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Area coverage and collective exploration are key challenges for
swarm robotics. Previous research in this field has drawn
inspiration from ant colonies, with real, or more commonly
virtual, pheromones deposited into a shared environment to
coordinate behaviour through stigmergy. Repellent pheromones
can facilitate rapid dispersal of robotic agents, yet this has been
demonstrated only for relatively small swarm sizes (N< 30).
Here, we report findings from swarms of real robots (Kilobots)
an order of magnitude larger (N> 300) and from realistic
simulation experiments up to N= 400. We identify limitations to
stigmergy in a spatially constrained, high-density environment—
a free but bounded two-dimensional workspace—using
repellent binary pheromone. At larger N and higher densities, a
simple stigmergic avoidance algorithm becomes first no better,
then inferior to, the area coverage of non-interacting random
walkers. Thus, the assumption of robustness and scalability for
such approaches may need to be re-examined when they are
working at a high density caused by ever-increasing swarm
sizes. Instead, subcellular biology, and diffusive processes, may
prove a better source of inspiration at large N in high agent
density environments.
1. Introduction
Exploration and area coverage are classic challenges for cooperating
robot teams: agents need to coordinate effectively such that
an unknown territory is rapidly reconnoitred and then monitored
on an ongoing basis. Applications include search and rescue,
the deployment of communication networks, environmental
monitoring [1] and even cancer treatment using nanobots [2].
In the swarm robotics paradigm, inspiration is taken from
collective animal behaviour, for example ant colonies that are
organized according to simple interaction rules based on local
communication and information [1]. One form of communication,
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stigmergy, allows robots to communicate through the environment, for example through depositing

chemical markers known as pheromones that facilitate indirect communication and coordination [3].
Yet, just as in nature where stigmergy has limits to its usefulness, for example where army ants form
futile circular mills through trail following [4], so too in robotics limitations may arise when the
environment becomes saturated with pheromone information.

The focus of much biological research has been on the use of attractive pheromones that, upon
detection, recruit group members to a valuable resource such as food [5], or to an intruder [6]. There
has also been a more limited amount of research on repellent (‘anti’, negative or territory-marking)
pheromones, which may be used by ants to mark an unprofitable foraging pathway [7], an unsuitable
nest site [8] or an otherwise empty area around a colony that is nevertheless liable to be defended
against intruders [9]. Such chemical markers may be deposited passively from ants’ footprints, which
leave behind a residue from the outer cuticle of the animal, which is coated in a signature mixture of
hydrocarbons [10]. The research of one of the present authors (Hunt et al. [11]) indicates that such
passive markers can expedite an ant colony’s collective exploration of an unfamiliar territory. In the
context of swarm robotics, deflective movement away from ‘always-on’ trail markers is a very simple
rule that can be used for stigmergic coordination in a collective exploration and/or area coverage task.
By moving away from ‘pheromone’ markers left by the swarm, significantly less time should be spent
revisiting previously explored areas.

However, avoidance behaviour might be expected to reach the limits of its usefulness in larger groups
of agents if they reach a high density. This is because agents may be unduly constrained by the large
amounts of repellent pheromone being deposited by fellow group members. Swarm robotics
approaches are often assumed to be robust and scalable, yet neither of these characteristics may be
true when increasing N to large numbers and a high robot density in a scenario where robots interact
via stigmergy. This is in addition to the challenge of more robot–robot collisions, which beyond an
optimal swarm density would be expected to reduce performance owing to physical interference
[12–16]. Instead, high-density swarm performance may be limited by reliance on stigmergy, whereby
it may become preferable for individuals to be non-interacting and ignore social information that has
become uninformative. Thus, we anticipate and investigate the limits of stigmergic area coverage at
higher swarm densities, relative to a non-interacting, random walk behaviour in the agents. We do
this in simulation and with real robots, using the Kilobot platform. Section 2 provides a brief
overview of previous biological and swarm robotics work on repellent pheromones, §3 describes the
simulation and robotics methods, §4 presents results and §5 discusses the significance of our findings
for the scalability of stigmergy-based control algorithms at large N and high agent density.
2. Background and previous research
One of the principle advantages of the swarm robotics approach is that agents can have simple
computational hardware, and hence be cheap and replaceable [17]. Stigmergy as a control mechanism
greatly facilitates this goal, because sophisticated memory encoding, storage and retrieval can be
substituted for chemical deposition and detection. Information transfer is possible via the modification
of the environment. Indeed, stigmergy is a likely precursor to the development of internal memory
[18], and has been observed as such in very simple organisms, including slime moulds [19]. Through
this simple organizing principle, swarms of organisms or robots can exhibit remarkable, emergent
‘swarm intelligence’, with respect to tasks such as foraging or exploration [20]. Pheromones, chemical
markers deposited in the environment, are a particular form of stigmergy and are used most notably
by the ants. For example, a ‘no entry’ mark can be used to deter other ants from travelling down an
unprofitable foraging route [7]. In animal communication, one distinguishes between a signal, sent or
left deliberately in the environment to modify the behaviours of others, and a cue, which may also
alter the actions of others, but which may be transmitted inadvertently, and at no cost to the sender.
Pheromones are signals, but passively deposited chemical cues may also be of great importance to
various species. For example, bees may leave behind scent marks in recently visited flowers from their
footprints and use these to forage more efficiently [21]. Ants can use footprint cues to discriminate
between the foraging trails of different colonies [22] and to avoid competing conspecifics or potential
predators [10]. Footprint cues may also be used to avoid nest-mates when scouting for food sources
[9], avoiding the redundant revisiting of previously explored space. Our previous research also
indicated that ants may avoid the footprints of other nest-mates to collectively explore unfamiliar
territory, even when not scouting for food (Hunt et al. [11]). An alternative form of stigmergy to
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deploying chemicals is depositing building material, as seen in the termites; using this concept to

coordinate a group of robots was previously found to show worsening task performance at larger
group sizes (four or five versus three) owing to time-consuming robot interactions [23].

It is in the exploration of unfamiliar space, and in ongoing area coverage, that swarm robotics has
most often drawn upon the concept of repellent markers. This has been tested through three main
methods: digital pheromones deposited on a shared virtual map, simulation studies and real-world
environments, generally using light patterns. We review some of this research as an overview of
approaches. The method of implementation may also have some relevance to observed results, with,
for example, real-world pheromone implementations being noisier to detect than digital ones.
/journal/rsos
R.Soc.open

sci.6:190225
2.1. Digital pheromones
Stigmergy-based coordination through pheromones can be achieved through deposition on a virtual
map, with the map shared globally among the swarm members [24]. Digital deposition can also be
made on the robots themselves, which record levels of attractive and repulsive pheromones being
added to them from robots transmitting nearby. This has been demonstrated in 20 robots [25,26]. Such
digital pheromones have been used to coordinate unmanned aerial vehicles (UAVs), with their use in
100 simulated UAVs reported in a US military war-game [27], and up to 20 simulated UAVs in
another study [28]. Another study used a node-based representation of the spatial environment upon
which robots deposited both attractive and repellent pheromone; this used eight simulated and two to
four real robots [29]. A modified Kilobot system ‘Kilogrid’ has used a system of floor-based
communication modules to demonstrate a pheromone-based foraging task in 50 real robots [30].
Similar capabilities have been developed in the ‘augmented reality for Kilobots’ (ARK) system by
using an overhead controller to track robots in a virtual environment [31]. A recent study using this
system considered virtual pheromone recruitment to four foraging patches with 100 real robots and
up to 200 simulated robots [32].
2.2. Simulated pheromones
The third class of study has investigated pheromone swarm robotics in simulation and thus remains
agnostic as to how such stigmergy may be implemented in practice. One simulation study examined
the effectiveness of repellent pheromone with 3–24 robots [33]. Another study with 10 agents
employed individual-specific pheromone trails and examined how group behaviour changed with
varying sensitivity of agent to own versus others’ pheromones [34]. This was complemented by a
further simulation investigation of various performance metrics for stimergy-based area coverage.
With 10 agents, it examined the impact of varying parameters, such as pheromone diffusion and
evaporation rate, and different movement strategies (Brownian versus Lévy flights) [35].
2.3. Environmental pheromones
Pheromones can also be deposited into the spatial environment itself. This has often been done using
projections of light: an early example showed ant-inspired trail-following and avoidance behaviour in
five robots [36], while a more recent study used 10 [37]. Another technique using light involves
manipulating the surface upon which the robots move. Pheromone trail following with up to six
robots (one leader and five followers) has been achieved with LCD TVs [38], while phosphorescent-
glowing paint has been demonstrated for trail following in one robot [39]. Thus, environment-based
pheromone markers have not, until now, been implemented in very large, spatially constrained
swarms (e.g. greater than 100 robots). High swarm density may result in large amounts of
pheromone, thus making it harder to avoid, especially for robots with limited capabilities such as the
Kilobot. This challenge is in addition to the higher rate of robot–robot collisions. Our approach is
explained in §3.2.

The previously described studies use a relatively low number of real robots (generally, 2–20 robots,
though 50 in [30] and 100 in [32]). The robot densities are summarized in table 1. We use Kilobots to
investigate the operation of a simple stigmergic interaction rule in very large N swarms: up to 324 real
robots and 400 simulated.



Table 1. Robot swarm density of some previous research, compared to maximum investigated here.

reference type vehicle number area point density/m−2

this study real ground 324 6 m2 54

this study simulation ground 400 6 m2 66.7

[24] simulation air 10 30 km2 0.0000033

[28] simulation air 20 ∼1 km2 ∼0.0002
[36] real ground 5 ∼0.25 m2 ∼20
[37] real ground 10 ∼0.4 m2 ∼12.5
[38] real ground 6 0.48 m2 12.5

[30] real ground 50 2 m2 25

[32] real ground 100 4 m2 25

[32] simulated ground 200 6.25 m2 32
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3. Methods
3.1. Robot arena and pheromone
We use a 3 × 2 m arena for our experiments: a smooth surface made of white acrylic plastic, bordered
with 5 cm walls. Kilobots are placed in the centre of the arena in a square grid formation (spaced
4 cm apart from their centre, or with a diameter of 33 mm, a gap of 7 mm), and they all execute the
same simple controller (a homogeneous swarm) for 20 min. The initial formation of the robots in the
centre of the arena can be thought of as the release of a robot swarm by a user into a territory for
reconnaissance, or the injection of nanoparticles into a target site. The initial heading of the robots
was randomized in the simulator (§3.3) and as far as possible in reality. Kilobots are simple, small
and cheap robots that can thus be combined into large swarms [40]. Above the arena is a webcam
(Creative VF0700 Live! Cam Chat HD), which has full view of the arena and can detect Kilobot
positions using a simple image processing routine.

The identification of Kilobot positions and the projection of pheromone depositions took place in
Matlab 2017b (using its image processing toolbox) and consists of a cropping step (removing area
outside arena), a thresholding step to pick out the metallic Kilobots on the white arena and a circle
detection step (Kilobots are 33 mm in diameter). There is also a projector above the arena, which
creates a dynamic pheromone environment using light patterns. The Kilobot detection routine takes
place twice per second, and circles of pheromone (blue light) are projected onto the detected locations
with a 0.5 s delay, thus typically placing the pheromone slightly behind the robot as it moves. In the
case that the Kilobots are executing a turning motion and the deposition occurs on top of the robot,
this does not interrupt its behaviour. This is because, as noted in §3.2, previously chosen movements
are completed before further sensing of the environment. This implementation of the closed-loop
tracking and deposition process has the advantage of simplicity, exploiting the focus on swarm-level
behaviour rather than individual-level tracking.

To sense whether the Kilobot is in a region of previously deposited pheromone, it needs to detect
the colour of the local ambient light. This is sensed using the upwards-facing phototransistor of the
Kilobot, according to the pulse length characteristics of light from low-cost digital light processing
(DLP) projectors [41]. This allows four distinctive colour groupings to be sensed (primary colours,
cyan and yellow, magenta and black). The method used is described in [42]. We use blue light to
‘deposit’ pheromone behind the moving robots, which can then be detected and responded to by both
the depositing individual and its fellow ‘nest-mates’. The detection of light was binary (detected or
not) rather than on a continuous scale. Thus, as the simulated pheromone ‘evaporated’ over time, it
remained projected with full brightness until it reached a 0.5 threshold on a 0–1 scale, when it was
turned off. This was implemented to give a decay time of 140 s (see also §3.3). This decay rate was
chosen as an initial starting point for the investigation, as it appeared to allow pheromones sufficient
time to affect swarm behaviour for medium-sized groups (N = 64), in relation to the (relatively slow)
movement speed of Kilobots. Pheromone was deposited continuously by all robots, regardless of



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190225
5
whether they were already in regions where pheromone had been laid. In this case, the pheromone

concentration would return to the maximum concentration (i.e. a full 140 s seconds of decay time).
Robots could not tell the difference between their own and others’ pheromone.

3.2. Robot controller
The Kilobots were programmed with a simple finite state machine: either engage in random walk-type
movement behaviour, or if pheromone is detected, engage in simple scattering (avoidance) behaviour.
Because the Kilobot has limited sensory and motor capabilities [40], it is not possible to strictly ‘avoid’
pheromone marker when it is detected, in the sense that a path away from it cannot be planned out
and navigated precisely. Essentially, the Kilobot may perform a repertoire of random walks [43].
Nevertheless, a change in random walk behaviour was found often to be effective in deflecting it from
a pheromone patch when encountered. The random motion in both the random walk and scattering
behaviours also helps the Kilobots move away from the arena walls if they are in that position, which
they are not otherwise aware of as a result of their purposefully simple design.

The standard Kilobot controller operates via an execution loop that can repeat every specified number
of internal clock ticks: each tick is approximately 30 ms, and so we set the loop timer to 16 ticks or just
shy of 0.5 s. Initially, implementation of the sensing function obtained a reading from the environment
every loop iteration, but this was found to result in ineffective Kilobot exploration performance,
because frequent switching between behaviours resulted in trapping in circular movement patterns or
at the arena barriers. Sensing of the environment at the end of a previous movement, before
undertaking a relevant movement (scattering or random walk) for a predetermined length of time,
was found to be much more effective, especially in our experimental context, when rather large
amounts of pheromone could be present. This has interesting parallels with previous research on
motor planning in animals, which noted various potential benefits from intermittent movement and
sensing of the environment to reduce information-processing demands [44,45].

For the random walk behaviour, a random number is generated in the set {0,1,2}. If the number is 2,
the Kilobot’s two motors are both set to on, which results in a (roughly) forwards motion; otherwise, it
turns to the left on 0 or right on 1. Thus, forward motion occurs around 33% of the time on average and
left and right turning 33% each. Each period of movement lasts for 1, 2 or 3 s with equal probability.

The scattering (avoidance) behaviour is coded as follows. If pheromone (blue light) is detected, the
Kilobot randomly turns either left or right for 0.5 s and then it goes forward for 0.5, 1 or 1.5 s with
equal probability. This often has the effect of deflecting the robot away from the detected pheromone
trail (figure 2) and can be compared to the run-and-tumble movement dynamics in bacteria such as
Escherichia coli [46,47]. However, as noted later in the results, this scattering behaviour actually results
in a relative decrease in area coverage performance at higher swarm density (larger N ). If pheromone
is still detected, this procedure repeats; otherwise, the Kilobot reverts back to the random walk
behaviour. For the control group of experiments, the same controller was used, but the environmental
sense step was fixed to detect no pheromone; as a result only the random walk behaviour took place.
We simulated the Kilobot behaviour for various numbers of robots and collected data on real robots
for N = 64 (an 8 × 8 grid layout) and N = 324 (18 × 18). There were five real robot trials for each
experimental treatment and group size, for a total of 20 trials.

3.3. Simulations

3.3.1. Baseline scenario

We investigated the collective performance of the stigmergic area coverage algorithm with different
numbers N of robots. Because the Kilobots were arranged in a grid formation, we simulated square
numbers of robots: N = 1, 4, 16, 64, 144, 256, 324 and 400 (up to 20 × 20 robots). These group sizes
resulted in swarm densities as shown in table 2. Point density is the number of robot entities per m2 in
the 6 m2 arena, while physical density is the proportional occupation of the arena by robot hardware
(each robot being 33 mm in diameter or 8.5 × 10−4 m2 in area). Simulations were carried out in an in-
house simulator ‘Kilobox’ [42,48], based on the physics simulation library Box2D [49], which permits
accurate simulation of Kilobot behaviour based directly on their real controller code. The simulated trials
were carried out 2 × 30 times for each group size, first using the controller described previously and then
as a control group without the avoidance behaviour (i.e. random walk only). Pheromone deposition was
controlled via four parameters: these determined the rate of deposition (this was set to be maximal, i.e.



Table 2. Density of robots at the different N tested.

N (robots)

density in 3 × 2 m = 6 m2 arena

point (robots m−2) physical (2D area occupation)

1 0.167 0.00014

4 0.667 0.00057

16 2.67 0.0023

64 10.7 0.0091

144 24 0.021

256 42.7 0.037

324 54 0.046

400 66.7 0.057
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initial saturation on a 0–1 scale), distance behind the robot of the deposition (slightly behind), the size of the
circular pheromone patch (the same size as the robots) and the exponential decay constant. This final
parameter was set to r = 0.005, and the simulated Kilobots made a binary detection of pheromone (i.e. not
detected or detected) with a threshold of 0.5 on a 0–1 scale. Together with the decay constant, this resulted
in a decay time to below 0.5 in around 140 s ðlnð0:5=0:005Þ ¼ 138:6 sÞ. Simulations were carried out on a
Late 2016 MacBook Pro (2 GHz Intel i5, 8 GB RAM) and run times for the pheromone-based simulations
(Tsim = 20 min) ranged from around 2 s per trial for N < 25, up to 4 min for N = 400 (or 2 h for 30).

3.3.2. Further investigations

In addition to the baseline scenario described in the previous subsection, where the pheromone had a
decay constant r = 0.005, and robots explored a 3 × 2 = 6 m2 arena and laid pheromone continuously,
we made the following further investigations.

Constant density, lower group size. To further examine whether observed trends with increasing N are a
result of increased density, or increased group size, we repeated the analysis in a smaller arena, of
half the area of the original with the same aspect ratio, size 3

ffiffi

2
p � 2

ffiffi

2
p ¼ 2:12 � 1:41 ¼ 3m2 and half

the numbers of robots, thus maintaining the increasing density trend but halving the group sizes.
Pheromone deposition threshold. In the baseline scenario, pheromone was laid continuously, and this seems

likely to contribute to oversaturation of pheromone at high density. We tested the effect of only laying
additional pheromone when robots measured it to be below a certain threshold level. We set this
threshold to be 0.75, where 1 is full saturation (maximum pheromone in a location), which is the
level at which it is laid. That is to say, fresh pheromone had to decay for a period of time before it
could be overlaid again.

Decay parameter sensitivity. To perform a pheromone decay parameter sensitivity analysis for each of the
scenarios (baseline, smaller arena and deposition threshold), we repeated the simulation experiments
with the decay parameter set to r = 0.010 (decay time of 69.3 s) and r = 0.0025 (decay time of 277.2 s),
i.e. both a faster and slower decay of pheromone than r = 0.005 (decay time of 138.6 s).

The full results of these further investigations are presented in the electronic supplementary material,
while the results in the main text (§4) generally refer to the baseline scenario described in §3.3.1.

3.4. Data analysis
The simulations were output into text log files, recording the position of each Kilobot every 1 s. These
were analysed using Matlab 2017b, using a simple script, to read the files and calculate the following
metrics: (i) area coverage on an ongoing basis, and (ii) cumulative proportion of the arena explored.
Tracking of the individual robots’ identity was not necessary as performance was assessed at the
group (swarm) level. The area coverage was measured as the number of distinct cells occupied in
the foregoing 10 s window where the cells were 20 × 20 cm (400 cm2). This is because the
communication range of the Kilobots is approximately 10 cm and thus covers an area roughly 20 cm



Figure 1. Arena at T = 15 min, N = 324 Kilobots in the trail avoidance (stigmergy) condition. A large patch of repellent pheromone
has formed.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190225
7

in diameter; this is taken as a proxy for a robot sensor range. The exploration of the arena was calculated
as the percentage of arena visited at least once by any robot, given a division into 10 × 10 cm (100 cm2)
cells. This represents a static rather than a dynamic environment, where changing conditions require
repeated reconnaissance. These two metrics are complementary yet capture quite distinct aspects of
performance: although exploration may occur effectively, with most of the arena being passed through
initially by the robots, area coverage may be poor in the longer term with crowding into corners, for
example. On the other hand, area coverage might be quite good, with the robots spread out fairly
widely, and yet with some parts of the environment never being reached. Performance metrics were
calculated for the real Kilobot swarms by using coordinates recorded from the same process
generating the stigmergic overlay from camera images. We fitted logistic curves to the change in area
coverage and exploration over time to obtain estimates of the growth rate k and the maximum value
L_max. These estimates were then used to obtain quantitative, statistical comparisons of the
performance of the robots using pheromone coordination versus those without. These two logistic
curve parameters k and L_max capture complementary insights into swarm dynamics: initial speed of
area coverage and exploration (shorter-term) and longer-term performance.
4. Results and discussion
Robot swarms coordinating through stigmergy outperform non-interacting robots at an area coverage and
collective exploration task, but only within a certain swarm density range. A photo of the experimental
arena for N = 324 Kilobots for an experimental trial at T = 15 min into the 20min task, using stigmergy, is
shown in figure 1. This illustrates at least one important observation about the performance of stigmergy
at high swarm density. Performance is impaired because the pheromone avoidance behaviour begins to
impede the passage of Kilobots past each other. This is because broad patches of pheromone are formed,
as seen in the top half of the photo. This ‘traps’ a large number of agents within the same region. At the
same time, performance is not completely impaired because a smaller number of robots on the
periphery are able to encounter empty space that is not already saturated with pheromone information.
In the bacterial world, domains of high density can similarly form where many bacteria engage in run-
and-tumble dynamics in a crowded environment [46,47], a prelude to biofilm formation. Although
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dense patches of pheromone are deleterious to area coverage and exploration performance, depending on
the context, a high concentration of entities could be highly desirable (e.g. targeted nanoparticle drug
delivery). Other research has found that obstacles can be used for controlling large populations of robots
[50], and such patches could be seen as an emergent control mechanism.

Figure 2 indicates that stigmergy results in notably less time spent in pheromone in real robots atN = 64
(on average 56.1% of the time compared to 66.9%, a decrease of 16.1%; unequal variances t-test: t =−6.34,
p < 0.001) but less so at N = 324 (on average 77.1% of the time compared to 79.0%, a decrease of 2.4%;
t =−3.62, p = 0.013). Figure 3 and table 3 show that at N = 64, the swarm using stigmergy has an
advantage at area coverage: spreading out to occupy different parts of the arena on an ongoing basis.
The advantage at N = 64 of using stigmergy appears clear, with area coverage of around 36% compared
to 30%, and exploration of 90% of the arena at T = 20 min, compared to 72% for the random walkers.
At N = 324, there is no ultimate advantage to either area coverage or collective exploration for using
stigmergy, with both methods reaching a similar area coverage of around 65%, and 97% exploration at
the same time of T = 1000 s or just under 17 min. Indeed, for area coverage, sometimes the median
coverage of random walkers exceeds that of the robots avoiding pheromone trails. Nevertheless, the
pheromone avoidance method has some advantage in faster initial dispersal.

The robotic results were qualitatively confirmed in simulation (carried out at a range of group sizes,
N = 1– 400, see electronic supplementary material, figure S1). These indicated that at N = 4 onwards, there
is a clear improvement in collective exploration (visiting each part of the arena at least once) when using
stigmergy (figure 4; electronic supplementary material, figure S1).

This cumulative exploration advantage is maximized at N = 144. However, at N = 144, there appeared
to be no gain in area coverage performance, and at even larger sizes of N = 256, 324, 400, stigmergy
resulted in inferior performance to non-interacting random walkers (figure 4 and table 4; electronic
supplementary material, S1). This corresponds to effective performance at a physical robot density up
to around 2% of the physical space (table 1), while beyond this at 3%+, the stigmergy-based
movement rule is a hindrance. It is worth noting that in simulation for N = 324, the longer-term
performance (L_max) is statistically better for the null model (random walk only) for both area
coverage and exploration metrics (table 4); a significant difference in this parameter is not seen in the
real robots (table 3). This appears to be because of more effective random walk dispersal in the
simulator in the case of area coverage, and better pheromone dispersal in the real robots in the case of
exploration. In both cases, this could arise from more noisy behaviour in the real robots than in the
simulator, but the point about diminished performance (relative to non-stigmergy) at high swarm
density is confirmed. We also observe that the cumulative exploration curves rise more steeply (higher
growth rates k) in the real robots than the simulated ones: again, this could be because in large swarm
sizes, a greater diversity of behaviour in the real robots means a few particularly exploratory
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individuals result in faster swarm-level exploration than anticipated. In this case, greater behavioural
diversity associated with larger groups seems to be an asset.

A faster pheromone decay rate helps to reduce, though not eliminate, the negative effects on long-
term area coverage and exploration at high swarm density (electronic supplementary material,
figure S2 and table S2; cf. electronic supplementary material, figure S1 and table S1). Following the
logic of decreasing pheromone longevity as swarms get denser, it presumably makes sense to turn
pheromone off completely at sufficiently high density. A slower decay rate exacerbates the
performance issues at higher density (electronic supplementary material, figure S3 and table S3).

The swarm dynamics in a smaller simulated arena, with the same swarm density (smaller group
size), were broadly similar to the baseline scenario results (electronic supplementary material,
figures S4–S6 and tables S4–S6). Indeed, the random walk (non-stigmergy) treatment had a stronger
advantage over pheromone treatment at higher densities, which seems to point toward the relevance
of diffusive processes in smaller scale systems.

In our implementation of pheromone laying and detection, the robots do not differentiate between
their own and others’ pheromone trails. In some cases, ants are thought to use individual-specific trail
pheromones for orientation outside their nests [51] or to measure area inside nests [52]. If individual
robots in our exploration and area coverage scenario were able to distinguish their own trails, it may
help them to avoid getting ‘stuck’ in high-density pheromone regions. With individual-specific
pheromones, it may also be possible to implement alternative, individual-specific avoidance strategies.
However, individual-specific pheromones would require individual-level tracking and distinctive
projector colours for each robot. With a colour palette of four detectable colour types (see §3.1) in our
set-up, this would not be practicable, though perhaps a larger palette could be implemented using
colours that pulse at characteristic frequencies (detectable by the robots but not by a human observer).
However, this would limit the scenario’s relevance to other contexts where individual trail laying and
detection would not be possible, particularly at the micro or nanoscale, where one might deploy light-
sensitive particles for example [53]. Individual trail identification may also limit the scalability of
swarm systems. In the ‘Kilobox’ simulations, saturation gradients of pheromone (on a scale of 0–1) are
present, but in the real robots this is implemented as a binary marked/absent light. It may be
possible to sense light intensity gradients using the Kilobots’ ambient light sensor, though this would



Table 3. Performance of real robotic swarms (N = 64, 324) in terms of fitted logistic curves with parameters L_max (maximum
value) and logistic growth rate k. Standard error shown, and result of unequal variances t-test comparison between treatments.

N = 64 N = 324

null pher p (diff ) t null pher p (diff ) t

area coverage

L_max 30.22 ± 1.39 35.64 ± 0.55 <0.001 −7.27 63.93 ± 2.31 65.55 ± 1.84 0.31 −1.10
rate k 0.011 ± 0.004 0.047 ± 0.011 0.002 −6.31 0.008 ± 0.002 0.020 ± 0.003 <0.001 −6.78
exploration

L_max 72.08 ± 4.87 90.03 ± 2.55 <0.001 −6.53 96.23 ± 1.83 97.26 ± 0.82 0.35 −1.03
rate k 0.006 ± 0.001 0.009 ± 0.002 0.009 −3.77 0.008 ± 0.002 0.013 ± 0.002 0.009 −3.98
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presumably be noisier than the binary detection event of full brightness pheromone versus no
pheromone. A stepped gradient of one or two intermediate light intensities could be implemented,
but might be expected to have relatively little impact on swarm-level behaviour, given the limited
controllability of the robots. Such a logic may also apply to nanoscale swarm systems.

Another aspect of our implementation is the continual production of pheromone trails by robots,
regardless of whether they are already in a pheromone patch. If some form of intensity gradient was
implemented in the real robots, they could ‘choose’ not to deposit pheromone in regions already
marked. This may help to prevent trapping pheromone patches from forming. We investigated a
threshold of 0.75 in simulation (electronic supplementary material, figures S7–S9 and tables S7–S9)
and interestingly, the trend appears to be an improvement in initial dispersal (logistic growth rate k)
but a decrease in longer-term performance (L_max), especially in area coverage. Pheromone could also
be laid such that it accumulates progressively rather than starting from full saturation. Without
changing the robot or pheromone behaviour, the initial spatial positioning of the swarm in a square
grid could also be adjusted to be more spread out to reduce the number of robots initially encircled
by a pheromone patch. With such a change in initial conditions, one needs to consider the
relationship with the envisaged real-world deployment scenario. An even simpler way of tackling the
challenge of pheromone oversaturation could be to make the pheromone avoidance decision
probabilistic (i.e. sometimes pheromone is ignored when detected). Alternatively, a swarm density-
dependent controller that is able to adjust robot behaviour depending on the detected presence of
neighbours, which may indeed vary considerably over time if robot ‘clumping’ occurs in response to
pheromone, could be a useful direction in future swarm stigmergy research. This density-dependent
behaviour could change either, or both, of the robot movement and decision to lay pheromone. For
example, the negative consequences of high densities of army ants are managed through self-
organized ‘traffic lanes’, which emerge in part from avoiding collisions before attending to pheromone
information [4]. In the context of attractive recruitment pheromone trails to a food source, Lasius niger
ants are observed to lay less pheromone in crowded conditions [54] (crowding negative feedback);
while high levels of trail pheromone supresses further pheromone deposition [55] (pheromone
negative feedback, as in the 0.75 threshold investigated here). Of these two effects, crowding negative
feedback appears to be the more significant [56], suggesting the value of a swarm density-dependent
pheromone-laying rule. Finally, the avoidance behaviour implemented by the robots in the results
shown here was very simple, involving a turn to a random direction and then a period of forward
motion (§3.2). One alternative approach would be to use a form of ‘iterative deepening’, whereby on
pheromone detection a robot turns and travels a distance k, and 2*k (n*k) if pheromone is detected
again (n + 1), requiring only one additional memory variable n. Our findings of stigmergy’s limits
under one avoidance approach do not, of course, mean that all approaches will be necessarily inferior
to random walk at large N—though they do serve to highlight the engineering challenge of using this
fundamental method of self-organization when environmental modifications saturate. This also
challenges the general assumption that swarm strategies are scalable to large numbers.

In our exploration and area coverage scenario, stigmergy could be more effective when implemented
for a time-limited period: for the initial dispersal into the environment, it may be valuable for
reconnoitring all available space; and then once this initial phase is complete, stigmergy could be
deactivated for very large swarms because non-interaction may be superior for area coverage and



0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

20

40

60

80

100

20

40

N
=

40
0

N
=

4

60

80

simulated t (s) simulated t (s)

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

%
 o

f 
ar

en
a

%
 o

f 
ar

en
a

% arena occupied, 10 s window % arena visited, cumulative

null
pheromone4

5

3

2

1

10

5

20

15

25

Figure 4. Performance of simulated robotic swarms (N = 4, 400; see electronic supplementary material for the complete set).
Median and lower and upper quartiles shown for 30 simulations. For N = 1, there is no clear difference in performance in
either metric, while at N = 4 onwards cumulative exploration is superior using stigmergy. At N = 256 upwards, area coverage
becomes increasingly inferior to non-interacting robot swarms; and while collective exploration still shows an early lead, long-
term performance is comparable to random walkers.

Table 4. Performance of simulated robotic swarms (N = 64, 324). Compare to table 3 (real robots).

N = 64 N = 324

null pher p (diff ) t null pher p (diff ) t

area coverage

L_max 33.38 ± 2.16 36.57 ± 4.06 <0.001 −3.69 73.45 ± 3.65 62.46 ± 11.27 <0.001 5.00

rate k 0.005 ± 0.001 0.006 ± 0.002 0.018 −2.45 0.003 ± 0.0004 0.007 ± 0.005 <0.001 −3.69
exploration

L_max 64.71 ± 6.34 77.23 ± 6.26 <0.001 −7.57 90.00 ± 5.03 85.61 ± 6.32 0.005 2.92

rate k 0.004 ± 0.0004 0.005 ± 0.0008 <0.001 −4.48 0.004 ± 0.0003 0.007 ± 0.002 <0.001 −8.38
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diffusing into all available space (though agents still interact inasmuch as they bump into each other).
Alternatively, a subset of individuals could be pheromone layers and avoiders among a larger group of
agents operating a very simple movement algorithm such as a random walk. Many natural systems that
work in large numbers (cells, molecules, etc.) rely on reaction–diffusion, rather than complex
communication, to achieve tasks. Perhaps random, uncoordinated motion is an effective, low-cost
movement strategy at high agent densities: when a large N swarm is introduced to a spatially
constrained environment.
5. Conclusion
Social insects like ants are the archetypal inspiration for swarm robotics research: in particular, their use
of pheromones facilitates highly effective, low-cost coordination of many individuals. Attractive or
recruitment pheromones are well known in tasks like foraging, and though repellent or territory-
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marking pheromones are less commonly employed, they are also recognized as highly effective for tasks

such as area coverage and exploration. Yet repellent pheromones have only been tested in simulation and
in robots for relatively small numbers (N < 30). Here, we demonstrated their use and effectiveness in
swarms of Kilobots an order of magnitude larger (N > 300). However, we found that at higher swarm
densities (larger N ), such stigmergic coordination may become ineffective in certain respects relative
to non-interacting swarm agents.

As with ants leaving chemical marker cues with their footprints, the robots in this study left
pheromone on an ongoing basis. This is advantageous inasmuch as little or no processing activity
needs to be expended on decision-making. However, as with the ants, there are pros and cons to a
continuous passive signal. For high-density swarms, an additional cost may be recognized: the
nullification or even harm to performance of stigmergic coordination because of environmental
saturation with the social information (pheromone). This may be a particular challenge when the
environment is spatially constrained, for example, by a physical barrier: and in cases like the repellent
markers here, such constraints may be emergent and self-reinforcing via the pheromone itself.
A higher pheromone decay constant (faster decay) appears to be more optimal in higher density
(larger) groups, to compensate for the larger amount of pheromone being deposited. Faster decay
(reduced social information sharing) may also be appropriate for dynamic environments rather than
the static environment exploration considered here [57]. Yet, with an ever-shortening memory of
movement trails, pheromone could become increasingly irrelevant to group-level behaviour. In ant
colonies, it is unlikely that such large numbers of individuals would be exploring at once. Rather,
such coordination via negative markers is thought to occur among species with smaller colony sizes,
among a few scouts [58]. Thus, just as evolution has optimized the trade-off between swarm size and
pheromone use for collective exploration, our study here points towards the limits of stigmergy at
large N swarm sizes in spatially constrained (high density) environments. Sometimes, ‘less is more’:
less frequently laid pheromone, or fewer depositing agents as a subset of a larger group, may
maximize stigmergy’s usefulness. One optimizing step could be the use of hybrid swarms of many
simple agents, with minimal processing power to carry out random walk-type behaviour, and a
subset of individuals with pheromone-laying hardware and avoidance capabilities. Such swarms may
be better equipped to achieve simultaneously good area coverage and exploration.

Our findings indicate that when working with a high-density robot swarm in a spatially constrained
environment, more sophisticated swarm exploration and area coverage strategies may not bring
advantages beyond that observed with random movement. Instead, for biological systems working at
the subcellular scale, with very large numbers of ‘agents’, reaction–diffusion is relied upon for
effective permeation of an environment [2]. Thus, although common design principles across length
scales may exist for swarm engineering, swarm size (agent density) may be a key factor in
determining the relevance of either stigmergic or diffusive movement rules.
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