flexibility

ease of data file construction

ease of file maintenance

The dBASE program provides the framework for building data files which

enable a relational database model to be employed. The ability to build the

relational model and readily implement it in the database assists understanding the

organization and implementation of the expert system. Speed of execution is gained

in the Prolog program by reducing the number of facts which the interpreter must

process. This is accomplished by storing the facts concerning the configuration of

an aircraft carrier in the database system, rather than as prolog facts. Only the

28

appropriate facts are called from the database and built as Prolog facts for use by

the expert system.

Reduction of memory requirements is achieved by storing the facts in the

database format rather than as prolog facts. The compact storage of the database

files saves the replication of the predicate portion of each Prolog fact. The savings

in memory storage for the configuration of the ship is 50 to 70 percent of that

required for storing large numbers of Prolog facts in the predicate lists.

The utilization of dBASE queries can provide information from the database

which can aid the user in decision making and fault isolation. The database by

virtue of modeling the ship's piping systems has value beyond that of the expert

system. The utility of the database is virtually that of a piping system diagram, and

can assist in isolating systems, isolating compartments, damage control decisions,

casualty control, and normal operation of systems.

The use of dBASE to maintain data files eases maintenance and construction of

files. Because an instance of the database can be used to build more than one fact,

updating the database for the single instance in the database, saves changing

multiple predicates in the expert system. The organization of the database readily

allows location and access of a specific instance needing modification.

B. REFINING THE PROTOTYPE

There are five areas in which the prototype could be further developed to

expand its utility and scope of application.

• The relational model designed for the database system offers the flexibility

to significantly increase the number of attributes, making the database a

more powerful model of the detail of the ship. The potential exists to expand

the database to store enough useful information as to define the exact

configuration of the ship.

29

For nine of the most important through-tank piping casualties the prototype

is fully operational in a real environment. The expert system can be extended

by the addition of the trouble shooting options offered in the two user

problem selection menus but not installed in the system.

The installation of this prototype requires the building of the database for

each specific aircraft carrier to which it will be applied to. This capability is

fully provided for in the prototype. It is accomplished by using program

menus for file construction and maintenance.

The implementation of a maintenance planning function in the expert system,

to include decision making capability for establishing the priority of repairs

and the development of schedules, would add a significant and useful

dimension to the prototype system.

The expansion of the graphical presentation of the ships piping systems is an

important area in the design of the prototype.

C. POTENTIAL EXPERT SYSTEMS

The application of expert systems to shipboard decision making processes has

extensive scope and potential for making significant impact on the reliability,

correctness, and efficiency of daily shipboard operation. Expert systems, similar

to the one developed in this thesis,could be built for the any of the following unique

engineering casualty control/management problems:

loss of main engine vacuum

condensate/feed system salt contamination

evaporator troubleshooting

02N2 plant

automatic combustion control system

boiler water/feed water chemistry

aircraft carrier multi plant engineering drills

The considerable contribution that such development and implementation

would make to fleet readiness is worth further investigation.

30

APPENDIX A. DECISION TREES

Clou itopi

rotd purr.pi?

~7
no^

JL.

Til

Problem

10 1 a t Ion

Piobl*m
lolution

(itaralvt)

Pump void w/iub pomp
will not tmptr?

T»l "
\ Inipiet void

Mtructur* eraeki?

T»l
z1

Problem
tolatlon

(craeki)

noA

7
L*aki In through

told pip**?
^

T»l

Problem

iclutlon

(l»aky pipn)

noA
Tree* lound tub*

A/E, l*a'ii from bnaki?

jL
T»l

Ptobl*m lolution

noA
Ind*t*rm!nat*

Figure A.I D.C, Void Will Noi Pump

31

Pomp to Id empty, open

ita TalTt leak?

3L

-BO
Ch*ek taction

tallplp* baekflowlns?
-BO- Plpei leaking?

Cycle ita TalT*

leakage itop?
-T»l

Problem
lolatlon

yei

_L
Void monllold
ander pr»nur»?

no

1
Problem

• elation

Indaitrlol repair

required, eoflttdam

BO

no

craeki?

Edaetor overboard

opts?

no yei

Op*n overboard

taction manifold?
• no-

Other Told
laetloni open?

Bulkhead «-?»i
itOpi Open?

7~Z

Cloie yold laetloni
manifold itlll preuare?

Cloie bulkhead
itopi preuare?

T
yei

/

810 Iloodlno TalT*

eloied and loeked?

no

J_
Problem

Solution

Break 1b l/T

or air •leapt?

yei no11
Problem
lolatlon

Hole* In

4th deck?

Cloie Hood TalT*

manifold p renu re?
no-

y*i

JL
i

no

Problem

lolatlon

Indetermlnat*

Section Talre blocked

or operating Incorrectly?

r7

I"
Problem

lolatlon

no

Inboard void?

Indettrmlnat*

y»i

Op*n Inipeet pipe*?

re i

Problem
lolatlon

Figure A.2 D.C, Void Pumps But Relllls With Water

32

Soandlno lab*

el*ar?
no

PiobUm tolatlon
Op»n Tcid eliai

toandlng tab*

T»l

Oil In hydroalle

station?
y*l

no

Probl*m 10 lc t ion
Fill with oil

Station lilt*!

el*an?

7*1

Air *iocp» op»n?

r»i

8*l*eto? voir*

plp*d baekwardt?

no

Optn void, hydraulic
llnti damaatd?

no

no- Probl*m tolatlon
Cl*an lilt*:?

no-
Probl*m tolatlon

(op*n air *ieap*)

r»i Pioblim tolatlon

y*t Probl*m tolatlon

l*l*ctor mlimarktd
ltnti plp*d oorr*ot?

y*t-».

Frobltm tolatlon

(d*l*etlr* i*a ralr*)

no

Problim tolatlon

(correct mltplptd eonntetlont)

Figure A.3 Damage Control Void Will Nol Flood

33

Void
orirllowtng? -lOll-

Tr an if* r

pampi running? yn-
liean pampi

orirllow itep?

Another idaetor

In operation?

y»i

_L
Biean idaetor
orirllow itop?

no

t M

77
i

T»l

i
Problem
lolatlon

Problim
lolatlon

Void Inboard

el contam tank?

J
Stripping dliehargi

to eontam tank?

y»i

Sicun itrlpplng

till ovtrllowlng?

Pinmaln to b a 11 a it

manllold ncand?

no

lieur* F/M rain
ovirllow itop?

Problim

lolatlon

>ia Hooding
valvi nearid?

no

no

Problim

lolatlon

Clou valvi

orirllow itop?

Voldi Inboard
ol eontamlnatid tank?

11
y»i

Inditirmlnati

Problim

lolatlon

Problim

lolatlon

*• no

Itrlpplng dlieharglng

to eontam tank?

y»i
no

Sicun itrlpplng

orirllow itop?

T
T

Problim

lolatlon

r ii i

JP-8 tronilir lyitim

prmarliid?

y»i

y

lieari JP-6 pampi
orirllow itop?

n

1 i

1

yti

r

Problim
lolatlon

-yu-

Dim! Iranilir lyi

prmarliid?

Figure A, 4 Damage Conlrol Void Overflowing

34

Stripping vclv» due
oft it»m/|ammid?

no

Wat*: 1b 4th d*ct

eompartmtnt ebov»?

no

Ship In Hiary !»ai?

no

Tank top, alrtieap»i.

oundlna tab* l*ak?
— r*i

Probltm
Solution

!nd*t»rmlnat»

Figure A, 5 Water in a Fuel Oil Service Tank

35

Traniltr ?«np
Running or K»la»lllng?

Itean TraniUr

Pqmpi - Ovrllovlnc?

It* el re ralvt

aiitmbltd corr»ct!y?
7 <

r_
no

Op»n i*r rle*

plptl l»ak lne?

/ \
y,, no

^ V

Probltm
tolatlon

Probltm
lolotlon

Indtttrmlnatt

Figure A, 6 Fuel Oil Service Tank Overflowing

36

Voldi In itrlng

hart futl?
-Til

Follow fold with

tad logic

no

Pump roldi. optn and
lnipict. Ttrllr roldi
• mptr. S/T cornet?

r»i

Chick llll/traniltr, itrviet

taction, itrlpplng. rtelrc ralvti

lor dtbrli/damagt junctional?

no-
Probltm tolatlon

(rtpalr ralTti)

T»»

String P.O. itoragt

tanki mill 11 tmptltd?
r»i

Optn P.O. Stir let tank

lnipict piping, ltaki?

no no

Optn P.O. 8 tr vie*

tank, toandlng tabt

TL1 comet*

r»i

Indtttrmlnalt

no-

r»«

- Craeki?
Probltm
tolatlon

r»i

no

1
Probltm

tolatlon

(npai! TL1 or l/T)

Probltm

tolatlon

Figure A, 7 Fuel Oil Service Tank Losing Fuel

37

TraniUr Pampi

Rann lng or R»lu»lllng?
y»i-

no

liear* Traniltr

Pampi » OytrMowlng?

.!••

Plll/lranil»r

ralv* eloitd?
-y»i

no

Stripping- ijrittm

b*lng ai*d?

no

Clou t r an i l«r

ralv* - OT»rMow itop? no

i
Probl»m

i ol a lion

Plll/traniftr to.1v*

cn*mbl*d corr*etly?

r
Stripping suction ralr*

en*mbl*d eorrietly?

Cp»n nr vie*

plpn leaking?

/ \

7»i
7 77
ii no

\
Problim
lolallon

J—
no

Problim

i ola tl on

X
Indittrmlnat*

-7*i-
Edaetor btl ng

and to strip?

r»i

t
Ortrboard

dlichargt optn?

no

!••

no

Op*n ortrboard

ovtrtlow itop?

T
y»i

Stripping pump

llnvd ap eorrietly?

\no
L

Comet Mr,* ap

ovtrilow itop?

Problem

lolatlon

Figure A, 8 Fuel Oil Storage Tank Overflowing

38

Ittlpplno pomp
In MMR running?

no

y»i
Stent* pomp

OTtrllow itop?
yn

no

Problem
lolatlon

Stripping pampi
othtr ipaen operating? yii

S»cc?» othir ittlpplng

parr.pi, oriMlow itop?
-r»i-

Probltm

tola tlon

no no

Olhtr tqulpm»nt tyittmi

dlich to itrlpplng main?

Bdaetor In MMR
In ait?

no

y»i

y»i
Itear* othtr tqutpmtnt

ortrllow itop?

Chtei » a actor 1 1 n • ap

omboatd dlieh optn?

y»«

yti-

no-

Probltm
lolotion

Problem

tela tlon

Main drain bulihtad
itopi eloitd?

— no-

yn no

C 1 o i • bulkhtad itop?

ovtrtlow itop?

no

Fatl oil tram 1*

r

tyitim prinarlitd?

no X
6 • c u r • traniltrlng lutl

ovtrllow itop?

no

Indtttrmlnatt

Lack ot tduetor noli*?

Sat* oil it*m?
-y*i.

y*i-

-yti

Probl*m

lolatlon

Probltm

elation

Probltm

lolatlon

Figure A, 9 Large Contaminated Tank Overllowtna

39

Full tan ka In itrlng

leilng luil?

yti

Opin md Inipiot
veld, Inky plpaa?

no

no •> Crioki?

yn

Problim
tolutlon

yn no

/ A
Problim
tolutlon

Inipiet fourth diek
Inki, holn, brnki
In top, 8/T, or A/E7

Problim
tolutlon

yn no

/ \
l,m Inditirmlniti

Figure A. 10 Fuel/Oil In A Damage Control Void

40

APPENDIX B. RELATIONAL DIAGRAM

String

Uicc«

Compartm»nt_Namb»r

Datt. Paint

Datt.Complitid

COMPARTMENT

CONTAINS

Syittm.Numbtr

Compartment

PIPE. SYSTEM

Coupllnai

Mattrlal

Hi*

Plp».8yjt»m

lyit»m.Numb»r

ADJACENT

Abovt

Port

Starboard

Alt

Porward

|compar1m»nt

Figure B.l Relational Diagram

41

APPENDIX C. PROGRAM LISTING

/ Jc it "_Ar "jit* "J; ^A; li: iA? ^f 'it: "ik: ^f ^Ar it lA; iA; sic ^Ic iAr ifc ifc lie ^lc ifc ifc ifc sic lie 2^C ik 5fc iJc 3k 5fc iJc sl(jfc 3lc A *fc sic sk jfc «fc >Jc sic *ic lie 3lc iJc lie 2JC 2tc)lc iAc jA; jic lA; lA;

* *

* TROUBLE.PRO *

* Driver for the PIPES Expert system. *

* The following files are compiled and linked by the *

* Pipes.prj PROJECT FILE into PIPES.EXE executed from *

* PIPES BASEm PLUS System *

* DataBase.pro *

* Screen .pro *

* Question.pro *

* Solution.pro *

* VoidNoPm.pro *

* VoidOil.pro *

* VoidPump.pro *

* WaterFos.pro *

* WaterFot.pro *

* FosLosFl.pro *

* VoidNoFd.pro *

* FosOvrFl.pro *

* VoidOvrFl.pro *

* FotOvrFl.pro *

* ContmOvr.pro *

* Fact.pro *

* *

* *

code = 4000

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"
include "AnaGdef.PRO"
include "Pipegraph.PRO"

42

PREDICATES

mainmenu
proces(INTEGER)
drawtank(INTEGER)
evaluate(SYMBOL)
problemmenu(LIST,SYMBOL)
problem_type(SYMBOL,INTEGER)
detennine(INTEGER)
contains_fuel

print_tanks(SYMBOL,SYMBOL)
find_string(SYMBOL)
retrieve_tank(SYMBOL,SYMBOL)
ans(CHAR)
convert_case(SYMBOL,SYMBOL)
get_problem_tank

port_stbd(SYMBOL,SYMBOL)
side(INTEGER,SYMBOL)
inboard_voids

outboard_voids

parse_tank_port_stbd(SYMBOL,SYMBOL)
find_inbd_voids(INTEGER)

fmd_otbd_voids(INTEGER)
assert_inboards(INTEGER)

assert_outboards(INTEGER)

assert_inboard_voids(SYMBOL)

assert_outboard_voids(SYMBOL)

troubleshoot

* MAINMENU *

GOAL
pipecover,troubleshoot.

CLAUSES

troubleshoot:-

makewindow(21 ,78,0,"",24,0,1 ,80),clearwindow,write

("Esc:Quit ~ -- Use arrow keys to

select-- — Enter to activate"),

43

makewindow(22,78,0,"",24,0,l,80),

write("Esc: Quit -- Fl -- Print

Action Block"),

makewindow(2,7,23,

"TROUBLESHOOTING AIRCRAFT CARRIER THROUGH-TANK
PIPING SYSTEMS",
0,0,24,80),!,mainmenu.

mainmenu:- repeat,

shiftwindow(2),clearwindow,menu(3,14,47,14,5,"Main menu",

["Tutorial",

"Graphics",

"Problem Analyzer",

"Query Database"],

CHOICE),proces(CHOICE),CHOICE=0,!,
removewindow(2, 1),removewindow(2 1,1).

proces(0):-retract_facts,makewindow(10,ll,2,"EXIT",

18,4,3,50),

write("Are you sure you want to quit? (Y/N):"),

readchar(ANS),

ans(ANS), removewindow(1 0, 1), !

.

proces(0):-!,removewindow(10,l).

proces(l):-file_str("trouble.hlp",TXT),display(TXT),

clearwindow,!.

proces(l):-!,write("» trouble.hlp not in default

directoryW).

proces(2):-repeat,shiftwindow(2),clearwindow,

makewindow(4,78,7,"Piping

Diagrams",13,5, 10,70),

shiftwindow(4),

menu(5,47,7,14,7,"Diagrams",["SingleTank",

"Tank String",

"Zones","Tank Sections"],

CHOICE),removewindow(4,l),

drawtank(CHOICE),CHOICE = 0,!.

proces(3):-repeat,shiftwindow(2),clearwindow,

makewindow(4,78,7,"Problem

Analysis",13,5,10,70),

shiftwindow(4),

menu(5,47,7,14,7,"SelectTank",["Void","Fuel

44

Oil Service'V'Fuel Oil Storage",
,,

Contaminated","JP-5"],CHOICE),

determine(CHOICE),CHOICE = 0,!.

proces(4).

ans(V).

ans('Y').

determine(0):-removewindow(4,l).

determine(1):-evaluate(void).

determine(l):-retract_facts,removewindow(4,l).

determine(2):-evaluate("fuel_oil_service").

determine(2):-retract_facts,removewindow(4, 1).

determine(3):-evaluate("fuel_oil_storage").

determine(3):-retract_facts,removewindow(4,l).

determine(4):-evaluate(contaminated).

determine(4):-retract_facts,removewindow(4,l).

determine(5):-evaluate("JP-5").

determine(5):-retract_facts,removewindow(4,l).

evaluate(void):- makewindow(7,47 ,7, "Action", 1,5, 12,70),

assert_empty_fact,problemmenu(["Oil in void",

"Unable to pump",

"Unable to flood",

"Pumps but refills with water",

"Filled with sewage",

"Overflowing"],void),removewindow(7,l),!.

evaluate(void):- removewindow(7,l).

evaluate(fuel_oil_service):-

makewindow(7,47,7, "Action", 1,5, 12,70),

assert_empty_fact,
!

,

problemmenu(["Water in the tank",

"Overflowing",

"Foriegn particles",

"Losing fuel",

"Gaining fuel"],"fuel oil

service"),removewindow(7, 1), !

.

45

evaluate(fuel_oil_service):- removewindow(7,l).

ev aluate(fuel_oil_storage) :
-

makewindow(7 ,47,7,"Action", 1,5, 12,70),

assert_empty_fact,!

,

problemmenu(["Water in the tank",

"Overflowing",

"Foriegn particles",

"Losing fuel",

"Gaining fuel"],"fuel oil

storage"),removewindow(7,l),!.

evaluate(fuel_oil_storage):- removewindow(7, 1).

evaluate(contaminated):-

makewindow(7 ,47 ,7,"Action", 1,5, 12,70),

assert_empty_fact,
!

,

problemmenu(["High percentage of oil in

tank","Flooding with water",

"Will not take suction",

"Unable to fill",

"Overflowing",

"Draining without suction"],"contaminated"),

removewindow(7 , 1), !

.

evaluate(contaminated):- removewindow(7, 1).

drawtank(0):-removewindow(4, 1).

drawtank(l):-makewindow(5,47,7,"",5,5,ll,70),

shiftwindow(5),

ask_ques_read_ans(TANK,"single tank"),

SingleTank(TANK),removewindow(5,l),!.

drawtank(1):-retract_facts,removewindow(5, 1).

drawtank(2).

drawtank(3).

drawtank(4).

problemmenu(LIST,MENU):- shiftwindow(4),clearwindow,

menu(6,30,7,14,7,"",LIST,CHOICE),

shiftwindow(4), clearwindow,

!,problem_type(MENU,CHOICE),
removewindow(4, 1), !

.

46

problemmenu(_,_):-retract_facts,removewindow(7,l).

get_problem_tank:- ask_ques_read_ans(FOSERVTK,"tankno"),

assert(problem_tank(FOSERVTK),problem).

problem_type(_,0).

problem_type(void,l):- get_problem_tank,retrieve_contains,

add_problem(["oil in void"]),

contains_fuel,fuel(_),

ask_ques_read_ans(LOSINGFUEL,"losingfuel"),!,

losingfuel(LOSINGFUEL),solution.

problem_type(void,l):- !,

ask_ques_read_ans(FOURTH,"fourthdeck"),!,

fourthdeck(FOURTH),solution.

problem_type(void,2):-

get_problem_tank,!,add_problem(["unable to pump"]),

! ,fmd_string(STRING_NUM),retrieve_string(STRING_NUM),
!

,

ask_ques_read_ans(LOSING_FUEL_WATER,"void losing fuel

water"),!, losing_fuel_water(LOSING_FUEL_WATER),
solution.

problem_type(void,3).

problem_type(void,4) :-get_problem_tank,
!

,

find_string(STRING_NUM),retrieve_string(STRING_NUM),
inboard_voids,

add_problem(["pumps but refills"]),!,

retrieve_adjacent(above),!

,

ask_ques_read_ans(SEA_VALVE,"sea valve

leak"),sea_valve_leak(SEA_VALVE), solution.

problem_type(void,5).

problem_type(void,6).

problem_type("fuel oil service",!):- !,

47

get_problem_tank, ! ,add_problem(["water in

fuel"]),!,

find_string(STRING_NUM),retrieve_string(STRING_NUM),

inboard_voids,outboard_voids,
!

,

retrieve_adjacent(above),!

,

ask_ques_read_ans(FILLED,"fuel filled

from"), ! ,asserta(filled_from(FILLED),

problem), !,paste_test("Y"),!,

solution.

problem_type("fuel oil service",2):- !,

ask_ques_read_ans(_,"overflowing"),!,

retrieve_contains,solution,!.

problem_type("fuel oil service",3).

problem_type("fuel oil service",4):- get_problem_tank,

find_string(STRING_NUM),retrieve_string(STRING_NUM),

ask_ques_read_ans(OIL,"voids have oil"),

voids_oil(OIL),! solution.*/

problem_type("fuel oil service",4):- !,

ask_ques_read_ans(FOURTH,"fourthdeck"),!,

fourthdeck(FOURTH),solution.

problem_type("fuel oil service",5).

problem_type("fuel oil storage", 1):- !,

get_problem_tank,! ,add_problem(["water in

fuel"]),!,

find_string(STRING_NUM),retrieve_string(STRING_NUM),

inboard_voids,outboard_voids,!

,

retrieve_adjacent(above),!,

from"),assert_filled(FILLED),

solution.

problem_type(contaminated, 1).

problem_type("JP-5",l).

assert_filled(FILLED):- str_len(FILLED,LEN),LEN <> 0,

asserta(filled_from(FILLED),problem),!,

48

fot_paste_test("Y"),!.

assert_filled(_):- ! ,fot_paste_test("N").

contains_fuel:-contains(_,SYSTEM),

frontchar(SYSTEM,_,REST),

frontstr(3,REST,SYS,_),

enter_fuel_fact(SYS,REST).

contains_fuel.

ask_ques_read_ans(ANSWER,QUES_NO):- !,

question(QUES_NO),

!,readln(INPUT),

convert_case(INPUT,ANSWER),clearwindow.

convert_case(INPUT,ANSWER):- upperJower(ANSWERJNPUT).
convert_case(INPUT,ANSWER):- ANSWER = INPUT.

print(TANK_TYPE,WINDOW):-retrieve_tank(TANK_TYPE,WINDOW),
nl.

print(TANK_TYPE,_):-error(TANK_TYPE).

retrieve_tank("adjacentfuel",WINDOW):-

adjacent_fuel_tanks(TANKS),

print_tanks(WINDOW,TANKS),fail.

retrieve_tank(" adjacent fuel",_):- adjacent_fuel_tanks(_).

retrieve_tank("fueltanks",WINDOW):-

fuel(TANKS),print_tanks(WINDOW,TANKS),fail.

retrieve_tank("fuel tanks",_):- fuel(_).

retrieve_tank("adjacent tanks",WINDOW) :-

adjacent_tanks(TANKS),

print_tanks(WINDOW,TANKS),fail.

retrieve_tank("adjacent tanks",_):- adjacent_tanks(_).

retrieve_tank(" string fuel tanks ",WINDOW):-
string_fuel_tanks(TANKS),

print_tanks(WINDOW,TANKS),fail.

49

retrieve_tank("string fuel tanks",_):-

string_fuel_tanks(_).

retrieve_tank("voids in string ",WINDOW) :-

string_void_tanks(TANKS),

print_tanks(WINDOW,TANKS),fail.

retrieve_tank("voids in string",_):- string_void_tanks(_).

retrieve_tank("string voids in tank",WINDOW):-
string_void_in_tank(TANKS),

print_tanks(WINDOW,TANKS),fail.

retrieve_tank(" string voids in tank",_):-

string_void_in_tank(_).

retrieve_tank("inboard voids",WINDOW):-inbd_void(TANK),
print_tanks(WINDOW,TANK),fail.

retrieve_tank("inboard voids",_):- inbd_void(_).

retrieve_tank("outboard voids",WINDOW):- otbd_void(TANK),

print_tanks(WINDOW,TANK),fail.

retrieve_tank("outboard voids",_):- otbd_void(_).

retrieve_tank(_,_):- fail.

print_tanks(WINDOW,TANKS):-
!

,

position_in_window(WINDOW),write(TANKS).

error("adjacent fuel"):- write("AT ERROR"),readchar(_).

errorffuel tank"):- write("AT ERROR"),readchar(_).

error("adjacent tanks"):- write("AT ERROR"),readchar(_).

error(" string fuel tanks"):- write("AT

ERROR"),readchar(_).

error("voids in string"):- writefAT ERROR"),readchar(_).

error("string voids in tank"):- write("AT

50

ERROR"),readchar(_).

error("inboard voids"):- indeterminate,solution,!,fail.

error("outboard voids"):- write("AT ERROR "),readchar(_).

find_string(STRING_NUM):-problem_tank(TANK),

fronttoken(TANK,_,REST),

fronttoken(REST,_,STRl),

fronttoken(STRl ,STRING_NO,STR2),
fronttoken(STR2,_,STR3),

fronttoken(STR3,PORT_STBD,_),

port_stbd(PORT_STBD,SIDE),

concat(STRING_NO,SIDE,STRING_NUM).

inboard_voids:- problem_tank(TANK),
parse_tank_port_stbd(TANK,PROB_TANK),
str_int(PROB_TANK,PROB_PORT_STBD),
find_inbd_voids(PROB_PORT_STBD).

outboard_voids:- problem_tank(TANK),

parse_tank_port_stbd(TANK,PROB_TANK),
str_int(PROB_TANK,PROB_PORT_STBD),
find_otbd_voids(PROB_PORT_STBD).
parse_tank_port_stbd(TANK,PORT_STBD):-
fronttoken(TANK,_,REST),

fronttoken(REST,_,STR 1), fronttoken(STR 1 ,_,STR2),

fronttoken(STR2,_,STR3),

fronttoken(STR3,PORT_STBD,J-

find_inbd_voids(PROB_PORT_STBD):-string_void_tanks(_),

assert_inboards(PROB_PORT_STBD).
find_inbd_voids(_):- write("error").

find_otbd_voids(PROB_PORT_STBD):-string_void_tanks(_),

assert_outboards(PROB_PORT_STBD).
find_otbd_voids(_):- error("voids in string").

assert_inboards(PROB_PORT_STBD):-string_void_tanks(TANK),

parse_tank_port_stbd(TANK,TANK_PORT_STBD),
str_int(TANK_PORT_STBD,PORT_STBD),
PORT_STBD < PROB_PORT_STBD,
assert_inboard_voids(TANK),fail.

assert_inboards(_).

51

assert_inboard_voids(TANK):-

assertz(inbd_void(TANK),problem).

assert_outboards(PROB_PORT_STBD):-
string_void_tanks(TANK),

parse_tank_port_stbd(TANK,TANK_PORT_STBD),
str_int(TANK_PORT_STBD,PORT_STBD),
PORT_STBD > PROB_PORT_STBD,
assert_outboard_voids(TANK),fail.

assert_outboards(_).

assert_outboard_voids(TANK):-

assertz(otbd_void(TANK),problem).

port_stbd(PORT_STBD,SIDE):- str_int(PORT_STBD,INT),ANS =

INT mod 2,

!,side(ANS,SIDE).

side(0,SIDE):- SIDE = "P".

side(_,SIDE):-SIDE = "S".

indeterminate:- retract_facts,assert_empty_fact,!,

add_problem(["indeterminate data"]).

* PIPEGDOM.PRO *

* GLOBAL DOMAINS *

GLOBAL DOMAINS
LIST = SYMBOL*
file = datafile

QUES.VAR = SYMBOL
WNO,SCRATTR,FRAMATTR,ROW,COL,LEN = INTEGER
KEY = cr ; esc ; break ; tab ; btab ; del

;

bdel ; ins ; end ; home ; function(INTEGER) ; up ; down ;

left ; right

;

ctrlleft; ctrlright; ctrlend; ctrlhome; pgup; pgdn;

chr(CHAR) ; otherspec

52

**

* *

* GLOBDEF.PRO *

* GLOBAL DECLARATIONS *

* *

***/

GLOBAL PREDICATES

nondeterm question(SYMBOL) - (i)

nondeterm \vrite_solution(LIST) -(i)

nondeterm menu(WNO,SCRATTR,FRAMATTR,
ROW,COL,STRING,LIST,INTEGER)-(i,i,i,i,i,i,i,o)

nondeterm write_screen(LIST)- (i)

nondeterm repeat

solution

position_in_window(SYMBOL)-(i)
nondeterm retrieve_contains

nondeterm retrieve_adjacent(SYMBOL)-(i)

nondeterm retrieve_string(SYMBOL)-(i)

nondeterm add_problem(LIST)-(i)

append(LIST,LIST,LIST)-(i,i,o)

nondeterm error(SYMBOL)-(i)

retract_facts

nondeterm print(SYMBOL,SYMBOL)-(i,i)
enter_fuel_fact(SYMBOL,SYMBOL)-(i,i)

compare_string_void_to_contains

nondeterm assert_fact(SYMBOL,SYMBOL)-(i,i)

assert_empty_fac t

nondeterm ask_ques_read_ans(SYMBOL,SYMBOL)-(o,i)

* *

* ANAGDEF.PRO *

* GLOBAL DECLARATIONS *

* *

GLOBAL PREDICATES

nondeterm indeterminate

nondeterm losingfuel(SYMBOL)-(i)

nondeterm paste_test(SYMBOL)-(i)

53

nondetermfot_paste_test(SYMBOL)-(i)

nondeterm fourthdeck(SYMBOL)-(i)

nondeterm losing_fuel_water(SYMBOL)-(i)

nondeterm voids_oil(SYMBOL)-(i)

nondeterm sea_valve_leak(SYMBOL)-(i)

nondeterm fot_paste(SYMBOL)-(i)

nondeterm assert_filled(SYMBOL)-(i)

nondeterm fos_pump_run_refuel(SYMBOL)-(i)

nondeterm fot_pump_run_refuel(SYMBOL)-(i)

nondeterm mmr_strip_pump(SYMBOL)-(i)
nondeterm clear_sounding_tube(SYMBOL)-(i)

nondeterm void_ovrflow(SYMBOL)-(i)

* PIPEGDBASE.PRO *

* *

GLOBAL DATABASE - problem

contains(SYMBOL,SYMBOL)
problem_tank(SYMBOL)
user_data

first_char(CHAR)

adjacent_tanks(SYMBOL)
adjacent_fuel_tanks(SYMBOL)

string_tanks(SYMBOL)

string_fuel_tanks(SYMBOL)

string_void_tanks(SYMBOL)

string_void_in_tank(SYMBOL)

which_tank_losing_fuel(SYMBOL)
above_tank(SYMBOL)
filled_from(SYMBOL)
otbd_void(SYMBOL)
inbd_void(SYMBOL)
nondeterm fuel(SYMBOL)
count(INTEGER)
problem(LIST)

54

* *

* DATABASE.PRO *

* *

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"

PREDICATES

search_contains(SYMBOL,INTEGER)
search_adjacent(SYMBOL,INTEGER)
search_string(SYMBOL)

compare_contains(SYMBOL,SYMBOL,SYMBOL)
compare_adjacent(SYMBOL,SYMBOL,SYMBOL,INTEGER)
compare_string(SYMBOL,SYMBOL,SYMBOL)
compare_string_to_problem_tank

moredata(file)

find_space(SYMBOL,INTEGER)
split_string(INTEGER,SYMBOL,SYMBOL,SYMBOL)
is_space(INTEGER,INTEGER,SYMBOL)
check_adjacent(SYMBOL)
check_string(SYMBOL)
which_adjacent(SYMBOL)
which_tanks_in_string

find_adj_tanks(SYMBOL)
find_above_tank

find_string_tanks(SYMBOL)

check_empty_list(LIST,LIST)

assert_string_void_in_tank(SYMBOL)

CLAUSES
retrieve_adjacent(WHICH) :-

openread(datafile,"adjacent.txt"), readdevice(datafile),

problem_tank(COMP_NUM),str_len(COMP_NUM,LENGTH),
search_adjacent(COMP_NUM,LENGTH),closefile(datafile),

readdevice(keyboard),

55

which_adjacent(WHICH).

retrieve_adjacent(_):-

closefile(datafile).

which_adjacent(WHICH):- WHICH =

"all",adjacent_tanks(TANKS),

find_adj_tanks(TANKS).

which_adjacent(WHICH):- WHICH = "above" ,find_above_tank.

find_above_tank :
-

adjacent_tanks(TANK),str_len(TANK,LEN),LENGTH = LEN -

1 3,frontstr(LENGTH,TANK,_,LAST), find_space(LAST,0),

count(COUNT),frontstr(COUNT,LAST,_,ABOVE),!,
assertz(above_tank(ABOVE),problem).

find_above_tank:- !.

search_adjacent(COMP_NUM,LENGTH):-
readln(PIPESYS), ! ,moredata(datafile),

split_string(LENGTH,PIPESYS,COMPNO,SYSTEM),
compare_adjacent(COMP_NUM,COMPNO,SYSTEM,LENGTH).

search_adjacent(_,_):- !.

compare_adjacent(COMP_NUM,COMPNO,REST,_):-
COMP_NUM = COMPNO,!,assertz(adjacent_tanks(REST),

problem).

compare_adjacent(COMP_NUM,_,_,LENGTH):-
search_adjacent(COMP_NUM,LENGTH).

find_adj_tanks(TANKS):-

frontchar(TANKS,_,REST),find_space(REST,0),

count(LENGTH),
frontstr(LENGTH,REST,COMPNO,STRl),
!,check_adjacent(COMPNO),find_adj_tanks(STRl).

flnd_adj_tanks(_):- !.

check_adjacent(COMPNO):-str_len(COMPNO,LEN),
LAST = LEN- 1,

frontstr(LAST,COMPNO,_,USAGE),USAGE = "F",

assertz(adjacent_fuel_tanks(COMPNO),problem).

check_adjacent(_):- !.

56

find_space(ADJ_TANK,COUNT):-frontchar(ADJ_TANK,FRT,REST),
char_int(FRT,VAL),is_space(VAL,COUNT,REST).

is_space(VAL,COUNT,REST):- VALo 32JNCCOUNT =

COUNT +1,!,

find_space(REST,INCCOUNT),!.
is_space(_,COUNT,_):-asserta(count(COUNT),problem).

retrieve_string(STRING_NUM):-

openread(datafile,"compartment.txt"),

readdevice(datafile),

search_string(STRING_NUM), closefile(datafile),

readdevice(keyboard),

which_tanks_in_string.

retrieve_string(_):-

closefile(datafile),readdevice(keyboard),readchar(_).

search_string(STRING_NUM):-

readln(DATA),moredata(datafile),

frontstr(4,DATA,STR_NO,REST),
compare_string(STRING_NUM,STR_NO,REST),
search_string(STRING_NUM).

search_string(_):- !.

compare_string(STRING_NUM,STRNO,REST):-
STRING_NUM = STRNO,assertz(string_tanks(REST),problem).

compare_string(_,_,_):- !.

which_tanks_in_string:- string_tanks(TANKS),

find_string_tanks(TANKS),fail.

which_tanks_in_string:- !.

find_string_tanks(TANKS):- !,frontchar(TANKS,_,REST),

check_string(REST).

check_string(TANKS):- str_len(TANKS,LEN), LAST = LEN - 1,

frontstr(LAST,TANKS,_,USAGE),USAGE = "F",

assertz(string_fuel_tanks(TANKS),problem).

check_string(TANKS):- str_len(TANKS,LEN), LAST = LEN - 1,

57

frontstr(LAST,TANKS,_,USAGE),USAGE = "V",

assertz(string_void_tanks(TANKS),problem).

check_string(_):- !.

retrieve_contains :-

openread(datafile,"contains.txt"),

readdevice(datafile), problem_tank(COMP_NUM),
str_len(COMP_NUM,LENGTH),
search_contains(COMP_NUM,LENGTH),closefile(datafile),

readdevice(keyboard).

retrieve_contains :

-

closefile(datafile),readdevice(keyboard).

search_contains(COMP_NUM,LENGTH):-
readln(PIPESYS),moredata(datafile),

split_string(LENGTH,PIPESYS,COMPNO,SYSTEM),
compare_contains(COMP_NUM,COMPNO,SYSTEM),
search_contains(COMP_NUM,LENGTH).

search_contains(_,_)- _ -

split_string(LENGTH,PIPESYS,COMPNO,SYSTEM):-!,
frontstr(LENGTH,PIPESYS,COMPNO,SYSTEM).

compare_contains(COMP_NUM,COMPNO,SYSTEM):-
COMP_NUM = COMPNO,
assertz(contains(COMPNO,SYSTEM),problem).

moredata(FILE):- not(eof(FILE)).

add_problem(PROBLEM):-problem(LIST),
check_empty_list(LIST,PROBLEM).

check_empty_list(["_"],PROBLEM) :-

!,asserta(problem(PROBLEM),problem).

check_empty_list(LIST,PROBLEM):-

! ,append(LIST,PROBLEM,LIST2),
asserta(problem(LIST2),problem).

compare_string_to_problem_tank:- string_void_tanks(_),

compare_string_void_to_contains.

compare_string_to_problem_tank:-error("voids in string").

compare_string_void_to_contains:- string_void_tanks(VOID),

58

contains(_,PIPESYS), frontchar(PIPESYS,_,REST),

fronttoken(REST,_,STR 1),

frontchar(STRl,_,PIPE),VOID = PIPE,

assert_string_yoid_in_tank(VOID),fail.

compare_string_void_to_contains.

assert_string_void_in_tank(SYMBOL):- !,

assertz(string_void_in_tank(SYMBOL),problem).

* *

* SCREEN.PRO *

* *

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"

PREDICATES
readkey(KEY)
readkey 1 (KEY,CHAR,INTEGER)
readkey2(KEY,INTEGER)
answer(CHAR)

CLAUSES
readkey(KEY):-readchar(T),answer(T),char_int(T,VAL),

readkey 1(KEY,T,VAL).

readkeyl(KEY,_,0):-!,readchar(T),char_int(T,VAL),

readkey2(KEY,VAL).
readkey l(cr,_, 13):-!.

readkey l(esc,_,27):-!.

readkey l(chr(T),T,_) .

readkey2(up,72):- !

.

readkey2(down,80):-!.

readkey2(function(N),VAL):-VAL>58,VAL<70,N=VAL-58,!.
readkey2(otherspec,_).

59

answer(T):- user_data,asserta(first_char(T)),write(T).

answer(_):- !.

PREDICATES
maxlen(LIST,INTEGER,INTEGER)
listlen(LIST,INTEGER)

writelist(INTEGER,INTEGER,LIST)
index(LIST,INTEGER,SYMBOL)
scroll_screen(LIST)

check_end_of_question(LIST)

check_question_length(LIST,INTEGER)

* MENUS *

* *

PREDICATES
menul(ROW,SCRATTR,LIST,ROW,INTEGER,INTEGER)
menu2(R0W,SCRATTR,LIST,R0W,INTEGER,INTEGER,KEY)
request(INTEGER,INTEGER,INTEGER,SYMBOL)
user_key(INTEGER,INTEGER,SYMBOL)
user_request(INTEGER,INTEGER,SYMBOL)
user_input(KEY,INTEGER,INTEGER,INTEGER)

CLAUSES
menu(WN,SN,FN,LI,KOL,TXT,LIST,CHOICE):-

shiftwindow(21),

maxlen(LIST,0,ANTKOL),
listlen(LIST,LEN),ANTLI=LEN,LEN>0,
HHl=ANTLI+2,HH2=ANTKOL+2,

makewindow(WN,SN,FN,TXT,LI,KOL,HHl,HH2),
HH3=ANTK0L,
writelist(0,HH3,LIST),cursor(0,0),

menu 1 (0,SN,LIST,ANTLI,ANTKOL,CH),
CH0ICE=1+CH,
removewindow,
shiftwindow(22),

shiftwindow(2).

60

menul(LI,SN,LIST,MAXLI,ANTKOL,CHOICE):-
field_attr(LI,0,ANTKOL,l 12),

cursor(LI,0),

readkey(KEY),
menu2(LI,SN,LIST,MAXLI,ANTK0L,CH0ICE,KEY).

menu2(_,_,_,_,_,- 1 ,esc):- !

.

menu2(LI,_,_,_,_,CH,function(10)):-!,CH=LI.

menu2(LI,_,_,_,_,CH,cr):-!,CH=LI.

menu2(LI,SN,LIST,MAXLI,ANTK0L,CH0ICE,up):-
LI>0,!,

field_attr(LI,0,ANTKOL,SN),

LI1=LI-1,

menu 1 (LI 1 ,SN,LIST,MAXLI,ANTKOL,CHOICE).

menu2(LI,SN,LIST,MAXLI,ANTKOL,CHOICE,down):-
LRMAXLI-1,!,
field_attr(LI,0,ANTKOL,SN),

LI1=LI+1,
menu 1 (LI 1 ,SN,LIST,MAXLI,ANTKOL,CHOICE).

menu2(LI,SN,LIST,MAXLI,ANTK0L,CH0ICE,_):-
menul(LI,SN,LIST,MAXLI,ANTKOL,CHOICE).

user_key(ROW,COL,ANSWER):-
asserta(user_data),user_request(ROW,COL,ANSWER),

retract(user_data)

.

user_request(ROW,COL,ANSWER):-readkey(KEY),
user_input(KEY,REQUEST,ROW,COL),
! ,request(REQUEST,ROW,COL,ANSWER).

user_input(esc,-l,_,_):- !.

user_input(cr,l,_,_):- !.

user_input(down,l,ROW,COL):- cursor(R,C),R <> ROW,
NROW = R + l,

scr_char(R,C,CHAR),cursor(NROW,COL),scr_char(R,C,CHAR).
user_input(down,l,ROW,COL):-!,cursor(ROW,COL).
user_input(up,l,_,COL):-cursor(R,C),Ro 0,NROW = R
- l,scr_char(R,C,CHAR),

cursor(NROW,COL),scr_char(R,C,CHAR).

user_input(up,l,ROW,COL):- !,cursor(ROW,COL).

user_input(_,0,_,_):- !.

61

request(l,ROW,COL,ANSWER):-user_request(ROW,COL,ANSWER).
request(0,_,_,ANSWER):-readln(ANS),first_char(T),

frontchar(ANSWER,T,ANS),
write(ANSWER),retract(first_char(T)).

request(-l,_,_,_):- fail.

CLAUSES
index([XIJ,l,X):- !.

index([_IL],N,X):-N>l,Nl=N-l,index(L,Nl,X).

append([],L,L).

append([AhlAt],B,[AhlC]):-append(At,B,C).

maxlen([HIT],MAX,MAXl):-
str_len(H,LEN),

LEN>MAX,!,
maxlen(T,LEN,MAXl).

maxlen([_IT],MAX,MAXl):-maxlen(T,MAX,MAXl).
maxlen([],LEN,LEN).

listlen([],0).

listlen([_IT],N):-

listlen(T,X),

N=X+1.

writelist(_,_,[]).

writelist(LI,ANTKOL,[HIT]):-field_str(LI,0,ANTKOL,H),

LI 1 =LI+ 1 ,writelist(LI 1 ,ANTKOL,T).

write_screen([]).

write_screen([HIT]):-

scroll_screen([HIT]),

write_screen(T).

scroll_screen([HIT]):-

cursor(_,COL),

check_question_length([H] ,COL),

write(H," "),check_end_of_question(T).

scroll_screen([HIT]): -

scroU(l,0),write(H),

check_end_of_question(T).

62

check_question_length([HI_],LENGTH):-

str_len(H,LEN),MAXLEN = LEN + LENGTH,
MAXLEN < 65.

check_question_length(_,_):- nl.

check_end_of_question([]).

check_end_of_question([HIJ):- not(isname(H)).

check_end_of_question(_):- nl.

position_in_window("problem analysis"):-

shiftwindow(4),nl.

position_in_window(action):-

shiftwindow(7),cleanvindow,nl.

position_in_window(solution):- shiftwindow(12),nl.

repeat, repeat: -repeat.

* FACT.PRO *

* *

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"

CLAUSES

enter_fuel_fact(SYS,COMPN02):-

assert_fact(SYS,COMPN02),fail.

assert_fact(SYS,COMPN02):-

SYS="FOT",assertz(fuel(COMPN02),problem).

assert_fact(SYS,COMPN02):-

SYS="FOS",assertz(fuel(COMPN02),problem).

63

assert_empty_fact : - asserta(problem(
[
"_"

]),problem)

.

retract_facts:- retractall(_,problem).

* *

PIPEGRAPH.PRO *

* *

include "GrapDecl.PRO"

CONSTANTS
intlist = BGI_ilist

Domains
PointList = intlist*

Constants

PaletteList = intlist

* Local data base *

Database - graphics

Determ driver(Integer,Integer,String)

Determ maxcolors(Integer)

Determ maxX(Integer)

Determ maxY(Integer)

Determ graphCoord(Integer,Integer)

* *

* Return Type of Tank *

* *

PREDICATES

64

TankType(STRING,STRING)

CLAUSES
TankType("8-119-9-V";'8-119-9-V DC VOID").

TankType("8-119-7-V","8-119-7-V DC VOID").

TankType("8-l 19-1 1-F","8-1 19-1 1-F FOS").

TankType("8-119-7-V","8-119-7-V DC VOID").

* *

* Return pipes in compartment *

PREDICATES

Pipes(SYMBOL,INTEGER,INTEGER,INTEGER,INTEGER,INTEGER,SYMB
OL)

CLAUSES
Pipes("8-119-7-V",l,-l,0,-l,0,"RED").

Pipes("8-119-7-V",4,-3,0,-3,0,"BLUE").

Pipes("8-119-7-V",l,-6,0,-6,0,"RED").

Pipes("8-119-7-V",0,-8,0,-8,0,"ORANGE").

Pipes("8-119-7-V",2,-15,0,-15,0,"GREEN").

Pipes("8-119-7-V",0,6,0,6,0,"ORANGE").

Pipes("8-119-7-V",2,l 1,0,1 1,-28,"GREEN").

Pipes("8-119-7-V",2,13,0,13,0,"GREEN").

Pipes("8-119-7-V",2,15,0,15,0,"GREEN").

Pipes("8-119-9-V",l,-l,0,-l,0,"RED").

Pipes("8-119-9-V",4,-3,0,-3,0,"BLUE").

Pipes("8-119-9-V",l,-6,0,-6,0,"RED").

Pipes("8-119-9-V",0,-8,0,-8,0,"ORANGE").

Pipes("8-119-9-V",2,-15,0,-15,0,"GREEN").

Pipes("8-119-9-V",0,6,0,6,0,"ORANGE").

Pipes("8-119-9-V",2,13,0,13,-23,"GREEN").

Pipes("8-119-9-V",2,15,0,15,0,"GREEN").

Pipes("8-1 19-1 1-F", 1,-1,0,-1,0,"RED").

Pipes("8-1 19-1 l-F",4,-3,0,-3,-10,"BLUE").

Pipes("8-1 19-1 1-F", l,-6,0,-6,-25,"RED").

Pipes("8-1 19-1 1-F",0,-8,0,-8,-28,"ORANGE").

Pipes("8-119-ll-F",2,-15,0,-15,0,"GREEN").

Pipes("8- 119-11 -F",0,6,0,6,-30,"ORANGE").

65

Pipes(
,,

8-119-ll-F\2,15,0,15,0,"GREEN").

Pipes("8-119-15-V",2,15,0,15,-26,"GREEN").

* *

* Return pipename *

* *

PREDICATES
Pipename(SYMBOL,SYMBOL)

CLAUSES
Pipename("RED","Fuel Oil Transfer").

Pipename("BLUE","Fuel Oil Stripping").

Pipename("GREEN","Ballasting and Main Drain").

Pipename("ORANGE","Fuel Oil Service & Recirc").

Pipename("MAGENTA","OverFlow").

* Return name of driver *

* *

PREDICATES
GetDriverName2(Integer,String)

CLAUSES
GetDriverName2(0,"Detect").

GetDriverName2(l,"CGA").
GetDriverName2(2,"MCGA").
GetDriverName2(3,"EGA").
GetDriverName2(4,"EGA64").

GetDriverName2(5,"EGAMono").
GetDriverName2(6,"Reserved").

GetDriverName2(7,"HercMono").

GetDriverName2(8,"ATT400").

GetDriverName2(9,"VGA").
GetDriverName2(10,"PC3270").

PREDICATES

66

GetMode(Integer,Integer,String)

CLAUSES
GetMode(cga,cgaHi,"CGAHi

M
):-!.

GetMode(cga,GraphMode,S):- !,format(S,"CGA%",GraphMode).

GetMode(mcga,mcgaMed,"MCGAMed"):- !

.

GetMode(mcga,mcgahi,"MCGAHi"):- !.

GetMode(mcga,GraphMode,S):- !,format(S,"MCGA%",GraphMode).
GetMode(ega,egaLo,"EGALo"):- !.

GetMode(ega,egaHi,"EGAHi"):- !.

GetMode(ega64,ega64Lo,"EGA64Lo"):- !.

GetMode(ega64,ega64Hi,"EGA64Hi"):- !

.

GetMode(hercMono,_,"HercMonoHi"):- !

.

GetMode(egaMono,_,"EGAMonoHi"):- !.

GetMode(pc3270,_,"PC3270Hi"):- !

.

GetMode(att400,att400Med,"ATT400Med"):- !

.

GetMode(att400,att400Hi,"ATT400Hi"):- !

.

GetMode(att400,GraphMode,S):-

!,format(S,"ATT400%",GraphMode).

GetMode(vga,vgaLo,"VGALo"):- !.

GetMode(vga,vgaMed,"VGAMedo"):- !

.

GetMode(vga,vgaHi,"VGAHi"):- !.

GetMode(_,_,"UnKnown"):- !.

* *

* Return name of font *

* *

PREDICATES
GetFontName(Integer,String)

CLAUSES
GetFontName(l ,'TrixplexFont").

GetFontName(2,"SmallFont").

GetFontName(3,"SansSerifFont").

GetFontName(4,"GothicFont").

67

* *

* Implementation of the C loop: for(I=Cur, i<Max, I++) *

* *

PREDICATES
nondeterm for(Integer,Integer,Integer)

CLAUSES
for(Cur,_,Cur).

for(Cur,Max,I):- Cur2=Cur+l, Cur2<Max, for(Cur2,Max,I).

* Mode switching *

PREDICATES
ToGraphic

ToText

KeepColor(integer,integer,integer)

CLAUSES
ToGrapHic:-

/* Detect graphic equipment */

DetectGraph(G_Driver, G_Model),
KeepColor(G_Driver,G_Model,G_Mode),
GetDriverName2(G_Driver,G_Name),

assert(driver(G_Driver,G_Mode,G_Name)),

envsymbol("BGIDIR",SetValue),

InitGraph(G_Driver,G_Mode, _, _,SetValue),L

ToText :-

closegraph().

KeepColor(l,_,0).

KeepColor(_,Mode,Mode).

68

* *

* Display a status line at the bottom of the screen *

* *

PREDICATES
StatusLine(String)

CLAUSES
StatusLine(Msg):-

maxX(MaxX), maxY(MaxY), SetViewPort(0,0,MaxX,MaxY, 1),

maxColors(MaxColors), MaxCol2=MaxColors,
SetColor(MaxCol2),

SetBkColor(O),

SetTextStyle(default_Font, horiz_Dir, 1),

SetTextJustify(center_Text, top_Text),

SetLineStyle(solid_Line,0,norm_Width),

SetFillStyle(empty_Fill,0),

TextHeight("H",Height), MaxYH = MaxY-(Height+4),

Bar(0, MaxYH,MaxX,MaxY),
Rectangle(0,MaxYH,MaxX,MaxY),
MaxX2 = MaxX div 2, MaxY2 = MaxY-(Height+2),

OutTextXY(MaxX2,MaxY2, Msg),

Height5 = Height+5, MaxXl=MaxX-l, MaxY5 =

MaxY-(Height+5),

SetViewPort(1 ,Height5,MaxX 1 ,MaxY5 , 1).

* *

* Pause until the user enters a keystroke *

PREDICATES
Pause

CLAUSES
Pause :-

readChar(_).

69

* *

* Draw a solid line around the current viewport *

* *

PREDICATES
DrawBorder

CLAUSES
DrawBorder :-

maxColors(MaxColors), MaxCol2 = MaxColors,

SetColor(MaxCol2),

SetBkColor(O),

SetLineStyle(solid_Line,0,thick_Width),

GetViewSettings(Left,Top,Right,Bottom,_),

RL=Right-Left, BT=Bottom-Top,
Rectangle(0,0,RL,BT).

* *

* Establish the main window and set a viewport *

* *

PREDICATES
FullScreen(String)

CLAUSES
Ful 1Screen(Header) :-

ClearDevice,

maxColors(MaxColors),

SetColor(MaxColors), % Set current color to

white

SetBkColor(O), % Set background to black

TextHeight("H",Height), % Get basic text height

Height5=Height+5,Height4=Height+4,

maxX(MaxX), MaxXl=MaxX-l,MaxX2=MaxX div 2,

maxY(MaxY), MaxY4=MaxY-(Height4),MaxY5=MaxY-(Height5),
SetViewPort(0,0,MaxX,MaxY, 1), % Open port to full

screen

SettextStyle(small_font,horiz_dir,0),

SetTextJustify(center_text, top_text),

70

OutTextXY(MaxX2,2,Header),
SetViewPort(0, Height4, MaxX, MaxY4, 1),

DrawBorder,
SetViewPort(l, Height5, MaxXl,MaxY5, 1).

Initialize video and Global flags

PREDICATES
Initialize

CLAUSES
Initialize:-

retractall(_, graphics),

ToGraphic,

GetMaxColor(MaxColors), assert(maxcolors(MaxColors)),

GetMaxX(MaxX), assert(maxX(MaxX)),

GetMaxY(MaxY), assert(maxY(MaxY)).

Display PIPES system screen

PREDICATES
PipesScreen

CLAUSES

PipesScreen :-

FullScreen("Piping Improvement And Planning Expert

System"),

GetViewSettings(Left,Top,Right,Bottom,_),

SetTextStyle(gothic_FONT,horiz_Dir,5),

SetTextJustify(center_Text,center_Text),

maxColors(MaxColor), Color = l+round(MaxColor / 2.5),

SetColor(Color),

H = Bottom - Top, W = Right - Left,

71

W2 = Wdiv2,H2 = Hdiv2,
OutTextXY(W2,H2,"P I P E S"),

StatusLine("Press any key to Continue").

Display a pattern of random dots on the screen

DOMAINS
Pixel = p(Integer,Integer,Integer)

PixelList = Pixel*

PREDICATES
WriteDot

PutPixels(Pixellist,Integer,Integer,Integer,Integer)

OutPixels(Pixellist)

DelPIxels(Pixellist)

Delay(Integer)

CLAUSES
WriteDot :-

GetViewSettings(Left,Top,Right,Bottom,_),

H = Bottom - Top,

W = Right - Left,

maxColors(MaxColors),

PutPixels(Points,1200,H,W,Maxcolors),

DelPixels(Points),

for (0,2,1),

OutPixels(Points),

Kl,
DelPixels(Points),

fail.

WriteDot:- pause,ToText.

PutPixels([],0,_,_,_):- !.

PutPixels([p(X,Y,Color)IPoints],I,H,W,Maxcolors):

random(W,X),
random(H,Y),

72

random(MaxColors,Color),

PutPixel(X,Y,Color),

12 = 1-1,!,

PutPixels(Points,I2,H,W,Maxcolors).

OutPixels([p(X,Y,Color)IPoints]):-!,

PutPixel(X,Y,Color),

OutPixels(Points).

OutPixels(_).

DelPixels([p(X,Y,JIPoints]):-

!,PutPixel(X,Y,black),DelPixels(Points).

DelPixels(J.

Delay(N):- N > 0,!,N1 = N-l, Delay(Nl).

Delay(O).

DISPLAY COVER

PREDICATES

PipeCover

CLAUSES

PipeCover:- !,Initialize, % Set system into

graphic mode
GraphDefaults,

PipesScreen,

WriteDot.

DRAW PipeSystems

PREDICATES

73

SingleTank(SYMBOL)
PlotLine(SYMBOL)
WriteName(SYMBOL,INTEGER,INTEGER)

CLAUSES

SingleTank(CompNo):-

!,Initialize, % Set system into

graphic mode
GraphDefaults,TankType(CompNo,TYPE),

FullScreen(TYPE),

StatusLine("Press any Key to

Continue"),

setwritemode(O),

setlinestyle(solid_LINE,0,norm_WIDTH),

PlotLine(CompNo),

pause,ToText.

PlotLine(CompNo):-

pipes(CompNo,COLOR,XPOS,YPOS,XPOSl,YPOSl,PIPETYPE),
maxColors(MaxColor),

LineColor=

MaxColor-COLOR,setcolor(LineColor),

GetViewSettings(Left,Top,Right,Bottom,_),

H=Bottom-Top,W=Right-Left,

X = Wdiv2,
XCORR = X div 16 ,XREAL = XCORR *

XPOS,

YPOS,

XPLOT = X + XREAL,
XREAL1 = XCORR * XPOS1,
XPL0T1=X + XREAL1,
YCORR = H div 32 ,YREAL = YCORR *

YPLOT = LEFT + YREAL,
YREAL1 = YCORR * YPOS1,
YPLOT1 = Bottom + YREAL1,

line(XPLOT,YPLOT,XPLOTl,YPLOTl),APLOTY=YPLOTl-3,

74

arc(XPLOTl ,APLOTY, 1 80,0,4),

settextstyle(small_Font,vert_DIR,0),

SetTextJustify(top_TEXT,top_TEXT),

TX = XPLOT-
5,TY=Top,WriteName(PIPETYPE,TX,TY),

fail.

PlotLine(_).

WriteName(PIPETYPE,TX,TY):-
! ,Pipename(PIPETYPE,PIPENAME),

outtextxy(TX,TY,PIPENAME).
WriteName(_,_,_)

.

* *

* Oil in the Void Tank *

* *

/

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "AnaGdef.PRO"

PREDICATES

nondeterm cracks(SYMBOL)

CLAUSES

losingfuel("Y"):- add_problem (["losing fuel"]).

losingfuel("N"):- ask_ques_read_ans(CRACKS,"cracks in

tank"),cracks(CRACKS).

cracks("Y"):- !,add_problem(["cracks"]).

cracks("N"):- ask_ques_read_ans(FOURTHDECK,"fourth deck"),

! ,fourthdeck(FOURTHDECK), !

.

fourthdeckfY"):- !,add_problem(["4th deck"]),!.

fourthdeck("N"):- !,indeterminate,!.

75

* *

* Unable to pump Void Tank *

* *

Project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"
include "AnaGdef.Pro"

PREDICATES

nondeterm pump_leaks(SYMBOL)
nondeterm valve_open(SYMBOL)
nondeterm debris(SYMBOL)
nondeterm void_pumps(SYMBOL)
nondeterm clean_valve(SYMBOL)
nondeterm manifold(SYMBOL)
nondeterm eductor(SYMBOL)
nondeterm submersible(SYMBOL)
nondeterm bilge(SYMBOL)
nondeterm bulkhd

nondeterm bulkhd_stops(SYMBOL)
nondeterm close_valve(SYMBOL)
nondeterm bulkhd_stops_close(SYMBOL)
nondeterm pump_cracks(SYMBOL)
nondeterm sounding(SYMBOL)
nondeterm string_leaks(SYMBOL)

CLAUSES

losing_fuel_water("Y"):- ask_ques_read_ans(WHICH,"which

tank losing fuel"),

asserta(which_tank_losing_fuel(WHICH)),

ask_ques_read_ans(LEAKS,

"unable pump losing fuel"),pump_leaks(LEAKS).

losing_fuel_water("N"):-

ask_ques_read_ans(VALVE_OPEN,"check valve"),

76

valve_open(VALVE_OPEN).

pumpJeaks("Y"):-add_problem(["leaks"]).

pump_leaks("N"):- losing_fuel_water("N").

valve.openC'Y^i-ask.ques.read.ansCMANIFOLD/'manifold"),

manifold(MANIFOLD).
valve_open("N"):-ask_ques_read_ans(VOID_PUMP,"void

pump"),void_pumps(VOID_PUMP).

debris("Y"):- ask_ques_read_ans(CLEAN,"clean valve"),

clean_valve(CLEAN).

debris("N"):- eductor("N").

void_pumps("Y"):- add_problem(["pumps"]).

void_pumps("N"):-valve_open("Y").

clean_valve("Y"):- add_problem(["clean valve"]).

clean_valve("N"):- eductor("N").

manifold("Y"):-ask_ques_read_ans(EDUCTOR,"eductor"),

eductor(EDUCTOR).
manifold("N"):-ask_ques_read_ans(DEBRIS,"check

debris"),debris(DEBRIS).

eductor("Y"):-add_problem(["eductor"]).

eductor("N"):-ask_ques_read_ans(BILGE,bilge),bilge(BILGE).

submersible("Y"):- add_problem(["submersible"]).

submersible("N"):- ask_ques_read_ans(CRACKS, "cracks in

tank"),pump_cracks(CRACKS).

bilge("Y"):-bulkhd.

bilge("N"):- ask_ques_read_ans(CLOSE_VALVE,"close valve"),

close_valve(CLOSE_VALVE).

bulkhd:- ask_ques_read_ans(BULKHD_STOPS,"bulkhd stops"),

bulkhd_stops(BULKHD_STOPS).

bulkhd_stops("Y"):-

ask_ques_read_ans(SUBMERSIBLE,"submersible"),

submersible(SUBMERSIBLE).
bulkhd_stops("N"):-ask_ques_read_ans(STOPS_CLOSE,"bulkhd

77

stops close"),

bulkhd_stops_close(STOPS_CLOSE).

close_valve("Y"):- add_problem(["valves closed"]).

close_valve("N"):- bulkhd.

bulkhd_stops_close("Y"):-add_problem(["bilge"]).

bulkhd_stops_close("N"):-bulkhd_stops("Y").

pump_cracks("Y"):- add_problem(["cracks"]).

pump_cracks("N"):- ask_ques_read_ans(LEAKS,"leaky pipes"),

string_leaks(LEAKS).

sounding("Y"):- add_problem(["sounding tube"]).

sounding("N"):- indeterminate.

string_leaks("Y"):- add_problem([" string leaks"]).

string_leaks("N"):- ask_ques_read_ans(SOUNDING,"sounding

tube"),sounding(SOUNDING).

* *

* Void Tank Pumps but Refills with Water *

* *

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "AnaGdef.PRO"

PREDICATES

cycle_sea_valve(SYMBOL)

void_backflow(SYMBOL)
manifold_pressure(SYMBOL)
void_cracks(SYMBOL)
overboard(SYMBOL)
void_debris(SYMBOL)
void_breaks(SYMBOL)
void_suction(SYMBOL)

78

open_ovbd(SYMBOL)
holes(SYMBOL)
close_suction(SYMBOL)
bulkhd_stops_open(SYMBOL)
close_bulkhd_stops(SYMBOL)

flooding_valve(SYMBOL)
close_flood_valve(SYMBOL)
inboard_void(SYMBOL)

CLAUSES

sea_valve_leak("Y"):- ask_ques_read_ans(CYCLE,"cycle sea

valve"),cycle_sea_valve(CYCLE).

sea_valve_leak("N"):-ask_ques_read_ans(BACKFLOW,"void

backflow"),void_backflow(BACKFLOW).

cycle_sea_valve("Y"):- add_problem(["cycle sea valve"]).

cycle_sea_valve("N"):- add_problem(["industrial repair"]).

void_backflow("Y"):- ask_ques_read_ans(MANIFOLD,"manifold
pressure"),manifold_pressure(MANIFOLD).

void_backflow("N"):- ask_ques_read_ans(CRACKS,"cracks in

tank"),void_cracks(CRACKS).

manifold_pressure("Y"):-ask_ques_read_ans(OVERBOARD,

"overboard"),overboard(OVERBOARD).
manifold_pressure("N"):- ask_ques_read_ans(DEBRIS,

"check debris"),void_debris(DEBRIS).

void_cracks("Y"):- add_problem(["void cracks"]).

void_cracks("N"):- ask_ques_read_ans(BREAKS,"sounding
tube"),void_breaks(BREAKS).

overboard("Y"):- ask_ques_read_ans(SUCTION,"void suction"),

void_suction(SUCTION).

overboard("N"):- ask_ques_read_ans(OPEN,"open

ovbd"),open_ovbd(OPEN).

void_debris("Y"):-add_problem(["debris"]).

void_debris("N"):- ask_ques_read_ans(INBOARD,"inboard
void"),inboard_void(INBOARD).

inboard_void("Y"):- add_problem(["inboard"]).

79

inboard_void("N"):- indeterminate.

voidJ>reaks("Y"):-add_problem(["breaks"]).

voidJ)reaks("N"):-ask_ques_read_ans(HOLES,"holes"),

holes(HOLES).

void_suction("Y"):- ask_ques_read_ans(CLOSE,"close

suction"),close_suction(CLOSE).

void_suction("N"):- ask_ques_read_ans(OPEN,"bulkhd

stops open"),bulkhd_stops_open(OPEN).

open_ovbd("Y"):- add_problem(["open ovbd"]).

open_ovbd("N"):- overboard("Y").

holes("Y"):- add_problem(["holes 4th deck"]).

holes("N"):- indeterminate.

close_suction("Y"):- void_suction("N").

close_suction("N"):- manifold_pressure("N").

bulkhd_stops_open("Y"):- ask_ques_read_ans(STOPS, "close

bulkhdstops"),close_bulkhd_stops(STOPS).

bulkhd_stops_open("N"):- manifold_pressure("N").

close_bulkhd_stops("Y"):-ask_ques_read_ans(FLOODING,

"flooding valve"),flooding_valve(FLOODING).

close_bulkhd_stops("N"):- manifold_pressure("N").

flooding_valve("Y"):- indeterminate.

flooding_valve("N"):- ask_ques_read_ans(FLOOD,
"close flood valve"),close_flood_valve(FLOOD).

close_flood_valve("Y"):- indeterminate.

close_flood_valve("N"):- manifold_pressure("N").

I** ***************

* *

* Damage Control Void Will Not Flood *

* *

project "PIPES"

80

include "PipeGdoms.PRO"
include "GlobDef.PRO"

include "AnaGdef.PRO"

PREDICATES

oil_hydro_station(SYMBOL)
clean_station_fltr(SYMBOL)

air_escape_open(SYMBOL)
sel_valve_bkwrd(SYMBOL)
damage_hydro_line(SYMBOL)
sel_mismarked(SYMBOL)

CLAUSES

clear_sounding_tube("Y"):- ask_ques_read_ans(OIL,"oil hydro

station"),oil_hydro_station(OIL).

clear_sounding_tube("N"):- add_problem(["sounding tube"]).

oil_hydro_station("Y"):- ask_ques_read_ans(FLTR,"clean

station fltr"),clean_station_fltr(FLTR).

oil_hydro_station("N"):- add_problem(["oil hydro station"]).

clean_station_fltr("Y"):- ask_ques_read_ans(AIR,"air escape

open"),air_escape_open(AIR).

clean_station_fltr("N"):- add_problem(["clean station

filter"]).

air_escape_open("Y"):- ask_ques_read_ans(SEL,"sel valve

bkwrd"),sel_valve_bkwrd(SEL).

air_escape_open("N"):- add_problem(["air escape open"]).

sel_valve_bkwrd("Y"):- add_problem(["sel valve bkwrd"]).

sel_valve_bkwrd("N"):- ask_ques_read_ans(DAMAGE,"damage
hydro line"),damage_hydro_line(DAMAGE).

damage_hydro_line("Y"):- add_problem(["damage hydro line"]).

damage_hydro_line("N"):- ask_ques_read_ans(SEL,

"sel_mismarked"),sel_mismarked(SEL).

sel_mismarked("Y"):- add_problem(["sel mismarked"]).

81

sel_mismarked("N"):- add_problem(["correct mismark"]).

* *

* Void Overflowing *

* *

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "AnaGdef.PRO"

PREDICATES

trans_pump_run(SYMBOL)
close_ovrfl_stop(SYMBOL)

eductor_lit_off(SYMBOL)

another_eductor(SYMBOL)
close_edu_ovrfl_stop(SYMBOL)

void_inb(SYMBOL)
ballast_manifold(SYMBOL)
strip_dischrg(SYMBOL)

close_FM_valve(SYMBOL)
close_strip(SYMBOL)

close_sea_fld_valve(SYMBOL)

close_valve_ovrfl_stop(SYMBOL)

void_inb_contm(SYMBOL)
dischr_contm(SYMBOL)
cls_strip_ovrfl_valve(SYMBOL)
jp5_trans(SYMBOL)
closeJp5(SYMBOL)
diesel_trans(SYMBOL)

CLAUSES

trans_pump_run("fuel"):- losingfuel("Y").

trans_pump_run("water"):- ask_ques_read_ans(LIT,"eductor lit

82

off"),eductor_lit_off(LIT).

* Overflowing Water *

* *

eductor_lit_off("Y"):- ask_ques_read_ans(CLOSE,"close

edu ovrfl stop"),close_edu_ovrfl_stop(CLOSE).

eductor_lit_off("N"):- ask_ques_read_ans(EDUCTOR,"another
eductor"),another_eductor(EDUCTOR).

another_eductor("Y"):-eductorJit_off("Y").

another_eductor("N"):- ask_ques_read_ans(INBD,"void inb"),

void_inb(INBD).

close_edu_ovrfl_stop("Y"):- add_problem(["close eductor"]).

close_edu_ovrfl_stop("N"):- ask_ques_read_ans(BALLAST,
"ballast manifold"),ballast_manifold(BALLAST).

void_inb("Y"):- ask_ques_read_ans(STRIP," strip dischrg"),

strip_dischrg(STRIP).

void_inb("N"):-close_edu_ovrfl_stop("Y")

ballast_manifold("Y"):- ask_ques_read_ans(CLOSE,"close sea

fid valve"),close_sea_fld_valve(CLOSE).

ballast_manifold("N"):- ask_ques_read_ans(CLOSE,"close FM
valve"),close_FM_valve(CLOS •

).

strip_dischrg("Y"):- ask_ques_read_ans(CLOSE,"close strip"),

close_strip(CLOSE).

strip_dischrg("N"):- close_edu_ovrfl_stop("Y").

close_FM_valve("Y"):- add_problem(["close FM valve"]).

close_FM_valve("N"):-

close_strip("Y"):- close_edu_ovrfl_stop("Y").

close_strip("N"):- add_problem(["close strip"!).

close_sea_fld_valve("Y"):-

close_sea_fld_valve("N"):- ask_ques_read_ans(CLOSE,

"close valve ovrfl stop"),close_valve_ovrfl_stop(CLOSE).

83

close_valve_ovrfl_stop("Y"):- add_problem(["close ovrfl

stop"]).

close_valve_ovrfl_stop("N"):- indeterminate.

* *

* Overflowing Fuel *

* *

close_ovrfl_stop("Y"):- add_problem(["close ovrfl stop"]).

close_ovrfl_stop("N"):- ask_ques_read_ans(INBD,"void inb

contm"),void_inb_contm(INBD).

void_inb_contm("Y"):- ask_ques_read_ans(DIS,"dischr contm"),

dischr_contm(DIS).

void_inb_contm("N"):- ask_ques_read_ans(JP5,"jp5 trans"),

jp5_trans(JP5).

dischr_contm("Y"):- ask_ques_read_ans(CLOSE,"cls strip ovrfl

valve"),cls_strip_ovrfl_valve(CLOSE).

dischr_contm("N"):- void_inb_contm("N").

cls_strip_ovrfl_valve("Y"):- add_problem(["close strip

ovrfl"]).

cls_strip_ovrfl_valve("N"):- void_inb_contm("N").

jp5_trans("Y"):- ask_ques_read_ans(CLOSE,"close jp5"),

closeJp5(CLOSE).
jp5_trans("N"):- ask_ques_read_ans(DIESEL,"diesel trans"),

diesel_trans(DIESEL).

closeJp5("Y"):- add_problem(["close JP5"]).

closeJp5("N"):- jp5_trans("N").

diesel_trans("Y"):- add_problem(["diesel trans"]).

diesel_trans("N"):- ballast_manifold("N").

* *

* Water in the Fuel Oil Service/ Fuel Oil Storage Tank *

* *

84

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"

include "AnaGdef.PRO"

PREDICATES
nondeterm fuel_paste_test(SYMBOL)

nondeterm known_tank(INTEGER)
nondeterm outbd_fuel(SYMBOL)
nondeterm void_suction(SYMBOL)
nondeterm backflow(SYMBOL)
nondeterm fuel_pipes(SYMBOL)
nondeterm fuel_inboard(SYMBOL)
nondeterm water(SYMBOL)
nondeterm fuelJeaks(SYMBOL)
nondeterm pumps_refills_fuel(SYMBOL)

nondeterm fuel_cracks(SYMBOL)
nondeterm x_fer(SYMBOL)
nondeterm stripp_paste(SYMBOL)
nondeterm stripp_blockage(SYMBOL)
nondeterm fuel_stripp_open(SYMBOL)

nondeterm water_above(SYMBOL)
nondeterm skin_of_ship(SYMBOL)
nondeterm heavy_seas(SYMBOL)

CLAUSES

paste_test("Y"):-filled_from(TANK),

str_len(TANK,LEN),known_tank(LEN).
paste_test("N"):- ask_ques_read_ans(OTBD,"fuel outbd

fuel"),outbd_fuel(OTBD).

known_tank(0):-fot_paste_test("N").

known_tank(_) : - ask_ques_read_ans(WATER_PASTE, "fuel

waterpaste"),!,fuel_paste_test(WATER_PASTE),!.

fuel_paste_test("Y"):-filled_from(TANK),

asserta(problem_tank(TANK),problem),

85

fot_paste("Y").

fuel_paste_test("N"):-paste_test("N").

outbd_fuel("Y"):-ask_ques_read_ans(VOID_SUCTION,
"fuel void suction"),void_suction(VOID_SUCTION).

outbd_fuel("N"):-ask_ques_read_ans(BACKFLOW,"fuel

backflow"),backflow(BACKFLOW).

void_suction("Y"):- add_problem(["void suction"]).

void_suction("N"):- position_in_window("action"),

clearwindow,backflow("N").

backflow("Y"):-ask_ques_read_ans(CK_PIPES,

"fuel check pipes"),fuel_pipes(CK_PIPES).

backflow("N"):- ask_ques_read_ans(FUEL,"fuel fuel

inboard"),fuel_inboard(FUEL).

fuel_pipes("Y"):- add_problem(["void suction"]).

fuel_pipes("N"):- backflow("N").

fuel_inboard("Y"):- ask_ques_read_ans(LEAKS,

"fuel pipes inboard"),fuel_leaks(LEAKS).

fuel_inboard("N"):-ask_ques_read_ans(WATER,"fuel

water"),water(WATER).

water("Y"):- ask_ques_read_ans(REFILLS,

"pumps refills fuel"),pumps_refills_fuel(REFILLS).

water("N"):- ask_ques_read_ans(XFER,"fuel trans

conn"),x_fer(XFER).

fuel_leaks("Y"):-add_problem(["leaks"]).

fuel_leaks("N"):- ask_ques_read_ans(CRACKS,"fuel cracks"),

fuel_cracks(CRACKS).

pumps_refills_fuel("Y"):- ask_ques_read_ans(LEAKS,"fuel

pipes inboard"),fuel_leaks(LEAKS).

pumps_refills_fuel("N"):- water("N").

fuel_cracks("Y"):-add_problem(["cracks"]).

fuel_cracks("N"):- water("N").

x_fer("Y"):-add_problem(["x-fer"]).

x_fer("N"):- ask_ques_read_ans(STRIPP,"stripp paste"),

86

stripp_paste(STRIPP).

stripp_paste("Y"):- ask_ques_read_ans(BLOCK,"stripp

blockage"),stripp_blockage(BLOCK).

stripp_paste("N"):- ask_ques_read_ans(VALVE,"fuel stripp

open"),fuel_stripp_open(VALVE).

stripp_blockage("Y"):- add_problem(["stripp blockage"]).

stripp_blockage("N"):- ask_ques_read_ans(WATER,

"water above"),water_above(WATER).

fuel_stripp_open("Y"):- add_problem([" stripp open"]).

fuel_stripp_open("N"):- ask_ques_read_ans(WATER,
"water above"),water_above(WATER).

water_above("Y"):- ask_ques_read_ans(SKIN,"skin of

ship"),skin_of_ship(SKIN).

water_above("N"):-ask_ques_read_ans(HEAVY_SEAS,"heavy

seas"),heavy_seas(HEAVY_SEAS).

skin_of_ship("Y"):- add_problem(["skin of ship"]).

skin_of_ship("N"):- indeterminate.

heavy_seas("Y"):-add_problem(["heavy seas"]).

heavy_seas("N"):- indeterminate.

* *

* Water in the Fuel Oil Storage Tank *

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "AnaGdef.PRO"
include "PipeGdbase.PRO"

PREDICATES
nondeterm fot_outbd_fuel(SYMBOL)

nondeterm fot_void_suction(SYMBOL)

87

nondeterm fot_pipes(SYMBOL)
nondeterm fot_inboard(SYMBOL)
nondeterm fot_water(SYMBOL)
nondeterm fot_pumps_refills_fuel(SYMBOL)

nondeterm fot_cracks(SYMBOL)
nondeterm fot_water_above(SYMBOL)
nondeterm fot_skin_of_ship(SYMBOL)

nondeterm fot_backflow(SYMBOL)
nondeterm fotJeaks(SYMBOL)
nondeterm fot_stripp_paste(SYMBOL)

nondeterm fot_stripp_blockage(SYMBOL)

nondeterm fot_stripp_open(SYMBOL)

nondeterm fot_heavy_seas(SYMBOL)

CLAUSES

fot_paste_test("Y
,,

):-fmed_from(TANK),!,
asserta(problem_tank(TANK),problem),

ask_ques_read_ans(WATER_PASTE,"fot waterpaste"),

fot_paste(WATER_PASTE),!.
fot_paste_test("N"):- ask_ques_read_ans(OTBD,"fuel outbd

fuel"),fot_outbd_fuel(OTBD).

fot_paste("Y"):- ask_ques_read_ans(FILLED,"fot filled

from"),!,assert_filled(FILLED).

fot_paste("N
n
):-fot_paste_test("N").

fot_outbd_fuel("Y"):-ask_ques_read_ans(VOID_SUCTION,

"fuel void suction"),fot_void_suction(VOID_SUCTION).

fot_outbd_fuel("N"):-ask_ques_read_ans(BACKFLOW,"fot

backflow"),fot_backflow(BACKFLOW).

fot_void_suction("Y"):- add_problem(["void suction"]).

fot_void_suction("N"):- position_in_window("action"),

clearwindow,fot_backflow("N").

fot_backflow("Y"):-ask_ques_read_ans(CK_PIPES,

"fot check pipes"),fot_pipes(CK_PIPES).

fot_backflow("N"):- ask_ques_read_ans(FUEL,"fuel fuel

inboard"),fot_inboard(FUEL).

fot_pipes("Y"):- add_problem(["void suction"]).

fot_pipes("N"):-fot_backflow("N").

88

fot_inboard("Y"):- ask_ques_read_ans(LEAKS,

"fuel pipes inboard"),fot_leaks(LEAKS).

fot_inboard("N"):-ask_ques_read_ans(WATER,"fuel

water"),fot_water(WATER).

fot_water("Y"):- ask_ques_read_ans(REFILLS,

"pumps refills fuel"),fot_pumps_refills_fuel(REFILLS).

fot_water("N"):- ask_ques_read_ans(STRIPP,"fot stripp

paste"),fot_stripp_paste(STRIPP).

fot_leaks("Y"):- add_problem(["fot leaks"]).

fot_leaks("N"):- ask_ques_read_ans(CRACKS,"fuel cracks"),

fot_cracks(CRACKS).

fot_pumps_refills_fuel("Y"):- ask_ques_read_ans(LEAKS,

"fuel pipes inboard"),fot_leaks(LEAKS).

fot_pumps_refills_fuel("N"):-fot_water("N").

fot_cracks("Y"):-add_problem(["cracks"]).

fot_cracks("N"):- fot_water("N").

fot_stripp_paste("Y"):- ask_ques_read_ans(BLOCK,"fot

stripp blockage"),fot_stripp_blockage(BLOCK).

fot_stripp_paste("N"):- ask_ques_read_ans(VALVE,"fot

stripp open"),fot_stripp_open(VALVE).

fot_stripp_blockage("Y"):- add_problem(["fot stripp

blockage"]).

fot_stripp_blockage("N"):- ask_ques_read_ans(WATER,
"water above"),fot_water_above(WATER).

fot_stripp_open("Y"):- add_problem([" stripp open"]).

fot_stripp_open("N"):- ask_ques_read_ans(WATER,
"water above"),fot_water_above(WATER).

fot_water_above("Y"):- ask_ques_read_ans(SKIN,"skin of

ship"),fot_skin_of_ship(SKIN).

fot_water_above("N"):-ask_ques_read_ans(HEAVY_SEAS,"fot

heavy seas"),fot_heavy_seas(HEAVY_SEAS).

fot_skin_of_ship("Y"):- add_problem(["skin of ship"]).

fot_skin_of_ship("N"):- indeterminate.

89

fot_heavy_seas("Y"):-add_problem(["heavy seas"]).

fot_heavy_seas("N"):- indeterminate.

* *

* Fuel Oil Service Tank Overflowing *

* *

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"

include "AnaGdef.PRO"

PREDICATES
pump_overflow(INTEGER)
fill_valve_closed(SYMBOL)

strip_sys_used(SYMBOL)

eductor_strip(SYMBOL)
trs_valve_ovrfl(SYMBOL)

recric_fostank(SYMBOL)

ovbd_dis_open(SYMBOL)
stripJineup(SYMBOL)
ovbd_ovrfl_stop(SYMBOL)
close_recirc(SYMBOL)

fill_x_fer(SYMBOL)
correct_ovrfl_stop(SYMBOL)

strip_suct_valve(SYMBOL)

serv_suct_valve(SYMBOL)
recirc_valve(SYMBOL)

pipeJeak(SYMBOL)

CLAUSES

fos_pump_run_refuel("Y"):- ask_ques_read_ans(PUMP,"pump
overflow"), pump_overflow(PUMP).

fos_pump_run_refuel("N"):- ask_ques_read_ans(CLOSE,"fill

valve closed"),fill_valve_closed(CLOSE).

pump_overflow("Y"):- pump_run_refuel("N").

90

pump_overflow("N"):- ask_ques_read_ans(SYS, "strip sys

used"),strip_sys_used(SYS).

fill_valve_closed("Y"):-pump_overflow("N").

fill_valve_closed("N"):- ask_ques_read_ans(TRANS,"trs

valve ovrfl"),trs_valve_ovrfl(TRANS).

strip_sys_used("Y"):- ask_ques_read_ans(EDUCTOR,"eductor

strip"),eductor_strip(EDUCTOR).

strip_sys_used("N"):- ask_ques_read_ans(RECIRC,"recirc

fostank"),recirc_fostank(RECIRC).

eductor_strip("Y"):- ask_ques_read_ans(OVBD,"ovbd dis

open"),ovbd_dis_open(OVBD).

eductor_strip("N"):- ask_ques_read_ans(LINEUP,"strip

lineup"),strip_lineup(LINEUP).

trs_valve_ovrfl("Y"):- add_problem(["trs valve ovrfl"]).

trs_valve_ovr("N"):-fill_valve_closed("Y").

recirc_fostank("Y"):- ask_ques_read_ans(STOP, "close

recirc"),close_recirc(STOPS).

recirc_fostank("N"):- ask_ques_read_ans(FILL,"fill

x_fer"),fill_x_fer(FILL).

ovbd_dis_open("Y"):- strip_sys_used(("N").

ovbd_dis_open("N"):- ask_ques_read_ans(STOP,"ovbd ovrfl

stop"),ovbd_ovrfl_stop(STOP).

strip_lineup("Y"):- strip_sys_used("N").

strip_lineup("N"):- ask_ques_read_ans(STOP,"correct ovrfl

stop"),correct_ovrfl_stop(STOP).

ovbd_ovrfl_stop("Y"):- add_problem(["ovbd ovrfl stop"]).

ovbd_ovrfl_stop("N"):- strip_sys_used("N").

close_recirc("Y"):- add_problem(["close recirc"]).

close_recirc("N"):- recirc_fostank("N").

fill_x_fer("Y"):- ask_ques_read_ans(STRIPP,"strip suet

valve"),strip_suct_valve(STRIPP).

fill_x_fer("N"):- add_problem(["fill x-fer"]).

91

correct_ovrfl_stop("Y"):- add_problem(["correct ovrf

stop"]).

correct_ovrfl_stop("N"):-strip_sys_used("N").

strip_suct_valve("Y"):- ask_ques_read_ans(SERV,"serv suet

valve"),serv_suct_valve(SERV).

strip_suct_valve("N"):- add_problem([" strip suet valve"]).

serv_suct_valve("Y"):- ask_ques_read_ans(RECIRC,"recirc

valve"),recirc_valve(RECIRC).

serv_suct_valve("N"):- add_problem(["serv suet valve"]).

recirc_valve("Y"):- ask_ques_read_ans(LEAK,"pipe

leak"),pipe_leak(LEAK).

recirc_valve("N"):- add_problem(["recirc valve"]).

pipe_leak("Y"):- add_problem(["pipe leak"]).

pipe_leak("N"):- indeterminate.

* *

* Fuel Oil Service Tank Losing Fuel *

* *

/

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "AnaGdef.PRO"

PREDICATES

pump_pipe_leaks(SYMBOL)
fill_debris(SYMBOL)

refill(SYMBOL)
inspectJeaks(SYMBOL)
open_sound_tube(SYMBOL)
fos_los_fuel_cracks(SYMBOL)

CLAUSES

92

voids_oil("Y"):- ask_ques_read_ans(VOID,"which void has

oil"),retract_facts,assert(problem_tank(VOID),problem),

retrieve_contains,add_problem(["oil in void"]),

contains_fuel,fuel(_),ask_ques_read_ans(LOSINGFUEL,"losing

fuel"),!,losingfuel(LOSINGFUEL).

voids_oil("N"):- add_problem(["fos losing fuel"]),

ask_ques_read_ans(LEAKS,"pump pipe

leaks"),pump_pipe_leaks(LEAKS).

pump_pipe_leaks("Y"):- ask_ques_read_ans(FILL,"fill

debris"),fill_debris(FILL).

pump_pipe_leaks("N"):- add_problem(["leaks"]).

fill_debris("Y"):- ask_ques_read_ans(REnLL,"refill"),

refill(REFELL).

fill_debris("N"):- add_problem(["refills"]).

refill("Y"):- ask_ques_read_ans(LEAKS,"inspect leaks"),

inspect_leaks(LEAKS).

refill("N"):- ask_ques_read_ans(CRACKS,"fos los fuel

cracks"),fos_los_fuel_cracks(CRACKS).

inspect_leaks("Y"):- add_problem(["leaks"]).

inspect_leaks("N"):- refill("N").

fos_los_fuel_cracks("Y"):- add_problem(["cracks"]).

fos_los_fuel_cracks("N"):- ask_ques_read_ans(OPEN,"open

sound tube"),open_sound_tube(OPEN).

open_sound_tube("Y"):- indeterminate.

open_sound_tube("N"):- add_problem(["sound tube"]),

* *

* Fuel Oil Storage Tank Overflowing *

* *

project "PIPES"

93

include "PipeGdoms.PRO"
include "GlobDef.PRO"

include "PipeGdbase.PRO"

include "AnaGdef.PRO"

PREDICATES
pump_overflow(INTEGER)
fill_valve_closed(SYMBOL)

strip_sys_used(SYMBOL)

eductor_strip(SYMBOL)
trs_valve_ovrfl(SYMBOL)

ovbd_dis_open(SYMBOL)
strip_lineup(SYMBOL)
ovbd_ovrfl_stop(SYMBOL)
fill_x_fer(SYMBOL)

correct_ovrfl_stop(SYMBOL)
strip_suct_valve(SYMBOL)

pipeJeak(SYMBOL)

CLAUSES

fot_pump_run_refuel("Y"):- ask_ques_read_ans(PUMP,"fot

pump overflow"),pump_overflow(PUMP).

fot_pump_run_refuel("N"):- ask_ques_read_ans(CLOSE,"fot

fill valve closed"),fill_valve_closed(CLOSE).

pump_overflow("Y"):- pump_run_refuel("N").

pump_overflow("N"):- ask_ques_read_ans(SYS,"fot strip sys

used"),strip_sys_used(SYS).

fill_valve_closed("Y"):-pump_overflow("N").

fill_valve_closed("N"):- ask_ques_read_ans(TRANS,"for trs

valve ovrfl"),trs_valve_ovrfl(TRANS).

strip_sys_used("Y"):-ask_ques_read_ans(EDUCTOR,"fot

eductor strip"),eductor_strip(EDUCTOR).

strip_sys_used("N"):- ask_ques_read_ans(FILL,"fot fill

x_fer"),fill_x_fer(FILL).

eductor_strip("Y"):- ask_ques_read_ans(OVBD,"fot ovbd dis

open"),ovbd_dis_open(OVBD).

eductor_strip("N"):- ask_ques_read_ans(LINEUP,"fot strip

lineup"),strip_lineup(LINEUP).

94

trs_valve_ovrfl("Y"):- add_problem(["trs valve ovrfl"]).

trs_valve_ovr("N"):-fill_valve_closed("Y").

ovbd_dis_open("Y"):-strip_sys_used(("N").

ovbd_dis_open("N"):- ask_ques_read_ans(STOP,"fot ovbd

ovrfl stop"),ovbd_ovrfl_stop(STOP).

strip_lineup("Y"):- strip_sys_used("N'*).

strip_lineup("N"):- ask_ques_read_ans(STOP,"fot correct

ovrfl stop"),correct_ovrfl_stop(STOP).

ovbd_ovrfl_stop("Y"):- add_problem(["ovbd ovrfl stop"]).

ovbd_ovrfl_stop("N "):- strip_sys_used("N").

fill_x_fer("Y"):- ask_ques_read_ans(STRIPP,"fot strip suet

valve"),strip_suct_valve(STRIPP).

fiU_x_fer("N"):- add_problem(["fill x-fer"]).

correct_ovrfl_stop("Y"):- add_problem(["correct ovrf

stop"]).

correct_ovrfl_stop("N"):-strip_sys_used("N").

strip_suct_valve("Y"):- ask_ques_read_ans(LEAK,"fot pipes

leak"),pipes_leak(LEAK).

strip_suct_valve("N"):- add_problem([" strip suet valve"]).

pipe_leak("Y"):- add_problem(["pipe leak"]).

pipe_leak("N"):- indeterminate.

* *

* Large Contaminated Tank Overflowing *

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"

include "AnaGdef.PRO"

95

PREDICATES
cont_pump_overflow(INTEGER)
cont_ovrfl_closed(SYMBOL)

other_sys_used(SYMBOL)
cont_ovbd_open(SYMBOL)
other_dischrg(SYMBOL)
other_ovrf!_closed(SYMBOL)

mmr_eductor(SYMBOL)
main_drain(SYMBOL)
gate_off_stem(SYMBOL)
cont_blkhd_stop(SYMBOL)
fot_pressure(SYMBOL)
close_trans_fuel(SYMBOL)

CLAUSES

mmr_strip_pump("Y"):- ask_ques_read_ans(PUMP,"cont pump
overflow"),cont_pump_overflow(PUMP).

mmr_strip_pump("N"):- ask_ques_read_ans(OP,"other sys

sed"),other_sys_used(OP).

cont_pump_overflow("Y"):- add_problem(["pump overflow"]).

cont_pump_overflow("N"):- mmr_strip_pump("N").

cont_ovrfl_closed("Y"):- add_problem(["overflow stops

closed"]).

cont_ovrfl_closed("N"):- other_sys_used("N").

other_sys_used("Y"):- ask_ques_read_ans(CLOSE,"cont ovrfl

closed"),cont_ovrfl_closed(CLOSE).

other_sys_used("N"):- ask_ques_read_ans(DISCH,"other

dischrg"),other_dischrg(DISCH).

other_dischrg("Y"):- ask_ques_read_ans(OVBD,"other ovrfl

closed"),other_ovrfl_closed(OVBD).

other_dischrg("N"):- ask_ques_read_ans(EDUCTOR,"mmr
eductor"),mmr_eductor(EDUCTOR).

other_ovrfl_closed("Y"):- add_problem(["other ovrfl

closed"]).

other_ovrfl_closed("N"):- other_dischrg("N").

96

mmr_eductor("Y"):- ask_ques_read_ans(EDUCTOR,"cont ovrbd

open"),cont_ovrbd_open(EDUCTOR).
mmr_eductor("N"):- ask_ques_read_ans(MAIN,"main drain"),

main_drain(MAIN).

cont_ovbd_open("Y"):- ask_ques_read_ans(STEM,"gate off

stem"),gate_off_stem(STEM).

cont_ovbd_open("N"):- add_problem(["ovbd open"]).

main_drain("Y"):-ask_ques_read_ans(PRESSURE,"fot

pressure"),fot_pressure(PRESSURE).

main_drain("N"):- ask_ques_read_ans(STOP,"cont bulkhd

stop"),cont_bulkhd_stop(STOP).

gate_off_stem("Y"):- add_problem(["gate off stem"]).

gate_off_stem("N"):- mmr_eductor(N").

cont_bulkhd_stop("Y"):- add_problem(["bulkhd stop"]).

cont_bulkhd_stop("N"):-main_drain("Y").

fot_pressure("Y"):- ask_ques_read_ans(CLOSE,"close trans

fuel"),close_trans_fuel(CLOSE).

fot_pressure("N"):- indeterminate.

close_trans_fuel("Y"):- add_problem(["trans pressure"]).

close_trans_fuel("N"):-indeterminate.

* *

* QUESTION *

* Contains the questions for the PIPES system. *

* *

project "PIPES"

include "PipeGdoms.PRO"
include "GlobDef.PRO"
include "PipeGdbase.PRO"

CLAUSES

97

* The problem tank number is a mandatory piece of *

* information and is entered in the following format: *

* 8-119-9-V *

question("tankno"):-

position_in_window("problem analysis"),

write_screen(["What is the compartment number of the

problem tank?"]).

* The tank number is required to locate the tank to be *

* drawn and is entered in the following format: *

* 8-1 19-1 1-F *

* *

question("single tank"):- nl,

write_screen(["Enter compartment number
to be drawn: "]).

* Water in the Fuel Oil Storage Tank *

question("fot filled from"):-

position_in_window("action"),

problem_tank(COMP_NUM),position_in_window("problem
analysis"),

write_screen(["Which fuel oil storage tank was",

"fuel oil storage tank", COMP_NUM,"filled from?", "(press

enter if unknown)"]).

question("fot backflow"):-

otbd_void(QUES_VAR),position_in_window("action"),

write_screen(["As a precaution to eliminate D.C. Void",

QUES_VAR,
"as a possible source","of contamination, pump",
"it to zero and leave empty","until actual source of,

"contamination to", "Fuel Oil Storage tank is",

98

"determined. "/'Monitor level of',QUES_VAR,"to see if,

"its level rises from fuel "/'leakage back through",

"void suction tail pipe. "/'Alternative is to open,",

"gas free and visually"/'inspect suction tail pipe in",

QUES_VAR]),position_in_window("problem analysis"),

write_screen(["Does oil flow back into the void?"!).

question("fot check pipes"),QUES_VAR),
position_in_window("action"),

write_screen(["The tailpipe in D.C. void", QUESJVAR,
"is backflowing fuel,pump down Fuel Oil storage",

"tank and check the 2 1/2 inch copper-nickle void",

"suction line passing through the service tank."]),

position_in_window("problem analysis"),

write_screen(["Are any pipes leaking?"]).

question("fot void suction"):- problem_tank(TANK),
position_in_window("action"),

write_screen(["Pump down fuel oil storage

tank",TANK,"and inspect 2 1/2",

"inch void suction line in storage tank for cracked or

leaking couplings"]),

position_in_window("problem analysis"),

write_screen(["Are there any leaks in the 2 1/2 inch

void suction line?"]).

question("fot heavy seas"):- position_in_window("action"),

position_in_window("problem analysis"),clearwindow,nl,

write_screen(["Has the ship been operating recently in

heavy seas, which",

"could have backflowed through the overflow piping into

the service tank?"]).

question("fot stripp open"):-

problem_tank(TANK),position_in_window("action"),

write_screen(["Disassemble the Fuel Oil Storage

Ballast/","stripping valve for",TANK/\
Inspect for debris under the seat,",

"disc off stem, and correct, free operation"]),

position_in_window("problem analysis"),

write_screen(["Was the ballast/ stripping valve damaged
or inoperative?"]).

question("fot stripp paste"):-

99

problem_tank(TANK),position_in_window("action"),nl,

write_screen(["Strip Fuel oil storage tank",TANK,
"and perform water paste test"]),

position_in_window("problem

analysis"),write_screen(["Was",TANK,

"successfully stripped of water?"]).

question("fot stripp blockage"):-

problem_tank(TANK),position_in_window("action"),

write_screen(["Disassemble the Fuel Oil Storage

Ballast/'V'stripping valve for",TANK,".

Check for blockage holding the valve in the",

"open position, allowing backflow of water into the

service tank."]),

position_in_window("problem

analysis"),write_screen(["Was the ballast/ stripping",

"valve blocked open or partially open?"]).

* Water in the Fuel Oil Service Tank *

question("fuel filled from"):-

position_in_window("action"),

problem_tank(COMP_NUM),position_in_window("problem
analysis"),

write_screen(["Which fuel oil storage tank was",

"fuel oil service tank", COMP_NUM,"filled from?"]).

questionffuel waterpaste"):- filled_from(QUES_VAR),
position_in_window("action"),

write_screen(["Do a waterpaste test on fuel oil storage

tank ",QUES_VAR,
"."]),position_in_window("problem analysis"),

write_screen(["Is the test positive for water?"]).

question("fuel outbd fuel"):-

position_in_window("action"),

otbd_void(QUES_VAR),
write_screen(["Sound the outboard D.C. void",QUES_VAR]),
position_in_window("problem analysis"),

write_screen(["Does the sounding tape indicate the

100

presence of fuel",

"(May require a waterpaste test)?"]).

question("fuel backflow"):-

otbd_void(QUES_VAR),position_in_window("action"),

write_screen(["As a precaution to eliminate D.C. Void",

QUES_VAR,"as a possible source of contamination,

pump", "it to zero and leave", "empty until actual

source of ',"contamination to", "Fuel Oil Service tank

isV'determined. "/'Monitor level of',QUES_VAR,"to see

ifV'its level rises from","fuel leakage back through",

"void suction tail pipe. "/'Alternative is to open,",

"gas free and visually"/'inspect suction tail pipe in",

QUES_VAR]),position_in_window("problem analysis"),

write_screen(["Does oil flow back into the void?"]).

question("fuel check pipes"):- otbd_void(QUES_VAR),
position_in_window("action"),

write_screen(["The tailpipe in D.C. void", QUES_VAR,
"is backflowing fuel,pump down Fuel Oil service",

"tank and check the 2 1/2 inch copper-nickle void",

"suction line passing through the service tank."]),

position_in_window("problem analysis"),

write_screen(["Are any pipes leaking?"]).

question("fuel fuel inboard"):-

position_in_window("action"),

position_in_window("problem analysis"),

print("inboard voids","problem analysis"),

write_screen(["Do soundings or waterpaste test indicate

there is fuel","in any of these voids?"]).

question("fuel pipes inboard"):-

position_in_window("action"),

write_screen(["The inboard D.C. void indicates fuel is

present,"]),question("leaking").

question("fuel void suction"):- problem_tank(TANK),
position_in_window("action"),

write_screen(["Pump down fuel oil service

tank",TANK,"and inspect 2 1/2",

"inch void suction line in service tank for cracked or

leaking couplings"]),

101

position_in_window("problem analysis"),

write_screen(["Are there any leaks in the 2 1/2 inch

void suction line?"]).

questionf'pumps refills fuel"):-

position_in_window("action"),

write_screen(["Pump inboard void empty","Take soundings

and do waterpaste",

"test after serveral hours to see if voids refill with

fuel."]),position_in_window("problem analysis"),

write_screen(["Do any voids in the string refill with

fuel?"]).

question("leaking"):- position_in_window("action"),

write_screen(["pump down void, open, gas free, and check

for leaks",

"on:W,
" 4 inch fuel oil service suction \n",

" 5 inch fuel oil transfer to FOS tank \n",

" 2 inch recirc pipe to FOS tank \n",

" 2 1/2 inch stripping pipe to FOS tankW,
" heating coils \n"]),position_in_window("problem

analysis"),

write_screen([" Are any pipes leaking?"]).

question("fuel cracks"):- problem_tank(COMP_NUM),
position_in_window("action"),

write_screen(["Piping is not leaking. As a precaution,",

"do not flood inboard D.C. voids. ","Pump, open, gas",

"free, and inspect", COMP_NUM, " for cracks in the",

"longitudinal bulkheads near", "the weld to the

transverse",

"bulkhead. Check for leaks'V'at cracks in pipe and

heating",

"coil penetrations in the","lower part of the void."]),

position_in_window("problem analysis"),

write_screen(["Are there any cracks?"]).

question("fuel water"):- position_in_window("action"),

position_in_window("problem analysis"),

print("inboard voids","problem analysis"),

write_screen(["Is there water in these voids?"]).

102

question("fuel pump"):- position_in_window("action"),

write_screen(["Pump void empty as a precaution"]),

position_in_window("problem analysis"),

write_screen(["Does void refill with fuel?"]).

question("fuel trans conn"):-

position_in_window("action"),

position_in_window("problem analysis"),

write_screen(["Is the emergency connection from the Fuel

Oil Service",

"pump suction piping to the Fuel Oil Transfer system ",

"open (normally a locked closed valve)?"]).

question("heavy seas"):- position_in_window("action"),

position_in_window("problem analysis"),clearwindow,nl,

write_screen(["Has the ship been operating recendy in

heavy seas, which",

"could have backflowed through the overflow piping into

the service tank?"]).

question("fuel stripp open"):- problem_tank(TANK),

position_in_window("action"),

write_screen(["Disassemble the Fuel Oil Service",

"stripping valve for",TANK,". Inspect for debris under

the seat,",

"disc off stem, and correct, free operation"]),

position_in_window("problem analysis"),

write_screen(["Was the stripping valve damaged or

inoperative?"]).

question(" stripp paste"):-

problem_tank(TANK),position_in_window("action"),

write_screen([" Strip Fuel oil service tank",TANK,
"and perform water paste test"]),

position_in_window("problem

analysis"),write_screen(["Was",TANK,

"successfully stripped of water?"]).

questionf'stripp blockage"):-

problem_tank(TANK),position_in_window("action"),

write_screen(["Disassemble the Fuel Oil Service",

"stripping valve for",TANK,". Check for blockage

holding the valve in the",

103

"open position, allowing backflow of water into the

service tank."]),

position_in_window("problem

analysis"),write_screen(["Was the stripping",

"valve blocked open or partially open?"]).

question("water above"):- position_in_window("action"),

problem_tank(TANK),above_tank(ABOVE),
write_screen(["Open and inspect the compartment

above",TANK,"which is",

ABOVE,"and check for water"]),position_in_window("problem

analysis"),

write_screen(["Is there water in",ABOVE]).

question("skin of ship"):- position_in_window("action"),

write_screen(["Inspect manhole cover, flange coaming,

gasket, deck,",

"pipe penetratings, and sounding tube/ air escape piping

on decks above",

"for deterioration and possible avenues of leakage"]),

position_in_window("problem analysis"),

write_screen(["Was a path for water to leak into the

service tank found",

"on the fourth deck?"]).

* *

* Fuel Oil Service Tank Losing Fuel *

* *

question("voids have oil"):- position_in_window("action"),

position_in_window("problem analysis"),

print("voids in string","problem analysis"),

write_screen(["Do any of the above Voids contain

fuel?"]).

question("which void has oil"):-

position_in_window("action"),

position_in_window("problem analysis"),

print("voids in string","problem analysis"),

write_screen(["Which Void contains fuel?"]).

104

* *

* Void Pumps but Refills with Water *

* *

question("sea valve leak"):-

problem_tank(TANK),above_tank(ABOVE),
position_in_window("action"),

write_screen(["Empty",TANK,"remove tank",

"top cover in",ABOVE,"gas free and visually observe sea

valve","for leakage. "]),position_in_window("problem

analysis"),write_screen([

"Does sea valve leak?"]).

question("void backflow"):-

position_in_window("action"),write_screen([

"While void is empty and suction secured,","gas free and

enter void,",

"check void suction tailpipe for backflow."]),

position_in_window("problem analysis"),

write_screen(["Is there backflow?"]).

questionf'cycle sea valve"):-

problem_tank(TANK),position_in_window("action"),

write_screen(["Hydraulically cycle sea valve

for,",TANK,"and then pump,",

TANK,"empty."]),position_in_window("problem analysis"),

write_screen([Observe sea valve,",

"did cycling the sea valve stop leakage?"]).

question("manifold

pressure"):-position_in_window("action"),write_screen([

"Break flange of void suction valve in machinery

space"," Do not remove",

"all fasteners. "]),position_in_window("problem

analysis"),write_screen([

"Is manifold under water pressure?"]).

105

question("void cracks"):- position_in_window("action"),

position_in_window("problem

analysis"),write_screen(["Are there",

"any cracks in welds at transverse bulkheads",

"or in piping penetrations?"]).

question("overboard"):-position_in_window("action"),

write_screen([

"Check line up of machinery space or pumproom
eductor.","Ifthe",

"firemain supply in open"]),position_in_window("problem

analysis"),

write_screen(["Is the overboard discharge valve",

"of the eductor open?"]).

question("void suction"):- position_in_window("action"),

position_in_window("problem analysis"),

write_screen(["Are other void suction valves open?"]).

questionf'open ovbd"):-

position_in_window("action"),write_screen([

"Open the overboard discharge."]),

position_in_window("problem analysis"),

write_screen(["Is pressure at the void valve manifold

removed?"]).

question("close suction"):-position_in_window("action"),

write_screen(["Close all other suction valves in the

machinery space or pumproom."]),

position_in_window("problem analysis"),

write_screen(["Is the void manifold underpressure?"]).

question("bulkhd stopsopen"):-

position_in_window("action"),

write_screen(["Verify that bulkhead stops in the main",

"drain system",

"for the affected machinery space/ pumproom are

closed."]),

position_in_window("problem analysis"),

write_screen(["Are bulkhead stops closed?"]).

question("flooding valve"):-position_in_window("action"),

position_in_window("problem analysis"),

106

write_screen(["Is the sea flooding valve to the

ballast system closed and locked?"]).

question("close bulkhd stops"):-

position_in_window("action"),

write_screen(["Close main drainage systems bulkhead",

"stops."]),position_in_window("problem analysis"),

write_screen(["Is the",

"void manifold under pressure?"]).

question("close flood valve"):-

position_in_window("action"),

write_screen(["Close sea flooding valve."]),

position_in_window("problem analysis"),

write_screen(["Is the void manifold under pressure?"]).

question("holes"):-

above_tank(ABOVE),position_in_window("action"),

write_screen(["Open, gas free (if necessary)and",

"inspect the 4th deck compartment",ABOVE,"for holes in

the deck coaming, tank top, gasket or penetrations."]),

position_in_window("problem analysis"),

write_screen(["Were holes/",

"breaks found in ",ABOVE,"?"]).

question("inboard void"):- problem_tank(TANK),
position_in_window("action"),print("inboard

voids", "action"),

write_screen(["The above voids are located",

"inboard of,TANK,". Pump down these voids, open, gas

free'V'and inspect",

"2 1/2 inch copper nickle void suction line to",TANK]),

position_in_window("problem analysis"),write_screen([

"Are any lines leaking?"]).

* *

* Oil in the Void Tank *

* *

question("losing fuel"):- position_in_window("action"),

position_in_window("problem analysis"),

107

print("fuel tanks"/'problem analysis"),

! ,problem_tank(COMP_NUM),
write_screen(["The above are fuel oil system

associated pipes contained in ", COMP_NUM,". Are any of

these tanks losing fuel?"]).

question("cracks in tank"):- problem_tank(COMP_NUM),
position_in_window("action"),

write_screen(["Pump, open, gas free,",

"and inspect", COMP_NUM, "for cracks in the

longitudinal bulkheads near the weld", "to the

transverse bulkhead.",

"Check for leaks at cracks", "in pipe and heating coil",

"penetrations in the lower part of the void."]),

position_in_window("problem analysis"),

write_screen(["Are there any cracks in ",COMP_NUM,"?"]).

question("fourth deck"):- retrieve_adjacent(above),

above_tank(TANK),

position_in_window("action"),

write_screen(["Inspect fourth deck compartment for oil",

"on deck, loose or deteriorated tank top to void",

"below holes in deck, holes in pipe","penetrations (air

escape,","sounding tube, or TLI."]),

position_in_window("problem analysis"),

write_screen(["Are there any leaks in",TANK,"?"]).

question("void losing fuel water"):-

position_in_window("action"),

position_in_window("problem analysis"),

print("string fuel tanks"/'problem analysis"),

write_screen(["Are any of the above fuel tanks",

"losing fuel/filling with water?"]).

question("which tank losing fuel"):-

position_in_window("action"),position_in_window("problem

analysis"),write_screen(["Which tank is losing fuel?"]).

question("check valve"):- position_in_window("action"),

position_in_window("problem analysis"),

write_screen(["Is the void suction valve open?"]).

question("check debris"):- position_in_window("action"),

write_screen(["Disassemble the void suction valve and",

108

"remove bonnet from manifold. Inspect debris/ blockage",

"under the seat."]),

position_in_window("problem analysis"),

write_screen(["Was there blockage/ debris under the

valve?"]).

question("void pump"):- position_in_window("action"),

write_screen(["Open void suction valve."]),

position_in_window("problem analysis"),

write_screen(["Does the void pump?"]).

question("clean valve"):- position_in_window("action"),

write_screen(["Clean suction valve."]),

position_in_window("problem analysis"),

write_screen(["Will the void pump?"]).

question(manifold) : - position_in_window(" action "),

position_in_window("problem analysis"),

write_screen(["Is manifold under water pressure at

suction valve?"]).

question(eductor):- position_in_window("action"),

write_screen(["Check eductor lineup.","Check overboard

discharge suction valve firemain supply.", "(Note: Check
valve clattering",

"means eductor is drawing air)"]),

position_in_window("problem analysis"),

write_screen(["Is eductor lined up incorrectly?"]).

question(bilge):- position_in_window("action"),

write_screen(["Check other valves in the machinery",

"space or pumproom."]),

position_in_window("problem analysis"),

write_screen(["Are bilgewells and other void suction",

"valves all closed?"]).

question(submersible):- problem_tank(TANK),
position_in_window("action"),

write_screen(["Open",TANK,"pump with submersible pump",

"(Note: NSTM permits pumping oil)"]),

position_in_window("problem analysis"),

write_screen(["Will tank not pump down?"]).

109

question(tailpipe):- position_in_window("action"),

position_in_window("problem analysis"),

write_screen(["Is there backflooding through the",

"tailpipe?"]).

question("ovbd discharge"):- position_in_window("action"),

position_in_window("problem analysis"),

write_screen(["Is the eductor overboard discharge",

"open?"]).

question(" sounding tube"):- position_in_window("action"),

write_screen(["Trace out sounding tube and air",

"escape."]),

position_in_window("problem analysis"),

write_screen(["Is void flooding through breaks in",

"sounding tube or air escapes?"]).

question("unable pump losing fuel"):- problem_tank(TANK),
position_in_window("action"), write_screen([

"Pump, open, and gas free",TANK,". "/'Inspect fuel oil",

"transfer/stripping/suction",

"line for leaks."]),

position_in_window("problem analysis"),

write_screen(["Are pipes leaking?"]).

question("bulkhd stops"):- position_in_window("action"),

position_in_window("problem analysis"),

write_screen(["Are the bulkhead stops closed?"]).

question("close valve"):- position_in_window("action"),

write_screen(["Close all valves."]),

position_in_window("problem analysis"),

write_screen(["Will void pump now?"]).

question(bulkhd_stops_close):-

position_in_window("action"),

write_screen(["Close the bulkhead stops."]),

position_in_window("problem analysis"),

write_screen(["Will void pump now?"]).

question("leaky pipes"):- position_in_window("action"),

problemj;ank(TANK),!,retrieve_contains,!,

110

compare_string_void_to_contains,

print("string voids in tank","action"),nl,

write_screen(["Pump down, open, gas free, and check",

"each of the above",

"voids for leaks on the 2 1/2 inch stripping pipe to",

TANK]),position_in_window("problem analysis"),

write_screen(["Are any pipes leaking?"]).

* Void Overflowing *

* *

question("pump run refuel") :- position_in_window("problem

analysis"),

write_screen(["Are any fuel oil transfer pumps running",

"or is the","fuel oil transfer system pressurized due to",

"refueling?"]).

question("pump overflow") :- problem_tank(TANK),
position_in_window("action"),

write_screen(["Secure fuel oil transfer pumps or isolate

the transfer",

"system to the section serving service tank",TANK]),
position_in_window("problem analysis"),

write_screen(["Is the service tank still overflowing?"]).

* *

* Overflowing Water *

»i- \Li \L, sLf -Jr sL? -1- jL? jl» -A- -A- \L* jl; jl- -A- -A- ;A; jfc ~A; ale ife sic ~A? si; ;4c *Je ait i i 2ic lie die ik at sic aic sic lie lie aLr lie i; iir 3lc lir it ik st- vl- -J, jl» vL. ^u -1- «A^ -A- ^- si- -A-

question(" strip sys used") :- position_in_window("problem

analysis"),write_screen(["Is the fuel oil stripping

system being used?"]).

questionf'trs valve ovrfl") :- problem_tank(TANK),

position_in_window("action"),

write_screen(["Close the fill/transfer valve to ",TANK]),

position_in_window("problem analysis"),

write_screen(["Did service tank",TANK,"stop

/

111

overflowing?"]).

question("eductor strip") :- position_in_window("problem

analysis"),write_screen(["Is the eductor being used to

strip?"]).

question("recirc fostank") :- problem_tank(TANK),
position_in_window("problem analysis"),

write_screen(["Are the fuel oil service pumps
recirculating to",TANK,"?"]).

question("ovbd dis open") :- position_in_window("problem

analysis"),write_screen(["Is the eductor overboard

discharge open?"]).

question("strip lineup") :- position_in_window("problem

analysis"),write_screen(["Is the stripping pump lined up

correctly?"]).

question("close recirc") :- problem_tank(TANK),
position_in_window("action"),

write_screen(["Secure recirc to",TANK]),
position_in_window("problem analysis"),

write_screen(["Did the overflow from service

tank",TANK,"stop?"]).

question("fill x_fer") :- problem_tank(TANK),
position_in_window("action"),

write_screen(["Disassemble and inspect the fill/transfer

valve to",TANK]), position_in_window("problem analysis"),

write_screen(["Was the fill/transfer valve operating

correctly?"]).

question("ovbd ovrfl stop") :- problem_tank(TANK),
position_in_window("action"),

write_screen(["Open the eductor overboard discharge"]),

position_in_window("problem analysis"),

write_screen(["Is service tank",TANK,"still

overflowing?"]).

112

* *

* Overflowing Fuel *

* *

question("correct ovrfl stop") :- problem_tank(TANK),

position_in_window("action"),

write_screen(["Verify correct line up of stripping

pump"]),position_in_window("problem analysis"),

write_screen(["Is service tank",TANK,"still

overflowing?"]).

question("strip suet valve") :- problem_tank(TANK),
position_in_window("action"),

write_screen(["Disassemble and inspect stripping valve to

service tank",TANK]), position_in_window("problem

analysis"),write_screen(["Is the stripping valve

to",TANK,"operating correctly?"]).

question("serv suet valve") :- problem_tank(TANK),
position_in_window("action"),

write_screen(["Disassemble and inspect the service suction

valve to",TANK]), position_in_window("problem analysis"),

write_screen(["Is the service suction valve to",TANK,
"operating correctly?"]).

question("recirc valve") :- problem_tank(TANK),
position_in_window("action"),

write_screen(["Disassemble and inspect the recirc valve

to",TANK]),position_in_window("problem analysis"),

write_screen(["Is the recirc valve to",TANK,"operating

correctly?"]).

question("pipe leak") :- problem_tank(TANK),
position_in_window("action"),

write_screen(["Open, gas free, and inspect piping and

structure in",TANK"]), position_in_window("problem

analysis"),write_screen(["Are any pipes or is any

structure in",TANK,"ruptured or", "leaking?"]).

113

/+. **
* *

* Fuel Oil Storage Tank Overflowing *

* *

question("fot pump run refuel") :-

position_in_window("problem analysis"),

write_screen(["Are any fuel oil transfer pumps running or

is the","fuel oil transfer system pressurized due to

refueling?"]).

question("fot pump overflow") :- problem_tank(TANK),
position_in_window("action"),

write_screen(["Secure fuel oil transfer pumps or isolate

the transfer",

"system to the section serving storage tank",TANK]),

position_in_window("problem analysis"),

write_screen(["Is the storage tank still overflowing?"]).

question("fot strip sys used") :-

position_in_window("problem analysis"),

write_screen(["Is the fuel oil stripping system being

used?"]).

question("fot trs valve ovrfl") :- problem_tank(TANK),
position_in_window("action"),

write_screen(["Close the fill/transfer valve to ",TANK]),

position_in_window("problem analysis"),

write_screen(["Did storage tank",TANK,"stop

overflowing?"]).

question("fot eductor strip") :- position_in_window("problem

analysis"),write_screen(["Is the eductor being used to

strip?"]).

question("fot ovbd dis open") :- position_in_window("problem

analysis"),write_screen(["Is the eductor overboard

discharge open?"]).

question("fot strip lineup") :- position_in_window("problem

analysis"),write_screen(["Is the stripping pump lined up
correctly?"]).

114

question("fot fill x_fer") :- problem_tank(TANK),

position_in_window("action"),

write_screen(["Disassemble and inspect the fill/transfer

valve to",TANK]), position_in_window("problem analysis"),

write_screen(["Was the fill/transfer valve operating

correctly?"]).

question("fot ovbd ovrfl stop") :- problem_tank(TANK),

position_in_window("action"),

write_screen(["Open the eductor overboard discharge"]),

position_in_window("problem analysis"),

write_screen(["Is storage tank",TANK,"still

overflowing?"]).

question("fot correct ovrfl stop") :- problem_tank(TANK),
position_in_window("action"),

write_screen(["Verify correct line up of stripping

pump"]),position_in_window("problem analysis"),

write_screen(["Is storage tank",TANK,"still

overflowing?"]).

question("fot strip suet valve") :- problem_tank(TANK),
position_in_window("action"),

write_screen(["Disassemble and inspect stripping valve to

storage tank",TANK]), position_in_window("problem

analysis"),write_screen(["Is the stripping valve

to",TANK,"operating correctly?"]).

question("fot pipe leak") :- problem_tank(TANK),

position_in_window("action"),

write_screen(["Open, gas free, and inspect piping and

structure in",TANK"]), position_in_window("problem

analysis"),write_screen(["Are any pipes or is any

structure in",TANK,"ruptured or","leaking?"]).

1***^********************** ************************ *********
* *

* SOLUTION.PRO *

115

project "PIPES"

include "PipeGdoms.PRO"
include "PipeGdbase.PRO"

include "GlobDef.PRO"

* write_solution predicate is used to determine the *

* appropriate solution to the queries from the user *

* based on the responses given to the *

* proposed questions and facts collected from the *

* pipesystem database. These facts are asserted in *

* the problem(LIST_OF_PROBLEMS) fact. *

* The first object in the write_solution predicate *

* is the original problem selected from the problem *

* menu and the clauses are grouped by this *

* object for program clarity. *

* Solution builds the screen display and writes the *

* appropriate solution *

* *

CLAUSES

solution:- position_in_window("action"),clearwindow,

makewindow(12,23,7,"Solution",8,5, 10,70,1,255,

"\201\187\20CM88\205\186"),problem(PROBLEMLIST),!,
position_in_window("solution"),

write_solution(PROBLEMLIST),retract_facts,

readchar(_),removewindow(1 2, 1),!

.

solution:- retract facts.

* *

* OIL IN A VOID TANK *

* *

write_solution(["oil in void", "losing fuel"]):-

problem_tank(COMP_NUM),

116

fuel(C0MPN02),write_screen(["A fuel oil",

"transfer/stripping/suction line to",COMPN02,
"is cracked/holed in",COMP_NUM,".","Pump, open, clean,",

"gas free, and repair ruptured pipe."]).

write_solution(["oil in void'V'cracks"]):-

problem_tank(COMP_NUM),
retrieve_adjacent(all),print("adjacent

fuel",solution),!,

write_screen(["The cause of the fuel in void",

COMP_NUM,"is a crack in the bulkhead into",

"one of the above tanks"]).

write_solution(["oil in void","4th deck"]):-

above_tank(FOURTH_DECK),
problem_tank(COMP_NUM),write_screen(["Fuelin",COMP_NUM,
"is coming from a break in",FOURTH_DECK,
"above."]).

* *

* UNABLE TO PUMP VOID TANK *

* *

write_solution(["unable to pump","leaks"]):-

problem_tank(TANK),
write_screen(["The cause of ",TANK," not pumping",

"is that it is refilling from a fuel oil tank in the",

"string through a leak in the",

"fill/transfer/stripping/service piping inside",TANK]).

write_solution(["unable to pump","pumps"]):-

problem_tank(TANK),
write_screen(["The cause of ",TANK," not pumping is",

"that the correct suction valve in the machinery",

"space/pump room was","not open."]).

write_solution(["unable to pump","clean valve"]):-

problem_tank(TANK), write_screen(["The cause of,

TANK,"not","pumping is debris/foriegn object/rag",

"blocking the suction'V'valve from functioning."]).

117

write_solution(["unable to pump","eductor"]):-

problem_tank(TANK), write_screen(["The cause

of,TANK,"not",
"pumping is one of the following:"

"A. eductor overboard discharge not open",

"B. eductor firemain supply not open",

"C. eductor suction valve not open",

"D. firemain isolated from firemain supply valve"]).

write_solution(["unable to pump","valves closed"]):-

problem_tank(TANK), write_screen(["The cause of ",TANK,
"not pumping is another suction valve or bilge well",

"valve in the","machinery space/pumproom is open",

"causing" a loss of vacuum to",TANK]).

write_solution(["unable to pump","bilge"]):-

problem_tank(TANK), write_screen(["The cause of,

TANK, "not pumping is a bulkhead stop to another",

"machinery space/","pumproom is open."]).

write_solution(["unable to pump","submersible"]):-

problem_tank(TANK), write_screen(["The cause of ',TANK,
"not pumping is the sea flooding valve",

"is stuck open or has debris",

"nder the seat or there is a large opening to",

"the sea."]).

write_solution(["unable to pump","cracks"]):-

problem_tank(TANK), write_screen(["The cause",

"of',TANK,"not pumping is cracks in (l)bulkhead",

"structure generally near ","welds to tranverse",

"bulkheads or (2)around piping "/'penetrations into",

"adjacent tanks or (3)to the sea."]).

write_solution(["unable to pump","sounding tube"]):-

problem_tank(TANK), write_screen(["The cause of, TANK,
"not pumping is that it is reflooding through a break",

"in the sounding tube outside the tank or a break in",

"the air escape","allowing water to flow from an",

"exterior source into the void."]).

write_solution(["unable to pump", "string leaks"]):-

118

problem_tank(TANK), write_screen(["The cause of,

TANK,"not pumping is it is refilling from a leak",

"in a void suction line", "to another void in the",

"string."]).

* *

* WATER IN A FUEL OIL SERVICE TANK *

* *

/

write_solution(["water in tank","outboard void"]):-

otbd_void(QUES_VAR),
write_screen(["The outboard D.C. void", QUESJVAR,
"indicates oil present, pump down, open and gas free",

"problem Fuel Oil Service tank and check the 2 1/2",

"inch copper-nickle void suction line for leakage,",

"particularly at silver braze fittings."]).

* *

* Water in the Fuel Oil Service/ Fuel Oil Storage Tank *

* *

write_solution(["water in fuel","void suction"]) :-

problem_tank(TANK),
otbd_void(OUTBOARD),

!

,

write_screen(["The void suction line to the",

"outboard void",OUTBOARD,
"is ruptured in ",TANK,".","Empty, clean, gas free,",

"and repair the",

"break in the 2.5 inch","void suction line in",TANK]).

write_solution(["water in fuel","leaks"]) :-

inbd_void(INBOARD), write_screen(["A fuel oil ",

"service/ transfer/ stripping pipe is leaking in",

INBOARD,". Do not",

"flood "JNBOARD,". Empty, clean, gas free,and",

"repair the break in the failed pipe in"JNBOARD]).

write_solution(["water in fuel", "cracks"]) :-

119

problem_tank(TANK), inbd_void(INBOARD),
write_screen(["There are cracks in "JNBOARD,
"allowing water to ","leak into ",TANK,
" Do not flood ",INBOARD,". Empty, clean, gas ",

"free "JNBOARD, "and",TANK,
"and repair bulkhead cracks."]).

write_solution(["water in fuel","x-fer"]) :-

write_screen(["The emergency connection from ",

"the fuel oil service pump suction piping directly to

the fuel oil","transfer system was open or leaking",

"through. Close and lock the ",

"valve or repair it.
"

]).

write_solution(["water in fuel","stripp blockage"]) :-

problem_tank(TANK),
write_screen(["The stripping valve to ",TANK,
"is being held open by ","foriegn matter or is",

"damaged, allowing water to backflow through ",

"the stripping line into the service tank."]).

write_solution(["water in fuel","stripp open"]) :-

problem_tank(TANK),
write_screen(["The stripping valve to ",TANK,
"is inoperative, the "," disc is off the stem, or",

"the disc is jammed in the closed position ",

"preventing",TANK," from being stripped."]).

write_solution(["water in fuel","skin of ship"]) :-

problem_tank(TANK),

above_tank(ABOVE),
write_screen(["The source of water in ",TANK,
"is a leak from the "/'fourth deck compartment",

"above, ",ABOVE,". The tank top, tank top ",

"flange coaming, deck, gasket, stuffing tube,or a",

"piping penetration is allowing water to enter ",

TANK]).

write_solution(["water in fuel","heavy seas"]) :-

problem_tank(TANK),
write_screen(["Water from high seas is backing through",

"the service tank overflow piping through a stuck or",

"leaking check valve, back ","into the service",tank,",

120

TANK]).

* *

* WATER IN THE FUEL OIL STORAGE TANK *

* *

write_solution(["water in fuel","fot leaks"]) :-

inbd_void(INBOARD), write_screen(["A fuel oil ",

"transfer/ ballast/ stripping pipe is leaking in",

INBOARD,". Do not flood "JNBOARD,
". Empty, clean, gas free, and repair the",

"break in the failed pipe in",INBOARD]).

* VOID PUMPS BUT REFILLS WITH WATER *

* *

write_solution(["pumps but refills","industrial

repair"]):- write_screen(["The sea flooding valve is",

"leaking through and will not reseat. ",

"The valve must be cofferdamed and repaired by an",

"industrial activity."]).

write_solution(["pumps but refills","cycle sea valve"]):-

write_screen(["Debris under the seat of the sea valve",

"or other obstruction",

"was released, allowing the valve to be reseated when",

"cycled."]).

write_solution(["pumps but refills","void cracks"]):-

problem_tank(TANK),

write_screen(["Cracks in bulkheads are allowing",

TANK,"to refill","from adjacent flooded voids.",

"Pumping adjacent voids will",

"remove source of water. Industrial repairs",

"required."]).

write_solution(["pumps but refills", "debris"]):-

121

problem_tank(TANK),
write_screen(["Debris under the seat of the",

"void suction valve","allowed water to",

"back from the main drain system through the suction",

"valve into the void",TANK]).

write_solution(["pumps but refills","open ovbd"]):-

problem_tank(TANK),
write_screen(["The eductor overboard was closed",

"allowing fire main"/'pressure to leak back",

"through suction valve to void",TANK]).

write_solution(["pumps but refills","breaks"]):-

problem_tank(TANK),
write_screen(["The source of water refilling void",TANK,
"was a break in sounding tube or airescape piping",

"or a missing","sounding cap providing a path for",

"flooding from another source above."]).

write_solution(["pumps but refills","holes 4th deck"]):-

problem_tank(TANK),
above_tank(ABOVE),
write_screen(["The source of water refilling void",TANK,
"was a break in the deck, tank top cover,manhole",

"covering or piping penetrations in",ABOVE]).

write_solution(["pumps but refills","inboard void"]):-

problem_tank(TANK),
inbd_void(INBOARD),
write_screen(["The source of water refilling void",

TANK,"was a break in the void suction line in",

INBOARD]).

write_solution(["indeterminatedata"]):-

write_screen(["The answers provided thus far are",

"not sufficient to","determine a cause, retrace",

"your answers through", "the system again,and if,

"possible provide additional information."]).

122

* PipesMain.prg is the main menu for the Pipes *

* database system *

SET TALK OFF
CLEAR
SET STATUS OFF
SET BELL OFF
SET COLOR TO +G,BG/B,R,B
SelOpt = .T.

DO WHILE SelOpt

Selopt = .F.

SET FORMAT TO pipesmain

Option = "

"

READ
CLOSE FORMAT
DO CASE
CASE Option =

"

"

EXIT
CASE Option = "A"

AddSel = .T.

DO WHILE Addsel

AddSel = .F.

Add = "

"

SET FORMAT TO addscr

READ
CLOSE FORMAT
DO CASE
CASEAdd = ""

AddSel = .F.

CASE Add = "A"

do contedit

Addsel = .T.

CASE Add = "B"

do compedit

CASE Add = "C"

do pipesedit

CASE Add = "D"

do adjedit

OTHERWISE
AddSel = .T.

ENDCASE
SelOpt = X

123

ENDDO
CASE Option = "Q"

do pipequery

SelOpt = .T.

CASE Option =T
do pipeprint

SelOpt = .T.

CASE Option = "B"

CLEAR
RUN pipesbk.bat

Selopt = .T.

CASE Option = "R"

CLEAR
RUN pipesrs.bat

SelOpt = .T.

CASE Option = "E"

RUN SET BGIDIR=c:\dbase\bgi

RUN Pipes

SelOpt = .T.

OTHERWISE
SelOpt = X

ENDCASE
ENDDO
SET STATUS ON RETURN

* PipeQuery is the main query menu for the Pipes *

* database system *

SET COLOR TO +G,BG/B,R,B
ON ESCAPE RETURN
Choice = .T.

DO WHILE Choice

Choice = .F.

SET FORMAT TO pipequery

Option = "

"

READ
CLOSE FORMAT
DO CASE
CASE Option = "

"

CHOICE = .F.

CASE Option = "C"

124

do access

CHOICE = .T.

CASE Option = "P"

ChkSel = .T.

DO WHILE Chksel

ChkSel = .F.

PipeOpt = "

"

SET FORMAT TO pipesys

READ
CLOSE FORMAT
DO CASE
CASE PipeOpt =

"

"

ChkSel = .F.

CASE PipeOpt = "P"

do passing

Chksel = .T.

CASE PipeOpt = "C"

do pipecont

Chksel = X
CASE PipeOpt = "S"

do specmat

Chksel = .T.

CASE PipeOpt = "M"
do material

Chksel = .T.

OTHERWISE
ChkSel = .T.

ENDCASE
Choice = .T.

ENDDO
CASE Option = "A"

do adjtank

CHOICE = .T.

CASE Option = "L"

do Lpaint

CHOICE = .T.

CASE Option = "S"

do strings

CHOICEST.
CASE Option = "T"

do TankType
CHOICE = .T.

CASE Option = "I"

125

do inboard

CHOICE = .T.

CASE Option = "Q"

do custqry

CHOICE = .T.

OTHERWISE
Choice = .T.

ENDCASE
ENDDO
RETURN

* CompEdit.prg is used to add new records to the *

* database or modify records that already exists *

* UPPER(COMP_NUM) is the KEY field for the COMPARTMENT
* database

USE compartment INDEX compno
SET COLOR TO +G,BG/B,R,B
ON ESCAPE EXIT
Adding = .T.

DO WHILE Adding

CLEAR
CLOSE FORMAT
@ 3, 20 SAY "COMPARTMENT DATABASE UPDATE"
@ 22, 7 SAY "Press ESC to EXIT"
CompNo = SPACE(14)

@ 10,5 SAY "Enter the Compartment Number " GET CompNo;
FUNCTION "!"

READ

* Create a Search Variable

Search = UPPER(CompNo)

* RETURN if no input

IF Search = "

"

Adding = .F.

LOOP
ENDIF

* Check database for compartment number

126

SEEK Search

SET FORMAT TO compscr && open format file

* Edit if found

IFFOUNDO
READ

ENDIF

* ADD if not found

IF .NOT. FOUND()
APPEND BLANK
REPLACE Comp_Num WITH UPPER(CompNo)
READ

ENDIF

ENDDO (while adding)

REINDEX
ERASE COMPARTM.TXT
COPY TO COMPARTM FIELDS STRING,COMP_NUM TYPE DELIMITED
WITH
BLANK
CLOSE ALL
RETURN

* AdjEdit.prg is used to add new records to the *

* database or modify records that already exists *

* UPPER(COMP_NUM) is the KEY field for the COMPARTMENT
* database

USE adjacent INDEX adjcomp

SET COLOR TO +G,BG/B,R,B
ON ESCAPE EXIT
Adding = .T.

DO WHILE Adding
CLEAR
CLOSE FORMAT
@ 3, 20 SAY "ADJACENT TANK DATABASE UPDATE"
@ 22, 7 SAY "Press ESC to EXIT"
CompNo = SPACE(14)

@ 10,5 SAY "Enter the Compartment Number " GET CompNo;

127

FUNCTION"!"
READ

* Create a Search Variable

Search = UPPER(CompNo)

* RETURN if no input

IF Search = "

"

ADDING = .F.

LOOP
ENDIF

* Check database for compartment number

SEEK Search

SET FORMAT TO adjscr && open format file

* Edit if found

IFFOUNDO
READ

ENDIF

* ADD if not found

IF .NOT. FOUNDO
APPEND BLANK
REPLACE Compt_Num WITH UPPER(CompNo)
READ
IF READKEY() <= 36

DELETE
PACK
ENDIF

ENDIF

ENDDO (while adding)

REINDEX
ERASE ADJACENT.TXT
COPY TO ADJACENT TYPE DELIMITED WITH BLANK
CLOSE ALL
RETURN

128

* PipesEdit.prg is used to add new records to the *

* database or modify records that already exists *

USE pipesyst INDEX pipesys,pipename

Adding = .T.

DO WHILE Adding
CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
pipesys = SPACE(20)
System = SPACE(35)
SET FORMAT TO pipestart

READ
CLOSE FORMAT

* Create a Search Variable

IF pipesys #""

Search = UPPER(pipesys)

SET ORDER TO 1

ELSE
IF System #""

Search = UPPER(system)
SET ORDER TO 2

ELSE
Search = "

"

ENDIF
ENDIF

RETURN if no input

IF Search = "
"

Adding = .F.

LOOP
ENDIF

* Check database for compartment number
Looking = .T.

SEEK Search

SET FORMAT TO pipescr && open format file

RK_QUIT=12

129

* Edit if found

IFFOUNDO
SET COLOR TO +G,BG/B,R,B
READ
IF READKEYO = RK_QUIT
Looking = .F.

ENDIF
DO WHILE Looking .AND. .NOT. EOF()
SKIP
IF SYSNUM = Search .or. Pipe_Sys = Search

READ
IF READKEYO = RK.QUIT
Looking = .F.

ENDIF
ELSE
Looking = .F.

ENDIF
ENDDO(while looking)

ENDIF

* ADD if not found

IF .NOT. FOUND() .AND. READKEYO # RK_QUIT
APPEND BLANK
IFpipesys#"

"

REPLACE SYSNUM WITH UPPER(pipesys)

ENDIF
IF System #"

"

REPLACE Pipe_Sys WITH UPPER(System)
ENDIF
READ
IF Pipe_Sys = "

" .OR. SYSNUM = "

"

DELETE
PACK
ENDIF

ENDIF
ENDDO (while adding)

REINDEX
CLOSE ALL
RETURN

130

** ***********

* ContEdit.prg is used to add new records to the *

* database or modify records that already exists *

USE contains INDEX contcomp,contsys

Adding = .T.

DO WHILE Adding
CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
CompNo = SPACE(14)
System = SPACE(18)

SET FORMAT TO contstart

READ
CLOSE FORMAT

* Create a Search Variable

IF CompNo # "

"

Search = UPPER(CompNo)
SET ORDER TO 1

ELSE
IFSystem#""
Search = UPPER(System)
SET ORDER TO 2

ELSE
Search = "

"

ENDBF
ENDIF

* RETURN if no input

IF Search = "

"

Adding = .F.

LOOP
ENDIF

* Check database for compartment number
Looking = .T.

SEEK Search

SET FORMAT TO contscr && open format file

RK_QUIT=12

131

* Edit if found

IFFOUNDO
SET COLOR TO +G,BG/B,R,B
READ
IF READKEYO = RK_QUTT
Looking = .F.

ENDIF
DO WHILE Looking .AND. .NOT. EOF()
SKIP
IF COMPT_NUM = Search

READ
IF READKEYO = RK_QUIT
Looking = JF.

ENDIF
ELSE
Looking = .F.

ENDIF
ENDDO(while looking)

ENDIF

* ADD if not found

IF .NOT. FOUNDO .AND. READKEYO # RK.QUIT
APPEND BLANK
IF CompNo #

"

"

REPLACE CompT_Num WITH UPPER(CompNo)
ENDIF
IF System #""

REPLACE SysNum WITH UPPER(System)
ENDIF
READ
IF SysNum = "

" .OR. CompT_Num = "

"

DELETE
PACK
ENDIF

ENDIF

ENDDO (while adding)

REINDEX
ERASE CONTAINS.TXT

132

COPY TO CONTAINS TYPE DELIMITED WITH BLANK
CLOSE ALL
RETURN

* Access.prg is used to query the adjacent database *

* for the above tank to get access to an eightdeck tank *

USE adjacent INDEX adjcomp

SET COLOR TO +G,BG/B,R,B
ON ESCAPE EXIT
compno = SPACE(14)
SET FORMAT TO access

CLEAR
READ
CLOSE FORMAT

* Create a Search Variable

Search = UPPER(CompNo)

* RETURN if no input

IF Search = "

"

CLOSE ALL
RETURN

ENDIF

* Check database for compartment number

SEEK Search

SET FORMAT TO adjprt

* Show if found

IF FOUNDO
READ

ELSE
@ 10,16 CLEAR to 13,60

@ 1 1 ,25 SAY "Not an eightdeck compartment"

wait
""

ENDIF
CLOSE ALL
RETURN

133

* TankType.prg is used to list compartments *

* by type *

USE compartm
ON ESCAPE RETURN
Listing = .T.

DO WHILE Listing

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
Tank = SPACE(10)
SET FORMAT TO tanktype

READ
CLOSE FORMAT

* Create a Search Variable

DO CASE
CASE Tank = "

"

Listing = .F.

LOOP
CASE Tank = "S"

Search = "FOS"
ComName = " Fuel Oil Service"

CASE Tank =T
Search = "FOT"
ComName = " Fuel Oil Storage"

CASE Tank = "V"

Search = "VOID"
ComName =

"

Void"

CASE Tank = "C"

Search = "CONT"
ComName =

" Contaminated"

CASE Tank = "J"

Search = "JP-5"

ComName =

"

JP-5"

OTHERWISE
(5)12, 21 SAY "Invalid selection"

@ 13, 21 SAY "Press any key to continue"

wait
"

"

LOOP
ENDCASE

134

* Check database for pipe system number

Looking = .T.

LOCATE FOR UPPER(USAGE) = Search

ANS = "

"

SET FORMAT TO tankscr && open format file

RK_QUIT=12
RK_PRINT = 2

* SHOW if found

IFFOUNDO
STORE RECNO() TO saverec

STORE "USAGE" TO Sparam
STORE ComName+" Compartments " TO Title

STORE "comprt" TO prtfile

SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEY() = RK_QUIT
Looking = .F.

ENDIF
IF READKEYO = RK_print

do fprint

Looking = .F.

ENDIF

DO WHILE Looking .AND. .NOT. EOF()
CONTINUE
IFFOUNDO
READ
IF READKEYO = RK.QUIT
Looking = .F.

ENDIF
IF READKEYO = RK_PRINT
do fprint

Looking = .F.

ENDIF
ELSE
Looking = F.

ENDIF
ENDDO(while looking)

ENDIF
ENDDO

135

SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

* Passing.prg is used to find pipesystems passing *

* through a speified compartment *

USE contains INDEX contcomp

ON ESCAPE RETURN
NoExit = .T.

DO WHILE NoExit

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
CompNo = SPACE(14)
SET FORMAT TO PasStart

READ
CLOSE FORMAT

* Create a Search Variable

IFCompNor*

"

Search = UPPER(CompNo)
ELSE

Search = "

"

ENDIF

* RETURN if no input

IF Search = "

"

NoExit = .F.

LOOP
ENDIF

* Check database for compartment number
Looking = .T.

SEEK Search

ANS = "

"

SET FORMAT TO passscr && open format file

RK_QUIT = 12

RK Print = 2

136

* SHOW if found

IF FOUNDO
STORE RECNO() TO saverec

STORE "Compt_Num" TO Sparam
STORE "Pipes Passing Through Compartment "+Compt_Num;
TO Title

STORE "sysprt" TO prtfile

SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEY() = RK_QUIT
Looking = .F.

ENDIF
IF READKEYO = RK_print

do fprint

Looking = .F.

ENDIF

DO WHILE Looking .AND. .NOT. EOF()
SKIP
IF COMPT_NUM = Search

READ
IF READKEYO = RK_QUIT
Looking = .F.

ENDIF
IF READKEYO = RK_print

do fprint

Looking = .F.

ENDIF
ELSE
Looking = .F.

ENDIF
ENDDO(while looking)

ELSE
@ 10,16 CLEAR to 11,60

@ 9,25 SAY "Not a valid compartment"

@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"

wait
""

ENDIF
ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL

137

RETURN

* Material.prg is used to find the pipe systems *

* made of a specific material *

USE pipesyst INDEX pipemat

SET COLOR TO +G,BG/B,R,B
ON ESCAPE RETURN
NoExit = .T.

DO WHILE NoExit

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
pipemat = SPACE(10)

SET FORMAT TO Pipemat

READ
CLOSE FORMAT

* Create a Search Variable

IF pipemat #""

Search = UPPER(pipemat)
ELSE

Search = "

"

ENDIF

* RETURN if no input

IF Search = "
"

NoExit = .F.

LOOP
ENDIF

* Check database for pipe system number
Looking = .T.

SEEK Search

ANS = "

"

SET FORMAT TO lspecmat && open format file

RK_QUIT=12
RK_PRINT = 2

* SHOW if found

138

IFFOUND()
STORE RECNO() TO saverec

STORE "Material" TO Sparam
STORE "List of pipe systems that are made of "+pipemat;

TO Title

STORE "sysprt" TO prtfile

SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEYO = RK_QUIT
Looking = .F.

ENDIF
IF READKEYO = RK_print

do fprint

Looking = .F.

ENDIF

DO WHILE Looking .AND. .NOT. EOF()
SKIP
IF Upper(Material) = Search

READ
IF READKEYO = RK_QUIT
Looking = F.

ENDIF
IF READKEYO = RK_PRINT
do fprint

Looking = .F.

ENDIF
ENDIF
ENDDO(while looking)

ELSE
<2> 12,16 CLEAR to 11,58

@ 9,25 SAY "No pipes of that material"

@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"

wait
""

ENDIF
ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

139

* Adjtank.prg is used to query the adjacent database *

* for the tanks surrounding the specified tank *

USE adjacent INDEX adjcomp

SET COLOR TO +G,BG/B,R,B
ON ESCAPE EXIT
AdjCont = .T.

DO WHILE AdjCont

compno = SPACE(14)
SET FORMAT TO passtart

CLEAR
READ
CLOSE FORMAT

* Create a Search Variable

Search = UPPER(CompNo)

* RETURN if no input

IF Search = "

"

AdjCont = .F.

LOOP
ENDIF

* Check database for compartment number

SEEK Search

RK_QUIT=12
RK_PRINT = 2

ANS = "

"

SET FORMAT TO adjtank

* Show if found

IF FOUND()
READ
IF READKEYO = RK_QUIT
AdjCont = .F.

ENDIF
IF READKEYO = RK_PRINT
STORE RECNOO TO saverec

STORE "Compt_Num" TO Sparam
STORE "Compartments adjacent to "+Compt_Num;

140

TO Tide

STORE "adjprt" TO prtfile

do fprint

ENDIF
ELSE
@ 10,16 CLEAR to 11,60

@ 9,25 SAY "Not a valid compartment"

@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"

wait
""

ENDIF
ENDDO
CLOSE ALL
RETURN

* InbdTank.prg is used to find inboard compartments *

USE compartm INDEX compno
ON ESCAPE RETURN
NoExit = .T.

DO WHILE NoExit

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
Indb =

"

"

SET FORMAT TO inbdtank

READ
CLOSE FORMAT

* Create a Search Variable

DO CASE
CASE inbd =

"

"

NoExit = .F.

LOOP
CASE inbd = "T"

do findinbd

CASE Tank = "V"

do voidinbd

OTHERWISE
(2)12, 12 SAY "Invalid selection"

@13, 12 SAY "Press any key to continue"

wait
"

"

141

LOOP
ENDCASE

ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

* Findinbd.prg is used to find the inboard *

* tank of a specified compartment *

ON ESCAPE RETURN
NoExit = X
DO WHILE NoExit

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
CompNo = SPACE(14)
SET FORMAT TO PasStart

READ
CLOSE FORMAT

* Create a Search Variable

IF CompNo #
"

"

Search = UPPER(CompNo)
ELSE

Search = "

"

ENDIF

* RETURN if no input

IF Search = "
"

NoExit = .F.

LOOP
ENDIF

* Check database for compartment number
Looking = .T.

SEEK Search

ANS = "

"

SET FORMAT TO findinbd && open format file

RK_QUIT=12

142

RK_Print = 2

* SHOW if found

IFFOUNDO
Strno = STRING
Strlen = LEN(Stmo)
chkstr= SUBSTR(Strno,strlen,n

DO CASE
CASE UPPER(chkstr) = "S"

side = "PORT"
CASE UPPER(chkstr) = "P"

side = "STBD"
OTHERWISE

(5) 21,12 SAY "ERROR"
ENDCASE
Use Adjacent INDEX adjcomp

SEEK Search

IFFOUNDO
SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEY() = RK_QUIT
Looking = .F.

ENDIF
ELSE
@ 10,16 CLEAR to 11,60

@ 9,25 SAY "Not a valid compartment"

@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"

wait
""

ENDIF
ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

* SpecMat.prg is used to find the material a *

* specific pipe system is made from *

USE pipesyst INDEX pipesys

ON ESCAPE RETURN
Looking = .T.

143

DO WHILE Looking

SET COLOR TO +G,BG/B,R,B
SET FORMAT TO PasSys

CLEAR
System = SPACE(18)

READ
CLOSE FORMAT

* Create a Search Variable

Search = UPPER(System)

* RETURN if no input

IF Search = "
"

Looking = .F.

LOOP
ENDIF

* Check database for pipe system

SEEK Search

RK_QUIT=12

* Show if found

SET FORMAT TO specmat && open format file

IFFOUNDO
ANS = "

"

SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEYO = RK_QUIT
Looking = .F.

ENDIF
ELSE
@ 10,18 CLEAR to 11,60

@ 10,27 SAY "Not a valid pipe system"

wait
"

"

ENDIF
ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

144

* PipeCont.prg is used to find compartment *

* through which a speified pipe system passes *

USE contains INDEX contsys

ON ESCAPE RETURN
NoExit = X
DO WHILE NoExit

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
System = SPACE(18)

ANS = "

"

SET FORMAT TO PasSys

READ
CLOSE FORMAT

* Create a Search Variable

IF System
#""

Search = UPPER(System)
ELSE

Search =
"

"

ENDIF

RETURN if no input

IF Search = "
"

NoExit = .F.

LOOP
ENDIF

* Check database for pipe system number
Looking = .T.

SEEK Search

ANS = "

"

SET FORMAT TO pcontscr && open format file

RK.QUIT = 12

RK.PRINT = 2

* SHOW if found

IFFOUNDQ

145

STORE RECNO() TO saverec

STORE "SYSNUM" TO Sparam

STORE "Compartments Containing "+SYSNUM TO Title

STORE "contprt" TO prtfile

SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEY() = RK_QUIT
Looking = .F.

ENDIF
IF READKEY() = RK_print

do fprint

Looking = .F.

ENDIF

DO WHILE Looking .AND. .NOT. EOF()
SKIP
IF SysNum = Search

READ
IF READKEYO = RK.QUIT
Looking = F.

ENDIF
IF READKEYO = RK_PRINT
do fprint

Looking = .F.

ENDIF
ELSE
Looking = .F.

ENDIF
ENDDO(while looking)

ELSE
@ 10,16 CLEAR to 11,60

@ 9,25 SAY "Not a valid pipe system"

@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"

wait
""

ENDIF
ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

146

* Strings.prg is used to find the compartments *

* in a speified string *

USE compartment

ON ESCAPE RETURN
NoExit = .T.

DO WHILE NoExit

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
StrNo = SPACE(10)
SET FORMAT TO String

READ
CLOSE FORMAT

* Create a Search Variable

IF StrNo # "
"

Search = UPPER(StrNo)
ELSE

Search = "

"

ENDIF

* RETURN if no input

IF Search =
"

"

NoExit = .F.

LOOP
ENDIF

* Check database for string number
Looking = .T.

LOCATE FOR STRING = Search

ANS = "

"

SET FORMAT TO strscr && open format file

RK_QUIT=12
RK_Print = 2

* SHOW if found

IFFOUNDO
STORE RECNO() TO saverec

147

STORE "STRING" TO Sparam

STORE "Compartments in STRING "+STRING;
TO Title

STORE "comprt" TO prtfile

SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEYO = RK_QUIT
Looking = .F.

ENDIF
IF READKEYO = RK_print

do fprint

Looking = .F.

ENDIF

DO WHILE Looking .AND. .NOT. EOF()
CONTINUE
IFFOUNDO
READ
IF READKEYO = RK_QUIT
Looking = F.

ENDIF
IF READKEYO = RK_print

do fprint

Looking = .F.

ENDIF
ELSE
Looking = .F.

ENDIF
ENDDO(while looking)

ELSE
@ 10,16 CLEAR to 11,60

@ 9,29 SAY "Not a valid string"

@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"

wait
""

ENDIF
ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL
RETURN

148

* Stradj.prg is used to find the compartments *

* surrounding a specific string *

USE compartment

ON ESCAPE RETURN
NoExit = .T.

DO WHILE NoExit

CLEAR
SET COLOR TO BG/B,N/G,R,R
CLOSE FORMAT
StrNo = SPACE(IO)
SET FORMAT TO String

READ
CLOSE FORMAT

* Create a Search Variable

IF StrNo #
"

"

Search = UPPER(StrNo)
ELSE

Search = "

"

ENDIF

* RETURN if no input

IF Search = " "

NoExit = .F.

LOOP
ENDIF

* Check database for string number
Looking = .T.

LOCATE FOR STRING = Search

ANS = "

"

SET FORMAT TO stradj && open format file

RK_QUIT=12
RK_Print = 2

* SHOW if found

IFFOUNDO
SRSTR = UPPER(COMP_NUM)

149

USE ADJACENT INDEX adjcomp

SEEK SRSTR
IFFOUNDO
tankport = UPPER(PORT)
tankstbd = UPPER(STBD)
CLOSE DATABASES
strsearch = tankport

USE COMPARTMENT INDEX compno
SEEK strsearch

IFFOUNDO
PortStr = STRING
ELSE
PortStr = "

"

ENDIF
strsearch = tankstbd

GO TOP
SEEK StrSearch

IFFOUNDO
StbdStr = STRING
ELSE
StbdStr =

"

"

ENDIF
IF PortStr # " " .AND. StbdStr #

"

"

Search = PortStr .OR. StbdStr

ELSE
IF PortStr #""

Search = PortStr

ELSE
IF StbdStr #"

"

Search = StbdStr

ELSE
Search =

"

"

ENDIF
ENDIF

ENDIF
IFSEARCH#""
GO TOP
LOCATE FOR STRING = Search

IFFOUNDO
STORE RECNO() TO saverec

STORE "COMPT_NUM" TO Sparam

STORE "Compartments Surrounding STRING "+StrNo;

TO Tide

150

STORE "strprt" TO prtfile

SET COLOR TO +W/B,BG/R,G,B
READ
IF READKEYO = RK_QUIT
Looking = J\

ENDIF
IF READKEYO = RK_print

dofprint

Looking = .F.

ENDIF
DO WHILE Looking .AND. .NOT. EOF()
CONTINUE
IFFOUNDO
READ
IF READKEYO = RK_QUIT
Looking = .F.

ENDIF
IF READKEYO = RK_print

dofprint

Looking = .F.

ENDIF
ELSE
Looking = .F.

ENDIF
ENDDO(while looking)

ENDIF
ELSE
@ 10,16 CLEAR TO 11,60

@ 9,25 SAY "Invalid data in Search"

@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+"

;

to continue"

ENDIF
ENDIF
ELSE
@ 10,16 CLEAR to 11,60

@ 9,29 SAY "Not a valid string"

@ 11,17 SAY "Press "+CHR(17)+CHR(196)+CHR(217)+" to

continue"

wait
""

ENDIF
ENDDO
SET COLOR TO +G,BG/B,R,B
CLOSE ALL

151

RETURN
**

* Fprint.prg is used to print queries *

**

SET CONSOLE OFF
SET MARGIN TO 4

Linect = 1

pagect = 1

pageln = 55

GOTO Saverec

SET PRINT ON
CLEAR
@ 23,10 SAY "Press any key to stop printing..."

ON KEY DO Interrupt

* Print header

? SPACE((80-LEN(TITLE))*.5)+Title

?

?

Linect = 3

*Print Query Info

DO WHILE .NOT. EOF()
IF &Sparam = Search

do &prtfile

ELSE
SET PRINT OFF
EJECT
SET CONSOLE ON
RETURN

ENDIF

* See if a page break is needed

IF Linect >= Pageln

EJECT
Pagect = Pagect + 1

? SPACE((80-LEN(TITLE))*.5)+Title
?

?

Linect = 3

ENDIF
SKIP

152

ENDDO
SET CONSOLE ON
ON KEY
SET PRINT OFF
EJECT
RETURN

* Pipeprint.prg allows user to build a report form *

* and send it to the screen or printer *

SET SAFETY OFF
CLEAR
Dir *.DBF
DbFile = SPACE(8)
@ 22,2 SAY "Enter Database Filename: " GET DbFile

READ
USE &DbFile
CLEAR
DIR *.frm

Rfile = SPACE(8)
Printer = "N"

@ 22,2 SAY "Enter a new filename for the report form"

@ 23,2 SAY "or reuse an existing form from above:
"

@ 23,41 GET Rfile

READ

* Build REPORT FORM

IFRfile#""
MODIFY REPORT &Rfile

* PRINT

CLEAR
STORE " " TO Printer, PMacro
@ 15,5 SAY "Send data to printer? (Y/N) " GET Printer

PICT"!"
READ
IF Printer = "Y"

PMacro = "TO PRINT"
WAIT "Prepare printer, then press any key to continue..."

153

ENDIF
REPORT FORM &Rfile &PMacro

ENDIF
IF Printer = "Y"

EJECT
ENDIF
SET FILTER TO
CLOSE ALL
WAIT "Press any key to return"

RETURN

* Passprt.prg is Fields to be printed for query pipes *

* passing through a compartment *

?SPACE(5)+SYSNUM
Linect = Linect + 1

* Strprt.prg is Fields to be printed for query *

* compartments in specific string *

?SPACE(5)+COMP_NUM
Linect = Linect + 1

* Adjprt.prg is Fields to be printed for query *

* compartments adjacent to specified compartment *

?SPACE(5)+FWD
?SPACE(5)+AFT
?SPACE(5)+STBD
?SPACE(5)+PORT
?

Linect = Linect + 5

* AddrQry.prg lets user build a custom query form or use *

* an existing form. Also allows user to direct data to *

* printer *

SET SAFETY OFF
CLEAR
Dir *.DBF

154

DbFile = SPACE(8)
@ 22,2 SAY "Enter Database Filename: " GET DbFile

READ
USE &DbFile
CLEAR
DIR *.QRY
Qfile = SPACE(8)
@ 22,2 SAY "Enter a new filename for the query form"

@ 23,2 SAY "or reuse an existing form from above:
"

@ 23,41 GET Qfile

READ
IFQfile#""
MODIFY QUERY &Qfile

GO TOP
IFEOFO
CLEAR
? "Warning... no records match search criterion!"

?

WAIT
ENDIF(EOF)

ENDIF(Qfile)

CLEAR
DIR *.frm

Rfile = SPACE(8)
@ 22,2 SAY "Enter a new filename for the report form"

@ 23,2 SAY "or reuse an existing form from above:

"

@ 23,41 GET Rfile

READ

* Build REPORT FORM

IFRfile#""
MODIFY REPORT &Rfile

* PRINT

CLEAR
STORE " " TO Printer, PMacro
@ 15,5 SAY "Send data to printer? (Y/N) " GET Printer

PICT"!"
READ
IF Printer = "Y"

PMacro = "TO PRINT"

155

WAIT "Prepare printer, then press any key to continue..."

ENDIF
REPORT FORM &Rfile &PMacro

ENDIF
IF Printer = "Y"

EJECT
ENDIF
SET FILTER TO
CLOSE ALL
Wait "Press any key to continue"

RETURN

* CustQry.prg lets user build a custom query form or use *

* an existing form. Also allows user to build a *

* report form and send it to the screen or printer *

SET SAFETY OFF
CLEAR
Dir *.DBF
DbFile = SPACE(8)
Printer = "N"

@ 22,2 SAY "Enter Database Filename: " GET DbFile

READ
USE &DbFile
CLEAR
MODIFY QUERY pipes

GO TOP
IF EOF()
CLEAR
? "Warning... no records match search criterion!"

?

WAIT
ENDIF(EOF)
CLEAR
DIR *.frm

Rfile = SPACE(8)
@ 22,2 SAY "Enter a new filename for the report form"

@ 23,2 SAY "or reuse an existing form from above:
"

@ 23,41 GET Rfile

READ

* Build REPORT FORM

156

IFRfile#""
MODIFY REPORT &Rfile

* PRINT

CLEAR
STORE " " TO Printer, PMacro
@ 15,5 SAY "Send data to printer? (Y/N) " GET Printer

PICT"!"
READ
IF Printer = "Y"

PMacro = "TO PRINT"
WAIT "Prepare printer, then press any key to continue..."

ENDIF
REPORT FORM &Rfile &PMacro

ENDIF
IF Printer = "Y"

EJECT
ENDIF
SET FILTER TO
ERASE Pipes.qry

CLOSE ALL
WAIT "Press any key to return"

RETURN

* PipesBk is the floopy disk backup for the Pipes *

* database and expert system *

CLEAR
RUN pipesbk.dat

RETURN

* PipesRs is the floopy disk restore for the Pipes *

* database and expert system *

CLEAR
@ 10,12 SAY "Place disk containing files in Drive A and

Close door"
9

WAIT "
Press any Key to continue"

157

RUN pipesrs.dat

RETURN

158

LIST OF REFERENCES

1. Carrier Life Enhancing Repairs (CLER) Program Engineered Maintenance
Plan (Tank and Void Zoning, Tank Top, Piping, and Section), Naval Sea

Systems Command Detachment PERA (CV), Bremerton, Washington,

October 1987.

2. Rowe, N. C, Introduction to Artificial Intelligence through Prolog, Prentice-

Hall, 1987.

3. Borland International, TURBO PROLOG, Version 2.0, Reference Guide,

1988.

4. Ashton-Tate, d-BASE III PLUS, Version 3.0, Reference Manual, 1 986.

159

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School

Monterey, California 93943-5002

3. Curriculum Officer 1

Code 37

Computer Technology

Naval Postgraduate School

Monterey, California 93943-5000

4. CDR I. B. Clayton 2
COMNAVAIRPAC Code 73

NAS North Island, California 92135

5. LTP.R. Boozer 2

128 Brody Road
Chapin, South Carolina 29036

6. Associate Professor C. T. Wu 1

Code 52Wu
Department of Computer Science

Naval Postgraduate School

Monterey, California 93943-5000

160

Thesis

C5067 Clayton
c.l An expert system inter-

faced with a database
system to perform
troubleshooting of air-
craft carrier piping
systems

.

K772*5

