
LIBRARY

RBIAIWjM REPORTS DIVISION

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA 93940

NPS-53-88-001

NAVAL POSTGRADUATE SCHOOL

Monterey, California

<ssss^.

CALCULATING THE SELF- INTERSECTIONS OF BEZIER CURVES

L--nfTeter Lasser

/ March 1988

Approved for public release: distribution unlimited

Prepared for:

National Research Council

2101 Constitution Ave. N.W.

Washington, DC 20418

FedDocs
D 208.14/2
NPS-53-88-001

fa&boa
NAVAL POSTGRADUATE SCHOOL

MnMTT?DrV PIT TPnDMTAMONTEREY , CALI FORNI

A

Rear Admiral R. C. Austin K. T. Marshall
Superintendent Acting Provost

The work reported herein was supported with funds from the
National Research Council, 2101 Consitution Avenue, N.W.,
Washington, DC 20418.

Reproduction of all or part of this report is authorized.

This report was prepared by:

/

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enfred)

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL

REPORT DOCUMENTATION PAGE
1 REPORT NUMBER

NPS-53-8S-001

2. GOVT ACCESSION NO

4. TITLE 'and Submit)

Calculating the Self-Intersections ofBezier Curves

MUNibKfc^A^tt4W^«y3 1

BEFORE COMPLETING FORM
3. RECIPIENT'S CAT alOG NjMBE*

S TYPE OF REPORT & PERIOS COHERED

Technical Report S 87 - 10 8'

6 PERFORMING ORG. REPORT NUMBER

7. AuTMORCi;

Dieter Lasser

8. CONTRACT OR GRANT NUMBER'!,

9 PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School - Code 53

Monterey, CA 9 394 3

10. PROGRAM ELEMENT, PROJECT, TASK
AREA A WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME ANO ADORESS 12. REPORT OATE

March 19S8
13. NUMBER OF PAGES

36
14 MONITORING AGENCY NAME 6 ADDRESS*"// d///aranf from Controlling Olllc») 15. SECURITY CLASS, (ol thl* tapott)

unclassified

ISa. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol thlt Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol fha mbtiract mnfrod In Block 30, II dlltmrtnt Irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WOROS (Continue on revert* tide II neeeeeerry and Identity by block number)

CAD, CAGD, Bezier Curves, Spline Curves, Intersection, Self-Intersection

20. ABSTRACT (Continue on reveree elde II neceeemry and Identity by block number)

Abstract: A user-friendly divide-and-conquer algorithm is presented for finding all the self-intersection

points of a parametric curve in the Bernstein -Be/ier representation. The underlying idea of the algorithm

is to deal with the Bezier polygon instead o(the curve description itself. By alternately subdividing the

Bezier polygon and estimating the self-intersection regions the self-intersection points are finally approx-

imated by straight line intersections of the refined Bezier polygons. The algorithm also calculates the

parameter values of the self-intersection points. In addition to the convex hull and the approximation

property of the Bezier polygon the working o(the algorithm is based on a very intuitive angle criterion.

DD | JAN 71 1473 EDITION OF I NOV 68 IS OBSOLETE

S N 0102- IF- 014-6601

unclassified

SECURITY CLASSIFICATION OF THIS PAGE Whmn Dett tmerea,

Calculating the Self-Intersections of Bezier Curves

Dieter Lasser

Fachbereich Mathematik, AG3
Technische Hochschule Darmstadt
6100 Darmstadt, West Germany

Present address: Naval Postgraduate School
Department oi Mathematics

Monterev. CA 93943

L'SA

Abstract: A user -friendly 'divide-and-conquer' algorithm is presented for finding all the self-

intersection points of a parametric curve in the Bernstein-Bezier representation. The underlying

idea of the algorithm is to deal with the Bezier polygon instead of the curve description itself.

By alternately subdividing the Bezier polygon and estimating the self-intersection regions the

self-intersection points are finally approximated by straight line intersections of the refined Bezier

polygons. The algorithm also calculates the parameter values of the self-intersection points. In

addition to the convex hull and the approximation property of the Bezier polygon the working

of the algorithm is based on a very intuitive angle criterion.

0, Introduction

For two explicit given curves fx

(x) and f2
(x) intersection points of fx

{x) and f2
(x) can be calcu-

lated using numerical methods like Newton's method by rewritting the problem as that of finding

the roots (zeros) oi the function F(x) = J\(x) —f:
(x). If the equation of one curve is given in implicit

resp. explicit form and the other in parametric form, we can substitute the parametric form into the

implicit resp. explicit equation. The (usually non-linear) equation we obtain can be solved by
Newton's method again. If both curves are given implicitly as (non-linear) functions fi{x,y) and

f\{x,y) of x and y or as parameterized curves x, = x
x
([), v, = }\(t) and x

2
= x

2
{r), y2

— y2
{r) vve

have to solve the two equations A(x,y) = and f2
{x,y) = Q resp. x

x
{t) — x

2
{t) = Q and

>'i(0
—

.!-':(T ^
= simultaneously, what can also be done by Newton's method [Faux, Pratt '83]. A

geometncaly based modification of the methods described by Faux and Pratt to calculate the

intersection points of two parameterized curves was given by Hoschek in [Hoschek '85]. Hoschek's

method works also for the problem of calculating the self-intersections of a curve. Self-intersections

of a curve can appear for example as boundaries of loops of parallel curves, often called offset

curves. [Arnold '86], [Farouki '85], [Hoschek '85, '87], [Klass '83], [LycheM4>rken '87],

[Tiller,Hansen 84]. For the loop removal the self-intersection points have to be detected. For ra-

tional curves this can also be done by algebraic methods which have been introduced in the area

oi CAGD by Sederberg, Goldmann and .Anderson. They described in [Sederberg '84], [Sederberg

el al. '84, '85] and [Goldmann '85] a method of classical algebraic geometry for solving the curve-

curve intersection problem for rational planar and non-planar curves and in [Sederberg et al. '85]

a method for finding the double points and bv this the sell-intersection pomts of planar rational

cubics (see also [Salmon 1879], [Hilton '32], [Walker '50]).

In CAGD the B-spline-Bezier representation of curves is very popular and therefore it is of im-
portance to have (self- (intersection algorithms for this type of curve representation too, so that no
conversion of the curve description [Dannenberg.Scrwacki '85], [Hoschek '87] is necessary.

Curve-curve intersection algorithms for B- spline -Bezier representations have been described by
[Lane el al. SO], [Cohen et al. SO] and for quadratics by [Yang el al. '36]. Yang calculates the

intersection points using an algebraic method while the algorithms of Lane and Cohen are subdi-

vision algorithms taking into account the geometric relationship between the curve and its defining

control polygon. Pure subdivision algorithms are very time-consuming and need a lot oi storage

space [Griffiths '75] but they can accelerated by using in addition an estimation of the intersection

region which yields to the so called 'divide-and-conquer' algorithms. For B-spline-Bezier repres-

entations the estimation oi those parts that do not participate in the intersection can be done by
using the convex hull property [Lane et al. 'SO], [Peng '84] (see also part I of this paper) or, rougher
but more easily and quickly handled by min-max boxes (see part II of this paper). An estimation

usins min-max boxes can also be done for non-B-sphne-Bezier representations [Koparkar.Mudur
'831

A disadvantage of the subdivision and even of the more advanced divide-and-conquer algorithms

against the algebraic based intersection algorithms might be that they are more time-consuming
because of the subdivision process [Sederberg, Parry '86]. But the great advantages of the divide-

and-conquer algorithms are that

• they are very user-friendly - no worry about 'suitable' starting points,

• they find independently - that means without any interactive disruption to the user - all inter-

section points within the specified tolerance,

• they can be formulated easily for arbitrary polynomial degree and for non-rational and rational

representations, and
• they are numerically very stable because of the extraordinary numerical properties of the Bernstein

polynomials [Farouki,Rajan '87], [Sederberg,Parry '86].

Because of these favorable properties of the intersection algorithms based on the B-spline-Bezier

representation using divide-and-conquer methods and because of the reason named above we would
like to have also a self-intersection algorithm of this kind. The existing curve-curve algorithms can

not be used directly by doing the curve input twice, because in this case the divide-and-conquer

method will fail in the sense that no elimination of curve parts that do not participate in the self-

intersection will be possible. Furthermore the final calculation of the self-intersection points, done
by intersecting straight line segments defined by the control polygon will also fail by doing the same
polygon input twice.

The only self-intersection algorithm for B-spline-Bezier representations I know was given in

[Tiller,Hansen '84]. They calculate self-intersections of (rational) B-spline curves in a two step

procedure. First they find the intersections of the control polygon with itself and then they use an
iterative method (e.g. Newton) to improve the approximate solution found in step one. They know
that this method can fail, because a curve can have a loop even though its control polygon has no
self-intersection, but by using control polygons which approximate their curves very closely, i.e.

building up the curve by a 'large' number of segments, they try to make sure to be 'on the safe side'

.

Although Tiller and Hansen are working with B-spline techniques, their algorithm dosen't belong

to the powerful class of the divide-and-conquer algorithms because their algorithm dosen't use the

typical kind of strategy of the divide-and-conquer algorithms for the evaluation of the self-

intersections.

The algorithm presented here is a user-friendly divide-and-conquer algorithm for finding all the

self-intersection points, including their parameter values, of a parameterized non-rational or rational

curve of arbitrary degree in Bezier representation. For the creating of the algorithm the geometric

relationship between the curve and its defining control polygon was fully taken into account. By
alternately subdividing the Bezier polygon and estimating the self-intersection regions the self-

intersection points are finally approximated by straight line intersections of the refined Bezier

polygon. In addition to the convex hull property and the approximation property of the Bezier

polygon the algorithm is based on a very intuitive angle criterion which is together with the convex

hull property used for estimating the self-intersection region of the curve.

Because a curve-curve intersection algorithm is an important part of the self-intersection algorithm

of part III of the paper, and because the final calculation of the self-intersection points and its pa-

rameter values is done in the same way as in the curve-curve algorithm, a short explanation of a

divide-and-conquer algorithm for calculating the intersection points of two parameterized non-
rational or rational curves of arbitrary' degree in Bezier representation is given in part II. The
curve-curve algorithm described there differs from the 'classical' one introduced by Lane [Lane et

al. 'SO] in some details' . mainly in the concept oi the 'control unit' and in the final calculation

oi the intersection points and its parameter values.

Part IV finally includes a short description of how to calculate the self-intersections of a Bezier

spline curve.

.-Ml algorithms are written for planar curves, but for the extension to spatial curves only 'a third

equation for the z-coordinate ' has to be added everywhere uhere coordinates have to be evaluated.

The paper starts with some introductory words on the Bezier representation of (planar) curves.

/. Bezier Curves

A (planar) Bezier curve is defined by

m

B(u) = Y bk B?(u)

k=0

where b, = (xk , yk) e W, us [0,1] and

**(«) -
\ k)

u -")

are the (ordinary) Bernstein polynomials of degree mm u. The coefficients bk e R 2 are called Bezier

points. They form in their natural ordering given by their subscripts the vertices of the so called

Bezier polygon (see Figure I).

It is possible to build up complex Bezier sphne curves from a number of Bezier curve segments.

The conditions for O continuity of adjacent curve segments can be found in \Boehm el al $4].

The Bezier description of a curve is a very powerful tool because the expansion in terms of

Bernstein polynomials yield to a geometric relationship between the curve and its defining Bezier

points. For example:

• the Bezier polygon gives a rough impression of the Bezier curve (see Figure 1),

• the curve has its endpoints at b and bm with tangent vectors defined by b , b[and by bm , bm _[

(see Figure 1),

• convex hull properly: the Bezier curve lies completely within the convex hull of its Bezier polygon
(see Figure 2),

• the curve point B(^), for any 14, e [0,1] can be computed by repeated de Casteljau steps by the

recursion formula

bf(^) = (l-^)bf-'(^) + Uq^Uq)

where b^ = b„ and B(Uq) = by (see Figure 3).

The point u = Uq subdivides a Bezier curve into two Cm continuous segments. Each segment is again

a Bezier curve of the same degree as the original one. The Bezier points of these two segments are

'byproducts' of the de Casteljau construction for the evaluation of the point B(^). They are given

by b$ and b? (k — 0, ... , m). The subdivision process may be repeated yielding a sequence oi

polygons. For this sequence of polygons we have the important

• approximation property: if the u^ are dense in [0,1] the sequence of polygons converges to the

curve.

Figure 4 illustrates how the curve can be fixed usmg the approximation and the convex hull prop-

ertv.

Figure 1. planar Bezier curve of degree five

Figure 2. convex hull property

K

b,

Figure 3. de Casteljau construction

Figure 4. fixing the curve by the approximation and the convex hull property

A rational (planar) Bezier curve can be defined by

R(«)

where b
k
= {xk ,yk) e R 2

, u e [0,1] and

I
k=0

b, /?>)

RT(u)
p B?(u)k u k

jB?{u)

are the rational Bernstein polynomial of degree m in u with weights ^eR [Piegl '86].

Figure 5 compares the (ordinary-) Bernstein polynomials B'?{u) and the rational Bernstein

polynomials R"{u) with p„ > lor all k.

If we demand /?* > for all & we have all the properties and algorithms for rational Bezier curves

which we have for ordinary i.e. non-rational curves [Farin '83], [Tiller '83], therefore there is in this

case no principle difference between a curve-curve resp. a curve self-intersection algorithm for

non-rational and for rational Bezier curves.

Figure 5. ordinary and rational Bernstein polynomial of degree four, (/?„ /?4)
= (1, 3. 2, 5, 1

//. Curve-Curve Algorithm

The underlying idea of the curve-curve algorithm is to deal with the Bezier polygon instead of the

curve description itself, using the relations between polygon and curve mentioned above.

The program of the algorithm is to subdivide both curves repeatedly which yields at the same time

to a subdivision and refinement of the polygons. This is done until a fine polygon structure is ob-
tained and the curves can be approximated well by the polygons defined by these subdivisions. This

procedure reduces the problem to a number of straight line intersections that can be handled easily.

Because subdividing the whole curves in each algorithm step is relatively time-consuming and needs

a lot of storage space in addition an estimation of the intersection region is done.

The algorithm consists of four main parts (Figure 6), they are described now.

• First, the intersection area is estimated. Using a coarse but very quick estimate of the possible

intersection regions of the two curves those parts of the curves that do not participate in the

intersection will be eliminated as early as possible in the algorithm.

• Second, refinement occurs by subdividing the Bezier polygons. Except at the beginning, the al-

gorithm subdivides not the whole Bezier polygons, but only those parts whose corresponding

curve portions might participate in the intersection. An adaptive subdivision is done to detect the

separation of regions of the two curves that do not intersect readily.

• Third, the intersection points are calculated by intersecting the Bezier polygons of the curve

subsegments of possible intersection. Part three also calculates the parameter values of the

intersection points.

• Fourth, error values are calculated, tolerances are checked, this part of the algorithm is the con-

trolling unit of the algorithm and is very important for dealing with difficult and complicate cases.

Beside drawing parameters for creating the plot output, the input of the algorithm consists of the

polynomial degrees {M and m) and of the Bezier points of the two Bezier curves (B(7~) and b(0),

furthermore of an error tolerance value to determine the accuracy needed. Pre-settings for con-

trolling the algorithm can be specified in the program too.

The first step of the algorithm is to subdivide the two curves simultaneously forming two new
subsegments on each curve. A 'min-max box' defined by the maximum and minimum x and y co-

ordinates of the curve segments defining Bezier points is built for each segment. The boxes of the

two curves are then compared with each other (a comparison using min-max boxes instead of the

convex hulls is rougher, but much more easily handled and quickly practised). Those subsegments

whose boxes do not intersect any box of the other curve will no longer be considered. Only those
subsegments whose boxes can not be separated from that of their rivals will be dealt with further

(Figure 7). For this, Bezier points of pairs oi interfering subsegments of different curves will be
provided with an subscript, called interference index'. By thus a list of pairs of segments of different

curves which might interfere is created. In the following, Bezier points, i.e. segments of the same
interference index, will ail go through the algorithm subroutines.

The de Casteljau subdivision process, the min-max box formation and the separability test are

connected by an algorithm loop, which will be done as otten as is required by the level of accuracy

needed. Alter each subdivision, two new subsegments are formed, each corresponding to a smaller

convex hull. When more and more subdivisions are done each convex hull becomes smaller and
smaller, while the curve topology near the intersection is reasonably closely approximated by the

polygons of the subsegments.

nput

subdivision

loop 1

estimation

intersection
i

control unit

Figure 6. principle structure of the algorithm
output

loop 2

Figure 7. estimating the intersection region using min-max boxes

All subsegments which might participate in the intersection go through the third part of the algo-

rithm: the section that computes the intersection points and the parameter values of the intersection

points what is be done in the following way.

Let B,(r) a subsegment of the first curve BiT) of degree .1/ and

B
y
= (BXj,BYj) ; = 1/

be the Bezier points of B,(r) and let bK{r) a subsegment of the second curve b(0 of degree m
and

bk = (bxk , byk) k = m

be the Bezier points of b^r).

The polygon legs defined by the Bezier pouits are given by

Qj = B
;
+ 7}S

y
y = U- 1

where G. = (GX,,GYX S. = (SX, , SY
}
), S

;
= B,_, - B, and 7}e [0,1] and surular for g,.

If G, and g* intersect in P (Figure 8) i.e.

G/7}=7}(P)) = p = g*(?* = F*(P))

we have for the parameter values

syk (BXj - bxk) - sxk (BYj - byk)

7}(P) = * r-

V*

and

SK
y
-(flA} - bxk) - SXj(BYj - byk)

'Vis

where

7~(P) resp. F*(P) are parameter values with respect to the polygon legs G
;

resp. g^ but because

the de Casteljau refinement is always done for 0.5 we also know the parameter value T; of

B — By(0) and the parameter value tK of b = b^(0) so that the parameter values 7"(P) and ;(P)

oi the intersection point P with respect to the parameter intervals of the originally given Bezier

curves can be calculated by (Figure 7)

Tj + (7}+1
- Tj) 7}(P)

T(P) = Tj + -* 7

^

and similar for f(P), where j is the number of subdivisions and 7. are the parameter values given

to the Bezier pouits B, of the Bezier polygon of B/t). The 7, (and so the tk given to the bj
can be defined in different ways for example

by an equidistant measure

J ~ M
by an chord length measure

J M-\

TJ = -rXO^+i-B,!! where L = V
II
By>1 - B

y ||

(=0 y=0

by an geometric average measure of T" and T'

dw
•J* I, -j.

Figure 8. calculating of parameter values of the intersection points

BuiiT^

As a measure of error we can use the distances

RBb = ||B(7(P)) - b(f(P))

/?
fl/

> = ||B(7(P)) - P||

RbP =
I! b(nP)) - P

II

Per default a minimum number of de Casteljau subdivisions will be done before part three will be

started (loop 1). If the accuracy needed is 0.002 for example the pre-setting has to be 6 (see table

1) an this will yield in almost every example to an accuracy of about 0.002, if in some complicated

case not, the control unit will effect to do as many additional subdivisions as needed for the speci-

fied accuracy (loop 2).

When the two curves intersect in a very small angle or do not intersect, but come very close together

part three might calculate more intersection points as two curves of degree M and m can produce

or might calculate (pseudo-)intersection points lying very close together in parameter space which

has to be checked (the statement of the parameter space criterion is stronger than an statement of

an analog coordinate space criterion). In both cases the control unit will also effect to do as many
additional subdivisions as needed for clarifying the situation.

The repeatedly done polygon refinement initialised by these criterions will be stopped in different

ways: first, if the result has the accuracy needed, second, there is a default of an upper boundary for

the number of de Casteljau subdivisions and thud, there is a default of an maximal (possible) ac-

curacy. This default value is dependent on the initialization of the variables, e.g. real or double

precision real and of the machine accuracy for each kind of initialization.

Finally the control unit checks if the distance between intersection points in coordinate space is less

than a specified tolerance. If yes, an intersection point is defined by the arithmetic average of these

points.

Examples

Table 1 lists the maximal error

R = max { RBb , RBP , RbP } 5

as it depend upon an increasing subdivision factor for the examples 1 to 6 for equidistant

parameterization for which we got the best results.

subdivision factor 4 5 6 7 8

Example 1 0.00904 0.00130 0.00039 0.00012 0.00003

Example 2 0.04563 0,00791 0.00210 0.00051 0.00014

Example 3 0.00273 0.00071 0.00014 0.00005 0.00001

Example 4 0.00450 0.00271 0.00121 0.00047 o.ooooi

Example 5 0.03817 0.01037 0.00260 0.00062 0.00019

Example 6 0.05235 0.00856 0.00177 0.00057 0.00012

Table 1. R for equidistant parameterization

Example I

PX PY 7"(P) UP)

-3.12109 0.76362 0.09834 20604

-1.67341 0.60298 0.32366 [j 35662

1.67341 0.6029S 0.67634 u 64338

312109 0.76362 0.90166 ii "9396

bx by

-3.3 1.3

-3.3 -0.7

0.0 2.}

}.} -0.7

3.3 1.3

BX BY

-4.0 -0.35

-4.0 3.0

0.0 -2.6

4.0 3.0

4.0 -0.35

parameter values and x-y-coordinates of the intersection points Bezier points of b(J) and of B(7~)

10

Example 2

O

PX PY 77 P) :(P)

0.00809 1.17249 0.03029 0.85430

0.02596 1.97778 0.054" 1 0.61825

0.17250 3.99191 0.14570 0.03029

0.97778 3.97404 0.38175 0.05471

1.50000 2.50000 0.50000 0.50i)00

2.02221 1.02596 0.61825 0.94529

2.82750 1.00809 0.85430 0.96971

2.97404 3.02221 0.94529 0.38175

2.991'-) 1 3.S2750 0.96971 14570

bx by

0.0 0.0

0.0 14

3 -9.0

3.0 5.0

BX BY

-1 ii 4.0

4.0

-10.0 1.0

4.0 1.0

Bezier points of b(t) and of B(T)

parameter values and x-y -coordinates of the intersection points

11

Example 3

PX PY 7"(P) HP)

-3.64353 1.49822 0.23120 0.27305

-2.92393 1.50086 0.29330 0.32148

-0.77325 1.49989 0.44827 0.45409

0.77325 1.49989 0.55173 0.54591

2.92393 1.50086 0.70670 0.67852

3.64353 1.49822 0.76880 0.72695

bx by

-5.0 0.0

-5.0 3.555

-3.0 -1.0

0.0 4.17

3.0 -1.0

5.0 3.555

5.0 0.0

BX BY
-6.0 3.0

-6.0 -0.555

-3.0 4.0

0.0 -1.17

3.0 4.0

6.0 -0.555

6.0 3.0

parameter values and x-y-coordinates of the intersection points Bezier points of b(/) and of B(7~)

12

Example 4

PX PY TIP) f(P)

-5 69310 2.23393 0.14418 0.06613

-2.68113 3.21920 0.33243 35152

2.68113 321920 0.66757 MS48

5.693 ID 2.23393 0.85582 0.93387

parameter values and x-) -coordinates of the intersectuion points

bx by

-4.0 0.0

-10.0 6.0

-2.0 6.0

-2.0 0.0

2.0 0.0

2.0 6.0

10.0 6

4.0 0.0

BX BY

-8.0

0.0

8.0 !

Bezier points of b(t) and of B(7^

I i

Example 5

PX PY 7"(P) HP)

3.60359 -4.10631 0.01787 0.12443

-5.44b 5 3 -0.76332 0.10171 0.28110

0.00000 4.14844 0.50000 0.50000

5-44^53 -0.76332 0.89829 0.71890

3.60359 -4.10631 0.98213 87557

parameter values and x-y-coordinates of the intersection points

bx by

-1.5 0.0

-1.5 -8.0

-10.0 -8.0

-10.0 9.0

0.0 9.0

10.0 9.0

10.0 -8.0

1.5 -8.0

1.5 0.0

BX BY

-3.0 -5.0

-12.0 8.0

0.0 &y

i

12.0 8.0

3.0 -5.0

BY, = 2.062507

Bezier points of b(t) and of B(7~)

14

Example 6

PX PY 77 P) f(P)

6.29966 1.63288 0.03 1S4 0.96977

5.S7601 -0.86192 0.33990 0.85797

0.04246 -2.38219 0.49353 0.05087

-4 67397 -2.17^73 0.62148 0.2S232

3.5"214 1.91463 0.96618 46 102

parameter \alues and x-y -coordinates of the intersection points

bx by

5.0 in

14.0 6 l)

10.0 -6U

-12.0 -Ml

-12.0 2.0

-2'i 2.0

BX BY

0.0 0.0

2.0 -8

-10 5 -8.0

-10.5 9.0

3 5 9.0

3.0 BK«

8.0 5}",

6.0 3

Bezier points of b(f) and of B(7)

(i?r5 = 5K4
= -4.129807)

15

///. Self-Intersection Algorithm

It is not possible to calculate the self-intersection of a Bezier curve by the curve-curve algorithm

of part II by douig the curve input twice because in this case the separability test of min-max boxes
will always be positive so that no elimination oi curve parts that do not participate in the sell-

intersection is possible. Furthermore part three will fail by doing the same input twice, so that an
additional criterion is necessary.

What we would like to have is a geometric criterion based on a relation between the curve and its

defining Bezier points i.e. its Bezier polygon which is as simple and at the same time as strong as

the convex hull property. This turns out to be more difficult than it looks like first, because the

situation is complicated by the fact that

• it is possible that the Bezier polygon has a self-intersection but the Bezier curve has no self-

intersection (see Figure 9)

but on the other side even

• if the Bezier curve has a self-intersection the Bezier polygon does not have to have a self-

mtersection (see Figure 10).

Figure 9. polygon self-intersection

Figure 10. curve self-intersection

16

Furthermore.

• if ^ ?.; . i.e. the sum of the amounts oi the rotation angles a* of the Bezier polygon less, is

greater than t the Bezier curve does not have to have a self-intersection (see Figure i 1) and

• if the -um (from u = to u= 1) of the amount of the rotation angle oi the tangent vector
B'iM of the Bezier curve is greater than n the Bezier curve does not have to have a self-

intersection (see Figure 12).

But.

the sum of the amount of the rotation angle of the tangent vector of the Bezier curve is greater

than - if the Bezier curve has a self'-intersection (see Figure 13).

CX<

Figure 11. v
|

a j > n
i
no self-intersection

Figure 12. no self-intersection

17

Figure 13. Bezier curve with self-intersection

Figure 14. all a k with same orientation => £ \aM \
= X l/?*l

=

Figure 15. a k with different orientation =* Z l
a *l > X \Pk\ >

18

Because of the de Casteljau construction which creates in every step a convex combination of the

ty and because of the approximation property mentioned in part I. the sum £ |*J is equal to the

sum of the amount of the rotation angle of the tangent vector oi the Bezier curve if the orientation

of the rotation angles of the Bezier polygon legs is the same in ever.' inner Bezier point (see I igure

14) But the sum of the amount oi the rotation angle of the tangent vector of the Bezier curve is

smaller than X '**! ^ tne orientation of the rotation angles oi the Bezier polygon legs is not the

same in every' inner Bezier point (see Figure 15). that follows from the smoothing property of the

de Casteljau subdivision process together with the approximation property mentioned in pan I

So we have the statement that

the sum oi the amount of the rotation angle of the tangent vector of the Bezier curve is always

smaller or equal the sum X 1**1 °f the amounts of the rotation angles oi the Bezier polygon legs.

By combining the two statements we get the

• angle criterion: The sum X !

a *l °f the amounts of the rotation angles of the Bezier polygon legs

is greater than n if the Bezier curve has a self-intersection.

Tor the algorithm we will use the contraposition of the cntenon.

• angle criterion: A Bezier curve has no self-intersection if the sum X \

a k\ of the amounts of the

rotation angles of the Bezier polygon legs is smaller or equal than n.

By this we have a very simple geometric criterion for deciding whether a curve has a self-intersection

or not and for the elimination of curve parts that do not participate in a self-intersection. What we
have to do is to calculate the sum X l

a *l °t the polygon angles a t and compare with rr . If we
have X 1**1 ^ T we know that there is no self-intersection of the curve (Figure 16.1 and 16.2), but

if X i«*l > * the curve might have a self-intersection (Figure 16.3 and 16.4). For clarifying we
subdivide using de Casteljau and check the smaller parts again against the angle cntenon.

Figure 16.1 Figure 16.3

Figure 16.2 Figure 16.4

Figure 16. the angle criterion

19

To buUd up a self-intersection algorithm the idea of the angle test has to be combined with the idea
of the min-max box test. Thus is done in the follow ing way.

The algorithm consists again of the four mam parts of Figure 6. But part one of the alsorithm for

estimating the self-intersection region of the curve consists now of two different tests, the min-max
box test and the angle test. Tigure 16 gives the example o[an subdivided Bezier curve having se-

veral self-intersections. As we can see, there is a subsegment (subsegment B«) with self-intersection

(point P,t. there are two subsegments with common boundary point (subsegments B
:
and B,) cre-

ating the self-intersection point P, and there are subsegments (subsegments B, and B
6) which are

not connected to each other but create the self-intersection point P
3
of the Bezier curve B(7). To

distinguish between these three different cases and for controlling the algorithm we introduce a so

called 'genus index'

.

The self-intersection of a segment of genus one that means a segment of case one has to be checked

by ujing the angle criterion. If the angle test is positive e.g. £ 1**1 > n a refinement has to be done
to clarify the situation. The refinement of a genus one segment produces two subsegments of genus
one and one pair of subsegments oi genus two.

A parr of subsegments of genus two that means subsegments with a common boundary point have
also to be checked against the angle criterion but now the angle sum of both polygons has to be
calculated. The min-max box criterion can not be used because of the common boundary point
oi the two segments. If the angle test is positive a refinement has to be done for both segments, it

produces one pair of subsegments of genus two and three pairs of subsegments of genus three.

Subsegments of genus tliree can be dealt with as in the curve-curve algorithm of pan II i.e. for

calculating the self- intersection point P
3
of Figure 16 we do need only the min-max box test not

the angle test because the refinement of pairs of segments of genus three can produce pairs of sub-
segments of genus three only and no (pairs of) subsegments of genus one or two.

Bo u
7

Figure 17. possible subsegment configurations contributing to the self-intersection

In the first step the algorithm has to deal only with one curve segment of genus one - the Bezier

curve segment which has to be checked for self-intersections. If the angle test is positive a refinement

has to be done, so that m the second step the algorithm has to deal with two subsegments of genus

one and one pair of subsegments of genus two and the result of this step might be subsegments of

genus one and pairs of subsegments of genus two or three. When more and more subdivisions are

done not only each convex hull becomes smaller and smaller but because of the approximation

property of the Bezier polygon also the aneJe >ume of each subsegment becomes smaller and

smaller so that after an initial increase of (pairs o\') subsegments of genus one and two the number

of (pairs of) subsegments of genus one and two decreases very fast until there are only pairs of

subsegments of genus three. From this moment on the self-intersection algorithm works in the

same way as the curve-curve algorithm described m part II of the paper. That also means that part

two and part three of the algorithm - the subdi\ ision of the curve in the aim of refinement and the

calculation of the self-intersection points and parameter values - is done in exactly the same way

as described in part II.

20

The control unit also works as in part II describted except that it checks in addition if the <ubdi-
vided control polygon turns through 180 degrees at a subdivision point which implies a cusp at this
point (Example 4).po

Examples

Table 2 lists the maximal error given by <g> part II as it depend upon an increasing subdivision

factor for the examples 1 to 12 for equidistant parameterization.

subdivision factor 4 5 6 7 8

Example 1 0.28064 0.01093 0.00568 0.00269 '
i

;

Example 2 0.08635 0.0362S 0.01297 0.00189 0.00075

Example 3 0.20799 0.09101 0.02185 0.00619 o. no ioi

Example 4

Example 5 0.02390 0.00445 0.00156 0.00007 in, < i.;

Example 6 i)ii3326 01207 0.00236 0.00080 "'

Example 7 0.04659 0.01579 0. 0(ni55 0.00027 0.00012

Example 8 0.06235 0.02459 0.00620 0.00150 0.00040

Example 9 0.10368 0.01132 0.00434 0.00162 0.00032

Example 10 0.10184 0.01123 0.00427 0.00159 0.00032

Example 1

1

Example 12 0.07962 0.00794 0.00332 0.00124 0.00025

Table 2. R for equidistant parameterization

Because of the bad character' of the two cusps appearing in Example II, this example requires

more than 8 subdivisions for the decision if the curve has self-intersections or cusps.

21

Example I

PX PY 'i(P) 'a(P)

0.00000 8 06782 0.35510 0.64490

-0.35685 9.99926 0.09241 0.75224

0.00000 10.70820 0.12485 0.87515

0.35685 9.99926 0.24776 0.90759

parameter values and x-y -coordinates of the intersection points

bx by

1.0 3.0

-2 20.0

8.0 6.0

-S.0 12.0

0.0 -4.0

s.o 12.0

•8.0 6.0

2.0 20.0

1 3.0 22

Bezier points of b(t)

Example 2

PX PY r,(P) MP)

o.uoooo 5.63639 0.06S97 0.93103

parameter values and x-v -coordinates of the intersection point

6.x by

-2.0 8.0

3.S 0.0

3.8 X il

0.0 -1.0

•3.8 SO

3 S 0.0

2 ii 8.0

Bezier points of b(l)

23

Example 3

PX PY f,(P) fc(P)

0.90426 5.07460 0.08358 0.44207

-0.90426 5.07460 0.55793 0.91642

0.00000 5.71900 0.05154 0.94846

parameter values and x-y-coordinates of the intersection points

bx by

-2.0 8.0

3 8 0.0

3.8 8.0

3.8 8.0

0.0 -1.0

-3.8 8.0

-3.8 8.0

-3.8 0.0

2.0 8.0

Bezier points of b(t)
24

Example 4

bx 6v

-2 0.0

2.0 4

-2 4

2. '"i i) o

Bezier points of b(f)

25

Example 5

PX PY *i(P) MP)

0.33333 2.44444 0.21133 0.78867

parameter values and x-y-coordinates of the intersection point

bx by

2.0 0.0

2.0 4.0

2.0 4.0

-2.0 4.0

2.0 0.0

Bezier points of b(/)

26

Example 6

PX PY MP) f2(P)

0.00000 2.08204 0.13673 0.86327

parameter values and x-y-coordinates of the intersection point

bx by

-2.0 0.0

20 4.0

2.0 4.0

-2.0 4.0

-2.0 4.0

2.0 0.0

Bezier points of bit)

r

Example 7

PX PY h(?) %(P)

0.77089 6.26442 0.14003 0.92162

parameter values and x-y-coordinates of the intersection point

bx by

0.0 0.0

0.0 14.0

8.0 14.0

8.0 6.0

-2.0 6.0

Bezier points of b(l)

28

Example 8

PX PY MP) 'a(P)

1.59322 6.5167S 0.41859 0.92 722

parameter values and x-y-coordinates of the intersection point

bx by

l! II in

li l) 0.0

II ij 0.0

0.0 14.0

X il 14.0

s 6.0

-2.0 6

Be/ier points of bl f)

Example 9

PX PY 'i(P) MP)

0.65030 2.72773 0.17750 0.58924

0.00000 3.01382 0.22167 0.77833

0.65030 2.727^3 0.41076 0.82250

parameter values and x-y-coordinates of the intersection points

bx by

-3 0.0

3 'i 2.0

4 Q 8.0

4 '.I -0.5

•4.0 -0.5

-4 i) 8.0

3 2.0

3.0 0.0

Bezier points of b{t)
30

Example 10

PX PY '.(P) 'j(P)

0.23977 3.40057 0.24154 0.470"6

-0.23977 3.40057 0.52924 0.75846

0.00000 3.28345 0.22167 0.77833

parameter values and x-y-coordinates of the intersection points

h x 6y

-3.0

-3.0 2.0

4 8.0

4 10

-4 n
1

-4.0 8.0

3 2'i

3.0

Bezier points of b(I)

J

I

Example 11

PX PY 'i(P) 'j(P)

0.00000 3.38682 0.22167 0.77833

parameter values and x-y-coordinates of the intersection point

bx by

-3.0 0.0

-3 2.0

4.0 8.0

4 6y3

-4.0 by*

-4.0 8.0

3.0 2.0

3.0 0.0

Bezier points of b(t)

[byi = byA
= 1.575039) 32

Example 12

PX PY fj(P) hi?)

0.00000 3.82273 0.22167 0.7*833

parameter values and x-y-coordinates of the intersection point

hx 6v

-3.0 0.0

-}a) 2.0

4 u 8.0

4.0 4

-4.D 4.0

-4 ii 8

; ii 2

3.0

Bezier points of b(f)

33

IV. Self-Intersections of Spline Curves

Normally we are not really interested in single Bezier curve segments hut in B-spline resp. Bezier

spline curves consisting of several curve segments. Because a B-spline curve can be redefined in a

Bezier form by using the Oslo algorithm adding multiple knots in one pass [Cohen et al. '8(7] or

by using the computationally more efficient Boehm algorithm adding the multiple knots one bv

one [Boehm SO. $2]. self-intersections of B-spline and of Bezier spline curves can be calculated

using the algorithms o(part II and III.

The segments B K(u) of the Bezier representation of the spline curve might be given by

BA'(") = 2^ bmK+k Bk(")
k=0

where

a = (l - U) k K + uk K+ x
, < u < 1 , K = \!

i.e. the spline curve is defined with respect to a partition of the domain space by 'knots'

;. < ;., < ... ;. v/ .

The self-intersection points of a spline curve can be calculated by_doing the curve-curve intersection

algonthm for all pairs of segments B^ and B^ with K ^ K and by doing the curve self-

intersection algorithm for all segments B^ . While the algorithms of part II and III calculate the

parameter values of the self- intersection points with respect to the local coordinate domain [0,1]

we also know - because of the linear relation between /. and u - the k parameter values of the

self- intersection points.

Remark

This study was done as a pre-study for the creating of a surface self-intersection algorithm for

parameterized surfaces in Bezier representation. The surface algonthm is described in the paper

Self- Intersections of Parametric Surfaces , Technical Report # NPS-53-88-002, Naval Postgraduate

School. Monterey (1988).

A cknowledgment

This paper was written while the author was supported by an one year award of the Sational Re-

search Council. Washington, DC visiting during this time at the Naval Postgraduate School.

Monterey, California.

The author would like to thank Professor Richard Franke whose effort made this visit possible.

And also like to thank Professor Richard Franke for all his help during the time in Montery.

34

References

Arnold. R: Quadratische und Kubische Offset- Bezierkurven. Diss. Dortmund (1986)

Bezier. P: Numerical control - mathematics and applications. J. Wiley & Sons. Chichester f 1972)

Bezier. P: The mathematical basis of the L'MSL'RF CAD system. Butterworths & Co Ltd (198<

Bochm. W: Inserting new knots into B-spline cur\'es. Computer Aided Design Vol 12 No 4 (1980)

Boehm, W: On cubics. a survey. Computer Graphics and Image Processing Vol 19. 201-226 (1982

Boehm, \V, Farin. G. Kahmann. J: A survey of curve and surface methods in CAGD. Computer
.Aided Geometric Design Vol 1 No 1 (1984)

Chandru, V, Kochar. B S: Analytic Techniques for Geometric Intersection Problems, in Farin. G
(ed.) Geometric Modeling: Algorithms and New Trends. 305-318 SIAM (1987)

Cohen. E, Lyche. T, Riesenfeld. R F: Discrete B-$plines and subdivision techniques in computer-
aided geometric design and computer graphics. Computer Graphics and Image Processing Vol 14
(1980)""

Cohen, E. Scliumaker, L L: Rates of convergence of control polygons. Computer .Aided Ge-
ometric Design Vol 2 No 1-3 (1985)

Dahmen. W: Subdivision algorithms converge quadratically. Jour of Computational and Applied

Mathematics 16, 145-158 (1986)

Dannenberg, L, Nowacki, H. Approximate conversion of surface representations with polynomial

bases. Computer Aided Geometric Design Vol 2 No 1-3 (1985)

Farin, G: Algorithms for rational Bezier curves. Computer Aided Design Vol 15 No 2 (1983)

Farouki. R T: Exact offset procedures for simple solids. Computer Aided Geometric Design Vol

2 No 4(1985)

Farouki. R T. Rajan. V T: On the numerical condition of polynomials in Bernstein form. Com-
puter .Aided Geometric Design Vol 4 No 3 (1987)

Faux. I D. Pratt, M J: Computational geometry for design and manufacture. Ellis Horwood,

Chichester (1983)

Forrest. A R: Interactive interpolation and approximation by Bezier polynomials. Computer Jour.

Vol 15, 71-79(1972)

Goldman. R N: The method of resolvents: A method for the imphcitization. inversion, and inter-

section of non-planar, parametric, rational cubic curves. Computer .Aided Geometric Design Vol 2

No 4 ' 1985)

Goldman. R N, Sederberg, \V T, Anderson, D C: Vector elimination: A technique for the

Lmplicization. inversion and intersection of planar parametric polynomial curves. Computer Aided

Geometric Design Vol 1 No 4 (1984)

Gordon, YV, Riesenfeld. F R: Bernstein- Bezier Methods for the Computer .Aided Design of Free-

Form Curves and Surfaces. Jour, of Assoc, for Computing Machinery Vol 21, 293-310 (1974)

Griffiths, J G: A data structure for the elimination of hidden surfaces by patch subdivision.

Computer .Aided Design Vol 7 No 3 (1975)

35

Hilton, II: Plane Algebraic Curves. Oxford University Press, London: Humphrey Milford (1932)

Hoschek, J: Offset curves in the plane. Computer .Aided Design Vol 17 No 2 (1985)

Hoschek, J: Approximate conversion of spline curves. Computer Aided Geometric Desiim Vol 3

No 4 (1986)

Hoschek. J: Spline Approximation of Offset Curves. Computer Aided Geometric Design Vol 4

(1987)

Klass, R: .An offset sphne approximation for plane cubic splines. Computer .Aided Design Vol 15

No 5 (1983)

Koparkar, P A, Mudur. S P: A new class of algorithms for the processing of parametric curves.

Computer Aided Design Vol 15, 41-45 (1983)

Lane, J M. Riesenfeld. R F: A theoretical development for the computer generation of piecewise

polynomial surfaces. IEEE Transaction on Pattern .Analysis and Machine Intelligence PAMI 2

(1980)

Mortenson. M E: Geometric Modeling. John Wiley, New York (1985)

Piegl. L: A Geometric Investigation of the Rational Bezier Scheme of Computer Aided Design.

Computers in Industry 7, 401-410 (1986)

Salmon. G: A Treatise on the HIGHER PLANE CURVES. Photographic reprint of the Third

Edition of 1879, New York, G. E. Stechert & CO. (1934)

Sederberg, T W: Planar piecewise algebraic curves. Computer Aided Geometric Design Vol 1 No
3 (1984)

Sederberg, T W, Anderson, D C, Goldman, R X: Implicitization, Inversion and Intersection of

Planar Rational Cubic Curves. Computer Vision, Graphics, and Image Processing 31, 89-102

(1985)

Sederberg, T W, Parry, S R: Comparison of three curve intersection algorithms. Computer .Aided

Design Vol 18 (1986)"

Tiller, \V: Rational B-Splines for Curve and Surface Representations. IEEE Computer Graphics

& Applications Vol 3 No 6 (1983)

Tiller, W, Hanson, E G: Offsets of Two- Dimensional Profiles. IEEE Computer Graphics & Ap-

plications Vol 4 No 9 (1984)

Walker. R J: Algebraic Curves. Princeton University Press, Princeton, New Jersy (1950)

Yang, M C K, Kim, C-K, Cheng, K-Y, Yang, C-C, Liu, S S: Automatic Curve Fitting with

Quadratic B-Spline Functions and its Applications to Computer-Assisted .Animation. Computer

Vision, Graphics, and Image Processing 3}, 346-363 (1986)

36

Initial Distribution List

\ >ociateship Programms JH608
National Research Council
21 M

1 Constitution Avenue. NW
Washington, DC 204 1 S USA

Director (2)

Defense Tech. Information Center

Cameron Station

Alexandria. VA 22314 I SA

Director o(Research Admin.
Code 012

Naval Postgraduate School
Monterey, CA 03043 USA

Peter Alfeld

Department of Mathematics
Universitv of Utha
Salt Lake City, UT 841 12 USA

Randolf .Arnold

Fachbereich Mathematik
Uruversitat Dortmund
4600 Dortmund FRG

Robert E. BamJull

Department of Computer Science

Arizona State Universitv

Tempe, AZ S5287 USA

Brian Barsky

Dept. oi Electrical Engineering

and Computer Engineering

Universitv of California

Berkeley,' CA 94720 USA

Wolfgang Boehm
Institut fuer Math. Stochastik

Technische Uruversitat Braunschweig

3300 Braunschweig FRG

Genz-Zhe Chang
Department o(Mathematics

University of Science and Technology

Hefei. Anhui
The People's Republic of China

Carl de Boor
Mathematics Research Center

610 Walnut Street

Madison, WI 53705 USA

Library 1

Naval Postgraduate School

Monterey. CA)394 USA

Department ol' Mathemai
Naval Postgraduate School
Monterey. CA 93943 I SA

LandesbibUothek Darmstadt
6100 Darmstadt FRG

:

Fachbereichsbibliothck (2)

Fachbereich Mathematik
Technische Hochschule Darmstadt
6100 Darmstadt FRG

Franz Jurgen Delvos

Fachbereich Mathematik
Uruversitat Sieaen

5900 Siegen ~FRG

Anthony D. DeRose
Department of Computer Science. FR-35
Universitaet of Washington
Seattle, WA 98195 USA

Gerald Farin

Department of Computer Science

Arizona State University

Tempe, .AZ 85287 USA

Thomas A. Foley

Department of Computer Science

Arizona State University

Tempe, .AZ 85287 USA

Rida T. Farouki

Manufacturing Research Department

IBM Thomas J. Watson Research Center

Vorktown Heights. NY 10598 USA

Herbert Frank

Fachbereich Mathematik
L'niversitaet Dortmund
4600 Dortmund FRG

Richard Franke (5)

Department of Mathematics

Naval Postgraduate School

Monterev, CA 93943 USA

Wendelin Degen
Mathematisches Institut B

Uruversitat Stuttgart

7000 Stuttcart SO" FRG

Harold M. Fredricksen

Chairman. Dept. of Mathematics

Naval Postgraduate School

Monterev. CA 93943 I SA

Frederick N. Fntsch

Numerical Mathematics Group

Lawrence Livermore National Laboratory

Livermore, CA 94550 L'SA

Gerhard Geise

Technische L'niversitat Dresden

Sektion Mathematik

S027 Dresden DDR

Oswald Giering

Mathematisches Institut

Technische L'niversitat Munchen

8000 Munchen 2 FRG

Ronald Goldman
Control Data Corporation

4201 N Lexinston Ave, AHS 251

Arden Hills, MN 55126 USA

William J. Gordon
Center for Scientific

Computation & Interactive Graphics

Drexel University

Philadelphia, PA 19104 USA

John A. Gregory

Dept. of Mathematics & Statistics

Bonnel University

Uxbndge UBS 3PH England

Hans Hanen
Institut fur Graphische Datenverarbeitung

und Computergeometne
Umversitat Kaiserslautem

6750 Kaiserslautem FRG

Josef Hoschek (10)

Fachbereich Mathematik, AG3
Technische Hochschule Darmstadt

6100 Darmstadt FRG

Reinhold Klass

Daimler-Benz AG
Abt. AIDK
7032 Sindelfmgen FRG

Dieter Lasser (15)

Fachbereich Mathematik, AG3
Technische Hochschule Darmstadt

6100 Darmstadt FRG

Norbert Luscher

Angewandte Geometrie und

Geometrische Datenverarbeitung

Technische L'niversitat Braunschweig

3300 Braunschweig FRG

Harry W. McLauchlan
Dept'. of Mathematical Sciences

Rensselaer PoKtech. Inst.

Troy, NY 12181 USA

Gregory M Nielson

Department of Computer Science

Arizona State University

Tempe, AZ S5287 USA

Horst Nowacki
Institut fuer Schiffstechnik

Technische L'niversitat Berlin

Salzufer 17-19

1000 Berkn FRG

Malcom Sabin

Oakin'-Tton

Cambridge CB4 5BA Enaland

Paul Sablonniere

UER IEEA Informatique

Universite de Lille L
59655 Villeneuve d'Ascq. Cedex France

Ramon Sarraga

General Motors Research Laboratories

Warren.Michigan 48090-9055 L'SA

Thomas VV. Sederberg

Department of Civil Engineering

Briaham Young University 368B CB
Provo, Utah 84602 USA

Larry Schumaker

Center for Approximation Theory

Texas A & M L'nive:

College Station, Tex; A

Wolfsang Schwarz

Jakob-Stefan-Str. 12

6500 Mainz FRG

W. Strasser

Heinrich Fabri Institut

L'niversitat Tubingen

7400 Tubingen FRG

Andrew J. Worsey

Dept. of Mathematical Sciences

University of North Carolina

Wilmington, NC 28403-3297 USA

DUDLEY KNOX LIBRARY

3 2768 00329737 5 U235255

