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ABSTRACT 

This study examines how to reconstruct a satellite decryption process from source 

information. It examines how cryptographic algorithms are implemented in software and 

what software components are required to access data in a useable format. This 

examination enabled the reverse engineering and reconstruction of the decoding 

processes utilized by the three PropCubes: Merryweather, Fauna, and Flora. Transmitted 

data from these PropCubes was analyzed to verify the validity of the developed 

decryption and data handling Python scripts. A concept of operations for implementing 

the reconstructed decryption and data handling processes in real-time is discussed in this 

research. 
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I. INTRODUCTION 

The Space Systems Academic Group (SSAG) at the Naval Postgraduate School 

(NPS) operates three satellites called Picosats Realizing Orbital Propagation Calibrations 

Using Beacon Emitters (PropCube) [1], [2]. The cube satellites (CubeSats), Merryweather, 

Flora, and Fauna, were designed by Tyvak and are operated by the Mobile CubeSat 

Command and Control (MC3) network at NPS [1]–[3]. The NPS node originates 

commands for the spacecraft and processes data received from PropCube utilizing Tyvak-

created source code. Formerly, the source code that enabled the ground site to decrypt and 

interpret the received data was unavailable to NPS operators; therefore, these processes 

were carried out by software that was not explicitly known. Without explicit knowledge of 

the decryption process and data handling process, the SSAG is not able to customize 

processes to optimize operations. 

Upon acquisition of PropCube, Tyvak provided documentation that outlined 

specific, standardized data protocols that are utilized for data handling and security [3], [4]. 

These processes are primarily standardized protocols that are available to the public at 

large. Through examining these standards, this thesis reconstructs the Advanced 

Encryption Standard 128 (AES-128) decryption and data handling processes of PropCube 

and identifies the key information required to do so.  

The reconstruction of the decryption process and data handling process are critical 

for customizing operations. PropCube transmits data in a time constrained, noisy, radio-

frequency environment at 914 MHz [2]. Sporadic radio-frequency noise routinely increases 

the link bit error rate during PropCube’s transmissions, which reduces the probability the 

ground station will receive the transmitted data [2]. The Tyvak-created processes enable 

access to downlinked data after a PropCube pass has occurred. To ensure the desired data 

reaches the MC3 ground station, multiple requests for the same data are made by the 

spacecraft operators, which increase the probability of successful reception of the desired 

data. In recreating the decryption and data handling processes, the SSAG can potentially 

alter the processes to enable real-time access to PropCube data being transmitted. Such 

modifications could increase efficiency in operations by reducing the number of requests 
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made for specific data. Real-time access to data could give operators actionable 

information to enable improved operations. In knowing what data is being received as it is 

received, flexible decisions can be made by the operator or using automated scripts during 

a single pass to improve data reception. 

A. DESCRIPTION OF DATA SETS UTILIZED  

The methodology of this work draws on previous work conducted by students and 

members of the SSAG [2], [5]. This previous work created data sets that were utilized in 

reconstructing both the decryption process and the data handling process. These data sets 

provided a means for validation of the two developed processes, enabling this research.  

1. Anatomy of a Message 

To decrypt and interpret received messages, the structure of the message must be 

understood. The structure of the message dictates everything from what system is supposed 

to receive the message to how data is supposed to be accessed by the receiving system. In 

the Tyvak UHF Space-to-Ground Interface Control Document (ICD) [3], the structure of a 

message transport protocol is explicitly delineated. The standard AX.25 Amateur Packet-

radio Link Layer Protocol is utilized with a unique fixed callsign assigned to each 

spacecraft [2], [3], [5]. The standard Internet Protocol (IP) header and User Datagram 

Protocol (UDP) are used. Each spacecraft is assigned its own unique, static IP address [3]. 

The IP, UDP, and message data are sent encrypted utilizing AES-128 [3]. Utilizing the 

initialization vector (IV) sent as the first 12 bytes of the AX.25 frame, as depicted in  

Figure 1, and the Tyvak-provided keys, it is possible to decrypt the received data. 

Reconstruction of this decryption process will be discussed in Chapter II of this thesis. 

The message data format, shown in Figures 2 and 3, depends on the spacecraft and 

the specific message being received. Flora and Merryweather have an identical format, 

while Fauna, having been launched two years after the other two spacecraft, has a slightly 

modified message data format [2], [3]. The message identification indicates what type of 

message is being received by the ground station from the spacecraft. Utilizing the Data 

Expression Space-to-Ground ICD [4], it is possible to parse the data appropriately so that 

it can be interpreted.  
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Figure 1. Data Transport Protocol. Adapted from [3]. 

  

Figure 2. Flora and Merryweather Message Data Format. Adapted 
from [3]. 

 

Figure 3. Fauna Message Data Format. Adapted from [3]. 

2. NPS KISS Decoding Process 

Jan Roehrig outlines the AX.25 protocol and its implementation for MC3 and 

PropCube in his thesis [5]. Each message transmitted by the spacecraft begins with a 

preamble of alternating ones and zeros, as shown in Figure 1, so that the ground receiver 

and satellite may synchronize [2], [3], [5]. The following Start byte, 0x 7E, seen in  

Figure 1, announces the beginning of the data transmission. This same flag, 0x 7E, also 

denotes the end of each data transmission for that set of packets [2], [3], [5]. Appended to 

the transmitted data is a 16-bit cyclic redundancy check (CRC) value that is utilized for 

error detection [2], [3], [5]. Once the ground station receives the data, this CRC value is 

calculated based on the data downlinked [2], [5]. The ground station’s calculated value is 

checked against the transmitted CRC value. If these values match, then it is likely the data 

received is identical to the data transmitted [2], [5]. This means the data can be successfully 
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decoded, and it is logged into a “Keep it simple, stupid” (KISS) packet [2], [5]. KISS 

packets include the AX.25 Header and AX.25 Frame data from Figure 1.  

In KISS mode, at both the beginning and end, each packet is framed by 0x C0, the 

Frame End (FEND) special character byte to delimit the transmitted data [5], [6]. If the 

data in the packet contains the FEND special character, it is replaced by a two-byte special-

character sequence, 0x DB, the Frame Escape (FESC) and, 0x DC, the Transposed Frame 

End (TFEND) [5], [6]. Additionally, if the FESC character is contained in the packet’s 

data, it is replaced by a two-byte special-character sequence of FESC and, 0x DD, the 

Transposed Frame Escape (TFESC) [5], [6]. The special-characters and their hex 

representation are in Table 1.  

Table 1. KISS Special Character List. Adapted from [6]. 

Special Character Description Hex Representation 
FEND Frame End C0 
FESC Frame Escape DB 
TFEND Transposed Frame End DC 
TFESC Transposed Frame Escape DD 
   

 
Figure 4 is an example of a KISS log file from Flora. It contains multiple KISS 

packets, each of which contain their own AX.25 Header, which is sent unencrypted, and 

AX.25 Frame, which, with the exception of the IV and authentication tag, is sent encrypted. 

In Figure 4, the bytes underlined in red are inserted FEND characters in adherence to the 

KISS protocol, the bytes underlined in green comprise the AX.25 header, the bytes 

underlined in purple comprise the IV, and the bytes underlined in blue comprise the 

authentication tag. The bytes not underlined are encrypted data. The bytes boxed in red is 

an example of when the FEND character is replaced by a FESC, TFEND sequence, while 

the bytes boxed in green are examples of when the FESC character is replaced by a FESC, 

TFESC sequence.  
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Figure 4. KISS Log File Example   

The KISS data packets must be unframed prior to decryption. That is, the beginning 

and end C0 bytes must be removed, any sequenced DB DC bytes in the data must be 

replaced by C0, and any sequenced DB DD bytes in the data must be replaced by  

DB [5], [6]. The process of unframing packets is handled in the “propcube_decrypt.py” 

script, as seen in Appendix A of this thesis, enabling the decryption process to act only on 

the appropriate data. 

B. METHODOLOGY 

This thesis first reconstructs PropCube’s decryption process, which enables access 

to transmitted data. It then reconstructs the data handling process, which enables the 

decrypted data to be interpreted and displayed in a human readable format. To verify the 

reconstructed processes, this thesis conducts selected analysis of the current KISS log file 

data set. KISS files that had accessible corresponding decrypted and interpreted data were 

selected to test the processes developed in this thesis. The validity of the two reconstructed 

processes was verified through a comparison between the data sets. Through an 

examination of the data set and provided spacecraft documentation, a trial-and-error 

approach was utilized to reconstruct PropCube’s decryption and data handling processes. 
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Tyvak’s provided executable software processes log data to .pcap files maintained by the 

ground station. These files contain network packet data. This data is decrypted, but not yet 

interpreted. These files allowed for the created decryption process to be validated prior to 

developing the data handling process. The Tyvak software processes decrypted data, which 

is then interpreted and maintained in separate log files. These log files are also accessible 

to the ground station. These files allowed for the created data interpretation process to be 

validated.  

C. THESIS OVERVIEW 

This thesis documents the information necessary to successfully reconstruct 

PropCube’s decryption and data interpretation processes.  

Chapter II reconstructs PropCube’s decryption process. PropCube utilizes the AES-

128 algorithm and its employment of the Galois/Counter Mode (GCM) of operation to 

provide confidentiality and authentication of transmitted data [3]. The operations utilized 

in the algorithms are explained, and the inputs necessary from a KISS packet are identified. 

Chapter II discusses how the “propcube_decrypt.py” script, found in Appendix A of this 

thesis, was developed and verified.  

Chapter III discusses the reconstruction of the data handling process for 

interpretation of decrypted data. It discusses the development of the “data_parse.py” script, 

found in Appendix B. In parsing the decrypted data as described in the Data Expression 

ICD, some, but not all, received data packets are able to be accessed and interpreted. This 

chapter outlines which messages are able to be reconstructed, which are not, and why. 

Finally, Chapter IV outlines future work that could build on this project.  

Chapter IV also summarizes the results of this thesis, reiterating the key information 

required to reconstruct PropCube’s decryption process and enable the ground station to 

interpret the downlinked data. 
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II. RECONSTRUCTION OF PROPCUBE’S DECRYPTION 
PROCESS  

Utilizing the KISS log files generated by the Mobile CubeSat Command and 

Control (MC3) network as test data, this thesis reconstructs and outlines how PropCube 

implements the Advance Encryption Standard (AES) 128 in Galois/Counter Mode (GCM). 

This chapter provides an overview of the cryptographic and authentication functions used 

by PropCube, a knowledge of which is necessary to reconstruct the decryption process. 

With an understanding of the AES-128 in GCM cryptosystem, open source Python libraries 

are leveraged in the construction of the “propcube_decrypt.py” script shown in  

Appendix A. The Python libraries provide a simple and secure implementation of the 

cryptosystem, including the decryption process. The development of this decryption script 

was a critical step to enabling the interpretation of transmitted PropCube data.  

A. ADVANCED ENCRYPTION STANDARD 128  

To enable decryption, the AES algorithm must be understood. The National 

Institute of Standards and Technology (NIST) adapted the Rijndael algorithm, created by 

Joan Daemen and Vincent Rijmen, as AES [7], [8]. The NIST document “Announcing the 

Advanced Encryption Standard (AES)” outlines, with examples, the adapted algorithm [7]. 

AES is a symmetric key algorithm, meaning both communicating parties know the secret 

cipher key [8]. AES can be utilized with cipher keys of one of three lengths; 128, 192 or 

256 bits [7]. PropCube uses a 128-bit secret cipher key, referred to as AES-128, which 

provides data confidentiality [3], [7], [8]. This work will refer to the Tyvak-provide secret 

cipher key as the original key. Data confidentiality provides a means to stop third party 

actors from being able to read transmitted data [8]. 

AES is a block cipher which breaks the plaintext into blocks of fixed length and 

encrypts each block individually [8]. AES-128 acts on a fixed 128-bit block length [7], [8]. 

The specific 128-bit block that AES-128 acts on depends on the mode of operation. Since 

PropCube utilizes GCM as its mode of operation, AES-128 is applied to a unique 128-bit 

counter block [9]. So it is the counter block that is being encrypted by AES-128, not a 
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plaintext block. The encrypted counter block is then combined with the plaintext block to 

produce the ciphertext [9]. By encrypting the unique counter block, rather than the 

plaintext, a unique ciphertext is always produced, even when the same message data is 

repeatedly transmitted [8]. This protects the data’s confidentiality against chosen plaintext 

attacks that could otherwise be used by a third party to gain access to encrypted data [8]. 

How counter blocks are determined and GCM is employed by PropCube is described in 

depth in Section B of this chapter.  

The 128 input bits are treated as 16 bytes, which are arranged into a 4 x 4  

matrix [8]. The first column of the matrix is the first four bytes of the block, the second 

column is the next four bytes, and so on [8]. For example, if the 128 bits were grouped into 

the 16 bytes, 0 12 13 14 151 2 3b bb bb b bb … , then the array, is as presented in Figure 5. 

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

b b b b
b b b b
b b b b
b b b b

 
 
 
 
 
 

 

Figure 5. Example 128-bit Data Block Treated as a 4 x 4 Matrix. 
Adapted from [8].  

We count the rows from top to bottom as follows: 0, 1, 2, and 3; similarly the columns 

from left to right are 0, 1, 2, and 3. 

The operations performed on our elements by the AES algorithm are performed 

over the established field [7], [8]. As described in “Announcing the Advanced Encryption 

Standard (AES),” each byte in a matrix is treated as an element of the finite field ( )82 . 

The irreducible polynomial 8 4 3 1 1x x x x+ + + +  is used to construct the finite field in  

AES [7], [8]. For more background information on finite fields, the curious reader should 

see Chapter 3 Section 11 in reference [8]. In ( )82 , each byte represents a unique 

polynomial of the form 7 6 5 4 3 2 1
7 6 5 4 3 2 1 0b x b x b x b x b x b x b x b+ + + + + + + , where the 
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coefficient bn is the bit in nth place of the byte [8]. For example, 10101010 represents the 

polynomial 7 5 3 1x x x x+ + + .  

In this finite field, a bitwise XOR function, also denoted as ,⊕ is utilized on the 

elements as the addition operation [8]. When matrices are added, the XOR operation is 

performed on bytes of corresponding entries [8]. When matrices are multiplied, polynomial 

multiplication modulo 8 4 3 1 1x x x x+ + + +  is performed on the elements in the matrices 

[8]. Two polynomials are multiplied, and the product is divided by the base polynomial; 

the remainder is the polynomial element desired. For example: 

7 5 3 1 2 9 7 5 3

7 4 3 2 1 8 4 3 1

( )( )
(mod 1)

x x x x x x x x x
x x x x x x x x x
+ + + = + + +

≡ + + + + + + + +
 

First, the polynomials are multiplied. Since the product is of degree 9, it is larger than the 

base polynomial, so it must be divided by the base polynomial. By performing standard 

polynomial division and dividing 9 7 5 3x x x x+ + +  by 8 4 3 1 1x x x x+ + + +  the result would 

be 7 4 3 2 1x x x x x− + − − . However, this operation is being performed in a binary field, 

which means a coefficient of 1−  is the same as the coefficient 1 since 1 1(mod 2)− ≡ . This 

results in the 7 4 3 2 1 8 4 3 1(mod 1)x x x x x x x x x+ + + + + + + +  congruency.  

In general, this polynomial multiplication can be performed on bits by considering 

multiplication by the polynomial x1 [8]. Let ( )p x  be the polynomial element contained in 

( )82  on which we are performing multiplication, and let ( )p x   be in bit representation. 

The algorithm, as seen in Figure 6, can be utilized to multiply by 1x . 

 

Figure 6. Multiplication Algorithm. Source: [8]. 
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If the first bit is 0, as in step two, the polynomial is less than degree eight after being 

multiplied by 1x  so there is no need to reduce the product [8]. To multiply by higher powers 

than 1,x  as in the example above, the polynomial is multiplied by 1x multiple times [8]. 

To apply the algorithm to the previous example, let 7 5 3 1( )p x x x x x= + + + . This 

polynomial is represented in bits as 10101010 . Since ( )p x  is being multiplied by 2x  it is 

appended with two 0s rather than one, thus 10101010 1010101000→ . This begins with 1, 

so step three is followed as seen below:  

 

This yields a leading 0, so step two is followed and the algorithm stops. If there was a 

leading 1 a second step three from the algorithm would have been performed on the result 

of the first XOR with the trailing 0 brought down [8]. There are at most as many XOR 

operations performed as the degree of x being multiplied [8]. So in this example there could 

have been at most two XOR operations performed. Had ( )p x  been multiplied by 3x , there 

could have been at most three XOR operations performed, and so on [8]. The resulting 

polynomial 010011110 is equivalent to 7 4 3 2 1x x x x x+ + + + , which matches the answer 

given initially. This algorithm is further extendable as stated in reference [8], 

“multiplication by an arbitrary polynomial can be accomplished by multiplying by the 

various powers of X appearing in that polynomial, then adding (i.e. XORing) the results”. 

1. AES Algorithm 

AES-128 uses the original key and 128-bit data blocks as inputs to generate a 

ciphertext output [7]. AES-128 utilizes the operations outlined in the previous section as 

building blocks for encryption and decryption. AES-128 encryption/decryption consists of 

ten rounds performed upon each 128-bit block of data [8]. Each round of encryption utilizes 

four transformations called layers [8]. These layers are the ByteSub transformation, the 

ShiftRow transformation, the MixColumn transformation, and the AddRoundKey 

transformation. Utilizing these four layers, the encryption algorithm is shown in Figure 7, 
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where the ( )W i  for 0,1, 2,..., 43i = comprise the round keys utilized in the AddRoundKey 

layer. The ( )W i , referred to as words, are defined in Section A.2 of this chapter.  

 

Figure 7. AES-128 Encryption Algorithm. Source: [8]. 

a. The ByteSub Transformation 

This transformation performs a non-linear byte substitution utilizing a substitution 

table called an S-box [7]. This operation acts on each of the 16 bytes independently [7]. 

This layer, implemented with a lookup table for performance, is non-linear to protect the 
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cryptosystem from differential and linear cryptanalysis attacks [8]. For example, the 

hexadecimal byte 7D is substituted with the hexadecimal byte FF, circled in Figure 8.  

 

Figure 8. S-box: Substitution Values for the xy Byte in Hexadecimal 
Format. Source: [7]. 

A new 4 x 4 matrix is the output after the ByteSub Layer is applied to the data block 

matrix from Figure 5. The new 4 x 4 matrix is the right matrix shown in Figure 9.  

0 4 8 12 0,0 0,1 0,2 0,3

1 5 9 13 1,0 1,1 1,2 1,3

2 6 10 14 2,0 2,1 2,2 2,3

3 7 11 15 3,0 3,1 3,2 3,3

s s s sb b b b
s s s sb b b b
s s s sb b b b
s s s sb b b b

  
  
   →
  
       

 

Figure 9. ByteSub Layer. Adapted from [7], [8]. 

The interested reader can read the mathematical description used to construct the 

S-box in Chapter 5 Section 2 of reference [8]. 
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b. The ShiftRow Transformation 

As seen in Figure 10, this transformation cyclically shifts the bytes in the rows  

left [7]. Each row shifts its row number of bytes, so that row 0 does not shift, row 1 shifts 

each byte left one, and so on [8]. This layer causes data diffusion over multiple rounds [8]. 

  

Figure 10. ShiftRow Layer. Source: [7]. 

c. The MixColumn Transformation  

This transformation mixes the data of the columns to produce new columns [7]. 

Like ShiftRow, this layer also causes a diffusion of the data over multiple rounds [8]. This 

is accomplished with the following matrix multiplication, shown in Figure 11, where the 

left matrix is the MixColumn matrix and the right matrix is the state of the initial data block 

inputs after the ShiftRow transformation. 

0,0 0,1 0,2 0,3

1,1 1,2 1,3 1,0

2,2 2,3 2,0 2,1

3,3 3,0 3,1

00000010 00000011 00000001 00000001
00000001 00000010 00000011 00000001
00000001 00000001 00000010 00000011
00000011 00000001 00000001 00000010

s s s s
s s s s
s s s s
s s s

 
 
 
 
 
  3,2s

 
 
 
 
  
 

 

Figure 11. Matrix Multiplication for MixColumn Layer. Adapted 
from [7], [8]. 

The MixColumn matrix is invertible [8]. Its inverse matrix is utilized in decryption [8].  
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d. AddRoundKey 

For each round of encryption/decryption a round key is used [8]. Since there are ten 

rounds of encryption, there are ten round keys, in addition to the original key [8]. The 

generation of the ten round keys from the original is referred to as key expansion [7]. The 

AddRoundKey transformation utilizes the XOR operation to apply a round key to the 

current state of the matrix [7]. In Figure 12, the matrix with entries si is the current state of 

matrix being encrypted, while the matrix with entries ik is the round key being applied. 

How a round key is obtained is described in section A.2 of this chapter. These matrices are 

added by performing the XOR operation on corresponding bytes, i is k⊕ , to produce the 

output byte [8]. This operation has a 0th round, in addition to the ten rounds, which uses 

the original key [8]. 

4 8 12 4 8 120 0

1 5 9 13 5 9 131

2 6 10 14 2 6 10 14

3 7 11 15 3 7 11 15

s s s s k k k k
s s s s k k k k
s s s s k k k k
s s s s k k k k

   
   
   ⊕
   
   
   

 

Figure 12. AddRoundKey Layer. Adapted from [8]. 

2. Key Expansion 

In order to use the AES-128 algorithm, we must have a secret 128-bit original key 

known to both parties. From the original key, the ten round keys are recursively  

generated [7]. These round keys are then used during the AddRoundKey layer of the AES 

algorithm. Merryweather, Flora, and Fauna each have a distinct original key. Their keys 

are contained in an individual “AES GCM Keychain File” which was provided by  

Tyvak [3]. 

The original 128-bit key is grouped into 16 bytes, each designated kn, and arranged 

into a 4 x 4 matrix in the same way as the data block [8]. The four byte columns, denoted 
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( )W i , are referred to as words [7], [8]. Let 0 1 2 3 12 13 14 15...k k k k k k k k  be some key. Then the 

key matrix is as seen in Figure 13.  

4 8 120

5 9 131

2 6 10 14

3 7 11 15

k k k k
k k k k
k k k k
k k k k

 
 
 
 
 
 

 

Figure 13. Key Matrix 

Let ( )0W be the first column, ( )1W be the second column, ( )2W  be the third 

column, and ( )3W  be the forth column [8]. These four words are the original key, which 

is utilized during round 0 of the AES algorithm. The recursive equations, shown in  

Figure 14, are used to derive (4)W through (43)W ; the ten round keys, from the original 

four words. 

( ) ( ) ( )
( )

4 1 , 4 |
4 ( ( 1)), 4 |

W i W i if i
W i

W i T W i if i
− ⊕ − /=  − ⊕ −

 

Figure 14. Recursive Equations For Round Key Generation, where |/
means does not divide and | means divides. Adapted from [8]. 

In Figure 14, |/ means does not divide and | means divides. When four divides i, the 

operation ( ( 1))T W i −  transforms ( 1)W i − , as seen in Figure 15, by first performing a 

cyclical shift up of the elements in the column vector, with the top entry of the vector 

becoming the bottom entry [7], [8]. Each byte is then substituted using the ByteSub 

Transformation described in the AES Algorithm section of this thesis [7], [8]. A round 

constant is then calculated by ( 4)/4( ) 00000010 ir i −= , where 00000010 is a polynomial 

element of ( )82  [8]. This round constant is added, as defined by the XOR operation, 
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with the 0 entry of the column vector [8]. A complete example of key expansion can be 

found in Appendix A of the NIST publication, which outlines AES implementation, 

reference [7]. 

 

Figure 15. Example of ( ( 1))T W i − Transformation. Adapted from [8]. 

3. Decryption 

Each of the layers has an inverse which allows the process to be undone to decrypt 

the block [7], [8]. These layers are the InvByteSub transformation, InvShiftRow 

transformation, InvMixColumn transformation, and AddRoundKey transformation. It is 

then useful to reorder the layers of the decryption process to mirror the layers of the 

encryption [8]. This reordering allows for the construction of a single piece of hardware 

that can carry out both the encryption and decryption process. PropCube uses a software 

driven solution for encryption and decryption, but the AES algorithm is designed to meet 

both software and hardware implementation requirements [7]. This reordering creates a 

new operation InvAddRoundKey [8]. Figure 16 shows the AES-128 decryption algorithm. 
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Figure 16. AES-128 Decryption Algorithm. Adapted from [8]. 

a. InvByteSub Transformation 

This transformation utilizes a second look up table, called the Inverse S-Box, to 

undo the ByteSub layer [7]. This operations acts independently on bytes, just as the 

ByteSub layer does [7]. For example, the hexadecimal byte FF is substituted with the 

hexadecimal byte 7D, circled in Figure 17, which undoes the substitution example given 

previously.  
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Figure 17. Inverse S-box: Substitution Values for the xy Byte in 
Hexadecimal Format. Source: [7]. 

b. InvShiftRow Transformation 

This transformation cyclically shifts the bytes in the rows by the corresponding row 

number just as ShiftRow does, but it reverses the shift direction [7]. Now the cyclical shift 

of bytes is to the right [7]. 

c. InvMixColumn Transformation 

To undo the MixColumn layer, this operation uses the inverse of the MixColumn 

matrix [8]. The matrix multiplication is shown in Figure 18.  

4 8 120

1 5 9 13

2 6 10 14

3 7 11 15

00001110 00001011 00001101 00001001
00001001 00001110 00001011 00001101
00001101 00001001 00001110 00001011
00001011 00001101 00001001 00001110

s s s s
s s s s
s s s s
s s s s

  
  
  
  
  
  

 

Figure 18. Matrix Multiplication for InvMixColumn Layer. Adapted 
from [7], [8]. 
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d. AddRoundKey Transformation 

Because the AddRoundKey layer is the XOR operation on the entries of the 

matrices, it is its own inverse [7], [8]. We XOR the derived round keys in the reverse order, 

so the 0th round of decryption uses the 10th round key, the 1st round of decryption uses the 

9th round key, and so on until the original key is used for the 10th round of decryption [8]. 

To summarize, Table 2 shows the steps of AES encryption. 

Table 2. AES-128 Encryption Algorithm. Adapted from [8]. 

Round 0 AddRoundKey 
Round 1–9 ByteSub, ShiftRow, MixColumn, AddRoundKey 
Round 10 ByteSub, ShiftRow, AddRoundKey 

 
For decryption, we reverse these steps, which yields Table 3.  

Table 3. AES-128 Decryption Algorithm. Adapted from [8]. 

Round 0 AddRoundKey, InvShiftRow, InvByteSub 
Round 1–9 AddRoundKey, InvMixColumn, InvShiftRow, InvByteSub 
Round 10 AddRoundKey 

 

e. Reordering of Layers  

We can rewrite the decryption process to look like the encryption process [8]. Because 

ByteSub acts on individual bytes one at a time, and ShiftRow simply permutes the bytes in 

our matrix, the order in which these two operations are performed does not impact the 

outcome; that is to say, the operations commute [7], [8]. Similarly, the InvByteSub and 

InvShiftRow layers commute [7], [8]. Reversing the order of the operations in the 

decryption process yields Table 4. 

Table 4. Modified AES-128 Decryption Algorithm. Adapted 
from [8]. 

Round 0 AddRoundKey, InvByteSub, InvShiftRow 
Round 1–9 AddRoundKey, InvMixColumn, InvByteSub, InvShiftRow 
Round 10 AddRoundKey 
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The AddRoundKey and InvMixColumn layers do not commute, so we cannot simply reverse the order as we did with InvByteSub 

and InvShiftRow [8]. However, MixColumn and InvMixColumn are linear with respect to the individual bytes in our  

matrix [7], [8]. Figure 19 shows the result of carrying out the InvMixColumn linearly.  

4 8 12 4 8 12 4 8 120 0 0

1 5 9 13 5 9 13 1 5 9 131

2 6 10 14 2 6 10 14 2 6 10 14

3 7 11 15 3 7 11 15 3 7 11 15

s s s s k k k k s s s s
s s s s k k k k s s s s

InvMixColumns InvMixColumns InvMixC
s s s s k k k k s s s s
s s s s k k k k s s s s

      
      
      ⊕ = ⊕      
             

4 8 120

5 9 131

2 6 10 14

3 7 11 15

k k k k
k k k k

olumns
k k k k
k k k k

 
 
 
 
 
 

 

Figure 19. Linear InvMixColumns Result. Adapted from [8]. 

In Figure 19, the matrix with entries si is the state of the matrix being decrypted, while the matrix with entries ki is the round 

key being applied. So define InvAddRoundKey to be the transformation such that the round key is first transformed by the 

InvMixColumns layer then added with the XOR operation as shown in the last matrix of Figure 19 [7], [8]. Now InvMixColumns and 

InvAddRoundKey can commute and we see the algorithm as outlined in Table 5.  

Table 5. Further Modified AES-128 Decryption Algorithm. Adapted from [8]. 

Round 0 AddRoundKey, InvByteSub, InvShiftRow 
Round 1–9 InvMixColumn, InvAddRoundKey, InvByteSub, InvShiftRow 
Round 10 AddRoundKey 

 



21 

To ensure the decryption process mirrors the encryption process the MixColumn 

layer is not applied in the final round of encryption [8]. If it had been applied, the 

decryption process would have begun with an InvMixColumn, which would slow down 

the algorithm without having added any utility to security [8]. Now that the operations have 

been reordered, a regrouping yields the final process as seen in Table 6. 

Table 6. Final AES-128 Decryption Algorithm. Adapted from [8]. 

Round 0 AddRoundKey  
Round 1–9 InvByteSub, InvShiftRow, InvMixColumn, InvAddRoundKey  
Round 10 InvByteSub, InvShiftRow, AddRoundKey 

 

B. GALOIS/COUNTER MODE 

AES is designed to encrypt/decrypt 128-bit blocks [7], [8]. However, most of 

PropCube’s messages require more that 128-bits be encrypted. When messages exceed 

128-bits, meaning there is more than one block of data to encrypt, the mode of operation 

describes the algorithm used by AES to encrypt/decrypt the multiple blocks [8].  

Galois/Counter Mode (GCM) is a block cipher mode, constructed for a 128-bit 

block size, which is able to provide authenticated encryption with associated data 

(AEAD) [9], [10]. AES provides confidentiality, the protection of information from a third 

party [8]; GCM brings authentication to our cryptosystem [9]. Authentication ensures the 

data received could have only been sent from the expected second party [8]. Authenticity 

of the data is established by using a universal hash function [10]. Additional authenticated 

data (AAD) is data sent unencrypted and is used as an input, along with the original key, 

the IV, and ciphertexts, by the universal hash function in creating the authentication  

tag [2], [10]. Generally, a hash function utilizes an arbitrary length input string and 

produces a fixed length output string [8]. A hash function should also have the following 

properties: the output can be calculated quickly, the function should be one-way or pre-

image resistant, and it is computationally infeasible to find two different messages that 

result in the same output [8]. The GHASH function is the universal hash function used by 
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GCM and is described in the Authentication Tag portion of this section [9], [10]. The  

16-byte tag seen in Figure 1 is the output of this hash function.  

This authentication can prevent malicious actors from harming operations [11]. If 

a third party were to send a command to remove files from the spacecraft, this 

authentication process would allow the spacecraft to detect that the command was not sent 

from a trusted party [11]. The authentication tags would not match because the third party 

does not know the original key, so the spacecraft would not even attempt to decrypt the 

message it received and the message would be discarded. The authentication tag is 

overhead that must be transmitted with each packet at the expense of transmitting data [11].  

As described in [9], operations performed in the GCM algorithm are done in the 

finite field 128(2 ) . The irreducible polynomial 128 7 2 1x x x x+ + + +  is used to construct 

the finite field [9]. Each 128-bit block of data represents an element of our field [9]. The 

operations performed in this field are similar to those performed in the ( )82  finite field 

constructed for AES. Each 128-bit element represents a unique polynomial of the form
127 126 2

127 126 2 1 0...b x b x b x b x b+ + + + + , where the coefficient nb is the bit in the nth place of 

the byte [9]. As before, addition of two elements is achieved utilizing the XOR function 

bitwise on the two elements. Multiplication of two elements is polynomial multiplication 

modulo   128 7 2 1x x x x+ + + + , the base polynomial. 

1. Authenticated Encryption 

GCM utilizes four inputs during the authenticated encryption process: the original 

key (K), the IV, the plaintext (P), and AAD (A) [9]. These inputs produce two outputs: the 

ciphertext (denoted C), and the authentication tag (denoted T) [9]. It is in the 

implementation of GCM that inputs from PropCube are required. By determining 

PropCube’s unique inputs, the decryption process was able to be reconstructed in the 

“propcube_decrypt.py” script found in Appendix A of this thesis. Figure 20 depicts where 

the four inputs and two outputs are in PropCube’s message format. 
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Figure 20. GCM Authenticated Encryption on a PropCube Packet. 
Adapted from [3], [9]. 

a. Inputs from PropCube 

(1) The Original Key, K 

The original key is the unique secret cipher key for each PropCube described 

previously, in section A of this chapter. 

(2) The Initialization Vector, IV 

The IV is utilized to create counter blocks. AES-128 in GCM encrypts the counter 

blocks. The XOR function is then performed on the encrypted counter block created and 

the plaintext to produce the ciphertext [9]. Each IV must be distinct and must be a nonce, 

a number used once [9], [10]. This creates a unique set of counter blocks for every message, 

since the counter blocks are derived from the IV.  

PropCube transmits the IV unencrypted, but masked, as the first 12 bytes of the 

AX.25 frame [3]. The structure of PropCube’s IV ensures it is a nonce. The 12 byte IV is 

composed of two fields: the first eight bytes is a counter, while the last four bytes is a 

unique identifier for the spacecraft [3]. The counter, transmitted Little Endian, counts the 

message number the spacecraft is transmitting, so every time a new message is sent out the 

counter increments by one [3]. This ensures the IV acts as a nonce.  
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Before transmission, the XOR function is used on the IV and a 12 byte IV  

mask [3]. This IV mask, which hides our transmitted IV, is constant across all of the 

spacecraft and is co-located with the cipher key in the AES GCM Keychain File [3]. Before 

we can utilize the received IV for decryption, we must again perform the XOR function 

with the IV mask to undo the masking. It is this unmasked IV that is utilized in the 

authenticated decryption process [3].  

Once the IV is unmasked, 0Counter , as seen in Figure 21, can be derived. 0Counter

is the initial counter block to be used in GCM. As outlined in reference [9], because our IV 

is 12 bytes, which equals 96 bits, 31
0 || 0 1Counter IV= . Here the IV is expressed in binary 

and concatenated with 31 bits of 0 and one bit 1, yielding a total length of 128-bits [9]. In 

the equation 31
0 || 0 1Counter IV= , the operation || means to concatenate and 031 is to be 

interpreted as a string of length 31 with 0 as every bit. To concatenate two strings is to 

append the second string to the first. For example, 0100||0101 yields the new string 

01000101. Strings need not be the same length for concatenation. The length of the output 

string is the sum of the length of the input strings.  

As seen in Figure 21, 0Counter  is encrypted using the AES-128 algorithm. Rather 

than being applied to a plaintext, that output is held to be used in creating the authentication 

tag, T, at the end of the authenticated encryption process [9]. 0Counter  is incremented by 

one to produce 1Counter  [9]. In general, 1( )i iCounter incr Counter−=  where the value of 

( || )incr IV I  is 32|| ( 1mod 2 )IV I + as described in reference [9]. Note, 321mod 2I +  is 

integer addition and does not utilize the XOR function. In the case of Figure 21, 
30

1 || 0 10Counter IV=  and 30
2 || 0 11Counter IV= . 
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Figure 21. Diagram of Authenticated Encryption. Source: [9]. 

(3) The plaintext, P 

The plaintext is the data which needs to be encrypted/decrypted. PropCube 

transmits the IP, UDP and message data encrypted, as seen in Figure 1.  

(4) Additional Authenticated Data, A 

As depicted in Figure 20, the empty string, denoted {}, is utilized for A. This 

information was not included in the Tyvak documentation. Initially, this research attempted 

to utilize the AX.25 header as A, as the original specification, reference [9], and the NIST 

publication which outlines GCM block cipher mode of operation both make reference to 

header information utilized as AAD. However, when the AX.25 header was utilized as A, 

the authenticated decryption failed with all known keys. It was unable to create the 
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authentication tag. This led to an attempt to decrypt with the {} as A. With that, the 

authenticated decryption was achieved.  

Figure 21 graphically depicts how the GCM mode of operation utilizes the 

described inputs to produce the ciphertext and authentication tag outputs. It creates 

ciphertexts by first encrypting a 128-bit counter block via the AES-128 algorithm [9]. The 

encrypted block is then combined with the 128-bit plaintext blocks via the XOR function 

which produces the ciphertext as the output [9]. The ciphertexts are transmitted as the 

encrypted data seen in Figure 20.  

The authentication tag is generated in this process via the GHASH function [9]. 

This function uses the ciphertext, A, and a polynomial H, called the hash subkey, to produce 

the universal hash value which we call the authentication tag, T [9], [10]. As shown in  

Figure 20, T is appended to PropCube’s encrypted data for transmission [3], [9].  

(5) Hash Subkey, H 

The hash subkey is not a direct input from PropCube, but it is derived from the 

cipher key input provided by PropCube. This derived subkey is not to be considered an 

output of AES-128 in GCM either. The hash subkey is used as an input to create the 

authentication tag output. To establish H, the AES-128 algorithm is used to encrypt a 128-

bit block of all zeros with the cipher key, expressed mathematically as 128( ,0 )H E K= , in 

reference [9]. The output of this will yield a polynomial in our field that will be utilized in 

the GHASH function, which creates the authentication tag. 

b. Outputs from AES-128 GCM 

(1) Ciphertext 

Let n be the number of blocks that will be encrypted. For 1i n≤ − , 

( , )i i iC P E K Counter= ⊕  represents ciphertext production mathematically [9]. For 

example, the output of encrypting 1Counter  is applied to Plaintext1 utilizing the XOR 

function resulting in 1Ciphertext . Similarly, the output of encrypting 2Counter  is applied 
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to Plaintext2 utilizing the XOR function resulting in 2Ciphertext . These would then be 

transmitted as encrypted data in a PropCube message.  

Let block n be the final block to be encrypted. This block may or may not be a full 

128-bit block of plaintext. If the number of bits in our data is a multiple of 128, then all 

plaintext blocks that need to be encrypted will be full blocks. If the number of bits in our 

data is not a multiple of 128, then the nth block will not be a full block [9]. Let u be the 

number of plaintext bits in the nth block, where u is 1 128u≤ ≤ . Then to encrypt block n, 

( ( , ))n n u nC P MSB E K Counter= ⊕ , where MSBu (S) returns u most significant bits of S as 

a string [9]. 

In this process the AES algorithm is applied to the counter, which is always 128-

bits. This ensures that the AES algorithm can always be applied, as it requires 128-bit 

blocks. The MSBu() function truncates the rightmost 128 u−  bits, resulting in a string 

which is the same length as the remaining plaintext to be encrypted [9]. This allows the nth 

block of plaintext to be encrypted regardless of its length. If 128u = , then the nth block is 

a full block and MSBu (S) would simply return the entire encrypted counter string.  

For example, when the MC3 ground station network receives part three of a system 

status message from Flora, it receives 1,216 bits that are encrypted. This makes nine full 

128-bit blocks and one partial 64-bit block. So the 10th block has 64u = . 10Counter  is 

encrypted with Flora’s original key, K, which results in a 128-bit string. The 64 most 

significant bits, (the leftmost 64) becomes the string S via the MSBu (S) function. The 64-

bit Plaintext10 is then combined with S using the XOR function. The result is Ciphertext10, 

which is 64-bits of encrypted data.     

(2) Authentication Tag 

PropCube uses GCM to generate a 128-bit tag. As [9] explains, the equation 

128 0( ( , , ) ( , ))T MSB GHASH H A C E K Counter= ⊕ generates this authentication tag [9]. To 

calculate the tag, the GHASH operation is applied to the hash subkey derived from 

encrypting the all zeros block (H), the empty string (AAD), and the ciphertext.  
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Generally, 1( , , ) m nGHASH H A C X + += , where m is the number of pieces of AAD 

inputs, and n is the number of ciphertext inputs [9]. iX , for i=  0,…,m+n+1 are defined in 

Figure 22.  

   

Figure 22. Definition of Xi  for the GHASH Operation. Source: [9]. 

The operation len(), returns the integer value of the input represented as a 64 bit 

binary string [9]. Since PropCube uses the empty string as A, 0m =  and 64( ) 0len A = . Using 

the previous example of a 1,216-bit message being transmitted, C=1216  and 
53( ) 0 ||10011000000len C = . In calculating the GHASH, ( ) || ( )len A len C  = 

64 530 || 0 ||10011000000 . 

As described in reference [10], the effect of the GHASH is the calculation of  
1 2

1 2 1...n m n m
n m n mX H X H X H X H+ + +
+ + +• ⊕ • ⊕ ⊕ • ⊕ • , where •  represents polynomial 

multiplication mod 127 126 2
127 126 2 1 0...b x b x b x b x b+ + + + + . Since PropCube uses the empty 

string as A, 0m = . This results in 0 0A H• = , so 1 1X C H= • , as 1 10C C⊕ = . The GHASH 

continues as described in Figure 22, and depicted in Figure 21. 

2. Authenticated Decryption 

The structure of the authenticated decryption process, as shown in Figure 23, is the 

same as the authenticated encryption process [9]. However, for the decryption process the 

tag must be calculated before the encrypted counter and data block are combined with the 
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XOR function [9]. The data block in this instance is the ciphertext, which is needed to 

compute an authentication tag. When the ciphertext is combined with the encrypted counter 

via the XOR function, the plaintext is the resulting output.  

 

Figure 23. Diagram of Authenticated Decryption. Source: [9] 

After the authentication tag is calculated with the decryption process it is compared 

to the authentication tag received from the originator [9]. If these tags match, then the 

receiver can be sure it was sent by the trusted party. If these tags do not match, then the 

message is treated as tampered with and discarded. A summary of the authenticated 

decryption process is shown in Figure 24. 
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Figure 24. Summary of Decryption Operations. Adapted from [9]. 

C. PYTHON CRYPTOGRAPHY LIBRARY 

As community moderator, Moshe Zadka, writes on opensource.com, “The first rule 

of cryptography club is: never invent a cryptography system yourself. The second rule of 

cryptography club is: never implement a cryptography system yourself: many real-world 

holes are found in the implementation phase of a cryptosystem as well as in the  

design” [12]. Because cryptosystems are often difficult to implement in the real-world, the 

Python library, PyCryptodome, was utilized to build the “propcube_decrypt.py” script. 

This script is the reconstructed decryption process. 

PyCryptodome is a self-contained Python package that implements AEAD, to 

include AES-128 in GCM [13]. This library allowed for the implementation of the 

decryption script, found in Appendix A, without the need to create functions that handle 

all of the difficult operations outlined in Chapter II, sections A and B of this thesis. The 

creation and layering of complicated functions is often where the implementation phase of 

a cryptosystem goes awry.  

In leveraging open-source libraries, this research was able to marry Tyvak-provided 

values and recreate AES-128 operating in GCM. The example code in Figure 25 outlined 

how to generally use the library. The script developed utilizes two arguments, the KISS 

packet file to be decrypted and the spacecraft name. The spacecraft name identifies which 

original key is to be used for decryption.  
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Figure 25. Example Decryption Code. Source: [13]. 

Additional code was utilized to ingest a KISS packet file. Treating the data in the 

file as a string allows for the KISS packet to be parsed appropriately. First it is unframed 

so that bytes inserted by the KISS protocol are removed. The remaining data is parsed into 

the IV (which it then unmasks), the ciphertext, and the tag. In Appendix A of this thesis, 

there is no line of code to delineate A. Since A is {}, it was not necessary to directly assign 

any AAD for the Python library to decrypt the received message. 

Once all inputs are identified by the script, the library enacts decryption as 

described in this chapter, producing a plaintext hexadecimal output string, as seen in  

Figure 26.  
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Figure 26. Example of a Decrypted Flora Ciphertext Produced by 
“propcube_decrypt.py” Script  

The decrypted data was validated by comparing it to known decrypted data contained in 

stored .pcap files. The validation of the decryption process allowed for this thesis to begin 

reconstructing PropCube’s data handling process.  



33 

III. RECONSTRUCTION OF PROPCUBE’S DATA HANDLING 
PROCESS FOR INTERPRETATION OF DECRYPTED DATA  

After data is decrypted, that data still needs to be interpreted and translated into a 

human-readable format. After the reconstruction of the decryption process was complete, 

this thesis was then able to reconstruct PropCube’s data handling process, which translates 

binary bit sequences into tangible, actionable information for PropCube operations. This 

thesis reconstructs the data handling process in a second python script, seen in  

Appendix B, called “data_parse.py.” To create the “data_parse.py” script this research first 

examined the Tyvak-provided Data Expression ICD, then created a way to identify 

message data received by the ground station, and finally reconstructed a process to interpret 

the received data.  

A. DATA EXPRESSION INTERFACE CONTROL DOCUMENT 

PropCube utilizes a customized data handling process for interpretation of 

transmitted information. Each type of message PropCube transmits has a specific format, 

which is also know by the MC3 network that receives the information. This specific format 

allows the systems to ingest and interpret commands and data. This format is outlined in 

the Data Expression ICD [4]. The Data Expression ICD provided by Tyvak is a spreadsheet 

document that describes the format of message data. As shown in Figure 2 and Figure 3, 

messages have a message ID byte that follows the IP and UDP information. This byte is 

called the Frame ID in the spreadsheet document. The primary message types received by 

the MC3 network are ARSFTP_METADATA, which provides a hash value MD5 sum for 

a file; ARSFTP_DATA1, which returns requested information such as directory listings 

and GPS information; and SM_STATUS_RESPONSE, which provides health and 

telemetry information for the spacecraft. These are indicated by the hexadecimal bytes 04, 

05, and F1, respectively [4]. 
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Figure 27. ARSFTP_METADATA Message Format. Adapted from [3], [4]. 

Figure 27 is an example of how the spreadsheet delineates message data for the ARSFTP_METADATA message. 

ARSFTP_METADATA contains 61 bytes of information that is decrypted once received by a ground station. Bytes 0 through 19 are 

the IP header, and bytes 20 through 27 is the UDP information [3], [4]. The IP and UDP information was originally absent from the 

Data Expression ICD but is described in the UHF Space-to-Ground ICD. This thesis merged the relevant information to create a more 

accurate documentation of received data. Byte 28, 0x 04, is the message ID [3], [4]. The message data that follows the frame ID is 

delineated by bit length. In ARSFTP_METADATA, the 32 bits that follow the frame ID represent the transfer request ID [4]. As 

described by the Data Expression ICD, that binary string is then converted to a decimal number. That decimal number is then multiplied 

by the constant given in column C1, outlined in purple, which is then summed with the constant in C0, outlined in green [4]. The output 

produced by this affine transformation is the value of the request ID. ARSFTP_METADATA has the same constants for all values, but 

that does not hold true for other message types; SM_STATUS_RESPONSE utilizes several different affine transformations to produce 

interpretable data [4].  
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As described in Chapter II and seen in Appendix A, the reconstructed decryption 

process produces a hexadecimal string as the output. Thus the “data_parse.py” script acts 

not on binary strings but on hexadecimal strings, which it converts to decimal values before 

applying the appropriate affine transformation.  

B. DETERMINING MESSAGE DATA 

To interpret message data, the “data_parse.py” script must first be able to identify 

which message type has been received. Initially, this appeared to be an easy task, as the 

ICD provided frame IDs for all message types. To determine the message type, the data 

parser would only have to look to byte 28 to determine which message type was received.  

However, due to ambiguities in the ICD, relying only on the frame ID for message 

type determination does not work. The SM_STATUS_RESPONSE message exceeds the 

256-byte maximum PropCube encrypts and transmits [3], [4]. The ICD indicates that 

SM_STATUS_RESPONSE is received as three separate messages, 

SM_STATUS_PART1, SM_STATUS_PART2, and SM_STATUS_PART3, each with a 

unique frame ID—0x F2, 0x F3, and 0x F4 respectively [4]. However, in examining the 

decrypted data, this research determined that these three frame IDs are not being utilized. 

Only SM_STATUS_RESPONSE messages, with frame ID 0x F1, are transmitted by 

PropCube, which, utilizing IP and UDP formatting, fragments the larger F1 message into 

three packets that are transmitted separately. The result is that only SM_STATUS_PART1 

contains a frame ID—0x F1—and UDP information. The remaining two packets only 

contain IP header data and message data. Thus, relying on only the frame ID to determine 

which message type has been received is not possible.  

Nevertheless, SM_STATUS_PART1, SM_STATUS_PART2, and 

SM_STATUS_PART3 messages were able to be identified and reconstructed by 

partitioning SM_STATUS_RESPONSE messages in accordance with IP and UDP 

standards. All received messages contain the IP header. Utilizing the fragment offset 

information, outlined in green in Figure 28, it was possible to determine which message 

was received. If the fragment offset indicates that there is 0 offset, then it is the first 

fragment of the message [14]. This means byte 28 will be the message ID, which can be 
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used to determine if the message is ARSFTP_METADATA, ARSFTP_DATA1, or 

SM_STATUS_RESPONSE.  

 

Figure 28. IP Header Format. Source: [14]. 

Only the SM_STATUS_RESPONSE message is too large to be sent in one packet, so, if 

the received packet has an offset that does not equal 0, then it is the second or third packet 

of an SM_STATUS_RESPONSE. A second packet, SM_STATUS_PART2, returns a 

fragment offset of 29, while a third packet, SM_STATUS_PART3, returns a fragment 

offset of 58. By utilizing a combination of IP information and frame ID information, the 

message type can be determined.    

Although the fragment offset allows for the determination that 

SM_STATUS_PARTi, where i= 1, 2, or 3, has been received it does not directly indicate 

what message data from the larger SM_STATUS_RESPONSE message is contained in 

each fragment. By utilizing IP and UDP protocols to partition data for fragmentation, 

SM_STATUS_RESPONSE message data as delineated in the Data Expression ICD, can 

be partitioned into the three packets, which allows for reconstruction and interpretation of 

that data.  
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When fragmentation occurs, the message data of the IP is what is being  

fragmented [15]. For this reason, only SM_STATUS_PART1 contains UDP information. 

The fragment offset indicates where the data of the fragment is in relation to the beginning 

of the message data [15]. This follows IP and UDP standards but was not indicated directly 

in the Tyvak documentation.  

Fragments are grouped by octets, made up of 8 bytes [15]. The fragment offset 29 

for SM_STATUS_PART2 indicates that it begins after the 29th octet, which means its data 

is placed after the 232 bytes of data that were transmitted in packet 1 of 

SM_STATUS_RESPONSE. The first packet, SM_STATUS_PART1, transmits 252 total 

bytes of encrypted data, consisting of 20 bytes of IP header data, eight bytes of UDP data, 

and 224 bytes of message data. The 20 bytes of IP header does not count as data for the 

offset calculation because it is not message data.  

PropCube can transmit a maximum of 256 bytes of data encrypted, but 

SM_STATUS_RESPONSE packets cannot take advantage of that because of IP 

fragmentation constraints. Data must be fragmented on octet boundaries [15]. Each 

fragment requires the IP header so that messages can be reassembled using the 

identification block, outlined in blue in Figure 28 [14]. All fragments have the same unique 

identification value so that they can be traced to each other [15]. After the 20 bytes for the 

IP header are utilized, 236 bytes are left for data. Since 236 is not divisible by eight, there 

is an inefficiency created; leaving four bytes unusable.  

When SM_STATUS_RESPONSE was partitioned in accordance with IP and UDP 

standards, the reconstructed packets matched the partitioning as described in the Data 

Expression ICD for messages with hexadecimal frame IDs F2, F3, and F4 with slight 

differences: namely that the F2 message is indicated with the frame ID F1, while the 

messages for F3 and F4 do not utilize any frame ID. Figure 29 shows the logic used in the 

“data_parse.py” script to determine what message type has been received. 
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Figure 29. Logic Flow Diagram for “data_parse.py” Script 

Utilizing the fragment offset information provided by the IP header and the frame 

ID, messages can be classified after their decryption. If the fragment offset is zero, the 

script examines byte 28 to classify the message. If the fragment offset is not zero, it 

classifies the message as either SM_STATUS_PART2 or SM_STATUS_PART3 as 

dictated by an offset of 29 or 58, respectively. 

C. INTERPRETING THE MESSAGE 

Once the message type is identified, the next step is to interpret the data. The 

message is treated as a hexadecimal string. That string is appropriately dissected based on 

the message type so that affine transformations from the  spreadsheet can be applied to 

correctly interpret the data. This research was only able to reconstruct 

SM_STATUS_PART1, SM_STATUS_PART2, SM_STATUS_PART3, and 

ARSFTP_METADATA messages, as these message types have consistent length and a 

clearly outlined interpretation description in the Data Expression ICD. This consistency 

allowed for a reconstruction of their interpretation process. ARSFTP_DATA1, by contrast, 
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has a variable return structure. An examination of the decrypted data showed varying message lengths, and the description in the Data 

Expression ICD was not specific enough to enable a reconstruction of the interpretation process in the time available for this research. 

As seen in Figure 30, the entire block of message data is called “File Data,” outlined in red, with no corresponding affine transformation 

described to interpret the data [4]. The “data_parse.py” script outputs “Cannot do 0x 05 packets” when this message type is received. 

 

Figure 30. ARSFTP_DATA1 Message Format. Adapted from [3], [4]. 

Although the last 16 bytes of an ARSFTP_METADATA message are also an array with no corresponding affine transformation, 

this message is still interpretable because the information is defined in a less ambiguous manner. As Figure 27 shows, the Data 

Expression ICD indicates that “MD5 sum” is the same data type as “File Data. However, unlike the nondescript term “File Data,” an 

MD5 Sum is a standard data block known to be a hexadecimal output, which makes it reproducible. 
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To enable data interpretation of all messages, five affine transformations are 

defined in the “data_parse.py” script. First, the hexadecimal string is converted to a decimal 

value. Then the affine transformations convert the decimal value to a value with units, such 

as volts or amps. The five transformations, as seen in Figure 31, convert raw values to their 

corresponding temperature, voltage, current, angle, attitude control, or magnetometer 

measurement.  

 

Figure 31. Python Code for Conversions From “data_parse.py”  

As seen in Figure 32, the appropriate affine transformation is delineated with 

defined coefficients and clearly defined units. The unambiguous conversion provided by 

the Data Expression ICD allows for data in SM_STAUS_RESPONSE messages to be 

correctly segmented and converted into human-readable values.  
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Figure 32. SM_STATUS_PART1 Message Format. Adapted from [3], 
[4]. 

The script, “data_parse.py,” is able to take a decrypted string, as seen in Figure 26, 

and convert it appropriately, as seen in Figure 33, successfully reconstructing the data 

handling process. Figure 34 demonstrates how to utilize the reconstructed processes.  
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Figure 33. Plaintext From Flora Interpreted by “data_parse.py” Script 
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Figure 34. Command to Utilize Reconstructed Processes 

By importing the “data_parse.py” script into “propcube_decrypt.py” one command 

can be utilized to decrypt and interpret a message. From the command terminal access the 

directory, underlined in red in Figure 34, in which the Python scripts and KISS file logs 

are stored. The “propcube_decrypt.py” script is called, underlined in green, utilizing two 

arguments as inputs. The arguments are the KISS log file to be decrypted and interpreted, 

underlined in yellow, and the spacecraft the data was received from, underlined in fuchsia. 

The command terminal will then output the data as seen in Figure 33.  
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IV. FUTURE WORK AND CONCLUSION 

 This thesis has reconstructed the decryption process and partially reconstructed the 

data handling process of PropCube. In doing so, this research found ambiguities in the 

Tyvak documentation. Resolving the ambiguities took considerable time, which hindered 

the complete reconstruction of the interpretation process and prevented the reconstructed 

processes from being implemented in real-time by this project. However, this thesis has 

laid the foundation for this objective to be accomplished in future work. This chapter will 

outline areas for future research and conclude with recommendations for improved 

operational performance.  

A. FUTURE WORK 

From the work of this thesis, there are three primary projects for future work: 

implement real-time operations, reconstruct the ARSFTP_DATA1 message, and 

reconstruct the encryption and uplink data handling processes.  

1. Real-Time Concept of Operations 

The processes that have been reconstructed in this thesis can work in parallel with 

the Tyvak created processes. Currently both systems analyze data received from PropCube 

after the completion of a spacecraft’s overhead pass. That means the information received 

cannot be acted upon until the next time that spacecraft is overhead a ground station. 

However, the reproduced processes can be altered to enable decryption and interpretation 

of data while the pass is occurring. With more timely information, operators can make 

better decisions. For example, as a pass occurs, the ground station is transmitting new 

commands to be performed by the spacecraft, while simultaneously receiving data about 

the spacecraft’s health status. Currently, operators first try to receive health information for 

part of one pass to verify a particular spacecraft is in good working order; then whether 

this data has been downloaded or not, during the rest of the pass, the operator can task a 

spacecraft to perform a mission task. The spacecraft’s battery health is transmitted to the 

ground in a SM_STATUS_PART1 message. For example, a low battery voltage prevents 

operators from activating the PropCube’s experiments. Over time its solar panels recharge 
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the battery, allowing operators to resume experimentation. The ability to process data in 

real-time would allow for the spacecraft’s health to be verified immediately, enabling 

potential same-pass mission tasking. 

Further changes could be made to the processes allowing for more autonomous 

operations. Alert logic can be built into scripts that would notify operators of status 

conditions outside of acceptable levels. For example, if the battery level were to fall below 

a certain threshold, operators could be notified with a special warning indicating abnormal 

operating conditions. The system could then automatically command the spacecraft to 

pause transmissions allowing it to recharge its battery. These alerts could be made for other 

known values such as operational temperature ranges as well.  

2. Reconstruct ARSFTP_DATA1 Messages 

Since ARSFTP_DATA1 messages were too broadly defined in the Data Expression 

ICD and return variable lengths of data, this research was unable to reproduce the 

interpretation process. However, the SSAG received some flight software source code from 

Tyvak as this research was being conducted. This source code could be examined to see if 

it offers any insight into ARSFTP_DATA1 messages. Future research could also compare 

decrypted ARSFTP_DATA1 message data to Tyvak log files to see if some way of 

reproducing the data handling process reveals itself.  

3. Uplink Data Handling and Encryption 

This thesis focused on downlinked data; future research could reconstruct the 

uplink processes. By utilizing selected unencrypted uplink messages and examining the 

Data Expression ICD it may be possible to reconstruct the uplink data handling process in 

a similar manner the downlink data handling process was reconstructed. Utilizing several 

KISS packets from each spacecraft that encompass all of the different possible uplink 

messages should enable the uplinked data handling process to be reconstructed.  

To reconstruct the encryption process the PyCryptodome library that enabled the 

“propcube_decrypt.py” script to be made can also be leveraged. Figure 35 provides an 
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example code for encryption utilizing AES-128 in GCM. The required encryption 

components are the same as outlined in Chapter II of this thesis.  

 

Figure 35. Example AES-128 in GCM Encryption Code. Source: [13]. 

This research found it necessary to reconstruct the decryption process before 

reconstruction of the data handling process was possible. Similarly to reconstruct the uplink 

process, typically the data handling process would be reconstructed before the encryption 

process is reconstructed. However, since the “propcube_decrypt.py” script has already 

been demonstrated to work, it could be used to test and validate an encryption script. After 

the encryption process is reconstructed, any string of data could be encrypted. That 

encrypted string can then be passed to “propcube_decrypt.py.” If the string decrypts 

correctly, then the reconstructed encryption process would be valid. In testing this way, the 

reconstruction of the encryption process can be done independently of reconstructing the 

uplink data handling process.  

B. CONCLUSION AND RECOMMENDATIONS 

It was possible to reconstruct the decryption processes because a well-known, open 

source standard was utilized for security. Had Tyvak created their own cryptosystem rather 

than utilizing a NIST standard, it would not have been feasible to reconstruct the decryption 

process. Likewise, it was possible to recreate data interpretation process largely because a 
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standard data handling processes were utilized. A clear data expression ICD is also needed 

for reconstructing the data interpretation process. As this research shows, where data 

formats are not clearly defined, it is difficult to reconstruct the interpretation process, as 

was the case with ARSFTP_DATA1 messages. Thus, when possible, it is critical to require 

detailed documentation from a manufacturer when acquiring technologies.  

In addition, based on its examination of the use of AES-128 in GCM for operational 

use by small satellites with limited power, this research recommends utilizing a different 

mode of operation for security. Although authentication is a valuable best practice, its 

application in this environment imposes an overhead cost that compounds data reception 

problems caused by a noisy environment. Authentication in a symmetric key cryptosystem 

exists without the addition of a tag. Since the key is secret, if the message decrypts to 

something interpretable, it can be assumed to have been sent by a party that knows the  

key [8]. To illustrate this concept, let Eve be the malicious actor. If she wanted to remove 

a file from the spacecraft, she would have to know what the file was called and how to 

command its removal. She would then have to send an encrypted command to do so. Since 

Eve does not know the key, she can send some command encrypted with some random 

key. When the spacecraft receives that command it would decrypt the message. Since the 

key was random and likely wrong, the message would be decrypted to a message calling 

for a file name that does not exist to be removed. Although using the authentication tag 

would have prevented the process from even happening, the cost imposed is higher than 

the value of the security gained.  

Although it is possible to send a receiving ground station a message which could 

be interpreted as incorrect data, the cost of doing so would not be worth it for Eve. She 

would have to send down data at the expected time and from the expected place the ground 

station was expecting a spacecraft to pass. This received data would decrypt and be 

interpreted as data due to the format of the received messages. However, the data would 

likely be outside of believable values due to the incorrect key. It would be easier for Eve 

to jam the ground station to prevent data collection.  

Figure 36 is example code utilizing the PyCryptodome library for AES-128 in 

Counter mode (CTR). CTR encrypts AES similarly to GCM but without the universal  
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hash [8], [9]. It encrypts counters, which are then combined with plaintext to provide 

confidentiality, but without the additional data overhead required for transmitting an 

authentication tag [8]. 

 

Figure 36. Example AES-128 in CTR Encryption Code. Source: [13].  

Reconstructing the decryption and data handling processes gives better insight not 

only into how PropCube operates, but also into operations in general. Going forward, the 

SSAG may use cryptosystems on platforms developed at NPS. Cryptosystems inherently 

sacrifice efficiency for privacy. To keep data confidential, encryption imposes costs on 

processing power, memory, and at times transmission overhead. If NPS develops platforms 

and associated payloads that face similar noisy environments, utilizing AES-128 in a mode 

of operation like CTR could provide a better cost-benefit balance for operations. 
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APPENDIX A. PROPCUBE DECRYPTOR PYTHON SCRIPT 

#######################################################################  
#   Naval Postgraduate School  
#   propcube_decrypt.py  
#  
#   Revision History:  
#   =================  
#   Date            Who            What  
#   ---------------+--------------+------------------------------------  
#   2019-02-11      Jim Horning     Creation  
#   2019-04-23      Jim Horning     Import data_parse   
#   2019-04-27      Joseph Gilley   Comments  
#  
#######################################################################  
  
from __future__ import print_function  
from Crypto.Cipher import AES  
import binascii  
import struct  
import sys  
import time  
  
import hexdump  
import data_parse  
  
  
  
class PROPCUBE_Decrypt(object):  
    #IV mask and keys are found in ".aes_gcm_keychain" files provided 
by Tyvak  
    #IV mask is a 12 byte mask represented in hex. The IV Mask 
presented here is for reference only, not actual implementation.    
    IV_mask = binascii.unhexlify('01234567890123456789ABCD')  
  
    #To use this library, only an 16 byte original key represented in 
hex is required. The round keys are derived from the original by the 
PyCrytodome library.   
    #The keys presented here are for reference only, not actual 
implementation. The true IV mask and keys are omitted for security 
purposes.   
    keys = {'merryw': 
binascii.unhexlify('012345678901234567890123456789AB'),  
            'fauna':  
binascii.unhexlify('ABCDEFABCDEFABCDEFABCDEFABCDEF12'),  
            'flora':  
binascii.unhexlify('A1B2C3D4E5F6A7B8C9D0E1F2A3B4C5D6')}  
      
    #The first 18 bytes are AX.25 header and KISS protocol  
    XOR_START = 18  
    #This is the length in bytes of the IV mask that must. The packet 
IV is the 12 bytes that follow the AX.25 and KISS protocol bytes  
    XOR_LENGTH = 12  
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    START_OF_CIPHER_DATA = 30  
    TAG_LENGTH = 16  
      
    def __init__(self, debug=False):  
        self.debug = debug  
          
          
    def make_addr(self, addr):  
        return '%d.%d.%d.%d' % ((addr&0xFF000000)>>24, 
(addr&0x00FF0000)>>16, (addr&0x0000FF00)>>8, addr&0xFF)  
  
          
    #The first 20 bytes of our encrypted data is the IP information of 
the message  
    def decode_ipv4_header(self, header):  
        protocol_lookup = {1:'ICMP', 2:'IGMP', 6:'TCP', 9:'IGRP', 
17:'UDP', 47:'GRE', 50:'ESP', 51:'AH', 57:'SKIP', 88:'IEGRP', 
89:'OSPF', 115:'L2TP'}  
        (b0, tos, tot_len, id, w3, ttl, protocol, check, saddr, daddr) 
= struct.unpack('!BBHHHBBHII', header)  
        version = (b0&0xF0)>>4  
        ihl = (b0&0x0F)  
        flags = (w3&0xE000)>>12  
        offset = w3&0x1FFF  
        if self.debug:  
            print('version             = %u' %version)  
            print('IHL                 = %u' %ihl)  
            print('TOS                 = %u' %tos)  
            print('total len           = %u' %tot_len)  
            print('ID                  = %u' %id)  
            print('flags               = 0x%01X' %flags, end='')  
            if flags&0x4:  
                print('  Do Not Fragment  ', end='')  
            if flags&0x2:  
                print(' More Fragments follow  ', end='')  
            print()  
            print('fragment offset     = %u' %offset)  
            print('TTL                 = %u' %ttl)  
            print('protocol            = %u: ' %protocol, end='')  
            if protocol in protocol_lookup:  
                print(protocol_lookup[protocol])  
            else:  
                print('UNKNOWN')  
            print('source address      = %s' %(self.make_addr(saddr)))  
            print('destination address = %s' %(self.make_addr(daddr)))  
          
    #If the packet has a fragment offset of 0, found in the IP header, 
the following 8 bytes contain UDP information  
    def decode_udp_header(self, header):  
        (sp, dp) = struct.unpack('!HH', header)  
        if self.debug:  
            print('source port      = %u'%sp)  
            print('destination port = %u'%dp)  
      
    def unframe(self, msg):  
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        # Unframe a KISS packet  
        #Before decryption can occur, any bytes that were inserted by 
the KISS protocol must be removed  
        FEND = "\xC0"  
        FESC = "\xDB"  
        TFEND = "\xDC"  
        TFESC = "\xDD"  
        unframed = ''  
        i = 0  
        try:  
            while i < (len(msg)):  
                if msg[i] == FESC:  
                    if msg[i+1] == TFEND:  
                        unframed += FEND  
                        i += 2  
                    elif msg[i+1] == TFESC:  
                        unframed += FESC  
                        i += 2  
                    else:  
                        return ''  
                else:  
                   unframed += msg[i]  
                   i += 1  
        except:  
            print('Error: cannot unframe the packet (index=%d)'%i)  
        return unframed  
  
  
    def xor(self, data_a, data_b):  
        # XOR two arbitrary lengthed (but equal) byte-strings  
        # (performed on successive bytes)  
        x = ''    
        for a, b in zip(data_a, data_b):  
            x += struct.pack('B', ord(a) ^ ord(b))  
        return x  
  
          
    def hprint(self, data, hexlify=True):  
        if hexlify:  
            temp = binascii.hexlify(data).upper()  
        else:  
            temp = data  
        s = ''  
        for i in range(0, len(temp), 2):  
            s += temp[i]+temp[i+1] + ' '  
        return s  
  
          
    def process_packet(self, kissed_data, spacecraft):  
        if self.debug:  
            print('--------------------------------')  
            print('packet = %s' %self.hprint(kissed_data))  
          
        raw_data = self.unframe(binascii.unhexlify(kissed_data))  
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        raw_data = raw_data[:-1]        # remove end C0 from the 
unframed data (the starting C0 is still there)  
          
        #This unmasks the IV, which is used as the nonce   
        nonce = 
self.xor(raw_data[PROPCUBE_Decrypt.XOR_START:PROPCUBE_Decrypt.XOR_START
+PROPCUBE_Decrypt.XOR_LENGTH], PROPCUBE_Decrypt.IV_mask)  
  
        #This extracts the encrypted information from the KISS packet  
        ciphertext = raw_data[PROPCUBE_Decrypt.START_OF_CIPHER_DATA:-
PROPCUBE_Decrypt.TAG_LENGTH]  
        #The Tag is the last 16 bytes of the unframed KISS packet  
        tag = raw_data[-PROPCUBE_Decrypt.TAG_LENGTH:]  
          
        #This selects the appropriate key for our spacecraft. merryw is 
used to indicate Merryweather, flora to indicate Flora, and fauna to 
indicate Fauna   
        key = PROPCUBE_Decrypt.keys[spacecraft]  
        cipher = AES.new(key, AES.MODE_GCM, nonce)  
        plaintext = cipher.decrypt_and_verify(ciphertext, tag)    
  
        if self.debug:  
            print('IV     = %s' %self.hprint(PROPCUBE_Decrypt.IV_mask))  
            print('key    = %s' %self.hprint(key))  
            print('nonce  = %s' %self.hprint(nonce))  
            print('cipher = %s' %self.hprint(ciphertext))  
            print('plain  = %s' %self.hprint(plaintext))  
            print()  
        self.decode_ipv4_header(plaintext[0:20])  
        self.decode_udp_header(plaintext[20:24])  
          
        #This enables one command to be used in the terminal window to 
decyrpt and parse a KISS log file  
        data_parse.data_parse_packet(plaintext, spacecraft)  
          
        return(plaintext)  
          
  
    def process_file(self, fname, spacecraft):  
        # open a ASCII-encoded file and process all lines that begin 
with a 'C0'  
        fp = open(fname, 'r')  
        data = fp.read().split('\n')  
        fp.close()  
        counter = 0  
        for line in data:  
            if line[0:2] == 'C0':  
                data = self.process_packet(line, spacecraft)  
                fp = open('%s_%d.bin'%(spacecraft, counter), 'wb')  
                fp.write(data)  
                fp.close()  
                counter += 1  
  
  
if __name__ == "__main__":  
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#   fname = '41695_2017-05-18_15-46-
53_UTC_KISS_HSFL_10MERRYW_188_036_051.txt'  
#   spacecraft = 'merryw'  
    fname = sys.argv[1]  
    spacecraft = sys.argv[2]  
    decryptor = PROPCUBE_Decrypt()  
    decryptor.process_file(fname, spacecraft)  
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APPENDIX B. DATA PARSE PYTHON CODE 

#######################################################################  
#   Naval Postgraduate School  
#   data_parse.py  
#  
#   Revision History:  
#   =================  
#   Date            Who            What  
#   ---------------+--------------+------------------------------------  
#   2019-04-23      Jim Horning     Creation  
#   2019-04-27      Joseph Gilley   Comments  
#  
######################################################################  
  
from __future__ import print_function  
from Crypto.Cipher import AES  
import binascii  
import struct  
import sys  
import time  
  
import hexdump  
  
  
def make_addr(addr):  
    return '%d.%d.%d.%d' % ((addr&0xFF000000)>>24, 
(addr&0x00FF0000)>>16, (addr&0x0000FF00)>>8, addr&0xFF)  
  
          
def decode_ipv4_header(header, do_print=False):  
    protocol_lookup = {1:'ICMP', 2:'IGMP', 6:'TCP', 9:'IGRP', 17:'UDP', 
47:'GRE', 50:'ESP', 51:'AH', 57:'SKIP', 88:'IEGRP', 89:'OSPF', 
115:'L2TP'}  
    (b0, tos, tot_len, id, w3, ttl, protocol, check, saddr, daddr) = 
struct.unpack('!BBHHHBBHII', header)  
    version = (b0&0xF0)>>4  
    ihl = (b0&0x0F)  
    flags = (w3&0xE000)>>12  
    offset = w3&0x1FFF  
    if do_print:  
        print('version             = %u' %version)  
        print('IHL                 = %u' %ihl)  
        print('TOS                 = %u' %tos)  
        print('total len           = %u' %tot_len)  
        print('ID                  = %u' %id)  
        print('flags               = 0x%01X' %flags, end='')  
        if flags&0x4:  
            print('  Do Not Fragment  ', end='')  
        if flags&0x2:  
            print(' More Fragments follow  ', end='')  
        print()  
        print('fragment offset     = %u' %offset)  
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        print('TTL                 = %u' %ttl)  
        print('protocol            = %u: ' %protocol, end='')  
        if protocol in protocol_lookup:  
            print(protocol_lookup[protocol])  
        else:  
            print('UNKNOWN')  
        print('source address      = %s' %(make_addr(saddr)))  
        print('destination address = %s' %(make_addr(daddr)))  
      
    return offset  
  
  
#These functions take our raw data and convert them into their real 
values  
def convert_temp(tin):  
    return (float(tin)/64.0)-273.0  
  
  
def convert_volt_or_amp(temp):  
    return float(temp)/65536.0  
  
      
def convert_angle(temp):  
    return float(temp)/24.0  
      
      
def convert_adc(temp):  
    return float(temp)*0.0000000596  
  
  
def convert_mag(temp):  
    return float(temp)/128.0  
      
#This enables KISS log files from Flora or Merryweather to be converted 
into human readable data  
#Flora and Merryweather have the same message format, which differs 
slightly from Fauna  
def data_parse_packet(data, satname):  
    offset = decode_ipv4_header(data[0:20])  
      
    if offset == 0:  
        # Part 1  
        if satname == 'flora' or satname == 'merryw':  
            temp_names = ['DAUGHTER_A_TEMP', 'DAUGHTER_B_TEMP', 
'3V_TEMP', 'RF_AMP_TEMP', 'MINUSZ_INTERNAL_TEMP', 
'MINUSZ_EXTERNAL_TEMP', 'MINUSX_INTERNAL_TEMP', 'MINUSX_EXTERNAL_TEMP', 
'MINUSY_INTERNAL_TEMP', 'MINUSY_EXTERNAL_TEMP', 'PLUSZ_INTERNAL_TEMP', 
'PLUSZ_EXTERNAL_TEMP', 'PLUSX_INTERNAL_TEMP', 'PLUSX_EXTERNAL_TEMP', 
'PLUSY_INTERNAL_TEMP', 'PLUSY_EXTERNAL_TEMP', 'PAYLOAD_LFREQ_TEMP', 
'PAYLOAD_HFREQ_TEMP']  
            va_names = ['PAYLOAD_3V0_V', 'PAYLOAD_3V0_A', 
'PAYLOAD_5V0_V', 'PAYLOAD_5V0_A', 'PAYLOAD_3V3_V', 'PAYLOAD_3V3_A', 
'ATMEL_BUS_V', 'ATMEL_BUS_A', '3V_BUS_V', '3V_BUS_A', '3VPL_BUS_V', 
'3VPL_BUS_A', '5V_BUS_V', '5V_BUS_A', 'DAUGHTERA_V', 'DAUGHTERA_A', 
'DAUGHTERB_V', 'DAUGHTERB_A', 'FUEL1_V', 'FUEL1_A', 'FUEL1_Acuum', 
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'FUEL2_V', 'FUEL2_A', 'FUEL2_Acuum', 'MINUSZ_3V_V', 'MINUSZ_3V_A', 
'MINUSZ_5V_V', 'MINUSZ_5V_A', 'MINUSZ_PWRA_V', 'MINUSZ_PWRA_A', 
'MINUSZ_PWRB_V', 'MINUSZ_PWRB_A', 'MINUSY_PWRA_V', 'MINUSY_PWRA_A', 
'MINUSY_PWRB_V', 'MINUSY_PWRB_A', 'MINUSX_PWRA_V', 'MINUSX_PWRA_A', 
'MINUSX_PWRB_V', 'MINUSX_PWRB_A', 'PLUSZ_PWRA_V', 'PLUSZ_PWRA_A', 
'PLUSZ_PWRB_V', 'PLUSZ_PWRB_A', 'PLUSY_PWRA_V', 'PLUSY_PWRA_A']  
            # need to inspect the 0x28 offset byte  
            b28 = struct.unpack('B', data[28:28+1])[0]  
#           print('b28 = %u'%b28)  
            if b28 == 4:  
                print('\nARSFTP_METADATA:')  
                # ARSFTP_METADATA packet  
                (request_id, fsize, utc_sec, utc_nsec) = 
struct.unpack('>IIII', data[29:29+4*4])  
                md5 = struct.unpack('16s', data[29+4*4:])[0]  
                md5 = ''.join('%02X ' %ord(x) for x in md5)  
                print('request_id=%u, fsize=%u, utc_sec=%u, 
utc_nsec=%u' %(request_id, fsize, utc_sec, utc_nsec))  
                print('md5 = %s'%md5)                 
            elif b28 == 5:  
                # can't deal with these  
                print('\nCannot do b28==5 packets')  
            elif b28 == 0xF1:  
                # SM_STATUS_PART1  
                print('\nSM_STATUS_PART1:')  
                version = struct.unpack('>B', data[29:29+1])[0]  
                temps = struct.unpack('>18H', data[30:30+18*2])  
                s = 23*'Ii'  
                volts_amps = struct.unpack('>%s'%s, data[66:250])  
                print('version = %u'%version)  
                for tname, t in zip(temp_names, temps):  
                    temp = convert_temp(t)  
                    print('%s = %2.1f C' %(tname, temp))  
                      
                for vaname, va in zip(va_names, volts_amps):  
                    va = convert_volt_or_amp(va)  
                    s = vaname.split('_')[-1]  
                    if 'V' in s:  
                        print('%s = %2.3f V' %(vaname, va))  
                    else:  
                        print('%s = %2.3f A' %(vaname, va))  
                          
  
    elif offset == 29:  
        # Part 2  
        # If the IP header indicates there is a message offset of 29, 
then we know that it is the second part of a system status  
        # This offset indication is the same for all spacecraft  
        print('\nPart2:')  
          
        va_names = ['PLUSY_PWRB_A', 'PLUSX_PWRA_V', 'PLUSX_PWRA_A', 
'PLUSX_PWRB_V', 'PLUSX_PWRB_A']  
        angle_names = ['MINUSZ_SAS_X', 'MINUSZ_SAS_Y', 'MINUSY_SAS_X', 
'MINUSY_SAS_Y', 'MINUSX_SAS_X', 'MINUSX_SAS_Y', 'PLUSZ_SAS_X', 
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'PLUSZ_SAS_Y', 'PLUSY_SAS_X', 'PLUSY_SAS_Y', 'PLUSX_SAS_X', 
'PLUSX_SAS_Y']  
        adc_names = ['MINUSZ_ADC', 'MINUSY_ADC', 'MINUSX_ADC', 
'PLUSZ_ADC', 'PLUSY_ADC', 'PLUSX_ADC']  
        mag_names = ['MINUSZ_MAG_X', 'MINUSZ_MAG_Y', 'MINUSZ_MAG_Z', 
'MINUSY_MAG_X', 'MINUSY_MAG_Y', 'MINUSY_MAG_Z', 'MINUSX_MAG_X', 
'MINUSX_MAG_Y', 'MINUSX_MAG_Z', 'PLUSZ_MAG_X', 'PLUSZ_MAG_Y', 
'PLUSZ_MAG_Z', 'PLUSY_MAG_X', 'PLUSY_MAG_Y', 'PLUSY_MAG_Z', 
'PLUSX_MAG_X', 'PLUSX_MAG_Y', 'PLUSX_MAG_Z']  
        pib_names = ['PIB_HP_3V3_V', 'PIB_HP_3V3_A', 'PIB_VSUM1_V', 
'PIB_VSUM1_A', 'PIB_VSUM2_V', 'PIB_VSUM2_A']  
  
        volts_amps = struct.unpack('>iIiIi', data[22:42])  
        angles = struct.unpack('>12I', data[42:90])  
        adcs = struct.unpack('>6i', data[90:114])  
        mags = struct.unpack('>18i', data[114:186])  
        pibs = struct.unpack('>IiIiIi', data[228:252])  
        for name, va in zip(va_names, volts_amps):  
            va = convert_volt_or_amp(va)  
            s = name.split('_')[-1]  
            if 'V' in s:  
                print('%s = %2.3f V' %(name, va))  
            else:  
                print('%s = %2.3f A' %(name, va))  
        for name, a in zip(angle_names, angles):  
            a = convert_angle(a)  
            print('%s = %2.3f degrees' %(name, a))  
        for name, a in zip(adc_names, adcs):  
            a = convert_adc(a)  
            print('%s = %2.3f' %(name, a))  
        for name, a in zip(mag_names, mags):  
            a = convert_mag(a)  
            print('%s = %d mGauss' %(name, a))  
        for name, va in zip(pib_names, pibs):  
            va = convert_volt_or_amp(va)  
            s = name.split('_')[-1]  
            if 'V' in s:  
                print('%s = %2.3f V' %(name, va))  
            else:  
                print('%s = %2.3f A' %(name, va))  
              
          
    elif offset == 58:  
        # Part 3  
        # If the IP header indicates there is a message offset of 58, 
then we know that it is the second part of a system status  
        # This offset indication is the same for all spacecraft  
        print('\nPart3:\n')  
  
        va_names = ['PIB_VSUM3_V', 'PIB_VSUM3_A', 'PIB_HP_BOOST_V', 
'PIB_HP_BOOST_A', 'PIB_GPS_3V3_V', 'PIB_GPS_3V3_A']  
        misc_names = ['DSTRING', 'DUINT', 'USERTIME', 'LPUSERTIME', 
'SYSTIME', 'IDLETIME', 'PAGEIN', 'PAGEOUT', 'SWAPIN', 'SWAPOUT', 
'INTR', 'CTXT', 'BTIME', 'PROCESSES', 'PROCS_RUNNING', 'PROCS_BLOCKED', 
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'MEMFREE', 'BUFFERS', 'CACHED', 'ACTIVE', 'INACTIVE', 'VMALLOCTOTAL', 
'VMALLOCUSED', 'FREEDATAFLASH', 'FREESD', 'UNIXTIME']  
  
        volts_amps = struct.unpack('>IiIiIi', data[20:44])  
        PIB_HP_BOOST_TEMP = struct.unpack('>H', data[44:46])[0]  
        misc = struct.unpack('>26I', data[46:150])  
        LDC = struct.unpack('>H', data[150:152])[0]  
  
        for name, va in zip(va_names, volts_amps):  
            va = convert_volt_or_amp(va)  
            s = name.split('_')[-1]  
            if 'V' in s:  
                print('%s = %2.3f V' %(name, va))  
            else:  
                print('%s = %2.3f A' %(name, va))  
        temp = convert_temp(PIB_HP_BOOST_TEMP)  
        print('PIB_HP_BOOST_TEMP = %2.1f C' %temp)  
        for name, va in zip(misc_names, misc):  
            print('%s = %u' %(name, va))  
        print('LDC = %u'%LDC)  
  
      
def data_parse_file(fname, satname):  
    fp = open(fname, 'rb')  
    data = fp.read()  
    fp.close()  
  
#   hexdump.hexdump(data)  
      
    offset = decode_ipv4_header(data[0:20])  
      
    if offset == 0:  
        # Part 1  
        if satname == 'flora' or satname == 'merryw':  
            #This is the temperature information provided in the first 
packet of a system status  
            temp_names = ['DAUGHTER_A_TEMP', 'DAUGHTER_B_TEMP', 
'3V_TEMP', 'RF_AMP_TEMP', 'MINUSZ_INTERNAL_TEMP', 
'MINUSZ_EXTERNAL_TEMP', 'MINUSX_INTERNAL_TEMP', 'MINUSX_EXTERNAL_TEMP', 
'MINUSY_INTERNAL_TEMP', 'MINUSY_EXTERNAL_TEMP', 'PLUSZ_INTERNAL_TEMP', 
'PLUSZ_EXTERNAL_TEMP', 'PLUSX_INTERNAL_TEMP', 'PLUSX_EXTERNAL_TEMP', 
'PLUSY_INTERNAL_TEMP', 'PLUSY_EXTERNAL_TEMP', 'PAYLOAD_LFREQ_TEMP', 
'PAYLOAD_HFREQ_TEMP']  
            #This is the voltage and current information provided in 
the first packet of a system status  
            va_names = ['PAYLOAD_3V0_V', 'PAYLOAD_3V0_A', 
'PAYLOAD_5V0_V', 'PAYLOAD_5V0_A', 'PAYLOAD_3V3_V', 'PAYLOAD_3V3_A', 
'ATMEL_BUS_V', 'ATMEL_BUS_A', '3V_BUS_V', '3V_BUS_A', '3VPL_BUS_V', 
'3VPL_BUS_A', '5V_BUS_V', '5V_BUS_A', 'DAUGHTERA_V', 'DAUGHTERA_A', 
'DAUGHTERB_V', 'DAUGHTERB_A', 'FUEL1_V', 'FUEL1_A', 'FUEL1_Acuum', 
'FUEL2_V', 'FUEL2_A', 'FUEL2_Acuum', 'MINUSZ_3V_V', 'MINUSZ_3V_A', 
'MINUSZ_5V_V', 'MINUSZ_5V_A', 'MINUSZ_PWRA_V', 'MINUSZ_PWRA_A', 
'MINUSZ_PWRB_V', 'MINUSZ_PWRB_A', 'MINUSY_PWRA_V', 'MINUSY_PWRA_A', 
'MINUSY_PWRB_V', 'MINUSY_PWRB_A', 'MINUSX_PWRA_V', 'MINUSX_PWRA_A', 
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'MINUSX_PWRB_V', 'MINUSX_PWRB_A', 'PLUSZ_PWRA_V', 'PLUSZ_PWRA_A', 
'PLUSZ_PWRB_V', 'PLUSZ_PWRB_A', 'PLUSY_PWRA_V', 'PLUSY_PWRA_A']  
            # need to inspect the 0x28 offset byte  
            b28 = struct.unpack('B', data[28:28+1])[0]  
            print('b28 = %u'%b28)  
            if b28 == 4:  
                # ARSFTP_METADATA packet  
                (request_id, fsize, utc_sec, utc_nsec) = 
struct.unpack('>IIII', data[29:29+4*4])  
                md5 = struct.unpack('16s', data[29+4*4:])[0]  
                md5 = ''.join('%02X ' %ord(x) for x in md5)  
                print('request_id=%u, fsize=%u, utc_sec=%u, 
utc_nsec=%u' %(request_id, fsize, utc_sec, utc_nsec))  
                print('md5 = %s'%md5)                 
            elif b28 == 5:  
                # can't deal with these  
                print('Cannot do b28==5 packets')  
            elif b28 == 0xF1:  
                # SM_STATUS_PART1  
                version = struct.unpack('>B', data[29:29+1])[0]  
                temps = struct.unpack('>18H', data[30:30+18*2])  
                s = 23*'Ii'  
                volts_amps = struct.unpack('>%s'%s, data[66:250])  
                print('version = %u'%version)  
                for tname, t in zip(temp_names, temps):  
                    temp = convert_temp(t)  
                    print('%s = %2.1f C' %(tname, temp))  
                      
                for vaname, va in zip(va_names, volts_amps):  
                    va = convert_volt_or_amp(va)  
                    s = vaname.split('_')[-1]  
                    if 'V' in s:  
                        print('%s = %2.3f V' %(vaname, va))  
                    else:  
                        print('%s = %2.3f A' %(vaname, va))  
                          
  
    elif offset == 29:  
        # Part 2  
        # all spacecraft have the same  
        #This is the voltage and current information provided in the 
second packet of a system status  
        va_names = ['PLUSY_PWRB_A', 'PLUSX_PWRA_V', 'PLUSX_PWRA_A', 
'PLUSX_PWRB_V', 'PLUSX_PWRB_A']  
        #This is the solar angle sensor information provided in the 
second packet of a system status  
        angle_names = ['MINUSZ_SAS_X', 'MINUSZ_SAS_Y', 'MINUSY_SAS_X', 
'MINUSY_SAS_Y', 'MINUSX_SAS_X', 'MINUSX_SAS_Y', 'PLUSZ_SAS_X', 
'PLUSZ_SAS_Y', 'PLUSY_SAS_X', 'PLUSY_SAS_Y', 'PLUSX_SAS_X', 
'PLUSX_SAS_Y']  
        #This is the attitude control information provided in the 
second packet of a system status  
        adc_names = ['MINUSZ_ADC', 'MINUSY_ADC', 'MINUSX_ADC', 
'PLUSZ_ADC', 'PLUSY_ADC', 'PLUSX_ADC']  
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        #This is the magnetometer information provided in the second 
packet of a system status  
        mag_names = ['MINUSZ_MAG_X', 'MINUSZ_MAG_Y', 'MINUSZ_MAG_Z', 
'MINUSY_MAG_X', 'MINUSY_MAG_Y', 'MINUSY_MAG_Z', 'MINUSX_MAG_X', 
'MINUSX_MAG_Y', 'MINUSX_MAG_Z', 'PLUSZ_MAG_X', 'PLUSZ_MAG_Y', 
'PLUSZ_MAG_Z', 'PLUSY_MAG_X', 'PLUSY_MAG_Y', 'PLUSY_MAG_Z', 
'PLUSX_MAG_X', 'PLUSX_MAG_Y', 'PLUSX_MAG_Z']  
        #This is the adiitional voltage and current information 
provided in the second packet of a system status  
        pib_names = ['PIB_HP_3V3_V', 'PIB_HP_3V3_A', 'PIB_VSUM1_V', 
'PIB_VSUM1_A', 'PIB_VSUM2_V', 'PIB_VSUM2_A']  
  
        volts_amps = struct.unpack('>iIiIi', data[22:42])  
        angles = struct.unpack('>12I', data[42:90])  
        adcs = struct.unpack('>6i', data[90:114])  
        mags = struct.unpack('>18i', data[114:186])  
        pibs = struct.unpack('>IiIiIi', data[228:252])  
        for name, va in zip(va_names, volts_amps):  
            va = convert_volt_or_amp(va)  
            s = name.split('_')[-1]  
            if 'V' in s:  
                print('%s = %2.3f V' %(name, va))  
            else:  
                print('%s = %2.3f A' %(name, va))  
        for name, a in zip(angle_names, angles):  
            a = convert_angle(a)  
            print('%s = %2.3f degrees' %(name, a))  
        for name, a in zip(adc_names, adcs):  
            a = convert_adc(a)  
            print('%s = %2.3f' %(name, a))  
        for name, a in zip(mag_names, mags):  
            a = convert_mag(a)  
            print('%s = %d mGauss' %(name, a))  
        for name, va in zip(pib_names, pibs):  
            va = convert_volt_or_amp(va)  
            s = name.split('_')[-1]  
            if 'V' in s:  
                print('%s = %2.3f V' %(name, va))  
            else:  
                print('%s = %2.3f A' %(name, va))  
              
          
    elif offset == 58:  
        # Part 3  
        # all spacecraft have the same  
        #This is the voltage and current information provided in the 
third packet of a system status  
        va_names = ['PIB_VSUM3_V', 'PIB_VSUM3_A', 'PIB_HP_BOOST_V', 
'PIB_HP_BOOST_A', 'PIB_GPS_3V3_V', 'PIB_GPS_3V3_A']  
        #This is the additional information provided in the third 
packet of a system status  
        misc_names = ['DSTRING', 'DUINT', 'USERTIME', 'LPUSERTIME', 
'SYSTIME', 'IDLETIME', 'PAGEIN', 'PAGEOUT', 'SWAPIN', 'SWAPOUT', 
'INTR', 'CTXT', 'BTIME', 'PROCESSES', 'PROCS_RUNNING', 'PROCS_BLOCKED', 
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'MEMFREE', 'BUFFERS', 'CACHED', 'ACTIVE', 'INACTIVE', 'VMALLOCTOTAL', 
'VMALLOCUSED', 'FREEDATAFLASH', 'FREESD', 'UNIXTIME']  
  
        volts_amps = struct.unpack('>IiIiIi', data[20:44])  
        PIB_HP_BOOST_TEMP = struct.unpack('>H', data[44:46])[0]  
        misc = struct.unpack('>26I', data[46:150])  
        LDC = struct.unpack('>H', data[150:152])[0]  
  
        for name, va in zip(va_names, volts_amps):  
            va = convert_volt_or_amp(va)  
            s = name.split('_')[-1]  
            if 'V' in s:  
                print('%s = %2.3f V' %(name, va))  
            else:  
                print('%s = %2.3f A' %(name, va))  
        temp = convert_temp(PIB_HP_BOOST_TEMP)  
        print('PIB_HP_BOOST_TEMP = %2.1f C' %temp)  
        for name, va in zip(misc_names, misc):  
            print('%s = %u' %(name, va))  
        print('LDC = %u'%LDC)  
  
  
  
  
if __name__ == "__main__":  
    try:  
        fname = sys.argv[1]  
        satname = sys.argv[2]  
    except:  
        print('%s <raw data filename> <satname>'%sys.argv[0])  
    else:  
        data_parse(fname, satname)  
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