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Stable isotope analyses provide the means to examine the
trophic role of animals in complex food webs. Here, we used
stable isotope analyses to characterize the feeding ecology of
reef manta rays (Mobula alfredi) at a remote coral reef in the
Western Indian Ocean. Muscle samples of M. alfredi were
collected from D’Arros Island and St. Joseph Atoll, Republic
of Seychelles, in November 2016 and 2017. Prior to analysis,
lipid and urea extraction procedures were tested on freeze-
dried muscle tissue in order to standardize sample treatment
protocols for M. alfredi. The lipid extraction procedure was
effective at removing both lipids and urea from samples and
should be used in future studies of the trophic ecology of
this species. The isotopic signatures of nitrogen (δ15N) and
carbon (δ13C) for M. alfredi differed by year, but did not vary
by sex or life stage, suggesting that all individuals occupy
the same trophic niche at this coral reef. Furthermore, the
isotopic signatures for M. alfredi differed to those for co-
occurring planktivorous fish species also sampled at D’Arros
Island and St. Joseph Atoll, suggesting that the ecological
niche of M. alfredi is unique. Pelagic zooplankton were the
main contributor (45%) to the diet of M. alfredi, combined
with emergent zooplankton (38%) and mesopelagic prey
items (17%). Given the extent of movement that would be
required to undertake this foraging strategy, individual
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M. alfredi are implicated as important vectors of nutrient supply around and to the coral reefs

surrounding D’Arros Island and St. Joseph Atoll, particularly where substantial site fidelity is
displayed by these large elasmobranchs.
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1. Background
Coral reefs support high levels of marine biodiversity and host intricate food webs [1,2]. Many reef
systems are isolated, dispersed across tropical waters where they form hotspots of increased
productivity in otherwise oligotrophic oceans [3]. Part of this productivity may be supported by
highly mobile marine megafauna, such as sharks, rays, seabirds, turtles and whales, whose foraging
movements and residency patterns may facilitate significant nutrient transport and recycling between
reef and offshore environments [4–7].

Reef manta rays (Mobula alfredi) [8,9] are large filter-feeding elasmobranchs that display high levels of
site fidelity and residency at circum-tropical reef locations [10–13]. Individuals are often observed feeding
on pelagic zooplankton that accumulates near the surface of the water column (less than 5 m) during
daylight hours, and this foraging behaviour has been found to be linked to zooplankton density in
eastern Australia [14]. During the night, demersal zooplankton emerge from the seabed, where they
vertically migrate towards the surface [15], and become potential prey items for M. alfredi [16]. These
emergent zooplankton communities are thought to be particularly significant for M. alfredi that
occupy lagoon systems [17]. Furthermore, M. alfredi have been observed to travel offshore to feed on
mesopelagic zooplankton before returning to inshore coral reefs during the day where they may
excrete waste products [16,18–20]. In this way, M. alfredi may be able to create links between shallow
coral reefs and deeper water ecosystems, potentially facilitating the horizontal transport of nutrients
between these environments [21].

Stable isotope analyses provide a means to examine the trophic role of manta rays and other marine
megafauna in coral reef environments [22–24]. The isotopic ratios of nitrogen (14N/15N, or δ15N) and
carbon (12C/13C, or δ13C) in the muscle tissues of manta rays provide information on both the trophic
level and foraging locations of these animals. This is possible as values of δ15N increase with
increasing trophic position [25,26], and values of δ13C display predictable changes with foraging
habitat [27] and location [28]. Few studies to date have used this analytical approach to examine the
feeding ecology of reef and oceanic (Mobula birostris) manta rays, but those published have shown that
emergent (δ13C >−17‰) [27] and mesopelagic zooplankton (greater than 200 m depth in the water
column) comprise a significant proportion of the diet of M. alfredi along the coast of eastern Australia
[16], and of M. birostris in Ecuador [29], respectively. Emergent zooplankton have also been reported
to be a significant contributor to the diet of M. alfredi within the lagoon of Palmyra Atoll in the
central Pacific [17]. Coupled with the potential for M. alfredi to travel large distances (greater than
300 km) [19,30,31], these findings suggest that manta rays may act as a vector for the horizontal
transport of nutrients between offshore and coastal reef ecosystems. Additionally, the high site fidelity
displayed by M. alfredi at aggregation sites may serve to increase the significance of such nutrient
transfer processes, and of the trophic role of this species within reef environments as a whole.

Although previous research suggests that manta rays may be important to nutrient flows in
oligotrophic seas [16,17], the context of their trophic role within reef communities is not fully
understood as a result of the restricted sampling regimes [32]. Since most studies of stable isotopes
have only sampled the target species and putative species of prey [16,29,33], it may be that manta
rays are simply one species of a much larger guild of fishes that perform similar functions.
Alternatively, by moving across habitats over larger distances than most other planktivorous reef
fishes [34], it could be that manta rays occupy a unique role in nutrient transport in reef systems.
Insight into this issue requires contemporaneous sampling and isotope analysis across a wide range of
species from multiple guilds of reef fishes.

Here, we describe the feeding ecology and trophic role of M. alfredi at the coral reefs surrounding
D’Arros Island and St. Joseph Atoll (hereafter, D’Arros Island), Republic of Seychelles, using stable
isotope analyses. In order to facilitate comparisons across species at D’Arros Island and among
studies in other locations [32], we firstly optimized sample treatment procedures by assessing the
effect of lipid and urea extraction procedures on the δ15N and δ13C values obtained from M. alfredi
muscle tissue. Our study then assessed the extent to which foraging M. alfredi targeted pelagic,
emergent and mesopelagic zooplankton communities, given the findings of earlier work [16,27,29].
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Figure 1. D’Arros Island and St. Joseph Atoll, located on the Amirantes Bank within the Republic of Seychelles, Western Indian
Ocean. Position of St. Joseph Channel indicated by star. Maps created in ArcGIS 10.3 (http://www.esri.com/) using GEBCO_08
(version 20100927) bathymetry data. Georeferenced drone imagery © Save Our Seas Foundation.
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The values of δ15N and δ13C, and ratios of C : N, forM. alfrediwere then compared to that of zooplankton,
reef fishes and seagrass samples collected at D’Arros Island to understand the broader trophic role of the
species within the reef community. Lastly, we examined the role that this species may play in the
horizontal transport of nutrients across ecosystems within this region of the Western Indian Ocean.
2. Methods
2.1. Study site
The Republic of Seychelles is an archipelago located in the Western Indian Ocean and encompasses an
Exclusive Economic Zone (EEZ) of 1.4 million km2. It comprises 115 islands that collectively occupy
459 km2 of land [35]. These tropical islands are divided into two main groups based on their
geography and composition; the granitic islands to the north comprise the Inner Islands, and the
dispersed coralline islands to the southwest comprise the Outer Islands. The Amirante Island Group,
located upon the predominantly shallow (less than 40 m depth) Amirantes Bank, lies within the Outer
Island region and is made up of 11 low-lying sand cays [36]. D’Arros Island (1.71 km2) and the
St. Joseph Atoll (1.63 km2) occur in the central region of the Bank (5°24.90 S, 53°17.90 E), and are
separated by a 1 km wide and 60 m deep channel (figure 1) [36]. Aggregations of M. alfredi are
observed year-round in the waters surrounding D’Arros Island [37], which is significant given the
infrequency of sightings of this species at other islands and island groups throughout the rest of
Seychelles (L. Peel 2018, unpublished data).

2.2. Sample collection

2.2.1. Reef manta rays

Small tissue samples (approx. 50 mg; n = 50) were collected from the posterior dorsal surface of M. alfredi
in November 2016 (n = 13) and November 2017 (n = 37) using a biopsy probe mounted onto the end of a
modified Hawaiian sling [16]. Individual M. alfredi were identified by the unique pigmentation patterns
present on their ventral surface [38,39] prior to all sampling to ensure that the sex, size and identification
number of each animal could be associated with all collected samples and to minimize the likelihood of
re-sampling the same individual. Sex was determined from the presence (male) or the absence (female) of

http://www.esri.com/
http://www.esri.com/
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claspers [8,40]. Wingspan (m) was visually estimated to the nearest 0.1 m, and individuals subsequently

categorized into one of three life-stage classes indicative of increasing maturity status [41]: juvenile (less
than or equal to 2.4 m), sub-adult (male, 2.5–2.8 m; female, 2.5–3.1 m), and adult (male, greater than or
equal to 2.9 m; female, greater than or equal to 3.2 m). The presence of mating scars on females and the
extent of calcification of the claspers of males were used as additional aids to assess maturity status
[42,43]. Biopsy samples were kept on ice until return to land, where the white muscle of the sample
was separated from the skin, and tissues were stored at −20°C. A single sample of M. alfredi faeces
was also collected opportunistically from a surface-feeding individual at D’Arros Island, and
subsequently stored at −20°C.

2.2.2. Reef fishes

Samples of the dorsal musculature of 20 fish species, representative of nine trophic guilds ranging from
herbivore to carnivore, were collected at D’Arros Island in November 2017 (n = 157; electronic
supplementary material, table S1). Species were assigned to trophic guilds based on information about
their primary diet obtained from FishBase [44]. Capture method, mean size (fork length, cm) and diet
of each species are summarized in electronic supplementary material, table S1. Tissue samples of
white muscle collected in the field were kept on ice until being stored at −20°C.

2.2.3. Zooplankton

Zooplankton samples (ntotal = 24) were collected from near the surface of the water column around
D’Arros Island during the day and at night.

2.2.3.1. Pelagic
During the day, zooplankton samples were collected within the uppermost 2 m of the water column
using a small plankton net towed behind an 18 ft research boat. The net (202 µm mesh, 50 cm
diameter; General Oceanics, FL, USA) was deployed when M. alfredi were sighted feeding over the
reef flats of D’Arros Island or along the reef edge of the St. Joseph Channel during November 2016
(n = 7) and 2017 (n = 10), and towed for approximately 5 min at a speed of 2 knots. The sample
contained in the cod-end at the completion of each tow was kept on ice until it was divided into
subsamples using a Folsom plankton sample splitter (Aquatic Research Instruments, ID, USA), and
stored at −20°C.

2.2.3.2. Emergent
Samples of emergent zooplankton were collected at night using a small light trap constructed from a
300 ml plastic bottle, 200 µm mesh net and an underwater fishing lure light with a white LED in
November 2017 (n = 7). The light trap was deployed 40 m offshore to the north of D’Arros Island at a
depth of 2 m at sunset, and retrieved after approximately 2.5 h. The collected zooplankton sample was
immediately stored at −20°C.

2.2.4. Seagrass

Seagrass samples (Thalassodendron ciliatum, n = 10) were collected by hand within the St. Joseph Atoll
lagoon in November 2017. Seagrass leaves were removed from the stems and all epiphytes removed
from the exterior of the blades prior to storing the samples at −20°C.

2.3. Sample processing
Within a month of collection, all samples were lyophilized in an Alpha 1–2 LD Plus freezer dryer (Martin
Christ, Germany) for 69.8 ± 14.8 h and subsequently stored in a desiccator until required. In April 2018,
all fish, zooplankton and seagrass samples were coarsely subdivided and homogenized by hand before
being ground to a fine powder using a Mixed Mill MM 200 with 6.4 mm ball bearings in preparation for
stable isotope analysis. The single sample of M. alfredi faeces was also processed in this manner. No
additional extraction procedures were performed on this subset of samples.

Freeze-dried tissue samples ofM. alfrediwere subdivided into 1 × 1 mm cubes by hand using a scalpel
blade, but were not ground to a powder because of the sponge-like nature of the freeze-dried tissue.
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Given the recommendations made in previous studies of stable isotope ratios in elasmobranch tissues
[45–47], lipids and urea were extracted from M. alfredi samples following the methodology of Carlisle
et al. [48] and Marcus et al. [47], respectively. Briefly, subdivided samples were soaked in 2 : 1
chloroform-methanol solution for 24 h to remove lipids. After a 24 h air-drying period, the samples
were then oven dried for 48 h at 60°C. To remove urea, samples were then soaked in 1.5–1.8 ml of
milliQ water for 72 h; centrifuging each sample (Centrifuge 5810 R; Eppendorf, Hamburg, Germany)
for 3 min at 3000 r.p.m. and replacing the water every 24 h. At the completion of this process, samples
were oven-dried a final time for 48 h at 60°C.

To examine the effect of the lipid and urea extraction on M. alfredi muscle tissue, five samples that
were collected in 2017—four male and one female—were subdivided into quarters. One of four
extraction treatments was then applied to each subsample. The first subsample was exposed to the full
extraction treatment described above (lipid and urea extraction; LE +DIW), the second was exposed to
only the lipid extraction treatment (LE) and the third to only the urea extraction treatment (DIW). The
last subsample was left untreated as a control according to Marcus et al. [47].
Soc.open
sci.6:190599
2.4. Stable isotope analysis
All samples were analysed for δ15N and δ13C, using a continuous flow system consisting of a Delta V Plus
mass spectrometer connected with a Thermo Flush 1112 via Conflo IV (Thermo-Finnigan, Germany) at
the West Australian Biogeochemistry Centre at The University of Western Australia. δ15N and δ13C
(parts per million; ‰) were used to express stable isotope ratios, with δ15N reported relative to
atmospheric N2 and δ13C reported relative to the standard reference Vienna Pee Dee Belemnite.
Samples were standardized against primary analytical standards from the International Atomic
Energy Agency (δ13C: NBS22, USGS24, NBS19, LSVEC; δ15N: N1, N2, USGS32 and laboratory
standards). The external error of analyses, calculated as the standard deviation of mean values, was
determined to be 0.10‰ for both δ15N and δ13C.

Prior to data analysis, lipid normalization equations were applied where the reported mean C : N
ratios for sampled fauna were greater than 3.5 [49] as the presence of lipids in muscle tissue can lead
to depleted values of δ13C [50,51]. No corrections were required for M. alfredi or any of the reef fishes,
but zooplankton δ13C values were normalized with the following equation [29,52]:

d13Cnorm ¼ d13Cbulk þ 7:95� (C :Nbulk � 3:8)
C :Nbulk

� �
,

where norm was the lipid-normalized δ13C value, and bulk were the unadjusted δ13C values and C : N
ratios. The same equation was applied to samples of M. alfredi faeces, given the zooplankton-based
diet of this species. Values of δ13C for seagrass samples were not adjusted.
2.5. Statistical analyses
One-way ANOVAs were used to investigate the effect of extraction treatment type, sampling year, sex
and life stage on the values of δ15N and δ13C and the ratio of C : N in M. alfredi muscle tissue. Tukey’s
honestly significant difference post hoc tests were used to examine group-specific values when
significant differences were observed. Differences between groups were assessed using non-parametric
Kruskal–Wallis (KW) tests, where data were shown to be non-normally distributed using Shapiro–
Wilk normality tests, or heterogeneous in nature through Levene’s tests. Dunn tests were then used to
examine group-specific differences post hoc. Similarly, linear models were used to examine the effect of
wingspan on values of δ15N and δ13C and the ratio of C : N in M. alfredi muscle tissue, and of size on
the same values and ratio for the muscle tissue of reef fishes. Where data were found to be non-
normally distributed, Spearman’s ranked-order correlation coefficients were used. All analyses were
conducted in R (version 3.4.1; R Core Team 2017) and variation around the mean presented as
standard deviation unless otherwise stated. Significance for all analyses was p < 0.05.

The packages SIBER [53] and nicheROVER [54] were used to assess the level of trophic niche overlap
that occurred between male and femaleM. alfredi in each sampling year as described by Shipley et al. [55].
Values of δ13C and δ15N for both sexes were compared using a bi-plot, and the total area of the convex
hull (TA) and core trophic niche area with a small sample size correction (SEAc) for each sex was
calculated using SIBER. Total trophic overlap values for 95% TA were calculated using nicheROVER.
This latter analysis is insensitive to sample size and incorporates a statistical uncertainty using
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Bayesian methods that differ from more traditional, geometric-based computations regarding trophic

niche space [55,56].
Estimates of relative trophic position (TL) for M. alfredi were calculated using the following equation

[25,57]:

TL ¼ (d15Nconsumer � d15Nbase)
DTDF

� �
þ 2,

where δ15Nconsumer is the δ
15N value for M. alfredi, and δ15Nbase represents the weighted average value of

δ15N for all pelagic and emergent zooplankton samples combined. The integer value of 2 was used to
reflect the baseline trophic level of the zooplankton samples that were composed predominantly of
primary consumers (TL = 2) [26,29]. To account for the sensitivity of TL estimations to assumptions
regarding the trophic fractionation of δ15N, two estimates of TL were generated for M. alfredi using
diet-tissue discrimination factors (DTDFs) calculated previously for other elasmobranch species [29].
The first estimate was based upon a DTDF of 2.3‰ as calculated for Carcharias taurus and Negaprion
brevirostris muscle [58], and the second based upon a DTDF of 3.7‰ as calculated for muscle of
Triakis semifasciata [59].

Estimates of trophic enrichment between M. alfredi and both pelagic and emergent zooplankton
samples were calculated using the following equation [16]:

DX ¼ dXpredator–dXprey,

where X represents either δ15N or δ13C, and using both bulk and lipid-normalized δ13C values.
Lastly, Bayesian stable isotope mixing models were constructed to determine the potential

contribution of different prey sources to the diet of M. alfredi in 2017 using the simmr package [60] in
R. Other studies of the trophic ecology of both M. alfredi and M. birostris have suggested that demersal
and/or mesopelagic organisms may form a key component of their diet [16,29,33]. As we could not
sample mesopelagic zooplankton in this analysis, we included stable isotope data from four species of
small (35.3–69.3 mm total length) mesopelagic fishes (Ceratoscopelus warmingii, n = 20; Diaphus
splendidus, n = 15; Notoscopelus caudispinosus, n = 13; Vinciguerra nimbaria, n = 8) that were collected
within the Indian South Subtropical Gyre for another study [61]. Each of the four species have
distributions encompassing the Seychelles region and equivalent trophic positions to that of primary
and secondary copepod consumers (TL = 2.1–2.9) [62]. Mesopelagic fishes have been shown to display
strong isotopic similarity to mesopelagic zooplankton [63] allowing their use as representative
mesopelagic organisms in the absence of zooplankton samples [29]. The selected species had an
overall mean δ15N value of 8.23 ± 1.27‰ and overall mean δ13C value of −18.33 ± 0.39‰.

The final mixing models included three potential prey sources for M. alfredi; pelagic and emergent
zooplankton, and mesopelagic prey sources. Data for pelagic and emergent zooplankton collected at
D’Arros Island were not pooled as there were significant differences between their values of δ15N and
δ13C. We constructed two versions of our mixing models to overcome uncertainty in the importance
of dietary lipid content and in the lipid normalization procedures applied to the zooplankton data.
The first model used the non-normalized values of δ13C for the zooplankton groups, and the second,
the lipid-normalized values of δ13C. Both models incorporated the DTDFs of Couturier et al. [16] for
M. alfredi—1.3‰ for δ13C and 2.4‰ for δ15N—and accounted for the variation that has been observed
in measurements of these values in elasmobranchs during laboratory-based experiments by
introducing a standard deviation of 1‰ for both isotopes [33,58,59]. The average between the two
mixing models was taken as the final estimated contribution of the three prey sources to the diet of
M. alfredi.
3. Results
3.1. Extraction treatment effects
Lipid and urea extraction had a significant effect on values of δ15N and δ13C, and the ratios of C : N of
M. alfredi muscle tissue (Kruskal–Wallis test, H(3) = 11.983, p = 0.007; Kruskal–Wallis test, H(3) = 10.440,
p = 0.015; ANOVA, F3,16 = 220.601, p < 0.001). Untreated muscle tissue samples were found to have
significantly lower δ15N values than the DIW, LE and LE +DIW treatment groups, which did not
differ significantly from one another (figure 2a). The untreated control group was found to have
similar values of δ13C to that of the LE and LE +DIW treatments, but these values were significantly
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higher than the δ13C values of the DIW treatment. Values of δ13C for the DIW and LE +DIW treatments
did not differ significantly (figure 2b). Values of δ13C encompassed an overall range of 1.09‰. The C : N
ratios of the untreated muscle tissue samples of M. alfredi were significantly lower than those of the DIW,
LE and LE +DIW treatment groups. Ratios of C : N did not differ between the LE and LE +DIW
treatments, but these two treatments had ratios that were significantly lower than the DIW treatment
and higher than the control (figure 2c). Ratios of C : N for the control and DIW treatments differed
significantly.

3.2. Stable isotopes

3.2.1. Reef manta rays

The effect of sampling year, sex, life stage and wingspan on isotope composition for M. alfredi was
investigated using stable isotope data collected from the set of 50 samples included in the LE +DIW
treatment (electronic supplementary material, table S2). Values of δ15N and δ13C differed significantly
among M. alfredi muscle tissues collected in November 2016 (n = 13) and 2017 (n = 37). Values of δ15N
were lower in 2016 than in 2017, whereas values of δ13C were more enriched. Consequently, ratios of
C : N were lower in 2016 than in 2017 (Kruskal–Wallis tests, H(1) = 12.321, p < 0.001; H(1) = 14.821, p <
0.001; H(1) = 12.162, p < 0.001; figure 3), and all subsequent analyses considered isotope data relative to
year of collection.

Values of δ15N and δ13C and ratios of C : N did not differ significantly between males (wingspan 2.1–
3.6 m) and females (wingspan 2.4–3.8 m) in 2016 or in 2017 (ANOVA, F1,11 = 0.991, p = 0.341; F1,11 = 0.153,
p = 0.904; F1,11 = 0.002, p = 0.967; ANOVA, F1,34 = 3.456, p = 0.072; Kruskal–Wallis test, H(1) = 0.146, p =
0.702; Kruskal–Wallis test, H(1) = 0.584, p = 0.445). Males, however, displayed lower amounts of
variation in all values than females (electronic supplementary material, table S2).

The similarity of δ15N and δ13C values for male and female M. alfredi was confirmed by trophic
overlap analyses. The trophic niche of females overlapped with 71.6% and 51.6% of that of males in
November 2016 and 2017, respectively, whereas the trophic niche of males overlapped with 78.1% and
89.3% of the niche of females in November 2016 and 2017, respectively (electronic supplementary
material, figure S1). Females were found to have higher TA and SEAc values in comparison to males
during both sampling years, with the exception of SEAc in 2016, which was slightly lower (electronic
supplementary material, table S3).
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Life stage did not influence values of δ15N, δ13C or ratios of C : N forM. alfredi in 2016 or 2017 ( p > 0.05),
whereas wingspan was found only to influence values of δ15N in 2017 (Spearman rank correlation, rs =−
0.334, p = 0.047). In November 2017, δ15N tended to be lower for individuals with larger wingspans;
however, these values did not vary to the extent that the C : N ratio for M. alfredi also differed during
this sampling year.

3.2.2. Reef fishes

Of the 20 fish species sampled in this study, significant relationships between size and values of δ15N,
δ13C and ratios of C : N were identified across seven species (table 1). Values of δ15N increased
significantly with size in three species: Aethaloperca rogaa, Scarus rubroviolaceus and Thunnus albacares
(linear regression, r2 = 0.591, F1,6 = 8.667, p = 0.026; r2 = 0.525, F1,7 = 7.731, p = 0.027; r2 = 0.673, F1,6 =
12.38, p = 0.013). Similarly, values of δ13C increased significantly with size in four species: Chaetodon
trifisciatus, Chlorurus sordidus, Lenthrinus lentjan and Selar crumenophthalmus (linear regression, r2 =
0.739, F1,8 = 22.619, p = 0.001; r2 = 0.527, F1,8 = 8.925, p = 0.017; r2 = 0.408, F1,8 = 9.248, p = 0.047; r2 =
0.564, F1,8 = 10.353, p = 0.012, respectively). Ratios of C : N increased with size in two species i.e.
Lethrinus lentjan and Lutjanus bohar (linear regression, r2 = 0.536, F1,8 = 9.248, p = 0.016; Spearman rank
correlation, rs = 0.906, p < 0.001).

3.2.3. Zooplankton

Pelagic samples from net tows were dominated by calanoid copepods (figure 4a), with one sample
showing an abundance of fish eggs (figure 4b) and another of crab zoea (figure 4c). Emergent samples
were more variable in composition, with dominant species across samples including ostracods,
polychaetes and crab megalopae (figure 4d–f, respectively).

Values of δ15N and δ13C for pelagic zooplankton samples differed between collection years. Values of
δ15N were larger in 2016 than in 2017 (8.439 ± 0.401 and 7.185 ± 0.340‰, respectively; ANOVA, F1,15 =
48.727, p < 0.001). Values of δ13C were more enriched in 2017 than in 2016 (−21.410 ± 1.560 and
−22.476 ± 0.380‰, respectively; Kruskal–Wallis test, H(1) = 9.482, p = 0.002). Ratios of C : N did not
differ significantly between years (Kruskal–Wallis test, H(1) = 1.120, p = 0.290).

Furthermore, values of δ15N and δ13C also differed between samples of pelagic and emergent
zooplankton collected in November 2017 (ANOVA, F1,14 = 87.746, p < 0.001; Kruskal–Wallis test, H(1) =
7.868, p = 0.005, respectively), with the former having higher concentrations of both isotopes than the
latter (table 1). Ratios of C : N were similar between these groups ( p > 0.05).

3.3. Feeding ecology of reef manta rays at D’Arros Island
The relative trophic position of all taxa was visualized using an isoscape comparing the values of δ13C to
those of δ15N (figure 5). The trophic level of M. alfredi was 2.92 (i.e. TL =∼3; secondary consumer) [26],
after estimates using the conservative (2.3‰; TL = 3.13) and maximum (3.7‰; TL = 2.70) DTDF were
averaged. The sample of M. alfredi faecal tissue closely aligned with that of the pelagic zooplankton
samples. Muscle tissue samples of M. alfredi were positioned in a unique isotopic space within the
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(a) (b) (c)

(d) (e) ( f )

Figure 4. Photographs of representative pelagic (a–c) and emergent (d–f ) zooplankton samples collected at D’Arros Island,
Seychelles. Pelagic samples were collected during daylight hours using a towed plankton net and were dominated by copepods
(a), fish eggs (b) and crab zoea (c). Emergent samples were collected using a light trap deployed after sunset for 2.5 h and
were dominated by polychaetes and ostracods (d ), polychaete worms (e) and crab megalopae ( f ). Scale bar (approx. sizes;
a–f ): 1, 0.5, 1, 2, 2, 2 mm.
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isoscape, aligning closely with the zooplanktivorous and mesopelagic fishes, as well as emergent
zooplankton. Values of δ13C for muscle tissue samples of M. alfredi were more enriched than those of
the other zooplanktivorous fishes sampled in this study, and were similar to those of the benthic
invertivore, Parupeneus macronemus.

Average enrichment values between M. alfredi and bulk emergent zooplankton samples was 1.53‰
and −0.39‰ for δ15N and δ13C, respectively. When lipids were mathematically normalized for emergent
samples, the δ13C enrichment value decreased to −1.85‰. For bulk pelagic zooplankton samples,
average enrichment values for M. alfredi were 3.05‰ and 3.27‰ for δ15N and δ13C, respectively.
Following mathematical lipid normalization, the value of δ13C decreased to 2.28‰. For both mixing
models, pelagic zooplankton was the dominant contributor (around 45%) to the diet of M. alfredi
(table 2) and emergent zooplankton (approx. 38%) contributed a larger proportion of the diet than
mesopelagic sources (approx. 17%; figure 6).
4. Discussion
Mobula alfredi fed predominantly on pelagic zooplankton that accumulated at the surface of the water
column (approx. 50% of diet). Emergent and mesopelagic zooplankton contributed a smaller, but
significant proportion of the diet (38 and 17%, respectively). The observed pattern of foraging was
consistent between sexes and the majority of individuals, and placed M. alfredi within a unique
trophic niche relative to the other reef fishes sampled at D’Arros Island.
4.1. Feeding ecology of reef manta rays
Mean nitrogen enrichment values indicated that M. alfredi at D’Arros Island occupy a trophic level of
approximately 3, a level representative of a secondary consumer as was expected for this
zooplanktivore [16,26,64]. The average enrichment value for δ15N of 2.92‰ was close to that of 2.4‰
calculated for M. alfredi on the Great Barrier Reef [16] and places M. alfredi within the range of DTDFs
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Table 2. Outputs of mixing models estimating the proportional contribution (±s.d.) of pelagic and emergent zooplankton and
mesopelagic sources to the diet of reef manta rays (Mobula alfredi) at D’Arros Island, Seychelles, based on samples collected in
November 2017. Model 1 used bulk δ13C values of zooplankton samples, whereas Model 2 used values mathematically
normalized for lipids. Both models assumed a diet-tissue discrimination factor (DTDF) of 2.3 ± 1.0‰. The mean values were
calculated as an average between the two mixing models.

source Model 1 Model 2 Mean

emergent zooplankton 0.41 ± 0.06 0.34 ± 0.07 0.38 ± 0.07

pelagic zooplankton 0.43 ± 0.04 0.47 ± 0.05 0.45 ± 0.05

mesopelagic sources 0.16 ± 0.06 0.19 ± 0.08 0.17 ± 0.07

s.d. δ13C 0.26 ± 0.20 0.75 ± 0.48 0.50 ± 0.34

s.d. δ15N 0.13 ± 0.10 0.16 ± 0.12 0.14 ± 0.11
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estimated for other elasmobranchs (2.29‰ for C. taurus and N. brevirostris, and 3.7‰ for T. semifasciata)
[58,59,65].

The values of δ13C in M. alfredi muscle tissues after lipid and urea extraction (LE +DIW) fell between
those of the lipid-normalized pelagic and emergent zooplankton groups with enrichment values of
−2.28‰ and −1.85‰, respectively. Isotopic signatures of carbon for M. alfredi were similar to those
of planktivorous fishes, a benthic invertivore (P. macronemus) and mesopelagic zooplankton. These
results suggest that M. alfredi may have periods of residency (often several months) in reef
environments, followed by shorter excursions between reefs into the open ocean and movements
throughout the water column [18,19,37].

Values of δ15N and δ13C for M. alfredi muscle tissue were significantly different between collection
years, likely reflecting a shift in the zooplankton community structure at D’Arros Island during this
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time and subsequently, prey availability to M. alfredi [66,67]. Within each year, values of δ15N and δ13C
did not vary between the sexes, although females tended to display more variation in both isotopic
concentrations. This suggests that female M. alfredi may forage upon a more diverse assemblage of
prey items than males. In 2017, the values of δ15N for M. alfredi were found to decrease with
increasing wingspan. Given that the level of residency displayed by M. alfredi to D’Arros Island
decreases with increasing wingspan [37], it is possible that this result reflects the tendency for larger
individuals (mostly females) to seek alternative foraging opportunities offshore of D’Arros Island and
consume zooplankton communities that occupy lower trophic positions [67].
4.2. Zooplankton as prey for reef manta rays
Pelagic zooplankton were found to constitute the largest proportion (45%) of the diet of M. alfredi at
D’Arros Island. The coral reefs surrounding these locations are one of the few locations in Seychelles
where M. alfredi are known to aggregate predictably year-round [37], and individuals are regularly
sighted surface-feeding during daylight hours. This is particularly true within the St. Joseph Channel
(figure 1), where pelagic zooplankton is observed to accumulate along current lines (L. Peel 2018,
unpublished data). The isotopic similarity between faeces of M. alfredi and pelagic zooplankton
reported here confirms that M. alfredi are consuming these communities at D’Arros Island, and
estimates from faeces are likely representative of a very recent feeding event (possibly within 24 h of
sampling). Similar observations of M. alfredi feeding on pelagic zooplankton at the surface during the
day have been reported at other aggregation sites around the world [12,14,20,68–70]. Mobula alfredi
have also been observed foraging during the day on demersal zooplankton in the Maldives [70], and
on the Great Barrier Reef. In the latter locality, demersal zooplankton constitute a significant
proportion of the diet [16]. Such benthic-oriented feeding behaviours have, however, not been
observed for M. alfredi at D’Arros Island during the day (L. Peel 2018, unpublished data). Taken
together, the observations reported here and the results of the isotopic mixing models suggest that
pelagic zooplankton comprises the majority of the diet of M. alfredi at D’Arros Island.

The feeding behaviour of M. alfredi on pelagic zooplankton in the St. Joseph Channel may serve to
increase nutrient cycling over the reefs of D’Arros Island as a whole, and enhance nutrient enrichment
in particular places within the reef. After feeding on zooplankton, M. alfredi frequently return to



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190599
13
cleaning stations on coral reefs for parasite removal, to socialize, and possibly to thermoregulate

[11,43,71]. Defecation is often observed at these shallow (less than 30 m) cleaning stations (electronic
supplementary material, figure S2), where the water temperature can be warmer than the surrounding
habitat, possibly increasing the speed of digestion [70,72]. At D’Arros Island, this could result in the
transfer of nutrients from St. Joseph Channel to the reef slope, with positive impacts on coral growth.
Similar impacts of nutrient enrichment on coral growth have been reported for reef fishes and sharks
[4,21,73,74], and for schools of small planktivorous fishes that shelter in individual coral heads [75].
The high residency and frequent use of cleaning stations by M. alfredi at reefs around D’Arros Island
identified through acoustic telemetry [37] and photo-identification (L. Peel 2018, unpublished data),
increases the significance of such nutrient cycling processes to these reefs.

Emergent zooplankton were estimated to comprise approximately 38% of the diet of M. alfredi,
suggesting that the species—unlike diurnal zooplanktivorous fishes [34]—also forages along the reef
at D’Arros Island at night. The value of δ13C for M. alfredi was close to that of the invertivore,
P. macronemus, which forages on benthic invertebrates in sand along reef edges during the day (less
than 40 m) [76,77]. This apparently contradictory result can be explained by the fact that the same
communities consumed by benthic invertivores during the day emerge at dusk to occupy the water
column, where they can become prey for M. alfredi. While it is possible that emergent zooplankton
originating from the St. Joseph Atoll lagoon may also contribute slightly to this demersal signature,
acoustic telemetry and visual observations indicate that M. alfredi rarely enter this habitat [37]. In
contrast to the feeding behaviour of M. alfredi within the lagoon at Palmyra Atoll [17], this suggests
that foraging by M. alfredi on the emergent zooplankton community at D’Arros Island is restricted to
the reefs surrounding this location.

The emergence of benthic zooplankton from sediment and the reef at night is thought to influence the
movement and foraging behaviour of M. alfredi in many locations, including eastern Australia [11,16],
Hawaii [78], Indonesia [13] and Seychelles [37]. The ability to forage throughout a full diel cycle may
be necessary in order for these relatively large animals to obtain sufficient food resources to satisfy
metabolic requirements in the warm surface waters of a coral reef [79]. In contrast to M. alfredi,
smaller planktivorous fishes tend to be either diurnal (e.g. caesionids, pomacentrids) or nocturnal (e.g.
holocentrids, apogonids), and subsequently only forage during half of the day. The extended periods
of foraging undertaken by M. alfredi may, therefore, serve to increase nutrient cycling in the reef
environment over larger temporal scales, particularly at cleaning sites within the reef where nutrient
supply is expected to be enhanced.

In addition to nutrient cycling within reef systems, the possible contribution of mesopelagic
zooplankton to the diet of M. alfredi (approx. 17%) highlights the potential for this species to act as a
vector for horizontal nutrient transport between coastal and mesopelagic ecosystems. In comparison
to the local-scale nutrient supply occurring across the reefs at D’Arros Island (less than 1 km), the
transport of nutrients derived from mesopelagic origins is anticipated to occur over larger distances
(greater than 10 km). Mesopelagic zooplankton communities perform diel vertical migrations
involving movements from depths (greater than 200 m) during the day to shallow surface waters (less
than 50 m) during the night [80]. Feeding on these communities would require travel by M. alfredi
either 10 km to the east or 20 km to the west of D’Arros Island to waters beyond the shelf edge. Such
distances fall well below the maximum reported range of travel for M. alfredi within a 24 h period
(89.3 km d−1) [37], and would be reduced should the mesopelagic zooplankton community migrate
horizontally over the Amirantes Bank and towards D’Arros Island during the night [81]. Although
the frequency at which such ventures occur cannot be assessed here, such behaviour could provide
M. alfredi with additional feeding opportunities, or supplement foraging when food availability
around D’Arros Island is scarce [18,82,83]. The ability of M. alfredi to travel away from the shallow
reef of D’Arros Island to consume mesopelagic zooplankton contrasts with zooplanktivorous reef
fishes, which tend to range over a much smaller spatial scale (metre to kilometre). The excretion of
faecal matter by M. alfredi on return to D’Arros Island may therefore represent a unique method of
nutrient supply to the coral reefs at this locality, and may serve to increase horizontal nutrient
transport in the region [4,17,21].

4.3. Extraction procedures for reef manta ray muscle tissue
There is still debate regarding the most appropriate way to treat elasmobranch tissue samples prior to
analysis, despite the increasing use of stable isotopes as a means of investigating the feeding ecology
of marine megafauna and the trophic structure of marine ecosystems [22]. We found that urea should
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be extracted at a minimum from M. alfredi tissue samples prior to stable isotope analysis, given the

significant difference observed in all δ13N treatment groups relative to the control. Lipid extraction
must also be considered in studies of M. alfredi stable isotope analyses (as discussed by Marcus et al.
[47]), as significant differences were observed in values of δ13C across extraction procedures. No
difference was observed between the final C : N ratio of the LE and LE +DIW extraction procedures,
suggesting that the lipid extraction process conducted here was sufficient for the concurrent removal
of lipids and urea from M. alfredi muscle tissues [45]. Future studies of M. alfredi using stable isotope
analyses should, therefore, aim to extract lipids from freeze-dried muscle tissue samples using the LE
procedure described above. No additional urea extraction treatment would then be required, and the
utilization of a consistent extraction methodology would increase the comparability of results of
all studies.
l/rsos
R.Soc.open
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4.4. Limitations
All sampling was conducted during the month of November in both 2016 and 2017, which has
implications for our ability to detect seasonal shifts in the diet of M. alfredi, and align these measures
with biological and environmental variables. White muscle tissue is estimated to represent the
assimilated diet of elasmobranchs over periods of 300–700 days [65,84], in contrast to shorter periods
reflected by tissues such as blood plasma or skin, which exhibit higher turnover rates of δ15N and
δ13C [59,85,86]. The restriction of our sampling to a single month of the year at D’Arros Island thus
averages our view of the feeding ecology of M. alfredi on the zooplankton community at D’Arros
Island across both the southeast (April–September) and northwest (December–March) monsoonal
periods. Future studies should aim to collect tissue samples throughout the year in order to gain
further insight into potential seasonal shifts in the foraging and feeding patterns of M. alfredi in
Seychelles throughout the full annual cycle. Additionally, other tissues, such as skin [87] or mucus
[88], with higher turnover rates of isotopes could be collected and analysed together with samples of
muscle tissue to provide better temporal resolution of feeding patterns. Such tissue samples would
also provide more information on the frequency and timing of mesopelagic foraging, and whether
pelagic zooplankton remains the primary food source for M. alfredi year-round.

Significant differences in the δ15N and δ13C values of pelagic zooplankton collected in 2016 and 2017
further emphasize the importance of multi-year sampling programmes for studies of manta ray feeding
ecology. These differences are likely to be the result of a dynamic zooplankton community existing at
D’Arros Island, the composition of which may be constantly changing on both spatial and temporal
scales [66,67]. While logistical constraints limited the amount of zooplankton sampling that could be
completed in the present study, future research should endeavour to repeatedly sample zooplankton
communities throughout the annual cycle. Concurrently, rapid methods for community structure
assessment (e.g. using ZooScan systems and Plankton ID software) [14] should be developed to allow
for the feeding ecology and trophic role of M. alfredi to be described on finer spatio-temporal scales at
aggregation sites around the world.
5. Conclusion
Stable isotope analyses revealed that M. alfredi occupy a unique trophic niche and role within the coral
reef ecosystem at D’Arros Island. With a diet that includes pelagic, emergent and mesopelagic
zooplankton, M. alfredi are able to maximize foraging opportunities at this remote locality while
supplying nutrients via excretion to the coral reef over fine (less than 1 km) and broad (greater than
10 km) spatial scales. The high level of site fidelity that M. alfredi exhibits at D’Arros Island [37]
increases the significance of these nutrient transport processes from mesopelagic ecosystems to local
reefs by increasing the frequency at which they can occur. Collectively, the findings presented here
highlight the potential for this large elasmobranch to play a unique role in nutrient transport and
supply to an otherwise nutrient-poor coral reef ecosystem.
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