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With the imminent construction of an electron-ion collider in the USA, both saturation physics and nuclear
shadowing physics will be important for the same processes for the first time, particularly for the exclusive
production of vector mesons, such as the J/�. In this paper we investigate the underlying assumptions commonly
made when phenomenologically investigating this process from a shadowing and saturation perspective. We use
the bSat model which is commonly used to describe saturation physics, and a calculation by Ryskin which
is commonly used when describing nuclear shadowing at leading twist. It is expected that the bSat model
is equivalent to Ryskin’s result in the hard-scattering and nonrelativistic limits. By explicitly taking these
limits we show that the bSat model does indeed become equivalent to Ryskin’s result. However, two more
approximations are needed for this result. First, the factorization and renormalization scales in the bSat model
have to be independent of the dipole radius, and second, we need to omit a term in the overlap between the
vector meson and virtual photon wave functions. We show that for the typical dipole radius of the J/�, the
different approximations offset each other and the bSat model agrees very well with Ryskin’s calculation in
hard-scattering and nonrelativistic limits.
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I. INTRODUCTION

With the advent of an electron-ion collider [1] in the USA,
the first ever high-energy high-luminosity electron-nucleus
collider experiment, phenomena of gluon saturation as well
as of nuclear shadowing will become important for the same
processes for the first time. One process that especially gives
overlap between the two kinds of phenomena is that of exclu-
sive diffractive production of vector mesons, such as the J/�
meson.

In the process e + p → e + J/� + p, the differential cross
section is given by

dσγ ∗ p→J/�p

dt
= 1

16π
|Aγ ∗ p→J/�p|2. (1)

This is a diffractive process which at small momentum frac-
tions x can be seen as mediated by a pair of virtual gluons.
Here Aγ ∗ p→J/�p is the amplitude of the process.

A widely used approach in the leading twist shadowing
community (see, e.g., [2,3]) for the amplitude was calculated
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in [4] by Ryskin:

Aγ ∗ p→J/�p
T = i4π2

√
�

J/�
ee M3

J/�

3αEM
αS(μ2)

× xg(x, μ2)F 2G
N (t )

2μ2 + t

(2μ2)3
, (2)

where �J/�
ee and MJ/� are the J/� decay width and mass,

respectively, and F 2G
N (t ) is the proton form factor, which is a

Fourier transform of its thickness in impact-parameter space.
The strong coupling αS and the gluon density g are taken at a
scale μ2 = (Q2 + M2

J/� − t )/4, where t = −�2, � being the
change in four-momentum in the proton vertex and Q2 is the
virtuality of the photon. The T indicates that this calculation
is for a transversely polarized virtual photon.

Another approach, widely used for investigation of sat-
uration physics, or the color glass condensate [5], is given
by the bSat dipole model [6,7], which is based on the color
dipole approach first proposed by Golec-Bienat and Wüstoff
[8,9]. Here, the virtual photon splits up into a quark-antiquark
dipole which subsequently interacts with the pomeron and
then recombines into a J/� meson. The amplitude for this
process is given by

Aγ ∗ p→J/�p
T,L = i

∫ ∞

0
2πr dr

∫ 1

0

dz

4π

∫ ∞

0
2πb db

× (�∗
J/��)T,LJ0(b�)J0([1 − z]r�)

dσqq̄

d2�b , (3)
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where b is the impact parameter, r is the size of the dipole,
(�∗

J/��)T,L is the wave overlap between the virtual photon
and the vector meson, z is the momentum fraction taken by
the quark, and J0 is a Bessel function. The dipole cross section
is given by

dσqq̄

d2�b = 2

[
1 − exp

(
− π2

2Nc
r2αS

(
μ2

dip

)
xg

(
x, μ2

dip

)
T (b)

)]
, (4)

where T (b) is the proton thickness in impact-parameter
space. It is usually taken to be Gaussian, T (b) =
1/2πBG exp(−b2/2BG), where BG is a parameter which has
been fixed by data to be BG = 4 GeV2 [7]. The scale μ2

dip =
4/r2 + μ2

0, where μ2
0 is the starting scale in the DGLAP

evolution. Here we follow [7] and set μ2
0 = 1.17 GeV2. It is

easy to see that this dipole cross section saturates for large r
as well as for large gluon densities.

This paper aims at taking the hard-scattering limit, where
r → 0, and the nonrelativistic limit, where z = 1/2 in the
dipole model Eq. (3), and show that it becomes equivalent
to Ryskin’s expression in Eq. (2) for transversely polarized
photons. In order to do so we will also need to set μ2

dip = μ2.
In Sec. III we will show how well Ryskin and the dipole model
compare when we relax the different approximations.

II. TAKING THE HARD-SCATTERING AND
NONRELATIVISTIC LIMITS OF THE DIPOLE MODEL

The overlap between the wave functions of the transversely
polarized virtual photon and the J/� meson is given by [7]

(�∗
J/��)T = ê f e

Nc

πz(1 − z)

{
m2

f K0(εr)φT (r, z)

− [z2 + (1 − z)2]εK1(εr)∂rφT (r, z)
}
, (5)

where ê f = 2/3 and m f are the charm quark charge and mass,
respectively, e is the electron charge, ε2 = z(1 − z)Q2 + m2

f ,
and K0,1 are the modified Bessel functions. Here, φT (r, z) is
the scalar part of the J/� wave function. It is usually taken to
be a “boosted Gaussian” [7]:

φT = NT z(1− z) exp

(
− m2

f R2

8z(1 − z)
− 2z(1 − z)r2

R2
+ m2

f R2

2

)
,

(6)

where NT and R are parameters which are fixed by data.
When we take the nonrelativistic limit, where z = 1/2, we
instead let the scalar part of the wave function be in the form

φT (r, z) = Cφr (r)δ(z − 1/2), (7)

where C is a constant. When z = 1/2, we see that Eq. (6)
becomes a single Gaussian in r, and following that we assume
the form φr (r) = exp(−βr2), β may be explicitly calculated
through the normalization conditions on the wave functions.

The decay width of the vector meson puts a constraint on
its wave function. The width is given by

�ee
J/ψ = 4πα2

EM f 2
J/ψ

3MJ/ψ
, (8)

where the coupling of the vector meson to the electromagnetic
current, fJ/� , is given by [7]

fJ/ψ = e f
Nc

2πMJ/�

∫ 1

0

dz

z2(1 − z)2

× {
m2

f − [
z2 + (1 − z)2∇2

r

]
φT (r, z)

}∣∣
r=0. (9)

This fixes the constant C in the wave function:

C =
√√√√ 3M3

J/�π�ee
J/ψ

256α2
EMe2

f N2
c m4

f

. (10)

Plugging the scalar wave function into the wave overlap gives
in the nonrelativistic limit

(�∗
J/��)T = e f eNcC

πz(1 − z)
e−βr2

δ(z − 1/2)

×{
m2

f K0(εr) + 2rβ[z2 + (1 − z)2]εK1(εr)
}
.

(11)

For the hard-scattering limit we expand the scalar part of
the wave function for small r:

φT (r, z) = Cδ(z − 1/2)[1 − β2r2 + O(r4)]. (12)

We do the same for the dipole cross section:

dσqq̄

d2�b = π2

Nc
r2αS

(
μ2

dip

)
xg

(
x, μ2

dip

)
T (b) + O(r4). (13)

We perform the integral over impact-parameter b using the
definition of the proton form-factor:∫ ∞

0
2πbdbJ0(b�)T (b) ≡ F 2G

N (t ). (14)

Plugging Eqs. (11)–(14) into Eq. (3), and performing the
integrals over b and z gives

Aγ ∗ p→Jψ p
T = iF 2G

N (t )2πe f eC
∫ ∞

0
dr αS

(
μ2

dip

)
xg

(
x, μ2

dip

)
J0

× (r�/2)
[
m2

f K0(εr) + β(εr)K1(εr)
]

× [r3 + O(r5)]. (15)

We assume for now that the integral over the second term
[containing K1(εr)] can be neglected [for small r, εrK1(εr) ∼
1]. We will later discuss the impact of this approximation.
We further assume that the factorization and renormalization
scales are independent of r, i.e., that μ2

dip = μ2 as defined
by Ryskin. This assumption will also be discussed later. The
integral over the first term then becomes

∫ ∞

0
drK0(εr)J0(r�/2)r3 = 16

2ε2 + t/2

(2ε2 − t/2)3
, (16)

where we have used that t = −�2.
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Now the amplitude can be written as

Aγ ∗ p→Jψ p
T = i4π2

√
M3

J/��ee
J/�

3αEM
αS(μ2)xg

× (x, μ2)F 2G
N (t )

2ε2 + t/2

(2ε2 − t/2)2
, (17)

where we have used that αEM = e2/4π . Ryskin makes the
approximation that the J/� mass is twice that of the charm
quark. With this approximation (keeping in mind that z =
1/2), ε2 = (Q2 + M2

J/� )/4. Then Eq. (17) becomes equal to
Eq. (2), which is what we wanted to achieve.

III. DISCUSSION

In order to analyze the result we define an unintegrated
amplitude for Ryskin:

dAγ ∗ p→Jψ p
Ryskin

dr
≡ i

√
π4M3

J/��ee
J/�

48αEM
αS(μ2)xg

× (x, μ2)F 2G
N (t )K0(εr)J0(r�/2)r3. (18)

If integrated over r this retains the result in Eq. (17). The
corresponding expression for the dipole model is

dAγ ∗ p→J/�p
bSat

dr
= iπr

∫ 1

0
dz

∫ ∞

0
b db(�∗

J/��)T J0

× (b�)J0([1 − z]r�)
dσqq̄

d2�b , (19)

where the J/� wave function is taken to be the boosted
Gaussian in Eq. (6). We take all parameters from [7] and fix
the decay width in Eq. (18) accordingly.

To compare to the nonrelativistic limit we use the following
expression:

d2Aγ ∗ p→J/�p
bSat

drdz

∣∣∣∣
z=1/2

= i
r

2

∫ ∞

0
2πb db(�∗

J/��)T

∣∣∣∣
z=1/2

× J0(b�)J0

(
r�

2

)
dσqq̄

d2�b , (20)

where the d/dz denotes that we are not performing the integral
over z in Eq. (19).

The normalizations of the wave functions do not exactly
match, since the second term in Eq. (9) becomes significant
for the boosted Gaussian. We compensate for this by multi-
plying the Ryskin amplitudes by a factor of 1.72.

The gluon density is taken from [7]. In the dipole model the
gluon density absorbs some of the saturation effects, which
restrain its growth as x decreases, as compared to the nonsat-
urated Ryskin. To compensate for this in the comparison, the
gluon density in Eq. (18) is taken to be

xg(x, μ2) = 2NC

π2r2αS(μ2)〈T (b)〉

×
[

1− exp

(
− π2

2NC
r2αS(μ2)〈T (b)〉xg(x, μ2)

)]
,

(21)

where we use the average value of the gluon thickness func-
tion 〈T (b)〉 = 1/16π .
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FIG. 1. Ratios with respect to Ryskin’s amplitude as defined in the text. The left hand side is using fixed renormalization and factorization
scales, while the right plot uses scales which are dependent on r. All calculations are at Q2 = 5 GeV2, x = 10−4, and t = −0.01 GeV2. All
curves are described in detail in the text.
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For investigating the effect of using different scales in the
strong coupling and gluons density, we simply replace μ2 by
μ2

dip in these expressions. We will also investigate the effects
from omitting the integral of the second term in Eq. (15).

In Fig. 1 we show ratios with respect to Eq. (18). On
the left hand side we show the ratios between Eqs. (20)
and (18) with μ2 = (Q2 + M2

J/� − t )/4 as in Ryskin. The
graph marked “Full WO” uses the entire expression for the
wave overlap in Eq. (15) while the graph marked “Reduced
WO” only includes the first term. We see that by including
the second term in the wave overlap we add about 10% to
the amplitude, but for r → 0, the ratio goes to unity, and
this omission does not contribute in the hard-scattering limit.
The characteristic size of the scattering dipole is given by
1/ε = 1/

√
Q2/4 + m2

c ≈ 0.1 fm. We see that here, the hard-
scattering limit is a good approximation, both ratios are within
10% of unity.

On the right hand side of Fig. 1 we show the result of
letting the scale in the strong coupling and gluon density have
an r dependence in accordance with the dipole model. The
graph marked “Ryskin” shows the ratio between using μ2

dip

and μ2 in Eq. (18). We see that for small r this increases the
amplitude by a factor of 2.7. The same is seen in the graph
marked “bSat, z = 0.5”, which is the ratio between Eqs. (20)
and (18) using the dipole scale in the former. However, this
effect seems to be somewhat offset by going away from the
nonrelativistic limit and allowing all z as is seen in the graph
marked “bSat, all z”, which shows the ratio between Eqs. (19)
and (18). Both bSat curves include the full wave overlap.
Around the characteristic size of the dipole, this third ratio
is very close to unity which means that Ryskin’s predictions
for J/� production are very similar to those from the dipole
model, by virtue of the different approximations offsetting
each other.
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