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Since the coronavirus disease (COVID-19) outbreak in December
2019, studies have been addressing diverse aspects in relation to
COVID-19 and Variant of Concern 202012/01 (VOC 202012/01)
such as potential symptoms and predictive tools. However,
limited work has been performed towards the modelling of
complex associations between the combined demographic
attributes and varying nature of the COVID-19 infections across
the globe. This study presents an intelligent approach to
investigate the multi-dimensional associations between
demographic attributes and COVID-19 global variations. We
gather multiple demographic attributes and COVID-19 infection
data (by 8 January 2021) from reliable sources, which are then
processed by intelligent algorithms to identify the significant
associations and patterns within the data. Statistical results and
experts’ reports indicate strong associations between COVID-19
severity levels across the globe and certain demographic
attributes, e.g. female smokers, when combined together with
other attributes. The outcomes will aid the understanding of the
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dynamics of disease spread and its progression, which in turn may support policy makers, medical

specialists and society, in better understanding and effective management of the disease.
lsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201823
1. Introduction
Respiratory viral illnesses are allied with the continuing and serious psychopathological concerns among
survivors [1]. Coronaviruses are ribonucleic acid (RNA) viruses that can trigger contamination illnesses,
including common colds or even serious concerns such as severe acute respiratory conditions [2].
Research studies indicated that the exposure to coronavirus has shown to be associated with
neuropsychiatric diseases, including Middle East respiratory syndrome (MERS), severe acute
respiratory syndrome (SARS) and other outbreaks [3]. Coronavirus disease (COVID-19), which initially
appeared in Wuhan, China in December 2019, is triggered by acute respiratory syndrome and is
referred to as coronavirus-2 (SARS-CoV-2). In March 2020, the classification of COVID-19 was altered
from a ‘public health emergency’ to a pandemic by WHO. The COVID-19 pandemic is the most
important global health disaster in modern history and the greatest trial humans confronted since
World War II, spanning every continent apart from Antarctica. There are more than 90 million cases
and more than 1.9 million deaths to date (8 January 2021). Studies reported COVID-19 affects people
who have a weak immune system, such as the elderly and vulnerable people with underlying medical
conditions, including diabetes and cardiovascular disease (CVD). On the other hand, the effects of the
virus on children and young adults are not yet fully understood, since the number of infections or/
and death rate is relatively low [4].

Various research studies addressed medical symptoms, personal attributes and demographic
characteristics, which are highly correlated with the COVID-19 infection. For instance, the Centers for
Disease Control and Prevention (CDC) indicated that there were 52 166 deaths in 47 US jurisdictions
between 12 February to 18 May 2020 [5]. Among the decedents, the majority were found to be aged
greater than or equal to 65 years, with higher ratio of males, white ethnicity while comparatively
lower ratio of black, Hispanic/Latino and Asian ethnic background. Median decedent age was found
to be 78 years. Authors reported that a higher percentage of Hispanic and non-white decedents were
aged less than 65, compared with lower percentage of white, non-Hispanic decedents. Studies also
indicated other clinical attributes, specifically, obesity [6,7], CVD and hypertension [6,8] as important
factors affecting the COVID-19 infection rate. On the other hand, studies address demographic
attributes such as GDP ratio of a country, smoking prevalence and average annual temperature of a
country [5,6,9,10], etc. being highly correlated with the COVID-19 infection around the world.

While the aforementioned studies have identified some clinical and economic demographic
parameters to predict disease spread and its associations, most of the works are either carried out at
early stages with insufficient amount of data, or using conventional statistical approaches, which are
limited to investigate only the individual attributes’ associations with COVID-19 infection. An
intelligent algorithm is needed to model the complex and multi-dimensional attributes and investigate
the combined impact of various demographic characteristics over the COVID-19 severity, particularly,
at the current stage, where sufficient data is available. This would support understanding of the in-
depth demographic aspects of this disease, and significantly contribute towards effective policy-
making and disease management.

In order to explore COVID-19 severity and its associations to multiple demographical characteristics
across the globe, this study investigates whether the diversity in COVID-19 infection severity (e.g. variations in
death rate) across the globe is significantly associated with an individual or combination of demographic attribute/s?

To answer the underlying research question, the authors have undertaken this study to model
the associations between multiple demographic attributes, including economic, socio-economic,
environmental and health related. The varying nature of COVID-19 infections in the global geographical
context is far from clear and, therefore, adopting an open-minded approach is useful in unravelling such
a complex problem. Deploying machine intelligence approaches offers an advantage over conventional
statistical methods in analysing the complex patterns and potential associations between multiple
predefined demographic facts and COVID-19 spread in the world. The major contributions of this
study include:

— Using class association rules (CARs) to investigate the combined demographic attributes that are
significantly associated with COVID-19 infection severity across the globe.
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— Using self-organizing maps (SOM) for pattern identification within the multi-dimensional

demographic and COVID-19-related datasets as well as detailed country-level information in the
form of two-dimensional visualizations of COVID-19 spread across the globe, which is easily
understandable and interpretable by humans.

— Gathering a larger COVID-19 dataset (over a period of 1 year) and various demographic
characteristics from reliable public data sources and transforming them into an appropriate form
using statistical approaches and medical experts’ recommendations, where appropriate.

The remainder of this paper is organized as follows. Section 2 describes the existing works related to
COVID-19 spread and correlated attributes. Section 3 presents the details of the proposed
methodology. Experimental results and interpretation of representative rules are reported in §4,
followed by the discussion of the findings, and finally, the conclusion and future directions are
presented in §5.

2. Related work
Since the COVID-19 outbreak, research studies have been attempting to address diverse aspects of the
disease, specifically, the predictive symptoms and associated attributes. Various clinical and
demographic attributes were identified as potentially associated with the COVID-19 spread in
different parts of the world. Research carried out in [6,8] indicated that certain male patients aged
between 40 and 60 having underlying medical conditions, such as hypertension, CVD and chronic
lung disease, were in a critical condition on admission, and progressed rapidly to death within two to
three weeks from contracting COVID-19. Likewise, [9] reported that male patients aged over 65 years,
who smoke, might face a higher risk of developing critical conditions of COVID-19. Obesity and
smoking were also associated with increased risk of COVID-19 infection [6]. Study [7] also indicated
obesity as an important risk factor for COVID-19 hospital admissions in patients younger than 60 years.

On the other hand, research outcomes from these studies contradict each other, specifically, in terms
of demographic aspects. For example, the authors in [10] suggested that countries with a higher smoking
rate had lower frequency of critical cases and deaths, whereas [6,9] indicated that high smoking rate is
associated with increased risk of COVID-19 infection. The outcomes from [6] also reported other
indicators, such as gender, being influential on the disease spread. Likewise, patients with high lactate
dehydrogenase levels require thorough observation and early mediation to avoid the possibility of
developing severe COVID-19 [11]. Male patients with heart injury, hyperglycaemia and high-dose
corticosteroid use may have a high risk of death [11].

The authors in [12] suggested that children of all ages seemed susceptible to COVID-19, irrespective
of gender. While COVID-19 cases in children were less severe than those of adult patients, young
children, specifically infants, were found to be easily infected [12]. On the other hand, findings in [13]
suggested that children may be less vulnerable to COVID-19 because children have: (i) a more active
immune response, (ii) stronger respiratory tracts, since they are less exposed to cigarette smoke and
air pollution in comparison with adults, and (iii) fewer underlying medical disorders. A similar study
reported milder disease progression and better prognosis in children as compared with adults, with
deaths being extremely rare in children [14]. On the other hand, WHO [15] reported that refugee and
migrant children, children deprived of liberty, children living without parental care or proper shelter
and children with disabilities are most vulnerable to COVID-19.

In terms of demographic characteristics, research conducted in [10] indicated that countries with high
GDP per capita had an amplified number of reported severe COVID-19 cases and deaths. This may be
due to more widespread testing in the developed countries, superior and transparent case reporting
and better surveillance systems at national level. Frequent air-travel might be another possible cause
of COVID-19 severity in the developed countries, as travel was identified as an important factor
contributing to international viral spread [10]. For instance, [16] reported that the high numbers of
COVID-19 cases in Jakarta, Indonesia, were caused due to high mobility of the people.

Likewise, smoking prevalence is also identified as being moderately to highly negatively correlated
with COVID-19 infection rates. In [10], the authors surprisingly indicated that countries with a higher
smoking rate, had lower frequency of critical cases and deaths. In addition, the authors reported a
number of other possible predictors, which are associated with the total number of reported cases per
million including: (i) days to lockdown (i.e. partial or full), (ii) commonness of obesity, (iii) median
age of population, (iv) number of tests performed per million, and (v) days to the closure of borders.
The study found a negative relationship between the total number of cases per million and the
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number of days to lockdown, where a lengthier time preceding implementation of any lockdown, was

linked with a lower number of detected COVID-19 cases per million. Furthermore, countries with
high obesity rates among their population, higher median population age and longer number of days
to border closure had considerably higher caseloads [10].

Studies have also indicated the average annual temperature of a country to be correlated with
COVID-19 spread [16,17]. For instance, [17] found that the majority of the 10 000 new COVID-19 cases
in the USA (10-day interval) are correlated with absolute humidity in a range of 4–6 g m−3, and
temperatures in a range of 4–11°C, thus concluding that low-temperature ranges are correlated with
higher COVID-19 rates. Another research conducted in Brazil [18] found high solar radiation to be the
main climatic factor that suppresses the spread of COVID-19. High temperatures and wind speed are
also potential factors [18] correlated to COVID-19 spread. In summary, this work concluded that wind
speed, temperature and increased solar radiation are the probable climatic factors that may steadily
reduce the effects of the COVID-19 pandemic in Rio de Janeiro, Brazil.

Experimental results from [19] demonstrated that weather factors are more pertinent in predicting
mortality rates in COVID-19 patients, when compared with other variables such as age, population
and urbanization. The outcomes indicated that weather factors are more important as compared with
age, population and urban percentage, while considering death rates due to COVID-19. A similar
study in [20] proposed that humidity and temperature variations may represent significant factors
affecting COVID-19 mortality rates.

Population density has also been reported as one of the relevant demographic attributes. Research
outcomes in [21] indicated that in high population-density cities, it is difficult to enforce suitable
distance between people coughing and sneezing. In turn, this may result in higher infection rates. Tsai
& Wilson [22] stated that it is possible the disease will be transmitted to people facing homelessness.
In the US, it is reported that more than 500 000 people were facing homelessness on any given night
over the past decade (2007–2019). If cities enforce a lockdown to avoid COVID-19 transmission, it is
unclear how and where homeless people will be relocated [22]. This can also be one of the potential
causes of high infection and mortality rates in the US. Similar work in [23] reported that the high
COVID-19 infection rates in Iran were positively correlated with population density and intra-
provincial movement. Another study [24] investigated the morbidity and mortality rates of COVID-19
pandemic in various regions of Japan. The correlations between the morbidity, mortality rates and
population density were found to be statistically significant while, lower morbidity and mortality rates
were observed in regions with higher temperature and absolute humidity.

Researchers in [25] stated that the lockdown is an effective measure in limiting COVID-19 spread in
densely populated areas. They also found that COVID-19 spread is negatively correlated with the latitude
and altitude of the region. The study also found that there is no significant relationship between
COVID-19 spread and population density, which contradict the findings of [23]. The study also
suggested that strict lockdown procedures can effectively decrease the human-to-human infection
propagation risk, even in densely populated regions, as stated in [21].

Air pollution, in [26], indicated negative correlation with COVID-19 infection rates. However, this
contradicts the findings of [25]. Wu et al. [27] concluded that even a small increase (i.e. only 1 µg m−3) in
long-term exposure to PM2.5 results in a large increase (i.e. 8%) in COVID-19 mortality rates based on a
US research study. By contrast, Zhu et al. [28] found a significant correlation between air pollution and
COVID-19 infection rates. Positive correlations of PM2.5, PM10, CO, NO2 and O3 with confirmed COVID-
19 cases were observed. However, the authors found SO2 to be negatively associated with the number of
daily confirmed cases of COVID-19. In [29], a direct relationship was discovered between air pollution
and increased risk of hospital admission in Bangkok. It was also found that air pollution plays a
significant role for the development of respiratory diseases such as pneumonia, asthma and chronic
respiratory disease (CRD) leading to hospital admission. Elderly people are more fragile against the effect
of air pollution and thus more vulnerable to respiratory diseases, similar to COVID-19. A similar study
[30] also supported the argument presented in [29], indicating that exposure to air pollution could
increase vulnerability and have negative effects on the prognosis of patients affected by COVID-19.

In addition to the aforementioned medical and demographic aspects of COVID-19, machine learning
algorithms have been used in disease prediction and classification. For instance, Loey et al. [31] used a
deep learning model and conventional machine learning methods for automated face mask detection.
They deployed support vector machines, decision trees and ensemble method for the classification task.
They claimed high accuracy results for both training and testing; however, the application of their
system in the online context requires further details. Tuli et al. [32] used machine learning and
mathematical models to detect the threat of COVID-19 around the globe. They claimed that their model
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outperforms the Gaussian model; however, there is a lack of benchmarking with other mathematical
models. On the other hand, Yeşilkanat [33] used random forest to predict the future number of infected
cases in 190 countries around the world, and compared the results with actual confirmed cases. RMSE
values between 141.76 and 526.18 were reported; however, it would be interesting to show more results
with other machine learning and statistical models for comparison purposes.

The aforementioned research studies investigated diverse aspects of COVID-19, specifically, association
analysis and prediction using various medical and demographic attributes. However, the scope of these
works is either limited to medical aspects or the analysis of individual association identification, where
the outcomes indicated potential contradictions with other works. This might be due to several factors
such as immature data/information about COVID-19 in the early stages, use of conventional statistical
approaches and/or limitations in the combined analysis of multiple attributes which is presented in this
study. More specifically, ongoing waves and variants of COVID-19 such as VOC 202012/01 further limit
the generalization of existing similar studies conducted at earlier stages with immature data. We conduct
a comprehensive analysis of complex associations and hidden patterns within the multi-dimensional data
(gathered over a longer period of 1 year) while using the machine intelligence to investigate the impact of
diverse demographic characteristics over the COVID-19 infection rate across the globe.
3. Material and methods
Combinations of intelligent algorithms are deployed to analyse the complex patterns and class
associations between the multi-dimensional demographic attributes and COVID-19 death severity
across different regions of the world. In the first step, the publicly available dataset is compiled from
various sources (detailed in the following sections), comprising various demographic and COVID-19-
related attributes across the globe. In the next step, data cleansing algorithms are used to remove
outliers, where appropriate, and deal with missing records. The cleaned dataset is then normalized
and passed on to pattern identification and association learning algorithms, to identify significant
associations between the combined demographic attributes and the target attribute (i.e. death rate due
to COVID-19). The statistical outcomes, associations and patterns are then fused together to draw the
conclusions, while using existing information and experts’ knowledge in the context of the underlying
research question. Figure 1 summarizes the major building blocks for the proposed model, which are
detailed in the following sections.

3.1. Dataset preparation
Exceedingly large and progressive data streams are publicly available, comprising numerous factors and
statistics in relation to COVID-19. To investigate the research question set in this study, we used the
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publicly available dataset [34] until 8 January 2021 that comprises deaths per million population (DpM),
cases per million population (CpM) and tests per million population (TpM) for each country across the
globe (January 2020 to January 2021 in this study). Figure 2 shows the boxplot distributions for the
selected attributes. Further explanation of the dataset, data capturing procedures and related ethical
information is available in [34].

As previously discussed, several studies indicated significant relationships of certain demographic
attributes with COVID-19, specifically, DpM. However, a detailed investigation is required to identify
the complex associations and patterns within the multi-dimensional dataset. To investigate this
hypothesis, we compiled several open-source demographic datasets [35–39], comprising a
comprehensive list of 22 demographic attributes for countries around the globe, as shown in table 1.
The parameters are selected based on recommendation from clinical domain experts as well as
existing studies [6–30] as being potentially correlated with COVID-19 severity in different parts of the
world. In total, there are 162 instances in the dataset each representing a single country.

The gathered data is then cleaned by eliminating outliers and missing values, specifically, countries
containing some invalid entries (e.g. invalid or unnecessary names of countries such as ‘Asian
countries’), which were removed from the dataset. Figure 2 shows an example of outliers within the
TpM attribute that were identified and eliminated using the box plot. Next, the cleaned numeric data
were standardized using the z-score and forwarded to the pattern analysis and CARs algorithms.
3.2. Pattern analysis and rule mining
One of the major limitations associated with conventional statistical approaches is the inability to analyse
complex patterns within a high-dimensional dataset. This study uses various demographic attributes (as
listed in table 1) with diverse variation and ranges, which are difficult to be analysed by human experts
or conventional statistical approaches, e.g. to draw conclusions from multiple combinations of different
attributes. One effective means of dealing with multi-dimensional data visualization is SOM, an
unsupervised form of artificial neural networks, performing a nonlinear projection of a high-dimensional
space onto a lower-dimensional (typically, two-dimensional) map [40].

Topological properties of the input space are preserved in SOM, which use competitive learning, as
compared with error minimization in supervised neural networks. The two-dimensional map
representation is useful for pattern identification within the high-dimensional data such as the ones
dealt with in this study. During the competitive learning phase, input data samples (e.g. a country’s
record in this study) are iteratively mapped to SOM, where a winning neuron (also called best
matching unit) is identified based on the distance of its weights and the input vector. Weight update
is performed within the specific neighbourhood radius resulting in similar samples being mapped
closely together using

wj(nþ 1) ¼ wj(n)þ h(n)h ji(x)(n)(x(n)� wj(n)), ð3:1Þ
where h(n) is the learning rate and h ji(x)(n) is the neighbourhood function around the winner neuron i(x).
Both h(n) and h ji(x)(n) are varied dynamically to achieve optimal outcomes. Further details, explanation
and mathematical formulation of SOM can be found in [41].



Table 1. Demographic attributes names and description.

attribute description attribute description

Lung disease death rate per 100 000 due to

lung disease

Poverty ratio poverty headcount ratio at $1.90 a

day (% of population)

Hypertension occurrence rate per 100 000 Employment ratio employment to population ratio,

15+ years, total (%)

Population

density

people per square kilometre of

land area

Smoking females smoking prevalence, females (% of

adults)

Female ratio % of females in total

population

Smoking males smoking prevalence, males (% of

adults)

Age_1 population ages 0–14 (% of

total population)

Air_pollution PM2.5 air pollution, mean annual

exposure (µg m−3)

Age_2 population ages 15–65 (% of

total population)

Mortality rate_AP mortality rate attributed to

household and ambient air

pollution, age-standardized (per

100 000 population)

Age_3 population ages 65 and above

(% of total population)

Mortality_Diab_CVD mortality from CVD, cancer,

diabetes or CRD between exact

ages 30 and 70 (%)

Beds hospital beds per 1000 people Literacy rate literacy rate, adult total (% of

people ages 15 and above)

Forest Area (% of land area) land area

covered by forests

Physician physicians per 1000 (include

generalist and specialist medical

practitioners)

Handwash people with basic

handwashing facilities

including soap and water

(% of population)

Health_Expenditure current health expenditure (% of

GDP)

Obesity % of a country’s obese

population

Avg. Temperature average yearly temperature (°C)
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As the attributes within the COVID-19 dataset (i.e. DpM, CpM, TpM) are in numerical form, we can
use the SOM distance map to visualize these variables in the form of a two-dimensional plot. Figure 3
shows the mapping of countries over the SOM nodes, based on the distribution of three COVID-19
attributes, representing its severity levels. The algorithm automatically shapes the map (i.e. position of
samples and nodes) using the distance metric between the codebook vectors of neurons/nodes. In
other words, similar records (i.e. COVID-19 severity rates across the countries in this case) are
mapped close to each other within the same node. Likewise, nodes with high similarity (i.e. nodes
with smaller neighbouring distance) are positioned closely within the map, whereas dissimilar nodes
are mapped far from each other. As an example, most of the severely affected countries (e.g. USA,
UK, Spain, France, Belgium, Italy, etc.) are positioned within the left side and bottom-left nodes e.g.
nodes 1–4, etc.) in figure 3, representing the similar behaviour of COVID-19 infection rates in these
countries. On the other hand, the least affected countries (e.g. Thailand, Sri Lanka, Nepal, etc.) are
placed in the top-right and right-side nodes (e.g. nodes 53–56, 60–64, etc.) within the map. This
distribution clearly indicates the distinctive behaviour of COVID-19 severity levels across the globe,
which requires further investigation in regard to its associations with other demographic
characteristics, listed in table 1.
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In addition to the distance plot of figure 3, SOM provides heat maps, which are a powerful tool to
visualize the individual behaviour of multiple attributes across the map. Figure 4 shows the
distribution of individual factors across the SOM heat maps for all countries producing very useful
visual information. For instance, ‘Iceland’ having ‘low’ DpM, is grouped together with high DpM
countries (i.e. ‘Cyprus and ‘Maldives in node 6 of figure 3). However, mapping this information
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within the same node in figure 4 indicates that this grouping is due to the TpM in this zone, which is true
in the case of Iceland (864 659/million in the dataset by January 2021). Secondly, the overlapping
distributions observed for these attributes in figure 4 clearly indicate high positive correlations
between these factors, which make sense in the case of the COVID-19 outbreak. For example, CpM is
increasing with the increase in TpM in a country, which is also reported in related works [10,25].

While SOM produces powerful clustering and rich visual information within the numerical data,
further investigation in relation to associations between multiple combinations of demographic
characteristics and COVID-19 severity might be helpful to understand the complex patterns and inter-
relationships within the categorical dataset. For this purpose, we use the special case of conventional
rule mining known as CARs [42], where the consequent of a rule contains the target attribute (i.e.
death severity in this case). As compared with conventional statistical techniques, CARs has the
ability to identify frequently occurring patterns within a larger dataset that can be easily interpreted
by humans in the form of rules. Let ‘A’ be the attributes defined in table 1, containing O= {o1, o2, o3,
… oN} observations (i.e. countries’ records) in the dataset, where each observation oi contains a subset
of attributes A. The X→Y relationship in CARs indicates the disjoint item-set, i.e. X ∩Y =∅, occurring
in O, as antecedents and consequents, respectively. An important property of a rule is the corresponding
support count (σ) representing the number of observations containing that item-set (i.e. attribute/s)
which can be formulated as

s(X) ¼ j{oijX #oi, oi [ O}j: ð3:2Þ

The association of a rule (X ) is usually controlled by confidence (c) and support (s) metrics, where

s (X ) Y) ¼ ðsðX< YÞÞ
N

: ð3:3Þ

In equation (3.3), N represents the total number of countries in this study. The rule confidence
measure c is the percentage for which attribute Y occurs with the presence of attribute X and is
represented as

c (X ) Y) ¼ ðsðX< YÞÞ
sðXÞ : ð3:4Þ

To account for the base popularity of both constituent items (i.e. X and Y ), a third measure called lift is
used that measures the correlation between X and Y of a rule, indicating the effect of X on Y, and is
calculated as

lift(X ) Y) ¼ (s (X < Y))
(s(X) � s(Y))

ð3:5Þ

A value of lift(X⇒Y) = 1 indicates independence between antecedents and consequent, whereas
lift(X⇒Y ) > 1 indicates positive dependence of X and Y. A detailed explanation about CARs and the
Apriori algorithm can be found in [42].



Table 2. Statistical metrics (i.e. quantiles) and clinical domain knowledge-based data transformation (numeric to categorical).

attribute name

attribute categories

low (L) moderate (M) high (H)

Lung Disease Lung Disease≤ 10 10 < Lung Disease≤ 35 Lung Disease > 35

Hypertension Hypertension ≤ 5 5 < Hypertension ≤ 19 Hypertension > 19

Population Density PD ≤ 30 30 < PD≤ 150 PD > 150

Female ratio Female ratio≤ 49 49 < Female ratio≤ 51 Female ratio > 51

Age_1 Age_1≤ 16 16 < Age_1≤ 38 Age_1 > 38

Age_2 Age_2≤ 58 58 < Age_2≤ 68 Age_2 > 68

Age_3 Age_3≤ 3 3 < Age_3≤ 15 Age_3 > 15

Beds Beds≤ 0.9 0.9 < Beds≤ 4 Beds > 4

Air Pollution Air Pollution≤ 13 13 < Air Pollution ≤ 40 Air Pollution > 40

Mortality rate_AP MAP ≤ 29 29 < MAP≤ 145 MAP > 145

Poverty ratio Poverty ratio≤ 0.4 0.4 < Poverty ratio≤ 20 Poverty ratio > 20

Employment ratio Emp. ratio≤ 50 50 < Emp. ratio≤ 65 Emp. ratio > 65

Smoking males Smoking≤ 13 13 < Smoking ≤ 30 Smoking > 30

Smoking female Smoking≤ 1.5 1.5 < Smoking ≤ 12 Smoking > 12

Diabetes prevalence Diabetes≤ 5 5 < Diabetes ≤ 10 Diabetes > 10

Mortality (Diab_CVD) Mortality_CVD≤ 14 14 < Mortality_CVD≤ 22 Mortality_CVD > 22

Literacy rate Literacy rate≤ 85 85 < Literacy rate≤ 95 Literacy rate > 95

Physician ratio Phys_rate≤ 0.3 0.3 < Phys_rate≤ 2.8 Phys_rate > 2.8

Health Expenditure Health.Exped≤ 4 4 < Health.Exped ≤ 8 Health.Exped > 8

Forest Area Forest Area≤ 10 10 < Forest Area≤ 50 Forest Area > 50

Handwash Handwash≤ 30 30 < Handwash≤ 95 Handwash > 95

Obesity Obesity≤ 8.5 8.5 < Obesity≤ 25 Obesity > 25

Avg. Temperature Avg. Temp≤ 9 9 < Avg. Temp≤ 25 Avg. Temp > 25

DpM (COVID-19) Minor: DpM≤ 25, low: 25–100, moderate: 100–500, high: DpM > 500

CpM (COVID-19) Minor: CpM≤ 1200, low: 1200–4600, moderate: 4600–35 K, high: CpM > 35 K

TpM (COVID-19) Minor: TpM ≤ 15 K, low: 15–36 K, moderate: 36–200 K, high: TpM > 200 K
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To deploy CARs in this study, the numeric dataset was transformed into categorical form using
statistical information (i.e. quantiles and interquantile ranges), as well as expert knowledge, where
appropriate. Table 2 summarizes the multi-scale categories for the demographic attributes as
transformed using statistical metrics and histogram distributions. Similarly, the COVID-19 attributes
(e.g. DpM) are also categorized as ‘Mild’ to ‘Severe’, indicating lowest to highest severity levels,
respectively, across the globe. The final categorical data representations contain uniform
representations of all attributes forming the knowledge base for CARs to learn the associations
between combinations of multiple attributes and the target DpM in the COVID-19 dataset.

Figure 5 shows the frequency distributions of the categorical attributes within the transformed
dataset. It can be noted that all attributes have uniform categories as low (L), medium (M) and high
(H) with the additional category of minor (Min) for the COVID-19 attributes.

The histograms demonstrate normalized distributions for the demographic attributes indicating
categorization of the numerical dataset. To find the individual relationships between the DpM and
demographic attributes, we initially deployed the χ2-test, which is one of the most commonly used
statistical tests of independence for categorical data. The χ2-test between the DpM and CpM provided
χ2 = 162.19 with a p-value of 2.2 × 10−16≪ 0.05, clearly indicating the rejection of the null hypothesis,
thus concluding that DpM is highly dependent on CpM in a country that aligns with the existing
study [10] as well as SOM-based analysis (figure 4). Similarly, the χ2-test between TpM and CpM
produced χ2 = 69.46 with a p-value of 1.942 × 10−11≪ 0.05, also indicating the rejection of the null
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hypothesis. These findings align with the SOM-based outcomes of figures 3 and 4, implying that a higher
number of tests will produce a high number of cases, which will, ultimately, result in a high DpM for the
corresponding country.

Table 3 indicates the outcomes from the χ2-test of independence between each demographic attribute
and DpM. It can be observed that the value of χ2 for certain individual attributes, e.g. Age, Poverty_ratio,
Obesity, Avg_temperature and Female_smokers, indicates high dependence with the target attribute of
DpM (i.e. p-value≪ 0.05). However, it is important to investigate the combined associations of these
attributes with the varying nature of COVID-19 severity across the globe.

As mentioned earlier, CARs can produce the desired associations while using the categorized
demographic data (i.e. table 2) as antecedents and DpM as the consequent in the rules. One of the
limitations of conventional rule mining is the generation of a high number of rules, which make them
impractical for interpretation by traditional approaches or human experts. However, this issue can be
resolved using sequential filtration of irrelevant rules with varying threshold values for parameters c
and s. The selection of optimal values for these thresholds entirely depends upon the nature of the
problem and the data itself [43]. Based on empirical experiments, we performed rule filtration while
optimizing several parameters, which included confidence (minimum confidence = 0.9), minimum
length = 2, maximum length = 5, thus resulting in the extraction of a compact list of highly associated
rules. As per the research question in this study, we extracted conditional rules based on DpM
severity levels (i.e. minor, low, moderate and high) as consequent, which further limits the generation
of a larger set of rules. In addition, we used redundant rules elimination [44] to filter out repetitive
rules and, therefore, resulting in the list of the most representative ones.
4. Results and discussion
In order to investigate the potential patterns within the dataset and class associations between the
demographic attributes and COVID-19 severity, specifically, DpM around the world, experiments were
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Table 3. χ2-test of independence between the demographic attributes and DpM (d.f. = 6).

attribute name χ2 p-value attribute name χ2 p-value

Lung disease 13.04 0.041 Smoking females 22.53 0.0009

Hypertension 22.83 0.0008 Smoking males 4.86 0.56

Population density 3.58 0.73 Diabetes prevalence 6.92 0.32

Female ratio 8.92 0.17 Mortality (Diab_CVD) 26.25 0.00019

Age 0–14 (Age_1) 32.87 1.16 × 10−5 Literacy rate 31.46 2.06 × 10−5

Age 15–65 (Age_2) 29.7 3.97 × 10−5 Physician per 1000 32.72 1.18 × 10−5

Age 65+ (Age_3) 23.11 0.0004 Health expenditure 33.41 8.72 × 10−6

Beds.per.1000 25.81 0.0002 Forest area 1.71 0.94

Air Pollution 15.58 0.016 Basic handwash 33.43 8.63 × 10−6

Mortality rate_AP 37.75 1.25 × 10−6 Obesity 41.29 2.53 × 10−7

Poverty ratio 39.42 5.90 × 10−7 Avg. temperature 28.30 8.24 × 10−5

Employment ratio 16.19 0.011
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conducted using both numeric and categorical representations of the dataset, comprising the
demographic and COVID-19-related attributes in tables 1 and 2. The CARs algorithm was used with
the parametric configurations and rule filtration explained in §3.2, while considering the listed
attributes as antecedents and target DpM as a consequent of CARs. The specific objective of these
experiments was to analyse the associations between the extreme levels of DpM (i.e. severe and mild)
and certain demographic attributes, particularly, the ones associated with health, environmental and
economic indicators of a country.

Figure 6a demonstrates the 11 representative rules (shown as light-pink and red circles) comprising
the list of attributes (green circles) identified as highly associated with the high DpM across the
globe. The size and colour intensity (i.e. red colour) of the circles relates to the relative strength of
the rule in terms of confidence and lift measures, respectively. These non-redundant rules indicate
significant associations (with confidence > 0.9 and lift≥ 3.64) between the DpM and multiple
demographic attributes such as high values for (i) Phys_rate, (ii) smoking_females, moderate levels of
(iii) obesity, (iv) population density, (v) diabetes_prevalence, (vi) poverty_ratio, while low categories
of (vii) younger population (i.e. Age_1).



Table 4. Antecedents in class-rules with high association between demographic attributes and high death-rate (consequent),
lift > 3.64, confidence > 0.9, support > 0.065.

Diabetes.prevalence = M, Age_1 = L, Phys_rate = H

Smoking.Female = H, Female = H, Age_1 = L

Employment.ratio. = M, Smoking.Female = H, Age_1 = L

Smoking.Male = M, Smoking.Female = H, Age_1 = L

Smoking.Female = H, Diabetes.prevalence = M, Age_1 = L

Smoking.Female = H, Diabetes.prevalence = M, Age_1 = L, Phys_rate = H

Employment.ratio. = M, Smoking.Female = H, Diabetes.prevalence = M, Age_1 = L

Obesity = M, Forest.Area = H, Female = M, Poverty.Ratio = M

Lung_Disease = M, Obesity = M, Forest.Area = H, Female = M

Diabetes.prevalence = M, Age_2=M, Poverty.Ratio = M, Phys_rate = H

Population.Density = M, Smoking.Female = H, Forest.Area = M, Female = H
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Despite the elimination of redundant rules and restricted parametric constraints (e.g. lift, confidence),
individual occurrences of different attributes within the representative rules might be helpful
for visual analysis. For this purpose, we extracted the frequency histograms within the antecedents of
rules as shown in figure 6b. Frequency histograms help to visualize a more complex and larger set
of rules to further investigate the significance of individual factors within the list of representative
rules. However, it is important to consider the associations, when antecedents are combined with
other factors (i.e. how the association varies with varying combinations in antecedents) as shown
in figure 6a.

Table 4 further shows the list of antecedents for the rules presented in figure 6a. These outcomes clearly
indicate the significant associations between a high DpM and certain demographic attributes, specifically,
low poverty_ratio and young population, while high female_smoking and medical facilities (e.g.
Phys_rate). The outcomes align with existing research, for instance [10], that also reported significant
association between the economic (GDP) condition of a country and COVID-19 spread. However, the
results of our work also consider the impact of combined attributes (e.g. smoking_female = H appears
with the low Age_1 and high Phys_rate), which is an important aspect to be further analysed.

Table 4 and figure 6 demonstrate that attribute smoking_female is highly associated with high levels
of DpM. Recent studies [6,9] reported a positive correlation between smoking_prevalence and COVID-19
deaths, which aligns with our outcomes. On the other hand, research conducted in [10] reported
contradictory outcomes, indicating negative correlation of smoking prevalence and COVID-19 impacts.
We used the gender information (i.e. male versus female) in combination with the smoking ratio
(male, female), which helps to further investigate contradicting outcomes in previous studies [6,9,10],
while measuring the combined relationship. Our findings demonstrate that countries with a higher
ratio of female smokers are affected more as compared with that of countries with more male
smokers. Likewise, [6,11] reported males being at more risk than females; however, when smoking
ratio is combined together with the gender attribute in our research, it produces contradicting
outcomes. This can be further validated with figure 3 (i.e. SOM map for global distribution of DpM),
where most of the countries containing high female smokers (e.g. UK, Spain, Chile, Montenegro,
France, USA, Luxembourg, Bosnia and Herzegovina, etc.) overlap with countries appearing within the
high DpM area of the SOM map (i.e. left/bottom-left nodes). The outcome also aligns with a fact
sheet [45] issued by the CDC, which states that smoking damages the human immune system and
can make the body more vulnerable against COVID-19 attacks.

Furthermore, in most of the rules shown in table 4, countries with low-to-moderate poverty_ratio
indicated significant associations with high DpM, which puts credence on the existing findings [10].
This factor can also be validated using the SOM map distribution (figure 3), indicating high DpM in
most of the high GDP countries (i.e. bottom-left nodes). The significant association between the
poverty_ratio and DpM may also be due to several factors such as the limited availability of medical
resources in low GDP countries, less travelling (i.e. national and international) due to limited GDP
and therefore causing less spread of COVID-19, effective lockdown policy and less tourism.
Furthermore, the limited number of COVID-19 tests (i.e. low TpM) carried out in low GDP countries
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also significantly reduces DpM as can be seen in figure 4, where DpM is high positively correlated to
TpM.

These outcomes demonstrate the significance of combined attribute analysis, producing more reliable
outcomes and comprehensive insight of inter-relationships. On the other hand, most of the existing
studies are reporting on these attributes individually while using immature datasets, and are therefore
insufficient in drawing general conclusions about the diversity in DpM distribution across the globe.

In a similar way, figures 7 and 8 show the rules comprising the demographic attributes that indicate
significant associations with the low and minor DpM levels, respectively. The corresponding antecedents
are reported in tables 5 and 6, respectively, which clearly indicate frequent occurrences of low Obesity,
Age_2, and high Poverty_ratio, Avg_temperature and Employment_ratio. More specifically, Age_2
appeared as low here as compared with Age_1, which is comparatively high which means that
countries with a high ratio of aged population are affected more by COVID-19, compared with those
with a high ratio of younger population. This also aligns with existing findings, such as [12–14] and
WHO reports [15] indicating younger people and, specifically, children are less affected. An example
scenario in our findings is Pakistan (with a low ratio of aged population, Age_3: 4.3%) versus the
United Kingdom (with higher ratio of aged people: Age_3: 18.5%). This outcome also aligns with the
SOM heat map (figure 3), where Pakistan appears in low affected areas in the map (i.e. top-right
nodes), while the UK appears in the bottom-left (i.e. severely affected) areas of the map.



Table 5. Antecedents in class-rules with high association between selected factors and low death-rate (consequent), lift > 3.5.

Smoking.Female = L, Literacy.Rate = M, Mortality.rate_AP = M

Lung_Disease = H, Employment.ratio.=M, Health.Exped = L

Diabetes.prevalence = M, Poverty.Ratio = M, Health.Exped = L

Obesity = L, Diabetes.prevalence = M, Beds = L

Lung_Disease = H, Population.Density = H, Avg.Temp = H

Obesity = L, Diabetes.prevalence = M, Age_2 = M

Employment.ratio. = M, Mortality.rate_AP = H, Phys_rate = M

Employment.ratio. = M, Beds = M, Mortality.rate_AP = H

Obesity = M, Forest.Area = L, Beds = M

Table 6. Antecedents in class-rules with high association between selected factors and minor death-rate (consequent), lift >
3.42, confidence > 0.9.

Literacy.Rate = L, Poverty.Ratio = H

Obesity = L, Age_2 = L, Poverty.Ratio = H

Female = M, Age_2 = L, Poverty.Ratio = H

Employment.ratio. = H, Female = M, Age_2 = L

Employment.ratio. = H, Female = M, Age_1 = H

Employment.ratio. = H, Female = M, Poverty.Ratio = H
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Table 6 indicates an important aspect of significant association between the obesity level and DpM
severity. The antecedents’ histogram (figure 8b) indicates that low obesity is highly associated with
minor DpM, whereas obesity is moderate when DpM is high as shown in table 4 and figure 6. This
implies that DpM increases with an increasing obesity population ratio, which is consistent with the
results of a recent COVID-19 study [7], which shows a positive correlation between COVID-19
infections and obesity. However, it is important to note that our results indicate that a low obesity
appears in combination with high Poverty_ratio and low Age_2, which indirectly represents lower GDP
countries. In other words, the combination demonstrates strong associations between these attributes
and minor DpM, while simultaneously, the inter-relationship between these attributes. According to
[46], most of the low GDP countries (i.e. high poverty ratio in our study) are reported with a high
global hunger index (GHI), which indirectly validates the combined appearance of low obesity and
high poverty ratio in the case of minor DpM. Furthermore, these outcomes clearly indicate that the
obesity attribute reported in existing works, such as [7], is highly dependent upon other demographic
characteristics of a region that might alter the outcomes, when analysed in combination with these
demographic attributes.

In summary, the association outcomes in tables 4–6 indicate that certain demographic attributes,
specifically, Obesity level, Poverty ratio, Age group, Annual temperature and Smoking prevalence,
combined with gender information (i.e. smoking_females, males), are highly associated with
COVID-19 severity levels (i.e. DpM) across different countries. Likewise, several demographic
attributes related to medical facilities (e.g. Health_expenditure, Physician_ratio and Beds availability),
environmental attributes (e.g. Forest area, Handwash facilities, etc.) and economic factors (e.g. Poverty
ratio, Employment ratio, etc.) indicated comparatively partial associations with the COVID-19 severity
distribution across the globe.

As the demographic and COVID-19 dataset are primarily in numerical form, we can use the SOM
heat maps to visualize the distribution of all demographic attributes in a two-dimensional plot as
shown in figures 9 and 10. This also helps to simultaneously visualize the inter-relationships between
these attributes. For instance, Test_ratio and Case_ratio in figure 9 show similar patterns across the
map indicating a high correlation between them. Interestingly, the outcomes in figure 9 align with the
CARs results (tables 4–6), indicating the significant dependence between DpM and the certain
demographic attributes across the world. For instance, heat maps for the Age_1 distribution in
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figure 9 inversely correlate with the heat map distribution of DpM in figure 10, indicating higher Age_1
(e.g. nodes 10, 11, 16–18 in figure 9), lower DpM (nodes 10, 11, 16–18 in figure 10) and vice versa, which is
similar to existing findings [9,12–14]. Similarly, Obesity and Female_smoking levels indicate direct
correlations with DpM, which also aligns with the CARs outcomes (i.e. categorical data). Likewise, the
demographic attributes related to medical facilities, environment and economic indicators also



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201823
17
indicated relationships with DpM similar to CARs associations. Furthermore, the inter-relationships

identified between Age, Obesity and Poverty_ratio in CARs (tables 4–6), are also produced by the
SOM heat maps in figure 9.

It is important to consider the ongoing and dynamic nature of COVID-19 severity levels across the
globe. More specifically, the continuing COVID-19 waves and variants such as VOC 202012/01 might
affect the generalization and outcomes of the existing predictive approaches. Typical examples may
include the temperature and population density of a country. Some of the existing studies [17–20,22]
reported an inverse relationship between the temperature of a country and COVID-19 spread. We
carried out SOM analysis to investigate this further, which, interestingly, indicated a moderate negative
relationship between the temperature of a country and the corresponding DpM, which is also reported
in CARs outcomes (see table 5 and figure 7). Likewise, the χ2-test of dependence produced a p-value of
8.24 × 10−5≪ 0.05, indicating significance dependence between the DpM and average temperature of a
country. These statistics and SOM outcomes indicate at least a partial relationship between the DpM
and average annual temperature of a country, which also places credence on the aforementioned
studies. However, as mentioned earlier, the outcomes might vary when analysed in combination with
other demographic characteristics and geographical locations. For example, USA, Iraq and India, with
comparatively high annual average temperatures, are listed as severely affected countries, which
contradicts the above argument. This implies that while the argument is true in most of the cases, the
results in this work as well as reported in the existing studies, are insufficient to draw general
conclusions about the interdependence of COVID-19 severity and annual temperature of a country,
specifically in the given circumstances of ongoing waves, variants and dynamic spread of COVID-19
across the globe.

Population density on the other hand, has been considered an important but contradictory factor in
existing works. For instance, [23,26] reported dense population areas being positively correlated with
COVID-19 cases in contrast to [25], which reported that correlation is not significant. The outcomes
from SOM and CARs in proposed work indicated that population density is irrelevant, which agrees
with the research outcomes reported in [25]. This indicates that COVID-19 spread in high-density
population regions can be controlled with the effective management, specifically, lockdown policy
implementation as reported by the WHO and [21,25].

Finally, the Air-pollution indicated high negative association with DpM (figures 9 and 10), which
aligns with the outcomes reported in [25,28]. However, the outcomes contradict the findings reported
in [27,29,30]. Likewise, Hypertension and Lung_disease in figures 9 and 10 show moderate negative
relationship with DpM, which aligns with CARs outcomes (figure 6), but contradicts the findings in
[6,9,47]. There might be several factors for this contradiction, specifically, (i) the use of conventional
statistical analysis of individual associations in existing studies, (ii) the nature of this study, which is
based on demographic attributes and not COVID-19 health-related symptoms, and (iii) the use of a
premature dataset about COVID-19 infections in existing works, which may produce variations in
results at later stages of the disease.
5. Conclusion and future directions
This research proposed a framework of data analytics algorithms to investigate which demographic
characteristics are highly associated with severe death rates due to COVID-19 in different countries.
The study performed a comprehensive analysis using well-established clustering and class rule mining
algorithms to investigate COVID-19 death-rate associations with multiple individual and combinations
of demographic attributes. Our results demonstrate that certain demographic attributes, specifically,
age distribution, poverty ratio, female smokers percentage, obesity level and average annual
temperature of a country, are significantly associated with COVID-19 death rate distribution. This is
potentially an important finding, implying that various demographic attributes can be used as
markers to identify COVID-19 spread and severity levels, leading to various aspects (e.g. social,
economic, cultural, healthcare, educational, etc.) and a bunch of other related conclusions, which may
be helpful to policy makers, health professionals and individuals for the effective management and
control of the disease.

The authors believe that the complex associations and patterns within the multi-dimensional
demographic attributes in this work are more comprehensively studied, when compared with the use
of classical statistical approaches, reported in most of the existing works. Our findings demonstrate
that certain individual attributes (e.g. age, gender, GDP ratio), when combined with other
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demographic characteristics (e.g. smoking ratio, obesity), produce varying outcomes in contrast to some

of the existing works that use conventional statistical techniques with inability to explore the complex
patterns within the high-dimensional data. It is also vital to consider the dynamic and ongoing nature
of the COVID-19 spread across the globe that might affect the conclusions made in some of the
existing studies using insufficient data at premature stages of the disease. As an example, India had
fewer (i.e. 25% only) cases in the first five months of the outbreak (i.e. February to June 2020),
however, within the following two months only (July and August 2020), 75% of the total number of
cases appeared. This type of dynamic CpM might influence the outcomes and generalization of
existing works carried out with an insufficient dataset at earlier stages. Finally, we identified several
attributes, including hypertension, lung disease, mortality rate (CVD and diabetes) and medical
facilities (e.g. beds, physician rate, etc.), which are also partially associated with COVID-19 spread and
may set a baseline for future investigations.
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