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TENSIONS IN TRACK CABLES AND
LOGGING SKYLINES

The Catenary Loaded at One Point

INTRODUCTION

Two problems of the catenar>^, viz., the common catenary and

the parabohc catenary, are generally treated in texts on Mechanics.

A third problem, that of a catenary loaded at one point, is equally

important, but either is not discussed at all or given a sketchy treat-

ment that is far from satisfactory. This type of catenary is of con-

siderable practical importance, as a conveying cableway or a cable

tramway closely approximates in form to this curve. In the West-

ern States such devices are much used in mining and logging opera-

tions for transporting loads from higher to lower levels by gravity.

In this paper the equations of the catenary loaded at one point will

be derived and the properties of such a catenary discussed. It will

also be shown how the tensions may be computed and what the

condition is for maximum tension.

It will be assumed that (1) the cable is perfectly flexible and

(2) the load is fixed at one point, neither of which assumptions

agree with practice. The cables in use are generally steel, sometimes

two inches or more in diameter and very stiff in short lengths.

However, when they are used in lengths of 2000 to 3000 feet and

the vertical deflections are small compared to the length, the

relative stiffness is negligible, and hence, the first assumption a

legitimate one. As the load travels along, the conformation of the

cable is constantly changing and likewise the tensions. But by

assuming a fixed position of the load, it is possible to obtain the

properties of the catenary for an instantaneous position of the load,

from which the condition for maximum tension in the cable may be

determined. To start with, it is assumed that the load is at any

point, so that the treatment is general-
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Derivation of the Equation of the Catenary Loaded at One Point.

Let OAB, figure I, represent a heavy, flexible cord or cable,

fastened at A and B and supporting a known load W at O. Assume
B to be at a higher horizontal level than A. At O there w^ill be three

forces in equilibrium: (1) the weight, (2) the tension in the part

of the cable OA which will be called T' and (3) the tension in OB
which will be called T". Let </>'and </>" be the angles that T' and T"
respectively make with the horizontal. By Lame's theorem we have

W T' T"

sin[180°— ((/>'+<^")] sin(90°+</>") sin(90°+</>')

W T' T"
= =

(1)
sm((f>'-\-ct>") cos^" cos<f>'

Solving for W
W=T'sin</.'+T'cos</>'tan<^" • (2)

and

W=T"tan(/,'cos</)"4-T"sin</>" (3)

Resolving the forces vertically and horizontally, respectively,

ve have

W=T'sinc/.'+T"sinc^" (4)

and

T'cos</,'=T"cos</,"=Th (5)

where Th is the horizontal component of the tension of the cable

and is the same at all points for a given load and position of that

load. Combining equations (2), (3), (4) and (5) we get

2W=T'sin(/>' + T"sinc^"+Thtanc/>'+Thtan</." (6)

W=Thtan(^'4-Thtanc/>" (7)

It is evident that in form the cable is divided into two parts

the point of division being at O, where the load is hung. From a

mathematical consideration, this is a point of discontinuity which

means that in passing from one portion of the cable to the other

the change in the properties of the catenaiy with respect to the

length is very abrupt at this point. It will be necessary, then, to

consider the two parts separately and derive the equations for each

part.
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We will consider first the arc OB. Let P be any point of this

arc, and let T be the tension at this point making an angle i// with

the horizontal. The arc OP is in equilibrium under three forces

:

(1) the tension at O, which with respect to P is opposite and equal

to T" of figure 1
; (2) the weight of the cable between O and P

acting at the center of gravity of OP; (3) the tension T at P. If

s be the length of the cable from O to P measured along this arc and

w the weight per unit length, then the second force is ws. Resolving

these three forces vertically, we have

Tsini/'=ws-[-T"sin</)" (8)

and resolving horizontally

Tcos./^Th=T"cos(/>" (9)

Dividing equation (8) by (9) we have ,

dy ws
tani/'=— = • \-tan4>" (10)

dx T,

This is the differential equation of the curve OB which is the con-

formation the cable assumes under the action of the three forces.

The solution of this gives the desired analytical equation.

It is evident that in equation (10) w, Th, and tan</>" are all con-

stants for a given cable, a given load and fixed position of that load.

We will write for these three constants

Tn
c=- (11)

and

So=c tan</)" (12)

Equation (11) conforms with the usual method of treatment of the

common catenary, but it will be noticed that no assumption is made

regarding the form of the curve OB. That is, c is considered noth-

ing more than a constant at this stage of procedure. Introducing

these two constants equation (10) becomes

dy s+So-= (13)
dx c

Since s is a variable dependent upon x and y it is necessary to

eliminate one of the three before the equation can be solved. This

may be done by the relationship
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ds2=dy^+dx2 (14)

First eliminataing x we have

dy s-|-So

(15)

ds V(s+So)-+c"

the sohition of which is

y=V(s+So)^+e'+A

where A is a constant of integration. If we choose the origin at

so that y^O when s^=0, then

A=— Vs'o+c-'

and (16) becomes

y=V(s+ So)=+ c2' -Vs^'+ e'
.

(17)

On ehminating y between (13) and (14) we have

ds V(s+ So)^ + l'

(18)

dx

the solution of which is

log [(s-;rs)o+V(s-^s„)^'-fc--'|=^H-B (19)

where B is a constant of integration. Using the same conditions as

for evaluating the constant A,

B=— log(so+ V+S"o+C=| )

Substituting this value of B (19) becomes

(s+So)+V(s+ So)^+ C^'_= log ——-^ (20)

C So+Vs^o+C^'

This may be written in the exponential form,

^
(s+So)+V(s+So)-+ C-|

e~= —-^
So+a/s'o+c^'

By inverting equation (21) we get

_^_ V (s+So)-+c-| — (s4-So)

e=^— ZZZZ^
(VS-+ C^' —So)

We may obtain an expression for y in terms of x and the con-

stant c and So by adding (21) and (22)' and combining with (17).

(21)

(22)
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V So |~C X X So

y+Vso->e|= (e'-+eO=— (e>—eO (23)
2 2

By substracting- (21) from (22) we get a symmetrical expres-

sion for s.

V So ~t~C
I

X X So X X

s+So= (e"^— e~) +— (e^+ e^) (24)
2 2

Equation (23) is the equation of the curve OB in rectangular
co-ordinates, and (24) gives the length of the arc measured from O
in terms of the abscissa and the constants So and c. These equations
represent a general case of the catenary of which the common
catenary is a special case. This may be seen from the following

consideration. Suppose that tan<^"= 0, which could be attained by
removal of the load W or by shifting to such a point that the arc

OB became horizontal at O. Then by (12) So= and equations

(23) and (24) reduce to

^ X X

y + c=— (e^+~e^)
'

(25)
2

and

c X _^
s=— (e^ — e^ (26)

2

which are the well known equations of the common catenary.

In order to interpret the constants So and Vso^+c^l of equations

(23) and (24) let us assume that the curve OB is extended to the
left of O to a point C where the tangent is horizontal. This is rep-

resented in figure 1 by the broken line curve CO. Let the weight
per unit length of the ima"^inary cable be the same for the arc OB,
and let the horizontal tension be Tu. Call the co-ordinates of 0>
referred to C, p and q. The arc CO will be in equilibrium under
three forces, Tn, the weight of the cable wr where r is the length of

the arc CO, and the tension T" at O. Resolving these forces hori-

zontally and vertically we have the following relations

:

Th=T"cos<^" (27)

and
T"sin<^"=wr (28)

Dividing equation (28) by (27) we obtain

dq r

tanc/>"=—=— (29)
dp c
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This is the differential equation of the arc CO, and is of the same
form as that of the common catenary, so that the solution may be

immeditely written.

Vr=+c^'—

c

(30)

p= clog^ V (31))

i c

Since the curve COB is continuous the equations for any point

referred to C as the origin will be of the same form as (30) and

(31). Let x', y' be the co-ordinates of any point referred to C- Then

y'=V(s+r)^ + c^' — c (32)

f(s + r) + V(s + r)^ + c^'^

x'= c log^ y (33)

I
c J

where (s+r) is the length of the arc measured from C.

Now let us transform the last two equations by the following

relationship,

y'=x+p
y'=y+q

and substituting values of p and q from (30) and (31).

y=V(s+r)^+c=' - c + Vr' + c^^ + c (34)

r(s + r) + V(s + r)^+c^' ^

I r— Vr^ + c^' ^

^=\og\ y (35)

c L r— Vr^ + c^

Equations (34) and (35) must be identical with (17) and (20)

respectively, since in both cases x, y are the co-ordinates of any

point of the arc OB referred to O as an origin. Hence

r= So

That is, the constant So of equations (17) and (18) is the length

of the fictitious arc CO. This means that the curve OB is a portion

of a common catenary, the lowest point of zvhich is a distance So

from O measured along the curve. While OB is the only part of

this catenary that represents the conformation of a part of the

cable, nevertheless, the part of the catenary CO has a physical in-

terpretation which will be given later.
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From a consideration of equations (17), (34), and (30) it is

evident that

Vso' + e' = Vr^ + c='=q + c (37)

In the common catenary c is the distance from the lowest point to

a horizontal line which may be called the directrix. Hence Vso^+c^'
is the distance of O from this same directrix. We will call this yo.

Making this substitution in equations (23) and (24) we get

yo XX So X X

y + vo=— (e"^ + e~) + — (e^—'e~) (38)
2 2

yo X X So X X

s + So=— ("e^— e~) H (e~ +'e) (39)
2 2

Substituting the hyperbolic functions for exponential, these equa-

tions become

X X

y + yo= yo cosh )- So sinh — (40)
c c

X X
s + So= yosinh 1- So cosh

—

(41)
c c

These equations involve three constants, c, So, and yo, the last of

which is dependent upon the other two.

yo=Vso^+c-^'
'

(42)

All three are quantities of the fictitious arc CO ; c being the parame-

ter, So the length of the arc, and yo the ordinate of the terminal

point O measured from the directrix. By assigning different values

to c, So, and yo (40) and (41) become the equations of a family of

curves which represent the conformation the cable will take under

various loads and horizontal tensions.

In the same manner we may obtain equations of the arc OA
which is the conformation assumed by the part of the cable to the

left of the load W. The differential equation is,

dy ws
—= htanc/>' (43)
dx T,

which differs from (10) in that x and s are taken to left of O and

fp' replaces cf>". Hence the analytical equations of the arc OA will be
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the same as (40) and (41) except the constants So and yo will have

different values. The constant. c is the same for the two curves,

since it depends upon the horizontal tension and the weight of the

cable per unit length, which are the same for all parts of. the cable.

Hereafter when Soiand yoi are used in equations (40) and (41)

they apply to the arc OA to the left of the origin and hence the

values assigned to s and x are negative only ; and when Soo and yoo

are used the above equations apply to the arc OB to the right of the

origin and the values assigned to s and x are positive only. Since

the constant c is the same for both arcs it is evident that OA and OB
are arcs of the same common catenary having the parameter c. If

in figure 1 the cui"ve DOA were shifted to the left and slightly up-

ward until the point D coincided with C, AODCOB would form a

continuous curve which is the common catenary from which OA and

OB are taken to form the discontinuous curve AOB. The length

of the arc DO is the constant Soi of the curve OA and the length of

COO is the constant So2 of the curve OB.

II.

Determination of the Tensions.

Arbitrarily we have set

Th= wc (11)

and found that c is a perameter of both curves OB and OA.

The vertical components of the tensions T' and T" at O may be

obtained by combining equations (5), (11) and (12).

T'sin<^'=wSoi (44)

T"sin<^"=wSo2 (45)

Hence the vertical component of the tension in OA at O is equal to

the weight of the fictitious arc OD ; and likewise, the tension in OB
at is equal to the weight of OC. If these expressions for the

vertical components of the tensions are substituted in equation (4),

an expression is obtained giving the relation between the load W,
the weight per unit length of the cable, and the fictitious arcs.

W=w(so,+So,) ' (46)

This shows that the constants Soi and Soo ai'e dependent upon the

nature of the cable and the load.
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T'==wVe + So,^' =wyo, (47)

T"= wVc^ + So/'=vvyo, . (48)

The vertical component of the tension at any point in the curve

OB is given by equation (8). Combining this with (45) we get

T2sin,/^2=w(s+Soo) (49)

And in hke manner we have for any point in the curve OA

T'sin,/.,=w(s+SoO (50)

Now (s+Soo) is the length of the arc COP measured from the

lowest point of the fictitious arc OC, and hence the vertical compo-

nent of the tension in the cable at any point is w times the length of

the arc of the common catenary of zvhich OB or OA is a part.

By combining (11) with (50) and (49) respectively we obtain

the total tension at any point in OA or OB respectively.

T,=w(y+yo,) (51)

T,=w(y+yo,) (52)

Hence the total tension at any point is w times the verticle distance

of that point above the directrix of the common catenary.

Equations (11), (44), (45), (47), (48), (49), (50), (51)

and (52) give completely the tension in the cable. In every case

the tension depends upon the weight per unit length, w, and one of

the three constants, c, So, or yo. If these tensions are known, the

constants can then be determined and by the aid of equations (40)

and (41) the position of the cable determined. And conversely,

if the constants can be determined from the data available and
eouations (40) and (41), the tension for any point in the cable can

be found.

Equations (51) and (52) show that for a given load and given

position of that load the tension in either part of the cable is great-

est at the point where (y+yo) is a maximum, that is, at the point of

fastening at the end of the cable. So that in future considerations

of the effect of the load and of the position of the load the ten-

sions at the ends only need be taken account of. At which of the

two ends the tension is the greater depends upon the position of

the load. If in equations (51) and (52) y^ is the verticle height of

the lower end above the position of the load and y^ that of the

upper end, y^ will be greater than Vj for any position of the load



Page 12, insert before equation {47),

The tensions T' and T" can be expressed in terms of w, c, So,

and yo. Combining (11) with (44) and (45) respectively we have,

FIG. 2
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along the cable, but yo2 will be considerably less than yo^ when the

load is near the lower end and hence T, will be less that T^. But

for the load near the middle of the span and any place between the

middle and the higher end To will be greater than T^. (See fig-

ure 2).

In practice, information is wanted regarding the tensions in

various parts of the cable for a certain load and different positions

of that load, or more specifically, the maximum load the cable will

carry. To answer the latter question equation (46) must be used

which involves the constants s and Sq. It is desirable, then, to ex-

press s in terms of other quantities on which it depends. This may
be done by eliminating yo between equations (40) and (41). Writ-

ing these in the following form

X X
y— Sosinh—= 3^0 (cosh—— 1) (40)

c c

X X
s + So ( 1 — cosh—) = yosinh— (41

)

c c

and dividing the first by the second we get.

X

y sinh c
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cable the value of c depends alone upon the horizontal tension

which may be made anything desirable. In the loaded cable c may

be computed from the value of the horizontal tension, but this lat-

ter depends in part upon the load which is placed on the cable. A
relationship between x, y, s and c, which is independent of the

other constants Sq and yo, may be obtained which is of considerable

use. Subtracting ecjuation (38) from (39) we get

X

s-y=-(yo-So)(e^-l) (55)

and by adding

X

s+y=(yo+so)(e"-l) (56)

On multiplying (55) by (56) and substituting

c-=y^—s%
we have

X X

S2 y2=r=:c^(e'' 2-|-e'')

^vhich may also be expressed in terms of the hyperbolic function,

X
Vs^—y-|=2c sinh

—

(57)
2c

This may be thrown into a more useful form by substituting from

equation (54).

sinh (/>

Vs^ — y^|=x (58)

By this last equation the length of the cable between the load and

terminal point may be quickly found for any value of c. To faciil-

tate computation, it is desirable to have a curve in which sinh </> is

1>

plotted as ordinates against c^ as abscissas. Such a curve is given

in figure 3. In the next section it will be shown how these computa-

tions may be made.

Another equation giving s in terms of x, y, and c may be obtain-

ed by eliminating So between equations (40) and (41).

x
s= y + 2yotanh— (59)

2c
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III

Practical Solution of the Problem.

In sections I and II equations have been derived giving the

relations among all the factors involved in stresses due to loading.

But when an actual computation is undertaken, it is generally found

that not sufficient data is available. Perhaps this may be best

illustrated by taking a numerical problem, which was presented to

the writer by a logging company. It is typical of those the engi-

neers encounters.

It is required to know the maximum load a cable will carry

when used as a logging "sky-line" under the following conditions

:

1. Breaking strength—112 tons.

2. Weight of cable—5.38 Ibs./linear ft.

3. Horizontal span—2500 ft.

4. Vertical height of upper end above lower (tail spar tree

above head spar tree)—625 ft.

5. Factor of safety—3.5.

The maximum tension allowable is

112X2000= 64,000 lbs.

3.5

Calling this To and substituting in ecjuation (52) we find

64,000

y, + y^,= = 1 1 ,896 ft.

5.38

This may be used in equation (40) for finding So2, but before any

computation is possible values of x, y, s and c are necessary. Since

the value of Tg used above is the maximum that the cable is to

stand, the value of x to be used should be the horizontal distance

of the load from the upper end zvhere the tension is the greatest.

In other words, before we can proceed further it is required to know
the condition of maximum tension in the cable for a given load.

So far no general method of treating this phase of the problem has

been found, but it has been determined for a special case, which

will be taken up in detail.
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FIG. 3
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The first step necessary in this calculation is the assumption of

some value of the parameter c. A common usuage* is to take the

horizontal tension equal to one-fourth of the breaking strength of

the cable, and the "deflection" of the cable when the maximum
gross load is at the center to be one-twentieth of the span. By "de-

flection" here is meant the vertical distance of the loaded point of

the cable below the lower fixed end of the cable.

Following thse two specifications we may find values of c, x
and y. From equation (11)

Th 112X2000= 10,409

w 4 X 5.38

One-twentieth of the span is 125 feet, so that

y2=7S0 ft.

X2=1250 ft.

r.y equation (54) we find

1250

2X10409
.06004

sinh
(f)

From figure 3 =1.0012.

Substituting these values of x,, ya, and sinh cj> in equation (58)

we find

S3=1458 ft.

To find S] the same procedure is followed.

Xi=1250 ft.

yi=125 ft.

sinh (/.= 1.0012

The value of sinh
<f>

is the same for the two parts of the cable only

for the middle of the span where x^^^Xo. This greatly simplifies

calculations. It is found that

Si=1257 ft.

* Mark's Handbook of Mechanical Engineering, page 1160.
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The length of cable required for this span of 2500 feet is then

5^+82=2715 ft.

We may now compute Soi and So2, using equation (53).

s„,=414 ft.

s„2=5524 ft.

The load which satisfies the above conditions if found by

equation (46).

W=5.38(414+5524)=31,946 lbs.

To find the tensions at the two ends the constants yoi and joo

must be found, using equation (42).

yo,=10,419.

yo2=l 1,784.

Then by equations (51) and (52) the tensions are computed.

T,=5.38(10,419+125)=56,726 lbs.

T2=5.38(ll,784+750)=68,203 lbs.

Perhaps attention should be called to the fact that in this

calculation no use has been made of the factor of safety specified

above. Arbitrarily a horizontal tension was chosen equal to one-

fourth the breaking strength, and this gave a value for the con-

stant c upon which is based the calculation of the load and tensions

as just given above. The factor of safety comes out 3.29 instead

of 3.5. It is apparent that, in using the horizontal tension recom-

m.ended in Mark's Handbook, too small a factor of safety is pro-

vided for. Reference will be made to this discrepancy later.

In order that we may know where the load produces the great-

est tension, the computation must be made for several different

positions of the load in the same manner as above. In carrying out

this computation one of three proceedures must be followed

:

(1). We may assume the exact position of the load measured

horizontally and vertically from one end, and the hori-

zontal tension of the cable as was used above.

(2). We may take the length of the cable fixed (say, the

length found above for the load at the middle, 2715

feet), and assume the horizontal tension the same, one-

fourth of the breaking strength.
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(3). We may take the length of the cable fixed, and assume

the load the same as we found above for the middle

point of the span.

Of these three proceedures the first is the easiest, but of no

value, because the length of the cable found in this manner will be

different for each position of the load. In practice the length of

the cable is generally constant while the load is being transported.

(Although in some logging operations the cable is let down, given

a big sag, in picking up the load). The third method will give the

most useful result, but is the most difficult to carry out. In fact,

it was found impossible to make this calculation until, by the second

proceedure, the tensions and positions of the load had been found

for a number of points.

The exact proceedure by the second method is as follows

:

(1). Assume a value of c, say 10,409.

(2). Assume certain values of x^ and y-^, which seem to be

reasonable according to one's best judgment.

(3). By equation (58) compute s^.

(4). By the same equation compute s,, using the same value of

c, and values of Xo and y,, which may be found by the

following relations,

Xi-)-X2==horizontal span.

y2—yi=^verticle height of higher end above lower.

(5). The sum of s^ and s, so found should be the length of

cable 2715 feet. If it does not, new values of x^ and yi

must be assumed and the same proceedure gone thru

with again.

It is thus seen that this method is one of "trial and error"

which involves a vast amount of work. The computations were

carried out for seven positions or points in the span and the results

plotted in the curves of figure 4. Abscissas for all the curves are

values of x^, i.e., the horizontal distance of the load from the lower

end support. In curve L the ordinates show the load necessary

at any point in order that the horizontal tension may be constant,

56,000 lbs., giving a constant value of c of 10,409. T^ shows the

total tension in the cable at the lower end fastening, and T, the

total tension at the upper end for any position of the load.
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Curve L shows the rather surprising result that the required

load is a minimum at the center of the span. And since the load

is larger near the ends, the tensions in the cable are larger also for

the load near the ends. The curves of this figure are of little prac-

tical value except as a guide in selecting values of the coordinates

to be used in the computations made for the curves of figure 5.

In computing the data for the curves of this latter figure, we
assume

:

(1). That the length of the cable is constant and equal to

2715 feet.

(2). That the load is constant and equal to 31,950 lbs., which

is the load (approximately) at the middle of the span

as first found.

The proceedure followed is one of trial and error as described

in method 2, but with this additional requisite : SoiH-Soo must equal a

certain constant value, viz., 5938, which is obtained by dividing the

load by the weight per unit length of the cable, 5.38 Ibs./^ft. This

makes the computations for these curves twice as laborious as for

figure 4.

As in the former figure, the abscissas of figure 5 are values of

Xi. Curve Tn shows how the horizontal tension varies with the

position of the load. Curves T^ and To give the tensions in the

cable at the lower and upper ends respectively. The form of all

these cui"ves might have been predicted from those of figure 4.

The maximum tension at the higher end occurs when the load is at

the center of the span. The maximum point in the other two curves

is slightly displaced toward the lower end.

Although these curves give the relation between the position

of the load and the tensions for a special case, they may be safely

taken as a guide in predicting in general the conditions of maximum
tensions in the cable. It is evident that if the vertical distance be-

t\veen the end supports of the cable are less than the value taken

above (one-fourth of the span) the tension curves will be more

nearly symmetrical, and when the two supports are at the same

level they will be perfectly symmetrical about an ordinate thru a

point corresponding to the center of the span. Hence for all cases

in which the difference in level between the ends is one- fourth the

length of the span or less, the maximum point on the tension curves

will occur at a position corresponding to the center of the span.



24 Tensions in Track Cables and

For greater differences in height between the ends, the maximum
point may be displaced a Httle toward the lower end. But as the

curves are rather flat on top, no great error will be involved in

assuming that the maximum tension in each branch of the cable

occurs when the load is at the center of the span. This conclusion

is of the greatest importance, for as it has been shown the calcula-

tion of the tensions is the simplest when the load is at the center of

the span, that is when Xi=X2 ; and when this computation is made

we may be certain that the maximum tension is known.

Futhermore, the conclusion stated above enables us to examine

the most favorable conditions for the use of a track cable. As was

previously stated, the use of a horizontal tension of one-fourth the

breaking strength is inconsistent with a large factor of safety.

Mark's Handbook of Mechanical Engineering recommends a fac-

tor of safety of 4. This is absolutely impossible with a horizontal

tension of one-fourth the breaking strength. The effect of the sag

and the horizontal tension on the load and factor of safety is

shown in table 1.

Table 1.

Sag
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Hence if it is desired to use a factor of safety of 4, the sag

should be about one-tenth of the span and the horizontal tension

one-fifth of the breaking strength. If it is necessary to keep the

sag small because of the topography of the ground, the horizontal

tension should be made as small as possible and still keep the load

at a sufficient height above the ground.

It will be observed that in the above discussion no considera-

tion is given to the bending stress which the cable undergoes in pas-

sing around pulleys. Of course this is an important feature of

cable transportation and should be given proper weight in the de-

sign of a track cable, but it is not a part of this particular problem

which treats only of stresses due to loading.

IV

Directions for Computing the Load.

In conclusion the proceedure for finding the safe load that a

track cable will carry will be outlined. It is assumed that the fol-

lowing data is given

:

(a) Breaking strength of the cable.

(b) Linear density.

(c) Horizontal span.

(d) Vertical distance between end fastenings.

(1) Take the horizontal tenions to be one-fifth of the break-

ing strength and compute the parameter, c, by

c=- (11)

w

(2) Take the sag at the center of the span to be one-tenth,

(or as near that as feasible) of the span. This gives the

ordinate y^ of the lower end. The ordinate yo of the

upper end is y^ plus the vertical height between the two

ends. The absicassas, x^ and x,, are equal and each equal

to one-half of the span.

(3) Compute the length of each part of cable between the

load and the lower end, and between the load and the

upper end respectively, i.e., Sj^ and So, by
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sinh </)

Vs^— y^'=x (58)

<!>

(4) The constant Soi and Soo may now be computed by

y s

So^— coth(/> (53)
2 2

(5) The load is given by

W=w(So,+So2) (46)

(6) The constants y^ and yoo may be found by

yo=Vc^+s^o' (42)

(7) The tension at each end, T^ and To, respectively, may
be computed by

T=w(y+yo) (51) (52)

using y^ and yoj for T^, and y, and yoo for To. Since

yo is taken greater than y^. To is the greater tension and

the maximum for any position of the load.

Altho the computations required by the outline above are some-

what longer than those called for by the approximate formulas

given in handbooks, they are by no means laborious, and have the

advantage of giving exactly the load zvhicJi may be carried and the

maximum tension involved.



SUMMARY.

(a). When a cable is loaded at one point, the conformation

which the cable assumes is that of two arcs of the same common
catenary, with the point of intersection at point of loading.

(b). The eciuations of these two arcs have been derived.

They involve three constants or parameters : ( 1 ) c, which is the

parameter of the common catenary, of which the two arcs are part,

and which depends implicitly upon the horizontal tension and linear

density of the cable; (2) So, which is ec|ual to the length of an arc

of the common catenary extending from the lowest point of the

common catenary to the point of intersection (the loaded point)

of the two arcs which represent the actual conformation of the

cable, and which may be called the "fictitious arc" and depends

upon the load and the linear density of the cable; (3) y,,, which is

dependent upon the other two parameters, and is the vertical dis-

tance of the loaded point above the directrix of the common
catenary.

(c). Expressions for the horizontal tension, vertical tension

and total tension at any point in the cable have been derived.

(d). It has been shown that in either one of the arcs the

point of maximum tension is the highest point, i.e., the point of

fastening at the end, and that in most cases the higher end of the

c.?ble has the greater tension.

(e). It has been shown for a special case that the maximum
tension occurs in the cable when the load is at the center of the

span, and that the point of maximum tension is the higher end of

the cable. Furthermore, it has been shown that very probably the

maximum tension ahvays occurs, in a catenary loaded at one point,

when the load is at the center of the span.

(f). A method of computing exactly the load and tensions in a

given track cable has been outlined in section IV. To the logging

engineer this will probably prove the most interesting and useful

part of the paper.
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