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PERIODIC REPLACEMENT WHEN MINIMAL
REPAIR COSTS VARY WITH TIME*

Philip J. Boland

Department of Mathematics

University College Dublin

Be(fieId, Dublin, Ireland

ABSTRACT

A policy of periodic replacement with minimal repair at failure is considered

for a complex system. Under such a policy the system is replaced at multiples

of some period 7" while minimal repair is performed at any intervening system

failures. The cost of a minimal repair to the system is assumed to be a nonde-

creasing function of its age. A simple expression is derived for the expected

minimal repair cost in an interval in terms of the cost function and the failure

rate of the system. Necessary and sufficient conditions for the existence of an

optimal replacement interval are exhibited in the case where the system life dis-

tribution is strictly increasing failure rate (IFR).

1. INTRODUCTION

A complex system may fail if one of its many components ceases to function. The system

is returned to the operating state when the failed component is replaced. As the great majority

of components have not been replaced, the remaining life distribution and failure rate of the

system are essentially undisturbed. This type of system repair, whereby the failure rate of the

system is not altered by the failure and subsequent repair of the system is known as minimal

repair.

A policy of periodic replacement with minimal repair at failure is one in which the system

is replaced at multiples of some period T while performing minimal repair at any intervening

system failures. This type of policy was introduced and investigated by Barlow and Hunter [1]

(see also Barlow and Proschan [2]). In their paper, Barlow and Hunter show how to calculate

the optimal period Fassuming the cost of a minimal repair is constant and using as an optimal-

ity criterion the minimization of total expected cost per unit time over an infinite time horizon.

Tilquin and Cleroux [8] modify this model by introducing to the cost analysis a general cost

function (to account for depreciation or adjustment costs, interest charges, monitoring costs and

the like), which increases continuously with the length of time the system is in use. However,

as in the model considered by Barlow and Hunter, the cost of a minimal repair to the system is

constant (and hence, for example, does not depend on the time at which the repair is made or

the previous number of repairs to the system). Boland and Proschan [3] generalize the

Barlow-Hunter model to incorporate the situation when the cost of a minimal repair is an

increasing function of the number of previous repairs to the system. Further generalizations of

the Barlow and Hunter model can be found in the work of Nakagawa (see for example Naka-

gawa [5]).

'Research supported by Air Force Office of Scientific Research, U.S.A.F., under Contract No. F49620-82-K-0007.
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542 P J BOLAND

In this paper, it is assumed that the cost of a minimal repair to the system which fails at

age / is C(t), where C(t) is a continuous nondecreasing function of /. Hence, as the system

ages it becomes more expensive to perform minimal repair. F m\\ denote the life distribution

function of the system with density / r(t) will denote the failure rate function of the system,

while R(() =
J r(s)ds is the cumulative failure rate function or hazard function of the sys-

tem. It is assumed that F(0) = and that r(t) is a positive continuous function of t. The

problem of finding an optimal period T for periodic replacement (where minimal repair is per-

formed according to the cost function C(t) on system failure) is investigated. It is shown that

if C(t)r(t) is nondecreasing (in particular if F is IFR), then an optimal period T (possibly

infinite) exists.

2. EXPECTED MINIMAL REPAIR COSTS

Now consider the situation where the system is in operation in the time interval [0, T).

On failure, minimal repair is made (according to C(t)) and we assume that repair time is negli-

gible. If the system is not replaced in this interval, the following theorem gives two useful

expressions for the expected costs of minimal repair in [0, T).

THEOREM 1: The expected minimal repair cost of the system in the interval [0, T) is

R(T)

Jo
C(R-Ht))dt = jQ

CU)r(t)dt.

PROOF: Let NT be the random variable denoting the number of minimal repairs per-

formed on the system in the age interval [0, T). We know that NT has a Poisson distribution

with parameter R(T) (see Barlow and Proschan [2], pp. 96-97 and Cox and Miller [4], p. 153).

Now if NT = k, and t\ , . . . , tk are the times of the minimal repairs, then the total
k

minimal repair cost in the interval [0, T) is £ C(f,). Given NT = k, we know that T] =
/-i

R(t\), ..., r k
= R(tk ) are distributed as the order statistics of a random sample of size k

from the uniform distribution on [0, R(T)) (see, for example, Parzen [6], pp. 139-143 or

Thompson [7]). Hence, the expected minimal repair cost given NT = k is

£(C(/,) + ...4- CUk)\NT = k)

= £(C(/?- 1

(t
1
) + ... + C(R~ l

(T k))\NT - k)

= kE(C(R- l (r))\NT = k)

(where t is uniformly distributed on [0, R(T)))

RiT) ^,„-w^ 1-kj C(R-Ht)) Jffydt

-
k

f
R(T) Jo

k r R{T)

C(R-Ht))dt.
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PERIODIC REPLACEMENT 543

Therefore, the expected minimal repair cost in the interval [0, T) is

ENr {E{C{t x
) + ...+ C(tk)\NT = k))

R(T)
= Es

R(T) J co

R(T)

C(R-Ht))dt

1 r R(T)

HnX cor'W)*

/?(D

= f C(R~Ht))dt
Jo

= I C(w)r(w)dw
Jo

[ENT (k)}

[R(T)]

(using the change of variable w = R '(/)).

REMARK 1: In the above proof of Theorem 1, the number of minimal repairs to the

system in [0, T) is a nonhomogeneous (or homogeneous) Poisson process with intensity func-

tion r(t). In particular, given that the system is functioning at age t, the probability of a sys-

tem failure in the interval 0, t + h) is of the form r(t)h + o(h). Moreover, the mean

XT r(t)dt = R(T). This leads us to interpret

C(t)r(t) in a naive sort of way as the "rate" of spending a dollar on minimal repair at age t.

With this interpretation J C(t)r(t)dt represents the mean number of dollars spent on

minimal repair in [0, T), which we have rigorously demonstrated in Theorem 1.

We now consider some examples of minimal repair cost functions and determine the

resulting expected minimal repair cost in an age interval [0, T) for a given life distribution. It

is reasonable to assume that the cost of a minimal repair to a system should be a nondecreasing

function of its age. Perhaps even more appropriate would be a nondecreasing function of the

life distribution F(t) or equivalents R(t) or — .

Fit)

EXAMPLE 1; Let C(t) be of the form C(t) = g(R(t)) where g is nondecreasing and

G' = g. Then

f
T

C{t)r{t)dt= f
T
g(R(t))dRU)= G(RU))- G(0).

We consider the following particular cases:

(a) g{y) - cy
a

(a > 0). Then CO) = c log —
Fit)

and f CU)r(t)dt =
•j o

Da+l (T^)

c —
. When a = 1, i.e., minimal repair cost is proportional to the cumula-

+ 1

tive failure rate function, then the expected minimal repair cost in [0, T) is
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544 P. J. BOLAND

R 2 (T)
c —-— . When a = 0, one obtains the cost function used by Barlow and

2

Hunter [1].

(b) giy) = ceay (a > 0). Then C(t) = g(R(t)) = ce
aRU) - c

CU)r{t)dt= - (e
aR(T) - 1) = -

a a

1 - 1

tf«F
and

^»

r

When a = 1, i.e., the cost of
F*(T)

a minimal repair is inversely proportional to the survival probability, then the

expected minimal repair cost in [0, T) is proportional to the odds ratio

F(T)/F(T).

The linear combinations of (a) and (b) constitute a large class of reasonable cost functions for

minimal repair.

EXAMPLE 2: One might consider a cost function of the type C(t) = cf (a ^ 0). In

the particular case when a = 1 this yields an expected minimal repair cost in [0, T) of
T T

( ctr(t)dt= cR(T)T- f cR(t)dt.
Jo Jo

If the life distribution is Weibull of the form Fit) = I— e
{kl)

, then the expected cost is

cikT^T- f
T
c(\t)^dt= cX*3^ 1

+ 1

3. PERIODIC REPLACEMENT WITH MINIMAL REPAIR

Let us now consider the problem of finding a period T for replacement which minimizes

expected long-run cost per unit of time. c will denote the cost of a planned system replace-

ment. If ViT) represents the expected long-run cost per unit of time when the system is

periodically replaced at times T, 2T, 3 7, ... , then tfiT) has the form

f
n

C(t)r(t)dt + c

<€{ T) = ^

Therefore,

"(T) =
C(T)r(T)T- fj C(t)r(t)dt- c

and this yields

THEOREM 2: If C(t)r(t) is a nondecreasing function of /, then an optimal replacement

interval T exists. T is finite if

lim f [C(T)r(T) - CU)r(t)]dt > c
r—oo •'0
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PERIODIC REPLACEMENT 545

or if C(t)r(t) is eventually constant and

lim f [C(T)r(T) - CO)rO)\dt > c ,

r—oo •'0r—oo

otherwise the optimal policy is to never replace.

PROOF: If Cit)r(t) is nondecreasing then C(T)r(T)T- fQ
C0)r0)dt is nondecreas-

ing and hence C'(T) has a zero iff

lim f [C(T)r(T) - C0)r0)]dt > c
r-oo Jo u

or

lim f [CiT)r(T) - C(t)r(t)]dt > c

if C(T)r(T) is eventually constant.

REMARK 2: If F is an IFR distribution with strictly increasing failure rate function r(t),

then there exists a unique optimal replacement interval T (possibly infinite).

EXAMPLE 3: Let us consider CO) of the form CO) = ce
aR(,)

(see Example Kb)): if F
is Weibull of the form Fit) = 1 - e~ {kl)P where /3 > 1, then the optimal period T must

satisfy

ce
a(\Tn)P pxni - j_

a

)l//8

CO

(/J- l)c

Co
c_

a

If a =0, then T = —
A

EXAMPLE 4: Let C(t) be of the form CO) = c(RO))a and Fbe Weibull where FO)
= 1 - e

- (k,)\ Then C(/)r(/) = c^\{\t)afi+^~\ This is increasing iff a/3 + > 1, and

hence, in particular, if /8 > 1 (or for example /8 = 1/2 (F is DFR) and a = 3/2) there is a

unique optimal replacement interval Tq.

REMARK 3: We may also wish to consider the problem of finding a replacement interval

Tq which minimizes total expected costs over a finite time horizon [0, / ). For period T, where

mT < t < (m + 1) Tfor some integer m, we see that the total expected cost in [0, / ) >s

U-mTC ' f '(f ""

<f, (D- mc + m J CO)rO)dt+J
Q

C0)r0) dt.

If C(t)rO) is an increasing function of r, it follows that ^,(T) = m[C(T)r(T) —

C0 - mT)rO - mT)) > in
>o jo

m + 1 m
Therefore, if CO)r(t) is increasing then the

optimal replacement interval Tq is an element in the set {tQ to/2, to/3, . . .}.
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RELIABILITY OF A SINGLE UNIT WITH K SPARES
IN CASE OF THE HYPER-EXPONENTIAL

AND THE ERLANG FAILURE DISTRIBUTION

J. van Dam and F. J. M. Raaijmakers

Royal Netherlands Naval College

Den Helder, Netherlands

ABSTRACT

In this paper formulas are derived for the reliability of a single unit to

which identical spares in standby are allocated, with all of these units having a

hyper-exponential or Erlang distributed lifetime. Two advantages are obtained

by using these distributions. First, the general procedure for calculating the

effect of redundancy is applicable, in contrast with most of the common life dis-

tributions, such as Weibull. Moreover, both distributions are suitable for

matching to observed curves and practical data by varying the values of the

parameters, covering together most of the cases of practical interest.

1. INTRODUCTION

A complex system made up of several subsystems in series, cannot successfully perform

its function, unless every subsystem remains in operation. In case of malfunctioning of one of

them, a spare must be present in order to replace the failing part on-line. If the needed spare

part is not available the series-system is out of service, while the remaining spares for the other

subsystems are of little use for the moment.

To increase the reliability of temporarily isolated systems— e.g., aboard a ship on route-

spare parts must be taken along in a sufficient number. A shortage during this period of isola-

tion not only decreases the availability of the system concerned but also entails an enormous

rise in the costs of maintenance, if this component has to be supplied on an emergency basis, if

possible at all.

In former days it was possible to provide the system with an abundant stock of spares. If

there were no budgetary, spatial or other limitations the stocks taken along could be extended

to such a high level that for a certain period there was practically no shortage of any spare.

Nowadays, however, due to increased complexity and consequently high prices of modern sub-

systems, the costs of such a stock would be prohibitive.

A procedure has been developed based on dynamic programming by means of which the

composition of an optimal kit can be calculated [9]. The basic idea is that the chance of a shor-

tage of any spare and a simultaneous surplus of the other ones is as small as possible. An
optimal kit, of all kits of the same cost, guarantees the highest reliability of the series-system to

which the kit is joined.

VOL. 29, NO. 4, DECEMBER 1982 547 NAVAL RESEARCH LOGISTICS QUARTERLY



548 J VAN DAM AND F. J. M. RAAIJMAKERS

The spare part provisioning in behalf of modern systems is a logistics problem, which can-

not be solved satisfactorily only by best engineering judgement based upon intuition and experi-

ence, as happened formerly. A numerical approach must be made at present with the aid of the

theory of reliability, using formulas to determine the chance of survival of a unit to which one

or more units in standby are allocated.

Many papers in this field of investigation assume an exponentially distributed lifetime of

the units and spare parts concerned. This distribution is a one parameter distribution and com-

pletely defined when the mean lifetime is specified. Characteristic is the constant failure rate

which means that the probability of failure is independent of age: the unit is as good as new at

any moment of its lifetime. A certain justification for assuming an exponentially distributed

lifetime is given by Palm's theorem [5] and, of course, by so many units actually showing an

exponentially distributed lifetime. On the other hand the exponential distribution is not flexible

enough to describe the survival curve of many other components or systems. Therefore, other

failure distributions (such as Weibull, gamma, etc.) are proposed [7,3,4]. These distributions

are characterized by more than one parameter and so are more suited for fitting to observed

reliability curves in practice.

A drawback of most of the nonexponential distributions is that it is difficult, if not impos-

sible, to obtain a closed form expression for the effect of redundancy by using the general pro-

cedure to derive an expression for the reliability of a unit with one or more spares. In this

paper two generalized exponential distributions are studied, together covering most of the cases

of practical interest; for both distributions a formula for the reliability with spares is derived.

2. RELIABILITY OF A SINGLE UNIT WITH K SPARES

In this section the reliability of a single unit together with k (identical) spares is derived.

The procedure holds for every life distribution [2,6].

Figure 1 shows a single unit (equipment, component, system) on-line, to which k identi-

cal spares are allocated, k — 0, 1, 2, . . . . When unit 1 fails, unit 2 in standby is put in opera-

tion, while unit 1 is taken off-line. This process will be repeated until the kit of k spares is

exhausted.

1

k+1

Figure 1. Unit 1 on-line, k spares allocated.

Let X-, be the lifetime of the /th unit, / = 1, ... , k + 1. Then the lifetime Yk+ i
of the

whole system consisting of one unit with k spares may be written as
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RELIABILITY OF SINGLE UNIT WITH SPARES 549

k+\

Yk+ l

= X ^''

Let ait) be the same probability density function (p.d.f.) for all Xh fit) the p.d.f. of Yk+\.
Then renewal theory states the following relationship between the two functions /and a:

Lf= iLa) k+x
,

where Lg is the Laplace transform of a function g. Using the inverse transformation one finds

the function /

Finally, we can find Rk+\it) by integration of fit):

(2.1) /W') =X°° Au)du, t > 0.

This general procedure, if applied to the exponential distribution ait) = ke~ Kl
, gives the well-

known results:

/(/) =v tke
~ K '

k\

(2.2) k = 0, 1, ...,

k
i\tY_

'! '

iW*)-*-*'!

3. THE HYPER-EXPONENTIAL AND ERLANG DISTRIBUTIONS

As mentioned in the introduction, most of the common life distributions unfortunately

are unsuitable for the application of the general procedure described in Section 2. In most

cases it is difficult or even impossible to calculate the Laplace transform of the density function

ait). Even if the transform of ait) can be calculated, the expression is so complex that calcu-

lation of the inverse transform is difficult. Although in many cases numerical methods are

available for common distributions, such as the Weibull, closed form expressions for the effect

of spare parts in standby are not yet known. It must be emphasized that this lack of knowledge

of a closed form expression must be seen as a more and more disturbing drawback, as the

redundancy is of increasing importance for an optimal spare part policy. Now it seems that two

distributions are available which combine the two operational advantages, namely, the suitabil-

ity both for curve fitting and for application of the procedure in Section 2. These two distribu-

tions expressed by their reliability functions are, respectively:

1. The hyper-exponential distribution:

^ co ^ 1

(3.1) R
{
it) = coe~^'+ il-co)e- {1-^' < 8 < 1

fi >

2. The Erlang distribution:

(3.2) R] ( ( ) = e-LK,
L
y(lAiy_ L = \,2,..., X > 0.A /!

Both distributions can be seen as generalizations of the exponential distribution: the hyper-

exponential is exponential if co = 0, io = 1 or 8 = 1/2 while the Erlang is exponential in case

L = 1.
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550 J. VAN DAM AND F. J. M. RAAIJMAKERS

To compare these distributions we first give the results for mean and variance. 9 U is the

mean of the hyper-exponential distribution.

Mean Variance

Hyper-exponential
to 1 — to

8 1-8
j

2o>(l -o>)(l - 28) 2

(w - 2a>8 + 8)
2

'Bl

Erlang
1

LX 2

Characteristic is that the standard deviation is always less than or equal to the mean in case of

an Erlang distribution where the opposite is true for the hyper-exponential distribution.

(3.3)

The hazard function of the hyper-exponential distribution is given by

8a> + (1-8)0 - a>)<T
(1 - 28)'"

Z(t) = (JL

to + (1 - a>)e- (1- 28)"'

Simple analysis gives that z is a monotonic decreasing function and

lim z(t) = dfx.
t—oo

In Figure 2 some graphs of the hazard function are given for particular values of the parameters

(resulting in the same mean value).

z(t)
2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

2

1

A 6 » .01

- \ w = .7

\ u - 7.0303

;V
6 = .4

0) = . 7

u = .225

/
1 1 1 1 I 1 1 1 1 1 1 .1 l .J L i i i i i i i i ii i j _i...j—i

—

0.2 04 0.6 08 1.0 1.2 1.4 1.6 1.8 20 2.2 24 26 28 30
~ t

Figure 2. Graphs of the hazard function for the hyperexponential distribution.
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RELIABILITY OF SINGLE UNIT WITH SPARES 551

With the hyper-exponential distribution we are able to describe a high failure rate in the

first part of the lifetime of a unit. After a "burn-in" period the failure is approximately con-

stant.

The hazard function of the Erlang distribution is an increasing function of time [1] and

lim zit) = Lk in this case. So those two distributions form a group whose standard deviations

cover all values from zero to infinity and the same is true for their hazard functions. These dis-

tributions have proven to represent adequately many real lifetimes of systems and units [6].

Figure 3 shows the reliability function of both Erlang and hyper-exponential distributions,

where time is normalized with respect to the mean lifetime.

MO

— t

Figure 3. Erlang and hyperexponential distributions.

4. THE RELIABILITY Rk+1 (t) IN CASE OF THE HYPER-EXPONENTIAL
DISTRIBUTION

The probability density function ait) of the hyper-exponential distribution is given by

ait) = 8ixwe-^'+ (1 -8V(1 - a))e- (1-8)^'.

If 8 = 1/2 orw = Oorw = 1, ait) becomes the density function of an exponential distribu-

tion. Results for Rk+l it) being known in this case, we only study the other values of 8 and o>.
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552 J. VAN DAM AND F. J. M. RAAIJMAKERS

We write for ait) the somewhat shorter notation

a it) = ce-"' + de~ bt with a = Sfi, b = (1 - 8)/u,

c = SfjLw, d = (1 — 8)fi(\ — <o).

Taking the Laplace transform of ait)

Lais) + d

s + a s + b

so

«*>-*(*}') c
/t+l-7

1

s + a

Making some preparations for the inverse transformation, yields:

with

k+\ k±\ B fi^>=X<7^ + I<7T^

A"~
i

A k+\ c

, k,

1
k+\-p

Bfi
ib - a) k+x-t

,ff

Actually, taking the inverse Laplace transform, we find

k+i

r(*t
I

)(/if)<-»
,-' +,-v- "- 1 *

/(/) . y Il£
{
a-\ -at , y j^ 0-1 -fc,^ ' A 09-D!

Integrating /(/) we find the reliability Rk+i it) of a single unit with A:-spares in case of a hyper-

exponential failure density function per unit:

(4.1)

a-l

A
' *-«J

k I k+\ AHI7
+ 1

0-1

it--*

^ +
,5

^ (fa)*

A A!

-*,(faK

Application and combination of the above mentioned results yields the following formula for

Rk+l it):

(4.2) wrt-i^^+i^*- 1

y-o y-o
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with

k+ l 1+ I
i-j+l

28- 1

k + l-i
k+\-i

x Mlf- >')<-»

i+

1

i-y+i

</, = (1 - 0>)*+ 1

I i-J+

Ck = o>*
+
\ </*- (l-o,)* +1

1 -8
1 - 28

/-I

k+l-i

(l-8)(l-o>)
8o>

rcT'iif -.')<->
k+ \-i

z
/-l

8(d

(l-8)(l-o»)

/i

y-0, 1 k-\,

5. THE RELIABILITY Rt+ ,(t) IN CASE OF THE ERLANG DISTRIBUTIONkk+l

Differentiation of the Erlang reliability function with parameters L and X yields the fol-

lowing expression for the probability density function of the lifetime of a single unit:

<.\ (L^ L
,L-\ -

Taking the Laplace transform gives

(L\)L

Lki

hence

Lais) =

Lf(s) =

(s + Lk) L '

Uk) {k+l)L

(s + L\) {k+» L

We must take the inverse transform of the expression for /(/):

fit)
ax) (k+\)L

[(k + 1)1 - 1]!

,(*+ !)/.-!
e
-Lkl

again a p.d.f. of an Erlang distribution with parameters (k + 1)1 and
k + 1

Thus, we find

for the reliability Rk+X (/) of a single unit which k spare parts in case of the Erlang distribution:

(5.1)

(k+\)L-\ (T x ,\l

i-O '
•

6. A NUMERICAL EXAMPLE

To applicate the formula of Section 4 we study a system of units where all the units have

a hyper-exponentially distributed lifetime. We assume for the parameters the following values:

o» = 0.7, 8 = 0.01, and fx = 50. This means that each unit has a mean lifetime of 1.4 with a

standard deviation of 1.9.
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If we have to allocate spares to the system so that a 99% reliability exists at / = 10 we see

from Figure 4 that 18 spares are sufficient. If we base computations on the exponential distri-

bution with the same mean lifetime of 1.4 we find that 14 spares already give the same reliabil-

ity at / = 10. And if 14 spares are allocated to this system where the units have an hyper-

exponential distribution only a 96% reliability at / = 10 can be given. Generally, the hyper-

exponential distribution is more conservative in estimating number of spares than the exponen-

tial distribution with the same mean.

W> 1.00

0.99

0.98

0.97

0.96 .

0.95

Figure 4. Graphs of Rk+ \(t) in case of hyperexponential distribution with <a = .7 8 = .01 and /i = 50.
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ABSTRACT

In a recent paper, Kent and Quesenberry [19] considered using certain op-

timal invariant statistics to select the best fitting member of a collection of pro-

bability distributions using complete samples of life data. In the present work

extensions of this approach in two directions are given. First, selection for

complete samples based on scale and shape invariant statistics is considered.

Next, the selection problem for type I censored samples is considered, and both

scale invariant and maximum likelihood selection procedures are studied. The

two-parameter (scale and shape) Weibull, lognormal, and gamma distributions

are considered and applications to real data are given. Results from a (small)

comparative simulation study are presented.

1. INTRODUCTION

The two-parameter (scale and shape) Weibull, lognormal, and gamma distributions are all

commonly used in reliability and life testing problems. The problem of selecting one of these

three distributions for a particular sample, either complete or censored, is a difficult one. In

this work we consider basing the selection on the values of certain selection statistics computed

from the sample. Although we consider selection based only on sample information, it should

be noted that in some practical problems further information may be available which should

also be weighed in the final selection of a distribution. Such information could be derived, for

example, from known physical characteristics of a failure mechanism and its failure rate.

Also, it should be mentioned that throughout this paper we treat the selection of one of

the distributions as a forced selection problem. That is, we formally select exactly one of the

competing distributions. In practice, we may sometimes wish to use a partial selection pro-

cedure which does not necessarily always select one distribution over the others when they are

close together, as indicated by selection statistics that are nearly equal. The selection statistics

posed here may be readily used in partial selection schemes. However, we do not explicitly

consider these applications in the present paper.

Kent and Quesenberry [19], KQ, proposed a forced selection procedure based on statistics

that are invariant under scale transformations. Other relevant literature includes a paper by

Dumonceaux, Antle, and Haas [11] who examined maximum likelihood ratio (MLR) tests for

discriminating between two models with unknown location and scale parameters, and compared

empirically the power of MLR tests with that of uniformly most powerful invariant (UMPI)
tests for discriminating between normal and Cauchy distributions. They actually recommend
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the MLR test over the UMPI test on the basis of relatively good power and ease of computa-

tion. Dumonceaux and Antle [10] gave an MLR procedure for discriminating between Weibull

and lognormal distributions that is based on the fact that the logarithms of both Weibull and

lognormal random variables have location-scale parameter distributions. In a recent paper, Bain

and Engelhardt [2] considered a likelihood ratio selection statistic for selecting between gamma
and Weibull distributions.

Some graphical procedures for the selection problem have been given by Nelson [21], and

by Barlow and Campo [3]. Other papers that are related to the present work include Hogg,

Uthoff, Randies, and Davenport [18], who discuss a number of selection procedures, including

one based on location-scale invariant statistics; Dyer ([12], [13]) who considers a number of

selection procedures for discriminating between pairs of classes of location-scale distributions;

and Uthoff ([24], [25]) who considers some particular invariant statistics. As general references

for invariant tests see Hajek and Sidak [15] and Lehmann [20], and for MLR tests see Cox [8].

Volodin [26] considers a generalized three-parameter gamma distribution and discriminates

between two-parameter gamma and Weibull distributions by making scale invariant tests on the

other parameters.

As mentioned above, KQ considered selecting among the gamma, lognormal and Weibull

families for the complete sample problem. The selection statistic posed was formed by first

deriving a scale invariant statistic that is optimal in the sense that it minimizes the sum of the

two probabilities of selecting the incorrect distribution for two conformable distributions (cf.

Quesenberry and Starbuck [22]); and then replacing the shape parameter by its ML estimator.

Such procedures were called suboptimal, and the selection statistics for the three families were

set out in simple closed form formulas in that paper.

In the present work we consider two major changes in the approach and problem con-

sidered in KQ. First, for the lognormal and Weibull families we use optimal scale and shape

invariant selection statistics. Also, we consider the selection problem for type I censored sam-

ples as well as for complete samples. For these cases the selection statistics are generally

expressed as definite integrals whose evaluation requires numerical integration. Thus, a sub-

stantial part of this work has necessarily been concerned with the development of computer

algorithms to evaluate these integrals.

2. DENSITIES AND SELECTION FUNCTIONS

In many applied problems it is reasonable to assume that the location parameters of life

distributions are known. Thus, we consider distributions with only scale and shape parameters

unknown. The densities of the gamma, lognormal and Weibull distributions to be studied are

given in Table 1. The symbol /( a,6)Cv) m Table 1, and elsewhere, is the indicator function of

the interval {a, b), i.e., /( a>
6)0t) = 1 if a < x < b, and is zero, otherwise.

We consider type I censored samples, which are obtained when a number of items are put

on life test and observed for a previously specified fixed time T. Thus, the parent density for

the observed lives is a truncated version of the complete samples density given in Table 1.

The approach used here is of the same general form as that in KQ. A selection statistic, S,

is defined for each of the three parametric classes, and the class with the largest selection statis-

tic is chosen as the best fitting family for a given sample.
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TABLE 1 — Densities of Weibull, Lognormal, and Gamma Distributions

Name Symbol Density

Weibull W(9, j8) /i - 4"
r7

exp[-(x/G)p
] /(o,oo)U); e, /3 :

Lognormal L/V(0, a) f2
= -5= ' exp{-[ln(x/0)] 2

/2<7
2

}
• /«> «,)(*); 0,

V27T (TX

Gamma G(0, a) /3
= ^"^(a)]-^" 1 exp (-x/0) • /

(o,o.)(x); 0, .-

We consider some transformation properties of these distributions before del'

tion statistics for them. If AT is a random variable with either a G(0, a), LN{9, cr) or I

distribution, then consider the transformation

(2.1) Y = aXb
, a > 0, b > 0.

If X is a W(0, j8) random variable, then Y is a W(a0 b
, 3/b) random variable; and i

LN{9, <x) random variable, then y is a LN(a9 b
, bo-) random variable. Thus, Weibull r

variables are transformed to Weibull random variables by (2.1), and lognormal random vari-

ables are transformed to lognormal random variables by this transformation. Unfortunate

present purposes at least, the gamma distributions do not share this property since a %

random variable is not always transformed to another gamma random variable by (2.1). ' hat is

to say, the G(9, a) class is not a scale-shape class that is conformable with the lognorni.- and

Weibull classes as defined by Quesenberry and Starbuck [22]. Nevertheless, we use I

selection statistic for the complete samples problem which is essentially the value of the c

function of a maximal invariant when each of the three parents is assumed.

For x\, ... , xn an observed sample, we define the selection statistic for a densii;

tion/- (/= 1, 2, 3) by

J Myxt yx})y"-'\"-Hx
l
...xn)*dy d\.

Due to the property of the G(9, a) distribution discussed above, the selection statistic

(2.2) is a function of the parameter a. We obtain a selection statistic by replacing a

maximum likelihood estimator, a, in this function. The selection statistics used in this work

are given in Table 2.

TABLE 2 — Scale-shape Invariant Selection Statistics for Complete Samples

Family i s,

W(9, p) 1 Tin) C (Uxl)Hl.xi

k
)-''k

n-2dk

LN(9, <t) 2 1/2 W
- 1/2

7r-
1/2(fl- 1)r[l/2(« - 1)][I ln

2
x, - (I In x,)7/»]

l/2(n ""

G(9, a) 3 r(rta)r-"(<i) fj (YI xi)
&x

(.'Lx
l

k)-n&\',
-2d\
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The evaluation of these functions requires numerical integration, except for the lognormal

selection function. It is often computationally easier to compute and compare the logarithms of

the selection statistics than the statistics themselves. To estimate the parameter a of the

gamma distribution, we use the ML estimator a of Greenwood and Durand [14] which has

been studied further by Bowman and Shenton [6], and was recently used and given in detail by

KQ. The selection procedures proposed here are closely related to uniformly most powerful

invariant (UMPI) tests for separate families testing problems. For the particular case of select-

ing between lognormal and Weibull distributions, using the selection statistics of Table 2 is

equivalent to using the UMPI test statistic for classifying a sample into one of these two distri-

butions. If a i denotes the probability that a sample from a lognormal parent will be classified

as a Weibull sample, and a 2 the probability that a Weibull sample will be classified as a lognor-

mal sample, then the above selection procedure will minimize at\ + a 2 among all procedures

invariant with respect to the transformations of (2.1). Or, if the probability of selecting each

distribution is 1/2, then this procedure minimizes the total probability of misclassification, viz.,

(a\ + a 2)/2 (see KQ, Section 3).

3. SIMULATION RESULTS FOR COMPLETE SAMPLES

In this section we report results of a simulation study of the selection rules proposed

above.

In order to obtain results that can be compared with those of KQ, samples were generated

from nine parent distributions: W(\, 1/2), W(\, 2), W{\, 4), LN{\, 0.4), LN{\, 1),

LN(\, 2.5), (7(1, 1/2), GO, 2), and Gil, 5) for n = 10, 20, 30. One thousand samples

were generated from each of these distributions. The pairwise selection error rates are given in

Table 3 and the observed rates of correct classification in the 3-way procedure are given in

Table 5.

The entries in Table 3 are read as follows, using the first set of results as an example.

The selection is to be made between W and LN families. One thousand samples of size 10

were generated from a W distribution, and 28 percent of these samples were classified as being

from an LN distribution. One thousand samples of size 10 were generated from an LN distri-

bution and 36 percent of these samples were classified as being from a If distribution. Note

that since W and LN are conformable scale-shape families, these results do not depend upon

which particular members of the families that are involved.

This procedure has total error probabilities for the case of a lognormal vs a Weibull that

are the smallest possible for a scale-shape invariant procedure. Comparison of the results for

this case given in Table 3 and those in Table 4 of KQ shows that the present optimal procedure

has very little advantage over the suboptimal procedure of KQ. For the other two-way selection

problems, gamma vs lognormal and gamma vs Weibull, the comparisons of the procedures of

this paper with those of KQ are not clearcut. This is because the gamma distribution does not

admit a UMPI statistic with respect to the transformations of (2.1).

In view of these observations we recommend the selection procedures set out in KQ on

the grounds that (i) the selection statistics in Table 2 of KQ have convenient formulas that are

readily evaluated, and (ii) the error rates achieved by those procedures appear to be about as

favorable as for those achieved by the much more computationally difficult scale-shape invari-

ant procedures.
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TABLE 3 - Selection Error Rates for Pairwise Procedures*

n X ~ W X ~ LN Total

10 .36 .28 .32

20 .21 .23 .22

30 .15 .18 .16

n X ~- (7(1/2) X -- WO/2) Total X -- GU/2) X - Wil) Total

10 .40 .42 .41 .40 .44 .42

20 .37 .38 .38 .37 .36 .37

30 .34 .35 .34 .34 .33 .34

X ~ C?(l/2) X - WiA) X ~ Gil) X- WiMD
10 .40 .40 .40 .44 Al .43

20 .37 .29 .33 .42 .38 .40

30 .34 .23 .29 .40 .35 .37

X - G(2) X ~ Wil) X ^ (7(2) X ~~ Wi\)

10 .44 .44 .44 .44 .40 .42

20 .42 .36 .39 .42 .29 .36

30 .40 .33 .36 .40 .23 .31

X ~ (7(5) X ~- ^(1/2) X -- (7(5) X - Wil)

10 .39 .42 .41 .39 .44 .41

20 .31 .38 .35 .31 .36 .34

30 .30 .35 .32 .30 .33 .31

X ~ G(5) X - Wi4)

10 .39 .40 .39

20 .31 .29 .30

30 .30 .23 .26

n X-- (7(1/2) X- LM.04) X- (7(1/2) X- LNil)

10 .25 .41 .33 .25 .33 .29

20 .15 .38 .27 .15 .27 .21

30 .09 .35 .22 .09 .21 .15

X -- (7(1/2) X - LNil. 5) X - Gil) X - LNiOA)
10 .25 .23 .24 .37 .41 .39

20 .15 .14 .15 .31 .38 .34

30 .09 .08 .08 .24 .35 .29

X - Gil) X -~ LNil) X ~ Gil) X ~ L/V(2.5)

10 .37 .33 .35 .37 .23 .30

20 .31 .27 .29 .31 .14 .22

30 .24 .21 .22 .24 .08 .16

X ~ (7(5) J~ LNiOA) X -- GiS) X ~ LNil)

10 .44 .41 .42 .44 .33 .38

20 .36 .38 .37 .36 .27 .32

30 .33 .35 .34 .33 .21 .27

X -- (7(5) X ~ LN(2.5)

10 .44 .23 .33

20 .36 .14 .25

30 .33 .08 .20

*See Section 3 for explanation of table entries and discussion of these results.
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TABLE 4 — Total Error Rates for Gamma vs Weibull for

Likelihood Ratio Procedure of Bain and Engelhardt

a n 0: .5 2 4

.5 10 .435 .405 .385

20 .375 .345 .320

2 10 .470 .440 .420

20 .415 .385 .360

Also, Bain and Engelhardt [2] give in their Table 2 some probabilities of correct selection

between gamma and Weibull distributions using a likelihood ratio test statistic. Their results

can be used to construct total error rates comparable to those of Table 3, for a few selected

values of the gamma and Weibull shape parameters. We have computed these values and give

them in Table 4. Comparison of the total error rates of Tables 3 and 4 shows no trend in favor

of either procedure.

Table 5 gives the selection rates in our simulation study for the three-way scale-shape

invariant selection procedure. The entries in in Table 5 are read as follows, using the first set

of results as an example. The selection is to be made among the gamma, Weibull and lognor-

mal distributions. One thousand samples of size 10 were generated from a GO, 1/2) distribu-

tion, of which 57 percent are classified as G, 21 percent are classified as Wand 23 percent are

classified LN. The results in Table 5 can be compared with the results in Table 5 of KQ. The
comparisons do not show that either of these procedures has a clear advantage, however, the

selection procedure of KQ may have a slight edge. Thus, as for the two-way selection pro-

cedures above, we favor the computationally simpler scale invariant, SI, procedure of KQ.

TABLE 5 — Selection Rates for Three-Way Procedure

n X -- GO/2) X - GO) X - G(5)

G W LN G W LN G W LN
10 .57 .21 .23 .20 .44 .37 .18 .39 .44

20 .62 .26 .12 .28 .43 .31 .32 .31 .36

30 .66 .29 .05 .37 .40 .24 .38 .30 .33

X - W{\/2) X - WO) X ~ W(4)

G W LN G W LN G W LN
10 .42 .23 .35 .15 .57 .29 .16 .60 .24

20 .38 .41 .21 .24 .64 .12 .19 .71 .10

30 .35 .51 .15 .26 .67 .07 .18 .77 .05

J~ l;v(o.4) X -- LN{\) X - LNO.5)

G w LN G W IN G W LN
10 .17 .24 .59 .14 .19 .67 .14 .15 .72

20 .23 .15 .62 .18 .09 .73 .04 .19 .77

30 .26 .10 .65 .16 .05 .79 .02 .16 .82
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4. SELECTION WITH CENSORING

Suppose that from a random sample of size n on a parent random variable with density

and distribution functions /and F, respectively, only the values less than a prespecified time T
are observed. If r is the number of values less than T, then r is a binomial rv with probability

function b(r\ F(T), n). Let X\, ... , x
r
be the observed values, indexed in the same order as

the original sample, and x<d X(,) be the corresponding order statistics. We require selec-

tion procedures based on the values X\, ... , xn and r. We have studied procedures based on

scale-shape invariance, as considered above for complete samples, scale invariance as in KQ,
and maximum likelihood ratio procedures. Of these procedures, only the SI and maximum
likelihood, ML, procedures will be described now, since these procedures will be recommended
for reasons given below.

When f and F are functions of parameters 9, say fe and F , the likelihood function

corresponding to x 1? . . . , xr and r is

L„(x (1) , ... , X(r>, r\ T) =

(4.1)

(«!/(« - r)!}{! - F9 (T)}"-r JlMx{l))r{o,T) (*(,))•

/-I

The scale invariant selection statistic is defined by

(4.2) S =
J*o

°°

L Ux (1) , .... Ax (r) , r; K T)\ r
~

} d\,

where the scale parameter in L has been set equal to one, and S depends upon a shape parame-

ter. The shape parameter in Sfor each of the three families considered here will be replaced by

its maximum likelihood estimator, obtained by maximizing the likelihood in (4.1).

We also consider selection for the censored case using, essentially, a likelihood ratio pro-

cedure. In this approach we use the maximum value of the likelihood function in (4.1) as the

selection statistic. Formally, the selection statistic is

S = sup {L„(x (1) , .... x (r) , r\ T)},
9

(4.3)

= Lg(x(D, ... , x (r ), r\ T),

for 9 the ML estimator(s) of 9.

The selection functions for these two methods for the three families are given in Table 6.

We have written programs to evaluate the selection statistics of Table 6. A brief descrip-

tion of this work follows in the remainder of this section. For more detail see Siswadi [23].

Maximum likelihood estimates for the scale and shape parameters are required for the

ML selection functions, and for the shape parameter for the SI selection functions. For the

Weibull class, these estimates were obtained as solutions of the ML equations in Cohen [7].
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TABLE 6 — Selection Statistics for Censored Samples

Family S,

Scale Invariant, SI

W{e, 0) 1

(n - #)!
T(r)p r-\ n*o

j=i

LN(B, a) 2 .
"

^ (yflU &) x
- rrm

in - r)\

/3-lf r -

£x£) +(#!-/) 7*

i-l

it r f
i

,_1 2cr

£ (In x (/) )
- —

i-l ^Hl+^hH
where « is a N - ^ In x

(
,)/r, <x

2
/H r.v.

G(0, a) 3
(if - r)\

r(ra)r" r
(a)

i
l - r \Tu I X x (<)' «

i-i

r

n
/-i

*(/)

a-l r

£ *(i)
i-l

n—r

a /T(a)

where m is a G(l, ra) r.v.

Maximum Likelihood, ML

- --hi r Y~
X

II *(/) exp
-l

In T - In 9

i>m /3) l ,
"•

,, /§
r
e-

f

(« - r)!
5>f„ + (« - r)!*
/-I

7JV(0, o-) 2
/I!

(«- r)!

exp

\-<f>

-l

l
'

G(0, a) 3
n

(« - r)!

2*< ,t

r-"(a)

X On x U) - In 61)'

r(a) - r — , a

n *(/)

i=i

(or

(a V2^)"'

n *u)
i-i

^-1

exp " 7 ,5 *<"

Note: T(a, b) - J" s*
_1

exp (-s)ds, <f> is JV(0,1) rf/.

o

For the lognormal class solutions for the ML equations were obtained using results of Harter

and Moore [17], adjusted for type I censoring. Another procedure for lognormal type I cen-

sored samples is given by Aitchison and Brown [1]. Solutions of the ML equations for the

gamma class were obtained from the results of Harter and Moore [16], adjusted for type I cen-

soring. After the ML estimates of the scale and shape parameters are obtained, the evaluations

of the ML selection functions of Table 6 are straightforward.
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After the ML estimate fi of the shape parameter of the Weibull distribution is obtained,
the SI selection function is readily evaluated. However, the selection functions for both the
lognormal and gamma scale invariant procedures are difficult to evaluate, and we have used
Monte Carlo and importance sampling from the normal distribution and gamma distribution,
respectively (see Davis and Rabinowitz [9]) to evaluate them.

5. SIMULATION RESULTS FOR CENSORED SAMPLES

We have conducted a small Monte Carlo simulation study of the two selection methods
discussed above for censored samples to provide some information on the error rates for these
procedures. These empirical error rates allow comparisons of the two procedures with each
other as well as with complete sample rates given in Section 3 and in KQ. Comparison with
complete sample rates gives a measure of the loss of information due to censoring.

The families of distributions considered were Wil/2), W(4), Gil/2), G(2), LNiOA),
and LN (2.5); and the sample size was n = 30 in all cases. The truncation point 7 was chosen
so that the df, F(T) = 0.90, i.e., for a mean rate of 10% censoring. One hundred samples
were generated for each of the above distributions except Wi4), for which 16 samples were
generated. The running time for some cases was very long and this limited the number of sam-
ples that could be generated.

The misclassification rates for pairwise selection are given in Table 7, which is comparable
to Table 3 for the complete samples case. Note in Table 7 that the ML and SI procedures give
similar error rates for W vs LN and, in fact, both give the same total error rate of 0.29. Com-
parison of these results with those of the SI procedure for complete samples (see Table 4 of
KQ) shows that there is a rather large loss of information due to censoring since the W, LN
and total error rates are 0.19, 0.15, and 0.17, respectively.

TABLE 7 — Misclassification Rates for Pairwise Selection

Procedures-Censored Sample (n = 30)

Procedure X - W X - LN Total

ML
SI

.40

.45

.18

.12

.29

.29

Procedure X -~ (7(1/2) X ~ WiX/1) Total X - GUI!) X ~ WiA) Total

ML
SI

.38

.52

.32

.16

.35

.34

.38

.52

.44

.50

.41

.50

X - Gil) X ~ Willi) X - Gil) X ~ WiA)

ML
SL

.36

.39

.32

.16

.34

.28

.36

.39

.44

.50

.40

.45

X - GO/2) X ~ LNiOA) X ~ Gil/2) X ~ LNi2.5)

ML
SI

.14

.20

.32

.31

.23

.26

.14

.20

.08

.09

.11

.15

X ~ Gil) X - LNiOA) X ~ Gil) X ~ LNil.5)

ML
SI

.35

.42

.32

.31

.34

.37

.35

.42

.08

.09

.22

.21
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For the two-way selection error rates in Table 7 that involve a gamma distribution, neither

the ML nor the SI procedure appears to have an overall advantage. Also, by comparing these

cases with the same cases in Table 4 of KQ, we feel that the loss of information due to censor-

ing is not so large as for the W vs LN case commented on above.

The classification rates for three-way selection procedures are given in Table 8. Again,

neither the ML nor the SI procedure appear to have any overall advantage, and both perform

quite well. Also, by comparison with Table 5 of KQ it appears that ten percent censoring has

little effect on the probability of correctly classifying a lognormal sample, but the probabilities

of correctly classifying either Weibull or gamma samples are reduced somewhat.

TABLE 8 — Classification Rates for Three-Way

Procedures— Censored Sample (n = 30)

Procedure X ~ (?(l/2) X - G(2) X- W{\/2)

G W LN G W LN G W LN

ML
SI

.60 .29 .11

.47 .35 .18

.29 .36 .35

.28 .32 .40

.27 .35 .38

.16 .40 .44

X ~ W(4) X ~ LN(0A) X ~ LN(2.5)

ML
SI

.13 .56 .31

.25 .50 .25

.23 .09 .68

.23 .08 .69

.01 .17 .82

.01 .13 .86

6. A USER PROGRAM AND EXAMPLES FOR CENSORED SAMPLES

The selection procedures for the three families of distributions have been proprammed in

FORTRAN. A listing of this program can be obtained from the authors. The program com-
putes the selection statistics for complete and censored samples according to the formulas given

in Tables 2 and 6, respectively.

For the scale invariant procedure, the selection statistics are computed by the Monte
Carlo method given in Davis and Rabinowitz [9]. The program was tested on several examples

and on many samples produced through simulation. In general, the selection statistics

estimated did not appear reliable for heavily censored samples. Therefore, in the user program

for the scale invariant procedure, the selection results are not printed if the coefficient of varia-

tion of the replicated values in the Monte Carlo method is larger than 35%.

EXAMPLE 1: Birnbaum and Saunders [5] considered a set of data of lifetimes, in

thousands of cycles, of aluminum sheeting under periodic loading, to illustrate the gamma fam-

ily. If we assume that the experiment was terminated at a prespecified time, say T = 1900,

then the censored observations and the results of the selection procedure are presented in Table

9. For these data, the Weibull family is selected by both the ML and SI procedures, however,

the selection statistics for the gamma family are only slightly smaller. It is also to be noted,

although the details are not given here, for the complete sample the selection procedure based

on the selection statistics given in Table 2 yields the same results.
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TABLE 9 — Results of Selection Procedure

Lifetimes of Aluminum Sheeting under Periodic Loading

370 706 716 746 785 797

844 855 858 886 886 930

960 988 990 1000 1010 1016

1018 1020 1055 1085 1102 1102

1108 1115 1120 1134 1140 1199

1200 1200 1203 1222 1235 1238

1252 1258 1262 1269 1270 1290

1293 1300 1310 1313 1315 1330

1355 1390 1416 1419 1420 1420

1450 1452 1475 1478 1481 1485

1502 1505 1513 1522 1522 1530

1540 1560 1567 1578 1594 1602

1604 1608 1630 1642 1674 1730

1750 1750 1763 1768 1781 1782

1792 1820 1868 1881 1890 1893

1895

Sample Size = 101

Sample Observed = 91

Truncation point := 1900

Maximum Likelihood Estimates

Family Scale Shape

Weibull

Gamma
Lognormal

0.154149D + 04

0.125214D + 03

0.135159D + 04

0.4041 14D + 01

0.112550D + 02

0.317034D + 00

Family Selection Statistic

Maximum Likelihood Procedure

Weibull

Gamma
Lognormal

0.147164D + 03

0.146470D+03
0.144092D + 03

The Family Selected is Weibull

Scale Invariant Procedure

Weibull

Gamma
Lognormal

0.144432D + 03

0.144103D + 03

0.141762D + 03

The Family Selected is Weibull
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EXAMPLE 2: Bartholomew [4, p. 370] gave the failure times of 15 items that failed dur-

ing a specified period of testing from an original sample of size n = 20. He states that the

items have an exponential life distribution, and uses the exponential distribution to perform

analyses of the data. We have used these data in the selection program, and the results are

given in Table 10. Both the maximum likelihood and scale invariant procedures prefer the log-

normal distributions, which casts some doubt on the assumption of an exponential parent distri-

bution.

TABLE 10 — Results of Selection Procedure

Bartholomew Data

3 19 23 26 27 37

38 41 45 58 84 90

99 109 138

Sample size = 20

Sample Observed = 15

Truncation point := 150

Maximum Likelihood Estimates

Family Scale Shape

Weibull

Gamma
Lognormai

0.105498D03
0.876146D 02

0.682517D02

0.108289D01
0.116892D 01

0.122585D01

Family Selection Statistic

Maximum Likelihood Procedures

Weibull

Gamma
Lognormai

-0.669185D 01

-0.664251D01
-0.660273D 01

The Family Selected is Lognormai

Scale Invariant Procedure

Weibull

Gamma
Lognormai

-0.720101D 01

-0.699896D 01

-0.667347D 01

The Family Selected is Lognormai
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ABSTRACT

This paper is a case study. We show how the powerful methods of time

series analysis can be used to investigate the interrelationships between Alert

Availability, a logistics performance variable, and Flying Hours, an operational

requirement, in the presence of a major change in operating procedures and us-

ing contaminated data. The system considered is the fleet of C-141 aircraft of

the U.S. Air Force. The major change in operating procedures was brought

about by what is known as Reliability Centered Maintenance, and the contam-

inated data were due to anomalies in reporting procedures. The technique used

is a combination of transfer function modeling and intervention analysis.

1. INTRODUCTION AND SUMMARY

In January 1976, the U.S. Air Force began some experimental modifications to the exist-

ing maintenance policies for the fleet of

C-141 aircraft. These modifications were a part of a Department of Defense project known as

"Reliability Centered Maintenance," henceforth denoted by RCM. The modifications involved

an extension of the maintenance intervals and a reduction in the amount of scheduled mainte-

nance. The experimental phase of the project ended in June 1977, and the modified policies

were officially and permanently institued at that time. The anticipated benefit from RCM was a

decrease in scheduled maintenance activity, with a consequent increase in "alert availability."

Alert availability, henceforth denoted by AA, is the instantaneous probability that a typical air-

craft is available to react to an execution order. In practice, its average value, over say a

month, is computed by dividing the monthly total number of "fleet operational hours" by the

total number of "fleet available hours."t A plot of AA from October 1973 through November
1979 is shown in Figure 1.

•This research was initiated and supported by Air Force Logistics Management Center, Contract F01600-79-D0146,

Office of Naval Research Contract N00014-77-C-0263 and U.S. Army Research Office Grant DAAG-29-80-C-0067.

"Major, USAF
t Fleet available hours is the cumulative time of possession across a fleet of aircraft, whereas fleet operational hours is the

cumulative amount of operational time (i.e., up-time) for the fleet.
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Figure 1. A plot of C-141 alert availably from October 1973 to November 1979

In a previous study (Singpurwalla and Talbott [5]), we investigated the effects of RCM on

several variables which describe what is known as the "logistics performance" of the fleet. Our

conclusion was that there was no evidence of an improvement in the logistics performance of

the fleet due to RCM; on the contrary, in some cases there was a clear indication of

deterioration in performance. These conclusions were particularly true of AA, which is con-

sidered to be an important logistics performance variable. One criticism of this previous study,

and a valid one, is that it did not take into consideration the influence of other "operational

variables," which in addition to RCM may affect the logistics performance variables. An impor-

tant operational variable, which is suspected of being strongly related to the AA, is "flying

hours." Flying hours is the total number of hours flown by the fleet of the C-Hl's^over a cer-

tain period of time, say one month. A plot of the monthly flying hours, from October 1973

through November 1979, is shown in Figure 2. Another criticism of our previous study, and

again a valid one, is that it did not adequately account for the fact that some of the AA data

were "messy." Specifically, there were some revisions to the information system for reporting

the operational status of the aircraft that resulted in some possible anomalies in the reported

values of the AA.

The analysis that is described here was initiated with a view towards rectifying the limita-

tions of our previous study. Here, using the AA and the flying hours as examples, we demon-
strate how a procedure for investigating the interrelationships between the two, using messy

data and RCM as an intervention, can be developed and used. The approach we take is a com-
bination of those described in Box and Jenkins [1], pp. 335-420) for the analysis of multiple

time series, and in Box and Tiao [2] for intervention analysis. Our conclusion is that the AA is
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Figure 2. A plot of C-141 flying hours from October 1973 to November 1979

indeed related to the flying hours, as has been conjectured, but that even after taking this rela-

tionship into consideration, and in the presence of messy data, our previous conclusion still

holds, namely, that there is no clear evidence of improvement in the AA after the initiation of

RCM.

Before going into the details of our analysis, we want to emphasize that the above conclu-

sion and its practical implications are not intended to be the main theme of this paper. Rather,

our aim is to suggest and to demonstrate how the powerful methods of time series analysis can

be used to analyze the messy and interrelated data that often arise in a study of the reliability

and the logistics performance of large military systems.

In what follows, we presume that the reader has a knowledge of autoregressive integrated

moving average (ARIMA) processes and is familiar with the notation, terminology, and metho-

dology described in Box and Jenkins [1].

2. NOTATION, PRELIMINARIES, AND AN OUTLINE OF THE PROCEDURE

Let X and Y be two variables of interest, and let X, and Y, be their values at time /. In

our case, we let X, denote the total flying hours for the fleet of C-14Ts during the rth month,

and Y, the alert availability during that month; /varies from October 1973 through November
1979. A sequence of values X„X

t-\, . . . will be denoted by [X
t
).

To discern the relationship between X, and Yn we strive to obtain a linear transfer function

model (Box and Jenkins [1], p. 379) of the form

(2.1) (1 - 8,5 -
. . .

- 8
r
B r

) Y
t
= (w - w

x
B - ... - w

s
B s)X,_ b + N„
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where Bm
X, = X,_ m , m = 0, 1, . . . , and 8 1( . . ., 8

r
,w , . .

. , w
s
are unknown constants to be

estimated; b represents the lag of Y, with respect to X
t \ and N

t
denotes a noise component

described by a suitable ARIMA process.

Equation (2.1) describes the alert availability at time t in terms of the previous values of

the alert availability and the present and previous values of the flying hours.

Following the procedures suggested by Box and Jenkins [1] and by Haugh and Box [3],

we first consider the sequence (series) {X,} and transform it to a "white noise series," [a,], by

way of an appropriate univariate time series model. Similarly, we also reduce the sequence { Y,}

to a white noise series, {b,}, using an appropriate "intervention analysis model" (see Box and

Tiao [2]). Such a model is necessary here in order to account for RCM as well as for the pres-

ence of some anomalous observations in { Y,}. This procedure of reducing {X,} and { Yt ) to {a,}

and {b,}, respectively, is known as prewhitening the respective series. We then cross correlate

the two prewhitened sequences [a,] and [b,} in order to obtain an indication of the relationship

between {X,} and { Y,}. The cross correlation function is used to suggest values for r,s, and b in

(2.1). Finally, we use the prewhitened sequences [a,} and [b,] to estimate the constants

8i, . . . , 8,, w . . . , w
s for some selected values for r, s, and b.

Regarding the prewhitening of { Y,} using a model for intervention analysis, we remark

that intervention due to RCM can be described by a sequence of indicator variables, say {Z,},

where Z, takes a value of for all t representing the months prior to January 1976, and a value

1 for all / thereafter. Recall that January 1976 is the date of intervention— the date at which

experimental RCM was initiated. The response of the sequence { Y,), the output sequence denot-

ing AA, to the input sequence {Z,} can take various functional forms. These are depicted in Fig-

ure 3; they have been taken from Box and Tiao [2]. We strive to use the most appropriate

form of the response function for the situations at hand.

3. PREWHITENING THE FLYING HOURS SERIES [X
t ]

An inspection of Figure 2 finds that the fluctuations of the series about its mean changes

over time. In such situations it is common to take the natural logarithms of the data. Accord-

ingly, our analysis of flying hours involves a logarithmic transformation of the original data.

We find that flying hours can best be described by an ARIMA (2,0,0) * (2,0,0) 4 process.

However, the residuals from this model reveal significant autocorrelations at lags 5, 10, 15, ...,

etc. Consequently, we fit an ARIMA (0,0,0) * (0,0, 1) 5 model to these residuals. Based upon

these considerations, an appropriate model for prewhitening can be written as

(3.1) (1 - .545 + .llfl
2
)(l + .38fl

4 + 31B%)(X
t
- 10.09)

= (1 + .\%B s
)a,.

This model produces residuals whose autocorrelation function (ACF) and log spectral density

are shown in Figure 4, in (a) and (b), respectively. These residuals are listed in Table 1.

4. PREWHITENING THE ALERT AVAILABILITY SERIES { Y,}

In our previous study we considered alert availability as two separate series, one ending
prior to January 1976 and the other beginning with January 1976. We found that the loga-

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. 4, DECEMBER 1982



TIME SERIES ANALYSIS OF LOGISTICS PERFORMANCE 575

Form of Input {Z }

Jan 76

a. Jump Response

b. Slope Response

c. Ramp Response

d. Step Response

Forms of Output {Y }

Jan 76

-1

Jan 76

Jan 76

V " z
t

I

2

[_
= aZ

t
+a6Z

t
_^+a6 Z

t_2+.

'v = -^ 7Y
t 1-B

Z t

Jan 76

Figure 3. Typical forms of the response { Y,} to the input {Z,\

L. =aZ
t
-+aZ t_i+aZ t_2+. . .

'Y =
a

Z
1-B S Lt

= aZ t+aZ t_s+aZ t_ 2s+.
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Figure 4. Behavior of the ACF and the log of the spectral density of the residuals from an

ARIMA (0,0,0) • 0,0,1)5 model fit to residuals from an ARIMA (2,0,0) • 2,0,0) 4 model
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TABLE 1 — Residuals from Prewhitening Models

for Flying Hours and Alert Availability

TIMET A (T) B (T) TIMET A (T) B (T)

JAN 1975 -.131303 JUL 1977 .037152 -.053020

FEB 1975 -.026086 -.074950 AUG 1977 .022717 .012580

MAR 1975 -.034914 -.003150 SEP 1977 .021623 -.045700

APR 1975 .283323 .108000 OCT 1977 .080163 .053860

MAY 1975 .060148 .026820 NOV 1977 .037052 .039220

JUN 1975 -.032649 .056160 DEC 1977 -.048706 -.063430

JUL 1975 .135207 .085220 JAN 1978 -.047455 -.011080

AUG 1975 .124353 .105500 FEB 1978 -.058318 .016660

SEP 1975 -.007629 .039270 MAR 1978 .130172 -.010630

OCT 1975 .059647 -.003746 APR 1978 -.053118 .013570

NOV 1975 .046232 .035070 MAY 1978 -.008318 .001221

DEC 1975 .020893 .007938 JUN 1978 .020092 -.023900

JAN 1976 -.025669 .033680 JUL 1978 .036141 .067210

FEB 1976 -.021861 .054060 AUG 1978 -.073053 -.013030

MAR 1976 .109077 .095080 SEP 1978 -.002367 -.015090

APR 1976 -.101662 -.033110 OCT 1978 -.050561 -.099890

MAY 1976 .001382 -.081130 NOV 1978 -.054985 .001532

JUN 1976 -.044392 -.057940 DEC 1978 -.110742 .036330

JUL 1976 -.012095 .068650 JAN 1979 .041226 .051630

AUG 1976 .068336 -.175700 FEB 1979 -.043154 -.043154

SEP 1976 -.047820 .075940 MAR 1979 .106237 .047260

OCT 1976 -.035721 -.047270 APR 1979 -.173297 -.027790

NOV 1976 -.066278 -.066570 MAY 1979 .007886 -.090300

DEC 1976 -.044366 -.042450 JUN 1979 -.031905 .030150

JAN 1977 .003072 -.040260 JUL 1979 -.014306 -.183300

FEB 1977 -.073529 .076220 AUG 1979 -.027671 .163600

MAR 1977 .045873 -.014810 SEP 1979 -.030462 .029880

APR 1977 .097139 .062520 OCT 1979 .026290 -.062220

MAY 1977 .008354 .098570 NOV 1979 -.070995 -.015390

JUN 1977 -.089749 .137600
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rithms of the observations in both these series could best be described by an ARIMA (1,0,0)
*

(1,1,0) 6 model. Here, we prewhiten the entire series by considering the onset of RCM as an

intervention and incorporating this effect into the ARIMA (1,0,0) * (1,1,0) 6 model.

Figure 1 indicates clearly that the AA had been decreasing after January 1976, the onset

of RCM. However, the rate of decrease of the AA during the experimental phase of RCM is

greater than the rate of decrease during the post-RCM phase. This suggests that the effect of

RCM during the experimental phase may be different from the effect after the experimental

phase. One possible reason for this difference is that there was a piecemeal introduction of

RCM, air base by air base, during the experimental phase, along with several trial revisions in

the maintenance policies. We also notice some large spikes in value of the AA during October,

November, and December 1977 and January 1978. A cause for these large values may be that

the information system for reporting the operational status of aircraft was revised during this

period. The AA may have been artificially increased during this period due to anomalies of

reporting. Thus, it appears that we need three distinct components to our intervention analysis

model. We represent these components by three indicator variables, J,,K,, and L,, where:

J
t
=

1 for Jan 76 < r < May 77

otherwise

K
t
=

L,

1 for Jun 77 < t < Sep 77

1 for Feb 78 < t < Nov 79

otherwise

1 for Oct 77 < t < Jan 78

otherwise

Note that the union of the three sequences {/,}, [K,}, and [L,} constitutes the series {Z,},

defined earlier.

As for the functional form of the response (series {Y,}) to these components (see Figure

3), we remark that ramp and step responses appear to be possible candidate forms for {/,} and

{K,}, whereas a jump response is appropriate for {L,}. We exclude a jump response for the first

two because it would not account for the gradual decline evident in the data, and we consider a

slope response to be inappropriate due to the absence of a sustained leveling of the data. We
conjecture that a step response might have a period of three months, which coincides with the

length of time between scheduled minor inspections. Our aim now is to compare the functional

forms of the ramp response versus the step response in order to determine which combination

might best represent the relationship between AA and the series {Z,}.

We fit all reasonable combinations of response forms with the variables J,, K,, and L
t ,

and find that step type responses, along with the original ARIMA model, i.e., a model of the

form

(4.1) y,=
«i

-J,+
«2

1 - B3
' 1 - B3

NAVAL RESEARCH LOGISTICS QUARTERLY

K, + a 3 L, + N,,
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where N, denotes an ARIMA (1,0,0) • (1,1, 0) 6 process, produces residuals that are most
satisfactory (see Figure 5). The model (4.1) describes the series { Y,} as a step function with

three-month incremental decreases of size ct\ during the experimental RCM phase, as a step

function with three-month incremental decreases of size a 2 after implementation of RCM, and

as a jump function with height a$ during the October 1977-January 1978 time frame. Thus we
have the prewhitening model

-.02 , .
-.01 .,

(4.2) (1 - .185X1 + .35£6X1 - B6)Y
t

=

+ .151, -I- b,.

1 - B3
' 1- Bs

We remark that the estimated parameters a
x
and a 2 are negative, as expected, with a

t
greater

than a 2 . Also, the estimated parameter a^ is positive, which is intuitively apparent. We also

remark that in the residual series (see Figure 5) there remain some significant auto-correlations

at lag 12. We can account for this by fitting an ARIMA (0,0,0) »(2,0,0)i2 model to the residu-

als. However, this would provide us with only 34 observations with which to perform a cross

correlation analysis. Since paucity of data can lead us to questionable results,* we elect to con-

tinue working with the residuals of the model (4.2). These residuals are given in Table 1 as

values of b,\ also given there are values of a,, the prewhitened flying hours.

10 13

0.40

0.20

0.00

X

X XXXX
X XXIX XX
X X

X X

-.20

20

X

X

X

X X

X X

x x :

X XXX
XXX
X X

25

Lag k

Figure 5. Intervention model for alert availability; graph of the ACF of the residual series

'Actually, we did perform a cross correlation analysis with only 34 observations and obtained results that were
counter-intuitive.

VOL. 29, NO. 4, DECEMBER 1982 NAVAL RESEARCH LOGISTICS QUARTERLY



580 N. D. SINGPURWALLA AND C. M. TALBOTT

5. CROSS CORRELATION ANALYSIS

Using the prewhitened series {a
t
) and {b,}, we now develop the transfer function model

(2.1). We remark that the [a,} series with its 59 observations must be modified by omitting the

January 1975 observation so that it will match the {b,} series, which has 58 observations.

Following procedures of Box and Jenkins and using the estimated "impulse response

weights," Vk , shown in Figure 6, we remark that possible values of (r,s,b) in (2.1) are (1,3,0)

or (2,3,0). From the autocorrelation functions of the generated noise series (see Singpurwalla

and Talbott [4]), we remark that a possible model for the noise N, is an ARIMA (1,0,1).

K V(K)

0.224

1 0.260

2 0.035

3 0.126

4 0.026

5 0.000

6 0.078

7 0.127

8 -0.025

9 0.023

10 -0.016

11 0.14?

12 -0.227

13 -0.213

14 -0.021

15 0.146

Figure 6. Estimated impulse response weights

V{K) from a cross correlation of prewhitened

flying hours and alert availability

We fit both the (2,3,0) and the (1,3,0) transfer function models with an ARIMA (1,0,1)

noise component to the data and find that the more parsimonious (1,3,0) model results in

better residuals. This estimated model, whose residuals have an ACF as shown in Figure 7, is

(5.1) (1 + .535)6, = (.25 + .515 + .24B2 + AB3)a
t
+ ]

~
'\\
B
D e

t ,

1 + . 12/>

where e, is random noise.

6. THE COMBINED INTERVENTION ANALYSIS TRANSFER FUNCTION MODEL

We can expand the transfer function model (5.1) for the prewhitened series [a,} and {b,}

by using the following relationships from (3.1) and (4.2):

„ ,. (1 - .545 + .1152
)(1 + .3854 + 31B*){X,)

(6.1) a. = ;
'

1 + .185 5
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% 2 4 4 • 10 12 14

•.100 • 4

(.ISO * «

t
I

X

X

X

X

X

X

r
k I I I 11 I X X

I 1 1 1 I

1 X

1 X

X X

X

-0.150 ] I t 4

Lag k

-4.100

Figure 7. A (1,3,0) transfer function model between flying hours and alert

availability; graph of the ACF of the residual series

(6.2) *,= (!- .185)0 + .3556)0 - 56
) Y, +

where X,= (X, - 10.09).

.02

T/.+
.01

1 - 5J
' 1 - 5*

- A5L„

K,

Substituting (6.1) and (6.2) for a, and b, in Equation (5.1), we obtain a multiplicative transfer

function model relating the input series {X,} to the output series [Y,] as

(1 + .1855)0 -I- .535)0 - .180)0 + .3556)0 - 56)0 + .125) Y,

= (.25 + .515 + .245 2 + .15 3)0 - .545 + .1152)0 + J854 + .3758
)

. u + Aml _ (1 + ^25)0 + .535)

' + .185 5)0 - 53
)

+ .125)0 + .535)
(6.3)

+

+ .1855)0 - 53
)

+ .125)0 + .535)

4- .185 5
)

[.ouy

[.151,] + - .115)*y

Note that X, and Y, in (6.3) are in terms of the logarithms of the original data.

4^

Expanding the polynomials and rewriting Equation (6.3) in conventional notation (in the

interest of parsimony, coefficients with a value less than .1 are arbitrarily deleted), we can

reduce the transfer function model to
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y, = -aiy,_
x
+ .iy,_ 2

- .i8r,_ 5 + .59r,_ 6 + .3ir,_ 7 + .UY
t
_u

+ .39Y
t
.n + MY

l
.n

(6.4) + .25 X, + .68Z,_, + .11 J,_ 3 + .26X,_ 5 + .25Z,_ 9

+ .42e,_, + .18e,_ 5

+ Z, + .65Z,_! - .18Z,_ 5
- .12Z,_6

where, following the notation of Section 4,

Z, - {[ - .027, - .02/,_ 3
- .02/,_ 6

- .02/,_ 9
- . . . ]

+ [-.OIK, - .01tf,_ 3
- .01tf,_ 6

- .01tf,_ 9
- ...] + .151,}.

7. CONCLUDING REMARKS

From Equation (6.4), we remark that the nonzero coefficients associated with the X^s
imply that flying hours do have an effect on the alert availability in a manner specified by the

functional form of the equation. Furthermore, an examination of Figure 2, together with the

prewhitening transformation, Equation (3.1), reveals that there was no upward or downward
trend in the flying hours during the period of study. However, there does appear to be a reduc-

tion in the variability of the flying hours as of the inception of RCM. In any case, it appears

that Equation (6.4) supports the adage that "the more you fly, the less you fail," within limits.

The negative coefficients (albeit small) associated with the variables J, and K, in Equation

(6.4) do, in the absence of any upward or downward trend in flying hours, support our premise

that RCM has a tendency to reduce the alert availability.

The model, Equation (6.4), can be used not only for interpretative purposes as is done

above, but within limits and with proper care, it can also be used to predict future availability

given its previous values, and the present and previous values of the flying hours.
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ABSTRACT

A theoretical and computational investigation is made of the performance

of a dynamic-programming-based algorithm for nonlinear integer problems with

various types of constraints. We include linear constraints, aggregated linear

constraints, separable nonlinear constraints and constraints involving maxima
and minima. Separability of the objective function is assumed. The new
feature of the algorithm is that two types of fathoming or pruning are used to

reduce the size of tables and number of computations: fathoming by bounds

and fathoming by infeasibility.

1. INTRODUCTION

Several lines of research have been suggested for mathematical programming problems

which are nonlinear and also restricted to integer values for the decision variables. We define a

very general notation for such a problem:
n

(1) max z = £ <i>j(xj)

7=1

subject to (PI)

(2) /?,(3c) < /= \m ... , m

(3) Xj ^ 0, integer 7=1, . . . , n

where 0,-Cx,-) are nondecreasing functions and the constraint set is bounded and nonempty, and

x = (xi,x2 , ... , xn ).

Applications that have been or could be modeled by a representation of the form (P\)

include multidimensional knapsack problems [5], optimal allocation of scarce resources in pro-

duction planning [5], servicing, repair and replacement of machinery [5], [7], [2], control of

inventory [18], chemical reaction in a stirred tank [1], bottleneck problems in ecomomics [3],

[1], [5], communication network problems [21], [4], models of growth and competition [1],

[6], many aspects of chemical engineering [8], defensive missile allocation [33], and nonlinear
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resource allocation [37], [38]. In the special case of binary variable problems there are applica-

tions to capital budgeting [29], sewage treatment and irrigation systems [28], media selection

[36], cluster analysis [31], scheduling [19], [30], [2], location problems [35], [12], [32], and

hydrological studies [12].

Cutting plane approaches to this problem have been suggested by Witzgall [34], and

Granot, Granot, and Kallberg [16], among others. Solution methods based on enumeration or

branch and bound have been given by Laughunn [25], Hansen [20], McBride and Yormark

[26], and Korte, Krelle, and Oberhofer [22] -[24]. Other authors have taken the approach of

linearizing to a linear integer programming problem and using existing integer algorithms.

Papers by Glover [13], and Glover and Woolsey [14], [15], and Granot and Granot [17] lie in

this class. The present paper is based on a fourth approach to nonlinear integer programming:

using dynamic programming methodology while mitigating the traditional difficulty dynamic

programming techniques have with multiply-constrained problems. This aim is referred to in

the literature as reduction of state dimensionality [3].

2. HYPERSURFACE SEARCH

The hypersurface search method uses discrete, deterministic dynamic programming
methodology to identify integer points on the hypersurface given by the objective function

when the objective function value is set equal to some upper bound (in a maximization prob-

lem). Initially we "bypass" the original constraints of the problem and utilize dynamic program-

ming recursion formulas for the following problem (P2) which is based only on the objective

function of (PI):
n

(4) max z = £ 0,(x,)
7-1

subject to

n

(5) 2>,(*y) < *0
y-i (P2)

(6) < xj < Uj j = 1 , . . . , n

(7) xJt integer j = 1, ... , n.

where z is an upper bound on z and Uj are variable upper bounds. We complete the "forward

pass" of dynamic programming. Then integer points are ordered according to decreasing value

of the objective function using some efficient sort routine (we used Quicksort), and they are

tested separately for infeasibility with the original constraints (2) of the problem (PI). Each

candidate integer point is developed component by component in the usual "backward pass" of

dynamic programming. But if we have one or more separable constraints we may detect

infeasibility before completing the backward pass at the partial solution stage. Assume that in

problem (PI), the inequalities (2) are replaced by

(8) £ hyixj) < 0, i=l, ... , m.
7-1

Then a point can be eliminated as soon as any new component x£, gives a partial sum

(9) £ hu {x]) >
;-*
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for any constraint I Here we are assuming a separable form for some or all of the constraints

and, in addition, the nonnegativity of constraint coefficients. This algorithm is described in

Cooper 19].

In a portfolio application [10] we have implemented several fathoming techniques used by

Morin and Marsten [27] and others, and generalized by Denardo and Fox [11]. In order to use

fathoming we must change the usual calculation of the recursive equations. It is replaced by a

label-setting technique which has been called "reaching" in shortest path applications. This

allows us to prune the entries in the dynamic programming tables. We eliminate partial solu-

tions which would correspond to solutions with inferior values of the objective finction, and

also partial solutions for which any complettion would be infeasible. The corresponding two

types of fathoming are called fathoming by bounds and fathoming by infeasibility. The con-

straints must be separable, and be nondecreasing functions in order to get full computational

effectiveness.

In this paper we extend the idea of fathoming by infeasibility from the portfolio applica-

tion to the general problem with separable objective function and many different forms of con-

straints. We investigate linear, aggregated linear, separable, and nonseparable constraints.

3. LINEAR CONSTRAINTS

Computational testing was done on random problems with linear and squared terms in the

objective function and linear constraints. The motivation for these tests was to find out

whether fathoming by infeasibility with every constraint is superior to aggregating some of the

constraints, and generating integer points, and then testing the solutions with the disaggregated

constraints, as in [9]. Here are the two options tested:

(a) Fathoming by infeasibility with each constraint. Then all solutions at the end of

the forward pass will be feasible with the original constraints. Sort according to

objective function value to find the optimum.

(b) Fathoming by infeasibility with aggregated linear constraints. Several constraints

are aggregated and the resulting constraint is used to eliminate some infeasible

solutions in the forward pass. Sorting on objective function value is done and a

backward pass through the dynamic programming tables tests solutions as their

components are found for feasibility with the original disaggregated constraints.

For problems with special structure a good bound may be found so that fathoming by

bounds can be implemented, but for these very general problems, no such good bound can be

found easily.

4. COMPUTATIONAL RESULTS FOR LINEARLY CONSTRAINED PROBLEMS

Ten randomly generated problems were solved for each of three sizes of problems with

nonlinear objective function and linear constraints. They were solved by Option (a), and

results are given in Table 1.
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TABLE 1 — Quadratic Separable Objective Function with Linear Constraints

Using Fathoming by Infeasibility

10 Variables 15 Variables 20 Variables

Problem No. and and and

5 Constraints 7 Constraints 10 Constraints

1 .01 4.31 .02

2 .02 3.86 44.14

3 .01 25.94 16.95

4 .43 79.49 150.37

5 .11 275.73 .03

6 .1 .02 141.63

7 .29 .02 .02

8 .01 .05 36.63

9 .01 .01 .02

10 .01 .01 .05

Average .1 38.94 38.99

Standard .15 86.85 58.74

deviation

TABLE 2 — CPU Time in Seconds for Problems With Aggregated Linear

Constraints, (x Means Time Limit Exceeded.)

10 Variables 15 Variables 20 Variables

Problem No. and and and

5 Constraints 7 Constraints 10 Constraints

1 .15 4.05 .06

2 .05 26.91 X

3 .01 X X

4 1.7 X X

5 1.89 10.21 .07

6 .36 .09 X

7 4.07 .01 .03

8 .01 .04 X

9 .01 .01 .02

10 .09 .01 17.46

Average .83 5.17 3.53

Standard 1.34 9.5 7.79

deviation
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From these results we see that the CPU times on a CDC 6600 in seconds are highly variable.

The algorithm was efficient on some of the largest size problems, and comparatively good for

medium and small problems. Next we give the computation times for the Option (b) algo-

rithm.

These are identical problems for which the constraints have been aggregated betore fathoming.

We see that performance has deteriorated significantly, and many 15 variable problems were

not solved to completion. The conclusion is that fathoming is a very important element in the

hypersurface search algorithm, and if special structure permits, fathoming by bounding would

be expected to improve performance times if it is implemented. Obviously, the tightness of the

constraints or bounds is the key factor in evaluating the resulting improvement.

5. NONLINEAR AND NONSEPARABLE CONSTRAINTS

The type of constraint permitted using the algorithm described above is very broad. Non-

linear and even nonseparable constraints are handled without any difficulty in forward pass

fathoming. As we generate the forward dynamic programming tables we can look backward at

any stage, k, and trace out a partial solution x^,x^\, ... , x\. Let us assume that the constraint

is linear:

a\X\ + a 2x2 + . . . + a„x„ ^ b, all aj ^ 0.

If we have reached stage k when we do the fathoming test, we are testing the following inequal-

ity:

£ aj(xj) > b.

7=1

It is easily seen that if the constraint is nonlinear and separable, that is,

£ hjixj) < b,

7=1

then fathoming test at the kih stage would be:

£ hjixP > b.

7=1

Therefore, we have shown that the forward fathoming method can be implemented for one or

more nonlinear separable constraints with no additional difficulty in logic or computation.

Now we consider the logic for nonseparable constraints: crossproducts, maximum or

minimum expressions, etc. The only change we need to implement in the forward fathoming

logic is that a partial solution is not tested for infeasibility until all values xj involved in a non-

separable term are developed. For example, let the constraint be:

X\X2 + max (x3,4x4 ) ^ b.
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Instead of testing for infeasibility, that is fathoming at stages 1, 2, 3, and 4, we delay testing

until stages 2 and 4. At the second stage the test is

x\x'2 < b.

If not, the entry corresponding to x2
= x\ is deleted from the second stage table. No test is

made at stage three, but at stage four we test the inequality again with another partial solution:

x\x\ + max (X3, 4x4) ^ b.

If the inequality is violated, then the partial solution (x\,xl,xl,xl) is deleted with all its comple-

tions. Therefore, the only effect of using the algorithm on nonseparable constraints would be a

possible reduction in the efficiency of the fathoming algorithm since it could be implemented

only for stages at which all components of a nonseparable term had been developed. An alter-

native approach, which seems wasteful, would be to use known transformation techniques for

factorable functions which result in a separable form, but always at the expense of added vari-

ables and constraints.

CONCLUSION

The hypersurface search algorithm has been improved using techniques derived from

shortest path problem algorithms in order to allow a reduction of computational effort in

evaluating the functional equations of dynamic programming and in reducing the number of

entries or states in the tables. We have presented computational results based on these tech-

niques for linear constraints and have shown how they can be used with no additional difficulty

for nonlinear and even nonseparable constraints.
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ABSTRACT

In this paper we introduce a discrete state level crossing analysis and

present some basic results and a key theorem of level crossings. We illustrate

the fertility of the discrete state level crossing analysis by applying it to queue-

ing systems with (i) bulk arrival, (ii) instantaneous feedback, (iii) limited wait-

ing space, and (iv) to machine interference problems.

1. INTRODUCTION

In this paper we define several event epochs associated with a general queueing system

and derive relations among the steady state probabilities associated with these event epochs.

Often, in queueing theory, embedded Markov chains are used to obtain the steady state proba-

bility distributions of the number in the system at arrival or departure epochs. Then specific

approaches, suited to individual queueing problems, are used to relate the steady state probabil-

ity distributions associated with different event epochs such as arrival, departure, feedback, and

rejection and with arbitrary time epoch. For example, see Chaudhry [7], Chow [8], Courtois

and Georges [14], Disney, McNickle and Simon [15], Heyman and Stidham [18], Neuts [22],

and Takacs [33].

In this paper we present some basic relations among these steady state probabilities and a

key theorem of level crossings relating the steady state probabilities at arrival and departure

epochs. The fundamental idea behind this key theorem is the relationship between the up and

downcrossings of regenerative processes.

Level crossing analysis that utilizes the relationship between up and down crossings of sto-

chastic processes with continuous state space is introduced by Brill [1], Brill and Posner [3,4,5],
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and independently by Cohen [9,10]. Also an alternate imbedded level crossing analysis is dis-

cussed by Brill [2]. Shanthikumar [23] extended Cohen's [9,10] approach to alternating regen-

erative processes with continuous state space and illustrated its applicability to several queueing

problems with server interruptions and several classes of customers (see [24-27]).

Shanthikumar [28] also introduced an alternate form of level crossing analysis to regenerative

processes with continuous state space.

All the approaches mentioned above are specifically designed for stochastic processes with

continuous state space and do not directly extend themselves to stochastic process with discrete

state space. In this regard, we introduce a new level crossing analysis that is applicable to sto-

chastic processes with discrete state space. The fertility of this method is illustrated by a

simpler derivation of existing results for some queues with bulk arrival and customer feedbacks.

New results are derived for general queueing systems and a machine interference problem.

Further application of this approach to develop new and efficient algorithmic solutions to a

computer system model is illustrated in [30] and to an automatic transfer line model in [32].

Also, using this discrete state level crossing analysis a new hybrid simulation/analytic model is

developed for a computerized manufacturing system (see [31]). See Shanthikumar [29] for a

recent application of this method to a single server queue with server failures and state-

dependent arrival process. In the past, some basic exploitation of this idea of discrete state

level crossing analysis has been carried out by Cooper [11], Gross and Harris [17], and Jain and

Seth [19].

In Section 2 we present some basic relations and the key theorem of level crossings. We
illustrate the fertility of this level crossing analysis, in Section 3, by applying it to queueing sys-

tems with (i) bulk arrival, (ii) instantaneous feedback, (iii) limited waiting space, and to (iv)

machine interference problems.

2. THE BASIC RESULTS

In this section, we will derive some basic results and a key theorem of level crossings for

a special case of regenerative process, which occur in many queueing systems. These results

will be used later to analyze some queueing systems.

The Regenerative Process

A regenerative process {X(t), t > 0} is a stochastic process which starts anew probabilist-

ically at an increasing sequence < R
x
< R 2 < . . . of random epochs on the time axis

[0, oo). Thus, between any two consecutive regenerative epochs R, and Rj+\, the portion

[X(t), R, < t < Ri+ \\ called regeneration cycle, is an independent and identically distributed

replicate of the portion between any other two consecutive regeneration epochs [9,13]. We
represent the time intervals between any consective regeneration epochs by the set {T

t
/ ^ 1}

where T
t
= /?, +1 — Rh and assume £(7}) < °° for all values of / > 1.

The process {X(t), t ^ 0} is assumed to have a state space N+ of nonnegative integers

and to have sample paths which are continuous from the right and which make only a finite

number of jumps in each finite time interval. In almost all queueing systems, the epochs when
customers arrive to find all servers idle constitutes a sequence of regeneration epochs. If X(t)

denotes the number of customers at time /, / ^ 0, then a sample realization of this process can

be represented by Figure 1. In the queueing context, an accepted external arrival of a batch of
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Figure 1. A sample realization of the regenerative process X(t)

customers at the system is represented by an upward jump and a departure from the system by

a downward jump. The magnitudes of the upward and downward jumps are assumed to be

independent and depend only on the level (that is, the state) of X(t) just before the upward
and downward jumps, respectively. The magnitudes of these upward and downward jumps
from level ware assumed to have distributions [gn (k), k ^ 1} and {fn (k), k ^ 1} with finite

means E(Xn ) and E(Yn ), respectively. We allow for the possibility of rejections. That is, an

external arrival of a batch of customers seeing a level n may be rejected (that is, entry to the

system is denied) with probability gn . These epochs of rejections are marked by stars in the

sample path. Similarly, feedback is also allowed (see Figure 2). That is, customers, after

service completion, rejoin the queue with probability /„, for more service instead of leaving the

system. These epochs are represented by hollow circles in the sample path. Note that neither

an upward nor a downward jump occurs at the rejection or feedback epoch.

Let the sets U, D, R and F contain the epochs of upward jumps, downward jumps, rejec-

tions and feedbacks, respectively, within the first regeneration cycle during [R\, R 2 )- Then
A = U D R, C = D U F, and / = V U Fare the sets of external arrival epochs, service com-

pletion epochs and input epochs to the system including feedback, respectively. "Now for each

level n of X(t), define U~ , D~, R~ , F~, A~ , C~, and /" as the sets of epochs of upward

jumps from level «, downward jumps from level n, rejections at level n, feedback at level n,

arrivals to see level n, service completions at level a?, and inputs to see level «, respectively,

during the first regeneration cycle.

Similarly define £/„
+

, Z)„
+

, /?„
+

, Ff, A+, C„+ , and 7„
+

as the sets of epochs of upward

jumps to level n, downward jumps to level n rejections at level n, feedback at level n after

arrivals, service completions to level n, and level n after inputs, respectively, during the first
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Arrivals

Rejections

-•- Service
Mechanism

Input
Completions

Figure 2. Overall system

regeneration cycle. The sets E~ and E+ basically represent the epochs at which the level is n

just before and just after the occurrence of the event e, for e 6 {u, d, r, f, a, c, /'} 4 S, gener-

ically associated with the set E € { U, D, R, F, A, C, I) of events as defined above. Note that

R~ = Rn
+

, and F~ = Fn
+

.

Let e Tk be the time of the fan occurrence of event e. Then if # {£} is the cardinality of a

set £and 8() is the indicator function, we have

T e A#{k:R
l < e Tk < R 2 ) = #{E)

,t~A £8Ur(e 7T) = n) = #{E-},
fc-i

and

er„
+ A ^8(X(e Tk

+)= «) = #{£+},
A:=l

when e and E are generically matched. Now we will define the associated probability distribu-

tions (see Figure 2)

p-(n) = lim P[X(e Tk~) = n)
k—°°

and

pe
+ (n) - lim P{*(e r/) = /»}.

A:—oo

The existence of these distributions is guaranteed by the regenerative property of

{X(t), t > 0}. From the mean value representation for the regenerative processes, we have

pe (n) =
E{ er-n )

E{re
)
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and

Pe
+M =

E{t<)

Based on the earlier observation that R~ = R* and F~ = F„
+

, one has

Pf{n) = p/(n) 4 Pf(n), n > 1

and

pr~(n) - />
+ (/?) &pr (n), n > 0.

Relationships between pe in) and p*{n) are an immediate consequence of the above "stochas-

tic mean value" equations. For example, we have the following:

(1)

(2)

(3)

(4)

(5)

(6)

Pa
+M = Z AT(') SM ~ 'Ml " ft) + AT(")ft,. " > o

i-O

/>u

+
(") = Z A,~(') ft<" - 0, n >

i-O

A.
+
(tf) = A.~(fl) = P,(n), n ^

/»/(») = />/(«) = /y(n), « > 1

oo

/»/(») = Z AT(/) //0 - /») n >

oo

/>+<«) - £ />f
~(') //(/ - n)(\ - ft ) + p-(n)fn , n > 1

/-/i+i
t

= 2>c~0) /,(')(1 -/,), »-0

Let re be the rate of occurrence of events of type e. That is,

re
= E{T e)lE{T

x ), VeZS.

Using the relationship between the rates of occurrence of different event epochs, we will

derive the following relations:

(7) p~{n) = p~(n)(l - gn )l i -
;

n

£ Pa («)fti
-0 J

, liVfl

(8) Pr (n) - Pa~(n)gJ
OO

Z^~ (w) ft
.1,-0

, « ^ o

(9) Pi(n)~p-(n)(l-/ny i- !>-(«)/„ , « >

(10) P/(n) = p~(n )/„/

1

Z a"(»)/»
B-l

J

, « >
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Let the sets U~, D~, R~ , F~, A~, C~, and I~ be as defined earlier. Now define

(generically subscripting) r~(n), rjin), r~{n), r/(n), r~(n) , r~(n), and r~(n) as the rates

of upward jumps, departure, rejections, feedbacks, arrivals, completions, and inputs with

respect to level n of the X(t) process, such that,

(11) r-(n) = E{eT-)/E{Tx
), n > 0,

for e € S & {u, d, r, f, a, c, /} and E € [U, D, R, F, A, C, /}, where the pair (e,E) is

chosen to match generically. Note that

r-(0) = 0for e € {/, c, d)

oo

and, since U E~ = E,
n=0

(12)

n=0

Then from the "stochastic mean value equation" for pe (n), we have

(13) p~{n) = r~ (n)/re , Ye € S.

Therefore, the interrelationships between these probabilities can be derived using the relation-

ship between the rates r~(n), e € S. Since the probability of rejection of a batch on its arrival

is gn if it sees n in the system, we have

(14) r-(ii)- r-{n){\- gn ), n >

and

(15) /-"Or) = r-(n)gn , n > 0.

Then from (12), (13), and (14), equation (7) follows. Similarly, from (12), (13), and (15),

equation (8) follows. A similar inspection of completion epochs gives

(16) rd~(n) = r-(n)(l-fn ), n >

and

(17) rj(n) = r-{n)fn , n > 0.

Then similar to the above cases, equations (9) and (10) follow from (12), (13), (16), and (17).

Note that when g„ = g, V n > 0, from (7) and (8) p^(n) = p„(n) = pr (n), and simi-

larly when the feedback probability /„ is independent of n, that is, /„ = /, V n ^ 1, from (9)

and (10), p~(n) = pjin) = pf {n).

Next we will establish the following relations:

(18) /> + («) =
Pd
+
(n) +

l-fn
Pd («)

oo

n-]

fn
Pd^n)

, n > 1

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. 4, DECEMBER 1982



LEVEL CROSSING ANALYSIS IN QUEUEING SYSTEMS 599

pu (n)ru + rd

(19) Pi (n) =

/„

l"/n

pd (n)

P^(n)ru + rd

fn

(20) A
+
(«) =

l-fn

fn

, n>\

l-fn

Pd (n)

Pd~(n)

ru + rd

n̂-I

fn

l-fn

; n > 1

Pd («)

where ru and r^ are the rates of upward and downward jumps as defined earlier.

Now as defined earlier, let i/„
+

, /„
+

, Z)„
+

, and C„+ be the sets consisting of epochs, just

after an upward jump, input, downward jump, and completion when X(t) = n. That is,

for

£„
+ = {t: X(t+ ) = n, t 6 E),

E € \U, I, D, C).

Now generically define the rates

(21) r+(«) = E[ eTt)lE{Tx ), e 6 [u, i, d, c), n >

and since [J E„
+ = E, we have

n-0

oo

re = £ ^
+
(«).

Then, as in the previous case.

(22) pe
+
(n) = re

+ (n)/re , e € [u, i, d, c).

Note that

(23) /+(«) = rf (n) + rd
+
(n),

and therefore, from (21), (22), and (23) we get equation (18), after noting from (16) and (17)

that iy(ii) - rd~(n)fj{\ - f„). Similarly, the relation

(24) r-(n) = r~(n) + r/n)

and

(25) r,
+
(/i) = ru

+
(n) + rf (n)

along with rf (n) - rj{n)fj{\ - /„), (21) and (22) lead to (19) and (20).

get

(26)

Equating the number of customers arrived and departed during a regeneration cycle, we

£ r-(n)E(Xn ) = ^rd-(n)E(Yn ).
n-0 n-l
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These relations (1), (2), (3), (7), and (8) form one class such that if p~(n), n > 0, is known,

we can derive pfin), Puin), pfin), and pr (n). Similarly, the relations (4), (5), (6), (9),

(10), and (18) form a second class such that if pj{n), n 5*1, is known we can obtain

p/(n), Pf(n), P(T(n), and p*(n). However, to relate these two sets of probabilities and to use

(19) and (20), we need a relation between two probability distributions, one from each set.

Such a relation is our key theorem of level crossings, which we present next.

THEOREM 1: The Key Theorem of Level Crossing

The probability distributions pj~(n) and pjin) are related to one another by:

(27) ru 5>-(/)(l - G,(n - /)) - rd £ a," (/Hi - F,(.i - n - D), n >
i-O i-n+\

where

G,(k) = £ ft(/). G,-(0) = and F,(k) = £ /,(/), ^(0) =
y-l y-i

are the cumulative distributions of #,(•) and ./}(•), respectively.

PROOF: Define

# £/„ = #{r: X(r) < «, Jf(/
+

) >/*,/€ £/}, the number of upcrossings

over level n from and below level n, and

# />„ = #{/: *(r) > // + 1, JT(f
+

) < » + 1; t € /)}, the number of

downcrossings below level n + 1 from and above level

n + 1, by the process [X(t), t ^ 0} during its first

regeneration cycle.

A simple inspection of the sample path (see Figure 1) will show that

(28) # £/„ = #£„ a.s.

From the definition of # U„, it is clear that

E[#U„) = E\ £ 8(X( u Tk ) < n < X(u Tk ) + Xk
)

U-o

where Xk
is the batch size at the A:-th upcrossing in the first regeneration cycle. Since

8(X(u Tk~) < n < X( u Tk ) +Xk
) = 8(X(u Tk~) < n)

-8(X(u Tk ) + Xk ^ n),

from the above equation for £{#£/„}, we get

£ 8(X(u Tk ) < n) - £ 8(X( u Tk ) + Xk < n)\.
*-o k-0 I

£{#£/„} = E

Now from the "mean value equations" for p~(n), p+(n), and from (2), we have

(29) £{#£/„} = £{t"}£ p-(/)(l - 0,(11 - /)).

/-o
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Using a similar derivation, we can show that

(30) E{#Dn ) = £{t<*} £ pjU)(\ - F,U ~ n - 1)).

Now from (28), equating (29) and (30) and dividing by E{T
X
), we get (27).

COROLLARIES:

Next for a special case of the X(t) process we will relate the up and downcrossing rates to

the steady state probability q(-) at an arbitrary time. The special case considered is a piecewise

Markov process (see Kuczura [21]). For this, we assume that there exists a sequence of ran-

dom variables { W„)q with < W\ < W2 < . . . , such that for any n > 1,

(/) [XU), wn_ x < t < w„],

with W = 0, is a Markov process

07) Pij =p{X(Wn)=j\X(W-)=i) >

is the same for all n > 1, and

(/•/•/) Qk (u) =P{W„- Wn_ x
< u\X{W„_

x
) = k),

is a family of distribution functions of positive random variables.

CASE 1: Let us first assume that the process [X(t), t ^ 0} is piecewise Markovian
between two successive downward jumps such that,

Pfupward jump during^, / + At)\X(t) = n) = \(n)At + 0(At),

V n ^ 0, where lim —-— = 0, is independent of time / and depends only on the state of
A/—oo A/

XU). From equation (27) and the rate of upcrossings, we then have

COROLLARY 1:

£ A (/)<?(/) (1 - G,(n - /)) = r„2>-(/)(l - G,(n - /))

i=0 ;=0

(3D =rd £ pj{i){\- F
t
{i- n- D)

i-n-1

CASE 2. For this case we will assume that X{t) is a piecewise Markov process between
successive upward jumps so that,

Pfdownwardjump during^, t + &t)\X(t) = •«} = n(n)kt + 0(Af),

n ^ 1, is independent of rand depends only on X(t). Similar to Case 1,

COROLLARY 2:

£ tiU)qUHl-F,(i- n-\)) = ru £p-(i)(\- (?,(«- /))

;=n+l ,=0

(32) =rd £ Pd-(j)(i- F.(j- „-))
i=n+ l
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In the next section we will illustrate the fertility of these results by applying them to

several queueing examples.

3. APPLICATIONS

3.1 Queueing Systems With Bulk Arrival

Let us consider a queueing system to which the arrivals are in batches of size B. Let

P(B = n) = bn , n ^ 1. It is assumed that the interarrival times from a renewal sequence with

mean 1/A. The departures, however, occur singly such that the magnitude of a downward jump
is one. It is assumed that all arrivals are accepted. However, no specific assumptions are made
regarding the feedback. A special case of this system is a GIx/G/c queue with the restriction

that departures occur singly. Now from (26) and (12), we get

(33) ru = \ and rd
= \E(B)

Now using (33) in (27), after noting that p^(n) = p„(n) and pd (n + 1) = pd {n),

(34) 5><T(<)(1 - H{n - /)) = E(B)pd
+
{n), n > 0,

(-0

where

H(k) = £6, = P(B < A:), H(0) = 0.

Now taking the moment generating function of (34) we get

(35 )

Kua-a(,» _ E(B)P;(Z)

where

Pa~ = £ z«pr(n), Pd
+
(z) = £ z"pd

+
(n),

n-0 n=0

and

H(z) = £ z
Hbn

B-l

are the moment generating functions of Pa~(-), />/(•) and bn . This result relating the steady

state probability distribution seen by an arriving batch and a departing customer immediately

extends the key result (equation (D) derived by Chaudhry [7] for an Mx/G/l queue to systems

even more general than a GIx/G/c feedback queue. Now let us consider two special cases of

the above model: (i) GIx/M/c and (ii) Mx/G/c.

3.1.1 GIXIMl c Queue

Let the service times be exponentially distributed with mean 1//jl and the feedback proba-

bility fn = f, n > 1. Then from corollary 2, with /x(n) = mm(n,c)fj,(\ — /), and (34), we get

(36) \ £aT(/)(1 - Hin - /)) = min(/i + l.c^d - f)q(n + 1)

Result (36) is a generalization of the results given in Takacs [33] for the GI/M/cgueue.

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. 4, DECEMBER 1982



LEVEL CROSSING ANALYSIS IN QUEUEING SYSTEMS 603

3.1.2 Mx/G/c Queue

Here we assume that the arrivals of batches form a Poisson process with rate k. Then
from Corollary 1 we have q(n) = p^(n) and from (35) we get

(37) Q(z) = P-(z) = [EiBHl - z)}Pd
+
(z)/(l - H(z)),

OQ

where Q(z) = £ z"q(n), and others are as defined earlier. Result (37) was derived by Chau-

dhry [17] (Equation (D) for the Mx/G/l queue.

Similar results can be derived for the bulk service queues.

3.2 Queues With Instantaneous Feedback

Now we will consider a queueing system with single arrivals and departures. That is,

g„(l) = /„(1) = 1 Vn. We will also assume that the probability of blocking gn is zero and pro-

bability of feedback /„ is a constant equal to /, Vn > 1. A special case of this system is the

GI/G/c queue with instantaneous feedback. Let the mean inter-arrival time be 1/X. Recently

Disney, McNickle and Simon [15] considered the M/G/l queue with instantaneous feedback.

They obtained relationships between the probabilities at different event epochs using Markov
Renewal theory. Our result will generalize theirs. From (26) and (12), we have ru

= rd . Now
from the key theorem of level crossing, and noting that p^(n) = p„(n),

(38) p-(n) = pj{n + 1) - pf(n), n > 0,

Now from (18) and (38),

(39) ft+(«) -(1 -f)pf(n) +fpj-(n-l), n > 1.

From (4), (9), and (10),

(40) P/ (n) = p-(n) = Pd-(n), n > 1.

Also from (6),

pc
+
(n) = p-(n + 0(1 - /) + Pc~(n)f, n>\

(4°
=/>-(l)(l-/) (

«-0
So having evaluated /?/(•) from embedded Markov chain analyses, the remaining probability

distributions can be evaluated using (38)-(41).

3.3 Queueing Systems With Limited Waiting Space

In this section we consider the same model as 3.2 except that the capacity of the system is

K. That is, g„ = 1 , n ^ K and = 0, n < K. Then from (7) we get

(42) Pu („) = p~(n)/(\ - p'iK)), < n < K
and

p~(n + 1) = Pu(n) = 0, n > K.

Now from the key theorem of level crossings and noting that ru
= rd ,

(43) p-(n) = pd~(n + 1), < n < K.

Next we will consider two special cases.
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3.3.1 GI/M/c/K Queue

From Corollary 2 we get, after noting that/i(/7) = min(«,c)/u,(l — /), n = \, 2, ... , K,

(44) ruP -(n - 1) = m\n{n,c)^(\ - f)q(n), n - 1, 2, , . . . , K.

From (42) and noting that ru
= \(1 - p~(K)), we get

(45) \p~{n - 1) = minUcVU - f)q(n), n = 1,2, .... tf.

The above result agrees with that of Heyman and Stidham [18].

J.J.2M/G///K()weue

From (42), (43), and Corollary 1 we get

(46) kq(n) = rup-(n), n - 0, 1, 2, . .. , K - 1,

= ^Prf~(« + D-

Now noting that rd = /jl(1 — <?(0)), we get from (46)

(47) ,(,)-
(1 -« (0))»- (' + 1)

,,,-0,1.2 K-l.

where p = \//i. So

p

. So

<7(0) =
p/(o)

P+Pd
+ (0)'

^(«) = i

P+/^/(0)

?(/<:) = l- x 9 («)

«=o

(48) q(n)= \ /n ^ pd
+
(n), n = 1, 2, . . . ,K - 1,

and

give the steady state probability distribution at an arbitrary time epoch. See Gross and Harris

[17, page 252], for an alternate derivation of the same results.

4. MACHINE INTERFERENCE PROBLEMS

In this section we apply the level crossing technique to machine interference models

which are queueing models with finite capacity sources, and derive some new results for this

model.

4.1 M/G/l/ /N Queue

We consider here a queueing model with a single finite source model of capacity N and a

single server. The arrival rate of customers, when there are n customers at the service facility,

is k(N — n). Besides, g„ = 1 when n > N and when n < N, and p^(n) = if n ^ N. So

we get from (7)

p~{n) = p-(n), < n < N
= Otherwise,
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from (26), ru
= rd .

From Corollary 1, and because of (49), we get for < n < N

(50) \(n) q(n) = rup~(n)

= rd pj(n + 1).

Let l/fi represent the mean service time of a customer, and p the utilization of the

server. Then,

rd = MP-

Because pj(n + 1) = pj~(n), we get from (50), for ^ n < A/,

\(n) q(n) = fippj~(n).

So

tip pd
+
(n)

q\n) = ——

—

t— for ^ n < N
\(n)

and

(51) q(N)= 1-
J) q(n).

These results agree with equation (15) of Courtois and Georges [14] and equation (10) of

Chow [8].

4.2 M/G/1//N,, N 2 , ... N k Queue

We now extend the results to a multiple finite source queueing model with K finite

sources and a single server. The capacity of the / th source is A/,. The server can follow any

work-conserving service discipline for selecting customers for service. Relations are obtained in

the following subsections with respect to marginal and joint probabilities.

4. 2. 1 Marginal Probabilities

We consider each source separately and apply results obtained in Section 4.1. We define

pf(nk ) = lim P(Xk (t;) - nk )

r—oo

where Xk (t) denotes the number of source k customers present at time /, / ^ 0, and £ r is the

service completion epoch of the rth type k customer. So from (51) we get, for

fc-1, 2, .... A,

9*K) -
>

k

, \ • Pd
+

K), \(0 ^ nk < Nk

and

N
k
- 1

(52) q
k(Nk ) = 1 - £ q

k
(i)

i-o
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where q
k
(nk ) is the marginal time average probability of finding nk number of source k custo-

mers at the facility, p k is the proportion of time the server is busy with source k customers and

\/(jL k is the mean service time of a source k customer. Then rd — p- kp k for class k source.

4.2.2 Joint Probabilities

In this case, we represent the state of the system X(t) as a vector n = (n\, n 2 , .... %),
where nk refers to the number of source k customers.

From an extension of Corollary 1, for the multidimensional discrete state processes, we
K K

can show that, for the compound state (i; /, < njt j = 1, 2, .... K) with £ rtj ^ £ Nj,

j-\ j-i

K

A:=l

"1 "2 "k-\ "*+l "K

II" £ £ ••• £?('i. h, •••• ik-i- nk , 4+i, ..., iK )

,ro/
2
=o i

k_r0ik+i=0 fc-0

(53)

'i=o '2=° '*-r°'*+r° 'a-
=0

'/t-l> w
fr» '*+!' .fc>

where /?£ (n) = lim P(X(g?) = n).

Rearranging the terms, (53) becomes

(54)

(55)

A'

I
k-l

A A
q(n)k(n) = Y, Pd (nWp* ~ £

A:-l

"l "2 "k-\ nk+\

II 'I Z L (9 (/ i' h. • k-\> nk .
ik+x , .... iK )\ k (nk )

- Pd
+
0\. h> •• k-\. nk> k+\> ••> 'a-VatP*)

K K

7=1 J-i

q(N
x

, N2 , ..., Nk
)=\-

"l N
2

£ £ ... £«r(/i lf n 2 nK )

Z n, * £ A>
fc

.

fc-i *=i

Details of the numerical algorithms using the above relations for calculating the time average

probabilities gin) are given in [6]. A detailed derivation of these and other results with

numerical examples will be reported elsewhere.
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5. CONCLUSIONS

In this paper we have presented some basic results concerning level crossing analysis

applied to discrete state processes. By applying these results to some queueing systems, we
obtained relations between time average probabilities and the steady state probabilities at arrival

or departure epochs.

The queueing systems considered in this paper are but a few among the vast number of

cases where the level crossing analysis can be used to relate the steady probabilities associated

with different event epochs. The most important feature of this analysis is that the level cross-

ing analysis is a more general and simple tool which can be applied to many queueing systems.

Application of this discrete state level crossing analysis has already proven to be very fruitful in

different cases (see [29-32]).
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ON PATROLLING A CHANNEL

Alan R. Washburn

Naval Postgraduate School

Monterey, California

ABSTRACT

A simple formula is found to be just as accurate as a complicated one for

estimating the probability of detection achievable by an ingenious searcher pa-

trolling a channel or barrier. The difference between "detection" and "closure"

is emphasized in an extension.

INTRODUCTION

A searcher whose speed is v and who can see any target within some distance R patrols a

channel of width L looking for targets that come down the channel with speed u. By "patrols,"

we mean he selects any closed path and travels around it repeatedly; the endurance of the

searcher is not an issue. The question is, "What is the best closed curve, and what fraction of

the targets are detected?" If v < w, it is also of interest to find the fraction of targets that can

be closed (touched) by the searcher, assuming that targets continue to move in a straight line

down the channel. The problem is an old one, with the classic reference being [1]. In most

naval applications, one role or the other is played by a submarine. The "channel" sometimes

corresponds to that portion of a wide barrier that has been assigned to a particular searcher.

Our approach to this problem will be to first show that there is an upper bound on the

probability of detection, corresponding to a particular infeasible patrol path for the searcher.

We will then argue that there are feasible patrol paths for which the probability of detection is

quite close to the upper bound. Finally, we shall provide a simple geometric analysis of the clo-

sure problem based on the infeasible patrol path.

AN UPPER BOUND ON THE DETECTION PROBABILITY

It is convenient to imagine that the targets are fixed to a tape moving down the channel

with speed w, in which case the probability of detection for randomly distributed targets is just

the ratio of the rate at which the searcher can examine new area on the tape to the rate uL at

which new tape area appears. Let w(t) be the speed of the searcher with respect to the tape at

time t. Then the rate at which the searcher examines new area on the tape certainly does not

exceed 2Rw(t). If the searcher is at the same position on his path at time T as at time 0, and

if A is the amount of new area examined between and T, then necessarily

(1) A < 2R f w(t)dt.
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Let v cos 9 it) be the component of the searcher's velocity in the same direction as the tape is

moving. Since the searcher returns to his initial position at time T,

T

f cos 9 it) dt^O.

According to the Law of Cosines,

wit) = Vw 2 + v2 -2w v cos 0(t).

The fact that

wit) < Vw 2 + v2 - u , ,

v
cos 9it)

Vw 2 + v2

is easy to show by observing that the right-hand side is positive and then squaring both sides.

Consequently,

(2) A < 2i?rV« 2 + v2
.

Since the amount of new tape that appears in time T is uLT, this leads to an upper bound on
the probability of detection p:

(3) p ^ min \,(2R/LWl + iv/u) 2

CONVEYOR BELT SEARCH

In order to achieve the upper bound (3), it is evidently necessary that cos Git) = 0; that

is, the searcher's motion must always be perpendicular to the sides of the channel. Unfor-

tunately, the only way for the searcher to do this is to simply move back and forth across the

channel, and this type of motion is inefficient for fast searchers because of the large amount of

overlap with previously searched parts of the tape. The situation would be different if the tape

were made into a tube by fastening the edges together, in which case the searcher could

proceed perpendicularly to the target tracks without ever having to reverse his course. The
effect of this would be the same as if there were a conveyor belt of searchers spaced L apart

moving across the channel. Relative to such a belt, the tracks of the targets would differ from

being normal to the belt by an angle
<f> whose tangent is v/u (see Figure 1). From Figure 1, it

is apparent that a fraction 2R/L cos
<f>

of all such tracks would encounter a searcher, assuming

that tracks are equally likely to penetrate the belt anywhere, and also assuming 2R < L cos <f>.

But this is the same as (3). Thus, a conveyor belt (CB) search of a channel produces the larg-

est possible probability of detection. In most circumstances, however, a CB search is not feasi-

ble.

APPROXIMATELY OPTIMAL SEARCH PATHS

In order to avoid the overlap caused by the back and forth (BF) search, a fast searcher

should move parallel to the channel near the edges. For example, he might choose a bow tie

(BT) shaped path as in Figure 2. In [1], the choice was to make D = R and a such that

v sin a = u. The probability of detection was compared with that for a = (which corresponds

to BF), and BT was found to be preferred to BF for fast searchers. Specifically, letting r = v/u

and A = L/2R — 1, the results were:
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Figure 1 — Geometry of a Conveyor Belt Search

T

TAPE MOTION

Figure 2 — The Bow Tie Search in a Channel
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(4)

(5)

Phl — 1 +
rs/r

2 - 1

r + 1 X + 1

PBF - 1 - X -
Vr2 + 1 - 1

for r ^ 1

'x(X + 1),

except that the probability cannot exceed 1 in either case. A proof of (4) and (5) is available in

[3]. It is of interest to compare (4) with (3) when r is large and (5) with (3) when r is small.

The analytic expression in (3) is

TTT a

in the present notation. Letting

/i = Vl + r
2

and

/2 = 1 +
r + 1

it can be shown that

n - n = 2r

(1 + r) (r +y/r2 - 1)

from which it follows directly that f\ > f2 and lim,. _ 00 (2r
2
)(/1

— f2 )
= 1. Thus, Pcb ^ Pbt^

and the difference becomes very small for large r. Also, it is simply a matter of expanding the

square in (5) to show that

2

r

x(x + 1)."up — Pen ~BF CB
Vr2 + 1 - 1

Consequently, PCB ^ /^p, and

,. 4X(X + 1)
lim z

r—0 r
1

V^CB — ^Bf) — li

i.e., the difference between the two becomes very small for small r. Figure 3 shows

Pqb>Pbt> ar>d ^bf as a function of r for X = 2.

The fact that PCh > max (PqP , Pqj) does not follow directly from the fact that PCB is an

upper bound. The reason for this is that corners were "squared off' in [1] for ease of computa-

tion, which has the effect of computing too large a detection probability. The author has

repeated these calculations with two changes:

(1) "round corners" were used

(2) all angles a such that < v sin a < u were explored, and the optimal a
selected for each (\,r).

The computations are reported in detail in [4]. For X = 2, the optimized detection probability

is shown in Figure 3 as P p- The result is typical; P0? is very nearly Pcs except when PCB is

large. Furthermore, it seems clear that even this shortfall could be eliminated by also permit-

ting D < R (see Figure 2), since the probability of detection for targets near the channel edges
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DETECTION
PROBABILITY
FOR X=2

OPTIMAL

TIE

Figure 3

r = v/u

Comparisons with the Conveyor Belt Bound

will be small as long as D = R. Erickson [2] has done some computations along these lines.

Since the searcher is actually allowed to use any closed path whatever, rather than only the class

of generalized bow ties that we have permitted him, it seems reasonable to come to the conclu-

sion that there exists a search path that is close to the conveyor belt in terms of probability of

detection, provided the probability of detection is not too close to 1. It follows from this that

formula (3) is generally a better assumption than either (4) or (5), for reasons of both simpli-

city and accuracy. The geometric simplicity of the conveyor belt search also makes various

extensions relatively easy. An example of such an extension is given in the next section.

THE PROBABILITY OF CLOSURE

Suppose there is a conveyor belt of searchers looking for targets that move in straight

lines normal to the conveyor belt. Upon detecting a target, a searcher attempts to catch (close)

it at some speed v' that may exceed his patrol speed v. If v' > w, he will certainly succeed, but

if v' < m, he will succeed only if the detection is made in a certain sector of the detection circle

as illustrated in Figure 4, where cos t/> = v'/u. A target will ultimately be caught if and only if it

touches the shaded part of some detection circle. As in Figure 1, the targets arrive relative to

the conveyor belt at angle <f>. The geometry of computing the closure probability depends on

the relative magnitudes of <f> and i/». Figure 4 illustrates the case where
<f> < t//, and Figure 5

the case where > i//. Noting that cos(<// — <j>) + cos(</> + <j>) = 2 cos <f>
cos <//, we see that

(6) Pr =

(2R/L) tan0

(2R/L) cost//

R 1 -1- cos (<// + 0)

L cos <f>

if v > u

if v < u and
<f> < ^

if v ^ u and <f> ^ t//.
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Rcos(\//+<£)

Rcos(i/M-<£)

Figure 4 — Closure Geometry when <f> < \\i Figure 5 — Closure Geometry when ^ i//

Figure 6 shows Pc vs w/v when v' = v and R/L = .1. The downward jump when w/v = 1

shows that there is a definite benefit to the target for being faster than the searcher. Of course,

increases in u may also affect R, particularly if the detection mechanism is based on sound

waves, so it does not follow that the best strategy for the target is to go as fast as possible.
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CLOSURE
PROBABILITY

Figure 6 — Dependence of Closure Probability on Target Speed
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ABSTRACT

This paper studies Lanchester-iype combat between two homogeneous

forces modeled by the so-called general linear model with continuous

replacements/withdrawals. It demonstrates that this model can be transformed

into a simpler canonical form, which is also shown to arise from fixed-force-

level-breakpoint battles modeled by Lanchester-type equations for modern war-

fare. Analytical expressions for the force levels for the general variable-

coefficient linear model with continuous replacements/withdrawals are con-

structed out of so-called general Lanchester functions for the model without

replacements/withdrawals, for which all solutions are shown to be nonoscillato-

ry in the strict sense. These force-level results are unfortunately so complicat-

ed and opaque that the constant-coefficient version of the model must be stu-

died before any insights into the dynamics of combat may be analytically ob-

tained. Thus, fairly complete results are given for the general linear model

with constant attrition-rate coefficients and constant rales of

replacement/withdrawal. However, the expressions for the force levels are still

so complicated that we have not been able to develop battle-outcome prediction

conditions directly from them alone but have had to establish general results

on the qualitative behavior of solutions. A significant result (and one that

greatly complicates the prediction of battle outcome) is that all solutions to the

model with replacements/withdrawals are no longer necessarily nonoscillatory

in the strict sense, i.e., both sides' force levels can take on negative values if

the force-on-force attrition equations are not "turned off' at the right time.

Thus, this paper shows that the addition of continuous

replacements/withdrawals to a Lanchester-type model may significantly change

the qualitative behavior of the force-level trajectories. Battle-outcome predic-

tion conditions are nevertheless given, and important insights into the dynam-

ics of combat are briefly indicated.

1. INTRODUCTION

Deterministic Lanchester-type combat models (so-called after pioneering work by F. W.
Lanchester [12]) are widely used today in both the United States [16], [19], [22] and also

'This research was partially supported by the Headquarters U.S. Air Force, Studies and Analysis Group
(HQUSAF/SAZ) and partially by the Office of Naval Research as part of the Foundation Research Program at the Na-

val Postgraduate School.
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NATO countries [8], [9] for defense-planning purposes. The modern high-speed, large-scale

computer has made possible the development and use [2] of quite complex differential

equation-based operational models of combat operations (e.g., see [4]). It is indeed surprising,

therefore, that relatively little effort has been devoted to the mathematical analysis of various

Lanchester-type paradigms (see [15, p. 88]) from which these complex computer-based combat

models have been developed by the process of model enrichment (e.g., see [3], [13], or [16]).

Accordingly, this paper will theoretically investigate the qualitative behavior of a relatively sim-

ple Lanchester-type model with replacements to develop some important insights into the

dynamics of combat.

How do replacements and withdrawals affect the course of a battle? How fast should

troops be put ashore in an amphibious landing to insure its success? Will reinforcements reach

NATO in time? These are important questions both for the military tactician and also the

defense planner. In this paper we will study a relatively simple Lanchester-type model that

explicitly considers continuous replacements and/or withdrawals in order to provide some basic

insights into such issues as delineated above. Our basic analysis strategy is to use a simplified

auxiliary model for understanding the basic dynamics and behavior of a large-scale complex

operational model [6], [16]. This has been the basic motivation for studying the relatively sim-

ple Lanchester-type paradigm considered here. Also, many times one can fit such a simple

analytical model to data generated by a detailed combat simulation, and thus a simple analytical

model such as we consider here may provide an economical framework for summarizing simu-

lation output data [5], [10].

Thus, this paper theoretically investigates a relatively simple Lanchester-type model that

explicitly considers replacements and/or withdrawals. Essentially, no analytical work (except

for the rather dated work of Morse and Kimball [14] and Karns [11]) has been previously done

on such models. In particular, no previous theoretical work has been reported on the qualita-

tive behavior of solutions to such models. Our new theoretical results show that the qualitative

behavior of force-level trajectories is fundamentally changed by the inclusion of continuous

replacements and/or withdrawals in a Lanchester-type combat model.

2. THE GENERAL LINEAR MODEL FOR LANCHESTER-TYPE
COMBAT BETWEEN TWO HOMOGENEOUS FORCES

In this section we will briefly examine the general linear-differential equation model for

combat between two homogeneous forces. Special cases of this general model will be examined

in more detail in subsequent sections of this paper.

Accordingly, we consider the following Lanchester-type equations for xand y >

dx
—j; = -ait)y - pit)x + r(t) with x(0) - x ,

dy

^ dt
= -b(t)x - ait)y + sit) with ^(0) = y ,

where xit) andj>(/) denote the Xand Y force levels at time /, and ait) and bit) denote Lan-

chester attrition-rate coefficients, which represent the fire effectiveness of a single "typical" firer

on each side. There are several different sets of physical and operational circumstances to

which the model (2.1) may be hypothesized to apply, and the coefficients ait), pit), rit), and

sit) have different physical/operational interpretations, depending upon the context in which

the model is viewed. We will now discuss several such possibilities.
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The term rit) in the first of Equations (2.1) can model either (I) the replacement rate for

the A" force (with a negative value representing a net continuous withdrawal), or (II) the attri-

tion [in which case r(t)<0] of the X force from exogenous fires (not subject to attrition) at a

rate not dependent on Xs force level. Similar remarks apply to sit). For simplicity, however,
we will consider only the first possibility here and wili consequently refer to rit) and sit) as

replacement rates. Even within this context, two different tactical situations may again be

hypothesized to yield the above equations (2.1) (cf. Figure 4 of Taylor [19]):

either (SI) "aimed-fire" combat between two homogeneous forces with "operational"

losses and with continuous replacements,

or (S2) "aimed-fire" combat between two homogeneous primary forces (or

infantries) with superimposed effects of

subject to attrition and with continuous

primary forces (see Figure 1).

supporting fires

replacements for

not

the

Y- FORCE

ARTILLERY

Figure 1. "Aimed-fire" combal belween two homogeneous primary forces (infantries) with superimposed effects of sup-

porting fires (here, from artillery) not subject to attrition and with continuous replacements for the primary forces.

In the second case (S2), it is assumed that each side uses "aimed" fire and that target-

acquisition times do not depend on the number of enemy targets. The supporting weapons are

assumed to employ "area" fire against enemy infantry (see Taylor [19] for a more thorough dis-

cussion of modeling assumptions; also [17], [20]). In this case, determination of numerical

values for the attrition-rate coefficients ait) and pit), modeling the effects of the supporting

fires, follows along the lines discussed in Taylor [19, Section 6.3] . In the simplest instance we

then have that, for example, ait) = aL puUq/A y , where the X force's artillery is denoted as

U, aL denotes the lethal area of a single f/ artillery round, vy denotes the (/firing rate per

tube, «o denotes the U force level (which is constant because it is assumed that the U force

suffers no losses), and A Y denotes the presented area of the region occupied by the Y force.

Mathematically, we make the following assumptions about the attrition-rate coefficients

and replacement rates in the model (2.1):

(Al) ait) and bit) are defined, positive, and continuous for t € (f , +°°) with

>o< 0,
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(A2) ait) and Bit) ^ for t € [/ , +°°),

(A3) ait), bit), ait), pit), rit), and sit) € Lit , T) for any finite T > t .

Here the notation ait) € Lit , T) is used to mean that I a it)dt exists (and is given by a
-' 'o

finite quantity). Further details are to be found in [17], [20]. It follows from (A3) that any

force-level trajectory to (2.1) for a given set of initial conditions is continuous and unique. We
will place no further restrictions on the replacement rates rit) and sit), and, consequently,

negative values are possible for them. We will further assume, however, that ait) and bit)

are given in the form [18], [20]

(2.2) ait) = ka git) and bit) = kb hit),

where ka and kb are positive constants chosen so that a it)/ bit) = kj

k

b when

d{ait)/bit)}/dt = 0. In other words, ka and kb are basically "scale factors," which are useful

for parametric study of battle outcome as related to various system parameters [18] (see also

[20]). It is then convenient to introduce the combat-intensity parameter \ f and the relative-fire-

effectiveness parameter \ R defined by

(2.3) k, = y/ka kb mdk R = -r
2-.

Kb

3. TRANSFORMATION TO A CANONICAL FORM

No results have previously appeared in the literature for the general model (2.1) with

variable attrition-rate coefficients. We will now show that (2.1) may be transformed into a

simpler canonical form to which results [16], [18] for variable-coefficient Lanchester-type equa-

tions of modern warfare (3.5) may be applied. Thus, this model (3.5) is really basic for study-

ing a wide variety of combat situations (cf. Sections 5.4 and 5.5 of Taylor [16]). The substitu-

tion

(3.1) pit) = xit) exp J>> ds
, qit) = yit) exp I ais)ds

Jo

transform (2.1) into

(3.2)

-f
= -A it)q + Vit) with piO) = x .

dq_

dt
= -Bit)p + Wit) with qiO) = yQ ,

where

(3.3)

and

(3.4)

A it) = ait) exp

Bit) = bit) exp

Vit) = rit) exp

f'\Bis) -ais)]ds

-['[pis) -ais)]ds
•t o

f'(3is)ds , Wit) = sit) exp I ais)ds
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1

The transformation (3.1) is motivated by looking for an "integrating factor" for, for example,
the first equation of (2.1), as writing dx/dt + @it)x = -a{t)y + rit) suggests to one.

As we have seen above in Section 2, we may consider Equations (3.2) to model "aimed
fire" combat between two homogeneous forces with continuous replacements. However, there

is another very important set of circumstances that leads to equations of this form. Consider
aimed-fire combat between two homogeneous forces modeled by Lanchester's equations for

modern warfare (for x and v > 0)

(3.5)

dx

—fi
= -a(t)y with x(0) = *o>

dy

dt
= -b{t)x with^(O) = y .

In this model the state variables x(t) and yit) are the numbers of combatants that are effective

on each side. Consider now a fixed-force-level-breakpoint battle [16], [19] . If we introduce

new state variables Xit) and Yit) defined by

(3.6) Xit) = xit) - xBP and Yit) = y{t) - yBP ,

where xBP and yBP denote the Zand Y force-level breakpoints, then

dX

(3.7)

dt
= -a(t)Y- v(/) with X(0) = *o ~ xbp>

dY
dt

bit)X - wit) with Y(0) = y - yBP ,

where vit) = a(t)yBP and wit) = bit)xBP . These equations (3.7) have the same form as

(3.2), and thus we see that the equations (3.2) may also be taken to model force attrition

"above a unit's breakpoint." We observe that for the transformed force-level variable A" defined

by (3.6), X = corresponds to the X force reaching its breakpoint.

The force-level trajectories xit) and yit) for the model (2.1) [equivalently, (3.2) or

(3.7)], however, no longer possess a very important mathematical property that is possessed

[18] by all solutions to (3.5) with ait) and bit) ^ for all t ^ and x and y > 0: namely,

all solutions to (2.1) are no longer nonoscillatory in the strict sense that xit) and yit) can how
have more than one zero between them. Here it is convenient [and indeed usually implicitly

done when one works with analytical solutions such as (6.1.1) and (6.1.2) below] to relax the

nonnegativity restrictions on the force levels. The possible lack of such nonoscillatory behavior

will be shown by considering a specific example below. This mathematical property is trouble-

some and makes analysis of battles modeled with (2.1) much more difficult than those modeled

with (3.5).

4. REPRESENTATION OF FORCE LEVELS

The solution to the inhomogeneous differential-equation combat model (2.1) may be con-

structed out of the same "building blocks" that may be used to construct the solution to the

corresponding homogeneous system of linear differential equations. Thus, the X force level as

a function of time, xit), for the general model (2.1) may be represented as
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*(/)-

(4.1)

exp -f'(3is)ds Xq- Co (0)CP (t) - SQ iO)SP it) - y(PJTR~{CP iO)Spit) - SP {0)Cp(t)

+ R Jo
Zis)

o zis)
{CP (s)SP U) - SP is)CP it)}ds

where Zit) A(t)SU) + dR/dt- {Rit)/Ait))dA/dt = [-a(t)sit) + dr/dt - r(t)[(l/

a{t))da/dt — ait)}expfo(3is)ds}, and the hyperbolic-like general Lanchester functions (GLF)

Cp(t), Spit), CQ it), and Sgit) arise from the corresponding homogeneous system of linear

differential equations, which is considered in the next section. Thus, they hyperbolic-like GLF
Cp(t) and Spit) are linearly-independent solutions to the P force-level equation (5.4) that

satisfy the initial conditions (5.5), and CQ it) and SQ it) are similarly defined. The above result

(4.1) is readily developed by considering (3.1) and applying well-known results for inhomo-

geneous linear ordinary differential equations (e.g., see Hildebrand [7, pp. 29-30]) combined

with those for the model (5.1) [20].

5. THE MODEL WITHOUT REPLACEMENTS AND WITHDRAWALS
(COMBAT WITH SUPPORTING FIRES)

An important special case of the general linear combat model (2.1) is that in which there

are no replacements and withdrawals, i.e., rit) and sit) = 0, and in this case our combat

model becomes

(5.1)

dx
~j

t
ait)y - pit)x with x(0) = x ,

dy

| dt
bit)x - ait)y with ^(0) = y .

An essential characteristic of all solutions to (5.1) (if we forget for the time being about

the nonnegativity restrictions on x and y) is their so-called nonoscillation (here in the strict

sense).

THEOREM 1: At most, one of the two force levels xit) and yit) for the model (5.1)

can ever vanish in finite time.

PROOF: Multiplying the first of Equations (5.1) by y, the second by x, and adding; we
obtain after some straightforward algebraic manipulations

-y(xy) + {ait) + pit) + 2^lait)bit))xy = -{VaTT)y - VRTTx} 2
.

dt

whence integration yields

xit)yit) = exp[-J*
o
'{a(s) + /3(s) + 2y/ais)bis)}ds] xoyo

Jo VaJslyis) -JTUlxis) exp f
S

{air)+(3ir)

(5.2) + 2y/a(r)b(r) dr ds
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The theorem now follows by observing that the second multiplicative factor on the right-hand

side of (5.2) determines the sign of xit)yit) and that this factor can change sign at most once.

The simultaneous vanishing of both xit) and yit) is precluded by the fact that if

xita ) = yita ) = for some finite ta > 0, then the uniqueness of solutions to (5.1) would imply

that xit) = yit) = 0. ^ nQ.E.D

The significance of Theorem 1 is that the mathematical behavior of the force levels is funda-

mentally different for the models (2.1) and (5.1): we show in Section 6.2 below by the example

of the constant-coefficient version of (2.1) that (again ignoring the nonnegativity restriction on

the force levels) both x(t) and y(t) can become zero (and then negative) for the general linear

model (2.1). Thus, the addition of replacements and/or withdrawals to the model (5.1), i.e.,

take rit) or sit) ^ in (2.1), leads to fundamentally different behavior for the force-level tra-

jectories.

Another reason for briefly considering this model without replacements and withdrawals

(5.1) is that the same basic building blocks may be used to construct force-level solutions to

both (2.1) and (5.1). Thus, the X force level as a function of time, xit), for the model (5.1)

may be written as [20]

xit) = exp -J'p(s)ds [x {CQ iO)CP it)- SQ iO)SP it)}

(5.3) -yoy/*R{Cp(0)Sp(t) - SpiO)CP it)}}

,

where the hyperbolic-like GLF CP it) and Spit) are linearly-independent solutions to the P
force-level equation

(5.4)

with initial conditions

(5.5)

In
dt

2
Pit)- ait) + -7T rr

ait) dt

&-- ait)bit)p = 0,
dt

CP it )= 1,

dCP

SP it ) = 0,

ait ) dt
(/ )-0,

1
dSP

ait ) dt
(fo>-

1

The GLF CQ it) and SQ it) are similarly defined. It should be noted here that the above result

(5.3) is a special case of (4.1). Further details and analysis of the model without replacements

and withdrawals (5.1) may be found in [17] and [20].

6. THE GENERAL LINEAR MODEL WITH CONSTANT ATTRITION-RATE
COEFFICIENTS AND REPLACEMENTS

In the case of constant attrition-rate coefficients and replacements, the general linear

model (2.1) reads

(6.1)

dx
, = — ay — fix + r with x(0) — xo>

dy

dt
= - bx - ay + s with yiO) = y ,
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where a, b, a, /3, r, and 5 denote quantities that remain constant during a particular battle, and

we assume that a and b > 0, while a and /3 > 0. Although there are several different sets of

physical circumstances that may be hypothesized to yield (6.1) (see Section 2 above), we will

consider (6.1) to model "aimed-fire" combat between two homogeneous forces with supporting

fires not subject to attrition and continuous replacements/withdrawals. In this case we should

consider r and s to be replacement rates, with a negative value denoting a net rate of withdrawal

of forces. Accordingly, we will place no restrictions on the replacement rates rand 5, i.e., rand

s are unrestricted in sign.

The model (6.1) is of interest because it provides insights into the consequences of addi-

tional troops (continuously) committed to battle. We may consider a term like, for example, r

to represent the rate at which additional X forces are committed to battle. Another related

interpretation is that r represents the net rate at which the A' force enters the fields of fire of the

Y force. Such interpretations essentially apply to small-unit combat in the fire fights. We may
also (see Section 2 above) however, consider (6.1) to model combat with operational losses and

continuous replacements. In this case we may consider (6.1) to apply to large-scale combat over a

sustained period of time, and then r and s represent the rates at which additional resources are

committed to the theater of operations (see Morse and Kimball [14, pp. 71-73]). In this light,

analysis of this combat model will provide important insights into the nature of tradeoffs among
(1) direct combat capability, (2) "build-up" capability, and (3) operational losses. In terms of

the NATO scenario, the model (6.1) provides rough insights into the structure of tradeoffs

among the quality of weapon systems, the quantity of weapon systems, and the "build-up" rates

at whjch new systems are introduced into the theater of operations.

6.1. Force-Level Results

Unlike the previous variable-coefficient versions considered above, the constant-coefficient

model (6.1) yields an analytical solution that is simple enough to provide some important

insights into the dynamics of combat through direct analysis. When ab ^ a/3, the X and Y
force levels x(t) and y(t) for the model (6.15.1) are given by*

(6.1.1)

and

(6.1.2)

where

(6.1.3)

x(t) = £ + Ae (()
- ,T), + 9 + 8

Be-(e+<r)<
t

y(t) = 7)
- 9 + 8

a
Ae (e-(j)t

A = ab

29(9 + 8)
(*o -0-

+ Be

9+8

-(9+<r)t

0>0~ tj)

*An equivalent analytical result has been given by Morse and Kimball [14, p. 72]. However, their result is not in a par-

ticularly convenient form for determining the qualitative behavior of the model (6.1). Moreover, the qualitative

behavior itself of such solutions (as delineated in Section 6.2 below) was not known at that time, and consequently in-

correct battle-outcome prediction conditions were implied in [14, p. 72). Furthermore, the solution behavior shown by

the example in Table I was not detected by Morse and Kimball.
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(6.1.4)

(6.1.5)

(6.1.6)

B = ab

19(9 + 8)

9+8
a

(* -f) + (vo-tj)

t
as - ar br - jQs A , _

? = 1 , 17 = r
-^

, A = ab - aB,
A A

ff = VaTTY2
, 8 = ^=-^, and a- = *L±£

2 2

Let us also note the following identity

(6.1.7)
9 + 8 VR # +V + 1

where

(6.1.8)
d ° ^ c B — aR = — and 5 = r

,

—

6 yf^b

The parameters /? and S have interesting military interpretations, and the interested reader can

find a discussion about them in Taylor and Parry [21, p. 527], Taylor [16, p. 789], or Taylor

[17, p. 368].

When ab = aB, the X and Y force levels x{t) and.y(/) for the model (6.1) are given by

x(t) = x e- {a+P )
' +

ar — as

a + B

(6.1.9)

and

+
(Br + as)

\ (a + B) 2

y( t)=yQe-(«+P)>-

ax - ay

a + B
{1 - *-<«+*>'},

ar — as

a + B

(6.1.10) +
(as + br)

(a + B) :

ax - ay

a+B
j

{l- e-<« + 0>'}.

In this latter case, i.e., when ab = aB, the constant-coefficient combat model (6.1) possesses

the state equation

(6.1.11) b(x - x) = B(y - y) + (Bs - br)t,

which yields the overall casualty-exchange ratio is constant, i.e.,

(6.1.12) — =^
where the Zand /casualties are given by

(6.1.13) xc
= x + rt — x, and yc

= y + st - y.
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Let us observe that in all cases the instantaneous casualty-exchange ratio dx/dy is given by

(6.1.14)
dy b

J— s — — v
b b

y

which for ab = aft becomes

(6.1.15)
dy b

s — bx — ay

r - (0/b)s

s — bx — ay

In particular, for br = (Us and ab = a/3 we have the linear law

(6.1.16) b(x - x) =p(y -y).

Let us finally sketch the development of the above expressions for the force levels x(t)

and y(t). When ab ^ a/3, we may write (6.1) as

' dx
-^ = -a(y-r))-(3(x-0

dy

\ dt
= ~b(x - - a(y - tj),

whence the substitution

(6.1.18) X(t) = x(t) - { and Yit) = y(t) - -r,

transforms (6.1.17) into

[dX
dt

dY
\-jf

= -bX -aY with r(0) = v - t),

(6.1.17)

(6.1.19)

= -aY - (3X with X(0) = x - t

for which we have given a solution, i.e., expressions for X(t) and F(f), in [20, p. 118] (see

also Bach, Dolansky, and Stubbs [1]). When ab = a/3, we may write (6.1) as

(6.1.20)

dx = r-l3
dt

a
x + -y

dy

dt
= s- b x + -y

withx(O) = *o>

with^(O) = y ,

whence follows (6.1.11). The state equation (6.1.11) may then be used, for example, to elim-

inate v from the first of Equations (6.1.20), and hence the expression (6.1.9) for x(t) may be

obtained by a simple integration.

6.2. Theoretical Analysis of Solution Behavior

Determination of the qualitative behavior, e.g., battle-outcome prediction conditions, for

the linear combat model with replacements (6.1) is much more difficult than we have hereto-

fore encountered because the force levels x(t) and y(t) no longer possess a very important
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mathematical property that facilitated analysis of combat modeled with Lanchester's equations

for modern warfare (3.5): namely, all solutions to (6.1) are no longer nonoscillatory in the

strict sense that x(t) and y(t) can have more than one zero. We will give an example of such

solution behavior below. However, analysis of the qualitative behavior of the model (6.1) is

relatively straightforward when ab > a/3, i.e., the intensity of combat between the primary sys-

tems exceeds the "intensity" of the supporting fires, although the above analytical results for

x(t) and y(t), e.g., (6.1.1) and (6.1.2), are nevertheless complicated enough so that direct

analysis of them has not proven completely fruitful. We will now develop battle-outcome predic-

tion conditions for a fight-to-the-finish for this case in which ab > a/3.

We begin with a few heuristics to provide some intuitive understanding of our results.

Let us first observe that 9 — o- > if and only if ab > a/3. Hence, in this case the exponen-

tial e
(e-(r)

' in (6.1.1) and (6.1.2) is a strictly increasing function that grows without bound.

Furthermore, the signs of x(t) and y(t) for large rare opposite and determined by the sign of

A. However, further analysis and a few additional assumptions are required to convert these

preliminary heuristics into mathematically precise battle-outcome prediction results. It is

worthwhile to finally observe that then A = 0, i.e., (x — £) — (vo ~ t?)^ + 8)/b, (6.1.1) and

(6.1.2) reduce to

X ( t) - Xq e-U+<r)t + £{! _ e-(»+<r) t

) t

(6.2.1) y(t)~y e
- (e+^' + -n{l - e

-
(»+*>'}.

Consequently, one must have, for example, £ ^ in order that x(t) > for all finite t > 0.

Thus, we should anticipate having to make some sort of assumption about £ and tj in order to

develop battle-outcome prediction conditions.

The first step in the development of these conditions is to generalize the nonoscillation of

solutions to Lanchester-type equations for modern warfare to the case of the general linear

model with constant attrition-rate coefficients and replacements (6.1) (cf. Taylor [18, Theorem
1] or Taylor [20, Result 4.1]).

THEOREM 2: Assume that ab ^ a/8. Then for all finite t >

(6.2.2) either x(t) > Z or y(t) > i).

If either of conditions (6.2.2) is violated at some finite time, then the other holds for all time /

> 0.

PROOF: Recalling that the substitution (6.1.18) transforms (6.1.27) into (6.1.19) , we
observe that Equations (6.1.19) are of the same mathematical form as those for the model

without replacements and withdrawals (5.1). Consequently, we may apply Theorem 1 to

(6.1.19) and conclude that X(t) and Y(t) between them have at most one zero for all finite

time / > 0. In other words, either X(t) or Y(t) > for all finite t ^ 0, i.e., by (6.1.18) we
have shown that (6.2.2) holds for all finite / ^ 0. Furthermore, if (for example) X(t) is equal

to zero at some finite time, we know from the proof of Theorem 1 that Y(t) > for all t ^ 0,

whence follows the last part of the theorem. ~ ^ ^Q.E.D.

We can now develop rather precise battle-outcome prediction conditions if we assume that

both £ and tj > 0.
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THEOREM 3: Assume that ab > a/3 and that both £ and r\ > 0. Then the JIT force will

lose a fight to the finish in finite time (i.e., will be annihilated first in finite time) if and only if

(6.2.3) (*o -0 <
9+8

(yo- *?).

which may also be written in the equivalent form

(6.2.4) (x - O < V7T +
VI + 1 (Vo -*»?)•

Furthermore, when (6.2.4) holds, we have that for all r ^

(6.2.5) yit) > -n > 0.

Neither side will be annihilated in finite time if an only if

(6.2.6) (x - £) = V7T +V yJ+l "(Vo -»?).

and in this case

(6.2.7) lim xit) = £ > and lim y(t) = 77 > 0.
I—>+oo t—+00

PROOF: Sufficiency of (6.2.4) for the annihilation of the X force is proven by observing

that — cr > if and only if ab > aft. Consequently, we see from (6.1.1) that the A" force

level xit), which is a continuous function of time, becomes negative for t large enough when
the coefficient A in (6.1.1) is negative, i.e., (6.2.3) holds. Hence, (6.2.3) holding [equivalently,

(6.2.4)] guarantees that the X force will be annihilated in finite time, and then the last line of

Theorem 2 guaranteees that (6.2.5) holds. Necessity of (6.2.3) for the annihilation of the X
force (and also the statements concerning the nonannihilation of either side) is proven by

observing from (6.1.1) and (6.1.2) that when A = 0, i.e., (6.2.6) holds, we have via (6.2.1)

that xit) and yit) > for all finite t > 0. This result shows that X cannot be annihilated

when A = and proves the nonannihilation statements involving (6,2.6) and (6.2.7), since

(6.2.1) is readily seen to yield (6.2.7). If A > 0, then (6.1.2) shows us that yit) has a finite

zero point, since + 8 > 0. Consequently, yit) can be made to be negative for t large

enough, and Theorem 2 then yields that xit) > tj > for all finite t > 0. Thus, we have

shown that xit) can vanish only if A < 0, i.e., (6.2.4) is necessary for the X force to be annihi-

lated in finite time. n F D

Still assuming that both £ and 17 > 0, we see that the Y force will be annihilated first in

finite time if and only if the above inequality (6.2.4) is reversed. Furthermore, it should be

clear that the assumption that both £ and 17 ^ plays an essential role in these battle-outcome

prediction conditions. For example, the inequality (6.2.4) holding for the initial force levels
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guarantees via Theorem 2 that y(t) > for all t ^ only when tj > as the numerical exam-

ple depicted in Table I shows.* In this numerical example, the condition (6.2.4) is satisfied and

we consequently still have that for all t ^

(6.2.8) y(t) > 7f,

but (6.2.8) no longer guarantees that the Y force will never be annihilated when tj < 0. Thus,

(6.2.4) being satisfied no longer guarantees that Y will win a fight to the finish (i.e., a battle

that lasts until one side or the other has been annihilated) when tj < 0. In other words,

(6.2.4) is satisfied for the particular battle depicted in Table I, but the Y force is actually annihi-

lated before the X force is. Again, the reason why (6.2.4) fails to correctly predict battle out-

come is that tj < 0. This numerical example should alert the reader to the fact that determina-

tion of the qualitative behavior, e.g., battle-outcome prediction, for the constant-coefficient

model with a constant rate of replacement/withdrawal is in some sense much trickier for the

variable-coefficient model with no replacements/withdrawals (5.1).

Moreover, we can relax somewhat our assumption concerning the signs of £ and 17 and

still develop sufficient condition for a side to win a fight to the finish.

THEOREM 4: Assume that ab > a/3 and that 77 ^ 0. Then the X force will lose a fight

to the finish (i.e., a fight that lasts until the annihilation of one side or the other) in finite time

if (6.2.4) holds. We also have for this battle that y(t) > tj > for all t > 0.

PROOF: Very similar to the proof of Theorem 3, since A < 0, we know from (6.1.1) that

x(t) becomes negative for t large enough, and hence x(t) has a finite zero point. Since x(t)

can always be made to violate (6.2.2) by taking / large enough, Theorem 2 tells us that

y(t) > tj > for all t> 0. D

However, as the example depicted in Table I shows, "if-and-only-if" statements regarding battle

outcome can no longer be made when we assume that only one off and tj ^ (in the numeri-

cal example under consideration, only f ^ 0).

7. DISCUSSION

The results that we have given in this paper concerning the effects of

replacements/withdrawals on battle outcome not only are of interest in their own right, but they

are also important for understanding the behavior of complex operational Lanchester-type com-

bat models that are widely used today in both the United States (e.g., see [2], [4], [19], [22])

and also NATO countries [8], [9]. In particular, a simple combat model such as we have con-

sidered here may yield a clearer understanding of important relations that are difficult to per-

ceive in such a complex model. Furthermore, the mathematical combat model that we have

studied here is important not only for the significance of particular modeling interpretations but

also for its versatility (see Section 2 for further details). In particular, its interpretation as

'Here, we have computed x(t) and y(t) as functions of lime from (6.1.1) and (6.1.2) and have ignored the nonne-

gativity restriction on them when the differential equations (6.1) are viewed as a Lanchester-type combat model. In ac-

tual application, however, one would terminate the battle when first V = 0. Moreover, in practice one decides to do

this by computing the force-level trajectories x(t) and y(t) from (6.1.1) and (6.1.2). Thus, one is interested in these

formal mathematical solutions without consideration of the physical restriction on negative force levels.
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TABLE I— Example that

Shows that One Must Have

both £ and 17 > in Order

for the Inequality (6.2.4)

to Correctly Predict

a Y Victory

in a Fight-to-the-Finish.

t x(t) y(t)

0.00 200.00 60.00

0.1 172.26 33.31

0.2 151.52 13.73

0.3 135.94 -0.56

0.4 124.17 -10.92

0.5 115.19 -18.33

0.6 108.25 -23.53

0.7 102.79 -27.07

0.8 98.40 -29.35

0.9 94.76 -30.65

1.0 91.64 -31.18

1.1 88.85 -31.11

1.2 86.27 -30.53

1.3 83.78 -29.53

1.4 81.30 -28.15

1.5 78.76 -26.43

1.6 76.10 -24.37

1.7 73.27 -21.99

1.8 70.23 -19.28

1.9 66.92 -16.22

2.0 63.31 -12.79

2.1 59.36 -8.98

2.2 55.02 -4.73

2.3 50.23 -0.02

2.4 44.96 5.19

2.5 39.15 10.97

2.6 32.72 17.36

2.7 25.63 24.43

2.8 17.80 32.35

2.9 9.15 40.89

3.0 -0.41 50.44

3.1 -10.98 61.00

3.2 -22.66 72.67

3.3 -35.56 85.57

3.4 -49.82 99.82

3.5 -65.57 115.58

NOTE: In this battle we have

taken (in compatible units)

a = b= 2, a = (3 = \, r= 0,

and S = 150. It follows that

(6.2.4) is satisfied but with £ =
100 and 7) = -50.
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1

representing a simple model of large-scale combat over a sustained period of time with replace-

ments continuously committed to battle generates particular interest within the framework of

the NATO scenario with regard to rough insights into the structure of tradeoffs among the qual-

ity of weapon systems, the quantity of weapon systems, and the "build-up" rates at which new
systems are introduced into a theater of operations.

Unfortunately, the general linear model with replacements/withdrawals (2.1) is much
more difficult to analyze than its simpler versions (3.5) and (5.1) previously studied (e.g., see

[16] for further details and references; also [17], [20]). We show how the general linear model
(2.1) could be transformed to a simpler canonical form (3.2), but unfortunately this canonical

form has not been much studied. We did see, however, that a fixed-force-level-breakpoint bat-

tle modeled with Lanchester-type equations for modern warfare (3.5) does lead to this same
canonical form. More importantly, solutions to the canonical form (3.2) were shown to exhibit

qualitative behavior (at least in special cases) markedly different from that for Lanchester-type

equations of modern warfare (3.5). In particular, nonoscillation in the strict sense was shown
not to hold for solutions to (at least the constant-coefficient version of) (2.1).

We showed how to represent the force levels for the model (2.1) in terms of general Lan-

chester functions corresponding to the model without replacements/withdrawals, but these

analytical results do not appear to be of much practical significance for developing insights into

the dynamics of combat. More importantly, we showed in Theorem 1 that all solutions to this

model without replacements/withdrawals had the property of being nonoscillatory (in the strict

sense) in marked contrast to that of those to the general model (2.1) (recall the example dep-

icted in Table I). This analysis of solutions to (5.1) turned to be be particularly significant

when we saw that it could be applied to the constant-coefficient version of (2.1).

In hopes of developing insights into the dynamics of combat, we turned to the general

linear model with constant attrition-rate coefficients and replacements (6.1) because of the

apparent opacity of analytical results for its variable-coefficient version. Unfortunately, analyti-

cal results for the force levels to (6.1) turned out to be so complex (although wholly and expli-

citly expressible in terms of elementary functions, i.e., exponentials) that we were unable to

determine the qualitative behavior of the force-level trajectories by direct examination of these

analytical results. However, we were able in Theorem 2 to generalize the nonoscillation of

solutions to this model by transforming its equations (6.1) into those for combat with only sup-

porting fires (5.1) [recall Equations (6.1.19)]. Theorem 2 was particularly significant because

we were able to develop the battle-outcome prediction conditions of Theorems 3 and 4 by using

it.

The complexity of solution behavior for the constant-coefficient model (6.1) was

apparently not appreciated in the earlier work of Morse and Kimball [14], and consequently

incorrect battle-outcome prediction conditions were implied in [14, p. 72] (recall the example

depicted in Table I). Because of our previous theoretical examinations (particularly with

respect to the nonoscillation of solutions) of the simpler models (3.5) and (5.1), we had

developed enough analytical machinery to profitably study the more complex model at hand

(2.1) [especially its constant-coefficient version (6.1)]. Such results were, of course, not avail-

able when Morse and Kimball wrote their pioneering book on military operations research [14].

Finally, the reader should note that we have shown how various Lanchester-type combat

models are transformable into each other and consequently how results for simpler models can

be adapted to the study of more complicated ones.
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8. CONCLUSIONS

(I) Analytical results for Lanchester-type models with continuous replacements

and/or withdrawals are much more complicated than those for models without

replacements/withdrawals. The complexity of these analytical results is such that

general results concerning the qualitative behavior of solutions in general is

required for the study of theier qualitative behavior in specific instances.

(II) The problem of studying a fixed-force-level-breakpoint battle modeled with

Lanchester-type equations for modern warfare is mathematically equivalent to that

of studying a fight to the finish with continuous withdrawals on both sides.

(Ill) The force-level trajectories for the so-called general linear model with continuous

replacements/withdrawals behave in a fundamentally different way (at least in

special cases such as constant coefficients) than do those for the corresponding

model without replacements/withdrawals (i.e., so-called combat with (only) sup-

porting fires). In particular, for the general linear model with continuous replace-

ments, both sides may successively be annihilated in battle if the force-on-force

attrition equations are not "turned off' at the right time, and this phenomenon
makes battle-outcome prediction particularly difficult.
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ABSTRACT

The power of the component randomization test for the paired sample loca-

tion test is compared to the power of the parametric test for paired comparisons

using the sum of differences distribution. This analysis is presented in the form

of operating characteristic curves for normal, exponential, uniform and abso-

lute lambda observations over a range of small sample sizes.

1. INTRODUCTION

Little study of the power of component randomization tests for paired comparisons has

been undertaken for finite sample sizes. Knowledge of the power is important for evaluating

the tradeoffs between the robustness and computational ease of the various tests. The com-
ponent randomization test, the most powerful distribution-free test, has the disadvantage of

requiring great computational effort. The corresponding parametric test, which assumes

knowledge of the exact form of the distribution of the test statistic, would be expected to have

more power than distribution-free tests which do not make use of this information, but

knowledge of this distribution is rare. The normal test is of interest because it is widely used

and uniformly most powerful in the case of normally distributed observations.

Quantifying the difference in power between the first two tests is helpful in deciding

which test to use in a particular situation. The power of the normal test under the null

hypothesis, which is the probability of type I error, is important in determining the degree of

inappropriateness of the normal test for various underlying distributions.

In Deutsch and Schmeiser [1], [2], methods were developed to study the component ran-

domization test and the exact corresponding parametric test, respectively. The methods are

general in that they are appropriate for any underlying distribution and sample size. These

techniques are implemented here, using also the methods of quantile estimation discussed in

Deutsch and Schmeiser [3] and of process generation discussed in Schmeiser and Deutsch [4],

to estimate the power of various tests of location for the paired sample design.
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Specifically, the tests considered are the component randomization test, the corresponding

parametric test, and the commonly used normal test. The "corresponding parametric test" is to

reject H if the test statistic is greater than the (1-a) quantile of the distribution of the test

statistic. In the case of normally distributed observations, the parametric test and the normal

test are one and the same.

In the next section, an overview of the analysis performed for each underlying distribu-

tion and sample size in later sections is described. In Section 3 an analysis of the power of

these tests under several specific distributions and sample sizes is presented. Lastly, in Section

4, conclusions of the analyses are delineated.

2. ANALYSIS METHODOLOGY

Before looking at specific results, the steps necessary to determine the powers of the tests

of interest are now discussed. Conceptually, the approach is straightforward, requiring only two

steps:

(a) Determine F~ l

(p), the plh quantile of the reference distribution F for the

parametric test. The power of the parametric test or the normal test may then be

determined from 1-/3=1 — F(Ca — yfnEidJcr}) where Ca is the (1-a) quan-

tile of For the normal distribution.

(b) Generate TV samples of size n from the distribution of interest with specified

expected differences. For each sample perform the four tests and update a

counter for each test which rejects H . The count divided by TV is then the esti-

mate of the power of the test.

Thus the power of the parametric tests may be determined from either phase. Note that

the power of the component randomization test may be determined only from Phase 2.

3. THE POWER OF CERTAIN TESTS

In this section the results arising from the techniques developed previously are presented.

The probability of type II error, /3, which is one minus the power, is given in both tabular and

graphical form for each of the tests for various underlying distributions and sample sizes. The
aim of this section is to examine some specific examples to determine the relationship of power

to other factors in a general way. The normal, exponential, uniform, and absolute lambda cases

are examined. These distributions were selected to illustrate the effect of tail weight and shape

on the power of the tests.

In each section results are given in the form of operating characteristic (O.C.) curves.

The curves for sample sizes 4, 7, 11, and 15 are grouped by underlying distribution and a
value, the values of a considered are 1/128, 1/16, and 1/8, the closest values to .01, .05, and

.1 of the form ml2" where n is integer. These values are necessary since a can take on only

values of this form for permutation tests.

Normal Observations

In this section the power of the tests of interest, presented in the form of O.C. curves, are

compared for the case of normally distributed observations. Since the appropriate parametric

test is the normal test, only the component randomization and normal tests are of interest here.
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Figure 1 shows graphically the results of this section, which are also presented in tabular

form in Table 1. Several observations can be made from the graphs corresponding to a =
1/128, 1/16, and 1/8, respectively:

Normal

Random za.ti.on

Figure 1. Operating characteristic curves from normal observations.
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TABLE 1 — Type II Errors (fi) ofRandomization and Parametric

Test (Standard Deviations Shown in Parentheses)

8/0-

n

.5 1.0 1.5

X,Y- N(0,.5)

a= 1/128= .0078125 za = 2.417

7
.991875

.991875

.93 (.0046)

.86

.71 (.0083)

.41

.3800088)

.06

11
.991875

.991875

.8400081)

.78

.35C015)

.18

.03600059)

.005

15
.991875

.991875

.76 (.017)

.69

.15C013)

.07

neg

neg

a = 1/16 = .0625za = 1.534

4
.9375

.9375

.7700066)

.70

.5000079)

.32

.2400067)

.07

7
.9375

.9375

.64C0088)

.58

.1900072)

.13

.02 (.0026)

.01

11
.9375

.9375

.490011)

.45

.05100070)

.04

neg

neg

15
.9375

.9375

.380020)

.35

.01200040)

.01

neg

neg

a = 1/8 == .125za = 1.1 50

4
.875

.875

.61 (.0077)

.56

.2700069)

.20

.075 (.0042)

.03

7
.875

.875

.46(.0091)

.43

.0900051)

.07

.00500013)

.002

11
.875

.875

.330010)

.31

.01600040)

.015

neg

neg

15
.875

.875

.220017)

.22

.003800022)

.003

neg

neg
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1. The value of /3 decreases as sample size increases.

2. The value of /3 decreases as E{dJ a-} increases.

3. The value of (3 decreases as a increases.

4. The normal test, which dominates the component randomization test in this case

of normally distributed observations, has asymptotically the same power as the

component randomization test. The dominance of the normal test decreases as a
increases and as n increases. This is logical since many observations are needed

for the tail areas of the randomization reference distribution to be well developed.

An a value far out in the tail requires more observations for the same power.

Thus, for normally distributed observations, the largest loss of power in using the

component randomization test is for small n and small a.

Exponential Observations

Results are given here for exponentially distributed observations. The form of the results

is the same as for the normal case of the last section, except here the parametric test is distinct

from the normal test.

Figure 2 shows the parametric reference distribution for the parametric test under

exponential observations as determined by Phase 1. The upper half of the reference distribu-

tion is plotted on normal probability paper for sample sizes n = 4, 7, 11, 15, and infinity. The
reference distribution as n approaches infinity is the normal distribution (the straight line in the

figure) with the difference between the normal distribution and the parametric reference distri-

bution for finite sample sizes being greatest for small samples. For all sample sizes the normal

distribution lies above the parametric reference distributions above approximately the 95%
quantile and below the parametric reference distribution otherwise.

Table 2 contains the results of this section in tabular form. Three tables are shown,

corresponding to a = 1/128, 1/16, and 1/8, respectively. Each of the entries are the probabil-

ity of type II error, /3, for various values of n and E{djcr). Results for the component random-

ization test are in the columns labeled "R." Similarly the parametric test results are under "P"

and the normal test results are under "N." For the randomization test the estimate of the stan-

dard deviation of the result is given in parentheses. The results for "P" and "N" are determinis-

tic calculations from the results of Phase 1. The critical values used for the parametric test are

determined from Figure 2 and are given in the right-hand column under Ca .

The most surprising aspect of these results is that the power of the parametric test does

not dominate the power of the component randomization test. Especially for alternative

hypotheses close to // , the component randomization test has more power for all n and values

of a. At first glance this is counter-intuitive, since the usual circumstance is that power is lost

in obtaining distribution-free properties. Note that over the range of values of E{dja-}, how-

ever, the parametric test is indeed more powerful.

An intuitive rationale for the greater power of the component randomization test for alter-

native hypotheses close to the null hypothesis is as follows: the reference distribution for
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Figure 2. Reference distributions arising from exponential observations.
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TABLE 2 — Type II Errors (p) for Randomization (R), Parametric (P), and

Normal (N) Tests Arising from Exponential Observations

8 D .5 1.0 1.5

can R P N R P N R P N R P N

X,Y ~ Exp

a = 1/128= .0078125 za
- 2.417

7
127 127— ==£ .990
128 128

.86

(.0063)

.89 .86 .59

(.0090)

.48 .40 .34

(.0086)

.07 .06 2.54

(.02)

11 -121 ill 990
128 128

.76

(.013)

.80 .79 .30

(.0089)

.20 .18 .07

(.0046)

.008 .007 2.49

(.01)

15
227 J27
128 128

.66

(.024)

.70 .69 .13

(.023)

.08 .07 neg neg neg 2.47

(.03)

a = 1/16= .0625za = 1.534

4 .9375 .9375 .940 .67

(.0074)

.70 .69 .40

(.0077)

.30 .31 .21

(.0065)

.06 .07 1.51

(.004)

7 .9375 .9375 .939 .54

(.0091)

.61 .61 .17

(.0069)

.12 .13 .035

(.0034)

.01 .01 1.52

(.007)

11 .9375 .9375 .938 .42

(.016)

.45 .45 .0.68

(.0046)

.04 .04 .005

(.0013)

.0005 .0005 1.53

(.004)

15 .9375 .9375 .938 .34

(.019)

.34 .34 .01

(.007)

.01 .01 neg neg neg 1.53

(.02)

a -1/8- 1.25za - 1.150

4 .875 .875 .89 .51

(.0079)

.54 .56 .22

(.0065)

.16 .18 .08

(.0043)

.03 .035 1.09

(.004)

7 .875 .875 .88 .40

(.0090)

.43 .41 .09

(.0052)

.06 .07 .013

(.002)

.005 .005 1.11

(.006)

11

15

.875 .875 .88

.875 .875 .88

.29

(.014)

.20

(.016)

.30

.20

.30

.20

.03

(.0031)

neg

.01

neg

.01

neg

.002

(.0008)

neg

neg

neg

neg

neg

1.13

(.006)

1.14

(.01)
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exponential observations has heavier tails than the normal (a 4 = 3.75 for n = 4, and the nor-

mal value is a 4
= 3) while the randomization reference distribution has light tails (a 4 < 3)

since its range is always finite. A distribution with a high value of a 4 is more peaked and has

heavier tails than a distribution with smaller a 4 . Small a 4 values indicate light tails and heavy

shoulders. Now an alternative hypothesis close to the null hypothesis is more easily detected

by the distribution with heavy shoulders, in this case the randomization reference distribution,

since many observations are close to the mean. On the other hand, alternative hypotheses in

the tails are more easily detected by the parametric test due to its reference distribution having

more observations in the tails.

Note that the power of the normal theory test is very similar to the parametric test.

While not appropriate for exponential observations, the nominal value of a is not far from the

true value, as indicated in the columns under E{d
i
/cr} = 0. The power of the normal test is

similar to the power of the parametric test for all alternative hypotheses and sample sizes,

although the greatest difference is for small sample sizes where the parametric reference distri-

bution differs the most from the normal distribution.

Note also that as the sample size increases the results of all three tests converge to the

same values. This must be true for the parametric and normal tests due to the central limit

theorem. This is equivalent to the reference distributions becoming the same in Figure 2 for

large sample sizes. The component randomization test also converges to the same power for

large sample sizes, since this test is asymptotically the normal theory test for large sample sizes.

However, the nonnormality in terms of sample size is of interest here.

Figure 3 shows graphically the values of Table 2 for the parametric and component ran-

domization tests. The normal test is not shown since it is only approximately correct for this

case and since the results are so similar to the parametric test. All of the same general relation-

ships between a, n, and Eidja-) are true here as for the normal case. /8 decreases as any of

the three factors increase. The striking difference is that the parametric test does not dominate

the component randomization test, as just discussed.

It is of interest to compare the results of this section to those of the last section for nor-

mal observations. The power of the component randomization test is generally greater for

exponential observations than for normal observations, the greatest difference being .1 for

n = 4, a = 1/16, and E{dja-) = .5. However, for large values of E[d
i
/<r} and/or for large n

the normal observations lead to the greater power. In these cases the power is so great for both

tests, however, that the difference is not usually important. Thus it appears that the component
randomization test actually has better overall power for exponential observations than for nor-

mal observations.

This relationship does not hold true for the parametric test. For small a, the parametric

test performs best under normal observations. For a = 1/16 the test has similar power for both

types of observations and for large a values the parametric test performs best for exponential

observations. That this should be true is obvious from Figure 2. The reference distributions

all cross the normal distribution around the .95 quantile. Since power of the parametric test

depends on this distribution only through the (1-a) quantile, power should indeed be similar

for a = 1/16.
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Paranetric

Randomization
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Figure 3. Operating characteristic curves from exponential observations.
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Note that the result of all the parametric reference distributions having the same .95

quantile is that the normal theory test is very close to exactly valid for exponential observations

for any sample size if a ~ .05. Smaller or larger values of a lead to inaccuracies in the normal

test.

Uniform Observations

Results corresponding to those of the last section are given here for uniformly distributed

observations. Figure 4 shows the reference distributions for sample sizes n = 4, 7, 11, 15, and

infinity arising from uniform observations. Again the straight line, the normal distribution, is

the limiting distribution as n approaches infinity. Not shown is the limiting case of n = 1, the

distribution of the difference between two uniformly distributed random variables, which is the

triangular distribution. All of these reference distributions have a finite upper bound and there-

fore lie above the normal line, whereas the exponential reference distributions were below the

normal distribution. Note that, for the a values considered, the reference distribution is essen-

tially identical with the normal. Only for a greater than .01 is the difference noticeable in Fig-

ure 4 and even there it is not as great as in the case of exponential observations.

.005

.01

c>

.02
J
5
3
cy

.05

Figure 4. Reference distributions arising from uniform observations.
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Table 3 shows the probability of type II error for various sample sizes and alternative

hypotheses E{djcr} for the component randomization and parametric tests. From the table it

would appear that the normal test works well in this case as an approximation to the true

parametric test, even for small sample sizes.

TABLE 3 — Type II Errors (ft) for Randomization (R), Parametric (P),

and Normal (N) Tests Arising from Uniform Observations

8£>

n

.5 1.0 1.5 ca

R P N R P N R P N R P N

X, YUniform

a = 1/128= .0078125 za
= 2.417

7 lH 121 oo
128 128

' .93

(.004)

.85 .85 .74

(.008)

.40 .41 .42

(.009)

.06 .06 2.39

11
_127 127

128 128
.87 .80 .80 .40 .19 .19 .03 .004 .004 2.40

(.01) (.01) (.015) (.12) (.005) (.002)

15 121 J21
128 128

.81

(.03)

.67

(.04)

.67 neg neg 2.41

a = 1/16= .0625za = 1.534

4 .9375 .9375 .94 .68

(.006)

.70 .70 .54

(.007)

.32 .32

(.007)

.27

(.006)

.07

(.003)

.07 1.53

7 .9375 .9375 .96 .65

(.009)

.57 .58 .21

(.007)

.14 .14 .02

(.002)

.005 .006 1.53

11 .9375 .9375 .96 .50

(.02)

.45

(.02)

.45 .05

(.006)

.04

(.005) neg 1.53

15 .9375 .9375 .94 .34

(.04)

.29

(.04)

.29 neg neg 1.53

a- 1/8- .125za = 1.150

4 .875 .875 .87 .52

(.006)

.56

(.006)

.56 .30

(.006)

.19 .19

(.004)

.08

(.003)

.03 .03 1.15

7
.875 .875 .87 .40

(.009)

.43 .43 .09

(.005)

.07 .07 neg neg neg 1.15

11

15

.875 .875 .87

.875 .875 .87

.32

(.01)

.19

(.03)

.30

(.01)

.18

(.03)

.30

.18

.01

(.004)

.01

(.004)

neg

neg

neg

1.15

1.15

The results for uniform observations are similar to those of the prior two cases, with /3

decreasing as a function of n, a, and E{dj/o-}. Again of interest is that the component random-
ization test has greater power (lesser /3) for Eidja-) = .5 and a = 1/16 and a = 1/8 than the

parametric test. That is, even though the parametric test has better power for most combina-

tions of /?, a, and E{djcr}, it does not dominate the component randomization test.
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It is apparent by comparing Tables 1 and 2 that the normal test does indeed approximate

the properties of the parametric test well in this case. The power never differs by more than

.01 except for large values of Eld/fa} where the difference in tail weights between the uniform

and exponential distributions has an effect. If, however, a value of .0001 and a small sample

size were used, Figure 4 shows that the normal test is not so good an approximation since

C9999, equal to 3.35 for n = 4, does differ from the normal value Z9999 = 3.45, resulting in a

biased indication of the true a value.

Absolute Lambda Observations

In the previous three subsections, the power of the component randomization test and the

corresponding parametric test has been examined for normal, exponential, and uniform obser-

vations. These three distributions were selected as three distributions representing a wide range

of tail weights. The uniform has the lightest tails (fi 2
= 1-8), the normal has medium tails

(/3 2
= 3), and the exponential distribution has heavy tails (/3 2 = 9). A question of interest is

whether tail weight, as measured by the fourth standardized moment, is really the central factor

in determining the effect of underlying distribution on the power of the tests.

An analysis similar to the last three sections is performed here to gain insight into the

fourth moment's impact on power. In particular, observations are generated from the absolute

lambda distribution (Deutsch and Schmeiser [4], with moments one through four identical to

the standardized normal distribution. Despite having the same skewness and kurtosis, this den-

sity function has a shape quite unlike the normal.

Figure 5 shows the reference distribution arising from the aboslute lambda distribution

with parameters Xj = 0, \ 2
= — 1.575, X 3

= —.2247, and X 4
= .5 for a sample size of four. The

reference distributions for larger sample sizes are not shown since in the figure they would not

be distinguishable. Also included, for comparitive purposes, is the normal distribution which

appears as a straight line. While the difference between the reference distribution shown and

the normal is slight, compared to previous examples, it is significant. The major difference

between this and previous examples is that the nonnormality occurs in the body, rather than

the tail, of the distribution.

Table 4 shows the results of the Monte Carlo determination of the power of the com-
ponent randomization and the parametric tests for this underlying distribution. The results for

the normal test and the parametric test are identical to two places of accuracy, and therefore the

results are given only for the parametric test. For the cases studied, the power of the test does

not differ noticeably from the results for normally distributed observations. Note, however,

that the power of the component randomization test is somewhat less for these observations

than for normal observations. The discontinuity of the underlying distribution seems to affect

the component randomization test while not affecting the parametric test.

4. CONCLUSIONS

The power of the component randomization test and the parametric test is given in the

form of operating characteristic curves for normal, exponential, uniform, and absolute lambda

observations. The power of the component randomization test is usually less than the power of

the appropriate parametric test, but is not dominated for all alternative hypotheses. That is, in

some cases, the distribution-free randomization test has more power than the parametric test

which assumes knowledge of the exact distribution of the observations, including variance.
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Figure 5. The reference distribution arising from absolute lambda observations for n = 4.
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TABLE 4 — Type II Errors (ft) for Randomization (R), Parametric (P) ,

and Normal (N) Tests Arising from Absolute Lambda Observations

(0, 2.227, -.224745, .5)

8/(7

n

.5 1.0 1.5

R P R P R P

a = 1/128 = .0078125 za = 2.417

7 .89 .87 .87 .42 .30 .06

11 .87 .78 .36 .19 neg

15 .72 .68

(.036)

.14

(.028)

.08 neg

a = 1/16= .0625 za = 1.534

4 .71 .67 .68 .32 .18 .06

7 .66 .59 .21 .14 .013 .007

11 .52 .47 .04 .03 neg

15 .37 .34

(.039)

.013

(.009)

.013 neg

a= 1/8= .125 za = 1.150

4 .66 .58 .29 .20 .06 .03

7 .49 .45 .09 .07 .003 .001

11 .33 .32 .01 .01 neg

15 .29 .23

(.035)

.006

(.006)

neg

The robustness of the normal test of location, a well-known property, was observed in

relation to the performance of the correct parametric test. The difference in reference distribu-

tions is seen to be greatest in the tails of the distributions for common distributions. The
power of the component randomization test is different for normal and absolute observations,

even though both have identical first four moments. The power of the parametric test, on the

other hand, is essentially the same for both types of observations.

Since in practice the appropriate parametric test is not known, the component randomiza-
tion test is a viable alternative to the normal test for samples no larger than 25. Especially

when the variance is unknown the component randomization test costs little in terms of power
loss.
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ABSTRACT

Preference for food in the function of the time since last consumption and

total preference in the function of eating frequency are equivalent mathematical

representations of attitudes governing food consumption. The observed and

postulated properties of these functions imply a formal correspondence between

preference maximizing and variety seeking behavior.

INTRODUCTION

Repetitive consumption is defined here as the phenomenon of consuming identical goods

repeatedly over time. Repeated demand for identical goods may stem from technological

necessity such as replacement, or from the desire to obtain the sensory stimulus associated with

the consumption of known commodities. This article is concerned with the latter case.

Food consumption is the most prevalent example of repetitive consumption, although the

same phenomenon may be manifested in "consuming" music, sights, or even certain fragrances.

The common characteristic of these phenomena is that the act of consumption tends to create a

feeling of satiation that inhibits the desire for further stimulus of the same kind for at least a

short time period. As time progresses, however, the desire may build up again, and the

consumption-satiation sequence is repeated.

The mathematical representation of this process is possible through the formulation of a

preference function over time which expresses the desire for consuming a particular food item

during the consumption-satiation cycle. The evidence reported by Balintfy, Duffy and Sinha [1]

indeed indicates that such a preference-time function exists. Responses to questionnaires indi-

cated that preference, i.e., the indicator of anticipated satisfaction, increases monotonically as a

concave function of time since last consumption.

Another aspect of this phenomenon is the frequency of consumption for food items and

people's ability to estimate their desired frequency. It was postulated that such frequency esti-

mates are meaningful only if they are predicated upon optimizing behavior. In that case the

desired frequency estimate must be the locus of the maximum of total preference as a function

of eating frequency. Indeed, when school lunches were planned on the basis of a quadratic
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approximation of these preference-frequency functions, double blind experiments showed a

significant increase in participation and food consumption [Balintfy, Rumpt, Sinha 2].

The purpose of this article is to show that the preference-time and preference-frequency

relations are equivalent properties of repetitive consumption and the functional forms of these

relations follow a well-defined rule of correspondence. Further analysis of these equivalence

relations appears to explain variety seeking behavior in terms of mathematical optimization

models.

The equivalence relations identified in this paper provide the theoretical foundation for

selecting the appropriate utility functions and coefficient estimation procedures in related sur-

veys. These utility functions are very important in optimizing menu planning and scheduling

decisions by mathematical programming techniques for a variety of institutional food service

systems. Experimental evidence indicates that preference maximized menus do increase satis-

faction and/or decrease food cost significantly in practice [3].

DEFINITIONS:

a. /(/) is the preference-time function where t is the time interval at which a unit

portion of a food is consumed.

b. x = T/t is the frequency of consumption over a time horizon T.

c. g(x) is the preference-frequency function representing the total preference

obtained during a time period T by consuming a unit portion of an item x times

repetitively at / = T/x times apart during that period.

d. g(x) = xfit) = xf(T/x), T > 0.

Graphs of the functions /(/) and g(x) are illustrated below.

A fit) k s(x)

Figure 1 . Preference-Time Function
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Figure 2. Preference-Frequency Function
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PROPOSITION 1: If fit) is a twice differentiable continuous function defined for t ^ 0,

strictly concave, monotonically increasing, bounded from above and has a positive root, i.e.,

fitQ) = for tQ > 0, then

(i) lim t/(t) -
I
— oo

(ii) The function gix) = xfiT/x) with T > is strictly concave for x ^

(iii) The function gix) obtains its maximum at a unique finite point x* which is a

solution of the equation f(T/x) = (T/x)f(T/x).

(See Figures 1 and 2.)

PROOF:

(i) Since /(/) > 0, it is clear that t fit) ^ 0. Let us assume that there exist

e > and a sequence /„
— oo for which tnfitn ) ^ e. We may assume for a

subsequence that tn+x/tn > 2, i.e., t„/2 > tn- X
. Then /(/„) ^ e/tn and since fit)

is a decreasing function, it is implied that fit) ^ e/tn for t ^ t„. Consequently,

fU„) - fit„ID > ie/tn ) itjl) - e/2. Since the (r„/2, t„) intervals are not over-

lapping, fitn ) > £ {/(/,) - fitjl)} +fUi/2) > « (e/2) + fitJT) which con-

tradicts the assumption that /(/) is bounded,

(ii) We need only to prove that the second derivative g"ix) is negative for x > 0.

Let

(1) g'ix) = fiT/x)- iT/x) fiT/x)

Then

g"ix)= (T2/x3
)fiT/x).

Since /(/) is strictly concave, fiT/x) < 0. The nonnegativity assumption on x implies

that iT2/x3
) > 0, which preserves the inequality, i.e., g'ix) < is proved.

(iii) Since g(x) is strictly concave, its unique maximum occurs where its first deriva-

tive vanishes, i.e., g'(x) = 0. This implies by (ii) that: fiT/x) = iT/x)fiT/x),

or by substituting / = iT/x),

(2) /(/) = tfit).

To prove that (2) has a positive solution, t* = iT/x*) > 0, implying that the

corresponding x* is finite, let us consider the expression hit) = fit) — tfit). The
function hit) is < for t < tQ , since fit ) = 0, and positive for / > f* since

t-fit)—*0. By continuity, the equation hit) = must have a solution for

t = t* > t . At that point, f*, gix) attains its maximum, since the second derivative

g'ix) is strictly negative at x* = T/t*:

g'ix*) = iT2/x*3
)fiT/x*) = it*

3
/ T)fit*) < 0.
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COROLLARY 1: The tangent of gix) at x = is equal to the upper bound of fit), i.e.,

giO) = lim fit) = a. Taking the limit in (1) as x —> 0, and taking into account (i)

t—'OO

giO) - lim {f(T/x) - (T/x)f(T/x)} = a

since

lim fiT/x) = lim fit) = a and lim iT/x)fiT/x) = lim t/it) = 0.
X—'0 /—»oo x—'0 t—»°°

COROLLARY 2: The value of x at which g(x) obtains its maximum is given by

x* = (T/t*) where /* is the abscissa of the point where the line from the origin is tangent to

/(/). By (2), fit)/t = fit) at t = t*, i.e., the mean of the function is equal to its derivative.

This is also the point where f(t)/t reaches its maximum and the cord from the origin becomes

the tangent.

PROPOSITION 2: If g(x) is a continuous twice differentiate concave function, with a

zero root, i.e., giO) = 0, and bounded from above, then fit), defined as /(/) = (t/T) g(T/t)

where Tis a positive constant, t > 0, has the following properties: (i) it is strictly concave, (ii)

it is monotonically increasing, (iii) it is bounded from above, and furthermore, (iv) if g(x) has

a maximum at a positive finite point, then fit) has a positive root.

PROOF:

(i) In order to show the concavity of fit), it is sufficient to prove that fit) < for

t >

/it) = n/T)giT/t)- n/t) g'iT/t)

fit) = (77

r

3
) g'iTlt).

Strict concavity of gix) implies g"ix) < for every x. For t ^ 0, iT/t3
) > 0,

preserving the inequality. So /'(/) < or fit) is a strictly concave function.

(ii) In order to show that /(/) is monotonically increasing, it is sufficient to prove that

fit) > Ofor / > 0, or by (3):

(4) giT/t) > iT/t)g'iT/t).

Using the mean value theorem for the points iT/t) and 0, we get:

giT/t)- gi0)= iT/t)g'iT/r)

where

(5) < iT/r) < iT/t).

Since it is given that giO) = 0, (4) becomes: iT/t)g'iT/r) > iT/t)g'iT/t), or since

iT/t) > 0, then g'iT/r) > g'iT/t) which is always true for a strictly concave function

because of (5).

(iii) Since gix) is bounded from above, and giO) = 0, there always exists a large number,

say a, such that gix) < xa for x ^ substituting x= iT/t) it > 0), we get

giT/t) < iT/t)a or fit) = it/T)giT/t) < a i.e., fit) is bounded from above.
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(iv) For the last part, we have only to prove that the equation /(/) = 0, or by definition the

equation (t/T)g(T/t) = has a solution for t > 0. That can be done only if:

(6) g(T/t) = 0for t >

However, since g(x) starts from 0, i.e., g(0) = 0, and obtains its maximum at a posi-

tive finite point, being always strictly concave for x ^ 0, there will exist a positive

x = x > x* for which it becomes again. In other words, there exists a / > such

that (T/t ) = x > 0, for which (6) holds.

Applying the above properties to well-known results concerning the maximization of con-

cave functions, the following two corollaries are stated without proof:

COROLLARY 3: If a time horizon T is partitioned into /, time intervals, such that
m

£ tj = T, and the preference-time function /(/,-) for a given item is a concave twice

i-l

differentiable function, then optimal repetitive consumption strategy over time implies that all

the time intervals must be equal, i.e., tj = tj for all / and j. This is to say that at optimum the

marginal preferences with respect to time must be equal, and that is equivalent with the propo-

sition that at optimum the time intervals of consuming the same food are equal.

COROLLARY 4: Given concave unimodal preference-frequency gj(xj) for different food
m

items j = 1, 2, . . . , n, and positive quantity K such that £ Xj = K, then the consumption fre-

y=l

quencies of the foods, x
7

, are optimal if the marginal preference with respect to the eating fre-

quency is equal for each item, provided x, > 0. This solution is feasible only if gj(xj) = A has

a positive root for all j, which is not necessarily assured.

COROLLARY 5: Optimal consumption frequencies that are all positive and all integers

always exist if K is integer.

PROOF: The corollary implies that the following nonlinear integer programming problem

always has solution:

n

PI maximize £ gjixj)

J-\
n

subject to £ Xj = K
7-1

xj >
Xj, K are integers.

Let Xj be expressed by the auxiliary variable yy where

7=1,2 n

subject to

/-O

X
J

m
= 1

/-0
Cfy.

y>j
= 1

y>j >

assuming that x
y

is bounded by the intervals < x,- < /n

for all /
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Similarly

m
gj(xj) = ^gjiOyij •

1-0

Then we have the following piecewise linear programming

representation of PI:

n m
P2 maximize £ £ SjiOy^

y-i /-o
n m

subject to £ £ iy
tj
= K

j-\ /-0
m

j;^ =1 y = i, 2, ... n .

J>(, ^ 0.

The above linear programming problem has n + 1 rows and consequently an

(« + l)x(/j + l) basis. This means that for (n — 1) variables, /? — 1 convexity constraints

can be satisfied if, and only if, ytj
= 1 yielding n — 1 integer frequencies. The remaining two

variables are, however, on adjacent grid points of the same item due to the concavity of gj(xj)

and according to the simplex rule of optimization. Let these points be /and / + 1. Then the

subproblem:

iyij + (i + \)yi+lJ + N = K

where N < K, and both N and AT are integers, can have positive solution if, and only if, either

y,j or yi+ ij is zero. Consequently, P2 must have a degenerate solution which assures that all

the frequencies of solving PI are nonnegative integers. Thus, the optimum consumption fre-

quencies for PI can always be determined by linear programming.

CONCLUSIONS

The empirical evidence concerning the shape of preference-time and preference-frequency

functions was utilized to derive results to show that these functions are describing equivalent

mathematical properties. Consequently, one of the functions can always be derived from the

other.

This finding is important for the consistent estimation of the parameters of the functions

chosen for the analytical representation of the phenomena under study. If, in the simplest

case, the perference-frequency function is approximated by a quadratic function, then the

preference-time function will be hyperbolic. In this case, it is sufficient to estimate the upper

bound of fit) and the locus of the maximum of g(x), i.e., one parameter from each function.

For more complex functions the precision of curve fitting can be improved by imposing the

equivalent properties of both functions on the data points used.

Another important result is the theoretical foundation this investigation yields for the

proper formulation of objective functions for planning human diets. The augmentation of PI

or P2 with nutritional and other desired constraints leads to the formal statement of preference

maximizing menu planning problems further described in Balintfy and Sinha [4]. The solution

of these problems has a great importance in institutional menu planning and in individual diet

planning.
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In a more general sense, the existence of preference-time functions explains why repeti-

tive consumption may yield optimal consumption frequencies. Vice versa, whenever variety

seeking consumption behavior occurs, the presence of preference-time functions can be rightly

assumed.
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ABSTRACT

This paper describes the background of the Office of Management Budget

Circular A-21, "Principles for Determining Costs Applicable to Grants, Con-

tracts, and Other Agreements with Educational Institutions," that describes the

requirement for effort reporting. A sampling procedure is proposed as an alter-

native to 100% reporting.

1. INTRODUCTION

Following the March, 1979 publication of the revised Office of Management Budget Circu-

lar A-21 "Principles for Determining Costs Applicable to Grants, Contracts, and Other Agree-

ments with Educational Institutions,"! which promulgates the cost principles to be used in the

determination of cost charged to government sponsored agreements, there was an undercurrent

of faculty dissatisfaction with the revised rules. Of major issue was, and still is, the require-

ments relating to reporting of faculty effort charged directly or indirectly to government agree-

ments.

The two acceptable methods for effort reporting contained in the revised A-21 are con-

tained in section J. 6 of that document and are called Monitored Workload and Personal Activity

Reporting. The Monitored Workload method can be used for faculty and professionals only,

whereas the Personal Activity Reporting method can be used for all personnel.

The major objection raised by the faculty centered on the requirement (under either sys-

tem) to account for 100% of their effort applicable to each sponsored agreement, each indirect

cost category, and each major function of the University. This level of accountability was con-

sidered burdensome, arbitrary, and to some extent, useless work because of the interrelated

nature of the research, instruction and other activities of the faculty. The results of such effort

reports, though fulfillng the documentation requirements established by the regulation, were

known to be arbitrary and therefore inaccurate, and with the added detail terribly expensive for

institutions to implement.

That the assessment of direct and indirect costs is, at times, highly subjective and approxi-

mate was also recognized by the government. Section J.6.b of OMBA-21 states:

•This work was supported, in part, under Contract N00014-75-C-0561 with the Office of Naval Research.

tThese cost principles were revised again in July 1982.
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"... it is recognized that, because of the nature of the work involved in academic institu-

tions, the various and often interrelated activities of professorial and professional

employees frequently cannot be measured with a high degree of precision, that reliance

must be placed on reasonably accurate approximations and that acceptance of a degree

of tolerance in measurement is appropriate."

Because of dissatisfaction with the new effort reporting guidelines, the major research

institutions formed a task force under the auspices of the Association of American Universities

(AAU) to develop alternative methods of gathering faculty effort without the burden necessi-

tated by the new regulations. As a consequence of their deliberations, it was suggested that a

method of statistical sampling be used to determine the indirect effort performed by the faculty.

The results of the sample could then be used in determining indirect cost rates.

It was also noted that too often the approximations made in effort reporting resulted in

very poor data. To improve the data, the faculty would have to be apprised of what specific

costs are to be labeled a direct or indirect cost. By cutting the scope of reporting, a sampling

procedure would permit increased dialogue between the administration and faculty thereby ena-

bling the faculty to have a better understanding of the process.

The idea of statistical sampling was explored between Stanford University and the Office

of Management and Budget. The OMB felt the idea had possibilities and suggested that Stan-

ford submit a formal proposal. The authors carried out some preliminary work to describe how
such a system would work, and a plan was presented to OMB and a panel of Federal statisti-

cians. After their review, agreement was reached to proceed with a more detailed study to

include the process, the sample sizes to reach a 90% confidence level with a probable 5% error

and the statistical formulas to produce the desired data.

The plan was completed in January, 1981 and submitted and accepted by OMB which had

chosen ten universities who had expressed interest in using the statistical method as test of the

proposal. Unfortunately, of those institutions who submitted their proposals based on the sta-

tistical model, the implementing agency wanted the test made in parallel with a standard J.

6

method so that the results could be verified. In essence, this stringent requirement virtually

terminated further consideration by the institutions.

However, on January 7, 1982, after several months of added effort by the AAU and other

higher education associations, a proposal for revision of section J. 6. of A-21 was placed in the

Federal Register. Included in the proposed revision is paragraph J.6.b(2) (c), which reads:

"(c) The payroll distribution system will allow confirmation of activity allocable to each

sponsored agreement and each category of activity needed to identify indirect costs and

the functions to which they are applicable. The activities chargeable to indirect cost

categories or the major functions of the institution for employees whose salaries must

be apportioned (see J.6.b(l) (b) above ) if not initially identified as separate categories,

may be subsequently distributed by any reasonable method mutually agreed to, includ-

ing, but not limited to, suitably conducted surveys, statistical sampling (emphasis added)

procedures, or the application of negotiated fixed rates."

It is assumed that the public comment will be overwhelmingly favorable to the proposed

revision, which makes the publication of the method developed at Stanford by the authors
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timely. Use of the method would allow confirmation of salaries directly charged to sponsored

agreements by confirming notations on the monthly expenditure reports and less costly (and

less disruptive for the faculty), gathering of data necessary for indirect costing purposes. What

follows is the proposal that was submitted to OMB as a statistical sampling model.

2. THE SAMPLING PLAN

The proposed sampling plan is designed for a particular university for a particular purpose.

However, the method can be extended to other organizations and for other purposes.

The sample is designed to determine the amount of effort expended by the faculty in

indirect activities such as departmental research, university and student service administration.

For example, if the indirect activity departmental administration is of interest, then we need to

estimate the total cost, T, expended by the faculty engaged in that activity

T = f\S\ + /#%,

where fj is the fraction of time that the jlh faculty members devote to departmental adminis-

tration, Sj is the academic year salary of the jlh faculty member and N is the number of

relevant faculty. There will be similar totals for university administration, research administra-

tion, etc.

Because faculty differ with respect to their activities, we use a stratified sample thereby

reducing the sample variance of our estimates. Two methods of stratification appear natural in

a university context, namely, rank and disciplines.

For stratification by rank four strata may be appropriate: professors, associate professors,

assistant professors, department chairs and faculty with major administrative duties.

Stratification by discipline might include the Schools of Medicine, Engineering, and Education,

the Physical Sciences, Social Sciences, the Humanities, etc. In making these divisions it is

important to emphasize that within each stratum the faculty should be relatively homogeneous.

Definition of the Universe

The universe is assumed to be all faculty who conduct sponsored activities and have other

duties funded from nongovernment sources, including the departmental operating budget. Also

included would be faculty totally funded from the operating budget or a combination of operat-

ing budget and other nongovernment sources. A faculty person funded 100% on sponsored

agreements or patient care would be excluded from the universe. Since the results of the sam-

ple need to be generalized to the universe it represents, the sample must reflect the elements

necessary to fulfill the objective of the universe.

The Strata

At Stanford University strata were chosen using a combination of both the rank and dis-

cipline criteria. These were:

(1) Medical School department chairs.

(2) Other department chairs and laboratory directors.
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(3) Full professors in the sciences.

(4) Full professors in other fields.

(5) Associate professors.

(6) Assistant professors.

3. DETAILS OF THE SAMPLING PLAN

3.1 Preliminaries

For_each stratum, we have available the total number, A/,, of faculty members, and the

average, Yh of the product of academic year salary and proportion of time devoted to depart-

mental administration. Consequently, we can also determine the sample variance, S?, of the

/-values. That is

s,
2 = i(r- y,)

2/^- i).

Actually, much of the above data is unknown beforehand. However, some preliminary

estimates are essential if we are to sample with a specified degree of accuracy. One procedure is

to obtain estimates from past data, or from a sample of past data. Indeed, an examination of

past data may also lead to improved stratification. At Stanford an examination of 1979-1980

data was used to estimate the needed parameters and also to establish the use of the strata.

3.2 Choice of Sample Sizes

The design depends on choosing an overall sample size, n, and an allocation into the vari-

ous strata. The total sample size depends on the confidence level, c, and a given relative error,

e. The higher the required confidence, the larger the required sample size; the smaller the rela-

tive error, or equivalently, the greater the precision, the larger the required sample size. The
sample size also depends on the variances in each stratum, but not in a simple way.

The determination of n is given by

m _ (£A^,) 2
T2

(U n =
W1 + INjS,2 W1 + V'

where T — LA7
,-?,, V = IA/,S,

2 and W depends on the confidence level, c, and the relative

error e:

(2) W = e(Total)/c*,

where the total is the estimated true total cost of administration, c* = <J>
-1

((1 + c)/2), and $
is the standard normal cumulative function.

Once the sample size is chosen, the allocation n
t
to stratum / is made in the proportion

(3) n, =
**A i

n, tii < A7
,.
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3.3 An Example

The following data with five strata are fictitious.

Variance 5,
2 Stratum

Stratum

Number JV,

in stratum

in each

stratum

standard

deviation S, N,S,
XNjSj

N,S,2

(in millions) (in thousands) (thousands) (in millions)

A B C D E F G
1 20 100.00 10.0 200 .110 2000

2 50 4.00 2.0 100 .055 200

3 200 9.00 3.0 600 .329 1800

4 250 6.25 2.5 625 .342 1562.5

5 300 1.00 1.0 300

T= l,825

.164

1.000

3.0

V= 5,862.5

If we wish to estimate the total amount spent on departmental administration to within

5% of the true total with 90% confidence, and if we estimate the true total to be more than $7

million, then from (2)

w (.05) (7,000,000) ... .,,W
L645

= 212,766,

where c* = 1.645 is obtained from the tables of normal distribution. From (1)

(1,825,000) 2

' (212.766) 2 + (5,862,500,000)

which we round upward to n = 66.

= 65.1,

The allocation to strata is now obtained from the proportions in column F. Thus, stratum

one will have a sample size 66(. 11) = 7.3. The results for the five strata are

7.3, 3.6, 21.7, 22.6, 10.8.

Since these values are not integers, it will be safest to round up to

8, 4, 22, 23, 11,

which yields a total sample size of 68.

Because Stanford is on a quarter system, the sample sizes within strata are divided into

thirds, representing the three quarters. To avoid unequal numbers per quarter, and to simplify

the procedure, we round upwards so that the samples are divisible by 3, namely,

9, 6, 24, 24, 12.

Thus, for example, we would sample four per quarter in the fifth stratum. The total sample

size would now be 75.
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Remark

An alternative procedure, if a sample is not divisible by 3, is to randomize the remainder.

For example, in the fifth stratum, take three faculty per quarter and assign the remaining two at

random to two quarters.

4. DERIVATIONS AND TECHNICAL RESULTS

We now provide some of the derivations and rationale for the formulas. Formulas that

are standard are not derived.

Let yijk be the v value of the yth faculty member in stratum / for quarter (semester) k.

[Since Stanford is on a quarter system, we use three quarters in our discussion. However the

procedures are easily modified for use at a university with the semester system.]

A sample of size n is chosen and then partitioned in accordance with the allocation

N,S,
n, — n, a?, < Nit

in each stratum, where we assume that /?, is rounded upward to be divisible by 3 (or 2). We
then measure the >>-value of 1/3 (or 1/2) of the sample in each stratum each quarter (or semes-

ter).

A notation is needed to denote measurements taken in each of the quarters, and we use

yh and y\ and y t
to denote the sums of ^-values in quarters 1, 2, 3, respectively. That is

7=1

In,

y'i= £ yU2

7=H,+1

y) - L y<ji>

y=2n,+ l

where n, = nj2>.

The sampling procedure has two-stages: In the first stage we sample the faculty within

each stratum, and in the second stage, sample by quarters (semesters). The quantity to be

estimated is

3

(3) ^=111 Y
ijk/X

i~\ j-\ k-\

where g is the number of strata. The estimate used is

(4 ) y=z— (yi + yi + yX

which has variance

(5) V(Y)= V(E(Y\samp\e)) + E(V(Y\sample)).

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. 4, DECEMBER 1982



A SAMPLING PROCEDURE AND PUBLIC POLICY 665

Presumably, V{E{Y\ sample)) is large compared to £(F(y|sample)).

Consider the population with values

YU
= jO'yl +Jty2 + J'</3)-

The total Y* is just F, and our sampling scheme reduces to a single-stage, stratified simple ran-

dom sample. Also,

which has variance

2rc*^2N,HS*)

N, "i

i
n

i 7=1

1
- nf = V(Y*).

With optimal allocation, nf = ni^Sf/T*), where T* = LNa S*. Then

N?Sf t*
"

T*N
:
S*

V(Y*)= £ N,ST
1
-

M = 1 1
'

= zw —- 5;

7^*2
= i (/*

where V* = I7V,S* 2 Now, 5* < Sh so that

T2W) < -— v.

n

Also, because the expectation is linear,

F(£(r|sample)) = V

Consequently, V(Y) > V(Y*), and

= r(y*).

W) = w*) < -— k
/J

which suggests the approximation

T2

1 y= y(Y).
n

For relative error e with confidence coefficient c, we must have

P{Y(\ - e) < Z < r(l+e)} ^ c,

where Z is normally distributed with mean Kand variance V(Y) = (T2/n) —V. This requires

that the condition
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(7) 2<D( W) = 2<D (eY/JT(T)) - l> c

be satisfied. But (7) is equivalent to

'
\ + c-leY/jTTn > <f>

where 4> is the standard normal cumulative distribution. Consequently,

V(Y)= — - V ^ W2
,

n

from which we obtain

T2

(8) n > W2 + V'

This formula is slightly optimistic because it allows for fractional allocation to strata and

because V(Y) was approximated. Since Tand Fare not known exactly, further caution would

be used in picking n.
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ABSTRACT

This paper considers an inventory system in which demand occurrences ar-

ise according to a stationary Poisson process, demand sizes at each occurrence

follow a logarithmic distribution, and leadtimes are random variables with the

gamma distribution. Both the exact and approximate distribution for leadtime

demand are derived and computations are performed which compare the ap-

proximation to the exact distribution. The results have application to both

repairable and consumable item inventory systems.

1. INTRODUCTION

Many of the inventory models which are used in practice reply upon knowing the proba-

bility distribution of demand over a leadtime. The common assumption is that this distribution

is normal. However, in certain circumstances, the normality assumption may in inappropriate.

The purpose of this paper is to derive the exact distribution of leadtime demand under the fol-

lowing assumptions: customer requisitions occur according to a stationary Poisson process,

requisition sizes follow a logarithmic distribution and leadtime is a random variable with the

gamma distribution. In addition to deriving the exact distribution of leadtime demand, we

compare our results to actual operational data and discuss a variety of approximations.

A number of researchers have considered the problem of determining inventory operating

policies when requisition size exceeds one. For example, Hausman [6] extends Hadley and

Whitin's [5] heuristic while Archibald and Silver [1] derive optimal (s,S) policies. These stu-

dies differ from ours in two ways. First, in every case leadtime was assumed to be determinis-

tic. Second, they focus primarily on describing optimal and suboptimal ordering policies. Our

interest is in a detailed examination of the distribution of demand over leadtime.

VOL. 29, NO. 4, DECEMBER 1982 667 NAVAL RESEARCH LOGISTICS QUARTERLY



668 S. NAHMIAS AND W. S. DEMMY

2. THE LOGARITHMIC DISTRIBUTION

The logarithmic (or log series) distribution was originally derived by Fisher, Corbet and

Williams [4] and has been discussed by Sherbrooke [11] in connection with inventory problems.

It can be derived as a limiting case of the negative binomial distribution and has the form

(1) fix) -4t 7T for* =1,2, ... forO<0<l.
—x ln(l - 9)

A maximum likelihood estimator for 9 is obtained as follows. The likelihood function,

L(9), is

(2) L(9) = 9"*[-ln(\ -9)]~"

L'(9) = rix
9™- l [-\n(\ - 9)]~"

+ 9"~x(-n)[-ln{\ -9)\-"- x

1 -9

The maximum likelihood estimator, 9, solves L'(9) = or

n(9)"*- ] [-\n(\ - 9))-"- l {x(-ln(\ - 9))-9/{\ - 9)) =

which gives

(3) x =
(1 -0)ln(l -9)

where x is the observed sample mean. (This estimator could have also been derived by the

method of moments as suggested by Chakravarti, Laha and Roy [3].) Note that this is a tran-

scendental equation in 9 which can be solved efficiently by interval bisection since the right

hand side is an increasing function of 9. Alternately, one can use a recursive scheme as fol-

lows: let (o = 9/1 — 9) then (3) is equivalent to 3cln(l + co) = co. This suggests the recursion

co„ +1 = x\n(\ +u)n). As an example, the observed sample mean of the data represented in

Table 1 is 3.94. Starting with w = .5 we obtain

co, = 1.5975

oil ~ 3.76

a> 3
= 9.08328

W7 = 9.11864

which results in 9 = o> 7/(l + co 7 ) = .9012. Using this value in (1) we can compare the

observed and theoretical frequencies for a typical item. These results, which are reported in

Table 1 show the close agreement between the observed and predicted cumulative distribution

functions for this item.

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. 4, DECEMBER 1982



LOGARITHMIC POISSON GAMMA DISTRIBUTION 669

TABLE 1 — Comparison of Observed Frequencies and Those Predicted

by Logarithmic Distribution for a Typical EOQ Type Item

Number of Observed Theoretical Observed Theoretical
X

Observations Frequency Frequency Cumulative Cumulative

1 93 .4247 .3896 .4247 .3896

2 31 .1416 .1755 .5663 .5651

3 13 .10594 .1054 .6257 .6705

4 15 .0685 .0712 .6942 .7417

5 10 .0457 .0514 .7399 .7931

6 15 .0685 .0386 .8084 .8317

7 8 .0365 .0298 .8449 .8615

8 8 .0365 0.235 .8814 .8850

9 3 .0137 .0188 .8951 .9031

10 4 .0183 .0152 .9134 .9190

11 7 .0320 .0125 .9454 .9315

12 3 .0137 .0103 .9591 .9418

13 .0000 .0086 .9591 .9504

14 1 .0046 .0072 .9637 .9576

15 2 .0091 .0061 .9728 .9637

16 1 .0046 .0052 .9774 .9689

17 .0000 .0043 .9774 .9732

18 1 .0046 .0037 .9820 .9769

19 .0000 .0031 .9820 .9800

20 2 .0091 .0027 .9911 .9827

25 2 .0091 .0008 1.0000 .9915

3. THE LPG DISTRIBUTION

Let us now assume that requisitions are generated by a Poisson process and the requisi-

tion size has a logarithmic distribution. (That is, the demand process is a compound Poisson

process with logarithmic compounding distribution.) It is well known that (see, for example,

Quenouille [10]) that the total number of units demanded in any fixed time r, say Z(t), has the

negative binomial distribution. In particular, we obtain

P{ZU) - x) =
r(

,

c/

T
t* ) - 9V'9>(4) for x = 0, 12,

where c = —k/ln(\ — 9) and A is the requisition arrival rate.

Boswell and Patil [2] give fifteen different derivations of the negative binomial distribu-

tion, thus accounting for its power in describing many common phenomena.

Now let us assume that the procurement leadtime, t, is a continuous nonnegative random
variable with probability density g(r). In general, the number of units demanded during a ran-

dom leadtime t is a random variable with probability function h(x) given by

(5) h(x)= C f(x\r) g{r)dT
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where f(x/r) is the probability function of the number of units demanded in a time t. Under

our assumptions, /(x/t) has the negative binomial distribution. Since ct is, in general, not an

integer, we use the gamma function representation for the factorials, so that

(6) h(x) « £ C F(
w \X) " 0)" 8(r)dr.

x! J o T{CT)

(7)

Using the fact that Via) = (a — l)T(a — 1), we have

i very 7=0 k=l

where the coefficients Sxk are known as Stirling numbers of the first kind and can be computed
from the recursion

(8) Sxk = 5
,

x_ 1Jt_] + (x — 1) Sx_\ k ,

for k = 1, 2, .... x and x = 1, 2, ....

with Sx0 = for all x.

Furthermore, from the definition of c,

(9) (1 - 60" = exp{cT ln(l - 0)} = e~kT ,

so that we may now write

ax x

(10)
*• A:=l

We now specialize to the case where g(r) has the gamma distribution with parameters a
and /3 so that

(11) g(r) = -^r- t"-' <r" T
for t > 0.

TCa)

Since leadtimes must be nonnegative, the gamma distribution should provide sufficient flexibil-

ity to model leadtime variability in many operating environments.

Using the fact that

(12) Jo

°°

t*^- 1 e- (K+^ )T = T(k+ a)/(X + p)
k+a

and that, as above,

(13)
T(a)

= Z <*
J
Skj,

7=1

we obtain the following as the probability function for the number of units demanded in a lead-

time:

(14) h(x) =
08/ (X + /8))«

X +/8

a

*• x-1

C

X +/S

for x =

& Y, a% for x-1, 2, 3,
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We call this the LPG distribution (for Logarithmic-Poisson-Gamma). Its four parameters

are a, /3, 9 and A. (9 and A. determine c). An example of the LPG distribution is presented in

Table 2 for a = 1, (3 = 1, 9 = .8 and A = 1.

TABLE 2 - The LPG
Distribution Parameters

a = 1, = J,

9 = .8, X = 1

X h(x) Hix)

.5000 .5000
i

i .1243 .6243

2 .0806 .7049

3 .0589 .7638

4 .0451 .8089

5 .0355 .8444

6 .0283 .8727

7 .0228 .8955

8 .0185 .9140

9 .0151 .9291

10 .0124 .9415

11 .0101 .9516

12 .0083 .9599

13 .0069 .9668

14 .0057 .9725

15 .0047 .9772

16 .0039 .9811

17 .0032 .9843

18 .0027 .9869

19 .0022 .9892

20 .0018 .9910

4. A RECURSIVE FORMULA FOR THE DETERMINATION OF THE LPG DENSITY

For numerical calculations, we found the following recursion to be useful. Let us assume
that a is integer, and let C, = (p/(\ + /3))

a and C2
= c/(\ +/3). Further, using (13) let us

define

(15)
ax

x.k — M i *-2 ^x.k
(a + k- 0!

(a- 1)!

(16)

Hence, hix) may be computed as a sum of Txk :

hix)- £ TXik .

k=\
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Note that Tx0 = since Sx = and that

t r
{9Cl)X

(« + *-D!
xx l '

xl (a -1)1

(n) = (ecjxia + x - i) rx_ ljJC_,

since 5XX = 1. Using (8), we may now write Txk in terms of Tx_\ k \ specifically, we obtain

(18) TXik = l[C
2 (a + k- DT^ifcl, + (x - 1) Tx_ hk ).

Thus, Mx) may be evaluated using only Tx_ lk terms. This provides significant reductions in

computer memory and calculation requirements compared to a direct evaluation of (14) for

each x.

5. APPROXIMATIONS

Many inventory models require computing reorder points from fractiles of the leadtime

demand distribution. Finding exact fractiles of the LPG distribution might be too demanding

computationally for many real applications. In this section we consider an approximation which

uses a scaled version of the Poisson distribution to approximate the negative binomial distribu-

tion.

The mean and variance of Z(t), the number of units demanded in time /, are, respec-

tively,

(19) E(Z(t)) = ct9/{\-9).

(20) VAR(Z(f)) = ct9/(l - 9)
2

,

which gives VAR(Z'(/))/£(Z(f)) = (1 — 0)
-1

. In certain circumstances, one may have

knowledge of the variance to mean ratio of the demand which can then be used to estimate 9

directly.

The approximation is based upon replacing the negative binomial distribution of Z(t)

with a scaled Poisson distribution. Let Y be a Poisson random variable with parameter /x /and
let Wbe defined by W = AT for some k > 0. We may think of W as a random variable which

assumes values 0, k, 2k, ... and whose distribution depends upon the two parameters /x t and

k.

Since

(21) E(W) = k IJ.t

(22) VAR(W) = k 2
fit

we have VAR(W)/E( W) = k. Thus, we set k = (1 — 9)~ x
to achieve the same variance to

mean ratio. Comparing the mean and variances of Wand Z{t) we see that fi = c9 (recall that

c = -X/ln(l -9)).

Since the negative binomial distribution is defined on all nonnegative integers, we would

like the approximation to be defined on the nonnegative integers as well. We have found the

following procedure works well. Assume that the scaled Poisson probabilities are shifted to

k/2, 3k/2, Sk/2, ... so that
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(23) P{W = (n + 1) k/2] = n = 0, 1, 2, ... .

We then assume that the cumulative distribution function is linear between nk/2 and
(n + \)k/2. As an example, suppose 9 = .75, t = 1, c = 2 (that is A = 2.77). Then

fj,

=
1.5, * = 4 and

p[W=2} = e"M'= -2231

p{W = 6} = e^'fit- -3347

/>{^= 10} = e^Vrt"*- - 251

/>{^= 14} = e-"V^)
3/3!= .1255

etc.

The comparison of the exact negative binomial probabilities and the scaled Poisson

approximation is presented in Table 3 for this case.

TABLE 3 — Comparison of Negative Binomial and Scaled Poisson Approximations

(9 = .75, t = 1, c = 2,\ =2. 77)

V Negative Bionomial Negative Binomial Scaled Poisson Scaled Poisson
A

Probabilities Cumul. Probabilities Cumul. Probabilities Probabilities

.0625 .0625 .0744

1 .0938 .1563 .0744

2 .1055 .2618 .2231 .0744

3 .1055 .3673 .0837

4 .0989 .4662 .0837

5 .0890 .5552 .0837

6 .0779 .6331 .5578 .0837

7 .0667 .6998 .0628

8 .0563 .7561 .0628

9 .0469 .8030 .0628

10 .0387 .8417 .8088 .0628

11 .0312 .8729 .0314

12 .0257 .8986 .0314

13 .0208 .9134 .0314

14 .0167 .9361 .9343 .0314

15 .0134 .9495 .0118

16 .0106 .9601 .0118

17 .0085 .9685 .0118

18 .0667 .9753 .9814 .0118

19 .0053 .9806 .0035

20 .0040 .9846 .0035

21 .0033 .9879 .0035

22 .0026 .9905 .9955 .0035

We now obtain an approximation to the LPG distribution by averaging the scaled Poisson

approximation of the negative binomial with the gamma distribution of leadtime. That is,

(24)
(x/k)l«*'>-*>- J."*» •*££

T(a)
dr.
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But this integral is exactly a Poisson mixture with a gamma distribution which is still

another way that the negative bionomial distribution can be derived (see Baswell and Patil [2]).

Hence, the approximation for the LPG distribution is a scaled version of the negative binomial

distribution. The approximation therefore is:

(25) P{Z(r) = kx}^ (tt +
*~il!

!

x! (a — U!
[ p

1

a

M
n+p

forx = 0, 1, 2,

Note that these probabilities are defined on 0, k, 2k, .... As with the scaled Poisson we
suggest shifting these probabilities to k/2, 3k/2, . . . and approximating the probability func-

tion by assuming the cumulative distribution function is linear between these fractile points.

We tested a variety of cases and found the fit to be excellent, especially in the tails. In Table 4

we compare the exact LPG probabilities for the parameter set considered in Table 2 with the

scaled negative binomial approximation. Note_that since 9 = .8, we have k = 5 and the

approximate cumulative probabilities (labelled H(x) in the table) are defined at the points 2.5,

7.5, 12.5, etc. The final column gives the approximate cumulative distribution function defined

on the positive integers obtained from a linear interpolation between the fractiles. Notice the

close agreement between the exact and approximate cumulative probabilities in the tail of the

distribution.

TABLE 4 — The Scaled Negative Binomial Approximation

to the LPG Distribution

(Parameters are the same a those of Table 2)

X
Exact Probabilities Approximate Probabilities

h(x) H(x) H(x) h(x)
Approximate

Cumulative

.5000 .5000 .1905 .1905

1 .1243 .6243 .1905 .3810

2 .0806 .7049 .6667 .1905 .5715

3 .0589 .7638 .1174 .6889

4 .0451 .8089 .0444 .7333

5 .0355 .8444 .0444 .7777

6 .0283 .8727 .0444 .8221

7 .0228 .8955 .8889 .0444 .8665

8 .0185 .9140 .0296 .8961

9 .0151 .9291 .0148 .9109

10 .0124 .9415 .0148 .9257

11 .0101 .9516 .0148 .9405

12 .0083 .9599 .9630 .0148 .9553

13 .0069 .9668 .0099 .9652

14 .0057 .9725 .0049 .9701

15 .0047 .9775 .0049 .9750

16 .0039 .9811 .0049 .9799

17 .0032 .9843 .9877 .0049 .9848

18 .0027 .9869 .0033 .9881

19 .0022 .9892 .0016 .9897

20 .0018 .9910 .0016 .9913
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6. THE FIRST FOUR MOMENTS OF THE LPG DISTRIBUTION

Knowledge of the moments of a complex distribution can be utilized in a variety of ways.

The moments can be used to estimate the distribution parameters or to approximate the distri-

bution itself. We derive the first four central moments (moments about the mean) of the LPG
distribution.

The distribution of Z(r), the number of units demanded in time t, is negative binomial

with parameters q = 9, p = 1 — and n = ct. From Kendall and Stuart [7], the first four

cumulants of the negative binomial distribution are given by

K
x
= nqlp, K2

= nq/p2
, K3

= nq(l + q)/p
3 and K4 = nq(\ + Aq + q

2)/p*.

The first three cumulants are equal to the first three central moments, respectively, while the

fourth central moment, fi 4 is given by

/x 4 = K4 + 3K2 -

Hence, the first four central moments (f.f.m.) of Z(/), say /t /( 1 < / < 4, are

(26) Ml = ct9/(l - 9)

(27) n 2
= ctB/iX - 9)

2

(28) ^3= ct9(\ +0)/(l -0) 3

(29) fi 4
= ct9(l +49 + 9 2 + 3ct9)/(l - 9)

A

In order to derive the f.f.m. of the LPG distribution, we use the following relationships

which can be found in Parzen [8], p. 55: Let Zand Y be two (dependent) random variables.

Then

(30) E(Y) - E[E(Y\X)]

(31) VAR(K) = E[VAR(Y\X)) + VAR[E(Y\X)]

(32) n i(Y)~E\ti 3 (Y\X)]+fi i [E(Y\X))

(33) fi 4 (Y) - E[ti 4(Y\X)] + 6£[VAR(y|jr)] • VAR[E(Y\X)]

+ (i 4 [E(Y\X)]

where

(34) fi 3 (Y) = E[(Y-E(Y)) i
]

(35) n 4 (Y) = E[[Y- E(Y)]*]

In the context of our problem, we interpret Yas Z(t) and Z as t. It follows that

£(Z(t)) = £[£[Z(t)|t]]

= E[ct9/(1 - 9)]

(36) = ca0/p(l - 9).
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Similarly,

(37)

(38)

(39)
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VAR(Z(t) = £[VAR(Z(t)|t] - VAR[£(Z(t)|t)]

= E[ctO/(1 - 9)
2
] + VAR[ct6»/(1 - 9)]

= ca9/(fi(l - 9)
2
) + (c9)

2
a/(/3

2
(l - 9)

2
)

= ca9/\p(l - 9)]
2

{ft + c9).

Following the same kinds of arguments, one eventually obtains

ca9

(jl 4 (Z(t)) =

[j8(1-0)P

ca9

{/3
2
(1 +9) + 2c 2

9 2
}

{/3
3
(1 +49 + 9 2

) + /3
2c9(3a + 1)

08(1 -9)V

+ 6pc29 2a + c
3 3 (3a + 6)}.

These results can be used to derive exact expressions for the skewness and kurtosis of the

LPG distribution. In particular the skewness, say SK, is given by

SK = »> 3 (Z(.t))/[VAR(Z(t))]
3'2

and the kurtosis (KU) is given by

^(/ = a14 (Z(t))/[VAR(Z(t))]
2

.

In Table 5 we present examples of the relationship between the mean, variance, skewness

and kurtosis for a variety of system parameters. We can see that each parameter has a different

effect on the four measures considered. The mean and the variance both increase with A, a and

9 (although at different rates) and decrease with /3. The skewness appears to be most sensitive

to changes in a and /3 while the kurtosis to changes in alpha, /3 and X and is relatively insensi-

tive to changes in 9.

TABLE 5 — Means, Variances, Skewness, and Kurtosis for

Various System Parameters

a 9 k Mean Var SK KU
1 1 8 2.49 18.60 1.78 20.94

1 1 8 12.43 216.56 1.38 7771.43

1 1 8 10 24.85 741.96 1.57 84723.23

2 1 8 4.97 37.21 1.26 76.94

5 1 8 12.43 93.02 .79 789.73

10 1 8 24.85 186.04 .56 5393.6

2 8 1.24 7.76 2.77 54.77

5 8 .50 2.73 5.01 169.02

10 8 .25 1.30 7.53 366.37

1 1 1.05 2.28 1.09 3.34

1 3 1.20 3.16 1.18 9.99

1 5 1.44 4.97 1.32 20.35

1 9 3.91 54.36 2.15 17.12

1 95 6.34 167.07 2.52 16.85

1 99 21.50 2611.9 3.35 22.89
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ABSTRACT

Let X denote the life of some system. We define the observed hazard rate

at time /, call it R(t), as the instantaneous probability (density) of failure of X
at time / given survival up to / and given a complete description of the system

state at /. We conjecture that the total observed hazard— namely,

ftf R(t)dt— is an exponential random variable with mean 1 and verify this for

the special case when X is the distribution of system life of an n component
system having an arbitrary monotone structure function.

1. INTRODUCTION

Let X denote the survival time of some item and suppose X has distribution function F
and density / Then, the hazard rate function of A'— call it \(t) — is defined by

kW
I- Fit)'

As

\U)dt = P[t < X < t + dt
I
X > t),

we can interpret X(r) as the instantaneous probability (density) that an item of age /will fail.

The distribution /"can be expressed as

1 - F(t) = exp[- f'\(s)ds),
•> o

implying that

1 - F(X) = exp{- f \(s)ds}.

*This research has been partially supported by the Office of Naval Research under Contract N00014-77-C-0299 and the

Air Force Office of Scientific Research (AFSC), USAF, under Grant AFOSR-77-3213B with the University of Califor-

nia.
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Now, as is well-known, 1 — F(X) has a uniform distribution on (0,1) and as the negative loga-

rithm of such a random variable has an exponential distribution with mean 1, it follows that

o

or, in words, the total hazard experienced by the item is exponentially distributed with mean 1.

C x

J \(s)ds — Exponential (1),

In the above, the hazard rate at time / was defined to be the probability (density) of

failure at / given survival up to that time. Now, however, let us suppose that we define the

observed hazard at time t— call it R(t) — to be a random variable which represents the actual

probability (density) of death at time / given not only the fact of survival up to time / but also a

complete description of the "state" of the item at that time. (Such a quantity would, in general,

be a random variable as it would be a function of the "state" of the item at time / and the state

would itself generally be a random variable.) For instance, for a given individual, R (t) would

denote the probability (density) of failure at time /given the life history of the individual up to

time t.

C x
We conjecture that I R (t)dt is also an exponentially distributed random variable and in

j o

the following section, we verify this conjecture in the case of an n component coherent system

in which components function for a random time and then fail.

2. COHERENT SYSTEMS AND THE OBSERVED HAZARD

We are given a system consisting of n components each of which is at all times either

working or failed. In addition, we suppose that whether or not the system is working is solely

determined as a function function— call it — of the component states. That is, letting x, equal

1 or according to whether or not the \

lh component is working, then we suppose that there

exists a nondecreasing binary function such that

<f>ix) = <f>(x\, .... xn )
=

1 if system works under state vector x

otherwise

Suppose now that component / is initially working and will work for a random time having

distribution F
t

at which time it will fail, / = 1, . . . , n. Once a component has failed, it

remains failed from that time on. Let x,(/) equal 1 if component / is working at time t and

otherwise and define the random sets C(t) by

C(t) = {/ : 0(1,, x(t)) = 1, 0(0,, x(t)) = 0}

where 0(1,, x) = <f>{x x
, ... , x,_i, 1, xi+\, ... , xn ) and 0(0,, x) = 0(xi, .... xH \,

0,x, +1 , . . . , x„). In words, C(t) is the set of critical components at time /, where a component

is critical at some time if its failure at that time would cause the system to go from working to

failed.

If we let L denote the length of system life, then assuming independence of components,

the total observed hazard experienced by the system during its lifetime could be expressed as

Jo 21 ^iU)dt = total system hazard
ifCU)

where k
t
(t) is the (usual) hazard rate function of component /at time t. We now show that

this random quantity is exponentially distributed with mean 1.
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THEOREM: The total system hazard is an exponential random variable having mean 1.

PROOF: The proof is by induction on n. As the observed hazard rate is equal to the

(usual) component hazard rate when n = 1, the result follows in this case. So assume the

result for any system of n — 1 components and consider an n component system. Say a com-
ponent is a 1-component minimal cut set if its failure guarantees system failure even if all other

components are working. We consider three cases.

CASE 1: There do not exist any 1-component minimal cut sets.

In this case, the observed hazard rate will be until a component fails. At this point, the

remaining hazard will be exponentially distributed with mean 1 by the induction hypothesis.

Hence, the result follows in this case.

CASE 2: There exists exactly one 1-component minimal cut set— say {l}.

In this case, let L
x
denote the life of component 1 and let T denote the first time any of

the components 2 through n fail. Now, conditional on T = /, the total observed hazard can be

expressed as

Jfl

' k](s)dt if Jo

' \i(s)ds < Jo
'x,(5)(

J k
{
(s)ds + Exp (1) if f ' \i(s)ds > J \

{
(s)ds

'0 ' *Jo •'o

where we have used the induction hypothesis in writing that the remaining observed hazard

starting at time T = t and assuming that component 1 has not yet failed is exponentially distri-

buted with mean 1. Thus, from the above, we see that, given T = r, the total observed hazard

has the same distribution as the random variable defined by

E
{

if £, <c

c + E2 if E2 > c

where c is a constant and E
x

, E2 are independent exponential random variables each having

mean 1. Such a random variable is easily seen to be also exponential with mean 1.

CASE 3: There exists at least two 1-component minimal cut sets— say {1} and {2}.

In this case, we can combine components 1 and 2 into a single component which fails

when either one of them fails and the result follows from the induction hypothesis.

REMARK: The above proof goes through in an identical manner even when the com-

ponent lifetimes are dependent. Of course, the observed hazard rate at time t would no longer

be V kj(t) but would have to be suitably modified.

itctt)

3. SOME FINAL REMARKS AND A HEURISTIC ARGUMENT

(i) Whereas we have only established that the total observed hazard experienced by a

system is exponentially distributed with mean 1 for the rather special system

described in Section 1, we believe that this result holds with tremendous general-

ity. (Another system in which we have been able to verify it is when events
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occur in accordance with some arbitrary point process and each event has a ran-

dom nonnegative damage associated with it. The system is said to fail the first

time the total cumulative damage exceeds some specified value.)

(ii) An interesting sidelight about the system of Section 1 is that it is well-known that

if all component life distributions are IFR (increasing failure rate) in the sense

that A,(f) is a monotone nondecreasing function for all / = 1, . . . , n, then it

need not be the case that the system hazard rate is also increasing. However, ft

easily follows in this case of IFR component life distributions that the observed

system hazard rate— namely, T A ,-(/) — increases up to the time of system
itctt)

failure.

(iii) A general definition of the random hazard can be given along the following lines:

Let [Fs , < s <=oo} denote an increasing family of sigma fields and let X
denote a stopping time defined on this family. Let

P[t<X<t + h\F,\
R(t) = hm ;

h~o h

where we assume the above limit exists almost surely. We now claim that, when
it is well defined,

R U)dt has an exponential distribution with mean 1.

We now present a heuristic argument of the above.

Heuristic Argument of (2.1)

Let Hit) =
J R(s)ds. We wish to argue that H(X) is exponential with mean 1 and to

do so, we shall argue that its failure rate function— call it A(s)— is identically 1. To show that

A (s) = 1, let us condition on the event that H(X) ^s and on the values of Ts and R(TS )

where Ts is defined to be the time at which H is equal to s— that is, H(TS )
= s. Now given

H(X) >s, Ts , R(TS )
= \ S

X > Ts + e with probability 1 - ek s + o(e).

Hence,

But

and so

H(X) > H(TS
+ «)with probability 1 - eA 5 + o(e).

H(TS + e) - H(TS ) + ek s + o(e)

= s + e\ s + o(e)

H(X) > 5 + €\ s
+ o(c)with probability I - ek s + o(e)

which, for A s > 0, is roughly equivalent to

H(X) > s +8 with probability 1 - 8 + o(8).
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Thus, independent of 7^, k s ,
given that H(X) ^ s, it has probability 8 + 0(8) of failing during

the next 8 units of hazard. Thus,

P{H(X) < s + 8| H(X) > s) = 8 + 0(8).

Dividing the above by 8 and letting 8 go to "proves" that the failure rate function of H(X) is

identically one.
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ABSTRACT

In previous papers [1], [2] the authors developed a maintenance policy for a

single life-limited part. Using an opportunistic replacement approach a scheme

was devised which utilized early replacement of equipment to offset more costly

future expenditures. This paper will extend the results to the multicomponent

case. Examples are given illustrating the benefits of this new technique.

INTRODUCTION

Optimal opportunistic replacement (OR) and maintenance policies for single component
systems have been extensively discussed [3], [4], [5]. In previous papers [1], [2], the authors

dealt with the application of these policies to life-limited parts. Specifically, B is a component

of a system with the following properties:

(1) The system is known to fail exponentially (not due to B) at which time it is

brought to the maintenance base at a cost of CT , disassembled and reassembled (if

necessary) at a cost of CA (cost of accessing); and repaired according to its mal-

function.

(2) B never fails but has a life-limit of Y hours. After Y hours, the machine must be

brought to the maintenance base (forced removal— FR) at a cost of CT , disassem-

bled and reassembled at a cost of CA (CF = CT + CA ) and part B replaced at a cost

of CB .

Compressor units on jet engines, for example, contain disks that satisfy these conditions. The
optimal strategy for B is given by an (X

x
, X2 ) rule such that:

(1) If, when the unit fails, B is accessible, replace B if it has less than X2 hours of

remaining life.

(2) If, when the unit fails, B is not accessible, replace B if it has less than X
x
hours of

remaining life (X
x < X2).
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(3) Under all conditions replace B after Y hours of usage.

X\ and X2 are computed by minimizing

Expected (Cost) £(C)
Expected (Life)

where

(1)

(2)

and

£(C) - CB + exp

E(L) = Y- X2 + \

E(L)

-(X2
- X

x )p

1—I- exp
P

((l-p)(l-e'XA)CA + e-
XACF)

(X2
— X

x )p
,

1 -X
{
/K

1 e
'

— Average time between removals (due to the unit failure)

— Probability of B being accessible on any unit breakdown.

This paper will extend our previous results to a multicomponent system (i.e., more than

one life-limited disk). While the above-mentioned policies insure optimal utilization of indivi-

dual components the results may be far from optimal for the system as a whole.

EXAMPLE 1: Assume two identical disks, D\ and D2 , with the following parameters, are

inserted simultaneously into a jet engine compressor unit (a unit may contain as many as 10

disks):

p = 1, CB - $18,000, A = 5,000 hours, CF - $7,800, and Y = 30,000 hours.

Applying our rule on an individual basis yields X
x
= and X2

— 5,650. The cost of the entire

system per hour is thus, from (1) and (2)

E(CDl ) E(Cp
2
) E(CDl ) 18#000 20,520 18,000 tfl

- 0O+ -zz-zzt = $1,389 per hour.EUDl ) EUd
2
) E(LDl ) E(LD2) 27,735 27,735

E(CDl) = 18,000 because (a) p = 1 cancels the CA term; and (b) no forced removal cost CF is

assigned to this disk since if an FR does occur both disks will be removed simultaneously, caus-

ing only one CF which has already been accounted for in the calculation of E(CD ). The

optimal policy for the system is in fact X\ = and X2
= 3,800 and costs

21,648 18,000 .. „, .— = $1,373 per hour.
28,863 28,863

v

Considering that major airlines operate hundreds of engines with thousands of disks, a 0.8 cents

savings per disk per hour is appreciable.

The solution of the multicomponent system has proven to be elusive. Various enumera-

tive procedures for the general class of OR problems have been suggested, [6], [7]. Application

of these techniques to real-life situations, however, requires simplifying assumptions that are
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unrealistic and often result in considerably suboptimal policies. Additionally, computational

requirements for these techniques are quite large. Vergin and Scriabin [7] state that, on an

IBM 370/165, the two disk problem required 0.5 minutes and the three disk problem 13.3

minutes. Any attempted extension to an /i-disk problem (n > 3) leads to prohibitively high

computer processing time and memory requirements. They conclude by saying that "it seems
highly unlikely that any computationally simple optimizing model will be developed for the

maintenance of very complex equipment."

The structure of the life-limited problem and the technique of our solution in the single

disk case offer an approach not previously investigated. It involves an analytical procedure that

facilitates handling of even the n-disk paradigm. We present the solution to the two disk prob-

lem. The generalization to A?-disks is similar. Illustrative examples are provided.

PROBLEM FORMULATION

Consider two disks, 1 and 2, where 2 has AT more hours of life remaining than 1 (Figure

1). We will, for the sake of a more lucid development, assume throughout this paper that p =
1, i.e., every engine maintenance insures accessibility of the entire unit. The generalization for

p < 1 can be readily derived. The following notation will be used:

Xj — The removal point for disk / (only one accessible cut-off point per disk is

necessary).

CB — Cost of disk /.

Yj — Life limit of disk /.

E(Cj) — Expected cost of disk /in a one disk system.

E(Lj) — Expected life of disk /in a one disk system.

EiCyO — Expected cost of disk 2 in a system which also contains disk 1.

E(L 2/\)
— Expected life of disk 2 in a system which also contains disk 1.

P\ — The probability that disk 2 is retained when disk 1 is removed.

E(Cj) and £(L,) can be found by substituting the desired X, into the simplified forms of equa-

tions (1) and (2), i.e.,

(3) E(Ct)
- C

Bi
+ e~

X,IX
CF

(4) £U,)= Y,-X, + \a-e~X,fk
).

Any time disk 1 arrives with less than X
x
hours of remaining life it will be removed and

disk 2 will be checked with respect to X2 . If 1, however, exceeds X\, disk 2 under all cir-

cumstances will remain. The reasoning is simple. An FR attributable to 2 is impossible if 1 is

still operational. In the worst case, 1 will lead to an FR and make 2 accessible at that time.

Since removal of a disk is justifiable only as a deterrent to a possible FR, a decision to retain 1

must automatically retain 2 as well. A flowchart of our policy is given in Figure 2.
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Disk 2\C -AT- i Disk 1

No

Replace Disks
1 and 2

-Remaining Life-

Figure 1. Two disk paradigm

Start

1
Engine in

for repair

Yes
Replace
Disk 1

^ Send out
engine

End

Yes

Replace
Nothing

Figure 2. Two disk flowchart

ANALYSIS

The relevant factors are summarized in the following series of statements:

STATEMENT 1: The cost per hour of the system is equal to the sum of the costs per

hour of the individual disks.

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. 4, DECEMBER 1982



REPLACEMENT FOR MULTICOMPONENT LIFE-LIMITED PARTS 689

STATEMENT 2: The objective in the 2-disk problem is to minimize

(5 )

£(C
'
} + £(C2/' }

E{L
X
) EUyO

PROOF: The cost and life of disk 1 is a function of X\ alone. The cost and life of disk 2,

however, as we have previously explained is dependent on both X
x
and X2 .

STATEMENT 3: The optimal X2 may be derived by the single disk approach, i.e., find

the X2 that minimizes E(C2)/E(L 2 ) of (3) and (4).

PROOF: Since X2 is used only if disk 1 has been removed, the statement is true by

dynamic programming.

STATEMENT 4:

(6) E(CV i)
- PiE(C2 ) + (1- P\)C

Bl

PROOF: If disk 2 remains after disk 1 has been removed, then it may generate an FR.

Its expected cost is therefore given by E(C2) of (3). Disk 2 can never cause a forced removal

if it is removed together with disk 1. Its expected cost in this situation is simply its original

cost.

STATEMENT 5: The expected life of disk 2 given that it is removed together with disk 1

is:

(7) Y2
- Min (X2 , Xx + AD + A(l - t

-"«*r'r-*V*)
t

PROOF: (a) If X2 ^ X\ + AT then whenever disk 1 is below its cut-off value disk 2 is

also below its cut-off point. Thus, the two disks will always be removed together. The double

removal will occur due to an accessible removal when disk 1 has less than X
{
hours remaining

(and disk 2 has less than X
x
+ A 7), or an FR when all of disk l's permissible life has been

expended (and disk 2 has ATof remaining life). The expected value is

f ' ( Y2
- (Xi + A T) + x) - e~ x/x dx + ( Y2

- A T) f
'

" — e~x/x
dx.

*, ° \ %/x
\ A.

(b) If X2 < X\ + AT it is possible that disk 1 is removed and disk 2 is retained. The
knowledge that both are removed simultaneously insures that both were in use when disk 2 had

X2 hours of remaining life, or equivalently when disk 1 had X2
— AT hours of life remaining.

Since X2
— AT < X

x
the next breakdown, if it occurs prior to an FR, will result in the removal

of both disks. The expected life is therefore,

f
2

(Y2 -X2 + x)±- e~x/K dx + (Y2 -M) f
~

AT f e~x/x dx.

Simplifying both expressions yields (7).

STATEMENT 6:

(8) EU VI ) = P
X
E{L 2 ) + (1 - P

X
)(Y2

- MinCr2 , X
x
+ &T) + X(l - ^"^-^^i^))
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PROOF: Direct application of expected value and (7).

STATEMENT 7:

(9) />, =
if X

x
+ A T < X2

1 if X2 < A T
, -(x,+&T-x )/k otherwise
1 — e '

PROOF: In the first case the disks will always be removed together while in the second
case the time differential is so great that the disks have no effect on each other. In all other

cases a breakdown with AX
X
remaining time on disk 1 (AA^ = X

x
— x, where x is time to first

breakdown after disk has reached its critical value) means that disk 2 has AX
X
+ A T time left.

P
x
= P(AX

X
+ AT > X2 )

= P(X
{
-x + AT > X2 )

= P(x < X
x
+ AT- X2 )

-J.
X

}

+AT-X
2 j

o x

which simplifies to (9).

It is now clear that the objective function (5) can be broken down into a function of X
x

and X2 using equations (6), (8), and (9). Since X2 has already been computed in the standard

manner, the only remaining variable is X
x

. The optimal X
x
can thus be computed by using a

one dimensional search on the objective function.

EXAMPLE 2: Referring to Example 1 (AT=0), an X2 value of 5,650 minimizes

E(C2)/E(L 2 ). Inserting this value into (8) and (9) the X\ value that minimizes the objective

function (5) is 3,800. Note that P{ for this combination is 0(X
X
+ AT < X2 ), guaranteeing

that both disks will always be removed simultaneously and that X2 need never be actually

applied. It is intuitively obvious and can be easily shown that one disk having the combined

cost of disks 1 and 2 will have the same 3,800 cut-off value.

EXAMPLE 3: We will again use the 2 disks of Example 1 except that this time disk 1 is

3,000 hours older than disk 2, i.e., AT = 3,000. As before X2 is initially computed as 5,650

and an X
x
of 4,250 will minimize (5) at a cost of

' + ' = 1.444 dollars per hour.
28,613 26,754

Because the 2 disks have different remaining lives this system costs an additional 7 cents per

hour to run (1.444-1.373). If the engine is in for repairs when

(a) disk 1 has more than 4,250 hours left— leave both disks

(b) disk 1 has less than 4,250 but more than^,650 hours remaining—remove disk 1

and leave disk 2

(c) disk 1 has less than 2,650 hours left— replace both disks.
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EXAMPLE 4: Suppose the two disks differ in age by over 5,650 hours, i.e., AT> 5,650

= X2 . By (9) P\ = 1 and everything reduces to a computation of the individual optimal cut-

off points for each disk, i.e., X
x
= X2

= 5,650. The system costs 0.74 + 0.74 = $1.48 per

hour. We can conclude that as the disk separation time increases from to X2 the minimal

cost per hour will continuously increase.

CONCLUSIONS

A variation of this procedure was used in a simulation run of actual engine configurations

of a major passenger airline. Computational requirements caused no problem for even a

seven-disk system. Additionally, the results were compared to various alternate approaches

(e.g. Markov analysis) and found to be superior to them all.

It should be noted that certain underlying assumptions are inherent in our analysis. In a

2-disk system for example, computation of X2 is necessary for the computation of X
x
and it is

assumed if disk 1 is removed, X2 will be our criteria for judging the wisdom of removing disk

2. This, however, depends on the amount of life in disk l's replacement. If the new disk has

less life remaining than disk 2, then by previous arguments disk 2 will be retained regardless of

X2 . If the new disk, on the other hand, has more remaining life than disk 2, then disk 2

becomes disk 1 in the new configuration. As such, its cut-off point is not the previously com-

puted X2 but a new X\. In order for our procedure to yield optimal results the new X\ would

have to equal the old X2 . As discussed in the 2-disk system if AT > X2 , disk 1 is unaffected by

disk 2 and can be treated as an individual disk. Life specifications of jet engines are such that if

disk 2 in the initial system was close enough in life to disk 1 to influence it, then the new disk

which replaces disk 1 will have considerably more life than the remaining disk, and hence not

affect it. Under these conditions the use of X2 in our policy is justified.

However, what if we are dealing with a situation where this condition is not met? Engine

build policies may very well dictate the replacement of a worn out disk with remaining life that

is comparable to the retained disk. As discussed in Example 4 such a policy offers

configurations leading to lower costs per hour. However, the necessary prerequisite for

guaranteed optimality is missing. Additionally, when removing one or two disks the time

differential between the disk will generally change. Hence, although we minimize the present

configuration we in no way consider the effect our decision will have on future utilization.

Because of these arguments the multidisk extension is presented not as the optimal stra-

tegy but rather as a heuristic. The complexity of the problem necessitates the use of a more
limited objective. Disregarding future contingencies, we restrict ourselves to the optimization

of currently operating disks only. The application of a logical policy in the present will hope-

fully lead to near optimal system utilization in the future as well. The simulation runs previ-

ously mentioned indicated that our policy will converge on uniform configurations in a rela-

tively short period of time. Pending further investigation, the authors are convinced that, at

least in the jet-engine problem, the approach is sound and far superior to any other presently

employed.
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ABSTRACT

Let T be a finite stopping time with random hazard rate function

[k,U ^ 0}. We prove that /j X, dt is exponentially distributed with mean 1.

1. INTRODUCTION

In their paper published in this issue (Naval Research Logistics Quarterly, 29, 4, 1982),

Brown-Ross [1] introduce the notion of a "randomly evolving hazard rate function." Perhaps

the simplest case of such a function is known in reliability theory as the failure rate function.

Let X denote the survival time of some item and suppose X has distribution function F and

density / Then, the failure rate function of X— call it k (•) — is defined by:

(i.i) *e>-T^7T
and since kit) dt = P(X €(/,/ -I- dt] \X > t) one can interpret kit) as the instantaneous pro-

bability density that an item of age / will fail. It is well known that the total hazard experienced

by the item, i.e.,

(1.2) C ^t) dtJo

^x

is exponentially distributed with unit rate. Now suppose that we are able to observe more than

just whether or not the item is functioning at / but also a complete description of the "state" of

the item at that time. Then the interpretation of k (•) becomes:

(1.3) k it) dt = PiX€ it.t + dt] | complete information of state of item at t).

Such a quantity is, in general, a random variable and its value is determined by the state of the

component at t which is itself a random variable. Brown-Ross [1] conjectured that even in this

case J k it) dt is exponentially distributed with unit rate. They verified the conjecture in

numerous cases taken from well-known models in statistics, reliability and Markov chains.

However, for the general case they only provided a heuristic proof.

•This research was supported by the National Science Foundation under Grant MCS-81-02075.
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Using recent developments in the martingale theory of jump processes, we shall give a

precise formulation of the conjecture and prove it.

2. THE CONJECTURE AND ITS PROOF

Let (O, F, P) be a probability space and let [H,:t ^ 0} be a complete, right continuous,

increasing family of sub -a- -fieIds. A stochastic process [X
t
:t > 0} is said to be adapted to {//,}

if for each / > X, is //,-measurable. It is said to be {//,} predictable if there exists a sequence

[X,
in)

t ^ 0} of stochastic processes such that for each / ^ lim X,(n) = X, and for each

n [X,
{n)

} is left continuous and adapted to {//,}.

Let t be any finite stopping time defined on {//,}, i.e., P(0 < t <©©) = 1 and for each

t ^ 0, [t ^ t) belongs to H
t

. Define the following process:

1 t < /

(21) 7
'

= if
otherwise

clearly /, is a submartingale. Hence, by the Doob-Meyer decomposition theorem there exists a

unique increasing process, call it [A,:t ^ 0}, such that:

(2.2) (i) ^ =0

(ii) A is right continuous

(iii) A is {//J-predictable

and:

(2.3) M, = I, — A, is {//,} martingale. Now suppose that [A,} has a differentiate sample

path, and let \, = — A,. Then the stochastic process {\,:t > 0} is the random hazard rate of
at

the stopping time t. To see this, note that since {M,} is a martingale, we have:

E[Ml+dl
- M,\H,] =

hence

but

and

E[It+dl -I,\Ht
\ = E[Al+dt -A t

\H
t
]

E[Il+dl - I
t
\H

t
] - P(t € (/,/ + dt}\H,)

E[A l+dt
- A

t
\H

t
] = \, dt.

Now we state the conjecture as a theorem:

THEOREM: If {A,} is differentiate with derivative {A,} then A T
=

J \, dt has an

exponential distribution with mean 1.

The proof is based on the following lemma:
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LEMMA: E[A"T ] = n\ n = 0,1,2, •••
.

PROOF: It is well known (consult for instance [3. Ch. 18]) that for any finite {//,}-

predictable process { /,:r>0} the stochastic integral J fu d Mu is a {//,}-martingale. In partic-

ular, since [A,] is predictable, for each n (n = 0,1,2..)

(2.4) *,<"> = Jo

'

AS dMu = Jfl

' ^ «//„ - Jfl

' ^ X u <Ai

is a martingale.

Thus: E[qT
(n)

] =

(2.5) E\f
o

T

A"u dl\ = e\J
q

T

A n
u \ u du]

or equivalently:

' A"T
+X

(2.6) Kn
] = E

n+ \

which implies that

(2.7) U T
n

] - «! /i = 0, 1, • • •
.

This completes the proof of the Lemma.

PROOF OF THE THEOREM: First note that the nth moment of an exponential distribu-

tion with mean 1 is n\

It is well known [2. p. 228] that a distribution function is uniquely determined by its

moments [fx k ] whenever the power series:

n (2n)\

converges in some interval. This clearly holds for the exponential distribution and thus A T has

an exponential distribution with mean 1. This completes the proof of the theorem.

REMARK: Note that a sufficient condition for A T to have an exponential distribution

with mean 1 is that the sample path of A is continuous, (2.4) becomes J A{} dlu — J Ay dA u

which for each sample path of A is merely a difference between two Stieltjes integrals and thus

(2.6) and (2.7) remain valid.
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