
Finding All Cross-Site Needles in the DOM Stack:
A Comprehensive Methodology for the Automatic XS-Leak

Detection in Web Browsers
Dominik Trevor Noß
Ruhr University Bochum
dominik.noss@rub.de

Lukas Knittel
Ruhr University Bochum
lukas.knittel@rub.de

Christian Mainka
Ruhr University Bochum
christian.mainka@rub.de

Marcus Niemietz
Niederrhein University of Applied

Sciences
marcus.niemietz@hs-niederrhein.de

Jörg Schwenk
Ruhr University Bochum
joerg.schwenk@rub.de

ABSTRACT

Cross-Site Leaks (XS-Leaks) are a class of vulnerabilities that allow a
web attacker to infer user state from a target web application cross-
origin. Fixing XS-Leaks is a cat-and-mouse game: once a published
vulnerability is fixed, a variant is discovered. To end this game, we
propose a methodology to find all leak techniques for a given state-
dependent resource and a set of inclusion method. We translate
a website’s DOM at runtime into a directed graph. We execute
this translation twice, once for each state. The outputs are two
slightly different graphs. We then get the set of all leak techniques
by computing these two graphs’ differences. The remaining nodes
and edges differ between the two states, and the corresponding
DOM properties and objects can be observed cross-origin.

We implemented AutoLeak, our open-source solution for au-
tomatically detecting known and yet unknown XS-Leaks in web
browsers and websites. For our systematic study, we focus on XS-
Leak test cases for web browsers with detectable differences induced
by HTTP headers. We created and evaluated a total of 151 776 test
cases in Chrome, Firefox, and Safari. AutoLeak executed them
automatically without human interaction and identified up to 8 403
leak techniques per test case. On top, AutoLeak’s systematic evalu-
ation uncovers 5 novel classes of XS-Leaks based on leak techniques
that allow detecting novel HTTP headers cross-origin. We show
the applicability of our methodology on 24 web sites in the Tranco
Top 50 and uncovered XS-Leaks in 20 of them.

CCS CONCEPTS

• Security and privacy → Web application security; Browser

security;Web protocol security.

KEYWORDS

XS-Leaks, Browsers, Web Security, AutoLeak, Graphs, Privacy

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3616598

ACM Reference Format:

Dominik Trevor Noß, Lukas Knittel, Christian Mainka, Marcus Niemietz,
and Jörg Schwenk. 2023. Finding All Cross-Site Needles in the DOM Stack: A
Comprehensive Methodology for the Automatic XS-Leak Detection in Web
Browsers. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’23), November 26–30, 2023, Copenhagen,
Denmark. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3576915.3616598

1 INTRODUCTION

5 670 strings
1 112 functions
979 objects
524 numbers
111 booleans

Figure 1: Firefox DOMgraph of a web pagewith only two tags:

<script> and <object>, which is used as cross-origin inclusion

method (red edges). The graph consists of 11 427 properties

(edges) and 8 823 objects (nodes), each of which could func-

tion as a leak technique.

https://orcid.org/0000-0002-2138-9989
https://orcid.org/0009-0006-5676-5151
https://orcid.org/0000-0002-4273-645X
https://orcid.org/0009-0006-1726-8099
https://orcid.org/0000-0001-9315-7354
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3576915.3616598
https://doi.org/10.1145/3576915.3616598
https://doi.org/10.1145/3576915.3616598

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Dominik Trevor Noß, Lukas Knittel, Christian Mainka, Marcus Niemietz, and Jörg Schwenk

XS-Leaks.Client-side vulnerabilities that allow collecting privacy-
sensitive information about cross-origin web resources are called
XS-Leaks. For state-dependent resources, different states of a web
application result in differences in the HTTP responses (e.g., in sta-
tus codes, headers, or the body). Attackers can not detect these
differences cross-origin due to the Same-Origin Policy (SOP). How-
ever, XS-Leaks use side-channel information, called leak techniques,
from browser features that is not considered security-critical and,
consequentially, not blocked by the SOP. If a leak technique for
a state-dependant difference exists, this is a detectable difference.
Differences may be detectable only for certain inclusion methods
(e.g., iframe, object, embed) because they impose different restric-
tions on the SOP [31]. Attackers can use detectable differences to
construct XS-Leaks to gather information about a user’s state on a
target website.

Example: Fixing and breaking HotCRP. The web application
HotCRP allows users to download a specific file only if they have
the required access rights. An error event is thrown if the user’s
authentication state does not allow accessing this state-dependent
resource. Sudhodanan et al. [35] showed this event could be detected
cross-origin, using a specific detectable difference: the status code.
Subsequently, the reported XS-Leak was fixed in HotCRP [1]. Using
our methodology, implemented in AutoLeak, we found a new
XS-Leak in the fixed version of HotCRP. The detectable difference
used is the presence or absence of the Content-Disposition header.
Similarly to Sudhodanan et al., it allows an attacker to determine
whether a victim has access to a specific submission on HotCRP. In
our finding, an attacker website can use an iframe as the inclusion
method for the cross-origin content to iterate over all submissions
to deanonymize reviewers or authors.

State of Research. For XS-Leaks, there are two possible re-
search directions. The first direction is to analyze real-world web
applications like HotCRP. This has been done by manually creating
several test cases, with different inclusion methods, and a manually
crafted list of possible leak technique. Since authentication and au-
thorization mechanisms differ between web applications, manually
prepared scripts are necessary to access the different states with
the same browser. For example, Sudhodanan et al. [35] prepared
scripts for 62 web pages and used a list of 40 leak techniques to
analyze them (including HotCRP), and Rautenstrauch et al. [30]
used 34 leak techniques and manually signed in on 100 websites for
their login analysis. The list of leak techniques may be incomplete,
so an existing XS-Leak may be overlooked, leading to a significant
false negative rate. This gap motivates our first research question:

RQ 1:Given a state-dependent resource, is there a sys-
tematic way to automatically find all leak techniques
for all known inclusion methods?

We answer this research question in the affirmative: using Extrac-
tor to get the DOM graph and Comparator to compare multiple
DOM graphs as sketched below, we get a complete list of all leak
techniques for a given state-dependent resource and a set of inclu-
sion method in the cross-origin DOM. For example, Rautenstrauch
et al. [30] concentrate on the 34 most promising leak techniques
that allow for fast computations and large-scale (browser and web
application) evaluations. In contrast to this, we treat each DOM
object and property as a possible leak technique; depending on the

test case, up to 8 403 leak techniques could thus be identified (Ta-
ble 2). Also, instead of finding bugs in specific web applications, we
focus on the second, more generic line of XS-Leak research: find-
ing leak techniques in web browsers. For this, we must construct
lab-based test cases, which include a state-dependent resource and
an inclusion method. In contrast to prior work, we do not need to
specify leak techniques for these test cases since they are generated
by AutoLeak. While there is only a finite number of inclusion
methods, an infinite number of state-dependent resources can be
constructed. We need a carefully chosen, finite subset of state-
dependent resources for browser tests. This motivates our second
research question:

RQ 2: Is it possible to systematically construct lab-
based state-dependent resources to automatically find
all leak techniques for a given set of inclusion meth-
ods in a given web browser?

We try to answer this question for leak techniques induced by
two types of detectable differences. First, we created test cases for
detectable differences induced by (the presence or absence of) single
HTTP headers. This includes, amongst others, the novel XS-Leak in
HotCRP induced by the Content-Disposition header as described
above. For this purpose, we collected a list of 119 HTTP headers,
resulting in 77 112 test cases due to their combination with different
inclusion methods and file types. Second, we created 50 544 test
cases for detectable differences induced by 13 HTTP status codes.
Another interesting approach for creating test cases was recently
published in [30].

Methodology: Comparison of DOM Graphs. We use a novel
transformation to map a web browser’s actual DOM and JavaScript
environment, which depends on the loaded resource, to a directed
graph, which we call DOM graph. DOM graphs are huge. Figure 1
depicts a DOM graph of a simple webpage (containing only two
HTML tags) in Firefox, visualized with FM-3 in Tulip [4]. Surpris-
ingly, even this simple webpage has 8 823 nodes and 11 427 edges.
Creating DOM graphs is far from straightforward: The nodes (ob-
jects) in the DOM do not have unique names but are addressed
through edge paths. The edges (properties) have unique labels, but
these labels may occur several times at different edges. We invented
a unique naming scheme for nodes, the shortest path labeling, and a
reliable method to identify loops. We construct each graph by using
a breadth-first traversal of the actual DOM, starting with window

as the root object. Our novel methodology to automatically list all
cross-origin observable leak techniques, for a given state-dependent
resource and a set of inclusion method, is based on the comparison
of two such DOM graphs:

(1) Our JavaScript-based Extractor runs in the execution con-
text of an empty web page. It embeds the target state-dependent
resource 𝑠𝑑𝑟 using an inclusion method 𝑖 . Extractor creates a
DOM graph containing all accessible objects and properties. In
particular, the DOM graph contains those nodes and edges that are
observable cross-origin under the given inclusion method 𝑖 .

(2) We run Extractor twice: first with 𝑠𝑑𝑟 in state 0, and then
in state 1. These runs result in two DOM graphs.

(3) By running a graph difference algorithm implemented in
Comparator, the identical (isomorphic) parts of both graphs are

Finding All Cross-Site Needles in the DOM Stack:
A Comprehensive Methodology for the Automatic XS-Leak Detection in Web Browsers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

removed, leaving only the parts in which the graphs differ. The re-
maining nodes are both observable cross-origin, and differ between
the two states, and therefore are potential leak techniques.

Empirical Study. Our method is empirical and results can be
reproduced with our open-source tool AutoLeak. We have con-
densed our findings in Table 2, where for each triple, consisting
of a detectable difference, a specific web browser, and an inclu-
sion method, we list the number of leak techniques and details on
the root causes. For example, if we use the presence or absence
of the Content-Disposition header as detectable difference, and an
<object> element as inclusion method, in Safari there are 8403 leak
techniques. On top, we identified 5 novel classes of XS-Leaks that
detect the existence of HTTP headers that any previous research
has not described.

Contributions.We make the following contributions:
• We are the first to present a comprehensive methodology to
systematically detect all leak techniques, for a given state-
dependent resource and a set of inclusion method, by creat-
ing DOM graphs for each state and comparing them (Sec-
tion 4). We describe a novel algorithm to create DOM graphs
from the actual DOM of a web page.

• We provide AutoLeak, a framework for creating test cases,
graph-based snapshots of a browser’s DOM, identifying pair-
wise differences in DOM graphs, and automatically generat-
ing PoC exploits (see Section 5).

• We evaluate a test suite of 151 776 test cases, of which 16 028
produce leak techniques (Section 6). On top, we identified 5
novel classes of XS-Leaks. Since the results are reproducible,
researchers and analysts can use AutoLeak in continuous
integration processes to verify their fixes for XS-Leaks, or if
novel XS-Leaks are introduced together with new browser
features.

• We show that AutoLeak can also be used to analyze real-
world web applications by evaluating the Tranco Top 50
websites and applying it to HotCRP, YouTube, and Slack (see
Section 7).

In the interest of open science, AutoLeak and its source code,
including the data set of all differences within the DOMs, are avail-
able.1 We reported all new leak techniques to Google, Mozilla, and
Apple (see Section 6.7).

2 BACKGROUND

2.1 XS-Leaks

An XS-Leak can be described as a function 𝑥𝑠𝑙 (𝑠𝑑𝑟, 𝑖, 𝑡) [25]. It takes
three arguments and outputs a single bit 𝑏′. Its first argument is
a state-dependent resource, which is a URL to some web resource
that differs in certain aspects based on the user’s state. The second
argument is the inclusion method 𝑖 , a method to trigger a cross-
origin request to a specific state-dependent resource. The third
argument is the leak technique. Its basic idea is to infer the user’s
state. The output of the 𝑥𝑠𝑙 () function corresponds to the user’s
state if the given leak technique is exploitable with inclusionmethod
𝑖 .

1https://autoleak.org/

Running Example: An XS-Leak based on the X-Frame- ⌋
Optionsheader. For a better understanding, we introduce a running
example which we will reference throughout the paper (cf. Figure 3,
Figure 4). Suppose an attacker wants to infer whether a victim is
currently signed-in into an account at example.com. The X-Frame-
Options (XFO) header XS-Leak works as follows:

• Weuse https://myaccount.example.com as the state-dependent
resource. If the victim is signed in, the web server delivers the
resource with the HTTP response header X-Frame-Options:
DENY. Otherwise, the header is absent.

• The user’s set of states is: 𝑠 ∈ {signed in, signed out}
• The attacker uses an <object> element as the inclusionmethod:
<object data='https://myaccount.example.com/'>.

• In Firefox, there are several leak techniques which can be
detected with AutoLeak:
if the user is logged in, an error event is thrown on the
<object>, the number of subframes is window.length==0, and
window[0] is undefined.
If the user is logged out, a load event is thrown, the number
of subframes is window.length==1 and a cross-origin window
handle is reachable via window[0].

2.2 Graphs & Labeled Directed Multigraphs

Let us briefly recall the definition of a directed graph.
Definition (Directed Graph): A directed graph𝐺 = (𝑁, 𝐸) con-

sists of nodes 𝑛 ∈ 𝑁 and edges 𝑒 ∈ 𝐸 ⊆ 𝑁 ×𝑁 . Directed graphs cor-
respond to our naive intuition about the Document Object Model
(DOM): each object is a node and we can go from one node to
another by following labeled directed edges, which are the DOM
properties. For example, we can access the location object either us-
ing window.location or window.document.location. Unfortunately,
the DOM cannot be mapped to such a simple structure: There are
parallel edges in the DOM (e.g., firstChild and firstElementChild),
and there are multiple loops in the DOM (e.g., the window, frames,
top, parent all connect windowwith itself). Thereby, we need a more
complex structure.

Definition (Labeled Directed Multigraph): A multigraph is a
graph that may have more than one edge connecting two nodes and
may have multiple loop edges on single nodes. A labeled directed
multigraph (LDMG) is a multigraph with labeled nodes and edges.
Formally, an LDMG is an 8-tuple 𝐺 = (𝑁, 𝐸, 𝑠, 𝑡, Σ𝑁 , Σ𝐸 , ℓ𝑁 , ℓ𝐸)
where 𝑁 is the set of nodes, 𝐸 is the set of edges, 𝑠 : 𝐸 → 𝑁

is a map that assigns a start node to each edge, and 𝑡 : 𝐸 → 𝑁

assigns the target node. Σ𝑁 and Σ𝐸 are the sets of labels for nodes
and edges, and ℓ𝑁 and ℓ𝐸 are the functions assigning these labels.
Although this definition is mathematically complex, LDMGs can be
efficiently generated and stored. Graph algorithms can be adapted
to LDMGs, and allow for further analysis.

3 SYSTEMATIZATION OF KNOWN XS-LEAK

ANALYSES

We shed light on prior work on XS-Leaks. Table 1 gives an overview.
Tool-based Vulnerability Detection. One of our paper’s main

contributions is a systematic and automatic tool-based approach
for identifying XS-Leaks at scale. Prior work conducted either man-
ual vulnerability detection or also used tool-supported analyses.

https://autoleak.org
example.com
https://myaccount.example.com

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Dominik Trevor Noß, Lukas Knittel, Christian Mainka, Marcus Niemietz, and Jörg Schwenk

Table 1: We compare research close to our work and identify a gap in large-scale detectable differences within HTTP headers

and new leak techniques.

Investigation Target: Detectable Differences
Name Paper Tool Websites Browser Header Body Status Code New IM New LT
Scriptless Attacks Heiderich et al. [17] ¥ ¥ ¥ ¥
Unexpected Dangers Lekies et al. [26] W ´ ¥ ¥ ¥
SOP Evaluation Schwenk et al. [31] W ´ ¥ ¥ ¥
Leaky Images Staicu and Pradel [33] ´ ¥ ¥
Cosi Sudhodanan et al. [35] W ´ ´ ¥ ¥ ´ ¥
Oh, the Places Janc and West [21] ¥ ¥
Pool-Party Snyder et al. [32] ¥ ¥ ¥
Leakuidator Zaheri and Curtmola [43] è ¥ ¥ ¥
XSinator Knittel et al. [25] W ´ ¥ ¥ ¥ ¥ ¥
Same-Site Cookies Khodayari and Pellegrino [23] ¥ ¥ ¥
SoK: XS-Leaks Van Goethem et al. [36] è ¥ ¥ ¥ ¥ ¥
Leaky Web Rautenstrauch et al. [30] W ´ ´ ¥ ¥ ´ ¥

AutoLeak W ¥ ´ ´ ¥ ´ ´

W Offensive tool è Defensive tool ´ Large Scale Analysis & Contributions ¥ Contributions

Roughly every second paper listed in Table 1 analyzed XS-Leakman-
ually [17, 21, 23, 32, 33]. These works concentrate on finding severe
issues in specifications or conducting semi-automated and manual
security evaluations. Lekies et al. [26] was, to the best of our knowl-
edge, the first work which automatically detected such information
disclosure leaks. The authors implemented a Chrome extension
that automatically requests each state-dependent resource twice,
the first time including and the second time excluding attaching
cookies to the request. Sudhodanan et al. [35] implemented BASTA-
COSI which crawls websites and automatically generates XS-Leak
attack exploits based on known XS-Leaks. Schwenk et al. [31] and
Knittel et al. [25] implemented a browser evaluation test bed as a
website. Their tools used a set of hard-coded leak techniques while
AutoLeak autonomously discovers new leak techniques. Zaheri
and Curtmola [43] and Van Goethem et al. [36] implemented a
tool-based mitigation for XS-Leaks.

Investigation Target: Website vs. Browser. XS-Leak research
methodologies distinguish between their target. Someworksmainly
target the detection of issues in websites and web applications [23,
26, 30, 33, 35, 43]. Others focus on identifying browser-related is-
sues [21, 23, 25, 30–32, 35, 36]. When correlating the browser target
with the offensive tool-based approach, three works provided a
website evaluation test bed for browsers [25, 30, 31]. Note that
BASTA-COSI [35] is a tool to detect XS-Leak attacks in websites.
Heiderich et al. [17] targeted neither websites nor browsers but
revealed mistakes in the HTML specifications.

Detectable Differences. A state-dependent resource can have a
detectable difference in any part of the HTTP response. Therefore,
we distinguish in which HTTP part prior work identified them.

HTTP Header. WithAutoLeak, we specifically address XS-Leaks
that detect HTTP-Headers. We identified several prior work that
deals with detectable differences in HTTP-Headers [17, 25, 26, 30,
31, 35, 36]. These works have mainly put their focus on previously
known XS-Leak-Headers instead of systematically investigating
a broader set. Schwenk et al. [31], for example, only considered

CORS HTTP-Headers. The HTTP header column in Table 1 empha-
sizes the gap. A comprehensive investigation of HTTP headers as
detectable differences was not yet considered.

HTTP Body. Most of the related work in the field of XS-Leaks
has their major contribution in the detection of new XS-Leaks in the
HTTP body [17, 23, 25, 26, 30–33, 36]. Finding detectable differences
in this HTTP part is the most complicated because the combination
and nesting of HTML elements lead to an enormous number of
possible HTTP bodies. In contrast to prior work, we decided to put
our major effort into the large-scale analysis of HTTP headers.

Status Codes. Status codes in HTTP responses are a well-known
possible cause for XS-Leaks and have been analyzed by Knittel et al.
[25], Rautenstrauch et al. [30], Sudhodanan et al. [35], Van Goethem
et al. [36], Zaheri and Curtmola [43]. They are a convenient root
cause for XS-Leaks. Two works [30, 35] have intensively investi-
gated them at scale. Since there is a finite set of HTTP status codes,
we included them in our methodology for completeness.

New InclusionMethods.A large body of research used existing
XS-Leaks and created new variants. The main recipe is to use the
underlying leak techniques of a known XS-Leak, but combine it
with different inclusion methods. For example, Schwenk et al. [31]
found a new login oracle XS-Leaks in Edge by using the <link>

tag as the inclusion method. Sudhodanan et al. [35] systematically
combined known leak techniques with a large body of inclusion
methods based on JavaScript event handlers in their attack classes.
Zaheri and Curtmola [43] used <video>, <audio>, and <object> tags
in their XS-Leak variants. We conclude that extending the number
of inclusion methods with known leak techniques is a reasonable
but well-studied approach.

New Leak Techniques. Previous works identified new leak
techniques manually. Even if their research was tool-supported,
these tools did not reveal new leak techniques. For example, Knittel
et al. [25] revealed new leak techniques that abuse global limits
with WebSocket. The leak techniques were identified based on a
formal model and then integrated into their evaluation testbed. The

Finding All Cross-Site Needles in the DOM Stack:
A Comprehensive Methodology for the Automatic XS-Leak Detection in Web Browsers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

manual identification was yet the preferred method to identify new
leak techniques in prior research [17, 26, 30, 32, 33]. In summary,
we see a gap in the systematic and automatic detection of new leak
techniques.

4 METHODOLOGY TO FIND XS-LEAK

At the core of our methodology is the comparison of DOM graphs. It
is applied to different test scenarios, depending on whether we want
to mass-test web browser implementations or analyze web pages on
the Internet. To find all leak techniques for a given inclusionmethod
and state-dependent resource, two DOM graphs are generated, and
the difference between these two graphs is computed.

4.1 Extracting DOM Graphs

There is no simplemethod tomap the JavaScript DOMof aweb page
to an LDMG 𝐺 = (𝑁, 𝐸, 𝑠, 𝑡, Σ𝑁 , Σ𝐸 , ℓ𝑁 , ℓ𝐸), and unfortunately, the
browser’s built-in JavaScript does not provide a method to serialize
and export the entire DOM graph at once. One can enumerate and
traverse each object’s properties. We start with the root element of
the DOM and insert a root node 𝑛0 labeled with the empty string
as the first node of the graph. The root node 𝑛0 is added as the
first node to the list L of nodes to be processed. We then extract
all root node properties 𝑛0 and add an edge for each. For each
edge 𝑒 , we add (𝑒, 𝑛0) to the function 𝑠 . We label each edge with a
complex label that includes the property’s name and attributes (e.g.,
being frozen, being extensible, etc.). Each edge 𝑒 is directed from
𝑛0 to another DOM object 𝑂𝑖 . It may be a new node 𝑛𝑖 or already
contained in the DOM graph. Each such edge 𝑒 is added to the set
𝐸. To detect loops and multiple paths, we test each newly found
node 𝑛𝑖 for equality against all previously found nodes (see the
Section 5.2 for implementation details). Only if 𝑛𝑖 is different from
all previous nodes, it is added to the set 𝑁 and appended to the list
L. An entry (𝑒, 𝑛𝑖) is added to function 𝑡 , and 𝑛𝑖 is labeled with the
path from the root node to 𝑛𝑖 . If 𝑛𝑖 is equal to any previous node
𝑛, an entry (𝑒, 𝑛) is added to 𝑡 . New nodes are assigned complex
labels consisting of multiple components: (1) an ID label containing
a string that describes the shortest path to the node, (2) a type
label with the data type of the node (e.g., string, Boolean, function,
object), and a value label. Once all properties 𝑒 of 𝑛0 are processed,
𝑛0 is removed from the list L. The next node 𝑛1 from L is then
processed in the same way as described above for 𝑛0. Thereby, for
each node in the list, all edges are detected. This process expands
the graph, and then, the node is removed. The graph extraction
algorithm terminates when the node list L is empty. Details of the
algorithm are described in Section 5.2.

4.2 Computing the Difference of Two DOM

Graphs

The algorithm for computing the difference between two LDMGs
𝐺0 and 𝐺1 (cf. Figure 3(a)) starts with the root node 𝑛0, performs a
breadth-first search in both LDMGs in parallel. All outgoing edges
of 𝑛0, called the out-star of 𝑛0, are examined in both graphs. Two
edges 𝑒, 𝑒′ of the out-star are identical if they have the same label
(𝑙𝐸 (𝑒) = 𝑙𝐸 (𝑒′)) and the same target node (𝑡 (𝑒) = 𝑡 (𝑒′)). Identical
edges are removed from both graphs. Two nodes 𝑛, 𝑛′ are identical
if they are isolated after removing identical edges (i.e., they have

neither incoming nor outgoing edges) and if they have the same
label. As a result, we get two graphs 𝐺 ′

0 and 𝐺
′
1 (cf. Figure 4): 𝐺

′
0 is

the graph𝐺0 with all edges and nodes identical to𝐺1 removed, and
𝐺 ′
1 is the graph𝐺1 with all edges and nodes identical to𝐺0 removed.

Consequently, if two DOM graphs are isomorphic, the difference
graphs will be empty. This algorithm is efficient as it effectively
is the synchronized depth-first traversal of the two graphs, which
runs in linear complexity with worst-case performance𝑂 (|𝑉 | + |𝐸 |).

4.3 How to Find New XS-Leaks in Browsers

For a given state-dependent resource and a set of inclusion methods,
we aim to automatically find all leak techniques in web browsers,
both known and novel. More precisely, we want to construct func-
tions 𝑥𝑠𝑙 (𝑠𝑑𝑟, 𝑖, 𝑡) in a systematic manner, which returns different
bits depending on the state of 𝑠𝑑𝑟 . For the inclusion methods 𝑖 , this
construction is straightforward: the HTML standard only defines
a limited number of them for cross-origin resources, which we
collected. The input set of leak techniques 𝑡 are the DOM objects
and properties which correspond to the nodes and edges in the dif-
ference graphs𝐺 ′

0 and𝐺
′
1. We get them by running Extractor and

Comparator. This is efficient and usable since we get the complete
input set for 𝑡 with a single run of these tools, automated for each
possible inclusion method 𝑖 .

Only one problem remains to be solved: how do we systemati-
cally generate a finite list of state-dependent resources 𝑠𝑑𝑟? This
problem is not universally solvable: by nesting arbitrary HTML
elements in arbitrary depth, we can generate an infinite list of pos-
sible test cases. The selection of a suitable subset from this infinite
number of test cases is a community effort, for instance, the most
typical HTML nesting scenarios. A single research paper cannot
cover this systematically. Therefore, we take another approach.
Since only a few prior works investigated the interaction of HTTP
headers with XS-Leaks (cf. Table 1), our goal is to fill this gap with
a comprehensive large-scale analysis of the influence of HTTP
headers on different inclusion methods. Our running example (cf.
Section 2) exemplifies that these headers may induce a difference
in the web browser’s rendering of an HTTP response and that
these differences can be found somewhere in the DOM. If such a
difference can be identified cross-origin, we identified that as a new
leak technique. We keep the HTML part of our test cases simple:
one state-dependent resource 𝑠𝑑𝑟 is included with one inclusion
method 𝑖 , without any HTML nesting. Thus, we can derive a sys-
tematic way to build our 𝑠𝑑𝑟 test cases. We start with a list of HTTP
headers that may eventually influence the rendering of 𝑠𝑑𝑟 . Each of
these headers typically has a limited list of parameter values. There
are exceptions, such as the CSP policy which requires a complex
grammar. For each meaningful header-parameter combination, we
design a state-dependent resource in two variants. In the first vari-
ant, the header is present with the selected parameter. In the second
variant, the header is absent. We additionally constructed test cases
for status codes, file types, and defensive headers (c.f. Section 6).

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Dominik Trevor Noß, Lukas Knittel, Christian Mainka, Marcus Niemietz, and Jörg Schwenk

4.4 How to Find New XS-Leaks in Web

Applications

Since each real-world web application has unique characteristics,
a manual step is always necessary: we must determine the state-
dependent resource and the two or more states we want to test.
In [35], 62 scripts were manually created to be able to test the 62
web applications automatically. We proceed similarly and use two
different browser profiles for each web application to access the same
state-dependent resource. One browser profile can access the state-
dependent resource in state 0 and the other in state 1. Our test cases
involve different inclusion methods. For each inclusion method,
we use Extractor and Comparator to generate the difference
between the two DOM graphs. For demonstrating the feasibility
of detecting XS-Leaks in websites with AutoLeak, we chose three
fundamentally different, high-level target applications: YouTube,
Slack, and HotCRP. We found XS-Leaks in all of them, see Section 7.

4.5 False Positives and False Negatives

AutoLeak has a low False Negative rate, given that it finds XS-Leak
described in previous research, and that it uses all DOM objects and
properties. However, it may miss differences that are observable
through other means than the DOM tree (e.g., the operating system
or cache usage [13, 36]), global limits or timing-based side-channels.
True Positives are checked for validity by automatically generat-
ing PoC exploits. Some parts of the DOM change inherently and
are irrelevant to XS-Leaks: E.g., performane.timeOrigin contains a
timestamp that changes each and every time a website is loaded.
We implemented an ignore-list of these ever-changing variables,
effectively removing these False Positives before they are displayed
to the analyst. This list was created by comparing the two DOM
graphs of the same document before and after a reload.

5 AUTOLEAK: DETECTING XS-LEAKS

AUTOMATICALLY

AutoLeak consists of four main components: a) a test runner for
automating graph creation en masse (Automator), b) a JavaScript
crawler for extracting DOM graphs (Extractor), c) a framework
for storing and comparing differences in graphs (Comparator),
d) and an exploit generator (PoCGenerator). For a better under-
standing of these components and their interaction with each other,
we use our running example from Section 2.

5.1 Automator: Automated Test-Case Execution

Automator is a test-runner for automatically generating large
quantities of DOM graphs for our test cases. For this purpose, Au-
tomator instruments and uses various browsers. We need to evalu-
ate many test cases to find XS-Leaks based on HTTP response head-
ers.Automator consists of an HTTP server to deliver customizable
HTTP responses, a Celery [7] task queue and state management in
MongoDB [8]. Automator loads the test cases from a config file.
After the analyst confirms a selection,Automator queues the tasks
and processes them until finished. Each test case takes 25 seconds
on average, from the instantiating of the browser process, opening
the URL, loading the state-depending resource, extracting the graph
of the website, closing and resetting the browser, switching state,

AUTOMATOR

Store DOMs

- Selects TestCase
- Executes Browser

Extract Test Case
Graphs

Generate PoC

Start

POCGENERATOR

<ht ml >
 <scr i pt >
 l eak()
 </ scr i pt >
</ ht ml >

COMPARATOR

EXTRACTOR

- Crawls DOM properties
- Extracts Objects and

Properties

- Computes Differences
- Returns Access Paths for

Differences

- Generate XS-Leak Exploit
- Uses Access Paths

Figure 2: AutoLeak’s architecture. Four components inter-

act to detect XS-Leaks automatically. Automator provides

and runs the test cases. Each test case consists of identical

websites except for one feature, e.g., an HTTP header or the

status code. Extractor traverses the DOMs for both cases.

Comparator estimates the difference between the DOMs.

PoCGenerator can then generate exploits.

opening a new browser, creating the second graph, running the
comparison algorithm and the storing the results in the database.
Each test case consists of an inclusion method (e.g., <object data= ⌋
...>), a detectable difference (e.g., X-Frame-Options: DENY versus
no header), a data type (e.g., a JPEG image), and a browser (e.g.,
Firefox). To minimize the noise generated by the test harness, we
entirely keep track of the test case on the server side, meaning the
state-dependent URL is constant and will return different HTTP
responses depending on its server-side state.Automator uses Play-
Wright to automate headless browsers and dynamically injects the
code of Extractor via the DevTools protocol, so no additional
<script> element is needed.

Challenge: State Switching without Cookies. To find the
leak techniques for a given state-dependent resource, it must be
opened in a browser twice - once in each state. In between, the
state must be switched. In real-world applications, the state usually
depends on the HTTP session cookie. The session cookie is a secret
value that the browser appends to HTTP requests to authenticate
to the server. However, 𝑠𝑑𝑟s can depend on other factors, such as
the IP address. An XS-Leak could leak whether the user is part of a
private network by testing a 𝑠𝑑𝑟 of an intranet website. 𝑠𝑑𝑟s with
IP-based geoblocking can leak the geographic location of the user.
Also, there are more possibilities besides the cookie storage to store
client secrets (e.g., localStorage, WebSQL) and to transfer them to
the server (e.g., through WebSocket connections or GET param-
eters). Consequently, we constructed Automator to be agnostic
of the state-switching mechanism. The tool manages the state of
each 𝑠𝑑𝑟 completely server-side and switches between each call of
Extractor. This way, we also find leak technique for differences

Finding All Cross-Site Needles in the DOM Stack:
A Comprehensive Methodology for the Automatic XS-Leak Detection in Web Browsers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

that don’t work with cookies, such as when the server disallows
the sending of cookies via CORS.

Running Example in Automator. AutoLeak provides a web
interface on https://autoleak.org. It provides a pre-configured list of
inclusion methods, detectable differences, file types, and browsers.
AutoLeak triggers theAutomator component. AlthoughAutoma-
tor’s architecture allows running thousands of test cases automati-
cally, we keep this exampleminimal.We select <object> as inclusion
method and X-Frame-Options as detectable difference. We set the
file type to html and select Firefox as the browser under test. Press-
ing the run-button automatically instantiates a headless browser
instance on our server. The browser visits a specific test-case URL,
which invokes the Extractor component. Afterward, it visits the
same URL a second time, but this time, Automator changed the
state of the state-dependent URL: the document is served with
X-Frame-Options: DENY, which represents the detectable difference.
Again, it invokes the Extractor.

5.2 Extractor: Extracting DOM Graphs

Extractor solves the challenge of translating the DOM structure
of a given test page into an external mathematical object, a labeled
directed multigraph (LDMG, Section 2.2). Since Extractor is a
JavaScript program, it has the same capabilities that regular users
(or attackers) have. Thus the exported DOM LDMG exactly maps
the view of web attackers on included target resources. Extrac-
tor enumerates JavaScript properties and uses them to traverse
the DOM from object to object. Starting with the root object, Ex-
tractor executes a breadth-first traversal of the DOM objects.
The collected information is stored as nodes, edges, and their as-
signed labels of a labeled directed multigraph. For each object, it
collects information, for example, whether the object is frozen or
extensible, the result of applying different serializations and the
object’s prototype chain. All this information is stored along with
the object node in the LDMG. Thus, the labels of the nodes rep-
resent complex data structures on their own. Extractor discov-
ers each object’s properties via various methods, like for(x in

obj), Object.getOwnPropertyDescriptors(obj), Object.keys(obj).
Each property is stored as an edge in the LDMG, labeled with its
name. After collecting data on the objects and all their properties,
the neighbor objects are queued for traversal. For detecting cycles
and loops, each newly discovered object is compared to all previ-
ously visited objects using both Object.is(obj1,obj2) and ===. The
crawling ends when the queue is empty. Extractor can receive
callback functions for each new node or edge. For example, it can
add event listeners to all nodes or instantiate the performance API
(see example below). This expansion is executed before the crawling
process starts. Afterward, Extractor does not modify the DOM
anymore. The collected graph data is uploaded from the browser
to a server so that Comparator can further process them.

Challenge: Evading DOM Pollution. Extractor is itself a
JavaScript program, so there is the danger of polluting the DOM
through modification made by Extractor. The extractor must not
be able to access a reference to itself. If it were to, the extractor
risks recursion by iterating over its own queue entries, thus in-
troducing noise into the measurements. Therefore, Extractor is
implemented as an anonymous function. Anonymous functions

are nameless and have their own scope for local variables. Only
local variables are used because they are not visible in the DOM:
(function () { x = 5 })()would create the global variable window ⌋
.x and would therefore pollute the DOM. Instead, we use (function
() { var x = 5 })(), and this local variable does not appear outside
of the scope of the function. For more information on global and
local variables, see [20].

Challenge: Reliable execution of Extractor. In JavaScript,
accessing an object’s property can fail for many reasons, such as
being restricted by the SOP, invalid usage of bound methods, or
browser bugs. Thus, the extractor extensively uses try and catch

to create and extract the DOM graph reliably. This approach allows
collecting and storing every error message as node or edge proper-
ties so they can be part of the subsequent analysis even if aspects
of the extraction failed.

1 XSL_im = document.createElement('object')
2 XSL_im.data = 'https://test.com/testcase'
3 XSL_run = () => {
4 document.body.appendChild(window.XSL_im)
5 }

Listing 1: Testcase for the inclusion method <object> that

includes the state-dependent resource.

Running Example in Extractor. Extractor generates two
DOM graphs for each test case that Automator processes. The
HTML source code for both calls, as provided by Automator, is
depicted in Listing 1. Note that Listing 1 does not simply use an
HTML <object data=".."> element. We choose to generate all test
cases with JavaScript. This design choice allows Extractor to
crawl the DOM before executing the inclusion method (XSL_run())
and add all possible event listeners to all nodes. For example, Ex-
tractor adds load and error listeners to the <object>. Afterward,
Extractor executes the inclusion method (XSL_run()) and crawls
the DOM a second time, and extracts all nodes and edges. The result
is depicted in Figure 3 and stored in a database on our server so that
Comparator can further process them. For the running example,
Automator invokes Extractor to create two graphs: one with
11 427 edges and 8 823 nodes, and another one with 11 403 edges
and 8 804 nodes.

5.3 Comparator: Differences in DOM Graphs

Comparator can identify differences in two DOM graphs. The
intuition behind Comparator is that it removes everything the
DOM graphs have in common, starting from the root.

Algorithm. The algorithm is described in Section 4.2. Here, we
only mention details that are important for the interworking of
the different components of AutoLeak. Edges that are different in
the two graphs are kept. For each such edge, the common shortest
path to it is assigned as an additional attribute and is stored in a
list called roots of differences. This list contains the first contact
points with differing graph components but not the subsequent
edges. We discovered that these points of divergence are helpful
for summarizing differences between graphs, and are later used in
PoCGenerator. In the end, the BFS has deleted every edge that

https://autoleak.org

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Dominik Trevor Noß, Lukas Knittel, Christian Mainka, Marcus Niemietz, and Jörg Schwenk

1

document

body

firstEleChild

load

0

length

(a) Example DOM graph without
X-Frame-Options header set.

0

null

document

body

firstEleChild

error

0

length

(b) Example DOM graph if
X-Frame-Options is set to
DENY.

Figure 3: Our example extracts two different DOM graphs

depending on the URL’s state. Without X-Frame-Options, the

object’s content is accessible (green nodes) and window ⌋
.length=1. If set to DENY, the object throws an error event in-

stead of load and window.length=0.

1

load

0

length

(a)

0

null

error

0

length

(b)

Figure 4: Comparator computes differences between graphs.

The left side shows 𝐺 ′
0, the differences of Figure 3(a) when

removing everything identical to Figure 3(b). The right side

shows 𝐺 ′
1.

identical in both graphs, and kept all the differences, including
a list detailing where differences begin. The remaining graphs,
which may now be unconnected, are returned and the results can
be analyzed. We implemented this algorithm in Python using the
MultiDiGraph implementation from NetworkX [15].

Challenge: Shortest Paths Variation. The common shortest
path attribute is useful for understanding graph differences. When
describing differences in DOM graphs, it is natural to locate differ-
ences using the shortest path from the Global Object (GO). How-
ever, the shortest paths to corresponding nodes for interesting
edges can be different from one DOM graph to another, because
extra edges in one DOM graph may provide a local shortcut. This
occurs quite often in practice, for example, if a website uses an
iframe to include a cross-origin website. Then, window[0] usually
points to a cross-origin window handle and is mostly inaccessible.

Thus, the shortest path to the iframe itself is window.document ⌋
.body.firstElementChild. If the iframe fails to load the resource
and defaults to an about:blank page, window[0] is same-origin.
Now, the shortest path to the iframe-element itself is window[0] ⌋
.framingElement. Consequently, if we would only compare a list of
shortest paths to every node in both graphs, most of them would be
false positive differences. To ensure that we can uniformly locate dif-
fering edges, we use the common shortest path concept - a shortest
path that exists in every graph. This new label is computed dur-
ing the synchronized breadth-first traversal. The common shortest
path in our example is window.document.body.firstElementChild,
since the iFrame can be reached via this path in both cases (cross-
origin iFrame loaded vs. cross-origin loading failed), and there is
no shorter path available in both DOM graphs.

Challenge: Filtering Expected Changes. Certain parts of the
DOM depend on the time or the URL, for example, performance ⌋
.timeOrigin and document.lastModified. To reduce noise and high-
light only relevant differences, we filter out irrelevant changes
which do not depend on the inclusion method or state. These differ-
ences were identified by comparing the DOM graph of two identical
pages (which are, therefore, in the same state).

Challenge: Condensing Massive Tables into Tags. The mass
comparison of DOM graphs produces large amounts of information,
as each pair of graphs can result in thousands of differences. Our
large scale browser study consisting of 151 776 test cases produced
303 552 graphs, which consists of a total of 1 865 021 895 proper-
ties and 1 411 433 830 objects. We created a rule set for assigning
tags to condense and summarize the complex changes between
graphs. Tagging rules are regular expressions executed on the roots
of change.

Running Example in Comparator. Figure 4 shows a sim-
plified version of Comparator’s result for the two graphs of the
running example (cf. Figure 3). There are several differences: length
property differs in value, one graph contains a window under 0, and
one does not, and different events are caught. Out of the collec-
tive 22 828 edges of both graphs, Comparator computes a precise
list of 208 unique paths that have changed depending on whether
X-Frame-Options is set. Manually reviewing each differing DOM
path is labor-intensive. Instead, to condense complexity, we use the
feature of Comparator to summarize the roots of differing graph
components. For Firefox, there are 15 roots of change. Ultimately,
Comparator comprehensibly summarizes the original list of 208
differing DOM paths with 6 tags: elemdims, events, onerror,
onload, window[0], and windowlength.

5.4 PoCGenerator: Automatic Exploit

Generation

PoCGenerator uses information from Comparator to auto-
matically create a leak technique: (1) the common path to access
the node that differs. (2) the values of difference. Together with the
inclusion method, PoCGenerator builds an HTML file that con-
tains the resulting XS-Leak as JavaScript. In our running example,
Comparator identified multiple differences and PoCGenerator
used the length difference to create the code depicted in Listing 2.

Finding All Cross-Site Needles in the DOM Stack:
A Comprehensive Methodology for the Automatic XS-Leak Detection in Web Browsers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

1 XSL_im = document.createElement('object')
2 XSL_im.data = 'https://test.com/testcase'
3 XSL_run = () => {
4 document.body.appendChild(window.XSL_im)
5 }
6 XSL_leak = () => {
7 if(window['length'] === 0){
8 console.log('State 0') // X-Frame-Option header set
9 }else{
10 console.log('State 1') // X-Frame-Option header NOT set
11 }
12 }

Listing 2: Generated exploit from PoCGenerator.

6 BROWSER EVALUATION: DETECTING

NOVEL XS-LEAKS AUTOMATICALLY

AutoLeak automatically finds all leak techniques for a given state-
dependent resource and a set of inclusion methods usable to create
XS-Leaks. We extended known classes with new leak techniques
(Table 2) and identify five entirely new XS-Leaks (Table 3).

6.1 AutoLeak Setup

A test case consists of an inclusion method, a difference we want to
test, and a browser. The difference consists of header, status code,
and body. We created a configuration file composed of the following
testing parameters:

Inclusion methods. We collected known inclusion methods from
existing research and standards [25, 35, 36]. Furthermore, we evalu-
ated HTML tags and JavaScript API’s that allow fetching resources
by considering the community-based HTTPLeaks list [16].

Headers. There are too many HTTP header and value combi-
nations to test them all in a reasonable time. Furthermore, most
of them are not processed by the browser, for example, the Server

header. Therefore, they are unlikely to cause detectable differences
in the browser. In order to make a suitable selection, we chose
two approaches to build a representative set of headers. First, we
collected headers that previous research showed to be detectable
cross-origin (cf. Section 6.2). Second, we extend this set by extract-
ing 500 most frequently used headers and value combinations that
the HTTP Archive collected [3], a list of HTTP headers from the
Firefox source code [29], Web Platform Tests [37], and MDN Web
Docs [10] (cf. Section 6.3). In a first run, we tested all headers with
a single file type with every inclusion method in all browsers. We
then reduced the number down to the most promising 119 headers
so that we could test them with every file type in a reasonable time.

Body. Some XS-Leaks only work when a specific file type is
returned. We created minimal response bodies for the most used
file types. In total, we chose nine file types. (1) html and (2) json
are essential file types on the web and are often treated differently
by the browser (e.g., MIME sniffing, Cross-Origin Read Blocking
(CORB)). We included basic (3) css and (4) js files because there exist
known XS-Leaks [26] and they are parsed by the browser when
included with the corresponding inclusion method. (5) gif, (6) wav,
and (7) pdf are interesting because they can be opened directly
in the browser, which might cause XS-Leaks. We also added two
additional HTML variants to cover knownXS-Leaks: (7) one with an

iframe tag and (8) one with a focusable input element. Furthermore,
we added a test case for (9) an empty response body.

Status codes. We selected the ten most used status codes col-
lected by the HTTP Archive [3] and added those where known
XS-Leaks exist [35]. Although AutoLeak allows us to easily extend
this number, we chose to keep our test set small. We summarized
the results of all 50 544 status code tests on https://autoleak.org/.

Browsers. We ran the tests in three major browsers: Chrome
(?) v. 109, Firefox (�) v. 107, and Safari (K) v. 16.4. Previous XS-
Leak research shows that browsers that share the same underlying
browser engine exhibit the same XS-Leak behavior [25]. For exam-
ple, browsers like Edge, Opera, Brave, and Vivaldi are all based on
Chromium and showed very similar results in our initial tests.

6.2 Extending Known XS-Leaks

To prove the effectiveness of our tool, we verified that AutoLeak
can detect known XS-Leaks. We collected headers where known
XS-Leaks exist . These leaks allow an attacker to detect if the header
is present in a cross-origin response. For some headers it is also
possible to distinguish between different header values. This can
be useful if the header is present in both cases. We created a con-
figuration file based on these headers and let AutoLeak evaluate
them automatically. We chose to run them in combination with
all implemented inclusion methods, file types, and in ?, �, and
K. Table 2 shows the results of AutoLeak for this configuration.
Due to the lack of space, we show results for the file type html. Our
website provides the complete list for all 16 028 test cases.

Old Bugs – New Insights. Our tool was able to reproduce
known results, see Table 2. While these leaks have been studied by
previous research we identified new edge cases and leak techniques
because of our graph based approach.

The CSP header directives can be probed with the iframe attribute
csp [42]. This type of leak only works if an attacker can detect that
an error page is rendered in an iframe. Previously, attackers used
to reload the iframe with a hash and count the onload events. This
technique was fixed in ? [18]. Our tool revealed that the patch
only addressed a single leak technique. There is still a difference
in the history API when reloading the iframe. Thus, the XS-Leak
was not entirely fixed. The deprecated afterscriptexecute and
beforescriptexecute document event handlers do not fire when
a script request is blocked in �, for example, by the Cross-Origin
Resource Policy (CORP) header. Iframe tags do not resize when the
response is blocked by X-Frame-Options. On the other hand, the
object tag adapts its visual size depending on whether the content
can be loaded.

6.3 Five New Detectable Headers

We could identify 5 novel XS-Leaks that detect headers that were
not known by any prior research. Table 3 shows our findings.

Accept-Ranges: bytes This response header signals to the
browser that the server supports partial requests. AutoLeak dis-
covered that in ? this header can be detected cross-origin for wav
files. In an audio or video element, multiple requests are issued
only when the header is set, which causes a difference in the Per-
formance API. This XS-Leak is a handy example for the need of

https://autoleak.org/

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Dominik Trevor Noß, Lukas Knittel, Christian Mainka, Marcus Niemietz, and Jörg Schwenk

Table 2: AutoLeak detects all leak techniques for a given test case. For example, the first row shows that one test case for the

Content-Disposition-header in Chrome using the inclusion method embed has 6 669 leak techniques. These are distributed

among the three DOM-sub parts events, perfentries, and window[0].

Inclusion Method(s) Details #Leak Techniques

Header: Content-Disposition: attachment

? embed events, perfentries, window[0] 6669
? iframe, object contentDocument, contentWindow, events, perfentries, window[0] 6671
? windowOpen popup 6449
� embed, object elemdims, events, window[0], windowlength 136
� iframe contentDocument, contentWindow, perfentries, window[0] 7084
� windowOpen events, onfocus, popup 6923
K embed events, perfentries, window[0] 8391
K iframe contentDocument, contentWindow, events, perfentries, window[0] 8393
K object contentDocument, contentWindow, elemdims, events, perfentries, window[0] 8403
K windowOpen popup 8115

Header: Content-Security-Policy: default-src ’self’;

? iframeCSPHashreload history 2

Header: Content-Security-Policy: frame-ancestors ’self’;

? object contentDocument, contentWindow, elemdims, events, onerror, onload, perfentries, window[0] 6751
� embed elemdims, events, window[0], windowlength 136
� iframe events 100
� object elemdims, events, onerror, onload, window[0], windowlength 212
K embed, iframe, object perfentries 134

Header: Cross-Origin-Opener-Policy: same-origin

? windowOpen popup 7
� windowOpen popup 6725

Header: Cross-Origin-Resource-Policy: same-origin

? fetch error, fetchresponse 65
? script, stylesheet events, onerror, onload 164
� embed elemdims, events, window[0], windowlength 136
� fetch error, fetchresponse 68
� object elemdims, events, onerror, onload, window[0], windowlength 212
� script events, onafterscriptexecute, onbeforescriptexecute, onerror, onload 877
K audio, image, video perfentries 134
K fetch error, fetchresponse, perfentries 198
K script events, onerror, onload, perfentries 415
K stylesheet perfentries, styleSheets 151

Header: Timing-Allow-Origin: *

? embed, iframe, object perfentries 10
� audio, embed, favicon, fetch, iframe, image, object, script, stylesheet, video perfentries 10
� import perfentries 8
K audio, embed, fetch, iframe, image, object, script, stylesheet, video perfentries 7

Header: X-Content-Type-Options: nosniff

� script events, onafterscriptexecute, onbeforescriptexecute, onerror, onload 877
K script events, onerror, onload 281

Header: X-Frame-Options: DENY

? object contentDocument, contentWindow, elemdims, events, onerror, onload, perfentries, window[0] 6751
� embed elemdims, events, window[0], windowlength 136
� object elemdims, events, onerror, onload, window[0], windowlength 212
K embed, iframe, object perfentries 134

our systematic evaluation with AutoLeak – it only appears in this
niche combination of inclusion method and file type.

Allow-CSP-From Header Detection. If a site is rendered in
an iframe, it can agree to let the parent origin set Content Security
Policy (CSP) directives using the csp iframe attribute [39]. This leak
is very similar to the CSP directive leak (cf. Section 6.2). As seen in
Table 3 it can be detected if the attacker is allowed to set a CSP.

Cache-Control: no-store. The Cache-Control HTTP header
is used to specify browser caching policies [9]. For example, the
no-store directive prevents browsers from caching the response.
AutoLeak found that for file types other than JSON and HTML it
is possible to detect if the header is present in the response. This
detection is possible since no performance API entry is created if
the header is present.

Refresh Header Leak. The Refresh header is a non-standard
HTTP header instructing the browser to refresh the page after a
given time interval. It is mostly used with meta tags in HTML to

reload the page, but it can also be used as a header. Table 3 shows
that it is possible to detect if a page is redirected in this way. This
can be accomplished in several ways, for example, by listening for
the load event of an <iframe>.

Server-Timing The Server-Timing header allows developers
to expose server timing metrics via the Performance API. In K, it
can be detected for a few file types if included with embed, iframe,
or object. Note that this violates the specification, as server-timing
metrics should only be exposed for same-origin requests [14]. Not
only can an attacker probe if the header is set, but also get the exact
server timing information.

6.4 Evaluation Insights

Our header analysis revealed exciting insights.
Browser engines. The three major browser engines, Blink in

?, Gecko in �, and WebKit in K, overall exhibit similar behavior.

Finding All Cross-Site Needles in the DOM Stack:
A Comprehensive Methodology for the Automatic XS-Leak Detection in Web Browsers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 3: AutoLeak identified five new XS-Leaks. Each row

represents the results of one or more test cases. Results have

been merged where applicable. See Section 6.3 for details.

Inclusion Method(s) File Type Details #Leak

Techniques

1. Header: Accept-Ranges:bytes

? audio, video wav perfentries 278

2. Header: Allow-CSP-From:*

? iframeCSP wav perfentries 124
? iframeCSP pdf contentDocument,

contentWindow,
events, perfentries,
window[0]

6671

? iframeCSPHashreload css, empty, gif,
html, js, json,
text

history 2

? iframeCSPHashreload wav history, perfentries 126
? iframeCSPHashreload pdf contentDocument,

contentWindow,
elemonload,
events, perfentries,
window[0]

6707

3. Header: Cache-Control:no-store

? fetch css, gif, js, text,
wav

perfentries 124

4. Header: Refresh:0; url=https://www.example.com/

? embed, iframe, object css, empty, gif,
html, js, json,
text

events, onload 117

? embed, iframe, object wav events, onload, per-
fentries

241

� embed, object css, empty,
html, js, json,
text

events, onload 129

� iframe css, empty, gif,
html, js, json,
text

events, onload 129

K embed, iframe, object css, empty, gif,
html, js, json,
text

events, onload 123

5. Header: Server-Timing:cache;desc="Cache Read";dur=23.2

K embed, iframe, object css, gif, html, js,
json, text

perfentries 70

Nevertheless, our results show that there exist small differences
in which leak techniques and inclusion methods can be used for a
given XS-Leak. For example, inclusion methods that allow embed-
ding, like iframe, embed, and object, surprisingly react slightly
differently across browsers when loading cross-origin resources. .
Overall, from our 5040 test cases with response body HTML,K is
vulnerable in 677 cases,? in 530, and� in 403 cases. These results
can partly be attributed to the fact that ? implements more fea-
tures, like the iframe CSP attribute, that increase the attack surface.
ForK, we found that the implementation of the Performance API
is responsible for a large number of vulnerabilities.

Softening the SOP. An attacker can detect the presence of
headers that soften the SOP for a given origin. If wildcard (*)
or origin reflection is used, the attacker’s page can detect this
behavior: TimingAllowOrigin: * adds additional timing measure-
ments to Performance API entries for cross-origin requests to

the resource. By checking for them, the header can be detected.
AccessControlAllowOrigin: * allows any website to read the con-
tent of a response cross-origin, otherwise prohibited by the SOP.
This header disallows the use of credentials such as cookies with
wildcard origins [2]. Detecting this header can result in an XS-Leak
if the state is dependent on different aspects such as the IP (e.g.,
to detect geo-blocking or VPN usage). AllowCSPFrom: * can be de-
tected because a cross-origin page can test if it is allowed to set CSP
directives for an iframe (cf. Section 6.3). These headers soften the
SOP and create new accessible properties, which can be probed.

Hardening the SOP. Security headers, like XFO, XCTO, COOP,
CORP andCSP harden the SOP by restricting resources from loading
with certain inclusion method (cf. Section 6.6). These headers can
be detected because the included resource throws an error, or DOM
properties that are usually accessible, are missing or changed.

Defaulting to about:blank. When a header causes an error,
framing elements often default to about:blank, a special null origin
with no content. These fallback documents are usually accessible to
the parent. This causes thousands of differences in the DOM graph
because either the frame can be traversed or it is cross-origin.

Performance API Leaks. The Performance API [38] is very
prone to side-channel attacks [25, 42]. For every request, one perfor-
mance entry should be created. However, sometimes no resource-
timing entry is generated in one of the two states. This leak is
very common in ? and especially in K. Other smaller bugs ex-
pose small details about a cross-origin response. For example, the
nextHopProtocol property of a Performance API entry shows the
network protocol used [11]. In � a redirect can be detected if it
causes the protocol to change (e.g., from http/1.1 to http/2). In
other browsers, the property is empty for cross-origin resources.

6.5 Evaluating Inclusion Method Protections

Website owners can deploy security headers to block requests for
certain inclusion methods to prevent XS-Leaks:

• Framing Protections, like X-Frame-Options and CSP: frame-
ancestors, should protect against XS-Leaks using framing
elements as inclusion method (e.g., iframe, object, embed).

• CORP protects resources from inclusion methods that issue
no-cors requests (e.g., script, img, link, video, audio, fetch)

• Cross-Origin Opener Policy (COOP) protects resources from
window.open. COOP prevents other websites from gaining
arbitrary window references.

To test the effectiveness of these security headers, we created a
new set of test cases by combining them with all findings from
our previous evaluations. These tests closely resemble real-world
targets that often deploy at least some security headers.

Download Detection. As seen in Table 2, downloads triggered
by the Content-Disposition: attachment header can be detected
cross-origin. However, our tests show that even when X-Frame-
Options or CSP: frame-ancestors is set, framing elements in? and
� default to about:blank, when resource triggered a download.
Also, this behavior is true for window.open when the resource is
COOP protected; the empty origin is still accessible in all browsers.
This is rather problematic as there is currently no way to protect
against this leak solely with browser features.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Dominik Trevor Noß, Lukas Knittel, Christian Mainka, Marcus Niemietz, and Jörg Schwenk

Insufficient Patch. Previously, a bug in the Performance API
was reported to Chromium developers. It allowed an attacker to
differentiate between response status codes with an object tag [41].
However, the tests with security headers show that if the page uses
framing protections, this patch is insufficient. The resource-timing
entry is not created when the status code is 200 and the page is
blocked by, for instance, XFO.

Inconsistent FrameBlocking.While testing X-Frame-Options: ⌋
deny and Content-Security-Policy: frame-ancestors 'none'; we
found an interesting negative side effect. The two headers can be
distinguished in an <iframe> in �. If the Content-Security-Policy

blocks cross-site framing, the browser throws a load event on the
<iframe> element. If the blocking is caused by X-Frame-Options:

deny, no error is thrown. These experiments demonstrate the strength
of AutoLeak: the tests can easily be adapted to new scenarios and
extended with new headers.

6.6 Discussing Further Mitigations

Cookies are probably the most frequently used technology to au-
thenticate the state-dependent URLs. Recently, they have gained
significant security improvements that also affect XS-Leaks.

SameSite Cookies. The SameSite cookie attribute restricts send-
ing cookies to the server in cross-site requests. It defines three
different values: None, Lax, and Strict, which Khodayari and Pel-
legrino [23] analyzed recently. Cookies with SameSite=None will
be attached to every cross-site request, regardless of the inclusion
method. Lax cookies are only sent during top-level navigation that
do not use POST (e.g., window.open). In the Strict case, the cookies
is never attached to cross-site HTTP requests. Thus, their responses
are state-less and prevent XS-Leaks.

Partitioned Cookies. Partitioned cookies are another XS-Leak
mitigation for cookie-based state-dependent resources. It automat-
ically binds all third-party cookies to the top-level site. If an at-
tacker’s site requests an state-dependent resource cross-site, it will
only be sent with the third-party cookies that are bound to the
attacker’s top-site cookie jar. Usually, partitioned cookies are an
effective countermeasure against many XS-Leaks, since they are
not representing a victim’s authenticated state on any meaningful
website. However, if window.open is used as an inclusion method,
first-party cookies are still attached to the request. Currently, par-
titioned cookies are implemented in ? as opt-in, called Cookies
Having Independent Partitioned State (CHIPS) [28], and in � as
default, called Total Cookie Protection [12].

Blocking All Third-Party Cookies In newer versions ofK,
the Intelligent Tracking Prevention (ITP) blocks all third-party
cookies by default [40]. This blocking prevents all XS-Leaks except
for those based on pop-ups. Similarly, in ? Incognito Mode, all
third-party cookies are blocked.

6.7 Responsible Disclosure Process

We identified previously unknown leak techniques and reported
those to browser vendors. We took special care when we iden-
tified bugs that allowed us to leak differences that were previ-
ously unknown, see Table 3. The Chromium team acknowledged
Cache-Control:no-store (Section 6.3) and Insufficient Patch (Sec-
tion 6.6). We reported the Inconsistent Frame Blocking problem

(Section 6.6) to Firefox. Webkit acknowledged and fixed the Server-
Timing leak (Section 6.3). When we identified bug patterns, such as
bugs in the Performance API in Webkit, we reported those all at
once. Firefox signaled that they can not fix these problems easily.
We consulted browser vendors about addressing minor bugs, quirks,
and new leak techniques for XS-Leaks. They suggested extending
Web Platform Tests [37]. AutoLeak provides a complete list of
paths that enable XS-Leaks. This is a first step to systematically
remove XS-Leaks from the web platform.

7 WEBSITE EXPLOITABILITY

The following section highlights the prevalence of XS-Leaks in web
applications. AutoLeak can also be used to detect XS-Leaks in real
websites, given a state and URL. First, we scanned the Tranco Top
50 for XS-Leaks that allow login detection. Next, we highlight three
more severe leaks in YouTube, Slack, and HotCRP.

7.1 Tranco Top 50 Login Detection

We used AutoLeak to find and exploit XS-Leaks that allow login
detection in the Tranco Top 50 websites. We manually registered an
account on each website that allowed account creation without the
need for a foreign phone number or a required payment method.
We made exceptions for websites where we had private accounts.
On 11 domains, no website was reachable (e.g., akamaiedge.net),
so we skipped them. In total, we could authenticate to 24 out of
the Tranco Top 50 websites. To find a suitable state-dependent re-
source using this account, we used three different pages per website:
(1) the website’s startpage, (2) the login page, and (3) the accoun-
t/profile page. We prepared two Chrome browser profiles for the
state-dependent resource in state 0 (logged in) resp. state 1 (logged
out). Afterward, we used AutoLeak to automatically find all leak
techniques for our set of inclusion methods on that state-dependent
resource.

Results. We found XS-Leaks on 20 of 24 websites within the
Tranco Top 50. Among our three tested state-dependent resource,
the login page was the most successful: we identified XS-Leaks in
19 out of 24 login pages. In contrast, the start page had the least
issues. Only 11 of them were vulnerable. Websites often redirect
logged-in users away from the login page, which leads to more,
possibly detectable, differences. Similarly, we observed that in the
unauthenticated state, users are often redirected to the login page
when trying to access the account page. Themost effective inclusion
method was windowOpen, which worked on 14 websites. Interest-
ingly, websites that were resilient to XS-Leak attacks are often
single-page applications. These websites serve a single HTML file
and fetch user-specific resources using JavaScript. With this ap-
proach, the responses for the two states do not differ. We reported
the issues to the website vendors.

7.2 Real-World Case-Studies

We want to exemplify that XS-Leaks are not limited in finding
login states. Thereby, we used AutoLeak to find XS-Leaks for very
different states in three case studies. In Youtube Studio, we can
identify a specific user. In Slack, we can detect if a user is a member
of a specific workspace. Finally, we found XS-Leaks on HotCRP that

Finding All Cross-Site Needles in the DOM Stack:
A Comprehensive Methodology for the Automatic XS-Leak Detection in Web Browsers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 4: Tranco Top 50 (6JL4X, 05 April 2023) evaluation with AutoLeak. We could log in on 24 websites, where 20 of them

were vulnerable○ to login detection on at least one of the three tested pages. Only 4 websites were not vulnerable○.

Number of Leak Techniques per Inclusion Method on the . . .

Rank Website Vuln? . . . Start Page . . .Login Page . . .Profile Page

1 google.com ○ ○ ○ iframeCSPHashreload: 2, object: 136,
objecthashreload: 136, windowOpen: 27

○ object: 11059, objecthashreload: 11186,
windowOpen: 60

2 facebook.com ○ ○ ○ windowOpen: 7 ○
4 youtube.com ○ ○ ○ iframeCSPHashreload: 2, object: 136,

objecthashreload: 136, stylesheet: 180, script: 180,
preloadScript: 180, preloadStyle: 180

○

6 microsoft.com ○ ○ ○ windowOpen: 79 ○ iframe: 127, iframeCSPHashreload: 2,
iframeHashreload: 164, object: 10960,
objecthashreload: 11087, embed: 127,
embedHashreload: 164

7 twitter.com ○ ○ ○ ○
10 instagram.com ○ ○ ○ windowOpen: 7 ○
11 apple.com ○ ○ ○ windowOpen: 27 ○
13 linkedin.com ○ ○ iframe: 1, iframeHashreload: 1, object: 1,

objecthashreload: 1, embed: 1,
embedHashreload: 1

○ iframe: 1, iframeHashreload: 1, object: 1,
objecthashreload: 1, embed: 1,
embedHashreload: 1

○ object: 4, objecthashreload: 4, embed: 223,
stylesheet: 180, script: 180, windowOpen: 27,
preloadScript: 180, preloadStyle: 180

15 wikipedia.org ○ ○ ○ ○
16 live.com ○ ○ iframe: 27, iframeHashreload: 27, object: 11086,

objecthashreload: 11213, embed: 250,
embedHashreload: 335, windowOpen: 34

○ iframe: 127, iframeCSPHashreload: 2,
iframeHashreload: 206, object: 10960,
objecthashreload: 10964, embed: 127,
embedHashreload: 206

○ iframeCSPHashreload: 2, iframeHashreload: 164,
object: 10960, objecthashreload: 11087,
embed: 127, embedHashreload: 164

18 amazon.com ○ ○ windowOpen: 54 ○ ○ windowOpen: 53
24 yahoo.com ○ ○ iframe: 1, iframeHashreload: 2, object: 1,

objecthashreload: 1, embed: 1,
embedHashreload: 2, windowOpen: 237

○ windowOpen: 209 ○

26 googletagmanager.com ○ ○ stylesheet: 180, script: 180, preloadScript: 180,
preloadStyle: 180

○ stylesheet: 180, script: 180, preloadScript: 180,
preloadStyle: 180

○ stylesheet: 180, script: 180, preloadScript: 180,
preloadStyle: 180

27 bing.com ○ ○ iframe: 27, iframeHashreload: 27, object: 27,
objecthashreload: 27, embed: 27,
embedHashreload: 27, windowOpen: 27

○ iframe: 127, iframeCSPHashreload: 2,
iframeHashreload: 206, object: 10960,
objecthashreload: 10964, embed: 127,
embedHashreload: 206

○ iframe: 27, iframeHashreload: 27, object: 27,
objecthashreload: 27, embed: 27,
embedHashreload: 27, windowOpen: 27

32 office.com ○ ○ windowOpen: 79 ○ windowOpen: 79 ○ windowOpen: 79
34 github.com ○ ○ ○ ○
35 reddit.com ○ ○ windowOpen: 80 ○ windowOpen: 105 ○ windowOpen: 27
36 pinterest.com ○ ○ iframe: 1, iframeHashreload: 5, object: 1,

objecthashreload: 1, embed: 1,
embedHashreload: 5, windowOpen: 53

○ iframe: 4, iframeHashreload: 8, object: 1,
objecthashreload: 1, embed: 4,
embedHashreload: 8, audio: 1, video: 1,
windowOpen: 107

○ iframe: 1, iframeHashreload: 2, object: 1,
objecthashreload: 1, embed: 1,
embedHashreload: 2, windowOpen: 107

37 wordpress.org ○ ○ ○ windowOpen: 79 ○
38 whatsapp.com ○ ○ ○ ○
42 fastly.net ○ ○ windowOpen: 28 ○ windowOpen: 258 ○ windowOpen: 258
44 zoom.us ○ ○ ○ windowOpen: 105 ○ windowOpen: 105
47 adobe.com ○ ○ ○ windowOpen: 105 ○ windowOpen: 105
50 vimeo.com ○ ○ windowOpen: 232 ○ windowOpen: 232 ○ windowOpen: 205∑

24 20 11 19 14

Legend: ○ Vulnerable ○ Not Vulnerable

allows us to de-anonymize reviewers or authors. For each website,
we identified the state-dependent resource manually.

YouTube Studio. YouTube is a feature-rich web application
open to all Internet users. It is owned by Google, one of the leading
companies in web technology and, subsequently, in web security.
Therefore, we assumed YouTube is a high-value target, employing
all countermeasures to prevent XS-Leaks. We identified an XS-Leak
on YouTube Studio that leaks if a victim visiting the attacker’s
website is the owner of a specific YouTube channel. The YouTube
channel page may reveal personal information, such as contact
email or other social media accounts. The XS-Leak exploits the
state-dependent URL studio.youtube.com/channel/<id>. This web-
site returns status code 200 if the visitor is the channel’s owner
corresponding to the specified channel id. Otherwise, the status
code is 403. Attackers can differentiate between these by including
the state-dependent URL in an object tag and counting the cre-
ated resource-timing entries. Note that YouTube returns X-Frame- ⌋
Options: deny in both cases to forbid other pages from embedding
this page. Surprisingly, this does not protect against this XS-Leak,
as shown in Section 6.6.

Slack. We selected Slack as an example of a web application
to handle closed user groups. Members of an organization using
Slack should only be visible to other members of the same orga-
nization. On Slack, we found an XS-Leak that leaks whether a
registered user can access a specific workspace. Attackers could
use this XS-Leak to identify individuals of a specific organiza-
tion. AutoLeak identified the issue on the state-dependent URL
<workspace>.slack.com/terms-of-service. Only Slack users who
belong to that specific <workspace> can access this link. The redi-
rect can not be detected in an easy way, however, AutoLeak re-
ported a difference in the window.length property after the redirect.

HotCRP. HotCRP is a web application specifically designed to
provide double anonymity for reviewing scientific papers: reviewers
should not be able to detect the identity of the authors of a paper,
and authors should not be able to determine who reviewed their
paper. AutoLeak found a XS-Leak on HotCRP, which allows an
attacker to learn if a victim has access to a specific submission id.
Only authors and reviewers can download the submission PDF.
The state-dependent URL for this XS-Leak is <conf>.hotcrp.com/ ⌋
search?p=<id>&[. . .]. HotCRP provides a detectable difference with

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Dominik Trevor Noß, Lukas Knittel, Christian Mainka, Marcus Niemietz, and Jörg Schwenk

Content-Disposition: attachment; header. It is present if the
user has access to the submission. Otherwise, it is absent.AutoLeak
identified the following leak technique: either window[0].location
== "about:blank" or the attempted access to this property raises
an error.

8 RELATEDWORK

Table 1 shows a comparison of AutoLeak to prior work. In this sec-
tion, we summarize additional related work for DOM fingerprinting
and graph-based approaches.

Starov and Nikiforakis [34] applied XHOUND on the most pop-
ular Google Chrome extensions and found out that most of them
are fingerprintable due to changes within the DOM. Karami et al.
[22] implemented a parallel DOM which separates the DOM modi-
fication made by browser extensions from the code attempting to
exploit said modification for fingerprinting purposes.

Barth et al. [5] analyzed cross-origin JavaScript capability leaks.
They modified source code of the Safari browser to annotate Java-
Script objects with its origin to detect leaks using singular heap
graphs. In contrast, we built a graph extraction browser-agnostic
in pure JavaScript, and rendering the need for memory addresses
obsolete by using graph comparison instead. By using Chromium’s
code base, Li et al. [27] constructed JSgraph as a forensic engine for
a post-mortem reconstruction of web attacks. A graph-based ma-
chine learning approach to ad and tracker blocking was presented
by Iqbal et al. [19]. They used ADGRAPH as a tool to construct a
graph-based representation by instrumenting Chromium’s render-
ing engine. Bau et al. [6] proposed an approach for ad and tracker
blocking by using machine learning, including a graph-based ap-
proach to show how scripts are loaded into the DOM. Khodayari and
Pellegrino [24] constructed DOM graphs (Hybrid Property Graphs)
by systematically extending known DOM clobbering exploits.

9 CONCLUSION

We present AutoLeak, a novel methodology to identify XS-Leaks
from the DOM systematically. We used a graph-based approach to
automatically find all leak techniques for a given state-dependent
resource and set of inclusion methods. AutoLeak automatically
executed 151 776 test cases with Chrome, Firefox, and Safari. It
identified 16 028 test cases with XS-Leaks.

Lessons Learned. Previous research on XS-Leaks systemati-
cally analyzed HTTP/HTML configurations and produced many
test cases. However, a single proof-of-concept was described for
each XS-Leak. It was left to browser vendors to mitigate similar
vulnerabilities. This paper describes a methodology for finding all
leak techniques for each test instance. This methodology can help
browser vendors learn the problem’s exact scope. Using a graph
algorithm, we could detect all state-dependent differences in the
DOM of target applications. Thus we could identify all possible
leak techniques which could be exploited in an XS-Leak attack.

Future Research Directions. Besides the DOM, other com-
ponents in the browser exist where including a state-dependent
resource may lead to detectable difference [36]. Differences may
occur in the HTTP cache, socket pool, OS layer, or any other com-
ponent involved in processing or fetching the cross-origin resource.
An attackermay detect these differences. Our graph-based approach

shows that a systematic analysis can be done for the DOM compo-
nent. Investigating other components would be a good step towards
an XS-Leak-free web, but may come with its own challenges. For a
complete analysis, more complex test cases are needed. However,
it is unclear if generating a finite list of useful test cases efficiently
is possible since some XS-Leaks may occur only in niche scenarios

ACKNOWLEDGMENT

Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA - 390781972. Lukas Knittel was supported by the re-
search project "North-Rhine Westphalian Experts in Research on
Digitalization (NERD II)", sponsored by the state of North Rhine-
Westfalia – NERD II 005-2201-0014. Dominik Noß was supported
by the German Federal Ministry of Economics and Technology
(BMWi) project “Industrie 4.0 Recht-Testbed” (13I40V002C) and by
the research project “MITSicherheit.NRW” funded by the European
Regional Development Fund North Rhine-Westphalia (EFRE.NRW).

REFERENCES

[1] 2019. Attempt to plug an information leak represented
by http status. https://github.com/kohler/hotcrp/commit/
406a966aad00a762460fbc62cfb04a7532fc9fbd

[2] 2022. Fetch Standard, CORS protocol and credentials. https://
fetch.spec.whatwg.org/#cors-protocol-and-credentials

[3] 2022. The HTTP archive. https://httparchive.org/
[4] David Auber, Daniel Archambault, Romain Bourqui, Maylis Delest, Jonathan

Dubois, Antoine Lambert, Patrick Mary, Morgan Mathiaut, Guy Melançon, Bruno
Pinaud, Benjamin Renoust, and Jason Vallet. 2017. TULIP 5. In Encyclopedia of
Social Network Analysis and Mining, Reda Alhajj and Jon Rokne (Eds.). Springer,
1–28. https://doi.org/10.1007/978-1-4614-7163-9_315-1

[5] Adam Barth, Joel Weinberger, and Dawn Song. 2009. Cross-Origin Javascript
Capability Leaks: Detection, Exploitation, and Defense. In Proceedings of the
18th Conference on USENIX Security Symposium (Montreal, Canada) (SSYM’09).
USENIX Association, USA, 187–198.

[6] Jason Bau, JonathanMayer, Hristo Paskov, and John CMitchell. 2013. A promising
direction for web tracking countermeasures. Proceedings of W2SP (2013).

[7] Celery. 2023. Celery: Distributed task queue. https://github.com/celery/celery
[8] Mongo DB. 2023. Mongo DB Website. https://www.mongodb.com/
[9] MDN Web Docs. 2022. HTTP Headers: Cache-Control. https://

developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control.
[10] MDN Web Docs. 2022. MDN Web Docs. https://developer.mozilla.org/.
[11] MDN Web Docs. 2022. PerformanceResourceTiming nextHopProtocol. https:

//developer.mozilla.org/en-US/docs/Web/API/PerformanceResourceTiming/
nextHopProtocol.

[12] MDN Web Docs. 2023. State Partitioning. https://developer.mozilla.org/en-
US/docs/Web/Privacy/State_Partitioning.

[13] EdwardW. Felten andMichael A. Schneider. 2000. Timing attacks onWeb privacy.
In Conference on Computer and Communications Security.

[14] Ilya Grigorik and Charles Vazac. 2022. Server Timing. W3C Working Draft. W3C.
https://www.w3.org/TR/server-timing/#privacy-and-security.

[15] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network
Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th
Python in Science Conference, Gaël Varoquaux, Travis Vaught, and Jarrod Millman
(Eds.). Pasadena, CA USA, 11 – 15.

[16] Mario Heiderich. 2020. HTTPLeaks. https://github.com/cure53/HTTPLeaks.
[17] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg

Schwenk. 2012. Scriptless Attacks: Stealing the Pie without Touching the Sill.
In ACM SIGSAC Conference on Computer and Communications Security (2012).
ACM, ACM Press, 760–771. https://doi.org/10.1145/2382196.2382276

[18] Luan Herrera. 2021. Guessing the URL a cross-origin iframe was redirected to by
listening to the load event. https://crbug.com/1248444.

[19] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and
Zubair Shafiq. 2018. AdGraph: A Graph-Based Approach to Ad and Tracker
Blocking. https://doi.org/10.48550/ARXIV.1805.09155

[20] Travi J. 2012. What does it mean global namespace would be pol-
luted? https://stackoverflow.com/questions/8862665/what-does-it-mean-global-
namespace-would-be-polluted/13352212.

[21] Artur Janc and Mike West. 2020. Oh, the Places You’ll Go! Finding Our Way Back
from the Web Platform’s Ill-conceived Jaunts. In 2020 IEEE European Symposium

https://github.com/kohler/hotcrp/commit/406a966aad00a762460fbc62cfb04a7532fc9fbd
https://github.com/kohler/hotcrp/commit/406a966aad00a762460fbc62cfb04a7532fc9fbd
https://fetch.spec.whatwg.org/#cors-protocol-and-credentials
https://fetch.spec.whatwg.org/#cors-protocol-and-credentials
https://httparchive.org/
https://doi.org/10.1007/978-1-4614-7163-9_315-1
https://github.com/celery/celery
https://www.mongodb.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://developer.mozilla.org/
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceResourceTiming/nextHopProtocol
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceResourceTiming/nextHopProtocol
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceResourceTiming/nextHopProtocol
https://developer.mozilla.org/en-US/docs/Web/Privacy/State_Partitioning
https://developer.mozilla.org/en-US/docs/Web/Privacy/State_Partitioning
https://github.com/cure53/HTTPLeaks
https://doi.org/10.1145/2382196.2382276
https://crbug.com/1248444
https://doi.org/10.48550/ARXIV.1805.09155
https://stackoverflow.com/questions/8862665/what-does-it-mean-global-namespace-would-be-polluted/13352212
https://stackoverflow.com/questions/8862665/what-does-it-mean-global-namespace-would-be-polluted/13352212

Finding All Cross-Site Needles in the DOM Stack:
A Comprehensive Methodology for the Automatic XS-Leak Detection in Web Browsers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

on Security and Privacy Workshops (EuroS&PW) (Genoa, Italy). IEEE, IEEE, 673–
680. https://doi.org/10.1109/eurospw51379.2020.00096

[22] Soroush Karami, Faezeh Kalantari, Mehrnoosh Zaeifi, Xavier J. Maso, Erik Trickel,
Panagiotis Ilia, Yan Shoshitaishvili, AdamDoupé, and Jason Polakis. 2022. Unleash
the Simulacrum: Shifting Browser Realities for Robust Extension-Fingerprinting
Prevention. In USENIX Security Symposium. USENIX Association.

[23] Soheil Khodayari and Giancarlo Pellegrino. 2022. The State of the SameSite:
Studying the Usage, Effectiveness, and Adequacy of SameSite Cookies. In IEEE
Symposium on Security and Privacy (S&P). IEEE Computer Society. https://
publications.cispa.saarland/3504/

[24] Soheil Khodayari and Giancarlo Pellegrino. 2023. It’s (DOM) Clobbering Time:
Attack Techniques, Prevalence, and Defenses. IEEE Symposium on Security and
Privacy (S&P) (2023).

[25] Lukas Knittel, Christian Mainka, Marcus Niemietz, Dominik Trevor Noß, and
Jörg Schwenk. 2021. XSinator. com: From a Formal Model to the Automatic
Evaluation of Cross-Site Leaks in Web Browsers. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. 1771–1788.

[26] Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns. 2015. The Unex-
pected Dangers of Dynamic JavaScript. In USENIX Security Symposium (2015).
USENIX Association, 723. https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/lekies

[27] Bo Li, Phani Vadrevu, Kyu Hyung Lee, and Roberto Perdisci. 2018. JSgraph:
Enabling Reconstruction ofWeb Attacks via Efficient Tracking of Live In-Browser
JavaScript Executions. In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018. The
Internet Society. https://www.ndss-symposium.org/wp-content/uploads/2018/
02/ndss2018_07B-4_Li_paper.pdf

[28] Milica Mihajlija. 2022. Cookies having independent partitioned state (CHIPS).
https://developer.chrome.com/docs/privacy-sandbox/chips/

[29] Mozilla. 2022. Firefox Source Code. https://hg.mozilla.org/.
[30] Jannis Rautenstrauch, Giancarlo Pellegrino, and Ben Stock. 2023. The Leaky Web:

Automated Discovery of Cross-Site Information Leaks in Browsers and the Web.
In IEEE Symposium on Security and Privacy (S&P). IEEE Computer Society.

[31] Jörg Schwenk, Marcus Niemietz, and Christian Mainka. 2017. Same-Origin
Policy: Evaluation in Modern Browsers. In USENIX Security Symposium. USENIX
Association, 713–727. https://doi.org/10.5555/3241189.3241245

[32] Peter Snyder, Soroush Karami, Benjamin Livshits, andHamedHaddadi. 2023. Pool-
Party: Exploiting Browser Resource Pools as Side-Channels for Web Tracking. In
32th USENIX Security Symposium (USENIX Security 23).

[33] Cristian-Alexandru Staicu and Michael Pradel. 2019. Leaky Images: Targeted
Privacy Attacks in the Web. In USENIX Security Symposium. USENIX Association,
923–939.

[34] Oleksii Starov and Nick Nikiforakis. 2017. XHOUND: Quantifying the Finger-
printability of Browser Extensions. In 2017 IEEE Symposium on Security and
Privacy (SP). 941–956. https://doi.org/10.1109/SP.2017.18

[35] Avinash Sudhodanan, Soheil Khodayari, and Juan Caballero. 2020. Cross-Origin
State Inference (COSI) Attacks: Leaking Web Site States through XS-Leaks. In
Network and Distributed System Security Symposium (San Diego, CA). Internet
Society. https://doi.org/10.14722/ndss.2020.24278

[36] Tom Van Goethem, Gertjan Franken, Iskander Sanchez-Rola, David Dworken,
andWouter Joosen. 2022. SoK: Exploring Current and Future Research Directions
on XS-Leaks through an Extended Formal Model. In ACM Asia Conference on
Computer and Communications Security (ASIACCS) (New York, NY, USA, 2022-05-
30) (ASIA CCS ’22). ACMPress, 784–798. https://doi.org/10.1145/3488932.3517416

[37] W3C. 2022. The web-platform-tests Project. https://wpt.fyi/.
[38] Yoav Weiss and Noam Rosenthal. 2022. Resource Timing Level 2. W3C Working

Draft. W3C. https://www.w3.org/TR/2022/WD-resource-timing-2-20220706/.
[39] Mike West. 2021. Content Security Policy: Embedded Enforcement. W3C Editor’s

Draft. W3C. https://w3c.github.io/webappsec-cspee/.
[40] John Wilander. 2019. Preventing Tracking Prevention Tracking. https://

webkit.org/blog/9661/preventing-tracking-prevention-tracking/.
[41] Takashi Yoneuchi. 2019. Issue 1038036: Security: Cross-Origin (Partial) Status

Code Leakage. https://crbug.com/1038036.
[42] Takashi Yoneuchi. 2019. XS-Leak with Resource Timing API and CSP Embedded

Enforcement. https://crbug.com/1105875.
[43] Mojtaba Zaheri and Reza Curtmola. 2021. Leakuidator: Leaky Resource Attacks

and Countermeasures. In Security and Privacy in Communication Networks -
17th EAI International Conference, SecureComm 2021, Proceedings (2021). Springer
Science and Business Media Deutschland GmbH, 143–163. https://doi.org/
10.1007/978-3-030-90022-9_8

https://doi.org/10.1109/eurospw51379.2020.00096
https://publications.cispa.saarland/3504/
https://publications.cispa.saarland/3504/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07B-4_Li_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07B-4_Li_paper.pdf
https://developer.chrome.com/docs/privacy-sandbox/chips/
https://hg.mozilla.org/
https://doi.org/10.5555/3241189.3241245
https://doi.org/10.1109/SP.2017.18
https://doi.org/10.14722/ndss.2020.24278
https://doi.org/10.1145/3488932.3517416
https://wpt.fyi/
https://webkit.org/blog/9661/preventing-tracking-prevention-tracking/
https://webkit.org/blog/9661/preventing-tracking-prevention-tracking/
https://crbug.com/1038036
https://crbug.com/1105875
https://doi.org/10.1007/978-3-030-90022-9_8
https://doi.org/10.1007/978-3-030-90022-9_8

	Abstract
	1 Introduction
	2 Background
	2.1 XS-Leaks
	2.2 Graphs & Labeled Directed Multigraphs

	3 Systematization of Known XS-Leak Analyses
	4 Methodology to Find XS-Leak
	4.1 Extracting DOM Graphs
	4.2 Computing the Difference of Two DOM Graphs
	4.3 How to Find New XS-Leaks in Browsers
	4.4 How to Find New XS-Leaks in Web Applications
	4.5 False Positives and False Negatives

	5 AutoLeak: Detecting XS-Leaks Automatically
	5.1 Automator: Automated Test-Case Execution
	5.2 Extractor: Extracting DOM Graphs
	5.3 Comparator: Differences in DOM Graphs
	5.4 PoCGenerator: Automatic Exploit Generation

	6 Browser Evaluation: Detecting Novel XS-Leaks Automatically
	6.1 AutoLeak Setup
	6.2 Extending Known XS-Leaks
	6.3 Five New Detectable Headers
	6.4 Evaluation Insights
	6.5 Evaluating Inclusion Method Protections
	6.6 Discussing Further Mitigations
	6.7 Responsible Disclosure Process

	7 Website Exploitability
	7.1 Tranco Top 50 Login Detection
	7.2 Real-World Case-Studies

	8 Related Work
	9 Conclusion
	References

