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ABSTRACT

Recent years have seen many attempts to program learning

based on many principles ranging from intuition to mathematics.

The area of criterion establishment for advancement or con-

versely additional training at the same or lower levels remains

primarily in the realm of intuition. The intuition used is

only as good as the experience and background of the program

designer however. In the case of a very experienced program

designer the criteria may be very efficient. In the case of

less experienced program designers the criteria are usually

arbitrary. This work describes a method of analyzing learning

programs and determining mathematically sound criteria. The

mathematical foundation for this analysis is the Markovian

learning model as opposed to the linear learning model.
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I. INTRODUCTION

A. GENERAL

This work was stimulated through the author's association

with the Behavioral Sciences Institute of Monterey, California.

Members of the staff of the Institute have developed a pro-

cedure for preparing language training programs [Gray and

Ryan 1973] . This procedure "Language Training Through

Programmed Conditioning" is based on a mathematical principle

or structure. The total language program consists of ninety

sub-programs covering different language deficiencies which

are the result of various causes such as deafness, mental

retardation, non-English speaking, etc. Each sub-program

consists of a series of steps that sequentially train a

student until he reaches a desired objective. The total pro-

gram is designed to test the student in a continuous manner

to determine what sub-programs or parts (steps) he needs,

when he has completed any step or complete sub-program, and

when he is having excessive problems that require stepping

back (branching) or other forms of special help.

The procedure, though developed for language training,

probably has wide application. These applications will appear

as more people, in varied fields, become familiar with the

procedure and investigate its appropriateness to their specific

areas of interest. Along this vein it is also hoped that the

method developed herein, of analyzing the program and





determining criteria to be used in the administration of the

program, will have wider application.

B. PROGRAMMING

The objective of an intellectually oriented training

program is to move a subject from a specific unlearned state

(U) to a learned state (L) . The process used to achieve this

goal is Stimulus -Response-Consequence, normally referred to

as operant conditioning. In most situations the desired

learned state (L) can be achieved most effectively by reducing

the unlearned state (U) to a number of small steps (states)

which are learned in a sequence and build up to the ultimate

goal. This latter process is called programming. Throughout

this work the term presolution will be used interchangeably

with the unlearned state and the term solution with the

learned state.

C. CRITERIA

The subject of criteria arises when the programmer desires

to measure the success of a given program in moving a specific

subject from the unlearned to the learned state. Basically the

question is: "What measure should be used for determining

when a subject has achieved the learned state (L) ?" A second

aspect of criteria arises when it appears that a subject is

having an excessive amount of trouble with a particular step.

In such a case it may be desirable to alter the program for

the subject, possibly reducing the step to several less dif-

ficult substeps. The first criterion is referred to as

advancement criterion and the second is referred to as





branching criterion. A difficulty in establishing these

criteria results from the generally accepted idea that there

is no exact (deterministic) method of establishing criteria.

Alternately learning is viewed as being probabilistic (sto-

chastic) in nature and therefore the criteria must be

established within the realm of probability theory. To

further complicate the situation there is not a universally

accepted learning theory and therefore the criteria, if

determined statistically, will be a function of the learning

theory the programmer subscribes to.

Some possible measures for criteria are: total number of

correct responses, total number of incorrect responses, total

number of trials, plus the associated ratios and percentages.

A trial is one Stimulus-Response-Consequence sequence. Of

these it seems intuitively appealing to select total number

or percentage of correct responses as an indication of when

to advance a subject. More specifically it is common practice

to use a string of consecutive correct responses for advance-

ment. Determining the number in this string and the confidence

in that number is required in establishing the first criterion.

Determining a maximum acceptable number of trials and/or

errors per
7

step, and the associated confidences, is the pro-

cedure used to establish the second criterion.





II. MODEL DEVELOPMENT

A. BACKGROUND

In a brief historical review of mathematical learning

theory, Atkinson, Bower, and Crothers (1965, pp. 19-24),

indicate that the treatment of learning using probabilistic

models began with Thurstone in 1919. From 1919 through

1950 there were numerous probabilistic models proposed and

tested, all related to various specific learning situations.

Since 1950 there has been a great deal of work done in the

area of stochastic learning, and two theories have evolved

as the primary contenders for acceptance: the linear model

and the Markov model. Basically the linear model states that

a subject has a probability of success on any trial n which

is given by the following equation:

P
n

= 1 - (1-P
1 ) (1-6)

11" 1
(1)

where P, is his initial probability of success and 8 is his

learning rate. The Markov model takes a quite different

approach. Basically the theory says that if a subject is in

an unlearned state (U) then the probability of a correct

response is g (guess) , and if the subject is in the learned

state (L) , then the probability of a correct response is 1.

The probability of going from the unlearned state to a learned

state on any presolution trial is usually denoted c. The

probability of a correct response on any trial n is usu : Lly

given by:

9





P
n

= 1 - (1-g) (l-c)
11
" 1

(2)

Comparison of Eqs. (1) and (2) indicates that their forms

are exactly the same. The difference in these two equations

lies in their theoretical background and the meaning of the

parameters. Equation (1) states that a subject starts with

a probability P, of making a correct response on the first

trial. The probability of success on the second trial is

greater, due to the incremental learning achieved on the first

trial. This linear process continues indefinitely and the

subject's probability of success asymptotically approaches 1.

Equation (2) states that on each presolution trial a subject

has a probability c of going into solution. Once in solution

the subject will remain in solution and always respond cor-

rectly (P =1) . While in presolution the subject has a proba-

bility g (guess) of responding correctly and this probability

does not change. The form of these two equations and other

interesting comparisons are made in "Learning: Gradual or

All-or-None," [Restle and Greeno 1970, Chap. 2], Based on

their analysis Restle and Greeno stated, "... the all-or-

none theory is the most interesting, and we think it is the

one most deserving of future work," (p. 79).

Pilot research involving a computer simulation of the

linear model yielded a set of criteria for use in the language

training programs of the Institute. Informal observation of

the data on which the linear model was based suggested that

the linear model might not be appropriate. Further

10





study of data from students trained on these and other

programs showed a definite tendency toward the Markov

principles of stationarity and independence [Atkinson, and

others, 1965, pp. 39-49; Coombs, Dawes, and Tversky 1970,

pp. 296-297] . Based on these results the linear model was

set aside and this work started based on the Markovian (All-

or-None) principle.

B. ASSUMPTIONS

The following assumptions are necessary to the development:

1. The learning process involved in the programs devel-

oped by the Institute are Markovian in nature.

2. The subject can be correct on the first trial of

any step by either: (1) being in solution prior to the trial,

(2) going into solution because of the information presented

in the first stimulus, or (3) guessing correctly in presolution

This assumption modifies Eq. (2) in that Eq. (2) contains the

restriction that for the subject to be correct on the first

response, he must guess correctly, therefore not allowing the

possibility of being in solution (the learned state) on the

first trial. Allowing for the possibility that the subject is

in solution on the first trial [Atkinson, and others, 1955,

footnote p. 55] , appears to be a more realistic approach and

was used in this work.

Gray, B. B.; Carrier, J. K., Jr.; Bradfield, R. H.; and
Rigg, L. , The Discrete Effects of Response Contingent Reinforce -

ment During Skill Acquisition , submitted to Journal of ; plied
Behavior Analysis for publication.
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3. The g factor (guess) in presolution is a function of

the conditioning sequence (step) and the subject.

4. The c factor (probability of going into solution) is a

function of the step and the subject.

5. g and c are constant over any step for a given subject.

6. The set of outcomes form a homogeneous Markov chain.

n

U
n l_

J

n+1 n+1 r
— >— l.

1 V
c (1-c) _g

n = 0,1, 2, •

g <1, c £ 1

P (Correct I Row State)

(3)

C . MODEL

The equations developed in this work are a combination

of .what is presented in Refs. 1-3 and some original work.

Since there is so much overlap it is not possible to give

credit to any one source, instead the equations will be given

with explanations and generally acknowledging the credit to

all. The first development is the probability of errorless

response given that the subject is known to be in the un-

learned state (U) . This state is assumed on the first trial

and known to exist if an error occurs. If a subject is put

on a program step and no error occurs before reaching the

advancement criterion, then there is no way of determining

whether he was in solution (learned state, L) initially, or

was in presolution (unlearned state, U) initially and performed

as follows:

12





2 2
P[Errorless] = c + g(l-c)c + g (1-c) c + ...

. Aim P[Errorless ] = e
n-*-00 l-gCl-c)P [Errorless] = -, n <- (4)

1-g (1-r

For future reference, this probability will be called p (rho)

,

the probability of errorless response given that the subject

is in presolution. (Being in presolution is demonstrated any-

time a subject makes an error.) The above development says

that the subject either goes into solution on the first trial;

stays in presolution, guesses correctly and then goes into

solution; stays in presolution twice, guesses correctly twice

and then goes into solution; etc. The development indicates

that the subject eventually goes into solution if errorless

response is achieved after an error. The reader familiar with

the Markov theory will note that the term relating to remain-

ing in presolution and having errorless response was omitted

in developing Eq. (4) . The omission was committed since the

term g (1-c) goes to zero in the limit as n approaches infinity

The next development will be the expected number of errors

given g and c. The development relies on the parameter p. The

probability that the total number of errors is exactly k

equals:

00

P[E = k] = I (

k
|
i
)g

i
(l-c)

i
(l-g)

k
(l-c)

k
c

i=0 •

If this abbreviated mathematical statement were written out, it

would represent every feasible combination of events in which

exactly k errors can occur.

13





;. P[E = k] = (l-g)
k
(l-c)

k
c I (

k
|
i
)g

i
(l-c)

i

i=0
1

Referring to a standard math table e.g. CRC [13th Edition, p.

463] . This equation then reduces to

k , k+1
P[E = k] = [(l-g)d-c)] c [

1.g( i. c)
l

r (1-g) (1-c ) , r
c

i

" l l-g(l-c) J l l-g(l-c) J

k
" [1 " l-g(l-c) ] [ l-g(l-c)]

Referring to Eq. (4) and substituting

.". P[E = k] = (1-P)
k
p (5)

In words Eq. (5) says that there were k possible errorless

response strings broken by the occurrence of an error and

then there were no more errors. Since the probability of an

errorless response string is p, given that the subject is in

presolution, it follows that not errorless response is equal

to (1-p) . This takes into account all possible numbers of

correct responses before the error response that breaks the

string. The occurrence of an error demonstrates presolution

and also allows another possible string of errorless response,

which is independent of the length or number of previous

strings and is only dependent on the knowledge of being in

presolution, i.e., the occurrence of an error. In summary

then Eq. (5) says that the probability of exactly k errors

occurring is equal to not errorless response k times and then

errorless response.

14





CO 00

E[E] = I k-P[E=k] = I k-p(l-p)
k=0 k=0

= p(l-p) I k(l-p)
k=0

k-1

_ p(l-p) _ (1-p)
2

P

(6)

.\ E[E] = (1-g } (1 -C)
(7)

The next development is the expected trial number of the

last error. The probability that the last error occurred on

trial t equals:

P[T=0] = p

P[T=t] = (l-c)
t (l-g)p (8)

t = 1,2,3, •••

In words, Eq. (8) says that there were t presolution trials

indicated by an error on trial t and then errorless response.

This probability statement allows for any sequence (order) or

number of correct and incorrect responses up to trial t. The

only required knowledge is that an error occurs on trial t and

then no more errors. It should be noted that the probabilities

given by Eqs . (5) and (8) are both decreasing functions. This

corresponds with what will be observed about Figs. 2 and 1

respectively.
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E[T] = I t«P[T=t]
t=0

= 0.p+ I t«P[T=t]
t=l

I f (l-c)
t (l-g)p

t=l

E[T] = p(l-g) (1-c) I f (1-c)
t=l

p(l-g) (1-c)
2

t-1

= &•*« = l-g(l-c) (9)

;. E[T] =
r

( ^" g)M
(1

"?l do)[l-g(l-c) ]c

With Eqs. (6) and (9) it only requires a little manipulation

to get estimates of g and c:

from Eq. (6)

p = (E[E]+1)
_1

from Eq. (9)

c =
,E[E]

P E[T]

• E[E]
E[T] (E[E]+1)

• /\ E
T(E+1)

(11)

In Eq. (11) the expected number of errors E(E) is replaced

by the observed number of errors and similarly the trial of the

last error T replaces E(T) . This might seem out of o to

16





some, in that a random variable is substituted for its expected

value (mean or first moment) . Some thought, however, will

point out that the observed values of E and T are the mean

when the sample size is one. Each subject/step combination

represents a unique data point that cannot be repeated since

the completion signifies the transition from the unlearned

state (presolution) to the learned state (solution) , and g and

c factors are no longer applicable when the subject is in solu-

tion. This procedure represents a special case of the applica-

tion of method of moments in estimating the parameters of a

distribution:

1 - E[E]

.
from Eq. (9) g =

(l_^
[T]

Substituting E = E(E) and T=E(T) and utilizing Eq. (11):

T - E

g = _

1 " T(E+1)

(T-E) (E+l)
T(E+1)-E

2
E" * " 1 " T (E+1)-E

If E is much greater than 1 (E>>1) then

1
C * T

Also

E
g = 1 -

(T-l) + |

Since T is greater than or equal to E(T > E)

g > i - |

(12)

17





These equations state that c is approximated by the reciprocal

of the number of the trial of the last error. This is intu-

itively appealing as it states the larger the c factor

(probability of going into solution) , the fewer expected number

of trials. The estimate of g is slightly larger than the

apparent presolution accuracy. This comes from the concept

which allows the possibility of presolution correct responses

after the last error. If the number of these responses were

known, the estimated presolution accuracy rate (g) would

increase above what can be estimated using only the trials to

the last error. The required correction factor is taken into

account in Eq. (12)

.

PREFACE — SECTION III

During the final proofreading of this thesis it was discovered that
the computation of g (Appendix B and Figs. 4, 7, and 8) had been done

A E ^ E
using: g = 1 - m/ „ _

.

—— , instead of g = 1 -, =r=~m—^ (Eq. 12) .s * T(E+1)+E ' y T(E+1)-E ^

The second equation is the valid equation as it appears in the text.
Specific reference to g, as it applies to the data analyzed, must the re fore
be considered in light of the first equation, e.g., pages 20 and 21.

The effect of using the first equation is to cause an across-th -board
increase in g. The general conclusions are still valid but the spec fie

conclusions as regards the data analyzed, must be viewed in light oi this
new information. Examples of the effect of this change are: (1) a eneral
shift of Figs. 4, 7, and 8 to the left, (2) a general decrease in the mean
values of g listed in Tables I and II, (3) a general decrease in the esti-
mated values listed in Table III. This is based on observing that the
slope of the associated equation (page 25, no number) is positive with
respect to g. This would move the estimated value toward the observed
(12% estimated and 8% observed) , and (4) a general increase in the esti-
mated values listed in Tables IV and V. This is based on observing that
the slope of Eqs. (15) and (16) are negative with respect to g. This would
move the estimated values toward the observed.

18





III. APPLICATION OF THE MODEL

A. DATA SOURCE

With the estimates of g and c being obtainable from only

a knowledge of the total number of errors and the trial num-

ber of the last error, it was now a matter of obtaining some

data to evaluate the model. The Institute has 41 programs in

operation. These programs were being used in 20 different

locations in the country. Due to the nature of the overall

program, individual students receive only those programs which

they require. It was therefore difficult to determine which

program to sample. After some consideration the "What is"

program was decided on. Calls were sent out to four sites for

complete data on students having completed this program. There

were 19 subjects from the 4 locations, the least from any loca-

tion was 2 and the most was 7. There were 11 boys and 8 girls.

The "What is" program consists of 35 steps grouped into 9

series. With 19 subjects there was a possibility of obtaining

(35x19) = 765 sets of data points, each representing a unique

student/step combination. Throughout the remainder of this

work "data point" will refer to a set of data from a unique

student/step combination. Only 208 data points were available

for the following reasons:

1. Due to the placement procedure the student may

start at a point other than the beginning of the program.

(There were 208 missing points due to this.)

19





2. If a student is put through a step and makes no

errors, there is no way to tell whether he was in solution

before he started or had an errorless response string.

Therefore, these points yielded no usable information and had

to be ignored. (There were 349 of these points.)

B. EXAMINATION OF DATA

The raw data formed a 35 by 19 matrix with 208 data points.

Each data point consisted of the trial number of the last error

(T) and the total number of errors (E) . The data was then

converted into a similar matrix containing c and g at each

data point using Eqs. (11) and (12). The first step was to

examine the various frequency distributions to see what informa-

tion they would yield. Frequency distributions are presented for

the number of trials (T) , number of errors (E) , c and g. These

distributions consisted of a total of 208 data points each and

are shown in Figs. 1, 2, 3, and 4 respectively. Figure 1 shows

the frequency distribution of the trial number of the last

error, the interval widths are two trials. Figure 2 shows the

frequency distribution of the number of errors, the interval

widths are one error. Figures 3 and 4 show the frequency

distribution of c and g respectively, the interval widths are

.04. Figures 1, 2, and 3 exhibit a consistent decreasing

nature, which indicates the lower values of T, E, and c are

predominant in the sample and should generally be expected if

the sample is representative of the population. Figure 4 has

a much different shape, somewhat similar to a truncated normal

type distribution. Figures 3 and 4 each have one point hat

20





breaks the otherwise consistent pattern. These points are

in the interval .48 to .52 for c, and .64 to .68 for g. There

appears to be a relatively simple explanation for these points:

Data points having 1 error and 1 trial in presolution, that is

an error on the first trial only, yields a c = .50, and a g =

.667. If a student was in solution, i.e., knew how to

answer correctly, but misunderstood the protocol the chances

are good that he would have one error only. This protocol

concept seems a valid explanation for the out of place peaks

in Figs. 3 and 4.

Examination of the individual data (Appendixes A and B)

showed no consistent trends. All of the factors T, E, c and g

vary both over subjects and over steps. Accordingly the next

approach was to calculate the means and standard deviations of

c and g by subject and by step. The results are shown in

Tables I and II, respectively. The frequency distributions of

these values are plotted in Figs. 5 through 8. Figures 5 and

6 show c by subject and step, respectively. It is apparent

that these frequency distributions overlap and that they fall

under the overall frequency distribution of c shown in Fig. 3.

Similarly Figs. 7 and 8 overlap and fall under the overall

frequency distribution of g shown in Fig. 4.

It had been hoped that some definite consistency in one of

the parameters would show up over subjects or steps. It appears,

however, that the parameters g and c are random variables from

the overall distributions shown in Figs. 3 and 4. Assuming

that the sample is representative, it then follows that n this

21





TABLE I

MEAN AND STANDARD DEVIATION OF g AND c BY SUBJECT

g c

Subject Mean Standard
Deviation Mean Standard

Deviation

1 .738 .167 .023 .019

2 .712 .283 .060 .040

3 .789 .119 .109 .149

4 .752 .143 .081 .065

5 .840 .038 .144 .077

6 .769 .174 .148 .154

7

8

" 9

.764 .085 .225 .240

.725 .245 .095 .105

10 .824 .099 .083 .139

11 .885 .135 .154 .214

12 .759 .119 .057 .063

13 .767 .144 .025 .023

14 .811 .136 .230 .248

15 .741 .146 .048 .044

16 .790 .128 .092 .132

17 .805 .105 .173 .197

18 .837 .101 .119 .191

19 .667 .500
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TABLE II

MEAN AND STANDARD DEVIATION OF g AND c BY STEP

g c g
Aw

c

Step Mean
Standard
Deviation

Mean
Standard
Deviation

Step Mean
Standard
Deviation

Mean
Standard
Deviation

1 .554 .260 .183 .190 19 .819 .114 .063 .059

2 .667 .097 .315 .216 20 .736 .205 .063 .055

3 .635 .125 .268 .255 21 .797 .086 .067 .087

4 .723 .196 .189 .271 22 .760 .214 .070 .057

5 .792 .185 .085 .123 23 .794 .066 .020 .020

6 .876 .065 .085 .094 24 .719 .093 .136 .202

7 .758 .112 .062 .091 25 .764 .147 .092 .120

8 .812 .126 .182 .276 26 .775 .081 .041 .056

9 .852 .085 .051 .077 27 .821 .038 .054 .028

10 .884 .049 .065 .072 28 .835 .106 .091 .095

11 .809 .141 .036 .027 29 .882 .075 .043 .038

12 .774 .124 .205 .259 30 .842 .095 .072 .051

13 .764 .192 .053 .051 31 .777 .122 .136 .185

14 .746 .159 .131 .128 32 .747 .143 .027 .025

15 .742 .126 .021 .013 33 .851 .085 .068 .054

16 .852 .185 .054 .025 34 .855 .111 .093 .100

17 .767 .218 .040 .032 35 .834 .100 .037 .026

18 .772 .128 .045 .029
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program the values of g and c, and therefore L and E, are

random variables from the general populations indicated by

Figs. 1 through 4.

C. CRITERIA DETERMINATION

Based on this conclusion, general criteria for all students

on this program can be determined. Two criteria have to be

established: (1) At what point in the program can the student

be advanced with a high probability of being in solution?

(2) At what point in the program should a student be sent

to a subroutine which has lower difficulty levels?

1. Advancement Criterion

The first criterion is based on the student's g level

for that step and can be analyzed from the individual data

given in Appendix B and Fig. 4. The individual data (Appendix

B) showed that the largest g for this population is .974. Using

this as an indication of the highest g that might be expected,

the next step is to determine its approx. probability of occur-

rence [P(g=M)]« Figure 4 shows that there were 8 times v;hen g

was recorded between .96 and 1.0. This represents approximately

.04 or 4 percent.

m\ P[g=.98] - .04

Table III gives an indication of what the probability

would be of not being in solution. The values listed are for

several different consecutive numbers of correct responses

(X) as the criterion. M is the midpoint value of g used in

Fig. 4, i.e., (.98, .94, .92 ) and is used to repress at
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TABLE III

ESTIMATED PROBABILITY OF NOT BEING IN SOLUTION

[P(S)] ONCE THE CRITERION OF X CONSECUTIVE

CORRECT RESPONSE HAS BEEN ACHIEVED

Criterion Estimate

X P(S)

8 .26

10 .21

12 .17

14 .14

16 .12

18 .10

the interval. The following basic, conditional probability

statement was used for these calculations.

P[Not Solution] =P[S]=£p [Not Solution
|

g=M,Criterion=X] P [g=M;
M

/. P[S]=£ (M)
X
-P[g=M]

M

It is obvious that the criterion must be established

based on the desired certainty. For purposes of validation,

let the criterion for completion be established at 16 con-

secutive correct responses. The actual raw data criterion

levels of 10 and 20 consecutive correct responses were used

in a rather arbitrary fashion. Of the possible 765 data

points, there were 765 - 208 = 557 in which the subject was

tested. Of these 557 data points, there were 306 which -sed

a criterion level of 20. Of these 306 data points, thei j
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were only 24 in which a criterion level of 16 would not have

been satisfactory. That is, there were 24 data points where

16, 17, 18, or 19 consecutive correct responses were recorded

followed by at least one more errors. This value

2
"'

:

= .08 = 8%
306

means that 8 percent of the time the criterion of 16 was in-

adequate. The prediction was 12 percent, and therefore the

method of setting this first criterion level seems appropriately

conservative.

2 . Branching Criterion

To establish the second criterion we turn to Figs. 1 and

2. Figure 2 tells us that 90% of the data points had less than

25 errors. Figure 1 tells us that 87% of the data points were

completed in less than 90 trials. What is more significant

about Fig. 1 is that the data points which had more than 90

trials required a total of 5065 trials, whereas those requiring

less than 90 trials required only a total of 3988 trials. This

means that 13% of the data points required approximately 56% of

the effort. Similarly, the upper 10% of the data points showed

1586 errors out of a total of 2575 error. This means that

approximately 61% of all the errors occurred in 10% of the data

point. These two observations indicate that there should be

some upper value of E and/or T which would signify the need

for branching. That is, some point that, if reached, would

indicate that the subject is having an exceptional amount of

difficulty and should be branched. To develop this furtl 2r
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requires returning to Eqs. (5) and (8). The following shows

that these equations are true probability mass functions.

**£ P[E<k] = J Pd-p)
1

~ i-(l-p) " 1

J"; P[T<t] = p+ l p(l-g) (1-c)
1

^ i=l

= p+p(l-g) (1-c) I (1-c)
i=l

= p+p(l-g) (l-c)i

i-1

= p '(1+
(l-g) (l-c)

?

c

= p
/ C+i-c-g(l-c)

c

„ (l-gd-e),

= P(i) = 1

Based on this development it follows that

k
i

P[E>k] = l-j; p(l-p)
1

i=0

, p[l-(l-p) k+1 ]
1

l-(l-p)

= 1 - 1 + (l-p)
k+1

- p ' E >k
' = ^iv^ 1

(13)
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and

t
P[T>t] = 1-p- I p(l-g) (1-c)

1

i=l

S i-1= (l-p)-p(l-g) (1-c) I (1-c)
1 x

i=l

= (l-p)-p(l-g) (1-c) II- (1-c) 3

- (1-gj (1-c) _ (1-g) (1-c)
f

t,
" l-g(l-c) l-g(l-c) tl-(l-c) ]

•'•HT>t] = {-g(l-c)
C)

[1-c]t (14)

With Eqs . (13) and (14) in hand, it simply becomes a matter

of calculations. The calculations are similar to those done

for the first criterion. To get the unconditional probability

that E or T is greater than some number requires the following

basic type equations, involving two independent random variables

(g and c)

.

P[E>k] = H P[E>k|g=x,c=y] P[g=x] P[c=y]
gc

k+1

= ^ [

(

l-xU-v!>
)

]
p[g=x] p[c=y] (15)TT^yT

and

P[T>t] = H P[L>t|g=x,c=y] P[g=x] P[c=y]
gc

n {

{z*\\lzV [1 ~
y]t

p[g=x] p[c=y] (16)
g c x \ y /

Tables IV and V represent the results for E and T respectively.

Also listed in Tables IV and V are the values obtained om the
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lower abscissa's of Figs. 2 and 1, respectively. The lower

abscissa's represent the cumulative percentages, that is, the

percentage of data points with values less than or equal to

the value indicated on the first abscissa. For the sake of

comparison, one minus the values in Figs. 2 and 1 are used

in Tables IV and V. This value then represents the percentage

of data points in which E and T were greater than the associated

criterion number.

TABLE IV

ESTIMATED PROBABILITY THAT THE NUMBER OF ERRORS

WILL EXCEED A GIVEN CRITERION k [P(E>k)]

Criterion Estimate Observed

k P(E>k) Figure 2

5 .29 .36

10 .17 .27

15 .12 . .20

20 .08 .14

25 .05 .10

(Also associated with this table are the observed

percentages of data points which had more than k

errors [from Fig. 2]).

It should be noted that the observed values in Tables

IV and V are consistently higher than the expected values.

Some thought indicated that the assumption of independence,

required for the development of Eqs . (15) and (16) may n t

have held up. A Pearson "r" test was run with g-X and Y.
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.13 .20

.10 .18

.08 .16

.07 .13

.06 .12

• ." TABLE V

ESTIMATED PROBABILITY THAT THE NUMBER OF TRIALS

WILL EXCEED A GIVEN CRITERION t [P(T>t)]

Criterion Estimate Observed

t P(T>t) Figure 1

60

70

80

90

100

(Also associated with this table are the observed

percentages of data points which had more than t

trials [from Fig. 1] )

.

The result was r=-.2774 with n=208. This value is significant

at greater than the P=.01 level. With a knowledge of this fact an

examination of Eqs . (15) and (16) indicates why the estimated

values were lower than the observed values. It is felt however

that the correlation between g and c is an unavoidable artifact

of the estimators. In explanation of this last statement,

observe that Eqs. (11) and (12) have an upper and lower bound

based on the value of T. These bounds are most restrictive at

the lower values of T where c is larger than g has its most

restrictive upper bound. Since 36% of the population had a T

value of ten or less (Fig. 1) , it is relatively easy to accept

a higher c and lower g (negative r) bias in the estimators.

The branching criterion must therefore be established wit' an

awareness of this artifact.
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One case of branching was observed in the raw data.

At that time the branching criterion required three consecu-

tive sessions with a percent of accuracy less than 80%. It

took 184 trials before branching was performed. Had a

criterion of 25 errors been used, the subject would have

branched after the 57th trial, which would obviously have

been an advantageous move. Since there is no apparent way to

measure the benefit of branching over just forcing the subject

through the step, a comparison similar to that done for the

first criterion cannot be made. It is felt however that the

confidence on using the number of errors or the number of

trials as branching criterion will lie somewhere between the

estimated and the observed values (Tables IV and IV)

.
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IV. CONCLUSION

In general, any program that has the form of those used

in this study could be analyzed in a similar manner. Once

the program is ready for testing, a representative sample

should be run through with an arbitrarily high criterion, say

20 consecutive correct responses with no branching. (Branching

changes the basic probabilities (g and c) and confounds the

data.) Analysis of the resulting data would then indicate

the criteria to be used when the program is given general use.

For this particular program the following criteria seem adequate

Pass Criterion = 16 consecutive correct responses
(88-92% confidence)

Branch Criterion = 25 total errors (90-95% confidence)

or Branch Criterion = 100 total trials (88-94% confidence)

It is recommended that anyone using this procedure attempt

to increase the number of data points at least twofold. This

increased number of data points would smooth out the frequency

distribution and possibly point more exactly to how c and g are

distributed. Having a smoother frequency distribution will

also fill in blanks in the joint probability matrix used in

calculating P (E>k) and P(T>t). With more cells filled in, it

may be possible to use the actual joint density P(g=X, c=Y)

rather than the product of the marginal densities P (g=X) «P (c=Y) .

This would bring the estimated and observed values in Tables

IV and V closer together because it would remove the requ re-

ment for an assumption of independence which appears to
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violated due to the model. Knowledge of this procedure

before the data is taken will also allow for better control

of the data gathering.
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APPENDIX A

Individual Data Matrix (T and E)

Rows Represent Subjects, Columns Represent Steps

Top Entry Equals T, Bottom Entry Equals E

Subject A
x

A
2

A
3

A
4

A
5 ^ A

?
B]

_
B
2

83 B^ B
5

000000000000000000
000000000000000000

10

12 71 47

4 42 18

7

7

9

3

2 1 13

2 1 1

4 2

4 2

1 1 8 8 11 76 108 219 44 99 62

1 1 1 1 1 13 15 41 5 25 17
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APPENDIX A

Individual Data Matrix (T and E)

Rows Represent Subjects, Columns Represent Steps

Top Entry Equals T, Bottom Entry Equals E

Subject c
i

C
2

C
3

C
4

C
5

D
l

D
2

D
3

D
4

D
5

E
l

E
2

1

2
39 14 10 24

12 2 2 5

3
37 8 1

14 3 1

4
5 3 22 9 15 25

3 1 8 5 4 13

5
3 39 2 4

1 5 1 1

6
39 2 12 22

3 2 7 3

7

8

41 14 3 41 6

9
7 1 1 18 5

10
6 43 30 26 85 15 221 16 2

2 5 4 6 14 2 45 3 1
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APPENDIX A

Individual Data Matrix (T and E)

Rows Represent Subjects, Columns Represent Steps

Top Entry Equals T, Bottom Entry Equals E

Subject E
3

E
4

E
5

F
±

F
2

F
3

G
± ^ G^ R

±
I
±

109 54000000 50 00 4

10

9 11 9 69 8 8

2 2 4 20 1 1

35 27 7 8 10 23 2 23

5 5 1 1 6 6 1 7

17 3 3 3 2

3 1 1 1 1

10 2 4 10 35 12

3 1 1 4 6 1

- - - - 1

1

12

3

6

2

- -

- - - - - - - -

55 47 16

5 5 2

2 57 5 43 37 310 129 16

2 13 1 8 5 79 30 3
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APPENDIX A

Individual Data Matrix (T and E)

Rows Represent Subjects, Columns Represent Steps

Top Entry Equals T, Bottom Entry Equals E

Subject A
x

A
2

A
3

A
4

A
5

A
6

A
7

B]
_
^ B

3
B^ B

5

11

12

13

14

0110000000 15011000000010
3 91 48 178 3 30200 34 9 67 01100

32 138 277 12 18 21 59 8 13 5

8 85 123 2 2 3 15 1 5 1

010000000000010000000000

16
14 1 96 9 2 38 106

3 1 19 2 1 2 19

17
1 1 2

1 1 1

18
44 1

10 1

19
1 1

1 1
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APPENDIX A

Individual Data Matrix (T and E)

Rows Represent Subjects, Columns Represent Steps

Top Entry Equals T, Bottom Entry Equals E

Subject C
l

C
2

C
3

C
4

C
5

D
i

D
2

D
3

D
4

D
5

E
l

E
2

11
10 19

1 1

12
20 36 269 6 212 334 262 55

10 10 99 1 104 119 57 17

13
170 28 16 233 53 37 200 133 54

93 4 1 78 24 9 39 40 14

14

15
27 21 6 28 43 78

6 3 5 4 9 16

16
7 11 4 52

3 3 1 24

17
9 10 15

1 2 4

18
23 4

3 1

19
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APPENDIX A

Individual Data Matrix (T and E)

Rows Represent Subjects , Columns Represent Steps

Top Entry Equals T, Bottom Entry Equals E

Subject E
3

E
4

E
5

F
±

F
2

F
3

G]
_

G
2

G
3

E
±

I
±

11

12

13

17 21 8

1 2 1

16 101 12 142 7 9 13 4

4 15 3 32 1 3 3 1

12 80 49 47 178 104 23 64 334 88

2 18 11 17 44 19 2 24 112 17

14
9 o 1 86 6

1 1 14 1

15
70 6 9 37 9 13 184 82

22 3 3 4 3 4 86 32

16
22 50

2 23

17
36 41 6

6 13 1

18
75 36

15 3

19

39





APPENDIX B

Individual Data Matrix (g and c)

Rows Represent Subjects, Columns Represent Steps

Top Entry Equals g, Bottom Entry Equals c

(S = Tested with No Errors, S' = Not Tested)

Subject A A A A
4

A
5

A
&

A
7

B
1

B, B„ B^ B. B,

1

.750 .570 .644 „„„-----,.SSSSSSSSS

.067 .014 .020

2
* 222 SSSSSSSSSSS
.125

3 S 1 S 1 S 1 S' S 1 S 1 S' S' S' S 1 S' S'

4 S' S' S* S' S 1 S' S' S' S' S' S' S'

.770
5 S S SSSSSSSSS
6 S -

50° '
667

S - 963 S S S S S S S

.333 .500 .038

7 S' S' S' S' S' S' S 1 S' S' S 1 S' S'

8 S« S' S' S 1 S' S" S 1 S' S' S' S' S'

9
* 333

s s s
' 500

S S S S S S S

.200 .333

.667 .667 .941 .941 .956 .843 .871 .818 .907 .760 .745

.500 .500 .063 .063 .045 .012 .009 .004 .019 .010 .015
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APPENDIX B

/\ A,

Individual Data Matrix (g and c)

Rows Represent Subjects, Columns Represent Steps

Top Entry Equals g, Bottom Entry Equals c

(S = Tested with No Errors, S' = Not Tested)

Subject C
±

C
2

C
3

C
4

C
5

D
x

D
2

D
3

D
4

D
5

E]
_

E
2

i «

927
-
911

-
610

S S S S S S S. S S

.025 .023 .008

•723 „ .909 .875 B .832 _SS S SSS SS
.024 .048 .067 .035

^, « 656 «, - 74 3 B c -667
S' S* S 1 S S S S

.025 .094 .500

4
.609 .857 .689

g fl

.576
g g

.797 .534
g fl

.150 .167 .040 .093 .053 .037

.857 .845 .800 .889
S S S S S S S S

.167 .021 .250 .125

6
- 943

-
500

S
- 524

S S S S
- 901

S S S

.019 .333 .073 .034

7 S' S' S' S' S 1 S' S' S' S 1 S 1 S' S'

8 S' S' S 1 S 1 S* S' S* S' S 1 S' S' S'

9 '

854
S S S S *

965 ' 857 ' 593
S

' 39° S S

.021 .036 .125 .023 .139

.800 .905 .896 .809 .848 .915 .802 .866 .800

.111 .019 .027 - 033 - 011 - 044 - 004 -
047 - 250
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APPENDIX B

Individual Data Matrix (g and c)

Rows Represent Subjects, Columns Represent Steps

Top Entry Equals g, Bottom Entry Equals c

(S = Tested with No Errors, S' = Not Tested)

Subject E
3

E
4

E
5

P
1

F
2

F
3

G
±

G
2

G
3

*
± ^

l s s s s s s *

554
s s *

941
S'

.009 .015

2SSSSSSS
3 S S

.791

.075

.862 .886 .673 .728 .941 .941

.074 .061 .089 .014 .063 .063

.884 .850 .933 .941 .526 .784 .800 .743

.024 .031 .071 .063 .086 .037 .250 .038

s
.873 .857 .857

S
.857 .800

.044 .167 .167 .167 .250

.800 .889
S

.704 .857
s

.960

.250 .125 .080 .024 .042

S' S S
.667

.500

.834

.063

.800

.111

S'

s«

S' S' S' S' S S S" S'

8 S' . S' S 1 S 1 S' S' S S S S' S'

925 913 9209SSSSSSS * ,yiJ *

S

.015 .018 .042

1Q
.500 .792 .909 .838 .890 .749 .777 .866

.333 .016 .100 .021 .023 .003 .008 .047
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APPENDIX B

Individual Data Matrix (g and c)

Rows Represent Subjects, Columns Represent Steps

Top Entry Equals g, Bottom Entry Equals c

(S = Tested with No Errors, S 1 = Not Tested)

Subject A
1

A
2

A
3

A
4

A
5

A
6

A
?

B B
2

83 B^ 85

968
11 c ,w" s s s s s s s s

:: e
- j31

s '
857

'
857

s

•06 .167 .167

13

14

.667 .667 S s S

.500 .500

.636
S S

.641 .834

.222 .011 .019

.784 .396 .561 .895 .929

.028 .007 .004 .056 .037

.667
S S S S

.500

.033

.897 .765 .941 .699 .909

.036 .016 .063 .064 .100

15 S' S' S" S' S 1 S 1 S 1 S' S 1 S' S' S'

16 S — S '
667

-
814

-
862 - 80 °

S -

966 ' 831
S S

.500 .010 .074 .167 .018.009

s s
80 ° S S S S S S

.250

18

19 s ssssss* sss'
.500 .500

s
.847

.054

S

.667 .667
R

.500 .500

.798 .667

.021 .500
S
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APPENDIX B

Individual Data Matrix (g and c)

Rows Represent Subjects, Columns Represent Steps

Top Entry Equals g, Bottom Entry Equals c

(S = Tested with No Errors, S 1 = Not Tested)

Subject C]
_

C
2

C
3

C
4

C
5

D
x ^ D

3
D
4

D
5

E
± ^

11
.952

.050

S S S S S S s s
.974

.026
S S

12
.565 .754 .637 .923 .516

S s s
.648

s
.787 .713

.045 .025 .004 .083 .005 .003 .004 .017

.462 „ .889 .970 m .671 .573 .786 „ .811 .709 .762
13 S S S

.006 .029 .031 .004 .018 .024 .005 .007 .017

14 S s S S s s S S S S S s

15 S" S' S' S' S'
.815

.032

.897

.036

.390

.139

.889

.029

S
.815

.021

.809

.012

16 s
.710

.107

S S s
.809

.068

S S S
.889

.125

S
.565

.018

17 S S S -

947
-
875

S -
79?

S S

.056 .067 .053

-i/-i „ ~ ~ ~ -. „• 905 . 88918SSSSSS S

.033 .125

19 S
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APPENDIX B

Individual Data Matrix (g and c)

Rows Represent Subjects, Columns Represent Steps

Top Entry Equals g, Bottom Entry Equals c

(S = Tested with No Errors, S' = Not Tested)

Subject E
3

E
4

E
5 Fl F

2
F
3

G
x ^ G3 ^ I

±

r,
- 971 c - 938 * -

941 o11SSSS s s ss
.029 .032 .063

12 .810 .862 .824 .783.933 .770 .836 .889

.050 .009 .063 .007 .071 .083 .058 .125

.895 .789 .798 .665 .760 .828 .944 .645 .689 .819

.056 .012 .019 .020 .005 .009 .029 .015 .003 .011

ta * .947 _ .667 .850 .923 „14SSSS S SS
.056 .500 .011 .083

1C .703 .667 .770 .915 _, .770 .768 .540 „ .626 B
l-> s s s

.014 .125 .083 .022 .083 .062 .005 .012

16 S S S S *

941
S S

* 567
S S S

.030 .019

m « ' » -861 - 7 1 2 r> -923 „,17SSSSSS S S'

.024 .023 .083

18

19

.815 .949

.013 .021
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