促

DESPAFTNETAT OP ASTKOMOHT
UNIVERTTY OF CNURONA AT LOG AMCNES

GIFT OF TrEDERICI C. LEONARD

THE AMERICANA

A Universal Reference Library

COMPRISING THE ARTS AND SCIENCES， LITERATURE，HISTORY，BIOGRAPHY， GEOGRAPHY，COMMERCE，ETC．， OF THE WORLD

EDITOR－IN－CHIEF
FREDERICK CONTERSE BEACH EDITOR SCIENTIIIC AMERICAN

M．HNAGING EDITOR
GEORGE EDIWIN RINES

ASSISTED BY M PRE THAN TWO THUU゙SAN．）OF THY AUST FMMNENT SCHOLARS AND AUTHORITIES IN AMERICA AN゙D EUROPE

Nisuce mber the editorial whervision of Ebe 玉cientific Emerican

IN SIXTEEN VOLUMES
ILLUSTRATED

SCIENTIFIC AMERICAN COMPILING DEP＇T
225 FIFTH AVENUE，NEW YORK
(89, $=1.4-2.0$
is

Cory 1uT 1=0e

A Few of the Leading Articles in Volume Eight

WRITTEN AND SIGNED BY SPECIALISTS．

GREGORIAN CHANT
Joseph Otten
GREIG．EDVARD
Organist Epiphany Church，Pittsburk，1＇a．

GROUPS，THEORY OF
Musical Director New ぞork＇Evening Fost＇
Professor of Mathematics，Columbia University
GUATEAIALA；GUIANA；HONDURAS．．．．．．．．．．．．．．．．．．．．．．．．．．Marrion Wilcox Authority on Latin－America
GUNCOTTON：GUNPOWDER
Charles E．Munroe．
Professor of Chemistry，Columbian Universty
GUNNERY
Phitip R．Aigier
U．S．Naval Academy，Annapolis
Persifor Fraztir
HANDWRITING relles．Univ．de France
HARDIVARE TRADE E．C．SIMMONS

HARMONIC ANALYSIS
ware Company，St．Louls

HARTMANN，K．R．E．von ；HEDONISM．
HAWAII：HONOLULU
arics，Harvard University

HAWTIIORNE，NATHANIEL \qquad
HEART．
．
Visiting Phy．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．illam W．GanNett，M．D．
Visiting Physician to the Massachusetts General Hospital，Boston，Mass．
HEAT ．

HEATING AND VENTILATION
HEBREWS，EPISTLE TO THE ．
HEGEL，GEORGE WILLIAM FRIEDRICH
HEINE，HEINRICH．
HERBART，JOHANN FRIEDRICH
．． Author of＇Jewish Literature and Other Essays＇，Berlin，Germany＂ Charles Degarmo Professor of the Science and Art of Education，Cornell University
HERBERT，GEORGE；HERRICK，ROBERT．
Henry C．Meyer，Jr．
Consulting Engincer，New York＇City
David Foster Estes
Professor of New Testament Interpretation，Colgate University
 Harvard Unversity

Assistant Professor of English，Amherst College HEKEDITY；IIONEY－BEE；INSECTS；INSTINCT．．．．．．．．．．．．．．．．．．．．ALPMEVSS．PACKARD Late Professor of Zoology，Brown Universty

Syivester Burnham．I）．D HIGHER CRITICISM
HISTORICAL SOCIETIES OF THE U．S． Dean of Hamilton Theological Scminary，Colgate University Sydney II Carney：Jr．，M．D． Historian of the Society of Colonial Wars

George Willis Botsford
nt History，Columbia University HISTORY，ANCIENT．
HISTORY，MEDI无VAL。
Adjunct Professor of Ancient History，Columbia Unwersity
IISTORY，MODERN
Professor of History，University of Wisconsin
Willis Masox West
Irofessor of llistory．University of Mannesota
IIXion Münsterburg
Professor of Psycholosy．Harvard Unwersity Mary Whiton Calkins

Formerly Dircctor New Vorh State Lebrary
Pemberton Dudley，MD．
IIOMEEOPATIY
Professor of Institutes of Medicine，Hahnemann Medical College，Philadelphia
．．．．．．．．．．．．．．．．．．．．．．．．．．．．Jons C．Rolfe
Professor of Latin Language and Literature，University of Pennsylvania
HORACE．
James Lail
HORSE，CARE AND DISEASES OF TIJE．
Director of New York State Veterinary College，Cornell University

HJDR．IU゙IIC EIGIIEERIN゙G
ケリDRODY゙ズAMICS．
HVDROPIIOBIA：HVSTERIA；IIVDROTHER．IPY゙

1IPPNOTISM

ICITIIVOLOGY゙ Alrain Professor of Mathemals＇s．Columbia Ľniversi：y

Ilamilon Osgond．M D． David Starr Jurdan

IDIOCV：IMAGINATION：IN゙SANITジ

ILLINOIS．

IMITATION．

 nd Stans ral Jr．Unwerst：yJamfs Hexdrie Lloyd Formenty Neusolonsst Philadephia Hosprta！ －dolal E Stevenson Formerly Vice－Presuden：the U＇n：ted Siates
loms Grier Hibres Professor of Phitoso y．Pranceton University

Williay A HanMond Professor of Ancient and Medseval Philuso；hy Cornell Lniversit y Frfaertck L．Andersos Professor of New Testamert Interpretation，Newton Theological Seminary

Thomas P．Hughes

1NDIA

Author of＇Dictionary of Islam＂

IXDIAI，EDUCATION OF THE
INDI．Nへ』
1NDIANS，NIIERICAN゙
INDIN゙IDE゙，1L PSJCHOLOGY
1NDでLGEXCE

William I．IIallan
Ex－Supeantendent Indian Sctuols
Jacob Piatt Dús．i Secretary Indiana Historical Society Alexandfr F．Chanberlalis Clark U＂nwera！y，Worcester，Mass． Professor of Psychology．University of Chicago

Thowas E．Judge．ST．P． Edusor＇The Catho＇sc Review of Reviews＇
 Instructor in Diseases of Children，Van lerblt Cl nuc，Columbaa Üniversity
1．NSCRIPTIONS
「NSURAMCE，CASUALTI
INSURRANCE．CREDIT．
INSUR．İ゚でE。IVR．ITERN．IL
INSURANCE，INDU゚STRIAL
TKSURANCE，I．IPE
Prifessur ci Lath，Univesity of Texas
EDWiv IT．Deleon Bice President Casuativ Company of Amenta Xew Yorn
 President Wilmanton \mathfrak{X} © Board of Trade

Frederick Gaston Prest Jent of Grand Fraternaty Halfy Fiske Vise．Presulent Mctrot ohtan inde In urance Company

IIfitfras Vichols
INSUR．INCE．I．TFE，STATISTICS

 Stal＇I ian Pru ent al In urance C＇m any i Anerida

INTERN：ITION．11．L．．IU
INY：IRT．IVTS ANO COI：ARI．ANTS
I゚リヒズTIOパS
1017． 1
IRUN゙ POU゚NIIN゚G，CIIEMISTRY OF
 I＇rifen if Metallursy．Harvari C＇nverney

F．If Newell
t s Ceotorical Survey
Charlea Rufla Brown

KEY TO PRONUNCIATION.

THE ENCYCLOPEDIA AMERICANA

Great-crested Flycatcher, a large flycatcher (Myiarchus crimus), which is a summer visitor to all parts of temperate North America, and is noted for its shrill, yet musical scream, and for its habit of entwining one or more cast-off snake-skins in its large tree-lodged nest. It is olive-brown above, with an ashy head surmounted by a tall brownish crest, and the lower parts delicate yellow. Several other species belong to the southwestern States and Mexico, and are often called crested kingbirds.

Great Dane, a breed of large, smoothcoated dogs, the modern equivalent of the ansient boar-hound. See Dog.

Great Divide, The. See Difide, The Great.

Great Eastern, a British iron steamship, before the Celtic the largest vessel constructed, built ($1854-8$) at Milwall, on the Thames, for the Eastern Steam Navigation Company, by Scott Russell, from plans by I. K. Brunel; Jength 680 feet; breadth, $82^{\text {t }} 2$, or, including paddleboxes, II 8 feet; height, 58 feet ($\because 0$ to top of bulwarks). She had 6 masts, 5 of iron and 1 of wood, and could spread -.000 yards of sail. besides having 8 engines, divided between her screws and paddles, and capable of working at 11,000 horse-power. From the first her career was unfortunate, the launching process alone lasting three months and costing $\$ 300.000$. After several unremunerative trips to New York she was employed first as a tron-shin, and thent as a cable-laying ship. for which her size and steadiness specially qualified her. Varinus attempts were afterward made to utilize her, but she at last came to be a mere holiday spectacle. and was broken up in 1888.

Great Expectations, a novel hy Charles Dickens, published in 186I. As in 'David Copperfield,' the hero tells his own story from boyhood. Owing to the simplicity of the plat. and to the small number of characters, it possesses great unity of design. These characters. each drawn with marvelous distinctness of outline. are subordinated throughout to the central personage "Pip." whose great expectations form the pivot of the narrative.

Great Falls, Mont., city, countr scat of Cascade County; on the Nissouri River, the Great Northern, and the G. F. \& C. Railway:; 120 miles northeast of Butte. South and nearby is a g at mining region and north is an agricultural and grazing section. It has large gold, silver, and copper smelters, and bituminous coal. lead, iron, and sandstone are found in the vicinity. The excellent water power which the city possesses is an inducenent to manuiacturers to establish works in Great Falls. The waterpower, at medium low rater, is equal tu over 350,000 horse-power, and this, together with the unusual wealth of minerals, has largely aiderd the rapid growth of the city. There are a number of falls here; one. Great Fall-, gives name to the ciry: Its rapid growth las been largely the result oi its natural resources. Its chief manufactures are flour. furniture, mining and agricultural instruments, wagons. carriages, and woolen goods. The first sctlement was made in ISSt. and in IERS Great Falls was incorporated. Jlunicipal affairs are admini-tered by a mayor, clected biemially, and a city council of two chambers. Minor officials are nominated by the exccutive and confirmed he the council. The water-works are owned and operated by the city. The population increased from (i890) 3.979 to (1000) 14.030.

Great Fish, or Black River, a river in Mackenzie and Kecwatin territorics. Dominion of Canada. It rices in a sm. It lake near the northern shore of Lake ivlmet flows in a northeasterly direction thrnugh lakis Beechy, Pelley and Farry, and enters the Iretic necan by a wide estuary. King $1 /$ illiam 1 ant 1 is near it mouth. The Gireat 1i, biver is about seo miles in length. Sir Gurte linck. the Iretic explorer (1-ran-r8-S) explerul the river in IS 3.45 and followed it the the ncian 11 c described th-hel-Dessy, or Parry Fall. on one of the tributarice, as more ere id than Xiagara in splendor of effect. So Is ek Xarrative of the Iretic Tand Fxneiliti in t the Mouth of the Great Fish River' (18: 3 :

Great Fish River, a river in Cape Colony, South Airica. which risen in the snecuwberg. or Snowy Mountainc, an 1 ait a southeasterly course of 230 miles. entu T. the Indian Ocean at lat. $33^{\circ} 25^{\circ} 5^{\prime \prime}$. and 1 . $\pi \mathrm{E}, 2^{-} 8^{\prime}$, about five miles northeast of Port Alfred.

Geeat Horned Owl. See Eigle Owl Great Island. (1) A small island at the entrarce to Portsmuth Harbut, I. H. It has a lighthouse 90 feet high. (2) in is'and in Bas: Strant, between Tasmania and Ausiraia. It is about ;o miles lung and 12 miles bstad. Pip. 42.100.

Great Kanawha, ką-nå'wa, a eributary of the Ohi Ruver, has its ntee between the Blue Rodse and Ircn Dountains in the norlhwestern par ci Al rth Carcuna, flusen reheat by n rth through the s-uthwe-tern fart of لirgina, then changes 1ts comere n rihwest and weat into West Virgmia, and tuws into the Oho River at Point Mleasant. It receives the Gatiey Rues in Fayette County, West Sirgnia, and :rum thence to its mouth is kncwn by the name ii Great Kanawha. The river, at a cost if wer $\$ 4.000 .000$, has been mode navigable irom ths Ohio to Geeat Kanawha Falls, abe ct three miles from the mouth oi the Gauley Rucer. It is about $4: 0$ miles in length.

Great Kanawha, Battle of. See Porst Pleasant.

Great Lakes, the name given to the chain of Jakes on the northern border of the Linned States. They include Lakes Supervr, Michigan, Huron, Saint Claır, Erte, and Ontari : Michigan only lying wholy within the Linzed States, and no cne ci the lakes wh Jly whin the ternasy oi the Deminion of Canada. Ther area is abecui go.000 square nules: elevation. Lake Supern: coo iect above the sea, and Lake Ontann 2so ieet. The fall of Lake Superi i t Lake Erte is about 40 ieet. Nio large river filws into the Great Lakes; the Saint Lawrence River is the outlet. The bavin (i the Great Lakes averakes in width abcut tou miles in rth and wuth (if the north and suth sh re: respectively. The cmbined cuast lines in the United states have a shore line of abous 3.075 milcs. Theoc great inland seas constatute the larcest 1 y i irenh water in the world. Like a l large Indes of water they affect the clmate if the surrounding cruntry: Good iarm-. exten-we i rests, and saluable minerals are i, uad al me the c ant. On the southern shre of Lake Superis qul are i und masses of ere an! I is mintram- apparently of eruptue orgin. The lireat Lahe have been the meams of d vel $; z 1$ a c nalderable extent the \widehat{N} rthwe-1. 25 t ey are the man th roughiare- by which the firliets ci the large farms, the catle ranches, the nube. amol the forests lhave been low ught : ...ern rawhet. C al and manuiactured products if the colt hers ciser the lahes to weitem marke:- The I tumin ul chal thange ri the laher fils 5 (5) wat 9.0no.coo tins. In the same ser th tei regl:

 are on indivitual friwen the Gircat l he " 1 ol have a resitere! tombere fing of if m

 ters. The line of citue ar unl it e forcut lhes
 and ppultion with mise ianduy ther ow. group of effes in any cther pert of the wirth Some of the clahe 「ras, all termit If citi. road trunk lines, are Teleds, which mereitad is
per cent inm tsoo to 1 goc. Cincaso. whach increased in the same tame $5+4$ per cent: Cieveland, th per cent: Minauhece 39 per cemt: and Burfalo. 3) per cont. The question of luating a dam at the outlet ci Lane Erie sy as 0 benctit nastga:1 n hav been under cuntieratu n. and efforts a:e teary ma e (1003) it tave ammistiners appoisted ty the g cenments of the Linted States and Great Braan whe wil work together, and rep it unth the c rditions and uses of the waters adwent is the b andary lines between the L'nied Siutes and Camada. In Tune Iooz, the C nerees if we lnited States $t k$ action regarding the rias:er, and empuwered the President t appoint thace American Commissioners; une in be an engeneer ofifect of the army: another, a civl engineer. well versed in the hydraulics it the liea: Lakes:' the thrd. a lawyer 'ci expentence in questions of international and rifartan law. The necessity of stch a commis: 7 th examne even the variatons in the levels of the waters of this great thorughiare is manifist when the level: i Detrut River. Lake Sam: Clan: Saint Cla:- River, and Saint Mary s Ruver have been I wered by the Government werty-ene-ios channels irem Duluth and Chicago 1. Butial. The Chicago Drainage Canal (sce Chicago) has helped to wer Lake Michrgan. The C ns a lated Lake Superior Company
taknz wate ut ci Saint Marys River. Other causes are making a change ci level. and the ncreased tran-pu ration on all the lakes will mean better channels to the ocean. For canals CInecting the Great Lakes with rivers and the :w ar und water-ial's, see articies on the re--pective lakes.

Great Meadows, Pa., Engagement at, 28 May 17st: Washington's first fight. When the Frach buit Fort Duquesne (now Pittsburg 1, draing of an Enclish force which had begun 10 itrity the same in t, it was evident that the decive strugge it mastery oi the American Thnterlan was to begin: and the commander of the reare-t English io ree. a Virginia militia ficer i 22 , named George 11 ashinston, at once sent a mesenter to Gov. Dinwiddie and W-rte !cters: the gevemors if Pennsylvania and Mar land, urger a all to send it p s and exIel the Frenclh. Mcantime he set out with his ifre: I uild a furt oa the Mcramgahela where Br w w-y"c. Pa. ncw stards. Constructing a re-d ω hewci, h ba'ted at the Great Meadows if the liferte tny. a bushy fild at the ioct si laurel H1H-a d campins-place and de-
 th lirenc hat of it ci the English activity: an! wnt Tur a mos 1 c.az ge any Enclish band the: : "es. he ctod the fied it bushes and threw
 in 1 . : : 1 i warta an attack, took to it 11 if a tucl : urps - if the French, guided Is lnow al It 1 . ruinu \& hard. the path windon $:$ anl cld min reach the French anp:4 mong the were an advance party If i2. I^{2} : ic inn itre and, hearing of II. a drance, ticy had hidden in a rnchy ibat sent I ckis is einiorcements, but thl 1 \& drits when -urprised, the comm : lat - 10 Ium suille - and nine men wose h/rl. 1 1t er 4 captured and taken to ite ampe at fare t "cad ws. W'ashington lost "ic hiltal 1 = inded. The sequel is t duture fiat Nit entr).

Great Pacificator, a name given Henry Clay (q.v.), on account of his efforts to reconcile the conflicting interests of North and South, especially in connection with the Missouri Compromise.

Great Pedee, a river which las its rise in the monntans of the northwestern part of North Carolima, flows south and east across the State, and enters Sonth Carolina at Narlboro County, in the northeastern part of the State, then Hlows somtheast into Winyaw Bay, an inlet of the Atlantic. In North Carolina the river is called Yadkin. About where the Little Pedee joins the Great Pedee, and south to its mouth, there are several quite large islands. The river is navigable for a distance of about ijo miles from llinyaw Bay.

Great Salt Lake, a body of water in the northwestern part of Utah, the principal drainage centre of the Great Easin (q.v.) ; bounded on the east by the W"asatch Mountains, on the west by the Great Salt Lake Desert. It is about 4.200 feet above sea-level, 80 miles long and from 20 to 32 miles wide. Its chief inlets are the Bear, Ogden, and Weber, and the Jordan which brings the fresh waters of Lake Utah. Great Salt Lake has no apparent outlet save evaporation. In is50 the amount of saline matter held in solution was 22.4 per cent, in 1869 only 14.8 per cent. Between these dates the amount of water flowing in annually exceeded the evaporation, and the lake increased in area from 1,700 102,360 square miles. Since $1869-70$ the lake has been receding. One cause of the water diminishing in volume is the amount used for irrigation ; but the amount of water contributed by the inlets has decreased since 1870. At one time Great Salt Lake was much larger than it is now. The bars, cliffs, and beaches formed by the waters of the ancient lake (called Lake Bonneville) are plainly visible along the base of the mountains. Lake Bomeville had an area of 19,800 square miles and a depth of $\mathrm{I}, 100$ feet. Its depth near where the great Mormon Temple now is was about 850 feet. Its dry bed is now occupied by nearly 200,000 people. The waters of Lake Bonneville reached the ocean through Columbia River. Geological investigations show that there have been at least two moist periods with intervening and subsequent periods of dryness. A change from the present dry climate and scant rainfall to a moist climate would result in a great increase in area of the waters in the lakes and rivers and a return to former water areas. Great Salt Lake has several islands, the largest of which Antelope, is 18 miles long. No fishes seem to exist, but several species of insects and brine-shrimps have been found in the waters; and water-fowls in large numbers frequent the shore. The first mention of Great Salt Lake appeared in a report made by the Franciscans, in 1776. Father Escalante and companions seem to have traveled from Mexico to this region. A report made also by the Franciscans early in the 17 th century mentions the large rivers and lakes and the mineral wealth of this section. In 1843 Fremont explored and described this region, and a thorough survey was made in 18.49-59 by IJoward Stansbury, captain in the United States Army. (See Urah.) Consult: 'Jesuit Relations'; Bancroft, '(Ttah'; U. S. Reports, and Surveys.

Great Slave Lake, a body of water in the Canadan Northwest 'I erfitory, lat. (12 N . greatest length about 300 miles, greatest breadth 50 miles. Estimated area. 10,100 square miles. By the Great Slawe River it receives the waters of Lake Athalusca: and the nutlet is the Mackenzie River which flows into the Arctic Occan.

Great Slave River, in Canada, is the ontlet of Athabanca Lake and Hows into Great Slave Lake (q.v.), by two months, near Fort Resolution. A number of falls and rapids are n its upper course, but the descent becumes more gradual near its mouth. Lengeh about 300 miles.

Great South Bay, an arm of the Alantic Occan on the southern coast of Suffulk Connty; Long Island, N. Y': 50 miles long, from one and one-half to five miles wide. Great South Beach, which is ahont 35 miles long. has Fire Island lighthouse on the western extremity, and separates the bay from the ocean.

Great Stone Face, one of IIawthorne's short stories relating to the "Old Nlan of the Mountain" in the White Mountains, in 'Snow Image and Other Twice Told Tales' (IS52).

Greatorex, grāt'ō-rěks, Eliza Pratt, American artist: b. Manor Hamiton, Ireland, 25 Dec. 1819; d. Paris, 9 Feb. 1897. She studred art in New York and Paris. Her work began in landscape painting. but pen and ink work and ciching subsequently absorbed her efforts. In 1808 she was elected associate of the National Academy: In 1870 she visited Germany and in 1878 published 'The Homes of Oberammergau.' Her principal works are 'Summer Etchings in Colorado' ($18-3$) and 'Old New lork from the Battery to Bloomingdale’ (18,6).

Grebes, greebz, a well-defincd group of water-bird (Colymbida or Podicipida) comprising 25 species, spread over practically the whole world. The grebes are peculiar in having the legs placed very far back, in their flatened tarsi and lobed (not webbed) toes, each digit being flattened and bordered by an extension of horny skin. They are expert swimmers and preeminent as divers. They nest in secluded ponds and bogs, piling tup a mass of vegetable matter upon some floating foundation, and deposit chalky white eggs. When the female leaves the nest she usually covers the eggs over with vegetable matter. The little grebes are expert swimmers and divers from the time they are hatched, and in their soft downy plumage are exceedingly beautiful. During migrations grebes are found frequently along our rivers and sea coasts, and are often shot by duck hunters in the autumn and winter. Though they have no stiffened tail feathers, and have relatively very small wings, they are able io fly long distances. The body plumage is suit and compact. and that of the under surface is a beautiful silvery white, which makes "grebe-breasts" a very desirable article in the millinery trade. "The best-
 horned grebe (Colymbus auritus) which has a peculiar ruff of black and rusty feathers about the head: and the pied-billed grebe (Podilymbus podiceps) a rather more heavily built bird without a ruff and with a thicker and shorter bill. Both are popularly known as "hell-divers." In Europe the commoll species are the loorned grebe, the great crested grelee (C. cristatus) and the dabchick (C. Auciofilis).

Greece, Ancient, the Europea: perns
 d row and Ilyras: a the e st und - the it ls
 suthwer.. ty the I - -en. It- er-i. irm

 E-.t Mak: lireta. :n ? O ! and

 :ume in Henus, and \therefore :! ! Wier, witer the ofuntry was coquered y the $\mathrm{Rm} \pi$ - : : " c d
 hrown as lonata, and the rol..n.an reat ns to tive n rhas Maced nia. T. Gre : iri' $=$

 properly of called. The same pri-p: - pre. erlyapplied niy t the c untry yrgi the - uth ri Maced nia. with the adacent Fiand: lut it ha: : nterme: been glien in a m dom seme by geagrapters to the whic ternery ying to the - ath of Mount Hrmus, Mount Somius. and the Illyrian App, or the wh le serie of mountains now called the Bahan. : as to molude regi ns inh bed by : me thracian. Maced intan, and llyrian tribs. The area, it the manland of the thire limitad regi: n :a which the name of llellas is pr pery y rtined os at re 5s.000 square miac. the "I 's ci lisecee taturaly divude, itely ins three parts 1 trtern Grecee, meludng Eprut and Theway. Ceneral Greere, wath omprise what was kn wn as Hella: : and the I'c ponne-us.

Phys isl fialuris.- he fir-t thang whoh strinc- the eye n l hing at a mip, "i wretec is the cumparatwely great extent of it eiartline, irmel ty nurberat: $\&$ li, whet perrate into it in all directine and keve it a retharh ? brohen add ruanel apper trace procel nit ro ind the clati i -n the ne riswest the nirt. eat we are preatent in :10.0 \& 11 i/ the Ambracian Gomi in w $l_{i} i$ i irsl. C rac.
 the G li af Pith: w et rase i Gli.i Cormel i remel is the mior fromo.

 the IAt i Crimb thas 100 ?

 harl Ab ram amo prol ther

of Tir restus row Mount Velukhi), two duan ir cu in ..n easterly direction, the : ri: -7n it i whach. Mount Uihrys. runs a...- - i se cast. and atrains at sume porms a t \therefore if if mion i.000 : 0.000 feet, while the - Actar ac runs rui er in a s-utheasterly. Qrea . ettuing at the point a height of S.-4 : . . .rminaics at the celebrated pass if -m yte The Cambunian 11 umtains on t. -a the rance i Prndur on the west. and
 in : : ic fl:c...ly. irming the basm of the T.. iv 17 w 5.1 m rial, and the ranges oi O: rys or (lea enct e the smaller basin of the ¿ $\because \cdots \cdots$ Heloia. An ther range of mounin: cunch- zis n! 31 me LEta and runs -t" im re t fine : u:h. This is the celebrated Γ rnans. whith, it it highest n int, exceeds S. 2 ic: The reaks if Cithreron. Pames. Fentelico. and Hymetur ..e in the same drec-
 or: ry than if their height. The range in wi it tese pecis are i :.ad is amtaned to the wuthe st port isomental Greece, and the Frand i Ce . Cythn : El: hhe and Siphnos It Wia, Shemis. Serph and Siphanto) m-y be reçarded as eminuations of it. This rance -n the suth and that of Ceta on the north enc -c the basin if the Cephisus, with Lake C pai: न w Isp ia). Another chain of mountins strkes suthwestward from the central Far zu if olmtinental Greece, under the names of E- rax and Taphiassus. The chief rivers on the weot side of the Pindus chain are the Arach:hus (now Arta) and the Achelous (now A-prap tamo).
The chice feature in the mountain system of the Pol punnesus is a range or series of ranges i frumg a circle found the valley of Arcadia in the mitcrir. having a number of branches proceulng , utward if m it in different directions, dividig the rest ai the Pelupennesus into several ither val ey. The loitiest part of the Itie uncamn us crecte round Arcadia is that lying t the noth. with the peak of Cyllene (Zitia), \therefore ive hgh, as its eastern exrremity, and Lefmartha- ic : 7,297 feet high, at its wh tern. The whern part consists rather of A.er - i he ette than a chain of mountains. Tie igleet rasage which branches off from the circie ar nd Ireadia, and, indeed, the highest rar a in the Pelp nne ilie, is Mount Taygetus (ler: $=$ lfy n. wh ch strkes southward, separit the antent dunti ns ni Messenia and I C. 1 -rm natrgy in the promontory of tive r - nuw Cape Masapan). The viher P. il if in mpance The only riwers
 11.. 16. ir pras Lac nia on the south-E- 1 Momb (Mrita), draining Messenia : than Anh us Ruphia), drainiez Ir oud En a if the Penelus (Gastuni)

Theres lateely developed in the * num ui creos. ine-trne, which often at ila tare it the fitert marble Granite an $x \rightarrow ?$? 1 , y in the north. in the ans row in in if the Pindus. Tertiary :Ul| now in the northeast of the I, Tr in=. at a 1 in the northwest, along the hbor if lla are convillerable tracts of allewom. Vileanic rocks are not seen on the

GREECE

mainland, but form considerable masses in some of the islands. Attica was rich in silver and marble. The gnarrics of Pentelicns and the mines of Lanreimm were famons. Gold and serpentine wete found in Siplnos; there was tin in Ccos, and copper near Chalcis in Eubara. In many of the islands iron abounded.

Dierisions.- On the northwest of the mainland of Greece was the momatanous region of Epirns, which was never more than half Gireck; and to the cast of that district, separated from it loy the chain of Pindus, lay Thessaty, a region of fertile plans. To the sonth, lay a sories of small independent states. Reckoned from west to east, there were Acarnania, Ætolia, 1)oris and Locris, Phocis with Mount Parnassus, the seat of the Muscs, and the sacted Delphi, regarded by the Greeks as the navel of the earth; Bueotia, with Ifelicon, another mometain sacred to the JInses, and with the cities of Thebes and Platea; Megaris, containing the city of Megara; and Attica with its capital Athens, Pirrus, the port of Athens, and the city of Eleusis, the seat of the mysterions worship of Demeter. In the middle of the Peloponnesus was Areadia, with the towns of Mantinea, Tegea, and Megalopolis, the last founded by Epaminondas. In the north lay Sicyon and Corinth, the latter situated on the isthmus connecting the Peloponnesus with the rest of Greece; and to the west of that Achaia. To the southwest of Achaia lay the rich province of Elis, with the plain and sacred grove of Olympia, celebrated on account of the Olympic games, which were held here every fourth year. To the south of Elis, in the southwest corner of the Peloponnesus, lay the province of Messenia, with the famous stronghold of Ithome. "one of the horns of the Peloponnesus," the fort of Pylos, and later the capital town of Messene, founded by Epaminondas 369 . Separated from Messenia by the range of Taygetus was the province of Laconia, occupying the southeast corner of the Peloponnesus, and containing the renowned city of Sparta, long the rival and ultimately the conqueror of Athens. Lastly: to the north of Laconia, the east of Arcadia, and the south of Sicyon, lay the province of Argolis, with the capital Argos, and the cities of Mycenæ and Tiryns, all remarkable for the remains of gigantic works of masonry, commonly known as Cyclopean works.

The islands of Greece are partly scattered over the Fgean Sea and partly contained in the Jonian Sea on the southwest of the mainland. The Greeks applied the names Cyclades and Sporades to two groups of islands in the Egean, the former name (from kuklos, a circle) to those which they believed to form a circle round the sacred island of Delos, and the latter (from a Greek root meaning scattered, sporadic) to those which were scattered over various parts of the sea. Some islands were sometimes said to be in the one group and sometimes in the other, and several were sometimes excluded from both. The following, however, are the principal of those which may most properly be considered as belonging to the Cyclades: Andros, Tenos, Myconos, Naxos (now Naxia), Paros (celebrated for its marble), Amorgos, Anaphe, Thera (now Santorin), Pholegandros (now Polykandro), Sicinos, los (now Nio). Melos, Syros, and Gyaros (Jura), Siphnos. Seriphos, Cythnos, and Ceos. The name

Sporades may be applied to all the other 3 stand in the Egean. The Sporades will thens inclucte the following islands on the northeast of the mainland of Grecee: Fuberat (Negropunt), the largest of all the Fireck islands, separater] from the condenent only hy the narrow strait of Euripus, and containing the ports of Chalcis and Eretria ; Sciathos, Scopelos, Halonesus (Kili dromi), Eudemia (Sarakino), and Scyros; the iollowing off the coasts of Thrace and Asia Minor: Jemmos, Thasos, Jmbros, and Sanothrace (in very remote times the seats of a mysterious religions worship) Lesbos (with the flourishing and luxurious fown of Mitylene). Chios, Samos, Cos, etc. ; and the following in the Saronic Ganlf, or between it and the Argolic Gnlf: Salamis (now Salamis or Kolmri). Egina, Calauria (Poros), lyydrea (Jlydra), and Pityussa (Spetse). The islands in the lomian Sea are Corcyra (Corfu), celebrated in the most ancient times for its wealth and culture, and at a later period colonized by Corinthians; Paxos, Lencas or Leucadia (Santa Naura), al one time connected with the mainland; the "rocky" Ithaca (now vulgarly called Ithaki), the home of Ulysses: Cephallenia (Ceplalonia). Zacynthus (Zante), and Cythera (Cerigo), one of the seats of the worship of the goddess Aphrodite.

Soil, Productions, Etc.- Greece was in ancient times more fertile than it is now, which is accounted for by the fact that the forests have been to a large extent cleared away; the springs thas dried up, and the soil deprived of moisture. The most fertile districts were Thessaly, Bcotia, and some parts of the Peloponnesus; the least fertile Attica and Arcadia. The principal objects of cultivation were the vine and the olive, but flax and the commoner cereals were also cultivated more or less. Among the domestic animals were horses, asses, mules, oxen, swine, sheep, goats, and dogs. Swine were very mumerous everywhere, and mules were much used in the Peloponnesus; but there were comparatively few horses, as the monntainous character of the country was not conducive to their being reared; the best horses of Greece were reared in Thessaly. Bears, boars, and wolves are mentioned among the wild amimals anciently found in Grecce, and it may perhaps be inferred from the legend of the Nemean lion that even lions at one time existed in this country. Herodotus, indeed, expressly states that lions were found between the Nestus in Thrace and the Achelous in Acarnania.

Climate. - The climate of ancient Greece is highly commended by ancient Greck writers, as by Herodotus, Hippocrates, and Aristotle, on Which account it seens fair to infer that the malaria which now infests the air in summer did not then prevail to the same extent, a circumstance that is casily accounted for by the fact that in those times the country was more thickly populated and better cultivated. In respect of temperature the same differences resulting from the inequalities of the surface must have existed then as exist now, long and scvere winters being experienced in the highlands of the interior. white the lowlands, exposed to the sea, enjoyed warm and genial weather all the year rommd.

History-Grecec has never at any perionk formed a single and independent state. Is long as it remained independen it was divided into a mmmber of separate states, and durmg
the onty pcrind w - : was admon-iered us a
 power. A get 3 . . . ich + it the h st oy of ananent Geece muvt thre: re t uch ony upen th se lead.rg cie:- uhthen be ng to the c m-
 leart a Fectud tie Gireck ple pie a- a wh.le. esen alth wht they $7 .:$: \quad ns m-re espectai'y t the

The earlu-i in' a itants i Geece i whom anything is kn wn are called by Greek writers Pelastums. The et n - लical ainintiles ti chese have dien been dincussed, but the m si fecent auth :-ies belsere that they were an 1nd: Gemanic $=$ AFyan prope. They necupied Greece beicre the intux i I mans. Erlians and Dunans. They seem to have been agricultural in pursuit: dwet al ne the ferale val eys, buitt ser - ce cites. wa's ei the sthealled cyclom pean mas r. 7 , and am ng ther m mik :am us seats were $D \mathrm{c}^{2}$ an in Eplets. Thessaly. Orehomen - in B r ia. Nycente in Are is. Sicy n. cic.

In relagi n they abh-rred beth polytheism and anthr momern. Therr name attcrward becarre danged i Hellenes and under this appelaiin they amalgamated with the I nian: the $A+\cdots n=$ the 1 lar: and the D sians.
 perhaps echected in the ecends i Oricnial col ni-i- - Cadmu:. $\mathrm{Pe}^{\prime} p=$ Certof: e:c. - wh settied :n Greece in berg rem e time $=$ The rea"iy of an eanly orrect n tetween Greece and the Fari is ev:a lohed by the iac: that the rateeti- derwed the seeate: part of eir alphabet irrm the phenctant

The Hellener, : Citech: p: perly so called. enic:ing the entin: pr lat y is me the nurth-we-i s bdued and farty driplaced the Pea-ganc hey are un:3) y repre-onted an having been suided int iur et lef rie e- the THan- ocupy.ng the Them parti of Greece
 o:- z:naiy n'y the small res on in the neiaht s- $^{-}$
 the gicie: prr i the P, ane-: a 3 the I mian: iecupying the n-rt en str:p of the Pe fanev- an! ditca the m-ldli part of the l'e pennciu wi- it m-y whabited by a Pela-gic ppulacu: The war he and enterprione characier i i e llet \because madere is casimerd by the watie leart, if: a-heseme: ts 1 in the he: tic azes. - el an te tale it the Trtan Wiar, of Th eens. oi Ja n and the Ara naut. etc Fr m al these we may eather at Nat that the Hellene enrly in migunhed

 "then itht uree estermed 'y haw w we the the of t tuprette fien int whe ir
 ia lit tie tite, u in liser re als

 theser temodinate k ge gavr ther $-=$ in evers th ect ei dellorati: n! wi 1 the upiem rier a \% the cricl 1 pere. Lity, nd the they lid $n=3 u^{2} \cdots$ in :
intuence however. was very great especially where the rightiul head of the state did not possess the abthats of a ru.er.

The distributn i athe Hellenic tribes which we have just inducated is pot that which coninued throughout ine main period of Greek histur. If was entirely alte:ed by an event called die D rian misation. of Enmetmes the return if the Heracleids, which is placed by Thecydides about so years aiter the fall of Troy, and thus $a^{\text {. }}$ ut the yea: 1ro4 B.C. according to the crdimary syatem chronology. Beiore the greas rigrti n severa smaller ones had taken pace. One tribe. 太reding tis cerrizory too circumberibed, would m se t- an-ther. expelting the inhabitants already setted there, who thats iound themselves ormpelled to remove to some orther district, where they treated the criginal inhabitarts in the same way that they had been treated themselves. In this way there arose a general disturbance, tul' at last the hardy Dorian inhabitants oi the munamous region about Nount Cia began a migraticn on a greaier scale than had hithern beer attempted. and thus brought abou: a se-ies of changes which resulied in an entirely new settlement of the Greek territury. They nirst o nquered a large part of nortbern Greece. and then entered and subdued the greater par: of the Pe:-ponnesus, driving out or subjugating the Acheans, as the Achears had driven out or subjurzied the Pe'asgians. The Dorians are a:- said to have inveded Attica, where. however. they were baffied, according to the legend, by the self-dev tion of Codfus, the king of that territ F. It is said that an oracie had pron unced that in this war whichever side lost its king w u!d be vict fious. on which account strict crder: were given to the Dorian soldiers to -pare the lite of the king of the enemy. But C drus disguised himself in the dress of a c mm n herdsman, and going into the enemy's camp fr y 'ied a quarrel in which he met hi death, n leaning which the Durians despaired of success and withdrew. In the legend in which tht pries if events has come down to us the D rians are represented as having entered the Pel ponnews under Temenus. Cresphr rees, and Arist demus, three descendants of Heracles, who had oume to recover the territory - i which their ancesors had been unjustly deprsed by Eurysthers Hence the name of the Return i the Heracleids. sometimes given to this event.

The ichaan inhabitants of the Pelop - nesus $w h \mathrm{~m}$ the Dorians found there had a threei ld fate. One part of them sought for new h $\mathrm{m} \cdot$, and turned their steps toward the Prt if the Pel p rresus occupied by the Ion1an. wh m they expelled. keeping for them-- lven the r ierrit g, which hence received the n it if itha a inother part voluntarily subFr'ed the invaders. who impesed tribute upi ? them at excluded them from all share In the a vermanem: while a third part resisted to - \quad - 1 were in the en 1 reduced to the e mi n i tasery In Laconia the former rec be t e name Écieci (dwellers round), and the later were cal ${ }^{1}$ el Helots

The I mani wh were driven out of the Pel . nnesun i und at first a refuge among th of hintred in Altica, but wher this district d 1 r t - fibs ir all the inhabitants nld and icw. Lurze num ers of them leit it and founded

GREECE.

1. Parthenon, on the Acropolis. . Athens
2. Temple of Victory, con the . Acropolis. . Thens

GREECE

Ionic colonies on several of the islands of the .Egean Sea and on the middle part of the coast of Asia Alinor, where they built 12 cities, which formed an Ionic Confederacy. The principal of these were Ephesus and Aifetus, About the same time as the lonians are said to have colonized the midelle part of the seaboard of Asia Minor. another body of Grecks, procecding from Theesaly and Bcotia, are said to have founded the Eolian colonies on some of the northern islands of the 龙gean, and on the northern part of the western coast of Asia Minor. The .Eol:c colonies of . Asia Minor also formed a contederacy of 12 cities, but the number was afterward reduced to it by the accession of Smyma to the Ionic Confederacy. White lonians and I:olians thus colonized the middle and northern islands of the Łgean and coasts of Asin. the southern islands and the southern part of the west coast of Asia Minor were in like manmer colonized by Dorian settlers. The six Doric towns in Asia Ninor, along with the island of Rhodes, formed a confederacy similar to the Ionic and. Eolic ones.

In considering the subject of Greek colonization we are brought face to face with the fact that in settling in foreign lands, the Greek races kept distinct from each other. One of the great keys to an understanding of Greek history is a right understanding of the relation between the two great races of the Greek name, the Dorians and Ionians. The Dorians were inland mountaineers, the Ionians were of the seacoast. The former, as represented in the institutions of Sparta, were a practical, and conservative race, living in public, simple and unimaginative. Their poctry was the public ode, accompanied with the dance in the market-place. often carried on under arms. The Ionians were versatile. imaginatiye. impressible. They were devoted to the maritime life, were travelers, and fond of welcoming strangers to their cities. They were traders. Joreover, they were keenly intellectual and reached the summit of excellence in art. literature, and philosophy. Their poetry was the epic narrative: and they invented the drama, in which the Ionian tale of personal adventure was mited with the Doric ode. These two contrasted races between them swayed the fate of Greece. Their relations were complicated by the different colonics which they established at different points on the Mediterranean and Euxine coasts. In the course of tinse new Greek settlements were made on the coasts of the Hellespont, the Propontis (Sea of Marmora). and the Black Sea by both Dorians and Ionians. The most important of these were Byzantium (Constantinople) (Dorian), Sinope (Ionian), Cerasus (Ionian), and Trapezus (Trebizonde) (Ionian). Further, there were flourishing Greek colonies on the coasts of Thrace and Macedonia: for example. Aldera. Amphipolis, Olynthus. Potidra, etc., which were all lonian; and the Greek colonies in Lower Italy were so numerous that the inlabitants of the interior spoke Greck. and the whole region received the name of Greater Grecce. The most fanous of the Greek colonies in this quarter were Tarentum, Sybaris, Croton, Cumæ, and Naples. The island of Sicily also came to a great extent into the hands of the Greeks, who founded on it or enlarged many towns. By far the largest, most powerful, and most highly cultured of the

Greek colonies was the forian colony of Syrit cuse. founded in the sth century B.C. (1n the north coast oi Africa the Dorian colony of Cyreme rivaled in wealth and commerce the cny of Carthage: and on the south coast of Caul Ionian Massilia (Marseilles) presented a mondel of civilized government to the inhabitants of the surrounding districts. All these towns kept up a commerce in the products of the land in which they were planted. They exerted a must important and bencficent influsnce on the manners of the neighboring inhabitants. They preserved the customs and institutions of their mother city, which they regarded with filial reverence: but otherwise they were perfectly free and independent.

Although ancient (irecce never formed a single state, the various Greek tribes always looked upon themselves as one people, and classed all other nations under the gencral name of Barbaroi (foreigners). There were four chief honds of union between the Greek tribus. First and chiefly they had a common langıage, which, though it had considerable dialectic jeculiarities when spoken by different trilese, was yet understood throughout every part of Grecce and in all the Greek colonies. Secondly, they had common religious ideas and institutions, and especially in the oracle of Defphi (q.v.) they had a common religious sanetuary, which was held by all the states in equal reverence, and was resorted to from all parts of Grecee, alike by communities and individuals, for advice in circumstances of difficulty, and not unfrequently for indications as to the future. Thirdly, there was a general assembly of the Grecks called the Amphictyonic League (q.v.) in which the whole nation was represented ly tribes (not by states), and the chicf functions of which were to guard the interests of the sanctuary of Delphi. and to see that the wars between the separate states of Greece were not carried on in too merciless a manner. When any of the ordinances of the league were violated it was it, duty to see that the violators were punished, and to entrust the infliction of the pumishment to some one of its members. The fourth bond of umion between the tribes of Grecce consisted in the four great national festivals or ganes, the Olympian, Isthmian. Nemean, and Pythian (qq.w.) which were held at different intervals in four different parts of Greece, in which all Greeks, and none but Greeks, were allowed to participate, and which slaves were not allowed even to witness. At these games contests took place in foot-racing and chariot-racing, lonsing, wrestling, and throwing with the quoit (or discus). and prizes were also awarded for works of art. poems, dramas, lsitories, cte. The prize was a simple wreath of olive or pine branches, or of parslev: but such a prize brought glory not only on the winner himself, lout on his whote family and kindred, and even on the state to which be belonged. The victor was welcumed home hy a trimphal procession, and his victory was celebrated in odes sung on the necasion, and sometimes composed by such prets as Simonides and Pindar. The Olympic games were the most celebrated of these festivals. They were held in the summer once every four years at Ulympia. in Elis: the monh in which they were held was considered as sacted, and during it mo acts of hostility were allowed to take place betweer:

GREECE

any of the Greck states. Originally, the only contest wa- a int-race, and so high was the honer if a victory in this race enieemed, that from that of $\mathrm{C}=\mathrm{t}$ u- in FO BC , the whote af Greece rech nes the time." Ti.e year in wh ch any event happerted was styled the rirst. -ectud. third. © fourth year, if a certain Olymp ad. the name siven on the moterval elan-ing betwetn each celebratim.

The varicu: -mall states ci Grecee may be divided. accurdng to the $i \mathrm{rm}$ (if thenr comsututh n, int the two great clases of arivto eratic and demecratic. Sparta ir Lacedem n. the chei unw (i Lacmia and of the D, rians. was the leading aristicratic -tate: and Athens. the captal di Atica atd the chicif tewn of the lonian-, wa- the leadine democratic tate: and as a rule all the Duric ratee and -ubsequently all the ee under the influence if Sparta. resembled that cry in their comstuthen: and all the lonic states. and those under the influence of Athens, resemtledit. Theretwn races are the only one that cime into prominence during the earlier rart of Greek hist ry subsequent to the Doric migration. Sparta is said to have derived its inrm oi covernment, and all its insti-tution:- near the close of the oth century B.C., from Lycurgus. who made minute regulations as to the course of education and the mode of life ammer the Spartans. He had but one object. that of training the Spartan youth for war. and developing a hardy and warlike spirit among the people. The immediate result of this trainng were seen in the conquests, which the Spartans effected over the surrounding states. especially over the Mes-enian- in the 8th and Th centuries RC. Many of the sanquished Messenians left their native coumtry and founded the city of Mesana in Sicily. Those who remained were reduced to the condition of Helots (q.v).

The constuturion of whens was not originally: democratical, hut monarehical. Ifterward it became aristocratic, and first received a mure or less demueratic convatution from Silm at the beginning oi the oth eemtury b.c. This was iollowed alhout so year- later by a deynutic monarchy under the celelorated "iyrant" Pi-i-tratus. and his snns, Hippras and Hinparchus, the Ja-s surverr of whom. Hippas, remened m Vhen- till 510 RC Hipparclus lad lerell awasinated four yeare lefore and the lant fo ur yeare of the remen of Hipplas were d-tmenthel hy wience and
 after whith the republic was re 4 red in a mere furcly Jemocratic form thas at firt
 of lerea, with wheo dill he h peed to he alle

 Jere. Malas. and Malylis. it al orr Fegst and lit las or Wieh the re: ita

 t mien that n . Ha were hot in - liem-

 wat If ticom of shleme, whoter hewer lad excitel detrut of larlut, the Pirton heng,
for the latter, on the pretence of rewarding' hime in a signal service invited hins to his court and kept hum at Susa in practical captivity: Histizus secretly incited his relative. Aristagoras oi Diletus. to get up a rising among the Greek E lutes of Asia Mlnor, in the hope that he might. during the disturbance. find an opportunity if returnng to his home. The endeavors if . Iristagora: were successful: all the Greek tewns, n the coast were soon in arms, and asswance was asked from the mother country: Only Athens, which ieared lest Darius should re-e-tallish Histizers, and the small Ionian town of Eretria in Eubrea. furnished any aid. The Greeks. in quis... conquered and burned the town of Sardis, the capital of Asia Minor, whereupon the rebellion extended over the whole i i lnnia. But the superior forces of the enemy, and the want of union among the insurgents, led in the iollowing year (495) to the loss of a naval battle, and soon after to the destruction of Miletus, the inhabitants of which were partly pur to death and partly made captives.

Darius now determined to avenge himself on the Athenians and Eretrians for the part that they had taken in the rising. In 492 he sent out an expedition against them under his son-in-law Mardonius, but the Persian fleet was wrecked off the promontory of Mount Athos. Darius had at the same time despatched heralds to the islands and states of Greece to demand earth and water in token of submission. llost of the islands and many of the smaller states yielded, but Athens and Sparta indignantly refused the demand. and even went the length of putting the heralds to death. Enraged at this insult Darius equipped a second fleet and placed it under the command of Datis and Artaphernes. But this met with no better fate than the first. The Persians landed on the island of Eubrea, and after destroying Eretria, crossed the Euripus into Attica; but here they were met (400 B.C.) on the plain of Marathon by to.000 Athenians and 1.000 Plateans, under Miltiades, and, although to times as numerous, were totally deieated and pursued to their ships. This battle nut an end to the second Persian expedition, but Darius at once began to make preparations ior a third expelition, and this time on a far greater scale than before. In the midst of thece preparations he died. but his son Jerxes, collectid an arny of 1,500.000 men and a fleet i i 1.200 large ships besides a number of smaller wher, erused the lleflespont in 481 by means of two Irugecs if boats, and led his army through Thrace, Macedonia. and Thessaly, while his fleet followed the line of coast. Thessaly had surrenderes withous a troke, and Jerxes at once [urned hrie march in the direction of Plocis. But hefire he could enter this territory he had (1) n ahe hi- way througlt the narrow and difficult pan if licemopyla, and this had previil I lect cecuprel by 300 Spartans under le mede. atheng with several thousand allies. 11. Dernee in vain attempted to force
 1) urals in hin tromps were slain: ard 1t wa- illy aiter Eqhaltes had hetrayed ti the Pervian- a fort-path which led over 1) Jengel th of (f'ia to the rear of the defenders in the pa-. that the Persian king effected his purpmee liondan allowed all the allies to oiepart. Whith he limelif and his 300 Spartans.

GREECE

along with 700 Thespians who voluntarily remained with them, held out until they were completely aminilated (48o r.c.).

The way through Phocis and Beotia was now open to the lersians, who adranced into Attica, and laid the city of Athens in ruins, putting to death the small garrison. The women and children belonging to Athens had by this time. on the advice of Themistocles, been removed to Salamis, Jgina, and Treezen, while all the men capable of bearing arms served in the fleet. It was to Themistocles that the deliverance of Greece was now chiefly due. The united flect of the Greeks had already contended with success against that of the Persians off the promontory of Artemisium, in Eubcea, and had then sailed into the Saronic Gulf, whither it was followed by the enemy. In this confined arm of the sea, where there was no room for the mancenvring of the numerous ships of the enemy, a decisive battle between the 'wo fleets took place with the result that Themistocles had anticipated, the total defeat of the Persians. This battle is known as the battle of Salamis, from the name of an island in the Saronic Gulf, and was fouglit in the same year as Thermopyle (4So b.c.). Xerxes himself had been an eyewitness of the battle and at once began a speedy retreat with his land army through Thessaly, $1 l a c e d o n i a, ~ a n d ~ T h r a c e, ~ a ~ r e t r e a t ~ w h i c h ~ T h e m i s-~$ tocles had hastened by causing the false report to reach Xerxes, that it was the intention of the Greeks to destroy the bridges of boats over the Hellespont. Serxes left behind him only 300,000 men in Thessaly. In the spring of the following year (479) these advanced into Attica and compelled the citizens once more to seek refuge in Salamis; but in the battle of Platæa the Greeks, under the command of Pausanias, obtained so complete a victory, that only 40,000 of the Persians reached the Itellespont. On the same day the remnant of the Persian fleet was attacked and defeated by the Greeks off Mount Myeale, near Samos on the Ionian coast of Asia.

By the brilliant part which the Athenians under Themistocles had played against the Persians, the influence of Athens had greatly increased throughout Greece: and this was further strengthened by the fact that the war aginst Persia, which still contimed, was chiefly conducted by sea, where Athens was mich more powerful than Sparta. From this date then begins the period of the leadership or hegemony of Athens in Greece, which continued to the close of the Peloponnesian war, 104 B.C. Athens now exerted her influence to form a confederacy including the Greek islands and maritime towns as well as Athens herself, the object of which was to provide for the continuance of the war by the payment into a common treasury at Delos, of a fixed sum of money, and by furnishing ships for the same purpose. In this confederacy Athens of course had the lead, and gradually was able to render tributary many of the islands and smatler maritime states. In 469 B.C. the victories won by the Athenians over the Persians was crowned hy the double victory of Cimon, the son of Miltiades, over the fleet and army of the Persians on the river Eurymedon, in the south of Asia Minor: and this victory was followed by the Peace of Cimon, which secured the freedom and independence of all Greck towns and islands. Shortly after followed the bril-
liant adminstration of Pericles, during whet Athens reached the height of her political grandcur, white at the same time she flourished in trade, in afts, in science, and in hterature.

The position of Athens, however, soon raived up a number of enemics. Sparta regarded her prosperity with jealous.s: and the arrogance of Athens had produced a pretty general feeling of indignation and hatred. Two hastile confederacies were furmed in Greece. At the head of one of these confederacies was the city of Athens, which was joined by all the Ionian states of Grecee, and more or hess supported by the democratic party in cvery state. At the hearl of the other confederacy stood Sparta, which was similarly joined by all the Dorian states, and supported by the aristocratic party everywhere. At last in 431 war was declared by Sparta on the complaint of Corinth that Athens had furnished assistance to the island of Corcyra in its war against the mother eity; and on that of Megara, that the Megarean ships and merchandise were excluded from all the ports and markets of Attica.

In the first part of the Peloponnesian war the Spartans hat considerable successes. while a great calamity befell the Athenians, who had collected all the inhabitants of the country districts of Attica within the walls of the city; and in consequence a pestilence broke out which carried off thousands of the inhabitants, and among them Pericles himself. From this blow, however, the city soon recovered, and in 425 the early successes of the Spartans in Attiea were compensated by the capture of Pylos in Messenia by the Athenian general Demosthenes, who at the same time succeeded in shutting up 400 Spartans in the small island of Sphacteria, opposite I'ylos, where they were ultimately starved into surrender. The person to whom the surrender was made was the demagogue Cleon, who, in consequence of his military successes, obtained the command of an army which was sent to operate against the Spartan general Brasidas in Thrace. But in 422 he was deftated by Brasidas before the town of Amphipolis, and himself slain, after which the opposite party in Atherss got the upper hand, and concluded the peace with Sparta known as the Peace of Nicias (421 b.c.).

The effect of this peace was to divide the Spartans and the Corinthians, who had hitherto been allies. The latter united themselves with Argos, Elis and some of the Arcadian towns to wrest from Spatta the hegemony of the Peloponnesus. In this design they were supported by Alcibiades, a neplew of Pericles, a man of handsome figure and ereat personal accomplishments. The war which was now waged between Sparta and Corinth with her allies resultect, however, in fayor of the former. whose arms were victorious at the battle of Mantinca in 418.

Soon after this: the Athenians resumed hostilities, fitting out in 415 B.C. a magnificent army and flect, under the command of Aleibiades. Nicias, and Lamaclus, for the reduetion of the Dorian city of Syracuse in Sicily. This undertaking, which renewed the race hatred between Sparta and Athens, was a complete failure. Aleibiades was accused in his absence of several offenses against religion and the constitution. and deprived of his command. Thirsting for revenge, be betook himselí to Sparta, and ex-

GREECE

horted the city io retew the war with Athers. Bÿ hıs advice one Sparan army was despaiched to Aitica, where it took up such a position as prevensed the Athentans irom obtaning supplies frcan Eubuea, whle another was sent under Grlippus to assist their kindred in Sicioy. These steps were sumous to Ahens. Lamachus fel! in the siege of Syracuse, and the Athenian dee: was totally desiroyed. The reinficements sent out under Nicias and Demsshenes were defeased (+13 BC.) by the combined Sparian and Syracusan armies. Ail the Atheniams who escaped death were made captives End compëned to work as siares in the quarries sicily, although it may be menti ned as an menesting fact that many of these captives obtained thei: libery by being able :o recite iragments of Euripides.

Aiter this disaster many of the allies of Athens fomed the Spartans. who row pressed on the war whth greater energy. The Athenians recalled Alibuades, who seturned in fo-. and was secewed by his fellow-citizens with enthusiasm as their expected deliverer. A iew months later he was again an exile. having been deprived of the command because ine of his subordinates had losi a nera! batile forght of Ephesus in his absence. During the rest of the war the Athemans had on'y ine success, the naral sictory won of the istands of Arginusæ over the Sparan Callicratidas 1 n 40 . In the iollowng year (405) the Spartans made themselves masiers of the whole of the trhentan Heet excepi nine vessels, while the majority of the crews were on shore at Egcspotamis on the Hellesport. The Spartars now easily subdued the islands and states that sti!1 maintained then allegiance to the Athenians. and laid siege to Athens itself. In fo4 Bic. the wa: was te:minated by the Athenians" surrender. Sparta immediately imposed won Athens an aristocratic form of government. placing the supreme power in the hands of the Thirty Tyrants. Only a year later, however (403). Thrasybulus was able to overhrow this hated rule and re-establish the democracy.

The rall of Athens resu'ted in Sparia's leadership or hegemony in Greece, which lasted till the battle of Leuctra, 371 B.C. The Spartans now abused their power and specdily ro:sied the hatred and jealousy of the wher siates. The Greek siates which had up to this tume been, and sti!! continued to be leader: had now lost alme entirely their manliness and independent spirt: and no longer maintained the kereditary war against Persia. but each stught the and of tha: puwer it iss own purp $-\infty$ The Spartans d:d indeed send an expedies n into Asia Min r. but it came ! nthing: and the irates of Greece, the Spartans included, ai last, in is:agreed to the disgraceiul Peace i Antalcidas. Iy which the whole of the wes: c-asi ci Asia Nin is was ceded to the Persians, and the Greck c 1 nies there thes deprived of the independence that had been secured to them by the Peace of Cimon.

An act of volence ctmmitted by a Spartan general in Thebes in 36 in the end led in the complete downiall ci that city. The aristocratic party in Thebes, when the Sparran army happened in be in the neighborthond, prevalled upen the general to sive his assistance in cue:hawins their opponertis and citablishing an aristocratic sovernmert. I number of the lens fum-
inent members of the defeated party, amung them Pelopidas. made their escape to tinens. where they go: the support and ass:stance of the democratic party there They soon returned in disguise ic ther owa chy, surprised and murdered the leades co the asistocreic farty, expelied the Epartan garrisen, and again set up a demacratic government. These circusmsances give a good idea cif the ing ci party staie which was then geveral in the Greet crties. The 1 mneciate resuit oi this cownter-revolution :n Thebes wes a war wi:h Sparta, the herocs ci which were Epamincadas and Pelopidas. who were thea at the head of af̈airs in Thebes. In the curse of the wat the Spartans imvaded Brctia. bu: we:e so ecmpletedy deieated at Letctra in 35 B. A that they never fulity recovered irom the blow.

With this sictory Thebes won hegemony in Grecee, which she maintained during the lifetime ci Epaminondas, whose policy it was to kecp diwn the power of Sparta by sirengthening the surtounding states. From him the Messenians recuvered their freedom, and by his adrice the cuties of tricadia iormed themselves into a conzederacy, and built the cisy of Merralepolis. This policy was at first successiuh but in a few years the con*ederacy besan itsel: :o strive afier the supremacy, and jomed themselves with this object to the Spartans. Epamincadas then invaded the Peloponnesus, bus athough the Thebans totally defeated the Spartans and Arcadians in the batric of Mantinea 302). yet the victory being won with the loss c their grear general, the Thebans could no longer boast with justice of supermacy in Greece. Pelopidas had died iwo years beiore.

Tro years aiter the death of Epaminondas. Philip. the father of Aleander the Great, be came king oi Macedonia. He was a man of great ability as a soldier and a ruler, an ad. mirer of the Greek character, and a lover of Greek art and literature. He perceived, however, the weakness of the Greeks, arising irom their want of unity, and waited for an opportunity of interiering in the atiairs of their country: with the view of ultimately making hamseli master of it An occasion ior interterence was iurnished him by the Sacred war ($355-90$). The Phocians having taken possession of some ci the land belonging to the sameruary of Delphs. the Amphictyonic League condemned them to pay a fine and restore the land they had taken. This was refused and the league imposed upon the Thebans the task of forcing the Phocians to submit, but in ther rocky strongholds the Phocians were able to resist all the efforts of their assailants, who at last called in the aid ci Philip of Macedon. With his help the Phocians were subdued. they themselves expelled irom the league, and their place given to Philip.

It was not. however, ull the Locrian war (330-S) that Philip acquired a firm hok in Grece. The Locrians had committed the same - fense a: that of the Phocians, and when they likewise refused to pay the fine imposed upon them by the league. Philp, as one of the menslers. received the charge of punishing them. The advance of Philip was at nirst witnessed with comparative indifference by the states of Greece, bu: when his real designs became apparent the Athenians, on the advice of Demosthenes. hastily concluded an alliance with the Thebans. and an army was sent cu: to oppose
him. The hatte of Cheronca (338) turned out, however, disastronily for the Greeks, who saw their whole conntry laid at the feet of Philip. But the conqueror treated his new subjects with milduess, wisting to reconcile them to the Macedonian yoke, and to win their co-operation in his projected imvasion of the rotten empire of Persia. Ile collected a large army, of which he got himself declared commander-in-chici by the Amphictyonic League in an assembly held at Corinth in $33 \bar{\gamma}$ B.C. ; before he was able to start he was assassinated 336 B.c.

The design of Thilip on Persia was taken up and carried out by his son Alexander the Great, during whose absence Antipater was left behind as governor of Nacedonia and Greece. Soon after the departure of Alexander, Agis 111. of Sparta headed a rising against Antipater. He was defeated, however, in the battle of Megalopolis in 330 B.C., and no other attempt was made by the Greeks to recover their liberty for nearly 100 years. At the close of the wars which followed the death of Alexander, and which resulted in the division of his empire, Greece remained with Macedonia.

The last efforts of the Greeks ic recover their independence proceeded from the Achaeans, who heid the northern strip of the Peloponnesus. This tribe is frequently mentioned by Homer as taking a very prominent part in the Trojan war; but during the historical period of Greece they for the most part kept aloof from the quarrels of the other states, and did not even furnish assistance in repelling the Persian invasion. They had taken part, though reluctantly, in the Peloponnesian war on the side of Sparta, and had shared in the defeat of Megalopolis in 33° B.C. In the course of the first half of the 3 d century b.c. several of the Achrean towns expelled the Nacedonians, and revived an ancient confederacy, which was now known as the Achean Leagne. About the middle of this century the league was joined by the town of Sicyon, the native city of Aratus, who soon after became its leading spirit. Through his influence it was joined also by Corinth, and then it began to aim at acquiring the supremacy throughout the Peloponnesus, and even throughout the whole of Greece, as well as at delivering Greece from the Macedonian yoke. In following out the first of these aims Aratus and the league came into collision with Sparta, which at that time happened to be governed in near succession by two kings, Agis IV. ($24.4-240$) and Cleomenes (236-220), who had both something of the old Lycurgan spirit in them. These, then, naturally looked with jealousy on the efforts of Aratus, and during the reign of Cleomenes a war broke out between Sparta and the Achrean League. The league was at first worsted, and was only finally successiul when Aratus, forgetting the ultimate end of his efforts in the pursnit of that which he had more immediately in view, called in the aid of the Macedonians. In the hattle of Sellasia, in 222 в.c., Cleomenes was defeated and compelled to take to flight, and the Macedonians became masters of Sparta. Aratus died in 213, and his place was taken by Philopermen, "the last of the Greeks," who roused the league once more to vigorous efforts, and gradually succeeded in making it in some degree independent of Macedonia.

About this time the Romans, who had just come out victorious from a second war with

Carthage, in which they had had to contend woth llanmbal, iound an ciccasion to meteriere in the affairs of Circece. l'hilip V. of Nacedon had alliced himself during this war whth Hamibal, and, accordngly as soon as the war was concluded, the Romans sent over Flaminunus to punish him for so doing, and in this war with Philip the Ronams were joined by the Achacan League. Philip was defeated at the battle of Cynoscephalix in 197 B.C., and was in consequence obliged to agree to a peace, in which he recognized the independence of Greece. To gratify the Greek vanity Flaminims proclamed the deliverance of birece from the Macedonian yoke at a celebration of the lithmian games in 1 of n.c. ; but the Greeks soon felt that they had only exelanged masters, that they were in reality, although not in name, as much in subjection to them as they had ever been to the Nacedonians. On this account the .Etolians, who had formed a league similar to that of the Achwans, appealed for assistance against the Romans to Antiochus the Great. king of Syria, one of the kingdonss which had been formed out of the empire of Alexander. The appeal was listenes] to; but the help afforded was useless, for Antiochus was defeated in a bloody batte at Magnesia in Asia Minot in 100 B.C. The .Etolians were compelled to pay a money indemmity, and to sacrifice some of their art treasures.

By this time the Achaan League was unguestionably supreme over all other powers withun Greece, having been joined by all the states of the Peloponnesus. But the league itself was in reality subject to Rome, the senate of which assumed the right of regulating its proccedings; and on one occasion, in I6 B.C., on the conelusion of a war waged by the Romans against Inacedonia, the former carried off into htaly 1,000 of the noblest Achreans, on the pretext that they had furnished assistance to the Macedonians. Such was the condition of affairs until 147 B.C., when the league openly resisted a demand made by the Roman senate, that Sparta. Corinth, Argos, and other cities, should be separated from it, in consequence of which a war ensucd, which was concluded in 1.40 B.C. by the capture of Corinth by the rude consul Nimmits.

The independence of Grecee was virtually gone with the fall of Corintl. From this date the prosperity of her cities rapidly declined, and the last sparks of the ancient Greek patriotism and love of independence becane extinguished. The various cities still retained, however, something of the qualities for which they had been remarkable at the height of their glory. Athens was still one of the centres of culture. and the cradle of all kinds of new speculations, Many Athenians left their native city and made a livelihood, although they gained little esteem, among the Romans, as artists and scholars, actors and dancers, poets and wits. The citizens of Sparta continued to gratify their thirst fur warfare as well as their covetousuess by serving as mercenaries in foreign armies. Corinth was still the home of luxury and vice.

From the date above mentiond Greace remained attached to the koman empire. On the division of the Roman empire it fell of course to the castern or Byzantine half. From 1204 to 1261 it formed a part of the Latin Empire of the East, ant] was divided into a number of feudal principalities. ln the latter year it was reannexed to thic Byzantine empire, with which
it remamed till it was conquered by the Iurhs between 1400 and 145 . In 1099 the Norea was ceded io the Venetians. but was recovered by the Turks in 1515 . (For the history of the present kingdom oí Greece, see Greece, NlodEkN. $)$ Cornair: Thirlwall. 'History of Greece' Grote, 'Hsctory of Greece'; Bury. History of Greece) (1000).
C. sme shy and Religion.-Nowhere did polytheisen develop isecli into a brighser and more beautiful system than among the ancient Greeis. It was this circumstance no doubt that led the Romans, when they became acquainted with the hterature and religion of the Greeks. to blend the Greek system with that of the ancient Italian: identufying the Greek deities with those of thers own pantheon. In this way the Greek and Italian deities came to be confounded.

According to the view oi the origin of all things which in course of tume grew up among the Greeks, the umwerse was in the beginning a formless mass, Chaos iconiusion). irem which arose the "broad-bosomed" Earth (Greek, Gdia, Gé; Lain. Tillus). the Lower florld " Tartarus). the darkness of Night (Greek, Nis.r: Latin, Jor), the parent of Light, and the formative principle of Love (Greek. Erōs; Latin. -fmorl. all of which were regarded as independent divinities. From the womb oi the Earth proceeded the Heaven (Greek Ouranos: Latin. Calum) and the Ocean, and aiterward the Titans. creatures of superhuman size and strength, who iormed the first dynasty of gods. The Titans were succeeded by a more genial race of divinities endowed with intellectual as well as physical qualities, who subdued the Titans. and subsequently the Giants. another race whom the Earth produced aiter the loss of her first brood. In this second dynasty of gods the supreme ruler was Zeus (Jupiter or Juppiter), the son of Kronos (Saturn). who after the subjugation of the Titans and Giants ruled in Olympus over "the middle air," while his brother Pluto reigned over the dark kingdom of the lower world (Hades, Tartarus. Oreus). and Poseidōn (Septune), armed with his trident, ruled in the sea. Like reverence was paid to Héra (Juno), the sister and wile oi Zeus. and the queen oi Heaven. the virgin Pallas Arhēne (Ilinerva). a goldess armied with helmet and shield, and worshipped as the patroness di all intellectual emplovments and usciful mentirns: to the two children oi Léto (Latona), Apolio, the leader oi the Wuses (hence called Musacetes) and the pretector of the fine arts. and his sister, the chaste huntress Artemis (Diana) the goddess of the moon, to the daughter ci Zeus, Aphrodite (1emus). the gondess if love. Ares iMars), the god if war. Herme(Acreury). the herald of the rod. and others bevides. In additien to the e there wa- an innumierable host oi incertor dejties (Nymphs. Nereids. Tritons. Hirai, Siren-. Dryad and Hamadryads. ete), who fresilded wer weds a:n 1 m intatise, folds an! mead ws, rwers and lake, the seasons, cite. There was alon a race of hermes or demige de Ilferacles ur Hereules. I'er-e $1=$ e.e.) tracme thene frign ir in 7ens. an 1 forming a enmecting link lectween gind a. 1 mon. while nit the other hand the Sutyr: is and a cennectine lonk between the race of mon and the lower animals. According to a faswhe berry, now lese genserally hele than furmerly, these gods and demigods are nothing
else than the personified objects oi nature (the Sky or Copper Air. the Sun, the Ocean. the Air in Motion, etc.) and were origmally not conceived as personified, in the strict sense of the term, that js, as clethed in a human iorm, but smply as the cbjects themselves. to which the earlicit races everywhere attributed a cuascions existence like their own, and that the mytholegical tales revarn g to these deities and heroes were in their simplest form the natural expression of what human beings in their miancy believed to be cione and ielt by the very things: Which they saw. Such is the theory oi Max Mi:iler, Mir. Cox. and others: but it will be more appropriately expounded in the article Myrhology (q.x.).

With regard to the inculcation of religious beliefs. and the practice oi religious duties among the Greeks, the mest striking thing to remember is that they had no separate class appointed to perform these functicns. The priests were in no sense preachers of doctrines, but nerely, hierophants, or exhibitors of sacred things, of rites. symbols, and images. They showed how the gods were to be worshipped. or more usually how a paricular god was to be worshipped: but it was not their office to teach theological doctrine.

Grick Language and firiting.- The lansuage which we call Greck belongs, as is well Known, to the Indo-European or Aryan family: of tongues, being akin to the Sanskrit. Persian, Latin, Celtic. Slavonic, and Germanic languages, including of course English. Out of Greece it was spoken in a great part oi Asia Minor. of the south of Italy and Sicily and in other regions which were settled by Grecian colonies: From the great number of Hellenic iribes of the same race it was to be expected that there would be difierent dialects. the knowledge of which is the more necessary for becoming acquainted with the Greek language. since the Writers of this nation hase transmitsed the peculiarities of the different dialects in the use of single letters, words, forms. terminations, and expressions, and that not merely to characterize more particularly an individual represented as speaking, but even when they speak in their own person. It is customary to distinguish three leading dialects. according to the three leading branches of the Greeks, the . Wolic, the Doric, and the Ionic, 10 which was aiterward added the mixed Attic dialect: hestdes these there are several seecndary dialects. Nkin to the lonic is the so-called Epic dialect. that in which the peems of Homer and IIesicd are writen, and which was afterward adopted by other epre writers. The Doric was ruse and harsh; the lonic was the soitest and most liquid. The lutic was the neatest, clearest and most Precise in sound luteration and illom. The - Eolic was spoken on the north ui the Isthmus if Cerinth (except in Megara. Aitica, and Dors:-), in the Ealian colunies of Asia Minor. and en onme ni the northern islands of the - Pacan Sea. The Doric was -poken in the Pe pramens, in the Daric Tetrapolis, in the Doric c lonies of Disa Mimor of Lower Italy (Taremum), of Sicily (Syracuse. Agricentum). and met purely by the llesemians: the lone in the Iunian colr mies ni Asia Minor, and on the i-lands of the Arehipelago: and the Attic in Atrica. In each of thene dialects there are celebrated authors. The lonic dialect is iound pure
in some prose writers, especially Iterototus and Hippocrates. The Doric is used in the poems of Pindar, Theocritus, Bion, and Moschus. Litthe Doric prose remains, and that is mostly on mathematical or philosophical subjects. In Folic we have fragments of Alcaus and Sappho. After Athens hat obtained the supremacy of Greece, and rendered itself the centre of all literary cultivation, the masterpieces of Eschylus, Sophocles, Euripides, Aristophanes, Thucydides, Xenophon, Plato, Aristotle, Isocrates, 1)emosthenes, cte., made the Attic the common diallect of literature. Grammarians afterward distinguished the genuine Attic, as it exists in those masters from the Altie of common life, calling the latter the common Greek or Hellemic dialect: and even the hater Attic writers, posterior to the golden age of the literature, were designated Hellenes or common Grocks. In this latecr class are Theophrastus, Apollodorus, Polybius, Plutarch, and others. Many of the later writers, however, wrote genuine Attic, as Lucian, Elian, and Arrian. Except the dramatists, the pocts by no means confinted themselves to the Attic; the dramatists themselves assumed the Doric, to a certain degree, in their choruses, for the sake of giving them additional solemnity, because the antique ode was of Doric tradition. They also used the epic or Eolic dialect in narrative passages of the drama where it recalled the recitations of the ancient Ionian rhapsode. Undoubtedly the Greek dialects were not, in the earliest times, so distinct from each other as they afterward became; and on this subject we may quote the words of Prof. Bury (Hist. of Greece, chap. i.) : "There can be little doubt that the mixture of the Greeks with the native peoples had a decisive effect upon the difficrentiation of the Greek dialects. The dialects spoken by the first settlers in Thessaly, in Attica, in Arcadia, have some common characteristics which tempt us to mark them as a group, and distinguish them from another sct of dialcets spoken by Greek folks which were to appear somewhat later on the stage of history. We may conjecture that the first set of invaders spoke in their old home much the same idiom; that this was differently modified in Thessaly and Bootia, in Attica and Argolis, and the various countries where they settled: and that many of the local peculiarities were developed in the mouths of the conquered learning the tongue of the conguerors." It results that to have a thorough knowledge of the Greek language we mnst follow out historically as far as possible the course of its formation, extending our view over all the varied forms of the dialects - a labor which this language, so rich in classic models of every kind. so perfect. so flexible, so expressive, so sweet in its sound, so harmonious in its movements, and so philosophical in its grammatical forms and whole structure, merits, and richly rewards.

When the Greeks became acquainted with the art of writing we do not know. In Egypt hicroglyphics were used more than 3 ,ooo years before the Christian era, and the cuneiform writing of Assyria and Babylonia had a similar antiquity. In Crete writing was practised more than 2,000 years before Christ, it is believed, and among the Asiatic Greeks it was probably introduced 9 or 10 centuries before Christ. According to the writer above quoted: "Perhaps the earliest example of a Greek writing that we possess is
on an Attic jar of the eth century; it says the jar shall be the prize of the dancer who dances more gaily than all the others. But the lack of early imseriptions is what we should expect. The new art was used ior ordmary and liecrary putposes long before it thas employed firs official records. It was the great gifi, which the Semites, who themselve derived it from Exypt, gave to Europe." Aceurdang to the legend it was Cadmus the Phenection whe imtonduced the alphabet inter Greece: and it is an undoubted fact that the om at of the Greck letters are derived from the Phernician anes. The direck alphabet possesses the ifllowing 24 letters. A. α (alphat, a^{2}; 3 , β beta, b; 1, γ gammal:
 (zeta): zi If, そ cetal, é; O. θ thect, th; I, \& (iota), i; K, к (hasprat k; A, ג lambda,
 $x ; 0$, o comicron, i. e. small o, ǒ ; $11, \pi$
 T, τ (tau), $t ; T, v$ (upsilon), 11 , comamonly transliterated by $y ;$, ϕ (phi, phy X, x (chi), ch gutural ; $\psi, \psi(1, s i), \quad$ ps; ! ! ω (omega, or great 0), $\overline{0}$. There are also marks indicating accent, a rough and a smooth "breathing," the former cquivalemt to h initial before a vowel; but no j, z, z, , ctc. The alphabet originally introduced into Grecce is said to have consisted of but 16 letters: \& ($\theta \Xi \Phi \bar{Z}$) are said to have been invented by Palamedes during the Trojan war, and 4 more ($/ 11 \Omega \Psi$) by Simonides of Ceos. That the 8 letters mentioned are more modern than the others is certain, partly from historical accounts, partly from the most ancient inscriptions. It remains to remark that the Greeks originally wrote from right to left ; then boustrophedon, that is, alternatcly from right to left and left to tight: and finally always from left to right.

Greek Literature. - The origin of Greek literature, that is, of the intellectual cultivation of the Greeks as contained in written works, is lost in an almost impenetrable obscurity. Though therc existed in Greece, in carlier times, no actual literature, there probably was by no means a want of what we may not improperly call literary cultivation, if we free ourselyes from the prejulice that a literature must oi necessity be embodied in written alphabetical characters. The first period of Grecian cultivation which extends to the movement known as the invasion of the Peloponnesus by the Itcrachda and Dorians, and the great changes produced by it, and which we may desiguate by the name of the Ante-Itomeric period, was no doubt utterly destitute of literature; but it may be questioncil? whether it was also diestitute of all that culture which we are accustomed to call literary. The fables which are told of the intellectual achievements of this period may hate a certain basis of truth. Among the promoters of literary cultivation in this time we must distinguish three classes: (I) Those of whom we have no wrolings, but who are menthoned as inventors of arts, poets, and sages: Amphim. Dem, docus, Ifelampus, Olen, Themius, and l'rometheus: (2) Those to whom are falecly attributed winks no longer extant: Abaris, Aristeas, Chiron. Epimenides, Eumolpus, Corimus, Linus, and Palanedes. (3) Those to whom writings yet extant, which, however, were productions of later times, are attributed: Dares, Dictys. Horapollo, Museus, Orpheus, and the authors of the

Sibyinne oracles. This is n : the flace io mo quire whether any and hew much ei these w:rtinzs is genume. It ta enough that the thea of such a furgery proves a belvef in the ex:stence if eatlier productun: And huw e uld the next persod have been what it was without preve us preparathn: If we may thus anter what must hase been in crder that the stoccecing permed shorid be what it was. we learn ais in me the various iaditicns of the Ante-Hormerse pers ${ }^{2}$ that there existed in it institutsons whoch. thruwh the reans of reigion. poetry, oracles. and nysteries, had no small miluence on the ciudizats n of the naidn and the pimositn of culture: iut the misi part, indeed, in Ormental ficms and perhaps $6:$ On:ental origin: and that these m-thitituns. senerally of a poicstiy chatacter. $c^{\text {a }}$ ained princ:ral y in the northern furts $<$ i Grece. Thate, and Macedona Whe mest here remark that intelectual cultivatica did an prose per at unce in Greece, nor dispay itseli simultancots:y am ng ail the tribe:: that the Greet: became Grecks inly in the fioces ci time. und same tribes made more rapid progress than others.

About so years after the Ircian war new comm thons and a new migration bezan within the berdere i Greece. A frion ci the inhatiiants envigra:ed it on the mother country to the islands and to dsia Minn:. Thrs change was in the higher degree iaverable io Grectan semus: in- the new senlemen:, abounding in harbors, and destined by mature ict comerce and indus:ry, afurded them! n : unly a :an:e tranquil life, bu: alw a wider fied it refinement, and gase rise is new mode- ci life. the ancients ascribed in the e I nies in Inma and the eentif Asia Mimor the character ci luxury and volurtumsnes:. The b :ee zta, the pure sty, the baimy air. the beautitul if "rect:. the rinest fol:o and mu-i dei ci us rezetahes in abumdance, all the req̧us-ic of luxury here united in noursh a soit sensuaity. Pue:ty and philnsx ohy, paintine and sintuary, here at:alned the:r highes periect: nl: but Efei an! hern deed were oitene: ce'ebratel than peri rmed. Near the scene $r i$ the irst grand nats nal eniergrlee of the Greck - the fr jan war - it wa- - i strance that the interent ils event extiel shoud be live y. and that : -huld tahe a poueficl hold if the imaginathm. I vet? it found a sulfect, in the tecament \vdots which it mecescanly a-surtelf a character cntite y d-i ne: in m that it the i :mer fer -1 in or al na:ng= her ic putry hav fl urndel int the spirat oi herasm. The hros- wese here il. firced by the bard. a: 1 th the opmee on= i imed Wie therei re call is. ma por: the efic $a_{\text {ge }}$ of the larech- The monemp \& id s) пин anfearn - ep rated ir .. t e prien. fut hashly hanoted. particular'y bee the the mem ry if the h sre- lived in his leree: -rid potry was the guard an wi ab tac hemeslace of preed ng ume. $s \rightarrow$, lag as it di: whe not emmited! : writhe Fir mo ver nuture the eforecemus: be lin real, in an emlarged cence tinder such circum-ta: en is in rive strange that pectilar selool, in feet were cesab'rhe1: it the imagomaten if it e firct fri ited the umacination ni nthe:- and it was then, nerhay: believed that iwe:ry mus be learied like ether arts-a belief to which the echuth is priesis on which the echols for mintirel were pitaby mndeled, contril uied
no: a lus:ie But they were minstrels in ite strmest senve. i ? thetr ifadmons were -ung. and the p ee: act :mpanied his vesoes on a :trmsed ins:rumert. On cverg mp stant oct Cas: \cap rlesstes were freent, who were reFarced as s:anding under the immediate irntoence i ithe g ds espectaity of the Muses, wha wees acquanitu with the presur, the past, and the iuture. The manstel, wath the seer, thus $\therefore \quad d$ at tie head i men. But am ng the namy norotel which thas age undubiediy pusessec. H1me: al ne has su-vmed, wh.-e rame nas aiways ben assciated woth the two gecot epte 5em- the 'Iliad and 'OJy'sey. aith ush in mi den :tmes the thecry first premu:rated hy N1 it in i- J., that reither of these peens is the w th if ne man, has been accepted either ennre!. 0 - 8 :\%h m dnicauns by many ech ars. ard many others whr comend $\dot{\vdots}$? the unity is each if the wo poens are yet inclined it leheve that they were nut both a mpered by the =ame indiwiua.. The latter ifuica is not of m dem resin bli divided also the Hmern sch ar- : ancient times. Severai hymns and a mexh her e pe en calied the 'Barrach myomatha, : :he 'Batile of the Fruss and Mke.' are at =-cribed io Homer, but on altogether :notitic:ent gruands. From him an Ionian ※h - i munerrels takes sts name - the H ritride - who probably constituted at first. at Clu:s. a dj-umct fumily oi rhapsodists, and who fecserved the oid Homenc and epic style, the spirit and the 1 : the Homeric rerse. Much that wa- attrly uted it Homer may reasonably be assigued in them. A certain class of the © : : wer: i 11 mer are known by the name oi the Cyc ic putis, who began, however, to deviate nu:erially ir m the I gian cpo the historical element fic 1 monating mere and more over the poetical. By Cyclus we undersiand the whole circle ei madts no and iables. and not merely the event i it the T_{r};ans war. Cyolic poetry emprehended the whe le ampass of muthology: and we mas, thereinre. diside it into: (1) a corme netal: 12 a genealogical: and (3) a he: ic Cociu: : in the lateer of which there are tw - varate pers ds: (I) that cit the heroes if re: and (2) that if those alter, the expeds: a if the Argmatrs. To the first class ie ne die hatiles oi the Tuams and framb:- it the secuad. the thers nies and firs wite I the first pertud of the :1rd čal lé ine the Eur pra, several Heraceas anl Dins-acs. several Thehats. Aren-
 the $-\infty$ o 11 in r: d the poetry generaly related to
 wh therestel, it the return of the her we ir m Try Me irrow ci these C!cik mets apfrid al : 1 eft me of the birut Oiympad. 1.- - i it c eradual ifmasim oi thers metry con i lw giben. In cauve we have on'y wers geral -an on revectitg them lBut what we d. hn wh-t on uvince ctury ng that betweer 1) Ne llatoric if and the In man achos i if
 wete the 'ramion in And we actualy find this in the fore fat-is rian wehool. Whach arove spl Eut pean 1, recice. if is and, in the Eth century se is lity d ir name irnm Asera in Berotia. the re- letce if Hertod. who stood at its head. and ly whom setry was probably conducted back agam ir mi Asla Min o (ior he was nriginall! if (yme in Pia) 10 Greece $H_{1 s}$
works also were at first preserved by rhapsodists. They were not arranged till a later period, when they were augmented by foreign additions; so that, in their present form, their authenticity is as doubtful as that of the poems ascribed to Homer. Of the 16 works attributed to him there liave come down to us the 'Theogony,' the 'Shicld of Hercules' (the fragment of a larger poem), and 'Wrorks and Days' (a didactic work on agriculture), the 'Choice of Days,' intermixed with moral and prudential maxims, ete. The works of Homer and Hesiod acquired a canonical importance among the Greeks, and constituted, in a certain degree, the foundation of youthful education.

In the third period, the age of lyric poetry, of apologues and philosophy, our knowledge of Greck history gradually acquires a greater certainty. About the begimning of the epoch of the Olympiads (7,6 B.c.) there enstred a true ebb and flood of constitutions among the small states of Greece. After numerous vicissitudes of power, daring which the contending parties persecuted each other for a long time with mutual hatred, republies, with democratical constitutions, finally sprang up, which were in some measure united into one whole by national meetings at the sacred games. The spirit prevalent in such a time greatly favored lyric poetry, which now became an art in Greece, and reached the summit of its perfection at the time of the invasion of the Persians. Next to the gods, who were celebrated at their festivals with hymns, their country, with its beroes, was the leading stubject of this branch of poetry, on the character of which external circumstances seem to have exercised no slight influence. The mental energies of the nation were roused by the circumstances of the country; and the numerous wars and conflicts, patriotism, the love of freedom, and the hatred of enemies and tyrants, gave birth to the heroic ode. Life, however, was at the same time viewed more on its dark side. Thence there was an intermingling of more sensibility in the elegy, as well as, on the other side, a vigorous reaction, in which the spirit of ridicule gave rise to the iambus (satire). In everything there was a more powerful impulse toward meditation, investigation, and labor for the attamment of a desired condition. The Golden Age, the gift of the gods, was felt to have departed. Whatever man discovered in future was to be the fruit of his own efforts. This fecling showed that the age of manhood had arrived. Philosophy had become necessary, and attained continually a greater development. It first spoke in maxims and gnomes, in fables and in dogmatic precepts. Lyric poetry next gave utterance to the feelings excited by the pleasures of earth. Of those who gained a repIttation in this way, as well as by the improvement of music and the invention of various forms of lyric poetry, history presents us the names of Archilochus of Paros, inventor of the iambus; Tyrtacus, author of war songs; Callinus of Ephesus, inventor of the elegiac measure (all of whom flourished in the 7 th century b.c.) ; Terpander of Antissa, in Lesbos (675 в.c.) ; Simonides of Amorgos (664), the second of the three principal fambic poets of Greece; Alcman the Lydian, and Arion of Methymma, said by Herodotus to have invented the dithyrambus (both flourished about 630 b.c.) : Sappho, A1caeus, and Erinna, all natives of Lesbos, the first
two of Mitylenc, and all of Whom flourished about oro b.C.; Nimmermus of Colophon (flourished from about U3. to 600 B.C.) ; Stesichorus of Ilimera (600) ; Hyycus of Rhegrium (lived about 540 B.C. at the court of Polycrates of Samos): Anacreon of Teos (lived first at the court of Polycrates, afterward at that of Ilipparchus at Athens) ; Hipponax of Ephesus ($540-520$), the third great iambic poot; Lasus of Hermione (520); Simonides of Ceos (11. 500); his contemporary, Timocreon of Rhodes; Corinna of Tanagra (490), the friend and instructress of Pindar (522-442). As gnomic writers, Theognis of Megara and Phocylides of Miletus deserve to be named (both of whom flourished about 540 B.C.) ; as a fablist, Fisop (570 B.C.). In the order of time several belong to the following period, but are properly placed here, on account of their connection.

In the period of $550-500$ B.C. traditions were first committed to writing in prose, and Cadmus of Miletus (540), Acusilaus the Argive, Hecatreus of Miletus (500), Hellanicus of Nitylene, and Pherceydes of Scyros, are among the oldest historical writers (450). Thesc are known as the logographers (logographoi), a name given to them by Thucydides. After them appeared Herodotus (borr 484), the Homer of history. His example kindled 'Thucydides (born 471) to emmlation, and his eight books of the history of the Peloponnesian war make him the first philosophical historian, and a model for all his successors. If his conciseness sometimes renders Thucydides obscure, in X̌enophon (born about 444), on the contrary, there prevails the greatest perspicuity: and he became the model of quiet, unostentatious historical writing. These three historians are the most distinguished of this period, in which we must, moreover, mention Ctesias (400), 1’hilistus (363), and Theopompus (340).

An entircly new species of poetry was created in this period. From the thanksgiving festivals, which the country people solemnized after the vintage, in honor of Dionysus (Bacchus), with wild songs and comic dances, arose, especially in Attica, the drama. By degrees variety and a degree of art were given to the songs of the village chorus, and by and by an intermediate speaker was introduced. who related popular fables, while the chorus varied the eternal praises of Bacchus by moral reflections, as the narration prompted. These games of the feast of the vintage were soon repeated on other days. Solon's contemporary: Thespis, who smeared his actors, like vintagers, with lees of wine, exhibited at the cross ways or in the villages, on movable stages, stories sometimes serious with solemn choruses, sometimes laughable with dances, in which satyrs and other ridiculous characters excited laughter. Their representations were called tragedies (tragodiai), that is, songs of the goat (so called either because the exhibition of a tragedy was in the earliest times accompanied by the sacrifice of a goat, or because a goat was the prize, or because the actors were clad in goat-skins) connedice ($k \bar{o} m-$ $\bar{o} d i a i$, meaning either village songs, from $k \bar{o} m \bar{c}$. a village, or songs of revelry, from komos, revelry), festive dances and satirical actions (drama satyricum). These sports were finally exhibited, with much more splendor, on the stages of the towns, and acquired a more and more distinct character by their peculiar tone
and morality. Instead of an intermedia:c speaker, who related his story extemporaneously, .Eschylus ($525-456$) Arst substituted actors, who repeated their parts by rote; and he was thus the actual creatur of the dramatic art, which was son carried to periection: iragedy by Eschylus. Sophocks ($495-4 \alpha$) and Euripides foo-qou : c medy ty Cratinu: ($510-\mathrm{f}_{2} 2$) Eupclis A. Hग. Crates. but eaecia y by Arsir phanes labe ut $\ddagger+300$. Under the $\because=$ ernment, ithe Thirty Tyrant, the irced m which c medy had prsereed. il |wding uf hwig chuacturs to r.dicule, was restrictio anll the mond 'e cmedy was thes grauan.! i rmud. in whinch the dirut wa: abo sh d, and, with de :t eati ns of genteal characte. characternite masks wer at, ment d:ced. The m.mes ei S plaren of Syractse $(+0-4-0)$. dramatic dia' gues in rhythmea! prose, irmed a distinct sfectes. in contaction whith wheh stands the Sictitan comedy of Epicharmus (about $\equiv \ddagger 0-\$ 50$.

Elugutnce. the necessary outc me of the demoeratic institutions of many of the Greck states, likewioe nlourished during this pernd. and was speediy clevated to the rank oi a fine art. Anesply $(+0)$, Lysias $(5-3-3,5)$, fsocrates $\left(43^{\circ}-33^{\circ}\right)$, I =us ($4=0-3 \not 5$). Deme thenes (about $305-322)$. Eschines (300-314), were renowned masters of this ant. We still posses: the admired masierpieces of several of these orators. Hcw near rletric was then to triumphing over poetry is maniested in Euripides. and there is no question that it had a considerable inituence on Plato and Thucydides. Mathematics was now cultuated. and gengraphy served to illustrate history. Astron my is mdebied to the lonic schoml, arithmetic to the Italic, and genmetry to the Academic sehool ior many discoverses. As mathematicuans, Neton. Euctemon, Archytas of Tarentum. Eudoxus of Cnidus, were celebrated. Gecgraphy was particularly enriched by voyage of din covery, which were eacasioned by commerce: and in this riew Hannos syage the the western coast of dirica, the Perip tis if Scylan (a descriptinn ri the coavt- ni the Mediterraneans. and the discoverice nif Potheas if Masilia in the northwe of Eurape, cacre mention. The tudy of nature was likewse fur-ued ly the I hili onphers: but the healme art, hiolerto 1 rac-ti-ed by the A-clegradxe the temples, c motiisted a dot net el nece and H ppocrate: (abn ut in-350) became the ereater ei -ieptitie mettine.

The ithowing perios is thaty cal cel
 the syst motions ait errtical AT, liteth dal
 in: but durnz the greve prosithe perist devandria wis til re ity the calligg firceh city. Fir mt the ant the eates Il e oftrit if Gre an literature nece -arily tah an hertor Girece was tim mider a i resen ? e. great
 If the cyuttry , in the c nes: and the 1 e e if an immencel lerary towled to mhe erudut in erinmf exer the free act in uf mend. wheh. Jowever, combl in a te immablaticly overberse. In phicu li. l'lato's acute and learned disciple, Artettie ($254-322$), appeared as the fommter of the Perphatetic chool, which camed datinction by enlarging the terntory of fhal woplyy, and by its spirit of syotem. He separated logue and rhetrinc, ethis and molitics, physics and meta-
physics and applied philosophy to several branches of knowledge: thereby producing economics, pedagogics, and poetics. He invented the phalosonhacal svilogisn2. and gave philosuphy the fictan which it preserved ior centuries. His disciple 1 hee phrastus (died 28- B.C.) followed his sieps in the investigation of philcsophy and :Latural hist y. But the more digmatic was the phile arthy of Arwitule. the m re cation "as req 3 - tie it the philosiphical inquirer, and the sparit ide tht was salutary. This was par-
 wisch riemated wath Pyrrho of Elis (330). A -imit or atat subsisted in the middle and new acutcm $=$ if whech licesiau= (211) and Carnocada iss were the inunders. The Sion sch 1. i umided ty Zemo of Citium in Cyprus (342-2,0) and the Epicurean, of which Epicurus (2uy-2,9 was the iounder, were chieny ternarkabie is the efiect that they had in the development di moral speculation in copposite direct ins, whech gradually brought abe cit a great difference in the practice of the adherents of the upp ite schouls. Mathematics and astronfmy made great prigress in the schools at Alexandra. Rh des, and Pergamus. And to whom are the names of Euclid $(323-283)$. Archimedes (28゙-212), Eratosthenes (2,6-106), and Hipparchus (rno-145) unknown? The expeditions and achievements of Alexander furnished abundant matter to history: but, on the whole it gained in extent, not in value, since a preference it the wonderful over the actual had now bec meprevalent. The more gratitying, thereiore, is the appearance of Polybius of Megalopolis (20\$-122), who is to be regarded as the author of the true method of historical exposition, by which umiver:al history acquired a philosophical epirit and a worthy object. Geograplyy, which Eratothenes made a science, and Hipparchus nuited more ch sely with mathematics. was enriched in various ways. To the knowledge of countries and nations much was added by the accounts of Searchus Agatharchides and others. With revect to poetry many remarkable changes occurred. In thens the middle comedy save pase mit without the intervention of pinical cancé to the new which approaches to the $n 3$ dern "comedy of manners." (See l)Rimi) Ameng the imany poets of this class Nenander (342-230t) and Philemon (330) were emnent thi- perinal also belong the celeIrated idy ic prot. Theneritus $(2,-0)$, and his contembis. ry Bung. as well as Noschus. who Incel alm 120 years later. The other kinds of I eersy dil t i reman uncultivated: we may me nit in tue berncy fictry of Callimachus ant
 the dulacte i ir tus and Nicander: but all th ec inr- N we a the craticisms of poetry awh the tire art- of tre to Alcxandria: and we Ah theis $1 \cdots$ th m ver inn this place.
 I 10.1) r (ir ih ir in 11 n , i the Old Testament wis a "1 rh if - -t orv of the AlexanJram well lhe perind arent to 140 RC.
 Je placed here as we l as the ther historians. Dimlirus Siculus and l) Dus -us of JalicarnasG13: while in the Chriut i era we have Josephus, Arrian, Appian, Heroctant the biocraphies of Ilutareh, Hengene, Laertius, and Philostratus, the kengraphics of Strabo and Pausanias: the a wronomy and geography of Ptolemy;

GREECE

the informatory works of Athenrus, Slian, and Stobrus: che medical works of Galen; the satirical works of Luciant and the Greek romances best represented in 15eliodorus, Achilles Tatius, and Chariton. See Brzantine Literature.

The following are among the best works ons Greek literature: K. O. Miiller's 'Geschichte der griechischen Litteratur) (4th cd. 1882-4) ; Dergk's 'Griechische Litteraturgeschichte) ($1802-4$) : Bernhardy's 'Grundriss der griechischen Litteratur) (new ed. 1802): Nlure's 'Critical History of the Language and Literature of Ancient Grecce) (I854-60) : Mahaffy's 'Classical Greek Literature' (I890) ; Jevons' '11istory of Greek Literature' (1800): Croisct's 'Histcirc de la littérature grécque ($1889-95$) ; Susemihl's 'Geschichte der griechischen Litteratur in der Alexandrincrzeit' ($189 \mathrm{I}-2$).

Greece, Modern (Greek Hcllas), a kingdom in the sombeast of Europe, bounded on the north by Turkey, and on all other sides by the sea - the Ionian Sea on the west, the Ilediterrancan proper on the sonth, and the Jgean Sea on the east. The mainland forms two chief portions, united by the narrow Isthmus of Corinth; a northern, called Northern Greece or Livadia, and a southern peninsula, called the Peloponnesus or Morea. By far the largest island is Eulora, only separated from the mainland of Livadia by the narrow channel of Eitripo. The other islands form several groups: The northern Sporades on the northeast of Euboa including. Skiathos, Skopelos, Khiliodromia, Pelagonisi, Sarakinon or Peristeri, and Skyros: the western Sporades, chicfly in the Gulf of Egina, or between it and the Gulf of Nauplia, including Hydra, Spetsie, Poros, Egina, and Salamis or Koluri, the Cyclades; and the Ionian 1slands. (See Greece, Ancient.) The zapital and largest town is Athens.

Physical Fealures.- See Greece, Ancient.
Ditisions.-Greece is politically divided into 16 nomarchies, which are again subdivided into eparchies, and these again into demes. "The following table gives the names of the nomarchies, with the area of each of them. and the population according to the returns for 1896 :

	Nomarchies	Area in sq. in.	$\begin{aligned} & \text { Pop. } \\ & 1896 . \end{aligned}$
Northern	S litica and Eoeotia...	2,472	313,069
Grecce:	Phocis and Phthiotis:	2,0.4.4	147,297
	(Acarnania and Etolia	3,013	170,565
	Argolis and Corinth.	1,44.2	157,578
Pclopon-	Achaia and Elis....	1,901	236,251
nesus:	- Ircadia	2,020	167,092
	Messenia	1,221	205,798
	Laconia	8,670	135,462
	Eubra and Sporades.	2,216	I15,515
Islands:	Cyclades	923	134.747
Istands:	$\left\{\begin{array}{l}\text { Corfu } \\ \text { Zante }\end{array}\right.$	431	124,578
	Cephalonia	277 302	45,032 83,363
	Sirta ...	395	39,144
Thessaly:	\{Trikkala	2.200	176,773
	Larissa	2.478	181,542
Total		-5,014	2,433,806

By the law of 17 July 1899 there is a new division into 26 nomarchies, namely: Attica, Beotia, Phthiotis, Phocis, Etolia and Acarnania, Eurytania, Larissa, Magnesia, Trikkala, Karditsa, Arta, Achaia, Elis, Euboea, Cyclades, Kerkyra (Corfu), Leucas, Kephallenia (Cepha-

Ionia), Zacyutios (Zante). These are subdivided into 09 districts and 4.42 commumes.

Climate.-- In gencral the first snow falls in October and the last in April. Diring the summer rain scarcely ever falls, and the chanmels of aluost all the minor streans become dry. The air is then remarkably clear, and a month will sometimes pass away withont a cloud being seen. A sudden change, however, takes place toward the end of harvest. Rain becomes frequent and copious; and the streams which had been dried np not only fill their channels, but irequently overflow then, and lay considerable tracts under water. In this way stagnant pools and marshes are occasionally formed, which give rise to intermittent fevers. Compare Greecr, Axciest (Climatc).

ICgetation, Agriculture, efc.-The cultivated land in Greece has recently been estimated at rather more than 5,563,100 acres. There are besides 5,000,000 aeres of pasture land, and $3.000,000$ acres of waste land. The draining of Lake Copais redeems 60,000 acres of land, which the company divides into holdings of from 5 to 50 acres. English agricultural machinery is being introduced, but still agriculture is in a backward state.

Thessaly is the richest portion of Greece agriculturally: The condition of the agricultural population is said to be very satisfactory. The principal cereal crops are wheat, barley, and maize, but the quantity raised is not sufficient, and mucli grain is imported. All the fruits of the latitude are grown - figs, almonds, oranges. citrons, melons, etc.-in alumdance and of excellent quality, without receiving any great share of attention. The vine also grows vigorously, and considerable quantities of wine are made, some of the sorts being of high quality. But a much more important product of Greece, especially on the coasts of the Peloponnesus, and in the islands of Cephalonia, Zante, Ithaca, and Santa Maura, is the Corinthian grape or currant, the export of which has increased in value from $\$ 7,558,350$ in 1898 to $\$ 8,238,118$ in 1goo. Another important object of cultivation is the olive, for which both the soil and the climate are alike favorable. The culture of the mulberry for the rearing of silk-worms is carried on to some extent. Some good tobacco is grown. The forests contain, among other trees, the oak (Qurous FEgilops) which yields the valonia of commerce. 'The live stock are neither numerous nor of good breeds. The raising of artificial grasses for their maintenance may be said to be unknown, and the scanty herlage which natural pasture affords must be of little avail. Asses and mules are more numerous than horses: cattle are comparatively fow: and the chief animals from which dairy produce is obtained are the sheep and the goat. The quantity of wool produced is emsiderable, but most of it is of a coarse description.

Manufactures, Trade. Commmanications. tetc.The manmfactures are limited, but with all other branches of industry in Greece are increasing, and are furthered by high cluties on imported gonds. The employment of the steam-cngine in mannfacturing indnstries dates from about 1868, and is yet only developed to a small extent. Pireus is the chief industrial centre, having spiming and weaying factories for cotton, silk, and wool, machine-shops, paper-works, dyeworks, etc. Other centres arc Syra, Corinth,

GREECE

Sauplia．Patras，Larista．Still，cottons and other textios form by iar the mosi important part of the imports i manuiactured soods． Letther manuiactures iorm ass imporant branch of industry．Marbie has been worked iro：n the most ancient period in the quarries of the island of Pa－cs．In 1 ハーI the working of the ancient a－gentiferous lead mines of Laturon in Attica was resmmed whth good success；and quantines eif manganesc iron ore and zinc ore are also raised int this districi．The nost impurame branch of manufacturing industry is ship－buiid－ irs．which is carried on at varous places．Much of the trade carricd on is merely coasting．but the ioseign trace also is of considerable extent． A large part of the foreign shippung of Greece is that which dea！s with the import of the manu－ iactures of England．Germany，etc．，in：o Greece． Turkey．and the Levant semerally．In regard： this branch．the peculiar advaniages which the Greeks posiess in therr hnowledse of the lan－ guages，and acquaintance with the habite and wants，of the people of these countries．have been sreatiy in their faror．The chie：ports of Greece are Pirews population $\div 2.160$ ，the port of Aihens）．Syra，and Patras（pepulation 35．958）．The principal export is curranis（very Jargely to Britain）：but wine．olwe－oil．dried figs，raisins，silver，lead，zine ore，and manganese iron ore，tobacco．sponges．and other articles are also exported：the principal imports are cereals． coals．and cotten and wolen goods．The imports
 in igot the imports were s－－．－3．010．The greatest hindrance to the development of Greece is the wath of gocd road：．which are pe－ culiarly necessary in so motntain us a countr： At：ention．however，bas been directed to the supplying ote this want，and there are now over 2.045 mules oi ruads．Anmerg other public works which have engased the energies of the Grecks are the constructan and restoration oi hasbors．the erection of lighthouses，the execu－ tion of drainage works．etc．In ISK there were only $5 S$ miles of railways open，but in to01 003 miles were open，and 300 were under construc－ tion．A shin canal across the isthmus of Corinth （ 4 miles）was opened in is）s．
il ci－ghis．liesuris．and M Moy：－The French metric system of weigits and measures has been introduced into Grece by the govern－ ment，but the people still adhere to flie（ld system． In the latter the standard lineal mea－ure was the finci．equal to three quartors oi an Encio！？3rd： the stanlard square moncore was the strembus． near： s：andard weiglt was the $i=2$ 我o punds
 al－at I2：f wad－ar itcupuis．The we zhts and measuris of the metric system are cal el ruyal，to dutinguish then from the nld werzhts and macasties．In thi system the French mea－ sures ilensih，milimetre，centimetre，decimetre． and inctre are cailed respectively sramma．dsk－
 metre is called a sfudi n ．and the myramote s^{2} ． 1 is．The new or royal meatures if suriace are the square ficherus＝the square metre，and the $s^{2} \boldsymbol{i}^{\prime 2}$ ，$=$ the are．The mea－ures it capa－ city are the kyk s ，Dystron，k ：ylc litra，an！ \＆it $2:$ ，re－pectively equal to the mit lititre，cemti－ liered o＇lime，lites，and hect litre．The weire＇s fir e d．：her，and piceotu＝stren are tho F．Nh s．${ }^{3}$ its，and draiime repecinely equal
to the centizramme，decigranme，and gramme． The commercial unit of weight is the ras＝
 in is equal to the quintal，and the tarns equa！ to the sonneau．

In 10 －亏 Grecce conered the monetary league of which the other members are France．Ita？！． Swize－iand，and Be＇gium，and all the members of which have a ni netary unit equal to the franc in satue．The name of the Gieek uncit is the Cluchmus，divided into too lifis．rominally equal io a franc but varying considerably in value．
 present onoumution the throne is hereditary ac－ cording to the law oi primogenitu：e in the tamily of King Genage．The bang must be a member of the Greek Orthodon Charch He ai－ tains his majority at the age of is．The legis－ lative auth rity is rested in a single chambe：． cailed the Bu u！e．the members oi which pro－ portioned in number to the aumont of the propu－ lation）are elecied ior iour years by ballct by manhood sumpage It meets every year on i November，unless cal＇ed at an earlier date for spectal busincs．The executive power is exer－ cised by the king through a responsible monsiry． The Greek Orthodox Church alone is estab－ lished．but all cther forms of reision eniog t veration．The highest ecolesiastical awhority． subicct to the king．is rested in a permanent symid．whach sits at Athens，and ecnetsts of tive members appointed by the king irom the bighest dignitaries of the Church．There is it rexta politan．who has his seat at Athens． 21 archbishops．and 29 bishops，who are presented and urdained by the Eynod，and confromed and inveried by the kng．Iustice is adnamisered． on the basis oi the Frerch civil code，by a supreme court（Atril＇s Pisis），wheld his：its seat at Athens：nive higher courts，une at －Athens，one at Nauplia，one at Patras．ne ar Larisia，and one at Cirin：and a number oi courts of pamary resort（Pr，ik d．keiz），in the principal t wrs．The pubic revenue．derived chariy ire in drect taxes，custom－stamps，ex－ cree．m mopins．the reat di nationai pr perty． cii．，was evimated i I 1 coo at $5158510-55$ and the expenditute at E1，－03－135．Feven：i：－

 public de t．In two the amoumt of this debt Hit－al ？ 0 ：the de ：incurred in recen：years has been in the wry i raising loan for the making of railu ays．（）：he foreim doli one loan is zaar－ arn ud by Grewi Eritain．France，ard Kussia， whel have laterly had to pay the divatols on 1t．and which are now according＇y heary casm－ ants（is lirecte．The payment of the interest ra its Iu＂e del：has loice been with Geeece a maticr of Ju＂cu＇ty．Every male Greek no ai－ tainge the age if as yours is liable to military survice，lis term bing 2 ye．．rs wath the c $r=$ ， 10 with the seicrve．$\&$ in the national suard，an 1 to in the nati nal muand reserve．The artuy inn 1 tho momb cred abu ut 25.000 cm a peace
 war．The navy in 1 on consisted oi 3 arm ：－ clad ships． 10 i meitwl ats．besides several un－ ir tected cun－vessels and cruisers．The ponula－ if n contains a considurable interminture of inreich st ck：ann an which the dibanese，of Amauts，are the nost mumerous：but the great

GREECE.

1, The Academy at Athens.
2. The C'niversity at Athens.

GREECE

majority, though not without seme taint in their blood, are of gennme Greek extraction, and, both in plysical and mental features, bear a marked resemblance to their celebrated forefathers. It is true that the degrading bondage to which they were subjected for centuries has sunk them far below their natural level, and too often substituted sycoplancy and low cunning for the intellectual superiority which, in earlier and better times, displayed itself in immortal productions of the chisel and the pen; but that the original elements of greatness still exist has been proved by the noble struggles which they have made for independence. The educational system of Greece, organized in I834 by George Gemarthis, one of the leaders of the war of independence, is very complete. There are three grades of schools, the demotic or primary national schools, the Hellenic or secondary grammar schools, and the gymmasia, in which, it is asserted, the range and the level of the teaching are mucli the same as in a German gymmasium or in the upper parts of our public schools. In all three grades of sehools education is gratuitous, and in the primary schools it is compulsory on all children between 5 and 12 . There is a university at Athens, attended by nearly 3,000 students, many of whom come from districts under the rule of the Sultan. Thus far, however, cducation seems to be actually diffused among the people only to a limited extent, though the numbers that receive a university education are so great that many such young men find themselves without any proper sphere of employment, and are obliged to adopt the career of politician and place-hunter. Many of these are now, however, said to be finding better ways of turning their education to account through the rapid development of trade and industry. The national dress of the Greeks resembles the Albanian costume. In the men it consists of a tight jacket, generally scarlet, a white linen kilt in mumerous folds, a brightcolored sash round the waist, and embroidered gaiters ; in the women it consists of a vest or jacket fitting close to the shape, and a skirt, on the head a kind of fez or skull-cap.

History.- From the year 1715 (sce preceding article) till I82I the Greeks were subject to the domination of the Turks. In 1770, and again in 1790 , they made attempts at insurrection, which, however, were speedily frustrated. In the early years of the igth century a secret society was formed for the purpose of effecting their liberation from the galling yoke, and in 1821 they found an opportunity of breaking out into another insurrection, which in the end droved successful. In that ycar Ali, the pasha of Janina, revolted against the Sultan Nahnoud $11 .$, and secured the aid of the Greeks by promising them their independence. The rising of the Greeks took place on 6 March, under Alexancler lpsilanti, and on I Jan. I822 they published a declaration of independence. In the same year Ali was assassinated by the Turks, but the Greeks nerertheless continued the struggle that they had begun, and in which they were encouragcd by the sympathy of nearly all the nations of Europe. Among the most distinguished of their leaders were Marcos Bozzaris, Capo d'Istria, Constantine Kanaris, Kolocotroni, Miaulis, Mavrocordato, Mavromichaelis, etc. In 1823 they were joined by Lord Byron, who, during the last year of his life, did all in his power
to further their ceuse ly his wealth, a. well as by his active efforts on their belaalf. Unfortunately he died in April of the following year. In 1825 , the Turks having called to their aid Mehemet-Ali, the prasha of Egypt, the latter sent his son, Ibrahm Pasha, whose talents secured them the success that they had hitherto been umable to attain. Tripolitza, the catpital of th Morea, was taken, as was also Missolonghi, in spite of the valor of the Suliote montameers. It was about this time that the Greck patriots received the aid of the English admiral Lord Cochrane, who organized their ffect. ind of the French colonel Fabvier, who instrncted their army in the system of European tactics. In spite of this, however, the Turks continued to triumph everywhere, and resisted all the pressure that was put upon them by other European powers to make concessions. A treaty was then concluded at London (6 July I827) between Britain. France, and Russia, for the pacification of Greece, and when the mediation of these three powers was declined by the Sultan, their united flects, under Admiral Codrington, attacked and annihilated the Turkish fleet off Navarino, 20 Oct. 1827. In the begimning of the following year (i828) Count Capo d'Istria became president of the state, and later on in the same year lbrahim Pasha was forced to evacuate Greece At last, on 3 Feb . 1830 , a protocol of the allied powers declared the independence of Greece, which was recognized by the Porte on 25 April of this year. The new member of the states of Europe received from the allies a monarchical form of govermment, and offered the crown to Leopold, Prince of Saxe-Coburg, and when he refused it, to Otho, a young prince of Bawaria. The latter accepted the offer, and was proclamed king of the Hellenes at Nauplia, ou 30 Aug. 1832. The powcr of the king was at tirst almost absolute, and his arbitrary measures, and more especially the preponderance which he gave to Germans in the govermment, soon made him mpopular. At the same time the finances of the kingdom were in a very chbarrassed condition, and a general uneasinesc prevailed. In 1843 a rebellion took place, after which a constitution was drawn up. But Otho was after that no more popular than before, and after the outbreak of another rebellion in February 1802. he saw himself compelled to abdicate the throne (24 October). A provisional government was then set up at Athens, and the National Assembly after declaring that the throne had been forfeited by Otho, offered it in succession to Prince Alfred, of England, and Prince William George, of Demmark. The latter accopted it, and 30 March 1803 was proclaimed as King (ieorge 1. At the end of that year a constituent assembly was elected for the purpose of framing a new constitution, and the restuht oit its labors was the constitution which is still in force. In 1804 an addition was made to the small kingdom by the amexation of the loni:n 1 slands, which lad hitherto formed an independent republic under the protecion of Britain. From the fir"t Greece has been watheling for an opportunity of extending its frontier northward, ser its to include the large Greck population in Thessaly and Epirus. In Jamary isfs, cluring the RussoTurkish walr, Greek troops were moved into Thessaly and Epirus to the assistance of their brethren who had risen there, but on the remonstrance of England these troops were with-

GREECE

drawn. The Treaty - i Berlin node no dennite provsions for any extenston of Grech terntory, but in 1REt Turkey had to cede about 5.000 square miles of Thessaly to Greece. Aiter the t:nion o. castern Roumelia with Bulgaraa, $1 n$ 188 E. war with Iurkey was only prevenied by the great powers. In isgo an insurfection of the Christians in Crete led so the interierance of Greece and io war with Turker. The Turis speedriy drove back the Greeks from the northera itunner and overran Thessaly: and Greece was enabled only through the effors of the great pewers to obtain reas mable remms of peace. The recent internal polincal history ot Grece relates mainly to her financial cobligathons. -fiter the expulsion of the Turkith troops from Crete in tion Prince Groorge was appointed high commissioner of the island.

Medern Grack Langmase and LiteratariThe Greek language seems to have preserved it: purity konger than any ether known to us: but a deadly blow was inflicted whe: the Greeks were enslaved by the fall of Constammople (1453 A.h.). All the eultivaied classes, who still re:ained the pure Greek, the language of the Byzantire princes, either perished in the conthict or took to flight, or courted the faver of their rude conquerors, by adopting their dialect. In the lower classes only did the common Greek survive (the koinè. démodis, hapke, :ditike dialektos) the vulgar dalect of the polished classes. the iraces oi which occur, indeed, in earier authors. but which first appears distinctly in the oth centurs. This Greek fat is deparied still more from the purity of the written language which took reiuge at court, in the tribunals oi justice. and the halls of instruction - when the Frank crusaders augmented is by their own peculiar expressions, and the barbarians in the neighborhood engrafted theirs also upon it. This popular dialect first appears as a complete written language in the chronicles of Simon Sethos, in 1ojo-So. Aiter the Ottomans had become masters of the counsry all the institutions which had contributed to preserve a better idion perished at once. The people. leit to themselves, oppressed by the m-st bratal despotism, would finaily have abandoned their own dialect, which became constanty more corrupt, had not the Greeks possessed a surt of rallyingpoint in their Church. But cyen here, owins chietyy :o the immorance and corruptom prevailmg among the clerss: litule could be innd :o prevent the fu:ther del asement of this fine dialect. which contmued til: ilue midel., ithe risth century. About thi tume many if the (ireciss
 tie of the Wert whence they rearnad tu thar ratwe ountry it ammate :hicir fe". w-ctrymen with the deate if manang nearer apor ache: in the ni re cuvlized :lan an if Eur 1 . so as nit to remain behad in the seneral pr. ere-. One onserwence si thil was that the Girecks becan is pay in se attention their mother thgue, and thi tendency way increase 1 by meterafe w th the more reined llico. ly meatis if mric ire utht whto ire in mathigent men aif that cquarter to the ruins of Geecia: Frcatmo. The Pa:riarch (Samuel Furene Bul-ga:- Thesth - 1 i Rl ga-. may be menti ned as cminent at thrs [-7n)

It fin: a large part of the lite-.tare ci
awakened Grece consisted of translations irom the Fremch, but the country now iurnishes original writers in every deparmment of itterature. Among the theologcal works of modern Greece ferhaps the mest remarkabie is that on 'Truth.' by Pharmakidis (1852), which is one of the most important wirks in the modern Greek language. The Ihiiosonhica! and mathematical sciences are all well represented. For these b:anches of knowledse much has been done ty the Tnversity of Athens, many of the profesars of wheh have pubisised nanuais lasme of which have ro inconsiderable scientific value) an the subjects on which they lecture With the excegtion of poetry, hissery is perhaps the deparment which has autacted mest writers in the modern Greek lansuage. On this head the long and learned dissertations prefived by Spiridion Zampelios to his 'Popular Sonss oi Greece' (Coria 18ミ2), and 'Sudies on Cons:anunople' (INES), affording raluable and interesting materials for the history ui Greece in the liddle Ages, deserve to be particularly mentures. In the department of philolozy and scholarsinip Coray has periormed important seryices ly collecting a large mass of materials for acquiring a more thotough knowledge both of ancient and modern Greek: ard afier him Doukas. Darbaris. Asopios, and Rhangalie. ought to be noticed for their editions of the ancient classics with commentaries in modern Greek. At the head of the orators of the tume oi the struggle for independence stands Trikoupis. some oi whose speeches were collected and published in 1829. and a second and enlarged edition of them in 180 . In the department oi poetry a distinction must be made between that of the people and that of the cultirated classes. The former is represented chiefly in the songs of the Klephrs and other Enngs datins from the rar oi indenendence, which are a faithiul mistor of the public life at the time to which they belong. At this period the warsongs of Rhigas were caught up by the whole nation and sung with enthusiasm. At a later period the two Sutsos, Panasios and Alexander. Calvos. Swmos, and others, carned distinction in the same kind oi poetry. The Soutsts were distinguished also as dramatists and avelicis, and Alexander also as a satirist. Am ne the other leading dramatists are Rizos Nerculos and Zampelics. The mose distinguished recent anthor, h th a pott and a -cholar. is 1. R R.mgabe. while Demetrus Bikeias is the chief in velion.

II dera lireek, as spuken by the unaducated claseses, is caled Remaic. irmo the f.ct that it : k it special character at the time when the Gruch: comsidered themectucs as ratives of ti e Reman empire, and hence called themselves
 eated ct we., that ured in the newopapers and - lu r it -...are if the present day. is distingailled if in it by a greaicr te-cmblance to the Grek i aniquity, which renders it easy for any sac wl has a sati-factry acquaimiance with at -ic.: Greek to read the hricrary Greck if the pro-mt day: The dimain if the Romaic emate in aly the wh'e of the fresen: king im i (irecte melndng The …aly), hut a1. Ht if R :a cia. Altania, ani inatolia. the inavds i Crete and Cyprus, as well as the wland in the archipelaz not belenging in Grecce. The purest R manc is spoken in the
less frequented isles of the archipelago, and in some of the mountainous districts of the interior. It is in these districts particularly that modes of expression are still found belorging to the most classical antiquity. At Nlegara the language is less corrupt than at Athens, where it is mixed with a considerable number of Italian wordis In the northern provinces it is mixed chichly with Albanian. Besides the foreign words which have been introduced into northern Greck, a pretty large number of words are found which have changed their original signification afthough they lave retained their original form. Ancient words are most commonly found in significations the most remote from the original or derivative sernse. The grammar has also undergone considerable modifications. For example, the numbers have been reduced to two by the suppression of the dual; and the cases to four, by the disappearance of the dative, the signification of which is now expressed by means of a preposition with the accusative. The first of the cardinal numerals is now used as an indefinite article. The degrees of comparison are sometimes expressed by the ancient inflexions, but at other times by the use of plon (more). The past tenses of the verb are formed by the aid of the verb cchō (I lave), and the future tenses by the aid of thelo (I will). The infinitive mood. which has fallen out of use, las its place supplied ly a periphrasis, in which the verb is put in the subjunctive. The middle voice has disappeared, and what remains of the old conjugation is of so little conscque:ace that it may be regarded as an irregularity: The ancient orthography of the language is still preserved, but considerable changes appear to have taken place in the pronunciation. The rowels η, \imath, and v, and the diphthongs $\epsilon 6$. ot, and v, , are all pronounced like ca in the English word mean. B is now pronounced as ε ', and the sound of b is expressed by $\mu \pi$. " Δ is pronounced like th in thus, and θ like th in think.

Consult: Néroulos Cours de Littérature Grecque Moderne' (1828): Rangalé, 'Histoire Litteraire de la Grèce Moderne' (18\%\%); Nicolai, 'Geschichte neugriechischer Litteratur)' (IS;6).

Greek Architecture. First, that which has existed in Greece, that is the land of the Hellenes, which, for art purposes, includes everything soutl) of Mount Olympus on the east coast and the Island of Corfin on the west. This architecture is of several very distinct epoclis. Sccond, the architecture identified with the Greek spirit at the time of the lighest intellectual development of the race - viz. from about 500 B.C. to the Roman Conquest; and which is in architecture represented by the famous styles called Doric and Ionic, with the Corintliazt just appearing at the time when the freedom of Greece was at an end. Each of these definitions of the term requires separate treatment.

First.- The architecture of the land of Greece is known to us in its earliest form by certain tombal chambers, in which a circular or polygonal room is enclosed and roofed with stone by one operation, that is, by laying the stones in courses continually projecting inwards, and so decreasing the size of the chamber within, until at last a single cap-stone closes the aperture at the top. These stone structures had passages leading to them, enclosed and roofed with
stone; and these passages allowed of the cover-
ing in of the whole stone edifice with earth, perlaps in huge, high mounds. In this way, as in northern Europe and also in the peninsula of 1 n dia, a great funercal monnment was erected which cost nothing but the lablor of transporing many thousand tons of earth and rough stone in addition to the comparatuely slight building of the stone chamber and passage. The largest of these is among the ruins of Mycence, and lias been known for many years as the Treasury of Atreus. More elaboratc buildings are of what is known as the Mycenæan epoch (see MrCEN.EAN) which is not accurately fixed, but which it is customary now (1904) to place at about Izoo B.C., lasting perlhaps for 500 years. The name Mycenxan comes from the city of Mycenr, explored first by Dr. Schilemann in 1876. We know only its remains, painting upon walls, inlays of metal, pottery and the like, and something is known of the plan of the royal palace and its accessory buildings; but 110 part of this enables us to fix the date. If we assume that this artistic civilization lasted until about 1200 b.c. there is less a lapse of time before the Homeric conditions began; for the palaces and fortresses described in the Iliad are generally accepted as of about 1,000 B.C. Again a blank occurs, and the earliest buildings of the ProtoDoric may be thought to begin about 600 B.C.

For the classical art of Greece, that is the building of the celebrated and beautiful temples. see the second part of this paper. This classical epoch lasts until the Roman conquest, and even beyond it in a modified form. Thus the gateway of the Agora in Athens is Doric of a style not used until the Roman control had begun: and it is extremely curious to compare this with the Doric of 500 years earlier. The Roman governors and generals built memorial buildings, porticoes and temples in a curiously inodified style, partly pure Greek, partly of that Romanized Greek which was beginning to be recognized as the Imperial art for the whole Mediterrancan world. Under the reign of Hadrian an attempt was made to return to a purer taste. but this was of brief duration. Greece was not to lave an art of her own again until the Byzantine style was well established (see Architecture and Byzantine Architecture). The Byzantine style in the land of Greece was singularly characterized by very small proportions: there has never been an interesting style of which the monuments are so diminutive; important churches exist in Athens and other cities which would not hold two hundred persons and which are delicately built in a refined shape, and prettily if not richly decorated. The architecture of modern times in Greece is not more intelligent than that of the rest of Europe. while it is very simple and inexpensive. The country is smalt and poor, and even a royal palace cannot have much costly treatment; moreover the huildings in Athens are mostly of German design, according to the taste of the first dynasty established there after the frecing of Greece in 1823.

Sccond-Grecian architecture in the sense of the classical style begins with what we call the Proto-Doric style as exemplified by the temple at Corinth. a building with low, thick columns and a comparatively liigh entablature, as far as can be ascertained. It is thought by some that the Heraion (that is the temple of Hera) at Olympia, is a still older building, and in that

GREEK ARCHITECTURE

case the earliest piece of classical Greek architecilite. It is curious in form, as it has six columns ai each end with sixteen on cach side, the comer columns being counted twice. that is to say, there are forty columns in all. The peculiarity of this will be seen when we speak below of the perfected type of Doric temples. In the Olvmpia building the columns are of diffcent sizes, varying even more than a foot in their thickness, and the capitals also differ. The common explanation, that the columns were originally of wood and were replaced by stone, one at a time. at all events points to the extreme irregularity of the structure. The Doric buildings of accepted and permanent type may thus be thought to appear first at the beginning of the $5^{\text {th }}$ century B.C. The Greek colonies in southern Italy and Sicily were flourishng at this time and we and some of the earliest Doric temples of classical form in Pesto (the Roman Paestum, the Greck Poseidonia), in Campania and in Selimunte and Girgenti in Sicily. The style rapidly took definite form and was reduced at an early date to a very definite set of rules. Thus it became a recognized arrangement that the columms on the flank of the peristglar temple should be twice as many as those on the front and one more: the corner column being always counted twice. Thus the herastyle temples at Athens, in Pesto and elsewhere, having 6 columns in front, have 13 on the side; and the only two octostyle Doric temples known the Parthenon at Athens and the great temple at Selinunte - have 17 columns on the side. But all temples were not peristylar; on the contrary by far the greater number had porticoes only at the east front or at the east and west end. The essential parts of the temple are, of course, the closed naos or, as the Romans called it, the cella, in which the statue of the divinity was preserved, together with certain treasures, consecrated gifts and the like. There must have been thousands of these little shrines in Greece, the Greek islands and the colonies. A somewhat larger temple would have a second chamber, the treasury (opisthodomos) at the rear or west end of the cella, and this would have its own portico. The Tersple of Thesens (so called) at Athens seems to have had a single chamber and two porticnes, one at either end, these heing deep and sheltcred and affording place for certain sacred statues and the like. Larger temples, like the Temple of Zeus at Olympia, the Parthenon at . Ithens: and the one at Pesto, called the Temple of Neptune, have the interior of the cella divited into a nave and aisles ly two sows of columne: but just what the connection was between these columns and the carrying of the rnof is not rishtly understood. Some archrenlogists associate them with the assumed arrangement for admitting daylight into the interior through the ronf (see Hip.ethril Thenry).

The style of desien was this-the columns wese thick in proportion to their height and tapered from bottom to top, but not as a cone tapera, for the diminettion of thicknese follows a decided and even visible curve which is called the entasis. These columns are channeled from top in bottom by gronses, usually twenty in number, each having an elliptical curve or nearly so and inceting one annther at sharp arrises. These shafts carried capitals made of onc or
two blocks of stone but always in two archi. tectural parts. The lower part is what is called the echinus. It is a circular slab of stone projecting all round as much as half the diameter of the shaft in the earliest examples, perhaps a quarter of that diameter in the later ones: and this projection is rounded in a very subtle way, becoming flat below near the shaft and roundmg more rapidly above. The curve of some of these echinus capitals is of extraordinary beauty. The uppermost nember of the capital is a thick square block, or die, or plintl, sharp-cornered. without ornament of any sort except for the painring. These columms carry the epistyle or architrave, which, in the Doric style, is usually plain. Cpont this rests what is known as the frieze, which consists of a series of upriglut blocks of stone perlraps half as high again as they are wide. and their height increased in appearance by grooves running vertically. These triglyphs carry, or seem to carry, the third or crowning member, the cornice. but between the triglyphs are the spaces called metopes, which are conmonly filled by slabs or blocks of stone, the onter surface of which was always a favorite place for ornamentation. The cornice projected very much beyond the frieze. and its under side was cut with a drip moulding so that rainwater would not back up and run down the entablature, that being the name given to the three parts taken together, that is, to the whole horizontal superstructure laid upon the columns. There was nothing above this cornice except at the two ends the rising gable which marks the slope of the roof (see Pemiment), and on the side a gutter for rain-water with spouts or scuppers in its outer space.

The building of the temple was in this way as simple as possible - square cornered, oblong. roofed with a simple gable-roof, without arches or windows or chimneys. Its decoration was largely in the extreme refinement of the parts. The proportion of height to width. the spacing of columns and their shape and character were helped out by an extraordinary system of curves by which a grace was added to the building which the eye could hardly follow in its canse or character, but which changed the whole aspect very greatly. Thus the entablature was cut with an upward curve toward the mididle and in this way the whole building had a lighter aspect than if it had been strictly horizontal. The same upward curve was repeated in the stylohate or stnne floor on which the columns stood. The columns themselves were curved in cutline as above stated. and they were set so as to slope inward. the nuter ones the most, this for the obvinus purpoie of making the building seem more solidly set upon its base. To the builaing en carciully designed there was often adided a great deal of claborate sculpture (see below) and. apparently in all cases, rich chromatic recoration. For this subject see Ponscurnms: hat it may be mentioned here that the modern world has no very clear notion of what was the effect of brilliant painting in red and bluc. with gideded metal, applied to a marble building standing higle upon a prominent rock in the heart of a town, the recognized centre of interest and the chicf religious shrine. No living man has -ver seen anything at all like that; and it is nrobable that no imagination can reproduce it in thought.

To the modern student, the Doric stylc as described above, is much the most important part of Grecian architecture : but to a Greek of the time of Alexander the Great the lonic temples along the shore of Asia Minor would have scemed the more grand and costly; the more recent, and therefore the more identified with advanced civilization. Those great temples have disappeared with a strange completeness. While there are Doric temples nearly complete except for the ronf - which has. of course. disap-peared.- while there are many others of which large and most interesting remains exist, many colnmms standing erect and some parts of the superstructure.- there is almost nothing remaining in complete condition of all the great lonic temples. It is on this account that the exquisite building on the Acropolis at Athens, the Erectheum, contains in itself almost all our modern notions of the style. Very near it on the Acropolis is the little square amphiprostyle temple: known as the Temple of Athenr Nike. or as the Temple of the Wingless Victory, and this slorine may also be considered an unchanged Greek building. because, though it was entirely destroyed, the stones of it were found built into a Turkish fortification and the whole structure was piled up again by the engineers of the first European king of Greece. Otho of Bavaria, who reigned from 1832 to 1862 .

We learn from these buildings what the style really was. The shafts of the columns are much more slender than those of the Doric style and are fluted with circular grooves which are separated from one another by narrow fillets instead of meeting at a sharp edge. There is a base composed of mouldings running around the column. The capital is very peculiar, having volutes or scrolls at either side so that each capital has a front and a back precisely alike, and two ends alike, differing from all other capitals in not being alike on at least four sides. The nembers of the entablature are the same as those of the Doric style but there are important differences in them. Thus the epistyle, instead of being a plain smooth block. is divided into three parallel surfaces, each one slightly overhanging the one below: the frieze is continuous and not broken by triglyphs; the cornice is more richly sculptured. Figure sculpture is applied in a somewhat different way. Thus as the frieze luas no triglyphis it may be carved continuously: and in the Erectheum the sculpture is in the form of statuettes in white marble secured to a gray marble ground. It is not quite decided whether this color effect was helped ont by painting or gilding, and how far the other parts of the temple were painted in bright colors. Again in the famous temple of Artemis (Diana) at Ephesus, the lower part of the shatts of the columns was in some cases very ruchly sculptured. The term columna calata is applied to one of these columns and in any one of them is found this unique device:- the hase is rather musually ligh and is divided up by many mouldings: begimning about four fcet from the pavement is a circle of figures larger than life surrounding the lowermost of those blocks of marble which make up the shaft proper: the flutings then begin above the band of sculptured figures and stop beneath the capital in the usual way. Not all the columns were arranged in this way, apparently only about one fourth of the
whole mmber. The ancient Temple of Artemis which existed before the later magnoficent structure was buit had the same smigular arrangement of sculptured shatus. Near Ephesus there have been found some capitals in which the head and shoulders of a bull project on cither side beyond the solutes of the capital ; and on the Island of Delos there are capitals made up entirely, so far as their decorations are concerned, of the heads of bulls. 1n the Erectheum of Athens there is that wonderful Portico of the DIaidens in which an cntablature made up of peristyle and cornice alone, without frieze, is supported on the heads of six caryatides, that is, draped female statues. In the Sational Ifuseum at Athens are some caryatides of another portico. In the Incantada, a ruined Greek building in Salonica, there is a row of caryatides high up in the wall. The pilasters are treated with capitals of a curious style of Asiatic sculpture in the temple of Miletus. If to this we add the extraordinary capitals which some few monuments possess. monuments which must be called Grecian, but which are quaint and barbaric in appearance and almost grotesque, it appears that the Ionic was not as disciplined a style as the Doric but was influenced by the highly decorative sense of the Asiatic pcoples and allowed of great variety of decorative design.

The Corinthian style is so little known to us as of Greek invention and use that it is almost always considered as a Roman or at most a Greco-Roman style : but the unquestionably Greek building, the jittle choragic monmment of Lysicrates in Athens is Corinthian and the equally unquestioned and much more splendid round building at Epidaurus, was absolutely Greek, of pure type, and possessed a Corinthian order: the capitals completely developed. The dates are approximately, of the Athens building, 335 B.C. ; of the Tholos, about the middle of 4 th century b.c. The Athenian monument stands tolerably complete. The round building at Epidaurus is ruined and the capitals much seattered, but a single capital was found in a cellar or a chamber built for that purpose, and evidently intended to preserve it as a pattern. and this is intact. It is also one of the most beantiful Corinthian capitals known to us. The style, however, is almost idemtificd with Roman work and will be treated in connection with Roman 1 mperial Architectire.

Rissell Sturgis.
Greek Art. Modern students of Grecian archrenlogy do not doubt that the Greeks of difforent epoclis were as successful in painting of stately and religious suhiects and of painting and drawing in a slighter and more popular way as they were in sculpture: but this is mercly an inference. Absolntely nothing remains to us of Greek painting of high class. TV'e can sturly the figures on Greek painten vases and notice their admirabic disposition and the beatiful designs made of their combinations, and we can note the technical system followed, sometimes Dy drawing on the clay witls a hard point, sometimes withont that help and drawn evidenly with the brush alone. The use of pigment, too, generally black but sometimes of other colors, can be perfectly understood: but this is all of the simplest character, nor can we draw any conclusions at all about the wall-paintings or pancl-paintings

GREEK ART

ci the Greek：In \because＇e pores di Fompe i ：i．cte are many wall－paint：r＝－whoh seem t howe h－d a ก ri－l：ai：nn ari po bab＂y Greek orzin and i नt＇ет．et is kn wn that P m e引 was a
 G．Eこん j－r？eree esen－nder the Ruman Em－
 Esin pa：n：ed on punet tiat is． $\mathrm{t}^{2}: n$ ba ands －i．c－e are cerid．．．y n－Esyptian ；they may be as mod to be G̈ncek oi i．e dievandrian ep－2．2．In these，h weser．tiere is mo back－ st－un2，no ajiel ine de：t，which mi hi－：ilice ：： to a krow edze 1 G Geek desizn in Graphre art． Finally，sane paintings discvered in R ame． though bet are alingtinet Greek in cessm：and these may ue il be re uced conies．or imisations． i fame $\because=$ crinina！s tinree nondred years cariter． lume of these paintiors are great im－
 a＇： ＇ed ilea of the patnting which stood ins their orisinal impu＇se．The statementis made by an－ c：e＂t wनic：with resard to the pairtinss of the：－wh tire and intse wiro were teen iamous AS lasing belonzed io earlier simes，are of very $1: 0!n$ we bezause we have no standard with whoh is c mpare their critica．rematks，and
 mainir r th u is mantiquity seems to be the whrk ni a man rreat＇y interes：ed in fine ar：． Fur inis zeasun the paintings on the vases are w thy ci the m minute examination．The earties：style in which the whect：rep－evented are a ： ail elab rate are of the undetermined er ech which we ca！l the Mycenman．Those vaces are rich in paneers ni se $1!=$ tands．
 i． $\mathrm{rm}=$ ir．$=$ fucet in bar $i=2 \times 1$ as in C－c：e and Cypr：i：）as a principal＝abec：and covering a larze pari ci the bo dy the vaze．The paint－

 The farmas llars o Vaze ions a：Mseerix and nw ir the Central \hisesm $: \therefore \quad \mathrm{l} 1 \mathrm{l}=$ und
 ha：．．．ch of that हt－tequte indimercree th torm
 meatong wich we a－n witie with h rbaric ars in all azen：the himan firm is d：aun w tl nt：a ay c melinc：i erace ant with any sme－ces in ge：قne conent i genloe：lot th purp ee is cicar．$D \mathrm{z}$ ．the dieplavire－i a pi－e．．．n of wart－s wearing lased c^{\prime} mot－carrs：rg－reat chieds of the errin．kitmey thane i－ E after－ wa－d siccrated woh certilit A．atic inflo rees． ard carrying epear in the pigh：han！．Whic＇s spears haves me imes $t w=1$ ads or whyt seem ＇a te hea＇s

The faintirgs on petiery which are of the $m n$ ：inieeces are those ri the perin l bezinning atone：Con BC and er live ahnist $1=0$ oc The
 ap－ai rimarnly They renrecent wrri－－engaged
 ning a－ind the vace li ns，bol＇s an l－tage ar－ ganced amain in 1 －i－rta hands：figures thrap d in lng armeri：men as well as wormm cartr． ing sefincel instuments．weapnns，ba－kets and i^{3} e like：enectsimans a ceeter s 3^{11} ith can be iten－ tifici．a－wlese Hercules hring，the Frsman－ thiam bate in thow in his hr her．kive Furle． ithens or where Pelens is ahent o carty not Thetis irm am ns her a＇tendani nymphe：or
iney represens a feas？with rer recining on c crio－and xises acrng as attendant：b－inging f：：chers and vases ：fil the co：p heid by the reciming sue－i．Othe betwitu：black glaze of i．e la－es is used sometmes as the pigment iot the figures and sumetimes is work the back－ sound around the sizures．These iwo swles tre k！wn as the biack－on－rec r biack－ngeure s：vie．the ot．er as the red－on－b ack or red－figure $\because 3$ e．and ans tatter seve is know？as che later ui the tw．There i－－ill another form which is －cherat＇y the latest of a！．．．In this the black giaze is warked ver the whole vase except it a panel－r medalling or even a band arousd the sase．which is left in the red enl y of the poi－ iery and up on this the rigures are painted ins blacic From the 5＊i century on the drawing is exiremely vizorous and simnificant．It is St ic：ave semeines．as where the muscles are given excesstre promence or where the at－ itude is exagrerzied in the atiemp：to make is tell the story：but evervwhere the drawing of the outime and the Alling in with color shows singular mastery

In a fers casce the drawing itseif is fauitless： but in by iar the greaier number of cases．even of a goid time．it is rather the evidentiy sligh： and switi wrk ci a man familiar with nature and with the bes：tradtions of art but not using l：：s whole strengin in the slight painsing of the erthenware．The use of pigments ocher tinan the back 쾨aze is ant very irequent：but a red ＝mewhat brizhter than the color of the c！ay 15 uned，also a kind of vi let．more racely a green． a：d ：n some cases zidinz is applied－especially in lase and rery elabnsate work．A small clasi ef sases identified wish the cly of thens has the b dy covered with a solid coat of white． tern wich fouses are painted in various bright ci i ： but this w ok is perishable．

In thee comecti n with the drawing and parti：n znpled in poitery is the engraved work fr the backs of be n－e mirtors on pieces 0 ： armir，and on cives（cistu）．Even as in modern itnes s me of the most elaberate and prectots drawiss that of the engraver working on cop－ per－plate though he prop ases to take prints on paner from his encravirg）．s？the Grecian ：－aught－man put some of his nimes wark on those engravines meant for pure decoration．As we tave no iree drawing on paper or plaster or w 1 －r thing that shows how the Greek drew with a iree 1 and－we can only reanon back－ ward in m the firm and resvluse se：try down of lines drawn on the resistant material with the －harp f int，and inier the vigos and daring of the more tiniettered design

Echlptrre in is different forms is．after all． the which Greece ha＝leit us which is most im－ portant lle lave the marble reliefs carved t：pon temples，combs，and the walls of sacred encl sures，and al－a grea：number oi slabs whith．when mare than two or three icet in c：her dimension are zererally iombstones．bur which．when snall．are irequently mere recoras c rved upon a boundary sone os a memorial．or elec a in ture alab dedicated at the shrine of Nome fivinity．In all of these the propriety and the frend in ci decign are wnoderful and，in re－ lief orndpo．．e at least．the Greeks have set an example which has never been equalled since． meither in th actual beatity of the form not in the intellicence shown in the composition．The

GREEK vasES
most wonderfal of the low reliefs are those of the famous frieze which forms the crowning member of the wall of the Parthenon within the screen of columns. the wall of the naos or cella. The well-known fact that this whole composition was painted in bright colors changes at once our ideas as to its decorative effect as a part of the building, but modern students can form no correct idea of the appearance of elaborate sculptures painted in an artistical fashion because they have never scen anytling of the kind. One special reason why the reliefs are pectuliarly important to modern students is their undoubted originality. The sculptures found at Phigalia, at Jlalicarnassus, at Xanthos, and at Gjolbaschi in Asia Ninor are the undoubted work of the fth and 5 th centuries, and moreover they were designed for the places in which we now find them. This is not so with statues and busts, for of all the great world of Grecian statuary only three or four undoubted originals of the first rank remain. The Hermes of Praxiteles was found as Pausanius saw it in the 2d century A.D. ; the Winged Victory of Paionios also; and these two were found in the excavations at Olympia in Greece. Statues of somewhat less importance have been found in the islands of the Greek archipelago and in specially protected undergromend chambers in the mainland of Europe, and a number of splendid bronzes, were found in a single great country house at Herculaneum near Naples; but as a general thing it has to be settled by intermal evidence whether the piece discovered is of unmingled Greek character or of a less simple and perfect later style. The statues of the pediments, however, those which once stood at either end of the Parthenon, the Temple of Zeus at Olympia, the great temple of Egina, and those which seem to have been placed between the columns of the Nereid Monument at Santhos, are almost as certainly of their apparent epocli as are the basreliefs of the same buildings. In this way we have a score of fairly complete marble statues, two or three bronze statues of the highest rank, and a dozen less important ones, a score of lifesize busts, and many smaller bronzes, all of which are assuredly of the best time of Greek art. Our knowledge of this subject is greatly helped by the study of engraved gems and coins. The gems were used for seals, or set in finger rings worn hung by a string, and the materials used were, of course. very hard stones, such as chalcedony and sardonyx; though glass was used also, and some seals are engraved in gold. The figure engraved in intaglio can be seen as if in relief when the stone is transparent and is looked at from the back. But commonly the student takes a cast in plaster or wax and studies that relief together with the original hollow sculpture of the gem. The number of these gems in our public and private collections is very great, even if we consider only those of undoubted Grecian origin. The coins are. in art, of the same claracter as the gems, because they are struck from a die, which die has been engraved in the same way in which the intaglio in hard stone is engraved: that is, the artist in either case keeps in mind the future relief and carves his lonllow or sunken design rather with a view to its utility as a die than as to its own appearance. Greek coins are the subject of much and careful study among modern
students. Creek sculpture includes also the earthenware figurines which have been found in great number in the neighboriond of Smyrnat in Sicaly and the other islands of the Nediterranean, and especially in the neighborhood of Tanagra in Grecce.

The years since is5o have been rich in books on the subject of Grectan arelienlogy. which archaology is, is great measure, the study of the existing works of art; books on Grecian vase-painting. gems and coins are to be counted by scores and hundreds. The latest are generally the best to begin with. 'l'he student will find in them the best means of jutging what earlier books he may need: and at the same sime he will find the latest discoveries and the most mature opinions of archæologists. The same remark applies to the periodicals, of which there are many and very valuable, for indeed misch of the comparative study of this subject las been carried on in the columns of German, Fronch and English periodicals, often issued by learned societies.

Russell Sturcis.

Greek Church, or Holy. Oriental Orthodox Apostolic Church. that section of the Christian church dominant in Eastern Europe and Western Asia, especially in Turkey, Greece, Russia, and some parts of Austria. In the first ages of Christianity numerous clurches were tound d by the apostles and their successors in Gireckspeaking countries: in Greece itseli, in Syria, Egypt, Dlesopotamia, Asia Nlinor. Thrace, and Nacedonia. These were subsequently called Greek. in contradistinction to the churches is which the Latin tongue prevailed. The removal of the seat of empire by Constantine ti Constantimople, and the subsequent separation of the eastern and western empires, afforded the opportunity for diversities of language, modes of thinking, and customs to manifest themselves. and added political causes to the grounds of separation. During the earliest period the chici seats of influence in the Eastern Church were Jerusalem. Antioch, and Alexandria, the seat of that mystical plislosophy, by which the oriental church was distinguished. In 341. soon after the synod of -Intioch, the rivalry between the Bishop of Rome and the Bishop of Constantinople began to assume importance, and before the year foo differences of doctrine with respect to the procession of the Holy Spirit appeared. The Council of Chalcedon in 451 reaffirmed the "pre-eminence of honor" after Rome, which had been granted Constantinople by the Secund General Council in 381 , but also accorded to its bishop supremacy, not only over Thrace, but over Pontus and Asia. This canon. the famous 28th, Rome refused to confirm. The title of Commenical Patriarch was assumed by Jobn, bishop of Constantinople, in 588 , and in the following year tise phrase '(Filioque) ('and the Son') was added by the Latins to the Nicene Creed (which now read 'proceeding from the father and the son'). an addition to which the Greck Church was opposed. In 648 Pope Theodore deposed Patriarch Paul II.; but a reconciliation of the churches was effected at the Council of Rome (680). The doctrines of the Greek Church were defined by John Damascenus in 730 . The disruption was hastened by the banishment of 1 gnatius by Nichael the Drunken. and the consecration of Photius (858). Pope Nicholas I. refused to sanction
the usurpation of Photius and excommunicated t:!n. The schism was temporariy healed after the death ef Photius, but Mehael Ceruiartus recpened it by charging the Latins with heterod xy. He wis excomanmated by Leo 1... in 10ミi. since which the Greeks have been severed from the Roman communion, though the RlisioGreek Church was not separated until the izth contur: The presence of the Crusaders in the Eas: asgravated the quarre! : Latin patriarchates were established in Antiocin and Jerusalen, and. idough on the capiure of Constantinople by the Criaaders a Laun patriarchate was set up there (1204). the schism was revived there as soon as the Latin empire fell (1202). Reumon was proposed in 12,3 by Patriarch Joseph. and efrected, with the acknowiedgment of the pupe as promate, at ihe Council of Liens ($12-4$). The unmon. however. Was amulled is I å2 by Emperor Andronicus Il.. and in 1283 and 1285 by synods oi Constaninorle. It was again effected under Iohn Pakelogus at Florence in $i 430$. but was reprdiated in ifis by the Patriarchs of Alexandria. Antooh, and Jerusalem. In tys3, when the pairiarch fled from the Turks, a schismatic. Gregury Scholarius. was chosen in his place. In 15,5 unsuccessiul negotations were commenced with a riew to union with the Lutherans. and in 1723 the Engish bishops even proposed that the Greek and Anglican churches should unnte, a propeal - Thited by the archbishop of Moscow in i\&uo. The clams of the czar in 1853 so the protecioratic of the Greek churches in Turkey was one of the causes of the Crimean War.

The Greek Church is the only church which holds that the Holy Ghost pricceds irom the Father only: the Reman Catholic and Protestant Churches deriving the Huly Ghost irum the Fathe and the Son. Like the Reman Catholic Church it has seven sacraments - baptism: chrism: penance, preceded with cunfession: the eucha-ist : ordmation: marriage : and unction. But it is peculiar (i), admuntiterng bagism by theect id immersion, the chriom (ecnimation i 1 wing immediately aiter it: 21 . in adcpting. $a=$ to the eucharist. tie doctrone of ithe -eal peesence and transutstartatu n : but in orderme the brad to be kave: ed, the wine to be maxed with water, and beth element: t be detribuicd to every ene, even to chi dren: 131. the par chial c'ergy ..se required : be marrod. bet hy'y nee and ill a trem. and marriate muit sake a ce lei re ordma: s: wadened clergor are fermite is ret.in 1 cir luster1 lit $ह$ mt a c-iter. whe?e ily are clled fiter in bata Rare! Fo a wd wed laho al Lwed io preserse h - dince-e. the Grect Cheitch grams diwrec in case i pr sed adu'-
 mair se lt duăer-alio from the Ktum Cathcic C.ひrch in as orting with the 1 y cul. n ? tie bibar at the 1 ack, ior the 5 totion ri heaith. Eravenew, and sanctification. It releets

 frave in the dead, whece dhtion an artit te e neidered andecermaned ur il the tral julaon n : It ree grizen mo siable viear, if Chriv: in - rih, but the spiritual autherity of giriarch is latile mierine to that of the pope. It allnw- no carsed, sculptured. or molten imase of holy fersons or subjects; lut the representati ns of Chen except in the eructiv). I llary, and
the saints, mus: be merely painted. and at most inlaid with precious stones. In the Russian churches howevi. works of sculpture are found. In the invecation of the saints. and especially of the Virgin, the Greeks resemble the Latins. They aiso hod relics. staves, and cresses sacred; and crossing in the name of Jestis they consider as having a wenderiul and blessed intuence. Among the means of penance. iasts are particu lar'y numerous with then. They iast Wednesday and Friday of every week, and besides observe four great annual fasts. namely iorty days beicte Easter: from 11 hitsuntide to the days of Sts. Peter and Paul : the fast of the Virgin Mary, frum the Ist to the 15 th of Alugust: and the apostle Philip's iast. frem the 13 ih to the 20 ih of November: besides the day of the beheading if Iohn the Baptrst, and of the elevation of the cross. The calendar oi the Greek Church is in the old style. their - Xew lear's Day falling on I3 Ianuary

The services of the Greel- Church consist almost entirely in outward iorms. Preaching and catechizing constitute the least part of it. Instrumental music is excluded altogether. The Mass is considered of the first importance. The convents coniorm. for the most gart, to the strict rule o: Si. Basil. Tlre Greek abbot is termed hesumenc so the abbess hessumene. The abbot of a Greek convent which has several others under 1:s inspection is termed archmandriti. and ranks next a bishop. The lower clergy in the Greek Church consist of readers, singers, deacons, etc., and of priests or popes and protopopes or archpricsts, who are the first clergy in the cathedrals and metropolitan churches. The members of the lower clergy can rise no bigher than prosopopes. for the bishops are chosen from among the monks, and irom the brshops are selected the archbishops. merropolitans. and pairiarchs. In Russia shere are iwenty-iour dioceses. With which of them the archicpiscopal dignity shall be united depends on the wall of the emperer. The seats of the iour metropolitans of the Russian Empire are Si. Petersburg, Kies, Kasan, and Tol lik. In the Turkish dominiens ihe dignitses of Patriarch of Constantinople. Alexindria. Antioch. and lerusalem still substst. The Parrasch oi Cemstantin ple still pessesses the ancient auth rity of hi-see: the cther three pa-
 lwe ins the mest part in the and aiturded them ly the Pair rels of C-rotantin ple

The Lintad Gecek Charches eomprise the se Charche - i (ireck rite wlich are in communion uth il See of Reme: the adherenti if these Charelos are comm nly style 1 Lniates, and the (] rehe Lins te Churche: There are five such I'nate (rocek Churehes. name!y, th se of the De chnte, it the Ruthenion=, if tie Cireek Cath--he if hay, i the Grow-k matros, and of 1) e. Dugarians. Theere several Churches reiain then - ve-al (ireck or Oriental liturgies and sacrementel riscs ard me of ef the usaces and coremen - it the Eastern schismatical Churches irı: with they are sprus g .

The Sl chites represent those Churches of Syria and Egypt which. in roxin and later, seec led it m imridictions of the Nonophysite patrareh: if Antinch. Jerusalem, and Alexandina. Tl cir number is small. perhaps not excocling soum suls, but they have three patriarchs, with bush is subordinate to them.

GREEK FIRE - GREEK-LETTER SOCIETIES

The Ruthenian Cnited Church is an offshoot wf the Russian Greek Church by secession : the membership, of this Church in Russian Poland and in the sistro-Hungary monarchy comprises probalily $1,000,000$ souls.

The Lnited Greeks of Italy, mostly in Cala. bria, are estimated at 30.000 .

The Greco-Romaic Chusch of Hungary and Transylvania has about 1,000.000 adherents.

The Enited Bulgarian Church dates from 1860, when several hishops with a considerable iollowing of their people were received into the communion of the Church of Rome.

All thece Churches retain the ancient Greek liturgies of the Eastern Churches from which they seceded, and to a great extent their ancient systems of discipline. The priest. as in the Greek orthodox and in the Russian urthodox Church. must be married. and the bishops must be celibates: heace the bishops are usually chosen from the monastic order. The widowed priest is not permitted to contract a second marriage. In short, these Charches retain, of the religious practices and of the discipline of the several Eastern Churches from which they seceded, whatever is not inconsistent with allegiance to the supreme pontiff in matters of doctrine.

The language of the Ruthenian United Church's liturgy is Old Sclavonic, and translated from one of the ancient Greek liturgies. The liturgy of the Nelchites is that of St. John Chrysostom, and on certain occasions that of St. Basil, both in the original Greek: The liturgy of the Bulgarian Church is also of Greek origin, but translated into an ancient Sclavic idiom.

Greek Fire, a combustible composition made probably of naphtha, sulphur and nitre, which vas first used in 673 A.D. by the Greeks of the Byzantine Empire against the Saracens. Its invention has usually been ascribed to Callinicus of Heliopolis, and to the year 668 A.D. The mixture appears to have been highly inflammable, and to have been difficult to extinguish: was poured out, burning. from tadles on besiegers. projected out of tubes to a distance, or shot from halistex, burning on tow tied to arrows. At Constantinople the process of making Greck fire was kept a secret for several centurics: but the knowledge of its composition and the nse of it, gradually spread to the West. It was in use for a short time after the invention of gunpowder. Combustibles of a similar kind were used at the siege of Charleston in 1863. composed of sulphur, nitre. and lampblack: and naphtha in shells was also tried.

Greck-letter Societies, or College Frater-

 nities, are found in nearly all leading edncational institutions, particularly the great uni-ver-ities, in the United States. Branches of the varions societies are known as "chapters." and are found in nearly every college as well as in every large city in the comitry. No society has more than one chapter in any one college. While these societies are secret in character there is neither ritual nor mystery in their conduct, the protection of meetings, constitution and mottoes being all the secrecy involved. The Greek alphabet is generally used in naming a fraternity, or a chapter. There are three types of badges worn by members, the name badge. monogram badge. and symbol badge. In the latter a key, skull, or scroll is usually employed.The oldest of these literary and social brothcrhoods was established as early as $177(2$, and continued the sole suciety of its kind for 50 years. There were in Igoz more than 800 chapters of these societies in American colleges, whith a membership neluding the alumni, of more than 100.000. It has become quite the practice for $\mathbf{e n}^{+2}$ dents of a particular fraternity to reside together during their college course in their "chapter" house. In igot there were 70 such liouses in the United States owned by the "chapters," and 200 other houses rented by then. Prinction is the only prominent college in the country where the fraternal society is prohibited, and the iact that all the other leading institutions permit these organizations to exist affords strong presumption that they are regarded with favor, and that their influence is for good rather than for evil. In 1902 there were 25 of these societies for men and 8 for women, in the universities and colleges of the United States.

Phi Beta Kappa.- This, the oldest organization, is composed of 53 college chapters, anc was founded 5 Dec. t,-6, at William and Mary College, Williamsburg. Va. A chapter was formed at Yale, in Xew Haven, in Dec. 1/79, and soon after at Harvard. Dartmonth, Bowdom and Amherst. The society in 1902 had a membership of it,000. The national comncil mets triemially. The badge of the society is a golden key: Among prominent members are \uparrow. W: Higginson, Seth Low, Joseph H. Choate, and H. II. Mabie.

Kappa Alphu.- Founded in 1825 at Old Union College by four members of the Phi Detta Kappa. It likewise had a golden key as a badge design. The first branch of this society was established at Williams College. The society had 1,000 members in 1002, prominemt among them being Whecler H. Peckham, John Boyd Thatcher, L. Clark Seelye, and Edward S. Bragg.

Sigma Phi.-Founded at Lnion College, Schenectady, N. 1., +1 Iarch I 827 , the society established branches at Hamitton, Willians, Ilobart. Lehigh, Cornell and the Üniversities of 11 ichigan and Yermont. It had a membership of 1,400 in 1902. The badge of the socicty is of the monogram type: the colors are light blue and white. Among its members are Elihn Root, Andrew D. IW hite. and John HI. Post.

Delta Phi--Founded at Luion College, 17 Nov. 1827. this society established liranches at Columbia. Rutgers, Harvard, Johns Hopkins, Cornell. and other colleges. The badge is in the form of a \$altese cross: colors blue and white. There are several thousand members, among them John Jacol Astor, Emest Howard Crosby, and R. O. Doremus.

Alpha Delta Plri--Founded at Ifamilton College, Clinton, X. Y., in 1832. the society estahlished chapters in 10 other colleges and had a membership of 8.400 in r 102 . There are in houses owned by the society and 24 active chapters. The badge is of green and white, with the star and cresent as cymbols. Smong prominent members are 11. R. Day, Bartow S. Weeks. Henry Clews, Jr., Jas. K. I lacket, and H. E. Lippincot.

Psi I'psilon.-Founded at Ľnion College, 24 Nov. 1833, this socrety had t of its originat founders still living in iooz. The membership of the organization is over 10,000 , with 22 chapters in varions colleges. The badge is of gold, dia-
mond-shaped; colors garnet and geld. Among its members are Chauncey MI. Depew. Wm. C. Wh:iney. G. R. Schieiflin, and Herbert L. Bridgeman.

Diltu C'fsilun.- Founded at Williams College in $18_{j}+$, the society has chapters in $3+$ colleges and untwersites, with a membership of 8.000 . It is an open, non-secret organization and owns 24 chapter houses. -imong its promment members are David Starr Jurdan. Rossiter Johnson, II: H. P. Faunce, and Rev. Charles If. Sheldcr.

Bifu Theta Pi.- Founded at Miami University. Oxiord. Ohio in 1839 , this was the pioncer society of the Niddle We:t. It has a membership of 12.500 . with it active chapters. The badge is a shield with 8 sides curved inward: the colors are light pink and blue. -tmong its prominent members are Foster L. Backus, P'aul Wilcox, and W. R. Baird.

Chii Psi- Founded at Linon College, in 184 I . this was the first Eastern society to establish chapters in the West, extending its organization to the Universities of Michigan and Minnesota. It had a membership in 1902 of $4: 500$ with 19 active chapters. The chapter house at Cornell is the finest iraternity house in this country. The society is more secret than most of its iellows. The badge is a jeweled monogram. Among its members are Willis I. Abbot. Francis 11. Scutt. and Allan Lee Smidt.

Dila Kurfo Epsilon.- Founded at Yale College. New Haven. Conn.. 22 June 18.4. by 15 members of the junior class. The society has established is chapters and had a membership in 1902 of 13.545 , being the strongest numerically of any college iraternisy. Among prominent members of the society are President Rusevelt. John D. Long. Whitelaw Reid. Howard Gould. Julian Hawthone. Cyrus C. Adams, Iohn Dellitt Wiarner. Ii. G. Hyde, Julius Chambers, and G. R. Hawes.

Zitu Psi- Founded at the New Lork Coniversity: I lune teti, this society established 28 chapters, and had a membership in 1902 oi 5.330 . The badge is a monogram: the color white, with which each chapter blends its college colors. Among prominent members are Augustus lian Wiyck. Wim. Slirady, Harrison Grey Fiske, and H. 1f: Bookstaver.

Dilta Psi- Founded at Colunbia College. New York in Jan. I84, has if chapters and a membership oi 3.000 . The badec of the society is a St. Anthony cross, bearing a shield of blue enamel. Imong its prominent memberare Thomas Nelkon Page, IV. Seward Webb. F. W. Vanderbilt. Brander Mathews. Wm. E Curtis, and D. S. Appleton.

Thita llelta Chi- Founded like several of its predecensors at Linion College, this socicty was nryanized in tiss, and has 22 chapters and 4.000 members. The badge is a monogram: the colors black, white and blue imcuy its memhers are John Ifay. J. W: Grigg: H. H. Hanna, S. Fred Nixon, and Rev. David Gregy

Phi Gamma Della- F Funded at Jefferson College. Cam mburg, Pa., in May Iftre this sho cicty has whblinhed 5 chapter: and ha- a memberihip of $8,=53$. The badee is a diamendshaped shield on a field of black, bound ly a golden cord: the color royal purple. Aniong its membere are Gen. Lew Willace. Edward Eggleston. S. S. McClure, Leigh H. Hunt, and R. Lloyd Jones

Phi Dilta The:d-Founded at Miami Criversity, Uxictd. Ohio, zo Dec. IEt\& this society has eetabhohed cie chapters and has a nember--hip of 12.000 . The badge 1s a shield, bearmy a scr 11: the fraternity colors are argent and azure. Atm ng tis members are C. P. Bassett, Irving R Bacon. C. P. Van Alen. and Rev. E. A. Denr.

Phi Kitfou Sizma-Founded at the l-niversity of Pemnsylvania. 10 Aug. I850. has established 15 chapters and has a membership of r.000. The badge is a gold Maltese cross. with a skill and crosshone centre: the colors are old sold and biack. Its membership includes H. C. King. J. R. Paxton. Mf. J. Asch. Geo. G. Battle, and itm. McClure.

Phi Kopfo Psi-Wounded at Jefferson College. Canonsburg. Pa.. 19 Feb. I8 \boldsymbol{F}_{2}, has estabjished io chapters and had. in 1902, over 8.000 members. The badge is a shield of gold: the colors pink and lavender. Prominent among its members are Henry T. Scudder, F. E. Hamlin. II. L Stoddard and Thos. A. Xelson.

Chi Pi.- Founded at Hobart College, in Dec. 1854. has organ:zed 19 chapters with a membership of f,ioo. The fraternity was reorganized in ison. The badge is a monogram. Geo. S. Hobar. H. C. Platt. F. A. SIandeville, and F. C. Weber are among its prominent members.

Sigma Chi-Founded at Miami Lंniversity, Oxiord. Ohio zo June ise has organized so chapters and has 8.000 members. The badge is a cross of gold and white enamel : the colors are blue and gold. Among its members are Thos. Ewing. Ir.. Wm. E Quimby, H. II: Chatield, and Henry A. Potter.

Sigma Alrha Ersilon.-Founded at the University of Alabama in 1850 , has organized 59 chapters and has 7.000 members. Among its prominent mentbers are Charles B. Harver. F. K. Knowlion, T. W. Beach, and H. P. Nash.

Deltu Tuu Dilta.-Founded at Bethany College in rivo has organized 37 chapters and has a membership of 1,200 . The colors are purple, gold and white.
-Htha Tar Omega. Founded at the Virginia Military Instituie, if Sept. ISos. has organized 45 chapters and has a membership if 0.000 . Among its prominent members are Irving Bacheller. Hugh S. Thompson. E. B. Southworth and Walter H. Page.

Kapru Sisma.-Founded at the University of Sirginia in t 86 , has established an chapters and has a nembership of 3.500 . The badge is a crescent and star: the colors old gold, maroon and blue.

Sigma Vith-Founded at the Virginia Military In-titute, 1 Jan t8on) has organized 46 chapters and has a membership of 5.000 . The badge is dengned aiter that of the Legion of Honor of France: the colors are llack, white and gold.

Phi Suma Koppo. - Founded at the Mas:achusetts Agricultural College. 15 March $18 ; 3$. has organizel it chapters and has a memberchip ii 1,050 . The colurs of the society are silver and magenta. Among its members are 1 lm . H. Bi:hap. S. C. Thompion, J. IV. Goff, Ir., and M. C. Valentine.

Among the Greek-letter Societies of women are the Alpha Chi Omega, Alpha Phi, Chi Omesa. Delta Delta Delta. Delta Gamma, Kappa Alpha Theta, Kappa Ǩappa Gamma, and Pi Beta Phi. The Mpha Phi was founded in 18;2, has to chapters and $\mathrm{r}, 100$ members. The Delta Delta

Delta was founded in IS88, has 17 chapters and a tuembership of 1,000 .

In October 1903 there was organized at the Indiana University the first negro Greek-letter society in the United States. It is known as the \$1pha Kappa, with a charter memberslip of 10.

Greek Music, the theory and practice of melody and harmonics among the ancient inhabitants of Hellas. The subject of Greek music is an obscure and difficult one, but there are enough data extant to afford us a general idea of the Greek mnsical scale, of the use of instruments, and employment of the roice in solo and chorus among the Greeks. The earliest notion of music was derived from the necessity of keeping time in the dance. This at first would be effected by merely clapping the luands. The use of instruments of percussion would follow, and the drum and cymbal came into use. The cymbal originated in Egypt, and reached Greece as a permanent element in the practice of music. The rustle of the wind through the reeds, sometimes with a shrill whistling vibration, suggested the application of the human breath to hollow pipes, and what is still called the Pan's pipes was invented. Wind instruments of various kinds came afterwards into vogue, the flute, and the double flute were employed, and seem generally to have been blown as accompaniments to the elegy and the love song. These pipes were of varions kinds and were considered as good accompaniments to the recitations of the poet, as well as for regulation of movement in a dance. They were employed in the ceremonies of the mysteries, and Plato speaks of an often recurring thought as resembling "the sound of the flute in the ear of the mystic."

Instrumental music attained its highest development in the invention of the lyre. The Egyptians attributed this invention to their god Thoth. In Greece Hermes is celebrated as the inventor of the lyre, which became henceforth the instrument of the epic poet and the rhapsode or reciter. It had originally four strings, which it is said were suggested by the tendons stretched over the shell of a tortoise. The first Greek philosopher to attempt a scientific theory of musical scales and intervals appears to have been that profound and versatile man Pythagoras (585 B.c.). The Greeks did not use the word music in application to the art which we so name. Music to them comprised everything which the Muses inspired, and even history and astronomy as well as poetry were music. What we mean by the term was called by the Greeks harmonics, which means the art of fitting, that is, adjusting the intervals in a scale, in the strings of a lyre. The scale of Pythagoras had seven notes, corresponding with the seven strings of his lyre, and he professed to derive his idea of music from the missic of the spheres. The sun revolving round the earth was to him the chief planet, and was represented by the middle string of the lyre which was considered the keynote, corresponding with A in the modern scale. On one side were strings representing Mercury, Venus and the Moon, on the other side three more corresponding with Mars, Jupiter and Saturn. It is said that Pythagoras discowered the ratios of the perfect intervals from hearing blacksmiths striking an anvil with hammers of different weights. Aristoxenus (b.c. 300) discovered the difference between the major and
minor tones and has been called "the father of temperament." Claudius Piolemy (B.C. 150) demonstrated the musical axion which obtains in tnodern times that the major tone should be below the minor.

The Grecks had four modes or scales, the Dorian, the Phrygian, the Lydian, and the MitoLydian. The Dorian was set in the key of E. natural, and the rest were distinguished by analogous differences.

The ancient Greeks were passionately iond of music, and elaborate treatises were written by them on the science and art. They did not understand harmony, and Aristotle ($38+$ B.C.) speaks of the only chorus singing known as that of men singing a melody an eighth lower than it was sung ly boys, which of course would be unison. Music was employed at Athens by wandering epic minstrels; it was also common in religious ceremonies, and to regulate the movements of the army. It formed part of the drama. We are told that Eschylus, the father of tragedy, composed the music for his own dramas and that Sophocles accompanied on the lyre the performance of one of his plays.

Greek Philosophy, the various speculations of the ancient Greeks with regard to the origin of things. This is but a partial description of the intellectual efforts made by the kien and powerful minds of the ancient world to solve those problems which science now-a-days is so eagerly investigating. The origin of Greck philosophy, was the gradual disbelief that had seized men's minds as to the truth of the ancient poetical cosmogonies, and antique mythologies of religion. Faith was dead and reason had awakened. In the 7 th century before our era. in the flourishing city of Miletus, capital of the Ionian colony, the first Greek philosopher propounded the question which is still being put, What is the basic substratum of all phenomena? In our own days Huxley called it protoplasm: Herbert Spencer said it was force. Thales of Miletus (636 b.c.) declared it was water, which to him seemed to permeate and give life to all things. Thates was the first of the Greek physicists, or materialists, and was considered one of the Seven Wise Men of Greece. He was the founder of the Ionian School of Philosophy. He was succeeded in the long line of philosophical inquirers by Anaximenes (529 B.C. $)$: who looking for the first element, the first cause. found it in air. Air was uniwersal and must be the parent of all things. It was the breath of life and nuust therefore be the source of it. Diogenes of Apollonia (460 b.c.) fixed upon a higher motion as the first canse of things. He saw the ruling race of mankind prevailed over nature by their intelligence. He decided that intelligence was the cansc and foundation of all things. In these speculations as to the nature of the miverse and its origin we come upon two remarkable men, Anaximander of Miletus (6io B.C.) and Pythagoras, who imented the word philosoply: The former taught that all existence came from the infinite -a vague term, which did not mean the infinite intelligence bat the infinite existence. Pythagoras said that number was the first thing, from which all else proceeded-a metaphysical abstraction, which almost defies analysis. Aristotle says the Pythagoreans "taught that number was the beginning of things, the cause of their mate-
rial existence, and of their modincations and different states."

The school of Eleatics is chiefly represented by the poet Jenophanes (020 R.C.). His philosuthe creed is thus described by Aristotle: "Casting his eves upward at the immensity of heaven, he dectared that The Oric was God. ${ }^{\text {W }}$ Reason and umagination led this thinker to become at once a Monotheist and a Pantheist. Parmenides who was born (536 b.c.) at Elea, a city which gave its name to Eleatics. was the first to make the great distinction between truth and opinion, between the deductions of reason and the impressions of sense. He made being the basis of things, for non-being was impossible -a discorery which at that stage in philosophical speculation was of great importance. Zeno, another Eleatic, b. 500 BC .. who was the inventor of logic. was persecuted and put to death for free-thinking, and was a follower and disciple of Parmenides. Plato says that the master proved the existence of the one: the disciple established the non-existence of the mamy. He preserved his masters distinction between iruth and opinion. "Your senses," he would say, "tell you that there are many things existing; reason avers that there is but one."

A contemporare of Zeno was a man who began at Ephesus those speculations as to the origin of the universe to which as preliminary he added a theory on the origin of knowledge. This was Heraclitus (503 e.c.). He was a disciple of Senophanes, and taught that fire is the origin of everything, and there is no existence, but only change: things cannot be said to be, but only to be becoming: processes and not states formed the mode of existence. We cannot know or name anything with truin, for as we look at it, it changes, and is something different from what we thought it.

Anaxagoras came from Clazomene to Athens jusi when the age of Pericles wa: dauning: he had indeed Pericles. Euripules, and Socrates as his pupils. He attacked the patriotic religion of the proud city and was banished to Lampsacus. He thought thei all sense - knowledge was delusive until corrected by reason. He believed that intelligence was the creative and regnlating intluence of the universe. Things as they are were brought about by the concouree ci infinite atoms: but these atoms were ui all surts. and that like was unted to like in an intinte series of movement and combination: gold ly the union of guld atoms that had existed frem eternity, fires from fire atoms, air ir, matoms of air. These at ms were the famme homeomerix spiken ci and condemnel by drist the: Empedockes (4 H B.C.) wa; of tike great city of Agrigentum: 11 hi-view e ef kn wledge he belonged to the Eleatics, and maintamed that the scmes werc fallible, while reavon wa- a sure surde to truth. Ile was a poet and declamed againt anthre perm rohic ideas of deity: He getlered in one the doctrmes of the Ionian fhy-icists declaring the primary elementa were if inr. namely, earth, air. fite and water. Les wav the fo rmative principle of thing. hate the di- ver and de-triyer. One was harmeng. the other a -curd, and Foud i- the One. 'a pleere fixed in the lusem of harinony, rejo cing in calm rect.

Dem critus ni Abdera (fro BC) was a rich man who entertained lierxes at his hutwe. He

Went one step Iurther than Anaxagoras, aud almost enter ${ }^{3}$ the circle of our modern science by teaching the atcmic theory. namely tha: everything in the world is the result of a fortuitous concourse or atums, all of the same sabstance, but making marous things through the various forms they take in uniting. Colur. sweenter. cold. are the resuht not of substances essentially difrering: all is form.

All attempts had so far failed to solve the problems of the naterial world. and of human knowledge. Dlany theories were put forth. none were universally accepted. although they were each discussed. This brought the Sophists on to the stage of philosophy- men who taught the arts of discussion, not of investigation. One of the greatest of them was Protagoras. He was a disciple of Democritus. and tanght that opinion was everything. 'Man, the individual man, each for himself, is the measure oill things." The Sophists were the first skeptics. but a new epoch rose with Socrates (469 B.C.). He was the most remarkable man in all the Greek world: for his love of disputation he was classed by some with the Sophists, for his ridicule oi traditionat views in religion and physics. he was condenmed to death - yei he succeeded in substituting morals for physice as the subject of philosophy: He first gave to philosophical methods the definition and the inductive argument. or reasoning by analog: One of his disciples, Aristippus of Eyrene, while he followed the method of his master, finnded the Cyrenaic school which taught that pieasu:e was the critermon of the true: Socrates had taught that the grod as judged by the individual conscience was that criterion. Then fullowed the Cynics. under Antisthenes, who went to the opposite extreme to Aristippus, became an ostentations ascetic, and in this was iollowed by Diogenes of Smope, who made his home in a cask or tun, and tried to set the example o: a rugecd virtue, which is misanthropic, but triumphant nyer bodily appetite. It was leit to Plato to exhibit the complete adoption and application of the Socratic method. He believed that in each man resided the power ni detecting the trath. if m having seen the periection of things. in an tieal world during a previots state of exintence: he could indige of the cood and the beantitu here irom hivememry of what their periect archetypes were. H1s volummous writings enahie us to judige buth of his ethical and pulitical sys: cm . hut they both fail in practicality Ilin ine it fame the puphl wa: Aristote $1,3^{2}+1$ BC a a man i ercychpedic mind. the first scientific observer, te inven: : © the syllocom. P'ato was an idealiot and a rationalist: Art-otle a materialist and an cmparic The one tru-ied to reas ns, the ther to experience. Aristutie always argued amanst the ideal theory of hus mater, and deduced his onclesums from thang: as he saw them. He innented grammor a- weil as logic. and was in himscli an epitome of the phatosophic learning of hi- predece-ies. Bui by rea-ning If : 31 cxpericuce lie had upened the way for the -heltice of whe the the rir-t wa= Pyrthe, who tangl that there in no criterion of truth. Phethmena are mere appearances, he w can we prove they are anythine cl-e? This was what in nu dern time - 1s c: "led agme stuctsm. for we cannot pri ve and therefore cannut know the truth of anythng we sce. But aiter this suicide of philus phy in the school of pyrtho, she revivea again as a moral mentor in the person of Epi-
curns, of Sanios (342 d.c.). Fife tanght the highest good is pleasure; this is the moral end of existence. He was controverted by the Stoics. Zeno was their leader, a man of stern unbending character and abstemious life, whose aim was to show that virtue consisted in manhood, and manhood in the power to endure hardness and to despise the body. Skepticism, indifference, scnsuality and epicurean softness were not to be combated by the vague dreams of Plato, or the cumbrous system of Aristotle. The Stoic attempted to micet the growing decadence by an exactly opposite self-denial and impassive reserve. But Stocism was egotistic: its aim was the repression of feeling, it was apathy, death in life. The last struggle of Greek philosophy to dominate the mind of sociery was witnessed in the rise of the New Platonists and their New Academy. Carneades (213 b.c.) was their most illustrious representative, and he was the type of a school that took up the doctrines of Plato, expanded and enlarged them until the time when Christianity appeared, and faith, not reason, as in the old days seven hundred years before, dominated the world of opilion. See Philosophy, History of.

Greek Theatre, First in America, the gift of William R. Hearst to the University of California, is exactly similar in its proportions to the famous theatre of Dionysus at Athens.

The structure was used for the first time at the University of California commencement 1003 when President Roosevelt was the orator of the day. It was then learned that every one of the 8.000 spectators seated in the theatre could hear with perfect distinctness.

No roof shats out the sunlight or starlight from the audience. Situated right in the heart of magnificent scenery, tall trees towering up above the walls on all sides and the building itself being an architectural gem, it will readily be scen that very little stage scenery will be needed when presenting the early plays which will be given by university students and the leading actors of the world as soon as all is ready.

The entire structure is white: the hangings will be a blending of the Greek and Roman colors: but there will be very few decorations used aside from architectural earvings, the splendor of the place being in its dimensions and simplicity.

Though this theatre is modeled in a general way after the ancient classic buildings of a similar character, no single historic example has been literally followed. The theatre at Epidaurus, in Greece. however, offers many points of similarity, notably in the difference of slope between the upper tiers of seats and the inner and lower portions of the auditorium. The new theatre is of approximately the same size as the larger theatre at Pompeii.

The building is, as a whole, made up of two separate and distinct parts, namely, the stage. corresponding to the ancient logeion, and the auditorium.

The floor of the stage is 133 fect wide and 28 feet deep. It is entirely open toward the audiforium and surrounded on the other three sides by a wall 42 feet in height. This wall, which corresponds with the ancient skene, is enriched by a complete classic order of Greek Doric columns with stylobate and entablature, the ends of the side walls toward the auditorium forming two massive pylons. Five openings pierce the
wall, the entrance in the centre of the back of the stage being the most important - the socalled royal donr of the anciemts. This is flanked by two minor doors to the right and left the two remaining openings occurring on the return walls at either end of the stage.

The auditorium or theatre proper is semicircular in form, 254 feet in diameter, and is divided into two concentric series or tiers of seats. The first series is arranged about a level circle 50 feet in diameter and $51 / 2$ feet below the stage. which corresponds to the space anciently devoted to the chorus. orchestra, ctc.

From this circle the receding rows of seats step up gradually until the stage level is reached at a circle corresponding in diameter with the terminal pylons of the stage wall. This line is marked architecturally by a passage, anciently named the diazoma or diodos, funning around the semicircle of seats midway between the orchestra and the topmost circle. The diazoma is protected on its onter side by a wall, beyond which the seats step up more steeply, approximately at an angle of 30 degrees with the horizontal, to the outer limit of the theatre.

It is estimated that more than 7,000 persons can be seated in the theatre proper. The stage will accommodate some 600 more, a number which can be readily added to by the temporary extension of the stage floor toward the anditorium.

Greeley, Horace, American journalist: b. Amherst, N. H., 3 Feb. ISII; d. Pieasantrille. N. I., 29 Nov. 18 -2. More than 30 years after his death, Horace Greeley's name remains at the head of the roll of American journalists. Successors in the primacy of current discussion maysurpass him, as doubtless some of them already lave, in consistency and learning, but hardly in the chief essentials of a journalistic styie: other. may exert a more salutary influence, if not so personally diffused: but in the respect of high ideals, courage, intellectual force, and personal magnetism, the qualities which impel a man of letters to be also a man of action, Horace Greeley was of heroic mold. He was no pop-gun journalist firing from a sky-sanctum, but a face-toface clampion in the arena of public affairs, laying about hinn with pen and speech like an ancient Bayard with his sword. The battles he fought for humanity, and the blows he gave and received, have made him for all time the epic figure of the American press.

Born in rural New Hampshire of English and Scotch-Irish descent, he epitomized his heritage and his attaimment in the dellication o: his autobiography "To our American boys, who. born in poverty, cradled in obscurity, and early called from school to rugged habor, are seeking to convert obstacle into opportunity, and wrest achievement from difficulty."

Though physicarly a weak child, his intellect was strong. and when near his tenth year his father remored to Vermont. the boy thick with him the reputation of a menta! prodigy; so, with little schooling and mucl reading, ino was thought when $1+$ to be a fil apprentice to a printer, setting forth four years later as a iour neyman. Il is parents lad moved to western Pennsylvania, and he followed ; hut after a desultory practice of his art he came to the metropolis on August 1\%, 1831, with $\$ 10$ in his pociket. and so rustic in dress and manners as to fall under suspicion of being a runaway apprentice. Later

GREELEY

in life, a: least. his iace and his figure would have lent distinction to the unnost elegance oi style: but his dress was so careless even aiter the long period of comparative poverty was passed, that tire peculiarity became one of his distinguishing features as a public character; and to the last there were iriends of little discernment who thought this eccentricity was studied affectation : but manifestly his dress, like his unkempt handwriting was the unconscious expression of a spirit so concentrated on the intellectual interests of its l:fe as to be oblivious to mere appearances.

After is months of dubions success in lew York as a journeyman, in his 21st year, he joined a iriend in seting up a modest printing-office, which on March 22, 183 . issued the 'New lorker,' a literary weekly in the general style of Willis" (Mirror.) under the firm name of "H. Greeley \& Company: For four years the young printer showed his editorial aptitude to such good effect that in tis3 he was asked to conduct the 'Jeffersonian.' a Whig campaign paper. This was so effective that in $1 \AA_{40}$ he was encouraged to edit and publish the 'Lng-Cabin,' a weekly which gained a circulation of 80.000 . brought him a reputation as a political writer. and active participation in politics with the Whis leaders. Gov. Seward and Thurlow Weed. It contributed much to the election of Gen. Harrison but very little to the purse of the ambitious editor. On April 10 of the following year. 1841, he issued the first number of the New lork Tribunc, as a Whig daily of independent spirit. He was still editing the 'Newlorker' and the 'Log-Cabin.' both of which were soon discontinued, the 'W'eekly Tribune' in a way taking their place. Though the 'Newlorker' had brought him literary reputation, it had not been profitable, because of uncollectible lills which at the end amounted to Sro.000. Still, at the outset of the Tribure he was able to count $\$ 2.000$ to his credit in cash and material. He was then 30 years of age, and ior 30 years thereafter the paper grew steadily in circulation, inhuence, and profi, until, a iew weeks aiter his death. a sale of the majority intere't indicated that the "good-will" of the Tribunc, asisle from its material and real estate, was held to be worth about a million dollars. The Grectey interes was then small, since he had parted with mont of it to sutain his generous methods of giving and lending.

He had great capacity for literary work, and when ab-ent for travel or business was a copious er utributor to his paper. To his rather delieate yhysical habit was perhaps due hrs duta-te for all stmulants, alcoholic or otherwi-e, and his atherence through life to the vegetarian dictrene of Dr. Gralam: another follower of the latter being his wife, Mary lounc Cheney, als a writer. wh mi he married in 1836 . His moderate adwecary of temperance in fond and droth. coupled with his then unorth di x denial if
 pul ic mind with ment ni the "1-ms" of the time. includine Fomrieriom and spirituali-m: when in i.ce lus mind and his paper were merely , pea to free inltiry: ann lwere active in expeomle vakarke of opinit:s whereser manife-ted Protorion to Imerican indu-try, and al litinntw. were the only varieties which he accepted with--.. s, ialification: and while the pro-slavery party
detested him as a dangerous i.gitator, it is possible at this day even from their point of view to admire the moderation, the candor, and the gentle husnamty of his treatment of the slavery question. In all issues concerning the practical atiairs of life, like marriage and divorce, he was guided by rare cormmon-sense, and usually his arguments were scholarly and moderate: but in matters of personal controversy he was distinctly human, uniting with a taste for the intellectual iray a command of facts, and a iorce and pungency of presentation, which nerer seem admirable in an opponent.

He was in great demand as a lecturer and as a speaker at agricu'tural fairs, his addresses always being distirguished by a desire to be helpful to working humanity and by elevated motives. Though not a jester, genial humor and intellectual exchange were characteristic of his social intercourse. His books, with one or two exceptions, were collections of his addresses and лewspaper articles. His first book. 'Hints Toward Reiorms,' appeared in 1850 , and was iollowed by: 'Glances at Europe' (185r): 'A History of the Struggle for Slavery Extension or Restriction' (IS:6): 'The Overland Journey to California' (1850): 'An - Address on Suiccess in Business' (ISO-) : 'Recollections oi a Busy Life,' iormed on a series of articles in the New York 'Ledger' (rSog): 'Essays Designed to Elucidate the Science of Political Economy' ($18 ; 0$); 'Letrers irom Texas and the Lower Mississippi, and an Address to the Farmers of Texas' (1875) ; 'What 1 Know of Farming' (18-1) : and 'The American Conflict.' written as a book, the first volume appearing in 1804 and the second in 186%. This work on the Civil War is remarkabie, when considered in the light of his purpose to show "the inevitable sequence whereby ideas proved the germ of "vents": but it was hastily prepared. and while strikingly accurate in the large sense, will not bear scrutiny in some of the minor details of war history.

Neither his political friends, nor his party. nor the causes he espoused. could held hinn to a course of partisan logaty contrary to his own convictions of right and duty. As a member of the Seward-Wied-Greeley "triunvirate," he was iften a thron in the thesh of the senior members: his letter of Now. 11. 1854, dissolving 'the political firm." being no of the iranke-t documents in the history of American pointics. During the Civil War he oecasimally embarrasisd Mr. Lmeoln's admmstration by what seemed then to be untimely cries of "On io Richmond!" immediate emancipaticn, and peace. Un the whole, his imluence for the L'nion cause was poweriul; but when, the War heing over, he advocated general ammesty, and fimatly as an whect leson went on the hail bond of Jeffersnn Davis, he lout the suppert of a large body of his me-t ardent anti-slavery admurers. The clamor asams hum called forth a chameteristic defiance in 1 is letter to members of the L'nion League Club, who were seekng to discipline him. Havine iurther alicnated the Republican party by his- gemeral attitnde in "reconstructhon" maters. the liecame the locgical candidate int the PreasWency, in 188_{2}, ni the Democrats at Baltimore and the Lileeal Republicans at Cincinnati, in opprovition th a second ierm for Gen. Grant Though presonally the made a brilliant canvas:
the inflnences at work in his favor were inharmonious and disintegrating, and the result was a most hmmiliating defeat. This lie appeared to bear with mental buoyancy, despite the affliction of his wife's death, which occurred a week before the election, he having left the stump in September to watch unremittingly at her bedside. On November 6, the day after his defeat, he resumed the editorship of the Tribune, which six months before he liad relinquished to Whitelaw Reid. Thereafter he contributed to only four issues of the paper, for the strain of his domestic and political misfortunes had aggravated his tendency to insommia; on the 12 th lhe was serionsly ill, and on the 2gth he succumbed to inflammation of the brain. The last few months of his eventful career supplied most of the elements essential to a Greck tragedy: On December 23 , the Tribune having been reorganized, with Mr. Reid in permanent control, there first appeared at the head of the editorial page the line "Founded by Horace Greeley," as a memorial to the great jonrnalist and reformer. A bronze statne has been erected in the portal of the new Tribune office, and anothes statue in the angle made by Broadway and Sixth Avenue, appropriately named "Greeley Square," after the man wh; was second to no other citizen in establishing the intellectual ascendency of the metropolis.

Clarence Clough Buel.

Greeley, Colo., city, county-seat of Weld County; on the Cache la Pondre River, the Union P. and the C. \& S. Railroads; about 50 miles north of Denver. The place was settled in 18;0 by the "Greeley Colony" (named after Horace Greeley), made up mainly of New England people. By irrigation they have made of the almost barren region an excellent agricultural country. It is the seat of a State Normal School. The chief manufactures are flour, beetsugar, and lumber. Its trade is in its manufactured articles, also sheep, cattle, grain, and vegetables. Pop. (1900) 3,023.

Greely, Adolphus Washington, American Arctic explorer: b. Newburyport. Mass., 27 March 1844. After receiving a high school education he enlisted as a private in the 19th Massachusetts volunteer infantry, serving in the Civil War from 1861 to 1865 . He entered the regular army in 1867 as second lieutenant and was appointed to the signal service. In 1881 he was put in command of an Arctic expedition, organized to carry out the plan of establishing circumpolar stations in accordance with the recommendations of the International Geographical Congress held at Hamburg in I879. The exploring party made their headquarters for two years at Discovery Harbor, Grinnell Land. In an expedition made lyy a detailed party, the highest point north attained up to that date, $83^{\circ} 24^{\prime}$, was reached. On his way back he reached Cape Sabine with great difficulty, and during the winter of 1883 lost, through cold and famine, all but seven of his twenty-five companions. Meanwhile Com. Winfield S. Schley had been despatched on a relief expedition, and in June I884 rescued them at Cape Sabine. From his services to geographical science Lieutenant Greely was awarded the Founder's Medal of the Royal Geographical Society, and the Roquette Medal by the Sociéte de Géographie of Paris. He was promoted to the rank of captain in the United States Army, and in 1887 succeeded Gen. W. B. Hazen as chief Voz. 8-3
sigual officur, with the rank of brigadier-general, Consult: Crrcely, "Ihrce Years of Arctic Scrvice" (I886) ; Schley, 'The Rescue of Grecly) (ISO_{5}).

Green, Alice Sophia Amelia (Stopavd), English historian: b. Kells, Ireland, 1849. She was privately educated. In 1877 she was married to J. R. Green (g.v.) the well-known historian. She collaborated with him in 'A Short Cicography of the British lslands' (1879), edited his 'Conquest of England' ($\mathrm{I} 88_{3}$) , prepared a rcvised edition (1888) and, with Miss K. Norgate, a finely illustrated edition (1802) of the 'Short History of the English Feople.' Her origina] works are 'Henry II.' (I888) and 'Town Life in the Fifteenth Century) (1894)

Green, Andrew Haswell, American lawyer: b. Worcester, Mass., 6 Oct. I820; d. I3 Nov. 1903. He studied lav, practised his profession in New lork, and was there president of the board of commissioners of edncation, and comptroller (1871-6). In the latter capacity he re-established the municipal credit, scriously impaired by the embezzlements of the Tweed ring. He originated in 1868 the plan for Greater New York, executed in 1897, and also devised the plan for the consolidation of the Astor, Lenox, and Tilden foundations as the New York Public Library: He also assisted in establishing the American Nuseum of Naturai History and the Metropolitan Museum of Art, and founded and became president of the New Iork Zoological Society. He was shot by Cornelius M. Williams, a negro, pronounced insane. It developed that he lost his life through resemblance to another against whom the assassin had a supposed grievance.

Green, Anna Katharine. See Rohlfs, Anna K. G.

Green Ashbel, American Presbyterian clergyman: b. 6 July I762; d. Ig May I848. IIe was graduated from the College ol New Jerscy (now Princeton University) in $1-83$, and appointed tutor and subsequently professor of mathematics and natural philosophy in that institution, which latter position he held for a year and a half. In 1786 he was licensed to preach and took up ministerial work in Pliiladelphia. From Ij92 to ISoo he was chaplain to Congress, and in 1809 took a prominent part in forming the Philadelphia Bible Society, the earliest institution of the kind in the United States. He drafted the constitution of the Princeton theological seminary, of which he was one of the originators, and in 1812 was elected president of Princeton College. In 1822 he resigned this office and returned to Philadelphia to edit the 'Christian Advocate,' a religious montlily For half a century he was one of the leading men in the Presbyterian Church. Among his many: writings are 'Discourse Delivered in the College of New Jersey, with a History of the College" (1822) ; 'History of Preshyterian Missions', (Lectures on the Shorter Catechism.)

Green, Bartholomew, American publisher: b. Cambridge, Mass., 1006 ; d. 1732. He published the first newspaper that appeared in the American colonies, and succeeding to his father's business at Cambridge extended it at Boston, where the office of the 'Boston News Letter' was situated. The proprietor and editor was John Campleil, postmaster of Boston. He event*
ually bought in the paper. which became notable ios cutspokenness on tepics of religice and polituc

Green, Beriah, American abolitionist: b. Sew I A State 1:04 d 18-: He was educaied ai Middiebury College. Vermont becamc frofesser of sacred literature in 1 lestern Reserve College in 1 E2l but was compelled to =esign in a few monthe through the opposition aroused ly his anti-slavery views. He was for man:y years president of the Oneida Institute. Ohio. He wás a great iriend 0. William Lloyd Garaison, and exerted a wide intuence in abolitionist circles. Ameng his writings are 'History of the Quakers' ($\mathrm{S}=3$)

Green. Duff American politician and jour-
 ton. Ga $18-5$ He served with the Kentucky militia tro the War oi $181 z$ aite: the admission o; Missorn as a Stati was appormic State Sema:05 (1823) and becam- editor and proprictos o: the S. Lou: En:yutri In $1 \delta_{25} \mathrm{~h}$ removed te Weashngton D C where be purchased the United States Telegrafh. This became the administration organ and Greer rose to high iavor witb President Jackson He was a member of the Kitchen Cabine: Aiter the rupture beiweer Calhoun anc Iackson the Ielegrapit as the orgar on in rullificationists bitter's attacked Jachsm. Arte some years spen ir Eu: pe he senurned te the United States $18+4$ and edited a short-lyec newspaper ir New lorh. During the latyer years of his lite he was activels engaged in promoting the developmen of the Sveh. anc was one or the founders or the :own of Da: n Ga

Green, Hetty Howland Robinson. - m merican zinancuer. b. Jew Bediord. Mass at Nov. 1835. She is the richest w mas: in Anmerica and probably the bo'dest and $a^{\text {t }}$ cust w mar innancies of her time Although she has an interes in nearly equy large e rporation and imporant enterprise in the world. the manuz s pers ral.y h'r cwn property ir s? ck= bchu. an? rea estate :n Cheago. لiew lith and enewhere

Green. Jacob. American Fresbyterian cle:monen: b. Na! een, Máa. 1,-22; d. i- 0. Hu e-

 sey P- vincial Congress. was charman of the c mmirtee chosen t prepare a state Con-tit:t. \therefore. He \because gaceted in promt a schomut i t tle red.mpri n ot the (.rmental currevey. c^{\prime} - es resem ang ihut witch C iegr is an: ad tel!

Grecn, John Cleve, American mer-hant in: I : mitr pist: D. Lewic ci ite. Mercer

 (ina, and in 1 dis lecarre a rnemte if : - mi : R:-.e! \& C at Cent- in Mの, 1. timed th lew lirk. Wiciebec ni nucd 1 the E recti-de. Frmany year: wia drect r

 celon me. He was itheral in his ent of recuoy o New I rk Un versisy, and Prince on Lntien iy. At Princet n he cstablished (15-3) t e Jin C. Greer School of Sctertee by the git Eso.000. subsequently increaced by the re:-$t^{2}-1$ legatees. In this sehool insiruction is gict in general science, ciml encincering, and icurical engmeering. The cour-cs are iur
score or lencth and lead t. the vegrees of bach elor ui sotmce cir:i engimeer and masier of science [: booz-3 the number of students in this depar:me:t wa= 50 . The endowed propretary sche: in boys at Lawrenceville \% J Nas :e-estab: :had in iS8z upon a giti iron: the executor: his estate hown as 'The Jun C. Greer Foundamin.'

Green, John Richard, Eaglish historian: b. Oxi -i In d Mentme France. JMay Is83 He was grutuated in Issc from Jesus College Oxiond whese since the stucy of modern histry had no ye takers any considerable place is the university the offers railed of sympathy wit his ferene ce in Mathew Paris to the classics In tice he was ordained deacor and becam curz: 0 §: Barrabas. London, in 1803 wa. appoist i Hliy Trinity. Hoxion, and in soc t: P: Philin's Stepney: Failing health and arcreasingt thbera wews caused him to withdraw i: m clica life and from I809 he was lib:arsaz at Lambeh. His onrst literary wo:h oó importance conssisied of aricies. especially briei essay" on hist raca subjects, in the 'Saturday Review, In is- after having been twice rewritien h. Shc- History of the English Peofle' adpeartc This work unised End!ish history as ne cther hac yot d -..e. 'What Macaulay had done r2t a perind of English historg, says C-erchtos "Green did for it as a whoie" Green = nurp is was to exhroit the development ot o Dular litc by a description of the leading mar:iezan ons ot sxcal detgress. The book was skilio \because arransemen: and artstte in style and met with an instan and larce success. The auther expanded ir inte his 'Hisicty ci the Eng hsh Pecpe (IE:- - O) not enly to sectite Sreate: :Uhess $\because: 3$ also to de:end views mere!. sta:c in the smatie: wath He then attempid a his: 7 : - =inolar: 0 which but ewo patis were pultished - The Jaking ot Englan: 1 $\mathrm{SB}_{2}=1$. Whic extends i-:m Brata: as leit by the R.mans \because the consolidation unde: Egbert, and secure as iame as a critica, lis rian, particularly the esh his me:hod of enployng
 -The C-n uest of England" (185s. which entinued she normave : the arrival oi the \mathbb{N} :-
 in Englard was very seeat, and r's 'Sl ? lime t x" and H'it fistil hold a 1 i cxi : Hi-rrical Sciety ani :'sc Mriz. ini $11-2$ K K w werengonalv *osge-sed by 1 m:ur he :-rth for ished. Stray Stud-

 Is: 11 : \quad b exirac: : : 'A Slenet Genata.

 were

Green, Joseph. American poet: b. Bostoว, Ma... i\% r I ndra. Engiand. it Dec. 1,00 He 1 - es : . $t-\frac{1}{4}$ at Harvard $1=2 \pi$ and was in nm - F : w: and satirical powers. During the 11 - ? i: Resolution he was Frominent at th $\therefore t$.le His works iaciude: 'The Il : ri I hammt c: Old Mr. Tener' (tafif): - Pam- Eanurs ($1-50$).

Green, Seth, American pisciculiuris?: b. Irondey 1 2..19 March isi\%; d. Rochester. : 1.. - . \because - IN'. He learned the natural hist ry n c...ry : his proiession irom obserati anl -vaie readins. and began his
life's work by the artificial hatching of trout roe He was looked upon as the leading expert in ans department of fish culture, but his first great triumph manw fields came with his succuss in the reproduction of shad. The Seth Green shad-hateling hox was invented in 1867 , and, althongh it has been superseded, by this device shad culture was first demonstrated to be pussible and its inventor must be looked upon as the pioncer in t.ris difficult department of pisciculture. The Connecticut River was restocked by means of this invention. In 1808 he was made tish commissioner for the State of New lork, and the following year undertook the artificial reproduction of whitefish. Ile was successful in his experiments, and was acknowledged as one of the fathers of fish culture in the L'inted States. From 1870 until his death he was superintendent of the state hatclery at Caledonia, N. ${ }^{\prime}$.

Green, Thomas Hill, English philosopher: b. Birkin, Yorkshire, April I836; d. Oxford, 15 March i882. He was educated at Rugby and Oxford; was elected fellow at Balliol in 1862 , the first lay tutor on that foundation (1867), and in 1878 Whyte professor of moral philosophy in the university. His principal work as as philosopher was the foundation of the so-called Nco-Hegelian School. He is supposed to have heen taken by Mrs. Ward as a model for her Mr. Gray in "(Rohert Elsmere) ; hut the resemblance is by no means complete, as Mr. Gray's work is undoubtedly, as he appears in 'Robert Elsmore,' rather that of a destructive literary critic than a constructive philosopher: Hisworks include: "Introduction to Hume's Treatise of Human Nature' (1874) ; and 'Prolegomena in Ethics' ($\mathrm{IS8}_{3}$)

Green Bay, Wis., a city and county-seat of Brown County, situated at the head or southern point of the bay of the same nane, and at the mouth of the Fox River, on the Chicagn \& Northwestern, Chicago, Milwankee \& St. Paul, the Green Bay. \& Western R. R.'s.

Commerce and Industry.-Green Bay has an extensive commerce. Twenty-four passenger trains arrive daily over the four railroads entering the city. An extensive lake traffic is also carried on, the harbor, through government appropriations, having been made accessible to the largest vessels upon the Great Lakes. Coal constitutes the largest single import, Green Bay being an advantageous distributing point. The largest export by way of the lakes is grain, although much lumber has hitherto been shipped out. A line of excursion steamers is also run to nearby summer resorts and to Mackinac and the "Soo." The city is provided with a complete electric railwav system, including an interurban line up the Fox River valley to Kaukauna, where a junction is made with another electric line passing throngh Appleton, Neenah. Oshkosh and Fond du Lac. I light and power plant furnishes gas for lighting and heating and electricity for light and power. м are a number of manufacturing plants - 3 large hreweries, 2 paper mills and I sulphite mill. 2 large saw mills, 2 planing mills, I very large canning factory, I shoe factory, 1 glove factorv. I pure milk factory, I furniture factory, 2 woodenware factories, 3 machine shops, I candy and hiscuit factory, I pickle factory, I coffin factory, i carriage factory, i cornice factory.

I paper-box factory. Several jobbing and wholesale houses do a large business, the moss important being a grocery house, a hardware house, and a crockery house. In extensive fish-shipping business is also carried on. Water is supplied from artesian wells by a private company.

Educational Institutions, Etc.- Green Bay has a number of fine public Luildings, the Kellogg library, the Federal lanildings, Saint Joseph's Academy, three llospitals, and just outside the city limits the State Reform School. The public school system consists of 2 high schools and I3 ward schools. employing $8+$ teachers. There are also several parisi schools, graded in the same manner as the public schools. There are 6 Roman Catholic chmoches, 2 Baptist 2 Congregational. 1 Episcopal, 2 Evangelical, 2 Lutheran. \& Methodist. 2 Moravian, 2 Presbyterian, and I Christian Scientist.

History:-Green Bay, the oldest town in 11 isconsin, was first visited in 1034 by Jean Nicollet, who had been sent by Champlain. goversor of New France, to find the rumored short route to China. The site was a favorable one for an Indian village as well as a larding frlace for explorers and missionaries. It is known that Marquette, Joliet, Allonez, and Jonti spent considerable time here. The town was therefore settled by the French, who impressed their character upon it for over 200 ycars, although it fell into the hands of the English at the close of the French and Indian war in I763. In ISI6 the Americans establishe.] a fort on the opposite side of the river, known as Fort Howard, around which a prospernis town of the same name grew up. In 1805 Fort Howard was annexed to Green Bay, and is now known as the DTest-Side.

Goztrument, Etc.- The government of the city is administered by a mayor and common council, the latter consisting of sixteen members, elected ior two years, two from each ward. Assessed valuation: Lots exclusive of build-
 property, $\$ 2,827$, I. 0 ; total, $\$$ II, 257,II5. Pop. (1003 est.) 20,142.
A. IV. Bírton,

Superintendent of Schools.
Green Bay, an arm of Lake Michigan, on the southwestern coast of the upper peninsula of Michigan and the eastern const of II isconsin. It is 120 miles long. from 10 to 20 miles wide, has an average depth of abont 100 fcet. Fox River, the outlet of Lake VIinnebago, enters the bay at its head, at the city of Green 13ay. The bay is navigable for the largest lake steamers. The largest cities on the bay are Green Bay and Marinette, in Wisconsin, and Menominec and Escanaba in Michigan.

Green Cove Springs, Fla., town. countyseat of Clay County ; On the St. John's River. the Jacksonville, T: \& K. IV. railroad. It contains a warm sulphur spring noted for its medicinal properties. The trade is chiefly in fruits, vegetables, and lumber. Pop. 1,015.

Green Island. N. Y., a village of Albany County, on an island in the Hudson River oppesite Troy, on the Delaware \& H. and the New York C. \& H. R. R.R.'s. It is connected with Watervi - and Troy by bridges; and has iron manufactorics. machine shops and railroad car shops. Pop. (1000) 4.270.

GREEN MANURING - GREENAWAY

Green Manuring, the asricultural practice oi plowing under crops while succuient in order that they mas enrich the suriace :aver is their decay. It is of ancient crisin and wide pepularity, especially in mild clinntes: levs in tre pical than it should be. The objects gained are the opening oi the soil and especially the subsoil by the roots ni deep ieeding plants: the raising of plant ind irem the lower strata in the surface layer and the saving of available plant fo d in the suriace layer. material that whitd leach away bey nd the reach of sha!' w- :cd plants: the addition of humus io the stil by the decay of the plants: and, with ce:tain cr-tls. the addition oi nitrogen us ic ds chaned ir m the air. As the plants decay they alse act upon insoltable plant food in the s.il and make it arailable. They beleng to two clasees: (i) shallow-rooted plants stich as rye. buckwhear, mustard, rape, ete.. which are special y useiul on hard and pour solls cpen the way for more exacting crops: (2) deep-routed plants such as clover, corr-pea, velver bean. vetch and ther leguminous plants which are still iurther useiul because of their power of obtaining nitrogen from the air. See Clover: Fertilizers; Lee Misots Plants: Mantres and Mantring: Rout-Ttebercles; Sorl, and articles on the crops mentioned.

Green Monkeys, three similar species oi small Arican monkers, often seen in menagerics, and representing the genus Ciriorit eirus, may properiy be called green monkeys tecause of the prevailing tint of their fur. The cre mest e momonly seen is C. collitriohus, the size of a cat. and remarkable ior its umbr, ken sllence. The vervet (C. Lulundi) is smaller, grayi-h green, reddish white on the cheeks. throat and underparts, whie the face. faws and end of the tall are jet back It is common all over South Airica, whete no other species of its large genus arc is und. The grivei (C. srisivi irdias) is specklud e we-greent. with a whitish forelnead. chin and rump: is dwells in Abyssinia and is not numer nts. 111 these monkey, at least when young, are cxecedingly docile and good-nature 1 in captivity.

Green Mountain Boys, the restiments of Vermont setters rained to defend ile New Hampshire arantes asainst the efforts ci New lork to oust them or col ect quat-rents, and later for service in the Revoluti n. Ste Illevi, Etris.

Green Mountain State, a popular name for the State n i lermont, from ir berng cr wed $1 y$ the Green Muvntains. See Gnfes Merotans:; Versist.

Green Mountains, a rance belunging is the Aryalachin is -tem pr perly evtor ling if in near Ling [sland S ind ihr iceh the wesien part of Cumectic at anl Mainachu-ctt- int Vormont and Canala In the State, i Vern it ils.
 in X a-achusett= and C nncetcut, it is caloul ly

 one if the deat in \therefore oth America, have trent worn d isn by or winn and we thering, ut tion molly illce they have bee me low, muml huls. Weir graatent devatic n is in Verms n : Mumts Ki metm, 1 astrield, Catre Hompl, I.me Im, 7 d Jay being the lichest Summi: a hamlet in the t wn of M, unt If liy: in Rutlat of County,
is the higle-: r int en ssed by a railroad. Some if the test buiding stume the country is obtame 1 in me Green JJoumtams. Granite and mar le exno in large quantities. and on the western slope are lavers oit red sandstone. Ircn and siate al u*d. It emper and manganese are inund in several places. The range forms the divade between the basin of the Connecticut on the eart and the Lake Champlain and Hudson River basms on the west. The rivers rising in the Green Af umtams are short streams. but their water-1 wer is abundant. In the fertile vallevs are rich farms, and sheep and cattle are raised ©n the uplands. The hemlock, spruce pine, and wher evergreans which i rm striking parts of the iorests, have g'ven the name to this range. Hard w d irees and the sutar maple are iound on both tle east an I west slopes of the mountains. The boauty of the scenery and the climate make the Green 11 untans a place much irequented in =ummer by tourists.

Green River, in Kentucky, has its rise in Line in C unty, slows south and west to Adair Ciunty: west, a very irregular course. to Butler County : then nerthwest to the Ohio River which it enters a few mules above Evanswile. Ind. It is aho it sso miles long, and is navigable for small steamers int a distance of about zoo niles It in the Ohto: lut for a part of this distance artificial means have been used to make it naviarable. In Edmunson County this river passes whin so fect if the mouth of $\$ 1$ ammoth Cave. The subterranean stream called Echo River. which is veen in connection with the Mammoth Cave. flows noto Green River.

Green River, in Uiah, has its rise in the westert pirt of ll yummeng. flows south and east int C rad. suth and west into tiah. then in a southem direction to the southeastem part of the Siate where un mites with the Grand to form the C. lirad Rover. Nlajor Powell (q.w.) and ether expl rers have passed through several of the remarkable cannoss of this river. Its length i- al ut 525 mlc

Green Snake, in the United States, a very slenter. agle, harmles. grass-green, yellowbellied icrfett (Lu filus zirnalis). whieh is not f nly c mm in in grassy places but in bushes, its oul T C necalre it well in locth places. It ieeds mainly in insects. Several poisonous serpems it è i.r East, are called jreen snakes ${ }^{0}$ by Eng h-apeaking resident: on account of their C r.

Green Springs, Va, Battle of, 6 Tuly 1781 . Laiver te. rumi reed by Etcuben, was pressing cl -e. an Crnu Is" rear down lork penmsula: at I the. nec-guard under Wavne came unexf - 'ly ${ }^{11}$, 11 an entire division if the Britith
 tht it it a mean my destrucion, he charged t! eth - fi rety that Cornwallis, thinhing the enture Ir creas army was umon him, merely re1 1. .tag party and drew e \tilde{f} his men, Vinc 11 : rtrated in the other direction. j ic \I …n J - was 145

Green Vitriol. Sec Coprer.s:
Green"away, Kate, Enclish artist: b. LonTha it 1 ivere 8 Nov. Igor. She studied at the the ry Sith Keusingt in, and the Slade s.h 1. and firut exhibited in res at the Dudley finkery Fir many years her work regularly appearel in the exhibitons of the Water Color

Society and the Academy. Her illustrations were widely published and popular in the L'nited States as well as in Great Britain. She became especially famous for her pictures of child life, characterized by individuality of design, skiiful coloring, and lumorous tonches. Iler books include ' 1 Painting Book ior Boys and Girls' and 'Kate Greenaway Birthday Book.'

Greenback-Labor Party, or National Party. The workingmen during the "panic vears" ($1874-8$) increasingly resorted to political activity to right their grievances, and in Ohio in 1877 began to call their local organization the "National Party:" In Massachusetts and Pennsy1vania they iused with the Greenback Party (q.r.). On 22 Feb. IS-8, at Toledo. Olio they held a convention which organized the fusion as the "National Party:" but the popular name for it was the old fusion name "Greenback-Labor." Their plafform was the Greenback one, with planks against prison contract labor and in favor of legislation ior shorter hours. The new organization awakened hopes in the hopeless minorities in several States where the majority, Republican or Democratic, could not be overturned: and they organized fusions with it, which raised it at once to a popular vote (apparently) of over 1,000,ooo, and elected it Congressmen. In the close States ach old party kept its own vote. with a slight falling off to the new one. The party proper elected but two representatives, five of the it being really Republicans and seven Democrats. In 1880 ($9-10$ June) it held a national convention at Chicago, and nominated James B. Weaver of Iowa, and B. J. Chambers of Texas, for President and Yice-President; Chambers declined, but no substitute was nominated. The platform had all the old planks in substance, and new ones against Chinese immigration, land-grants to railroads, and favors to corporations and bondholders, and in favor of sanitary regulations for manufactories. The fusions had largely disappeared, and the popular yote sunk to 306.807 . and the Congressmen to eight; four from Missouri. two from Maine, one from New lork, and one from Texas. It retained its organization till 188_{4}, when it fused with the Anti-Monopoly Party (q.v.) and nominated Benjamin F. Butler for the Presidency, polling in all 175,380 votes. It then practically disappeared.

Greenback Party (its own name Independent Party). 1874-6. The prosperity of western agriculture during the War, due largely to the heavy government purchases and the payability of nortgages in depreciated paper, was attributed by a large section there to the plentifulness of the paper by itself: hence, when hard times had succueded, it was believed that a fresh inflation oi greenbacks would reproduce the same conditions. The chief obstacle to this was thought to be the eastern banking interests, which, laving lought government bonds in greenbacks, had obtained the act of I 869 making them payable in coin whether so specified or not; and should have been forced to take what they gave. the more since paper was now at par and their bonds were not taxed. By isus the Ohio Democrats, led by George H. Pendleton, were insisting on the payment in greenbacks of all bonds not specifically payable in coin, as the $5-20^{\circ}$: this was called thic "Olio Idea." Western Democratic conventions placed this plank in their platforms for three
or four years, but the nomination of Grecley put an end to that in is-z. The rerval of greenbackism is often attributed to the silver demonetization act of 1873 : but in fact silver was above par at that time, the act drew no general attention, and but ior the later fall in silver probally neser would have done so. The real cause was the bringing forward of the Resumption Act, passed If Jan. I875, to take cffect 18,9. On 25 Nov. 1874 a Greenback convention was held to protest against it, and adopted three resolutions - (t) that all bank and corporation currency should be withdrawn: (2) that no currency be allowed except governmenr paper "based on the fath and resources of the nation." and exchangeable on demand for 3.65 per cent bunds: (3) that coin should be paid only for interest on the national debt, and for that part of the principal which promised it. Several Democratic conventions indorsed these; but in 18,6 the prospect of the hard-money Tilden being the next Presidentia! candidate. led the party to form an organization of its own. At a convention at Indianapolis. 17 May, they nominated Peter Cooper of New lork and Newron Booth of California for President and Vice-President:- Booth declined, and Samuel F. Cary of Ohio was substituted. The platiorm, besides the three points above, demanded the repeal of the Resumption Act. The ticket polled $\mathrm{S}_{1,737}$ votes, over half of them in Michigan, Illinois, Indiana, Iowa, and Kansas. In the State elections the next year the party polled 187.095 votes. but the main strength continued to be in the West. The next year it was absorbed in the Greenback-Labor Party (q.v.).

Greenbacks (as printed in green ink), the current name, from the first, of the legal-tender notes first issued by the government during the Civil War. (See Debt, Nafiosal.) The authorizing act was signed by Lincoln 25 Feb. 1862 ; it was the first ever passed by Congress making anything but coin legal tender, and nearly all the Dennocrats and many Republicans declared it unconstitutional. But war necessitice were too exigent, and the bill authorized $\leqslant 150,000,000$ of the notes, not receivable for import dues nor payable by the government as interest on its obligations: On 11 June 1862 and 3 March 1863 inther issues were authorized: and on 3 Jan: 1864 they reached their maximum anount of $\$ 449.338 .902$. The great inflation, the uncertain fortunes of the War, and the belief that even if rictorious the United States neither could nor would pay its enormous debt at face value, but would repudiate or scale it, combince to depreciate the value of the notes; throughout 1804 they were worth on an avcrage only about 45 cents on the dollar, and on one day. It July, when Early was threatening Washington, they dropped in panic to about 35 cents - or as currently expressed, the "preminm on gold" was 285. The legal-tender acts had always been monderstood to be temporary war measures only, and a choice of evils; thic secretary of the treasury (AlcCulloch) in his report for 1865 . expressed the opinion that they onglat not to be in force a day longer than was necessary to prepare for a return to the gold standard. The House passed a resolution of cordial concurrence. Itt to 6: and on 12 March 1800 both houses agreed on a reducing act, by which on 38 Dec. 1867 the volume of greenbacks stood at $\$ 356,000,000$. But the demoralization of economic sentiment and
judgment wroughe by them, which aiterward lisued in the Greenback party, was already, at work: many attributed the prosperity of the time to the currency inflation, and even in Congress a majority had determined to make the paper eurrency a permanent feature oi our finarce On \ddagger Feb. 180 any further reduction was pruhibfited. and the wolume stood at this mark till Ociter 18:2, when it began to increase, amount-
 IEI, the maximum was tixed at $\$ 382.000 .000$. Neantime a test case had been made up to try the question of their constitutionality (Hepburn

Griswold: see Legal Tesder Casesi, and in 18og the Supreme Court. by nive to three, headed by Chiei-Iustice Chase, decided agamst them. The fiercest politica! opposition was roused by this, howeve:, and ii became a party question. The Suprenie Court, in May 18, t. reversed its decision by one majority This experience has led the Supreme Courr to te excessively cautious about taking jurisdiction in auy case where strong pointical feeling is involved. The question oi legal tender has beame unimpertant since the passage oi the 'Gold Standard Bill' (o.v.), under which no depreciation in value is possible.

Green'brier, any of vari wis prickly vine: of the genus Smilar (q.v.), commonly the catbrier (S. roturutif)! ip). which grows ail cuer the eastern half of the L'nited Siates and is especially numerous in the Southern Alleghanies. where it designates various mountain-ranges, streams, etc.

Greenbrier Mountains, a range of mountains 10 the eastern part of West Sirgma. lyms west of the man part of the Alleghanies and parallel to the Greenbrier River (g....). Their average height is about 2.000 feet. the highest ptint being about 3 .500 iect.

Greenbrier River, a river ni West Sirginna. rising in the Rich 11 untans: Rand 'ph County, flowing onthwest imo diw Ruver: lengeth tso miles.

Greenbrier White Sulphur Springs, 11 : Va.. the name : me:me- given the Whte Sulphur Springs in the Greentrue M1 atall dietmedish them irom les impotant rrma of cimplar charactur. See White Sulbuer SIKIX :E, IV: Va.

Green'bush, \mathfrak{N}. 1.. inomerly a toxwn now a part of the city of Renwelacr is Revon zer
 A. and the New Yint C. \& II. R. Railruads. Sec Rex $r=$ eliser.

Green'castle, Ind., city and county-cat of
 L. the L_nuizvile. N., A. \& C. and the Vandalia Line R.K.': 35 nile nertheart oi lerre Hante. It i, the eat if De Paw ('niveraty, wh hern large buldinge. She lav wet ut poblic
 -..wo vumes. It was -ettled in is22 and incorpurated in then. The i rmot goverituent in by a mayer and a momicepal commeil elected every two years. Greencastle enntarth lumberm is and mannfact ries of lightmene r 小. pungs, and one ei the largest and best ofuipped tin-plate factorie in the world. Jip. (190.t) 4.200 .

Greene, Aella, imcrican jnurna ${ }^{12}$ - and

Mar:., 1903. He was the authur of: 'Rhymes of lamkee-Land: 'Into the Sunshine' (1881): Stanza and Sequel' ($18 \mathbb{S}_{4}$): 'Gathered From Liie.

Greene, Albert Gorton, American lawyer and peet: U. Pruvdence. R. I.. 10 Feb. 1802; d. Cicveland. Ono + Jan. INos. Graduated irom Brown Lniveraty 1820 , he was admitted to the lar in 1823 ; in 1832 became clerk of the town and of the manicipal court of Providence, and in 1850 judge i the court. From 180 ; he was in Cleve and. Uhis. He was at one time president of the Rbode Island Hiserrical Society, was a if under of the Providence -theneum, began the Hurris collection of - American verse (now at Brown [niversity), and wrote some well-kne un poems. such as 'Old Grimes' and 'The Baron's Last Banquet.'

Greene. Charles Ezra, American engineer: 1. Cambridge. Ifa=s.. 12 Feb. ISt2: d. Ann Arb r. Nich., $1-\mathrm{Oct}$ 1903. Graduated from Harvard in 1802 and from the Hassachusett: Inctitute of Technology in 1808 , he was United States as-sistant engineer in $18,70-1$, eity ensineer of Eang or. Maine, in 18-1-2. and in No: 2 became professor of civil engineering in the University of Mrchigan. He also practised
consuling engmeer and in 18, (0-2 was as:-crate-edit r it the 'Engineering Jews.' His writings include: 'Grap'incal Method of Analyss of Bridge Trusses' (18-5). 'Structural Mechanics' (18g-), and other technical works.

Greene, Christopher, American soldier: b. Warwick. R. I. 1737: d. Westchester County, N. Y. 13 llay 1-\&t. He was among the first to take the field in the American side aiter the encazement: at lexington and Coacord. Subat |uenr:\% as colonel of a Rhode Island regimout, he participated in the campaign in Canada under Arnold. In $1 \% \%$, while in command at Firt Mercer at Red Bank: on the Delaware, Ie sutal⿻ 4 an atiack from a large force of Hestans ander Cal. Dunop, who were repulsed with great : argher. Fir these scrvices a sword was whed h:mb by C ngess, and a monement com-mem-rative if the battle and of the valor of the Amerienn commander was erected in the neighb rhand of Fert Mercer in 18zo.

Greene, Edward Lee, American botanist: 1. 11 Him? R. I., 20 Anz. $18+3$. After studying at Nho on Cellize. Wis., he wok orders in He Procornt Epicupal Church (18 -1) : but in An ured the Church of R me. He has been prife...r II tany at the Roman Catholic Uni-

 1. ©): Fra Franciscana' (I\&21) : and 'Pitthat Cus)

Greene, Francis Vinton, Imerican soldier: 1 Ir. Y, R. I., $2-$ June 1850 . He was groflated: Wi-? Pe int wath the rank of secA. 1 if artillery. In 18,0 he was : it ry tuache at S?. Peterchurg and rem. x d at the head puaters of the Russian army
 Gur of "i ch te was iwice deenrated for Fraver. () winng his captamey in $t 88_{3}$ he 1. : liry : rrs later appointed instructor in
 is -rice wit in the Barler Asphalt Company. and in ancont of the Natinnal Asphalt Comfry ulen the trut went into the hands of reealrer. He entered the Xat nal riuard in

1889 on the staff of Gen. Louis Fitzgerald and was elected colonel of the Seventy-first regiment in 1892. In the Spanish-American War he was commissioned major-general of volunteers and served principally in the Philippines. In 1902 he was appointed police commissioner of New lork. He has written: 'The Russian Army and its Campaign in Turkey' (1879) ; 'Army Life in Russia' (1880): (The Mississippi) (1882); 'Life of General Nathanael Greene' (1893).

Greene, George Sears, American civil engineer and soldier: b. Warwick, R. I.. 6 Hay $1801 ;$ d. Morristown, N. J., 28 Jan. 1809. He was graduated at West Point in 1823 and was for several years one of the professors there, hut in 1836 adopted eivil engineering as a profession, after sending in his resignation as an officer in the United States army. He was engaged subsequently in railway construction in many castern States, and in 1850 the Croton Aqueduct Department of New Fork city eommissioned him to execute several important works. He designed and constructed the reservoir in Central Park, widened High Bridge, and built a water tower and reservoir at its western extremity. At the beginning of the Civil War he took command of the Sixtieth New York Voluntecrs, and was put in command of a brigade at Cedar Mountain and a division at Antietam. He took part in many other important events of the war and was severely wounded in an engagement near Chattanooga, 111 I863. In 1866 he retired from the army and the following year was appointed commissioner and chief engineer of the Croton Aqueduct Department, and in 1871 was called to Washington, D. C., as chief engineer of public works. During his three years' incumbency of that office he planned the sewer system of the national eapital.

Greene, George Washington, American historian: b. East Greenwich, R. I., 8 April I8rı d there 2 Feb. 1883. He was a grandson of Gen. Nathanael Greene (q.v.) of Revolutionary fame. After study in Brown University, he traveled extensively in Europe, was United States consul at Rome in 1839-45, and from $18 \not 48$ until his resignation in 1852 was professor of modern languages at Brown University. He was appointed non-resident professor of history at Cornell in 1872. His publieations include several historical works, such as: 'Historical View of the American Revolution' (1865), 'Life of Nathanael Greene) ($186-7 \mathbf{7}$), 'The German Element in the War of American Independence' (1876), and a 'Short History of Rhode Island' (1877).

Greene, Homer, American author and lawyer: b. Ariel, Pa., 10 Jan. 1853. He was graduated from Union College in 1876, from the Albany Law School in 1878, was admitted to the bar in 1879, and entered practice at Honesdale, Pa. In Pennsylvania politics he has been active as a Republiean. He has contributed much verse and prose to the magazines, and published: 'The Blind Brother,' 'Burnham Breaker,' 'Coal and the Coal Mines,' and 'The Riverpark Rebellion.'

Greene, Nathanael, American soldier: b. Patawomut, Warwiek County, R. I., 7 Aug. 1742: d. Mulberry Grove, Ga,., i9 June 1786. His father, a leading preacher among the Quakers, was the owner of an anchor forge and
a grist mill. He was brought up as a Quaker, and trained from childhood to work on the farm and at the forge. Resolute perscverance in the midst of many olstacles gave him in the course of time a more than ordinary familiarity with ancient and English history, geometry, law, and moral and political science. In 5/70 he was chosen a member of the generat atssembly for Coventry, whither he had removed to take charge of another forge; and from that time continted to take an active part in pullic aftairs. He was one of the first to engage in the military exereises which prepared the way for resistance to the encroachments of the mother country, and this open renureiation of the prineiples of his sect was promptly foflowed by formal excommunieation. In $17 / 4$ he joined the Kentish guards as a private; in July of che same year was married to Catharine Littlefield of Block Island, and in
 command as brigadier-general the Rloode Island contingent to the army before Boston. He joined his command at Roxbury on 3 June and from that time remained in active service without a day's furlough till the final disbandment of the ariny in $1 ; 83$. At Boston his brigade was distinguished by its discipline, and after the evacuation he was entrusted with the defense of Long Island. IIe distinguished bimself in the battle of Harlem Heights, later commanded a portion of Washington's army near Ft . Washington on the Hudson, and in September he was made major-general, and appointed to the command in New Jersey, At Trenton he led the division with which Washington marched in person, and, with Knox, was for following up the advantages of that brilliant surprise by advancing directly upon the other detachments of the enemy. He took an equal part in the battle of Princeton, and was entrusted by Washington during the winter with a confidential communication to Congress. At the Brandywine he commanded a division, and by a rapid mareh and successful stand preserved the ariny from utter destruction. At Germantown he commanded the left wing which penetrated into the village. On 2 March 1778, he accepted the office of quartermaster-general, which he held till August $1 / 80$, fulfiling its arduous and complicated duties in such a manner as to call forth from Washington when he left it the declaration "that the States have had in yon, in my opinion, an able, upright, and diligent servant." Or 23 June $1 \% 80$, he checked with two brigades and a small body of militia the advance of a corps of 5,000 of the enemy in the brilliant battle of Springfield. He was in command of the army during lWashington's visit to Hartford in September 1780, when Arnold's conspiracy was diseovered, and sat as presilent of tile court of inquiry upon Major André. In October of the same ycar, he was appointed to the command of the Southern army, which he found on his arrival, in December, in a state of utter disorganization and want. He soon advanced to a well-chosen camp on the hanks of the Perlee, and legan a series of operations which in less than a year stripped the enemy of nearly all their hard-won conquests in the two Carolinas and Georgia, and shut them up within the narrow limits of Charleston and its immediate neighborhood. Among the events of this active year were the battle of the Cowpens. won by Gen. Morgan at the opening of the campaign; a brilliant retreat from the Catawba

GREENE

to the Dan; the battle of Guiliord Court House in which he lost the field, but gained the end ior which he iought: the pursuit oi Commallis to the Deep River: the darins advance into South Carolina: the battle of He blirk's Hill. a sec nd derat followed by the result of victory: the siuge of Fort Nincty-sin. raised by the advance of Lurd Rawdon. bui iol: wed by the immediate evacuation of the post and the retreat of the enemy tuward the west: the drawn battle of Eutaw Springs. and the advance upon Dorchester. spoken of by Washingion as ancther "proof of the pectiliar abilities" of Gen. Greene. Congress presented him with a medal in services in the batle oi Eutan Springs. and North and South Carolina and Georgia made him raluable grant: of property: He removed to the estate of Mulberry Grove on the Savannah River, Georgia, where he died uf a sunstroke Consuli G. H'. Greene. 'Lie' (186,--1): F. Y'. Greene. 'General Nathanae! Greene' (1893).

Greene. Nathaniel. American journalist: b. Boscawen, ‥ H.. 20 May 1;9; ; d. Boston. Mass.. 29 Nor. 18.7. At 12 he entered the office of the lia Hampsitire Patri): published at Concord. and at 15 became editor of the C miond Guactic. Aiter editing papers at Portsmouth. ‥ H., and Haverhill. Hass. he removed to Boston. where he estahlished a new Democratic paper known as the Bos:n Stotesn:an, and published semi-weekly. its tirct appearance being on 6 Fcb. IS:1. During the administration of J. Q. Adams it was oppozed to the almost unamimous sentiment of the city and State: but in 18 ºn, when the general government passed into the hands of the Democratic party. President Jackson appointed Grecne postmaster of Boston. He held the cffice for i2 years without interruption. and. althouch remored in I\&si. was reappointed to it by President Tyler in Isf. and held it until 18s0. In 1836 he tranclated a 'llistory of Italy' from the Italian of Siorzozi, which was foll wed by the translation of two whlumes of 'Tales from the German' (1837). In 1843 he mublisled 'Tales and Sketches from the French. German, and Italian.'

Greene. Robert. Englich writer: h Norwich. $15=\mathbb{R}^{\circ}:$ d. Lond nn. 3 Sent. 1502. Though little is kn wh of his early life. Robert Greetse was frohably born in 158° : his father may have heen a addiler. The greater part if his career is ennjecturned from his mate ar lese aut hine craphical novile and pamphlets. He entered Sairt I hat e College. Cambridse in $15-5$ amt irnk his R.A. in ras. Already in his emllege vears, perhape carlict, he hat entered hearily: int, the disipation for which he was unterinus. tI nugh pertraps his nwn reencil of himeclí ani i) at left ly his enemy Gabricl liarver. may both be ere geetated Eponte vine enll ie he ceemis have trawed extencively abond. liarning. from 1 is nwn account. for more evil than ge at Shirtly after his return to Fingland he hearl a erm in in Saint Andrew : Church. Sinrwich. which atrongly moved him to repontance. lint he in ree wered his misual recklemsese the incid th. I wever true is charasteri-ti of him: his excesces alternated with highly ery iti nal confewi ms of penitence, which were probably
quise sincere. The original fineness of his sprati was litule harmed by his whld courses: his writing throughut is remarkably pure-minded. In 1500 Dlamila. has irst novel. was registured; it was published three years later. It seems that he was then studying medicine at Cambridgc, where he to k his MLA. in 1583. Uithin two years afterward he married a w oman fi sood iamily. Aiter their one child was bonn. Grecne descrted her, and gave himself up to a wihd life in Lundon. It has been pointed out that the charactur of the patient. deserted wite fecus through his writiogs, as though the woman he had wronged was ahways in his mind.

Greene's first occupation in London was the writing of prose rominces, varying between the type of Sidney's 'Arcadia' and Lyly'ミ 'Euphues.' His success in this kind of writing was inmediate. He had a better narrative faculty than either Sidney or Lyly: and in addition to an umusual facility in composition he had something oi the journalist's skill in finding the interest of the moment. Before 1590 he had writen 'Penclope's W'eb.' 'Euphues. his Censure to Philautus.' 'Alcida. 'Greene"s Metamorphocis.' 'Perimedes the Blacksmith.' 'Orpharion.' 'Pandosto." 'The Spanish Masquerado.' 'Jenaphon.' and 'Tullies Love.' He had also made many good iriends. Nash he had known before: now he met Lodge and probably Marlowe. But at the same time he was living a strangely profligate life, among thieves and outcasts. his special comrade being their chief. Ball. whe ended his career at Tyburn. Ball: sister was Greene's mistress. the mother of his son Fortunatus

In ison appeared 'The Cobbler of Canterbury:' a collection (i six coarse tales, ascribed 1) Greene Greene repudiated the book in a pamphlet. 'Greene's . 'pology.' amouncing his intention to write no more such romances as micht make him seem the likely author of 'The Cobbler!' Is further expressions of this characteristic repentant mood appeared in the same year his 'Mourning Garment and 'Never Too Late,' and in $1: 01$ 'Farewell to Follie.' Hithin the next year he wrote his five pamphlets on do semage' no 'cmer-catching - descriptions of the lives and methois of thieves and cutpurses: for his material he drew on his own experience and sbecration, and the pamphles present pictures of ast mishing realism. His old companin:ls whom le had now turned on, are said to have eried ! kill him.

In a -atire on the social evils of the times. ' 1 Quip ior an L'pstart Courtier' (1ミ0z). Greme tonk accasion to incult Gabriel Harvey and his tw) hr thers one of whom. Richard, in a panplate: n the Martin Marprelate Controwersy had speken hirally of Greene and his friend. The wrath of the llarvers was turned upnon Greetce and pursued him even atter his reath, in Gobriel Harvey's "four Lesters and Cortain Sontets especially touching Rohert Grecne'-a cru 1 acciunt of Greene and of his la-t 1 ur

The trus ply of riteene's according to the mous recent -ch ilar-hip. wan 'Alphnnsus.' abous 1501 ar imiati n if liarlowe's 'Tamburlaine:
 Lor th at I Fin-l nd. in which some of the matcri i ile ${ }^{\text {coney-eatchingo pamphlets is }}$
reflected. Before 1592 he had written the 'Orlando 1'urioso,' 'Friar Bacon and Friar Bungay;' and 'James IV. of Scotland,' prolably in that order.

At the end of the year 1592 Greene fell ill, and with death at hand, his better mature reasserted itself. On his deathbed he wrote or completed his 'Groatswortl' of Wit Bought witlı a Million of Repentance,' and 'The Repentance of Robert Greene,' which were published shortly after his death. His affecting letter to his wife, whom he now remembered; the pathetic squalor of his death scene in the shoemaker's honse; his ironical request to be crowned with bays-completc one of the romances of litcrary biography.

Greene is an important figure in the history of the English novel, drama, and lyric. His amorous romances are in the Euphuistic style, and their subject-matter is Arcadian; but Greene's vital interest in life at first hand and his humor tend to humanize the artificial manner, and to bring the content of the stories out of the pastoral glamour into a natural world. The pastoral habit of beauty is perilously near shipwreck in the passage in 'Menaphon' where the shepherd and his jealous mistress. Pesana, begin to quarrel with true rustic energy and frankness; and the same genius for realism found its opportunity in the later "coney-catching" pamphlets, which, though formless, practically have the interest of the picaresque tale. The delicacy of his feminine characters, however. proves Greene's sympathy with the courtly world of beauty that his realistic power helped to supplant.

Greene's dramatic work, with the exception of 'Friar Bacon and Friar Bungay' and 'James IV. of Scotland,' is unimportant, but in the first of these better known plays he is clearly a forerumner of Shakespeare; as in the romances, he represents a transition, from the serious drama, religious or heroic, to a realistic ningling of moods and themes; and his country folk belong to England, not to Arcadia.

His real fame rests on the lyrics in the romances. These songs, like those in the 'Arcadia,' all highly wronght, are quite without Sidney's pedantry; they are at times stately, as in "Doron's Description of Samela,", or pathetic. as in "Sephestia's song to her child." or metrically ingenious, as in Menaphon's song, "Some say love"; but they all hase a certain silvery music, a tone of dignity without heaviness, which in its peculiar quality is found only in Greene. Lodge's lyrics are the only examples that can be compared with his. In 'Rosalind' the famons "Love in my bosom like a bee" is perhaps smonther than anything in Greene; and "Rosalind's Description" is the best example of Lodge's rich, pictorial coloring. But Lodge's art, thongh finer, is less directly human than Greene, whose lyrics, like the account of his career, stir one with a sense of the actual man.

Bibliography-The best complete edition is that by Frncart. 'The Huth Library' ; the best editinn of the plays and poems is that by Churton Collins. For biograply and criticism, consult 'Introductions' to above.

John Erskine,
Assnciatc Professor of English in Amberst Collcge.

Greene, Samuel Dana, American naval commander: b. Cumberland, Md.., is leb. 1840; d. Portsmouth, N. IL., aI 1)ec. isit. Grahluated at the Nival Scademy in 185\%, he volunteered in Jannary, 1812,2 th serve as executive officer of the Monitor, whose capalalities were then untested, and during the engagement of the Monitor with the Confederate ran Merrimac, in Clampton Roads, he commanded the vessel on account of an accident to Captain Worden, his superior. After the war he was a professor at the Naval Academy for 10 years.

Greene, Sarah Pratt McLean, American novelist: b. Simsbury, Comn., July 1856. She was educated at South Hadley Seminary and for several years taught school in Plymouth, Nass. In 1887, she was married to F. L. Greene. She has published 'Cape Cod Folks'; 'Towhead, the Story of a Girl' (I884): 'Lastchance Junction' (1889): 'Leon Pontifex' (I897); 'The Moral Imbeciles' (1898): 'Vesty of the Basins' (igoo): 'Flood Tide' (IgoI); 'TVinslow Plain' (1902) ; etc.

Greenfield, Ind., city, county-seat of Hancock County, on the Pittsburg, C., C. \& St. L. R.R., 20 miles east of Indianapolis. It has foundries, machine shops, and manufactures of glass, paper. stoves, etc. It is the birthplace of James Whitcomb Riley (q.w.). Pop. (1900) 4. 189 .

Greenfield, Mass., town, county-seat of Franklin County; on the Connecticut River, the Boston \& M. R.R.: about $3+$ mites north of Springficld. Greenfield was once a part of Deerfield; but in 1738 it petitioned for a scparation which was not granted until $\mathrm{F} 7+3$. Greenfield and vicinity has many famous historic associations. The massacre of Deerfield occurred in the winter of 1704 , and a monument marks the place where an Indian struck down Eunice Williams, the wife of the parson. John Williams, on 1 March, 1704 The chicf mannfactures are machinery, cutlery, shoes, paper, boxes, wooden-ware, bricks, toys, cliildren's carriages. Pop. (1900) 7,92\%.

Greenfinch, or Greenlinnet, one of the most common and beautiful of European finches (Ligurinus chloris). The general color of the male is olive-green; primaries grayisli-black, with bright yellow elges; under parts yellow; female brownish. Although its song is uninteresting it is a favorite cage-hird in Germany. In Texas a greenish towhee bunting (q.w.) is locally called "greenfincli."

Greenhouse, any glass-mofed house used for plant growing. The term exchucles cold frames and hot-beds, but in America includes many structures known in Europe by special mames, such as stove-houses, graperies, conservatories, etc. Gircenhouses may be divided according to the temperature maintaincd in them: for example, cont-house, used for such plants as violets, pansies, daisies. ctc. conservatory, used for plants displayed but not propagated or forwarded in growth: the foreing house in which plants are rapidly pushed

GREENHOUSE INSECTS - GREENLAND

to markerable jution: the warm-hotise, weed fu- ioplcul and huatiosing plants. Then there are .t as designed iu yecial erops and known as : Isc- carnats .' . palm-, orchid-, asparagushouses, cte.

S:nce the beginning of the poth century, and ese cobaly during the latter halif, improvements in zreenhouse construction, heating, ventilation, and managenment have made remarkable progre:s. In place of the heaw shade-casturg roof ei large wooden rafters and small panes is the large-faned, sniall ir n-raitered rooi; steam and lut water have supplanted the old fue systems; and the carefully pitched rooi which iavors the entrance of light in winter and net in summer, las replaced the roof of scarcely considered slant. Nuch attention is also given to location, sume points considered being exposure to the sun, shelter ircm prevalling winter winds, adequate water supply, proximity to market, eic.

An idea of the importance of greenhouses may be gamed from the knowlecige that during the first quarter, if the tyth century there were almo:t no greenh uses except the few cumberorme anes uly sime private places, and that in
 esta in inments averaging about 2.500 square ieet, 1. fued at 50 cent: a square ioot, and a producing capacity of $\$ 1.00$ a square font - intals of S1I.250.000 and $\Sigma_{22.500,000 \text {, respectively. Be- }}$ soce these are himdreds oi prisate establishmemt: many of which would have been constuered very extencive as commercial houses 75 or cyen 50 years ago.

Cincult: Tait, (Greenhouse Construction' (Ňw l'rrk Nos): Lewchars, 'H t-Houses' IEEO: Hunt, 'Hyw to Gr "3 C't F wers' Terre Haute. Ind., 180.3): Taft, Grecnh use Manazement' (New Iork is, 8 : Scot:, 'Flor-

 American Ilorticulture $(\mathbb{L}$

Greenhouse Insects, Jlants cultivated rondes alans are ay su! ect to meect depredatuma s are the se srovine in the garden and rch-1, onlen the greatest care is exerciect. In addits in to many srectes of fureign urigin, sweh as trenter th kind ni seale-mneces (7.1 .) and
 utt) (x. te phant-, we have tative meet-firmly
 men it atd mot deverntise in the llack of. de (1 -i-1 lum (lew), w'th in ilon a pet if im-

 ir $\quad 18=1$ is 41 nore dintinetse y a genem-
 ated meals I uge 'If ') are likely at athe tome
 it... "It hyelruevane-acill sis. Tlic Hite dy (Iv.). wheh mame, as 11 ed I y - H. is. ce vees a momier nf species of iley-

: 1 phats griwn artifictally are attacked - 1 y mphormis grecnhouse 1 is . 4 ch - erel ruder (7 eranvehus bintrulaus) : 1 the ereate ne leafiger, and by getmeral field atil surilen gets such as cutworins, wireworms,
 leaf lver (Phlÿt nia forru alis) i iel affected

aniected jeaves, and by spraying with arsencal maxtures

Rusts are peculiarly subject to insect injury, and there are several specific indoor rose pests, such as Fuller's rose beetle (-1ramigus fulleri), which also attacks azaleas, begonias, lilies, primruse, geranium, canna. and others. It appears tu be nearly immune to insecticides in the adult conditwn; one must, thereiore, employ hand methods, collecting and destroying the beetles, preierabiy in Norember and December, when they cungregate on various plants. Injured plants should be pulled out, and the larve about them destruyed with kerosene emulsion or bisulphid of carbon. Numerous leai-rollers, budworms, and leai-tyers (qq.v.) are very injurious to the ruse, by eating into the buds just before blossumung. Roses are seriously injured at times by gall-fies and by the rose-scale (Aularaspis rosa), and other scale insects. Violets eultivated under glass are much injured by insect pests, principally by the black or brown aphis (Rhopalosiphrm riola), violet gall-Hy (Diplosis ciolicola), violet sawfly (Emphitus canadersis), and the red spider, and greenhouse leai-twer. The black aphis is still restricted and dependent on commerce for carriage from one greenhouse to another. but has caused losses of thousands of dollars to single firms. It may be controlled by furnigatinn with hydrocyanic-acid gas, which also destroys the saw-fly and the gall-fly (properly a gall-gnat, q.w.), which attacks the leaves while they are young, the larva or maggot developing in iolds, incorrectly termed "galls." Tobaceo preparations and hibach irsect-powder are also useful against these minute pests.

Green land, an extensive island belonging to Demmark: on the northeast of the contment of North America, irom which it is separated by Davis Strant, Baffin Bay: and Smith Sound; arca $f^{2}, \bar{i} \neq 0$ square miles. A sreat part of its north and precipitous east coast is yet unknown; I 10 it does not extend farther than about lat. $83^{\circ} \mathrm{N}$. Like the northern parts of Nonth America generally, Greenland is colder than the correspending latitudes on the eastern side of the Dtlantic. In June and July the sun is constantly abue the hurizon, the ice on the coast is broken up and a few small lakes are opened; but the th rt summer is followed by a long and dreary "nter. The interior, which is lofty, is uninhabitable. and all the villages are confined to the chant, which are lined with numerous islands and rleeply penetrated by fiords. The Danish \& 51 wends th the Bay of Disco, in lat. 69° \therefore Cilur tirn is confined to the low shores and w: leys, where grassy meadows sometimes uc-ur with sunted shrubs and dwarfed birch, alder, ind pime trees. Attempts to raise oats and I rley have failed, but putatoes and turnips attain the cize of a pigeon's cege. and cabbages gri w ory tnall. The radisll is the only vegetal le w! ch grow s unchecked.

Ti c inlatotants of Greenland (see Eskimos) are ifle E imu race. in re or less mixed with lure pean hend. The individuals of the mixed race har l'y differ as to language and habits from the gerume Ekimo. Besides the natives, about 2:0 Eur manc usually recide in the country, 3n fon whrm have married native women. I lr an l ! ith are large y dependent on hunting atd efoling Whale buller and seal oi'

are used as fuel. The land animals are the Eskimo dog. the reindeer, the polar hear, the Arctic fox (blue alld white), the ermine, the Aretic lare, and the musk ox. Ameng the amphibia the walrus and several species of seal are common. The seas abound in fish, the whale and cod fisheries being of special importance. Seafowl are abundant in summer, and largely killed. The chicf mineral product is cryolite. but graphite and miocene lignitic coal are also found. Oil, eider down, furs, and cryolite are exported. For administrative purposes Greenland, or rather its coast, is divided into two inspectorates of North and Suuth Greenland. The residences of the inspectors are at Disco Island and Godhaab, but the most populous district is Julianehaab.

Grcenland was discovered by an Icelander named Gunnbjörn about 8,6 or 857 , and was zolonized from Iceland about the end of the 1oth century: In the reign of Elizabeth Frobisher and Davis rediscovered the coast, but nothing was done to explore it till the Danish government in 1721 assisted Hans Egede, a clergyman. to establish a European mission settlement. Good Hope (Godhaab). Which was -uccessfully carried on by him and his son. Whale fisheries were established on the coast by the English and Dutch about Ico. The interior of the country was first crossed by Nansen in r888. There are 12 chief stations for trading and the Danish Nission; the southernmost is Julianthaab, the northernmost C"pernarik. At Godbaab there is a seminery for training native catechists: of late, too. natives have been appointed pastors. Pop. (igoI) 67,68I.

Greenland Whale, or Bowhead, the largest and most restricted of the "right" or whalebone whates of the genus Baland (B. mysticetus), which is absolntely confined to the arctic region, reports of its occurrence on other coasts originating in mistaking for it the almost cosmopolitan southern right whale. It grows oceasionally to a length of 70 feet, but is usually considerably less; and is black, execpt a white patch on the under side of the jaw. This whale mas yield 275 barrels of oil, and 3.000 pounds of whalebone. It has become comparatively rare through constant pursuit. Its general habits agree with those of its family (Balanida), for which see Whalebone Whales.

Greenleaf, Simon, American jurist: b. Newburyport, Mass., 5 Dec. 1783; d. Cambridge. Mass., 6 Oct. 1853. He commenced the practice of law in 1806 at Standish, afterward practising at Gray and Portland. He was a reporter of the Supreme Court 1820-32; professor of law at Harvard Cniversity 1833 -48. succeeding Judge Story in the Dean profescorship in 1846 : and upon his resignation in 18,48 was made professor emeritus. Beside nine volumes of reports of the Jlaine Supreme Court proceedings he published: 'Treatise on the Law of Evidence) ($8, \$_{2}-53$): 'Principles of Frecmasonry" (i820): 'Examination of the Testimony of the Four Evangelists by the Rules of Evidence, as administered in Courts of Justice, with an Account of the Trial of Jesus' (18 16). He also edited Cruise's 'Digest of the Laws of England respecting Real Property' (I849).

Greenlings, a family (Hexagrammida) of coast-fishes allied to the rose-fishes, many species of which occur abundantly from northern

Califormia to Bering Sea, including several exeellent and of local importance as fond-fishes. They are brilliant in color, yellow and green being promment; are carnivorous: and seek their food among keip and about rocks.

Greenock, grĕn'ók, Scolland, in Renfrewshire, on the south shore of the Firth of Clyde, 22% miles by rail west-10orthwest of Glangow: The Watt Institution contains a marble statue of W'att by Chantrey. The harbor works date from 1507 , and have cost upward of $\$ 7,-$ 500,000. Ship-burilding has becan carried on since 1,60; sugar refining began in 1705, and there are also manufactures of stean-engines, anchors and chain cables. ropes, saileloth. paper, wool and worsted, etc. Besides being the birthplace of James Watt (q. W.). famous because of his work on steam-engines, of Spence the mathematician, and of Principal Caird, it has memories of Rob Roy: John Mrilson, and Galt, and contains the grave of Burns' "Highland Nary." Pop. (IgOI) 6-,645.

Gree'nockite, or Cadmium Blende, a native sulphid of cadmium, having the formula CdS , and crystallizing in hemimorphic forms belonging to the hexagonal sytem. It is transparent, or nearly so, and yellow, with a vitcous or resinous lustre. It turns carmine when heated in a closed tube, returning to its original color upon cooling; and it dissolves in hydrochlorie acid, with liberation of sulphuretted hydrogen. Greenockite is brittle, and has a hardness of from 3 to 3.5 . and a specific gravity of about 5.0. In the United States it is found in Marion County, Ark., in the zinc-bearing districts of sonthwestern Missouri, and in a zinc mine in Lehigh County, Pa.

Greenough, grēn'ō. Horatio, American sculptor: b. Boston 6 Sept. ISo5; d. Somerville, Mass., 18 Dec. I852. When he entered Harvard at is he had already modeled in clay and attempted sculpture. A French sculptor named Binon, resident in Boston, was his first master. During his college career he enjoyed the friendship and advice of W'ashington Allston, and produced the design from which the present Bunker Hill monument was erected. He was graduated in 1825 , and went to Rome with letters to Tnorwaldsen. He returned to Boston in ISzh, and after modeling busts of John Quincy . Idams, Chief Justice Marshall, and others, again went to Italy and established his studio in Florence. His first commission was from James Fenimore Cooper, for whom he executed his 'Chanting Cherubs,' suggested by a purtion of one of Raphael's pictures. This was the first original group from the chisel of ans American seulptor. To Comper. also, he was indebted for the commission from Congress to execute his colossal statuse of Wrashington, finished in tis 43 , after many years' labor, and now in the national capital. During this time he exccuted. among other original works, the 'Jledora.' the 'Ingel Abdiel.' and the 'Venus Victrix) (Gallery of the Boston Athenxum). In 185 I he returned to the Crited States to superintend placing in its destination in Washington his group of the 'Reseue.' in which the tritmph of civilization is symbolized. Many vexatious lelays prevented the arrival of the work from ltaly, and Greenough, unaccustomed by long absence to the turmoil of American life and the variations of the American climate.
was attacked by brain fever，soon aite－he had commenced．in Bostun，a course of lectures on ari．He puharshed a volume of＇Essays＇en art ionics．Consu＇t：Tuckerman，＇Memorial of Horatio Greenoush）（に53）．

Greenough，James Bradstreet，American Latin schuia－：b．Portard．Jie．，ras3：d．Cami－ bricge Mass．，II Oet Ioor．He wis grocuated irm Harvard College in ISE fur some time practised law in Michiran，in ion 5 was ane－irted futor in Letin at Harvard，in Iヒ－4 assistant professor of Latin．and in INo 3 privesar．In 18，2 he began at Harvard a cuuree in Sanshrit and comparative philolers，and untii into，when a chair of Samshrit was founded，gave instruction in those sutiects．He became wadly known through a series oi Latin tex：－ $000^{\circ} \mathrm{s}$ ，particularly a＇Latin Grammar）＇prepared in collaboraticn with J．H．Allen；and＂rote also a＇Special Vocabulary to Virgil）verse in both Latm and Engish，and，with G．L Kittredge．＇Werds and Their 11 ays in Encisis Speech（ 1901 ）．

Greenough，Richard Saltonstall，．Imerican sculptor：b．Jamaica Plair．Maミテ．．27，Apoll ISig：d．Rume，lialy． 23 tpril rgos．imong works by him are the notably nine bronze statue of Franklin is iront ui the City Hall．Boston； the marble statue of Gnvernir Ilinthrop at Nount Aubur cemeters．Cambridge；＇The Shepherd Boy and the Eagie＇at the Boston Atherreu：n．

Greenough，Sarah Dana Loring，American author：b．Buston is Feb．1ミュー；d．Franzens： bad．Austria， 9 Aug．IRE5．She was the wie of R．S．Greencugh（q．w．）．Her wris include： ＂Treason at Home，＂a novel（1805）；＂Arab－ esques＇（ $18-1$ ）：＇In Extremis，a Stry of a Broken Law＇（1872）：and＇Mary sLagda en，＇ a from（lito）．

Greenport，\therefore I．，village of Suffolk County，un the cas：ern end ci Lug lamud un the Ling Isiand R．R．：∞ maies cast of B：o k－ ly：n．It has an excel．ent harbor and shipyards． and the chici indurtres are fishirg and ship－ tuiding．It is also a pinpular summer resort． Pop．（ 10,00 ）$=3 i \pi$.

Greens，Potherbs．Any plant who－e flage and succuleri stems are prepared ior the table ly b oing．The irmer ierm is less arplied to the flants themstues tian it the dish prepared i－m them；the latier is riten appized ts the living it nis，but rarely ${ }^{\prime \prime}$ the cuimaz preparais n．Grecss are cminere a spring

 a 1 ne w in th arpette－jata！whthe us－ 1 W．ater ves thes．C mp－ath y iew ir ex－ am－le，La－l＇a anil New Ze land spinachl are

 iluce Sthe it r caara；le，matard，wil il are，dini e in te au kman，and a fow（kak， end v even dirne sinter．

In gemeral ！fee ！！rth sh uld a：l ${ }^{\prime}$ © \mathbb{E}^{-}wn upan rict，mit．welf－drained，iri bl ．I my © 11，sila up un uch iley gn＂ 7 icl y ：a iarge sere，and r min succolent－I celle
 c ntaining al ind rt avalal＇s nitrom naus il．．． fond is panmitury inirahle．The एmil sh widl be thu：ugl＇y frepared by deep pl wang
ct discins ind the suriace made as fine as possi－ ble by harr wing or raing．For earliest crops i such herdy purnis as spinach and corn salad， the sucd ray be suwa in antumn，and，where the winters are severe，a：d e－pecialty if snowless， protected with a meich ci marsh hay or other mate－an！free from wecd seeds．They may also be sown as eariy in the spring as the ground can be worked．Tun er plants such as baselia， and these that require a high temperature ior the germination of their sceds，for instance， pursione，shumld le sown only atter the ground becum－s Wirm．Beyond keeping the suriace of the soil losse and free ircm weeds，the crops need practically no iurther care．To he best anrteciuted，greens šauld be gathered while very succuient and within as few minutes of meal time as are p－ssible to wash and cook them Since most of them occury the ground for only a few weeks in earliest spring，they are usually planed by marker ga－deners between the rows of ciher s！ower growing crops or as precursors to the main c：p．

Besides the cuitivated potherbs（in America a rather smail list，there are several scores of plants kn wn $\$ 1$ ：t w：dely as weeds．Several of these are superio in some ways to the culti－ vated kinds．There is no reason why they should 2 t be cultivated；indeed，they de serve curtivation．When 10 be grom in the garden．and when seed cannot be pur－ chased，secu should be selected from those p．ant that mast nearly meet the intendins gry wers seal．Probably the best known and m－st irequenty used weeds or wild plants are the i ．．wing．several of which are more or less cultwated：lambs quarters or Grooseioot （Cl．\hat{f} di．m a．um）．Pigweed（ i marantus， varicus spectes）．P keweed（Pliytuacia dian－ dra．Marsh mariz id．＂Cowslip Gecens＂（Ca！－
 cies．D ch Rumare various species）．Quinoa （C＇í）pudines s air：a）．Surtel（Oralis．various sfecies Pursiane（Pertuacza lerabed），Plan－ tain（fian ${ }^{\circ} \mathrm{s}$ ，hari us species）．Chicory（Ci－ \therefore rim：In： $11(5)$ ．Cress（Cardamine，Jsilars－ ：is．Bar urid．Sinc iors，Gynancir psis，lustur－ （ium－varı us species in each genus ．Fepper－ grass Lif inn ，various species），Mercury or markery（Che dium Buns－Henricus）．Jet－ t＇e（tidiz various specks）．Winter purslane

Oi．ectivated not－heris the following are po the－t kruwn and the most widely c tiv ：d：Spir．ch．corn salad，chard，borage， d ntin，cal！o＂＇，mustard，hale，erach，mari－ E ；＂月．cl：－ry endive，masturtium，un－ 1 ＇1 ch＇se ar 1 caulifl wer，youns beets and ir

Green＇sand，in zeolozy，the name given to two ：s \ddagger irelace us if rmations．the L－pper and Lnwir Grcen－rd．The Unper Greensand is a ultur in－i t！e L＇pper Cretaceous rocks， and is ：$: . .1$ immediztely below the chalk marl，An！itut al ve the gaut．The beds of wl in it is c mp ad have in them green par－ it les a a min al cal ed glauconite．Among
 \＆ s － ．iwo species of fusus，etc． G mee are i，iti n that t！e so－called İpper Green and ir m which these fossils came is
itself gault. The Lower Greensand is a series of beds constituting the Lower Cretaccous rocks and the lowest member of the cretaccous group. It is called in Europe Neocomian, a name adopted by Lyell, he considering the term greensand peculiarly inapplicable, as in the district where these strata were first observed sand of a green color was rather the exception.

Greens'boro, Ala., town, county-seat of Hale Comnty; on a branch of the Sonthern R.R.; about 72 miles soutliwest of Birmingham. It was settled in 1816, and is in a cotton-growing section. The chief industries are the cultivation of cotton and corn. It is the seat of Greensboro Female Academy and of the Sonthern University. The latter was established by the Methodist Episcopal Church, South, and was opened in I859. Pop. (1900) 2,416.

Greensboro, Ga., city, county-seat of Greene County; on the Georgia R.R.: 70 miles west of Augusta. It is the trade centre for a thriving agricultural region, and it has a large creamery, a cotton-mill, coton-gin, and a cot-tonseed-oil mill. Pop. (1900) I,5II.

Greensboro, N. C., city, capital of Guilford County, on the Southern R.R.; 8I miles northwest of Ralcigh; named in honor of Gen. Greene, who commanded the Continental army in the battle of Guilford Court House 15 March 1781. Here are the Greensboro Female College. Bennett School for Colored Youth, Guilford College, and the State Normal and Industrial College. Greensboro is the centre of a tobacco, fruit, and grain region, which has gold. copper, and iron mines, and contains a blast furnace for the manufacture of Bessemer steel: cotton-mills and other industries. The growth of the city has been marvelons and shows the rapid development of the Nuw South. Pop. (1880) 2,105; (I 890) 3,317; (1900) 10,035 ; (1903) 22,000.

Greensboro Female College, a non-sectarian educational institution for women in Greenshoro, N. C.: founded in I826 as the Edgeworth Fenale Seminary; reported at the close of 1900: Professors and instructors, 15; students, 250: volumes in the library, 7,000 ; income, $\$ 25,000$; number of graduates, 692.

Greensburg, Ind., city, county-seat of Decatur County ; on the Cleveland, C. C. and St. L. R.R.: about 55 miles northeast of Cincinnati. Nearby are large stone-quarrics; it is surrounded by a good agricultural zegion, and is supplied with natural gas. Its chief manufactures are flour, furniture, farm implements, and carriages. Pop. (1g00) 5,034.

Greensburg, Pa., borough, county-seat of Westmoreland County; on the Pennsylvania R.R.; 31 miles east-southeast of Pittsburg. It is in a coal-mining, coking and natural gas region; and contains a steam-heating apparatus factory, steel works glass works, nut and bolt works, and has three National banks. It is the seat of St. Joseph's Academy. In Hanna's Town, which was near the present Greenslurg, was held (1z73) the first regularly organized court of justice west of the Alleghany Moontains. Hanua's Town was destroyed by the Indians in 1782. Pop. (1900) 6,50S.

Green'shank, a large species of sandpiper (Totanus gloftis) breeding in the northern parts
of the Old World, and migrating far southward. Several allied species of similar haljits occur in America, of which the greater and lesser ycllowlegs (q.v.) are fammiar to gumers.

Greens'let, Ferris, American writer: b. Glens Falls, N. L.. 30 June 1875. He was educated at Wesleyan University and heside contributions to reviews has published 'Joseph Glanville: a Study in English Thonglit and Lctters of the izth Century' (Igoo).

Green'stick Fracture, the name given to a fracture of a bone when continuity is not entirely severed one portion of the bone remaining umbroken or bent. The leg and arm bones of children are particularly liable to this fracture.

Green'stone, formerly a granular rock, consisting of hornblende and imperfectly crystallized feldspar, the feldspar being more abundant than in basalt, and the grains or crystals of the two minerals more distmet from each other. It was called also dolorite. Sir Charles Lyell included under the term greenstone those rocks in which augite was substituted for hornblende, the "olorite" of some writers, and those in which allite replaced common feldspar. This was sometimes termed andesite. The term is now used the same as diorite, which is an essentially crystalline granular admixture of triclinic feldspar and hornblende. It is not now held to be the equivalent of dolorite. In geology, volcanic rock, occurring in dykes, tabular masses, etc.

Green'ville, Ala., city, county-seat of Butler Cominty ; on the Louistille \& N. R.R.; about 77 miles nortbeast of Nobile. Its chief manufactures are lumber and furniture ; it has a cot-ton-gin, and its trade consists principally in cotton and lumber. Pop. (1900) 3,102.

Greenville, I11,, city, county-seat of Bond County; on the Vandalia \& T. H., and the Louisville J. \& St. L. R.R.'s; about 42 miles east of Alton. It is the seat of Greenville College, under the auspices of the Free Methodist Church. The chief manufactures are flour, lumber, wagons, and carriages, bricks, and in addition to its manufactured articles, it has considerable trade in coal, from the coal-fields of the r. and in the agricultural products of the .', .using country. Pop. (1900) 2,504.

Greenvi:e, Mich., city, in Montcalm County, on the Flat River, the Toledo. S. \& M. and the Pere M. R.R.'s; about 42 miles mortheast of Grand Rapids. Its chicf manufactures are lumber, flour, agricultural and lumbering implements, refrigerators and furniture. Its trade is in its own manufactured products and in the agricultural prodacts of the surrounding country. Pop. (IgOo) 3,38I.

Greenville, Miss., city, connty-scat of Washington County: on the Mississuppi River, the Southern and the Yazoo \& M. V. R.R.'s; about I 30 miles sonth of Memphis. It contains several cortonseed-oil-, saw-, and planing-mills. a national bank, and has steamboat comection with all important ports on the river, and a large cotton trade. Fop. (1900) 7,642.

Greenville, Ohio, city, county-seat of Darke County; on Greenville Creek, and the Cincinnati, J. \& M. the Dayton \& U., and the Pittsburg, C., C. \& St. L. R.R.'s: 35 miles north of Dayton. It is noted as the site of Anthony Wayne's treaty with the Indians, 3 Aug. Iz95.

GREENVILLE－GREENWOOD

In ：he eativ past of the 10 th cenary Teansath （q．v．hwed here．m a biaie－rdian vilace It has a ilundr，：umber mils，an ${ }^{2}$ rach and is the irade centre is a lage agnouitu：－ secticr．Pep． 1000 ミ． 501 ．

Greenville，Pa．，berough，in Nercc： Cuentya un the Shanenco Kive．ihe Erta tie Pentryivinia ard ine Proburg．E．d L E RR
 te－－ t wer．The cher induria：al interests ate Fers－mil！woolen－mills．sew－and planirs－ mili，sundries，machine－shors．ra：：－ad－sh ps， casrage and wagsin wosks，：ube－mion，mach n－ cty en choredt，and c－al－minimy The cras and cil 末elds ard ：！e st ne－guarries in the vi－ cimaty acd io the industries of the i．wh．The itaie ot ihe i＝wn is cons deakke as it is the commerial ceme of a arge nect n ci Mer－
 vii．e was iurnery ile sea：o：Thie．C liege apened in $x=-0$ wisder the auspicis of the Lu－ ：heran Chucio P．p．：V01 s．74： 1000

Greenville，E．C．，ciry，colutis－seat 0 ： Grecurilie Co．nn：y ca the ミ．uth las：na \＆G．． the Eturnern，the Allartic C L K．K

 lege for T1oman．Chicra Fcm ie C ese P－es byte－ian）．Greenvile Frmaie é ‥ ze Baņit a mintary ins：atu：e ant a i siness crioure I has cotion mins，aariage and wagon whrks
 11.8 aio

Greenville，Texas．cuty，cunty－scat ot
 Ir exas Mrüaci，oned iac M．se ari，Kunas

 st ck－aiving sect a d c chet ind－or a in－
 It hat c ：incr r：ro．．：$\because: n$－ed－il mls．

 a mu－cind … 1 ．Aee ：

 0．0n

Greenville O° ．Trezty of．－ 1 ．

 Caik and his sldi－s．The L：：c土 E：－io ch：whedged the Irdan $1: t^{\prime} e$ is the rembing \ldots I．and amed io pay arme．ties ni s．asm in a．to the trites． $1!1$ pri．ners on both sides

Were F st tun．Thrs puce secured quiet io the Du：cers ：： 5 years．3ut the suaranty of the lands i OR－．Nons enabled the Br：uish io u：e
 of si：2；and aiter the war（Eee TEEATY of GHETI Gecat Briain atiempted ：o maire this fouty i－unciag a pemaner：cre．orbiduing Unioecs Siules senlement beyond it．See Ginex－ riLie．

Greenway．Thomas．Canadian statesman：
 fathe ic Onk：Ho：up land in Mari－ \therefore 二，and in ：ハー lecame the Liberal ？cadcr and Prine Minsic：in the frovincuai gcverament． wher his a aty cane intic power in Iitil．He has ahwas studied the if ch－beng and g：－yrts ¿ Kis po vince：has citemfied tu ab hish French as ar．…．．．．．．．．．．．．．．．．and to co eway with the

Greenweed．E．e DiEWEEn．

Greenwich．ŋrena＇wich，Coma．．somn，in Faiste：－C nis 17 nf I and S umd the

 Dutich－m ir m 1642 to $10: 0$ ．when hy arcee
 cume a 1 ar：i C mecticur．In cruer to fre－ sove the chutm nots country life，it has re－ 1 ．Weci i．：e oit $\vdots \mathrm{ml}$ of sown meeting gorermment． with ihsee velectmen as agents．as it mas over $-=0$ years es ．Evechi in ive cerital part di ine
 a：u six bursynses，has charge af anairs．The－e

 ：e

Gieenwich，\＆－irsi，Er，zlank，merropolitan I r．ah i

 1 vir … ：－u゙atic enpiai Green－ 2．1113 \because i wed y Luet Mary for ．．．

 fil $-1, \sum_{i=1}$ of ihe paluce w！，re Hems 11 Ni E c．．．gluers Mury ard İiak in ，\quad \％\％：v vilue Eduare VI ad．The
 －4 1 ：un med by Inizo Tues（oy），
 1 ．$-\cdots$ t made the designs for the r．．r－\quad－\quad © ihe ch pel：and the statue it rat 11 ．n the coriral square is by Rys－ 1rc．I7 M－2 G－cenw：ch Hospial became the c efe：－．© R yl Navy．The Royal H：＝－ F：al＜－1 $\quad \therefore$ ！$y=$ who may ente the nary in ile $1 /=-$－Scho－1，are liberally endowed

Greenwood．Grace．See Lippiscctr．Sarita JいE C＝

Greenwood Cemetery, N. Y., the principal ourial place of New York and neighborhood, in South Brooklyn, near Gowanus Bay: area 475 acres. It occupies a picturesque site, and is laid out so handsomely as to make it almost without a rival in the world. From its heights the waters of New York Bay may be seen on the one hand, and the broad expanse of the Atlantic on the other. There are 20 miles of roadway and more than 25 miles of footpaths. Many distinguished men and women are buried here. The main gateway is adorned with four magnificent sculptures in alto reliezo, representing four scenes in the resurrection. The number of interments up to I90I exceeded 300,000 .

Greer, David Hummell, American clergyman: b. Wheeling, W. Va., 20 March 184t. Me was graduated from Wiashington College, Washington, Pa., in I862, and studied theology in the Episcopal Seminary at Gambier, O. From Brown University and Kenyon College he received the titles of Doctor of Divinity and Doctor of Laws. His first ministry was at Covington, Ky.; from there he was transferred to Clarksburg, WT. Va., and in I87I he was called to Grace Church, Providence, R. I. In I885, Dr. Greer became rector of St. Bartholomew's Parish, the most fashionable and richest of New York Episcopal parishes. In 1800 he established the St. Bartholomew's Parish House, at 42 d street and 3d avenue, at a cost of $\$ 400,000$, built largely through the liberality of Cornelius Yanderbilt. This parish louse embraces a wide field of charitable, missionary and educational work.

In 1903 Dr. Greer was elected coadjutor to Bishop Potter of the New York Episcopal diocese. He had previously declined three bishoprics, that of coadjutor-bishop of Rhode Island, bishop of Pennsylvania, and bishop of Massachusetts to succeed Phillips Brooks.

Greer, James Augustin, American rearadmiral: b. Cincinnati, O., 28 Feb. I833: d. Washington, D. C., I7 June 1904. Entering the navy in 1848 , he was promoted lieutenant in 1855, and was on board the San Jacinto when that vessel intercepted the English steamer Trent, on which were Mason and Slidell, the Confederate commissioners. He commanded the ironclad Benton in the fleet that passed the Vicksburg batteries; and in 187.3 was in command of the Tigress in its search of the polar seas for the Polaris. He became rear-admiral in 1802 and was retired in 1895.

Greey, grè. Edward, American writer: b. Sanclwich, Kent, England, I Dec. I835; d. New York I Oct. I888. After spending several years in Japan, he came to the United States in 1868 , hecame a citizen, and engaged in commercial purvilits in New York. He published 'Young Americans in Japan' (188I); 'The Wonderful City of Tokio': 'The Golden Lotus' (1883) ; 'The Captive of Love,' founded on a Japanese romance; 'The Loyal Ronins,' a translation from the Japanese, etc.

Greg'arine, a parasitic sporozoan (see SporozoA) dwelling in the intestines of many insects, crawfishes, and other arthropods.

Gregg, David, American Presbyterian clergyman: b. Pittsburg, Pa., 25 March 1846. He was graduated at Washington and Jefferson College in 1865 . He has been pastor in several
places, and since is80 has preached in Lafayette Avenue Presbyterian Church, Brooklyn, N. Y He is editor of 'Our Banner,' and among his many published volumes may be mentioned: 'Nakers of the American Repulblic) (1896) ; 'Ideal Young Men and Women' (I807): 'Facts that Call for Faith" (1808) : "Things of Northficld and Other 'Things' (I899).

Grégoire, Henri, ŏn-rē grā-gwär, Count, French churchman and statesman: b. \& Dec. 1750: d. Paris 28 May 1831. In 1789, while cure of Embermenil, in the district of Nancy, he was sent by the clergy of Lorraine as their representative to the States-General. Is one of the secretaries of the constituent assembly he joined the extreme democratic section, and in the convention voted for the condemnation, thongl not for the death, of the king. Although extreme in his democratic opinions, he was an unflinching Jansenist. He was a member of the Conncil of Five Hundred, of the corps législatif, and of the senate (iSoi). On the conclusion of the concordat he resigned his bishopric of Blois. He voted against the establishment of the insperial government, and alone in the senate resisted the restoration of titles of nobility. He himself afterward accepted the title of commt, but in the senate always opposed Napolenn, and in I8I4 was one of the first to vote for his deposition. He left numerous works, among them 'Ruines de Port Royal' (r8or): 'Essai Historique sur les Libertés de l'Eglise Gallicane); 'Historie des Sectes Religieuses depuis le Commencement de ce Siècle'; 'Amales de la Religion' ($1795-1803$).

Gregorian Chant (Latin, cantus gregorianus, cantus planus, cantus firmus," Italian canto formo: French, chant gregorion, plainchant; German, gregorianischer (horal) is as old as the Churcl itself. As an integral part of the liturgy, music has its origin in the celebration of the Last Supper. According to the evangelists, Natthew and Mark, after the consecration and breaking of bread, our Lord and the apostles sang a hymn, which is commonly accepted to have been the "Great Hallel" of the Jewish passover celebration, that is, the Psalme, cxii--cxvit. (Douai version), inclusive. The first Christian communities of Jerusalem in P'alestine and Antioch in Syria were founded hy newly converted Jews. Consequently it is more than probable that, although the converts from paganism were soon in the majority, melodies in use in the temple and in the synagogues continued to be sung at their religious mectings. This hypothesis is all the more reasomable because the recruits from paganism could offer nothing either in the way of poctry or munic which would lave been acceptable to the new cult. As to how the chant came to Rome and concerning its early development, archacology has so far been unable to ascertain any definite information. Conjecture and probability are the most we have to go by. Without doubt Greek music, which was known to the Romans. as was every other form of Hellenic culture, had its influence on the formation of the Christian worship masic. It is certain also that there was a constant development and that singing played an ever greater role in the early liturgy. There were hardly any religious functions of which the singing of psalms, responsories and hymms did not form a part. From the fruitful soil of
the early Church sprang with great exuber:.nce a new hymnology, which in turn, as its Ingival eomplemert, was translated into me dies Many i the latter were pontaneous impn visathons, the children of ardent hearts and imagmations illumined by the Xew Light. It first the whole relyrous commontity participated in the singing. but as the liturgy became more chabcrate and the assemblies more numerous. this partucipation on the part of all the ianthiul had to be restricted to certain portions if the service. Other, more particular parts were performed by the Primicerius, Prace:itor ir $\$ 1$ Titer, who also had general charge of the smin ing and wh se office it was to see that the faithind were well prepared for their allotted task. After emerging from the catazombs at the beginning of the th century the Cluarch displayed its ever-growing vitality in the uni hamg oi her liturgy and the increasing splendor of her cult. At this perood the chants used muit have been numerous and varied. Popes and bishops f -stered the liturgical music in every manner. Pope Sylvester (3tf) ard Hilarous (f)I founded schools for its cultivation. Saint . Im-
permanent chacter and from whom it is named. awentud the tapal throne, the number cif feasts and c...sequetly of liturgical chants had increasen t ewth ann extent that the four modes fived by lrobrise were no longer sumfieient. Many of the new me dies did mot belong to any one if the scales enumerated above. They had gr wn heyond the original irame. Is Greg ry partly ref romed and, at least in outlite, gave shape to the ecclesiastical year as we Tow hy: w it he was compelled also th rearrange existing chants, reject inferior ones. adapt ald ones to new texts and add new ones <i his wn creation. In order to carry out this sast plan he found it necessary to enlarge the i nal system then in use. He retained the four Ambr sian modes, which were hencefortl designated as the untternit modes. and added thereto i ur more which he called plagal. Gregory i rmed the new modes by transposing the last four ni les of the existing - authentic - scales an octave 1 wwer. so that each plagal mode besan a fourth below the cuthentic from which it sprans. Thus the tonal system as completed by Saint Gremory was as follows:

 given authentic m aie at lis derivel pi alare ile tica. he, n : is that ione which occurs oitenest or preis minates on any mel ly.]
 which wte ri greater importance tlan anting which lad beell dune up to ilat time. Ile gla e - - -iem and wifer t the mel licioi $1 \mathrm{cl}, \cdots$ in
 tavis. This he accernini-l eif by ad perz in mod eir - c. les. each the f lil ich 1 ois as its mitial nere of the filur metes of $t 1$. Tremal, rl (sequen é ai if or

 d; (h) Phrygian) E.F. C, a, l.c. I, e. No
 Lyinno, Cs, a. b.c. d. e.f. g. 1 th themelode. and ol the used had osme ine uf there n le-
 the cintem of cinging hymn and pealnes antit. mally

When aco yeare later, Firegiry the fireat the man who gave the mu-ic of the Clureh it

I .r mi re modes were added th these in It e consis bit they are not different in م- - - ir m the cight named ahouse By means i 1 - - 1 intiostrokes, bars is hooks. of eths ly clled neums-all nt which had a a 1 . in ' n anine. and which were placed wer 1 :-ile the w orde of the revto. Saint Gir. Is in coted the mel lies on wh ich these
 - Wha it oth tmanerous, ffices was calle !
 su-rli siar f St. Peter so as to cunvey that (1) r. witci it i be can-idered as the 1. rel i r fte wlole Christian wirld.

Is ir:r t zain an insight into and an apfre . it it there and charactes of the
 a wite mi re chasely the enal material nut of wheh they are com-tructed. Whe wil! notice il tal the oc has are diatonic, that is to say
that each one luas fise whole tones or steps and two half-steps or semi-tones; furthermore that the hali-steps or semi-tones occur in a different place in each scale, according to what the initial note happens to be, and, finally that only one of them has a leading tone or half-step between the seventh step and the octave or repetition of the initial note. It is these three ieatures which differentiate the Gregorian modes so markedly from our modern scales and which give them that impersonal and objective character so marvelously suited to the purpose they serve. namely, that of expressing the ideas and sentiments conveyed by the sacred texts. In other words, these modes, or tonalities. lend themselves to the expression of a mental attitude of objectivity as against the modern scales which, on account of their chromatic character, are more pliable vehicles for conveying the emotions springing from subjectivism and introspection. If we remember, in addition to the general character of the Gregorian, or Church modes - as they are often called- the rule which permits the use of six intervals only in the formation of Gregorian melodies, namely: the major and minor second, the major and minor third, the perfect fourth and the perfect fifth, we realize that this tonal system is better adapted for the expression of reverence, humility, peace, and joy, whereas the modern chromatic system is more suited for the expression of passion and dramatic conflict.

Saint Gregory used every means at his command to propagate the chant and have it universally adopted. He established schools for its proper interpretation. At one of these he is said to have taught in person. Missionaries who were sent from Rome into foreign lands took with them a copy of the antiphonarium, and, of course, a knowledge of how the melodies it contained should be sung. Thus, Saint Augustine brought the melodies to England at the command of St. Gregory himself. The great pope's successors continued the process of propaganda during the following centuries. In the Sth century Saint Boniface introduced the chant in Germany, and by him several "scholx cantorum" were established on German soil. Through Pepin and after him through Charlemagne, it found its way into Gaul and into the whole territory under the emperor's sway.

It is held by many historians that the original chant was, in the main. syllabic, that is to say, that only one note was sung to each syllable and that only the word "alleluja" was ever extended over several notes. Be that as it may, it is certain that it gradually developed into a melismatic system, syllables being often extended over smaller and greater groups of notes.

From the time of Saint Gregory until the advent of Guido d'Arezzo (995-1050?) the primitive means of determining the melody, the neums described above, remained in use. As las been pointed out, these signs were intended to assist the memory of the singers in reproducing the melodies which they had learned by oral tiansmission. It is not to be wondered at that, in the course of time, many of the melodies were altered and modified in the many places where they were in use. There were frequent variations and modifications due to local habits, different temperaments, hut, above all, to the instifficiency of the means employed to indicate
with precision the form of the melodies. Careless copyists and finally the arbutrariness and caprice of singers in the varnous countrics led to confusion. Before the time of Guido d'Arezzo, attempts liad heen made to fix wath more precision the intervals of the melodies. He found in use two lines, a red and a yellow one. drawn across the page. U'pon the red line was placed the F, and C was put upon the yellow one. Above, below and between these two lines the neums were written. By placing a black line between the two already existing and adding another above or below these three as the ambitus or range of the melody might require, Guido created the four line staff which has been used ever since for the chant, and made it possible to indicate precisely the form of a melody for all time to come. Guido and his pupils transcribed the existing chants into the nell system of notation. Copies of these transcriptions found their way into the cathedrals and monasteries of many countries where they took the place of the books formerly in nse. Though the neums as a system of notation were superseded by the more precise invention of Guido, they continued nevertheless to be employed to indicate the manner of interpretation. Although Guido's invention was epochmaking and of incalculable importance in the history of music. it must mot be inferred that it was at once universally adopted. Neums as a means of rotation continued in use in many places and institutions far into the i3th century. Nor must we imagine that because of the introduction of the new system of notation no further modifications of the chant took place. As new saints were canonized and new feasts instituted by the Church, offices and chants were necessarily created. Then the growing skill of professional singers gave rise, especially in the Alleluja following the gradual, to improvisations, elaborations and displays of virtuosity which often exceeded the linnits of good taste and appropriateness.

As the melodies comprising ecclesiastical music grew out of the sacred texts and were never performed without being wedded to these texts, it is but natural to assume that the melodic construction partook of the rlyythmical form of the texts. Especially must this have been the case when the chant was still largely syllabic. Some maintain that the ancient chant had a definite - artificial - rhythm, as in our modern music, in contradistinction to the natural, or that dictated by the rhythm of the text. Whatever the prevailing rhythm was at the beginning of the roth century, it was now to undergo a gradual change. The monk Hucbald invented the organum or diaphony, that is, the practice of having a second voice sing the melody a fifth above or a fourth below the original, or add to the fifth also the octave, the first voice meantime maintaining the original melody. By this step Hucbald paved the way for the polyphony which was soon to develop and find its culmination in the wonderful creations of Palestrina and his school in the r6th century: Sulzer in his 'Allgemeine Theoric der Künste) in the article on harmony. points out that polyphony was latent in the mison singing of the Gregorian melodies by old and young. men and boys, each class of voice. soprano, alto, tenor, baritore, and bass, having a different pitch.

GREGORIAN CHANT

Hucbald s system of parallel motion of fiftls and octaves was soon succeeded by attempts at contrary motion, and counterpoint as we know it. that is, point against point (or note agasnst note) was born. To the Gregorian melody which now became "cantus firmus," that is unchangeable melody, were added one or more others. In giving birth to the new system and contrnuing to be its ioundation and the source whence polyphony drew its life and being, the Gregorian chant lost its most distinguishing characteristic, that is, its natural rhythm. The therres taken from the chant and used by contrapuntists as "canti iermi" were forced into the rhythmical straight-jacket. Each note oi the cantus firmus had now to assume a definite value in order that the added melodies simultaneously sung might harmonize with it. Polyphons, or the new school of music, increased in favor very tapidly to the detriment of the old cliant. Instrumental music, which was gradually developing. also had a deteriorating influence on the execution and caltivation of the ancient music of the Church. Counterpoint in many instances lost its original purpose and degenerated into artificiality: Composers used it to display their skill rather than to give expression to the ideas and emotions latent in and suggested by the text to which it was wedded. A reform movement toward primitive simplicity set in toward the end of the 15 th and the beginning of the 16th century: The Council of Trent enacted laws concerning the abuses that had crept into the chant as well as against the extravagances which the display oi shill for its own sake had brought about and which in iact almost caused the total exclusion of figured music from the Church. In a bricf dated 25.0 ct . 157% Pnpe Gregory XIII. directs Giovanni Perluigi Palestrina and Annibale Zoilo (Palestrina was at the inne director of the papal choir and Zoilo a member of the same) to revise the chants contained in the "Antiphonaria." "Gradualia." and "P'salteria." and "eliminate" therefrom "all barbarisms. obscurc passages, contradicsions, and snperflous additions which. through the ignorance, neglect. and also through the malice of compocers, copyists, and singers, have crept into these broks." A pupil of Palestrina, Cisovanni Crudetti, had. a few vears previnuly, edited the various chants for the celebrant contained in the Miseal. which had been new!y revised by a commision of cardinal appointed for this purpoee atter the Tridentine Council Pale-irma. Zoiln, and Guidetti in their labers of reviown acted upon the principle which had been Inct sicht of ine a time. but which was now generally sccepted ly muscians in Rome. "that the worls of the rext- diould be stang to the note- as they wight to be eproken or declaimed without note This principle in its application brouglt into univer-al nee the three different kind of untebalues: the Innes, the herevis, and the semibresis The work of revicion, of the Giratuale only. which was contineed and completed after Palestrina's death 12 Fedr. 150.4) hy Felice Ancrin and F̈rancesco Surtam imolved many excicion- and abbreviations: reduced many chant- which had heers elaborately meli-matic in a - ${ }^{\prime \prime}$ labic $i \mathrm{rm}$. This revied edition derned it * name "erltin medicea." from the fact that it was primed be the "-tamperia" or peess of that name cutablished in Reme ly Carelinal

Ferdinand de Medicı. The Congregarion o: Sacred Rites. in 1595. appointed Sovanni Maria Nanino, Giovanni Andrea Dragoni, Luca Marenzto, and Fulgentio Valesio to edit, in accordance with the primciples stated above, the 'Pontincale Romanum.' The revised books were now printed and published with the approbation of Pope Paul I. $(1605-21)$ and that of the prefect of the Congregation of Sacred Rites. This approbation did not carry with it the prohibition of the use of the old. more elaborate, now called traditional. versions of the chant. No doubt because of the latitude thus permitted, the abbreviated sersion did not make much headway outside of the papal ierritory. Besdes this, monody (solo singing) and the theatrical style in general came into vogue in Italy at the beginning of the rath century. It took such a hold of public taste that even the works of Palestrina and the masters of his school were temporarily forgotten for the trashy and trivial products which now had lise upper hand. This beng the case with regard to the polyplonic style. it was natural that the austere. chasic, and simple Gregorian melodies should suffer even greater neglect. While in Italy and in some other parts of the world the chant was ior a time neglected. there were countries. such as France. Belgium. Spain, and the Catholic parts of Holland, where it never ceased to be cultivaied according either to the traditional or the abbreviated version. Many different editions came into use, notably in France. where many dincess had their own rersions. Toward the middle of the roth century the plan entertained by Gregory X1II., Clement VIII.. and Pant V.. of having uniformity for the whole Catholic world in everything pertaining to the Inturgy: moluding the cinant. was revived with new vigor. Pope Pius IX., in 1868 , appointed a commosion to whom he entrusted the task oi ediring. in accordance with existing requirements, the "editio medicea." which Pius IX. and his successor. Leo SIII., repeatedly declared to be the official rersion of the Gregorian chant for the whole Church. During the past 30 years or more, howerer archxologists notibly the Benedictines of Solesmes. A. Dechevtens. S. J. of Paris, the Belgian savant. 1. A Gevaerts, Dt. Peter IVagner oi Freiburg. Swlterland, and others - have made exhau: ive studies of the mantuscripts dating from the oth century (alse oldest so far disonvered) up on the Renaisance. The results oi ihese studice have indnced the present Pope. Pins X., to appont (2gof) a commission for the purponse of preparing what is to be called the "editio vaticana." which will embody the fruit of the rescarclies and labors of learned men for many bear past Illatever may be the differences jutween this later version and the many that have gone before, they will in no sence change the (.-ential character of the chant. Thes character laa tt root primarily in the nature of the scalon or mudes isect, as has been shown above, and. vec ndly, in the intervals in the construction wif the meh dies. is has been pointed ont, the meld die- sprang from the sacred texts of the liturgy: thes were their complement and splendor. The Church has always declared the chant in be her nwn music par excellence. Other forms of music which she admits in her colt. the Palcurima, of polyphonic, and the mod-
ern styles, are to be judged as to thieir fitness in the light of the Gregorian chant, which is the norm and standard of excellence because it best expresses the attitude of prayer.

Bibliography.-Some of the works on the Gregorian chant which may be profitally consulted are: Haberl, 'Magister Choralis': Kienle, 'Choral-Schule): Gietmanin, 'Kunstlelire) (Vol. III.) : Kornmuiller, 'Lexikon der Kirchlichen Tonkunst' : Geraert, 'La Nelopéce Antique dans le Chant de l'Eglise Latine'; the Benedictines of Solesmes, 'Paléographie Musicale': Dechevrens, Etudes de Science Musicale,'
Joseph Otten.

Gregorian Liturgy, the ritual which Pope Gregory 1. introduced after 590 in the Roman Catholic Church in the administration of the Eucharist, as exhibited in the book entitled 'Gregorianum Sacramentarium.'. St. Gregory made a new arrangement of the liturgy of Gelasius, which was previously in use, expunging from it what seemed to him useless and adding a very few new prayers. The celebration of the mass is still essentially the same as it was then.

Greg'ory, Saint, or Gregory of Armenia, surnamed "The Ileuminator." founder of the Armenian Church: b. Valarshabad, Armenia, 257; d. Mount Sebull, U'pper Armenia, 332. He was conveyed by a Christian nurse from his home in Armenia, when but two years old, to Cxsarea in Cappadocia to escape being slain with his family for the crime of his father Prince Auak, who had assassinated Chosrov 1., king of Armenia. When he reached manhood he married a Christian lady of Cæsarea, who after bearing him two sons retired to a monastery. Thereupon Gregory entered the service of Tiridates III., son of Chosrow who, with the help of the Romans, had recovered his father's throne. Tiridates imprisoned him for 14 years in a deep pit, for refusing to perform an act of idolatrous worship, whereupon the tyrant was punished by a horrible temper, of which Gregory cured him and converted him to Christianity. After the baptism of Tiridates Gregory was appointed bishop and patriarch of Armenia and consecrated by Leontius of Cresarea. Tiridates established Christianity as the national religion of Armenia, a measure afterward imitated on a larger scale by Constantine the Great. Gregory spent the last year of his life in a hermitage on \IJount Sebuh.

Gregory, Saint, of Nazianzus (Gregorius Nazlanzenius), Greek Church Father: b. Arianzas, near Nazianzus, Cappadocia, abont 330 ; d. about 390 . Receiving baptism, he retired for some time with St. Basil to Pontus. He began to preach in 362 and between 365 and 374 , cliiefly at Nazianzus. He went to Constantinople about 378 or 379 to oppose the Arians, and was appointed patriarch of that see in 380 . The election was confirmed by the Council of Constantinople in 38 I. but during the same year he resigned and retired to his former charge of Nazianzus. We possess a number of sermons by him, a large number of letters and nuany poems. His eloquence is said to have placed him nearly on a level with Basil and Chrysostom. His festival is celebrated on 9 Nay.

Gregory, Saint, of Nyssa, Greek Church Father:: h . Sehaste Pontus, about $332:$ d. about
$398 . \mathrm{By}$ the influence of 398. By the influence of his brother St. Basil
(q y.), he was made bishop of Nyssa, in Cappadocia. He took a prominent part in the Councils of Constantimopie from 38 r to 394 . He was less of an orator than Gregory of Nazianzus, but was more distinguished than any of the Greek fathers for a philosophical spirit, and for his acquaintance with the writings of the Greek philosophers. He also exlibited a liberality in his views uncommon in his day. His tentival is on 9 March. His works consist of dogmatic treatises, Scripture commentaries, sermons, letters, etc.

Gregory, the name of 16 popes, as follows:

Gregory I., called the "Great": b. Rome about $540 ; \mathrm{d} .12$ March 604 . The death of his father put him in possession of great wealth, which he expended in the foundation of monasteries and charitable institutions. Disgusted with the world, he took the monastic vows himself and became a member of one of his own establishments. On the death of Pope Pelagius in 590 he was chosen his successor, an honor which he very unwillingly accepted. He displayed great zeal for the conversion of heretics. the advancement of monachism and the rigid enforcement of celibacy among the clergy: and there was nothing in which the Church was concerned that he deemed too small to lie beyond the sphere of his personal interest and action. (See Gregorian Liturgy, Gregorian Mesic.) During his pontificate the pretension of John, patriarch of Constantinople, to the title of ecumenical patriarch. which Gregory. repudiated, contributed to bring about the schism betweer the Greek and Latin Churches (see Greek Churcil). The works ascribed to him are very numerous, and lave been frequently published. His genuine writings consist of a treatise on 'Pastoral Duty.' (translated by King Alfred), 'Letters,' 'Scripture Commentaries,' etc. Consult: Snow, 'St. Gregory the Great' (1892); Mamn, 'Lives of the Popes in the Early Niddle Ages' (1903).

Gregory II.: b. Rome; d. Io Feb. 731. He was elected pope and his pontificate is specially noticeable as forming an epoch in the progress of the territorial pre-eminence of the Roman See in Italy. Gregory II, was distinguished by his zeal for the evangelization of heathen lands: it was under his auspices that the famous Winfried or Boniface entered on his missionary work in Germany:

Gregory III.: b. Syria; d. 28 Nov. 74I. He succeeded Gregory I1. in 731 . The encroachments of the Lombards in Italy during his pontificate became so formidable that as the eastern emperors still remained powerless or indifferent to the protection of the Italian provinces, the Romans charged Gregory to send a deputation to Charles Nartel, which promised him the title of patrician and consul of Rome in return for his help against the Lombards. Charles Martel's preoccupation with the Saracens made it impossible for hirm to respond to this plea. But the fact that Gregory was anthorized by the Roman primus to approach Charles on this subject and in this way shows how Rome was breaking away from the East, and so marks an epoch.

Gregory IV.: b. Rome: d. 27 Jan. 84. He succeeded Valentine in 828 , and was greatly
estecmed ior his learning and piety. During his proniricate the observance of the ieast of All Saints was made general.

Gregory V.: b. Germany: d. IS Feb. 999: sometimes styled Brevo of Carintera. He was nephew oi the Emperor Otto 1II. and through his influence was chosen first German pope and at the age oi 24 succeeded John $\mathbf{X V}$.. in 996. An anti-pope, named John S'lli. was set up against him by Crescentius, a consul of Rome, but was expelled by the emperor.

Gregory V., Ecumenical patriarch oi the Greek Church: b. Dimitzana. Arcadia, Greece, 1739; d. Constantinople. 1821. His original name was Georgios Angelopulus, and he took his ecclesiastical name on entering the monastery on Mount Athos where he received his theological training. He was appointed archbishop oi Smyrna in $1-S_{4}$ and patriarch of Constantinople in 1795 . When the French inraded Egrpt in 1708 . the national spirit of Greece was aroused by hopes of deliverance from the Turkish yoke. Suspicions of conspiracy iell upon Gregory, and the Turks clamored ior his head. Sultan Selim thereiore banished him to Athos, but he was soon afterwards reinstated in his see. In 1821 the Greeks of the Morea resolted, and 21 March banishment was proclamed against all who took part in the rebellion. Gregory had been pui in charge of the iamily of Prince Murusi, who without the patriarch's connivance had been permitted to escape by the Russian ambassador. On Easter morning. 22 April. 1821, by command of the sultan Gregory with three bishops and eight of the clergy were hanged in front of the basilica. Three days later the Jews threw his body into the sea, where it was recovered by Greck sailors and earried to Odessa. The Greeks looked upen the:r murdered archbishop as a martyr, his bones were placed by the govermment in the cathedral at Athens, and his statue was raised in iront of the university. Among his writings is a translation of St . Paul's epistles into modern Greek, with a commentary:

Gregory VI.: b. Rome; d. Cologne 104S. He -ucceeded John ㅈ1. Finding the lands and revenues of his church much lessened by usurpations. and the roads infested by robhers. he acter with such vigor that a poweriul party was raised asainst him by those accustumed oo live by plunder. At a council, held at Surci, in 104", Gregory abdicated the pontificate.

Gregory VII. (Hildebraso): b. Soana, Tuscany, about 1015: d. Salerno, 25 May 1085. He became a monk at Cluny, and when Brunc, bishop of Tonl, was elected pope by the cmperor and diet in tofs Hildebrand acompanied him to Reme, having persuated him, it is aid. to lay aside the insignia of the pontificate until he should receive the iree suffrages of the clergy and perple of Rome. Henceforth Hhlucbrand became the rulng spirit of the papace. Leo IN. (Brunn) and his succesurs. Victer If (1055). Xichr las 1I. ($10: 8$), Nlexander II (10 oft), cinfided in hi: cotmeels. He impuenced the dection if erseral oi thene popes. and procured the exputivis f the anti-n pe- Bemedict antl H1monrivse who were numoied to Xicholas and Nle叉andur. Ender Nicholas if he veceerderd in changing the mode of election to the puntmeate. If theren the clergy and the penple of Kome had a vnice in the election He gave the prwer of
nomination to the cardinals alone, leaving the clergy and people only a right of concursence, of which they were subsequently deprived. On the death of Alexander 1I. ($10 ; 3$) Cardinal Hildebrand was raised to the Papal chair. His efforts were directed to iree the Church from the interserence of temporal rulers, which had become quite an abuse in his day, and reform the numerous irregularities which had crept in among the clergy, especially in relation to the violation of the law of celibacy. In 10-4 he issued his edicts against simony and the marriage of prtests. and in 1075 an edict forbidding the clergy. under peralty of forfeiting their offices, from receiving the investiture of any ecclesiastucal dignity from the hands of a layman, and at the same time forbidding the laity, under penalty of excommunication. to attempt the exercise of the investiture of the clergy. The Emperor Henry 15. refused to obey this decree, and Gregory, in 10,6, issued a new decree summoning the emperor before a council at Reme, to defend himself. Henry then caused a sentence of deposition to be passed against the pope by a German council assembled at Worms. The pepe, in return, excommunicated the emperor. and released all his subjects and vassals from their oath of allegiance. To escape being deposed by the pope. Henry hastened to Italy, where he submitted at Canossa (10-7) to a humiliating penance, and received absolution. In the meantime his iriends again assembled round him. ard he then caused the pope to be deposed by the Council oi Brisen. and an anti-pope. Clement IlI., to be elected in toso, aiter which he hastened to Rome and placed the new pope on the throne. Gregory now passed three years as a prisoner in the castle of Si. Angelo, but could never be induced to compromise the rights of the church. The character of Gregory was ardent and unvielding. In the pursuit of his ends in guarding the liberties oi the Church he spared teither iriend nor foe The leng dispute he began with Henry IN. about invest1tures sursived both pope and emperor. The same subject involved him in disputes with France and England. He carried out his ecclesiasucal retorns wath an unbending rigor. He vigurauly prosecuted those of the clergy who brike the law of celibacy, and in his contests with the emperors vindicated the spiritual auth rity of the Church as independent of the secular power. To the last he refused 10 withdraw the excommunications he had launched aganst the emperor. the anti-pope, and their adherents. The words which have been put into I in mouth in dying. whether authentic or not. do no injustice to his inflexible spirit. "I have lwed justice and hated inquity : therefore I am keit th de in exile." Sce JIilman "Latin Christianity' (Vol. 1II.) : Giesebrecht. 'Geschichte der jeut-ch-Kaiserzeit) (Vol. 11I.) ; Bowden, "1.1fe of (iregnry VII.' (isfo) : Voigt. 'Hildebrand al Papt' (2d cd. 18 40) : Gfrorer. 'Papst Brezar Vll.' (isshot): Stephens. "Hildebrand ard has Times) (t\&es): and the studies by Sitl (184, Vollemain (18-2: Eng trans. 18-3), 1angertin ($18-4$). and Meltzer ($8:-0$).

Gregory VIII.: b. Benevento: d. Pisa 17 1)ec. 1N- 1he succeeded Trban 111. in October 11s, and died the same year, aiter having exborted the Chri-tian princes to undertake a new crusade, and abis lied 1tenry 11. of England for the murder of Becket.

Gregory IX. (LGolino. Colent of Segni), b. Campania ahout II4; ; d. Rome 21 Aug. 1241. He became a bishop of Ostia and cardinal, and in 1227 succeeded Honorins 111. The principal events of his pontificate were the various incidents of his contest with the great Emperor Frederick II., whom he four times exconmunicated, absolving his subjects from their allegiance, and proclaiming a crusade against him. The 'Decretals,' which he published in 1234. form the basis of the canon law of the Church.

Gregory X. (Tebaldo Visconti), d. Arezzo, 1o Jan. 1276. He was elected Pope in 1271, after an interregnum of two years. He convened a council at Lyons in 1274 , the chief purpose of which was to promote a union between the Eastern and Western Churches.

Gregory XI. (Peter Roger), b. Maumont, Limoges, France, 1329 ; d. Avignon, 30 Dec. 1378. He was a nephew of Clement Vi., and succeeded to the pontificate in 1370 , after the death of Urban V. He was a patron of learning, and endeavored to reconcile the princes of Christendom and to reform the religious societies. He transferred the papal see from Avignon to Rome.

Gregory XII. (Angelo Conario), b. Venice about 1325 ; d. IS Oct. 1417 . He became pope in Ifo6, during the great schism of the West, Benedict XIII. being the other pope. Both were deposed by a councii held at Pisa, and Alexander V. elected in their stead. Gregory abdicated at the Council of Constance in 1415, and thenceforward held the rank of cardinalbishop of Porto.

Gregory XIII. (Ugo Buoncompagno), b. Bologna 7 Jan. 1502 ; d. 10 April 1585. He was one of the theologians of the Council of Trent; on his return thence was created cardinal in 1565. On the death of Pius V. Gregory was elected pope in 15%. Not one among the postReformation pontiffs has surpassed Gregory XIII. in zeal for the promotion and improvement of education; a large proportion of the colleges in Rome were wholly or in part endowed by him. The most interesting event of his pontificate, in a scientific point of view, is the correction of the calendar (q.v.), which was the result of long consideration, and was finally nade public in 1582 . Under his care was published also a valuable edition of the 'Decretum Gratiani' with learned notes. He was a zealous patron of the Jesuits, and supported the League in France against the Huguenots. He strongly supported Philip II, of Spain in his designs against England; and left the mark of his energy on almost every department of church life and work.

Gregory XIV. (Nicholas Sfondrate), b. Crmona 1535 ; d. 15 Oct. 1591 . He was made a cardinal in 1583 and succeeded Urban VII. in 1590.

Gregory XV. (Alessandro Ludovico), b. Bologna 9 Jan. 1554; d. 8 July 1623. He became a cardinal in 1616 and succeeded Paul V. in 1621. He was the founder of the College of the Propaganda, and in 1622 canonized Ignatins Loyola, Francis Xavier and Philip de Neri.

Gregory XVI. (Bartholommeo Capellari) b. Belluno 18 Sept. 1765 : d. Rome 1 June 1846. He was made prefect of the Propaganda in 1826 and was in effect minister of foreign
affairs. He succeeded Pitus V1II. in I83I. Its rule was a period of no ordinary interest and difficulty in the history of the Church, and in the relations of the Vatican with the temporal powers of Christendom. Of simple labits he was very active in his conduct of affairs. Ilis 'Trimmphs of the Papacy' (1j00) has been translated into both German and French.

Gregory, Casper René, American scholar: b. Philadelphia, Pa., IS\&6. Was graduated at the Universities of Pennsylvania, Princeton and Leipsic (i864-76). He has done important work in New Testament criticism, and has been professor of New Testament exegesis in the theological faculty at Leipsic. In addition to translations of critical works from the German, he has written 'Les Cahiers des Manuscrits Grees' (1885) ; and the 'Prolegomena to Tischendorf's Editio Octava Critica Major of the New Testament' (1893).

Gregory, Edward John, English painter: b. Southampton, 1850 . He trist exhibited at the Royal Academy in 1876, and became known as a genre painter of distinction, whose lightness and refunment, combined with rare technique, were almost more French than English. His most characteristic pictures are 'A Rehearsal' (1882); 'The Swans of the Thames'; and 'Is it a Mouse?

Gregory, Eliot, American painter and author: b. New York 13 Oct. 1854. He studied at lale, obtained his education in art at Rome, arıd at Paris as a pupil of Cabanel and CarolusDuran, and exhibited both sculpture and painting at the Salon. His pictures include genre works and portraits, among the latter being those of Adniral Baldwin, Ada Rehan and August Belmont. His books, published under the pseudonym "An Idler," are: "Idler Papers' ; 'Worldty Ways and By-Ways' (1898) ; and 'The WVays of Men' (1900), containing satirical observations on American life, especially that of plutocratic society.

Gregory, Francis Hoyt, American admiral: b. Norwalk, Conn., 1789 : d. 1800 . He was appointed midshipman in the United States navy in 1809, and during the war of 1812 was attached to the command of Commodore Chauncey on Lake Ontario. He was captured by the English in 1814 and confined till the close of hostilities. He saw service in repressing the Algerine pirates (1815-16) and the buccaneers of the Wrest Indies (1821-23): took part in the Mexican War and commanded the Afirican squadron (1849-52). He retired with the rank of rear-admiral in 1862 .

Gregory, John Milton, American educator: b. Sand Lake, N. Y., 16 July IS22; d. Washington, D. C.. 20 Oct. I898. After graduation at Union College in 1846. he entered the Baptist ministry, but soon relinquished preaching for teaching. He was. State superintendent of public instruction in Nichigan in 1858-63: president of Kalamazoo College $1863-65^{\circ}$: and president of the Industrial University in Champaign, Ill., in 1867-80. He published 'Compend of the School Laws of Michigan': 'Handbook of History" (IS66) : 'A New Political Economy' (I 822); 'Seven Laws of Teaching' (IS83) : etc.

Gregory of Tours (Gregorius Florentics), historian of Gaul, b. Averni, now Clermont,

GRENADA - GRESHAM

France. 538 ; d. Tours 17 Nor, 593. He lived some time at the cour: of Anstrasia, and became bishop oi Tours in 573 . His 'Historia Franccrum.' though destitute of style or method, contains an invaluable collection of facts bearing on the manners of the Franks and Gallo-Rumans, and the historical events oi the period. and has caused him to be ranked as the Herodotus of Gaul. He also wrote lives of fathers, ecclesiastics and martyrs. ctc. His complete works are contained in Migne's 'Patrologia' (Vol. LXXI.) and his histore is included in the first voiume of the 'Monumenta Germanix Historica' ($\mathrm{TSR}_{4} \mathrm{CR}_{5}$).

Grenada (grĕn-ä'dạ) and Grenadines, gren-a-dēnz'. islands of the West Indies. Grenada is the mosi southern of the Caribbean chain. and may be characterized as the most British and the most beautiful of all the British Antiles. Its length is is miles. its width io and irs area 33 square miles. Loity volcanic craters rise high above fertile and well-watered valleys. The volcanic character of the island is perhaps more marked, and is certainly regarded by geologists as being more secent than that of the northern Caribbees. A lake two miles in circumference lies among the mountains just mentioned, at an altitude of 3.200 feet. St. George, the capital, has a good hazbor. a iort, and pretry houses and churches. The island is headquarters of the government of the 1 indward group (which includes with this the Grenadines, St. l'incent and St. Lucia), and has excellent schools, roads, waterworks, etc. The chiei product is cocoa. Population about ミ4.000, of which number jour-fiths are negro peasants. The Grenadines are long, low islands "oi quaint forms and euphonious names,") lying between Grenada and S. Sincent. The largest of them is less than 8.000 acres in extent, and their total area is approximately 8 ; square miles. They have in all more than 0.000 inhabitants, who raise and export cattle and provisions.

Marrion Wilcox.
Authority on Spanish America.
Grenade, grẹ-nād', a small hollow bail, cylinder, or cube. oi metal. glass, or paper, about two and one half inches in dameter, which is filled with some explosive, and burst by means ci a iuse when it ialls ameng tlee enemy. L'ntil about the end of the 10 th century trained ooldiers called grenadiers threw grenade by the land. Gerenades have been delwered irem mortar:- to sepel the cloie attacks ui besicgersheliering themedyes under the le-ieged walls. They have been inund useful alon in repelling In at attach:. At the iege of Maicking in fiorsom dynamite grenades are sand th liave been thrown by the be-iesed. Girenades, were one ni the earliest iorms ai explaive projectlo. The gradual diewe oi hand-grenade in war dates irem the lattle of Steinkerque in 1600 . Handgrenado are in use at the precont tume as fire exingui-here, chemicals being uned to fill h llow glaw batis, which are thrown into a barning mass. Many hotels, hospitals and tublie buildinge are couphed with hand-erenales

Gren'fell. George, Engli-h miwi mary and lórian exnloer h Penzance, Cornwall, Fng-
 o Tuly irne In is-- he was fespatched in kam ron. Comral tirica. where he founded the
settlement of Victoria. He later reached the Congo, and rendered good services to science by his hydrographic survey of the Congo valley during his voyage in the steamboat "Peace." Notable was his exploration of the C'bangi (1885) whose identity with the Welle Makua he convincingly established. The geographical societies of Germany, France and England, publi:hed valuable communications from this intrepid traveler, who shares with Livingstone the repuration of a missionary who did much to promote an accurate scientific knowledge of interior Airica.

Gren'ville, George, English statesman: b: 1012; d. 13 N Nor: 1:\%0. He became treasurer of the navy in 1754. secretary of state in 1762, and first lord of the treasury and chancellor of the exchequer in April, $1 ; 63$. In 1765 the Commons accepted his scheme for stamp-duties to be levied in the American colonies, which was one of the proximate causes of the American Har of Independence. In $1 ; 06$ he defended the stamp act in Parliament: in 1;60 opposed the expulsion of Wilkes from the House of Commons, and in $1 \% \%$ brought in the Controverted Elections Bill, which was passed. He was able, hard-working and honest, but narrow-minded and obstinate, wanting in tact and foresigbr. The 'Grenville Papers.' edited by W. J. Smith (is52-53), contain interesting information on the politics of the day.

Grenville, $\mathrm{S}_{\text {IR }}$ Richard. English naval officer: b. about 1543 : d. September 1591. In 1585 he commanded a fleet of seven vessels intended to aid in the colonization of Jirginia. His most brilliant exploit occurred in 159r, when he Ettempted to cur his way through a Spanish Heet of 53 ships. His ship while becalmed was attacked by 15 of the largest Spanish vessels. Not till atier is hours of batule and when only -o out oi his 150 men were leit alive did he strike his colors. He died iron wounds received in the engagement. It is upon this incident that Tennyson has founded his spizited ballad. 'The Reverge.'

Grenville Act, 6 April ry64. An act passea by the English Parliament on the proposal oi George Grenville, a member of Lord Bute's ministry. Its purpose was more effectively to protect English trade and manufactures irom foreign compctition, to raise better revenues irom the colt nies. It was based on the act of 1733. wheh, to protect the British West India sugar indus:ry. laid prohititory duries on the mport of French West India sugar and molasere into the colonies, and which. it eniorced, wuld have ruined Sew England commerce. The new act made the duty on molasses a heary revenue one in-tead: increased the duty on sugar. and laid new duties on wines; decreased the drawbacks on joreign articles exported to America: im, sed regulations on manuiacturers, and attomped to enforce the navigation acts more th roughly: and prohibited ali trade between the colonics and the French islands St. I'ierre and Miquelon.

Gresham, Walter Quinton, American jurist and stateman: b. near Lanesville. Jfarrimn County, lud., If Jarch 1832. His family origmated in Kentucky, from which State his grandfather had removed to Indiana. There his father met with success as a farmer, and

GRESHAM'S LAW - GREVY

also exercised the art of cabinet-making. He was elected sheriff and was murdered in the performance of his duties. The son was educated at the local school, and the State University, Bloomingdale, Ind. After leaving the latter he went to Corydon, Ind., and began the study of law, while filling the office of deputy clerk (1854). In 1860 he was elected to the State legislature. When the Civil War broke out he was commissioned in the Federal service as lieutenant-colonel of the 38 th Indiana regiment. He was promoted under Grant, and at Vicksburg had charge of a brigade with the rank of brigadier-general of volunteers. He joined Sherman's forces in the expedition against Atlanta, Ga., where he commanded the 4 th divicion of the 17th Army Corps. At Leggetts Hill, in January, I864, he was severely wounded and disabled from service, and in the following year was retired as major-general of volunteers. He chose as his home New Albany, Ind., and began an active life as law practitioner. In 1866 he was put forward by his friends as Republican candidate for Congress, but was defeated at the polls, and for the two following years resided in New York, as the financial agent of his State. His next field of activity was as a jurist, for in 1869 President Grant appointed him judge of the United States circuit court for Indiana. He had previously declined an appointment as collector of customs at New Orleans, which would have necessitated his removal from Indiana. He had also declined the position offered. him as district attorney. But his great abilities and high character had pointed him out as fitted for some important employment, and in 188.2 no surprise was felt, but rather general expectation was satisfied when he received an appointment to the cabiret with the portfolio of postmaster general (1882). In 188+ he was called to the secretaryship of the treasury, in the discharge of whose duties he would doubtless have increased his reputation as a financier, had he not been appointed a few months later as United States circuit judge for the 7 th judicial district. He made himself conspicuous as favoring the third term of his old friend Gen. Grant (IS80). His own name had been put forward with some enthusiasm as presidential candidate in 1884, and again in 1888. There were many who thought that he had good claims to be invested with the office of the chief magistrate. Subsequently he changed his convictions on the most important question of the lour. and ranged himself on the side of vjews of tariff legislation with which the Republican party had no sympathy. The Populists, however, looked upon him with favor as his judicial decisions had in many cases been to their adrantage. Had he consented, they would have nominated him for the presidency at the national convention of that party held at Omaha, Neb., in July. I892. He declined the honor and made a public statement announcing his purpose of supporting Grover Cleveland's nomination. He was afterward named by President Cleveland as secretary of state.

Gresham's Law, a principle in finance and political economy formulated about the middle of the 16th century by Sir Thomas Gresham, founder of the London Royal Exchange. It may be thus stated and expounded. Bad
money drives out good money from the circulation. The good coin of full weight and purity in circulation with worn, light, or depreciated coins, will be hoarded or used for exportation, where it will buy more abroad than the worn out coins, which will be left to pass as counters at home. This law is still a living principle, and especially applicable in controverting the position of those who wish the United States, single-handed, to issue a currency of the double standard.

Gres'well, William Henry, English Anglican clergyman and anthor. He was educated at Oxford and has been rector of Dodington, Somerset, from I888. As a writer he is known by 'Our South African Empire' (1885): 'Imperial Federation' (1887): 'History of the Canadian Dominion' (I890); 'Geography of the Canadian Dominion' (IS91); 'Geography of Africa South of the Zambesi) (I892); 'The British Colonies and Their Industries) (I893) ; 'Growth and Administration of the British Colonies’ (1897).

Gretna, La., town, capital of Jcfferson Parish; on the Mississippi River and the Southern Pacific railroad: opposite New Orleans. A number of the Mississippi River packet lines take on and discharge shipments at Gretna. It was founded in 1835, and has now many of the advantages of a suburb of New Orleans. It manufactures cottonseed oil and its trade is chiefly in cotton and cottonseed oil. Pop. 3,875.

Gretna Green, or Graitney, Scotland, village in Dumfriesshire, on the Solway Frith, eight miles north of Carlisle. It was for nearly. a century notorious as the place of celebration of the matriages of rmmaway couples from England. To conclude a lawful marriage in Scotland, it was then only necessary for an unmarried couple to go before witnesses and declare themselves man and wife. The English marriage service was usually read at these marriages by a pseudo-priest, said to be the blacksmith of the rillage, who has become in consequence a historical character in fiction. Gretna Green marriages are now at an end, in consequence of a statute which enacts that no irregular marriage contracted in Scotland shall be ralid. unless one of the parties resides in Scotland, or has done so, for 21 days next preceding such marriage.

Grétry, André Ernest Modeste, äñ-drä ėrnā mō-dĕ́st grā-trē, French composer: b. Liège 8 Feb. 1741; d. Ermenonville 24 Sept. 18:3. After completing his studies at Rome he settled at Paris and there his reputation was made. He was the most prolific composer of his age. He produced forty comic operas, most of which with the exception perhaps of (Raoul' and 'Richard Cour de Lion' are now forgotten. His "Memoires’ 1 I296, and his life by Gregoir and Brenct give the main incidents of his career.

Grev'ille, Henry. Sce Durand. Alice Mrary.
Grevy, François Paul Jules, fräñ-swả pōl zhül grā-vè, French statesman: b. Mont-sousVaudrey, Jura, 15 Aug. 1807: d. 9 Sept. ISgi. He studied law in Paris, and became prominent as the defender of republican political prisoners. In 1848 he was returned to the Constituent Assembly, where his ability as a speaker soon
made him distinguished. After the couf d"étut he retired from politics. but in 1869 again entered the Assembly as deputy for the Jura. In February: 18-t. he was elected president of the Narional Assembly, and re-elected in 18,6, 18%, and 1879 . When Marshal MacJahon resigned in 1879 Grevy was elected president of the republic for seven years. In December. 1855, he was elected president for a second term of seven years, but, hampered by ministerial complications, resigned in December 1887.

Grey, Albert Henry George, Fourth Earl, English statesman: b. Howick, Northumberland, England, Nov. 28, 1851. His grandrather, the second earl, was prime minister of England, and influential in securing the passage of the Reform Bill of 1832. The present earl was graduated from Trinity College. Cambridge; in ISSo he was elected to Parliament, as a Liberal. and supported Gladstone in the House until 1886 when the Liberals declared in favor of home rule. He then became a Liberal Unionist, but lost his seat in Parliament. In 1894. as his uncle died childless, he succeeded to the estate and title, and entered the House of Lords. He was a personal friend of Cecil Rhodes, was one of the promoters of the South African Company, and in $1896-97$ served as governor of Rhodesia. As an executor of the Rhodes will. he is now one of the trustees of the scholarship fund. He has been an active worker in reform movements, especially in the canse of co-operation and of temperance. On his estate he has organized a co-operative system which has worked successinlly: and in igor he organized a system for the management of public houses in the interests of the public. known as the Public House Trust. In 100 he was appointed governor-general of Canada to succeed the Earl of Minto.

Grey, Lady Jane, English princess: b. Bradgate. Leicestershire, 533^{-}; d. Tower Hill, London, 12 Feb . 1554 . She was the daughter of Henry Grey. marquis of Dorset, afterwards duke of Suffolk. She displayed much precocity of talent ; posecssing an acquaintance with the classic and oriental langrages. as well as French and Jtalian. She was married to Lord Guildforl Dudley, fourth son of the Duke of Northumberland. in day 155. Edward 111 . was induced at his death 5 July 1553 to sctile on her the sueces--ion to the crown. The conncil endeavored 10 keep his death secret. with a view to secure the persons of the princesses, Mary and Elizabeth. Jlary apprised of their decigrn, wrote expressing her surprise that ,he had not been advised of her brother's death. and commanding them on their allegiance to proclaim her title. The council replied, exhortims lier on bee friet and whedient. and proclaimed Lady Jane on the soth. On the approach of Jlary the council. monenpported in their usurpation, meanly deserted ther victim Lady Jane, ard joined in proclaiming Jary queen on the inth, and on the zoth Lady Jane was confined to the Tower. On 13 Nov: she and her hushand were arraigned, and pleaded guilsy of high treason: but they might. perlap:. have heen allowed to expiate their imprudence by a temporary ennfinement. but for the ill-adviscel insurrection under Sir Thonas 11 yalt, in which the Duke of Suffolk, Lady Jane's father, was weak cnough in paricipate. The suppression of this rebellion was fnllowed by the exe-
cution of Lady: Jane Grey and her husband ont Tower Hill.

Greyhound. A long, tall, slender hound, the standard features of which are described under Dog. It hunts by sight, is fitted for the swiftest running and leaping, and is used in the sport of coursing (q.w.). In the United States grevhounds are kept mainly as pets; yet in the W"est are used in chase of jack-rabluts, prong-horn antelopes and coyotes. Few horses are able to keep $u p$ with them, even in a level country; and on an irregular surface they distance horses easily. The modern thin, smoothhaired type, to which the name is now popilarly restricted, is a development irom a form which arose in western Asia before the Christian era, and was adopted and esteemed in Syria, Egypt and Rome, during the classic period. It was taken west with the Romans in their conquest of Europe, and later became the favorite dog of the nobility, an accompaniment of tal conry: At that time black, or black-and-white were the approved colors. There seems to have been little essential change of form or qualities during this prolonged history, and literature and art abound in commemoration of the dog's gracc. kindliness and exploits in the field. There arose at an early time a dimimutive variety not hali the size of its namesake (about 7 pounds in weight) fragile. delicate. and of no use save as an ornamental pet, which is now known as the ltalian greyhound. It is of almost any whole color,-black, mouse-grey, fawn or rasely white. Besides these satin-coated "Inng-dogs." other: arose in the colder parts of Europe which differed from the greyhound only in having a "rough," that is Iong-haired, coat. These are the lrish wolfhounds (see WolfHovid), the Scotch stag or deerhound (see Deerhoc: x) , and the Russian wolihound or psovie (see Borzot).

Greytown, old name San Jran de NicaRagua. destroyed in 1854 by the United States. (For the general situation, see Claytox-BurWer Treaty.) In May i85t the caprain of an American steamship had a quarrel with a negro, and shot him dead; the mayor of the city ordered him arrested, and the passengers nit the ship, as well as Solon Borland. the C inited States minister to Nicaragua, took the captain's part and resisted the arrest. The native inlmhitants were indignant and nobbed Borland. whereupon the Cinited States war-vessel Cyane. Commander Hollins. Was sent in exact reparation. Ilollins espoused the cause of an American transit company who were making cxcessive claims, and ordered the mayor to pay them at once; on their refusal he hombarded and burnt the place. This nutrage embroiled the Enited States with Fireat Britain.

Gridley, Charles Vernon, American naval officer: h. Logansport. Ind.. 24 ズov, \&855: d. Kohe, Iapan. 5 June isn 8 . A graduate (isoz) of the ['vited States Nava] Academy: he served during the Civil Wiar in the Whest rulf blockading squadron. subsequent to the war was on varinns chins and in $18-5-79$ was statinned at the Naval deademy: Ie was navigation offiecer in the Rocen Savy lard in $188_{2}-8_{4}$. Was lighthouse inspector in iSS-OI and iSOS-97. in info attained the rank of captain and was ap.

ALBERT HENRI GEORGE. THE FOURTH EARL GREI, GOUERNOR-GENERAL OF CAD.ND.
pointed to the command of the Olympia, then flagship of the Asiatic squadron. This ressel he commanded in the battle of Alanila Bay I May (1808). He died at Kobe.

Gridley, Richard, American soldiet: h. Boston, Mass., , Jan. 1/11; d. Stoughton, Mass. zo June rig96. He served in the British army as lieutenant-colonel of engincers under Peppercll at the capture of Louisburg in 1745 ; as chicef engineer and colonel of infantry in 1755: took patt in the expedition to Crown Point under Winslow in 1756 ; under Amherst in 1758; and under Wolfe at Quebee in 1559. We was appointed chief engineer and commander of the artillery of the American army upon the outbreak of the Revolution, constructed the fortifications on Breed's Hill before the battle of Bunker Hill, and later fortified Dorchester Heights. He was commissioned major-general by Congress on 20 Sept. 1 -行, and commanded the Continental Artillery till Xovember of that year.

Grieg, Edvard, ĕd’uärd grēg, Norwegian composer: b. Bergen 15 June 1843 : d. there 4 Sept. 1907. His great-grandfather, Alexander Greig, was a Scotchman who emigrated to Norway after the battle of Culloden (1745) and changed his name to Grieg. Edward's father was British consul at liergen: he married the Norwegian Gesine Judith Hagerup. a descendant of Kjeld Stub; from her. Edvard inherited his musical gifts; she was a good musician and gave him lessons. By the adrice of Ole Bull, Edward was sent to the Leipsic Conservatory at the age of 15 : he remained there three years, studying with Plaidy, Wenzel, Moscheles. E. F. Richter, Hauptmann, Reinecke. Their lessons, and the music he for the most part heard and studied. impressed a German stamp on his mind, which characterizes his first compositions. 1 is studies were interrupted by an illness, a severe case of pleurisy, which destroyed one of his lungs and left his health impaired for life. On his return to the North he came under the influence of three Scandinavian musicians: the composer Gade, who gave him many useful hints: Ole Bull, an ardent musical patriot, who made him familiar with the charming folk-tunes of Norway, which he played so entrancingly: and Riclard Nordtaak, who encouraged him in his natural inclination to get out of the maclstrom of German music and steer into the fjords of Norway. From 1856 to 1873 he lived at Christiania, conducting the Philharmonic concetts and giving lessons. He also gave subscription concerts, with the aid of his consin, Nina Hagerup, whom he married on it June 1867: she was an excellent vocalist, whose art was a great aid in winning favor for his songs. In IS $\& 8$ Liszt accidentally came across Grieg's first violin sonata (Op. S). and was so much imoressed by the evidence of creative power it gave that lie invited him to come and spend some time in his studio. It was in consequence of this flattering letter that the Norwegian Government gave Griey a sum of money which enabled him to visit Rome. There he repeatedly met Liszt, who became more and more impressed by the boldness and the national traits of his genius: he urged him to persevere in his original course and not to let the critics intimidate him.

In 1874 Ilenrik 1 bsen asked Grieg to write the music for a stage version of his 'Per Gynt.' The offer was accepted and the play was produced, with much sucees, in 18,6. It is often given in Scandinawian citics: elsewhere it has not succeeded, becaltec of its untheatrical, fantastic character and its grotesque local coloring: but the music, atranged for the concert hall in the form of two stites. scon made Gricg one of the most popular compnsers in al countries. In the same year that Ibsen invited bim to compose the music for 'Peer Gynt.' the Norwegian Government honored him with an annuity of 1600 crowns for life. This relieved him of the drudgery of teaching and enabled him to devote most of his time to composing. For several years he lived at Lofthus. on the Hardanger Fjord. At Bergen, 1880-1882, he conducted a musical society called the 'Harmonien.' In 1885 he built the elegant villa Troldhangen, ovetlooking the fjord, abont 8 kilometers from Bergen: there he lived till his death. After his fame was well established, about 1880, he leit his home frequently for concert tours in Germany, France, and England. Everywhcre he was acclaimed as one of the most individual and enchanting of pianists (he piayed only his own pieces), and usually all the seats for his concerts were sold long before their dates. Sometimes he conducted his orehestral compositions. "How he managed to inspife the band as he did and get such nervous thrilling burse and such charming sentiment out of them I don't know." wrote Sir George Grove, in IS88. In 1803 a writer in the Paris Figaro said: "Among the most famons living musicians there is nome 1 know of whose popularity equals, with us, that of 31 . Grieg" $]_{11} 1890$. Colonne invited him to Paris to conduct a Grieg concert: but it was just after the verdict in the Dreyfus casc. which had made Grieg so indignant that he refused the invitation. When it was repeated, four years later, he accepted. There was a tremendous crowd: crics of "apologize, you have insulted France!') were heard; but the vast majority was with him, and the concert proved one of his biggest trimmphs.

Grieg did for Norway what Chopin did for Poland, Liszt for Hungary, Drorak for Bohemia: he created a new national art. This great achievement, unfortmately, stond in the way of the full recognition of his superlative genius. It is still commonly assumed that he did little more than transplant to his garden the wild flowers of Norwegian folk-music, whereas. in truth, minety-five hundredths of his music is absolutely his nwn. He ranks with Schubert and Chopin both as a melodist and a harmonist. His persistent ill-health prevented him from writing operas and symphonies: most of his works are songs and short pianofirte pieces. The songs, 125 in number. ate of striking originality and denth of feeling. The coually numerous short pieces for piano (in- 'uding 66 "lryic pieces" in one vol.) are as illimatic as Chopins. There are also 5 sonatas: nue fin piano alone, three with vinlin, one with ceilo, beside a string quartet. The orchestral list includes: Overture. 'In the Autumn': (Holberg' suite: 2 'Peer Gynt' suites: 'Sigurd Jorsalfar') : arrangements of Grieg songs and Norwegian dances. Choral worlis: 'At the Cloister Gate': 'Landsighting': 'Olai Trygrason.' Berg-
liot＇is a poem for declamation，with orchestra． The only books on Grieg and his works are by Schjelderup，in Norwegian，and by the author of this article．in English．The latter contains a list oi pamphlets and magazine articles on Grieg． Hexry T．Finck．
Mustal Director．New York Etening Post．
Griesbach，Johann Jakob，a noted German New Testament scholar．biblical critic and theo－ Jogian：b．Butzbach in Hesse－Darmstadt． 4 Jan． $1845:$ d．Jena． 24 March 1812 ．He was educated at Frankiort－on－the－Main：later studied theol－ ology at Tübingen，Halle，and Leipzig：duriug 1；00－－\％traveled extensively in England．France and Holland：in 1771 became docent and in 1573 professor extraordinary in theology at Halle：and from 1 iois till his death was profes－ sor ordinary at Jena．Griesbach：most impor－ tant work－to which he devoted the best years of his life－was the collecting and classifying of the ancient manuscripts and versions of the Greek text of the New Testament．His critical researches，the result of which appeared in his edition of the Greek New Testament（Halle， 1755－7）one of the first ever printed．are valu－ able and in the main correct．It was he who first divided the authorities ior the text of the Greek New Testament into the three great families－Alexandrine．Latin or Western，and Byzantine or Eastern．

Griffin．Charles．American soldier：b． Licking County：Ohio，1826；d．Galveston． Texas， 5 Sept．1867．He was graduated at West Point $(18+i)$ and served through the Mexican War．In the Civil War he commanded the sth artillery at the first battle of Bull Run，and on 6 May is64 was brevetted lieutenant－colonel in recogition of gallant and meritorious services in the field．He was one of the commissioners to carsy out the condition agreed upon by Gens． Grant and Lee．

Griffin，Gerald，Irish novelist：h．Lime－ rick．Ireland， 12 Dec．ISo3：d．Cork， 12 June 18．40．He will be longest remembered for his novel＇The Collegians＇（1829）．upon which Boucicault＇s popular play．＂The Colleen Bawn．＂ is founded．Griffin was a poet as well as a writer oi tales and the author of various lyrics popular with his countrymen．

Griffin，Sik Lepel Henry，English diploma－ tist ：b．ifo．He entered the Bengal Civil Serv－ ice in tisto and since then has been administra－ tor of the civil government in several places． especiaily in the Punjab．In 1885 he was nom－ inated by Lord Salisbury＇s government as En－ voy Fxtraordinary in Pekin．He has written ＇The Punjab Chicis＇（ 8805 ）：＇The Raiahs of the Punjab＇（18；0）：＇The Great Republic＇ $\left(1 \mathrm{~N}_{2}+1\right.$

Griffin，Ga．，city，county－seat of Spaldine County，on the Southern and the Central oi G． R．R．＇s．It is the centre of a cotton and iruit region，the chief fruits heing erapes and peaches． The city contains cotton－mills，a foundry：and furniture factoric：：wine is also manufactured． The State Igricultural Experiment Station is located in the vicinity．Pop．（1900）6，85\％．

Griffin，or Gryphon，in mythology，a fah－ ule us ammal．unvally sepreented with the loody and legs of a lion，and the head and wines of on cagle，ignitying the union of strength and agility．ligures of griffirs are irequently used
as ornaments in works of art．It is employed as an emblem of vigilance，the animals being sup－ posed to be the gliardians of mines and hidden treasurers．Figures of it are met with in tombs and sepulchral lamps，as guarding the remains oi the deceased．

Griffis，William Elhott．American clergy－ man and author：b．Philadeiphia is Sept．ist3． He was graduated irom Rutgers College in 1860 ． and 18；0 wemt to Japan to organize schools after American methods in the province of Echi－ zan．made a study of the Japanese feudal system． and was professor of physics in the Imperial Eniversity in 18；2－7！．In 18；－4 he returned to the U＂nited State＇，where he was graduated from the Union Theological Seminary in 1875 ．He was pastor of the First Reformed Church． Schenectady：I．I．（18：－-85 ）of the Shawmut Congregational Church．Boston（I885－93）．and of the First Congregational Church of Ithaca． N．1．（1893－1903）．In 1891 he was a delegate to the International Congregational Council at London．From 1903 he turned his attention wholly to literary work．An authority on Japan：he also studied the Dutch origins oi America and the influence of the Dutch in the formation of the United States．His pub－ lisled works include＇The Mikado＇s Empire＇ （ $18 ; 0$ ），his best known volume，which has appeared in many subsequent editions：＇Japan－ ese Fairy World＇（ 1880 ）：＇Corea：the Hermit Nation＇（18\＆2）；＇Corea．Without and Within＇ （ $18 \mathcal{S}_{4}$ ）：＇Mathew Gaibraith Perry：a Typical American Xaval Officer）（ 188 ；－90）：＇The Lily． Among Thorns＇（1880）：＇Henda the Samurai＇ （IB00）＇Sir William Johnson and the Six Nations＇（1801）：＇Japan in History．Folklore and Art＇（I892）：＇Brave Little Holland＇ （I\＆Q4）：（Townsend Harris：First American Envor in Japan＇（180玉）：＇The Romance of Discovery）（189－）：＇The Pilgrims in their Three Homes＇（i\＆gi）：＇The Romance of American Colonization＇（ 1808 ）：＇The Romance of American Conquest＇（ 180 ）：＇The Ameri－ can in Holland＇（tiso）：＇The Pathtinders of the Rerolution＇（ 1000 ）：＇In the Jikado＇s Serv－ ice＇：＇A دlaker of the New Orient＇：＇Sunny Memories of Three Pastorates＇（1903）．

Griffiths，Arthur George Frederick，Eng－ lish soldier and author：b．Poonalh．India．He served in the Crimean War，was inspector of prisons is－8－o6．edited＇The Fortnightly Re－ vew＇（ IS8 4 ），and is editor of＇The Arniy and Nary Garette．）He is the author of＇The Queen＂Shilling＇（ 18 ； 2 ）；＇Memorials of Mill－ hank＇（I8－5）：＇Lola：a Tale of the Rock＇ （ $18-8$－8）：＇Ćhronicles of Newgate＇（ 188_{3} ）：＇A Prisin n Princess＇（ 1800 ）：＇Secrets of the Prison Hotse＇（1．n3）：＇Criminals I lhave Known＇ （IN⿱二小欠）：＇The Rome Express＇（I8g6）：＇Wel－ bingtorn and Waterloo＇：＇Mysterics of Police and Crime＇（I8，$)$ ：＇A Girl of Grit＇（ISO8）： ＇Ford＇：Folley：Lid．＇（ 180 ）：＇The Brand of the Rroad Arrow＇（rooo）：＇A Sct of Flats＇ （tnot）：＇A Duchess in Difficulties＇；＇Tales by a Grvernment official＇：ete．

Griffon，or Bassett－griffon a large gray－ $i=h-t e d$ fielddog．combining the qualitics of both pointer and setter，but having a thick hard coat emabling it to work readily it thickers and remgh cumery：It anginated in Germany at the end oi the with centurs：

Griggs, Edward Howard, American lecturer: b. Owatunna, Minn., 9 Jan. I868. In 1889 he was graduated from Indiana University (Bloomington), and later studied at the University of Berlin, and was successively instructor in English literature and professor of literature in Indiana University: Subscquently he became professor of ethics, and upon the combining of the departments, professor of ethics and education, in the Leland Stanford, Jr., University: From 1899 he was active as a public lecturer, particularly in connection with the conrses of the Brooklyn (N. Y.) Institute of Arts and Sciences. He wrote 'Moral Education' (1905).

Griggs, John William, American politician: b. Newton. N. J., 10 July 1849 . Ile was graduated at Lafayette College in 1868, and was admitted to the bar in 1871, practising in Paterson, N. J. He was a member of the New Jersey General Assembly: 1876-77: a state senator, 1882-88; and president of the state scmate in 1886. He became governor of New Jersey 1 Jan. 1896, resigning 31 Jan. 1808 to lecome attorney-general in President McKinley's cabinet. He resigned in April, 190 .

Grijalva, Juan de, hoo-än' dā grē-lıăl'vä, Spanish navigator: b. Cucllar 1489 or 1490 ; d. Nicaragua, 21 Jan. 1527. He was intrusted by his uncle. Don Diego Velasquez, the first governor of Cuba, with the command of a fleet of four vessels, which. on I May 1518, sailed from St. Jago de Cuba, to complete the discoveries which Fernandez de Cordoya had made in Yucatan the year preceding. Rounding the peninsula of Yucatan, he extended his explorations as far as the province of Panuco, giving his name and that of his companion, Alvarado, afterward famous in the expedition of Cortes, to two rivers on the coast. His communication with the Aztecs was friendly, and so profitable that he was enabled to send back one of the ships well freighted with gold, jewels, and nther treasures, the acquisition of which was nue of the main objects of the expectition. On his return to Cuba he found an expedition organizing for the conquest of Mexico, with Cortes at the head. and was received by Velasquez with reproaches for having neglected to plant colonies on the coast. Grijalsa, a man of integrity and prudence, had, however, acted strictly in conformity with his instructions, and against his own judgment. In the latter part of his life he settled in Nicaragua, and was slain in an ontbreak of the Indians in the valley of [Jancho.

Grillparzer, Franz, fränts grill'pärt-sčr, German poct and dramatist: b. Vienna 15 Jan. 1791; d. there 21 Jan. I872. In I813 he entered the service of the imperial court, retiring to private life with the title of Hofarth (court councillor), in 1856 . In 1861 he was appointed macmber for life of the imperial council. He became known as a dramatist in 1816 by his 'Ahnfraul.' a tragedy of the fatalistic school, which still keeps the stage. It was followed by the dramas 'Sappho' (i819); 'Das Goldene Vliess' (1822): 'Des Meeres und der Liebe Wellen' (isto), an adantation of the legend of Hero and Leander. Perhaps the finest of Grillparzer's products is the historical drama of 'König Ottokar's Glück und Ende' (I825).

Grilse, a young salmon (q.v.).

Grimes, James Wilson, American politician and legislator: b. Deering, Hillshoro Connty, N. H., 20 Oct. 18ı6; d. Burlington, Ia., 7 Feb. 1872. He was graduated at Dartmouth College (1836), and went west, where he began the practice of the law, was appointed secretary of a commission instituted to negotiate the transfer of lands from the Sac and Fox Indians, and after the organization of lowa Territory in 1838 , he was elected to its legislature. He was elected governor of Iowa in 1854, and after completing his term, was sent to Congress as a Republican Senator. IIe roted for the acquittal of President Jolmson at his impeachment trial.

Grimké, grim'ké, Archibald Henry, American lawyer: b. Charleston, S. C., 17 Aug. 1849. He was graduated from Lincoln University in 1870, from the Harvard Law Scliool in 1874, and in 1883-85 was editor of the 'Hub.' a Boston newspaper. In 189:-02 he was a special writer for the Boston Herald and Trazeller, and in 1894-08 United States consul at Santo Domingo. His writings include a 'Life of William Lloyd Garrison' (I891), a 'Life of Charles Sumner' (I802), and numerous contributions in periodicals, dealing chiefly with various questions pertaining to the American negro.

Grimké, Thomas Smith, American lawyer and scholar: b. Charleston, S. C., 20 Sept. 1z86; d. near Columbus, Ohio, 12 Oct. 1834 . He was graduated at Yale College in 1807, studicd law at Charleston and rose to eminence at the bar and in the politics of his State. He became widely known by his addresses in belalf of peace, religion, and literature. An early and prominent advocate of the American Peace Society, he held the opinion that even defensive warfare is wicked. Though a superior classical scholar, he maintained that neither the classics nor mathematics should enter into any scheme of general education in this country. In some of his pamphlets he introduced a new system of orthography of the English language. A volume of his addresses was published at New Haven in 1831.

Grimké Sisters, The, Sarah Moore, and Angelina Emily: b. Charleston, S. C., Iy92 and 1805 ; d. Hyde Park, near Boston, 1873 and 1879. They were sisters of Thomas Smith Grimké (q.v.). They liberated their slaves, removed to Philadelphia, entered the Society of Friends, and became known in connection with the Anti-slavery movement. They went to New York in 1836 and in the year following to Boston; were leaders in the American AntiSlavery Society, and appeared as platform speakers on slavery. In 1854 they established a successful cocducational academy at Eagleswood (near Perth Amboy), N. J. Sarah lectured also on woman's rights. Angelina wrote 'An Appeal to the Christian Women of the South' : Sarah an 'Epistle to the Clergy of the Southern States.'

Grimm, Jakob Ludwig, yä'kōb lood'vĭg grim. German philologist: 1). IIanan, HesseCassel. 4 Jan. 1785 ; d. Berlin, 20 Sept. 1863. In 1806 he became librarian to Jerome Bonaparte, king of Westphalia, and from 1816 to 1829 occupicd the post of second libratian at Cassel. From 1830 to 1837 , he resided at Göttingen as professor and librarian, lecturing on the German language, literature and legal antiquities. Hav-
ing, with six other professers. resisted the unconstitutional encroachments of the King of Hanover, he was banished, and aiter his retirement to Cassel, he was, in 1841, called to Berlin as a proiessor and member of the Academy of Sciences. He sat in the National Assembly of 1848 , and in that of Gotha in 1849 . From that time till his death, he occupied himself only with his various publications. He wrote on German mythology. German legal antiquities, the history oi the German language, and published old German poems, etc. His two greatest works, both unfinished, are his 'Deutsche Grammatik' ($1819-3$-), and his 'Deutsches Worterbuch' commenced in 1852. in conjunction with his brother Wilhelm (q.r.), and gradually completed by eminent scholars. He also published, in company with his brother, the 'Kinder und Hausmărchen.' one of the most popular coliections of juvenile iairy tales.

Grimm, Wilhelm Karl, vill'hělm kãrl, German philologist: b. Hanau, 24 Feb. 1;-86; d. Cassel. 16 Dec. 1859 . He was the companion in study of his brother, Jakob Grinım (q.r.), at the Lyceum oi Cassel. the L-niversity of Marburg, and again at Göttingen, where in 1830 he was appointed under-librarian and supernumerary professor of philosophy. He joined his brother in the protest against the King of Hanover, shared his exile, and also his call to Berlin. There they labored together, and ware commonly known as the Brothers Grimm. Under that name also they have a certais immortality in the affections of the civilized world. His earliest independent work was a German transiation of the Danish 'Kcempe-Tiser') (18t1-13). He edited many old German texts and collaborated with his brother Jakob in several of his works. His own most important book is 'Die deutsche Heldensage) (180-), and 'Kleinere Schritten,' (I881-86).

Grimm's Law is the name given to the rule which regulates the Lautacrschicbung, or permutation of certain primitive consonants, which takes place in the Tcutonic languages. The law, as finally formulated by Jakob Grimm, is that if the same routs or words exist in Sanskrit, Greek, and generally in Latin, Celtic, Lettic. and Slavonic, and also in Gothic, English, Dutch, and other Low German dialects on the one hand, and in Old IIigh German on the other, the following correspondences are to be expected: (t) Gothic has a soft mute. and Hirh German a hard mute, in place of the corresponding aspirate in Sanskrit and Greek; (2) Gusthic has a hard mute, and High German an aspirate. in place of the corresponding soit mute in Sanskrit and Greek; (3) Gothic has an aspirate, and High German a soit mute, in place of the correiponding liard mute in Sanskrit and Greek. Thus, a primitive th becomes d in Low German, and t in 11 igh German, as in the words thugatēr, daughter. inchter. A primitive d becores t in Low German, and $=$ in 11 igh German. as in duo, two. zwei; ur denc, funti, z.. 1 ml : or decem, ten, zehn. A primitive t becumes th in Low German, and d in Hegh German, as in 1Res, three. drei; or tu, thun, du; or icmuis, thin. dunn. Similar changes affeet the labials and Euthurals, as in pecus, fec. zieh; pater, father, zater: fagus, beech. funcha: and in nculus. eghe ("eye"), ange; quis, who, wer; or khortos,
garden, korto. The normal changes are set forth in the following table:

Greek, etc.	Lab	Dentals	Gutturals
	${ }_{\text {h }}^{\text {p }}$ ph	${ }_{\text {th }}{ }_{\text {t }}$	(h)
Old High	?	d_{2}	$\mathrm{g}(\mathrm{b}) \mathrm{cb}$

The credit of the discovery of the Lavt. terschieburg is not wholly due to Jakob Grimm. ihre and Rask had discovered, as early as 1 bi\&, the law of the transmutation of consonants in Greek and Gothic, while Grimm, in the second edition of his 'Deutsche Grammatik'; which appeared in 1822 . added the corresponding changes in Old High German, and formulated the law as it now stands.

Grimm s Law may be interiered with by the action of other laws, especially by the position of the accent. as formulated in Verner's Law (q.v.). Thus frater is accented on the first syllable and patér on the second. consequently, though we have brother and father in English. we find bruder and zater in High German. The accent in patír has interiered with the regular action of the Lamterschiebung, and prevented the mormal change of t to d from taking place.

Thus Grimm's Law may be defined as the statement of certain phonetic facts which happen invariably unless they are interfered with by other facts. The great use of Grimm's Law in addition to the identification of words in different languages, is in the detection of loan words. Any etymology which violates Grimn's Law, as qualified by other phonetic laws, must be rejected unless it can be explained as a loan word.

The causes which brought about the changes formulated in Grimm's Law are obscure. They are probably due to the settlement oi Low German conquerors in central and southern Germany.

See Douse, 'Grimm's Law : a Study of Lautverschicbung' (18 -6), Max Müller. 'Lectures on the Study of Language,' 2 d series, lecture \because (i864), IIorris, 'Historical Outlines of English Accidence,' clap. ii. ($\mathrm{t} / \mathrm{F}_{2}$).

Grimsel (grim'zěl) Pass, a mountain pass in the Bernese Alps, leading from Meiringen, canton of Bern, to Olergesteln, canton of Valais. It was in this pass that the French repulsed the Austrians in $1 / 99$.

Grim'shaw, Robert, American engineer: b. Phuladelphia, Pa., 25 Jan. 1850. He is lecturer in the Franklin Institute of his native city and has done much literary work. He has pub-li-hed: 'Saws' (1880): 'Steam-Engine Catechiirm' ($\mathrm{IRS-}$); 'Records of Scientific Progress' (ISO1) :'HINts to Power U'sers' (IS91) : 'Fifty l'ears Hence' (:802).

Grim'thorpe, Edmund Beckett Denison, Inpo, Enclish barrister and author: b. Carlton ITall. Nottinghamshire, England, 12 May t 816 : d. 20 April roos. He took much interest in architecture, and designed many churches and hu.sec. but he will be Ingest remembered for his reatrations and reluildings at St_{t}. Thans Cathedral, works which were carried out at his nwn expense, but from their iconoclastic charaeter met with almost universal disapproval from architects and excited much diseussion loth in England and America. His works include: 'Origin of the Laws of Nature) (1870) : 'A Ronk on Ruildine' (2d ed. 18fo): 'Should the Revised New Testament be Athorized?'

GRINDING - GRINNELL

(1882): 'Astronomy Withont Mathematics' (-ill ed. 1883); 'Treatise on Clocks, W'atches, and Bells' (zth ed. 1883).

Grinding, a mechanical process in which certain effects ate produced by the attrition of two surfaces. This process is of extensive usc in varions mechanical arts, as in grinding corn, ores. colors, in which cases the object is to reduce the materials by crushing to a fine powder: or in grinding the metals. glass, and other hard substances for the purpose of giving them a certain figure or polish, or a sharp cutting edge. In the first case the grinding or crushing is effected by passing the material between rough stones. as in the common flour-mill, or as in crushing ores between heavy metal cylinders, smooth or fluted, according to the degree of fineness required, or by a beavy stone or iron cylinder revolving upon a smooth plate. Chicory, chocolate, plumbago for pencils, and a variety of other substances are ground by iron or stone rollers, revolving on a slab in such a manner that they not only merely roll but also rub on the surface of the slab. A knife or scraper follows one roller and precedes the other, scooping the paste into the position required to come fairly under the roller which follows it. Colors are ground in small quantities with a muller and slab. The mutler is a heavy piece of stone of conical shape, and which rests its base on the slab and is grasped by the hands; the color is mixed to a pasty consistence with the desired medium of oil or water, and rubbed between the two surfaces until smooth and impalpable. The grinding of cutlery and tools is effected by means of the grindstone; glass lenses and metal specula are ground to shape with emery-powder laid on a metal tool. Ornamental glass is ground into facets or otherwise by means of stones and lapwheels. Diamonds and other precious stones are cut or ground with diamond dust embedded in soft iron. Large flat surfaces are obtained by first working two pieces of the material nearly flat and then laying the one upon the other and grinding their surfaces together with sand, emery, or other cutting powder. Plate-glass is flatiened in this way; also surfaces of cast-iron, where accurate fitting is required. Sockets and other bearings which require to be fitted with great nicety are usually finished by being ground tugether. For brass or bell-metal pumice-stone is employed in such cases, as emery is apt to embed itself in the metal and give it a permanent abrading action on the bearings. Dry grinding is the term applied to the grinding of steel with dry grindstones. The points of needles and forks are produced by this means, also the finishing of steel pens and the surface of gun barrels. The men and women engaged on this kind of work suffer painfully from irritation of the throat and nostrils caused by the fine. dust-like particles that fly off from the work. These difficulties have been mitigated in recent years by the usc of mouth-pieces of damp cloth, and the provision of air-blasts to dispose of the dust. Sind-jet grinding is a remarkable process, in which abrasion is effected by the percussion of small hard particles on a plain surface. Sharp silicious sand, varying in hardness and fineness according to the kind of work to be done, is employed in most cases. This sand is impelled ly a blast of steam or of air. A hole $\mathrm{I}^{1 / 2}$ inch in Cometer by $1^{1 / 2}$ deep, has been bored through a solid piece of corundum (the lardest mineral
known except the diamond) in 25 minntes by sand driven with steam-power at 300 pounds pressure on the square inch. A diamond has been sensibly reduced in weight, and a topaz altogether dissipated by a sand-jet in one minute. These results are obtained by cansing a sand-stream to mix with a steam jet. The sand passes through a central tube, and the steam through an annular tube which surrounds it: a kind of suction acts at the end of the concentric tubes, which draws the sand into the steam jet, and both dash with great force against the stone or other substance to be acted upon, which is placed at about an inch from the mouth of the tube. By the use of flexible jointed connecting tubes the jet can be turned in any direction, and grooves, moldings, letters. etc., can be produced instead of merely straight cuts or cavities. By using an air jet instead of steam, and varying the pressure, a design can be engraved on glass, the parts not to be acted upon being covered with the pattern, made of paper, lace, india-rubber, or oil-paint.

Grindstone Island. (I) A small island lying off the southeastern coast of New Brunswick, Canada, at the head of the Bay of Fundy. It has a number of sandstone quarries, from which a fine quality of sandstone is exported, chiefly to the United States, for the manufacture of grindstones. (2) One of the most important of the Mlagdaten Islands, belonging to Quebec, in the gulf of St. Lawrence, northeast of New Brunswick.

Grinnell, grin-ěl', George Bird, American writer and ornithologist: b. Brooklyn, N. Y., 20 Sept. I849. He has been an editor of 'Forest and Stream' from 1876. His works deal principally with Indian life and folklore and among them are: 'Pawnee Hero Stories and Folk Tales' (is89); 'The Story of a Prairie People': 'The Story of the Indian' (1895): 'The Indians of To-day' (1900): 'Jack Among the Indians' (1900).

Grinnell, Henry, American patron of arcic exploration: b. New Bedford. Mlass., 1799 : d. New York, 30 June 1874. In 1828 he settled in New York and amassed a fortune in business as a ship-owner. This gave him an opportunity to fit out at his own expense the ship which in i850 sailed from New York in search of Franklin. He also bore a large part of the expense of Kane's arctic royage (1853-55), as well as of the later American expedition under the command of Hayes and Hall. In recognition of his services to geographical science the American Geographical Society elected him their president and the coast which stretches to the north of Smith Sour. 1 was named Grinnelf Land.

Grinnell, Josiah Bushnell, American clergyman and politician: b. New Haven, Vt.. 22 Dec. 1821 ; d. Marshalltown, Iowa, 31 March ISgi. After studying at Auburn Theological Seminary, he entered the Presbyterian ministry and held pastorates successively at Union Village, N. Y., Waslington, D. C., and New York. In is 54 he founded the Congregational Church in Grinnell, Iowa, a town named for him, and preached there several years. Later he became known as a wool grower, sat in the Iowa senate 1856-60, and in Congress as a Republican 1863-67. He frequently aided fugitive slaves and at one time a reward was offered for his head on this account by slave-holders. He gave
much assistance to Grinnell University, oi which he was president, and laid out fire Iowa towns. He was the author of 'The Home of the Badgers' ($18+5$): 'Cattle Industries of the United Siates) (1884).

Grinnell, Iowa, city in Poweshiek County; on the Chicago, R. I. \& P., and the Iowa C. R.R.s: 115 miles west by north of Darenport. It is the principal trade centre for the county, and manuiactures flour. carriages. gloves, and some iarming implements. It is the seat of the Iowa College. founded in 1845 and under the auspices of the Congregational Church. In 1882 the city was nearly swept away by a cyclone. Pop. (1900) 3.S60.

Grinnell Land, a large tract of land in the Arctic Ocean, separated irom Greenland by Kennedy and Robeson channels. The northern part of the explored portion is called Grant Land and the sourhern part Ellesmere Land. The coast is irregular, and the interior is hilly. The climate of the valleys is mild in summer: in many places there is no snow for several weeks. and regetation grows rapidly. The iox, wolf, musk-ox, ermine, and hare are found in quite large numbers. Lieut. De Haven. an American, in charge of the Grimnell expedition in search of Sir John Franklin, first saw this land 22 Sept. 1830 and named it aiter Henry Grinnell (q.v.). Eight months later it was wisited by Capt. Penny of the British vessel. Lady Franklin. He not knowing of the previous risit called the country Prince Abert Land. A British expedition under N゙arses visited it 25 years after De Haven. Greely in 1881, Lockwood in 1882, and Peary in 1898-g9.

Gripe. (1) A brake applied to the wheel of a crane or derrick: is generally consists of an iron hoop under the conirol of a lever. and is drawn closely around the wheel to check its motion. (2) As a nautical term: (a) The fore-foot of a ship. on to which the stem is iastened; the forward end of the keel. It is scarfed to the stem piece and ialse keel, and is secured by a horseshoe or ring to the stem. (b) At broad plait of rope or bars of iron, with lanyard rings and claws, passing over a large boat. and by which it is secured to the ring bolts oi the deck. (c) One of a pair of bands passing round a boat near the stem and stern when suspended from the davits, to prevent the boat irom swinging about.

Grippe. See Isfluenza.
Griqualand (grékwa-lănd) East, a district oi Cape Colony, Airica, lying south of Natal, between Pondoland and Basutoland: area, -594 square miles. The capital is Kokstad. Pop. (1891) 153.618.

Griqualand West, a district of Cape Colony, Airica, bounded north by Bechuamaland, cast by the Orange River colony, wouth by Orange River, and west by Orange River and Bechuanaland: area, 15.197° square miles. It is noted for its diamond fields whieh in 18,0 began to attract people from other countries. The country was then clainued by the Orange Free State and by Wiaterboer, the Griqua ehref. In 1871 Waterboer ceded all his rights to the British government, and in $18 ; 0$ the Orance Free State redinquished all claim for the um of about $\$ 410,000$. In i8So firiqualand West was incorporated as a part of Cape Colony. The chief
centre of the diamond mining industry is Kim. berley (q.r.), the capital. Pop. (1801) 8.375. Consult: 'Statesman's lear Book': Reports (British) 'On the Cape and Griqualand IV est Diamond Mining:' Reunert. 'Diamonds and Gold in South tirica': Williams. 'The Diamond Mines of South Airica' (1902).

Gris'com, John. American educator: b. Hancock's Bridge. Salem County. . I.. 27 Sept. 1754: d. Burlington, N. J., 20 Feb. $18 ミ 2$. After pursuing his studies at the Friends Academy in Philadelphia, established by William Penn, he took charge of the Friends monthly meeting school in Burlington, with which he was connected 13 years. In 180; he removed to New lork, and began there a career oi 25 years as a teacher. In connection with his school he lectured on chemistry with much success. He took a prominent part in the formation of the society for the prevention of paupersism (1817), of which he prepared the constitution and an elaborate first report on the causes and remedies oi pauperism. He was ant organizer of the Rutgers ISedical College, in which he occupied the chair of chemistry and natural philosophy, and after the suspension of the college was widely known as a general lecturer on those subjects. Horace Mann quoted him as one of the eight educational authorities for the changes which Mann planned to introduce into the Massachusetts school system.

Grisons, grē-zón (German, Grawhulutien or Bionderr), the largest canton of Swizeriand; ared about 2.753 square miles. It is a mounttainous country, more than 20 pean's being above 9.000 feet. The valleys are generally narrow, Leper and Lower Erigadine are the broadest. lis chiei drainage streams are the Inn, branches of the Adige and the Adda, and the Vorder and the Hinter Rhine which have their rise in this canton, and which belong to the Rhine basin. There are a large number of small lakes. Snow rests on the mountains until the last of May and sometimes into late July, but the climate of the valleys is warm or temperate nearly all the year. Agriculture in the rallers and the raising of cattle and slreep on the mountain sides are the chief occupations. Pop. (1900) 104.510.

Griswold, griz'wold, Alexander Viets. American Protesrant Episcopal bishop: h. Sims: hury, Hartiord County, Conn., 22 April 1,00; d Boston. Mass. 15 Feb. 1843. Alter studying for the ministry he was ordained in $1705 . \mathrm{He}$ was rector of St. Michael's Chureh, Bristol. R. I., 1804-30 and of St. Peter's, Salem. Nass., 1830-35. When what was known as the eastern diocese of the Episcopal Church was organized lie was consecrated its first brshop in istr. He published 'The Reiormation and the Apostolic Office' (1843). See Stone, 'Memoirs of Bishop Griswold' (184).

Griswold, John Augustus, American mannfacturer: b. J̌assau. Kensselaer County. . 1. I., 1822: d. 18-2. At Troy. N. 1.. he was active successively in the hardware drug. and iron trades, and established the Albany and Remsselaer 1 ron and Sicel Company. He was a leader in the antroduction of Bescemer steel manufacture into the Linited States, and wnel C. H. Delamater built the Monitor of Civil War iame. In 1855 he was elected mayor of Troy. in 1803 a Democratic representative in Congress, and sub-
sequently was twice re-elected as a Republican. In 1868 he was nominated for the governorship of New York, but defeated by the Democratic nominee, J. T. Hoffinan.

Griswold, Matthew, American jurist: b. Lyme, Conn., 25 Narcl2 1714: d. there 28 April 1799 . Besides being lieutenant-governor of Connecticut 17/1-84, he was governor 1;84-85 and became judge oi the supreme court in 1769. He also presided over the convention which ratified the Federal Constitution.

Griswold, Roger, American politician: b. Lyme, Conn., 21 Nay 1762 ; d. Norwich, Conn.; 25 Oct. 1812 . He was graduated from Yale College in 1780 , and afterward studied and entered on the practice of law. He was a nember of Congress, $1,595-1805$, and became judge of the Connecticut supreme court in 1807. He was lieutenant-governor of his native State, I $800-11$, and governor 1811-13. He was a son of Mat- $^{\text {P }}$ thew Griswold (q.w.).

Griswold, Rufus Wilmot, American author and compiler: b. Benson, Rutland County, Vt.. ${ }^{15}$ Feb. 1815 : d. in New York 27 Aug. 185\%. He was apprenticed to the printing trade, but afterward studied divinity and became a preacher in the Baptist Church. He soon became associated in the editorship of literary periodicals in Boston, New York, and Philadelphia, among which were the 'New Yorker,' 'Brother Jonathan,' and the 'New World.' In $18+2-43$ he edited 'Graham's Magazine.' in Philadelphia, to which he attracted contributions from some of the best writers in the country, and in 1850 projected the 'International Nagazine.' published in New York, and edited by him till April, 1852 . The works by which he is chiefly known are collections of specimens from American authors, accompanied by memoirs and critical remarks. His published works include: 'Poets and Poetry of America' (1842) : 'Prose Writers of America' (1846); 'Female Poets of America' (1849); 'Sacred 'Poets of England and America) (8849); (Poets and Poetry of England in the Nineteenth Century) (4th ed. 1854): 'Curiosities of American Literature,' 'Washington and the Generals of the American Revolution,' with Simins, Ingraham, and others ($1 \mathbb{E}_{47}$), Napoleon and the Xarshals of the Empire.' with Wallace (1847) ; 'Republican Court, or American Society in the Days of Washington) (I854). He edited the first American edition of the prose works of Milton (IS45). and was one of the editors of the works of Edgar A. Poe, for whose bad repute Griswold's 'Memoir' is partly responsible.

Griswoldville, Battle of. When General Sherman marched from Atlanta to the sea. his right wing, conmmanded by Gen. Howard, was under instructions to threaten Nacon and strike the Savannah Railroad at Gordon, about 20 miles east. Upon his arrival at Clinton, the cavalry advance made a demonstration on Macon, and 21 Nov. 1864, his entire cavalry force took up an advanced position covering all the roads to Macon, and that day and the next all the troops and trains were closed up toward Gordon, except C. R. Woods" division, which was directed to take up a strong position on the Irwinton road and demonstrate on Macon and Griswoldville, eight miles east. The demonstration was made on the 22 d by Walcutt's
brigade of 1.513 min and two guns, in co. operation with Kilpatrick's cavalry on the different roads. Some of Kilpatrick's cavalry were in advance of Walcutt and were fercely attacked by Wheeler; but with. Walcutt's assistance Wheeler was driven from the field, and followed by Walcutt beyond Griswoldville. Walcutt was then recalled to a position a little east of Griswoldville, where two miles in advance of his division, he formed line along a slight rise of ground, with his flanks well protected by swampy ground, and with an open field in front. Kilpatrick's cavalry was on either flank. Walcutt had scarcely thrown up a rail barricade. in riew of another attack of Wheeler's cavalry, when he was fiercely assailed by intfantry. That morning, under Gen. Hardee's order, Gen. G. WW. Smith, in command of a considerable body of Georgia militia that had been concentrated at Macon. directed Gen. Phillips, with a division of infantry and a battery, to march from Macon to Gordon and take trains for Augusta. Phillips had been instructed to halt before reaching Griswoldville and wait for further orders, and was cautioned not to engage an enemy if met, but to fall back to the fortifications at Macon. But when he heard of Walcutt's position he moved through Griswold ville and, with more courage than discretion, threw his four brigades against Walcutt, at the same time opening destructively with his artillery. At 2 o'clock. in three compact lines, his militia charged to within 75 yards of Walcutt's line, and were repulsed. The assaults were repeated in front and on both flanks, and continued until sunset, when. everywhere repulsed, he abandoned the field, leaving his dead and wounded. During the action Walcutt was severely wounded by a piece of shell. The Union loss was 13 killed, 69 wounded and 2 missing. The Confederate loss was 51 killed and 472 wounded. Consult: 'Official Records,' Vol. XLIV.: Cox, 'The March to the Sea': the Century Company's 'Battles and Leaders of the Civil War,' Vol. IV'.

E. A. Carman.

Griv'et. See Green Monkeys.

Groesbeck, groos'běk. William Slocomb, American politician: b. New York, ${ }^{1815 ;}$ d. i897. He was graduated irom Niani University, Oxford, Olhio, in 1835 . studied law and began practice at Cincinnati. In 1851 he was a member of the Ohio State constitutional conrention. and in 1852 a member of the commission appointed for the codification of the State laws. From 1857 to 1859 he was a Democratic. representative in Congress, in 187\% was nominated for the Presidency by the Liberal Republicans but met no recognition in the ensuing campaign, and in I8-8 was United States delegate te the International Monetary Congress at Paris. He defended Andrew Johnson in the latter's. impeachment trial (I868).

Groin, the region where the front of the thigh joins the body: The abdoninal muscles end below in a strong tendon which makes a iold across the front of the bony pelvis. The large nerves, arteries, and veins pass through folds of this ligament, and portions of the abdominal contents in case of rupture pass inte the scrotum or form a tumorous swelling in the groin.

Gronlund, grōn'lind, Lawrence, American socialist : b. in Denmark 184 -: d. ISg9. He studied in the University oi Copenhagen, in tion came to the Lnited States. practiced law for a time. but became a writer and speaker on socialism. Among his publications are 'The Coming Revolution' (1880), a iorecast of the peaceiul changes which he believed might be effected by a national organization operating in every community: 'ऽa Ira.' a rehabilization of Danton (1888): and 'The New Economy' ($18 \mathrm{~S}_{8}$).

Gronovius, grō-növi-ūs (properly Groxor: grōnōr). the name of sereral Dutch classical scholats:
(i) Johavix Friedrich, yōhän irēd'rilı: b. Hamburg \& Sept. 1011: d. Leyden. 28 Dec. 1671. He studied at Leipsic and Jena, and law at Altdori. was appointed professor of history and eloquence at Deventer (1642), and, aiter the death oi Heinius, succeeded him as professor of belles-lettres at Leyden (1658). His editions of Livy, Statius, Iustin. Tacitus, Aulus Gellius, Phredrus, Seneca, Sallust. Cicero. Terence. Pliny, and Plautus. 'Observationes' (1630). and edition of Hugo Grotins' work, 'De Jure Belli et Pacis' (164_{2}) are justly valued on account of the notes.
(2) Jakob, ya'köb son of the preceding: b. Deventer. 1645 : d. Leyden. 21 Oct. $1 ; 10$. He studied at Deventer and Leyden. and pubiished. in 1676. an edition of Polybius, which met with great applause. He received from the grand duke of Tuscany a proiessorship at Pisa, which he relinquished in 1679 to become proiessor of Greek literature and history at Leyden. This learned critic edited Tacitus., Polybius, Herodotus. Pomponus Mela. Cicero, Ammianus Marcellinus and other classical writers, and compiled the valuable 'Thesaurus Amiquitatum Grecarum' (0 ger-1;02). He also promoted the publication of the collections of Grevius. He was a violent controversialist.

Groot, grōt. Groete, or Groote. Gerhard or Gerardus, fonnder of the Brothers of the Common Lite (q.i:): b. Deventer 134° : d. there 20 Aug. 138_{4}. Educated at Paris, he there became a teacher, later took deacon's orders and was successiul as a traveling preacher. He adrocated general reading oi the Scriptures, assembled a company for the preparanon of copies of the Bible. and thus began the formation of the Bruthers of the Common Life To this nrder. whela obtained papal sanction in $1+18$, belonged Thomas à Kempis (q.w.). Groot was the author of several works.

Gros, Antoine-Jean, añ-twān zhịn grö. Baros. French historical painter: b. Jari- in March 1-:7: d near Paris, zo June 1835. At It he becanre a pupil of llavid, and in $1 \% 24$ leit Paris fir Rome. His means, however, were not surficient fu: the journey, and he had to depend on what he could earn as a portrait-painter in the varions iowns he passed through. At fienoa. in 1 -rxi. he was drawn ior the French army, and soon became a staff-officer. Josephine, aiterward empres of France, saw and admired several portraits hy the young officer, and lie was called upe in ti. pains that of Bumapane. The revult wa- a icture representing Napoleon leading hitratps over the bridge of Arenla. In 1ikt he proluced his 'Peste de Jaffa,' considered hy man:y to be his masterpicee. Ife painted the
(Bataille dAboukir) (ISo6): (Bataille d'Eylau' (ISOR): 'La Prise de Madrid,' 'Wagram.' and 'La Bataille des Pyramides' (1810). In France his chief work is considered by some to be the cupola of St. Geneviève at Paris. exhibiting the saint protecting the throne oi France, represented by Clovis. Charlemagne. St. Louis. and Louis Xillil. This picture covers an immense space, and is correct in design but deiective in color and expression. The artist received ior it 100.000 francs and the title oi baron. The rise of the romantic school bore away irom him the tide of popularity, and his last work 'Hercule et Diomède,' was a iailure. -Adverse criticisms upon it brought on a fit of despondency and he drowned himself in the Seine.

Gros Ventres. groo văntr (Fr. "big bellies"). (I) The Minnetari or Hidatsa Indians, on the Missouri River. (2) A band of the Arapaho, who separated from the main body about isoo: the name was a misunderstanding of their own term. which meant "hungry men" or "beggars." After contlicts with the Sionx, and being plundered by the Crows, whon they had joined. they settled among the Blackfeet near Milk River about 1824: prospered. and were very hostile to the whites. About 1830 they had some ;00 lodges and 3.000 souls. But about 1806 they were decimated by the measles. and thus weakened, seceived a terrible defeat from the Piegans: reduced to about 1.300 by smallpox ir. I8, o, they were plundered and many killed by the Sioux. Later they were joined by the main body of Arapaho and Chevennes. In 1868 they were settled among the Blackieet in Montana.

Grosbeak, grōs'bēk. any of various birds

 whose beaks seem disproportionately large. They are mainly finches such as the hawfinch and bullfirch in Europe, and their relatives in the Orient. Bird-dealers call "grosbeaks" a great number of Airican, Asiatic and American line cage-birds. some of which are weaver-birds. or tanagers.ete. The term is more exactly given to certain Xorth American fringilline birds with big swollen bills. such as the cardinal (q.v.), the evening grosbeak (q.s.), and the pine, blue. rose-breasted, and black-headed grosbeaks. The pine gro-beak (Pinicola conucledor) is a greenistr yellow finch which dwells exclusisely in the coniferous iorests of northern Europe and America, and is only seen in the Linited States when forced southward by hard winters: it ieeds on the seeds oi the pine. spruce, etc.. Wrenching open the cones with its poweriul beak: The blue grosbeak (Guirdid iarulia) is a large, richly blue southern and western bird. nearly related to the indigo-finch. which makes its nest in a bush, and lays pale blue eggs. wholly unmarked. The rose-breasted and black-headed gre abeaks represent the genus Zanclodia, the inrmer (Z. Iudericiana) in the Eastern States, and the latter (Z. melanociphala) in the Rocky Moumain region. Both are birds of brushy places, making large, rude nests in bushes and laying greenish, heavily marked eggs; and in the lireeding-season both are among the loudest and me -t brilliant of American song-birds. As in nearly all the grosbeaks the females of these speciec are inconspictuous in brown tints. while the males are dreseed in gay colors. The male rose-1 reasted has the head, neck and upper parts mostly black, with the rump, wings, tail and abdomen. white; while the breast and lining ofShe hend of the wing are exquisite rose-red, which the bird is fond of displaying. The male black-liead has a wholly black head and upper parts. set off by a collar and other marks of dull orange, which color also suffuses the whole lower parts.

Grose, grös, William, American soldier and politician: b. Dayton, Ohio, IS12; d. 1900. He resigned his position as judge of the court of common pleas in 1861 to recruit and take command of the 36 th Indiana regiment of infantry, and commanded a brigade in the battles of Murfreesboro, Chickamauga, and Chattanooga. He was commissioned brigadier-gensral 30 July I864 and at the battle of Nashyille, 15 and 16 Dec. 1864 , he commanded the Third brigade in General Thomas's army. In 1865 he was brevetted major-general of volunteers. He was State senator from 18\%9 to 1883 .

Gross, grōs, Charles, American historian: b. Troy, N. Y., Io Feb. I857. After graduating from Williams College in 18 \% 8 , he pursued his studies at Göttingen, and was engaged in literary work in England 188+-87. Since 1888 he has been instructor and professor of history at Harvard University. A frequent contributor to the 'American Historical Review' and other historical journals, he has published: 'Gilda Mercatoria' (I883): 'The Exchequer of the Jews of England in the Niddle Ages' (1887); 'The Gild Merchant' (I890); 'Select Cases from the Coroner's Rolls' (ISo6): (Bibliography of British Municipal History' (1897) ; 'Sources and Literature of English History' (1900). In addition he has translated: Lavisse's 'Political History of Europe' (I891) ; Kayserling's 'Christopher Columbus’ (1893).

Gross, Samuel D., American physician and surgeon: b. Northampton County, Pa., 8 July 1805; d. 6 May 1884. He began the practice of medicine in Philadelphia, devoting his leisure to study and to the translation of French and German medical works. His first original work was a treatise on the 'Diseases and Injuries of the Bones and Joints' (1830), in which occurs the first account of the use of adhesive plaster as a means of extension in the treatment of fractures. In 1835 he became professor of pathological anatomy in the medical department of the Cincmnati college, where he delivered the first systematic course of lectures on morbid anatomy that had ever been given in this country, and composed the first systematic treatise upon the subject ever published in the United States, 'Elements of Pathological Anatomy (1839). In 1840 he became professor of surgery in the University of Louisville. Besides the works already mentioned. he was the author of a monograph on 'Wounds of the Intestines' (1843): 'Diseases. Injuries, and Malformations of the U'rinary Organs' (185I): 'Foreign Bodies in the Air Passages' (185t): 'System of Surgery, Pathological, Diagnostic, Therapeutic, and Operative) (2 vols. 1859).

Grosse, Julius Waldemar, German poet, dramatist. and novelist: b. Erfurt, Prussia, 25 April, 1828; d. 1902. After obtaining his education at Halle, he entered the field of journalism. for 16 years ($1854-70$), being associated with the Neuc Mïnchener Zcitung (afterward known as the Bayrische Zeitung), and in I870 becoming secretary of the Schiller-Stiftung. at Weimar. His writings are various, including
novels, dramas, epics, songs, and ballads, the most important of which are his war songs, 'Wider Frankreisch' (18;0): 'Das Volkramslied' (1889): ‘Gundel won Königssee,' and 'Das Nädchen von Capri,' all epic poems; 'Pesach Parde]) (1871) : 'Hilpah und Shalum,' and 'Der Wasunger Not' ($18 ; 2$), comic epics; the dramas, 'Tiberius' (1875), and 'Fortunat' (I895); the novels, 'Ein Revolutionär' (2d ed. 1871), and 'Tante Carldora,' and several tales and romances, among which is 'Die Novellen des Architekten) (1896).

Grosseteste, Robert, English Roman Catholic prelate: b. Stradbrook, Suffolk, about 1175 ; d. Buckden, 9 Oct. 1253. He studied law, physics, and theology at Oxford and Paris, and, upon his return to England, attained an enviable reputation as a theologian, so much so that in 121+ he became archdeacon of Wifts, and in 122t received the directorate of theology and became first rector scholarum of the Franciscan school at Oxford. In 1232 he took up the cause of the Jews against the king, defending them with great vigor, and in 1235 was elected Bishop of Lincoln, whereupon he undertook to make radical changes in his diocese and eliminate some of the many abuses prevalent there, the result of which was that though he was possessed of great force of character, his high temper and lack of tact and diplomacy led him into innumerable controversies. The most famous of these was with Pope Imocent IV., who, desiring to fill the lucrative positions in the church with Italians and Provençals, in 1253 sent the Bishop a request that he appoint his (the Pope's) neplrew to the first vacant canonry in the cathedral of Lincoln. This Grosseteste flatly refused to do, and, as his clergy stood by him in his fight against this abuse, the matter was finally dropped and it is mainly upon this incident that his fame rests. He was, though, a man of great scholarly attainments, Hebrew, Latin, Greek, French, mathematics, medicine, and music being numbered among them, beside which he was one of the most learned preachers of his time and a voluminous writer. Consult: Perry, 'Life' (London 1871); Luard (editor).' 'Roberti Grosseteste Episcopi quondam Lincolniensis Epistole' in the Rolls Series (I86z).

Grossi, Tommaso, Italian poet and novelist: b. Belluno, on the Lake of Como, 20 Jan. I79I ; d. Milan, Io Oct. 1853. He studied law at Pavia and settled in Milan, where he passed the remainder of his life as a notary; but his political ideas prevented his rise in his profession. His first attempt at poetry was 'La Principe,' written in the Milanese dialect, and this was followed in ISI6 by two shorter poems, 'La Fuggitiva' and 'La Pioggia d'Oro,' and in 1820 by 'Ildegonda,' a romance in verse. This poem became popular and set the fashion for that style of writing, the success which it attained encouraging him to write ' 1 Lombardi alla Prima Crociata' in 1826, a poem remarkable for its patriotic sentiment. Despite the fact that Manzoni gives praise to this last poem in his novel 'I promessi sposi,' and that the cost of printing was defrayed by a generous subscription, it was soon forgotten. This did not dishearten him, however, and in 1834 he published his 'Marco Visconti.' which at once excited pullic approval and became the pioneer of the
historical novel in Italy: His only other work of note was ' L"lrico e Lida.' published in 183%.

Grosso. Matto, mā'tō grō'sj. Brazil (q.v.) a western central state bordering on Bolivia. Argentina. and Paraguay. It has an area oi 532.500 square miles and an estimated popnlation in 1900 of 15\%.000. Capital Cuyabả (q.r.).

Grosvenor, grō'vē-nór. Edwin Augustus, American educator and author: b. Newburyort. Nass., 30 Aug. I845. He was graduated at -Amherst College in 186; and at Andover Theological Seminary in 1872. was professor of history at Roberts College. Constantinople, in $18,3-90$: and of European history at Amherst College in 1S92-9. In IS99 he was appointed to the newly established chair of modern governments and their administration. His publications include translations from the French of Victor Duruy's "Uodern Times" (iSot) and 'General History' (1808): 'The Hippodrome of Constantinople) (IS89): 'Constantinople' (IS95) 'The Permanence of the Greek Type' (ISo\%): and 'Contemporary History' (JSg9), extending from $1 S_{4} 8$ to the present time.

Grote, George, English historical writer: b. Clayhill, Kent. 17 Sov. 1794: d. London, 18 June IS;-I. After having studied at the Charterhouse. in 1809, he became a clerk in his father's banking house. He kept on with his studies. particularly with philosophy, and his liberal trend of thought gradually drew him into politics. He had written and spoken much in favor of the Reiorm Bill which was passed in 1832 . and in that year he was elected to the House of Commons from London, which seat be continuously occupied until 1841. During all these years he had steadily worked upon his 'History oi Greece.' the idea of which was suggested to him by the spirit oi partiality displayed in Mitford's 'History of Greece' and which he had severely criticised in an article in the IVistminster Rericou (April 1826). He had as early as I $\$_{23}$ devoted himself to the study of Greek history, for a sympathetic interpretation of which his extreme liberality made him admurably suited, and though to a certain extent the spirit oi democracy is evident in the "History of Gresce.' yet the iacts are placed befure the reader with the idea that he will iorm his own conclusion. His private and public duties had prohibited literary work and it was not until he retired that he completed the first two volumes which appeared in $18_{45} 5$. the last volume of the set. the twelfth, appearing in 1856 . Grote also wrote 'Plato and the Other Companions of Secrates" (3 vols.. 1865) : "Miner Works," edited by Alexander Bain (London 18,3), and 'Aristotle.' which he leit unfinished (2 vols. 18:2). He lad taken an active interest in educational matter=, in 1860 becoming vice-chancellor of the London Eniversity, and in 1 sfog president of the University College, and also was elected a trussee of the British Museum. Consult: Mrs. Grote, 'Memoirs' (Lnndon, 18;3): Alexander Bain. 'Character and Mritines of G Grote,' prefixed to his 'Minor W'orks' (London, is-3).

Grotefend, Georg Friedrich, German ar chaologist and philologist: b. Winden, near Cassel, Prussia. 9 June 1705: d. Hanover, 15 Dec. 1853. He received his carly education at

Hanover and Ilield, and completed his studies at the University of Göttingen (1795-\%). He became prorector and later conrector of the gymnasium at Frankiort-on-the-Main ($\mathrm{I} 03-21$), and for nearly 30 years (I\&21-49) was director of the lyceum at Hanover. His research in the field of Latin philolosy was of great value. but his importance is chiefly due to the fact that he first deciphered the old Persian inscriptions of Persepolis, presenting the results oi his labors in a paper before the Academy of Science at Göttingen. + Sept. ISoz. Chief among his publications are: 'Rudimenta lingure Umbrice' (1835-8) ; 'Neue Beitrāge zur Erlăuterung der babyloniscben Keiliuschrift" (1\&\&0): "Zur Geographie und Geschichte von alt-Italien' (IS:0-2); (Rudimenta Lingur Oscæ (I839). etc.

Grotius (grochi-us). of De Groot. Hugo. Dutch scholar and staresman: b. Delfit io April 1583: d. Rostock $2 S$ Aug. 1645. He was a pupil of Joseph Scaliger at the University of Leyden. conducted his first lawsuit in his 1 -th year: and in his $2 f^{\text {th }}$ was appointed adrocate-general. In 3613 he became symdic. or pensionary, of Rotterdam. In 1615 he was sent to England in order to arrange the difficulties arising from the claims of the English to exclude his countrumen from the Greenland whale-fishery. He declared himself on the side of Barneveldt (q.w.) in the struggle between the Remonstrants and their opponents, and was sentenced to imprisonment jor life in the fortress of Loevenstein. He succeeded in escaping by concealing himself in a chest, and after wandering about for some time in the Catholic Netherlands escaped to France. where Lonis XIII. gave him a pension oi 3.000 livres, withdrawn in 10́31. He returned to Holland. but by the influence of enemics. was condemned to perpetual hanishment. He later went to Hamburg, and in 1634 to Stockholm. where he was appointed counsellor of state and ambassador to the French court, in which post he remained for ten years. On his return to Sweden by way of Holland he met. in Amsterdam, with a distinguished receprion. Most of his enemies were dead. and his countrymen repented of having banished the man who was the honor of his native land. With the talents of the most able statesman, Grotus united deep and extensive learning. He was a protound theologian, excellent in exegesis his 'Commentary on the New Testament' being still esteemed: a distinguished scholar. an acuie philosopher and jurist, and a judicious historian. His writings have had a decisive influence on the formation of a sound iaste, and on the difusion of an enlightened and liberal manner of thinking in affairs of science. As a critic and philologist he seizes the genius of an author with sagacity, illustrates brietly and pertinently, and amends the text with facility and success. His metrical translations irom the Greek are executed with the spirit of a poet. Amone the modern Latin poets he holds one of the first places, and he also tried his powers in Dutch verse. But the philosophy of jurisprudence has been especially promoted by his great work on natural and national law, 'De Jure Belli ct Pacis.' which represented the study of twenty years and laid the foundation of the new science of international law: besides which he wrote 'Annalea et. Historix de Rebus Relgicis' (1657): 'Annotationes in Vetus Testamentum'
(1644) : 'Annotationes in Novum Testamentum' (J641-46). 'De Veritate Religionis Christianx, and Poemata' (1617). See Butler, 'Life of Hugo Grotius' (1826); Hély, 'Etude sur le Droit de la Guerre et de la Paix de Grotius' (1875).

Gro'ton, Comn., town in New London County: on the Thames River, the New York, N. H. \& H. railroad; opposite New London. In 1637 Capt. Nason stormed the fortress held by the Pequots, and many lives were lost, both whites and Indians. A more disastrous fight occurred here 6 Sept. 1781, when Soo British troops under Benedict Arnold attacked Fort Griswold (q.v.), which was garrisoned by 150 soldiers. The Americans heroically resisted, but were overwhelmed by numbers, and Arnold and his force entering the fort butchered 85 men and wounded 65 . Soon after 35 of the 65 died from the effects of their wounds. This battle is known in history as the "Massacre of Fort Griswold." Groton contains ship-building yards, several manufactories, and the Bill Memorial Librars. Consult: Caulkins, 'The Stone Records of Groton' (1903); 'History of New London County'; 'Magazine of American History,' 'The Massacre of Fort Griswold.'

Grouchy, groo-shē. Emmanuel, Marquis ne, French marshal: b. Paris 23 Oct. 1766; d. St. Etienne 29 May 1847. He acquired distinction in the revolutionary armies, and in the campaign of 1800 fought in the army of the Rhine under Moreau, and rendered important seryice at the battle of Hohenlinden. In the war with Prussia in 1806, and with Russia in 1807, he acquired new fame, and was sent to the army of Italy under Prince Eugene. At the battle of Wagram his masterly manœeuvres contributed greatly to the victory. On the restoration he was banished, but allowed to return in 1815 . On Napoleon's return from Elba he immediately joined him, was made a marshal, and obtained first the command of the army of the Alps, and then the command of the cavalry in the grand army. After the battle of Ligny he was sent on the following day with 34,000 men and 100 cannon to follow the retreat of the Prussian army under Blücher. White he here on the ISth engaged with Thielemann, Napoleon gave battle at Waterloo, the disastrous issue of which has been sometimes laid to Grouchy's charge, from having failed to observe how three divisions of the Prussian army were advancing to Waterloo to take Napoleon in flank and rear, while Thielemann alone remained at Wavres. Being again banished, he came to the United States, where he lived five years, but was permitted to return in 1819. After the July revolution he was elected to the chamber of deputies by the department of Allier. supported the new dynasty, and was appointed in 1831 marshal, and in 1832 a peer.

Ground Beetles. The family Carabida, predatory beetles of various sizes and appearance. It contains upwards of $\mathrm{f}, 200$ described species, nearly all of nocturnal habit, and, consequently, dark, mostly black in color. Some species, however, are metallic green or blue or beautifully variegated. The family contains many beneficial species, which roam fields, meadows and gardens, destroying many injurious pests. They fly freely at night, and seek concealment in the daytime under stones and logs and in other convenient hiding-places. Most
species are terrestrial, but a few forins, such as species of Calosoma, known as 'catcrpillar-hunters.) elimb the trunks of trees in search of noxious caterpillars which they destroy. A remarkable gemus is that of the bombardier beetles (q.v.). A very few are occasionally injurions, anong them Agonoderus pailipes, which burrows into newly planted seeds oi corn; and two species of Harpalus which are destructive to strawberries. These latter insects are interesting because of their dual habit of being carnivorous as well as herbivorous. They attack, in the beetle stage, the seeds of Ambrosia, and also eat insects of various kinds.

Ground-cherry, herbaceous plants of the potato family, constituting the genus Physalis, scattered through most of the world. About 35 species are natives of the United States, and some are known as 'tomato strawberries,' and are cultivated for the sake of their berry-like fruit, which is hidden within a persistent red calyx.

Ground Cuckoo, a coucal (q.v.).

Ground-dove, any of various species of pigeons which live mainly on the ground and seek their food there. The name is especially given to the genus Columbagallina, small birds of the warmer parts of America, of which one gentle and familiar species (C. passcrina) is well known in the South Atlantic States, along the coast. The bronze-wing pigeons of Australia, and the large pigeons of the genus Goura (q.v.) are also so called.

Ground Ivy, a familiar European labiate plant (Glechoma hederacea), allied to mint, with a creeping stem and purple flowers. The leaves are crenate-reniform and the flowers are in threes. It was formerly employed to flavor ale and also medicinally.

Ground-nut, a climbing plant (Apios apios) of the pea family, which puts out dense clusters of dull purple flowers after most other plants have stopped blooming ; these are velvety within and sweetly fragrant. The tuberous rootstock is edible, whence the name.

Ground-rent, in law, is the rent paid to the landlord by a person for the use of ground on which he intends to build. The usual arrangement is for a specified time, generally for a. period of ninety-nine years. On the expiry of this period the whole of the building becomes the property of the groundlandlord. The ground-landlord is able, when his rent is in arrear, to distrain all the goods and chattels found on the premises, to whomsoever they may belong; and as the ground-rent is generally a small sum compared with the furniture of a tenant, he is always certain of recovering its full amount. This power of distress exists whether the tenant has paid his house-rent to his landlord or not, but the tenant may deduct the amount from the next rent he pays. See Landlord; Rent; Tenant.

Ground-sloths, a family (Megatheriida) of extinct edentates, related to the modern sloths, but of terrestrial habits. and, in respect to many of them, of gigantic size, which are of specia] interest because some survived into the human period. They exhibit the head and teeth of a sloth, associated with the vertebre, limbs and tail of an ant-eater. They were chiefly South American, but spread as far as North America
in the Pliccene and Pleistocene epochs, and became extinct in very reent. but probabiy prehistoric times. Wesutherium (q.v.) is the largest and most familiarly known gence: it almost equalled an elephant in size. and surpassed one in its massye proportions. Listodon. Mylocien (q.s.). Sëliaotherwm and Megalonyr. were smaller but more common torms. The discovers of part of the hide of one of these animals. senus Glossotherium, in a cave at Last Hope Inlet Patagonia, showed that their shin was thick. studded with small embedded bony nodcles. and thickly covered with long, coarse. yellowish-brown hair, as weil preserved as are the ieathers of the moas in New Zealand. The skin, says the discoverer. Dr. Moreno, oi Buenos Ayres. shows patches oi red color. suggesting of course blood-stains: and when small bits were chemically analyzed they yielded serum and the substances of glue. In view of this it seems impossible to believe that the skin can be of any great age, ior bacteria would have finished their work upon the serum and gelatine long ago. An equally fresh-looking skull was iound. as though in a small stone enclosure and wounded in such a way as only man could have inflicted: and there are legends among the Indians that such creatures were known to their ancestors Dr. Moreno is of the opinion, from evidences found in this care and elsewhere, that these animals had been domesticated by man. but to what extent and for what purposes is unknown.

Consult Beddard. 'Mammalia' (\$902), where jurther references are cited.

Ground-snake, one of the litzle. burrowing worm-shaped snakes of the genus Carfhothiops. which abound in tropical America. One species (C. amanus) is numerous under stones and logs in the Southern States, and is glistening chestnut in color above and salmon-yellow beneath. A larger, more purplish species (C. iernis) is called "ground-worm" in Lousiana. These snakes are periectly harmless, and are the least specialized of the Colutride.

Groupers (Anglicized form of Spanish name "Garrupa"). Tropical and semi-tropical sea-bass of the genera Erintephelus. Promicmps. Ifscterofirca and their allies. All are valuable fond-fishes and most if them oi large size. brisht col ration and high quality as gamefishes. Abnut a dozen species ewter the water: of the Siuthern Stase or Caliturnia. the nost commos along the Atlantic ce ast benes the red grouper (E mori), called "Cherna' and by many other local names. It is a larse nish so to 40 poundi), is particularl : abundant in the west coast of F! rida, keeps near the $1=11 \mathrm{~m}$ and is a y ract us carnivore, c i-umme 1 rge quantitse of emall fiolies as well as erahs, ete It is a favnrtie weth marketfi-hermen, hecause it bear- = well the harlhipe ri transprotuen The yellow-finmed erouper or rackition (1) -roter sa): yellow grouper (II (lis.r): and bl ck crouper of the Fl rida $\mathrm{K}(\mathrm{y}$ - 11 . ह raci). are alon large and important: whle an ther black grouper (Prmarjes) w the bama iew fish (qu) if - p : immen. Several cther species are el-where deserile ! innder particular name: as Cibrills. Mem, Sesup, ete Consult 'American Foud and Game Fiolies.' by Jordan and Esermann licw lork: (202)

Groups, Theory of. Everywhere in mathematics are encountered systems oi uperations, possessing deninize laws of combination. Thus. two geonetrac actions compound into a single motion. two algebraic transformations into a shasle transi rmation. under laws as definite as the primordial ? 2 of arithmetic bus otherwise capable of infinite variety oi simplicity and int-icacy. Consider. for example, the 12 rotations cil a regular tetrahedron into itself. Any two ci these rotations compound into a third one among them, easily identified on a model. By a simple convention. these various combinations can be reglstered in algebraic iorm. The sereral rotations may be designated by the marks a.b.c..... : the symbel ab may indicate that a is iollowed by b. and at the same time designate their resultant effect. This resultant $o b$ is called the prodsoct of s and b in the order written: it is itself one of the 12 rotations, say c, and we write $a b=c$. It is an instructive exercise to tabulate the producte of two or more of the 12 rotations, identitying each product with one of the 12 original rotations. It is possible to express all the 12 rotations as products oi two of them, say of the rotation a through 120° about an axis through one oi the four vertices oi the tetrahedron and the retation b through 180° about an axis joining the middle points of two opposite edses. It may be noted that the products $c b$ and $b a$ are here not the same rotation: a and b are not commmtatio as in ordinary algebra. On the other hand ou, which is a rotation through 210° about the axis oi 0 is conreniently denoted by $a^{2}: d^{3}$ and $b-$ both of which restore every point to its intial position. may appropriately be equated to I (identity), which is included among the 12 rotations. The three intations b :. $b_{5} b_{3}$ about the (trirectangular) axes joining the middle points of opposite edges of the tetrahedron will be found io be comnutative: in faci $b_{2} b_{2}=b_{2} b_{3}=b_{3}, b_{2} b_{3}=b_{3} b_{2}=$ $b_{2}, \quad b_{5} b_{3}=b_{2} b_{5}=b_{2}: \quad\left(b_{1} \circ=b_{2}^{2}=b_{5}^{2}=1\right)$.

The tetrahedral rotations furnish a simple instance of an alsibra of oferations. Any sysiem oi operations possesses such an algebra. of sreater or less extent. And as many differen: system: of operations, taken from widely separated mathematical fields, ofien present one and the same aigehra, these algebras are worthy of study hy themselves as gemeralizing and unifise instruments since each alcebra is completely denned ly the laws of combination of the symby = a.b.c..... we may abstract the idea of operation entirey and deal with the pure algebra. Thin frith = having been reached, it is incutalic to the mathenatical mind to everese t) ec crier of thu ught and to devise algebras is fri ri. having their concrete interpretation ior sec if dary o nsideration. In constructing such alcebras. ch ce among the infinite possibilities wi' be dommated by the two principles of generaluy and usetulneis. The iwo qualities are 0 mined in high degree in the algebra of grurs

Dizinits n of Gr uf.-A system of zimbols. ir éenerts a b, c..... (finite or infinite in tumbert. © necered as capable of multiplication with each , Her. s said to form a grower it the i 11 wing comdinoms are fulsilled
(1) The product of any two elements of the system is a third element of the system.

GROUPS

(2). The multiplication is associative: $(a b) c=a(b c)$, (but not nceessarily commutative: $a b$ and $b a$ need not be equal).
(3). Equalities $a b=a b^{\prime}$ or $a b=a^{\prime} b$ require $b=b^{\prime}$ or $a=a^{\prime}$, respectively.
(Conditions (2) and (3) evidently hold for any ordinary kind of opcrations; (I) traces a significant boundary).

The order of a group is the number n of its elements. A group is briefly called finite or infinite, according as its order is finite or infinite.

The defining conditions (1)-(3), classic in their simplicity, possess a most extraordinary fecundity. From them alone proceed, by pure logical deduction, the vast and intricate systems which make un the algebra of groups.

As a primary deduction it may be noted that every finite group G contains one and only one element, identity (denoted by 1), such that for every element x of $G 1 . x=x 1=x$. A proper power x^{m} of any element x of G is equal to this element 1 ; the lowest exponent m for which this is true is called the order of x^{*}; every power of x is equal to one of the m powers x, x^{2}, x^{3},
$x^{m-1}, 1$. The inverse x^{-1} of x is defined by $x^{-1} \cdot x^{-1}=x^{m-1} x$, whence by (3) $x^{-1}=$ x^{m-r}; then $x-2=\left(x^{2}\right)-1=x^{-m-2}$, etc. The analogy to ordinary algebra (of m th roots of unity) is here perfect. These elementary principles may be illustrated by reference to the tetrahedral group G of order 12 above.

An infinite group does not necessarily contain the element 1 nor the inverse elements. Thus all the motions of a point along a line in one direction form an infinite group, but this does not contain the reverse motions nor the case of no motion. The prevailing tendency is, however, to restrict the name group to systems which contain the inverse of their elements, and consequently the element 1.

A part of the elements of a group G, taken by themselves, may form a group H. which is then called a subgroup of G. Thus the powers of any element r of G form a cyclical group H which is either G itself or a subgroup of G. The tetrabedral group has a subgroup of order 4 composed of b_{1}, b_{2}, b_{3} and identity. The order h of a subgroup H of G is always a divisor of the order g of G. If p^{i}, where p is a prime number, is a divisor of g. G has ane or more subgroups of order p^{i}, and the total number of these subgroups is of the form $k p+1$, where k is an integer. If p^{a} is the highest power of p that divides $g . k p+I$ is also a divisor of g. These theorems of Sylow and Frobenius are of great assistance in the analysis of groups of finite order. Thus a group of order $p q$, where p and q are prime numbers, has a single subgroup of order p; it has also a single subgroup of order q, unless p is of the form $k q+1$. Thus the order $15=5.3$ presents only one case, while the order $21=7.3$ presents two. For a further example, the icosahedral group of rotations, which is of order 60 , contains subgroups of orders, 2, 4. 3. 5. and also 6 and ro. The 15 lines joining middle points of opposite edges of the icosahedron form five sets of trirectangular axes, each of which sets is converted into itself by a tetrahedral group contained as subgroup in the icosahedral group. There are no subgroups of orders 15,20 , or 30 present.

Isomorphism and Transformation-Groups which have the same algebra are called isomor-
phic. Written in the same symbols, isomorphic groups are by definition identical. But in the practice the isomorplism requires to be detected, being veiled under dissimilarity of motation. Once detected among grotups derived perhaps from quite different mathematical fields, isomorphism constitutes the unifying principle already mentioned. For example, the tetrahedral group is isomorphic with the group of 12 substitutions (rearrangements) which it produces among the four vertices of the tetrahedron; and the icosahedron group is isomorphic with the corresponding group of substitutions of the five trirectangular axis systems mentioned above. These isomorphisms contribute materially to the theory of equations of degrees four and five.

One instance of isomorphism is expressible by a universal formula. Let G be any group, with elements a, b, c, \ldots, and let t be any clement whatever capable of combination with a, b, c, \ldots, under conditions (1) - (3) ; then the elcments $a^{\prime}=t^{-1} a t, b^{\prime}=t-1 b t, c^{\prime}=t-1 c t$,
form a group $G^{\prime \prime}(t-1 G l)$, and this group G^{\prime} is isomorphic with G. For if $a b=c$, for example, then $a^{\prime} b^{\prime}=t-1 a t \cdot t-1 b t=t-1 a b t=t-1 c t=$ c^{\prime}, so that not only $a^{\prime}, b^{\prime}, c^{\prime}$ form a group, but the algebra of this group is identical with that of G. The process of deriving G^{\prime} from G is called transformation of G by $t ; G^{\prime}$ is called the transform of G by t. All transforms of a group G (by t, s, \ldots) are isomorphic with G and with each other.

Transformation has a very simple concrete significance. Suppose that G is a group of operations, a, b, c, \ldots performed on a field of objects A, and that t converts A into a second field of objects B; then $t-{ }^{-1} G t, i, c ., t$ reversed, followed by G, followed by t, produces among the objects B an effect precisely parallel to that produced by G on the corresponding objects A. For example, if A is a plane, G a group of operations in A, t a projection of A on a second plane B, then $t \rightarrow$ Gt is the projection of the group G on B. Or again, if G is a group of rotations about an axis A, and t a rotation which moves A into the position B, then $t^{-1} G t$ is a second group of rotations, precisely similar to G, performed about the new axis B. In general, transformation in the present sense is the concomitant, for operations, of transformations in the ordinary sense as affecting objects.

Group Analysis.-If G is any group and H any subgroup of G, all the transforms of H with respect to the elements of G are contained in G. These transforms are called the conjugates of H in G. Thus the subgroups of order 3 of the tetrahedral group are conjugate in that group. A noteworthy general example is that of the subgroups of order p^{a} (a a maximum) of a group G; these $k p+1$ subgroups are always conjugate. The number of conjugates of any subgroup H of G is a divisor of g. In the important case where its conjugates all coincide, H is an inarariant subgronp of G. Every group G has two invariant subgroups, itself and the identical operation. If it has no other invariant subgroups, G is simple; otherwise G is compound. Thus the four rotations $1, b_{1}, b_{2}, b_{3}$ of the tetrahedral group form an invariant subgroup, this being in fact the only subgroup of order 4 , of the tetrahedral group.

A maximum invariant subgroup H of G is not contained in any larger invariant subgroup
of G. A principal series of composition of G consists of G and a series of subgroups, H. I, J, \ldots. , i of G, each of which is a maximum invariant subgroup of the preceding one. The ratios of the orders g.h.i,j...... 1 of these subgroups is a pruncipal series of factors of conllusition of G. Apart from their order of succession, these factors of composition remain the same tor every princıpal series of con.position of G. They play an important part in the theory oi algebraic equations.

Every compound group G is reducible to a sequence oi simple groups, whose orders are the factors of composition of G. Only simple groups present new problems. The chiei problem of the pure theory of groups is thereiore the determination of all simple groups. This problem awaits solution. All groups of prime order are simple. Simple groups of composite order are of rare occurrence, the only: cases below order 2000 being one group ior each of the orders 60, 168, 360, $304,660,1092$. The number of differem prime factors in the order oi a simple group not oi prime order is at least three, and the total number of prime jactors is at least six (orders 60, 168, 660, 1092 being the only exceptions). No simple groups of odd order have as yer been found. Several series of orders of simple groups are known, ior example, $1 / 2 n!(n \neq 4),{ }^{1}=p^{n}\left(\rho^{2 n}-1\right),\left(\rho^{n}>3\right)$, etc.

A group whose elements are commutative is called an abclian group. Every subgroup and every element of an abelian group is invariant. The factors of composition are here the prime factors of the order.

Example of Group Construction-Let a and b be two elements of prime orders f and q ($a r=1=b a$) and subject to the further condition $b-1 a b=a^{i}$. We nind successively $b-{ }^{-1} a=b$ $=b-1 a b \cdot b-1 a b=a^{i} \cdot a^{i}=a=i, \quad b-1 a 3 b=a 3^{i}$
$b-1 a i b=a^{i i} ; \quad b-2 a i b=\doteq b^{-1}(b-1 a j b) b=$ $b-1 a a^{i i b}=a a^{3} \cdot b-3 a i b 3=a^{i r}, \quad \cdots, b-k a^{i} b^{k}=$
三I(mod. \quad). If f - 1 is not divisible by q. i must be $1, b-1 a b=a, a b=b a$. that is, a and b are commutative, and their various products ab form an abelian group of order fu. (This group consists of the powers of one element. say ub.) Bu: if q divides $f-1$, the congruence iq $\equiv 1$ has roots i different from 1. Any one of these roots i having been chosen, the conditions of $=$ $i=b q, b-1 a b=a^{i}$ are consistent and lead again to a group of arder $f q$ composed of the distinct product $a^{k} b^{f}$: the last group is non-abelian. For $f=3 . q \doteq 2$, the second group presents the multiplication table

$$
\begin{array}{r|cccccc}
1 & 1 & a & a^{2} & b & a b & a^{2} b \\
a & a & a^{2} & 1 & a b & a^{2} b & b \\
a^{2} & a^{2} & 1 & a & a^{2} b & b & a b \\
b & b & a^{2} b & a b & 1 & a^{2} & a \\
a b & a b & b & a^{2} b & a & 1 & a^{2} \\
a-b & a-b & a b & b & a^{2} & a & 1
\end{array}
$$

Substim:ion Groufs.- The permutations or suhstifuli n oi n given letters x_{1}. x_{2}. x^{-x} fyrm a group (the ammetric eroup) ní order n \therefore. The order of any group of substitutions oi n lettera is a divions of $n \prime$. An individual sub-titution is written in cycles: thus $\left(x_{1} x_{2}, x_{0}\right)\left(x_{0} x_{3}, x_{0} x\right)$, or simply (123) $(456-)$ simuifies that $x_{10} x_{20} r_{3}$ are to be replaced by x_{0}, x_{1}, x_{1}, and $r_{0} x, x_{2} x_{0}$ by $x_{0} x_{0} x_{0} x_{6}$. Every finte group is express-
ible as (isomorphic with) a substitution group. Thes in the case of the group of order 6 above, if we denote the elements $1, a, a^{2}, b, a b, a=b$ for convenience by $x_{1} \ldots=\ldots$ ore the six lines of the table are obiained from the first line by the six substututions $1,(123)(456)$. (132) (465), $(14)(20)(35), \quad(15)(24)(36),(16)(25)(34)$, which form a substitutson group isomorphic with the origmal group.

Those substitutions oi n letters $x_{1}, x_{2}, \ldots . x_{n}$ which leave a given funcrion of $x_{1}, x_{2}, \ldots x_{n}$ unchanged in iorm, form a group. Thus the junction $\phi_{1} \equiv x_{2} \sigma_{3}-x_{3} x_{s}$ is unchanged by the eight substitutions $G_{1}: 1,(12)$. (34), (12) (34), $(13)(24),(14)(23),(1324),(1423)$. The substitution $t:(23)$ convers ϕ_{2} into $\varphi_{2} \equiv x_{1} x_{3} T$ $x_{2} x_{1}$ and transiorms the group G_{1} of \bar{o}_{1} into the group $G_{i}=5_{1}^{-1} G_{1}$: 1. (13). (24). (13) (24), (12) $(34),(14)(23)$. (1234) . (1432) of ϕ_{2}.

Interesting examples of substitution groups may also be obrained by determining those substitutions of n letters $r_{2}, r_{2}, \ldots, x_{n}$ which transform the substitution (12....6) into its powers. If n is a prime number. the order of this (metacyclic) group is $n(n-1)$.

For further discussion of substiturion groups see the article Galois Theory of Equatioss.

Groufs of Lincar Transformations. - tll the linear iransiormations oí a complex variable \approx. $z^{\prime}=(\alpha=+\beta) /(\gamma z+\delta)$, for which $\alpha \delta-\beta \gamma$ $\neq 0$, form a group. For two of them in succession evidently amount to a third linear tramsformation. Thus $S: z^{\prime}=1 / z$ and $T: z=1-z$ give $S T: \approx=1-1 / z=(z-1) / z, \quad$ TS: $:=$ $1 /(1-z)$. The group of all limear transiormations of z is both infinite and consinuous. If a, β, γ, δ are restricted to integral values, the tesulting group is still infinite but discontinuous. The modular group is subiect to the still further condition a $\delta-\beta \gamma=1$; this is the group connecting the values of the ratio ω of the two periods $\omega_{z} \omega_{z}$ of the elliptic integral ${ }_{n}=$ $\int\left(4 z^{3}-g_{z} \approx-g_{3}\right)-\frac{3}{2}=d z$.

There exist only a finite number of non-isomorphic types of जnite groups of linear transformations of z. If \approx is represented on a spherical surface. every rotation of the sphere produces a linear iransiormation of \approx. Those rotations of the sphere which convert into itseli a regular solid inscribed in the sphere, or a regular polygon of n sides inscribed in a great circle (equator), form a group. These groups are of orders 60 (icosahedron, dodecahedron). 24 (octahedron, cube). 12 (tetrahedron), 2n (dihedron). n (cyclical). They give all the non-iscmorphic types of finite groups of linear transfurmations of \approx. The octahedral group is also iscmerphic with the symmetric substitution group oi four letters, the terrahedral and icosahedral groups with (alternating) substitution groups oi i ur and five letters, respectively.

A smple example of a (dihedral) group of nrder 0 is generated by the transiormations $S: z=1 /=$ and $T: z^{\prime}=1-z$ above

The linear tran-formations of z written in homogencous form $z_{1}=a s_{1}+\beta z_{2}, z_{2}^{\prime}=\gamma s_{1}+$ $\delta \approx$ furmsla $/ 2$ mogencous linear groups. Increasme the number i variables. we arrive at the general homugeneous linear croups $z_{1} 1^{\circ}=a_{11} s_{1}$
 + annEn identified. ior example. with projective geomerry: Curves. surfaces. etc., irequently

1. J'rairse Iten (Tympanuchus Americanus).
2. Black cock (Tetrao urogallus).
3. Woor-hen or Ptarmigan (Lagopus albus)
+. Scotch Red Grouse (I.agopus scoticus).
4. Rufferl Grouse (lionasa umbellus).
5. Hybrid between Black cock and Capercailzie.
have linear transformations into themselves, these always forming a group. Thus a plane cubic curve lias in general such a group of order 432. Linear congritence groups should also be mentioned. An example is the simple group of order $1 / 2 p\left(p^{2}-1\right)(p>\psi)$ composed of the linear transformation $z^{\prime}=(\alpha z+\beta) /(\boldsymbol{z} z+\delta)$ when $a, \beta, \gamma, \delta, z^{\prime}, z$ are integers taken mod. $力$

Continuous Groups.-These are groups of transformations involving continuous parameters, such as the entire group of linear transformations of z, or the entire group of motions in a plane or in space. The theory of these groups, which has been extensively developed by Sophus Lie and his followers since 1870 , has important applications to geometry, and especially to the theory of differential equations.

Historical.-The theory of groups was originally developed by Galois, Cauchy, and their successors under the particular guise of substitution groups. It was with Sylow's memoir in the 'Mathematische Annalen,' Vol. V. (I872) that the theory began to assume its independent abstract form. Among those who contributed to this movement are Cayley, Klein, Dyck, and others. But it is to Frobenius, above all others, that we owe the great developments of the pure theory which have been accomplished in the last fifteen years. The theory of group characteristics, recently created by Frobenius, is destined to produce brilliant results in the near future.

Other historical elements are traceable in the accompanying bibliography.

Bibliography.-Burnside, 'Theory of Groups' (1897): Cayley, 'American Journal of Nathematics' (1878) ; Dickson, 'Linear Groups' ((rgor), 'Theory of Equations' (1903) ; Easton, 'Constructive Development of Group Theory, with a Bibliography' (1902) : Frobenitus, 'Sitzungsberichte) of the Berlin Academy (1895 et scq.) ; Jordan, 'Traité des substitutions' (1871) ; Klein, 'Ikosaeder' (1884); Netto, 'Substitutionentheorie' (1882): Serret, 'Algèbre snpérieure) (I866) : Sylow, 'Nathematische Annalen' (1872); Weber, 'Algebra' (1899).

Frank Nelson Cole,

Professor of Mathematics. Columbia Uniz'ersity.
Grouse, a family (Tetraonida) of gallinaceous game birds with feathered feet or tarsi, inhabitants of the northern hemisphere. In North America our best known species is the ruffed grouse (Bonasa umbellus); the "partridge" of New England and the "pheasant" of the Middle States. This bird. in one or other of its races, ranges all across the continent from Canada to Washington and southward in the higher ground, and is one of our best esteemed game birds. The rumbling drumming of the male is a familiar sound in the woods in early spring, and is effected by rapidly beating the wings against the body. On the prairies of the central and western States are several varieties of pinnated grouse or prairie chickens (q.v.). In the northwest occur the blue or dusky grouse (Dendragapus fuliginosus) and the sage hen (q.v.). In Canada and the northernmost part of the United States occurs the Canada grouse or "spruce partridge") (Canachites canadensis) with the allied Franklin's grouse (C. franklini) in the northern Rocky Mountains. The species to which the name grouse was originally applied, namely the red grouse or moorfowl (Lagopus scoticus) of England, is the only bird absolutely
restricted to the British 1sles. It is plentiful in suitable parts of Wales and northern England, but is especially numerous in the lighlands of Scotland, where it is bred and preserved on moorlands of great extent, large areas of which are kept barren of other occupation for this purpose. This, then, is the bird whose shooting, permitted for a period following the 12th of August, attracts so large numbers of sportsmen annually to Scotland for the "grouse-shooting." The sport may be followed in the ordinary method of shooting on the wing over dogs; but in many places is conducted as a battue. Grousemoors are owned and rented in large numbers, and have a status similar to that of deer-forests (q.v.). This grouse is a ptarmigan, other species of which exist itt the artic regions (see PTARMIGAN). Other European grouse of importance are the blackcock and capercailzie (q.v.). Among works dealing especially with grouse and gronse-shooting are Lloyd, 'Game Birds and Wildfowl of Sweden and Norway' (London, 1867) ; the volumes on 'Shooting' in the 'Badminton Library" (London, I889) ; Alflalo, 'Sport in Elirope' (London, Igor); Sandys and Van Dyke, 'Upland Game Birds' in the Sportsman's Library (New York, 1902) ; Cones, 'Birds of the Northwest' (Washington, 1874).

Grove, Sir George, English engincer, autthor, and musical critic: b. Clapham, near London, i3 Ang. I820; d. Sydenhan 28 May 1900. After completing his studies in the gramnar schools of Clapham, he learned civil engineering, and for two years worked in Napier's factory near Glasgow. In IS.41 he went to the West Indies, erecting in that year the Morant Point lighthouse in Jamaica, and in 1845 the Gibb's Hill light in Bermuda. He was appointed secretary to the Society of Arts in 1849. and in 1852 to the Crystal Palace. While in the latter position he exerted all his influence toward giving the music-loving public the best music obtainable, and endeavoring especially to create a taste for the compositions of Beethoven and of the German Romantic School. From 1868-83 he was editor of 'Macmillan's Magazine,' and from 1878-89 edited the famous (Dictionary of Music and Musicians.' In 1882 he was made the first director of the Royal College of Music, at the same time being knighted, and in 1894 was made a Commander of the Bath. He contributed to Smith's 'Dictionary of the Bible' (1864), and to Stanley's 'Sinai and Palestine' (I865).

Grove, Sir William Robert, English physicist; b. Swansea, 18 II : d. I896. He was graduated at Oxford in 1832, began the practice of law in 1835. but eventually applied himself to the study of physics. He was elected professor of experimental philosoply to the London lnstitution, I $8+40-47$, and received the Royal medal from the Royal Society for his paper or the 'Gas Voltaic Battery.' Returning to the law he was kniglited and made a judge of the High Court of Justice. He was one of the first to grasp the law of the "conservation of force." He is the author of (The Correlation of Physical Forces' (1846).

Grove City, Pa., borough in Mercer County, on the Pittsburg. B. \& I. E. railroad: 58 miles north of Pittsburg. It is the seat of the Grove City College, a coeducational school opened in 18S4. The clief manufactures are
carriages. $b=-m s$, gas-engines, and machiner: Pop. 1.01 .

Grover, Cuvier, American army officer: b. Bethel. Me, zi July IS29: d. Ailantic City, N. J.. 6 June 1885. He was graduated at the United States Military Academy in the class of 1850. and on the outbreak of the Cwal War was appointed capiain of the soth infantry. Returning East, in April I\&6z, brigadier-general if wolunieers. was assigned io duty with the Army of the Potomac. with which he participated in the various batiles of the Peninsular campaign in Virginia. and in the second batile of Bull Run. In i8tu he commanded the 1oth corps, and in the Shenandoah campaign was engaged in the bati!es of Opequarr, Fisher's Hill, and Cedar Creek. He was mustered out of the solunteer service in 105 , and in $18-5$ became colonel of the 151 cavalry.

Grover, Lafayette, American politician: b. Bethel, Me., 29 Nor. 1823 . He was admitted to the bar in Philadelphia in 1850 , and settled in Salem, Ore., in IEst, where he became prominent in his profession. and was made prosccuting attorney of the second judicial district. and auditor of public accounts. In 1853 he was elected to the territorial legislature. serving there three years, and being speaker in bis last term ($18: 6$). He jought in the Indian wars in 1853 and i855-6, and was later made Cnited States commissioner to audit spoliation claims. In 1857 he was a member of the Oregon constitutional convention, and when Oregon was ' admitred as a Siate, he was member of Congress (ISER-G). He was chairman of the Democratic State commitiee ($1866-j$) : served as governor of the Siate $18,0-$ - ; and was United States

Groves. See Asherd.

Groveton, Va.. Battle of. See Bral Rưs, Second Battle of.

Grow, Galusha Aaron, American statesman: b. Ashiord (now Eastiord), Nindham County, Conn., 31 Aus. 1823; d. Glenwood, Pa., 31 March 100.. He was graduated irom Am-
 of Susquehanna County, \}'a., in 104% was elected to Cohgress in 1850 , and was six times reelected. During his nirst three terms he was a Free-S il Demecrat. during the last three a Repuilican. Ifewas chairman of the committee on the Territuries in the Thirty-fourtis and Thirtysixth Consresses, and speaker of the Thirsyseventh Coneress, whose nive-wechs sean of \& July - Aus o is6: largely defined the gosernmint attitude toward the Coniederacy and vesel $\$ 500.0 c 0,000$ ior war purposes. He introduced the Hume-ead bill isee Homesteid Lalls im: the House, fought is it 10 ytars finally obtwine 1 it s enactment, and sisned it as speaker. In 18,9 he declined the mission to Ru- in. in sist was elected from Pennsylyania as cungre..man-at-large, and was successively re-elected to the Fity-i urth. Fifty-fith. Fify-sixth and Hityseventh Corgrecies. Ilis plurality in inv, was $20-+6$. the large t given up to that tme in any Siate of the Conited States io a candulate itr any office. He was aloo a delezate the nationl Kepublican cenvention of IN4. NAS. and ity2, and chairman of the Pennslvania
 he was the president of the International and

Great Northern railway company oi Texas. His long record of conspicuous service is almost unparalleled in the political anmals of the [nited States.

Growth, increase in size or volume. It may be divided into inorganic and organic growth. As an example oi the former is the increase in size of minerals. Living beings or crganisms grow by adding to the substances (protoplasm, etc) forming their bodies similar matrers as food, which are digested. assimilated. and thus taken into the body of the plant or animal by intersticial deposit. Organic growih is thus fundamentally a physico-chemical process together with a form of constructive energy as yet quite incomprehensible to us. The result of this absorption of food is that the body increases in size. that is. grows. All growth is atiended by movement: and growth-movements are. as Verworn states. common to all living bodies. but they take place so slowly that they can scarcely be followed with the eye. Growth goes on more ireely and the size of the bodyincreases most rapidly in those organisms in which the body presents a large raying suriace. in distinction from the microscopic bodies of the one-celled plants or animals. The simplest phenomenon of growth is seen in cells. which during growth rapidly multiply by seli-division, which causes the increase in volume in the embryo.

The physical agents or factors in the srowth of plants and animals are abundance oif iood, ogether with the intuences exerted by heat. light. etc. During growth the simple molecule of living proteid continually attracts elements toitself from the food (Hatschek). Growth is most rapid in a well-ied plant or animal. The health. size, and stature of children depend on good nutritious plain food and plenty of iresh air. Food and Chernical Agents.- As digestion and assimilation are chemical processes, they require certain materials to work with. These are called inod. The elements which constitute food and which occur in proteplasm and flesh are carbon. oxygen, nitrogen. lime. phosphorus, potassium. sodium. chlorine, magnesium, sulphur. silicon and iron. All or any of these enter the hody in various combinations. each playing a definite part in growth. Phosphorus is especially abundant in the tissues of embryos : potassium appears to be of great importance in mbibith. while iron is essential in the early procestes oi cell-division. Besides these inorganic -ubs:ances. organic iood. as tlesh or vecetables. are essential to the growth of animals. Water is also essential. and embryos dewinp most rafidly in moist places or in water.
light.- Without light there would be no. growth, indeed no life. Light may retard of Iasien growth. under different circumstances. loung er wing plants and embryos of animals reed to be fritected irom too direct sunlighs.

Tenferaburi- Organisms need sufficient heat in arder to grow. The requisite amount i. r. 11 rmal, maximum growth is called the - ptimurn temperature. for at such a degree of " rmoth or wth takes place faster than at any - her. If the temperature be lowered. the rate - i sol with gradually diminishes: it the temverature le raised too much above the optimum. the rate if erowth diminishes more rapidly: Excess of cold dwaris both plants and animals.

Space and Moctmont. - If too much crowded, plants become slender and weak; spails become dwarfed if reared in too small vessels: mankind when confined to too narrow quarters in large cities tend to become undersized, from not laving sufficient space and good air to live in; small trout live in small brooks and large ones in larger strcams. All organisms need room to move or at least to grow.

Heredity - Besides the factors already mentioned heredity has its share as an agent. Growth, development and reproduction are now in the plant and animal world proceeding as it were in grooves, or along more or less definite patlis, in accordance with long established laws or relations, and the mechanism of growth is subject to heredity.

Groaith and Longeaity.- The elephant and whale attain a colossal size because they grow throughout life and live long. The large size of man as compared with many other mammals, is due to the fact that he grows for a longer period; while many mammals get their growth in one, two or three years, man does not stop growing until he is thirty.

It is to be observed that individual growth is not only dependent upon a suitable amount of food, but on proper enviromment and favorable conditions of life, and all these agencies also are the primary factors of organic life. It is the changes in the conditions of life, coupled with heredity and selection, that have caused the evolution of the world of plants and animals. Thus we see that the fundamental causes of the evolution of species are the same as those which determine the growth of any individual organism: we by no means understand all the phenomena of simple growth; there are unexplained laws and causes, as there are in general evolution; both in this respect are of a piece and are similar in their nature and results. The origin of species is as natural a process as the growth of the individual, and both in many respects are alike inexplicable by the science of the present day.

Growth and Development of the Human Being. In this article growth refers to an increase in size, and development to an increase in capacity. The body begins in a microscopic cell, and passes through the various stages of birth, growth, development, decline, and death.

The life of an individual may be studied in various periods, the embryonic and fcetal (which do not concern us at this time) and those of infancy, childhood, youth, maturity, and old age. The above division is convenient, but not physiologically exact. The various periods are not slarply limited. From birth to maturity, with a gradual increase in size of various organs, there are progressive modifications of fumctions. Toward old age, decline begins and the modifications retrogress.

The Period of Infancy is variously limited by different writers, extending from birth to the end of the fourth, fifth, or even the seventh year, the last considered by law as the beginning of responsible life. Probably the best limitation is from birth to the end of the first dentition, about the end of the second year. At birtl, comnection with the mother suddenly ceases, and a new existence begins with the first inspiration. Then the regetative functions, digestion, circulation, respiration, secretion, excretion, and assimilation, are soon established,

The infant performs all the functions of adult life except reproduction and volition. But in order to have them at their best they should be intelligently supervised by the parents. The young baly is the most helpless and dependent of all creatures. The care it reccives influcnces its future life. With no care it must perish.

The period of infancy is characterized by frailty, active nutrition, rapid growth, and commencing development. It is especially prone to convulsions from improper food, or from high body temperature, whatever the cause, to rickets and scuryy from improper nourishment, to spasmodic affections such as false croup, to hydrocephalus, meningitis, whooping coush, diphtheria, diarrhea, bronchitis, pneumonia, and to the eruptive diseases, measles, chickenpox and scarlet fever.

The rate of infantile mortality is very high. From one fourtl to one half of the children born in our large cities die within the first year: in small towns and in the country the rate is much lower. Many of the new-born are enfeebled by vices of formation, such as cyanosis, spina bifida, hydrocephalus, or meningocele, by an hereditary syphilitic, scrofulous, or tuberculous taint, or by chronic affections in the mother. All infants are exposed to the risks of an improper dietary, impure air, and the extremes of heat and cold.

The bones of the infant are very vascular, quite clastic, have but little firmmess, and their epiphyses are cartilaginous. They are therefore readily inflamed, as in scurvy may be distorted by pressure, or incompletely broken by apparently slight injuries. or the epiphyses may be separated by such injuries. To forcibly lift a young child by one arm is always dangerous. The skill at birth is not fully ossified and can be readily compressed. The anterior fontanelle begins to close about the gth month and is usually closed about the 18 th. Depression of this fontanelle is one of the evidences of general debility. Premature closure of the skull is a cause of epilepsy or idiotism. The vertebral column is straight, lacking the curves of later life, and is quite flexible, but this tlexibility tends to backward, forward, or lateral distortions of the spine, as the result of rickets, inflammation (caries) of the vertebra, or of sitting, standing, or reclining in strained positions. Allowing infants (especially feeble ones) to sit, stand, or walk too early tends to produce bow legs and knock knees, as well as spinal deformities. It is many weeks before a baby can hold up its head. Even by the twelfth week it is not properly balanced. It may be at the sixteenth. The first attempt to sit is about the sixteenth week, and sitting is accomplished about the fortieth. About the thirty-eighth week, the child attempts to stand, and should be able to stand alone by the eleventh or twelfth month, and to walk unaided by the fifteenth or seventeenth month. Some children never creep. If they do. the attempt is made about the ninth month.

The muscles of an infant are soft and not capable of great effort. Not till after the sixth month are they felt firm and resisting. To develop them the clothing should be loose, and the child, in a nude state, should at times be allowed free play of them. To swathe the feet and limbs in bandages "to make the child straight" is hurtful.

The abdomen and chest (in its lower portion) are prominent. due to the very large liver, the small pelvis, and the distertion of the siomach by food, and to large size of the heart and lungs. All of these organs must have free movement, in order to carry on their important functions. Tight bandaging of chest or abdomen hampers movement and compresses important blood vessels. The size and weight of the heart of the new-born explains the rapid growth oi the body and those organs in most direct communication with the heart, especially the brain. The small size and the vertical position of the stomach account for the ease with which infants throw up their food when the stomach is distended. Repeated acts of vomiting are injurious. The practice oi jolting babies tends to produce vomiting. Each child must be studied by itself as to its powers of digestion, and what is the proper food for each. The substitution of artificial feeding for maternal nursing, and the indiscriminate use of baby foods are responsible for much sickness and many deaths. But natural feeding is not always possible, owing to the dictates of fashion or the poor health of mother or child.

The nervous system of infants is very excitable, especially toward the end oi the first year, and is out of proportion with the slow development of the inhibitory centres. Convulsions and spasmodic affections are therefore readily produced by various causes. such as undigested iood, eruptive ievers. impure air. iright. or excessive heat. Most of the movements and actions oi early infancy are rellex. such as stretching. crowing, and sighing, for example. About the fourth month evidences of will power appear and gradually increase. Good habits. as to regular times for feeding, sleep. etc., can often be inculcated at this early age, or even before, to the advantage of both mother and child. The brain is relatively large at birth and grows rapidly up to the seventh year. and after that time more slowly.

During this formative period care should be observed not to excite the brain unduly, else nervous disorders may result. Repeatedly urging a young child to "show off" is, to say the least, very unwise.

The senses of taste and smell scem to be partially developed at birth. After the third month the quick closure of the cyes on the approach of an object scems to indicate the establishment of true vision. A very bright light may be appreciated hy the second or third day, or may be followed by the eyes, if moved slowly, after the sixth week. It is usually weeks before there are associated movements and convergence of the eyes. The eyes of the new-born irequently move independently of each other producing "squint." but squinting in the course of a severe diseace is a bad sign. As to colors, yellow, red, pure white, gray, and black, in the order named, are said to be the first recognized, gradually after the sixth month.
-111 children are born deaf, but may notice sharp sounds six hours after birth, though usually not until a number of days. Toward the end of the first year the infant becins to imitate rocal snunds in its attempt to speak.

The circulationn ai llood is very rapid; the boond vessel- are large and thim. Concestions, inflammations, and hemorrhages, therefure, are
quite common. The pulse is irritable and slight causes disturb its rate and sometimes its regularity. The rate in the new-born is $130-$ 140. during the first year $105-150$ per minute, during the second $110-120$, then gradually diminishes until at the fith year it is about 90 ; irom the seventh to the fourteenth year $80-90$, and afterward 7o-80. The respirations of the new-born are from 30 to 50 per minute, and at the end of the first year from 25 to 35 . The breathing of healthy children is noiseless and through the nose. The habit of mouth breathing usually caused by enlarged tonsils and by adenoid growths, is productive of deainess, change in facial expression and distortion of the chest (pigeon breast). The relatively small size of the pharynx. larynx. and trachea frequently cause throat afrections to be serious ailments in intants.

The average temperature of the infant is $100^{\circ} \mathrm{F}$., but it is subject to many fluctuations. It is raised by ingestion of food, struggling. crying. etc., and lowered by sleep, inactivity, and insufficient iood. Sponging with cool water or oiling the skin will frequently lower a high body temperature, which, if unchecked, might cause convulsions.

In man there are two sets of teeth. The first or temporary teeth are 20 in number, 10 in each jaw. The first tooth appears about the seventh month. the last about the twenty-fourth month. The dangers of dentition are much exaggerated. Well-nourished children of healthy parents cut their teeth earlier. easier, and more regularly than do feeble children. If the first tooth is not cut before the 1 fth month there is some serious defect About the 6th year (and beiore the temporary teeth are shed) the jaws contain all the temporary teeth and all the rudimentary permanent teeth except the wisdom teeth. At birth. when the teeth have not appeared and in old age when they have disappeared the lower jaw is obtuse. During the growth of the teeth. the lower jaw increases in depth and length. To admit of these changes, the temporary as well as the permanent teeth should be taken care of. and filled if need be. Food requiring mastication should not be given until there are several teeth. The permanent teeth are 32 in number, 16 in each jaw. The first one appears about the 6th year, the last from the isth to the 2th or later. The thymus gland appears in the new-born, attains its full size by the end of the $2 d$ year, then gradually diminishes until at puberty it has almost disappeared. It is supposed to be one of the sources of the red blood corpuscles.

For the first few months of life tears and perspiration are rare. Aiter three months they are freer. In rachitic infants perspiration is niten profuse. Up to the end of the first year the sebaceous glands are very active, especially upnn the scalp. The saliva and pancreatic juice are cmall in amount until about the third month and therefire starchy foods cannot safely be given in young infants. The gastric secretion at birth can as a rule readily digest the casein of mother's milk, but has difficulty in disposing of nther food. Jucus in the infantile intestines is copious, niten ferments and may neutralize the fechly alkaline intestinal juices, and the pancreatic juice and saliva.

Both the small and large intestine are com-
paratively long, and digestion and peristaltic action are rapid. These facts together with the smail size of the stomach and the rapid growth of the body, require that the young baby be fed every 2 or 3 hours. The great length of the sigmoid Hexure of the colon impedes the passage of faces and induces constipation, which should be relieved by light laxative medicines or, better still, by change in the diet.

The lyinphatic glands are numerous and large in the infant and the communication between them and the general system is more marked than at any other period of life. They are readily congested and enlarged in affections of the throat, scalp, etc., and in scrofulous and syphilitic ailments.

The average weight of the male new-born child is 7 lbs .11 oz ; of the female 7 lbs. 4 oz. For the first few days there is a loss in weight, then the weight gradually increases. Generally it is doubled by the 5 th month and trebled by the 12th in breast-fed infants; in hand-fed, later. Usually a healthy child gains 20 lbs . in weight and to inches in height in first 2 years of life; in the 3 rd year 4 lbs. and 4 inches. During next 6 years there is an annual increase of 4 lbs . and 2 or 3 inches; after the loth year about 8 lbs . a year. About the 9 th year in girls and the IIth in boys there is a diminution in the rate of growth, and at puberty (13 th year in girls and t6th in boys) the activity of growth is the greatest. Between 12 and 15 , girls grow heavier and taller than boys, but at 15 the boys again lead and maintain it through life. Growth usually continues to about the age of 25 in nules and there may be a slight increase for 5 or 10 years afterwards. Girls usually attain adult stature at about 2 y years. Weight usually increases in the male and frequently in the female to the 50th or Goth year, due to an accumulation of fat.

The Period of Childhood may be said to extend from the end of the second year to puberty or youth. By the end of infancy, the anterior fontanelle is closed, the temporary teeth are cut and the child is beginning to talk and walk, to use judgment and memory and to display independence. Childhood is characterized by active growth and development of the body and mind. Arrest of growth and loss of weight indicate malnutrition. On the other hand, while a very thin baby is abnormal, a very fat child or youth is, as a rule, one whose nutrition is at fault, or whose diet is too rich or generous.

The preparation of boys and girls for the duties and responsibilities of manhood and womanhood, requires especially that their brains, muscles, and digestive apparatus shall be strong. Nerve force must be stored not dissipated, and coddling is wrong. Their nervous systems are normally very active and sensitive to impressions, hence nervous disorders and exhaustion are readily induced by over-stimulation of the brain, through excitement, too much study, etc. Physical and mental training must go together. A vigorous child is almost constantly in motion, either at work or play, and this is as it should be. The same amount of exercise would exhaust an adult. It is well understood that systematic muscular exercise besides hardening the muscles improves the mental strength, that well developed children take a higher rank in
school than those of the same age less developed. Abundant out of door exercise also develops the co-ordinating power of muscles and the special senses, induces a greater respiratory range, better oxidation, and an increased power of the heart. Thus nutrition is stimulated and a symmetrical development obtained. And this is just as necessary for girls as for boys. Children need sicep oftener and longer than adults. A healthy young baby sleeps nearly two thirds of the time and a healthy child of seven will often sleep quietly for twelve hours or more. Disturbed sleep and sleeping with the moutly open indicate some nervous gastric or intestinal disturbance or the presence of enlarged tonsils.

After the first few years of life the special senses seem to acquire an acuteness, more marked than in later life when the perceptions are associated with more complex mental processes. Children require much food and the diet should be nutritious, but overloading the stomach, especially with sweets and fruit, may excite general convulsions, vomiting, diarrhoea and alarming fever. A vigorous, healthy boy often eats, and may require about as much food as the average man. A variable appetite or the habit of eating mainly one class of foods is indicative of innutrition. A properly mixed diet is necessary for health. Sugar (candy, etc.), valuable in reasonable amount, should not be eaten in such quantity as to interfere with the appetite for regular meals. Children, especially those who eat but little sugar, should be taught to eat fat. In childhood the lymphatic system is still active, the glands readily enlarge as the result of irritation or of general disease, especially scrofula. The respiration in early childhood as in infancy is mainly diaphragmatic - the abdomen moves freely. The temperature normally is about $100^{\circ} \mathrm{F}$. A sudden high temperature is much less significant than in the adult, so also is an increase in the rapidity of the pulse. Young children lose heat readily from the surface of the body, and are susceptible therefore to "taking cold" when insufficiently clad. The line should be carefully drawn between overdressing and the "hardening" process, and woolen garments except in the hottest weather are advisahle.

Owing to the large amount of food consumed and the detritus resulting from the activities of the body - a free discharge of waste by the skin, kidneys and bowels should be facilitated by frequent bathing, the drinking of considerable pure water and the use of fruit, grahanı bread and green vegetables.

The stomach in children is straighter and more vertical than in adults, hut less so than in infants. Voniting is still easily produced. The small intestine is relatively much longer than in adults, due to the fact that much nourishment is to be digested.

Children are susceptible to nervous disorders such as chorea and certain forms of paralysis, and to whooping cough, mumps, measles, etc., which last are often classed as "children's discases." Spinal deformities are readily induced. Certain diseases, such as tuberculosis, are likely to affect a large number of organs at the same time. The recuperative power of a normally healthy child is very great, even in severe discases.

The mortality of young children in general is encrmous but decreases with age. It is greatest among those whose hygienic conditions are bad. who suffer from poor or insutictent food. impure arr. etc. Diphtheria. scarlatina. measles. croup. pneumonia and intestinal disurders are the chici causes oi death.

The Period of fonth, fidulisience or $P_{s}-$ kerty: is that period of lie between childhood and maturty: in law. "hat period irom 14 in males and 12 in iemales till 21 years of age." It occurs earlier in hot climates than in cold. is hastened by lexurious living and habits oi idleness and is retarded by severe labor, hardship. privatoon and ill health. It is that period when the individual becomes fitted ior reproduction by :he development oi the sexual organs. The roice is unsettled. due to a rapid general enlargement of the laryngeal cartilages and a lengthening oi the rocal cords. Hair appears in the pubic region. in the axilixe and on the iace in the male. In the female particulatly. iat is rapidly deposited in the subcutaneous cellular issue oi the breast and extremities, adding to the comeliness of the iorm. The function of menstruation is established. preceded in a varying degree by headache, backache, physical and mental lassitude, palpitation, bleeding irom the nose. nervous irritability and hysteria. Sexual maturity is evidenced by awakened sensibilities towards individuals of the opposite sex. of attraction, of repulsion or oi timidity and shyness. In youth there is a pronounced development of the limbs, an increase in the size oi the chest and a diminution in the size of the head and abdomen. The spine now iorms a double curse, and the pelvis widens especiaily in the iemale. Mental iacultics mature. A girl becomes a woman earlier than the boy a man.

Inasmuch as the rapid nutritive changes are prone to be attended by more or less erave disturbances of the nerveqs functions, it is essential, in order to have a sound mind in a sound body (that is, health), to careiully reculate physical and still more. mental exertion. The habit of seli control must be encourazed, and exaggerated language discouraged. School duties should not be imposed beyond. or even up to the limit of tulerance of the individual, and social iunctions should not interfere with an abundance oi sicep and outdur exereise. elee the re-ult wil be a wreck of the nervous system, and prolonged nervous and muscular pr stration. Reckleesness as os the laws if health are re-ponsible fins much of the - cknes, at this period oi life Purity of thought and action are great saieguards asainst the temptaisens which beect growine youth, which ii welded to they :mpair ar deutroy both mind and londy. Animal impul-e are to the cubcrit na:td to aspirati m- if the mind The contanued fevers such as ivphinid, severe inflammatinns. as pneum nia and acute rheumatism. tuberculnsis and heart affections, are the princifal disease of yon sth Sarlet fever, mearles ant nother cruptive dreasec may affect the indurdual, bet nt commonls. Ilenholism is a dankerno:- condtition easily acquired. Neurotic ennditions, especially in the female, too frequently necur

The Perid of Vaturity hegins at ahose the end of the 2 at year, and extends in men to at it the roth, when the p wer of reproduction
wates, and in women to about to or 45 . wher the menopause orcurs: the breasts and teproductive organs diminish and ovulation ceases. In women, at this time (as in the onset of puberty) the organic functions may be irregular: dy:pepsia, paipitation, sweating. vertigo. neuralgia irritability and melancholy may occur. The "change of life" is in reality therefore attended with a severe uervous shock. Manhood and womanhood begin when the individual has reached the full stature, when the skeleton is irmly ossified, the jaw is square, the chest iully expanded. and the limbs well developed. Gradually from this time onward in most instances iat begins to accumulate. especially upon the abdomen, towards the end of maturity.

Populatly is is believed that man is in the "prine of life" ifom 35 to 50 . but there are many instances of iarmers. professional and business men and women being successiul and at active work and in good health at 60 or more. The fact is. that the ability to do hard work. mental or physical. at an adranced age, depends upon habits oi industry and method, and upon the care oi the health which have been inculcated in earlier life, and are continued into and throngh aduls life.

Gradually as adult life advances, the inclination and sometimes the power for active exercise fails. These are evils to be guarded against. Out-door games, horse-back riding, and vigorous walking, ior example. may be pursued advantageously as a sule to 45 or 50 years oi age. It about this time degenerative changes occur in the body and care is necessary that the heart and blond vessels be not overstrained. During the prime of life the body enjoys a maximum or vigor and power oi endurance, and there is reason to believe that this is also true of the mind. But the seli-consciousness of power that the individual possesses is irequently a menace, ior it induces him to struggle for wealth or iame in the turmoil and bustle of modern life. to neglect recreation, to resort to alcoholics and other stimulants to keep up his energy. and to mdulge irr general high living. It is especially true at this time of life that no one should work up to the full measure of his ability. Such wurk is danserous and has been responsible ior the "breaking down" of the health and the death -i many otherwise intellizent persons. The principal diseases of adult life are alcoholism. tout. cancer, urinary and venereal diseases. rleumatism. pneumonia, tuberculosis., affections 3 the brain and nervous system, of the heart and blood vessels and oi the digestive system.

The Perind of Old -ige or Sinility usually commences about the fort year and is characterized hy a waning oi the vital powers and by atrophic and degenerative changes. the natural consequences of decay: While death irequently re-ults from local accidents of the brain and nervous system (apoplexy. sclerosis. etc.) and -i the heart. blood vessels and urinary organs predermably damared in the course of decay. it is normaily but the ending of a natural life. and not a pathological fact as in earlier liie. The stature of the ald is less. the shoulder: rnunded. bones are more iragile. the cartilages are hardened. the lower jaw resembles that of the infon:. the chin is prominent. the skin is wrinkled owns to the absorption of fat. and Inses its elasticity, the teeth decay and fall out,
urination is frequently difficult, the respirations and heart beats are reduced in frequency, the arteries lave a tendency to ossify, the veins to dilate. 'lhe muscles fail in their tension, the voice becomes a "childish treble," the digestion is weakened, the cye no longer sees clearly, and hearing is dullect. The mind may preserve its freshness for a long time. Usually the senses fail first, next the faculties of memory, reason and volition. Towards the close of life the organic or vegetative phenomena prevail. The natural death occurs when the breatl becomes fainter and fainter and the heart beats are weaker and fitful - and then gradually cease.

Old people require an abundance of sleep. They need also to be kept warm, for heat is generated in them in smaller amount than in robust bealth. Hence they are easily chilled. Food should be plain, largely liquid, and that which is easiest digested. Exercise in the open air every day is desirable but it should be gentle in character. With these precautions old age may be made comfortable. Jerome Waliker, M.D., Author of 'Walker's Physiology.'
Grub, the larva of an insect, especially of a beetle or fly. In reference to cattle it usually means the maggot of a flesh-fly or warble. See Bot-fly; Larva.

Grubb, Sir Howard, Irish optician and telescope-maker : b. Dublin 28 July 18 +4. The Jargest telescope of his construction is the 27 -inch of the Vienna Observatory. He was the first to suggest a movable floor for an observatory dome, which has been adopted in the dome of the great 36 -inch telescope of the Lick Observatory. He has been vice-president of the Royal Dublin Society from 1893, and was knighted in 1887.

Grübel, grü'bel, Johann Konrad, German poet: b. Nuremberg 3 June i736; d. Nuremberg 8 March 1809. He was a saddler and harnessmaker, and passed his youth in privation: but he possessed genuine poetic gifts, as shown in the pictures he has given of the lives and manners of his countrymen in the three volumes of 'Poems in the Nuremberg Dialect' (1802). Another volume appeared in 1808.

Gruber, grö'ber, Johann Gottfried, German author: b. Naumburg, on the Saale, 29 Nov. 1774: d. 7 Aug. 1851. He studied at Leipsic, and in 18II was appointed professor at the University of Wittenberg, and in 1815 professor of philosophy at Halle. His chief work was that of editing, first with Ersch, and after his death, alone the first section of the 'Universal Ency'clopredia;' His independent works include: 'Herder's Characteristic' (I805); 'History of the Human Race) (I805) : and Lives of Wieland (I8I5-I6), and Klopstock (I832) ; he also edited 'Wieland"s Complete Works' (18+8-28)

Grün'berg, Germany, capital of the circle of Grünberg in the Prussian province of Silesia: on the Oder, I5 miles east of Giessen. It is surrounded by vineyards, and large quantities of wine are made here and in the vicinity. Pop. 21,268.

Grundtvig, groont'vig, Nikolai Frederic Severin, Danish theologian, historian and poet: b. Udhy, island of Seeland, 8 Sept. 1783 ; d. Copenhagen 2 Sept. I872. He was educated at the University of Copenhagen, and in 1822 went to Copenhagen as chaplain. He made a fierce attack on the rationalism of the time in his 'The Answer of the Church' (1825), a renly
to Professor Clausen, and for the violent expression of opinion in this work was severely censured and resigned his position. For a time he devoted himself to literary work, and througlo his writings exercised a great influmee on the religions and political thought of Denmark. In 1839 he became pastor at the hospital church of Vartor, Copenhagen, and held that position till his death, being made a bishop in I86!. He was for a time a member of the Danisl. diet, and took an active part against Germany and German influence. His most important work is 'Northern Mythology'; he also wrote a number of poems, among them some very popular national songs, and translated 'Beowulf.'

Grundy, Felix, American jurist: b. Berkeley County, Va., II Sept. Ir77; d. Nashville, Tenn., 19 Dec. 1840. Studying law, he was admitted to practice in 1798 , and soon acquired a high reputation as an advocate in criminal cases. He was a member of the Temessee legislature $1790-1806$, and in the latter year was appointed one of the judges of the supreme court of errors and appeals. In i8ir he was elected representative to Congress, and re-elected in 1813. In 1829, and again in 1833, he was elected to the senate of the United States, where he was among the most prominent of the supporters of President Jackson. In I838 President Yan Buren appointed him attorney-general of the United States; but in I840 he resigned that office, and was re-elected to the senate.

Grundy, Sydney, English dramatist: b. Manchester 23 March i848. He was called to the bar in 1869 and practised till 1876 , but has since become known at home, and in the United States, as a successful and popular playwright. Among his very numerons plays are: 'The Glass of Fashion' (I883) ; 'A Fool's Paradise' (1890) ; 'A White Lie' ' (1893); 'Sowing the Wind' (I893) ; and 'The New Woman' (I894) ; 'Slayes of the Ring' (I894): 'The Degenerates' (I899) : 'Frocks and Frills' (1902).

Grundy, Mrs., a personage constantly appealed to in the phrase, 'But what will Mrs. Grundy say?' in Morton's play, 'Speed the Plough) (isoo), but who never appears among the dramatis persona. The phrase has now come to stand for the judgment of society in general upon actions or conduct.

Grunt, or Croaker, a drumfish (q.vo).
Gruson, groo'sǒn, Hermann, German inventor and manufacturer: b. Magdeburg 13 March 1821 ; d. 1895. He studied at Eerlin ; became chief engineer of the Wohlert machine shops in Berlin in 1851 , and in 1854 went to Buckau as director of the Hamburg-Nlecklenburg steamship company. There he established a shipyard of his own and built a small iron foundry, where he invented a process of chilled cast iron, which was much used in the manufacture of machinery, as well as for armor. His establishment consequently grew rapidly, and in 1886 was incorporated, manufacturing armor for most of the states of Europe. Gruson was manager of the company until July 1891, when he retired and devoted himself mostly to stady and experiments in physics. In 1893 the works were sold to Krupp.

Grützner, Eduard, ed'oo-ärd grüts'nĕr, German painter: b. Gross Karlowitz. Schlesien, Germany, 26 May 18.10. He began the study of

GRYLLIDEE—GUADELOUPE

att without a master．and his talent having been recognized by the archiest．Hirschberg．he was taken by the latier to Nuaich，riot．He was there admitted to the school it Piloty：He first appeared beiore the public as a humorous panter．Shakespeare＝Falstañ being his favor－ ite subject．He is，however，known all over tive world in－his pictures of monks．in the cellar． tailor＇s shop．kitchen，etc．Well－known also is h：s＇Mephistopheles Behiad the Scenes in the Dressing Koom oi a Ballet Dancer．＇

Gryllidæ，grili－de，a iamils，the crickeis， of saliatornal orthopterous insects．distinguished from the grasshoppers and locusts by the iact that the tarsi are three－joinied and the ori－ posior，when exserted，is spear－shaped：the wings，when present．fit c！sely to the bodr． The family includes three types：（1）the true crickets．such as the common field cricket．of the hearth cricket oi Europe，which are of the genus Gryius：（2）ihe burowing，curiously modined mole－crickets（q．s）：（3）the tree－ crickets．pale－colored nocturnal forms which lay their egrs in the twigs of different plants．and which sometimes are so abundant that by their ess－layine aione they do consilerable damage to vinevards and to raspberty and blackberry plantations．The black neld－crickets．of which the commonest American species is Anabrus simplex．inlabit burrows in the ground and come abroad io fied on grass and he：bage at night，and sometimes in daylight．They deposit egg：in the pround in the autumy．but these do nei haich until the follewing spring．

Gryphon．Sce Griffin．

Guadalajara，mriā－dā－la－hā＇rā．Nexico．capi－ tal of the siate of lalisco，and secund on！y in population and importance to the City of Mexico，from which it is io miles distant by ite line oi the Mexican Certs！ralw y It ativite above sea level is Eost fect．The city phosesers a creat adrantage in the nearhy Falls ni It：anacatlan which supply electric energy If r its indurtries．steect rallinay and liahting． In recent years Guadalajara has become a ：（ry imp riant m ning cen：－e or he lqu rters it t
 i：$=$ beat：iful poticry avd＝k：＂it：＇v wrucht oretrato r－feruse in thy，and it：d－awn who．In the immediate vicinity is an ines－ h：u－i ble de：．．．it of clay the clavic q alitics ard pleasing c－lor of wheh especially adapt it in the ill？purpu＝c＝irst al ic nuenil hed．Thung
 aricles．The hospital in pade a Civil flos－
 Husp：－1 ci the Saciel Hert．if o 11 men．$t^{3} \mathrm{c}$ Honnizal rop dalupane，al－it wimen，and the Beata Marcarita H -1 i：L ．- In $1 \leq$ ntiomo
 ti nal facitores include a crelege flaw，a col． lese of medicine，a it mal -1×1 ．a whing lales eminary：a joceum，a ligh schy ji，and a number i primary seh s＇s Th．Cuhelrl． ne most molle ciurih of the city， ，ne nf the grandest in the Republic，aschitectur＇ly an 1 in ise dimensi ma，decnratinas，and nenamet ta：l 9 ． The penitentrary of the State，an mpeing structure，is located here，as also the various
other pubilic institutions．Located in the city are two pubile libraries．－the State Lib－ rary．with over 50.000 volumes－and the Seminary Library with over 12.000 volumes： an industrial liluseum，a theatre and the Governor＇ some of which are exceptionaily beautiful，are the Alameda．Plaza de Armas．Botanical Gar－ den．Alcalde Park．and the Calzada de San Ped：o．The banking facilities are supplied by the Bank of Jaisec，a local institution with a capital ois $5,000,000$ ．the Guadalajara Banking Company：and branches or agencies of the National Bank．and the Bank oi London and Nexico of Mexico City ：the Bank of Aguascal－ ientes．and the Central Bank，of Mexico City． Fep．（1906）102．000．

Guadaloupe－Hidalgo，swā－dā－loo＇pā－ē－dāl＇． go．a viliage of ine federal district of the Enited States of Mexico，at the foot of the Guadalupe Mountains，three miles north of the city of Mexico．The rreaty of peace be－ iween the C＂nited Siates and Mexico was signed here 2 Feb．isus．

Guadalupe－Hidalgo，Treaty of， 2 Feb． IE4S：the treaty wich closed the Mexican Wiar． While the war was in progress．Polk sent Nicholas P ．Trist of Virginia．shen chie：clerk of the State Department．to negotiate a treaty i peace：the conditions to inciude the cession ni Loper and Lower California and Jew tween and the Rio Grande for boundary be－ treen Mexico and the Unived States．Trist went ranged．and in August isf，the thre Nexican commissinners and Trist met and exchanced proposals．The former would not vield to such remme demanted the Nueces as the boudach siving them C orpus Christi and a largetriangle at the s wh），and ofiered much less oitriangle tito Trist was recalled．but remained as healouarters：Santa－Arina declared that he was trickel in the promosals．war operations went 7．an I the city of Mexico was captured not ：an afoer．In January ISt，negotiations were resumed．Trizt still acting as principal，and the i－eaty above was acreed on．The Senate，how－ ever，refused to accept it．and insisted on h．rther ierm＝：Mexico was ionced to accept them，and $t: 5$ Senate ratified the ereaty 10 Mrech Formal proclamation ma＝made ifuly 12s．The land cessinn was of Cipner Cali－ © rnia and Now Mexico，and the Rin Gramle $u=0$ le the bundary．The tritel states i il llevico \leqslant_{15} noonco，and asoume l $\leqslant_{3.250,-}$ （in）fol ans matc by［nised Sta＊es citizeln＝ as in－：Mevin rrine to the treaty，besides any cl ins th w 1 ith under the convertinns of 1839 an I ise3 Mexion wa＝adjulzel liahie．Oi the こここ chims puit in under thi treaty， $1 \AA_{2}$ were

Guadeloupe，gà－da－iocp，（Fr．gwäd－loop）． Wíve InA：－wh island of the inner chain of the Cari bee：．（See－Notilles．）It lies in lat． is and lon． $\mathrm{Ct}^{\circ} \mathrm{IV}$ ，and，with its depenci－ ef cir h－an area nisk to（em square mile． A ver it divile it in：n two marts，caltal Basse－ Terte and frande－Terre．The former is very m minntus．and its volcanic character has fo in ou ariestel most impressively by the erup－ if in ni La Sonfriere in 1707 and the disastrous
earthquake in 1843. The eastern division, or Grande-Terre, on the contrary, is a calcareous plain, which at no point attains an elevation of more than 450 feet. The mean temperature of Guadeloupe is $78^{\circ} \mathrm{F}$., the maximum being IoI ${ }^{\circ}$ and the minimum 61°. The dependencies referred to above are the adjacent islands, Maria Galantc, Les Saintes, and Désirade. The chief products are sugar, coffec of the finest quality. and cocoa. Revenues amount to about $\$ 1,300,000$ to $\$ 1,400,000$ annually; expenditures, including the appropriations made by France from time to time, are somewhat in excess of that sum. Guadeloupe is a department of France, represented in the French chambers by one senator and two deputies. Its local interests are directed by a governor and a general legislative assembly of 30 members, the jurisdiction embracing one half of St. Martin, besides the islands which have been mentioned. There are nearly 100 elementary schools, with II,000 pupils, and one lycéc, with 350 pupils. The chief seaport, Point-à-Pitre, with about 17,000 inhabitants, is sitwated on the eastern side of Basse-Terre. Several times its buildings have been destroyed or severely damaged; in 1903 minor earthquakes were reported to be of frequent occurrence; and a fresh outbreak from La Soufrière was thought to be not improbable. Le Moule, the principal town of Grande-Terre, resembles Point-à-Pitre in size and situation. After the discovery, Guadeloupe belonged to Spain until 1635 ; in that year it was taken by the Frencl: ; in 1594 England seized it, freed the slaves, and retained possession until 1802; then it passed again into French Lands, together with Martinique, England taking St. Lucia in exchange; the restoration of slavery by the French was resisted by the negroes, and was attended with great suffering and loss of life; for a brief period in 18 ro England once more held Guadelonpe, but returned it to France; emancipation was declared in I848. The inhabitants are largely French mulattoes, with perhaps 15.000 coolies. Total population, including dependencies, about 167,000. Consult Hill, 'Cuba and Porto Rico, with the other Islands of the West Indies.'

Marrion Wilcox,

Authority on Spanish America.

Guadiana, gwä-thleē-ä'nä, a river of Spain and Portugal, which rises in the platean of New Castile, flows first northwest, then circuitously southwest into and across Estremadura, and on reaching Badajoz turns southwest and forms part of the boundary between Spain and Portugal. Entering Portugal it flows past Monsaraz, Moura, and Serpa, to Mertola, again forms the boundary between the two kingdoms, and falls into the Atlantic between Castro Marim on the Portuguese, and Ayamonte on the Spanish side. Its course is about 5 I 5 miles, of which only 35 are navigable. Its chief tributaries are the Gigiuela, Bullaque, Valdehornos, and Rubial on the right, and the Azuel and Jalialon on the left.

Guagua, gwä'gwả, Philippines, a pueblo of the province of Pampanga, island of Luzon, on one of the main channels of the Pampanga delta, 3 miles southwest of Bacolor. It is the port for Bacolor, has steamboat communication with Manila, and has an extensive business in groceries and drugs. Pop. 10,700.

Guaiacum, gwi-a-kŭm, a genus of trees of the natural order Zygophyllacca, natives of
tropical America, remarkable for the hardness and heaviness of their wood, known as lignum vita, or Brazil-wood; also the peculiar resinous product of the common species (G. officinale). This is a trec 30 or 40 feet high, usually growing with crooked stem and knotty branches. The wood and resin have been obtained chicfly from Cuba, Jamaica, and San Domingo, hut the tree is becoming scarce there. Guaiacum-wood is remarkable for the direction of its fibres, each layer of which crosses the preceding diagonally. It sinks in water. It is much valued and uscd for pulleys, casters, mortars, bowling balls, and other purposes requiring an extremely firm and durable wood. It is pale yellow on the outside but blackish brown near the heart, where it abounds in resin. Stimulative and other medicinal properties reside in the bark, leaves and resin of this tree.

Guaira, La, lä gwä-ê'rä, Venezuela, a seaport on the Caribbean Sea, five miles in a direct line (29 miles hy rail) north of Caracas, of which it is the port. It is situated on a narrow coast strip between high mountains and the sea, and has an unliealthful climate. There are modern harhor works including a breakwater, and a considerable export and import trade is carried on. In IgoI the exports of coffee amounted to 7,290 tons; of cocoa, 3,756 tons; and of hides, 782 tons ; the imports include manufactured goods, provisions, wines, etc. The town dates from an ancient Spanish settlement in 1588 . In 1903 the port was blockaded by British and German fleets to enforce a settlement of commercial claims. Pop. I4,000.

Gual, gwall, Pedro, South American patriot: b. Caracas 31 Jan. I784; d. Guayaquil, Ecuador, 6 May I862. He was graduated from the University of Caracas; joined the patriots in 18 Io, and was elected as a member of the legislature in I8II. In I8I2, when the republicans surrendered, he escaped to New York, but in a few years returned, was made governor of Cartagena, and later sent as ambassador to the United States. He was admitted to the bar in Washington, and began the practice of law, but in 1816 joined Bolivar, was made governor of some of the conquered provinces, and was for a time minister of finance and foreign affairs. In 1858 he joined the revolt against Monagas, and was made president of the provisional government; in 1859 he was elected vice-president of Venezuela, and in 1860 became president, but resigned the next year, retiring to private life.

Gualeguay, gwä-lā-gwī', Argentine, Sonth America, city in the province of Entre Rios; on the Gualeguaychu River. It is a trade centre for a region in which cattle raising is the chief industry. Pop. 7,8io.

Gualeguaychu, gwä-lā-gwī-choo', Argentine, Sonth America, city in the province of Entre Rios, on the Gualeguaychu River, II miles from its month. Its chief industries are connected with the raising and shipping of catlle and wheat. Pop. 14,000.

Guarm, gwäm or goo-äm', or Guajan, gwä-hän', one of the Ladrone Islands, the southernmost and largest, and the only one with much population; east of the Philippines; occupied by the United States in I898, the remainder of the group belonging to Germany. It is 29 miles long by 3 to Io wide, and abou 150 square miles in area; high and precipitous
on the ewsicn side, and formins a I w raieau in the purticern purt but numatanous in the sutu thout hati the sonl is arable, lut only about one per cent cultivated. Excepi for the zathe deurngs, mu=i ui it is thick -nd pathocs jungie. S. mue if the trees are raluabie hardwouds fur ship-buidung or ornamsentil cabinetwark: others are usciul for food. as the cocoanut (the incest here of all the tropics): pineapple, breadirut, sour-sup and custurd-appie, cic. the hau (Hibuscus twriem) makes strong cordage. not afected by water: ibe pandanus long leaves are braided ino mats and hats: and the ylangYlang is iamous for perimme Rice. =uzar. vobacco, hemp. coñee. caczo. bamanas. melons. eic. have been introduced and are cultivaied. The only native mammals are rats, fying iuses. and bais: but the deer and wild goan. oi Enropean oricin. have thriven plentifully, and cows and pigs are ruised. There are no snakes: there ase centipudes and scorpions. but none dangerous. The climate is vers ramy, but mild except in midsummer. when the contict of trade-winds produces a dead calm. oppressive heat. and siorms, with some hurricanes. Earthquakes ate irequent. The island is volcanic. with berde:ing coral reeis. The east side Has but two gnod harbors. Pago and Tarniofo: the latter is the only one. except San Luis d'Apra on the west, which is sate for vessels all the year somnd. The island contains about o.eco people: Chamorros with a mixture of Tagal and llalay, and some Anglo-Saxon irom whaling ships, producing hali-hreeds with copper skins and licht hair. They are nearly all in the sillages: th se with raaches build rough huts on them. where the family spend part oi the time. Agana (San Imacio d Agana) is the only large town it is a neat place with houses half of stone and half of wood or bamboo. and contains 0.400 penple. Iis beat pori is Apra tabovel. on a deep bay insmed by a peninsula: its own harbor being dangerous in a stom irom the anch fis drageing on the coral boiinm. and the larding bad $i-n m$ breaking reef: There is a missinn chool. end wed in the 1 नih contury by liaria Ana, queen of Plalip 11 of Spatm Imaia, on tie west. was the intmer capial Asat, $+\infty$ people i- nexi in imporance io Acaña: but she next largest in size are Suwai, ono. and lnaraian. a fair ofra nn the - 1rheas: $\equiv: 0$ Nerign has ano iWheeler. Reprot en Guam. 1900. War Deft dx. 123)

Guan. gwàn, a Eallinacenus hird oi she fams: Lir ids. gent. Fini fi. ch.r.cturized by :he if ut oi the thrast bersag naked and watted, specitically P. ir.stota It 1- alh at . 30 incher 1 ng. nearly lai ic which in dic ot e t. il The col r is a shmume redds-h-green, with fump an 1 t ells che-inur. neck and cheot whiteap tie 1. and the feet and it ir red: the female is a mire refth thm, with the crest, neck and mantle brileie with white Thuah the Euan= have mot of the habsi- ri tie curanwow (q)․). they are iar leas grecarimac. an i-y ard res:less They the in tree when alarenerd. :ans there at nigl: and often m ke their ne-tamene the tranches. Thev iohalig the Amatican 1 - nies cre precies the chacal of inrell's
 Iecn 1 m-ica.ed on Suth lmer-

Guanabacoa, cwà-na-bえ-k"゙a. Cuba, a th wn

Weil sithueec or hagh ground near the city of Havana. The number of its inhabiants stown by the United States War Department census if i809 was 13.903 (ihat is, 8.232 native white; 1.00t foreign white: 2.173 negro: 2.408 mixed: and 61 Chinese). The sotal population of the disirict of Guanabacoa nas $20 . a 0$.

Guanaco. gwa-näko. See Horxico.

Guanajay. Ewā-na-hí. Cuba, town in the department of the same name in the province -i Pinat del Rio, about 30 miles west of Havama. It is sirwated in a hill region of much salubrity, and is a popular health resort. Here is the terminus of the Havana and Guanajay Railroad. Pop abour 9.000 .

Guanajuato. Swā-nä-hoo-ā"̄ō, Mexico, a stave bounded by the states of San Luis Poiosi. Que:etaro, Michoacán, and Jalisco. Area 20.2,-6 square kilometres. or -.E06.26 square milé. The principal cordilleras uraversing the stare are the Siera Gorda. in the northeast, and the Sierra de Guanajuato in the centre. which are iormed by the junction of the Codomiches. San Antomio. and Santa Rosa mountain ranges. The highest peaks are the Gigante (2. 346 metres) and ihe Llamitos ($2 . \mathrm{S}_{15}$ merres). In the south and west are the valleys oi San Tudas. San Felipe, and Santiago, and the iertile piain of El Bajo Rivers are: the Lerma, with it: amuents the Laja and the Turbio. the lrapuato, and a number oi smaller streams. There are many mineral springs, and one lake. $351-3$ square miles in extent. called the lake oi blood (Fuririapundaro). Five mining districts merit special mention: namely: the Sierra Gorda. Allende, Smina Cruz. Guanajuato, and Leon, the principal mines being those which produce silyer and gold, silver, mercury or cimnabar, tin. iron. lead or argentiferous lead. and copper or arsentiferous copper. On it Dec. 189\% there were 5 so claims registered. of whica number $\mathbb{C o}$ were in process oi development. (See statistics siven in connection with ihe deparment and city of Gmanajuato.) The climate. except in the higher parts of the mountain ranges, is not voรูป rable (mean annual temperature abont 70 $=1$. The ramy season extends irnm the middle i May until ilue beginning oi July During ith se minnls the raininl is heary in the vallevs. but only moderate in the monntains. See Mexte - The States of.

Guanajuato. Nexico, capitai of the State $r i$ the same name. Elevation 6.830 fees abore :he sea. Distance irom the cirv of Mexico 252 mite and l.00 miles by the Nexican Central railway :- \rightarrow ti?e Conited Eiates border a: El P on. Texas. it is situated in the hean oi the C, anain in m untains, in a picinresque ravine. six mics it m the main line of the above nomed railway and overlocking a sich and heausiful regy n. while itseli surrounded and 1. ecombe 1 by mines hundreds ai years old. whech have froduced unknown millions of preci un metals and are stil productive Min\therefore or been nese son years ago, developing as it p^{-}cocoled. some of the richest deposits ever e. wherel neer $\$$ fromem.ano of rold and silber have heen mined ronder and in the immed tae vicinity the city, inlly twothirds of which was en'l The huldings of the business centre a-e qquite enmm dinus and imposing and
are very substantial, umlimited quantities of very superior building stone being immediately at band. Among the prominent public buikdings are the Govermment Palace, or State Honse, in which the legislature holds its sessions and the State officers have their offices, and the Opera house or Theatre, a maguificent stone structure copied from the Grand Opera Honse of Paris. In a remote part of the city are the famous Catacombs, wherein are stored the mmmified remains of some 30 or 40 human beings representing both sexes, and several tons of luman skulls and bones. At the opposite extremity of the city is the great dam of modern construction which contains the community's water supply. Another notable structure is the principal church of the city. built of the peculiar eolored stone or marble which exists in great quantities in the inmediate vicinity. It is surmounted by a dome of large proportions and exceptional beaty. There are several other clurches, the ancient Mint, the State Collegc, the Market de la Reforma, and the Castle of Granaditis. There is a street railway, and a thorongh system of electric lighting. The Bank of Guanajuato, a local institution of $\$ 3.0000 .000$ capital, and branches of the National Bank and the Bank of London $\&$ Mexico compose the financial institutions of the city: There are a State College and a Normal School for young women: two museums, - one connecterl wit's the State College and devoted to natural history and mincralogy, and the nther - the Minscum of Ramon Alcazar - devoted to "Antiquities. Minerals, and Precious Objects." Two public libraries contain over 13,000 volumes. In 1905 the city was flooded and much valuable property destroyed. Pop. abott 40.000 .

Guanare, gwä-nä'rā, Venczuela, city, capital of the State of Zamor, near the Guanarito River, about 220 miles sontiwest of Caracas. Coffee and sugar-cane are sonne of the chief agricultural productions: but the city is the centre of an extensive cattle trade. Pop. about 11,500.

Guanes, gwä-nås', or Guane, Cuba, town in the province of Pinar del Rio; about 10 miles from the sea, and izo miles southwest of Ilarana. The district court holds its sessions here. The trade in the products of the surrounding comntry, cotton, tobacco, and cattle, is extensive. There is also a large trade in lumber. Pup. (1899) 14.760.

Guan'idin, a basic organic substance, having the empiric formula $\mathrm{CH}_{3} \mathrm{~N}_{3}$, and the constitutional formula $11 .: \mathrm{C}\left(\mathrm{NH}_{2}\right)_{2}$, It may be prepared by heating an alcoholic solution of cvanamide and ammonium chlorid to $212^{\circ} \mathrm{F}$. Guanidin is a crystalline, deliquescent substance, with strongly alkaline properties, and it absorbs carbon dioxid from the air. It forms numerons salts, and urea is evolved in many of its reactions. In fact. it is this close relation with urea that gives guanidin its chicf interest, many authorities holding the opinion that guanidin is an intermediate product in the formation of urea from proteid bodies, in the normal physiological chemistry of the body.

Guanin, gwänin, a yellowish-white, amorphous substance, which derives its name from
being a constituent of guano: but it also forms the chief constituent of the excrement of spiders. has been fotmol attached to the seales of fishes, and scenns to be a normal constituent of the mammalian liver and pancreas. With regard to its occurrance in guano, as it has not heen found in the recent exerement of seabirds, there is every remon to believe that it is formed by slow oxidation (from atmospheric action) of uric acid, much as uric acid can be made to yield urea and oxalic acid. Ancl in the pancreas and liver it probably represents one of those transitory stages of disintegrated nitrogenous tissue which are finally excreted by the kidneys in the more highly oxidized form of urea. Gunnin is a diacid base, but also forms salts with metals, airl combines with salts. When heated with hylrochloric acid and potassimm chlorate, it is nxislized to carbon dinxide, guanidin, and parabanic acid.

Guano, gwánō, Spanish gutuo huuno, from Perurian huanu, dung, is the name for deposits of the partially decomposed and dry excrementitious matter of sea-birds, but it has been also extended to accumulations of a similar kind from land-birds, and even from bats in caverns. Deposits from sea-birls are got wherever there is good feeding-ground in the neighborhood of unfrequented islands and rocky cliffs, and such may be seen arournd many shores. But to renter them of practical utility atmospheric conditions are requisite which are only found 11 certain localities, and all the great guano deposits exist in the hottest and driest parts of the tropics, as on the islands of the Snuth Pacific Ocean. The most important of all were the deposits on the Caincha Islands off the coast of Peru, which for years yielded a considerable revenue, but are now quite exhausted. The guano which was found there was from 60 to 80 or 100 feet in thickness, and was entirely due to the droppings, accumulated for many ages of the innumerable sea-birds which make these islands their rest-ing-place and breeding-ground. The cxerement which is at first pasty, rapidly drues by cxposure to the sun in a part of the world where a fall of rain takes place once in a lifetime, and is looked upon as an historical event, and thus. while putrefaction is almost entirely arrested, the soluble salts of which guano to a great extent consists are retained. This guano, called teconically Perusian, is the most highly prized, and is regardetl as a type of the substance; but quantities are or have been got from other localities, as Patagonia, various noints of Bolivia, Mexico, and Chile, Malrlen Island and mumernus other Pacific islands, new deposits being opened up as the older become less productive.

Guano varies extremely in composition, even in the same deposit considerable difforences will be found; and when deposits from different incalities are compared, there is sometimes un analogy except in the kind $n f$ substances present. Thus, smme consist mainly of phosphate of calcimm and other fixed salts. while athers contain much malatile matter, with a large proportion of ammonia. To the latter belongs Perturian guano, which is a very light, dry, non-colesive pale-yellow powder. with a characteristic ammoniacal odor, and sometimes containing lomps, made up of different salts. It is a ver complex mixture, containing the urate of ammonimm, the oxalates

GUANTA - GUARANTEE

ci ammonum and calcium, the phosphates oi sodium, ammonium, calciun, and magnesium, the su!phates oi potasslum. sodium and anmonium. the chlorades of sodium and ammonium, and the carbonate of calcium. There is always some moisture, organic matter of different kinds sand irom the rock on which the deposit lies and this is sometimes considerable. These may be regarded as the possible construtuents oi guano but the ingredients which are especially prized are the armoniacal salts, the phosphoric acid. in combination with the alkalies and alkaline earths, and the alkalies themselves, pasticularly the poiash. li is the remarkabie abundance of these constituents and their fine intermivture which makes genuine Peruvian guano so much esiecmed as a manure. It contains almost all the inorganic matter required by a plant, and that in a highly avai!able if rm, so that it is one ci the best of all ferthazang agents for diffesent crops. Its use as a manure was known to the rative Peruvians centuries ago, but no attemtion was paid to the accounts by modern travelers of its wonderiul eñcacy until A. von Humbold took some to Europe, in 1804. and had it analyzed. If was not exporied on a large scale till about 1850, and from that time the quantity sent io foreign countries, inclading large shipments to the United Siates. was very great, but the supply has latterly much fallen ctr.

As a substitute iur ordinary guamo, what is known as fish-guano has been in use for a considerable number of years. This consists essentially oi fish and fish ofral dried and powdered. In the case of oily Ash, such as herrings. it is necessary 10 extraci a: much oi the o1l as possible betore the operaticn of powdering: and it will thus be understood tha: different kinds of fish differ greatly as regard their value ier manurial purposes. But all sons ci fish-guan contain a large percentage ci amm nia and phosphate of lime, and are thus valuable as fortilizers.

Guanta, gwan-tă. Venezuela, a modern seaport on the north coast. in the state it Bermudez, 12 miles west of Barcelona, ly raul.

Guantanamo, swan-tänā-mō. Cuba. a inwn in the frovince of Santiago, situated at thie head of the most mportant harber east of the chy of Santiago on the s uthern c.st. lis surr und-
 beauty of the gr ves oi lame-trecs and lenr ntrees, the ecifec plantatn ma , and the resdences of sealthy planter: wh mabe the liether verlookirs the bay a fan onte place of re- ri. Smee the Spanish-Ancrican war. (, uantanam hasbeen immous as the cene ci certam mliary operan: n. On 10 Nay lisk an un-ucco-miul attemyt to cut the cal e in the bay was made Iy the $S_{i} L \cdot u$ - and the Wi mptruck On 10 Jtme a feree of two marmes landet irem the transo it Parther of the eavern - re if (is.manamm Bay, and undertiok i make the cther hart if a secure place it the wae if Anerse or beaels when c salase. - t as a sende-vand a reiuge in stormy weather the marmen entalli-lel their eamp ('Camp MeCai ") 'nl a -mall ho. where they cu-t med the attack if the spanth trems - $i=$ coctal das- and the e urave and codurance dicplayed as tha- tron mu-t le recardel 3. men ralle icature. i the war The Marlleliead a: 1 Texa- lent a-ho nese the lato ter en 12 jince vending so ntirince isth ino automatic guns. In the cuurse of that week the
camp was protected by earhworks: other warships arrsed and shelled the thickets in which the Spaniards were concealed. the iorts, and the town: the garrison was strengthened by accessions of bluejackets and Cuban insurgents familias with the courtry: and thus, when sen days had passed, the outer harbor was practically in the p sesesion of the American yorces. In July 1908 the C"nated Siates governmena selected Guantanamo for one of the iour naval stations on the Spanish coast. The number of mhabitants of the town of Guantanamo, according to the United Siares War Deparment census of 1899. was न, 3 \%. The total population of the district was 28.063 . comprising native white, 7.028: ioreign white, 1.843 ; negro, 8.988; mixed, 10,025: and Chinese, 1\%9.

Marrion Wilcox.
 Authority on Stanish -imerica.

Guaporê, swā-pō-זā’, or Itenez, ē-tā-nāz', a South American river which fises in the Serra Aguapehi. in the state of Matto Grosso. Brazil. fows south, nearly paraliel to the Jaurn, passes the scwn of Matro Grosso, whence it is navigable downward for light draught vessels, then wish a northwesterly irend iorms part of the boundary between Brazil and Bolivia, and finally aiter a course ci over ocio miles, unites with the Mamore 10 form the Madeira.

Guarana, gwä-ränä. a dried paste consisting chienty of the crushed or pounded seeds of Paullinia sorbilis. a climbing shrub, narive of South America. The seeds are obrained largely irom the cultivated plants, and in South America guarana is used much as tea or corice is used in other conniries. It is the staple drink of milliuns of people. Guarana is found in the drug market in the iorm of flattened cakes or cylinders oi a dark reddish-brown color and showing On iracture numerous coarse angular iragnments if sceds. The iaste is astringent and somewhas bitter, becoming swect on chewing. Guarana e reans it tor it five per cont ci caffeine, making it iwice as itrong as coffee. Its action, however, revembles more closely that of tea because of the ligh percentage of tannic acid it cmains. In medicine it has been used in the treatment oi sick-headache.

Guarana-bread, the seeds of the Pandliniag s rliuls la Siuth American iree). pounded, made into cakes, and dried in the sun. It is exits avely wed in Brazil and uiher parts of South America as a -umulant and restorative and as a material ior making a refreshng beverage. The ctuve princtpe ci guaranime. is said io be ukentical with theine or caffeine ($\mathrm{Q} \cdot \boldsymbol{x}$) ; and no kn ur sub-tance yield. it =o abundantiy: Other -recie: "i Paullina fussess poisonuus properties.

Guarantec, Ear-an-tē , or Guaranty, in law, an madertaking in answes for the ialuse of andiles. The stature of irauds provides that no porn n, talle lialle any special promise to anhlict if the delt. deiauli, or miecarriage of :an ller per no unncos a written asreement, or - me menor. ndum in wrting for such purpose. - |atil le gned ly the Irannsus or come other Inty lusity auly rized ly him. In the con-- ruct i a guaratice it is a general rule that the urety shall n t le 4 und beyond the express word i the meagement. By the mercantile Law . Ar:endnent Act (England and Ireland). nt rectal promive made to answer for the debt. dciault, of miscarriage of another is decmed
invalid to strpport an action, by reason that the consideration for such promise does not appear in writing, or by necessary inference from a written document. By a similar statute applying to Scotland, and passed in the same year, all such guarantees must be in writing, and if for a firm will cease upon a change of the members, unless intended by the parties by express stipulation or implication to be binding notwithstanding the change in the firm. Every person who becomes surety for the debt or obligation of another, and disclarges his liability, is entitled to the assignment of all securities held by creditors. In the United States the common law on the subject of guarantee or suretyship was the same as that of England and a guarantee was equally forcible whether written or oral, but see Suretysuip?

Guard, National. See Militia.

Guardafui, Cape. See Cafe Guardafur.

Guardi, Francesco, frän-cliěs'kō gwär'dē, Italian painter: b. Venice 1712; d. there 1793. He was a pupil and follower of Canaletto; his work shows less exactness in detail than his master's, but is superior in use of color. His paintings are mostly of scenes in Venice: they include 'Procession of the Doge' : 'Fete of Corpus Domini'; 'Grand Hall of the Palazzo Ducate' (in the Louvre, Paris): 'Church and Piazza of San Marco) (National Gallery, London) ; and 'The Rialto' (Metropolitan Nuseum, New York).

Guardian Angel, an angel who watches over a particular individual. It is the general belief, in the Roman Catholic and Greek Churches that every man has a guardian angel who defends him from evil, suggests good thoughts and wise counsels, and helps him in prayer. This belief is based on the words of Christ in Matt. xviii. 10: "Their angels do always behold the face of my Father which is in heaven"; the Fathers of the Church strongly inculcate it, and in the lives of the saints instances are given of the active interference of guardian angels. The belief is shared by some Anglican high churchmen. The Roman Catholic Church celebrates the Feast of Guardian Angels on 2 October. See also Angel; Guardian Spirit.

Guardian Spirit, a spirit that watches over the welfare of an individual or household. The belief in guardian spirits finds expression in some form in all primitive religions, and in many which have reached a higher stage of development. The Australian native believes that wher a warrior kills his first foe the spirit of the slain enters the body of the slayer, and becomes his guardian; in Tasmania a mative lias been heard to ascribe his deliverance from danger to the care of his deceased father's spirit; and the most important religious rite of a North American Indian is to obtain a patron genius. In Asia, in Africa, and among the Indians of South America, the belief in guardian spirits obtains, as it did formerly among the Aryans of Northern Europe. Greeks and Romans believed that each individual was under the protection of a spirit who prompted him to good deeds, and guided him throughout his life; gradually there arnse a belief in an ewil spirit who was at war with the good spirit, and instigated every evil deed. These spirits were called in Greece, Dæmons, in Rome, Genii. The Romans also be-
lieved that the spirit of the founder of each family was the guardian spirit (the Lar) of the family and worshipped the Lates with special rites. For the Christian form of the belief see Guardian Angel.

Guards. A guard, in the primary sense, is one who watches or protects a person or persons, a place, property, etc., against loss, danger. or harm ; as a body-guard, a prison-guard, etc. Body-guards have been an inseparable accompaniment of monarchy from the carliest ages; the Assyrian and Persian kings employed them, and the corps of "Argyraspides." or silvershields were selected by Alexander out of the bravest men of his army: "The Roman emperors had their Pretorian guard. Napoleon 1. first created a small troop of bodyguards, with the title of Guides, while he was yet only general, in his first Italian campaign. From this arose by degrees, the great institution of the Imperial Guard, consolidated in 1804. which 10 years later comprised 102,708 men, and after being disbanded by Loms NVIII. in 1815, was rentored by Napoleon III. in 1854. It consists of infantry, cavalry, and artillery. In England, the Guards, otherwise called household troops, consist of two regiments of Life Guards, the royal regiment of Horse Guards, and three regiments of Foot Guards. Many of the Enropean sovereigns before the French Revolution had small corps of foreign troops which served in this capacity. Thus the French had, in former times, the Guard of Scottish Archers, and at a later period, a body of Swiss guards, called the Cent Suisses. The Cent-Gardes formed by Napoleon III. are founded upon the latter. The Pope still retains his Swiss guards. In Prussia there is both infantry and cavalry of the guard, and the Russian imperial guard forms an entire corps d"armée 50,000 strong.

In general military use the term guard is of various distinct applications and denotes functions of great importance. It means a sentry on duty, and also a body of soldiers assigned, under the proper officer or officers, to the duty of guarding or protecting a camp, post, or any place where military control is established. Company and regimental details for guard duty are made according to circumstances - the number of men required or available, etc.s - rank of officers being also regarded as far as convenient. Guard-mounting or inspection and review before the old guard is felieved, is a ceremony of much detail and is usually carried out with strict military observance.

Guasa, gwä'sä, or Warsaw, a name given in the Gulf of Mexico and West Indian region to varions large groupers (q.v.), especially the jewfish (q.v.). "Wiarsaw" is an anglicized form of the Spanish word.

Guatemala, Republic of (República de Guatemala), the largest country in Central America; hounded on the north by Mexico, British Honduras, and the Gulf of Honduras; on the east and southeast hy British Honduras, the Gulf of Amatique. Honduras, and Salvador: on the south and southwest by the Pacific Occan: and on the west by Mexico. Its area is extimated at 4,810 or $48,-$ 290 square miles; its territory extending from lat. $13^{\circ} 42^{\prime}$ to $17^{\circ} 49^{\prime} \mathrm{N}$., and from len. $88^{\circ} 10^{\prime}$ to $92^{\circ} 30^{\prime} \mathrm{W}$.

Political Dizisions.-Guatemala is divided into 22 departments. and each department subdivided into municipal districts, the total number of the latter being 331. Again, ior electoral purposes, the whole republic is divided into 38 distritos electoralis. The following list of the departments and chief towns shows the population and altitude of the latter. The figures given for the number of inhabitants are those of 1903 in the case of Guatemala City. Cohan, and Totonicapam: otherwise the statement is based upon a table carefully prepared in 180 .

Northern departments are: Baja Verapaz (chief town Salamá. population to,6os, altitude $2,82-$ feet): Alta Verapaz (chief town Cobán, population 24.45 , altitude 4.04 ; feet); El Petén (chicf town Flores population 1,0 -1, altitude 4 $_{82}$ feet): El Quiche (chiei town Santa Cruz, population 11.914. altitude 5.543 feet) ; and Izabal (chief town Livingston, population $1.9 ; 8$).

Central departments are: Guatemala (chief town Guatemala City. population 72.102 . altitude 4.854 feet) : Sacatepéquez (chict town Antigua. or Antigua Guatemala. population 10,150, altitude $4.46+$ ieet) ; and Chimaltenango (chici town Chinaltenango, population $3 . \% 49$. altitude 5.066 feet)

Eastern departments are: Jutiapa (chief town Jutiapa, population 11.023. altitude 2.847 feet) : Jalapa (chicf town Jalapa. population 12.240, altitude 4.625 feet) : Chiquimula (chief town Chiquimula, population 12.5 12 . altitude 1.10; feet): and Zacapa (chief town Zacapa. population 11.064 . altitude $\$ 11$ feet).

Southern departments are: Escuinela (clief town Escuintla, population 12.343. altitude 1.269 feet) : Amatitlan (chicf town Amatithan,* popuLation $8,40^{\circ}$, altitude 3.614 ieet) ; and Santa Rosa Ichiei town Cuajiniquilapa. population 3.062 . altitude $3.25+f$ feet).

Western depariments are: Huehuctenango (dricf town Huchuctenango, population 10.2\%0, altitude 7.118 feet): Totonicapam (chici town Totonicapam. population $25.1(x)$, altitude $7 .(x)-$ feet): San Alarcos, chief town San Marcos,* jopulation 6.036 , altitude 7.216 feet): Quezaltenango (chief town Suczaltenango.* population 22.265 , altitude 7,419 feet) : Retalhulen (chief town Retalhuleu, population 6.327 . altitude 977 feet) : Suchitepequez (chief town Mazatenango,* population $6,9 \% 0$, altitude 1,005 feet) ; and Sulnla ¿chicf town Solola," population $\overline{-1,027}$, altitude $\equiv .940$ feet).

The Capital-Guatemala City, or Now Guatemala, whel was built after the detruction of Antigua Guatemala in $1 ;-6$, has a temperate climate, owing to its elevatom alnwe the level of the sea. It is a well-plamed town, covering a large area; the strects are wide and traight. lighted by electriety, and have lines of treet railways. P'rncipal building:: the palace of the prevident, city hall, comet-houce, purt ant telegraph office, artillery barracks, custum-luwe. ligune and tohacen bureaus, mational theatre, college of medicine and fharmacy. mmsernty: school of arts and trades polytechnic sclooi, palace of the arelbithop, the cathedral ams several other fine clurches, the penitentiary, athe the hotele the caty has public gardens, telephone

[^0]and telegraph service, and is connected by raii with the port of San José. Pop. -4.527.

Topography and Physical Geography- The mountains of Guatemala are commonly referred to as "Cordillera of the Andes," "Guatemalan Andes." or simply "Andes." though there is no propriety in those names. The Andes terminate in northern Colombia. and lave no genetic connection with the mountains of Central America. In order to understand the independent character of the latter (so far as the great continental ranges are concerned), we must realize that they are also in their geologic history totally distinct from the Rocky Mountain system, or North American Cordilleras. which terminate in southern Mexico. If the trends of the Andean and Rocky Mountain systems were protracted from their termini (in $70^{\circ} \mathrm{W}$. and 97° II.. respectively), they would not connect with each other. but would pass the latitude oi Guatemala in parallel lines nearly 2.000 miles apart. (See Caribienic Sea: Central America: and consult: Hill. 'Cuba and Porto Rico,' Chap. I.). The Guatenalan mountains belong' to the Antillean system. which lies between the iermini just referred to: its ranges, composed of folded sedimentaries. in eastern Guatemala have an east-and-west trend. But the ranges near the Pacitic coast of the republic, crossing the western ends of the Antillean corrugations diagonally, or with a northwest-and-soutleast trend, must he assigned to still another class: they form a part of the volcanic chain which extends along the entire western coast of Central America, and is continued in Mexico. The Sierra Madre is the principal range of the west and south: in the central and castern districts are the Sierra de Chama. Sierra de las Minas. Sierra de Santa Cruz, and the Sierra de Copan - the last named on the frontier of Honduras. The highest poims of the Cordillera are given as: Tajumulco volcano (12, (00 feet). Tacaná volcano (12,400 feet), both in the southwest: Acatenango volcano (if.100 fect), south-central: and the volcano de Fuego (11.400 icet), also south-central.

Mydrography.-Rivers emptying into the Gulf of Slexico are: the Usumacinta, on the Mexican irontier and the Cuilco and Salequa, which are also tributaries of Mexican streams. The following empty either into the Gulf of Honduras or Izabal Lake (Golfo Dulce) : the Montagua. Rio Hondo, the 1)ulce, the Belice. the Sarstoon, and the Polochic. Those which How into the Pacific are: Kio de los Esclavos, Rin de Paz, the Nichatoya. Guacalate. Coyelate, l'atulul, Nagualate. Samala. Tilapa, Naranjo, and Suchiate. Steamship navigation has becr established on the Dulce and Poloclic rivers: seven ar ciglt of the others are navigable for small boats. The most important lakes are: Atitlán and lyabal (linth navigated by steamers). Petén, Imatrilan. Iyarza, and Giiija (on the foontier of Salvador). Ports on the Caribbean side of the repulbic are: Puerto Barrios. Livingston, and Samen Tomas - the first two being ports of cutry and delivery. while the last is a "minor pors,", at which importation and exportation are restricted to certain articles. On the Zacific coast the most important ports are: San José, i- $1^{1 / 2}$ miles from Guatemala City; Champerico. and Ocis - all ports of entry and delivery, provided with iron piers. etc.

Geolog:- The calcareous formations of the Antillean ridges and, gencrally, the eastern and
central regions, deserve special mention. Volcanic products characterize the Pacific slope and Sierra Madre, where they occur in connection with granitic rocks. porphyries and trachytes. See also Central America.

Mincral Resources.-Gold and silver are found near the Montagua River and elsewhere: salt in the departments of Alta Verapaz and Santa Rosa. Other minerals reported to exist are: coal, lignite, manganese, lead, tin, cinnabar, copper, kaolin, opals, slate. alum, antimony, marble, alabaster. sulphur, ochre. asbestos, plumbago, chalk, and bitumen. A belt of country extending from the coast range of mountains on the western frontier, near the Pacific, across the Sierra Madre to the coast range of the Caribbean slope, is regarded as essentially a mineral territory; in which there has been comparatively little exploiting or prospecting, though enough to reveal the presence of the precious and base metals.

Climate- The lowlands of the Pacific and Atlantic coasts are torrid; interior table-lands, at an altitude of 2,000 to 5,000 feet, have an agreeable climate: and the high districts, where the elevation is more than 5.000 feet, are decidedly cool. As is shown in the list of places given under "Political Divisions," the larger towns are built in the temperate or cool zones. The rainy season, beginning in May, lasts until October in the interior, but sometimes until December, on the coast. December and January are the coldest months; March and April the hottest. Snow sometimes falls (in December or January) on the uplands of the cool zone.

Flora and Fauna. - The very name of the country signified in the Indian language "the land covered with trees." The rich soil and varying climatic conditions favor a wide range of products in the vegetable kingdom; no systematic classification of these, however has yet been made. The extent of the forest land, which abounds in mahogany, is estimated at $5,300,000$ acres. The fauna and asifauna resemble those of Costa Rica in general. but especially characteristic of Guatemala are the aquatic birds on its rivers and lakes, and the quetzal. Mexican deer are quite numerous. The tapir, honeybear, armadillo, wild pig, cougar, jagua, etc., are found as in other parts of Central America. The over-abundance of insect life is particularly noteworthy.

Land Tenure.- The most interesting provisions of the Guatemalan laws, to be considered under this heading, are those which relate either to the public lands or more particularly to the aid which the government desired to extend to the cultivators of certain crops. The latter will be stated in the paragraph entitled Agriculture. As for the former, the agrarian law of iSg4 provided for the sale, lease, and gratuitous concession of the public lands, and created a board of government engineers to survey the said lands and divide them into lots of not more than I_{5} caballerias each. (One caballeria in Guatemala = II $35 / 8$ acres.) These lots can be purchased from the government at prices ranging from $\$ 250$ to $\$ 500$ per caballeria, but no alien is allowed to hold lands situated on the frontier of the republic: or they may be leased (under certain restrictions as to area, duration of lease, and use of the lands) at a rental not to exceed 5 per cent of the selling price; or they may be granted by the president of the republic, in
tracts not larger than two cahallerias each, to poor persons applying for them, to immigrants, to cducational inctitutions, as a reward for the construction of new roads, etc. Real estate, the value of which does not exceed $\$ 1,000$, is exempted from taxation. Transfers of unimproved city lots, or of real estate in the country the price of which does not exceed \$roo. cannot be taxed : and no foreigner can be required, during the first year of residence in the country, to contribute money or personal service for making or repairing roads.

Agriculture. - Coffee grows in the regions between 1.000 and 6.000 feet above the sealevel: sugarcane, between sea-level and 6,200 feet: cacao in the lowlands or those regions having an altitude of less than 3.000 feet. Tobacco, wheat, maize, and beans, are also produced in large quantities. Coffee exports in one year have amounted to $85,3,3.223$ pounds, with a value of $\$ 7,390,477$, gold. The ordinary annual yield of tobacco is given as $1,000,000$ pounds: of cane-sugai, $+1,000,000$ pounds: bananas, $1,000,000$ bunches; and cacao, 200.000 pounds. Stock-raising has been encouraged in the departments of Izabal, Zacapa, Petén, and Alta Verapaz, by decrees authorizing the political chiefs of those departments to make grants of land to persons who establish ranches. Money premiums have been offered to cultivators of india rubber, cacao, sarsaparilla, and hemp; grants of land to those who engage in the cultivation of wheat and bananas. Proprietors of large cotton or tobacco plantations, and reliable day laborers on large plantations of coffee, sugarcane, bananas, or cacao, are exempted from military service. No tax of any kitud is levied for 10 years upon plantations of hemp. flax, ramié, cotton. grapes, and one or two other products. Large cash premiums to encourage the production of grapes, hemp. cotton, flax. wheat, and tobacco were offered. particularly during the decade I886-96; in I8N9 the government offered $1135 / 8$ acres of the public lands as a reward for every 20,000 rubber-plants, four years old, planted after If Jan. ISog.

Commerce- Exports to the United States in the fiscal year ending 30 June 1902 were valued at $\$ 2,600,000$; imports from the United States at \$i,680.000. The principal exports for 1901 were: Coffee, $67,3.344$ hundred-weight, sent to Germany; the United States, and Great Britain: sugar, 55,200 hundred-weight, sent to other Central American countries and to the United States: bananas, 262.691 bunches, sent to the United States: hides, fors hundred-weight, sent to Germaty and the United States; india rubber. 4.420 hundred-weight, sent to the United States and Germany: timber, 2,155.696 feet. sent to Great Britain and the United States; and other articles valued at $\$ 55.000$. Of the imports, about one half in value are supplied by the United States, and one quarter by Great Britain, the chief imports being flour, cotton goods, machinery and manufactured iron, and preserved meats and other articles for food. Both exports and imports have increased in value during recent years.

Manufactures. - For the partial supply of local needs a number of small establishments are maintained, the chief industries being the preparation of ramié fibre and the manufacture of coarse textiles, hats, shoes, pottery, cigars,
foundry frciuc：s，musical instruments，furni－ ture，asriculiura！implements，and liquors．

Shrftins and Vatisuicn－Steamers of the Paciñe Maii Steamship Company call as Ean Jose three times each month on the vorages from Sar Franciso southward．From Jew York ：3 Puerto Barrios（via Haiti and Jemaica） passengers and iseight are carried by two steam－ ship lenes．The steamers of the Amertan Forit Company ply between lew Orleans and Puer：o Bartis：and in 190；announcement was made of a rew steamsh：p service，the Guatemaia Dorthern Steamship Line．in operate chiefiy between ports on the guli coas：of the lritied States and Puerto Barrios
 tral Railway．the fi－st line buit in the republic． was ecmpleted in 18s2．It conmects ：he port of San Iose with Guatema？City．The Cham－ perido Rallway funs irom the Pacific port of thas rame to Realhu：en and San Felipe．a distance ci it miles．The Ocis Railway．Is miles in length．connects the whart at Ocis with the wown of Aymila．near the Mexican itontie： The Ixtapa Railway connect：Overo with the old por of Istapa（ 12 miles）．The Patulul－ Mazatenango Railway has as its ierminal points Santa Maria station，on the Centra！．and San Felipe．passins throush Patuitul and Mazaten－ ango．The Ni－hern Railtad．which is to con－ nect Puezo Barriss with Guatemala City（and thus，in cen：unction with the Ceatral，to＊upply ratiway itansperation irom coas：to coa－i），had completed 150 mies of its road in March I م2． An impertant highway irons Sanarate has been completed siving access to the northern azri－ cu：tural dietricts．The republic has in operari n more than s．000 miles of telegraph wises． 13 ； hilome：re：having been added in roon－2：and the telephone systm extends over $2=0$ miles．Ke－ ceipis irom ielesraph and telephone lines were greater by Si30．042－in 1002 than in 1001 ．The cperation of the pu－tal sysiem in 1002 left a considerable surplus in the trea－ary．

IV eigh＇s Miusuris and Mc ney－The French metric system is uied，cracursently with the nld Spanish sysem ni weigh：s and meawes The latter ha：：Di：a（ounce litra（patind，esticty 1．043 pr un：d：are ha 2 hereas）．पumita！ 100
 $1^{5}{ }^{2}$ luabelol．The motare unit is the siver fis）walue in In：ed State gld of－ilver． So $3 \&_{4}$ ）．The m－ney in actual use is paper currency and fact：nal nickel ouns

Bunkmz－S－lank－are auth rized ：©．．．ue faper．ramely Internationa Bark if iruarmaa Banco Iriemact nal de Gatatemaial．C l mikn Bank（Banci Cal ntian－We－tery Bank Banen de oveidentel．C mmercal 13 ank ${ }^{i}$ Guatema：a｜Eanc C mercial de riastemala）． American Bask，Banon Ame：cant）．Guatemala Bank Bance de Guatemala） 11 （E theec． except the Bane de Occ dente．have the＇r he d－ quarter in G ，：astern da Cry

G tirnment－The legilat ve pmwer is veved in the lare mai luent y ia single havel．
 20．ono intalit $2 \cdots$ ．an lare clected is if ur sears B．pmpuas whe The executive pe wer i－beved in a p－oddent．clected ir ix yes：－ty drect wie of the peple He is respunctle i ，his are：it o．．emlly，and canmis be reelected until aixer in interval，i at leat ne term The admmatrath－1s carried en，under the pre－idens，
by six＂secretastes of state．＂each of whom has charge of a separate deparment（mmisterio）． These departments are ：Government and Justice， Foreimn Relatinss．Public Instruction．Promo－ tion of Puble Weljare（Fomento）．Finance and Public Credr．and Wa：．The council of sta：e is an advisozy board．of which certain members are cheon sor the assembly and others appointed by the presideat．

Finchics．The national revenue in 1901 is shown in the following iable：

Cust ms ．．．．．．．．．．．．．．．． Expersituze ．．．．．．．．．．．．．．．－．		
Laұu ：excise ani gorern－ 		
Expeadi：ure ．．．．．．．．．．．．．．	517．6さ－． 5	
S゙e：：o：a？ Reverue 12 $1000 . . .$.		§13，$\div 3$ ， 110.16
		－．9：－＋35－40
Increzie in zeremre．．．		s $\sum, 463,6, \ldots-6$

The sum of ミ14ミォラ－246．\％2 Was appropriated io：administrative experses in the fiscal year extending from I July 1902 to 30 June igo．3． with the inl wing distribution：Goverament and
 ireasury．Er．190．080：public credit．So．000．000： cevel pment．S1．4E8．2，9：wat．$\$ 2.006,1 \approx 4.40$ ： public inseruction． $\mathbf{F}_{1}+42.900$ ：other expenditures． §so9．370．32．The revenue ficr the year was esti－ mated ai Etrsis．000．The total amount of the icteign debe liquidated to 30 Iune 1902 ，accord－ ang th an oncial staiement．was：

Ha＇f of	interes：to 30 Jume	－ 8.6 .64
Intere：	¢ ：：32： 030	283，092

On is Dec． 1900 the outstanding amount of the g id deh：was So．zs1．．02．and of the cur－ rency deb：ミュ－，，ou cuío．
－irny－The army consiss of about 7.000 men in recular service：elfective army．$\$ 6.900$ men be wee？the ases of is and 30：reserve． sa．000 men ir mo so so years of aze．
P rula＇－Fu：l－blooded Indians are much m re n ‥ner is in Guatemala than in other Centra Ame－ican countries：in iact they，with the Ind an i mixed blood．ladims and mes－ tiz s nrake to the bulk of the population．The natural increase amner these people is indicated in the ref rt it the secretary of public works is：ton？Which thows mon．，28 births in that year asaine： 3 ande deaths．a pain of 31,110 persons． The tual rumber inhabitants in 1903 was al me t．－co．000，including $11.000-12.000$ ioreign－ e：－

Eduict n－Fublic instruction．supporied by the $\&$ vernment．is secular and statuitous： primary intruction is obligatory：ifree education 1．suaramicel ty the Constitution．In toon there were t．oso chiv＇s in the republic．fis being
 night－ch ：In Guatemala City there were §3 chool，of which number 25 were public，
under government inspection: and among the private institutions was a school for boys and girls of the Gcrman colony only, cndowed by the German govermment. Higher instruction was given in the capital at the National [nstitutes (one for men and one for young women), to which normal departments were attached; and similar institutes existed at Quczaltenango (before its destruction) and Chiquimula. There is a separate normal school for young women at Guatemala City, and normal schools for young men at Antigua, San Marcos, and Mazatenango. Schools of law, medicine, and engincering are mainly supported by private funds, but receiyc aid from the public treasury. Education in music is supplied at the National Conservatory and a number of local schools. There are also trade schools (including one for women) a commercial collcge, and an art sclool. The national library contains 30,000 volumes and many valuable unpublished documents. Other libraries accessible to the public are those of the professional schools, the supreme court, national institute for men, and academy of teachers. Public libraties are maintained in the larger towns, The national printing-office at the capital is regarded as one of the best establishments of its kind in Latin-America. More than 30 daily papers and other periodicals are published in the country.

Religion.-The Constitution guarantees liberty of conscience. The government rrcognizes no creed. The prevailing religion is Roman Catholicism.

Judiciary. - The supreme court of justice consists of a chief justice and four associates, elected by the people. There are six courts of appeal, each consisting of a chicf justice and two associates. also elected by the people. Courts of the first instance are 29 in number: their judges are selected by the president among the candidates approved by the chief justice of the supreme court.

Locol Gozernment.-The "Political Chief" (Jefe Politico) of each department of the republic is appointed by the president, whose authority he exercises in provincial matters. The local officials locally elected are: the Alcaldes (one or more for each municipal district) and the Regidores (members of the municipal council). Alcalde and Regidor correspond to mayor and alderman; the jefe politico takes the place of a goyernor, and his relation to the chief executive in a centralized republic fairly indicates the limits within which local self-government is permitted.

History.- Pedro de Alvarado, one of the lieutenants of Cortés, in $1523-4$ conquered the country, and on 25 July 1524 proclaimed the sovereignty of Spain at Almolonga, the native town which was afterward to be known as Santiago de los Caballeros. The important fact in connection with this conquest is that it did not lead to the extermination of the natives. Two explanations of this circumstance are offered. Mr. Bancroft says that the Indians, after fighting desperately in defense of their homes, maintained a sullen resistance, and therefore both here and in the adjoining state of Chiapas "the natives probably retain to the present day their original traits with fewer modifications than elsewhere in the Pacific States." But this theory is at variance with the Central American records in general. A
suggestion which may be preferred is that the natives of Guatemala werc essentially peaceloving agriculturists, not uninfluenced by that civilization which had survived here, as in southern Mexico and Honduras, from very ancient times; that they were allowed to remain undisturbed after the first resistance ccased, while the more warlike tribes, such as those inhabiting Costa Rica and Veragua, were gradually being exterminated. And their descendants in great numbers still possess the land. After the conquest all of the territory now divided up among the Contral American countries was included in the captain-generalcy of Guatemala. Independence was proclaimed is Sept. 1821 ; annexation to the Mexican empire under Iturhide followed (5 Jan .1822). An assembly of representative citizens of Guatemala and the other Central American provinces on I July 1823 declared the whole country to be independent, with reference to Mexico, Spain, and all other nations, "whether of the Old or of the New World." Accordingly the United Provinces of Central America came into existence. Guatemala seceded from this union 17 April 1839. The name Republica de Guatemala was assumed 21 Narch 1847. Between 1839 and 1851 there was a series of bitter struggles with Salvador for supremacy, fortune favoring the smaller republic; but in the year last mentioned Guatemala began to be successful, and, under the leadership of Rafael Carrera (president until 18j6, and subsequently life-president or dictator), carried the war into Salvador (I863) and regained the controlling position in Central America. Carrera appointed his own successor, and dicd in 1865 . The next significant administration was that of Gen. Justo Rufino Barrios, who was put in office by the Liberals, after their onslaught upon the Jesuits. Barilias was elected to the presidency in 1886. In 1890 and 1891 the progress of the country was checked by epidemics of cholera and smallpox. On 15 March 1892 José Maria Reina Barrios was inaugurated as president, and by a decree of the National Assembly (30 Aug. 1897) his term was extended to 15 March 1902 - in direct violation of the Constitution, which was proclaimed in 1879 and modified in 1885, 1887, and 1889. He was assassinated 8 Feb. 1898 by a British subject of German origin. Dr. Alanuel Estrada Cabrera was proclaimed acting president, and received the support of the army. An insurrection begun under Gen. Castillo's leadership 28 July was put down, but only to be quickly followed by another revolutionary movement. Insurgent forces commanded by Morales offered a stubborn resistance in the sonthwest, until Morales was captured. When peace had been restored, Cabrera was the only candidate for the presidency, and his election was amounced 25 Sept. 1898. In the following year the government of Guatemala made a. proposition which was equivalent to repudiation of a part of its foreign debt, but yielded to Germany's protest -or threat to use force-and withdretr the discreditable suggestion. Earthquakes which occurred in April 1902 caused great damage in several districts. Amatitlan, Mazatenango, San Marcos, Sololá, and San Felipe suffered severely, and Quezaltenango, in importance the second city of the republic, was totally destroyed. An eruption of the wolcano Santa Maria followed on 24 October, and there were outbursts from new
craters in November. Several thousand persons lost their lives through these disasters, and the injury to property (plantations, buildings. machinery, and catile) has been estimated at $\$ 5,000,000$ to $\$ 10,000.000$. Taxes for the relief of the earthquake sufferers were imposed by the Legislative Assemb!y 24 April 1902. At convention between the Enited States and Guatemala relating to the terure and disposition of real and personal property was signed 2- Aug 1901, and ratifications exchanged at Guatemala 16 Sept. 1902.

Bibliography:-Bancroit (H. H.). 'History of the Pacific States of North America' and 'Native Races' : Bureau of American Republics, 'The Republic of Guatemala' (180\%): same, 'Monthly Bulletins' (1902 and 1903): Frubel. 'Aus Amerika': Squier. 'The States of Central America': V'reeland and Bransford. 'Antiquities at Pantaleone,' Smithsonian Inst Rept. ise 4. Pr. I.: Ximenez, 'Las historias del origen de los Indios de Guatemala, traducidos de la lengua Quiché.'

Marrion Wilcox.
-Athority on Spanish -imerica.
Guava, gwā'vā, the name of several tropical plants oi the myrtle family which yreld delicious fruits. The common guava (Ptsidium guata, or fyriferum) is a low bushy tree, bearing long. iragrant white flowers on solitary axillary stalks. from each of which develops a iruit larger than a hen's egg. roundish or pear-shaped, smooth, yellow: the rind thin and brittle: the pulp firm. iull of bony seeds, aromatic, and sweet. The jelly or preserve made from it is highly esteemed, and pleasantly mingles tarthess with sweetnes. The rind is stewed with milk, and is also made into marmalade. This iruit is rather astringent than laxatuve. Guava buds. boiled with barley and licorice, make a useful astringent drink in diarthoa. This guava is now naturalized in all the warmer parts of the world, and in many. especially Ceylon, has rum wild. Two cultirated varieties are known, the preierable "white." and the more showy but less agreeable "red." Several other species are cultivated: as the mountain gurava of the Weat Indies (P. montanm) and the marangaba, a dwari species (P. †ygmaum) of Brazil. with fruit no larger than goowherries.

Guaviare, gwā-ve- -a'rā, or Guayabero, gwīā-ba'rō, a river of Colombra, South America, which rese in the Cordillera Uriental near Bogota, flows eastward fir jso unle forms the boundary between the departments of Cundinamarca and Cauca, ant joms the Orinoco near San Fernando de Otabapo. it is navigable for nearly five ohundred males.

Guayama, swi-ãmă. Torto Rico, town in the suthea-tern part if the deparment of Guayama; five miles irnm the sea Pup. S.foo.

Guayaquil. gwi-a-kēl', Ecuador, a seaport city, the captal of the province of Guayas. on the river (suayaqui, 25 miles alone 1t- muth in the Gulf of Cuayaqul, nt the l'actic Deean. The site is low and unlealthiul. lun the sat tary conduions have been improved ly a moderin system of waterwith-, and "id dramage. Other nowdern improsements include street railways. gas-lighting, and teleplone service, while a ranroad er nnects wh the interior. The chicf buildings are the cu-tom-house, town-hall, a college. iechnical school, and the cathedral. V'essels of

18 ieet draught reach the town, and the river and its tributary, the Daule, are navigable ior smaller vessels, a considerable distance above the town. The export trade averages $\$ 5,500,000$ annually, cocoa representing nearly five-sixths, the rest being, coffee, ivorv-nuts, rubber, hides, and specie. Cottons, hardware, and other manviactured articles are inpported. The industrial establishments include steam saw-mills, ioundries, machne-shops, ice factories, and a large brewery: The town was founded 25 July 1531 on St. James day, whence its official title Santiago de Guayaquil It has had an eventful history, being attacked by pirates. Dutch. French and English, and suffering from disastrous conflagrations, on the last occasion in 1896. Pop. (1903) 55.000

Guayaquil, a gulf of the Pacific, in the republic of Ecuador. It has a wide entrance, narrowing as it extends inland, and receiving at its head the Guayaquil River. It contains a number of islands

Guaymas, gwímās. Mexico, city in the state of Sonora: on the Guli of California, the terminus of the Sonora Railroad. and the chief Pacific port of Mexico. The principal exports are gold. silver, and hides. Pop. 6.100.

Guayrá (gwī-rā') Falls, Brazil and Paraguay, a cascade of the Parana River, on the boundary between the countries menticned: the resuit of a contraction of the river-bed irom a width oi 4 fio yards into a narrow gorge, 65 yards wide, the waters making a plunge of 50 说et. "These falls, situated in the midst of a desolate region, far irom human habitation, and rendered almost inaccessible by virgin forests, rapids, and other obstacles, have been visited by very few. though they are said to form one of the grandest spectacles in the world. The volume of water which passes over them is twice that of - iagara." Consult 'Paraguay' 12 d ed. revised by J. S. Decoud. Honorary Corresponding Member of the International Cnion oi American Republics: Washington: Government Printing Office, 1902).

Gubat, 'goo'bāt. Philippines. a pueblo of the province of Sorsogon, Luzon, on the east coast of the Bay of Gubat. 11 mile southeast of the provincial capital Sorsogin. The waters of the bay were iormerly infested by pirates. who terrorized the surrounding region. Pop. 13.300.

Gubernatis, Angelo de, än'jā-1ō dā goo-bèr-natés. Italian Orientalist: b. Turin 7 April 1840 . He founded the ltalian Asiatuc Sosiety in is86 and has written much in various departments. Among his works are 'The First Twenty Hymns of the Rig-leda' (1865): '1) eath ni Cato' (1803), a metrical drama: 'Kins Nala.' an Indo-Brahmin play: 'Gabriel.' a 110vel: 'Zoological Mythology' (18-2): and 'Dictionnaire International des Ecrivains du Jour

Gudgeon. suij'on, a small European freshwater fivh (bibis flut iufilis) oi the carp family. It wime in shoals, and affords great sport to anglers irom its greediness in seizing upon any heit presented. Irs name has therefore come to mean a person easily "fooled" to his hurt.

Gudrun, goo-droon', or Kudrun, an old German epic, luilt up ous of the popular songs and traditions of the seafaring people who lived

GUEBERS - GUERCINO DA CENTO

on the shores of the North Sea between the Elbe and the Seine. It was put into permanent form by an unknown poct of Austria in the latter part of the I2th or early izth century; and ranks second to the 'Nibelungenlied' in the history of early German literature. It relates the history of three generations of the kings of the Hegelings or Frisians, and in the third part tells how Gudrun, the daughter of Hetel, king of the Hegelings, was carried off from her home by Hochmut, son of the king of Normandy, how she preferred to work like the lowest maidservant in the house of Hoclmut's mother, and endure the greatest indignities, rather than break her troth pledged to Herwig, king of Zealand, and how finally she was rescued by her brother and her betrothed.

Guebers, gē'bèrz, also Ghebers, Gabers, Ghavers, Gebirs (Turkish Ghaur or Ghiaur, infidel, generally but probably wrongly derived from the Arabic kafir), a name applied by Nlohammedans to the adherents of the ancient relig;on of Zoroaster, who reside in Persia. They originally were subjected by the Mohammedans to much cruelty, but are now permitted a great legree of religious freedom. Those who fled to , ndia are known as Parsis (q.v.).

Guelder (gĕl'dèr) Rose, or Snowball, a cultivated variety of the liburnum opulus, or water elder, of the order Caprifoliacce. In the European wild iorm, the inflorescence is a dense cyme whose outer flowers are barren and enlarged, but in the cultivated form all the flowers are neuter and consequently the plant can never set seed. A yellow dye is obtained from it, and the wood is sometimes employed in making to-bacco-pipes and other articles.

Guelders, gèl'derz, or Guelderland. See Gelderland; Netherlands.

Guelfs, gwēlfs, or Guelphs, and Ghibellines, names of rival political parties in Italy during the Middle Ages. The words are of German origin, derived respectively from Welf, the name of a princely family in Bavaria (from which is descended the royal Brunswick line and the line of Este), and Waiblingen, the name of a castle in Wurtemberg belonging to Conrad of Hohenstaufen, the German emperor. In the great battle of Weinsberg, ifto, the war-cry of the partisans of Conrad was "Hie Waiblingen." that of the adherents of the Duke of Saxony (of the house of Welf) was "Hie Weif." Some years after when the effort was made by the popes and various states and princely houses of Italy, among them the house of Este, to consolidate opposition to the Emperor, the two German words, changed to Guelfo, Guelfi (plus), and Ghibellino, Ghibellini, were adopted as party designations by the Italians. At first and for a long time after the assumption of these names by the great parties in Italy, Gueli and Glibelline, did really designate two opposing national policies - the policy of the dependence of the several states of the Peninsula on the Empire, and the policy of Italian independence of Germany, and of resistance to imperial absolutism. The states of northern and of central Italy were divided in their allegiance and they were continually passing from one side to the other, but they were predominantly Ghibelline; the states of southern Italy were always Guelf. The popes were the mainstay of the Guelf party and thus
were the assertors of the policy of Italian independence and home rule. As usual with party designations, "Gueli" and "Glibelline" continued in use as the names of factions in no wise concerned with the question of imperialism.

Guell y Rente, Jose, hō-sā' goo-ely' è rān-tā', Cuban author: b. Havana, Cuba, 14 Sept. IS18; d. Madrid 20 Dec. 1884. He studied law in Havana and Barcelona and practised his profession in his native city. In 1848 he went to Spain where he married Josepha de Bourbon, sister of the king. Besides several novels he published 'Pliilippe II. et Don Carlos devant I'histoire' (1878), and other works.

Guelph, greelfí, Canada, city and county-seat of Wellington County, Ontario; on the river Speed, and on the Grand T. and Canadian P. Rys., 48 miles west of Toronto: founded by John Galt (q.v.). The river affords abundant water power and the city, in a rich agricultural and cattle-raising district, enjoys a large trade. It is ant inland port of entry and is the seat of a United States consulate. It has breweries, large flour, saw, and planing-mills, and manufactories of foundry products, machinery, pipe and tubing, nusical instruments, sewing-machines, agricultural implements, woolen goods, carpets, furniture, carriages, leather, soap, boots and shoes, etc. Good building stone is quarried in the vicinity: Guelph has in addition to the county buildings, 4 colleges. I6 chureles, substantial business blocks, banks, a library and reading-room, and daily and weekly newspapers. The city owns and operates its electric light, gas and power, its water-works and street railway. It is the seat of the Ontario Agricultural College (q.v.) and the Provincial Experimental Farm. Pop. (1901) 11,496: (1904 est.) 12,500.

Guelphs. Order of, frequently styled the Guelphic Order, an order of knighthood instituted for the kingdom of Hanover in 1815 by the prince-regent of England and Hanover, afterward George ${ }^{5}$. of England, and conferred by the kings of Hanover until the absorption of that kingdom by Prussia in 1866.

Guemal, gwā'mäl, either of two species of small Andean deer (Cerzus chilensis or C. antisensis), whose antlers have only one forking - a long brow-tine projecting straight forward; which have tusks in the upper jaws in both sexes; and whose fawns are not spotted.

Guerber, Helene Adeline, American author. Her books include: 'Empresses of France): (Legends of the Middle Ages': 'Legends of the Rhine): (Myths of Greece and Rome': 'ALyths of Northern Lands'; 'Story of the Thirteen Colonies) : 'Story of the Great Republic': 'Story of the Greeks,' etc., etc.

Guercino da Cento, gwěr-chē'nō dä chĕn'tō. Italian painter: b. Cento, duchy of Ferrara, 1590; d. Bologna 1666. His proper name was Giorinvi Frascesco Barbiert. and he was called Gnercino from a squint in his eyes. In t621, having already acquired renown as a painter. he was invited by Pope Gregory XY. to Rome, but the premature deaths of this pontiff induced him to return to his native town two years after. About 1642 he went to Bologna, where Count Aldovrandi received him in his palace and entertained him with the most magrificent hospitality. Guercino adopted three different manners of painting, the first in imitation of Caravaggio, which being very dark, he
quitied for that of the Caraccis，and latterly for a style still more light and sketehy；but his mid－ dle style is his best．His chief pic：ures are at Rome．The most celebrated is that of the ＇Martyrdom of Saint Petronilla．＇which has been copied in mosaic to adorn one of the panels in Saint Peter＇s between the＇Transfiguration＇ by Raphael，and the＇Communion of S_{i} ．Je－ rume，＇＇by Domenichino．His other chief pic－ tures include a＇St．Anthony＇at Padua：an ＇Annunciarion＇at Milan；＇Š．Peter＇at Mo－ dena：＇Cephalus and Procris．＇and a scene from the＇Pastor Fido＇in the Dresden gal－ lery：the＇Paring of Priam and Hect or＇as Marseilles．The galleries of Bologna，Florence． and Paris，besides some of those of England and Germany；also possess specimens of this master．

Guereza，gẽr＇ě－za，or Guerza，gér＇za， （C．ibkus gucrad）．an Abyssinian monkey re－ markable for its beauty．Short．glossy．jet－black jur covers its limbs，back and head，white a long fringe of silky white havr depends from the flanks．It irequents loity trees and is much sought for the sake of its valuable fur．

Guérin，Eugénie de，è－zhā－nē de ģā－răñ， French writer：b．Cayla．Languedoc．1No5：d． 31 May isfS．She was a sister oi G．M．Guerin （q．y．）and much of her liie was devoted to taking eare oi him．Iler＇Journals and Let－ ters．＇of which an English translation appeared （ $1805-6$ ），have been widely read in America， both for their charm of style and their devo－ tional spirit．See Parr，Maurice and Eugenie de Guerin＇（ 18 ；0）．

Guérin，Georges Maurice．zhơrzh mō－rēs， French poer：b．Languedoc 4 Aug．1810：d． Paris． 19 July 1839 ．He was for a time a mem－ ber di a religious house in Brittany，but in 1833 went io Paris and taught in the College Stanis－ las．His verse has been greatly admired by eritical readers．Sainte Beuse in 1800 edited his＇Reliquae＇with critical notice，and the poet forms the subject also of one of llathew Ar－ nold＇s＇Esays in Criticism＇（ 1805 ）．Sec P＇arr， ＇Maurice and Eugénic de Guerin＇（18，0）．

Guernsey，gern＇zi．Alfred Hudson，Imeri－ can editor：b．Lermont．1825：d．1\％Ian．1102． He was ior several years editor oi＇Harpers Magazine．＇and he was also issociate edisor of the＇American Cyclopiedia＇（18゙ーシーか）．With Hetary M．Alden he was author of＂Harper＇s Pietrial History oi the Great Rebellion，＇Writ－ ing the Eastern campaign．（ $18,2-5$ ）；and＇The Spani－h ．Irmada＇（バン）

Guernsey，Egbert，American plysician：b． Litchifeld．Comn．\＆July ぶ23：d．Fohkill Land－ inge．\therefore l．， 19 Sept．in03．He was graduated irom the medical deparment of lew lork

 ical limes．He was also president for many years of the Jletrophlitan Hospital of Slew licrk，and pmbhwhed＇Drmestic Practice＇ （ 1855 ），wheh hav pawed through 11 edtioms．

Guernsey，the eecond largest and western－ mont of the Chamed J－land（qv）．\＆（t）mes sonthweat of Chetlxurg，France，and ess miles from Start Pont．Devonwhire，England．It is trangular in i rm，nine mile long and from three to inur miles broad．The pictureaque suth coast is lofty and abrupt．the itland slop－
ing towards the north which is low and level． Guernser is noted for its heaithiul climate，for the fertility of its soil，for its horticultural and ：loricuiural products grown chiefly under glass， and ior its magninicent breed of cattle．The chief towns are St．Peter Port（q．x．），the capi－ tal，and Saint Sampson，the latter with an important export trade in blue granite．W the adjacent islands of Sark，Alderner，Herm and lethow：Guernsey forms an autonomous bailiwick．Pop．（1903）41，000．

Guerrero，Teodoro，tā－ō－đō＇rū gěr－rã＇rō， Cubant dramatist：b．Havana 9 Nor． 1824 He was educated in Spain，returning to Cuba in 1sf：in which year his first volume of poems， ＂Teordorelas．＇was published．His comedy， ＇La Cabeza y el Corazon＇（＇The Head and the Heart＇），was successiully periormed at Havana in 18os，and＇Lecciones do Mundo＇（＇The Lessons of the（IVorld＇），didactic verse，reached many editions．The author published other dramas and several works oi fiction and was active in Cuban educational affairs．

Guerrero，Mexico，a state bounded by the states of Morelos and Mexico on the north， Puebla on the northeast．Oaxaca on the east and southeast．and by the Pacific Ocean on the southwest．Its area is given as $6+256$ square kilometres．or 24.926 square miles．It is moun－ tainous throughout almost its entire extent，the northern section being occupied by the spurs ci the ranges of Morelos and Mexico，and the southern by the Sierra Madre del Sur（highest peaks 2． 200 metres）．Between these two sec－ tions runs the llexcala or Balsas River，to which all the streams of the state are tributary． The principal lakes are Pazahualco．Chantengo． San Marcos，and Sexpa．The Pacific coast line is low and sandy，and has excellent har－ bors．The bay of Acapulco，the chief port，is deep and spacious．The mineral resources of the state have been as yet very imperiectly developed．Gold．silver．lead，mercury．iron． coal．sulphur，marble，granite opals，topazes． and diamonds are mentioned among its prod－ ucts．The climate is unhealthy．On the coast the heat（irom 95° to $06.80^{\circ} \mathrm{F}$ ．）and rainiall are both excessive；and in the belt above 6,500 icet．the cold is sometimes severe．Fevers， leprosy and affections of the respiratory and digestive organs are the prevailing diseases． The annual value of the agricultural products i－about $\$ 2,200,000$ ，and the total value of live －the is estimated at $\$ 3.000 .000$ ．Nanuiactures are limited to sugar－canc products．mescal wine，palm－oil，cotton fabrics，and leather． Plans ior a number of railways have been made，hut have not been carried out．There are，however，telegraph and telephone lines， and a iclw wag on roads．Steamers of the Pacitic Nail and the Mexican International Cumpany ir theh at icapuleo．The state is di－ sided into it districrs：La Ĺnión，Mina，Alar－ cin．Hidalgu，Alvarez，Zaragoza，Morelos， Aba～oln）．Allende．Tabares（chief town Acapulco de Juarez，with population of $5 .-\mathrm{So}$ ）． Tialcana．Chilpancingo（principal town and cap－ pal of the state Chilpancingo de los Bravos， with populatirn of 6.321 ），and Guerrero．Total population ai the state $\$ 20,336$ ．

Guerrilla，ei－ril＂la，an irregular mode of carrying on war by means of small independent bands of armed men，self－constituted and un－
connected with the regular army. The name originated in the Spanish war for independence (1808-14), when the term guerrillas was applied to the bands of Spanish peasants, organized to harass the French armies that then occupicd Spain. Guerrilla wardare was carried on to some extent during the Revolution and also in the Civil War, particularly by the Confederates. Guerrilia methods were also effectively used by the Cuban patriots in Cuba's war for independence.

Guesclin, Bertrand du. See Du Guesclin.

Guest-bees, a large genus (Nomada) of little bees of both Europe and America, which lay their eggs in the nests of burrowing bees of the genera Androna and Halictus, where the young share the food gathered for the young of their hosts, and the adults live harmonionsly together,-apparently a case of partnership rather than of parasitism. Compare CuckooBee.

Gug'genheimer, Randolph, American lawyer and politician: b. Lynchburg, Va., 20 July 1848; d. Elberon, N. Y., 12. Sept. 1907. He studied at New lork University and began his business career as clerk in a woolen goods house in New lork. He later entered a law office, studied law, was admitted to the bar, and became the head of a law firm, which was particularly successful in important negotiations wit', English syndicates, investing capital in American industries. He also was active in the political life of the city as a Democrat; was a member of the hoard of education for three years: and was also president of the board of aldermen, in which capacity he served as acting mayor of Greater New York.

Guiana, ge-ä'nä, the name applied to all that tract of country in South America bounded by the Atlantic Ocean, the Amazon River and its branches, and the Orinoco River and its branches. It lies between lat. $8^{\circ} 40^{\prime} \mathrm{N}$. and lat. $3^{\circ} 30^{\prime}$ S., between lon. 50° and $60^{\circ} \mathrm{W}$. Its greatest extent east and west is 1,000 miles; its greatest breadth, from Punta Barima, to the confluence of Rio Negro with the Amazon, is 710 miles. The total area is more than 800,000 square miles. The western districts belong to Venezuela; the southern and eastern districts to Brazil. The three European colonies, the British, Dutch, and French Guianas, extend from the seacoast to the frontiers of those republics.

Early yoyages to this part of South America are mentioned in the article Discoveries, etc. The first settlements on the northern coast lay much farther toward the west, and exploration and colonization east of the Orinoco began when European adventurers continued in this new field their search for Eldorado. Spanish and Portuguese expeditions into Guiana during the 16th century were very numerous, but always disastrous. The English undertook its conquest. believing, in the words of Sir Walter Raleigh. "that whatever prince shall possess it, that prince shall be lord of more gold, and of a more beautiful empire, and of more cities and people, than either the king of Spain or the great Turk." Capt. Laurens Keymis, sent by Raleigh in 1596 to explore the region, reported that "the like occasion seldom happeneth in many ages." In the articles. Dabaiba and Eldorado, it is shown that the birthplace of the

Eldorado myth was the region now known as Colombia, ant that the time of its birth was near the beginning of the soth century; but in the course of too years the site of Eldorado was transferred to central Guiana, and Schomburgk asserts that the possibility of its existence in that locality continued to occupy the imagination and attention of adventurers until the close of the 18th century. Humboldt was the first to prove that a lake "like unto Mare Caspium." as Raleigh described it, no longer existed, and it was erased from the maps; Schomburgk identified the locality where it was sougnt with the small lake Amucu near an Indian village named I'irara. Raleigh led several armaments from England with the hope of conquering the golden capital. When these undertakings ended in disappointment, Capt. Keymis committed suicide, and Raleigh "paid the forfcit of his illusions with his life upon the scaffold." Dutch traders, who arrived about 158o, settled on the Pomeroon and Essequibo rivers; and after the establishment of the Dutch West India Company land on the Berbice River was granted to van Peere. The Pomeroon colony was abandoned owing to attacks by the English in 1666 and by French privateers. In If40 English planters from the West Indies established themselves on the Essequibo, as a result of the "open door" policy adopted by the Dutch with respect to that region alone. Next, the overflow of immigration settled in the Demerara district ; and in $1,8 \mathrm{I}$ all three colonies, Essequibo, Demerara, and Berbice, were taken by the British. Recaptured before the year was out by the French (who were then allies of the Netherlands). they were again taken by the British in 1796. The peace of Amiens restored the original status: but English troops interposed once more, and the colonies were ceded to Great Britain by the treaties of 181.4-15. They were united in 1831, forming British Guiana.

In the region east of Berbice, a few English people attempted to form a colony at the village of Paramaribo (1626), but abandoned the project. Ten years afterward the French invested Paramaribo, but relinquished it, proceeded to Cayenne, and there founded what is now known as French Guiana. In 1652 a hody of English settlers again arrived at the Coma River, and succeeded in establishing themselves. This colony was granted in I662 by Charles II. to Lord Willoughby, who changed the name Coma River into Surryham, in honor of the Earl of Surrey. Hence we have "Surinam." the mame often used instead of Dutch Guiana. The Brutish crown bonght the colony from the heirs of Lord Willoughby, but it passed into the hands of the Dutch about the time when Holland gave up the attempt to keep New Amsterdam, now New York. The statement often repeated, that Surinam was "exchanged" for New Amsterdam is incorrect.
I. British Guraxa is situated approximately between lat. I° and $8^{\circ} 40^{\circ} \mathrm{N}$. It is bounded on the north and northeast by the Atlantic Ocean, on the east by Dutch Guiana, on the south by Brazii, and on the west by Brazil and Venezuela. Its area is 104.000 square miles. The old settlements of Essequibo. Berbice, and Demerara form counties with the same names. Of these, Demerara contains the capital of the colony (see Georgetown) : Essequibo, the town
ci Bartica，the point of departure ior miners going to the sold－helds：and the capial oi Ber－ tice County is New Amsterdam．One oi the chiei points on the new boundary line with leneztela．Nount Rorama，is an immense sand－ stone mase rising with perpendicular sides 2.000 feet above the slopes（themselves o．000 feet above sea－levell which iorm its base．Some oi the neigbboring mountains resemble it in form， but ate less imposing．Midway between this sroup and the filantic coast is the Invataca range， extending east－sutheast to the conituence of the Cuyuni and Esiequibo．The latter with its tributaries drains nearly the whele internor of the colony ；the Demerara，though nuch smaller． is more impor：amt，becanse it ficws through the region which has become the centre oi popula－ tion：the Corentrne is the boundary between British and Duich Guiana．

Geology and Mineral Risomeas．－The origi－ nal sea beach is iound far inland．Where it now appears as long siretches of white sand reeis． the sand being derived from a barster oi pro－ mary voleanic and metamorphic rocks．which im－ pedes the navigation of the rivers．The strip between this barrier and the ocean iront－com－ posed oí layers oí soft mud．clay，sand．broken shells．and decomposed vegetable matter－is really an enormeus mud－fas．about 100 fee：in depth，and covered with a rich，heavy loam，and in places．with a kind oi peat called pegass． The whole interior of the country：between the agricultural i ast－strip and the range cuiminat－ ing in Roraina is an ausiferous recion．The gold is commenly i und in combination with silver．Quartz－mines have been worked in upper Demerara．bui placer－mines in the beds ci former sireams or the channels of existing ones are roose usual．Other mineral products are iron．sapphires．diamu nds mercury，sar－ nets，antimony：and plumbago．A sandione ior－ mation characterizes ihe sourhwest，from Mount Forama it the P（iar）and Essequibo rivers， thence exienting eastward acros：the Demerara． Berhice，and Corentyme．The sandstene is mter－ Leided with volcanic rocks．In many parts of t．e eweny there are red，sellow，and blue clays： and fine is tite clay，suitatie for the manufacture of porcelam．is al＝o iound．
 alluvium is s，iertle that a ternation of crop：． is not required：it is however，ver！neavy and hard is culwate．The therm meicr ranges
 ence in thi－respect between day and matt． Rainiall in s me year： 130 inche－in chers net m re than o o inches．The year is divided into two rainy scaun：（November－Fehruary and May－July）and iwn dy eavens S゙ether de－trictive earthquakes ner hurricane occur． There ha been enly the sermen－tuthreak if ：if iever during $\mathfrak{c o}$ years．Death rate ti the © hiy alvest is per t，cion．

Fi ra む．a Fíuna－Characterissic ineen prod－ uch are eveedmely hard and heasy wiod． Tle ereenlxart．mi ra，and wallała are vatualle fr burding：ite simamba．lefret－wh－1，and eralw 1．i－making furmiture．ete lieseta－ ti n in Suiana is remarkalle on ace unt i i the altitude of the trece and the great we if leave and Aower：The gigantic water－fily，liet ria Regia，i－very cimin n sme oi the orchids ifmlarge mavees，whith fower－4tem－12 fect high Comm n mammals are sl ths，deer，ant－eaters．
tapirs，armadillos，peccarnes，jaguars，cavies，and ring－tail monkeys．Nonkeys belong to two iamures which are entirely confined to this re－ gion，and bats develop here their most extraor－ dinary specializations．In some parts oi the ionest vampires are＂ready io suck the foot or even the cheek of the unwary traveler．The manatee（ a ：／go＂mermaid＂or＂water－mamma ${ }^{\nu}$ ）， inhabiting sonke oi the large rivers．and coming to the suriace at intervals to breathe or to graze on the plants which line the banks．owes its popular designations to the circumsiance that it suckles its yung at the breast．The represent－ ative iamilies of birds are，with iew exceptions， peculiar to this regron，the list oi such birds including greenlets，tanagers，hang－nests，sugar－ birds．irce－creepers，manakins，and coingas． Alligaters and boa constictors both attain to great size in this region：iguanas and smalles kinds of lizards are numerous．Among the in－ sects，ihe variety oi genera and species can．it is thought scarcely be equaled in any other part if the world．Uncommon brilliance oi coloring is characteristic of both the birds and the in－ sectis．
－Igrion＇fure：－About So，000 acres are nader cultivation．or．say，one acre out oi every 100 available for the purpcse：and of this amount －1．j－(x) actes are in sugar plantations．Only a very small portics is devoted to coffee and cocoa．

Cummerci．Shiffing，Rcilacuys，efo－The chier imperts in 1901－2 were tissues．four，ma－ chinery，manures，rice，fish，hardware．coal．and tobacco．cigars，and cigarettes．The total value oi imports 1 principality from Great Britain and British pessessions）was s－0－3．土s5．The chief exports in the same year．with their values：
 230：balarta．Sis． 20 ：timber and woods．S105．－ cos：diamends．ミ9ミ．2－：charcoal．$\underbrace{}_{35.030 \text { ；and }}$ molases．E24．015．The iotal value of exports was so．rowizo．In 1901 the recristered vessels be－ If namg to Bratish Guiana numbered +5 ．compris－ ing 32 sailing vessels（I．．．9－ions）and 16 steamers 12,213 tons）．Total connage entered and cleared．in $1001-2$ ，was $-25,80^{-}$．（See also routes（i revels under Geongerown．）There are 1 af mies of railways．zó mles oi good roads，and 12 miles of the larger sort of canals， used ios navigat：on．Emaller canals，to carry off supertue us water irom the plantations，inter－ act each orher in every direction．The heary ramiall and the slatness of the coast region －hlige the planters to maintain these canals to provide drainage，and by means oi the larger draming trenches the sugarcanes are taken to the 1mi．s is1 punns．There are 73 post－otrices． 46 ielcgraph，ffict s ，otraveling post－oftices．about $\$ \$ 9$ mien if cecaraphs and cables，and telephone serva－（,$\tilde{\sim}$ mile $=1$ in Georgetown and New An－terdam．

Af mi！che Bankins－British gold and sil－ rer are ined．There are 25 savings banks，with 21．zer dep－itor：－and 2 banks with note circu－ lail ！

G icrn tint－The governor is assisted in execume and admmintrative matters by an adur ry c uncil，composed of 3 colonists and 3 fricl \therefore al apponted by the Ling of Encland： in legh atwe maters by the Cours of Policy（ 7 －picals l e de the g vernor，and 8 elective mem－ ber－ch een ist ma inhabitants by constituency oi $2!-71$ ier qualified by income or property）． The snvern r has a casing rote，and can decide

any question against the votes of the representative members. The colonists are in the majority, however, in the Combined Court, which rotes the taxes and public expenditures.

Finances.- Total revenue for the year 1901-2 was $\$ 2,657,535$, derived mainly fron customs, licenses, duty on rum. and royalty on gold. Public expenditures in the same year amounted to $\$ 2,613.155$. The public debt in 1901 was $\$ 4,960,600$.

Population, Sihools and Judiciary:- The census of 1801 showed: Negroes, 115.58 ; East Indians (Hindu coolies), 105.465; aboriginal Indians, about 17.463; Portuguese from Madeira, 12.160; whites of other nationalitics, 4.558 : Chinese. 3.433: mixed races, etc., 29,3;6. The total number of inhabitants was therefore 288,049. In 1901-2 the schools, numbering 213 , had 20.68_{+}pupils. There are three judges, and, in the several districts, a number of magistrates. The criminal law is based on that of England; in civil cases the Roman-Dutch law is applied, with certain modifications.

History (inchuding the boundary dispute with l'cnezuclà).-Prohibition of the slave trade checked the agricultural deyelopment of the colony, and emancipation of the slaves (1838) ruined many planters, the freed negroes demanding higher wages than the planters could afford to pay. This crisis led to the introduction of large numbers of laborers from Madeira, the East Indies, China, and Malta, Immigrants of a different class began to arrive about 1886 in consequence of the rediscovery of gold; but serious difficulties arose precisely on account of the enlancement in the value of the auriferous regions, some of the most promising of which were located in the territory west of the Essequibo claimed by both Venezuela and Great Britain. The inland limits of the Spanish (afterward Venezuelan), the British, the Dutch. the French, and the Portuguese (afterward Brazilian) Guianas were undetermined. In 1841 Schomburgk surveyed the boundary line of British Guiana for the British govermment, and made two maps: the second or revised map placing the boundary with Venezuela much farther toward the west than the first. Subsequently Venezuela and Great Britain agreed not to encroach upon the territory in dispute, pending a settlement of the boundary question, but bath countries offended against the spirit of this compact. The proposal for arbitration in 188\% was met by England's prompt refusal to admit any doubt as to her title to the lands east of the revised Schomburgk line, and, a little later, by the cstablishment of British posts, and the declaration that the region drained by the Barima River was hers by right. It is necessary to bear in mind that if England had accepted the views of Venezuela and Brazil as to the boundaries of British Guiana, that colony would have disappeared from the map. Brazil claimed all but about 12.000 square miles: Venezuela nearly the whole of the old Essequibo colony, the Pomeroon and the unsettled interior districts. When President Cleveland, in 1895 , called to the attention of the British government the bearing of the Monroe doctrine upon the question at issue, his suggestion was at first not accepted. His message to Congress went much farther. It advised Congress that a commission should be appointed for the determination of the true
boundary, and declared in effect that any attempt to extend British territory beyond the true boundary should be resisted by the United States, by force, if necessary. It was a threat of war. Pursuant to the act of Congrcss $2 t$ Dec. 1895. a commission was appointed I Jan. 1896. But before their report was submitted a treaty providing for the reference of the matter to a tribumal of arbitration hacl been signed at Washington (2 Feb . 1807). Arbitrators were: Chief Justice Fuller and Justice Brower of United States Supreme Court; Lord Herschell (and, after his death, Lord Russell of Killowen). and Justice Sir R 11. Collins; and as president, Prof. Martens. The tribunal met at Paris in 1899. The award, given 3 Octoler, determined the boundary nearly in correspondence with the second or revised Schomburgk line, assigning to Great Britain a region about 00,000 square miles in area which Veneznela had claimed. On the other hand, Point Barima, at the principal mouth of the Orinoco, and certain gold-fields near the headwaters of the Cuyuni, were awarded to Veneztuela. The territory of British Guiana, thus defined, extends along the scacoast to Point Playa, and includes the whole valley of the Barima and that of the Cuymi cast of the Wenamu - the larger part, though not the best part, of the mining region.
2. Dutch Gulana of Surinam is bounded on the north by the Atlantic. Ocean, on the east by French Guiana, on the south by Brazil, and on the west by British Guiana. It extends from lat. 2° to $6^{\circ} \mathrm{N}$., and from lon. $53^{\circ} 50^{\prime}$ to $58^{\circ} \quad 20^{\prime}$ E. Area 46,060 square miles. The political divisions are districts, 16 in number, and communes: the capital, Paramaribo, has about $31,81 \%$ inhabitants. Chief products are: Cacao (75 plantations), sugar (7 plantations). coffice, bananas, rice, maize, rum, molasses, and gold (output valued at about $\$ 480,000$ in 1900). The mining experience of this colony resembles that of British Guiana: the metal has been sought hitherto in beds of streams, etc., but is now being taken also from mines which require crushing machincry. Imports regularly exceed in value the exports; thus in 1901 imports amonnted to $\$ 2.831,112$, and exports to $\$ 2.146 .224$. During the years 1897 to 1901 the value of exports remained almost stationary, while that of imports steadily increased. Executive authority is vested in a governor. The representative assembly, called the Colonial States, is composed of members chosen for 6 years by a limited number of electors. The council consists of 5 members, including the governor himself as president, and represents the sovereign. The revenues of the colony fall short of the expenditures. The military force is about as follows: Garrison, 20 officers and 351 men; militia. 27 officers and 411 men; and civic guard, 50 officers and 1.008 men. There are a few guard ships and vessels of the royal nary. The number of inhabitants in 1902 was somewhat more than 69,000 . Educational institutions are: A normal school: schools maintained hy the Moravian Brethren and the Roman Catholics: 33 private schools, with 4,822 pupils; and 20 public schools. with 2.342 pupils. The judicial system comprises a court of justice (all the officers appointed by the qucent), two circuit, and three district courts. Slavery was abolished I July 1863 . but the authorities imposed the con-
ditions that for 10 years the emancipated negroes should remam upon the plamtations of the districts in which they had formerly lived, and should perform the same kind of work ior wages that they had been accustomed to while in bondage. Aiter I July 18,3 , the importation of laborers to replace the freedmen became a matter of life and death in Surinam as in the neighboring colonies, for agriculture was almost ruitred.
3. French Gutaxa, tying between the Atlantic Ocean, Brazil, and Dutch Guiana, has an area of about 30.500 square miles. Besides Cayenne, capital of the colony, and its only port (population, according to the latest cerrsus. 12.612), there are 13 communes. Mineral productions are gold, silver. marble, phosplates, and iron. In igor the exports of gold anrounted to 94.14% ounces. Agricultural productions are varjed (including sugarcane, cocoa, coffee, rice, indigo, tobacco, maize, and manice), but laborers are few, the area under cultivation is small, and the total value oi the crops imsignificant. Here, as in Dutch Guiana, the value of exports is much less than that of the imports. the difference in rot being about song.r50. Colonial interests are entrusted to a governor and privy council of 7 members, and one deputy represents the colony in! the French Parliament. There is also an assembly called the Council-General, composed of 16 members. Revenue and expenditures for 1002 were each estimated at $\$ 050.261$; but the cost of maintaining the penal establishment (EI,I 39.122, according to the budget oi 1903), is borne by the French republic. Between 300 and 400 French soldiers are kept in the colons: The total population, including convicts and Indians, was given as 32.008 in 1901. Cayenne has a superior court, court of first instance, and two justices of the peace: a college, a library, and a museum; in the entire colony there are 27 primary schools

From the first, the French undertaking in Guiana has been minuccesstul. On in Dec. 1653. the survirors of the original colony abandoned the fort and sailed away, after suffering from hunger and disease. A new company formed for the colonization of Cayenne in 1663 was scarcely able to hold its own again:t hostile neighbors in Brazil. The deportation of political prisoners to Guiana at the end of the 1 Sth century completed the ruin which Portuguese attacks had legun: for the exiles ascribed the death of their companions to the climate: and French Guiana was completely diccredited in the eyes of the wurld. In Jantary tion, the enlony surrendered to the Portuguese and Einglish. It was restored to France by the treatses of 1814-15. Since 1855 it has been used as a penal settlememt. In 1002 the aumber of convicts in residence there was 10.075 , includmg 240 women. The bumdaries with Brazil wete determined I Dec. Ifoo, by the Swiss court of arbitration.

Bibliograrhy:- Dalton, 'History of British Guiama'; Kappler, 'Hollandisch-Guiana); Raleigh,' 'Sewes of Sr. Watter Ratleigh, with the true de-cription of Guiama' (1618): Rodway, 'IMand-book of Britivh Guanal' S Schomlurgk, "Twelve liews in the Interior of Gniana, "ith Descriptive Letter-press'; Ternaux-Compans, 'Notice historique sur la Guyane fran¢aisc.' Marrtos W゙ilcox,
Asthurity on Spanish . imerica.

Guicciardini, Francesco, irän-chĕs'kō gwē-chär-dénē, Italian historian: b. Florence 6 March 1483 ; d. there 23 May 1540. He studied at Padua, and became an advocate and professor of law at Florence. In IsI2 he was appoimed ambassador to the coust of Ferdinand the Catholic of Spain. At a later period he was invited by Leo X. to his court, and entrusted with the govermment of Modena and Reggio. This office he discharged also under Adrian Vil.. to the general satisfaction; and afterward, when Clement VII. (de' Medici) ascended the papal chair, Guicciardini was sent as lieutenant of the pope to Romagna. He contributed here to the public good by restoring civil order, constructing roads, erecting public buildings, and founding usetul institutions. Having been appointed lieutenantgeneral of the pope. he in 1521. defended Parma when besieged by the French. In 1534 he began his great work 'Istoria d"Italia' (1561-4) extending from 1490 10 1534 . In 1537 he contributed greatly to the elevation of Cosmo de Medici to the office of grand-duke, but when later he attempted to impose constitutional limitations upon the grand-ducal power, he lost bis influence. The 'History' was translated into English by Goddard, and the iranslation published between 1753 and 1701 . The reader of Guicciardini is sometimes offended by a wamt of method, and his statements cannot always be depended on as derived from the best sources.

Guide-birds, or Honey-guides, certain small, mainly black and yellow birds, allied to the barbets, and constiuting a genus inhabiting the tropical regions of the Old World, which have ibe curious habis of atracting the atteation of men, and of honey-loving quadrupeds, to bees' nests, profiting by the disturbance which follows. They are fond oi bees, grubs, and honey, but camot oiten get them without assistance: sometimes, also, they show equal zeal in leading a person to a snake, leopard, or something else which has attracted their notice. Although the genus is known in India and Malaya, it is in South Airica that its traits are most noticeable and the books of travelers and explorers there abound in accounts of iss guiding habits. Sir John Kirk comributed the following exact description of the work of Indicator minor to the 'Ibis' (tion):
"The honcy-guide is found in forests, and often iar from water, even during the dry season. On observing a man it comes fluttering from branch to branch in the neighboring trees, calling attention. If this be responded to, as the natives do by whistling and starting to their fect, the bird will go in a certan direction and remain at a hitle distance, hopping from one tree to another. On being iollowed it goes further: and so it will guride the way in a nest of bees. When this is reached, it tlies about, but no longer guides; and then some knowledge is noeded to discover the nest, even when pointed out to within a few trees. 1 have known this bird, if the man after taking up the direction for a little then turns away, to come back and offer to point out anwher newt in a different part. But if it do not know of two nests, it will remain behind. The dificulty is, that it will point to tame bees in a bark-hive as readily as to those

1. Guide-bird (Indicator sparrmanni).
2. Garden Warblers (Sylvia curruca and S. rufa).
 meleagris).
3. Finropean ionden ()riole (tholus galbula). 5. (irable (lulabes religiona).
in the forest. This is natural, as the bee is the same; the bark-hive, 'musinga' as it is named, being simply fastened up in a tree and left for the bees to come to. The object the bird has in vew is clearly the young bees. It will guide to nests having no heney, and seems equally delighted if the comb containing the grub be torn out when it is seen pecking at it."

Guido Reni. Sce Rexi, Gutdo.

Guidon, gi'don, a swallow-tailed flag. such as is carried by a regiment of cavaly or mounted artillery. In the United States cavalry the regimentral guidon is hali red and halif white. dividing at the fork. The red above has " U . S." in white. The white is below and has the letter of the company in red. The fiy is 3 ieet 5 inches to the end of the tail; the head is 27 inches. The lance is 9 feet long, including spear and ferrule.

Guienne, gè-ĕn', or Guyenne, ancient Aquitania (q.v.), a former southwestern province of France, now divided into the departments of Gironde, Lot, Lot-et-Garomne, Dordogne, Aveyron, and part of Landes and of Tarn-et-Garonne. The capital was Bordeaux.

Guija, gwēhä, a lake in the republics of Guatemala and San Salvador. in Central America. lt is in a volcanic region, and contains two small volcanic islands.

Guikowar, gik'wär, the native title of the Mahratta prince, ruler of the province of Baroda (q.v.) in British India. The ruling Guikowar in 187.4 was tried for attempting to poison the British resident and was deposed. Since I802, when the province lost its independence to the English, the authority of the Guikowar has been merely nominal.

Guild, Curtis, American journalist: b. Boston, Mass., 1827. Aiter several years deyoted to reporting for the Boston Journal, he became one of the owners of the Boston Travciller and in 1859 established the Boston Daily Comntercial Bulletin, of which he became the editor. He has published 'Over the Ocean' (1867): 'Aboard Again' (IS73); 'Britons and Muscorites' (I888); 'A Chat About Celebrities'; (From Sunrise to Sunset' (verse).

Guild, Curtis Jr., American journalist and politician: b. Boston, Alass., 2 Feb. 1860. He was graduated at Harrard in I88I as class orator, and entered the employ of the Commercial Bulletin of Boston, condücted by his father, Curtis Guild (q.v.). He interested himself at once in local politics, was Republican delegate-at-large to the St. Louis convention in 1896; and active in securing the gold flank in the national platform. In the following campaign he made a political tour of to States. He was appointed brigadier-general of Massachusetts militia and inspector-general of 1 ifle practice by Gor. Roger Wolcott. At the outbreak of the Spanish war he was appointed lientenant-colonel and inspector-general, United States Army, serving in the Seventh Army corps under Ger, Fitzhugh Lee. In 1900 he accompanied Gov. (now President) Roosevelt on a tour of political speaking through the West. In 1902 he became sole owner of the Commercial Bulletin.

He was elected, \& Xor. 1902, Jieutenant-gevernor of Massachusette, with John L. 1Rates, governorelect: and was inaugurated 10 Jan. 1903. In 1905 and rgot he was elected governor.

Guild, Reuben Aldridge, American librarian and author: b. West Dedham, Mass., 4 llay I822; d. ISo9. His published works include: 'Biographical Introduction to the Writings of Roger Williams' (1866): '(History oi Brown Cniversity with lllustrative Documents' (1867): 'Chaplain Smith and the Baptists' (1885).

Guild, a iraternity, society or company, formerly active in commerce and mechames. Guilds played an important part in public affairs in the Xliddle Ages. The Romans had various mechanical iraternities, but these seem to have been merely religious and political societies; while the associations of workmen in the arsenals that existed under the empire were regular hereditary castes, enjoying certain priyileges and bound to certain duties. In Italy, the cradle of the class of free citizens in the Middle Ages, and particularly in the Lombard cities, those connecting links between the ancient and modern civilization, some remains of these Roman institutions, or recollections of them. probably contributed to revive the guilds, which naturally presented themselves as an excellent means of supporting the citizens against the nobility by uniting them into poweriul bodies. It is certain that small societies existed as early as the r2th century, which appear, in the following century, to have been in the possession of important political privileges. When the advantages of these associations became known and felt they rapidly increased; and in the struggles of the citizens and the nobility the principal resistance against the latter was made by the corporations. As soon as the citizens acquired an influence on the administration the guilds became the basis of the municipal constitutions, and every one who wished to participate in the municipal government was obliged to become the member of a guild. Guilds in Germany possessed no political importance before the isth century. At this time they acquired the right of bearing arms for the defense of their own interests, and when a struggle arose between them and the citizens belonging to ancient families the guilds were victorious, and became so powerful that even persons of "iree occupations" joined these associations as the allodial possessors of land sometimes placed themselves under ieudal lords. The by-laws of the German guilds contained regulations as to \because e training of apprentices, the practice of one ${ }^{-}$strade in different towns as a journeyman, and the requirements of a master. At an early period these workmen's associations met with opposition, but the opposition was not at first directed against them on account of the obstacles they threw in the way oi commercial intercourse, and the other evil consequences of their monopoly, but simply on account of their political influence. In the 18 th century several edicts were made in Germany against the abuses of the guilds, and at different dates in the 19th century freedom was granted in most of the states of Germany to all to practise any trade without being admitted into a guild. In Austria this was done in 1860, and

GUILDHALL - GUILFORD COURT HOUSE

in 1868 it was done in all the states of the North German Coniederation.

In Great Britain the socteties of mechanics were important principaity in a political respect, in account of therr connection with the democratic element of the constrution. These societies originated at the time of the devel pment of the importance of the cities. In the towns where they long existed they had an important influence in the election of representatives. and in the municipal administration. These guilds. in England, had no legal right to prevent any ma: from exercising what trade he pleased. The only restriction on the exercise of trades was the statute ci Elizabeth. requiring seven years apprenticesho. The gulds of the city oi Lond n (among the oldest of wheh are the weavers, founded in 1164: the parish clerks. in 1232: the saddlers. in 1280: the fishmongers. in 128_{4} : the goldsmiths. in $132-$: the skinners. in 132-: and the grocers in $13+5$) are stall very important corperationa. still contmang io fultil the chief object ine which they were founded that of giving relief to poor and decayed members. and also having in many cases the management of vast iunds bequeathed for benevolent purpeses by persons who selected one or cthe: of the guld s as trustces. Sometimes these funds are bequeathed ior specific purposes. which the guilds. as trustees, are of course bound to carry out: but in ocher cases. where they are available for general purposes. the guilds have usually shown great discreti on in the manner in which they have employed them. Beside- the secular guilds or mechanics" as:ociations there were from a very early period. in Great Britain, relicious guilds, resembling the relighous sncieties of modern times. From the time ui Henry II. all such guilds were required to have a charter irom the crown. In isks a return to these gulds was ordered to be made. and it was then found that that of Cnrpus Chrsist. lork, numbered ricoo members. Some - It the must obiectuctable features of the ancient guilds nave again been developed by st the of the trades unions, their modern representatwes.

In France guild-privileqes were solld by the state from the toth century fill the rev lution of $1 / 20$. and the position of the artisan had come to be a most pitiable une: but at that date every restriction on the exercise wi any trade was removed. This wa, d.ne als at a later period in Belgitm. H Hand. ltaly. Sweden
 guilds in America will he finund under Lafonk Uninvs. See al~Trioe C viuss fir the mudern European hiotery of guld.

Guildhall, the uiual designation in England ift the medneval city halls, the m st iam tus of which is the Lendon Guildhall. King Street Cheap-ide, first buit in $14: 1$, all but de-
 The iacade dates from $1 / 2$. . The great hall wed is the iamous caty ieats, the eiection of cr:y officer and members of Parliament, and If the pullie mectue i i the iisery and ireemen. i* $i=3$ feet lena. de ieet bri a 1. and ss iect high. It is deerrated by statues of varim us celebrites and in the cimmen council rom there in a c llection of valuable panturg:

Guilford, Conn.. a town and borough ui New Havern County, ${ }^{n}$ Long Wland Sinund. $0-1$ on the liew lork, N. H. \& II. RR, it
miles east of New Haven. It was settled as Henumkatuck by English colonists in 1630, and cne if the ancient stone buildings of that date is now lised as a State museum. Farming. canning. iren working. and some woolen manuiactures are the chiei industries. Halleck the poet was a native and resident of Guilford. Pop. of town and borough (ig00) 2.-85; of town, 1.512.

Guilford (giliōrd) College, N. C.. a town of Gurliord County. on a branch of the Southern R.R. six miles west oi Greensboro. It was incorporated in IS95 and derives its name from Guiliord College, a coeducational estabfishment controlled by the Friends, and founded in 1837 . The income of the college is $\$ 20.000$, and it has a library of over 6.000 volumes.

Guilford Court House, Battle of, is March 1-3r: in results one of the decisive battles of the Revolution. Cornwalis at Hillsboro proclaimed that he had conquered North Carolina. and called on the well-disposed to rally around him: Greene, awaiting reinforcements near the Virgina border. perceived the necessity of showing the parriots they were not abandoned, and advanced across the Dan. After some days of fencing and recruiting. Greene halied for batthe at Guiliord Courr House. He had about 4.400 men, but 3.000 were militia: and of his Continemtal regulars, only the Tirginians and the First Maryland were veterans. the Second being new. Cornwallis had 2.213 trained troops. Greene posted his nirsi militia line in an open field. to thin the British iront before giving way: the second in a wood 300 yards back: the regulars on a rise 400 yards to the rear, near the court-house. Their iront was convex: the Virginians on the right, then in succession Singleton's artilery, Gunby and Howard s First Maryland, and Ford's Second Maryland on the leit. Lee ${ }^{\text {s }}$ Legion and Campbell: ritlemen guarded the leit flank: William Washington's cavalry. Lyuch's ritles. and the remnant of the Delaware regiment, the right tlank. The Britsh routed the first militia after it fired one or two volleys: but only drove the second from the wond aiter an obstinate and murderons eombat. Advancing against the hill, their leit was riddled by a withering fire, and then broken by a bavinet charge of the First Maryland: but therr righe crushed the Second and captured two cammon. The First faced about and checked it: Wa-hinge on in tum pierced the British line and ret ois the preces. The First steadily crowded back their opponents with the bayonet: and C mwa li- only stayed the tide of deteat by redering his artillery to open on the Marylander through has own ranks, checking the pursuit at heavy liss to himselt. Reforming, the Brotsh no ved formard: and with double the numler hi real troop:- carried the hill and hed it against every assault. Toward evening lireene, aiter five holurs conflict. withdrew. leaving his artilicry on the field because the In rev were kulled. The American loss was 90 killed and IN: w unded: and about 1.000 militia diaperaed to their hames. Comwallis lost 03 kil ed, 453 wonded. and 26 musing - 532 in all. or a quarter ithse entire inree. He announced a viet ry in Parliament, hut Fex declared that - an ther stoch vict Ty wnuld destroy the British army' : and. in fact. Cornwallis had to fall back on Wilmington, abandoning his hold on the

Carolinas, except two or three places on the coast, and shortly going to Virginia and capture.

Guillaume, gwiy-yom'. Eugene, French sculptor: B. Montbard. France, + July i822: d. Rome, lialy, 28 Feb. 1905. He opened lis first studio at Dijon, and subscquently became a pupil of Pradier at Paris. In $18+5$ lie carried off the Grand Prix de Rome. It was during studies at Rome that he manifested that mastery of the human form which appears in his 'Reaper,' which he modeled at Rome. It was subsequently cast in bronze, and is now in the Luxembourg. In 1853 he produced in marble the sitting figure of Anacreon with the dove of Vents. He was, however, less succesful in ideal creations than in portrait busts. His statues of Napoleon I. as lieutenant of artillery and as emperor, his bust portraits of Archbishop Darbor, of F . Baloz, Ferry, and Thiets are characteristic and dignified, but he is perhaps best known for his sculptures on the facade of the New Opera Honse. Paris (1869) : 'The Fount of Poetry' (I8-3): 'Aopheus' (I8-8): 'Two Hermes': 'Anacreon with Eros': and 'Sapplo with Eros and Andromache.' He was the designer of the medals given at the expositions of 1867 and 18;8.

Guillemet, Jean Baptiste Antoine, zhŏn̆ bäp-têst antwan gwi-yi-māa. French painter: b. Chantilly 1842 . After studying under Corot and Oudinot he exhibited for the first time in 1865 . He chooses for his subjects the scenery of Normandy, and the Seine valley, and is faithful in his transcripts from nature, but his work lacks the color and subtility as well as the imagination of the Barbizon school. His 'View of Bercy' and 'View of Paris' are in the Luxembourg.

Guillotine, gill'ō-ten, a machine for beheading, so called irom Dr. Josepls Ignace Guillotin, and introduced during the French revolution. It consists of two posts united at the top by a cross beam. and furnished with grooves, in which a broad steel blade heavily weighted with lead descends by the impetus of its own weight on the neck of the criminal, fastened to a plank beneath. The certainty and speed with which this instrument separates the head from the body gives it an advantage over the axe or sword wielded by the hand. Machines of a similar description have been in use among many nations. In Italy, from the 13 th century, it was the privilege of the nobility to suffer capital punishment by an? instrument called the mannaia, closely resembling the guillotine. In Germany; likewise, during the Middle Ages, an instrument resembling the guillotine was made use of, though the blade did not fall upon but was thrust through the neck of the criminal. There was formerly employed in Great Britain, also, and more especially in Scotland, an imstrument of decapitation called the "maiden," said to have been introduced by Regent Morton, who himself afterward suffered by it. It differed from the guillotine in this, that while the blade of the guillotine falls upon the neck of the criminal, in the maiden the blade is fixed with its edge upward, and the neck of the criminal is forced down upon it by the fall of a heary weight. Such an apparatus
was also known and used at an early period in France. The Dutch likewise formerly made use of a decapitating machine.

Dr. Guillotin was not the imventor of the instrument which bears his name, and had only a secondary share in its introduction into France. As a member of the constitutional assembly he proposed to that body to abolish all class distinctions in the method of inflicting capital punishments, and with that view to lave some instrument invented which might do the work more quickly and certainly than the hand of the headsman. The establishment of a new penal code having now become the subject of delitheration, a vote for a uniform system of capital punishment was, on the motion of Dr. Guillotin, passed on 21 Dec. 1789 , with a recommendation that the least painful method of inflicting it should be adopted. It was not till 1/92, however, that this special machine was selected after a report from Dr. Ant. Louis, secretary to the College of Surgeons. The guillotine was first erected in the Place de Greve at Paris, and the first execution performed by it on 25 April 1702, on a highwayman. Shortly afterward, in remembrance of Guillotin's original proposition, it received the name of "guillotine,". both popularly and in official language, and it was introduced wherever the penal code of France has been adopted.

Guimaras, gē-mä-räs', Philippines, an island lying west of Negros and south of Panay, forming with Panay the strait of Iloilo. The east coast is mountainous, the west coast, open and fertile; an excellent road follows the entire coast. except for a distance of 10 miles, and the most important towns are on this road. The products include rice, corn, cotton. and tobacco, and there are important fishing interests. The island is a part of the province of Panay:

Guimbal, gèm-băl', Philippines, a pueblo of the province of Iloilo, island of Panay. situated on the southeast coast. at the mouth of a river, it miles west of the town of lloilo. Pop. 10,950.

Guinaan, gè nä'an, a Malay tribe of the Philippines, inhabiting the watershed of the Rio Abra and the Rio Grande de Cagayan, island of Luzon, and the neighboring region of Isabela and Abra. They are a heathen, headhunting tribe, and have a distinct language.

Guinea, gin'é, an English gold coin, first issued in 1663 ; by a proclamation issued 22 Dec . 1717, the guinea was declared current at 215 . sterling. Its true value, as derived from the market values of gold and silver at that time was 20s. 8 d., about $\$ 4.96$. It has not been coined since 181%, when the sovereign supplanted it, but the fashion still prevails of quoting prices of some thing: in guineas, and subscriptions are frequently recorded in the same denomination.

Guinea-corn, a name given to durra, Sorghum zulgarc, cultivated in the United States under the name of broom-corn. See Durra; Broom-cor: :

Guinea-fowls, a family of gallinaceous birds (Numidida) allied to the pheasants and turkeys, natives of Africa and Madagascar. Twenty-three species are known, the most familiar being the common guinea-fowl of our pouitry yard (Numida meleagris). This bird ranges in a wild state from Senegambia to the Niger

River, and is found also on the Cape Verde Islands. It is supposed to have been first brought to Europe by Portuguese explorers in the roth century; but these fowls were domestucated in Rome during the classic period. Oi the other species the vulturine guinea-fowl (-Acryllium tuiturinum) is one of the handsomest, being striped with brilliant blue; while the black guinea (Phusidus niger) and the turkey-like guinea (Asilastes meleagridis) are peculiar in possessing spurs.

Guinea-grass, a kind of grass (Panicum maximum), oiten 6 or 10 feet in height, a native oi western Airica, which has been naturalized in South America and the West Indies, and is largely cultivated for fodder.

Guinea. Gulf of, that portion of the Atlantic on the coast of Airica, between Capes Lopez and Palmas. Two of its arms are the bights oi Benin and Biaira. The Niger flows into this guli south oi the bight of Benin. A nunber oi small streams enter from French Kongo and Kamerun. It contains a number of islands. chief of which are St. Thomas, Fernando Po, and Prince's Island. The guli has two currerts. one setting eastward into the bights of Biaira and Benin, and the other coming from the south: ther meet in the bight oi Biafra. and unite in one stream which gradually expands as it flows northwest, then west and southwest.

Guinea-pig, or Cavy, a small, variable domesticated race oi the restless cavy (see Cavy). bred in all parts of the world as a children's pet. It is about six inches long. and exists in several races, some short-haired, othe:s with lorg. curiously ruftied hair. The colors are greatly varied, white, black and a mixture in quaint pattern of white and tan being preierred. Ii is a restless, grunting little creature. showing a small amount of intelligence. but gentle and amusing. It ieeds on vegetables, bread, parsler, letiuce, etc.., and is exceediagly cleanly in its habits. It begins to breed when fise or six mnnth: old, the period of geitation being irand 0 to 10 week- and the litt-rs averagirg iom \therefore :0 $5:$ and this exteme fecendity seem: t he its only means oi defence again-i extiretie? The name is probably a corruption of 'Gmanapig.' reierring to its native home and its piglike form and grunting. Enclish children call them "cavies." They are bred by fanclers if show purp ses. and clubs exist for the improvement of standard breeds.

Guinea-worm, a nematode worm (Filaria medmensts), the iemale of which may be three feet lene, and as thick as a knitting-rieedle. It 1: a para-ite in the fiet and twes of readens: if the Eart Indres and firican crat. furmme ab-ce-ces beneath the skin in which the worm is cutiod up. It produces the diseare hnown to the Grechs as dracentiasis, and one of the e raw called filaria-is (q.w.). To extract the w rm it mut le sewly wr und upon a rall if paper, a littie at a time. care beine taken nus to break the wurm, an if a partion is leit in the abocers, the y. ung will devel p and be sattered :nder the kin. Athouch i merly confined to the Old World, the gurnea-worm has recently leeal iound in the tripice of America. but is sery rate y sen in nerthern parts.

Guinevere, swin'é-ser, the wife oi king Arthu- in the Arthuran legends (9.1). In the
first accounts of the Arthurian court. she plays a very ummportant parr, and her character is not clearly portrayed. It is in the 13th century that the personalizy of the queen and the story oi her love ior Lancelot are first developed. The mosi vivid and poweriul picture of Guinevere is that given by Tennyson in the 'Idylls of the King.' in whech her sintul love ior Lancelot is made the real cause oi the downfall of the Round Table and Arthur's kingdom.

Guiney, Louise Imogen, American poet: b. Boston $/$ Jan. 1801. She began to write for publication in 1880 and was a irequent coniributor to 'The Pilot.' Boston. Her published works include 'Songs at the Star' ($1 \mathbb{E} 4$): 'The White Sail and Other Poems' (IR8:) ;'A Roadside Harp) (IEO3); 'Martyr's Idyi and Shorter Poems' (1899): and in prose she has also published: 'Goose-Quill Papers' (188三): 'Brownies and Bogies': 'Monsieur Henri' (tsiga): '-t Little English Gallery': 'Lovers' Saint Ruths': 'Patrins' (1897): 'The Seceet oi Fougereuse' ; etc. She has edited an edition if Hangan's poems.

Guinness, SIR Benjamin Lee, Irish philanthropist: b. I Nov. 1\%o8: d. 19 llay trus. He was a member of the great Dublin brewing ñtm, the largest in the world. In 186 - 8 he was 11 . P. ior Dublin. He restored St. Patrick's Cathedral. Dublin, at a cosi of $\$$;00.000. His busimes in ise was placed in the control of a limited liability company, employing 3,000 persons and having a capital of 66.000 .000 .

Guinness, SIR Edward Cecil, Irish philanthropist: b. 10 Nor. 184\%. He was the son of Sir B. L. Gumnes: (q.v.). In ISg1 he became Baron Iveagh. He cave $\$ 1.250 .000$ for the purpose of erecting sanitary dwellings for working people at a low rent. Oi this sum $\$ 1.000 .000$ was to be given to London, and the remainde: to Dublin. The income obtained on the capital is to be empleyed in the same iashion.

Guinobatan. şē-nō-bā’tān. Philippines, a town in the province of tmbos Canarnne:, island ci.Luzen, on the Quinali Ruver. Pop. 10.000.

Guise (qū-ēz or sèz) Family. The. French ducal house. a branch of the family of Lorrame. The isunde: was Claude, a youncer s:n oi René 11., duke of Lorrame. who in tion berame naturalized in France, and in 1513 niarried A:1toinette de Bourben, the daughter of the C unt of Vendeme. In his favor the county of Guise (ne (i ha- numercus possessions in France) was eeceted in 1528 by Francis 1 . into a duchy He deed in $1 \equiv \equiv 0$. leaving behind him five daugh-ter- the vident (f whom. Narie. narried lames V. i Se lard. and wa: the mether of Mary. queen if Serta) and six sons - France is, who atcceeded him in the duchy oi Guise and his Rhe: digmties: Charles iusualiy hrown as Cardinal (i Lerraine). Louis (Cardinal of (i.n ec. Caude. Françi., and Rene, ala perwins "i Nute The i mily acqured great poltucal imge reance en the aicession of Francis II.. who w. me rred : Mary, queen of Scots. Francois, the weond dukie of Guise. was assassmated is 1:03. and leit three sons, Henri who inlerited lis iather's titles; Louis, cardinal of Lorraine and archbishyp of Rheims (bnth put to dea:h in 1583 on the cimmand of Henry 111.); and Charles, duke of Mayenne. Henri, third duke
of Guise, was succeeded by his son Charles, who died in Italy in 104c, and was succeeded by his second son Henri. Henri died wathout issive in 1664, when he left the title to his nephew, Louis Joseph, duke of Joyeuse and Angouleme. His son and succesor, François Joseph, died in 1671, leaving only one son, who died at the age of five in 1675 , when the direct line of the house of Guise became extinct. In 1704 the title was revived for the house of Condé.

Guise, France, a town in the department of Aisne, on the Oise, 25 miles by rail northeast of St. Quentin. It is an ancient city, mentioned as early as 1050 , and has interesting remains of the 16 th century castle of the famons Dukes of Guise. The town is noted for the ironworks of Dequerème et Cie founded by Jean Baptiste André Godin, and conducted on a profit-sharing plan. The workmen are provided with dwellings on the associated plan; the first portion of the familistire was erected by Godin in $1859-60$ at a cost of $\$ 400,000$. In connection with the workman's colony is a phalanstere, or common dwelling-house accommodating 400 families, a theatre, library and reading-room, schools, nursery, covered playgrounds, and a co-operative store. Pop. (1901) 7,300 .

Guitar', a stringed musical instrument, with an oval body, and a neck like that of the violin. The modern or Spanish guitar has six strings, the three highest of gut, the three lowest of silk covered with fine wire, and tuned to the E in the second space of the bass staff, A, its fourth, and the treble D, G, B, and E The intermediate intervals are produced by bringing the strings, by the pressure of the fingers of the left hand, into contact with the frets fixed on the key-board. while those of the right pluck or twitch the strings. The Spaniards are supposed to be the inventors of the guitar, and it is most widely used in Spain, though its use is quite general in other countries.

Guiteau, gè-tō', Charles Julius, American assassin: b. about 1840; d. Washington, D. C., 30 June 1882. He became a lawyer in Chicago, and in 1880 , after the election of James A. Garfield to the presidency, went to Washington. presumably to secure the office of United States consul at Marseilles, but did not succeed. Owing to this and the fact that the new President was opposed to the Stalwarts, led by Roscoe Conkling, Guiteau became greatly incensed. On 2 July 1881, he shot the President in the waiting room of the Baltimore and Potomac Railroad station in Washington: and on 19 Sept. the President died from the effect of his wound. Letters taken from Guiteau after his arrest showed that he had planned to "remove" the President. He was indicted for murder on 7 October, was found guilty on 25 Jan. 1882 after a sensational trial in which insanity was the only plea offered for the defense, and was hanged in the District of Columbia jail. 30 June following. See Garfield, J. A.

Guiuan, gé'wän, Philippines, a pueblo of Sámar, on the extreme south coast. is miles southeast of Catbalogan, having a good harbor. On the edge of a reef near the town are several sulphur springs, which though covered by the sea at high tide, are never brackish. Pop. t t. 300.

Guizot, François Pierre Guillaume, iranswä pē-är gê-yōm gè-zō, French histortan and statesman: b. Nimes 4 Oct. 1787 ; d. Valncher near Paris, 13 Sept. 18 j4. His father, a lawyer, having in 1794 perished by the guillotine, his mother and her three sons retired to Geneva, where François was gratuitously educated at the gymnasium. In 1805 he commenced the study of law at Paris, but gradually drifted inte the literary profession. In 1812 he married Mile. de Meulan, editor of the 'Publiciste,' and became professor of history at the Sorbonnc On the fall of the empire he obtained severai public offices, such as councillor of state, and director-general of the departmental and communal administration. In 1816 he published 'Du Gouvernement Représentatii et de l'Etat Actuel de la France,' and 'Essai sur 1.Instruction Publique.) In 1820 the Duc de Berry uas assassinated, and Guizot's party fell before an ultra-royalist reaction. In 1825 he lost his chair on account of the political character of his lectures, but regained it in 1828. In 1829 he again became councillor of state, and atter the July revolution was appointed minister of the interior, but resigned in 1831. After the death of Périer. Guizot, along with Thiers and De Broglie, formed a coalition ministry, and rendered great service as minister of public instruction. He became ambassador at the British court in 18 80 , and next year was the real head of the government of which Soult was the nominal chief. He retained the office of minister of foreign affairs until 1848, and during that period opposed all measures of reform. After the fall of Louis Philippe. Guizot escaped. Hed to England and though he returned the next year he henceforth practically retired from public life. Born of a Calvinist family, he always remained a stern Protestant of the orthodox type, although he zealously supported the temporal anthority of the pope. Among his numerous works may be mentioned. 'Histoire de la Civilisation en France' (1830) ; 'Histoire générale de la Civilisation en Europe' (1828): 'Histoire de la Civilisation d'Angleterre) (I827): 'Washington': 'Discours sur la Révolution d'Angleterre': (Méditations et Etudes Morales'; '(Guillaume le Conquérant'; 'Némoires pour servir à l'Histoire de mon Temps' (I858-68): 'Méditations sur l'Etat Actuel de la Réligion Chrétienne' (I865): (Mélanges Biographiques et Littéraires': 'Histoire de France Racontec à mes Petits Enfants' (1870) : etc.

Gujarat, gŭzh-rät', or Guzerat, India, a region bordering on the Arabian Sea. comprising part of the northern section of the presidency of Bombay and some native states. Area of the whole, about 70.000 square miles; pop. about 11,000.000.

Gulf of Saint Lawrence. See Satisr Lawresce, Gulf of.

Gulf-stream. See Cerrents, Marine

GuIfport, Miss., city in Harrison County, on the Gulf of Mexico, and the Gulf \& Ship 1stand and the Louisville and N. RR.'s. Culfport has grown in 5 years from a seacoast hamlet to a thriving city. The keynote of its success is the fact that it has one of the best harbors on the Gulf of Mexico. Prominent among its public buildings is the "Great Southern" lotel, with its 250 rooms. intended as a winter resort for Northerners and as a s:mmer

GULFWEED - GULLS

resort fur the people of the South, especially those of New Orleans. It is situated directly on the shore and is undoubtedly the finest resort hotel between Tampa and New Orleans Other prominent buildings are the county courthouse and those of the First National bank and of the Guli \& Ship Island railroad. The latter is used jos the offices oi the company. The First National bank is now the largest bank in the State of Mississippi, having a capital of sze0.000. The most important manufacturing plant are oil and fertilizer jactories, the Guliport Packing Company and the shops of the Guli \& Ship Island railroad. There are. also, numerous smaller concerns, such as iron foundries and wood-working plant: Pop. (1900) צ.020: (1903) 3.500.

Gulixeed, a genus (Sargassum) oi seaweeds of the sub-order Fuiaria. which grow in deep waier along all warm coasts, and becoming tasily detached. are found floating in immense quantities in the middle of all oceans. where they accumblate in rast eddies. as it were of the oceanc currents. The North Atlantic species (S. baccifietum) is the best known, and takes its popular name from its presence in long yellow lines in the Guli Stream: and its specinc name ircm the berry-like appearance of its airressels. The frond is very long, and is iurnished with distinet, stalked, nerved leaves, and smple axullary stalked air-sessels: and its structure approaches that of the higher plants. Where the Gait Stream is deflected irem the banks of Vew oundland eastward, and sends off its more southern branch toward the izores, is sutuated the Sargasso Sea, "that great bank of weeds. Which so vividly occupied the imagination of Cliristupher Columbus, and which Oviedo calls the seaweed meaduws' (Humboldt). The quantity of thoating seaweed is often sthch as $10 \mathrm{im}-$ pede the progress of shins. Ifultitudes of small marine animals accompany it. With fishes ready to prey on them, constituting a distinct and considerable iauna. The guliweed is eaten in China, and in other parts ci the East aloo it is used in salads and as a pickle.

Gulick, John Thomas, American clergyman: b. Kauai, Hawaii, 13 March 1832 . He was graduated at Williams College in 1850 , studied theolegy at the Union Theological Seminary, went to China as a missionary, and subsequentiy to Japan. He is a well-known writer os tepic: retating to evolution and natural he tury. He contributed to the 'Journal' of the Linnean S ciety of Lond n: The Diret-nty ci Erolution mider One Set ai External Conditions' (18 - 2): 'Divergent Evinlutio: Through Cumulative Scgregation' (\&N゙ー): 'Intemsive Segregatirn' (isen): and other monographs.

Gulliver's Travels, a famous satire by lonathan swit anemyouly publs:hed in 1727 It is one of the mist brilhant and proiound of satures, became immediately prpular, and has never hot its interen for both youne and old. It begins with Ginlliver's account of himseli and ho setting i rth upmon the travels. A vident serm off Van Diemen's Land drives him, the one survivor, in Lilliput, where he is exammed with curmsity by the tiny ioll. Ifis next voyage is to Bendxingnag, where he is a Lilliputaan in comparion to the size of the glgantic inhabitants of this strange land, in
which he becomes a court tor. The next adventure is a royage to Lapura, where the inhabitants are absorbed in intellectual and scientific nursuits, and "taken upp with intense speculation:.' and their conduct is most eccentric: this is prubably a satnre upon perdantry. The last voyage takes the traveler into the country of the Houshnhnms, where the horses under this name have an ideal government.-Swift's Itopia- - and are immensely superior to the liahoos, the embodment of bestial mankind.

Gulls, a large group of sea-birds found throughout the world and constituting. together with the terns (q.w.). skimmers (q. $\%$), and skuas or jaeger-gulls, the family Larida (q.w.). Some 53 specses oi gulls are kmown. ranging in size from that oi a pigeon to that of a goose. The prevailing color is pure white below and pearl gray above. while some species have a gray or blackish head. and a iew are dull gray all over. The young birds of all species are dusky during the first year. They walk with tolerable ease, and swim well. but are incapable oi diving. They keep much on the wing, and their flight is rapid. strong, and long sustained, even in heary gales. In sitting they contract their necks and rest onl one foot. They mest along the shores in the grase. on rocky clifts or rarely in small trees, ifrming the nest of dry grass, sedges. etc. and invariably in colonies, creating a great uproar when their nesting-grounds are visited. The wild claracteristic note is, in the bigger species, harsh and querulous. in the smaller a "lauglring" or screaming: the lesser skuas give vent to a curious mewing cry and the great skuas to a similar but deeper sound. At the breedingquarters :he utterances are maturally more agitated and shrill, and the parents hang excisedly above a risitor's head. "The food." says Evans. "consisis mainly of fish. mollusks, crustaceans. and worms, but is varied in the stronger forms by small mammals, young birds, and eggs: the great black-backed gull undoubtedly attacks lambs and weally ewes; carrion is not uncommomly devoured: and Larus macmlifennis acts as a scavenger at Buenos Ayres besides clearing the coumry of grasshoppers. and robbing the Cayenne lapwing of its insect booty. Skuas give chane to their smaller kin, and force them to disgorge the fishes they have just caught. while even solan gcese are sometimes victimized: Lorus scopulinus. moreover, which robe the oy-ter-catcher of New Zealand, is a further instance of parasitic habits. Insects and their l?rvie, turnips berries, and grain are also eaten hy these onmivorous but nseinl creatures."

Nost gulls are migratory and scatter far al ng the coasts during fall and winter in search of inod. On the castern coast of the Lnited States are rive species. The large herring-guli (larus argentaius) breeds on the coast oi Jaine and winters t t the southward, being abundant alout all harlmos and along fidal fivers irom October to April. Sscociated with them are sometimes seen the larger black-backed gull (L. marinus). In summer are present the smaller hlack-headed or laughing gull (L. atri(illa) which nest plentifully on the saht marshes of the Middle and Southern States. The Bonaparte": and ring-hilled gulls (L. philadelphis and l. delatarensis) breed on our northern coar- In the interior Franklin's gull (1. franklini) inhabits the lake sloores and marshes of
the upper Mississippi Valley; while on the Paeffic coast occur several other species. In the arctic regions the most abundant gull is the great Burgomaster (L. glaucus), one of the largest species, which wanders some distance southward in winter. Two other species peculiar to the far north are the pure white ivory gull (Pagophila alba) and Ross's rosy gull (Rhodosteflita rosia). The latter is one of the rarest of birds and one of the most beautiful, the whole under suriace being suffused with pink and the neck surrounded by a dainty collar of gray. It has been seen in numbers only by the arctic explorers Alurdoch and Nansen. The Kittiwake (Rissa tridactyla) is another species of circumpolar distribution, peculiar in lacking the hind toe. Several of these species are known on the coasts of Europe or Asia; and the gulls of other parts of the world present little that is peculiar. Large areas of coastal beaches and islands iormerly inhabited by gulls in various parts of the world, but especialiy along the eastern coast of the United States. have been wholly depopulated of these beautiful and useful birds by the incessant robbery of their nests for the sake of the eggs-which are conical in form, and white or greenish, heavily blotched with purple and brown in color;-or for the sake of their plumage to be used in millinery trimmings. Protective laws now prevent this waste of life.

Consult Eyans, 'Birds' (igoo): Coues, 'Birds of the Northwest' (1874) ; Baird, Brewer and Ridgway, 'North American Water Birds' (1884).

Gum Arabic, a gum of the Acacia arabica, which grows in India and Arabia. Gum arabic can be obtained also from t'achellia farnesiana of India, a small tree closely allied to the true acacias. Gum arabic occurs in transparent white tears, which are often colored yellow or brown by impurities: it cracks on exposure to the air on the surface: it is brittle, and has a bland. mucilaginous taste. It dissolves in water, and the solution gives a precipitate of arabin on the addition of hydrochloric acid. Gum arabic contains about 70 per cent. of arabin, $2 \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{5}+\mathrm{H}_{2}$ O, and 17 per cent of water: the rest consists of potash and lime, which are combined with the arabin.

Gum-boil, an abscess in the gum caused by inflammation, generally the result of toothache or of the presence of decayed teeth. The carious tooth or stump, if the inflammation proceeds from this canse, should be removed. When matter has formed it should be evacuated by a free incision, and the mouth should be frequently washed with tincture of myrrh and water. See Dentistry; Teeth.

Gum-resins are complex mixtures obtained from plants. They contain both a gum, which is soluble in water, and a resin, which dissolves in spirit. There are usually present in addition essential oil, coloring and extractive matter, and a variety of impurities. The gumresins have frequently a strong and characteristic taste and smell. They are solid, opaque, and brittle. The common gum-resins are aloes, ammoniacum, asafotida. euphorbium. galbanum, gamboge, myrrh, olibanum, opoponax, sagapenum. and scammony.

Gum-trees, a name for several different trees: (i) those of the Australasian genus

Eucalyptus (q.v.) ; (2) in the United States, the pepperidge or tupelo, various species of which are called black, sour, cotton-gum, etc. (see Tupelo) ; (3) the liquid amber (q.v.).

Gumbinnen, goom-bin'nĕn, Prussia, the capital of a government with an area of 6,125 square miles. The town is on the Pissa, 22 miles by rail sonthwest of Edythulmen on the Russian frontier. It is comparatively modern, its municipal charter dating from $1 ; 22$. There are manufactures of woolens and linens, and a trade in cattle and agricultural produce. Pop. (1903) I 4,000 .

Gumbo. See Hibiscus; Orra.

Gumma, gŭm'a, a tumorous deposit that occurs in the tertiary stage of syphlis (q.v.). It affects most frequently the bones, cartilages, skin, and periosteum. They are made up of a hard connective tissue which tends to undergo softening. causing destruction of the part and deep ulceration if near the surface. The periosteum of the cranial bones is particularly liable to be affected, causing dangerous pressure on the brain.

Gumming, or Gumosis. See Diseases of Plants.

Gums, various mucilaginous substances, generally obtainable from the sap of trees. They are soluble either in cold water or in alcohol. Many aromatic products such as are employed in making perfumes and incense are to be classed as gums. Gum Arabic is the best known among such products. It is obtained from the Senegal Acacia in Western Aifica. There are no less than eight or nime varieties of this gum. Gum tragacanth comes from the Astragalus gummifer, in Western Asia. Cher-ry-tree gum, whose name tells its origin. is used for stiffening felt, as in hat making. There are some gums which might perhaps more properly be classed as resins, and are sometimes styled gum-resins: many of which are used in medicine.

Gun, a strongly-constructed metal tube, from which destructive projectiles are expelled by the gradually increasing pressure of gas evolved from fired gunpowder or other explosive. The term comprehends every description of frearm, from cannons, mortars, and other heavy pieces of ordnance. to the fowlingpiece, rifle, and pocket-pistol. See Arms; Artillery; Fire-arms; Ordnayce.

Gunboat, a term originally applied to small craft mounting usually a single gun, and cmployed exelusively in the defense of coasts and rivers. Experiences in the Crimean war suggested the extension of the use of gunboats, to offensive wariare. One of the main objects of a ship of war being to carry guns, it was thought that a vessel large enough to carry only a single gun of the largest size would, from the rapidity with which it could be mancurred, and its comparative immunity irom shot, inave great advantages in attack against large vessels carrying a heavy armanent, and requiring much room and time to maneurre. About 1860 the British government constructed about 200 gunboats upon this principle. They were about roo fect long. with 22 feet beam, and a draught at load-line of $61 / 2$ feet. Each was armed with one deck-gur a 68 -pounder, which, by turning on a pivot, could
be used etther ahead, astern. or in any other direction: while the lacility of manceurring was jurther enhanced by the rapidity with which the vessel irseli could be turned almost in her own length. Experience soon proved that there were serious defects in this species of armament. One of these was, that from being obliged to carry their guns constantly on deck the gunboats were liable to be top-heavy and untrustworthy in a heary sea.

A new gunboai was designed in England in ISOS by G. Rendel, the chief peculiarity of which was the placing of the gun on a platiorm, which could be raised to the deck or lowered to the hold by a donkey-engine. The gun did not turn on a pirot, the manourring being effected enurely by the turning oi the ressel. to effect which it was fited with twin-screws worked by independent engines. Other types of gunboat have since been constructed for the British nave One of a receut and poweriul type is 165 feet in length. with a breadth of 31 ieet. and a displacement of Sos tons. It draws 11 feet $7^{-1} 2$ inches of water, and has triple-expansion ensines, working up to 1.200 horse-power, with a speed of 13 knots an hour. It carries six 4 -inch steel breech-loading guns, besides iwo quickfiring guns and machine-guns. and is barkrigged. A number of what are known as norpedo gunboats have been consiructed for the British navy. One boat of this class is 200 feet In length. with a beam of 23 feet. and a depth ci is feet. It is built entirely oi steel, has a torpedo-rube through the bow and another through the siem in a icre-and-ait line, and one on each broadside forward. a 4 -inch 25 -cwi. central-piret breech-lozding gun. and six s-pounder, quick-firing guns. It has two sets of triple-expansion engines. working up to 2.700 hose-power. and enabling the ressel of 4 go tons io sieam oret is knots an hour. Several firitclass gunboats of a more recent type are twinscrew ressels. ISo rect long, of 700 tons disflacement. armed with two f-inch gins and Sou: 12 -pounder quick-firing gums.

In the C'nited S:ates the gunbeat nigured 10 a very considerable extent in coast and lake wariare in our first two wars. They were first used on the Delaware River, in $1 \% 5-6$. and drove ihe British irigate Reliance ont of the rands. In December iso, there were (o) if rhem in Conited States service, and the Congress -rdered ise more built, $a=$ an auxiliary to the embargo declared a iew days later, making $25:$ in al!. Improved ordnance has made them raluctess, and they had a bad cffect on the service. but there was strong opinion in their iaver at the time. and they did good ecrvice in the 11 ar of 1812 . The theory was that these snuwable batiernes could act in water where large serse's ectid not. wuld be entucentated against the latier so at in afford as large an armament, yet preent enly a number if small targets. whle their antag nist preicoted on'y one large (ne that sh, ts amed $[\mathrm{m}$) high would do no harm of gan ats. but would imjure mants and riccing of irigate-: that $1: s$ ci rudder and sail-
 shi, Co uid n. happen in the gunimatw, propelled ant stectel ! y sweeps: that nearnese in the na:cr levil gave the guns more accorate aim: and that $i s$ cumbat - ce uld be buile for the cost ci rne 3 (b)gun ingate.

In 1903 the United States navy had 20 oi the ordinary gunboats in commission and about 60 torpedo-bots and destroyers of the gunboat type. Great Brtain in 1902 had 33 iorpedo gunboats. Germany 3, and France 15. In most countries the gunboat has been superseded by modern torpedo-boats and destroyers.

Gun-carriage. or Gun-mounting. See Artillery: Fortification; Ordsance

Guncotton is the name originally assigned to the material produced by Schoenbein, of Basle. Switzerland. in is 45 by treating cotton with a mixture oi strong nitric and sulphuric acids. The discovery that starch, woody fibre, and similar substances give rise to the iormation of highly combustible bodies when acted upon by concentrated nitric acid is attributed to Braconot in 1832, and he styled the bodies so produced generically xyloidse. Six years later Pelouze took up this subject and extended his investigations to the behavior of cotton. paper and vegetable substances generally: and later Dumas prepared irom paper by this means the substance which he called niframidine. No practical result followed these observations until the discorery by Schoenbein of the adrantages which followed the use of the acid mixture: a discovery which was also independently made by Boettger. of Frankiont. in 1847 and by Knop, oi Hanover, and Taylor, of England, in $18_{4}-$. The discovery aroused the liveliest expectations which were stimulated by the facts that the explosive was much more poweriul than gunpowder and that when used as a propellant, it gave little or no smoke. Experiments and tests were begun shorsly after with the new explosive in Germany. France, Austria. England. Russia, and the United States with a view of utilizing it as a substitute for gunpowder in guns. C'niortunately the material, as manuiactured, was found io be not only so irregular in action that it was likely at any time to burst the piece. but also so unstable as to give rise to numerous accidents so that. especially after the serious and. at the time inexplicable explosions at Vincennes and Bouchet in France. and Faversham in England. the experiments were discontinued except in Austria, where Baron son Lenk gave the matter close and long-continued study and came to the conclusion that the grave defect: noted were not inherent in the material. but were duc 10 the imperfect and irregular methods of manufacture the failure to purify the coton heiore treatment with the acid, and the failure to purisy the guncotton and iree it completely irom acids aiter treatment. Following these convictions he improved the method of manufacture i) such an extent that in 1862 the Austrian army had 30 batteries provided with sumcoton cartrides made up by twisting the fibre into yarns which were braided iogether, but the spontanee us explosions at the masazime at Simmering in IShz and at Steinteld in 1865, together with the fact that the guncotion cartridges still gave ai unexpected times abnormal pressures Fid in it: iurther use in Austria being interdicte. 3.

Iin Lenk's process of manufacture was patented in England in 1862 and the Prentice Brithers legan manuiacturing under this process in intit In 1 Sos tbel patented an improvement of the process which was so successiul in use that it gave guncotton a prominent and
permanent place among explosive substances, and this process is followed to-day. The cotton when treated with the acid is in the fibrous condition which so well characterizes it, and ander the microscope these fibres are seen to be hollow so that each is really a capillary or hair-like tube. Von Lenk had shown that cotton contains not only cellulose as the main component of its structure but that there were smaller and variable quantities of other substances naturally present besides foreign bodies accidentally present, and that it was necessary to get the cellulose in a pure and dry condition before treating it with acid. He, too, with others, had proved that the purity, strength and proportions of the acids used and the time and temperature of immersion of the cotton in the acid mixture affected very materially the character of the substance produced, while it was essential that every trace of free acid should be removed from the product, since a most minute quantity of sulphuric acid acts continuously and cumulatively on the guncotton and causes a progressively increasing rate of decomposition. Yet von Lenk and all others up to this time produced the guncotton in the same long staple form as the cotton from which it was made. It was evident to Abel's mind that as the dry cotton was immersed in the acid mixture the capillary tubes, of which it was composed, would suck up the liquid acid and retain it with such force and in such a manner as to make its removal by wringing, or washing with or in water or by neutralization with alkalies, extremely difficult and uncertain, and to remedy this Abel proposed to pulp the guncotton through which the fibres would be cut into such short lengths that the acids could be completely and readily removed from the interiors of the tubes while furthermore this pulped material could by molding and pressure be shaped into any desired forms and dimensions.

Abel's process for the manufacture of military guncotton as carried out at the United States naval torpedo stations was as follows: The cotton nsed was what is known as "cop" or weaver's waste, which is the tangled clippings from the spinning room of a cotton mill; the thready form of this material being preferred to the fluffy form of the unworked cotton. This was first hand-picked to remove the larger foreign bodies present and to open out after baling. It was then boiled in 200 -pound lots in caustic soda solution to remove grease, oils and the incrusting substances on the fibres, then wrung out in a centrifugal wringer and dried in a heated closet. It was then put througli a cotton picker to open up the fibre and remove foreign bodies which had been overlooked in the hand-picking, and was then dried in a second closet at $225^{\circ} \mathrm{F}$. until it contained not over one half per cent of moisture, when it was stored in snall lots in hermetically sealed metal vessels to cool. It was then dipped in lots of one pound each in 150 pounds of acids, consisting of part by weight of nitric acid, I. 5 specific gravity, to 3 parts by weight of sulphuric acid. i. 845 specific gravity, contained in a large iron trough about which cold water circulated so as to maintain a temperature of $70^{\circ} \mathrm{F}$. throughout the dipping. The cotton was plunged rapidly under the acid, allowed to remain immersed for so minutes, removed to a shelf above the acid dipping trough, where
it was squeezed to remove the excess of acid, and then at once transferted to a two-gallon crock made of acid-proof earthenwarc. As transferred to this digestion crock the cotton carried with it from 10 to 12 pounds of the acid mixture, and by pressing the mass down in the crock with an iron tool, the colton was forced to the bottom and covered with a layer of the acid mixture which was squeezed from it. The crock was then covered and placed in a wooden trough where it was partly surrounded with cool water, which was kept in constant circulation, and where it was allowed to remain, so that the cotton could "digest" the acid, for 24 hours. Then the contents were thrown into a steel centrifugal wringer by which the greater part of the acid was removed. The guneotton was then thrown into a tub holding 800 gallons of water through which a large stream of water was continually flowing and in which a large paddle-wheel was in revolution so as to very quickly bring the acid guncotton into contact with so large a volume of cold water as to prevent its becoming heated. The guncotton was then boiled twice for eight hours each in a dilute solution of soda, wrung out and washed with fresh water and put in the pulper. This was an ordinary "beater," "rag-engine," or "Hollander," such as is used in the paper-making industry, and the guncotton, suspended in water, was subjected to the action of the machine for two days in charges of from 300 to 350 pounds. where, by the shearing action of the knives, the fibres were cut into short lengths and the guncotton was reduced to the fineness of cornmeal, and mixed into a pulp with the water present. This was drawn into a large tank, known as the poacher, where the powdered guncotton was allowed to settle and the supernatant water drawn off. Fresh water was added and, by means of a revolving paddle in the poacher, the guncotton was mixed with it and washed by it, and this washing was repeated six or seven times until the chemical test of a sample showed that the acid had been completely removed. Then it was treated with a solution of lime containing a small quantity of caustic soda and also of precipitated chalk, and the mass was ready for molding.

As shown above the first use to which guncotton was put was as a propellent in guns, and Abel devised means for making powder grains from the pulped guncotton, but he soon pointed out the advantages which it possessed, when compressed, for use in military and naval mines and torpedoes and for enginecring operations in times of war, and these are the chief uses to which it has been put. To compress it the alkaline solution from the poacher, containing the finely divided guncotton in suspension, was pumped up to a stuff-chest, which is a cylindrical tank containing a vertical shaft armed with paddle-blades which, by revolving, keeps the guncotton in suspension. From here, by means of a wagon, the pulp was run into a hydraulic press where it was subjected to a pressure of 100 pounds to the square incly and thereby molded into blocks. These blocks were then transferred to another press where they were subjected to a pressure of from 6,000 to 6,8oo pounds to the square inch. As made at the United States naval torpedo stations the blocks from the molding press were prismatic, with the vertical edges chamfered, 2.8 inches in
diameter by $\Xi \div$ to ξ^{1} = inches high, with a circular hole :2 inch in diameter, produced by a mandrel in the press. running vertically through the centre of the prism. After final pressing the blocks were 2.9 inches in diameter by 2 inches high the hole remaining practically unchanged, and they still contained from 12 to 16 per cent of water, thongh as sent out into the service as "wet guncotton" they were soaked in water until they contained 35 per cent. In the final press by means of sieel dies. inscriptions in letters and figures, such as the place and date of manufacture and factory lot. were placed upen each block.

In the fibrons condition suncotion appears like the cotton from which it is made, but it has a harsher feel and it becomes electrinied by friction when dry. When dry if rubbed in the dark it becomes phosphorescent. Inder the microscope by polarized light it exhibits colors. while cotton is colorless. Pure suncoton is without odor or taste and is insoluble in water. The gravimetric density beiore pulping is o. 1. atter pulping 0.3 . and after compression irom 1.0 to 1.3 . but br excessive pressure it has been raised to $1+$ The real specinc gravity of guncotton is 1.5 . When dry. compressed suncotton is detonated by inserting a detonator in the hole in the block and firing it. Wet suncotton is de:onated by the detonation of a block of dry guncotton fired in contact with it. The violence of the explosion of guncozton when thus detonated is comparable with, if not supericr to. that of mutroglycerin. Dry guncotion may be set on fire and, when compressed, it burn so slowly in the open that the fire may be exti: guished by pouring water upon it. Wret guncotton, thoroughly saturated whe water, can be shaped by a tool without taking fire or exploding. In forming the cylindrical and conical charges i. : the torpedoe thrown from the pneumatic cuns of the Lnited States steamship Vesurius at Santiago. the prismatic blocks above described were sawn with a band saw. rurned in a lathe and cut with chisels as wood is treated, hut care was used to keep the blocks and dust wet throughout the process.

Pure cotion is composed of cellulose having a Sormula which chemists believe to be sme muitiple of $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4}$. When it is acted upun by nitric acid or mixtures of nirric with sulpheric acid. under the proper conditions, cellulese nitrates are produced. ihrough. it is believed. the replacement of hydrogen atoms in the malecuie by NO: Eroup: thus inminy esters or organic salts. Views ditücr as to the number of cellulose nitrates existing tur, illowing lieille, who is the most widely accepted auth rity on this point. taking the formula of cellulose as $\mathrm{C}_{2} \mathrm{H}=\mathrm{O} \Rightarrow$ we may have the :ollowins:

Celiu	ose Nitrates	Percent of Niteogen	Weikht obtained irom Ccl ulase cal ulose
Cellulase	endecanitrate	13.47	1,64
Ceinulose	decanatrate..	12.75 1.96	169.4
celuose	enneantratc.	${ }_{\text {1 } 11.98}$	155.7
['e ${ }^{\text {c }}$ - ${ }^{\text {se }}$	heptanstrate.	10.18	1456
Cellu	hexarutrate.	9.15	191.7
ic ulase	pentantrate	8.02	13.6
Cel me	tetrasitatc..	6.96	12: 8

There are probably existing also isomers of many of the nitrates given in the table. Following their differences in composition these different cellulose nitrates have different properties especially as regards their solubility in organic solvents. Thus all except the endecanitrate, if properly made, are soluble at ordinary temperatures in a mixture of one volume of alcohol and two volumes of ether. Such cellulose nirates are called fyroryline, nitrocotton, scluble sumiotton, and collodion. cotton or gincotton. The decanitrate is also called pyrocillulosi. All the cellulose nitrates are by some called nitrocillutase. The material preduced by the Abel process described above is partly soluble. but nostly insoluble in the ether-alcohol mixture. and to this material the name guncolton or better militzry sumberton is applied. In additionto guncotton, the cellulose nitrates are used in the manuiacture of smokeless powder. explosive gelatine. pyroxylin plastics. pyroxylin varnishes. photographic films and collodion. For smokeles powders and explosive gelatine the deca- and enneanitrates are most largely used. For varnishes. collodion and photographic films the actonitrate is generally employed. And the heptanitrate. Which is of low nitration. is preferred for the pyroxylin plastics. This last nitrate may be made by dipping one pound of pure dry cotton or tissue paper in 100 pounds of a mixture of 60 parts of sulphuric acid, 15 parts of nitric acid and is parts of water, and continuing the immersion at $30^{\circ} \mathrm{C}$. ior 20 to 30 minutes. The acid is then wrung out and the nitrate washed and neusralized. The higher mitratc are made by using stronger acids. longer exposures and higher temperatures. In naking pyroxyline varnishes, which are largely used in coatirg metals, artinicial leather and in waterprooting. the pyroxylin is dissolved in ethyl acetaie, amyl acetate and similar organic solvents.

C $l l, c: n$, which is used in surgery, is made by placing 30 grams of pyroxylin in a suitable bittle, pouring upon it Fo cubic centimetre- of ether, cu-king the bottle and allowing the whoie to stand 15 minutes. Two hundred and fifty cubic centimetres of alcehol are then added and the bottle shaken until the pyroxylin is dis= Wed. On allowing to stand the solution becomes clear, and if poured upon a flesh wound the selvents evaporate and a continuous film of pyocylin is iomed which protects the wound from the air and which also, by contracting as it dries. brings the edges of the wound together. Suhitances such as cantharides, tannic acid and the like. by which to produce blistering, styptic and other effects. may be added to the collodion. See Explostres.

Charles E Muxroe.
The C lumian C"miersity, U"ashington, D. C.
Gunnery is the science and art of using sums. As a science it treats primarily of the motion of projectiles. and has threc branches. "interior hallistics." 'exterior ballistics." and 'effects of proiectile: ${ }^{\circ}$
"Interior hallstics" considers motion within the stin, and seeks to determine the fluid pressure caused by the combustinn oi a given charge ni pewder and the velocities thereby imparted to the proiectile and to the gun itself.

From the middle of the 1 th century until some 20 years ago. a practically unchanged mixture oi nitre, sulphur. and charcoal, called gun-

GUNNERY

powder, was uniwersally used as the propelting agent in firearms. At first, as the name implies, 1: was used in the form of dust; later the superior effects produced by granulation were discovered, and a powder in the form of small irregular grains was used in all kinds of guns; early in the roth century powders were divided into two classes, the finer-grained "musket powder" being used in all shoulder pieces, and the cuarser "cannon powder" in all artillery: about 1860 Gen. Rodman, U. S. A., proposed and developed the manufacture of powders of regular granulation and very large grains for use in the 15 - and 20 -inch smooth-bore guns; with the advent of large rifled camnon, the practice became general of molding powder into separate grains of a size and density suited to the particular gun in which it was to be fired; a slower burning gunpowder, called brown, or cocoa, powder from its color, and made from underburned charcoal. next came into use for large guns; and, finally, the discovery that the high explosives can, by suitable treatment, be made to burn progressively in guns made smokeless powders practicable, and these have now entirely superseded gunpowder.

The explosion of the powder charge of a gun begins with "ignition," which is the setting on fire of a portion of it ; "inflammation," or the spreading of the fire from grain to grain, throughout the charge, follows; and "combustion," or the burning of each grain from surface to centre, completes the phenomenon. Meanwhile the gaseous products of the combustion, filling the powder chamber, develop a fluid pressure which starts the projectile from its seat and gives it an accelerated motion along the bore. Evidently the gas pressure at any instant depends upon the quantity of powder consumed at that instant and the space which the products of its combustion occupy, and lhe latter depends not alone upon the volume of the powder chamber, but also upon the displacement of the projectile. It might well be thought that the periods of time required for the inflammation and combustion of a charge of gunpowder are so small as to be negligible, yet much of the superiority of modern over ancient ordnance comes from proper regulation of those time intervals. The ballistic power of granulated was much greater than that of dust powders because the interstitial spaces between the grains greatly increased the rapidity of inflammation, and the use of large charges of grained powders without inadmissible strains upon guns was made possible only by so diminishing the rapidity of combustion that the burning of the powder was not complete till the projectile had traversed a considerable portion of the bore of the gun. Robins, Hutton, and Count Rumford were the pioneers in the experimental determination of the force of fired gumpowder and in measuring, by means of the former's "ballistic pendulum," the velocities which it imparted to projectiles, but Rodman was the first to directly measure the pressures developed in guns by the explosion of their charges. In 1861 he published the results of experiments made for the United States government, and described his pressure gauge, a modification of which is still universally used for measuring powder pressures. The Rodman gauge consists of a piston contained in a small eylinder inserted in the gun wall so that the inner end
of the piston is exposed to the bore of the gun. while its outer end, which carrics a knife edge, presses against a disk of soft copper: on firing the gun the gas pressure forces the piston outward and the knife edge makes a cut in the copper which, by comparison with cuts made by known forces, measures the gas pressure which produced it. Rorlman measured the pressures in guns not only at the lottom of the bore, but at intersals to the muzzle, thereby determining the necessary thickness of metal to withstand them, and he showed that by making the size of the powder grains vary with the size of guns. their ballistic power could be increased without increase of strain upon their walls.

The first exhaustive investigations of the phenomena attending the explosion of gunpowder were those of Noble and Abel, communicated to the Royal Society in 18,4 and 1879. They measured velocities with the electric chronograph, and powder pressures with the Noble "crusher" gatuge, which differs from the Rodman gauge in using the extent to which a copper disk is shortened by erushing, instead of the dimensions of a cut, to measure the force. They found that the products of explosion consisted of 57 per cent by weight of solid or liquid matter and of 43 per cent by weight of permanent gases; that the gases, reduced to $32^{\circ} \mathrm{F}$. and atmospheric pressure, would occupy about 280 times the volnme of the original powder: that the pressure produced if the powder filled the space in which it was exploded was about 43 tons per square inch; and that the temperature of combustion was about $4000^{\circ} \mathrm{F}$. They also deduced formulx for the pressure at any point in the bore of a gun and for the work per pound of powder which its charge would do, both based on the assumption that the solid and liquid residue gave up its heat to the gases during their expansion: and these formula were very generally used until gunpowder was replaced by smokeless powders. it being only necessary to apply to the calculated work of any powder charge a "factor of effect" based upon experjence in order to predict with reasonable accuracy the muzzle energy of the projectile and thence to deduce its velocity. By far the most important and complete study of the questions of interior ballistics has been made by the engineers of the French "Service des Poudres et Salpetres" during the past 20 years, and it is to their experimental investigations that we owe almost all of the latest knowledge upon this suhject. Sarau was the first to take into account the progressive combustion of the powder charge under the varying pressure in a gun, and by assuming that the velocity of combustion is proportional to the square root of the pressure he deduced his now classic formulae for the muzzle velocity and maximum pressure resulting from firing a given gun with any given charge of a powder of previously established characteristics. He. like all previous investigators. assumed that the powder grains burned progressively from the surface in parallel layerc, but Vicille, by registering the movement of the piston of a crusher gauge while it was compressing a copper disk under the action of powder pressure, measured the rate at which the pressure was developed and, laving thus determined the law of combustion of various explosives, proved that progressive burning from the surface was a
characteristic only of the modern sinokeless powders and did not occur in the case of the older black and brown gunpowders in the forms in which they were actually used in guns. Vieille found that the velocity of combustion oi pure guncomon smwkeles powders was proportional to the two thirds power of the pressure, varying from about 1.4 inches per second under a pressure of two tons per square inch to about sis inches per second under 20 ions per square inch: while in the case of smokeless fowders containing from so per cent to 50 per cent of nitroglycerine. such as cordite and ballistite, the relocity of combustion was about ihree times greater and varied about as the five ninths power of the pressure. He also established the fact that the pressure cansed by the combustion of any explosive in a closed chamber
is accurately given by the expression $p=\frac{i}{y-a} 1$ in which \perp is the "density of loading" or the satio of the weight of the explosive to the weight of water which would fill the chamber ; f is the "force" of the explosive. varying from about 22 ions per square incls ior gunpowder, to as much as 6 ; tons per square inch for some smokeless powders; and a is the "covolume" of the explosive, having a value from 0.5 to 0.6 for gunpowders and not differing greatly from unity in the case of high explosives and smokeless powders

Notwithstanding his somewhat crroneous assumptions. Saran's formule gave very accurate results for sunpowder. and when put in the slighty modified form which iollows they are still the most reliable for u=e with smokeless powders As originally used. Sarau's formule contained jactors depending upon the form of the powder grain and its time of comlustion in iree air: but with smokeless powders these mas he displaced by a single iactor, namely. the "least dimension" of the grain, since with true progressive burning it is this. which. for any given powder. fixes it time of combustion.

These iormule, as modified. are
in which f° is muzzle veloctry of projectule in icet per second.
"is travel of projectile in the bore, and i is the calibre. in inches.
f is weight of proiscule. and at that of powder charge. in pounds.
s is volume of powder chamber, in cubic nelie:.
is the leart dimen-i r of the pows der grain, :a inches
P se maximum presoure in gun. in pu unds fer square : ch .
A. B, and \mathbb{K} are conntant , having the fol1. wing values as decermined $1 y$ experiment is r the gumouton amokelo- powder used in the United Siapes:

The f. 11 wing practical formule give approximately the changes in muzzle veloctiy and maximim presente id l° and $d P$) die to -mall chancen in the welght of projectile or, if finwder charg, (df and d :)

Similarly, the change in muzzle velocity, due to a change in the length oi bore, is $\frac{1 V}{V}=$ $k \frac{d:}{n}$ where k has a mean value of about five sixteenths, varying from thee eighths for slow to one fourth for quick powders.

Among modern practical ballistic instruments are Sebert's "projectile register" and "velocsmeter." The iormer directly measures the acceleration of a projectile during the first part of its motion is the gun, and thus determines the pressure on its base: but the difficuly of stopping the projectile in a butt without injuring the recording apparatus contained in it has prevented the estensive use of this device. The velocimeter is an apparatus for the simultaneous registering of the time and the distance moved by a gun in iree recoil. whence the pressure on the botrom of the bore is calculated.

Diagram 1 gives the information obtained by means ui the velocimeter from ilhe firing of a Linted States army $\delta^{\prime \prime}$ rifle. The projectile weighed 300 pounds: the charge was 52 pounds of a guncotion miroglycerine smokeless powder: and the total fecoiling weight was 34.573 pounds. Flie maximum pressure of 61.500 pounds per square inch was attained in $.00+5$ secnods from the begiming of motion, and at that time the gun had moved 0.20 inches to the rear, and acquired a velocity of 10.50 f.s.: while the profectile had moved $2,5,5$ inches and acquired a velocity of 1.1 is is The projectile left the muzzle in .01: second: with a velocity oi $2.0,2$ i.s., having traveled 2048 ; inches:

while at the same instant the gun had moved 1.n meher and liad a vel city wi $10 .-5$ f.s., and
the pressure had fallen to about 11,000 pounds per square inch. Spring gauges, capable of giving a continuous record of the varying pressures in a gun and registering them as the gun recoils, have also been successfully used in recent years. and diagram 2 gives the information obtained by such means from the firing of a French io c. m . (3.97 inches) gum. The projectile weighed 31 pounds. and the charge was 4.4 pounds of French guncoton smokeless powder. The maximum pressure of 18.6 tons per square inch was developed when the gun had moved o.I4 inches in free recoil, and the projectile 12.0 inches: when the projectile left the muzzle the gun had recoiled 0.95 inches and the pressure had fallen to about 5.3 tons per square inch.

It will be seen from diagram I that the relocity of recoil increases from about 20 f.s. to 25 ifs after the projectile has left the muzzle. This is due to the reaction of the escaping powder gases. If u and IF are the maximum velocity of free recoil and the total recoiling weight, p and i i being the projectile and powder-charge weights, and z^{\prime} the muzzle vejocty, then $" \|=a p+n a z$, wnere $n z$ is the mean velocity of exit of the powder gases. With gunpowders n has a value of alout three halves, but with smokeless powders it is probably somewhat larger.

The energy of rotation of the projectiles of modern guns is about 2 per cent of their energy oi translation, and is allowed for in ballistic calculations by a suitable increase of the assumed value of the weight of the projectile. About I per cent of the available energy developed by the discharge is absorbed in the recoil of the gun: from 10 per cent to 12 per cent is taken up in giving energy of translation to the powder charge itself: and about 5 per cent goes to heat the gun walls.

Extcrior Ballistics treats of the motion of projectiles after they have left the gun, and investigates the laws which govern their flight in air. The ancient artillerists supposed that the trajectory was composed of three distinct parts. of which the first, or "violent" part, was a straight line, the middle a circle. and the last, or "natural" part. again straight. Nicholas Tartaglia, who may well be called the father of ballistics, invented the quadrant for measuring a gun's angle of elevation, and in 1537 published a treatise on the flight of projectiles, in which he showed that no part of a trajectory is straight. and that the range increases with the angle of elevation up to 45°, where it is greatest. Galileo. who also neglected the resistance of the air, showed that the path of a projectile is a parabola with vertical axis. Newton, assuming that the resistance of the air is proportional to the square of a projectile's yelocity, demonstrated that the trajectory consisted of two dissimilar branches, one ascending and the other descending, and that the latter would become vertical if sufficiently prolonged. Rolins was the first to measure experimentally with any degree of accuracy the velocity of projectiles. In $1 ;+2$ he published his famous (New Principles of Gumery,' and described his invention. the "ballistic pendulum." which consisted of a heary bob suspended from a tripod and arranged to receive the impact of a projectile and to register the resulting swing: the velocity imparted to the bob by the impact could then be calculated, and theace, by the principle of the equality of the
quantities of motion hefore and after the impact. the striking velocity of the projectile could be determined. Robins measured velocities as high as 1,000 f.s., and determined approximately the loss of velocity due to air resistance for distances up to 250 fect from the gun: he also suggested using the gun itself as a pendulum and calculating the velocity of the projectile by observing the swing of the gun when it was fired, and Count Rumford soon afterward experimented with this device. Dr. Hutton made extended experiments in England from 1775 to 1791 with both the ballistic pendulum and the gun pendulum, but there was no further great advance in knowledge of ballistics until the French government experiments were made at Metz in 1839 and I8fo, from the results of which it became possible to rouglily construct trajectories and to calculate, by empirical formulie. approximate ranges and times of flight for any given elevation of a gun. In 1840 Wheatstone suggested measuring the velocity of a projectile by causing it to cut successive wire screens, each of which formed part of an electric circuit, and in following years many instruments for measuring projectile velocities by electricity were perfected, of which the Boulengé chronograph is to-day the most widely used. This instrument consists of two electro-magnets, the magnetizing currents of which pass through wire screens at a carefully measured distance apart in the path of the projectile. and from one of which is suspended a long cylindrical rod, called the chronometer, while from the other is suspended a shorter rod, called the registrar. A spring trigger carrving a knife edge is so arranged that when the registrar drops it strikes and releases it. causing it to fly forward and make a cut on the side of the chronometer. When released by hand the trigger makes a mark on the suspended chronometer called the origin: when the circuits are sinultaneously broken by a device called the disjunctor the chronometer and registrar fall freely side by side until the released trigger makes a second mark on the chronometer at a distance above the origin called the disjunctor reading: when a projectile is fired it cuts the first screen, releasing the chronometer, then it cuts the second screen, releasing the registrar, and thus a mark is made whose distance above the origin is the velocity reading: then the time of falling freely the velocity reading less the time of falling freely the disjunctor reading is the time it took the projectile to travel from the first to the second screen. and the distance between the screens divided by this time is taken to be the velocity of the projectile when midway.

The perfection of a means of accurately measuring the velocity of a projectile at any desired point in its path made it practicable to experimentally investigate the laws governing the resistance of the air. Bashforth, in extensive experiments (1865-70 and 18-8-80). showed that the resistance was proportional to the square of the projectile's diameter. and for flat, hemispherical, and ogival-shaped heads, varied in ratios alout as I.5. f.O, and .80: his earlier experiments, bowever, were vitiated by his use of studded projectiles having insufficient rotation for smoth Alight. Mayerski's deductions, published in T 883 , and founded upon Krupp's ex-
periments, are probably the most reliable. Expressing the retardation $\left(\frac{d z}{d z}\right)$ in the form $A \frac{d z}{5} \tau^{2} r$, in which d is diameter in inches, and u is weight in pounds oi the projectile, : is its velocity, and $\frac{d}{d}:$ nts retardation in f.s.s., he found the following values ior A and n :

These values of the consonants n and f are for projectiles having ogwal heads of two calibres radius, and ior a srandard condition of the atmosphere. For other conditions the retardation found as above must be multiplied by a coefficient of form (i), and by the ratio of the actual density of the air to its assumed standard density $\left(\delta=\frac{\perp 1}{\perp 0}\right)$. Thus we have for a general iormula $\frac{d \mathrm{a}}{d t}=\delta \delta \cdot \frac{d^{2}}{\alpha^{n}} i^{\prime}$, in whicls i depends upon the form of the projectile, and is unity for most modern projectiles, and δ depends upon the temperature, barometric height and humidity: and is unity ior ordinary atmospheric conditions.

Since the retardation is inversely proportional to $\frac{s v}{i d^{2}}$, that iactor, which is called the "batlistic coefficient" and denoted by C. measures the "ranging power" oi a projectile. W"ith spherical projectiles C could only be increased by increasing the calibre. but with rifled guns it became possible 10 greatly increase its value ior any calibre of gun by lengthentng the projectile and sharpening its point, and it is this iact which largely accomnt for the immense superinrity in ballstic power of rifled over smooth-bore guns.

Assuming that the axis of a projectile coincides with the tangent to its path, as is practically the case with modern rifled guns. the resultant action of the ressstance of the aur will likewise coincide with the axis and the tratectory will be the -ame as it the mass of the projectile were concentrated at its centre of gravity and moved under the action oi two forces, one the cuntant vertical force ni gravity ic, and the other the variable resistance $\frac{w d z}{g a t}=8$ $\frac{i \delta}{g}-r$ acting in the tangent. Under these circumbtances the difierential equation to the trajectory is readily whaned, and. though its furm prevent = direct integraton, its approximate solution ha- been effected by several dafierent methods, of which Sincti - is the simplent and the one almont universally uned. By shacci- methond the two co-ordinates. the inclimatmon, the tume. and the velocity at any poomt of the trabectory are gwen as functmin ni a new variable. called the piceudo-velocity. and. by means oi tahthated value of thoic function all the prollems of exterion hallistics may to accurately sol:eel.

As burn by Mayewti- inrmula. we may consuler the air rewiotance in le proportional on the -quare of the velocity, so long as the velocity
exceeds I.3-5 f.s., which is the case throughout the irajectories of modern naval and coast defense guns (excepting mortars), when they are fired at the moderate elevations with which alone they are practically used. Within these limits the equation to the trajectory in air, the gun being the origin, is $y=x$ tat $a-\frac{5 x^{2}}{2 y^{\prime 2} \cos ^{2} y}\left(1-\frac{2 i x}{3}\right)$, the first wo terms of which represent the trajec-

$$
\begin{aligned}
& n=2: \log A=6.119244(-10) \\
& n=3 ; \because \\
& n=5 \vdots \because .98083(-10) \\
& n=3: 6.8018+1(-20) \\
& n=2: \cdots
\end{aligned}
$$

tory in vacuo. and in which a is the angle oi departure of the projectile. I^{-}is its initial velocity, and k is the constant in the expression for the retardation $\frac{d z}{d s}=k^{2}$. Thus, for example, taking the case of a $12^{\prime \prime \prime}$ projectile of standard form, RSo pounds weight, and 2,800 is initial velocity; we have, under standard atmospheric conditions, $k=A \frac{d^{2}}{w}=\frac{d^{2}}{w w} \quad(6.119244-10)=.000021534$, and, supposing we wish to determine the proper angle of elevation for a range of 3.000 feet, putting $y=0$, we get $\sin 2 a=\frac{g \cdot J^{*}}{b^{\prime 2}}\left(1-\frac{2 k H^{*}}{3}\right)=0.012$ S; whence $a=2 z^{\prime}$. By the same iormula the elevation for a range of 15.000 fect will be found to be $2^{3}-09^{\prime}$. which agrees with the published range rable for the latest pattern Linited States naval I 2 -inch gun.

Representing the ratio of the range of any projectile in vacuo (P) to its range in air (\mathbb{J}^{*}) by n, so that n is the $\frac{1}{3} X$ of the preceding formula, it can be shown that n. while always greater than unity, cannot excecd 3. and that for flat trajectories the iollowing relations are quite approximately irue: the angle of fall (ω). which in vacuo equals the angle of projection (a, in air is given by fan $\omega=\left(z-\frac{1}{\pi}\right.$) fa: a; the ahsciasa of the highest point (S_{i}), which in vacto is hali the range (\hat{J}), in air is given by $x_{1}=x^{\frac{1}{3^{n^{2}}-3^{n}-1}-1} \frac{3 n-1)}{3}$ and cannot exceed 0.57 N : the time of flight (T), which in racuo would be $T_{1}=\frac{x}{b^{\prime} \cos a}$ or very closely $\frac{x}{b^{\prime}}$, in air is given by $T=\frac{2 .(3 \pi-2)^{\frac{3}{2}}-1}{\pi} \cdot \frac{1}{r-1}$, or still more roughly by $T=n \frac{X}{V^{\prime}}$, and cannot exceed
 would be the same as the initial velocity l°, in air is given by $U=\frac{\mathrm{r}}{\sqrt{3}-2}$ and cannot be less than 0.385°.

Experience shows that the projectiles oi riffed guns, when fired in a still atmosphere, deviate ir. in the plane of fire (a verrical plane through the axis of the gun) to a!n extent approximately proportional to the square of the time ni Aiglit and in the direction toward which the upper sirrface ni the propectile moves in its rotation. This devation is called "drift." and for all Linied Statcs guns is to the right, since they are so

GUNNERY

rifled that their projectiles, viewed from the rear, turn with the hands of a watch. With modern high-velocity guns driit is only important at very long ranges, being. for example, in the case of the 12 -inch rifle already cited about $\mathrm{I}^{1 / 2}$ yards at 2.000 yards range. and about 100 yards at 12.000 yards range. The cause of drift is that soon after the projectile leaves the gun the line of action of the air resistance ceases to coincide with the axis (on account of the curvature of the trajectory) and, meeting that axis obliquely between the point of the projectile and its centre of gravity. tends to raise the point, which action, combined with that of rotation, causes the point to move first to one side (the right for rightlaanded rotation), and then downward: this movement, by wiftue of which the axis of the projectile tends to describe a cone about the tangent to the trajectory, is called precession, and its result, in combination with the angular motion of the tangent caused by the curvature of the trajectory, is to keep the point of the projectile always on that side of the plane of fire toward which it was first deflected. Thus with right-handed rifling the projectile, during its flight. always points very slighty to the right of the plane of fire, and consequently the resistance of the air has a component normal to that plane which carries the projectile bodily to the right with increasing velocity.

For many reasons, among others the fact that the drift caused by rotation is affected by lateral wind pressure it is difficult to determine accurately the deviation of a projectile which will result from a side wind. Hélie's formula, $D=I^{\top} T-\frac{X^{\prime}}{r^{-} \cos \alpha}$ in which W^{\prime} is the velocity component of the wind at right angles to the line of fire, T is the actual time of flight, and $\underset{-1}{x}$ $\bar{r} \cos a$ is the time the projectile would take to traverse the range (\mathcal{I}) if its original horizontal velocity ($l^{\prime} \cos a$) remained unchanged, is usually relied upon: but, while reasonably accurate for light projectiles, it gives much too great results for modern projectiles of large calibre, especially at moderate ranges. Assuming that in the short time of flight the projectile can acquire but little lateral velocity, the wind effect is a practically constant lateral pressure, and the deviation caused by it will be $D=k \frac{W^{2} T^{2}}{d}$ in which. d being the diameter of the projectile, IV the wind relocity at right angles to the plane of fire. T the time of flight, and D the deviation, k will be a consonant whose value must be found by experiment. The increase or decrease in the range cansed by the wind is approximately $\Delta X=2 W T\left(\frac{\Gamma T}{A}-1\right)$, in which W is the relocity component of the wind in the plane of fire.

The Effects of Projectiles depend not only upon their own characteristics, but also upon the nature of the objects attacked. "Cannister," the balls of which spread on leaving the gun and rapidly lose their velocity, are only effective at ranges within 300 or 400 yards and against exposed men or very light vessels, such as torpedo boats. The "shrapnel." burst by the action of a time fuse. produces a cone of balls and fragments whose axis is the trajectory and whose angle of dispersion depends upon the violence of
the explosion, and cara be used effectively against exposed men at any range, provided the point of burst can be properly adjusted: with ficld artillery: which uses shrapnel alnost exclusively, it is usual to adjust the fuses with a view to causing the burst to nccur when the height of the shrapnel above the point of attack is about one two hundredth of its distance from the gun. "Common shell" are sometimes used like shrapnel, but as a rule they are fitted with percussion fuses to cause them to explode on impact, in which case they are effective against unarmored ships and fortifications, and against any structures not protected by armor sufficiently thick to cause them to break up without penetration. If made of steel, and with thick walls, a common shell may be capable of penetrating steel plating of a thickness equal to half its own calibre, but as a rule the shell walls are thin and the power of penetration much less than this. It requires a resistance at least equal to that of a quarterinch steel plate to actuate the fuse of a $6^{\prime \prime}$ shell, and after penetrating such a plate it will range to or 15 feet before bursting. The larger the shell the more the resistance required to burst it, and the farther it travels after impact before bursting. From the point of burst the fragments spread in a cone the angle of dispersion depending upon the relation between the velocity of the shell as a whole at the instant of bursting and the velocity imparted to the fragments by the explosion. The greater destructive effect of shell loaded with high explosives than of those loaded with gumpowder is primarily due to the much wider angle of dispersion of the former. "Armor-piercing shell" have been so perfected as to be capable of penetrating, unbroken and undistorted, a thickness of wrought iron or steel only limited by their striking energies. Against hard-faced armor, however, these projectiles require the aid of soft steel caps in order to penetrate even a moderate thickness without being shattered. The formula of Jacob de Narre, based upon French experiments, are considered the most reliable for calculating the velocity necessary for the perforation of oak, wrought iron, or homogeneous steel by projectiles of the usual form and of such quality as not to be broken or seriously distorted hy the impact. When a projectile is distorted, or is broken. by impact, the velocity necessary for perforation increases very rapidly with the amount of distortion, or the number of fragments.

These formule are as follows:

In which e is the thickness to be perforated and a the diameter of the projectile, both in inches; p is weight of the projectile, in pounds; and z^{\prime} is its striking velocity in feet per second.

For capped projectiles and Harveyized armor, the Davis formula, based upon experiments at the United States naval proving ground, is $v=\frac{e^{\cdot 5} a^{.5}}{p^{.5}}(\log 3.25312)$, and the same formula will serve as well as any yet proposed for Krupp armor, if to the calculated velocity be added from so to too f.s., the amount added increasing with the thickness of the plate.

The above iormuliz are all for normal impact. When the angle which the axis oi the projectile makes with a normal to the plate is less than 30°. provided the projectile remains whole, and if its velocity component normal to the plate exceeds the velocity required for perforation with normal impact. it will periorate the plate: with greater angles of incidence than 30° the projectile is deflected unless it very greatly overmatches the plate.

Experiments show that a projectile which will penetrate a distance unity into oak will penetrate slighty less than one hali into concrete, about one halt into good masonry, about three halves into sand. about four into common earth, and about seven into clay.

The Art of Gumuery is concerned with the actual use of guns, and primarily with pointing them so that when fired their projectiles shall hit the target. If a great number of rounds be fired irom a gun under as nearly as practicable the same conditions, and the impacts are received upon a vertical screen. the average of their distances above or below the mean point of impact is called the mean vertical error of the gun : their average distance to right or leir of the mean point of impact is called the mean horizontal error: and the trajectory from gun to mean point of impact is called the mean trajectory: Theory: as well as practical experience, indicates that only about 2 per cent of the projectiles fired will deviate irom the centre of impact more than three times the mean error, and with modern guns the mean errors are so small that we may reasonably expect practically all the shots fired on any occasion, from a stationary platform. and at a fixed angle oi elevatron, to strike whhn a vertical rectangle o feet high by o feet wide at a distance of 2.000 yards. It is only necessary, therefore, to poimt a gun so that its mean trajectory intersects the target at the latters centre in order to obtain a larce percentage of hits: the accomplishment of thts, however is not easy and constitutes the principal part of the gunners art. Guns are pointed by directing what is called the "line of sight' at the iarget. Originally the upper surface of the gun itself was used as the line of sight: this was called "sighting by the line of metal." and resulted in the gun having an clevation corresponding to the difference in thickness oi the metal at breech and at inuzzle, which elevation determined the range later a piece of wood or metal. called a dispart. was secured to the muzzle in as to give a line from breech to muzzle parallel to the gun's axis: sucll a line ui sight had to be drected more or lew alme the target accordme th the rance. Early in the last century the present method ot having one fixed and one morable staht. on il :t the line between them, which is the line ni sisht, can be adtusted at any desired angle with the axis of the gun. came into u-e. It i- cus:omary to make the sear sight the movable one. aid to put range marks on it so that if. fur example. It is set at the mark 2,000 yards, the angle between the line of sight and the axis of the gun st the angle of elevation necersary to give the proiectile a range ni 2.000 yards. Be-ides the movement of the rear sache up or down. to instire the ctin's havme proper elevation, it is also usual to have ne ean of moving it sidewiee, so that the lime of shght can be adjusted to make any desired small angle, in the horizontal plane, with the axis of
the gun. and thus the dritt of the projectile may be allowed for by causing the gun to point the proper amount to one side of the target at which the line of sight is directed.

If now gun and target are stationary, if there is no wind, if the air is of standard density, it the sight is set for the correct distance of the target, and so as to compensate for the driit at that distance. and if the line of sight is accurately pointed at the centre oi the target, then the mean trajectory will pass through that centre and the chance of hitting will be a maximum. The first dificulty is that the line of sight cannot be accurately directed, since to do so requires the eye to determine when three objects at diiferent distances (rear sight. front sight and target) are exactly in line: with the telescope sights now coming into general use this source of errot is practically eliminated. In the next place the distance is never exactly known: there is always some movement oi the atmosohere; the density of the air may readily be as much as 9 per cent greater or less than on the average: the target is usually in motion: and in the case of nava! guns the gun is always in motion. The skill of the gumner, then, consists, first, in estimating the total lateral deviation which will result from wind and motion of gun and target at right angles to the plane of fire, and pointing sufficiently to one side of the target to compensate therefor: and second. in so adiusting the eleration of his gun as to compensate for the vertical deviation due to wind and motion of targen in the line of fire, to angular motion of the gun ii such exists. and to abnormal air resistance. With modern guns. mounted on shore, where the platiorm is stationary and the distance of the target can be measured with comparative accuracy, the percentage of hits upon a target of ordinary size should be very large. even at long range, if the gunners are well practised. Under the conditions of naval actions it is not surprising that in the past the percentages of hits have been extremely small, and it is no to be expected that they will ever be large, at least during such parts of actions as are fought at long range.

Philip R. Alger,
〔̌. 5. .luad Acudemy, Annafolis.
Gun'nison. a river ni Coloradn formed at Almont by the junction of the Tayl r and Eait Rivers, flows southwesterly to Gummison, :hear Cimaron unter the Grand Cañon of the Gunnian 15 milus long, and cortinuing in a nort?wevterly diectiont past Delta umies with the Forand River at Grand lunction atier a con:-se n* nearly 200 miles. Sec C"scoxtruage Valley Po rect

Gunny, a jute (see JUTE) cloth, also a bag or sack. Gunny-bags are very largely exported irom Inda to various part: of the world. American cortun is largely packed in theie. They can be manufactured at a low price. hence the grcar demand for them. The name gunny is applicit tu the cloth as well as to the made-up bas:. Aby ut 1850 the peasant hand-iooms of Lower Bengal met both the home and the forcian demand for Indian-made gumny-bags - indeed the making of these was then the great dumentic industry of that portion of India. At the present tine the mumber made at the great seam-factories, of which there are now 23 in India, far exceeds what is produced
by hand-looms. For example, in one year 82,--79.207 gunny-bags were exported from India, of which only $5,000,000$ were woven by hand.

Gunpowder, ant explosive substance formed by mising saltpeter, charcoal and sulphur together. The misture may vary in composition between quite wide limits, and yet possess explosive properties; but the proportions adopted by the United States governmental authorities are saltpeter, 75 per cent ; charcoal, 15 per cent ; and sulphur, io per cent. The saltpeter used is the India saltpeter or niter, which is known to chemists as potassium nitrate, and although fonnd native as an incrustation on the soil in India it is to-day largely made from Chile saltpeter, or sodium nitrate, by reacting on the latter with potassium nitrate. It is carefully purified, finely ground and thoroughly dried for use, in the manufacture of gunpowder. The charcoal most suitable for gumpowder is that varicty which is mostly readily ignited, most quickly burned and gives the least quantity of ash. Such charcoal is produced from dogwood, willow or alder, by heating the air-dried woods in closed iron cylinders or retorts out of contact with air so that they undergo destructive distillation and leave the charcoal as a residue, this method of manufacture having been invented in England by Bishop Landloff and adopted in that country in 1797. The dogwood, which is really the alder-buckthorn, Rhamnus Frangula, is cut when one inch in diameter; the willow and alder when four inches; though these dimensions vary in practice. The wood is cut in the spring when in full sap, stripped of to bark and seasoned by an exposure of two to three years; the dogwood being stacked under shelter, but the other woods in the open so that the rain may wash the sap from the wood and the sun's rays and the air may destroy the spiral cells. The charring is effected by fires outside the retorts or by passing superheated steam or hot carbon dioxide gas through the retorts. The character and yield of the charcoal produced yaries with the temperature to which the wood is exposed and the time of exposure. When the wood is heated to $290^{\circ} \mathrm{C}$. red charcoal is formed; when heated to $350^{\circ} \mathrm{C}$. or above, black charcoa! is produced. When the heating is done quickly the yield of charcoal is much larger than when the leating is slow. Red charcoal is much more easily ignited and burns faster than hlack charcoal. Charcoal for the manufacture of gunpowder is ground to a fine powder by rotation in a drum with a quantity of brass or bronze halls. Sulphur of commerce is purified for use in this manufacture by fusion and distillation; being eventually obtained in the form of roll brimstone, which is then crushed to a fine powder by heavy rollers. It must be free from sulphuric and sulphurous acids, as well as solid impurities, and should consist entirely of that modification of suiphur which is completely soluble in carbon disulphide.

The dry, finely ground and sifted saltpeter, charcoal and sulphur are weighed into the mixing machine, which consists of a gun-metal drum arranged to make 40 revolutions a minute and provided with hollow bearings through which a shaft is passed which carries it arms or fliers of such length as to just clear the interior surface of the drum. This shaft revolves in an opposite direction to and with twice the speed
of the drum. After the ingredients are put in the drum the mixing is carried on for five minutes and then the mixture goes to the incorporating or wheel mill. The process of incorporation is of the greatest importance i. this manufacture. It consists in the long continued grinding together of the ingredients in order to mix them so intimately that the product appears to the maked eye as a homogeneous mass, for, unless this be done. complete reaction between the components of the powder by combustion cannot be expected. The finished gunpowder depends for its excellence largely upon the completeness and thorouglness of tic incorporation. The incorporating mill consists of 2 circular bed of iron or stone on which the mixture is placed. A vertical shaft rising through the centre of this bed carries a horizontal one, on the two ends of which heavy stone or iron wheels, called edge smmers, are hung. These whecls rotate about the horizontal shaft and, as the vertical shaft revolves, they travel at the same time in a circle around the bed so that, at the points on the bed where the edge runners touch, the motions of rotation and translation are converted into a twisting motion, like that of a muller, and the material beneath is thus overturned and very intimately mixed. The edge runners weigh from three to seven tons. are from four to seven feet in dianneter, and are so movable on the spindle that they can accommodate themselves to varying thicknesses of powder on the bed. One of the edge runners is a little nearer the vertical shaft than the other, so that they travel in different paths and they are followed by a scraper which throws toward the centre of the bed the material that has been forced to the exterior by the edge rumners. To incorporate, 50 pounds of the mixture are spread out on the mill-bed and slightly moistened and the wheels are set in motion. If the wheels are of stone weighing $3^{1 / 2}$ tons and making $71 / 2$ revolutions per minute, the incorporation is completed in $3^{r / 2}$ hours. If the wheels are of iron weighing 4 tons and making 8 revolutions per minute, $21 / 2$ hours are required for cannon powder. The operator does not remain constantly in the mill but goes in occasionally to wet the charge, from 2 to 10 pints of water being used in accordance with the weather. The chief danger from accidental explosions during the manufacture of gunpowder is found in the incorporating mills; fortunately there is less explosive material here at any time than there is at any other part of the works. To render the damage done by an explosion as slight as possible, the buildings in which these operations are conducted are built with a strong framework covered with light boards, or else with three sides of stone and the fourth and roof of light wood, so that when an explosion occurs the framework or the stone walls remain. These mills are usually built in groups, and to prevent an explosion in one being communicated 10 the others, cach is provided with a drenching apparatus which antomatically wets and protects the charges in the mills adjacent to the one which is blown up. The communication of fire or explosion is also arrested by means of barricades built about the mills which consist of masonry filled with earth, or simple earth mounds or sometimes wooden structures built in the shape of a letter A.

GUNPOWDER

When the incorporation is complered the mill cake. as the mixture is now called, is removed irons the bed and runners by means oi a copper chisel and wooden mallet. It is partly in the form of a compact cake and partly fine meal and in this condition it is put into the pres. This is a poweriul hydraulic press with a rectangular box which is divided into comparmments of the desired width by means of copper or gun-metal plates. When the spaces between the plates have been filled with mill cake. pressure is applied which causes the particies to cohere, and the gunpowder is taken irom the press in sheets hasing an area equal to that of the plaies and a ihickness dependent on the width of the filling space. the amount of the pressure appiied and the duration oi its application. Sometimes the press plates are corrugated like watile irons. as for instance, in the manuiaciure oi watile and of hevagonal powders, and sometimes they are replaced by a press block filled with m lds in each of which a separate grain is pressed. as in the manuiacture ci cocoa or prismatic powder. The operation of fressing is a most important one. since the density of the finished powder depends upon it and. as it is markedly affected by even slight changes in atmospheric conditions, it is a very nice one.

The press cake pasies to the coming of granulating machine, where it is cut into crains. This machine consists of a hopper into which the charge is ied, an elevating band, an endless revolving iable, four pairs oi rollers and several setsoi screens for sorting the grains according to size into boxes placed to receive each different size. The rollers, which are of gun-metal, are corrugated or provided with reeth, the upper tro being coarser than the lower. and they are adiusted to the size oi grain required. When the hopper has been emptied a clutch is relieved which stops the machine and at the same time rings a bell which notifies the operator of the iact for. as the machine is self-iceding, the workmen are not obliged to be present while it is at work. The grains are now ireed irom dust by passing through horizontal cylindrical seres such as are used in flour-mills and they are then clazed by rotation in wooden barrels where, by the friction of the crains against each other. iheir angles are rounded ofir and a hard polished surface is imparted to them whereby they become better able to bear transprimtion and are less likely to aborb moisture. Sumetimes the grains are coated with graphite which 1s put in the glazine barrel with thenn. Though but + ounces of graphite are used in 1.200 pound: of gunpowder it is considered objectionable for use with fine grain regulatien powder as it delays ignition anif fouls the piece, yet it improves powder to be used in fixed ammumition. in that it enables the grains in readiy pack c ise together. As more dust is formed during the elazine process the grains are again put through the dusting reels and are then exponed is a day in the drying house t, a iemperature of irom 125° to $t .30^{\circ} \mathrm{F}$. The ninished fowder 1: packed in i-poumd tins or 25 -pound kezs. though other sized packages are produced to some exient. According to the size or form or strueture of the grain sumpowde is known as uncoled flacder. sufirfini. devignated by the mark F.F.G.; fine gran. F G.: larke or coarse grain, L.G.; large gram inr rifles. R.L.G.; mam-
moth. pebble. pellef. "wbicul, hexagonal, spherodicxaginal. actite: Fassano or progressize, and Gica or brown prismatic poader. Mealed powder is in the form of dust and is used for driving fuses for ammunition and in pyrotechny. Fassano or progressive powder is jormed by pressing mill cake to a density of t.-g, then breaking this press cake into ${ }^{1}$ \& $t 0^{1}+$ inch grains. mixing these grains with a prescribed quantity of fine grain powder, pressing this mixiure to a mean density oi 1.06 and breaking this press cake into grains about $2^{1} 2$ inches square by $13 / 4$ inches thick. By this means a grain oi varying density was obrained which burned progressively. This ieature was introduced inio powder-making by Prof. R. Ogden Doremus oi lew lork, but was developed in Europe. Cocoa or brown prismatic powder is the nnal stage of development oi the ecmpressed periorated grain invented by Gen. Rodman of the Lnited States army. In experimenting with the ${ }^{15}$-inch and 20 -inch smooth-bore guns invented by him. Gen. Rodman iound that he could reduce the initial pressures. while securing the desired velocities, by using perionated disks of compressed powder which were oi a diameter equal to the calibre of the gun and between i and 2 inches in thickness. He styled this charge a "periorated cake cartridge" and in his 'Properties oi Metals ior Cannon and Qualities of Camon Powder.' published in Boston, Mass.. in 185n, he mathematically demonstrated that at the beginning such disks presented the minimum of iree suriace to combustion but as the powder burned there was a constant enlargement of the periorations. whereby the area of surface exposed to combustion was constantly increased and that thereiore the volume of evolved gases increased as the volume of the chamber, due to the travel of the projectile, increased, in consequence of which the pressure nas more uniormly distributed along the bore than it had been with the granulated powders hitherto emploved. Owing 10 difficulices in manufacture and use. Rodman later jound it convenient to build up his charges with perforated hexagonal prisms of comparatively small size. The Civil War prevented the further development of this novel idea ir powder-making in this country at that time. but a Rusian military commission, which visited the United Slates during the Civil War, was so impresed by what Rodman had accomplished, that nit it recommendation the manuiacture was taken up and carried on in Russia on an extensive scale. and it soon spread to other countries. Abmit 1830 Germany adopted cocoa powder, which was a brown prismatic powder with a single canal, the grains having the form of an f.exagonal prism, inch in height by 1.36 inches in diameter, and a density of 1.86 . This powder. however. differed from ordinary gunpowder both in the kind ni charcoal used and in the proportions of the components. The charcoal was underhurned or red charcoal made irom ree c:raw, and the eompmition was saltpeter So. 50 per cent, charcoal 16.00 per cent. sulphur 2.50 per cent, and mointure 1 per cent. Cocoa powder was so cuccessiul for use in modern higlı-powered risle cuns that it was sought for by all military mations and the want was met in this country by substituting for the rye straw charcoal red charcoal from wood and carbohydrates, such a- -igar, and this brown prismatic powder

President Armour Institute of Technology.
Chairman Advisory Board, American School of Correspondence.
was used in our modern large calibre guns until displaced ly smokeless powder.

Athough very great care is exercised in the manufacture of gumpowder, yet there are so many opportunities ior variations to occur in cach of the many steps of the process that even the best powder-nakers camot regularly produce powder that wilh always give the same pressure and velocity in the same gun. Since, in order to ensure aceuracy of fire, the successive powder charges used must possess the same ballistic properties this result is secured ly proving a number of iachry runs by firing trials and then mixing these together in the proportions required to produce the desired result. This process is called blending. It was practused by Renvenuto Cellini and lias been in vogue ever since.

Good black gunpowder showld have a perfectly uniform slate color and it should show no difference in color when crushed. If it is bluish or quite black it contains too much charcoal or is too damp, while the presence of bright points or bluish-white spots indlicates that the saltpeter has effloresced. If the powder soils the hand or a sheet of paper when run over them it contains too much moisture or else meal powder. On pressing the powder in the hand it should not crackle or be easily crushed and when crushed the grains should not fall at once to dust, but should first split into angular fragments. Three different densities are determined for gunpowder. each of which furnishes valuable information. These are the gravimetric density which is the weight of a unit volume of powder grains ineluding the air between and enclosed in them: the relative density, which is the weight of a unit volume of powder grains excluding the air between them but including that contained in the pores of the grains: and the absolute specific gravity, which is the weight of the powder exelusive of all air.

Since smokeless gunpowder has been perfected and adopted for use in guns of all calibres it has been declared that it would supersede black gunpowder altogether ; yet the census of the United States for 1900 shows that there were over 25.000 .000 pounds of black gunpowder made in this country in that year and the production bids fair to be large for many years to come. because in ordnance it is necessary to use a priming charge of black gunpowder with which to fire the smokeless gunpowder; because smokeless powder camot be efficiently substituted for black gumpowder in the older forms of small arms that are widely scattered over the country; becanse black powder is most suitable for use in fuses and in pyrotechny; and because smokeless powder is too expensive and inferior for use in saluting.

Gunpowder was formerly used in blasting as well as for a propellem, but usually a special mixture containing as little as 60 per cent of saltpeter was prepared for this purpose. In ${ }^{18} 5$; Lamotte Dupont of Wilmington, Del., invented blasting pozider which differs from gunpowder chiefly in that Chile saltpeter is used in place of India saltpeter. Thougla cruder materials are used and less care is taken the methods pursued for its manufacture are in general similar to those used for gunpowder.

Charles E. Munkoe,
The Columbian University, I' ashington. D. C.

Gunpowder Plot, a famons conspiracy ionned in England in 1004 lig Kubert Cateshy, and a small band of other koman Catholics. who. goaded into excitement by the penal laws directed against their faith and its profichors, aimed to blaw up the Houses of Tarliament log gumpowder 5 Nov. 1605. An anonymons letter of warning, sent to Lord Monteagle, led to the discovery of the plot. and the varionts conspirators were arrested and executed. Smong thone put to death was Guy Fawkes, who lad leen caught in the vault leclow the llouse of Lords with matehes ready to fire the train. Since 1005 all places comected with the 1 Iouses of Lords and Commons where explosives cotuld be stowed away are amually searched at the opening of Parliament.

Gunsaulus, gŭu-sa'lŭs, Frank Wakeley, American clergyman and educatur: 13. Chesterville, Ohio. I Jan. 1830. He was graduated at the Ohio Wesleyan Luiversity in I85.5. was ordained to the XIThodist ministry, Gut became a Congregationalist. He was pastor of Congregational Churches at Columbus, Ohio (1870-81), Newtonville, Nlass. (1881-5), and Baltimore, Md. (1885-7). In 1887 he became pastor of Plymouth Churcla. Chicago, and from 1809 of the Central Church of that city. For some years he was also president of the Armour Institute of Technology, Chicago, resigning in 1901. He is well known as a platform lecturer, and has published: 'Monk and Knight' (IE91): (Phidias' (I803): 'Gladstone) (I898); 'The Man of Galilee' (iS99), and other works.

Gunshot Wounds are wounds caused by missiles projected from firearms by the exple sion of gunpowder, etc. Such wounds present great diversity of form, depending on the kind of missile. All show more or less contusion and laceration of the tissue, particularly beneath the surface. Of the two wounds ucually causect. that of entrance and that of exit of the missile, the latter is usually the larger. Deflection of the missile from the straight line by hard tissue is conmon. Thus a ball striking the front of the chest may pass around the ribs. emerging at the back. Infection of the bullet itself, particularly when driven at high specd, is not common : and as the presence of a bullet in the body is not of itself dangerous, the ctror of muck probing along the track is evident. A bullet readily loeated (the X-rays are mow largely used for this purpose) is ordinarily extracted, and where signs of infection become cuident the conversion of the puncturat wound into a iree large open wound is necessary:

Gun'ter, Archibald Clavering, American author: b. Liverpool, England, 25 Uct. 1847 ; d. New lork, 23 liel. 190 . Ile was a mining and civil engincer in the 11 est from 1807 until 1875 , when he became a stuck broker at San Francisco. From 18,8 he deyoted himeslf to writing plays and novels. The best known of the former are: 'Courage') (Prince Karl': and 'The Deacon's Daughter,' 1 lis works of fiction, sensational volumes. largely without literary merit, include: 'Mr. Barnes of New Tork' (1887) ; and 'Mr. Potter of Texas' (1888): both successfully dramatized: 'That Frenchman' (1880): '(Miss Nobody of Nowlere) (ISoo) : 'Baron Mintez of Pamama and Paris' (I893) ; and 'Adrieme de Portalis' (1900).

Günther，sün＇tèr．Siegmund，German gecgrapher and mathematician：b．Nuiemberg 6 Feb．1848．Educated ai several German uni－ versities he became professor of geography in the School of Technolegy at Munich，in Isso． Among his many raluable professional works may be named＇Lehrbuch der Determinaten－ theorie＇（1875）；＇Parabolische Logarithmen und parabolische Trigonometrie＇（1882）：＇Die Meteorologie ihrem nevesten Standpunkt gemas： dargestellt＇（18．9．9）；＇Lehrbuch der physikal－ ischen Geographie）（1891）．

Gunton，George，American economist：b． Cambridgeshire．Eng．， 8 Sept． 1845. He came to the Linted Siates in 18，t，and unil IESo was a wrter oa economic subjects．He then turned his attention to sociulogical and eco－ nomic werk，and in 1890 became president of the Institute of Social Eccromics and editor of the ＇Social Econcmist，＇which in 1800 became＇Gua－ tcn＇s Slagazinc．＇H1s publications include ＇Ilealth and Progress＇（IS8；）：＇Principles of Social Eccnomics＇（1891）：＂Trusts and the Public＇（1899）．

Guntown，Battle of．Aiter Gen．Forrest＇s capture of Fort Pillow，I2 April IS04， Gen．Siurgis was ordered to march from Memphis to intercept him．but beiore the expe－ dition got fairly under way it was ascertained that Forrest had fallen back to nothern Mis－ sissippi．On I June Siurgis staried from IV hite＇s Station．reas Memphis，with about $=500$ infantry and arillery：under Col．Alc－ Jiilan，and 3．400 cavalsy，under Gen．Grierson． to defeat Ferrest and prevent his interierence with Sherman＇s advance on Ailanta．Mowng southward．Sturgis reached Ripley：so miles from Memphis en the sth．and in the toth struck the Mobite \＆Ohio Railroad near Gun－ town，Mi：s．，where（irierson，in advance with the cavalry，mei Forrest＇s cavalry mear Brice＇s Crus－roads，and became immediately tageged． Sturgis．who was six miles in rear with the infantry，moved on the dinble－quck，i＂ewed hy a train ci 250 wagens and．E nn $\because g$ of where Griersen was engaged，without ghame hi＝＂x－ havered men a monent：rest，and badly hund－ ling thern，threw them int the figl．t．in three hour：time Forret routed hims．druse him frem the field in conius：n n．captured pris vers． gims，and wagons，and closely pursad lin to cas Ripley：There．carly in the mane chin the 1tho．his rear－guaril．＂thens drantage of a －mall utreana，aiter a sharp fight ch ccled Fertest．
 hav ne wit 23 nificer a：d sut men hillet and

 inrce did fint exceed f．mo mear：his $1 .{ }^{\prime \prime}{ }^{\prime \prime}$ ． 1,2 killd d atd wrund d．Consult：＇Cumial Rec－d＇Vill NXXIN：F．CTras

Gur don，Lady Eveline Camilla Wallop， Ereith wfite o．iny．She was the ore nil （l）＂R＇：er of the fith Earl if I＇rism uth，and marracd to Sir libliam Gurden in 1 Nw Her citerilume to feri dicals were cullectul of r her death in a rolume entrled＇Suffink THL）（1Nか），in certain reepects one oi the …－：witurnthy Engli－h collections oi clont －- －re ，lath as regards ctyle and sympathetic treatmeat

Gurhwal，gūr－wal＇．India．See Garhwal
Gurjun（gèr＇jun）Balsam，or Wood Oil， the juice or liquid of the Dipteracea which grow in the Andaman Islands：It resembles copaiba balsam，and has at yarious times been sold as such．Its chief use in the East is as a varnish for boats and ior preventing the attaci：s of ants on timber．It was used for the check－ ing and alleriating of leprosy by the late Father Damien among the lepers of Molokai，in Hawaii．

Gurkhas，goor＇kaz．See Gherkas．

Gurko，goor＇kō．Ossip Vladimirovitch， Russuan soldier：b．IS Nor， 1828 ；d． 28 Jan．Igor． He tock part as captain in the Crimean war and as lieutenant－general commanded the Rus－ sian advance－corps which at the beginning of the war with Turkey crossed the Danube and seized Tirnova（July I8：－）．In the same year he capiured Gerny Dubnik and Telish，and on 15－1才 Ian．is－8 deieated Suleiman Pasha at Pliilippupolis．He was governor－general oi St ． Petersburg in $1850-80$ of Poland in $1883-94$ ， and in 1894 was retired with field－marshal＇s sank．He was among the foremost Russian generals of secent times．

Gurnards，gén＇nardz，a family of teleost fishes（Trighde）occurring in all warmer seas． resembling somewhat the sculpins in the rough spiny benes of the skull，but differing in having the it dy reguiarly scaled or covered with Lung plates．The fantastic sea－robins（Prion fus） are emmon representatives on our coases Chsely allied are the flying－gurnards（family Cephalucanthidal of the warmer seas，in which the pectoral fins are very long．enabling the fish in hutier a short distance in the air．

Gurney，ger＇ni．Sir Goldsworthy，English invertur：ह．Ccmwall．England．1793：d．18－5． He built a steam carriage in 182% ，and was the first to derise and use the high－pressure steam－ jet in bometion．He invented the oxyhydro－ gen blow－pipe，and the Drummond light．

Gurney，Joseph John，English Quaker phitamthrepist：b Earlham Hall，near Norwich． FngLnd， 2 tur 1 －ix：d．there + Jan．184\％．He was a lanker in Jorwich and in 1ss became a preacher in the Scicty of Friends，and the same year acempanied his sister．Mrs．Eliza－ heth Fry（o．．）on her tomr to Seitiand，！iav－ ang wrmiy taken up the henewilent canae to which she had devele l herself－the ame inra－ inn if the c ndit n if p －ioners． In 182 ，the th ice a jamey is 1－vand with the same 1）Wet．and it 183% Gurney visited the［：ntel Stans a 1 Canada，where he was absent i s marly thece ye．rs．He wemt with Mrs．Fry in 1xil Hil nd．Belgium，and German． IT1 in 1゙れ2－4 M－ited Frarce aad Switzerland The it cet these fousneys was to rei rm If－in management，and iffect the aloolition of faviry in the French coluries．for which pir－ Pac lic lad interviews wih Louis Philippe and 11．Gowtet．He was the auther of＇lotes on l＇riwn and Pris in Discipline＇（1819）：＇Olh－ rrvan on－on the Religints Peculiarities of the S_{x} ty if Friends＇（1824）：＇Essays on the Evilences．Diectines，and Practical Operation if Chrmsanity＇（182\％）：＇Winter in the West Indies Dencrifud in Familiar Letters to Henry Clay ai Kentucky＇（ 1840 ）．

Gurowski，enn－roifoke，Adam de，Coust， a P fish och ar and auther：b．Kahsz 10 Scpt

1805; d. Washington, D. C., \& Nlay 1866. In carly life he was a leading Polish patriot, and an insthgator of the revolution of 1830 . Later he became an adrocate of Panslavism, and was employed in Russia. In 18tt he left the latter country and in I849 came to the L'nited States, and from 1801 to 1803 was a translator on the State Department at Washington. Among his works, several of which were written in French and German, are: 'Civilization and Russia' (1840) ; 'Panslavism' (1848) ; 'Russia as it Is' (1854); 'The Turkish Question' (1854); 'America and Europe' (185\%); 'My Diary: Notes on the Civil IVar) (1862-6).

Gur'teen, Stephen Henry Villiers, American Protestant Episcopal clergyman and sociologist: b. ncar Canterbury, England, 9 June 1840; d. i898. He was educated at Jesus College, Cambridge, and was ordained in 1875. He was professor oi Latin at Hobart College, Geneva, N. Y., was successively rector of Trinity Church. Buffalo, and Trinity Clurch, Toledo, Ohio, and dean of St. Paul's Cathedral in Springfield, 111. He interested himself in charity organization, and was instrumental in forming the Order of Associated Charities. He wrote: 'Phases of Charity) (IS;7): 'Provident Schemes' (18-9): 'What is Charity Organization?' (18 /9) : 'Handbook of Charity Organiza(tion' (1882) ; 'How Paupers are Made' (1883) ; 'Beginnings of Charity Organization in the United States' (1894).

Güssfeldt, Paul, powl güs'têlt, German explorer: b. Berlin 14 Oct. 1840. He studied science and mathematics between 1859 and r865 in Heidelberg. Giessen, and Bonn. The Gernan Af́rican Company sent him out on an expedition in 1872 to explore the Loango coast. He was shipwrecked near Freetown (14 Jan. 1873), and landed at the mouth of the Kongo. He has given an account of this expedition in the work 'The Loango Expedition' (1879), which he wrote in collaboration with his fellow travelers Falkenstein and Pechuel-Loesche. In $18 ; 6$ he explored the Arabian Desert, and in September 1882 he visited South America. Among the Andes he discovered a vast area of glaciers, in lon. $34^{\circ} 30^{\prime} \mathrm{S}$. He climbed the higlest peak of the volcanic range of the Andes (21 Feb. I882) and reached the edge of the crater of Maipó, and during April and May of the same year explored the lofty plateaus of Bolivia. He has published 'In den Hochalpen' (ISO3): 'Reise in den Arden von Chilc und Argentinien' (188/) : 'Der Mont Blanc' (i894).

Gustavus (gŭs-tā'vŭs) I. (commonly called Gustaves Vasa), king of Sweden: b. Lindholnien 12 Nay I 196 ; d. Stockholn 20 Sept. 1560. He studied at the U"niversity of Upsala, and entered the service of Sten Sture the younger, administrator of the kingdom, in 151.4. Sweden lad. by the union of Calmar, become subject with Norway to the crown of Denmark. The country was at this time divided into two parties. There was a Danish party headed by the Archbishop of Upsala, and a Swedish party, which upheld the independence of the country, headed by the administrator whom it had raised to power. Gustavus fought with distinction under Sture against the Danes in 1517 and 1518 . He was one of six hostages sent hy Sture as guarantee of the safety of King Chiristian II..
but effected his excape, and reached Lübeck in 1519. Aiter wanderng about for some time as a proscribed fugitive he took refuge in the mines of Dalecarlia, where he worked as a common laborer. After various adventures he attempted open resistance. Chirstian 11. was crowned at Stockholm on 4 Nov. IF2c. On the sth the leaders of the Swedsin party, among whom was Gustavus' father, were executed. By the beginning of 152 I Gustavus had raised a considerable force, driven the Danes from several positions, and excited a general insurrection in Dalecarlia. In April he defeated the Danes at Westeraas; in July he seized Upsala, and in August was named administrator of the kingdom by the states which had assembled at Wadstena. On 6 June 1523 he was elected king by the Diet of Strenguas. In 152% he obtaincd the exclusion of the bishops from the senate, and their subjection to the civil power. He now openly professed Lutherauism, and was crowned by a Protestant archbisliop of Upsala on 12 Jan. 1528. The Lutheran religion was formally established at a diet held at Orebro in 1529. In 1544 the states assembled at Westeraas declared the kingdom hereditary in his house. A war broke out with Russia in 1555 . which was concluded by the Peace of Moscon, 2 April 155%.

Gustavus II. (Gustarus Adolphus), king of Sweden, grandson of Gustavus Vasa: b. Stockholm 9 Dec. I594: d. Luitzen. Saxony, 16 Nor. 1632. He was trained to war under experienced generals, and at 16 took his place in the state council. Charles 1 . ., the father of Gustavus, had been declared king to the exclusion of his nephew Sizismund. who, on accepting the crown of Poland during his father's lifetime, had abjured the Protestant religion. On the death of Charles. Gustavus succeeded him, with the consent of the states, as king-clect. Sweden was at this time at war with Demmark. and Gustavus was in command of the army: He chose for his chancellor and first councillor Axel Oxenstiern, a man 10 years his senior, and already eminent for his ability, who eventually proved himself to be one of the greatest of European statesmen. The war with Denmark was concluded through the mediation of England in 1613 . A new enterprisc at this time presented itself to the ambition of Custavus the throne of Russia was vacant and contested. A party favored the election of Charles Philip, the brother of Gustayus, and was supported by a Swedish invasion under Gen. de la Gartic. who had penctrated to Novgorod: while the Poles, who had also invaded Russia, had reached Moscow. Michael Romanofi was, however, elected czar. Gustavus took a persona! share in the Russian war, which continued tor about four years after this election, and lad made considerable conquests in 1.ivonia and the neighboring provinces when peace was concluded at Stolbova in 165\%. In 1620 he inarried Eleanora, sister of the elcctor of Brandenburg. The war with Russia was followed lys war with Poland, which lasted ninc years, and was concluded on advantagcous terms for Gustavus by a six years' truce in Scptember 1629. He had made important conquests. which he was allowed to retain. in East Prussia.

His attention was now diverted from northern wars by the affairs of Germany. The oppression of the Protestants by Ferdinand II.
excited his srmnatiy He wos alarmed by the

 komself with the Pootesants I! Gemany he might y-pe for easie: and mooe exterace en an cuest tian by sorugging =*ge-handec asamst the nethern pruers. He numed his canzoner
 Germany in May inso, and lanced with an $=-\mathrm{m}$ citis.000 men in ihe island of Lisedm on the cozs: ci P-meranic. S-e THTETY Irite.
 genera: $:$ and con uering a great part if Germany, he was aitec in the batle ti lären. Gus?uths iifiesed ircm stme rober sue: cammanders in preferaing a sma"? we." -c:deed army to a lasge ore. assernity tha: all over بn.000 men were an encomisatce. H_{i} : character $-: 3$ ie h m
 a devasion which ena"ed nim to cifect grea: thege woth small means. - te ducupine re impated :o the S- edish army, and the prestige
 after his death Fis bliy was :ancer : Svecen

 -Gustarus Ad.phus (ivo

Gustarus III., kins o: Sueder: b. Stack-

 oi H. ssein, who hat been ca..ed : tie Swe ...sh cr-wn in 1543. and succeded his iath r a 12
 iweet tw : ari-socratic fact: ns. ive at creros fo France and Russta. kim wespocticy its \therefore e Hais and Caps. He res lved of se the cuuntre a new constuti n, and t...erese !e power of the cr-wn. He instituted a tyew mot:ary coder ci Viasa, in rerer is awn the $£ \mathrm{GL}$ will of the cticers: ald eticted ‥ts rur se by means -i a sham fevcit. wsich ena-ed fom it assemble troofso wherewith he surt unded the asserniy the state--seneral. and i rou tlem to accert bis conturut! th, which, as it a ay circumseribed the privieges i the ? sity, uas generaits popular. In i-x, whe? war had Endien \because with Kuwia, the $n d$ es revenged them-lves by iaducing the states-general to
 Dalcarlians ena "ul hom i ren 'ee the ememy. T. iree \therefore ns it it m the hot ity it the :
 he executed in 3 . Ay -il $1,-$. y cau-ir the lead-rsmi: ecptat n ! e arrelec. on $t \cdot n$
 He c aded pease wath R:..- a y itres
 oppret : an a"turce w1th R....a, an I a d t

 with is p ․! $\because d$ so froct ry thit he was
 this bal i rmed a a nepir cy amirnt him and r d $\quad \therefore, k$: Trec i, in $\quad k=n$
 car? $: 1$ ir int 711 r Th i: ir' n Cap: mn . Inkarstrim, wh th t t. kine in the ck I a m-pumade aven t the opea h \ldots at

Gustavus IV., Adolphus, king n: Sweden:

Feb. ISE: He snocec-d 1 :he death oi his
 :h en the: ' e d mheritec his father's hatred tithe n-inu:gics itto Foench :es lution, which te carried it the extent i ianomorsm In 1803 :ee matic a : urby : Gomany :o prom :e a vain i the Geman poncus asainst Napoleca.
 vas soi ch and se.t his aite- Ee-camp in Paris Opotcot actimst tat act ci fiotence. Atier the feace 1 This: he expesed himseli to a war wih Kurcia white he was $=$ was with France, by reiusing to $\vdots 00$ the evontanental b ockade and pet:n = bis - = = Engand: and in ISOS he ソ.artelel wion England ins cony ainy. His inicmat any was as hac as his external. His su.fects mere nonecsed w:h taxes to support fis Nars, ared ind on retum the humi:ation of fanura P merania in the possessica o: France. and Fion ind in tion if Russia. A conspiracy vas formed against h:m: he was deposed, and the dic: y a decree di Io Mäy Isog declared his sam:y focve: :ncapab"e of streceding to the cr-wn \vdots Sineden. His uncle, the duke of Suderm nia was poceiaimed king. under the title c弓 Chts SIII., and in the folowing year ¿: ntel as ris stucessor. Berrade:ie, prince oi

 fices.

Guterberg, §oo'tèn-bĕrg. Johannes or Henne, German :avent of printing with In vo ${ }^{1}$? ispes: b. Mainz atout 1400 : d. there -3
 Iise. 17 I4:4 he was livirg in Sirasburg. and in
 D-yzehn or p-itzehen and others. binding himseif t ieach them a"! hi= secret and wonderivi arts, and I cua or them for their common advarage The death ofryehn, which happened
 m :he o mpans. Abutt 143 he returned io U1: $z=d$ ionned a cuparmership with If :ann Föst r Fauzo, a rich goldsat th who iur\because ad onney : 1 esia ish a piess, in which the
 I. Gun accut $1 \div 50$ and timshed abou! $1+55$. Is be fíat \& \ln an io have been primted w ith nowa e types, Atiter some years ihis connect. It was drisised. Fust had made lazge
 OTC : : .n. as he cibher c uld mat o would at it in the sul ect was carried beroce the it: - n be sesiti was that Fus: retained the $r-4 \leq 1$..ch ' e moms ved, and c-nt:o ved to tro \rightarrow y mury with Pe:er sch fier ei Gerns: hon [y on purn nage it a olansil: of M $\cdots \mathrm{C} \cdot \mathrm{H}$ Hmmer, romemberg was again ! : at ll's a foes the if owing year, ․ m re insted the sine (ath 'icon'

 fla in n!s d fa=-s merther hans in con-
 der L-3. 1.... he-g 1s-8. and 'Geschichite Ler 1:-in' 'g wer Bu-l 3rvekerkuast' (IN60) He-se. 1_{2},....nliers: Was He the Invemtor of Prmting:' (rxsz); 'Haarlem ithe Birihplace of

Printing, not Mentz) (1887) ; Gordon Duff, 'Early Printed Books' (1893)

Guthrie, Thomas, Scotish clergyman and philanthropist: b. Brechin, Forfarshire, 12 July rito 3 ; d. Saint l.eonard's, Sussex, 24 Feb. 1873. lle was educated at the University of Edinlurgh, and was licensed as a preacher in connection with the Church of Scotland in 1825. He accepted a call to Greyfriars, Edinlmogh, in 18,37, where he soon became very popular with all classes. in 1843 the Disruption took place, and Guthrie was active with Chalmers and Candlish in organizing the liree Church, becoming minister of liree St. John's, Edinburgh. The work with which his name is chiefly identified ont of Scotland. was the establishment of ragged schools, of which he was the earliest advocate. 1le was widely known for his gifts as an orator, and on retiring from the ministry in 1864 was editor of 'The Sunday Magazinc' till his death. Among his published works are: 'The Gospel in Ezekiel) (1855) ; (A Plea for Ragged Schools' (18+7): 'The City: its Sins and Sorrows' (1857) ; 'Autobiography' (18745). See Smeaton 'Thomas Guthrie' (1900).

Guthrie, Thomas Anstey ("F. Anstex"), English humorist: b. Kensington, London, 8 Ang. 1856. He was graduated from Cambridge in $18 \% 5$, and called to the bar in 1880 , lmit never practised and has devoted himself to authorship. his books having been extremely popular both at home and in the United States. He is the autlor of 'Vice Versa' (1882): 'The Giant's Role) (1883); 'The Black Poorlle' (188t): 'The Tinted 'enus' (1885): 'A Fallen Idol' (1886): 'The Pariah' (I889); 'Tourmalin's Time Cheques' (1890) : 'Vnces Populi' (1890); 'Mr. Punch's Pocket Ibsen' (1893); ‘Puppets at Large' (1807): 'Love Among the Lions' (1898): 'The Brass Bottle) (1900); 'A Bayard From Bengal) (1002) ; etc.

Guthrie, William Norman, American Episcopal clergyman and author: b. Dundee. Scotland, \pm March 1868 . He was graduated from the University of the South in 1889 and was professor of modern languages there 1889 90, and at Kenyon College. Ohio, 1892-3. He entered the Episcopal ministry in IS93, and t:as since been rector of several Cincinnati कurches. He has published: 'Love Conquereth' (1890): 'Mladern Poet Propliets: Essays Critical and Interpretative) (1897); 'Songs of American Destiny) (1900).

Guthrie, Okla. the capital of the Territory of Ollahoma and the county-seat of Logan Cointy, on the Cottonwood River and on the Atchison. Topeka \& Santa Fe, the Chicago, Rock 1sland \& Pacific, the Oklahoma Eastern, the Missouri, Kansas and Texas, the Fort Smitls \& W'cstern, Denver. Enid \& Gulf, and the St. Louis, E1 Reno \& Southern Rys.

Industrics, Etc.-Guthrie has a very large trade, and is especially noted as a wholesale distributing centre. It has planing, flour and ent-ton-seed oil mills, furniture and carriage factories, a foundry and machine slops, a broom works, a plow factory, creamery, railroad repair sloops, novelty works, book hindery, etc.

Buildings. Educational Institutions. Etc.Guthrie's chief buildings are the rapital, Federal court and post-office bilding, the city hall, the Scottish Rite temple, Carnegic Lilrary, and the

Federal prison. The Carnegie Library (costing \$25.000) is a noteworthy instutution. The eny possesses an excellent public school system. including a high school, Saint Joseph's Icadeny, and many private schools add to the city's educational facilitics. A $\$ 50,000$ connty high school las just been built, aml the Capitol University is located on a height overtooking the city on the west.

Goternment:-The city is governed by a mayor and a commen of ten mombers elected biemnially. The chicef of police and all other city officers are chosen by the people. The city has electric lighting and owns and operates its own water-works, has several miles of paved streets, large gas plant and work has beg in on a street railway:

History.-Guthrie dates its existence from the opening of the territory in 1880 , and it was made the capital city one year later, in 1890. The city has had a rapid development and has had a rival in Oklahoma City, athont 30 miles south. Pop. (Federal census of 1900) 10,000; (territorial census of 1904) 23.000.

Gut'ta Per'cha, a substance which has been known generally and used in Western countries only since about $18+5$, though travelers and residents in the East were acpuainted with it long before, and had seen various artickes made of it, but without knowing the nature of the material. It is the inspissated milky juice of several large trees belonging to the order Sapotacea, the principal being Isonandra gutthe. and is obtained lyy felling the large and old trees, cutting off rings of bark at intervals along the stem, collecting the juice which issues, and concentrating by cvaporation, if necessary. The result of this terribly wasteful process is, that the gutta percha tree has been exterminated from various districts in which it was formerly abundant. The tree is found in the Matayan peninsula, and in some of the neighboring islands, in great numbers and of very large size; but if these trees be also cut down, instead of the juice being tapped by incisions (a methoul which has now come into 11sc), gutta percha will become one f the rarest of sulstances.

The crude substance is gray or reddish, and is mixed with fragments of bark, leaves, and other impurities, from which it is separated by washing with cold amd then witl: warme water. This softens the gutta percha, and the impurities can be easily picken out. When pure it has a hrown color: at the ordinary temnerature it is hard and tough, and in not ton thick pieces is flexible like leather. It is clastic only to a very slight extent, and cannot be beaten out. It has little or no adhesion for other borlies, but its own colresiveness is remarkable, a thin strip of it bearing a very considerable weight. When warmed it gradually softens, and then can he drawn into fine filbes. rolled into sheets, or molded. For the latter purpose it is atmirably adapted, as when warm and soft it takes the finest impressions. which it retains after it has hecome cold and hard. When heated to a sufficiently high temperature in the air it catches fire, and burns with a bright flame: heated in close vessels it gives off nily hydrocarhons and all acid limine, so that gutta perecha seems th consist mainly of carfon and hedrogen, with some oxygen, while nitrogen is ahsent. or present only in very minnte quantities. Attempts have been made to resolve gitta percha into
proximate constituents, and accordingty three substances extracted irom it have been described. These are named respectively gutia, which is the chief constuzuent, and when pure is white and epaque: alban, a white oxygenated crystaline subitance: and fluavil. also oxygenated. and oi a yellow color. These :wo are said to be iormed irom the nirst by oxidatich. bus there is a conside:able diversity of opinion on the nature of these bolies. O-dinary gutza percia is in in oluble in water, partially in alce:hol and ether, readily and completely in ch' cc form: turpentine, benzo!, bisulphide of carbon, and naphiha. It is also dissived to a stight extent by oils. It is not attacked by solutions of alkalies, nor by hydechitutic acid: but it is acted on by suphuric, nitric, and hydrochloric acids - being dazkened in coior. oxidized. rendered be:tite. or atiogether diemtegrated - and by chicrine, which transiforms it in: a whise substance inke :vury. It is also affected by the oxygen of the air. especially in light, becuming britile. resinuas, and acid: it cembines with sulthur and. tike cautcincus, can be velcanized. Gutra percian is empleyed ict a great rariety of purposes. especially - insulating electric wires. being invatuable its syt marine telegraph cat les because, as a natiral insulatos of elecricity. it is not affected by water, is very pliant. and forms a uniiorm and close-fitting coating to the wires. It is much prized for makin certain kinds of sursical insiruments, and in sheets ior surgical dressins. and is used inr making waterpipes and ubbes of various kinds, hese, machinebeiting, soles for shoes, guvi-balls, overshoes. buckets, picture-irames, and many other articles in general use.

Guy, Thomas, English phtilanthropist: founder oi Guy's Hospitai, Lond'n: b. abcut rás ; d. Decernber r ;24 His princ:pal incume arcee from the disteputalle yurclase of seamien's prize tickets in Queen Anne's war, and irom his deaings in Scuth Sea stack in $1 ; 20$. By these speculations, aided ly in st penuri us hebitis, he amasied a fortune if mearly tali a million p unds sterling, of wh.ch he spen: upward of \$t,000,000 in bu:ding and end wing his haspiral 1:0 S. uthwark. He als, erected almahouses at Tamwoth, iurnisted threc mards of St. Tht nas' Hespital, and benefited Chritis H spial and various cther charities. He was member of Parliament for Tamworth $162 ;-1 ; 0 \%$.

Guy Mannering, a novel by Sir Walter Sc t. It was the sectnd of hts in vels, appearing an nymously in 18 is, seven m nins aiter 'bWaserleyg', !: is sait to have beers the rean't of sw week: w rk, and ty some cotice is th aht the whe motithase. It- tive i- the $m d^{1} l e$ ti the te:h century its sme
 so re climeacters in 'siry Mam cring.' and the $\mathfrak{f}:$: : icy a mp est d. Mes Merril
 pedan:, ase the. ' 'y greut creations it o mams.

Guy of Warwick, a metrical romance bebnging to that Angho-Danth cycle i- me which the \mathcal{A} man tr weres drew on much material. The earliest exinting manuseripts of thes roma"e are on French; th ush is is supposed te have t en writen ty Walier of Exet r, a Coznith Fr …h li e:rns ct ab ut 12.000
verses. iambic measure, arranged in rhymed cotuplets.

Guyon. Jeanne-Marie Bouvier de la Motte, zhàn ma-rē boo-vē-à dè la mět gè-óñ, IIADIME French mysric: the introducer in France of̂ the syistem of Quietism. b. Wontargis 13 April 1648: d. Blois 9 June ITI\%, At the age of 16 she was married to Jacques Guycn, atter whose death in 10,0 the tendency to mystic entusiasm which had characterized her younger years again acquired ascendency. She published numerous wo-ks. such as 'Ie Cantique des Cantiques interprete seion le Sens Mystique) (1085): 'Po-
 at Epiritue's' $1,-10$) : etc As last the archbishop Co Paris thought it pecessary to take siep: assanst the spread of Madame Guyon"s mystical doctrines, and through his infuence she was shut lp in the convent of the Visitation. but aiterward released at the instigation of Madame Mainten n. who berseli became ior a fime a convert to the new coctrines, and allowed Madame Guy n to preach in the seminary of $S_{i .}$ Cy: where s':e made a conver and disiple of Finelen. A commission of ecclesiastics. cinef am as whem was Bessuet. now sai in -udgmen: and the doctrines of Madame G:yon were cordemned (1095). This led on ber being imprisoned Eor scme years. latterly in the Bastille whence she was liberaied in 1 -02. The -est of hes life was spent in seciremert and in whis of charity: See Upham, (Ifife, Religious Opminas, and Experiences of Madame Guyor'
 cocirine, son influence' (188 S).

Guyot, gē-ō, Arnold, American geograpler: b. near lieuchäicl, Switzerland, 23° Sept. INO-: d. Princern, I., \& Feb. IN8, He studied theology at seuchàtel and Berlin: but later turned his attention to natural science, ard in 1835 in k the degree of coctor in the University of Berling. He then went to Paris, where he resided nive years. passing the summers in ccentife excurstons through France. Belgium, Hyland. and Itaiy, examining the characteristic physical features of those countries. In a t ur in Sivitzenland, in tis3s, he aicertained and ann unced in a communication to the Geolns-$i-a l$ Socity of France several of the mose imFroant laws concerning slaciers. He first disc verad the laminated structure of the ice, and sh wed tha: the moti n of the glacier is due to the displacement of its molecutes. There diecnveries were fu'y oontimed and illustraied by t e mbertignts no of Agasiz. Forbes and whers. Ile nexi investimated the distribution ot erni alder: is ceder to solve the question - ith m de i their bransp rati 7 . Durine ㄴon vomme-s he trace them on both sides of the vental 1 ip: in Ewitzerland a: 1 laty. T) ir wrtical rnits and the laws of theis deA... sere chormined by means of more than $3 .$. or n :T- 1 hot-vain ni: and the charHerwie if \cdots if rock of each basin were tr - $1+\mathrm{H}^{2}$ step to :heir surce, niten in the ni it ic ing cot regin ns of ice and saow: it ciatin of re tham 6.000 spectrmens of r. ki, was made as vichers for the resulk. The iull detalls of the-e investigations were ann noud $t i f$ ithe second volume of the isy: me glaciaire' by Acessiz. Guyot, and Di3 - the first v lume of which was printed is

Paris in $18_{4} 8$; but the political disturbances of that epoeh and the removal of Guyot to the United States prevented its publication. The main results, however, are to be found in the 'Bulletin de la Société des Sciences Naturelles de Neuchatel.' and in D'Arcliac's 'Histoire de la Géologie': and have since passed into various scientific manuals. In the College of Neuchàtel, which numbered Agassiz among its professors, Guyot occupied, from 1839 to is 48 , the chair of history and physical geography. In the latter year a political revolution in Neuchatel broke up the institution, and he was induced by Agassiz to remore to the United States. He resided for several years at Cambridge, Mass., occupying himself with the study of the plysical geography of the American continent, and first became extensively known in this country by a course of lectures delivered in Bnston in the winter of $1848-9$ in the French language, on the relations between phy'sical geography and history. These were translated and afterward collected into a rolume entitled 'Earth and Man!' (1849). The work had a large circulation in the United States, where it was extensively used as a text-hook. For several years Guyot was employed by the Massa. chusetts hoard of education to deliver lectures in the normal schools of the State and before teachers' institutes, and in this way, addressing annually 1,200 or 1,500 teachers, he exercised an important influence in reforming the method of teaching geography. From I855 until his death he was professor of geology and physical geography at Princeton. His meteorological observations, undertaken for the government, were the basis of the present United States weather bureat1. Among his further works are 'Treatise on Plyssical Geography' (1873) ; 'A Memoir of Agassiz' (10083); and 'Creation, or the Bible Cosmogony in the Light of Nodern Science) (1884).

Guyot, Yves, ēv, French publicist: b. Dinan, France, 6 Sept. I848. He began his studies at Rennes, and early interested himself in social and economic problems of international importance. He took part in the revolution of ${ }_{4}^{4}$ Sept. I87o, which, after the surrender of Sedan, established the third Republic. He is an ardent reformer, but not a socialist, a frectrader and member of the Colden Club. In 1885 he was elected to the French Parliament, and in 1889 made minister of public works. He has for years been editor of the Siecle, a Liberal paper of a staid, old-fashioned style. He took a prominent part in the defense of Dreyfus, and waged a successful war for the aloolition of the continental sugar bounties. Among his writings may be noted 'La Tyramie Socialiste' (1893): 'Les Principes de 'So et le Socialisme' (1894): 'L'Economie de 1'Effort' (1896); 'Le Bilan de l'Eglise' (1901) ; and 'La Question des Sucres) (1901).

Guzerat, gŭz-ě-rät'. See Gujarat.
 Guzman Blanco, Antonio. See Blanco,

 Antoxio Guzarin.Gwin'nett, Button, American patriot, one of the signers of the Declaration of Independence: b. England about 1732 ; d. Georgia 27 May 107: He emigrated from Bristol to America in 1770 , purchased a tract of land on St. Catharine's island, Georgia, and devoted him-
self to agriculture. He became conspictuous in 1775 hy his maintenance of the colonial rights, was elected a representative to Congress in Feb. 1776, and re-elected for the following year, and in 1757 lecame president of the provincial council, the highest station in Georgia. He planned a military expedition against East 1Florida, which he refused to entrust to his rival Gen. Mcintosh, whose official ratak emitled him to command it, and which resulted disastronsly. This event, aggravated by other disturbances, Jed to a duel between lim and McIntosh, in which he was mortally wounded. See Dwight, 'Lives of the Signers' (I^{295}).

Gwynn, Eleanor, commonly Nell Gwynn, English actress: b. Hereford, England, 1650 ; d. London 1687. She was at first an orange girl, and also gained her bread lyy singing from tavern to tarern. She became the mistress of Hart and Lacy, the actors, before going in her foth year upon the stage, where she distinguished herself in light comedy. About 1667 she beeame the mistress of Lord Buckhurst, who surrendered her to the king. She caused much embarrassment to the Duchess of Portsmouth, who deemed herself too refined for such a rival. It is said that in her elevation she showed her gratitude to Dryden, who had patronized her in her poverty; and, unlike the other misiresses, was faithful to her royal lover. From her are sprung the dukes of St. Albans.

Gymkhana, jĭm-kä'nạ, a term of Hindu origin, presumably derived from gond-khana, that is, ball-house, and associated by AngloIndian soldiers and civilians with "gym" or gymnasium, whence its introduction into the English language. It is applied to a building or grounds arranged for athletic recreation, and signifies also the open air meetings for athletic and other mixed sporting events, including horse racing, which are the ammal features of almost every military cantomment throughout India.

Gymnastics, History of. The development of gymnastics began in an early period of Grecian and Roman history. Systematic exercise received the stamp of approbation from the most eminent educators of ancient times, and has the endorsement of all teachers to-day. Such exercise has had its periods of decline in popularity due to the develomment of professionalism, stimulated by the conferring of extravagant honors and rewards which caused the ranks of the athletes to be filled by a professional class of low extraction, who made their art a trade. But through these periods of decline there have been those who have kept in mind the true value and aim of regularly and systematically conducted exercise: and these advoeates have outlived and lived down these evils. So that we find that the scientifically conducted gymmastics have never entirely lost their hold upon educators and those interested in the betterment of mankind.

Modern gymastics differ considerably from the exercises of the ancients, which at first consisted of athletic feats performed by each individual according to his own notion, and were encouraged among the youth as combining annsement with exereise. "They were at length reduced to a system which, in Greece, formed a prominent feature in the state regulations for
education. In iact the period ficr gymnastics was equal to the time spent on art and muste combined. Public sames were cinsecrated to the gods, and were conducted with the greatest ceremony. The earllest mention we can nad of gymnastic sports is in Homer's 'Iliad,' Book 11., and again in Book SXIII.. when Achilics instituted sumes in honot of Patrocius, and distributed prizes to the victors ior boxing and wresting. Plato telis us that just befere the time of Hippocrates somnastics were made a part of medical study, becanse they were suted to counteract the effects of indolence and luxurious ieeding, and that ai length they became a state maiter reduced to a system and supermtended by state officers. The first putlic gymnasia were bult by the Lacedzemonians. I lese were imitated at Athens, where. in ote called the Academy, Plar insiructed his pupits, and in another. the Lyceum. Aristot? taught. These buidings were superiniended by a chiet cificer. The athletics were m charge of a directur. and medical officers were in attendance to prescribe the kind and extent of exercise. Baths were attached to the gymnasia. and a hot bath. follo wed by a cold plunge. was recommended. Plato and Arrsotle considered tiat no republic conld be deemed perfect in which gymmasia. as part of the national establishment, were neglected.

The Spartans were the mest rigid in exacting for their youth a gymnastic traming: even the girls were expected to be good gymnasts. The exercises ior pupils in the gymmasia consisted of a sort of tumbing, war-dances. running - ior both sexes-leaping. climbing ropes: of jumping or springng from the knees. with weights attached to the body. mainaining the equilibrium whle jumping on slippery skins filled with wine: and of wrestling for the throw Riding, drwing, -wimming, rowing, and swinging supplemented the indor work.

Duting the Middle Ages the knightiy amusement of the tournament absorbed nearly every other sport except ioct-racinz and wrestling. so that gymnastics iell into disuse til Ba-ed w
 winted bodily exercises with ther instruction. This example was followed by Salzmann at his institute and, from this smal commencement. the ractice gradually exterded. In the latter part oi the roth certury grmastics were extensively insroduced into Prus-ann sehool by Guts Muths, who wrote several werks on the stibject. In I2to the sy-ten was -til more widely spread by Jahn, who is regur led as the isumder of the precent Tumverein q.y. . Pruesia at that time was impatient under Nap lownic rule. and Jahn concered the idea if bringing isether the y ung men io the practuce ci gyma-tic excrel-e-, and at the same tume. nd x irmstang them wath patrictic sentment, which mag' : be made arailable t expel the French ir in Germany The l'rmsian gnermment idvired tl e plan, and. in 1Ril. a puble mym-Tra- e-cha, r Tumplatz, "Ias upened at Berlin. and was quickly imutated all wer the commtry. In IEt3 the citizen were calld to arms agennt the French, ant lahn himat fermmanted a bartalon of Litzow whemeer. When, h wever, there was no longer amy reas in to dread the French, the government ni Prussia. fezarding the meeting oi patrintic young men as a means of spreading liberal ideas, ctosed
the gymmastic schools and Jahn was inprisoned. In other countries. bowever. the system introduced by Jahn was eminently successiuk, especially in England, Switzerland, Purtugal, and Denmark. It was first introduced into female education under the name of calisthenics when systematic exercises were added to hoop-trumdlug. snipping-ropes, etc., and to riding, archers. an 1 viher healthy ourdoor exercises practised amn g the women.

The masculine sports oi cricket. football, quoits. boxing. wrestling, leaping, foot-racing. etc.. have beet ior ceuturies enjoyed by the boys of England in the playgrounds attached to tbe sch is. In 1848 the political condition of Europe enabled the Turuvereine to be reorsanized and the German emigration to the Inted States has brought these institutions with it. The first society was formed in New lork. The organization, as first established, was contined to the practice of bodily exercises: but soon assumed a bigher scope. Libraries were c llected. schools established. a newspaper ('Turnzertung') founded: and various arrangenhents were made for the diffusion oi useful knowledge. and for mental culture as well as physical training. Much credit must be given to Ling for his efforts to develop educational symmastics. He has many followers, and his priblication on Educational and Curative Gymnastucs' has much merit. Ling has been severely criticised by English writers for his clams to originality: They go so far as to say that he simply used the works of authors of his time and oi an earlier period, and rook his holus-b $11: 1 s$ ircon Dr. Francis Fuller in the 'Dledicina Gymmastica.' The first edition was published in 172s. and it ran through eight others. It is also claimed that he borrowed in its entirety without acknowledgment, the work oi one John Pough. 'A Physsological. Theoretic, and Practical Ireatise on the Utility of the Ecience of Muscular Exercise for Restoring the Power oi the Limbs.' with such materials and Qerman symuastics as had previously found their way through Denmark and Sweden. Througli the exertions of such men as Salzmann, Jahn, and others, together with certain Englith authorities 35, Fuller, Pough. Croit. Chas. Thomas and John Graham it was not difficult to establish a system. In fact Salzmann's gymmastics for yolth needs only what Pugh supplies to give all that Ling calls his =y-tem which is only adapted to beginners. The qua ity of the Ling exercises is stilted, and there 1. litt e scope for varsety. The fact is. the sysun -tick i m clusely to automatic movements. which undrubtedly produce precisc and studied in netony in drill.

Turning now to the Dio Lewis period, we see that it mark- an epoch in the introduction of a:1 In ertcan system of physical training formed in a -mall measure unom the Swedish and largely ur :n the German ustem. This sy:tem incorf rated free-arm cierciecs, the use of dumbI. ll- clut - rimg =. wands. together with what was then called the Pangymnastiken, but which wis nothme mere or lese than a pair of flying rings equpped with a pair of detachable stirrup from whel swinging. iumping. and stretel ing exercises were periormed. Dio Lewis' work trok up the matter of the schooldesk, criticised the faulty position of the ordi-

nary desk, and the poor school-room ventilation. In ISo1 the Normal Institute for Plysical Education was incorporated and located in Boston. Its directors included many of the most distinguished cducators of New England, and its departments of anatomy, physiology, and lyggine were in charge of able teachers. Dr. Dio lewis gave the work in gymuastics. The aim of the institute was and is to furnish competent advocates and teachers of physical traming.

Next follows the work of Dr. Sargent, with his American system of gymnastics. Dr. Sargent was bom in Naine. He was fond of all kinds of outdoor sports and physical exercise, and joined a gymnasium club while attending high school; but as he had to work out of school hours to support his family, he could only attend to his exercising at odd moments as time permitted. Un one occasion he broke a piece of apparatus and was expelled from the club. Piqued and aroused, he improvised an apparatus of his own in a barn. Shortly afterward the club gave a display and, after the members had finished, Sargent and a friend came forward and easily surpassed the athletic feats performed by the others. This event is said to have been the direct cause that led Dudley Sargent to become an ardent physical educator. He was graduated from high school in 1867, was invited to become teacher of gymmastics in Bowdoin College in I 869, and entered the college as a freshman in the regular course and conducted the plysical work. In an endeavor to arouse the faculty and the public to the necessity for physical training, he was successful to the exent that. in 1871, gymnastics became a part of the regular curriculum, and Mr. Sargent, though a student only 22 years of age, was placed at the head of the department, and filled the position with credit. About this time he brought out his system of chest-weights. In $18 \div 2$ he accented a position as director of the Yale College gymnasimm, and for three years had charge of both Yale and Bowdoin, spending part time in each place. It was while at Yale that he fully developed the "individual apparatus" for which he is so well known. At the solicitation of friends he went to New York and started a gymnasium on Fifth Avenue, which at once sprang into popularity. In 1879 he accepted the appointment of director of the Hemenway Gymnasium and assistant professor of physical training at Harvard University. This promotion of the department of physical training in a rank equal to the scholastic departments of the university was a great stride forward, and stamped the new system with the mark of public approval. To Dr. Sargent is the credit due for the invention of the chest-weight, the intercostal machine, quarter-circles, leg and firger machine, and other appliances to the number of 30 or more. He also claborated a system of anthropometric measurements which enable an examiner to ascertain at once the physical condition of a student, and which guided a director in prescribing proper exercises for the development of deficient parts. Dr. Sargent believes in special work for individuals, and will not allow a man or woman to go into the gymnasium and take the drills and work with the apparatus indiscriminately. Health, harmony, and symmetry are the resuits aimed at.

About the same thme, physical training was taken up by and introduced into the foung Nem's Christan Asoochation, whose local gymnasia have done much to give the work a moral tone. We orr a great deal to such men as R. J. Roberts of Bostom, whose name has been associated with the advancement of phys seal education since 1875, and whose dumb-bedl drill and book of exercises has long been a standard in the association's work. The organization of the physical work under the auspices of the 1 . 11. C. A.'s has been practically responsible for the systematization of the American system of gymrastics, and for the establishment of a universal nomenclature of gymnastics. Among those who have done most for physical trainmg along educational lines, 1 would mention Dr. Hartwe!! of Boston, Dr. Gulick of New York, and Dr. Scaver of lale.

To-day, practically, all private schools have a well-equipped gymasium under the direction of a man who has had special training in the application of cxercise, the theory and practice of gymnastics, and who is, in many cases, a medical graduate. Systematic progressive courses of work are conducted, which aim to develop and strengthen, to give co-ordination and grace, and to make the individual self-reliant and resourceful. The equipment required to obtain this result is necessarily extensive, consisting of a gymnasium, say 50×100 feet, with clear floor space, high-vaulted roof, a fine system of ventilation, and with every varicty of apparatus which the ingenuity of the specialists, and the energy and resourcefulness of the manufacturers, can provide. The equipment consists of light apparatus-dumb-bells. Indian clubs, bar-bells, wands; heavy apparatus - German horse, parallel bars (suspended and floor), horizontal bars (high and low), buck, Hying rings, traveling rings, horizontal and vertical ladder, climbing ropes, rope ladders, spring-boards beat-boards, floor-mats, wrestling and tumbling mats, Swedish stahl bars, booms, serpentine ladder, and balance-beams; as well as special apparatns - chest-weights, intercostals, quartercircle, chest-expander, traveling parallels, wristmachine, long inclined plane, sculling-machine, paddling-machine, leg-machine, neck-machine, bicycle-trainer, and so on through an almost endless varicty. No plant is complete without its swimming-tank, warying in size from 15×4 up; its shower-baths, needle-baths, tuh-baths; and some have steam-rooms and massage-tables. An indoor running track is an almost indispensable adjunct to all well-equipped gymuasia; and there slould also be the equipment for indoor athletics during the winter months. Provision for indoor games is also essential -basket-ball, baseball, and ring-hockey. Each school has adjacent athletic gromnds with ten-nis-courts, quarter-mile track, foothall and baseball fields, and golf course. See Pirysical Culture.

The college physical departments surpass those of the preparatory schools only in size and extent of equipment. Harvard University prob)ably excels all others in point of variety of equipment for special work. The summer work in the public parks and school playgrounds must also be noted. These out-of-duor gymmasia are equipped with extensive apparatus for all ontdoor work. Preparatory school work in gym-
nasucs is. by generai cunsent, made to consist of a system of corrective budy-building exercrees. made up oi iree-arm work and light calısthenics in the lower grades, followed by heavier calisthenics, dumb-bells. clubs and wands, light apparatus. mitermediate and advanced apparatus, boxing, wrestling, and fencing, interspersed with periods for recreative games, competitions, and contests of skill and strength.

Bibliography.-Alexander. 'Modern Gymmastic Exercises' (1890): Stebbins, 'Delsarte System of Expression' (1892): Posse, 'Special Kinesology of Educational Gymnastics) (I894): Ravenstein, 'Tolksturnbuch' (1894): Broesike, ${ }^{1}$ Der Menschliche Körper. mit besonderer Berucksichtigung des Turnens' (1894) : Nissen, - Rational Home Gymnastics for the Well and the Sick (1898).

Director of Gymmasimm. Pralt Institute, Brook-

 ly. I. I .Gymnophiona, jĭm-nō-fīō-nạ. See C.EcilLANS.

Gymnosperm, jĭm'nō-spėrm, a plant with a naked seed. Among the gymnosperms are the cycads, gingkos, conifers, and Genetacer. The last group is represented by a single extraordinary tree or plant of Weest Africa (Witaitschia inirabilis), the stem of which, looking like a huge wood-fungus, may, when mature, be a little over a foot high but several feet across. It bears but two leaves, the cotyledons, which sonretimes grow to be 5 or 6 ieet long and 2 or 3 ieet wide, ultimately splitting into strips. The plant is said to live over 100 years.

Gymnotus, jim-nōtŭs. Sce Eiectric Fisires.

Gynæcoiogy, in medicine and surgery, the cience which treats of the plysical organization of women and of the diseases peculiar to them.

Gyp, pseudonym of Sibylle Gabrielle MaRie ANtolnette de RiQuetti de Mir.ibenle, Cumtesse de Martel de Javille. Sce Martel de Janille.

Gypsophila, jip-súti-la (Baby's Brevtri). - gents of European and Asiatic ammal and perennial herbs of the natural orrler Caryophyllacea. They are highly valucd and widely planted for their small fowers which, bemg upon bramely stems, give a plea-ing eifect to buquets and a mist-like erace to hower-borders. They are of simplest culture upon somewhat dry soils, especially among rocks and in sumny situations. The perennial species are hardy. Six or more species and a fow varicties are cultivated in American gardens and greenhouses.

Gyp'sum, a native hydrated sulphate of calcium, having the formula $\mathrm{CaSO}+2 \mathrm{H}-\mathrm{O}$; the water of erystallization being the only thing that differentiate it. chemically, from the orthorbombic mineral anhydrite. Gypsimm is weually colorlese or white. It crystallizes in the monoclinic system, contact twins and penetration twins heing very common: and it also necure in massive forms. The pure crystals
have a hardness of from 1.5 to 2.0 , and a spe cific gravity of about 2.32. Gypsum is an exceedingly abundant substance, and is met wath in many parts of the earth, and in a variety of forms. When found in the form of clear, trans parent crystals, it is known as selenite; when the mineral is finely frbrous, and the fibres are parallel to one another so as to form a mass with a pearly opalescence, the mineral is called satin spar: when it occurs in uniform, fine-grained, translucent masses, it is known as alabaster: and when it occurs in large beds of massive rock, often mixed with clay, calcium carbonate and other impurities. it constitutes the earthy gypsum, or rock gypsum, of commerce. Gypsum is soluble in from 400 to 500 parts of water at ordinary temperatures, but it dissolves more freely in hydrochloric acid. When lieated, it loses part of its water of crystallization, though it retains the power of recombining with water to form a hard, noncrystalline mass, if the temperature to which it is exposed does not exceed $500^{\circ} \mathrm{F}$. It is this property of recombining with water, which gives to dehydrated gypsum much of its industrial value. (See Plaster of Paris.) When heated with charcoal. gepsum is converted into calcium sulphide, which dissolves readily in dilute acids, with evolution of sulphuretted hydrogen gas. In this way the sparingly soluble sulphate of calcium may be conserted into the soluble chloride or nitrate of calcium. Gypsum, when pulverized, is used as a fertilizer, its efficiency in this respect being apparently due in large measure to the fact that it facilitates the decomposition of rocks containing alkaline silicates.

The production of gypsum in the Enited States, in Igor, was 5.246 .649 short tons, valued at $\$ 1.577 .493$. Texas, Nlichigan, New Vork, and Iowa were the principal producing States. The United States ranks second in the world's production of gypsun, France being first, and Canada third.

Gypsy. See Gipsies.

Gyra'tion, Radius of. The energy required to set a body in rotation in any given manner depends on the arrangement of the mass of matter to be rotated. Thus, a mass made into a ring like a wheel with very light spokes reguires the expenditure of more energy in order to set it in rotate once per second on its axis than would be required if the same amount of matter were made into a uniform circular plate of the same radins. The energy reguired to set any given body in rotation about any given axis depends, in fact, on the "moment of incrtia" of the given body about that axis: and the mass of the body being given, the moment of inertia depends on the way in which the mass is disposed about the axis of rotation. The radins of gyration about a given axis is the rlistance from that axis at which the whole of the matter of the given body might be concentrated without altering the moment of imertia. The moment of inertia and radius of gyration for any given body alout any given axis may be calculated mathematically. The two magnitudes are evidently of great importance in the theory of rotating bodics.

Gyroscope, jī'rō-skōp, from the Greek guros, a circuit, sköpóo, I see. An instrument used in experimental physics for excmplifying the various properties of rotation and the composition of rotations. Its invention is ascribed to Jean Bernard Léon Foucault (1819-1868), whose famous experiments with pendulum and gyroscope proved and measured the diurnal motion of the earth. The application of the gyroscopic principle, however, was made many years previously to Foucault's experiments, and the instrument in some of its forms originated probably in Germany or France, towards the end of the 18 th century. A form of the instrumont is popular as a toy, in the familiar gyroscopic top. Since 1907 the gyroscopic principle has licen adapted to the practical purposes of railroad transportation.

Freely supported on gimbals in a frame or in a box, the gyroscope consists of two interjointed wheels which revolve in opposite directions. As a rotating body will not alter the direction in which its permanent axis points, unless gravity intervenes, the action of gravity is eliminated by the opposing rotation with a rotation, of the central metallic disk, the middle point of whose axis constantly remains the centre of gravity of the machine. U'pon this principle is explained the rotation of the earth on its axis, and the gyroscope thus affords a notable illustration of the harmony among physical laws. The gyroscope is so constructed that the axis of rotation can be made to point to some star in the sky. Then, as the heavy disk whirls round. it is found that the axis continues to point to the moving star, though, in consequence of this, apparently altering its direction relatively to bodies on the earth. If, again, the axis be pointed to the celestial pole, which is fixed, no alteration in its position relative to bodies on the eartlo takes place.

The following lucid and elementary exposition of the principles governing the action of the gyroscope is given by Dr. S. Tolver Preston in an article on 'The Wechanics of the Gyroscope' reproduced from Techuics in the Scientinc Amcrican Supplement of 8 Oct. 190.1:
"According to the Newtonian system of dynamics (a system which is now universally recognized and accepted), the velocity of a particle can only be increased in any given dircetion by the application of a force acting in that direction: conversely. its velocity in a given direction can only be diminished by the application of a force acting in an opposite direction. The magnitude of the applied force is proportional to the rate of increase or decrease of the velocity of the particle.

Let us suppose that a series of equal heavy particles are arranged around the circumference of the circle in Fig. I. These particles may be supposed to be rigidly connected one with another, the whole being connected by massless spokes, with an axle passing througla C. the center of the circle; this axle being at right angles to the plane of the naner. This arrangement constitutes an idcal flywheel, and may he considered typical of an ordinary gyroscone disk.

Let the flowheel be set in rotation in the
direction indicated loy the arrow. The problem before us is to determine the nature of the forces which must be applied to the rotating flywheel in order to deviate the axis of rotation. Let us suppose that the flywheel, while still rotating about its axle, is constrained in addition to turn about the line $A B$, at right angles to the axle. Looking in the direction $A B$, let the flywheel turn about that line in a clockwise direction, so that the side L moves downward through the plane of the paper, while the side R moves upward through the same plane. The particles at c and p being, at the given instant, on the axis of rotation $A B$, will possess no velocity of rotation about that axis. So far as concerns other particles, their velocities of rotation about A, B will be proportional to their perpendicular disțances from that line. Sixteen equidistant particles on the circumference of the circle liave been indicated. The rotational velocities of these particles, about

the line $A B$, will be proportional to the respective perpendiculars let fall on $A B$.

In a certain interval of time the disk will complete a revolution about its axle. In oncsixteenth of this interval of time, the particle a will move round the circle so as to attain the position previously occupied by the particle b. In doing so, the particle a will acquire the velocity previously possessed by the particle b, i. e., its velocity will be diminished, since b is nearer than a to the axis $A B$. The diminution of velocity will of course be proportional to a D, where $b D$ is a line drawn from b perpendicular to C a. But since the velocity of the particle a, in a direction passirg vertically downward through the plane of the paper, is diminished as the particle moves from a to b. this particle must have been acted upon by a force directed wertically upward through the plane of the paper, and proportional to a D. This force is indicated by a small circle containing
a dot at its center. The dot indicates the pointed end of an arrow supposed to be directed vertacally upward throngh the paper; while the diameter of the small circle is drawn proportional to a D, or to the magnitude of the force.

While the particle a moved to b. the particle b mored to i. In this tume the velocity of the particle b, perpendicular tu the plane of the paper, musi have been diminished by an amount proportional to $b E$. A small circle containing a dot at its center. and of a diameter proportional to b E, indicates the magnitude and direction of the iorce which must have been applied to the pasticle as it moved irom b to c.

The iorce wbich acted on the particie c as it moved to d, and that which acted on the particle d as it moved to ε, are represented in a similar manner.

Owing to the rotation about the line $A B$, all particles on the right-hand side of the disk are moving upward through the plane of the paper; thus it follows that the particle ε, in moving to the position \dot{f}. must have acquired a velocity, directed vertically upward through the paper, proportional to $G \dot{f}$. It must. theruiore, have been acted upon by a iorce propertinnal to $G f$, directed vertically upward through the paper. The forces acting on the particles f, g, f, can be determined in a similar manner.

It is obvious that the velocity of the particle k, directed upward through the plane of the paper, is diminished as thar particle moves to the position previously occupied by the particle l. Consequently, it must have been acted upon by a force, of which the magnitude is determined in the manner previulsly explained, acting downward through the plane of the paper. A circle, of which the diamoter is proport nal to this force, while the cross at its center sepresents the feathered end oi an arrow directed downward through the paper, indreates the magnitude and direction of the ioree acting ont the particle k as it moved to $/$. The i rees acting on the particles, l. m, n, f, q, r, s, are determmed similarly, and represented by circles cortaining ernses. to indicate that the iotes act downward through the flane of the paper.

A slance at Fig. t shows that all i rees acting on the part ui the flywhel above the line a k, are directed upward throush the plane of the paper: while all furces acting on the part of the flywhed helow the line a k, are directed downsard throngh the plane of the paper. All the ioree acting above the line a k might be replaced by a single resultant force, acting upward throush the paper at some point on the live $C i \because$ while all the forces acting betow the line a k mizht be replaced by a single resultant actung downward through the paper at sume point in the line $C f$. These two eevitant firces, acting parallel to each ether, but in opposite directions. emstitite a corple, as d preduce a torque or turning moment about the line a k. Thus, in order to turn the revolving flywled about the diameter if. We munt ipply a tirque which, if it acte 1 ont the stationary flywheel, would turn it about the perpendicular diameter a k Converscly: if we apply is torque tending to turn the flywheed about a diameter a k, it will turn, not about
c. k (as might have been expected), but about the perpendicular diameter $i f$.

The torque necesary to defiect the flywheel night be produced by iurees acting directly upun it, as fur instance, by blowing air on the upper half of the thy wheel from the back, and un the lower hali irom the iront. Generally, however, it is more convenient to act on the axte, the end above the plane of the paper being urged 111 the direction $C B$, while the end below the plane of the paper is urged, by an equal force, in the direction $C \mathcal{A}$.

Some further points should be noted. Anyo force acting to the right of the line $A \mathcal{A} B$, is equal, both in magnitude and direction, to a corresponding force acting to the left of the same line. Consequently as the thwheel turns about the axis A B, no wook will be periormed by the forces producing this rotation. This follows from the circums:ance that whereas one iorce acts in the direction of motion (so iar as relates to rotation about the axis -1 B the other equal force is opposed to that motion.

The actual behavior oi a gyroscepe can now be easily maderstood. The Hywheel a a (Fig. 2) having been set in rapid rotation in the direction indicated by the arrow r, the frame carrying it is supported irom a projection $:$ at ont ead, on a pirot 0 . Instead of ialling to the ground. as it would do if it were not rotuting, the gyroscope remains with its axis $b z$ hurizontal: but the axis turns in a horizontal plane about the point oi support v, in the direction indicated by the arrow s. The torque produced by the pull of gravity is easily seen to be that required to turn the Hywheel is a about a vertical diameter in the difection mentioned. The fact that the riywheel, besides rotating about a vertical axis, also revolves in a circle about the point o as center, is merely due to the circumstance that, under the conditions of the experiment. the rotation cannot occur witheut the revolution.

It is instrtactive to consider the same problem irom a sumewhat different standpoint. We have already determined the nature of the appled iorces required 10 turn the ideal sotating tluwhel (Fiz. t) about the axis .1 B, in a e) ckwise direction when viewed from A. We i und that a torque must be applied which tends t unge the end of the axle above the plane of the paper in the direction C B. and the opposite end of the axle in the direction C. -1 . It will now be proved that the reaction of the rotatir g flywheed, when it turns as abore, abont the axis it B, produces a torque which tends to urge the end of the axle above the plane of t e p:per in the direction C. 1 . and the other end fitce axle in the direction $C B$.

Under the siven conditions. the component (d) catic: d wnward through the plane of the paper. of the particles a, b, c, d, are all being dminished: and the consequent reactions tend tu turn the axle in a clnckwise direction. abont the hne k a. when viewed irnm the side k. The c npenert vel citics. upward through the plane "i the paper, of the particles i, f, g, h. are all beirg increased. and the consequant reactions tand it itrn the axle in the same direction. It 1 cavily secn that the reactions due to the alterati ns in the velocities of the particles k, l,
n, n, p, q, r, s, all tend to turn the axle of the flywheel in the same direction. Thus the torque due to the reaction of the rotating flywheel when turning about the axis $A B$, is of the character specified above.
"The precise way in which the gyroscope (Fig. 2) acts can now be readily followed. When the frame carrying the rotating flywheel a a is first supported on the pivot o, the initial tendency is for the whole to descend toward the carth, under the action of gravity: But the pivot o prevents the end b of the axle from descending, so that an incipient rotation about a horizontal diameter commences. The reaction due to this rotation produces a torque which tends to turn the flywheel about a vertical diameter in the direction of the arrow s. As the flywheel is free to turn in this direction, it at once commences to do so, and in so doing generates a reacting torque opposing the incipient rotation produced by gravity. The action of gravity being opposed, the rate of (incipient) descent of the flywheel is diminished; but so long as descent continues, a torque acting in the direction of the arrow s will be produced,

and this will increase the velocity of turning, thus increasing the torque which opposes the descent of the flywheel under the action of gravity. The flywheel, finally, acquires a rotational velocity in the direction of the arrow s, which produces a reacting torque just equal and opposite to that due to the pull of gravity. If friction were entirely absent, the flywheel would then cease to descend, and would continue to turn at a uniform rate in the direction of the arrow s. In this process, the work performed is that due to the incipient descent of the flywheel; this work is just sufficient to supply the kinetic energy due to the rotation of the flywheel and its supporting framework about the axis o. When the permanent condition outlined above has been attained, no further work is done in the absence of friction. If there is friction between the supporting lug n, and the pivot 0 , the gyroscope will slowly descend, at such a rate that the work performed by gravity is just equal to that needed to overcome the frictional drag.
"In the absence of friction, it is obvious that the gyroscope turns about 0 as center merely
by virtue of its own inertia, after the final state has been reached; in this respect the motion resembles that of a planct around the sun. The torque due to gravity, though necessary, only scrves the purpose of nentralizing the reacting torque which the turning of the flywheel about a vertical diameter produces."

Mr. C. M. Brownall also, in a treatise on 'The Gyroscope, an Explanation without Mathenatics.' published in the Scientific American Supplement of 10 Aug. 1907, summarizes the action of the gyroscope force as follows:
"1. The gyrosconic force always acts at right angles to the plane of motion of the axis, neither accelerating nor retarding it and only tending to change its direction. The gyroscopic force is of the nature of a couple, and can only be balanced by an equal couple.
II. The gyroscopic foree is greater, other things being equal, as the velocity of motion of the axis is greater, as the velocity of rotation of the wheel is greater, as the mass of the wheel is greater and as this mass is more distantly situated as regards the center of the wheel."

In May 1907, with a gyroscopic monorail car Mr. Lonis Breman, C. B., the inventor of the Bremnan torpedo used by the British government, demonstrated before the Royal Society of Great Britain that he had discovered a practical application of the gyroscope which will probably revolutionize railway transportation.

The invention is, briefly, a system by which a vehicle or a train of vehicles supported by a single row of wheels may travel on a single rail and at all times maintain perfect equilibrium, whether in motion or stationary, and regardless of the distribution of the load, wind pressure and other conditions. Automatic stability mechanism carried by the vehicle itself endows it with this power. The mechanism consists essentially of two flywheels rotated directly by electric motors in opposite directions at a very high velocity; and mounted so that their gyrostatic action and stored up energy can be utilized. These flywheels are mounted on high-elass bearings and are placed in exhansted cases, so that both air and journal friction is reduced to a minimum, and consequently the power required to keep them in rapid motion is very smatl. The stored up energy in the flywheels when revolving at full speed, is so great and the friction so small that if the driving current is cut off altogether they will run at sufficient velocity to impart stability to the vehicle for several hours, while it will take from two to three days lefore they come to rest. The model car, while ruming on a curved monorail, leans forward and so automatically balances the effect of centrifugal force, while a single wire hawser stretched across a river or ravine is all that is necessary: in the shape of a bridge. The adoption of the gyroscopic principle to the practical purposes of steamship transportation is also in an adranced experimental stage, while it is considered probable that the crucial problens of the aeronant, how to keep an automatic balance, may be solved by a simple application of the gyroscope.

H

Hthe eighth letter of the English and other alphabets derived irom the alphabet of the Latins. It was borrowed by the Latins from the alphabet of the Greeks, and in early Greek represented an aspirate consonant sound, but in the Greek of classical ames it stands ior the prolonged yowel sound of ε, as omega (ω) stands for the prolonged sound of omicron (o). The H is evidently a character borrowed from tbe Phenician alphabet. where its form was E and its sound gutiural aspirate, like that of the corresponding Hebrew letter cheth or like che in German and in Scotch. In Greek, aiter If was adopted as a vowel sign, the aspirate was represented by - or either prefixed to a letter ('o) or written above it (\dot{o}): it was previous to this change that H was introduced into the Latin alphabet. It is probable that in early Latin this letter. occurring between two vowels, as in nilall, mihi, traho, teho, represented a guttural sound, as the h_{h} in nihil and milh; does still in the Italian pronunciation of Latin. But evidence exists that in the classical usage of ancient Latin speech initial h was of little account and was "silent" as in modern Italian and French: this is certain as regards the pronunciation of the vulgar; and that even the educated often "dropped the h's' we know from the fact that in ancient monuments we find Hannibal and Amibal, Hadria and Adria, herus and erus, haruspex and aru=pex.

In Anglo-Saxon and earlicit Enclish speech h represents a gurtural aspuate like German and Scotch ch in wih, 1 th: for cxample in
 the same sound as if in the German words neint, gidacht. In earliest Engli=ll specely h was prenixed to l. n, and r, to repreent a sutteral aspirate which is now entirely li-t: examples. hlof (loai), hercica (neck), hring (ring): the intial guttural in such werd ha- leen dropped. as in the names of the early. Frankith kings Hlodowig became Ludovicus and L Lis, and 111 thar became Lothair. The original guttural h in old High German lercs is completely climinated in the modern Gernan riss, but is represented by the aspirate h_{h} in Oid English h rs (herec). The h after w in many words as whari, what, when, etc.. reprecents an initial aspirate in Old English hwari, hwaet, lwaenne, ctc.
H is adfed to various consonante to form digraphs ior representation of various sounde, f r example. ch as in chin, sh as in shy, gh as in gherkin, the as in thin, then : or even to represent scunds for which there is already a priser consonant in the alphabet, for example f^{h} and $g h$ for the sound of f (philter, rough),
its ior the sound of k (chyle); in very many cases the digtaph ghb is employed simply as a memorial of an ancient etymolosy: as in plough. and not seldom ior no discernible purpose at all, as in ghost; the iorm r / h usually eccurs in words of Greek origin. and recalls the Greek etymology (rhapsody), but again :: is employed to suggest false Greek etymology (rhyme).
H. H. See Jachson, Helen Maria Fiske Hust.

Haarlem, hạr'lĕm, Holland, the capital of the prounce oi Jorth Holland. II miles by rail west of Amsterdam, and five miles irom the North Sea. The city is intersected by canals bordered by tree-lined avenues, and communicates with the Zuyder Zee by the Spaarne and the Ij. Its chief nunicipal building is the town hail, a 1 th century palace of the counts of Holland, containing a library. art, and histerical collections. In Haarlem wood a iavorite pleasure resort is the Parilion housing the Socicty ior the Promotion of Industry, and containing the colonial and industrial museums. Chief among numerous educational institutions is the Teyler Museum, ior the study oi theclogz: natural science, and the fine arts. The finest ecclesiastical structure is St. Bavo's or the Grocte Kerk: a 15 th century late Gothic basilica, one of the largest clurches in Holland, noted for its tower 260 feet high, and its large orman. Haarlem was important commercially as eariy as the feth century, and altheugh its manufacturing industies have declincd. has cott in-mills, linen bleaclieries, ivpe i uldries, ireweries. etc. The town sufferd during the recolt of the peasantry in it 42 and was deprived of its privileges by Albert of Sax ny. During the war of independence it :unt-ined a siege of seven months ($15,2-7,3$) ly the Spaniards, and capitulated oaly aiter a display it the noblest heroism and courage. It was retaken by the Prince of Orange in 16%. Pop. (1xisy) 4.069.

Haas, hás, Johannes Hubertus Leonardue de, Durch paimer: b. Hedel, North Brabant, 23 March 1-32. A pupil of lan van Os at Haarlem, he cutablished his studio at Brussels in 15: 5% and attained an excellent reputation by his finely-colored animal studies and animal group: with background of Dutch landscape. In dion he received a gold medal at Munich for his 'Trio ni Dunkeys.' Others of his works are: 'The Three Comrades'; 'In the Dunes': TOn the Bank of the l'sscl'; 'Cattle at Pasture.'

Habakkuk, ha-bäk'ük or hăb'ạ-kuk, the eighth of the twelve minor prophets. He was

HABBERTON - HABEAS CORPUS

of the tribe of Levi, and flourished about 600 e.C. His prophecy $=0$ mences with a lamentation for the corruption and social disorganization which the prophet sees around him. He cries to God for help, and is answered by threatenings of swift vengeance. The prophet is commanded to write the vision of God's retributive justice as revealed to his prophetic eye. The doom of the Chaldrans is first told in general terms and the announcement is followed by a series of denunciations pronounced upon them by the nations whom they had oppressed. The whole concludes with a magnificent psalm (chap. iii.), 'Habakkuk's Pindaric Ode,' as it is called by Ewald, a composition unrivaled for bolduess, sublimity, and majesty of diction.

Hab'berton, John, American author: b. Brooklyn, N. Y., 24 Feb. I842. At first a printer he subsequently served in the Federal army, and later undertook editorial work in New York. His best-known book, 'Helen's Babies) (1876), attained great popularity both in America and in Europe. He has published also 'The Barton Experiment' (1877); 'Other People's Children' (1877) ; 'The Worst Boy in Town) (I880); (Who was Paul Grayson?) (1881) ; a humorous 'Life of Washington' (1883) ; 'One Tramp' (1884); 'Brueton's Bayou' (1886); '(The Chautauquans) (1801) : 'A Lonely Lover' (1803); 'The Tiger and the Insect) (ID02); 'The Bowsham Puzzle'; 'Country Luck'; 'Little Guzzy'; 'Caleb Wright' ; etc.

Habeas Corpus, hā'bē-as Kôr'pǔs, an ancient English writ addressed to him who has another in custody, and commanding him to produce the body of the person named at a certain place and time. One of the purposes for which it was used was to recover freedom when wrongfully taken away. Personal liberty was asserted by the common law from its earliest ages, and it was always assailed by kings who would be absolute, and with an earnestness proportionate to their tyramy. Hence it became imperatively necessary, if subjects were to retain the control and disposition of their own persons, that they should demand a recognition of this principle from their sovereign, and in England the principle was declared in the most solemn manner in Magna Charta. It is there said that "no man shall be taken or imprisoned but by the lawful judgment of his peers, or by the law of the land." It became necessary, however, in the course of time to put down the abuses by which the government's lust of power, and the servile subtlety of crown lawyers, had impaired so fundamental a privilege; and this was effected by the Habeas Corpus Act passed in 31 Charles I1. (I679). Of the political and social effects of this measure Blackstone writes: "If once it were left in the power of any, the highest magistrate, to imprison arbitrarily whomever he or his officers thought proper, there would soon be an end of all other rights and immunities."

The provisions of the act may be stated generally thus: (I) That on complaint or request in writing, by, or on belalf of, any person committed and charged with any crime (unless committed for treason or felony expressed in the warrant; or as, or on suspicion of
being accessory before the fact to any felony, or upon suspicion thereof, plainly expressed in the warrant; or unless committed or charged in execution by legal process), the lord-chancellor, or any of the judges in vacation, upon viewing a copy of the warrant or affidavit that a copy is denied, shall (unless the party has neglected for two terms to apply to any court for his enlargement) award a habeas corpus for such prisoner, returnable immediately before himself, or any of the judges: and upon the return made shall discharge the party, if bailable, upon security being given to appear and answer to the accusation. (2) The writ shall be returned, and the prisoner brought up within a limited time, according to the distance, not exceeding 20 days. (3) Officers and keepers neglecting to make due returns, or not delivering to the prisoner, or his agent, within six hours after demand. a copy of the warrant of commitment, or slifting the custody of a prisoner from one to another, withont sufficient reason or authority (specified in the act), shall for the first offence forfeit $£ 100$; for the second $£ 200$, to the party grieved, and be disabled to hold their office. (4) No person once delivered by habeas corpus shall be recommitted for the same offence, on penalty of $£ 500$. (5) Every person committed for treason or felony may insist on being tried at the next assizes, or admitted to bail, unless the crown witnesses cannot be ready in that time; and if not tried at the second assizes or sessions, he shall be discharged from the imprisonment. (6) The prisoner may apply either to the Court of Chancery, or to the Courts of Queen's Bench, Common Pleas, or Exchequer, and any judge denying such writ is liable to a fine of f_{500}. As the Habeas Corpus Act extended only to cases where persons are imprisoned on criminal, or supposed criminal charges, the other cases being left to the operation of the common law, which was found defective, the statute $\$ 6$ George III. was passed, which extended the writ to other cases. Under this last act any person confined, or restrained of his liberty (otherwise than for criminal matters, and except persons imprisoned under a judgment or decree for delit), may apply to any judge of the common law courts for a habeas corpus, on showing by affidavit that there is a reasonable and probable ground for complaint.

In times of great political excitement, and suspected treasonable conspiracies, the operation of the Habeas Corpus Act has been suspended, as in Ireland in 1866, by 29 Vict. But such sus. pension does not enable any one to imprison without cause or valid pretext for so doing. It only prevents persons who are committed from being bailed, tried, or discharged during the suspension, leaving to the committing magistrate all the responsibility attending on illegal imprisomment. It is not uncommon therefore to pass an act of indemnity. subsequently, for the protection of those who either could not defend thenselves in an action of false imprisomment, without making improper disclosures of the information on which they acted, or who have done acts not strictly defensible at law, yet apparently justified by the necessity of the moment. The English statute has been copied i:s the United States without essential change.

In the Constitution of the United States it is provided that "the privileges of the writ

HABERSTICH－HACKLEY

of habeas corpus shall not be suspended unless when，in cases of rebellion or invasion，the nublic safety may require it．＂The scope of this pro－ vision came under discussion during the Civil War when the President of the Cinted States auth rized Lieut．－Gen．Scott，where in his judg－ nient it seemed necessary．to suspend the writ． When on one occasion the general reiused to obey the writ．Chiei Justice Taney，who had issued it，uttered an oninion in which he declared that it was only in the power of Congress，and not of the President，to proclaim such suspen－ sion．a view which legal authorities seem in－ clined to agree with．

It has heen decided by the Supreme Court． in view of possible conflicts of jurisdiction between State and Federal courts，that no State judge has a right to issue a writ of habeas corpus for the release oi a person held under the anthority of the Federal government．On the other hand the Lnited States courts are more restricted in the power to issue such writa than the State courts．A Federal coun may issue a writ of habeas corpus in cases coming within Federal inrisdiction．The circuit court may decide whether the person ought to be dis－ charged．but cannot do this even in cases where the writ has been suspended There are also several provisions made by which an imprisoned person．Whose testimony in a court of law is required，inay be released hy a writ of habeas corpus in order to appear beiore the julge．The Supreme Court has not the power to issne this writ，excepting in response to an appeal．Con－ sult：Blachstone，＇Commentaries＇：Hurd，＇Ha－ beas Corpus．？

Haberstich，Samuel．See Bitter，Asthtr．
Hack＇berry，an American tree of the elm family and genus Celtis．growing in dry wounds throughout the eastern Lnited States and Can－ ada．It is small or middle－sized．with the aspect of an elm．The fruit（a globular drupe）is sweet and edible．as large as the bird－cherrs，and ripening in autumm．Two species exist－－C^{\prime} ． occicentalis，the northern hackberry，susar－berry or neitle－tree：and a southern one（C．miss：s－ siffiensis）．The soft．coarse－grained yellow whed is of little value．It is affected hy the same insects as injure the elm（q． O ）．

Häckel，Ernst H．Sec H．ieckel．

Hack＇ensack，ふ．J．．city，county－seat of Bergen Connty，on the Hackensack River，and on the Sew lork S．\＆W．．．and Erıe R．R．ミ， 10 miles from New lork．It is a residential city． but has brick．suk，and other manuiacturing interests．It has a public library．high schon！． gas and electric light，waterwarks．electric street railways comnecting with surrounding to wors and cities and with Xew York，and an assersed prop－ erty valuation of over $\$ 5.000,000$ ．Hackensack was settled by the Dutch in the latter part of the 1 th century，and during the Revolut：n was occupied in turn by the Britich and tmerican armies．Pop．（1900）0．44．3．

Hacker，Arthur，English artist：h．Tondon 25 Sept．TNSR．Me tudhed at St d his：C cee， Innden．was a pupil in art nf the k mal lead－ emy and of Lemn Bonnet at Taris（19RO－1）．act u_{p} his studin in lorindon．and painted．be side $=$ several portraits：＇Pelacia anrl Mhilammon＇： ＇Ay the llaters of Rabylon＇：＂Vic Victis＇； ＇Syrinx＇；＇Sir Percival＇；aml other works．

Hack＇ett，Horatio Balch．American Bap－ tist cergyman and educator：b．Salisbury，Mass．， 2－Dec．Inax：d．Rochester．N．Y．， 2 Nor．IS－5． He was professor of biblical literature at Jew－ ten（ Nass．）Tle egical Seminary is30－－0，and of Greck：at Rochester Theological Seminary， from the Intter date．He was one of the com－ matece if New Testament revision，and witly E．ra Alhot（q．v．）edited the American edition oi Smith＇s＇Bible Dictionary＇（ 1 Sos－；0）．If is chiei work was a＇Commentary on Acts＇ （IRE1）：and he also wrote＂Memorials of Chris－ itan Nen in the N＇ar＇（ISO4）：＇Tour in the Holy Land＇（I860）：eic．

Hackett，James Henry，American actor： h．New Iurk 15 March ISoo；d．Jamaica．L．I．． 28 Dec．IS－1．He went on the stage in IS 26 and was particularly successful in impersonating lankies and Westerners but was best known by his Falstaff，which he plaved first about 1832. He was widely popular in the Lnited States as well as in England．He published＇Notes and Comments on Shakespeare＂（I863）．

Hackett，James Keteltas，American actor： h．Wiolic Island，Ontaric．Can．，O Sept．INO9． He is the son of J．H．Hackett（q．r．）．He was graduated irom the College of the City of New lork in 1891．made his debut in I802．became leading man c．the Lyceum，New Vork．in ISgo， and appeared in＇The Prisoner of Zenda，＇ ＇Rupert of IHentzan．＇，＇The Pride oi Tennico，＇ ＇Din Cæsar＇s Return．＇and＇The Crisis．＇

Hacketstown，N．J．．town in Warren County：on the Jlusconetcong River and on the Delaware．L．\＆II．railroad and the Martis Canal：abut so miles from Nerr lork city，and so miles west of Newark．It is about soo feet above the sea and within hali a mile of the highest point in the State．Its chief mamufac－ tures are silk soods，carriages and wagons，and agricultural implements．The waterworks are owned and operated by the town．and the supply comes irom springs on Schooley＇s Mountain， distant ircm the town about two and one hali miles．It is the seat of the Centenary Collegiate Instimte，under the anspices of the Methodist Episcopal Cemference of Newark：Pop．（1900） 2.42%

Hackländer，Friedrich Wilhelm von，frēd＇－ rim whlhën ion häk＇len－der，Gernan novelist an I writer of comedies：b．Burtscheid，near Aix－ la－Clapelle，Prussia，I Nor．I8io：d．Leoni，near Munich． 6 Tuly is－7．After serving for a time in the Prisoian artillery he began a literary－ career with＇Pictures of Soldier Life＇（IS＋1）， i．lowed hy＇Soldier Life in Peace＇（is 4 ）． Other works of this period were＇Daguerreo－ りpe＝（I\＆九2）；and＇Pilgrimage to Mecca．＇In 14． 40 he went to ltaly，where he was present ＂ith Radetzky＇s army during the campaign in I＇iedon int．and aiterward published＇Soldier Lite 111 War＇（ISfo－s0）．Among the best of his lomeer novels are＇Trade and Trafic＇； －Eugere Stilified＇（1852）：and＇Inonymons Histories＇（185I）．Ifis＂best comedies are the isectet Igent ${ }^{\text {i }}$（1850），translated intn several Pur pean languases，and＇Slagnetic Cures＇ 115：1）．With Zoller，in IRSE．he started the if watrated weekly＇Orer Land and Sea．＇

Hackley，Charles Henry，Imerican cap－ 11．11－： 1 Wichiman City，Ind．． 3 Jan．1837； （1．Mu－kegen，Mich．， 10 Feb． 1005 ．In 1856 he

HACKMATACK - HADIS

went to Muskegon, Mich., and worked in a lumber-mill as laborer and forman; then attended a commercial school and was given a position as bookkeeper and later came to be partner with a mill firm. In IS80 he founded the firm of which he is the head, which is one of the most important in the State, and he has also been interested in many other industrics. He has been a member of the board of education, and was elected regent of the University of Nichigan, but declined the office. He has made large gifts to the city of Muskegon. In ISS8 he gave a public library, which he endowed in 1891 ; in IRS9 he had a park made in a central part of the city in which he erected a soldiers' and sailors' monument and other statues; in i891 he built and endowed a manual training school; in Igor, he provided for the erection of a hospital with a training school for nurses, and erected a statue of McKinley, the first statue of the late President to be unveiled. The total value of his gifts is $\$_{1,380,525}$.

Hackmatack, hăk'mạ-tăk, the American larch. See Larch.

Hackney, England, a metropolitan borough in the northeast of London, three miles north-northeast of St. Paul's. It has a fine modern town hall. Hackney was formerly noted for its boarding-schools for young ladies. It is supposed that hackney-coaches were first established between this place and London, and derived their name from it. It has manufactories of chemicals, india subber, etc.: and had formerly extensive silk-mills. Pop. (1901) 270,535.

Hackney Carriage or Coach, a fourwheeled enclosed vehicle drawn by two horses and seating four persons exclusive of the driver. They are usually let out for hire. The carriage derives its name from Hackney (q.r.).

Haddam, Conn., a town and one of the county-seats of Middlesex Countr. 26 miles southeast of Hartford, on the New lork, New Haven \& Hartford R.R., and on the west bank of the Connecticut River, 29 miles above its mouth. Among its educational institutions is Brainerd Academy. It has important granite quarries, lumber and saw-mills, and a paper mill. Pop. (1900) 2.015.

Haddock, a fish (Melanogrammus aglefinus) of the same family (Gadida) as the cod, and much resembling it in gencral appearance. From the cod it may be easily distinguished by the black lateral line and suprapectoral blotches, and the swollen bones of the shoulder girdle. The haddock scarcely exceeds a weight of 15 pounds, and is usually ahout 3 or 4 pounds. It is restricted in its range to the North Atlantic. The food is extremely varied, consisting of every kind of botton-living invertebrate. Spawning occurs in late winter and early spring, according to locality. and the eggs are essentially like those of the cod. Haddock associate with cod on the Banks, but the principal American fisheries are in Massachusetts Bay, on the Nantucket shoals and other points off southeastern New England. where immense numbers are taken on trawl and hand lines, especially during the summer. Philadelphia and Boston furnish the best markets for fresh haddock, but the demand from the interior is constantly growing. Though considerable quantities are salted at Province-
town, the haddock when so prepared is much inferior to the cod. The Scotch method of drying and smoking produces the much superior "Finnan Haddies,") and is largely practised at Portland and Boston.

Had'don Hall, an old English baronial mansion, the seat successively of Avenells, Vernons, and the Rutland family, stands on a slope overlooking the Wye in Derbyshire, 23 miles north-northwest of Derby. The styles of architecture range from Norman to the 16 th century. Reference is made to it in Scott's 'Peveri] of the Peak.). Although it is not inhabited it is in fine condition and remarkable as one of the most interesting extant examples of the country house of a great land owner in the late Niddle Ages.

Haddonfield, N. J.. a borough of Camden County, five miles southeast of Camden, a junction of two branches of the Camden and Atlantic railroad. Its industries are mainly agricultural; and it has also manufactures of stores, tinware, watchcases, etc. Pop. (1900) 2,776.

Ha'den, Sir Francis Seymour, English etcher and surgeon: b. London I6 Sept. i818. He studied at the Sorbonne and in the Paris and Grenoble medical schools, and in 1857 became a Fellow of the Royal College of Surgeons. The 'Etched Work of F. S. Haden' contains I 85 plates by him and still others have been published in 'Etudes à l'Eau Forte' ($1865-6$). His work as an etcher is noted for both vigor and breadth. He is president of the Society of Painter Etchers, was knighted in 189.4, and has written (Rembrandt True and False): 'Etcled Work of Rembrandt' (1870-So); 'Lectures'; 'About Etching' (188).

Hades, hā'dēz, the Greek name of a god, in large measure corresponding to the Roman Pluto, who reigned over the infernal regions. Both Greeks and Romans supposed the infernal regions to be in the centre of the earth. To enter these, the river Stya had to be crossed by the dead in the wherry of Claton. If, by any chance, the body lay unburied, the shade was detained 100 years on the bank of the Styx before crossing.

The Greek word Hades is rendered in the authorized version by the ambiguous term hell (q.v.). Expressions. most of them obviously figurative, used of Hades, represent it as subterranean; as having gates with keys in the hand of Christ, and as having, in a portion of it, souls in torment.

Had'is, or in Arabic plural, Ahadis, narrations or traditions, which selate to the Prophet Mohammed. and are not found in the Koran. There are numerous collections of these floating traditions, anecdotes and legends. A search for such data was first undertaken by Abdul 3lalik ibn Juraisch (d. Ifz A.D.). Others consider that the collection of Imam Xalik (d. Sor) is the earliest extant. The following six Hadis collections are considered by the Sunnite Mloslems to be canonical scriptures: I. The Hadis of Nlohammed Ismail al Buchari ($\mathrm{d} .8,8$). 2. Of Muslim ibn ul ITajaj (d. 883). 3. Of Abu Isa Alohammed al Tirmisi (d. 901). 4. Abu Dand al Sajistani (d. 807). 5. Of Abu Abd ur Ralımân al Nasái (d. 925). 6. Of Abu Abdallah Mohammed Ibn Wajah (d. 895). None of these have ever been printed.

HADLEY - HADRIAN

Hadley, Arthur Twining, American =ollege president: b. New Haven, Conn., 23 April 18:5. A son of James Hadley (q.r.), he was graduated from Fale in 18-6, and took graduate studies in political science at lale and the Liniversity of Berlin. In IE,9-83 he was a tutor at Yale, and during that time wrote for several journals. including the 'Railway Gazette' and the 'Finaneial Chronicle.' He was commissioner oi labor statistics ior Connecticut ($1885-\overline{\text { o }}$), and was in 188: a witness beiore the Cullom State committee which prepared the Interstate Commerce Law. In 1885 he became professor of political science at Yale, and in 1899 was made president oi the university. He was president of the American Eeonomic Association for two years. In 188 , he published 'Railroad Transportation: Its History and Laws.' which is everywhere recognized as one of the chiei authorities on the subject. and has been translated into French and Rusian: his other works include (Report on the Labor Question) ($8 \$ 8$) ; 'Economies, an Account of the Relations between Private Property and Public Welfare' (1\&g6), presenting the theories of political econcmy in accordance with the most modern reseateh and thought: and 'The Education of the American Citizen' (1901). His writings show him to be not only a scholar, but also a man of a ffairs well aequaimed with the business world, and in this regard he is one of the best representatives of the modern type of university presidents.

Hadley, Henry K., American composer: b. Somerville, Mass., is-I. He was a pupil oi S. A. Emery and G. W. Chadwick in Boston. studied also in Vienna, and in 1805 returned to the United States and was appointed instructor in music at $S_{\text {t. Paul's School, Garden City. }}$ I. I. His smphony, 'The Four Seasons.' received the prizes given by the Paderewski Fund and the New England Conserratory of Boston. His works iurther include a concert overture 'Hector and Andromache'; a symphony, 'Youth and Life': a cantata, 'In Music's Praise': a festival march: trios, quartettes, and more than 150 excellent songs and pianoforte compositions.

Hadley, James, American philologist: b. Fairfield. ‥ I., 30 Mareh 182 t ; d. Ner Haven. Comin, it Now, 18,72 . When a boy he suffered an injury to his knee, which developed seriously, and erippled him for life. He was graduated from lale in 1842, took graduate studies in mathematies and also a theological course. In 184, he was tutor at Middlebury College, Vit., and in I 845 beeame a tutor at lale. In ist 8 he became assistant professor of Greek there, and in 1851 . proienior of Greek. He was iamiliar not only with Greek, Latin. and :he chief modern languaces, but also with Hebrew, Arabic. Armenian, Gaelic. Irish, Sanskrit, Gothic, and Old English, and won a high reputation as a lineuist distinguished for exactness and :horoughness in detail, united with breadth of view; he alsn was suecessiul and influential as a teacher. He publiched a 'Greek Grammar) (186\%), based on Curtius, and wrote the 'Brief History of the English Language' in the 1864 edition of Webster's 'Dietionary': after his death. his 'Introduction to Reman Law_{3} ' (1873) and 'Philological and Critical Essays' (1873) were published.

Hadley, John, English mathematician and astronomer: b. IO82; d. If Feb. 1743. He became a Fellow of the Royal Society in 171%, and was the inventor oi Hadley's quadrant (see Sextani) and of a reflecting telescope (1;23). The credit of having invented the sextant is claimed for Hadley, Godirey. and Newton, but each seems. nevertheless, to have made his own discovery independemtly: Hadley deseribed his instrument. which he called an "octant," to the Royal Society in May $1 ; 31$.

Hadley, Mass. town, which ineludes several villages. in Hampshire County: on the Connecticut River and on the Boston \& II. Railroad; three miles northeast of Northampton and four miles scuthwest of Amherst. It was settled in $16 \equiv 9$, and was first called Norwottack; but in I66t, when it was incorporated it was given the name Hadley, from Hadley in England. William Goffe and his father-in-law Whalley. who fled from England to -tmerica in 106o. and who lived for a time near Jiew Haven, sought concealment in Hadler, in 1664. where Gofie died in 16;9. According to tradition, when Hadley was at one time attacked by Indians, and the people were called from the meeting-house, they stood helpless until Goffe appearing, took the lead and repelied the enemy. Hadley is an agricultural region. and its industries are chienly connected with farm products. Pop. (1900) 1.zs9.

Hadramaut, hā-đrā-mât'. Arabia, the name given to the coast region from Aden to Cape Ras-al-Hadd. It consists of a plateau, pared from a mountain chain. the barrier of the interior desert, by a complex of valleys. Commerce. agriculture, eattle-breeding. and the chase are the chief occupations. The climate is dry but healthy: Pop. about 1 I 30.000 .

Hadrian, ha'drī-ą (Ptblecs . Elttes HadRIaves), Roman emperor: b. Rome 24 Jan. 76 ; d. Baire Io July 138 . For his ardor in the study of Greek he earned the nickname of Greeculus. A nephetr of Trajan, he was adopted by that emperor, fought under him against the Dacians with some glory. and, having been entrusted with the praciceture of the East and the command of the Roman armies in the East early in H^{-}when Trajan leit the field, Hadrian, upon Trajan's death later in the same year was made emperor by his soldiers. He quickly realized that he could make no forcible head acainst the simultancous attacks of the Parthians and. in Dacia and Moesia, oi barbarian fecs, to say nothing of revolt in Suria and Egpt. With the true insight of a diplomat he ioresaw that the extrome East must be either surrendered voluntarily or lost. and chose the inrmer alternative as the least costly. Hence he gave up Armenia. Mesopotamia, and Assyria, all comparatively new Roman provinces, to the Parthian power, and withdrew the Roman eacles to the west of the Euphrates. In 110, ior the purpose of becoming aequainted with the state of the provinces. he began his celchrated journey, which he is said to have performed chiefly on foot, marching bareheaded 20 miles a day and sharing cheerfully the hard fare of the humblest soldier. He visited Gaul, Germany: Britain. where he built the famous wall extending from the Solway to the Tyne. Spain, Mauritania, Egept, Asia Minor, and

ARTHCR TWIN゙ING HADLEY,
PRESIDENT YALE UNIVERSITY。

HADRIAN'S WALL - HemATOXYLIN

Grecce, whence he returned to Rome after his circuit of the empire in 126 or 127 A.D., and recerved the title of "Pater Patrix." Hadrian spent the years 132 and 133 in Athens, which city he adorned with splendid and costly buildings. After once more visiting Syria and crushing a desperate Jewish revoit, he returned to Italy, and spent the last years of his life at Rome and his villa. During his reign the army was vigorously disciplined and reorganized. As a civil ruler he merits high praise for the just and comprehensive view he appears to have taken of his duties as a sovereign. Hence to him is attributed, more than to any other, the consolidation of the monarchical system of Rome. Hadrian also divided Italy into four parts under four consuls, to whom was entrusted the administration of justice. Hadrian had a passion for building: his most splendid edifices were a famons villa at Tibur (now Tivoli), and in Rome the Aelian bridge, built in J_{3}, and now styled the Pont Sant' Angelo. This bridge leads to the emperor's splendid mausoleum, the Moles Hadriani. He likewise laid the ioandation of several cities, the most important of which was Adrianopolis. He was a lover of the fine arts and set a high value on Greek literature. No fragment of ancient literature has been more famous than the verses attributed to the dying Hadrian:

> Animula vagula, blandula
> Hospes comesque corporis
> Oup nunc abibis in loca
> Pallidula, rigida. nudula.
> Nec ut soles dabis jocos?

David Johnston, in his 'Translations, Literal and Free, of the Dying Hadrian's Address to his Soul' ((187\%), gives no fewer than 116 translations of all degrees of excellence. Among well-known writers. Byron. Prior. Pope, and Merivale have attempted renderings. Consult: Gregorovius, (Der Kaiser Hadrian' (IS84); Durr, 'Die Reisen des Kaisers Hadrian' (I881).

Hadrian's Wall, a wall in the north of England, called also the Roman Wall and the Wall of Severus. Before Agricola adranced into Scotland he established forts between the estuary of the Tyne and the Solway Firth. to protect him from attack in his rear. He adopted the same precaution before leaving the Lowlands of Scotland for the Highlands, placing encampments between the firths of Forth and Clyde. Afterward walls were constructed on these two lines. On the English side of the Border is a stone wall with a ditch on its north side. Attached to it are stationary camps, mile-castles, and turrets for the accommodation of the soldiery who manned it. To the south of the stone wall is a series of ramparts generally called the z'allum. This fortification consists of three aggers or mounds and a ditch. The military way along which the soldiery moved lies between the murus or stone wall and the vallum. The wall was not intended as a mere fence to block out the Caledonians. but as a line of military strategy: Hadrian is now generally believed to have been the builder of the whole structure. Severus, however, repaired it before he advanced into Scotland. Agricola came to Britain in 78 A.D. Hadrian came toward the close of II9 A.D. Severus died in 2 II A.D. Considerable portions of Hadrian's Wall yet remain. In two places the wall stands nine feet highl. See Collingwood Bruce, 'The Roman Wall' (1851); and
'Handbook to the Roman TVall' (I863) : Neilson. ('Per Lineam Valli' (I891); Creighton, 'Carliste' (1889).

Hadrosaurus, hăd-rō-sàr rŭs, or Trachodon, a genus of duck-billed dinosaurs of the Cretaceous rocks of North America. Compare Claosaluus.

Haeckel, hèk'el, Ernst, German naturalist: b. Potsdam, Germany, to Feb. I834. He studied at Berlin, Wurzburg, and Viema, taking his medical degree in 1858 and practising that profession a short time in the former city. During 1859 and 1800 he made a journey through Italy and Sicily in the interest of science, his work on 'The Radiata' (1862), being a result. Later portions were added in 188 ; and 1888. In 1861 he settled in Jena for the study of comparative :natomy, but soon turned to the specific investigation of zoology, and aiter holding subordinate positions, was appointed in 1865 full professor at Jena. His researches had to do especially with the Iower ranks of marine animals, and above all. with deep-sea life in its simolest forms. The material for such ztudy was gathered from many and extended experiences in the North Sea. the Mfediterranean, the Canary Isles, and the Indian Ocean. These travels and rescarches were the basis of works like the 'History of the Development of the Siphonophora (1869) ; and (Biological Studies) (IS70). These, however, were introductory to greater representative works on matural philosophy and the development theory, such as 'Calcareous Sponges' (I872): 'Natural History of Creation' (I868), - which has received the homor of translation into twelve languages, - and his master work 'General Morplology of Organisms' (I866). More popular writings, making him known to a public much wider than the biologist ever addresses, are those 'On the Division of Labor in Nature and Human Life' (18'9), 'On the Origin and Genealogy of the IIuman Race' (1870). 'Life in the Great Marine Animals': 'The Arabian Corals' (I873) ; 'The System of the Medusa' (1880); and 'A Visit to Ceylon.' For many years he has devoted his attention to the deep-sea exploration- oi H. M. S. Challenger expedition, of which he has written voluminous reports in English. His general biologic conclusions regarding the life and growth of deep-sea organisms are given in his 'Plankton Studies' (I890), while his 'Mlonism as the Link between Religion and Science' may be considered as in a certain sense his confession of faith.

Hæmatemesis, hẽ-ma-těm'ě-siss, vomiting blood, which comes from the stomach, or œesophagus. It may result from alcoholism, poisoning, or cirrhosis of the liver. It is more frequent in later life than hemoptysis (q.v.) but may occur in the acute perforating ulcers of the stomach in young women. It is frequently associated with cancer, but it results also from external violence.

Hæm'atin, or Hem'atin. See Hemoglobin.
Hæmatoxylin, hé-mạ-tăx'ō-lin $\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{6}\right)$, the coloring matter of logwood, or Hamatoxylon Campcehianum, got from the extract by allowing it to stand some days in contact with ether, decanting. removing the ether, and adding water. Hæmatoxylin gradually deposits, and the crystals by pressure and recrystallization from water containing a little ammonium sulphite can be

HemATURIA - HemORRHOIDS

got nearly colorless. Combined with three molecules of water it forms cimetric, with one of water trimetric crystals. The crystals are large. transparent, and brilliant, and have a sweet taste. Hamatoxylin dissolves sparingly in water, but it is taken up very irecly by solution of borax, by hypo-sulphite of sodium, phosphate of sodium. and some other salts. It is also soluble in ether and in alcohol. By acids it is not readily affected. but it reacts at once with alhalies, forming colored solutions, and with metallic oxides iorming precipitates of various colors. By joint action of air and bases hromatoxylin is oxidized and becomes tramsformed into harnatein.

Hæmaturia, hem-a-túrĭ-a. the presence of blood in the urine. which points to disease of the kidney or bladder. It is a symptom of some gravity. The treatment oi the cause will probably remove this affection: in all cases complete rest is very important. See Trematoda.

Hæmoglo bin, or Hemoglo"bin, an organic coloring matter, which constitutes about nine tenths oi the weight oi dried red blood corpuscles, and serves as a carrier of oxygen irom the lungs to the general tissues of the body. It is an exceedingly complex substance, and its formula is not certainly known. Zinoffsky gives it as $\mathrm{C}_{23} \mathrm{H}_{2130} \mathrm{~N}_{24} \mathrm{~S}_{2} \mathrm{FeO} \mathrm{O}_{2}$: but this can hardly be regarded as more than a guess. According to many authorities. hrmoglobin is not a defunte chemical compound, but a more or less variable mixture of simpler substances. It gives all the general reactions of the proteids, but, unlike most of the proteids, it may easily be obtained in crystalline form, its crystals commonly occurring in rhombic plates or prisms, varying somewhat in shape, according to the source from which the substance is prepared. The exceeding physiological importance of hemoglobin depends upon the fact that it readily combines with oxygen to form a very unstable compound known as oxyhemoglobin. The combination takes place as the blood corpuscles containing the hemoglobin pass through the lungs; and the loosely-combmed oxygen is given off again as the corpuscles pass through the capillarics, the oxyhremoglobin being thereby again reduced to hamoglobin. Hxmoglobin also ecmbines whth carbon menoxid to $i: \mathrm{rm}$ a similar but far more stable sub-tance known as carbosylixemoglobin. In poisoning by the inhalation of coal-gas the carbon monoxid present in the coal-gas combines with the ham glubin in the lungs, and the carb xymmog! in sn irmed dies nut break up again. $-1=$ the abserptins of the coalgas pricocds. a cont:nually increasing quantity of haemelubin is therei re destresed. so fiar as its urimy as an cexgem-catrict is ermocticd. In exteme caces of such prosming, tranciusion of blold is reatred 40 , in erder that the patient may have a sufficient supply oi herm ghe bon to transper the requisite quantity of exyeen from the lungs in the ciluer ti-ute of ale lady.

The preparation of pure hamu glinin is a difficult nperati n, and if it- details reference should be made to Gamgees 'Physiological Chemistry:' One oi the best metlinds that have been propnied eon-iets in adding to defil anated blood akest cule sixteenth of its own volume at ether, and < haking the mixture. This treatment catres the rul entpuselea to break up, and the flisid beormes lake-colored. After a time, vary-
ince from a few minutes to three days, according to the source of the blood, a heary deposit of minute crystals of oxyhremoglobin is thrown down. This may be purified by washing with 25 per cent alcohol, and subsequent recrystallization. Crystals of hemoglobin itseli have also been prepared. Pure hremoglobin has a purplish color. which gradually passes into a scarlet or a yellowish red, as the substance absorbs oxygen and becomes thereby converted into oxyhemoglobin. Carboxyhæmoglobin is even more brilliamely red than oxyhemoglobin. All three of these substances exhibit marked absorption spectra when in solution, and rery small quantities of them can be easily detected by the spectroscope. It is said that the presence of one part of hemoglobin in ten thousand parts of water can be distinctly demonstrated by this means.

When oxyremoglobin is acted upon by acids or alkalies, or by the gastric juice, it is resolved into a proieid substance and a detinite compound which has the probable formula $\mathrm{C}_{\infty} \mathrm{H}_{70} \mathrm{~N}_{3}$ $\mathrm{Fe}_{2} \mathrm{O}$, and is known as hæmatin. Hxmatin may be best prepared by extracting blood clot, directly. with hot alcohol to which a small quantity of sulphuric acid has been added. The extract is next agitated with chloroiorm, which takes up the hematin. The chloroform is then separated, washed with water to remove the acid, and allowed to evaporate, when ilhe hematin is deposited in the form of a bluish-black powder. Hrematin is a rery stable compound, and may be heated to $350^{\circ} \mathrm{F}$. without decomposition. At higher temperatures it burns with evolution of hydrocyanic acid. leaving an ash composed chiefly of oxid of iron. It is insoluble in water, ether. dilute acids, and pure alcohol; but it dissolves readily in solutions of the caustic alkalies, and in alcohol to which a small quantity of sulphuric acid has been added. Consult Gamgee, 'Physiological Chemistr:.'

Hæmophilia, a congenital inlerited disease characterized by a tendency to obstinate bleedings. Women are very rarely affected, but transmission of the disease seems to be from the father through the dauglaters to the grandsons, and from father to son. The disease usually makes itself evident in early life. a slight wound beinc i-llowed by abnormal hemorrhage, whereby the child becomes known as a "bleeder." The exact iault in nature's ordinary methed in plugFing blood-vessels has not been di-covered: the shed blood will clot maturally. Desides the liability to excessive hemorrlage, these subiects are irequently afficted with trouble in the joints, probably a chronic inflammation. the result of repeated small hemorrlages. Death is always imminent. as nu thisg can stop the flow of blood Whese larke areas of the body are jnjured. Chl rides are used with some success for those mill lly afflicted with the discase, particnlarly the chlonide ni calcium.

Hæmoptysis, expelling blood from the luse- laryms of bronchial tuhes by coughing. "hich may ic a sympt om of phethisis. Jorphine is ateful immeliatcly after such hemorrhages. Int modern medicine rejects the use of styptics.

Harmorrhoids (Greek, haima, blood, and rhio. (t) flow). literally, a flow of blood. Until the time of Ilippocrates this word was used, confirmably to its etymology, as synonymous with hemorrhage. It was afterward used in a
narrower sense, to indicate the flux of blood at the extremity of the rectum, and in some other cases which were considered analogous to it; thus it was applied to the flow of blood from the nostrils, the mouth, the bladder, and the uterus. It is at present used to signify a particular affection of the rectum, although the discase is not always attended with a flux ; in this sense the affection is also called piles. Certain general causes may produce a predisposition to this disease ; in some cases, it appears to be the effect of a hereditary disposition; in general, it manifests itself between the period of puberty and old age, although infants and aged people are not entirely exempt from its attacks. Men are oftener affected than women, in whom it is sometimes produced by local causes. It often shows itself in subjects who pass suddenly from an active to a sedentary life, or from leanness to corpulency. Any circumstance which produces a tendency to pressure on the venous return of blood in the pelvis is to be reckoned as a local cause. The accumulation of fæcal matter in the intestines as in habitual constipation; efforts to expel urine; the pressure produced by polypi; the obstruction of any of the viscera, especially of the liver; worms; use of drastic purges, particularly of aloes; long continuance in a sitting posture; riding on horseback; preguancy; the accumulation of water by ascites;-such are some of the ordinary causes of hæmorrhoids.

Several varieties of hremorrhoids are distinguished. They are known as external when apparent at the anus; internal when concealed within the orifice; blind or open, regular or irregular, active or passive, periodical or anomalous, etc. There is also a great difference in the quantity of blood discharged; it is usually incousiderable, but in some cases is so great as to threaten the life of the subject. The quality, color, etc., of the blood, also differ in different cases. The number, seat, and form of the hemorrhoidal tumors likewise present a great variety of appearances. When the discase is purely local it is cured more readily; but in the greatest number of cases it is connected with some other affection, or with the constitution of the subject. In these cases, if the piles are not troublesome on account of their size, or if the bleeding is not very considerable, cure of the primary affection should be attempted. The best mode of treatment is then to recur to lyygienic rather than medicinal influences. The subject should avoid violent exercises, but moderate exercise will be found beneficial. The standing position is to be avoided as much as possible, especially following defecation. The constipation (q.v.) with which the subjects of this disease are liable to be affected should be remedied by hygienic dieting. If the pain is considerable, recourse should be had to sedatives and local application of hot water. If the disease appears under a more severe form, more violent remedies will become necessary. If the discharge of blood becomes excessive, particular care must be taken to regulate it. If the tumors acquire a considerable volume, surgical operations are necessary. At the present time the operative treatment of persistent hæmorrhoids is both safe and efficacious.

Hafiz, hâ-fiz', the pseudonym of Mohammed Shems ed dîn, Persian poet: b. Shiraz in
the beginning of the 14th century; d. 1388 . The surname Hafiz was given him because he knew the Koran by heart. He was also called Shakarlab (Sugar-lip), from the flowing melody of his ghazals or short lyrics; and Lissan Elghaïb (the Mysterious Voice), from the deep mystic meaning said by his warmest admirers to be contained in many of his poems. He preferred independent poverty as a dervish to a life at court, whither he was often invited by Sultan Almed. He became a sheik or chief of a fraternity of dervishes, and died at Shifaz where a monument was erected to him, still frequently visited by pious Moslems. He is the greatest lyrical poet of Persia, and he furnishes the safest guide to Persian thought and manners. The songs of Hafiz were collected into a Divan (a Persian word for a collection of poems) after his death, which was first published at Calcutta in 1791, and translated into German by the celebrated orientalist Hammer-Purgstall (181213). A complete English translation by Clarke appeared in 189I. A critical coition of the Persian text, with scholia, etc., was published by Hermann Brockliaus (I854-61). Consult Horn, 'Geschichte der persischen Litteratur' (igor).

Hag-fish, a name given to the species of the families Heptatromida and Myrinida Myxinc, and Bdellostonia of the class of Cyclostomi (q.v.). They are eel-like in shape, lack all paired fins, have a suctorial mouth, without jaws; a single nostril at the tip of the head and either one (My.rinc) or from 6toI4 (Polistotrema) gill openings along the sides of the body. Around the mouth are eight barbels, and the nostril comects with the cavity of the mouth. The skin contains numerous mucus-glands and also numerous pockets of "thread cells," the protoplasm of which is converted into long threads, which, when discharged, unwind and, together with the mucus, form a jelly-like mass protecting the animal. The eggs are large, oval in shape and enclosed in a horny case provided with hooks on each end by which they are anchored to sea weed, etc., on the bottom. Where abundant the hag-fishes are among the greatest pests of the fishermen. They attach themselves to other fishes in the neighborhood of the gills or on the eycs, and thence work themselves rapidly into the interior of the body, devouring the viscera, muscles, etc., so that there remains "a living hulk of head, skin and bones." The California hag-fishes (Polistotrcma Stouti) will devour a fish of 10 or 15 pounds in a single night, and it is believed that they enter the fislies after they are taken in the nets. The hag-fish of the eastern coast (Myrine glutinosa) ranges north of Cape Cod, and in the European seas, south to the English Channel. Other species occur in other parts of the world.

Hagar, hā'gar, an Egyptian handmaid in Abrahan's house. She was presented by her mistress Sarah to Abraham, in order that Abraham might not die without descendants, Sarah herself being barren. Hagar bore Islmael; but Sarali soon became jealous of her, and treated her severely. When Sarah bore Isaac, Hagar was sent away by Abraham, who, the Bible informs us, had received a divine order to dismiss her. Slie suffered much distress in the desert, but was relieved by an angel, and married her son to an Egyptian woman.

Hagen, Gothhils, göt'hili hä'gēn, German hydraulic engineer: b. Konigsberg. Prussia. 3 Jarch $100 \cdot \mathrm{~d}$. Berlin à Feb. 18\% He studied at the Universiry of Künigsberg: in 1816 observed at Kulm the total eclipse of the sun. but laser turned his atiention from astronemy to engineering, and ircm 5831 to ISt9 was professor of hydravile engineering in the School of Engrneering. The naval harbor of Wilhelmshaien. one oi the strongest on the German Ocean, was buith from his designs. In 1869 he became director of the Prusian building deparment. His most imporant work is his 'Handbuch der Wasserbaukunss' (IS+1-065), besides which he published numerous other volumes, including: (Die Kanalisiertug der obern Saar) (1800). and 'Unntersuchungen uber die gleichiormige Bewegung des 11 assers) (IS:-5).

Hagen, Theodor, tà’ōdōr. German painter: b. Düsseldori 24 May $1 \varepsilon_{42}$ He became known through his laindscapes of the Elfei Mountains and Westphalia. in 18,1 wasappointed professor in the Weimar an school. of which he was also director from $18: /$. In riss he resigned both posts and returned to Dusseldori. He obtained a gold medal at the Berlm exposition of tign. fmong his works, distinguished by their forceiul drawing and excellence oí aérial perspective. are: 'The Kanderthal in Switzerland': 'Sunset in the Siegenthal'; 'Spring Weather': 'Swiss Landscape. with the St. Gethard Pass': 'Town on the Lower Rhire - Evening.'

Ha'gerstown, Md., city: county-seat of Washinston County, on Antietam creek, and on the Balsimore \& O. the Cumberland V.. the Noriolk \& W, and the Western M. R.R's. Here ate extensive manuiactures of knit goods, bicycles, machinery. steam engines, lumber, etc. It is the trade centre oi western Jaryland and coniains a court-house, high school. Bacon's School io: boys and girls, electric light and street railways. three national banks. and an assessed property valuation of $\$ 7,000,000$. Pop. (1900) 13.591.

Haggadah, ha-gäda. one oi two rabbinical biblical interpretations forming the Midrash (q.v.)

Haggai, hāg'i. the tenth oi the minor prophets. and firet of those who prophesied aiter the captivity. He was born in Babylon, and joined the first band of exiles who, on the issue oi the decree of Cytus ($\$ 30 \mathrm{EC}$) retumed to their own land. He was burted among the priests at Jerusalem, as beloncing to the iamily, of Aaron. The book of Haggai consists of four distinct prophecies and has but cne theme. the building oi the second temple. The brevity of the several prophecies is so great, and the povery of expression which characterizes them so striking. as to give rise to an idea that in their present form they are but the outhne or summary oi the original discourses. They were delivered in the second year of Darius Hystaspes (520 zC). at intervals from the firt day of the sixth month to the iwenty-fourth day of the ninth moath in the same year. The closing prediction i reshadows the establishment of the Messianic kingdom upon the overthrow of the thrones of the nations.

Haggard, hăg'ard. Andrew Charles Parker, English novelint: b. Bradenham Hall,

Noriolk. ; Feb. I85\% He is a brother of H. R. Hasgard (q.w.) and besides serving with distinction in the English army has published 'Dodo and I': 'Polvglot Poems': '(Tnder Crescent and Star': 'Love Rules the Camp,' and other books.

Haggard. Henry Rider, English novelist: b. Bradenham Hall. Noriolk. England. 22 June 1850. As to he went as secretary to Natal. and served on the staff oi Theophilus Shepstone durng his mission to the Transvaal in 18%. In IRE, he was admitred to the bar of Lincoln's Inn, but has devoted his time mainly to authorship and agriculture. His novels of South Airican life have atrained a wide popularity both at home and in the United Siates Among his works are: 'Cetewayo and His White Neighbers' (188_{2}): 'Dawn' (IRX_{4}) : 'The Witch's Head) (1885):(King Solomon Mines) (1880); 'Jess' (risi) : 'She' (18゙っ) : 'Allan Quatermain' (IRES): 'Colonel Quaritch, 1. C.' 11088): 'Cleopatra' (1889): 'Beatrice' (1890): 'Montezuma's Daughter) (1894); 'Doctor Theme' (ISy): 'History of the Transraal' (1000): (Iysberh) (rgor) : 'Rural England' (:902): 'A Gardener's Year) (i005) : etc.

Haghe. Louis, loo-ē hāg, Belgian painter and lithegrapher: b. Toumai I $^{-}$March 1800: d. London 9 March 188 . At first an architect. he turned to landscape painting. in 1832 went to London. there as a lishographer entered partnership with William Day. then became interested in water-color painting, and in $18,3-$ S4 was president of the New Whater Color Society. He painted by preierence old Flemish inieriors, such as 'Audience Chamber at Bruges.' but also scenes from English history ('Ctomwell with the Letter of Charles [.'). and other subjects. In oils he was less successiul. He worked entirely with his leit hand.

Hagiographa, hā-jī-og'rạ-ia, a Greek word, signiyyng sacred writings, nitsi introduced by Epiphanius as the rendering of the Hebrew word Kitubin $=$ writings. The third and last great division oi the Old Testament books, the cthers being Torah (the Law) and Nebiim (the Prephets). The three-iold division is alluded to in the New Testament, the several parts being described as "the law" or "Moses." "the Prophets." and "the Psalms" (Luke xxiii H). In this passage the Psalnis are the Hagiographa. When the division is twoold. the Law and the Prophets, the Hagiographa are merged in the second category (Matt. br to, xi. 13). In our present Hebrew Bibles the Hagiographa consis: of ${ }^{2} 3$ books thus arranged: Psalms. Proverb: Job, Song of Solomon. Ruth. Lamentaticns, Ecclesiastes, Esther, Daniel, Ezra. IVehemiah. and I. and II. Chionicles, but the list is otherwise drawn up by many authorities.

Hagonoy, hà-çō-noi'. Philippines, a pueblo of the province of Bulacan, island of Luzon. on the Grande de la Pampagna River, about three miles from Manila Bay., seven miles southwest ci Malolos. Lake Hagoney is partly within the precinets of the town; this lake dries up in the cummer season, so that the lake bed can be cultwated. Fop. 20.100.

Hagood, Johnson, American soldier: b. Barnwell, S. C. 21 Feb. 1829: d. there 4 Jan. 188. At the beginning of the Civil 1 Har he entered the Coniederate army and in IS62 be-
came a brigadier-general. He fought against Gillmore at the siege of Charleston (1863), and was commander of Battery Wagner. With his brigade he participated in the battle of Cold Harbor, and subsequently was in the trenches at letersburg. He took part also in the operathons nurth of the James after the surrender of Fort Harrison, and commanded Bragg's rear guard at Fort Fisher.

Hague, hagg, Arnold, American geologist b. Boston 3 Dee. 1840. He was graduated at the Sheffield Scientific School of Yale (1863); siudied three years at the universities of Gotringen and Heidelberg, and in 1867 was appointed assistant geologist on the United States seological exploration of the foth parallel. His published works are: 'The Volcanoes of California, Oregon, and Waslington Territory" (1883): 'The Volcanic Rocks of the Great Basin' (1884) ; 'The Volcanic Rocks of Salvador' (1886); 'Crystallization in the Igneous Rocks of Waslooe': 'Geology of the Iellowstone National Park' (1899).

Hague, George, Canadian financier: b. Rotherham, Yorkshire, Eng. I825. In 1854 he went to Canada, where in $1856--6$ he was conrected with the Bank of Toronto. Subsequently Se becanse general manager of the Merchants' Bank. He was also elected first president of the Canadian Bankers' Association and of the Montreal Good Government Association, and made generous gifts to various charities.

Hague, The (Holland), one of the chief towns, practically the capital of the kingdom. 33 miles southwest from Amsterdam, i6 miles northwest of Rotterdam, within 3 miles of the sea. It is the residence of the queen and of the foreign ambassadors, and the seat of the StatesGeneral of the Netherlands, and of the principal part of the central administration of the kingdom. Among the most important structures are the royal palace, in the Nordeinde, the palace of the Prince of Orange, the palace of Prince Frederich of the Netherlands; the Binnenhof, a large irregular building, founded in 1240. and containing the hall of assembly of the StatesGeneral, and various government offices, the provincial government-house, a large roomy edifice: the town-hall: the ministry of justice: the municipal museum. containing pictures and antiquities; the royal library, containing 500.000 volumes. besides valuable collections of medals and cameos; a canmon foundry, one of the largest and most conspicuons buildings in the town, colonial office, war office, the national montiment. erected to commemorate the restoration in 1813 of Dutch independence. There are many other monuments to attract attention, particularly the equestrian statue of William I. of Orange, in front of the roval palace, and the figure of Shinoya. placed opposite the honse in which he lived, etc. The royal collection of pictures, in the Prins Mauritshuis, embraces a picture gallery chiefly confined to Dutch masters. The parks, gardens, markets and suburbs of the city are farmous for their beauty and interest. The special educational facilities of the city are excellent, and there are good public schools. There are also many learned societies in the city, among which mar be mentioned The Hague Society for the Defense of the Christian Religion, the Witte Society, the Physics Society and the Netherland-India Institute. The Hague is not a manufacturing or commer-
cial city; its chef revenue being derived from the throngs of forcigners who visit the city and watering place on the coast.

The orign of The Hague may be traced to the building of a hunting seat here of the counts of Holland in 1250 . It is the birth-place of William 11.. prince of Orange, and Willian III., prince of Orange and kins of England. Here were held the International Peace Congress's in 1901-2 and ino \%. Pop. (1000) 199.285.

Hague Court, The, a permanent tribnnal for international arbitration established as a result of The International Peace Conference, held in Nay: June. and July. I8g9, at The llague, the governmental seat of the Netherlands.

The Hague International Peace Conference was one of the most important events which marked the close of the rgth century: and has been justly styled "the first great parliament of Man". The Conference assembled in response to a rescript issued by Czar Nicholas II. of Russia, 24 Ang. ISg8, inviting to a conference all governments with representatives accredited to the Imperial Court. The Conference was to nccupy itself with the great problem of universal peace, especially through the international diminution of armaments by land and sea, and the prevention of armed conflicts by pacific diplomatic procedure. The invitation was accepted by all the governments to whom it was tendered, and the first meeting for the Conference was fixed for 18 .15ay 1899 at The Hague. the capital of the Netherlands being selected. as stated by the Russian minister of foreigu affairs, tecause" "His Imperial Majesty considered it advisable that the Conterence should not sit in the capital of one of the Great Powers where so many political interests centre that might impede the progress of a work in which all the countries are equally interested". The Conference was held at the celebrated Huis ten Bosch - House in the Wood.- the members assembling in the historically decorated Orange Hall. Each nation was represented by prominent diplomats, jurists, men of affairs, soldiers, and sailors, the representatives of the Tnited States being Ambassador Andrew D. White, Minister X゙ewel, General Crozier of the army. Captain Mahan of the navy, Seth Low. mavor of New York, and F. W: Holls of the New York bar. The president of the Conference was Baron de Staal of the Russian delegation.

Three committees were formed to deal respectively with disarmament, regulations in warfare. and mediation and arbitration. The final act of the Conference, signed 29 Julv i8on. comprised three conrentions or treaties emboding the results arrived at by the committees. The first and most important was the Convention fir the Peaceful Adjustment of International Differences by the permanent institution of a Court of Arbitration in the midst of the independent powers accessihle to all. The second convention dealt with the laws and usages of war on land. and the third convention provided for the adaptinn to naval warfare of the principles of the Genera Convention of I864. Regulations also prohibited the throwing of projectiles and cxplosives from ballonns; the use of projectiles intended solely to diffuse deleterious and asphyxiating gases (this was not accepted by the Linited States and Great Britain) : and the use of soft expansive bullets. The last two conventions emhodied the wisest and most humane principles of military conduct resulting from a study and dis-
cussion oi these matters disring the hali-century preceding, and which had their first codification in the "Instructions for Guidance oi the Armies of the "nited States" issued at the beginning of the Civil War.

The Convention ior the Peaceful Adjustment of International Differences, however. was the crowning work of the Conference, and was a source of much gratinication to the adrocates of international arbiration, as bringing to irtition a sentment which for centuries had hoped for the estabishment by the nations of the earth oi some permanent form oi congress or court, which should be veried with functions to insure the preservation of peace and to deliver the world from the sirife and carnage with which it had been afficted in all the past ages.

During the last decade of the Ioth century peace adrocates had been persistent in their adrocacy of a permanent court of arbitration. In IRof. at its meeting in Holland, the Interparliamentary Cnion, a voluntary organization of members of the national legislative bodies of the nations, adopted a declaration in iavor of a permanent court of arbitration; and in ISon resolations to the same effect were unanimously: adopted in the L:nited States at the anmual Mohonk Conference on international arbitration, and by the New lork State Bar Association. the latter presenting to the President if the [nited States a memorial setting forth a permanent tribunal as the essential ieature of any general scheme of arbitration. The honor of presenting such a proposition in The Hague Conierence icll to J.ord Pauncefote, chairman of the British delegation; Germany was antagonistic, but the sentument was so sirongly in its favor that the German delegates were induced to withdraw their objection, and prosision was made fur its consummation. The fourth division oi the Convention in 7 , articles provides for the creation of the Court. defines its jurisdiction and the principles which are to guide it. specifies the manater in which its members are chosen, the rules governing its procedure. its awards, and other necessary details. The Convention provides that each of the 26 signatory powers shall appoint ior a term of six years as members of the Permanent Conrt not more than inur persme "of recognized enmpetence in questions of internat onal law. enjoying the highest moral reputation." These persons constitlic a Permanent C on at of Arhitration, accessible at all times and acting in aceordance with the prescribed rules of procedure: they do not, however. sit as a enllective body. but when iwn or more nations have a case to subnut to arbitration, they select by mutual aspeenecnt one, three, or five members, who will act as the tribunal in try the case. Thus it happens scme member: of the Cotirt may never be called upon th di-charge the functions of a judge. Also, althomgh The Hagt:e is desigmated as a place where the Conmet shall hold its secsions. another place may be designate 1 by agrecment of the litigant parties Inlet the presidency of the Dutels minitier of ioreign affaire, the diplomatic ayent = if the stantry powers. in reaidence at The llage, contit ite a permatent conncil which erves as the neffice of the Permanent Corest if Arhitration. The firet eases adjulaed hy the Const were the Pinn- F and Claim lotwien Mevion and the Enited States in 1002 , and the diffenlties of Venezucla witls
the United States and various European nations in 1003.

For the erection of a Temple of Peace comprising a comprehensive librar! of international law, and a courthouse which could be used as a meeting place for the Permanent Court of Arbitration, Andrew Carnegie on 25 . April 1903 donated the sum of $\$ 1.500 .000$ to be administered by the Government of the -letherlands as irnstee for the other signatory powers of The Hagne Convention of 29 July, isyg. Consult Foster, "Arbutration and The Hague Court" (1904): Holls. "The Teace Conference at The Hague" (1000): Penficld. "Some Problems of Interrational Arbitration" (190;).

Hahn, han, August, German Protestan: theologian: b. Grossosterhausen, Saxony, 27 March $1 / 92:$ d. Breslan, 13 \ay 1863° He studied at Leipzig, and was appointed in ISis professor extraordinary of theology at Königsberg. In isz6 he became proiessor ni theology. at Leipzig, and in 1833 was called to Breslau, and in 184 became general superintendent of the Psorince of Silesia. Among his best known works are his Hebrew Bible (1831) and his 'Bibliothek der Symbole und Glaubensiegeln der Apostolisch-Katholischen Kirche) (IX2, 2d ed. 18-8).

Hahnemann, hā'ně-män. Samuel Christian Friedrich, German physician: ionnder of the homexpathic system : b. Jeissen 10 April $1 \overline{5} 5:$ d. Paris 2 July $18+3$. In 1-5 he went to Lecipsic, where, against his father's will. he studiet medicine. and iound the means chienty by the translation of English medical works. At a later period he went to Tiema, and aiter some vears he returned and completed his studies at Erlangen. He afterward practised medicine at yarious places. but gave it up for a time, matil. in $r-89$, by the translation of Cullen's 'Alateria Medica. 'he was led to adopt a new method of curc. His system was fully explained in his 'Organon der rationellen Heilkunde' (1 Sio). In is20 the government prohibited him from dispensing medicines. and thereby: irom his inability to have them prepared by druggists. olliged him to give up his. practice. Duke Ferdinand of Anhalt-Föthen, howeser, gave him an asylum at K 0 then. and confersed upnn him the tule of llofrath. Here he remained till 1833 , when he proceeded to Paris, where he hoped to fisd a wider sphere for his operations. The result equaled his expectations: and a royal decree issued in 18.35 authorized him to practise homoeopathy: Aniong his works should be named 'Dictionary of Nateria Nedica.' his Pssays on Poisoning by Arscnic, and on the Effects of Coffce,' and his treatise on 'Chronic Afections.' Consult: 'Lie and Letters' by Bradionl (1805). See Homa:opithy.

Haidarabad, hi-da-ra-bad!. See Ilymerabab.
Hail, mall masses of ice or frozen rain f.lling irom the chouds in showers or storms, Bryme in their furm, being either angular. 1, ramida!, wr stellated: as well as in their consistency: being sometimes as hard as ice and sometimes as inft as suow. The thenry that the formathon if hail is dependent on the presence of whirlwis? plomomena in the upper atmosol ere. las. gained comsiderable acceptance The formstion of the alternate enatimge of ice and sin w is. ain this therry. proluced by a series of withal a-rert-and descents io and from an rpper con w region and a hower region where the emperature is rather higher.

Hail Columbia, a national song of the United States. The words written during a period of great political excitement in 1598, by Judge Josenh Hopkinson, were set to the melody of the 'President's. March.' composed the same year in honor of l'resident Washington, ly Pfyles, orchestral leader at the John Strect Theatre, New lork. The composition first sung at a theatrical benefit attained great popularity, and on account of its patriotic sentiments has become a representative national song.

Hail Mary, Ave Maria, or Angelical Salutation, a prayer consisting of three parts: the first, the words by which the angel addressed the Blessed Yirgin (Luke I. 2f) with the word Mary after "-Iail"; the second, the words by which Elizabeth addressed Mlary (Luke 1. 42), to which has been added the word Jesus; the third, the words: "Holy Mary, Mother of God. pray for us simpers now and at the hour of our death - Amen." The name, "Angelical Sajutation." comes from the first part of the prayer, which is the salutation of the angel. The first and second parts. taken from the Bible, were in use in their present form in early times; but the words of the third part were varied until the 16th century when the present form was approved and adopted by Pope Pius V. The prayer is in general use among Roman Catholics and is found in many Anglican books of derotion.

Hailes, Lord. See Dalrymirle, Sir David.
Hai'leybury College, England, an institution at Hailey, near Hertford, 20 miles north of London, founded by the East India Company in 1806, as a training school for admittance to the service of the company. It attained a high reputation, and numbered among its alumni, the most distinguished names connected with the Indian administration of the 1gth century: After the Indian Mutiny of $185 y-8$, and the government reorganization of the Indian Civil Service, the college was closed for four years. It was reopened under a royal charter in 1862 as a public school, and while maintaining many of the traditions of its famous predecessor is no longer an 1ndian service training ground. Handsome modern buildings have been added to the old college quadrangle, built in 1809; the surrounding grounds cover nearly ioo acres. Consult: Lowell, 'Colonial Civil Service' (1900): Mo-nier-Williams. (Memorials of Old Haileybury College' (1894).

Hailmann, hāl'mạn. William Nicholas, American educator: b. Canton Glarus, Switzerland, 20 Oct. 1836. He studied at the medical college of Louisville, Ky., was director of the German-American Seminary at Detroit in 1878 83 in $1894-8$ was national superintendent of Indian schools, and in 1808 became superintender.t of instruction at Dayton, Ohio, Among his writings are: 'History of Pedagogy') (18 \%o) : 'The Application of Psychology to Teaching' ($\mathrm{IR8}$ -) : 'Place and Development of Purpose in Education (1899).

Hair, strictly speaking, the peculiar epidermal covering of the body in manmals. altrougl by analogy the term is loosely applicd elsewhere, as to the setre of annelids, the slender modified. spines of caterpillars, etc. Hair is present in every manmal, although the amount may be greatly reduced so that in certain whales
it occurs only in the foctal stage, in others is limited to two bristles on the lips. The structure is best understond by following the development. In the carlicst stage (Fig. 1) there is mercly a thickening of the Malpighian layer of the epidermis (see Skin) at the points where the hair is to be found. This thickening increases in amount, and thus forms a solid plug (Fig. 2) which projects into the underlying

Fig. 1.-Section Throvgh the Earliest Stage of Hair formation
E, epidermis, showing in m, the llafrighian layer, the elongation of the cells: d. derma, with prohferation of cells to form the papilia shown in Fig. 2.
derma. At the same time the cells, which are scanty in most parts of the derma, become abundant heneath the ingrowing plug, and form the basis of the future papilla. Next a ringshaped pit appears on the outer surface of the plug and gradually becomes deeper, cutting the epidermis into two parts, an outer root-sheath and an inner rod-like part, the hair itself, while

Fig. z.- Second Stage in hatr Formation.
The epidermis. E, has now iormed a solid plut extending down into the derma; the parilla. P, has hegun to form at the apex of the epidermat ingrowth.
the pit forms the iollicle (sue Fig. 3). The papilla grows into the lase, bearing blood-vessels. white the Malpighian layer at this point forms the tissue from which the hair grows. In the hair itself scceral parts are recognized-a central pithy axis, the medulla; mext, a layer of
cells, the cortex, and outside this forming the outer su-iace of the hair, ihe enticle. Farther down in the follicle is the inner root-sheath. iormed of two layers of cells known respectively by the names of the two anatomists. Henle and Huxley, who first described them. The Malpighian cells. at the base of the jollicle. divide continuallys. and the new cells thus formed are pushed outward and are transiormed into the hair. From this it will be seen that the hair is not a secretion but is composed of curnified cells. It is also apparent that the hair is net hotlow

The differences between the different kinds of hair are largely those of shape and of the amount of the various parts present. Thus in many animals two kinds of hair occir. longer and coarser hair on ine outside and beneath this a cleser and softer under-iur. The coarser hairs may be enlarsed into bristles. or still more enlarged to form spines. like those of the porcupines and hedgehogs. Again the hairs may become united to each other. the result being the firmation of scales like those of the pangolins ot homs like those of the thinoceros. In some

Fig 3.- Digramvatic Eection of Hail ast Haig FOLlicle.
b. blood ressel: c. cor:ex: ce, cuticle: e, epidermis: f. follicle: he. Henle's layer. hu. Huxley's dayer (ho and the makinc ap the inner root-sheaih): m, medulla; n, cerve: s. outer rooi-sheath: s, sebaceous gland: sm, Malpishasn layer of epidermis.
cases the hair is periectly straight. again it may be curly. The straight hairs are circular in section, the curly are :lattent, the amount of curl being proportional to the amount of flattening. Cerain hairs (wool of sheep. ete) have the property of felting. This depends upon the scale-like projections of the cell= of the cuticular layer. The color of the hair is due to the presence of pigments belonging to the group of melanins.

Several accesiory structures (Fig. s) are connected with the hair: sebaceous clands which empty an oify substance into the i.lliele to keep the hair in a moist, soit condition: nerves which are disiributed to the wall of the tollicle and thus
render the hairs to a certain extent organs of louch, as in the whiskers (:ibrissa) of cats: and muscles for the erecrion of the bair (erectoresplle). This erection may be to increase the warmth of the body by entangling a layer of air among the bairs. or it may bave the purpose of protection against injury, either by terrifying sme enemy or by affording a loose envelope around the body some distance from

the flesh. Usually the hair is shed (molted) at regular intervals, but there are exceptions. as in the mane and tail of horses, as well as in the case of man. The hair is not scattered irregularly over the body but occurs with more or less regular arrangement. In the early embryos it is not uncommon to find it distributed in regular lines (Fig. 4). Later the lines become broken up into groups of hairs, the arrangement being characteristic of the species, but without any broad morphological signinicance. It should be noted that although hair and pin-feathers closely resemble each other in general appearance they are very distinct structures. hair originating in a thickening of the epidermis. while ieathers (q.w.) like scales are dermal in origin. Mlost ot the literature relating to the hair is in German. Consult the writings of Maurer. Meigerle. Weber, and Pou'ton, 'Quarterly Joumal of Xlicroscopical Science,' Vol XXXVVI. (IS94).
J. S. Kingsley.

Professor of Zoology, Twits College.
Hair-dressing. As the hair is the greatest ornament of the human body. the arrangement oi it has always been one oi the most important duties oi the toilet. The ancient Hebrews esteemed fine hair a great beauty, as several passages of Scripture show. The Hebrew women plaited their hair. confined it with gold and silver pins. and adorned it with precious stones. Herodotus informs us that the ancient Egyptians
let the hair of the head and beard grow only when they were in mouruing. Even in the case of young children they were wont to shave the head, leaving only a few locks on the front, sides, and back. The women, however, wore their natural hair long and plaited. often reaching down in the form of strings to the botom of the shoulder-blades. A gractice the very opposite scems to have prevailed among the ancient Assyrians, as regards men at least. In the Assyrian sculptures the hair always appears long, combed closely down upon the head, and -hedding itself in a mass of curls on the shoulders. The beard was also allowed to grow to its full length. To dhe Grecks the hair was an object of great importance, and they devoted much time to it. 11 omer regularly applies to the Greeks an epithet denoting that they had ample flowing locks.

The Athenians curled their hair. and fastened jt up with small golden ornaments shaped like grasshoppers, in token of their being "sons of the earth." Gold, pearls, precious stones, tlowers, and ribbons were employed to ornament the tresses, and nets were also worn. False hair seems to have been latterly used, and in great quantities, both curled and frizzled. Married women were distinguished from the unmarried by the manner in which the hair was parted in front. The Romans generally wore no covering on their heads except at sacred rites, games, festivals, and in war. Women in later times wore great quantities of false hair, and dyeing the hair was commor. They were particularly addicted to frizzling and curling their hair, raising it into stories of curls, some of great height. Long hairpins were used to fix the curls. Arranging the hair was a matter of great importance. Slaves frizzled and adjusted it, and a number of females learned in the art of the coiffeur superintended the process, white the fair dame herself watched the growing edifice of curls, gold, precious stones, crowns of flowers, in a mirror of polished stecl, brass, tin, or silver.

On the introduction of Christianity the apostles preached against the prevailing fashion of dressing the hair. St. Paul regarded it as a shame for a man to have long hair, though the reverse for a woman. It then became common for men to cut the hair short; hence the clergy soon wore the hair quite short, and afterward even shaved their heads in part. In the time of Francis I., king of France, long hair was worn at court; but the king, proud of his wound on the head, himself wore short hair, in the Italian and Swiss fashion, which soon became general. In the reign of Louis XIII. the fashion of wearing long hair was revived, and as it became desirable to have the hair curling, the wigs were also restored.

Among the Anglo-Saxon women the custom prevailed of parting, curling, and turning the hair over the back. Anglo-Saxon men wore their hair long at the time of the Norman invasion, while the conquerors adopted the singular fashion of shaving the back of the head. Under Elizabeth, false hair was greatly worn, padded with cushions, under-propped, with forks, wires, etc., and adorned with gold, pearls, and precious stones. It is well known that the gallants of Charles I.'s time wore their hair in long flowing locks, while the closely-cropped hair of the Puritans brought the name of Roundheads down
upon them. In the Quecn Ame era, while the ladies wore their hair long, they generally tied it in a knot, and almost completely coyered it up by extravagant head-dresses of wire and paste-board, or feathers and ribbons. At that time, and for long after, the coiffure of a lady was such a serious affair, and the hair-dressers were so fully employed, that fair wearers were often compelled to have that part of their toilet done two days before a ball, and pass the night on a chair for fear of disturbing the elaborate arrangement. This was the period of the presalence of whitening the head with hair-powder, a preparation of pulverized starch and perfume. The custom of wearing it was introduced from France into England in the reign of Charles II. To make the powder hold, the hair was ustally greased with pomade. In 1795 a tax was put upon the use of hair-powder in Great Britain, and at one time yielded $\$ 100,000$ per annum, but the result was that hair-powder fell out of general use, and the French Revolution, which overturned so many antiquated customs, further contributed to throw it into disfavor. The chignon was introduced and had its day of popular favor in the 19th century, bringing back the fashion of false hair and padding to a greater or less extent. With respect to men's hair, shott cutting is now unirersal, long hair being considered as a sign of slovenliness or eccentricity.

Hair Manufactures, the industries by which the hair of animals is employed in the production of commercial articles of ornament or utility. The strongest and most durable of haircloth is woven from the tails of horses. The horsehair from the mane is twisted into ropes and after being boiled and then dried in an oven is untwisted and in a half-matted condition employed for stuffing beds and cushions. The hair of cows is employed as a binder for plaster: in Europe it is sonnetimes woven into carpets, or hose. The Chinese use pig's laair for the same purposes. The stiff hair, or bristles from the ridge of the hog's back, are made into brushes, for the hair, teeth, or mails; as well as into brooms, and the larger painting and whitewashing brushes. Human hair is used for wigs, toupees and frisettes. See Wig.

Hair Pencil, in painting, a fine brush made of the hairs of the camel, sable, badger, squirrcl, marten, raccoon, goat, etc. The various sizes require the quills of the crow, pigeon, goose, turkey, or swan. Hair pencils are used by artists in water colors, and by house and sign painters in fine work.

Hair-tail. See Scabbard-fish.

Hair-worm. See Eelworm.

Hairless Dogs. Several races of domestic dogs are bred in the warmer parts of the world, whose skins are nearly hairless. In China and Farther India a large dog of this description, called polygar, is used in hunting. Central Africa has a breed resembling a small black greylound. A hairless dog is found mummified in prehistoric Peruyian tombs, and others were formerly prevalent in the W'est Indies, or is still known in Mexico. These have been cultivated by fanciers in the United States, and constitute a recognized show class. They are small and terrier-like, brownish or bluish-black, wrinkled,
and bave only a ien straggling hairs on the body, with sometimes a tuit on the head.

Haiti, Hayti, or Santo Domingo, the second largest island oi the West Indies. lying between Cuba and Porto Rico, the primcipal adjacent islands being La Gonave, at the entrance oi Port-au-Prince. Tortuga I-land, beiore Port de Paix, and Iache Island. beiore Cayes. The whole island is about ozs kilometres iong with a suriace of -ミ.0-\% square kilumetres. It comprises twe republice: the Republic of Hait in the west and the Dominican Republic (q.v.) in the east. with a total pepulation ci t.-co.000. The land is very fertile, being irrigated by it rivers: 14 mowntain chains are spread over the istand. The mines are still to be worked and there is a large field fir investment. Haiti is healihtul. Frum Jume to September it is hot ins the lewlands: but regular land and sea breezes moderate the temperature. In the mountains it is always cool. There is a dry and a wet season. There are no poisenous snakes of insects. The samitary condition is excellent.

Ilthern, on 0 Dec. 1492. Columbus discovered Hati, the island was divided into five states or "cacicats." The inhabitants, called Indians, had an easy life and were ruled by chici: whose title was "cacics." The natives eould not stand the hard work imposed on them by the Spaniards: they died rapidly. Then began the imphet irem Atrica of the hlack slaves. The Spaniards enjoyed alone their new possession until tojo. when the French adventurers known as 'buccaneers and "ireebooters." aiter cecupying Tornuga Island. undertook the conquest of what be came St. Domingue.

From the intercourse between white and black, resulted in St. Domingue an intermediary clase, the mulatsoes. Mosi oi the latter, on account of their relationship. Were not slaves; and their black mothers. their relatives. and other slaves who could own enough money to redeem themselves, intle by little obtained their ireedom. These iree colored people were not allowed any political rights. They at first did not resent it. They endeavored to become land-owners.

When the French Revclution broke o::t in $t-80$ these free men or "antranchis," who by that time had accumulated wealth. asked ior equality oi politucal rights. The Asemblec Natimale granted them theve rights. But the French fand iods or "collns" were not at all picased to have the coll red perple it r their i ll is catizens. A hard truggle began. The cown=" called the Encli-h t their re:cue.

At the end if the year 1703. the Enclish tomk : ...essiun oi a pari ni the island. St Domingre was cemsidered heit t France. Weng cecupie partly by the Spamards. party hy the
 po u-d the cauve ni France. This extral rimary man, who, up to to yare oi age. wa- a -lave, reveated horeli a great general and a fir-t-cla: state-man. He succeuled in ralding the counsry of the Spaniard and in expell ne the Ensiat. who atier ar mecupation of alust five seass. were compeled tu alandon their prey: The French stivernment rewaraled hun hy apm netig him majo r-general and covermer oi tle ihland Later on, Napu!e n I. thorght that To l-ame Luverture was tho poweriul In 1 Ros he app infed his hruther-in-law. Gen. Leclerc. governer ci St. Dermingue, and sent a formudable
army to reduce the authority of Louverture. Toussaint Louverture, aiter a iew shirmishes, surrendered and reiired on one of his propetties. Jevertheles. Gen. Leclerc caused him to be arrested and deported to France in June 1802: to that end the French general resorred to treachery.

The culosed people took up arms against the French domination in September 1802 under the leader:liip of Ger. Dessalines. The fight was very severe. And at the end of the year 1:03. Rechambeath. who, at the death of Gen. Leclere, was is ammand of the French army. hard pressed in the eity of Cape Haiti by the black troops, was compelled to capitulate. And on 1 Tan. ISo Haiti proclaimed its independence. with Gen. Dessaimes as its first ruler. Slavers was at lished. Haiti was then the first country to rid humanity of such a sad practice.

In 1822 the Spant:h part came under the adminseration of Haiti ; and the whole isiand was ruled by cae geverrment. But in ifit the Spanish part seceded and established an independent glvernment, known to-day as the Dominican Republic.

The Repablic oi Haiti is acministered by a prestent, elected for seven years, by the House if Representatues and the Senate assembled in Asismblee Nationale" The president is asststed by six ministers or secretaries of state. The House of Representatives is elected by the people for three years, and the Senate is elected by the House of Represemtatives ior six years: but cerery two years the third part of the Senate is remewed.

The judiciary organization consists of a supreme court (Tribunal de Cassation) of civil. criminal. correctional courts, and oí justices of the peace.

Education is compulsory and gratuitous. The primary as well as the high schools are ireety open to all. Hiaiti derotes now a sixth of its revenues to education.

French is the language of Haiti, though the country people speak a patcis called "creole."

The religion of the people is Roman Catholic. There are an archbishop. three bishops. and in every commune at least a priest. The pope eatertains a diplomatic representative. a legate, at Port-au-Prince, and Haiti has a mmister accredited to the Holy See. Freedom of con--cience is, however. guaranteed: and all cults are profected. Haitian citizens only can own real evtate. Any ioreigner may easily be naturalized.

Haiti produces coffee. cocoa, logwood. mah gany, and atton: tortolse-sheils, all hind of cal inct whd. hides, honey, bees-wan. etc., are a un expu red: ior home censumption, they make atzar. rum, shap. straw hats. pottery: matches. artific al ice. ete. There is a railroad irom Cape Haiti to Grande Riviere and another one from D rt-au-Prince : 'L'Etang These railroads are manazed by Haitian companies; so are the inland telecraph and relephone lines. The area ithe Repul lic is estimased at zo.000 square kil metres and the population (1900) 1.294 .400.

> I. . . Lécer

E : Y Erera rdinare ef Munistre PlénifobenWhi d'Hu:ti anes Etuts-l'nis.
Hake. Alfred Egmont, English journaiist and auther. He is a son of Thomas Gordon Hake (q.v.) and cousin of General C. E. Gor-

don (q.v.), whose life he has written in 'The Story of Chinese Gordon' (1883). Other works by hinı are: 'Paris Originals' (1878) ; 'Flattering 'Tales' (1882); 'The Unemployed Problem Solved' (1883) ; 'Events in the Taiping Rebellion' (1891); 'Suffering London' (1892) : 'Gordon in China and the Soudan' (1896) ; 'Irish Finance' (1897).

Hake, Thomas Gordon, English poct and physician: b. Leeds 18o9; d. London 11 Jan. 1895. He took his medical degree at Glasgow University in 1831, and practised his profession in East Anglia, later becoming the physician and friend of Dante Gabriel Rossetti. His poetry is thoroughly original, but very sultly philosophical. His works include: 'Poetic Lucubrations' (1828); 'Vates: A Prose Epic' (1839) ; 'Madeline with Other Poems and Parables' (1871) ; 'New Symbols' (1875); 'Maiden Ecstasy.' verse (I88o) : 'The Serpent Play, a Divine Pastoral' (1883) ; 'Memoirs of Eighty Years' (1892).

Hakes, Fishes of the family Gadide and chiefly of the genera Plyycis and Merluccius, distinguishable from the cod and haddock by having only two dorsal fins. Phycis has a chin barbel and filamentous ventral fins, both of which are lacking in Merluccius. The squirrelhake (Phycis chuss) and white hake (P. tcnwis), both also called ling or codling, are common bottom fish on our Atlantic coast from Virginia northward. The silver hake or whiting (Merluccius bilinearis) has a similar range, but is less common in shallow waters and leads a roving life in search of herrings and other smaller fishes. Various other species occur in the North Atlantic and Pacific Oceans. The hake fishery is of considerable extent, and the product is salted and sold chiefly as boneless cod. The dried air-bladders are utilized in the manufacture of isinglass.

Hakim, ha-kēm', a Turkish word, signifying lord and frequently in the Koran applied to Allah, God, as in the Greek and English yersions of the Jewish Scriptures the word Lord is used for Jehovah. It is now-a-days especially given as a title of honor to the imperial physician of the Sultan, who is Hakim bashi, that is to say, the chief of the physicians, always a Turk; whilst the physicians in the seraglio under him are western Europeans, Greeks and Jews.

Hakluyt, hăk'loot, Richard, English geographer: h. about 1553 : d. London 23 Nov. 1610. He cutered Clirist Church College. Oxford, in ${ }^{1570}$, and became so eminent for his acquaintance with cosmography that he was appointed nublic lecturer on that science. In 1582 he pullished a small collection of voyages and discoverics, forming the basis of a subsequent work on a larger scale. In $1584-88$ he was in Paris as chaplain to Sir Edward Stafford. On his return he published (in 1589) his famous collection of 'The Principal Navigations, Voyages. and Discoveries of the English Nation, made by Sea, or over Land, within the Compass of these 1500 Years.' The first volume of a new edition of his great work was published in 1598 , the second and third in 1599 and 1600 . In 1602 he became prebendary, and in 1603 archdeacon. of Westminster, and next year he was appointed a chaplain of the Savoy. He was interred in

Westminster Abbey. He published several other geographical works, among them 'Virginia Richly Valued, etc.' (1 (x (y), a translation from the Portuguese. An edition of his chief work appeared in 16 vols. 1885-90. The manuscript papers of Hakluyt were used by Purchas in his 'Pilgrims.'

Hakluyt Society, of Great Britain, organized in December 1846, for the purpose of printing and distributing among its members rare yolumes on voyages and travels, and geographical records. Between 1847 and 1900 fully 100 volumes were issued under the editorial supervision of eminent anthorities. Among these publications were: 'Select Letters of Columbus' (I849); Raleigh, 'Guiana' (I848); and 'Danish Arctic Expedition' (1897).

Halbig, Johann, yō'län häl'bŭg, German sculptor: b. Donnersdorf, Lower Franconia, 13 July 1814; d. Munich 29 Aug. I882. He studied at the Munich Academy, and elsewhere. finally establishing himself at Munich, where le became a professor in the Polytechnic School in 1845. His most important work is the quadriga with four colossal lions for the triumphal gateway, Munich. He also executed the Platen memorial at Ansbach, the bronze statue of Fraunhofer at Munich, the 'Emancipation' group in New York, the 'Crucifixion' group for Oberammergat, and numerous busts.

Haldeman, hầ’dĕ-mạn, Samuel Stehman, American naturalist: b. Locust Grove. Pa., I2 Aug. 1812; d. Chickies, Pa., 10 Sept. I880. H\& was educated at Dickinson College, Pa., was professor of natural sciences at the University of Pennsylvania in $185 \mathrm{I}-5$; and of comparative philology there $1860-80$. He published 'FreshWater Univalve Mollusca of the United States' (I840): 'Zoological Contributions' (I8 $12-3$); (Elements of Latin Pronurnciation) (1851) ; 'Affixes in Their Origin and Application' (I865): 'Pemnsylvania Dutch' (1872): 'Outlines of Etymology' (IS77) ; 'Analytic Orthography) (1858) : etc.

Hal'dimand, Sir Frederick, Swiss soldier in the English service: b. Canton of Neuchâtel, Switzerland, October 1718; d. Iverdun, Switzerland. 5 June 1791 . He served in the army of Sardinia and in that of Prussia under Frederick the Great, later became a member of the Swiss guard at The Hague, and was there stationed when with Henry Bouquet (q.v.) he enlisted in 1756 in the British army for service in America. He organized, largely from Pennsylvania, a reginent composed of Swiss, Germans, and others and known as the 'Royal Americans.) and became its commander. In İ59 he won distinction by his successful defense of Oswego against the attack of 4,000 French and 1ndians, in 1767-73 commanded the garrison at Pensacola, Fla., and assisted Gage in the siege of Boston. From 17,8 to $1: 84$ he was governor of Canada, severely repressed Canadian sympathy with the Revolution, and offered an asyJum to royalist refugees. His valuable official correspondence is in the possession of the British. Museum. Upon his return to England actions for false imprisonment were successfully brouglht against him.

Hale, Charles Reuben, American Protestant Episcopal bishop: b. Lewiston, Pa., 14 March 1837; d. Cairo, Ill., 25 Dec. 1900. He

HALE

was graduated at the University of Pennsylvania in 1858 : enterec the Episcopal ministry and in 1892 was made assistant bishop of Springtield. Ill., with the title of Bishop of Cairo. He was an authority upon matters pertaining to the Greek Church and his writings, all of a very scholarly cast, mainly relate to the history, liturgies and customs of that communion.

Hale, Edward Everett, American Unitarian clergyman and author: b. Boston, Mass., 3 April 1822. His iather was Nathan Hale (q.v.), the first editer of the Boston Daily Advertiser, and the son was educated at the Boston Latin School and Harvard College. Later he studied theology and atter being licensed to preach in 18.42 was pastor of the Church of the L'nity, Worcester, Mass, 1846-56. He then became pastor of the South Congregational Society in Boston, a U'nitarian Church, and has been its pastor emeritus from 1901. In the Unitarian body he has long been one of its foremost men. and of a radical rather than a conservative type. while yet strongly loyal to the Unitarian faith. As a preacher he has always been popular, and his talents for organization have borne fruit in such humanitarian societies as the Harry Wadsworth Clubs, King's Danghters, Look Up Legions, and others. For several years he edited 'Old and New,' a magazine afterward merged in 'Scribner's Monthly,' and has edited 'Lend a Hand.' a journal of organized charity, since 1886 . Since his retirement from active pastoral work he has been active in various denominational and other religious and social enterprises, and still continues to preach and lecture at frequent intervals. His soth birthday was celebrated by a gathering in Symphony Hall, Boston, composed of representative persons from all denominations in his native city, as well as of civic and state officials, assembled to testify to the regard in which he was held, irrespective of creed or race. To Americans in general, however, he is best known as an author, and in spite of his countless clerical labors he has been one of the most voluminous of American writers. Much of his work is from necessity eplemeral in its nature, but when he has conscionsly wrought with an artistic end in view his level of attainment has been high. His short story, 'The Man Without a Country.' has long been accounted an American classic, and even more skilful in construction and perfect in finish, 'My Double and How he L'ndid Me.' and 'In His Name' have been alnost equally popular. In extravaganzas like 'The Brick Moon,' such an absolute air of verisimilitude is preserved that the absurdest conceptions of the tale appear more than half credible. 'The Man II ithout a Country' was indeed accepted as a record of fact by many readers on its, first appearance in 8863 , although the theme is in its conception most improbable, and its author was obliged to state at a later date that it had no foundation in fact. The list of his published works is a long one, including mearly $; 0$ titles and becides those already' named may be cited 'Margaret Percival in America' (isso): 'Elennents of Christian Dectrine' (i8fo) : 'If, Yes, and Perhaps' (1868); 'Sybaris and Other Homes' (1869): 'The Ingham Papers' (1869) ; 'His level Best and Other Stories' ($18 ; 2$) ; 'Philip Nolan's Friends' (18;6): 'The Fortunes of

Rachel' (1884): 'Boys ${ }^{\text {© }}$ Heroes' (i886): 'Life of George Washington Studied Anew (1887): 'They Saw a Great Light' (i8\&9) : 'The Story of Chiristopher Columbus' (1891): 'The Story of Massachusetts' (1891); 'The New Harry and Lucy' (1892) : 'East and West or the New Ohio' (1892); 'A New England Boyhood' (1893): 'Fifty Tears: Poems' (1893): 'If Jesus Came to Boston' (1894) : 'Susan's Escort' (1895) : 'Historic Boston' (1898): 'Lowell and His Friends' (1899); 'Nemories of a Hundred lears) (1900). With his sister Susan Hale (q.v.) he has written a series oi travel books entitled 'Family Flights through France, Germany, etc..' and he has also edited numerous yolumes irom 'The Rosary' (iS48) to 'Unpublished Essays of Emerson' (1895).

Hale, Eugene, American politician: b. Turner, Oxiord County, Me., 9 June 1836. Aiter study of law he was admitted to the bar in 1857 , began practice at Ellsworth, Me., and was a member of the Maine legislature in 186\%, I 868 and 1880 . In 1868 he was elected representative to Congress, and in that capacity served until 18-8, acting on the committee on appropriations, and during his last term being chairman of the Republican congressional committee. In 1868. 18,6 and 1880 he was a delegate to the Republican national conventions of those years, in 1874 was offered the post of postmaster-general and in 18% that of secretary of the navy. but declined both. He was a member of Grant's commission appointed for canvass of the Louisiana presidential yote in 18,6 . He succeeded Hannibal Hamlin in the United States Senate in 1881, and was re-elected in 1857. 1893. 1809 anc 1005. In the Senate he became known as a Republican leader, interesting as a speaker and skifitul in matters of legislanse routine.

Hale, George Ellery, American astronomer: b. Chicago 29 Jume is68. He was graduated irom the Massachusetts Institute oi Technology in ISgo, studied also in the Harvard obseryatory and at Berlin, was professor of astrophysics at Beloit College in isg1-3, lecturer in astrophysics in Northwestern University, 1891-3, associate professor of astrophysics in the Un:versity ni Chica-o $1892-7$: director of the lerkes Observatory (Williams lasy, Wis.) of the univercity 1 Ros-1075, professor of astrophysics 1890^{-} 1005. and in 100\% directur of the Solar ohservawry of Carnerin Institutiou at Mt. Wilson, Cal. Ile edit.d the 'Astrophysical Journal' from tions, and pullished papers on astronomical subjects.

Hale, Horatio, American ethnologist: b.
 tario, 29 Dec. tigo. lle was a son of Sarah J. Hale (q.v.). He was graduated from Haryard in 18.37 and the next year was appointed philologist to the government exploring expedition under Captain Wilkes, and was thus enabled to study the languages of the Pacific Islands, North and South America, Australia, and Africa. The results of his observations were published in "Elhnography: and Philology" (IS46). He then studied law, was admitted to the Chicago bar. and removing to Canada in 1855 practised law at Clinton. His other works are: 'Indian Migrations as Evidenced by Language) (1883): 'The Iroquois Book of Rites' (1883): 'A Report on Blackfoot Tribes' (1885). He was classed among the foremost plitologists of his

COURTESY OF THE BOORLOVERS MAGAZINE.
Copyright by Davas \& Sanborn.
EDWARD EVERETT HALE
time and was a member of learned societies at home and abroad.

Hale, Irving, American soldier and electrician: D. North Bloomfield, N. Y., 28 Aug. 1861. He was graduated from the United States Military Academy in 1884, was assigned to the engineer corps, was instructor in engineering at the Nilitary Academy in 1888-9, and in 1890 resigned from the army. He became manager of the General Electric Company for the district comprising Utal1, Wyoming, Colorado, and New Mexico, with headquarters at Denver; upon the outbreak of the Spanish-American war was appointed colonel of the ist regiment of Colorado volunteers, was promoted brigadier-general for distinguished service in the Philippines, and later brevetted major-general. In isg9 he was honorably discharged from the volunteer service. His writings include papers on electrical subjects in scientific and engineering journals and in the prcceedings of the Colorado Scientific society.

Hale, John Parker, American legislator and diplomat: b. Rochester, N. H., 31 Marcl 1806; d. Dover, N. H., 19 Nov. 1873. After graduation from Bowdoin in 1827 and study of the las at Rochester and Dover, he was admitted to the bar in 1830 , in 1832 was elected a Democratic representative in the State legislature, and in 1834^{-41} was United States district attorney. In 1842 he was elected to Congress, where, though remaining a Democrat, he stoutly opposed the "gag-rule". which sought the exclusion of anti-slavery petitions. He was renominated; but previous to the election the annexation of Texas was made a plank of the Democratic platform, and the State legislature of New Hampshire directed its congressmen and senators to support the measure. Hale in a public statement refused to do this and the Democratic State Convention was then reassembled and his name stricken from the ticket. Hale ran as an independent Democrat, but no candidate received a majority. In 18.66, after a spirited canvass known as the "Hale storm of 1845," he was elected to the lower house of the legislature, and became its speaker. In 184\% he was elected to the United States Senate, where he was the first, and, until joined by Salmon P. Chase in 1849, the only avowed anti-slavery member. He was an orator of fine abilities, and besides opposing the slave system, secured laws abolishing flogging and grog-ration in the navy. He was nominated for president by the Free-Soil Democrats in 1852, and received 157,685 votes. In 1855 he was elected to the Senate for the four years of the unexpired term of C. G. Atherton, deceased, and in 1858 for a full term. During the Civil War he supported the Lincoln administration. He was United States minister to Spain in 186;-9.

Hale, Lucretia Peabody, American author, sister of E. E. Hale (q.v.) : b. Boston, Mass., 2 Sept. 1820 ; d. there 12 Jume 1goo. She was very popular as a writer for young people, and in addition to 'The Lord's Supper and Its Observance' (1866) ; 'The Service of Sorrow' (1867) ; 'The Wolf at the Door' in the 'No Name Series' (1877), she published for young readers 'The Peterkin Papers' (1882), and 'The Last of the Peterkins' (I886). She also wrote 'The New Harry and Lucy' (with E. E. Hale). She
will be longest rememioned as the creator of the Peterkin Fanily, who bave become widely recognized types of character.

Hale, Sir Matthew, English jurist: b. Alderley, Gloucestershire, 1 Nov. 1600 ; d. there 25 Dec. 16;6. He was educated at Oxford and Lincoln's Inn, and is said to lyave studied 16 hours daily, extending his researches to natural philosophy, mathematics, history, and divinity, as well as the sciences more immediately connected with his profession. He was called to the bar before the commencement of the civil war; and in the conflict of parties which took place his moderation, accompanied as it was by personal integrity and skill in his profession, secured him the esteem of both royalists and parliamentarians in lis own time. In 1654 he became a judge of the Common-bench (the former King's-bench), in whicln station he displayed firmness of principle sufficient to give offense to the Protector. He was a member of the parliament which restored Charles II., and one of the members most active in passing the Act of Indemnity. In 1660 he was knighted, and made chief baron of the Court of Exchequer. He was the last English judge who sanctioned the conviction of culprits for witcheraft. He was raised to the chicfjusticeship of the King's-bench in 1671. After his death appeared his 'History of the Pleas of the Crown' ; 'Jurisdiction of the Lords' House' ; and 'The History of the Common Law of Eng-' land. He also wrote several worls on scientific and religious subjects.

Hale, Nathan, American revolutionary officer: b. Coventry, Conn., ó June 1755; d. New York 22 Sept. I7-6. He was graduated at Fale in 1753, and engaged as a teacher, first at East Haddam, and afterward at New London. His parents intended him for the ministry; but on the Lexington alarm in 1775 he wrote to his father, in a Connecticut regiment, saying "that a sense of duty urged him to sacrifice everything for his country," and soon after entered the army as lieutenant (1775) and in a few months was promoted to be captain (1\%-6). While with the troops near Boston he was vigilant and faithful in every point of duty; and according to a tradition of doubtrul authenticity. in September 1776, when in New York, he, with an associate, planned and effected the capture of a British sloop laden with provisions, taking her at midnight from under the guns of the man-of-war Asia, and distributing her prize goods to the American soldiers. After the retreat of the army from Long Island, when it was all-important to understand the plans of the enemy. Washington applied for a discreet and practised officer to enter the encmy's lines and procure intelligence, and Hale voluntecred for the service. He passed in the disguise of a Dutch schoolmaster to the British camp and made full drawings and memoranda of all the desired information, but on his return was apprehended and taken before Howe, by whom he was ordered to execution the next morning. He was denied a Bible and the aid of a clergyman: and was hanged, saying with his last breath: "I only regret that I have but one life to lose for my country." A statue of Hale is in City Hall Park, New York. Consult the 'Life' lyy Johnstort (rgoi) : Holloway, 'Nathan Hale, the Martyr Hero' (isog).

HALE - HALEVY

Hale, Nathan, Americen journalist: b. West Hampton. Mass.. I6 Aug. 1-84; d. Brookline, Mass., 9 Feb. 1863. He was a rephew of the patriot Nathan Hale (q.v.) and father of E. E. Hale (q.v.): He was graduated irom Williams College in 1804 and after studying law was admitted to the Boston bar in 18:0, in 1811-4 was editor of the Boston 'Weekly Messenger,' and in 1814 purchased and became editor of the - diecriser, established in 1813 and the first New England daily: At first Federalist in polities, the - Howerfiser became successively Whig and Republican and was at all times very influential. In I 820 it opposed the Missouri bill, in I85+ the Kansas-Nebraska bill, and it was the first newspaper to adrocate the settlement of hansas by "Free-Soil" colonists. Haie was a founder of the 'North American Review' (1815), served at various times in both houses of the Massachusetts legislature, published a series of stereotyped maps after a method invented by himseli (i830), and wrote pamphlets on topics of internal improrement.

Hale, Philip, American music critic: b. Norwich, Vt., 5 March 1854. Graduated from lale in 18-6, he was admitted to the bar in Albany (i\&SO), studied music under Dudley. Buck and later in Europe with Haupt. Bargiel̄, and Guilmant ($1885-$) , and was organist successively of Saint Peter's. Albany (18,9-82), Saint John's, Troy ($188 ;-9$), and the First Unitarian Society oi Roxbury, Mass. (I889). In 18S9-97 he contributed music criticism to the Boston press, from 1801 was critic of the Journol, in IS9? became editor of the 'Musical Record,' and in 1001 of the 'Musical World.' He is known as one of the most discriminating and interesting of American writers on musical subjects.

Hale, Salma, American politician: b. Alstead, Cheshire County, N. H., \% March 1787: d. Somerville, Mass., 19 Nov. i866. He was early apprenticed to a printer of Walpole. $\grave{\circ}$ H., in 1805 became editor of the 'Political Ob server,' a Republican journal of Walpole, held various local offices, and in 1828 and 1844 was a member of the New Hampshire house of representatives, and in 1824 and IS 55 of the State senatc. In I E_{45} he was appointed secretary of the commission for the determination of the northeastern boundary line of the Linted States. lle was elected to Congress in 1816 as a Republican (Democratic) representatire. but declined a re-election. His 'History of the United States' (1821) won a prize of Sfoo and a cold medal offered by the American Academy o: Belles-Lettres, and appeared in many suberuent editions. Ile published al=o 'The Administration of J. Q. - dam-' (1S26): and 'Annals of the Town of Keene' ($1 \varepsilon_{2}(1)$.

Hale, Sarah Josepha Buell, Imerican au thar and editor: b. Newpurt. \therefore. If. 24 Oct. 1-8'; d. Philadelphia 30 April $88-0$. Her hushand dying in 1822 leaving her with five small chuldren. she supported her iamily by literary. work. She was editor of the Beinn '1adlies' Magazine' $1820-3 \%$, and when in 1837 this was consolidated with 'Godey's Lady's IBnok') published in Philadelphia, she became editor of the latter also, continuing in the position for forty years. She retired from literary lite in 187%. Her efforts in behalf oi the Bunker Hill Monu-
ment fund, her interest in seamen, in foreign missions, and in the higher education of women, were untiring and successful. For many years she adrocated the keeping of Thanksgiving Day as a national festival, as it bas been observed since IS64. when President Lincoln adopted her suggestion. Her most enduring publication is 'IVoman's Record: or Sketches of All Distinguished Women' (New Fork 18;4).

Hale, Susan, American author and watercolorist: b. Boston 5 Dec. 1833 . She has published 'ILife and Letters of Thomas Gold Appleton) (q.v.) (1885), and with her brother, E. E. Hale (q.x.) has writen the popular (Family: Flight' series of travel books for young people.

Hale, William Bayard, American writer: b. Richmond, Ind., 6 April 1869. He was graduated from Harvard and the Episcopal Theological School (Cambridge, Mass.). and was rector at Middleborough, Mass., I\&9z-9, and subsequently at Ardmore, Pa.. retiring from the ministry in Igor. He has published 'The Making of the American Constitution'; 'The Eternal Teacher' (1895): 'The New Obedience' (1898) ; (Phillips Brooks' ; etc.

Hale, William Thomas, American writer: b. Liberty, Tenn., i Feb. 1857. He practised law for several years and has since been connected editorially with St. Louis and Tennessee journals. He has published 'Poems and Dialect Pieces) (iSo4): 'Showers and Sunshine,' verse (I896); 'The Backward Trail' (1899); 'An Autumn Lane and Other Poems' (1899); 'Great Southerners' (1900).

Halévy, Jacques François Fromental Elie,
 composer: b. of Jewish parentage, Paris 27 May 1799; d. Nice. France. 17 March 1862. He studied counterpoint under Cherubini for five years, and in 1810 was sent to Italy to finish his education. The first of his pieces performed was a little comic opera, 'L'artisan,' given at the Theatre Feydau. in 1827. His chet douvre, 'La Juive.' appeared in 1835 , and rapidly obtained a European celebrity, and has been irequently sung in the Enited States. Among his other works are 'L'Eclaire'; 'Guido et Ginevra': 'La Reine de Chypre'; 'Le Tal d'Andorre'; 'La Fee aux Roses.' The melodies of Halevy are always soft and flowing. the harmony correct and pleasing: but his works display on the whole more talent than genius.

Halévy, Joseph, zhō-zēt, French Orientalist and tralcier: B. Adrianople. Turkey. 15 Dec 1827. In i\& ${ }^{8}$ \& he traveled in Abyssinia; and for the Academic des Inseriptions he traversed (isfoy-;-) Iemen, where he obtained copies of not less than avo mseripticns. largely Himyarctic and Sabran. He was appointed assistant librarian of the . Isiatic Suciety, and adjunct-professor of Ethiopic in the Eenle des 1 latates Etudes. Well known also as a Biblical critic and AsyriMngint, he founded (iso3) the 'Revose Semitique depngraphie ot d"histoire ancienme,' and publithed mumerous works, including: 'Archæologe Mis-i n to l'cmen' ($18,-2$): 'Journcy to Xedjran' (18-3): 'Sahxan Sudies' (1875): 'The Origin of Pabylonian Civilization' (IS76) ; 'aricellanyo of Criticism and History Regarding Semitic l'ioples' (188_{3}).

Halévy, Ludovic, Jü-dō-vèt, French dramatist and novelist: b. Paris, फrance, I Jan. 1834

HALF BLOOD - HALF-TONES

Ile is a nephew of J. Halexy (q.v.) and, unsuccessful at first, he finafly worked his way into pulbic favor, especially after associating his pen with that of Henri Mcilhac. In collaboration with the latter, he wrote many of the librettos of Offerbach's most brilliant and satiric operettas, including 'The Perichole,' 'The Brigands,' the 'Belle Helene.' and 'The Grand Duchess of Gérolstein.' Scveral serious librettos of high excellence are from the same hands, including that for Bizet's 'Carmen.' In spoken drama, Fron-Frou' and 'Tricoche and Cacolet' are among the most popular plays the two dramatists produced together. In 188 h he ceased, writing for the stage, and turned to fiction. 'L'Abbé Constantin.' the first of his novels, is also the most popular, and opened to him the French Academy. It was for more than one season the French story of the day. It is a charming story, full of fresh air and sun, simply and skilfully told. It presented a view of American character and temperament not usual in French fiction: and iri-aroachalble in its moral tone, has become a sort of classic for American schools and colleges. 'La Famille Cardinal' (The Cardinal Family) and 'Crichette' are studies in fiction of aspects of Parisian life. 'Notes and Souvenirs' embody olservations during the Prussian invasion of 187 I. They are interesting, as giving faithful pictures of the temper of the people during those days. Among his short stories, 'Un Mariage d'Amour' (A Marriage for Love) is one of the best.

Half Blood, in law, the relationship of persons born of the same father but not of the same mother, which is called a consanguinean relation; or of those born of the same mother but not of the same father, which is termed uterine. In the succession to real of landed property a kinsman of the half blood inherits next after a kinsman of the whole blood in the same degrec, and after the issue of such kinsman when the common ancestor is a male, but next after the common ancestor when such ancestor is a female. So that brothers consanguinean inherit next after the sisters of the whole blood and their issue: and brothers nterine inherit next after the mother.

Half-breeds, the children of parents of different races; a term usually confined to whites and American Indians. There are two tribes of Indian half-breeds, at Red River Settlement, chiefly employed in agriculture and hunting. The rise of independent lalf-breed tribes is "the first step toward the evolution of a distinct race."

Half-caste, a person born of a European father and a Hindu or Mohammedan mother, or more rarely of a Hindu or Nohammedan father and a European mother; an East Indian.

Half-crown, a British silver coin of the value of two shillings and sixpence (60 cents).

Half-dollar, a silver coin of the United States of the value of 50 cents. Authorized in April 1792, its coinage at a weight of 208 grains was begun in 1794 ; its issue was suspended from 1798 to 1800 inclusive and in 1816 . In 1853 its weight was reduced to 192 grains. The halfdollar is legal tender to the amount of ten dolJars.

Half-eagle, a gold coin of the United States of the value of five dollars, so called from
the national emblematic bird which figures upon the reverse. Authorized in 1792 the coinage was begun in July 1795; there was no issue in 1816 and 185%

Half-King, the name given by the English to a Sencca Indian, chieftain of an Ohio tribe, who accompanicd Washington during his expeditions in 1753-54, and was present at the defeat of the French at Great Ncadows. His stummary of the prowess of the respective combatants was that "the Englishn acted like fools and the French like cowards."

Half Moon, the name of the vessel commissioned by the Dutch East India Company in I6o9, and commanded by Henry Hudson for a voyage of exploration in search of a Norlhwest Passage. In this ship he entered New York Bay and explored the river which bears his name.

Half-tones, pictures produced by printing from plates made by the half-tone process, which will here be described. Except that used in linedrawing, until early in the eighties there was no process by which paintings, wash-drawings, or photographs could be done into the form of a surface printing-block for the press, and the introduction then of the half-tone block marked a revolution in the history of photographic illustration. The development of the process was the result of a kind of evolution of Bullock's (1866). Meisenbach of Munich patented a half-tone process in 1882.

The American Frederic Eugene Ives and others have since experimented and published results, and by them within a few years the process as it now exists was practically established. Americans were first in the field with an improved device for breaking up the image into dots, which was so much superior to anything invented in Europe that almost every other method was dropped in its favor. The diamondruled screen, which was introduced in this country by Nax Levy, is essential to advanced work in half-tone. To make one of the screens, a sheet of the finest plate-glass is coated with a varnish of asphalt and wax, and placed on the bed of an automatic ruling-machine capable of ruling lines of any fineness up to 500 to the inch. The cutter is diamond-pointed and gauged to cut lines of any desired width. The lines are ruled diagonally at 45° across the glass, the number to the inch varying as required. The ruled surface is treated with hydrofluoric acid, which eats into or etches the lincs laid bare by the diamond and forms a channel which is filled up with an opaque pigment. This enamel is baked in the lines in an oven, and then the surface is polished until the lines are perfectly level and the spaces represented by the clear glass are bright and transparent. Two of thesc ruied glasses are required for each screen, laid together with the lines crossing at right angles and cemented with Canada balsam.

To produce a half-tone block from a picture, wash-drawing, or photograpl, this ruled grating is placed in front of the sensitive plate, not in contact with it, but at a distance which must be nicely determined by experience. Everything is represented by dots so accurately graded in relation to the light and shade of the original that the cye scarcely detects them, and the half-tone picture appears as a practical focsimile of the original from which it was plotographed.

Most hali-tone blocks are now etched on copper, and the sensitizing solution generally employed for this metal is a compound of fishglue, alburmen, chromic acid. water, and bichromate of ammonia. The copper is cleaned with tripoli and washed: the sensitizing solution is flowed over it two or three times: it is placed on a revolving table and rapidly whirled to spread the coating thinly and evenly: the coating is dried by gentle heat in a yellow-lighted room, and the plate is now ready for exposure under the half-tone negative. Three io ten minutes exposure to an electric arc-light completes the printing, then the plate is given a bath in cold water, and is soaked and washed under a spray of water until the compound not acted upon is dissolved out. The image on the metal at this stage is almost invisible. To facilitate an examination of the film, the plate is dipped into a solution of methyl-violet, which stains the film and brings the picture into view. If all is right, the surface is dried either by flowing it with methylated alcohol or by gentle heat. The next operation is the hardening of the glue-picture into a substance resembling enamel - hence the "enameline process." The plate is highly heated over the flame of a large Bunsen burner; during the progress of this "buming in" or enameling. the blue picture gets pale. then gray, and vanishes; as the plate gets hotter, the image appears as a faint brown, and increases in strength to a rich chestnut-brown tint, when the heat must be withdrawn. and the plate cooled off. The plate has now upon it a picture formed of a strong, hard. impermeable coat of enamel which will bear any reasonable etching without further protection.

The etching-bath is made up of neutral perchloride oi iron dissolved in water, and of a strength which registers 35° with a Baumés hydrometer. The plate is first subjected to a general etching. so that it may be inked over with a printer's roller, and a first proof of the photo-etched picture be pulled in the press. The dulling of the general effect caused by the interposition of the necessary screen-grating has to be removed as iar as possible, and this is done by artists who are specially trained ior the work. The parts of the picture which are in shadow and are usually correctly rendered by a properly exposed negative are covered over with varnish. and the next tones are etcted again: then these tones are covered up and the high lights are treated until the resulting picture, when prooted. correctly represents the original. The plates are then trimmed by engravers, heveled to admit of being riveted to the wood-mounts, and arc mounted type-high for use in the printing-press.

Invention and experiment are now active toward the next great step in hali-tone work, the production of surfaces without the mechanical smoothness hitherto so persistent. What is aimed at is the makine of pictures which are iree from mechanical effect. and are yet sufficiently delicate in texture to retain the finer details.

Half-way Covenant, a concession in church requirements made hy the New Ensland Synod convened at Northamptn in 165% whereby persons who had been baptized in their infancy, who assented to the doctrines of iaith. entered into covenant with the church. and led decent and respectable lives. were admitted to
the privileges and prerogatives of church-membership with the exception of the Lord's Supper, although they might give no evidence of conversion and had neither the ability nor willingness to make profession of religious experience. This "hali-way covenant" as it came to be called aroused bitter controversy which did not die out until the 19th century: among its most strenuous opponents were Jonathan Edwards and his iollowers. The contention is baseless that it entailed certain civil privileges in relation to the State franchise. its chief aim being to admit children to baptism and to transmit to them the same degree of church membership as their parents. Consult Walker, 'Creeds and Platforms of Congregationalism' (1893).

Haliburton, hălĩ-bèr-tòn. Thomas Chandler. Canadian humorist: b. Windsor. Nova Seotia. December 1-96: d. Isleworth, near London. $2 ;$ Aug. 1865 . He practised law in Halifax. and in $18+2$ became judge of the supreme court of Jova Scotia. but subsequently gave up his proiession. and went to live permanently in England. His first work was a 'Historical' and Statistical Account of lova Scoria' (I\&29). In 1835 he contributed a series of letters to a Halifax newspaper, under the pseudonym of "Say Slick." clock-peddler. These were published with considerable alterations and additions, in a collected form in 183\%, under the title of 'The Clockmaker, or Sayings and Doings oi Samuel Slick oi Slickville.' and became very popular. A second series followed in 1838 . and a third in isto. In 'The Attaché, or Sam Slick in England.' his bero is represented as attache of the American embassy at the court of St. James, and again appears in 'Sam Slick's Traits of American Hunnor) (I 852). Another work of his of some importance is (Rule and Misrule of the English in America' (185 t). In $18 \equiv 9$ Haliburton was elected member of parliament for Launceston.

Halibut, the largest of the flat fishes (Hirpoglossus zulgaris). and one oi the most important and highly prized iood-tishes. occurs in all Northern waters, south to France, New York and San Francisco. It reaches a weight of 400 pounds, and is characterized by lasing the eyes on the riglut side, the ventral fins and mouth symmetrical. and the lateral line arched in iront. Ir is dark brown on the right side. and white on the leit or lower side. It was formerly very abundant along the whole eastern coait of the Lnited States, at times proving a nuisance irom its numbers to the cod-fishers. It has gradually become scarcer, and at the same time the appreciation of it as a iood-fish has increased. so that the halibut nishers have gone iarther and zarther for it until now a good propronn if the catch comes from the waters ar und Iceland. A second species. the Greenland halibut (Reinhardtius hippoglossoides) accurs in the Aretic Atlantic, but is not very common. It is yellowish brown and has a -traight lateral line. In the trade this is not disincuished from the common species. Halibut are taken with hook and line (or trawls) using ire-h fish (lierring. etc.) for bait.

Halifax. Charles Montague. Eirl of. English nolitician: b. Horton, Northamptonshire. i6 April Iofrt: d. 19 May $1 / 15$. He first attracted notice by his verses on the death of Charles 11.;

I. City of Halifax from the Citadel
2. North $10^{\circ} \mathrm{ent}$. Irm

HALIFAX - HALL

and in 1687, in conjunction with Matthew Prior, wrote 'The Town and Country Mouse,' a parody on Dryden's 'Hind and Panther.' He hecane a lord of the treasury in March 1692, in 1004 was made chancellor of the exchequer: in 1695 carried out the much needed re-coinage, appointing Newton warden of the mint; and in 1606 he devised the ssstem of exchequer bills. His administration was distinguished by the adoption of the funding system, and by the establishment of the Bank of England. In I700 he was raised to the peerage, under the title of Baron Halifax. In the reign of Anne he remained out of office, but he actively exerted himsclf to promote the union with Scotland, and the Hanoverian succession. George I. created him an earl, and bestowed on him the order of the Garter. The 'Life and Miscellaneous Works of Lord Halifax' were published in 1715 . and his poems were included in the edition of 'English Poets' by Dr. Johnson.

Halifax, Canada, the capital of the province of Nova Scotia, and county-seat of Halifax County, a city and port of entry on Halifax Harbor, on the Intercolonial and Dominion, and Canadian Pacific R.R.'s. The harbor, originally known as Chebucto, "chief of havens," is one of the best in the world. It is 16 miles long from north to south, with an average width of a mile, and terminates in Bedford Basin, a beautiful sheet of water four miles wide, affording io square miles of safe anchorage. The North W'est Arm, an inlet on the west of the city, is a charming bay, on the shores of which are many of the villa residences of the wealthier Haligonians. The harbor is protected by if forts and batteries. A citadel crowns the hill, on the slopes and at the base of which the town is built. The streets are regularly laid out on a rectangular plan, are lighted by gas and electricity, and have electric strect-car lines. The public buildings are built chiefly of freestone; the houses of wood. The most notable structures include Government House, the official residence of the lieutenant-governor, the armories, the post-office, the custom-house, the Province building, court-house, city-hall, Masonic Temple, Academy of Music, the Admiralty House, the Wellington barracks, several hospitals, and other charitable institutions, the Roman Catholic and Anglican cathedrals, and Saint Paul's church, the oldest Protestant church building in British North America. Among the higher educational institutions are the non-sectarian Dalhousie University and College (q.v.), the Roman Catholic College of Saint Mary; the Presbyterian Theological College, the Halifax Ladies' College and Coniervatory of Music, and a high school. The city maintains a free library, an excellent waterworks system, and fine parks, including Point Pleasant Park, and the handsome public gardens covering 17 acres. Halifax is the chief Pritish naval station in North America, and has extensive dockyards: besides Esquimalt it is the only military post in Canada garrisoned by British imperial troops; in 1901 the garrison amounted to $1,78+$ soldiers. Halifax has railroad communications with all parts of the Dominion and the United States, and steamship ?ines connecting with Great Britain, the West Indies, Boston. and New York. A United

States consul-general is resident in Italifax. The chief occupations of the inhabitants are commerce and fisheries. The city has considcrable W'est lndian trade, exporting lumber, fish, and agricultural products, and importing sugar, rum, molasses, and other sub-tropical products: most of the commerce of the province is carried on through Halifax. The principal manufactures are iron castings, machinery, agricultural implements, nails, paints, gunpowder, cordage, leather, boots and slooes, clothing, soap and candles, cotton and woolen goods, and woodenware; there are also sugar refineries, distilteries, and breweries.

Halifax was founded in rifig by the Hon. Edward Cornwallis, and mamed in honor of the Earl of Halifax. The following year it was made the capital of Nova Scotia, then including New Brunswick, in place of Annapolis: in 1817 it was declared a free port; in $1 \&_{12}$ it was incorporated as a city. It is governed by a mayor, elected amually, and by 18 aldermen, elected triennially. The city and county send two members to the Canadian House of Commons, and three to the Provincial Legislature. Pop. (1901) 4o,832. John Forrest,

President Dalhousic College.
Halifax Commission, the designation for the commission of representatives of Great Britain and the United States which met at Halifax, Nova Scotia, in 1877 , to determine the amount of compensation to be paid by the United States for the privileges which under the provisions of the fisheries treaty of 1871 between the two countries. had allowed the fishermen of the United States to take fish along the shores of Canada and Nerifoundland. The great value of the British fishing waters was admitted and the sum of $\$ 5.500,000$ was awarded Great Britain. The tenyear treaty which went into operation in 1873 was terminated by the U. S. government in 1885. and an attempt to renew it by the ChamberlainBayard Treaty in 1888 was frustrated by the rejection of the United States Senate. A modus rizendi, however, was arranged for, which the Dominion Parliament enacted as a law in 1890.

Hal'ite, the mineralogical name for native common salt, rock salt, or sodium chlorid, NaCl . Halite crystallizes in the isometric system, usually in cubes. It has a hardness of 2.5. and a specific gravity of 2.135 when pure, though it often occurs mixed with calcium sulphate, and with the chlorids of calcium and magnesium, the specific gravity being modified accordingly. Halite is usually colorless or white, though it is sometimes colored by impurities. Its refractive index for yellow sodium light is 1.54 .42 , and transparent crystals of it are used somewhat in the manufacture of prisms and lenses, since the mineral is far more transparent than glass to the infra-red rays of the spectrum. Tyndall made extensive use of it in this way, for example, in his researches on radiant heat. (Consult his 'Contributions to Molecular Physics in the Domain of Radiant heat.') See Salt; Sodium.

Hall, Alexander Wilford, American editor and author: b. Bath. N. Y., 18 Aug. 1819: d. 1902. He became known as an evangelist espe cially through attacks on Universalist doctrine and the thenry of evolution presented by Darwin. Huxley, and lyaeckel. In 1881 he estahlished
'The Microcosm,' and in 1893 became president of the Society for Philosophical Research. In IS9: he was elected fellow of the Philosophical Society of Great Britain. His works include: 'Universalism Against ltself': 'The Problem oi Human Lije' ; 'The Immortality of the Soul'; and 'The Hygienic Secret of Health.'

Hall, Anna Maria Fielding, British novelist: b. Dubiin. Ireland. 6 Jan. ISoo: d. East Dloulses. Surrey. England, 30 Jan. I8Si. In her I5th year she went to London. Where she was married to the well known writer, S. C. Hall (q.v.). She published 'Sketches of Irish Character' (I 288) ; 'The Buccaneer) (I832): 'Tales of Woman's Trials' (183t): 'The Outlaw' (1835): 'The French Retugee, a drama; 'Uncle Horace' (183-): 'Lights and Shadows of Irish Character) (I838); 'Marian' (1830): "Didsummer Eve" (IS+3); "The Whiteboy" (1845): etc. Her 'Stories of the Irish Peasantry' appeared originally in 'Chambers's Journal.' Pesides assisting her husband in writing 'Ireland: its Scenery, etc." ($1841-3$) and other works. she assisted in the establishment oi a hospital for consumptives, and the Nightingale Fund. which resulted in the endowment of a training-school for nurses.

Hall, Arthur Crawshay Alliston, American Protestant Episcopal bishop: b. Benfield. Berkshire, England. 12 April 184\%. He was graduared from Christ Church. Oxiord. in I $\$ 60$. took orders. entered the Society of St. John the Evangelist (Cowley Fathers). in IS -4 became assistant minister of the Church of the Advent. Boston, and irom 1882 to 1891 was there minister of the mission church of St. John the Evangelist. In isg4 he was consecrated bishop of Vermont, after release from the Cowley order. His publications include: 'Confession and the Lambeth Conierence' (18-9): 'Meditarions on the Creed' (IS8O): 'Meditations on the Collects' (IS8;); and other doctrinal and devotional works.

Hall, Asaph, American astronomer: b. Goshen. Litchfield County, Conn.. 15 Oct. 1829. He learned the carpenter trade but aiter private study: attended Central College. McGrawville. $\$$. \because.. in 1854 . was for a term a pupil of Francis Brünow at the University of Nichigan. taught at Shalersville, Ohio, and later was appointed assistant to Bond in the Harvard ohservatory. He became assistant in the Naval Observatery at 11 ashington in $I \delta_{62}$, and in $\left\{\mathbb{S O}_{3}\right.$ professor of mathematics in the nary, with relathe rank of captain. He continued in the government scrvice until 1891. When he was retired on account oi age. with relative rank of captain. While at the Gaval Ohservatory he was despatched on several expeditions, including those for mservation of solar eelipses to liering Strait in sisig. to Sicily in 1870, and to Colnrado in 18-8. He was also in charge of the American party sent to observe the transit of Venus ai Vladivostock, Siberia, in 187 , and chief astronnmer of the expedition to San Antonio. Tex.. for the transit of 1882. Among his many discoveries the most important is that of the monns of Blars (August 1875), which he named Deimes and Phohos, and whose orbits he calculated. Among his later work is a valuabie study of double stars. In isfs-lonr he was professor of astronomy at Harvard. He received the Lalande prize of the French Academy of Sciences in is 8 . is Arago medal in 1895 , and the gold
medal of the Royal Astronomical Society in 18;9. In 1902 he was president of the American Association ior the Adrancement of Science.

Hall, Basil, British naral officer and writer: b. Edinburgh 31 Dec. 1-88; d. Portsmouth. England. if Sept. IS4t. He entered the navy in ISoz. accompanied Lord Amherst's expedition to China in 1815 , a trip which supplied him with the materials of his first work, "A Voyage oi Discorery to the West Coast of Corea, and the great Loo Choo Island in the Japan Sea.' This work. first published in 18i\&, had a very extensive circulation. In 1827 he made a tour in Canada and the Cnited States, and published his 'Travels in Jorth America' (18_9), a work which excited much adrerse criticism in the United States by reason of its outspoken and somewhat supercilious comments and observations. 'Fragments of Voyages and Travels' appeared in 1831-33, and was followed by 'Schloss Hainfield, or a llinter in Styria' and 'Patchwork' (ISyI).

Hall, Bolton, American lawyer and lecturer: b. Ireland 185+ A son of John Hall (q.3.), he was graduated from Princeton in 1875, became known as a writer and lecturer in connection with various reforms, and has been identined with the U-niversity extension movement. Among the causes adrocated by him are the cultivation oi vacant lots by the unemployed, and the restoration of the land to the people. His publications include: 'Even as You and I.'

Hall, Charles Cuthbert. American Presby-

 terian clergyman: b. New lork 3 Sept. 1852. He was graduated from Williams College in 18-2. studied theology at the Union Theological Seminary 18,2-3, and at the Presbyterian College in London and the Free Church College, Edinburgh. He was pastor of the Presbyterian Church, Newburg, N. I.. $18,5-\%$ and oi the $15 t$ Presbyterian Church, Brooklyn, N. Y.. 1S77-97. In the vear last named he was elected president of Ciion Theological Seminary. He has published 'Into His Marvellous Light: Studies in Life and Beliei) (ISgi): (Does God Send Trouble?' (is94); 'The Children, the Church and the Communion' (1805) ; 'The Gospel of the Divine Sacrifice' (1896).Hall, Charles Francis, American Arctic explorer: b. Rochester, N. I., in I\&zr; d. Thank God Harbor. Greenland. 8 Nov. 187I. Becoming interested in the fate of the Franklin expedition, he devoted his leisure to gathering information about Arctic America. and made two search expeditions. in fino-2 and $1864-9$. living alone among the Eskimo. and bringing back relics of the Franklin expedition and the supposed bones of one of Franklin's company. Natives whom he encountcred in tS60 near the southern shore of King William Land gave him a report of the fate of 79 of the 105 who perished by starvation in that region. He thus contributed much to the details of the expedition's final listory. In sifs he sailed in command of the government ship 'Polaris,' on an expedition to the North Polc. On 29 Augu:t he reached 82° II' \mathbb{S}, at that date the highest north latitude ever reached. Then turning south he went into winter quarters at Thank God 1larbor, Greenland ($\left.\mathrm{Si}^{\circ} 3 \mathrm{~S}^{\prime} \mathrm{N}.\right)$. Herc he was taken suddenly ill. and died. Over his grave a grateitul cpitaph was placed by the British polar expedition in 88,6 . His compan-

ASAPH HALL,
PROFESSOR OF ISTRONOMY, HARVIRU L゚N゙IVERSITY.

HALL

ions left Thank God Harbor in August, 1872, but in October, through the ice-anchor slipping, 19 men were left with stores on a floe. and only after five months of severe sufferings were they rescued by a sealer off the Labrador coast in the following April. The 'Polaris' drifted to the coast of Greenland, at a point not far south of Smith Sound, and thence in the spring the party set out in boats and was rescued by the Scotch whaler 'Ravenscraig.' off Cape York. Among the valuable resilits of Hall's work were the exploration of Kennedy chammel, the discovery of Robeson Chamel and Hall Basin, and the extension of Greenfand and Grimnell Land $11 / 2^{\circ} \mathrm{N}$. Hall was less a scientist than a fearless and resourceful explorer. He published 'Arctic Researches, and Life among the Esquimaux) (1864) ; and mainly from his papers was compiled the 'Narrative of the Second Arctic Expedition' (1879).

Hall, Charles Winslow, American lawyer and author: b. Chelsea, Mass., 2 Nov. 1843. He was admitted to the Suffolk har in 1866 and besides editing various New England journals has written: 'Arctic Rovings' (1801); 'Twice Taken' (1867) : 'Adrift in the Icefields' ($18 / 7$) ; 'Drifting Round the World' (1881); 'Legends of the Gulf': 'Cartegena, or the Last Brigade' 'Regiments and Armories of Massachusetts.'

Hall. Chester Moor, English inventor: b. Leigh, Essex, England, 9 Dec. 1703 ; d. Sutton, Essex, 17 March $17 / \mathrm{I}$. He was a large landowner in Essex, and convinced from study of the human eye that achromatic lenses were possible, he discovered two varieties of suitable glass in 1729, and in 1733 made several telescopes later declared by experts to he achromatic. Indifferent to his claims of priority, he did not appear at the trial of Dollond i'. Clampness. Later his invention of the achromatic telescope in the year 1733 was adjudged by Lord Mansfield conclusively proven.

Hall, Christopher Newman, English Congregational clergyman: b. Maidstone, England, 22 May 1816; d. London 18 Feb. 1902. He was educated at Highbury College and ordained in 1842, his first charge being at Hull. 1121854 he was made pastor of Surrey Chapel, Blackfriar's Road, London, from which place he moved with his congregation into Christ Church. Westminster Bridge Road, erected mainly through his exertions, and of which he became pastor emeritus in 1893. During the Civil War he did much by tongue and pen to give his countrymen correct ideas of the nature of the struggle in the United States. $1 n 1865$ he visited this country and again in 1873 when he delivered lectures in the principal cities. He was the author of 'The Christian Philosopler'; 'Land of the Forum and the Vatican' ; 'Lectures in America': and of a famous tract 'Come to Jesus' (1840) of which millions of copies have been issued, etc.

Hall, Edward Henry, American Unitarian clergyman and author: b. Cincinnati. Ohio, 16 April 1831. He was graduated from Harvard in 1851, ordained to the Unitarian ministry in 1859, and was pastor at Plymouth, Mass., 185967: Worcester, Mass., 1860-82: and at Cambridge. Mass., 1882-93. His writings include. besides a volume of 'Discourses' : 'Orthodoxy and Heresy in the Christian Church': 'Lessons on the Life of St. Paul' ; 'Papias and his Con-
temporaries: a Study of Religious Thought in the ad Century' (1899).

Hall, Fitzedward, American philologist: b. Troy, N. Y., 21 March 1825: d. Narlestord, England, I Fels. 190I. He was graduated from Harvard in 1846; spent many years in India; made a thorough study of its tongues, and contributed to its local journals original translations and original atticles. In 1850 he became tutor, inl 1853 professor, in the government college at Benates; in 1855 was transierred to Ajmere as inspector of schools for Ajmere and Maiwara: and in 1856 to a like nost in the Central provinces. In i862-79 he was professor of Sanskrit, Hindustani, and Indian jurisprudence in King's College, London; in 186 examiner in Hindustani and Hindu to the civilservice commission; in 1880 examiner in Sanskrit to succeed Max Müller; and in 1887 also examiner in English. He was the first American to edit a Sanskrit text - 'The Atmabodha, with its Commentary, and the Tattvabodha' (I852). He prepared also an edition of the 'Vishnupurâna,' containing numerous quotations from manuscripts owned by him; and editions of many other Sanskrit books. His collection of 1,000 Oriental manuscripts and 1,000 works on special subjects, he gave to Harvard. He wrote further: 'Modern English' (1873), 'Doctor Indoctus' (IS80), and other works on English philology, and contributed to the 'New Oxford Dictionary.'

Hall, Florence Marion Howe, American author and lecturer: b. Boston 25 Aug. 18.45. She is a daughter of Julia Ward Howe (q.v.). Prominent in the women's club movement, she became vice-president of the General Federation of Women's Clubs, and chairman of the educational department of the New Jersey State federation of women's clubs. In 1893-1000 she was president of the New Jersey Women's Suffrage Association. Her writings are: 'Social Customs' (1887) ; 'The Correct Thing' (1888).

Hall, Francis J., American Episcopal theologian : b. 24 Jan. 1856 . He was graduated from Racine College, Wis., and the General Theological Seminary, New York, and has been professor of dogmatic theology in the Western Theological Seminary from r886. He has published 'Theological Outlines' ($1802-5$): 'Historical Position of the Episcopal Church' (1896) : 'The Kenotic Theory' (1898).

Hall, George Henry, American artist: b. Boston 1825. He studied art at Dusseldori. Paris, and Rome; established his studio in New York; and became known as a still-life and figure painter. In I868 he was elected a national academician. Among his works are 'April Showers' : 'Studies of Grapes': 'The Seasons'; and 'Bric-a-Brac of Damascus'.

Hall, Gertrude, American writer: b. Boston 8 Sept. 1863. She has written 'Far from To-day;') a collection of short stories; 'Allegretto') a book of verse: (Foam on the Sea, and Other Tales) ; 'The Itmelred and Other Stories' (1898) ; 'The Age of Fairy Gold.' verse (1899); 'April's Sowing' (1000). Her work, both in rerse and prosc, is distinctively original.

Hall, Gordon, American missionary at Bombay: b. Tolland. Mass.. 8 April 1784: d. Bombay 20 March 1826 . He was graduated at

Williams College in ISos and having studied theology, offered himseli as a missionary to the American board of commissioners for foreign missions. Ordained at Salem in February 1812, he sailed the same month ior Calcutta and arriving at Bombay in 1853. spent 13 years in missionary labors. No missionary in western India has been more respected among the Brahmins and higher classes than be. Beside publishing several missionary racts he revised the Mahratta NVew Testament.

Hall. Granville Stanley, American psychologist and college prestdent: b. Ashfield, Mass.. 6 JIay iS45. He was graduated irom Wlilliams College in 186 , studied also at Berlin, Bonn. Hendelberg, and Leipsic, was professor of psychology in Antioch College (Ohio) in 18-2-6, and lecturer on psychology at Harvard and Williams in 1NOO-1. From 1SSI to IESE he was professor of psychology in the Johns Hopkins University: and in ISSS became president oi Clark U"niversity, then newly founded at Worcester, Mass.. and professor of psychology in the institution. He soon became known as an authority on education and a leader in the "new Dsychologr." -1 s editor of the "Predagogical Seminary' and the 'American Journal of Psy-chologs-' he published: 'Aspects of German Culture' (1881): 'Hints toward a Select and Descriptive Bibliography oi Education' with Mansfield (1S86): 'Methods of Teaching History' : 'How to Teach Reading' ; etc.

Hall, Isaac Hollister, American Oriental scholar: b. Norwalk. Conn.. 12 Dec. 1837: d. Mount Vernon. ㄹ. L.. 2 July 1896. Graduated irom Hamilton College in 1859 , he was there tutor until 1863 . in i865 was graduated irom the Columbia Law School. and until 185 was a practitioner in Jew lork. In 185ミ- he was professor in the Syrian Protestant College at Beirut. and Jater at Cyprus aided Gen. di Cesnola, then United Staies consul. in the arrangement of the Cypriote collection now in the Metropolitan Museum oi New Jork. From 1884 until his death he was curator of sculpture and archreology in the Metropolitan Museum. He also lectured on Vew Te-tament Greek at the Johns Hopkins Eniversity; published (rSSi) an account. with facsinile pages, of the Syrian manuscripts of the Gospels. Acts and the larger part of the Epistles, discovered by him (18-6) at Beirut: and compiled a 'Critical Bibliography' of the Greek New Testament' ($1 \mathrm{ES}_{4}$).

Hall. Sir James, English geologist and chemm: h. 1,01 ; d. Edinburgh 23 J une 1832. Early interested in geological questions, he made the acquaintance of James 1 futton (q.s.) and Playtair, and himseli states that he came to adopt Huton's system after three years of almost daty discussion with its founder. In the examination of this syitem, whose leading principle explains the conformation of the earth's cruat by the action of constant natural changes, he traveled in Scotland, the Alps, lialy, and Sicily. Hall was the first geologist directly to apply chemical laboratory tests to the hypotheses of genlogy, bus published no results of his work in this field until after the death $(1,07$) of llutton who objected to the judgment of the vast operathens of nature thmogh "having kindled a fire and looked into the butenm oi a little crucible." lle was electerl president of the Royal Society of

Edinburgh. invented a machine for the regulation oi high temperatures. and in 180 ,-12 represented Michael (or Mitcheil). Cornwall, in Parliament. He wrote various scientific memoirs.

Hall, James, American lawyer and author: b. Philadelpha 19 Aug. 1793: d. near Cincinnati. Ohio, 5 July 1808 . He served in the army ISI2-18 and subsequently studying law became judge of the circuit court of illinois, and also State rreasurer. In 1833 he took up bis residence in Cincinnati. and devoted himself to banking and lieerature His chief works are: 'Legends of the W'est': 'Harpe's Head. a Legend of Kentucky.) (1833): 'Skerches of the West' (1835); 'Tales oit the Eorder) (1835); 'Notes on the Western States' (1838): "History of the Indian Tribes' ($1838-44$) with Mckennes; "The Uilderness and the NrorPath' (IS45): 'Romance of Western History' (I859).

Hall, James, American geologist and palæontologist: b. Hingham, Mass.. 12 Sept. 1811; d. near Bethlehem. N. H.. 7 Aug. I898. He studied at the Rensselaer Polvtechnic School for six years, and was subsequentiy professor of geology there and in 1837 was appointed to a position on the New lork Geological Survey. In 1855 he was appointed State geologist of Iowa. In Is5o he was elected by the Royal Geographical Society of London one of its so foreign members, and in 1858 received the Wiollaston Medal from that scientific body. He was a distinguished member oi many scientific societies at home and abroad and was held in the highest esteem for his attainments in geology and palacontology: timong his publications may be named 'Geology of New lork' (is+3); (Paireontology of New Fork (184, if siq.) : 'Graptolites of the Quebec Group' (I865): as well as parts oi the Geological Reports of Jowa (I858-9) ; and Wisconsin (1862).

Hall, John. American Presbyterian clergyman: b. near Armagh. Ireland. 31 July 18-90 d. Bangor. County Down. Ireland. I\% Sept isgs. He was curcated at Belfas? College and after holding several pastorates in Ireland. in IS67 became pastor of the Fiith Avenue Presbyterian Clurch. New lork. He was chancellor of the University of the City of Jew lork 188z-90, and was also trustee of Princeton University, Union Theological Seminary, and of $1 V^{\circ}$ ellesley College. Ile was noted for his simple eloquence and impressive sincerity and was one of the most promment clergymen in his denomination. lle wrote 'Family Prayers for Four Weeks' (:186): 'Papers for Home Reading' (18-1): 'Questions of the Day' (1873): 'God's W'ord through Preaching' (18 -5): 'Foundation-Stones for loung Builders" (18,9); "A Christian Home: how to Make and how to Maintain It' (183)

Hall, John M., American railroad president: h Willimantic, Conn., 16 Oct. IS 41 ; d : Dcw Haven, Conno, 2\% Jan. 1905. He was graduated irom lale in 1866 and from the C lumbia Law School in ifis. He took up the practice if law in his natue town and became a judge of the superior court in i\&So, resigning in 1 mos to 1 ccone vice-pre-ident of the Xew York. Sew Havern and Hartiord Railroad Compane: On the dath ni President Clark in 189a Judec Hall succecded him as president.

Hall, Joseph, English prelate: b. near Ashby-de-la-Zourh, Leicestershire, I July 1574; d. near Norwich 8 Sept. 1650. While yet in college he published his 'Virgidemiarum,' a serics of poetical satires, remarkable for elegant and energetic versification, strong and lively coloring, and masterly traces of genuine humor. Having taken orders he obtained the rectory of Halsted, near St. Edmund's Bury, where he published a very popular work, 'A Century of Mleditations.' In 1617 he becane dean of Worcester, and was raised to the see of Exeter in 1627 . After the open rupture between the king and Parliament, he came forward in defense of the liturgy and discipline of the church, against the views which the leading Nonconformists had published, in a treatise called, after the initials of the names of its authors, 'Smectymmus' (q.v.). In the end of 16.41 Bishop Hall was translated from the see of Exeter to that of Norwich. but was later imprisoned in the Tower with the other prelates who had protested against their expulsion from the House of Peers. In 16.43 he was specially named in the ordinance passed for sequestering what were called "notorious delinquents." His prose works edited by Philip Wynter were published in 1863. Among the latter. the best known and most popular is his 'Comtemplations,' which still finds many readers.

Hall, Lyman, American patriot: b. Wallingford, Conn., I2 April 172.4; d. Burke County, Ga., I9 Oct. 1790. He was graduated from Yale in 1747, studied medicine, and began practice in Wallingford, Conn., but finally settled near Sunbury, Ga.. where he became a leading physician. The settlers in this locality were from New England, and on the outbreak of trouble with England, they with Hall as leader took active part in the rebellion, though Georgia was slow in joining the patriot cause. Hall was sent by them as a representative to the Continental Congress. where he was admitted by a unlanimous vote, and took part in all debates, but did not vote when the vote was taken by colonies, until Georgia was represented as a colony. ln 1776 it was so represented, and Hall continued a member of the Congress till 1780 , being one of those who signed the Declaration of Indenendence. He was elected governor of Georgia in 1783 , and in an energetic administration of one year, he did much to repair the damage done by the war, established land offices and schools, and then retired from public life. Consult: Dwight. 'Signers of the Declaration'. and an article, 'Lyman Hall' in the 'Magazine of American'History,' XXV. 35 .

Hall, Marshall, English physician and physiologist: b. Basford, near Nottingham, 18 Feb. 1790; d. Brighton, England, It Aug. 1857. In 1800 he commenced the study of medicine at the University of Edinburgh, and took his degree in 1812. In 1817 he commenced practice at Nottingham, and soon rose to eminence. In 1826 he settled in London, where he carried on a most successful practice. He paid especial attention to the symptoms of illness and in 1817 pulblished (Diagnoses of Diseases,' and in 182. his 'Medical Essays) appeared. His (Essay on the Circulation of the Blood) (1831) contained an account of his discovery of the so-called "caudal heart") in the tail of the eel. The more important of his other writings are: 'Lectures on the Nervous System and its Diseases' (1836), 'Theory and Practice of Medicine' (1837); 'Theory
of Convulsive Diseases' (1848). His services to the cause of humanity were numerous and valuable, and among these one of the most widely known is the method which he invented of restoring suspended respiration, now gencrally adopted in the case of persons partially drowned. It is known as the "Narshall llall Method." See Drowning.

Hall, Robert, English Baptist clergyman: b. Arnsby, Leicestershire, England, 2 Nay 1764 ; d. Bristol. England, 21 Feb. ${ }^{1831}$. He studied at the Baptist College at Bristol and King's College, Aberdeen, and entered the Baptist ministry, becoming in a few years not only the most prominent minister in his denomination but one of the very foremost of English orators. Ie was also widely known as a master of prose style, his most noted writings being 'Apology for the Freedom of the Press' (1793): 'Nodern lufidelity' (1800) ; 'Reflections on 'War' (1802). He was subject to attacks of insanity but in spite of this misfortune accomplished a vast amount of intellectual work and was a tireless student. His complete works in six volumes reached an 11th edition in 1853.

Hall, Robert Henry, American soldier: b. Detroit, Mich., 15 Nov. 1837. He was educated at West Point and served in the Federal army during the Civil War, and was in command of a brigade during the war in the Philippines. He became a brigadier-general in the United States army in 1901. He has published 'Register of the United States Army 1789-98'; 'History of the Flag of the United States) : 'History of United States Infantry Tactics.'

Hall, Ruth, American novelist: b. Schoharie, N. Y., Io April I858. Besides more or less journalistic work she has written: 'In the Brave Days of Old' (1898) ; 'The Boys of Scrooby' (1899) ; 'The Black Gown,' a novel of colonial Albany ($\mathrm{rgo0}$) ; 'The Downrenter's Son,' a novel of the anti-rent troubles in New York State (1902) ; 'The Golden Arrow' (1903).

Hall, Samuel Carter, English miscellaneous writer: b. Topsham, Devonshire, England, 1801 ; d. 16 March 1889 . For over 40 years he was the editor of the 'Art Journal,' which he founded in 1839 . Witl his wife (Anna Maria) (q.v.) he published: 'Ireland, its Scenery and Character) $(18 \not 1-3)$; (Book of Royalty' (1838): 'A Woman's Story' (1857); 'The Book of the Thames) (1859) ; 'A Companion to Killarney) (1878); and others. His separate works were: 'A Book of Memories', 'Book of British Ballads' ; 'Baronial Halls'; 'Retrospect of a Long Life) (${ }^{(883}$).

Hall, Thomas, American inventor: b. Philadelphia 4 Feb. 18.3. He was educated at the University of Pennsylvania, and subsequently studied mechanics in Europe, and at the Paris exposition in 1867 placed a keyed typewriter on exhibition. His mumerons inventions include a mechanism for printing by touching keys; a keyed typewriter, the Hall typewriter, first offered for sale in 1881; several sewing-machines, as well as drill-grinding and other machinist tools, etc.

Hall, Thomas Cuming, American theologian: b. Armagh, Ireland, 25 Sept. 1858. He was graduated from Princeton in 1879, from the Union Theological Seminary in 1882, studied also in Berlin and Göttingen, and was a pastor in

Omaha and Chicago. In 1898 he became professor of theology in the Cinion Seminary. Among his works are: 'The Power of an Endless Life' (1893); 'The Social Significance of the Evangelical Revival in England' (IS99) and 'The Synoptic Gospels' (1900).

Hall, a large room or apartment, the term having its origin in the castles and mansions of the Middle Ages. Here the king or the lord of the manor gave audience, administered justice. and received and entertained his retainers and guests. At one end of the hall was a raised platform or dais, on which the table of the lord of the manor and his honored guests was placed. This end of the hall was usually lighted with large oriel windows, and communicated with a building which contained the lords' solar, or bedroom and parlor, on the upper floor, and the wine cellar below. The retamers sat at a table which ran along the lower part oi the hall. The entrance was at the lower end of the hall, where a passage gave access to the kitchen, pantry, and buttery. Above the passage a gallery for musicians was irequently constructed. Survivals oi such mediaval dining halls may be found in the Oxford and Cambridge colleges; also in the halls of the Inns of Court and of some of the London guilds. The hall partook of the style of architecture prevailing at the time when it was built, and being a large and important apartment was generally ornamental in its character. The hall of the king's palace. now known as Westminster Hall, built by William Rufus and restored by Richard II., is the finest example in England, being 300 feet long and 100 feet broad. In the L'nited States Nassau Hall. Princeton: Carnegie Hall, New York: Faneuil Hall, Boston; Independence Hall. Philadelphia, are examples of the modern hall.

Hall-marks. See Plate-starks.

Hall of Fame, a memorial to famous Americans, at the New lork University. The institution received a gift of $\$ 100.000$ with which it built a colonnade 500 icet long on पniversity Heights, a beautiful site in upper New York, overiooking the valleys of the llarlens and the Hudson. Large panels to the number of rsO_{2} two feet by cight, will bear simple inscriptions of the names and dates of birth and death of the famous native Americans who are chosen as the 150 greatest men. Of these, 50 were chosen in 1903. and five every five years thereafter till the year 2000 . The public was invited to make nominations; and such nominatinns as were seconded by the Senate of the University were submitted to 100 judges. representing every State in the [nion. These judges were university and college presidents, professors of history. *cientists. publicists, cditors, authors, and judges of the surreme court, national and state. Ninety-seven of these sent in their wites, and $2 n$ great men, native and 10 years dead, chosen by this vote, and thercafter ratified by the Senate of the University, are the first of these immortal=

Naturally George Washingenn headed the liot, with Abraham Lincoln second, and Danicl Webster came third. The names oi Bryant, Pre, and Cooper are likely to be added hereafter. Lowell was not dead to years and was not yet (ligible. Bryant failed by three votes, Greeley by five, Motler by nine. The most animated dis-
cussion was proroked by the selection of General Robert E. Lee. But since only a minority oi the judges were Southern men, the vote for him was at least not sectional. The names of 21 other great men will be added to the list. The following shows the roll oi names chosen for the Hall of Fame, and the number of votes that each received:

Hall of Odin, a tradition among the Scandinavian peoples, which tells of the rocks from which the Berserkers, when tired of life, flung themselves into the sea: so named because they were regarded as the portals of the Scandinavian Valhalla.

Hallam, hăl'am, Arthur Henry, English essayist: b. London 1 Feb. ISi1: d. Vienna 15 Sept. 1833. He was a son of Henry Hallam ($\mathrm{q} \times$.) and was graduated in 1832 from Trinity College. Canabridge entered the Inner Temple and later the office of a conveyancer of Lincoln's Inn: and died during a visit to the Continent. At Camhridge he met Alfred Tennyson, whose '1n Memoriam.' through which he is best known, employs his sudden and untimely death as a basis for the exposition of a poet's philosophy. His 'Remains in Prose and V'erse' (1834), largely justiiy the high hopes entertained for him. especially in the critique of Rossetti's 'Disquisizionc sullo spirito antipapale,' and the essay on Cicero.

Hallam, Henry, English historian: b. Windsor 9 July tiot: d. Penshurst, Kent, 29 Jan. 1859. He was educated at Oxford, and in 1818 made his appeara:nce as an author by his "View of the State of Europe during the Niddle Ages' which at once established his reputation. and is acknowledged as a standard work. His next work, the 'Constitutional History of England' (182\%), is justly regarded as a model at nnce of laborious research and scrupulous impartiality - an impartiality so scrupulous, that his readers are sometimes perplexed to discover to which side his judgment inclines. His 'Introduction to the I,iterature of Europe' (18.3\%-9), if it could not add to his reputation, certainly did not detract from it. His eldest son, Arthur Henry (q.v.), died in early manhood: the great hopes buried with him mas be gathered from a most affecting 'llemoir' printed by his father for private circulation, while Tennyson's
'In Memoriam,' of which Arthur LIallam is the subject, has raised to him a durable monument.

Hallé, häl-lā, Sir Charles, Anglo-German pianist : b. Hagen, Westphalia, in April 1819; d. Manchester, England, 25 Oct. 1895. He studied first at Darmstadt, and afterward at Paris, where his reputation was established by his concerts of classical music. But the revolution of 18.48 sent him to England, and he made his home in Manchester. There he established in 1857 a series of subscription orchestral concerts which did much to raise the popular standard of musical taste by familiarizing the British public with the great masters of classical music. The orchestra which he conducted some forty years was the most finely trained body of musicians in the United Kingdom. He was knighted in 1888, and married the same year the famous violinist, Madame Norman-Neruda.

Hallé, Wilma Maria Francesca Neruda, Lady, Austrian violimist: b. Brumn, Moravia, 1840. She made her delut at Viema in 1846, exciting the greatest enthusiasm by her wonderful execution. Her first husband was a Swedish musician, Ludwig Norman, and as Madame Norman-Neruda she was famous in England and America long before her marriage to Sir Charles Hallé (q.v.) in I888. After the death of the latter she visited the U'nited States on a concert tour.

Halle, här'lé, or Halle an der Saale, än-dẹ̌zä'le, Germany, a town and important railway junction of six lines, in Prussian Saxony, about 20 miles northwest of Leipsic, on the river Saale. It consists of the medireval town with narrow, crooked streets and ancient dwellings, separated by boulevards on the site of the old ramparts, from extensive and handsome suburbs. Among notable public buildings are the restored medixval Rathaus; the "Red Tower" in the market place, a 15 th century clock-tower; the decaying Moritzburg, formerly a citadel and archiepiscopal residence; the modern Gothic Ratskeller; the extensive buildings of the University (q.v.) ; a deaf and dumb asylum; a lunatic asylum; the 12th century Moritzkirche with fine wood carvings; the 16 th century Protestant cathedral; and the 16 th century Gothic church of the Virgin, with four towers and noted for its handsome interior. In the suburb of Glaucha the Waisenhaus, "orphan house," or institution founded by the Rev. Francke about 1693 forms a small town in itself. Besides the orphan asylum it includes different grade schools, attended by betwcen 3.000 and 4.000 pupils; a printing and publishing establishment; and a laboratory where medicines are prepared and sold. The trade and manufactures of Halle are extensive. The latter include starch, beet-root sugar, chemicals, oil, machincry, etc., besides the celebrated ancient salt works. The salt workers form a distinctive colony with special exemptions and privileges and are known as "Halloren.". Halle is mentioned as Halla as early as 806 ; in the 12 th century it had developed considerable trade, and in the next two centuries was an important member of the Hanseatic League. In 1806 it was taken by the French; in ${ }^{18} 13$ it was annexed to Prussia. Pop. (1900) 156,661.

Halle, University of, Germany, a celebrated institution founded in 1694 by King Fred-
erick I. in the intcrests of the jurist Thomasius, when he was followed to Halle by several students after his retirement from Leipsic owing to the envy of his fellow professors. It attained a high degree of prosperity, but owing to its strong Prussian proclivities was suppressed by Napoleon in 1806 and in 1813. It was re-cstablished in 1815 and in 1817 was united with the University of Wittenberg. Its huildings which are very extensive, especially those accommodating the medical faculty, date from 1832 . There are faculties of theology, law, medicine, and philosophy. From its foundation Halle was recognized as one of the principal schools of Protestant theology, and has numbered among its professors some of the most eminent names of Germany. Connected with the university is an ever-increasing library of over 220,000 volumes and MSS., a medical and surgical clinical institute; a maternity hospital ; an observatory; a theological and normal seminary; and a botanical garder; especial attention is devoted to agriculture. In Ig03 the university had nearly 2,000 students.

Halleck, hăl'ěk, Fitz-Greene, American poet: B. Guilford. Comn., 8 July 1790; d. there 19 Nov. 1867. At 18 he became a clerk in a New York bank, in which employment he remained for 20 years. For a long period after this he was the confidential agent of John Jacob Astor, and was named by him one of the original trustees of the Astor Library. In 1849 he retired to his native town. He wrote verses in his boyhood, but these early effusions were excluded from the collected editions of his poems. In i819 he assisted Joseph Rodman Drake (q.v.) in the humorous series of 'Croaker ${ }^{2}$ papers, contributed to the New York Evening Post. Drake's death in the succeeding year was commemorated by Halleck in a most touching poem. In 1819 was published Halleck's longest poem, 'Fanny;' a satire, in the measure of Byron's 'Don Juan.' on the fashions, follies, and public characters of the day. From the variety and pungency of the local and personal allusions it enjoyed a great but fleeting popularity. In 1827 he published an edition of his poems in one volume, two of the best in the collection, 'Alnwick Castle' and (Burns,' having been suggested by scenes and incidents of foreign travel. This edition also included the spirited lyric, 'Marco Bozzaris,' by which he will probably be longest kept in mind. Consult Wilson, 'Life and Letters of Fitz-Greene Halleck) (1869).

Halleck, Henry Wager, American soldier: b. Westernville, N. Y.., I6 Jan. 1815; d. Louisville, Ky., 9 Jan. 18\%2. He was graduated at the United States Military Academy in 1839, was assistant to the Board of Engineers at THashington $1840-1$, and in 1841-6 assistant engineer in the repair of the New York harlor fortifications. In the Mexican War he was on the Pacific coast. and in $1847-9$ was secretary of State for California under the military government. After service as inspector and engineer of lighthouses ($1852-4$) and as engineer of the board for fortifications on the lacinc coast (1853-4), he resigned from the service in 1854. and practised law in San Francisco. On the outbreak of the Civil War he re-entered the army, and in November I861, was appointed commander of the department of the Missouri,

HALLECK－HALLEY

then in a state of thorough disorganization．He quickly reduced the department to order，out－ lined the western campaign of 1802 ，directed thys campaign in person irom 11 April，and took Corinth，with its 15 miles of entrenchments， on 30 Maæ：．In July he became general－in－chief of the armies of the United States：and hence－ iorth directed from Washington the movements of the generals in the feld，till，in March J864． he was superseded by Gen．Grant．Halleck was chief of staff till 1865 commanded the military division of the James in 1805 ，that of the Pacific． $1805-9$ ，and that of the South from 1860 until his death．He wrote a work on＇The Elements of Mlilitary Art and Science＇（18\＆6）．largely used as a manual in the Civil War：＇Bitumen＇ （ s \＆i ）：A Collection of Jining Laws oi Spain and Mexico＇（1859）．and other volumes．

Halleck，Reuben Post，American educator： b．Rocky Point．L．I．\＆Feb．I\＆s．He was graduated from lale in IS\＆r，was instructor in the Male High School，Lousville，Ky．． 1883 －90． and principal from the latter date．He has pub－ lished：＇Psychology and Psychic Culture＇ （1895）：＇The Education of the Central Nervous System＇（1890）：＇History of English Litera－ tire＇（1000）

Hallelujah，hăl－e－loo＇ya．Halleluia，or Alle－ luia（Hebrew），＂Praise ve the Lord＂：ant expression which occurs often in the Psalms， and which was retained when the Bible was translated into the various languages，probablv on account of its itull and fine sound．which．to－ gether with its simple and solemn meaning．so proper for public religious serwices．has ren－ dered it a iavorite of musical composers．The Roman Catholic Church does not allow it to be sung on the Sundays during Lent．on account of the mourntul solemnity of the season：and in that church it is not sung again before Easter． It is no longer sung in masses for the dead as iurmerly．In the time of Augustine the Airican Church used this doxologe only from Easter to the ieast of Pentecost．The Greeks made an earlier or more common use of the Hallelujah than the Latin Church．The Jew：call the Psalm．cxini．－cxvii．the Great Hallelujah，because they celebrate the particular mercies oi God to－ warl the Jews，and they are sung on the feast of the Passover，and on the feast of Taber－ nacles．

Haller，Albrecht von，ảl＇brĕht ion h hảl＇lĕr， Swis＝anatomist．botanıt and pret：b．Bern 16 Oct．1－os：d．there 12 Dec．17\％．Hasing chosen the medical prefessiun，he went to the Lniversity of Tubingen．where he studied comparative anat－ omy under Duvernoy：and in 1525 removed io Leyden，then the first medical school in Europe． After extensive travels in England and France he went to Basel in tese to study mathematics under Bernoulli．Here he first imbibed a iaste for hotany，and composed his poem＇Die Alpen＇． followed by varrous ethical epistles and other pieces，which sare him a reputation in Germany： In $1 ; 20$ he returned to his native city，and en－ tered on his professional career as a public lec－ turer un anatomy，In 17．36 he became professor oi anammy．surgery，and botany，in the newly founded Coniversity of Göttingen，and through his iniluence the university was enriched with a brtanical garden，an anatomical theatre，a school iormandery and a college of surgery．In 1ラッ耳 appeared the first edition of his＇Prime Linex

Physiologize，which，long aiter the death oi the author．was used as a text－book in schools of medicine．In 1552 he first advanced his opinions on the properties of sensibility and irritability as existing in the nervous and muscular fibres of animal bodies；doctrines which atiracted much attention．and excited great controversies in the medical world．Disagreements with his col－ leagues induced him to return，in $1 \% 53$ ，to Bern， where his countrymen received him with the respect due to his fame and talents．Having been elected a member of the sovereign council of the state，he soon obtained by lot one of its magistracies，and entered with zeal on the duties oi a citizen，though he did not neglect his scien－ tific pursuits．He was elected in 1－5t one oi the foreign associates of the Paris Academy of Sciences．In 1758 he became director of the public salt－works at Bex and Aigle，and in the course of his superintendence introduced many improvements in the manufacture of salt．His later published works include：＇Elementa Phy－ siologire Corporis Humani＇（ $1757-66$ ）；＇Bibli－ otheca Botanica＇（17－1）；＇Bibliotheca Anatom－ ica）（ 501 ）；＇Bibliotheca Chirurgica）（15J4）； （Bibliotheca Medicina Practicæ）（ $17,6-68$ ）．

Haller is considered one of the greatest Ger－ man poets of the 1 8th century．His philo－ sophical and descriptive poems display depth of thought and richness of imagination．His （Elegiac Poems）（Die elegischen Gedichte）are still irequently republished in Germany．He wrote in prose three philosophico－political romances－＇T＇song．＇＇Alired the Great，＇and Fabius and Cato＇－designed to exhibit the re－ spective advantages of different forms of gov－ ernment，and corresponded in German，Latin． Italian．English．and French with all parts of Europe．

Hallett，Benjamin Franklin，American statesman：b．Barnstable，Mass．． 2 Dec．1797： d．Boston 30 Sept．I\＆62．Graduated from Brown University in 1816，he studied law，was admitted to the bar，and was connected with the Providence（ R，I．）press，but later went to Boston，and there became editor oi the Boston －Idiocate，the official mouthpiece of the Anti－ Nasonic party：From 18_{27} to I_{31} he edited the Boston Dully Adecoriser，which he made ex－ tremely unpopular through his vigorous enun－ ciation of his views on masonry，temperance． and emancipation．He aiterward became a Democrat and an influential factor in his party． For years he was chairman of its national com－ mittee，and it was he who drafted the Cincin－ nati platiorm of 1856．President Pierce，whose nomination he had helped to secure，appointed him Lnited States district attorney in 1853.

Hallettsville．Texas，city，county－scat of Lavaca County：on the San Antonio \＆A．P． railroad ；about 100 miles southwest of Houston． It is in an agricultural and stock－raising region， and special attention is given to cotton and cattle．It has a cotton－seed oil mill and a num－ ber fo cotton－gins．Large shipments are made each year of live－stock，cotton．and cotton－seed oil．Pop．（1900）1，457．

Halley，hāľ．Edmund．English nrathema－ tician and astromomer：b．Haggerston，near London，29 Oct．1050：d．Greenwich，Kent，1742． Betore he was 19 he published＇A D Direct and Geometrical Method of Finding the Aphelia and

HALLIWELL-PHILLIPPS - HALLOWE'EN

Eccentricity of Planets.' which supplied a defect in the Keplerian theory of planetary motion. By some observations on a spot which appeared on the sun's disk in July and August 1676, he established the certainty of the motion of the sun round its own axis. August 21, the same year, he fixed the longitude of the Cape of Good Hope by his observation of the occultation of Mars by the moon. In 1679 he published 'Catalogus Stellarum Australium, sive Supplementum Catalogi Tychonici,' etc., and in 1683 his 'Theory of the Variation of the Magnetical Compass,' in which he endeavors to account for that phenomenon by the supposition of the whole globe of the earth being one great magnet, having four circulating magnetical poles or points of attraction. For the purpose of making further observations relative to the rariation of the compass he sct sail on a voyage in 1699, and having traversed both hemispheres arrived in England in September too. The spot at St. Helena where he erected a tent ior making astronomical observations is still called Halley's Mount. As the result of his researches he published a general chart. showing at one view the variation of the compass in all those seas with which English navigators were acquainted. He was next employed to observe the course of the tides in the English Channel, with the longitudes and latitudes of the principal headlands, in consequence of which he published a large map of the channel. In 1703 he was elected Savilian professor of geometry at Oxford, and in $1 ; 20$ he received the appointment oi astron-omer-royal at Greenwich. where he afterward resided. devoring his time to completing the theory of the motion of the moon. In $1 / 21$ he began his observations, and for the space of 18 years scarcely ever missed taking a meridian view of the moon, when the weather was not unfavorable. In $1 / 52$ appeared his 'Astronomical Tables.' and he was the author of a great number of papers in the 'Philosophical Transactions.' For the comet called by his name, see Comet.

Halliwell-Phillipps, Jhăl'i-wël-fillîps, James Orchard, English antiquary and Shakespearian scholar: b. Chelsea, London, 21 June 1820; d. Hollingsbury Copse, near Brighton, 3 Jan. 1889. He was educated at Cambridge. In 1839 he was elected Fellow of the Royal and Antiquarian Societies. Gradually he came to concentrate his studies on Shakespeare alone, and more particularly on the iacts of the poet's life. discrediting the internal evidence of the plays and sonnets, and devoting his attention to a minute and patient study of local tradition and the records of 32 towns besides Stratiord. The successive editions of his 'Outlines of the Life of Shakespeare' (1848; 8th ed. 1889) recorded the growing results of his discoveries. Apart from Shakespeare. his 'Nursery Rhymes and Nursery Tales of England) (1845), and 'Dictionary of Archaic and Provincial W'ords' (1847; 6th ed. 1868) will keep his name from being forgotten. His magnificent folio edition of the 'Works of Shakespeare,' probably the richest storehouse extant of Shakespearian criticism ($1853-65$), was published at a price prohibitive to most students. To the Smithsonian Institute he gave (1852) a collection oi accounts, inventories, and bills illustrative
of the history of prices current in the years 1650-1750.

Hal'lock, Charles, American journalist and author: b. New lork 13 March 1834. He was graduated from Amherst in 1854, was editor of the New Haven Register in 1855-6, of the New lork Journal of Commerce in 1850-61, of the St. John (土. B.) Telegraph and Cowrier in 1863-5. In $18 ; 3$ he founded 'Forest and Stream.') and in I8o6-7 was editor of the 'Northwestern Field and Stream.' In_{n} 1874 he founded the International Society for the Protection of Game. He did field-work and collecting for the Smithsonian Institurion, and published numerous works, such as: 'The Fishing Tourist' (1873): 'Camp Liie in Florida' (18-6): 'Vacation Rambles in Nichigan' (I8/7); "Dog Fanciers' Directory" (1886): 'The Salmon Fisher' (I890). He w'as a son of Gerard Hallock (q...).

Hallock, Gerard, American journalist: b. Pittsfield. Mass., is Narch 1800 ; d. New Haven, Conn., \& Jan. I866. He was graduated from Williams College in 1819. in 1824 founded the Boston Telegraph (united with the Recorder in 1825), in 1827 purchased a part interest in the New York 'Observer,' and in 1828 became associated with David Hale on the Journal of Commerce. A leader in journalistic enterprise, he started (1833) a pony-express between Philadelphia and New Lork, and operated the Evening Edition, a schooner which met incoming ships at Sandy Hook, and brought foreign news. A pro-slavery man, he was a founder of the Southern Aid Society (1854), intended to succeed the American Home Jissionary Society when the latter refused support to slave-holding congregations. In 1861 the Jowrnal of Commerce was forbidden the use of the Tinited States mails, and Hallock thereupon sold his interest, and never afterward wrote for the press. He was a founder of the Associated Press.

Hallock, Joseph Newton, American Presbeterian clergyman and religious journalist: b. Franklinville, N. Y.. 183ł. He was graduated from lale in 1857 and irom the Yale Theological Seminary in 1860, and after holding pastorates oi several Presbyterian churches became editor and proprietor of 'The Cliristian at Work.' Among other works he has published 'The Christian Life' (I890): 'Family Worship' (I892): 'What is Heresy?' (1894); (Mlormonism' (1896); (Liie of D. L. Moody' (q.r.) (1900).

Hallowe'en, hăl-ō-ēn'. or Hallow-Even, the evening of 31 October, so called as being the eve or vigil of All Hallows or festival of All Saints, which ialls on 1 November. It is associated in the popular imagination with the prevalence of supernatural influences, and is clearly a relic of pagan times. In the north of England, hallowe'en is known as Nutcrack Night. In Scotland the ceremonies of the eve were formerly regarded in a highly superstitious light, and Burns' (Hallowe'en' gives a humorous and richly imaginative presentment of the usual ceremonies as practised in Scottish rural districts in his day. The principal object of curiosity in consulting the future was to discover who should be the partner in life. Popular belief ascribed to children born on halloween the faculty of perceiving and holding converse with supernatural beings.

Hallowell, Richard Price, American author and wool merchant: b. Philadelphia 16 Dec. 1835 : d. Medford, Mass.. 5 Jan. 1904 He was prominent in the abolition movement, was appointed by Gov. Andrew of Massachusetts special agent to recruit negro regiments, and subsequently was vice-president of the New England TVoman Suffrage Association. He published 'The Quaker Invasion oi Massachusetts' (1883), etc.

Hallowell, Me., city in Kennebec County. on the Kennebec River, and on the Maine Central railroad: two niles south of Augusta and four miles north of Gardiner. The first permanent settlement was made in $1 / 51$. It was incorporated as a township in $1 \% \mathrm{t}$, and chartered as a city 29 Aug. 1850. At the time of its becoming a chartered city it included within its limits Chelsea, Manchester. and Farmingdale. The city is governed by a mayor and a council oi seven members elected annually. It has two banks with a combined capital of $\$ 150.000$. The industries of the city include granite works. shoe manufactories. glue works. cotton goods. machinery, etc. The Hubbard Free Library and the Maine Industrial School are public institutions. Pop. (1904) 3.000 .

Hall statt Epoch, a name taken from the necropolis of Hallstati. U'pper Austria, not iar from Salzburg, and applied to that culture in Europe - parts oi Germany, France. Italy, and in Switzerland, Bohermia, etc. - distinguished as the last bronze and first iron stage, dating back at least as far as 1000 b.c. According to some ethnologists in the eastern highlands of the Alps this culture was of a higher evolution than that of a partially Oriental cast in the west during the Neolithic epoch.

Hällström, Ivar, č'vār hèl'strèm. Swedish composer: b. Stochholm 5 June 1826; d. there 11 April igor. He studied law at Lpsala, then turned his attention to music, in $1861-72$ was director of the institute founded by Lindblad, and from $18 \$ 1$ instructor to the Royal Opera. His works include the operas 'Den Bergagna' ("The Mountain King" 1874): and 'Neaga' (libretto by Carmerl Sylva, 1885): cantatas. numerous songs, and an 'Idyle' for orclicetra, chorus, and solo voices, for which he received (1860) a prize from the Stockholm Mlusica! Union.

Hallucina'tions, are morbid conditions of mind in which the patient is conscious of a perception without any impres:ion having been made on the externa! organs of sensc. 1lallucimations are to be distinguished from delusions, for in these there are real sensations, though they are erroneously interpreted. All the senses are not equally subject to hallucinations: the most frequent are those of hearing: next, acenrding to many, come those of sight, smell. touch, and taste: and hallucinations of several senses may exist simultanenusly in the same individual. They may also be complicated with certain delusions. Often even the hallucination of one sense is confirmed by the delusion of another, so that it is neither posible nor necessary always to distinguish hallucinations from delusime. The simplest form of hallucinations of hearing is the tingling of the ears: but the striking of clocks, the sounds of musical instruments and of the human voice are often heard,
and in these instances, as in those of the perturbations of the other senses, there must be a diseased sensorium, though there should be no structural derangement of the nerves. Hallucinations are not confined to those whose mental faculties have been alienated, but occasionally assail and torment even the sane. The second Earl Grey was haunted by a gory head. but he could dismiss it at will. Swedenborg had a similar faculty: and Bernadotte, king of Sweden. was besieged in his rides by a woman in a red cloak, being perfectly conscious of the hallucination under which he labored. Lord Brougham proposed that the existence of hallucinations should be established as an authoritative test for the existence of insanity: but, as will have been seen, this would be no teat at all. The proportion of the hallucinations of the various senses has been by some tabulated thus: - hearing, 49 : vision, 48 : taste. 8: touch. 3 : smell, I. All are more irequent in mania than in monomania. and in mania errors of vision are more numerous than those of hearing. See Apparitions: Dreams: Ghosts: Insanity.

Hallux Valgus, a deformity of the great toe consisting of a turning of the toe toward its neighbor, with a marked enlargement of the head of the bone. The synovial sac on the inner side of the toe is often chronically inflamed from constant pressure, forming a bunion. Adranced cases may require the excision of the bony outgrowths, but early cases may be relieved by a properly adjusted shoe.

Halmahera, häl-mā-hā'rä. See Gılolo.

Halo, the name given to colored circles sometimes seen around the sun or moon, and to other connected luminous appearances. Sometimes as many as three circles are seen round the sun. A white band across the sun, parallel to the horizon, is also sometimes seen: and sometimes a second white band, perpendiculas to the first. Thesc bands form a cross. and stretch out so as to cut the circles of the halo. It is on these bands that parhelia or mock suns are iormed. The explanation of halos is complex and difficult. Marriotte attributed the colored rings to reiraction of light through small erystals of ice in the air, and calculation appcars to confirm his hypothesis. The third circle is probably due to refraction of light that has undergone internal reflection in the crystals in a way similar to that which occurs in the formation of the rainbow. On the other hand. the white bands crossing the sun must be due to refection of light from the surfaces of the crystals. See Liciut: Pariellon; Sux.

Halogen, hăl'ō-jĕn, in chemistry, an clement. or inorganic radical. which unites directly with a metal to produce a saline sulstance. such as common salt. The term is usually confined to the elements fuorin, chlorin, bromin, and iodin, and the compound known as cyanogen.

Halophytes, hǎl'ō-fits, a group of plants ennsidered with reference to their habitat, and including those which inhabit salt marshes, and by combustion yield barilla, as Sulsola. Salicornita, and cheropodium. For iurther examples sec Beach-plints and Deefrt Plints

Hal'pine, or Halpin, Charles Graham, American soldier and author: D. Oldeastle. County Mcath. Ireland. 20 Now, 1829: d. New York

3 Aug. 1868. After study at Trinity College. Dublin, he came to Boston, Mass., in I85I, was there assistant editor of the Post, and with B. P. Shillaber began the 'Carpet Bag,' an unsuccessful humorous periodical. Later Washington correspondent of the New York Times, he then went to New York, where he was connected with the Herald, and wrote much ephemeral matter for magazines. Upon the outloreak of the Civil War he enlisted in the Goth New York volunteer infantry, and was afterward on the staff of Hunter as assistant adjutant-general, of Gen. Halleck with the rank of colonel. In 1864 the resigned from the service and was brevetted brigadier-gencral of volunteers. Ile was hest known for his burlesque verses, written in the character of an Irish private, "Miles O'Renly," over which pseudonym they appeared. 'Life and Adventures, Songs, Services, and Speeches' was published in 1864, and his complete 'Poctical Works' in 1869.

Hals, häls, Frans, Dutch painter: b. Anwerp about 1584 ; d. Haarlen 7 Sept. 1600. When young he went to Haarlem, where he studied painting under Karel van Mander, and he was one of the civic guard, director of an art school, and chief of the painters' guild. His first dated work is a portrait helonging to the year 1013, his next, the 'Banquet of the Officers of the Haarlem Corps of Arquebusiers of St. George' (I610), one of the earliest pictures belonging to the Dutch school of genre painting, of which Hals is sometimes regarded as the founder. He executed 'The Jolly Trio,' 'Herring T'ender,' and 'Fool Playing a Lute,' and seems to have found in genre painting a scope and a possibility of humor much to his taste. He executed also many single-figure picces, as 'THille Bobbe' (National Gallery, Berlin: replica in the Metropolitan Musemm), and numerons portraits, all of high value artistically: Hals is ranked among the foremost of portrait artists, being notably successful in illuminating the character of the face. Adrian van Ostade, Wouwerman, and Adrian Browwer were among his pupils. He is said to lave been improvident in his habits, and latterly received a pension from the municipality of Harlem. His brother Dirk, d. Haarlem May i656, and his son. Frans Hals, the Younger. b. about 16zo; d. about 1660, were also excellent painters.

Hal'sey, Francis Whiting, American journalist: b. Unadilla, N. Y̌., 15 Oct. 1851 . He was a member of the editorial staff of the New York Tribune 1875-80, and was attached to that of the New York Times 1880-1902, editing the Times 'Saturday Review' from 1896 . He has published 'Two Nonths Abroad' (1878) ; 'The Old New York Frontier' (1901); 'American Authors and their Homes'; 'Essays'; 'Our Literary Deluge' (1902).

HaI'stead, Murat, American journalist: b. Ross, Butler County. Ohio, 2 Sept. 1829. At 18 he hegan writing for newspapers, studied at Farmers ${ }^{\circ}$ College, near Cincinnati, and did local newspaper reporting on several Cincinnati papers. In 1853 he became manager of a department on the Cincinnati Commerciol. The following year he acquired a pecuniary interest in the paper, which began rapidly to increase in circulation and influence, so that in a few years it was considered one of the most in-
fluential newspapers in the West. The Commercial combining with the Gazette, its rival, the Cincimati Conmercial-Gazelte, became the recognized organ of the Ohio Republicans. In 1890 he removed to Brooklyn, N. Y., where he edited the Standard Cnion. Later he was a contribmitor to magazines and special correspondent, and in the latter capacity went to the Philippines during the Spanish-American War. He wrote: 'The Story of Cuba'; 'Life of Wialiam McKinley"; 'The Story of the Philippines': 'History of American Expansion': 'Life of Admiral Dewey"; 'The Boer and British War.'

Halsted, George Bruce, American mathe-

 matician: b. Newark, N. J., 25 Nov. 1853. He was graduated from Princeton in 1875 and since 188 t has been professor of mathematics in the University of Texas. He has published 'Mlensuration' (1881): 'Elements of Geometry' (1885): (Elementary Synthetic Geometry' (1892) ; 'Pure Projective Geometry' (1895).Ham, one of the three sons of Noalh, from whom the earth after the Deluge was peopled. He is first mentioned between the other two Shem, Ham, and Japheth; but afterward is expressly designated the younger son of Noah, that is, relatively to the other two. He had four sons - Cush, Nizraim, Phut, and Canaan. The three first traveled sonthward, and from them chiefly sprang the tribes that peopled the African continent, as Canaan became the father of the tribes that principally occupied the territory of Pluenicia and Palestine. Ham is also used as a desiguation of Egypt, probably on account of its population having sprung from a son of Ham, and the name Ammon, by which the chief god of the northern Africans was often called and worshipped. may very likely derive its origin from the same source.

Ham, the joint which unites the thigh and the leg of an animal, but more generally understood to mean the cured thigh of the hog. Ham-curing is now an important branch of business, especially in Great Britain and America, and the details of the process are generally the same cverywhere. The meat is first well rubbed with salt, and a few days after it is rubbed again with a mixture of salt, saltpetre, and sugar, though sometimes the saltpetre is omitted. After lying in the tub for eight or ten days it is ready for drying. Wet-salting requires three weeks, and dry-salting four. The smoking of hams is carried on in smoke-houses, the meat being hung as high as possible, and subjected to the smoke of a fire kindled on the ground-flat, and which ascends through holes in the flooring. The process of smoking is for the most part carried on in winter, the fire being kcpt in a smouldering state for five or six weeks. Wood is used in preference to coal in the process of smoking. See Porr.

Ham-beetle, or Paper-worm, a small clerid beetle (Necrobia ruffipes), sometimes a pest of considerable importance "because of the occurrence of its larve or "worms," the paper-like cocoons and bectles on hams in such numbers as to render them unmerchantable. Its injuries are generatly confined to the exterior and are due to carelessness in packing and to the cracking of the ham coverings. This is one of three cosmopolitan species of the same genus, all of which are carnivorous seavengers.

Ham-fly, a name of the cheese-tiy (q.v.). due to the occasional appearance of its maggots or "skippers" in the fatty exterior portions of preserved hams.

Hama, hä'mä, or Hamah, Syria, the Biblical Hamath, a very anctent city, on the El-Asi (Orontes), ino miles northeast oi Damascus. It is surrounded by gardens, and has narrow. crooked streets. with houses built of timber, and sun-dried bricks. There are manuiactures oi yarn and coarse woolens, and a general domestic and caravan trade. Hamath is irequently mentioned in Old Testament history as in conflict with the Assurians: first as early as 854 BC. Ater the Greco-Xacedonian conquest it became known as Epiphania. In 639 it was captured by the Moslems. Abulieda. the Arabian geographer. was prince oi Hama irom 1310-31. In 1812 Burchhardt here discovered the four Hittite stones, the inscriptions of which are still undeciphered. Pop. (est.) 45.000.

Hamadryad, hãm'ạ-drīād. (I) A baboon (q.w.). (2) The king-cobra (Naja bungarus), one of the Oriental cobras. found from Southern India to China and the Philippines, and close! ${ }^{*}$ allied in structure, markings, and habits to the cobra di capello. but much larger. reaching the length sometimes of 13 ieet. making it the longest of venomous serpents. It is also the most fierce in disposition, but iortunately is nowhere common, and feeds wholly on other snakes. Consult Fayrer. 'Thanatophidia of India' (18 - -4).

Hamadryads, in Greek myrhology, the eight daughters of Hamadryas. They received their names irom trees. and are the same as the Dryads (q.w.). They were conceived to inhabit each a particular iree. with which they were born, and with which they perished.

Hamame"lis. See Witch Hazel

Haman, häman, a minister of the Persian King Ahasuerus. Because Mordecal the Jew reiused to pay him homage, he resolved on the destruction of all the Jews in the Persian monarchy. By ialsehood and intrigue he succeeded in obraining a decree for this purpose; but Esther, the Jewish consort of thasuerus. interposed for their deliverance, and Haman was hanged on the very gibbet he had caused to be prepared for Mordecai. His history is contained in the book of Esther.

Hamath, hả'mảth. See H.ıms.
Ham'blin, Joseph Eldridge, American soldier: b. Varmonth. Mass. IEss: d. New lork 3 July is,o. Not long after the commencement of the Civil War. he became adiutant of the sth New York. later was transiersed to the Gisth, whose commander he snon became, and with whicls he participated in Sheridan's victorinus movements in the Shemandoh. For services at Cedar Creck he was brevetted brigaliergeneral, and was mustered nut in 18 sh with full rank of brigadier and hrevet of major-seneral. Subsequently he was active in the affairs of the Jew lork State Jational Guard

Hamblin. Thomas Sowerby, American actor: b. Pentomville, near London, England, I4 May ISno: d. New lork S Jan. 1853. He was carly a member oi the corp: of the Sadler's Wells and Drury Lanc theatres, was a tragedian at Bath. Brighton, and Dublin, came to the

United States in 182 . appeared at the Park Theatre. New lork, and acted in leading American cities. He was manager of several New lork theatres, and among his roles were those of Macbeth, Hamlet. Othello, Rolla. Pierre, Virginius. and Coriolanus. He was esteemed second only to Forrest and the elder Booth, and made the standard drama a feature of his management, under which the Bowery Theatre saw its historic days

Hamburg, hăm'bèrg (Ger. hām'boorg), Germany, a free city and state of northwestern Germany, the city occupying 30 square miles of the state"s total area of 158.18 square miles. The city is the greatest commercial port on the European continent, the chief oi the three Hanse towns, and the seat of the upper Hanseatic court. It is situated at the junction of the Alster and the Bille, on the right bank of the northern branch of the Elbe, about 93 miles irom the Corth Sea. With its connecting suburbs Altona and Ottensen it has a river frontage oi over five miles. The river is spanned by two fine bridges. and there are numerous bridges across the canals which intersect the east and lower part of the city in all directions, and across the Alster which Hows through the city and iorms two omamental pieces of water. the Aussen-Alster and the Binnen-Alster or AlsterBassin. The latter is surrounded by fine quays, the Alter Jungiernstieg and the Neuer Jungiernstieg, lined with handsome residences, hotels. and stores. and constituting the chief thoroughiare in the city. The harbor accommodation is extensive; the principal quays along the Elbe where the ocean steamships lie are the Kaiser-Quai and the Sandthor-Quai. The boulevards or Anlagen occupy the site of the ancient encircling walls. removed since 1815 . The modern portion of the city, rebuilt since the destructive fire of $18+2$ in a magnificent and expensive style, is in striking contrast to the older low-lying portion. with its back streets, bordered by warchouses, and the meaner class of dwelling houses. The most important public buildings are the Exchange, a noble edifice consisting chietiy of a magnificent hall surrounded by a fine colonnade and containing a large commercial library: the modern Rathaus in Renaissance style, and the Deutsches Schauspielhaus. Among ecclesiastical structures are the toth century Gothic church of St. Nicholas with a tower and spire 473 feet high: the ISth century Renaissance church of Saint Michael's. with a spire 426 icet high, the 15 th century cliurch oi St. Catherine's. the fith century church of St. Janmes, and a fine Jewish synagoguc. Besides the numernus private and public schonls the educational institutions include the Johanneum institution founded in 152 S , containing a college, muscums, and the ciry's extensive library: the Kunsthalle with a large art collection: and zoological and botanical gardens, etc. Smong the many charitable and benevolent inctitutions are well endowed hospitals. nephary, and insane asylums. and there is also an organized system of municipal foor relief. The sewerage system has heen modernized. and the genseral sanitary conditions improved, especially -ince the severe choleraic epidemic of 1802. The municipal waterworks, dating from 1531 , have been added 10 at various dates and a modern filtering plant installed since 1893 : municipal
bath and wash houses are maintained; food adulteration is keenly looked after; the gas and electric lighting plants are civic property; and a large revenue is obtaned from the electric street railroads. which are operated by private companjes, paying state subventions.

The importance of Hamburg is due to its great marine commerce, which has been facilitated by the engineering enterprises of the inlabitants in deepening the bed of the river, cutting canals, and since 1890 in the construction at Cuxhaven, at the mouth of the river, of enormous docks. Seven railroad lines enter the city, which is connected also by rivers and canals with nearly all parts of the German empire. In 1900, 12,912 vessels with a net tonnage of $8,148,218$ tons entered. and 14,030 with a net tonnage of 8.293 .252 cleared the port. The exports by sea in 1901 amounted approximately to 4.695 .469 tons, walued at $\$+54.886 .750$; the imports by sea in the same year were approximately 9. 701,346 tons, valued at $\$ 5+0,177,550$. Raw materials, foodstuffs, especially coffee, and manufactured articles are the chief imports, the last item constituting also the bulk of the exports. The city's manufacturing interests, though large, are less important. including ship-building, ironfounding, tobacco and cigar making, sugar refining, distilleries, breweries, and numerous other domestic industries. The banking. exchange, and marine assurance business of Hamburg has been on an extensive scale since the establishment of the Hamburg giro-bank in 1619, and is one of the most important in the world.

The city-state has a democratic constitution and is administered by an executive senate of is life-members, including a first and a second burgomaster elected biennially among the members, and by the legislative House of Burgesses composed of 160 members elected every six years, one half of whom retire every three years. The population of the city is second to that of Berlin in the German empire; in Igoo it was 705.738.

The city was founded by Charlemagne. who, between 808 and $8_{1 I}$, built a citadel and a church on the heights between the Elhe and the east bank of the Alster as a bulwark against the neighboring pagan Slavs. In 8_{31} it became an episcopal see. It was frequently devastated by Danes and Slavs, but in the 12 th century had become an important commercial city, and in 1241 and 1249 combined with Litbeck and Bremen in forming the Hanseatic League. It was declared an imperial city by Maximilian in 1510 , but was not formally acknowledged until 1618 . Diering the Thirty Years' War its population and prosperity increased owing to the immunity of its position, and in the following century extensive commercial relations with North America were developed. In 1810 it was incorporated in the French empire as the capital of the department of the Mouths of the Elbe. but was occupied by the Russians in 181_{13}. They were driven out by the French under Davoust, iwo months later. and the city underwent severe finamcial spoliation at the hands of the conqueror and extensive depopulation. In 1815 it became an independent state of the German federation, forming with Lübeck, Bremen, and Frankfort, the curia of the free cities. 1ts trade and importance have increased ever since. In 1871
it united with the German empire as a free city-state; but dicl not join the Zollverein or German Customs Union until 1888.

Hamburg Fowls. See Poultry.

Hamilcar, hă-mil'kạr. a name of common occurrence at Carthage, and borne by sereral of its most distinguished citizens, among whon the chief was 'Hamilcar Barca ("Irghening"): b. Carthage; d. Spain 228 b.C. He was the father of the celebrated Hannibal. While a young man he was appointed to the command of the Carthaginian forces in Sicily, in the ISth year of the first Punic war, 247 B.C. He established himseli with his whole army on Mount Hercte (now 3lonte Pellegrino), where he not only succeeded in maintaining his ground, but sent out squadrons to plunder the coasts of Sicily and Italy. In 244 he quitted his strong position, and. landing at the foot of Mount Eryx. converted the town of that name into a fortified camp for his army. For two years he defied all the efforts of the Romans to dislodge him; but the Carthaginian admiral, Hanno, having been totally defeated off the. Egate Islands. 243 B.C.. he reluctantly consented to withdraw from Sicily. His inability to perform the promises which, to keep them in obedience, he had made to his mercenary troops, brought about their revolt after returning from Sicily, and as they were joined by almost all the native Aificans. Carthage was brought to the brink of ruin. The incapacity of Hanno, who had been entrusted with the suppression of the revolt, led all parties to concur in the appointment of Hamilcar. He defeated the enemy with great slaughter. reduced their towns to subjection, and after several alternations of fortune. and the appoiniment of Hanno to a share in the command. the war was brought to a successfill close, 238 b.c. Hamilcar now projected the formation of a new empire in Spain, to be a source of strength to Carthage, and the point whence hostilities might be renewed against Rome. This policy was ably prosecuted after his death by Hasdrubal and Hannibal. Hamilcar penetrated into the heart of the country, reduced some cities and tribes, and acquired vast wealth. He passed nine years in Spain, and fell in a battle against the Vettones.

Hamilton, Alexander, American statesman and soldier: b. Charles Town in the island of Nevis, W. I., il Jan. 1757 : d. New York 12 July I80. His parentage is uncertain, but it is generally accepted that he was the son of James Hamilton, a Scotch merchant in Nevis. and Rachel Levine, the daughter of a French plysician. Hamilton's father was unfortunate in his husiness ventures, and having become a bankrupt it was necessary for Alexander, at the age of 12 years, to earn his own living. He secured a position as clerk in the counting-house of Nicholas Cruger of Saint Croix. His "genius for affairs" was soon apparent. and after two years we find him entrusted with the full management of the business. But ambition for something more than a commercial career had already taken hold of the young man's mind. and he began to write for the local press. A very strong and vivid description of a West Indian hurricane. which had devastated the islands, attracted general attention and arrused the lad's friends to provide the necessary funds
to erable him to come to America to complete his education. He arrived at Boston in i:-iz, and was put in a school at Elizabethtown. N. J., where be industriously prepared himself for college. and in roit he entered King"s Collese (ncw Columbia Universtyy), and made a brilliant record as a student. The iriction between England and the American colonies was constantly growing more serious, and aiter studyng the question and being convinced that the coionists were right. Hamilon began the adrocacy: of their cause in a soeech a: a public meeting. 6 July 1 Jit. The meeting aseembled to diseuss the calling of a general congress and was held in tire fields (now City Hall Park). He also pubiished two pamphlets. asserting the colonists* position in relation to the Crown and to Parliament, and justifying their appeal to arms. The pamphlets were ai first thought to be productions oi weil-known leaders, and when theis authorship became known it gave Hamilton a national reputation. Hamilton now tumed his attention to preparation for mintary service in the Revolution. He secured a conmission as captain of the firs: Continental artiliery company and entered the patriot service in March 10-5. His natural aptitude for organization and command soon made the comnany a model of discipline and efficiency. He participated in the battles of Long Island. White Plains. Trenton and Princeton, and won the commendation oi his superiors ior his skill and courage. On I Dlarch IF: Hamilton was appointed lieutenantcolonel and aide-de-camp on the stafi of Washington, whose entire confidence he secured, becoming the general's cunfidential serretary. He took an active part in his chiefts batiles. assisted in plammang campaigns and in desising means for the support of the army, and was entrusted with the important and delicate mission oi going to Albany to obrain eroops from Gen. Gates (who had previously been ordered to send troops to Washongton and had failed to do sol-a dury which Hamilion periormed with skill and suecess. It was while on this mission that he first met Elizabeth Schuyler, the dauthter of Gen. Philip Schuyler of New Iork. whom he atierwards married (14 Dec. $1-20$). Having received a reprimand from Washington for a supposed delay he iook offense and resigned ironz the stañ 16 Feb. r-si. He had no intention. however, of resigning irom the Continental Army, and beconng the head oi an infactry regintent, he took part in the siege oi lorktown, heading a storming party and capturing one of the strongest British redoubts. The war was now practically ended. and there being no iurther opportunty fins success in the army. Hamilton returned to cival liee. He was set but 23 years o d. but by his natural abilittes and capacity for leadership he had attained a iuremost place amma the zreat neen of his day.

The actisity of Hamilon's mind is seen in the fact that while still in active maltary ecrvice he iound time to study the sreat questions of E vernment and ninance. In a letter to James Diane he clearly set forth his view $=$ on the C netitution, that: "Congress should have enmplete sovereicnty in all that relaies to war: peace. trade, finance. and to the manasement of it reisn aftair:" A letter to Morris on the es.abli=hment if a national bank induced hims t ffer Hamilton :he place of receiver-general
of Continental tases, which he accepted and originated a new system of national taxation. The receiver" and he was relieved oi its duties by his election to the Continental Congress irom New Lork i Oct. r-zz. Congress proved a disappointment. Such were the deplorable conditions then prevailing, the looseness oi the Constitution and the financial chaos of the government. that Hamilon' utterly fanied. He resigned from Congress in $\mathrm{I}_{2} \mathrm{SB}_{3}$ and returned to the practice of law in New York. where his melodious voice, dignified deporment and unanswerable logic of reasoning, soon placed him in the highest rank of his proiession.

The condition oi the Siates at this time is graphicaily depicted by Senator Lodge in his "Life oi Hamiton": "Divided among themselves, with no army. no nasy, no cohesion. flounder:ag wifully and heiplessiy in a sea of unpaid dejos and broken promises, bankrupt in money and reputation alike." To secure some relief the Annapolis Convention (q.v.) was held II Sept. I-So, five States only being represented - New Yok. Jew Jersey. Pennsylvania. Delaware and Virginia. Hantilton was one of the delegates iron New lork. This convention adopted an address. drafted by Hamilion, reciting the intolerabie conditions and calling for a convention io meet the following llay in Philadelphia $:$ form a Federal Constitution. (See Cosistitutios. Framing of the.) Úpon his return to Jew lork he was elected to the State Legislature which convened in January 5 -8-, and began a fight to induce the State to send delegates to the Philadelphia convention. In this he succeeded. and three delegates were appointed, of which Hamilton was one: but the other two were Anti-Federalists. bitterly opposed ro Hamilons idea of a strong general government. When the convention met the vote of his own Siate was cast against him on every question: the Anti-Federalists withdrew irom the convention. leasing New lork withou a vote. Hamilion, however. presented his views oi a pian of government to the consentionan aristccratic republic. with a president and Eenators chosen ior life, and the Siate governors appointed by the Federal government. After the presentation oi this plan, which iound no support in the convention. Hamilon withdrew. only returning to engage in the final debates. and at the close he heartily embraced the work of the consention and signed the Constitution as actuaily adepted.

The Constrution was still to be ratined by the Siate:. New lork was opposed to its adopthon. There were numerous internal stries and jealousies, but with great power and determination. Hamilton combated and won over all opponert - is the legislature, and by his essays in the 'Federalist.' assisted by Madison and Jay, he succes-iuily fought the great battle for the Constituti m. winning a hostile majority to its suppart. Of these essays George Willian Curtis declared they 'gave birth to American constitutional law, which was thus placed above arbitrary construction and brought into the domain of legal iruih."

11 ahington was inaugurated President in 1pril 1-\&. In September 1-So Congress passed an act e-tahlishing a Treasury Deparment, and Washingten at oncs made Hamilion the frot

ALENANDER HAMILTON.

Secretary of the Treasury. His creative, constructive and practical mind was now confronted with the problem of giving to his country a workable system of national administration. With a master's hand he organized the Treasury Department: reduced the confused finances to order; provided for a funded system and a sound system of national taxation; induced Congress to assume the State debts: authorized methods for the establishing of a national bank and a mint, the raising and collection of internal revenue, the management of the public lands, and the purchase of West Point by the government. In 1 Iogs his Report on Industry and Commerce appeared, wherein he discussed with profound ability and clearness the economic problems of his time, and inaugurated, in a very moderate way, the protective tariff system. His methods to strengthen the national government were vigorously opposed by those antagonistic to centralization. chicf among whom was Thomas Jefferson (q.v.), and the controversies that then divided parties have been continued by the rival political parties to the present. Engrossed as he was with the home affairs of the government, Hamilton was nevertheless a deep student of foreign relations and advocated a position of strict neutrality on the part of the American government with regard to the difficulties of nations. He ably sustained Washington in his proclamation of strict neutrality between France and England, both in the cabinet and in the public press, and when M. Genêt, the ambassador of the French republic, tried to involve this country in a war with England, Hamilton was vigorous in his condemnation. It was at this time that Jefferson, then Secretary of State, took sides with editor Freneau of the Philadelphia 'National Gazette.' in his criticism of the administration and especially of the treasury department. Hamilton replied and the controversy became typical of the two great political parties - the Federalists and the Republicans. Jefferson's position in? the cabinet was most uncomfortable and he resigned I Jan. 1794. In I79\# the Whiskey Insurrection (q.x.) occurred in Pennsylvania in opposition to the excise laws passed by Congress. Hamiton advised a vigorous policy and when troops were sent by Washington against the insurgents, Hamilton accompanied them and the "rebellion" quickly faded away.

Desiring to give more attention to his priyate interest: Hamilton resigned from the Cabinet 31 Jan. 1/95. He declined the office of Chief Justice of the United States Supreme Court and returned to his law practice in New York city where he was at once acknowledged the leader of the bar. But he still continued to take an active interest in political affairs. In I794 Chief Justice John Jay (q.v.) was nominated by Washington as envoy extraordinary to negotiate a commercial treaty with Great Britain. With Lord Granville a treaty was drawn up known as Jay's Treaty (q.w.), the terms of which were so hard and unjust that when the treaty was published there was a violent outburst of indignation. Hamilton, however, in a series of cssays signed "Camillus," defended the treaty as the best obtainable and after a severe struggle in Congress it was ratified. Washington thoroughly appreciated the judgment and genius of Hamilton, often consulted him on im-
portant matters, and received much help from him in the preparation of his messages and speeches. The "Farewell Address would have been less perfect as a compposition." says Renwick, "lhad it not passed through the hands of Hamilton."

Hamilton had supported John Adams (q.v.) for the Presidency, but Adams was jealous of the power and influence of Hamilton over members of the Cabinet, and made war upon him. expelling his friends from office and assailng him personally: Hamilton blamed Adams for the loss of the elections in New York State, and denounced him bitterly. Adams was renominated in 1800 for the Presidency; but he was beaten by Jefferson, and the Federalist party never won another election. Owing to a defective clause in the Constitution (sce Jeffer-son-Burr Imbroglio) the election was thrown into the House of Representatives. Jefferson and Burr having received an equal number of votes Hamilton exerted his great influence with the Federalists and Jefferson was elected.

In $18 O_{4}$ the Federalists nominated Aaron Burr (q.v.) for Governor of the State of New York. The contest was a bitter one and again Hamilton was instrumental in Burr's defeat and the latter challenged him to a duel on the ground of an alleged insult. Under the idea that the continuance of his personal influence and the peculiar condition in which the affairs of the country were at the time demanded his acceptance of the challenge, he consented to meet Burr, and the duel was fought at Weehawken. N. J.. II July I804. Hamilton was wounded and died the following day, universally mourned by his countrymen.

American history presents no more striking character than Alexander Hamilton. He was not popular, nor did he strive after popularity, but after 100 years his name still holds a noble eminence. He lived for the public good. Eloquent and refined, able and brilliant, the embodiment of devotion, integrity and courage, he has left as deep a mark upon our political institutions as any other statesman our country has produced. Hamilton's works were published by H. C. Lodge in nine volumes ($1885-6$). Consult: Hamilton, 'History of the Republic of the United States as Traced in the Writings of Alexander Hamilton and His Contemporaries' (4th ed. 1879) ; Norse, 'Life of Alcxander Hamilton' (2 vols. 1876): Lodge, 'Alexander Hamilton' (1882). For his writings, etc., consult 'Bibliothica Hamiltonia' (I\&86).

George Edwis Rinfs.

Editorial Staff (Encyclopedia Americana.'

Hamilton, Andrew, American lawyer: b. Scotland about 1670; d. Philadelphia 4 Ang. 1741. His early career is unknown. He was for a time called Trent, and it is not certain at what period he took the name of Hamiton. About $169{ }^{-}$he appeared in Accomac County, Virginia, where he opened a classical school. In ijpl6 he went to Philadelphia, the next year became attorney-general of Pennsylvania. From $1 ; 21$ to 1724 he was in the provincial council, and in IF27 was clected from Bucks County to the provincial assembly, continuing to hold his seat, with a year's exception, until 1539, and in 1729 was speaker. He is best known for his gratuitous defense of Joln Peter Zenger, a New York printer, who was charged with libel in
publisting in a zewspaper owned by hum statements regarding the interference by the gorernor with the process oi the law-co irs. Hamil:ons dejerse was based on the irwh oi ine statements in the aliesed libe: He was successFul. was granted ihe ireediom of Jew lo: anc, having thereby secred a ficer discussion of public ofncers. was iermed by Mornis the "day-star of the Rerolution. He became judge oi the rice-admiraity court of Penssylvania in 1737

Hamilton, Anthony. Corxt. Engish corriier, and man o Tipperar. Ireland 1640 d St Germain-erLaye France, 0 Aug. $17=0$. He was descended frim a younger branch of the family of the dukes of Hamifton in Scoiland. His parents were Catholics and Royalists. and removed to France arier the death of Charles I., and young Hamilion became domiciia:ed there He horever. made fequent visits to England in the reign of Charles II. His siser was matried to Count Grammont (q.s.). On the ruin of the royal cause he accompanied Janes to France. where he passed the res: of his life Hamition is chienis known as an atotho: by his Memoise of Count Grammont.' a lively and spiried production. exhibiting a iree and, in the general outhe. a faithit delineaion of the roitp:uous cour of Charles II. It is an admirable chronicle of the Erivolous lise of the Freach and English couris of that time. His other werks are 'Poems' and 'Fairy Tales.' which. as well as the 'Mlemoirs.' are in French, and are really masterpieces ci grace and sprightiness.

Hamilton, Edward John, American educator: b. Beliast. Ireland. 29 Ior. 153. He was graduated ai Hanover College. Indiana. in 1853. and at Princeton Theological Seminary iᄀ ISER; w2三 proiessc: of mental philosphyy at Hanover Colege in iake-a and of philoscpby
 In iNg he became profeisy of philosonhy in the Stase Universtry of Washing: n. He is the auther ot what is known as 'Percepticnism la syicem oi metarhysical fhi'scphy and has published 'A SVe Anaiysis o: Fundamental Mo-als' (18,0); 'The Human innd (188_{3} : 'The Modalitt' (IS83): 'The Perceptionalist o: Menta! Science) (18op)

Hamilton, Frank Hastings, American sur-
 lork it Aug. 1ise6. He wa= graduated i: m the medical duratment of the Lnaversty di Pennsylvania in 1833: in I\&I went 1 the war as surgeon of the $31=t$ Sew Sork vlunteer. was made brimade surceon aites the batile of Bull Run, and surgeon oi Gen. Keves corp- in sitr A. yea- late: he became medical im-pector ni the L-nited S:Ltev army. He was cre, ithe f inders i Delerwe Harntal Nedical C cge in

 with Dr: Amew and Blis in the care ni Prew idert Garferd. He wote on the principle - ad practice ci torgery three work rega-ded as standa:d un he wibjects treated: "Trea" - n Fractures and Disocations' 118 s$)$) 'Practica! Treatise no Military Surgery (isfi): and 'The Princir?es and Practice of Surgery" 18721.

Hamilton, Gail Sce Dodge, Mary Abigail

Hamilton, Gavin, Scottish painter: b. Ianark. Scolend. I-30: d Rome. Italy. ITOT. Sent when sef young to Rome. be there deroted himseif curing the semainder of his lie to hisionic painting. One of his greatest woths was his Homer. consisting óa a series ó pictures representing scenes taken from the 'Tliad.' He publishec in IJJ. 'Echola Picture Italixe.' composed of a number of fine engrarings by Cunego, מhaking paft cí the collection oí Piranesi: be there traces the diferen: stries irom Leonardo da \inci to the Carraccis: all the ciramings were made by Hamilion, and this admirable collection now 0 orms one of the principal ireasures in ihe irsi librarses in Europe He spent the la:ier part oit his liee in conducting archoological excavarions in rarious localities near Rome.

Hamilon, Los George Francis, English politiciaz: b. Brighton IE45- He was a Conservative member e\% Parliament for Middlesex in ISOCSE. io: Eaing division in ISE5-1002. in 18-!-\$ Was under-secreary of stare for India, and in IE-E-So rice-presicent oi council. In $1085-6$. and again in isco-g2 he was frst lord of the admiralto and from 1895 until his resignation in 1003 was secretary of state for India. His naval zeccastruction pian of Iasg was the most exiensise of the kind ever adopted by Greai B-itain. As secretary ior India he displared great ability in cealing with the aumerous d:fïculties which arose during his administration.

Hamilton, James, American statesman: b. Charlesicn, S. C.. S Jay r-Só: d. at sea 15 Sov, 18:- He was educated fo: the bar. but eriezed the army and served with credit as a maj - in the Canadian campaign of tSt2 AI the ead ot the was he fesmed the pactice of law in Charieston. For several successive years Hamilica was chosen mayor. or. as it was inen terred. intendant of Charleston. To his rigilance and activity was chreny due the deiection of a formidable conspiracy in 1822 among the negro population, led by Denmark Vesey. a iree mulato- it Haiti In the same year he was elected to the Siate legislature and was also chosen a represeatative in Congress, of whoch he scon became a prominent and popular member. He became noted ior intense and eacrge:ic cppcsiticn to the protective sritem and favesed difect iaxation, regarding all indirect priceses ivt raising revenue as irauds upon the pergle, and as disparaging io the popular iniellect, as weit as popular morals. He quitted Congrea io become sovernor of South Carolina in 1530. at a period when the State had resolved upon nutlifying the tariff laws of the iederal gnvernmeni. On the settlement oi this questr in by Clay's c-mpromise. Hamilion retired from pub ic life ior a time. Later he became inecrested in the cause of Texas. to which he dew itd his personal services, and a large
 Iexas was an independen: republic, he was he: mins:er: England and France, where he pricurd the iec ention of her independence. C 3 the death oi Calhoun in 1852 , he was apF iro his successry in the U'nited States Sera:e, \& \because declined the cince.

Hamilton, John Church, American biographer and Fistorman, son of Alexander Hamilion (q.x.): b. Philadelphia 1792: d. IS\&2.

Resides cditing his father's works (1851), he wrote: ‘Memoirs and Life of Alexander Hamilton' ($1834-40$): 'History of the Republic' (4th ed. 1879): 'The Prairie Province' (18 ; 6), sketches of travel.

Harnilton, John Taylor, American Moravian clergyman: b. Antigua. Wi. 1., 30 April 1859. He was graduated from the Moravian College, Bethleliem. Pa... in I875, and from the Moravian Theological Seminary there in 18% He was pastor of the Second Miforavian Church in Philadelphia, $1881-6$, and has been a resident proiessor at the Moravian College and Seminary from the latter date. He has published ${ }^{\prime} H$ istory of the Moravian Church in the Enited States' (I 95 F) ; 'History of the Moravian Church during the ISth and igth Centuries' (1900) ; 'History of Moravian Missions' (1900).

Hamilton, John William, American Methodist bishop: b. Weston, Va.., 18 . March 1845 . He was graduated from Mount Cnion College (Ohio) in 1865 , and from Boston Lniversity in 1871, was ordained an elder of the 3 lethodist Church in 18;0. He was subsequently pastor of various congregations. including that of the People's Church. Boston, founded by him. In 1900 he was appointed bishop. He was corresponding secretary of the Freedmen's Aid and Southerm Education Society. (I \& 92 -1900), and has published 'Memorial of James Lee' (18-5): 'Lives of the Methodist Bishops' (1883) : ‘People's Church Pulpit' (1884) : and other works.

Hamilton, Kate Waterman, American novelist: b. Schenectady, N. Y... 12 Nov. 1 \&4r. Since 18 ;o she has lived in Bloomingzon. 111. She is the author of 'We Three': 'Vagabond and Victor' (t 879): 'Rachel's Share of the Road' (1882): 'Tangles and Corners' (1882); 'The King's Seal' (r88-): 'The Parson's Proxy" (t 896): "The Kinkaid T'enture) (1900) ; 'How Donald Kept Faith' (1900) : etc.

Hamilton, Patrick, Scottish reformer and martyr: b. probahly Glasgow about 1504; d. St. Andrews 29 Feb. 1528 . Adopting during a short residence on the Continent, the principles of the Reformation. when he settled at St. Andrews in 1523 he naturally cherished his new convictions, and in 1526 announced them with a decision that attracted the notice of Archbishop Beaton, who proceeded to have him formally summoned, and put on his trial. Hamilton had meanwhile fled to Germany; where an intimacy formed with Luther and Melanchthon deepened his conrictions, and after an absence of six months he returned to Scotland. He openly preached in the neighborhood of linlithgow, and Beaton. under pretense of a friendly conference, contrived to allure him to St. Andrews in January: 1528 . The early stages of the conference were marked by a conciliatory spirit, but he was led into damaging avowals of opinion. and the result of his trial, on the last day of February, was that he was conricted of divers heresies. and delivered over for punishment to the secular power. by which he was condemned the same day: In the afternoon he was hurried to the stake in front of the gate of St. Salvador's College, his martyrdom, in the 2tth year of his age. having done more to extend the principles of the Reformation in Scotland than his life could have dnne.

Hamilton, Schuyler, American soldier: b. New lork 25 July Ik22: d there 18 . March 1903. He was a son of J. C. 1 Itamilon (q.r.) and a grandson of Alexander Hamilton (q.v.). He was graduated from IV est Point in isft and served in the Mexican War and in the Civil Wat also. becoming a major-general of volunteers in 1862. He was subsequently hydrographic engineer to the department of docks. In $185+$ he pullished 'A History of the American Flag' and in I8\%/ 'Our National Flag, the Stars and Stripes, its History in a Century, delivered as an address before the New York Historical Society in June of that year.

Hamilton, Sir William, Scottish metaphysician: b. Glasgow 8 March 1588 ; d. Edinburgh 6 May 1856. Having studied with distinction at Glasgow, in 180; he entered Balliol College, Oxiord, where he gained first-class honors. and in 1813 he was admitted to the Scortish bar. His taste lay in a different direction, and while he diligently applied himself to almost every branch of literature. mental philosophy became his favorite study. In 1820 he became a candidate for the chair oi moral philosophy in Edinburgh, rendered vacant by the death of Thomas Brown, but was defeated by Professor John Wilson. He was appointed professor of universal history in the University of Edinburgh in 1821 , and in 1826 became a contributor to the 'Edinburgh Review:' and enriched it with a series of articles afterward published in collected form, with large additions, as 'Discussions on Philosophy and Literature, Education, and (niversity Reform.' Oi these the most celebrated was his 'Critique of Cousin's Cours de Pliilosophie.' in which was developed that philosopher's doctrine of the unconditioned. Many of these contributions were translated into the leading European languages. and attracted much autention irom contimental speculators in philosophy. In 1836 he became a candidate for an Edinburgh professorship. and succeeded in gaining tne chair - which oi all men living he was perhaps the best fitted to adorn-ot logic and metaphysics. His zeal and ability in discharging its duties were rewarded by the number of ardent students whom he gathered around him. The fame oi the Scottish school of metaphysicians, which had begun to wane, was gradually re-established: and his influence would have been felt to even a higher degree had he not been struck with paral-sis in I\&4. from which he never recovered so far as to undertake the full duties of his position. His mind. however, retained its vigor, and he endeavored to carry out literary designs he had previously formed. In 1846 he published an annotated edition of the works of Thomas Reid. and in 1857 the commencement of a similar edition of the works of Dugald Stewart. His lectures were published in $1850-61$, under the editorship of ITansel and Veitch. Ilis views are chiefly expounded in the 'Discussions' and in the 'Dissertations' appended to his edition of Reid. and are attacked in Mill's 'Examination.' Ser Veitch, 'Mernoir of Hamilton' (1860) : 'Hamilton: the $\ / a n$ and his Philosophy' (188_{3}): Seth. 'Scettish Philosophy' (I8oo).

Hamilton. SIR William Rowan, Irish mathematician: b. Duhlin 3 Aug. I8o5: d. there ? Sept. 1865. He knew Greek and Latin when only 6 , and before the had completed his 1 tit

HAMILTON

 कuages amoias which were Arabic, Persian. PIMumiatani. Sanskrit and Syriac IVhen 10 years old he began the study of mathematics, and at $1 /$ presented a paper to Brinkley. the Irish astronomer-royal, which exhibied such a profound kowledse of mathematics, that the latter declared the author of it to be already the frst mathematician of his age. In 182%, the chair of astronomy in Trinity College, as well as the post of astonomer-roval. becoming vacant. Hamilton obtained both appointments. ihough then only in his 23d year. His life henceiorth was exclusively devoied to abstruse studies. He was knighted in 1835 : in 1837 was elected president of the Royal lrish Academy, and was an honorary or corresponding member of the principal scientitic academies of Europe and America. In tses his 'Theory of Sistems of Ravs' was published. In this his celebrated prediction. on theoretical grounds. of the existence of conical refraction of a ray of light was given to the world. Reasoning on the properties of light, he came to the conclus:on that under certain circumstances a ray. instead of beiag reiracted in the ordinary way, should split up into a cone of rays: a phenomenon afterward proved experimentally by Iloyd to take place under proper conditions. In 1834 his 'General Method in Dynamics' was published. In this work and that on 'Sy-iems of Rays' the whole of any dynamical problem is made to depend on a single finction and its difierential coefticients Anotler imporiant treatise oi his is Algebra looked on as the Science of Pure Time.' He published also - Memoirs on Discontinuous Fumctions or Eqia:ans of the Firth Degree. etc.' But the foundation on which his iame mosi securely rests is the discovery or invention oi the calculus of quaternions. an instrume:tt of extranrdinary power in the solution of intricate prohiems in mathematics and plysics. IIis "Lectures on Q-aternions' appeared in 1853 and in 1806 a Fothumaus wotk on the same subject entitled Flements oi Quaternions. See Life of Sir
 wi:h an Addend:un (ISO2)

Hamilton. Bermuda, a seaport town, the capital of the lslands on Greaz Bermuda, Long, is Hamitron Island. It has a fire landlocked harber. Founded in $1 \% 90$. Pon. (1001) 2.2 26 .

Hamilton. S. I.. a village oi Madison Co:nty: 20 miles southwes? of tica. on the Cew York. O. \& IV. R.R. It is the seat of Colgate ẗnversity (q.w). It is in a gond agricultural region, contains a himber yard and can:Hing factory, and has a stone quarry, from which the ctonc for the constr:ctinn ni most of the University las been taken. Hamilton was isas settled in 1-02. Was separated from the : nwaship of Paris in 1-05, and named in honor of tlexander Hamilion: the village was incorporated 12 April 1816 : in $1 \delta_{5}$ a fire deciroyed the businecs partion of the inwn. in which the village records were lnct Later in the same year, waterwnits and an electric lighting plant were espobliched, which are noned and operaied hy the inwn In ims a free lihrary was nenenct hy the Litheary Ascociation, and it is intonden in make it a public library cunorted by the illace corporation. (P0p. 1000) 1.62\%.

Hamilton, Nhin, citv, county-seat of Ruller Cno.n.: $\quad 7$ the Creat Sliami River, the Mi-
$2 m i \&$ Erie Canal, the Pittsburg C., C. \& Si Lo, and the Cincinati. H. \& D. R.R.'s: about 15 miles north of Cincinnati, and 32 mules southwest of Dayton. Gen. Arthur Saint Clair established here a fort, in $1 \% 91$, and called it Fort Hamilton. in homor of Alexander Hamilton. It was incorporated as a town in ISIo. The excellent water-power has been of great adrantage in the developement of the city, as manufacturing is its chief industry, although it is located in an agricultural section. The canal has also contributed to the water-porrer available inr manufacturing purposes. Its chief manvifactures are paper. flour, beer. woolen goods, agricuitural implements. machinery, tools, and iron. The trade is in the manufactured articles and in tobacco hay, grain, and vegetables. The gcvermmert is vested in a mavor. who holds oftice three years, and a board of control composed of tive members, each one of whom is the head of a deparment of the ciry"s government. They are elected for five years. The city owns and operates the electric light plans, the wate:works, and the gas plant. Pop. (1900) 23.914

Hamilton, Ont.. Canada, city and capital of Wentworth County. situated on the shores of Bualington Bay at the western extremity of Lake Ontario, 40 miles from Toronto, 42 miles from Niagara Falls, and so miles northwest of Buifalo. It was laid out and settled in 1Si3 by G. Hamilion, and is buili on a platean of slighty elevated ground extending around the iromt of hilly range from Niagara Falls. Hamilton is connected with a large system of Canadian and American Railways. - The Canadian Pacific, Grand Trunk. Toronto. Hamilton \& Butialo, the Jichigan Central. the Jew lork Central. and the Lehigh Valley and Viabash Railways. Hamilion's geographical position as the head of Lake Ontario affords the best shipping iacilities to the Northwest Provinces and European markets by water. while her railway facilities are not excelled by any city in the Dominion. She has also become a ce:ntre of a complete eleciric railway system. Theee are 10 miles of street railway, 110 miles of streets. to miles of sewers. and 465 street electric lights. Ilamilton is the chief manufacturing city in Canada and is in the centre of a fine fruitgrowing disirict. It manafectures very largely, scme of the chief industries being asricultural implements, air brakes, and electrical supplies, helting, boots and shoes, carriages. cigars, $10-$ hacco, clothing, drugs, elevators, emery wheels. encine packing, fertilizers, files, frewarks, furnaces, gasoline engines, harness, gl:e, mats. paints, pottery, soaps. spices. silverware. nails. wine, vinegar, mattresses, wringers, washing machines. and musical instrmments. It has 2 cathedrals, 62 Protestant churches, 7 Roman Catholic churches. 15 banks. is public schools, - separate schools, 2 art schools. 2 convents. a public library: 26 charitable institutions. \& hosnitals. 2 incline railways, 4 theatres. a large insane asylum. 7 parks, a wireless telegranh station, 200 groceries, 5 bands. 2 scwace dispocal works, 3 reservinir. capacity (main) $11.000,000$ gallons: so social and athJesic clubs. about zoo national and secret societies, 100 hotels and 3 daily papers. Pop. $(1004) 60.000$.

1. Castell Hoprins.

Edifnr 'The Canadian Annual Reciets' of Public Aftise'

1. The Gore, King Street
2. View of Hamilton from Mountain

Hamilton College, an institution located at Clinton, Oncida County, N. Y: : founded by Samuel Kirkland, a Congregational missionary: in 1793. as an academy for both white and Indian children. The school was not opened until 1797, although Gen. Frederick Willian Steuhen laid the cornerstone in 1794. Lack of funds prevented the completion sooner, and to the mutiring efforts of its founder was due, in a great measure, the success of the undertaking. It was first called Hamilton Oneida Academy, so named in honor of one of its trustees, who was also a benefactor. In ISt2 it was chartered be the University of the State of New York as llamilton College. The school has grown steadily in facilitics, keeping well ahreast of the times. Two courses are offered: the LatinScientific and the Classical. It has fine scientific collections, an astronomical observatory, and well-equipped laboratories. The college has at its disposal I fellowship, 55 scholarships, 4 prize scholarships (yielding $\$ 200$ each), and a number of valuable prizes. The campus, nearly 100 acres, has many notable improvements, gifts from graduates. In 1906-7 there were connected with the school 20 professors and instructors. and 181 students. The library contained about 47.000 volumes.

Oren Root.

Late Registrar.

Hamilton Inlet, Labrador, the estuary of the Hamilton or Grand River. It is 150 miles long and has a maximum width of 30 miles. On its north shore is Rigolet, a IIudson's Bay Company trading-post.

Hamilton, Mount. See Lick Obsertatory.

Hamilton Series, a series of rocks, including the Hanilton and Marcellus stages and constituting the Middle Devonian. The name is from the town of Hamilton, 29 miles south of Utica, N. Y., where the series is typically developed. It consists there of shales and sandstones with a few beds of limestones, the most prominent being the topmost member of the series. The Hamilton like the other Devonian formations, was laid down along the Atlantic shores of what was then the American continent and in a great interior sea, sedimentation being heavicst in a northeast gulf of this sea. The sea extended from eastern New York to western Iowa. In the west the series is largely calcareous. The serics is about 1.500 feet thick in eastern New York and reaches a maximum of 2.000 to 5.000 in Alonroe County. Pa. It rapidly thins westward, and the south end of Lake Huron is only 20 to so feet thick. At the falls of the Ohio alove Louistille. the scries is represented by 20 feet of hydraulic limestone. The rocks forming the high cliffs along the Delaware River south of Port Jervis, Pa.., are of Hamilton Age. Outside of the interior basin rocks of Hamilton Age have been determined in the Gaspe region of Canada, where they reach a thickness of 7,040 feet. In the Eureka district, Nevada, is a great but undetermined thickness of Ilamilton limestone and in the Mackenzic River valley in Northwest Territory is a deposit of fully 500 feet of fossiliferons limestone, partly at least of Hamilton Age. See Devonian Period: Devonias System and Equisete.

Hamilton Stage, the upper division of the Hamilton series of rocks. consists chiefly of shaly sandstone and fine slales with a few thin
seams of limestone. In Ulster, Albans; and Green countien, $\therefore .1$. , the thick-bedded shales are known as Nortly River flagstone, and are quarried on the Hudson River near Kingston, Saugertics, and Coxsackie. Some of the thicker layers of these flagstones are known as blucstone.

Hamites, hăm’its (descendants of llam), the name given to several races in North Africa, who are regarded as of kindred origin and speak allied tongues. They include the ancicnt Egyptians and their modern descendants, the Copts. the Berbers. Tuaregs, Kalyles, the Gallas, Falashas. Somali, Dankali, ete.

Hamlet, the hero of Shakespeare's most famous tragedy; a personage who appears in history, yet is half mythological, but has been transiormed by the genius of the English poct into one of the most dominating figures of literature. It is allowed that Shakespoare's Hamlet was suggested by the Hamleth, or Amleth, of Saxo Grammaticus. The latter's 'History of Denmark' had been published in Paris (1514). Francois de Belleforest included the tale of Hamlet in his 'Tragic Ifistories' (1570). an English translation of which appeared in 1608. Shakespeare's drama was written earlier than this last date and must have derived its plot either from de Belleforest's work, or a translation executed before the end of the roth century, unless the poet, who, we know, was a great reader of histories, took the incident direct from Saxo Grammaticus. According to the Danish historian Hamletl was Prince of Jutland; his father, the King of Jutland, had been murdered by his own brother Fengo, who took the throne and queen of the dead man. Hamleth feigned madness to save his own life. He stabbed one of Fengo's colurtiers sent to spy upon him, and had for this purpose conccaled himself under a truss of straw. He reproached his mother with her shamcful second marriage to such effect that she promised to help him in avenging his father br putting Fengo to death: a promise which she kept.

Hamlet Case, the dcsignation of the first recorded action in 1850 under the Fugitive Slave Law (q.v.) of that year. It is named after llamlet, a free negro with a family. who was surrendered after a cursory cvamination. as a fugitive slave of Mary Pitown of Baltimore. He had been arrested by a deputy U'nited States marshal in New lork, and the whole circumstances of the case so aronsed public opinion that Hamlet was finally redeemsed.

Ham'ley, Sir Edward Bruce. English general: b. Bodmin, Cornwall, 2% April 1824: d. London 12 Aug. 1893. Entering the army in 1843, he served throngh the Crimean war, was professor of military history at Sandhurst 1858-64. and commandant there 1870-75: and division commander in the Egyptian wat of 1882. 11 is 'Operations of "Var' (1866) is a recognized text-book for military examinations. Among his other pullicatimas are: 'The Story of the Campaign' (1855), a narrative of the Crimean War: 'Wellington's Career) (1860) : Voltaire) (IS:-): 'The Whar in the (rimea) (1800). He was also the author of a popular novel, '1ady Lee's Widowhood.' and the admirable sketch entitled 'Shakespeare's Funcral.'

Ham'lin, Alfred Dwight Foster, American architect: b. Constantinople, Turkey, s Sept. 1855. He is a son of Cyrus Hamlin (q.w.). He was graduated from Amherst in 1875 , studied architecture in the Massachusetts Institute of Technology in $18,6-5$ and at the Beaux Arts of Paris in 18,881 , and in 1883 becarne special assistant in Columbia University. In 1889 he became assistant professor of architecture at Columbia, and in 1 Sg1 adjunct professor. His published works include: 'A History of Architecture' (1896); and a 'Handbook of the History of Ornament.'

Hamlin, Augustus Choate, American surgeon: b. Columbia, Maine, 28 Aug. 1829 : d. Bangor, Me., 19 Nov. 1905. He was graduated from Bowdoin in 1851, irom the Harvard Medical School in 1855 . was appointed assistant surgeon to the 2d Jaine iniantry in I861, and from 1863 until mustered out in 1865 . lieutenant-colonel and medical inspector. United States army. Subsequent to the Wat he practised in Bangor, of which he was twice mayor. and in 1882-6 was surgeon-general oi Maine. Among his works are: 'Mlartyria' (1866): 'The Tourmaline) (1873): 'Leisure Hours among the Gems) (1884); and treatises on 'Transfusion' (IS68): 'Tetanus') (1868): and 'The Transmission of Disease' (1870)

Hamlin, Cyrus, American missionary: b. Waterford, Maine, 5 Jan. 1811 ; d. 8 Aug. 1900. He was graduated from Bowdoin College in 1834 and from Bangor Theological Seminary in 1837 ; and was missionary of the American Board of Missions in Turkey 1837 -59. From 1860 to 18;6 he was president of Robert College, established after long controversy with the Turkish government. In this position he did much in molding the character of modern Bulgarian leaders, and producing autonony for Bulgaria. Returning to the L"nited States in 187% he became a professor in the Theological Seminary in Bangor; and was president of Middlebury College, Vermont. $1880-5$. Some of his works are in the Armenian language ; those in English include 'Among the Turks' (18%): and 'My Life and Times' (1893).

Hamlin, HannibaI, American statesman: b. Paris Hill, Oxford County, Maine, 27 Aug. 1809; d. Bangor Maine, 4 July 1891. Though prepared for college, he did not enter, but became the editor of 'The Jeffersonian,' a weekly of Paris. Maine ; studied law, was almitted to the bar in 1833 . and began practice at Hampden. Maine. He was active in Democratic politics. was elected to the lower branch of the State legislature in 1835 . served by re-election until 1840, and was speaker in 1837, 1830, and 1840 . Nominated for Congress in 18fo, he was defeated by the Whig candidate, but in ify was elected, and in 1844 re-elected. Chosen to the Senate in 1848 to fill a vacancy, he was again elected in 185t, but in 1856 resigned his seat to accept the governorship of Maine to which he had been clected as a Repullican. In less than a month, however, he re-entered the Senate for a full term. In $18 \mathrm{str}^{2}$ he was elected vice-president on the ticket with Lineoln, and in 1861-5 was president of the Senate. He was thereafter sticcessively collector of the port of Boston (1865-6), United States senator (18 (n) - 81), and minister to Spain (1881-3). Hamlin's separation from his party
was due to his strong anti-slavery convictions. During the absence from the House of David Wilmot. lee introduced the bill now known as the "Wilmot proviso." and obtained its passage in the House by 115 to 106. As rice-president he was a highly valued counsellor of Lincoln. Consult : C. E. Hamlin, 'Life and Times of Hannibal Hamlin' (1899)

Ham'line, Leonidas Lent, American Methodist bishop: b. Burlington, Conn., 10 May 1797 ; d. Mount Pleasant, Iowa, 23 March 1865. He was educated for the ministry: but afterward studied law, was admitted to the bar at Lancaster, Ohio, was licensed to preach by the Methodist Church. and was a traveling minister in the Ohio conference. When in 1844 the Methodist Churcls divided on the slavery question, he was one of the members of the general conference. and drafted the plan for the separation of the northern and southern branches. He was a bishop from $18+4$ to 185^{2}. when he was retired at his own request. His 'Works' were edited by F. G. Hibbard (1869). Hamline University of Minnesota (q.v.) was named in his honor.

Hamline University, a coeducational institution at Hamline, Minn., between Mimneapolis and Saint Paul. The school was established under the auspices of the Methodist Episcopal Church, at Redwig, Minn., but it was closed in 1869. In 1880 it was reopened at Hamline. In 1903 there were connected with the school 21 professors and instructors in the college of liberal arts and 50 in the medical department. In the preparatory school there were about 125 students. in the college of liberal arts about 210 , and in the medical department 161 students. There were 6.500 volumes in the library, and the endowment was $\$ 200,000$.

Hammer, a tool for driving nails or wedges and for beating malleable materials. (See Mallet.) There are hand hammers, steam hammers and electric hammers. The ordinary hammer of to-day is essentially an American product. Exactly when the hammer came into use is not told in history. but it is certain that some rude form of the instrument must have been used in the earliest days of handicraft. Oit the hammers made in America to-day there is no end. There is the little tack hammer whith weighs only a few ounces, and is indispensable in house, store or factory. Then there is the twenty and thirty ton hammer, driven by steam and used for making immence forgings. The numberless effects which are due to its renarkable force of impact have made the hammer a necessity in all trades. Immense manufactories. employing thousands of men, are grinding year in and year out making hammers, while ten times as many wholesale houses are busy putting the product on the market. The industry has advanced to such a stage that many general hardwate firms in the United States have thrown out the hammer. leaving it to the houses that deal in tools exclusively

11 ammers are made in a variety of shapes, the most in demand being the claw hammer. This and the shoennaker's lammer have retained their shapes for hundreds of years. One gold beating firm relies on them entirely. The sheets or leaves of gold are hammered to such exceeding thinness that two hundred and fifty thonsand are required to make up the thickness of an inch.

Another odd product of the hammer factory is the butcher's hammer, used for killing cattle. It is capable when properly wielded of carrying a very heavy blow. Then there are the stonecutter's hammer, the carpet layer's hammer, the wood carver's mallet and the plumber's odd implement. All of these have a good sale in the markets of the world, because they possess a "something" which users cannot find duplicated in the output of other countries.

The modern hammer is made to fit every requirement of a driving tool. One individual of the family, the magnet hammer, has a loadstone in its head, and every little tack jumps at it. The magnet lammer is very useful where canvas is being tacked on the walls. It saves the user the trouble of holding the tack and taking chances at smashing his fingers. The magnet hammer is much in use in tacking tin signs on trees. It is necessary to secure the advertisement at a height beyond the reach of the small boy and the magnet hammer answers the requirement. A clip on the side holds the card or sheet of tin while the tack is retained in position by the magnetized head. One firm blow drives the tack through the tin into the fence or tree trunk and secures the sign. A great variety of power hammers are used. These. for the most part, are masses of iron raised by steam or electricity, and then allowed to fall by their own gravity on the work. The "helve" or "shingling" hammer, used for compressing the mass of iron drawn from the puddling-furnace, and the "tilt" hammer, used in the manufacture of shear-steel, are important examples of such hammers. The first is a heavy bar of cast iron about 10 feet long, weighing 3 or 4 tons or more, to which is attached a head of wrought iron faced with steel, weighing nearly half a ton additional. It works on an axis at the end of the bar farthest from the head, and is raised by cams attached to a heary wheel set in motion by steam or water power. These cams strike or "lick ${ }^{\mathrm{D}}$ a projection extending beyond the head, and thus raise it about 18 or 20 inches at the rate of 70 to roo times per minute. The tilt hammer is similar, but much lighter, and is adapted for striking more than 300 blows per minute.

Hammer-head Sharks, sharks of the genus Zygana, in which the head is produced on either side into a broad lobe, so that the whole has somewhat the appearance of a double-headed hammer; the eyes on the outer ends of the lobes. Five species are known, two of which (Z. tiburo and Z. mallens) occur in the warm American seas, and the latter reaches a length of I_{5} feet or more.

Hammer-toe, a deformity most frequently affecting the second toe, in which the first bone is sharply extended or pulled back and the other two are flexed at a right angle with the first. It is usually due to the long continued pressure of short shoes, particularly in early life. Amputation of the toe may be necessary in severe cases, as the discomfort becomes unbearahle.

Hammer-Purgstall, Joseph, yō'zĕf häm'-měr-poorg'stäl, Freiherr von, Austrian Orientalist: b. Gratz, Styria, 9 June 1 $1 / 24$; d. Vienna 24 Nov. 1856. In 1799 he accompanied as interpreter to Constantinople the internuncio Freiherr von Herbert, who afterward entrusted
him with a mission to Egypt, where he collected various antiquitics and manuscripts for the 1 m perial Library. In 1810, on the occasion of the marriage of Napoleon with Maria Louisa of Austria, he accompanicd the latter to Paris, where he became intimate with Sylvestre de Sacy and other Orientalists. In 1817 he was appointed imperial councillor at the court of Austria, where he also held the post of interpreter. In 1835 he received the title of Freiherr. Among his numerous literary works may be mentioned: 'Constitution and Administration of the Ottoman Empire' ($1815-16$); 'Constantinople and the Bosporus' (1821); 'History of the Ottoman Empire' ($1835-6$) ; 'Hlistory of the Assassins'. 'History of the Golden Horde in the Kiptshak'; 'History of the Ilkhans'; 'History of Persian Eloquence'; 'History of Turkish Poctry' ($1836-8$): 'History of Arabic Literature) ($1850-7$) ; besides numerous translations from Oriental authors, and contributions to various periodicals.

Hammock, from the Spanish, hamaca, originally used in Peru to denote a couch or bed of canvas or grass-netting, suspended from the branches of a tree. A sailor's hammock, common on ship-board, is generally made of hempen cloth or cotton canvas, six feet long and about three feet in width. It is gathered together at each end by means of a cord and a clew, and fastened to hooks in the ceiling of the cabin or deck. On a ship-of-war harmmocks are hung about three feet apart and in the morning are taken down and stowed away in the hammock netting. The man-of-warsmen use the hammocks for their clothing and bedding during the day time. In former times when a warship entered battle the hammocks were taken on deck to form a barricade against musket balls. In recent times the hammock has become very popular for domestic use, especially in the United States, being hung on verandas and balconies and under the trees on the lawns of private cstates during the summer montlis. These hammocks for home use are made of various materials, but usually of cotton card or manila hemp. They are dyed in bright colors and are made very attractive and picturesque.

Ham'mond, Edward Payson, American evangelist: b. Ellington, Conn., I Sept. I831. He was graduated at Williams College in 1858; studied theology at Union Seminary, New York, and afterward at the Free Church Seminary, Scotland. He was ordained to the Presbyterian ministry in 1862, and was long prominent as an evangelist in Great Britain and the United States. He wrote: 'Childrcn and Jesus' ; 'Jesus the Way': 'Golden Gleanings) : 'Early Conversion' ; etc.

Hammond, Henry, English prelate: b. Chertsey, Surrcy, England, is Aug. 1605; d. Westwood, Worcestershire, 25 April 1660 . He was educated at Eton and Oxford, took orders in 1629, and in 1633 was rector of Penshurst in Kent, in 1643 archdeacon of Chichester. He was an adherent of Charles I., and took part in the unsuccessful rising of Tonbridge. He served as chaplain to the king 1645-7, and was in 1648 made sub-dean of Christ Church. In 1649 he removed to Westwood. Among his works are: 'A Practical Catechism' (1644); 'Paraphrase and Annotations upon the New'

Iostamen:" (1653). His 'Miscellaneous Theological \because "naks were published at Oxford. together witn the 'Life' by Fell (ISt'-50, 3 rols.).

Hammond, James Henry, American politician: b. New berry. S. C., 15 N゙ov. 18oj; d. Beach Island, S. C., 53 Nov. 1864 . He studied law. was admitted to the bar in IE28, and in 1830 became the editor of a political journal in Columbia, which maintained the doctrine of state rights and adrocated nullification in respect to the tariff act of Congress. He entered zealously into the nullification contest which then divided the State, and took an active part in organizing the military force which South Carolina raised in 18_{33} to resist the Federal government. He was elected to Congress. and took his seat in 1835 . but declined a re-election on account of ill health. In IS4i he was elected general of brigade. and in 1842 governor of South Carolina. While governor be published in 1844 a letter to the Free Church of Glasgow on slavery in the United States, and in 1845 two others in reply to an anti-slavery circular issued by Thomas Clarkson, the English abolitionist. These, in connection with other essays on the same subject. were published in IS53. in a rolume entitled 'The Pro-Slavery Argument.' In November 1857 he was elected to the United States Senate, remaining there till 1860.

Hammond, John Hays, American mining engineer: b. San Francisco, 3I March IS55. He was graduated from the Sheffield Scientific School of lale in 18-6, studied at the Royal School of Mines, Freiburg. Saxony, and becaine an expert on the U"nited States Geological Survey and mineral census. with the duty of examining gold mines in California. In 1882 he was appointed superintendent of silver mines in Sonora, Mexico, but later was again in Caliiornia as consulting engineer at mines in Grass Valley, and as consulting engineer to the Cinion Iron Works at San Francisco, and to the Southern and Central Pacific railway companies. In the capacity of consulting engineer he visited many portions of North and South America and Mexico. In 1893 he went to South Airica as consulting engineer to the mining companies operated there by Barnato Bros. of London. Ile was associated with Cecil Rlondes in the latter's numerous mining interest:, and consulting engineer to the Randsiontein Estates Gold Mining Co., the British South African Co. (chartered). and the Consolidated Gold Field= Co. lle was one of the four leaders in the reform mosement in the Transvaal and for his connection with the well-known Jameson raid. with which, however, he did not sympathize, wa- senteneed to death by the Boers. This sentence wa- later commuted to 15 years imprimument, and then to the payment of a fine of $\$_{125.000}$. Ile residea in New York. with nffices there and in 1 ondnen. and is general manager and consultins engineer of the Guggenhein Exploration Co., one of the largest mining companies in the world. His reputation as a mining expert is world wide.

Hammond, Samuel, American soldier: b. Richmond County, Va., 21 Sept. 1757: d. Horse Creck, near Augusta, Ga., iI Sept. i\&fz. His impulses led him, while a mere boy, to volunfeer in the wars of the Virginia frontier with the Indians, where he is said to have greatly
distinguished himself. and to have acquired that skill in stratagem which marked his subsequent military periormances. In $1-5,5$ he raised a company, and took part in the battle of Longbridge; and in $1=-0$ he was at the battle of Stono Ferry: S. C. After the fall of Charleston he kept the field with a small cavalry force, pursuing the active partisan warfare which alone maintained the revolutionary cause in South Carolina. He subsequently settled in Georgia; in ISoz was elected to Congress from Georgia; in 1805 was appointed by Jefferson to the civil and military command of upper Louisiana: and in 1824 removed to South Carolina, where he became surveyor-general of the State in 1827, and secretary of state in 188_{31}.

Hammond, William Alexander, American surgeon: b. Annapolis. Md., 28 -tug. 1828; d. Vashington, D. C., 5 Jan. 1900 . He was graduated from the Cniversity of the City of New lork in 1848: and entering the United States army in 1849 as assistant surgeon. became sur-geon-general in April 1862. Aiter the Civil War he practised his profession in New lork for some years and in his later life took to writing fiction. Among his publications are included: (Military Hygiene' (1863): 'Sleep and Its Nerrous Derangements' (I869) : 'Diseases of the Nerrous System' (IS,I); 'Neurological Contributions': etc., and the novels, 'Robert Severne": 'A Strong-Winded Woman'; 'A Son of Perdition': 'Doctor Grattan' (ISS4): 'Mr. Oldmixon' : etc.

Hammond, Ind.. city in Lake County; on the Grand Calumet River. on the Balsimore \& O.. the Erie and the Nichigan Central. and other R.R.'s: about in miles southeast of Chicago. It was settled in 1869 and incorporated in 188_{3}. It is situated in an agricultural region, and its railroad facilities make it of considerable commercial importance. It has a number of manufactories, the principal of which are chemical works, steel-spring, starch, glue, carriage, nail. and flour-mills. It has a large distillery. a slaughtering and meat-packing plant, brick-yards. tameries. and foundries. The city owns and operates the waterworks. The government is under the charter of 1883 . The officers are a mayor. who holds office for four years, a city council. and administrative officials clected by the city council. The industrial growth of Hammond has been rapid, and the population has more than doubled in the last decade. Pop. (IROn) 5.428 ; (1900) 12.3;6.

Ham'mondsport, N. Y.. town in Steuben County, on the Eric. and the New York, O. \& II. RR. : about 55 miles southeast of Rochester and 50 miles southweat of Auburn. The town is in a iertile agricultural section. noted especially for the large number of vinevards. The chici manufactures are wine. fruit-boxes. flour. cigars, barrels, wire hoods, and baskets. Hammondsport has a large trade in wine, and in grapes and other fruits. It contains a high school, and scveral other good public buildings. Pop. I.230.

Ham'monton, N. J.. town in Atlantic County: rn the Philadelphia \& R and the Camden \mathbb{S} A. R.R.s: about 27 miles southeast of Camden and $2 S$ miles northwest of Atlantic City. It is situated in a region noted for its rich farms and abundance of fruit. The chief manufactures

HAMMURABI

are shoes and cigars; but it is the trade centre for the northcastern part of the county, and from Hammonton a large amount of small fruits are shipped to New lork and other citics. Pop. (1900) 3,481 .

Hammurabi, hăm-moo-rā'bé, The Code of, a recently discovered code, instituted by Hammurabi, king of Babylon, about 2200 B.C. The code is a thousand years older than the Mosaic age; older than the laws of either Mann, or Moses. It is engraved on a pillar of black diorite, eight feet high, which was finally uncarthed. January 1902, in the acropolis mound at Susa. The obverse of the column is surmounted by a bas-relicf which represents the god Bel, the lawgiver, before whom the king stands to receive the law. The inscription which covers this stately monolith is the longest Babylonian record ever discovered. It contained originally about three thousand lines of writing, divided into forty-nine columns; but five columns on the front have been erased by some Elamite king, probably Sutruk Naknunti, who served the stele of Naram-Sin in a similar manner. The writing is a very beautiful type of the best archaic script, a kind of black-letter cuneiform, long used by kings for royal inscriptions. The code is divided into about 280 clauses, and opens with the words, "Law and justice I established in the land, I made happy the human race in those days."

Character of the Code. - The code shows a most careful and systematic order, beginning with witcheraft, which connects it with a religious code: it passes through all grades of social and domestic life, ending with a scale of official wages for all classes of workmen, even the lowest in the scale. Hammurabi's laws of witchcraft preserve the "ordeal of water."
"If a man lias placed an enchantment upon a man, and has not justified himsclf, he upon whom the enchantment is placed to the Holy River (Euphrates) shall go ; into the Holy River he shall plunge. If the Holy River holds (drowns) him he who enchanted him shall take his house. If on the contrary, the man is safe and thus is innocent, the wizard loses his life and his house."

The same ordeal was applied to a wife for unfaithfulness or extravagance, or to a wineseller who sold drink too cheap.

The three essential features of the code may be clearly defined. First it is based on personal responsibility and the jus talionis. Thus: "II any one destroys another's eye, his own eye shall be destroyed. If any one breaks another's bone, his own bone shall be broken. If any one knocks out the tooth of his equal, his own tooth shall be knocked out." Next the belief in the sanctity of the oath before God, as in the Hebrew code. and also the absolute necessity of written evidence in all legal matters. as became a nation of scribes. Judgments in the law courts required a "sealed" document ; an agent must take and give receipts for all money or goods entrusted to him: bonded goods required a deposit note. One of the most interesting series of clauses relates to officers or constables employed on active service: the estate of such a person could be entrusted to management, must not be sold or mortgaged, but he must depute a representative, or three years' absence and neglect forfeited fief. Substituted service was not allowed. As might be expected in a land so rich in culti-
vation, the agricultural laws are most explicit. Land must be cultivated, and if neglected the owner had to pay the same as neighboring land. Damage to crop by storm excused the payment of interest on loan. There are very stringent laws as to the tending of the irrigation canals and ditches, and any damage to adjacent land by neglect had to be made good. The commercial laws are cxtremely important, as showing a highly developed system. Noticeable are the clauses relating to agents of peddlers, commercial travelers of the period.
"If on the road on his business, the enemy have caused him to lose the property he bore. the agent by the name of God shall swear and he shall be quit. If a merchant gives goods to an agent to trade with, the agent shall write down the moner: and to the merchant he shall render; the agent a sealed (receipt) for the money he gave to the merchant shall take."

Manctary Transactians.- Money for which no receipt was taken was not to be included in the accounts. In case of dispute all witnesses and documents must be prodiced. Among the commercial laws are some of much interest at the present time relating to licensed premises. It is curious to note that all wine merchants were females.
"If riotous persons assemble in the house of a wine merchant and those riotous persons she seizes not and drives to the palace that wine merchant shall be put to death."

Curious, too is the following, which seems to reflect the Hebrew Nazarite law: "No votary or woman residing in the cloister may open a wine shop or enter one for drink on pain of being burned."

In the code's domestic legislation, the most striking feature is the high position and legal protection extended to women. If a man causes a votary or the wife of a man "to have the finger (of scorn) pointed at her and has not justified himself" he is to be branded on the forelead.

To justify herself from scandal a woman could claim the ordeal of plunging in the sacred river. The mere formula of marriage "taking to wife" was not sufficient, for "if a man married a woman and executed not her deeds that woman is no wife." Divorce law is most fully given a childless woman could be divorced. If divorced without cause the husband must allow alimony and custody of her children, and a portion of the estate equal to a son, and the woman was free to marry. The woman could get a divorce, but must justify her right to do so. Thus we read:
"If the wife of a man who dwells in the honse of that man has set her face to go forth, and has acted the fool. and wasted his house, and impoverished his house, they shall call her to account. If the husband shall say, I put her away, he shall put her away: She shall go her way; for her divorce he shall give her nothing."

If the husband insisted, such a wife could be drowned. There is, however, a kindlier tone in the law as to a sick wife. "If a man has married a wife, and sickness has seized her, he may take a sccond wife, but the sich wife he shall not put away; in the home she slhall dwell; as long as she fives he shall sustain her."

Laws of Property:- The laws of property
are most full and based on a most equitable system, one clause relates to the remarriage of a widow with young children, and might be pres-ent-day law:
"lf a widow whose children are young has set her face to enter into the house of another, without the consent of the judge she shall not enter. When she enters into the house of another, the judge shall inquire regarding the house of her former husband. The house of her former husband to that woman and her future husband he shall entrust and cause them to deposit a deed. They shall keep the house and rear the little ones, but furniture for money they shall not sell. A purchaser that has bought any furniture from the children of the widow shall forfeit his money and return the property to its owner."

Here we have all the essential features of the modern ward in chancery: In the conclusion of this code Hammurabi repeatedly calls himselt "King of Righteousness." as did his contemporary Melchisedek of Jerusalem, and enjoins upor all of his successors upon the throne to observe this code and its laws.

Hamon, Jean Louis, zhŏñ loo-ẽ ä-món, French genre artist: b. Plouha, Cotes-du-Nord, France, 8 May 1821 ; d. St. Raphael, Var, France, 29 May 18-4. His work though not strong exhibits grace in drawing and has been popular. His most important work in the United States is 'Among the Flowers,' to be seen in the New York Metropolitan Museum.

Hamp'den, John, English statesman: b. London 1504; d. Thame, Oxfordshire, 24 June 1643. He was educated at Oxford and possessing an ample estate, led for several years the usual career of country gentlemen. He was cousin-german, by the mother's side, to Oliver Cromwell. He entered Parliament in the beginning of Charles I.'s reign as member ior Grampound, and continued to sit in the House of Commons three times in succession as member for Wendover, and finally for Bucks. In 1636 lis resistance to Charles' demand for shipmoney made him the argument of all tongues, especially as it was after the decision of the judges in favor of the king's right to levy shipmoney. that Hampden refused to pay it. Being prosecuted in the Court of Exchequer, he himseli, aided by counsel. argued the case against the crown lawyers for twelve days before the twelve judges: and although it was decided against him hy seven of them to five, the victory, as far as regarded puhlic opinion. was his. From this time he received the title of the "patriot Hampden." In the following year (163:) he was one of those who medtitated emigration to America, which they were prevented from carrying oit by an order in cotancil detaining them. Henceforward he took a prominent part in the great contest between the crown and the Parliament, and was one of the five members whom the king, in 1642 , attempted, in person, to seize in the House nf Commons. When civil war hroke out Hampden acted with his usual decision, took enmmand of a regiment in the parliamentary army, under the Earl of Essex. Prince Ruperi having appeared near Thame, in Oxfordshire. Hampden joined a few cusalry that were rallied in haste, and in the Skinnish that followed on Chalgrove Field, received a wound which proved fatal six days
aiter its infliction. His death was a great subject of rejoicing to the royal party, and of grief to his own. His character and conduct, from first to last, evince his conscientiousness, and he has taken his rank by acclamation on the one side, and tacitly on the other. high in the list of English patriots. Consult: Niugent, (Memorials of John Hampden' (183) ; Forster, 'Life of Hampden' (1837) : Gardiner. 'History of the Great Civil War.' Vol. I. (I880).

Hampden, Renn Dickson, English Anglican bishop: b. Barbadoes, IV. I., 29 March I-93; d. London. England, 23 Ápril 1868 . Although a man of moderate abilities both as philosopher and theologian, it was his fortune to precipitate one of the most notable controversies in the English Church. As Bampton lecturer for 1832 he lectured on 'The Scholastic Philosophy Considered in its Relation to Christian Theology,' which brought upon him the charge of Arianism, and when he became regius professor of divinity at Oxford. in 1836 , opposition to the appointment was very bitter and widespread. He was accused of heresy and all the leading men in the Anglican Church took sides in this theological war of words. In 1847 he was nominated by Lord John Russell for the see of Hereford and the strife of ten years previous was renewed in organized fashion. many bishops uniting in remonstrance and the dean of Hereford openly resisting. He was nevertheless consecrated in March 1848 , and his episcopate of 20 years was quiet and uneventful, the echoes of the great controversy having ceased long before his death.

Hampden, Maine, town in Penobscot County: on the Penobscot River; about five miles southwest of Bangor. The chief manufactures are flour and lumber. There is an extensive river trade, chiefly in lumber and food products. The town is one of the oldest in the State, but recently it has grown steadily in industries and population. Pop. 2.484.

Hampden-Sidney College, in Hampden Sidney, a village near Farmville, in Prince Edward County, Va. The school was founded by the Presbyterian Church of Hanover, in 1776, and in 1783 was incorporated by the legislature of Virginia. The land was donated by Peter Johnston, but the acreage has been inereased by gifts and purchases. and the college now owns 250 acres. Among the incorporators were Patrick Henry, James Dladison, Nathaniel Venable, Paul Carrington, William Cabell. Sr., and nany other famous Virginians. Rev: John Blair Smith, the first president of Union College. New York, had previously been president of Tlampden-Sidney, also Rev. Archibald Alexander, a lounder of Princeton Theological Seminary. It grants the degrees of bachelor of arts, bachelor oi science, and bachelor of literature. In 1902 there were in attendance 107 students. The library contained 15.000 volumes.

Hampton, Wade, American general: b. South Carolina 1-54: d. Columbia, S. C., 4 Feb. 1835. During the Revolutionary War he served under Surnter and Marion. He was a Democratic representative in Congress from South Carolina $1795-97$, and again from 1803 to 1805. In ISO9, he was promoted to be hrigadiergeneral. subsequently was stationed in command at Jew Orleans, was superseded: in 1813 he was raised to the rank of major-general and ap-

HAMPTON - HAMPTON INSTITUTE

pointed to command the force stationed at Norfolk, whence he was shortly afterward ordered to the northern frontier and placed in command of the army on lake Champlain, with directions to threaten Montreal. The attack on Montreal, for which 12.000 men had been concentrated near Lake Champlain, was irnstrated by. Hampton's unwillingness to co-operate with jhis colleague General Wilkinson, with whom he had been long at enmity. Hampton resigned his commission 6 April 1814, and passed the rest of his life in agricultural pursuits. He was considered the wealthiest planter in the United States, and was reputed to be the owner of 3,000 slaves.

Hampton, Wade, American soldier: b. Columbia, S. C., 28 March 1818: d. there T1 April 1902. He was graduated from the University of South Carolina, stucied law but never practised, managed extensive plantations in South Carolina and Mississippi, served in both houses of the State legislature, but, as a Union Democrat, was not popular among South Carolinians. At the beginning of the Civil TWar, he formed and equipped at his own expense the command of cavalry, infantry, and artillery known as 'Hampton's legion.' With this he won distinction at the first Bull Run and at Seven Pines, where half his troops were killed and himself severely wounded. Having been made brigadier-general of cavalry and assigned to J. E. B. Stuart's command, he took part in Lee's advance northward (1863), was prominent at Gettysburg, and latei brilliantly opposed Sheridan's progress in the Shenandoah valley. He attained the rank oi lieutenant-general in 1864, and was placed in command of Lee's entire cavalry forces. In 1865 he commanded J. E. Johnston's cavalry, and endeavored to prevent Sherman's northward advance from Savannah. After the war he was an active reconstructionist; in 1876 was nominated as the Democratic candidate for governor, and, after a contest regarding the election with D. H. Chamberlain, the Republican nominee, served until 1898 , when he entered the United States Senate. He was in the Senate until r8or, and in 1893-7 was United States commissioner of railroads.

Hampton, Iowa, city, county-seat of Franktin County; on the Chicago G. W.., and the Iowa C. R.R.'s; about 29 miles by rail south of Mason City and 60 miles north by west of गarshalltown. It is situated in an agricultural and stock-raising region. The chief industrial establishments are cigar factories and aluminum works; and its principal trade, in addition to the manufactured articles. is in grain, tobacco, live stock, and horses. Pop. (r900) 2,72\%.

Hampton (formerly Hamptox ColrtHouse), S. C.. village, county-seat of Hampton County; on a branch of the Atlantic C. L., and the Hampton \& Branchville R.R.'s; about 67 miles southeast of Augusta. The village is in the yellow pine section, but cotton, sweet potatoes. and Indian corn are the staple products of the surrounding farm lands. Its chief manuiactured article is lumber. Pop. 320.

Hampton, T° a., town, county-seat of Elizabeth City County ; on the north shore of Hampton Roads, on the Chesapeake \& O. R.R.: about two and a half miles from Fortress Monroe
and 15 miles north by west from Norfolk. In the last of the ith and first of the 1 thth centuries the Indian village Kiquotan occupied the site of the present town of Hampton. John Smith and Lord Delaware mention (1608-10) the peaceful friendly Indians of Kiquotan, the hunters and fishermen; but before 1610 there were whites living along the shore and in this Indian village which retained its Indian name for some time after it became a white settlement. In the first session of the Virginia House of Burgesses or Colonial Legislature (1619), the borough of Hampton was represented. In the war of ISI2 the town was attacked by the British and a large part was burned. In 1861 it was again burned by the Confederates. The Church of Saint John, Protestant Episcopal, built 1660, is still in good repair. Hampton contains a National Soldiers' Home, which las 2.000 resident veterans; a National Cemetery which contains 3,323 graves of soldiers, 600 of them of unknown dead. It is the seat of Hampton Normal and Agricultural Institute (q.v.). It has some manufactures; brich, fish-oil, and canned crabs. It has considerable trade in fish, especially oysters, and in fruits and vegetables. It has excellent bathing iacilities and is a popular resort. Pop. (I890) 2,513; (1900) 3.521.

Hampton Court, England, a royal palace situated near Hampton, a village of Middlesex, 15 miles southwest of London. The palace i: about one mile from the village. The origina! edifice consisted of five quadrangles, of which two remain; it was built by Cardinal Wolsey in 1525, and presented in 1526 to Henry VIII., by whom it was subsequently enlarged, and who formed around it a royal park or chase, which he enclosed and stocked with deer. A third quadrangle was added by Sir C. Wiren for William III., who laid out the gardens and park in Dutch style. Hampton Court contains many valuable pictures by Holbein, Lely, Kneller, WVest, etc. The gardens comprise about "4 acres, and contain a famous "maze" and "wilderness." Hampton Court was inhabited by successive monarchs and their families until the reign of George 11. Suites of apartments in Hampton Court palace are now set apart for persons of rank in reduced circumstances. The state apartments, picture gallery, gardens, and home park are open to the puhlic. In 1885 the palace suffered considerable damage by fire.

Hampton Court Conference, a mecting at Hampton Court (q.v.), on the 14th. 15th. and I6th of January 1604, which was convened on the petition of the Puritan ministers to King James I. for moderation and tolerance on religious questions. By the composition of the conference,- on the episcopa! side being the Arclabishop of Canterbury: cight bishops, five deans, and two doctors, and on the Puritan side only four representatives- - the king sufficiently indicated his artitude toward the aims of the Puritans, and the proceedings consisted chienly of adulation of James on the part of the episcopal party: and lecturing of the Puritan members by King James. A few alterations were made in the Prayer 13ook, and a new version of the Bible was agreed upon, the result being the authorized version of t6ry.

Hampton Normal and Agricultural Institute, a school for negroes and Indians,

HAMPTON ROADS - HAMPTON ROADS CONFERENCE

opened in 18068 , in Hampton. Ya., under the auspices of the American Missionary Association. It was chartered by the State in ts;o. The school is owned and controlled by a private corporation, administered by 1 , irustees. The charter gives the trustees power to choose their own successors. and to hold property without taxation to the amount of $\$ 800,000$. In 18 IS the General Assembly of V'irginia passed an act giving the Institute one third of the agricultural college land-grant of Virginia (see Colleges. Lasd-Grait) amounting to 100,000 acres, which was sold for $\$ 95.000$ and which pays regular annual interest. The school was first opened in an old barracks (used during the Civil (War). with two teachers and 15 pupils. It now (1903) owns 185 acres on Hampton River, upon which have been erected dormitories, a library, class-room buildings, a church. gymnasium, saw and planing-mill, shops, hospital, domestic-science school, trade school.-in all numbering 55 buildings. The Institute owns also a stock farm oi 600 acres, about five miles from the school. The farm land, and the workshops where trades are taught, furnish occupation for the boys and young men. The girls are instructed and employed in sewing and cooking classes, in all the domestic work of the school, and wherever possible learning trades side by side with the boys. In 1806 the Armstrong and Slater Memorial Trade School was opened. (See Negro, Edccation of the.) In this scbool is taught the theory and practice of blacksmithing, carpentry, house painting. tailoring, and general repairing. The pupils are taught also. mechanical, civil. electrical. and mining engineering. On the farms they are zaught how to care for stock, how to raise different crops, and the theory and practice oi farming in general. The students are charged §ro a month ior board, which is largely paid in labor. They are expected to provide their own books and clothing. and for the tuitions. buildings, funniture, and the implements used on the farms and in the shops. the school is dependent on the charity of the country. In 18,8 . 15 Indians, who had been prisoners of war at Saint Augustine. Fla., and in charge of Capt. R. H. Pratt, were admitted as students. Since then the Indian department has increased steadily, the pupils being cluiefly from the Sioux tribe. of whom two thirds make a fair or good record. The young men of the school are orgatuized into six military companies, all forming one battalion. This places the young men under military discipline. The 'Southern Workmen?' a monthly school periodical. is edited, printed. and managed by the pupils with only a qeneral supervision by one of the teachers. The vacation is from Iune to October for all except the pupils in the industrial departments, which continue work all the year. During the regular long vacation a large number of the eolored teachers of the South assemble here for a summer school. For the past ten years the average attendance at these summer schonls has been nearly $s 00$. The graduates number about 1.000 , more than half of whom are teaching in the colored schnols of the South. In 1002 the number of pupils in the Hampton 1nstitute was $1: 16 \mathrm{f}$, ahout 90 per certit of whom were in the induestial and preparatory departments, the remainder in the college department.

The same year there were S_{2} instructors in the school. The library contains about 12.000 volumes. Nany of the graduates are engaged in iarming or working at trades; some are teaching. Booker T. Washington (q.v.), of the class of 1875 , is the most noted graduate. Hampton's endownents amount to about $\$ 1.100 .000$. The annual income is about $\$ 170,000$, and comes from the Government Indian Funds, the Slater and Peabody Funds, the State land-grant and agricultural iunds, and from private donations.

Hampton Roads, Va., a broad deep channel which connects the estuary of the James River with Chesapeake Bay: really a part of the estuary which is at the mouths of the James. Elizabeth, and Nansemond rivers. Some of the good harbors along the shore are Norfolk and Portsmouth on the south; Hampton. on the Hampton Creek. an arm of the Hampton Roads. on the north. At the entrance are Forts Monroe and Wool. On the north side of the entrance is Thimble Shoal light, at lat. $37^{\circ}+2^{\circ} \mathrm{N}$. and lon. $-6^{\circ} 14^{\prime} 3^{\prime \prime}$. 11 . A large number of railroads have terminals on Hampton Roads, especially at Jorfolk. This estuary; or channel, is considered of great military importance. During the Civil War its adrantages as a militarystation were demonstrated. On Hampton Roads occurred the battle of Hampton Roads (q.v.), the first engagement between ironclads.

Hampton Roads, Battle of. Hampton Roads was the rendezvous of several important naval and military expeditions during the war, and the scene of two memorable encounters. On \& March 1862 the Confederate ram Merrimac (or Virginia) left her anchorage at Norfolk. 12 miles from Fort Monroe. steamed down Elizabeth River and, with her consorts, five in number, attacked the Union fleet of five vessels in the roads. destroying the Congress and Cumberland. which lost over 250 men , and then retired to the mouth of Elizabeth River. Next morning the Merrimac returned to the roads to complete the destruction of the Union Heet. but was met by the Monitor. which had arrived the nighe before from New York, and a novel naval battle ensued. resulting in the return of the Merrimac to Norfolk and the saving of the remainder of the Union fleet. See Mositor and Merrtiac.

E. A. Carman

Hampton Roads Conference, an informal conference held 3 Feb. 1865, between President Lincoln and Secretary of State Seward, representing the United States government, and V'ice-President Alexander H1. Stephens, Senator Robert M. T. Hunter, and Assistant Secretary of War John A. Campbell. representing the Confederate States. The meeting took place on board the River Qucen, near Fort Monroe, and its object was the arrangernent of a peace between the North and South. The originator of this conference was Francis P. Blair (q.w.) who thought a combination of North and South againt Maximilian in Mexico, in enforcement of the Monroc doctrine, would bring in peace I.: a diversion. President Lincoln refused to join the conference excepting with a view to the rest ration of union, and on the understanding that the Emancipation Proclamation was to
stand without qualification. He disapproved of a joint action against the French in Mexico. The conference lasted for four hours, but broke up without reaching any definite conclusion.

Hamstring. See Axatomy; Muscles.
 Han-yang, hän-yäng'. See Haxkow.

Han'aford, Phebe Ann Coffin, American Universalist minister: b. Nantucket. Mass., 0 May 1829. In 1849 she was married to I. H. Hanaford, a teacher. She was the first woman ordained to the ministry in New England and since her ordination in 1868 has held pastorates in Hingham and Waltham, Mass.. New Haven, Conn., and Jersey City. She has been industrious as a writer, among her many published works being 'Life of Abraham Lincoln': 'Life of George Peabody', ‘Lucretia the Quakeress'; 'Leonette, or Truth Sought and Found': 'The Best of Books and its History' : 'Frank Nelson, the Runaway Boy'; 'The Soldier's Daughter' : 'Field, Gunboat, and Hospital': 'Women of the Century'; 'From Shore to Shore, and Other Poems' ; etc.

Han'cock, John, American statesman; b. Braintree, Mass., 23 Jan. 1737; d. Quincy, Mass., 8 Oct. 1793. He was graduated at Harvard College in 175t, but shortly after entered the counting house of an uncle, on whose death in 1764 he received a fortune of $£ 80.000$. After 1; 66 he was several times elected to the Massachusetts General Court. It was the seizure of his sloop, the Liberty, that occasioned the riot in 1768 , when the royal commissioners of customs narrowly escaped with their lives. After the so-called "Boston massacre." in $17 \% 0$, he was a member of the committee to demand of the royal governor the removal of the troops from the city, and at the funeral of the slain delivered an address which greatly offended the governor, who now endeavored to seize the persons of Hancock and Samuel Adams. Both were members of the Prorincial Congress at Concord and later of that at Cambridge. and Hancock was president of each. This arrest is said to have been one of the objects of the expedition to Concord which led to the first battle of the revolution after which Gage offered pardon to all the rebels except these two, "whose offences," he added "are of too flagitious a nature to admit of any other consideration but that of condign punishment." In 1775 Hancock was chosen president of the Continental Congress, and in 17,6 signed the Declaration of Independence. Ile resigned from the presidency in $1 / 7 / 7$, but was a member of the Congress until 1780, and again in $1 ; 85-6$. With rank of majorgeneral, he commanded the Massachusetts forces in the Rhode Island expecition, in 1780 was a member of the Massachusetts constitutional convention, and under that constitution was in $1 ; 80$ chosen first governor. To this office, with an interval of two years $(1 ; 85-\overline{)}$) he was annually re-elected till his death. Hancock was a man of strong common sense and great decision of character. of polished manners, easy address. affable, liberal, and charitable. His personal vanity, and his jealousy were at times conspicuous, but he was a sincere patrint, and of much ability. John Adams said of him: "He was by no means a contemptible scholar or orator. Compared with Washington, General

Lincoln, or Knox, he was learned." See A. E. Brown, 'John Ilancock: liis Book' (1898).

Hancock, Winfield Scott, American soldier: b. Montgomery Square, P'a., 14 Feb. 1824; d. Governor's Island, New' Y'ork harbor, 9 Feb. 1880. He was graduated from the United States military academy in 1844, and after frontier service in the Sixih infantry iought with credit in the Mexican war, was successively regimental adjutant and quartermaster in is $48-55$, and briefly assistant adjutant-general to the Department of the West. Appointed assistant-quartermaster with rank of captain in 1855. he was stationed at Fort Myers, Fla., during the Seminole disturbances, and in $1857-8$ was in Kansas, whence, after service, in the border troubles, he was ordered successively to Litah and Caliiornia. In 1859-61 he was chief quartermaster of the southern district of California, with headquarters at Los Angeles. At the beginning of the Civil War, he was commissioned brigadiergeneral of volunteers, and assigned to the command of a brigade in Smith's division, Fourth corps, Army of the Potomac. He distinguished himself at Williamsburg and during the second day's fight at Antietam (I7 Sept 1862) was placed in command of the 1 st division. Second army corps. Promoted major-general. U. S. V. (November 1862), he commanded his division at Fredericksburg in the attack on Marye's Heights, on which occasion he lost 2,013 from a total of 5.006 troops. He largely saved the day at Chancellorsville (2-4 May 186_{3}), and shortly afterward was assigned to the command of the Second corps. In July 1863, he was ordered by Meade to proceed to the field of Gettysburg, take command, and report whether battle should be given at that point. He reported Gettysburg as the suitable place for the ensuing battle, reorganized the Federal lines, on 2 July commanded the left wing. and on the next day the left centre, against which was directed a Confederate charge in the course of which the Second corps lost about 4.000 killed and wounded out of less than 10.000 troops and Hancock was shot from his horse. In 1866 he was appointed major-general, U. S. A.. in $1866-8$ commanded successively the departments of Missouri. and of Texas and Louisiana, in 1868-9 the military division of the Atlantic, in $1869-\mathrm{i}^{2}$ the department of Dakota. He was again assigned to the division of the Atlantic in 18;2. In 1880 he was Democratic candidate for the presidency, but was defeated by Garfield by a vote of $4.45+416$ to $4.444,952$. He was a brilliant leader, known as "Hancock the Superb." - "the most conspicuous figure." says Grant, "of all the general officers who did not exercise a separate command." Consult the 'Life' by Walker (1894).

Hancock, Mich., village !n Houghton County: on Lake Portage, and on the Duluth. S. S. \& A. railroad; opposite Houghton (q.v.). Although the northern part of Michigan and this region had been explored by missionaries in the 1 ,th century, the first permanent settlement was made in Hancock in 1850. and the village was incorporated in I863. It is situated in a section rich in minerals, the Lake Superior copper belt. The Calumet and the Hccla copper mines are nearby, and the village has foundries. machinc-shops, smelters, stamp-mills. lumber and brick yards. A ship-canal to Lake Superior brings a large portion of the lake traffic to and
from Duluth and Superior through the "sbort cut., ${ }^{\text {D }}$ by way of Hancock I_{i} is the seat of a Finnish college. The government is vested in a president, whose term of office is one year. and a village council who are elected by the people. The village owns and operates the waterworks. Pop. (1890) 1.,7,2: (1000) 4.050.

Hancock, N. I.. village in Delaware County: at the junction of the two branches of the Delaware River, on the Erie and the New Y., O. \& W. RR's. Nearby are bluestone quarries, which add to the industria! wealth of the village. Hancock has flour-mills, tanneries. a wood alcobol factory, and large lumber-yards. It is a trade centre ior an extensive agricultural region. Pop. (1900) $1.2 \$_{3}$.

Hancock, Mount, a peak of the Big Game Range. in the southern part of the Yellowstone National Park, on the boundary between the Park and Wyoming. It is on the western border of Two Ocean Plateau, a portion of the continental divide The Suake River (q.r.) has its rise on the east side of Mount Hancock. flows north by west, then south by west around and almost circling the mountain. Mount Hancock is 10.235 feet in height.

Hand. Edward. American revolutionary soldier: b. Clyduff. King's County, Ireland. 3 I Dec. 1fH: d. Rockford. Lancaster County. Pa., 3 Sept. 1802. In rijit he came to America as surgeon's mate in the 18 th Royal Irish regiment. but he later resigned and entered medical practice in Pennsylvania. At the outbreak of the Revolutionary War. he becanse a lieutenantcolowel in Gen. William Thompson's brigade. participated in the siege of Boston, and in $1 ;-$ was appointed brigadier-general. In $17-8$ be sccceeded General Stark in the command at Albany: and later took part in General Su'lwan's expedition against the Iroquois, He sat in Congress in $1,-84-5$ and signed the Pennsylvania constifution in t 9 g .

Hand. The human hand is composed of 27 bones. namely eight bones oi the carpus or wrist atranged in two rows of four each, the row next the fore-arm containing the scaphoid, the semilunar, the cuneiform, and the pisiorm, and that next the metacarpus, the trapezium. the irspezoid, the os magnum, and the unciorm. The metacarpus consists oi the five bones which form the palm, the first beirg that of the thumb. the others that of the fingers in succussion. Lastly, the fingers proper certain 14 bones called phalanges. of which the thumb has but two, a'l the other digits having three each. These bones are jointed so as to admit ci a variety oi movements, the more characteristic being those by which the hand is Hexed backward. forward. and sideways, and by which the thumb and fingers are moved in different ways

The chiei muscles which determine these movements are the "flexors." which pass duwn the iore-arm. are attached by tendon- to the phalanges oi the fingers. and serve to tiex or bend the fingers: and the "exteneors" ir extending the fingers. There are two muacles which flex all the fingers except the thumb. The thumb has a separate long and slort fexer. There is a common extensor for the fingers which passec down the bact of the fore-arm and divides at the wrist into iour lendons, one for "ach inger. each being ztrached of all three

Phalanges. The fore-finger and little finger have. in addition. each an extensor of its own, and the thumb bas both a short and a long extensor. The tendens of the muscles of the hand are inrerlaced and bound together by bands and aponeurotic fibres, and from this results a mo:e or less complete unity of action. It is sometimes difficult to make a morement with a single finger without the others taking part in it as in executing instrumental music. for instance; but practice gives to these movements perfect independence.

Oi all the movements of the hand the opposition oi the thumb to the other fingers. alone or united. especially characterizes the human hand. This action oi the thumb results from its length, irom the first metaearpal bone not being placed on the same plane as the other four. as is the case in the moakey, and from the action of a mescle - ihe long fiexor of the thumb peculiar to the buman hand. This muscle completes the action of the other motor of the thumb and permits man to hold a pen. a graver, or a needle: it gives to his hand the dexterity necessary in the execution of the most delicate workProperly speahing then, the hand. with its highly specialized museles, belongs to man alone It cannot be considered, as in the ape, as a normal organ of locemotion. It is essentially the organ of touch and prehension. It molds itself to a body to ascertain its form: it comes to the aid of the eye in completing or rectifying its impressions. The functions of touch devolve principally or its anterior or palmar face, the nerrous papilla abounding specially at the ends of the fingers. A layer of adipose tissue very close in texture protects. without lessening its powe- or its delicacy, the network of muscles, vessels, and nerves with which this remarkable organ is equipped.

Hand ball, a popular game of ball, the bare hand only being used. The game is indigenous to Ireland, but has been iransplanted to America. where are the most expert players. Two or iowr men can play, one or iwo on a side As far as is known the game of handball came to the Lnited States abour $1 \mathbb{E}_{4} 0$, and has since becorne one oi the sports under the regulations ci the Amateur Athleric Tnion. The game consists of scoring the ball against a single back wall, with a lined-out space of 60 ieet in fronl The ball corning irom the wall must fall between these two lines to be in play. The game is simply to strike the ball on the rebound with the hand.

Han'del, George Frederick, (properly Georg Friedrich Haesdel). English composer: b. Malle. Saxony, 23 Feb. 108 E , d. London 20 April 1;E0. His iather, intendiny him for the law, discouraged the strong passion which he evinced early in life ior the science of music. But although forbidden the use of musical instruments. the yung musician contrived to hide a small elavich rd in a garret. where he amused himself. during great part of the night afier the rest of the family had retired, and made such progress that. when at seren he accompanied his father in the court of Saxe-Weissenfels, he played on the church organ with such power and effect that the duke, who accidentally witnessed his performance. used his influence successiully with his iather to permit him to follow his inclinati m. He was accordingly placed under

Zachau, organst of the cathedral, and was soon so far advanced in the practical part of the science as to officiate oceasionally as deputy to his instructor. At 14 (1698) he went to Berlin, where at that time the opera under the direction of Buononcini and Attilio was in a very flourishing condition. Attilio becante his teacher and friend. In 1703 he went to Hamburg, and procured an engagement in the orchestra at the opera there. On 30 Dec. 1704, he brouglat out his first opera, 'Almira,' in the February following succeeded by his 'Nero,' and subsequently by 'Florindo' and 'Daphne.' He then went to Italy, where he composed the operas 'Rodrigo' and 'Agrippina,' and the first form of the serenade 'Acis and Galatea.' On his return to Germany in 1710 he entered the service of the Elector of Hanover, afterward George I. of England, as chapel-master; but having received invitations to visit London, he set out for England, where he arrived in the latter end of I 7 IO . On the occasion of his first visit to England he composed the opera 'Rinaldo.' He soon returned to Hanover, but at the cnd of two years again received permission to visit England. At the time of his arrival in London the negotiations for the Peace of Utrecht were just about to be concluded, and Handel was invited by Qucen Anne to compose a (Tc Dcum) and 'Jubilate' in celebration of the peace. But this act was so distasteful to the Elector of Hanover that Handel did not venture to return, but remained in England on an income of $£ 200$ a year allowed him by the queen. He was, in consequence, on the accession of his royal patron to the throne of Great Britain in 1014, in much disgrace, till Baron Kielmannseck restored him to favor. From 1715-18 Handel resided with the Earl of Burlington, and then quitted that nobleman for the service of the Duke of Chandos, who entertained him as chapelmaster to the splendid choir established at his seat at Camons. For the service of this magnificent chapel Handel produced those anthems and organ fugues which alone would have been sufficient to immortalize him. When the Royal Academy of Music was instituted by some of the leading noblemen of England, Handel, whose fame had now reached its height, was placed at its liead; and this, for a short period, may be considered as the most splendid era of music in England. The warmth of his own temper, however, excited by the arrogance and caprice of some of his principal Italian singers, caused many violent quarrels; and public opinion becoming enlisted in favor of his opponents, and especially of his rival, the musician Buononcini, his popularity waned somewhat and the Academy was dissolved ($1 ; 28$). Handel then started a new operatic company. But a rival company to his was afterward started, and the result was that much money was lost by both. The operas which he had composed up to this date (1735), from the institution of the Acadeny of Mlusic, were 'Radamisto); (Ottone); ‘Giulio Cesare'; (Floridante': 'Flavio'; (Tamerlano); 'Rodelindo'; (Alessandro' ; 'Scipione'; 'Ricardo 1.' ; 'Tolomeo'; 'Siroe'; 'Lotario'; 'Parthenope'; 'Poro': 'Orlando'; 'Sosarme': 'Ariadne'; 'Ezio'; (Ariodante'; and 'Alciua.' Among other works should be mentioned his first English oratorio, 'Esther', and his delightful pastoral 'Acis and Galatca.' In 1736 his fanous
sctting of Dryderi's ode, 'Alexander's Feast,' was performed with brilliant success. His last opera was performed in 174r. 1tandel had by this time begun to devote himsclf chiefly to music of a serions nature, especially the oratorio. The approval which his first works of this kind 'Esther,' 'Deloorah' (I;23), 'Athalia' (1733); had met with encouraged him to new efforts; and he produced in succession 'Saul,' 'Israel in Egypt,' and 'The Messialn.' The last-mpentioned, his chicf work, was brought out at Dublin in 1742. This sublime composition had becn composed the previous year, in the incredibly short period of twenty-three days. When Handel returned to London his oratorios were received at Covent Garden Theatre with the greatest approbation by overflowing audiences - 'The Messialr' in particular increased yearly in reputation. Before it was given, however, a new oratorio, 'Samson,' was produced (1743), and there next followed 'Joseply and his Brecthren' (1744), ‘Belshazzar) (1745), 'Judas Mac-
 (1749), and 'Jephthah' (1752). Some time before his death he was afflicted by nearly total blindness; but he continued not only to perform in public but even to compose. His own air, however, 'Total Eclipse,' from the oratorio of 'Samson,' is said always to have affected and agitated him extremcly after the loss of his sight.

Handel's habits of life were segular; his appetites were coarse, his person large and ungainly, his manners rongh, and his temper even violent; but his heart was humanc, and his disposition liberal. His musical powers can hardly be estimated too highly. In boldness and strength of style, and in the combination of vigor, spirit, and invention in his instrumental compositions he has never been surpassed. His choruses have a grandeus and sublimity which have never been cqualed. Yet a singular fact in regard to him as a musician is that in some of his works he shows himself as an unscrupulous plagiarist -a fact of which various explanations and palliations have been attempted. He was buried in Westminster Albey, where a monument by Roubillac was erected to his memory. See 'Lives by Clirysander' ($1858-6 /$) : and Rockstro (i883) ; Whittingham, 'Lifc and Works of Handel' (1882); the articles in the 'Dictionary of National Biography' and Grove's 'Dictionary of Music.'

Han'dicap, Brooklyn. Sce Ilorse-racing.

Handicapping, a term used in racing: The allowance of time, distance, or weight made to the inferior competitors in a race with the object of bringing afl as nearly as possible to an equality; the extra weight imposed on a superior horse in order to seduce his chance of winning to an equality with that of an inferior animal. The handicap is framed in accordance with the known previous performances of the compctitors, and in horse-racing also with regard to the sex and age of the animals engaged. The principle is the same in other contests, as in billiards a superior player is handicapped by having to allow his inferior competitor a start of a certain mumber of points.

Handies (hăn'dǐz) Peak, in the southeastern part of Colorado, in the San Juan Range; about 12 miles northcast of Silverton. Rich

HANDWRITING

deposits of silver ore are found in all the mountains of this vicinity; the range is known as the 'Silver San Juan.' The altitude of Handies Peak is about I4,000 feet.

Handwriting, Expert Analysis of. A mental image may be made either consciously and with attention to every detail, or with varying degrees of consciousness amounting in some cases to almost complete automatism, but it must in any case be largely influenced by the machine which produces it. No matter what care may be employed to make two objects alike, a sufficiently minute inspection will always discern differences between them. It is from this fact we are able to distinguish a particular tone of a bell, a particular face, etc. All things, and notably those which owe their existence to organic life, are sesultants of very complex forces acting simultaneously or in sequence, and in comparing similar resultants it is ever found that quantitative or qualitative differences of the constituent forces employed in fashioning them have occasioned differences in the objects themselves. These differences may be indiscernible to the casual view, but will never fail to reveal themselves to an examination sufficiently searching.

The factors employed in making marks may be roughly divided into: A, the model in the mind which it is the intention to reproduce; and B, the mechanism by which the act is to be accomplished. Under the latter head there is to consider not only the permanent structure of the individual, which necessarily limits his performance, but also the manner of employing this structure, which becomes a habit, and the fluctuations, due to disease, drugs, variations of mood, increasing age, etc., in the motor impulses controlling it.

The basis of any sound judgment on the authorship of designs such as pictures or handwriting, depends upon the recognition of sorts of differences; which it is essential to distinguish from each other. In general, designs by different authors differ in kind, while those of the same author differ in degree. The methods for distinguishing these two sorts of differences will be more particularly treated hercafter.

The general subject of the study of those characteristics which distir.guish cach handwriting from every other has been called Grammapheny: the study ce methods for detceting frauds relating to handwriting either in imicating, altering, or suppressing a record, is called Plassopheny; and the general study of the records of human thought including thicir forms, their purport, and the tools and materials by means of which they are produced is called Bibliotics.

Ever since the more or less permanent records of human thought have had a value they have been the objects of falsification. It is not known to how great an extent this may have been practised in the hicroglyphic and ideographic carvings on stone, but doubtcess interpolations were frequent in recording the deeds of thcir kings, and the sculptors imitated each other's style with a view of bettering their own; or each other's peculiaritics to convey false impressions as to the narrator.

But with the introduction of writing in pigments on parchment and papyrus the greater facility with which alterations and erasures could
be made immediately attracted the attention of the unscrupulons. According to historians the Greeks, Romans, Egyptans, Assyrians, and others practised garbling and forgery by erasing, resurfacing, and bleaching manuscripts to change their purport, or give false impressions of their age and authorship. These depredations, then as now, were chielly made upon manuscripts of persons absent or, more commonly, deceased; whole compositions which they never saw being ascribed to them. As an example may be cited the interpolation in the text of Josephus with which Eusebius has been charged. A host of epistles, papal decrees, productions of the Fathers, and dogmatical treatises were in early times altered, erased in part, and falsified from the original text, sometimes by learned and reverend scholars for the greater glory of the Church, and sometimes by obscure copyists from ignorance, or trifling incentiyes. Erasmus declared he knew not a single important old manuscript which was not tainted by this kind of fraud. The methods of effacing the writing of a parchment multiplied in proportion to the increase of manuscripts and the cost of parchment. The practice of using such effaced parchments for other writings was common in the time of Cicero, as a letter from him to Trebatius testifies. Such writings were called palimpsests; and the custom of producing them gave dangerous experience to perpetrators of fraud in the art of effacing written characters by mechanical and chemical means. Plutarch speaks of this practice as one well known. As the price of parchment rose it began to be the habit in the early libraries to efface the letters from parchments "of little value" in order to replace them by more valuable compositions. Dangerous as was such a rule at any time it became fatal to learning when the choice was in the hands of ignorant monks inflamed against their adversaries in controversy, and against all "pagans," in which class almost all the great authors of our classics were included. and willing to sacrifice the choicest thoughts of the Greeks and Romans in favor of the fanatical dissertations of those they were pleased to call the "faithful."

When the Caliph Omar put an end to the mannfacture and sale of papyrus he caused a wholesale destruction of the writings in the libraries throughout the world. Michclet states that "the fatal patience of the monks" accomplished more ruin than the conflagrations of Omar, of the hundred Spanish libraries, and of the Inquisition. (Consult Gustave Itasse, 'Le Faux devant l'histoire,' etc., from which much of the preceding is taken.). According to Adolphe Bertillonl ('Revue Scien.' 25; 4 Ser. Vol. VIII. is Dec. 1897) the first recorded student of bibliotics was Francois Demelle in 1609, and the first writer on the subject one Ravenean (1656). In his treatise the latter deplores the lack of science of his colleagues, which however did not prevent their landing him in jail for forgery.

The methods employed in judging the authorship of handwriting by these and almost all later writers on the subject are the same as those relied upon by connoisseurs of painting. They deal cxclusively with the pictorial and apparent peculiarities, and the undefined effect these produce upon the mind. The most daring of these methods is the so-called
"Graphology;" described in a pamphlet of the Abbe Michon in 1880, which has many conscientious supporters and partial government recognition in Germany and France. This curious study has for its olject the revelation of the character and peculiarities of a writer by his handwriting. It would lead to too long a digression should the various claims of the adrocates of graphology be reviewed. It must suffice lere to say that some of these not content with finding in the manuscript of an unknown writer personal peculiarities which he already possesses, have imagined thcy could detect the lurking tendencies to virtuous or vicious deeds such as self-sacrifice, kleptomania, murder, etc., which he has never developed. These are deduced from the pen habits which they think they detect in the writing: such as deliberation, precipitancy; economy of paper, or of effect, etc., etc. M. Bertillon thinks "To the public no proof is so decisive as that of personal identification of individuality yet how many mistakes are made?" He believes with the exception of the advance in photography the art of handwriting judgment is just where Raveneau left it in the reign of Louis XIV. He forgets the aid he himself has rendered to the art of differentiating and identifying handwriting by the application of his anthropometrical measures for the identification of criminals. The former art without such methods is in precisely the state in which Bertillon found the latter before his demonstration that exact measurements of different parts of the body and the relation to each other of the results of such measurements entirely removed the chance of error in identification, whereas there have been many instances of mistaken identity, or denial of identity by a wife or other near relative of the person in question. The history of this minute branch of research resembles that of other and larger branches. Subjeetive impressions such as those supplied by the feelings, indicating supposed relative amounts or intensitics of emotions or sensibility, which were the only guides to the pioneers of inductive research, gave way to exact methods by employment of instruments of precision recording facts in intelligible units, in estimating, for example, degrees of acidity, pitch of sounds, height of temperatures, intensity of lights. One after the other the old subjects of research were furnished with these unequivocal means of recording phenomena, and all the new subiects were required to find such means or forfeit recognition. Thus through mathematics astronomy, already in the van of exact sciences, was enabled to thake enormous enlargements of our view of the universe in the last two centuries, and even those objects of research which seemed to deiy such treatment were provided with mathematical methods. Psychology became a science admitting expcrinentation of which the results can be expressed in units, and chemistry is becoming as loyal a subject of that seience of relation-mathematics - as its sisters, physics and meehanics.

The purpose of the investigation of a handwriting will determine the kind of examination that is made. If the object be to ascertain whether a particular signature has been legitimately placed as an authentification of a writing, it is necessary to scrutinize the paper on which it is written for evi-
dence of scratching, erasing, or other tampering; the ink for peculiarities of constutution which may be inconsstent with its use at that time and ins that place. The question of superposition of lines may show that the writing it validates was made after the signature. In numerous criminal trials each of these and of many other unmentioned demonstrable facts have at once stamped documents as fraudulent and ohviated the necessity of the more particular study of the character of the writing. (Thus a water-mark in a paper on whech was written a statement bearing date 1808 represented the German Eagle which was not adopted till after 1870, and this of course showed the whole instrument to be a fraud. A similar conclusion is forced in the case of traced characters purporting to have been written before Hoimann's discovery of the aniline colors yet demonstrably produced by aniline ink.) The value of a signature as authenticating a contract is forfeited if it is clear that parts of the body of the document were written after the signature was written. These and other problems in the domain of plassopheny are too numerous to treat in this place and attention will be directed exclusively to the grounds for deciding two specimens of writing to be by the same or by different hands.

The first and most obvious method is to compare their respective features; large or fine writing; perfect or imperfect shaping of the letters; slant or angle of the stems and tails of letters with the line of writing; peculiaritics (of which there are always a number) in the forms of individual letters or in the manner of connecting or grouping them : alterations in pressure producing shading in certain directions, and many, other similar details. These peculiarities are pictorial. In all genuine writing they arise from the limitations of the writer, first in forming a mental picture of what he wants to produce, and secondly in producing it. Any one of these peculiaritics can be easily imitated by another, and indeed all the visible details together can be drawn or traced by a skilful artist, yet in the latter case not withont revealing to one using a magnifying glass that the lines have been slowly and caretully drawn and not dashed off with ease. Even if words are photographed or traced from an original and afterward inked, an ordinary magnifying glass will show a difference in the pen marks from the current facility of the original writer. The careful study of such details constituted the entire basis of judgment of the expert till within recent years, and usually they will suffice; for though the forger should know all the minute peculiaritics which are disclosed to the patient study of a handwriting, yet he could not reproduce many of them without betraying in the result a painstaking, lahored use of the pen which would excite suspicion. Where the same word or signature occurs twice or more in a document the forger must avoid exact repetition of all the minutize and at the same time not make such deviations as are inconsistent with the habits of the writer. The most important of these habits for purposes of identification are not pictorial nor immediately apparent to the eye.

Proportions.-Among the most important kinds of characteristics which insensibly influence the judgment in forming a conclusion as to identity of authorship of two specimens of
handwriting are the proportions between ertain parts of a letter, or word, or group of these, which often occur together. Especially is this the case with a signature, which is written so irequently that the act becomes almost automatic and therefore one in which the peculiarties due to the hand and aim making it, and to the brain furnishing the pattern, are most prominent because without the interference of voluntory effort. The result in fact resembles typewriting where the defects in the levers and typefaces of a trpe-writing machine can be detected: but with this difference that in handwriting they are still recognizable even when from lack of space or other causes the signature is written smaller or larger than usual. In such cases there is found a greater conformity to the established relations of parts of the signature than any foreign hand could make without a pantograph or other artificial aid. These proportions of parts may be detected either individually by carefully noted measurements, or by composite photographs of genuine signatures. Each method has some advantages over the other. In employing composite photography one attains to an ideal signature because all the possible characteristics of relation in every signature have been introduced, but on the other hand by this means only a form has been evolved -a graphic average - which must then be made the standard for comparison.

Fig. 1.- Composites of genuine signatures.

Fig. 2.-. Forgeries of the above signatures.
In the case of the method by actual measuremints although only a small fraction of the total number oi relations is noted, yet these are n numerical form and can be averaged and the results compared directly:

The principle on which the method by investigation of proportions of parts rests is that the spaces between various distinctive points of a signature bear numerical relations in each other, and to the heights of certain letters. which are constant within comparatively narrow limits whether the signature be written small or large.

The following illustration (Fig. 3) represents a small part of a letter written with pen and ink
and photographed at an enlargement of 30 dimeters:

Fig. 3.- The points a show the widest and b the norrowest parts of the ink lines. Is is to be noted that the maxima and minima of the two margins are not always opposite to each other, but show a tendency :0 oscillate about a horizontal line so that the a's and b 's of one masan will be observed alternately above and below such line in following the ink mark downward, while those of the other margin will he found in opposite phase. This is made clearer by the white lines uniting the o's and b's of the opposite margins. This can be accounted for thy the simultaneous operation of lateral and vertical movements whelk are not coincident in period.

Tremosrans.-Another valuable individuality in writings executed by means of pen and ink are the irregularities observed in the margins of the lines when examined under a sufficiently highs power of the microscope (about 120 diameters). How far this examination will enable one to identity an individual is not yet known. but it lias been established that there are characters in the general disposition, numbher, arrangement. and position of these serratons, which remain comparatively constant in the writings of the same individual with differcent pens, ink, and paper, and under different mental and physical conditions, and which therefor cannot have other source than peculiar motions imparted to the writing instrument and. writing fluid by the writer.

Inke-Tables for the determination of the characters of inks by qualitative chemical tests have been published by Robertson, Hofmann and others. To the same end special devices have becn made to solve questions relating to the composition of inks without affecting the document or writing fluid: Doremus by means of the spectroscope. Frazer through absorption of light admitted to and

Fig. 4.-A tracing by camera lucida of the margins of an ink line drawn by a pen fixed to a ruling machine. It ameters. There is an absence of the irregularities al. ways found in the margins of ink lines made by the human hand.
antry in the first half of the 10th contury, Dy an accomplished anthor who not only could illustrate his own marrative, luut conld write songs for it and furnish music for them as welt.

Han'ford, Cal., city and connty-seat of Fings Connty: on the Southern Pac. and Santa Fe R.R.'s. about 30 miles sontheast of Fresno. and 250 miles sonth of San Francisco. It was first settled in 1871 and was made a city in 1801. Its chief industries are agrieulure. fruits, raisins, and livestock. It has also flour and planing mills, milk condensing, facinty, butter and cheese factories. etc., and is a di-tributing centre for food products and ciothine sent to mining sections in the ricinity. The city govermment is by a Board of Trustess, the board chonsing its own chairman. The city has six banks, and a Carnegie Lihrary. Pon. (Ino3) 3.000. Fred A. DODGE

Editor 'The Hanford Scutinel.)

Hanfstängl, Franz, frănts hănf'stengl, German lithographer: b. Rain, Germany, 1804; d. 1877. He studied art at the Munich Academy, and in 1820 went to Dresden where he began his series of lithographic copies of pictures in the Dresden Gallery, which he completed in 1852. During the latter part of his life he devoted himself to photography and kindred processes.

Hang-Chow, häng'chow, China, the capital of the province of Che-kiang, on a plain at the southern terminus of the Imperial Canal. and within two miles of the head of the estuary of the Tsien-tang River, about fo or 50 miles from its month, nearly 100 miles southwest of Shanghai. It is a strongly fortified city of obiong form, surrounded with high well-built walls about eight miles in circuit, enclosing many large vacant spaces. The streets are well paved and elean, and there are numerous trimphal arches. monuments to great men. and gorgeous Buddhist temples. The stores and warehouses are noted for their size and the quantity and quality of the goods displayed. Nore than 100,000 persons are employed in silk mamufactures, and among other industries are the weaving of cotton. manufacture of tapestrics, carsing in ivory, the making of lacquered warc. fans and screens, etc. The houses generally are one story high. A large portion of the inhahitants reside in the suburbs, and in boats on the waters around them. The governot-general of Che-kiang and Fe-kien resides in thic city, and also the governor of the province. With their courts and troops, in addition to the sreat trade passing through, and its activity as a cenire of literary and ecclesiastical hif, 11ang-Chow is one of the most important and richent cities in Clina. The river, opposite the ciry, 1 s ab mit four miles broad at high-water, and is crowdicd with ressels of all descriptions, being the channel by which vast quanitics of merchandise are received from and exported to the sotithern provinces. The extensive Lake of Si-hon. "liest Lake," close by the city is celebrated for its natural and artificial beautics. Chapu. the sesport of llang-Chow, is zo miles down the rive. Hang-Chow is the celebrated "Kinsai" of Marco Polo-the capital, in his time, of Southern China. It was captured by the Taiping rethels in 186s, and deserted by all its rich or respect-
able inhabitants. A disciplined iorce of Chinese, under the command of French officers. united with the Imperialist troops. recap:ured the city on 31 March 1864. By the Treaty of Shimonosehi (18og) it was opened to foreign trade, and a district platted for a foreign settement. Pcp. estimated at 000,000 .

Hanging, a icrm of capitai punishment indicted under the common law : also a niede of death sometimes lawiessly visited upon ${ }^{3}$ person, or occurring irom accident, or by suicide. In cases oi hanging. death seldom results from pure asphyxia. but is usually in some degree owing to apoplexy and injury to the spinal cord. In attempted suicide, bieeding fonm the jugulat vein and artificial respirator may be iried for resuscitation. In difficuly of inducing artificial respiration, iaryngctory and iracheotomy should be periomed, and the lungs inflated through the opening ul the reck. In judicial hanging. the nonse ought to be so adjusted as to produce immediate dislocation of the spinal column, death in that case being instantaneous. In New lork State electrocution as capital punishment is substituted for death by hanging, and it has to some extent been tried in other Siates. (See Eiectricity, Catise of Death by.) In several American Sta:es infiction of the death penalty is fobbidden by law. Hanging, diawing, and quartering wete once the punishrrent of treason in Eng'and. See Capital Pexishment.

Hanging Rock, Battle of. fousht 6 Aug. ${ }_{S}^{1-S o}$. It occurred on Hanging Rock Creek: S . C. between Col. Sumter's Americans. s me Soo in number, and about as many Loyahists commanded by Maj. Carden. Aiter driving back the Loyalists, the Americans, beconng disorganized while plundering the enemy's camp. were in turn put to light. The American loss is unknown: that of the Loyalists, in killed. wounded. and missing. is recorded as 209 . Consult Lossing. 'Field-Book of the Anterican Revolution.'

Hankow, hän-kow' (Mouth of the Han) China. a town and river-port in the province of Hu -peh, at the junction oi the Han with the lang-te-kians, kis miles above the mouth of the lang-tee, which is navigable fir large vessels up to the town. On the ofpunite bant of the Han is Hanyarg. on the other side of the lang-tee is Wuchang, the three t-wether frming one immense city. In addition there is a large fleating population, the Han heng deneey crowded with junk iir about hali a ruie above its mouth. In $\mathrm{IN}_{\mathrm{E}}^{\mathrm{E}} \mathrm{-}$, the city was almost intally destreyed by the Taipings. The po it was npelled to ioreign trade hy the Treaty nit Tient-n, ratifed in isto: and wron became the chiei empnrum ior the tea trade, it the central pronsinces. t er ncessich of about no acres of land apart from Chinese jurisdiction is laid, wht like an English mwn. The reirdents of the Briti-h concessin are formed int a mennicipalny, with a tuncil emp, wered to levy taxe-. There are alin German. French, and Rusian settements. The fircien rade of this mirt is ne of the most impertant in China. The impirts are It ronght almont exclusively irore Chincee prots (ahout one haif from Shanghai), whd consint par:ly of forign griduce such as cottons, woolens. and puem: nartly if native ir luce, wh

Hanina, Marcus Alonzo, American politician: b. New Lisbon. O.. 24 Sept. 1837 ; d. 15 Feb. 1904 In 1852 his family moved to Cleveland. where he was educated in the public schocis and he also took a year's course of study in Western Reserve University. He left college to enter the grocery trade with his father. and lacer had entire conirol of the busines. In IND, he became a partner with his father-in-law in the firm of Rhodes \& Co., ergaged in handing coal and iron: he soun mastered the details of the business. greatly extended the woth of his rizm. and was the irst to build steel steam=hips for the lake trade. In $18-5$, he became the controlling partner of the firm. the name of which was changed to MI. A. Hanna \& Co.. and acquired large interests ir lake navigation. He also was Ens a time manager of a theatre. and president of the Lnion Xational Bazk of Cleveiand, and of the Cleveland City Reilway Co. In tiso he orgenized a business men's political club. and irom that time was actre in politics. In 15it he was sent as a delegate to the Republican National Convention, and in the next convention (IS88) was / hm Shermans poiitical manager. He first gained a national reputation. when he obrained the nomination of Mchinley int President at the Convention of isoo, and as chairman of the Republican national committee, conducted the Presidential campaign, which resulted in a large plurality ior Mckinlev, In this campaign he adopted the method: which had made him successiul in business. studying the situation and it needs, and carefully attending to details. In teot he was appointed United States Senator to succeed Sherman. who resigned beicre the completion of his term of six years. In tiges he was elected to a full term, and in tgat re-elected. but died befine taking his seat. In 1900 he again conducted the Presidential campaign. As a large employer of labor. Senatc: Hanna had a number of questions to settle with his own employees. and as a rule won their respect and confidence by hir faimesis and willingnes to listen to their clams. He was a firm believer in arbitration between labor and capizal. and was active in the crganzation, in tcor, of the National Curic Federatucn, a nom-parti*an organization formed to consider such tepics as trusts. taziff, taxation. eic.. becoming its president, and a member of a permanent committee appointed to consider and sett.e labur disputes.

Han nay. James, Canadian histrian and i. urnalist: 1 . Richtbucto, 1. B.. 22 April 18.42 . Aiter many year of editorial work upon influensial Canadian journals, he was chiei edianrial writer en the Brockly, A Y. Daily Eu't (INS:-) and cditur of the S: John.
 Daily Telesraph (iN22-1000). Since 1002 he b= been , ficial reporter of the New Bruniwick P- viseial Parliarre"t. Beside= report: of the Nuw Bron-wick Supreme Court, he has prb-1-hed 'Nine rears a Captive' (18-5): 'Hisa lcadia' (ts,0): "The His?nisy of the L, ia int' (IN) 3): 'The Strey of the Qucen'= Rat gers in e tmerican Revolution' (1883) 1 and Times "if Sir Lennard Tilley' (qv.)处: 'The Hiventy ni the War of $18(2)$. idev Pronswick: its Resources and Advantas : 1 1100

HANNIBAL

Han'nibal, Carthaginian soldier: b. 247 n.c.; d. probably 183 в.C. He was the son of llamilear Barca (q....) and at the age of nine his father made him swear at the altar eternal hatred to the Romans. Ile was a witness of his father's achievements in Spain; but IIamilcar having fallen in battle in Lusitania, in 228 t.c., and his son-in-law Hasdrubal having been appointed to succedl him, IIamibal returned home. At 22 he returned to the army at the reguest of llasdrubal. The soldiers perceived in him the spirit of I Iamilear, and in three campaigns his talents and his conrage were so conspicuous that the army, on the murder of Hasdrubal in 22r, conferred on him the chief command by acclamation. In 219 b.c. he laid siege to Saguntum, a town which had concluded an alliance with Rome. In eight months Saguntum fell. The Romans, alarmed by this, seut ambassadors to Carthage to demand that Hannibal should be delivered up. The demand being refused, they declared war: Hannibal raised a powerful force, and conceived the design of attacking the Romans in ltaly. After providing for the security of Africa, and having left his brother Hasdrubal with an army in Spain, he began his march with 90,000 foot-soldiers, forty elephants, and 12,000 horsemen, traversed Gaul in the depth of winter with incredible rapidity, and reached the foot of the Alps. In nine days he crossed these mountains, probably by the pass leading over the Little St. Bernard. The conquest of the Taurinians and the capture of their chief city enconraged the people of Cisalpine Gaul to join him. These auxiliaries would have been still more numerous had not Publius Scipio approached at the head of a Roman army, which had landed at Pisa. On the banks of the Ticinus the armies engaged, and a clarge of the Numidian horse ieft Ilannibal master of the field (218 B.c.) Scipio avoided a second battle, and retreated heyond the Trebia, leaving the strong town of Clastidiun in the enemy's hands. Meanwhile Sempronius arrived with a second army, but Hannibal soon provoked his impetuons adversary to an engagement, disposed an ambuscade near the Trebia, and surrounded and destroyed the Roman forces. The Romans lost their camp and 26,000 men. Hamibal now retired to winter quarters among his allies in Cisalpine Gaul; and at the opening of the mext campaign (217) fonnd two new armies awaiting his approach in the passes of the Apennines. Ile determined to engage them separately, and destroy Flaminins before the arrival of his colleague. He deceived him, therefore, by feigned marches crossed the Apennines, and traversed the Clustan marsh. He then employed every means to compel Flaminius to a battle. He wasted the whole country; feigned a marel to Rome; but suddenly formed an ambush in a narrow pass surrounded by almost inaccessible rocks. Flaminius, who followed him, was immediately attacked. A bloody engagement took place near the Lake Trasimenus. Assailed on every side, the Roman legions were cut in pieces. Hannibal now armed his soldiers in the Roman manmer, and marched into Apulia, spreading terror wherever he approached. Rome, in consternation, entrusted her safcty to Fabius Maximus, the dictator, who determined to exhaust by delay the strengtl of the Carthaginians. He attacked Hannibal with his own weapons, and hung upon him everywhere with-
out attempting to overtake him, convinced that the Carthaginians conld not long hold a desolated territory. Ilamibal marehed into the plains of Capua, with the design, of separating the terrified cities from their alliance with the Romans, and drawing down Fabius from the mountains. But suddenly he found himself in the same toils in which Ifaminius had perished. Shut up between the rocks of Formize, the sands of Liternum, and impassable marslies, he was indebted for his safety to a stratagem. Having collected a thousand oxen, and fastened burning torches to their horns, he drove the anmals at midnight into the defiles guarded by the Romans. Panic-struck at the terrible sight, the Romans abandoned the heights, and Hannibal forced his way through their ranks. Minntius Felix, master of the horse. was then made colleague of Fabius in the dictatorship. Eager for combat, he fell into an ambush at Geronium, and would have perished but for the aid of lrabius. After this campaign the other Roman generals seemed unwilling to trust anything to chance, and imitated the delay of Fabius. Ilannibal saw his army slowly wasting away, when the new consul Terentius Varro, an inexperienced and presumptuous man, took the command of the legions. Hannibal had occupied Came, and reduced the Romans to the necessity of risking an engagement (216), Emilius Paulus, the colleague of Varro, wished to put off the battle, but Varro chose the day of his command, and directed the attack. The Roman ammy was destroyed, and Hannibal now marched to Capua, which immediately opened its gates. In 215 Hannibal sustained. at the hands of Marcellus, a repulse before Nola - the first check which he had received in the open field - but in 212 P.C. made an important acquisition in the capture of Tarentum. Capua, however, was invested by two consular armies, and was on the point of surrendering. Hannibal marehed to Rome, and encamped in sight of the capitol, 2It B.c.; but the Romans were not thas to be discouraged; Capua fell. This success gave the Romans a decided superiority, and nearly all the people of Italy declared in their favor. Held in check by the consul, Claudius Nero, 1lamilaal could not effect a union with his brother Ilasdrubal, who had set ont from Spain with reinforcements, but after having passed the Apemnines was attacked and defeated by Nero on the Metaurus in 207. Hasdrubal himself fell, and lis bloody head was thrown into the camp of Slannibal. The latter then retired to Bruttium, where, surronnded with difficulties, he yet maintained the contest with inferior forces against victorions armies. But Scipio now carricel the war into Africa, and Hannibal was recalled to defend his country. He reluctantly cmbarked his troops, and in 203 left the country which for r 6 years he had held in spite of all the efforts of Rome. He landed at Leptis, gained over a part of the Numidians, and encamped at Adrumethm. Scipio took several cities, and redued the inhabitants to slavery: Pressed by his countrymen to come to a decisive engagement, Hannibal met Scipio at Zama, and was defeated with 20,000 loss. Peace was concluded in 201 n.c. Hanmibal, accused by his enemies of stirring up Antiochus the Great to war against the Romans, went to Ephesus, to the court of Antiochus. In the ensuing struggle with Rome, Antiochus was signally defeated, and obliged to
concit:de a peace. onc of the terms of which was that Hamibal should be delivered up. HanHibal, again obliged to flee. went to the court of Prnsias. king of Bithynia. Prusias, to whom tine senate had sent ambassadors to demand the person of Hannibal. was on the point of complying with the requisirion, when Hannibal prevented the disgrace by swallowing poison, which he always carried about in his ring.

Hennibal, Mo., city in Narion County, on the Mississippi River, and on the Missouri. K. \& T., the Chicago. B. \& Q., the Wabash, and the Saint Louis, K. \& N. II. R.R.s : about 90 miles northwest of St. Louis and is miles south of Quincy. Ill. Hanmibal was sertled in 1819 and incorporated in I839. It is situated in an agricultural region. The chief manufactures are foundry and machine-shop products, flour. lumber. cigars. lime, cement, stoves. car-wheels, shoes. and furniture. It is an important trade centre, as it has the advantages of several railroads and steamboat connection with the cities and towns on the Mississippi. A steel bridge for railroad cars and wagons crosses the river from Hannibal to East Hannibal. Ill. The trade is princıpally in tobacco. lumber. flour, potatoes, ready-made clothing, dairy products, and the city manufactures. It has a free circulating library, public and parish high schools, the Douglas colored high school, and a number of fine public buildings. The city charter of 1845 revised in 1853. provides for the annual election, by the people, of a mayor and a certain number of the members of the school board. The officials of the administrative departments are under the control of the mayor. The electric-light plant is owned and controlled by the city: Pop. (1900) $12,-80$.

Hanno, hăn'ú, or Anno, German medixval prelate: b. not earlier than 1000 ; d. Siegberg. near Bonn, 1075 . The emperor, Henry JII., made him his chancellor, and presented him to the archbishopric of Cologne. to which he was consecrated in 1056 . After the death of Henry III., Hanno made himscli master of the person of Henry III.'s young son IIenry. IV.. and sccured for himself the administration of the emfire (1062). His energetic government and his holy life, his paternal care for lis sec. his zealous reformation ni monasteries and ioundation of churches. gained him the character of a saint. The hymn in his praise is by some thought to have heen writen sonn after his death: hy others about 118.3. It is nne of the most important monmments of the carly Ferman national literature. The best version of it is to be found in Muillenhoff and Scherer's 'Denk7läler deutscher Poesic and Prosa' (I864).

Hanotaux, Albert Auguste Gabricl, äl-bär $\bar{\jmath}$-gúst gä-brè-è ä-nō-tü, French nolitician: b. Beaurevilr, Disne, IS Nov. 1853 . He chose for cimself the profession of the law, tnok a ceientific course in the Ecole des Chartes. and afterward became a teacher in the Ecole des Hantes Etudes. In 1870 he received an appnintinemt in the French forcign office; in is8s hecame a member of the cabinct. and was sent to Constantinople as ambassador in 1885 . From 1886 to 1889 he was republican deputy: and in May 1804 reccived a portfolio in the secnnd Dupu:y cabinct. He has puhlished: 'Les Villes Retrouvées' (1880); 'Origines de l'Institution des

Intendants des Provinces' (iS\&) ; 'Henri Martin. Sa ie. Ses Euvres. Son Temps ${ }^{\prime}$ (1885); ¿Eitudes Historiques sur le XVIe. et le X'VITe. Siecle en France' (IR86): 'Histoire du Cardinal de Richelieu' (I893).

Han'over, Germany, the northwesternmost province of Prussia, prior to i 866 an independent kingdom. It borders on the North Sea. and has an area of $14.8 \% 0$ square miles. In the south the Harz mountains attain an altitude of over 3.000 feet: the rest of the country is an alluvial plain with a gentle slope to the sea. The Elbe on the northeast boundary, the Ems, and the $1 \mathrm{l}^{\circ}$ eser, with its tributaries, the Leme and Aller, are the principal rivers. Coal and lignite, rock salt, iron. copper, zinc, silver, and gold, are found in the mountainous districts, and there are large peat beds in the morth. Over one fourth of the area is arable land. producing large quantities of grain and flax. The keeping of bees is generally practised on the moors, and a breed of superior cattle is raised along the marshy coast land. Forests of hardwood and pine, extensively used in smelting, occupy one sinth of the surface. The manufactures are extensive, and include iron goods. machinery, woolens, linens, cottons, leather paper, beet-root sugar. beer, spirits, and numerous domestic commodities. Hanover has over 1,500 miles of railroads, numerous canals, and an extensive traffic is carried on at its several ports, among which are Geesteminde. Emden, and Harburg, although practically its chief port is the free city and port of Bremen (q.\%.). The capital is Hanover (q.v.). For administrative purposes, the province is divided into the six districts of Hanover. Hildesheim. Lüneburg, Stade, Osnabrück and Aurich. The highest court is in Celle. The province sends 36 members to the Prussian Chamber of Deputies, 10 to the Upper House, and 19 to the German Reichstag. Education is compulsory and free: chief of the higher institutions of learning is Göttingen Lniversity. The majority of the inhabitants are Lutheran Protestants. Roman Catholics inhahiting Hildesheim and Osnabrïck constitute about one seventh of the pepulation. Hanover was long connected with the Brunswick family, a scion of which, Ernest Auguatus, in 1692 , became the first Electer of Hanover. He married the daughter of the Elector Palatine, granddaughter of James I., and niece of Charles I. of Fngland. He was succeeded in abod hy his son George Louis, who in accordance with the Act ni Scttlement (q.s.), hecame Genrge I.. king of England, at the death of Quecn Anne in 1\%I4. The connection with England continued during four reigns, and in IRIf the Congress of Iienna raised Hanover 10 the rank of a kingdom, Genrge IV. and William 11. thus being kings of Great Britain and of llanover. On the accession of Queen Victoria, however, by the Salic law, the Hanoverian crown pasced to the nearest male heir. Frnest Augustus, Duke of Cumberland, and at his death in 1851 to his son George V'. In i866 Hanover sided with Austria in the Austro-Prussian contest ; the capital was occupied by Prussian troops: the kinc lost his chrone, his estates were sequestrated, and Ilanover was annexed to the Prussian dominions. Pop (1000) 2.590.336.

Hanover, Mass. (1) Village in the town of Hanover in Plymouth County ; on a branch of the Ncw York, N. I1. \& H. railrond; about

HANOVER - HANOVER COLLEGE

10 miles east by north from Brockton and 25 miles southeast of Boston. It is the scat of Hanover Acadeny. It is situated in an agricultural region, and the chief industries are connected with agricultural prolucts. Its chief manufactures are tacks and nails. (2) The town of Hanover contains several villages, and the chief manuiactures are shoes, nails, tacks, and dairy products. Pop. of the village is about 420 ; of the town 2.200.

Hanover, N. H.. town in Grafton County; on the Connecticut Ruver, and on the Boston $\&$ M. railroad, about 72 miles northwest oi Concord. It is situated in an agricultural region and its industries are comected chictly with farm products and lumbering. It is a summer resort, but is known principally as a college town. being the seat oi Dartmouth College (q.v.). It contains also the Mary Hitchcock Memorial Hospital. Pop. (1900) $\mathrm{t}, 8 \mathrm{R}_{4}$.

Hanover, Pa., borough in York County; on the Western Maryland and the Pemnsylvania R.R.s; abont 32 miles south of Harrisburg. It was settled about 1,29 and incorporated in 1813 . It is in a rich agricultural section of the State, and nearby are iron-ore mines. The chief manufactures are shoes, machine-shop products. cigars, carriages and wagons, gloves, and leather, Hanover is the commercial centre of a considerable part of York County; the trade is largely in agricultural and dairy products, the manufactures of the borough, and in live stock. The government is vested in a burgess and borough council. Pop. (t 890) 3.746: (1900) 5.302.

Hanover, Prussia, the capital of a prorince, and formerly of the kingdom of Hanover, in an extensive plain northeast of and dominated by Mount Linden, at the contluence of the Inme with the Leine, 44 miles by rail west by north of Brunswick. It consists of an old town, intersected by the Leine, and of various modern suburbs. The old town is unattractive. but the new quarters are regular and well built. The principal features are the Narkt church, of antique appearance; the Kreuz church: Schloss church, a handsome structure, with an altar-piece hy Cranach, and some curious relics collected by Henry the Lion; several handsome modern churches; the palace (1036-40, rebuilt since 185才), now a royal Prussian residence: the iormer palace of King Ernest Augustus (in government occupancy) ; the royal library : the museum of art and science: the restored townhouse ($5430-55$) ; the new town-house (formerly palace of George V.) ; the Kestner musenm of antiquitics: the provincial assembly house: the Franco-German war monument: the Waterloo monmment: various schools, among which is the technical high-school, a remodeled building of great extent, formerly the Welfenschloss (palace of the Guelis), and the Schloss--1Ferrenhausen, formerly a royal residence. Trade and industries are important, the latter including railway works, machinery, iron castings, cotton. linen, tobacco. lacquered wares. lamps. glass. chemicals, etc.: breweries and distillerics. The city has clectric street railroads.

Hanover is first mentioned in 1163 . It joined the Hanseatic League in $\mathrm{T}_{1} \mathrm{R}_{1}$, and received the Reformation in 15.33 . It became the residence of the Dukes of Brunswick-Lineburg, and the capital of the principality in 1636 . In 4866 the
kingdom was aboorbed by Prussia, and since 1890 the city has held the postion of a royal residence ant capital. Sir William 1 Lerschel, the two Schlegels, and lffand were born here. Pop. (1900) 235.049, with suburb. 302.054.

Hanover, Pa., Cavalry Action at. During the Gettysburg campaign Gen. Stuart, commanding the Confederate cavalry; was ordered hy Gicn. Lee to obscrve the movements of the Army of the Potomac and harass its rear should it attempt to follow the Confederate army and pass into Maryland. Leaving two brigades south of the Potomac, to guard the passes of the Blue Ridge. Stuart. with the rest of his command, crossed the Potomac at Sencea Creck, 20 miles north of Washington, on the night of 27 Junc 1863 and, learning that Ilooker had crossed the river. marclled north by way of Rockville, captured a train of 125 wagons and 400 prisoncrs between Rockville and Washington, struck the Baltimore \& Ohio Railroad at Sykesville and Hood's Mills, and. ascertaining that the Union army was marching from Frederick northward, endeavored to get ahcad of it, reaching Westminster at 5 P.M. of the 2gth, where he struck a squadron of the First Delaware cavalry, which offered a stubborn resistance, but was finally dispersed. and Stuart, continuing his march, bisouacked at Union Mills, about midway between Westminster and littlestown. Hearing that Union cavalry was at Littlestown, and that Early was on the Susquehanna. he marched by crossroads for Hanover, on the morning of the zoth and, at io o'clock, his head of column reached that place, 16 miles east of Gettysburg, and attacked the rear and flank of Kilpatrick's cavalry division, as it was passing through the town from Frederick and Littlestown. in advance of Meade's central column. His first attack threw the rear of Farnsworth's brigade into confusion, hut Farnsworth rallied his men. Custer's brigade was recalled and thrown into action and, after two hours' fighting in and around the town. Stuart was driven back on the Littlestown road, having lost nearly 100 men. Kilpatrick reports his own loss as 59 killed and wounded, and 123 mis-ing. had suart was now in a perinus position: he had thrust himself unwittingly between Kilpatrick's cavalry and Meade's main body; Gregg's cavalry divisim was moving torth or his right, but he extricated himseli by marching all night over a circuitons route through Jefferson to join Early at York. The latter, however, was on his way to frettysburg, and Stuart passed almost within sight of him, without knowing it. Finding that Early uns not at York. Stuart continued his march in Carlisle. hoping to find Lee's main hody there, but found the place nccupied by Linion tromps, and heard that Lee was concentrating at Gettyshurg, where by marching night and day, he joined him in the afternoon of 2 July. Sce Getrisberg. Cas palgs and Buttie of.

E. A. Carman.

Hanover College, at Ifanover, Ind; founded in 1828 . under the auspices of the Presbyterian Church, as Hanover Icademy. It was chartered as a college in 18.33 . Women have been admitted since is8o. The regular departments are letters, arts, science, law, philosophy, and divinity: also a course for teachers. No charges are made for tuition. In 5903 the college
reported if instructors. 160 students, and about 17.000 volumes in the librasy. The endowment fund is over S200.000, and the ammal income is about $\$_{1}$ S.000.

Hanover Court House, Engagement Near.

 On 21 May $180 z$ Gen. NeClellan had marched the Army of the Potomac up the lork peninsula to the banks of the Chickahorniny, ; to 12 miles distant from Richmend. On the 26 th he heard that R. H. Anderson's Confederate brigade and Stuarti: cavalry were near Frederickiburg, and that another bodr. Branch's brigade, was in the vicinity of Hanover Court House. If miles north of Richmond, to his right and rear. These bodies threatened his communications, and were in position to reiniorce Jackson, in the Shenandoah valley. or to oppose McDowell. whose advance was then eight miles south of Fredericksburg. Gen. Fitz-John Porter was ordered to clear the enemy from these positions and destroy the bridges over the South Anna and Pa munkey rivers. Warren's snall brigade had been aiready detailed to destros the bridges had destroyed all means of communication over the Pamunkey as iar as Hanover Courr House, and was then posted at Old Church. On the morning of the 2 zith Warten moved toward the court house. on a road running parallel to the Pa munkey. Porter left lew Bridge at 7 AM. with Morell's division and Enory's cavalry brigade and. marehing by way of Mechanicsviile northward toward ilhe court-house, about noon his cavalry and the Twenty-fith Jew York iniantry, enicountered a portion of Branch's brigade. supporting two pieces of artillery, attempting to hold the road leading to the courr-house. A Union battery was brought up and Butterfield's brigade deployed, which charged and drove the Confederaies from the field capturing one gun. A part of the Twenty-fith New York was captured by the Ceniedera:es. Supposing that the Coniederates had all retreated in the direction of Hancrer Coutt House. Porter pursued. the cualry mater Emory, and the Seventeenth lew lork, overtaking and capturing a large number of the Twenty-eighth North Carolina. Efrn nearing the function oi the Ahland and the Court Hinue roads, a part of Martindale's lirigade was sent toward Ashland :o guard that flank aga:nst an approadi irom Richnond and to deeroy the railroad running to that city. Xear Peake's station Martmdale ran int Branch: brigade, was immediately attacked. and wos driven back it me ditiance. When Pirter. whose advance had reached 11 anover Court House, heard that Martindale had been attacked, he faced about his entite colum, reached Martiadale. struck Dranch in his leit and rear, and routed lum. Branch retreated to A-hland and i rmed a junction with Andersnn': 1 rimade. which had iallen back from McDowe'is finme. Aiter detroying the ralre ad in several place and ofening the way in AcDowell's advance irm Fredericksbure. Porter reeurned to hife old camp- on the night of the zoth. The Uninn fass in the engagement of the 27 th. was 62 killed, 223 wounded, and :o missing. The Confederate loss was $\bar{i} 3$ killed. 102 wrunded. and $i 30$ pri-oners, oi whom alout 152 were alon wounded Consult: 'Official Records.' Vol XI.: Wehb, 'The Penin-ula': 'MeClellan's Own Stary': Allan. 'The Army of Northern Virginia'; The Century Company's'Battles and Leaders of the Civil Was,' Vol I1.

E. A. Carmas.

Hanover. Treaty of, an alliance between England. France, and Prusia, made in September 1725 for the purpose of mutual assistance. in opposition to that between Anseria and Spain.

Hansa, or Hanse. See Hinseatic League

Hanseatic (hăn-sè-at'îk) League, Hansa, or Hanse. a coniederacy of certain cities of northern Germany for mutual protection, especially in matters of commerce: ior the extension oi trade, and of rights and immunities received from sovereigns. and which had suffered curtailment. The union was formed in the $1^{\text {th }}$ century, at a time when sea and land swarmed with pirates and sobbers. and German trade. no longer guarded by the privileges of armed atiendants, was exposed to many dangers. while government had degenerated into a power for extorting taves without giving protection.

The first alliances known to have been concluded are those between Hamburg and Lübeck (1241 and 1255) to keep open the road across Holstein connecting the North Sea with the Balcic. and between Lübeck. Rostock. and Weimar in r2so for defending thermselves açainst the pirates. About the same time a similar league was concluded between the Westphalian towns, Münster, Dormund. Soest, and Lippstadt. When a wider union came to be formed for like purposes, the name of Hanso, signixying a league, which was at first applied to any such coniederacy: survived exclusively as the name of that influential league. During its most flourishing period it embraced 90 towns. scattered over the whole length and breadth of Germany, including Itolland. Its organization was very loose. the t. wals of which it was made up being at first divided into three and. after the rorh century, mio four provinces, each with a chief town. These divisions had, however. little more than a ge graphical significance. The town of Lubeck, which already held an important rank. from the fact that it was the highest court of appeal ior all those towns which were govemed by the L.iibeck law. was recognized as the chief town of the league. Here assembled the deputies of the other Hansc thwns to deliberate on the alliairs of the confederacy: the decrees of the diet had no effect unless they received the sanction of the separate towns.

In the tith contury the league everywhere attained a high political importance. and gave rise to the develonmemt of that commercial folicy which has since become intimately connected with all fulitical relations, but of which the sovereigns on that time had little idea. Kings and princes were, in reality. more deperdent on the league than it was on then. The extensive carrying trade oi the Hanscatic League was a great source ni wealth and at length there was no mart in Europe which was py gradually drawn within the circle of its inturnce. Encland. Denmark: and Flanders a meluded treaties with the league ior the extomion of their commerce. It undertouk to provide for the security of commerce on the Baltic and North seas. In the country under its immediate influence it constructed canals, and introduced a uniform system of weights and measures.

But the prosperity of the Hanse towns was uxiturally dependent on the continnance of the circumstances which gave rise to it, and when circumstances changed, the league was destined to declinc. When the rontes by land and sea were no longer insecure; when princes learned the advantages of trade to their own states, and turned their attention to the formation of a naval force of their own, and the encouragement of navigation; when the inland members of the confederation perceived that the great scaport towns had a separate interest of their own, and used them principally to promote their own ends: then the dissolution of the Hanseatic Leaguc was evidently approaching. There remained at last as active members of it only Hamburg. Linncburg, Luibeck, and the towns in the neighborhood (Wismar, Rostock, Greifswald, Stralsund, whose interests were identified with those of Libleck. The league existed no longer as a political power, but merely as a loose association of towns for commercial purposes.

In England, during the reign of Quecn Elizabeth, the leaguc lost its privileges by its refusal to grant complete reciprocity. About 1614 there remained only it towns which contributed to the support of the league, and had a voice in the management of its affairs. These were: Litibeck, Wismar, Rostock, Stralsund, Greifswald. Stettin. Danzig, Magdeburg, Brunswick, Hildcsheim, Liuneburg, Hamburg, Bremen. and Cologne. The Thirty lears war, which destroyed the prosperity of the German towns generally, gave the death-blow to the league. At the dict of 1629 it was entrusted to the cities of J.iibeck, Bremen, and Hamburg to consult for its general interests, and in 1630 these towns concluded among themselves a closer union, which was renewcd in 1641. After the Peace of W'cstphalia (1048) repeated but vain attempts were made to bring the league together again, and a fast diet was held in 1669. Hamburg. Lübeck, and Bremen still retain their independence, and now form separate constituents of the German empire.

Hansen, hän'sěn, Gerhard Henrik Armauer, Norwcgian plysician: b. Bergen, Norway, IS4. He was educated during boyhood in the cathedral schools of his native city, afterward entered mpon the study of medicine, and was eventually appointed resident physician in the Rigs Hospital of Christiania. He was afterward government modical officer for the Lofoten fisheries, but did not reach the field of his fame until he was appointed in 1868 to the post of assistant plyysician at the Bergen Leper Hospital. From this time forth he devoted himself to the study of leprosy, and following the lines laid down hy Virchow, traveled from one to another university of Europe, continuing his investigations. On his return to Norway the Niedical Socicty of Christiania voted a sum of money to pay the expenses of his further researclies. Ile at last was enabicd to demonstrate the fact that leprosy was contagions. Continuing his investigations he discovered at last the leprosy bacillus in unstained preparations. Later it was stained and became known as Hansen's bacillus (1873). He was not successful in cmploying the bacillus for purposes of inoculation with a preventive object; but on the basis of his contagion theory, legisiation has
been emabled to check to a considerable extent the spread of the diseasc.

Hansom, or Hansom Cab. Sce Carkiage.

Han'son, Alexander Coutee, American journalist and politiclan: b. Maryland 178 $^{8 / 1)}$: d. 1819. After being gradnated at St. John's College, Annapolis, he adopted journalism as a profession, and in 1812 his (ffice was wrecked by a mob on account of an article attacking the Madison Idministration which appeared in the 'Federal Republican,' of which he was editor. He was elected to the lower house of Congress in 1813 . and from 181% until his death had a seat in the Senate.

Hanus, Paul Henry, American educator:

 b. Hernisdorf-unter-dem-Kymast. Prusia, it March 1855. He came to the United States 14 childhood. was educated at the Linversity of Michigan and has been professor of the history and art of teaching at Harvard from I8ol. He has published 'Elements of .Determmants' (1886); 'Geometry in the Public School' (1893) ; 'Contemporary Educational Problems' (1899).Hap'good, Isabella Florence, Amcrican author and translator: b. Boston, Mass., 21 Nov, 1851. She has written 'The Epic Songs of Russia': 'Russian Rambles.' etc.. and is widely known by her translations from the Russian of Tolstoy, Gogol, etc., and she has also made important translations from the French and Spanish.

Hapgood, Norman, American journalist: b. Chicago 28 11arch i868. He was graduated from Harvard in 1890 , and the Harvard Law School in 1803, and has since become well known as a keen, discriminating essayist and dramatic critic. He has published (Literary Statesmen and Others' (1897); 'Daniel Webster' (1800): 'Abraham Lincoln' (1899); 'The Stage in America' (1901).

Hapsburg, hăps'bėrg (Ger. häps'boorg) (properly Habsbcrg), the jmperial house of Austria-Hungary, so named from the ancestral caste, in the canton of Aargau. Switzerland, on the right bank of the Aar. The castle was built in the inth century by Bishop Werner, a descendant of Ethico 1., a comnt of Alemamia, in the zth century. It stands on the Wipelsherg. a sleep rocky situation, whence the mame Habichtsburg (Hawk's Castle). The proprictors of Hapsburg became at a later period comms. of Hapsburg and gradually extended their territorics. Werner If. who died in 1oofs. is said to have been the first to assume the title. After the death, about 1232. of Rudolph H1.. the fourth in succession from Werner II., the family divided into two branclics. the fomuler of one of which was Albert IV... and that of the other Rudolph Iff. The later is known as the Haps-burg-Latuffenburg line. which became extinct in the direct male line in 1408. A younger son of Rudolph, called Eberhard, founded the Kyburg branch of the Hapslburg-laufficuburg line, which did not become extinct till 1415 , and Godfrey, al grandson of Ruthoph, who settled in England in the 13 th century, there became the founder of the Fielding family, to which the Earls of Denbigh belong, and of which the novelist Fielding was a member. The line descended from Afbert 15 . is that to which the historical celeb-
rity of the house is almost entirely due. In $12_{1}^{\circ} 3$ Rucic'ph. the son of Albert IV... was chosen emperor of Germany or Holy Roman Emperer. He is the founder of the relgring house of Austria, which is of the line of Hapsburg-Lorrame. Frem Rudolph to Charles VI, the Austrian monarch: were of the Hapsburg male line. Mlana Theresa. who succeeded Charles VI., married Francis Stephen of Lorraine, who in 1,45 was chosen Emperor of Germany. Francis IL.. the third emperer of Germany of the hne of Haps-burs-Lorraine, was the last who bore that titie tiil the estabishment of the new empire, the last of the so-called "Holy Roman Emperors." He changed it in ISOS for that of Emperor of Austria. and the present imperial house of Austria continues to represent that line. From the Emperor Rudolph was also descended a Spanish dynasty which began with the Empeoor Charies IV. (Chatles I. of Spain), and terminated with Charles II. in $1 ; 00$.

Haraforas, or Alfures, names applied in Celebes, the Moluccas, Mindinao, and the adjacent islands to certain native tribes, particularly of the interior, which difier irom the Malays, and have been thought to be perhaps pre-MaIayan aborigines.

Hara-kiri, hăr'a-kir'e, or Seppuku, a mode of inflicting death upon themselves allowed in Japan to criminals of the Samurai or twosworded class as more honorable than public execution. It consists in curring open the body so as io disembowel it, by means of a wound made with one sword perpendicularly down the front and another with the other sword horizoatally. Till recent times Japanese of the twosworded class who had been guilty of any crime irequently resorted to this mode of killing thermselves before their guilt had been proved, and it was regarded as honorabie in them to do so, indicating a strong sense of shanle. Sometimes they were commanded to put themselves to death in this manner. Consult: Mitined. 'Tales of Oid Japan' 13 d ed. $18,-5$) : and Chamberlain, 'Things Japanese' (ISgi).

Harald. See Harold.

Haran (Assyrian Kharranu, road), the name ni a desriet of northern Mesopotamia and oi a town situated therein, on the stream cailed Itilab. suheast oi Edes:a. The name is probably derived irom the iact that at this town the trade-routes from Media, Assyria, and Babylonia met to proceed al. 7 g the a.me highway In the coast ni Cilicia. Hiran is mentimed in the O!d Testament in Gen. xi. 3i-iz. and Ezekie! wxii. 23. To the Assyrians it was a strategic poit of great importance. In the inscriptio rs reierences to it appear as early as the reimn oi Tiglath-pileser I. (abnut Inoo BC.). An exter:ive commerce centred here. To the rireeks and Rnmans it was known as Carrie (Gk. кd́ppat or Xidoa), Crasius, ti.e Rnman enmmander, was here defeated and clain by the Parthian= during his eaitern expeditinn (53 Be) aird Caracalla ascassinated by the coldiery ni Macrinte (21; a d.). It was of impmetance even in the time nf Arab supremacy, but the serarapher and histnrian Abulfeda (d. 13.3I) speaks $n f$ it as in ruins in his day. It was the seat of an episcopal see in the 4 th certury. Concult Metz, 'Geschichte der Stadt Harran') (ISD2).

Harar, or Adari, a Semiric dialect spoken in the Abysiman province of Harar (q.x.). It includes scme Hamitic words. For an account of it. consult an article by Pratorius in the 'Zeitschriit der Deutschen Morgenandischen Geseilischait,' Vol. XXIll. (180́g).

Harar, Harrar, or Adari, capital of the pronince of Harrar in eastern Abysinia, south of the Gulf of Aden. about I8o miles from the coast. It is situated at an elevation oi 5.500 fect above the level of the sea. The surmounding district is very fertile and produces chiefly cofiee. Cotton is also a large crop, and excellent in quality: There is a brisk trade in gums, ivory, and iruits. Harar was formerly the capital of a small. independent country, ruled by an emir. In 18,6 it became a dependency of Enyt, and later was under Italian protectorate. Aiter the Italian defeat at Adowa in 1896. it passed with the province to Abyssinia. Its first European visitor was Si: Richard F. Burton, who obtained admission there as an Arab in 1855, and described it in his 'First Footsteps in East Aírica, or An Exploration of Harar) ($18 ; 6$). Pop. (roco) fo.000. Consult further the 'Bulletio de i'Etat Major-Genéral de l'Armeé Egyptieme' (18-6). and Paulitschke, 'Harar, Forschunssreise nach den Somal- und Galialandern' (rSES).

Harar. Harrari, or Harrur, the most easterly of the Abyssinian provinces: bounded on the east and north by British and French Somaliland. and on the south and southeast by British East Arrica and Iralian Somaliland. The country is a table-land, with a maximum elevaticn of nearly 11.000 feer. Previous to the insurrection of the Mad Mullah (q.v.) it was a part of the Esyptian Sudan. It was captured by Italy in ISOI, but after the severe defeat of the Italian iarces by the Abrssinians at Adowa 1. March 1896 it passed to Abyssinia. The forcign irade of Abyssinia is conducted largely through Harar.

Haraucourt. Edmond. French poet and novelist: b. Bourmont (Haute-Marne) i85\%. His first work appeared in 1883 and was entitled 'La lésende des sexes, poems hysteriques.' i collection of lis verses was published in ISor. He aliso published 'Amis' (INS:) ; 'Shyiock', (İスO): (Don Juan' (I\&ot): 'Elizabeth' (ISo4). He was awarded the Academy prize ior his poem 'Les Vikirgs' (ISgo).

Harbaugh. Henry, American clersyman of the Gern in Reinemed Church in America: b. near Wayne:borongh. $\mathrm{Pa} ., 21 \mathrm{Oct}$. $1 \mathrm{~S}_{17}$; d. . Mercersurg. Pa.. 28 Dee. 186 -. He studied at Franklin and Marshall College (Mercer=hurg) and at the Mercer-burg Seminary, was ordained in is 4 . and in $\mathrm{R} \mathrm{S}_{4} 3-64$ held pastorates sticcessively, at I-ewisbrrg, Lancazter, and I.ebanon, Pa. In isf he was appointed professor of therincy in the Mercersburg Seminary. He was one of the leading exponents of the ${ }^{\text {a }}$ Mercersh.res thenlogy (q.v.) and belonged to the hish-chureh schonl of his demmination. From IS=0 to ri\&6 he was editor of the 'Grardian.' and in 18f6-; of the Mercersburg 'Review.' Besides a collection of poems in the "Pennsylvania Ditch ${ }^{\text {d }}$ dialect. he published: 'Henven' (IS\&3-3): a 'Life of Michael Schlatter' (185:): 'Christological Theology' (1864), and other works.

HARBEN - HARBOR

Harben, William Nathaniel, American novehst: b. Jalton, Ga., 5 July I858. He has contributed many short stories to magazines, and his published novels include: 'White Marie' (1891) ; 'Almost l'ersuaded' (I890) ; 'A Minte Confessor' (18or); 'The Land of the Changing Sm' (189t) ; 'From Clue to Climax' (1896); 'The Caruthers Affair) (I898) ; 'The North Walk Mystery' (i8gg); 'The Woman Who Trusted' (1901) ; 'TV'csterfelt' (1901): 'Abuer Maniel' (1002): 'The Substitute' (1903). He is also the author of 'Northern Georgia Sketclies' (1900).

Harbin, Manchuria, a city on the Sungari River at the point where the Manchurian branch of the Trans-Siberian railway crosses that stream. The Chinese eastern branch of the railway, running to Dalny (Talienwan) (q.v.) and Port Arthur (q.w) begins here. Prior to the Russian occupation in 1900 (see Manchleria), Harbin was a small Chinese village. On account of its geographical and strategical position it was chosen as a military centre, and very quickly it became also headquarters for railway and governmental affairs. Commerce and manufacture have also greatly developed, although not originally considered in the promotion of Harbin; and here more than elsewhere Russia gradually asserted its intention of becoming an active industrial force in the Orient. Every system of protection that could be devised has been employed by the govermment to advance its commercial prestige. Harbin consists of the old town, three miles distant from the central dépot; Prestin, the river town, the present commercial portion; and the administration town, about the sailway. Only Russians and Chinese are allowed to hold land, construct buildings, or enter any permanent enterprise. The territory for many miles surrounding has been secured so as to make it impossible for any foreign interest or influence to obtain a foothold or profit near to the city. The principal railway engineer is the chief administrative official. A census of 1003 showed a population of 60,000 exclusive of soldiery; of these all but 700 were Russians.

Harbor, a recess or inlet of the sea, a lake, or other large body of water, either landlocked or protected from winds and waves by artificial means, so as to be a secure haven for vessels in all weathers. In selecting or constructing a harbor regard is also had to convenience in loading and unloading vessels. The two chief classes are harbors of refuge and commercial haribors. Often the latter are merely tidal. only to be entered by vessels as the tide serves, and where with the tide they rise and fall. Harbors of refuge or shelter are accessible in all conditions of tide. Sometimes there is a comhination of the harbor or haven with a capacious protected roadstead outside of it, as at Cherbourg. France, and other places.

Construction-In the construction of harbors the great desiderata are sufficient depth of water and perfect security for the vessels likely to frequent them, together with the greatest possible facilities for ingress during any weather, while the chicf obstacles to be surmounted are the action of the waves upon the protecting piers and breakwaters, and the formation of sand-
banks and bars, which dimmish the fiepth of water at the entrance and also within. All good harbors should pussess the following characteristics: A decp, hroad entrance-chamel, which cam be kept by ships of all kinds iu all sorts of weather; an ample anchorage, free from rocks and sloals, with good holding-ground, and protected from winds and waves. Commercial harbors should also be supplied with adequate constructions and appliances for loading and discharging vessels.

Ground-plan.-In designing the ground plan of harbors, some rules should be kept in view: (I) the entrance should always be kept seawards of the works of masonry, care being taken that the direction of the piers docs mot throw the sca across the entrance; (2) there should be a good "loose," or point of departure free of rocks or a lee shore: (3) spending-beaches inside should be provided to allow the waves that pass in to break and spend themselves (a lrar-bor-basin surrounded with vertical quay-walls becomes a "boiling pot"), but this is a point frequently overlooked by engineers ; (4) the relation of the width of entrance to the area of a larbor should be a matter of careful study, as upon this depends the tranquillity of the interior.

Anchorage.- The anchorage of a harbor should be large enough to afford shelter to the maximum number of vessels sceking it. The space required by a vessel at anchor is, roughly, a circle whose radins is six times the deptly of water plus the vessel's length. First-class harbors should have a depth of at least 40 feet, to admit and give secure anchorage to the largest ships now existing. An available depth of 25 feet is sufficient for ordinary transatlantic frcight and passenger steamers. Coasting vessels rarely have a draft of more than 20 feet.

Natural Harbors.-Some of the best known natural harbors are those of Queenstown, Ireland: Rio de Janeiro, Brazil ; Portland, Nle: Boston, Mass.; Narragansett Bay, R. I.: New York, N. Y.: Old Point Comfort (Norfolk), Va.; Port Royal, S. C.; Havana, Cula; San Francisco, Cal: Puget Sound, Wash.; King George's Sound, and Princess Royal Harbor, in southwestern Anstralia.

Artificial Harbors.-These are as old as naval warfare, and may almost be said to date from the birth of commerce. The Phenicians protected their little strip of the Levant coast. Tyre and Sidon were well provided with harbors, having effectual breakwaters, mainly built of loose rubble. Carthage, Grecce, and Rome. each in its own way, utilized their harlors for commercial and warlike purposes. That of Carthage was artificial, those of Grecec but slightly so, nature having provided so many navigalle inlets that little remained to be done loy man. The great harbors of Rome, constructed in the solid and workmanlike manner of her practical race, may still be studied with profit, for the coasts of Italy yet show how well the Romans understood both the principles and the practice of this branch of marine ellgineering. One of their finest and most complete constructions of this uature was the port of Ostia, at the month of the Tiher, now more than two miles inland. The Romans were distinguislled in harbor-making by the open or

HARBOR GRACE - HARCOURT

arched mole cr encicins work, whicin save full play to the currents, preventing the deposit of sand or mud. "The foundations of hesos port." says Addison, 'are sill to be seen. It was aitogether artificial. and composed of huge moles sunning round $i \tau$ in a kind oi circular ñgure. except where the ships were to enser." Harbormaking came to an end with the decay of commerce and civization consequent upon the iall of the empire, to be revired oy the Italian republics of the Middle Ages. The rich ramite of Venice and Geroa soon led to the construction of suitable ports at those places. and the moles of the latter ciry and the works in the lagoons of Venice remain to this day. France was next in the nield, embanking. protecting. and deepentig the mouths of the rivers along her nothwestern shores, as at Havre, Dieppe. Durinirk. etc In 1627 . during the siege of Rochelle, Metezeau consiructed jetties of locse rubblestone, to prevent access to the ciry.

British Herbors.-Great Britain. whose ocean commerce is of comparatively recent date, lagged far behind her Continental rivals. With rew excepticas her ports were absalutely unprotected. of ather uncreated; and this state of things continued unill late in the reth century: Two of the few exceptions were Hartiepool. where a harbor was iormed about 1250. and Arbroath in 1394 ; in the 1 -rb century at Whitby and Scarborough rough piers were thrown out. protecting the mouth of the pett: at larmouth a north jetty, and subsequentiy a south one. were formed: an ancient male existed at Lyme Regis; but the chief efforts of the early Engl:sh engineers we:e directed against the shoals and waves oi Dover. When k wever. I her Emea:on (q.s.) rose to vindicate the engnincring saient of England, things took a different turn, ard now few count-ies surpass Great Beitain in the number of arincially improved commercia! harbors. In Great Britain the construction and regulation oi harbors is fimarny under authority ci the crown, bei Parliament n w usually names o mmissioners and bu ards with powers oi ownersinip or management snecia!!y c nfersed by that body. All individal nwners ate required io manage harburs subject to the tights of nublic use, white final g vernment cuntrol of them is practically absolute

Herbors in the United Stutes. - In this country a!l haroo-making in a public senve has been done since the beginning of the igth century. The date of its fret undertaking is tivoz, when the pr ject i building pub ic piers in Philadephia received q serment aif by an apfrop:sathon inf Eso.cco. Twenty years later, i'r a harbor of retuge in Deiaware Bay, ミ22,-00 was approp-iated: and in ISzo appr-priati $n=$ azgregating about $\sum_{1}=0.000$ were made ior river and hath r improvement = at many places. Frm this time rover and harbor bills have steadily increased the Congressional appocpriatina: which now amr unt in the agsregate to hundreds of millions.

Federal control over the ports of the United Siates including all the important harbe-s. is exercised under the cons:ituticnal power of the Evernment to regulate commerce: but in mis: of the details of harbor managemen: - iuch as ownership and uic of wharies, docks warehouses. and the prowisinn atd dispozal n^{2} facilities generally - management is lett to the States.

Pilot iaws. tine appcintmen of hatbor-commissioners, harbo-masters. etc. and ail other har$\mathrm{bc}=$ regrlations are made and eniorced by the Sta:es, subject in cerrain things-as. for example quarantine rules - to the jurisdiction of the Federal government. Consult: Rennie, Harb rs : Sievenscn. 'Design and Consiruc-ti-n of Harbors : Moore. History of the Foreshcse and the Law Relating Thereto': Harcourt. 'Harbors and Docke': Bi-dseye, 'Laws oi' the State of lew Icrk) (Narigation Law and - lew I'cok Harbor): Ented States Revised S:atutes, Secs. Docks and Dock yakds: Iettes: LigetHotises.

Harbor Grace, Vewfoundland, a port of entry on Conception Bay. 2- miles west by noth of St John ${ }^{\circ}$. St miles by rail. It has a large but exposed harbor. with an inner secure pott. a parent slip. and a ligh:house with a revolving light. It is the see of a Roman Catholic dincese with a hardsome cathedral and convent. Its commerce is second to that of St. John's. Pop. (1goI) 5.18_{4}

Harbor Seal of Hair-seal, the common sma!l seal (Phote ijutina). Once common on both sides of the Sorth Atiantic. down to Virgizia in the United Siaies, but now oniy occasionaliy seen south oi Cape Cod. See Senl

Harbor Springs. Nich.. village, county-seat of Emmet Countr: on Little Traverse Bay, an arm of Lake Michisan, and on the Grand Rapids \& I. R.R. The landiocked harbo: is much used $i \because$ iumber vessels. The viliage is in a par: ci the Siate where the larce forests make lumbering the chei industy. The chier manuiac:ures are ilour and inmber. The cool climate in summer makes Ha-bor Springs a iavorite resurt during July and August. Pop. (1900) $1.6 \div 3$.

Harby. Isaac, American dramatist and journalisi: b. Charleston. E. C., ras: d. New lork If A v. 528 . In 1822 he conducted the Charieston Cobl Guacose and later ihe MI Croury. His plays were 'The Gordian Knot': 'Alexander Severus' : and 'Aiberti.' He was vice-president of the Hebrew Orphan Asylum of Charlesin and leader of the reiormed movement amogg the Jews of ihat city - ine thrst of its kind in the United Siates In IS2S he removed to New lick and engaged in in umalism, until his death the same year

Harby, Levi Cbarles, American naral ofncer: b Gecrgetown. S. C., $2 t$ Sept 1793: d. Galve: n. Tex. 3 Dec $18-0$. While a midshipman in the C-nited States navy in 18r2, he was taken prisnner and confined in Dartmoor Prison, England. Lntil the end of the war. He served under Gen. Iackson in the Creek war. and participaied in the Texas serugale for independence and the contict with Mexico. Subsequen:ly he fousht in South Ameria under Evlivar. On the secession of Suth Carolina. he resimed his a remission in the United States service and inined the Coniederate forces as commander ni the deet at Sabine Pazs.

Harcourt. hir"knort. Sis William: George Granville Venables Vemon, English statesman U. I4 Oet $\mathrm{I}^{2} 2$: : d. Jalwond. Hamp=hire. 1 Oct inc. He began his education is a privare seh I at Salizbury: and then siudied at Trinty College, Camizidge, whence he was

HARCOURT

graduated with high honors in 1851 , receiving the degree of M.A. He then studied law, being called to the bar in 185% and in 1800 he became queen's counsel. In i858 he made an attempt to enter Parliament as an Independent Liberal, but was defeated. During these years he wrote largely for the 'Saturday Review' and other journals, and in 1800 attracted considerable attention by a series of letters on international law and kindred subjects contributed to The Times over the signature of "Historicus." and which he contimed thronghout the American Civil War. In 1868 he entered Parliament as Liberal member for Oxford, serving his constituents at that post till I880. when he was defeated for re-election. The was, however, selected to represent Derby and continued in that position mintil I895, when, having been defeated at the general election, he found a seat in West Monmouthshire. In IS69 he was elected Whewell proiessor of international law at Cambridge: at the same time he was appointed a member of the royal commissions for amending neutrality laws and for amending the naturalization laws. He was appointed solicitor-general in 1873 , but held the office only three months, and in the same year was knighted by the queen. Although he had not supported Mr. Gladstone during his retirement from power, yet upon that statesman's return to the office of prime minister in 1880, he was appointed sectetary of state for the home department, continuing in that capacity until the Liberal party went out of power in 1885 . At that time his name became famotis through his connection with the 'Ground Game Act' (IS80), the 'Arms (Ireland) Act' (I88I), and the 'Explosives Act' (1883), the last one being pushed through all its stages in the shortest time on record. In IS84, his bill for mifying the municipal administration of London was introduced. Upon the return of the Liberals to power in 1886, he was made chancellor of the exchequer. holding that position only a short time, as the fortunes of politics again took him from office. During the years 1880 to 1892 he was Gladstone's lieutenant in political life, and his services were of immense value. especially on accomnt of his brilliant oratorical powers. Again in 189? he was made chancellor of the exchequer, acting as such until 1895. It was during this term, in I89t, that he introdnced and carried his famous tax budget, in which the income tax became more graduated and the "death duties" on real and personal property werc equalized, thereby giving the government inuch aid in solving their financial problems. Lpon Gladstone's retirement in I8g. Harcourt was looked upon as his successor, but his title was ignored and Lord Rosebery appointed in his stead. Sir William then becane leader of the Liberals in the House of Commons, and it became evident that he and the new prime minister did not agree as to party policy, and, though their differences were from time to time patched up, it was clear in his defeat at Derby in 1895 that the party was divicled on many issues, and the effect was then seen of Sir II illiam's Local Veto Bill, not only in the ntter rout of the Liberals, but in the setback given to temperance legislation. From 1895 to 1000 he represented West Nommouthelire in the House of Commons, but the task of leadership of the Liberal party became particularly
oneruns becatise of the tendeney of the various sections to break away from control. In the session of $18(y)$, against the overwhelming Unionist majority, he seored several successes, but was severely criticised by his own party for consurring the the mority report of the spocial committec, of which he was a member, appointed in Isory to investigate the Jamieson Raid and the liritisl Sonth Africa Company: The internal dissensions in the Cabinct lecame more marked as time went on, and the divided comsels manifest among the leaders of the liberals led to his decision to retire from the leadership of the party on the floor of the llouse of Commons, and in 1808 with John Morley he retired from active work and thereafter sat as a private nomber. As a private member, lie no longer restrained his attacks on the government, paying not the least deference to Liberal imperialism. He actively opposed the government's policy with regard to the sinking fund, their attitude in the negotiations with the Transvaal, and the financing of the South African war, and throughout the war he lost no opportunity in criticising the South African developments. In 1898-1goo he became prominent, both on the platform and in his letters to The Times, in advocating active measures against ritualistic practices in the Established Church. The general election of 1900 found him full of fight, favoring the official Liberal programme as distinet from that of the imperialistic scction which favored the return of Lord Rosebery to the leadership, and when the new Parliament met his attitude signified that his former claims wonld not be dropped. Sir William had refused twice to enter the pecrage. and in a speech delivered at the National Liberal Club on 28 July, after announcing his determination to retire at the close of the session, said: "It is not because I am weary of the fight or am lukewarm in the cause that I intend to retire. It is becanse I do not think it for the public advantage that persons should attempt to fulfil duties that they are unable to perform." And yet after this anmouncement he vigorously attacked Joseph Chamberlain, whose weightiest political antagonist he was, for his fiscal proposals, in a lengthy speech, delivered in his familiar IIomeric style. It has been written of him: "Sir William Vernon-IIareourt is one of the few public men whose addresses out of Parliament are printed in full by the London journals. Ilis reputation has steadily improved while his party las been in the minority, and his caustic wit, polished satire, and brilliant epigrams lave stung and irritated the conservative peers time and again. He has Lord Beaconsficld's trick of giving phrases the stamp of his own originality so that there is no one on the Liberal side whose speeches are quoted more frequently. It has been aptly said that Sir llilliam's distinguishing characteristic is his cleverness. 1 lis platform speeches are not only rattling and rollicking, but are generally brimful of witty and happy phrases. He has a great gift of lucirl exposition and on rate occasions, when he condescends to be serious, commands a flexible and sinuous prose." Sir William llarcourt was married in 1859 to Lady "There'se Iewis, widnw of Sir George Cornwall 1 owis, and danghter of T. II lister, and again in 1876 to Mrs. Elizabeth Ives, widow of J. P. Ives, and daughter of John Lothrop Mot*

Ley，the histaran．and a：one time Conted States minizter in Landon．

Hard Labor，in law，compry meciamalal or ther．sometmes ：udictaliy stm－ posed upon criminais in adcitic：to $: m p r i s n^{-}$ ment of site＝pumsimme：it．It is a provision of siatute law b th in this conotry and Great Erit－ ain．I：s Arst Engish adcp：ic：was secued thru ugin the demand ior s me adequate peral：y in cases where fanal．servitude and tansportio－ t：on were in any reason inexpedient In ine Troted States the foursinemt of ha－d aber （which．however．is generally loried epon ly human：tarans ans sanivorians as bers zather a Realthiti and mescifin？privilege）car onls be impoed by a court an the authority oi Evatute． the mode ot applying the punishmert being in some cases prescribed by Sta：e o：Federal laws， and in others left to paison restiation．

Hardecanute，hār－dè－ka－nü̈：．Harthacnut， or Hardacnut king of Engiand and Den－ mark：son fornte：b．about yoro：d．S June 10s2．At the time of his father＇s death in 1035 he was in Dermark，where he was im－ mediaiely revosmized as king．His hali－ brothe：－Harold，however．who happened to be in Engiand a：the time．laid clatre to the thene of that part if their iather＂s comiaions．F＝a time jine mether of Hardecannte succeeded in kolding llessex in his name．Whife Mercia and Northumbia were heid by Harold．such an alloment having been made by a witenagemote held at Oxined．Hardecamute was about is make an armed cescent up．n England．when Harcld cied（10o），and his brther peaceiulty succeeded him．He jels：ed tio？tatz but his seimn was mot ma－lied by any imporant event． He ：cat the governnemt aim st ernrely in the hancs r：ris mother and the powerin！Earl Go ：－
 and carousals．

Har＇dee．William Joseph，military nöcez
 Ta．． 6 Now 1 s－3．He was graduated at Wes：
 Vexezo W＂ar：and in the Civil Wa：entened ise C riedenate aromy with the fank nic c ？mel．

 he c mrandel the let：wing，ane Crobe terate a－m anj：Decerber IK5 de：endel Savanraln ǎain＝：Gercea！Sherman．

Harden．William American hic：rian b
 in ：le solmis ra Savanmah io j in ihe C n－ feder：amny servins thronghom the C vil War in ine 5 Elh Gergia inionery and in the s－ma！ crop＝lite－the wa：He st edied law and w： adound in the bar in the carly oris．IHe was

 wa：arnatid \because roritn，a posiin η he sill neen－ 1：＝．He hostreat a mertber of ile hatc of managers i Te＇iair Acacemy of Art：anl sci－．since intz and cu－iodian sinee ．e_{2} ．
 rites … i Re Rev lorion since ront：and w：：Den－rate mepher oi the Crer raiz linuse
 … dh rat fis：rical stbiects in masa ines and jurnals．

Hardenberg．Georg Friedrich Philipp von，
 －NVwats．German poet：b．Wiedensradi．Prus－
 ITareh Isor He made himeei we：i acquained wtil icw，：atu：－al philosophy，mathematics and philosopiy，but was most eminemi ine fis poei－ ica：falents．In the wotks ní＂Novalis tivere is a singular mixture of imagination．sensibiaty． seligion and mrsticism．He was the gentlest and most amiab＇e ci enolusiasts．His novel． ＇Heinrich von Oiverdingen＇，was leit unin－ inved His Hymms to Signt＇and the＇Geist－ tiche Lieder are greativ admired．IV：m the Schlege＂：and Tieck he assisted in ounding the romanic scoiool in Gemany．Corsult：Schu－ bart，＇Sovalic Ieben＇（1ふズフ）：Bing．＇Fried－ rich von Hardeaberg）（ISo3）．

Ha：dhack．0－Steeple－bush，an erect species ol Anserican Sf：ras（S．fomini su）． common in pastures and low grouncis．and cele－ brated for is：astringent properties．which cause it to be tised medicinally．It is distinguistable by the dense woolly tomentum．which covers its stem and the underside of iss leaves：and bears in late sumn：er＂a compaci steepie－shaped fanicle of peach－blow pink．＂

Hardie．James Allen，American soldier： b．Nem Iork Mav 1\＆23：d．Washingt n．D．C． If Dec．Is，ó．He was graduated ircm the
 alhe aroilers du－ing ：ie Civit lVar served on the stañ s：accessively of Generais MicCle：lan and B：rnside，was judge－acucca：e－general ni the Army of the Poromac on Hocker＇s stañ，became brigadier－gemeral of woinntee：in lixoz and in－pecior－general with rank of colonel in ske He таs brevetted maior－general．Cruted States army，in Infs．His writings are largely con－ fincd ：o mitiare reports．

Hardie．James Keir．Engligh labor leader： b．Lamarkithe 15 ．IUs．IE 56 ．He worke 1 i：l the col mines unti $18-0$ when he was biackitsied on accoum of his activity in orcanizing the arivers：he was ile：appointed paid secretary of the miners＂mion．In iS86 he organizud the Arraire miners．and in 188 ，atrended his fir：t Trace Crion Cengress．He was cnie of the i urcers of the Independent Labor Derey：and was eiected memher of Parliament in 1N6．1022， znd 100 lle is proprietor and ecit 5 of a wuck：y pater ihe＇Labnur Leader．＇

Hardie，Robert Gordon，American po：trait pa：\％！er：b．Erat！！eborn．Vǐ． 29 March $185:$ ： d．Irasid－ro．Vit，o Jen．ixt．He cendied －r．ning at the Cooner Tinn Ir＊ritute．the Academy of Desimm，ant the Ari Sindents＇ Leas：：e．N．L：and at Puris hecame a minil of Gu－ime．He exhitred at ：re Salen in $1=0$ and i＇wine years，and in iS82 studied urner Ca－ i－cl．I neture ct lis appeared at the Exhbi－
 an ${ }^{+}$he cuhibised a p rirait ci his wife ot the

Harding，Chester．American Prirait manier b Comenay，Dlass．．I Sept．1－0 ：：d．Bcs－ tn t An－i？1wí $i=$ an artist he was seli－
 i H－＇t as as＂Gier ：？the War of IS12．and found emn＇y velt on lis dicharte as a sign－pamier in Pri－hirs．Pa C－ssing the ncean he became a is rite of rtrait painicr is London and found
patronage among the royal family. His 'Portrait of Daniel D'ebster' is owned by the New York bar Association, while his 'Portrait of John Kandopph is in the Corcoran Gallery. Washington.

Harding, Karl Ludwig, German astronomer: b. Lanenburg 29 Sept. 1705; d. Göttingen 35 Aug. 1834. Called to be a tutor to the son of the illustrious Schroter, he beeane mspector and observer in Schröter's observatory. In I805 he was appointed professor of astronomy in the University of Göttingen, and remained in this position till his death. 1le discosered the asteroid Juno, the third of the planetoids, in 180+. and intependently, the second comet of isr3 credited to Pons.' His 'Atlas Novus Ceelestis' ($1808-23$; new ed. 1856) was for years the best of its sort.

Hardness, Scale of. 1 n mineralogy. the hardness of a mineral is estimated by observing which of certain standatel minerals will scratch a smooth surface of the given mineral, and which will not. On Mohs' scale (which is usually adopted), ten such standard minerals are selected for the establishment of the scale. their hardness being arbitrarily defined as 1, 2 , 3. etc., up to 10 . The minerals that are commonly used for this purpose arc as follows:

1. Talc.
2. Feldspar.
3. Gypsum.
4. Calcite.
5. Fluorite.
6. Apatite.

A mineral which will neither scratch apatite nor be scratched by it, for example, has a hardness of precisely 5 : and the same may be said of one which will both scratch apatite and be scratched by it. A mineral which feldspar will scratch but apatite will not, has a hardness intermediate between 5 and 6 . The decimal expressing the precise degree of hardness in such a case must be assigued by guess; but there is little use in attempting to determine a hardness more closely than to the nearest half-degree on the scale given above.

Hardware in America during the past century. The term "hardware." like everything else in our country, has suffered a great deal of expansion during the past hundred years, particularly as regards its application. Originally restricted to necessary articles of steel and iron, it has come to embrace in its technical and business understanding a great variety of goods which have no relation at all 10 the original meaning of the word.

One of the potent canses of this sweeping change has been the steady reduction in the price of hardware for a long series of years. This reduction has not been altogether contimous, but with occasional up-lifts during prosperous times or due to manipulation and control of the products-but on the average the trend has been steadily downward, particularly as compared with a period of so years ago. There are innumerable articles whose present cost is only from one third to one half as much now as then. It became necessary for all who were interested in hardware - mannfacturers, jobbers. and retailers - to consequently largely increase the volume of their business in dollars and cents, since the mere tonnage output was so much less in value, thus recosnizing one of the
elementary principles of business - that the Jarger the oulput, withm cettam limits, necessarily the smaller the average cost of doing business.

Because of the discovery and exploitation of enormons ore boties of aron, copper, and lead, among which nuay be instanced the great mines of Lake Superior - both ison ant copper - the copper deposits in Montana anci Arizona, and the learl and zinc ores in Missouri and the Soutlowest, and alio because of the stealy multiplication and inereasen efficiency of machinery, it becane possible to produce the finished product at a steadily tecreasing cost.

Expericuce soon showed that the field of legitimate hardware was not ilself sufficiently comprehensive to enalble the jobler and the retailer to transact a large enough volume of business commensurate with the cost of doing this; therefore, kindred fields were invaded and occupied, ond have now become practically incorporated as part of the hardware business. Thus it has been that the great number of articles which are known as house-furnishing goods, and embrace such lines as refrigerators, ice cream freczers, and innumerable other items which go to make up the objects needed in every honschold - and that the line of tinware and sheet iron, and what also have come to be known as sporting goods-not only guns, rifies, and pistols, but athletic supplies - have become part and parcel of the hardware business in addition to the line of cutlery, and quite a number of other items in lines that were onee entirely separate in themselves and had no relation to the hardware business. Thus the hardware retail dealer has practically reverted to the original type, in the sense of going batk to the plan of the old general store and keeping pretty much all that his customers need outide of such lines as drygoods, groceries, ant drugs.

Hardware is, to a large extent, maturally the business of a new comutry beculse of the great amo:unt of building and the clearing of land. though it is equally true that in the moulern civilized, progressive communities of this country the use of hardware is in equal proportion to the demand caused by new emmitrics, and much more complex and complicated in its nature.

The history of hardware is naturally the history of this country, and it can be safely said that there is no other department of mercantile business that has so kept pace with the progress of the Uuited States, 110) which to-day depicts so thoroughly all the characteristics of modern American character in all its varie! details. Beginning in the crudest way with the manufacture of hand-made implanients, and depending almost entirely upon inportation from the Old Worith for what was needed - wen in the way of necessitics of life-it has grown by giant strides, more especially siuce the end of the Civil Wiar, and in many instances largely because of the protection afforded by the tariff. antil to-day Smerican hardware is practically independent of the foreigner, satve in those rate instances where we have not as yet learned the mysteries of manufacture or succeeded in procuring sufficiently skilled workmen to mbwer the purpose. The manufacturers of harelware in America have been original in their ideas and methods and have adapted themselves absolutely to the necessities of their enviroments.
not slavishly following the copies oi Old Werld tools, bu: being guiced solely by common sense and necesity. It has followed thus particutan? in edge iools, that there has been such adrancement in the way of appropriateness :o purposes insended and improvement in appearance, snish and desigy as can be scarcely equalled in any otber line of busines. The artistic sense has no: been lost sight oi but has been appealed to as well as the sense of wisity. Curting tools are made jusi heavy enough and to avoid the clumsiness oi the Old World items in this regard. Originality has been shown in the incessant improvement of existing mode s and the devising of entrely new conceptions. The manulacturer has no: been content to sollow the cnstom of ages - has had lizle respeci iof iradition or inheritance, but has set himself solely to the task of producing an efifective tool at the lowest possible cost.

It is iruc that in no country itp the road does merit in haruiware command the price and popularity as in the tnited siates. and the h:story of manuiaciurers who lave been successiul has been the history of merit, and not because of cheapness in quality or price. The only manufaciurers who have been successiul for any length of ime have beea those who have based theis products primarily on quality and who have had the faith and conrage to maintain thrs quality in the face. often, of discourasing circumstances. Is may be stated as an axiom that no hasdware item oi the day sursives for any length of time on any other basis. The temptation to deteriorate the quality aiter the reputation is establ:shed and built upoiz its qualizy has almays met with sure and pernament disaster.

The blacksmith oi the smaller town and of the country was among the earliest makers of tools and implements, and even to this day in many localities there still survives a call for his hand-made products. The hardest fight which the manuiacturers of macbine-made articles have had to iace has been to overcome the iceling. and ofen prejudice. in javor oi the iool that was made by hand and that seemed consequenty superior - and, as a matier of iact. the reverse has ustally been the case.

Appearance counts for much - probably more in America than in any other countr: atiractive packages. handsome lathels, and beautimen tinishes are as mush a part of hardware io-day as the adaprability end merir of en aricle. There have been numerous sirides in this regard. particularly when one contempla:es the old-fashioned method di tymg up the hardware in heary paper with staint, a package that was both clumsy and unsightr. The question of the size and nature cit the package is one of great moment in the appenal to the public, and the general tendency has been to pack the eoods in smalles and smaller boxes all the time. to insure their ready -ale and prevent breaking the packazes. which is always on detrimental is the goods themstives, and so expensive to the dealer.

The imporiation of hardware is almost at an en1. bema c ninud as beinse stated, to some few specialices which are slowly but surely losme then hold upon the public of this country bu:. 63 the other hand. the exporation of - American hardware - and particularly American edge tonls - to all parts of the worid is a large and gr,wing busners, and one oi great
value to the home manulacturer. The foreis: busmess has been obrained entirely by the merit ci the American aricle: its attraciveness. its noveis, is merit, and its adapiability to the purpose intended have, aiter much opposition. ppened the way for American hardware in ail patts of the world. So that it has steadily gained ground at the expense of the forergn artucle.

The sieady stbstitution of machinery for hand labor has been ibe most potent cause of the sreat success that hardware has made in the Enited Siaces. The American manuiacturer is never content- With present conditions. bu: is always endeavoring to find a more efriciemt and more economical method oi producing the funished article and consequensly endeavors to subsituie machinery for hand labor. American hardware has. thereiore been placed within the reach of ail, and has largely contributed to the comfort and weliare of the people.

The production and the tie oi hardware canno: be incelligen-ly considered without refereace to some of the leading conditions of the country - conditions of soil and climate, as well as the temperament and nature of the people. The most far-reaching and enduring change has been the substitution oi what is known as mild steel for wrouglit iron. due to the invention of Sir Henry Bessemer. It has rendered possible the production of hatdware in all brands at very much lower prices and much more numerous iorms since the production of open hearth and of Bessemer steel, which thus supplanted those ci cass iron and of wrought iron.

On the ozher hand, hardware has been very adversely afrected oy this change because oi the consequent substitution oi sieel ior wood, and this is most marked in the erection of the modern sty-scraper, as is is known, where there is bu: comparatively litile hardware nsed, either in the erection of the building or in its subsequen: tinishing. These buildings having practically littie of no wood in them have small use for either the carpenter or his various tools. and all tha: is left of hardware is a small amomit o: locks and trim to decorate the building and to give it security. This process has gone on in many ways until apparently is mnst seriously afec: the continued use of hardware in all branches of life: but, on the other hand. the growth of the population has been so great that this can be safely set down as a discussion of criy academic interest at present.

In a country so diversified as to soil and climate, there is a necessity of great diversity oi hardware, and the gonds used in the different pars of the country invariably retlect the nature and icmper of the people. The South is much more conservative than the Jorh and clings longer to old-iashioned aricies of wellknown reputation some time aster they have been sleperscded in the lorth by more modern thiag:. Because of the comparaive poverty of the South in the pasi, and the lact that the nemro is the principal laborer, the demand, until litely, has been rather for price than for quality Asain, in the cxiteme East very much the same conditions prevasl. owing to ilve natural economy of the periple and their extreme conservatism. The U6est - by which is also meant the Southwest and the Jorthwes: - is a great consumer 0 hardware. and within its hounds are the grea: dur-ibuting hardware centres.

The sitsiy and rapid destruction of the
formats has had a far-teaching effect upon the hardware business, and one that is destinel to, in many cases, permanemly alter the use and nature of many hardware implements. In the begiming the country had to be cleared of forests, which created an cmormous demand for all colge tools and stimulated the ingenuity of the manuacturers to produce articles fitted for the different needs - not alone for the different sections of the country, but also for the various kinds of wood. Now that the white pine forests have practically been lestroyed, it is necessary to have edge tools that are more and more adapted for use of the hard woods which are still fairly abundant: and the question also presents itself to the manufacturers as to how long it will be possible to keep up the present production of such items as axes and cross-cut saws, in view of the fact that the forests are steadily disappearins.

It is impossible within the limit of this article to more than briefly mention some of the leading branches of the laardware business and tell in a few words of their nature and history.

Hire Industry.- One of the most prominent to-day is that of the wire industry, because it ramifies and affects almost every part of the hardware business. It early felt the impetus of the adyantages offered by the Bessemer steel process, since it was possible to produce in wire made from steel many items which could not be drawn from wrought iron. It is difficult to state with exactness - because of its largely contlicting with other branches of iron and steel manufacture - but it has probably invested in its manufacture more than $\$ 200,000,000$, and its output in 1905 was something like $15,000,000$ tons. Few things have been of greater interest than the story of barbed wire and its enormous growth since its introduction. It is probably the cheapest fencing ever placed upon the market, and exactly met the demands of the new country where thousands of acres had to be fenced in at a time. It is still a product of great tonnage, but its place is being slowly but surely taken by the woren-wire fencing which, though higher in price. is more effective and is better suited now for the country, which is gradually being cut up into smaller farms.

Nail Industry:- The mail industry is a conspicuous example of the chance and changes in manuincture, for in the beginning the iron cut nail, first as made by hand and afterward by machinery, had behind it the prestige of centuries, and scemed to be enduring as an article of every-day use. it was foumd, however, that with the growth of the Bessemer steel business. the steel cut mail could be made cheaper, although it was not in any way a better article. Its place, in turn, is being very fastly taken hy the wire nail, which is much more comprehensive in its uses than the steel cut nail, though the latter style prevails in certain sections and for certain purposes, but the dectine of the steel cut mail is as marked in its way as the rapid increase in the nse of the wire nail.

Tacks. Thic kindred industry is that of tacks, but it has been serionsly lurt by the expansion of the wire mail since it is possible to make the latter in many forms and sizes that are substitutes for tacks. This industry was founded in Taunton about 75 years ago, and for a great number of years was practically confined to New England. It spread gradually westward to Pittsiurg; there it almost died out,
:and hats since taken some hold further west m Cleveland and Chicago. Owing to the encroachment of the wire naul it ias declined rather than advanced, and the mumber of manuat turers has been greaty decteated The product is not large-prubably not more than 15,000 tons per annum.

Farming Tools.-The making of farming tools and what are known technically as "sted goods" is one of the most important industries in the hardwate line, since with these touls the crops are cultivatud and gathered. The steady progress of the American manufacturer has been in the direction of producing items which were light, strong, and handsome in appearance. The diversity of soil and climate mean great diversities of various items used in cuhtivating the ground, and the number grows each year. The business dous not keep pace with the growth of the country owing to the steady increasing use of labor-saving machinery - the mower and the reaper have taken the place of the snath, the cradle, and the seythe - the corn binder of the corn knife, and the corn planter and the cultivator have gradually diminished the use of hoes. The amount of capital invested is not exactly known, but does not probably exceed $\$ 3,000,000$. The absolute importance of these tools to the country' is rather striking contrasted with the small anmual output in dollars and cents. See American Farm haplements.

Builders' Hardware. - The builders' hardware business is often considered the centre of tl chardware trade, because of its great importance as related to the hardware industry as a whole. Builders' hardware is an excecdingly comprehensive term and does not admit of exact definition. It is ordinarily used in reference to locks (sec Locks) and trim and to all the various items which find employment in the building of a house. It is a business of immense complexity and has a most interesting history: It began far back in Jew Haven and New Britain, Conn,, as early as 1834 , and the first goods were naturally crucle and rough. Shortly, however, the ingenuity of the American manufacturer produced a new article in the shape of the cast-iron lock, thus departing entirely from the wrought lock, which was formerly known to England, Germany, and France. The cheapness of the cast-iron lock and its actual efficiency soon caused it to entirely displace the foreigh article. Since that time the sheet stecl lock has been made in this country, but in a much smaller and more condensed form than the wrought lock of Enrope.

Builders' hardware has a most interesting history since it is in part the story of the develapment of taste in America. The centemial Freposition of 18,0 dicl much to educente the people of this country in the way of goud taste and high artistic ideals. There gradually beca:ac is demand for things of daily use which shonicl have beauty as well at utility, and particularly of late years this feeling has spread to locks and trim, and all forms of builders" hardware, with increasing emphasis. The leading manufacturers have immmerable designs which are suitalle for the different scliools of architecture, such as Gothic, Remaissance, and Colonial. or any of the variations of the standard schools. All high-grade builders' hardware is now gotten up in shape and design to match appropriately not alone the building. but each separate room where the rooms are fimished and

HARDWARE TRADE IN AMERICA

ornamented differently. It is, therefore, largely a thing of ornament as well as of use, and the ingenuity of the manuacturer and the salesman has been taxed to keep pace with the demands of the consumer ior novelty and appropriatenes. It is difincult to more than approximate the ammal production. but it is probably something like a matter oi $\$ 25.000 .000$ in value. The finest grades oi hardware are still made largely in the East, principally in Conaecticut, but the business is slowly but sicadily drititing west in keeping with the seneral trend of hardware manufactire.

Shoads.- The first shovels in this country were produced as iur back as 1/-7 by Captain John Ames. who made them by hand in competition with the English article. The business then established was carried on there fir the succceding 27 years, and constituted the nucleus of the present large concern of the Oliver Ames \& Sons corporation. whose headquarters are in Northeaston, Mass. Mr. Oliver Ames, the son of Cantain John Ames, established in 1803 a shovel plant where he soon produced shovels that were superior to those imported from England. In 179; Thomas Rowland commenced the manufacture of shovels at Cheltenham. Pa... and this plant has been in continuous operation ever since. Business gradtally crept westiward and is now spread over the couniry as far west as the Mississippi river. By 1854 there was something like \$0.000 dozen shovels produced annually, but with the growth of the country this product has been largely increased untii the annual output is now about 600.000 dozen. As with ail other hand tools, the demand for shovels has been seriously affected by the introduction and improvenent of labor-saving machinery - such as the steanm shovel, the coal and ore conseyor. and other mechanical devices for loading and unloading. it is inieresting to note that the origin:1 nonchinery ior making sh wels has not been greatly improved upon so fur as the actual efficiency is concerned. afthotigh the variety of shovels $112 s$ been greaty increased to meet the wants and tastes of the different part of the con-ntry: It is difficult to approximate with any reasmable degree of acciracy the amomi invested in this businese. but it is probably in the neighborliout of $5,000.000$.

Sates.- There are few things more difficult to make than saws, and they have been the subject of study of some of the mot talented and ingenious monniacturers of the country: They were manufactured as far ly:ck as tio6 in Philade!phia, though in a very maill way In 1820 a iactory was eitablished in Bristol, Comn.. by Irenus and Rollin Atkins. Rollin Atkins being the father of E, C. Athins, the founder of E. C. Atkins \& Company: of Indianapolis, who now have one of the larzest saw plants of the world. It was necessary to import the first saw makers irom Englan!.

In 18 fo Menry Disston, an Englishman by birth, really made the great begiming of the saw-making indlyotry in Philadelphia, and sonn produced saws that had no equal in the world. It 1:as only a short time before the Dis-ton saws drove out the Engliyh hrand entirely from this country. and to-day this firm have not only achieved a world-wide reputation for merit but sendl their products all over the globe. The annual output of all saws amounts to hetween $\$ 10,000,000$ and $\$ 12,000,000$, and there is about
that amount of capital invested in the business. The tennage oi steel used in the manufacture of saws varies from 15.000 to 20.000 tons per апииm.

American saws, particularly hand saws, are pre-eminent in America and have no equal abroad. Outsic'e of the Disston factory there are several very large and prominent makers. among them E. C. Atkins © Company, of lndianapolis. Iad., and the Simonds Manufacturing Comparay, who make their headquarters at Fitchburg. Mass. The saw business has been notable because of the genius shown by the manciacturers, and in this respect Henry Disston is pre-eminent. There are prebably something like between 5.000 and 0.003 people employed permanently in the business. See Shus and Sawivg.

Axes.-Axes have always been among the most important items in the hardware business because of ihe great need of them in felling the iorests with which the country was covered in the early days. They are oi innumerable sizes and shapes to suit the needs of the lumbermen and the users. The production has not increased of late years. due not only to the deforestation of the country, but also to the fact that the place of axes is being largely taken by cross-cut saws. The amual output is somewhere between 350 . ooo and 400,000 dozen. As in other lines of busine:s, there have been great consolidations. so that a few large concerns have taken the place of innumerable small ones. The use of matural gas has had a most important effect on the manufacture of axes. since with it a very much superior tool can be made, and it is also oi great advantage in tempering. It is noticed as regarding the matter of tempering - a thing of rital necessity in all edge tools - that practically there has been no improvement in this regard for several centuries. Not alone did many of the implements of the ancients equal σ_{2} temper the best that can be produced now-a-days, but in many cases they were much superinr. The difficulty seems to lie in the zact that tempering is purely a thing of experiment and not of scientific development, the reason ior it not being known, nor why sorae metals can be tempereil and others camot. In the beginning axes were originally made by hand as viere all the other lardware implements, bat later the tendency devcloped to establish smail iactories on available water powers throughout the country, as at Prtsburg. Pa., Lewistown, Pa., Eat Donglas. Mass, and Collinsville. Conn. With the enormous demand for the goods, this indasiry soon outgrew its "leading strings" and extablished itself at more available locations.

Edze Tools. - The item of edge tools is a very large one, and next to builders hardware, probably the most inportant in the whole range oi hardware proper. It embraces practically everything with a cutting edge such as hatchets. chisels, drawing knives, planes, and the like, and space forbids any atiempt at more than generalities. It is interesting to note that on such small items as chisels, drawing knives, adzes. and hatehets, the advance within! a period of 1.non years has been rather of attractiveness of iorm and appearance than in actual adaptabilis: or merit. Some tools dug up from the Roman catmp of Salzhurg are, so far as adaptability goes. quite equal to any that are made up now-a-days. The smplicity of the articles mentioned
has largely rendered then impossible of any great improvenumt. In the more complicated lines such at planes and the like there have been rery great changes and improvements, and the plane industry, particularly, is one of enormons proportions. The manufacturers who have attaned at reputation in adge tools hate done so pmrely on the score of merit and because of the fact that earls manufacturer made only one particular line, no one thus having a complete tine of edge tools of uniforms excellence. design, and efficiency; and one of the great causes of the demand for American hardware abroad - particularly since the Spanish War has been the fact of the assembling of a complete line of high grade tools under one brand. so that the foreigner realized that anything that bore that particular trade-mark could be depended upon as being uniform in quality and efficiency. Among the somewhat lesser items in the tool line have been the interesting developments in auger bits of innumerable designs and patterns, with varying adaptability for different kinds of work. See Trols.

Filcs.- There are few things of greater and more growing importance to the hardware dealer than that of files, and it is an interesting story of development and of the genins of the manufacturer. They are articles which have to be made with the greatest care and go through a great number of processes before they reach perfection and are fitted for use. The five leading operations requisite are forging, annealing, grinding. cutting, and hardening. They were formerly made entirely by hand, and even to this day; there still exists among a few, the prcference for the hand-made file. The history of the business really dates from the practical use of a machine to cut files, patent for which to all intents and purposes was first issued to William Nicholson in 1816. There are records of filecutting machines in France as far back as 1699 , and several since that time up to the 1gth century, but none of them apparently of any practical value. The first really important attempt to manufacture files was son after 1850 at Ramapo. N. Y., a company being organized under the name of the American File Company, with large capital. The life of the attempt was short. however, and the business was soon discontinued. Various attempts were made shortly after that - both in this country and England to manufacture files by machinery, and none of them had any extended experience.

Abont r863. Mr. William T. Nicholson, of Provilence, R. I., gave the matter of file cutting by machinery his personal thought and attention. He had long training as a mechanic and practical experience in the finest branclies of machinery. At that time the great source of supply of files for this country were the hand-made Files of England. and the story of attempts to cut files by machinery had been one of sunken capital, ruined hopes, and dismal failures. From this beginning grew the great prescnt firm of the Nicholson File Company, which largely dominates the file trade in this country and has an enormous export business. They have produced better and cheaper files than it is possible to cut by hand, and have carried the business apparently to the point of perfection. The importation of files has fallen to about $\$ 75.000$ per anmum. while the total output of American files does not fall short of $\$ 6,000,000$, and is repre-
sented by total investments of approximately \$12,000,000. See Fims AND Fillemonive.

Rusps.- Few things have bech more inarked than the determination of the Jinerican manufacturer to successfuliy produce a mactunc-cut horse rasp. It followed a long ways in the wake of the machine-cut file, and after many discouragements - the principal difficulty bing to overcome the inveterate prejudice of the blacksmith. To-day hand-cut horse rasps are a thing of the past.

Bolts and ぶuts.- The manufacture oi bolts and nuts dates as far back as IFOX, a patent for serew machinery at that time being issued t) David Wilkinson, a celebrated mechanic of Rhode Island. There were various uther patents granted and these gradually developed in Jater years into the present sloticts, threaders, pointers, and tapers. By slow growth and In immunerable inventions and improvements this industry has attained its presemt enormons proportions and is represented to-day by about 15 prominent makers, who manufacture all oi the yarious kinds and styles of bolts, the yearly product being sometling like $1,000,000.000$ boits.

Scretes. - The manufacture of screws - or, as they are technically known, wood screwsis one of the important developments of this country; thongh the demand does no: keep pace with the growth of the country owing to the continned substitution of steel for iron, and consequently of bolts and rivets for screws. Screw macininery is of the highest type of autematic efficiency and almost equals liuman intelligence in its working. Patents for varrous derices on screw machinery date back into the latter part of the ISth century, and innumerable patents have been issued since that time. The real beginning of successful manufacture was in 18.38 when the Eagle Screw Company was incorporated in Providence. R. 1., the leading spirit being Mr. William G. Angel. 1 nl 1846 Mr . Angel finally perfected the machine for making what is known as the gimlet point of a screwup to that time it had a blunt point. From this time dates the prosperity and growth of his company, which grew into the present American Screw Company. There are now sone 13 large concerns engaged in the manufacture of screws and scattered from New England to the Nlississippi river. See Screws.

Tin Plate.- The tin plate and sheet iron industry has kept pace with the gencral growth of the iron industry all over the conntry, and has been greatly fostered by a protective tariff since the time of what has been known as the AleKinley Bill. Its production in this country has grown at an enormons rate, as may be seen by the statement that in 1892 there were only about I\&,000 tons of tin plate produced in this country as against aloout 48.000 tons in 1924. The industry is chiefly represented by what are known as black sheets, galvanized iron, and tin plates - all of which have now become integral parts of the hardware business. Sce Tis Plate.

Tinware-Among the lines which were originally independent, but which have practically become now incorporated with the hardware business, is that of the tinware industry in all its various ramifications. The retail hardware shop has practically absorbed the tinners' shop and because of the fact that hand-made tinware is fast heing supplanted by the product of the stamping company; the hardware retailer has
gene ：Mi：the hanuing of tintrare on all shapes and wraties．

Ena iationte－Coincident with th：s is the devecopment of what is kacwn as enameled ware，being a coating on the sheet ateel 10 place of the tinains．It is of ail colors aad varieties and has grown to be a business of great im－ perazace．Is lihntrates distinctly the general desire of the people for something more tastirit？ and artistic in appearance than the old－fasimoned ienware．

Meiduncs Tools－The Ametican manniac－ turer has shown to great advantage in the manu－ facture of ligh grade mechanics teols for ex－ ceedingly ine measurements．In this respec： the Brown \＆Sharpe Manitaciuring Company． oi Providence，R．I．，occupy a commanding po－ sition and their products to－day are sought it all over the world where exceeding accuracy is necessary：ts an example．the micrometer caliper will measure with absolute accuracy the $250.000-h$ part of an inch．For an aitainment of such results，the fines：tools made by any other nation cannot be compared with those oí America

Cutiers：－Few things are more imreresting than the history of cuilery－making in the C－nited Siates．as it has suffered many＂ups and downs，＂ not alone from rarious forcign competition，but irom the diziculty of procuring sufficiently skilled labor to produce the proper article．The manufacture oí scissors and shears－which are always treated as a part of the cut＇ery business －has been unique in the fact that it was a Fankee genius who first solved the prublem oi welding a high grade steel blade to a soit cast－ ing of iron backing ande to fit the hand．this being the invention of Seth Borden in $1 \mathbb{E}_{2} 6$ ． The actual manufaciure of shears in this coun－ try seems to have been commenced by R．Hein－ isch in 1825 at Elizabeihport．I．I．This was iollowed by others until at present ihe Anerican shears have been developed and improsed as to be far allead oi any in the wor！d．Prior to 18 没 table cutlery was imported very largely from Eng！and．From that year American manufac－ turers began in a sinall way to produce these goods，and by tien ：they had practic：lly taken the businers unt themselves．There is a large expori：irade bus：ness in table cu：lery nwing to the superior quality of the goods made in this counir：．

The making of pocket cutlery is one（if the most interestiny things conveted w th the hard－
 Laieville．Ci ma．by the Holey II numaturns Comp ny abun： I $^{\circ}+$ F．The total anmal cepecity was pob－bly less than s－o．000 The brrines was eradua＇ly extended in a sonall way and finally a co－operative culny was est thishel at Walcer．$\%$ \％．and since then thi lime of Americas industry hos largely centre 1 in the two Siates ni Xew lork and Connecticut In－ mumerable if c：ries hose been siarted and have iailed．largely owing in the lack of inresight on the part of the manui ：urers in a：＊enpeng on compete woh ：he clean thath of Furnpe in pro－ ducine zon ts bo h che：n in quality ：．I 1 nish as they were in price．The co－operative coltans spment ri grew br slow degrees and economical manazement．having the advantace ni harge water mwer at lialden，until they fally be－ came ne of the leading makers，not alone＂i
the country but of the rrolld．and were enabled to show at the recent Louisiana Purchuse Ex－ pastion prociucts superior io those made abroad． ins which they received the highest award．It Is an interestang case of development in the way of quality and of merit by patience and skill． There are something like io or 12 makers now in the field and their annual produc：is roughiy－ se：in the neighbarthood of $\$_{2.000 .000}$ ．

E．C．Smpons．
Har＇dy，Arthur Sherburne，American nö－ elist：b．Andover．Mass．．I3 Aug．ISt子．Aiter a single year at Amhersi Coilege he entered the IVest Point Military Academy．graduating in inv．He became a second lientenant in the 3 d Arillery regiment，saw some service during tion and 18,0 ，and then resigned to become a proies－ sor of cisil engineering ai Iowa College for a brief time．In is：－he went to Paris to take a course in scientific b－idge－building and road－con－ structing．recurning to take a proiessorship in that line of instruction at the Chandler Scientific School，connecied with Dartmouth College．He assumed a similar professorship in Dartmouth College in $18-8$ ．This position（in connection with which he published＇Element：of Quater－ nions＇（IES1），followed br his translation of ＇Argand＇s Imaginary Quansities．＇by his own ＂－Analytical Geometry＇ ：and＇Elements of the Calculus＇：＇Imaginary Quantities＇：and＇Meth－ ods in Topographical＇Surveying＇）he held until 1893．when he became editor of＇The Cosmopol－ it Magazine．＇He was Cnited States minister to Persia，i\＆g－－9，and envoy extraordinary and minister plenipotentiary to Greece，Rumania and Servia．IS99－1901，to Switzerland，1901－3．and io Spain since 30 Jan 1903．His works include ： ＇But let a lioman＇（ 188_{3} ）；＇The Wind oi Destiny）（IR86）：＇Passe Rose＇（IRCO）：＇Songs of Two．＇poems（ 1000 ）：＇His Daugher Firss＇ （1903）．He also wrote the＇Liie and Letiers oi Joseph Hardy Neesima＇（ISgo）．

Hardy，Edward John，English author and clergyman：b．Armagh．Ircland．／May isto． He took orders in the English church．became an army chaplain，in toos was stationed at Hong Kong，and in Joos in Esypt．He is know：1 the world over as the author of＇How to be Happy though，Married＇（ $\mathrm{I} 88_{4}^{4}$ ），which has been trans－ lated inio many lansuages．Oiher work by hing are：＇Manners Makth Man＇（1N8ミ）： TFamt ye：Pursuing＇（tiso）：＇Tacle Johive 1 alks witl his Jephews（tivo）：＇The Five
 －Some Fam uis Men＇（180－）：‘Mr．Thomas Aikins＇（1000）：＇Concerning Sarriage＇（1901）： Lwe．Courthip and Marrage＇（1002）：＇Pen Frtait＝ni our Soldiers＇（1002）：＇Love Rules the IVorld＇（Icos）：＇John Chinaman at Home＇ 1105

Hardy，Iza Duffus，English menvelist． daugher of Sir Thomas Hardy：the Englsh hi－torian．Amang her numerous novels are： ＇（reacairn＇（ 1×5－）：＇Only a Love Stury＇ （18：－）：＇I Broken Faith＇（18－8）：＇The Love th tHe Passed $B y$＇（ $1 \mathbb{R Q}_{4}$ ）an American novel： －I Winman＇s Lenyalty＇（i\＆oz）：＇The Lesser liit＇；‘دlan．Woman，and Fate＇：‘A Butterly＂） （1ms）．C＊c．，and two volumes of transatlantic remini－cences．＇Retween Two Occans）（ 18 R 4 ）． an 1 ＇nrances and 1 Illigators：Sketches of South 11 rida Liie＇（işo）．

Hardy. Thomas, English novelist: b. Dorsetshire, England, 2 June 1840. He was educated as an architect and practised his profession 1802-7.3. 1le then turned to literature and is now recognized as the first of living English novelists. Il is published works include ' Desperate Remedies' (187 I) : 'Under the Greenwood Tree' (IS72) : 'A Pair of Blue liyes' (IS73) ; "Far from the Madding Crowd," which first established his fame (1874): 'The Hand of Ethetherta' ($18-6$) ; 'The Return of the Native" (18-8) ; 'The Trumpet-major' (ISSo); (A Lao(licean' (I88I); 'Two on a Tower' (1882); 'The Nayor of Casterbridge' (1886); 'The Woodlanders' (I887) : 'Messcx Tales' (ISSS) : 'A Group of Noble Dames' (1891); 'Tess of the D'Urbervilles' (i891) ; 'The Threc Way farers' (1893) ; 'Life's Little Ironies' (I894); 'Jude the Obscure' (I805): 'TVessex Poems' (I898): (Poems of the Past and Present) (1001). Consult: Johnson, 'The Art of Thomas Hardy' (i894) ; Macdonnell. 'Thomas Hardy" (1894); Windle, 'The W'esscx of Thomas Hardy" (Igor); Sherren, 'The WVessex of Romance) (1002).

Hare, Augustus John Cuthbert, English descriptive writer: b. Kome, Italy, I3 March 1834 : d. St. Leonards, Sussex, 22 Jan. 1903. He was a nephew of J. C. Hare (q.v.). His life was spent mainly in travel, on descriptions of which his fame chielly rests. Among his many works may be cited 'A Winter at Mentone' (1861): 'Walks in Rome' (1870): 'Wanderings in Spain' (IS72) ; (Memorials of a Quiet Life) (1872): 'Days near Rome' (1874): 'Walks in London' (1877): 'Days near Paris) (1887): 'Sussex'; 'The Story of Jly Life' (1895) ; 'Shropshire.'

Hare, John, English actor: b. London 16 May 1841 . He made his first appearance in Liverpool, then going to London played at the Prince of Wales theatre, and later was manager of the Court theatre, the Garrick theatre, and the Globe theatre. He became distinguished as a comedian, and visited the Tnited States, playing in the chief cities. The plays he has brought out include 'A Serap of Paper') 'Still Waters Run Decp': 'A Bachelor's Romance' ; and 'Gay Lord Quex.'

Hare, John Innes Clarke, American jurist: b. Philadelphia 17 Oct. ISI7. Graduated from the Thiversity of Pemsylvania in I834. he was admitted to the bar in ISAI, was sucecssively associate and presiding judge of the Philadelphia district court ($1851-75$), and in $1875-05$ presiding judge of the court of common pleas. He was also for a time professor of the institutes of law in the University of Pennsylvania, and published: 'American Leading Cases' (1847 ; with Wallis), 'The Law of Contracts' (IS87), 'American Constitutional Law' (1880), eleven rolumes of chancery reports, and other works.

Hare, Julius Charles, English Anglican clergyman and author: b. Valdagno. Italy, 13 Sept. 1795; 1. Hurstmonceaux, Sussex, 23 Jan. 1855. He was vicar of Hurstmonccaux from 1832 and published 'Vindication of Luther' and other works, but is much more widely known as co-author with his brother A. W: Hare, of 'Guesses at 'Truth' (1827), a work which still enjoys popularity:

Hate, Robert, American scientist: b. Philadelphia 17 Tan. 1781 ; d. there 15 Nay 1858 . He

Was professor of chemistry in the Cniversity of lemnsybania 1818 th. He will be longest remembered for his discovery of the oxyhydrogent blownipe to which he gave the name "hydrostatic blowpipe," but he also invented the ralve-cuck, the calorimeter and a process for denarcolizing laudanum. We wrote 'Brief View of the Resources of the United States' (1810) ; 'Chemical Apparatus and Jlanipulations' (1836) ; 'Nlemoir on the Explosiveness of Nitre) ; etc.

Hare, William Hobart, American Protestant Episcopal bishop: D. Princeton, N. J., I7 May 1838. He studied at the T'niversity of Pennsylyania, was ordained priest in 1802, was minister of St. Luke's. St. Paul's (Chestnut Fill) and other churches of Philadelphia, and in I873 was consecrated missionary bishop of Niobrara. In 1883 his diocese, having been enlarged so that its limits were identical with those of the territory of South Dakota, was renamed that of South Dakota. He became known as an authority on the Indian question, and wrote pamplulets on mission work in the western United States.

Harebell, or Bluebell, a familiar species of bcll-wort (Campanula rotundifolia). common throughout the northerly parts of the whole northern hemisphere (sce Bileebell: CampaがULA), growing in dry and hilly pastures, on waysides, and open lands gencrally: It is, however, rare in America south of Canada, although other species are to be found here. It is perennial, with a slender stem 6 to If inches high, bearing a loose raceme of a few drooping flowers, on very slender stalks; the flowers, generally bright blue, but sometimes white, bell-shaped. and about half an juch long. appear in summer and antumn. The juice of the flowers yiclds a fine blue color, and may be used as ink.

Harel, Paul, pōl ä-rěl, French innkeeperpoct: b. Echauffour (Orne) 1854 . He became landlord of the "Croix Saint-Andre." an imn at Echanffour, and within a modest range of suhject wrote picturesque verses in an excellent lyric style. He was elected to the Caen Academy, and on the recommendation of Sully-Frudhomme received a prize from the Academic Francaise. Among his works are: 'Sous les Pommiers' (1859) : 'Rimes de Proche et d’Epéc' (1883): 'Aux Champs' (I886) ; and 'L'llerbager' a three-act poetic drama (IROI).

Harelip. A fish. See Cu'tlirs.
Ha'rem, or Hareem' (Ar. "the prohibited"), is used by Jussulmans to signify the women's apartments in a household establishment, forbidden to every man except the husband and near relatinns. The women of the harem may consist simply of a wife and her attendants, or there may be several wives and an indefinite number of conentines or female slaves. with black eunnchs, etc. The greatest harem is that of the sultan of Turkey. The women of the imperial harem are all slaves, generally Circassians or Georgians. Their life is spent in bathing. dressing, walking in the gardens, witnessing the volupttous dances performed by their slaves, etc. The women of other Turks enjoy. the society of their friends at the baths of in cach other's houses and appear in public accompanied by slaves and eunuchs: but the women of the sultan's haren have none of these privileges.

It is of course only the richer Moslems who can maintain harems: the poorer classes have generally but one mife.

Hares. In the United States the names hare and rabbit are used indiscriminately ior various species of rodents of the family Liforida. Hare is the generic term, while rabbit is applied properly to a single sbort-legged species cf essentially burrowing habite whose naked, blind. and helpiess young are nurtured in underground nests (三ee Rabbit). None of the native American species have these characteristics. The second pair of upper incisors are small. non-functional and placed directly behind the large gnawing ieeth, a peculiarite which distinguishes the hares and a fert allied forms from all other rodents. The ears are always large. the tai! short. bushy. and upturned, the forel:mbs shor: and five-toed. the hind ones long and torr-toed, and the soles of the feet densely hairy. Hares are exclusively regetarian. They are extemely timid, alert and have keen senses. They move with peculiar erratic leaps and with great speed ior short distances. and walk with a peculiar shuflirg gait by placing the entire sole of the hind foot on the ground. Afarorite attitude is that of resting on the haunches with the head erect: but the forelimbs lack altogether the prehensile powers of the squirrels. None of them are arboreal or aquatic. The older catalogues enumerate from 20 to 30 species from all parts of the world except Australasia, but chiefly belonging to the northern hemisphere. With a very few exceptions all the hares are included in the single gerus Lepus.

The gray rabbit, wood rabbit or cotiontail (L. fioridanzs or L. syliaticus) is very plentiful throughout eastern North Anerica north to Ontario. It frequents thickets and brier patches on the borders of woods, multiplying excessively in the more thickly settled regions and replacing the more retiring varring hare. All kinds of succulent herbage. bark, berries. and buds. the latter especially in winter, form the rabbit's food. which it seeks to a large extent along regularly established runways, not infrequently leading to the farmer's truck-patch. Aithough it does not iteeli burrow, the cottontail frequently escapes its pursuers by retreating into the holes of woodchucks. skumks. etc.. in this respect and some others resembling the true European rabbit more closely than any other American species. Several broods of four to six young are raised eacl year. At birth they are blind and helpless, and are protected in a nest built in a depressicn in the ground of dried grass or weeds lined with the rabbit's own fur.

The varying hare or white rabbii (L. ansericanus) is a larger species with longer hind legs. taking its name ircm the alternating brown and white color of summer and winter re-pectively. a chance which is less complete sonthward. Much difference of opiniun has prevailed regarding the manner in which this change occure, the latest competent wiew being that the white coa: is due to the growth of new white-tipped hairs among the soft short iur. the brown tint of which again appears with the less of the white end of the hairs in the spring. In one or other of its varieties it range- ircm liirginia norhward in Hudson Bay, and is cummon in the hemlock forests northward. This is a typical hare. which depends for its saiety from ioxes, lynxes, wea-
sels. hawks. owls and numerous other enemies solely upon its quick senses and great speed. It never enters burrows. but lives by day and night with no other shelter than that afforded by thickets. Feeding chiefly by night it travels along regular runways used in common by several individuals, a iact which is sometimes taken adrantage of by ioves and other enemies to compass their destruction. Af favorite winter food is the bark and buds of the birch tree. Scarceiy any nest is formed for the young, which are fully active a short time after birth. A somewhat similar species is the polar hare (L. ercticus), a pure white species of high northern latitudes.

The jack-rabbit or prairie hare (L. icmpisifis) is representative oi a group of large, longjegged. big-eared hares which inhabit the western plains, and whose lives are spent mostly "on the jump." For short distances they are perhaps the swittest quadrupeds known. Their lives are spent among the bushes, upon the twigs of which they ieed. and where their young are dropped and within a short time required to shit io: themselves. In cultivaied districts the jackrabbits increase enormously and become great pests. As a consequence they are much hunted, not only with dog and gun and snare, as are the eastern species, but by the organization of extensive "drives" which result in the destruction of thousands, the bodies of which are shipped to the markets. Coursing them with greyhounds after the English fashion (see Courstag) is an exciting and favorite sport.

The marsh hare (L. palustris) and water hare (L. aunuticus). of the Southern Atlantic seaboard and the Mississippi valley respectively. are rather short-legged species. which difier from the others in the readiness with which they will enter water.

In Europe the common hare (L timidus). the mountain hare (L. :ariabilis) and the rabbit (L. cuniculus). ifom which the domestic races have been derived, are the principal species. Consult: Coues and Allen. 'Monographs of the Rodentia' ($18 / 2 /$): Thompson. 'IWild Animals I have Known' (1898) : Stone and Cram. 'American Animals' (tgoz).

Hargraves, här'gravz, Edmund Hammond, English discoverer of the gold-fields of Australia: b. Gosport, England. $1 \mathbb{E}_{\mathrm{ts}}: \mathrm{d}$. Sidney. N . S. W... October 18or. When is he settled in Australia. but atiracted to California in I\&49. he there tried his luck as gold-digger, and detecting a similarity in the geological formation of Caliiornia and Australia, inferred that gold would be found in the latter, also on his return established the correctness of his surnise by finding gold on the west slopes oi the Blue Hills in New South Wales in 185t. He was appointed commissioner of crownlands, and received from the government of New South Wale: a reward of Eiso.000. In 185 he published 'Australia and Its G Id-fields.)

Hargreaves, här'grèvz. James, English inventur: b. Stanhill. near Blackbura, Lancashire; d. Xittingham, England. Aptil $1 ;-8.8$. In $1 ; 60^{\circ}$ he invented a machine consisting of a revolving cylinder with cards or combs set round it as a sub-titure for the hand-cards formerly in use in combing nut cotton. Some ycars after this he in ented the spinning-jenny, by which he was able to spin with several spindles at once. With his new machines he succeeded in turning out a
much greater amount of yarn than his neighbors, which excited their jealousy, and they accordingly broke into his dwelling. and destroyed his machine. In consequence of repeated persecution of this kind llargreaves semoved in 1 jus to Nottingham, and in 1770 obtained a patent for his invention. Here, however. he reaped scarcely any more benefit from it than before. Aiter refusing $\ell_{3} .000$ offered him by a private company for his patent, this was declared invalid on the ground that he had sold several of the machines before taking out the patent. For the rest of his liie lie carried on husiness as a cotton manuiacturer in partnership with Mr. James. The only public recognition this invention ever obtained was in the form of a bounty of $£ 250$ granted by Sir Robert Peel. nearly fo years after Hargreaves" death. to his last surviving daughter.

Häring, Wilhelm, vil'hĕlm hă'ring, "Alexis TVilibald," German historical novelist: b. Breslau 29 June 1798; d. Arnstadt 16 Dec. 1871. 11 is work was suggested by the 'Waverley Novels' and in fact, his first two important works. 'Walladmor' and 'Avalon Castle.' purported to be translations from Scott. His works are historical tales of Prussia, with Frederick the Great for hero: among these may be cited 'Cabanis': 'The False Waldemar': 'Peace is the First Civic Duty.? He was very fertile in plot and incident. but his style is mannered; the tales are still popular, however, from their patriotic fervor.

Harivanśa, Juă-ri-văn'sha, a Sanskrit epic poem. later than the Mahâbhàrata, to which it forms a sort of sequel or epilogue. It has been translated into French by Langlois (1834).

Hark, Joseph Maximilian, Moratian clergyman: b. Pliladelphia + June is 49 . Gradnated from the Aloravian College and Theological Seminary in Bethlehem. Pa., he entered the Moravian ministry and was successively pastor of Moravian churches in Lebanon. Philadelphia and Lancaster. Pa. Since 1893 he has been principal of the IJoravian Seminary at Bethlehem, Pa., the oldest girls' boarding school in America. He has been a frequent contributor to 'The Outlonk' and other periodicals. and has published 'The Unity of the Truth in Christianity and Evolution.'

Hark'ness, Albert, American Latinist: 13. Menden, Mans., 0 Uct. isz2; d. Providence, R. 1., 26 May 190\%. Ho was graduated from Brown Luiversity in ist, and in 1855 was appointed poofessor of Greck in that institution. He was a founder of the American Philulugical Association, and its president in 1875-6. In $188+$ he was clected director of the American School of Classical Studies at Ithens, Greece. His best-known works were a series of Latin text-bonks widely nsed and of much intluence; including a lirst book, readers, a manual of prose composition, editionn of Cesar, Cicern, and Sallust, and an excellent 'Latin Grammar' (1881), revised and enlarged as ' 1 Complete Latin Grammar' (1808).

Harkness, William, American astronomer: b. Ecclefechan. Scotland. 17 Dec. 18.37 : d. 1903. He was graduated from Rochester (niversity in 1858. studied medicinc, vas a surgeon in the Federal army for a time. in 1862-5 was an aid in the United States naval observatory. and during the total eclipse of 7 Aug. 1869 discovered the
line K. rith of the sular corona. He is best known for his theory of the focal curve of achromatic telescopes, and for his invention of the spherometer caliper. the most nearly accurate device for the measurement of the inequalities of pivots in astronomical instruments. In 1804-9 he was astronomical director of the Naval Observatory, and in 1899 was retired with relative rank if rear-admiral. He published "The Solar Parallax' (1891).

Harlan, här'lan, James, American legislator: b. Clarke County, M11., 25 . Lug. 1820; d. Mount Pleasant. lowa. 5 Oct. I800 Jle was graduated from Indiana Astury (now De Paum.) University in $18+5$. in 1853 was elected president of Iowa Wesleyan University, in 1855-65 served as United States senator, in $1805-6$ was secretary of the interior, and then served a third term ($18660-z_{2}$) in the Senate. Subsequently he was editor of the Washington Chronicle, and in 1882-5 presiding judge of the conrt of commissioners of Alabama clains.

Harlan, John Marshall, American jurist: b. Boyle Connty: Ky., I June 1833. IIc Was graduated from Centre College, Kentucky, studfed law at Transylvania University, and entering upon the practice of his profession at Frankfort, became county judge in 185 S , and was Whig candidate for Congress in 1859, but was not elected. In the Civil War he served in the Union army as colonel of a Kentucky regiment, and in $1863-6$ was attorney general of his State. He was Republican nominee for governor in 18;1 and 18;5. but was defeated on loth occasions. In the Republican National Convention of $18 \tau_{2}$ his name was presented by the Kentucky delegation for the nomination for vice-president of the United States. In $18-7$ he was appointed a member of the commission to investigate the troubles in Louisiana: and in November of that same year he was appointed associate justice of the United States Snpreme Court. of which he is considered one of the most able and independent members. He supported the constitutionality of the income tax clause of the Wilson Tariff Bill.

Harlan, Iowa, city, county-seat of Shelby County: on the West Nishmabotna River, the Cliicago. R. 1. \& P., the Chicago \& N. R.R's; about 90 miles west of Des Moines. The clicf manufactures are foundry products, agricultural implements. flour, bricks, gasoline engines, and iurniture. Its shipping trade is in agricultural products and the mannfactures of the city. Pop. (1900) 2.422.

Harland, här'land. Henry, pseudonym 'Simeyy Le:sk.') inglo- American novelist: b. St. Petersburg. Russia, i Jlarch isot: dl. San Remo. Italy, 2I Dec. r905. He was cducated at Jlatrard and after being in the surrogate's office in Xew lork 1883^{-6} removel to 1 ondon. where he edited the 'rellow Book.' He published 'As It Was W'ritten' (IRR5) a musician's story: 'Mrs Peixala) (188,) "The Land of Love' (iSSन) ; 'Aly ['ncle lilorimond' (IXP8): (The Yoke of the Thorah' (1887): 'Mr. Sonnensclicin's Inheritance' (1888) 'A Latin-Quarter Courtship': 'Comedies and Errors' (i8o8) : 'Cardinalt's Smuff-box' (Inoo): etc., books which lave been extensively circulated in both America and England.

Harland, Marion. See Terbune, Mary Virginia.

Harlech, här'lè. U"ajes, an ancient town, the former capital of Nerionethshire, sitwated on the coast. 10 miles north of Barmouth. On a steep hill overlooking the sea is the castle. which held out for the Lancastrians in the wars oi the Roses, and later for Charles I. The 'Jlarch of the Jen of Harlech' commemorates its capture by the lorkists in 1468.

Harlem, a part of New lork city above 106th street, between the East and Harlem Rivers and Eighth Avenue. See N゙ew Iork Citr.

Harlem, lll., village in Cook County; on the Illinois C. and the Chicago \& N. II. R.R.'s: about seven miles from Chicago and near Oak Park. The first permanent settlement was made in 185% and the village of Harlem was incorporated in SCO_{3}. It is a residential suburb of Chicago, and is noted for its race track (see HorseRacisg). IValdhein and Forest Home cemeteries are in Harlem. A monument to the men executed as anarchists who were connected with the Chicago riots of 1886 is in the Waldheim cemetery. The government is rested in a president and board of trustees elected annually. Pop. (1900) 4.085.

Hariem Plains, Battle of, in the Revolutionary IVar. a conflict on 16 Sept. 15-6, which followed Howe's occupation of lew lork and Manhattan Island. On the Harlem Plains or Flats an advance guard of British troops came into contact with a body of Virginian and Connecticut troops commanded respectively by Dajors Leitcly and Knowlon. In attempting to flank the enemy Knowlton was killed, and by Washington's orders the Americans retreated, with a loss of 60 killed and wounded.

Harlem River, the name given to the tidal channel north of the island of Nlanhattan. which separates the boroughs of Manhattan and the Bronx. in New lork. The Harlem is connected with the Hudson River by Spuyten Duyvii Creek, and extends south by east about seven miles to East River. Randall's lsland is at its entrance to East River. In ISog a shipcanal was opened which comects the Hudson and the Harlent somth of the Spuyten Duyvil channel. A number of bridges span the Harlem. the finest being Higls Bridge, an aqueduct bridge. and Washington Bridge which crosses the river a little north of a point opposite For Washington on the Hudson. Along the western shore is the excellent roadway called the Speedway, and on the same side of the river are the polo and ball grounds, the High Bridge park and a muntber of fine public and private buildings.

Harlequin, här'lě-kin or -kwinn (French, urléquin, Italian arlectimo), a word? of doubtinl origin, but probably from old 1 French Hellequin, $H_{k} r$ lequin, the name of a demon figuring in mediaeval legends: this again is supposed tw be of German origin, it e elements corresponding to Englioh "hell" and "kin." Riccoboni conjectures ('History of the latian Theatre') that the dress of the harlequins is un other than the cenfumentus of the old Roman mimi or mimes. who were players in ridiculous pieces or farces of a lnose character. The character of the ancient harlequin was a mixture of extravagant buffocnery with great bodily agility. But in the middle of the I6th century his character was essentially changed. He became a simple, jgnorant servant. who tries very lard to be witty, even at the
expense of being malicious. He is a chameieun, who assumes all colors, and can be made, in the hands of a skiltul actor, the principal character on the stage. He must excel in extempore sallies. This account applies more particularly to the Italian harlequin. The gallant, obsequious French harlequin is an entirely national mask. In the vaudeville theatre he is silent, with a black half-mask, and reminds one throughout the representation of the grace and agility of the cat. In Great Britain. in the Christmas pantomimes, be becomes a lover and a magician; and in exchange for the gift of language, of which he has been deprived. he has been invested with a wonder-working wand. Wjith this wand he protects his mistress. the columbine, aganst the clown and pantaloon, who pursue and endeavor to capture her, until the pursuit is brought to a termination by a good tairy. The harlequin wears a tight dress of bright colors, and glittering with spangles.

Harlequin Cabbage-bug. See CabbageIN:ECTS.

Harlequin Duck. See Dück.

Harlequin Snake. See Coral Snake.
Har'ley, Robert, 1 st Earl of Oxford. English statesman: b. London 5 Dec. I661: d. 21 May Iフ24. After the accession of Anne he and his colleague St. John. afterward Lord Bolingbroke. became leaders of the Tories. The former was chosen speaker of the House of Commons in $\mathrm{I} \% \mathrm{O}$, and was chief secretary of state-1704-8. Aiter the fall of Marlborough Harley became chancellor of the exchequer in $1 / 10$ and next year was created Earl of Oxford. He and Bolingbroke secured the Treaty of Cetrecht ($1 ; 13$), but afterward quarrelled. Early in the reign of George 1. he was inpeached oi high treason on the ground of his alleged Jacobite intrigues. and was kept in the Tower for two years. but owing to the inability of the Peers and the Commons to agree about the mode of procedure. was acquitted. His patronage was extended to Swift. Pope, and other literry men, and he made a valuable collection of books and MSS.. which latter are preserved in the British Muscum, where they form the 'Bibliotheca Harleiana.' Those which have been printed constitute the 'Harleian Miscellany.'

Harlow, hār"lō, George Henry, Englisu painter: b. Londnn to June $158-$; d. there 4 Feb. isto. After studying under other masters he entered the studio of Sir Thomas Lawrence, who used to employ hini to dead color. In isis he visited Rome, where he astonished the arrists there by completing an effective copy of the "Transfiguration" of Raphael in is days. This gained him the friendslip of Canova, who procured his clection as a member of the Academy of St. Luke. His best original works are two designs irom Shakespeare, 'Hubert and Prince Irthur," and the 'Trial of Qucen Catharine.' The principal characters in the latter are portraits of members of the Kemble iamily; and the figure of Queen Catharme is a likeness of Mrs. Sicilons (q.v.). ke was eminent as a portrait painter. and his portrait of Fuseli is regarded as a work of great merit.

Harlowe, Clarissa, a novel published by Samuel Richardson in t\%.4. The story is told by means of letters, and while somewhat prolix
for movern taste, is an accurate record of many of the manners and ideals of the 1 Sth century

Har'maline and Harmine, two alkaloids which occur, probably in the form of phosphates, in the seed-coatings of the harmel or Syram tue (leganume harmaia), a plant growing in the Mediterranean region and in southern A sia. The seeds are extracted with dilute acetic or sulphuric acid, and the hydrochlorids of the two alkaloids are precipitated by the addition of common salt. The precipitate is washed with salt solution, and afterward with water, in which the hydrochlorids dissolve. The filtrate is charified by animal charcoal and heated to $140^{\circ} \mathrm{F}^{\circ}$. after which ammonia is added. Harmine is precipitated first, and by the continued addition of ammonia the harmaline is thrown down subsequently. Harmine has the formala $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$. It is practically insoluble in ether, and is but slightly soluble in water. It dissolves in alcohol, from which it erystallizes in colorless monoclinie prisms, melting at $495^{\circ} \mathrm{F}$. llarmaline is the hydrid of harmine, and has the formula $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$. It is somewhat soluble in water, ether, and cold alcohol, and dissolves frcely in hot alcohol. It crystallizes from solution in alcohol in the form of octahedra belonging to the trimetric system, and melts at about $460^{\circ} \mathrm{F}$. The salts of harmine are mostly colorless, while those of harmaline are yellow; and the salts of both of these bases exhibit marked fluorescence. The name "harmaline" is also applied to the coloring matter now more commonly known as fuchsine.

Har'mar, Josiah, American soldier: b. Philadelphia 1753 : d. there 20 Aug. 1813. He entered the patriot amy as captain, became colonel in 1777 , served with Washington (1778 -80) and with Greenc in the South. In 1,84 he brought to France the ratification of the final treaty. In r 780 he was made brigadier-general in the United States army, and was gencral-inchief of the amm from 1759 to 1792. We conducted an expedition against the Miami Indians, which suffered a severe defeat, and shortly afterward resigned his commission. From 1793-9 he was adjutant-general of Pennsylvania.

Harmattan, här-măt'an, a land-wind, very dry and hot, blowing upon the coast of Africa between Cape Verde, in lat. $14^{\circ}+3^{\prime} \mathrm{N}$., and Cape Lopez, lat. $0^{\circ} 36^{\prime}$ S., during December, Jannary, and February. It is generally attended by fog, through which the sun shinces red. It hurts vegetation and injuriously affects man, drying up the eyes, the mouth, ete., even peeling off the skin. On the other hand, it tends to terminate fever and dysentery, and to mitigate cutancous diseases. It corresponds to the sirocco of 1 taly and, to a certain extent, to the Indian and Australian hot wind.

Harmodius (här-mo'dī-ŭs) and Aristogi-
 in $5^{1}+$ B.c. killed Ilipparchus, the younger brother of the tyrant IIppias, partly because of an insult offered to the sister of Harmodius, and partly with a view to the overthrow of the 1, isistratidx. Harmodius was slain by the soldiers of Hipparchus, while Aristogiton "lled, but was afterward taken and executed. Sulsecquently they came to be regarded as patriotic martyrs. and received divine honors from the Athenians, and had statues raised to their menory. They were strongly attached to each other, and are
sculptured in a gromp in the Museo Nazionalle, Naples, copisel from the bronze orginals which once adorned the Acropolis at Sthens.

Har'mon, Judson, American jurist: D, Liamilton County, ()ho, Feb is. 86 . He was graduated at 1)anison (University, 1866 , and at Cincimati Law School, $1: 60$. We was judge of the common pleats court ($1870-6$) ; judge of the superior court of Cincinnati, is $7.5-S_{7}$; and attor-ney-general of the United States, $18000-5$. Ile is president of the Ohio Bar Assuciation, and a member of the faculty in the law department of the University of Cincinnati

Harmonic Analysis, The. "The Ilarmonic Analysis" is the name first given by thomson and "Tait in their 'Natural Philoscyph"' to a methorl extensivcly and fruitfully employed in investigations in many bramehes of Mathematical Physies, and first used by Danicl Bernouilli and Euler in the middle of the cighteconth century in studying the musical vibrations of a siratcheal elastic string.

From the plysical side it is clescribed by I. Clerk Maxwell as "a method by which the solution of an actual problem may be obtainecl as the sum or resultant of a number of terms, each of which is a solution of a particular catse of the problem." The method is applicalule to physical problems where the actual complicated state under investigation can lic regarded as due to the superposition of a number of simplerstates that can coexist without interfering with one another.

For example, in dealing with the small oscillations of a musical string it is known that the string is capable of somoling a varicty of socalled pure notes, known as the fumdamental note, the first harmonic or octave of the fundamental note, and the higher harmonies of the fundamental note, and that the forms of vibration giving these various notes may eocexist, so that the string may be sounding it once its funclamental note and its various harmonies and thus be giving a note quite distinguishable from its pure fundamental note though of the same pitch. If we are dealing with the problem of the motion of a string somnding such a complicated note, the harmonic analysis emables us. to obtain and to express its solution as at sum of the terns expressing the motions which soparately would give the separatc pure notes actually present.

From the mathematical side the problems to which the harmonic analysis is applicable are those in which it is necessary to fincl a solution of a homogeneous linear differential equation which shall satisfy a sut of given initial or boundary conditions sufficiently inumerous to make the problem detcrminate. It is well known that if a solution of such a differential exptation has been obtained, it may be multiplied by any constant and will still be a solution; amel that if several solutions haver been obtained, their sum will be a solution. In using the harmonic analysis we attempt by a skilful use of these two principles to so combine simple particular solutions of the differential equation involvest in the problem as 20 form a solution of the equation which satislies all the given ennditions. This usually makes it nceessary to analyze some one of the given conditions into a sum or series of simpler so-called harmonic terms, or in other words to develop, some function of one of the

HARMONIC ANALYSIS

incependent rariabies．or of a sct of the inde－ pen之ons variables into a series whase terms are

Fir mstance．supp，se a harp－string of length ja：chally distorted into a curve mnose equa－ iter fiered to the pnsitin i equiliznun $=$ the siriog as the I latis and to one end the
 and that it is requizal io solve the posblem the suhsezuent moti n of the string．the initial fisklacement being smali．

He－e we have to sulve the difierential equa－ Tic？

$$
\begin{equation*}
\frac{\partial z y}{\partial!^{2}}=d^{2} \frac{\partial z}{\partial x^{z}} . \tag{I}
\end{equation*}
$$

subiect to the conditions $y=0$ when $x=0: y=0$ When $\because=\therefore \quad \frac{\partial}{\partial ;}=0$ when $:=c: \quad j=\pi(x)$ when $:=0$ ．Ii is leowre and is easily renifed that $\because=\sin \cos u 弓$ as a paricular soluiin of（1）
 $1 \because$ ：s any whole number．$\because=\sin \frac{m-\because}{!}$ cns $\frac{m-a t}{!}$ is a solutica of（1）which satishies our first three conditicas：and so is

$$
\begin{array}{r}
y=a_{2} \sin \frac{-x}{b} \cos \frac{-a i}{!}-a_{2} \sin \frac{2-\pi}{!} \cos \frac{2-a x}{!} \\
-a_{3} \sin \frac{3-x}{l} \cos \frac{3 \pi a}{!}+. \tag{i}
\end{array}
$$

Where $a_{1}, a_{2}, a_{3}, \ldots$ are any consants．When $i=0(I)$ reduces ： 0
$b=a_{2} \sin \frac{-r}{!}-a_{2} \sin \frac{2 \pi r}{l}+a_{3} \sin \frac{3 \pi x}{?}-$
and if we can chonse u．．u．etc．so that the series
 0 are $\sum_{(I)}$ becomes our－uquired solution． This calls fry the development of $i r$ into a Trisummetric Series of somewhat peculiar form hotm as a Fourier＇s Serics，and when that is accomplished cus solution is comple：e．
\vec{F} ：urior＇s series．It was nirst shown be Fou－ rier in his researcines into ：he Cuduction of Hewi มn ェふェン that

$$
\begin{equation*}
-a_{1} \sin \frac{-z}{i}-a_{1} \sin \frac{2}{2}_{2-x}^{i}-a_{3} \sin \frac{i-v}{i} \tag{3}
\end{equation*}
$$

Wher

$$
a_{m}=\frac{1}{i} \int_{-}=\sin \frac{n-i}{i} t x
$$

－－＿ii Malues of r beiwters a：d i ．
If it－－- in ihas $!s$, if is an odd iunc． ．：I reduces：

$$
\begin{align*}
& \text { (14) } \quad \sin \frac{-x}{i}-a_{3}=\operatorname{nn} \frac{z+i}{i}-u_{3} \sin \frac{5 \pi i}{i}-\ldots \text { (4) } \tag{4}\\
& a_{m}=\left.\frac{2}{-}\right|^{\circ} \dot{\theta}|x| \sin \frac{n:-x}{i} d x .
\end{align*}
$$

$f(x)=\frac{1}{2} b_{0}-\dot{b}_{1} \operatorname{ccs} \frac{\pi x}{i}+\dot{b}_{2} \operatorname{ccs} \frac{2 \pi x}{i}$

$$
\begin{equation*}
-\dot{E}_{3} \cos \frac{3-x}{i}+ \tag{5}
\end{equation*}
$$

$\pi h e r e$

$$
\dot{o}_{m}=\frac{2}{i} \int_{0}^{\pi} \dot{i}(x) \cos \frac{n-\pi}{i} \dot{v} x
$$

If the development reed hold good merely fis vaiues of x besween o and i ，any one of the iums nven above may be emploved．

$$
\begin{equation*}
\frac{\partial^{2} T^{2}}{\partial x^{2}}-\frac{\partial^{2} i^{*}}{\partial y^{2}}-\frac{\partial^{2} T}{\partial z^{*}}=0, \tag{II}
\end{equation*}
$$

in ：he zumerous iorms it assunles in diferen＝ systems of coordinates plays a larger part in the rarious brenches of mathematical physics than any other diferential equation．and the harmonic analysis is required in a la－ge propor－ tiva of the physical probiems that cbey the latr it expresses．
－function which together with its ñst space decivatives is convinuous mothin a specined region and which saisisies Laplace＇s equation at every point mithin the region is said to be inaru：in the region in question．

The form to thich a harmonic function re－ duces can one of the level suriaces of the afpro－ priaie coōdinate system is called a Surfuce Harmors：：－

Zoral Harmuins．－The coetricient of $z^{-\pi}$ in the derelopment of（ $I-2!\underline{L}+z^{2}$ ）－$\frac{1}{3}$ in ascending powers of $=$ where $\because=\cos$ A．is rep－esented by $P_{\text {En }}(\underline{\prime})$ and is called a Survie Zins？Harminio
 Lesentrinn：

It can be shom that $T^{\circ}=r^{m} P_{n}(c: s \theta)$ and $T^{-}=\frac{1}{r^{*}-i} P_{m}(\cos \theta)$ are particular solutions of Laplace＂s equation in spherical coordinates．
$\frac{r \partial=r l}{\partial r^{2}}-\frac{i}{\sin \theta} \frac{\partial\left(\sin \theta \frac{\partial I}{\partial \dot{\theta}}\right)}{\partial \theta}+\frac{i}{\sin ^{2} \theta} \frac{\partial=I^{\circ}}{\partial \dot{\zeta}^{-}}=0$.
They are called said Z ron ？Horm：onies．The tirst form is harm nic within the sphere whose centre is at the ocighn of coordinates and whose fadius is unity，and the sec ond ism is harmonic in all space cutsde of that sphere．They are anpropnate functi ns io use in solving pr blems where as lutica nt（111）is requital，if it is evi－ deat irom a nsiderations of symmerty that the s lution is independent ot the coordmate ϕ.

$$
\begin{aligned}
& \left.-\frac{n(n:-1) \cdots-2 n:-3}{2 \cdot+\cdot(2 m-1)(2 n:-3)}: n=-1 . .\right] \text {, }
\end{aligned}
$$

whence

$$
\begin{aligned}
& P \quad: \quad 1=\mathfrak{n}, \\
& \left.P_{2}(1,1)=\frac{1}{2} n^{2}-1\right) \text {. } \\
& P:(E)-!\text {. } \\
& \left.P_{3}(\underline{n})=1!n^{3}-3!!\right), \\
& \left.P_{1} \mu-\frac{1}{4} 35 \mu^{\prime}-30 \mu^{2}-3\right) \text {. } \\
& P_{5}\left(\mu=\frac{1}{3}\left(03 \mu^{3}-; 0 \mu^{3}-15 \mu\right) .\right.
\end{aligned}
$$

A very implata propert of the Suriace Zonal Ilamin ${ }^{\circ} \mathrm{c} P_{m} u$ which follows readily from its a fintit n is $I_{n}(I=\tau$ ．That is，the function

HARMONIC ANALYSIS

reduces to unity at all points on the polar axis.

If, in a problem where I' must satisfy Laplace's Equation and there is symmetry about the polar axis, the value of 1 on the axis is represcuted by a convergent series $a_{0}+a_{1} 2+a_{2} z^{2}+$ being the distance of the point fron the origin, then the series formed by writing $r^{m} I^{\prime} m(\cos \theta)$ instead of z^{m} in the given series sives the balue of V at any point in space at which the new series is convergent. If the ralue of I on the axis is represented b_{y} a convergent series $\frac{a_{1}}{z}+\frac{a_{2}}{z^{2}}$ $+\frac{a_{3}}{z^{3}}+\ldots$, then the series formed from the given series by replacing $\frac{1}{z^{m+1}}$ by $\frac{1}{r^{m+1}} P_{n}(\cos \theta)$ gives the value of 1° at any point in space at which the new series is convergent.

For instance, if a charge M of statical electricity be placel on a conductor in the form of a thin circular clise of radius a, it is known that the charge will so distribute itsclf that the surface density σ at any point of the clise at the distance .I s from its center will be $a=\frac{}{4 a \pi-) ~} a^{2}-s^{2}$

If the axis of the disc is taken as the polar axis, the value of the Potential Function I^{2} due to the charge, at a point of the axis at the dissance x from the contre is $1-\frac{M}{2 a} \cos ^{-1}\left(\frac{x^{2}-a^{2}}{x^{2}+a^{2}}\right)$ This can be developed into the series

$$
\begin{array}{r}
\quad \frac{M I}{a}\left[\frac{\pi}{2}-\frac{x}{a}+\frac{x^{3}}{3 a^{3}}-\frac{x^{5}}{5 a^{5}}+\ldots\right] \text { if } x<a, \\
\text { wr } \quad \frac{M}{a}\left[\frac{a}{x}-\frac{a^{3}}{3 x^{3}}+\frac{a^{5}}{5 x^{5}}-\frac{x^{7}}{i^{7}}+\ldots\right] \text { if } x>a .
\end{array}
$$

IIence
$I=\frac{T}{u}\left[\frac{\pi}{2}-\frac{r}{u} P_{1}(\cos \theta)+\frac{1}{3} \frac{r^{3}}{a^{3}} P_{3}(\cos \theta)\right.$
$\left.-\frac{1}{5} \frac{r^{5}}{a^{3}} P_{5}(\cos \theta)+\ldots\right]$ if $r<a$, and $\theta<\frac{\pi}{2}$;
and 1

$$
\begin{array}{r}
!=\frac{M}{u}\left[\frac{a}{r}-\frac{1}{3} \frac{a^{3}}{r^{3}} P_{2}(\cos \theta)+\frac{1}{5} \frac{a^{5}}{r^{5}} P_{1}(\cos \theta)-\ldots\right] \\
\text { if } \quad r>a .
\end{array}
$$

If, in a problem where V must satisfy Laplace's Equation and there is symmetry about an axis, the value of V on the surface of the sphere $r=a$ is given and can be expressed as a sum or as a scries of Surface Zonal Harmonics, the value of 1° at a point not on the sphere will be obtained by replacing the Surface Zonal Harmonics by the appropriate Solid Zonal Harmonics.

To take a very simple example: If a charge of electricity is placed on a spherical conductor of radius μ, it is known that it will so distribute itself that all puints on the surface will be at the same potential $\frac{M}{a}$.

Now $\frac{I I}{u}=\frac{M}{u} P_{0}(\cos \theta)$ and is a Surface Zanal Ifarmonic. Hence any point at the distance r from the centre of the conductor is at potential
$\frac{I I}{u} \frac{r^{\theta}}{a^{0}} P_{0}(\cos 0)$ or $\frac{Y}{u}$ if $r<a$, and at poterntial $\frac{M I}{a} \frac{a}{r} P_{0}(\cos \theta)$ or $\frac{M I}{r}$ if $r>a$.

If the value of I' on the surface of the spluere had been less simple, say $\left.\mathrm{l}^{\prime}=F(11)-\hat{(} \cos 0\right)$ $\equiv j(\mu)$, then $f(\mu)$ would have had to he expressed in the form $a_{0} I_{0}(l l)+u_{1} I_{1}^{\prime}(l, t)+a_{2} I_{2}^{\prime}(, l) L$. before we could have used the simple method illustrated above. This can be done by the aid of the formulat
$f(\mu)=a_{0} P_{0}\left(l^{\prime \prime}\right)+a_{1} P_{1}(\prime l)+a_{2} I_{2}^{\prime}(\ell l)+a_{3} I^{\prime}{ }_{3}(\mu)$
where $a_{m}=\frac{2 m+1}{2} \int_{-I}^{1} f(x) P_{m}(x) d x$, the development in question holding good when $-\mathrm{r}<!$: <1.

For instance, let one half of the surface of a homogencous sphere be kept at the tempera. ture zero and the nther half at the temperaturg I: to find the stationary temperature ut of ariy internal point. Here f(, 1) $-1, \quad 0<n<1$, and $f(\mu)=0,-I<\mu<0$. Consecquently

$$
\begin{aligned}
a_{m} & =\frac{2 m+1}{2}\left[\int_{-1}^{0} 0 \cdot P_{m}(x) d x+\int_{0}^{1} P_{m}(x) d x\right] \\
& =\frac{2 m+1}{2} \int_{0}^{1} P_{m}(x) d x .
\end{aligned}
$$

Letting $m-0,1,2, \ldots$, successively, and usirs * the corresponding values $1, x, \frac{1}{2}\left(3 x^{2}-1\right)$, ete., of $P_{m}(x)$, we get $a_{0}=1, a_{1}=\frac{3}{1}, a_{2}=0, a_{3}=-7 \cdot \frac{1}{5}$, $a_{4}=0, a_{5}=\frac{11}{12} \cdot \frac{1}{2} \cdot 3$ and $j(i i)=\frac{1}{2} P_{0}(\mu)+\frac{3}{*} P_{1}(i, i)$ $-7 \cdot \frac{1}{2} P_{3}(\mu)+\frac{1}{1} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{4} P_{5}(\mu)-$
If a is the radius of the sphere, the required temperature

$$
\begin{aligned}
u=\frac{1}{2}+\frac{3}{4} \frac{r}{u} P_{1}(\cos \theta)-\frac{7}{S} \cdot & \frac{1}{2} \frac{r^{3}}{u^{3}} P_{3}(\cos \theta) \\
& +\frac{11}{12} \cdot \frac{1}{2} \cdot \frac{3}{4} \frac{r^{5}}{u^{5}} P_{5}(\cos \theta) .
\end{aligned}
$$

Tables giving the numerical values of the Surface Zonal ifarmonics have been computed and are accessible, and by their aid numerical results can be obtained in such prohbenns as those we have been considering as readily ats if we were using simple trigonometric functions. The following is such a table carried only to threc places.

Table 1.-Surface Zosal Harmonics.

Legendrians were first used by Legendre in a paper published in 1785 on the attraction of solids uf revolution.

Luplace's Cocfficichts. - $I^{3}(\cos \gamma)$, where $r \equiv \cos \theta \cos \theta_{1} \cdots \sin \theta \sin \theta_{1} \cos \left(\phi-\phi_{1}\right)$, ans 1 is the angle made ly the radius vector with a dixed

HARMONIC ANALYSIS

line througl the origin whose direction is given by the angles θ_{1} and ϕ_{1}, is called a Laplace's Coemeient or Laplacian. the fixed line being called the Axis and its intersection with the unit sphere the Pole of the Laplacian. I Surface Zonal Harunonic $P_{m}(\cos \theta)$ is merely a Laplacian whose axis coincides with the axis of coordinates. $\quad r^{m} P_{m}(\cos \gamma)$ and $\frac{1}{r^{m+1}} P_{m}(\cos \gamma)$ are solutions of Laplace's Equation (1I1). The first is harmonic within and the second without the unit sphere.

Laplacians mar be used in problems symmetrical about an axis if the axis does not coincide with the axis of coordinates just as Zonal llarmonics are used when the problem is symmetrical about the pular axis.

Laplacians were first used by Laplace. in one of the most remarkable memoirs ever written. in determining the attraction of a Spheroid. The paper in question was published in 1,8 ?

Spikrical Harmonics.-I Surface Spherical Harmonic of the \quad uth degree I_{m} may be most simply defined as the function obtained by dividing a rational, integral. homogeneous. algebraic polynomial of the litth degree in x, y_{0}, z which satisfies Laplace's Equation (1), by $r^{m s}$, that is, by $\left(x^{2}+y^{2}+z^{2}\right)^{\frac{m!}{2}}$. For example, $\frac{1}{r}(x+y+z), \frac{1}{r^{2}}\left(x^{2}+x y+y^{2}\right), \frac{1}{r^{3}}\left(2 x^{3}-3 x y^{2}-3 x z^{2}\right)$ are Surface Spherical Harmonics of the first degree. of the second degree, and of the third degree. respectively.

It is clear that $r^{m} I_{m}$ satisfies Laplace's Equation. The same thing can be shown of $\frac{1}{r m+1} I_{m}^{-}$. The first is harmonic mithin, the second without, the unit sphere. They are known as Solid Spherical Harmonics

It is clear that if the value of V on the surface of a sphere whose centre is the origin can be expressed as a sum of terms each of which is a surface Spherical Harmonic, its value at ant point not on the surface is the sum of the appropriate corresponding Solid Spherical Harmonics.

It can be shown by transforming from spherical to rectangular coordinates that the Surface Zunal Harmonic $P_{m}(\mu)$ or $P_{m}(\cos \theta)$ and the Laplacian $P_{m}(\cos \gamma)$ are Surface Spherical Harmonies, and by the reserse transformation that the genteral Surface Spherical Harmonic ξ_{m} can be formulated as
$Y_{m}=1_{0} P_{m}(!)$
$\underset{n=1}{n=n} \underset{n}{\underset{\sim}{n}}\left[\left(A_{n} \cos n \phi+B_{n} \sin n \phi\right) \sin n \theta^{(i n} P_{m}(n)\right]$
Ifunction given arbitrarily on the surface of the unit sphere, i.e, a function of $"$ and ϕ. if expressed as a function of eos $\|$ and ϕ can be developed into a series of surface Stherical llarmonics by the firmulas

$$
\left.+B_{n \cdot m} \sin 1: \zeta\right) \sin \pi^{n} \theta^{d n} \Gamma_{m}\left(n^{(t)}\right]_{1}^{1},
$$

$$
1_{0 . m}=\frac{2 n n+1}{4 \pi} \int_{0}^{2-} d \phi \int_{-1}^{1} j(\mu, \phi) P_{m}(u) d u,
$$

$$
\begin{aligned}
& \frac{2-}{2 m+1} \frac{(m+n)!}{(m-n t)!} A_{n+m} \\
& =\int_{0}^{2=} \quad \int_{-1}^{1} f(\mu \cdot \phi) \cos n \phi \sin n \theta \frac{d n P_{m}(\mu)}{d \mu^{n}} d \mu_{0} \\
& \frac{2-}{2 i n+1} \frac{(m+n)!}{(m-n)!} B_{n \cdot m} \\
& =\int_{0}^{2=-} d \phi \int_{-1}^{1} j(\mu, \phi) \sin n \phi \sin ^{n} \theta \frac{d^{n} P_{m}(\mu)}{d \mu^{n}} d, \mu .
\end{aligned}
$$

The following theorems concerning ihe integration of Spherical Harmonics are important We give them without proof.

The integral of the product of two Surface Spherical Harmonics $\xi_{m} Y_{n}$ of different degrees taken orer the surface of the unit sphere is equal to zero.

The integral over the surface of the unit sphere of the product of a Surface Spherical Harmonic by a Laplacian of the same degree, is $\frac{+\pi}{2 m+1}$ multiplied by the value the Spherical Harmonic assumes at the Pole of the Laplacian.

These theorems enable us to solve many problems in the theory of Gravitation and the theory of Electrostatics by direct integration.

Bessel's Functions.-A Bessel's Function or Surface Cylindrical Harmonic of the uth order $J_{n}(x)$ may be defined as the coefficient of z^{n} in the developmant of $e^{\frac{x}{2}}\left(z+\frac{y}{z}\right)$ into an ascending Power Series in z. It can be shomn that

$$
r=\cosh (\mu-1)(A \cos n \phi \div B \sin n \phi) I_{n}(\mu r)
$$

and

$$
I^{-}=\sinh h(\mu)(A \cos n \phi+B \sin n \phi) J_{n}(!r) .
$$

Where \because is any constant, are solutions of Laplace's Equation in Cylindrical Coordinates

$$
\begin{equation*}
\frac{\partial^{2} V^{-}}{\partial r^{2}}+\frac{1}{r} \frac{\partial V^{-}}{\partial r}-\frac{1}{r^{2}} \frac{\partial^{2} T^{2}}{\partial \phi^{2}}+\frac{\partial^{2} V^{2}}{\partial z^{2}}=0 . \tag{IV}
\end{equation*}
$$

The Bessel's Functions most used are $J_{0}(x)$ and $J_{,}(x)$, which are appropriate when the problem has axial symnetry about the Axis of Z.

$$
J_{0}(x)=1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\ldots .
$$

and is convergent for all values of x.

$$
J_{1}(x)=-\frac{d I_{0}(x)}{f_{x}}
$$

lmpurtant properties are given by the formulas

$$
\int_{0}^{x} x J_{0}(x) d x=x J_{1}(x)
$$

and

$$
\int_{1}^{x} x\left\{I_{0}(x)\right\}^{2} d x=\frac{1}{2} x^{2}\left[\left\{I_{0}(x)\right\}^{2}+\left\{J_{1}(x)\right\}^{2}\right] \text {. }
$$

ant the following formulas for development in Cylindrical Harmonic Series, the development holding good for ralues of r between o and a.

$$
j(r)=2 H_{\kappa} J_{0}\left(n_{\kappa} r\right),
$$

Where n_{x} is a root of the transcendental equation in $\mu, j_{0}(\mu, 1)=0$, or of $J_{1}(\mu(0)=0$, or of

$$
\mu d J_{1}\left(\mu(a)-i J_{0}(\mu a)=0,\right.
$$

and
$A_{k}=\frac{a^{2}\left[\left\{J_{0}\left(\mu_{K}(z)\right\}^{2}+\left\{J_{I}\left(\overline{\mu_{K}}(a)\right\}^{2}\right]\right.\right.}{\int_{0}^{a} r f(r) J_{0}\left(\mu_{K} r\right) d r . ~ . ~ . ~}$
For the important case where $j(r)=1$,

$$
A_{\kappa}=\frac{2}{\mu_{K} a\left[\left\{J_{0}\left(\mu_{n} a\right)\right\}^{2}+\left\{/_{1}\left(\mu_{k}(l)\right\}^{2}\right]\right.} J_{1}\left(\mu_{K}(z) .\right.
$$

As an example in the use of Bessel's Functions let us find the stationary temperature of any point (r, \Rightarrow) in a homogencous cylinder of radius a and altitude b if the consex surface and one basc are kept at the temperature zero and the other base at the temperature 1 .

Here we seek a solution $]^{\prime}$ of equation (IV) which reduces to zero when $z=0$, and when $r=a$, and to I when $r=b$. By the aid of the formulas above this is easily formed and is

$$
\begin{aligned}
T^{\prime}=\frac{2}{\mu_{1} a J_{1}\left(\mu_{1} a\right)} & \frac{\sinh \left(\mu_{1} z\right)}{\sinh \left(\mu_{1} b\right)} J_{0}\left(\mu_{1} r\right) \\
& +\frac{2}{\mu_{2} a J_{1}\left(\mu_{3} a\right)} \frac{\sinh \left(\mu_{2} z\right)}{\left.\sinh \left(\mu_{2}\right)^{\prime}\right)} J_{0}\left(\mu_{2} r\right) \\
& +\frac{2}{\mu_{3} a J_{1}\left(\mu_{3} a\right)} \frac{\sinh \left(\mu_{3} z\right)}{\sinh \left(\mu_{3} b\right)} J_{0}\left(\mu_{3} r\right)+.
\end{aligned}
$$

If numerical results are desired, tables for $J_{0}(x)$ and $J_{1}(x)$ are needed. Such tables have been computed and are accessible. We give here a small threc-place one.

Table II.-Bessel's Functions.

x	$I_{0}(x)$	$J_{1}(x)$	x	$J_{0}(x)$	$J_{1}(x)$
0.0	1. 000	0.000	5.0	$-.178$	$-.328$
0.5	.938	. 242	5.5	$-.007$	-. 341
1.0	.-65	-443	0.0	. 151	-. 277
I. 5	. 512	. 558	0.5	. 260	-. 154
2.0	-224	. 577	7.0	- 300	-. 005
2.5	-. 0.48	- 497	7.5	. 206	-135
3.0	-. 260	- 330	8.0	. 772	. 235
3.5	-. 350	. 137	8.5	. 042	. 273
4.0	-. 307	-. 006	0.0	-. 090	. 245
4.5	-.320	-. 23.1	9. 5	--.104	.101
5.0	-.188	-..325	10.0	-. 240	. 044

Table III-Roots of Bessel's Functions.

n	x_{n} for $J_{0}\left(x_{n}\right)-s$	r_{n} for $J_{1}\left(x_{n 1}\right)=0$.
1	2.405	3.832
2	5.520	7.010
3	8.654	10.173

Bessel's Functions of the zeroth order were first used successfully in the Hammonic Analysis by Fourier in ISI2, in dealing with the flow of heat in a right circular cylinder

Other more complicated Harmonic Functions are Lamés Functions or Ellipsoilal Hammonics, Conal Harmonics, Toroidal Harmonics, ete. Each set is adapted to dealing with Laplace"s Equation expressed in a suitable system of Curvalinear Coördinates.

Bibliograplzy.-For general treatises on the Harmonic Analysis and on the Harmonic Fumetions the reader is referred to Heine, '1landbuch der Kugclfunktionen' (second edition, 1878); Todhunter, 'The Functions of Laplace, Lame, and Bessel' (1875) : Thomson and Tait, 'Natural Philosronhy) (Appendix B, i879); Ferrers, "Spherical Harmonics) (iSSi); Bycrly, 'Fouricr's

Scries, and Splherical Ifarmonics) ($\mathrm{r} \mathrm{SO}_{95}$) ; Gray and Matthews, (Bessel's Functions' (18895). In excellent account of the history of the subject with detailed references to the carly papers, memoirs, and other publications. propared by Professor M. Bobcher, will lx foumd at the end of Byerly's abose-mentionerl treatise. For the contemporary literature see the recent volumes of the 'Jahrbuch uber die Fortschritte der Mathematik' under the hearling Kugelfumktionen und verwamdte Frumkionen.

> William E. Byerly,

Professor of Mathematics, Harvard Unizersity.
Harmon'ica, a musical instrument invented by̌ Benjamin Franklin in ifo2. It is formace of a number of glasses of water, and is plized by touching them with the dampened finger. The less the quantity of water, the lower the tone of the seale. The name is also applicel to a small wind instrument, or moutlh-organ, which has a series of holes to conduct the breath to free reeds, like those of an accordion.

Harmon'icon, a chemical apparatus consisting of an open glass tube, the air in which may be made to give a sound resembling a musical note, when held over burning hydrogen. The note depends upon the size of the flame and the length of the tube.

Harmon'ics, the accessory or collateral sounds accompanying the primary, fundanental, or predominant tone of any string, pipe, or other sono-
 rous body. and constituting in varving degrees what in English is known as "quality"." in Frencla as "timbre," and in German as "Klansfarbe." No purely simple sound-one whose ribrations are all in the same pe-riod-is producible. Whern a sound is produced by the vibration of an open string, the whole string vibrates as a unity, giving rise to a tone called the fundamental. The string, however, further divides into various sections, which vibrate separately and more rapidly, and produce sounds-the harmoniesdifficring from the fundamental, but bearing certain fixed proportions to jt . By whaterer vibrating body a mutical sound is evoked harmonics also are produced; and althouglı some of the harmonies are suppressed by modifling circumstances, some are always present. Ther" is a regular sucecssion of intervals in which the harmonics naturally accompany a fundamental sound, which is represented in the follewing scale of vibrations: $I=3+567$, etc. These also are the intervals which groduce the successive chords in hamony, although the natural harmonies when producal further go beyourl the range of harmony which human cars can recognize or musical instruments proluce at the will of the performer. (See illustration.) it is the interval of the oetare; z is the fifth: 3 is the fourth: f is the major third; s the minor third; from 6 to 7 is already logond the range of production on a keyed instrument, but is recognized by musicians as the complement of a four-part simple chord, and is represunted approximately on the pianoforte, by E flat, for example, for the key of F

A musical tone, then, is always complex, hut the larmony which attenels it is not always the

sam
 mucts suppresics now some. now :hers, tithe
 if t. ne is thus paductd, distin =ushora a ncie Sn ane insiument from the same no e in anpionaferte in minich dess nart harmanes wee pupressed. and cas the viner hand. tha us the cean of mutait n and mirente si is-the th:reenths anu fiteenths - whereby the cons nent harmonics of a siven toge are merth emFhasized. Again, many of the higher hamuancs地 sit asly disonant both mith the fundamench: tone and with each oine-. whence arises the Oiscordant quality of such insmuments for instarice as the cymbals. Harmonies are also callicd "overones." and all the frimar". and secadiry tones consituting an acoul tone are irecuentiv termed "partials" or "Fartial tunes." -lue fundamertal sone being the irst partial, and the harmonics. : e upper partials. See Harvosy.

Harmonics, Spherical. See Harvolit ANAL-
Harmonists, also cailed Rappisis amỉ Ecovomites. a religious-sociatistic community fourded in i-5- by George Rapp (IF5:-IS4\%) a German of if urtemberg. The peaceat le and spiritual tenets of the o-canization ar used aniasirism and persecution, and in nsos they emisrated to America, settling in the Conr queressing Valler, where the Hammen Sciciy nas established on a working basis, By iso heuses. churches. mills, and manutactories had been bunl. and the settlement had a ponulation 050 In IS:5 they remored to Posery Enunty. Ind., there they founded lien Hamony
 tmy, in Beaver County, on the Ohif. 20 mites
 ture. Bemhard wuiler, setting among thems. caused dissensions and a split in the scoety: a separatica and apportonment of the pr perty was azreed upon, and 250 members retired The held all froperry in cemm n. believed in the sec rd ceming of Chnist, the near advent of the milimnium. and practised cehbacy As a festit of the latier condition, the membership in 1 ว 02 ras reduced to cight, and the valuable est :e will pass finaliy inio the nands of the iast survis or. Cnsul: Hinds. 'Amercan C Msnunities) (100z). Norlh of. 'The Cimmusti S acieties fithe L'nited states) Irsifl.

Harmonium, a moders musical instrument which produces sunds resembling those andr De ain of Paris; lut he has at the must mer ly the credit of perfecting an instmment pre it ty hrown, callud the rgte cxpriaif. a iree vibrating ree ls, intended io merease or dimnish the intensity and volunte of the sound Ey eemula:ing the pessure of the wind, by the aid f which the sunds were produced. The inst-ument has a k vbnard line that - f a piano. and when rae i the kers is peesed duwn a valve is rpeac I. Which allows the wiad fom the bellows to rush thrmugh onc of the windkoixes and act on the vibra:ne. There are alsn seveml strps. like cegan s:ops live means of whin the performer can dinect the stream of wint into the wind-boxes, which produce a flute,
clariol: ot any other stind, accordias so the number istces which the insthument possesses. Such is te haf-n-nium which was fatented
D_{1} - $=$ in $1 s+2$ but simce that time rurious GDer imo -vem..nts innore or less value have be=n m.ale. The chi 5 ff these are the addit: ? Gi a dre coctioz. Which citho = serres as an expressi : : s. . . or bangs all the stofs of the strument inu pia. at nce. and what is calleci the nercussi n action, the invention of Kauiman fi $D=s^{3}$. Whinh wissts ir the applica-ti:-l ir a small hammer. Which strikes the Mb=atur as spor as the key is pressed down and thas wics the action of the wind.

Harmony, from the Greek גंoutシer". to I::n or Hi together), in music is the science Which conten is the relationship of chords. and decides that of the dissinant elements in a discord to the iundamental concord: the fundamental lat belag that dscord is an untinished design which renuires onacced for its completion. A chard, of combination of romes. in any scaie co hey may be a concord or discord. The one concord in a majnt hey consists of the betnote or thnic wi-hissmajerihird and tith. This means of course the tonic triad: but in evers. majr key there are two other majer triads. abs lutely equal in consorance witn the tonic trau-those i- unjed ca the domionart and subdeminani. Is a mino key the triad on the berncie coasists of the ionic with a miner third and perfect fith. The mafor third and sifth are the nites which produce Daturally a perfect sound in combination: they are calleci" con-
 sonance. ${ }^{\circ}$ Thev can be inrerted, that is. any tone of a chard can be in the bass of lowest par. See Fưddamental Note, Tone, or Bass. This, the "cmmon chord" or "majer Erial makes a stantin ?oint and a point of inality, in m whoh the harmenjes ponceed, diverse ard converge, and into which they resclve themselves cinally.

The seventh harminic pi nature (see Hararonics. Which :s re semitcae less than the severth consecuite ncte in an ascendins major scale, c תsit:utes a min seventh. and produces a disered. which. With its complementary or fuitiling o ne d . is the fcundation oi all harn7 ny. This discord the "dominant seventh"signed V;-. must always be "resolved" into the

chnod of the tonic (I) of the dey to which it bel nes. (See illustretion.)

1 is an example of "cluse. B of "open" or "cviended harmeny. The disce-d c:1 G 1msinctively demandinis the chord of C as its resm lution, the n sec $\left(\begin{array}{l}\text { a } \\ \text { it the similar sift. clegree in }\end{array}\right.$ any" scale is called the "dmmant "-simned V°. of that key, and the chords and discords buit en it crnstitute the dominart harmonies. Position B is the mist satisfactory 10 the ear. be-
cause of the effect of finality induced by the resolution to the first position of the triad. The two chords together form the dominant or authentic cadence - the most important of those terminal plirases which serve the same purpose in music as the marks of punctuation in literary composition. "My comntry, 'tis of thee" exlibits examples of two other important cadences, showing at the same time how these marle the completion of more or less final musical periods.

The first period is closed at A by a "half" or "imperfect" cadence - that is, the order V.1. is reversed; the second at B by a "false" or "deceptive" cadence - that is. the dominant clrord, instead of proceeding to the tonic. "deceives" the ear by proceeding to another chord; the third period is brought to a close by the authentic cadence at C.

The dominant chord can also bear the more elaborate dissonances of the 9th, m11h, and i3th, as well as the 7 th, hut it is impossible here to enter into the varieties of discord - "suspensions," "double-root chords." etc., into the analogons discords which may be built on the tonic as a ground-note, or thic chords belonging to the minor scale. Suffice it to say the effects which can be evolved from the almost innumerable inversions and involutions of single chords and combinations of chords are subject to stringent natural laws, and the possibilities of variety are infinite.

An important branch of harmony: however, must be mentioned, that is "modulation" or change from one key (or "mode") to another. Modern scales have had the relation of their intervals so modified (see Temperament) as to be approximately alike. By the addition of a single sharp or flat any melody can procced from the key of C to G (with $F=$), F (with BD), or A minor (with $G \neq$). These - the dominant, subdominant (next below the dominant), and the minor of the sixth degree - are the keys of the first relation, as out of the seven notes which constitute cach scale six are present in the scale of C , thus providing as it were six
more or less convenient bridges by whath to pass from one key to the other. The conventionality of these modulations makes them inaderuate to conves the more passiomate coloring of modern music, and more striking changes to remoter keys are necersary. A favorite device with modern composers is to take adyantage of the "tempered" system, and by" using one note in two significations (for example, F×E =) to secure means of startling and also of very tender effects in modulation.

Ifarmony comparatively is of modern growth. In conmerpoint (q.v.), the science which preceded harmony, attention was given altogether to the correct progression of the individual voices or parts, while the combinations made by the voices at any monemt were regarded as merely accidental. But unconscionsly the ear of musicians was being cultirated, and in the fichness of Palestrina's simpler writings was shown the possibility of obtaining undreamt-of effects from chords as integral units in a march of harmonies, rather than accilental combinations of independent melodies. One of the fundamental rules of counterpoint was that a dissonance must cither be "prepared"- that is, it must appear as a consonance in the previous chord - or else it must be approached very gradually. This rule of the old science was disregarded by Monteverde (1608), who used muprepared discords, and at one blow released the new fecling for chords from its bondage to counterpoint.

Only those who tuderstand counterpoint and harmony can appreciate the full importance of the new departurc. It meant that discords were no longer mere variations of concords, but individual creations with an individual's rights and duties. The discord most casily used was the dominant seventl, the first discord produced by nature's harmonics: and so the relation of dominant to tonic - the central idea of all harmony - developed from an increasingly general tendency into a recognized rule. During the $1 ;$ th century many experiments were made by Monteverde's followers, until at the end of the century Rameau's famous treatise called attention to the fact that all chords are derived from some note which is the generator or root, and the relationships of these roots govern the progressions of the harmonics. The less known, but hardly less important, researches of Tartini formed a good supplement to Rameau's theory; and the bacis of scientific harmony establislied by these two works was not serionsly disturbed even hy the thorough investigation and the astonishing discoverics of Helmholtz, who extcnded the foundation and built a complete superstrncture thercon. In the meantime, notwithstanding that theorists fought each other with great fierceness, the science made extraordinary procress muler such practical harmonists as Bach, Mlozart. and Beethovert, while Wagner, who handled any number of parts as easily as did bach himself. so enlarged the pmssibilities of harmony that it is difficult to conceive of any further advance. Consult the manuals by Bimnister, BowmanWeitzmann, Jadassohn, Macfarren, Ouseley, Richter, and Riemann.

Harmony of the Spheres, a hypothesis of Pythagoras and his school, according to which the motions of the heavenly bodies pro-
duced a nusic imperceptible by the ears of mortals. He supposed these motions io conform to certain fixed laws, which could be expresed in numbers. corresponiling to the numbers which give the harmony of sounds.

Harmotome, liär'mot-tom, a mineral of the zeolite family: a hydrous silicate of aluminum and barium. invariably occurting in twin crystals of various colors irom white to red-brown.

Harms'worth, Alfred Charies, English newspaper proprietor: b. Chapelizod, County Dublin. Ircland. I5 July is65. He is the principal proprietor of the London Daily Mail, and Ereving l"cis, as wel! as some 30 other English journals, and cquipped the arctic expedition under F. G. Jackson in ISgt.

Harnack, här'näk, Adolf, German theologian: b. Dorpat 7 May Is51. He began his studies in his native town in 1869 and in 1874 took up his residence at Leipsic. for the purpose of pursuing a course in church history, and was made extraordinary professor there in is;6, and ordinary professor of theology, first at Giessen in I870, and eventually at Serlin IS89. In 1800 he was made a member of the Berlin Academy: He has been a prolific writer, both in theology and church history, and some of his books have given rise to much controversy: among his works are: 'Lehrbuch der Dogmengeschichte' (1894): 'Die Ueberlieferung und der Bestand der altchristlichen Litteratur" (1893) ; ctc.

Har'ned, Virginia, American actress: b. Boston 1868. She became a member of a trareling company abont 1884 . in 1895 appeared as Trilby in P. DI. Potser's dramatization of Du Maurier: story, and subsequently took various roles, including Alice Rousillon in 'Alice of Old Vincennes, and the title-part in A. 11 . Pinero's '1ris.' She was married to E. H. Sothern (q.y.) in $18 g 6$.

Harness and Saddiery Trade, The. It is extremely difficult to trace the history of the harness and saddlery industry in Anverica as iar back as the days of the cclonies, for in thet perind of our existence as a mation oxen were so generally used for purp carting that harnesses were in small demand. Those were the days in which roade were so poor that driving could searemy to recarded as a pleas:rre, and the equipments rembured in sadde rillag : acre chiefly impurted from England.

The first attempt ti make and liery hardware. one if the mo-t importent accesorica in the saddlery trade, was inancurated by Seth J. an 1 - twin Jurth, at Jew 1ritain, Conn. Orimina!ly engaged in the blackimithing hosine-s. they begun tu cxterel the facilities of their whon matil they were tinally making hridic-hite. and onter harnese equipnemt: meluther slune-bohles, an! finge th le thed f or a variety of purposes. All these articles were originally produced from wire drawn nut by hand. Later, horec-power was introducel fir this purpose. but it was many years hef re all the finithing work c:n these pir alacts, the pollobing. the weflang. etc.. ceaced on le a matter of manual labers. The -lieensery of a mure rapid method oi polishing was marle hy a hack mith at Nidelletown, Conn.. (1) whom Ilitu Vurth patel $\$_{25}$ to learn the proces, which simply consisted in taking an old woolen stocking, which, after all the holes
had been darned, was filled with the articles to be polished. A number of small pieces of soap were added. after which the stocking was dipped in a pail of warm water and was rubbed briskly between the hands. This method of polishing was finally improved by the substitution of canvas bass for the stockings, but, with this exception. no better process was found until the tumbling-barrels were introduced.

The adsent of better roads, and the corresponding increase in the popularity of driving and riding. was the means of creating a greater demand for both saddlery and harness. To meet these requirements of the trade, factories were established at Jewark, N. J.. Hartford, Conn., St. Louis. Mo., Wheeling, W. Va., Louisville, Ky, and Cincinnati, O., but the greater part of the harness made in those days was suitable only for the heary stages and wagons, which were then so generally utilized both for the tramsportation of passengers and in business traffic. At that period in our history the movement for the betterment of roads had been confined almost exclusively to the more populous sections of the East, and as the black soil of the western prairies made the use of wagons practically impossible during certain seasons of the year there was an insistent call for heary riding saddles. Those that were made in foreign countries had proved to be utterly unsuited, either for the rough frontier life of the West. or for the hard usage which they received in the South, and, as the result of these conditions the manufacturers of saddlery, with the characteristic inventive genius of the Yankee, devised the tree made of wood, and covered with rawhide, with long skirts and fenders to act as a protection, both from :he elements and the many deep quagmires which the rider was quite certain to encounter.

It was in $\mathrm{I}_{2} \mathrm{~S}$ that the Franklin Institute presented a medal to Seth Boyden for his achievement in inventing the first buckles and bits made of annealed cast iron. The discovery liad been made by putting a few pounds of cast iron into an ordinary cooking stove, in which. in the process of laking, it became annealed, a process which was largely responsible for the early success of the manufacture of saddlery hardware in this country: thout the same time. Peter Hayden, then 22 years of age, began to manuiacture hames and saddlery at Auburn. 2. Y. His shop was a small one, and as there was hotle demand for such goocls in his neighhorhood. he extended his trade by loading lis - lcigh or wasen with his stock and peddling it throush Central lew lork and Canada. By these methodes his husiness hecame so well established that, in 18.3 . he entered into a contract whth the State of Ohio, by which he agreed to furmish employment for its convict lahor in the making of hames, saddle-trees. sadellery hardware, and chams. At times he employed upward ni 300 convicts, to say nothing of a large force of irce labor, and he was soon abic 1.) upen conmections for the sale of his product with the largest mercantile houses in Chicago. St. Lonis, Cincinnati. Detroit. Galveston, San Francisen, and New lork. Thus, from a small begimsing. for Hayden's busincss netted but a few thonsand dollars during the first years of its existence he increased his trade until it reached millions, while it was largely due to
his control of the domestic market that the importations of foreign saddlery almost entirely ceased.

The first horse-collars regularly manufactured in this country were made by Timothy Deming, in East llartford, Conn1., in 1828. Prior to this time the making of horse-collars had been the work of itincrant laborers, who traveled from place to place, hiring themselves to make collars for individuals who were in need of several, or to any local harnessmaker whose stock might need replenishing. When Deming invented and patented his short-straw collar and the block upon which it was made, the event marked the first stage in the development of collar-making in America.

Althongh the wot-thread. chain-stitch sew-ing-machine was invented by a New England concern, as early as 1853, it was three years later before it had attained such practicability that it could be used in the sewing of boots and shoes, and fully io years before it was applied to the making of harness. Even then the prejudice against machine-stitching was so great that such products were not easily disposed of, and it was only the enormous reduction in cost that ultimately brought it into favor. Another important improvement came in 1858 , when II. K. Thornton, of Niles, Mich., perfected the invention of the creasing-machine, but so slow was the trade of those days in the matter of adopting any process which necessitated a radical departure from the old-time and traditional methods that the inventor found that the only way in which he could introduce his machines was to leave them on three months' trial at such shops as would accord him this privilege. A few years later, he eatered into partnership in Cincinnati, under the firm name of Thornton \& Perkins. In I 865 the business was sold to Randall \& Company, the concern which is now engaged in the manufacture of similar, but vastly improved machinery. In fact, the sew-ing-machine and the creasing-machine were such important inventions that they may be said to have practically revolutionized the industry of harness-making. Other inventions have been patented, but fow of them have becn of lasting benefit to the tradc. The most important, perhaps, was the iron gigtree which was patented by Samuel E. Thompkins, of Newark, N. J., in 1872, the radical change which this invention heralded being indicated by the fact that all buggy saddles up to this time had been made on wooden trees imported from England, but only a few ycars clapsed after the introduction of the iron gigtree before the wooden tree was entirely discarded.

It was about this time that the harness industry began to enjoy a period of almost phenomenal progress. The invention of labor-saving devices cnabled manufacturers to produce goods at a cost which naturally tended to increase the demand for such articles.

Among the inventions which were patented at about this time one must mention the Bosworth lock-stitching, wax-thread scwing-machine, which first appeared in 1872, as well as the Camplocll lock-stitching machine, patented first in IRSo. With the introduction of these inventions, hand-sewed harness largely disappeared, for these stitches, which were interlocked, made the sewing alike on both sides,
which gave the appearame of hand work, a great improvensent ipnin the product of the ofe? harness-sewing machuncs: 1 Hich prorluced a sometimes ansatisfactory cham-stuth. The other kinds of harness machinery wheh have proved themselyes such great labor-saving inventions that they are now regarded as indispensabie in all well-ectuipped factorses are the tubular riveting-machines, which entirely dispensed with the old processes of hand riveting; the box-loup sewing-machines, which now sew up all the long loops formerly sewed be hand; the quilting-machines, by means of which pads, gig and riding saddles are quilted; the power trace-trimmers, and trace-polisiers; the power splitters, and the dieing-out machmes. The first factory for the making of harness thread in this country was established at l'aterson, N. J., by Barbour Brothers, in 1×63, prior to which time such thread had been imported from Ireland, white the hard-rubber-covered latmess trimmings were invented by Andrew Albright, of Newark, N. J., in 1867.

The great development in the making of horse-collars dates only from 1883 , for it was in that year that William Fogelsong, of Dayton, O., invented a machine for the stuffing of collars. Some 10 years later R. Brownson, of St. Paul, Minn., perfected a metal-staple machinc for sewing collars, and, with these two practically recent innorations, one set of machinery will now do the work which formerly required the labor of some 20 men. It was by means of such machinery, practically all of which is due to American push and enterprise, that the trade of saddlery and harness-making has been advanced from a position of inferiority to a commanding place among the great industries of the United States. To comprehend the extent to which this business has progressed it is on!y necessary to glance at the following table in which the figures prepared by the census buteau are recapitulated:

	1880	1890	1400
Establishments	7,909	7,0.5	12.03,
Capital.	\$16,503,019	* $35,346,200$	\$ $43.35+.156$
Wage earners	21,4+5,	- ${ }^{28.6782}$	
Wages..............	S 7.997 .7521	S80,005,915	S10, 825.647
Crist of materials....	Sr $8,958,716$ $83,081,643$	- $2+0,071,275$	\$32,127,926

The fever for the organization of combinations, "trusts," and other associations had its natural effect upon some of the saddlery manufacturers, and, in 1 soo, the first move was made toward the establislmment of an organization for conference and mutual imporement. This initiative was taken by the Western manufacturers who called a meeting of the trade to be held at St. Lonis, 110. and it was at this time that the organization known as "The National Wholesale Saddlery Association of the C'nited States," was formed. According to the terms of the constitution adopted at this first gathering, the objects of the association were to correct abuses, adopt uniform terms, and encourage a more fraternal foeling among competitors, hit, although its annual meetings and clections have been held, and men prominent in the trade have been elected as nfficials, its effect upon the growth of the inductry is entirely problematic. See Carriage and Wagon Industry.

HARNESSED ANTELOPES - HARP

Harnessed Antelopes. See Bushbucx.
Har'nett, Cornelius, American statesman: b. Ensiand 20 April 1/23; d. North Carolina I-81. He came in early life to America, and was one oi the earliest to denounce the stamp act and kindred measures. In 17,0-1 he was representative oi llilmington, $\$$. C .. in the Provincial Assembly, and chairman of the most important committees oi that body. In $17 / 2$ he was appointed with Robert Howe and Maurice Moore, to prepare a remonstrance against the appointment, by the roval governor Marin of commissioners to fix the southern boundary of the province. Iosiah Quincy, who risited him in 17π, called him "the Samuel Adams oi Sorth Carolina": and. as the Revolurion approached, he was its master spirit throughout the Cape Fear region. He was elected to the Provincial Congress in $1 \% 5$, and drew up the instructions to the North Carolina delegates in the Continental Congress. When in I\%O Sir Henry Clinton appeared with a British fleet of Cape Fear, Harnett and Howe were excepted. as arch-rebels, irom the terns oi a gemeral pardon. As member of the Continemal Congress he signed the articles of confederation. Ithen in 1780-1 the British held possession oi the country around Cape Fear. Harnett was made prisomer, and died while a captive.

Har'ney, John Hopkins, American journalist: b. Bourbon County. Ky.. INon: d. No:-. He was educated at Oxford L̈niversty: Ohic; became professor of mathematics at the Lniver sity of Indiana and at Hanorer College and was president of a college at Louisriile. Ky. He was ict a number of years editor of the Louisvile Demuerut, a paper which took a radical attitule during the Civil Wa:-

Harney. William Selby, American soldier b. Harbero. Tenn.. 2; Aus. 1:00: d. 9 Nay 188. He cutced the army in 1815 : served as cotmel in the Mexican W ar and was brevetted brigadier-general for sallantry at Cerr Gorde. and prom ted to that rank in is5s. While cem-
 took pessessicn of the island ci San ! wan. which wa: clained by the Englisla government. He was in con-equ:cnce recalled. He retired in ist 3 and was brevetted major-general in tins.

Harney's Peak, the highest point of the Black Hifls, Sruth Dakota. nancd in hon- of Gen. W: S. Harney: height T .21 三 fett.

Hato Islands. Sue Six Juis lelands.
Harold 1.. surnamed Hakef it. hing of Encran 1: d. O iu-d F: Marel: rofe the succeeded hi- father Canute in 10.35, in twith-anding a previ us agrumetit that ic e - creagnty of Erz'and shuld decend it the Cante by hi- scend wife. the Nirmat prim-ce-: Emma Hardecanut:. whe was aln..' t invade Ergland at the time ri Harold: death. die un hii- 1 dy and leheaded it See Freman. 'The lirman C nque:?.' li! I.

Hatold II.. king ii England. see nd an ci Godu … c...I ©f Kent: b about iozz: d. scalac. near 11aringe. Stisex. if Oct. toms. On his fatl er - dea:h in $10 \equiv 3$ he succeeded him in the earld min llesex and other great offices, and upon the death ni Edward the Confesior. : lan. scefb, why had named him his successor, he was chosen king by the nobles, notwithstanding the claim of Edgar Atheling, or the asserted
bequest of Edward in iavor of William, duke of Normandy. The latter called upon him to resign the crown, and upon his refusal prepared for invasion. He also instigated Harold's biother, Tostig. to invade the northern coasts Ei England in conjunction with the king of Norwar. The anited fleet of these chieis sailed up the Humber and landed a numerous body of men, who defeated the opposing forces of the Earls of Northumberland and Mercia; but at Siamford Bridge, on the river Derwent, in lotkshire, were iotally touted by Harold, whose brother Tostig fell in the battle. A day or two later he heard of the landing of the duke of Normandy at Pevensey, in Sussex. Hastening southrard with all the troops he could muster, a general engagement ensued at Senlac. near Hastings, in which Harold was slain with an arrow, and the crown of England was passed to William. See Semlac Consult: Freeman, 'The Jorman Conquest.' Vols. 11. and 111.; Tennyson, 'Harold' (I8;6).

Harold, or Harald 1., surnamed HasrFager (Fair-haired), king oi lorway, son oi Halidan the Black: d. Trondihem 933. He succeeded to the throne in Sto. While he reduced the lesser kings be leit them with the title iarl. the administration of their terrioories, and the thisd part oi their income: but many of them emprated. and iounded Norwegian colonies. Hroli of Roilo emigrated to Neustria France. Others, with their iollowers, established themselves in lceland, the Shetland lises. the Faroes, and the Orimers, then nninhabited. When Hatold round that the emigrants often ex:ended their incursicns into his dominions he emsarked with a maval ictce io subdue them, conque:ed the Orkneys, etc.. and returned.

Harold, or Harald III., surnamed HAardrad.a. kine oi dorway: d. Stamiord Bridge. England, 25 Sept. 1066. The date oi his birth is umknown. During a great part of his youth and prime he etred in the imperial bodyguard at Byzantium, returning to Norway about 1045. He persuaded his nephew Magnus to divide ihe suprome P-wer with him. in return icr a share of his treasures, and two years later (104\%) his nephew died. when he himself hecame sole king of Norway. In 10 on he joined Tostig, the brother of Haruld II. (q.r.) of England, in an invasion of that cuuntry, having been promised half of it in case ri succes:: hur he was s!ain at the batile of Stamior? Bricge.

Haroun-al-Rashio. See Hurtx-al-RashtD.
Harp, the oldest of stringed instruments. The bible menti ns Iubal as the inventor. It has been used by alf nati-ns in one form or annther. The modern instrument is nearly trist cular and the strings are extended irom the mple pant io one of the sides. It stands erect, ant is played with both hands, the strings being truck of pulled with both fingers and thumls. The improvements which have rendercd the modern harp an efâcient musical in--truncrat are due to Sebasian Erard. who in 1524 toxk cut a patent for a harp with seven pedale, and again in fios for a double-action harp with the same number of pedals. each of which effects two changes in the pitch of the strings. The harp thus constructed contains 4.3 strings tuned according to the diatonic scale. every elghth string being a replicate in another

WILLIAM RAINEY HARPER.
PRESIDENT UNIVERSITY OF CHICAGO.
octave of the one counted from. Various improvements over Erard's harp were made during the 19th century.

Harp, or Saddleback, Seal. Sce Seads.
Harp-shell, a genus (Harpa) of gasterop)odous moltusks of the whelk family (Buccinida), laving the last whorl of the shell large, and covered with numerous sharp smooth ribs, rescmbling the strings of a harp. The foot is large, and there is no operculum. These shells are clegantly marked, and much prized for their beauty. Nine species are known, all of them tropical, and living in deep water, on soft, sandy, or muddy bottoms.

Har'per, Charles G., English artist and author: 13. IS63. He is one of the best-known of English book illustrators, and his own books, mainly lively, entertaining descriptions of pedestrian and bicycle tours in England illustrated by himself, have been popular in the United States as well as in his own country. Among them are: 'Some English Sketching Grounds' 'From Paddington to Penzance': 'The Brighton Road' : 'The Great North Road': 'The Norwich Road': 'Cycle Rides Around London.'

Harper, Ida Husted, American journalist and author: b. Fairfield, Ind. She attended the University of Indiana for two years; entered journalism when about 18 , conducted a woman's department in the Terre Haute 'Saturday Evening Mail' and in the 'Firemen's Magazine,' and was a contributor to many papers, including the Cleveland Lcader, San Francisco Chronicl:, and Washington Post. She was managing editor of the Torre Hante Daily. Nenu's, for a year, has written for the McClure syndicate, and since Jannary 1899 has been on the editorial staff of the New Jork Sun. She was a member of the International Congress of Women in London in IS99, and was appointed chairman of the international press conmittee for a five years' term. She prepared the Indiana State monograph for the World's Fair at Chicago under the title 'Organized Wiork of Indiana W'omen,' and has written (Life and Work of Susan B. Anthony' (I898) and 'History of Woman Suffrage to the Close of the Ninetcenth Century (1901).

Harper, John Murdock, Canadian educator: h. Johnstone. Renfrewshire, Scotland, io Fel). 1845. He was graduated from Qucen's University (Kingston, Ont.), later was appointed superintendent of education ior Prince Edward Island, but declined the appointment, and became successively rector of Quebec High School, and inspector of superior schools for the province of Qucbec. Among his publications are textbooks and varions pamphlets.

Harper, Robert Goodloe, American lawyer and statesman: 1). near Fredericksburg, Ja., I 765 ; d. Baltimore, Md., 15 Jann . I825. In his isth year young Harper joined a troop of horse, and muter Gen. Greene served during the latter part of the southern revolutionary campaign. He was graduated from Princeton College in 1785, while there acting for a time as tutor to lower classes. Sailing from Philadelphia for Charleston, with the intention of studying law, he arrived at his destination nearly penniless, but was assisted by the father of a former pupil, who obtained a position for him in a lawyer's office. In one year he was qualified to practise, and soon establislied a reputation, and
becane well known by a series of newspaper articles on the proposed change in the State constitution of South Carolina. We was soon after elected to the Statc legislature, and in 1594 to the national Congress. ln this position he showed marked ability, supported the administrations of Washington and John Adams, and was regarded as one of the leaders of the Fedcral party. On the election of Thomas Jefferson as Prosident in 180 i he retired from Congress, and resumed the practice of his profession in Baltimore. At the Maryland bar he attained great eminence, at the period too of its highest renown. He was associated with Joseph Ilopkinson as counsel for Judge Chase of the United States Supreme Court, when under impeachment. In i8i5 he was elected United States senator Irom Maryland.

Harper, William Rainey, American college president and Hebrew scholar: b. New Concord, Ohio, 26 July 1856: d. Chicago, Ill., Io Jan. 1906. He was graduated at Muskingum College in 1870; was professor of I Ebrew at the Faptist Union Theological Seminary, Chicagn, in 18,986; and of Scmitic languages in the graduate faculty of Yale. From 1889 he was alse professor of biblical literature. He was primcipal of the Chautanqua College of Liberal Aris in 1885-91, and in ISOI was appeninted dircetor of the Chautauqua system. In 1801 be was closen furst president of the new Inivers ty uf Chicugo, where he was also head of the depastment of Semitic languages and litrature. He was a fuander and cditor of (Hehraica' and the "Hebrew Student,' was an editor of three of the publications of the University of Chicago - the 'Biblical Morln,' the 'American Journal of Theology,' and the 'American Journal of Semitic Languages and Literature.) His administration was noted for its rapid development of the facilities of the university. Among his works are: 'Elements of Hebrew' (2d ed. 18go), '11e brew Method and Manual) (1885). and 'I' ments of Hebrew Syntax' (ISCS) 'Thre 'T in Higher Edac?tion' (1905); ‘Mh
Element in the Old Testament'
Harper, William Saint John, American artist: b. Rhinebeck, N. L.., S Scpt. 1851. He studied painting at the National Acadomy of Design, New York, and afterward became pupil of Munkacsy and Bonnat at Paris. He lias done much sutccessful work both as a painter and book illustrator.

Harper and Brothers, the designation of a noted firm of New York publishers. It consisted originally of James (I-95-1860), John (1797-1875). Joseph IVesley (1801-70), and Fletcler ($1806-7$,). The first two commenced to publish in isis, as J. \& J. llarper. The firm of Harper and Brothers, cotablished in 1833, is now managed by descendants of the founders It not only publishes hooks hut 'Harper's Magazine) (monthly, since 1850), (Harper's Wcekly) (since 1857), (Tlarper's Bazar) (fashions, social life, etc.; sinee 1807), and 'Harper's Round Table) (started in 188t as 'Harper's Young People) and recently consolidated with (St. Nicholas').

Harper's Ferry, W. Va.. is situated in Jefferson County, 55 miles northwest of Washington, on the Baltimore \& O. railroad. It is at the confluence of the Potomac and Shenandoah

HARPIES - HARPSWELL

fivers, where the former breaks through the Blue Ridge. presenting one of the most picturesque scenes in timerica. Aturacted ty its Ine water-power. Washington. in $1 t, 90$, chose it as a site ior a United states aremal and armory. and up to 186 Sti.300.000 had been expended icr land and improvement:. Here yo.000 muskets were made annuaily, and over -5.000 small arms weete ustally in siore. It is the seat of Storer Coilege and of a normal school for colored pupils. Pep. (1900) \$yb.

Harper's Ferry came into greaz prominence in I\&F9 through the acts of John Brown (q.r.). and was the scene of noteworthy miliary events dering the Civil War. When Tirgiria seceded. Harper's Ferry was beld by Lieut Rcger Iones. with 45 men. On the night of IS April rsor a large body of Tirginia milizia. hestly assembied from the surrounding country, appeared beicre the place Jones set fire to the arsenal. desiroyed as much prablic property as pussib:e, and retreated across the Pot mmac to Hagerstown. Mid., and thence to Carlisle. Pa. The Tirginia militia occupied the place. and troops were hastened to it fitm other Etazes of the ConEederacy. The Coniederate government attached much importance to the place as a strategical puint, but it was aband vied by Gen. I. E. Jhntin, Is June IR6t. when he heard that Gen. Pattersmn. marching isum Chambersburg. Pa, was threatening to cross the Potamac at inilliamsport. The piace wos thea occufted by ihe Taiional firces. When Gen. Lee invaded Maryland early in September in ? ? Happer's Ferfy was beld by Cul. Diven S. Miles with a large garrion, and there were :tr ng outpots ai Winchester and Martinchurg. Lee surposed that his presence at Frederick. Md.., would cause the eracuation oi Harper's Ferry and it oulp. Sts and thus open his commurica:i n= hy way of Shenandrah Talley. but as it was stili held by the Jaticnal ioreses it became a necessity to dikd dge them. On the mo rning oi to Sepiember he set three columns in moti n irem Fredefick to surfound the place and capture its entite garriston. Gen, Jackson, with It brigades, marched rapidly over the Suth Munnain. crosesed the Potimac at Williamsport on the ith. drove the garricon ir to Marinsbury int? Harper's Ferry. anid appeared beire Bolivar Heights on the $13^{\text {th }}$. thus inver:mg the place ir min the west. Gen. Mclaws, with to brigajes. marched tl 5 ugh Brownsvile Giap. and. aiter a severe engagemert with Cul. Th mas H. Frd on the 12 hh and 1 stht ofr re hm ircm Maryland Heighes and into llarpe:'s Ferry G n. Walker. with his divisi n, or sed the Promae at Pemt of Recks. 32 miles bil wh Hopers Fery. an! on the tzih sei-ed Loud un Heights tymid the Shenardesh. Mles was mow orm-
 Fech ercund. e mmandine his pasiten. Truilery tire was openel isom thl thee pinis on the 4.4). in late in the aiternoen fick an mmed ifon L ivar Hights, dn we in Whie' -kirmall isses, and waine! an adrantage n: pryitron on the kit fite tnin line. During the nisht r.:ल (L- n cavily cr …d fr m Harper': Ferry - He Maryland side and cuca; ed. During the came roght Jak-a cr \ldots..d to zuns in it regh: bark of the Shei andoah and wal whed them on a p.atea at the i int ci L udaun He ghte cerilading Aliles cture poititin on E livar Ileights,

Early ca the 1ith the Comiederate guns on Maryland Heighis. Loudoun Heights, and in iftut of B "war Heights opened fife, which was respoaded to icr more than an hour. but the difrect and plunging flank-ite irom the Coniederate batteries partially silenced the Union guns and creased scme disurder in the Lnion ra:ks. Jackson had advanced lis lines to within IEO rards ci the Uni.n wcrks on Bolirar Heights, and was about to assault, when Miles o-zered a white flas displayed on his warks and difected Gen. Julius. White to arrange terms of capiulaticn, soon after which Miles was mortally wounded by a shell from a battery that had nct seen the white flag. The Unicn loss during the siege was it killed and $\mathrm{I} / 3$ wounded. and the number of pris ners surfendered and paroled 12::20. The Coniederates captured $; 0$ guns. I3.000 small azms, 200 wagms, and a iarge amount oi quartermaster and conmissary stores. The C fiederate loss was 4 I killed and 247 wounded the greater part of whom were lost in the engagement on Maryland Heights. The Coniederates abandened Harper's Ferry on the 2oth. and it was again occupied by the Lnion ieters in the 22d. Consult: 'Oficial Records.' Tols, II. and XIX: : Allan. CArmy of Northern Tirginia in is62': The Ceniury Company's (Eattles and Leaders of the Civil War,' Tols. 1. and 11.
e. a. Carmas.

Har pies (Greek, Harifuiai, swift robbers), the sodidesses oi sicrms. Their ages, appearance, names and number are so dif̈erently given by the poets that it is difficult to say anything deinite concerning them. In the Honmeric poems they are repre:ented as personified stormwinds. The later poets and anists vied with each other in denicting them under the most hiceous firms. One has glven them the head oi a $\frac{\text { i whl }}{}$ with wings and a body covered with iearhurs, hunlan arms with claws, a white breast, and human less which terminate in the feet of a fowl. Others have given them the face of a young worman will the ears of a bear. See Ftries.

Harpignies, Henri Joseph, ǒ̀̀-rẽ zhō-zzéf arr-en-ve. French landscapisit b. Yalenciennes 28 Tuly 18 itg. He studied at Paris with Athard. fist exhmbited at the salon of $18 \% 3$, and in ivis attracted attention by his 'Edge of a W d be-ide the Allier.' His landscapes, done wih equal success in oils or water-celoss, evince a skififulness ci drawing and a coloristic truthiulnes marred only cccasional'y by a harshness in maturs of rechnique. His works number: Yiew ci Capri.' 'Le Saut du Lcup,' 'Banks ci the Rhwe' (Mletrop iftan Museum. N. 1..), and 'Garden of the Villa Medici.

Harp'sichord, a stringed instrument formerty in use in appearance and construction similiar to a crand planoione. In the trunt the key: were defeed, the lons ones being the :Hurak and the ih ot ones the e harps and flate.
 13. iy il Ftench chation was an improvemit - 4 .in in the chachast, which was lurrowed ir m the hatp. Buth are in w superseded by the

Harps'well. Maine, a township including the f ot w lise it Harpswell Centre, and comprlit z a peninsula and some islands in Casco Bay; i4 miles east of Portand. It has agricul-

VIEW OF HARPERS FERRY, VA.
tural interests and grist-milis, but is cheely :ioted as a summer resort. Pとp. (igoo) 1.750.

Hardj--agie. See Eagle.

Harraden, Beatrice, English norelist: b.
 her dertee at L ind in Leiversity at 21, and subsequerily traveied extensiveiy in the United Sta - and on the Continert. Her first n vel, 'Shups tiout I'as= in the Jizhe 1093 : was instamli, succe-sin! and was widely c.rcuizeci. It has feen it:-wed by (In Vatiog Mi. ds' (10xi): 'Hica Strafurd. a Cahifinian Etoty (iow-' 'The Fwier iowel.

Harrier, a smal! motrlec hound used in Eur, e in ancuert times. anc up to the cod of the is:lh century i=s chasing hates. The sp resment i : : wong in fors. The oid breed he disappeared -xctpt a sew i- -udi 5 in π purp se by fancues. ts place beirg taken in epite by a sma.l. kind of foxhe wed followed on hosseback.

Hatrier. Sec Marsh-Eawn

Har'igan, Edward, American actor and playwight: b. New Ioti refs. He enzeted upin the stage as a variety periormer and was a partner of Tony Hart ($1 \S_{1}-1-85$), when they opened in Xew Iork their Srsi Theatre Comique (IS-6). Am ing his dramas, which are streng in character drawing. but cif lizte vaiue in a liierary sense, are: 'Squatter Sorereignty); 'Carde ia's Aspirations': 'Old Lavender'; and 'Reilly and the Four Hundred.'

Harrild, Robert, Engiish inveator: b. London 1-80; d. ris3. He was the inventor and manufacturer oi composition trilers ior inhing type. the imroduction of which aione rendered cylinder presses practicable. He began the manuacture of printers materials in London in ISOA and the printing-press w:th which Franklin worked in London was owned by him before it was brought to the Trited Staies in $1 \&_{41}$ and put into the Pateri Ofice at Washington, where it now stands.

Har'riman, Tenn. city in Roane County; on the Emury River, the Southern, the Tennessee C.. and the Queen \& C. R.R. ${ }^{\prime}$: about is miles northeasi oi Chattanooga. and 3- miles weat of hnoxville. It was icurded in 1800 and receised its city charter in 18y). The charfer was revised in ingo. It is situated in an agricultural reģj n which contains rich deposits of coal and of is n ore, and sume tinn er land. It: chici manufactures are fourlory and machine shop pre !ucts. learher. farm impements. iron. fl ur, lum er, cotion grais, and fiemsuare. It is the seat if andustrial sch ool ior of red children. and of the Ametican Criversity. eatablifhed in ligh. lts irade in agriculaural and mining froducts and in its own manuactured aricles is rapidy increasing. The watenwork: and electric-light plent are owned and operated by the c:ry. Pop. (1900) 3-4;2.

Harriman Alaska Expedition, an American sciertific atd artistic expedrion which wisited the s uthern coast of Alaska durnes the summer oi 1\&u. The party was organized hy Edward H. Harrinan, and consifted of the members of nis own family: a iew iriends and so gentlemen interested in science. art and literature. Ammng thent were Messis. Heary Gannett. W. H. Dal. C. H. Merrian, R. Ridmway. G. K. Gilbert and F. V. Calville of Washington; D. G. Elliot of

 eray 1 ar:an . \quad T...............

 vi=1 ${ }^{\text {ed }}$
 ove: 300 seceits an! pa: giacue she which

 biocd-red with a white bead. In no raer $5 \cdot$
 yatied and ationg Ecme and © Antro
 srecies and sub-species, Euch cuarto … :

(1900 : 'Discoveries in our Averic Regiv2'
Harriman Fiord, on whe sou:heran cnest oin Aliasiza. at a cui Ia: A. IV.
 lenaih. This fist was diaconeted y tic Harriman Alazka Expeufion : IN: be
 roughs a menne- the Exfeli: :-

 entered upon a woyaze co d:-a =ay We steamer up to a gituic p :- fe thot

 Conit Surrey map we were at the un imo.

 aio shi wau ever bei re f...... Giacers hans on the sieep monna: \quad, \quad us. ane
 son cifts wimh surces the

 matuans of the $\%$ an : an the new amt ©it su... iv th :3 Sk gever tumbling in mate su: -
 A: :her tee \because, ofra ir walt us th the head ofins inie: wi eh wi.. : © ithe one in navi-
 was fity mom : an H ramen It in and the

Har rington, Mark Walrod, American astron mer: b. a: Sycm -.. IV... IS A z. IS, S.
 and in x^{-2-1} assi-ted in the U-rise Siates Coast and Grouize Survey Catasa. He was
projesser oi astronomy and director of the ob－ servatory at the Eniversity oi Michigan． 15－0001．In $18 S_{4}$ he established the＇American Ne：eorological Iournal＇and was its managing ediou unti！1892．In I\＆gi he became chief of the Weather Burean at Weashingten．D．C． Which post he held inll 180 ，and was president of the Wiashington Siate University ISos－\％

Harriot．Thomas，English marhematician b．Oxiord 1500 ：d．Londen 2 Iuly 162 He

 enzered Saint Marys Hall，Oxford．and was graduated in 15 KO．In 1585 he was sent by Sir il alter Raleigh as surveror on the Genvinie expedition to Virginia，and on has remurn he published an account of Virginia，later printed in Halluyt＇s＂Voyages．＇He gained the fay－r of the Earl oi Northumberland．who gave lim an annual pension，and thereaiter devoted himsel： entirely io mathematical and scientinc research． His chief work．＇Artis Analytica Praxis ad Equationes Algebraicas Resolvendas．＇pubishled in 1631．embodied the most important cesults of his mathematical work．He practically gave to algebra its modern form，improving the notaticn，being the first to equate ant the terms of an equation to zero，and announcine the prim－ ciple that every equation has as many rocots as its dimensics．He also did important woth in astron my．See Algebra．History of the Ele－ MENTS UF．
Har＇ris Amanda Bartlett．American

 Write：：b．Ilarner．А．H．． 15 Aug．1824．She ： a popular writer for young people and has pub－ lished：＇How We W゙ent Bird－Nesting＇（ H ＇＂ild Flowers．and Where They G－cil＇（ICS2） ＇American Authors for lounn Folks＇（ISE－： ＇The Luck of Edenhall＇（ISSS）：eic．Harris．George．American college preai－ demt：b．Eait Machias，Maine，is 14 He was graduated at Amherst iSS ：anl at Andover Thenlogical Seminary isfo．After iaking sev－ eral pastora：charces he became pr jessnt of Christian theonagy ai Andover ifs．from which Whatinn te nassed in isoo to the presidency of Amherst．which he now holds．He was one ct the editere of the＇Andewer Review＇） ハ\＆：べ3．Amnng his work：are＇Mnral Ev？lu－

Harris．James Rendel．Enclish ：ch lar． He was graduaicd at Camlondge Unuersity， where he was fellow and Ibrarian of Clure Col－ loge．He was proiessre at Iths H phone Cons versiey and at Haveriord College，and in $n w$ unversity lecturer in palx gruphy at Cambridge． England．He luas writien many v＇ames on philoges，paix graphy and kinured subecis， has later w－rt beng＇Annciai rs of the C a x Bezz＇ 1901

Harris，Joel Chandler，American journal－ ist and anther：b．Eat nten，Ga．，\＆Dec．184． He bezan his carcer as a pratiter：aprrentice en the Forsth（Ga．）＇Ccumryman＇and was co the claff of the Savannah Dorly léts．ミビーリーも．He has been connected with the Atianta C nstitu－ is n from 18－t，and f ceame its edner in 1\＆jo． The series oi＂Lis cle Remu：sheiches and sones which have civen hem an international reputa－ © n uere first rrinted in the Canstitution．His pub＇i i－hed books include：＇The F ik－Lore of the Old Piantith ๆ＇（1K80）：＇Nights With Uncle Remus＇（I＊゙3）：＂Mingo and Other Shetches＂
（1S83）：＇Daddy Jake the Runaway＇（IES9） Free Joe and O：her Siorjes＇（IS8－）：＇Balaam and his Master＂（ISgo）：＂Mr．Rabbit at Home＂ （ISO5）；＇The Story of Aarcn＇（1896）：＇Stories oi Georgia History＂（1807）；＇Sister Jane．＇a novel（ISg－）：＇Mineny Ann＇（18g9）；＇On the Wing of Oecasion＇（1900）：etc．

Harris，Joseph，American asricultural Writer：b．Shrewsbur：．England．1828：d． 1892. He began his scientiric study of agriculture wish Lawes and Gribent at Rothamsted and in IS64 emigrated to the Tnited States，and began to contribute to the agricultural press．His＇Whalks and Talks on the Farm＇was a series of articles which appeared partly in the＇Genesee Farmer．＇ and party in the＇American Agriculturalist．＂ in which the iormer had become merged．Among nis oilher mritings are：＇Harris on the Pig＇ （1888）；＇Talks on Manures＇（1883）：and＇Gar－ dening for Young and Old＇（1882）．

Harris，Mirian Coles，American novelist： b．Dosoris．I．I．．－July 1834．She was married to Sidney S．Harris in i\＆ 4 and has since lived ：n New lork．She wrote：＇Rutledge＇（I860）； The Sutherlands）（1862），bcth widely read． and among many later and almost equally popu－ lar works ci hers are：＇A Periect Adonis＇ （18，5）：＂Missy＇（1800）；and＂An［iter Fail－ ure（1891）．

Harris．Samuel，American theologian：b． East Machias．Maine it June ISI4；d．Litchfield， Comm．． 25 Tune ISgo．He was graduated irom Bowdoin College and from Andover Theological Seminar：．He was a teacher fo：a tune and held Congregationalist pastorates in Conway， Mass．， $1841-51$ ．In 1855 he was appointed pro－ iessor of syetematic theology in？Bangor Semi－ nary：was president of Bowdoin 186；－1；and then became profescor ci swstematic theology in the Yale Divinity School．His writings include： Zacchens or the Scriptural Plan oi Benero－ lence＇：＇Kingdom of Christ on Earth＇（18－ュ）； ＇Philosophical Basis of Theism＇（ISS3）；＇Self－ Revelation ni God＇（18e－）：＇God．Creator and Lerd ai All＇（INoन）．

Harris，Thaddeus William，American nat－ uralist：b．Dorchester．Mass．． 12 Nov，1705；d． Cambriege．Jass．． 16 Jan． $18=6$ ．He was grad－ uated at Harvard College in 181 ．studied medi－ cine and pracrised his professicn in Milton， Mass．，antil appointed librarian of Hariard in 1＊31．This fniftion he occupied until his deazh． Early in life he exhibited a fondness for natural 1 ratioy and though plodding alone，attained to a scentific eminence which secured for him the iel whinp oi all the principal learned socicties ci America，and oi many ahroad．For several year he gave instruction in botany and ceneral intural hiziory in the cullesc，and reiginated the Harvard natura！hist ry cicty ior the stu－ dent．He was chiefly distinguished howerer． as an cnt m lecmisr．and has been surpasced as such ty no the in the Tnited States．He was one i the i unders of the Massachuseats Hor－ nevftural Sicicty．In 183\％he was appointed me of the c mimissioners j or a zook gical and Lu nu ica！survey of Massachuectes，the result of whic was his＂Systemaric Catalocue of the In－ scet－i Mas：achusetts＇（IE：2）．in which 2.350 spece are enumerated．He also published：＂i Ircarive，n st me of the Insects of Eew Eng－ land which are Iniurions to Vegetation＇（18：2）， a work oí permanen：value．

IR. WTLAMAM T. H.SRR1S,

HARRIS - HARRISBURG

Harris, Thomas Lake, American socialistic and religions reformer: b. Femy Stratford, England, 15 May 1823 . He accompanied luis father to the United States in childhood, was for a time a Liniversalist pastor, and founded an 'Independent Christian Society' in 1850 ; but became a lecturer upon spiritualism. He lectured abroad in 1858 , and on his return to the United States organized the society of the "Brotherhood of the New Life." This was establishecl at Wassaic, Dutchess Cotuty, N. I., 1861-7, but removed to Brocton, Chautauqua County, N. Y., in the last named year. Its nature was co-operative rather than communistic. and farming and industrial occupations were engaged in by his followers, numbering at one time about 2,000 in the United States and Great Britain, among them Lady Oliphant and her son, the well-known writer, Laurence Oliphant (q.ヶ.). Harris removed to California in 1887. and retired to private life in 1895 , residing in New York city: He published many works in prose and poetry, among which are "Wisdom of Angels' (5856): (Arcana of Christianity) (1857): 'Modern Spiritualism' (1860) ; 'God's Breatlo in Man' (I891).

Harris, Townsend, American merchant and diplomatist, of TVelsh descent and of Revolntionary stock, the youngest of five children: b. Sandy Hill, N. 1., 4 Oct. ISot; d. New York city 25 Feb. IST8. He reccived his education at the village school and academy. From 1817 to 1848 be was in business in New York city, contimuing his self-culture by continuons and critical reading of the best literature, learning also the French. Spanish, and Italian languages; was member of the Board of Education and in 1846-7 its president. He was the practical founder of the New lork Free Acadeny, now the College of the City of New York, and in many ways was a trpically useful citizen. He never married. In 1848 he went to California and during the following six years made trading voyages to Chima and the Dutch and English Indies, becoming thoronghly acquainted with the manifold Oriental varieties of human mature. He acted for a time as American vice-consul at Ningpo. He was appointed Consul General to Japan and on the U. S. S. S. San Jacinto arrived at Shimoda, his future dwelling place (and now noted for its stone quarries), where the flag of the United States was hoisted + Sept. 1856. From the first Mr. Harris spoke the truth as against the constant deceit and prevarication of the corrupt officials of the Yedo Shogunate, demanding the courtesies due to an accredited envoy of a civilized power and refusing to deliver the President's letter to any one but the Shogun in Yedo and to him personally: Unbacked by a single ship or man, and with his secretary only, after prolonged negotiations lasting is months, he made a trimmphal progress to Vedo, and standing erect receved personal audience of the Shogun in the palace. Then began four months' instruction of these political hermits in the methods of modern international law and procedure. He concluded the treaty aud received the promise of signature by the premier, without regard to anything liappening in China. Nevertheless the arrival of Commodore Tatnall with two American men-of-war, bringing news of the hmmiliation of the Chinese emperor and
court, umdoubtedly had its imfluence on the Japanese. Mr. Harris urged the importance of having the treaty signed without a moment's delay, and the premicr li despatched commissioners to affix their siguatures and soon after an embassy to the United States, for which reason chiefly, di was assassmated in Vedo, 23 March 1860. The Harris treaty secured the right of trade, residence, and of missionary operations and teachings. He was buried in Grcenwood cemetery, Brooklyn, N. Y. Mr. Harris has always been very highly thouglat of by the Japanese, and is still the subject of much praise and appreciative writing by Japanese writers. His jotmrmals with comment and biography were published in 1896.

Wililam Elifot Griffis,

Author of 'Townsend Harris, First American Enzoy in Japan.'
Harris, William Torrey, American cducator and metaphysician: b. North Killingly, Conn.. Io Sept. 1835 . He studied at Yale in the class of 1858 but was not graduated, and after teaching in the St. Louis public schools, 1857-67. was superintendent of the schools of that city I867-80. While in St. Lonis he foun ed in 1867 the 'Journal of Speculative Philosophy.' which he still edits. He removed to Coneord, Mass., in 1880 and aided in fomding the Concord School of Philosophy at which the lectured on metaphysical themes. From I880 to Igo6 he was United States Commissioner of Education. He lias edited Appleton's School Reader and Appleton's Educational Series and is the author of 'Hegel's Logic: a Critical Exposition' (I800): 'The Spiritual Sense of Dante's Divina Commedia) (I891): 'Introduction to the Study of Philosophy' : 'Psychologic Foundations of Education.?

Harrisburg, Pa., city, State capital: county-seat of Dauphin County, on the Susquehanna River, the Pennsylvania canal, and on the Northern Cent.; Pemnsylvania; Cumberland Valley, and Philadelphia \& R. R.R.'s, and is situated ro5 miles northoest of Philadelphia. This is an important railroad, agricultural, industrial and commercial centre, and is the home of a system of municipal reform known as "the Harrisburg Plan" which has attracted widespread attention throughont the United States. The Susquehana River is nearly a mile in width at this point, and is crossed by numerous bridges.

History-The site of the future city was selected by John ITarris in 1785 , and the settlement was incorporated as a borongh in 1791 Harris was an adventurous English trader who built the first house here in 1726, and securcd a grant of 800 acres. 11 is son established a ferry here in 1753, and the place was known for many years as Harris lierry. The town became the capital of the state in 1812, and was chartered as a city in 1860 . The Harrisurg convention (c.v.), famous in American political history was hetd here in 1828, and Harrison and Tyler were nominated here in i839.

Topogrtphly. - The city has a most pictureesuue location on the left bank of the Susquehannia. which is soanned here by five bridges, three of
them m denn stee! seructures. The sld historic "Camel-back Bridge. a part i whici was lumed daring the midde of the roth century hes teen rom red in n). There is an exiensive anl leautifu: park if io zores. well-made street. $=:$ - bundance "t stisde. and a fine sewage system with matural drainage.

Comnerie and Industry:- The iron. steel. lumber and railroad interests of Harrisburs are of great importance. The roundhouses and :pair shops of the Pennsylvania Railroad are located here and give employment to the "sands oi wromen. There are extensive manuiacturics oi machinery, malt liquors. boilers. castings. brooms, cars, coaches, tanned ieather. lunber. cotton goeds, beds. mattresses, contr.. sitk gox ds and a large number $i \dot{i}=\mathrm{A}$ mg-mills. tin-mitls. blast furnaces. nait-w rks, typewriter works and boot and shoe iact ries. The ciry has tw merning and two crentag rewspapers and many weekly and monthly publicati mis.

Publi- Buidengs.- Promment among the public buildings is the new Sia:e capitci, erected at a cost exceeding E\$.000.000. It is tuilt of brich and steel. Woh jacmgs of mathie and granite. At the main entrance is a fountain -8 feet wide, ircm which the water leaps down an incline in many cascades. On each side of the fotnain rises a granite stairway \& feet wide, breadening at the top into an esplarade and widening at the comers of the buildirg to the proportions of a reviewing griund i i topps. The lesser approaches to the grounds are crmamented with statues ci the anima!s natire to Pennsylvania. The Siate Lilwary here. Tu:uded in toco. conains over 100000 vi tumes. In State Srect stands the Dauphin C wnery !diers. monument. Iro feet hich, in mum ry if the sidiers who died in the Civil War "Ifere is als a statue here of Gen. John F. Hartanit, and a monument erected in the memory ithe s ldiers who fell in the Mexican Mar ad. m- the Carit: Park. Among cher pi ints if interet are the Siate Arsenal, the court-1 ouse. Iunatic asylum, executive bulding. post-office, Hartis Parh, and Harrisurg Cemetery The edvatis nal inerimutions inslude the ligh schnol. Harro' u-g academy. St. Genevieve = academy, and the IVns Ladies" Seminary Harrivlo-g is the seat ia R man Cathnlic bishno, ant ivs charitable - ganizatina: include several hospital-: the H me oi the Friendiess, and the Chiblrens Indutrial Heme.

Trensn rtati n.-Harrinbure 1 - in per in one of tha mbst extensive and periect cectic strect ratway syst ms in the tnited Stoes. Every part of the cry, and - 11 ur and te reici -ing t wns and city are reacle 1 y clectric trcley lines. The su utian r iln y cervice oi the Penneylvania and cther ranlth ads $:=$:ntr-$-\overbrace{}^{\prime}$ ly al: ntagenus in cxtending the outlying resilment -ectims ri the cety.

M:an!ral Adminuseratin-T!e city \& vernment is stert in a my r. co... ! csery thre. yer., wh an -coond term, tha lieam r 1 an! cellet ic... il The hisiway emmel ber.
 in! - 7n: -y बffices ate selecter by the wlect c uncil T e city olicienr, buard of tax revin m not wothe. water commissinaers. cily encirucer, cty ct rk. 3 members oi the bard ai itw C wro and 5 members of the loard 11 i park commis-i-ners, are scoct-d ty the commun
council. The treasurer, controller, school direc. tors, superviscrs and assessors are elected by voie of the citizens.

Buniss and Fincinle.- Harrisburg has four natonal banks and a dozen other banking instiu:umen and building and loan assuciations. The asies-e: property va'uation is Sx6.000.000. the tax rate i course cunstantly changing. The munic: al inc me amounts to Erco,000 and the expenduture to Es,30,0co. The principal items of exnerse are: Fire deparmen: $\S_{1} .000$: waterw oks. Ezo.co0: street lighting. E30.000: police, Sis.ooc: schons. Eiss.000. Put ic improvements Livlrag an experdive of Esmonco were begun in Iroz, irr the development of a new sewe: system. W er filtration park develonment and street navins.
ifuicind Reform.- Harrisburg through the progressiveness and enterprise oi her citizens in the municipal improvement of the city. has been cal'ed 'the model city." and the plans of 1002, it an expenditure oi $£ 1,000.000$ have created an improvement ssistem now known as 'the Harrisburg p.an. In May rcot. a citizen wrote a letier to a daily paper ofering Sioo toward a fund $-f$: 5.000 to engage expert engineers to examine the city and to report a plan of improvement. The proposal met instant approval. In a few weeks the $\begin{aligned} & \\ & 50000 \\ & \text { was pledged by } 00\end{aligned}$ citizens. An organization and an executive committee soon followed, and these included the maycr. civil engineer and other officials elected by a reiorm element in local politics. Three nuted enginee:s were employed. and their reports published in Oc:ober rgor. included plans and estimates for the immediate improvement of the ciry. The subiect was presented to the peoFie at the annual election, IS Feb. rg02. "The Harrisburg League ior Municipal Improvements carried on an aggressive campaign, prop sing a mill on dollar expenditure. Ob ections were raised and to overcome these a board of public warhs was formed (under the laws of the Stave), cemposed of citizens who would serve with ut fuy, and to have entire control of the impoven euts. An ordinance auth rizing ihis t art and providing for its appeintment beitre the electi n was passe 1 by councils immeCiately after an ordinance hal been parsed submittin g to the veters the questinn of increasing the chry's delt for the folowing purposes:

The sem of E3to.000 for the extensi n, imponvement and filtation oi the water supply: Ezns.000 fir the extension and improvement of the sewerage syrtem: $\$ 0.000$ for the constructi n ni a dam in the Surquedanna River to iorm part of the improved sewerage system: $\$ 250.000$ i - acmiting land and pr pety for parks and i r a aking park imnrovements: and $\$ 100.000$ is rthe croati n i a finnd out of which the cisy m y defray the c ot of paring the intersections ti

Usin this tard three leading citizens of ilg. ctaracter were appointed. The campaign was ened. the nowspapers suppnoted the mivem nt. ank even the wimen formed a civic league an! ild in the wirk. Pamphlets. maps and 1 actams were issued and a booklet. 'The Plain Iruth . Th ut the Proposed Improvements for la-rin'tre.' was widely circulated. The result oi the electi n was a casting aside of party lines.
 ment farty hat a maju rity of 3.590 votes. I

HARRISBURG CONVENTION - HARRISON

was a mixed ticket selected for reform that won the election, the mayor being a Democrat (in a city naturally Republican), the treasurer, also a Democrat, while the controller was a Republican. Oi the six candtdates for the board of assessors, an important hody, fixing the tax valuation of the city, the hest three itwo Republicans and one Demoerat) were selected. Harrisburg in Ig0t with her \$1.000.000 improvements well advanced, is on the high road to remarkable prosperity. The State construction of a capitol huilding costing over $\$ 4,000,000$, and the local railroads projecting improvememts involving the expenditure of several millions. add additional strength to the movement toward municipal reform. Pop. (1900) 50,167; (1903) 52.95I.

Harrisburg Convention, the assembly convened in 1828 at Harrisburg. Pa.. by the protectionist faction of the New England and Niddle States, consequent on the rejection of the high tariff "Woolen Bill" in the Senate, by the casting-vote of the Vice-President. The forcible presentation of the cause of protection, and the demands of the convention for an increased duty on several manufactured articles, resulted in the passage of the high tarifif bill of 1828 .

Har'rison, Benjamin, American statesman: b. Berkeley. V'a., about I740; d. April I791. While a very young man he was elected to the House of Burgesses of which he was twice Speaker, and in 1773 was chosen a member of the committee which united the colonies against Great Britain. He was a member of the Conimental Congress, $17 \boxed{4}-7$, and on 4 July" 1776, reported, as chairman of the committee of the whole House, the Declaration of Independence, of which he was one of the signers. He was opposed to the ratification of the Federal constitution, but after its adoption, supported the national government. His brother, Charles, was a noted general in the American army during the Revolution, and his son, William Henry, became ninth President of the Unied States.

Harrison, Benjamin, 23d President of the United States: b. North Bend, Ohio. 20 Aug. 1833; d. Indianapolis. Ind., 13 March igor. He was a great-grandson of Benjamin Harrison, signer of the Declaration of Independence (q.s.) , and grandson of William Henry Harrison, ninth President (q.v.) He was graduated from Niami University, (Oxford, Ohio) in 1852. studied law in Cincinnati, was admitted to the bar in 1853, and in 1854 began in Indianapolis the practice of his profession. In I\&6o he was elected reporter of the supreme court of the State. At the time of his election to the Presidency (I\&SS) he was one of the foremost leaders of the State bar. At the outbreak of the Civil War he assisted in recruiting the 70 th regiment of Indiana Volunteers, of which he became colonel (August I862). He was an exceedingly efficient commander. For some time he was detailed to guard railways in the West: and in the campaign from Chattanooga to Atlanta the regiment was in the 20th Army Corps, the commander of which was Gen. Joseph Hooker. Harrison commanded a brigade at Peach Tree Creek. where he served with especial distinction, and also at Nashville. He was present at Johnston's surrender at Durham Station, N. C.. in 186 s was brevetted brigadier-general for his
services in command of the brigade, and in June of that year was mustered nut. The supreme court of ludiana had declared that llarrison by his enlistment vacated has office of reporter, and a Democrat was elected by defatilt to fill that office ior the unexpred term. At the election of 1864 Harrison, while still in the field, was rechosen. In 180 - he refused a renommation, and recommenced lis legal practice, in which he was largely retained in both the liederal and State courts. In is-6 he becanc. on the retirement of the original candidate, the Republican candidate for the governorshup, and thugh he ran about 2.000 rotes ahead of his tuket, he was defeated by a Democratic plurality oi 3.000 . He was appointed a member of the Mis-issippl River commission in 1879, and in 1NO was chairman of the Indiana delegation in the Republican national convention. At that convention, where he cast nearly the entire vote of the State for Garfield, he was himselt mentioned in comnection with the Presidency: From I88, to 188, he was in the Cnited States Semate, in which he took rank as a prominent debater. He opposed Cleveland's vetoes of the pension hills, urged increase in the navy and civil service reform, and as chairman of the committee on territories demanded the admission as States of North and South Dakota. Montana, IVa-nington, and Idaho. In I88+ he was a delegate to the Republican national convention. It the convention of 1888 (Chicago, Ill.) he wras presented by the solid Indiana delegation as a candidate for the nomination to the Presidency; and on the eighth ballot he received the nomination by a vote of $\overline{5}+$. The campaign was a vigorous one, and Harrison made many excullent speeches. He was elected, receiving in the electoral college 233 ballots to 108 for Grmer Cleveland. His administration was broadly characterized by a firm defence of American interests in foreign affairs and a general promotion of industry and governmental effectiveness. During this time the 5 sth Congress paseed the tariff act known as the Jlckinley law: the reciprocity system was introduced: the new navy was extended: civil-service reform was promoted: and the Pan-American congress whth representatives from all Central and South American countries was held at Washington m the winter of i8so-90. The Bering Sea arbitration respecting the seal fisheries was also organized between Great Britain and the U'nited States. The Samoan difficulties were adjusted: and the Chile affair. enncerned with an attaek on American sailors either connived at or permitted by Chilean authorities. Was promptly and satisfactorily settled by enfurced reparation on the part of Chile. At the Minneapolis convention of iSo2 Harrison was renommated without serions opposition. He was a second time opposed by Cleveland, and his defeat by $2,6 \mathrm{clec}$. toral votes to 145 was an occasion for sonse surprise. Upon lis retirement from office, he returned to the practice of law, and in I89.3-t delivered a course of lectures on constitutional law at Stanford U"niversity: In 1800 he appeared as council for Veneruela in the AngloVenezuelan boundary arhitration commission. He was appointed a member for the United State = of the Peace Conference held at The Hague in 1800, and hecame one of the International Board of Arbitration. He wrote 'This

Country of Ours tiest). A complete collecuion of his pubhc adireses from file to 1892 was edited by Hedges (1892) A posthumous collection of articles. 'Siews oi an Ex-President.) was pubhshed in rgor. Consult the campaign life by Lew Wallace (INEX), and Wilson (editor). The Presidents of the United States' (izai). Georae Edwis Rives.

Edisorial Stañ. 'Encyelopedia Amerizana.'
Harrison. Burton Norville, American lawver: b. New Orleans IE;6: d. Washingion, D. C: 09 March toce. He was graduated from Yale in 1859 . shorty afterward became proiessor of nathematics and astronony in the Lniversty of Mississippi. and at the outbreak of the Civil War was appointed private sectetary to Tefierson Davis. president oi the Coniederate Siates. Captured with Davis, he remained in imprisonment until January 1866, when his release was effected by the intervertion of F. P. Blair and President Johnson. Subsequent to the war he $\mathrm{i})$ lowed the !aw in the north with much success.

Harrison. Mrs. Burton. See Harrtson, Conetasce Cary.

Harrison. Carter Herry. American politucian: b. Ek Hill, Fayette County, Ky... is Feb. 1825 : d. Chicaso 28 Oct. 1803. He was graduaied from lale in 1845 . from the Iransylvania [-niversity]aw school (Lexington. Ky.), in 1855. and in the latter year was also admitted to the b3i and removed to Chicaso. There he inressed in real estate, in tsing was defeated as a candidate for State senator on the Democratic ticket. bu: in 18;1 was elecied county commissioner of Conk County, and in 18 復 was sent to Congress from the ad Illinois district. and in 18:6 reelected. In 18,0 he was elected mayor oi Chicaso. and again in 1885.123 .385 , and 1803. He was also an unsuceesstul indéependen: candidate in 180 I . In ISot he purchased the Chicaso Times in the direction of which he was active until his election as mayor in 1803 . In several instances his maynalty contests ass::med national interest, particularly so that of isozthe "World"' Fair year" - when the saccess nit the ereat exposition was thnught in depend much upon the occupant of the maynt = chair. He was coposed by the united Citizer: and Rephblican iorces and by nearly the entire press oi Chicasn but after a viznrous campaign of piblic meetings was elected hy more than 21.000 maineitr. He wrote: ' t Race with the Sun': and 'A Summer Outing

Harrison. Carter Henry, American poli-- ician: b Chicaso 23 . April isfo. He is snn of the preceding. He graduated from S. Imasi: $=$ Cnere. Chicaso, in 1581 , and from the Yale Law Sct onl in ieft. He practied law in Chicazn. was later encaged in the real estate h-rinesc. and in Sns became edi:nr $n f$ the C_{1}-asn Timis, a positicn which he held for two years. He has been active in Chicaco polites as a Democrat. and has theen font times e'retel nayner of the city, in 1807.180%, 100t, and 1003.

Harrison. Constance Cary, American nnve^{l} ast and miccellareous writer: h. Vaucluce. V'a. $2=$ April reth. She was married in tisk- to R.r- 7 . Harrison (q w.) and has since liverd in New Yonk. She is one of the met n pulor n! 1 merian aurhnes and amons her pullished binke are. 'NInman's Handiwork in Modern

Homes (IS8I) : 'Oid-Fashioned Fairy-Book' (1884): 'Bar Harber Days' (1887): 'The Anglomaniacs' (IE8;): 'Sweet Belle Out of Tune' (1893) : 'An Errant Wooins' (1895) : (A Bachelor Maid) (1894); 'A Son of the Old Dominion' (189 -) : 'A. Merry Maid of Arcady' (189\%): 'Good Americans' (ISoS): (A Princess of the Hills' (1901): a play, 'The Unwelcome Mrs. Hatch (1901) : etc.

Harrison, Frederic, Englisb philosopher and hestorian: b. London i\& Oct. 183 i. He was educated at Oxiord: was called to the bar at Lincoln's Inn in 1858 . and for a time practised as a convexancung and equity lawyer. In 1877 he was appointed professor of jurisprudence and internaticnal law at the Inns of Court. a post which he held till 1 SSg. He is the chiei living representative in Ensland of Positivism and the Religion of Humanity. He has been widely read in the Lnited States. which he visited on a lecturing iour in 1001. He is a master of English strle and his literary judgments command the fullest respect. Among his publications 'The Meaning of History' (1862): 'Science and Humanity' (88,9): 'The Present and the Future' (1sio): 'Byzantine History in the Early Middle Ages' (ig00), his Rede Lecture. The volume entitied 'The Religious Systems of the World) (IS93) includes an account by him oi the Relifion of Humanitr.

Harrison, Gabriel, American author and artist: b. Philadelphia 25 March 1825 : d. Brook1yn. … Y.. ts Dec. 1002. He began life as a photographer and an actor and in 1845 supported Charles Keane as the Park Theatre, New lork, and later taught elocution, and wrote dramatic and art criticism. Among his works are: 'Life oi John Howard Payne' (1873); dramatization of 'The Scarlet Letter' ($18 ; 8$);

Harrison, James Albert, American philologist: b. Pass Christian, Mise., er Aug, 1848 . He was graduated at the Lniversity of Pennsyl1ania in IN68: and has since been protesisor of La:in and modern languaces at RandolphMacon Collese. V'a.. 18-71-6: of English and m dern Sancuages at Washington and Lee Uni-rer-ity $18,-0-95$ and of English and romance lancuages a: the Lniversity of Virsinia. He is a prominent member oi the American Phitological Association and the founder and editor of the 'Library of Anglo-Sawon Poetry.' Among hi: works are: 'Grous of Poets and Their Haunts': (INPt) : 'Story of Greece' (IES5): 'Dictionary of Argio-Sanon Pcerry' with Bas kerville (iS86): erc.

Harrison, Joseph. American engineer: b. Pl' dentia 20 Sent. ISto: d. there 27 March Is-1 In is: he heaan the construction of Ix mmeives, and in isuo desimed for the Reading rijway an encine which was copied and inis Auced into Rusia with such success that he was invited in Russia, and there with two other American encineers concluded a contract with the Ruseian government to build the rollingconck and lecomotives of the St. Petersburg and M incon railway. He executed also other imritant contracts with that government. and in i $8=2$ returned to the United States. Where he cuhseq"ently patented a safety-boiler and received both the gold and silver Rumford medals frnm the American Academy of Aris and Sciences In 1 sfio he published a folio contaming his aut bingraphy, incidents of his Russian ex-

IENJ.AMIN゙ 11.AKRLへON,

perience, and his poem, "The Ironworker and King Solomon.'

Harrison, Lowell Berge, American artist: 1). 1'hiladelphia 28 Oct. 1854. He studied with Alexander Cabanel in Paris, became known for his landscapes, especially snow-scenes, and obtained medals at the Paris Salon of 188 ; and the Colmmbian Exposition (1893). His works include: 'Fricnds, or Foes?' : 'A Waif from the Sea) ; 'Calling Home the Cows' ; and (November,' purchased by the French government for the Marseilles Muscum.

Harrison, Mary Saint Leger ("Lucas

 Maler"), English novelist: b. Eversley, Hampshire. She is a daughter of Charles Kingsley (q.v.) and was married to Rev. Willian Harrison, rector of Clovelly, who died in 1897. She inlerits the talent of the Kingsleys and her novels puhlished under the pseudonym of "Lucas Malet" have been as widely popular in America as in England. They are marked by vigorons characterization and skilful construction, and include: 'Mrs. Lorimer' (I882) ; 'Colonel Enderby's Wife' (1885) ; 'Little Peter' (I887) ; 'A Commsel of Perfection' (I888) ; 'The Wages of Sin.' a notably strong tale (I891) ; 'The Carissima' (1896): 'The Gateless Barner' (1900): 'Sir Richard Calmady' (1901).Harrison, Thomas, English regicide: b. Newcastle-under-Lyne 1606; d. London 13 Oct. 5660. He was a soldier of Parliament in the civil war and commanded the guard that carried King Charles from Ilurst Castle to London, sat among his judges, and signed his death warrant. He fought at Worcester, but his uncompromising attitude in religion and politics was unacceptable to Cromwell and he was deprived of his commission, and later imprisoned for his share in some of the plots devised by the extremists. At the Restoration, be was seized, tried, and condemned to death.

Harrison, Thomas Alexander, American painter: b. Philadelphia I7 Jan. I853. He studlied painting under Gérome in the Ecole des Beaux Arts at Paris, and first exhibited in the Salon of 188 r. He was awarded the gold medal by the Pennsylyania Academy of Fine Arts in 1804 and elected an associate of the National Acadeny in I898. His best known works are: Coast of Brittany'; 'Little Slave' ; 'The SeaShore.'

Harrison, Susan Frances Riley, Canadian author: h. Toronto 24 Feb. 1800 . She was at one period literary editor of the Toronto (Week') and has been a frequent contributor to American and English periodicals. She has written 'Crowded Out and Other Sketches' (I889) ; - Pine, Rose, and Fleur-de-Lis) (I891) ; 'Down the River and Other Poems' (isni); and edited an anthology, 'French and English Native Writers' (1889).

Harrison, William Henry, 9th President of the United States: b. Berkeley, Charles County, Va., 9 Feb. I-73; d. Washnigton, D. C. 4 April IStr. He studied at Hampelen and Sidney College, later pursued a course in medicine, and was about to be graduated as a practitioner, when the sudden death of his father gave him the liberty to disengage himself from a profession for which he had no natural bent nor aptitude. He received from Washington a conmission in the army, and was soon on his way to Cincinnati, making the journey from Thiladelphia to Pitts-
burg on foot, to join the regiment to which he had been assigned. Ile arrived at Fort Washingt on just after the defeat of General St. Clair's army. 11 is first miluary scrvice was to command a company of twenty men as an escort for a train of pack-horses to Fort Hamilon, a military post on the west bank of the Big Miani River from which the seat of Bntler County was named. In I 793 he joincl the new legion unfer General Anthony Wayne who made him an ade-de-camp, and in December of that year he look part in the expedition which repossessed General St. Clair's ficld of battle, and erected thereon Fort Recovery: He participated in all the engagements with the Indians and their British allies during this campaign, and displayed conspicuous gallantry at the Battle of Fallen Timbers. Shortly after the close of this campaign Flarrison was advanced to the rank of captain and placed in command of Fort Washington. The position was largely a confidential one. The conduct of the Spaniards on the Mississippi was exasperating. French citizens and agents were engaged in exciting the people of Kentucky into a war with the Spanish of Louisiana with the object of thus enbroiling onr government with Spain and of forcing it into a league with Trance. Captain Harrison was instructed to present the passage down the river of boats laden with military stores belonging to the French agents. "1"he English posts on the northern frontier, which had been held so long in violation of good faith, were now evacuated by the English in obedience to the Jay Treaty of 1794 ; the new garrison and supplies were sent to Fort Waslington and forwarded thence throngh the wilderness under the supervision of the commandant of that post. In the spring of 57081 Iarrison resigned his commission in the army and settled on a tract of land at North Bend ahont 16 miles from Cincinnati, but was immediately appointed by President John Adams as secretary of the Northwest Territory under Gen. Arthur St. Clair as governor. A year later he resigned this position to take his seat in Congress as the first delegate from the Territory. Up to this time the public lands had! been sold in such vast tracts that none lout men of wealth could buy them. Harrison secured the division of the land into small tracts and made it possihle for the poor man to obtain a homestead. During that session of Congress a part of the Northwest Territory was formed into the Territory of lndiana. It included the present States of Indiana, 11 linois, Michigan. Wisconsin, and a part of Mimmesota, and contained a civilized population of nearly five thousand souls. Harrison was appointed its first governor by President Adams, and so satisfactory was his administration, he was successively reappointed by President Jefferson and President Madison. He was also made superintendent of 1 ndiati affairs. Governor Harrison organized the new government at Vincennes. Many difficult questions demanded his attention, but the most difficult and delicate was the restless and finally hostile attitude of the savages under the leadership of 'Tecumsch, and the preaching of Tecumseh's brother. "the T'rophet." The heginning of open warfare by the ludians was averted many times by his calmmess and comrage. Ile made in all thirteen treaties with the lndians, and secured the cession from several tribes of more than three million actes of land on the Wabash and White Rivers. Tecumsel condemned these treaties on
the ground that the land belonged to all of the Indians，and that a single tribe could not give a legal title withom the consent of every other tribe．Harrisen mwited Tecumseh to Vincennes ior a conierence，and directed that he should bring with him not more than thirty warriors： but he came with four hundred completely． armed．There were many evidences that treach－ ery was intended，and but for the concilatory methods of the governor，the council would have terminated in bloodshed．Fothing was accom－ plished by this interview，nor by a second in the following summer．Meanwhile，frequen dep－ redations by the Indians made it erident that conciliatory measures conld no longer be employed，and on 26 Sept． 1811 Harrison set out with goo men to punish thens．On 6 Novem－ ber，when the army was within a short dis－ tance of Tippecanoe，it was met by messengers demanding a parley：A council was agreed upon for the next day，but at + oclock on the fol－ lowing morning，the treacherous savages fiercely attacked the camp of Harrison in an endeavor in take it by surprise．The fighting continued till daylight when the Indians were routed with great loss．In the war of 1812 I Iarrison was appointed to the chici command of the Jorthwest，and given a major－general＇s commission．He urged upon the government the importance of creating a nary on the Lakes．That advice was heeded， and the splendid achievement of Cominn dore Perry on 10 Sept．1813．was made possible by the military sagacity of this accomplished soldier． Six days after Perry＇s victory General Ilarrison embarked his artillery and supulites for a descent on Canada．The British gemeral．Procter． burned the fort and navy－yard at JFhen and retreated，closely pursucd by Harrist who over－ took himi and his Indian allies led by Tecumseh near the river Thanes．Withn five minutes almost the whole British force was captured，and shorty aiterward the Indians were completely routed，and their leader Tecumseh yas slam． The battle of the Thames and Perry＇s victory ended the war in Upper Canada．and gave the Enited States undisputed possession of the Great Lakes excepting Lake Ontario．

The years between the llar of 1812 and the presidential campaign of I世九O Harrison devotel in part to the service of his commers，and in part to the life ef a country eentleman．Ile was in turn a member of Conoress，state semator in the general Asembly of Ohio，prenidential elector． United States seliator from Ohin，and minister to the Eniterl States of Colombia．In $1 \mathrm{~S}_{2}$ 品 he retired to his farms at Fintin Bend In Devem－ ber i839，he was nominaterl ly the Retional Whig convention for the Presidency oi the Eniterl States．with John Tyler of Virgma for viec－president．The campaign which followed was enc off the moct exctiong in the history of the conntry：Political mass meetings and fros－ cesuinm were intruduced fur the firat time，ant？ party watehworls and emblems were employed with iclling elfect．That canvan has ermminly treon calted the fow－aton and lard eiter cam－ paign．the cautern emb of rocneral llarrions hofice at North Remel ennsisted ui a log calsin cuscred with claplegards，and his tahle was refued to to well cuppliex woth goned cirler． ＇t teat of wines．Logeabins and hard el ler th －became party emblems typifying repmblicam cimplicsty：＂Tippecanoe and＂Fyler tow＂was sh ted and sung and emblazoned from one com］
of the country to the other．Nothing could stem the tide of wonderiul popular enthusiasm for the hero of Tippecanoe and the Thanses．Van Buren，the Democratic candidate．received only sixty electoral votes out of two hundred and ninety－four．The death of the President occurred only thirty－one days after his inauguration． Consult Bristwick in Wilson＇s＇Presidents of the （＇inted States＇（I894）．

Harrison，trk．．town，county－seat of Boone County：on the St．Louis \＆N．A．rail－ road；abnut 120 miles northwest of Little Rock It is in the lead and zinc section，and its indus－ tries are chiefly connected with nining．Consid－ erable fruit is grown in the vicintys，and it has flour－milling and dairy interests．It is the seat of a collegiate and normal institute for women． The Tnited States government building cost about $\$ 80.000$ ．Pop．1．603．

Harrison，N．I．，city in Hudson County； on the Passaic River，the Pennsylvania and the Erie R．R．＇s．It is a suburb of Newark，and a sub－station of the Newark post－office，but has an independent municipal government．It was settled in I668 and incorporated in 18－3．The charter of 1873 is still in force，and by it the government is sested in a conmon commil elected by wards．The chief manufactures are wire－cloth．marine－engines．steel．machinery． tubes，reirigerators，ink beer，and leather．The water－plant is owned and operated by the city． Pop．（igoo）10．506．

Harrison，Ohio，village in the township of Harrison．Hamilton County．on the boundary hetween Ohio and Indiama，and on the Cleveland， C．C．\＆St．L．railroad， 23 miles by rail west－ norlhwest of Cimcinnati．The village situated on the north bank of the Whitwater River：a tributary nf the Great Miami，in a fertile farming section，has manufactures of furniture．sashes． blinds，brushes，bricks，shoes，a corn－drill fac－ inry，a canmery：and lumber，flour，and roller miifts．Its pablic buildings include a high school and six churches．Pop．（1000） 1.456.

Har＇risonburg，Va．，town，county－seat of Rockinglam County：on the Chesapeake di 15 ．， the Southern．and the Batimore \＆O．R．R．＇s； about 100 miles northwest of Riclmond．It is in the Shemandoals Valley，and is surrounded by a rich agrocultural commery．Its chicf manufactures are flour，staves，saw and planing mill products． fomdry aml machine shopp products，and potters． It is the trade centre for the greater part of the combly：The town owns and operates the water－ werks．Pop．（1900）3．221．

Harrisonburg，Engagement Near．Harri－ a mhurg．Va．．unt the Great Valley Turnpike． 22 miles mirtin of Staumus，and 122 miles north－ W＜－t of Kichmond，was the seene ni many stir－ ring events in the Civil War．The place was occupied hy Gen．Bank：late in April 1862，and aland ned when Jackson forced Banks down the valley in Day Jhben Jackson，in turn，was furcerl in the valley by the combined armies of MeDnwell and Frimont．he abaneloned the main valley：moving from Harrisonburg in Cros－Keys and Port Republic．his rear－guard． two regimente of Virginia cavalry，under Gen． Turner Abhes，halting about two mites south－ eant of Harrionmburg．On 6 June 1862 Col ． 11 ymdlam，with the First New Jersey cavalry and a lattalion of the Fourth Sew York，nov－ ing from ITarrisonburg，attacked Ashby and

WILLI．A．I HEN゙RY゙ HARRISON．
NINTI PRESIDFNT OF THE TY゙ITED－TATE
was defeated and followed to within one mile of the town, with the luss of several men killed and wounded, and about co takch prisoners, including Wyndham himself. Gen. Bayard then pushed forward with cavalry and infantry and Ashby fell back and called for infantry support. Jackson sent him Stuart's brigade - First Mlaryland, Forty-fourth, Fifty-second, and Fiftyeighth Virginia. A few miles beyond llarrisonburg Bayard attacked with the Pennsylvania "Bucktails" under command of Lietit.-Col. T. L. Kane, and in the engagement Ashby was killed. and Kane was wounded and captured. While this was happening on the right. the Sixtieth Ohio infantry and First Pennsylyania cavalry, on the left, drove in the Confederate skirmish-line, without loss on either side. As soon as the wounded could be removed the Confederates fell back in the direction of Port Republic, and the Union forces retired to Harrisonburg. The Union loss in the engagement was 65 killed, wounded, and missing. The Confederate loss including Asbby, was i8 killed, 50 wounded, and 3 missing. Consult: 'Official Records,' Vol. XII.
E. A. Carman.

Har'risonville, Mo., city, comnty-seat of Cass County; on the Missouri, K. \& T., and the Missouri P. R.R.'s; : about 30 miles southeast of Kansas City: It is situated in an agricultural and stock-raising region and the trade and manufactures are connected chiefly with the products of the surrounding farms. The shipping consists mostly of grain, live stock, humber, and dairy products. Pop. (1 goo) I, $8+4$.

Harrisse, hăr-ēs', Henri, American critic, bibliographer, and historian: b. Paris 1830, of Russian-Hebrew parentage. He became a citizen of the United States, and for several years practised law in New York. He has published 'Bibliotheca Americama, Vetustissima' (i866) ; 'Christoplier Columbus) ($1884-5$): 'John and Selbastian Cabot' (1883); 'The Discovery of North America' ; etc.

Har'rodsburg, Ky., city, county-seat of Mercer County: on a branch of the Southern railroad; about 45 miles southwest of Lexington and 58 miles southeast of Lonisville. It is the oldest permanent settement in the State, and was founded by James Harrod in 1774. Two years later Kentucky was incorporated as one of the counties of Virginia and Harrodsburg was made the county-seat. Stock-raising and farming are the principal occupations in the surrounding country. It has flour and planing mills, a distillery, brick-yard, and ice factory. The climate, scenery, and the Greenville Springs nearby make it a pleasure and health resort. It is the seat of Beaumont College, an institution for women, opened in 1894. Pop. (1900) 2.876.

Harrow School, England, an academic institution situated at Harrow-on-the-1 lill, a town of Middlesex. 12 miles morthwest of Londlon. It is one of the famous public schools of England and was founded by John Lyon in 15\%1. The original red brick school house. now the Fourth Form School, was built $1608-15$. New buildings were added in 8819 and since, the chicf of these being the Vaughan Memorial Library (1863). and the semi-circular speech-room (1877). The school was primarily intended to afford free education to 30 poor boys of the parish; but provision was also made for the admission of 'so many foreigners as the place can conveniently
contain.' The age of admission is I_{2} to It ; and there ate six entrance scholarships of from $\$ 150$ in \$400 per ammm, ofiered every laster. The most valuable larnung scholarships are Baring's three of $\$ 500$ a year ine five years to 11 ertford College, Uxford. Among the distinguished alumi of llarrow :are Dr, I'arr, Theodore Ilook, Sheridan, Byron, Palmersten, Anthony Trollope, and Cardinal Maming. Under the Public Sclools. Act of 1868 thie governing loody comprises six members, clected respectively by the Lord Chancellor, the universities of Oxford. Cambridge and London, the Royal Society and the undermasters.

Hart, Albert Bushnell, American historian: b. Clarksville, Pa., ! July 185t. He was graduated from Haryard in ISSo, subsequently becoming professor of history there. He has written: 'Coercive Powers of the United States Govermment' (I885) : 'Formation of the L'nion' ; 'Introduction to the Study of Federal Government' (I890); 'Studies in American Education' (1805); (Life of Salmon P. Chase) (1899) ; 'Practical Essays on American Govermment' (1893); etc. He has also edited 'American History Told by Contemporaries' (1898-1901): 'American Citizen Series' (1899); and since 1805 , the 'American Historical Review.'

Hart, James McDougal, American painter: b. Kilmarnock, Ayrshire, Scotland, 10 May 1828. He came to the United States in 1831, and studied art under his brother William (q.v.). and at Dissseldorf in the studio of Schirmer (1851). He was elected a member of the National Academy in 1850, and devoted himself principally to American forest scenery with a preference for autumnal effects. His 'Landscape with Cattle' is in the New lork Metropolitan Museunn, and his best known pictures arc 'On the Croton'; 'Morning in the Adirondacks'; and 'Oaks in Autumn.'

Hart, James Morgan, American scholar: b. Princeton, N. J., 1830 He was the son of John S. Hart (q.v.). He was graduated from Princeton in 1860, studied in Crüttingen, and took the degree of A. M. from Princeton in I863. He was professor of modern languages at Cornell (1868-72) ; professor of modern languages and English literature in the University of Cincinnati ($1876-00$) ; returning to Cornell as professor of rhetoric and English philology in 1890. IIf has written: 'German Universitics' (1874); 'Syllabus of Anglo-Saxon Literature' (I 887) ; 'Hand-book of Englisis Composition' (1895); has revised and edited his Enther's 'Alanual of Composition and Rhetoric' (1807) ; and has translated 'German Classics' and 'Goethe Prose Selections.'

Hart, Joel T., American sculptor: b. Clarke County, Ky., about 1810; d. Florence, 1taly, 2 March 1877 . Ite was of bumble parentage, and in i830 entered a stone-culter's establishuent in Lexington. Ife was induced to attempt modeling busts in clay, and among others. Gen. Jacksons and Cassius .11. Clay (q.v.) sat to lim, the latter giving him his first commission for a bust in matble. This when completed proved so satisfactory that Hart was commissioned to excoute a marble statue of Henry Clay. He began this, but various delays prevented its completion, and it was not set up in Richmond, Va., till 1859. Other important

HART - HARTE

works by Hart are 'Woman Triumphant' in the court-house, Louisville, Ky., and 'Il Penseroso.' He was particularly well known for his portrait busts.

Hart, John, American patriot: b. Hopewell, N. J.; d. there, at an adranced age. 1 -So. Frequently elected to the colunial assumbly he was prominent especially in the legislation for local improvements. In Ifit he was chosen to the general Congress at Philadelphia, where he was noted for his sound judgment and inflexible determination; was re-elected in the two iollowing years, and was one of the signers of the Declaration of Independence. New Jersey was soon invaded by the British army, his estate devastated, and special exertions were made to take him prisoner. The capture of the Hessians by Washington permitted his return home.

Hart, John Seeley, American educator: b. Stockbridgc. Mass., 28 Jan. 18ro; d. Philadelphia 26 March 1877 . He was for many years principal of the New Jersey State Normal School, at Trenton, and subsequently professor of EngJish literature at Princeton College. His textbooks on English and American literature had a wide circulation, and in the long course of his career as educator he did much to stimulate a taste for good literature among students.

Hart, SIR Robert, English diplomatist, director of the Chinese imperial inaritume customs: b. Portadown, County Armagh. Ireland, 1835. He was educated at the Taunton Wesleyan School, and was graduated at Queen's College, Belfast. He entered the British consular service in China in 1854. was appointed inspec-tor-general of customs in 1863 and accepted his present position in 1885 . During the Boxer outbreak in rooo. he underwent the siege in the British legation, at Peking, and since then has published his views on the position of things in China in a very remarkable work. 'These From the Land of Sinim' (1goi). He attributes the disturbances in China to the arrogance of forcizners and the unyielding pride of the Chincse. He discusses China's army, haw: transportation, communcation. cursency. cducation. administration, and religion in a highly optimistic vein, and shows shat the Chinese government does a great deal better than it ge:- credit for. He is a firm believer in the Clinese plans for reform. He is certainly deeply trusted by the Chinese atthorities and is one of the best oriental administrators that England has ever been blest with in China.

Hart, Samuel, American Episcopal clergyman: b. Saybrook. Comn.. + Junc 1845 . He was graduated from Trinity College in IS(H), and was ordained priest of the Episerpal Church in 18,0. He was at Trinity College as assistant professor of mathematics ($18,0-3$). professnr of mathematics $(18,-3-8,3)$, and professor of Litim
 professor of doctrinal theology at Berkeley Divinity School. In 8800 he was appointed custothan of the Standard Prayer Book ni the Epincopal Church of the United States, in 18 ind secretary of the House of Bishops, and in 1806, historingrapher of the courch He is a member ni several learned socicues, including the American Historical Society, the American Oricntal Society, and the Society of Biblical Literature and Exegecis. He is editer of 'Satires of Juvenal, ' 'Satires of Persius,' and Bishop ScaBury's 'Communion Office.'

Hart, Thomas Norton, American merchant and politictan: b. North Reading, Mass., 20 Jan. 1829. He entered business in Boston as partner in a mercantile firm, later founding a firm under the name of Hart. Taylor \& Co. When he withdrew from this business, he became president of the Mount Vernon National Bank, and was connected with many eleemosynary institutions. He has also been active in politics, was a member of the common council. and of the board of aldermen: was nominated for mayor of Boston in 188; and 1888, but defeated at the election; was, however, elected in 1889, 1890, 1500 and 1901.

Hart, William, American painter: b. Paisley, Scotland, 31 March 1823 ; d. Mount Vernon, Ň. Y., I7 June 1894 . Emigrating with his parents to the C'nited States in 183 1, he settled in Albany: and was at first apprenticed to a firm of coachmakers, in Troy, by whom he was employed to paint the panels of coaches. He subsequently painted landscapes, portraits, and even window shades. In 1848 he became a regular exhibitor at the National Academy of Design. of which in 1858 he was elected as academician. He was president of the American Water Color Society 18;0-3. He was a brother of James McDougal Ha:t (q.w.).

Hart, a hunting term, applied to the male, or stag. of the red deer after it has completed its full antlers at the age of six or seven years.

Hartbeest, härt'bēst. one of the large African antelopes of the genus Bubalus, specifically. the caama (B. cama). formerly excessively numerous on the South Aifican plains. They have long narrowing heads, doubly-curved. ringed horns, cow-like tails, and usually are of a grayith or reddish color. with decided markings on the face, especially in the bontebok (B. Prgorgus), blesbok (B. oilbifrons) and sassaby (B. lunata). A!l were note! for swiftncss. Other very distinctive splecies are the konzi, tora, korigum and hunter's antelope. Nost of these have become greatly diminishad in numbers since about is;o.

Harte, Francis Bret, American novelist and poet: h. Albany, $\mathrm{N}^{1} 1 \mathrm{l}, 25$ Aug. 1839 ; it Aldershot. England, 6 Nay 1002. In $185+1.0$ went in California. attracted there by the gold evcitement. He was first a teacher at Sonora, then tried mining. in which he was unsuccessintl. Ife next entered a printing-office, and in 1857 was compositor on the San Francisco 'Golden Era.' At that time he began to write short sketches, which appeared in the 'Golden Era.' and soon attracted attention; he was invited to join the staff of the 'Californian,' to which he contributed a series of clever parodies on famus contemporary writers of fiction, later mullished as 'Condensed Novels.'. In 1864 he was appocinted secretary to the Lnited States branch mint: in 1868° became editor of the 'Overland Monthly,' for which he wrote 'The Luck of Roaring Camp ${ }^{3}$ and others of his most successfin stories of frontier life. In 18 ;1 he went to New lork and became a regular contributor to the 'Atlantic Monthly.' In 18,8 he was appointed L゙nited States consul in Crefeld. Germany, and in is8o received the consulshp at Clasgow, Scotland. In 888 his tenure of office as consul came to an end, and he settled in London, devoting his whole time to literary

BRET HARTE.

HARTFORD

work. He was a prolific writer, and continued for the most part to deal with California themes. Among his shorter stories the following may be mentioned: 'Niggles') 'The Outcasts of Poker Flat' ; (M'Liss' (1872) ; 'The Twins of Table Mountain' (18;9) : 'An Heiress of Red Dog' (1879) ; (Flip' (1882): 'On the Frontier') (1884) : 'By Shore and Sedge' (1885) ; 'Devil's Ford' (1887) ; 'A Phyllis of the Sierras.' and 'A Drift from Redwood Camp' (I888): 'The Heritage of Dedlow Marsh' (I889) ; 'A Sappho of Green Springs' (1891): 'The Bell-Ringer of Angel's' (1894): (A Protégé of Jack Hamlin's' (1894) ; 'Barker's Luck' (1890); 'Tales of Trail and Town' (1898): 'Stories in Light and Shadow' (I898) : 'Mr. Jack Hamlin's Mediation' (I899) : and 'From Sand Hill to Pine' (1900), a collection of short stories. His longer stories and novels include: 'Gabriel Conroy' (I876) ; 'Thankful Blossom: A Romance of the Jerseys' (1877); 'In the Carquinez Woods' (I883) ; 'Maruja' (I885); 'Snowbound at Eagle's' (1886) ; 'The Crusade of the Excelsior' (1887); 'Cressy' (1889): 'A Waif of the Plains' (1890) ; 'A Ward of the Golden Gate' (1890) : 'A First Family of Tasajara' (1892) : 'Colonel Starbottle's Client, and Some Other People' (1892) ; 'Clarence' (1895), dealing with incidents in the American Civil War; 'In a Hollow of the Hills' (1895) ; and 'Three Partners' (1897). He has also written much verse comprised in volumes entitled 'Poems' (1871) 'East and West Poems' (1871); 'Echoes of the Foot-Hills' (187t) ; and 'Some Later Verses' (1898).

In estimating Harte's work it must be remenbered that it was his rare good fortune to break new ground, and to hecome the first literary interpreter of a life which with its primitive brealth and freedom, its striking contrasts of circumstance and character, offered singular opportunities to the novelist. That he ever did anything quite so good as his first group of stories and poems cannot be said, for his later volumes are marked, as a whole, by the repetition of well-worn motives and by declining spontaneity and power. Still, the average quality of his output remained high; and when the circumstances of its production are borne in mind, it may perhaps seem remarkable that it shotld have preserved so many traces of the writer's youthful freshness and vigor. Among qualities of his work those which perhaps most constantly impress the critical reader are his dramatic instinct, his keen insight into character, his broad sympathy, and his subtle and pervasive humor. Dealing for the most part with large, strongly marked, elemental types, as these develop and express themselves under conditions which give free play to instinct and passion, he does not indulge in lengthy analyses or detailed descriptions. His men and women are sketched with a few strokes, and left to work out their own personalities in speech and deed; and yet. such is the skill with which this is accomplished that they stand out before us as creatures of real flesh and blood. He did not purposely soften the shadows in his pictures: the sin and wretchedness of frontier life are frankly pottrayed; none the less, there can be little doubt that consciously or unconsciously he contrived to throw an idealizing glamor over the mine and the camp, and that
many of his most lifelike and successful characters are wrouglit in the imagination, though out of the stuff of fact. But it is here that we touch upon what is perhaps one of the finest qualities of his work, - a quality not to be separated from his tendency toward idealization. Though he dwelt hahitually upon life's unexplained and inexplicalile tragic complexities, he nevertheless suffused his stories with an atmosphere of charity; clear, swect, and wholesome. The weakness of his writing is closely connected with some of its main elements of strength. A master of condensed and rapid narration, he produced many stories which are too sketchy in method to be completely satisfactory; while in his desire to achieve terseness he occasionally sacrificed clearness of plot. This is particularly the case with his more ambitious efforts, especially with his long novel 'Gabrie] Conroy,' an elaborate study of the culture conditions of early California civilization, which. though it abounds in memorable descriptions and vivid character sketches, lacks wholeness and proportion. As a writet of verse, he is unequal: some of his poetry shows the originality and power of his earlier prose, while much is of too temporary a character to find a lasting place in literature. Consult: Pemberton, 'Life of Bret Harte.'

Hartford, Conn., State capital, seat of Hartford County, port of entry, and head of navigation on the Comecticut River, 60 miles from Long Island Sound. By the main line of the New York, N. H. \& H. railroad it is 110 miles from New York and 124 from Boston (a midway position which has enhanced its lusiness development), 36 from New Haven, and 26 from Springfield Mass. ; the Highland Division (old N. Y. \& N. E.) connects it with Fishkill on the Hudson (110 miles) and Providence. R. I. (90 miles): the Valley Division extends down the river to its mouth, the Comnecticut Central to Springfield east of the river. The Central New England runs to Poughkeepsie and beyond. Pop. (1903) ahout 86.000 .

Hartford lies on the west bank of the river, on rolling ground: Prospect Avenue in the west and Fairfield Avenue in the south afford a superl view across the entire Comnecticut \alley, some 20 miles wide. It extends about $5^{1 / 2}$ miles north and south to Windsor and Wethersfield lines, by $3^{T / 2}$ west to 1 'est Hartford line, about i8 square miles in all; the $10 w n$ and city are conterminous. It is divided about equally by the little Park River, which joins the Connecticut just south of the centre and is crossed by many bridges, and through whose bed runs the great main scwer into the Connecticut. The chief lusiness strect is Main, following the river line along the first high ground back from its shore, the latter frequently overllowed in the spring freshets; wext Asylum, west past the railroad station, and State east to the steamer landing with the chief wholesale warehouses: Pratt and Pearl parallel to Asylim, and Central Row opposite Pearl across Niain. It is a place of great beauty; and from its age, early and continuous business importance, and consequent accumulated wealth and generations of inherited incomes, is of noted social and intellectual cul-tivation.- more like the old European provincial capitals in a mingling of metropolitan advantages with those of moderate numbers and coun-

HARTFORD

try foominess than any other American city． There are several costly residence districts；the most notable are Washington Street with its magnificent arch of old elms，Asylum Avenue． and a porticn of Farmington，and Woodland Street．with some handsome places on Werthers－ field Avenue．One oi the finest streets．Pros－ pect Avenue，is the West Hartiord boundary： and built up only on that side：and fine piaces extend well into West Harticrd．The street－ railway system is very extensive and well man－ aged：it runs in all directions for many miles． The Connecticut is spanned by a wooden bridge to East Hartord：but work has begun on a splendid stone bridge，to be completed by the end of 1904．at a cost with handsome street ap－ proaches of rearly $\$ 2.000 .000$ ．

The park system contains some 1.200 acres： within the past iew years the munificence of several citizens has endowed the city with a ring of beautiiul parks．which with the ciry＇s help will witimately encircle it entire．The old－ est is Bushnell Park，in the heart of the city． 4^{8} \％2 arres，crowned by the State capitol and containing monuments to Tsrael Putnam and Horace IVells．The largest is Keney Park in the extreme notth，extending into Windsor． 663．4 acres：next Goodwin Park in the extreme south．some 200 acres．Elizabeth Park in the extreme west．largely in West Hartiord． 90 acres，is the nursery for the other parks：Pope Park south west of the centre has $\bar{i} 3$ acres，ulti－ mately to be 92 with city additions；and River－ side Park is a reclamation and beautiiying of the formerly squalid river front north of the East Hartiord bridge．There are also smaller squares and spaces．

The city has a remarkable number of hand－ some and architecturaily notable buildings． Foremost is the State eapitol．of white marble． towering over Bushnell Park：the handsumest in the country except the one at Albany，and arehitecturally＇surpassing that in many ways．It was completed in January 1880 ，at a cost of \＄2．534．024．6；land and other expenses made the total $\leqslant 3.3+2.500 \cdot 73$ ．The general plan $w_{i}: s$ of ${ }^{13 \text { th－censury }}$ Gothic，but modern needs iirced very ruueh change in this．Each side is an in－ dividual and separately beautiiul de－ign：and the interior is as notable as the exterior．Its ex－ treme length is 298 ieet 8 inclies ；depth of centre part，ise feet + inches：depth ci wings，itI feet 8 inches；height from ground line to t． P of crowning figure， $2=6$ feet 6 inches．It is fire－ proof，the only known fireproci capitol．The red－sandstone Clieney Building was designed by H．H．Richardson．Trinity College（qv．）has fine buildings on high ground in the south part， uitimately to form a quadrangle．The hi mee oi the Connecticut Nutual Liie，the Eina Liie，the Phenix Mutual Life，and the Natunal Fire．are the fine et insurance buildings：the Phernix Eank and the First Xational，of the lank Luildngs． The white granite govemment building（P－t－ （ffice and custem－house）may be ne ted：and the Wad－woreth Athencurn is pleasing and digntificl． Oi weral handsi me clurch structures，St Trseph＇s Cathedral（R．C．）is m it nutable，Of interet historically，is the city hall，fermerly the state honiec，completed May $(\pi-2)$ ：the fann us Hartined Convention inv．）was held here in 1814．Of the city monuments，the two most notable are the Soldiers＂Mermorial，Arcli．farm－ ing a gateway into Bushnell Park across the

Park River：and the superb Corning fountain in that park，a bronze with symbolical figures．

The educational institutions are widely iamed． At their head stands Trinity College noted above．The Hattiord high school is the most complete＇y equipped in the country；it has cost in buiidngs．land，and equipment．$\$ 598.500$ ．The pupis from surrounding towns are admitted on payment of a iee．A manual－rraining depart－ ment was added in a new wing in IEq\％．The city schools are operated on the district system； several attempts to consolidate them have been hieazily defeated．There are nine districts， with is buildings altogether．The school ex－ penses are abcui $\leqslant+000000$ a year．The school tax is assessed with the city taxes，but each dis－ trict by itself．Hartiord has also a theological seminary managed by the Pastoral Union（Con－ gregational）of Connecticut．There are it church societies，of which the Congregational （13）．Roman Catholic（10），Baptist（9）．Epis－ copal（8），and Methodist（ $)$ ），are the chief de－ nominations．Hartiord is the seat of a Roman Catholic bishop．Its charitable institutions are renowned：it was the earliest seat of attempts to instruct the deaf and dumb in the United Etates，throush Gallaudet and Clere；and the School for the Deai．formerly Deai and Dumb Asylum（whence Asylum Street，where it is located），carries on the work．The Retreat for the Insane．the Hartiord Hospital，the Hartiord Ofphan Asylum the K．MF．C．A．the Cite MFission and Open Hearth，and the Union for Home Work．are only part of its overflowing charities． The Connecticut Humane Society also has its head office here．

The library facilities of the city are very large for its size，and far more varied in con－ tents than if they bad been collected by a single institution．In the Wadsworh Atheneum are housed the Hartiord Free Public Library with Fog．000 vilumes．the Watkinson Libraty（reier－ ence only）with 59.000 ，and the Connectieut Historical Society with about 25.000 ，besides as many paraphlets，and toward 30.000 MES ． The libraries of the Theological Seminary（ St ， coo．and about 40.000 pamphlets）and Trinity College（ 43.000 ）contain many valuable spe cia＇ties：and the State Libraty in the capitol （140．000．and some 50.000 MSS．），with its great collection of statutes，law reports，public docu－ mens，Hansard．etc．，is of extreme value．

Hartiord，as the head of navigation and therefore distributing point for the Connecticut Valley，early gained an inportance as a centre of wholesale trade which it has never lost：to accemm date this，the Hartiord Bank，the fith in the L＇nited States，was organized in $1,02$. But its largest importance is now as one of the leading insurance centres in the world，and third in the United States．This business de－ vel ped from the marine insurance on its West India cargues．added fire insurance as a branch， and in IS⿱世木灬⿱⺈⿵⺆⿻二丨冂刂 life insurance．The loans of its in－ sur t ce oump：nies with their vast assets，not restrcted ty law as are thuse of New York， ${ }_{\text {ande }}$ hy ten ore of the greatest agencies in devel－ ming the Weat，amounting to several hundred mi ：ns ci dollars．There are now six liie companies two of which also have accident brancte：－the latter being the original and chisef department in one：five fire enmpanies be－
atdes a bran a county mutual，and the Linited States branches of three foreign companies：and a

H IRTF(ORI).

steam-boiler insurance company. There are 7 national and 5 other banks of discount, 4 savings-banks, and + trust companies. The manufacturing interests are heavy and varied. Firearms, including liatling guns, at the famous Colt Works; electric machinery and vehicles: bicycles, of which it is the centre in the United States: cyclometers; woven-wire mattresses; horsc nails; screws; steam-engines and hoilers; typewriters; leather belting; and special machinery of all kinds, besides knit goods, furniture, carriages, harness, and many other things are manufactured here. It has also one of the largest printing houses in New England, which has manufactured many famous works; four daily papers, one of them the oldest newspaper in the United States (The Courant, 1764), and a number of weeklies, monthlies and quarterlies.

The mayor holds office for two years, and the representative body is two-chambered. The assessed valuation of property is about $\$ 8 \mathrm{r}, 000,000$, making it per capita one of the richest cities in the United States. The tax rate is under 2 cents on the dollar.

The first white settlement of Hartford was by the Dutch in 1633, at the junction of the Park and Connecticut, still called Dutch Point (though the original point is now out in the Connecticut). They built there a fort called the "House of Hope." (For the settlement by the Newtown men in $1635-6$, and the adoption of the first written constitution of modern times. whence Hartford is called the "birthplace of American democracy," see Connecticut.) Hartford was first named Newtown, changed to the present name from Samuel Stone's English birtlplace. From here in 1637 , sailed the first organized military expedition in the English colonies, John Mason's against the Pequots. The Dutch were ejected from their fort in 1654; they had never really made a settlement. (For the attempt of Andros to seize the charter, in t687, see Charter Oak.) In izoi Hartford became joint capital with New Haven. In the Revolution, Hartford, as the liead of the one rich store of food which the British could not seize, became of prime importance; the second commissary-general of the United States army, Jeremiah Wadsworth, was a Hartford merchant. Gov. Trumbull was also a strong reliance of Washington, who came to Connecticut to consult him; and in 1780 Washington and Rochambeau planned the Yorktown campaign here. The Hartford Convention (q.v.) of I814 sat here. In 1873 Hartford became the sole capital of the State.

Its native and adopted citizens have made the city one of the literary glorics of New England. It was the birthplace of Noah Webster, Frederick Law Olmsted, and John Fiske, with others of note; had the services of George D. Prentice, John G. Whittier, Joel Barlow, and others: and was the long or permanent residence of Harriet Beecher Stowe, Mark Twain, Charles Dudley Warner, and Horace Bushnell, besides John Trumbrill and Lydia H. Sigourney. In the business world, both Edwin D. Morgan and Junius S. Morgan began their career as Hartford inerchants.

Population.-1800, 5.347 ; 1810, 3.955 ; 1820, 4.726; 1830, 7.074: 1840, 9,468: 1850, 17,966; 1860, 29.152; 1870, 37,180 ; 1880, 42,015; 1890, $53,2,30$; $1900,79,850$. Of these 23,758 were of
foreign birth: 8,076 in Ireland. 3,364 in Germany, and Austria, 2,260 in Russia, 1,952 in Italy, 1,714 in Sweden, 2,073 in England and Canada (English).

Forrest Morgas:
Of Conncticut Histurical Society.
Hartford, Mich., village of llartford Township, Van Buren County, 15 miles west of Paw Paw on the Paw Paw River, and 17 miles northeast of Benton llarbor, on the Chicago \& M. L. S. R.R. It has a graded school and five churches. It carries on a considerable traffic in agricultural produce and stock, has grain elevators, flour, saw-, and planing-mills, canneries, electric light plant, and inanufactures staves. cigars, cheese, vinegar, etc. Pop. (1900) $1,07 \%$

Hartford, Vt., town of Windsor County, on the White River, about one mile above us junction with the Connecticut River, and 60 miles south of Nontpelier, on the Central Vt. and on the Woodstock R.R.'s. It has woolen, saw, and grist mills, and manufactures of agricultural implements and furniture. Pop. (igoo) 3,817.

Hartford City, Ind., city, county-seat of Blackford County; on the Pitusburg, C. C. \& St. L. and the Lake E. \& W. R.R.'s; about 45 miles southwest of Fort Wayne, and 00 miles northeast of Indianapolis. The natural resources which contribute to the industrial and commercial interests are the products from the surfounding agricultural country, the natural gas supply, and the oil fields. The chief manufactures are iron, glass, flour, pulp, and paper, strawboard, and wagons. The city owns and operates the waterworks. Pop. (1900) 5.912.

Hartford Convention, of 1814: a gathering of New Eugland Federalists to discuss measures for securing New England interests against the South and West; especially in relation to the War of 1812. The convention opposed the war on several grounds, the vital objection being that it was destroying all American commerce in order to punish Great Britain for crippling a part of it. It was believed by the delcgates that the agricultural States were sacrificing Now England, whose life-blood was commerce, from ignorance mingled with sectional malice (sce Embargo). All through the war, the New Fingland Federalists. impoverished and excluded from the national councils, harassed and hampered the government in conducting it; the government retorted by leaving the whole section to its fate; the British inflamed the discord by cxempting the New England coast from blockade, and the government commered by laying a new embargo which did the same work. All the New England States and New York were swept by the Federalists on this issue. In November I813 the governor of Vermont recalled a brigade of militia irom garrison duty; the government threatened prosecution, the Massachusetts legislature threatened to use the State power to support him. In the autumn of 18 th the destruction of New England industrics had become intelerable; the coast was undefended, the Britislı were occupying that of eastern Maine, and Congress was proposing a conscription so severe as to enlist minors without the consent of their parents: whereupon the Connecticut legislature ordered the governor to call a special session to protect its citizens
if the measure were adopted. On is October the Massachusetts legislature proposed a conrention of the New England States, to take aition "not repugnant to their obligations as members of the I'nion." and "lay the ioundation of a radical reform is the national conmact' through a fuiure national convention. Connecticut and Rhode Illand accepted the proposal with similar qualification: Jew Hampshire was divided politically, and Vermont was excited over Macdonough's victory at Plattsburg, but certain counties sent delegates. The war was a growing and alarming failure. England was demanding the renunciation of the whole Northwest as the price oi peace. national bonds were at 25 per cent discount. The goternment sent a regular army officer to oversee the convention. and uie force if it attempied disunion: deputed secret agents to see it it was true that there was a plot to make Jew England an English grandduchy under a prince of the blood: and appointed the succeeding 12th of January a national fast-day. The convention met at Hartiord. Conn.. 15 Dec. 18 r 4 . with 12 delegates from Massachusetts, \boldsymbol{z} From Connecticut, , irom Rhode Island. 2 from lew Hampshire, and Ifom Termont.- 26 in all. Genrge Cabot of Massachusetts was chosen president. Theodore Dwight of Connecticut. secretary. It secret session of three weeks was held, a report to the New England legislatures prepared. and 5 Jan. $1 \mathrm{E}_{15}$, the convention adiourned. The report stated the be-fore-mentioned grievances, and charged the government with making naturalizations too easy and with destroying the halance oi sections by forming new States at will out of the western territory: but denied any present intention to dissolve the Union. It was proposed that Congress should confide the deiense of each State to the State itself. and return a share ci its taves ior the purpose: and recommended seven changes in the Constitution, namely: abolition of the three fiths slave representation. the requirement of a two thirds vote ior the admission of new States, the linitation of embargoes to 60 days, the requirement of a :wo thirds vote to sanction the prohibition of ccm mercial intercourse. of to declare war r hestilities except in case of invasinn: the exc.usion of naturalized foreigners io m civil nffices st a seat in Congress. and prolubition of a President's re-election. Thes propused aloo tine two Presidenes in succession honld never be elected from the same State. Tl-ey als rec mareer hed that anether convention sheuld he leld at B-ton the following June if aifairs dud nit mend or the amendments were refected. The Ma-snchusetis and Connecticut legi-latures ad ptel the repmand sent commissimers to Washingun: but betore they arrised a satisiactory peace is: maje, all disasters forgoten in the taze the batte of Sew Orleans, and the prunt ters oif the onvention detested as trate re prep ring 1 . secrde. They were in tact killed it r puthe lif But in 18_{10} Caber depneted the surnal of the crnserti n with the Mas-achusett secret. ry of state a- a fermanent testimeny that nothing ireas.nal ce was attempted; in 1833 Dwight wn to it, hist ry

Hartford Fern. See Filicalis 2), under Feksis And Fers Allies.

Hartford Theological Seminary, an institution inunfed in ti:4 if the education of

Congregational preachers, at East ITindsor Hill, Conn. It was iormerly called the Theologica! Institute of Connecticut, and took its present name on its removal to Hartiord in roos. Its control is vested in a board of trustees elected by the Pastoral [-nion, an association of 200 minisers who have subscribed to the creed of the Lnion. The ainn of the institution is to train ministers ficr pastoral work on the broadest lines of intellectual and spiritual life. The seminary has always been a leader in theological pedagogy. In 1003 it faculty comprised $1=$ prezessors and 12 lecturers. and the number oi students was between \&o and go. It has a library of 8 r.000 volumes, and nearly 45.000 pamphlets. H smer Hall. the main building. was erected ISSo by Tames B. Hosmer, and as it is estimated, at a cost of $\$ 1=0.000$. In 1002 the Case Memorial Library was built by Newton Case at a cost of Sroo.000. Since isco the faculty have issued their valuable theological quarterly. 'The Hartiord Seminary Record.'

Harting, James Edmund, English naturalist: b. London 29 April I841. He was a solicitor until 18 - 8 , since when he has devoted himselis to zoological research. Among his numerous publications are: 'The Ornithology of Shakespeare) (IS-I) : 'Handbook of British Birds' (18-1): 'Rambles in Search of Shells' (18-5); (British Animals Extinct within Historic Times) (I\&80) ; 'Essays on Sport and Xatural History' (1883).

Har'tington. Spencer Compton Cavendish, Marquts cf, See Devonshire, Spencer Comptox, Deke of

Hartington, Neb.. city, county-seat of Cedar County: on Bow Creek, and on the Chicago. St. P. \& O. R.R.: abour 4 miles west by north of Sioux City. Ia.. and is miles south by east of Yankton. S. D. It is in a fertile agricultural region and is the commercial centre of a large part of Cedar County. Large slripments of wheat and live stock are made annually. Pop. (1900) 9-1.

Hartley, Sir Charles Augustus, English civil engineer : b. Heworth. County of Durham, England, 1825. Aiter being employed on several important engineering works he served in the Crimean war as captain of Turkish engineers, was knighted in 1802, and in 186- was awarded. againit 20 competitors, the prize ins plans firs extendug the harber of Odessa. He was appointed by President Grant a member tii a board of engineers to report on the impr ventent of the hiwer Mliscissippi and recomif endes the improvement of the Siuth Pass if it delta. Ife has been cuskulting engineer anany other motat engincering projects and Ias received many medals and decorations from h ine and firengh scieties. He has published The Deka ni the Danute': 'Public Works of the Ľrited States and Canada): 'Inland Navi-c:- n in Eure pe': 'Histury of the Engineering IIrrha of the Suez Canal.'

Hartiey. David, English philosopher and 11 wier n1: b. Armley, lorkshire, 30 . Aug. 1;05: I. B :h. S merset. 25 Aug wo\% He practised medicine at Xewark. Bury St. Edmund"s, and 1. nd ins. and is remembered ior his 'Observa(:nns (n Man) $(1 ;+2)$ in which is stated his hypetheris ni nervous vibration and of the asinciaturn i ideas

Hartley, Jonathan Scott, American sculptor: b. Albany, N. $\mathrm{I}^{\circ}, 23 \mathrm{Sept}$.1845 After spending several years in studyitg art in Eingland, Rome, and Paris, he estabhshad Intmself in Dew lork where he was proiessor ui anatomy in the schools of the Art Students Leagtie, 187884 and president of the league, 1879 E0. Among important works by him are: 'King Rene"s Daughter': 'The Whirlwind'; the Miles Morgan statue at Springticld, Mass; Daguerre monument, Washington, D. C.; Ericcson monnment. New lork: statue of Nifred The Great, for Appellate Court building. New lork (1000); statue of Thomas K. Beecher, Fimira, N. Y. (190t) : etc.

Hart'man, Sadikichi, Antrican author and artust: b. Nagisaki, Japan, 1867. He was educated in Germany. He has published 'Schopenhauce in the Air' (1890) ; 'Shakespeare in Art') (Igot) ; (Modern American Sculpture) (Igor); ctc.

Hartmann, Karl Robert Edouard von,

 b. Berlin 23 Feb. isfz; d. 6 June 1906. He was educated for the army, but an injury to his knee compelled him to leave the service in 1865. He then began the study of philosophy, and for many years lived the retired life of a student. His most important publications are: 'The Philosophy of the Enconscious' (IEGg); 'The Phenomenology of the Moral Consciousdess' (IS-9) ; 'The Reilgious Consciousness of Mankind in the Stages of its Development' (1881); and 'The Religion of the Spirit' (I882). Among his other works are: 'Critical Grounds of Transcendental Realism': 'The Crisis of Christianity in Alodern Theolog.' (t880): Judaism in the Present and the Future' (IR85): (Lotze's Philosoply') (ISSS) : 'The Gnost Theory in Spiritism' (I 891) ; 'The Fundamental Social Questions' (IS94): and mane other works on society, religion, etc.Yon Hartmann's philosoplyy is called by its author a transcendental realism, because in it he professes to reacli by means of induction from the broadest possible basis of experience a knowledge of that which lies beyond experience. A certain portion of consciousness. namely sense-perception, begins, changes, and ends without our consent and often in direct opposition to our desires. Sense-perception. then, cannot be adequately explamed from the ego alone, and the existence of things outside experience must he nosited. Noreover since they act upon conscionsuess and do so in different ways at different times they must have those qualities assigned to them which woukd make such action possible. Causality is thus made the link that ennmects the sulbjective world of ikeas with the nhective world of things. An examination of the rest of experience, especially such phemomena as instinet. voluntary motion, sesual love, artistic produc. tion. and the like, makes it evitent that will and itlea. unconscious but telenlogical, are everywhere operative, and that the underlying force is ne and mot mans. This thing-in-itself may be called the Unconscinus. It has two equally original attrihutes, namely, will and idea. Hegel and Schopenhaner (qqv.) were both wrong in making one of these subordinate to the other: on the contrary, neither can act alone, and neither is the result of the other. The will is illogical and causes the existence. the Das of the world; the idea, though mot con-
scious, is logical, and determines the essence, the II as. "The entlew and vann strang of the will necessitates the great proponderance of suffering in the universe, "bich could not well be more "srete acel than it is. Nevertheless it must be characterized as the best possible wurld, for both mature and lnstory are constantly developing in the mamer best adapted to the world-endi : and by menns of increasing conscionsmess the idca, instad of prolonging suffering to eternity, prosiden a refuge from the evals of existence in nom-existence.

The original state of the Linconscious is one of potentiality, in which by pure chance the will begins to strive. In the transtion tate: called that of the empty will, there is no delnite curd: and to avoid the unhappiness of aimlese desire the will realizes the itleas already potentially present and the Unconscions becomes actual. The existence of the universe is the rowith, then, of the illogical will. but its characternites and laws are all due the idea and are, therefore, logical. The history of the world ts that given by natural science, and particular cmphasis is laid upon the Darminian theory ut evolution (q.x.). Jlan is developed from the animal, and with the appearance of the first human being the deliverance of the world is m sight, for only in man does conscionsulens reach such height and complexity as to act independently of the will. As consciousmess develops, there is a constantly growing recognttion of the fact that deliverance must lie in a return to the original state of non-willing. which means the non-existence of all individuals and the potentiality of the Unconscious.

The one foundation for ethics is pessimism. for no other view of life recognizes that esui necessarily belongs to existence and can cuase only with existence itself. The essential feature of the morality built upon this basis is the realization that all is one and that. while every attempt to gain happiness is illusors yet hefore deliverance is possible, all forms of the illu-ion must appear and be tried to the utmost. Even he who recognizes the vamity of life hest serves the highest aims by giving himself up to the illusion, and iiving as cagerly as if the thought life good. It is only through the constant attempe to gain happiness that men can learn the desiralifity of nothingress; and when this knowledge has become universal, or at leart general. deliverance will come and the word will cease. Vo better proof of the ratinnal namre of the umiverse is meeded than that atforded hy the different ways in which men have hoped to find happiness and so have heen leal nnconsciously to work for the final moal. The first of these is the hope wi gool in the present. the conficlence in the pleasites of this world. such as las felt by the Grecks. This is i ! lowed by the Christi n transference of hampiness to amother and better life, to which in turn succeeds the illusion that looks for hapminese in progress, and elreams oi a future made worth while hy the achievements of science. N1! alihe are empto promises, and known as such in the final stage. which sees all human desires as ectually vain and the only eood in the peace of - "irvana.

The relation hetween nhilosnphe and religinn lies in their common recognition of an muderlsing unity, which transcends all the apparent differences and divisions due to individual phe-
nomena．Many changes must take place in the exisung religions before they will be sutied to modern condutions．and the resuiting religion of the iuture will be a concrete monism．

The Phlosophy of the Unconscious has been the subject of many different estumates，but is segarded as having less intrinsic than histernal value．Its influence nipon other thinkers was especially marked during the years following its first appearance，but at present that influence has much decreased．
B：Ch Grafhy．－Schneidewin．＇Lichtetrahlen aus Edouard von Hartmanns sanuntlichen Wer－ ken＇：Koeber．＇Das philosophische Srstem Edouard ron Hastmanns＇．Consult also Erd－ mann．＇History of Philosophy＇，and Falcken－ berg．＇History of Modern Philosophy＇． Grace lleal Dinson．
Prufessor of Philosofhy．Wiells College．
Hartmann，Moritz，Austrian noet and novel－ Sit：b．Duschnik．Bohemia． 15° Oct．1S21：d． Vienna． 13 May 18 －2．He was educated at Prague and Vienna and taught in Tienna till 1\＆if．when he left the country on account of his political liberalism．Upon his return to Austria he was imprisoned but released by the revolu－ tion of गarch I\＆\＆S．He sat in the Frankiort Parliament of ists but fled from Vienna to es－ cape imprisonment and took part in the＇Rump Parliament＂at Stuttsart．From IS f^{-68} he was in yoluntary exile in foreign countries；was Paris correspondent of the＇Kolnische Zerturg＇ and represented it in Crimea during the Russo－ Turkish war：in 1860 lectured on German his－ tory and letters in the Acaderny at Gencra；and in 186 became one of the editirs of the＂Neue Freie Presse＇．He wrote：＇Kelch und Schwert＇ （ 18_{+5} ）：＇Seure Gedichte＇（ 18_{5} ）：＇Reimchro－ nik des Piaffen Marizius＇（IS 49）：＇Der Kíreg um den Wald＇（I850）：＇Schatten＇（I851）； ‘Adam and Eve＇（ 1851 ）：＇Tagebuch aus der Provence und Languedoc＇（ $18 \mathrm{~S}_{3}{ }^{3}$ ）：＇Briefe aus Irland＇：＇Der Gefangene von Chillon＇（i80．3）： ＇Die letzen Taze eines Kinigs＇（ISi（6）：＇Nach der Natur＇（IS66）；＇Die Diomanten der Bar－ onin）（18（8）：etc．His select pnems were edited in 18；$;$ and his works in 18，3－it（ 10 role）．

Hartranft．hārotrǎnit，Chester David，

 American educator：b．Frederick Township． Montecmery County，Pa．， 15 Oct．is 89 ．He was graduated at the University of Pennsytwania in 156 a and at the New Brunswick Then gical Seminary in 1864；was pastor of the Dutch Reinemed church at South Buchwick．．．．in 185：－6，and of that in New Brun－wick．ぶ．J．． in $1866-\mathrm{S}$ ．In 18,9 he was appronted pruatssur if ecclesiastical history at the liartf rd Theo－ Ingical Seminary：in tefs was elected it presi－ dent，and held the clair of Biblical the logy i892－－and of ecclesiastical donnatics irom 1S9；to 1903．He resigned the presidency in 1003 to engage in literary work in Germany． He wa：at one time president of the Conserva－ tory of Music at New Brunswick，… J．Hartranft，John Frederick，American sol－ dier：b．Xew Hanover，Pa． 16 Dec． 1830 ；d． సorristown．Pa．． 17 Oct．ıRS．He was gradu－ atul：：U＂nirn College in 1853 ，and in 1850 was adlonitted th the bar At the outhreak of the Civil IVar he＇：canized the EIst Penneylvania regment，wa：malle it－colonel，and with it par－ ticipaced in Burnside＇s expedution to North Car－
olina（186z）．He also commanded the regiment in a charge at Antietam，and at Fredericksburg． In liarch 1865 ．he commanded a division of the 入inth corps in their assault on Fort Stead－ man，and was brevetted major－general He was elected auditer－general of Pennsylvania in 1865． and re－elected in 1868 ．From is－2 to 18,8 he was governor of Pennsylvania，and thoroughly reorganized the Pennsylvania militia，which from 1879 he commanded，with rank of major－ general．

Hart＇s－horn，the horn of the common stag and its decomposition products．The substances derived irom the herns were the volatile hquor． salt，and oil，and the ash which remains when the horns are calcined in the air．The fluid por－ tions are got by destructive distllation in a con－ venient still，and are separated．the salt me－ chanicalls，and the others，after washing with water，by repeated rectification either alone or with quicklime．by which the more solatile por－ tions are got iree from the tarry matter and heavier oils．The salt which is formed in this operation is ammonic carbonate，which in part condenses the neck oi the retort．in part is washed over by the acqueous yapor into the receiver：and when the ammonia is got pure from the distillate and is condensed in water it constitutes the spirit of hart s－liorn．The vola－ tile alkali or spirit of harts－horn is now no longer obtained from that source．except in special circumstances；the ammonia of com－ merce is now obtained from gas－liquor．from blast－ítrnaces，or from other sources．

Hart＇suff．George Lucas，American sol－ dier：b Tyre Seneca County，I．I．，es Tay 1830；d．lew York 16 May 18 ；+ He was grad－ wated from West Point in 1852 ，entered the artillery，was on duty on the frontier and in Florida in the Civil War became assistant adju－ tant－zeneral．with rank of captam，in 1865，and major in 1862．Later appointed major－general of yoiunteers，he was one oi the board for re－ vision of the rules and articles of war and the preperation oi a code ior the government of the ammies in the field．He was mustered out of the volunteer service in 1865 ，and in 18 －I was retired from the reqular army，with rank of lieutenant－colonel and brevet major－general．

Hartsville，Engagements at．Hartsville，

 Tenn．，on the north bank of the Cumberland River，about 35 miles nertheast of Nashwile． is an important crossing and connected by yood roads with Lebanon on the south and Gallatin on the northwest．In ．Jugust 1×62 Gen．John H．Murgan，with his Coniederate command．was operating north of the river and Gen．R．II． Johnsm，with a cavalry command，was sent to drive him back．Johnson，approaching on the Gallatin road，attackerl Morgan 21 August，near Hartsvile，and was defeated with a lose of \＆o killed and wounded，and $\overline{-}$ prisoners．On O Dec． 1862 Hartstille was held by Col． 1．B．Moore，with a Linion force ni three resi－ ments of infantry，a regiment and a company ne cavalry，and a section of artillery，in ail abrut 2.100 men．Norgan had been instructed， by Gen．Brags to operate on Gen．Rosecrans＇ lines if mmmunication in rear of Nasluville and． learming that Moore was isolated，with no sup－ port near．resolved to capture him．While two infantry brigades of Cheatham＇s division

HARTT - HARVARD

and Wheeler's cavalry demonstrated on Nashville, Morgan, with four regiments and a battation of cavalry, two regiments of infantry, and a battery, set out from Baird's Mills, 25 miles south of Hartsville, on the morning of 6 Dec. 1862, marched through Lebauon, crossed the Cumberland below Hartsville, during the night, disposed his forces so as to cut off Mloore's retreat on the roads leading to Gallatin and Castalian, posts occupied by other Union commands, and cariy in the morning of 7 December, closed in on the Union camp. surprised it, attacked the troops, who were being hastily drawn up to reccive him and, after a stubborn fight of an hour and a half, defeated and captured the entire command. Col. John M. Harlan, in command of a smalt Union brigade at Castalian Springs, nine miles away, hearing the noise of battle, marched to Hartsville and attacked Morgan's rear-guard as it. was recrossing the river. recapturing some of the wagons taken. The Union loss was 58 killed, 204 wounded, and 1,834 captured and missing. The Confederate loss was 21 killed, 104 wounded, and 10 missing. Consult: 'Official Records,' Vol. N...

E. A. Carman.

Hartt, Charles Frederick, American geologist: b.' Fredericton, N. B., 23 Aug. 1840 ; d. Rio de Janeiro, Brazil, IS March 18;8. He was a pupii of Agassiz in the Museum of comparative anatomy at Harvard. and accompanied the great naturalist as geologist of a Brazilian expedition (1865). During this expedition he explored the coast from Bahia to Rio, made extensive zoological collections, and by his researches made himself a leading authority on the natural history of South America. In 18-5 he was appointed chief of the geological surveys of the empire of Brazil. He was also from 1876 director of the National Museum at Rio, where are deposited his collections, the most complete of South American geology in existence. He published: 'Geology and Physical Geography of Brazil' (1870), and 'Contributions to the Geology and Physical Geography of the Lower Amazon' (1874).

Hart'well, Ga., town and county-seat of Hart County, the terminal of a branch of the Southern railway, 50 miles northeast of Athens. Its educational institutions include a high school. There are cotton, flouring, and sawmills, and a fruit cannery. Pop. (1900) 5,672 .

Hartwell, Ohio, village of Hamilton County, ir miles north of Cincinnati, on the Cincinnati, H. \& D. and on the Cleveland, C. \& C. R.R.'s. It has manufactures of wagons and carriages and a general retail and agricultural trade. Pop. (1900) 1,833.

Harty, Jeremiah J., American Catholic prelate: b. St. Louis I853. He was graduated from the St. Louis University in 1872, and took a theological course at St. Vincent's College, Cape Girardeau, Mo. He was ordained priest in 1878, and appointed assistant pastor of St. Bridget's parish in St. Louis, holding this position until I888, when he was commissioned to build the church and organize the parish of St. Leo in the same city. His organizing work has been most successful, and in 1902 he built a school accommodating over 700 children. In 1903 he was appointed archbishop of Manila, the mest important see in the Pbilippines.

Hartz'ell, Joseph Crane, American Methodist bishop and missionary: b. Illinois I June 1842: He was graduated from Westeyan University and Garrett Biblical Institute (Evanston, II1.), and in 1896 was elected missionary bishop to Africa where he has since been actively engaged in organizing missions. In June of 1003 he sailed from New York on his seventh missionary tour of inspection in Africa.

Harugari, hā-roo-gä're, a social and benevolent order established in the L'nted States in 1847. It had in 1903 over 300 lodges with a total membership of 30,000 . Its purpose is largely the preservation of German language. customs. and traditions.

Harun-al-Rashid, hā-roon'äl-răshĩd, or Haroun-al-Rashid, caliph of Bagdad: b. Rhey about 765 A.D.; d. Thous 2 April Sog. (See Caliph.) The popular iame of this caligh1 is by the 'Arabian Nights' Entertainments,' in which Harun, his wife Zobeide, his vizier Giaffar, and his chief eunuch Mesrur, are frequent and conspicuous characters. He was the fifth caliph of the dynasty of the Abbassides, and the most powerful monarch of his race, In -86 he succeeded his elder brother Hadi, who had vainly attempted to exclude him from the throne, and by his conquests and vigorous internal administration raised the caliphate of Bagdad to its greatest splendor, and made his reign esteemed the golden era of the Nlohammedan nations. His favorite ministers were lahia and his son Giaffar, of the ancient Persian family of the Barmecides, whose ancestors had for many generations been hereditary priests at the fire temple oi Balkh, and who now rapidly exalted the iamily to the highest dignities under the caliphate.

Harus'pices. See Aruspices.

Har'vard, John, American clergyman, founder of Harvard University: b. England, probably in Middlesex ; d. Charlestown. Jass., 24 Sept. 1638. He was entered as a pensioner at the university of Cambridge in 1628 . was graduated B.A. in $1631-2$, and II.A. in 1635, and having emigrated to America was made a freeman of the colony of Massachusetts, Nov. 2, 163%. The following year, as appears from the town records, a portion of land was set off ior him in Clarlestown, where he exercised the ministry. In April 1638, he was appointed one of a comimittee "to consider of some things tending toward a body of laws." These are the only particulars known of his life. His property at his death was worth about $f x .600$. one-hali of which he gave for the erection of the institution which bears his name ; but part of this bequest, it is said, was diverted from its original purpose. He also left to the college a library of more that 300 volumes, indicating in their selection the taste and skill of a scholar. A monument to his memory was erected in the burial grome of Charlestown by the alumni of the university, and inaugurated with an address by Edward Everett, 26 Sept. IS28. See Ilarvard U'inversity:

Harvard, I11., a city and important railway junction in Chemung Township, McHenry County, at the intersection of three divisions of the Chicago \& N. railroad, 63 miles northwest of Chicago. It has railroad repair shops, a malt house and brewery, manufactures

HARVARD UNIVERSITY

of agricultural implements, wagons. and carriages, and grist and woolen mills. Pop. (1900) 2.602 .

Harvard University, the oIdest institution of learning in the United States, was founded in Cambridge, Nlass., in 1636 . At a meeting of the general court of the Colony of Massachusets Bay, convened on 8 September, 6 years after its first settlement, it was roted to give £foo $^{\circ}$ toward a "schoale or colledge." for the purpose of educating the "English and Indian youth in knowledge and Godliness." The ensuing year 12 of the eminent men of the colony, including John IV inthrop and John Cotton, were authorized "to take order for a college at New Towne." The name Cambridge was adopted soon afterward in recognition of the English University where many of the colonists had been educated. In 1638 John Harvard, a young nonconformist minister. died in Charlestown, learing to the college $£ .50$ and his entire library of 300 volumes. The institution was opened soon after and was named Harvard in honor of its first benefactor.

In 1637 the first building was erected. The first president was Rev. Henry Dunster, who was elected in $16+0$. The first graduating class was in 1642 , and consisted of nine menbers. This same year a change was made in the government of the college; a board of trustees was created, the members of which were the governor, the deputy governor, the teaching elders of the "F next adjoining towns"-Boston. Cambridge, Charlestown. Dorchester, and Roxbury - the magistrates, and the president of the college. The college was established as a corporation in 1650. with power of control over the educational and financial concerns of the institution. The members oi the corporation were the president. the treasurer, and 5 fellows. In 165% the corporation charter was changed so that the overseers had practically no control over the internal management of the college. although a final appeal might be made to then if necessary. Now there were two governing bodics; the overseers and the cosporation. at times working in harmony and again antagonistic to each other. In 1,80 the board of overseers consisted of the governor, lieutenant-governor, senate, and council of the commonwealth, the president of the college, and the ministers of the Congregationalist churches of the " 6 adjoining towns" alrcady" mentioned. In 1810 a further change was made in the board of operscers, and instead of the senate and the ministers of certain churches, there were substituted I_{5} Congregationalist mininters 15 laymen, the president of the senate. and the speaker of the house, all to be inhabitants of the State. The members constituting the senate were restored as overseers in 1814. A till further broadening of the spirit of the foard was shown ly the act of 183.4 , but not ratified until is 43 . When clergymen of all denominations were made eligible for membership to the loard, and in 1851 an act was passed in which no mention was made of clergymen, but the clanse that made only imliabitants of the State eligible was retained. It was mot until 1880 that llarward was freed from all sectional lines, and mon-residents of the State of Massachusetts Lecame eligule fur membership to the board of overseces

During the 1 , thl century Harvard had to con-
tend with serious obstacles, many of which had their origin in religious differences or shades of differences: but the desire to give the youth of Massachusetts an opportunity io learn the things tauglat to their fathers in the schools of Europe never faltered. It required heroic courage then to persevere in such a work, which at present seems a comparatively easy task. The religious controversies continued even after donations and endowments had come to the aid of the institution and had made its success seem almost certain. Under the presidency of Rev: Increase Mather, the college was placed inder the control of the Calvinists (1692), but in 1707 the liberals gained the ascendency. An English merchant. Thomas Hollis. in 1721, founded a chair of divinity, and directed that no religions test should be given to the candidate for the professorship. The gift was refused by the overseers, but the corporation urged its acceptance, and the latter finally prevailed. However, the first candidate for a professorship was really subjected to a religious test, for a confession of faith on various disputed points was exacted of him. The religious controversies were carried so far that at one time there was a strong effort made by the orthodox friends of learning to found another college in the colony; but Governor Bernard refused them a charter.

In rf64 the college met with a serious loss by fire; the first Harvard Hall, containing the library and apparatus, was entirely destroyed. but the loss was repaired to some extent by the gencrous and of the Colonies. Harvard was loyal to the American cause during the Revolutionary period; even going so far in the readjustment of its financial affairs as to suffer considerable loss. The alumni and students have ever been patriotic, ready to contribute their best to the needs of their country: The fine building, Memorial Hall, was erected by the a) umni in memory of their dead who fell in the Civil IVar. Harvard has always followed a conservative course when parties were agitating questions of government.

Between 1636 and 1-82 Harvard College conferred only the degrees of bachelor and master of arts, but in 1 ,8o the term university was applicd to it in the Constitution of the State of Hassachusetts. The class of 1768 evidently gave some altention to dress, as they roted to wear homespun at their graduating exercises, although their action on the matter is often quoted to prove their democratic simplicity. In $1-82$ and 1,83 three professorships of medicine were established, and the first degree of bachelor of medicine was conferred in 1 -88. In 1810 the lectures in medicine were transferred to Boston, and there the first medical college was built. The law school was cstablished in 181\%, and it has the distinction of being the earliest school of law in the comntry comected with a university and authorized to conier degrees in law. The divinity school was a gradual outgrowth of the college : the Hollis professorship of divinity, which has been mentioned. was established in 1721, but the divinity faculty was not formally nrganized until 1819 . It is now undenominational, 130 assent to the special doctrines of any sect or denomination of Cliristianity being required ni any instructor or student. The schools of methine. law and divinity are the three oldest additions to the college proper, and it was de-

sided that such an institution, having \& schools and several departments, justified the title, unirersity.

In about 1822, a number of the friends of cducation and of the institution thought the time had come when further changes should be made in the work required of the students. George Ticknor (q.v.), professor in the department of modern languages, urged that some division of studies should be made whereby students might be permitted to pursue special courses or specialize on certain subjects. A committee, with Josepla Story as chairman, was appointed to investigate the wisdom of such a change, and how best to mect the needs of the students. The commitice reported (i824) the advisability of instituting two lines of study - the one a course neccssary for a degree, the other a scientific and mechanical course for those not intending to take degrecs, but who desired to fit themselves for certain departments of work. The departure from old customs as recommended by the commitree was opposed by many; but in $\mathrm{I} \$ 25$ changes were made and the special students were admitted. Prof. Ticknor and later his successor, Henry IV. Longfellow, introduced to some extent elective courses in the department of modern languages, but not until a number of years later did they become popular in other departments.

Charles William Eliot (q.s.) was elected president in 1869 . At this time the departments were almost independent schools, to which no entrance examinations were required; but the students were largely from classical preparatory schools. the majority of which were located in New England. The college required certain courses. and all demanded good work and a high degrec of scholarship before graduation. In iour years. so rigorous and thorough had been the work of President Eliot, that practically a reorganization had been made, the departments had been correlated, and individual work had been given recognition.

To. Harvard much credit is due for the conscriative manner in which it has dealt with the question of higher education of women. The Society for the Collegiate Instruction of Women was the name of an organization which began the work (1869) of providing ways and means for giving young women an opportunity to obtain a collegiate education. The name of the organization was changed, in 1894, by the general court of Jlassachusetts to that of Radcliffe College (q.v.). Systematic collegiate instruction is now given in this college, under the professors and teachers of Harvard Eniversity: The requirements are the same as for admission to the university: The schools and departments of Harvard Cniversity now comprise: (1) Harvard College, the Lawrence Scientific Schnol, and the Graduate Sclool, established in 18-2 for students making original research. The Scientific School was established in $1 S_{47}$ as an adranced scinol in science and literature; later the name was changed to Lawrence Scientific School, in honor of lbbott Lawrence who presented it with $\$ 50,000$. Thase three schools, which include If departments offcring clective courses. were placed, in 1890 , under the charge of the faculty of arts and sciences. In 1004-5 there were in attendance 2.905 students undes the faculty of arts and science. Of this number 3 fio were m
the graduate schonl and were engaged in origina! research. For the students of this school who are engaged in origmal inve-tigations there is available a number of icllowshpa, at presient 58 , which are from $\$ 200$ to $\$ 1,000$. The Edward Austin Fellowship and the Austin Teaching Fellowship are given only to resident graduate students. Some of the fellowships may be given to persons pursuing their sudies in ofher parts of the country or abroad : but non-resident appointments are given only to persons who have been resident students in some deparment oi the university. (2) The law school has been mentioned. The atrendance in 1go4-5 was 758. (3) The divinity school, already noticed. has an attendance of 43. (4) The medical school. founded in 1_{-82}, and the dental school, established in 1857 . were united in 1899 and are in charge of the faculty of medicinc. The school is located in Boston. The attendance in igot-5 was, in the medical school, 307 ; in the dental school, 106. The new buildings for the medical school (1903), in process of erection, promise to be second to none other in the world. There will be seven separate buildings, the central structure and two of the side pavilions are provided for by the gift of $\$ 1,000,000$ from J. Pierpont Morgan, and $\$ 1,000,000$ from other friends. The site comprises 26 acres, in Brookline, about three miles from the main buildings of the university in Cambridge (5) The Bussey Institute, a school of agriculture and horticniture, was established in IS\%o in accordance with the will of Benjamin Bussey. It is at Jamaica Plain, in the southwestern part of Boston. (6) The Arnold Arboretum, established in 1872, is deroted to scientific research in forestry. dendrology, and arboriculture. It was founded under the will of James Arnold. It is practically a large park containing about 220 acres, and is located in TVest Roxbury. (7) The astronomical observatory was established in 1843 by means of a public subscription. The Sears Ticr was built in 1846, and two years later Edward Bromfield Phillips bequeathed to the miversity the sum of $\$ 100,000$ for the observatory: this early bequest has since been supplemented by many others, so that the observatory now has an endowment of about $\$ 900,000$. It has a director and four other professors and 40 assistants. A branch station is establislocl on a monntain 8.000 feet high, near Arequipa, Peru. The anuals of the observatory filt about 50 volumes. Among the more important instraments are the 15 -inch and 6 -inch equatorial telescopes, the S-inch transit-circle, the 1 -inch Draper photograplyic telescope, the S-inch plintographic telescope, and the meridian ple tameter. I grant has recently (Igo3) been mate hy the Carnesie Institution. for the stir!y of the colle tion if photograpis at the llarvard Observatory: The amount of material, including plontograples and photographic charts of the sky the thas been collected in this department. requires a special Luilding for its accommodation. (S) 'I he university library, including the librarics of thie schools aud departments, contains about 673.394 volumes and 303.802 pamphlets. (9) The Gray Herbarium, so named becatse it contains the Herbarium oi Saa Gray (4.w.). presented to the university ith 3̛0.f. (10) The aniversity museum is made up of the followin collections:

HARVEST BUG - HARVEY

the Peabody Nuseum of American Archæology and Ethnology: the Museum of Comparative Zoology, established in I 859 by private subscription, State aid, and the collection of Louis tgassiz, and valuable gifts from his son ; the Mineralogical Museum, established in 1500-1 : the Semitic Museum. completed in 1902; the Willian Hayes Fogg Art Museum, completed in 1895: and the Germanic Museum, established in 1902. (11) The botanical garden, established in 1809, covers about seven acres and contains thousands of plants for scientific study.

Great credit is due Harvard for its leadership in the movement to better the teaching of the English language and literature in the schools of the country. Harvard mentioned the subject in its catalogue of $1865-6$; an announcement was made. in the catalogue of $1869-70$, that "Students would be examined. as early as possible after their admission, in English." In 1874. for the first time. every applicant for admission to Harvard was required to present English composition. The report of the committee who visited the preparatory schools to ascertain what they were doing with the subject of English, the discussions by educators on the "new demands of Harvard." the progress of the movement, the grand results, all now are parts of the "History" of Education" of America.

The university summer school gives short courses of study under the charge of a committee of the faculty of arts and sciences, and is held in the college buildings during the summer racation. The school is popular and has had a large attendance each year. In 1904 the students mumbered about 1.00%. Athletics are provided for - two fields of 24 acres each and the Hemmeniday gymnasitm furnish opportunities for physical training The stadium erected on Soldiers' Ficld has a seating capacity of about 30,000 . It is shaped like the letter " U^{\prime} ")" with the open space toward the Charles River. It is of steel and concrete construction. The mezzanine floor under the seats, the promenade above the seats, the stairs, the perfect arrangenment of all the parts make this stadium a model of construction. It was built under the auspices of the class of 70 . A club house, called the Harrard C'nion, was donated by Menry Lec IIigginson in 1901. The Plillips Brooks house is used for religious meetings. In 1003 Harsard received a valuable collection of plaster replicas of Germanic art: a number of them were goven by Emperor Willians 111. of Germany. Among them is a replica of the equestrian statue of the Great Elector, by Schülter, one of Frederick the Great, by Schadow, a cast of the golden gate of the Cathedral of Freiburg, the bronze donr of Hildesheim Cathedral, on which the Biblical story of Crcation, the wood screen of Naurtburg Cathedral, and several other remroductions of great value.

The university has now about co buildings. In 1001-5 the number of members of the corpnration was 6 ; of overseers, 30 ; of professors and instructors composing the faculty, 525 ; of students in all the schools and departmenis. 5,14.3. In 190. the invested funds of the university amomed to $\$ 16.755 .753 .10$: and the grounds, buldngs. and apparatus were estimated to be worth about $\$ 21,000,000$: the annual income was $\$_{1.572 \text {.- }}$ 539.50 ; and bequests and gifts amounted to
\$I, 509,563.76. Harvard has had 22 presidents, in. cluding the present incumbent (1903), Charles IVilliam Eliot. There are I3 periodicals which represents the interests of the university as a whole, and of special schools and departments.

Consult: Quincy' 'The History of Harvard University" ; Thayer, "Historical Sketch of Harrard University'; Hill, 'Harvard College by an Oxonian' ; Peabody, 'Harvard Graduates Whom I Have K゙nown' ; Bush, 'History of Harvard'; Eliot. 'A Sketch of the History of Harvard University'; Thayer, 'History of Middlesex County:'

Harvest Bug or Mite. See Mites.

Harvest-fish. See Butterfish.
Harvest-fly. A cicada (q.r.).
Harvest-moon, the full moon nearest to the autumnal equinox, when the earth's satellite, almost full. rises for several nights in succession about the same hour. This phenomenon is less plainly seen in the United States than in higher latitudes, and is not met with in the tropics. It is due to the fact that at the time of the autumnal equinox the full moon, being exactly opposite the sun, is in that part of her orbit which makes a small angle with the horizon at the point of moon-rise.

Harvest Mouse. See Mouse.

Harvestman, or Harvest Spider. See Daddy-longlegs,

Harvey, George Rossiter McClellan, Amcrican publisher and editor: b. Peacham, Vit, 16 Feb. 1864. After a secondary education. he became a reporter successively for the Springfield (Mass.) Republican, the Chicago Nea's, and the New York Werld. Was for a time managing editor of the $I f^{\circ}$ orld, and later a constructor and president of various electric railways. Ile purchased and became editor of the 'North American Review') in ISon. and in 1006 received the presidency of the reorganized firm of Harper and Brothers, publishers.

Harvey, Moses, Newfoundland historian: b. Armagh, Ireland, 25 March 1820; d. St. John's, Newfondland, 3 Sept. 100r. Tle was graduated at Queen's College, İelfast. in 1840 ; later studied theology; and was ordained in the Preshyterian Church. lle was pastor of the Free Presbyterian Church. St. John"s, N゙cwfoundland, 1852--8, when he retired from the ministry and devoted himself to literary and scientific studies, and became popular as a lecturer. Ile published Thoughts on the Poctry and Literature of the Bible' (1853): 'lectures on the Harmony of Science and Revelation) (1856): (Newfoundland, the Oldest British Colony' (1883) ; 'TextPook ni S'ewfoundland listory' : cte. He also contributed articles to the Encyclopedia Britannica on Ňewfoundland, St. John's, Labrador, and the seal fisheries of the world.

Harvey, William, English physician: b. Folkentnnc, Kent. April 1508 : d. Hempstead, Essex, 3 June 1657 ; he was graduated at the University of Cambridge in 150.3 , and later at Padua. Ilte is famous as the discoverer of the circulation of the blond.

Harvey, William Hope, American author: 1. Buffalo, Putnans County, IV. Va.. 16 Aug. 1851. He was educated at Marshall College

HARVEY - HASKELL

(IV. Va.), and practised law in 1871-84. ILe appeared at an athor mader the pseutonym "Cons" in 'Coin's Financial School' (1894), in advocacy of bimetallism as a currency standard. Other works hy him are: 'A Tale of Two Nations' (1804) ; 'Coin's Financial School Un to Date' (1895): 'Patriots of America' (IS95) ; and 'Coin on Money, Trusts, and Imperialism' (I809).

Harvey, III., city in Cook County; on the Cleveland, C., C. \& St. L. and the 1llinois C. R.R.'s; south of Chicago, about seven miles from Blue Island. It was founded in 1891 and incorporated in 1892. Its proximity to Chicago 'gives it the advantages of a residential city and its railroad facilities are an aid in the development of its manufactories. Some of the chief industrial establishments are railroad supply shops, an automolile factory, gas-stove factories, machine-shops in which are manufactured ditching and mining machinery. The trade is principally in its manufactures and agricultural products. Pop. (1900) 5,395.

Harveyized Steel. See Steel.

Harwood, Andrew Allen, American naval officer: b. Settle, Pa., I802; d. Marion, Mass., 28 Aug. 1884. He was a great-grandson of Benjamin Franklin (q.v.). In I818 he entered the navy and served in the suppressing of the slave trade and piracy in the West Indies; in $1835-7$ was with the Alediterranean squadron; in 1848 was given the conmand of the Cumberland, and in 1855 promoted to the rank of captain. In 1862 he was appointed chief of the bureau of ordnance and lyydrography: in 1863 he was made commandant of the Washington navy yard and Potomac flotilla, having the rank of commodore, and retired in 1869 with the rank of rear-admiral. He published 'Law and Practice of United States Navy Courts-Martial' (1867), and 'Summary Courts-Martial.'

Harz (härts) Mountain (Ger. Harzgebirge), the northernmost mountain range of Germany, extending abont 60 miles through Prussia, Brunswick, and Anhalt, between the rivers Weser and Elbe, and occupying an area of about 786 square miles. The range. composed chiefly of Devonian and Lower Carboniferous formations, broken throngh with granite, is divided into the Upper and Lower Harz, with average elevations of 2,100 and 1,000 feet, respectively, the maximum altitude, 3,745 feet, being reached in the Brocken (q.v.). Woods and fine pastures abound; silver, iron, lead, copper, and zinc are mined. and marble, alalaster, and granite quarried. Traversed by fine roads and accessible by railroads, the range is a favorite touring ground, its interest enhanced by the traditions and weird legends which had their birth in this romantic region.

Has'call, Milo Smith, American soldier: b. Le Roy, Genesee County, N. Y., 5 Aug. 1829: d. Oak Park. H1.. 30 Aug. 1904. He was graduated from West Point in 1852 , resigued from the army, practised law in Indiana, entered the Federal army as a private at the outhreak of the Civil War, rose to the grade of brigadier-general of volunteers, distinguished himsclf at the battle of Stonc River, where he saved the day: was present at the siege of Atlanta, and resigned his commission in 1864.

Subsequently he was a banker at Goshen, Ind., and a real estate deater in Chicago.

Hasdrubal, hăs'dro(n-bal, Carthaginian general. He was the son of Hannilcar Barca. and brother of flamibal (q....), and, on the departure of the latter for laly 218 B.C., was left in command of the army in Spain. Hanno, who had charge of the province north of the Iberus, was defeated and dispossessed by Cn. Scipio before Hasdrulal could come to his aid. Scipio, reinforced by his brother, how crossed the Iberus, and in 216 defeated ILasdrulal near that river. The Carthaginians then sent a force, intended for the assistance of Hannibal, to the relief of Hasdrubal under the command of his brother Mago. In 212 Cn. Scipio was defeated and killed by the Carthaginians. Publins Scipio was sent into Spain in 211, and after scizing New Carthage defeated Ifasdrubal in his camp at Brecula in 209. Hasdrubal withdrawing to the northern provinces, determined to proceed to Italy, leaving his colleagues, Hasdrubal, the son of Gisco, and Mago, to make head against Scipio. He crossed the Alps in 207, accompanied by Gallic allies, and descended into Italy, and sent messengers to concert a junction with Hannibal in Unubria, but his despatches fell into the hands of the consul, Claudius Nero, who joined his colleague, M. Livius, at Sena, and torced Hasdrubal to give batte on the right bark of the Metaurus. Being outnumbered, and ill-supported by his Gallic allies, he was dlefeated, aiter an obstinate engagement, in which both sides suffered severely. When he saw the battle irretrievably lost he rushed into the midst of the enemy, and perished fighting sword in hand. Nero hastened back to Apulia, and is saicl to have announced to Hannibal the defeat of his brother by catising Hasdrubal's head to be thrown into his camp, $20-7$ b.c.

Haseltine, hā'zĕl-tinn, William Stanley, American artist: 1. Philadelphia, 1: Jan. 1835 . He was graduated from Harvard in 1854, studied art in Düsseldorf and Rome, and has been a member of the National Academy from 186 I. Among paintings by him may he named 'Indian Rock, Nahant': 'Castle Rock, Nalant'; ‘Bay of Naples': (Ruins of a Roman Theatre.)

Hashish, lăslh'ēslı, an castcrn narcotic preparation, made from the tops and tender parts of the cultivated hemp, the variety known as Cannabis Indica being chiefly employed. The resin picked from the hemp is kncaded together, or sometimes the drug is obtained hy decoction or infusion of the leaves. The resin is taken in the form of pills or pellets, and the leaves are chewed, or smoked in conjunction with tobacco. It is called bhang in India, where it is mixed with sugar and eaten as confectionery: It is as powerfinl as opium and profluces intoxication and hallucinations; sometimes transporting the hashish-eater into an cestacy, or lulling him into sommolency or torpor. Its after-effects are not so depressing as those of opium, and it is often prescribed medicinally as a soporific or anti-spasmodic.

Haskell, Edwin Bradbury, American publislher and editor: b. Livermore, Maine, 24 Aug. 1837. He entered the office of the Portland (Maine) Adecefiser in 1854, was a reporter for the Journal (1857-G0) and Herall of Boston, bought an interest in the Herald in I865, and

HASKELL INSTITUTE－HASTINGS

was editor oi that paper $1862-87$ ．He still hoids an interest in the Herald．as well as in the Min－ reapolis Journa！，the St．Joseph（Mo．）derus， and the Los Angeles E．reress．

Haskell Institute．See Indins，Edtcamosi of．

Has＇kins，Charles Homer，American his－ torical scholar：b．Neadville．Pa．． 21 Dec．Is；o． He was graduated from the Johns Hopkins Eniversity in ISS－．studied also at Paris and Berlin，was instructor in history at Johns Hop－ kins in $1889-c 0$ ，and in the Cniversity of Wis－ consin was successively insuructor in instory （ISgo－I）assistant－professor（ISol－2），and pro－ fessor of European history（1892－1002）．In ISgo－$\$ 000$ he was a lecturer in history at Har－ vard．and in 1002 was appointed professor of history there．

Has＇sall，Arthur，English historian：b． Bebington．Cheshre．England． 23 Sept．is53． He was educated at Oxiosd，where he has been at various imes since lecturer，tuior．and ex－ aminer．He is one oi the recognized authorities upon European history，his published books in－ cluding＇Life of Bolingbroke＇（I\＆Bg）：＇Louis IIV＇．＇（I89三）：＇Handbook oi European History＇） （IE9；）：＇The Balance of Power 1 ， 1 İ－ 89 ＇ （IEO6）：＇Class－boo＇k of English History＇＇（IcoI）； ＇History oi France＇（igor）：＇The Frencls Pecple＂（igor）．

Has＇sam，Childe，American artist：b．Bos－ ton 1850 ．He s：urded art in Boston and Paris： he is à member oi Ten American Painters，of New lork，and of the Suciete Vational des Beaux Arts of Paris．He is one of the ireahest in strle and most original of the fmerican im－ presionists，and has gained medals at Paris， Munich．Chicago，and Philadelphia．

Hassen Ben Sabbah，the iounder of the sect（in the Assassins（ q ．＊）．

Hasselquist，hās＇sēl－kwist，Frederick， Swedish naturalist：b．O－trugothia $1,22 \mathrm{~d}$ d． Smyrna 9 Feb I－E2．In $5+1$ he went to the Lniversity of C paala．where his talents and in－ du－try drew the attenthon of Linnreus．In $1:+$ he pubhshed a disectation＇De Viribus Plan－ tarum．＇Wivhing to make researches on the sp／t into the natural his：ry of Palestine he sperit some the at Jerusalem，and aiterwisd vinited other parts i the country．Returang to smyrna he brought with him a collecti n of fiani a mimerals，fishes，reptiles，insects，and other iatural cur：sities．The Enedioh queen，Lhuia ［lrica．purchased the whote of Hasselqui－t＇s aequis：i ns，which were deposited in the castle ci De teningholm．Linneus，from the papers and orecimen：i natural hise ry collected by his f．It it．Fropared for the press the＇Heer Fa＇e－ ithum，－Traveis ：n Palestine，with Remark－on ！！刃itral History＇tた－）which has leen iran－lated int Erelish and otl r Eurupean lancuages．

Hassler，hās＇lér．Ferdinand Rudolph， Swiss－Interican ctientist：b．Swhzerland，o Oct． 17：0：d．Phiadelphia．Pa．， 20 Nov．IE4．3．diter terving en the trig n metrical survey of Swizer－ lar 1，he em erated to the United Siates．Ile wo．anpriry 1 acting profers－r of mathematics at lfe．P it in sor－and leld the p st if r three yar．He was superinentemt ni the Un＇ted Statc＝C ast Survey in 18 1 ，and ir m

1832 worked on the same commission until his death．

Hassler Expedition，a scientific expedition of great importance despatched by the United Siates Government．In I8－I the steamship Hassler was fitted cur for coast survey and marine exploration．The personnel of the ex－ pedition inciuded Prof．Louis Agassiz．and Mrs． Agassiz；Dr．F．Steindacher．ichthyologist：Dr． Thomas Hill，botanist：Count L．F．de Pour－ tales．Jr．I．A．Al！en．and others．The party leit Boston \div Dec． 18 －1 and reached San Fran－ cisco．August isi－2．Deep－sea dredging was car－ ried on at several points in the West Indies and South Atlantic．The glaciers in the neighbor－ hood of the Siraits of Magellan were explored． Collections were made at every point of the voyage：the resulis of the expedition have been published by Agassiz．Lyman，and Pourtales． and much saiwable material，zoological．geolog－ ical and botanical．deposited in the Museum oi Comparative Zoology．Cambridge．

Hastings，hãs＇tingz．Francis Rawdon，Ist Maréts of Hastivgs and 2 D Earl ef Morri， English soldier and statesman：b． 9 Dec ． 1 －54： d．of Naples 26 Nor．ISz6．He entered the army as an ensign，served in America during the Revolution，and on 25 April $1-S_{t}$ gained the battle of Hobkirk＇s Hill，which Lord Cornwallis described as the most splendid of the war．In I－EI he was elected a member oi the Irish House of Commons，and two rears later he was pro－ moted to the Englisth House of Lords with the title of baron．He was in command of a torce which sought to aid the royalists of Brittany in 1－03，and in the inllowing year co－operated with the Duke or lork in the letherlands．In 1812 he was appointed governor－general of Bengal and commander－in－chiet of the forces in India． His administration was distinguished by suc－ cesciul wars against the Ghurkhas of Sepaul and the Pirtarees of Central India，but in IBz！ he resigned because certain charges had been Iraaght against him in connection with a bank－ ing firm in which he was inieressed．In t\＆24 he was appointed governor of Malta．

Hastings，Thomas，Anerican musician： b ． Wa－hington．Conn．． $1,-\frac{1}{2}$ d．18，- He early made sacred music the subject of his careful study：itnm I尺̊23 to 1832 he edised a religious paper．＇The Recorder．＇in Lica．but remosed An Jew lork．where he made liis iame as a musical instructor and composer．His works molude：＂Muther＂：Eymm Book＇（ $\mathrm{E}+\mathrm{P}$ ）：＂His－
 e：Misicical Tasie）（ISEs）．

Hastings．Warren．English soldier and ad－ mini－trat r：b．Churchill，Uxi rdshire．o Dee． 1，32：d Davlewi rd．Warwickshire， 22 Aus 1Ns． An us cle in L nd n sent him at 10 years of ace ：Wintmin－et Schocl．On the jeath of his pice be＇inmed an appointment in the Eait It dia C mpany service，and he artived at Ben－ gal in Oet ber 1：－50．He was appointed to the I c！ry at C ssinbazar，and was taken prisoner by Siraial Dinlah（15：50）．On obtaining his innhmle ined Clive，under whom he served with distincrion as a volunteer in his campaign
 acent i tle company at Jloorshedabad．in wl 3 capaciry he c－ntinued to act till 1 ，on．It is recordel t his haner that he did not avail

HASTINGS

himself of the opportunity of making his fortme in the mode then common among the servants of the company, by "presents" (forced) from the native princes. In 1764 he returned to England, but as a result of a bad investment of his fortune was compelled again to ask for employment from the company; and sailed for India in the spring of 1769 . In $17 / 1$ the East India Company were contemplating extensive changes in the government of India. The government of Bengal was still carried on in the name of the nabob, although he had become a mere cipher, all his officers being appointed by the company; and they cast their eyes upon Warren Hastings as a fitting instrument to carry out their policy: Clive strenuously supported lis appointment to the Calcutta council (17/2), with succession as president of the council and governor of Bengal. He now received instructions from the directors to deprive of his offices Mohammed Reza Khan, who had exercised under the company the complete control of the revemues and administration of Bengal, and to bring him to trial for corruption. Mohammed bore a high character, and he was accused by Nuncomar, a man of notoriously bad reputation. Shitab Roy, dewan of Behar, was subjected to similar charges. After a protracted inquiry both Mohammed and Shitab were fully acquitted of all the charges against them. The object of these charges - the reorganization of the judicial and financial administration of the province under the direct control of the company's offiecrs, had in the meantime been carried ont by Hastings to the entire satisfaction of the directors. Another important step taken by him was to enter into a treaty with the Nabob of Onde (Treaty of Benares, 7. Sept. 1773). by which he ceded to him the districts of Corah and Allahabad for fifty lacs of rupees, and engaged to hire out the company's troops to him for the reduction of the Rohillas, whose territory the nabob coveted. By the subsequent act of 1773. Ilastings was appointed first gov-ernor-general of India, and a supreme council was named, of whom three formed a majority unfavorable to Hastings. The natives were encouraged to bring charges against him, and Nuncomar, his old ally, came forward with yarious charges of bribery. A supreme court of justice had been appointed at the same time with the supreme council of Calcutta. The chiefjustice. Sir Elijah Impey, its head, was a friend of Hastings. Nuncomar was brought before this court, charged with forgery, convicted, and cxecuted. This stretch of jurisdiction, which Hastings could casily have prevented, alicnated from him public sympathy in England. The directors of the company petitioned the crown on 8 May $1=-6$ for his removal from the council. Hastings had deputed Colonel MacLean, who returned to England in 1776 to insist on certain conditions or tender his resignation. It was accepted, and a successor appointed to take his place in the council, 23 Oct. 5クラ6. General Clavering assumed the title of governor-general, which Hastings still insisted on retaining, as the change had been made without the conditions he lad appended to his resignation. The supreme court, which was appealed to, decided in favor of Hastings. To end a dispute between the council and the supreme court of Calcutta, and to bring the chief-justice under the influence of the council. Hastings now appointed Sir Elijah Impey superintendent of the native courts
with a salary of 28,000 a ycar, an appointment regarded by some as equivalent to a bribe. He involved himself in disputes with the Madras govermment, made demands for a large war contribution upon the Rajah of ljenares, and when the rajaln resisted arrested and deposed him. He caused the "begums of Oude") mother and grandmother of the Nabob of Oude, to give up extensive estates in land and a large amount of treasure. The House of Commons had passed a resolution (30 May 1782) requiring the directors to pursuc all legal and effectual means for his removal. In November 1784 he resigned his post, and in February 1785 elft ludia. In 5786 articles of impeachment were brought in by Burke against him. The preliminary forms were gone throngh from I_{3} to If February, and Burke opened the charges against him in a speech of three days' duration, begun on the 15th. He was supported by Fox, Sheridan, and Grey: Hastings began lis defense on 2 Junc 1791, and on 17 April 1795 was acquitted by large majorities on all the clarges. His acquittal met with general approval. The legal expenses of his trial amounted to $£ 76,080$. The company in 1796 settled on him an amuity of $£_{4,000}$ a year for $28 \frac{1}{2}$ years, and lent him $£ 50,000$ for 18 years free of interest. He passed the remainder of his life in retirement. In 1813 he reccived the degree of LL.D. from the University of Oxford, and in iStif was created a privycouncillor.

Hastings, Mich., city; county-seat of Barry County; on the Thormapple River, and on the Chicago, K. \& S. and the Michigan C. R.R.'s; about 38 miles west by south of Lansing and 32 miles southeast of Grand Rapids. The city is in a fertile agricultural region. The chief manufactures are furniture, pumps, wagons and carriages, hose-reels, car-seats, flour, cigars, felt boots and lumber camp supplies. The principal buildings are the library, the city hall, jail and courthouse. The city owns and operates the waterworks. Pop. (1900) 3,172.

Hastings, Ninn, city, county-seat of Dakota County; on the Mississippi River at the mouth of the Vermilion River, and on the Chicago, M. \& S. P. railroad; about 15 miles sontheast of Saint Paul. Its chief industrial establishments are breweries, a malt-house, flourmills, grain-elevators, saw and planing-mills, sash, door, and blind factorics. carriage and wagon factories, furniture factories, humber and brick yards. In addition to the trade in mannfactured articles. grain, jumber, and live stock are among the important shipments. Pop. (1900) 3.8ir.

Hastings, Neb., city in Adams County; on the Missonri P., the Burlington \& A., the Firemont. E. \& M. V. the Saint J. \& G. I. R.R.'s; about 25 miles south of Grand Island and 95 miles west of Lincoln. Its first sctulers were Eastern people who availed themselves of the benefits of the government "ILomestead Act." but the city was not incorporated until 1874. It is in a fertile agricultural section. The chief manufactures are flour, wagons, and agricultural implements. The trade is principally in wheat, corm, and live slock. It is the seat of flastings College, under the auspices of the Ireshyterian Church, and opened in ISSz, and of the State asylum for chronic insane. The government is vested in a mayor, who holds office two years,
and in a city council. The present charter is that of 1891 . The city owns and operates the electric light plant and the waterworks. Pop. (1890) $13.584 ;$ (1900) 7.188.

Hastings-upon-Hudson, N. V゙., rillage in the torm of Greensburg. in Westchester County; on the Hudson River, and the New York Central \& H. R. railroad; about three miles north of Yonkers and 20 miles from New lork. It is largely a residential village; but in the ricinity are marble quarries which add to the industrial wealth of the place. It has some manufactures. chiefly chemicals and cigars: it has a large trade in coal and lumber. It is the seat of the Hastings Commercial and Collegiate Institute. and has several churches and good schools. Pop. (1900) 2.002.

Hastings, Battle of. See Sexlic.
Has'well, Charles Haynes, American engineer: b. New lork 22 May 1800; d. I2 May 1907. His practical education as marine and mechanical engineer was learned in a stearaengine factory. In 1836 he was appointed chiei enginuer in the United States navy. He built the first practical stean-launch in 1837 and was the first to use zinc to protect the halls of iron vessels and boilers irom the galvanic action of salt water and copper. After 1 gog he was the consulting envineer of the board of public improvements in lew lork ciry. His published works include "The Mechanics" and Encrinects' Proket Book' (1901): 'Mechanics' Tahles' (1854): ‘Reminiscences of an Octagenarian" (1895).

Hatch, John Porter, American general: b. Oswego, N. I.. 20 Jan. I I 22; d. 12 April 1001. He was graduated at West Poiut and rose through successive grades to lieutenant-colonel of cavalry in 18,3. He served in the Mexican War from Palo Alto to the capture of the city of Mexico: and in the Civil War was appointed brigadier-general of volkuteers in September 1861, and commanded a cavalry brigade in the Shenandoah Valley and Northern Xirginia. He subsequently commanded various districts in the South; and was brevetted major-general.

Hatch, Rufus, American banker: b. Wells, York Cnunty, Mame. 18_{32} : d. 1803. He began life as clesk in a grocery store, in Rockiord, 111., in 185.4 entered the grain commission business in Chicago, and amassed a fortunc. He managed the Clicago and Northwestern railroad combination in IS6S and made a financial iailure in the Jorthern Pacific collapse of 1883 .

Hatch, William Henry, Ancrican lawyer: b. Georgetown. Ky.. 1 K33: d. Isyo. He was admitted to the bar in I854: served through the Civil War in the Coniederate army, and was a menber irem Missouri in the Cnited States House of Representatives from $18 \% 0$ to 1805 The Hatch Act which distributed Federal aid is agricultural experiment stations in all the States and Terrik ries was inspired by him.

Hatchee, or Big Hatchee, a river which has its riec in the northeastern pars oi the State of Misi-i-ippi, flows north by west into Tennessce, then northwest and west jninine the Mississippi River about 30 miles in direct line above Memphis. It is navicable for small steamboate as iar as Belivar. alonut too iniles from its mouth. or half its whole leneth. The area drained he the Hatchee, aldut 4.000 square miles, is excellent cetton land.

Hatcher's Run (Boydtos Road), Battle of. Onl 27 Oct. I804. Gen. Grant, with the intention to extend his lines to the South Side railroad, and under the belief that the Coniederate works around Petersburg extended only to the Boydton road crossing of Hatcher's Run, and were but feebly manned, moved parts of the Ninth, Fifth, and Second corps, together with Gregg's cavalry division, in all about 38.000 men, in three colurnns to the left. Gen. Parke, commanding the Ninth corps, moving to surprise the right of the Confederate works, found them strongly held, and made no attack. The Fitth corps, on the left of the - linth. crossed Hatcher's Run and endeavored to seize the bridge by which the Boydton road crossed that stream, and was repulsed. The Second corps and Gregg's cavalry succeeded in forcing a passage over Haicher's Run by the Vaughan road, and reaching the Boydton road, moved down it to Burgess. Tavern, near the bridge over Hatcher's Run, some four miles above Armstrong's Mill, where the infantry was checked. Hancock's Second corps having effected the passage of Hatcher's Run, by the Taughan road. Warren was ordered to cross Crawiord's division oi the Fiith corps at Armstrong's Mill and. sweeping up the right bank of the stream, endeavor to recross and assault the Confederate line in the rear, while Grifin's division assaulted in front. Hancock was advised of the orders given Warren and authorized to make the attempt to carry the bridge in his front and gain some high ground beyond. At 4.30 P.M... when Hancock was extending his right to connect with Crawford, and was about to assault the bridge. Gen. Heth, with his own division and a part of Mahone's, having crossed Hatcher's Run and penetrated the interval between Hancock and Crawiord, vigorously attacked Hancock's right and rear, throwing it into some confusion and capturing many prisoners, but Heth was finally repulsed. At about the same time Hampton, with five cavalry brigades, attacked Hancock's leit and rear and Gregg's cavalry, but was repulice. Crawiord, who had crossed at Armstrong's Mill, iound great difficulty in moving up the bank of Hatcher's Run, and failed to make connection with Hancock. The object of the entire movement failed, with Hancock still six miles from the South Side railroad. The Union troops were withdrawn during the night and. next day: noved back to the line of entrenchments. The Linion loss, the greater part oi which fell upen the Second corps, was I.Igt killed and wounded. and 564 missing. The Coniederate loss is unknown. Consult: 'Official Recnrds.' Vol. NIII.: Humphreys. 'The Virginia Campaign of I $864-5$): Walker, (Hlistory of the (icond Army Corps': The Century Company's 'Battles and Leaders of the Civil War.' Vol. 11. E. A. Carmas.

Hatcher's Run (Dabxey"s Mill and Armstrosg's Mili), Battle of. It was on 5 Feb. ING5 that Gen. Grant put in motion an expedat:on to imterrupt the Coniederate line of commanication by the Boydton road, running through Dinwiddie Court House to Petersburg. Gresg's cavalry division was directed to march early in the morning by way of Ream's Station to Dinwiddie Court House and strike the road; Warren's Fittly corps was to cross Hatcher's Run and support Gregg; Gen. Humphreys, command-
ing the Second corps, was ordered with two divisions to the crossing of the Vanghan road over the Run, and to Armstrong's Mill, to hold these two points and to keep up communication with Warren, four miles distant, on the one side, and with Miles' division in the Lnion entrenchments, threc or four miles distant. on the other side. Aiter severe skirmishing. Humphreys pushed Motts" division th the sonth side of Hatcher's Run, and established Smyth's division at Armstrong's Mill on the north side, about r,000 yards from the Confederate works, where two hrigades were brought to Smyth's support. At 5 P.M. parts of A. P. Hill's and Gordon's corps cane out of their works and, under cover of the woods, attacked Smyth, but were repulsed. Smyth's line was now further strengthened by Hartranit's division of the Ninth corp: and Wheaton's of the Sixth. Gregg captured some wagons and prisoners on the Boydton road, and in the evening fell back to Malone's Bridge on Rowanty Creek, from which he moved up to the Vaughan road crossing, where he arrived early in the morning of the 6th, with Warren, who had been ordered to support Humphreys. About I p.... Warren, with two divisions, moved along the Vaughan and Dabney's Mill roads; Gregg, supported by one of Warren's divisions, going down the Yanghan road to Gravelly Run to observe the leit. Gregg was attacked by a part of Pegram's division, but held his ground and, with the support given him by part of Griffin's division, drove Pegram's men back. Warren's leading division (Crawford's) moving on the Dabney's Mill road, also encountered part of Pegram's division, which was forced back to Dabney's Mill, where Evans' division came to Pegram's support, and Crawford in murn was driven back. Three Union brigades were now brought up to Crawford's support and. at the same time, Mahone's division arrived and took position between Evans and Pegram, and the whole Contederate line advanced, driving Warren back in great disorder, but some of his men rallied upon Wheaton's division, which had crossed from the north bank of the stream, and the Coniederates were checked. On the morning of the 7 th Warren made a reconnoissance, but did not find the enemy in force. The Union works were now extended to Hatcher's Run at the Vaughan soad crossing. The U'nion loss was $1: 352$ killed and wounded, and 18, missing. The Confederate loss was about 1,500 , among the killed being Gen. John Pegram. Consult: 'Official Records.' 'Vol. XLJ'I.; Humphreys. 'The Virginia Campaign of $1864-5$); Walker, (History of the Second Army Corps'; Powell,' 'History of the Fifth Army Corps.?
E. A. Carmas.

Hatch'ettite, Adipocerite, or Mineral Adipocere, a native hydrocarbon. probably of the nature of a paraffin, occurring in certain parts of England and Scotland, mainly in connection with bogs and coal measures. It is waxlike, and melts at about $115^{\circ} \mathrm{F}$. The specific gravity of the natural mineral is about o.61, but after melting the specific gravity rises to 0.92 or even higher, owing to the elimination of air bubbles. Hatchettite is without odor, and when fresh it is commonly translucent and yellowish. T-pon exposure, however, it blackens and becomes opaque.

Hatchie River, or Davis' Bridge, Battle of. After Gen. Van Dorn's defeat at Corinth. Miss., 4 Oct. istiz, he retreated and hivouacked for the night at Chewalla. Farly on the mornung of the $5^{\text {th }}$ he continued his retreat on Pocahontas, but when his adrance had ernomel Ilatchic River, at Davis' Bridge, he wat met by Gen. Hurllint's division, whech hat been sent by Gen. Grant from Bolivar, Temn. to Mecahontas to intercept his setreat. Tan porn's advance was driven back across the bridge, his main body came up, and Gen. Ord, who had arrived on the field from Jacksun, took armand oi Hurlbut's division and attacked Van 12urn rigurously. A severe engagement ensued, in which Urd was severely wounded, and Hur but resumed command of the Union troops. Van Dorn, nit closely iollowed from Corimin by Rusecrans, who was 12 miles away, held his poution before Hurlbut the greater part of the day and. cut off from his route through Pocahontas, continued his retreat on the east bank of the Hatchie for six miles to Crum's 31ill, where he crossed his army on a bridge during the night and continued his retreat to Ripley and thence to Holly Springs. Rosecrans followed as far as Ripley. when Grant ordered him to return to Corinth and Hurlbut to Bolivar. See Corivtra, Adrance on asd Battle of.
E. A. Carman.

Hatch'ment (a corruption of achicvement, coat of arms) a funeral escutcheom, the arms of a deceased person within a black lozenge-shaped frame meant to be placed on the front of his home. If the deceased was unmarricd or a widower or widow, the whole fick of the escutcheon is black. In the hatchment of a married person the arms of hushand and wife are impaled, and only that part is hack which adjoins the side of it occupied by the arms of the deceased. Thus, in the hatchment of a husband the dexter side is black, the sinister white: in that of the wife the reverse. In a bishop's hatchment his arms being impaled with that of the see, those of the see have a white background. When the deceased is the last of his race a skull is set above the shield in place of a crest.

Hat'field, James Taft, American German scholar: b. Brooklyn, N. Y., IS June 1802. He was graduated from the Northwestern (niversity in 1883 . From the Johrns He plins Ưniversity in 1890; was appointed professor of German language and literature at Xorthwestern in 18 ino, and became contributing editor of 'Americana Germanica.' During the Spanish-.Imerican N'ar he served from seanan t, chicf yemman on board the cruiser Yale. His publications include 'Materials for German Composition' (i\&on), editions of Freytag's (Rittmeister vorn AltRosen' and Goethe's 'flermann und Dorothea.' and various articles and monographs on subjects of German literature.

Hath'amite, an explosive invented in 1902 by G. MI. Hathaway, of Wellsboro, Pa., and remarkable not only for the enormons energy liberated by its explosion, but also for the sajety with which the sulhstance may be handled. Hathamite mas be pulverized on an anvil with a sledge hammer without exploding, and rifle balls may be fired through it without effect. Lighted matches may also be thrown into it with impunity, and when poured upon a fire it burns

HATHAWAY - HATS AND HAT-MAKING

cuietly, with the evolution oi immense quantities of smoke. Apparently. explozion can be induced only through the agency of a dynamite percusson cap. Hathamite is a coarse powder, of a bluish-gray color, whose composition has not yet been divulged. It explodes with exceeding violence when fired with a suitable percussion cap. In one test a charge oi an ounce and a hali blew a two-inch hole through a piece of quarter-inch boiler plate. when merely laid upon the plate. and detonated in the open air. In another test a little orer eight ounces oi the explosive was actually melted and poured into a six-pound shell: and when the charge was afterward detonated, the shell was thoroughly fragmented. One marked advantage of hathamite is, that it will explode even when frozen.

Hath'away, Anne, the wife of Shakespeate. See Shakespeare

Hats and Hat-making. It is difficult to state just when hats were first worn, bur it is a fact that fur-ielt hats now form part of the attire of civilized man the world over. There is no record as to when or where the first hat was made. We find head covering in one iorm or another in yogue in the earliest times reierred to in history. The first modern hat, as we now know this article of men's wear. was made in Paris about 140 ; by a Swiss manuiacturer. but it was not until 19 years afterwards that the French adopted any sort oi a head covering. Charles Xil., upon his entry in triumphinto the city of Rouen in $1+53$ wore a huge hat made of iur. lined with red velvet. from which protruded a great feather. With royalty as its sponsor the hat at once became a necessary detail oi man's wardrobe. The hat is distinguished from the cap or bonnet by its continuous brim. It has been traced back to the "petasus" of ancient Greece. just as the cap has been regarded as the descendant of the brimiless "Pileus." also a firm of Grecian head atire. These articles, as far as we know, were made almost exciusively of ielt.

Felt hats became popular in England during the Nirman occupaticn. In Queen Elizabeth's reign great beaver hats, usually black. were the farorite among the nobility, and they remained in vogue for more than 300 years. About the middle of the 1 th century an effort was made to encourage this industry in America. In 1662 the assembly of Virginia, to stimulate actisity among the colonists. offered. by special enactment. to give to pounds of tinbacco for every cood wool or iur hat produces in that colony from materials taken from anamals :latwe thereto. Hate were then nade by hand, and no tivirt oi any consequence was made th inponve the primitive conditions until $\$_{20}$. when the energy of the American inventor produced the first laher-iasing machine. Improvement now f llowed improvement, cach one, in its way, iending en ecrmemize the cost of making.

In tilio the silk hat appeared. It was made bv hand and failed in its purpnse to supp'ast the tiled heaver. It was not until is 30 that the silk plu:la hat was manufactured upor a payine hacis.

In tifn the enit felt hat made itc how in the United Siarec. Its spmosor was the faminus Hungarian patrint, Kossuth, who visited America in that year. He was given tremendous receptions everwwhere. and won the heart of the great American republic. His great hat seemed to be
typical of the vigorous character of the man, and it was not surprisung that the "Kossuth" became a general iavornte. From that time the soit hat has steadily gained friends. and to-day in many sectrons it is a predominant type.

While the industry in this country, prior to the Civil War, kept pace with orogress in otnc: lmes, it was not able to hat the heads of thousands of Americans, and the foreign manufacturer found the States a very profitable territory. But to-day America has become a great exporter of hats. By iar the largest share of this foreign trade is controlled hy the city of Fhladelphaa, where the finest grades of hats in the world are made. The other well-known hat centres in America are Orange and Newark. I. I.. Danbury. Bethel, and Corwalk, Conn., Braklyn. 1. 1.. and Reading. Pa.

The kinds of lats now made are so numernus as to be almost beyond the possibility of listing. There are however, three principal classifications: the felt hat, which includes the soft and the stiff or derby shape, the silk hat. and the straw hat. All other kinds are but rariations in some way of these three. In this article the writer will deal exclusively with the telt hat, concerning which there is the greatest interest. But few people have any conception of the numerous perplexing details and methods which enter into the construction of the hat.

The furs most generaily used in manufacturing felt hats are the beaver. which is found in the northwestern part of the United States and Canada: the coypou or nutria, known as the South American beaver: the Saxony and the Russian hare : the Scotch. English and Frencly coney, and muskrats. The finest furs are taken from the nutria, beaver and otter, all water animals, that portion which is taken from the belly being regarded as the choicest. The others are land animals, the fur from the back being regarded as the best. In the more common grades if hats sheep's wool is used, while in the inferior grades wol is mixed with cotton and other vegetadie fihres. These however, cannot be properly termed felt hats, becanse the materials used are not felted together. They are cemented and are then stiffened by shellac.

Furs for the higher grade hats require the mnst exhanstive preparation. "pon their arrival at the factory the pelts are first washed with whale-oil soap to remove the superficial faity matter which clings to the fur A further purification is necessary, however, and for this purpose 'carrotting' is employed. A solution of m rcury and nitric acid is applied to the pelts. This clienical. deposited in the cellular tisulues. at arl and theroughly destroys all animal iats and cives in the fur it ielring pronerties.

Diter a throt:sh hrushing the fur is next cut from the pelts and is then stored away to nollow ard season, for the reason that, like gond wine. it strencthens and improves with ase. When these furs have become properly seasoned, and are in prime conditinn. they are suhiected to an interecting process for the purpose of remeving the hair: a machine, known as a "blower." contaiwing powerful air blaste. acconnplishes this wonk in a very thornuch manner. The hair is hl wom from the fur withont harming the 130ter. Tl is is reneated o $\because e r$ and over acain, until all foreisn matter las heen removed. The by-products obtained through these preliminary opera-
tions are extensive. Many of tlem are used for other purposes than hatting ; for instance. the shreds of the skins are used in the manufacture of the highest grades of glue.

The task of selecting the furs and of combining them in proper proportion to produce the best results in a high-grade hat demands the most careful attention of the experienced experts. Jany years of experiment have beer necessary, in order to learn just how these furs should be mixed, and jusi what wonld consitute the correct proportion. The streugth and perfection, as well as the beatuty of the completed hat, depend largely upon the efforts of those intrusted with this portion of the work.

The next stage in the life of the hat is the forming. Until recently this was a business in itself. Few liat-making firms engaged in it. To-day, however, many of the larger manufacturers are successfully doing their own forming. This work can be accomplislied only by experts. It is one of the most interesting features oi hat making. The exact quantity of properly mised fur is carefully weighed and placed upon an endless apron at one end of a box-like machine. At the other end of the machine there is a large perforated cone of sheet copper, revolving rapidly over a funnel, under which there is a powerful suction fan at work. As the attendant carefully feeds the fur to the macline in the proper quantity it is carried by the apron toward the cone. The suction of air attracts this fur and causes it to adhere to the surface of the cone. This continues until the cone is covered with a sufficient quantity of fur to make the hat. The whole operation requires only two or three minutes. As soon as the cone has accumulated the necessary fur a wet cloth is thrown over it, and a second cone, larger in dimension, is placed over that. Both are immersed in a tank of hot water for a few moments. This is the first stage of the felting. It causes the perfect adhesion of the various fibres. The operator slips this conical body from the cone. It is now several times larger than its ultimate size. It has assumed the primary form.

Sizing, as the felting is termed. is the next process. The body, which has just been removed from the cone, is placed in a sizing kettle. where it is shrunk in lot water. Continuous rubbing and rolling reduces it in size almost one-quarter. It still retains its cone shape, but it is now firmly felted. Care as well as skill is required to insure the even shrinking and the uniform distribution of the stock. Failure in any detail will cause streaks and weak spots in the finished article. The hat is now ready for dyeing. It is immersed in a great color vat and dyed to meet the prevailing fashion. Great improvements have been made in this detail during the past few years. The old wood colorings have been discarded, and coal-tar products are now used because they have been found more serviceable and increase the durability of the hat. Up to this point the manufacturing of stiff and soft hats has been along similar lines, but from this time on different methods are used. After dyeing the next step is to stifien slightly the brim of the soft hat by the application of "water stiff." a solution of shellac. The body is now beginning to assume a definite form. It is stretched. blocked and pulled, and, with the aid of hot water, steam and ingenious machinery, it is given
stability of shape and form The rough surface must now be cut off. This operation requires great care. If wo much of the fur is removed all the previous killed mampulation becomes valueless and the hat is rumed. This operation is known as "pouncing." It was formerly accomplished with a great deal of hand labor. It is now done by a machine and emery paper. This machine is a great time saver, and greatly facilitates the production of the plant. The crown is next gisen its shape. as demanded hy the style. It is stretched asor wooden blocks. ironed and re-ironed. It must then be carefully pounced by hand and steamed to tighten the felt. The brim must be treated exactly the same way, although it is not given shape at this time. Only men of skill and experience can engage in this portion of the work. There is a knack about pouncing by hand that can be acquired only by experience.

The hat is next flanged. or, rather, the brim is given its shape. The brim is placed upon a flange of metal or wood so as not to affect the crown. The entire hat restang on the flange is then placed under a huge receptacle containina heated sand and having on the under side a heavy cotton fabric, which comes in direct contact with the felt. After remaining in this position for several minutes the brim of the fat has its correct shape and trimming is in order. The turning up and edging each play an important part in the final process of slaping. In trimming artistic treatment is a necessity: Care must be taken in attaching the bands and bindings to preserve the neatness as well as the character of the design. The insertion of the sweat leather must be carefully done. All these and other details add greatly to the appearance and durability of the finished product.

The stiffening of the derby, better known as "the stiff hat." because of the character of the felting. is an interesting process. The hat body is impregnated with a solution of shellac and alcohol of given density. This substance is carefally worked into the lieart of the body: and as a result the felting attains a condition if firmness The hat is then placed on a wooden block. is immersed in hot water, and is given the proper proportion and shape before the final pressing. At the conclusion of this operation the superfluous gum is cleared away by a soda bath. WVhen dry the hat is rigid throughout. It is then placed in an oven and kept there unti! it becomes pliable. A mould. to which tremendous pressure is given by mechanical or hydranlic means. completes the pressing after the derby has been pounced or finished. The ponneing of a derby is done upon a lathe. It is placed on a wooden binck similar to the moulds used in pressing. Should the operater cut off too much of the surface fur, thus destroying the nap, the stiffening will be exposed and the work of the skilled men who preceded him loses its value. Curling or shaping of the hrim is done with a variety of small tools. heat. steam. deftness of fincers and a good eyc. The work of some of the experts who devclop the stiff liat brims by the eve is little less than marvelous. The trimming, binding. etc.. of stiff hats require even greater care in their selection and adjustment than in the case of soft hats.

Among American hat makers Charles Knox was one of the early specialists in beaver and
silk hatr in New York. Robert Dunlop, of New lork, has alsc an eminent name in the hat trade of America. The history of the John B. Sietson Company. ©f Philadelphia, is to a large degree the history of hat making in the United Siates for the last 39 years. From the small begiming of one room and two mechanics the Stetson factories have been developed to nine immense plants, having a floor space of over ten acres and a iorce of more than 2,500 employees. When John B. Stetson, in 1865 . determined to manuiacture hats he was known as the foremost expert in the mixing of furs and as one of the best hat finishers in the trade. He determined to aroid the cheap hat and to make only the highest grade of goods and to make them better than any other manuiacturer. His output the first year did not exceed one huadred dozen hats. His capital was not more than $\$ \mathrm{r}, 000$. In 1003 the John B. Stetson Company, with its great force of employees, supplemented by improved machinery. most of the patents for which are owned by the company, produced 105.800 dozens of hats. This company has introduced new machinery, which cheapens the cost of production without a sacrinice in quality, and has carried the fame of the city of Philadelpluia to every quarter of the globe. A process has also been perfected whereby pure nutria and beaver iur may be successfully utilized in superfine hat making.

Another important improvement in hat making is that known as the "Boss" raw-edge kettle frisished hat. This was introduced in the early seventies. Prior to this time all soft hats were made with bands and bindings, the latter being used to hold the brim in sliape. The "Boss" rawedge hat, as its name indicates, has no binding around the edge. It is shaped in hot water by frequent immersions and by the skilliul hand work of an expert. The brim curling is a feature that cannot be accomplished in any otber factory: This hat is beyond question, the most remarkable specimen oi headwear the worid has ever seen. The John B. Stetson Company has been awarded the grand prize or gold medal at nearly every world's fair since 18,6, but it holds as of aimost equal value an order which it received from the British government for 10.000 lats for the South Airican constabulary during the Bree war. Prior to this war a number of American miners and cattlemen drifted into South Africa wearing Stetson's hats. They came in contaci with General Baden-Powell, who admired the hats they wore and made inquiries about them. They were made of nutria fur. were leetter in quality than those produced anywhere in Eurnpe. General Powell requested his government to order 10.000 of these hats, and the Stetson iactories made and delivered them within six weeks of the receipt of the order. In 1876 the Stetson Company was awardet a cold nedal by the Philadelphia Centennial Exan atiun. In is 80 it won a medal at Paris. In i.kn and in troo it won the grand prix at Paris. The official report making the award at the Paris Exposition in 1000 said, concerning the Ctetern ext ihit: "The products displayed here qie. ir monery pont of view, absolately remarkable, but wery especially the manufacture of snit -ats, which is incontestably the acme of perfecsion nf this epoch." Wilutam F. Fris, First l'icc-Pris. John 3. Stitson Company.

Hat teras, Cape. See Cape Hatteras.
Hatteras Inlet, Capture of. In the forenoon of 26 Aug. 1801, a Union fleet of 7 vessels carrying 143 guns, under command of Flag-officer Silas H. Stringham, and 3 transports, carrying 930 men and a light battery, under command of Gen. Butler, set sail from Hampton Roads. Next afternoon the fleet arrived off Hatteras Inlet. the entrance to Pamlico Sound, which was guarded by Forts Hatteras and Clark, built by North Carolina on the south end of Hatteras Island, and mounting respectively 25 and 5 heary guns. The forts, which were garrisoned by over 700 men, were under command of Naj. Andrews. At to A.m. of the 28th Stringham began the bombardinent of the forts, and a little later about 300 troops, with two howitzers. were landed on the island above the forts. Fort Clark was silenced before noon, the greater part of its garrison retreating to Fort Hatteras, some escaping from the island by boats. At night the fleet withdrew, biat renewed the attack upon Fort Hatteras early in the morning of the 29th. drove the gunners from their guns to the sheiter of the bomb-proofs. and before noon the fort surrendered. after a loss of 30 killed and wounded. The Union loss was one wounded. Stringham and Butler returned to Hampton Roads, leaving three vessels as a sea-force and detachments of the Ninth and Twentieth New York and the Union coast-guard, under Col. R. C. Hawkins, to garrison the captured forts. The immediate results of the expedition were the capture of the two strong forts with their garrisons of 715 men. 31 heary guns, 1.000 stand of arms, and the possession of the best sea entrance to the inland waters of North Carolina. Consult: The Century Company's 'Battles and Leaders of the Civil War,' V'ol. I.; Jlaclay, 'History of the Navy,' Vol. II.

E. A. Carmax.

Hatti-Sheriff, the Turkish name of an edict signed by the sultan, who subscribes it usually with these words: "Let my order be executed according to its form and import." These words are usually edged with gold, or otherwise ornamented. An order given in this wav is irrevocable. The firman of is Feb. 18;6, called usinally Hatti hunayyun, "exalted writing." is the constitutional charter of the Turkish empire. It is a long dccument, undivided into articles, and prescribing varions reforms adnuinistrative and financial, etc., but its chicf importance consists in its explicit recognition of the principle of religinus liberty: already adniitted by the hatti of Gulhana, 3 ป゙or. 1839.

Hattiesburg, Miss.. city, county-seat of Perry County : on the Ieaf River. and on the Gulf \& S. I.. the New Orleans \& N., the Nobile. J. \& K. C., and the Pearl \& L. R. R.R.'s: about fis miles norih of Biloxi and \&t miles southeast of Jackson. The Gulf \& Ship Island railroad is the chortect route to the Fiuli of Mexico. Hatticshurg is the trade centre of a large fertile agricultural region in which an excellent quality of counn is extensively cultivated. The industrics are growing rapidly and its good railroad facilities mean cood markets. The chief indus trial estahlishments are saw-mills, planing-mills, cotronseed-oil mills, a cotton compress, a fonndry, machine-shops, boiler works. brick-yards,
a naval sto:e factory, railroad shops, an iceplant, and the electric light and power plant. It has three banks. a number of fine public buildings. Pop. (1900) 4,175; (1903) 7,000.

Hatto, hät'to, the name of two arehbishops of Mainz, both somewhat conspicuous in the history of Germany. The first was chosen arclbishop of Mainz in S91, d. 913. The second Hatto (d. 970) was a monk of the monastery of Fulda, and succeeded the celebrated Rabanus Maurus as abbot of the monastery of St. Foniface, about the year $9+2$ and in gos was raised to the see of Mainz, and continued one of the chief advisers of the emperor. Of his after-life and of his personal character most opposite accounts have been given. By some he is represented as an upright and successful administrator; by others as a selfish and hard-hearted oppressor of the poor; and the strange legend of his being devoured by rats, which Southey has perpetuated in his well-known ballad, is represented as an evidence of the estimate that was popularly formed regarding him. It is quite possible that this legend is of much later date, and that its real origin is to be traced to the equirocal designation of the tower on the Rhine, Aläusethurm, near Bingen, which has been selected as the scene of the occurrence. Häusethurm, "Mlouse-tower." is possibly only a corrupted form of Manth Thurm, "Toll-tower." a sufficiently c'escriptive name: but the modified form of the word might readily suggest a legend of mice or rats. The date at which the Mausethurm was built is unknown, and it is far from certain that it is not much later than the time of Hatto. See Baring-Gould, 'Curious Myths of the Middle Ages' (1869); Max Bcheim, (Die Mäusethurmsage) (IS88).

Hat'ton, Sir Christopher, English statesman: b. at Holdenby about 1510; d. 159r. Lord chancellor of England, a favorite of Queen Elizabeth; was entered a gentleman commoner at Saint Mary Hall, Oxford, but removed without taking a degree, to the Inner Temple in 1560. He was introduced at court some time previous to the middle of the year 1564 . and it is said Queen Elizabeth was so much struck with his graceful person and dancing that an introduction to her favor was the result, and gained him the name of "the daneing chancellor." He was a furious enemy of the Jesuits, and did not hesitate to accuse Parry, their defender in Parliament, and secure his execution. He was elected a member of Parliament in 1571, becane captain of the Queen's Guard in 1572, vice-chamberlain and a priw-councillor in 1557 , lord-chancellor in 1587 . He was one of the commissioners for the trial of Mary Queen of Scots, in 1586. His artful speech to the unhappy queen, "If you are innocent you have nothing to fear; but by seeking to avoid a trial you stain your reputation by an everlasting blot." is supposed to liave been mainly influential in inducing her to submit to trial. Spenser, whose patron, he was, dedicated to him 'The Faerie Queen.'

Hatton, Frank, American journalist: b. Cambridge, Ohio. 28 April IS46; d. Washingtoit, D. C.. 30 April 1894 . He served through the Civil War in the Army of the Cumberland, being commissioned and was subsequently part-
ner with Robert J. Burdette (q.o.) in the proprietorship of the Burlington Houkeye. He was assistant postmaster-xeneral (188t-t) ; post-master-general (i884-5): edieor of Chicago Mail (IR8 + - 8) ; and cditur of the Washington Post (1888 -94).

Hatton, John Liptrot, English composer: b. Liverpool tSory; d. Margate, Kent, 20 Sept. 1886. Removing to Londun in 1832 lie became famous for his many operas, cantatas, overtures, entr'actes, etc.. and was musical director of the Princess Theatre 1853-9. He is mow, however, remeinbered chielly for his admirable actungs of English songs. such as 'Good-byc, Sweetheart,' 'The Tar's Song,' 'The Bait,' etc.

Hatton, Joseph, English journalist, novel-
 London 31 July 1907. Beginning juarnalism on the Derbyshite Times, he went t) Wond n. where he edited the 'Gentleman's Magazine' ($1868-$ j4) ; and became a newspaper correspondent for the Jew Iork Times and other journals. Among his numerous novels are: 'Clytie' (18 ; 4); 'Queen of Bohemia' (1877) ; 'John Needham's Double) (1885), dramatized for E. S. Willard: 'By Order of the Czar.' a novel of Russian life: 'Princess Mazarnff): 'Cinder the Great Seai' : '(1)hen Greek Mreets Greek,' a novel of the French Revolution successfully dramatized; 'When Rogues Fall Out' (I899). Among his miscellaneous publications the best-known are: 'Tournalistic London': 'The New Ceylon': ‘Henry Irving's Impressions of America': ‘Old Lamps and New'; while among his plays may be cited a version of 'The Scarlet Letter) successfully acted in the U'nited States: 'The Prince and the Pauper) ; (Liz') and 'A Daughter of France.?

Hauck, hâk. Minnie, American wocalist: b. New York 16 Nor. 1852 . She appeared in concert in New Orleans at 13. afterward studred with Errani in New York and made her début as an opera singer in 'La Somnambula' in 1868 . She has been uniformly successful both in the United States and Europe, but is best known in the title sole of Carmen. She is married to the Chevalier de Hesse-W artegg.

Haupt, howpt, Herman, American engineer: b. Philadelphia. Pa.. 26 March 1817: d. I4 Dec. 1905. He was graduated at West Point in 1855 , but became a civil engmeer, and joined the staff engaged on the public works of Pennsylvania. For tliree years he was professor of civil engineering and mathematics in Pennsylvania College but in $1 \$ 47$ became consulting engineer of the Plyiladelphia Railroad. He was afterward chicf engineer of the Hoosac Tunuel and during the Civil War chief of the Tnited States Bureau of Military Railroads. The Royal Polytechnic Socicty of Great Britain gave hing their highest prize for the drilling machine which he invented, and he first made practicable the transportation and distribution of oil from the well side. He wrote (Hints on Bridge Puilding) ($18+0$): 'General Theory of Bridge Construetion' (1852): 'A Consideration of the Plans Proposed for the Improveinent of the Ohio River' (1855): 'Mrilitary Bridges' (186q).

Haupt, Lewis Muhlenberg, American engineer: b. Gettysburg, Pa., 21 March 184r. He

HAUPT - HAVANA

was educated at Harvard and West Point. Frun 15:2 io IS92 he was proiessu of civil engineerny in the Coniverser of Pennsvluania. and i 5 the yea: ending 1 sis edited the 'Encincering Registe:? From icg to ISg9 he was a member oi the - Vicaraguen and the Isthnian Canal Ccmmissions. H:s published works include: "TTorking Drawings and How to Make and Ise Then' (ISSI): 'Cana!s and Their Ecnemic Reaij'n :) Transportati(n) (ISgo).

Haupt, Paul, American Assyriologist: b. Guritz, Germany. 25 . Nov. 185:. He was graduated at the Gymnasium Augustum, G rimz. in 18-6: studied in Leinsic and Berm, and settled in Gütingen where in INE he was appinted extraordinary proiess r oi Assyriot gy. In the autumin oi the same year he accepted the cha:r of Semitic languages at Johns Hophins Unives-sity- Baltimore. Md. He prciected and continued :o edia the so-called Polychrome Birle. (See Blele, Polycerome) Among his many wri:ings in periodical. pamphlet an i book torm. the most important v'umes are 'Das babylonische N:mrod-Epos’ (ISoI) : ‘Akkadische und sumerische Keilschritttexte' (18S2): 'Prolesnmena to a Comparative Assyrian Grammar) (INSS).

Hauptmann, howpt'min, Gerhart, German d-amatist: b. Salzbrunn, Siiesia. Is N゙, 1N2. Aiter study at the Breslau Art Scho : he aiiended the universities of Jena and Berlin, iraveled in Italy and Switzerland, and first appeared in literat:Re with his epic. 'Promethidenles) (ISE). This he fcilowed by a swift successicn if dramas- 'Ver Sonnenauigang'. i\& (0). irank!y socialistic an 1 provucatise of Violcht discussion: 'Das Friedensies") INont: Einsame Henschen' (INOI : and 'Die Weber). 1\&92) a s:uty ci an unsuccessful uprising of the E!'esian weavers, ippitying the hene"es conditi n of the pacictariat. In these wros Hanntmann reveals the influence of Tolst i and It sen. and a stelag eev it again=t the cor diti ne imposed. paricularly up n rlee whe ing-class, ky a military and ply ucraic regime. To this n if he retorn= in Fuhmma Hencchel' (in 'Hanneles H:m meiahrt' (ISOs? a my-ic 'dre :m-pren' $a=$ the authr ry!e it. an! iDie restunlicme Glacke) $+18-$ - Ene trame by Ite:zer 1200), wh -1 l 1 .tk- 1 ch to as inlutimite peri d ri the Nidd'e Ame anl mhes ariariuse i :h primit.ve Germanic inery-se. In

 are if rim Cucा 1 !

Hauptmann, Moritz, German mu- © : \quad : h.
 Ife-t-ly I at linh : wa-s fot at it...t

 shte in L ard arl thent 1 .
 r-
mutettes. an oriertory. and sonatas ior viol:n and pian' - In ISEs he published his 'Die Natu:dor Harmonik und Merrik') a very important thecre:ical work

Haus'mannite, a native mancanate ni manganese having the formula MnO. Mn=O-.. and cryatallizing in the tetragonal system, with octahe lral habit. It is brownish black in color. and opaque with a submetaltic iustre. It has a hardness of from 5 to 5 . and a specinic sravity oi from $4-2$ to 46 . Hausmannise dissolves in hydrochioric acid. with evolution of chlorine gas. It cccurs in Germany. Sweden, and elsewhere, usualiy in connection with porphyry It was named in honor of the German metallurgist, J. F. L. Hausmann.

Haussa, how'sä. See Hotissi.

Haussmann, Georges Eugène, zhirzh è-zhản ōs-mān, Baron de, French municipal officer: b. Paris 2; March ISon: d. there 11 JonINor. He studied iaw, and under Louis Philippe was sous-prefect of tarious places. The Fe're:ary revolution $0 \leq 18+8$ caused the iorfeiture of his office, bui Louis Napoleon in $18: 3$ made him prefect of the Seine. and he applied himselt to the improvement and adornment of Paris with such energy that the city became transformed under his administration.

Hautboy, hō"boi (French huwbois. "high wo:d, al:uding to its cone): a wooden windinstrument of two-joot tone, played with a double reed. Also an organ stcp, consisting of reed pipes slightly conical. and surmounted by a bell and cap oi eight ieet pirch. The tone is thin and s-it.

Haiuy, René Just, ré-nà zhüst à-ū-è or àwe. French mineralocist: b. St. Just, Oise. 2 Feb. I-サ3: d. 3 June $1 \leqslant 22$. He was trained if the Church and tonk priest's orders but ilrned i- mineral-g2: and acquired a great reputati n by a series of important discoveries. Am ner the chief of these is the geomerical law ri crystalizaticn, according to which a gwen mineral uminmly contains the same pri-ma-y i m as its lasis of crovallizati n. Fr m ${ }^{t}-\mathrm{t}$-ime acoording to Hershel, mineral gy fir-t ce-cd to be a mese laborious catalogning if is : . and rubbish.' In s-a4 llaus became kecper of the cal inet of the Sth i! ai Mines. ant in 1802 pr fesar of mineral ty in it e M..veum i Nat:ral His: ry: His works in\therefore "Mrié de Mineraligie" (18011. and

Haüynite, liatwin it, or Haüyne, hāwin, a
 4.n teme un 5 cks, and no:ably m ile lavas of Ne. Ve-rivis. It is a silicate and sulphase of © dom. ca crum and aimmonm. crys:allizmy 1 m the 18 mesric -1 - $8 \cdot \mathrm{~mm}$ it is usual'y tranzlucent - H_{1} a bite ui livere, a hardnes: if irm 5.5
 If a. . e in c mm n y blue or green thumgh - r° ye it specinc:- are alen known. It s 1 in lanor of tine Frencls minerah s •R. I. Has

Havan'a (Sp. LA If, (biNM, lā hābānā). r. ${ }^{-}$caf:tal and the commerial contre if il Un In3: $-\sec n d$ city of Snanish
 II : wa tr the norh coast, one of the noblest

HAVANA.

1. Cathedral of llavana.
2. Colun l'ark, Ilaw゙ana.
harbors in the world, with deep water up 10 the quays; entered by a narrow channel $\$ 8$ of a mile long, protected by Punta Castle on the west and Morro Castle and La Cabaña on the east. It is in two sharply distinet sections. The old city, the commercial quarter, was built on the small western peninstia dividing the sea from the harbor, a low plain cut by a small stream on the west, strengthened by a city wall only torn down a generation ago. It is largely, and was entirely till the American occupation, a maze of narrow, crooked lanes traversed by one or two broader streets; the chief of which are the Calle O'Rcilly, the main business street, running from the governor's palace to the city wall, and the Calle Obispo (Bishop Strect). The new city is on a ring of hills 150 feet high south and west of the old, with the castle of El Principe on the crest, and has a wealth of broad and finely shaded macadamized streets, drives, promenades, parks, plazas, fower-gardens, fomntains, statues, etc., which make it one of the handsomest cities in the world. There is no "Wlest End" in Havana, the houses of the wealthy being scattered through every part, usually of classic pattern, with an inner courtyard or patio surrounded by marble or stucco columns, containing a garden of tropical vegetation and a central fountain. The handsomest residence street, next to the new suburb Vedado, is the Cerro, a long thoroughfare running up a hill at the farther end, and bordered by immense old villas in the midst of splendid gardens. The finest drives and promenades are the Malecon, a new thoroughfare along the water front from Prado to the Y'edado. the Prado, a boulevard with a double row of shade-trees in the middle. rumning from Punta Castle outside the old wall, and ending in the largest park in the city. Colun Park or Campo Marte, and the Calle de la Reina (Qieen Street) starting west from this park and contimed as the Paseo de Tacon to the citadel of El Principe. The Alameda de Patla along the bay is also a favorite promenade.

Among brildings, the most interesting are the palace of the old eaptain-general, facing the Plaza de Armas near the harhor front, the eathedral. built 1,64 , and supposed to contain the ashes of Columbus in an wra till it was removed to Spain in ISoS (but the San Domingans claim they have his anthentic bones), and the Tacon Theatrc. perhaps the largest in the world. There are several other theatres and opera-houses and many clubs, etc. The chicf crucational institutions are the Eniversity of Ilavana. founded 1670 lx the Dominicans: the Jesuit hors' college de Belén, with a museum. observatory, a library rich in oll Cinban histor:. etc. ; College of American Augustinian Fathers. founcled tgor. Famous amonet benerolent institutions are the Casa de Bencficencia, founded by I.as Casas for infants. There are three general hospitals, a great lazaretto for lepers, and an insane hospital in the city and vicinity. Over 100 newspapers, etc., are published in the city:

The water supply of the city was installed by a Culban engincer. Albear. some to years ago, and is considered a remarkable specimen of good workmanship. It comes from the Vento by an aqueduct 12 miles long, known as the Canal of Albear. In all other respects the Americans at the conquest found an undescribable state of filth and disease. The city was the
prey of ycllow fever, the sewers had seldom been cleaned since they were laid down, and some of then were choked wath generations of rottemess. the buildings were pest-inoles; and in that dumgenn of horrors, the mintary hospital, 70 per cent of the inmates died. The United States forces in their short stay lramsformed this reeking lome of pestikence into one of the healthiest cities in Anderica. In systematic order streets were cleanecl, repaved, widened; squads of cleaners were sent from house to house, emptying the Augean stables under them, whitewashing and dininfecting them, and where they were shanties that were nests of infection, tearing them down: the hospital uas cleaned, disinfected, and covered deep with whitewash, and turned into a schoolhouse. New business streets were made by widnning old lanes; parks were cleared up, and a fine sea-wall along the ocean to the north was built. The average deaths from yellow fever 188--98 were 440 : in I896 they were 1.262 ; in I00I, for the first time in its history, only three or four. A Cuban physician of Irish descent. Dr. Carlos Finlay, now chief sanitary officer of Havana, was the originator of the mosquito theory of the yellow fever. Gen. Wrood and the American army surgeons, however deserve much credit for making the theory of practical use.

The climate is not scvere. The mean anmual temperature is 77° : the range from hottest to coldest 82° to 71°; the highest recorded, 100.6°. the lowest 49.6°. The mean rainfall is 54 inches.

Havana is the market of western Cuba, the head of the island's banking and commercial interests, and the emporium of the West Indies. Besides being the centre of the island railway system and of a great domestic shipping trade, especially with Santiago, it is the focus of a rast foreign commerce with Spain. France. England, and the Ltrited States, regular ncean lines running weekly to the first three and scmiweekly to the latter, besides others to the other West Indies. It has excellent covered wharves and a capacious dry-dock to aid this. Regla, on the opposite side of the bay, contains the sugar wharves and railway termini. In igoz it had exports of albont $\$ 60.000,000, ~ \$ 43.0 n 0,0 c 0$ t.) the United States, an increase of \$11,000,000 in three years, mamly ours: but its imports had shrunk from $\$ 57.000,000$ to $\$.45 .000,000$, mest of the reduction from this country oning to uniavorable customs laws. The entitrancen and clearances of necan vessels in that year were over $1,500.000$, and of domestic vessels mearly 3.000, with an average $\frac{1}{2}$ nage of abe ut $0,35$. The exports are chicfly of sugar, tulsicco, cigars, and cigarettes: the imports, ffour, fice. lard. and other foods er et mon. and metal- Ils manufactures are mainity tuacco product-: its cigar factories, of which there are oner iro if the first rank, are the largest in the world, one covering an entire square. It also manufactures
 electric sirect rathon - - -tem is one of the ! at of its kind. wi•h 36 miles of track.

Pofulat:on.- In IPn it was $212.055 .=200$ being foreign: in INR- it was about 180000 . - $\begin{aligned} & \text { bont one third were } \text { whabie to read: and ahont }\end{aligned}$ one third from F to $^{\prime} I_{7}$ attended sclonol.

History- I lavana was fommel here (transferced from an nlder site) hy Diego de Velssquez in I5Ig, and called by him "the key of the

New World." Burnt by buccanecrs in 1328 . it w:s rebuilt and made the chief naval station oi Spain in this hemisphere. twice sacked in 1555 and 1563 , it was a siorm centre of wars and piracies for two centuries. In $1 ; 62$ the Engithly captured it, but restored it to Spain the yext year. In 1802 it was partly burnt. but under the iamous Governor Tacon. its second founder. commemorated at every turn. it was rebuit from a straw-tbatched wooden town to a city of brick and stone. For its late history: see Curea. Consult: Norton's 'Handbeok of Harana and Cuba' (1900).

Havana, Ill., city, county-seat of Mason Countr: on the Intions Ruer, and on the Chicago, P. \& St. L. and the Illinois C. R.R. ; abou: 39 miles northwest of Springfield. It is situated in an agricultural regien and is the trade centre for a large extent of country. The chieí manuiactures are sour. agricutural implemeats, driils, gas line engines, and some factory supplies. Its trade is chietly in grain, fruit. regetables, and dairy products. The waterworks are owned and operated by the city. Pop. (1900) 3.268.

Havelock, hăré-lök. Sir Henry, English soldier: b. Bishop-Wearmouth, near Sunderland. - April I,9ミ: d. Dikusha. India. 24 Nor. 1857: Entering the army, he served with distinction in the Burmese war ($1824-0$): in 1829 married, became a Baptist, and was distingunhled during the remainder of his life by his earnest religious zeal. He participated in the -lighan war. and in the defeat of M hammed Akbar. $18+3$. He took part in the Mahratta war. and distinguished himself in the Sikh war of 1545. He commanded a division in the Persian war (IEF(1)-) and on the outbreak of the Indian mutiny was despatched to Allahabad in order to surport Sir H. Lawrence at Luchne w and Sir H. Wheeler at Cawnonre. On arriving at Cawnpore he found that Nana Sahilb had massacred the prisoners. Pursuing his march to Lucknow, ine deieated the rebels at Bithoor. and finally won the battle oi Alumbagh. Having captured Lucknow, Havelock and Outram were shut up there until relieved by Sir Colin Campbell 1% Nor. INs. He was raised to the rauk oî major-general., made a K. C. B.. and (betore his death was known) created a baronet. Consult lives 1 y Brock ($18 \leqslant$ EX); Marsluman (1800); Fortes (tivo).

Havemeyer, hàv-è-míer. William Frederick, American banker: b. 31 March 1850. He received has educaton 181 private achnols and entered into commercial busuess, and as a successiul financier becande vice-president and directir of the National Bank of Nirth - Americ3. and of the Queens County Bank of Lene is and. and took a place in the binard of directors of numerous railroad and banking of if rati ms.

Ha ven, Alice Bradley, Imerican atthor:
 name wan Ernily Bradle:, ant while a chn 1 girl sle sut under the reudonym at eilice G. I-EE' many sketches to the Saturday 'Gazette,' then recently established by J seph C. Neal in Philadelphia She wa- marricd to Mr. Neal in thyo, and at his request assumed and re\therefore and the ranie of Alice. On the death of her humband is 184, she conducted the 'razatte' it - everal years. She published in 1850 'Gos-
sips of Rivertown, with Sketches in Prose and 'erse.' and became widely known by her series of juvenile stories. as 'Helen Morton.' 'Pictures from the Bible,' 'No such Word as Fail.' 'Patient Waiting no Loss.' 'Contentment Beiter than Wealth,' 'All's not Gold that Glitters.' 'Out of Debt Out of Danger.' etc. In IEE3 she was married to Mir. Samuel L. Haven.

Haven, Erastus Otis, American Methodist hishep and educator: b. Boston, Mass.. 1 Nor. 1820: d. Salem. Ore., 3 Aug. 188_{1}. He nas graduated at the Wisleyan Eniversity, Middletewn. Coan.. in IE42, soon after entered the nuinistry of the Methodist Episcopal Church. was appointed teacher of natural science in the Amenia Seminary. $\mathcal{N} .1 \%$ and in 1845 was elected principal of that institution. He was professor of Latin and Greek in the University if Michigan IE $54-6$: editor of 'Zion's Herald" IS $80-63$, and sat in the Massachusetrs Senate 18 $2-3$. He was president of the पniversity of Michigan IE63-\% and of Northwestern University, Evanston, Ill., 1869-iz. He was subsequently chancellor of Syracuse L'niversity and was eiected bishop in 18So. He published 'The Young ITan Advised' (1853): 'Pillars of

Haven, Gilbert, American Methodist bishop: b. Maiden, Mass., 19 Sept 1825: d. there 30 Tan. 1\&iso. He was an able writer, and a forceitul preacher. In the Civil War he was the first comnuissioned chaplain in the Federal army. He was edtor of 'Zion's Herald' 1867Fand was elected bisloop in the latter year. He published 'The Pilgrim's Whallet, or Sketches oi Travel in England. France, and Germany', 1IROE): (National Eemmons' (IR69); 'Life of Father Taylor, the Sailor Preacher' (18;1): - Our Next-Door Neighbor, or a Winter in Mexico' (18,5) : etc.

Hav erford College, under the auspices of the Society if Friends iounded in 1833 ml Haveri. rd. Pa. It was first known as Haveriord School, but in 1845 it was suspended for the purpose of coilecting an endowment, and in 1836 it was made a college. It was the first collegiate insatute in the United States which was founded and conducted entirely within the Society of Friends. Others besides the sons of Friends have been admitted as pupils since risp. It is well equipped in laboratory requirements and in its library facilities. In 1903 the college repirted 20 professors and instructors and 130 students. There were in the library about 37, 10 oolumes.

Havergal, hăveèr-gal. Frances Ridley, Enclish hym-writer: b. Astley. Worcestershire. If Dec. Is 30 : d. Swansea. Wales, 3 June 1870 She was a frequent contributor io 'Good Winds.' and the chief English religious perindicals, and her musical harmonjes were prased Iy the German cemposer Hiller. Her poems and lymns were collected in several volumes. 'The Vinittry of Snng) (IS,o) being the firti. Her 'Puetical Works' (riSt) appeared under the ediensish of M. V. G. Havergal. Oi her lymme, which contain her best work and are found in all collections. the most familiar is 'Take my Life and Let it Be.'

Haverhill, häver-il, Mass., city in Esscx Connty: on the Merrimac River at the head of navization. and on the Boston \&. M. railroad;

HAV.N゙A.

HAVRE DE GRACE - HAWAII

capacious wet-docks. lined with fine quays and extensive warehouses. Havre commands the greater part of the import and export trade of Paris. and of the more important towns in the north of France: importing vast quantities of colonial and other produce, among which cotton holds a most important place: and exporting numerous articles of French manufacture. It is the second port in France. The manufactures consist of paper, starch. lace. oil. refmed sugar. cables. and other marine cordage. sulphuric acid. earthen and stone-ware. There are also breweries. gun factories, and electrical works. At government tobacco factory employs 300 workmen: and from the building-yards a great numher of sailing ressels and steamers are annualis. fitted out. In the 15 th century Havse became of importance to form a new harbor in consequence of the silting up of that of Harfleur. The project was conceived. and some progress made in it, by Louis XII.: but Havre continued little more than a fishing village till the time of Francis 1.. wlo erected numerous works, and at immense expense gained the greater part of the present site of the town from the sea. A citadel was afterward built: and Hayre, as a place of strength, became the object of repeated contests hetween French and English. Pop. (I901) 130.196.

Havre de Grace, hav'èr de gräs, Md., city in Harford County: on the Susquehanna Rwer. near its entrance into Chesapeake Bay: and on the Philadelphia. 1!. \& B. and the Baltimore \& O.R.R.'s: about 36 miles east-northeast of Baltimore. It is the south terminus of the Tidewater canal. A small settlement was made here in about 16%. The chief manufactures are flour, sash, doors and blinds, Jumber, and canned fruits. The fisheries, especially shad and herring, are important. The trade is principally in the manufactured articles, coal. and fish government fish hatchery is located on Battery Island. Pop. (tgoo) 3.423.

Haw, Battle of the, in the Revolution. 2T Feb. 1781. Henry Lee bad leen commissioned by Greene to prevent Tory reinforcments coming to Cornwallis. Who had taken position at Hillsboro, and in the course of the movement attempted to surprise Tarletion. Tarleton had mosed; but hearing that about 400 Tories under Cal. P'yle were on their way to join him. Lee determined to pass off his nwn "leginn" as Tarleton's and capture them all. Forcing two captured British officers to keep up the deceptinn. he moved forward, with ['rekens" and Oldiam's companies following, and met two young men who had loen sent by Pyle to find Tarleton's camp: lie was presented in them : $=$ Tarletom, and directed them to have Pyle men drawn up beside the road while his "weary veterans" passed.-his nhject lieing to capture and disarm them all. The plan succeeded perfectly till. just as he had taken Pyle's hand. part of the Tories diacovered Piskens multia and saw the trap, ant at nnce fired on the American rear: the latter poured in a volley that killed ro of the eneny at the first fire, and in the melec, de-pite appeals for quarter, a great number of the rest were killed and the majority womeled. Pyle escaped bady hurt, and the rest of the body dispersed unpursued.

Hawait, a Territory of the United States; geographically, the Hawiniss (formerly S.wu-

Wich) IsLaNDs, the northeasternmost group of the Pacific, lying near the northern edge of the Tropics (lat. $18^{\circ} 54^{\prime}$ to $22^{\circ} 15^{\prime} \mathrm{N} .:$ long. 154°. 50^{\prime} to $160^{\circ} 30^{\prime} 1 T^{\circ}$.). 2.100 miles southwest of San Francisco. It consists of eight inhabited islands, ziz. Hawaii, Maui, Kahoolawe, Lanai. Molokai. Oalnu. Kauai. and Niihan besıdes several rocky islets. They extend from Hawaii on the sontheast, 390 miles to Kauai on the northwest, and are continued in a chain of islets. sand banks. and shoals t. 200 miles farther to Midway Island. The total area of the group is $6 .+54$ square miles. of which Hawaii contains mearly two-thirds or 4 .oI 5 square miles: the next island. Mani. 728 : the third. Oahu (which takes the lead in wealth and population. and contains the capital and chief seaport). 598 ; and the fourth. Kauai. 547 square miles.

Topography.-The islands are entirely rolcanic, consisting in fact of the summits of a gigantic submarine mountain chain rising from the bottom of the ocean. which is three miles deep within 30 to 50 miles from the shores. The rolcanic action seems to have moved from northwest to southeast. Kauai being the oldest island.

The last but one, Maui. contains the vast extinct crater of Haleakala, which is at its lighest point 10.032 feet above sea level, 20 iniles in circumference, and 2.000 feet deep; while Hawaii is made up of four volcanic mountains. Jauna Kea (White Mountain), 13.805 feet high, the loftiest peak in the Pacific: Mauna Loa (Long Mountain). 12.675 feet: Hualalai. S,273 feet; and Kohala, 5.490 feet high. Oi these Hualalai has been dormant since 18o1. but Mauna Loa is still active at intervals. having an oval summit crater. 9.5 miles in circumference, with nearly vertical inner walls 500 to too feet high. Twenty miles to the southwest is the famous crater of Kilauea, eight miles in circumference and 4.000 feet above the sea. which is almost constantly in action.

The windward sides of Oaht! and Molokai. and the northwest side of Kauai. present precipices 2.000 feet in height, white the northeast slopes of Hawaii and Maui end in bluffs several hundred feet high. furrowed by deep and narrow canyons cut by the streams. "In Wiest Naui and Kauai may be found valleys that almost rival losenite (Dutton). Eoral reef line the greater part of the shores of Kawai, Oalus. and the southern shore of Ilolokai. but are nearly absent irnm Hawaii and Maui.

The bust harbors are found in Oahu at Honolulu, and at Pearl Harbor, seven miles west. but Hilo Bay. Hawaii, only needs a breakwater to make a commodious harbor. The only rivers worthy of the name are found in the island of Kauai. Several of them were formerly crossed ly ferries.

Climate and Rainfall.-The climate of the islands is much cooler than that of other countries in the same latitude. This is due not only to the northeast trade winds. which blow nime or ten months in the year. but also to the return ocean current from the region of Bering Straits. It sea level the mean temperature is $7.3^{\circ} 1^{\prime} .$. the maximum and mimimum being 80° and 52°. respectively. The islands are entircly exompt irnm the cycinnes which sn often make Javoc in the central and western Pacific. The contrast in climate letween the windward and lecward sides of each island is very striking, the

HAWAII

northwest slopes being rainy and heavily wooded. while the opposite coast has a warm and dry elimate. From the differing elevations and exposures there is an extrandinary variety in the rainfall even within narrow limits. Thus the annual rainfall in the district of Hillo. Hawaii, averaged 136 inches in 20 years, from 1880 to 1900 . while in Honolulu it averaged 30.9 inches, and at Luakaha, in the ralley back of Honolulu, 128.9 inches.

Production and Industrics.-The Hawaiian Islands, from the lack of coal and metals, are an agricultural country, and about the only manufacture is that of sugar. The Honolulu iron foundry in $1890-1900$ turned out $\$ 1,107,030$ worth of work, and is now making sugar mills for Mexico. Formosa. and the Philippines. One plantation, near Pearl Harbor, is refining its own sugar.

The soil of the islands in general is poor: with the exception of the valleys and some of the coast plains, which are of limited extent. The greater part of the interior consists of rugged. barren mountain sides. extensive tracts covered with lava, and forest land, which needs to be protected for the preservation of the water supply. Extensive tracts of formerly barren land, however, have been made productive by irrigation and the use of fertilizers: On Oahu there are over 200 artesian wells, yielding daily from 250 to 300 million gallons, and on some plantations pumps are employed which raise over $10.000,000$ gallons of water 2 day, and in some places to an elevation of 350 feet.

In Kauai electricity generated by waterpower in the Wainiha Talley is carried 30 miles by wire to run the pumps of the Mabryde plantation. Extensive aqueducts have been made in western Kauai, Maui, and northern Hawaii. consisting largely of tunnels driven generally through solid rock. Numerous reservoirs have also been formed by damming the canyons. The Planters' Association employs a large staff of experts in chemistry. entomology, and scientific agriculture, with the result that the yield of sugar per acre is the highest in the world. The average anmual yield is $4^{1 / 2}$ tons per acre. but the average for irrigated plantations is six tons to the acre. The total crop for 1906 was 429,213 tons. The value of the sugar exported to the United States for the year ending 30 June roo6. was $\$ 25 \cdot 495 \cdot 427$. At the close of that year there were about 200.000 acres cultivated in cane. Only Java and Cuba have a greater gross product. The power for the sugar mills is obtained entirely from burning the hagasse or cane refuse. The sugar is so completely extracted from the juice that no molasses is made, the remaiuder being thrown into fertilizers. The total mumber of employees on the sugar plantations in 1905 amonnted to f8.229. including: Japanesc. 31.735 ; Koreans, 4.683 : Chinese, 4.409: Portuguese, 3.005; other whites, 1.006: Hawaians. 1,452; Porto Ricans, 1.907; Negroes, 32 .

The first importation of Chinese took place in 1852. In 1878 their number had risen to 5.916. and in 1886 to 21,000 . at which time a strict exchusion act was passed. In 1878 the first Portuguese immigrants arrived from the Azores, and during the next ten years ahout 7.000 of these people came to the islands. where they have given great satisfaction as industrious and law-abiding citizens. In 1886 a labor con-
vention was enneluded with Japan and a stream of immigrants set in, which increased the number of Japanese in the 1slands from 106 in 1884. to 24.400 in 1886, and 91.111 in 1900 . Porto Ricans were imported in ums to the number of about 2.500 . Both as lahorers and as citizens they have proved to be very unsatisfactory: Beginning with the year tho3. up to 31 Dec. 1005, about 7.000 Korcans arrived in the Territory, who have done well as lablorers. In the spring of 1007 several thousand immigrants were imported from Spain and the Azores, with the understanding that they should be given small frecholds of their own hy the planters.

The danger of depending upon a single crop has long been recognized, and persistent efforts have been made to develop minor industries. The culture of rice was commenced in 1860, and it soon became the second crop in importance, amounting in 1904 to If.000 tons of cleaned rice, most of which is consumed in the Territory: The quality of Hawaiian coffee is equal to that of Mocha. but the industry is depressed by the competition of Brazilian and Central American low-grade coffees. The crop in 1903 amounted to $300,000 \mathrm{llbs}$. The amount exported in 1906 was valued at $\$ 248,618$. There were four pineapple canneries that year, which put $11 \mathrm{p} 40,000$ cases. There are several sisal plantations, and two promising rubber plantations. Experiments with tobacco have been successful. The castor oil bean grows wild, but the manufacture of the oil has not yet been profitable. Nearly all the fruits of the tropical and some of the temperate zone. grow well in the islands, and yet the total export in 1905 of fruit, not canned. was valued at only $\$ 131,806$. The native staff of life is the taro root. or Colocasia, reduced to a paste called poi. There are about twenty stock and sheep ranches, which exported $\$ 15.883$ worth of wool in 1906. The export of honey and rvax amounts to about $\$ 40,000$ a year.

Commerce.-The total exports in 1004 were $\$ 26,275,4,38$, and in 1906. $\$ 26,904,824$. The imports in 1904 were $\$ 15,481,034$ and in root. $\$ 15,639,874$. Nearly three-fourths of the $1 \mathrm{~m}-$ ports are from the United States. In 1005, 452 vessels cleared from Thawaian potts. aggregating 973.279 tons. five-sixths of which were under the American flag.

Transportation.-For steamship lines see article on Honolulu. There are 20 steamers and as many schooners engaged in the interisland trade. There are about 150 miles of rantroads on the islands. the principal line being on Oalrus, and others on Mati and llawaii I he principal islands are comected by wireless telegraph, cach island being encircled hy telephone lines. The trans-Pacific submarime cable laid in 1903 connects the illands with buth continents.

Fintances.-The bonded deln asstumed loy the United States on anmexation was $\$ 4.000,000$. leaving $\$ 951.000$ to be paid hy the Territury of Hawaii. The delte of the Territory had increased by 30 June toot to $\$ 2.185 .000$, and by I Jan. Iopy to $\$ 3.722,000$. The assessed valnattion of taxalle property had increased hy 1 Jan. 1900 th $\$ 131.175 .015$. The taxes are 1 per cent. on property, and 2 per cent. on incomes above $\$$ r.000 a year. The current receipts of the government aside from loans, during the year 1006 . were $\$ 2,354,813$. The receipts from customs and internal revenue, which are re-

HAWES SHOP

mittes I Mashington，average about \＄1．200．000 a rear．

Ecillat：－n．－There is a good iree－schond sys－ tenl．graded．with compobory aitendance ir ma （ It J5．with an excelleni nurmal ifaining sth cl．besides indusitial and higls sch xols．ithe sehool law requ：res that the English larizuge thall be the basis and medium of instruction in all schools．

The depariment is adminisiered by a st！pcr－ intendent and six commisstoners，aided by three iravelling inspectors

On 31 Dec．Igon the numbers were as inl－ 1）w：Public schools．151： 443 teachers： 1 chos pupils．Private schools．62： 261 teachers： E．230 pupils．Total： 213 schools：Jo4 teachers： 2T，Son pupils．

The iotal cost of the govemment schn is is about $\Sigma_{3}=0.000$ per annum．The private schools are mosly endowed．as Oalmu College and the Kamehameha Echools．founded by the late Mrs． Bernace Bislonp：or managed by missinnary boards or religious orders as Saint Louts College．

Chorituble Insitutions．－Among these may te mmentioned the Lunalilo Home for aged and indigent Hawaians．the Asylum for the Insane． the numer us bospitals．eight of which are under the Board of Health．but the mest im－ pror：ant is the leper settlement established in I856 na a peninsula of Molokai．shut off irom the rest of the island by a precipice 2.000 feet in heish：．The number of lepers has decreased from 1.200 to 833．The verritorial government provides them comioriable homes．focd．cloth－ ins．and medical attendance iree of cost．aided Iy the devored Franciscan sisters and the Bre：hers of the Sacred Heart．

Population：－The census of 1900 divides the populat：in as jollows：Hawaiians，20．バー：Parı－ Hawaizans．－．84s：Americans． 7.283 ：Portuguese． 15．75：other Caucasians．3．294；Chinese．25－0．2： lapanese．61，115：Polynesians．053：other ior eigners．2．E8f：iotal． 154.001 ．Oi the islands． Hawaii had 46.843 ：Oahu（including the cive －i Honolulu．30．306）．E8．504：Naui．25．410： Favai and Siihat．－0．734；Nolokai and Lanai． 2.504.

Grernment．－The new tersitorial govern－ ment was inaugurated at Honululu 14 Jn：1e 1900．and the irst territarial lecislature beran \because－essuons at Honclalu 20 Feb．1001．The lecivature is composed if iwn houses－sto serate－ 115 member：，haldag nfrice inur vear：： and the house of representainves of 30 member－ hatding，fice two years．The legislature meets It numdy．and sessons are limnted to to days．

The executive p wer is lodeed in a gin－ trntr．a secretary both appointed by the Prest－ Hent，and holding nfice inur years．and the f I wing officials appo：nted by the governor． Iy and wht the consent of the enate if Hawan： in－it－ru－cencral，trea－urer commonner i ront ic land－commissioner oi agriculture and f rewirs：super：mtendent in public werks．super－ nitudent ni public instruction，audions and repury，surveyn．hich shermf．and members ni 1 ＇b bards ，it heahh．pulhe instruction．pricon f－geet rs，e：c．They hid office for four years． o．t m mut le citizens i Hawaii．

The udiciary of the Territory is composed of the－upreme court with three judges．the cir－ －it churt．as d wheh mierior courts as the lecti－lature may establioh．The judges are ap－
pointed by he President．The Tersitory is a iederal judicial district．with a district iudge． districi aziomey，and marshal，all appointed py the President．The disiriet judge has all the powers i a circuit judge．

The Terri：ry is represemted in congress by a deleg．．te．who is elected bieminaliy by the perple．

H st ry－Acoceding to documents in the Epansh archives．the islands were discovered in tis5 by Juan Gaetano．who named Hawain ＂La \liesa．＂They were rediscovered by Capt． lames Cuok in tios．and named the Sandwich Itlands．In 1992 Capt．Vancouver visited the islands．and introduced the first cattle and sheep． Kamehameha I．．a chief oi northern Hawai：． atter nine years of war．became master of the Whole island in 1591．In 1795 he conquered Mani and Oahu，the decisive battle being fought in Nimuanu Talley back of Honolulu．Having united the group under one sirong government． he Jed \＆May isio．His son．Kamehameha 11．． abolished the ancient iabu system in the follow－ ing September．The nirs American mission－ aries arrised at Kailua．Hawaii．\＆April ISzo． and met with remarkable success．The first Catholic missionaries arrived $\overline{7}$ Iuly isュ－．In the same year the first writuen laws were printed． The first constitution was proclaimed \＆Oct． If；o．On ${ }_{25}$ Feb．1843．the native government was compelled by Lord Paulet to make a pro－ visinnal cession to Great Britain．but its inde－ pendence was restored 3 II Iuly of the same year by Admiral Thonas．The iendal tenure of land was abolished in 184s．and a liberal co：1－ stivusion was adorted in fesz．The Kame－ hameha drnasty ended with the death of Kamehameha T．， 11 Dec．18；2．David Kalakana was elecied by the Legislature 12 Feb．18；－ 113 Is－6 a reciprocity treaty was ratified with the Unised Siates．which assured prosperivo to the islands．The King however．labored is huld up a reactionary paris．and to restore autocratic gyerument，un：ib he was comnelled by the cis－ ilized element in sigin a revesion of stie ensti－ 2ution．which limited his powers，in mer．I Reyalist insurfection was put down in reso． His sis：cr．Liliu kalani．succeeded him 111 IEn． and in January isos undertook to ahrisaie the constitution．and establish an ahst ute mon－ archy：Tper this the constitutional party de－ theched her．and estahlished a provisional gov－ ermmens．During the inllowing year the Ke－ public of Hawaii was organized with S．B． D le as Presilent．An antrexation treaty was negl：iated with Pressdent Jfarrisnm，which was withdrawn hy Presdent Cleveland in April 189．3． bui hriughi up again on the accession of Presi－ den：Mckinley After long delays．Hawaii was admitted into the Cuion by a font resolution pa－set 7 Iuly tros．It was finatly organized as a Jerrit iry it lume 1900 ．with S．B．Dole as Govern r．who was succeeded hy Gen．R．Car－ ter 23 Nov：1903．and by Whater F Frear in tuo\％．Cinsult Bichop．＇Hawaiian Irchipelago＇ （New lork iNot）：I＇wombley．＇Hawaii and lis Pe ple＇（London 1g00）：Nusick．＇Our New Pezessi n：＇（New lork 189न）：W＂himan， ＇Hawainan America＇（New lork 18g）：loung． ＂lhe Real Hawaii＇（London isg9）．

II．D．Alexander．
Formerly Surovor－Gineral Ilaciaitan Islands．
Hawes＇Shop，Cavalry Engagement Near． Gen．Gramt had crossed to the south bank of
the North Anna, in Virginia, and finding Gen. Lee too strongly posted to be attacked, and his own arm:' in a false and critical position, he withdrew, on the night of 26 Alay 1864, to the north bank, and moved down the north bank of the T'amunkey to turn Lee's right. Torbert's and Gregg's divisions of cavalry, mader Sheridan, together with the Sixth corps, led the advance. Torbert crossed the Pamunkey at Hanover Ferry on the 27 th, after considerable skirmishing in which he took about 60 prisoners, and the two cavalry divisions, supported by Russell's division of infantry, pushed on to Hanover Town and bivouacked for the night. On the morning of the 28th Sheridan was directed to make a demonstration and discover the enemy's position. Gregg's division, advancing on the Mechanicsville road, encomntered the two cavalry divisions of Wade Hampton and Fitzhugh Lce and Butler's South Carolina cavalry brigade about a mite beyond Hawes' Shop. The Confederate cavalry was dismounted and had thrown up a barricade of rails covering the road. Gregg attacked, and there ensued one of the most severe cavalry engagements of the War, which continued several hours, neither side yielding ground. Finally, late in the day, Custer's brigade of Torbert's division came up, dismounted, took position in the centre of Gregg's line, formed in close column of attack, the whole line charged and, after a hard struggle at close quarters, the Confederates were driven from position and retreated upon their infantry at the Totopotomoy. Gregg's loss was 256 killed and wounded; the entire Union loss was 44 killed and 306 wounded. The Confederate loss is not known. Consult: 'Official Records.' Vol. XXXY'I.; Humphreys, 'The Virginia Campaign of 1864-5): The Century Company's 'Battes and Leaders of the Civil War,' Vol. IV.

E. A. Carman.

Hawesville, hảz'vill, Ky.. city. county-seat of Hancock County; on the Ohio River, and on the Louisville, H. \& S. T. L. railroad; about 65 miles above Evansville. Ind : and 80 miles west by south from Louisville. It is situated in an agricultural and coal-mining region. Its chief manufactures are flour, lumber, and furniture. It has a number of tobacco factories or stemmeries, and its trade is chiefly in tobacco, coal, artieles of home manufacture, and agricultural products. Pop. (1900) 1,041.

Haw'finch, one of the largest of European finches (Coccothraustes zulgaris), so called in England from the belief that it subsisted principally on the fruit of the hawthorn. It resembles the chaffinch in color, but is distinguished hy its enormous beak and larger size. It feeds on all kinds of berries.

Hawk, a general name for diurnal birds of prey not eagles or vultures. See Falcors, and the names of various groups and species, as Hen-hawks, Sparrow-hawk and the like: also Falconry.

Hawk-moths, a family of large moths forming the family Sphingida. They have stout hodies, large heads with prominent eyes, and thick spindle-shaped antennæ, ending in a hook. The fore-wings are long, narrow, more or less pointed, and always much longer than the hindwings. They are insects of rapid flight, and dart about in the twilight; some species also during
the day. Their caterpillars are hairless, smooth, often green, with transverse stripes on the sides and nearly always a hom on the back of the second last segment, and always have ten prolegs. They are leaf-eaters and often greatly destructive to cultivated plants, the tomato-worm (q.v.) being a prominent example. They change to pupse either on the surface of the ground or in a cell underground, but make no cocnon. Some of the South American species rescmble hum-ming-birds so closely, especially when poising before a flower on whirring wings and sucking its nectar, that they can hardly be distingmshed. and popular belief asserts that the one is transmutable into the other. A great number of forms exist in all parts of the world, the Lnited States having about 100 species. All are plainly dressed in grays and browns, and one of the most remarkable is the death's-head (q.v.).

Hawkbit, a genus (Lcontodon) of composite plants closely related to the dandelion, from which they differ in having feathery pappus. The name is due to the peculiar shape of the lacerations of the leaves. Several species are natives of Europe and Russian Asia.

Hawke, Edward, Lord, English sailor: b. London 1505 ; d. Sunbury-on-Thames 17 Oct. ${ }_{17}$ Sis. Early in 1720 Hawke entered the navy and was appointed in 1733 to the command of the Wolf. Being promoted to the command of a squadron in 1847 he totally defeated the French fleet off Belle Isle. In 1759 he was sent in pursuit of the Brest fleet, which he came up with in Quiberon Bay, and signally defeated. He now received a pension of $£ 2,000$, and in 1768 becatne admiral of Great Britain and commander-in-chief of the fleet. From $1=66$ to $1 / \bar{\prime}$ he was first lord of the admiralty. In $1 / \sim 6$ he was adranced to a seat in the House of Lords by the style of Baron Hawke of Towton.

Haw'ker, Mary Elizabeth, English novelist: b. 8865 . Undet the pseudonym of "J.avoe Falconer" she has written the well known novel 'Mademoiselle Ixe" (iSpo); which was iollowed by 'The Hotel d'ingleterre' (189I) and 'Cecilia de Noel' (1891).

Hawkesbury, hâks'ber-ĭ. Canada, village in Prescott County, Ontario; on the Uttawa Kiner. and a terminus of a branch of the Canada Atlantic Railway, 30 miles west of 11 omureal. It has ferry communication with (irenville, across the river. Its chief industral establishments are flour mills, a woolen factors: and large saw and planing mills. It has an extensive lumber trade. Pop. (1901) 4.150.

Hawk'eye State, Iowa - so mamed after a famous lndian warrior

Hawking. See Falconry:

Haw'kins, Anthony Hope, English novelist, known by the pen-name "Asthony Hope"; b. London 9 Feb. 1863. He was educated at Balliol College. Oxford, was admitted to the bar at the Niddle Temple in 1887, and practised until 1894 on the London and Midland circuit. He contested South Bucks as a Liberal in I892, but unsuccessfully. In 1804 he achieved a striking literary success with his 'Prisoner of Zenda,' with scene in an imaginary independent state of South Germany: Other books of his are: 'The Dolly Dialogues' (1804), cited as models of keen if somewhat shallow repartee;
＇The Chronicies o：Count Antonio＇（iEgs）： Ruper oi Hentzau＇（ 18 os ）：and＇The Intru－ s：cus of Pesgy）（1002）

Hawkins，Hamilton Smith．American mili－ ary officer：b．South Casolna $上 3+$ He en－ tered the army in INor，was mace capiam in the oth iniantry in 1803 ．and brevetred maje in Oetober isós．In rase he became commendan： at 11 est Poini．and in isul was peomited col－ coel．When war ras declared against Snain （las）he went to the iront as a brigadier－gen－ eral oi rolunteers．He led the desperate and fow historic charse ai San Juar．Cuba 2 Iuly isos，and was made major－general of volunteers． S July Isos．

Haw kinsville，Ga．．viliase，county－seat of Putaski County：on the Ocmulgee River at the head of ravigation，and on a branch of the Macon \＆B raliroad：about os miles south of Macon．It is situated in a iestile agricutural region It has a corten iact ry cetton com－ presses，cotton gins，cottcmseed－o：1 mills．bar－ rel factories，carriage and waşn works．Ir： rade is chiefy in cottoa，lumber，iruits，and vesetables．Pop．（1000）2，103．

Hawksbeard．a perennial composive plant allied to hawkweed，but of the gerus Crifis about $i=0$ species of whick are knewn in the ntrthern hemisphere．Severâl are Eurcpean weeds which have become naturalized in the Tnised Staies，and there are several native spe－ cies．The Rowers are danceiton－like and ye．icw or orance．

Hawksbill，a great marine turtle（Chel．nic imbricata）allied to ihe green turtie，bui which has the plates of the shell overlapping：and these p！ates firm the tortoise－shell（q．v．）oi com－ merce．The tlesh is not ghod in eating．but the egrs are good．The animal inhatits the In－ dian Gcean，the Pactic，and the wamer parts of the Ailantic．This is one of the sea－turtles ealled＂ca：et．＂bu：t that remm belmes more properly to the Ingse－head．See Tirele

Hawkweed，or Rattlesnale Weed，a genus （Hieraijum）oi c רmp－ite fiants with m zoded． radical leaves，tall hairy stems and yet iw or E－ange तl wers．One species，the Eut pean－－ ange hawkweed H ．ourant：rum is ire vent chl－ivated ir the sake of its fine erange fil wers The name＇lawhweed＇in Eng＇ish，and var－ 18 simmar names in \because－ unc：inl Enrope are based n an awient is $\because=$

 ramerouly in the［nited S：mo．is er＂t ？ are called rartlesrake weed and are h＇yod t be i value in curing the m is n f somes

Hawhwood，STR John de，Fn－linh＝tier t He réam ：i 1．Ereex：i F re to lt＇r I）March 1324．He w＝styitd ly $1 \mathrm{Ha}^{2}$ ath the frot lar gu－ed e nomanler whohal aponer ir Eur pe since the dotruct n i ile R ．．．－ Frmare It is aid ：batleitatat Crioy onl
 Elwari 111 ．Hnwerer that may be．if 1350 le u＝s il leader of a trop ci irce lances，ney． ing vony France and nithern ltaly Wivh ti＝
 quN i Ninntierrat，la＇er the Repirb ic＋i Pisa． and of later F recce，upna whne－ide he cionnes：fought in the civil dustronance of Ita＇y． A．c mmander－1：－chiei he directed the cuccess－
ian wa：against Milan（1390－2）．He mas pen－ siuned by the Florentmes and entombed with great ceremony in the Duomo．

Haw ley．Gideon．American missionary to ihe Incians：b．Stratrield，now Bridseport．Conn．，三 Xiv r－＝न：d．Marshpee Mass．． 3 Oct．ISO＂． He mas sracuated at I＇ale College in IF：0．0 and c namenced his labors at Sicchbridge in ifsz． epening a schol at that place in which he in－ sir icted a number oi Mohawh。Oneida，and Tus－ carc：a iarrilies．In ITs4．under the patronage of Sir William Iohnson，he began a mission amng the I－cquois or Six Nations on the Susquelianna River：but in $1-50$ was obliged by ine disturbances if the French war to leave that fegicn．w＇：en he became a chaplain in the army marching asainst Crown Point．The campaign being over，he re－engaged in his missionary work at Xarshpee．where he was installed as pastor in I－se，and there passed the remainder of his life in his benevolent labors．

Hawley，Joseph，American siatesman：b． Nothamp：on．Mass．，I－24：d． 10 March r－S8． He was graduated at İ？College and iollowed the proiession of law at Norhampton，in which he trise ：l eminence At the ime it the dis－ futes between Great Britain and America，he ank a peoninent part in acvocating the cause ri the colonies．＂ulle musi fight．＂he wrote io i．：delesates of Massachusetts．＂if we cannot o：herwise sid ourselves of Bricish iaxation．The form of goverment enacted in us by the B－insh pasiament is evil against right，ntierly incierabie it every man．who has any idea ns feeling of right or liberty ${ }^{*} \mathrm{He}$ was several ames elected a member of the council，but de－ ci：ne ${ }^{3}$ ．preferring to enter the State legislature， Li wkich lie was a member 1 － $64-6$ ．

Hawley，Joseph Roswell，American politi－

 He was graduated at Hamilton Col：ege．Clinion． … N_{-}^{-}，and begain the proctice ni law at Hartiod．Com．．in Is三o．The Republican party． in C nnecticn：t was organized in the cffice of tie Ciurter Osk．of wheh he was the ednor He atierward became editor of the Harti rd Era $\quad P$ st the rew Republscar：paper．When be Con！War br ke out he recrulted the tirst a mony di v Sunteers rained in the State－ C if pay A hi the isi Connecticut regiment－ St wher he i k command．He saw service thr w：shout the wh ！e war and was musiered out y IVK w：h the brever rank，if major－rencral． He wis clecied swernor of Cancciout the －\because e year．In $1 x^{-2} 2$ he wos elceted to Cunsress，
 ［－－．ied S：：es Scmate，it which he was re－clected 10，－，INs，and 1 （x）．

Hawley，Pa．，borouzh in Wayme County； n7 t．e I－ckawaven River．and on the main line －b－a＂ches i ille Pemnsllania，the Delawa：c A 1l，and the Erie R R．s：about nine miles －．．．．．．．oteas oi Honesdale．Its chiei manu－ i－t．．．．．．estal hishments are a glass－factny：a s＇าธs－c．．．ing factn：y and a silk－factory．In ad－ dite on th it s trade in home manufactures，it has an ev：cnsive onal trade and ships a considerable q iantiy i iarm products．Pop．2．12S．

Haworth，Adrian Hardy．English nat－ vrals：：b．as Hull in $1-67$ d．dhere 16 Jan． 1833．He was educated for the law，but did not
practice, devoting his time to entomology and botany. lle was the founder of the Entomological Society of London. a member of the Limanan Society, and the Ilull Botanical Gardens were plamed by him, and laid out under his direction. His collections were large and important and his works are still standard. He wrote: 'Observations on the Genus Mescmhryanthemum' (1594): 'Prodromus Lepidopterorum Britannicorum' (1802) ; and 'Symopsis Plantarimn Succulentarum' (ISi2) ; and many minor papers.

Haworth, hâ'werth. Joseph, American actor: b. Providence, R. I.. 1855; d. 29 Aug. 1903. His first appearance was as a member of Ellsler's stock company at Cleveland, Ohio, and subsequently lie supported Edwin Booth, Lawrence Barrett, and John McCullough. From i883 he toured for several years as a star in "The Bells.' 'Tho Leavenworth Case,' 'Hamlet.' and other productions: in $1806-8$ was Nacheth to Modjeska's Lady Macbeth, and later Storm in Cane's 'Christian,' Vinicius in Stange's adaptation of Sienkiewicz's 'Quo Vadis,' and Cassius in the Mansfield presentation of 'Julius Cosar.'

Hawser, a manila or wire rope used in mooring or towing boats, etc., over four or three inches in circumference respectively. The name is now usually applied to all large ropes, though formerly it signified ropes "hawser-laid," that is, with three "plain-laid." three-stranded ropes laid up left-handed, now usually called a cable-laid rope.

Hawthorn, or White Thorn (Cratagus oryacantha), a small spiny European tree, rising sometimes to the height of 20 to 25 feet, much admired for the beauty of its foliage. The leaves are smooth, shining, more or less deeply lohed, and of a beautiful green color; the flowers are white, sometimes with a reddish tinge, disposed in corymbs, and possess an agreeable perfume. The species of Cratagus are about 50 in number, all shrubs or small trees, spiny, with red fruit resembling in miniature that of the apple, from which plant they are distinguished chiefly by their seeds, and are arranged with it in the family Rosacec. Fifteen species are recognized in North America. When young the hawthorn springs up rapidly, a shoot of a single year being sufficient for a walking-stick. It thus, if well prumed and kept down, quickly grows into a thick and intricately woven hedge.

Hawthorne, hâ'thôrn, Julian, American novelist and journalist. son of Nathaniel Hawthorne (q.v.) : b. Boston, Mass., 22 June i8f6. He was graduated from Haryard University in 1867 and afterward studied civil engineering in Dresden, but soon forsook this occupation for literature. His first successful story was (Bressant' (I872), the forerumner of a long list of novels, of which may be particularized 'Garth') (1875): 'Sebastian Strome' (188.f): 'Archibald Malmaison' (1884): 'A Fool of Nature' (ISO6). He has also puhlished 'Saxon Studies' (1876) ; and 'Nathaniel Hawthorne and His Wife) (1885). His best work suggests more than one element that distinguishes his father's stories. There is a psychologic accent. the touch of mystery, and the avoidance of the stock properties of romance.

Hawthorne, Nathaniel, American novelist: b. Salem, Mass., 4 July iso4; d. Plymouth,
N. 11., 0 May 1864 . The founder of the family in America was Wiltiam Hathorne (as the name was then spelled), a typical I'uritan and a public man of importance. fohm, his son, was a judge, ane of those presiding over the witehcraft trials: Of Joseph in the next generation little is said, but Danicl, mext in clescent, followed the sea and commanded a privateer in the Revolution, while his son Nathaniel, father of the romancer, was also a sea captain. This pure New England descent gave a personal character to Hawthorne's presentations of New England life: when he writes of the strictness of the early Puritans, of the forests haunted hy Indians, of the magnificence of the provincial days, of men high in the oninion of their townspeople, of the reaching out to far lands and exotic splendors, he is expressing the stored-up experience of his race. His father died when Nathaniel was but four and the litile family lived a secluded life with his mother. He was a handsome boy and quite devoted to reading, by an early accident which for a time prevented outdoor games. His first school was with Dr. Worcester, the lexicographer. In 1818 his mother moved to Raymond, Nlame, where her brother had bought land, and Hasthorne went to Bowdoin College. He entered collcge at the age of seventeen in the same class witl Longfellow. In the class above him was Franklin Pience, afterward 12 th President of the Crinted States. On being graduated in 1825 Ilawthorne determined upon literature as a profession, but his first efforts were without success. 'Fanshawe' was puhliched anonymously in 1828, and shorter tales and sketches were without importance. Little need be said of these carlier years save to note that they were full of reading and ohservation. In 1836 he edited in Boston the American Nagazine for Useful and Entertaning Knowledge, but gained litule from it save an introduction to "The Token.' in which his tales first came to be known. Returning to Salem he lived a very secluded life, sceing almost no one (rather a family trait). and devoted to his thoughts and imagimations. He was a strong and powerful man, of excellent health and, though silent, cheerful, ancl a delightful companion when he chose. But intellectually he was of a separated and individual type, having his own extrasagances and powers and submitting to no companionship in influence. In 1837 appeared 'Twice Told Tales' in book form: in a preface written afterwards Hawthorme says that he was at this time "the ohscurest man of letters in America." Ciradually he began to be more widely received. In 1839 he became engaged to Niss Sophia Peabody, but was not married for some years. In 1838 he was appointed to a place in the Boston custom house, but foumd that be conld not easily save time enough for literature and was not very sorry when the change of administration pith him out of office. In IS4i wis fonnded the socialistic community at Brook Farm : it seemed to Hawthorne that here was a chance for a union of intellectnal and physical work, wherely he might make a suitable home for his future wife. It failed to fulftll his expectations and Hawhorme withdrew from the experiment. In 1842 he was married and moved with his wife to the Old Mlanse at Concord just above the historic

HAWTHORNE

bridge. Hore chiefly he wrote the (Mosses of an Old Manse' (i8j6). In 1845 he published a second series of 'Twice Told Tales': in this year also the family moved to Salem, where he had received the appointment of surveyor at the custom house. As before, official work was a hindrance to literature: not till IS49 when he lost his position could he work seriously. He used his new-found leisure in carrying out a theme that had been long in his mind and produced 'The Scarlet Letter' in 1850. This, the first of his longer novels, was received with enthusiasm and at once gave him a distinct place in literature. He now moved to Lenox, Mass., where he began on 'The House of Seren Gables,' which was published in 185 t . He also wrote 'A W'onder-Book' here. which in its way has become as famous as his more important work. In Dec. 185 t he moved to West Newton, and shortly to Concord again, this time to the Wayside. At Newton he wrote 'The Blithedale Romance.' Having settled himself at Concord in the summer of 1852, his first literary work was to write the life of his college friend, Franklin Pierce, just nominated for the Presidency. This done he turned to 'Tanglewood Tales,' a volume not unlike the 'Wonder-Book.' In 1853 he was named consw] to Liverpool: at first he declined the position, but finally resolved to take this opportunity to see something of Europe. He spent four years in England, and then a year in Italy. As before, he could write nothing while an official, and resigned in 1857 to go to Rome, where he passen the winter, and to Florence, where he received suggestions and ideas which gave him stimulus for literary work. The summer of 1858 he passed at Redcar, in Lorkshire, where he wrote 'The Marble Faun.' In June 1860 he sailed for America, where he returned 10 the Wasside. For a time he did little literary work: in 1863 he published 'Our Old Home,' a series of sketches of English life and planned a new novel. 'The Dolliver Romance," also called 'Pansic.' But though he suffered from no diseasc his vitality scemed relaxed: some unfortunate accidents liad a depressing effect, and in the midst of a carriage trip into the White Mountains with his old friend. Franklin Pierce, he died suddenly at Plymouth, N. 11., early in the morning, 10 Jlay 1864.

The works of Hawthorne ennsist of novels, short stories, tales for children, sketches of life and travel, and some miscellanenus pieces of a bingraphical or descriptive character. Besides these there were published after his death extracts from his notebooks. Of his novels 'The Scarlet Jetter' is a story of old New England: it has a powerful moral iflea at bottom, hut it is equally strone in its presentation of life and character in the carly days of Massachuselts. -The llon-e of Seven Gohles' presents New England life of a later date: there is more of carciul analysic and presentation of character ant more deceription of life and manners, but les moral intensity. 'The Blitherlale Romance' is les strong: Hawthorne seems hardly to grasp his subject. It makes the third in what may he callest a series of rnmances presenting the milding currents of New England life: the firt showing the factore ni relicinn and sin. the seed nol the force of hereditary gond and cevi, and the therd giving a picture of intellectual
and emotional ferment in a society which had come from very. different beginnings. 'Septimius Felton,' finished in the main but not published by Hawthorne, is a fantastic story dealing with the idea of immortality. It was put aside by Hawthorne when he began to write 'The Dolliser Romance? of which he completed only the first chapters. 'Dr. Grimshaw's Secret) (published in 18S2) is also not entirely finished. These three books represent a purpose that Hawthorne never carried out. He had presented New England life, with which the life of himself and his ancestry was so indissolubly conmected, in three characteristic phases. He had traced New England history to its source. He now looked back across the occan to the England he had learned to know, and thought of a tale that should bridge the gulf between the old world and the new: But the stories are all incomplete and should be read only by the student. The same thing may be said of 'Fanshawe.' which was published anonymously early in Hawthorne's life and later withdrawn from circulation. 'The Marble Faun' presents to us a conception of the old world at its oldest point. It is Hawthorne's most elaborate work, and if every one were familiar with the scenes so discursively described, would probably be more generally considered his best. Like the other novels its motive is based on the problem of evil, but we have not precisely atonement nor retribution, as in his first two novels. The story is one of development, a transformation of the sonl lhrough the overcoming of evil. The four novels constitute the foundation of Hawthornes literary fame and character, but the collcctions of short stories do much to develop and complete the structure. They are of various kinds, as follows: (1) Sketches of current life or of listory, as 'Rills from the Town Pump,' 'The Village [ncle,' 'Main Street,' 'Old News.' Thesc are chiefly descriptive and liave little story; there are about twenty of them. (2) Stories of old New England, as 'The Gray Champion,' 'The Gentle Boy,' 'Tales of the Province House.) These stories are niten illustrative of some idea and so might find place in the next sct. (3) Stories based upon some idea, as 'Ethan Brand,' which presents the idea of the unpardonable sin: 'The Ninister's Black Veil.' the idea of the separation of each soul from its fellows: 'Young Goodman Brown,' the power of dnubt in gond and evil. These are the most characteristic of Hawthoenc's short stories: therc are about a dozen of then. (4) Somewhat different are the allegories, as (The Great Stone Face,' 'Rappacini's Daughter,' 'The Great Carbumcle.' Here the figures are not examples or types, hut symbols. although in no story is the allegory consistent. (5) There are also purcly fantastic developments nf some idea, as 'The New Idam and Eve.' 'The Christmas Ranquet,' 'The Celestial Rail. road.' These differ from the athers in that there is an almost incical development of some fancy; as in case of the first the iclea of a perfectly natural pair beine suddenly introduced to all the consentionalitics of our civilization. There are perhaps twenty of these fantasies. Hawthorne's storice from classical mytholosy, the 'Ilonder-Bonk' and 'Tanglewood Tales." belong to a special class of books, those in
which men of genius have retold stories of the past in forms suited to the present. The storics themselves are set in a piece of narrative and description which gives the atmosphere of the time of the writer, and the old legends are turned from stately myths not merely to children's stories, but to romantic fancies. Mr. Princle in 'Tanglewond Fireside' comments on the idea: "Eustacc." he says to the young college student who had been telling the stories to the children. "pray let me advise you never nore to meddle with a classical myth. Your imagination is altogether Gothic and will inevitably Gothicizc everything that you touch. The effect is like bedaubing a marble statue with paint. This giant, now! How can you have ventured to thrust his huge disproportioned mass annong the secmly outlines of Grecian fable?" "1 described the giant as he appeared to me." replied the student. "And, sir, if you would only bring your mind into such a relation to these fables as is necessary in order to remodel them, you would see at once that an old Greek has no more exclusive right to them than a modern Yankee has. They are the common property of the world and of all time" ('W'onder-Book,' p. 135). 'Grandfather's Chair' was also written primarily for children and gives narratives of New England history: joined together by a running comment and narrative from Grandfather. whose old chair had come to New England, not in the Mayflower, but with John Winthrop and the first settlers of Boston. 'Biograplical Stnries.' in a somewhat similar framework. tells of the lives of Franklin. Benjamin West and nthers. It should be noted of these books that Hawthorne's writings for children were always written with as much care and thought as his more serious work. 'Our Old Home' was the ontcome of that less remembered side of Hawthorne's genius which was a master of the details of circumstance and surroundings. The notebonks give us this also, but the American notebonk has also rather a peculiar interest in giving us many of Hawthorne's first ideas which were afterwards worked ont into stories and sketches.

One element in Hawthorne's intellectual make-np was his interest in the observation of life and his power of deceription of scencs. manners and character. This is to be seen especially, as has been said, in his notebonls and in 'Our Old Home.' and in slightly modified form in the sketches noted above. These studies make un a considerahle part of 'Twice Told Tales' and 'Mosses from an Old Manse.' and represent a side of Hawthorne's genius not always borne in mind. Had this imterest been predominant in him we might have had in Hawthorne as great a novelist of our everyday life as James or Howells. In the 'House of Seven Gables' the power comes into full play: ioo pages hardly complete the descriptions of the simple occupations of a single uneventful day: In Hawthorne howecer, this interest in the life around him was mingled with a great interest in history, as we may see, not only in the stories of old Xew England noted above. hut in the descriptive passages of 'The Scarlet Letter.' Still we have not. even here, the special quality for which we know Ilawthorne. Nany great realists have written histnrical novels. for the same curiosity that absorbs one in the affairs
of everyday may reathly .her rb one in the recreation of the nas. In llawthorne, however, was another elenent very different. Ilis imacination often furnished hum with conceptinns having little connection with the actual circumstances oi life The fanciful developments oi an idea noted abise (5) have ahnost no relation to fact: they are "made up wot of his own head." They are fantastic cnongh, but generally they are developments of sume moral idea and a still more ideal development of such conceptions Was not uncommon in 1 lawthorne. 'Rappacim": Danghter' is an allegory in which the idea is given a wholly imaginary setting, not resembling anything that Hawthorne had ever known irr mr observation. These two elements sometimes appear in Hawthorne's work separate and distinct just as they did in his life: sometrmes he sechuled himself in his ronm. goine ont only after nightfall; sometimes he wandered through the country observing life and meeting with everybody. But neither of these elements alone produced anything great. probably because for anything great we need the whole man. The true Hawthorne was a combination of these two elements, with various others of personal character, and artistic ability that cannot he specificd here. The most obvious combination between these two elements, so far as literature is concerned. between the fact of external life and the idea ci inward imagination, is by a symbol. The symbolist sees in everyday facts a presentation of ideas. Hawthorne wrote a number of tales that are practically allegories: 'The Great Stone Face' uses facts with which llawthornc was familiar, persons and scenes that he knew, for the presentation of a conception of the ideal. His novels, too, are full of symbolism. 'TheScarlet Letter' itself is a symbol and the rich? clothing of Little Pearl, Alice's posies among the Seven Gables, the old munty house itself. are symbols, Zenobia's flower. Hilda's doves. But this is not the highest symthesis of power. as Hawthorne sometimes felt himseli. as when he said of 'The Great Stone Facc.' that the moral was too plain and manifest for a work of art. However much we may delight in symbolism it must be admitted that a symbon that represents an idea only by a fanciful connection will not bear the serimusness of analysis of which a moral idea must be capable. A scarlet letter A has no real connection with adultery, which begins with A and is a scarle? sin only to such as know certain lancuages and certain metaphors. Si Hawthorne aimed at a higher combination of the powers of which he was quite aware and found it in figures and situations in which great ideas are implicut. In his finest work we have, not the circumstance before the anception or the conception before the circumstance. as in allegurs. We have the idea in the fact. as it is in life the two inseparable Ilester. Prymuc's life doenot merely present to ti the idea that the breaking of a sncial law makes one a stranger to socicty with its advantages and disadvantages. Hester is the result of her breaking that hw: The story of Don-tello is not merely a way ci conveying the ilea that the sul which conguers evil, thereby grows strong in being and life. Donate ha himelf is such a sonl growine and develping. We cammet get the idea without the fact, nor the fact withont the idea

This is the especial power of Hawth rne the phwer of presenting truth imp.icit in life. Add to tans his profound preoccupation with the pr. berm of evil in this world. with its appearance, its disappearance, its metamorphoses, and we have a ciue to Hawthonne's sreatest works. In 'The Scarlet Letter,' 'The Hn 1se oi Sever. Gables.' 'The Marble Faun.' 'Ethan Brand.' The Gray Champion,' the ideas cannot be separated from the personalities which express them. If is this which constitutes Hawth orne s lastive power in literature. His observation is interesting to those that care for the things that he describes, his jancy amuses, or charms citen stimulates our ideas. His shert stories are interesting to a student of literature becanse they did much to sive a deñite character to a Userary form which has since bee nue oi great imporance. His rovels are exquisite specimens of what he himseif called the romance, in which the figures ard scenes are laid in a wor'd a littie more poetic than that which makes up our daily surrounding. But Hawthome's really great power lay in his ability to depict life so that we are made keenly aware of the dominating influence of mora! motive and moral law.

Bik'i grafily:-Hawthorne's hife bas been written by G. P. Lathrep (librasy edition ci bis mizks). by Henty James ('Englich Men oi Letters'), and by Moncure D. Conway ('Great Writers' Series'). Consult also: 'Mermorials of Hawth rne.' by Rnse Hawthorne Lathrop. Criticism will be inurd in G. W. Curtis. 'Literary and Sncia. Siu ies' : T. W. Hizginson, 'Slort Sudies of Amurican Authors' : Lesiie Stephen, 'Hours in a. Library': W゙. D. H-wells. 'Ily Litcrary Passicns': J. T. Fields. 'lesterdays With Authers' : R. H. Hutten, 'Essays in Literary Criticism.'

Ediatrd Everett Hale, Jr,
Pr iess rof Englisi, L'nín Collige, Sithenci:0us, K. 5
Hawtey, Charles Henry, Enclish actor. Faywicht, and manager: b. Eion, is:s, son of Rev. John Hawtrey. He was educated at Ruth and Oxford, becoming an actnr when he was iwnery-three years old. His greatest suc-ces- was in 'The Private Secreary.' ad pted ir m V' m Mnser's 'Der Bibliothekar!') first irndrocel in Cambridge in 1883 . and r'ayed E_{4} consecutive times. Other plays in which he $13{ }^{3}$ hen unu- -ally succesifu! are 'Jane.' 'Mr. Mart.n. 'A Message from Mars.' and 'The il n i-m B.ankley:' With the last two flays he severa' times visited the L'nited States. For ceveral years he has controlled the Cornedy and Av nue theaters in Loaden.

Haxo's System, a style nif frtisention init docen by Barrn Frarenis Nicolos Bennt Hax a Frinch military enzineer. emp yed by Nio e $e n$ and put in command at the sicge of
 orthen narapers alone their irnnt, and there a-thos ase mant!nit with eorth. The anerures in ir nt nit the guns onen into eml rasares irmain an extensi n nit the parapet at these r- n - bernad its crdinary rerired pantri in Puan men in the rear the circulation of air a 1 it the inconvenience of corfined smake. Thi methed ef construction is now pretty generally ad pied.

Hay, George, Scottish artist: b. Edin. bursh. At 1 , he entered the architectural proiessi.n. which he afterward abandoned for panature, and has been a prolific genre paintes since he first attracted attention by his ' $\mathrm{Ba}-$ ber" Shop in the Time of Elizabeth) (is63). O:he $w^{-\sigma}$ 'is by him aze: 'A lisit to the Spae-
 a: d 1 Šene at Chatsworth' (IEp).

Hay, John, American statesman: b. Saiem, In!. (ct. Ns: d. rear Newbury. N. H.. I Iu'y Ins. He was graduated ircm Brown Universty in ISE, and on leaving college entered the office of Abraham Lincoln in Springield, Ill,, to study law. In i86a he was admitted to the bar. but did not practise, as in that same year he went with Lincoln to Washincton as one of the President's private secretaries. During the Civil War period he was also Lincoln's adjutant and aide-de-camp, and served in the field for some time under Generais Hunter and Gillmore. He was brevetted lieutenant and lieutenant-colonel.

After the death of Lincoln he was made secretary of legation at Paris. remaining there till $136 \overline{7}$, when he became charse duनuires at Vienna. Aite: holding this post for a vear he resigried and returned to the United States, but was sent almost immediately to Madrid as secretary of legation, where he remained till 18 -o.

Duaing his service abroad he çained a raluable knowledge not only of the language and Iiterature of the chief European nations, but also of ereign diplomacy and politics. On his return to the United States he took up journalism. was is: a time on the editorial staff of the New York Tribune, and published. mostly in its colt:mns, his 'Pike County Ballads)' After about Eve years of service on the Tribunc, he married a daughter of Amasa Sione of Cleveland and went to that city to live. He devoted himself mainly to literary nook, and occasionally took part in politics, writing and speaking in presidential can!paiz:s. In i\$79 he accepted an of̄er irom President Hayes to become first a=sistant secretary of state under Mr. Evarts. He held this position till the end of the Hayes administration in March 188: : then he took charse of the Tribune during Whitelaw Reid's abserce in Europe, and conducted it with marked strecess through the erying period of Gartield's asiacsinati 7 and death.

In Jarch poot President McKinley appnimed him Cnited States minister to Erigland, a: the selection was declared by all without dictinction of party. to be most suitable. In L - -n be was well received, and did much to tring abnut iriertly, understandung between Encland and the Conited Stater. His London experien-e was al:o most valuable training ior the important matition to which he was appointed in August fings. when he becane secretary of atere Viery few if those who had hectl at the ho - if e State Depirment had deate with \rightarrow matit ion -..ne questinnt as Secretary Hay, and n! ins on he had heen m re thoroughly trained dig'nmats. At the tirne of the Roxer outbeak in Coma, he was succecsful in obtaining justice frr Chinese, and preserving the integrity of ite Ch cse Empire. in INog he directed the Un . St es ambassadors at London, Berlin, St. Pet-r-irz. and Paris to propose that each of there z iemmerts make a declaration in favor

JOHN IIAY.
of the "open door" policy in China. They were invited to give assurances: first, that there would be no interfercnce with any treaty port or vested intercst; second, that the existing Chinese customs tariff would be continued without discrimination and administercd by Chinese officials; third, that there would be no discrimination in harbor dues and railroad rates. Italy and Japan were afterward included in the negotiations. No treaties were exchanged, but all the governments approached pledged themselves by definite promises to the "open door" policy. He also negotiated and signed the Hay-Panncefote treaty (q.v.), and several reciprocity treaties, including one with Cuba; gave support to The Hague Conference (q.v.), and induced the Powers demanding indennity from Venezuela to refer the question to The Hague tribunal; and, in tgo3. signed within forty-eight hours of each other a treaty with the Colombian government granting right of way for the Panama canal, and a treaty with Great Britain providing for the submission of the Alaskan boundary question to arbitration. During McKinley's first administration, also, Secretary Hay's position was of peculiar significance, because, owing to the death of Vice-President Hobart, Hay would have become MicKinley's successor had the President died or resigned before the end of the term.

Secretary Hay was known as an author also. his publications includung 'Pike County Ballads' (I871) and other poems; 'Castilian Days.' one of the best books on Spain in the Englisi language, and 'Life of Abraham Lincoln' (1890), written in collaboration with J. G. Nicolay (q.v.), and ranking as the most comprehensive and authoritative biography of Lincoln.

Hay-Pauncefote Treaty, signed is Nov. 1901, which replaced the Clayton-Bulwer Treaty (q.v.) as an Anglo-American agreement of policy regarding an isthmian canal, then supposed to be fixed as across Nicaragua. It was drawn up by John Hay, secretary of state, and Sir Julian Pauncefote, ambassador from Great Britain. Public feeling for some years had been growing so sore over the Clayton-Bulwer Treaty's restriction on the independent action of the United States, that there was grave fear lest Congress might abrogate it by open vioience, a great blow to future amicable action. President Mckinley voiced the feeling by the declaration, in his annual message for 1898 , that the canal had become a national necessity. Fresh negotiations were opened with Great Britain ; that country had no wish beyond that of neutralizing the canal, and sent one of her best diplomats with very liberal instructions, to concede whatever did not nullify that essential principle. The draft treaty was sent to the Senate by the President 5 Feb. 1900. It provided that a canal might be constructed by the United States, or under its direction; slrould be permanently neutralized on the bacis of the Suez Canal agreement - to be kept open at all times, either of war or peace, to all iessels, without discrimination, and no fortifications to be constructed commanding the canal or the waters adjacent. and that other powers should be invited to join in this guaranty of neutrality. The provisions excited intense hostility, and Senator Davis offered an amendment adopted by the committee on foreign affairs. canceling the very features for which it was drawn up, and which made the spirit of the previous
one. It provided that the nentralization clause should not prevent the United States from any measures it thought necdful for its own defense or the preservation of order, declared the Clay-ton-Bulwcr Treaty specifically abrogated, and struck out the third clause inviting the concurrence of other powers. In this form it was ratified by the Senate 20 Dec. 1900, but Great Britain refused to accept the transformed treaty, and it expired by limitation on 5 March rgor. Undiscouraged, the two diplomats set to work on a compromise, which was signed by them 18 Nov. 1got, sent to the Senate by President Roosevelt, and ratified by them I6 Decenber. The chief differences were in dropping as far as possible all specific guaranties, requirements, or prohibitions, leaving its interpretation and application to the chapter of fate and the certainty that the strong hand would decide in any event. The neutrality of the canal is not guaranteed at all except by the terms of the agreement, the Clay-ton-Bulwer Treaty is abrogated by name, and the United States is not forbidden to construct fortifications, nor required to keep the canal open in time of war.

Hay, or Forage, the stems and leaves of grasses and other plants cut for fodder and dried in the sun. In haymaking the object of the farmer is to prescrve the hay for winter use in the condition most nearly resembling the grass in its natural state. Of the various ingredients which compose grass, those portions which are immediately soluble in water are the most fitted for the purposes of nutrition; and therefore the mowing should be done when the plants contain the largest amount of sugar and other soluble matter. During the latter part of the process of fructification, when the seeds have arrived at maturity, the sten and leaves begin to decay; so that if the grass is not cut when in flower, a great amount of nutriment will be wasted. On the third day after mowing, if the weather is fine, the newly-made hay will be ready for gathering into large windrows for carrying and stacking; but otherwise it will have to be put up into large cocks, and the carrying deferred until the next day. It is not desirable that grass should be too rapidly made into hay under a burning sun, as it is liable to scorch and lose its nutritive value. Great care must also be taken to preserve the hay from dew and rain, as water washes away the solnble salts and other matters, and when in the stack will cause fermentation, which, if excessive, destroys some of the most valuable properties of the hay. Some farmers salt their hay in stacking; others do not. Salt is generally commended. A good plan, when the hay haryest has been accompanied by wet weather, is to place a few layers of straw in the stack at intervals to absorb the moisture from the heating lay. On large farms the spreading out of the hay after it is cut down is performed by a haymaking machine drawn hy a horse. which will do the work of twelve or fifteen haymakers, and distribute the grass more thinly and evenly as it crosses the field. It is only for the laymaking of the true grasses, however, that it is adapted, as clover must not be shaken so violently. To be transported to markets at a distance, hay is now compactly pressed into bales by presses worked hy hand or power. In fact baled liay has increased the importance of haymaking, owing to the readiness with which it can be transported by
rail or water. On the Pacific Coast, especially in California, hay cut from alfalia grass is very productive and profitable, and as many as three crops a year are frequently obtained. In the United States 6r,69t,i66 acres of land were utilized in cultivating hay and forage in 1900. the entire crop amounting to Sforit.299 tons, valued at $\Sigma_{4} 8_{i}=56.8 \div 6$.

The average salue per acre of the hay and forage crop is \mathbb{S}. Included in the above estimate were $4,-50-3 \equiv 3$ tons of cornstalks which were cut from fields cultivated mainly for the grain. These figures ior 1000 shor an increase in area since 1889 of $8 .,-\$ 2.369$ acres, or 16.5 per cent. and in production of 12.420 .466 tons or 18.6 per cent.

Oí this total area, 6.7 per cent was devoted to clover. 50.7 per cent to tame and cultivated grasses other than clover, 6.3 per cent to grains cut green for hay. E. I per cent to firage crops. $3+$ per cent to alialta or lucerne. 2.8 per cent to millet and Hungarian grasses, and $2 \Sigma .1$ per cent to wild. salt, and prairie grasses.

The North Central division contained $5-.-8$ per cent of the total hay and forage acreage of the country, the North Atlantic 21.0 per cent, the Western It \& per cent, the South Atlantic 3.5 per cent. and the South Central 6.3 per cent.

The rate of increase in area devoted to hay and forage since 1880 was greatest in the South Central division, being ro3.0 per cent. The Western division shows an increase of $91,+$ per cent, the South Atlantic oi t2.2 per cent, and the North Central of to. 7 per cent. The North Atlantic division shows a decrease of 22 per cent.

The total ralue oi the hay and forage crop of 1000 averaged $\$ 135$ per farm. The average yield per acte, exclusive of comstalks, was t.2S tons, and the average value per ton $\mathbf{\Sigma 6 . 1 1}$. The average yield per acre of the tarious classes was as follows: Forage crops. 2.62 tons: alfalía, of lucerne, 2.49 tons; millet and Hungarian grasses, 1.64 tons: grains cut green ior hay. 1.28 tons: clover, I. 26 tons; tame grasses other than clover, r.14 tons; and wild, salt, and prairie grasses, r.12 tons. In 1902, the United States exported hay to the value of $\$ 2.580 .622$.

Hay Fever, a nervous affection of the mucous membranes oi the eyes, nose. mouth, pharynx. larynx, and bronchi. characterized by a grofuse flow of secretion from the nose, and of tears from the eyes. and accompanied in some cases by asthma. It is induced by the inhalation of the pollen of the Graminec, is prevalent during the hay season, but subsides at its close, and varies in its severity according to certain atmospheric condutions and the amount of pollen in the air. The occurrence of catarrhal symptoms in summer separates it irom an ord:ary "cold in the head : while their combination with difficulty oi breathing prevents it being mistaken ior spasmodic asthma, in which there is seld mo any catarth. There are three enmbining causes of this aftectinu, which is largely nervous: First, a prediep sing cause in some nervous disease, with a probable lesi-n in the fourth sentricle of the brain. Second. defirmity, such as a deviating septum, in the nasal region. Third, inhalation of a special pollen. Remnval to the seashore or the mountains is beneficial in some cases. Arienic, iodides, bromides, and other nerve specifics benefit others. For the asthma, iodide of
potash, 5 grains with 5 minims of tincture of belladonna in syrup of orange-peel should be taken every two hours. Inhalations of nitrepaper, stramonium leaves, etc, with wine of cocoa internally. are also useiul.

These remedies are, however, merely palliative. End scientific men bave been for some time making investigations which may eventually lead to the discovery of a radical cure.

Prof. Dunbar. of Hamburg, who bas been studying the subject for seven years, is one of those who hold out the bope of curing hay iever by a rational treatment.

According to him, the disease is caused by the pollen of grasses. but not by mechanical irritation. He has extracted from the pollen a poison, or toxin. which is insoluble in ether and alcohol, but soluble in water and weak saline solutions, tears, the mucus of the nose and the serum of biood. A solution of this toxin dropped into the ese or nose at once produces the characteristic symptoms of hay iever. The same symptoms in an aggravated form occur when the solution is injected hypodermically.

This discovery suggested treatment by the serum method and Dr. Dunbar set to work to produce a curative serum by inoculating animals with pollen toxin, and a serum was eventually obtained which. when dropped into the eye or nose together with pollen toxin, completely prevented the attack which the latter alone would have caused.

Experiments looking to the cure of the disease began in the latter part of January oi 1903, and there is good reason to believe that the disease can be checked in its earliest stage by applying the serum to the external mucous surfaces. Hypodermic injection of the serum would probably be necessary if considerable quantities of pollen toxin had already passed into the blood.

It is noteworthy that rye, barley, wheat, rice, maize. and every kind of grain and grass which Dr. Dunbar has investigated yield a toxin which causes hay fever, while. on the other hand. he has not succeeded in obtaining such a toxin from any plant not of the grass family (Gromine ๔).

Hay River, a stream which rises in the Rocky Mountains in Athabasca. Canada. and Hows northeast into Great Slave Lake. It is navigable for about 140 miles from its mouth; its entire length is about 360 miles. The two Alexandra Falls (named aiter Princess Alexandra. now Queen Alexandra of England) are found in the upper course; they average about 250 feet in height and goo feet in width.

Hay-worm, the caterpillar of a mediumsized pyralid moth (Pyralis costulis), injurious to clover hay. and to other hay when mixed with clover. le depredations can be prevented by keepans the hay dry and well ventilated. as the insect preferably breeds in moist or matted material weh as is to be found in the lower parts of stacks: here the hay becomez filled with webbines of the "worms" and their excrement, rendering it unfit ise feeding. The webbed material should be burned. and the place thoroughly cleaned.

Hay'den, Ferdinand Vendeveer, American acologist: b. Westield. Mass., ; Sept. 1820; d. 22 Dec isi-. He was graduated from Oberlin Collcze, Ohio. studied at the Albany Medical College, and during the greater part of $1853-62$ was employed in surveys in the nothwest. He
served as surgeon in the Union army during the Civil War, and was professor of mineralogy and geology in the University of Pemnsylvania 1865-72. In $+867-9$ he made a geological survey of Nebraska, and was afterward director of the geological survey of the Territories of the United States, until in 1879 the various national surveys were combined in the geological survey of the United States. Till 1886 he remained at the head of the AIontana division. He published many papers, besides numerous and valuable government reports, and was a member of many scientific socicties at home and abroad.

Haydn, hä’dn (Ger. hīdn), Franz Joseph, Austrian musical composer: b. Rohau, on the borders of Hungary and Lower Austria, 31 March 1732; d. Vienna 31 May 1809. IIe was sent to school at Hamburg at 6, where he learned reading, writing, singing ly note, and to play on such instruments as his childish strengtly would admit of his handling. His voice attracted the notice of the parish priest, who recommended him as a choir-boy to the chapel-master of St. Stephen's in Vienna, and at 8 Haydn was received into the choir. With exception of some Latin and much practical music he seems here to have been tanght nothing; in the theory and science of the art he received but two lessons from his master in eight years. At last in his 16th year, his voice began to break, and he lost his place and took up his abode in an attic in the Austrian capital, intending to live by his art. At that time the first six sonatas of Emmanuel Bach fell into his hands. "I could not leave my instrument," he said in his old age, "until I had played them through; and any one who knows me must perceive how much I' owe to Emmanuel Bach, that I studied him carefully, and comprehended him." After a time he became acquainted with Metastasio, the greatest operatic librettist of the time. The poet had charge of the education of a Signora Martinez, and Haydn was employed to give her elemenary instructions in music. This afforded him an opportunity for mastering Italian, and what was of more immediate importance, procured him board and lodging. Metastasio introduced the struggling young artist to Porpora, a celebrated Italian musician, then in Vicnna. As Porpora's accompanist he attracted the attention of Gluck and other masters, and his prospects from this time onward grew steadily brighter. He was often cngaged to play at the musical entertainments given by the Austrian nobles, was appointed organist of two churches. sang tenor parts in the choir of another, and pupils became rapidly more numerous. He wrote a short comic opera. 'Der hinkende Teufel' (The Limping Devil), which was given three nights with applause, but owing to the satirical character of the libretto was forbidden by the police. Having now the means, Haydn purchased and studied the theoretical works of Emmanuel Bach, Matheson, and Fux. In 1759 Count Morzin engaged him as music composer and director at a salary of 200 florins, with frce lodgings and table with his secretaries and other officials. In 1761 he was appointed "chapel-master" or musical director to Prince Nicholas Esterhazy, in whose service he remained 30 years. Anything like a catalogue of his compositions during this time is impossible; much was destroyed on three separate occasions when his house was burned down, and much was
scattered: but we know of 163 picces for the baryton, an obsolete instrument in size between the viola and the violoncello; about 120 symphonies for full orchestra; more than 100 works of chamber music of the higher forms: and 12 Italian operas performed in his patron's private theatre. On the death of Esterhazy, in 1790, Haydn visited London, where the musical world reccived him with the greatest enthusiasm, and where he stayed is months. Here he produced an opera, the 'Orfeo,' nine symphonies, six quartettes. In sonatas, several songs and canzonets, and the accompaniments to more than roo Scotch songs. He visited London a second time in. 1794, his stay lasting a like period, and on his return to VVienna set albont composing the music of an oratorio, the 'Creation,' the words adapted by Linley from Milton's 'Paradise Lost.' Haydn thought the text too long, and being not thoroughly acquainted with English, had it translated and curtailed by Baron von Swieten. It was produced 19 March 1799: when its author was in his 66th year. It obtained a great success, and he was induced to undertake the music of another text prepared from Thomson's 'Seasons.' This work wants the freslness and vigor of the previous work; which may have resulted in some measure from the barren unpoetical text. Consult: Poln, 'Joseph Haydn' (1875): 'Mozart and 1laydn in London' (186\%); Karajan, 'Joseph Haydn in London' (186I) ; Reissmann, 'Joseph Haydn' (1879).

Haydn, hā'dn, Hiram Collins, American clergyman: b. Pompey, N. Y., iI Dec. 1831. He was graduated from Amherst in 1856, from the Union Theological Seminary in 1859, held pastorates at Meriden, Comn., and Painesville, Ohio, was pastor of the First Congregational Church of Cleveland, Ohio, in 1874-80 and again from 1884. He was also president of Western Reserve University in 1888-90, and published 'Lay Effort'; 'Deatly and Beyond': 'The Bible and Current Thought'; 'The Face Angelic,' and other works.

Haydon, hā'dón. Benjamin Robert, English painter: b. Plymouth 26 Jan. 1780: d. London 22 June 1846. He had a passion for great historical subjects, and covercd immense areas of canvas, but seldom rose beyond mediocrity excepting by exaggeration. His work was, howcver, admired by many of his contemporaries, including the poct Keats. Among his pictures may be mentioned: 'Judgment of Solomon' (1814): ‘Christ's Entry into Jerusalen)' (1820), now in Philadelphia; 'The Raising of Lazarus'; 'The Mock Election in the King's Bench': (Napoleon at St. Helena': 'Alexander and Bucephalus'; 'Alfred and the Trial by Jury'; 'Uriel and Satan'; 'The Burning of Rome,' Sce Life by Taylor (1853).

Hayes, Augustus Allen, American chemist: b. Windsor, Vt.. I8o6; d. Brookline, Mass., 21 June 1882. He began his studies under Dana, and was successful throughout his carecr in improving the resources of applied chemistry to a remarkable extent. He was the first to extract the alkabid sanguinarin from the blood root, Songuinariu Canadensis. He also improved the common method of reducing pig to malleable iron and discovered new processes in coppersmelting. His researcles led him also to a new

HAY FEVER - HAYDEN

rail or water. On the Pacific Coast, especially in California. hay cut from alfalia grass is very productive and profitable, and as many as three crops a year are frequently obtained. In the United States $61,691.166$ acres of land were utilized in cultivating hay and forage in 1900 , the entire crop amounting to 84.011 .299 tons, valued at $\xi_{4} \$ 4.256 .846$.

The average value per acre of the hay and forage crop is \mathbb{S}. Included in the above estimate were 4.550 .353 tons of cornstalks which were cut from fields cultivated mainly for the grain. These figures for 1900 show an increase in area since 18.8 of $8.7+2.360$ acres. or 16.5 per cent, and in production of 12.420 .466 tons or 18.6 per cent.

Oit this total area. 6.7 per cent was devoted to clover, 50.7 per cent to tame and cultivated grasses other than clover. 6.3 per cent to grains cut green for hay. 5.1 per cent to iorage creps. $3-4$ per cent to alialia or lucerne. 2.8 per cent to millet and Hungarian grasses, and 25.1 per cent to wild. salt, and prairie grasses.

The North Central division contained $5,-8$ per cent of the total hay and forage acreage of the country, the $\mathcal{C o r t h}$ Atlantic 21.0 per cent, the Western 11.4 per cent. the South Atlantic $3-5$ per cent. and the South Central 6.3 per cent.

The rate of increase in area devoted to hay and forage since $18 \& 9$ was greatest in the South Ceniral division. being 103.0 per cent. The Westem division shows an increase of 91.4 per cent, the South Atlantic of 12.2 per cent, and the North Central of 10.7 per cent. The North Atlanic division shows a decrease of 2.2 per cent.

The total value of the hay and forage crop of 1900 averaged $\$_{1} 35$ per farm. The average yield per acre, exclusive of cornstalks, was 1.28 tons. and the average value per ton $\$ 6.1$. The average yield per acre of the various classes was as follows: Forage crops, 2.62 tons: alfalfa, or lucerne, 2.49 tons; millet and Hungarian grasses, 1.64 tons; grains cut green for hay, 1.28 tons: clover. 1.26 tons: tame grasses other than clover, 1.14 tons; and wild, salt. and prairic grasses. 1.12 tons. In 1902, the United States exported hay to the value of $\$ 2.580 .622$.

Hay Fever, a nervous affection of the mucous membranes of the eyes, nose. mouth, phargnx. larynx. and bronchi, claracterized by a profusc flow of secretion from the nose, and of tears from the eyes. and accompanied in some cases by asthma. It is induced hy the inhalation of the pollen of the Graminea, is prevalent during the hay scason, but subsides at its close, and varies in it severity accordine to certain atmospheric conditions and the amount of pollen in the air. The occurrence of catarlal symptoms in summer separates it from an cordinary "cold in the head'; while their combination with diffculty oi breathing prevente it being mistaken fir spasmodic asthma, in which there is seldom any catarth There are three enmbining causes of this affection, whicly is largely nervous: 「irst. a predispring cause in some nervens disease, with a probahle lesion in the iourth ventricle of the brain. Second. deiormity, sucla a- a deviating septum. in the nasal region. Third, inhalatio n of a special pollen. Remnval to the seasifere or the monntains is beneficial in snme cases. Arenic, iodides, bromides, and other nerve specifics benefit others. For the asthma, iodide of
potash, 5 grains with 5 minims of tincture of belladonia in syrup of orange-peel should be taken every two hours. Inhalations of nitrepaper. stramonium leaves, etc, with wine of cocoa internally, are also useful.

These remedies are, however, merely palliative :nd scientific men have been for some time making investigations which may eventually lead to the discovery of a radical cure.

Prof. Dunbar: of Hamburg, who has been studying the subject for seven years, is one of those who hoid out the hope of curing hay fever by a rational treatment.

According to him, the disease is caused by the polken of grasses, but not by mechanical irritation. He has extracted irom the pollen a poison, or toxin. which is insoluble in ether and alcohol, but soluble in water and weak saline solutions, tears the mucus of the nose and the serum of blood. A solution of tbis toxin dropped into the eve or nose ai once produces the characteristic symptoms of hay fever. The same symptoms in an asgravated form occur when the solution is injected hypodermicalls.

This discovery suggested treatment by the serum meihod and Dr. Dunbar set to work to produce a curative serum by inoculating animals with pollen toxin. and a serum was eventually obtained which. when dropped into the eye or nose together with pollen toxin, completely prevented the attack which the latter alone would have caused.

Experiments looking to the cure of the disease began in the latter part of January of 1903, and there is good reason to believe that the disease can be checked in its earliest stage by applying the serum to the external mucous surfaces. Hypodermic injection of the serum would probably be necessary if considerable quantities of pollen toxin had already passed into the blood.

It is noteworthy that rye. barley, wheat, rice, maize, and every kind of grain and grass which Dr. Dunhar has investigated yield a toxin which causes hay fever, while, on the other hand. he has not succeeded in obtaining such a toxin from any plant not of the grass family (Graminea).

Hay River, a stream which rises in the Rocky Ilountains in Athabasca. Canada, and flows northeast into Great Slave Lake. It is navigable for about ifo miles from its mouth; its entire length is about 360 miles. The 2 wo Alexandra Falls (named after Princess Alexandra, now Queen Alexandra of England) are found in the upper course: they average about 250 feet in height and goo ieet in width.

Hay-worm, the caterpillar of a mediumsized pyralid moth (Pyralis costulis), injurious 10 clover hay, and to other hay when mixed with clover. 1 ts depredations cari be prevented by keenins the hay dry and well ventilated, as the insect preierably breeds in moist or matted material such as is to be found in the lower parts of ctacks: here the hay becomes filled wilh webbinge of the "werns" and their excrement. rendering it unfit ior feeding. The webbed material should be burned, and the place thoroughly cleaned.

Hay'den, Ferdinand Vendeveer, American genlegist: b. Westifeld. Mass. / Scpt. 1820: d. 22 1)ec iss-. He was graduated from Oberlin College, Ohio suludied at the Albany Medical College. and during the greater part of $1853-62$ was employed in surveys in the northwest. He
served as surgcon in the Union army during the Civil War, and was professor of mineralogy and geology in the University of Pennsylvania 1865-72. In $1867-9$ he made a geological survey of Nebraska, and was afterward director of the geological survey of the Territories of the United States, until in I879 the various national surveys were combined in the geological survey of the United States. Till 1886 he remained at the head of the Montana division. He published many papers, besides numerous and valuable government reports, and was a member of many scientific societies at home and abroad.

Haydn, hā'dn (Ger. hī'dn). Franz Joseph, Austrian musical composer: b. Rohau, on the borders of Hungary and Lower Austria, 31 March 1732; d. Vienna 31 May 1809. He was sent to school at Hamburg at 6, where he learned reading, writing, singing by note, and to play on such instruments as his childish strength would admit of his handling. His voice attracted the notice of the parish priest, whorecommended him as a choir-boy to the chapel-master of St . Stephen's in Vienna, and at $\&$ Haydn was received into the choir. With exception of some Latin and much practical music he seems here to have been taught nothing: in the theory and science of the art he received but two lessons from his master in eight years. At last in his 16th year, his voice began to break. and he lost his place and took up his abode in an attic in the Austrian capital, intending to live by his art. At that time the first six sonatas of Emmanuel Bach fell into his hands. "I could not leave my instrument." he said in his old age, "until I had played them through; and any one who knows me must perceive how much I owe to Emmanuel Bach. that I studied him carefully, and comprehended him." After a time he became acquainted with Metastasio, the greatest operatic librettist of the time. The poet had charge of the education of a Signora Martinez, and Haydn was employed to give her elemenary instructions in music. This afforded him an opportunity for mastering Italian, and what was of more immediate importance, procured him board and lodging. Metastasio introduced the struggling young artist to Porpora, a celebrated Italian musician, then in Viemna. As Porpora's accompanist he attracted the attention of Gluck and other masters, and his prospects from this time onward grew steadily brighter. He was often engaged to play at the musical entertainments given by the Austrian nobles, was appointed organist of two churches, sang tenor parts in the choir of another, and pupils became rapidly more numerous. He wrote a short comic opera, 'Der hinkende Teufel' (The Limping Devil), which was given three nights with applause, but owing to the satirical character of the libretto was forbidden by the police. Having now the means. Haydn purchased and studied the theoretical works of Emmanuel Bach, Mattheson, and Fux. In 1759 Count NIorzin engaged him as music composer and director at a salary of 200 florins, with free lodgings and table with his secretaries and other officials. In 1 1761 he was appointed "chapel-master" or musical director to Prince Nicholas Esterhazy, in whose service he remained 30 years. Anything like a catalogue of his compositions during this time is impossible; much was destroyed on three separate occasions when his house was burned down, and much was
scattered; but we know of 163 pieces for the baryton, an obsolete instrument in size between the viola and the violoncello; about 120 symphonies for full orchestra; more than too works of chamber music of the higher forms: and Iz Italian operas performed in his patron's private theatre. On the death of Esterhazy, in I\%90, Haydn visited London, where the musical world received him with the greatest enthusiasm. and where he stayed 18 months. Here he produced an opera, the 'Orfco,' nine symphonies, six quartettes, il sonatas, several songs and canzonets, and the accompaniments to more than 100 Scotch songs. He visited London a second time in 1794, his stay lasting a like period. and on his return to Vienna set about composing the music of ann oratorio, the 'Creation,' the words adapted by Linley from Milton's 'Paradise Lost.' Haydn thonght the text too long. and being not thoroughly acquainted with English, had it translated and curtailed by Baron von Swieten. It was produced 19 March 1799, when its author was in his 66th year. It obtained a great success, and he was induced to undertake the music of another text prepared from Thomson's 'Seasons.' This work wants the freshness and vigor of the previous work; which may have resulted in some measure from the barren unpoetical text. Consult: Pohl, 'Joseph Haydn' (18 T5) ; 'Mozart and Haydn in London' (I867) ; Karajan, 'Joscph Haydn in London' (1861) ; Reissmann, 'Joseph Haydn' (1879).

Haydn, hā'dn, Hiram Collins, American clergyman: b. Pompey, N. Y., 11 Dec. 1831. He was graduated from Amherst in 1856, from the Union Theological Seminary in 1859, held pastorates at Meriden, Conn., and Painesville, Ohio, was pastor of the First Congregational Church of Cleveland, Ohio, in 1874-80 and again from 188. He was also president of Western Reserve University in 1888-90, and published 'Lay Effort'; 'Death and Beyond'; 'The Bible and Current Thought'; 'The Face Angelic.' and other works.

Haydon, hā'dỏn, Benjamin Robert, English painter: b. Plymouth 26 Jan. 1,86: d. London 22 June 1846 . He had a passion for great historical subjects, and covered immense areas of canvas, but seldom rose beyond mediocrity excepting by exaggeration. His work was however, admired by many of his contemporaries, including the poct Keats. Among his pictures may be mentioned: 'Judgment of Solomon' (1814) ; 'Christ's Entry into Jerusalem' (1820), now in Philadelphia; 'The Raising of Lazarus'; 'The liock Election in the King's Bench'; (Napoleon at St. Helena'; 'Alexander and Bucephalus': 'Alfred and the Trial by Jury'; 'Criel and Satan') ('The Burning of Rome.' See Life by Taylor (r853).

Hayes, Augustus Allen, American chemist: 13. Windsor, V't. 1800: d. Brookline, Nlass., 21 June 1882. He began his studies under Dana, and was successful throughout his career in improving the resources of applied chemistry to a remarkable extent. He was the first to extract the alkaloid sanguinarin from the blood root. Sanguinaria Canadensis. He also improved the common method of reducing pig to malleable iron and discovered new processes in coppersmelting. His researches lcd him also to a new
formula for the production of chloroform. He was icr many years employed by the State of Massachusetts as assayer.

Hayes, Isaac Israel, American arctic exploret: b. Chester County, Pa.. 5 March I832; d. $1 /-\mathrm{Dec}$ ISSI. He was graduated in medicine at the Lniversity of Pennsylvania in 1832 , and began his arctic experiences as surgeon in the second Grinnell expedition sent out under Captain Kane in 1853 , in search of Franklin. Becoming convinced of the existence of an open polar sea, he was enabled to obtain fi:nds for the expedition on which he sailed in the ship United States from Boston in 1860 . He had two astronomers on board and according to their observations reached lat. $81^{\circ} 35^{\prime}$ N... lon. $70^{\circ} 30^{\prime}$ IV., the farthest point north hitherto recorded in any royage. In 1869 he made a royage to Greenland. He received gold medals from the geographical societjes of Paris and London. His published norks comprise (An Arctic Boat Journey' (T860): 'The Open Polar Sea' (IS67) ; 'Cast Away in the Cold' (I868) ; and 'The Land oi Desolation' ($18-2$).

Hayes, Rutherford Birchard, 19th President of the Crited States: b. Delaware. Ohio, 4 Oct 1822 ; d. Fremont, Ohio. I- Jan. I893. His early education was obtained in the common schools of Fremont and the academy at Norwalk. Ohio. At 16 he entered Kenyon College, from which he was graduated in 1842 as the valedictorian of his class. In 1843 . he entered the law school of Harvard University and completed the course in 1845. He was admitted to the bar at Marietta. Ohio, and opened an oftice at Fremont; but. his health failing. he was compelled io so South, establishing himselif later at Cincinnati (1849). His ability and industry soon gained recognition and secured him an excellent practice. He was city solicitor of Cincinnati from 1858 until April 1861. an affice which brought him prominently before the people.

Hayes military career began at the outbreak of the Civil W"ar. when he was elected captain oi a company formied from the old Literary Club oi Cincinnati. A few months later. June is6i, he was appointed major in the 23d Ohio Volunteer Iniantry, of which II: S. Rosectans was colonel and Stanley Jathews. lieutenant-colonel. After the promotion and transier of these two officers, the regiment was put under his command. and ordered at once to llest Virginia: it rook purt in all of the important battles of Sheridan's campaign. In the baitle of South Mountain he was severely wounded in the arm but soon recovered and returned to duty again. At the battle of 11 inchester, he made the famous charge across the swamp and saved the day. Jany fell in that charge, but the day was won. He was no less courageous at Fisher's Hill and Cedar Creck. For meritorions service he was promnted to the rank of brigadier-general of rolunteers and later brevetted major-general. He was nominated for Congrese in his home district at Cincinnati, and in the fall of 1864. elected by a mainrity of $2-400$: in te8n he was re-clected. In 186 ; he was nominated for governor of Ohio, by the Republicane: at that time a strong reaction arainst many of the policies of this party was felt in several States of the North. and the party itself in Ohio was divided into two factions. Hayes was one of the few ren who could unite these factions, and he was
elected by a small majority; and again chosen govemor in 1869. At the close of his second term, he returned to Cincinnati determined to retire irom public life; and in 58,3 he moved to his old home at Fremont. In 5855 , however he was mominated for governor, and was with difficulty induced to accept the nomination. The great issue of the campaign was the money question, which though properly a national issue had been forced into State politics. There were those who believed and publicly contended that all that was needed to make money was the stamp of the government of the Cnited States, that it was not necessary to have back of it any intrinsic value. Hayes, however. stood for "sound money:" and aiter an active campaign won the election. thus becoming governor of Ohio for a third time.

When the National Republican Convention met at Cincimati in 18,6 . a number of prominent leaders were candidates for the presidency. It soon became evident that none of the recognized candidates could be nominated and a "dark horse" was looked for. Thus it happened that Governor Hayes was nominated on the seventr ballot The campaign which followed proved tc be one of the most hotly contested in the history of the nation. The results were uncertain, and for the first time in our national life. a commission was created to pass upon the validity of the certificates which had been retlirned by the different States. This commission refused to go behind the returns of the different governors: and the rotes of the Republican electors were therefore admitted from all of the doubtiul States. This gave Mr. Hayes a majority of one in the electoral college, and he became the nineteenth President of the United States. (See Eiectoril Commission.) Two things were uppermost in his mind: the one. the improvement oi the political condition of the South; the other, "the restoration of the civil service to the system established by Washington and followec̀ by the early Presidents." In both of these, lie was opposed by the machine politicians of his own party. In spite of this opposition, however. the troops were gradually withdrawn from the South and self-government re-established; the people were slow to see the need of civil service reform, and without effective support. the President could do little. He preserved his attitude in regard to sound mones, and by his reto prevented dangerous financial legislation.

At the close of his administration, Mr. Hayes returned to private life. His interest in education was shown by the work done as a member of the boards of irustees of the Ohio Wiesleyan Liviversity at Delaware and the Ohio State Ciniversiry at Columbus. Hayes' Hall at the latter instirution bears his name because of his devotion to the cause of manual training. He was also president of the John F. Slater Educational Fund and gave much time to its proper distribution. As president of the National Prison Reform Association he did much to educate the public to a nore humane way of thinking about the treatment of convicts, many of his public uttcrances have become maxims in prison management, and his work along these lines has been exceedingly valuable and permanent in it sesults.

Hayes River, called Hill River in the upper part of its course. rises near Lake Winnipeg. in Canada, and flows northeast througli

RUTHERFORD BIRCIIARD HAIES，
NIN゙ETEENTH PRESIDEN゙T いF THE CNITED STATEら

Oxford or Holy Lake. Knce Lake, and several other lakes. into James Bay, near the mouth of the Nelson River. The largest tributaries are the Shamattawa and the Fox. The length of the Hayes is about 300 miles.

Hayesine, házin, a hydrous borate of calcium, occurring as a sediment consisting of snowy-white. silky flakes, in the waters of hot springs in Chile. It is a somewhat uncertain species, and is perhaps to be referred in part to bechilite, and in part to ulexite. In the United States, specimens are reported from Bergen Hilh. N. J. (Named in honor of A. A. Hayes (q.v.), an American chemist.)

Hay'good, Atticus Green, American Methodist bishop: b. Watkinsville, Ga., I9 Nor. 1839; d. Oxford, Ga.. 19 Jan. 1896. He was educated at Emory" College, Ga., of which he was president 18-6-90, becoming in the last named year bishop of the Methodist Church South. He became bishop in 1890. He wrote: 'The Monk and the Prince,' a study of Savonarola and Lorenzo de Medici: 'Our Brother in Black' (1881) ; 'Pleas for Progress' (1889) ; etc.

Hay'market Square Massacre, the murder of several policemen in Chicago, + May 1886 , by a bomb thrown by an anarchist. The labor troubles had long been exploited by the "practical" anarchists (with whom the philosophic anarchists disclaim connection), who denounced the efforts for shorter hours and better wages as tending merely to aggravate capitalistic slavery, and urged instead the general seizure of property and the murder of its owners. In February 1886 the Nucormick Reaper Works had been closed on account of a demand for the expulsion of some non-union men. but had reopened. Meantime a great eight-hour strike had left sone 50.000 unemployed workmen in the city. and in view of an almost certain conflict with the police. George Engel proposed at a meeting in Bohemian Hall on 2 Way, and the meeting indorsed, a plan to blow up the police stations. shoot the emerging police. cut the telegraph wires, fire buildings to engross the service of the fire department, and make a general jail delirery, that the prisoners might aid in a social revolution. The next day August Spies and others incited a meeting of the Lumber-shovers' Union, 16,000 or more, principally Germans and Bohemians, to assail the McCormick Works in order to furnish an opportunity for carrying out this plan, though the works had no connection with this union. The mob attacked the works with stones and revolvers, but were driven off. No one was fatally injured, but Spies immediately issued a circular headed" "Revenge!" asserting that six workingmen had been killed, and calling their brethren to arms. He also published a fierce article in his paper, the Arbeiter Zeitung, repeating the falseliood, and declaring that there had been a "massacre" to terrorize the workingmen. who should have had dynamite bombs instead of stones. In the evening a meeting was held at Greif's Hall, at which Engel's plan was adopted. Spies, Albert R. Parsons, Samuel Fielden, and Oscar W. Neebe spoke for a mass-meeting to further the plan above mentioned: at Adolf Fischer's suggestion it was fixed for next evening in Haymarket Square, that the dusk and the room for a great crowd might furnish more confusion and better means of escape. Rudolph Schnaubelt wished to have all socialists
in other cities notified, so that there might be a general revolution. The signal was to be "Ruhe" (Peace), which was printed in next afternoon's Arbciftr Zcitung. Ileantime Louis Lingg and others worked all day preparing bombs, of which the newspaper office was found to be an arsenal. along with firearms, and with a confederate carried a satchel of them to a place where others helped themselves. The air was full of rumors of intended violence. and the mayor (Carter Harrison, Sr.) ordered the police to mix with the meeting, and disperse it if incendiary language were used. and 176 were concentrated at the nearest station. Spies and Parsons spoke first, but the mayor was in the crowd, and they used mild language, till his suspicions were luiled and he left. Then Fielden began a frenzied and bloodthirsty harangue. calling for the "extermination" of the capitalists. The crowd grew so wild that shortly after to the police in four divisions appeared and covered the street. and while Fielden was speaking. Capt. Ward ordered the crowd to disperse. Fielden called out "Whe are peaceable" (curiously like "Peace"), and a bomb was at once thrown into the midst of the police, which exploded and caused frightul carnage killing or mortally :vounding eight policemen and injuring a great number more. The mob instantly followed it up with a volley from rifles and revolvers. proving that they had been expecting the signal. but the police, with a nerve as fine as that of trained soldiers, at once rallied and charged the mob, dispersing it in disorder. Nost of the leaders who had been urging destruction either did not attend or ran away. Of the police, besides those killed, 68 were wounded by shot or bombs, many maimed for life. Spies, Parsons, Fischer. Engel. Lingg, Fielden, Michael Schwab, and Neebe were arrested and tried as accessories before the fact: the first four were hanged II Now I887; Lingg shattered his jaw in prison with a boml and died: Fielden and Schwab were sentenced to prison for life, and Neebe for 15 years. The last three were pardoned by Gor: Aitgeld in 1893, many prominent men of Chicago and throughout the country having petitioned for their release on the ground that the evidence did not connect them with the actual throwing of the bomb, which was true, the evidence pointing strongly to Schnaubelt.

Hayne, Isaac, American patriot: b. South Carolina 23 Sept. 17+5; d. Charleston. S. C., + Aug. 1781. He was a wealthy planter who took up arms after the invasion of the colony by the English forces, and after the capitulation of Charleston was paroled with the proviso that he might not be ordered to bear arms against his countrymen. Ife was summoned, however, to the English standard and refusing compliance as a riolation of the compact, hastened to the American camp. Being shortly after taken prisoner by the English, he was tried and hanged.

Hayne, Paul Hamilton, American poet: b. Charleston, S. C.. I Jan. 1830; d. Grovetown, Ga., 6 July 1886. He was a nephew of R. T. Hayne (q.v.) and was educated at the Charleston College, studied law and engaged in journalism. He served in the Confederate army till forced to resign on account of ill health, and lost nearly all his property through the bombardment of Charleston and the subsequent pillage. With the little left to him he retired to Copse

Hill, Grovetown, Ga.. where he spent the rest of his life, a partial invalid. His verse is marked by grace and melody and he ranks almost the first among distinctively southern poets. He published 'Poems' (1855) ; 'Sonnets and Other Poems' (185\%): 'Legends and Lyrics' (18;2): etc A complete edition of his poems appeared in 1882.

Hayne, Robert Young, American statesman: b. Colleton District, S. C., 10 Nor. IT9I; d. Asherille. N. C., 24 Sept. Is39. After studying law he was admitted to the bar in IS12; and served in the second war with Great Britain. returning at its close to his practice in Charleston. He was a member of the State legislature 1814-18. and became Speaker, was attornex-general of the State in 18IS-22, and a United States senator IS23-32. He vigorously opposed protection, and in 1832 boldly supported in Congress the doctrine of nullification. Daniel Webster's reply to Hayne upon this theme is classed among the former's ablest speeches. In November 1832 South Carolina adopted an ordinance of nullification. in December Hayne was elected governor, and the State prepared to resist the Federal power by force of arms. A compromise, however, was agreed to. and the ordinance was repealed. Hayne was mayor of Charleston in 1834

Hayne, William Hamilton, American poet: b. Charleston, S. C.. t1 March 1856. He is the son of Paul Hamilton Hayne (q.s.). He received a secondary education, from 18,9 contributed extensively to various periodicals, and published 'Sylvan Lyrics and Other Verses' (1892).

Haynes, hānz. Arthur Edwin, American mathematician: b. Van Buren, … 1.. 23 Iay 1849. Aiter graduation from Hillsdale College, Mich. in $18 \pi 5$ became instructor of mathematics and physics there in the same year: and was professor, $185,-90$. He held the same pisition in Michigan Mining Schools in IRoo-3. and was professor of mathematics at the University of Minnesota, iS93-6. and in its engineering department $1896-1901$. He has published 'The Desirability of Uniformity in the L'se of Mathematical Symbols and Terms' : etc.

Haynes, John, American colonial gowerncr: b. Uld Holt, Essex. England: d. Hartford. Conn., I March rost He came with Hooker and his cempany to Boston in 1033. was swon after choven assistant, and in 1635 guvernor of Mas-achusctts. In 1636 he removed to C innecticut, being one of the prominent iounders of that culn ny. In 1639 he was chuse:, it- firit govern r. and every alternate year afterward. which wos as often as the constitution permitted. till his death. He was one oi the five who in t 538 drew up a written ennstitution ine the colony, which was finished in 1033 , the first ever formed in America. and which embodice the main points if all nur snbeequent state constitutions, and of the Federal constitution.

Hays, Isaac, American physician and editı r: h. Phiadelphia = July toco; d. there tz April 1.5\%. He was graduated from the University of Pennsylvania in 1816 and from its medical school in is20. In addition to his lons service as general practitioner he was for 52 years on the staff of the 'American Journal oi the Medical Service.' In 18.43 he established a
monthly, the 'Medical News.' and in 1874 the 'Monthly Abstract of Medical Science.' He edited: "Wilson's American Ornithology" (1828); 'Hoblyn's Dictionary oi Medical Terms' (1846); 'Lawrence on Diseases of the Eye' (184): and 'Arnott's Elements of Physics' (I\&\&). He was president of the Philadelphia Academy of Natural Sciences ($185-0$ - $)$ and connected with many scientific societies at home and abroad.

Hays, William Jacob, American painter: b. New York 8 Aug. I830; d. there I3 March 1875. He studied art under John Rubens Smith, and his 'Dogs in a Field.' exhibited in the Academy of Design in 1850, won him the reputation of an animal painter of remarkable fidelity to nature and spirit in design. He studied the bison in the upper waters of the Missouri and the deer in Nova Scotia. His 'Bison Bull at Bay') and (Herd of Caribou in Nova Scotia' are characteristic pictures.

Hays, William Shakespeare, American song-writer and composer: b. Louisville, Ky., 19 July 1037 ; d. 23 July 190-. In 105; he became a reporter for the Louisville Democrat, subsequently was clerk and captain oi steamboats on the Ohio and Misisisippi, and became marine editor of the Louisville Courier Journal and Times. He wrote and zomposed more than 3 co songs. among them 'Nora O"Neil.' 'Write Me a Letter from Home.' and 'Shamus O'Brien'; and published (Poems and Songs.' His songs sold very extensively.

Hays, Kan., city, county-seat of Ellis County: on Big Creek, and on the Linion P. railroad: about 222 niles west of Topeka. It is in a fertile agricultural region. The chiet manufactures are tlour, dairy products, and machinery. It has grain-elevators, and there are large annual shipments of grain, tlour. and live stock. It is the seat of a Normal school and of a State agricultural experiment starion. The experiment station is connected with the State Agriculitral College. which owns near Hays 2.000 acres ci land. Pop. (1900) 1.1 36 .

Hayti. See Haitr.

Hayward (properly "haw-ward." keeper ui the haws or hedres. and still so pronounced, (r rather as "howard." in country districts: the family name Howard as well as Hayward is from this), a town officer in old New England. whose duty was to keep the cattle on the roads from breaking through the hedges or fences into enclosed grounds and to impound them if they did s. The title came to be generic for a cat-the-ward. and the hog-reeve was frequently kn wn as a 'hey howard.'

Hayward. Wis., town, county-scat of Sawyer County: on the Namakagon River, and in the Chicago. St. P.. M1. \& O. railroad? about 3 tril s by rail somthwest of dahland. It is in the vicinity of the lumber region of the State. and the chief industry is lumbering. It has a gnernment Indian school. a public library, and f.ur churches. Pif. (:g00) $2 . ; 20$.

Hazard, hăz'ard. Caroline, American colleye president: b. Peacedale. R. I., 10 June 1850. She was educated in Providence and in Eurepe. and in ISOP was appointed president of Weliesley College. Mass.., receiving the degrces of 31. A. and Litt. D. from the University of Michigan and Brown U'niversity the same ycar. She is a
granddaughter of R. G. Hazard (q.v.) and has published 'The Narragansett Friends' Meeting in the I8th Century' (1899) ; 'Thomas Hazard: a Study of Life in Narragansett in the 18th Century.'

Hazard, Ebenezer, American author: b. Philadelphia 15 Jan. 1744; d. there I3 June i8if. He was graduated from Princeton in 1762. in 1782-9 was postmaster-general. and from 1791 was in business in Philadelphia, where he assisted in the establishment of the North American Insurance Company. He published 'Historical Collections' (1792-4) and 'Remarks on a Report Concerning Western Indians.'

Hazard, Rowland Gibson, American manufacturer and philosopher: b. South Kingston, R. J., 9 Oct. ISoI ; d. Peacedale, R. I.. 24 June 1888. He was a successful business man, being Jong engaged in the woolen manufacture in Peacedale. He also wrote on philosophical subjects; his works including 'Language, its Connection with the Constitution and Prospects of Man' (1836): 'Essays on the Resources of the United States' (1864) ; 'Causation and Freedom of Wiilling) (I869)

Haze, a condition of the atmosphere which deadens the blueness of the sky, and obscures the sharp outlines of distant objects. Haze is due to fine dust in the air or to extreme heat, the latter being known as heat-haze. In certain parts of China the haze is like a thin fog. Extensive forest fires create a smoke-haze. of a dense, blue color, which drifts like rain clouds hundreds of miles from the scene of the fire. Volcanic eruptions throw fine dust into the air in enormous quantities forming a haze which is carried many hundreds of miles. See Dust.

Hazel-nut, or Filbert, a genus (Corylus) of shrubs and trees of the order Cupulifera, confined to the northern hemisphere. The male flowers are in long cylindrical aments or catkins; and the fruit, a nut, is marked at its base with a large cicatrix. The inflorescences of the hazel are developed in the year preceding their appearance; the male flowers last over the winter. naked: the female inforescence is enclosed in a bud. In early spring the male catkins elongate and produce an abmonce of dry pollen, while the female inflorescences are distinguishable from the leafbuds only by their larger size and projecting red stigmas. The nut is enveloped at the base by a sheath of succulent bracts.

The European †hazel (C. acellana). from cultivation. has produced several warieties. differing in the size, shape, and flavor of the nuts, which are commonly known under the name of filberts. It grows in all situations, and is easily cultivated, but a light and tolerably dry soil is the most suitable. The best mits come from Spain. where they are baked in large ovens before export, in order to ensure their preservation. Other species occur in southern Europe and Asia. The American hazel (C. americana) very much resembles the European, but is lower in stature. It is common in most parts of the eastern United States, but has not been cultivated. A second species (C. rostratu) occurs in California.

The oil which is obtained from hazel-nuts by pressure is little inferior in flavor to that of almonds, and chemists employ it as the basis of fragrant oils artificially prepared and used br
perfumers, because it easily comhines with and retains odors. In many parts of England hazels are planted in coppices and hedge-rows for several useful purposes but particularly to be cut down periodically for charcoal, poles, fishingrods, etc. In brewing, the dried twigs were used as a substitute for yeast when they were soaked in fermenting liquor. Being extremely tough and flexible, the branches are used for making hurdles, crates, and springles to fasten down thatch. They are formed into spars, handles for implements of husbandry, and when split are bent into hoops for casks. Charcoal made from hazel is much in request for forges, and when prepared in a particular manner is used by painters and engravers to draw their outlines. The roots are used by cabinet-makers ior veneering: and in Italy the chips of hazel are sometimes put into turbid wine for the purpose of fining it. Finally forked twigs of the Eurcpear hazel were formerly used by diviners to determine the position of water, gold, etc.

Hazeltine, hā'zĕl-tin, Mayo Williamson, American journalist and literary critic: b. Boston, Mass., 24 April I841. He graduated from Harvard, studied also at Oxford, practised law until 1878 , and was then appointed literary editor of the New York Sun. He became widely known as a critic for his reviews in the Sun, and has published in book-form: 'Chats about Books' (I883); (British and American Education'; 'The American \Voman in Europe.'

Ha'zen, Marshman Williams, American lawyer and author: b. Beverly, Mass., 1845. He was graduated from Dartmouth in 1866, from 1873 was a manager for the publishing firms successively of Ginn \& Company and D. Appleton \& Company, in 1882 was admitted to the Nassachusetts bar, and in 1885 began the practice of law in New York. His publications include, besides a series of 21 school text-books: 'Observation, Thougbt, and Expression' ; a 'History of the United States'; and 'Government.'

Hazen, William Babcock, American soldier: b. West Hartford. Vt.., 27 Sept. 1830: d. Washington, D. C., 16 Jan. 188%. He was graduated at West Point in 1855 , went to the front in the Civil War in command of fist fegiment of Ohio volunteers, which he himself had recruited in 1861, served actively in Ohio. Kentucky, and through the Atlanta campaign and in Sherman's march through Georgia, and in 1865, took command of the Fifteenth army corps. He observed the Franco-Prussian war on French territory, and was at Tiema as military attache to the Tnited States legation during the Turko-Russian war. Appointed chief signal officer in t880, with the rank of brigadier general, he employed scientists as chservers. introduced "cold wave" signals, and suggested the standard-time meridians at present in use. He published: 'The Schonl and the Army in Germany and France, with a Diary of Siege Life at Versailles' (18 ; -2) : 'Our Barren Lands') (1875) ; and 'A Narrative of Military Service' (1885).

Ha'zleton. Pa., a city situated in Luzerne Connty: on the Pemnsysania and the Lehigh Falley R.R.s: ahout if miles sonth of Wilkes-Barre. The city was settled in 1820 , ircorporated as a borough in 1840, and chartered
as a city $1 n$ I8go. It is situated in the anthracite coal region, and its industrial interests are largely connected with the mining and shipping of coal. Its chief manufactures are foundry and machine-shop products. carriases. lumber, beer, baking-pans, cattle-powder. cigars, coffins and caskets. 1t has knitting mills, silk mills, three daily and eight weekly newspapers. It contains a State hospital for miners, 30 churches, three banks, a convent, high school, and Saint Gabriel's Academy. The government is vested in the mayor. who holds office three years, and in the council. The subordinate officials are appointed by the mayor. subject to the approval oi the council. Some are elected by the council. Pop. (1890) 11.8;2; (1900) 14.230.

Hazlitt, hăz'lit, William, English critic and essayist: b. Maidstone. Kent, io April $17 / \mathrm{S}$; d. Westminster is Sept. IS 30 . In i793 he became a student in the Unitarian College at Hackney: He devoted more time. however. to literature and art than to theology, and upon leaving college resolved to become a painter. He painted portraits with only tolerable success, and finally renounced art, and in 1805 opened his literary career with an essay 'On the Principles of Human Action.' in which much metaphysical acumen was displayed. In 1811 he settled in London. deriving his principal support from his contributions of political articles and theatrical and art criticisms to the nellspapers. and his occasional lectures and publications. In 8 It3 he delivered at the Russell Institution a course of lectures on 'English Philosophy,' and subsequenty delivered courses of lectures on the English poets generally, the comic pocts. and the Elizabethan poets. Later in life he contributed to the 'Edinburgh Review' and some smaller magazines. He was a good art critic. but his tendency to prejudice and paradox, and his almost contemptuous regard for the productions of contemporary genius, render him a less safe authority than bis knowledge and talents would lead us to expect. It is as a literary critic and essayist that Hazlitt achieved his chief success. Saimsbury has said that "long hefore Sainte-Beuve. Hazlitt had shown a genius for real criticism." He has probably not been surpassed by any English critic. Yet his reengnition, in view of this fact, has been singularly inadequate to his merits. llis judgment was, it is true. often marred by preiudice and by his maradoxes. But in the main it was discriminating and duly appreciative. His equipment.misht not now he thonght adequate but it was almnst certamly in most revpect cuperior to that ni his Cenorgian contemporaries. He was able to write interestingly ni a wide range ni topics. He was bitterly attacked, after the eu-tom of the times, by writers. particularly journaliste, of adverse political views. But as a controversialist he was more than the equal of any of thece. hold in epigram and iawective. His style has been highly praised for its combinatmon of vigor and case, its rhethm, its clearness, and the aptness of its epithets. Not only-in critical analysis, but as well in narrative and description it i execllent. Hazlitt also lectured in 18 ie 21 at the surrey Institute. Northeote states that had he eontinued his art work he wonld have heonme a great painter. The best of his essays for the "Foxaminer' appeared in 1817 under the title 'The

Round Table.' The 'Spirit of the Age, or Contemporary Portraits,' also a significant work and by some critics considered his best, was published in 1825. Further essays are grouped in 'The Elain Dealer' and 'Sketches and Essays.' Among other well-known works of Hazlitt are: 'Characters of Shakspere's Plays' (181%) ; 'A View of the English Stage' (1818): 'Lectures on the English Poets' (18i8); 'Lectures on the English Comic Uriters' (IS19): (Lectures on the Elizabethan Age) (1821) : 'Life of Napoleon Bonaparte' (4 vols. 1828). There is an edition of the 'Works' by Henley (1902) ; and a 'Life' by Berrell (1902).

Hazlitt. William Carew, English author: b. London 22 Alug. 1834 . He is a grandson of William Hazlitt (q.s.). He was at first a civil engineer. relinquished that profession for journalism, and finally took up that of literature. -tmong his works are: 'History of the Venetian Republic' (1860): 'Bibliographical Collections and Notes' ($18,6-92$): ‘Dlemoirs of Wi)liam Hazlitt' (1 89-) : 'Fout Generations of a Literary Family.' (1897): 'Leisure Intervals,' poems (1897): 'Ourselves in Relation to a Deity and a Church' (1897) : 'Coins of Europe' (1893-7).

Hazor, or Chazor (Heb.. enclosure), the name of several places in ancient Palestine, the best known of which was the seat of Jabin. a Canaanitish king of considerable power, who, with his allies. was defeated by Joshua (Josh, xi. 1-13). Though it recovered and oppressed Israel, it was conquered a second time by Barak (Judges iv.) and remained in the possession of Israel until the invasion of Tiglath-pileser. Solomon made it a northern fromtier fortress (I Kings ix. 15). Its site has been variously placed. by many at Tell Hara. $2^{1 / 2}$ miles southeast of l'adesh. Consult the "Journal of Sacred Literature) for 1866 , p. 245.

Hazzard. David, American politician and jurist: b. Rroadkiln Neck, Sussex County. Del., IS May 1; \& i d. S July IS6. He served as an ensign in the War of $18 t 2$, was elected governor on the American Republican ticket in 1829, and subsequently was State senator and an associate judge. During his administration as governor, a constitutional convention was held at Dover, Del.. by which among varions revisions, the governor's term was changed from threc to four years. Hazzard was a member of the constitutional convemion of $\mathrm{r}_{\mathbf{5}} \mathbf{5 2}$.

Head. Barclay Vincent. English numismatic scholar: h. Ipswich. Suffolk, 2 Jan. 1844 . In 1864 he became an assistant in the British Museum, where in 1803 he was made kecper of the department of coins and medals: He was also appointed joint-editor of the 'Numismatic Clironicle.' His chief wark is the 'Historta Nummorum) (i8 X_{i}), a valuable study. and the standard one in its department. Among iurther pulblicatinns by him are: 'History of the Coinage ni Butcotia' (IRRt), and 'Guide to the Coins of the Ancients' (I8Si).

Head. Sir Edmund Walker, English colnnial administrator and author: b. near Maidstnne. Kent. 1805: d. London 28 Jan. 1868. He was educated at Oriel College, Oxford, became a fellow of Merton, studied law, was a poor-law commishoner in 18.41 , and in $1847-54$ lieutenantgovernor of New Brunswick. IFrom I $85+$ to his
retirement in i861 he was governor-general of Canada. During his admunistration Ottawa was chosen as the capital of Canada, the Victoria bridge at Montreal was constructed, and the seigniorial tenures (see Canada - Selgatorial Tentre) and the clergy reserves (see Canada - The Clergy Reserves) were abolished. In 1863 he was appointed a civil-service commissioner and in 1867 a priwy councillor. He was an art critic of some importance, and published a 'Handbook of Painting of the German, Dutch, Spanish, and French Schools' (18.8), and other works. His poetical contributions to 'Fraser's Magazine' appeared in 1808 in book-form.

Head, Sir Francis Bond, English colonial administrator and author: b. near Rochester, Kent, I Jan. I793: d. Croydon, Surrey, 20 July 1875. Educated at Woolwich, he became first lientenant of engincers in I8ir, was at Waterloo and at Fleurus, retired from the army in 1825, and went to South America as a prospector in gold and silver mines. Of some of his experiences there he gave an account in 'Rough Notes of a Journey in the Pampas and Andes' (1828) In 1835 he was appointed lientenant-governor of Upper Canada. His administration was a decidedly unfortunate one. L'nfamiliar with the political status of the country, he opposed the union of the provinces, and endeavored to conduct the govermment without the assistance of a council. This state of affairs may be regarded as the chief cause for the part taken by Upper Canada in the insurrection of 1837 . His numerous publications include: 'Bublles from the Brunnen of Nassau' (1833): 'The Defenceless State of Great Britain' (I850) ; 'The Horse and His Rider' (1860): 'The Royal Engineer' (1869).

Head, Sir George, English writer of travels, etc.: b. Higham Pariṣh, Kent. 1-82; d. 1855. He held varions posts in the army, and was present at most of the great battles of the Peninsular. In I8it he proceeded to Canada to be chief of the commissariat of a proposed navy on the Canadian lakes, and subsequently published his experiences in 'Memoirs of an Assistant Commissary-General' and 'Forest Scenes and Incidents in the Wilds of North America.' He was knighted in 1831 by William IV. He also wrote 'Rome, a Tour of Many Days': 'A Home Tour Through the Manufacturing Districts of England,' and 'A Tour Through Various Parts of the United Kingdom' and other works.

Head, Natt, American politician: b. Hookset, N. H., 20 May 1828; d. there 12 Nov. 1883. He became a railroad and general building contractor, sat in the State legislatures of 1861 and 1862, was adjutant-general of the State in 1864jo, and in that capacity published a four-volume military record of New Hampshire during the Civil War. In 1876 and 1877 he was elected to the State senate and in the latter year was its president. He was governor in 1870-80.

Head, the anterior part of the body of an animal when it is marked off by a difference in size, or by a constriction. The presence or absence of a head was formerly much used as a character in classification. But this line of classification is artificial. The mouth and principal nervons organs are the guides to the anterior end of the body, where the head, when recognizable, is situated. In the protozoa, infusoria, and ceelenterates, such as the hydra and
corals, there is no nervous ganglion, and the mouth is not surrounded by special structures. In the inferior vermes the anterior end becomes marked by the presence of ganglia. The socalled head of parasitic animals, such as the tapeworms, is only the end of attachment, but neither mouth nor ganglia exist in it. In the polyzoa, lampshells, ascidians, and lamellibranch mollusks mouth and ganglia exist, but they are not surrounded by special structures. But in the worms proper, the articulated animals, the land and fresh-water gasteropods and tie cuttlefishes a head proper is found. That is, the mouth and the anterior nervous ganglia are placed in a segment of the body which, by structure, is different from the rest. Thus in the worms and articulated animals some of the rings or articles of which the body is made up are fused together, the appendages being not walking limbs, but modified into jaws or jawlike organs. Thus the common shoreworms possess a structural head, though it is not apparent. The head is best defined in the insects. The snail's head has its cavity shut off by a diaphragn from the rest of the body cavity. The cuttlefishes have, in addition, a remarkable cartilaginous box, which, like a skull, protects the ganglia and gives support to the muscles. The head of the vertebrated anima!s presents a regular series of increasing complexity from the amphioxus upward. In that fish the most anterior part of the nervous cord is lodged in a canal scarcely distinct from that which contains the rest of it. Ascending in the series, it becomes evident that as the anterior nervous mass enlarges, and its ganglia increase in complexity; the anterior vertebra change their character; as the brain becomes specialized, so does the brain-case or skull. In man the brain attains its highest development and the head its greatest complexity; the difference between skull and face being now most pronounced. The rertebrate theory of the skull, first propounded by Goethe, is now accepted to this extent, that the skull or cranium consists of three vertebre, which are recognizable in the fish. and that the facial bones are not vertebre, but developed from cartilage which did not form an original part of the vertebral colume. A vertebra consists of a body or centre, from which two processes arch upward and close in the spinal canal with its contents, the spinal cord. The posterior cranial vertebra is the occipital, consisting of a centre, two lateral pieces, and a superior, the next is the parietal, of which the basisphenoid is the centre, and the great wings of the sphenoid and the parietals the lateral arches; the most anterior is the frontal. with its centre, the presphenoid. and its arch, formed by the orlital plates of the sphenoid and the frontals. The centres of the spinal vertebre arc ossifications around a fibrocartilaginous rod, the charda dorsalis, which ends in the bacisphenoid. So far spinal column and skull have a common base; but the spinal vertebree were preceded by and are in fact modifications of primitive vettcbra, and no representatives of these appear in the development of the skull. It is therefore open to question whether the three divisions just mentioned are really vertchre, or should not rather be called cranial segments. There is the more reason for this that in fishes the basisphenoid and pre-
sphenoid are represented by a single bone, the parasphenoid, which underlies the skull, but disappears in the higher vertebrates, and that the presphenoid is not properly connected with the chorda dorsalis, but rather belongs to the series of facial bones. The pituitary body whick projects irom the lower surface of the brain lies in front of the end of the chorda dorsalis: from this latter rod and its surroundings a plate of cartilage passes forward on either side of the pituitary bods, and these (the trabicula) meeting in iromt of that body, form the cartilaginous axis around which the vomer, ethmoid, and other facial bones are developed, while the presphenoid is an ossification in this axis just where the iwo portions meet in front of the pituitary. The sense organs. the ear and the eye, are. so to speak, lodged in capsules of bone which are inserted, the ear between the occipital and parietal, the eye between the parietal and fromtal segments. They are accidental, not essential parts of the cranium. The hyoid apparatus and the lower and upper jaws are developed irom the cartilaginous walls of the embryonic skull, and the jarrs come in a secondary manner to take part in the composition of the face. (See Respiratory Orgays.) The increasingly globular form of skull in the vertebrates is due to the greater increase of the cerebral hemispheres relatively to that of the base of the brain and axis of the skull: hence the brain comes in man to overhang the iace. Ot course it is to be remembered that while in the vertebrated animals the head is divided by its axis (commencing at the middle line of the upper jaw, and passing backward through the hasisphenoid to the vertebral centres) into an upper chamber, lodging the brain, and a lower. lodging the first part of the alimentary canal: in the lower animals the cavity is a single one, the cesophagus piercing the nervous system so as to reach the suriace of the body, and thus coming to be surrounded by a pair of ganglia above and a pair below, with the filaments connecting these ganglia. In the vertebrate the head is curved downward, the basisphenoid heing the pirot point, so that the mouth is pushed to the lower surface: in the lower animals the under suriace oi the bod: carves upward, so as to carry a part if the reervous sytem past the mouth toward the upper surface. The eves and feelers ri a crab are in fact modified limbs which are thus carFied upward: the jaws and sense organs of a vertebrate are entitely distinct inno the limbs and oher appendages of the trunk.
grants arriving at New York, the Eunds going to the support of the State board of immigration. A test of the legality of the tax being made in the courts, a decision was rendered that the New Iork statute was yoid because it infringed on the prerogatives of national government. Subsequently the act of Congress imposing the tax was questioned in the United States Supreme Court, and a decision affirming the constitutionality of the law was made. The national act provides that the tax shall be paid by the masier or owner of the vessel bringing the immigrants, to the collector of the port. and by him turned over to the treasury of the United States, to be used by the secretary to deiray the expenses of regulating immigration and to relieve immigrants in distres. See Imatgration.

Headache, pain in the head. the result of a variety of causes. It may arise from overfulness of blood. from deficiency of blood or debility, irom excited or in Eammatory action, irom the nerves, etc. If a person who suffers irom headache is of iull habit generally ; if he is sleeps, dull, the wessels oi his face full: overiulness is the probable cause, and reduction of the diet. with occasional doses of saline medicine, exercise, bathing the head with cold water, will be beneficial. If the urine is deficient, cream of tartar in some form may be taken with adrantage. The ahove species of headache may also be occasioned by whatever impedes the circulation, such as affection of the heart or liver: when the latter is the case. the pain is frequently most severe at the back of the head. When. on the other hand, headache occurs in a person of weak constitution; When it is produced or aggravated by mental over-exertion; when there is listlessness both of mind and body rather than oppression - the face pale. the pulse weak- debility is the probable cause. This form of headache is often accompanied with indigestion. and is common in students and anxious men of business. Anything like abstraction of biond will certainly prove injurious. Exercise, attention to the state of the bowels, care in diet, resi, and change c: scene and air, will be most useiul. Headache irom excitement or intlammatory causes is such as occurs in the first stages of inflammation oi the brain and in some forms oi itvers. or it iollows violence to the head. Oi al! kinds of headache that arizing from some diander of the stomach is. however. the mast a mom. The presence of indizestable food in the stomach almost certainly causes dull pain in

IIAGRIN, ILLL'ミTRATING G ETHE'ミ THE \because Y OF THE IERTEDRITE HEAD.

Head-hunting. See Draks.
Head Money, an immigration tax of 50 rents levied by act of Congress 3 Aur is 8 nn every i reizncr brought to the United States. Betore the passage of this act the State of New łink levied a "head tax" on all immi-

the \hat{i}-rehead; and too acid a condition of the contents ui the organ produces the same effect. The vari us symptur ms of indizestion will generally point to the cause. In the first some aperient, such as a saline draught. will probably remove the disorder. When acid eructa-
tions, heartburn, etc., indicate the presence of superabundant acid, a dose of soda, potash, or magnesia will correct the cause. There is a form of headache which consists in throbbing and pain of one part, or sometimes over one side of the head. This is called hemicrania (the migraine of French and the megrim of old English writers), and is often of a distinctly intermittent character. For its permanent cure quinine is in conmon use; a mustard poultice on the nape of the neck is also of service; and antipyrin has proved of value in affording relief. It should be well understood that the habitual use in headache of strong and swiftly working drugs is likely to undermine the nervous system, and increase liability to attack. Exercise, moderation and cheerfulness are the best preventives.

Headley, hěd'lĭ, Joel Tyler, American historian: b. Walton, N. Y., 30 Dec. 1813; d. Newburg, N. Y., 16 Jan. 1897 . Graduated from Union College in 18.46, he took a course in theology at the Auburn Seminary, was pastor at Stockbridge, Mass.. and in 1846 became assistant editor of the New York Tribunc. In 1856-7 he was sectctary of state for New York. His works, written in a popular vein, had great currency in their day, and include: 'Napoleon and his Marshals' (1846): 'Washington and his Generals' (1847) ; 'The Adirondacks' (1849), said to be the first book to advocate that region as a health-resort; 'Grant and Sherman, their Campaigns and Generals' (1865) ; and 'The Great Rebellion' (1864).

Headley, Phineas Camp, American Congregational clergyman: b. Walton, N. Y., 24 June 1819; d. Lexington, Mass., 1903. He was a brother of J. T. Headley, the historian (q.v.). He was admitted to practice at the bar in 18.47 , but studied theology at Auburn Seminary, held pastorates in various Presbyterian and Congregational churches, and contributed to the New York 'Observer' and Tribune, and many other newspapers and magazines. Among his works are: 'Women of the Bible' (1850) ; biographies of the Empress Josephine (1851), Kossuth (I852), Lafayette (1853), Mary, Queen of Scots (1856), Ericsson (1863), Farragut (186.4), and others: 'Half-Hours in Bible Lands' (1867): 'Court and Camp of David' (1868) ; and 'Public Men of To-day' (I882).

Healy, George Peter Alexander, American

 painter: b. Boston 15 July 1808 ; d. Chicago 24 June 189. He went to Paris about 1836, where he remained several years, alternating his residence there with occasional visits to the United States. Among works executed by him abroad are portraits of Louis Philippe, Narshal Soult, and Gen. Cass. At home he painted Calhoun, Webster, Pierce, and other prominent American statesmen. He occasionally produced large historical pictures, of which 'TVebster's Reply to Hayne," illustrating a well known scene in American legislative history, completed in I85I, now hangs in Faneuil Hall in Boston. At the exluibition of Paris in 1855 he exhibited a seties of 13 portraits and a large picture representing Franklin urging the claims of the American colonics before Louis XV1, for which he received a medal of the 2 d class. Portraits by him of Buchanan and Lincoln are in the Corcoran Gallery at Washington.Healy, Timothy Michael, Irish political leader: b. Bantry, County Cork, Ireland, 17 May 1855. He was elected to Parliament for Wexford in 1880, County Monaghan in 1883 , South Londonderry in 1885, North Longford in 1887, and County Louth, North, in 1895 . In 1884 he was called to the 1rish bar: He became known as a leader of the l rish Nationalist party, was a founder of the Dullin 'National Press') (later combined with? the 'Freeman's Journal'), and was repeatedly in difficulties because of his public utterances on political matters. He made a lecture tour of the United States with Dillon and Parnell in 1880, and in IS8I participated in the Land League convention at Chicago, when $\$ 250,000$ were contributed to the Irish cause. The 'Healy Clause' of the Land Act of I881, providing that no tenant should pay rent on improvements made by him, was introduced by him. He wrote 'A Word for Ireland' (1886).

Heap, David Porter, American engineer: b. San Stefano, Turkey, 24 Marcli 1843 . He studied at Georgetown (D. C.) College, was graduated from the United States Military Academy in 1864, served in the Civil War with the engineer corps of the Army of the Potomac, and was brevetted captain for his services. In I895 he attained the grade of lieutenant-colonel of engineers. He was for years employed in the construction of fortifications and the improvement of harbors, and in 188I was military representative of the United States at the Paris congress of electricians. In addition to a 'Report on the International Exhibition of Electricity at Paris' (1884), he published: 'Ancient and Modern Light-Houses' (1889) ; 'Electrical Appliances of the Present Day': 'Engineer Exhibit, Centennial Exhibition' (1882); and 'History of the Application of Electricity to Lighting the Coasts of France) (1885).

Heard, Franklin Fiske, American jurist: b. Wayland, Mass., If Jan. 1825 . He was graduated at Harvard in 1848; was admitted to the bar in 1850; and practised in Middlesex County and later in Boston. He attained a reputation as an authority on pleading, and in 1861-6 was an editor of the 'Mlouthly Law Reporter.' His publications include: '1,ibel and Slander' (1860) : an edition of (Stephen on Pleading) (1807) ; standard books on 'Criminal Pleading' (1879) and 'Civil Pleading' (3880); 'Heard on Criminal Law' (2d. ed 1882) : 'Shakespeare as a Lawyer" (I883): ‘Precedents of Equity Pleadings) (1884); (Precedents of Pleadings in Personal Actions in the Superior Courts of Common Law' (IS86).

Hearing, one of the five senses, the plyysical organ of which is the ear. (See Ear, Acoustics.)

Hearn, hérn, David William, American Roman Catholic clergyman and educator: b. Boston, Mass., 21 Nov. 1861. He was graduated at Boston College in 1880; took postgraduate courses in literature, science and philosophy for five years, and theological courses for four: entered the Society of Jesus, and was ordained priest of the Roman Catholic Church. He was successively professor in Georgetown University, vice-president of Boston College, and vice-president of the College of Saint Francis Xavier. New York. In Igoo he became president of Saint Francis Xavier.

Hearn, Lafcadio, American author: b Santa Jlaura (Leucadia). Ionian lslands, 27 June toso: d. Tokio, Japan, 20 September tgot. Fducated in England and France, he came to the Cnited States in IN69. Was a journalist in Cincinnati and New Orleans, in 185-0 was at Saint Pierre, Martinique. French IV est Indies, and in 1890 went to Japan. He became a Japanese subject with the nams lakumo Koizumi, and was appointed lecturer in English literature at the Imperial C"niversity of Tokic; His 'Stray Leaves from Strange Literature' (1884), and (Some Chinese Ghosts' (188-), were succeeded by 'Chita: A Memory of Lost Island' (1889), story oi the destriction oi "L'lle Derniere." once the watering-place of Lousiana fashion, which attracted attention by its descriptive powers: and 'Two lears in the French West Indies' (1800): which gained new interest through the Martinique disaster of 1902. Among his further works. dealing almost exclusively with things Japanese and rcrealing a thornugh comprehension of and sympathy with the art, myth, tradition, and philosohy of the Orient, are: 'Out of the East' (1894): ‘Glimpses of Unfamiliar Japan' (ISO5): 'Kokovo' (ISo6): 'Gleanings in Buddla-Fields' (1897): 'Exotics and Retrospections' (ISoS); and 'Kottō. or Japanese "Curios' (tgoz).

Hearst, Phoebe Appersin. American

 philanthropist: b. ISfo. She was for a tine a teacher. and in $186 t$ married George F. 1 earst of California. She has been active in charitable and philanthropic enterprises and has given largely, especially to educational institutions. In San Francisco she has established kindergarten classes for the children of the poor. and a mantual training school, and has organized a rumber of working girl's clubs. She lias also given money to luil! a National Cathedral Sclinol for girls: has made donations to the American University at Washington: has cstablished and given largely to public libraries in the mining towns of the West: and maintained a schonl for mining engineers at the Cniversity of California. In 1806 she offered to pay the expenses of an international competition of atchitects to obtain a suitable plan for a campus and buildings for the L'niversity of Califormia. nud to erect two buildings in accordance with this plan. Sce Califorsila, T'xiverstty of.Hearst, William Randolph. American 1:cw:paper publisher: b. San Frantisco. He was graduated from IIarvard. and on leaving college tonk charge of the publishing of the San Francisco Eramizer. formerly owned by his father. Semator Hearst of Califormia. In ifighe hought the New lork Journal, the name ni the morning edition of which he later changed to the I merians: in tnoo he started the Chicago Imeri-an: in 100t the Boston American and the Lns Angeles Fixaminer. In 1902 he presented the Grech Theatre to the Unisersity of California. He representecl the tht Congressional District (Sew Fork) in the 5 Sth and soth Congresses. In 1905 he was defeated for the nffice of Mayor of Sew l'ork City and in 1906 for Governor.

Heart, The. The lieart and the bloodvessels constitute the mechanical means for maintaining the circulation of the blood. In many respects this system is the most readily understood of any in the body, in that it is
largely mechanical. There are, however, certain factors not existing in an ordinary system of hydratlics which. while essential to the proper performance of the iunction in the human body. render the understanding of the subject more difficult. The heart is merely a pump, or rather two pumps iused, for convenience, into one. It derives its power through contraction of the red muscle which forms its wall. It is hollow, alternately filling and emptying, receiving blood from one set of tubes filling its cavities, then emptring its contents into ctioer tubes by contraction of its walls and momentary obliteration of its cavities. The action is analagous to that of the ordinary bulb syringe. The proper direction of the flow of the blood is maintained by valves. similar in structure and like in function to the values in an ordinary pump.

The heart is about the size of the closed fist. The average dimensions of the adult organ are: length $85-90$ millimetres in the male. $80-8_{5} \mathrm{~mm}$. in the iemale; breadth. 92-105 mm. in the malc, $85-92 \mathrm{~mm}$. in the female : thickness, $35-36 \mathrm{~nm}$. in the male, $30-35 \mathrm{~mm}$. in the female. The average weight in men is 300 grams: in women $2=0$ grams. The heart is cone-shaped with the base uppermost. It lies within the cavity of the bony chest. a small portion of its anterior suriace being in contact with the chest-wall, the rest covered by the overlapping lungs. The apex of the cone, or "apex." as it is rechnically called. is in the space between the fifth and sixth ribs on the left side. about 2 centimetres to the inside of a vertical line drawn through the left nipple. The heart reaches no lower and no farther to the left than this. From this point it reaches upward to the second rib, two thirds of its mass being to the left of the middle line of the body. one third to the right. Its long axis is neither vertical nor horizontal but is inclined to an angle of about 30 degrees to the horizontal. hence 60 degrecs to the rertical. Therefore it is nearer horizontal than vertical. The position of the apex of the heart can be readily determined by placing the finger in the interspace mentioned and feeling the beat. In the healthy individual when not under excitenment of the emotions or exercise no motion of the heart can be felt by the finger upon the chest-wall except at the apex.

Of secondary importance only to the heart is the system oi tubes conveving the blood: arteries, capillaries. veins. The arteries are thick-walled. elastic tuhes, dividing and subdividing into smaller tubes. but the total sectional arca increases as the vessels become smaller in diameter. These end in a fine network of very small, thin-walled tubes called from their rescmblance in size to hairs. capillaries. These in turn become veins, enlarging their diameter and diminishing their number, thus reversing the process in the arteries. Veins have very thin walls in proportion to the diameter of the bore and are provided with ralves to prevent a back flow of blood.

This arrangement of the blond-ressels may be likened to two cones, base to base. one apex representing the largest artery leaving the heart, the other apex the largest vein entering the heart, and the bases of the cones the wide capillary system. The flow of blood will be naturally fastest in the larger arterics and veins, slower in the smaller arteries and veins, and slowest in the capillaries, due to the fact alroady men-
tioned that as vessels divide although the branches are smaller in diameter the conbined sectional area is larger. The condition is quite like that of the flow of water in a river, the current being swiftest where the banks approach cach other, slowest where the river widens into a lake or pond, again to become swifter as the width of the stream lessens.

The two pumps which compose the heart as a single whole are called the right heart and left heart. This designation takes its origin from the fact that one is more to the right side of the body, the other to the left side. Ordinarily the two parts are spoken of as the riglit side and the left side. The left side is by far the more powerful pump, having a very thick wall, its function being to force the blood under considerable pressure through most of the body, the so-called systemic circulation. The right heart has merely to force the blood through the lungs, a relatively short distance and under low pressure.

Each half of the heart has two cavities, a thin-walled one called the auricle for receiving the returning blood poured into it from the veins, and a thick-walled one called the ventricle which receives the blood from the auricle through an orifice guarded by a valre. The function of the ventricle is to force the blood by contraction of its muscular wall into the arteries through a connecting orifice also guarded by a valve. These four chambers are called the tight auricle, right ventricle, left auricle and left ventricle. The walls of the auricles are composed of red muscle and are quite thin, the work required of them being but slight, that is, they force the blood under slight resistance. The walls of the ventricles are also made up of red muscle fibres, the outer surface being smooth, the inner surface crossed by a network of beams of muscle called the trabeculie. The thickness of the wall of the right ventricle between the trabecula is from 2 to 3 millimetres; of the left ventricle 7 to 10 millimetres. The capacity of each ventricle is about 100 cubic centimetres, that is, it forces out about this amount at each contraction.

The function of the valves is to permit the flow of liquid in one direction and to prevent its flow in the opposite direction ; in other words, their presence enables a pump to maintain a flow of liquid in one direction with little or no back flow.

The heart has four valves, one between each auricle and ventricle, and one in each ventricle at its point of connection with its outgoing artery. The valve between the auricle and ventricle of the left heart is called the mitral, from its resemblance to a bishop's mitre; that between the right auricle and right ventricle is called the tricuspid from its having three folds or cusps. The left ventricle is connected with the systemic circulation by the great artery called the aorta, its guarding valve is called the aortic valve. The right ventricle is connected with the circulation through the lungs by the pulmonary artery, its valve is called the pulmonic valve. The aortic and pulmonic valves are each composed of three cups of thin, flexible tissue fastened to the inner wall of the bloodvessel, their edges hanging free, and capacious enough to meet in the middle of the orifice they guard. When the ventricles contract, the blood within them under pressure tends to escape
through any orifice, it presses upon these cuips, forcing them against the walls of the orifice leading to the aorta and pulmonary artery respectively, leaving an opening of full size. In other words they offer no obstruction to the flow of blood in this direction. When, however, the muscle-wall by its contraction has emptied itself of blood through the oritices just mentioned it begins to relax, thus enlarging the cavity of the ventricle. Were there nothing to prevent, the blood just forced into the aorta and pulmonary artery under considerable pressure would flow back again into the relaxing ventricle, and so it does to a very slight degree, but this very back flow fills these three cups with blood, causing them to meet in the middle of the orifice, thus completely blocking it so far as any return of blood is concerned, and what blood has been forced into the aorta and pulmonary artery remains there to be carried on still further with the next contraction of the heart.

The mitral and tricuspid valves are simply flat folds or curtains attached to the edges of the orifices between auricles and ventricles. They are thrown back upon the inner walls of the ventricles while the blood is flowing from the auricles into the ventricles, offering little or no resistance to the flow, but when the flow of blood is in the opposite direction, that is, when the zentricles contract, they are floated upward till the free edges come in contact, thus blocking the orifice. The flaps are prevented from going too far by delicate tendinous cords attached to the free edge of the valves at one end and to the inside of the heart wall at the other end. They play the same part that sheets do for a sail. It will thus be seen that while one set of valves - mitral and tricuspid-is closed, the other set - aortic and pulmonic will be open, and vice versa.

The period of active contraction of the ventricles is called the systole, and its time is ofter spoken of as the systolic period. The period of dilatation of the ventricles, the time during which they fill with blood from the auricles, is called the diastole or diastolic period. In time the two are ncarly equal, the diastole being somewhat longer.

The cause of the heart beat is a matter of great interest. Inasmuch as the skeletal muscles require for contraction a stimulus carried to them through nerves, it was thought that heart muscle required a similar nerve impulse. It was known to physiologists that the heart of a frog severed from its connections went on beating in spite of there being no nerves attached to it to convey an impulse from without. Then certain nerre ganglia were found in portions of the heart wall and it was inferred that these gave out the necessary stimulus. But finally it was found that isolated portions of the heart wall in which there were no nerve ganglia continued to beat if they had a blood supply. Hence it was concluded by Gaskell that the beat of the heart must be due to an inherent rythmical power of the ventricle; the stimulus to the muscle probably residing in some chemical substance in the blood coming to the part. At ary rate the ganglion thenry is no longer held, while the latter is considered the probable one.

The sounds associated with the periods previously described are readily heard by anyone placing the ear over the lieart of another person, or with a stethoscope the individual may hear
his own heart sounds. The contraction of the ventricles occurs at the time the impulse is seen and felt over the apex of the heart in the fifth interspace. It is associated with a booming sound. loud and distinct. Then comes a shors period of silence corresponding to the time when the heast muscle ceases its contraction and begins to relax. Then comes a very short. sharp. flapping sourd due to the closure of the valves which prevent the return of the blood from the aorta and pulmenary artery to the ventricles. Then follows a linger period of silence and again a repetition oi the same set of sounds. The time from the beginning of the first sound to the beginning $\mathrm{c} i$ the second su:und, that is, the time of the "boom" and its short silence. is the sy'st-le of the ventricle. The time irom the beginning of the second or short. sharp sound through the period of silence following it is the diastole of the ventricle. The whole period cecupied from the beginning of the firss of the sounds described to its repetition is called a cycle of the heart. Of these there are on an average in an adult $i=$ per minute. Nhen the stuccessive cycles occupy the same lengti of time the rhythm is said to be "regular." Then the times are unequal the term "irregular" is used. When a beat is dropped the term "intermitient ${ }^{3}$ is applied.
Ii. when the ear is placed over the heart. the finger be placed over the artery in the wrist, an impulse or beat will be felt in the latter, occurring at a slightly later time. about one sixth of a second. than the apex beat. This is the pulse wave corresponding to that individual heart beat. It varies in frequency in volume and in tension according to the number of heart beats. the volume of blood thrown into the arteries from the heart, and the tension or tone of the arterial wall. The latter point will be explained later.

The course of the hlood aiter leaving the left ventricle is through the aorta and its branching arteries to the arms and legs and to all the organs of the body, except the main supply to the lungs. through capillaries: thence it is returned by the veins to the right auricle. from there it goes to the right ventricle, from which it is pumped through the lungs ior purification to the left auricle and thence to the left ventricle again. The length of time required for any portion of blond to make the complete circuit in the human being is not known with absolute aceuracy, but it is probably not less than 15 seconds nor more than 30 seconds.

The work done by the heart may be ex-pres-ed in units. Assuming the pressure in the left sentricle during contraction to be $\mathrm{t} 30 \mathrm{mil} \mathrm{m}_{\mathrm{i}}$ metres of mercury, each square centimete will receise a precsure of 175.5 gram: Assuming interer that the left ventricie forces $100 \mathrm{Cu}^{3} \mathrm{He}$ centimetres of blond at each eontraction. the "1. Th done will equal $\mathrm{t}-\mathrm{So}$ gram centimetre: he riglt ventricle dnes a third as much work as the leit. giving a total of $23 \mathrm{~S}_{40}$ gram centi:! tres. The intal work of the heart per diem - puals 24.000 hilngram metres, equivalent in 5ne 0 L. ith-calcries.
he relatively ligh pressure required of the Bear in maintaining the circulation is dere to le fact that it has (i) irree the blood into -re rie having elastic walls that offer a con* derat le re-isoance to stretching. The stream ir m the heart into the arteries is intermitent,
the elastic arterial walls are stretched by the incoming blood absorbing the force during systole and tending to again give out this iorce When the heart ceases during diastole to supply fresh blood. Even during diastole the pressure within the arteries remains considerable. Hence the heart has to force the blood against the elastic tension of the arterial wall and against the blood already in the ressel from previous heart beats. This force stored up in the arterial wall tends to drive the blood along to the cap:llaries and veins. making in the capillaries and veins a constant flow, just as a single-cylinder pump provided with an air-chamber delivers a cunstant stream. The circulation, then, in the artcries is intermittent, in the capillaries and veins consiant.

An element of much interest as well as of great importance to the proper maintenance of the circulation in the arteries and to the nutrition of the organs supplied by them with blood is what is called "rascular tonicity." by which is meant the peculiar property inherent in the arterial walls of maintaining a relatively constart blood pressure with varying amounts of blood contents. In an ordinary system of Iydraulics maintained through elastic tubes the walls of which are stretclied by the circulating contents. the pressure ialls if some of the contents escape. In animals, on the contrarg. a considerable quantity of blood may be withdrawn irom the blood-vessels, yet the blood pressure, after a fail of very short duration. returns so the normal. This tonicity is due to the fact that the walls of the arteries have circular muscle fibres, under control of nerves, that contract down upon the blood remaining in the vessel and so maintain the pressure, a matter of great importance. as an equal pressure in organs is necessary for the proper physiological function.

The muscle in the arterial walls is supplied with two sets of neryes called vasomotor nerves. having opposite actions. One set called rasoconstrictors has the power when stimulated of contracting the vessel, the other set called vasodilators enlarges the vessel. Lnder normal conditions a ecrtain equilibrium is established between the two sets of nerves and the artery is said to possess "tone." Increased action of one over the other will produce increased amount of blood in the part, as in the familiar example of blushing, or on the other hand pallor as seen in fright. Certain drugs have a powerful effect upon these nerves.

Before considering the diseases of the heart a word may be said of the historical development of the subject. That the blood circulated was not known until Ifarvey demonstrated it in 1f2s. Auenbrugger, a Viennese physician. in tof invented percussion, the method by which the position, size, and in a measure the changes in orsans may be determined by the sound produced whe? the surface of the body over them is struck or "percussed." as it is technically. enled. His invention remained unheeded until lon. When Cnrvisart, body physician in Naplena, used if in mappine nut the heart in Eealthy and in diseased conditions. Laennec. t'e flunder of ansecultation as used to-day. by me : $:=$ of his newly invented stethoscope gave t) the world in siog the first accurate descripti n of the cliaracteristics of the heart sounds and the significance of chances in the sounds in the diagnosis of diseases of the heart. Bouil-
laud in France and Hope in England were also pioneers in this work, practically all that has been done since then being an claboration along lines laid down by them.

By percussion the size and position of the heart can be accurately determined, and by auscultation variations from the normal sounds and the presence of abnormal sounds enable one to determine what special derangement of the heart exists.

To understand the abnormalities of the heart it should be borme in mind that the work of this organ is done by the muscle of which it is composed; that the nerve stimulus for the muscular contraction comes from within the heart wall, and that the regulatory action, that is, whether it beats faster or slower, depends upon two nerves of opposing action, the vagus and the sympathetic: stimnlation of the former slowing the heart. stimulation of the latter increasing the rapidity of action. Under ordinary conditions an equilibrimm is established between them, somewhat analagous to the equilibrium in a balance when equal weights are placed in the scale-pans; an equilibrium that is at once disturbed if weights are added to or taken from either pan. Furthermore intact valves are necessary for the proper function of the heart.

Hence changes in the action of the heart are due to changes n the nerve stimulation; changes in the muscle; changes in the valves. They may exist alone or in combination. Changes affecting the nerves are more commonly functional or temporary; while those affecting muscles and valves are organic and usually, though not always, permanent.

Diseases of the valves are the most frequent, the most important and of the greatest interest. A valve to perform its duty properly must be so flexible tirat it is readily thrown back against the walls of the heart so as not to hinder the passage of the blood through the orifice it should go. It should also quickly fall back into place and meet its fellows. so as to block the passage and prevent the flow of blood in the direction it should not go. Unfortunately these delicate valve segments are prone to inflammation, rheumatic fever being the commonest cause. This inflammation is associated with the formation of new tissue much like that formed in the scar of a wound. It leads to thickening, rigidity, retraction and deformity of the valves, and also frequently to adbesion of the cups along the edges of closure.

These changes affect the function of the vaive, causing on the one hand narrowing of the orifice so that the passage of the blood is obstructed, hence the technical use of the term "obstruction," or "stenosis": on the other hand the segments of valves may be so shortened and puckered that they do not meet each other, and so leakage results. To this condition the term "insufficiency" or "regurgitation" is applied. Either obstruction of a ralve nrifice or leakage through a valve calls upon the muscle of the heart for more work. In the former case the blood is forced under a greater resistance; in the latter more blood must be forced to make up for the leakage. The muscular wall thickens and the cavity of the heart behind the leaky valve etularges to "compensate," as the expression is for the valvular defect. This compensation may remain effective for years, the patient having but little inconvenience from the disease.

Sooner or later the heart muscle feels the effect of the prolonged overwork, it weakens, becomes stretelned, the cavity enclosed by it enlarges, and the condition known as "broken compensation" follows. The heart can no longet supply a sufficient amount of blood for the needs of the body, the circulation is slowed, stagnation results with the associated symptoms of distress in loreathing and frequently dropsy. There is marked impairment in the functions of the organs of the body due to imperfect blood supply. Valvular disease is very common and may occur at any age, but it usually involyes the valves of the left heart, mitral and aortic.

With care on the part of the patient life may often be prolonged with comfort for many years. Apart from the bencfit derived from rest, the drug digitalis by prolonging diastole and stimulating the beart muscle to better contraction gives the best results. When properly used it is a great boon to the patient.

The muscle of the heart mondergoes a degenerative change in acute infective diseases associated with fever, like typlood fever, pneumonia, and diphtheria, by which its contractile power is lessened. It may reach such a degree as to lead to death from paralysis of the heart wall. If the patient recovers from the disease the heart muscle in time recovers its normal tone.

An important disease of the beart muscle is one occurring usually in males after middle life, frequently associated with the symptom known as angina pectoris. It is a degeneration of the heart wall due to partial occlusion, by thickening of the walls, of the two coronary arteries which supply the heart muscle with blood, thus disturbing the mutrition of the muscle and the nerve ganglia. Angina pectoris is characterized by the sensation of great constriction and pressure and often of a violent tearing of the heart, with intense anxicty and a feeling of impending death. The suffering is often very great, and while the attack may be of short duration the prostration following one is marked.

Fatty degeneration of the heart muscle occurs, but it cannot be diagnosticated with exactness during life. Although the term is often beard its use sloould be reserved as an anatomical and not as a clinical diagnosis. That is, one can be sure of it only when one sees the exposed heart. On the other hand, collection of fat between the muscle-fibres and around the heart such as occurs in fat people may seriouslyo embarrass the heart by not allowing enough space for it to more freely.

Extreme muscular effort as in lifting or carrying a heavy load or a prolonged march or climbing a mountain may overstrain the heart and lead to feeble action. Rest usirally repairs the clamage, although sometimes it is permanent.

Prolonged overwork and certain forms of disease of the kidney may lead to marked enlargement of the heart, due mainly to thickening of muscle wall of the left ventricle, to which the term "lypertrophy" is applied.

Disturbances of the leart function, due to some action through its nerves, are of great importance. Such may be plysiological or functional, or they may be due to diseased conditions. Among the former are examples familiar to all. The increased frequency and force of the heart beat due to the emotions, to alcohol, to tea, to
coffee, to tobacco. belong in this category. If not used to excess the effect of the above may be merely temporary, the heart resuming its usual irequency and quiet action when the effect of the stimulation has ceased. Prolonged abuse of such substances or long continued nerve worry or excitement may lead to a more permanent disturbance of the heart functions, indicated by palpitation. either permanent or aiter a trivial cause, or by irregularity in the rhythm. The "tobacco heart" of the milder form is an irritable one, with increased frequency oi the beat: in the severer grade marked irresularity is characteristic. In the nervously tired person palpitation is common. While the uncomfortable sensations about the heart due to disturbed digestion with fermentation in the s:omach often lead the individual to consult a plyysician feeling that heart disease exists.

A nervous disorder of the heart of considerable interest is one associated with greatly increased frequency of its beat. but with a regular rhythm. combined with a marked prominence of the eveballs, enlarged neck (goitre) and iremor of the hands. This complex has received the name of exophthalmic goitre, a neuropathic disturbance associated with irritation oi the sympathetic nerve leading to the rapid heart action.

Still more uncommon and as yet unexplained is the condition called Tachycardia (rapid heart) characterized by paroxysmal attacks of very rapid beating of the heart. lasting but a short time and iollowed by normal irequency. During an attack it may be impossible to count the heart or pulse beats, owing to the rapidity.
W.m. Whtrworth Gansett. M.D.

Visiting Physician to the Massachusetts Gencral Hosfital, Boston, Mass.
Heart of Midlothian, The, a romance by Sir Walter Scott. published anonymously in isis. It takes its name from the Tolbooth or old jail of Edinburgh (pulled down in 1815), where Scott imagined Effie Deans, his heroine, to have been imprisoned. The book is notable for having fewer characters than any others of Scott's novels. It has also a smaller variety of incidents. and less description of scenery.

Heart-urchin. One oi a group of seaurchins (see Ecmmomes) of clongated form and cordate outline irom a lateral point of view. The group is best represented by the genus Spatangus. common in Europe, but hearturchins eccur elsewhere, and are known as fossils.

Hearts-ease, a violet (q.w.). especially the common vellow violet of Europe or a pansy:

Heat. Until the early part of the foth century, it was generally believed that heat was a suhstance deroid of weight (imponderable), and difured through the mass of bodies. This hypothetical substance was called ialoric. Nans phenomena seented to be explained by the assumption of the existence of caloric. hit finally. through the experiments of Davy and Rumford. in which heat was actually created from mechanical energy, the old caloric theory was abandoned. In tt- place we now have the molecular motirn theory. According to this theory heat is nothing hist a vinlent agitation of the molecules of matter. These molecules are extremely minute, but have a definite size and weight for
each definite substance. It has been estimated that a molecule of water has a diameter of about one fifty-millionth of an inch. Though molecules are small in size, their velocity, even at ordinary zemperatures, is very great In air, where the molecules dast about in straight lines until they encounter other molecules, they attaim a speed of T . 7 \%o feet a second at the freezing temperature. The average length of their path between two encounters - the mean free path - is about $5-275.000$ inch. and the number of molecules in a cubic inch oi air is about so raised to the 2tst power. Each molecule experiences about 5.000 .000 .000 collisions a second.

Erpansion of Solids. Liquids. and Gasis.The molecules of every substance attract one another with a iorce called cohesion. It is cohesion that prevents a wire from breaking when it supports a heary weight. The pressure of the atmosplere also helps to hold the molecules of a body together. Opposed to both of these iorces is heat. The effect of the agitation of the molecules is to make them jostle one another apart. Thus it is that in general an increase of temperature results in expansion. In solids, where the cohesion is enormous, the expansion ior a given increase of temperature is very slight. especially when the test is made at low temperatures. At higher temperatures. when the molecules have somewhat weakened their mutual hold through having moved further apart, an increase of temperature equal to the previous increase generally results in a somewhat greater expansion. To express such ideas technically we employ the expression cocfficient of linear expansion, which means the fraction of its length that a bar expands when heated one degree centigrade. As the length varies with the temperature the length at the ireezing point, $0^{\circ} \mathrm{C}$., is taken as the standard length. Using then this expression we may say that the coefficient of expansion of a solid generally increases with the temperature. The coefficient of linear expansion of a number of substances will be found in the following table:

COEFFICIENTS OF LINEAR EXPANSIOS OF SOLIDS.

Two notable cascs may be remarked. It is seen from the table that the coefficient for glass is very close to that for platinum. This fact is taken advantage oi in the construction of incandescent electric lamps. and of those scientific inseruments where it is necessary to have a wire pass through glass and leave an air-tight joint. In making the joint. the glass around the hole is softened by heat until it gathers closely around the hot platinum wire. In cooling. it the coefficient for platinum were higher than that for glass. the platinum would contract more rapidly than the glass and leave a lcaky jnint. The second case to be noted is that of Guillaume"s nickel stcel. The coefficient of expansion of this metal is so extremely small that
it is eminently suited to the construction of clock pendulum rods, of surveying instruments, and of standard scales of length, and to many other purposes where nuch expansion now proves an annoyance. Unfortunately the high cost of nickel will preclude the employment of this wonderful alloy in some cases.
The influence of expansion is seen in railroad tracks. On a cold day 60 -foot rails may contract so as to draw apart one half of an inch. The cables of the Brooklyn Bridge support the slightly arched roadway. When they sag down in hot weather through expansion, they tend to make the roadway buckle. This tendency is increased by the expansion of the roadway itself. However, both tendencies were overcome through the foresight of the engineers, who provided a telescoping joint in the roadway at the middle of the span. The parts of this joint play in and out about a foot. On hot days clock pendulums grow longer, and so the clocks lose time. Glass when suddenly and hence unevenly heated, expands more at one point than at another, thus introducing internal strains that cause fracture. but vessels made of vitrified quartz are strong enough to resist this tendency to erack; they will endure without injury the sudden application of a blowpipe flame.

In liquids the molecules are so far freed from cohesion that they are able to roll around one another and to wander from one position to another. The small remaining cohesion is assisted by the pressure of the atmosplere or by any other pressure to which the liquid may be subjected and so the molecules in the body of the liquid are prevented from flying directly apart. It is on account of this small resistance to expansion that we find liquids very much more expansible than solids. The term cocfficient of cubical expansion is employed to express the degree of expansibility of a liquid. It means the fraction of its volume that a liquid expands when its temperature is raised one degree centigrade. The cubical coefficient of a substance is three times as great as its linear coefficient. because we measure the effect of expansion in length. breadth. and thickness, instead of merely noting the expansion in length. Of course a liquid confined in a tube of unchanging dimension could only expand in length. but the effect in this one direction would be three times as much as it would be if the liquid were allowed to expand proportionally in all three dimensions.
coefficients of cleical expansion, liquids.
Ethyl alcahol...0.00106 Petroleum
Methyl alcohol..0.00114 (heavy)......0.00090 Acetone0.00r35 Mercury0.00018153 Ether ……0.001.0.0.0. Aniline001r 8 Olive oil............00080

The expansibility of water is strikingly irregular. Starting at the freezing point, water contracts as the temperature rises until at about $4^{\circ} \mathrm{C}$. it has assumed its maximum density. A further inerease of temperature now causes the water to expand, which it does at an increasing rate until it begins to boil at $100^{\circ} \mathrm{C}$.

Gases surpass even liquids in their expansibility. Because in gases the molecules are relalively very far apart, cohesion counts for nearly nothing. leaving external pressure as almost the sole force restraining expansion. It appears that the coefficient of expansion of a gas is nearYoL. s-18
ly independent of the external pressure, for though a greater pressure tends to restrain expansion more, the greater crowding of the molecules resulting irom this pressure causes more frequent blows among the molecules, and makes the expansive iorce increase in tuearly the same proportion as the external pressure. This law is not perfectly complied with because the molecules in a gas are not quite free from cohesion. especially when much compressed, and because the diameter of the molecule is an appreciable fraction of the distance between two molecules. Another law. fulfilled only approximately ior the same reasons, is that all gases have the same coefficient of expansion, as will be seen in the following table, which gives the cubical coeificient referred as a standard to the volume the gas has at $0^{\circ} \mathrm{C}$.
coefficients of cubical expansion, gases at a PRESSCRE OF FROM 300 To 500 MM.

The Contection of Heat.-When the air in contact with a hot stove becomes warmed, it expands and grows lighter than the other air. Owing to unbalanced forces the hot air rises to the ceiling and then spreads out to the walls. It there becomes cooled, and therefore contracts and becomes dense. As a result it descends at the walls and finally returns to the stove only to start again on the journey. During this process, called contection, heat is carried by the air from the stove to the most distant parts of the room. Winds consist of convection currents in the atmosphere. Some parts of the earth's surface become more highly heated by the sun than others. The air over the hot areas expands and becomes specifically lighter than the surrounding air. The general result is that the hot air is forsed to rise giving place to the surrounding cooler air which blows toward the hot area as a surface wind. The hot air risen aloft spreads away toward the cool regions as an upper wind. Corresponding to the ascent of air over the hot areas is a descent of air over the cool areas. Much heat is brought from the tropical regions to temperate regions by regular winds.

Convection phenomena also occur in liquids. A large vessel of water supplied with heat at one side of the bottom becomes, through the action of convection currents uniformly heated throughout. 11 uch heat is conveyed from the equator toward the poles by means of the Guli Stream and other ocean currents. It is probable, however, that with ocean currents differences of temperature have little to do with the motion of the water, but that the motion is caused chiefly by the action of winds that hlow with? great steadiness in a westerly direction across the equatorial portions of the great oceans. Difference in salinity of the ocean at different latitudes may possibly be a partial cause of the phenomenon.

Thermometry.- Before proceeding further in the discussion of heat phenomena, it will be necessary to describe some of the methods employed for measuring temperature or the degree of hotness of a body. IIst commonly the methods depend upon the property of expanision. In ordinary thermometers the expanding body is either mercury or colored alcolol. The
liquid, say mercury, is held in a glass tube having a fine bore and at one end a spherical or cylindrical bulb, the other end being simply closed. Above the mercury, which fills the bulb and part of the sten, is a space that is iree from air and contains only a small amount of mercury vapor. When the thermonteter is warmed, the mercury rises in the tube because the cubical expansion of mercury is greater than the cubical expansion of glass. The glass tube is provided with a scale. sometimes engraved directly on the tube, and sometimes engraved on some other material and monned at the back of the tube. For a Fahrenheit seate division number 32 is placed opposite the mercury level when the thermometer is placed in pure crushed melting ice, and division number 212 is placed opposite the mercury level when the thermometer is placed in saturated steam over boiling water. As the temperature of the boiling point depends upon the atmospheric pressure, which is ever varying, the standard boiling point is taken to correspond to the average atmospheric pressure, which is measured by a barometric column of 760 millinetres. The space between these marks, the freezing and boiling points, is divided into tio equal divisions, and then divisions equal to these are extended above the boiling point and below the ireezing point. For the centigrade scale, which is generally: employed in scientific work, the ireezing point on the thermometer is marked 0° and the boiling point 100°. For the Reaumur scale, much used for household purposes in Germany, these points are marked 0° and 80° respectively, and finally for the De Lisle scale, which is used in Russia, the direction of the graduation is reversed, the boiling point being marked 0° and the freezing point $+150^{\circ}$. With this last thermometer, the greater the intensity of the cold the ligher the number representing the temperature. Nercury thermometers permit of the measurenent of rather high temperatures: mercury not boiling until the temperature of about 357° C. $(67+3 \mathrm{~F}$.$) is reached. Still$ higher iemperatures with mercury thermoneters may be reached by checking the raporization oi the mercury through the introduction into the upper part of the tube of a compressed gas such as mitrogen. With such a thermometer the only limitation is the softening of the glass at high heats, and even this trouble is largely lessened by the use of vitrified quartz for the material of the bulb. On the other hand mercury freezes at about $-39^{\circ} \mathrm{C}$. $\left(-38.2^{\circ} \mathrm{F}.\right)$ and so becomes useless for indicating temperaiures lower than this. For these lower temperatures alcohol may be employed as the thermonsetric substance because it resists freezing unthl temperatures far below any met with in nature are encountered. In addition to this: advantage alcohol expands much more rapidly than mercury, thus pernitting a much larger bore ior the same length of degree. However. ior very high temperatures alcohol is not available. as it brils at the moderate temperature of $-8.3^{\circ} \mathrm{C} .\left(173^{\circ} \mathrm{F}\right)$.

In practical work thermometry fairly bristles with errors. For several months after a thermonneter is made the bulb gradually shrinks. probally owing to some molecular instability in the glass caused by the excessive leating employed in the process of blowing the hulb. This causes the thermometer to read too high. Aiter
each time a thermometer is used for a very high temperature the bulb on cooling fails to contract promptly to the colume proper to the new temperature, and so now the thermometer for a while reads too low; however. prolonged heating at the temperature of boiling mercury tends to put the glass into a more stable state. Alsosuch troubles are much reduced by the use of hard glass instead of soft glass for the bulbs. Errors also arise from the following causes: non-miniformity of the bore: variations of atmospheric pressure, which cause a yielding of the bulb; failure to have the stem of the thermoneter at the same temperature as the bulb; the hydrostatic pressure on the bulb due to the liquid being tested, especially when the thermometer is sunk to great depths; a rariation in the internal pressure of the mereury itself on the bulb when the thermometer is inclined from the vertical position to the horizontal: a peculiar jerking motion of the mercury when it ascends a very fine bore; the fact that equal volnmes of the bore marked off on the tube do not represent equal expansions of the mercury, since at high temperatures the volume of the bore indicating a degree has increased (this is quite distinet irom the matter of the relative expansion of glass and mercury): irregularities in the expansion of the glass of the thermometer: and lastly irregularities in the expansion of the fluid itself, be it mercury, alcohol, air, or any other substance. This last source of error is worth much consideration because two thermometers otherwise perfect but containing different liquids, as alcohol and mercury. pail to agree in their indications. Further, we have no right arbitrarily to select any particular fluid as a standard and yet feel that our temperature seale has anything more than an empirical value. It will, however. be explained in the last section how a theoretical definition for temperature measurement can be formulated (the thermodmamic scale), agreeing fairly with ordinary thermometers, very closely with the hydrogen or nitrogen thermometer, and perfectly free from ambiguity.

In the hydrogen thermometer advantage is taken of the increase of pressure of a gas attending an increase of temperature, the volume of the gas being kept constam. The hydrogen is confined in a glass bulb about two inches in diameter which is connected by a thick-walled capillary tube with the top of one side of a U-shaped apparatus consisting of two vertical glass tubes connected by a rubber hase at their lower ends and partly filled with mercury. When the hydrogen in the bulb is warmed it tends to expand and push the mercury down its side of the L^{-}and to cause it to rise on the other side. which is open to the atmosphere. This effect is counteracted by raising the ghass tube on the open side, the rubber tubing allowing this to be done The extra back pressure of the mercury forces the hydrogen back to its former volume. In measuring the pressure to which the hydrogen at any time is subjected, the difference in level of the mercury columns must have added to it the length of the barometric column measured at the time. For each degree centigrade added to the temperature. the hydrogen is found to increase in pressure about $1 / 2,3$ of its pressure measured at $0^{\circ} \mathrm{C}$. Similarly for each degree subtracted, the pressure decreases 1223 of the pressure at $0^{\circ} \mathrm{C}$.

If this law held to the limit, we would conclude that at $-273^{\circ} \mathrm{C}$. the hydrogen would lose all its pressure, thus indicating the cessation of all molecular motion - a veritable absolute zero of temperature. However, at extremely low temperatures the perfect working of this law is interfered with through the dominance of cohesion which reduces unduly the pressure of the hydrogen, and may cause it to assume the liquid or even the solid state. Nevertheless, this limiting temperature as predicted by the hydrogen thermometer agrees almost exactly with the true absolute zero of the thermodynamic scale referred to above. On this absolute scale the temperature of freezing water is approximately $+273^{\circ}$ Abs., and iemperature of boiling. $+373^{\circ}$ Abs.

Other methods of measuring temperature depend upon change in the electrical resistance of platinum, and upon the electromotive force created when the juncture of two dissimilar metals as platinum and rhodium is heated. Very high and very low temperatures may be measured by such methods.

Conduction of Hiat.-When a sterling silver spoon is placed in a cup of hot tea, the handle of the spoon soon becomes uncomfortably warn to the hand. Heat has been conducted through the silver. The molecules in the bowl of the spoon are the first to have their motion accelerated by contact with the tea. This extra motion is communicated to their neighbors which in turn pass it on until, step by step, the motion reaches the molecules in the handle. It appears that in some substances the character of connection between the molecules is more favorable to conduetion than in others. As we might have expected, from the mutual grip of the molecules found in solids, that class of bodies furnishes the best conductors: but in gases, where the molecules are very loosely distributed, we naturally find the poorest condnctors. Liquids as conductors occupy a position intermediate between solids and gases. Metals surpass all other materials in conducting power, silver standing at the very head of the list, while near the foot of the list of solids are found organic materials and mineral substances especially when in the porous or fibrous state, such as horn, leather, magnesia brick, asbestos fibre, sand, cotton wool, cowhair felt, and down. Great value is attached to poor conductors of heat. They are called insulators. Bone is used in joining the handles to silver tea pots. Our clothes are made of organic material woven so as to leave a multitude of fine pores, a condition favorable to insulation and met with in the fur of animals and in the feathers of birds. Saw dust and mineral wool for the same reason are made to serve as insulators of heat in the outer casing of ice boxes.

In the following table of conductivities the better conductors have the higher numbers. These numbers, called the coefficient of conducticity, inclicate the amount of heat energy measured in calories (a calorie is the amount of heat energy required to raise the temperature of a gram of water one degree centigrade) condncted from one face to the opposite face of a centimetre cube of the substance when one of the faces is maintained one degree hotter than the other. The amount of heat energy conducted is proportional to the difference in temperature between the opposite faces.

COEFFICIENTS OF CONDUCTIVITY.

Specific Heat.- In the last section the expression "heat euergy" was employed, and the "calorie," its tunit, was defined. If thin glass vessels containing equal weights at equal temperatures of different materials, mercury and water for example, be placed over equal gas tlames so as to receive in a given time equal amounts of heat energy (equal numbers of calories), it will be found that the water will require nearly 30 minutes to get as hot as the mercury does in one minute. The water is said to have a greater capacity for heat than the mercury has. Nlaking allowance for the heat capacity of the glass vessels and for radiation and conduction it is found that the lieat capacity of mercury is 0.034 that of water. We say that the specific heat of the mereury is 0.034 . for water is taken as the standard and its heat capacity is assigned the value r.o. The value of the specific heat of a number of solids and liquids is given in the following tables:

SPECIFIC IIEAT OF SOLIDS.

Substance	A Atomic Weight	B Specific Ileat	$\mathrm{C}=\mathrm{A} \times \mathrm{B}$ Atomic Heat
Aluminum	27.04	0.2022	5.45
Bismuth	207.5	0.0298	6.17
Copper	63.18	0.09232	5.82
Gold	195.74	0.03035	5.94
Iron	55.88	0.10983	6.13
Lead	206.39	0.0315	6.50
Nickel	58.24	-. 10842	6.31
Platinum	194.3	0.03147	6.09
Silver	107.66	0.0559	6.10
Sulphur	31.98	0.1844	6.02
Tin	117.35	0.0559	6.65
Zinc	64.88	0.0935	6.05
Ice	0.502
Paraffin	0.694
Glass	0.19
Wood	0.6
Quartz		0.186
Rock Salt		0.219
Gypsum		0.26	
Ruby .		0.22	
Brass		0.093

SPECIFIC HEAT OF LIQUIDS.

\qquad
.54
In the first table the atonnic weights the weight of the atom as compared with the weight of an aton of hydrogen) of some of the element; in the solid state are also given. The product olstained by multiplying the specific heat by the atomic weight is given in the last column. It will be observed that these products are approxi-
matciy equal. This equality indieates that if we took as our standard of comparison equal numbers of atoms of a solid instead of equal weights. all elements in the solid state would have the same heat capacity. It takes about as much heat energy to raise the temperature of an atom of gold one degree as it does for ane atom of aluminium. This law oi Dulong and Petit also applies with some degree of approximati n to compounds in the solid state - not equal heat capacity for the molecules, but icr the atoms:

In the cases of gases we have two specific heats according as on the one hand the gas is conined to constant rolume while being heated. or as on the other hand the gas is allowed to expand so as to keep the pressure constant. This is shown in the accompanying table where it will be seen that the specific heat at constant pressure is greater than the specific heat at constant volume.

SPECIFIC HEATS OF GASES.

Stbstance	Symbol		$\begin{aligned} & \text { Censtant pres- } \\ & \text { sure } \end{aligned}$		
			$\begin{gathered} \text { Equal } \\ \text { weighis } \end{gathered}$	Equal olumes	
Air		.1692	2374	-23:4	
Mercury vapor.	Hg		,	--3	1.660
Argon					1.63
Carb. monoxicic.	Co	1546	. 2450	.23:0	1.403
	H_{2}^{2}	2.47\%	3.4000	-2405	1.41
Nitragen	${ }^{1}$	-1720	3-4088	-2370	1.41
Chlorine	Cl	. 0913	. 1210	.296=	1.336
Carben dios		.1654	$\because 169$. 3305	1.313
Ethe:	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}$. 46	.$_{4810}$	1.2296	1.03

This dinierence in specific heat in the same gas is due to two causes. When the gas expands not only do the molecules acquire greater kinetie enersy: but in pushing each other farther apart against the attractive iorce of cohesion, they requre a further amount of energy of the potential sort. and in pushing back the restraining pressure of the atmosphere still another large supply of energy is needed. It appears from several independent considerations that in gases far removed from their liquefying points the cohesion effect is exceedingly small. and so we cunclude that the excess of specifie heat of an expanding gas is almeat entirely due to work done on the external pressure applied in the gas.

1n the last column of the table the ratio of the iwo specifie heats of the gases is given. This ratio is found to vary, decreasing from simple gases like me:cury vapor, the molecules of which have single atoms, to complex gases like ether vapor. the molecules of which have 15 atoms. With ecmplex molecules a large part ni the energy is internal. much being iored up in the rotating metinn of the individual molecules, and in the relative motion of their atoms, leaving the energy oi ram-lation of the molecules and the energe dice to the pushing hack of the external pressure ahout the same as before. It follows then that the energy a=sociated with the external pressure is a smaller iraction of the whole energy: and that therefore as observed, the ratio betweren the heat energy imparted to an expand-
ing gas and the energy imparted to a non-expanding gas must be smaller for such complex molecules. The value of this ratio is the princinal means of judging of the number of atoms in a molecule of an element in the gaseous state.

Beiore leaving this subject it should be remarked that the specific heat of water varies slightly with the temperature, and so it is convenient to rake as the value oi the calorie one hundredth the hear required to raise the temperature of a gram of water irom $0^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$.

Latcht Heat.-If heat energy be imparted to a mass of ice at the point of melting, the ice will proceed to melt. but will not grow any warmer as it does so. The heat energy thus added without increasing temperature is called latent hect. Latent heat is devoted only to shaking the molecules of ice asunder, not to increasing their speed. Temperature depends upon the energy of motion (kinetic energy) of the molecules: latent heat only stores up energy of position (potential energy) of the molecules, and so does not produce an increase oi temperature. Again. when water is being boiled. a large amount of heat energy becomes latent. The latent heat of vaporization and of melting for a variety of substances is given below.

LATENT HEAT OF VAPORIZATION.

Calories			Calories
Water	536	Mercury	62
- -	$1=6$	Carbon disulphide.	90
Ethyl alcoho	206	Sulphur	362
Merdy alcoh	264	Erher	91
Liquid air.	45		
L.tIENT HEAT OF MELTING.			
Calories Calories			
Ice	80	Silver	21.07
Sulphur	9.37	Mercury	2.82
Paravin	35.10	Iron.	35.
Phosphorus	5.	Platinum	2% 。
Rees'-wax	± 2.	Tin .	14.
Zinc	28.13	Bismuth	13.
Lead 5.86	Copper	30.

It should be rematked that the latent heat devoted to converting a liquid into vapor besides increasing the internal potential energy of the molecules also does work in pushing back the atmosphere. but with water this external work bears a very small ratio to the internal work against cohesion, namely, a little more than one twelith.

Heretoiore we have supposed the energy for melting of for vaporization to be derived iront some external source of heat. It is, however, possible to secure a change oi state through the consumption of the heat energy of the body itself. If water be left in an open vessel it will presently have evaporated entirely away: During the progress of this vaporization a thermometer placed either in the water or in the moist air above the water will show a temperature lower than that of the surrounding air. The reason of this is as finllows: At the surface of the liquid, with all the irregularities of position and velncity possessed by the molecules. some of them find opnortunty to fly off irom the liquid suriace. On the average it will be the faster going molecules that spring away first. thus leaving the more slowly going ones belind, which is the same as saying that the remaining liquil is cooler. Also in going away, the
molecules fly against the back pull of cohesion, and so their velocity is checked. Indeed many are entirely stopped and drawn back into the liquid, though others escape quite beyond the range of cohesion of the liquid and diffuse among the molecules of the air. The reduced motion of these escaping molecules causes the low temperature referred to above of the vapor. Common illustrations of cold by evaporation are frequently met with. The function of perspiration is a means of regulating the temperature of the human body. In the healthy state when we are overheated the skin becomes very moist and the evaporation of this moisture, assisted by a breeze or by fanning. cools the surface. In disease the proper action of the skin may be interfered with, and becoming dry, may fail through lack of evaporation to provide the normal cooling effect. An exalted temperature of the body ensues; in other words, a fever. Certain drugs tend to promote perspiration and thus reduce the temperature of the patient. Another large factor in the temperature regulation of the body is in the water evaporated from the lungs in the process of breathing. The evaporation of ammonia hat has been liquefied by pressure furnishes the cold employed in some ice machines. In the case of liquefaction the necessary latent heat may be derived from the body itself. This occurs when a salt is dissolved in water, a process that is generally accompanied by a fall of temperature, though occasionally a rise in temperature is noted. The factors governing the result in such cases are rather complicated. We have to take account of the work done by the solvent in tearing molecules away from the solid lump and in some cases the tearing of these molecules apart into electrically clarged parts called ions. On the other hand a certain amount of kinetic energy is furnished by the attraction of the molecules of the dissolving substance by the molecules of the solvent. According as the back pulls or the forward pulls predominate, will the temperature of the solution be lowered or raised. If much chemical action takes place betiveen the substance and the solvent, the solution is almost always warmed.

The temperature at which melting takes place depends upon external pressure. When a solid like parafin expands on liquefying high pressure, which resists expansion, stops melting until a temperature slightly higher than the ordinary melting point is reached. Paraffin that under
 $49.9^{\circ} \mathrm{C}$. when subjected to the additional pressure of 100 atmospleres. In the case of ice, which contracts on melting. melting is favored by pressure. The addition of one atmosphere of pressure lowers the melting point of ice by $0.0072^{\circ} \mathrm{C}$. This fact accounts for the slipperiness of ice especially when being skated upon. The sharp edge of the skate exerts great pressure on the ice below it, which melts and furnishes a lubricating film of water. This film of water is cooler than the ice furnishing it, some of the heat of the ice having become latent, and as soon as the skate has passed over, the water immediately resumes the solid state. This process of freezing again is called regelation. Regelation is an important factor in glacier motion. The ice as it follows down a tortuous valley is continually being cracked. After the settling following
this cracking, the great prossure ircm the apper ice fields melts the ice at the points of cuntact of opposite sides of a fracture, and the escaping undercooled water freezes again, thus liealing the fracture. In this way the glacier appears to iollow down the irregularities of a valley as would a very viscous mass.

MELTING polints.

	Degrees Centigrade		Degrees Centigrade	
Parafin	55	Bismuth		
	.	Cadmum		$3:$
Silver chlar	450	Copper, pure	atr	5
Fluor spar	900	Comper, pure		
Potassium nitr	340	exclude		1084
Salt, common.	800	Iron		1600
Spermaceti	4	Lead		330
Sugar, crystal	170	Mercury		
Bees'wax	63	Nicke1		1500
Brass	900	Palladium		1700
Glass, crown	400	Platinum		900
Gold	1064	Rhodium		-000
Cast iron, gray	1200	Selenium		
Cast iron.	1100	Silver		1000
Sitver, sterling	900	Sulphus		114
Steel, cast.	1400			
Hydrogen		Zinc, pure		
Oxygen		Manganese		
Aluminium,	657	Chromium	- tre	
Antimony		from car		151

Saturated and Unsaturated I'apors. W"hen a liquid, water for example, is placed in a vacuous enclosure kept at constant temperature by artificial means, it immediatelv begins to evaporate, the vapor presently attaining a maximum density and pressure. The vapor as well as the space occupied by it is then said to be saturatcd. Before this maximum pressure was reached the vapor was unsaturated. If the temperature of the whole apparatus be now raised, more water will commence to evaporate, and the vapor will increase in density and pressure before it is again saturated. Had the saturated vapor formed in the first place been shut off from the water surface beiore raising the temperature, it would not become as dense as when it had the water evaporating into it, and so we would then pronounce the heated saturated vapor as unsaturated. On the other hand if a mass of unsaturated water vapor be cooled. the density of the rapor will at a certain temperature be sufficient to cause saturation. Below this particular temperature. called the desi-point. some of the moisture will condense. In some cases, however, when there are no nuclei in the form of dust particles, free ions, etc., the vapor may cool appreciably below the dew-point without immediate condensation. The vapor is then said to be supersaturated. The presence of air has only a very small inf dence on the density and pressure of saturated water vapor in contact with water, especially when the temperature is not high.

When the temperature of water or other volatile liquid is raised so high that the pressure of the saturated vapor becomes as great as that of the atmospliere, bubbles of the vapor begin to form in the body of the liquid. This constitutes the process of boiling. The temperature at which a liquid boils is much influenced by the external pressure. The boiling point is the same as the temperature at which the pressure of the saturated vapor equals the external pressure on the bubble. In the following table these temperatures with their corresponding pressures are given for water.

HEAT

PRESSURE OF WATER V゙APOR．

Temperature degrees	Pressure in millimetres	Temperature degrees	Pressure in millimetres
centisrade	$\begin{gathered} \text { of mercury } \\ 2.08 \end{gathered}$	centigrade	of mercury 91.95
－ 5	3.14	55	117.48
－	4.60	60	148.79
$+5$	6.53	65	186.94
10	9． 16	70	233.09
15	12.70	75	288.52
20	17.39	80	354．64
25	23.55	85	433.41
30	31.55	90	525.45
35	41.83	95	633.88
40	54.91	100	； 60.00
45	71.39	101	787.63
Degrees centigrade	Pressure in atmospheres	Degrees centigrade	Pressure in atroospheres
：00．	1	19S．S	15
112.2	18／2	201.9	16
120．6	$=$	20．4．9	17
133.9	3	20－．7	15
144.0	4	210.4	19
${ }^{15} 52$	5	213 －0	20
156.2	6	215.5	21
165.3	7	217.9	22
170.8	8	220.3	23
175.8	9	222.5	24
180.3	10	224.7	25
${ }_{15} 8_{4.5}$	11	226.8	26
188.4	12	228.9	27
192.1	13	230.9	28
195.5	14		

BOILTNG POINTS OF LIQC゙IDS．

	Degrees Centigrade		$\begin{gathered} \text { De } \\ \text { Cent } \end{gathered}$	egrees tigrade
Hydrogen	－ 24	Suiphur dioxide．	．-	T
Helism	－240．？	Ether ．．．	$\cdots+$	3
Xitrogen	－196．5	Carbon disulphid	de	46
－ 1 ir		Acetone		57
Argon	－ 186.1	Chloroform		60.
Oxygen	－183．7	Methyl alcoho		64
Fluorine	－ 18%	Ethyl alc		78
Krypion	－ 132.7	Benzol	T	80
Xeron	－109－9	Water		$\div 100$.
Ethylene	－102．	Anyl acelat		150.
Sitrous	\＄9．	Aniline		＋184．
Carbon di （sub－lim		Sulphuric Sulphus		33
Chlorine	－ 33.6	Mercury	$+$	356.
Ammenia	－ 32.9	Zinc		58

A saturated vapor in contact with its liquid offers a beautiful instance of dynamic equilib－ rium．We conceive that molecules are ever leav－ ing the surface of the water，adding themselves to the vapor．At the same time molecules of the vapor coming near to the liquid surface of plunging into it are caught by the cohesion of the liquid，thus subtracting themselves from the vapor．A less dense vapor would lessen the lat－ ter process and would allow the rapor to grow dencer；a denocr vapor would increase it and allow the sapor to fall to a state－ilhe saturated state－when the rate of evaporation is just equal tu the rate of condensation．

The degree of moistness of air is expressed by the phrase hygrometric state．The hygro－ netric state does not expreas the density of the water rapor present，Uut instead expresses the quotiont obtained by dividing the density of the sapor present by the density of the vapor re－ quired to saturate the air． li pressures were employed instead oi densities in getting the quo－ ifent，substantially the same result would be ob－ tained．Still another common way of defining nygrometric state is to take the quotient obtained by dividing the pressure of the vapor corre－ sponding to the dew－point by the pressure of abaper saturated at the temperature of the air，a method closely agreeing with the former oncs．

The Crifical Stafi．－When the temperature rises，the density of a saturated vapor in contact with its liquid becomes denser，while the liquid itseli expands and becomes less dense If the heating of the liquid and vapor takes place in a strong closed vessel containing not too much or too little of the liquid，after a while a tempera－ ture is reached at which the saturated vapor be－ comes as dense as the liquid．At this point they become identical in their physical properties ：the line of demarkation of liquid and vapor fades away，and the two fluids begin to mix．The tem－ perature at which this phenomenon occurs is called the critical temperature，the correspond－ ing pressure is called the critical pressurc，and the liquid is said to be at the critical state． Above the critical temperature it is impossible to distinguish between a liquid and its vapor． No matter how great the pressure，a gas or vapor cannot be forced into the state of a liquid that is obriously distinct from the vapor unless the rapor be cooled below the critical tempera－ ture．

CRITICAL TEMPERATERES AN゙D PRESSURES．

Substance	Critical Temperature Degrees Centigrade	Critical Pressure Atmospheres
Hydrogen	－ 223.	13.
Oxygen．	－118．8	50.8
Sitrogen	－ 146	35.
Carhon monoxide．	－141．	36.
Argon	－ 120.	40.
Fluorine	－121．	50.6
Methane	－ 95.5	50.
Carbon dioxide	＋31．	75.
Ammonia	－ 130.0	115.
Sulphur dioxide	-155.4	So．
Cblorine	＋14．4．0	83.9
－irrous oxide	T 35．	75.
V＂ater	＋ 365.	200.
Ethane	134.	50.2
Ethylene	＋ 10.	51.7

Radiation．－We have described two methods by which heat energy may be transierred from one place to another－by conduction and by convection．A third method remains to be stud－ ied．How does the heat of the sun reach us？By means of waves in the luminiterous ether．Go to al quiet pond in which a piece of wood may be tloating．Standing on the shore，vibrate your hand up and down in the water．Wiaves run from your hand over the suriace of the water to the wond and cause it to vibrate up and down． Energy from the hand has been transierred to the wood by means of waves．These wayes consist of the successive vibration of successive particles of water，each particle receiving energy irom behind and passing it on to the iront．It is much the same with heat waves．The ether， which fills all space，is capable of being set into vibration by vibrating molecules and of handing this vibration on step by step in the form of waves．Molecules acted upon by these waves are themselves set into vibration．The vibrating mole－ roles of the sun generate ether waves，and the ether waves generate vibration of the molecules of bodies on the earth．These ether waves are called radiant hid．We now have a very wide range of ether waves under experimental con－ trol．From the large waves generated by elec－ trical oscillations used in wireless telegraphy
and sometimes a quarter of a mile long we may pass by insensible gradations with only two breaks to the extremely minute waves supposed to constitute Roentgen's X rays. Dark heat waves or infra-red rays, ordinary light, and nltraviolet light belong to the middle of the series. Quite recently Blondot has discovered a peculiar radiation which he designates as n rays. There are indications that n rays are ether wases about one fifth of a millimetre in length. All of these waves bchave very much like light. They all have the same velocity as light, namely, 186,300 miles a second (n rays not tested yet). All except Koentgen rays may be reflected, refracted, polarized, and absorbed by transmission to a degree depending upon the substance used for transmission and the particular wave-length of the rays.

Thermodynamics.-The most cogent reason for discarding the caloric theory of heat is that heat may be generated from that which is not in any sense substance - heat may be derived from mechanical energy. Heat is generated when a brass button is rubbed on the carpet, when a bullet is struck with a hammer, and when two pieces of ice are rubbed together, a process resulting in their melting. The relation between mechanical energy and the heat energy generated by its consumption was first carefully investigated by J. P. Joule before 1850 . One poundcalorie of heat energy is obtaned from 1.400 footpounds of mechanical energy. That is to say, the energy due to the fall of I, 400 pounds through the distance of a foot is sufficient if transformed into heat to raise the temperature of a pound of water through one degree centigrade. This number of foot-pounds is called the mechanical equizalent of heat, for it has been found that the process is reversible. When by means of an air-engine or a steam-engine one pound-calorie of heat is consumed in generating mechanical energy. 1.400 foot-pounds of the latter are obtained. The first law of thernodynamics states that when mechanical energy is converted into heat. or when heat is converted into mechanical energy, the quantity of mechanical energy is equivalent to the quantity of heat energy. The second laz of thermodynamics states that it is impossible for a machine without the consumption of external energy to make heat pass from a body at a low temperature to one at a high temperature. When external energy is supplied, the transfer of heat becomes possible through the use of a reversible engine. A reversible engine is one that while it may on the one hand take heat from a high temperature source and transfer it to a low temperature escape with a conversion of a definite portion of the heat into mechanical energy, may: on the other hand. when its operation is reversed by the application of external mechanical energy equal in anount to that generated in the first operation, take back the same lieat from the low temperature escape and transfer it together with an amount of heat equal to that lost in the first operation to the high tenmperature source. The fraction of the heat leaving the high temperature source converted into mechanical energy, or when the engine is reversed, the fraction of the heat entering the high temperature source obtained from the mechanical energy applied has been shown by Carnot to be the same for all
reversible engines of whatever nature and working with any substance whatsoever, provided they work between the same temperatures. This fraction may be called the thermodynamic efficiency of the engine. The thermodynamic efficiency of good steam-engines occasionally exceeds 20 per cent. This means that 20 per cent of the heat energy supplied to engine is transformed into mechanical energy; the remaining 80 per cent escaping unused at the condenser or exhaust.

Using the provisional absolute scale as indicated by a hydrogen thermometer experiment shows that the efficiency, W / H, is roughly represented by the following equation in which W stands for the mechanical energy realized, H for the heat (measured in the equivalent footpounds) leaving the high temperature source, T for the temperature of the source, and T^{2} for the temperature of the cooler escape.

$$
\frac{W}{H}=\frac{T-T^{1}}{T}
$$

This suggests a new definition for a temperature scale, namely that mumerical values of temperatures be so adjusted as to fulfil exactly the above formula. Since the formula only fixes a ratio hetween the temperatures T and T^{1} corresponding to a given efficiency, an infinite number of sets of numerical values for these temperatures could be found to satisfy the formula. But if it be decided that a definite numerical range, say one hundred degrees, be comprised between the freezing and boiling points of water, only ane set of ralues becomes possible. This decision makes the value of the freezing point very nearly $+273^{\circ}$. Abs., and the value of the boiling point $+3,0^{\circ}$ Abs. Lord Kelvin was the first to propose this thermodynamic scole. Theory shows that its indications would correspond exactly to a thermometer containing a perfect gas. Hydrogen is not quite a perfect gas, for its molecules attract each other slightly and they occupy an appreciable fraction of the space holding the gas. Hence there are small deviations of the hydrogen thermometer from the thermodynamic scale. especially at low temperatures. It should be added that the practical realization of the thermodynamic scale, though much aided by very ingenious mathematical considerations relating to careful experiments made by Regnault on the expansion and the increase of pressure observed when hydrogen and other gases are heated, and by Joule and Kelvin on the temperature changes suffered by gases in expanding through a porous plug, still that realization is far from complete. Nevertheless, the thermodynamic scale offers us a theoretical ideal which is absolutely independent of the thermal properties of any particular substance, but is only related in a definite way to a fixed miversal law.

When a small amoment of heat is transferred from or to a gram of a substance, the heat transferred (measured in calories). divided by the average absolute temperature of the substance at the time of the transference is called the change of cutropy of the substance. For convenience, the zero of entropy is generally taken to correspond to water at the freezing point and under the normal atmospheric pressure. It may be shown that when two bodies at different temperatures are
placed in contact and their temperatures become equalized, the average entropy rises, for from the above definition of entropy; the heat leaving the hotter body must reduce its entropy less than it increases the entropy of the cooler body into which the heat enters. Consequently the average entropy of the universe is constantly rising and tending toward a maximum. At the same time the availability of the energy of the universe is tending toward zero.

Ernest R. Yon Nardroff, E. M., D. Sc.. Hiad Sciencc Department Erasmus Hall High School, Braoklyn, IV. I.
Heath, Daniel Collamore, American publisher: b. Salem, Maine, I9 Jan. i857. He was graduated from Amherst in 1868, became junior member of the firm of Ginn and Heath, publishers of Boston, and in 1886 established in Boston the house of D. C. Heath \& Company, publishers of text-books for schools and colleges, with branch offices in New York, Chicago and London.

Heath, Francis George, English writer: b. Totnes, Devon, 15 Jan. $18+3$. He entered the civil service as a clerk of the higher division in the customs department in 1862, and was iransferred as surveyor to the outdoor division of that department in 1882 . In 1896 he founded and in I89; became editor of the Imperial Press, in connection with which be directed from Isy6 the publication of the Imperial library: He was for several years prominent in his activity for the preservation and extension of open spaces in and about London: and published: 'The "Romance" of Peasant Life' (1872) ; 'The Fern W'orld' (1877: Ioth ed. 1902): 'Our Woodland Trees' (IS-8); 'WYere to Find Ferns) (IS8i), and other volumes.

Heath, Perry Sanford, American journalist and politician: b. Muncie. Ind., 31 Aug. I855. He learned the printer's trade, in 1857 became a newspaper reporter, in 18 -8-80 was editor of the Muncie Times, and in 1881 established the Pioneer at Aberdeen. S. D. In I88I-93 he was a correspondent at Washington, D. C., in IS94-6 president and gencral-manager of the Cincinnati Commercial-Gazettc (now the Cammercial-Trib(17e), and in 189i-Ig00 was first assistant post-master-gencral of the United States. In 1900 he was clected secretary of the Republican National committee.

Heath, William, American soldier: b. Roxbury, Mase. - Mareh 1737: d. there 24 Jan. 1814. When the Massachusetts congress in 1784 voted to enroll 12,000 minute men, volunteers from among the militia, Heath, then a farmer in Roxbury, was commissioned as one of the gencrals. In June 1775 he reccived the appointment of brigadier in the Continental army, and in August 1776 was created major-general. When the troons moved to New lork Heath was stationed in the highlands near King's Bridge, with orders to throw up fortifications for the defense of that important pass. In 1777 he was transferred to Boston, and the prisoners of Saratoga were entrusted to him. In June 1770 he was again in New York, at the llighlands, with four regiments, and was stationed near the Hudson till the close of the war. He was the last surviving major-general of the war. Consult: 'Mcmoirs of Maj.-Gen. Heath, con-
taining Anecdotes. Details of Skirmishes, Battles, etc., during the American liar' (1798).

Heathcock, Heath-hen. See Blackcock.
Heath'cote, Caleb, American merchant: b. Chesterfield, Derbyshire. England, 6 March 1665: d. New lork 28 Feb. 1721. He was successful in a mercantile career in New York from I602, sare for the years $1608-1701$. was a councillor of the province, was a petitioner for a license to build Old Trinity, was mayor of New York in 17II-14. and held other posts, among them those of judge of Westchester County; commander-in-chief of the military of the colony; surveyor-general: and receiver-general of customs for North America. His letters and despatches afford interesting glimpses of the history of his time.

Heaths, or Heather, a group (Ericoidea) of the order Ericacca. The leaves of the heaths are simple and entire; their flowers oval, cylindrical, or even swelled at the base; the anthers of many with horn-like appendages. From 400 to 500 species are known, 12 or 15 of which inhabit Enrope, and have small Howers, while all the remainder are natives of South Airica. many of them bearing brilliantly colored flowers, and fornaing one of the most characteristic genera of that region of dry plains. The common heath of Europe (Callund z'ulgaris), a low shrub, often covers exclusively extensive tracts of dry land, and is used in domestic economy; mixed with oak-bark it is employed in tanning; and also, when tender, for fodder. This species forms the "heather" of British moorlands; but in Scotland are two other species, whose flwers are the "heather-bells" of Scottish song and srory: Many South African species, remarhable for the size and beauty of their Howers, are much cultivated in greenhouses, and have been so improved and hybridized that they exhibit a wonderful richness of color.

Heating and Ventilation. Generall:- speaking, the methods of heating buildings may be divided into two general classes. - the direct and the indirect system, or a combination of the two. Heating by means oi an open firc, by a stose, and by radiators placed in the rooms to be warmed are examples of the former method. while furnacc-heating and heating by means of a current of air warmed by indirect steam or hot-water coils are examples of the latter method. When a direct radiator is fitted with a connection to the outer air, it is said to be arranged on the direct-indirect principle. Hot water, steam, or electricity may be the vehicle nsed for conveving heat io radiators. Ventilation is only obtained by supplying air. and in some systems of heating and ventilation the air is made so lot that part of it is available for heating purposes. This is the case in furnace-heating.

It is well known that when two bodies of different temperature exist, heat passes irom the warmer to the cooler body until their temperatures are equal. If a buidding be of a temperature of $-0^{\circ} \mathrm{F}$. and the otuter air of a lower temperature, heat will be transmitted by the walls, windows, and other exposed surfaces. and the temperature of the air in the building will be lowered. It is only by supplying to the building an amount of heat equivalent to that transmitted by the walls and windows that it is possible to maintain the building at constant temperature. If we supply more heat than is
transmitted by the walls, the temperature of the room rises.

Heat is measured in units which have as exact a value as a ton of coal or a pound of sugar. British physicists lave selected as the unit of heat that quantity which will raise the temperature of one pound of water one degree on the Fahrenheit scale when the water's temperature is near $39^{\circ} \mathrm{F}$. This unit is designated as the British thermal unit. It is known with reasonable accuracy just how many heat-units are transmitted by each square foot of wall, window, and other exposed surfaces of the various materials used in building construction, under such extreme conditions as to building and outside temperature as may exist. With these data and the plans of a building, calculation will show the heat-loss from a building or a room, and the heating-apparatus shonld be proportioned to supply this amount of heat. Allowances are made for various conditions that may exist, depending upon the judgment and experience of the designer. The heat required can be supplied by radiation from an open fire or from a stove, but this is an unsatisfactory method. Direct radiators supplied with steam or hot water can be placed in a room to furnish the heat necessary, or the heat may be supplied by hot air from a furnace, or by air heated by indirect radiators supplied with steam or hot water.

Heating by hot air is a slightly more expensive method than heating by direct radiation, for to be effective the air must be taken in from outdoors, sometimes at very low temperature, and heated above the temperature of the room to be warmed. If cold air at $40^{\circ} \mathrm{F}$. is heated to $100^{\circ} \mathrm{F}$., and is supplied to a room at this temperature, it is evident that as soon as this air is cooled from 100° to 70° no more heat can pass from the air to the room if the temperature of the latter remains at 70°. Under these conditions only one-half of the heat that has been supplied to the air is available for beating the room. This will tend to show why heating by hot air is more expensive. estimated from the cost of fuel, than the direct system. When the advantages of the air supply that accompanies indirect heating are taken into account the increased fuel cost becomes insignificant.

Direct heating is usually obtained by steam and hot-water radiators. Although manufacturers have greatly improved the appearance of direct radiators, at best they are unsightly and objectionable from an artistic point of view. This objection may be overcome by concealing the radiators in boxing beneath windows, when the walls of the building are thick enough to permit the boxing to be built in without projecting into the room. A screened opening is provided in the front of the boxing near the floor, and one at the top over the radiator, to permit a circulation of air, so that the radiators can be effective.

In residence-heating it is frequently the custom to heat the first floor by the indirect method and the upper stories by the direct. When an owner will pay for it, the indirect method is used throughout the building. Such a system is much to be preferred to the direct.

The simplest method of connecting steamradiators is by the gravity system, and it is usu-
ally employed unless steam exhausted by engines is available for heating. This system comprises distributing-mains connecting with the top of the boiler, and with vertical riscrpipes from which horizontal branches lead to the radiators. Usually a return pipe is connected to the opposite end of the radiators from that at which stean is admitted, this return comnecting, throngh return risers and mains, with the boiler at a point below the water-line. As the steam in the radiators condenses, the resulting condensation flows back by gravity through the return pipes to the boiler. The flow and return pipes are made sufficiently large to insure a practically uniform pressure throughout the system. The system is simplicity itself, as the fire only needs attention. When the boiler is once filled, no more water is required.

It is only recently that the steam exhausted by engines and pumps has been used for heating. Before this time steam direct from the boilers was used in direct radiators for heating mills and factories. The radiators consisted of coils of pipe suspended from the walls or ceilings. Sometimes the condensation was returned to the boilers by a pump or other device: sometimes it was allowed to go to waste. As the steam exhansted by engines, pumps, etc., contains a very large percentage of the heat that it contained upon entering the engine, someone conceived the idea of utilizing this steam for heating buildings. thereby saving the steam direct from the boilers that would otherwise have to be used. This practice is now almost universal where exhaust-steam is available, and the saving that it has occasioned is very great. By placing what is known as a back-pressure valye in the exhanst-pipe. sufficient pressure is maintained to canse the exhanst-steam to circulate through the pipes and radiators of the heating-system, the latter being connected to the exhaust-pipe between the engine and the backpressure valve. The condensation that occurs in the heating system can be collected and returned to the boilers by various methods. U'sually a pump or similarly acting device is employed.

A hot-water system arranged on the gravityprinciple has flow and return pipes similar to the gravity-system oi steam-heating described. The entire system is filled with water. As the water is warmed in the boilers it becomes lighter in weight per cubic ioot, making a difference in pressure between the flow and return pipes and causing a circulation to begin. The water rises in the flow pipes to the radiators and is there cooled. On its return to the boiler the water is again heated, and so the circulation is maintained. As the difference in weight between the water in the flow and return pipes is very slight, the motive power producing the circulation is very slight also. Hence the pipes have to be relatively larger than for steam-heating and very carefully connected to avoid excessiye friction, which would stop or retard the circulation. As large pipes are costly, in some large plants heated by hot water, a circulation is brought about by pumps.

Direct stean-radiators emit about 250 British thermal units per square foot of radiating surface per hour, and hot-water radiators alout i8o heat-units per square foot. Consequently about one third more radiating surface is neces-

HEATING AND VENTILATION

saiy with hot water than with steam. The pipes aiso must be larger, bence the hot-water sysiem is the most expensive in first cost. Hot water, however, is cheaper to operate, for water will circulate with a very low fire and supply the small amount of heat required to warm a building in mild weather.

With direct steam-heat. operating on the gravity-system, it is impossible to rary to any appreciable extent the temperature of steam in a radiator: bence with this system the aleernaive is, all the heat the radiator will supply or none at all. This is the principal objection to heating by means of direct steam. Air warmed by the relatively cooler hot-water radiators is thought by some to be more agreeable than air heated by steam-radiators.

With indirect heating the lack of means oi regulating the steam-temperature is not of so mich moment. for the air-supply can be partly shut off by partly closing a register in mild weather: or else. if the full air-supply is required ai all imes, arrangements can be made it r passing part of the air-supply around the mdirect radiators. which is called "by-passing" them. Another method is to divice the indrect radiator into independent sections and place some of the sections under the control of a regulator that automatically shuts of the supply of steam when the room becomes too warm. The method of "by-passing" the radiator, or subdividing it. is used mainly with the fansystem of supplying air.

The cost of indirect hot-water heating is greater than that of indirect heating by steam. as the radiators and pipes must be larger. the same as in direct heating. Hot water is, however, cheaper to operate. The principal objection 10 its use in indirect heating is the possibility of damage to the indirect radiators through the ireezing of the water in them in severe weather if the circulation should from any cause be arrested.

The direct-indirect system consists of direct radiators cennected with the outer air by means of an opening in the building-walls beneath the window-sill, the radiator being set under the window opposite the opening. With this system there is always the possthitity of geting too much air when the wind blows strongly. Furthermore. in situations where the air is smokeladen o: dusty, it is not easy to keep the smoke and dust irum entering a building suppled with air by this means.

As has been said, a supply of air may be brought about by the gravity-method or by means ni fans. In the gravity-nkethod the heated columm ci air in the flue is lighter than the outdocr air: sence it rises. As in the case of hot-water heating, the motws power is very slight, and it becomes less as the outdnor temperature increases. For this reason the gravity system is not a positive one and it cannot be depended upen to stipply much air in mild weather. lts we for schoolhoure ventilation is therefore to be deprecated. An important advantage of this syitem is it smplieny, as no machinery is required with it.

With the fan-system -ome type of fan is employed. to give a pneitive supply of air. The air is blown ower coils, usually steam, and delivered to the room at a temperature slightly ab ve that of the roum, if the air-supply is in-
tended to ventilate only, or at a higher temperature if the air-supply is to carry with it the heat necessary to balance that transmitted by the walls and windows. In the former event the indirect coils act as tempering-coils, being sufficient only to raise the air to about $70^{\circ} \mathrm{F}$. If the air-supply is to furnish heat for warming the rooms. additional coils, known as supplementary coils, are provided. These raise the air-temperature from 70° to from 100° to 120° F. Sometimes the supplementary coils are combined with the tempering coils the whole being divided into several independently controlled sections. In some instances the supplementary coils are divided into a number of small coils, one being placed at the base of each air-supply Hue. and so arranged that. by adiusting dampers controlled by hand or automatically, the temperature of the air supplied to any room can be regulated independently of that supplied to other rooms. If all of the air is passed through one group of coils, independent regulation of the temperature of the air in the branch ducts and thues is impossible. This independent regulation can be obtained, however by the doubleduct system. The coils are divided into two groups, one for tempering and one ior supplying additional heat All of the air is passed through the tempering coils, but only part of it through the supplementary coils. the balance "by-passing" the latter coils and flowing through a system of ducts. usually located below the system convering the air of higher temperature, to the base of the rlues. At the junction of the two ducts a mixing-damper is provided. so arranged as to open in one duct as it closes in the other. By adjusting this damper the air can be mixed to give the resultant temperature required.

In situations where direct radiators can be psed, either exposed or concealed. it is becoming the practice to provide sufficient heat by means of direct radiation to balance the heat transmitted by walls. windows, etc.. also a supply of tempered air for ventilation only. As previonsly explained. when heat is supplied by means of air, the fuel-cost is greater than with direct heating: so that a building can be warmed with less coal with the direct than with the indrect system. Furthermore. with the combined system, heating can be done at night, and at other times when air-supply is not required, at minimum cost. This systen is particularly adapted for schoolhouse heating and ventilation.

The withdrawal of impure air from rooms is effected by fans connected to a system of renttues extending upward to an attic space, or downward to a cellar or hasement, if the latter is more convenient. Another method of accelerating the outflow of air through flues rising tu the roof of a building is by the use of aspirating coils. These are simply coils of pipe, or radiators. placed in the vent-flues as low down as possible, the coil heating the air and thus causing it to rise. Theoretically the aspir-ating-coil is a more expensive method of moving air than the mechanical method, as iar as fuelent is concerned. It is simpler. however, than the fan-system.

Fans are of two general types - the disk or propeller ian, and the centrifugal blower. The former is constructed somewhat like a ship's propeller, and the current of air that it produces is mainly in a direction parallel with the shaft or the fan. The centrifugal blower, as usually de-
signed, consists of a wheel with blades, something like a ship's paddle-wheel, enclosed in a casing. The air enters at the axis of the fan, and when the fan-wheel is revolved the air is discharged radially to the casing by the action of centrifugal force. Relatively speaking, the propeller-fan will move a large volume of air with smail expenditure of power, but the pressure at which it will deliver air is limited. The centrifugal fan will deliver air under a greater pressure and the power required is therefore greater. In some buildings, where the system is of ducts and flues, is long, and the cross-sections are comparatively small, to save space, quite a pressure is required to force the necessary amount of air through them. For such situations the centrifugal blower is best adapted. When the ducts are short and of ample area, it is best to use the propeller type of fan.

Fans are driven usually by small steam-engines or by electric motors. Sometimes gasengines have been used with success. Where an engine is used, it is necessary for the boilers to operate under a sufficient pressure to drive the engine, or at least under a higher pressure than is commonly used with the gravity-system of connecting radiators. If the steam exhausted by the engine is condensed in the heating-system, as it usually is, a pump is necessary to return the condensation to the boilers. In large office buildings, public buildings, theatres, etc., where a skilled engineman is employed to care for the plant, the use of a pump, an engine, etc., does not present an objection. On the other hand. in the case of schoolhonses, large residences, churches, etc., which are apt to be looked after by less skilled attendants, an engine, pump, and other apparatus that must go with them are open to objection. In such cases electric motors can be used if current can be obtained from an electric-supply company. The entire heating system can then be operated on the simpler grav-ity-system. Of course the current must be paid for, but in many locations its cost will be more than offset by the greater simplicity of the motor-driven system.

Heating by electricity is not done to any great extent, on account of the excessive cost. When coal is burned under a steam-boiler, it is not uncommon for 60 per cent of the heat in the fuel to be realized in the steam which can be used for heating. If the heat in coal be transformed into electrical energy, and this again transformed into heat, less than so per cent of the heat in the fuel will be realized for heating.

Bibliography.- Tredgold, 'The Principles of Warming and Ventilating Public Buildings, Dwelling Houses, etc.': Hood. 'A Practical Treatise on Warming by Hot Water' : Peclet, 'Traite de la Chaleur') Briggs (and Wolff), 'American Practice in Warming Buildings by Steam'; Billings, 'The Principles of Ventilation and Heating' : Mills, 'Heat-Jts Application to the Warming and Ventilation of Buildings ${ }^{2}$; Baldwin, 'Steam-Heating' : 'Hot-Water Heating and Fitting' : Monroe, 'Steam-Heating and Ventilation': Carpenter. 'Heating and Ventilation of Buildings.’ Henry C. Meyer, Jr., Consulting Engincer.

Hea'ton, Augustus George, American artist: b. Philadelphia, Pa., 28 April 1844. He was the first pupil from the United States to study at the Paris Reaux-Arts, where he was
trained by Cabanel. Later (1878 -80) he was in the studio of Leon Bonnat, and exnibied considerably at the Salon. Among his paintings are: 'Washington at Fort 1)uquesne'; 'The Recall of Columbus.' engraved on the so-cent Columbian Exposition stamp of 1893; a portrait of Bishop Buwman: and 'Hardships of Emigration,' engraved on the $10-\mathrm{cent}$ Omaha Fair stamp. He wrote 'The Heart of David - the Psalmist King) (1900).

Heaton, John Henniker, English publicist: b. Rochester, Kent, England, 1848. He was for some time prominent in Australian journalism and has sat in the House of Commons for Canterbury from 1885. He carried the Imperial Penny Postage Scheme in July 1898, introduced telegraph money orders into England, the parcel-post to France, and has been connected with other progressive schemes. He has published: 'Alanners and Customs of the Aborigines of Australia'; 'Australian Alen of the Time' ; etc.

Heaton, John Langdon, American journalist: b. Canton, N. Y.., 29 Jan. 1860 . He was graduated from St. Lawrence University in 1880, entered journalism as a member of the Brooklyn Times staff in 188i, and in 1897 became assistant editor of the New York World. His publications are: 'The Story of Vermont' (I889) ; 'Stories of Napoleon' (1895); 'The Book of Lies' (1896); 'The Quilting Bee' (I896).

Heaven, in a pliysical sense, is the azure vault which spreads above us like a hollow hemisphere, and appears to rest on the limits of the horizon. Modern astronomy has taught that this blue vault is, in fact, the immeasurable space in which earth, sun, and planets, with the countless host of fixed stars, revolve. The blue color of the heavens is due to the action of minute particles in the air upon the blue rays in sunlight.

In ancient astronomy, heaven denoted a sphere or circular region of the ethereal heaven. The ancient astronomers assumed as many different heavens as they observed different celestial motions. These they supposed to be all solid. thinking they could not otherwise sustain the bodies fixed in them; and spherical, that being the most proper form for motion. Thus they had seven heavens for the seven planets: the moon, Mercury, Venus, the sun, Mars, Jupiter. and Saturn. The eighth was that of the fixed stars. which was particularly denominated the firmament. Ptolemy adds a ninth heaven, which he calls the primuni mobilc. But others admitted many more heavens, according as their different views and hypotheses required: Eudoxus supposed 23; Regiomontanus 33; and Fracastoro no less than z o.

In theology, this word denotes the upper and nobler region of God's universe, in contrast with the earth, the lower part assigned to men for their habitation. Of the belief in the existence of some special scene of the presence of Deity, the majority of the known religions of the world bear ample cvidence. According to Aristotle all men, whether Grecks or barbarians, had a conception of God; and all united in placing the residence of the gods in the most clevated regions of the universe. This idea runs through the Persian, Egyptian, German, Scandinatian, and indeed of all the ancient religions
in which the belier in a supreme being assumes any other form than the pantheistic: and even though the pantheistic philosophers may have cenied that any peculiar locality could be regarded as the peculiar habitation of the Deity. we find that the popular beliei and worship oi the sect is evidently grounded upon a contrary opinion. In addition, however to its being the special seat of the Deity, heaven also denotes the place, or the state or condition of blessed spirits. and of the souls of just men either immediately after physical death or at some certain period subsequent to it. All the religious systems which include the immortality of the soul involve. at least in substance, the idea of a future state of happiness as a reward jor a virtuous lite. The delights of the heavens of the various creeds differ greatly in kind. The pleasures oi the classical Elysian fields were to a great extent pleasures of sense; the German warrior believed he would be transferred to a region where he would be able to pursue his old fierce enjoyments, and the American Indian cherishes the notion that he quits this world ior a happier hunting-ground. Among Christians the general opinion is that heaven is the residence of the Most High, the holy angels. and the spirits of just men made periect, that this abode is eternal, its jors entirely spiritual: it is believed also by many that the just who are iree irom sin are admitted into heaven immediately after death; also that the souls of the patriarchs. prophets, and in general the good. were detained. before the new dispensation. in a temporary abode till the coming oi the Redeemer. See Immortality:

Heaves, or Broken Wind, a disease of the horse generally described as unsoundness of the respiratory organs. The disease is not well understood by veterinatians and the treatment is unsatisfactory. It is generally conceded that the disease is incurable. The characteristic symptoms are labored breathing. dilated nostrils, bloodshot eyes and dependent belly. Horses with this disease often drop down while at work and succumb to congestion of the lungs. hemorrhage or suffocation, the direct result of the heaves. Epon post-mortem examination the stomach is found distended and to have thinner walls than in the normal horse.

Hebe, he'be, according to Greek mythologr, the goddess of youth, and the cup-bearer on Olympus until replaced by Ganymede. Slie was a daughter of Zells and Hera, who gave her as a wife to Heracles, in reward of his achierements. At Rome she was worshipped is Juventa=: She is decribed by some authorities as a divinity who had it in her power to make old peroons young again. In the arts she is repre-ented with the cup in which she presents the nectar. under the figure of a charming young girl. her drese allorned with roves and wearing a wreath if fl wers. An caple oiten stands beside her. wheth she is carensing.

Heber, hëbér. Reginald, English Anglican bi-hop and poet: b. Malpan, Che hire, 21 April $1-83$: d . Trichmopoli, India. I April E ºr He was erlucated at Brasenose College. Oxfurd. distincuished himself by the English prize poem -'Pale-tine.' was elected to a fellowship in All Sculs College, traveled in Germany: Ru:sia, and the Crimea, entered holy orders in

ISO, and became the incumbent of Hodnet, Shropshire. In 1 Siz he was appointed prebendary of St Asaph, in $18_{1} 5$ Bamp:on lecturer at Oxiord. in $18 \geq 2$ preacher at Lincoln's Inn. From t822 until his death he was bishop oi Calcutta, at that time constituting one very extensive diocese, in all parts of which he traveled to the furtherance of the mission work in progress. He completed the establishment of Bishop's College. Calcutta, begun by Bishop Middleton. Heber is best known for his hymns, $\$ 3$ of which, including the ramiliar 'From Greenland's lcy Mountains.) (Brightest and Best.) and 'Holy: Holy. Holy!' appear in 'Hymns Written and Adapted to the Weekly Church Service of the Iear.' In prose he wrote ' -1 Lite oi Bishop Jeremy. Taylor' (1822). and ' 1 Journey Through India) (18_{28}). Consult the 'Life' by Smith (IS95).

Hébert, Jacques René, zhāk rè-nả ã-bãr, French journalist and politician: b. Alençon, Ome, 15 Nor, $1755:$ d. Paris 24 March 1794. At the beginning of the French Revolution Lemaire published a journal supporting constitutional principles under the title 'Pere Duchesne.) The Jacobins soon established a rival 'Peere Duchesne.' of which Hebert became editor. The journal owed its success to the cynical virulence with which it advocated the popular cause. and abused the court and the monarchy; and soon had the field to itself. He was a member of the Revolutionary Commune that approved the massacres in the prisons in September 1\%92. was soon after substitute attorney of the commune, and employed all his influence in forwarding a project to establish the authority of the commune on the ruins of the national representation. The Girondists. who were at that period contending against the Mountain, had credit enough to procure the arrest of Hebert 24 May 1-93 Again restored to liberty, he assisted with all his power and influence in the proscription of the Brissotins. Their downfall hastened his own. W"ith Chaumette he established the 'Feast of Reason.' and afterward accused Danton oi having violated the nature of liberty and the rights of mankind. This terrified both Dantor and Robespierre. who suspended their mutual jealousies to accomplish his destruction; and Hebert, with the greater part of his associates. was arrested and guillotined.

Hébert, Louis Philippe, Canadian sculpior: b. Sainte Sophie d'Hatiiax. Quebec, 27 Jan. 150. He studied ior several years in Canada, and later in Paris, where he established his studio. In tint he won the Contederation nedal awarded by the Canadian government Among his works are historical subjects executed for public buildings in Quebec. Ottawa, and 11 nereal.

Hebrew Language and Literature, the tongus in which the ancient Jew spoke and uruie. and the lnoks produced by that people durng their settlement in Palestine as an independent nation: the-e latter constitute the Hehrew scriptures and are looked upon by the Hlel rell - a-contanneng the inspred word of God.
 Literitire: Jemisif Philosophical Writers: The Jell in Art, Science. acid Literatere; The lalalco; The Masorint; The Cibalat.

Hebrews. See Jews in Americ.s: Jewisil Secte: Jewtsh Charities: Judaism-lis Prixciples: Jewish History: Reformed Jeda1sm: Zionism: Avti-Semitism: The Kar.utes; States of the Jew throughout the World; Rabbinic Legrscition: Jewish Emancipation:

Hebrews, one of the canonical hooks of the New Testament. usually spoken of as "The Epistle to the Hebrews." The fact that it lacks the introductory formula naming author and recipients, to be expected in every ancient letter. has led some to deny that this writing is a letter. But this form may in this case, as often, have been placed on a separate sheet and become lost. or for some other reason have failed to be copied. At any rate many expressions show that it really was a letter addressed by some individual to a definite group of early Christians. In the King James version it was styled "The Epistle of Paul the Apostle." and thus has been perpetuated an early Alexandrian tradition, which later became the universal opinion for many centuries. But this view was at first unknown in Rome and the West. where are the earliest traces of the use of this writing. and it differs from the acknowledged epistles of Paul in both style and thought. The language is here more idiomatic and choice; clauses and sentences are connected by an array of conjunctions largely different from those used by Paul: instead oi his abrupt, almost disconnected course of expression, earnest to vehemence. we find in Hebrews a series of balanced periods, flowing smoothly even when most emplatic, and a style abounding in almost artificial devices of rhetoric. There is no less difference in the theological conceptions and their presentation. While not antagonistic to Paul's doctrines. being rather complementary, the doctrinal teachings here are yet variant, as. for example, the teachings as to the divine Sonship of Christ: the nature of faith. and the value of the law of Moses.

While the Pauline authorship is now set aside as out of the question by the practically unanimous judgment of critics of every school, there is no general agreement as to who did write the book. Clement of Rome and Luke have been urged for no reasons except valueless suggestions made by Clement of Alexandria and his pupil Origen. Harnack has conjectured that it may have been written by Priseilla in association with her husband Aquila, but this view can satisfy only such as regard it as addressed to Roman Cliristians. The conjecture of Luther that Apollos was the author has been widely accepted. while the later suggestion that it was written by Barnabas has met with the approval of many scholars of the highest rank. The latter view has in its favor, to be sure, the only ancient testimony oi real weight, that of Tertullian. but it must be allowed that either Barnabas or Apollos would meet all the requirements of the case so far as they are now known. and consequently that the authorship cannot be positively decided.

There is no less uncertainty in naming the persons to whom it was originally addressed. The title prefixed very early, though in all probability not originally, was "To Hebrews." and the yiew that it was addressed to Jewish Christians is nearly universal. Not a few scholars, however. have lately declared in favor of the view
that it was written rather to Gentile Christians. The decision hinges on the answer to the question whether the danger against which the author warns his readers is rclapee imto heathenism or relapse into Judaism. On the one side it is urged that relanse into Judaism could not properly be designated "apontasy irom the living God." while on the other side it is urged that, while Judaism was in the author's mind good as compared with heathenism. yet it acceptance at cost of a surrender of all that was distinctively Christian might reasonably be sylcd apostasy. It has certainly seemed to most that the fact that the whole thought of the look is the superiority of Christianity over Judaism proves that the danger against which the first readers were warned was relapse into what the anthor regarded as relatively worthless because an outgrown and outworn stage of divine revelation, and that the opinion that apostasy into heathenism was the readers" danger is only "an ingenious parodox." even though "an amount of ingenuity has been expended in support of this hypothesis, sufficient to render it plausible."

To some extent the questions as to place and date depend for their answer upon the conclusion as to the character of the first readers. If addressed to Hebrew Christians, it is scarcely: possible that its date can be later than 68 . just before the Jewish war which resulted in the destruction of Jerusalem, and the final removal of the danger of relapse into Judaism. while the fact that it is addressed to a second generation oi believers and the references to the lapse of considerable time make it necessary to set the date as tate as possible. If addressed to Gentile Christians, it might be dated as late as 85 or even 90. But that in any case it is a first-century production is guaranteed by the use made of it by Clement of Rome before the year 100 .

Where the first readers are to be looked for hangs as completely on their claaracter as does the question of date. If Gentile, most would think it probable that they were to be found at Rome. where they may liave constituted only a single group of many among the Christians in the city. If. however they were really Hebrews. it is. if not impossible. at any rate less likely that they were at Rome. The reference to "those from Italy" is ambiguous, but it would seem plausible that Timothy had been imprisoned at Rome rather than that on release he should hasten hither. If the corc of the hook is a warning againit Judaism, it would be natural to look for those needing such a warning nearer the Temple than was Rome. While it is generally regarded as improbable that the letter was addressed to the church at Jerusalem. there may have been many communities within easy reach of that city where such a group of Christians as these "Hebrews" could have been found. Syrian Antioch and Jamnia have been named among other places.

The author very fitly ststed his work "a message of appeal." Such it is throughout. To be sure, the first ten chapters consist largely of argument skilfully marihaled and stated but all is to strengthen appeal, and exhortation is constantly inwoven with demonstration. The great theme is the superiority of Christianity over Judaism. While this is developed in many phases, it may be hriefly summed up in saying that in chapters i-vi the stress is laid on the
personal superiority oi Christ, as compared with angels. Moses. Aaron, and then (vii, r-x. 18) the superiority of the work of Christ is set forth. But the whole is one plea for persistence in the Christian profession and life, and while the changes of the centuries have made much in this book peculiarly hard to understand and have sobbed other arguments of some of their original force. yet, when understood. this plea for the value of Christianity remains cogent as well as earnest.

David Foster Estes.
Profissor of Neiz Testoment Interpretution, Colgate Unizersity.
Hebrides, hëb'ri-déz. The, or Western Islands, Scotland, an archipelago off the west coast. extending from lat. $5 \Sigma^{2} 35^{\prime}$ to $58^{2} 32^{\prime} \mathrm{N}$.; the most southern island being Islay, and the most northern, Lewis. The group is politically divided between the shires of Ross and Cromarty. Inverness, and Argyil, very neariy in the line of their coincidence with the coasts of the respective counties. They number about 400 in all. but many are inconsiderable islets and rocks. and only about go are inhabited: area, about 2.800 square miles: pop. (Igot) -9.159. They are usually divided into the Outer Hebrides of which the principal are Lewis and Harris (forming a single island). North Ciist, Benbecula, South Uist, and Barra: and the Inner Hebrides - Skye, Mull, Islay, Jura, Coll, Rum, Tiree. Colonsay, etc. The Outer are separated from the Inner, and from the mainland. by a strait or channel called the Minch, which at its narrowest part, between Harris and Skye, is about 12 miles broad.

The climate is mild and salubrious, but variable. tempestuous, and humid. Snow and frost are almost unknown in the smaller islands, and are but little felt in the la:ger. There is comparatively little wood in the Hebrides, and on many of the islands none at all. In Lewis, Skye. Islay. MuIl, and several of the other islands, however, both forest and fruit trees have been planted to a considerable extent. with great success. Oats and barley are almost the only. cereal crops raised. Potatoes are extensively cultirated. Cattle constitute the staple product. The native breed are small but handsome. Cheese and butter of good quality are produced. The breed of horses is also small. but hardy and docile. The native breed of sheep is very small, but Cheviots have been introduced with success. The productive land is partly occupied as sheep-iarms: nuch oi it is held by "crofters." who occupy holdings usually of a very iew acres, sometimes with a right of pasturage in common attached. There are also "cotters" who occupy houses, with or without a patch of ground. on the land of the croiter the iarmer, or the landlord, and who are often mere squatters paying no rent. Grouse-moors and deer ranges cover a considerable area. Owing to the minute division of the arable land there is in many places an excess of population. The condition of the crofters and cotters, especially in the Outer Hebrides and Skye. is very depressed. their dwellings miserable. and their living poor, consistang chiefly of potatoes. milk, and oat or barlcy bread, and in bad harvests it is oiten insufficient in quantity. The fisheries are not developed to the extent they might be. Whiskey is manufactured in Skye. I=lay: and Mull. Gaelic is the unversal language of the

Hebrides. which in remote times were subject to the kings of Norway, but in 1264 were annexed to the crown of Scotland. They were held by various native chieftains. in vassalage to the Scottish monarch; but subsequently fell into the hands of one poweriul chief. who thereupon ($13+6$) assumed the title of "Lord of the Isles." and began to affect an entire independence of his sovereign. The abolition of hereditary jurisdictions in 1 th C secured to these islands for the first time the peace and safety afforded by a just and poweriul government. Little was known about the Hebrides until the publication of Johnson"s 'Journey to the Western lslands of Scotland) ($\mathrm{t}-\mathrm{5}$), and of Scott's (Lord of the Isles.' which invested them with a popular interest which has been increased by the facilities afforded to tourists by the steamers of the Clyde.

Hebron, bébrón (originally Kirjatharba, now El-KHalil). Asiatic Turkey, a iown of great antiquity in Palestine. is miles southwest of Jerusalem, 2.830 feet above sea-level. It lies in the narrow valley oi Mamre, has narrow streets, high vell-built stone hovses with flat roofs, extensive covered bazars, with well-iurnished shops. exhibiting glass manufactures. consisting of lamps, colored rings, etc., for which the place has long been celebrated. The chief mosque. El-Haram. built around the Cave of Machpelah. from which Christians are rigorously excluded, is esteemed by Mohammedans one of their holiest places. Hebron is one oi the oldest existing towns. having been built seven years beiore Zoan (Num, xiii. 22), and it is mentioned prior to Damascus (Gen. xiii. I8). Abraham resided here, and acquired the Cave of Machpelah as a sepulchre for Sarah and his iamily. It was David's royal city for seven years. There is a German Protestant mission here. Pop. about 19.000.

Hebron, Neb.. city, county-seat of Thayer County: on the Little Blue River, and on the Chicago. R. I. \& P., and the Burlington \& 31 R.R.s: abons 63 miles southwest of Limcoln. It is situated in an excellent agricultural and stock region. it has a large four-mill, a creamery, and a planing-mill. There are sive churches. a high school, three banks, and three weekly newspapers. The shinments of wheat and live stock are extensive. Pop. (1000) 1.511.

Hecatæus, hek-a-tē'ŭs, distinguished Greek historian and geographer: Al. about 500 R.c. He was a native of Miletus, and the son of Hegesander, a member of an ancient and illustrious family. Of his public life the only event of which we have any definite knowledge was the part he took in the insurrection of the Ionians against the Persians. Being well acquainted with the resources of Persia. he vainly atiempted to disiuade Aristagoras, the planner of the revolt, from his undertaking. Later he went as ambassador to Artaphernes. and prevailed on the satrap to win the confidence of the lonians by lenient treatment. His two great works were his 'Tour of the World,' and his 'Genealogies.' The latter is little more than a prose version of the legends already given in versitied form. He improved the map of the world made by Anaximander: and his writings were highly esteemed hy Herodotus. The fragments of his works were published by Muller (IS,4--0).

Hecate, hěk'ã-tē, in Greek mythology, a goddess. whose parentage is variously given.

Homer does not mention her. She appears to have been originally a Titan who ruled in heaven, on the earth, and in the sea. She conld bestow or withhold at pleasure the blessings of wealth, victory, and wisdom to mortals, and was the only Titan who retained power under the rule of Zens. She was subsequently confounded with several other divinities, and at length became a mystic goddess having all the magic powers of nature at her command. She was identified with Demeter and Artemis, and was regarded as the mystic Persephone. Magicians and witches prayed particularly for her aid. Sacrifices used to be offered to her at places where thrce ways met (whence her epithet Tpo Siris, or in Latin, Trizia), and these consisted of dogs, honey, and black female lambs. Her mysterious festivals were celebrated annually at Ægina. Her appearance was frighttul. She had three bodies or three heads, and scrpents hung hissing around her neck and shoulders.

Heck, Barbara, one of the founders of American Methodism: b. Ballygarry, County Limerick, Ireland, I734; d. near Augusta, Ont., 180.4. She was one of a colony of German immigrants in Ireland who were among the first to be influenced by Wesley's preaching. In 1760 she came to America with her lusband. Paul Heck, and Philip Embury (q.v.). In 1766 she was very active in the organizing of a Methodist society which met at Embury's house, and she also did much toward the building of the Old John Street Methodist Church. Later she and her family removed to the northern part of New York State, and when the Revolution broke out went to Ontario, where they founded another Methodist society.

Heck'er, Friedrich Karl Franz, GermanAmerican soldier: b. Eichtersheim, Baden, 28 Sept. 18ir; d. St. Louis. Mo., 24 March 188r. After studying law in Heidelberg, he abandoned his profession for political life. In 1842 he was elected to the Chamber of Deputies of Baden. On the outbreak of the revolution in Germany in $18+8$ he endeavored to convert the preliminary convention into a permanent republican assemhly. Frustrated in this attempt, he put himself at the head of a band of revolutionists, and invaded Baden from the south. He was defeated at Käudern 20 May I\& 8 , and fled to Switzerland. In the following year he removed to the United States, and hecame a farmer near Belfeville, Ill. On the outbreak of the Civil War he raised a regiment of Germans, serving in General Fremont's division as colonel; and afterward for a time commanded a brigade.

Hecker, Isaac Thomas, American Roman Catholic clergyman: b. New York 18 Dec. 1819 ; d. there 22 Dec. 1888. In early life he was a member of the Brook Farm community, near Boston, where for nearly a ycar he officiated as baker for the estallishment. In 1845 he became a Roman Catholic: went to Germany to study for the priesthood, and joined the Redemptorist Fathers in Belgium in 1847 . He was ordained priest in London by Cardinal Wiseman in 1849 . Returning to New York he founded the order of the Paulists (1858), became their superior; and established the 'Catholic World' (1865), of which he was editor till his death. An anonymous French version of Elliott's 'Life of Father Hecker' led to the noted "American" controversy. He wrote: 'Questions of
the Soup" (1855): 'The Church and the Age' (1888) ; etc. Consult: Sedgwick, 'Father Hecker' (1900).

Heckewelder, hěk'č-wěl-dèr, John Gottlieb Ernest, American lloravian missinuary: b. Bedford, England, 12 March 1743 ; d. Bethlehenn, Pa., 21 Jan. 1823. At the age of 12 he came with his father to Pennsylvania. He accompanied Post in 1762 in his expedition to the Indian tribes on the Ohio, and in $17 / 7$ took up his residence among them as a missionary. After some 40 years' missionary service, he went to Bethlehem, the principal establishment of the Moravians in America, and there remained till his death. He wrote several memoirs upon the Delaware and Mohegan Indians: 'Account of the History, etc., of the Indian Nations' (1818); 'Narrative of the Mission of the Uniter Brethren' (1820).

Hec'la, or Hekla, Iceland, an isolated volcano in the southwest, abont 20 miles from the coast. It is of comical shape, terminating in three perpetually snow-clad peaks, the central and loftiest of which, Heklufiall, is 5.110 feet high. The circumference at the base is about 12 miles. It is composed chiefly of columnar basalt, and of lava, mostly covered by stones, scoria, ashes, and other loose volcanic matter. Since the roth century there are 4.3 eruptions on record. One of the most tremendous occurred in 1783 , after which it remained quiescent till 2 Sept. 1845 , when it again became active, and continued with little intermission for 15 months to discharge itself from three craters, its effects being felt as far as the Orkney Islands, 400 miles distant. The last outbreak was in 1878 .

Hectic Fever, a type of fever which is intermittent, and is distinguished by an afternoon or evening quickening of the pulse, and rise of temperature. The eyes of the patient brighten, his cheeks flush, and there is some nervous and cerebral excitement. The fever is succeeded by a profuse perspiration. This affection is frequently associated with phthisis. abscess, or septicermia, and is of dangerous significance.

Hector, in Homeric narrative, the son of Priam and Hecuba, and the bravest of the Trojans, whose forces he commanded. His wife was Andromache, the danghter of Aëtion. He encountered the Grecian herocs in battle, and often gained advantages over them. By his presence Troy was invincible: but when he had slain Patroclns, the friend of Achilles, the latter, forgetting his dispute with Agamemnon, resumed his arms to avenge the death of his beloved companion. Pierced by the spear of Achilles, the body of Hector was dragged at the chariot wheels of the conqueror; but afterward, at the command of Zens, was delivered to Priam for a ransom, who gave it a solemn burial.

Hector, Annie French ("Mrs. AlexanDER"), Irish movelist: b. Dublin, Ireland, 1825; d. London 10 Jnly 1902. She began to write at an early age and was a prolific and popular writer. Among her books, all of which enjoyed a wide popularity in the United States, are: 'The Wooing O't' (1873) ; 'Ralph Wiltor's Weird' (1875); 'Her Dearest Foe' (1876); 'The Frères' (1882): 'A Golden Autumn' (1897); and 'A Winning Hazard' (1897).

Hec'uba, in Greek legend, the second wife of Priam, king of Troy, to whom she bore Hector. Paris. Cassandra. Troilus. and other children. Aiter the fall of Troy she was given as a slave to Odyssells, and. according to one iorm of the legend. in despair leaped into the Hellespont.

Hedding, Elijah, American Methodist bishop: b. Dutches County, N. Y.. , Jan. 1-So; d. Poughikeepsie. .I. 1., 9 April 18ミ3. At the entered the Methodist ministry, and was appointed suicessor of Lorenzo Dow. He exrended his travels to Canada, and preached the Gospel in various parts. He became a member oi the Jew York annual conference in 1801 , and was made a bishop in 1824. He was instrumental in the establishment of the 'Zion's Herald' at Boston. the first fournal publtshed by the Methodist Church in the Tnited States.

Hedge, Frederick Henry, American scholar: b. Cambridge, Mass., I2 Dec. 1805; d. there 21 Aug. 1890. He studied in Germany I $815-23$. was later graduated from Harvard and Harvard divinity school. and after holding Linitarian pastorates in Bangor, Maine: Providence, R. I.. and Brookline. liass.: was professor of German at Harvard Lniversity (18 ;-2- 81). Deeply read in philosophy, ecclesiastical history, and German literature. he was a finished writer and a much admired orator, and ranked as perhaps the foremost German literary scholar in the tinited States. Among his writing a are: 'Reason in Religion' (1865): 'The Primeval World of Hebrew Tradition' (18 -0) : 'Martin Luther and Other Essays' (IR88): etc. His (Prose Writers of Germany) (1848) is a standard work. He translated porms from the fierman and wrote numerous hymns ior the Unitarian Church.

Hedge, a fence iormed of living trees or shrubs. Hedges are generally composed of one or more of the following species: Hawthorn. crab, blackthorn, holly, privet, beech. hornbeam. maple. barberry, iurze. broon, alder. poplar, willow, yew, box, arbor-wite, sweet-briar. etc. When there are so many different species to select from. plants may be iound suitable ior almost all kinds of soil - surh as wet or boges. and dry or sandy: ior all situations. whether sheltered or exposed: and ior all purposes, zuch as fences against cattle, or simply a: urnaments for garden and pleasure grounds.

Hedge hog, a small insectivorous mammal of the Uld World family Erimacida, and especially of the genus Erinticus, characterized by its coat of stiff spines. The family inlablit ieniperate Europe and Asia, but are not kmon on sea-girt islands. The best known of the score of species is the common hedgehog $(E$. curopaus). It has a long nose the face. sides, and rump covered with strong, coarse, yellowish hair, the back with sharp. strong spines: and is about nine inches long plus a very short tail. Hedgehogs. as their name indicate: reside under hedge- and in thickets. where they turn over the leaves and root in the mould ior insects lespecially beetles), cnails, lizards, roots, fallen irtit. etc. : they are indeed, omnivorous. The hedgehog deiends itself against attack by rolling itself up, a:d thus exposing no part of its body that is nit furnished with a defence of spines. It may te rendered domestic to a certain degree.
and has been employed in Europe to destroy cockroaches, which it pursues with avidity. In the winter. in cold climates. the hedgehog wraps itself in a warm nest. composed of moss. dried hay and leaves, and remains torpid till the return of spring. The female produces four or five young at a birth, which soon become covered with prickles. These animals are sometimes used as food, and are said to be very- delicate. The long-eared hedgehog (E. auritus) of the East is smaller than the common. and is distinguished by the great size of its ears and shortness of tail. Fossil forms as far back as the Miocene differ little from existing species. No true hedgehogs exist in America; the animals often so called being the very different porcupines (q.v.).

Hedge-hyssop. See Gratiola.

Hedge-sparrow, a small brown warbler (-Accentor moduluris), with a sweet plaintive song, very common in Europe about gardens and roadsides in summer. It is not a sparrow at all, but nearly reiated to the American waterthrushes (Seiurus). In Great Britain it goes by many names, as durmock, etc., and is one of the birds most frequently mentioned in books.

Hedin. Sven Anders, sviñ ān'dĕrz hĭ-dēn', Swedish geographer and explorer b. Stockholm 19 Feb. i865: was educated at Srockholm, Upsala, Berlin. and Halle, at the latter university receiving the degree of doctor of philosophy. In IS85 he began his first journey of exploration through Persia and Mesopotania. In 1890 he went to Persia as a member of King Oscar's embassy to the Shalh, and the next year journeyed through Khorassan and Turkestan. In f893 he set out on a remarkable journey from the Russian frontier to Peking. through Tibet and the Lob-nor region. He arrived at his destination in 180\%, having experienced four years oi exciting and harrowing adventures. His second expedition to Central Asia began in 1899. In 1901, writing from Narkhlik. Dr. Hedin tells of finding the ruins of a beautiful Buddhist tenple. some rare specimens of wood carving and 12 complete letters written in Chinese on paper and marvellously well preserved. Dr. Hedin has written five books, four in English: (A Journiey Throngh Persia and Mesopotamia' (IE8-) : 'King Oscar's Embassy to the Shah of Persia' (1801): 'A Journey Through Khorassan and Turkestan' (i892): and 'Through Asia' (18g8). Ile wrote also a scientific treatise in German. 'The Results to Geographic Science of My Travels in Central Asia.?

Hedonism is the name applied to any system of ethics which regards pleasure or happiness as the chisef good: as the good, that is, which makes all other goods desirable and to which they are all means. Not only money, health and the like are valuable merely as source of happiness, but virtue itself has no better claim to independent worth. In fact, for most hedom1sts, viftue is the name given in that kind of action which long experience has shown to ennduce to happiness. The most important of the many subdivisions of the theory is that which distinguishes psychological from ethical hedonism. According to the first, pleasure is the inevitahle content of every choice. Even III those instances of self-sacrifice which seem the mont rahtical contradictinn of such a view,

HEEL-FLY - HEEREN

the exception is apparent rather than real. For the martyr, death is preferable to denial. If it were not pleasant to him, he would not and could not cherese it. Ethical hedomsm, on the other hand, makes the choice of pleasure a duty - ther than a fact. The two have sometimes been regarded as incompatible, on the ground that what necessarily regulates chome cannot be exalted into an ideal; but the frequent inclusion of both in the same system may have a partial justification in the necessity for the rejection of certain pleasures and the acceptance of certain pains, if the greatest possible happiness is to be attained in the end.

A second division of the forms of hedonism is that between individual and universal. and is based upon the number of persons whose happiness constitutes the good. Individualistic hedonism regards the happiness of the man concerned as his own chief good, while that of other people is either a matter of indifference to him, or else is of importance merely because it forms one of the elements of his own happiness. Evidently psyehological hedonism is necessarily individualistic. although its combinations with ethical hedonism have often made it present an appearance of universality not strictly compatible with its original assumptions. Although there are plenty of modern instances of individual hedonism, these do not differ in essentials from the classical forms presented by the Cyrenaicism of Aristippus (cr. $435-356$ B. .) and the Epicureanism that sprang from it (Epicurus $3+2$ or $3+1^{-27}$ B.C.). Both Aristippus and Epicurus taught that individual enjoyment was the supreme good, but they differed in their conception of the nature of enjoyment and of the means by which it was to be obtained. Aristippus advocated seizing the pleasure of the moment, untroubled by regret for the past or dread of the future. Epicurns, while he also preached against fear and regret, maintained that the object of desire was a happy life rather than a succession of pleasant moments, an oroanized whole, not a mere sum. Another distinction between the conception of the two is found in the nature of the pleasurable state as described by each. For Atristippus its chief characteristic was excitement: for Epicurus, tranquility; a difference that undoubtedly was largely responsible for the different means advocated by them. The later modifications of buth theories show the well-known tendency of hedonism toward pessimism.

Universal hedonism was first brought markedly into notice by the Utilitarians, who found the supreme good, not in each man's own happiness, but in happiness in general, usually expressed by the formula "the greatest good of the greatest number." The moral worth of an action nust be judged by the amount of happiness it will tend to bring alout in the long run : and the consideration of all the different elements of intensity, length of time, certainty, possible complicating pain, and so forth. known as the hedonistic calculus, is associated with the name of Jeremv Bentham ($17+8-1832$). John Stuart ITill ($1806-18 \% 3$). to whose clear and persmasive mode of statement the theory owes much of its popularity, added to it the distinction between quality and quantity in pleasure. With the exception of Mill. botli ancient and modern hednnists have aln:ost invariably re-
garded pleasures as differing from one another in cruantiy alone he on the contrary, maintained that their differences "ere primarily qualıtative, and that quality must be considered in the conception of the chnei good. An action is to be judged, not only irum the amount, but irom the kind of happraces it causes. Ilill: wew has met with much adierse critucism, based upon the contentom that with qualnative differences in pleasure a nom-hedon'stic criterion 1as been introduced, wheh is inconsistent with the initial assumption of hedonsm. The adoption of hedonism by the evolutionists, especially by. Spencer, has given it a scientific basis, to which its present currency is partly due. Althougl the end in such systems is preservation, either of the individual or of the species, or of both, yet the actions best adapted to that end are accompanied by pleasure, and the animal to whom useful actions are painful. docs not perform them and is in course of time climinated. Actions found desirable in the history of the race come to have a feeling of obligation attached to them; and althongh at present end and means may to the individual consciousness seem incompatibie. yet as man becomes better adapted to his environment, all virtuous that is. useful actions will bring pleasure directly as well as indirectly:

As a theory of nitimate value hedonism can. of course, be neither proved nor disproved. 1ts chief advamages are: (1) It provides a simple and self-consistent account of moral action. (2) It makes possible a closer union between ethics and natural science than that allowed by any other theory. and is able to make use of the constantly growing store of knowledge in biology: anthropology, and ethnology. The most important objections brought against it are: (1) It confuses origin with value. (2) In regarding the moral end as constituted by fecling alone, it is psychologically inadequate. and psychologically false in so far as it views pleasure as the exclusive object of choice. See also Ethics: Utilitariaxism.

Bibliography- WI. Wallace. 'Epicureanism: John Stuart Mrill. '('tilitarianism:' Herlert Spencer. 'The Principles of Ethics:' Henry Sidgwick, Methods of Ethics.

Grace Neil Dolson,
Professor of Philosophy, II'clls vollege.

Hecl-Fly. See Bot-fly.

Heer, hăr, Oswald, Swiss naturalist; b. Nieder-Ltzwyl. Switzerland. 31 Aug. ISoo; d in Lausarne, 27 Sept. 1883. He was educate.1 at the U'niversity of Halle ; entered the nunistry in 183I; as privat dncent in botany in the University of Zurich $183+-52$ and from 1852 professor of botany at the University and at the Polytechnicum, and from i835-83 was director of the botanical gardens at Zurich. His most important "orks were: ‘Flora Tertiaria Felvetixe) ($185+6$): 'Tertiary Climates in Their Relation to Verctation' (1860): 'Die ('rwelt der Schweiz' (1865-io): (Flora Fossilis Helveriæe' (I877) : and 'Finra Fossilis Arctica' (1865-83)

Heeren, hā ren, Arnold Hermann Ludwig, German historian and philologist; b. Arbergen. near Premen, 25 Oct. 17ho: d. Göttingen. 6 dyarel $18 \$ 2$. He was educated at the cathedral
school of Bremen and the Eniversity of Göttin－ gen：in 1504 was appointed professor of philos－ phy and it 1801 professor of history at Goi－ tingen．His chief works are：＇Ideen über Pubitik．den Verlichr und den Handel der vornehmsten Voker der alten Welt）（17936， 4th ed．182；－6）：＇Geschichte des Studiums der Kiassischen Litteratur seit dem Wiederautieben der Wissenschaften＇（1；9：－ISO2）：＇Hanbuch der Geschichte der Staaten des Alterthums＇ （1SES：＇Geschichte des europaischen Staaten－ syisems und seiner Colomen＇ifth ed．1822）； Fersuch einer Entwickelang der Folgen der Kreuzruge＇（18081：and＇Vermischte his－ torische Schriften＇（ 1803 － 8 ）．

Heermens，Forbes，Anerica！dramatisi：b． Syracuse．－1．1． 23 Oct． 1836 ．He was grad－ waied from Cornell Lniversity in $18-8$ ，and is author of the deamas：＇Love by Induction＇ （1820）：＇The Silent WVitnes＇）（1800）：＇Between Two Foes＇（189n＇＇The Vagabond＇（1893）： ＇less of the Bar Z Ranch＇（tEg6）：＇Down the Santa Fe Trail：＇and the novels＇Thirteen $\dot{S}_{\text {：}}$ ries of the Far West＇）（18尺－）：＇The Rancho of Heavenly Rest）（Isgz）：＇The Investigators：＇ etc．

Hegel，George William Friedrich，philoso－ pher．especially iamous as the must sysiematic and nistorically influential of the post－Kantian German iclealists．was born in Stutisart．－－ Aug．1－50．and died as professor if phil anp ig at the Eniversity of Berlin，I4 N゙or． $183 t$ ．He attended as a boy and as a youth the Gym－ na＊ium of his native city，an 1 in 1 －゙s was ma－ triculated at the Lniveraty of Tubincen．where he studied theoloss：and where he fimshed his course of study in 1,03 From 1703 in 1，06 he was privite tut or in Switzerland．dev ting his leisure meanwhile．in theological and histroal studies In 100 he accepted a prisate tutor－ ship in Frankfurt．and remained ixere unti！ 1，oo．During this period he wrote out the ciritest sketch ci hic philosophical system，and． restring to devore himseli in phil suphy．
 lena．as Privatuon ne．Here ise lectured on philos plyy until the is uhles whith iol owel the batite of Jena in October．1\＆o6，interrupted for a time his schnl．rly＂r rk．During the years beween ISm an i 1 kor．IIegel＇$=$ rhilo－ e nincal teachines had assumed a much more herhy org－：icl i rm：he hal futlished a nuriber ni impretant esiays：ay lat the min－ ment it th bole ni I na we eju－t enmpletins his first great syse：man－treatise，the＇Phamon－ mer gie de $=$ Geivit．${ }^{\circ} i$ ．tle＇Pien men－ olve of lland＂nhe ，beain，for the time．sati－iactry ofprounty as an academic peacher．llemel thereatier pawed a year as cditer if a innmal in l＇imbera：and them rib－ tarmed a port on as rector of a gymasium in Airmberg，in ISaS He married the daughter of a distimauthel Nurnloeg imily in 1811 ． Thereafter．while stitl at curnherg he wrote his mat important an！fiaished philocophical tratl－．the＇Logik：＇in the years 1812－16． J_{11} ssfr he was apn inted to a prniesenrship of I 1 ＇n n play at the Lniversity of lle delberg in isis he accepted a eall in the Eniversity of If tine whe－e he rapidls wnn a pasition of the cret，intluence，gathered abnut him many
bearess and disciples．and became the head nf
a chool of philosophy whose influence upon contemporary German thoug．at was of the greatest．During his life he published．in addi－ tion to the works already mentioned，a sum－ mary statement of his whole system ni plii－ 1 sophy entitled＇Encyclopãdie der Philosn－ phschen Wissènschaiten．＇and a treatise on the ＇Piilosophy of Law：＇His lectures on the ＇Philosophy of Religion．＇on the＇History of Philosophy：＇on＇Esthetics．＇and on the ＇P＇ilosophy of History＇）were published post－ humously．His complete works．including his letters．fill is volumes．which were edired by a group of his friends，in the years immediately following his death（excepting only the letters， which in ibeir definitive edition．were published as Volume $\mathbb{X 1}$ of the warks by his son．the historian．Karl Hegel，in 188－）．

Hegels philosophical position can only be understond in the light of his relation to Kant． Immanmel Kint（q．v．）（1，－4－1804）became．by ire publication of his＇Critique of Pure Rea－ son．＇in $1-\mathrm{S}_{1}$ ，the leader in the movement of modern German philosophico $\}$ thought．In an age when the guidance of＂Reason＂was espe－ cially glorised hy all the leading liberal and pe－gressive teachers and parties of the day． Kant undertook a systematic inquiry into tic nature the limits，and the scope of the imman
 ISth centurics，had been especially diviled in npinion regarding the question whether experi－ ence or reason is the source of our knowledge Kint undertook to reconcile the conflicting views regarding this problem，and at the same time to map out．in a systematic way．the whole field which is accessible to human science H is result was．in substance，as follows：Human knowledre depends upon two factors．experi－ ence，and our own intelligence．Both fac－ tors are equally necessary for knowledge． Experience，when vewed apart from our intel－ ligence．is a collection of mere data of sense． which are given．but which．in so far as they are merely given are meaningless．The data of sense get their coherence solely throngh the active work of our intelligence．Onr intelli－ gence．whose manner of acting is spontamens： is indeed awakened to reaction only throneh sense，and can sive us knowledge onls with reference in the fact＝nf experience：but the data of sense ge：all their form，enherence． structure meaning anly ：ofongle the fact that nur intelligence is muided in its activity by cer：ain＂caternoies．＂and formative principles．in terms of which we interpret these data．view them as due to coherent＂ohjects of experience．＂ nd connect these ohjects so that the latter form the＂world of experience．＂Without the invelligence．then．with its＂forms．＂no colecrens experience is pnesible．Sense shows us by itself al ne，no ohjects，no connections of objects．ne 1．ve．no facts，no world．That we appear to fn1．in nur world of perception．connected thines．subject to laws is due th the mone or the hidden wark of nut intelligence．which gives frm 10 the otherwise incoherent seman－ ti ns That we all have the same nhenomenal wrold in deal with is due to the fact that in－ telligence is enmmon to us all，in the same forms．

In consequence．what we know，and wiat nur sciences of experience study．is neither a

CEORGE WILIIELA FRIEDRICII JIEGEL.

HEGEL

world of things simply given to ws as brute facts from without, nor yet a world of mere sensations. On the contrary, what we know is the world of experience as our active intelligence inevitably unterprets experience. Hence we know, not "things in t'jemselves," but "phenomena." and not mete "data" of expertence, but expericaces as interpreted by the active constructive work of our intelligence.

Neanwhile, our intelligence, upon its higher levels, is indeed not content with this mere interpretation of the contents of sense, but,still in its own spontancous way, - defines ideals of objects and of laws which far tran-scend.-according to our own conception.the facts of experience. Tie "Reason" proper. as distinct irom the "Lnderstanding". (that is. from the intelligence which morely interprets and renders coherent our experience), is the part or aspect of our intelligence which is concerned with these other and "transcendent" objects. The objects of the "Reason" proper, are objects which no human experience can reach or exemplify; and which we therefore conceive as lying beyond any possible experience. Such objects are God, the human ego itself, in its true naturc, the cosmos in its entirety, and the moral law. Such objects we cannot, in any scientific sense. "know." just because our knowledge is limited to our interpretation of experience.- ann interpretation due to the functions and to the categories of our lower intelligence. i.c. oi our "understanding." Yet if the "transcendent" objects of the "pure Reason" camnot be "known." they nevertheless can be and must be "postulated." by virtue of a certain active and spontaneous "fait?" which the Reason warrants. For these "transcendent" objects have for us a moral value, and give a meating to life.

We, "know," then, "phenomena." Our "Reason." meanwhile, gives us "faith" in certain "Ideas" which relate to the "transcendent" objects. This fait, is not knowledge, but is rationally warranted. It is the office of philosophy to bring to consciousness the "categories" in terms of which we inevitably interpret phenomena, and so organize our experience and get our science. It is also the office of philosophy to discover and define the "Ideas" in terms of which we just as inevitably organize our moral conduct, and give meaning to our practical life.

So. for Kant, this view of philosoply differs from the view of older philosophy in limiting our inquiries to the business of interpreting experience and organizing life. The philosopher then, is above all concerned with the universe, as the human Self. that is as the Self which is, in type, the same in all of us, sees the universe, acknowledges it. and gives to it. in the form in which we experience its presence, the type of rational coherenct. Any world which is not the world as the Self views it, is umknowable, and is a world of "things in themselves."

Hegel. in common with the other postKantian German idealists, builds upon the basis of this Kantian analysis of knowledge and of reason. His dependence upon Kant is shown by the rery fact of his frequent and persistent criticism of that philosopher's positions. That Hegel's results are in one sense far removed
from those of Kant becomes ubvious upon a very brief consideration. But that, however much Kant's doctrine is transtimed in 11 cgel s system, it is still Kiant whose vews are the principal ones thus transiurmeal, is also certain. The relation can be made more explicit by the finlowing statement of the contrast between Kant and Hegel:
I. The result of Kant's philosophy is that the accessible world is the world as the rational nature of the human Self requires us to interpret it. This result lies at the basis of Hegel's doctrine. But Hegel transforms it by dropping out of consideration, the adjective "accessiblc." as being superfluous. It is useless to talk of a world of unknowable or inaccessible "things in themselves." as Kant does. The world of reason is simply the world. There is nothing to know except i: 1 lat the nature of our intelligence requires us to acknowledge. Discover the secret of reason, and you have discoverel the secret of the universe. This is the first characteristic thesis of Hegel's idealism. "Behind the curtain which is said to hide the inner nature of things." says Hegel in the "Phenomenology,' "there is nothing, unless we ourselves go behind that curtain."
2. Kant furthermore divides the work of our intelligence between the activity of the " H " derstanding." which interprets special experiences, and the "Ideas" of that "Reason," which "postulates" out relations to ultimate reality. Hegel accepts this distinction as valid within its limits, but not as any absolute distinction. Our intelligence may and often does fix its attention upon fragments of knowledge. In that case it "abstracts" from the whole meaning uf its own life, and thereby becomes ipso facto an "abstract thinking" or "understanding" of this or that object or law. Such abstractions are useful, and inevitable. But they are not final. The truth. however, is in Hegel's phrase, simply "the whole." Only that form of reason therefore which is concerned with the widh ole meaning of life is genuinely philosophical. But since this meaning is, after all, our own meaning. the meaning of the Self, it nued not be simply a matter of "Postulates." It can be known to us.
3. Kant limited our knowledge to "phenomena." But this "limitation" loses its significance if once we sce that there are no "things in themselves" to know. The world is for us a world of mere "phenomena" mly in so far as we do not grasp the principle of which our experience is the expression. But, for Hegel, this principle is simply the absolute principle which lies at the basis of our own nature. Is this alsolute principle is not forcign to the Self the Self can grasp the principle. When it does so, it sees phrmmena as the ineritable expression of the meaning of its own life. And then its phenomena become once more "actualities." as real as any finite facts could be. What we know then is mot a mere world of phenomena. It is a worh of absolute Truth.
4. Our ethical ideals form, for Kant. a world of their own, which we can never lontw to be real, but which we can, and must, belieze, to be real. This contrast of ideal and real, of knowledge and faith. Hegel helieves to be founded only in a historical difference of cer-
ti.in stages f our own seli-development. Faith, 1i ence brought io a clear seli-cuaschusaness. beceme: a knowledge as to what the absolute Seli is and determines. Aind tais knowledge phbsoply can atain. Such or knowledge is ifso aith a knowiedge of trath. For ald innth is in and of the irue Seli. i.c the tbsulute
§. Kant. in trying to derne the eategorics which lie at the basis oi our interpretation of the world. had smpiy accepied these categories which he cobserved io be in luse in our daily thiaking, and in science. He treated tiem as a fixed set of principles. Regarding the origin and the mutual relations of these categurnes he has 110 extended theory. Tine categories are. fur him, uhtimate facts ci our inte.igence. detemming its cosstitution, but of nuknown source. Hegel, on the contrary. regards is as one oi the principal tasks of phtosopiny to show why and how we come by jusi these caicgories woich we nse in the interpretation of experience. and in the crdering of liie. His primeinal work, the 'Logic. is devoied to such a treament of the categories. And in fact, since. from Hegel's point of view, the wrid of "Thought" is the only real wor'd. cr. in ciner words, since the cuastructions of that ahstiuie process which embodies itseli in our thotght and in our life are constitutive 1 i ail trath, this Logic. which is to show the true senesis and nature of the Cotegories. takes the llace nit all that in the older philosanival systems, had been called Metanhysics. For the the ry of the ahs 'uie constructive process which upreses itself in our experience and in our thinking is simply the tiene of the tunverse. There is no other world to know than this world which th ught ennstructs, which experience cbserves. and which constitutes nur life and its meaning
6. For Kant, nothing absolute js kn wable. All our knowledge is relative For Hegel, absolute knowledge is rossible: in wherer knows the principles that determine the true nature of cur thoush: and if cur life. finds isese princinles as the expression of the trae Seli. absolute.

Thi comerast rof the positmons of Fant and of Hegel may help to give the Herelizn philosephy its forper liviorsal sating. without which it ineritably appears in he a presumpiunus attmot it transcend the natural limets of human reasnn. For llegel, the ee lini:s are mot what they seem. That is, they sre mit abonlute limits For what we have to consider, wlom we phin $=$ phize. is not a foreion w rlas, hut is Tu:her he wionle truth with remard! the me ninc of the vors life whith we ourseives are exyericacing and are living

In his $\because=\mathrm{zt}$ gr at w k. the 'Phenmenotric. Hescl a ie in areunt, ithe v... us
 -ann 1. = i- aryear in bintery, pasues, in its itnaiti 7 fral a miv depenlence un n the = n... the ...s. of phat $=$ nhieal rehectim 1. His (Le ek.' a-has juse been state l. Head 1. I retke : A-ceribe the way in whic's phil-

 \ldots or or invernretati n of hathere - it in tugertica nunedure. vherethe the
 shonm nt. irmutrmad int the helier ea:e-

Eirics. In the systen of Hegel, as he plamed the order of $1: 5$ parts, the 'Logik' is next iol1 wed by the 'slaturphalesopnie, or 'Phil-a-p.ay Jature The only connected treatment which tins purtou of the $=y$ stem ever recemed is the mere compend contaned in the secund part of Hegel's 'Encyclopade.' The 'Vaturp ilosophic' consequently' remained. irom Hegels po:mt of view. imperiectiy Worked out. The third fortion of the system was the 'Philosophy of Mmd.' This also was leit without adequate working out by the philo=opher. although in his 'Rechtsphilosophie,' in the third section of his 'Encyclopadic.' and in his p . sthumously published lectures. there is a very extended treatment of various parts of this ion-luding fortion of his undertaking Tnder the 'Philosopiz of Mind" Hegel included, first the whole range of psycholosy, and the phslosophical theory of the relations between nature and mind: secondly, ethics and the phrlosophical theory of the state; thirdly. philosophical aesthetics. or the theory of the beautiful : and finally the philosophy of religion.

The range and general intention oi the Hegelian doctrine are thus suggested aldough, owing to the vast range of his undertaking, this can bere be done only in a very inaciequate way. Further characteristic of the philosopher are especially (I) his "dialectical methou." and (2) his theory of the Absolute.

By the dialectical method Hegel means a procedure of which some of the dialogues of Plato sive us classical instances, and which Kan: 's "Antinomies" as well as Fichute's method of procedure in philosophy had exemplined. although the systematic lise of the method in Hegel's way is due to his own initiative. Irith. according to Hegel comes to us. in the ifst place, through the medium of "immedi..te" experience. Without such experience, we conl? indecd procecd no iurther on the way toward insight: and this is the permanent jusitication in "empiricism" in philosophy. if only. we obecre that !uis barely immedrate experience, although indispensable. remains meaningles imless we trancform experience through ine activity of our thought. Thought begins by observing that immediate experience. taken merelo as it comes. is. so far, not yet intelligible. The frst work of our thought is therefare to ct seify to divule, io fiv upno distinct aspects of focts, to insm gencralizations and so in convert what ctmes in us as immediate iato the Chetrac: fincm ci nur vari, us Gidin e'th or conceptual consiructions. This is, so iar, the work di "tue U"ederstanding." Such work first yes.ris in ear rezarding truth as something which. - the one hand, i= fixed, wniatral, and -histr.et, white, on the ether hiond, th: worll ni. ruit also appeare to us in be a world of in nitely = ar us special truahs. which relate 1 w : thic and n w in that indivilual thing. on- for, or law S far as our understamiong d. els uran the fixits the univerality, the ab--r ct ceme- lity of it truthe it finds, or end1. Wh ceeks \therefore iad unl!y in the werld. Bus
 (r) - in disonver unitr. singes cut :1 wis this hol nove that fict or haw it is enmironted by bre - rich of the reculis which is reachec. Ther- -esult: the well-known problem ni "the nae +1 the Nany" In coasequence, the un-
derstanding is involved in contradictions which are simply mevtable. In the world of the understandug, "everything is self-contradetory," and is so just beiduse the understanding makes furmal consistacy the one test of truth, even at the very moment when it expresses its searcil for truth in the form of an cfion (I) to divide what is inseparable, and (2) to substitute ab-tractions for life.

The iurms which the resulting contradictions assume are nel known in the history of philosophy. The imterest in abstract unity is shown in extreme form in the Eleatic reduction of the whoie world to a simple One Being. by contrast with which all vartety is illusory. The Atomistic thesis. which reduces all the qualitative rariety of nature to quantitative differences, the material substance of Descartes, whose only attribute is extension. the sole substance of Spinoza. - these are also consequences of the tendency to understand variety by reducing it to an abstract and lifeless unity. On the other hand an equally abstract pluralism. in all the earlier stages of philosophical thought, has emphasized yariety; with the result of making it inconceivable how the facts. when regarded as thus mutually isolated. could conspire to make a world at all. Views of one type have, by their very contradictions, led over to riews of the opposed type.

The solution of all such difficulties lies in reducing the contradictions to their "ground." wish lies in the very "movement" of thought itself. For the truth of such views lies in their synthesis, not in their mere conflict. Such a synthesis is furnished by the discovery that the search for unity and the interest in dirersity and variety are but "aspects" or "moments" of that life of seli-comprelension in which the very nature of reazon consists. When thought. by virtue of a deeper reflection upon the contradictions of the understanding, has reached this higher stage of the reazon proper, it therefore riews the successive opposing views as inevitably one-sided expressions of different aspects of our rational interest. Our world is indeed one; and in order to bring this fact to our consciousness. we have, upon the stage of the understanding, to emphasize this rery aspect of Being and of the life of our own thought to such an extent as 10 isolate, by our abstraction, the unity upon which we then dwell, from the very varicty of which it is the unity. Now unless we passed through the stage of doing this we should never bring the unity of things to light at all, hut should leave this aspect of the "immediate" lost in the original obscurity in which, apart from thought, all experience is involved. But so long as we remain upon this, stage of abstract reflection, we nevertheless inevitably contradict bath experience and ourselves. For experience is of the many, as well as of the unity: And an abstract unity: which is the unity of nothing. is indeed a self-contradiction.

But while our world is indeed also many: and while. in order to bring this aspect of things to light, we must emplasize pluralism. Yet the resulting views, taken in their ahstraction. are as contradictory as are those of mere monism. The many could never coöperate in one world were they not also one.

Thus we cannot reach truth without pass-
ing through comeradictions. For the truth is a syinthess of variuns pinto of view. No one of these can be apprectated uuless it has first been emprasized. if ome emphasped in becomes, however, in tio isulation, scli-contradictory, just becamec it has it, truth not in ats isolauon, but in its relations to the wher puints of view. But in order (w) be able to sce that these very relations are neceseary, and are not merely adventitions and emprocat. We must sec how the isolated point of view contradicts itself. The sequence of tacie 1splatrons of special categories (followed by the resulting contradictions, and by the necerary anthesis): constitutes the "dalectic mivement if thought," by which the "immediate" experience, with which we begin, is transformed into the system of truth, wherein all the elements appear in necessary interrelations to one another. The principle of this method is what Hegel calls the "Xegativity" of thought. The denial. or sublation of imperfort stazes of insight is the only mouns wherdiys the perfort stuge can be made explicit. This is the principle of the dialectical method.

The Hegelian theory of the Absolute is the correlate of this theory of the process whereby truth is acquired. For the dialectical method is not only a method of acquiring insight: but. since thouglt is, in principle. identical with the very life of the universe the method by which we come to insight is also the very method by which the life of the world is developed. Iran is simply the world come to self-consciousncess, - the Spirit explicitly aware of its own life. This is the obverse aspect of the thesis that the true Self is the world. Tiewred objectively, the Hegelian doctrine accordinely is that the world-ground, or "the Spirit," also called the Absolute. has a liice or activity: whose forms are expressed in the categories of the 'Logic.' This life has first to manifest itself in experience as a world of immediate facts. This immediately given outer world constitutes what we call - لature. Such a world has to exist, and to be found hy u e, in order that the forms of thought should be, not mere forms. hut forms expressed in a concrete and inme: diate way: In live. and especially in rational beings. the thoug't which is everywhere present in nature reaches a still higher expression. which at last becomes identical with our own insight. as this insig'it derel pes through the historical evolution of humanity: The entite world-process is therif re the complete expression of a rational spirit. which indeed eternally possesses self-conscinusness, but which. when viewed histerically, appears to us as at taining such self-consciousness. in individual form, in the religinus and in the philosophical consciousnees of man.

This must suffice as an outline of Hegel': main thougite. Owing is the interest which he had in viewing the entire course of human history as a series oi movements determined by the dialectical provesses of which all our life. according in him. concists. Hegel tonk great intcrest in the phincoply oi hictory. The influence of his schand has heen. in consequence. of great importance in affecting the spirit of a dreat number of modern historical inquiries. The hishly ambiruous relations of the Hegelian system to traditional theology

Fr ved rery momentous ior the devenpment of the crntical study of relrgious d－gma，and of reigious histozy．dunng the geneation aite？ frs death．While the origina，Hese ian scho： uitimately los：its dieect intuence in Geamany， \therefore indirect infuence of the Fegelian system till－emain very great，an 1 is especially no－ ticeab－it：English and American thoughe stnce 180：

B．bli graphy．－Sti－ling．＇Secre：of Hegel Edmard Caird．＇Hegel＇in Biackwood＇s＇Phil－ rs－phical Cassics＇：Kumo Firche：．His：org © Modern Philosoph‥＇Vo：．VII．

Jostre Royce．

Puriess＇r of fle History of Phal sopty，Humard

Hegira，hè $\mathfrak{1}-\mathrm{ra}$, Hejra， $0=$ Hijra，an Arak c whed meaning＇goiny a ay．c mm niy used－o indicate Mohammed stigit from Mecca，in $\mathrm{C}=2$ \therefore D．In 639 Caliph Omar instituted a new Mos－ lem calendar．to begn uith the fort day of th？ Itst mowth of the year in which the Alicht tock blace．The I $n h a n m e d a n$ year．as a luna－year． is shorter tian cuts by tei da．．s．II how：s，and If 2－seconds．A rouzh and Eczay me：t is if Thdirs the yener in our caen la－creespund－ ing is a given yar it the N1 hamen dan is ？？
 22 to the remainder．To fin 1 the precise year and day．multipty the year if the Heçira by $0-5.221$ ．strike 0 年 from the pr－duct six＊ecimal fsures and add 621．5－：－1：this wi！＇give the yeat
 s ：by muttiolying the decimal igures by 3 ts

Heidelberg，hidddbirg．Germary，is ntl M．．．．ersity iown in Badent，on ！－！it bank if the Veckar，here spanned ty tw bridmes mies by rail east－s otheaz：i Man－heim stands in a flarr w strip b \because on the ri．er an 3 the r cis on wich the caste is but．．．an 1 chie？
 strect，and les：impratart \therefore tply－shong or sa and pral！：$=$ reet．Tre cirf la＝à riectre
 i．．int al we the t wn，an ion．．．．．e ins－clud r in esun on the Isth century，ex h hio efa ate cxampes co early and la e renaisarace a－chi－
 Tas are the G itic ol ureh，is：Pear．ic G it \because ch reh ci the ！Iy $\boldsymbol{r i t a}_{\mathrm{t}} \mathrm{t}$ ，tite K man

 $\therefore-1$ th sct ols．The manuiact．res．c 71 －a－ tol＇y unmportant inclule cerner：of he el．

 i t^{\prime} ．chrt－ries nithe－9ace is th i．ithm r

 ：Ir r an I the frile a＂I rohly＂ole？ $\therefore \quad \because \quad$ uth which it win ：i ）\dot{i} in the Rhine．

 e．ntl，th－！iti－t hill of the district．form whoth an ext malsc vi＝w is c ainud of surpasintg
beauty．Heidelberg arose around its isih cen－ tur：castle and was until 1－19 the capital ©i the Palatinate．In 1022．Itss．and in ites the French captured and piliaged the city．I： I\＆oz it was united f：the Grand Duchy of Baden． Pop．：900 40．121．

Heidelberg Catechism，a religions work published at Heicelberg in $1=63$ by Zachariah troinus ire the use ci the Reiormed Church． and published in the Falatimate．It was ap－ proved by the Sind ci Dort．and was the model on which the llestminster Assembly framed the Is re－Catechism．

Heiceiberg University，Germary，a re－ ncwne1 instrtution isumued by Electre Ruperi I． in I38o．It was crganized by Narsilics van Inghen on ine model of the University o Paris． an 1 at the Reionmation，ircan a Catioize became a Prosestant stronghoid of learnins．It fous－ ished till the perind of the Thisty lears War when it dechned．In ISO under the administra－ tion of the Grand Duke－Eaden，a rew era was ：nausu：ated and the univesity rapidy became famous．It is very complete in its details，and c mprizes facultes of incoiosy．law．medicine a－d phi． 1 schy：the farmus library has over sococo v lumes and $1,-\infty 0$ MISE There are iso p－ofesonts and instroctors．whie the averaze anmusl aitendance of seudents in all depars－ ments is cyer I fiso．لany of the most famous German sch－lars have been nroiesso：s here－ Mramchohor，T－sinus．Olevianus．Reuchlin．
 Sotsser．Creuta．Gersinus．Paulus．Kuno Fschro．Helmholez．Bursen．Biuntschii．etc． The quincentarlary c it the university oras cele－ lrated with caborate ceremonial in 1 sio．

Heidelberg University，Obic，a neduca－ t ．nal institution at Tifin，founced in I 50 ．un－ der the auspices of the Reiormed Church in the Unised States It has departenents os theology． © mmerce．vasiry．art．and music．and prepara－ in and summer sch 1s．In Igo i i：had 24 protise ts and imstucters：3sh students；a －Fary－i vere 25 noo solumes：the grounds and buildines were valued at ミras．coo：the productiv in：$:=$ ampunted to $\leqslant-5,000$ ，and the income $t s$ ミnn：

Heidenmauer，hidn－mow－er．（i）A name Gival in Gameny to the comains of old Ge：－ in no $\mathrm{R} \boldsymbol{n}$ an i－rtrises ard ramparts．ミme If，＂i－h strl ciot．esnecia＂＇s at Ottibenthers．a
 runtl by Jam＝Fimimere Conper，when hat the $\cdots n=$ ni his story in the losges during the

Heights，Measurement of．See Hrpsoue－ －．

Heilprin，hil＂prin．Angelo，American natu－ ral：st：b．Satoralja－Ujhely，Hungaty， 31 March 1533 dew yr ck t－．－e t．e with his parent to the［nis 1$]^{\prime}$ Svates it in ．bat received hi education later in Eu－$^{\text {a }}$ t e e．makina a special s？udy of natural history． $\cap n$ is r．in＊America．his scientifc ability $\therefore \therefore \quad \therefore y+$ cognize 1 and he became succes－ ki．．y folesa ri invertebrate pateontnicer
 Pru－\because the dead my of SVatutal Scte：－es．

fessor of geology at the Wagner Free Institute. He was for five years president of the Geographical Socicty of Philadelphia, was leader of the I'eary Relief Expedition in I Yga and made a journcy of research to investigate the cause of the Mont Pelce (q.w.) diaster in 1902. His published works include: 'Contributions th the Tertiary Geology and Palæontology of the United States' (1884) ; 'Town Geology' ; 'The Lesson of the Philadelphian Rocks' (r885): 'Geographical and Geological Distribution of Animals' (1887): 'Explorations on the West Coast of Florida and in the Okeccholee Wilderness' (I 887); 'The Geological Evidence of Evolution' (188-); 'The Animal Life of our Seashore' (1888): 'The Bermuda Islands: a Contribution to the Physical IIistory and Zoology of the Somers Archipelago' (IS80) ; 'Principles of Geology' (ISgo) ; 'The Arctic Problem and Narrative of the Peary Relief Expedition' (r893): 'The Earth and Its Story' (1896): 'Alaska and the Klondike' (1899); 'Mont Peléc and the Tragedy of Martinique' (1903): 'Tower of Pelée' (1905).

Heilprin, Louis, American scholar: b. Miskolez, Hungary, 2 July i8jr. He is a brother of Angelo Jeilprin (q.v.). In 1856 he eame to the United States, where he was privately edncated, and where he was conneeted with various works of an encyclopedic character. He published a valuable 'Historical Reference Book' (1884: 6th cd. 1899) in 'The Concise Knowledge Library:'

Heilprin, Michael, American author: b. Piobrkow, Kussian Poland, 1823; d. New York 19 May i888. Carefully educated by his father, in his 20th year he cmigrated to Hungary, chafing under Russian conditions. For a time he had a book-store at Miskolez and was on intimate terms with Kossuth and his party. When the Revolution was quelled, he went to London, there meeting Kossuth, who advised him to go to America. In 1859 he and his family emigrated to New York, where his literary activity was continuous for nearly 30 years. As coeditor of Appleton's 'Annual Encyelopedia' and reviewer on 'The Nation.' he won a distinct rank for his exact and versatile seholarship, especially in the line of Semitic literature. On the arrival of the Russian Jewish refugees in r88ı-2, he took a prominent part in their welfare and personally supervised the colonization of many families. His published works include: 'The Historical Poetry of the Ancient Hebrew,' Vols. I. and II. (I880) ; 'Bibelkritische Notizen' (I893).

Heimburg, him'boorg, Wilhelmine. See Beinefas, Bertha.

Heine, Heinrich, German poet: b. Dusseldorf, 13 Dec. 1797; d. Paris, France, 17 Feb. 1850. Ilis father, Sanson Heine, of Hanover, was a merchant of honorable family, which sprang from Bückeburgo. He was good natured but without marked intellectual gifts and of little business ability. The mother, Peira (Betty) van Geldern, came from one of the oldest and most prominent Jewish families on the Rhine. Her father, Gottsehalk, was one of the first Jewish physicians who graduated as Med.D. from a Cerman university; her brother. Josenh, was also a graduate. Her uncle, Simon van Geldern,
was a strange, adventurous, enthustastic man. He journeyed throngh all Europe, went to Jerusalum, and returned from there to Germany atter a varis and eheckeredexperience. His dary of travel and other writhing are still preserved. The fate of this strange relative made a deep impression on the mand of the mature and gifted boy, who first was sent to a private school and then to a lyeem in harge of prests until the year I8If. The great at intluence on his education was exeresed sy his int 'le tually gifted mothe, v. ho :uad Rousseats and Gocthe and was an enthusiastic Gern- iatriot, while his father was ju:it a cnthusiastic f r Napoleon. Between these contrasts 1 leinc, in his youth, swayed constantly i both directions. The whole life of the poet can be described in one sentence: He was a German, who was ' in of Jewish parents in a Roman Catholic city on the Rhine in the period of Napoleon's supremacy , the one hand and of flourishing Romanticisi! the other. In these words lies the entire biography of Heine, everything which uplifted and hampered, all his defects and excellences, and all the deep contrasts and dissonances with which his life was filled.

When he left the gymnasium, he was ready with his companions to volunter' in the struggle against Napoleon. 11 is first poems glorify German custom and loyalty, German patriotism. But this spirit soon changed, and soon, like so many eminent Germans of the time, he becance one of the most enthusiastic supporters of the Emperor's heroic ligure, whose fame then filled the entire world. His most ardent wish at that time was to study. But his parents, whose business was already in decline. could not gratify this desire; and even his rich mele, the celebrated banker, Solomon Heine in llamburg. on whose bounty the whole family in reality lived. preferred to have the youtil become a clever merchant. So his father in 1815 took him to the Frankfort Fair (Messe) and placed him there with the banking firm of M G. Rindskopf. But the position was not long to Harry's taste nor was a grocery more enturable. After a sloort time he returned to Dusseldorf. The attempt was now mad to have him settle in Hamburg, first in his uncle's connting-house ansl then in an independent concern of this own, which was a branch of his father's business. But he showed little talent as a merchant and in 1818 his firm failed.

First Effort as Poct. - In the three gloomy years at Hamburg, however. Heine became a poct. Under the pseudonym "Sy Frendhold Riesenharf" appeared in those dars in a Hamburg magazine his first 'Traumbilder' and pocms. A luckless love for his rich uncle's fair daugliter Amelia filled his heart and aroused those lamentations of deep sorrows. which formed the basis of his poetry. The well known poem, 'I youth loves a maiden, who chose another' contained almost literally his entire heatt's romance. After it was shown that Heine 1 ad absolutely mo mercantile ability, his uncle finally consented that he might study law.

His Untiversity Corect- In Oetoleer 18 ra lie entered the University of Bonn, which had just been reopened. A frecly and stimulating spirit prevailed at this umiversity both amone teachers and pupils. Wen like lugust Wilhelm v. Schle. gel, who interested himself very mucl? in the

HEINE

young paet: E. A. Arndt, and others, belonged to the teaching stafi. - hmong the students we ind nanxes ske Woligang Menzel, Hof̆mana so Filersieben. 1 fensitenberg, etc. His specia iriends were leredrich Sicinminn, J. B. K. uncata, an 3 Irsef Xemzig. In the vacation, after the :rst year of study: Heine resided in the little town Deuc!. near Bonn. and there he worked on his tirst tragedy. 'Almansor.' the plot of which "1as paced in the persol of Moorish decline in Spain. In the poem. howerer. Heine wi-hed is present a picture of the battles which Judaism in Germany had io endure. '. Nnanns r ' is a lamentation oi crushed and persecuted Judaism. From Benn Heine went to G ttingen, whose faculy oi $13 x$ was quite famous at that time. But he did not enjoy its instruction very lons. ior he had is leave the unisersity or account of a duch, and in Fehruary 8821 cante to Berlin.

Lie at Berlin.-His choice oi Berlin was iotumate ins the young poct. A vigorous intellectual atmosplere prevailed in that era in the Prussian capital. Before everythong else he was atiracted by the best salon in which Rahel Varnhagen von Ense had her special circle with Goteht (q.w) and Fichte together with a coterie of brilliant spirits. Both she and her husband quickly recognized the poctical power in Heine, and admitted him to close intimacy Her brother Lenpold Roleet, who was also a poet, was exceedingly iriendly to him, anil his wie Friedricka aroused Heine's enth ssiastic adration in smmets and songs. The second coterie which iascinated Heine was a round sable i young prets who gathered in Lutter and Weseners restaurant. made iamous by Luduig Devrient and E. T. 1. Hoffmamm, which was to become the scene oi mare than one carouse. These mon were Christian Dietrich Gral be, Fricurich s: Leacheritz. K:r! Kichy, L. Gestort. and athers. I third circle finmed the greatest posibble contrast to the others and in this, perhaps. Heine felt mont at hame It was a small body of young men wlo in a tume if general apostasy irum Iudaism, asiumerl as their task the reform and deve opment of Julaism which then was regarded as in its declore. It the hearl of these restute workers at nd Elurd rans, the celebrate 1 jurist. Minscs Noneer. a mereliant, wh m his frien! lleine cale 1 a living epil. gue to Lesang': "Cathan" and Le pnl1 Zunz (q.w) . the imm ral f under wi th. t hr +h i i critical re-arch eallet the ecience of Julaism. Dleme tonk the deepent interest in the labore. hores, and] disappern:ments of i! is sterety. itmentiont ifin I re i r the sensal cause which was abondoned by them, is e:nbr-lied in his romance. 'The Rabbi © Yo ! arach,' which was thea begun but uniftatey fom ins a tren.
I orty. If: ! - 1 n Rerlin, tho, the un'veraty ist's is-inated lim. In particu'a- the

 Bler in. +1 . Trat phe t, i lleli-chmert in Germinv Vamlazen \because Ence anl Kirl lmmer-
 - $\mathrm{p} \quad \mid$ ar ${ }^{\prime}$ ir m directmg tle puhlice $=$ attention - the young pot. the new star on the lo rury

Ratcliffe) as well as by his (Lyrical Intermezzo' which appeared in a volume at the same publishers: When Heine in tezf went ior a pecond time to Gitingen, in order to undergo his d ctor's examination, he was already a well-known personality in literary circles. During thas perind of his second stay in Gutthgen ccurrel an act on his part which is wholly unhitel ig ble. judged by his previous labors, his writings, and letters, and which can only be explaimed by the sad conditions of the time - on - June is 25 at Heiligenstadi, neat Goitingen. Ie embraced the Protestant religion. Clearly this act was done only in promote his proiessional career. for his sympathies in increased degree remained on the side of his coreligiontits. Heine regretied the step his entire life.

Ifis Chove of Literature as ProiessionIfter his graduation as doctic of law he returned to Hamburg. But all his eff ris to maintain hrs hold there or in Berlin were unavailing despire his baptism. The failure was due either to the prejudices of the time or to other drawbacks. So Heine devoted himseli wholly to literature. Two years earlier he made a journey from Gottingen to the Harz Mountains, in the course of which he visited Goethe at Wieimar, but met a rather cool reception. This jurney he now described in his 'Harareise.' which had many readers who were delighted with the new and fresh tone in which the varied and piciuresque experiences were narrated. In the years $1826-1831$ Heine's rank as poet was firmly established. That period iorms the crown of his life and activity - his high-water mark of achievement. The four volumes 'Reisebilder' ('Pictures of Travel') published Is_o-1831, showed him from an entire: different point of view. His 'Buch der Lieder' ('Bork of Sonss'), gave on the other hand. a iaithral pieture of his iyrical skill. which also siruck eqtirely new paths. Heine had emerged trom romanticism. He knew its mysteries and magic spells. Close thereb:\% or rather iar abose it, stood the well of German popular I ciry out of whose depths he drew such we.lth as no other German poet had accomfliched. Goerhe and Chland. Brentano and Wishelm Müler were not without their intlucnee on the matter as well as the metrical form oi his poems; yet he was original and his songs. -r used a practical revolution in the world ot German poess.

His Gentus and Its Intutnti.- The seeret ci lus urignality and of the marvelous intucrice which he exercised not only on his centempraries but also on every age. lies in the lech ar charmi which characterizes these songe. as thes snuml the tenderest tones of the heart. aul then in cotting disonnances shatter the s ntimemtal quality which is ..t their basis, thus p. Iucinz a humornus-quetical effect incomparabe in $1:=$ way. The subjectivity, with which lleine w we liss snrrow:, whether trivial or seri u. in the warp and woof of his verse, was - met ne unheard ni in the hi-tory oi German 1 e"ry. [lere was as little hypocrisy in his ic ung of sorrow (Weltschmerz) as in that of 1. n 1 Pyr n. hut it was truer and deeper. be-rau-e it was blenled with the Jews snernw ir an gray antiquity. His pictures and thouzhts. tis O-iental senst:ousness, and his Germant renothetces. al this in its combination fiermed

HEINRICH HEIN゙E.

HEINE

a poctical ensemble which was to destroy romanticism, with its farryland of lesends, and to construct the poetry of a new age and a new generation. The verse included a mass of new poetical material; for instance, the description of sea in the splendid-colored North Sea pictures. $1 n$ marked contrast was the wonderful effect produced by the form of the poems, which, apparently somewhat careless, wats really intentional and just adapted to clevate the mood. W'ith his 'Book of Songs' Ilcine became at once the first German poet of his time. His p oose writings exercised in those days a similar influence. Ileine loosened the tongue of the modern man of culture: he taught limu what and why he suffers. In an age which was gloomy. depressed, and poor in deeds, he unfurled the bamer of freedom and announced to the young generation the dawn of new days which had to come. While much in his 'Pictures of Travel' was of transient worth and importance for the history of civilization, of permanent value was the blending of humor and sentiment, wit, and earnest reflection, wherein following his great predecessors, men like Lanrence Sterne, Jean 1'aul, and others, he created an entirely new gevue. The modern Feuilleton rest wholly on Hcine's prose. The "Young Germany" school which gave the deathstroke to romanticism in the 30° s of the past century followed in his steps. His travel picture and sketch remained for decades a model for joung German writers after which to pattern their prose.

Further Actizity- Despite his popularity, however. Heine conld never attain a life of entire self-reliance in the conditions of his age, His steady dependence on his rich mucle, who let his nephew feel his power, embittered his stay in Hamburg. Accordingly in 1827 he accepted the offer of Cotta, the publisher, to assume the editorship of the Nunich 'Political Anmals.' But he contimed at this work only one winter; then he undertook a journey to Italy, which he describer] in his incomparable fashion in his (Pictures of Travel.' He expected to receive on his return a professorship at the Munich University, which the Bavarian minister Erluard r . Schenck desired to secure for him from the king; but owing to the intrigues of the clericals all efforts in Hene's behalf were unavailing.

In 1828 he was recalled from his Italian trip by the news of his father's death - a man whom Heinc had most tenderly loved. The following years were occupied in violent attacks on the poct August v. Platen and his followers, whom Heine regarded as his worst foes, besides literary labors and traveling. When the intelligence of the July: Revolution in Paris reached him, the poet conld no longer endure the home atmosphere, while the powerful Austrian chancellor Mettenich, who found refreshing youth "in the melancholy waters of his lyric" warned him that he was not entirely secure from persccution. It was on a May day in 1835 when Heine forsook his fatherland, of course of his own accord, but in the firm conviction that sooner or later he would suffer the fate of all those who were leaders of freedom in Germany.

IIis Life in Paris.- In Paris Heine labored from the very start at the great task of his life

- to promote an understanding betwecn the French and the Cermans. Ifis correspondence jn the 'Augshurger Aligemeine Zeitung,' his bouk on 'I he kumantic school,' his contribations to "The History of Kelignon and I'lalosoplyy in Germany.' are devoted to thas great purpose. The turst appeared in 1832 as 'Prench Conditions'; the others - with literary sketches, reflections on the drama and art. poems, etc., as 'Salon' (4 vols. 1832-36). The persecutions which the German Det (Bundestag) set in motion against the "loung Germany" school of writers, leading to the dan against their works, this act uf mudievalism affected the poet deeply, and other unpleasantness was adrled thercto. His only compensation was his recognition in his fatherland, the esteem in which he was held in France, and the love of a beautiful young Frenchwoman, Mathilde Creszentia Mirat. whom he martied in I8,1, after having lived with her many years. Despite many storms and although his wife had no idea of her husband's eminence, the marriage was a happy one. The heary material burden which she obliged Heine to assume forced him in 1836 to receive from the French Government, when Guizot was head of the Ministry, a pernsion of 4,800 francs-a charity whelo France at that time bestowed on all promment fugitives. It is to be sunderstood, however, that Heine incurred thereby no obligation to praise or defend the political administration. Nevertheless, later he was violently attacked for this step.

His Illne'ss and Last IVorks.- The death of his rich uncle from whom he received an annual sum of 4,000 francs threw him into a terrable state. He was not mentioned in the will, and anxiety was added lest his cousin Car! tleme would refuse the further payment of his stipend unless he would stbmit his writings to a rigis censure by the family. Violent conflicts followed that cost the poet his rest and his health, which last had long been undermined. A scvere nervous trouhle lad tortured him from his youth, and now as added illness came paralysis of the eye.

In i843-4 IIeine visited his old mother in Hamburg. The poetical description of his journey in the winter tale 'Germany.' which appeared in $18+6$ with his 'New Puems.' and the epic poom 'Itta Troll,' which was issued in 183\%. showed an entirely new line of poetical genits: for looth these satirical epics are pearls of poesy. Since is $\& 8$ Ifcine was practically chained to his bed of illness - his famous "mattress grave." He bure his sufferings, however, with true heroism: his intellectual power was not weakened. But a great religious change took place which led him back through the Bible to belief in God and to the memorics of his race. The two great works of the last period of his life, 'Romancern' ($1,85 \mathrm{I}$) an I 'Confessions) (in Lutetia, 3 vols. I85.f), are proofs of this great change, both in poetry and prose. Once more dicl the poet reveal himself th his aflmirers in agonizing strains of sorrow, in classical ballads, in Hebrew melodies, in profonnd lamentations of sivid effectiveness. Once more steps the great writer before ths, and in prose of the lofticst heauty and strength he seeks to answer the most vital questions of our human existence.

On i：Feb．siso he died aiter much sumering． He eents at Montmartre，next to his wife．His grave is adorned with a monumerit，the work of the sculpior Hasselriis．An artistic memorial was erected by an enthusiastic almirer，the late Empress Eiizabeth oi Ausiria，at her country pa＇．．ce Achilleion，near Coriu in the Iomian Sea． with its classic memories．The consinued ef－ iorts．however．made to place a memorial to the poet in his home on the Rhine have so far been frutless，and have but led to bitterest con－ Hits between clericals and anti－Semites on the one side，and the large bedy of his admirers on the other．It is not without significance that the Loreler iountain which could find no lodg－ meri in Germany：has been placed in ブew Iork． the me：ropolis of the United States，a country where Chas．G．Leland＇s translation of the －Pietures of Trave！＇appeared in I855．and where the poet＇s werks have appeared in numer－ ous editons and translations．The poet＇s body oi admirers grows frem day to day，and with this vast congregation of thoughtiul men and w men in every land the history of literature， jutging without prejudice，glad＂y reensmizes Heine as the greatest German lyric peet．after Geethe，and as one who is and will rema：n anung the most illustrious poets in the world＇s liternture．

B；hliesrathy．－Iohn Weik edition（Phila－ de：phia IE5 ：Sirodman，original e lition （Hamburg．I86I－3）：Karpeles，popular edition （Hamburg．1855）：Karpeles．eritieal edition （Rerlor．I891）：Elster．（Leipsic，iSoz）：Bio－ gronical and other fritinss．by S－rodtman （Rerlin．Isé－）：Karpeles（Berlin．rivo：Leip－ sic．Nof）：Maximilian Heine Berlin， $1.56-1$ ： Ali－ed lfeisener／Hamberg．188－Camille Selden（Paris ic\＆ イRー－Marie Princess de Ma Rocea 1 Hamburg． ：Q2o）引 D．Kauimann．Gus Heinrich Heines Ahnersaal＇$/$ Breslau．Is－6 ：J．Snedgras Heine：Vlit．IVisdom，and Pathos），Boston： Iese ：Emma Lazar：：－＇Pems ant Ballads of Heinrich Heine 1sew lork，\＆尺I）．A gend h bingraphy c^{-n} be fund in the mem ir of 11 ． Sharp in＇Great llriters＇）series．

Gestiv K irpeles

Heinemann，Fine－man，William，English
 p．innted the publishing h mee wh be rs bi：name in tono．Ile has puhlished under the E 7 name i＂RISSINDR：VWMRI＂：＂ブ： lueis＇：＇The Gondky ai Olives＇：＇The First
 （：R，R ：Mar．a play（Igo1）．

Heinrich，H．H．，Ameri＝an h_{1} ．cist b．
 ruary 1003．He was apprentice t，a Hlamt ire n－tchmaker．sudied wi：h Martin Zet er ，í V：rma，in Switzerland became a ma＂ufact 1 r－r r ：withes an 1 eveapements，and there taumhe i r 10 years in a lonollegical school which he h． d t－tai i－her．He beeame known as one of the formut Fur nean chronometer－makers，came to the Lnited States and finally set up in Lusi－
 r c rding ins－rument e excellel a＇l others at the
 1 ithm，awards frem the expositisns at Berne

Heintzelman，hint＇sẻl－man，Samuel Peter， －tree：can military officer：b．Nanheim．Pa． 30 Sept．ISos；d．WVashington．D．C．，I May tiビo． Graduated at the United States Military Acad－ emy 1820，and sersed during the Nexican IVar． In ISor he commanded a division at Buil Run． whe：e he was wounded 21 July：Afterward pro－ y＂oted brigadier－general of volunteers，Heintz－ eman．duting the organization of the army in the winter nif i8or－2，held command of a divi－ ston．On the moring ci the A－my of the Po－ \because ：mnc，in March I862，the 3 d Army Corps was placed under his command．His corps formed the right wing of Pope＇s armw at the second battle if Bull Run 30 Aus．I862．During the Marviand camoaign he commanded the defenses at llashingt－n．an 1 was afterward appointed to the command of the Department of W ashington． and $i f$ the $22 d$ Army Corps．which he held dur－ ing the hattles oi Chancellorsville and Getirs－ horg．in May and July t863．He retired in 1860 ， with the rank of major－general．

Heir ILat，$h-\infty)$ in law one entitle？by descent and right oi blood to lands，tenements， or ether hereditaments．Hence $1 t$ is an ancient apothesm．that＂God only can make an heir＂ An heir is really one who is bern or begotten in law tul wadl ock，and on whom the law casts the evtate．in lands．tenement：or hereditaments ammediateiy on the death of lis ancestor．The rights of heirs in most ei ohe Conited States are deiermined by the priscipies of the common law unless specially noodised by statute．It is a matter of judicial decision that the－ights of leirs in the Unired States are statu：ory only： Herce they cannot plead．for instance that an inheritance tax is incons－itutional．An heir necsumptive is one who will he the heir at the death nit the onner．as the elder son of a de－ ceaserl bonther in Eraland，or all the children n ： a hoc：her in the United Soates，where the owner has mo chillran：for they will be heirs if he dies withnut $i=s, s e$ ．Is an heir p－esumptive may ！तes his heirshin hy a change of circumstances． he loes ron boene an heir anoarent so long as this change is lecra！ly nesbable，thongh physir－ a＇ly ne natually impnsible．The the nephew it the ountrer can never he his heir apparent． 11 wever aged ir iceble or nent to death ire owner may be：ine in contemplation of law it is always p seit that a son may be horn to him． who would be an huir apparent，and who weu！d 1 on fore superselle an heir presumptive．$A_{\text {ir }}$ In ir apparent is nae who most be the heir if he survive the ouncr．as the el leat son in Great Bruain．I ai！the chitdren in the Lnited States．

Heiss，his，Michael．tmerican Roman C．tholic nrelate：1．Pialldorf，Bavaria． 12 Anril MRミ：d．Milwaukee zo March isoo．He studied at the Lniversity of Munich and at the Catholie scminary at Eichstadt．and was ordained in 18 \＆o． In S_{4} ，he came to the Enited States，and was ir．assigned in a church in Covington，Ky．：he nevt went to Jilwaukec as missionary priest and scer．tary to the bishop．In 1,968 he was con－ －cravi as the first bishop of La Crosse，Wis．： in ISR he was apminted coadiuior to the arch－ lihhon \cap Milwatkee．with the right of succes－ ：n．aๆ1 twn vears later became archbishnn of Mils ankee He has taken an important part in Am fican councils，and was a member ni the inoi－an Council（re6o－：0）．He has written：
'The Four Evangelists,' and a treatise on marriage (in Latin).

Heistand, Henry Olcot Sheldon, American soldier: b. near Richwood, Ohio, 30 April 1856. He was graduated from West Point 1878 , and was assigned to 11 th Cinited States infantry as 2d lieutenant. He was appointed government inspector and instructor Ohio National Guard in 1892, and during the presidential campaign of I896 was confidential secretary to Nekinley. He was promoted lientenant-colonel in 1900, and became adjutant-general and chief of staff in the China expedition for relief of Peking 1g00. He has written: 'Alaska, Its History and Description' (1898)

Hejra, or Hijra. See Hegira.
Helen, in Greek legend, the most beatutiful woman of Greece, daughter of Zeus by Leda. By advice of Ulysses her numerous suitors were bound by oath to respect her choice of a husband, and to maintain it even by arms. She chose Menelaus, but was afterward carried off to Troy by Paris, the Trojan war arising from the claim made by Menelaus for the fulfilment of the oath. After the death of Paris she married his brother Deiphobus. On the fall of Troy she returned to Sparta with Menelaus, but at his death was driven from the country, and was murdered at Rhodes by the queen of that island.

Helena, hellĕena, Saint, the mother of the Emperor Constantine the Great. She was of humble origin, probably the daughter of an innkeeper of Bithynia. She captivated Constantins Chlorus, and became his wife; but when Diocletian elevated him to the dignity of Cæsar, in 292 A.D. he was compelled to repudiate her. The succession of her son, and the influence she had exercised in educating him as a Christian, compensated her for previons humiliations, while her piety and zeal for the propagation of Christianity have made her a saint in the Roman Catholic calendar.

Helena, hẹl'è-na or hĕ lẹ'nạ, Ark... city, courty-seat of Phillips County, on the Mississippi River, and on the St. Louis, I. M. \& S., the Yazoo \& M1. V., the Arkansas M. R.R.S., and is the terminus of the Arkansas Central; about 75 miles below Memphis and 95 east by south from Little Rock. It has boat communications with all important river-ports. A conflict between the Federal and Confederate forces took place here 4 July 1803 . The Lnion army, about 4,500 , was under Gen. Prentiss, the Confederate, about 9.000 , under Gen. Holmes. The Confederate loss was about 5,800 , including killed, wounded and prisoners. Helena is in an agricultural and lumbering region; the chief manufactures are lumber, cottonseed-oil, and foundry products. It has cotton-compresses, a shingle-mill, brickyards, and large lumber-yards. Some of its educational institutions are the Jefferson High School, and the Sacred Heart Academy: it has a public library, nine churches, and three banks. Pop. (1900) 5,500.

Helena, Nont.. city: capital of the State, and county-seat of Lewis and Clarke County; on the Northern Pacifie and the Great Northern R.R.'s: about yo miles north by east of Butte. The city is surrounded on all sides by the Rocky Mountains ; on the south and west the moun-
tains are within two miles of the city, while to the north there is a wide valley between the city and the foothills, and the same condition exists on the east. The city is protected from severe wind storms, and in the winter season there is a difference in temperature between the city and the mountain conntry of from to to 20 degrees. The comntry tributary to the city is rich in both mineral and agrientitural resources. The mines are prineipally gold-producing, while the products of the farms are cereals and the ordinary vegetables. Tributary to the city are large areas deyoted to the raising of cattle and horses, but this industry is gradually being replaced by diversified farming.

Helena is noted as the richest city per capita not only in Montana, but in the entire Rocky Mountairn country. It is principally a city of homes; cattlemen, miners, and others engaged in industries clsewhere in MIontana have their residence in Helena because of its church, school, and social attractions. It is the best built city in the State; its hotels, office buildings, mercantile establishments and private residences being equal to any found in cities of 100,000 in the east.

The geographieal situation of Helena has made it a great distributing centre. Before the days of the railroads, when stage lines and freight wagons drawn by oxen were the only means of transportation, the geographical position of the city brought to it many travelers and great stores of merchandise. From Helena the people and the goods were distributed to other settlements. The Northern Pacific Railroad, the first to reach the city, following the trend of business, built branch lines from Helena, and thus it retained its commercial supremacz: Later the Great Northern was also extended to the capital city, and it likewise reached out for trade in the surrounding country by building branches. The original of Helena was "Last Chance Gulch"; the town came into existence as a result of discoveries of placer gold. The first. discovery of gold was made in 1864, by four prospectors, John S. Cowan, John Crab, D. J. Niller, and Robert Stanley. These four men started early in the spring of 1864 from Alder Gulch, now Virginia City, in the southern part of the State, to search for placer gold. They Went first to western Montana, and finding nothing there started east, prospecting the streams. They finally fomd what is now known as Prickly Pear Creck, ruming throngh the valley north of Helena, and here they discovered a few traces of gold, but they continued their journey north. Provisions becoming scarce they retraced their steps, intending to return to Virginia City, and again they came to Prickly Pear Creek where they moticed a little gulch. One of them said: "Boys, this is our last chance to strike it. If we do not find gold here we mast strike straight for Alder." On 16 July 1864, they sunk two holes to bedrock. and in each they found gold. It was the "last chance" that turned ont favorably, and that was the name of the camp until 30 October of the same year. The news of the find spread, and soon there were 500 men in the camp. At the meeting to name the town. Pumpkinville. Squashtown, Tomahawk, and Tomah were suggested. Finally John Somerville suggested Saint Helena. This was amended to Ilelena. and on a ballot Helena won by two votes over Tomah.

The educational institutions are public and parish schools, the Montana Wesleyan University (M. E.), opened in 1890 , Saint Vincent's Academy: and the State, city, and other libraries.

Among the principal buildings at Helena are the Government building, costing $\$ 500.000$; State capitol. costing $£ 400.000$; the county courthouse, ecsting Stoo,000: the high school building. costing \$150.000. and seven graded school buildings ralued at $\$ 200,000$. There are also Saint Tobn"s Hospital, Saint Joseph's Orphanage. and several fine churches. Twelve miles irom Helena, on the Missouri River. is located the plant of the Missouri River Power Company. This company furnishes electrical power for operating street cars and lighting the city of Helena, and ior manuiacturing purposes. It also transmits electrical power to Butte for use in the mines, a distance of 100 miles. Four miles iron Helena is located the smelter of the American Smelting and Refuing Company: The principal gold mine now operated in the vicinity of Helena is the Big Indian, located in a gulch four miles south of the ciry. Narysville is the largest mining camp tributary to the city. Here is located the Drum Lummen mine, orned by an English company, and in the near vicinity are other mines which are large gold producers.

In the 20 years after the opening of the "Last Chance Gulch." gold to the amount of 525 ,000.000 was taken out of the gulch and the town grew to a city of 20,000 and became the capital of the State.

From the discovery of gold until 22 Feb. 188 r, when the city government was organized under a charter irom the State government, the gove ernment of the city was by a committee representing the merchants and bankers.

The govermment is now rested in a mayor. who holds office two years, and a council. The executive appoints, subject to the approval of the council. all the subordinate officials except the city treasurer and police magistrate, both of whom are chosen at a popular election. The assessed valuation of property in 1903 was $\$ 13,000,000$.

Helena has been the capital of Montana since IS69. In that year the capital was removed by popular vote from Virginia City. Diter Montaria uas admitted as a State two elections were held fur the permanent location of the canistal, and in 1804 Helena was chosen.

The alutude of Ifclena is 4.200 feet. The climate is n it severe, the average temperature in January and February, the two coldest menths in the year, being 20 above zero, with no moisture in the air. In summer the average temperature is 75 . The growth of the city from now un may not be as rapid as in the early days: but it promises to be a lealthy. steady development. Fop. (1900) 10,7,0.

Cunkles D. Greesfield,
Editor 'The Helena Indipendent?

Helena, Battle of. Helena. Ark., is on the west hank of the Mississippi River, about $\&_{2}$ mules behow Demphis. Since 13 Iuly iex 2. when fen. Ci:rtis arrived there from western Arkansac. it had been occupied by L"nion troops. and $n n+$ July tern3, was held by a division of the Thirteenth orrp. Under Gen. Salomnn, and a Lrigade of cavalry, in all 4.129 effective men, un-
der command of Gen. B. M. Prentiss. The place is surrounded by hills, and those nearest the city were occupied by strong redoubts: Graveyard Hill in the centre. Fort Righter on the north or right, and Fort Hindman on the south or left. were all connected by a line of bastions and rille-pits, both ends of which rested on the river. In the river lay a gunboat. Toward the middle of June it was determined by the Confederates to take the place, whereby it was hoped to raise the siege of \icksburg or, if \icksburg fell, still to keep the river closed. Gen. Holmes was ordered to more from Little Rock with about 7.600 men. Price's and Marmaduke's divisions, Fagan"s brigade of intantry, and Walker's brigade of cavalsy: Holmes bivouacked about iour miles irom Helena on the evening of 3 Julv, and at midnight advanced to within a mile of the outer works. The assault was ordered at daylight. On the Confederate right Fagan with t.-50 men advanced on Fort Hindman. carried all the outer entrenchments, and made a desperate attempt to take the fort. but was repulsed with a loss of orer 400 men. On the Confederate left. Marmaduke's division of infantry and W'alker's cavalry brigade, aggregating $2 .-80$ men. attacked Fort Righter and were repulsed. Price, in the centre, with 3.100 men. made as strong assault, carried all the entrenchments in his front, seized Gravevard Hill, and ordered one brigade to move on the town and another to assault Fort Hindman in the rear, but the Union troops checked the advance of the two brigades and drove them back and, the attacks on the right and left being repulsed, the fire of the forts, rifle-pits, and gunboat was concentrated an Price, and at to. 30 A. M. Holmes gave the order to withdraw, and led his troops back to Little Rock. The Union loss was 57 killed. 1.46 wounded and 36 missing: the Confederate Joss was $1 / 3$ killed. 687 wounded. and $7-6$ missing. Consult: 'Official Records.' Vol. XIII.; Greene, 'The Mississippi': The Century Company's 'Battles and Leaders of the Civil llar.' Tol. III.
E. A. Carmas.

Hel'enin, a chemical substance extracted by hot alcohol irom the root of the elecampane (Inula helchimm). It has the iormula $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$, and is nearly insoluble in water but very soluble in alcohol. The first crystals obtained from the root-extract contain considerable quantities inulacampher: but this may be removed by repeated crystallization from alcohol. Pure helenin errstallizes in white prisms or needles. melting at $232^{\circ} \mathrm{F}$ 。

Helicidæ, hē-lis $\mathfrak{1}-\mathrm{de}$, the family of terrestrial pulmonate mollusks which inctucies moit of the land and many fresh-water smails. See Sxives.

Heligoland, hēlĩ-gū-lănd, or Helgoland, hél'go-lant (Dan. "holy land"), a small island and popular sea-bathing recurt in the North Sea. belonging to Germany, situated about fo miles monthwest of the moutl of the Elbe. It is about a mile long and one third of a mile broad, and has an area of about one quarter of a square male. It consicts of two parts, the Oberland. a that-tuped rock and feet high. affording a little anil for pasture and the growth of potatnes. ctc., and crmmmaicating with the Cinterland, a small stretch of shore at its foot, by 192 steps and an
elevator. Most of the houses stand on the Oberland. The Linterland gives partial shelter to the shipping. Steamboats ply between the island and Hamburg. The principal buildings are the church. lighthouse, and a royal Prussian biological station for the study ci the fanma and flora of the North Sea. The bathing facilities, which attract so many visitors, are found in a dune or sand-bank separated from the main island by a channel about a mile wide: This Sandy Island, as it is called, is slowly heing reduced in size by the inroads of the sea. The inhabitants are chiefly employed in fishing, and speak a Friesian dialect. The island is well fortified, and has cable communication with Cuxhaven and IVilhelmshaven. Christianity was first preached here by St. Willibrod in the 7 th century: Taken from the Danes in I\&O-. it was cecled to Great Britain in ISı, but was transferred to Germany in 1890 . Pop. (1900) 2.307, in the bathing season increased by several thousand visitors.

Heliocentric, he"lī-ō-sĕn'trĭk. "having the sun as centre," a ternl applied to the Copernican system, as in opposition to the Ptolemaic system, which was geocentric, that is, "laving the earth as centre" of the solar system. In modern astronomy the word is applied to calculations in which the sun is referred to as centre of the planetary system. Thus the heliocentric place of a planet is the position it would occupy at a given time when calculated from a point of view in the centre of the sum.

Heliodorus, hē-lĭ-ō-dōrŭs, the earliest of the Greek writers of romance: b. Emesa, Syria, and lived near the end of the ath century: He became a believer in the Christian religion, and bishop of Tricca in Thessaly: His youthful work. (Ethiopica (that is, Ethiopic - fffairs), or the Loves of Theagenes and Charicleia, is a tale in poetical prose, with an almost epic tone. It is distinguished by its strict morality from the other Greek romances, and interests the reader b_{y}. the wonderful adventures it recounts. One of the best editions is that of Hirschig in the 'Erotici Scriptores' (I\&56). An English translation by R. Smith appeared in 1855.

Heliogab'alus. See Etigabalus.

He'liograph, an instrument invented by De la Rue for obtaining photographs of the sun. Also an apparatus for telegraphing hy means of the sun's rays. See Heliostit; Dilitary TeleGRIPH.

Heliogravure, hẻ"lĭ-ō-grā'vūr. See Photogratlere.

Heliom'eter, an instrument for measuring small distances on the sky, particularly the apparent diameters of the sun and of the moon. The heliometer of Bouguer is an astronomical telescope provided with two object-glasses, one of which is movable and which form two distinct images of the same object, visible through the same eye-glass. A single object-glass cut into two parts. which are relatively movable by a screw, is always employed now. If, in contemplating a celestial body. the object-glasces are placed so as to bring the images to toutch each other, the distance of the centres of the glasses gives the diameter of the image. In this manner the instrument gives, for instance. the difference of the diameter of the sun in perigee and apogee.

Heliopolis, he intop'ü-lis ("City of the Sun"), Egypt, the () n if the Hebrew Scriptures. on a site п י partly occupied by Matarich, sin miles northeast if Cairo, was one of the most ancient and extensive cities during the reign of the Pharanhs, and on adorned by monuments as to be csteemed among the first sacred cities of the king dom. Durang the flurithing ages of the Egyptan monarchy the priests and scholars acquired and tanght all the learning of the Egyptians withm the precincts of its temples it may be regarded as having been the unuversity of the land of Misrain, and at the time of Straho, who visited this rown $2+$ B.C.. the apartments were still shown irl which. four centuries berore Eudoxus and Plato had labored during 13 years to learn the philosophy of Egypt. Solon and Thales were aloo reputed to have vicited its schools. Here Juseph and Mary are said to hase rested with the infant Jesus. Near the village stands the Pillar of On, a famous obelısk, supposed to be the oldeat monmment of the kind existing in Egypt. Its height is 6^{-1} feet, and its breadth at the base 6 feet. Hiernglyphical characters are sculptured upon it, but are partly illegihle. A fierce battle was fought here, 20 March isoo, between the French under Kleber and the Turks, when the latter were defeated.

Heliornithidæ, he-lĭ-or-nĭtlı'î-de., a family of tropical birds, the fin-foats or sum-hirds, placed by some ornithologists among the Cccomorpha. and by others, more probably. with the rails. They are about a foot long, mottled brown and white, with long pointed wings and long stiff tails : and frequent tipe borders of furest streams and ponds, in whicly they spend much of their time swimming and diving well. They feed on small fish. crustaceans. insects and seeds. The hest-known species is Heliornis fulica of southern South America.

Helios, hély-ís, in mythology, the god of the sun (Latin, Sol) in the Greek mythology: son of Hyperion and Theia, and brother of Eos (Aurora, the dawn) and Selene (Luna, the moon). He is frequentiy called hy the name of his father. He dwells with Eus in the ocean behind Colchis. From the portals if the morming he rides firrough the air in an chlique curve to the gates of evening. and after having cooled his horses in the ocean, he drives hi- charix into a self-moving golden ressel, made by Hephrstus (Vulcan), which with wonderfnl rapidity hears him during the night along the nowthern shore of the ocean back to Colchis. where he bathes his lorses in the lake of the Sum, and rests till the dawn of the morning. Other accounts represent him as making this nighty pasage while slumbering is a golden hed. His lonses and chariot are first mentioned in the Homeric hymn an Helios. Among events in the bintory if Helins the poets relate his c metes wi:l Poscid on for the Isthmus of Corinth, his revealing the secret amours of Ares and Iphrodite. and his disclosure to Demeter of Pluto as the ravibher bet her danghter. This idea of his ommiscience seems to have been the reason why he was confounded and identified with Apollo. thongh they were originally quite distinct. Is he was descended from the race of the Titans he is oftern called Titan. The famous Colossus of Rhodes was a represcntati on of Ilelios.

He lioscope is a telescope behind wnich the image of the sm is received upon a plane

HELIOSTAT - HELIUM

suriace. An astronomical telescope is drawn out a little far:ler than is necessary for common use, and directed toward the sun, and the image which is formed is received in a darik place. For this purpose a dark chamber is employed, or the telescope is placed in a darts finncl-shaped enclosure, the bottom of which is covered with ciled paper or closed with ground glass. © 2 which the sun's imase is formed. Upon the paper or giass a circle is described equal to the image. and it may be divided by concentric circles into rings. Wjith this instrument the spots on the sun, eclipses. etc, may be observed.

Heliostat, héli-ō-stăt, an instrument used in optical experiments with sunlight for keeping a bearn always falling in the same direction in spite of the motion of the sun. It consists of a mirror mounted equatorially: and carried round by ciock-work in such a way as to net:tralize the apparent motion t a bean of sunlight reflected irom it. This instrument has been ennployed among other purposes as a incons of signaling. A beam of light being directed is the p oint to which it is iniended to convey tire sigials, the det-and-dash alphabet is made use of by the device of exhibiting and obstructing the liynt for longer or shorter periods. A short tlash represents one letier, a long flash anoher. a short quickly followed by a long a third, and so on. Is adapted to this purpose the heliostat has received the name of heliograph.

Heliotherapy (Gk. y̆Mos. sum - épartia, service), the treatment of disease by the action of sunlight See Phototherapy.

Heliotrope, hélī-o-trōp. a genus (Heliotrofiun) of plants of the b-raze family. characterjzed by the undivided ovary prolonged into a style. manye of wiose species have vanilla-scented blossoms. The one noss in repute is a small shrub (H. Peruciouus) originally South American, which has small iragrant tlowers growing compactly togetner in the-pikes. Cuttengs taken from the yning branches grow readily, and come soon in: blossom. The H iutopasm, or common leliotrope. is a liowering herb indigenous in the south and west ni Europe. The he iotropes are : ative ni warm climates. ard very numerous. several roning wild in the Cnited States. Mans de iahtrig sariettes have been prodeced as garcen and sreenh aree ti wers.

Heliotrope the hindistone is a variety of quar:z part kinz if the character ci jasper and I: chalcedin It is of a deep green color, and is covered with red! spi: like drons of ble ad. Dlany fine antiq:se Creek and Roman intaglios and camens, also seal ring carved in bloodstine, are preserved in the great gem collections. It is fornd in Tartary, Persia. Siberia: in the island ni Rum. Sontland. and many other places. It received the name helintrope, or as some of the nlder writers give it. elitropia, because it was said that if the mineral be put into water contained in a basin rubbed with the juice of the plant helinitope. and be exposed to the sun, the "aler will appear red and the sun blood-like, as - it was eclipsed.

Heliotropism, hē-lǐ-ŏt'tö-pizm, or Phototropism, the influence and effect of sunlight in organisma When a seedling plant is placed in a transparent vessel of water within reanh ni
the iight of a windor, the stem and leaves gradvally bend toward, and the roots from, the light. The iormer phenomenon is termed positive. and the latter negatse, helictropism. The shoots and leaves of nearly all plants turn toward the light, and the turning of the sunflower toward the s?n is familiar to every one. In the case of cryans Which are positively heliotropic the growth of the side next the light is retarded. and that of the cpposite side increased; the result of these combined actions is a concarity on the former, and a convexity on the latter, thus causing a curva ture teward the light. In the case of roots these actions are reversed. That these resolts are brought about by the action of light is evident: the cells on the concave sicie become less. while those on the comvex side become mare. twegid. thus forcing the crgan to bend; but the cause of turgescence is unknom.

In animals a similar heliotrepism is operative and is plainly manifested in scme low forms, as hydra. where it is of great service in their almost automatic food-geting. Helictropism is closelv allied io, and much modised by chemotronism (q.w.) and other intluences.

Heliozoa, hē"li-ō-zō'a, the $\mathbb{a}_{\text {sun }}$ animalcules, an order ci rhzopods (q.v:) with er without silicious skeletons. and having slender and radiant pseudopodia, stable and rarely interlaced. The majority live in fresh water, but some are marine it common and widespread example is the genus fictinothrys.

He lium, a gaseous element, known to be present in the atmosphere and in certain minerals, and. like argin, characterized by a singular chemical inertness. The discovery oi heli:nin was a cersenuence i the discovery oi argin and on acco:m of the close chemical, physical and historical relations of the two, reference should he made to the arti-le Arcoss, and to the references there given. Holium was known tw exist in the sun many years beiore it was discosered upon the earth. During a total eclipse of the sun. in 1863, Jannsen observed a brilliant yeli w line in the spectrum ci ilhe sclar chromosphore, very chas to the D lines of sodium, and yet $n t$ identical with either of them. The rew irne was assumid to be due ic a proviously unkn wn clement. and in the same year Lockyos pr rocd the name " h. lium " for this hypoine :cal element. irona the Greek word "heite. mearing the sun. No evidence of the existence it helum unen the eartl? was adduced until IN: wh en an Italan scontist named Palmieri ann inced that he lad ohtained the spectrum of heli m irem certain of the lavas given of $1 y$ M. Veravius. He made no attempt to isolate th. new lo dy, however, and while it is quite possil te the his observations were correct. he can hardiy be credited with the actual discovery of heli $\cdot \mathrm{m}$. X firther progress was made in this directi n until 1805 . When argon had been disc vered. and its chemical inertness had been established. Mr. Miers. mineralogist nf the British IIseum, pointed ont that the mineral cleveit ($\mathrm{q} v$.) had been shown to contain nitrogen gas, apparently in the free state. and made the surgestian that part of what had been assumed to be nitrogen might in reality prove to be argon. Professor William Ramsay evamined the gas from this source and found that while it undoubtedly did contain arson, it alse
showed a brilliant yellow line, which did not appear to coincide with either of the sodium lines, though it was very close to them. He sent a specimen of the gas to Sir William Crookes for a more careful examination, and Crookes promptly reported that the new line was indentical with the helium line. It was therefore proved that helium, which had previously not been certainly known except as a constituent of the solar chromosphere, is also a terrestrial element. Subsequent study revealed the presence of helium in several other minerals. It is given of from cleveite when that mineral is heated to about $400^{\circ} \mathrm{F}$. in an exhausted tube, or when the mineral is treated with sulphuric acid, or with acid sulphate of potassium. All the minerals which contain any considerable quantities of heliurn also contain mranium, ytrium or thorium. It is not certainly known whether the helium is chemically combined with the mineral, or whether it is merely occluded by it. The latter supposition would appear to be the more probable, judging from the chemical inertness of the gas, and from the fact (presently to be noted) that radium appears to be generating helium continuonsly: Certain observations upon the mineral fergusonite, however, appear to give some color to the hypothesis that the helinm is present in a state of chemical combination. Helium has also been found in solution in the waters of certain hot springs.

The presence of helium in the earth's atmosphere was established by means of subjecting the apparently pure argon that had been obtained from this source to a process of diffusion througly a series of porous partitions of baked clay. Helitm, being mucls lighter than argon, diffuses far more rapidly, and a mixture in which the two gases exist together may be partially separated into its constituents in this manner.

Helium, when pure, has a density of only 1.98, that of oxygen being taken as 8 . Its atomic weight cannot be directly determined. because helium has not yet been made to combine with any other sutlstance, although it has been subjected to the same experimental attempts as were tried in the case of argon (q.v.). It has been found, however, that the ratio of the specific heat of the gas at constant pressure to the specific heat at constant volume is about 1.65 , and this indicates that helium is a monatomic gas (see Gases. Kinetic Theory of), and that its atomic weight is about $2 \times 1.98=3.96$; the atomic weight of oxygen being taken as 16 . It therefore las the smallest atomic weight of any of the known elements except hydrogen. The chemical symbol He has been assigned to helium, although, as has been already noted, no $\mathrm{c} \cap \mathrm{m}$. pounds of it have as yet been obtained.

Dewar thought he had liquefied helium at the temperature of melting hydrogen (about $436^{\circ} \mathrm{F}$. below zero), but this was not confirmed by subsequent experiments, and it is now believed that the liquefaction of helium is a problem still reserved for the future. Its critical temperature is probably still nearer to the absolute zero than that of hydrogen, and for this reason the gas is well adapted for use in thermometers intended for the measurement of exceedingly low temperatures. It has, in fact, been used for this purpose with success, in studying the properties of hydrogen.

A most remarkable and previously unparalleled fact in connertion with helium remains to
be recorded. It has been known for some time that helium occurs in cleveite, and in other minerals in which the newly discovered element radium is found ; but whether this was to be regarded as a mere coincidence, or whether it has some actual physical and chemical significance. has been a subject of considerable discussion. The most striking experiment bearing upon this matter, is one that is due to llaggins, who catrsed the radiation from radium to pass through a spectroscope proviled with a quartz prism, and to fall uporn a sensitive photographic plate. Upon developing the plate after a prolonged exposure, he found that cold radium gives a line spectrum when treated in this manner: and he made the further discovery that nearly all of the fines in the spectrum so obtained are apparently coincident with lines in the spectrum of helium. The full significance of this fact is not yet known; but when taken in connection with the observations of Soddy and Ramsay, which indicate that helium occurs in the gaseous emanation that is given off by radium. it is considered by mo means impossible that we haye here an instance in which one element is being slowly but continuously transformed into another one. If this inference is corroborated by future experiments, it will throw an altogether new light upon the nature of the chemzal elements, and upon their relation to one another. The case is the more noteworthy, since helium lias a smaller atomic weight than any other element save hydrogen, and radium has a greater atomic weight than any other element save uranium and thorium. Radium, moreover, appears to be metallic in nature, while helium, by its chemical inertness, resembles nitrogen.

Helix, hē'liks, a curve generated by winding a line around in a coil of gradually increasing radius. (I) In anatomy, a prominent and incurved margin surrounding the thinner and larger portion of the pinna in the ear. (z) la architecture, the small volute under the abacus of a Corinthian column. Of these there are in every perfect capital 16: two at each angle, and two meeting under the middle of each face of the abacus. (3) In geometry, a curve the tangents to which make, with the horizontal plane, a constant angle. The edge of the path of a screw is a helix, as is also the path described by any point of the surface of the thread when moved in the nut. (4) In zoology, the typical genus of the snail family. See Snalls.

Hell (A. Saxon, hel, from helun, to cover), signifies originally the covered or invisible place. In the Bible the word is used to translate the Hebrew Sheol (grave or pit), and Githonaa (properly the valley of Hinnom), as well as the Greek Hades (the unseen). In the Revised Version of the New Testament, hell is used only to translate Gehenna, Ilades being left where it stands in the Greek. In common usage hell siguifies the place of punishmert of the wicked after death, its carlicr meaning being lost. The distinctive Scriptural term for the place of future punishment of the wicked is Gehenna. The belief in a state of punishment after death for the finally impenitent is held by almost all sects of Christians, as an analogous belief in the future punishment of unexpiated guilt is a tenct of nearly all religions ancient or modern. The nature of the punishment of hell, its locality, and

HELL GATE - HELLBENDER

its duration, have given rise to interminable controversies among Christian writers. The early Christian writers sometincs apply the word hell to a place of temporary purgation. in which the soul is freed from the stains of guilt contracted on earth preparatory to its enjoying the pure bliss of hearen. In this sense it corresponds in some degree with the Roman Catholic purgatory, and with the pagan idea of purification. as illustrated by. Virgil in the sixth Eneid. Sometimes it is applied to the place of waiting of the just under the old law, till the coming of Christ should secure for them the completion of their reward; sometimes to the place where unbaptized children are detained because of unremitted original sin: and more frequenty to the place of final and everlasting punishment for impenitent sinners. As to the locality of the scene of final punishment none at the present day makes a formal declaration. The terms above and beneath. as applied to hearen and hell. are merely relative and though conventionally accepted convey no information. The Churches are not fully agreed as to the nature of hell-punishment. The prevailing idea among modern theologians is that the "fire" and the "worm" are significant emblems to give us the most correct and liwing conceptions of the reality that we can possibly attain in our present circumstances. They are fit endblems of anguish, and as such had laid hold of the Jewish imagination in connection with the word Gehenna, the term used in Mat. Y. 22. 29, 30: Luke xii. 5. Gehenna. unlike Sheol and Hades. has never any intermediate signification, but is invariably applied to the place of punishment of the wiched after death. See Immortality.

Hell Gate, a narrow part of the East River between Long Island and Manhattan and on the east and west sides of Ward's Island. The passage between Ward's and Randall's Island is called Little Hell Gate. The rocks which were in Hell Gate were of such form and so situated as to make navigation dangerous, and the difference in the times and heights of the two tides which enter East River increased the dangers. The East River receives at one estremity the Sound Tide and at the other the tide from off Sandy Hook. "One sailing vesscl? out of every fifty" was the proportion damaged seriously when trying to pass through the channel between the reeis. Much had been said and written about the necessity of doing snmething to renove or at last lessen the dangers oif Hell Gate, and officials of the Lnited States navy, Lieutenants Davis and Porter, made a survey of Hell Gate in 1848 . They reported the necessity of making the channel safe, and suggested the destruction of some of the mont dangerous rocks: but nothing was done untul the year 1851 , when the work of de-troying the rocks was hegun. The process used was that of surface-blasting introduced by Mailkefert. A prainn of conce of the rocks was removed, hut this method of overcoming the dangers to masigation was found practically useles. In isk ant ther sursey was made hy lirevet-Alai-Gen. I hin Sewton of the Enited States Engineer Corpse and in tesiz he submitted his report, in which the advised the removal of the recfsthe work to be done by blasting, and the drilling
of the surface to be made from a fixed piatform. Soon after the work of making Hell Gate safely navigable was resumed and placed in charge of Joln Newton. For the work Newton invented a steam-drilling cupola scow, which served as a transport and a working platform from which the drilling-engines were operated. The new machine proved satisfactory. A new system of explosion had to be devised in order to protect |Vard's and Randall's Islands and Astoria. Diamond, Coentics, and Ways reefs were removed, also Pilgrim Rock, before operations were begun on Hallet's Point Reef. The last mentioned was an obstacle to both large and small vessels. The excavations, begun in October 5869 , were completed in June 1875. The drilling was completed 25 March 18,6. The area operated upon was about three acres. The method of explosion was most successful. No damage was done to the windows of buildings near: it had no perceptible effect on the air. but little on the water, and the underground shock was slight. but was perceptible on Manhattan and the western part of Long Island. The removal of Flood Rock. which was in the middle of Hell Gate, made the navigable capacity of the channel more than double. The work of removing this most formidable obstruction was hegun ; June 18;5. Lack of funds caused delay, and the explosion did not take place until 10 Oct. i885. For the removal of Flood Rock about nine acres were tunneled and drilled; and the aggregate length of the tunnels was 21,670 feet, and of the drill-holes, It3.102 feet. The object sought to be gained by removing the rocks and reets was to make a channel of the uniform depth of 26 feet and of sufficient width for the largest steamers. The work as planned and designed by Gen. Jewton has not been completed (rgo4).

Helladotherium, hel"a-dō-the'rĭ-ŭm, an extinct genus of giraffes, found fossil in the upper Oliocene (Pikermi) rocks of Attica. Its body was about as large as that of the existing girafie, but the legs were of nearly equal length. and the skull was hornless.

Hellas, hell'as, the abode of the Hellenes, was first a town, and afterward, under the name of Phthiotis, a district in Thessaly. The ancients applied this name to the whole of Thessaly: With the spread of the Hellenic people the term cmbraced a gradually increasing territory, till it came to denote the whole of Middle Greece, and thern the whole of Greece, with its islands and colonies. The Ilellenes received this name in the belief that they were descended from Hellena, a mythical personage, a son of Deucalion and Pyrrha, or, according to others, of Zus and Dorippe, and the father of Eolus. Dorus, and Ruthus, was said to lave leen king of Phthia. Sce Greece.

Hell'bender, a large salamander (Crytobranchus alleghaniensis) found chiefly in the streams emptying into the Great Lakes and thone draining the wetern slope of the Appalachian Somitains. The helbender is an ugly lonking dut perfectly harmess creature from If to 24 inches long: with the head and borls much flattened and a prominent wrinkled fold of skin along the sides. Athough entirely atqutic. no gills are present in the adult, and only a single pair of small pores represents the
gill-clefts; the lungs are simple sacs. The limbs are functional, the anterior with four, the posterior with five digits, and the tail is provided with a wide fin. A wide mouth with teeth in both jaws, very small eyes and a slimy skin of a deep mottled brown color are further external characteristics. The giant salamander (.1Yegalobatrachus maximus) of Japan is the only known closely related form. The hellbender is a sluggish animal, active chiefly at night, when its voracity causes great annoyance to fishermen whose bait and fish it deyours. It is extremely tenacious of life, and hibernates during cold weather. Although very common, its breeding habits are yet unknown.

Hellebore, a genus (Hcllcborus) of the crowfoot family (Ranunculacce), consisting of perennial erect herbs with scanty, palmately divided leathery leaves, and yellowish, greenish, or white terminal Howers. They are of interest on account of their poisonous and medical properties. About 10 species are natives of Europe and Asia, one of which (H. viridis) has becone naturalized in the eastern United States. The Christmas rose (H. niger) is the source of the black hellebore of modern pharmacopœeias, but the ancient black hellebore, a famous remedy for insanity, was probably obtained from other species. H. ziridis and H. foctidus have emetic and purgative properties, and the latter, which is poisonous, has become a common introduced weed along the eastern American seaboard. These plants are closely allied to the aconites.

White Hellebore is a very different plant, a species (Γ^{*}. album) of the genus l'cratrun! of the tily family, which contains several poisonous plants allied to colchicum. They are profusely leaved tall herbs growing in rich woods. and their roots contain the peculiar alkaloids veratroidin and jervin, to which their poisonous properties are mainly due. North America has a widespread species in the Indian poke (I^{\prime}. viride). which. like the European species, enters into the pharmacopœia, while its rootstocks are ground into the powder used as an insecticide.

Hellenes, hĕl'enz, a native name for the ancient Greeks.

Hell'enists, a name given the Jewish colonists who settled in Egypt after the destruction of the kingdom of Judah, about 600 B.c. Their number was increased by the many colonies of Jews planted by Alexander the Great (336 в.C.), and later by Polemy Lagus. Under the reign of the Emperor Augustus they amounted to nearly $1,000,000$. They laid the foundation of a new epoch of Greco-Jewish literature, which, from its prevailing character, received the name of the Hellenistic. The Alexandrian Jews were the most influential in developing Hellenizing tendencies, and to them chiefly is to be referred the formation of the peculiar dialect termed the Hellenistic. In their literature the systems of Pythagoras and Plato were strangely combined with those Oriental phantasies which had been reduced to a system in Egypt, and with which the mystical doctrines of the Gnostics were imbued. The most noted Jewish Hellenistic philosopher was Philo of Alexandria, and the chief of the learned labors of the Alexandrian Jews was the Greek translation of the Old Testament.

Hellespont, hĕl'es-pŏnt. Sce Dardaneltes.
Hellgrammite, hel'gra-mint, the large black aquatic larva if the insect Corydalus (q.v.), much used as bait for black bass and other game fish. It lives in streams, preying upon smaller anmals, and just before pupation crawls under large stones, where it can be found at about the same time as the bass are biting. It is also called "Dobson" after a maker of artificial baits.

Helm, Israel, Swedish colonist in America: b. 1615; d. 1695. He settled on the Delaware River, in 1649: was collector of customs at Philadelphia 1659 , and became a member of Captain Carr's council 1668. He was chief interpreter between the colonists and lndians, and rendered valuable service at the meering of the New Jersey Indians, Governor Andros, and the Swedish authorities, in 1675.

Heimet-shell, a large gasteropod of the genus Cassis. family Cassida. Most of the species inhabit tropical shores, but a few are fonnd on the coast of the Mediterranean. The shells of C. rufa, C. cornuta, and C. tuberosa (the queen conch), are the material on which shell cameos are usually sculptured.

Heimholtz, Hermann Ludwig Ferdinand von, hèr'män lood'víg fër'dénänd hēlm'hōlts, German scientist: b. Potsdam 31 Aug. 1821; d. Charlottenburg 8 Sept. 1894. He studied medicine in Berlin, and received the appointment of assistant-surgeon in the Charite Hospital there in 1842. Next year he went to Potsdam as a military surgeon, but in 1848 he returned to Berlin to assume the duties of teacher of anatomy at the Academy of Art and assistant in the Anatomical Museum. He was called to the chair of physiology at Königsberg in 1849, and six years later went to Bonn as professor of anatomy and physiology. In 1858 he was appointed professor of physiology at Heidelberg. whence he returned in 1871 to Berlin as professor of physics. In 1888 he was appointed to the post of president of the new Physikalisch-Technische Reichsanstalt (Imperial Physico-Technical Institute) in Charlottenburg. Felmholtz was distinguished alike in physical science, in mathenatics, and in physiology ; but his most valuable and most original work was done in those departurents of plysics which stand in intimate relations with plyssiology, especially acoustics and optics. the had an eminently philosophical mind, and his works are 110 less valuable for their masterly exposition nit the methods of experimental science than for the important results contained in them. His scientific fame was securcly established as early as 1847. when he published '"'ber die Erhattung der Kraft) (On the Conservation of Energy). This subject was pursued further in' ' '"ber die Wechselwirkungen der Naturkriffe) (On the Interactions of Natural Forces) (18ちゃ). Il is greatest works are the 'ITandhuch der Physiologischen Optik) (Handbook of Physiological Optics) ($1856-66$) : and (Die Lehre wn den Tonempfindungen) (TSfiz: 5th ed. ISO6), iranslated into English hy Ellis under the title 'Sensations of Tone as a Plysiological Basis for the Theory of Music' (18:5). A collection of 'Vorträge und Reden' reached a fourth edition in IRO6, and has been translated into English as (Popular Lectures on Scientific Subjects) ($18 / 3-$ Sil $_{1}$). In cdition of his scientific treatises was pub-
lished at Lempic in three volumes (ISS2-9ミ). and in IRgT his 'Lectures on Theoretical Physucs' appeared in one volume. In his 'Beschreibung cines Augenspiegels) (I85I) he described the ophthalmoscope he had recently invented. In 1 ES3 he was ennobled by the German emperor.

Helmont, Jan Baptista van, Flemish physician and chemist: b. Brussels 15ī: d. near Brussels 30 Dec. I6ч4. He devoied his attenzion to scientific research. and although he put forth some visionary theories on the constitution oi man, and on diseases, made some genuine discoveries in chemistry. He was probably the first to introduce the term ${ }^{\sigma}$ gas ${ }^{\circ}$ into science, and was the earliest observer of the acid reaction of the gastric juice. He published 'Ortus Medicine' (1648): and 'Opuscuia Medica Inaudita) (1644). works which still possess interest om studerts.

Hel muth, William Tod, American physician: b. Philade:phia 30 Oct. 1833 : d. Newl York IE, May rooz: graduated Homeopathic Medical College. Philadéphia. 1853: Hahmemann Coilege. San Francisco. IRCo. In 187/, he became professor of surgery and dean of the Jew lork Homeopathic College and Hospital. He was an cfficer in numerous medical associations and a member oi the Sociée MI Medicale Homeopathique oi France. Among his published works were: 'Treatise on Diphtheria'; 'Medical Pomposity) : 'System of Surgery'): '(Scratches of a Surgeon': 'Suprapubic Lithotomy.'

Heloderma, hē-lö-dér'ma. See Gila Monster.

Heloise, ā-lō-èz, or Eloise. See Abelard.
Helots, he-lots, were the lowest of the iour ciasses into which the population oi ancient Sparta was dirided. They are generally supposed to have been the aboriginal population oi the country, and to have been reduced to bondage by their Dorian conquerors, their numbers being swelled from time to time by the addition of peoples conquered in war. The name is generaily derived from the town of Heios, the inhabitants of which were carried off and reduced to slavery by the Heraclide about 1000 E.C. though a more probable derivation is the Greek helein, to iake. making the name siannify captives. They were the property of the staie, which alone had the dispcial of their life and ireedom. The state assigned them to ceriain citizens, by whom they were empl yed in private labors, though not extusively, as the state still exacted certain services iron them: and they were attached to the soil - that is. each citizen recpived the number that belonged to his all tment. Without any power to sell is irec them. Agricu!ture and all mechanical ant at Sparta were in the hands of the Hel ts. since the law = ni Lycurgus prohibited the Spartans if m all lucrative occupations. But the Helots were also obliged to bear arms for the state. in case of necessity. Their dress, by which they were contemptuously distinguithed irom the iree Starans. consisted oi sheep's skin and a leather cap oi a peculiar shape. They were :nmermes liberated for their services or inr a : an if mey: but they were not admitted to the iul dignity af citizenship. In 424 B.C. 2.000 of the He to, who had conducted them-elves with di-nagui hed bravery in war, were treach-
crously pur to death. They several times rese against their masters, but were always and finally reduced.

Helper, Hinton Rowen, American author: o. near Mocksville. N. C.. 2\% Dec. 1829 . He published in I85; 'The Impending Crisis of the South.', which the Repubbican party used as a campaign document with great effect. Later works by him are: 'The Three Americas' Railway' (188I): 'Noioque' (1867): 'The Negroes in '-egroland' (I8S8): 'The Land of Gold'; -Oddments of Andean Diplomacy.'

Helps, SIR Arthur, English essayist and histerian: b. Streatham ro July 1813: d. London - March 1875. He was educated at Eion and Cambridge: becarme private secretary to Lord Monteagle as chancellior of the exchequer, and was aiterward commissioner of French, Danish, and Spanish claims. In is60 he was appointed cle-k of the prisy council, and held this pos: till his death. He was creazed K.C.B. in 18 ;2. As an essavist he was one of the most popular writers ci his day. and his historical works had an extended reputation. He possessed very wide and general culture and sound judgment. "as painstaking and accuraie in details, and in his historical works dispiaved considerable breadth ci view. His principal' works are: 'Thoughts in the Coister and the Crowd' (18_{35}): 'Essars Wrizien in the Intervals of Business (IEA1) : 'Friends in Council' ($184 ;-5 ;$) ; 'Conquerors of the New World and their Bondsmen) (I\&y 52) : 'Companions of my Solitude' (18 B1) : 'His:ory of the Spanish Conquest of -America' ($18=5-65$): 'Oulita the Seri., a Tragedy' (18F8): (Lize oi Pizarro' (IS59): 'Realmah') (1850) : (Casimir Maremma) (I8-0): 'Brevia, Shor Essays and Aphcrisms' (18-0): 'Life of Hernando Cortes and Conquest of Mexico': 'Thoughts upon Government' (187I): 'Life and Labors of Mr. Brassey) (18-2): 'Social Pressure) (18:-4).

Helsingfors, hél'sing-iörs. Russia, a seaport town, capital of Finland, on a small peninsula in the Guif of Finland. ISo miles by rail west-northwest ci S_{i} Petersburg. It is deiended by the fortress of Sveaborg about three milies distan:, and is the residence oi the governor of Finland. the seat of important couris and public offices. Its university. removed from Abo in 182%, has a library of over 100.000 volumesThere are manufactures ó linen. sail-cloth, tobacco. etc. and an importart trade is carried on. Pop. (1203) 94.000.

Helve'tian Republic. she designation of the rent:b:ic estabhshed in Switzerland by France ia 1\%OS. Sce Switzerliad.

Helvet ic Confession, the name of a document drawn up by Nar:in Bucer in 1330 to se::le the controversy betwee? the Lutherants and the Zwinglians: and also oi one drawn up by Bullinger ($1:(6)$ at the request of Friedricis III.. elector of the Palatinate. and adopted in Ewizerland. the Palatinate, France, Hungary, Plant. and Scotland.

Helvetii, hèl-vé'shī-ī, a former Gallic or Celtic nation living between the Rhone and the Rhin : the Jura, and the Rherian Alps. They were more numerous and warlike than the neighte ring Gallic tribes. They first appear in history so; b C. but were not known to the Romans unti! the time of Juliu: Cæsar, who, as governor of Gaul. prevented their intended emigration, ana

HERMINN LUDUIG FERDINXXI VON HELIHOLTZ.
after many bloody battles, in which even the Helvetian women fought. pressed them back within their frontiers. The story of their meditated irruption into and seizure of southern Gaul is circumstantially related in the First Book of the Commentaries of the Roman gencral, who not only repulsed them with terrible slaughter. but almost exterminated them. Not a third of those who left their homes on this ill-fated expedition ever returned. Helvetia. which was less extensive than the present Switzerland, was divided into four districts. which had an entirely democratical constitution. Cresar subjected the country to the dominion of the Romans, who established several colonies there. After the death of Nero, the Helvetii, for refusing to acknowledge Vitellius as emperor, were mercilessly punished by Crecina, one of his generals, and thenceforth they almost disappear as a people.

Helvétius, Claude Adrien, klōd ä-drē-on ěl-vā-sē-ūs, French metaphysician: b. Paris Jan. $1 / 13$; d. there 26 Dec . $17 / 1$. At the age of 23 he obtained the lucrative post of farmergeneral, where he was distinguished by his mildness and indulgence from his colleagues, whose base practices filled him with indignation. He therefore resigned his office, and purchased the place of maitre d'hôtel to the queen. Aspiring after literary fame he first directed his efforts to mathematics, then attempted to rival the dramatic fame of Voltaire by writing a tragedy. In 1758 he published 'De l'Esprit,' the materialism of which drew upon him many attacks. It was condemned by the doctors of the Sorbonne, and publicly burned in accordance with a decree of the Parliament of Paris. Helvétius went in 1764 to England, and the year afterward to Germany, where Frederick the Great and other German princes received hin with many proofs of esteem. A complete edition of his writings was published at Paris in I795.

Hem'ans, Felicia Dorothea Browne, English poet: b. Liverpool 25 Sept. I793: d. near Dublin, Ireland. I6 May 1835. She displayed the bent of her genius when a mere child, and wrote some tolerable poetry in her oth year. She first appeared as an author, in I8os, in a volume entitled 'Early Blossoms.' but it was subjected to harsh criticism, which she took very serionsly to heart. A second volume published in 1812 . 'The Domestic Affections,' was much more successful. The same year she married Captain Hemans, from whom she was separated in 1818. She then resumed her literary pursuits, made herself acquainted with Latin and modern languages, anc wrote much in the periodicals of the time. At the suggestion of Reginald Heber, afterward hishop of Calcutta, she wrote a tragedy entitled 'The Vespers of Palermo.' which. owing partly to Sir Walter Scott, who wrote an epilogue for it. was favorably received at the Edinburgh theatre, though it had previously, in 1823, proved unsuccesaful at Covent Garden. Before this time she had added greatly to her popularity by her poems entitled 'The Restoration of the Works of Art to Italy': 'The Skeptic) : 'Modern Greece" : and (Dartmoor.) Later works were 'Lays of Many Lands': 'Forest Sanctuary': 'Records of W'oman'; and 'The Songs of the Affections' (I830). 'She visited Sir Walter Scott at Abbotsford, and Words-
worth at Rydal Mount, and left with eacly the impression of a singularly graceful and gifted woman. Iler poetry is essentially lyrical and descriptive, and is always swcet, natural, and pleasing. In her earlier pieces she was imitative but she ultumately asserted her independence, and produced many short poems of great beauty and pathos. X1rs. Hemans had no dramatic power, her effusions being always intensely subjective.

Hem'atin, or Hæmatin. See H.emoglobıN.
Hem'atite, native sesquioxide of iron, $\mathrm{Fe}=\mathrm{O}$, a mineral widely distributed, and constituting a valuable ore of iron. It crystallizes in the rhombohedral system, and also occurs in massive form, sometimes forming beds of great thickness. It has a hardness of irom 5.5 to 0.5 , and a specific gravity ranging from 4.9 to 5.3 . It is usually dark gray or black in color, with a metallic lustre, and is sometimes sliglatly magnetic, occasionally even showing magnetic polarity. Hennatite occurs in the rocks of every age. The extensive masses that occur in metamorphic rocks are believed to have been deposited, originally, in marshes, undergoing meta* morphosis at the same time as the rocks with which they are now associated. Fibrous and columnar forms of the minera!, brownish-red or black in color, are also known, and to these the name "red hematite" is sometimes applied. In crystalline and metamorphic rocks a varlety known as "specular iron" is met with, which is distinguished by the presence of crystals having a splendent lustre. Hematite occurs in vast quantities in various parts of the United States, notably in upper Michigan, in the Nlarquettc district, and in Menominee and Gogebic counties; in Northern Wisconsin: and in St. Louis County: Ninnesota. Iron Mountain, Missouri. is a hill about 200 feet high, the surface of which consists of loose blocks of henatite, many of which weigh as muclu as 10 or 20 tons. Tlise name "hematite" is from a Greek word signifying "blood," and was given to the mineral by the ancients from its fancied resemblance 10 coagulated blood. Hemacite is sometimes called "bloodstone" at the present time, thongh that name is more properly applied to a green varicty of quartz. which contains small spots of red jasper. An allied mineral, consisting of hydrated sesquioxide of iron and known to mineralogists as limonite, is often popularly called "brown hematite."

Hemianæsthesia, hěm-ĭ-ăn-ěs-thésĭ-a, loss of sensation on one half of the body, right or left.

Hemiplegia, hěm-ĭ-ple"jī-a (lit. "half a stroke," that is, of paralysis), paralysis of one side of the body. It is 1tsually caused hy hemmethage in the brain cavity, commonly known as apoplexy: often a local accumulation of serum, or a tumor is the cause. The paralysis falls on the side of the body opposite the lesion in the pyramids of the brain. unless the lesion occurs below the decussation of brain fibres. The treatment of hemislegia requires the services of a physician. It is amenable to timely remedies, and a cure is generally obtained after the first attack, if it result from apoplexy; bu* the patient is liable to suhsequent attacks.

Hem'ipode. Sec Button-quall.

Hemiptera, hē-mip'tera, an rider of insects. It contains two lading groups. the H omoftera and Heteroftera. In the former the two pairs of wings when present are appited in rest penthouse fashion to the sides of the body. Several zamilies are wingless. Cicadas. plant-lice (-Ift:is) and the ike come here. In the second group the wings, when at rest, placed herizorally acress the body. the second pait covered by the upper. which are hentely:ra. that is the basal hali is leathery, the distal portion membranciss. See Büg.

Heralock, one of various plants. (i) A highty poisonous umbelifer uus herb of the genus Conium, one species of which is Europeatr and the other African. The well-hnown oficinal European one (C. Macuiafum thas becone extensirely naveralized as a weed io the United States. It is easily recognized by ine wary. crenate ridges of its shot. Lateaniy compressed irwit, and also br the disagreeable muse-litie odor when bruised see Cosrus). (21 The water hemlceks co cowbanes oz the closely alied genus Ciruta. which is also both European and American. The commea American spectes is C. maulutc, which grows in swamps and wet places, and is alsy dangerously poisonous, espectally in its turnip-like cavernons foot. See Cittia.

Hemlock-spruce, an American coniferous tree 0 : the genus Abies for Tsusc of which two -pecies are recosnized, the common murthern one $I T$. cancuensis). and a lesser one ci the Southern Alleghanies (T. Cer liniw . The mood is ioo soit, weat, and brittie to be of extersive use as lumber. but the bark is of great importance in tanming. See FIR

Hemlock, Water. See Hemloct.

Hem'meter, Join Cohn, American physician: b. Baltimore Md. IS April 1 inn He studied at the Roval Gymnasium, Wiesbaden, Germany: Bai:imore City College: and Tonversity of Maryland: and became clinical nmiessoof medicine in the last named instituti n, and direc:- the clinical labe ant ry: He i* averciase cli: 5 f - Archives int Dizerive Di-euses. Berlin, and arthor of: 'The Epecia! P.th logy: and Ireutmett of Dtseases of the D.g-stiv Organs' 180 : 'Diseases of the Svmach' (IN): : Diseases of the Intestites ILOI': 'The dore Billr th, a bi grar"iy' 1 tooo. He is also a ormpeser, and has compused Hyzein (cantata : 'Prelule and C' ral Music ic the 23d P...m ar! ! ot -r w rh=

Hem orrhage. See Blesoti:

Hemp. T e hemp plant pr per. nr " com-

 th Weite is usel th designate mony ich he's of ftre whith are in no way reatil thto - eci=: i omm n h mp, such $a=$ Manila hemp. from a f'an:d.y, swal hemp ir m ant azasc, w strin m ir m a lilice is plant, and 30 I mate iter kits. The tiर्ferent kind i onn-
 Fie Brei n inp. Piedm ntese. Ruswan. Enz… C. ${ }^{\prime \prime}$: \because I Jarnee hemp-and m ny
 rems : ner-ies. Ite temp plant proper is a

 fis teen extended to many p ri $n=i$:'e
worid in both temperate and tropical climes. It Nas used by tire Scythians 2.500 years ago, and it was probably known to the Chinese and Europeans many centmies earlier. The Romans used it ior sails and cordage, but nt unti' aiter the dawn of the Christian era. It grows widd in many parts of Incia. where it is regarded more ior its produce known as chang of hasheesh than io: its fibre. It Anurishes on both the east and west coasts of Airica, and has been naturalized in Australia. as well as in several South American countries. In Europe it is ctilivated chtety $\therefore \rightarrow$ France, Itaiy. Germany, and central and southem Russim, and it will grow in Great Britain and Sweden. The plains of Hungary are peculiarly acapted to its culture. It is a favorite textile in China and Tapan, the fibre from the last named country being particularly strong and ine. and at the same time, better prepared than many European hemps. The plant is an annual shrub. the fibre being prodnced in the bark of the suraight stiff staks or stems, and is theretore a bast jbre. In the experiments oi Roxburgh and others. Russian hemp is taken as the standard of comparison for alh other ibres. The stems vary from 3 to 20 feet long, dependent uport the variety and the soil in which grown. The best kinds have a bollow stem, the rood of which breaks down readily when cleaned ior the ribse. While hemp is produced commercially in rery few localitues of the C-nted Stases, it mill thrive from ocean to ocean, and from the Guli to Canada. Its cuitivatiom as a tibre crop is contned chiefy to Kentucity. Illinois. Missouri. Nebrasia, and California, though considerable hemp, in past ime. has been produced in New lork. Lately it has been experimented with in the South, notably ir Mississippi and Texas. Ine butk of the crop is grown at the present time in Kentucky and California.

The Kentuchy hemp industry is very old, for the sibee was cultivated in the early part ot the last century. The annual production, in 1859 , reached a total $n \bar{f}-5000$ tons, but $=0$ years 'ater it had ia.len fif to Euch an extent that 5.000 zns on y we:e zeoorded $i=$ the entire country. Since that time it has fiuctuated between 5.000 and I2.000 the as the tutal crop ci the country. the ancual production at the present ime being te: than the smaller figure. In late years the price has ruled at about $3^{\dagger}=$ cents per pound, th ugh π w it is qu. ied at 4 : cents. American bemp was at the time used i some extent for t..e agzing of vessels, anough its largest use was ir bagging. As early as iszi it was emn! yed in the nary, and etrorts were made later by the ghvernment t wasd the production of citer grajes of liemp by maier retting. The
 * ven ial rics. In late y=ars the demand lias anat !arge'y in: a ! w srade tibre that culd be manutactured int binder twine, though the bulk If the tinder t. ine is made form manila and $:-1$. Viry recently there has keen a demand \vdots : a lecter grade if fite. which has resulted in - re careiul methods. particularly on the I cotic o ast. where a ti re has been pr duced at i = sine iwines and cordage Kentucky, Ilı : \because and Ne ra*a hempsare coarse. dark in c r. and are oct carcivily prepared, which is 1 - Fainn ior the low price of 3.3 cents -minz: s and io cents per pu und i riner impotel'tomp. The best temp onnes funn traly,
chicfly from the provinces of Bologna and Ferrara, the fibre being very white, very well prepared, and of superb strengtli. Breton hemp from France is almust as good, but rarely imported. Russian comes in several grades, some light, but not as light as the Italian, some dark like the native fibre, and low in grade. Some good hemp comes from Austria-Hungary, and a trifle from other portions of Europe. Little if any of the Japan fibre reaches this market, though the best Japanese is as good as the Italian. The consume annially less than 10.000 tons, including both the native and imported.

There are many varictics of the hemp plant, four or five having been grown in the United States, though it is said that the bulk of the seed at present sown is the China hemp and a Japanese variety. Five rarieties are cultivated in Europe, a common form reaching a height of 5 to 7 feet ; Piedmontese or Bologna, an Italian variety that averages 12 feet in height; China hemp, introduced in 1846; a small hemp found in the valley of the Arno, and around Tuscany, and Arabian hemp, cultivated for the resinous principle or drug.

Limestone soils and the alluvial soils of the river bottoms are best adapted to hemp culture, and the seed bed should be almost as carcfully prepared as for flax. One to thrce bushels of seed are sown per acre broadcast, and lightly covered. The planting, in Kentucky, usually begins in April, and the crop may be harvested in 100 days. For further particulars regarding the culture and preparation of this fibre, sce Special Reports Nos. I, S, and II, office of Fibre Investigations of the Department of Agriculture, and Hemp Culture in the United States, Year-book of Agriculture for 190I. See also the 'Dictionary of the Economic Products of India.?

While some 300 patents have been issued in this country for hemp machines, the bulk of the fibre is extracted by means of the old-fashioned, clumsy wooden "slat brake" that has been employed from time immemorial and without improvement or change. With one of these brakes a Kentucky negro can extract perhaps 150 pounds of fibre in a day. The brakes used in European hemp countries are little better, though they are smaller and less clumsy. The best foreign lemps are water retted, the stalks dried with great care, often in kilns, and therefore are more evenly prepared, and the fibre soft, strong, and light in color - almost white as in the Italian and French hemp. On the contrary most of the American hemps are dew retted, and are exposed to alternate freezing and thawing, as the stalks lie on the ground, giving an inferior product, uneven, and very dark in color, often a slate gray. Sce Cordage: Cordage Industries; Fibre; Flax; Manila Hemp; Ramie: Sisal.

Chas. Richards Dodge.

Hemp-agrimony. See Eupatorical.

Hemp-nettle, a genus (Galeopsis) of European plants of the mint family, two species of which have become naturalized as weeds in the eastern United States.

Hemp'hill, James C., American journalist: b. Due West, Abbeville County, S. C. IS May 1850. Was graduated at Erskine College in his native town in 1870 and entered journalism as editor of the Abbeville, S. C., 'Medium' in 18 I. In 1880 he joined the staff of the

Charleston Nias and Coutior, of which since I888 he has been managur and uditor.

Hempl, George, American philologist: b. Whitewater, TVis., 6 July 1850 . Ile was gradwated at the unisersities of 入lichigan in i879 and of Jena in 1889, and was appointed instructor in German at Johms flopkins University in r884. After spending thitec years abroad ($1886-9$) in study at (iottingen, Tulbingen, Strasburg, and Berlim, lie became junior professor of English in the ©niversity of Ahehigan, where he has been professor of English philology and general linguistics since 1807. Ile has been a voluminous writer, and among his technical works may be memtioned 'German Orthography' and Phonology' (189 -) : 'German Grammar' (1901).

Hemp'stead, N. Y., village, in the town of the same name, in Nassau County; on the Long Island Railroad; about is miles east of the borough of Brooklyn, and io miles from the occan. The village was settled in I0 43 by people from New England. The Presbyterian Society of Hempstead claim the oldest Presbyterian organization in the country, dating their beginning in this village in $16+4$. Hempstead is located in a section of Long Island in which there are many summer homes. During the war with Spain an encampment for State troops was located at Hempstead: it was called Camp Black after the then governor of the State. The chicf industrial interests are market gardening, farming, and the manufacturing of cork insoles, phosphates, and carriages. Fop. (1900) 3.582.

Hempstead, Texas, town, county-seat of Waller County; on the Honston \& 1. C. railroad; about 50 miles northwest of Houston and It 3 miles east by sonth of Anstin. It is situated in a fertile agricultural region, noted fur its cotton fields and its regetable products. It has a cottonsced-oil mill, cotton-gins, and its trade is chiefly in cotton, grain, fruits, and vegetables. Pop. 1,9-8.

Hems, or Homs, hōms (Lat. Emcsul), Syria, an ancient city, near the Orontes and the Lake of Homs, 86 miles northeast of Damascus. Its temple of the sum-god Elagabalus was famous, and one of its priests became emperor of Rome, assuming its title, in 218 . Here in 272 Zenobia was defeated by Aurelian, and in $1 \$ 32$ the forces of the sultan of Turkey by lbrahim Pasha. The town is still surrounded by its ancient walls now in a rumous condition. It has some manufactures of silk goods and gold ornaments, and a trade in oil and agricultural produce. Pop. est. 30,000.

Hem'street, Charles, American journalist and author: b. New York 20 Sept. 1806. He erltered the profession of journalism as a reporter in 1886, and was connected with the City Press Association until 1900 , when the resigned to devote himself to literature and historical research. He has publishlied: 'Manhattan' (1888); 'Nooks and Corners of Old New Iork' (I8(n)); 'The Calendar of Old New York' (1000): 'History of New York City' (1901) ; 'When Old New York was Young' (Igoi).

Hem'yng, Bracebridge, English author: b. London 1832; d. I891. In early life a journalist he began at the age of 35 a series of sensational tales for boys known as the 'Jack Hark-

HEN-HAWK - HENDERSON

away' stonles, which ior a dozen years had great vogue in Great Britain and the Tnited States. He wrote not only some 20 serial stories having to do with the ajrentures of (Jack Harkaway.) but upward of to volumes oi sensational netion, none of which. however, found readers in America.

Hen-hawk, or Chicken-hawk, any kind of hawk which attacks poultry, or is supposed to do so. Two or three large buzzard-hawks are popularly so called in the eastern Cnited States, and at least two smaller ialcons. In the West, and in other parts of the English-speaking world. are other species of the same repute, more or less well-deserved. In England the analogue oi the American marsh-hawk (q.i.) is known as "hen-harrier." Certain owls everywhere kill much poultry where it is not safely housed at nighi. In North America the best known hen-hawhs are the broad-winged, red-tailed, and red-shouldered (q.x.: also Buzzard). They are comparatively harmless to poultry, however, ieeding mainly on squirrels, mice. irogs. etc. The broad-wing (Bupo fenusylanicus) is ore of the most familiar of our hawks. breeding numerously in the woods all over the countrs: It is 16 inches long. with the tail σ inches, and the wing is inches. The upper parts are d:lll umber-Erown, the tail alnost black, crossed by two to iour pale brown bands: the lower pars are dull rutous brown, nearly unbrcken on the breast. It is rather sluggish in temperament. though capable oi swift and bold action, and ieeds mainly on mice, but wil! now and then seize foung chickens. ditchings. etc. On the whole, as in the case di the other buz-zard-hawks, it is of more service than injury to the agriculturist. The real culprits are two small. swif. agile falco:1s. Cooper's (Afcifiter cooperi), and the sharp-shin (1. -itor). The iormer is nearly two ieet long. grayish-brown on the upper parts and white below. with the sides and breast barred with dusky red-brown, and tail barred with blackish. The sharp-shin has much the same colors, but is little more than hali as large, and is iurther distimpushed by the triangular shape of the tarsus, giving it an edse in front. These bold and active falcuns live mainly on birds. and cn farms prey largely on chickens and house-sparrows, compensating somewhat int the former by killing the latter. Consuit Fisher. 'Hawks and Owls of the Lnited States' (IVashimgton ISg3).

Henbane, a dangernus plant (Hyoscyan:us nizer) of the order S lanaican, which contains the iobacco, stramonium and other plants air unding in narectic poisons. The black henbane 1 Hyoscyumus niger) repreaents some 15 species of the Medierranean region, and springs un in waste places throughom Great Britain and the eastern United States, where it has become naturalized. It is an annual. somewhat bushy, about two icet high. with large sinuated or sharply lobed leaves withe nt leat-aralks, and large dingy ye'low fifers with pery 'i-h ve!ns. The whole plant is cover d wi's unctiv Ius hars. and has a nausenus sme:!. The seeds comtain in largest quantity the specsic alkal rid hyescyarnin. which crystallizes in stellated acicular crystals of a silky lustre. The symp:oms of misonire by henbane are similar th those produeed by nther natectic poisone, and the proper fre::ment is the same as in eases of poisoning
by opium. In medicine henbane is employed both externally and internally. The leaves are the part commonly used: they are gathered and quickly dried when the plant is in full flower. Fomentations of henbane are applied to painiul glandular swellings. parts affected with neuralgia, etc.. and are often found to afford relief. An extract oi henbane is sometimes employed instead of belladonna to dilate the pupil of the eye. Tincture and extract of henbane a:e oiten administered in cases of annoying cough, spasmodic asthma, and other diseases requiring sedatives and antj-spasmodics. For many cases it has one great advantage over laudanum, in not producing constipation. The other species of henbane possess similar properties. The dried stalks of H. albus are used by smoking in Greece to allay toothache.

Hen'derson, Charles Hanford, American educator and author: b. Philadelphia 30 Dec. 1861. He was graduated from the Lniversity of Pennsydvania in IS_{2}, was lecturer at the Franklin Institute $1883-5$. ISS5-6: lecturer on education at Harvard 189:-8: and director of Pratt Institute. Brookinn, ISge-g. He has published 'Elements of Physics' (1900): 'John Percynield: the Anatomy of Cheersulness) (1go3): 'The Children of Good Fortune' (rgat).

Henderson, Charles Richmond, American educator: b. Covington, Ind., I\% Dec. is 48. He was graduated from the University of Chicago in 18,0, and has been prosessor oi sociology there since 1802 . He was president 26 th Na. tional Conference of Charities iscs-9. and vice. president National Prison Association. He has published 'Social Spirit in America' (ISg6): 'Social Settlement' (IS97) ; 'Social Element' (ISgS).

Henderson, David Bremner, Americar statesman: b. Old Deer, Scotland, It March I fo: is. Dubuque. Iowa, 25 Jan. tgos. He was educated in the public schools and Upper Iowa University; in I86r entered the army as lieuienant of the Twelith Iowa regiment: list a lez at Corinth (1,063), and was discharged irom the service. He then became commissioner of the board of entolment in the 3d Iowa district, but re-entered the army as colonel in 1864. He studied law and was admitted to the bar in lowa in 1865. and was Inited States district attorney in the northern division of Iowa 1869-: 1 . He early became prominent in the local politics of his district. and was a delegate to three Republican national conventions. In INS2 he was elected to the House of Representatives, and was re-elected biennally till rooz. He was ior many years cne of the leaders of the Republicans in tiv House. served on the commitree of appropriatins ior 10 years, and was chairman of the judiciary committee and a member of the committee on rules in the 5 th and 5 sth Congresses. He assisted Speaker Reed (q.v.) in the making "i the "Reed fules." was consistently an adrorate r sound money, and a strong supporter of Preaident McKinley's Cuban policy. At the c-canization of the 56 th Congress in ISoo he was ch sen speaker of the House, and re-clected in 1roI: he was an impartial presiding officer and took important part in shaping the legislatin made necessary by the Spanish war and the acquisition of new territory. In 1902 he

HENDERSON - HENDERSONVILLE

reclined a unanimous renomination from his district, because he could not support the policy of tariff revision then made a prominent issue by Iowa Republicans.

Henderson, Isaac, American journalist and novelist: b. Brooklyn, N. Y., 3 Feb. 1850. He was graduated from Willians College in 1872, and the same year joined the staff of the New lork Evening Post. of which journal he became publisher in 18;6. He sold his interests in 1880, and went abroad in 1888, making his home in London and Rome. Author of 'The Prelate' (I808); 'Agatha Page' (1900).

Henderson, James Pinckney, American soldier and politician: b. Lincoln County, North Carolina. 2 I March 1808 ; d. Washington, D. C., 4 June 1858. He practised law in Mississippi; went to Texas in I836, and lecame secretary of state of the Texan Republic $1837-9$. In the latter year le was sent as a minister to England and France to secure the recognition of Texan independence, and went to Washington in I844 to secure annexation. He was a member of the Texas constitutional convention 1845, and the following year was elected first governor of the State. In 1857 he was appointed senator from Texas as a State Rights Democrat. Henderson fought in the Mexican IVar and Congress gave him a sword for his gallantry.

Henderson, Mary N. Foote, American writer on domestic science: b. New York i842. She was married to J. B. Henderson, and in 1876 organized the St. Louis School of Design. She is the author of 'Diet for the Sick,' 'Practical Cooking and Dimer Giving.'

Henderson, Deter, American horticulturist: b. Porthead. Scotland, 1823: d. Jersey City, N. J., IT Jan. I8go. He came to Anerica in 1843, and opened a seed-store in New York city in 1862. He has been called "the father of horticulture and ornamental gardening in the United States." He published "Practical Fioriculture) (1867) : 'Gardening for Profit' (I866) ; 'Gardening for 'Pleasure' (1875): 'Garden and Farm Topics' (1884): 'How the Farm Pays' (I884).

Henderson, Richard, American pioneer: b. Hanover County, Virginia, 734 ; d. North Carolina t785. He studied law and in 1769 was appointed associate justice of the superior court of North Carolina. After the adoption of the Declaration of Independence he declined reelection to the bench, in order to participate in the scheme of the Transylvania Land Company. By this scheme the company organized as a political community with president, legislature, and judges. all the territory lying between the Cimberland River, the Cumberland Mountains, and the Kentucky River. The State of Virginia annulled the deed of sale of this tract of territory which the Cherokee Indians had given to the Transylvania Land Company, but as a reward for the pioneer work of the company, granted them an area 12 miles square on the Ohio River, below the mouth of the Greene River.

Henderson, William James, American musical critic and author: b. Newark. N. J., 4 Dec. 1855. He was graduated from Princeton College in 1876 , and joined the staff of the New York Tribune, the following year becoming musical critic of the New York Times. He
was associate editor of "The Standard Dictionary" ($1892-4$), and has published: "The Story of Music' (I\&No): 'Preludes and Studies' (1891) : 'Sea liarns for Boys' (1804): 'Alloat with the Flag' (1895); 'Elements of Navigation' (1895): 'The Last Cruise of the Mohawk) (I897): (WYhat is Good \$usic?' (1898) ; 'How Music Developed' (1899) ; 'The Orchestra and Orchestral Music' (1890) ; 'Richard Wagner) (Igor)

Henderson, Ky., city, county-seat of Henderson County; on the Ohio Ruver, and on the Illinois C., the Lounsville \& N ., the Louisville, H . \& St. L. R.R.'s : about io miles below Evansville, Ind., and 103 miles, in direct line, southwest of Lonisville. It has regular steamboat connection with Louliville, Evansville, Nemphis, and other river ports. It is one of the oldest settlements on the Ohio River, but it was not incorporated until Im9\%. It is situated in a fertile agricultural region, rich in timber and coal. The chief manufactures are cotton and woolen goods, flour, hominy, lumber, tobacco products, furniture, carriages and wagons. foundry products, car-works, and agricultural implements. Large shipments are made of corn, wheat, and tobacco. It has large coal and lumber yards, grain-elevators, tobacco-stemmeries. fine fairgrounds, and Atkinson Park, the area of which is about 100 acres. It has a samatorium and a number of well-built churches and schools. The charter of 1893 provides for a mayor, who holds office four years and is not eligible for re-election, and a common council. The city owns and operates the electric-light and gas plants and the waterworks. Pop. (1900) 10,272.

Henderson, N. C., town, county-seat of Vance County, on the Southern and the Seaboard A. L. R.R.'s: about 12 miles east of Oxford and 42 miles north of Raleigh. Henderson was settled in I 820 , but was not incorporated until $18+2$. It is situated in a cotton and thacco region of the State. The chief industrial estahlishments are cotton-gins, cot-ton-seed oil mills, cotton-mills, knitting-mills, tobacco warelouses, wagon-factories, flourmills, and lamber-yards. Its chicf trade is in cotton and tobacco. Pop. (1890) 4.191; (1900) 3,746.

Henderson, Texas, town, county-seat of Rusk County; on a branel of the International \& G. N. railroad : about 122 miles southeast of Dallas and 165 miles north lyy cast from Houston. It is sitnated in an agricultural section, and the chief industries are connected with agricultural producio. Its clief industrial establishmẹnts are a foundry, a pottery, and cottongins. The trade is in manufactured articles. live-stock, cotton, and vegetables. It is the seat of a normal college.

Hen'dersonville, N. C. town. county-scat of IIenderson County: on the Southern Railway: about 21 miles south of Asherille and 100 miles west of Charlotte. It is situated in a mountainous portion of the State, but in the valleys are fertile farm lands. The chief industrial establishments are a furniture factory. a tannery; a canning factory, and a lumher yard. Apples and vegetables arc among the agricultural products shipped to other markets. Hendersonville has a large number of summer
guests owng to the healthiulness of the climate and the beaty of the scenery. Pop. (1900) 1.91%

Hen'dricks, Thomas Andrews, Americant politician, 2tst Yice-President oi the United States: b. near Zanesville. O.. - Sept ISı9: d. Indianapolis. Ind., 25 Nor. i88. He was graduated at South Hanover College. Indiana. in 1841: studied law and was admitted to the Indiana bar in 1843 . In IEf5 he was elected to the legislature, and in 1850 and 1852 to Congress. In 1860 he was the Democratic candidate for governor of Indiana, but was defeated. He was a Crited States senator 1803-9: and at the Democratic National Conrention oi isen received 132 votes ior the Presidential nomination. In the same year he was again defeated for the governorship of Indiama, but in IS-2 was elected. In the Democratic National Convention oi $18,-6$ he was nominated for the JicePresidency: but the ticket. beaded by Tilden. was defeated. Hendricks was again nominated for the Vice-Presidency in 188, however, on the ticket with Cleveland, and on this occasion was elected.

Hen'drix, Eugene Russell, American Methodist bishop: b. Fayette. Mo., 1\% May I\&4\%. He was graduated irom IV esleyan University. Middletown, Conn., I86-: and the Cnion Theological Seminary 1869. Appointed bishcp of the Methodist Episcopal Church South. in I 886. he has since made official visits to China. Japan. Korea, Mexico, and Brazil. He is the possessor oi John Wesley`s manuscript 'Journal' writien in America $1736-$. He has written 'Around the Morld' (IS-E): 'Skilled Labor for the Master) (1900).

Hengist, hĕng'gist. Saxon iounder of the Lingdom of Kent in Great Britain: d. about qi\& He and his brother Horsa were renowned among the Saxons ior their bodily strength and the antiquity oi their iamily. which derived its origin in a direct line from Odin. In $H 9$ the Britons sued for aid from the Saxons against the inroads of the Scots and Picts. Under command oi Hengist and Horsa the Saxons landed at the month of the Thames, attacked the enemies of the Britons, and defeated them near Stamiord in $t=0$ A.D. As sown as they had received reinfurcements from home they sought cceasion for a quarrel. and uniting with the Scots and Picts they attacked the Britons, who were i reed to flee or sulmit to the Saxons. Some fled to Armorica (Haute-Bretagne). in which they gave their name. Hengist. whe had lost his br ther in the battle near Eglesford (now Aylesford) in 455 A.D., founded the kingdom of Kent. He established hi residence in Canterbury: By some oi our writers Ifengist and Horsa are regarded as mythical personages.

Hening's Statutes, the first complete enllection of the laws of any American State. including those of its colrnial times. those repealed and those dropped in evicinn. These were it : 'Statutes at large ni Virginia. 15in-1-02.' in 13 volumes, published at Riclimond ivor-23. Iy Villiam IValler Hening, clerk of the court ni chancery: Jefferson is said to have suggeated the publication. It is highly valued as a historical inurec.

Hen'ley, William Ernest, English poct, critic. and journalist: b. Gloucester 23 Aug.

1849: d. Woking 12 July 1903. He entered on a jonrnalistic career in London, and in $18 / 7$ became first editor of the magazine (London.) He was then editor successively oi the 'Magazine of $A r t$ ') ($18 \mathrm{~S}^{2} 2-6$), of the 'Scots' - later the - National Observer' - (1888-93) and oi the (Jew Review' (I893-8). His first publication. (In Hospita): Rhymes and Rbythms' (ISES). was inspired by his own experiences as a patient in Edinburgh Infirmary. Its contents were subsequently included in 'A Book of Verses' (ISSE). A second rolume of poems, 'The Song of the Sword.) appeared in ISO2 (2d ed. as 'Lendon Voluntaries' 1893). Both of these books were incorporated in the collection of his (Piems (isoz). Later poetical works were: 'For England s Sake' (1900): and 'Hawthorn and Lavender. and Other Verses) (Igoi). Henley colaborated with Stevenson four plays. 'Deacori Brodie.' 'Beau Austin.' and 'Admiral Guinea' and '\Iacaire.' He also edited. either alone or in cooperaticn with others, the following anthologies and collections: 'Lyra Heroica) (IEgt) an anthology of English patriotic verse: 'A London Garland: irom Five Centuries of English Verse) (ICOS): 'Book of English Prose' (18gó): 'English Lyrics. 1340IROO' (I89-): 'The Morks of Lord Byron' (I89,): 'The Poetry of VIfilirid Blunt' (I\&g6): and "London Types' (ISoS), and was editor of a series of 'Tudor Translations') The 'Centenary Burns) ($1806-z$) is an important work edited by him with the cooperation of T. F. Henderson. The fourth volume contains an elabcrate estimate by Herley oi Burns as poei and man. pubiished separately in 189 . His critical work appears at its best in (Views and Reviews: Literature’ (ISgo), and 'Views and Reviews: Painting and Sculpture' (igor). Both as poet and critic he was prejudiced and aggressive. but keen, rigorous, and oiten distinguished in strle. At paper on Stevenson contributed to the 'Pall Mall' in 1901 arowsed much uniavorable comment by its arraignment ó Balicur"s 'Liie.'

Henley-on-Thames, England, a markettown and municipal borough of Oxfordshire. on the Thames. 35 miles by rail west of London. The town is especially iamous for its annual regatta in July, a notable event in the Briuish? sporting world. The university boat races are held on the river here, and - Imericans irequently take part in the various open events. Pop. (1001) 5.984.

Henlopen. See Cape Hexlopes.

Henna, a shrub (Lausonia inermis) resembling ihe privet, but of the order LithraCEE. It grows in moist situations throughout the n rth of Airica. Arabia. Persia, and the East Indies, and has acquired celebrity from being used by the inhabitants of those countries to dye the nails. $r \hat{i}$ their fingers and the manes. honfs. etc.. of their horses. For this purp se the leaves are dried. powdered. and made into a paste with hot water, which imparts a yell w colnr. requiring renewal every three or fur weeks. It is cultivated extensively in Egypt, and the powdered leaves form a large article of export to Persia and Turkey. Hemna is supposed to be the kopher of the Hehrew. tranclated camphire in the Song of Snlom n .

HENNEPIN - HENNINGSEN

Hennepin, Louis, loo-ē ĕn-păt or hěn'ěph̆, French Franciscan missionary and explorer in Nortls America: b. Ath, Belgium, about 1640; d. Utrecht, Holland, about izou. He entered a convent, and being sent by his superiors io Calais and Dunkirk, the stories he heard from the sailors inspired him with a desire to visit distant comeries. At length he embarked for Canada, and arrived at Quelece in 1655 . In 1676 he went to the Indian mission at Fort Frontenac, whence he visited the Five Nations and the Duth settlement at Albany. In 1678 he was attached to La Salle's expedition, and, in company with the Chevalicr de Tonty and the Sieur de la Motte, was ordered to sail from Fort Frontenac to Niagara, and there construct a vessel for navigating the Lakes above the falls. This accomplished, La Salle joined the party, and on 7 Aug. 1679 the adventurers began their voyage on Lake Erie. They passed through Lakes Erie, Huron, and Michigan, to the month of the St. Joseph's River, ascended this in canoes to the portage, carried their frail barks several miles by land to the Kankakec, and floated down this stream and the Iroquois to the 1llinois, on the banks of which they built Fort Crevecerur near the present site of Peoria. After a delay of two months at this place. La Salle returned to Fort Frontenac for supplies, charging Father Hemepin with a voyage of discovery to the sources of the Mississippi, which had never been explored above the mourth of the Wisconsin. Accompanied by Picard du Gay and Michel Ako, he set out in a canoe 20 Feb . 1680, followed the Mlinois to its mouth, and ascended the Mississippi to the Falls of St. Anthony, which he was the first European to see, and which he named in honor of his patron saint. This was on 30 April. Arriving at the mouth of the St. Francis River, in what is now the State of Mimnesota, he traveled by land about iso miles along its banks, naming it in honor of the founder of his order, and visited the Sioux Indians, whom he mentions by the names Issati and Nadouessioux. He stayed with them three months, being, according to his own accomut, held in captivity, and then, meeting a party of Frenchmen who had come into the country by way of Lake Superior, returned with them to Canada, descending the Mississippi to the Wisconsin, and passing up that river and down the Fox, and so through Green Bay to Lake Michigan. From Quebec he sailed for France, where he published in 1683 his 'Description de la Loutisiane Nouvellement Découverte an Sud-Onest de la Non-velle-France, etc..' containing the fullest published account of La Salle's first expedition, a history of his second voyage, and of Hennepin's own explorations, with a description of the upper Mississippi. Notwithstanding the writer's vanity and fondness for exaggeration, the work is valuable. He put off his clerical dress in Holland about 1697 , bit to the end of his life seems to have written himself: "Recollect missionary and apostolic notary." In 1697, to years after La Salle's death. Hennepin prblished his extraordinary 'Nouvelle Découverte d'un Très-Grand Pays. Situé dans l'Amérique entre le Nouveau Mexique et la Mer Glaciale, etc..' reprinted the next year under the title 'Nonvean Voyage dans un Pays Plus Grand que 'Europe. etc.' In this work, which embodies his 'Description de la Louisiane,' written anew and enlarged, he claims
to have descended to the mouth of the Mississippi, and to have been the first European who floated on that river. He gives a description of the scenery. Indian tribes, and distances along the route, with a minutencss which casily gained him credit for veracity, and explained his long silence on this important point by saying that he feared the enmity of La Salle, who had ordered him to follow a different course, and who prided himself upon his own claims as the lirst who descended the Mississippi to the (iulf of Mlexico. Notwithstanding the uitter impossilility of reconciling the dates given in Hemmepin's narrative, the story obtained general credence until its falseness was exposed by Jared Sparks. (See 'Life of La Salle' by Sparks in the 'Library of American Biography') Consult: Saint-Genois, 'Les
 (I867) : Van Hulet, 'Notice sur le Père Louis Hennepin' (1845) : Shea, (Discovery of the Mississippi' (1852): Parkman, 'La Salle and the Discovery of the Great 'West'; Winsor, (Narrative and Critical History of America,' Vol. IV. (I884)

Hen'nessey, William J., Anglo-American artist: b. Thomastown, County Kilkemy, 1reland, 1839. He was brought to New York when Io years of age, and became a student of the Academy of Design in 1856. He paints in oil and water colors, with a prefercnce for landscape, and draws in black and white as an illustrator, 113 1863, he was elected a National Academician, and since 18 -o has lived in London, England.

Hennessy, John, American Roman Catholic bishop: b. Ireland 20 Aug. 1825; d. Dubuque. lowa, 4 March 1goo. He came to the United States in 1847, and pursued his theological studies in Carondelet Seminary, near St. Louis. After serving several years as a missionary in Nissouri lhe became professor in Carondelct Seminary in I854, and its president in 1857 . He was afterward pastor in St. Joseph, Nlo: became bishop of Dubuque in I866. and archbishop in 1893.

Hennessy, John Joseph, American Roman Catholic bishop: b. Coumt Cork, Ireland, I9 July 1847. He came to America in carly life and was graduated at the Christian Brothers' College, St. Louis, Mo., in 1862. He was ordained priest in 1869: founded the Railroad Mer's Benevolent Union 187 t ; cstablished the Ursuline convent, Arcadia, Mo., 1877: and edited 'The Y'outh's Magazine,' St. ILonis, I880-6. He was consecrated bishop of Wichita, Kan., in November 1888.

Hen'niker, Hon. Mrs. Arthur, English novelist. She is a danghter of Richard Monckton Milnes (q.v.), ist Baron Houghton, and was married to Hon. Arthur Henniker in 1882. Her books, which have had an American as well as English circulation, include: 'Sir George) (1891): '(Foiled' (1803) ; 'Outlines' (1894) : 'In Scarlet and Gray' (1806) : 'Sowing the Sand ' (1898) : etc.

Hen'ningsen, Charles Frederick, Ainerican military officer: h in England, of Swedish parents, 1815 ; d. Washington. D. C.. I. J une 1877. He joined the Carlists in Spain in 183f, and later was a follower of Rossuth in the Humgarian Revolution. He went to Nicaragua in 1856. where be distinguished himself in the de-
iense of Gravada, and in the victory at Queresma. During the Civil War he served in the Coniederate army, beecming a brigadier-gencral. He directed the construction of the first Minie rifes manufactured in the United Siates. Ins pubitations include 'Eastern Europe': 'Pas: and Future of Hungary': 'Sixty l'ears Hence'; Perscnal Recollections of Nicaragua': "The White Slave': cte.

Henri, Robert. American painter: b. Philadelphia, Pa.. I865. He began his art studies in his native city and became an instructer in the Philadelphia School $:$ Design. He has exhibized in Paris, and his picture 'Snow' was purchased by the French government and hangs in the Luxembourg. While in Paris he gathered round him a group of pupis in his studio, and as a landscape pair:er did much io impress sounger men with his breadth and viger of style. While he is a landscape painter of n -able attainment, his portraits also are admirable for the power of individualization and the directness which characterizes them.

Henrietta, Dechess of Orleacs: \downarrow. Exeter 16 Itane $16 \div 4$: d. St. Cloud. France. 30 Tune $10,0$. She was the daughter of King Charles I. Her mother fled with her to France where she was educaied a Roman Catholis, Hee marriage with the b--ther I Lout XIV., Philip of France. Duke çoleans, was celebrated in March. vósi. Lou* XIV. was desirous c! deaching her brether. Charles II., frem the triple allance with Holiand and Sweden. in o-der : $)$ azc mplish his pian of obtaning pissesan i a part of Holland. She went, therefoce. In 16\%0, with the court to Flanders, and, under prete:ne of visiting her br ther. pasise over is Dower. Where Charles was awaiting her areival, and there succeeded in obtaining his signature :o the secret treaty of Dover. Shorty after her return she died so suddealy as in excite the suspicion of her being porsored. Bossuet promounced her tancral oration.

Henrietta Maria, queen of Charles I, of England: b. Pars 2F Niv. roog: d. C i mbus. near Paris. 31 Aug. 1%. She was the \because unges: child of Hunry IV. of France. Her marnage ceremony was celebrated by p - xy at paris in 1625. On Henrieta ${ }^{-1}$ frst arrival in England she enjeged great pepuiarity with her hrishard's subjects, but her atachme:s to the Roman Cathelic fath, conbined with her hanteur and d sp tic ideas as to divime right. shen d心sipat i these fove able prep sacsions, Nuth of Charles subsequent arbitrary and injudicio us procedure. may be traced indirenly the influence ni his queen. On the bree'… out ni the civil war Henrietta priceeded in . In "ant. where she proc'red mincy and r rops for the assis:ance $-t$ her hustand, and atterward j in \mathcal{U}^{\prime} him at Oxird. She asain returned to the C sstinent, and took up her abode in France.

Henriet'ta, Texas, town, county-seat of Clay Counsy : on the Livole Wichasa Kiscr. and r_{n} the Missouri, K \& $\dot{1} .$. and the Firt II th \& D RR.s; about $\infty 0$ miles n rthwest of fort 11 roh and 12 S miles n rthwe: oi Dallas. It is : atal in an agreultural and stock-raisine - g. 1. and the brilding-stone quartics in the 7:ソ add t the ind"strial wealth of the town. The chief manufaci"tes are it ut and lumber. he iown has cott in-…-s. grain elevators, lum-
ber-yards, and stock-yards. The trade is chiety in live stock, stain. four, lumber, cotton, and building-stone. Fin (1900) i.l:

Hen rcin, Ellen M., tmerican social reiormer; b. Pcriand. Naine. July IEtT. She was educaied in Eniope and in 1809 was married to Charles Hermotia. Belgian consul at Chicago. In isgu she was vice-president of the Congress Aumliary of the World's Columbian Exposition: the same year she was decorated by the Sulan if Turkey with the order of Chathat and made an Officier de l'Academie by the French Republic. IEg9. She was president irom ISg+ to ISas of the General Federation of Women's Ciubs.

Henry I., Ling of England, surnamed Beatctarc. Youngest son of IVillam the Conqueror: b. Selbÿ, Lerishire, Iós; d. Rouen. France, 1 Dec. II35. He was hunting with William Ruius in the Jew Forest when that prince received his mortal wound in 1100 and instantly going to London, caused himseli to be proclaimed king. to the preiudice oi his elder brother Robert, then absent in the Crusade. To reconcile the people to his usurpation Henry issuted a charter containing concessions to public iiberty, and also periormed another popular act, by recaliung Anselm, azchbishop oi Canterbury. In November 1100 he married Matilda, daughter ai Jalcolm III., king of Scotland. This union strengthemed his pary, when his brother landed an army in rlor, with a view of asserting his claim to the crown. Actual hostilities were prevented by Anselm, who induced Robert to accept a pension: and it was agreed that in the event of the death of either of the brothers without issue, the other should succeed to his dominions. He subsequently invaded Normandy, and in 1 too took Rober prisoner. and reduced the whole duchy. His usurpation of formandy involved him in continual nar. bat although William, son ci Robert. escaped out of custody, and was assisted by the hing of France. Henry mainained possession of the duchy. His only son IV:liam was dromned in 1 i 20 in returning ifum Jormandy, and Henry was never seen to sanile afterwari. He martied his only daughter. Natilda, to the Empert Heary b-, and when she became a widow married her a semnd time to Gecfircy Plantagener. S'n ci the Count of Anju. Henty was succeeded by Siephen.

Henry. II., king of England, the first of the line of the Plantagenets, H . Sermandy 1133 : d. Castle Cf Chinon, near Saumu:. France, 6 Juive IIEO. He was the s n rit Gzonirey, count Ci Anjou, and the empress Matilda, daughter of Henty I. He was invested with the dachy of I mandy, by the consent of his mother, in 1550. The next year he succeeded his father in the p siecsisi n of Anjon and Maine, and by a marriage with Eleancr of Guienne, just divorced ir ni Louis VII.. king of France. annexed that privince with Poitou to his other dominions. He succeeded Stephen as king of England in Itio. - Hz?: "ach involved with his brother G ircy. wh attempted to seme Anjou and Jlame. an in a temporary dispute with France. he ruencl prosperously till the nemorable cern-:e-: weth Thmmas Becket. Anxious to dominate the clergy: Henry in 1154 summoned a general council of nobility and prelates at Clarendon, which assem ly passed the famous

HENRY

constitutions named from that place, the effect of which was to render the church and ecclesiastical dignitaries subject to the temporal authority, (See Claremdon, Constitutions of.) After the murder of Becket Henry receded from his position and restored the Church to its rights. Before this matter was terminated, Henry, in nthi, undertook an expedition into Ireland, and having left Earl Richard in the post of senesclaal of Ireland he returned to England - proceedings so important to the future destimies of both countries having occupied only a few months. Being an indulgent father Henry had assigned to each of his four sons a provision out of his extensive territorics. The eldest son, Henry, was not only declared heir to England, Normandy. Anjou, Maine, and Touraine, but actually crowned in his father's lifetime. On paying a visit to the court of his father-in-law, Loutis VII. of France, the prince was induced by the French monarch to demand of his father the immediate resignation either of the kingdom of England or of the dukedom of Normandy. This request being refused he withdrew from his father's court, and was openly supported in his claim by Louis. Henry's variotis gallantries, exemplified in the popular and not altogether unfounded legend of fair Rosamond, or Rosamond Clifford, also embroiled him with his queen, Eleanor, who incited her other sons, Richard and Geoffrey, to make similar clams. A general invasion of Henrys dominions was in this way concerted, and began in 1173 by an attack on the frontiers of Normandy; but the king presently subdued his opponents and entered into an accommodation with his sons on less favorable terms than they had previously rejected. Henry now employed himself in regulations and improvements which equally manifest his capacity and love of justice. He partitioned England into four judiciary districts, appointed itinerant justices to make regular excursions through them, revived trial by jury, discouraged that by combat, and demnlished all the newly erected castles as shelters of violence and anarchy. The turbulence of his sons still disquieted him; but Henry, the eldest. was cut off by fever in 1183 , and three years after the death of the equally restless Geoffrey occurred. Philip Augustus, then king of France, however, continmed to foment the differences between Henry and his sons, and Richard was again prompted to rebel. A war followed, the event of which was so unfavorable to Henry, that he was at length obliged to agree that Richard should receive an oath of fealty from all his subjects. He also stipulated to pay a sum of money to the French king, and to grant a pardon to all Richard's adherents. The mortification of Henry at these humiliating terms was aggravated to despair when he saw the name of his favorite son John at the head of the list of delinquents whom he was required to pardon. Henry II. ranks among the greatest kings of England. His wisdom and love of justice were acknowledged by foreign potentates, who made him arbiter of their differences, and regarded him as the first prince of the age. Consult: Stubbs, 'The Early Plantagenets' (1876): Mrs. J. R. Green, 'Henry II.' (I88S) : Norgate, 'England Under the Angevin Kings) (1887).

Henry III, king of England: b. Winchester I Oct. 1207; d. Westminster i6 Nov. 1272.

He was the son of John, whom he succeeded in i216. As lIenry approached to manhood he dis played a character wholly tinfit for hiss station. One of his first faise steps was to discard his most faithful and able minister llubert de Burgl. In 1236 Henry married Eleanor of Provence, which increased the dislike which his subjects already felt toward him; for she hrought a train of foreigners to the court, and encouraged her husband in extravagant courses which forced him to all kinds of eppressive exactions to raise money. He received frequent grants of money from Parliament, but always on condition of confirming the Great Charter, which had been extorted from King John. Henry at length raised the national discontent to such a pitch that the nobles rose in rebellion under Simon de Nontfort, the earl of Leicester. the husband of the king's sister ; and in 1258 , obliged the king to sign a body of resolutions, which threw all the legislative and executive power into the hands of an aristocracy of twenty-four barons, assisted by a lower house, consisting of four knights chosen from each county: By the aid of his son Edward. Henry was gradually restored to authority ; on which Leicester, calling in Llewellyn, prince of Wales, involved the kingdom in a civil war. The power of the barons was by this means partially restored; but both parties agreed to abide by the award of Louis IX... king of France. This being favorable to the king. Leicester and the barons refused to submit to it. and a battle was iought near Lewes, in which Henry was taken prisoncr, and the person of Prince Edward also ultimately secured. A convention provided for the future settlement of the kingdom; but in the meantime Leicester ruled withont control. To him, however, was owing the first example of a genuine House of Commons in England; for in a Parliament summoned by him in 1265. deputies from boroughs were sent, as well as knights of shires. Prince Edward at length escaped, and, assembling an army, defeated Leicester's son. The decisive battle of Eresham (1265) quickly followed, in which Leicester himself was slain. Replaced upon the throne Henry remained as insignificant as ever. He died in the 6ith year of his age, and the 56 th of his reign, the longest in English history, except those of George III. and Tictoria. He was succeeded by his son, Edward I.

Henry IV., king of England, first king of the house of Lancaster: b. Bolingbroke 3 April 1367 ; d. 19 March 1413. He was the eldest son of John of Gaunt. duke of Lancaster ; fourth son of Edward III. by the heiress of Edmund, earl of Lancaster, second sorn of Henry III. In the reign of Richard II. he was made Earl of Derby and Duke of Hereford, and while bearing the latter title appeared in the Parliament of 1398, and preferred an accusation of treason against Mowbray, duke of Norfolk. The latter denied the charge, and offered to prove his in. nocence by single combat, which challenge being accepted, the king apnointed the lists at Coventry ; hut on the appearance of the two champions at the appointed time and place, Richard would not suffer them to proceed. Both were banished the kingdom, Norfolk for life, and Hereford for 10 years, shortened by favor to four, with the further privilege of immediately entering upon any inheritance which might accrue to

HENRY

him. On ihe death of John of Gaunt in 1399 he succeeded to the dukedom oi Lancaster, and laid claim, according to agreement. to the great estates attached io it; but Richard retained possession if the estates. The duke. thereiore disregarding the unfinislued term oi his exile. landed with a small retinne at Ravenspur in lorkshire. whete he was quickly joined by the Earls of Sorthumberland and Westmoreland. and soon found himseli at the head of 60.000 men. Richard falling into the hands of his enemies. was brought to London by the duke. who now began openly to aim at the crown. A resignation was first obtained from Richard. who was then solemoly deposed in Parliament; and Heary unaninmously declared lawiul king under the title of Henry II. The death oí Richard soon removed a dangerous rival; yet a short time cnly elapsed beiore the nobles rebelled against the king of theit own creation. The first plot. in 1400 , was discovered in time to prevent its success. but an insurrection in Wales, under Owen Glendower, proved more formidable. That chieitain having captured Nortimer. earl of March. who was descended from Lionel. duke of Clarence. the second son of Edward III., and therefore the lineal heir to the crown. Henry would not suffer his relaticu, the Earl of Northumberland. to treat for his ransom. He thus offended that poweriul nobleman. who, with his sin. the iamous Hoispur, soon after joined Glendower. The king met the insurgents at Shrewsburs, and a iurious battle ensued. 21 July 1403. which ended in the death of Percy, and the defeat of his party, -1 new insurrection headed by the Earl of loutingham and Scrope or Scroop, the archbishop of lork, broke out in 1405 , which was suppressed by the king's third son. Prince John. The archbishop afforded the first example in this kingdom of a capital punishment inflicted upon a prelate. The rest of this king's reign was comparatively untroubled. Henry was succeeded by his son of the same name.

Henry V., king oi England: b. Monmouth 19 Aug. I 385 : d. Jincemes. France. 31 Aug. 1+22. He succeeded his jather. Henry 1T.. in 1413. His dissipated rourh. and fo:ldness for joviality and low company, gave his iather much uneasiness: but circumstances occurred, even in the midst of his wildness, which showed that ketter principles were latent in his mind. His conduct when he ascended the throne iustified the best expectations. The circunstances of France, torn asunder by the opposing factions of the dukes of Orleans and Burgundy, affurded a temptisz opportunity to an ambitious neighber. and Henry was easily induced to revive the claima of his predecesors upon that country. He accurdingly assembled a great tleet and army and lan led near Harfleur, if A19g. 1415 . He t 人k that town after a siege which $=0$ much reduced his army that he was advised to return t) Eng'ard ly sea. But Ilenry determined so mareh on Calai-, and rin his way was met on the plain ni teine urt Iy a French army ten times as rumerus as his own. A hattle tock place there in 25 October, in which the French hot wa: i taly deleated, with a comparatively tritling 1 on the side तi the Encli h. In $\mathrm{I}_{4} \mathrm{~F}^{-}$ the lit eral erant- of the Commons chal led Henry once no re to invade France with 25.000 men. By the iam us Treaty ef Trove (21 May 1420). Henty engaget to marry the Princess catharine,
and to leare Charles in possession of the crown, on condition that it should go to Henry and his heirs at his decease, and be inseparably united to the crown of England. Henry. after espousing Catharine. took possession of Paris, and then went over to England to raise Jecruits for his army: - 111 his great projects seemed about to be realized, when he was attacked by a disease which carried him off at the age of $3 \div$ and in the 10 h y year of bis reign. He was succeeded by his son Henry II. Henry I^{-}., as the gallant, youthiul, and successiul conqueror of France, is a favorite name in English histor: tut he was infe-ior in wisdom and solid policy to many oi his ancestors.

Henry VI., king of England: b. Windsor 6 Dec If2I: d. London 21 May IfrI. He was cowned at TVestminster in November 1429. and at Paris in December I430. As he was not nine months ald at the death oi his iather Herry ${ }^{\prime}$., John. duke of Bediord, a brother of the late king. was appointed Regent of France; and Hurnphrey. duke of Gloucester, another brother of the same. Protector of the realm of England, with a council at his side appointed by Pariiament. -t iew weeks after Henry's succession, Charles VI. oi France died. when, according to the provisions of the Treaty of Troses. Henry was proclaimed King of France. But the French did net quietly submit. and a war began at first favorable to the English, but in the end, aiter they had been roused to more effectual efforts by the heroism oi Joan oi Arc (q.r.) (iq2e 30). resulted in the almost total loss to the English oi their possessions in France. In 1453 nothing remained to them in that country but Calais. In April 14i5. Henry married Margaret oi An;ou. daughter of René of Provence. Two rears Iatet the Earl of Suffolk acquired the chief power in the kingdem, and was created first marquis and then duke. His government was very unponular. which caused the people to look to the clam of Richard, duke of fork. The insurrection of Cade followed. and the Duke of Lork was by Parliament declared Protector of the kingdnm. The lork and Lancaster parties were now in such a state that the sword only could decrde between them: and that course of civil contention commenced. the first bloodshed in which occurred at St Albans in May 1455 , and as iar as the reign of Henry wa: concerned, the last in the battle of Tewkesbury in 147s. W'hen the latter took place the king was a prisoner in the Tower. where he soon atter died but whether by a natural or violent death is uncertain. Henry was gentle, pions, and well-intentioned, but weak. Eton College reveres Hens as its inunder, as does likewise King's College, Cambridge.

Henry VII., king of England. त̄tst sovercign ni the huse of Tudcr: b. Wales 28 Jan. 145,: d. Richmond, Surrey. 22 April 1309. He wat the sun of Edmund. carl of Richmond. son of Owen Tudor asd Catharine of France, widow of Henry 1 : His mother. Margaret, was the caly child at John, duke of Somerset, grandzon of J-hn of Gaunt. Aiter the baitle of Tewkestury le was carried by his uncle, the Earl of P(min ke, to Brittanv: to seek reiuge in tha: court irsm the icalousy of the vicrorious house - 1 rh. On the usurpation of Richard the young Earl oi Richmond was naturally turned to as the representative of the house oi Lan-

HENRY

caster. In 1485 Richmond landed at Milford Haven, where he was immediately joined by some leaders of rank, but had only 6.000 men when Richard met him at Bosworth, with an army twice as numerous in appearance; but the defection of Lord Stanley with his forces. who joined Richmond during the battle, obtained for the latter a complete victory. Henry was proclaimed king on the field of battle, and his right was subsequently; recognized by Parliament. In I486 he married Elizabeth, daughter of Edward [V., and heiress of the house of York, and thus united the claims of the rival houses of York and Lancaster. The reign of Henry V'II. was troubled by repeated insurrections. The project of France for amexing the province of Brittany, by marriage with tt. 2 heiress, induced Henry to declare war, but his measures were so tardy and parsimonious that the annexation was effected. He then raised large sums on the plea of the necessity for hostilities; and landing a numerous army at Calais in 1492, almost immediately accepted a large compensation for peace. The Duchess-dowager of Burgundy. governess of the Low Countries, now advocated the cause of Perkin Warbeck, a youth who gave himself out to be Richard Plantagenet, the younger of the two sons of Edward IV., supposed to have been murdered in the Tower of London, and the justice of his claim has been maintained even by some historians of a recent date. The duchess professed to be satisfied with the proofs of his identity, and acknowledged him as her nephew. He was so far successful as to secure a large following, with which he marched to Taunton; but there his heart failed him, and he fled. Captured by Henry he confessed himself an impostor, and was sent to the Tower, where he became acquainted with the Earl of Warwick, and persuaded him to accompany him in an attempt to escape. They were both retaken, and Warwick was recommitted to the Tower and Perkin Warbeck hanged at Tyburn (1.499). Soon aiter, the king ordered the Earl of Warwick also to be executed. After a long negotiation he brought about a matcl between the Infanta Catharine, daughter of Ferdinand of Aragon and of Isabella of Castile, and his cldest son Arthur; and on the death of the latter, in order to retain the dowry of this princess, caused his remaining son Henry to narry the widow hy Papal dispensation, an event which, in the sequel, led to a separation from the See of Rome. He married his eldest daughter to James IV., king of Scotland, from which union there ultimately resulted the union of the two crowns. His reign was. upon the whole, beneficial to his country. Being conducted upon pacific principles it put a period to many disorders, and gave an opportunity to the nation to flourish by its internal resources. His policy of depressing the feudal mobility, which proportionally exalted the middle ranks, was highly salutary ; and it was especially adyanced by the statute which allowed the breaking of entails and the alienation of landed estates.

Henry VIIT., king of England: b. Greenwich 28 June I 491 ; d. Westminster 28 Jan. 1547. He succeeded his father. Henry VII., in 1509. His disposition for show and magnificence soon squandered the hoards of his predecessor. James IV., king of Scotland, having made an incur-
sion with a numerons body of troops into England, was completely defeated and slain at the battle of Flodden Field. Henry, however, granted peace to the Quecn of Scotland, his sister, and established an intluence which rendered his kingdom long secure on that side. The aggrandizement of Cardinal Wolsey now began to give a leading feature to the conduce of Henry, that prelate being applointed chancellor in I515. His favor was now sought by Maximilian I., emperor of Germany, who hoped to secure the support of England against France, and as Wolsey was at first neglected ly the French king the German emperor gained his point: but when Maximilian was succeeded by Charles V., hereditary king of Spain as well as emperor of Germans, Francis iound it cxpedient to gain Wolsey, and for that purpose entered into an amicable correspondence with them. In order to cement this new friendship the two monarchs had an interview near Calais, the magnificence of which gave the place of meeting the denomination of the Field of the Cloth of Gold (1520). Notwithstanding these indications, a prospect of the papacy being artfully held out to the cardinal by the young cmperor Clarles, his interest at length gained a preponderance in the English conncils. The principles of the Refornation, were now making rapid strides, and Henry himseli wrote a Latin book against the tenets of Linther, which he presented to Pope Leo X., who favored him in return with the title of defender of the faith. After being married to Catharine for about 18 years, Henry began to feel some scruples as to the validity of the marriage, on the gromed that she had previously been his brother's wife, and his scruples were no doubt increased by the fact of his having conceived a passion for Anne Boleyn, one of the queen's maids of homor. He accordingly applied in 1527 to P'ope Clement VII. for a divorce, and the Pope appointed cardinals Wolsey and Campeggio to try the case. Wolsey had at first been favorable to the project of a divorce, but when he perceived the desire of Henry to marry Anne Boleyn, fearing that this marriage would result in winning over Henry to the side of the reformers, since Ame Boleyn's friends belonged to that party, he did all in his power to prolong the inquiry, until the commission was at last withadrawn, and it was decided by the Pope that the case should be tried at Rome. This procrastination on Wolsey's part led to his own ruin. 1 lenry: disgusted at these delays, eagerly cauglit at the advice of Thomas Cranmer (q.v.), afterwards archhishop of Canterbury; to refer the case to the universities. from whom he got the decision desired. In MLay 1533 his marriage with Catharine was declared null, and as lie had hy that time privately married Ame Bolesta, this sccond marriage was a few days later declared lawful. As these decisions were wot recognized by the Pope, an act of Parliament was obtained in the following year (15.34): setting aside the authority of the chicf ponitiff in England, which was followed by another in I 535 declaring 11 enry the supreme head of the church. Thus was effected the great revolution by which, in ecclesiastical annals, this reign is so much distinguished. The birth of a dauglter by the ness queen produced a bill for regulating the succession, which settled it on the issue of this marriage, and declared
the king＇s daughter by Catharine illegitimate． But although Henry discarded the authority of the Roman Catholic Church，he adhered to its theological tenets．While he executed Bishop Fisher and Sir Thomas More（who had been appointed chancellor after the fall of Wolsey） for refusing the oath of supremacy，he displayed an aversion to the principles of the reiormers． and brought many of them to the stake．Find－ ing that the monks and friars in England were the most direct adrocates of the papal authority， he suppressed the monasteries by act of Par－ liament．The iall oi trone Boleyn was， however，uniavorable for a time to the reformers．Henry then married Jane Seymour， and the birth of Prince Edward in 153 ，fulfilled his wish for a male heir．although his joy was abated by the death of the queen．Henry now resolved to marry again，and Thomas Cromwell， a Protestant，who had succeeded More as first minister，recommended Anne oi Cleves．The marriage took place in January 1540，and Henry created Cromwell Earl of Essex：but his dislike to his new wife hastened the iall of that min－ ister，who was condemned and executed upon a charge of treason．At the same time Henry procured irom the convocation and Parliament a divorce from Anne of Cleves．He then mar－ ried Catharine Howard，niece to the Duke of Norfolk，but Henry now found that his new queen，of whom he was very fond，had proved false，and on further inquiry her conduct before marriage was discovered to have been loose and criminal．She was therefore accused and brought to the block in 1542 ．In 1543 he mar－ ried his sixth wife．Catharine Parr．widow of Lord Latimer．a lady of merit，secretly inclined to the Retormation．

Henry was succeeded by his son，Edward VI． The complete union of Wales with England．and the conversion of Ireland into a kingdom，date from the reign of Henry Vill．Consult：His－ tories of England by Lingard（ $1854-5$ ）；Froude （ 1870 ）；and Green（IS－9 and I884）：also Brewer．＇History of the Reign of Henry VII1． to the Death of Wolsey＇（IR\＆）：Dixon，＇His－ tory of the Church of England from the Aboli－ tion of the Roman Jurisdiction＇（ $1884-9 \mathrm{I}$ ）； Froude，＇The Divorce of Catharine of Aragon＇ （ ISgt ）．

Henry I．，king oi France：b． 1005 ；d．Vitri， 4 Aug．tooo．He was the third son of Robert II．He succeeded to power in 1031．His reign was a contmuous series oi difficulties with the nobility and with the growing power oi the clergy：His younger brother．Robert，led a re－ volt against him，but this he suppressed with the aid oi Duke Robert of Normandy：

Henry II．，king of France：b．St．Germain－ en－Laye 31 March 1519：d． 10 July 1559 ．He succeeded his iather，Francis I．， 31 March 1547. He severely persecuted the Huguenots，and was involved in wars with the Emperor Charies V．and Philip II．of Spain．The Constable de Montmorency was defeated at St．Quentin（io Aug．15ミー）；the Marshal de Thermes at Grave－ lines（is June $15=8$ ），and the peace of Cateau－ Cambresis（ 3 April tiso）lost to France most of the advantages previou：ly gained．Henry was a monarch of slight capability，despite his regal bearing．

Henry III．，king of France：b．Fontaine－ bleau I9 Sept． 1551 ：d．by assassination St．Cloud 2 －u g． 1589 ．He was the third son of Henry II． He fought．as Duke of Anjou，against the Hu－ guenots，was elected king of Poland in $15 \% 3$ and crowned I5 Feb．1574．but in June 1574 left Poland and succeeded his brother，Charles $1 \times$ ．， as king of France．The Peace of Beaulieu （ $15 ; 6$ ），confirmed by the Edict of Poitiers （15ンク）．granted to the Huguenots so many priv－ ileges that the Holy League was formed，seek－ ing openly Catholic supremacy and secretly the elevation of Henry of Guise to the French throne．When all privileges granted to Hugue－ nois were repealed by the Edict of Nemours （1585）war broke out．Henry of Navarre was victor at Coutras，while Henry of Guise drove the king from Paris．The king then caused the murder of Guise and Guise＇s brother，the Cardinal of Lorraine in consequence of which the doctors of the Sorbonne absolved the people from obedience io him．He then joined cause with Henry of Navarre，with whom he marched against Paris：but in camp at St．Cloud was stabbed by－Jacques Clément，a fanatical Domin－ ican．I Aug．${ }^{1589}$ ．Henty III．was the last of the brancls of Orlèans－Angouleme of the stock of the Talois．

Henry IV．，known as Hexry of Natarre， king of France：b．Pau 13 Dec．1553：d．14 May 1610．He was a son of Anthony of Bourbon， Duke of Vendome，and of Ieanne d＇Albret， daughter of Henry，king of Navarre，and her－ seli aifterward queen of Navarre．Educated by his mother in the Calvinistic faith，he early joined，at her wish，the Protestant army of France，and served under Admiral Coligny：in $15: 2$ he married Margaret of Valois．sister of Charles IN．．and after the massacre of St．Bar－ tholomew，which took place during the festivi－ ties in connection with this marriage，adopted the Roman Catholic creed．For the next four years he was compelled to reside in Paris， but 3 Feb． 1506 succeeded in making his es－ cape，and after retracting．at Tours，the abjura－ tion of Calvinism which he had made at Paris，put himself at the head of the Hugue－ nots，and took a leading part in all the subse－ quent religious wars．He occupied a still more important position，when．in 1584 ．the death of the Duc d＇Anjou，brother of the king（Henry III．）．made him presumptive heir to the crown． as descended from Robert．Count of Clermont． the sixtly son of Louis IX．Rejected by the Roman Catholic party and the League as a heretic．Henry iound himself obliged to resort to arms to assert his claims．On 20 Oct． 158% with an inferior fince．he deieated the army of the League at Coutras．In 1589 he became king through the assassination of Henry 111 ． （q．x：）．．but found innumerable difficulties in establishing his claims．His I＇rotestant religion was brought forward by all the competitors to prefudice the Catholics against him．At the head of the opposite party stood the Duke de Mayenne．Philip 11．of Spain also claimed the French throre，and sent aid to the League． Henry IV．defeated his enemies in the celebrated engagement of lvry（it March 1590）．In con－ sequence of this victory Paris was besieged，and Henry 15．was upon the point of compelling the citizens to surrender by famine，when the Spanish general，Alexander，Duke of Parma，by

HENRY

a skilful maneuver, obliged him to raise the siege. Convinced that he should never enjoy quiet possession of the French throne without professing the Catholic faith, Henry at length yielded to the wishes of his friends, was instructed in the doctrines of the Roman Church. and professed the Catholic faith, 23 July 1593, in the chureh of St. Denys. He was anointed king at Chartres in 1594; and entered the capital amid the acclamations of the people. He quickly brought France entirely into subjection, and concluded the war against Spain in 1598 , by the Peace of Vervins, to the advantage of France. The same year was signalized by the granting of the Edict of Nantes, which secured to the Protestants entire religious liberty, and freed them from all political disabilities. Henry made use of the tranquillity which followed to restore the internal prosperity of his kingdom, and particularly the wasted finances. In this design he was so successful, with the aid of his prime minister Sully, that the national debt of 350,000,000 livres was diminished lyy 125.000,000, and $41,000,000$ liyres were laid up in the treasury. As Henry was riding through the streets of Paris he was stabbed by the fanatic Ravaillac. The great benefits which Henry IV. bestowed upon France entitle him to the designation which he himself assumed at an assembly of the Notables at Rouen in 1596, the Regenerator of France. His benevolent mind, his paternal love to his subjects, his great achievements, his heart, always open to truth, though it exposed his own faults, have preserved his memory in the hearts of the nation. To the end of his life he had to contend against the governors of provinces, Protestant as well as Catholic, who had rendered themselves almost independent under the last kings of the house of Valois. Nany of the acts of his internal government show that, while he aimed at restoring the prosperity of the nation by encouraging agriculture, commerce, and manufacturing industries, he was determined by all means in his power to strengthen the authority of the crown. In his foreign policy Henry IV. revived the projects of Francis I. and Henry II, against the house of Austria, and re-estahlished the influence of France in the Catholic states of Italy. He supported Holland in its revolt against Spain; allayed the bitterness of feeling between the Litherans and the Calvinists, and induced them to form the Evangelical Union. Consult: Lacombe, 'Henri IV. et sa Politique' (I8-8); and 'Willert, 'Henry of Navarre and the Huguenots in France) (i893).

Henry V. (of France). See Chambord, Compte de.

Henry I., emperor of Germany: b. about 876: d. Memleben 2 July 936. He was the son of Otho I., the Illustrious, duke of Saxony, who had refused the regal dignity offered lim in 912. Henry, on the death of his father, beeame duke of Saxony and Thuringia. He was chosen king of the Germans by the Franks and Saxons, April 919, at Fritzlar. The surname der Finkler or der Vogler (the Fowler), sometimes applied to him, did not arise until the 12th century, and is based upon the unauthentic legend that the princes who notified lim of election found him at fowling. He subdued Duke Giselbert of Lorraine, and in 924 concluded with the Hungarians a nine-years' treaty of peace,
with the condition that he should pay a yearly tribute. This tribute he finally refused (033), whereupon the Hungarians invaded his realm with two large armics which he defeated, the one near Göttingen, the other at Riade (Kiethenburg). In 934 he waged a victorious contest against the Danes. He thoroughly reorganized the German defensive military system, built fortified cities, and fortified others. Though he did not technically possess the title of emperor, he was the real founder of the medireval German empire, and is recognized as a wise ruler and skilful military leader.

Henry II., tHe Lame, emperor of Germany: b. 6 May 973 ; d. Grona, near Göttingen 13 July 1024. He was the last of the Saxon line, a son of Henry the Quarreler of Bavaria, and greatgrandson of the Emperor Henry]. He inherited Bararia on the death of his father in 995. On the death of Otho III. in the beginning of 1002 he laid claim to the kingdom, and was crowned at Mainz 7 June. He was for a time busily occupied in wars with Duke Boleslav. II. of Bohemia, the Margrave Henry of Sehweinfurt, and the Margrave Ernest of Austria. In 1004 and 1013 he was obliged to make expeditions to Italy, where Arduin of Irrea was twice chosen king. Having thoroughly defeated his opponent, he was invested with the imperial insignia at Rome by Pope Benedict VIIl. If Feb. IOI.4. His somewhat protracted struggle with Boleslav of Poland ended without any considerable success. At the call of the Pope he fought against the Greeks in lower Italy. For his zeal in the interests of the Church he was canonized by Eugenius III. in It 46.

Henry III, variously surnamed the Old, the Black, and the Piols, emperor of Germany: b. Osterbeck, Netherlands, 28 Oct. 10I\%: d. Botfeld 5 Oct. 1056. He was the second of the house of the Salian Franks, son of the Emperor Conrad II., whom he succeeded in the imperial dignity 1039. He had already heen cliosen king in 1o26. He weakened the power of the nobles by keeping the great fiefs when they became vacant for himself or members of his family, or by bestowing them upon less powerful nobles than had previously possessed them. He also extended the power of the empire by foreing the duke of Bohemia in 1042, and the king of Hungary in 1044, and again in 1047, to accept their dominions as imperial fiefs. His influence was paramount in Italy, especially in the south, where the Normans in Apulia and Calabria paid homage to him as their feudal chicf. On the occasion of his first visit to Italy (I046) he put an end to the contention between Benedict I.... Sylvester III., and Gregory TI. for the papacy, causing them all to be deposed, and Suitger, bishop of Bamberys, to be eleeted in their stead with the title of Clement II. I lis efforts were now directed toward rooting out the evils which were rife among the clergy, but not less toward securing the permanence of the influence of the empire over the See of Rome. Ilenry III. was not only a powerful ruler, but also a patron of arts and sciences. He founded numerons. schools in connection with the monasteries, and built the eathedrals of Worms, Mainz, and Spires.

Henry IV., emperor of Germany: b. II Nov. IO50; d. Liege 7 Aug. IIo6. He was the

HENRY

son of Henry 111. He was crowned at Aix-laChapelle in Iost. His reign was from the first disturbed by contests with his vassals. The Saxons joined with the inhabitants of Thuringia. drove Henry from Saxony (10,3), and destroyed many of the castles which he had built to overawe the inhabitants. But some churches having been destroyed by the populace, Henry accused the Saxons to the pope of sacrilege. and thus gave him an opportunity to imterfere as umpire. The Saxons offered to make every satisfaction: but Henry suddenly invaded their territory with a powerful army, and attacked them 9 June 1075 , at Hohenburg. on the L'nstrut, where they suffered a total defeat. He insprisoned nobles and ecclesiastics, and aroused the attention of the papacy: Gregory VII. (Hildebrand), who had been elevated to the papal chair some years before. without the consent of the imperial court, eagerly seized this opportunity to challenge Henrys usurpation of the power of investing bishops with the spiritual insignia of office. and in December 1075 presented to the king a list of charges. and demanded proofs of obedience to the Church. Henry then instigated the bishops, assembled by his order at Worms, to renounce their obedience to the pope (24 Jan. 1076). Gregory, however. pronounced the sentence of excommunication against him (22 Feb.), and absolved his subjects from their allegiance, and Henry soon found himself deserted. In this state of affairs he was obliged to go to ltaly and make his submission to the pope. He found Gregory at Canossa, not far from Reggio. a sirong castle belonging to Matilda, comtess of Tuscany: whither he had retired for security. Three days successively. in the depth of winter. Henry appeared in a penitential dress. in the court of the castle, before the intercession of Matilda obtained for him an andience of the pope (28 Jan. 107%), when he was, after all. released from the sentence of excommunication only unon submitting to the most humiliating conditions. Some of the Italian princes. who had long been dissatisfied with Gregory, and were desirous of deposing him, gathered round Henry, who was not disposed to fulfil the hard conditions imposed upon him, and offered him their assistance. The German princes. however, at the instigation of the pope. assembled at Forchhcim in 107 , and clected Rudolf, Duke of Swabia, king. Henry hastened back to Germany and overcame his rival, who lost his life in battle at Merseburg. in roso. Gregory again excommunicated Henry: but at the councils of Brixen and Mainz in 10\$o, he was declased deposed by the German lishops as a heretic and a sorcerer, and Guibert. archbiblop oi Ravenna, set up in his place. with the title of Clement III. In to ${ }^{\circ}$ I I Eary marched moto Ita'y in take vengeance on Gregery, and appeared at Easter before Rome. IIe was not able In that year however. to pursue the sicge ni the city: which did not fall into his hands till tast Jle was foreed ly a conspiracy of the raja rite of the notles, fed by his som, Henry 1., to abdicate at Ingeiliseim 3i Dec. 1005 .

Henry V., emperor of Germany: b. If Aur 10 1 : d Utrecht 23 Mlay 1125 . He was the sire aml stucesion of llenry il: He was crowned emperor in 1111 . His reign was continually disturbed by troubles with the papacy.

He was excommunicated no less than four times, and finally in the concordat of Worms (23 Sept. 1122) conceded the advantage to the pope. He also carried on wars with Flanders, Hungary, and Poland, and with various German nobles. He was the last of the Salic or Frankish family of emperors. which was succeeded by the Swabian house.

Henry VI., the Crtel, emperor of Germany: b. 1165: d. Messina 28 Sept. 119\%. He was the son of Frederick 1. (Barbarossa), was crowned king in 1 r69. and succeeded his father as emperor in 1190 . He was involved in wars in Italy to assure his possessions there. It was during his reign that Richard Cener de Lion, returning fron Palestine. was imprisoned by Leopold of Austria and surrendered to the emperor, who exacted a heay ransom.

Henty VIl., of Lexemberg, emperor of Gernany: b. 1269 ; d. Buonconvento, Italy, 24 Aug. 1313. He was son of the Count of Luxemburg. and was chosen king of the Romans 27 Nor. 1308, and crowned at Aix-la-Chapelle 6 Jan. 1309. In 1311 he received the iron crown of the Lombards. and 29 June 1312 was crowned emperor at the Lateran. His march into Italy at the head of a Glibelline army (October 1310) was hailed by Dante, who did homage at some time and place unknown. His sudden death immediately after reception of the Eucharist led to the unfounded rumor that he had been poisoned.

Henry, prince of Portugal, surnamed the Natigator: b. + Mareh 1394: d. 13 Nov: 1460. He was a grandson of old John of Gaunt: nephew of Henry 15. of England: and greatgrandson of Edward III. His father. King João or John, who formed a close English connection by marrying Philippa of Lancaster, was the first king of the house of Avitz, under which Portugal. for two hundred years, rose to its highest prosperity and power. The career of Portugal in exploration and discovery, due to the gemius and devotion of Prince Henry, his biographer characterizes as "a phenomenon without example in the world's history, resulting from the thought and perseverance of one man." Prince Henry had become one oi the first soldiers of his age when, in $1 \neq 20$, he refused offers of military command, and undertook to direct, at Sagres (the extreme point of land of Europe lonking southwest into the Atlantic Sea of Darkness), plans of exploration of the unknown seas of the world lying to the west and south. His idea was to overcome the difficulties of the worst part of that immense world of storms. that lying west of Airica, and thereby get round Airica to the south and sail to India, and China, and the isles beyond India. Every year he sent out two or ihrec caravels: but his great thought and inthemitable perseverance had yielded only "twelve years uf costly failure and disheartening ridicale," when, in I434. the first great success was achieved he Gil Eannes. that of sailing heyond Cafe Dojador. Prince llenry made his seat at Sagres. one of the most desolate spots in the werld. a school of navigation, a resort for exrl rers and navigators. His contemporary $A z$ urara sys of him: "Stou of heart and keen of intellect. he was extraordinarily amhlitious of achieving great deeds. His self-discipline was unsurpassed: all his days were spent in

HENRY

hard work, and often he passed the night without sleep; so that by dint of maflagging industry he conquered what seemed to he impossibilities to other men. His household formed a training-school for the young nobility of the country." Consult: Major, 'Life of Prince Henry the Navigator) (I868).

Henry, prince of Prussia, German naval officer: h. Berlin 14 Aug. 1862. He is a brother of Emperor William, and married Princess Irene, daughter of the late Grand Duke Ludwig IV. of Hesse, in 1888. He succeeded Vice-Admiral von. Diederichs in command of the German fleet in Chinese waters, in March I899. In January r902, Emperor William requested that the president's daughter, Alice, should christen the royal yacht then building in the United States. After receiving the consent of President Roosevelt, the Emperor informed the President that he had ordered his yacht, the "Hohenzollern," to be present at the ceremony, and had appointed his brother, Admiral Prince Henry of Prussia, to represent him on the occasion. The Prince arrived in New York city on 23 February and left on 12 Narch, after receiving many national, municipal, and social honors.

Henry, surmamed The Lion, duke of Saxony and Bavaria: b. Ravensburg II29; d. Brunswick 6 Aug. 1195. He was the son of Henry the Proud, and the head of the Guelphs. He greatly enlarged his domains, and so increased in power as finally to become a dangerous rival of the Emperor Frederick I., Barbarossa. His refusal to support Frederick was among the chief causes of the latter's defeat at Legnano (29 May in 7 6). He was summoned to appear at three diets, and, having failed to attend was placed under the imperial ban (i180). Later he was allowed to retain Liuneburg and Brunswick upon condition of going for three years into exile. He was finally reconciled with Henry VI.

Henry, Alexander, American traveler: b. New Brumswick, N. J., 1739; d. 1824. He juined the Canadian expedition under Amherst against the French (1760) and when peace followed he went to Michilimackinae and engaged in the fur trade. After the massacre of the English by the Indians in that place he being one of the few survivors, remained a captive among the Ojibways at Sault Ste. Marie for 12 montlis, when he escaped and resumed the fur trade. In the pursuit of this business he traveled between Montreal and the Rocky Mountaiss. He also interested himself in the copper mines on Lake Superior and for many years made an effort to establish a company for their exploitation.

Henry, Edward Lamson, American painter : b. Charleston, N. C., 12 Jan. 18.41. He hegan his artistic studies at the Philadelphia Academy and in 1860 went to Paris where he studied for three years under Saisse and Courbet. In 1869 he was elected a member of the National Academy. Ile has frequently revisited Europe for the purpose of sketching the scenery, although his specialty is domestic genre, and history. In the Corcoran Gallery at Washington is one of his most characteristic pictures, which shows his carcful grouping of figures, his attention to detail as well as the stiffness of his drawing and his deficiency in the sense of color which recalls Wilkie, whose swing and movement he lacks, though he exhibits some of the humor of
the Scottish master. The picture referred to is a crowded canvas of fifty figures with the title 'Initial Excursion of the First Railway Ever Constructed in New York State.' Among his historical pictures the best are 'Battle of Cermantown,' owned by Willian Astor. 'Declaration of Independence.' owned ly J. W. Drexel. and 'Reception to Lafayette.'

Henry, Guy Vernon, American soldier: b. Fort Smith, Indian Territory, 1839: d. Ponce, Porto Rico, I89g. He was graduated at West Point 186I, and went to the front in the Civil War, taking part in four years of the hardest fighting, from Bull Run to Cold Harbor. At 23 he was commissioned colonel of the foth Massachusetts volunteers. After the Civil War he was transferred to the 3d Cavalry, and in $587+$ was in Arizona. He continued his Indian campaign, though severely wounded on one occasion, and compelled to be invalided. He served through the outbreak of the Sioux in 1890, and was also on service at Porto Rico during the SpanishAmerican War, where he died of typhoid fever.

Henry, Joseph, American physicist: b. AlLany, N. Y., I7 Dec. I797; d. Washington, D. C. I3 May i878. He was educated at the Albany Academy, after graduation undertook the study of chemistry, anatomy and physiology with a view to adopting the medical profession. During the years 1824-5, he contributed occasional scientific papers to the Albany Institute. his especial subjects being chemistry and mechanics, and was appointed assistant engineer on the survey instituted for a road hetween Lake Erie and the Hudson. In the spring of 1826 he was elected teacher of mathematics and natural philosoplsy in the Albany Acadeny and in the latter part of 1827 read a very important paper before the Albany Institute, On Some Nodifications of the Electro-Nagnetic Apparatus.' He made his first public demonstration of his magnetic discoveries in exhibiting before the Institute small electro-magnets wound with silk-covered wire. These magnets had a greatly multiplied lifting power over any that had yet been known. In this lay the essential point of his first discovery, for he was undoubtedly the earliest physicist to adopt insulated or silk-covered wire for the magnetic coil, and to employ spool winding for the limb of the magnet. He demonstrated also for the first time, by a very intelligent experiment, the difference of action in a quantity magnet excited by a quantity battery of a single pair, and an intensity magnet with a long fine wire coil excited by an intensity battery of many elements, having their resistances suitably proportioned. The first of these two forms was not capable of being employed for telegraphic purposes, while the intensity nuagnets with their attachments could be so applied. The quantity magnets which he exhibited calused a good deal of excitement in the scientific world. Their attractive power was at that time quite umprecedented. One of them had sufficient power to raise as much as 3.500 pounds.

Henry was the first to show that iron could be magnetized at a clistance, and to invent a suitable combination of magnet and battery for the production of this result. In 1831 he made this experimental demonstration. He suspended a mile of insulated copper wire round a chamber in the Academy, and so placed a bell at one extremity of it that it was struck by the polarized
armature of an intensity battery connected with the other extremity. This was the earliest example of the magnetic telegraph, for the galvanometer or needle had been the principle on which all preceding experiments had been conducted. It was not long after that he invented a machine, and finally constructed it. which is recognized as the first electro-magnetic engine with automatic pole-changer. In 1832 after repeated experiments he discovered how to give greater intensity to a magnetic discharge by the induction of a current on itself in a long spiral or helical wire. These progressive steps in magnetic science gained for him an extended reputation, and soon after the publication of the last experiment in Silliman's 'American Journal oi Science' Henry was elected proiessor of natural philosophy in Princeton College. The discovery of the spiral or helical conductor suggested to him further experiments, and his extended researches and their results were announced by him in a paper published 1834 , under the title 'On the Intluence of a Spiral Conductor in Increasing the Intensity of Electricity from a Galvanic Arrangement of a Single Pair.' He supplemented these discoveries by many others, and by his experiments produced electrical combinations which were undoubtedly precursors of later relay and receiving magnets. while his demonstration of the conditions and range of induction irom electrical currents. and the successive orders of induction in the passage of frictional electricity, as well as his discovery of the oscillatory naiure of electricity. paved the way for that great scientific and practical resolution which was to consummate by the genius of Morse and his conirères.

In 18,46 Henry was called to a new sphere of activity, in which he exhibited his usual zeal and enthusiasm. The Smithsonian Institution had just come into existence, and during the formative period of the great muscum, he was appointed to be its secretary. The office did not so iar engross his attention as to make him neglectiul oi practical work in science. He found time to investigate the acoustics of public buildings, meteorological changes of the atmosphere and methods for telegrapluic transmission of meteorological observation from all points of the continent. From IS68 up to his death le was president of the National Academy of Sciences, and of the Plailosophical Society of Washington from 187 I . When it was first organized.

Henry. Mathew, English Nonennformist clergyman: h. Broadoak. Flintshire. Wales. is Oct. I 162 : d. Nantwich. Cheshire. 22 June 1-14. In iGG6. having qualified himself ior the mini-try: he hegan to preach: and in the succeeding year he was settled as pastor to a congregation at Chester, and enntinued to discharge the duties of his rffice for 25 years. when he removed to Hackney. London, where his clerical labors were still more extended. Becides his greatest work. 'Expositions nn the Bible' (I7IO). he was the author of 'A Discourec on Schism': 'A Seripture Catechism': 'Family Hymns': etc.

Henry. Patrick, American oratnr and statesman: b. 20 May 8736 , in Hanover County: Ta. Within a few iniles of the birthnlace of Henry Clay: d 6 June rog9. in Charlotte Commis, Va. His father. John Henry was a well-cducated Scotcloman. presiding judae of
the Hanover court. He was a cousin of William Robertson, author of the 'History of the Emperor Charles the Fifth.' Another relative of his was Henty Brougham, the radical Scotch writer. who became lord chancellor of England. Of Patrick Henry"s mother, "a portly, handsome dame," a pleasing portrait is leit us by William Byrd, of Westover, the genial litterateur of colonial Virginia.

Poor as were the schools in his neighborhood, Patrick seems to have profited little by them. From his uncle, the rector of the parish. he gained a rudimentary knowledge of the classics and mathematics. He was a frolicsome and vagrant youth. iond of hunting and frontier life in general. At is years oi age. and without money or employment, he married Sarah Shelton, a poor girl of the neighborhood. He kept a store and failed; he tried farming, and failed; then he returned to the store, only to fail again. He now turned to law, and spent a few weeks in reading upon that subject. Having received his license, he began to practise in his native county, while he assisted in the tavern kept by his father-in-law.

In $1-63$ Henry singled himself out as a born orator by his impassioned plea in "The Parsons' Cause." The king had annulled a statute of the Virginia burgesses. whicl compelled the clergy to accept the depreciated currency of the colony in payment of their annual salaries, in lieu of 16.000 pounds of tobacco as theretofore, a product which was then selling at a high price. Henry startled the courr and the countryside oy asserting "that a king, by annuling or disallowing act of so salutary a nature, from being the father of his people. degencrates into a tyrant and forfeits all right to his subjects' obedience." Henty's utterance on this occasion was in keeping with the bold address. two years previous. of James Otis, who declared that the turany lurking in general search warrants had "cost one king of England his head and another his throne."

Henry became a member of the Honse of Burgesses in May 1765 . just at the time of the arrival of the Stamp Act. Unabashed by his rustic appearance and inexperience in legislative matters. he brought forward a series of resolutions to the effect "that the gencral assembly of this colony have the only sole and exclusive right and power to lay taxes." In the bloody debate which followed he was "opposed by Randolph. Bland. Pendleton. Nicholas, Wiythe, and all the old members. Whose influence in the House till then had been unbroken," so we Jearn iron Jefferson, then a college student, who was present at the session of the burgesses. In pleading the injustice of the Stamp Act. Henry used the famous words: "Caesar had his Brutus: Charles the First, his Cromwell : and George the Third ['Treason!' shouted the Speaker. 'Treason,' 'treason,' echoed others. After a mnment's pause. the orator completed the interrupted sentence in a manner that showed no less defiance than adroitness] and George the Third may profit hy their example. If this be treason. make the most of it." As the royal governor of Ilassachuscts wrote the ministry: "The Virsinia reonlve proved an alarm bell to the disaftected.' By his imtrepidity, his oratory, and his intuition, at once patriotic and prophetic. Patrick Henry became henceforth the protag-

onist of the colonial cause, sharing with Otis, Gadsden, and Samucl Adams the high honor of launching the Anerican Revolution.

Henry represented Virginia in the first colonial congress, which met at Phitadelphia 5 Sept. 1774, when he gave final expression to the feeling of nationality: "The distinctions between Virginians, Pemnsylvanians, Ncw Yorkers, and New Englanders are mo more. I am not a Virginian, but an American." With this speech compare Christopher Gadsclen's remark nine years before at the Stamp Act congress in New York: "There ouglit to be no New England men, no New Yorkers, known on the continent, but all of us Americans."

On 23 March 1755 , Henry, as a member of the second Virginia convention, which met in St. John's Church, Richmond, moved that the colony be armed, and again electrified the patriots with his eloquence in support of this radical measure. "Gentlemen," said he, "may cry peace, peace but there is no peace. The war is actually begun! The next gale that sweeps from the North will bring to our ears the clash of resounding arms! Our brethren are already in the field! Is life so dear, or peace so sweet, as to be purchased at the price of chains and slavery? Forbid it, Almighty God! I know not what course others may take; but as for me, give me liberty, or give me death." Col. Edward Carrington, listening at a window in the east end of the church, was so transported by the eloquence of Henry, that he exclaimed, "Let me be buried at this spot," a wish that was respected at his death in 1810. Such was the universal testimony of those present as to the overmastering effect of Henry's speech at that crisis.

On 5 Aug. 1775, Henry was made com-mander-in-chief of the Virginia troops. In May of that year he had made a dash against Lord Dunmore, on account of the governor's secret seizure of some powder belonging to the colony. Deeming himself slighted by the Committee of Public Safety, which acted during the interim as the executive of Virginia, Henry, with some heat, threw up his military commission, 28 Feb. 1776.

Fortunate was it for the colonial cause that Henry was again at liberty to exert lis forensic powers in the councils of the State. Representing Hanover County in the convention which met at Williamsburg 6 May 156 , he contributed greatly to the constructive work of that celebrated body, notably the motion for a declaration of American independence and the framing of a constitution for Virginia. Among the convention papers in the State Library at Richmond were found threc endorsed by the clerk, "Rough Resolutions. Independence." William Wirt Henry, after mintute comparison of the handwriting of these, concluded that the first was penned by Patrick Henry; the secoud by Meriwether Smith; and the third by Edmund Pendleton: and that the resolution actually introduced by Nelson was the one written by Henry. On the other hand, Edmund Randolph, who was a member of the convention, says that the resolution declaring for indenendence "was drawn by Pendleton, was offered in convention hy Nelson, and was advocated on the floor by Henry."

On 29 June 1776, the natal day of the commonwealth of Virginia, Patrick Henry was elected governor, took the oath of office 5 July,
and served for three annual terms in succession. As governor he commissioncd, on 2 Jan. 1778, Col. George Rugers Clark to enlist seven companies of men for the cxpedition against the Britisla garrisons in the Northwest Territory. After leaving the executive office. Henry settled in Henry County, on an estate of about 10,000 acres, called Leatherwood, where loe lived until be became governor for the fourth time, on 30 Nov. 1784. In the Virginia convention of 1788 , which was called to ratify the Constitntion of the United States. Henry led the opposition on the ground that such a federal government encroached too far upon the rights of the several States. While the arguments of Madison and the influence of Washington happily prevailcd on that critical occasion, Henry was a chief agent in securing the amendments which constitute a bill of rights in the national instrument. His objection to the Constitution was stated concisely in his first speech hefore the convention: "That this is a consolidated government is demonstrably clear; and the danger of such a government is, to my mind, very striking. Who anthorized them (the framers) to speak the language of we the people, instead of ace the States? States are the characteristics and the soul of a confederation. If the States be not the agents of this compact, it must be one great, consolidated, national government of the people of all the States." Such was his clear discernment of the real nature of the government established by the Constitution of the United States.
S. C. Mitchell.

Professor of History, Richmond College, Richmond, I^{\prime} a.
Henry, William Arnon, American educator: b. Norwalk, Ohio, I6 Junc, 1850 . He obtained his early edncation in the Holbrook Normal School at Lehamon, Ohin: studied at Ohin Wesleyan University from $186 \%-9$ and at Corncll University from $1876-80$, receiving the degree of B. S. Agr. He was appointed professor of botany and agriculture in the University of Wisconsin in 188i, professor of agriculture in 1883 , director of the agricultural experiment station in 1887, and since 1891 has been dean of Collcge of Agriculture in that umiversity. He has had charge, from the beginning, of the agricultural college and experimental station of the University of Wisconsin, which now has buildings valued at $\$ 300,000$ and 450 pupils. He has written: 'Rush's Special Report on Diseases of Cattle and Cattle Feeding' (Part 1I. 1892) : 'Handbook on Northern TVisconsin') (1895); 'Feeds and Feeding' (ISo8), ctc.

Henry, William Wirt, American historian and lawer: b. Red Hill, Ta.. It Feh. 1831: d. 5 Dec. 1000. He was educated at the University of Virginia, and took up the practice of law, later being elected to the legislature for four terms. He preferred, however, historical rescarch to his law practice, and spent much of his tinue in that ptrsuit. He was president of the American Historical Association and of the Virginia ITistorical Society: ITc is chicfly moted for his 'Tife, Correspondence, and Specches of Patrick Henry) (3 vols $180 n-1$).

Henry College, a coedncational institution, founded in I802. in Campbell. Texas. At the close of 1002 there werc conncted with the school 10 professors and instructors, with 150
students in attendance. The estimated value of the grounds and buildings is $\$ 125,000$.

Henry Documents, 26 leiters of iSog between John Henry and several British officials - Sir James H. Craig. governor of Brizish North America, his secretary Ryland, and the English ioreign secretary Lord Liverpool. with related papers. Tempted by the hostility of the Sew England Federalists to the Embargo (q.r.), and the threats of secession by the extremists. Craig sent the adventurer Henry in January 1809 to sound the people as to reunion with Great Britain. Henry remained till June. and sent back the most extravagant reports of the secession feeling, but the British ministry not paying him as he thought fitting, he sold the copies of the letters and other documents to the United States government in Febrnary iStz for $\$_{50,000 \text {. Madison used them io hurry }}$ forward the War of 1812 , by sending them to Congress on March 9 with a speciai message, in which he accused Great Britain oi attempting to dismember the C-nion by intrigue and annex the North to itseli. So far as the New Englanders were concerned. however, the papers contained rothing incriminatory of secession movenents.

Henry Phipps Institute, The. for the study, treatment. and prevention of tubercnlosis. was founded at Philadelphia. I Feb. 1903 by Henry Phipps. The incorporators were Henry Phipps. George E. Gordon. Lawrence F. Flick, Xliss Amy Phipps, and S. P. Harbison. The scientific work of the Institute is in the hands of a medical staff. consisting of a medical director, an assistant medical director, clinicians, bacteriologists, and pathologists. In the Institute"s organization there are a number of paid fellowships open to any member of the stafi and a number of honorary fellowships open to any person throughout the world who has done distinguished work in the cause of the study. treatment. or prevention of tuberculosis. The eleemosynary work of the Institute contemplated is the care oi the consumptive poor in their homes, the care and treatment of consumptives in hospital beds, and the care and trearment of consumptives in a sanatorium. Consumptives in their homes are to be cared for and treated through a dispensary. The patients come to the dispensary where they are prescribed for and given medicines and supplies for the prevention of tuberculosis. They are instructed in preventise measures, and during the intervals between their visits to the dispensary are supervised in the carrying out of these instructions by a visitor from the dispensary. The consumptive who is entirely destitute and who cannot be cared for in his home even with such assistance as can be given is brought into the hospital and treated as a ward of the Institutc. The scientific work of the Institute contemplated is education in presentive measures, study of the disease, divermination of knowledge ahout the disease among physicians. stimulati in of effort on the part if seientific men throughout the world, and encouragement of workers in the cause. This work is to be pursued through lecture courses, laboratory and clinical experiments, distribution of literature organization of the w:rkers in the cause of preventiun of tuberculnsis, and public receptions in persnns who have done distinguished work. The Institutc will scek to aid
all workers in the crusade against tuberculosis. It will act as a bureau of information and with this end in view will index literature on the subject oi tuberculosis and collect objects of various kinds which have a bearing upon the prevention or treatment of the disease. The Institute has inaugurated an international course of lectures by the foremost workers in the crusade against tuberculosis. One lecture a month is given during the fall and winter months. The Institute will publish ammally a report of its work which will be distributed gratuitously to the libraries of the world.

Lainresce F. Flick,

Of the Heury Phipps Institute.

Henschel, Georg, gā-ōrg' hĕn'shĕl, German composer and concert singer: b. Breslau, If Feb. I850. He began his musical education under the pianist Moscheles, the contrapuntist Richter, and the rocal teacher Gosse in the Conservatory at Leipsic. In I8;o he sang with great success at the Beethoven celebration at Teimar, and toward the end of the same year went to Berlin to complete his studies in musical science and rocalization. He met with a brilliant reception in his professional tour through Cologne. Düsseldorf. and the lower Rhine provinces. and his iame spread over all Germany. Austria. Holland. and Russia (15 ;-4- -). He was received with immense aplause in London, and crossing the Atlantic was appointed musical director in Boston (1883-5): when he returned to London and became teacher of singing in the Royal College of Music. He wrote among his numerous compositions many songs and duets, such as 'WFanderlieder': 'Duette in Kanonform,' 'Serbisches Liederspiel': etc. He married in IESr Lilian Jane Bailey (d. Igoi) a well known American singer.

Hens'ley, Sophia Almon, American lecinter and author: b. Nova Scotia 3r May is66. She studied in England and Paris. and moved to Sew Lork in ISSg. She has heen interested in the study of social problems and actively identified with the work of the "Mlother's Congress." She has served as president of the Socicty for the Study of Life in New lork city and as vice-president of the New York City Mothers Club, and lectures irequently: Slie is author of 'Tloman's Love-Letters' and 'Souls.'

Hen'son, Herbert Hensley, English Anglican clergyman: b. London S Nov. 1863. He was graduated at Oxford and elected fellow of All Souls College in that miversity iSS. He was head of the Oxford House at Bethnal Green. ISS- 8 . and since 1900 has been canon of Westminster Abbey and rector of St. Nargaret's. He has attracted wide attention as a fresh and poweriul preacher by his utterances on national topics of social and political interest. and amnng his published works may be noted: 'Light and Leaven' (tion): 'Cross Bench \iews of Current Church Questions' (1002).

Henson, Josiah, American negro slave and clergyman: b. Port Tobacco, Md., 1 ت尺-; d. tes. His carly life was one of great hardship. but he finally escaped to Canada (1828), where he becane a Methodist clermman with a charge at Dreiden, Bothwell County, Ontario. He also
lectured in the United States. Upon the story of his slave eareer was hased the character of Uncle Tom in Harriet Beecher Stowe's 'Unele Tom's Cabin' (1852).

Henty, George Alfred, English writer of novels and stories for boys: b. Trumpington, Cambridgeshire, 8 Dec. 1832; d. Weymouth, Dorsetshire, 16 Nov. Igoz. He was educated at Westminster and Cambridge; he went to the Crimea during the war with Russia, and served there in the parveyor's department of the army. Soon afterward he went to Italy to organize the hospitals of the Italian legion. As special correspondent of the Standard newspaper he went through the Anstro-Italian, Franco-German, Turco-Servian. Abyssinian, and Ashanti campaigns, besides accompanying Garibaldi in the Tyrol. He described two of these campaigns in the works (The March to Magdala' (iS68) and 'The March to Coomassie' (1874). He wrote eight norels, among which are: 'A NVoman of the Commune' (I895); 'The Queen's Cup' (1897) : and 'Colonel Thorndyke's Secret) (1808): but he is much more widely known as the author of a large number of stimulating stories of adventure for boys, many of them based on famous historical events. Among these are: 'The loung FrancTireurs' (IS-I), a story of the Franco-German war: 'The loung Buglers,' a tale of the Peninsular TVar (1879); 'In Times of Peril,' a tale of India (ISSI); "Under Drake's Flag' (1882): 'The Lion of the North' (1885), a story of Gustavus Adolphus: 'With Lee in Virginia' (ISS9): 'By Pike and Dyke' (ISS9). a story of the Duteh W'ar of Independence: 'In the Irish Brigade' (1000) ; and 'Out with Garihaldi' (1900).

Hepat'ica, a genus of plants, the liverworts, of the crowfoot order (Ranumalacea). closely related to Ancmone. The best-known species is H. Incpatica, found wild throughout North America as well as Europe in woods, and widely cultivated for its attractive and fragrant star-like blue, white, or purple-red flowers. which open in early spring. it is, indeed, the earliest of American spring flowers. Sometimes even under the snow its buds, well wrapped up in a warm down, lie upon the broad, furry liver-shaped leaves, awaiting the first warnth to induce them to open. In the southern Alleghanies its leaves are dried and steeped into a medicinal tea. A more sonthern species is H. acufa.

Hepburn vs. Griswold, I869: the great case in which the Supreme Court of the United States decided that the government had no power to make its own notes legal tender: reversed through a change in the constitution of the court in Knox \approx : Lee and Iuilliard \approx : Greenman. Mrs. Hephurn of Kentucky had given Henry Griswold a note for 11,250 "dollars." payable 20 Feb. I862: it was not paid when due, and five days subsequently the gorernment passed the act anthorizing $\$ 130,000,000$ in notes (see Greenbicks), receivable for public and private debts. In 1864 Griswold brought suit in the chancery court of Louisville for principal and interest: $\$ 12.270$ in greenbacks was tendered in settlement, hut refused, on the claim that the act did not extend to dehts contracted before its passage. The court decided
for Mrs. Hepburn Griswoh carned the case to the Kentucky conrt of appeals, which reversed the decision: Wrs. Wepburn carred it to the Supreme Court, which on aecount of the far-reaching importance of the case, and at the request of the attorney-general, laid it over till 1868, when it was reargued, and sinally decided in the December werms ision. Chief Justice Chase, for five justices againat three, decided that the act extended to all dehts, contracted as well before as after its prassage, and that the question therefore must be whether the government had the power to make anything but coin a legal tender; that it conld not do so, under the Constitution, because at the time of its adoption $n 10$ money but gold and silver was recognized: that as paper money never rose above coin and almost always fell below it, each particle of depreciation was so much abstracted from the value understood by the parties to the contract, and was therefore an unlawful deprivation of private property; that the power of Congress to use "necessary means" to carry out its power of making war did not convey this right, beeause this was no more a special means of carrying out war powers than any other powers, and would enalle it to issuse bills of credit and make them legal tender just as much in the post-office business or the patent business as the war. The minority admitted that it was so impairing the obligation of contracts, but asserted that Congress was given the power to do so: and this is now law. See Leg.il-Tevder Cases.

Hephæstus, her-féstus, a god of the ancient Greeks, identified by the Romans with their Vulcanus. He presided over fire, and was the patron of all artists who worked in iron and metals. He was the son of Zeus (Jupiter) and Hera (Juno). Homer says that his mother was so disgusted with the deformities of her son. that she threw him into the sea as sonn as born, where lie remained for nine years. He afterward returned, but for taking the part of his mother on one occasion against Zens was thrown down by the latter a sceond time. He was a whole day in passing from heaven to earth. and fell in the island of Lemnos. He broke his leg by the fall, and ever after remained lame of one foot. Ile fixed his residence in Lemnos, where he built himserf a palace, and raised forges to work metals. The Cyclopes of Sicily were his ministers and attendants; and with him they fabricated not only the thunderbolts of Zeus. but also arms for the gods and the most celebrated herocs. His forges were supposed to be under Mount Etina. in the island of Sicily, as well as in every part of the earth where there were voleances. Aplurodite (Venus) was the wife of 1 Iephastus. Her infidelity is well known. Her amours with Ares (.llars) were discovered ly Pluebus, and exposed to the gods by her own husband. He appears on some monuments with a long beard. disheveled hair, half maked, and a small round eap on his head. while he holds a hammer and pincers in liis hand.

Hep'tarchy, seven Anglo-Saxon kingdoms into which Fngland was at one time or ather supposed to be divided. although the kingdoms were founded at different times, and at no one time were they all independent inonarchies together. In 8_{27} King Eghert of Wessex united
them into one kingdom, and claimed the title King of England. See Exglayd.

Hep tasophs, Improved Order of, a benefit society, organized in $18-8$ as an independent branch of the Order of Heptasophs (q.r.). At the time of secession the Heptasophs had not adopted the bencit system. The constitution and ceremonies are identical with those oi the parent order. At the close of t902 it had 722 conclaves, a membership oi $32 . S 25$, and since its organization had disbursed in benefits nearly seven million dollars

Heptasophs, Order of, a benevolent society in the United States founded in New Orleans 1852 by Alexander Leonard Saunders, and other Freemasons, originally called "The Seven Wise Men." The ritual of its ceremonial is elaborate: the membership of each chapter is seven, or a multiple of that number. In $18 / 2$ the adoption of a death benefit system was agitated, and the discussion led to the secession in 18-8 of the Zeta Conclave of Baltimore. which organized the Improved Order of Heptasophs (q.v.). In 1880 the Order of Heptasophs adopted the benefit system. Members must be white males and proiess a belief in the Supreme Being. Their number in is Siates amounts to about 4.000 .

Hep'worth, George Hughes, American clergyman, journalist. and author: b. Bosion 4 Feb. 1833: d. - June 1902. He was brought up a Unitarian, and after leaving the Harvard Divinity School held Unitarian pastorates at Nantucket. Boston. and New lork. He advocated preaching in theatres and conducted theaire meetings in various cities, but being not wholly at ease in the Unitarian denomination, eniered the Congregationalist ministry in 18,2 ? Hc subsequently quitted the ministry and became attached to the editorial stafif of the New lork Herold. He published: 'The Whip. Hoe, and Sword' (1864): 'The Criminal, the Crime. the Penaliy' (1865): 'Starboard and Port' (18,6). record of a yacht cruise: a book entitled '! ! "': (Rocks and Shoals': 'Brown Studies': ‘Hiram Golf's Religion': 'They Met in Heaven'; 'Through Armenia on Horeeback' (1899). Consult S. H. Ward, 'George H. Hepworth: the Story of his Life) (1903).

Hera, hē'rā or -rē. a mytbological goddess of the Greek pantheon, identified by the Romans with their Juno, the sister and wife of Zeus (Jupiter), and daughter of Kronos (Saturn) and Rhea (Cybele). The poets represent Zeus as a faithless husband, and Hera as a riolent. jealous and sindictive wife. She was worshipped in all Greece, but her principal seats were at Argos and at Samos. The companions of Hera were the Graces and Hours. Iris. a personification of the rainborw, which seems to stretch from heaven to earth, was her messencer. Her usual attribute is a royal diadem. The temples built in her honor were called Herea. The principal one was at Argos, which city was considered to be cspecially under her protection. She is renresented by Homer as taking the part of the Grecks in the Trojan war, beine actuated by revence for the slisht passed on her hy the Troian Paris, who gave the golden appie irseribed "To the Fairest" not to her. but to Aphrodite.

Her'acles. See Hercules.

Heracli'tus, Greek philosopher: b. Ephesus, who flourished about 513 B.C. He traveled in different countries. particulatly in Airica. On his return to Ephesus he was offered the chief magistracy, but retused it. He leit a work on nature. in which he treats also of religion and politics. Some fragments only of this work remain. He is considered as belonging generally to the lonic school oi philosophers. though he differed from it in important particulars. He considered fire as the first principle of all things. describing it as an ethereal substance. "self-kindled and self-extinguished." from which the world is evolved (not made) by a natural operation. It is also a rational principle. and the source of the human soul. Phenomena exist in a constant state of flux, always tending to assume new forms, and finally returning again to their source.

Heraclius, hēr-a-kli'ūs. Roman emperor of the East, from 610 to 641 : b. Cappadocia about 575 A.D. He was the son of Heraclius, exarch of Airica, who had gained great renown by his victories over the Persians, the elder Heraclius of the East was applied to by a poweriul body of insurgents to claim the throne for himseli. This he declined. but sent his son Heraclius to do so. Heraclius the younger therefore ascended the throne, and though he undoubtedly possessed considerable talents, the Roman Empire in the East mas tottering to its fall. and nothing he was able to do could save it. Beiore his death Mohammed had carried his victorious arms on every side, and Syria. Palestine. Mesopotamia, and Esypt had iallen under the cominion of the caliphs. He was permitted, however, to die in peace, and to transmit the succession to his son, who mounted the throne under the title oi Constantine III.

Heraldry is the whole group oi ceremonial duties discharged by the heralds of a court, an army, a great noble, or the like, with the assistance of their pursuivants, and under the direction of the Earl Marshal. King-at-Arms, the College of Arms. or other chiei of the confraternity. These duties are generally divisible into heraldry proper, or the business of regulating ceremonial occasions such as coronations, marriages among princes. proclamations of important events, and the like: and armory; or the art or quasi-science of armorial bearings. In the first of these divisions but little remains of any interest at the present day, for only in Great Britain is the herald of any consequence. There, however, he still has some direction, as at the eventul proclamation of 1 Jan . 18%, when the Queen of Great Britain assumed the title of Empress of India. In the second branch of the subject. the order and marshaling of arms. the Germans are perhaps at the head of modern writers, though the English and Scottish treatises on the subject are more numerous and more widely used. The Germans' thoroughness of investigation has marked their treatment of this subject. which is eminently a branch of medieval and subsequent history serving to elucidate genealogical research.

Modern heraldry is no older than the tournamint of the Middle Ares. No linking evidences of the science occur during the Dark Azes, although badges and emblems are found
or: shields and helmets discovered in the ruins of antiquity, while in Biblical times the men of Isracl were directed to pitch their tents, every man by his own camp and standard with the ensigns of his father's house. Greek and Roman writers describe devices on shields and helmets; the golden cagle on the shields of the kings of Hedia; the standards and brilliantly colored shields horne by the ancient Germans in battle. The office of herald is as ancient as that of priesthood. Spartans, Greeks, and Romans had heralds, the Roman officers being divided into three classes: caduccatores, heralds of peace; fetiales, heralds of war and peace; and praconcs, judicial criers or messengers. The caduceator on a mission carried a wand of laurel or olive (caduccus, q.y.), as a symbol of his office and for his security. The fetiales are thought to have had a college of 20 members founded by Numa, who formulated the procedure and ceremonies connected with the declaration of wat and the making of treaties. The pracones were employed to proclaim matters of public interest to the people at religious ceremonies, in the comitia, at public sales, judicial trials, in the senate, on the publication of laws which they read, at funerals, at games, in the army when a gencral wished to address his men, at executions, and at all public meetings. The heralds of the Middle Ages had duties which in part resembled those of the heralds of antiquity. Thus, they carried messages of peace and of defiance, and yet even in the earlier years of feudality their office was an inferior one, they being replaced by ambassadors, diplomats almost in the modern sense, statesmen in whose suite the heralds and pursuivants went to the foreign court. So it was that the chief duty of the herald came to be the care of armories.

The first known tomb or monument with escutcheons in the period of modern history is stated to be the eleventh century tomb in the Church of St. Emmeran at Ratisbon, where are the bearings of Varmond, a count of Vasserburg; but this may be a later addition. Another very old specimen and certainly genume is the shield at Le Mans of Geoffrey Plantagenet, who died in 1150 . The use of coats of arms seems to have first become general in the 12th century. Rolls of arms in England are extant in the reigns of Henry III., Edward 1. and Edward II. Surcoats displayed armorial bearings in the reigu of Henry III. The Roll of Caerlaverock, a poem in Norman-Frencly, contains the names and armorial bearings of the knights and barons who attended Edward I. at the siege of the Castle of Cærlaverock. Dumfriesshire in 1300 , and exhibits heraldry already in a developed form. On coins also, no armorial ensigns are found till the 1 thth century; but then both coins and the seals of nobles and monasteries display them: the use of arms on the Great Seal of England was introduced by Richard I.

The study of armory became essential when at mediæval tonrnaments aged knights were appointed, whose duties were to act as arbiters, and to pass judgment on coats of arms and the right of knighthood. Whenever a new knight appeared at a tournament, the herald had to blasen-that is to blow - the trumpet, and woclaim and explain the bearing of his shield or coat of arms. Hence to blason (blasen)
came to mean, to describe and explain a display of bearings. The heralds were also the chroniclers of the times and were present on all occasions of public ceremony. In France the first herald - roi-d'armes - was crowned and consecrated with religious ceremonies, and was called Hontjoic. from the war-cry of the French royal armies. The heralds were united in associations, and their dutties formed a branch of science which was communicated only to the inembers. If any person pretended to the character of a herald, who on cxamination was found not to belong to the corporation, he was driven away with insults and frequently with violence. The heralds in modern courts are masters of ceremonies. In England there are now three kings at arms; the bighest is the Garter king at arms; the second, known as Clarencicux, is for the southern counties; the third, styled Norroy, for the northern provinces. These three kings at arms with six subordinate heralds and four pursuivants form under the presidency of the Earl Marshal, always the Duke of Norfolk, the herald's college or herald's office, established in 1340. The use of arms hy private persons in the British Isles was forbidden by proclamation in the reign of Henry V. All persons who had not borne arms at Agincourt were prohibited from assuming them unless by hereditary descent, or with the sanction of the constituted authorities. Periodical circuits called visitations were held afterwards by the provincial heralds to take cognizance of the arms. pedigrees, and marriage of such as were entitled to the use of armorial bearings. These visitations continued till about the end of the 17 th century; their records, many of which are preserved in the British Museum and elsewhere, contain much genealogical information and are still consulted for evidence of the hereditary right to bear arms.

The practice of blazoning the arms is frequently referred to in the poetry of the Troubadours of the 12 th and 13 th centuries. Those knights who asserted a right to appear at tournaments did so by the blazoning of their arms, and from the Germans this custom was transmitted to the Frencl, for tournaments werc held in Germany before they became general in France. The French, however, carried to far greater perfection the tournament, and the blazon of heraldry connected with it, as they did the whole system of chivalry; the French language prevailing at the court of England after the Norman Conquest, pure French expressions came to be preserved in British heraldry. German heraldry, on the contrary, contains almost pure German expressions.

The whole display of any person's arms is called an achievement, also spelled atchievement. Only the escutchcon, however, is of vital importance. This is the broad surface upon which the bearings are charged. It is always assumed to be a shield in the case of a man not an ecclesiastic: but churchmen's arms are charged upon an oval or other architectural form, a sort of cartouche, and women's hearings are charged upon a lozenge set vertically. The arms of hushand and wife, however, may be charged on a shield divided vertically in the middle, and are then said to be dimidiated or impaled: thus we might say that such an escutcheon bears the arms of Smith impaling the arms of Jones - Smith and Jones standing
for the two spouses．It is rare to charge the wite＇s arms unless she was an heiress，that is to say，the owner of real estate in her own right．These rules，however，are those of Great Britain：they differ widely in other countries

A single escutcheon may be complete with one simple division．Thus，a horizontal line divides the chief or top of the field at one third of its height from the remainder of the field．If that chief is，say，of gold．while the rest of the field is blue，that by itself makes a very respectable and honorable her－ aldic statement．The chief is one of the honorable ordinaries，and others are almost as simple．They are the pale，the vertical stripe in the middle of the shield and one third of its width：the iess，a horizontal stripe：the bend，which goes diagonally from the left hand upper corner to the right hand lower part． stopping against the rounded border of the shield：the bend sinister，which is a bend turned the other way（bui see below，dexter and sinister）：the cheyron，which is a pair of stripes meeting in the middle，forming a figure like the letter A without the cross－bar：the cross，the two arms of which are usually of one quarter the width of the escutcheon：and the saltire， which is a diagonal cross．A shield upon which there is any one of these honorable ordinaries and nothing else，is most respectable．In gen－ eral the simpler shields are the older：thus the old family Erskine，with a black pale on a silver field，or the family of Beauchamp with a gold fess on a red field，occupy the most enviable position in having such a plain escutcheon． There are ordinaries of the second rank．such as the quarter or canton，the orle，and besides these there are very many bearings in common use．especially those which are diminutives of the honorable ordinaries．Thus，the pallett is a smaller pale，and the shield of Aragon has four red palletts side by side on a gold ground． These again may be used to charge upon the greater ordinaries．Thus，the escutcheon of Loreyn bears a blue bend sinister on a gold field and the bend itseli is charged with three golden six－pointed stars．That also is a simple and presumably ancient armory．

In deseribing the escutcheon the side on the left of the spectator is callec the dexter and that on his right is called the sinister side：that is because the shield．when carried on the arm with the man－at－arms behind it would be to lim so disposed．The escutcheon is supposed to be divided into a certain number of imaginary pnint o or divisions for the fixing and placing of the bearings when they are described in words．When there are nine points，the three at the top following each other from the dexter to the sinister side are dexter chief，middle chief and sinister chief，and a similar nomen－ clature is used throughout．A modern and fuller arrangement is to give eleven points，the honor point interposed letween the top hori－ zontal row and the middle one：and the nom－ hril pnint spaced between the middle row and the lowermost nne．A small bearine as a mullet （a five－pointed star）may he located as being in the dexter chief or the like

The main busines of armory is to present simple patches of bright colors which can be recombized at a great distance．The tinctures used in Great Britain are nine－two metals．
or and argent（gold and silver）：five colors， gules（red）；azure（blue），sable（black），e＇ers （green）．furpure（purple）：though this last is very rare and green is not very common．There are also two furs，which are represented by curious conventional patterns supposed to repre－ sent the patchwork of small skins sewed to－ gether which make a garment or the lining of a garment．These furs are ermine and vair，but each has many curious variations known by dif－ ferent names．Thus＂ermine＂shows black tails on a white field，or in modern times a flower－ like pattern suggested by the real ermine；but erminois has the same pattern in black on a gold field．

Dimidiation and impaling，mentioned above， are varieties of the great general subject of marshalling．The more elaborate form of mar－ shalling is to divide an escutcheon into quarters． Thus，the son of a married pair who have borne their arms impaled，may divide the escutcheon into four quarters and will put his father＇s arms 011 the first and fourth quarters（dexter chief and sinister base）and those of his mother on the second and third quarters．This quartering may be quartered again，and so on indefinitely： Thus，the escutcheon of the Prince of Wales dur－ ing the reign of Queen Victoria（oi him who is now King Edward VII．）is too elaborate to de－ scribe fully here．This is because his bearings as Duke of Rothsay．Lord of the Isles．Duke of Comwall．Baron Renirew，and the like are all charged together，so that the number of small subdivisions is remarkable．Now，there are dif－ ferent ways of charging these．Those which his escutcheon must bear are the royal arms of England differenced（see differencing above） with the label of the heir apparent．which is a label of three points argent，and this escutcheon will bear in the middle a small shield with the arms of Saxony．Even in this the inescutcheon is out of place when we are considering his arms as heir to the crown．It is held by many that the Prince of Wales should display two shields：the first as simple as possible，with only the quarters for England．Scotland，and Ireland：while the second should display all his primary and secondary arms，including those of his wife，who，in the case assumed above，was the Princess Alexandra of Denmark．Again，a system is adopted by which a large shield bears those royal arms upon it，an inescutcheon with the secondary arms of Cornwall，Rothsay．Ches－ ter．Dublin，Lordship of the Isles，Carrick． Renfrew，IVales as a principality，and over all a small escutcheon of pretense charged with the arms of Saxony for Saxe－Coburg－Gotha．But ever these do not include the arms of the Princess，his wife，which should rightly occupy the sinister side of the shield，while all the achievement described above should be charged upnon the dexter side．It is cvident，then，that a person whose family has formed many dig－ nified alliances may have an indefinitely great number of quarterings．But let us take the escutcheon of a king of the House of Hanover． as George IV．，and we shall find that the four n⿴囗十atere of the slyicld are filled in this way： the firmt quarter（dexter ehief）in gules．bear－ ing three lions passant gardant，and the fourth quatter（sinister base）exactly the same． These twn quarters are England．The second nuarter（simister chief）is Scotland，a field or

HERALDRY

with a lion rompant gules, framed in a bordure flur-de-liséc. also gules. The third quarter (dexter base) is Ireland, the Irish harp or on a ground azure. Upon this shield is set an inescutcheon, divided in a curious way into three parts, for Hanover, and having above it a royal crown. Upon this inescutcheon is still a sccond inescutcheon, very small, simply gules with a bearing or, which is supposed to stand for the imperial crown of Charlemagne. this in commemoration of the electoral dignity of the sovereign of Hanover, who was called the elector intil after the Napoleonic wars. It is a rule never to place metal upon metal or color upon color. Thuss, if your shield is argent, any bearing put upon it must be in one of the colors-never in or. Put there is one curions exception: that of the Latin Kingdon of Jerusalem (which lasted only from 1099 to 1187 , but which is perpetuated by the addition of its bearings to many private shields) was argent, a cross potent between four crosses or. This means a large gold cross, at the end of each arm of which is a cross head like the handle of a cruteh; and in the little corners left by the cross, four small Greek crosses: all these in gold on a silver ground.

No two persons should hear the same arms at the same time, therefore a distinction is made between the escutcheons of younger children. Even the heir may distinguish his bearings from his father's by a special mark, apart from the quartering described above. The term marks of cadency is used for these distinctions. Many different plans have been followed, and one Which has been much accepted is the label. This is a band with pendant strips hanging from it, usually three: and this is laid right upon the escutcheon near its head, and crosses it, partly concealing all the bearings. This label will be plain for the oldest son, differenced by a bearing like a crescent, or, a mullet for the second son, another bearing for the third son, and so on.

The practical functions of the herald developed into blazoning, listorifying, passing judgment on, and marshalling coats of arms. Blazoning is the methodical description of a bearing. In the first place the shield is deseribed according to its tinctures, figures and partitions. The inferior parts of an escutcheon are then blazoned - the helm with its insignia which are trumpet, wings and plumes, men and animals, or their members; then the wreath and its tinetures; after which the coronet, cap, cte. : finally the supporters, the mantle, the device and other secondary addenda. To historify in heraldry is to explain the history of a coat of arms, its origin, and the changes it has undergone. If the herald is to explain a hearing historically, he must show that this figure is the proper emblem of the family or country. He derives, for instance. from historical sources the proof that the double-headed eagle of the German king was first introduced in the beginning of the $14^{\text {th }}$ century under Albert I.. and that previously from the time of Otho II. the royal eagle had but one head: and he records the privilege given to wear that eagle on a private eseutcheon. So he shows that the three lcopards (lions passant gardant) in the Englisli arms were first derived in 1127 under Henry I. from the Norman honse. The marshalling of arms is especially important in the
preparation of new escutelienns. In this matter, the herald cither follows the orders of the sovereign, of he insents the idea, and makes the plan of the escutcheon according to his own judgment, or he eomposes a new escutcheon from several coats of arms.

When color is not used, a system of conventional expression is substituted; thus, argent is plain white, or is white with hlack dots, azure by horizontal black lines on white, gulis by vertical black lines, sable ly erossing black lines horizontal and vertical, wert hy lines from the dexter chief to the sinister base, furpure by lines from the sinister chief to the dexter base. The furs have peculiar patterns and surfaces of their own.

The crest is the highest part of an achievement of arms and is set above the escutcheon. It is called erest from the Latin word crista, which signifies a comb or tuft, such as many birds have upon their heads. Crests were anciently marks of honor, becanse they were worn only by heroes of valor and ligh rank that they might be the better distinguished in an engagement, and thereby rally their men if dispersed: or else they were of the nature of badges worn by all the followers of a chieftain and serving to identify them. They are at present considered as mere ornaments; and they may be assumed without authority; obviously they should not be used by women. Supporters are figures placed on each side of the shield and perhaps originated from the custom of pages in fantastic dresses guarding the achievements of arms of their masters while the latter were taking part in the exereises of the tournament. The scroll is an ornament usually: placed below the shield and supporters, containing a motto or short sentence alluding to the crest, or to the bearing or to the bearer's name. The motto had its origin in the war cries of knights, though in some instances mottoes were borne differing from the war cry of the wearer. The badge is not subject to heraldie rule, though it may be a part of the heraldic achievement, used separately. The porcupine was the badge of Louis XII. of France. and the salamander was chosen by Francis I. when he came to the throne, but neither of these was included in the escutcheon or worn as a erest. The reader may consult Palliser. 'Historical Derices, Badges and War Cries' (I.ondon I870). The most recent large and important book on heraldry in English is "The Art of Heraldry,' by Artlur Charles FoxDavies, which is based upon the Heraldischer Atlas of TH. G. Strohl. An excellent book for persons who are making a serions study of the matter is Berry's 'Eneyclopxdia Heraldiea,' in three volumes. n. d. (ahout is 20). The treatise on Veraldry by IVoodward and Burnett, two volumes, $180, y 2$ is a very full and up-to-date manual. Smaller looks are numerous. To name Englisly ones alone Cussan's 'Ilandhook of Iferaldry," Planche's 'The Pursuivant at Arms.' W゚orthy's 'Practical Heraldry') and especially Charles Poutell's two books, 'English leraldry." second edition, 1871, and the very remarkable essay" "Hleraldry. Hintorical and Popular,' third edition. 1864. now scarce. but nevertheless the most suggestive book that cat be found.

Rerised by Russelit. Stirgais.

Herat her-at. Aighanistan, a city in the northwest near the Heri-Rud River, about 370 miles west of Cabul. It is enclosed by a broad deep moai and an earthen mound surmounted by a loity wall of unburned brich. and deiended by a strong citadel. The caravansaries, public baths, and mosques are numerous. The trade, almost entirely in the hands of Hindus, is greatly favored by the situation of the town on the great thoroughiare irom India westward. Herat was long the capital of the empire founded by Tameriane, and was once much larger and more splendid than now. lis possession has been repeatedly contested among the peoples of central Asia. and, being regarded as a key to Afghanistan on the side nexi Persia and Russia it is of great importance politically. Its capture by Persia in is 56 led to a short war between Britain and Persia. Pop. about +5.000 .

Herault de Sechelles, sä'shèl, Marie Jean, French revolutionist: b. Parrs 1-co: d. There 1794 . He became imbued with the teachings of Diderot, but. after his election to the Legislative Assembly in 1/gi, being rather a philosopher than a revolutionist, he at frest paid lirtie attention to the radical element there. He soon, however. joined the extreme left, and later on supported Danton in the revolution of August and September t792. He was a deputy irom the department of Seine-et-Oise to the Convention of 1,92 and woted for the king's death. He became a member of the Committee of Public Satety, and as such gained the enmity of Robespierre, who claiming that he had betrayed certain secrets to the army of the Rhine, caused him to be arrested and executed. His best writings were published under the title "Vowage à Montbard' (last ed. Isgo).

Herb Paris, a poisonous plant of the lily family , Puris quadrio bis), resembling and related to white hellebore (q.w.). the toxic principle of which is a speciñ alhaloid called paradin.

Herbarium, a collection of dried plants. leaves, and iruit or seeds, arranged for preservation between sheets of bibulous paper: it is sometimes called hortus siccus, "dry garden," and is an indispensable adjunct to the apparatus of the systematic botanist, and microscopist. The most famous public herbariums are those of Kew, London: those of the British Museum and the London Linnzean Society: Those in Paris. Leyden, Berlin, and Vienna are also very full and complete.

In the L'nited States there are three herbaria both copious and of the first order. namely, the Gray Herbarium of Harvard University, the Herbarium of the New York Botanical Garden, and the United States Sational Herbarium at W"ashington. The first named contains a vast majority oi the older types of American plants. and the last contains the matcrial br ught together by the government collectors and many of the most important collections of the ear'y Government survey: There are also important collections at the Missouri Botanical Garden (Saint Louis) and the Field Columbian Museum (Chicago).

Herbart, Johann Friedrich, German ph losopher: b. Didenhurg + Nay 1-\%): 1. Guttineen. is Aug. i\&ft. His career is svielerce ni the fact that at least some men may live peaceiul
lives in stormy times. A student at Jena under Fichte, a turor in Switzerland, a docent at G. ttingen in the theory of education, and aiter that a protessor to the end at Gottingen. at Königsberg, and finally at Götringen again - that is the story of his life. But if he took no part in the revolutionary tumult: that anficted his country, he at least became a leader in her intellectual contests. His metaphysics stands at the opposite pole from that of Hegel. His psychology laid the foundations for modern psychophysics and experimental psychology. while his pedagogics is still the source of much oi our best educational theory and practice.

Merapinysics.-The tuming point between Herbart and Hegel lies in the use to be made of the principle of contradiction. Herbart took the orthodox stand that what contradicts itselt cannot be truly real or actual, whereas $\mathrm{He}-$ gel boldly incorporated the principle of contradiction as a stage in what might be called his dialectic of evolution, which follows the formula. thesis, antithesis, synthesis. The antithesis is the contradiction of the thesis, but only that the two may come together again in a bigher synthesis. A familiar illustration is the relation of (t) being. (2) non-being and (3) becoming. in which the second is thought as the contradiction of the first, while the third is conceived as a higher synthesis of the first two. since becoming has elements both of beins and of non-being. Herbart. however, refects such reasoning as insufficient. and demands that philosophy shall accep: the validity of the principle of contradiction. and honestly endeavor to remove the contradictions inherent in our everyday thought of the world. Such contradictions are encountered when we consider a thing and its attributes or the ego, which is both subject and object. or when we trace experience back to matter, in which the notions discrete and continuous are seen to be at variance. The effort to remove the contradictions leads Herbart back to a pre-Kamtian method of speculation. for he holds himself ready to aceept any sort oi a presupposition. rational, or irrational, which promises to resolve the difficulty, even though the principle of explanation should iorever resist demonstration as to its reality. In other words. we may assume anything to be true which clears up our thinking. But this is the method of Leibnitz, of Spinoza, and oi many others antecedent to the time of Kant (q.v.). The iumdamental form in which contradiction appears is that the simf'e is conceived as manifoid. For example, the thing we call water is at the same time thought of as heavy. fluid, colorless, having the quality of quenching both fire and thirst, and as being capable of transtormation from a liquid to a solid or to a vapor. The way to overcome this coneradiction is to assume a plurality of -imple beirgs, and to explain the maniold as appearances arising from their relations. These world being: that underlic the phenomenal world are atoms, or monads, or as Herbart prefrs to call them, Rails. They are conceived to in the manifind we have in experience. Like the atoms of Democritus they are simple and the atoms of Democritus they are simple and
alike in quality, but umlike the monads of Leibnitz they are not points of self-active force, containing an inherent principle of development. Why and how the Reals act and interact llerbart does not explain, not even how they set and exercise their one function of self-prescrtations. The inability to explain these things which we most want to know is the penalty attached to this type of metaphysics. Vet it would be unfair to assume that no good results can come from even suclu pre-suppositions. The Reals are not spatial in the ordinary meaning of that term, for space and time as we know them are themselves phenomenal products, but they may be conceived to be in what Herlart calls intclligible space, in which the Reals exist in a state of partial or total interpenetration. llere they reciprocally "disturb" one another, a "self-preservation" resulting, which is a "state" of the Real. When the Real which is "disturbed" happens to be a soul, the disturbance, or the state of self-preservation, becomes an idea, which is the primary form of mental life. Psychology is, therefore, the science of these self-preservations of the soul-monad, which is like all Reals unknowable, but as Herbart thinks a necessary presupposition of our experience. Psychical life is the reciprocal tension of ideas. Consciousness depends upon the degree of this tension. The lowest degree of strength which an idea can have and still be actual marks the threshold of consciousness. If reduced below this degree it remains as "impulse", and may rise again when freed from "arrest." The soul monad bas its seat in the brain and is in intimate interaction with a multitude of other Reals. Outwardly originating stimuli are conveyed to the brain by the nerves and reach the soul through the medium of the other Reals present. Since the idea is the primary form of mental life, feeling and volition must be explained through an examination of the inhibitory relations of the ideas. Pleasure arises when there is a furthering of mental movement, and pain when there is an arrest. Volition arises from desire, a state of fecling, which has a natural impulse to find satisfaction through action. Since mechanical action and reaction of the Reals is the source of ideas, it seems a natural conclusion that there may be a statics and mechanics of mental states. This led to Herbart's attempt to work out the calculus of ideas, thus opening the road for the modern quantitative study of mental phenomena, as seen in psychophysics and experimental psychology. Herbart claims to have founded psychology anew upon metaphysics, mathematics, and experience. The third of these bases is treated under the term apperception, which has important results for education.

Apperception.-Leibnitz, who introduced this term, employed it in a double sense. Its first meaning is the original power of the mind to unify experiences originating in sensation; this is the sense in which Kant uses the term. The second meaning is the mental assimilation that takes place when we use knowledge already acquired to interpret new knowledge. It is natural that Herbart should emphasize the latter
process, for though he could hardly deny the validity of the first form of apperception, yet so slight is the original equipment of the mind -merely the power of preserving itself against the encroachnents of other Reals-that all the significance of its activity must be fomm in acguiring experience. This, it may be remarked, is the process most important to teachers, for they can help to supply and order experience, Whereas they have no control whatever over the original constitution of the mind. Herbart sces in each new sensation a stimulus to ideas already possessed, an attractive force for the similar, a repelling one for the dissimilar. The new idea therefore at first holds the centre of consciousness, gathering about itself similar ideas, and repelling hostile ones already in conscionsness or newly attracted to it by contrast. But this very comination of the new idea is in most cases the cause of its reduction to a sulbordinate place, for by bringing to conscinusness a body of more deeply rooted related ideas, it enables the old to control the new by placing the new in its true relation to older and better ordered experience. In other words, the new is apperceived by the old. Herbart's theory, thus briefly stated, has been extended and freed from contradictions, by suhsequent writers, notably Lazarus, Steinthal and Wiundt (gq.ふ.).

Ethics.-All knowledge, feeling, desire, and will, being explained by the various relations into which ideas may come, there is no rom in Herbart's system for transcendental will, hence no ethical imperatives antecedent to those dereloped by experience. Ethics consequently hecomes a brancl of æsthetics, and cthical jurlgment is founded upon pleasurable or painful feelings as the case may be. The mind spontancously approves some will relations and as spontancously disapproves others. These basal relations refer to five fundamental aspects of conduct, two relating to the self as such, and the remainng three to the relations of the self to others. The first two are Imer Frecdom (the feeling that arises from good conscience) and Efficioncy of lFill. (the pleasure that is aroused by efficient action). The three other ideas are first Good If'ill (subjective attitude toward others), the second Justice (the legal basis of rights). and the third Eupuity (the demand that requital slall be adequate to deed).

Education- Epon the basis of his psychology and ethics as above explained. Herbart built his educational structure. Since there is no source of character but experience, it is to experience, i.e. to organized knowledge or groups of ideas, that we must look for the development of character, which thus has its roots, not in a single department of knowledge as, e.g., that grounded in sacred writings, but in the wbole content of the mind. A man must be ctbical all over, not in spots only. For this reason the Herbartians speak fondly and proudly of cducatice instrucfion, meaning thereby such instruction as shall render all ideas contributory to moral character. But since fecling is the loridge between cognition and volition, this bridge the teacher must induce the pupil to cross if his conduct
is to be adequate to his knowledge. This leads to the

Doctrine of Interest. - By means of direct interest incited in the pupil ior the subjectmatter itself, not amusement connected with the subject-matter, as some have erroneously thouglit, the pupil's permanent attitude of mind toward the circle of thought itself and consequently toward the aspects of life involved will be established. This interest falls naturally into two groups. first that pertaining to knowledge itself, and second that pertaining to intercourse with others. The first group embraces empirical, speculative (causal). and resthetic interests; the second sympathetic, social. and religious interests. This doctrine of interest, so important in modern educational thought, has been brought into harmony with our more spiritualistic systems of philosophy and psychology by Professor John Dewey ("Interest as Related to Will'). The next important topic arises when we ask how the teacher is to lead the pupil to build his circles of thought adequately: and then to have the right mental att,tude toward them. This leads to the subject of

Method.- lt is a common experience that faulty methods may easily lead to inadequacy of insight: they may still more easily lead to the wrong attitude of mind, as when the student hates a subject and everything connected with it. The first point to consider is - fttintion. which is either spontancous or foreed. With the young where forced attention is painiul, it is better to induce spontaneous attention, for here the ideas rise frecly, producing liveliness and pleasure. Apperception has two marked stages, that of absorption, in which the mind gives itself up to new impressions: and that of riffection. in which the newly acquired elements of knowledge find their appropriate place in the systems of the old. To bring about this twofold process of absorption and rethection most effectively and most agreeably to the mind. we must observe at least fuur prominent stages of method. The first of these is clourness, by which is meant the adequate apprelension of the -ingle object of element as such. The second is assorution. which consists in the progress from one absorption to another related one. The third is systom, or the step in which eacl part of that which is learned finds its proper place in relation to other parts. Steps two and three may be said to emisace the process of generalization. The fourth stage is what Herhart calls method. by which he underntands the well-ordered activity of the pupil in the solution of problems and iasks
llaking due allowatce for those parts of llerbart: syetem that are now of historical interent only, it may be seen that many of its element are still of importance to the world, for they involse the most potent of modern educational processes and aims.

Herbart's chef phiboophical works are 'Lehrbuch zur Einleitung in die Philosophie' (INI3): 'Lchmbeh zus Psychoingie' (18:6) : ' P-ycholagic al, Wi-ion-chaft, ne'n gegrindat auf Erfahrung, Nciaployik und Sathematic (1824-25): © Illgemeine Mctaphysik neb)

Aniungen der plilosophischen Naturlehre (İ゙28-29) : 'Kurze Encyclopädie der Philosofinic. aus practischen Gesichtspunkten entworfen' (is3I). The complete works of Herbart have been edited in 12 volumes by G. Hartenstein (Leipzi 1850-52). Herbart's aducational works, including the 'Allgemeine Pädagogik' and the 'TMmriss Pädagogischer Vorlesungen.' were edited by Dr. Otto Willmann in two volumes (Leipzig I\&SO). The Psychology is translated and to be found in the International Series (Appletons) while the 'Allgemeine Padagogik' and the 'UTmriss' are also found in English, the former under the sitle of the 'Science of Education.' and the latier under that of 'Outlines of Educational Doctrine.' The Herbartian School has produced a literature in metaphysics. psychology and education too voluminous for mention here.

Charles De Garmo.
Professor of the Science and Art of Education, Comell ('niacrsity; Author of 'Herbart and the Herbartians.'
Herbelot, Barthelemy, d', bär-tāl-mē dērbiö, French Orientalist: b. Paris + Dec. 1625; d. there 8 Dec. 1695. Having gone through a course of study in the university of his native city", he applied himself particularly $t 0$ the eastern languages. with a view to the elucidation of the Hebrew Scriptures. He visited Italy, and while there commenced his great work, the 'Oriental Library:' Recalled to Paris by Colbert, a persion was given him, that lie might be at liberty to proceed with his undertaking. It was his first design to lave published his collection in Arabic. and types were cast for the purpose of printing it. But the death of Colbert hating interrupted this plan, he recomposed the work in the French language, as likely to prove more generally useful. He was appointed to the royal professorship of Syriac in 1692 . His. bnok was published in 169 , under the title of 'La Bihliotheque Orientale.' The best edition of the 'Oriental Library' is that of The Hague (IJ-). With the supplements of Galland and Tisdelou.

Herbert, Edward, Lord Herbert of Cuerbu'ry, English philosopher: b. Eyton-on-Severn, near 11 roxeter, 1583 ; d. London 20 Ang. 1648. He was a famous soldier and diplomatist in his day. but at the present is remembered as an author and plilosopler. At Paris, in 1624, he pronted his famous book. 'De Veritate prout Distinguitur a Revelatione, a Verisimili, a Possibili et a Falso.' the object of which was to assert the sufficiency. universality, and perfection of matural religion, and thereby prove the uselessness of revelation. In 1624 he returned from France. and was created an lrish peer: and in 1620 became an English baron with the title of Lord Herbert of Cherbury: In the civil war he at first tricd as far as possible to play a neutral part, but aiterwards sided with the Parliamentary party chichly with a view, it appears, to save his property: The character of Lord 1 leriaert is strongly marked in his memoirs, Whell how him to ise vain, punctilions, and fanciful. hut upen, gencrous, hrase and disinterised. The 'De Veritate' was followed by works entitled 'De Causis Errorum' (16;5);

HERBERT

and ' De Religione Gentilium (I663: Eng. trans. 1709). In 1649 was published his 'Life and Reign of Henry V'lll.' The English style of Lord Herbert is strong. manly, and frec from the quaint pedantry of his age. He was one of the first to attempt a systematic proot of the sufficiency of natural religion. "Herbert's religious doctrine," say: Sidney lece, "starts with the assumption that religion, which is common to the human race, consists merely of the five imnate ideas or axioms that there is a God, that He ought to be worshipped, that virtue and piety are essential to worship, that man ought to repent of his sins, and that there are rewards and punishments in a future life. He regards Christianity as on the whole the best religion, because its dogmas are least ineonsistent with his five primary articles." His autobiography remained in manuscript till 1;64, when it was published by Horace Walpole. There is a recent eritical edition by Sidney Lee (1886).

Herbert, Lady Elizabeth, English writer, mother of Sir Nichael Herbert, British ambassador at Washington 1902-3. She is well known as an authoress, and has written books of travel in Spain, Algeria, and many other countries, as well as novels and biographies. Among these may be noted: 'Rambles Round the World'; 'W'ayside Tales'; 'Cradle-Lands'; 'Impressions of Spain'; 'Algeria, or Search After Sunshine': 'Love and Sacrifice': 'Thekla'; 'Edith'; 'Wives and Mothers in the Olden Times': '(First Nartyrs of the Holy Childhood in China': 'Children of Nazareth': 'Lives' of Monsignor Dupanloup, Garcia Moreno, Alexis Clerc, General de Stonis, the Arehbishop of Braga, Geronimo, Père Eymard, Ven. Clement Hofbauer, Saint John Baptist de Rossi. Saint Cajetan, Mother Teresa Dubouché, Père Peract, etc.

Herbert, George, the best known of English religious poets: b. at the Castle of Montgomery, Wales. 3 April 1593: d. Bemerton, March 1633 . His father. Richard Herbert, came of an illustrious Welsh family; his mother, Margaret Newport, also of excellent family, is more remembered ior her own noble character. She was of the best type of Renaissance woman, cultured, highminded-the companion and friend of intellectual men. Between her and her poet son was rare sympathy; she guided his life in all things and early destined him to the saintly career in which he came slowly to find his happiness. Upon her husband's death in 1597 , the care of her ten children fell to her. The oldest son. Edward, Baron Herbert of Cherhury. himself a poet and the author of the famous autobiography (printed by Horace Walpole in 1;-64), went to Oxford in 1595 ; there his mother followed him with her other children, to watch over his career. Herc George Herbert was brought up until 1605 . when he entered Westminister School. From the first he distinguished himself, partly by his learning, partly by his daring. which showed itself in his attack in Latin epigrams upon Andrew Alelville, the noted Presbyterian. In 1600 he was elected scholar of Trinity College, Cambridge, where three years later he took his degree. In I61t he became a Fellow of Trinity, and won his Master's Degree in 1616. In ifig he was elected Public Otator, an office he filled until $162 \overline{7}$.

Uutil this electuon Herbert had looked toward a worhdy career. Pride of iamily and ambition were strong m him; the influence of his relatives and friends at court was great: he knew his own powers. But all that the court fayor bestowed upon him was the lay rector-hip of Whitford (1623), a sinecure put wheh Sir Philip Sidncy had held; and shorty afterward the death of his most poweriul friends darkened the promise of worldly advancement, and aided his mother's effort to turn him to the Church. In July 1626 , while yet a layman, he became prebendary of Layton Ecelesia, in the diocese of Lincoln. With the help of his mother and others, he restored the ruined church buildingan act more expressive perhaps of the beatityloving courtier than of the future parish priest.

His mother had married Sir John Danvers in 1609 . Her death in 1627 called isth Dr. Donne's famous funeral sermon and her son's 'Parentalia.) This sorrow marks the beginning of George Herbert's nohber life. Shatered in health. and threatened with consumption. he resigned his oratorship and spent the next three years in London and Essex and Wiltshire, communing with himself and with his friends.

In 1620 he married Jane Danvers, a relative of his father-in-law's, and the next year he was presented to the living of Bemerton, with which his name is remembered. The short remainder of his life was remarkahly active. ln these years he wrote most of his poems and the best of them. and also the charming "Character of the Country Parson." It has been thought that his extraordinary zea! hastened his enul. ITe died of consumption in 16.33; the date of his burial was March 3. Later in the same year his. fannous book of poems. 'The Temple,' was pul)lished in Cambridge.

Herbert's life must have scemed to him an elaborate and delayed preparation for the last saintly years at Bemerton-one kng turning from high hopes of a career and broad experience of the best of worldhy society, to the humble life of the spirit. The wasting of his physical frame paralleled this increasing ntherworldliness. Yet in his final achicsement his early life counts for more than at first might be guessed; he could turn irnm such a past less completely than he thouglt. He owed in to this broad experience of the world at its best that his nature remained normal. 11 is extreme saintliness took no strange outward firm, as did the piety of his friend Nicholas Ferrar. nor did it mar his writing with eccentricities of ferwor or mysticism: his genius is entirely same. In no English poet, religious or secular, do the small common-places of life count for more. In such poems as 'The Elixir.' with its famoms praise of "Drudgery Divine." he insits on that kind of awpiration which scorns no humble or routine task: anl his longest poen, 'The Church Porch'-a series of wise maxims for the Camiliar discipline of the soul-sums up the moral and religious traditions of the English race, thongh in his individual way His genins is for common sense emnobled by lofty faith and passionate devotion. It is this normal quality in him, this quicknes: to find inspiration along the highwav. rather than his frequent reference th erol-wiatical custome and offices. that makes him, as Coleridge said, the representative poct of the English Church.

HEREERT - HERBS

Herberts wide fame rests on the substance of his work, rather than on the skill of its expression. But technically in his own field he is an accomplished artist. In a certain striving to crowd too much thought into words or to secure a striking phrase, he must be classed with Donne and the other "fantastic poets.," but in him this quality is rarely. pressed beyond a charming quaintness. He has the artist's sense of word-values: his verbal felicity. as in the oft-quoted "Sweet day, so cool, so calm, so bright." could hardly be excelled, and in many of his poems the fine openings and cadences recall the best manner of the Cavalier Poets (q.r.). among whom Herbert would naturally have found his place, had he not devoted his genius to sacred poetry. Good illustrations of such qualities, besides the titles already mentioned, are the song "I got me flowers to straw Thy way," the lovely poem with the fantastic title 'The Pulley.' and the more passionate 'When blessed Nary wiped her Saviour's Feet.' In all these verses Herbert's individuality is strong-the quiet depth of his religious nature, and his indescribable sweetness of temper. the fruit of the winning over of his worldly ambition to saintly ideals.

Bibliography. - The best editions are: George Herbert Palmer: Grosart. in the Fuller's Worthies Library and in the Aldine edition: the Pickering edition, with the Life by lsaak Walton. For criticism, consult: 'Introductions' to the above. especially to Palmer's edition; also, for a charming study, consult the essay on Lady Danvers in Louise Imogen Guiney: 'A Little English Gallery:'

Joms Erskise.
Associote Professor of English in Amherst College.
Herbert. Henry William, "Frisik ForesTER." American author: b. London. England. 7 April. $180-$; d New York is May 1858 . Ile was graduated from Caius College, Cambridge, in 1828; removed to the United States in 1837 : and until I 839 was instructor in the Greek and Tatin languages in a private school of New lork. In I 833 he established and until 1836 was editor of the 'American Monthly Magazine,' during a portion of that time with Charles Fenno Hoffman (q.v.) as associate. From $183-$ he became largely known as the first important Imerican writer on sports and out-of-door sulbjects. He wrote al:o on Frencl and English history, and made excellent translations from Dumas and Sue. His volumes include: 'Cromwell' (1837): 'Marmaduke Wivil' ($18+3$): 'The Cavaliers of England' (1852): 'The Chevaliers of France' (1853): 'The Puritans of New England' (1853): 'Field-Sports of the [nited States and the Britich Provinces) (1,, 8): (Sporting Scenes and Characters' (t.5:-): ' 1 loreses and Horcemanship of the ('nited States and British Prowinces' (1859).

Herbert, Hilary Abner, American lawyer and politician: 1s. Laurensrille, S. C., 12 Ylarch 18.3 .31 c was eflucated at the universities of Alabama and Virginia, studied law and was admitted to the bar. He hegan practice at Greenville. Ala.. but served in the Conferlerate army as captain and colonel of the Sth Alabama
regiment: being disabled at the battle of the Wilderness (I864), he retired from the army, and continued the practice of luis profession, first at Greenville, then at Montgomery (1872). He was elected to Congress in 18\%\%, and seven times re-elected: in three Congresses he was chairman of the committee on naval affairs. In Harch 1895, he was appointed secretary of the navy by President Cleveland, an office which he held till i89\%.

Herbert, John Rogers, English historical and portrait painter: b. Maldon, Essex, 23 Jan. 1810: d. London, 17 March i8go. He studied at the Royal Academy, where he exhibited as early as 1830; later went abroad and in t $\& 40$ became a Roman Catholic, after which the subjects of his paintings were chiefly religious. In i\&f1 he was elected one of the masters of the government school of design at Somerset House, and in 1846 became a member of the Acadenay. His principal works are the frescoes in the peer's robing-room in the House of Lords; 'The Appointed Hour' (I 834) ; 'King Lear Disinheriting Cordelia'; 'Sir Thomas More and his Daughter' in the Vernon collection at the National Gallery; and 'Saint Gregory Teaching His Chant.'

Herbert, Sir Michael Henry, English diplomatist: b. England 25 June I857; d. DavosPlatz, Switzerland. 30 Sept. 1903. He went to Paris as attaché in 1879; was chorge d'offoires at Washington (ISSS-9) : secretary to the British legation at Washington ($1892-3$); at The Hague (I893-4) : and at Constantinople (1804-亏). On + June 1902 he was appointed British ambassador to the United States at Washington, in succession to the late Lord Pauncefote, and the following year was compelled by ill health to return to Europe.

Herbert, Victor, American musical director and composer: b. Dublin, Ireland, i Feb. 1859. Aiter studying music from his childhood in Germany, he was appointed principal cello player in the court orchestra, Stuttgart, from which time he appeared in concerts throughout Europe. In 1886 he took the position of solo "cellist in the Metropolitan orchestra. New lork, and has since been comected as soloist and conductor with the principal orchestras of the United States. Since ISO4 lic has been bandmaster of the 22d regiment band. New lork, was conductor of the Pittsburg, Pa., orchestra from I80S to 1904. and since 1004 has conducted Victor Herbert's New York Orchestra. As a composer he has written: 'The Captive,' an oratorio: and the conic operas, 'Prince Anamias': 'The Wizard of the Nile'; 'The Serenade': 'Cyrano de Bergerac': 'The Ameer'; 'The Viceroy': 'The ldol's Eye): 'The Fortune Teller): 'The Singing Girl': 'Babette'; 'Rabes in Toyland'; 'lt Happened in Nordland': etc.

Herbivora, a group of mammals claracterized hy their herbaceous diet; the grazers or ruminants. The term is no longer in use.

Herbs, Culinary, fragrant or aromatic plant- used to add flavor to food, especially secws, soups, dressings and salads. They usually nwe these qualities to essential oils, which, being readily soluble or casily volatilized by heat,
quickly permeate the mass of food in which they are mixed. The sced of some, as caraway, anise (qq.v.) and dill, is employed : the foliage of others, as parsley, sage, thyme, is more frequently used. The former plants are cut and placed loosely upon sleects as soon as the seed reaches maturity; allowed to dry a few days; lightly thrashed and the seed cleaned; still further dried and stored in air-tight packages. The latter are gathered just before the first blossoms would open, because they are then richest in flavor. With parsley the leaycs are gathered as soon as mature, several cuttings being made in a season. They are then dried upon trays at a temperature below 120 degrees and in freely circulating air until crisp, when they are rubbed to powder and stored as above. Paper or pasteboard packages are bad, because they allow the flavors to escape. Both seeds and leaves may be used in decoction, being covered with vinegar or alcohol in stoppered bottles. Fresh herbs, which are always preferable to dried or decocted, are especially uscful in salads; dried and decocted in dressings, stews, etc., and at seasons when fresh ones cannot be obtained. In the United States the species most in demand are parsley, sage, thyme, savory, marjoram, spearmint, dill, fennel, tarragon, balm and basil (qq.v.) in nearly the order named. Parsley is beyond question the most popular because of its double use as a garnish and flavoring plant but sage is perhaps more frequently used in the latter capacity. It is most esteemed with pork, goose, duck, and similar rich meats. Spearmint is used mainly with roast lamb; tarragon with boiled fish: dill with pickles; and the other kinds mentioned with mild meats. such as turkey, chicken, veal, venison, etc. The kind, quantity and mixture used with each sort of food depends upon personal preference.

In general, herhs are of simplest cultivation. They usually prefer rather light, moderately fich, well drained soil, and sumny exposures. Since the seeds of many are small or slow to germinate they are frequently started in a greenliouse, hotbed or window, and transplanted to the garden when they are large enough and when conditions are favorable. Clean cultivation and the removal of weeds is essential. The perennial kinds. such as sage, are often propagated by stem cuttings, divisions or layers; tarragon always thus because it does not produce sced; spearmint usually by cuttings of the rootstock. The great majority are grown as annuals, being replaced each spring with fresh plants. Commercially they follow sucl crops as early cabbage. peas, etc., thus permitting a double use of the same soil aunually. They are easily grown for winter use in the borders of benches in the greenliouse or in boxes placed in sunny windows.

Consult articles such as Sivet Herbs by Kains in Bailcy's 'Cyclopedia of Amcrican Horticulture) (New York $1900-2$).

Herculaneum, hěr-kй-lă'nē-ŭm, or Herculanum, Italy, an ancient buricd city, about five miles southeast of Naples. Strabo says it was first occupied by Oscans, afterward by Tyrrhenians and Pelasgians, and then by the Samnites. It took part in the social war against the Romans. In the time of Sulla it was a municipium and a fortified town. It was situated between Neapolis and Pompeii, on elevated
ground between two rivers, and its port was one of the best on the coast. 1t suffered in 63 A.D. in the same carthquake that nearly destroyed Pompeii. In the greater irruption of 79 A.D. it was buried under a voleanic tuff formed of sand and ashes, partly consolidated by the agency of water. The site of Herculancun?, though well described, had been long sought in vain, when in 1713 three female statues (now in the Dresden Museum) were found in digging a well at Portici, a village situated on the ancient site. After this discovery further excavation was prohibited by the government, until in 1738 the well was dug deeper, and the theatre of Herculanemm was discovered. In 1750 a long, narrow passage, sloping down into the theatre, was opened, and is still the only way by which travelers descend to examine this structure. The excavations were continued more or less industriously for 50 years: but comparatively little progress was made, as the work was difficult and also dangerous to the houses in the populons villages of Resina and Portici, situated above. As soon as one part was excavated and explored it was filled up with the fublish from a new digging. The theatre is the only building to be seen underground, and it is encumbered with the supports built to sustain the rock above it. It is a noble edifice, massively built of solid stone, and seated 8,000 persons. Bronze statues of Drusus and Antonia and of the Muses werc found in various parts of the building. In a square on the south of the theatre a temple was found which was connected with another temple, to the east of it, by a wide street lined with porticoes. One of these temples, dedicated to the mother of the gods, had been restored by Vespasian after the carthquake of 63 A.D. On the north of the theatre was a basilica 228 feet long and I 32 broad, surrounded by a portico of 42 columns, and adorned with paintings. Many beautiful paintings and works of art were removed from these buildings to the musemm at Naples. A sumptuous private villa was disinterred, containing a number of statues, and in one of the rooms a quantity of papyrus mannscripts. Some of the statues are excellent as works of art, such as those of Agrippina, Aristides, the Sleeping Faun, and the Mercury. Other precious relics discovered here, and now in the museum, are liusts of Plato. Demosthenes, Scipio Africanus, Augustus, Seneca, etc.. beautiful mosaics, and articles of furniture. New excavations were carried out in 1828-37, and since 1868 . The chief discoveries made were those of the forum, a small and clegant temple, a basilica: a dilapidated building supposed to have been an inn, dwelling-houses, tombs, etc. One of the honses discovered at Herculanemm contained a quantity of provisions, dates, clestnuts, large walnuts, dried figs, almonds, prunes, corn, oil, pease, lentils, pies, and hams, none of which had been disturbed for 18 centuries, for the doors remained fastened. in the same state as they were at the period of the catastrople which buried the town. The internal arrangement of the house, and the manner in which it was ornamented. proved that it had belonged to a rich family, admiters of the arts; for it contained many pictures, vases, articles in glass, bronze. and terra-cotta. Fens skeletons comparatively have been found cither in Pompeii or Herculaneum, so that it is probable most of the

HERCULES

inhabitants saved themselves by flight. At the door of a villa in Herculaneum were found two. one of which held a key in one hand, and in the other a bag with coins and cameos. Near them were silver and bronze vessels.

Among the most interesting objects discorered here are the papyri above mentioned, over t.750 of which are now in the Naples Muscurn. The rolls are of cylindrical form. and much charred. Hardly a third of them have been unrolled. The process presents great difficulties, from the tendency of the MSS. to crumble. One of the works is a treatise by Epicurus on Nature: there are some writings of Philodemus. a Syrian philosopher; but on the whole they are of Jittle value. There have been published it volumes of the 'Volumina Herculanensia.' containing engraved transcripts of the unrolled papyri (folio, Naples, 1-93-1855), and since te5t several volumes of a continuation of the same.

Consult: Furcheim, 'Bibliografia di Pompei, Ercolano e Stabia'; Ruggiero, 'Storia degli Scavi di Ercolano.'

Her'cules, her'kū-lēz. called by the Greeks Herakles. and also Alcides, al-sī ${ }^{\text {º}}$ dèz, atter his grandiather, Alcæus: a mythological hero of Greece, typified by poets. sculptors, and artists of later ages, as a model of human perfection, physical and mental. According to the traditions of the heroic age, he united the finest qualities of mind and heart, as understood at that period, with the highest development of bodily vigor, and under a ceascless succession oi labors and sacrifices. strove perpetually after divine excellence. His indomitable perseverance was crowned with yictories which showed the triumph of the divine part of man's nature over the earthly, while his death secured him inmortality, a seat among the gods, and the homage of divine honors.

The legends relate that be was the son of Zeus or Jupiter. king of the gods, and of Alcmena the Theban, daughter of Alcaus. son of Perseus. Knowing that the child born on a certain day would rule over the descemtants of Perseus, Hera or Juno, wife of Jupiter. consumed with jealousy, contrived to prolong the travail of Alcmena, and hasten that oi the wife of Sthenclus, another son of Perscus, who gave hirsh to Eurystheus. subsequently chief of the Perside. Hercules was brought up at Tirynthus. or according to Diodorus. at Thehes. Jupiter sought to protect his favorite son in every manner, and to make him worthy of immortality. On one occasion, while Juno was asleep, he laid the infant on her breast. that he might feed on the milk of the coddese. She awoke. and cast the liated babe from her, and the drops that then fell from her are said to have formed the Nilky lVay. Linder the care oí Amphitryon. Alemena's hushand. Hercules received the beit ivatraction in all arts. Castor, the son of Tyndarus, taught him how to fight: Eurytus, archery: Autolycus, driving: Eumolpus, singing: Limus, to play the lyre: and under the centaur Chirnn, he perfecied lis training, and became the most valiant and accomplished hero of the age.

In his cighteenth year he slew a huge lion in the neighborhond of llount Citheron which had preyed on the flocks of Amphitrynn and of the king of Thespis. The king, resirnus that this so daughters might have children by such a
hero. entertained him at his court for 50 days, and Hercules became the father of their sons. the Thespiadr. Hercules next freed his native city from the annual tribute of a hundred oxen, paid to Erginus, king of the Orchomenians. Creon, king of Thebes, rewarded Hercules by giving him his daughter Megara in marriage. and intrusting him with the government of his kingdom. Subjected to the power of Eurystheus owing to priority of birth, the latter acquainted with Hercules successes and rising power, ordered him to appear at Mycenæ, and perform the labors which he was empowered to impose upon him. Hercules refused, and Juno to punish him, afflicted him with melancholic madness, during which he killed his own children by Megara, supposing them to be the offspring oi Eurystheus. When he recovered he was so horrified by the misfortunes which had proceeded from his disobedience and insanity, that he consulted the oracle at Delphi; he was told that le must be subservient to the will of Eurystheus and perform ten labors imposed by the king, aiter which he would attain immortality. Hercules thereupon went to Mycena, where Eurystheus, aporehensive of so powerful an enemy. commanded Hercules to achieve a number of enterprises, the most difficult and arduous ever known. The favors of the gods, however. had completely equipped him for their periormance; from Minersa he had received a coat of arms and helmet, a sword from Mercury, a horse from Neptune, a shield from Jupiter, a bow and arrows from Apollo, and from Vulcan a golden cuirass and brazen buskin with a celebrated brass club.

The first labor was to destroy the lion which infested the forests of Nemea and Cleonze near Mycena, and was invulnerable to mortal arrows. Hercules attacked him with his club, chased him to his den, and after a sharp and fierce struggle choked him to death. He carried the dead beast on his shoulders to Mycenx, and ever after clothed himself with the skin. The second labor was to destroy the Lernæan hydra, which he accomplished with the assistance of his friend lolaus. who burnt with a hot iron the root of each head as Hercules crushed it to pieces with his club. The third labor was to cateh the hind of Diana. famous for its swiftness. golden horns, and brazen feet. The fourth labor was to bring alive to Eurystheus a wild boar which ravaged the neighborhood of Ergmanthus. In this expedition he destroyed the Centaurs, and caught the hoar by closely pursuing it in the deep snow. In his fifth labor Iercules was commanded to clean the stables of Augeas. where 3.000 nxen had been kept for many years: this he accomplished in one day by turning the rivers Alpheus and Peneus through the stables, receiving as payment a tenth of the cattle, and concealing the fact that he had been commanded to perform the scrvice. The sixth labor was to destrcy the carnivorous birds. with brazen wings, beaks, and claws, which faraged the country near Lake Stymplatis in Arcadia. In his seventh labor he brought alive into Peloponneseus the wild bull, a gift of Poscidon to Minos. king of Crcte, which had laid waste the island. In his cighth laber he was commissioned to capture the mares of Dinmedes, which fed upon human flesh. He killed Diomedes, and gave him to bie eaten by his mares. which he brought to

Etrysthents. For his ninth labor he was commanded to obtain the girdle of the dueen of the Amazons. In his tenth latoor, he killed the monster Getyon. king of riades, and brought to Argos hus mumerous flocks, which fed upon human tlesth. Adjudging the second and fittl labors as unlawfilly performed, Eurystlicus imposed two others. These were: the eleventh, to obtain the golden apples from the gardens of the Hesperides; and the twelfth, to bring from hell the three-headed dog Cerberus. Pluto promised him Cerberus on condition that he should use no weapons but force. Enrystheus, pale with fright when Hercules brought the monster to him, ordered its immediate removal. This ended what are generally known as the Twelve Labors of IJcreales, and relieved the hero from bondage.

Besides these. Hercules achieved other labors equally great and celcbrated. such as his war with Jupiter against the giants, his expedition with the Argonaluts to Colchis, the pillage of Troy, the liberation of Promethens and Thesens, etc. During three years' slavery, imposed bv the Delphian oracle for plondering the temple to avenge supposed neglect. Ilercules' mistress, Omphale, queen of Lydia, married him. Hercules afterwards married Dejanira, daughter of Enens, king of Etolia, and when lole, daughter of the king of EEchalia, a princess formerly refused to Hercules, became his captive, Dejanira sent Hercnles the tunic given her by the dying centaur Nessus, as having the power to recall a hushand from unlawful love. The tunic had been infected by the poisoned arrow shot by Hercules at the centaur, when he offered biolence to Dejanira, after carrying her across the river Evenus. When Hercnles put the tumic on, the poison penetrated his system and he suffered untold torments; in remorse Dejanira killed herself. In his agony llercules had himself conveyed to Nount (Eta and laid on a「uncral pyre which at his commands was set on fire. In the midst of a dark clotrel, accompaniced by lightning and thander, his immortal spirit was transported to Heaven, where he took lis place among the gods, hecame reconciled to Juno and married her daughter blehe.

While the myth of llercules is of Greek origin. connterparts of the legend appear among many mations. Some scholars regard Hercules as a solar hero, and the twelve labors to represent the 12 zodiacal sigus. Artists represcut him under a varicty of forms, as a child, a youth, and man, in his numerous adventures and exploits. The principal ancient statue is the Farmese Hercules at Naples, by the Athenian Filycon. In the Vatican, the Torso di Michelangelo. so called hecause that artist studied it during several years, is a remarkable fragment of an ancient statne of Ilcrenles.

Hercules, in astronomy, one of Ptolemy's northern constellations. It is within this constellation that the point toward which the sun, with its accompanying system of planets, is traveling at present is situated. The constellation contains the finest globular cluster of stars in the northern heavens, and the bright double and variable star Ras Algethi.

Hercules-beetle, a very large South American lamellicorn beetle (D pastes hercules). An enormous horn projects from the prothorax of
the mate, and a smaller one from the head; they act together like a par of forceps. The length of the male is atonot sux inches, hat the fomale is smaller and lacks the horns. Numerous related species are known, of which D. tityrus, found in the southern (Tnited States, is $21 / 2$ inches long.

Hercules' Club, a North American shrub or tree growing to height of 12 fect and sometimes to fo feet. See Ir.ilid.

Hercules, Pillars of, name of the Straits of Gibraltar among the ancients. Herctles is said to have crected a pillar on cach side of the strait hetween Europe and ifrica, upon the monntains Calpe and Abyla, as the limits of his wanderings toward the west. The earliest Greek writer by whom the Pillars of llercules are mentioned is Pindar. On the other land the Plocnicians called the strait the l'illars of Melkant (q.v.), whom the Greeks knew as Mclicertes.

Herder, Johann Gottfried von, yō hän gout'fréd fôn hecridèr, German critic and poct: b. Mohrmagen, Prissia, 25 Aug . 174 ; d. Weimar 18 Dec. 1803 . He was the son of a poor schoolmaster, but friends procuted him an appointment in Frederick's College, where he was at first tutor, and at a later perion instructor. During this period he became known to Kant, who permitted him to hear all his lectures gratis. ITis unrelaxing zeal and diligence enabled him to become acquainted with science, theology: philosophy: philology, natural and civil history, and politics. In 176.4 he was appointed an assistant teacher at the cathedral school of Riga, with which office that of a preacher was connected. In If60 he went to Paris: he became traveling tutor to the Prince of IIolstem-Oldemburg, but it1 Strasburg he was prevented from proceeding by a discase of the eyes; and here lie became acquainted with Goethe, on whom he laad a very decided influence. Herder had already published his 'Fragments on the More Modern Cerman Literature,' his 'Critical Woods' (Kritische Walder), etc., which had gamed him a considerable reputation, though he had not published anything of importance in theology; yet, while in Strasburg, he was invited to become court preacher, superintendent, and consistorial counsellor at Butakelorg, whither he proceeded in 1 y\%. Ite soon made himself known as a distinguished theologian. and in 1776 received an invitation to become contt preacher. general superintendent. and consistorial comnsellor at lVcimar. This appointment was through the intlinence of Goethe. In 1801 he was made president of the high consistory: a place never before given to a person mot a mobleman and was subsequently made a moble by the Elector of Bavaria. As a theologian Ilerder contributed to a better understanding of the historical and antiquarian part of the Old Testament. His 'Geist der hebräischen Pocsie' is highly valued. He did much for the better appreciation of the classical authors, and his philosophical views of human character are full of instruction. Jlis greatest work is his 'Ideen zur Philosophie der Geschichte der Nenschheit) (1785 cl seq.). In poetry Herder effected more by his varions accomplishments. his yast knowledge, and fine taste, than ly creative power: yet he lias produced some charming songs: and
his 'Cid.' a collection oi Spanish scmances into a kind of epic, is one of the most popular poems of Germany:

Heredia, José Maria, Spanish-American poet: b. Santrago de Cuba 3 I Dec. IRoz; d. Toluca, Mexico, ; May I839. He was graduated irom the law deparment of the University of Havana in ISIg: for taking part in the attempted revolution oi 1823 was banished irom Cuba. lived for two years in the United States. and in IEs5 removed to Mexico. where he lield various civil. judicial, and journalistic positions. His poetic works have been to some extent rendered into other languages. The 'Ode to Niagara' is well hnown. Heredia has been considered by many the greatest of SpanishAmerican poets. One of the best editions is that of Ponce de Leon. 'Obras Poeticas de Don José Maria de Heredia) (18-5).

Heredity, the transmission oi parental characteristics to the offispring. The child possesses the mean between the character of each parent. that is, the father and mother share equally in transmitting their peculiarities. Fet it should be borne in mind that no iwo inditiduals are exactly alike, and besides the resemblances to the parents, every child differs in certain respects irom the parent. We speak of the force of heredity, and this. whatever be its nature is very wonderiul. Thus the Egyptian oi to-day inherits the features and mental characteristics of his ancestors who lived 10,000 years ago. One cause of this is the fact that the physical features and climate of Eyypt have remained unchanged for that period. Did heredity act rigidly we should have no modincation of type from one geological age to another. The inheritance oi one set of characters may, owing probabiy to proiound changes in the enviromment. lapse, and the original peculiarities be replaced by others. Thus ciriized man has thrown off certain habits and rendencies of his savage ancestors, and acquired new and higher culture - modes of action and ieeling. Heredity has its limits. and in certain highly specialized types of animals has lapsed or ceased to act as at first. Hurst remarks: "Heredity is merely a likeness of erfects due to the likeness of the causes producing them. ${ }^{\nu}$

There are four types or iorms of inheritance: (i) Continuous or normal inheritance, that is. where the children resemble the iather and mether. (2) Interrupted irheritance, where the uffispring resemble the grandparents. (3) Collateral inheritance. where the offspring inherit the qualinies of their urncle or aunt. (4) Atavism or reversion, which is inheritance from a remete ancestor. Thus when individuals of two domesticated races are crossed, the offipring may resemble neither parent, but are like the supposed ancestral or wild species. This is called "hrowing bach" by breeders. Galton speaks of alternative heredity, and illustrates it by the color of the human eve. "Ii one parent." he says. "has a light eve-color and the other a dark eye-color. some of the children will, as a rule, be light and the rest dark, they will seldom be medium eye-colored, like the children of medium eye-colored parents." IThat is called particulate inheritance is common in the color of the hair of horses, dogs, mice, and other mammals, and in the hairs on the leaves of certain plants.

Galan's Lau:- We do no: hnow why certain characters are transmited and others are not, and we cannot foretell. says Bateson, which individual parent will transmit characters to the offspring, and which will not. yet ihis problen may at some time become solved. From his studies on human stature. and on the transmission of colors in Bassett hownds. Galton has shown that the expeciation of inheratance is such that a simple arithmetical tule is approximately iollowed. He deduced the ruie that of the whole heritage oi the ofispring the iwo parents together on an average contribute one half, the iour grandparents one quarter. ihe eight great-grandparents one eighth. and so on, the remainder being contributed by the more renote ancestors.

This rule does not in many cases appiy. and Gaitcr points out that it takes no account of individual prepotencies. Moreover. says Bateson. there are numerous cases in which on crossing two varieties the character of one variety almost always appears in each member of the first cross-bred geacration. For example the oftspring of the polled Angus cow and the shorthorn bull is almost alwars polled or with very small loose "scurs." Seedlings raised by crossing fitrope belladenna with the yellow-fruited variety have without exception the blackishpurple iruits of the type. These are now recogaized as instances of Mendel's priaciple of dominance.

Merdel's Laui-As far back as IS6́s an - tustrian monk. Mendel. made prolonged experiments in crossing rarieties of the pea 1 Pisum saficum). His paper was overlooked until atiention to his remarkable resuits was called by De lies in 1000: be and also Correns and Tschermak at the same time independently rediscovered Mendel's law. Mendel selected seven pairs of characters, such as the shape oí the ripe seed. of the cotyledons, of the seed-pod. color of the seed-skin. length oi stem, etc. Large numbers of crosses were made between peas differing in respect oi one oi each oí these pairs of characters. It was iound. says Bateson, that in each case the offspring of the cross exhibited the character of one of the parents in almost undiminished intensity, and intemediates which could not be at once reierred to one or other oi the parental forms were not iound. "In the case of each pair of characters there is thus one which in the first cross prevails io the exclution of the other." This prevailing character Mendel called the dominant character. and to the other he gave the name of recessive character.

This law of dominance has been found by Bateson and by Castle to apply to animals as well as plante. and thus is a most important biological law. Thus when mating occurs between two organisnns, whether vegetable or animal. differing in some character. the oftspring irequently all exhibit the character of one parent only, in which case that character is said to be 'dommant." For example. on crossing white mice with gray mice, Castle iound that the offspring are gray. that color-character being dominant. The character which is not seen in the immediate offspring is called recessive. for though unseen it is still present in the young. white in the experiment being the recessive color.

The law of dominance has its exceptions: the hybrid often possesses a character of its
own, instead of the pure character of one parent, as is true in cases of complete dominance. The hybrid form often tesembles a supposed ancestrat condition, when it is nsually regarded as a reversion. Examples are the gray lyblorid mice, which are indistinguishable in appearance from the house mouse; also slate-colored pigeons resulting from crossing white with buff pigeons.

One result of Mendel's discovery is the purity of the germ-cells. As stated by Castle: "The hybrid, whatever its own character, produces ripe germ-cells which bear only the pure character of one parent or the other." To breeders Mendel's law is of great importance because, as remarked by Castle, it reduces to an cxact science the art of breeding in the case most carefully studied by him, that of entire dominance. "No animal or plant is 'pure' simply because it is descended from a long line of ancestors possessing a desired combination of characters, but any animal is pure if it produces gametes (germcells) of only one sort, even thongh its grandparents may among themsclves have possessed opposite characters."

The bearings of Mendel's discovery, confirmed by De Vries' experiments, on the origin of species is of great interest and moment. The problem is whether aberrations, sports, of discontinuous variations may not sometimes result in the formation of new species and types, or whether species are all the result of slow, continnous variations. As stated by Castle, "A sport having once arisen affecting some one character of a species, may by crossing with the parent form be the cause of no end of disintegration on the part of any or all of the characters of the species, and the disintegrated characters may, indeed must, form a great variety of new combinations of characters, some of which will prove stable and sclf-perpetuating.

Mendel's discoverics also explain the principle that new types of organisms are extremely variable, whereas old types are subject to little variation. A new type which has arisen as a sport will cross with the parent form. The offspring, says Castle, will then inherit some dominant character, others latent, and this will result in polymorphism of the race. Thus the suggestion of Galton that species may arise from sports is confirmed, while added cases are afforded by the recent remarkable experiments of De Vries, resulting in the origination of seven new species of primrose by sudden variations, or what he calls "mutations."

Homochronous Hercdity.-This is a form of heredity called by Darwin "inheritance at corresponding periods of life." lt is exemplified in animals with a metamorphosis, whose larve lead a different life and differ greatly in structure and form from the parent. Thus the butterfly inherits in its infancy the caterpillar stage, then the pupa, finally the features of the imago: one character or set of characters appear by heredity, are cast aside. and new features arise, those of the pupa stage, and so on. Each butterfly, beetle, or bee, as well as the tluke-worms, tapeworms, etc., inherit at different periods of their lives stages which have become fixed by homochronous heredity.

The Physical Basis of Heredity. - A number of biologists from Spencer to Jaeger and Weismann have supposed that heredity is due to the transmission from parent to offspring of parti-
cles developed in the reproductive cells of the parent, whence arose the theory now generally hehl that the nucleas of the spermatozoon and of the exge is the beatrer of heredity. Liven in the protozoa, if one be flivided into nucleate and enncleate halves, the portion withont a nuclens degenerates. while the part containing the utuclens lives and regonerates the lost parts. The nuclens contains a portion which stains readily with reagents, and is called the "chromatin," which consists of particles called "chromosomes." Now the nuclens of the ugg and that of the spermatozoon contain the same mumber and quantity of chromosomes, to what are called the cleavage-spindles, hence the chromation, that is, the chromosomes, are regarded as the bearess of heredity, some of these passing down from one generation to another.

Constrlt: Weismann, 'The Germ-Plasm' (New Y'ork 1893): Bateson, 'Nendel's Principles of Heredity) (Cambridge, England, 1noz) ; Castle, 'Mendel's Law of Heredity' (Cambridge, Mass., I90.3) ; with the earlier works of Darwin, Brooks, Galton, Hertwig, and others.

Alpietes S. Packard,

Late Professor of Zoology. Brozn ['niz'ersity.
Hereford, hĕréeförd, England, a city and parliamentary borough, capital of Herefordshire on the Wye, i20 miles northwest of London. The chief building is the cathedral, built in 1012-56, rebuilt in $10 ; 2$, and restored in 186.3 . It is of early Norman architecture. 335 feet long and I/4 feet wide, contains many fine monuments, some as ancient as the cathedral, and its accessory features include a lady chapel, charterhouse, cloisters, an episcopal palace and a library containing valuable MSS., Wyclif's Bible, and a suth century map of the world. A musical festival of the united choirs of Gloucester, Worcester, and Hereford is given in the cathedral tricmially. The see dates from 673: the city was incorporated in the reign of liing John. Fop. (1901) 21,382.

Her'esy (Gr. haresis) primitively means a choice or election, and in its application to religious belief is used to designate as well the act of choosing for one's self, and maintaining opinions contrary to the anthorizeal teaching, as also the hetcrodox opmions thus adopted. In the Acts of the Apostles the word scenis to be used of a sect or party, apart from the consideration of its character, whether good or bad; but in the Epistles and in the early Christian writers it is almost invariahly used in a bad sense, which is the sense uniformly accepted in all subsequent theological literature.

Even in the apostolic times heresies had arisen in the Church, and before the Council of Nice the catalogue of sects had already swelled to considerable dimensions.

From the very date of the establishment of Christianity in the koman empire heresy appears to liave been regarded as a crime congnizable by the civil law: and Constantine enacted several severe laws for its repression, which were continued and extended by his successors, and were collected into a single title, 'De Hareticis,' in the Justimian code. The penalties of heresy ordained by these emactnents are very severe, extending to corporal punishment, and even to deatli; and they all proceed on the distinet assumption that a crime against religion
is a crime against the state．These enacments of the Roman law were embodied in the various codes of the European l－ingdoms；in English lam heresy ccasisted in holding opinicns con－ irary to the faith of Holy Church．By commen law the offender was to be tried in the pro－ vincial synod by the archbishop and his counci？． and．after conviction．was to be given up to the ling to be dealt with at kis pleasure．But the statute 2 Hen．IV，chap． 15 （ D_{ϵ} hatifico iom－ birrondo）empowered the diocesan to take cog－ nizance of heresy，and．on conviction．io hand over the criminal directly，and without waiting for the king＇s writ，to the sherifi or other cum－ petent office－：This statute continued practically in force，with certain modifications，till the 29 Charles II．chap．9．since which time heresy is left entirely to the control of ecclesiastical legis－ laticn．

The doctrines considered heretical by the Christian Church may be found in the＇Diction－ naire des Heresies？by the Abbé Pluquet，with the history．progress，nature，and also the reiuta－ tions of their errors．

Her＇etic，in ecclesiastical terminology，one who embraces a herese：It is evident that the word ineretic can have only the relative mean－ ing of heterodor．The early Christian Church always made a distinction between heretics who obstinately persisted in their heresy，and here－ tics merely through error，or who had been born in heresy．The fathers of the Church declare themselves ignorant of the final condition of the laier．Again．peaceable heretics are distin－ guished irom those whose doctrines produce pub－ Jic comiusion and disorder．However，the gen－ eral viet is that all heresies lead，sooner or later，io disturbances and bloodshed．

Hereward，hèr＇ě－ward，a Saxon jeoman who flourisned about 10 o，He was practically the last to withsiand the Normans．holding the Isle of Ely against William the Conquerur 10，0－1．Aiter Winiam had succeeded in reach－ ing ilhe refuge of the Saxon patriots．Hereward． scorning to yield，fied to the fastness of the swampy fens to the nurihward．He was com－ monly styled Herewasd the NAKE，and his character and adventures form the theme of Charles Kingsley＇s popular historical romance． （Herew－${ }^{\text {² }}$

Her＂ford，Oliver，American humorous au－ thor and illustrator：b ．England．He is at pres－ ent on the staff of the＇Criterion．＇Among his works are：＇Artiul Antics＇；＇The Bashitul Farthquake and Other Fables，and Verses：
 Child＇s Primer of Natural History（18m）： ＇Wamer ior Iniants＇（ 1800 ）；＇Overheard in a Garden＇（1000）．

Hering．Ewald．German psych lngist：b． Altgersduri．Saxony． 5 Aug． 1834 He studied medicine ant settled at Leipsic as phy－ician in 1850：in 1862 he was lecturer in physiol gy at the Leipsic University，and in 1805 was pro－ fen r of physiology and medico－physies in a medical school at Fienna，and in iso held the same chair at Prague．Hering is be－t kn wn for his work in the ficld of pochophysics，espe－ ciaily for his investigations of visual space per－ ception and for the color thenry which he orig－ inated．This theory is opposed to the empiristic theory of Helmholiz and is most generally ac－
cepted by psychologists at the present time．His writings include：＇Die Iehre vom Binocularen Eehen）（I860）：（Zur Lehre vom2 Lichtsinne＇ （IS，－－4）：（Der Raumsinn und die Bervegung des Auges＇：＇Das Gedächtniss als eine allge－ meine Funktion der organisierten Materie＇ （ 18,0 ）．

Her＇ing．Rudolph，American hydraulic and sanitary engineer：b．Philadelphia，Pa． 26 Feb．Ist\％．He was graduated at the Dresden （Germany＇）Polytechnic School．IS6－，and be－ came assistant engineer of Prospect Park． Brookiyn，I．I．．the following rear．He was assistant engineer of Fairmounz Park，at Phila－ delphia．1869－1，and astroncmer at lellorrstone Sational Park in 18 －2．－Aiter serving as assist－ ant city engineer $18,3-$－ 0 he opened an office for private practice in engineering and has iurnished designs ior sewerage and water supply for numerous rowns and cities in the United States． Canada and South America．He is menmer of many projessional societies both in Europe and America，and has writen many published reports on sewerage and water supply of cities．

Heriot，bĕr ri－òt，George，Scottish philan－ thropist：b．Edinburgh 1563 ：d．London 12 Feb． 1624．His iather was a goldsmith in Edimburgh， and the son followed his father＇s proiession， and was admitted a member of the Incorpora－ tion of Goldsmiths in May 1588 ．In 159 －be mas appointed goldsmith to the queen by a char－ ter from James VI．．and on the accession of the latter to the English crown followed the court to England．From the period of Heriot＇s settle－ ment in London little is known of his histors． He died on 12 Feb． 1624 and was buried at S_{i} Martin＇s－in－the－Fields．By his will he leit mearly the whole of his iortune ioward the found－ ing and erecting of a scbool for poor boys in Edinburgh，styled in the bequest a＂hospital．＂ The foundation of the present structure，known as Heriot＇s Hospital．was laid in Tuly 162S： and the expense of the erection exceeded $£_{3} 0,000$ sterling．From the rise in value of property the yearly sevenue of the hospital has very greatly increased：and the governors were empowered in the reign of Wipliam I！．to establish elemen－ tary schools within the city for the gratuitous education of poor children． 16 day schools being ulimately established．besides evening schools． In 1 ミ゚ミ however．an eatirely new scheme was introdiced and a sreat part of the funds are now devoted to the support of Heriot＇s Mospital School and the Heriot－liat College．The inmer is a day scheol for bors of 10 and up－ ward．and the Heriot－Watt College is a college giving a thorough technical．commercial，and lieerary education chiefly by evening classes． th $:$ ：rl there are also day classes．The annual revenue is now about 5150.000 ．

Herkimer，Nicholas，American military offices：b）about $1515:$ d．Danube， \mathcal{N} ．Y．， $1 /$ Aug． 1\％－7．He became a lieutenant of militia，served in the French and Indian war．and defended Firt Herkimer in 1% ．Promoted brigadier－ sumeral of miltia in $1=6$ ，he directed operations asainsi Sir John Johnson，and when Fort Stan－ wix was theatened by a combined force of Indians．Tcries，and regulars，advanced to its rulié．He was ambushed by Col．Saint Leger at Crishany，and one of the most closely－fought battles oi the Revolutionary IVar followed．

Herkimer haring lost a thire of his force, was unable to contimue, and Saint Leger's army was rendered thoroughly ineffective. Herkimer himself was wounded, antld died as the result of an unskilful operation. The town and county of Herkiner, N. I., were named in his honor.

Herkimer, N. I., village, county-scat of Herkimer County; on the Mohawk River, the Erie Canal, and un the New York C. \& H. R. railroad: about 25 miles east of L'tica and 68 miles northwest of Albany, The chief manufactures are flour, furniture, mattresses, knit goods, beds, paper, creamery products, and cigars. The city owns and operates the electric plant and the waterworks. It is the seat of Folts Mission Institute. Pop. (Igoo) 5:555.

Her'komer, Hubert, English painter: b. W"aal, Bavaria, 26 May 1849. His father, a wood carver, went to America in I851, but returned to Europe and settled in Southampton in 1857. Hubert studied at the School of Art in that city, where he assisted in founding a life school for drawing. In 1867 he exhibited in the Dudley Gallery: From this time he gradually gained recognition as a painter in water colors, and in 1871 was elected a member of the Institute of Water Color Painters. His first picture exhibited at the Royal Academy, 'After the Toil of the Day (1873), a German subject, attracted attention; and two years later he gained a great reputation by his famous picture representing 'The Last Master - Sunday at the Royal Hospital, Chelsea,' to which a grand medal of honor was awarded at Paris in IS,8. Later pictures are: 'Erentide: a Scene in Westminster Union" ($18-8$), "a worthy companion of the other realistic yet more heroic study of old age, which the artist made in his Chilsea Pensioners"; (Missing: a Scene at the Portsmouth Dockyard Gates) (r881). "a masterpiece in its way": 'On Strike' (189r), his diplona work: 'Back' to Life: a District Nurse Taking out a Child for the First Walk after a Long Illness) (IS96) : and 'The Guards' Cheer' (IS98), representing a scene in the Diamond Jubilee procession. Among many portraits painted by him the best known are those of Wagner, Ruskin, and Tennyson. Ilis best water-color pictures are: 'Im Walde': 'The Woodcutter's Rest'; 'The Poacher's Fate' ; and 'At the Well.' Mr. Herkomer was elected associate of the Royal Academy in $18 \% 9$, and full member in ISgo, and from I885 till 1895 held the Slade professorship of fine art at Oxford in succession to Mr. Ruskin. He holds a life professorship at Munich, superintends an art school founded by himself at Bushey in Hertfordshire, and for the theatre connected with it has written several plays. Herkomer also occupies a high place as an ctcher and mezzotint engraver. He has published: 'Lectures on Etching and Mezzotint Engraving' (1892). See Courtney, 'Life’ (i892).

Hermandad, ěr--1nän-dälh', a confederation of the cities of Aragon, formed to defend themselves against the usurpations and the rapacity of the feudal nobility. This object was most clearly apparent in the brotherhood (Hermandad) formed about the middle of the r3th century in Aragon, and that formed about 1282 in Castile. In 1295.35 cities of Castile and Leon formed a joint confederacy for the same object. These fraternities were the model of the
later Ifermanriad of tl e municipal communities, which was formed in Castile under the reign of Ferdinand and 1sabella. It was established in 1486 with the approbation of the king. The city authorities raisel a military force, and appointed judges in different parts of the kingdom. Neither rank nor station protected the offender against the trancuillity of the comntry, nor could lie find safety even in the churches. The Santa Hermandad (holy hrotherhoud) which readers of Don Quixote will be acquainted with, had, like the carlier institution, of which it was a continuation, the object of securing internal safety, and scizing disturbers of the peace and highway robbers, lout did not act except in case of offenses actually committed. It consisted of a company of armed police officers, who were distributed in the different provinces of the kingdom of Castile, and whose duty it was to provide for the security of the roads outside of the cities. One of their strictest regulations was not to use their power within the citics. They were subject to the Council of Castile. The principal divisions of the company had stations at Toledo, at Ciudad Rodrigo, and at Talavera.

Hermann, hẻr'man, Alexander, American conjurer: b. Paris, France, 10 Feb. 1844 ; d, near Great Tralley: N. I. If Dec I896. From his brother Carl, Alexander took his earlient lessons in slcight-of-hand and the brothers then traveled in Europe and became widely known as skilled conjurers. Conning to the Cnited States in 186\% they met with great success. The elder presently returned to Europe but Alexander became a citizen of the United States, made a tour of the world and had few equals in his profession.

Hermann (hĕr'män) und Dorothea, (फّ̆-ōtā'ä, a pastoral poem by Goethe, published in I797. It contains about 2.000 hexameter lines. The scene is the broad Rhine plain, and the time the poet's own. The standard English translation is that by Miss Ellen Frothingham (1870).

Hermann, Mo.. a town in Reark Township, the capital of Gasconade County, on the south bank of the Missouri River, here crossed ly a bridge. St miles west of St. Louis, and on the Missouri Pacific railroad. It is in a grape-vinegrowing region and manufactures wine, beer, Hour, tools and cigars. Pop. (1000) 1.575.

Hermannstadt, or Nagy-Szeben, Austria, the capital of a comnty in Transylvania. See Szeben, Nagr.

Hermaph'roditism, the occurence of both kinds of sexual glands in one and the same animal. The differentiation of the sexes begins with the polyps, when for the first time in the animal king dom we neet with individuals which are male and fomale. The lower plants and in the animal kingdom the sponges and Wydra (g.v.) are monrecious, that is, sexual cells occur in the same individual. In the more highly specialized amimals, the sexual glands exist in different individuals, and the form is said to be bisexual, or dinecious, as opposed to hermaphroditic forms:

Truc or Natural Incrmaphoditism. - This is found in many flowering plants, in sponges, most colenterates, many worms, including the earthworm, many mollusks, and in most barna-
cles and this appears to be in relation with their more or less fixed mode of life. As a rule testes and ovaries occur in the same amimal, but situated in different regions of the body. while in land snails there is a hermaphroditic gland which produces spermatozo3 and eggs in the same ioilicle Certain animals, or trogs, which are bisemal as adulis, pass through an embryonic hermaphroditism. Normal hermaphrodiuisn is very rare in insects and vertebrates: in the Jatter only two cases are known, that is, a sea-perch (Sirranies serica) and the hagnish (My-sini).

Abnormal Hermapterodifism.- Ithat in man is called hermaphroditism is a misnomer, as it arises from maliormation of the external reproductive crsans. In insects occurs laieral hermaphroditism in which one hali of the moth or butterty. for example is male and the olher iemale. In some oi these cases dissection has shown that cnly male or female sexual glands alone occur in an undereloped condition. This is called zynandromorthism. Abnormal hermaphroditism sometimes occurs in Eishes and batrachians where an ovary is found can one side and a testis on the other. It is curious that in a threadworms (- ingiostomum) and in certain isopod crustacea (Cymofhoida) the reproductive glands are firsi male, the same gland aiterward producing esgs.

Hermes. Georg, gã-ōrs' hěr'mès. Germanl theologian: b. Dreverwalde Whestphalia, 22 April I-O5: d. Bonn 26 May I83I. He studied theology at the University of Junster became a ieacher in the symasimm of that city and in ISo- professor of dogmatic theology in the miversity. When the Prussian govermment established the University of Bonn, Hermes was appointed to the chair of Catholic theology (I\&I9). Here he began to distinguish himself by his aitempts to found a speculative. philosophic, and dogmatic school in the church itself. delivering a series of lectures which caused great sensation by aiming at an alliance between Protestants and Catholics. This attempt to base the positive thealogy of the church (a doctrine known as Hermesianisin) drew around lim great numbers of followers. Many of these in time filled chairs of theology and set forth ibeir views in conjunction with their master in a magazine. the 'Zeitschriit iur Philosophie und katholische Therlegie.' published ai Culogne from $18: 2$. The methed which Hermes advocated insisfed :hat the truth of revelation and oi the Cath-lic Church should nisst be teited by reason, and that revelation thold then be i-17uwed He did not go so far as in declare that all the desmas in themselves could be proped a pricri. bus endeavored to found the right of the church to tach them on ii.e greund i reason. Hermesianinm was in fact an insenions efforl it base the doctrines of the chutch on Kamis sysem oi ;hilomphy: l: arnued pe weriul cppositi n. 1 eing crndemmed is heretical by a papal Ictler if 20 Sut $1 E_{35}$. Herme= chnlar stontly deFnced their orth doxy, many if them re;atedy appaling 1 : the rupe but without succes.

Hermes, hir'mēz called by the Romans Merour:as, and identified with their cwn gou nf ila: name), i:1 Greek mytholncy the an: if Zeus and Maia Accordine in legend hrhirthplace was in the mountains oi cyllene. Arcadia. Four hors siter lis birth he invented
the lyre, whin he made by killing a tortoise. and siringing the shell with three or seven strings. He then sang to it the loves of Zeus and his mothet Maia. Having concealed the lyre in his cradle. he was seized with hunger, went in the dark evening to Pjeria, and stole so oxen irom the sacred herd of Apollo which he drove backward and forward to coniound their tracks: then walking backward himself, he drove them backward also; and after having killed iwo of them near the river Alpheus roasted and sacrificed a part to the gods. He concealed the fenamder in a cavern. He also careiully dest-ored ail. iraces of ihem. The next monning Apollo missed bis oxen, and went Ki search of thems. but he could discover no traces of them until an old man of Pylos told him that he had seen a boy driving a herd of cxen in a very strange mamner. Apolio now discovered that Hermes was the thief. He hastened to Maia, and accused the infant. who pretended to be asleep. and. uot terrified by the threat of the god that he would hurs him into Tartarns. steadily maimained his innocence. Apollo, not deceived by the crafty child. carried his complaint 10 Zeus. Hermes lied even to him. But Zeus percejved him to be the offender; but was not angry with him, and smiling at his cumning. ardered him to show the place where the oxen were concealed. To secure him Apollo bound his hands. but his chains fell off. and the cattle appeared bound together by twos. Hemmes then began to play upon his newly-invented lure at which Apollo begged the instrument of the inventor. leamed oi him how to play on it, and save him a whip to drive the herd. thenceforth belonging ir ho: in common.

Iner men concluded a contract with each other: Hermes promised never to steal Apollos lyre or bow: the latter gave him the caducius. The ancients represent Hermes as the herald and messenger of the gods. He conducts the souls of the departed to the lower world. and is thereine the herald of Pluto, and the executor of his commands. His magic wand had the power to close the cyes of mortals, to cause dreams, and wake ihe slumbering. The qualities requisite for a herald he possessed in the highest perioction. and bestowed them on others-grace. dignity, and insimuating manmers. He was also the sombol of prudence. cunning. and irand, and even of periurs: asd was the god of theit and r-bbery: In the wars of the giants he wore the helmet of Pluio. which rendered him invisible. and slew Hippolytus When Typhon compelled the gods to fly beiore him and conceal themselves in Fgrpt. he metamorphosed himseli into an ibis. He is also mentioned by Homer as the patre:s ci eloquence, and still more pariicu arly by Hesiod. Oí his inventions Homer makes no mention. Lates writers ascribe to hims :1 e invention of dicc. music. geometry, the infirpiciation of dreams. measures and weights. the art- of the palestra. letters. etc. He was al regarded av the natron of public treaties. a- the gnardian of roads, and as the protector of travelers. He was represented in art as a boy in the prime ci routh, sometimes with the caduceus. and scmetimes. with a winged cap. standing. sitting, or walking. The arists if later tinie- flced him among the youthinl and leard'a. gels. The most prominent traits ri his character are vigur and dexterity: In the

Tepresentation of Ifermes of a later date the redations of corporeal beanty and mental dexterity are wonderfully preserved. Artists made the cock his symbol, on account of its vigilance or love of fighting (in allusion to gymmastics); the tortoise, on accennt of his invention of the lyre: the purse, becanse he was the god of traffic; a ram and a goblet, because he was the director of religions ceremonics and sacrifices: the trunk of a palm-tree upon which his statues lean, because he was the inventor of arithmetic and writing (upon palm-laves): the harpe or sickle-shaped knife, because he was the slayer of Argus.

Fiermes Trismegistus, tris-mé-jis'tuls, the Greek title of the Egyptian moon god, Thoth. one of the most interesting figures in Eigyptian mytholosy. He is represented as lhis or with the ibis hearl, and is fully illusinated in the monmments and papyrin rolls from time to time brought to light. He is the god of cmme and of its divisions; he is the measurer and the god of measurements. He is the conductor of the dead. H_{c} is also the god of hmman intelligence, to whom are attributed all the prodnctions of human art. All the literature of Egypt is attributed to him-all the writings that relate to the different sciences, mathematics, astromony, medicine, music. Thiesc were called by the Greeks the Hermetic Books. Thoth is also credited with the invention of alchemy and magic. The Hermetic art is nsed to mean alchemy. The ser rets of this art were hauded on from teacher to pupil orally and in secret and this transmissiun was termed the Hermetic chain. For these reasons the Grecks identified him with their Isermes, and besitles called him Trismegistus, "thrice great." By later writers, Euhemerists, Neoplatonists ($\mathrm{q} . \mathrm{r}_{\mathrm{O}}$) , and Christians. Thoth was considered a great Egyptian king, a teacher of mankind. who had leit books of magic and mystery behind him. Xumerons books of such a sort once existed in Egypt. Clement of Alexandria knew of +2 : and so colled llermetic fragments are still extant, in the works of Stoheus, Cyrillus, Suidas and Lactantius. The llermetic books as we know them belong probably to no carlier date than the 3 d or 4 th century of our cra. and are in Greck and Latin.

Her'mit (Gr. eromites), a solitary ascetic, Who, with a view to more complete frectom from the cares temptations, and business of the world, took up his aborde in at natural cavern or a rudely formed hut in a desert, forest. mountain, or other solitary place. Hermits began to appear in the Christian church in the 30 ecntury. The advocates of ascencisisn (o.v.) were the first to set the example of retiring from cities to rural elistricts and villages. Fiut the hermits sought to withelraw altogether from mankind, that they might give themselves up to holy contemplation. The earliest hermit is said to have been Pant of the Thehaid (Egypt), who thuring the Decian persceution fled oo the desert (250) : there he livel for the rest of his life. dying. 113 years old, about 342 . The fame of his sanctity quickly incited others wo imitate his mode of life. The most famons amongst these succossors wis St. Inthony (g.v.). It the time of his death $(.365)$ hermit cellis existed in considerable numbers in the leserts of Egypt. Suria, and Palestine. The fame of their sanctity drew many to visit these hermits partly out
of curiosity, to get religious atrice from them, partly also in the belief that cliseases were cured by wheir blessing. Sometimes they returned for a short time to the midst of their fellow-men to deliver warnings, instruction, or enconragement, amd were received as if they had heen inspired proplacts or angels fiom licaven. Wat the mamber of hermits gradually diminisheel as the cenobite life of comvents grew into fashion. Indecd the institution at motime securex the same footing in the Western Clurch that it did in the Eastern ; and perbups the reason may in part be found in the difference of climate. whith renders a manner of life impossible in monst parts of Europe that conld be phrsucel fur many years in Egypt or Syria. Partial revivals of the practice continued to be made, however, during some centuries, St. Cuthbert (q.o.) being a case in point. See Mlonachism, and Charles Kingsley's 'Hermits' (I86y).

Hermit-crabs, crabs that shelter themsclues in spiral sea-shells, for the protection of the soft-skinned and unsymmetrical abolomen. They are members of the Hacrua (rec DE(arod.n). and have very large and generally unequal claws, one being used to close the entrance of the shell into which the hermit can wholly retract himself. The abdominat appendages are practically aborted, with the exception of those at the tip of the tail, which hold fromly to the spire of the inlahited shell. 'The hormit-crabs belong to three families, namely: Paguride, or common marine hermit-crabs: Parapagwide, or deep-sea hermit-crabs; and Conobitide. or terresirial hermit-crabs. Two species are mumerous on the American Atlantic coast rumning actively about in rock pools and shallows. The little hermit-crab (Eupagurus longicupus) generally inhabits the shells of dog-whelks (ilyanussa), while the larger spocies (E. pollicaris) occuples those of Lunatia or sometimes of the winkles and conchs. As they grow they must move to larger and larger shells. and the search for new tenements and dangerous change of abodes in the presence of enemies makes the life of one of these ammals more than ordinarily exciting. The habits of these and other hermitcrabs are of great interest. generally, and especially on account of the varions hydroids. anemones and mollusca which associate with them as commensals. The palm or robber-crab (q.v.) of the East lindies, and the land-crabs of the 16 est Indies, are gooxl examples of terrestrial hermit-crabs. Consult I. R. Ilemeterson, 'Cliallenger Report on Anomura': Verrill, 'Tnvertcbrates of Vincyard Souml' (1875); Amold. 'Sea Beach at Elb) tide' (rmon). See Cummensalism, Crab, Cristicel.

Hermit Thrush. Sce "lonu"sit.

Her'mitage, The, Andrew Jackson's home at Nashvilic, Tenn., from about 1804. when he removed thace from Hunter's Fill. In wisn the house was built in which lee lived till his death in 1845 . The Hermitage is now the property of the State of Teumessec.

Hermite, Charles, shärl ãr-mêt, French mathematician: b. Dicuze, Aleurthe, German Lorraine, 2.1 Dec. 5822 : d. Paris 14. Jan, 1001. In entered the Ecole Polytechnique in IStz. but left it to devote his attention wholly to mathematics. Farom $18-6$ to his leath he held the chair of higher algebra in the University of

HERMOSILLO - HERNIA

Paris. His principal claim to be considered a great and original mathematician rests on his investigations in the line of functicns, and his first important work on this theory won for him election to the Academy of Sciences. He proceeded to make discoveries in the theory of algebraic forms and in the theory of numbers. He finally seitled the question of the solubility of the quimtic equation, and really led the wav to Lindemann's further investigations. For a list of his writings see 'Catalogue of Scientific Papers of the Roval Society of Lond. n.' Vols. III. and VIf.

Hermosillo, hãr-mō-sēl'yō. Mexico, capital of the state of Soncra, on the river Sonora. about 60 miles from the Guli of Caliit rnia. and is by rail north from the port of Guaymas. with which it has a large traffic. being the principal entrepot for the trade with the interior. Large quantities of fruit are grown in the vicinity. especially grapes, from which much brandy is made. Pop. (1903) if,800.

Hern'don, William Henry, American lawyer: b. Greensburs. Ky... 28 Dec. ISI8; d. near Springheld. 111.. IS March 1891. He studied at Illinois College, was admitted to the bar in $18+4$. and in the same year formed a law partnership with Abraham Lincoln. which continued iormally till the latier's death. He was mayor of Springfield. 111., in 185. With J. II. Weik, he wrote the well-known 'Hernden's Lincoln: The True Story of a Great Life) (in a new ed. 1891). which is particularly valuable for the study of Lincoln': personality and the details of his early career.

Herne, James A. (Jayes Aherine). American actor and playwright: b. Troy, N. I:. t Feb. I\&ı0; d. New York 2 June 190\%. He first appeared in a traveling company, and later in rarious roles and organizations throughout the U'nited States. Later he was acrer-manager at San Francisco, and in 18,8 presented his first play. 'Hearts of Oat.' which won immediate success. 'Drifting Apart' (1:85). 'The Xin-ure-Men) (t\&86) and 'largaret Fleming' (18oo) were les faverably received, although the last was highly ranked by the critics. In 1883-f Herne wrate his moat successiul work. 'Shore Acres.' which was first periormed as 'The Hawthomes' at Clicago in 1892, and in $18 y_{2}-3$ in looten under it- present citle. He himseli appeared as 'Tincle Jat' Berry. 'Shere Acres' was i llowed lye 'The Ker: Griffith Davenport) (isop) : a dramatization if Helen Gardner's 'An tin ficial Patrint.' and 'Say Harber' (1000). Is h th act r and dranatist Herne was a skilfel dilineatur of type nf everyday life.

Her'nia (Latin, a rupture, a burst, a descent), a swelling formed by the displacement of a soft part, which protrudes by a natural or accidental opening from the cavity in which it is comtained. The three great cavities of the body are subjeet to these displacements. The brain, the heart, the lungs, and most of the ahohminal viscera may become totally or partially disflacerl. and thus give rise to the formation of hernial swellings. Di-placenents of the brans and nf the organs if the chest arc. howewer, extremely rare, and are in gencral the result or symprem of some accident or diseasc. Many parts of the abdominal wall may become the
scat of hemias, but they most commonly anpear in the front lower regions, which, being destitute in great measure of muscular fibres, and bcing the site of many of the openings leading from the abdomen to the limbs, ofier less resistance to the displacement of the viscera. Hernias are most common in the groin. at the navel. more farely is the vagina, at the interior and upper part of the thigh, and at its lower and postericr part. They have received different names irom their positions, All the abdominal viscera, with the exception of the duodenum, the pancreas, and the kidneys. may form a hernia, but they are not all displaced with the same facility. The omentum and intestinal canal escape easily: the stomach. liver, and spleen rarely form hernias. Most of the viscera. when displaced. push the peritoneum forward before them: this membrane thus forms a covering to the hernia. which is called the hemial sac. If the hernia, with its sac, can be entirely replaced, it is said to be reducible: if. from its size or other cause. it cannot be restored to its former place. it is irreducible.

Among the predisposing causes of hernia may be ranked any circumstance which diminishes the resistance of the abdominal walls. whether natural or accidental ; such as muscular weakening of those walls by a iorced distention, as in pregnancy: by accidents, by lifting heary weights. or by excessive standing, Any prolongation of the viscera. which tends to bring them in contact with points at which they may protrude, and articles of dress which push the organs toward the weaker parts of the abdominal wall (as corsets), may also produce hernia. The efficient causes of hernie are all circumstances which may hreak the equilibrium existing between the abdominal walls and the risccra, which react and matualiy press upon each other. The simultaneous contraction of the abdominal muscles and of the diaphragm, which takes place on every violent effort, is one of the chief of these cases. Hence sneezing. coughing, leaping, playing on wind-instruments, etc.. may be the direct catse of a hernia.

The symptoms oi a hernia are the existence of a tumor or swelling at any point of the abdomen, but more particularly in the region of the groin. I seducible hernia is not a very troublesome discase, but may hecome so by acquiring an increase of size. and by strangulation. A hernia is said to be strangulated when it is not - aly irreducible, but also subjected to a continual constriction : this constriction may be produced by different causes, but it is generally a constriction at the opening throtigh which the hermia protrudes. As soon as a patient perceives that he is affected with a hernia he should have recourse to medical advice, for the disease is then in it mest favorable state for weatment. The bernia is imnnediately reduced, and must then be subjected to a constant compression. This is done by means of a truss (q.y.). An irreducible hernia must he supported with great care. All wiolent exercises and excess in diet must be avnided. Strangulated hernia, presenting greater danger, requires nore prompt relief. The olbect of treatment is to relieve the comstriction. If the reduction camnot be effected by other means, an operation will be necessary: This ennsists in dividing the parts which produce the constriction. The longer this opera-
tion is delayed, the more dangerous it will become. After the parts are healed. the opening must be subject to compression, as in the casc of a simple hermia. Radical operation for hernia is the most adrisable furm of treatment. It is safe in the hands of a competent surgeon.

Hero, a priestess of Aphrodite at Sestos. The loves of Hero and Leander, a youth of Abydos. on the other side of the Hellespont, are related in a poem by 入useus. No difficulties conld discomrage Leander. lle swam every night across the Ilellespont, guided by a torch which shone across the strait from the tower of Hero, and even continued his visits during the winter. On one occasion, however, the gutiding light was extinguished, and his strength failed bim, and the waves carried his body to the foot of the tower, where Hero anxionsly awaited him. Overcome with anguish at the sight, she threw herself from the tower and perished.

Hero of Alexandria (Crr. Herön), Greek mathematician and natural philosopher; Hl. perhaps in the ist century A. n. He seems to have invented a number of machines, among which are "Hero's fountain," and a steam-engine on a principle similar to that of Barker's mill (q.v.). He also made some contributions to pure mathematics. Hultsch edited the remaining fragments of his geometrical works in 1864 , and Schmidt began in 1899 an edition of his complete extant writings. See Hero's Forstain.

Herod, called the Great. king of the Jews: b. about 62 b.c.: d. 4 b.c. He reigned from 37 B.C. mintil his death. He was the secon? son of Antipater the Idumean, who, being made procurator of Judea by Julins Cresar, appointed him to the government of Galilec. He at first embraced the party of Brutus and Cassius, but aiter their death reconciled himself to Antony: by whose interest he was first named tetrarch, and aiterward king of Judea. After the battle of Actium Augustus confirmed him in his kingdom. As a politician and commander, his abilities were conspicuous. He rebuilt the temple at Jerusalem with great magnificence, and erected a stately theatre and amphitheatre in that city, in which he celebrated games in honor of Augustus, to the great displeasure of the more zealous of the Jews. He also rebuit Samaria, which he called Sebaste. and adorned it with very sumptnous edifices. He likewise, for his security, constructed many strong fortresses throughout Judea, the principal of which he termed Cæwarea. after the emperor. On his palace, near the temple of Jerusalem. he lavished the most costly materials, and his residence of Herodim, at some distance from tise capital, by the beanty of its situation, drew around it the population of a great city. Such, indeed, was his magnificence, that Augustus said his soul was too great for his kingdom. Herod was the first who shook the foundation of the Jewish government, by dissolving the national council, and appointing the high-priests, and removing them at pleasure. without regard to the laws of succession. Il is policy, ability, and influence with lugustus. however, gave a great temporary splendor to the Jewish nation.

Herod Agrip'pa I., king of Judea: d. Cresarea $\$ 1$ A.d. He reigned from 37 A.D. until his
death. He was wn of Aristobulns. At Rome with Drusus, son of libernus, on whose death he left Rome inr Idumea; but returned some years after. On the accusion of Caligula 37 A.D. he was honored with the title of king, and received the tetrarchies of I'hilip and I-ysanias. and later that of Antipas. Epon the accession of Clandins lis rule was extended to include all the dommions of Ilerod the Great. It was this Herod who, to please the Jews, caused St. James to be put to death, and St. leter to be imprisoned. His power and opulence acquired him a great reputation, and he really did much for the benefit of the Jews. His death is described in Acts xii. 20-3.

Herod Agrippa II., king of Judea: d. 100 A.D. He reigned from 53 A.D. until his death. He was son of Iferod Agrippa I. Ile resided much at Jernsalem, and here, together with his sister, Berenice, heard the defmse of Paul, addressed to the Ruman govermor Irestus (Acts xハt. 13-xxvi. 32). I great builder. he improved his capital city of Cesarea Philippi; renamed by him Neronias. It was in his reign that the Temple was completed. Being driven from Jerusalem in the revolt which prosed so fatal to the Jews, he joined Cestins, the Roman commander, and. when Vecpasian was sent into the province, met bim with a considerable reinforcement. During the siege of Jerusalem he was very serviceable to Titus.

Herod An'tipas, tetrarch of Galilee. Ife reigned from 4 B.C. to 37 A.D. He was son of Herod the Great. This was the llerod who put to death St. John the Raptist (Jlark vi. 44-29). in compliment to his wite Herodias, and it is he who is the familiar 'IIerod' oi the Diew Testament narrative. Accused of having been concerned in the conspiracy of Sejanms and of being in secret league with the king of larthia. he was stripped of his dommions, and sent (39 A.D.) with his wife into exile at Lugumam (Lyons), or, as some say, to Spain, where he died.

Herodes, Atticus. Sce Atticts Herndes.
Hero'dias, a granddaughter of Herod the Great and Nlarianme, danghter of Arstobulus and sister of Herod Agrippa I. She was first married to her hali-uncle 1 lerod Philip, whom she abandoned to connect herself with his halfbrother Herod Antipas. It was hy her artifice that Antipas was persuaded to order the death of John the liaptist (.latt. xiv. 3-12: Mark vi. 17-29)

Herod'otus, Greck historian, callect the "father of history": b. at Malicarmassus in . Asia Minor about tsi B.C. Before writing his history he traveled extensively, viaiting the shores of the IIellespont and the Euxine. Scythia, Syria, Palestine, liabyom and Ecbatana, Erypt as far as Elephamime and nther parts of nerthern Africa. everywhere musetigating the manners, customs, and religion of the people, the history of thic country, productions of the snil, etc. On returning home be found that Lygdamis had usurped the supreme authority in Halicarnassus. and put to death the noblest citizens. and Herndotus was forced to seek an asylum in the island of Samos. 11 aving formed a ennspiracy with several exiles he returned to llalicarnassus and drove out the usurper, but the mobles who had acted with him immediately formed an

HEROIN - HERONS

arist cracy more oppressive than the government of the banished tyrant. and Herodous withdrew to the recenty iounded olony ei Thurii, in I:aiy, where he seems it have spent mas of his remaining tife. Here, at ant advanced age, we are :oid by Pliny. he wa :e hiv ammera! wik, a satement strensthenec by the fact that events are noticed in the body ci the brok which occertred so late as toy s.c. white its abrunt ending proves almost beyond questice that he was prevented by death is m onombeting it. The history is disided inta nine buks. each beating the nime if a Muse one is written in the Ionic dialect. The objeer of the hist-r.: is is narrate the contlite between the Greens and Persians. and he trace: the enmity oit the two races back to mythical times. Pazsing rapidy orer the mythical peri-d he comes to Cresus. king of Lydia. of wh m and of his kingdom he gives a comparatively sult hstory The ernquest of Lydia by Cyrus induces him: relate the rise of the Persian minarchy and the subjugation of Asia Minor and Babrion. The history ci Camboses and his Egyption expedition leads him to introduce the valuable detals of the hiscor. gengraphy, and manners and cur-tom- ci Esypt, occupying the secend book. The Scythian expedition of Darius causes the hisinfian so treat of the Seythians and the nerth of Eur pe; and the subsequent extersion of the Pessian kingdon affords him opportunity icr an account of Cyrene and Libya. In the meantime the revoli of the lonians breaks out. Which eventually brings on the confict between Greece and Persia. An account of this curbreak and if the rise of Athens after the expulsing of the Pisistratidx. is iollowed by what properiy constitures the principal part of the wark. and the history of the Perstan war now rums, n in an unimerrupied stream uatil the taking of Sestos There are English translations of his history by Macaulay (rego): Beloe. Cary, and Rawhins mo the lasi with important no:es and dissertations. The 'Lite of Homer.' a:tributed to Herodotus, and painted at the end oi sereral editions of his woth. is now universally believed to be a producti n of a later date. The best editic ns of the history ai Herodotus are by Wesseling ($1,-63$)
 (189:
 diactic ester of morphine. It cocurs as a faintly brter. colorles. odorless, crystalline fo wder, which is nearly insoluble in water. It is - lathe in dilute acids. honsever and is precipitated hy alhalies. Iis hydroctlay dicsolves frecy is waser and in alculs 1 . but is insluble on ether. Hert in was frit prominently intnduced th the medical werld in tes

Herold, Louis Joseph Ferdinand, Ion-e zhin-zeit fier-dè-nas a-rild. French musical
 \#or Paris. i) Jon es 33 a pupil ni the Cm--rva* re. he atir studud compritica under E-2. Nichsi, and Cherubini, and in 1812 wn - EPX X de R.me with the cartiata 'Mlle. de la 1:" - Hi- fir: geal. La fixventú di

 \because - : tre a- c mp -er itr the French -iage wa*

 -uscesia by numerus others of varing inp-
tune. At ?az: in I83t appeared 'is Zampa.' and in I532 his 'Le Pre aux Cleres.' the operas on which his fame chiehy rests. and which have sazed a pern'anent place, the former especially beins still produced with acceptarce in the primcinal cifies of the Continent. Consult: Jouvin, 'Herold sa \ie et ses (Euvres' (i\&K8).

Heron. Matilda, American actress: b. Draperstown. near Londenderry. Ireland. I Dec. i830: d. New lick - Narch $18 / 7$. She was brought to the Cnited Sates as a child. and appeared on the stage it: the first time in Philadelptia as Bianca in (Fazio.) Her chief parts, it. Which she mei with grear success throughout the Crnited States. were Camille in 'La Dame atax Came' 'as' : and Cliah in 'De Soto.'

Herondas, or Herodas, Greek poet. probably flourishing about the lateer hali of the srd century b.c. Little positive :ntitrmation is ebtainable concerning the place of his birth. but it was probably in the istand of Cos. Prios to 180 s only a few fragmente of his verses had been found. but in that year an Esyptian papyrus was i-und containing several poums umimes of mimianibi) and these were published by F. G. Kenyon. thus bringing to light a phase of Greek life and times of which the history has been meagre. Seven of the poems are in comparazively complete form, and, besides giving an insight into Heronda's life and wotk they picture the every day life of the times in extremely realistic terms, though the satirical pertions of them are not personal in their nature. In composition the mimes are in cholianhic verse of iambic trimeter and are written in the Inmic dialect. The latest edition containing additions by O. Crusins was published in is? entitled 'Éntersuchungen zu den Mimiamben des Herondas.' See Minme

Herons, wading birds of the order Hercuis, Erming. with essets and bitterns, the fanily Ardeide. The family is characterized by a thin. compressed body: a long. thin reck: a straish:. nartow, pointed beak: fully feathered head: Iongish. slender legs: three toes in iront. the two outer united by a membrane. the middle claw pectinate: large blunt wings: extensive devel pment oi powder-down tracts: and oiten by elongated feathers of the top of the head and other parts. L'pward of ;o species of hern: an their immediate allies are known, of which $1+$ inhabit North America. The bitterns (q) 1 . with to tail-quills, form the sub-ianily: Boluurin e. the herens and egrets ($q v$) with 12 tail quilis, the Ardethe. Egrets are simply white herons The great blue heron (Afdia herodiss) to which A. cinerea of Europe is closely relaied. inhabit: a! parts of North Amenica and northern S th lamerica. It is a large bied. w:h a lengtis at abnur inur and a epread is nearly six feet. and of beautiful slate-blue co r. with the lon flowing plumes black. It is t be i. .in ty the side if streams. lakes and the seash -e, usually alone. Fish inm the bulk of isfind hut it alon devours irogs, small repsiles. in-cots, asd almost any kind of animal which : can capture. It rams in search ni i xel monsiy in t' e m raing and evering. Tle hering: -1-6-mz-p'ace. in uspally fourd among high erece. $a^{n 1}$ the same hree linx-place is used Iy :On -ive senerati no if they are urme ested: \therefore no nt y usera! -pecie= if liert:- morert t-cthe: at a iav rite breeding-place. The large

HEROOPOLIS - HERPES

nest is made of twigs and sticks, and is lined with rushes, grass. and varions similar materials. 'The eggs, usually three or four in a nest, are of a fairly miform greenish blue color. Many nests are usually fond in one heronry. and sometines the nests are built on the gromed or on a cliff. The ery is a sort of "crank, crank," uttered in a hoarse voice. In the North the blae heron is migratory, elsewhere it is resident. The little blue lieron (A. corvica) is found in the eastern (Thited States from the Micldle States sonthward and in the West Indies and Central America. It is searcely more than one half the size of A. herodias and exists in two color plases. the one dark slate-blue with purplish reffections on the lead and neck, the other white with traces of bluc, especially constant on the unfeathered parts. This species formerly bred with other sonthern species in great heronries, most of which have been decimated by plome-hunters

The little green heron or fly-up-the-creek (Butorides íviscons) ranges throughont temperate North America and somewhat beyond somthward, brecding nearly everywhere. Northward it is migratory and is the familiar heron about the streams and ponds of the Niddle and New England States, where it usually nests in pairs or small commemities and mostly in thick bushes or cedar trees: in other localitics it sommetimes breeds with larger species in heronries, The pale greenish elliptical eggs are from three to six in number. Its foods consist chiefly of small frogs, minnows and smakes, for which it searches by day as well as by night along the shallows of streams, where Ets harsh ery of alarm is often the first intimation of its presence. The name refers to the beantiful deep bronze green color of the upper parts.

The night-herons (Nycticoras ncerius, and N. Ciolacens), which are closely related to the 1. grisca of Europe, are easily distinguished from other herons by the thick, stoun beak. The former known as the black-crowned nightheron or squawk, is common throughout the linited States and Canada in summer, and in the winter migrates far into South America, while the latter, or yellow-crowned species, is much less frequent and chiefly confined to the sea-const of the warm parts of America. The squawk is about two feet long, the young browni:sh, the adult: deep green and blue-gray above with two or three very long filamentous white occipital plumes. The night-herons are more active after dark than any other species, and are seldom seen abroad, except in the elnsk or on cloudy days.

Many species of herons reside in the warm parts of Africa and Asia, among them heing the largest of all, the A. goliuth.

Consult Baird. Brewer and Kidgwas, "Water-hirds of North America" (188_{4}): Reichenow, 'Jourmal of Ornithology' (1877): Job, 'Among the Waterfowl' (1902). Sce Brttern : Egret.

Heroöpolis, an ancient lisyptian city founcl by excavation in the eastern Delta region. Naps made prine to 1880 generally located the city near the present city of Suez. but the excavations of Naville in 1883 maler the atrspices of the Egypt Exploration Fumd tend to show that the city was farther morth. Heroöpolis is given in the Septatagint version of the

Old Testument as the meeting place of Josepla and Jacols. The Contie translation is Pethom, very similar to the IIchrew Pithome or "IIonse of "lum," and for sume thme it has been known from Egyptian geographical lists that Pithom wats situated in the land of Theku-t. This mame has been identified with Suceoth, the second reating place of the Children of lanad in their flight from Figypt. The Naville excavations brought to light the old site of J'ithom and Suecoth, the exeavations lecing made at Tell elMashhotah, twelve miles west of lsmailah. I mile-stone which was recovered haen showed the distance between Herompolis and Clysma to have been nine miles. This wondel confirm the view taken by Strabo that the city was at the head of the Red Sea navigation and was sitnated on what he called "Heroopolitan Cialf"" but if his view be correct. then it can only be inferred that the Red Sea extemderl at that ancient date further north than it now does and that the place where the lsraclites erossed was not where it is generally supposed to be, but considerably further north.

Herostratus. See Erostr.stus.

Hero's Fountain, a menmatic apparatus, through which a jet of water is supported by condensed air. A simple mode of constructing it by means of glass tubes and a glass-blower's lamp is shown in the annesed figure. The columm of water in the tulue a compresses the air in b; this presses on the surface of the water in c. and causes it to gush out at d.

Herpes, an acute, nomcontagious, inflammatory diseasc of the skin, characterimed by an eruption of one or more clusters of vesicles upon a reddened base. Several forms of the disease are recognized by dermatologists. of which the commonest are facial herpes. and herpes zoster. liacial herpes constitutes the common fover blister, or cold sore, and is usually seen about the montl?
Hero's Fountain. though it also necurs on other parts of the face. There is often some slight constintuonal disturbance preceding the eruption. Which first makes its advent known by a sensation of burning or itching in the part. followed loy reddish discoloration of the ckin and after a few hours by a number of pin-head to pea-sized blisters filled with clear or turbid Aluid. Sfer a few days these dry up and form a yellowish crust. which then falls off, leaving a red spot that som disappears. The usual duration of the disease is about a week and it shows a strony tembency to recur. llerpes aften accompanies fehrile conditions such as pnemmonia and malaria, and a similar lesion is mot rare about the genitals. Herpes occurs mostly in those whose skin is irritable or delicate, and is usually the result of some deramgenent of the mucous membrane of the respiratory digestive or genito-urinary tract. It sometimes is the unfailing harbinger of the menstrual period. Cold, mental depression, and injury or irritation of the skin are other canses. The disease belongs to the class of the neuroses, and in some instances its presence
can be explained only on the basis of nerve disturbance. In most cases no treatment is required, as the lesions promptly heal of their own accord, but soothing ointments or lotions tend 10 relieve the irritation. Herpes zosier, of shingles. is a special form remarkable for the fact that the eruption follows the course of certain nerves. and is nsually disposed around one side of the body like a half belt. In rare cases it encircles the body. Its onset is preceded by stinging neuralcic pains, and by languor. lassiude, loss of appetite, shiverings, headache, nausea. quickened pulse, etc., after which the eruption appears in irregular patches. The vesicles become enlarged to the size of small feas in twenty-four to thirty-six hours, and iresh clusters occur for three or four days. completing the belt-like appearance. Is the eruption recedes, by the fitth or sixth day, the vesicles become white and opaque, and the red margins grow livid or purple. Sometimes the vesicles burst. and several of the patches run together, forming irritable sores, discharging a thin serous fluid, which concretes and forms a crust that falls off as the parts beneath heal. The disease occasionally follows injuries to the nerves, and it is common in damp, cold weather of spring or autumn, when it sometimes occurs in epidemics. It is sometimes produced by sudden exposure to cold aiter violent exercise, and sometimes follows acnte affections of the respiratory organs. The treatment consists in aitention to any systematic derangement present and in the local use of soothing applications, and protective dressings to prevent rupture of the vesicles. The duration of shingles is usually from ten days to three weeks. Most cases run a iavorable course and second attacks are rare.

Herpestis, a genus of dicoryledonous samopetalous plants, of the natural order Scrophularinea, of the tribe Gratiolic. native the iropical sections of both hemispheres. It may be distinguished by its calyx, as the upper sesment is large and ovate and covers the rest, the other lobes narrow or linear. its cylindrical corolla, four stamens, and two or folmr-valved capsule. The genus comprises about fifty species of small, creeping herbs, having npposite, or toothed leaves, and generally fowering solitary or in axillary clusters of yellow, blue or white fowers. H, Monuicra is the commen water hyssop, and the natives of India find the juice of this plant. When mixed with petrolemm. of great benefit to parts of the body affected with rheunatism. H. colubrina, a native to Peru, is used, under the name of yirbs di colura, as a remedy for the bites of poisonous animals.

Herpetology, hér-pètonl'̄-jĭ, the study of reptiles. In its earlier days it included minder the term "reptile" not only those now properly so parned. but the amphibia (q.v.) and some nither "creeping things" not in either group. Cuvier's classification the first approach to a sciontific one. put both the true reptiles and the amphihians as en-relaied sroups under Rertilia: lint their firmal di-tinction was snon perceived. Husley showed that in their descent, embryology and stinctural relations the amphibians wite more closely related to fishes than in the reptiles (lizards, serpente and tirtles) He therefire united the two in a cuperine group Ichithopsida, while he joined the birds to the reptile in a
sroup of similar rank called Souropsida. Thus the limits of herpeology have been resiricted totruly scientifie limits.- the chordate class Reftilia. a definite group distinguished by the following characters:

Reptiles are cold-blooded, the temperaure of the body not greatly exceeding that of the surrounding medium: the heart is three-chambered. except in crocodilians, where four chambers first occur: mostly venous blood goes from the heart to the anterior viscera, and mixed blood to the posterior region, only the head and anterior regions receiving purely arterial blood: the body is covered with scales, with which subjacent bony plates or scutes are sometimes associated: the vertebræ are absolutely gastrocenirous (biconcave) : the skull articulates by a single condyle with the bachbone, and the lower jaw works against the quadrate bone: the great majorjty are oviparous. while in some the eggs are hatched within the mother.

This characterization unites inio the one class, many orders of wholly extinct types one order represented by a single living example (the tuatara "lizard"). and the existing tortoises and turtles, lizards, snakes, and crocodiles: and none other is a reptile. properly speaking. The group occupies a central position in the vertebrate series. Above it on the scale of organization are the birds and mammals: beneath it the amphibians and fishes. Similarly reptiles stand in a middle position in geological history as the Mesozoic, or Secondary Period. was that in which the group flourished, and of which the existing forms are, on the whole. the diminished and degraded remnants. In respect to their phylogeny: "On the one hand, there is not the slightest doubt." declares Gadow, "that they are evolved from some branch of the Stegocephali (q.r.), whilst on the other hand the reptiles, probably ihrough some branch of the Theromorpha. have given rise to the mammals: some other reptilian branch, at present unknown, blossomed out into birds."

Clussificution.-The most recent classification of the reptiles. perfected since about i8-5 by the enormous amount of information collected in all part: of the world. and especially in the western United States, in regard to fossil forms (see Palfontology) is that formulated hy H. Gadow ('Amphibia and Reptiles.' tooi). exfressing substantially the consensus of all specialists, and is as follows:

CLASS REPTILAA.

Sl'bcliss t. Protefilia.-Permian reptiles in which the components of the vertebra remain separate: well developed limbs and girdles fitted fur a tertestrial life. The fragmentary remains ni these anmals are hard to separate definitely irom the Stegocephali.

Slbelass il. Prosamia.-Chiefly extinct reptiles with deeply amphiccelous vertebre whose parts are still unfused: movable chevron hones necur in the tail and frequently, with intercentra, in the trunk

Order 1.-Microsauri.-Small Carboniferous and Permian reptile: with dermal armor on the dorsal and ventral side of the trunk and tail; and ribs with head and tuberele. The armor of the skull. and the flat ischia and pubes of the pelvis resemble the condition in Stegocephali.

Order 2.-Prosuuri.- Permian to recent, terfestrial, unarmored. generalized reptiles, of which one species (Sphenodon, or Hutteria, Punctatum) still persists in New Zealand (see Tuatara). This amimal is distinguished from the lizards with which it was formerly placed by many skeletal characters, such as the fixed quadrate bone and the broad bony roof of the mouth.

Surclass ifr. Theromorpha,-Fossil reptiles with fixed culudrate bonc, only one temporal arch, and having pubes and ischia united ventrally in one broad symphysis. This group has an especial interest becatse it is probably the one from which mammals sprang, and flourished between the Permian and Triassic ages. Sce Theronorpha.

Subclass in: Cholonia-Reptiles with an upper and lower bony shield, four feet, and toothless jatws - the turtles. There are two orders. Atheca and Thecophord. See Chelonia,

Subclass v. Dinosauria-Mesozoic reptiles, having a long tail, powerful hind legs, fixed quadrate bones, and liffurcated ribs. It is divisible into several orders. See Dinosauria.

Subclass vi. Crocodilia.-Four-fonted, longtailed reptiles, with fixed quadrate bone. teeth in alveole and confined to jaws; jschia not united by a symphysis. The group had its origin in the Dinosauria, from which it is difficult sharply to separate it, arose in the Mesozoic era, and the early forms were marine. The strict Crocodilia first appeared in the lower Jura, and have evolved along two parallel lines of advance, one of which ends in the recent long. sharpsnouted gavials. and the other in the broad, short-snouted crocodiles and alligators (qq.v.). The skin is covered with horny scales or scutes which, in some fossil species formed an osseons armor. The front nasal openings lie on the dorsum of the snout near its apex, and their hinder cnds are carried by the broad and deep palate far back into the throat. By this means the alligator can lie submerged with its mouth open so as to bring the nostrils to the surface and thus breath without carrying water into the windpipe. The lungs are large and of complicated structure. The heart has practically four chambers as in mammals. There are three orders: Pscudostchia, early generalized forms, expiring in the Jurassic are: Parasuchia, extinct forms of the Jurassic and Triassic periods (See Crocodile, Fossil: Belodon); Eusuchia, modern crocodilians. Sec Crocudle.

Subeliss vil. Plesiosmaria.-Mesozoic reptiles, with rentadactyle appendages adapted to life in water: fixed quadrate bones, mumerons alvenlar twelh, and ribs without tubercles. They apparently filled the place of the dolphins nf to-day, except that the neck is in most species extremely long. See Presinsateria.

Suberass mir. Ichthyosatria-Mesozoic, marine, whale-like, viviparons reptiles, with appendages transformed into paddics. The teeth are conical, lie in a groove and are very numerous. See Ichthyosauria.

Stber.4ss xx. Pterosauria-Mesozoic aërial reptiles with fixed quadrate and anterior appendages forming wings - the pterodactyls. See Pterosauria.

Subclass x. Pythonomortha.-Elongate marine cretaceous reptiles with movalle quadrate bones; appendages slaped like paddles, teeth
fused with jaws. Two orders, Dolichosauri and Mosasauri. Sce Mos. 1512 ks .

Scbeliss xı. Siunia.- Reptiles with movablt quadrate bones and iransverse cloacal opening: the most recent of the reprike, probably originating in the Prosuntiv. It contains two orders: Lacertilia (geckens, lizards, and chameleons) : and Ophidia (shakes).

Bibliography:-Huxlcy, Inatomy of Vertebrated Animals' (1870) ; "Thoffinann in Promis 'Klassen and Ordnungen des 'Thierreichs' (Leipsic, in progresis) : Duméril and Bibron, 'Erpétologie Générale) (9 vuls. Faris, $183 \ddagger-5 \downarrow$); British Alusenn Catalogues by Bonlenger, uc.: Holbrook, (North Ameriean Herputohgy) (I836-42) ; Zittel-Eastman, 'Tcext-hook of Paleontology' (1g02) ; Gadow, 'Smphibiat and Reptiles' (1901).

Herrera, Francesco de, fräln-thēs'kō dā ār-rā'rä, called Ei Viejo (the Elder), Spanih painter: b. Seville 1576: d. Madrid 16:6. He broke with the Italian traditions of Spanish painting and became the founder of the Spanish national school. Ife also worked in bronzc, and it was this probably which gave rise to the charge that he was commected with comterfeiters. He had a disposition so very detestable that his pupils, of whom Velasquez was one, all left him. The Lonyre contains some of his works, among others 'The Israelites Gathering the Quail in the Wilderness.' But the best are at Seville, including the 'Last Judgment.' in the Church of San Bernardo; 'Saint Peter?' in the Cathedral; and Moses Smiting Water from the Rock,' one of four large canvases in the archiepiscopal palace. His frescoes at both Madrid and Seville have quite disappeared.

Herrera, Francesco de, called Ei Mozo (the Younger). Spanish painter: D. Seville 1622; d. Madrid 1685 . He studied art under his father, Francesco, called El Vicjo (q.v.) (to whom he was very far inferior as a painter), and remained some years at Rome. Ile was a founder of the Seville Academy (tobo), and became its rice-director. Sulsequently he was appointed court-painter to Philip IV. In the Seville XInseum is his 'Four Doctors of the Church Adoring the Host'; in the Prado Nuseum, 'Saint IIcrmenegill.' During his residence in Italy be painted fish with such success that he was known there as 'Lo Spagnuolo dei Pesci.'

Herrera, José Joaquin de, hō̄-sīa hō-ä-kēn, Mexican military officer: h. Jalapa ITg2; d. Tacubaya 10 Feb. I854. He joinecl the Nexican army in rioon, and in $1 S_{21}$ was promoted brigadier-general. 11e aded in uverthrowing Iturbide, when the latter became emperor, and was successively minister of war and president of the supreme court. President for a brief perind in 18.45. he again held office in $18+8$ - 51 . During the war with the C'nited States, he was aide to General Santa Amba.

Herreshoff, hựr'rěs-hớf, John B., American nhipbuifler: b. Bristul, R. I.. 1841 . Unler his management the 1 Ferveshofi Banufacturing Company succecded Edward Burgess in designing and building the fastest yachos in the workd. Althongh be has heen blind since the age of 15 , he has always been active in business.

Herreshoff, Nathaniel Greene, American shipbuilder: b. Bristol, R. 1, 1848. He was
edveaied at the Mas-achusetts Instute i Technolegy, and was graduated Sc. M.. at Brown Lnivesity. He is superintendent of the Herrestori Manufacturing Company, and has designed many torpedo-boats and yachts, notab:y those sloops which have engaged in the international races of recent years.

Her'rick, Christine Terhune, American writer on domestic economy: b. Sewark, N. J., 1859. She has published: 'Housckeeping Made Easy' (IXB8): 'The Little Dinner': 'Liberal Living Ĺpon Narrow Means': 'First Aid tr the loung Housekeeper' (1900): 'The Expert Maid-Servan:' (1902) : 'Consllidated Library oi Modern Cooking and Household Rectpes: (1905) : etc.

Herrick, Clarence Luther, American college president: b. Mmneapolis, Minn. 21 June 18.'.: d. 1903. He was graduated irem the Lniversity of Mimesota in 1880 , and after holding professorships at Denison Liniversity. Ohio. and the Cniversity of Chicago, became president of the Ciniversity of New .lexico at Albuquerque.

Herrick, Myron T.. American capitalist and pohtician: b. Huntington. Lurain County. Ohio. I85. He studied at Oberlin College and Ohio Weslevan L'nisersity, went to Cleveland in 18\%\% and taking up the study of law was adinitted to the bar in rese He soon gave up the profesion of law, however, and organzed the Euclid Avenue National Bank, from this time onward being prominent in financial circies. It first secretary of the Society for Saving Bank in Cleveland, he hecame st president in 1 Not. and has been connected with vari-us railroad and other large financial enterprive. He has taken a keen interest :a natinal and local politics ir ms a Republican tandpoint, in 1003 was elcted governor of Ohio, but in tons was defeaied by Juhn M. Patison.

Herrick, Robert, English puet: b. London, Aug. 1591: d. Dean Prior. Dewnshire. October 167. His iather. Nichola, Herrick. was a goldsmith: through inleritance and traming the inn was enabled io transier to the making of verse the exquisitanes of hi= father cratt. Shety after Robert'; birth ihe elder Herrick made his will, an I two day: later he ded, under circum-tances that shegestef -uicide. In his wife and his seven children he lefit a small properts.
titer a few years, perhaps at Westminster Selinol, and a brici apremtici-hip to his guardian uncle. William Herrick, also a goldsmith, the phet entered Cambridge lniversity, at first enro ling bimself in Seint Johns College. Two year: later he removel to Trinity 11 all, intending in study law. During his resilence he sem: frem letters to his guardian. to have frequently needed mone:, and he left the univerity in deht. He tonk his degree of R.A. in 1fi-, and aill. in in 1620.

Few fact- remain of his mext years. He went in I.ondon and associated with the phets if the time. admirers of Ben Jononn, and he tiencelf wrate verac. The worls of two New Year anthems set to music by Ilenry Lawes were his: through the friendly influence of prominent men at murt, he may have been known to the King and Oucen. By 162\% when he was chaplain of the Duke of Buckincham's expedition to the Isle of Rhé. he must have
taken orders. Two years later, shortiy aiter hins mother's death be becane vicar of Dean Prior in Devonshire.

So little ith Herrick's poetry -uggests the priesty character that question has been made why he iwh orders at all: he hmseli spoke of has Devon-hre years as pure exile irom London and the world. let the traditions of his career at Dean Prior are entircly pleasant. His pariehjuners remembered him ior his guad humor and wii. He wrote his best poems in the hittle viearage. whether in celebration of Prudence Baldwin, his husekeeper. or of Tracy, his spaniel. or of the village holiday ceremonies and superstitions, recorded with wonderiul sympathy: Nothing more particular remains, save the legend of his keeping a pet pig in the house, and of his hurling a misisle at an inattentive congrega-tion-his only practical expression of ill-will toward= Devonshire.

In 104\%. evicted as a lovalist hy Parliameni. he returned in London, glad to be iree of the quiet country: and set abour publishing his poems. They app:ared that same year, under the tutle oi 'Hesperides. or The Works Both Humane and Divine of Robert Herrick. Esq:' The sacred pnems bear the separate title, 'His Noble Niumbers: or. His Pions Pieces. Wherein (am ngst other things) he sings the Birth of his Sariour: and sighes fir his Saviour's Suifering on the Crosse. Nothing else is known of Herrick until 1062. when Charles II restored him to his old place at Dean Prior. The parish regi-tet records his burial on 15 Oct. 16,4

There is almost an emtemporary reference in Herrick's poe:ns. but the irequency with which they were reprinted in collection- proves the f_{2} wor they i und. By the end of the century. hnwever. they were forgoten. sharing in the Augustan neglect ni Elizahethan and Stuart preity. A meation of Herrick. with =ame of his mem:- in the Gontleman's Magazine, 1 -ob. and Dr. Xathan Drake's essay: and quotations in his 'listerary Hours.' two years later, revived his iame.

Herrick: literary mater, as he tells us in more than one fine trilute, was Ben Jonson (4.6). Campion and the poets of the later -ong-houk- iore-hadow him, but it was through Jonson that he derived the tradition of Horace and the Latun cpigrammatist., and he remained Latin in spirit. though his own carefully achiesed simplicity is offen near to Greck restraint. But it is not on!y in this literary inheritance that he lefongs with Jonson: persunally, if the Marshall portrait prefixed to 'He:sperides' is faithiul, and If the awault upon the drowsy congregation is no fable, he illustrates with Jonson and other Elizabethans. and with Landor in later days. the paradox of violent and robust temperament reacting in iastidious art.
llerrick is first of all an arti-t: his merit is almure invariably a vittue of expression: he is ma-ter of the inevitable phrase. Many of his yrrics have indeed a larger perfection of form. yet he is most often concerned with the single worl. His shortest poems, the numerous twoline fragments in which at first sight he would seem to :catter his genius. are frequently mere experiments in diction, usually for the sake of ane "ord that he coins ne discovers, easily recngnizable inr its curions awkwardness ir its complete heauty. For among these trial piecers can be found some unhappy ventures, as well as a-toni-hing verbal felicitics.

This gitt for language, part of the poctical equipment in general, is more marked in llerrick becausc of its intensity and its narrowness. It is so marrow as to be quite intlexible; far from exhibiting the Elizabethan faculty for adjusting the style to the most varied matter, Herrick subducs to one manner every subject he treats. The lines to his dying brother, the wedding songs for his friends, the epitaph on his housckeper, and the recipes for commery charms, are nttered alike in one voice and in one rigid though lovely tunc. And in his choice of subjects he exercises mone of the fine seleetion that distinguishes his dietion; his conscious art is a thing of words only: in his themes he is at once almost the coarsest and the daintiest of English poets. "This imperturbable mamner. itself exquisite, becomes in the handing of shockingly different themes llerrick's chief limitation; here is folt a certain hardness of character, an ill-proportioned sympathy or some deep defect of heart. But this impression is partly corrected elsewhere in his work.

The themes of Herrick's secular verse, upon which his fame rests, are given with characteristic confusion in the first puent of his book. He sings of youth and love-a Renaissance motive from which his chewriuness or his limited sympathy subtracts most of the Renaissancesadness at the passing of beauty. Ile sings of his own numerous loves in the Iloratian manner, leaving his admirers room to ponder whether be ever loved at all. He sings in his kindliest ycin of fairy lore, and of commtry holidays; he identifes Renaissance Springtime motives in the native village coremonies around him, and gives to the English May festival something of the significance it had in Provence: and he is the first writer to chronicle at length that old English Christmas spirit which Irving and Dickens recovered. No poet who writes of such subjects with such delight can be altorgether unsympathetic, and in the verses which are frankly ahout himself there is a frequent mote of human pathos that partly disarms criticism of his less felicitous themes.

It is not surprising that his 'Noble Numbers' are little read; in them as in his secular verse he is the technical experimenter, the conscions artist, where conscious art is out of place. Put in the 'Christmas Carols.' in the 'Graces for Chrildren,' in the fine thongh fantastic 'llis Savinur's Words Croing to the Cross,' in the epigram 'Riches and Poverty') and in the lines that Swinburne praised, 'Devolion Makes a Deity.' he shows fecling and thonghtfulness not unwortly of England's tradition of devont country. parsons.

Bibliography- The best editions are those by Grosart, Saintslury (Akline), and Pollard, with an introduction by Swinlurnce in the 'Muses' I ibrary.' For criticism, consult: 'Introductions' to the above: Cosse, in 'Seventeenth Century Sturlics': Nalrich, in 'Ponkapog Papers,' and W'ard's 'English Poets.'

John Erskine,
 Associate Professor of English, Amherst College.

Herrick, Robert Welch, American novelist: b. Cambridgc. Mass.. 26 April 1868 . TIe was graduated at Harvard in 1890 and in 1805 became professor of Figlish at the ITniversity
of Chicago. 1 lis literatrs stok unsplas-muk 1 finish, white his studics of character atre bond keco and diserimuating. fle has publislod: "The Man Who 11 ins' (ISO) $)$: 'Literary Lose Letters and ()ther Storich' (İ8g() ; "Iloure's Dilcmmas' (INyS): 'Compes sition and Rhetoric" (ISgo) ; 'The II'ch of Lifc' (Igoo) ; 'The Keal World' (I901): 'Thuir Child' (1903); 'The Common Lot' (IgO4) ; 'The Alemoirs of an American Citizen' (1905) ; ctc.

Herrick, Scphie McIlvaine Bledsoe, American microscopist: b. Ganlubr, ()hw, 26 March 1837. She was editor of the 'Sunthern Review' 1875-8, and has sinc been connected wath the cditorial stafí of 'Scribner's Magazine" and its successor, 'The Century:' She has publisheel "Wonders of Piant Life under the Mieroserpe" (1883): 'The Larti in Past Iges': '('hapters in Plant Life'; 'A Century of Sonness' (1902).

Herring. The typical fishes of the family Clupeide (q.v.), to which also belong the shasi. alewife, sardine (qๆ.:) amt other iood-fishe. the numbers of which consumed makes this the most important coonomically of ail iamilies of fishes. The true or sea-herrings belong to the genus Cluped. The common herring (C. harcongus) of both sides of the Nomp - Itlantic swims in enormons selools containing countless numbers of individuals packed as closely ats possible over areas of oftem 0 to 20 square miles. The herring is a migratory fish, but its mosements are so complicated that much mystery still clings to them. The most satisfactory conclusions have been arrived at by a German commission appointed to study the natural hisony of the Baltic, etc.. which concluded that the herrings five in the decp water off the coaste which they approach periolically chicfly for the purpose of spawning; that there evist a large number of distinct races, differing in size form, times of spawning, and varions other peculiatities, and that each of these races swims in suparate sclools, which move independently and have difterent seasons and grounds inr spawning. Spawning takes place at varions seasmus. according to bocality, some schools spawning in the late winter, othors in the epring. and still others during the autumn months. The eges are small and adhere in masess to seaweerls, stones, etc., on the hotom. Viast mmoters are thus deposited in certain fayored localities to which haddock and other fishes are attracted for the purpose of deworing them. The number of eggs produced ly each fish is not especially large, being from 10,000 to 50,000 , lut nevertheless the natural productiveness of the herring has been sufficient to overcome inroads caused by the fisheries and the much greater destruction due to the hordes of bituefish, sharks. porpoises, gulls, and other enemics which accompany the schools in order to prey upe on them. Having only few and small tecth. the herrings cannot capture active living croatures. but, as they swim with quick. nervous movements. water is being continually taken into the month and strained through the gill-rakers. By this means great numbers of copepods and nther minute forms of life, especially lareal crustaceans, annclids, and mollusks, are retaincel within the mouth and swallowed.

The herring fishery is of stupendous importance to the enuntries of northern Europe.

This is especially true oi the Scandinavian countries, whose hardy fishermen take frem the sea annually not less than $1,500,000,000$ punds. Scotland takes from $150,000.000$ to 200.000 .000 pounds, and the other jnaritime naticns usually smaller quantities. On this side of the Atlantic the fishery is much less extensive, but is growing. and is no doubr destined to reach a great magnitude, especially in the waters of British America, which iurnish each year about 250 000,000 pounds. Although found as far south as North Carolina, the herring has a commercial importance only north of Cape Cod, the Jew England fisheries, which are chietly confined to Maine, yielding in 189864.589 .000 pounds, worth $\$ 600.000$. Most of these were sold iresh. either for food, or, early in the season, for cod bait; of the remainder, about $7,000.000$ were salted and nearly 4.000.000 smoked. A favorite preparation is the partly snmoked form of "bloaters. ${ }^{D}$ Large quantities of young herrings are packed and sold as sardines. In the prosecution of the American fisheries use is made chiefly of several iorms of drift or gill nets and seines; under faworable conditicns of great tidal movements. as in the Bay oi Fundy, great numbers are captured in weirs.

A closely similar species (C. pallesii) is iound on the Pacific coast oi America, and is the object of a rapidly extending fishery. Oi the anadromous river-herrings or alewives (Pomolobus), two species are of great commercial importance on the Atlantic coast of the United States, particularly southward, though the fisheries extend from Maine to Florida. They enter the rivers to spawn about the same time as the shad, with which they are caught chiefly in pound nets and seimes. In $5896,2.500$ persons were employed in the fishery, the product of which was about $50,000.000$ pounds, valued at $\$+60.000$. The greater number are smoked.

To the extensive literature of the herring the following references will cerve as an introduction: Goode. 'Fishery Industries of the United States' ($\mathrm{t} \mathrm{ES}_{4}$); Smith, 'Alewife Fisherics of the United States,' in Roport of T'nited States Fish Commission for rioas: Cunningham. 'Marketable Marine Fishes': 'Report of the Commission fir the Scientific Investigation of the German Seas) (a very imp rtant contributur in German): 'Annual Reports' of the United States Cimmissioner of Fisheries.

Herring Gull, the most numerous and widely spread oi gulls, common in the breeding stason throughuit all the in rtherly parts of the werld and migrating solshward in winter. The silvery sheen of white and pearl-blue plumaze are indicated in its technical name - Larus argentotus): and its habit of i linwing scheols of fi-hes and pieking them up gives it the name of hering-gull. The same nanac is citen given. hic wever. it several cthere of the smaller gulls. See Gills.

Herrnhut, hërn'hoot, a small town or village in the kingdom of Saxony: me the circle and 18 m:les southea-t of Bauzen. It is situated at the in of of Ilutbers Mountain, 1.054 feet above the level of the sea. It was iounded by Comen Zinzendori $1 ; 22$, ior the use of the Moravian Brethren, and it aiterward became the metronolis and centre of that sect of Cliri**ians. who, frem this town, are often called Herrmhuters. (See Ľiited Bretiren.) The town
is built with great regularitr, and distinguished by the order, cleanliness, and stillness which prevail in it. It has a great variety of manufactures, principally of linen. calico, tobacco, and of articles in gold, tin. leather, etc. The objects of curiosity are the observatory and the burial-ground on a neighboring hill, resembling a garden, and called by the brethren "Garden of Peace." Pop. 1,200.

Her'ron, Francis Jay, American soldier: b. Pittsburg, Pa., 1; Feb. 18.37 ; d. New York 8 Jan. 1902. He was graduated at the Western University of Pennsylvania in 1854 and on the breaking out of the Civil War commanded the Governor's Grays in the First Iowa regiment. In 1861 he was made lieutenant-colonel of the Ninth Iowa regiment. In 1862 he received the commission of brigadier-general of volunteers. Early in 1863 he joined Gen. Grant at Vicksburg and commanded the leit wing of the besieging iorces as major-general (IS6z), until the capture of the city. He subsequently captured Yazoo City. with its boats and supplies; commanded the Thirteenth army corps, and broke up the traftic along the Rio Grande. assisted President Juarez against Maximilian's iorces. and in June 5865 received the surrender of the Coniederate forces west of the Mississippi. In I8,3 he took up his residence in New lork, where be practised law until his death.

Herron. George Davis, American clergyman and social reformer: b. Montezuma. Ind., 21 Jan. 1862. He was educated at Ripon College. Wisconsin. and also studied in Europe. He became pastor of the Congregational Church in Lake City, Minn., and while there made an address ("The Message of Jesus to Men of Wealth") before a Ninneapolis club, which attracted much attention: he subsequently receired a number oi calls from important churches, and went as pastor to Burlington, Ia. Here he organized a club for the discussion of sccial questions, which was largely attended. especially by workingmen. In 1893 he accepted the chair of applied Christianity at Iowa College, resigning in 1900 on account of the objecticn to his teachings: he then organized a religious and socialist movement known as the "social crusade." In toot he divorced his wife, and married a second time, an action which aroused much criticism. He has written: 'The Larger Christ' (r8or): 'The Call of the Cross' (189z): A Plea for the Gospel' (t\&oz) : 'The New Redemption) (t80.3): 'The Chistian Society' (189f): 'The Christian State' (180ミ): 'Social Meaning of Religious Experiences' (iSgi): 'Between Cæsar and Jesus' (tig9).

Herschel, hèr'shēl. Caroline Lucretia, sister of Sir William Herschel (q.w.). German astronomer: b. Hanover. Germany, io March t50: d. there 9 Jan. 1848 . In her 22d ycar she went to England to reside with her brother. then organizt in Bath. When William abandnned his former profession in iavor of astronmony the became his helpmate, and when he was appointed private astronomer to George III. she discharged efficiently all the duties of an as istant astronomer, for which she was allowed a small salary. Athough these duties were very arduous. she yet found time to conduct a serice of observations of her own with a small Newtonian telescope her brother had made for

her. She devoted special energy to the discovery of comets, and was so successful as to be entitled to claim the priority of discovery of at least five. Several remarkable nebulie and clusters of stars included in her brother's catalogue were described from her original observaions. In 1798 her valuable work, "A Catalogue of Stars taken from Mr. Flamsteed's Observations, with introductory Remarks by W . Herschel,' was published by the Royal Society. On her brother's death in 1822 she returned to her native country, where she died after an unusually protracted life, distinguished by useful scientific labors. The Royal Society recognized the value of her labors by bestowing upon her in 1828 their gold medal. and some time afterward by conferring upon her the privileges of honorary membership.

Herschel, Sir John Frederick William, English astronomer; only son of Sir IVilliam Herschel (q.v.): b. Slough, near W'indsor, 7 March I792; d. Collingwood, Kent, II May 1871. He was educated at Eton and Cambridge. Mis first publication was A Collection of Examples of the Application of the Calctults to Finite Differences’ (I820), but it was not until the death of his father that he devoted his special attention to those astronomical researches which have made the name of Herschel so famous. He limited his first exertions to a reexamination of the nebulae and clusters of stars discovered by his father, and in iS2., with James South, reported to the Royal Society the position and apparent distances of 380 double and triple stars, obtained by more than 10,000 measurements. This memoir attracted the notice of the French Academy, and they woted it their astronomical prize; and two years later the gold medal of the Royal Society was awarded to each of the astronomers. The results of the re-examination were given in 18,33 to the Royal Society in the form of a catalogue of stars in order of their right ascension. The catalogue contained observations on 525 nebulæ and clusters of stars not noticed by his father, and on a great number of double stars, between 3,000 and 4.000 in all. His 'Treatise on Soumd' appeared in the (Encyclopredia Metropolitana' in 1830, as did his 'Treatise on the Theory of Light' in 1831. ir: which year also appeared his well-known 'Preliminary Discourse nu the Study of Natural Pliflosophy:, one of the most charmingly written books on science. In I83I he was created a knight of the Royal Hanoverian Order. In IS33 Herschel published in Lardner's 'Cabinet Cyclopædia' a 'Treatise on Astronomy,' stubsequently enlarged into 'The Ontlines of Astronomy,' of which several editions have been published. Before this, however, he had undertaken a private expedition to the Cape of Good Hope for the purpose of carrying ont in the southern hemisphere observations similar to those he had made in the northern. Four years were spent near Cape Town (1834-7). His great object was to discover whether the distribution of the stars in the southern hemisphere corresponded with the results of his father's labors, prosecuted mainly on the opposite side of the Galactic Circle. That the observations might be strictly comparable they were made by the same method as $\operatorname{Sir} \mathrm{W}$. Herschel. and with a telescope of the same optical power. The whole number of stars counted in the telescope amounted to 68,948 , in-
cluded within 2,299 fields of view. By a computation based on the star-gauges in both hemispheres relative to the Milky W'ay, Sir John found that the stars visible in a reflecting telescope of 18 inchos apertute amounted to $5,331,-$ 572; and, more than this, the ntmmer really wisible in the telescope was vastly greater, for in some parts of the Milky Way the stars were found to be so crowded in space as to defy all attempts to count them. 'l'he results of this vast labor were published in 1847, expense being borne by the Duke of Northumberland. On Herschel's return to England in 1838 he was received with every public honor, and on the queen's coronation was created a baronet. In IS\& he was president of the Royal Astronomical Society. He was buried in Westminster Abbey:

Herschel, Sir William, Anglo-German astronomer: b. Hanover, Germany, 15 Nov. If38; d. Slough, near Windsur, England. 25 Aug, IS22. He went to England in 1757, and at first was employed in the formation of a military band. Although enthusiastically fond of music, he devoted his leisure hours to mathematics and astronomy: and being dissatisfied with the only tclescopes within his reach, the set about constructing one for himself, in which undertaking he succeeded, having in 1774 finished a reflecting instrument of $5^{\text {t/2 }}$ feet. Encouraged by his success he proceeded to complete larger felescopes, and from this period gradually withdrew from his musical engagements. Late in IJ79 he began a regular survey of the heavens, star by star, with a 7 -foot reflector, and after 18 months labor discovered, I3 March i-Si, a new primary planet, named by him the Gcorgium Sidus, but now known as Úranus. George 111. gate him a pension, enabling him to devote the rest of his life to astronony: At Slough, he commenced the erection of a telescope of the dimensions of fo feet, and completed it in 1787. Its diameter was $4^{1} 2$ feet, and it weighed 2.118 lbs. With this powerful instrmment he continued to prosecute his discoveries, regularly communicating the results to the Royal Socicty till ists. In 1783 he thought he had cliscovered at volcanic mountain in the moon, and from further observations made with his large instrument it $1-8 / 7$ found loe was the victim of an optical ilho sion. He discovered two of the satellites of Saturn, and the fact that his system of rings rerolved, and he measured his rotation and that of Venus, annommed to the world that hisere were binary stars in the heavens, etc. 1lerechel recoived much assistance in making and recording observations from his sister Caroline (q.v.) : and latterly his brother, a skilfal optical instrumentmaker, lent him valuable aid. In 1802 he laid before the Royal Society a catalogue of 5.000 new ncbula, nebulous stars, planetary mebula, and clusters of stars he had discovered. See 'Herschel, his Life and W'orks? by llohdon (1881).

Her'schell, Farrer, Lord, English lawyer and statesman: b. London, England, 2 Nor. 1837; d. Washington, 1). C.. I Marclı 1899. He was edncated at University College, London, and the University of Bonn. He became a barrister of Lincoln's Inn in 18(0): was recorder of Carlisle 1873-80: solicitor-general 1880-5; and lord high clanecllor in 1886, and again i892-5. IIe was a member of the Venezuela and British Guiana boundary arbitration tribumal in 1897,
and was subsequently appointed one of the high joint commissioners from Great Britain, on the Anglo-American Commission, designed to settle existing differences between the Lnited States and Canada. of which he becarne president. During the sitting of the commission in 11 ashington, D. C., in February I8g9. he had a severe fall, from the effects of which he died shortly after.

Hertel, hěr'těi, Albert, German painter: b. Berlin 19 April 1843: studsed at the Berlin Academy, where he became professor in 18 -5. and was made a member in 1901. Among his landscapes are 'Olive Harvest in Capri' (18 ;-2); (After the Storm on the Coast of Genoa' ($18-8$) ; 'Road Between Rapalla and Santa Margherita' (1So2); and 'View in the Roman Campagna) (iSg6).

Hertel de Rouville, ãr-tēl de roo-vèl, Francis, Canadian soldier: b. Three Rivers, Maurice County. Quebec, I643: d. I;22. He was captured in 168s and tortured by the froquois who were so struck by his fortitude that they adopted him into their tribe. from which he escaped and as one of Frontenac's lieutenants performed some remarkable exploits against the English from whom he captured Falmouth, now Portland. Louis SIY. tardily rewarded him with a patent of nobility.

Herter, Albert, American artist: b. New York 2 March is-1. He studied painting at Paris in the studio of Iean Paul Laurens. He has twice risited Japan and the years spent there have strongly influenced the character of his work. He is member of the Society of American Artists. of the IVater Color Club, and of the NVater Color Society.

Hertz, Heinrich, hin'rĭk hěrts, German physicist: b. Hamburg 22 Feb. 185 : d. Bonn 1 Jan. 1894. He studied at the Cniversity of Berlin, and in I88o became assistamt to Helmholtz there. In iSS_{3} he was lecturer on theoretical physics at the University oi Kiel; in 1885 was professor of physics at a technical school in Karlsruhe: and in 1889 succeeded Clausius as professor of physics at the University of Bonn. His mosi important work was his experiments with electricity, by which he proved that electricity can be transmitted in electromagnetic waves with the same rapidity as light, these waves showing the same phenomena of refraction, polarization, etc., as light waves. IIe thus further developed and attested the truth of Faraday's electro-magnetic theory of light. It is by means of the Hertzian waves also that wireless telegraphy (q.v) is made possiblc.

Heruli, her'u-li, a Teutonic tribe first heard of in hisiory about the maddle of the 3d century, who passed south from the coast of the Baluc and =wept with the Goths into the castern pronimes of kome and iounded an empare on th. Ganube. I hey appear as remiorememts of Udoacer in his invaston of the western provinces of Rome in $+\frac{0}{}$. Their king Studulph former an alhance with Theodoric the Great. but they were afterware conquered by the Longubardi. I part ei them were driven toward Scandinavia, a part lingered on the borders of the Roman empire. They did good scrvice to the Byzantine cmpire, but after encount ring the Vandals in dirica, and the Ostreme th- in laly, they vanished from history:

Herzel. Theodor, Jewish leader of political Zionism: b. Buclapest 2 Nay 1800 ; d. 3 July $190+$. He was educated in Vienna for the law, but devoted himseli almost exclusively to journalism and literature. He was at first Paris correspondent and later literasy editor of the Inse Freie Pressi, and wrote cnonedies and dramas. In I 896 he published his 'Jujenstaat,' the English transiation oi whicla I'A Jewish Siaie, made him the political leader of the Zionist movement; and his efforts were at once centred 111 this fropaganda. 'Die ineli' of ienna was established by him in 189%, and in that year he planned and was elected president of the first Zionist Congress held at Basel. At every subsequent congiess (the sixth having been held in Augnst 1903) he was unanimously re-elected. In isgS he inaugurated a series of dinlumatic interviews with various sovereigns and statesmen. At the Hague Peace Conierence he was reccived by many of the delegatas. In the Zionist movement he was officially the chairman of the Grosses Actions Comite and oi the Tienna executive commitee. and a member of the council of administration. Among his further works are: 'Das Newe Ghe:io' (1903). Ii ected against the Jewish element that combated his views: 'Almeuland' (1903), a fictional presentation of Zionistic ideas.

Herzegovina, hërt-sĕ-gō-vēnnā. AustriaHungary. a province of the Balkan peninsula nominally belonging to European Turkey, but since $18-8$ administered along with Bosnia (q.r.) by Austria. It is bounded on the north by- Croaria and Bosmia, on the east by Bosnia, on southeast by Montenegro, and on the south and west by Dalmatia; length, northwest to southeast, 140 miles: breadit, so miles: area, 700 square miles. The suriace is generally mountainous, covered by ranges belonging to the Dinaric Alps, sloping gradually to the Adriatic, which receives all its drainage chiefly by the Sarenta. It contains many fertile valleys. and raises cxcellent tobacco. The exnorts consist chiefly of hides, tallow, cattle, wool, wax, and fruit. Dostar is the chief town. The province was conquered by the Turks in 1465. An insurrection. causcd by Turkish misgovernment. broke out in July 1875 . and was the cause subsequently of war beiween Russia and Turkey. In accordance with the Treaty of Berlin (18-8) the province was occupicd by Austrian troops, and is now ruled by an Austrian military governor. Pop. ahout 250.000 .

Hesiod, hësi-od, Greek poet: b. Ascra, a village of Bootia. at the foot of Mount Helicon. whence it is called the Ascraan. But little is known ai Hesiod with certainty: Eyen the age in which he lived camot be preciscly determined A very common tradition relaics that in a poc:ical contest with lfomer at Chalcis, he came off victorious. Herodotus cails him a contemporary of Homer, and says they lived 400 vears before himself (about goo b.c.). In his 'Wrorks and Days) ($1 / 22$) Hesiod says that he belnnged to the period immediately following the Trojan war: but there are many reacon= for supposing the.t be lived at a later period. Of the numerous "1 --ks attributed to him three only remain. These are the 'Theogony:' a collection of the oldest fables concerning the birth and achicvements of the gods, arranged so as to form a connected whole. It is the most
important and difficult of all his works. Witls it was probably ecmected the lost 'Catalogues of 'Women' (or the Eioia megulai), to the fourth book of which the second fragment (the 'Shield of 1 lerackes') must have belonged. This is evidently composed of three distinct parts, only one of which is occupied with the real description of the shicld. The third fragment is a didactic poem. 'Works and Days' (Ergn, or Erga kui hemerai). It treats of agriculture. the choice of days. ete., with prudential precepts concerning elucation, domestic economy, navigation, ete. The Hesiodic poems are inferior to the liomeric in almost every respect. Hesiod's complete works have been translated into English werse by Elton, and Bohn's Classical Library contains a prose version.

Hesperides, hěs-pěriri-dēz (dangliters of lesperis). the guardians of the gold apples which Ge (the Earth) had given to Hera on her marriage. They were the daughters of Atlas and Jlesperis. but their parentage is differently represented by other writers. They were four in number and their names were Agle, Arethusa. Erytheia, Hesperia. or Hesperarethusa. They were assisted in the charge of their garden by the sleepless dragon. Ladon. It was the twelfth labor of Heracles to bring the golden apples of the Hesperides to Eurystheus.

Hesperornis, hés-pé-rór'mis, a remarkable extinct form of bird, the remains of which are met with in the cretaceous deposits of Kansas. As described by Prof. Marsh, it possessed small pointed reptilian teeth, which were implanted in a deep continuous groove, somewnat like those of Jehthyosturus. Its brain was smatl and more reptilian in type than that of any adult bird as yet exammed. It appears to have been a large diving-bird, measuring over five feet from the point of the bill to the end of the toes. Its wings were rudimentary; its legs powerful, and it , feet well adapted for rapid progression in water. The tail was broad, conld move up and down, and was probubly ised as a rudder or swimming-paddle. The long slender jaws were united in front only by cartilage, as in serpents, and had on eavh side a joint which admitted of some motion. so that "the power of swallowing was doubtless equal to almost any emergency." Consult: Lucas, 'Animals of the 'Past' (190i).

Hesperus, hěs'pë-tǔs, among the Greeks the planet Venus, when it appeared as evening star, personified as the divinity that at weddings leads the bride to the arms of her husband. He is called Phosphorus or Lucifer as a morning star, and is styled the son of Eos (Aurora) and Cephalus. He was also known as son or brother of Atlas, and brother of the Hesperidx.

Hesperus Peak, an elevation of the La Plata Mountains, in the southwestern part of Colorado. Gold and silver have been mined in the vicinity. This peak is one of a group of high peaks in the vicinity of the State; the height is about 13.135 feet.

Hesse, hěs, or Hessia (German. Hessex, hěs'sěn), Germany, an ancient territory inhabited in the time of the Romans by the Catti or Chatti, an old Germanic tribe. U'nder the Frankish kings Hesse was governed by counts, the primeipal of whom were the Counts of Gudensberg of the name of Giso. Philip 1. the Generous, who
:ucceeded to the suvereggnty of the whole country in 1500, and who was the earnest and zealous friend of the Reformation, divided his dominions amone bes four sons. The eldest, William $1 \mathrm{~K}^{\circ}$. , hataised one half, inchuding the capital, Cassel: Louis 11. one fourth, comprising Marburg; Phinp 11. one elghth, with Rlveinfels; and (ienrge 1. alon an cighth, with 1)armstadt. But Philip dying in ${ }_{5}^{5} \times 3$, and Louis in 160\%. without children, there remained only the main branches of llesse-Cassel and liesseDarmstadt (qq...).

Hesse, Grand Duchy of, formerly IIessenD.irmst.idt. liermany, a state consisting of 13 divisions. Eleven of these are small. six surrounded by Prussian territory, and five on the borders of Baden and Wurtemberg. Ihe other two portions, forming about nine temhs of the whole, are separated by a belt of land stretching east to west. and including part of the Prussian dominions. The more southerly of these portions forms the two provinces of Rheinhessen and Starkenburg. The northern portion, iorming the province of Oberhessen, is surrounded by the Prussian provance of HesseNassau; area of whole grand duchy, $2.96 \not$ square miles. Oberhessen is generally mountainous: Starkenlurg and Rheimhessen are also mountainons; in the sonthwest the Domersberg, a northern ramification of the Vosges, rapidly subsides to the extensive p!ains belonging to the valleys of the Main and the Rhine. To the latter river the whole surfiace of the grand ducly belongs, with exception of a small portion in the north, drained by the Eder and 1Fulda. affluents of the Weser. The climate is greatly diversified, varying with the altitude. The soil, particularly in the provinces of Starkenlhurg and - heinhessen, is fertile, and grain of all kinds is raised in large quantities. Hemp, flex, potatoes, and rape-seed also are extensivcly grown, and in particular districts tobacco and hops. The vine forms an important object of culture, and fruit is abundant. Horses, cattle, sheep, and swine are numerous. The minerals include iron, coal, lignite. and salt; and there are good quarries of sandstone. limestone, whetstones, basalt. and roofing-slate. The most important manufacturing industry is linen. The principal towns are Darmstadt, the eapital : 11 ainz, Giessen, Bingen, and Worms. The grand duchy is an hereditary monarchy: The constitution dates from 1820, but was somewhat modified in 1856 and 1872 . The legislative power is vested partly in two chambers-an upper, composed chiefly of nobility and citizens, appointed for life bio the grand-duke; and al lower, composed chiefly of deputies from the towns, villages, and rural districts. About two thirds of the inhabitants are Protestants. Pop. (1000) 1. 1 m, 803 . The grand-ducal line was founded in 1567 by George I. son of Philip the Generons. Biy the death of the landgrave of Ilesee Humburg. in 1866 . Louis 1II., grand-duke of llessen Darmstadt. succeeded to his dominions. In the German war of that vear Jlessen-Darmstadt joit.ed Nustria. Its army was nearly annililated at Friedberg, and it was deprived of the newly-acquired landgraviate and other districts. In IR,o the grand duchy of Hesse entered the German empire. Louis fV., who succeeded Louis 111., died in I\&gz. He was the husband of Princéss

HESSE－CASSEL－HESSIANS IN THE REVOLUTION

Alice of Great Britain，and thei：son．Enest Louis，is now the reigning sovereign．

Hesse－Cassel，hés－käs＇ēl，or Electoral Hesse，Germany：a former electorate and independent member of the Germanic Conied－ eracy：between Rhenisb Prussia and Bavaria， containing $+\rightarrow 30$ squere miles，with aboui 850 ，－ 000 inhabitants．mostly Prctestants．If was founded by the eldest son of Philip the Generous． the Landgrave Whilism IV．．surnamed the IVise $(150-02)$ ．For a iong period ilee lustory of Hesse－Cassel was a nartative of c nticts be－ tween the peopte ior political ireedom and the elect：for absoluie ruie．The demands of the peopie were on several occasions strenghened by afpeals to the elecion irom the Prussian geverm－ ment On the outbreak of the Geman war oi isoó the elector joined Austria，and his ier－ rit ry was occupied by Frussian roosns．On ilee conclusion of the War Hesse－Cas－cl was an－ nexed to the Prussian terniozics．and now icrms part of Hesse－Nassau（qv．）．

Hesse－Nassau．hẻs’nås＇à．or Hessen－ Nassau，bẻs sèn－r2ãs＂：om：Germany，a p－ovince of Prussia．Which includes the iormer princi－ pality of Hesse－Cassel（excep：some sma：l dis－ tricts，the greater part of the iormer duchy of Nassau，that frrien of the i mner land－ graviate of Fiesse－Homburg which lies on the fight bank of the Rhine．the terriory and iown of Franki rt．and some small disiricts ceded by Hessen－Darmstadi and Bavaria．The prov－ ince is bounded by the Prusian prownces of llestphaiia．Hanover．Saxony，and the Rhine－ land．the principality of 11 aldeck．the srand duchy of Saxe 11 eimar，and the bingdem of Bavaria；area，óo1s English square intles．di－ vided into the two governments（ Regicrungs－ bezirhe）of Cassel and 11 iesbaden．The sreater pari oi this province has a rugged suriace． party covered by branches of the Harz M Mun－ tains．The principal rivers are the Werra．Lahn， Ohm，Rhune，and Main．Arabie land is lim－ ited．and cuttivation is chichly confined to the narr w valleys and lower hill s1 pes，am－uns－ ing to ahu ut two niths of the whe surace． The principal crips are ree barley，and cats． Pitar es z！s？ase extensive y gromn．Fruit is tolerally al andan：and a sreat part si the 1 si：－ ier dintre：$=i=c$ vered with extmole i res：－ which（mpl y a of reiderat le number＋i the in－ ha itants，anil invoish one of the mot valuable sources i revenue．There are varinus minerals， and valmalle mineral water：at H mburg，Wies－ baden，etc．Tine manuiactures consist chiefly ci w twn－are Cassel，the eapital，Wicsbaden．and Frankilirt．Pap．（1000）1．心．J．3：0．

Hessen－Darmstadt，hi－xin－darm＇$=$ tat．See He：s．GKıND DじCHy IE

Hessian Fly．Sfe Wheに lNsect Pests．
Hessians in the Revolution，The．In the 18th century Germany wa－dy led min nearly 300 suereisntic：each maintaining a cotirt and a maliary i ree．The poosble revenue was citen very limited，the burden－were ${ }^{1} \neq 1$ in－ tolerable，and the princeling：we：fite pre i－ ligate and crucl：they did no need $i^{1 /}$ ir ires ior hame deien－e，and were glad tom ke moy for teme？ hire，though except in one ease they remmed no
taxes on the people from the receipts．There was also a lingering tradition that soldiering was an honest trade line any other，and that it was useiul for belping sovereigns to keep or－ der：especially to put dewn insurrections，which were wicked．This，however，did not apply to rulers hiring out their troops and pocketing the money：and not only the liberal school of writers and public men，but enlightened despors like Frederick the Great．denounced it．But Ensiand had not suficient army iot the Ameri－ can 11 ar，and wished drilled troops rather than taw rectuits．and after vainly endeavoring to tire 20.000 Rusian soldiers．iumed to the Ger－ man princes，with some of whom she had dynas－ ic zeations，and all of whom were so eager to sell their wares that two of them offered soldiers ior hire immediately after Bumher Hill．without waiting ：o be asked．Only those which could iumish considerable numbers mere woth treat－ ing with and all the German auxiliaries were firally hired from six states：about hali being irom two Hessian states，and by ：ar the largest m re than three times greater than any other） irom one All were indiscriminately iermed ＂Hessians．＂as all German imm！grams were iumery ca＂led＇Paiazines．＂The first treaty was made with the Duke of Brunswick， 9 Jan． 1，－0．io 4.300 tronps：reinicacements or re－ placements were sent year by year．till the to：al had amowated to $5-, 23$ ．cniy 2．$\%$ of whom ever remrned．The second was with the Landsrave of Hesse－Cassel。 I三 Jan．1\％：0，for $12 . \mathrm{Sos}$ ：finaliy increased to 16.992 ，of whon 10.402 returned． The ontingents from the others，under various treaties，amounied io－Hesse－Hanau， 2.038 ； Anspach－Baireuth．2．333：Waldeck．1．225：An－ hait－Zerlst．1．1ミュ．Tosal sent io America． 20.8% oi whom $1-.313$ retzrned：the rest eirher died or remained as citizens．There were about 20.000 in America at any one tinne afier $2 \pi, 6$ ． These iorces cosi Great Briain in subsidies and incicientals abcut Ex．－－0．000：besides the lump sum，it was obliged to replace the dead．and at least in one case count three wounded men as one dead one．

Ablut 18.000 were slipped in $17-6$ ：the com－ mander－in－chiei was Lieut－Gen．Philpp von Heister．a reteran of the Seven lears War． The first division of same S．000 landed at Staten Is＇and．Is Alugust：they included a body of chasseurs and grenadiers under Lieut．E II．F． von Donop，an able and daring onncer．They tok a leading part in the battles of long 1 lland and White Plains，and all the operations int capturing Xew lork：and stemud Fort Washingion with a loss of so killed and 2－6 w．atded．During thes time the sec nd division oif at u：4．000．under Lieut－Gen．Wilhelm von Knythawen，jomed theml 11 ashington＇s sur－ prise at Trenten fell on Col．Rall＇s brigade of Germans．Rall was a regular officer whose con－ tempt i－r the ragged Americans surpassed that of the m st arrogant Rriton，and he reinsed to take the m－t clementary precautions：he was m rta．fy wounded．Early in $5:-\mathrm{H}$ Heister vas superseded by Knyphausen：Howe finding the it rmer intractable，and the Landgrave of Hesse laying the blame of Trenton upon him． Meantime the Brunswichers and a Hanau regi－ ment under Baron von Riedesel had made a clearance of Canada；and in $5 \%-1$ they were
joined to the expedition of Burgoyne, in whom Riedesel had no failh. It was from this division that Baum's detachment was sent off to raid Vermont, and to meet its fate at Bermington, with Breymann's sent to support it; 365 of Baum's $37+$ Germans did not return, and 231 of Breymann's were killed, wounded, or captured. Riedesel and his remaining men shared in Burgoyne's surrender. Around Philadelphia, at Brandywine and Germantown, Knyphausen's command was of the first importance; and at Red Bank Donop tried to storm the American fort and was mortally wounded, his command losing 82 killed and 229 wounded, besides 60 prisoners. In the three years' occupation of Rhode Island, from the fall of $17 \% 6$ to that of $1 / 79$, about half of the British corps was Hessians; and they liked, and were liked by the inhabitants,- when they departed all persons, but especially women, were prohibited from appearing at the Newport windows, in fear that the soldiers might not wish to go. In the South, at Savanualı, Charleston, Pensacola, Baton Rouge, etc., they left many dead; and shared in the hloody drawn battle of Guilford Court House. Finally, at Yorktown, they bore the brunt of the actual fighting, losing 53 killed and 131 wounded.

The Germans did their duty bravely and faithfully, with loyalty to a service they had been sold into to no profit of theirs. Very few deserted, in spite of constant inducements held out to them; a policy which Washington strongly deprecated. Probably one reason was, that they were at once recognizable from their speech. Nor were they in the least inhumane or rapacious: the charge that they were cruel barbarians was a mere political weapon of the time. In a strange country, they would have run the risk of being murdered in reprisal had they been such; but in fact they appear to have been well-meaning men. Of the 29,867 who came over, only $1 \% .313$ returned to Germany. Of the 12,554 remaining, 548 were killed; some of the total 1,652 wounded died; some disappeared: but a great mumber are known to have remained and settled in the country. Grants were given them in Nova Scotia, but many scattered as chance directed. See Lowell. 'The Hessians in the Revolution' (1884).

Hestia. See Vest.s.

Hesychius, hĕ-sik \mathfrak{l}-ŭs, the author of a cireek lexicon, which has probably come to us in an abridge 1 form, and which he partly collected from former dictionaries, and partly enlarged by many new words and examples from Homer, the dramatic and lyric poets, the orators, physicians, and historians, was a native of Alexandria, and according to the best authorities flourished about the end of the the century after Christ. Of the circumstances of his life nothing is known. His lexicon possesses great value, especially of an antiquarian kind, and is the most useful for the study of the Greek language of all the ancient critical writings that are extant. The best editions of his lexicon are Alberti and Ruhnken's (Leyden 1亏 $+6-66$, two vols. folio), and that prepared by Sclmidt (Jena, five vols. 1867-68; in a smaller form, two parts, 1864 ; second edition, 1867).

Hetæra, hě-tērrạ (Greek hetaira, a female companion), the name given by the Greeks to a mistress, as opposed to a lawful wife. But the word had various shades of meaning, from a mistress, who might lec a wife in all but the lcgal qualification of citizenship, down to a harlot. The beauty and accomplisluments of many of the heterex oceasioned their society to be sought by men of the highest eminence, even Plato and Socrates. No shame was attached to associating with them. Aspasia, the mistress of Pericles, is the most renowned of these hetare. (Sce Aspasia.) Heterre, less intellectually famous, were Lais, whom Aristippus the philosopher loved, Ph , ne, and others. I hey also became fanous for their connection with the works of art. Praxiteles made a marble and gold statue of the latter, and she was also the model for his statues of Aphrodite.

Heterog'amy. See Metagenesis.

Heterogenesis, hět'ë rō jĕn'ě sǐs, or Heterogeny. See Metagevesis.

Heteropoda, hĕt-ě-rop'ö-da, a group of small. pelagic, pectinibranch mollusks, which dwell together in the open sea, have the foot modified into a swimming organ, and are provided with a ventral sureker. The shells are spiral or shaped like that of an argonaut and seem as if composed of thin glass; indeed, the whole anmal is beautifully transparent. Heteropods occur in enormous abundance at the surface of the sea in all the warmer parts of the world, and their dead shells sinking to the bottom form a large constituent of the abyssal ouze. They are highly organized, have well developed eyes and other organs of sense, are bisexual, and produce eggs in long cylindrical cords. The young in their development pass through a trochosphere and then a veliger stage. All are predatory, seizing and feeding on the numerous minute forms of life about them. They are most active in the early evening, darling about with twisting motions like worms, usually on their backs. They use the ventral sucking-disk for attaching themselves to any ohject they may encounter. Three families, containing many species, are known, and their closest affinities are with the pteropods. Consult Kingsley, 'Standard Natural History, Vol. I. (1885).

Heterop'tera. See IIemipter.a.

Het'man (Russian, Ataman), chicf of the Cossacks, formerly elected by that people. He had the power of life and death, and was head of the army in time of war. Alazeppa in 1 ,o8 revolted against Russia, taking the side of Charles XII. of Sweden, and Peter the Great abolished in consequence the power and authority of the h.tman. Catharine 1I, suppressed the office and title it the province of Ckraine: it still exists among the Cossacks of the Don. In Poland the commander-in-chief of the arnis was styled hetman. and was appointed by the sovereign. The last elective hetman of the Cossacks in Russia was Platorf istr-1. Ont his death the grand duke, heir to the throne, was made hetman.

Hetty Sorrel, in George Eliot's ‘Aclam Bede) (tis50), a dairymaid whose unfortunate carecr. condemnation to death, and final reprieve form an important part of the story.

Hevelius, Johannes, yō-hän'něs hā-iă'lēoos, or he-véli-ūs, known also as Johanies Herel. Polish astronomer: b. Dantzic 28 Jan. 161 ; d. there 28 Jan. 1687. After visiting the principal countries of Europe he settled in his native city, and from 1639 till his death applied himseli almost exclusively to the study of astronomy. His 'Selenographia,' or description of the moon. published in 164%, was the first of numerous astronomical works of great value and authority on his favorite science. Halley, who risited Hevelius at Dantzic at the request of the Royal Society of London, of which Hevelius had been elected a member in $166 \nmid$ reported favorably of the correctness of his observations. In 1661 he observed a transit of Mercury: a triumph confined to Gassendi alone of all preceding astronomers. Hevelius ranks next to Flamsteed among the men of his day as a diligent and accurate observer of the heavens.

Hewres, hùz. Joseph, American patriot; a signer of the Declaration of Independence: b. Kingston, N. J., 1730: d. Philadelphia. Io Nov. 1:-7. He was educated at Princeton College, and about 1,60 be removed to Edenton, North Carolina. He soon became a member of the colonial legislature, and was a delegate to the Gereral Congress at Philadelphia 1ラ74-广 and again in 1Fig. After taking his seat he was appointed on a committee to "state the rights of the colonies in general, the several instances in which those rights are riolated or infringed. and the means most proper to be pursued for obtaining a restoration of them." and aided in the preparation of its report.

Hewett, hū'ēt, Waterman Thomas, American Germanic scholar: b. Mliami, Mo., io Jan. 18,6. He was graduated from Amherst College in r 869 and has been professor of German language and literature at Cornell Liniversity from 18 -o. He has been general editor of Macmillan's 'Gcrman Classics' since 1895 . and beside frequent contributions to periodicals has published among other works 'The Friesian Language and Literature' (1879) ; 'History of Cornell '"niversity' ($\mathrm{IS94}$).

Hewit, hūit, Nathaniel Augustus, American Roman Catholic clergyman: b. Fairfield, Conn., $2 ;$ Nor. i8zo; d. Ňew York 3 July 180%. He was graduated irom Amherst College in 1839 and was for several years in the Episcopal ministry. He became a Roman Catholic in 1846 and joined the Order of Redemptorists. He was later one of the founders of the Congregation of Saint Paul (Paulists) taking the religious name of "Au-gustine Prascis." and subsequently becoming professor and superior in the Paulist Seminary, New York. He wrote 'Life of Princess Borghese' (1856) ; 'Problems of the Age' (i\&G8): 'Light in Darkness' ($\mathrm{I} / \mathrm{F} / \mathrm{I}$) ; etc.

Hewritt, hūĩt, Abram Stevens, American manuiacturer and politician: b. Haverstraw, Rockland Courty, N.. 1.. 31 July 1822; d. New York is Jan. 1003. He was graduated from Columbia in 1842 at the head of his class, and in 18.43 he was made acting proiessor of mathemazics there; he also began the study of law. and was admitted to the har in 1845 . He did not practice, however. hut shorty after went into the iron and steel business with his father-in-law, Edward Cooper. By carcful and skilful
management he built up the financial success of his firm (Cooper \& Hewitt); which was the first to manufacture iron girders and supports for fire-proof buildings and bridges. and also iumished the government with large quantity of material during the Civil War. In dealing with his employees, he was particularly successful, nerer having any serious trouble; it was his policy to keep the works running and the men employed. at least part of the time during dull seasons, though the business was sometimes carried on at a loss. At the time of his death he was recognized as one of the foremost iron masters in the country, his firm controlling the Trenton Iron Co. and the New Jersey Iron and Steel Co. He organized the Cooper Union Institute (q.r.), and as the secretary of the board of trustees largely shaped and controlled its policy for a number of years. He also gave largely to the institution. He was first active in politics at the time of the reorganization of Tammany, Hall after the overthrow of the Tweed Ring. He served in Congress $18,-4-8$, and again $1880-6$ and was always especially prominent in all matters pertaining to finance, advocating a low tariff and the gold standard. In $18 ; 6$ he was chairman of the Democratic National Committee. and immediately after the election issued a proclamation to his party stating that Tilden had been elected: later he supported the policy of Tilden which resulted in the appointment of the Electoral Commission (q.x.). In 1886 he was nominated for mayor of New York by Tammany and other Democratic organizations and after a hard campaign won the election over Henry George and Theodore Roosevelt. As mayor he gave the city a most efficient administration, but his independent policy often antagonized the Tammany leaders, especially his strict enforcement of the excise law. He was not renominated by his party, and was defeated as a candidate on an independent ticket in 1888. While mayor he urged in one of his annual messages the need of improvement of the city's rapid transit, and adrocated municipal ownership: though his suggestions were not heeded at the time, he continued his interest in the subject. and it was largely due to his efforts that recent improvements in that direction were undertaken: in recognition of his services the Chamber of Commerce presented him with a gold medal in 1901. In February 1903 a number of prominent citizens of New York set on foot a movement to raise a memorial fund of $\$ 500.000$ to be presented to Cooper Union as the "Abram S. Hewitt Endowment of the Cooper Union."

Hewitt, John Napoleon Brinton, American ethnologist and linguist: b. on the Tuscarora reserve. Niagara County, N. 1.. 16 Dec. 1859. For several years he assisted Ilrs. Erminnic Smith (q...) in the linguistic researches she was making for the Bureau of Ethnology on the Tuscarora reserve, and he is now employed in linguistic work at the Smithsonian Institution.

Hewitt, Peter Cooper, American capitalist and mventor: b. New lork 180 . He is the son oi Abram S. Hewitt (q.r.), was educated at Stevens Institute. Iloboken, and Columbia College. He entered business with his father and invented improvements in the processes of the Peter Cooper glue factory, which the Hewitt firm ontr!. Turning his attention to electricity
he invented the Cooper Hewitt lamp and static converter. The lamp in its present form consists of a glass tube of any desired shape with a bulb at one end which contains a small quantity of mercury. All air is exliausted from the tube, which theretnpon fills with vapor from the mercury in the bulb. Electrodes are provided at each end of the lamp, the negative electrode in the bulb of mercury and the positive electrode at the opposite cnd. On passing a direct current through the lamp the vapor which fills the tube is rendered incandescent and gives off a steady, blue-white light. Owing to the great resistance at the legative electrode to the initial flow of current, it is necessary to use a higl voltage to start the lamp. This is commonly done by passing a spark from a "choking" coil through the negative electrode, which when once penetrated offers but slight resistance to the flow of current. If for any reason the current is intermupted, the high resistance is immediately resumed and must be broken down again before permitting further flow of current.

The light given off by this lamp is entirely lacking in red rays, and consequently does not reveal the real color of the objects it falls upon. It is, however, of great value as a plotographic illuminator heing rich in actinic rays, which most affect the photographic plate. Mr. Hewitt is investigating with a view to discover means to turn some of the rays of the incandescent vapor into red rays. This discovery will be a means of great economy, because the Cooper Hewitt lamp is probably the cheapest artificial light in the world. The mercury vapor lamp consumes one half watt per candle-power, as against $3^{1 / 2}$ watts in the incandescent lamp.

Hewlett, hū'lĕt, Maurice Henry, English author: b. London 22 Jan. IS6i. Ile was the son of Henry Gay Hewlett, a writer of some little note, and was educated at the London International College, lsleworth. He was admitted to the bar in 189I, and in IS96-1900 was keeper of the land revenue records and enrolments. His reputation was made as an interpreter of the more recondite phases of the life and thought of the Niddle Ages, especially in ltaly. His style is a skilful medium for his purpose, but frequently so archaized as to be somewhat difficult. His books are: 'Earthwork out oi Tuscany) (I8oz), a collection of Ftalian studies: 'The Masque of Dead Florentines' (I895): 'Songs and Meditations' (I897): 'Pan and the Young Shepherd' (IRg8): 'The Forest Lovers' (1898), his first popular success: 'Little Novels of Italy' (1890); 'Richard Yea-andNay' (1900): 'New Canterbury Tales' (190r); 'Fond Adventures' (rgof).

Hexam'eter (from the Greek $\mu \epsilon t p o v$, a measure), a verse of six feet. It is the heroic or epic measure of the Greeks and Romans, the finest examples of which are the two poems ascribed to Homer, the lliad and the Odyssey, and the Eneid of Virgil. The sixth foot is always a spondee (two long syllables) or a trochee (a long and a sliort). The five first may be all dactyls (one long syllable and two short), or all spondees, or a mixture of both. The scheme of this verse then is -
with all the varieties which the mingling of the two kinds of feet, as mentionecl, affords; as,

Qui Bavium non odit amet tua carmina, Mrevi;
and so on. The variety of which the hexameter is susceptible, its great simplicity, its harmony, and its numerous pauses, constitute the charm of this verse, and adapt it to the most various subjects. A spondee is rarely used in the fifth foot, and then in Latin the word with which the verse ends is generally composed of four syllables, and the fourth foot at least inust be a dactyl: as,

Cara deüm soboles, magnum Jovis incrementum.
The prevalence of the dactyl or spondee in the hexameter depends much upon the genius of the language: thus the dactyl is more frequent in Greek than in Latin, and in German than in Greek. It is evident that the hexameter cannot be formed in such languages as Italian, French, Spanish and English, whose prosody is regulated by the accent and not by the quantity of the words.

The French and Italian writers, however, early attempted the hexameter, as well as Sidney and Southey in English; but without success. Nore recent English poets have also tried it, as Clough and Kingsley. Longfellow las made use of the hexameter in his 'Evangeline.' But in no modern European language have hexameters become natnralized, except in German, to which this measure seems as well adapted as to the Greek. Fischart attempted the German hexameter in the I6th century. In the middle of the 18th century it was used by Klopstock, Uz , and Kleist. Goethe's hexameters are very often as poor as their sense is beautiful. John Henry Voss improved the German hexameter by the excellent translation of Homer and his valuable 'Zeitmessung der dentschen Sprache' (Königsberg 1802).

Hexapoda, hěk-săp'ō-dạ, a group name for the six-footed arthropods, or truc insects (Insecta), excluding spiders, myriapods and rther formis often includ d it the terni "insects." Heatatcuch. See Pextitetecin.

Hexoic Acid, an organic acid having the formula $\mathrm{C}_{6} \mathrm{H}_{32} \mathrm{O}_{2}$, or $\mathrm{C}_{5} \mathrm{H}_{12} . \mathrm{COOH}$, and occurring in fats, in cheese, among the products of the butyric fermentation of sugar, and in the fruit of Heraclewn sphondylimm and in the flowers of Satyrium hircinum. It is best prepared by the fractional distillation of crude fermentation butyric acicl. It is an oily substance, very clear and mobile. solidifying at about $29^{\circ} \quad \mathrm{F}$., and boiling at $400^{\circ} \mathrm{F}$. It las a specific gravity of 0.95 . and is oxidized by nitric acid to acetic and succinic acids. It is also known as "caproic acid," and its salts are sometimes called caproates, and sometimes hexoates.

Heyse, Paul, powl hiszé, Gerinan poet and novelist: b, Berlin 15 March i830. He studieci classics in his native city: in 1852 traveled 11 Switzerland and Italy, and two years later he settled in Munich on the invitation of King Maximilian 11. of Bavaria. who granted him a pension. He has lived mainly in 11 unich ever since, devoted almost exchrively to literature. His first work was 'Jungormmen, Märchen
eines fantenden Schuless＇（Tales of a Traveling Scholar（ IEsO）：and to the same year belongs his iragedy＇Francesca da Rimini．＇＇Die
 rative poems，and formed pari of the vilume entited＇Hermen＇（Iミシャ），later＇Vovelien in lersen．＇which did much to establish his repu－ tation．Heyse＇s genius has found it most per－ fect expression th bis tules or novelettes I Svel－ len）．and in this deparment of literature he bolds almost a unique place among Germun writers．His work is aimost throuthout hrgh． ninished and artistic．and shows a rich imasma－ tizn and great fertility in invention．His tules have been published in mare than 20 co．lecth hs． and a selection appeared in ISgo under the title ＇Auswahl furs Haus．＇His eatly successes in narrative verse were followed by soch werks as： ＇Die Braut yon Cyperin＇（ISシ0：＇Thehla＇ （ISES）：＇Rajaer＇（INOZ：＇Syrniol（10世5）： （Der Ealamander）（I尺－9：Die Jladonna im Oiwald（Is－g）：＇Liebeszauber＇（INQ）．His best plays are those of his third period，and some of them，especially＇Hans Lange＇and ＇holberg．＇have been acted with great success． ＇Mary uf Mazdala＇was well received in Amer－ ica．Among them are：Die Hochze：t auf dem Aventin＇（I＊ヒヒ）：＇Gott schutze micl．vor meinen Freurden＇（1888）：＇Hans Iange＇ （Iscó）：＇Koiberg＇（IN心＇＇Die Weisheit Salomos）（res－）：＂Weltuntergang＇（INE）； ＇Die schimmen Brüder＇（ISor）：＇Whabraeis？＇ （ISO2）：and＇Thncte：Justme＂（1803）．His larger novels．（Kinder der Welt）（IS，3）：＇Im Paradiese＇（is－ミ：＇Merlin＇（INz）：and＇Uber allen Gipieln＇（regs）．have met with great success．Among other works are：＇Skizzen－ buch＇（IS－T）：＇Verse aus lialien＇（IR80）： ＇Spruchbuchlerm＇（188：1：＇Gedichte＇（Poems， 5th ed 1895 ：and＇Seue Gedichie und Jugend－ lieder＇（ISO゙）．

Heyward，hā＇ward．Thomas．Jr．，American patriot：b．St Luke $=$ Parish，S．C．，IJon：d． there 0 March INo．He was ：i much promi－ nence in Sorth Carolima duriag the Reviutoon． was a delegate to the Cuntinental Congress ros－s and one c if the signers of the Declara－ tion oi Independence．In later years he was a judge in h－s rative state．

Heywood．John，Enztish dramatist of the first hati w the roth century：He was a paid musician at the court of Heary blll．，with whim he became a iavrite on acc unt of his shill in nusic．Heyw odos dramatic werks may be clased as inter－udes，stan ling between the miracle－plays an 1 the drama pr per．Tle ear－ liest if them，A Merry Play beiween le Par－ doner and the Frure the Curate and Nisb ur Pratte，was written bef re sist．An ther fa－ mous Eicce is The Fiur pi！an interlule in which tgure a Primer，a Pardoner．a Potycary． and a P＿．．．＇ $11,=$ ry，the＇Ephler and
 ligu u－＂nctisties．Hy spilers，the Prutestants a－e meant：by tlies itie Cath lics．

Heywood，Thomas．Enz゙i－h dramati－t b．
 am 1 peat ：：h y．been writhe plato a－early
 musi - mine Wie lezan itom the preface ：o
 ha！had either an entire hand．or at the least a
main inger．＇in the composition of 220 plays． and he contumed for some years afier that date is write sor the stage．

Twenty－iou if Hewncod splays have been preserved．The best is＇I Woman kide wath hiodnesse＇（INO－）．His work is usualiy dis－ tmsurshed by naturalness and s：mplicity：but he wote at the besiming of his career one ab－ sut dly grandiose play，The Foure Prentises of Ludn IoI5，which was parodied in Beau－ mont，and Fletcher＇s＇Knizht oi the Butanng Pestle．＇＇The Rape of Lucrecce＇（Icon＇）is che ey noticeabe for its songs：＂Love＂：Mais－ tresse）（1030 dealing with the stary of Cupid and Psyche，is ianciiul and ingenious：and there $1 s$ much renderness in＇A Challenze irs Beautie＇（It 30 ）．＇The Capives．or the Lost Recovered，an interesting p－ay，acted in rozi． was first published in INミ

Hezekiah，hèz－e－ki’a（Hizkivch，generally Hizeiyotu．strength of Jehovah，the izih king of Judah．At $2 F$ he succeeded Ahaz about －20 R．C．，about cgs B．C．He had no sonner mounted the throne than he initiated a system di reform，on the injunctions of Isatah．and broke up the idolatrous customs into which the people had fallen during the life of his father． He also endeavored to repair the injury done by nacional defeats and losses．He pursed， reparted，and reopened the temple with masniti－ cent sacritices and a splendid ceremonial．So extreme was bis indignation against idolatry that he destroyed the brazen serpent which was said to be the one used by Moses in his miracu－ lous heaing of the Israelites．With patriotic zeal he assumed the aggressive against the Phil－ istines．and not only rewon the anties los：br his iather，but dispossessed them of most of their own．In the fith year of Hezekiah＇s reisn be had a dangerous iilness．wh．ch threatened serious complications，and the kingdom was in a difficult crisis．jor the king had no heir． Manasseh not being born till long aiterward． The greater part of the Scripture records bear－ ins on the reign of Hezekiah is occupled by the two invasions of Sennacherib．Several of the Palms are supposed to allude to the dis－ compture of Sennacherib，for caample．Nivi．－ x！viii．lxxti．Hezekiah did not long survive thys deliverance．dying aiter a reign of nearly －o years．Among the many highly useritl works evecured by him．the aqueducts of Jerusalem we，i especial importance．

Hiawatha，hi－a－wäta or－tha，the hero of an ．Imerican Indian lesend known by this name mone the lroquis an 1 amons the other tribes． lie is mentione 1 in varinus morks on the a oves－ 1th－and in INS was immortalized in the poem． ＇Fiawatha，＇by＂Longiellow．

Hiawatha，Kan，city，county－seat of Er wn County：on the Saint Joseph \＆G．I．and the llis uri P．R．R．s about oo miles n rth－ weit i－l Kansas City and ss miles morth of I pekz．It is sisuated in a rich asricutural r－ 1\％．．．duct and assicu＇tural implenter： Its tt le in f－incipally in wheat．co：n，irnip，live－ －t－k．H hur，and lumber．It kas the Norrill P．．．．Library and an academw．The city nums r1 wer：ses the waterwnrk：2n 1－－e’ecric－ I．It p＇ant An ther efectric－light plant is
owned by a private corporation. Pop. (1900) 2,829.

Hib'bard, George Abiah, Anmerican wriker of short sturnes: b. Buttalo, N゙. V., 1858. 11e hats writen "dduna, and Other Stories'; 'Nowadays'; 'The Governor'; ctc. His work is marked by finished style and much insight into character.

Hib'ben, John Grier, American logician: b. Peoria. Iil., 19 . Tpril 1801. He was graduated from Princeton iss, and is now professor of logic there. He is author of '1meluctive Logic' (1896) ; 'The Problems of Philosophy' (18098).

Hilerna'tion, the winter sleep of warmblooded animats. Under this term is also included the torpidity of frogs, toads, reptiles, certain fishes, insects, the horseshoe crab and snails, which is mainly due to prolonged cold. Among the mammals which hibernate are the bear, dormouse, badger, bat and hamster; a number are incomplete hibernators, as the prairie dog, while squirrels fall into a winter sleep during the coldest weather. but may he scen in warm spells in winter. The males of the black and white bear are more or less active during the winter months, while the females are hibernating. The same species, like the skunk, may in the southern portion of its range not hibernate at all. Neither do the hibernators all retire ts their holes or dens or under fallen trees at the same date, but the time varies with the temperature, and different degrees of torpidity are exhibited. It also appears that continuous hibernators do not lay in a supply of food, as do intermittent ones like squirrels: yet the Aretic fox is said to store up a supply of dead lemmings, ermines, geese, etc.

Hibernation is like sleep, and has been compared with trance. During this period the animal functions are nearly suspended, the excretions are greatly diminshed and in the bears the rectum is closed by a resinous plug, calleel by the Swedes "tappen." and by American hunters "seal." The animal heat is lowered to that or nearly that of the air, the action of the heart being slight; there is an increased muscular irritability, and the animal loses from 30 to 40 per cent of weight.

Snakes, lizards, the toad, frogs, salamanders, and certain fishes hibernate, burying themselves in the earth below the reach of frost, the aquatic forms digging into the mud at the bottom of streams. The few fishes which are known to lie dormant and take no foorl sink into the nud of streams or of the sea. The horseshoe crab burrows in the mud beyond the reach of oyster dredges in November, remaining in deep water until the mildle of spring. Most insects hibernate in the larva or pupa state, a few as moths or butterflies. Caterpillars hide under moss, the bark of trees, etc., but they frceze solisl and may be broken into two pieces like an icicle. They gradually thaw out in spring; when the changes are sudden, great numbers die. Spiders and smails hibernate under stones, moss, ete., while slugs burv themselves in the murl, and those mussels and other mollusks living in streams and lakes descend into the mud.

Estization.- In the tropics there is a corresponding period of torpor during the hot, dry season, when fond is scarce, and vegetation is taking a rest. Alligators, snakes, certain mam-
mals, as the taturee, inneets and land snails become dormant, the latter closng the momth of their shells with it in-unbranc-like substance (opiphragin). leanmg a amal upermag in it for the admission of an mbreathang, "ct after a prolonged shower they become actac: 1 has it is secn that heat, drymess and the late of food oderate in cansing estivation, whale cold and famine appear to be the catue of hibernation: though all species are by no means affected alike. Among the lowest organisms the dormant vitality of resting spores. seeds of plants, winter eggs of sponges, of polyzon, the dormancy of certain adult forms, are connected with a lowered temperature, and a rowimg period is necessary both in plants whe am mals. The simultaneous shetlding of the leave of deciduous trees is certamly comected with if not caused by cold. and it is undoulbtedly unte that changes of temperature as well as lack of food, and the need of rest, cause hibernation and summer dormancy:

Hibernia, the ancient name applied to lreland (q.v.).

Hiber'mians of American. Ancient Order c^{f}, an 1 rish-American secret society founded in 1836 . It has one general or national board. with 2,002 subordinate divisions. There were I39.453 members in 1902 . The bencfits disbursed the same year amounted to $\$ 429,000$. National president (IgO2), J. T. Keating, Chicago, Ill.

Hibiscus, hī-bĭ-kŭs, a gentus of plants of the mallow family (q.v.), distinguished by a double caly x and fruit of three or more manyseeded carpels united into a many-secded capsule. The species are numerous, natives of warm climates, some trees or shrubs. but most of them large herbaccous plants. Nany bear very beantiful Howers, much used in the South Sea Islands in wreaths, etc., for personal adornment. The rose-of-Sharon (Hibiscus symincus). a native of Syria and Carniola, has long been in cultivation as an ornamental shrub. Several other species have become favorite hothowse plants. The scarlet hibiscus ($/ 1$. coccincus) and the rose-mallow (H. moscheutos) are among the most striking and beautiful of North American wild flowers. glowing among the reeds of marslies in late summore in flame-color and pink. The characteristic mucalygin mo and fibrous properties of the Malvacese "rev very strongly developed in this tribe. The fatit of H. esculcuius, called gumbo. nkra. et is in general use for fool in the East and West lndies and the United States. It is an annual plant. with a soft herbaceous stem. three to five feet high, crenate leaves, axillary sulplum-colored fowers, and pyramilal, somewhat podlike capsules. The frnit is used in an unripe state. and is generally much estecmed. but is disliked by some no acconnt of ith viscidity: It enters as an important ingredient int the pepper-pot of the W"est Indies, or is used in snups. It also produces a coaric fibre. The bark of /I tiliaccus, a tree 20 fect high, with a very thick bole abounds in mucilage. This aree is one of the most abundant trees of the South Sea Isslands: and the wond. being light, tough, and durable is much used for many purposes. From its fibre the Tahitians mmmafacture matting. Many other species yicld fibres. some coarse. some fine and heatuful, which are used in dif-
ferent cuuntries: but the most important in inis respect is H. cannabinus, the Deccan hemp of weztern India (see Hemp). H. sabdariña is very generally cultivated in warm countries, on account of its calyx. which, as the iruit ripens, becomes rieshy. and acquires a rery pleasant acidity. It is much used for making tarts and jelly, and a decoction oi it. sweetened and iermented. ariords a reireshing bererage, well known in the 1 Vest Indies as sorrel cool drink, the plant being called red sorrel; and in IIadras it is used for similar purposes, and is named rozelle or rouselle. Musk-seed (H. abelmoschus) is cultivated for its seeds, which have a fragrance between that of musk and that of amber. They are much used by periumers, and are called grainis dembretie. In Egypt and Arabia they are mixed with coffee, and stimulant and stomachic qualities are ascribed to them. The petals of H. rosa-sinensis possess astringent properties, and they are also used by the Chinese to stain their eyebrows and their shoes black.

Hic'cup, or Hiccough, is a spasmodic affection of the diaphragm caused sympathetically by the irritation of structures supplied by nerves communicating with the phrenic nerve. Tholigh generally a slight and passing inconتenience, its occurrence in the last stages oi acute disease is a grave symptom, indicating general collapse of the nervous system. It may last only a few minutes or may continue ior weeks without being capable of being subdued by any kind of ireament. Fasting or a stimulant suddenly swallowed is one of the commonest causes oi hiccup, which generally passes off of its own accord. Nothing removes it mose effectually than some active emotion of the mind suddenly excited. Hiccup is a common aitendant of dyspepsia, and is oiten observed in abdominal diseases when terminating fatally: and is especially a symptom in some forms of hernia. Many remedies have been suggested ior it, such as holding the breath as ling as possible, twing a belt tighily round the waist. and the frequent swallowing of small rounded pieces of ice.

Hi hborn, Philip, American naval officer: b. Charlestown, Mass., 1839. In 1809 he entered the Cinited Siates navy as assistant constructor, in 18,5 was made constructor, and in 1881 a menmber of the naval advisory board. From 1893 until his retirement \& March tgot, he was chief constructor, and as such was identified with the reorganization and enlargement of the new United States navy. He attained rearadmiral's rank, and published a valuable report on foreign dockyards.

Hich'ens, Robert Smythe, English journalist and novelist: b. Speldhurst, Kent. If NVor. 1864. He was educated at Clifton College and the Royal College of Music, and aiter a short career as a musician turned to journalism. In 1803 he visited Egypt for his health, and there conceived the idea which materialized in the 'Imaginative Jan' (isos) 'The Green Carnation' (isg). however. epigrammatic and keenly satirical in tone, first brought him into public nrice. Later works of his are: 'Alter
 'The Folly of Eustace and Other Stories' (i896); 'The Londeners' (180;); 'Buewars'
(IS9:): 'The Prophet of Berkeley Square' (1901) : etc.

Hick'ey, Emily, English poet: b. Nacine Castle. County II exiord. Ireland, about 1845. She was co-founder in isst of the Browning Society with F. J. Furnivall (q.x.) and has lectured on English literature. She has published among other volumes 'A Sculptor and Other Poems' (IR81): 'Verse Tales. Lyrics. and Tramslations' (ISCg); 'Our Lady of May and Other Poenms' (1g02). Her verse has been .highly praised by critics.

Hickey Plot (1756), a conspiracy of the British officials and Loyalists of New lork in end the Revolutionary war by the murder or capture of its leaders and the seizure or destruction of its supplies. The heads and probable devisers of it were Governor Tryon, who had fled from the city but remained on a man-oi-was in the harbor. and sent supplies of money for bribery. etc: and Mayor Mathews. The scheme was to kill or seize the patriot generals. and at all events to deliver Wiashington alive io Sir IVilliam Howe. blow up the magazine and secure the passes to the city. Several hundred New lork Loyalists were involved. Two of IVashington s guard were bought, but a third pretended to accede and revealed the plot. Mathews. a gunsmith named Forbes, and a dozen others were arrested and sent to Connecticut. Hathews carrying the mayoralty Hag with him. Thomas Hickey, one of the treacherous guards, was hanged in Sew Jork 27 June $1--6$, the first military execution in the American army.

Hick'man, $\mathrm{K} \%$. town, county-seat of Fulton Coumty: on the Mississippi River, and on the Nashville, C. \& St. L. Tailroad; about 35 miles below Cairo. Ill. It has steamboat connections with the river ports. It is the seat of Hickman College. Its chief industrial establishments are a flour-mill. wagon-factory, two spoke-factories. sam- and planing-mills. Its trade, in addition to its own manuiactured articles, is principally in grain and tobacco. Pop. (1900) $1,589$.

Hick'ok, Laurens Perseus, American metaphysician: b. Danbury, Conn., 29 Dec. ro9S: d. Amherst, Mass., 6 May ises. He was graduated at Union College in 1820. was licensed as a preacher in IS22, and was pastor successively at Newton and Lirchfield, Conn., till in 1836 he was elected professor of theology in the 17 estern Reserve College. Ohio, where he remained eight sears. He was professor in the Aubum Theological Seminary IS $4-52$ and then became professor of mental and moral science. and vice-president in Lnion College. In 1866 he was formally made president of that institution of whicli. however, he had been in sole charse for cight years previous. His publications include among other works 'Rational Psycholosy" (ISy8): "Sloral Science" (1853); Empirical Psychology, or the Human Nind as Given in Consciousness' (1854); 'Rational Cosmolog.? (Sew lork 1858). in which he attempts to demonstrate a friori the laws of the universe: 'Creator and 'Creation' (1S;2); 'Humanity Immortal' (1872); 'Logic of Reason' ${ }^{\prime}(18-5)$.

Hickory (formerly Hickory Taleri), \therefore C. cown in Catawba County: on the Southern ratlway: near the headwaters of the Catawba

River: about 43 miles northwest lote and 50 miles west of Sali:bury. manefactures are flour, foundry wagons, lumber, leather, boots and shoes it las several private eflucational institutions: Claremont Female College, opened in 1N80: Saint Paul's Lutheran Seminary; Lenoir College, opened in 1891, under the auspices of the Lutheran Church. Pop. (1900) 2.535.

Hickory, a group of trees of the walnut, forming the genus Hicoria, and exclusively North American. They are large strong trees. 60 to So feet high, with close shaggy bark and large pimmately divided leaves, pintillate tlowers on a terminal peduncle and staminate flowers in long. drooping aments. The fruit is a thickslielled nut in a tough green husk. There are about to species, all matives of the eastern Lnited States and Canada except a Mexican species. The best known of these are the following: Shag-bark, shell-bark or white hickory (IH. (čota), leaflets 5 to 7 . whose bark scales off in great plates curving outward at both ends, and whose muts are sweeter and better than those of any other species; the northerly "big shag-bark" or king-nut (H. laciniosa), leaflets 7 to 9 , with narrower "shags." darker wood and big nuts in husks often three inches long: white-heart, or fragrant hickory; or mocker-nut (H. albo), noted for the hardness and toughness of its wood: the pignut or broom hickory (H. globra), leaflets 3 to \bar{i}, which represents a group of moisture-foring species whose nuts are thinhusked, elongated and bitter and estringent to the taste. Associated with these is the pecan (H. Fecon), of the Southern States, whose oblong. thin-shelled nut is one of the most delicious of all nuts, and is now being cultivated in a few places in order to supply the increasing demand. The water hickory (\hat{H}. aquatica) is sonetimes called the bitter pecan.
L'scs of Hickory-ưood.-As timber this wood is of great value for articles requiring great strength with lightness and elasticity; but it is liable to quick decay when exposed to the atmosphere, and for this reason is little used in building. and should be painted. It was the most serviceable of all woods to the aboriginal Americans; and the axe. pick, and tool handles made from it are exported to all parts of the world. It enters into the manufacture of rakes, cradles, and many forms of farm-implements: is largely used in carriage-making, especially for thills, shafts, and the parts of racing-sulkies. the lighter American vehicles owing their acknowledged pre-eminence largely to the arailability of this wood. The wood of the varions species differs in quality, however: that of the pecan is hard and brittle, and the water hickory soft and comparatively light. The wond of the others is exceedingly strong and tenacious, and weighs about 50 pounds to the eubic foot.
Insect Pists.-A. S. Packard recorded in 1890 1\%O species of insects attacking the hickories: and Chittenden declared in 1903 that this number could be easily doubletl. Hickory appears to be an especial favorite of borers. Prominent among them are the painted hick-ory-borer, one of the long-horned beetles (Cyllene pictu): the hickory twig-girdler (Oncideres cingulats), twig-pruner (Elophidion cillosum). and lickory-bark beetle (Scolytus quadrispinosus). This bask-borer is the most
important cconoms specses, and during recent years has been the cause of considerable injury in hickory furcots in the State of New York. Consult I'ackard. '1nsects 1ajurious to Forest and Shate Trees,' published in 1.K8s as the litill report of the United States Entomological Commission.

Hickory Shad. Sce Gizz.ird Sifad.

Hicks, Elias. American preacher of the Socicty of Friends: b. Hempstead, L. I., 19 Mlarch 1748: d. Jericho, L. 1., 27 Ficb. 1830. While a youth he manifested a talent iur public speaking, and at $=5$ wats a well known preacher. For many years he labored zealonsly in advancing the generally accepted doctrines of the Friends: but having as he believed discoveren errors in these tenets. put forth wiews of has own which be defended with encrgy and ability. To adrance these riews he traveled extensively in the Conited States and in the Pritish provinces, attracting large congregations by his oratory. The result was a schiom in the body of Friends; those adhering to the old doctrines being specially termed orthodox. while the followers of Hicks were called after him Hicksites. (See Friends.) He was an active abonlitionist and with others was inserumental in inducing the State of New lork to pass an act which. on + July 182\%, liberated all slaves within its borders. He was the author of 'Sermons' (1828): 'Observations on Slavery) (1811); 'The Letters of Elias Hicks' (1834) : ctc. See 'Elias Hicks. Journal of his Liie and Labors' (1828).

Hicks, Thomas, American painter: b. Newton, Pa., I8 Oct. 1823: d. 1890. He studied at the Philadelphia Academy, at the Xational Academy, New York, ancl afterward in Paris under Couture. Settling in New lork he became one of the favorite portrait painters of his day. His pictures in the romms of the New York Historical Society form an interesting gallery of historic figures, executed with more than ordinary artistic skill.

Hicks, Thomas Holliday, American politician: b. Dorchester County, Md., 2 Sept. $1 / 20 R$: d. Washington, D. C.. 13 Feb. 1865 . Nfier successively occupying the positions of sheriff, member of the State legislature, member of the State electoral college, and mermber of the Governor's counci]. he was in 1858 elected governor of the State. When war was threatened between North and South. althouglı sympathizing with the Sonth and condemning the Xorth's attitude on the slayery question, he sided with the party of neutrality in Maryland and opposed the secession of that State. When there were rumors of a plot formed by 6,000 men of his State to prevent Lincoln's inauguration and seize the city of Washington he suspended the writ of habeas cospus, and planned the arreat of sulspected persons. He was the only prominent State official who stond by the Federal government, and at the expiration of his term as governor the new Legislature passed recolutions thanking him for having saved the State from joining the Confederates. In 18 保 he was appointed to the senate of the United States and served in it till his death.

Hicks-Beach, $\mathrm{S}_{\text {IR }}$ Michael Edward, English politician: h. Londorn 18 37. The was educated at Eton and Oxford, entered parliament

HICKSON - HIDES AND LEATHER

in 1864, and was made chief secretary for Irelaud in 18,4, and secretary of state for the colonies in I\&ge. In I\&S5 he was appointed chancellot of the exchequer and leader of the Conservative party in the House of Commens. He was president of the board of trade ircm rise to riga. On the fall of the Gladstone ministry in $1 \$ 9$, be again became chancellce of the exchequer. In October, 1902, he caused a sensatiun by charging the Balfour government with wasteful expenditure of war appropriations, and in 1903 ably defended the British policy of iree trade

Hick'son, Sydney John, English zoologist: b. London 25 June 1859 . He was educated a: Cambridge and has been professor of zoology at Owens College. Jlanchester. England. Irom ISOt He has published 'A Naturalist in North Celebes'; 'The Fauna of the Deep Seas'; 'The Story of Life in the Seas' (IRgS)

Hidalgo y Costilla, Miguel, mè-gēl' è-dā!' gō ē kōs-rēl'ya, Mexican revolutionist. first leader in the Mexican war of independence: b. State of fruanajuato 8 May 1/53: shot in Chihuahua, Mexico. 27 Juiy Î́rif. He was a priest. and in earher life was simply a man of great acquirements, anxions to promote industry in Mexico, and noted for conscientious fuifitment oi biṣ ecclesiastical functions. He is said to have introduced the silkworm into Mexico, and did much to promose the culture of the vine. This conflicted with the policy of the Spanish povernment, which was to discourage al! manufactures or agriculture which could interiere with the revenue, and the vines Hidalgo had planted were destroyed. This drove him to rebellion. Possessing much infuence anoong the Indians, he formed the plan oi a general insurfection, which was to take place I Sow I8ro: but the plot having been disclosed by one of the conspirators. some oi his party were arrested, and he was obliged to precipitate his movements. On to September having been joined by three officers of the garrison of Guanajuato, he raised the standard of revolt. His eloquence had a remarkable effect on the multitude who heard him, and when after his oration he uniurled a rude copy of the picture oi Our Lady of Guadalupe, the patroness of Mexico, the war assumed the character ci a crusade. On $2 ¢$ September with an army of 20,000 ment. mostly indians, he captured Guanaiuato. He took tailadolid and séveral small places, and soorl diter was proclaimed generalissimo of the Mexican army: and advanced against Mexico; but finding himself almost without ammunition, was obliged to retreat During this war the government party declared that the ordinary rules oi wariare need not be observed as regarded the in-urgents, while the later retaliated with the most harrible atrocities. On one occasinn Hidalgo is said to have massacred ;oo prisoners becatise they were Europeans. After several defeats the insurgents were leit at Saluilo under charge of Rayen, while Hidalgo and others went to the United States to obtain arms and miliary aid. On their way they were captured hy a former íriend, and finally shot in Chihuahua. He was after his death regarded as a saint by the people, and within a few years the place of his expcution was shown to travelers as a holy spor. The town of Goliad. Texas,
was named in his honor, the H , as silent in pronunciation. being omitted and the other letters rearranged. At the founding of the cown the name of Hidalgo was still proscribed by the Spanish rulers and the transposition of the letters or his name was made in order to avert the attention of the autborities.

Hid'denite, a yellowisk-green or emeraldgreen. transparent variety of spodumene. discovered by II. E. Hidden. in 880 , in Alexander County, ㄷ. C. The emerald-green varieties have been used as gems. They resemble ibe emerald, but show a greate- wealth of color on account oi their pleockroism.

Hides and Leather. There are few arts, among the many that are used for the venefit oi mankini to-day, that are of such azcient origin as that of tarsing. It is only necessary to study the carvings upon tine monuments that the modern archroologist has tinearthed to ascertain the fact that the old Esyptians were not only acquainted with several processes of tanning and working in leather, but that its preparation was one of the most important branches if Egyptian industry: So iar as our knowledge if their methods of work extends, we know that these ancient workmen prepared their tan in earthen vessels and that they were able to preserve skin either with or without the ha:ze:ached. Among the Hebrews, who undoubtedly derived their knowledge of the art of preparing leather from the Esyptians, the trade of the tanner was despised. largely because of the bad odor connected with it. and those who followed this source of livelihood were obliged to locate tne:r working places outside the limits of the city. Ofien they were situated by the side of streams, or or the shore of the sea, as was the case in Joppa. where the buildin's said to have been the house of Simon the Tanner was located on the shore south of the city.
tocording to the most authentic records th:e first tannery to be operated in this country was established in Virginia, about the year 1630 . year or two later another tannery was established in New England, in the villace of Swampscott, or Lymn. Mas:., by Francis Ingalls, a colonist who had learned his trade in Lincolnshire. England. As it was impossible not to recognize the importance of the industry it was greatly encouraged by the colonial authorities, in evidence of wish iact there are many laws on the old statuie boks regulating, not only tha manufacture oi leather. but the saving of skins needed by the tanners, under serious penalties for noncompliance. For example, a law was passed in liassachusetts, in 1646, prohibiting the exportation of raw hides, or unn rought leather, under heavy penalties which not only affected the shipper, but reacted upon the master of the veisel that attempted to sail with such freight, for these were the days when the smail tanners who hal sheps scattered throughout the country were cntirely denendent upon the surrounding neiglibnothoni for their hides, but $=0$ effective were the restrictions placed upon im. portation= of ckine by the authorities, thos leather was relatively more plemiful in the American of-nies than it was in England.

Onte of the most prominent leather manutactwers oi the old days was Colonel William Ed-
wards，who sent the first tamed leather to the Boston market in 1 fot．Beginning his lusiness in Hampshire about 1790，when he was less than 20 years of age，he immediately inaugurated a series of improvements in the medranical branelo of the art，which，at they were afterward adoptud and extemed by others，were the means of infusings a much－needed spirit of enterprise into the business．ln fact，it was the new ideas in mechanism and in the arrangencont of the tamery which he crolsel that paved the way for the most important improvements which have since been made in the mannfacture of leather．The first company in the business to be incorporated also owell its existence to Colonel Edwards＇enterprise，fors i^{*} was his ex－ tensive tamerics it Northampton，Cummington． and Chester that were purchased by the men who incorporated the Hampslire Leather Manu－ facturing Company of Massachasetts，with a capital of \＄100，000 in 1800 ．These works then had a capacity of 10,000 full－growa hides per annum．

By i8ro，the tanning industry had extended so w dely that there were tameries in opera－ tion in almost every portion of the country． Bark was so plentiful that it was much cheaper than in England，and．as ．he result，it was not long before the exportatior；of American leather had attained an aggregate of 350,000 pounds per ammon，while the importations were contined to morocco，and some peculiar kir．ds of English leather which could not then be produced in this country．At this time（ 1810 ）the value of all the manufactures of hides and skins was stated by the census office to be $\$ 17,935 .+17$ ．but，owing to the fact that the consus at that time was so crudely conducted that it was very incomplete， it is safe to say that $\$=0.000,000$ would be much closer to the correct ligure．From that date， hewever，the business increased，slowly at times． perhaps，but steadily，mutil．in $18 \not+0$ ，it was re－ ported that there were about 8,000 tanneries in the country，with a capital of $\$ 16,000.000$ ．and employment for fully 26,000 hands．By i850， the capital had inereased to more than \＄20，000．－ $\infty 00$ ，while the value of the amual product had reached the quite respectable figure of $\$ 38,000.000$ ．In 1860 ，this product．including the making of morocco and patent leather，had almost doubled，being in excess of $\$ 7,000,000$ ． while，in 18% ，the 7.500 establishment，in the country were employing no less than 35,243 per－ sons．at an aceregate wage of $\$ 14.505 .775$ ，to produce an ammal output that was valued at $\$_{157,237.507}$ ．At this time the capital invested in this business was reported as being more than $\$ 6 \mathrm{r}, 000,000$ ．

Is the establishments engaged in the mak－ ing of leather were entumerated ver，differently by the consus of 1800 and 1880 ，it is quite impos－ sible to cubtain a reliable basis of comparion from the published statistics．In proparing the census of 1880 ，the g evermment emumerators not only comnted all the smaller businesses，but they must have reckoned twied all that were engaged in both tanning and currying，with the result that they were able to make an aggregate of 5,628 establishments．As the later census emmerators hat anifined their attention solely to the large establishments the discrepancy is tou great to be readjusted by estimate．Thus， for example，the 1890 census reports 1.787 estab－
lishments，while the 1 noo census has but $\mathrm{t}, 306$ ． The other census figures follow
the Leither indtstry， 1880 to 1900.

	198，	180	10）0
Capital	\＄7．34．36 \．413		777，421
Number of employ	$4=286$	4：5！	52，109
W．rse＇s praid．			S－2，－1，00g2
Covt of material usc		1：2， $214^{1}, 7$	1 ，7，\％xM ，exnd
Valure of prodirat	が）＋ 11	1－．14＋9，${ }^{\text {a }}$	－＋1，8， 229

Among the first patents taken ont for the application of any spectal process in the making of leather was in 1823 ，whetr an insentor pat－ conted a method of furcing the tammag licpuor through the skin hes heverostatic presente：In IS，3I，William Drake devised a moditatation of this methorl．Secording to his procios two skins were sewod together and the fimul，which was placed in the receptacle thus formed，was permitted to remain until the tanaing hand been completed．Some years prior to that time a patent had been issuled for a method which pro－ vided for the suspension of the hides in a closed

LE．ITHER FITENTS．

Purpose for which Issued	Date of First Patent	$\begin{aligned} & \text { Approwi- } \\ & \text { munte } \\ & \text { Tutal } \\ & \text { Sumber } \\ & \text { of \}at- } \\ & \text { ents to } \\ & \text { Date } \end{aligned}$
Processes and apparatus for leaching and making ex－ tracts from tan－bark．．．．．．．．． 	Aur．10，1991 July 19， 1744	100
Processes employing appa－ ratus for tanning leather．．．	f117 ${ }^{\prime \prime} 9,1908$	100
Leather－splitting nachine．．．	July 9，18，8	75
U＇лhairins machine	f11）${ }^{\text {¢ }} 12,1812$	75
For rolling leather	（1）1，19，1812	25
Scouring and setting machine	人v． 2 I，1831	70
Tanners vats and handling appliances	Ja72．9，1834	75
Machines for boarding and graining leather．．．．．．．．．．．．．	March 25,1835	35
Compounds for depilating hides and skins．．．．．．．．．．．．．．．	June 30,1830	60
For tleshing machines．	June 17.1537	25
Compounds for bating hides and skins．	Feb．3， 1838	40
Whirenine，buttines amd shav－ ing leather．	May 10，iS；S	30
Compounds and matreri．hs for tanning and tawing leather and preparing raw hides．．．	July 2,1838	175
Processes for tanning leather	A112，1，18，	275
For currying leatherr．．．．．．．．．		25
Machines for stoning，polish－ ing，finishing，glissing． glazing：fintine，creasing。 and dicing leather．	March 15，1845	75
Compounds for coloring and polishing lenther．．．．．．．．．．．．	Oct．3，19，4	\＄0
Methods for manufacturing enameled．jixpanmed，and patentlu	1，4n．9，18\％	20
For stuffanc leaticer．．．．．．．．．．．	febre ${ }^{\text {a }}$	20
F＊is peblilinge leather	May 0_{1} is ${ }^{\text {a }}$	30
For employiag mincral sulw stances for twing hides anc skins	S115－4． $18=\%$	20
For stretchiner leather．．．．．．．．	lich， $8,18=1$	40
Bark－rossing markines．．．．．．	1，am， 0,18	10
F゙or prescrvinu hides．．．．．．．．．．	Sept．It，1 O^{\prime}	15
Nachines for shavinct or mak－ ing leathé of uniform thickness．	Sept．24， 1807	5
Apparatus for blacking leather	Sept．20， 1870	15
Measmring－machines ．．．．．．．．	Auc． $2 \mathrm{~S}, 1877$	25
Striking－ont machines．．．．．．．	Miarch 27，18S3	4

vessel，in which their conversion into leather would be much accelerated by the removal of

HIERARCHY - HIERO

all the air by an air-pump. To enumerate a.? or even the mosi importani of these mentions witinn any brei space woud be ampossibie, but the preceding table gives the date when the rirst patent was jssued for each oi the detals which enter into the manuiacture of leather. as well as an estimate of the number of patents that have been issued in each division of the endustry up to the present time.

Hides. as the term is generaily accepted today. may be conveniently divided into three classes: (I) Hides proper, which consist oi the skins of the larger and more common animals. such as oxen. cows. and horses: (2) kips, which comprise the shins of small. or yearling cattle, which are too large to be classined as calfskins. and (3) skins. including those of calves. sheep. goats, deer, pigs. seal, and the rarious kinds of fur-bearing animals, many of which, including most of the latter. retain their hair after tanning. The heary hides are converted into sole. belt. and hamess leather: the calfikms are chiefly used for material for the manuracture oi the uppers for leather shoes and boots, and are also in much demand by bookbinders: the sheepskins are used ior a lasge variets of purposes. including linings for shoes. aprons, cushpons, and covers. gloves. women's shoes. bellows, whips, etc: the goatskins are used almost exclusively in the making oi gloves and ladies shoes-the morocco leather so exiensively manuiactured until f-cent years having now given place to the cheaper and more durable "glazed kid': the hogskins are utlized in the making of saddle-leather, traveling bags. etc., while dosskins, because of their thim and rough characteristics, are paricularly useiul in the manuiacture of gloves. The durability of the por-poise-skin has recommended it- use in the making of shoe-strings, while the buifalo, alligat r. kangaroo. deer, elephant, hippopotamus, shinoceros. walrus, and shark, are among ihe many other creatures whose shins are uthized in various fields oi manuiacture after they have lefit the hands of the tanner.

There is probably no vesctable growth containnge tannin tha: has not been tried by those who are interested in discovenng the best and mosi economical methods of tanaing leather. but. while nearly all of them have met with some favor, oak-bark is now held so be the best agent ob:ainabie for this purpose. Among the other tannages that have been utlized with success, however. nne may mention hemlockbark. union. Dongola, alum, chrome. combination, electric, sumac. and cambier.

Practically the only change that has taken place in the tannage proce-s of sole-leather is represented by a slight diminution ist the time required ior the work. but as experiments are constantly being made along these line it is believed that the day will come when such leather will be turned out in as many days-perhaps hours-as it now takes weeks. The change that has already been made along these lines in the preparation of the lighter skins has been almost as radical. The introduction of Dong Ja kid, in siso, completely revolutionized the manniacture of kid or morocco. It was the disenvery of James Kent, of Gloversville. \mathbb{X}. ${ }^{\circ}$ The evstem of taming, of tawing by the use तf chromium compounds. was discovered as carly as is:6 by a German chemist, but each of the

Fany experiments which iollowed thas discorcry had iailed because there was no known mithod by which the tannage could be made fermanent. At last it was found that hyposulhite of sodium contained the long-sought remcdy. and by ilhis process the tannage was made lasting. It was due to this discovery and to it: successiul application, that some of the largest and best equipped leather manufactories in the world have since been established in the Inited Siates.

Hierarchy, hìē-rär-kĭ (Eronl Gr. hiseros, sacred, and arche governmenil. sacred government or "ithe administration of sacred things." first used by the pseudo-Dionysius in the sth century in his work on the Celestial and Ecclesiastical Hierarchies. It is now generally used to sionify the body of offeials in the Chusch organically graduated in their ranks and orders Erim the supreme head to those in the most subordinate posirion. In the Roman Catholic Church a threefold distinction is recognized: (I) A hierarchy of divine right. which emsb:aces, under the primacy of the popes. bishops. priests. and deacons. This hierarchy is held by Church to be of divine institution. (2) A hierarchy by ecclesiastical right, consising of the Roman pontiff and the three original divine orders and of the five minor orders (two in the East), subdeacons, acolytes. evorcists. leciors, and porters (ostiarii). (3) A hierarchy oi jurisdiction, which includes all the judicial and administrative authorities ordinary and delegeted. charged with the maintenance of the Faith among Christians, its union. its discipline. and its general care and supervision, -111 its powers proceed from the pope as primate. either expressly or by implication. In this category are ranked cardinals. patriarchs, exarchs. netropolitans, and archbishops, and as deriving their powers irom these. archpriests. archdeaenns. rural-deans, vicars-general, etc. The Inデican Church also recognizes a hierarchical rank in its body. comprising bishops, priests. and deacons. The other Protestant bodies practically reject hierarchical government.

Hiero. I., hièrè. king oi Syracuse in Sicily: d. Catania, 467 B.C. He was brother and successor of Gelon. Hiero's reign, zhouglt less glorious than the precedng. was marked by a peculiar splendor on account of his gencrous encouragement of leazning. Though some blemishes tarnish the first years of Hierc : reign. he compensated for his irst iaults by the noble actions which signalized the remainder of his bife - I long sickness was the main cause of this alteration. Since he could no longer occupy himself with the cares of royalty: he colfreted arnund him a society of learned men, and thus becoming acquainted with the pleasures - learning. he never aiterward ceased to value 11. His cours became the rendezrous of the mist distinguished men of his time. The names if Simonides and Pindar appear among those his moi constani componinns. कul when Eschylus leit Greece. he betonk himseli to Hieso to elose his days in his kingdom. He was several times vichor in the Grecian games.

Hiero II., king of Syracuse: b beiore 306 B.C: d. 216 r.c. He was the son of Hierocles. a n. ble Syracusan. Who claimed a dencent irom the family of relon. During Hiero ${ }^{\circ}$ reign began the first Punic war, and he was able, by his
ad:oitness. to preserve the friendship of hoth Romans and Carthaginians. The glory of Itiero and the prosperity of Syracuse culminated in the period which intervened between the first Pinic war and the second: for in that scason of peace Hiern enacted wise laws. and was devoted to the happiness of his subjects. His encouragement of agricultural pursuits enriched him and doubled the revemues of the state. He left the crown to his grandson Ilieronymus.

Hieronymus, See Jerome, Saint.
Hieroglyphics, hï'ë-rō-gliffôks (from Gr. hieros, sacred, and glypho, engrave), the inscriptions sculptured on buildings in Egypt, with the implication that the writing was confined to sacred subjects, and legible only by the priests. The term has also been applied to picturewriting in general, such as that of the Mexicans and the still ruder pictures of the North American Indians. Two different modes of hicroglyphic writing were used by the ancient Egyptians,, the hieratic, and the demotic. Pure hieratic writing is the earliest, and consists of figures of material objects from Cartouche of every sphere of nature and art, with Cleopatra, i.e. certain mathematical and arbitrary Kleopatra. symbols. Next was developed the middle hicratic or priestly writing, the form in which most Egyptian literature is written, and in which the symbols almost cease to be recognizable as figures of objects. Hieratic writings of the third millennium B.C., are extant. In the demotic or enchorial writing, derived directly from the hieratic, the symbols are still more obscured. The demotic was first used in the gth century B.c., and was chiefly employed in social and commercial intercourse. Down to the end of the iSth century scholars failed in find a clue to the hieroglyphic writings. In 1790, however, M. Bouchard, a French captain of engineers, discovered at Rosetta the celebrated stone which afforded European scholars a $\begin{gathered}\text { iey } \\ \text { to the language and writing of the ancient }\end{gathered}$ Egyptians. It contained a trilingual inscription in lieratics, demotic characters, and Greek, which turned ont to be a decree of the priests in honor of Ptolemy V... issued in 195 B.c. The last paragraph of the Greck inscription stated that two translations, one in the sacred and the other in the popular Egyptian language, would be found adjacent to it. In deciphering these inscriptions the discovery of an alphabet was the first task. The demotic part of the inscription was first examined by De Sacy and Akerblad. and the signification of a number of the symbols ascertained. The hieratic part was next carefully examined and Cartouche of Ptolemy, carefully examined and
i.e. Ptolemaics. compared with the demotic and Greek. At last after much study Champollion and Dr. Thomas Young. independently of each other, discovered the method of reading the characters (1822), and thus provided a clue to the decipherment of the ancient Egyptian writing.

Hieroglyphic characters are cither ideographic, that is, using well-known objects as
symbols of conceptions, or phonetic, that is, representing words loy symbols standing for their sounds. The phonetic signs are again divided into alplabetical signs and syllabic signs. Many of the idcographic characters are simple enougls; thus the figure of a man, a woman, a calf, indicate simply those objects. Others, however, are less simple, and consey their meaning figuratively or symbolically. Water was expressed by three zigzag lines, one above the other, to represent waves or ripples of running water, milk by a milk-jar, oil by an oil-jar, frshing by a pelican scizing a lish, that is, fishing; seeing and sight by an eye : and so on. The nature of the phonetic hieroglyphs, which represent simply sounds, will be understood from an explanation of the accompanying cuts.
(I) The first hieroglyph in the name of Kleopatra is a knce, which is kne or kle in Coptic, and represents the \mathbb{K} of Kleopatra. (2) The second hieroglyph in Kleopatra is a lion couchant, which is laboi in Coptic, and labu in the old Egyptian, and represents the L of both names. In Kleopatra it occupies the second place, and in Ptolemaios the fouth. (3) The third hicroglyph in Kleopatra is a reed. which is aké in Coptic and aak in the old Egyptian, and represents the E of Kleopatra. The reed is doubled in Ptolemaios and occupies the sixth and seventh places, where it represents the diphthong ai of Ptolemaios. (4) The fourth hieroglyph in Kleopatra is a nonse, which represents the O of hoth names and occurs in the third place of Ptolemaios. (5) The fifth hicroglyph in Kleopatra is a mat, which represents the P of both names, and is the initial of Plolemaios. (6) The sixth hieroglyph in Klcopatra is an eagle, which is ukhoom in Coptic, and represents the A, which is found twice in the name of Kleopatra. (7) The seventla hieroglyph in Kleopatra is a hand, which is toot in Coptic, and represents the T of Klcopatra, but does not occur in Ptolemaios, where it might be expected to occupy the second place. The second place of Ptolemaios is occupied by a semicircle, which is fomd at the end of feminime proper names, and is the Coptic feminime article T. The researches of Champoltion satisfied him of the existence of homophones, or characters having the same phonctic value and which might be interclanged in writing proper names. (8) The cighth hieroglyph in Kleopatra is a mouth, which is ro in Coptic, and represents the R of Kleopatra. (() The nimth hieroglyph in Kleopatra is the eagle, which is explained in No. 6 above. (IO) The semicirele is the T of Ptolemaios, which with (it) the egg fonnd at the end of proper names of women. is a feminine affix. In the name of Ptolemaios there is stitl the II and the S to accoumt for. The fifth hieroglyph in the cartonche of Ptolemaios is a geometrical figure, consisting of three sides of (probably?) a parallelogram, but now called a hole, because the Coptic mu has that signification, and represents the $\$ 1$. The hook represents the S of the word Ptolemaios. Vowels werc only regareled by the Egyptians as they were needed to aroid ambignons writing. There are groups of hieroglyphs of which one clement is an illographic sign, to which a phonetic complement is added io indieate the pronunciation of the ideographic sign. The
words of a text could be written in hieroglvphs in three ways－（1）by phonetic hecroglyphs； （2）by ideographic hieroglyphs：and（3）by a combination oi both．According to Ebers． in the periected system of hieroglyphics the symbols ior sounds and syllabl．are to be re－ garded as the foundation of the writing．while symbols for ideas are interspersed with them． partly to render the meaning more intelligible． and partly for ornamental purposes．Consult： Brugech，（Egyptologie）（IS91）：Erman．（Life in Ancient Egypt＇（I8g4）：and＇Egyptian Gram－ mar＇（ I894）．

Hierosolyma．See Jertesilem．
Hig＇gins．Anthony，American politician：b． Red Lien Hundred，Del． 1 Oct．isto．He was educated at Yale and after studying law at the Harvard Law School was admitted to the Delaware bar in i 864 ．From 1860 to $18 ; 6$ he ras United States attorney for Delaware，and beconning interested in politics was chairman oi the Republican State Convention in 1808．In ISSI he secured the rote of the Republican members of the Delaware legislature ior the Iational Senate and in 1884 was defeated as a Renublican candidate for Congress．He was Lnited States Senator IR80－95．

Hig＇ginson，Ella Rhoads，American novel－ ist and poet：b．Council Grove．Kan．，1862．She was married to R．C．Higginson and has passed her life mainly in the vicinity of Puget Somnd， Waslh．She has contributed much to periodicals． and her work，which has a distinctly original flavor，has attracted much attention from its vigorous presentation of lite on the upper Pa－ cific slope．Her most noteworthy book is ＇Mariella．or Out West．＇an extremely strong novel（1902）：and other works of hers are＇The Flower that Grew in the Sand）（1806）；＇From the Land of the Snow Pearls＇（IS9\％）：＇A Forest Orchid）（ 1897 ）；and several collections of poems．
－Higginson，Francis，English clergyman in colonial America：1． 158 ；：d．Salem，Mass．， 6 Aug．1630．He was cducated at Cambridge， England and subsequently became rector of a parish in Leicester，but becoming gradually a Nonconiormist．was deprived of his leenefice，and was employed among his former parishioner as a lecturer．While apprehending a summons to appear before the high commiscion court，he received an invitation from the Massachusetts Cumpany to proceed to their collony，which he accepted．He embarked in May 162n．and it is related by Cotion Mather tlat as the ship was passing Land＇s End：he called the passengers －hout him and exclaimed：＂We wil？n＇t＊ay，as the Separaticts were wont to ay at that leav－ ing of Encland．＇Farewch，Batillon：farewell， Kt me！＇but we will say，Farewell，dear Eng－ 1 mid！farew ll，the church of God in England． and all the Christian friends there．We do not E．th New England as Separatists，though we cannet but separate from the corruptions of it． but we go to practi－e the positive part of church rei rmatuon，and prepagate the ge－pel in Imer－ a．＇He arrived at Salem－9 Junc，and on 20 July was chowen teacher of the congreqation estab－ li－lied there Subecquently 1 igginon drew up＂a conicesion oi faith and church covenant accordmg to Scripture．＂which on 6 Angust wa－assented to by 30 persons，who associater themselves as
a church．He wrote＇New England＇s Planta－ tions，or a Short and True Description of the Commodities and Discommodities of the Coun－ try）（1630），and an account of his vorage． printed in Young＇s＇Chronicles of the First Planters＇（I\＆ 4 ）．Consult：T．WV．Higginson， ‘Life of Francis Higginson’（ISgI）．

Higginson，Francis John，Ainerican rear－ admiral：b．Boston 19 J uly 1843 ．He was grad－ wated from the United States Naval Academy in 1861 and served in the United States navy during the Civil War becoming lieutenant－com－ mander in 1856．He was commander of the Massachusetts during the Spanish－American War 18g8，was promoted commodore that same year．and rear－admital in Narch 1899.

Higginson，Henry Lee，American banker：

 b．New York 18 Nor． 1834 ．He was educated at Harvard．studied music abroad and served in the Federal army during the Civil War and was brevetted lieutenant－colonel．He has been long connected with the Boston banking firm of Lee－Higginson \＆Co．，and has contributed large amounts toward the organization and support of the Boston Symphony Orchestra．Higginson，Mary Thacher，American au－ thor wife of T．IV：Higginson（q．v．）b b Nachias，Maine，2－Nov．1843．She has written ＇Seashore and Prairie＇（18；6）：＇Room for One More）（1879）；and＇Such as They Are＇（I893）， poems written in collaboration with her hus－ band．

Higginson，Sarah Jane Hatfield，American writer：b．Philadelphia 15 Jan． 2840 ．With her first husband，a Dutch jurist，she lived ior sev－ eral years in the Dutch East Indies，and after his death returned to the United States．where she was married to Steplen Higginson，a for－ mer American consul in the Dutch East Indies． She has written：＇A Princess of Java：a Tale of the Far East＇（I88－）：＇Tava，the Pearl of the East．）a book of travel（ISgo）；＇The Be－ douin Girl．＇

Higginson，Thomas Wentworth，American anthor：b．Cambridge，Mass．， 22 Dec．1823．He is descended from Rer．Francis Higginson （ $\mathrm{q} . \mathrm{w}$ ）and was graduated from Harvard in 18．41，and irom Harvard Divinity School in 184：－He became pastor of a Unitarian church in Newburyport，Mass．in 1847 ，but resigned irom the pastorate in 1850，his anti－slavery views being unacceptable to his congregation．In the year last named he was the unsuccessful＂Free Soil＂candidate for Congress，and he was pastor ni a Free（unsectarian）church at Worcester， Mass．INミこと．In the interim he had been prominent in anti－slavery agitation，and for his share in the attempted rescue of the fugitive Alave An：linny Burns（q．w），was indicted for murder in ISE．with Wendell Phillips．Theodore Farker and others，but owing to a flaw in the indictment the defendants were discharged．He also aided in the Kansas Free State efforts，and during the Civil War was captain of the sist Massachusetts regiment of volunteers，becoming colonel in November 1862，of the ist South Carolina volunteers，the earliest regiment of freed slaves in the Federal service．He resigned from the army in October 1864，by reason of disability，and has since given his attention to literature．residing at Cambridge．Mass．，since
1878. He has been almost a life-long advocate of woman suffrage and of the higher education of woman, and was a member of the Massachusetts legislature $1880-1$, serving on the State board of education, also, $188 \mathrm{t}-3$. He is a polished, graceful speaker, and has frequently appeared on the lecture platform, his latest appearance being as Lowell lecturer on American literature in Boston in 1002. As an aiterdinner or occasional speaker he is especially happy, his felicitous sentenees being almost always illuminated by the play of a very delicate humor. He is presideni of the Round Table, a social Boston club, and vice-president of the Boston Authors Club, as well as a mennber of many other organizations. social and literary. He has been for a generation a constant contributor to periodicals of the highest class and has figured in literature as essayist, novelist, poet. and historian. His principal work in fiction is 'Malbone' (I860), in which his first wife is outlined as tunt Jane. As an essayist he is perhaps seen at his best. the essay form seeming peculiarly adapted to his genius. Among collections of essays by him may be cited: 'Outdoor Papers' (1863): 'Atlantic Essays'. (1871): 'Women and Men' (1887): 'The New World and the New Book' (1891); and 'Concerning All of L's' (1892). His 'Young Folks' History of the United States' (1875) has been widely popular, and other histories by him are 'Larger History of the U'nited States) (1885) : (English History for Americans' (1893) : 'Massachusetts in the Army and Navy, $1801-5^{\prime}(1895-6)$. His verse is included in 'The Afternoon Landscape' (1889); 'Such as They Are' (1893). Y'et other important works by him are 'The Monarch of Dreams.' a strikingly original sketeh (I886): 'Army Life in a Black Regiment' (1869) ; 'Cheerful Yesterdays' (i898): 'Old Cambridge' (1899): 'Contemporaries' (1899) : and lives of Margaret Fuller (1884): Francis Higginson (I891): Henry W. Longfellow (1903) ; Joln Greenleaf Whittier (1903): 'History of the Cnited States' (1005). He translated the complete works of Eyictetus (IR65. revised edition 1801). With Samuel Longfeliow (q. .) :.e conpleted a wellknown anthology of seacide verse, 'Thalata' (185.3), and with Jirs. E. 11. Bigelow' American Somets' (18 co) . Several oi his works have been translated into Frencli, German, Italian. and even modern Greel?. He was the friend of very many of the older Xew Fngland writers and has heen especially helpful to many of the younger ones, not a feif of who:n owe him much in the way of kindly criticism or surgestion, the fruit of ripe scholarship.

High Church, a term applied to a faction. in the Church of England. It was applied first to the younger elergy during the latter part of the reign of Elizabeth who asserted that Calvinism was inconsistent with the ancient doctrine and constitution of the primitive church, and who claimed a divine right for episcopacy. Bishop Andrews was the chief writer of this faction, and Laud became its most active leader. The term now generally refers to those who exalt the authority and iurisdiction of the cluurch, and attach great value to ecclesiastical dignities and ordinances, being more or less
identified with the ritualistic party. Sec Rircallism.

High Bridge, Engagement at. See Farsamlie.

High-Frequency Oscillating Current. This term is especially applicable to electrical currents, the high frequency interruptions of which are obtained by means of condenser discharges in contradistinetion to those produced by a disrupted static current, without the interposition of a metallic condenser in series with one or both terminals. The latter differs in several characteristics and is cssemtially a high potential current. 10,000 to 50,000 volts, with a minimum amperage, usually about .0005.

To generate a high-frequency current it is usual to charge two Leyden jar condensers with a high potential current, the source of which nay be a static machine or induction coil, shunting the two wires with a spark-gap for the purpose of disrupting the current. The external armatures of the condensers are short-circuited through a solenoid or helix consisting of a few turns of coarse copper wire (D.Arsonval). The helix may be substituted by a straight copper bar (Sheldon). By prolonging the helix from 50 to 100 turns, this constitutes the resonator of Oudin. The upper part of the helix resonates in unison with the lower. when properly in tume as would a tuning-fork resonate with another of the same pitch. The office of the extended helix is to amplify the current.

Another arrangement is after Tesla: The primary of a specially constructed induction coil is energized by an alternating current. The secondary terminals, giving a potential of 15.000 volts, are connected, one to each side of a suitable condenser. From each of these terminals a shunt is taken. One leads to one end of the primary of a Tesla coil: the other, broken by a spark-gap, is connected to the second terminal of the primary. The frequency obtained from the Tesla apparatus is fabulously high -- millions a second. The potential may be hundreds of thousands or millions of volts. The amperage is sufficient to light to full candle-power several incandescent lamps. The primary of the induction coil consumes 15 to 25 amperes. For maximum high frequeney effects this type of apparatus seems to be essential. The brush discharge from the terminals may be 20 or even 50 inclues in length. There are many modifications of this apparatus.

The one characteristic of the high-irequency oscillating current is its lack of power to excite the motor, and, aside from a slight sensation of warmith, the sensory nerves at the pont where the electrode toullies the body: The accepted explanation ior this fact is that the nerves respond to certain frequencies of stimulus; for the motor nerves. reaction takes place up to about 5.000 frequencies: if these are gradually increased musenlar contraction diminishes and finally ceases. This thenty is in line with reasoning as to the cause for action of the special senses - sight and hearing.

At the terminals of a working high-frequency apparatus is seen a heantiful brusly discharge or effluve of a peeuliar blue color, which will leap to any ohject hrought near it. Interpose a plate glass one half inch thick (or more), and
the effuve will penetrate it. If the object be a vacuum tube it will glow almost as brightly as if nothing intervened. It is an ideal current for igniting Geissler and low-vicuum S-ray tubes; only one terminal need be connected.

The ligh-irequency discharge is a rich ozone generator, and, applied to unheathy granulations and various skin diseases. acts as an oxjdizer, antiseptic and disinfectant. Apphed to the skin before incision, it will render the site aseptic.

For general effect the patient is placed upon an auto-condensation couch or in the centre of an auto-conduction cage. In the treament of sub-acute and chronic rheumatism, sciatica, neurasthenia. etc., it is most useful.

Johei M. Garritt. M.D.

High Priest, the head or the Jewish priesthood. In the books of Moses the holder of this dignity is simply designated the priest. the epithet high occurs on one or two occasions. but as 2 distinctive epithet it appears to have been added subsequently. The formal consecration of Aaron. the brother of Moses, together with his sons, to a heredirary priesthood. is recorded in Ex. xxviii. The high-priesthood continued in the line of Aaron, sometimes in one, and sometimes in another branch of it, until the coming of Christ. Aiter the subjugation of the Jews by the Seleucidr. the Ptolemies, and the Romans, it was often arbitrarily conierred ty the foreign masters. The dignity of the priest's ofrice is indicated by the splendor and costliness of his garment, which was among the nost beatiful works of ancient art. To the high priest belonged the regulation and superintendence of the worship of bod, the declaration of the oracles of Jehovah to the people the alone being permitted to consult them on important public occasions), and the preservation of the national sanctuary. Although the administration of justice was comnnitted to particular judges. yet to him the last appeal was made in difficult cases. even in tempural affar- and nothing important in war or peace could be undertaken without his as ent.

High Schools, the term applied in the public school system of the United States to the instututions for secondary and hisher education preparatory to a college course. They werc generally, established at public expense betweers 1820 and 1850 , to correspond inn grade to the academies or schook maintained by endowment of at private expense in which young men were prepared for college.

The European representatives of the American high schools are the public schooli an's entlege: of Great Britain, the lyceums of France. Spain, and laly: and the gymma-ia of Fermany: the universitic in Fermany are oficha!!y called higls schonl= (Ilwh-chulen).

The irm 'high school' was applicd a" car'y a- the toth century in a celebrated educational ectablishment of a liberal character: a arade below the tumersity, in Fedinhurch. Sentlan!.

In 1057 the Bassachu-ett. Celony enacted at law that wery town of 100 iamilic honll maintam a school, the teacher of which oh whe he 'able to in-trnet youth, so fat as they may lee lited it the tiniversity." Thin law, themeh mareriectly sheyed, introduced very early mon Mas ch wett and New Eneland a =nall mom-
ber of classical schools, and subsequentiy pre pared the way for the endowment of a few academies in which young men were prepared for the colleges. Of these especially endowed academnes. many of which rendered eminent service, the more notable are the Hopkins Grammar Schools of Hartiord and New Haven. Conn.: the Hopkins Academy in Hadley, and Phillips Acaoomy at Andover, Mass.; Phillips Exeter Academy al Exeter, N. H., and Amhersi Academy. Mass. Among the public schools of the country, the Boston Latin School. a colonial. foundation. was for a long time almost the only classical school supported by public taxation at, which students could be prepared ior college. It was pre-eminent alike for the thoroughness of the education which it gave, and the ireenes: with which this was proffered to all the residents of Boston. In iser the English High School. supplementary to the Latin School. was established in Boston. In Philadelphia the corresponding institution still bears the name of the Central High School. while in New Lork city the original Free Academy has developed into the College of the City of New Jork. With the reorganization of the public school systems of the older States. and the foundation of such systems almost simultaneously with the redemption oi the soil irom the forest and wild prairie in the newer States. provision was made for a system of high schools, to give a thorough preparation for the college curriculum. These high schools are now in vigorous operation from one end of the United States to the other. See Entcation, Secondary:

High Seas. Among maritime nations both in ancient and modern times the necessity for some international regulations to govern their communications by sea has been iound a necessity: The views of jurists on this subject have fluctuated between two opposite principles. Xations possessing a poweriul marine are disposed to push their privileges to the umost. and to claim exclusive accession to. or a superiority and protective right: over. extensive tracts of the ocean highway. The weaker maritime nations. on the other hand. and the commercial rivals of these most especially prwileged. have contended for the liberty of the seas. The most memorable instance oi this controversy occurred in connection with the clams arnsing out of the great maritime di-coveries oi the Portuguese at the close of the 15 th century. Inder the grant of Pope . Nexander VI. the Portuguese clained the right to exclude other nation- irom the seas between the eastern coas: oi 1 irica and the coasts of India. Againt this. claim Grotius wrote his celebrated :reatise, the 'Nare Liberum.' which appeared in Itoo. The Fngli-h. who had their own clams of jurisdiction. were not the:! of for long atter. prepared t admat the liberty of the seas. The seteral irinciple of in ernational law mow accepted 15 that the jurindiction of maritime nations extends only for three miles. or within camon riseri their own enasts: the remainder of the sax leing high seas, accessible on equal terms in all nations. lnland seas and estuaries. of - n 位e, are excepted.

High Treason (Er. trolison, betrayal): is defned in Encli-h law as the most lemous ni all nfiet -en agam-t the law, and consists in imasin-
ing or devising the death of the ruling monarch. or proposing to kill, maim or restrain the king or queen ; or levging war against lim: adhering to his cncmies; killing his wife or eldest son, or heir : violating his wife, or dauglter. or heir's wife: killing the lord chancellor; killing the chancellor of the exchequer, or a justice in office. High treason against the United States consists in levying war against them: adhering to their enemies, or giving their enemies aid and comfort. Treason against a State is generally defined as hostility to a State only. The former punishment of treason in English law was death by hanging. drawing and quartering. The penalty is now hanging or imprisomment. This crime is punishable in the United States according to the act of 1862 by death or imprisonment with hard labor for a period of not less than five years, a fine of not less than $\$ 1 u .000$ and a perpetual disability to hold any office under the Crited States. The act of 1862 adds: "No person shall be convicted of treason unless on the testimony of two persons to some overt act, or on confession in open court. The Congress shall have power to declare the punishment of treason, but no attainder of treason shall work corruption of blood (q.s.) or forfeiture except during the life of the person attainted."

Highbinders, a name given to a secret organization among the Chinesc in the United States which has caused much bloodshed in the Chinese quarter of San Francisco. Cal., necessitating intervention on the part of the authorities. The Chinese call these societies "hatchet" societies, and the members "hatchet men." The organization scems to be an offshoot of the Six Companies (q.w.), though some claim that it is merely a revival of one which originated over 200 years ago in China.

Higher Criticism, The. The higher criticism is a science whose aim is the determination of the literary history of books and writings. It sets forth the facts and principles by which we must determine, in the case of any writing, its literary form, its unity, its date, the place of its composition, its authorship, the method of its composition or construction, its integrity, and the amount and character of any subsequent editing it has received, so far as these matters can be discovered by the use of such internal evidence as is presented in the writing itself. It is thus the scicnce for ascertaining the literary form and the literary history of any writing by means of internal evidence. These same matters may also be determined, in part or in whole, by external evidence in many cases; that is, by history or tradition. This latter method will not necessarily be cither better or worse than the method which employs internal exidence. The greater probability of the result, in every case, will depend upon the amount and the character of the evidence which is attainable. Sometimes external evidence may be more abundant and trustworthy than the internal evidence, and sometimes the reverse may be true.

The science under consideration is termed higher criticism to distinguish it from the related science of lower, or textual, criticism. This latter science has for its object the ascertaining of the history of writings as the work of penmen and printers. It seeks to determine
just the words and the letters which the anthor himself wrote, and what are the changes which his work las suffered in transmission. Since the literary history of a writing is, on the whole, of more importance than the history of the written or printed text, the science of the literary history is justly termed the higher criticism.

The higher criticsim is a science which is equally applicable to all literatures. It may be used to determine the literary listory of a writing of any age, language, or people. But, of late, it has been especially brought into notice in its application to the literature of the Bible. On this account, it is sometimes spoken of as if it were a science belonging to Biblical study only. But the fact is that Billical highor criticism is only one department of higher criticism in general.

As employed in Biblical study, higher criticism adopts the following method: (1) it sets forth the priuciples by which, according to the teachings of general literary criticism, we may correctly determine the literary form, the unity. the date, the place of composition, the authorship. the method of composition or construction, the integrity, the amount and character of subsequent editing, of each of the Biblical books and writings: (2) it then presents the evidential facts to be found in each of the Biblical books and writings, to which these principles will apply: and (3) finally it gives the conclusions which result from the application of these primciples to the evidential facts. In practice. however. different schools of Biblical higher critics come to rery different conclusions upon the same basis of evidential facts, while using the same principles of criticism. This results from the varying opinions held by these critics in relation to the value and significance of the evidential facts, dute to their differing views about the history of Isracl, and their philosophical convictions concerning the place of the supernatural in that history. Those critics who refuse to allow the existence of any supcrnatural element in the history of Isracl, and hold that this history was the product of only those forces which shape and determine all human history, so that it was exactly like the history of every other people, cannot purt the same value and meaning upon the historical testimony and references to be found in the Biblical books, as those critics must who believe that the history of Israel was, to no inconsiderable extent. a supernatural history, and, therefore, different from the history of every other people. In the case of the Old Tcstament, for example, some critics hold. because of their philosophical opinions in regard to the supernatural. and the universality of the working of the evolutionary forces of history, that the historical material of the Old Testament, as we now have it, is not to he accopted as the trus basis of Old Testament listory, and that this history must be constructed out of this material, under the guidance of some philosophical theory. Other critics accept the historical material which is now to be found in the Old Testament, as furnishing in itself the true Old Testament history: Since the evidential facts used in higher criticism recenve their value and meaning from their evident relatior to a previously determined history, it is clear
that each i two so different histories camot be a basis for the same critical conclusions. Bu: it is to be noted that the detemmation of the histories is not a work of higher criticism, but is a matter which results from the philoscplical opinions held by historians. The consequence of these facts is that the only results which have thus far been reached hy Biblical highe: criticism. which all schools of critics would accept. seem to be: (1) The existence of different documents in the Pentatench, which have been used in its compilation, although there is, among critics, quite a little difforence of view in relation to the age of these doctsments and tle time of their compilation int the Pentateuch: (2) the plural authorship of the books of the Old Testament known as the books of Isaiah and Zecharials: and (3) the fact that older sources have been used int the making of the symoptic gosnels and the book of Acis. From all that has been said. it will be seen that it is not the duty of higher criticism to aseert or deny anything in relation to the inspiration of the Seriptures or their anthority for belief or conduct. With these matters this science has absolutely nothing tu do.

Bis'i graphy.-Ander=on, 'The Eible and Vodern Criticism' (1902): Lias, 'Principle= of Biblical Criticism) (ISo3): McFadyen. 'Old Testamen: Criticiom and the Christian Church' (1003): Nicoll, 'The Church's One Foundation: Christ and Recent Criticism' (1901): Peters, 'The Old Testament and the N'ew Scholarship' (roor) ; Rishell. 'The Higher Criticism' (rso3): Zenos. 'The Elements of the Higher Criticism' (I895) . S. Butrivany. D.D.
Dean of the Hamilton Thiological Siminars. Colgate Lnitersity:
Higher Law, a famous phrase 11sed by IIjlliam H. Seward (q.v.) in Jarch 18.50 in the United States Senate, on the admissjon ni California as a State, which was held up by the Southern elcment to force the Congress to admit it as a slave Siate or at least to divide it on the line of the Missouri Compromise (q.w.). Seward denied that the minciple of compromise applied only to slavery, which was only one if many institutions, and held it equally applicable to the Territories, which were a possession to be enioyed and administercd in commsin by the States: and declared that the older States had no arbitrary power over them. He went not: "The Constitution regulates nur stewardship: the Constitution devotes the domain to union. to justice, to defense, to weliare, to liherty: But: there is a higher law than the Comsituti n, which resulates nur authority over the de mains and derntes it io the -ame mible purpuses. The territory is a part ; . if the comm "n heritage of mankind, beetowed upon them hy the Creator of the universe. lle are his sten: ard=. and must so dincharge our trust $a=$ th sceure in the highest attamalle degree their happinese" And in Weboter' aceertion that it was ah-urd to re-enact the lawe of ront. Ic - nowered that "there is no human enactment which is just that is rint a re-enactment of the !aw of rond" It was his fir-t wet speech in "te Senate, at d at ince made him? the receneria at leader of the radical sectinti. The con-mertatives denounced it as treanomalle, implying that is the was amber any whligation to whpert the Cemation it if he believed it in oppositum th
the law of God and making the execution oi any laws impossible.

Higher Plane Curves. See Curtes. Higyer Plane

High'land Cattle, a rariety of small. rough-coated, usually red or black cattle, with upiurned horns. kept hali wild upon the moors of the Scottisla Highlands, and believed to represent in part the cattle of the aboriginal Britons, which are replaced in the south of Great Britain by the short-horned breeds introduced by the Roman conquest. Compare White Cattle

Highlanders, Scotch, in the United States. After the Jacobite risings in England in 1,15 and $1 \% 45$ in favor of the Old and loung Pretenders. which were zealously supported by the Highlanders (who indeed formed their backhone). the English government exerted itseli to drain their strength by colnizing them clsewhere: and many who wete in danger of vengeance came to America voluntarily: The chiei movement was after 1745 , when the govermment thoronglily reorganized the Highands. broke up the clans. and deported large numbers to the colonies: bit after 1715 many: in bands or as individuals had come over. especially to the Carnlinas. Some seitled in westem South Carolina. as iarmers or Indian traders: a considerable body near Fayetteville, ㅅ. C. where their descendants still speak Gaelic in preference to English, and have their church ministrations in that language: and a number of different colonies in the iuture Georgia, where Oglethorpe fotnd them when he came over in $1 / 33$ with a patent for a new colony: Especially he won the hearts of a settlement at Darien, under a Capt. Nackay: These Highlanders gave him priceless helo in his incessant fights with the Spaniards and constant negotiations with the Indians: but they strongly opposed the slave trade or the introduction of slaves inio Georgia. Some Highland companies sent to the Mohawk Valley, during the French and Indian war. were disbanded there, and remained as settlers, a recognizable elenent during the Indian troublen of the carly Revolution.

Hilda, Saint, Anglo-Samn abhess: b. abont 6r4: d. 6so. She was consecrated as a num by Eishop Aidan, and was successively head of the abbey of llartlenol. and oi the famous monastery iounded by her in $15=$ at Whithy: Vorkshire. This continued for several centurics a rcligions house of great power and influence. in the time of its founder perlaps the strongest in Great Britain. Crednon (q.v.). the DigloSaw mot. was attached to the monastery during her rule, and it was there that the celehrated symon to ok place in 064 in which the Celtic ritual was eondemmed. Consult: Bede, Eeclesiastical History.'

Hil'debrand. See Gregory T"ll., Pore

Hil'dreth, Richard, Amcrican historian : 1 .

 Decefield. Dass.. 22 June $180-$: d . Florence, 1aly. 11 Inly si80 He was graduated at Harvard in iszo. studied law at Jewhuryport, entored practice in Boston, and ahandoned it in 1832 in beame editor of the 'Roston Atlas' In this po-ition a scries of articles hy him in 1.83:- relutise to the separation of Texas from Mexic. did much in stimulate the resistance wh that movernent encountered in the ireeStates. In 1834 his anti-slavery novel, 'The Slave,' was written. This work was republished and favorably received in England, and in 1852 an enlarged American edition appeared under the title of 'The White Slave: Nemoir of Archy Moore' (1837). In 1837 - 8 he was Washington correspondent of the 'Boston Atlas.' and resumed his editorial post as an adrocate of the election of General Harrison, of whom he wrote a campaign biography. He then abandoned journalism, and in 1840 published. under the title of 'Despotism in America.' a volume on the political, economical, and social aspects of slavery, to which in the edition of 1854 was appended a chapter on the 'Legal Basis of Slavery.' In I840-3 he resided in Demerara, British Guiana, and at Georgetown edited two free labor newspapers. Later, for several years, he was a member oi the New York Tribune staff, and in I861 was appointed United States consul at Triest. His best known work is his 'History of the United States' (1849-56), which extends from I492 to the end of President Mlonroe's first term. The author sought an authentic presentation of the conspicuous figures of earlier American history. His work is accurate and careful, though with a Federalistic siewpoint; but so uninteresting in manner as to be ill-adapted for continnous reading. Hildreth also wrote: 'Theory of Morals' (1844) : 'Theory of Politics' (1853): 'Japan as it Was and $1 \mathrm{~s}^{\prime}$ ' (1855): and 'Atrociouis Judges' (1856).

Hilgard, hil'gärd, Eugene Woldemar, Ger-man-American chemist and geologist: b. Zweibrücken, Bavaria, 5 Jan. 1833. He came to the United States in 1836 . returned to Europe for purposes of study and was graduated (Ph.D.) at Heidelberg. I853. In 1858 he became State geologist of Mississippi, in 1873 was appointed professor of geology and natural history in the University of Mlichigan. and in 1875 was made professor of agricultural chemistry and director of the agricultural experiment station in the University of California. He received the Liebig medal from the Nunich Acadeny of Sciences in 1894. and his investigations into the chemistry and physics of soils have done much to promote agricultural science.

Hill, Adams Sherman, American educator: b. Boston, 30 June 1833 . He was graduated from Harvard College I853 and Harvard Law School 1855. and in 1875 became Boylston professor of rhetoric and oratory at Harvard University: He has written: 'Principles of Rhetoric' (18 -8) ; 'Our English' (IS89) ; 'Foundation of Rhetoric' ($\mathrm{I}^{2} 92$).

Hill, Ambrose Powell, American military officer: b. Culpeper County. Va.. 9 Nov. $182 z^{5}$: d. 2 April 1865. He was graduated at the United States Military Academy 1847: served in the Mexican War, but resigned from the army in March 1861, and was made colonel of the 13 th Tirginia regiment of the Confederate army. Having distinguished himself in service, he was promoted maior-general in May 1862, and lientenant-general zo May I863. and placed in command of one of the three corps of the army of Northern Virginia. He led his corps at Gettysburg and later at Bristow Station and the assault on the Weldon railroad in
1864. He was killed in the attack on Petc... burg, Va.

Hill, Benjamin Harvey, American legislator: b. Jasper County; (ia.. ${ }^{14}$ Sept. 1823; d. 16 Aug. 1882. He was graduated at the State University of Georgia in 1844 and chose law as a career. In 1851 he was elected to the State legislature. He in vain attempted to withstand the secession sentiment of his State, but at last yielded to the movement, and was elected to the Provisional Confederate Congress, and from the assembly promoted to the Confederate Senate. He supported Greeley ior the presidency in $: 872$, and was defeated for the United States Senate the following year, but after being elected to the House of Representatives in 1875 . was given a seat in the United States Senate $18 ; 6$ and held it for the remainder of his life.

Hill, Daniel Harvey, American military officer: b. Hill's Iron Works, lork district, S. C., 12 July 1821 : d. Charlotte. N. C., 24 Sept. 1889. He was graduated at the United States Military Academy in I\&42, and served in the Mexican War; became professor of mathematics and military tactics in Washington College, Va., in 1849, professor of mathematics in Davidson College, N . C., in 1854 ; and was made president of the North Carolina Military Institute in Charlotte in 1859. At the outbreak of the Civil War he entered the Confederate army as colonel: was promoted to lieutenant-general in 1863, and commanded a corps at the battle of Chichamauga. After the close of the war he resumed his educational work, and in 1877 became president of the Arkansas Industrial University, where he remained until shortly before his death.

Hill, David Bennett, American lawyer and politician: b. Havana. X. Y... 29 - -ug. 1843. He entered a law office in Elmira, N. Y.. as clerk and student in 1862, and after admission to the bar in 1864. rapidly built up a law practice and was an acknowledged leader of the local bar. He was active in politics. and acquired a leadership there also, through his genius for organization. He was a member of the State assembly I870-1. and president of the Democratic State convention in ISTY and 1881. In 1882 he was elected mayor of Elmira, and lieutenant-governor in the same year. with Cleveland as governor. In 1885, when Cleveland resigned to take up his duties as President. Hill became governor. He was subsequently twice elected governor, serving till January ISg2. when he took his seat in the United States Senate. During his first administration as governor, the legislature was Republican. and he was involved in a number of partisan struggles. As senator, he opposed on some issues the policy of President Cleveland: he was also opposed to the income tax clause of the Wilson Tariff Bill. In 1802 he was a prominent candidate for the presidency at the Democratic National convention, and at the convention of 1806 was one of the chief leaders of those who favored the gold standard and were opposed to radicalism in the party. In 1894 he was again candidate for governor of New York State, but was defeated by Levi P. Morton. In 1902 he practically dominated the Democratic State convention, and was active throughout the campaign.

HILL

Hill, David Jayne, American educator and diplomat: b. Plannield, ㄱ. J., io June 18 ミo. He was educated at Buckneil L-niversity, where he became professor of thetoric $18, \pi-0$ and then frealdeat oi the institution. He was elected
 1ate. resigning to spend three years in Europe studying sarnational law and diplomacy. He vecame hirst assistant Ľnited States secreary of state in October 18: and in 1903 was appointed United States minister to Switzerland. He has wetten biographies of 'Washington Irving' (r8:9) : and 'William Cullen Bryant' ($18,-9$); 'Principles and Fallacies of Socialism' (INEJ): 'Intemationa! Iustice': 'A Premier of Finance' ; etc., and several school and college textbosk.

Hill, Frank Alpine, American educator: b. Biddeiord. Maine. 12 Oct. 1841: d. Brookline. Ma:s.. 12 Sept. 1903. He had long been prominent among New England educators, and aiter being head-master of high schools in Miliord, Chelsea. and Cambridge. Nass.. became secretary of the Massachusetts State Board of Education in 1894. He was a trustee oi the Massachusetts Institute of Technology, of the State Agricultural College at Amherst. and of the Boston Mhseum oi Fine Arts, as well as a commissioner oi the State School Fund.

Hill, Frank Pierce, American librarian: b. Concord. -1. H., 22 Aug. 1855 . He was graduated irom Dartmouth in $18 ; 6$. In 181 he became librarian of the Lowell public library, and in 188 S he organized the first iree public library in lew Jersey at Paterson. He also organized the Salem public library, and the Newark library in rise At Newark a new building was erected under his administration and the library brought to a bigh degree of efficiency so that it is recognized as one oi the model public libraries. In toor he was appointed chiei librarian ni Brooklyn, under the new system established upon the receipt oi Mr. Carnegic': gitu.

Hill, Frederic Stanhope, American sailor and author: b. Boston, 24 Aug. 18-2. Ite went to sea when a boy, and during the Civil War was an cificer in the Crited States navy. Ile was with Farragut at the cap ure of New Orleane and Vickskurg, and was also in command in the Texas cnast and in the Mi-siontpi equadrin. He has written: 'Twenty Years at Sea' , INai) : 'Story (i t're Lucky Littic Ent r-fri-e. Twenty-cix Hi=t!ric Ships' (T1,0.): and ha: 'ec:n edit : of the Camt ridge 'Tribune.'

Hiil. George Birbeck. Enatish educator and aut r : b. T ktenham, Niddesix, 7 Jume
 was a nephew af Sir R.whand Hil (qw), wo edeara! at Qxiner, and was head-m -rer i Brice Ca*tle Sch i is5on-6. Since the lauer the he lad devoted his a!:ension to literature and was well known in the Cinied sones th-owgh his 'Harvard College. by an Oxnmian' (1824). Other wnsk: liv him are: 'Talk: ahoult Awngranhs' (isifi): 'Dr. Tohnson- Fis Friendis and $\mathrm{Hi}=$ Critics' ($\mathrm{F}, \mathrm{S-Q}$): ' Lifife of Sir Rnwland Hill' (TSS): 'Font-steps of Dr. Johnson in Scotland' (18en): 'Memoirs of the Life of Frlwาed Git bnn' ((romb).

Hill, Henry Wayland, American lawyer: b. Itle La Motte, V'.. 13 Nor. ISE.3. He was
graduated from the University of Vermont in 18,- \quad, was proncipal of Swanton, Vit., union school 18:- -9. and oi Chateaugay, N. Y... acadeny 180-83. He was admitted to the bar at Albany, $-\mathrm{Y} .$, in 1884 , and entered upon the practice of his profession at Butalo. He was a member of the New lork assembly $1896-1900$. and bas been Sate senator since 1901 , representing each time a constituency in BuFalo. He is the authroi several constitutional provisions and of several general statutes now in force. During his public career he has secured for Buftalo large State appropriations ior the new T-th and osth reginent armories, for the Historical Sxiety building, tor harbor improvement and cther public purposes. He also adrocated measures desigued to provide home rule for cities, reiorm in election me:hods. etc., and many impertant State ineasures, such as the Primary Election law, the Civil Service law. :he Franchise Tax law. the Pharmacy law, and the Canal Improvement reierendum of $1 g 03$. He has made a study of waterways in this and other countries, and contributes the article on that subject in this encyclopedia. He is the author of 'The Development of Constitution Law in New York,' and a contributor to the 'Bibliophile Edition of the Odes and Epodes of Horace.'

Hill. James J, American capitalist: b. near Guelph. Ont. 16 Sept. 1838 . Ai 18 in the village of St. Paul. Minn., he became checkclerk and caretaker of ireight at the steamboat landing. At that time there was not a mile of railroad in the State. In $\mathbb{S 6}$ the first 10 miles oil railroad were finished from the levee in St. Paul to the riverside in St. Anthony, and knomn as the St. Paul and Pacific railroad. of which Hill later became the agent. Aiter the Civil War, Hill clearly discerned the grea: resources and possibilities of the Red River countryWestern Minnesota and Eastern Dakota. He went East. costracted ior his boilers and machinery, and on the bank of the river built a diat-bottomed steamer called The Selkirk. which in the suntmer of 18 ;o began to ren between Winnipeg and the head of navigation. to rival the line operated by the Hudson Bay C mpany. The same year. isiz. Hill consiliuazed his trans rati n interests, with those of the Ifudsin Bay Cumpany, iorming the Red River Trantpuitation Company. The St. Paul and Pacific railrcad n. w reached the weste:n boundaty if the Staie at Breckentuse. For several yeare the St Paul and Pacific system of railr ads. olnsisting ri fi: niles of completed theck, was i:1 p F © ncis. n. The stackholders. m stly Hu thal capitalists. were weary with de y and misinturne. Becatse of his faith in the future i the regin Hill in med a syndicate cif five fers mo which sto gained posesesion of the $5-\mathrm{d}$. and in Junc i8;o. the system was censolidated into a single ownership as the St. P M'. Minne?polis an I Manitnba Railrozd Comn. ny: In iRRo the road was exten led to the Pail cos. traversing vast tract on lan I with--ut 1 uman hinbitation. The track was well laid, Ho: the ot tions were often only freight cars. romn is mine another, and from other human -.. munts Tle rnad is now known as the rin: Othern. Coal fields were di-covered. is 1 - wh read carried their product for the use
of the main line and settlements formed for preparing the lumber for shipment. To ship valuable lumber eastward was an excellent plan: but to send empty cars after it was out of the question; and Hill conceired the idea of shipping grain for the Japanese steamers to carry to the Orient. An agent was sent to China and Japan to find out what the price of wheat must be to compete with rice, and the result was that the Japanese Navigation Company, the third largest steamship company in the world, began to carry large shipments of grain to China and Japan. Large docks for these steansers were built at Seattle, Wash.., the western terminus of the road. The original 43 - miles of completed road of which Hill iook charge as manager. developed into the Great Northern system of 6,000 mites. In 1883 he became president of the company. The road extends from Puget Sound to St. Paul, or during the season of navigation to Duluth and Superior, where it connects for Buffalo with its own steamers. A fleet of six freight vessels are added to these. The grain ships moving through the "Soo" give that canal rank over the Suez in point of tomage.

In developing this scheme the plan increased enormously in the process. Besides laying the ©oundation of a great fortune, it opened a very sich and rast new country, reached out to new markets for many American products, and brought benefit to great numbers of people. All along the line of the road Hill encouraged the most diversified and productive farming, and introduced new methods and labor-saving devices.

Hill, Octavia, English social reformer: b. abont IO3S. She began work among the London poor under F. D. Nlaurice (q.v.) ; and in 1864, supported by Ruskin, began her great work of improving the homes of workingmen in the slums of London. Her methods were based upon the principle of teaching the people to help themselves, by incuicating in them right notions of cleanliness, order, and self-respect. Her efforts have been crowned with great success: the houses which have been improved yield a good percentage on the money spent in effecting the improvements; and through her hundreds have been helped to lead more comfortable and better lives. She has written 'Homes of the London Poor' (1875); 'Our Common Land and other Essays' ($18-8$).

Hill, Robert Thomas, American geologist: b. Nashville. Tenn., in Aug. I858. He was graduated from Cornell University in 1886; and was immediately given a position on the United states Geological survey. He was also a lecturer in the school of economics at the University of SIchigan, and professor of geology at the Cuiversity of Texas in two years. which position he resigned to return to the United States Geological Survey. He has been engaged in geological and geographical explorations in the southwestern States, Mexico. Central America, and the West Indies. His work in the two last-mentioned localities has been the investigation of the origin of the land forms, and the problem of the union of the continents. Among his most valuable contributions to geological science have been the proof of the existence of the lower cretaceous formation in the United States and the announcement of the possibility of artesian wells in Texas. In May 1902 he
was sent by the National Geographical Society at the head of the expedition to imvestigate the volcanic eruption of Mount Pelé in Martinique. His publications include 'On Occurrence of Artesian and Other Lnderground Wazers in Texas' (I\&q2): 'Cuba and Porto Rico with other Islands of the West Indies' (ISo8); and numerous contributions to the bulletins of the geological survey and periodicals.

Hill, Rowland, Euglish popular preacher: b. Hawkstone, Shropshire 13 Aug. 1/4t; d. London 11 April 1833. He was ordained in the Anglican Cluurch, but embracing the views of the Calvinistic Methodists, soon began to preach in barns and meeting-house;, and when they were too small or too distant. or not to be procured, in strects, fields, and highways. In $\tau=83$ he laid the foundation of Surrey Chapel. Blackfriars Road, London, where he preached with great success every winter for about 50 years, making summer excursions to the provinces, where his eloquent but eccentric preaching attracted immense crowds. He published sermons and other theological works, of whicla the best known are his 'Village Dialogues.)

Hill, Rowland, Viscount, English soldier: nephew of Rer. Rowland Hill (q.w.) : b. Prees, Shropshire, If Aug. I\%/2: d. near Shrewsbury, England. io Dec. I842. He entered the army in $1 ; 90$ and served with distinction from Toulon to Waterloo. In 1812 he was made a K. B., and in ISIt, a peer by the title of Baron of Almaraz and of Hawkstone. At the battle of Waterloo, Lord Hill commanded the right wing of the British. In 1828 he was appointed general commanding-in-chief of the Eritich army. This important office he continued to hold under several successive ministries, and only resigned it a few months before his death. He was made a viscount in 1842 . He was often styled "the right arm of Wellington." See Sidney's 'Life of Lord Hill) ($18+5$).

Hill, Sir Rowland, English postal reformer: D. Kidderminster. 3 Dec. 1595: ©. 27 Aug. 18:9. He was engaged as a schoolnaster till 1833, shortly aiter which he was appointed secretary to the commissioners for the colonization of South Australia. In 1837 he publinhed a pamphlet recommending the adoption ci a low and uniform rate of postage throughour Great Britain and 1reland. The scheme waw approved by a committee of the House of Commons, and early in 1840 the pemmy postage system, which seems to have been originally proposed by James Chalmers of Dundee, was carried into effect with the assistance of Rowland Hill, who, for this purpose, received an appointment in the Treasury. In IS 46 he received a public testimonial of the value of upward of $\mathrm{E}_{13.000 \text {. In } 1845 \text {. he was made secretary to the }}$ postmaster-general, and in 1854 chief secretary to the Post-office. In sifo he became K. C. B.

Hill, Thomas, American Enitarian clergyman and mathematician: b. New Brunswick, N. J., 万 Jan. 1818 ; d. Waltham, Nass., 21 Now. 1891. Left an orphan at 10 years: at 12 he was apprenticed to the printer of the 'Fredonian' newspaper. where he remained four years. He then entered an apothecary's shop, after a year's attendance at school, and served in it several years. He was graduated from Harvard College in IS 43 ; and from the Divinity School in 1845 ,
and was settled as pastor at Waltham the same year. He was president of Antioch College, Ohio. IS59-62. He accompanied Ayassiz oll his expedition to South America and was pastor of the Linitarian Church at Portland, Maine. : $8 ; 3-91$. He published 'Elementary Treatise on Arithmetic' (1845); 'Geometry and Faith' (1849): 'First Lessons in Geometry' (1855): 'Treatise on Curves' (1855); 'The Natural Sources of Theology' (18\%):' (In the Woods and Elsewhere). verse (188S) ; etc.

Hill, Thomas, American painter: b. Birmingham, England, 11 Sept. 1829. He came to the Lnited States in 1841 . Returning to Europe he studied under Paul Mayerheim for several months, but is practically a self-taught artist. He paisted the 'Yosemite Valley' which was chromo-lithographed by Prang. He has continued to confine himself to the grander aspects of American scenery; and notable among his productions are 'The Home of the Eagle', and 'Grand Cañon of the Sierras.'

Hill. Walter Barnard, American lawyer and educator: b. Talbotton. Ga.. 9 Sept. 183r: d. Athens. Gaa.: 28 Dec. 1005 . He was graduated irom the University of Georgia in 18 zo. and from the law school in 18 -1, with the degree of - A . M. He was admitted to the bar. and practised law in Macon. Ga.. from te, to idog. He was a member of the Georgia Bar Association, and was its president in IR\&8: a member also of the Armerican Bar Association and the chairman of the committee on , Iudicial adiministration. He also was actively interested in edncational progress, being truste of Tanderbilt Cniversity at Nashville. Tenn. In ISog he was appointed chancellor of the University of Georgia: as an ellucator he strongly approved the work of the Tuskegee and similar institutions ior the negro. Ile wrose articles on legal and educational -ubject: and compiled the law code of Georgia (1873,1882).

Hill, Walter Henry, American Roman Catholic priest and cducator: 1. near Lebanon, Ky., 21 Jan. 1822 . Fle was graduated irom St. llary:s College in 1843 , was tutor there for a time, and also studied medicine at St. Louis Lniversity. In ISt; he became a memher of the Jesuit order, taught at St. Joiephis College and ar St. Louis University and completed his theoIngical studies. In ifor he was ordained a priest ; in $1865-9$ he was president of St. Xavier College at Cincinnati: he was socius of the provincial at St. Louis L"niversity in Som and profe-wor of mental and moral philosophy there in 1871. From 1884 to 18 ght he was pastor of the church sf the Sacred Heart in Chicago, and in ti\&n retired from all active duties. Hle has written 'Elements of Philosophy: comprising Ingic and Ontology' (1873): 'Ethics of Mloral Philosophy' (187-): 'Hitorical Sketch of St. Louis University' (18 F9) ; and valuable contributions to the 'American Catholic Quarterly.'

Hill River. Sec llayes Rurer.

Hillard, hil'ard, George Stillman, Ameriran author and lawyer: b. Machas. Naine, 22 Supt 180S: d. Boston 21 Jan. 18;9. He was graduated from 1 larvard in 1828 , and from the Harvard Law School four years later. He was a member of the Massachusctis senate in 1850 , where his policy as a legislator was warmly commended by Daniel Welister; a member of
the Massachusetts constitutional convention in 1853: and U'nited States district attorney in 1800-;0. Though successful as a lawyer his tastes were largely literary; he was well known as a lecturer: was editor of the 'Christian Register' with George Ripley, and associate editor of the Boston Couricr: wrote 'Sis Months in Italy') (1853) : 'Liie of George Ticknor' (with Mrs. Ticknor): 'Life of George B. MrClellan' (1864), and edited a series oi sciool readers which bore his name. and the works of Spenser.

Hillebrand, Karl, kār1 hîl'ľ-bränt, German critic and historian: b. Giessen, 1; Sept. 1829; d. Florence 19 Oct. 1884. For participation in the insurrection in Baden (1849) he was imprisoned, but escaped to France, where he was graduated at the Sorbonne, and in 1803 became professor of foreign languages at Douai. On the outbreak of the Franco-Prussian War, he removed to Italy and passed the remainder of his life there. Among his publications in French, German. Italian, and English, are: 'On Good Comedy. (1863); 'Contemporary Prussia' (1867): ‘Italian Studies) (1808): ‘Times. Peoples, and Men' (18 -5- 85): 'History of the Government of Normandy') ($\{863-i 3$); 'Public Instruction in the L'mited States' (IS69) : 'Lectures on German Thought during the Last Two Hundred lears' (i880). Consult Homberger, 'Karl Hillebrand' (1884).

Hillegas, Howard Clemens, American journalist and author: b. Pennsburg, Pa.. 30 Dec. 1872. He was graduated from Franklin and Marshall College. Lancaster. Pa.. in I8ot. and aiter being connected with several Pennsylvania journals was war correspondent of the New Lork IV orld in South Airica I\&go-1900. He has published 'Oom Paul's People' (1809): 'The Boers in War' (1900): 'With the Boer Forces' (1900).

Hillern, Wilhelmine von, vill-hĕl-mē'né fōn hil'črn. German novelist: b. Jiunich is March 1836. In early life she was an actress at Coburg. and in 185 married Baron von Hillern who died in IS82. Her novels began to appear in 1862 and became rapidly popular. Among them are: 'Double Liie' (I865) ; 'A Physician to the Soul' (I8(2): 'The Geyer-Walls' (1873). Translations of her novels lave been widely: circulated in America. Her efforts as a dramatist have not endured, but one or two of her novels have been adapted for the stage.

Hill'house, James, American politician: b. Montrille, 21 Oct. 1न54: d. Jew Haven, Comn., 2 Dec. 1832. He was graduated in $17 / 3$ at Yale, of which institution he was treasurer irom 1-82. He studied law, and took an active part in the struggle of the Revolution: was a Federalint member of Congress in 1791, and in 17951810 a member of the L'nited States senate. He was also a memher of the Hartford Convention of 1815 . It was chiefly through his initiative in the planting of trees that New Haven came to) ohtain the title of 'Elm City.'

Hillhouse, James Abraham, American poet: b. New Haven. Conn.: 26 Sept. 1/89; d. near there 4 Jan. 1\&it. He was the son of fames Hillhouse (q...). He was graduated at Yale College in isos, entered commerce in New York, and publiched in London his frama of 'Percy's Masque.' reprinted in New York with
changes in 1820. In 1822 he remored to a country seat near New Haven, where he passed the remainder of his life. In 1825 he published his second drama, 'Hadad'; and in 1839 a collected edition of his writings appeared under the title of 'Dramas, Discourses, and other Pieces.' His dramatic writings, once greatly praised, now appear grandiose and dull.

Hilliard, hil'zard, Henry Washington, American lawyer: b. Fayetteville, N. C., + Aug. 1808; d. Atlanta, Ga.. if Dec. 1892. He was graduated at Soutli Carolina College in 1826, was admitted to the bar in 1829. in 1831-+ was a professor in the University of Alabama (Tuscaloosa), ir 1838 was chosen to the Alabama legislature, in 1842-4 was United States chargé d'affaires in Belgium, and in $88+5-51$ represented an Alabama district in Congress. Though opposed to secession, he became a brigadier-general in the Confederate army. He was United States minister to Brazil, in IS-\%-8i. He wrote: 'Speeches and Addresses' (1855): 'De Vane, a Story of Plebeians and Patricians' (t865) ; and 'Politics and Pen Pictures' (IS92).

Hillis, hil'is, Newell Dwight, American Prestyterian clergyman: b. Magnolia. Ta., z Sept. 1858. He was educated at Iowa College and Lake Forest University, studied theology at IIcCormick Theological Seminary, entered the ministry of the Presbyterian Church, and held pastorates at Peoria, I11. (188 - -90). and Evanston. 111. (1890-4). In 1894t he was appointed pastor of the Central Church. Chicago, an independent congregation, and in 1899 of Plymouth Church of Brooklyn. He became known also as a lecturer, and has published: 'The Investment of Influence": 'A Mlan's Value to Society' : 'How the Inner Light Failed' : 'Foretokens of Inmortality': 'Great Books as Life Teachers': 'The Influence of Christ in Mlodern Life': 'The Quest of John Chapman' (1904): and many other books.

Hills'boro, Ill., city: county-seat of Slontgomery County ; on the Cleveland, C., C. \& St. L. railroad: about 45 miles south by west of Springfield, and 52 miles northwest of East Saint Louis. Its chief manufactures are flour, furniture, woolen goods, carriages and wagons, and dairy products. Thete is a coal-mine nearbs. It is the commercial centre of an agricultural section of the State. Pop. (1g00) 1,937.

Hillsboro, Ohio, village. county-seat of Highland County; on the Norfolk \& W. and the Baltimore \& O. S. R.R.'s: about 60 miles southwest of Columbus and 50 miles east by north of Cincinnati. It is in an agricultural and stock-raising region. The chief manufactures are furniture, foundry products, flour, lumber. dairy products, and cigars. It is the trade centre for a large part of Highland County. It has a public library containing about 8,000 volumes, and a number of fine public and private buildings. The city owns and operates the waterworks. Pop. (1900) 4.535.

Hillsboro, Texas, city, county-seat of Hill County: on the Missouri, K. \& T. and the St. Louis S. R.R.'s; about 52 miles southwest of Dallas and 38 miles north of Waco. It is situated in an agricultural and stock-raising region. Its chief manufactures are cottonseed-oil. cotton goods, hosiery, flour, candy, men's clothing. agricultural implements, and lumber. The trade
is largely in live stock, cotton, hides, gram, hay, and lumber. It has cotton-gins, cuttun-compresses, planing-mills, and haiy presses. The city owns and cperates the waterworks. Pop. (1890) 2,541; (1900) 5.346.

Hills'dale, Ilich.. city, county-seat of Hillsdate County: (91 the Lake Shore \& MI. S. railroad; about 88 miles southwest of Detron and 60 miles west of Toledo, Ohio. The first permanent settlement was made about the year 1840. It is situated in a rich agricultural region in which are raised large quantities of iruit. The chief nanufactures are flour, iur garments. screens for doors and windows, wagn-wheels, tables, furnaces, furniture, and canmed irnits The trade, in addition to the mannfactures. is chiefly in grain, fruits, vegetables, and litestock. Baw Beese Park, outside the city limits. is owned by the city. Hillsdale is the seat of Hillsdale College (q.r.). The electric-light plant and the waterworks are owned and operated by the city. Pop. (1900) 4.151 .

Hillsdale College, a coeducational institution founded in 1855 under the auspices of the Free Baptist Church, in Hillsdale. Nich. Since its establishment it has graduated about 1,000 students. The number of professors and instructors in 1903 was 24, the number of students 350. Special attention is given to the classical and scientific work, but the modern languazes are not neglected.

Hilo, hé'lō. Hawaii, town on the Hilo Bay, on the eastern coast of the island: about 38 miles from Mlauna Loa, 36 miles from Mauna Kea (the highest peak of the group) and 28 miles from Kilauea. Hilo is the second town in size in the Hawaiian Islands. It has the best harbor belonging to the group. The lighthouse in the harbor can be seen many miles. Large lava-fields are near: on the northwest side of the town and in the ricinity are extensive forests. The craters of Loa and Filanea, the largent in the world, are visited anmally by many tourists who land at Hilo. The iuhabitants of the town include many races: but people from the United States who have engaged in business in Hilo are quite prominent. Hilo has good schools to which attendance is compulsory. The population of the town, which is co-extensive with the district of the same name is (1900) 19.785.

Filongos, hē-lǒng'ōs, Philippines, pueblo of Leyte. on the southwest coast at the month of the Salog River, 62 miles southwest of Tacloban. It has a good harbor. Pop. 13.8 S 3 .

Hilprecht, Herman Volrath, hěr'män ioll'rät hil'prèнt. American Assyriologist: b. Hohenerxleben, Germany, 28 July 18\$9. He was graduated at Leipsic in $\mathrm{r} \$ 83$ and was curator of the Semitic section of the museum of the University of Pennsytvania, to which he presented the greater part of the 27,000 original cuneiforn inscriptions, which it contains. Ile was made professor of Assyrian and Comparative Semitic philology in the same institution 1886. In 1888-80 he was Assyriologist and scientific directar of the Cniversity of Pennsy]vania's expedition to Nippur, Babytonia, and editor-in-chief of its publications. Among his works may be mentioned: 'Old Bahylonian Inscriptions, chielly from Xippur); 'History of the Babylonian Expedition of the University of
 En Bibie Lands' : 'Expiorations in Bible Lamds during tle Igth Century (1903).

Huton Head, an island, at the mouth of the Bread River, ofr the sutheast ccast uf Souti Carciina: a part oi Beaufirt Coury: For: Walker. a Coniederate if tiñeaticn. was erecied here during the Civil 1 Far . O § iNor, the iot was attacked by a trion fleet. undes Commodose Duponi: Commodore Tat:.... with a Coniederate Ho:illa. or m squ.: fỉee. assisted Fcrt Waiker, bui it was captured by Duponi. The reporis gave [nion loss 8 kitied and 23 wounded; Coniedeates, 10 kiiied and to wourded.

Himelaya hirm-ălā-ya or him-a-jā'ya (ircm the Sankrit signify:ng the abude of sh(w), a -nomiain sysem oí Asia centaining the highest peaks in the world. the prineipal mass of which is nea: the southern dege of the central section of ithe continen: between lon. $0^{\circ} \xi^{\circ}$ and $110^{\circ} E$. and lat. 28° and $30^{\circ}-1$. The system extends appreximately irem nethwest to sowtheast io: abutt 2.000 miles. while its breadth varies from 100 to Detween soo and coo miles. The e'erated plaieau of Tibet, beween the Hima'aya proper and its extension, the Kuen-Lun range, is the wides pare of the sys:em. Whale the ierm Himalaya is usualy confred to the range farming the northern barrier of India. the HinduKish. on the norilwesi. and the Karaicram With the Kuen-Lun to the north are not distinct chairs as frequently represented, but are all purtions of the same connected mountain mass. havong ve:y little to distinguish them from the yesi of the elevated system to which they be:ony. The Himalaya is cumected on the east whit the moentain: ${ }^{\circ}$ China and the Indo-Chirees peninsula. and on the west with the mumtair: i Baluchistan and Aighanistan. The Pamir Plateau deseribed as a hu'ge bess if kn^{i} north if the Hindu-Kush arnects the Hina:ayaz with the Thian-Shan, an ther mounain syeiem which extends n rche...tward if
 fia:n if arthern ladia which has an elevati n ia at 1.000 fece above ilse sea, the H:matays aceerd hy successive s! pee The transiti in :- -1 this pian t the aricent of the range !: narne in the n rilhwet $1 y$ a bet ci dry. n:$\cdots \cdots$-: and. bo $h n$ un int nu:nestus ratities. E.:- i the is the Terai, a belt of strping Eur.-nd enved w:h illo-t and 1 ynec. wry mane. \because and on wded with w: 1 minits. Re-

 a ro. neitiolinal valley farily cel? ed
 Orace et icen the Bhatar and the - - it the
 C_{1} in \quad - d and melude the thi-G min po.. in Gurme 20-4:- feet, the Mitiagh 12.0 o feet.

 "t 'eva'" an- i the 11 :malayan sy:tem1 are Mt.

 \because Kir ir 31 ant Everest -nomz icti, the ligh\& p th :n the wold, Kunchinlinza $-1,0$ fert. $\because D$ awalas rit zise fict. On the twith the ant i i the $-n$-w line is $1,-00$ icet. on the s-inh 10,200 ieet. lirum the southern slope of
the censtal portion of the sereat chain flow the various streams which unite in the Ganges; from the southern slope of the morthwesien pertica spring the rivers if the Punjab or Five Wates, which unite to swell the Indus which rises on the northern slope and hlows surthwestwari to the Arabian Sea: also on the northern sope not far from the source of the Indus springs the Brahmaputra which flows east, southwest, and south to the Bay of Bengal: and also irom the plateau oi Tibet north of the mair Himalaran range fuw the Salwin. Mehons and other rivers oi the Indo-Chinese peninsula, the langtse. Hwang-ho, and other fivers of the Chinese Empire. The whoie system is of granitic formaticn associated with gneiss and mica-ilate, followed in descending by metamerphic and secondary rocks until the aí.urial deposits are reached. Minerals abound: cepper and lead have been mined from ancient times. iron mere recently, coal is found at the tor: of the mountains, gold in the beds of the muntain torrents, zinc. sulphur. plumbago and sai: are also obsained, and there are numerous mineral springs. The vegetation is luxuriant: thedodendrons are in rich proitusion, and there are zorests oi pine spruce silver-is and deodar cedar at varying altitudes. Consult Schlagintweit. 'Scienific Mission to India and Higla Avia' : Waddell. 'Among the Himalayas.’

Hinckley. Thomas, American colonial governor: b. England. about iots: d. Barnstab e. JIass... 25 -tpril 1500 . In 1635 he emiyrated to America, and settled at Scituate. but iour years later removed to Bamstable. He was deputy governor of Plymouth Colony in 1080 and afterward govemor.

Hincks, SIR Francis. Canadian statesman: b. Cork. Ireland. it Dec. 1so-: d. Montreal. is Aug. 1885. He went to Canada in 1831 . Set up in busines at Toronto. and there became editor of the 'Examiner.' In - $\& i l$ he entered the first United Parliament as a prominent Liberal. He mandook the ediacsinip ois the 'Pilot' of 1 metreal in ISf. From 1851 to 1854 he was Canauian premer, and as such deveioped the rathay facilities and mining resources of the chuncti. and negotiated a treaty of commerce wath the linited states. In $1855-62$ he was =reme of Barbadoes. in $182 z=0$ of British Griana, later minister oi finance. and irom 18,3 edi:er oi the Montreal Jounnal of Commefce.' Ameng his publications are: 'Canada: In. Fimancial Pesticn and Renurces) (88.9) The P litical History oi Canada between ISto ard 15ミ' (18:\%): 'The Enundaries Formerly in Drapute between Canada and the L'nited State: ' (12:

Hind, hind. John Russell, English astronomer: h. Nitingham 12 May 1823: d. Twickenh m 2: Due. Ant: In 1sio he nhtained a
ma in the R yal Obiervat ry at Greenwich. He was a reerber of the comainsion apminted : determite the evact lengitu? of Valencia sti an 1 no bis ceturn wa- apminted the ch-W- - in EiAh : Ohiervatot: Regent: Park. There he calculatel the crbit: of riwire than ;o plancti and cumets motci several new Wrialle stars and nehulx. and disonvered 10 mirs- planet- In $\& 51$ le heained iram the Tosdmy if Sciences at Paris the La-b-3c medal. and was elected a corresponding

HINDMAN -- HINDUISM

sinety of London's gold medal, and a pension wis sicon a year from the British government. In $1857-91$ he was director of the 'Natical AImanac,' and in 1 seso president of the Royal Astronomical Society: He wrote: 'The Solar System' (1846): 'Astronomical Vocabnlary' (1852): 'The Comets' (1852): "Elements of Algebra' (1885): 'Introduction to Astronomy)' (18;I), and other works.

Hindman, hind'man, Thomas Carmichael, American soldier: 13. Tennessee 1818 ; d. Arkansas 1808. He studied law, entered practice in Mississippi, fought in the Nlexican War as a licutenant of Mississippi volunteers, and in 1858-01 was a Democratic representative in Congress. Not long after the outbreak of the Civil War, he was commissioned brigadier-gencral, was defeated at Newtonia and Prairie Grove, was promoted major-general at Shiloh, and later served in Arkansas.

Hin'doos, in American history, a nickname given in New York State in 185 to the American (q.v.) or Know-Nothing Party, from a charge that its candidate for governor, Daniel Ullmamn, was born in Calcutta. He was in fact a Delaware man and a graduate of lale.

Hinduism, in its widest sense, the religion and religious philosophy of the inhabitants of Hindustan, which is professed by nearly half of mankind. Hinduism, historically considered, presents three periods of development. The first is the Vedic age. The Vedas (q.v.) are hymms of worship, and the study of them reveals very clearly the nature worship of primitive Hindustan. In these bymns the elements of nature are addressed as divine beings. Agni, fire lightning; Surya, the sun; Indra, the cloudless firmament: Marnts, the winds; Ushas, the dawn, are the principal deities of this poetic pantheon. They are addressed in high and sometimes beatiful language, as the senders of temporal blessings. Offerings of delicious viands are made to them: but they are not to be propitiated by bloody sacrifices of beasts, much less by human sacrifices. Libations are poured to them of soma, an exbilarating drink, made from the fermented juice of the soma (q.v.) or milk-plant. Throughout the Vedic hymus runs the munder-notion of a supreme being, the creator and ruler of all. This is less discernible in the Brahmana or the Veda than in the Upanishads (q.r.). The Brammana is a later class of Vedic hymn in which the henotheism suggested in the Upanishads has given place to a highly artificial classification of the divine powers, with a careful estimate of the rank of each. In the Tpanishads, Agni, Indra, and Surya become symbols whose united significance may help the mind to understand the existence of one supreme and absolute being, and in this class of Vedic hymn we see the principles of the most enlightened form of native religion in India. The one world soul, in all its manifestations, is reflected in the soul of man, whose destiny is to be reunited with it. The moral responsibility of man. and the judgment of the supreme being against wrong-doing, are plainly langht in these hymns; but there is no trace in them of the later doctrine of moral purification through reiterated metempsychosis.

The second period in the development of Hinduism may be called the epic period. It re-
ccives full illustration in the great epic poems, the Ramayana, and the Mahablarata. Side by side with the pictorial teaching of these poems, in which an attempt is made present the working of the divine economy in relation to specific human lives, there rises a whilosophical system. rudimentary indeed, hut laying foundations for the later Sanklyya, Nyaya, and Vedanta systems. In the Mahabharata, with all its episodes and fantastic incidents, is vividly put forth the doctrine that the union of the human soul with the great. divine soul of the world is aided and expedited by penances of various sorts, such as are detailed with systematic prolisity in the loga. In the enic period the doctrime of metempsychosis is clearly cnunciated. The soml, after the death of its temporary possessor, must be born again in some material semblance, in order that it may complete the work left unfinished in some previous state of existence, and must repeat the same experience until its task be accomplislred and perfection be attained. A decided change is apparent in the popular Hinduism of the third or Puranic period (see Puranas: Tantris). In the Puranas there is almost a Götterdämmerung discernible; no longer do peace and concord prevail in the pantheon where Brahma, Vishnu and Siva still reign supreme, but all is discord, confusion, and destruction. The legends of the epic noems are amplified with childish variations. The simple ideas of the Vedic hymns have vanished. The unbridled imagination of imitators and commentators has overstepped the limits of reverence. dignity, and even poetic beanty in the Puranas, which do not show any advance even in philosophical earnestuess, acuteness, or profundity: WTorship has become an empty ceremonial. The Vedanta philosoplyy is now the intellectual creed of the thoughtinl and learned (see Vedanti), and this philosophy is a sort of Deistic agnosticism, only slightly more definite than that of Herbert Spencer, as propounded in his 'First Principles.' For it is the main tenet of the Vedanta that there is one supreme divinity; but, however imagimation and spectlation may seek to invest this first principle with all the perfections which the human mind is capable of concciving, the essence of the one divine being lies far beyond the grasp of buman thought.

The philosophical creed and hemotheism of the educated Bralamin is a sort of esnteric 1 linduism which has not supplanted among the general people the influence of a wild polytheism. While it is said that the inferior gods of India make up a pantheon of 3,30,000,000 divinities, the most important among them are but few in number. These are styled "Guardians of the IVorld," and comprise the elemental gods worshipped in the Vedic hymms. Next in rank to V'ishnn, Siva, and Brahma, the supreme triad, are Indra, Agni, Yama (the god of hell), Surya, Varana (the god of water), l'urana (the god of wind). Kuvesa (the god of wealth). Soma or Chandra (the moon god), ctc. Among sacred animals are bulls: snakes, whose union with the demigods produced monkeys, and some birds, such as the ganada. Among trees, the banyan is held to be divine.

The sects of Hinduism are numerous, and their existence illustrates a prineiple which is
found to have prevaled in the mythological religion of Greece．Each of these sects wor－ ships a particular divinity，and teaches that this divinity possesses all the attributes of a supreme being．Thus polytheism does not mean in India， generally，the worship of many gods by each devotee，but very often merely the worship of one god under many names．For example，the Saivas worship Siva：the Sauras．Surya the scn；the Ganapatyas，Ganesa，the god of wis－ dom．and so on to an almost indefinite length． They ask from each of these gods the same gifts，and the exercise of the same powers． Other sects are Buddhists，Jainas（q．v．），and Sikhs（q．v．）．These last proiess a pure theism， yet blended with all the absurdities of Hindu mythology and the monstrous fables of Islam； nevertheless they despise Hindus and $1 l_{n s s u l}$ mans alike and do not recognize the distinctions of caste．They reject all the Hindu sacred books and look upon warfare as a religious deity．This sect was founded at the beginning of the 16th century A．D．by Nanak Shah．

The philosophy of Hinduism is almost alto－ gether occupied with those questions for which a religious solution is generally sought，namely， the origin and destiny of man，and his relation to the supreme being or the absolute．There are six schools of this philosophy，namely，the Nyaya．Vaiseshika，Sankhya，Yoga，Mimansa， and Vedanta．They all agree in essential points．Their object is to prescribe rules by which man may be delivered from the bondage of ignorance，and be absorbed into the deity． Their doctrine of the soul as something eternal and inextinguishable，distinct from mind． senses，and body，yet sharing in the merit or guilt of good or had deeds，the latter of which are caused by ignorance of what is best and highest，is identical．They all teach the doctrine of metempsychosis and accept the authority of the Vedas．There is complete agreement among them as to how ignorance is to be gradually illuminated and right apprehension acquired：to this end the Scriptures must be sturlied and clearness of intellect and heart secured by sac－ rifices，alms giving，pilgrimages，the repetition of sacred words．The Sankhya are atheistic in their belief，but all the other schools teach the existence of one suprem？heing．

Consult：Wurm，＇Geschichte der Indischen Religion＇（1874）：V＇ergaigne．＇La Religion Védique d＇apres les Hynmes du Rig－Teda’ （ $18-8-83$ ）：Barth，＇Les Religious de I＇Inde＂ （ェ尺プ）：Inuir，＇Original Sanckrit Texts＇： Colebrook，＇Essays on the Religion and Philos－ ophy of the Hindus＇（ 185Ω ）：Mullenc．＇Re－ ligious Aspects of Ilindu Jhilnsenphy＇（s860）．

Hindustan，hĭn－doo－stãn＇，Hindostan，hĭn－ dō－stān＇．or Indostan，signifying＂the land of the（river）Indus．＂a word nf Persian deriva－ tion，formerly applied to India（q．ふ．）．

Hingham，hingam，Mass．，town in Ply－ mouth County：on Massachusetts Bay，and on the New York，S．H．\＆II，railroad：about is miles southeast of Boston．In the town are the villaces of South 1 liugham，West Hingham，and Hingham Centre．The first permanent settle－ ment was made in 163．3．and it was then called Parecove．In 1635 it was inenrporated under its present name．lts chief manufactures are awnines，cordage，wooden－ware，tove，bont－ heck．furniture，leatherette and upholstery．It
has a meeting－house which was buile in i68r． It contains a public library and is the seat of Derby Academy．Some of the noted people who have lived in Hingham are John A．An－ drew，John D．Long，Benjamm Lincoln，and fames Hall，the famous geologist who for a num－ ber ot years was State geologist of Sew York． Joshua Hobart，the Puritan ancestor of the Hobarts of New Iork State，lived in Hingham． Pop．（1900）5．059．Consult：＇History of the Town of Hingham．＇

Hink＇son，Katherine Tynan，1rish novelist and poet：b．Dublin，Ireland， 3 Feb．186r．She was educated in a convent at Drogheda and since her marriage to H．A．Hinkson in 189.3. has lived in Ealing，a suburb of London．Sle is a voluminons writer of prose and verse．and her books are well known in the United States． Among them may be named：＇Shamrocks，＂ verse（188－）：＇The Way of a Jaid＇（1805）； ＇Oh！What a Plague is Love＂（18g6）：＇Three Fair Maids＂（1900）：＂That Sweet Enemy＂ （I901）．

Hinman，Russell，American editor of text－ boois：b．Cincinnati 23 Jan． 1853 ．He was edu－ cated at Antioch College．Ohio，went into busi－ ness as a civil engineer：and later became editor of geographical text－books for Messrs．Van Antwerp．Bragg \＆Co．of Cincinnati．Since 1800 he has been in charge of the editorial oi－ fice of the American Book Co．He has written ＂Eclectic Elementary Geography＂：＂Eclectic Complete Geography＇：＇Eclectic Physical Geog－ raphy．：

Hinoyossa，hē－noi－ŏs＇sä．Alexander d＇， Dutch colonial governor in America：b．and d． Holland．He came to America in 1650 as lieu－ tenant in a small military force sent to acom－ pany 150 immigrants．In 1659 he became direc－ tor of Nieuer Amstel．a Dutch colony on the eastern bank of the Delaware River．Although． owing to disagreements and ithess，this colony was not at first a success．it was greatly devel－ oped by Hinoyossas wise rule．Hinoyossa was for a ime involved in a contict of aumority with Director Petrus Stuyvesant of Siew An1－ sterdam，who had general supermendence of the commissioners constituting the government of Niewer Amstel．In 1063 lie obtained autnor－ ity over all the settlements on the Delaware． The Swedish colonicts submited．and Stuy－ vesant relinquished his control．Lipon the con－ quest of New Netherland by England．Hinoy－ ossa returned（16－f）to the continent where he fought in the Dutch army against the French insasion by Lontis XIV：

Hin＇ton，Richard Josiah，American author： h．London．England． 25 Nor． $18.30:$ d． 20 Dec． 1no1．IIe settled in the United States in 185 ： sturlied topographical engineering at the Colum－ bia Schonl of Mines：and removing to Kansas in 1856 became a supporter of the cause of John Brown．He served in the National army in 1861－5：and was the first white man appointed to raise and lead colored troops．After the War he engaged in newspaper work in Wash－ ington，New Vork，and San Francisco．IIe was the author of＂Life of William H．Seward＂： ＇Life of Gen．P．II．Sheridan＇；＇Jolin Erown＇； ete．

Hip，that part of the trunk comprised be－ tween the abdominal wall and the lower limb，
particularly the regin over the hip-bone (the crest of tire ilium)

Hip Joint, the joint of the upper leg or thigh (femur where it joins the trunk. It is a ball and socket joint, formed lyy the sinking of the smooth globular cap into the deep hollow. called acetabulum (vincgar bow1). of the os innominatum. Its movements are controlled by five ligaments: the capsular: the ilio-fumoral : the teres: the contyloid; and the transverse. These moventents are more wonderful than even those of the arm, being flexion, extension, abduction, alduction, and rotation inward and outward. It is the mot powerinl joint in the body and hardest to dislocate.

Hip Joint. Disease of, a disease of the ball and socket oi the hip. It often resilts from scrofula: comes on in childiren or young persons. from very slight canses: is often traced to a long walk, a sprain in jumping, or a fall. In the early stage of the disease the whole of the structures of the joint ate inflamed and after proper treatment may he sometimes subdued with no worse consequence: than a more or less rigid joint. Usually: however, ahscesses form around the joint, and often commnicate with its interior; and the acetabulum and the head and neck of the thigh-bone become disintegrated, softened, and gritty. In a still more adranced stage. dislocation of the head of the thigh-bone commonly occurs, either from the capsular ligament hecoming more or less destroyed, and the head of the bone being drawn out of its cavity by the action of the surrounding muscles, or from a fungous mass sprouting up from the bottom of the cavity, and pushing the head of the bone before it.

As the disease advances, alscesses occur around the joint. True shortening of the limb now takes place, which at the same time becomes adducted and inverted. From this stage. if the health is pretty gond, and the lungs are sound. the patient may be so fortunate as to recover with an ancliylosed (or immovable) hip-joint: but the probability is that exhanstion and hectic will come on. and that death will supervene. from the wasting influence of the purulent discharges occasionced by the diseased bone.

Hipparchus, hĭ-pär'kŭs, Greek astronomer: 1. Nicrea in Bithynia. He lived about 160-125 B.C.; resided for some time at Rhodes, but afterward went to Alexandria, then the great school of science. A commentary on Aratus is the only work of his extant. He first ascertained the true length of the year. discovered the precession of the equinoxes. determined the revolutions and mean motions of the planets, prepared a catalogue of the fixed stars, etc.

Hipparion, hĭ-pā'rǐón, a genus of fossil three-toed Equida. See Horse, Evolution of.

Hippel'ates, a genus of midges to whose agency is ascribed the spread in many instances of the southern ophthalmic disease of cattle calied pink-ege. Sce Flies: Prik-eye.

Hippocrates, hǐ-pǒk'rạ-tè\%, Greek physician, the father of medicine: h, in the island of Cos 460 b.c. : d. Larissa. Thessaly, 357 r.c. Besides practising and teaching his profession at home he travelecl on the mainland of Greece. His writings. which were early celebrated, herame the muclens of a collection of medical
treatises by a mumber of anthors of differen: places and periods, which were long attributed to him, and still hear his name. The best edition is that of Littre (in 10 wol- Paris, $1839-$ 61). He has the great distinction of having been the fir:t to put aside the traditions of early ignorance and superstitiom, and to base the practice of medicine on the study of mature. He maintained, against the universal religious view, that diseazes must lee treated as sulbject to nat ural laws ; and his olsectations on the natura! history of diseasc, as presented in the living subject. show him to have been a master of clinical reseatch. His accomats of phenomena show great power of graphic deccription. In treating disease he gave chief attention to diet and regimen. expecting mature to do the larger part. His ideas of the very great influence of climate both on the body and the mind, were a profound anticipation of modern knowledge. He reflected in medicine the enlightenment of the great age in Greece of the philosophers and dramatists.

Hippodrome (from the Greck, Hippos, a horse, and Dromos, a race course), the name given by the Greeks to places where races were held. This included both chariot and single horse racing, but the hipyodrome later took the form of a circus, other games, such as wrestling. boxing, running, etc.. being added. and for a short time after the introduction of Roman customs and manners it became the scenc of gladiatorial combats, but as sights of this nature did not find favor in the sight of the Greeks, these combats were eventually eliminated and the main feature of the games, as in the beginning, was the chariot race. To the brutal taste of the Koman populace flowing blood acted as an elixir, but to the more refined Eastern people the amphitheatre was abhorrent. Though nirmerous amphitheatres were scattered throughout western Europe very few were ever huilt within the limits of the Eastern empire and then only where the influence and manners of the Romans were most powerinl.

The first mention of a hiopodrome is made by Homer, but it is believed that the term then applied to any course over which a race of any kind was run and that it dicl mot necessarily. have a fixed location. As the chariot-racing became the national game, the proper courses for the holding of such events became necessary, as in these races, thongh much of the success depended upon the courage and shill of the driver, the loss of life was often great, through collision, the overthrow of the chariot in turning caused by rough ground, the breaking of an axle, or numerous nther accidents. The hippodrome was lanilt for the purpose of avoiding, as much as possible. the porvibility of such mishaps, by providing a wide and smooth track. thus leaving plenty of space for the contectants. Of the ancient hippodromes (as distinguished from circus, amphitheatre, etc.), probally the most famous are thove of Olvmpus and of Constantinople, and while the Circus Mlaximus of Rome may to a great extent have been more of a circus than race course, it was plamed after the Greek race courses, was used loy the Romans for this pmirpose, and thus may properly be classed with the other two.

The origin of the hippodrome at Olympas tratition gives to Hercules. but the only de-

HIPPODROME

scription of it obtainab?e is iound in the pasaages of Pausanias ($\mathrm{r} . \operatorname{t5} \phi \mathrm{f}$; vi. 20 o - illl.) though from the exploration: of the German archaeElogists the ground plans of mest of the strucsures described by Pausanias liave been traced. Of it: length and breadth there is no prectise ini rmaticn, the overflow oi the Alphus River having washed away the indications of its limits, though probably the distance irtom the starting place of the races to the geal. or froms one gral to the other, was $\because: \%$ metres or + Oiympic stradia. and it was about one fourth as wide, or the same as each side of the sta:ting place.

In general form the hippodrome was an oblonz. one end oí which was semicitcular: on three sides having seats ficr the populace and on the fourth, where the races were started, seats in) the royalty and nobles. The right side, formed by an artificial mound. was a li:ile longer than the left side, which was built on the natural slope of a bill, the base of the fourth side being formed by the portico of Agnaptus, named after its builder. The form of the starting place was not unlike the prow of a ship. eacb side being 400 feet long. and containing stalls for the chariots and their horses. In the arena were two goals around which the chariots passed sereral times to complete the race: one of these goals having a bronze statue of Hippodameia upon it., the other an altar dedicated to "Taraxappus, the Terror of the Horses." The principal difference between the Greek hippodrome and the Reman circus was in the width of the arena. in the latier only four chariots being able if race at one time; there was also some slight differerce in the arrangement of the carceres.

The erection of the hippodrome of Constantinople was due to two Ruman emperors, Septimus Severus and Constantine the Great, who each in turn captyred Byzantium by storm. Abut six years afier its capture by him (rog A.D.) Severus commenced operations a litile tn the west ri Byzantium. he: in that yeas was rali:d away hy a rebellinn in the West and never returned to the city For over a hundred years atmained un:nuched, nimil 32,3 , when Constantine. havins conquered the city, pushed the work to completion after changirg the details in the rriginal plans. On 11 May 330 it was inausurated.

The external appearazce of the hippociretre was imposing for its va*tnese its heizht, and even for is beanty. Tle wall. were of brick. fid in arches, and faced by a row i ic rintl:ay chluntas 250 in number and standing it icet ?part. There were iner entratece fro the eity each flanked with wwers hut uf the athirways leating to these entrances no deveription tas entre down to us.

Some rulea, ithe immencity of this proPifms otwcture may he civen by ine iact that it. dines- iss were 1 fm ict in lenzth hy fm
 fuet. or 23 acres. On the nortil was a sithe*"re centaining the apnaratus fir the exme- the -rt. ntt* and attemlants apartment- the chari is amel l-aes, the aremal, ete. callesl he ha Ro-n- In in inciere's and ly the Greeks udioang. T1 - - -truet wos andeated from the arna I. pitare with latieed eates 12 in munber. Nivt then gate was tle little chareh or inet ry, w' ere the riva! onnte-antant prased be-

The efr und stery was so feet high. On it
-ested the palace of the Kathisma o- Trib:nat in the centre of which. supperted upon 24 marble piliars was the platiorm in Kathisma proper, on the front of which was the emperots throne. On either side and a little be w the emperer were the seats for courtiers, ambassadors, ete. Fat down the western side of the hippodrome and nearly opposite the huilt columm was the gurgenus chamber oi the empress, this supporied upon four porphyry pillars and hence called he tetrakion.

The eastern, western, and southern pertions were occupied by para'liel rows of seats, appropriated to the spectators accorcing to their fank; Behind these rose tier upon tier of benclees until nearly half way to the top where was a broal p:omenade bounding the entire extent of the hippodrome except on the northern side. This promenade nas without roof or covering, and, standing nearly 40 feet above the ground. nrntected by a solid marbie railing reaching to the breast, the spectator had a spacious avenue 2.066 feet long. It is estimated that the hippodiome would seat 60.000 persons and have comioztabie standing room for 20,000 more, while with a little crowding to0.000 might be accommodated.

The arena mas 211 feet wide by i.190 feet long and was bounded by a narrow walk called the Euripus, paved in tesselated stone. The semicircular southern portion of the arena, that included in the curve of the Sphendone, was reserved for the criminals and there too was the place for executions. In the centre of the arena and lvine parallel to it was the Spina: a stadiunn. 6o:- English feet in length, it marked and govemed the beginning, duration, and end ci each course of a race. It each end of the Spina was a high, narrow iramework, surmounted by seven poles. on one group being placed seven fish. on the other seven eggs: one of each was taken down upon the completion of each circuit during the race unti? the race finished. Toward the southern end of the Spina was the Pliale, a br ad basin of running water deroted to the victims of accidents. The space between the northern goal and the carceres was calied the Stama, where wrestlers and acrobats performed.

Many additions to the works of art already: gathered by Constantine were made during the zoo succeeding years. bi:t in 1203 the hippodrome was sacked by the Frank: and Venetians and all were either carried oft or destroved. The most famous of these was the 'Four Golden S-ects? which was sti len by the Venetiars and whicls in turn was brought to Paris by lapolenn, and is now stat ding guard nuer ille main entrance of the catledral of Saint Mark. Among the others are the statues ni Hercules, the Shewoli and Hyena, the Virgin Goddess Diana. the Braven lis, the Caledonian Boar. Helen of Troy, the Gind of Weath and eight Sphinxes. beside the statues of the early Roman emnerors. martyri, teachers, philosophers, ete. In the early days of the city game were of irequent accurrence hut as time went by they hecame $l_{t=s}$ and less frequent owing probably to the great enst (it is estimated that a single celehraiin enit t.mo.oon francs) and at lait were celehrated only on 11 May and 25 December, the lirthdy: ni the city and Christ respectively:

It is not knnwn precisely when this hippo-d- Tre was entirely deetryed. but as there is no Iffinite refornce th any charint race later than the reign of lsaae Angelus, who was dethroned

MECHANICAL FEATURES OF THE NEWYORK HIPPODROME
in 1195, and as the place was sacked in 1203-4 it is probable that it did not survive the beginning of the 13 th century.

The Circus Alaximus at Rome was for a long time the only structure of its kind in the world. taking its form from the Greek hippodrome and furnishing the model for all later ctrci. In the Vallis Murcia, between the Palatine and Avantine hills, wooten seats were first constructed by Tarquinius Jriscus (Liv. I., 35) : were frequently burned and rebuilt until the time of Julius Cæsar, when the steps were constructed of stone and greatly improved. At that time it probably accommodated about too,000 people. After its destruction by fire in 3 r r.c. Augustus completely restored it, making several magnificent addlitions. The upper tier of scats on the Aventine side was again destroyed by fire in 36 A.d., but Claudius not nuly restored these, but greatly enlarged the entire circus. These additions were supplemented loy others made during the reigns of Trajan and Constantine until it was estimated that the circus held 385,000 spectators, while the 'Notitia' places the possible number at 485,000 .

The general plan of the Circus Maximus compared favorably with the Greek hippodromes, the main difference being in the arena around which Cxesar had constructed a moat 10 feet wide and 10 feet deep to prevent beasts from injuring the spectators, and in the width of the arena as before stated. Before the reign of Augustus the circus was used for glatiatorial fights with wild beasts and other forms of butchery, but after the erection of the amphitheatre of Statilius Tanrus the circus was no longer used for such purposes. The popularity of this as of the Greek hiopodrome also declined and it gradually decayed, now only a fow of the remains standing.

The termi lippodrome has also been applied to race tracks in England and on the continent, the most famous of these so called hippodromes being thosc at Vincemes, Longchamps, Chantilly in France, Newmarket and Epsom in England, and Curragn in I reland. The modern hippodrome, or indoor cirens, had its begiming in Paris, where the first was constructed in 1845. It was built entirely of wood, the arena was 108 metres long and rof wide, and it had a seating capacity of 15,000 persons. This was destroyed in 1870 by fire. The word hippodrome was first utilized in this comery when Franconi conducted a circus where now stands the lifth Avenue Jlotel, at 230 Strcet and Fifth Avenuc, New lork.

The first hippodrome of the aceepted type to be built in Anerica was the New York Ilippodrome, which occupies an entire block on Sixth Avenue, between 43 d and $44^{\text {th }}$ streets. This structure was begun on 1 July 1004 and finished in five months, the opening performance occurring 12 April inos. The main façale has a length of 200 feet, and the building extends 240 feet east on 43 d and $44^{\text {th }}$ strects. It is built of hrick, marble, and stecl, and rises to a height of 72 feet on Sixth Avenuse, and 1 so feet in the rear, the thtal cost being $\$ 1,750,000$. It is the largest playhonse in the world, having a seating capacity of 5.200.

In the interior decorations the general scheme of coloring is a Roman red as a background, with all the structural features done in ivory, gold, and silver. The carpetings are of the same
color, and the wall hangings, draperies, and upholstery are excouted in it Koman red velvet enriched with heavy godel and sitver embrodery and tassels.

The anditorimo is about soo feet fong and IGo fect wide in the first story, and the daternay and gallery occupy the builling in front of the stage albove the first story. At the rear of the balcony is the mezzanime floor, below the rear seats of the balcony being the wide segmental promenade with main entrances and tlights of shallow stairs at each end leading to the street. Behind the promenade the space 20 to 50 feet wide and 200 feet long, is occupied by smoking rooms, parlors, wating rooms, and cloak rooms. The promenade and lohbies are tinished in marble and can-stome, relieved by rich illmminations of the ormamented parts in gold and silver. A special feature of the autionium is the arrangement and construction uf eages for animals of the feline kind. Their dens are arranged in a segmental curve in the promenade floor, and have plate glass fromts witl iron bars bchind.

The chief point of interest in the bippodrome centres the stage and the entirely novel mechanical arrangements for operating the moval)le platforms, filling and emptying the tank. raising and lowering the stage, and handling the seenery. The depth of the stage from the extreme front to the back wall is 110 feet, or 50 feet from the back wall to the proscentum opening and 60 feet from the arch to the front of the stage. This latter part of the stage lying forward of the proscentum arch is known :"s the "apron,". It is large enough to contain two regulation circus rings, each 42 feet in diancter. Benteath the "apront" is built a huge steel and concrete tank, over if fect in depth, and large enough for the whole "apron" to sink within it. When aquatic performances or maval pageants are given the tank is filled with water :and the movalble "apron" is submerged below the water to the bottom of the tank.

Bibliography- As beiore stated, the only description of the Olympia as it originally stond is
 foll.). From results of excatations the locst descriptions of the ofd hippordromes of the warlat may be has in the following: ("urtin- '()! ymo pia' (Derlin 1852): (irosvonor, 'llippodrome of Constantinople (Lennfons 1880): Lehnchorf, 'Hippodromos' (Berlin 18-0): Pollack, 'Hippodromica' (Leipsic 18ron). Four acecriptions uf chatiot races consult: 1lemmer's "lliad," and Livy, and "Lew" Wallace, "Rem Hur" (New York isin). Of the Xew York Hippoltome probably the best deseription is ennained in the 'Scientific Americ:m" (1in). NCll., No. 12: 25 Nards 1005). For a study of the architectural features of the structures of those dimes consult Sturgis, (European Architecture) (New lork 1896).

Hippopot'amus, the gencric and prpular mame nf a great ampliblious mugule, allied in the swine, of which two species are known. One (II. amphibius) is common throughout the greater part of Africa: the other (II. liberiensis) is uot only smaller, but lase nther important differences, and is found only in the I fricam west coast rivers, and those flowing into Lake Thad. The former species has a thicis and square head, a very large muzale, smali eyes
and exis. hick and heary body, short legs termuna:ed by four toes. a shori iail, two ventral teats skin about two inches thack on the back arde sides, and without hair. excent at ihe exiremity of the iail. A curiou= ieature of the shin is the reddish exudation which pours from its peres when the animal is excited or in pain. It is called "bloody sweat." bei the biood has 110 part in $i t$. The incisors and canines of the Sower jaw are of great strength and size. the emines or tusks being long and curved firward These tusks sometime reach the length of two feet and more, and weigh upward of six pounds. The animal is hilled by the natives part $y=$ iocd but also on account ci the teeth, the:nardness being superior to that of ivory, and less liable to ium veliow. The hippepetamus has been iound as much as it feet long, and neary 5 ieet high, but wsually meesures much Cess. It de"igits in water, living in lakes. rivers. and estuaries, and ieeding on water-plants or on the herbase growing near the water. where it can walk as well as swim. It often leaves the water aiter nightiall, and goes. sometimes jong Cistances, io grassy pastures to feed: regmiar paths are morn though the reeds, and here the Aricans oiten arrange pits, deadialls. cr other raps ior their capture. These aninals Ere quitck ó sense. rimid and anxious to escape danger: but when brought to bay or enraged 1 -ove iomidable antagonists and often destrey cances. They are excellent swimmers and divers, and can remain under water eight or tea minLies. The behemoth oi Job is considered to be the hippopotamus. Several extinct species are found in Old World Tertiary icmations, and modern species formerly inhabited not only Madagascar, but southern Europe and Indaa: where they were contemporary with the men of the Stone Age.

Hippuric (hï-pūrik) Acid, an organic acid, ChH. ${ }^{2}$. existing in the urine of herbworous animals, and. in small quantities, in that of human beings. It is increased by a regctabic diet, and by the disease cal.ed diabetes, and may be caused to appear in the human urine in considerable quantities by the administration of benzeic acid with the food. It is mest conseniently prepared by boing horse trime with mith of line, fltering. neurrolizing with hẹds ch' ric acid, and evaporating to about (he eighth ci its vilume. The ancegtrased urine is then acidified wioh liydr whloric acid and allowed th stand, when impure hipnorie acid comes d wn as a yel; wizlı-hrewn recipitate. In purity the crude product. it is heate? to $212^{\circ} \mathrm{F}$, with n i quttc ea cegh water to entirely disnlive it. and chio rine g. is pased througla the a ution tint ! the …upl, - nit smell has entirely dieappeared. The - uti ? is then fitered while ho: and the eryual: wh ch separate upin co ling are ros'ated and \because fected again to the ame treatment. the A- rine htins pasied the weh the stlus: g. in this scont reatrsent, until the sol...tn is tricht sel w. When thu prepared. hipparic cil ery.alize is m water in the form i large Fi-ma+i- I: te. Klanging to the trimetric sy:*.m. I- erreals are colorless or white. free
 puri- aci 1 has a epecific sravity ni abmet 130 . and m lis at 360° F.: it hecias to l if at ahe $2 \cdot 4^{5} 5^{\circ} F$ giving off bentric acid on 1 benz nitrile. It is insoluble in benzene, carbon
disulphid, and cold chloroiorm, and is but sligltely soluble in ether and in cold water. It is rery soluble however, in boiling water, and in hot alcohol. Wjith bases. hippuric acid iorms saits that are remarkable ior ithe beauty of their crystalline forms. When boiled with dilute byodrochloric. sulphuric. nitric or oxalic acid, it yields benzoic acid and glycoccil.

Hiram College, a coeducational institution, founded in 1850, in Hiram. Ohio, under the auspices of the Christian Church. It was first called the Eclectic Institute. but was incorporated as a college in 18,0. In 1003 there were in attendance about 400 pupils in the departmente ci oratiry and misic and in the preparatury depantment and college. There are about 0,200 volumes in the library.

Hiroshima. hē-rū-shē'mā. Iapan, a town on the island oi Honde, about ito miles irom Kobe, and aiter Osaka the most important port on the inland sea. Pop. (I\&og) 122.300.

Hirsch, hirsh. Emil Gustav, American rabbi: b. Luxemburg. Germany. 22 May 18 ミュ. He studied at the University of Pennsylvania and at Beriin. was rabbi successively in Baltimore. Md. ($18-\%$) and Louisville. Ky. ($18-8$) So). and in 1880 was chosen minister of the Sinai congregation of Chicago. Ill. In INSOhe was editor of the 'Zei:seisi' of Milwaukee, Wis., and later became editor of the 'Reform Adrocate) of Chicago. He was appointed professor of rabbinical literature in Chicago University in 1892. He appeared as an orator on various patriotic and other occasions, and wrote several menographs on religious and Biolical topics. He was also prominent in Republican Siate politics, and in 1896 was presidential elector-at-large for Illinois.

Mirsch, Maurice, Bakon de (Baros Matrice de Hirsca pe Gereltif); Austrian Jewish capitalist and philanthropist: b. Junich 9 Dec. 183I: d. Ogyalla. Hungary, 21 April 1896. His fortune was computed to be $\$ 200.000 .000$, and his yearly income at about $\$ 20.000,000$. His temetactions equaled nearly $\$ 100.000 .000$. the most of this sum being directed toward the improvenent of the condition of the Jews in all parts of the world. The De Hirsch trust for the Cnited States is a iund oi $\leqslant 2,500,000$ for the Americanizing and education of Rumanian and Rusian Jews. Other large gifts were those of $\$ 5.000 .000$ for the endownent ci schools in Galicia. and oi $\$=0.000 .000$ to the Jewish colonization association for the establishment of olonies in Argentina. In tSSS he ofiered to the Russian gy vernment \$10.000.000 fine schools. with the conditicn that in the distribution of the ams urat an discrimination as to race or reSigin: be made. This offer was n te accepted. Baron de Hirsch made extensive sums through the construction of railways in Turkey:

Hirth, hert. Friedrich, German-American cduator: h. Gratentoma. Saxe-Cohurg, Germamy, ise: He studied at Leipsic. Berlin. and Greifowald, entered the Chinese customs service in 18,0 : retired in $180-$ and in tooz was called to the newly created professnrchip oi Chinese in C lumoia Cniversity. In the summer of tooz he was in St. Petershurg, eataloguing a colleciton ni manuecripts taken at Peking. He made a vale:ahle collection ni Chinese porceiains, now in the museum at Gotha, and one of printed

books and MSS., now in the Berlin Royal library. Among his publications are: 'China and the Roman Orient' (1885) ; 'Ancient Porcelain) (1888): 'Chinesische Studien' (Vol. I., 1890) : and 'Ueber fremde Einflusse in der Chinesischen Kunst' (I896).

His'cock, Frank, American legislator: b. Pompey, Onondaga Countr, N. Y., 6 Sept. 1834. In I855 he was admitted to the bar, in $1860-3$ was district attorney of Onondaga County, and in 1867 a member of the State constitutional convention of New York. He was a Repuhlican representative in Congress in $1879-87$, and obtained recognition as a party leader and speaker. In 1887 he was United States senator from New York and then returned to professional practice.

Hispania, hĭs-pä'nǐ-a. See Spain.

Histol'ogy, the science of animal and vegetable tissnes. It investigates by means of the microscope the various tissues of man, animals and plants in their anatomical relations and compositions. Topographical histology considers the more minute structures of the organs and systems of the body; normal histology deals with the healthy tissues; and pathological histology investigates the changes they undergo in disease. Marie François Xavier Bichat (17711802) is generally credited with the foundation of the science of histology. Unfortunately the imperfect condition of the microscope in his time prevented Bichat and his contemporaries from carrying their investigations to the point which Schleiden, Schwann, Johann Müller, Virchow, Von Recklinghausen, Colnhleim, etc., have reached. It has been found that all structures however complex are made up of cells, and that the parts of a body may be resolved into a small number of clementary tissues now grouped as: (I) epithelium, which lines almost all the cavities of the body and is directly or indirectly in communication with the atmosplere; (2) the nervous tissues, which as nerve cells originate and as nervous fibres transmit all nervous impulses; (3) muscle, which produces motion whether voluntary or involuntary; (4) glandular tissue which consists of cells standing in close relation with the blood-vessels which take from the blood certain substances and secrete them; (5) connective substances which support and hold together the more delicate and important structures, especially forming the cartilages and bones. Sce Cell; Anatomy. Comparative; Anatomy of Plants.

Many tissues have the power of repairing injuries that happen to them. This power is called regeneration, and is found especially in the lower animals, in polyps, worms, and in many amphibious creatures and reptiles. In other cases the lesion is supplied by a new growth of connective substance. In diseases the tissues undergo many clanges and many of these diseases in the organism are shown also by the changing of color. The science of such changes is generally called pathological histology. It is a comparatively young science and has becn cultivated by Virchow, who was the founder of cellular pathology.

Vegetable histology is that department of botany which deals with microscopic phytotomy or the anatomy of plants, especially investigating the plant cells and plant tissues. It is properly
subordinate to morphology and is a distinctively descriptive scicnce. It deals with the question in what relation the cells or forms of tissue stand to the vital activity of plants, what functions they perform, and in what respect they are constituted for the fulfilling of those functions. (Compare Cytology.). Owing to the excessive minuteness of the cells which form the tissues of all plants the investigation relies almost entirely on the microsconc, and naturally has made its advance in proportion as the microscope has been made more perfect. Nicroscopes that are now used magnify at least $\mathrm{f}, 000$ diameters, and the materials used have to be carefully prepared and mounted. Many of them have to be colored with hæmatoxylin, fuchsin, saffranin, and other alcoholic or aqueous dyes. Consult Delafield and Prudden, 'Handbook of Pathological Anatomy and Histology' (1901).

Historical Societies in the United States. John Pintard, of New York, deserves the credit of being the first who endeavored to organize historical societies in the United States. He was born 18 May 1759. received his education at Princeton College, and became actively identified with several military expeditions in the War of the Revolution, being also deputy commissary for American prisoners. He was especially zealous in the study of American history, and appreciated the need of preserving the literature, muster-rolls, private and public documents, relics, and other material of the colonial period, at that time uncollected. In 1789 he visited the Rev. Jeremy Belknap, in Boston, who writes: "When Mr. Pintard was here he strongly urged forming a socicty of antiquarians." In August 1790 Mr. Belknap, following this suggestion of Mr. Pintard, drew up an outline for such a society, in which was the following clause, "Letters shall be written to gentlemen in each of the United States requesting them to form similar societies and a correspondence shall be kept up between them for the purpose of communicating discoveries and improvements to each other." and quaintly concludes, "When ye societie's funds can afford it salaries shall be granted to the secretaries and other officers." In February 1791 Mr. Belknap writes: "We have now formed our society and it is dubbed. not the Antiquarian, but the Historical Society. It consists at present of only 8 , and is limited to 25 . We intend to be an active, not a passive, literary body; not to be waiting like a bed of oysters for the tide (of commnnication) to flow in upon us, but to seek and find to preserve and communicate literary intelligence, especially in the historical way." In 1794 the membership was increased to 60 , and by act of legislature in 1857, the limit of resident members was placed at too. Associated with Jeremy Belknap in the new society were Rev. John Eliot, Rev. James Freeman, James Sutlivan (later governor of Massachusetts), Rev. Peter Thatcher, William Tudor, the noted lawyer, Thomas Wallcut, the antiquary, James Winthrop, for years librarian of Harvard, Dr. William Baylics, a physician of Dighton, and George R. Ninot, the author. The position held to-day by the Massachusetts Historical Society is so well recognized at home and abroad that it would he futile to attempt to dcscribe either its valuable contributions or its stimulating example to similar societies, during its unqualified success of over 100 years. Its
oficers in 1903．were：President．Charles Fran－ cis Adams；vice－presidents，Samuel Abbott Green．M．D．，Thomas Jefierson Coolidge；re－ cording secretary，Edward James Young：cor－ responding secretary．Henry Williamson Haynes；treasurer，Charles Card Smith；libra－ rian．Samuel Abbott Green，M．D．；cabinet－ keeper，Henty Fitch Jenks．

To John Pintard is due the credit for the first meeting， 20 Nor． 1804 of the New York His－ torical Society．Those present included John Pintard．Judge Egbert Benson．DeWitt Clinton． Rev．Wim．Linn，Rev．Samuel Miiller．Dr．David Hosack，Rer．John M．Mason，Rer．John N． Abeel，Samuel Bayard，Peter G．Stuyvesant and Anthony Bleecker．These patriotic founders or－ ganized＂for the purpose oi discovering，procur－ ing，and preserving whatever may relate to the natural，civil，literary，and ecclesiastical history of the United States in general．and of this State in particular．＂The yaluable library of John Pintard was acquired in 180，．thus form－ ing the nucleus of the 100,000 volumes owned by the society in 1903．The first gift from outside sources，recorded in the minutes of the Society， came in 1810 ，when to rolumes of the publica－ tions of the Massachusetts Historical Society were presented．The society is now erecting a new home on Central Park West， 76 th and 7 隹h streets，where its thousand members may more adequately enjoy its collections；including the galleries of American portraits and old masters； the famous Egyptian collection of Dr．Henry Abbott，the Nineveh sculptures presented by James Lenox．the original Audubon water colors，together with countless original papers， engravings．prints，broadsides and relics of the Colonial and Revolutionary periods．Meetings are held the irst Tuesday of each month，Octo－ ber to June inclusive，at which papers，dealing with American history，are read．The society established a fund ior printing its proceedings and collections： 28 volumes have been issued since 1868，as follows：

Vol．I．－The Continuation of Chalmer＇s Political Annals of the American Colonics＇$(1685-96)$ ；The Colden Letters on Smirh＇s Hisiory of lew lork （ $1759-60$ ）：Documents Relating to the Administration of Jacob Leisler（ $1689-1-69$ ）．

「ol．11．－The Clarendon Papers，Relating to New York and Nex Eacland（ $1662-7$ ），：The Destruction of Schenectady，（1690）；Montague＇s Arguments on Acrs of New，York Assembly（ 1 yol）；＂Colden＇s Let－ ier on Smith＇s History of yew York：（1759）＇Plow den＇s Jew Albion＂（1632－50）：＂Gardiner＇s History of Fast Slampron．Xew Vork＇（1弓oE）：Collection of Evi－ dence and Vindication of the Rights of New lork to she New Hampshire Granes，

Vol．111．－Territorial Rights of New York Against the Government of Sew Hlampshire．a brief by James Duane：Old Sew lork and Trinity Church （ $1730-90$ ）；sermon by the Rev．Francí Makemie （：1707）．

Oi．IV．，Vol．V．，Vol．VI．，Vol．VII．－The Papers of Major．ileneral（harles Lee（1\％54－i811）．

Vol．Vill．－Lesters of General Patuson．Com． mandant of Sew York City＇（17\％9－S0）：＇Letsers to General S．ewls Morris（ $1-75-82$ ）．

Vol，IN．V1．I．－Official Letter－Books of Lieu． tenant G wernor（adwalader Colden＇$\left.(1,60-7)^{\prime}\right)$

Vol．XI Pr－iers of Charles Thomson：Seere：ary of the Cominenta Congress ： $11-65-1816$ ）： ：Letters it Colonel Arman 1（1，：\％－9i）；1．etiers to Robert Mor－ ris＂（17－5－8：）．
 Trial of fiencral Roberi llowe（ifsr）；Journal of Commissary Ralnsiord，Enlistment of Ilessian Troons ${ }^{\circ}$ （ $12-5-5$ ）．

Vol．Xill．－＇Trial of General St．（lair＇is，－8）： －Journal of Occurrences at Quebec 0 $(1775-76)$ ；CCase of 1 il liam Atwoml．Chici Justice of New Vork （1，03）；Jesey＇s sermon in Triaity Church，at the

Funeral of Lord Lovelace＇（i－09）；＇Letter of Dominie Michaelius，First Miaisier in New Netherland，（16zS）； ＇Kecords of the Court of Lieurenancy，New lork Militia＇（ $1686-96$ ）．

Vol．NiV．－Journals of the Engineer Officers， Colonel James and Captain John Montressor，of Ser－ vices in America＇（ $1757-$－8）．

Tol II．－Journal of Lieutenant Von Krafit，of the Hessian Army＂（1576－8 4 ）；＂Letter－Book of Cap tain Alexander McDonald，of the Roral Highland Emi－ grants＇（1－75－79）．
Colonel srephen Ker．．11．－＂Papers of Lieuteaan－ ish tmy in tmerica．Adutant－General of the Brit （17－5－89）．GGeneral Orders and Correspondence America＂（ $\begin{gathered}\text { FYラ－} 8 \text { ）；＂Journals．Documents，and Cor－}\end{gathered}$ respondence of the Expedition 10 Nicaragua，（ $1-80-1$ ）． Vol．XV111．－The Burgher Right and Roll of Burghers of J゙ew Amsterdam，（ $16+8-61$ ）；Roll of Freedom of New lork City＇（1675－1866）：＂Register of Indentures of Apprentices of New York City； （1604－1508）．

Fol．XIS．to XXIII－－The Deane Papers，Corre－ spondence，Oricial and Private．oi Silas Deane （1754－Sp）．
Nol．XXIV：－Muster Rolls oi New Lork Pro－ vincial Troops＇（ $1755-64$ ）．

0．A．－Ahstracts of Wills on File in the Surrogate＇s Otice，City of New lork（ $1665-1-0 \%$ ）．

Yol．XI－Same（ryos－29），with Appendix．
Vol．XXIII．Same $(1 ; 30-44)$ ．
Vol．XXVIII．－Same（iフ4ヶー）．
The officers of the New York Society for 1903 are：President．Samuel Verplanck Hoffman； first vice－president．Frederic Wendell Jackson： second vice－president，Francis Robert Schell： foreign corresponding secretary，Archer Milton Huntington；domestic corresponding secretary； George Richard Schieffelin：recording secretary， Sydney Howard Carney．Jr．，M．D．；treasurer． Charles Augustus Sherman；librarian，Robert Hendre Kelby：

Following in the steps of these two oidest societies hundreds of a similar character exist to－day．Indeed，hardly a city or county in each State of the U＇nion but has had its own local historical society．A casual glance at a few local societies in Nassachusetts and New York will give an idea of the spirit which prevails for the preservation of the historic past：

Tbe American Antiquarian Society，Worcester， Mass，was incorporated 24 October ist：；this inland city being selected as less exposed to possible invasion irom the sea，with the consequent loss of historical coliections．

The Essex Historical Society，Salem，Mass，was oricinally started by Dr．Edward A．Holyoke，of Salem， and itscorporated in $182 t$ ．Some 15 years later the Es－ sex County Marural History Society was incorporated． and in 1848 both of these societics united，forming the Essex Instutute．Of otber societies in Massachusetts a tew will suffice．The Sew England Historic Cene－ alogical Society，Boston；The Quoboag Ilistorical So cictvo Brookneld；Historical Society，Xantucket；Old Kesidents＇．s sociation，Lowell；Old Colony Historical Society，Taunton；l＇ocumtuck Valley Memorial Asso－ ciation，Deerfield：The Pilgrim Sociely，Plymouth；The Rumiord Historical Sociery，Woburn．Rehoboth．Wa－ tertown．Westborough，Weymouth，and Winchester have each local societies．

In lew lork State mention may be made of the Pong Island llistorical Socicty，Brooklyn；Suffolk Cunty Illstorical Socicty，Sas llarbor：Oneida Histori－ cal Sx ety［inca；Onondaga Hisporical Association，Syr． acuse：Rochester Historical societr：But̃alo Ifistorical Suctety：Westchester Wistorical Society，and Tarry． town 11 －inrical Excie：y．In many Staies the various religions denominations have historical socicties and the－e was organizel recently the American Jewish Mis－ thmal＝ciety．New Jork．

The rarious organizations in the several States lave assumed so much useflilness that flere now cxists an＂American Historical Association＂ n－ganized at Saratoga，N．2．． 10 Sept．ISty．in－ enrpurated by Act of Congress，approved $\&$ Jan． 1880，and reports annually 10 Congress througin the Smi：hsnnian Institution．The more recent
patriotic societies, suel as the Sons of the Revolution, Socicty of Colonial IVars, Mayfower Society, Daughters of the Revolution, Colonial Dames, and Euguenot Society, are largely indebted to the historical sucieties for their existence. Indeed, the Sons of the Revolution was formed in the hall of the New lork Historical Society:

The following list of historical socicties existing in 1903, is arranged in alphabetical order of States, with the information lurnished, in so far as replies have been received, from the secretaries of States, or officers of historical societies:

Alabama.- The Alabama Historical Society, organized 8 July 1850 at Tuscaloosa, Chancellor A Jexander Bowic being first president. Incorporated by Act of the General Assembly 5 Feb. i85z. During Civil War all work was suspended, many documents being lost. $18 j 4$ revived by Dr. Iosbua H. Foster. its first secre. tary. 10 Dec. 1898 ; The Alabama Mistory Commission was created at Montgomery, Hon. Thomas M. Owen being secretary and treasurer.

Alasko.-Society of Alaska, Natural History and Ethnology, incorporated ir April i 888 at Sitka. Alaska Historical Library and Museum incorporated 6 June 1900 , at Sitha.

Arizora.- The Arizuna Pioncer listorical Socicty, located at Tucson, was established some years ago.

Arkansas.- There are two historical societies in the State, both styled "Arkansas Historical Society," one at Little Rock, Fay Hempstead, secretary; tbe otber at the University of Arkansas, Fayetteville, J. H. Reynolds, secretary.

Californio.- The California IIstorical Society, organized in 1886. San Francisco.

Colorado.- The State Historical and Natural History Society, Denver; incorporated it July 1879 . Charles R. Dudley. secretary:

Connecticut. - The Connecticut IIistorical Society, Hartford, organized 1825 ; revived by the general assembly 1830; Albert C. Bates, secretary; New llayen Colony Historical Society, New Haven. I862; New London County Historical Society, New London, 18;0; Fairfield County Historical Society, Bridgeport, ${ }_{1881} 88$ and the Middlesex County Historical Society, Middle: town, 1902.

Deloteore.-The Historical Society of Delaware, Wilmington. incorporated 1868 ; Ilon. Chas. B. Lore, president: Wm . Hall Porter, recording secretary.

District of Columbia. - The Columbia Historical Society, organized 9 March 1894; Mrs. Mary. Stevens Beall, recording secretary; and also the American Hiso torical Society.

Georgia.- The Georgia Historical Society, Savannab; Hon. William Harden, secretary,

Idaho.- The Historical Society of the State of Idaho, Boise City; Hon. IMm. A. Goulden, secretary.

Illinois. - The Illinois State Historical Society, or ganized 30 Inne 1890 . Local organızations in the State cooperate with the Society. The last legislature made the society a part of the Lllinois State Historical Library, which library has hercioiore issued publications of the society. Mrs. Jessie Palmer Webb, librarian of State Historical Library, and secretary and treasurer State Historical Society.

Indiano.- The 1ndiana Historical Society, organized 1830.

Iowa.- The State Historical Society of Lowa, Lowa City; organized 1857; present articles of incorporation date April 1S92: F. E. Horack, secretary. The historical department of the State Library, Des Moines, sbould not be confused with this society

Konsas.- The Kansas State Historical Society, Topeka: organized it Dec. 1875: Geo. II. Martin, secretary; "this library conkains 24.424 books; 72.789 pamphlets; 25.926 volumes of newspapers; 25.977 manuscripts; 6,696 relics; 5.751 pictures; and 5.129 atlases and maps.

Kenucky,-The Kentucky Historical Society; organized $1839-40$. The legislature donated rooms to the society $1879-80$. In hugust 1902 it became a department of the state. Gov. I. C. 11 . Beckham, president; General Fayette Hewitt. first vice-president: 11 . W: Langmoor, second vice-president; Mrs. Jennie C. Morton, secretary and treasurer.

Ionisiono- The Lnuisiana Ifistorical Society; organized 15 Jan. 1836: Judge Henry A. Bullard, president: reorganized 1846 with Judge F. X. Martin, president: incorporated 1847 and a new cbarter given 30 April 187% transferring it from Baton Rouge to New Orleans. From 1860 to 1888 Judge Charles Gayarré, president, being succeeded by Judge 11. IV.

Inwe. Since 1894 Pre ह́. . Nic e Fortuer has been presdent
Maine- The Maine Historical Socicty, Portland: organized 18 eit 11. It ifryant. recurding secretary: The Bangor Ilistorical Socicty, Bangor; The Kennebec Antiquarian Sucicty, iugiuta; lurk Instituse, Saco: The Sagadaboc 11storical Society, 13ath; The Lincoln County Historical sucresy, Wiscasset; The Skowheran Histoncal Socrety: Skulhegan; The Waterville historical Society, Waterville; and The Ehot Itistornal Society, Eliot.

Morylond. - The Maryland Historical Society, Raltimore; Geo. II: AlcCreary, libraraan; The Irrederick County Historical Socicty, liredenck; The Harford County Historical Suciety, lielair, 1)r, - Vrcher, president.

Massuchusetts.-See data previously given.
Michrgan.- Tbe Michigan Pioneer and Historical Society, Lansing; organized 22 April 18 74; issues each year a volume of historical collections; Itenry R. Pattengill, secretary.

Minnesota.-The Minnesota Historical Socicty, St. Paul, is the only socicty in that Seate.

Mississippi- The Mississippi Historical Society; organized i898; Dr. F. L. Riley, secretary; Dunbar Rowland is director of the department of archives and history of the State of Mississippi, Jackson. This department was created 26 Feb: 1902 and is under the auspices of the historical socicty.

Missouri.-Tbe Missouri Historical Society, St. Louis; chartered in 1875; Tbe State Historical Society: Columbia, in 1899 .

Montana- The Montana Historical Society, Helena; organized lecember 1864: incorporated lebruary 1865 and is a part of the State Library; Miss Laura E. Hovey, secretary and librarian.

Nebrasko. - The Nebraska State Historical Society, Lincoln.

Now Hompshire.- The Niw Hampshire 1listorical Society, Concord.

New Jersis:- The New Jersey Historical Society, Newark; organized 1845; William Nelsono correspond. ing secretary; Bergen County Histortcal Society, Hackensack, 1902; New Brunswick Historical Club. New Brunswick. Hunterdon County Historical Society, Flemingor: Salem County historical Society, Salem; Princeton Historical Association, Princeton; Woods: town and Filesgrove Historical Society, Wuodstown.

New Mextco. The Historical Society of New Mexico; incorporated 5 1. eb. 1881 ; home nfice, Santa Fe .

Wew York- See previous references.
North Curolina- The Historical society of North Carolina was chartered in 1833: rechartered 22 March 1895: Dr. K. P. Battle, department of history Eimversity of Nortb Carolina, Chapel Mall, secretary: The North Carolina Literary and Historical Society Raleigh; 11. 1. Peele, secretary: and The Trinsty Historical Society, Durlam: Dr. 1. S. Passcth, secretary.

Corth Dakota-. The North IDakota Historical Society; incorporated 8 March 1895 ; Col. (C. A. Lounsberry, secretary, Irargo.

Ohio-- The Ohio State Irchatological and Ilistorncal Society. Columbus: incorporated 13 March 1885. E. O. Randall, secretary: There are many local societies in Oho: The Western Reserve 1 listorical Sc-cict-, Cleveland: The Fireland Historical Society, Norwalk; Tbe Ohio Philosophical and Ifistorical Society, Cincinnati; and orthers.

Oklahoma Territors.- The Oklahoma llistorical Society, founded by the Oklahoma l'ress Association at Kingfisher, May i893. 13y act of territorial legislature at Feb. 2805 it hecame trustec of the Territory " for the care, collection and preservation of all kinds of historical matter, and for the expending of any approm priation made by the Territory for such historical purposes, and located the socicty at the Cniversity building at Norman." In June 1001 the suciets accepted the offer of the entire upper floor of the Carnegie Libe offer of the entire upper foor of (ity, pending the erection of a capitol building. Lincoln Mckinlay, president; Sidncs Clark, custodian.

Oregon.- The Oregon Ilistorical Snciety, organized 17 Decumber 1So9: F. G. Young, sccretary, Unvecrsity of Oregon.

Pennsyla ania- The llistorical Society of Ponnsylvania, Philadelphia: organuzed 1824 : Johin 11 . Jordan. librarian: Bucks County listorical Society, Doylestown: Montgomery County Mistnrical Society, Xorristown; lork County Historical Society, lork: Lancaster County Ilistorical society, Lancaster: Wyoming Historical and Geological Society, Wilkes 13arre; Washington County Mistorical Society. Mashington: Leb. anon County Historical Society, Ileilman Dalc; Chester County Historical Saciety, West Chester; Delaware County Historical Society. Chester: Berks County His torical Society, Reading; Tioga Point Historical Societs

Atbens; and the Preshrterian, Baptist, and Methodist Historical Societies, Philadel phia.

Rhode Island. - The Rhode Island Historical Society. Providence: founded in 1822 ; The \owport Historical Society, Newport, R. I.
South Carolina. - The south Carolina Historical Societs. Charleston; organized 1855; Gen. Edward McCrady. president; A. S. Salley. Ir., secretary.

South Dakota. - The Department oi History in the State of South Dakota; administered by the State Historical Society; was organized by act of legsilature 21 lorical society; was arganized located at Pierre; Doane Robinson, secre-

Tennessee:- Tennessee Historical Society, Nashville: Robert T. Quarles, corresponding secretary,

Texas.- The Texas state Historical Society; organized 2 March \& $_{97}$; Hon. Jobn H. Reagan. Palestine,

Utah. - The State Historical Society of Utah; organized 38 Dec. 8997 Salt Lake City.

Vermont. The Yermont Historical Society: organized 1838; Montpelier; Joseph A. Deboer, recording sectetary.
$V_{\text {irgiria. - The Tirginia Historical Society. Rich- }}^{\text {ind }}$ mond: organized 1831; Yilliam G. Stanard, corresponding secretary and tibrarian.

Washington.- The "Iashington State Historical Society, Tacoma; Hon. Ezra Meeker, president; E. N. Fulier, secretary.

IIest Livginia.-State Historical Society, Charlestown.

Ii isconsin.- The State Historical Society of Wisconsin, Madison: organized 1849; re-organized 1853, this latter date being considered the real date of organization.

IV yoming. - The Wyoming Historical Society; organized 8895 ; Robert Mforis, sectetary, Cheyenne.

Sydiey H. Cariey, Jr., M.D.

History is a record of events which have occurred among mankind: embracing an account of the rise and fall of nations, and other great mutations which lave affected the political and social condition oi the human race. In a more limited sense, history is a record of the progress of mankind in civilization: and, therefore, deals especially with those nations which have performed great achievements and exerted a commanding influence upon the fortunes of the human race

History is generally divided into three great epochs - Ancient History. Nedizval History, and Modern History: Ancient History begins with the first appearance of historic records, and ends with the fall of the Western Roman Empire 476 A.D. Mediaval History, or the History: of the Middle Ages, extends from the fall of Rome 476 A.D., to the discovery of America ${ }^{1} 492$ A.D. Modern History embraces the period from the discovery of America to the present time. Sometimes, however, the world's history is disided into only two great periods-Ancient and Modern: Ancient History, enbracing the whole period before the fall of Rome, +6 s.D., and Modern History comprising the entire period since that event.

The three sources of history are written records, architectural monuments and fragmentary remains. Scveral races of men lave disappeared from the globe. leaving no records inscribed upnon stone or parchment. The existence and character of these people can only he inferred from fragments of their weapons, nrnaments and houschold wensils, found in their tombs or among the ruins of their habitations. Amone these races were the l-ake-dwellers of Switzerland: the prehistoric inhahitants of the Age of Stone and the Age ni Pronze of the Britich Isles: the huilders of the shell-mounds of Denmark and India: and the Mound-builders of the Missiscippi Valley.

The discovery of monuments of great antiquity has aided vastly in ascertaining the date of ancient events. The Parian Marble, brought to England from Smyrna by the Earl of Arundel. contains a chronological arrangement of important events in Grecian history from the earliest period to 355 b.c. The Assyrian Canon, discovered by Sir Henry Rawlinson, the great English antiquarian, consists of a number of clay tablets, constructed during the reign of Sardanapálus, and containing a complete plan of Assyrian chronology. verified by the record of a solar eclipse which must have occurred 15 June - 63 b.c. The Fasti Capitolini, discovered at Rome. partly in 1547 and partly in 181% and $18 t 8$, contains in iragmentary records a list of Roman magistrates and triumphs from the beginning of the Roman Republic to the close of the reign of Augustus. The Rosetta Stone, discovered by a French military engineer during Bonaparte expedition to Egypt in 1 JoS, contains inscriptions in the Greek and Egyptian languages, the deciphering of which has led to the discovery of a key to the meaning of the hieroglyphic inscriptions on the Egyptian monuments. The fragmentary writings of Sanchoniathon give us some light on Phoenician history ; those of Berosus on Babylonia and Assyria; Manetho"s lists of the 30 dynasties of Egyptian kings afford us valuable information: and the works oi Herodotus, the "Father of History," have given us a graphic account of the ancient nations - their annals, manners, and customs, as well as a geographical description of the countries which they inhabited.

Herodotus was the first of Grecian historians. Other Greek writers of history were Thucydides, the great philosophic historian; Xenophon, the writer of charming historical romances; Ctesias: Diodorus Siculus: Polybins ; and Plutarch, the charming biographer of antiquity. Ancient Rome produced Livy, Tacitus, Sallust, and Cornelius Nepos, who have given us the facts of Roman history: For the history of the ancient Hebrews we are indebted to the hooks of the Old Testament and the works of Joscphe:s. he celebrated Jewish historian, who wrote a complete history of his countrymen in Greek. Among early Christian Church historians were the Roman Eusebius and the Anglo-Saxon, the Venerable Bede. The Frenchmen Comines and Froissart were celebrated chroniclers of the Midtle Ages. The Italian Macchiavelli achieved fame by his historical writings. Among modern historians have been many who have acquired celebrity by their works. Such were the great trio of British historians - Hume. Gibbon. and Robertson, whose works have always been regarded as standards. England has produced many iannons writers of history; such as Macaulay, Carlylc. Grote. Thirlwall. Froude, Lingard, Arnold, Allison, Freeman, Rawlinson. Grecn, Knight, Merivale, Milnan, Hallam, and athers. France produced Rollin, Voltairc. Thicrs, Guizot. Sismondi, Mignet, Mlichelet, and the brothers Thierry. Germany has given the world a great ecclesiastical historian in the persun of Nosheims : and a number of German historians have given the world the benefit of their scholarly researches, among whom we nay mention Niebuhr. Neander, Rottcek. Hecren. Schlosser, Mommsen. Curtius, and Leopold won Ranke. Among American historians the most renowned
have been Hilrlreth, Prescott, Bancroft, Motley, Lossing, and l'arkman.

The origin of nations has been involved in obscurity, which has only qutite recently been removed by the diligent study and the patient research of modern European scholars. Investigation into the affinities of the various languages has given us some new knowledge upon this interesting and important subject. Comparing the languages of most of the moflern European nations with those spoken by the ancient Romans, Grecks, Medes, and Persians, and Hindus, we observe that all these languages had a common origin, entirely different from those spoken by the ancient Chaldees, Assyrians, Phonicians, Hebrews, Arabs, and Egyptians: these latter being related to cach other, but not to those of the nations previously named. The former of these languages are called Aryan, the latter Semitic and Manitic; while the Central Asian Tartar nomads have a language called Turanian.

The Aryan branch is called Japhetic, because it has been supposed to be descended from Japheth; while the Scmitic branch is regarded as the posterity of Shem, and the Hamitic branch as the children of Ham. The name Aryan means "tiller of the soil": wherem this race has differed from the Turanian, or nomadic races of Central Asia.

In the course of time nations became divided into civilized and uncivilized, as their intellectual development was furthered by talents and commerce, or retarded or cramped by dullness and by isolation from the rest of mankind. Uncivilized nations are either wild hordes under an absolute and despotic chief who wields unlimited power over his followers, or wandering nomadic tribes, guided by a leader, who, as father of the family, cxercises the functions of lawgiver, governor, judge and high priest. Neither the wild hordes under their despotic chiefs, occupying the manown regions of Africa (negroes), the steppes and lofty mountain ranges of Asia, the primeval forests of Amserica (Indians), and the numerous islands of Oceanica (Malays), nor the nomadic races with their patriarchal govermment, find iny place in history.

The oldest civilizations were those found in the Tigris-Euphrates and Nile valleys, in the Hindu peninsula, and in the remote empire of China. The exact origin of the ancient nations and civilizations is lost in the dimness of their remote antiquity. These regions ware richly endowed by nature with the resonrces necessary for sustaining a dense population : and the oldest historic empires accordingly took their risc in the rich alluvial lands watercd by the Tigris and the Euphrates in southwestern Asia and by the Nile in northeastern Africa.

Historical Asia is sonthwestern Asia; where the great Hamitic and Semitic empires of Chaldæa, Assyria, and Babylonia successively Hourished, in the Tigris-Euphrates valleys; where the Hebrews and the Ploenicans played their respective parts in the world's historic drama; and where the Aryan race finally came upon the scene in the appearance of the great Median and Medo-Persian empires and the Greco-Macedonian empire of Alexander the Great and his successors, followed by the Parthian. Eastern Roman, and new Persian empires; after which
the Semitic race agam prevailed m the sudden rise of Mohammed's religion and the great cmpire fonnded by his successors: followed by the conctuests of the Seljuk liurks from Tartary, the two centuries of warfare between Christendom and Islam for the possession of the Holy Land as represented in the Crusates, the terrible scourges of the conquering Mongol and Tartar hordes of Genghis Klanl and Tamerlane; and, lastly, the rise of the now-lecaying Moliammedan empires of the Ottoman Trurks and the modern Persians.

Southern Enrope was the seat of the greatest two nations of antiquity-the Greeks and the Romans-the former by their literature and philosophy and their political frecdom, and the latter by their laws and political institutions intluencing all future European nations. The other nations of ancient Europe were barbarians, many of whom were conquered and civilized by the Romans. The overflow of the Roman dominion in the 5 th century after Christ entirely changed the current of European history by a redistribution of its population through the migrations and conquests of its vast hordes of northern barbarians, who it centuries ago laid the fomdations of the great nations of modern Europe. America and Oceanica were wholly unknown to the ancient inhabitants of the Old World, and have only occupied the ficld of history since their discovery and settlement by Europeans within the last four centuries.

The cradle of civilization - if not the cradle of the human race - was the fertile alluvial Ti-gris-Euphrates and Nile valleys, where, with the dawn of civilization. Homrished the ald Chaldrant and Egyptian empires-the most remote of historical states of antiquity. History begins with Egypt, the oldest of historical nations.

Asia is the birtli-place of the great religions and the home of absolute despotism. The two great pantheistic rcligions - Bralimanism and Buddhism; also the great monotheistic religions - Judaism, Christianity, and Mohammedanisms -arose in Asia: while Asiatic governments today are what they lawe been from time imme-morial-absolute monarchies, or clespotisms; no republic or constitutional monarely ever having flourished on Asiatic soil.

Europe, on the contrary, inlabited by the progressive Aryan race, has carried political institutions to the higlest state of development : civil, political, and religious liberty having had a steady growth. Asiatic civilization has been stationary, while European civilization has been progressive. The Asiatics are passive, submissive, given to contemplative case and disinclined to active cxertion. The Europeans are active, energetic, vigilant and aggressive. Burope has also colonized ather portions of the globe: the greater part of the present populations of North and South America being the descendants of Europeans who settled in the New World, and drove awny, or assimilated with, the aborigines: while Europeans have also settled in portions of Africa, Asia, and Qceanica. The Asiatics, on the other liand, do not colonize.

History, Ancient. Objectively history is a succession of past events connected with one another as cause and effect: subjectively it is a record of such events as determined by the processes of investigation included in historical method. The history of mankind treats not so
much of indivjduals as of the prosress and decline of communities and states with especial reference to morality, religion, intelligence. social organization. economic conditon. refinement and taste. government, and the peaceiul and military relations of governments to one another (cf. Andrews, 'Institutes of General History.' p. 3). Sirictly there are no periods; the life of mankind flows contmuously. never wholly changing the direction of its current at any definite time. But for the convenience of study history is more or less arbitrarily divided into periods. during each of which the resultant of changes in the life of mankind, or of a particular part of it, is supposed to be a determinable movement of progress or decline which the historian iakes as characteristic oi the period.

The familiar division of general history into ancient. medireval, and modern may be accepted as the most practical, though it is exceedingly difficult to define these long and complex ages. Most obvious is the geographical characteristic. Leaving out of account India and the farther East, which have contributed little to the progress of the rest of the world. ancient history has io do (i) with the iertile river-valleys adjoining the east end of the Mediterranean: (2) with the Mediterranean basin itseli: for the few outlying countries which had a share in ancient history depended upon this area for their civilization. Or taking race and religion as the basis of division, we may define ancient history as the development of pagan, non-Germanic civilization: for with the thorough establishment of Christianity and the coming of the Germans the Middle Age begins. Although ancient history includes many nations and numberless movements of growth and decay, it shows nevertheless remarkable unity. From simple though diverse beginnings the various peoples of the area abose defned dereloped into the one complex political and social organization known as the Roman empire: and when with the wreck of this system the ancient world passed away, there began under new conditions that fresh life of mankind which in jts earlier stage we call mediæval and in its more mature growth modern.

History does not concern itselt with ulitmate origins: it begins with man in the lowest condition in which it actually finds him, and witls the help of anthropology: archrolomy, and kindred sciences it traces his improvement from that point upward through the earlier known stages of his existence. The prehistoric age, which precedes comemporary written records, is taken into account in so far as, by furnishing relative beginnings. it affords an explanati on of later developments. Even when the historian reaches the period of contemporary documents and literature, he continues to use all available auxiliary sciences, principally epigraphy, archrenlogy, numisnatic $\frac{1}{\text { s. philology, and geography. In }}$ testung the genuineness and the hi-torical value of sources he makes use of critical principles which are becoming more and more definise and efiective with the growth of historical method into a science.

Nowhere has source material accumblated so rapidly in recent ycars as in the Orient. As a result of enntinued explorations there our knowledsc of Oriental life has been vastly increased. and the beginnings of Oriental history lave been pushed much farther back into the
past. We are now able to study the Egyptians of the paleolithic age (ci. Petrie. 'Hisiory of Esypt' (fth ed. i. p. 5 ff), although no date can yet be assigned to that primitive culture. nor have yet been discovered all the links which connect it with the historic age. Beginning with the earliest appearance of written records in the Orient, we may divide ancient bistory into the following periods:

The Dazin of Citrilization; the old Egyptian Kingdom and the Chaldcan and Syrian City-Siaters $5000-3000$ B. C. Whether mankind risst emerged from the Stone Age in the valley of the Nile or in that of the Tigris and Euphrates rivers is disputed, and the date of this event bas not been even approximately determined. There can be no doubi, however, that early in the fifth millennium B.C. civilization in both these regions had reached a comparatively high development. People irrigated their fields, built cities. in which they lived under kings. and were acquainted with the elements of practical science as well as with the art of writing. The Egyptian alphabet of this period was hieroglyphic, the Chaldean cuneiform. Egypt achieved political unification under a monarch near the beginning of the period: Chaldea and Syria remained divided among rival city-states.

Through the most brilliant part of the period the Esyptian capital was Memphis, whose Plaraohs of the fourth dymasty (about .40003,25 B.C.) constructed the great pyramids at Gizeh. This epoch is unique in the world's history for the bold attempt to surpass nature in the grandeur and strength of its buildings, which at the same time incicate the high centralization in the hands of the monarch. The people of Egypt. devoted to agriculture and the industrial arts, were peace-loving. submissive to authority, and intensely religious. Prominent among the Chaldean cities were Cr , Nippur, Agade (Accad), and Babylon, under independent kings who strove with one another for the mastery. In spite of their military occupation the people. like the Egyptians, engaged their best thought and energy in creating the elements of civilization. Among their early achievenments were the science of astronomy, the calendar, and a sysiem of weishts and measures, which with some modifications afterward passed to Europe. Farly in the fourth millennium Chaldean civilization began to affect Syria.
II. The Middle Kingdom of Egypt; the Polifical Lौincation of Chaldea: the Scolithic and Eneolithic - Ages in Griact, about $3000-2000$ B. C.-In the beginning of the period Thebes supplanted Memphis as the political centre of Egnt. The most brilliant dynacty was the welfih (about 2--5-2550 B.C.). The Pharaols of this family with a firm hand controlled the ieudal lords who since the sinth dynasty had been growing strong over all Egyp: and to whons mest of the famous rock-graves of the perind belong. The same dynasty conquered Eilicpia (Xubia), carried on a lively trade with Syrla. and had commerce with countries as far west as Creie. They built splendid templos. and regulated the water of the lower Nile by means of a great reservoir in the Fayun. Their utilitarian works contrast strikingly with the grand thouch selfish idealism of the pyramidbuilders. Meanwhile in Chaldea the strife amone the cities continued till the whole country was unified under Babylon (2250 BC .).

In the industries both nations reached a high stage of technical skill. The Egyptians excelled in inlaid work, the Pabylonians in the engraving of gems. The architecture was massive, the Chaldean in brick, the Egyptian in stone. The sculpture, too, though lacking grace, showed great strength. The literature was looked upon by after ages as classic. In government we find a centralized monarchy with a bureaucratic administration regulated by written law (cf. the Code of Hanmurabi (q.v.), about 2250 b.c.). The family was monogamic, and society was definitely organized in classes. The prime motive power in life was religion. which, manipulated by the priests, was already reducing the activities of man to a system of conventions and thes putting an end to originality.

In the region about the Egean Sea the period is represented by the first settlement at Troy, of neolithic culture ($3000-2500$ B.C.), and by the second or "burnt" city, which was æncolithic ($2500-2000$ b.C.). Crete. in communication with Egypt, seems to have taken the lead in the civilization of this region.
III. The Earliest Empires and Their Struggles; the Beginnings of Assyria, Phonicia, and the Hebreres; the Bronze Age in Grecce, 20001000 B. C.-After the twelfth dynasty Egypt weakened; from the beginning of the second millennitum the Hyksos (q.v.) a barbarous people from Asia, controlled the lower Nile valley for several, possibly five, centuries. After their expulsion the Egyptians beeame a conquering people. The eighteenth dynasty (about 1600-1 325 b.C) extended their dominion on the south to the centre of Ethiopia and on the northeast to the Euphrates River. Cyprus and the "isles of the Great Sea" sent as tribute and gifts vases of Mycenæan manufacture.

Chaldea, ruled by Cossean - Kassite kings (1717-1140 b.c.), was not only unable to prevent these conquests, but even lost her hold upon Assyria, which now began a long winning struggle with Babylon for supremacy. Both conntries courted the favor of the powerful Pharaohs. For the first time in history we have great states in relations of war and peace with one another - the beginning of diplomacy and "world-politics." Assyria (1125 B.C.) suddenly created an empire which extended northward to the sources of the two rivers and westward to the Mediterranean. She advanced beyond Egypt in the organization and administration of conquered countries, but her empire soon fell to pieces, partly from internal exhaustion and partly because of invasions from Arabia.

Before the rise of the Assyrian empire the Hittites had conquered eastern Asia Minor and had wrested northern Syria from Egypt: but their power was as speedily overthrown by swarms of invaders of unknown race from Asia Minor, who then made a fierce assault upon Egypt.

Before the end of the millennium the Phœnicians had planted many trading-stations on the islands and coasts of the Mediterranean and had created a "world-commerce." Sidon was at first the leading city, and afterward Tyre. Their civilization. with that of all Syria. was iundamentally Chaldean, affected to some extent by Egyptian commerce and conquest. About Iooo B.C. the Greeks adopted their phonetic alphabet.

Among the immigrants from Arabia into the civilized districts of Hither Asia were the Aramæans, who established themselves in northern Syria with their capital at Damasens, and the Hebrews, who conquered the country in sonthern Syria now known as Palestine (1150 b.c.). At first their government was at theocracy represented by prophets and "judges," but soon (about 1050 B.C.) they established a kingship.

In this period the creative energy of the Egyptians liad exhansted itself. Life became artificial; wealth, flowing in from conquests. substituted magnificence for taste, and in the end enfeebled the national spirit. On account of the wats the military class came into great prominence; the king, more than before, became the proprietor of the state, and the priests gained control of the material as well as of the spiritual activities of the nation. In Hither Asia, also, artistic and industrial civilization suffered through the decline of Chaldea: for the Assyrian genius was chiefly political and military rather than artistic or intellectual. The Hehrews. however, were moving in the direction of monotheism, and Pheenicia was spreading Oriental civilization abroad over the Mediterranean lands.

Of enormous importance for history was the devclopment of civilization in the Egean region. The beginnings of the Bronze Age -proto-Mycemean - are represented by the third, fourth, and fifth citics at Troy (2000-1500 b.c.). followed by the fully developed Mycenran civilization, represented by the sixth city at Troy: by Tiryns, Mycenie, and many other cities on the Greek peninsula, in Crete and the Fgean islands. Characteristic of the civilization are massive fortifications, large palaces, immense tombs, wonderfully skilful work in gold, in vase-making, gem-cutting, and inlaying with precious metals, also excessive ornamentation of apparel and effeminate luxury. Toward the close of the milleminium this culture began rapidly to decline.

Parallel to this development in the Egean, yet little affected by it, the Etruscans of central and northern Italy were creating a peculiar civil-ization,- less artistic and less grand than the Mucenæan.- which did not reach its height tili the following millennium.
IV. The Groweth and Decline of the Syrian Kingdoms; the Rise of the Assyrian Empire; the Epic Age in Greece, Iooo-700 B. C.- Tyre, taking the place of Sidon, became the centre of the world's commerce. Under king David the Hebrews developed a great political power ; but after the death of Solomon they split into two kingdoms. Judah and Israel. Damascus, which had belonged to the realm of David. again became the capital of an independent Aramran kingdom. Near the end of the period, however. all Syria excepting Tyre fell under the Assyrian yoke. The people of Damascus (about 730 B.c.) and Isracl (722 b.c.) were carried into captivity, and Judah becane tributary. Babylon, too, was definitely conquered (728 в.c.). Egypt. again declining, divided into many small principalities, while Ethiopia rose to a power of the first importance. Her king conquered the Nile valley to its month in 728 b.c. But the greatest political event of the period was the rise of the Assyrian empire. Through persistent warfare carried on br a line of able
l:ings for crushing irequent rebellion as well as for new conquests. the empire reached the height of glory, though not yet its widest extent, under Sargon ($-22--05$ B.C.)

Great progress was made in civilization. The Hebrews, aftricted by Assyria, were purging themselves of polytheism. and under the lead of inspired prophets were learning to look upon Jehovah as the only God, almighty, pure, and jealous. who demanded of his worshippers not only ceremonial exactness but clean hearts and spiritual devotion. With the Assyrians. notwithstanding their strong religious nature, political motives were dominant. For strengthening their empire they adopted the plan (I) of recruiting their armies partly from conquered peoples, (2) of transplanting populations from one part of the empire to another, to break up local attachments and weaken the power of resistance, (3) of organizing some of the conauered countries into provinces ruled by Assyrian officials, though many were still left under their native rulers. In government and administration, accordingly, Assyria was at this time the most progressive of nations.

The centre of interest in the growth of civilization, however. shifted to the Egean region, where in this age the Ionic Greeks produced the first European literature - the 'Iliad' (q.v.) and the 'Odyssey' (q.r.) Colonists in a strange country, the Ionians were not in a condition to cultivate the Mycenzean arts, but drew their subsistence from grazing. agriculture, and war. With a high degree of refinement, mixed with barbarity, they possessed remarkably virile. elastic minds. In contrast with the slavish Orientals, the Greeks, represented by the Ionians. were in spirit free. To them neither nature nor religion was terrible: their gods were intensely human, generally the helpers, never the implacable enemies of man. Combined with this intellectual liberty and boldness was a rare sense of fitness and proportion, manifested in the Homeric poems referred to above. In Freek manhood, virility, ireedom, intelligence, and taste combined to produce a civilization which was already rapidly advancing beyond that ci the Orient.

1. The Fall of Assyria and the Rise of the Persian Empire; in Greece Colonial Expansion and the AJukening of a Lational Consciousness: the Struggle Between 4 sia and Europe. in inhich Grece Becomes the Centre of Interest in the IHorld's Polities: in the Central Mediterraneans Region the Political Groisth of Curthage and Etruria; at Rome the Primitize Kingship and the Beginning of the Républie. $700-1 / 9$ B. C.Early in the period Lydia became a conquering state, and reached the height of it imperial power under Croesus ($560-545$ B.C.). who ruled nearly all A-ia Miner west of the llalys River. Egypt fell under the Asivrian puwer ($66_{+}+$b.c.): but soon throwing off the yoke. it enjoyed a lonz period of independence ($645-$ 525 B.C.). Before the loss of Egypt the Issyrian empire reached from Thebes on the Vile nearly to the Caspian Sea, and irom the Percian Gulf nearly th the Black Sea - the greatcot evtent of country yet united under ante rulcr. In Nineveh. their new capital, the kines built magnificent palaces ni brick, adorned with representatinns of their wars in sculptured reliefs. They established lihraries, too, of BabyIonian learning. But ther had already ceased
to make political progress. and they failed to give their empire an organic unity, and to inspire the conquered nations with loyalty to the central government. Suddenly the empire was overthrown by a combination of the Babylonians and the Medes. who destroyed Nineveh in 606 B.C. With this event Assyria disappeared from history

Two empires - the Nedian and the Babylonian - divided between them the Assyrian domain. The former lay in the north of Hither Asia. the latter in the south. Under Nebuchadnezzar ($606-562$ B.c.). Babylon became the largest and wealthiest city in the world. a brilliant seat of industry and commerce. He destroyed Jerusalem. carried Judah into caprivity (568 B.c.). and conquered Tyre. Of the other empire the ruling people were the Nedes. who inhabited the plateau between the Tigris Yalley and the Caspian Sea. Their sway extended westward, on the north of Babylonia. to the Halys River. and southward over their Persian kinsmen. Both empires, however. were short-lived: in 550 B.C. Cyrus. an Elamitic prince, at the head of a Persian revolt, established himself master of the Median realm. This event made the empire Persian. Ater conquering Lidia (546 B.c.) and Babylon (538 B.c.), Cyrus proceeded to subdue the countries to the east and northeast of Persia: so that at his death (529 B.C.) his empire extended irom the -Egean Sea to the Indus River, and from the Persian Gulf to the Jaxattes River - an area perhaps fire or six times as great as that of the Assyrian empire. His son and successor Cambyses added Erypt (525 B.c.). and Darius, the following king ($522-$ 485 B.C.) : completing an organization begun by Cyrus. divided the empire into twenty satrapies (provinces). each under a governor termed satrap. This magistrate, appointed by the king. exercised iull military and civil authority over his province, subject to royal regulations and commands. Though checked by the continual presence of a royal secretary and by the occasional visits of the king's "eye" (inspector). the satrap enjoyed the splendor and nearly all the nower of a sovereign. Darius also built roads throughout the empire. distributed the taxes equitably, and established a system of gold and silver coins. He annexed Thrace to his empire. and made an unsuccessful attempt to conquer Greece.

In the begiming of this period the Greeks were extending the spluere of their infuence thmugh colonization. About 750 B.C. ther had begun to settle in southern Italy and Sicily: and for two centuries the movement of expansion continued, till their settlements cxtended from Naucratis. Egypt, to the Pillars of Hercules. and from the northern coast of the Black Sea th Libya. With colonial enterprise the industries and commerce kept iull pace. They manutactured armor, artistic bronze-ware, and tastefully painted vases. From Lydia they learned the art of weaving and dyeing fine wn lens as well as of coining money: from Esyipt they derived the elements of astronomy. of surveying. and of the other practical sciences. Grear intellectual progress took place: lyric pnetry flourished in all parts of Greece - a kind of pnetry which shows that the Greeks were actively thinking on all subjects suggested by their exoandine environment. They made a
beginning of geography，history，and philosophy． Thinking led to religious and moral progress： the Greeks began to exercise self－restraint and moderation in life．Their sympathies widened with their intelligence：they discovered that they were all of one blood，one speech，and one religion，and began to calt themselves by the common name of Hellenes．They became aware，too，of the differences between themselves and foreigners，whom they termed＂barbarians．＂ and of their own superiority to all other races． Conflicts with foreigners made the Greeks feel that they ought to combine for mutual defense． In the preceding age（ $1000-700$ B．C．）their whole country was divided among a multitude of small city－states，each under an independent king．While in the more progressive parts of the nation in the period now before us the gov－ ernment was rapidly developing from kingship through aristocracy，oligarchy or timocracy，and tyramy in the direction of democracy，a corre－ sponding movement was going on toward po－ litical unity．The city of Sparta，after uniting by conquest Laconia，Messenia，and Cynuria in the strong military state of Lacedæmon，built up the Peloponnesian league with herself as leader．The basis of her superior military organ－ ization was the phalanx．Under the fear of Persian invasion this power expanded into an Hellenic league of all the loyal Greek states on the peninsula and on the neighboring islands． In Sicily a similar league grew up under Syra－ cuse for defense against two formidable pow－ ers，Etruria and Carthage．The Etruscan domin－ ion extended from the Alps to the vicinity of the present Naples，and probably included the then insignificant city of Rome，which after having been ruled from the earliest times by kings set up a republic in 509 B．c．The Etrus－ cans，now at the height of their development， were equally powerfull by land and sea．Even more formidable to the Greeks was Carthage． the greatest Phenician colony，which united under its leadership all the other Phœ⿱宀八工力ian settlements in the western Mediterranean region． By means of enormous wealth，accumulated through commerce，this city recruited a vast army of mercenaries，with which she hoped in overwhelm the western Greeks．

Checked by the growth of foreign powers， Greek colonial expansion came to an end about 550 b．c．Then the boundary of free Hellas on the east was pushed back by the Lydian and Persian conquests in Asia Minor．I revolt of the Ionians against Darius．－in which the in－ surgents were aided by the mother country：－ precipitated between Asia and Europe a conflict destined to affect the whole future history of the world．An army sent into Greece by Da－ rius，was beaten back by the Athenians at Mara－ thon in 490 b．c．Ten years afterward，Nerxes． son and successor of Darins，led a yast host into Greece，hoping to overwhelm the free jittle country by the sheer force of numbers．But his flect was shattered in the battle of Salamis（480 B．C．）and his army destroyed at Platraa by the forces of the Hellenic league（ 479 B．C．）．Mean－ time at Himera，Sicily，the despot of Syracuse destroyed the invading mercenary army of Car－ thage（ 480 b．c．）．The Greeks met with bril－ liant success both in the East and in the West： those of their race in Asia Minor were liberated： all were relieved from fear of foreigners；Greek
civilization was free to develop without the re－ straint of alien rule；Greece came out of the struggle strong，proud．self－conscious，ready for great achievements in peace and in war．

V1．The Culmination and Decline of Greek Political Pozuer and of Greck Cizilization；the Hellenization of the Orient the C＂nification of Italy Under Rome．fīo－26．4 B．C．－The splendid naval force which Athens furnished for the war， together with superior statesmanship，placed her at the head of a new league of matitime Greek states，known as the Delian Coniederacy（or－ ganized 477 b．C．）．Rivalry for the headslip of Greece between democratic Athens and oligarchic Sparta led to the Peloponnesian war，which in－ volved a great part of the Greek world（ 431 － 404 B．C．），and which ended in the establishment of Spartan supremacy（404－471）over eass－ ern Greece，while nearly all western Greece was united under Syracuse．Oppression on the one hand，and on the other the love of the Greeks for city－autonomy，caused the downfall of both political powers．For a short time under Epa－ minondas（ $37 \mathrm{I}-362 \mathrm{~b} . \mathrm{c}$ ．）Thebes attempted to take the place of Sparta，but in vain：the Greck state－system，－consisting of leagues and he－ gemonies of cities，－was rapidly crumbling． Meanwhile Macedon，a territorial state under King Philip，taking advantage of the political disunion and mutual jealousies of the city re－ publics，began to encroach on free Hellas．After defeating the combined forces of Athens and Thebes at Chreronea（ 338 b．c．）he imposed his protectorate upon the Hellenic state－system． His son Alexander the Great in a series of bril－ liant campaigns（334－33I B．C．）conquered the Persian empire，and afterward extended its boundaries to the northeast and the east．His empire was the largest the world lad known． Among his improvements was the specialization of administrative functions．financial．judicial． and military．When he died，the empire after a long struggle among his generals ultimately divided into three great states．－Egypt，Asia （the Seleucid empire），and Nacedon，including Greece．To regain and preserve their liberty many of the cities of eastern Greece entered into two federal unions，the Etolian and the Achæan．These institntions，though long known to the Greeks，came intn favor too late to save them from the domination－not of Macedon but of Rome．The western Greeks．however． were first to meet their fate．

After adopting a Repuhlican constitution Rome engaged with lier neighlors in a long． desperate struggle for existence（509－431 B．C．）． Then by securing the headship of i atium（ 431 － 406 b．c．）and by the conquest of Veii she be－ came one of the strongest mwers in Italy．A series of wars with the Latins，Samnites，and Italiot Greeks（ 34,3 －290 B．C．）gave her control of all Italy south of the Rubicon River．The success of the Romans was due to their improve－ ment on the Greek phalanx，their strict disci－ pline and ohedience to authority，their lahorious patience in fortifying acquired territory，and their liberality in the treatnent of conqucred peoples．The political system which in this， period they gradually buile up on the hasis of Italian nationality recognized varions gradations of rights and olligations among the communities of the system from the tributary subjection of the Gauls to the full Roman citizensliap．Though
partly federal, the system left to Rome absolute control of foreign and military affairs. At the close of the period ($26+$ b.c.) Rome and Carthage were the great powers of the western Mediterranean; those of the East were Macedon. Egypt. and the Seleucid empire.

The century and a half ($+79-322$ B.C.) following the Græco-Persian war was in some respects the most brilliant in the history of civilization. The tremendous energy roused in Greece by the war displayed itself under the guidance of taste and reason in every field of activity. A wave of independence. overthrowing tyrannies and oligarchies, established popular governments in many cities, and intensified the democracies already' existing. In Periclean Athens, which depended economically upon the labor of slaves and tributes from dependent allies, the citizens enjoyed a more liberal education and a wider range of political and social privileges than have ever fallen to any other community known to history. In close relation with this political and social development architecture. sculpture, and literature reached ideal perfection. The fifth century produced the Attic drama (.Eschylus. Sophocles. Euripides, and Aristophanes). the noblest historical writing (Herodotus and Thucydides), and the inimitable Farthenon and Erechtheum. But the Peloponnesian war exhausted the energy and resources of eastern Greece. The growing refinement and love of peace which characterized the following century is indicated by the fact that the inhabitants of the city-states shirked military service. so that war came largely into the hands of mercenaries drawn from the less cultured territorial states. Thought prevailed over action: and in art strength was to some extent sacrificed to beauty and finish. While poetry declined, oratory and philosophy reached the height of their development in Demosthenes. Plato, and Aristotle. who brought classic Greek literature to a close.

Following the conquests of Alexander, commerce. colonization. and administrative policy spread Hellenic civilization over the Orient. In the post-classic period (after 322 b.c.) Persamum and Alexandria became the most iamous seats of Hellenistic culture, which was distinguished for painstaking sholarship rather than for creative power. The West, too. was ialling under Hellenic intuence. Rome adopted from the Greeks not only the phalanx, hut also various deities and religious ideas, the alphahet, - either directly or throngh the Etruscans, - and other rudiments of civilization. From the Etruscans chiefly came the impctus to the building of public works-temples. sewers. roads. bridges. fortifications.- in which the Romans showed creative genius. Rut to the end of the period they paid little attention to learning: they were without literature and had few if any schools. A realistic, practical people, they were narrow and unamiable in private and husiness relations, but excellent warriors and citizens. Duty and Discipine were the great cummandments to which the iamily and inciety. citizens and oldiers, yielded religinus obedience. These herore virtucs were not the least important factor in the creation of their empire.

Vil. The Expansion of the Roman Power foir the Mediticranten IVorld; the Groath of Plutecracy and the Decline of the Republic. -h:-2; B. C - The extension of the power of

Rome over the peninsula brought her into collision with Carthage, which had occupied nearly the whole of Sicily and was now threatening southern Italy. Not only did Rome feel bound to protect laly, but her growing commercial class desired by conquest to extend its opportunities for trade and speculation. The First Punic War ($264-241$ B.c.) may be compared in character and importance with the recent war between the U'nited States and Spain. which resulted in the occupation of the Philippine Islands by the former power. To meet the Carthaginians on their own element, Rome built a navy. and thus equipped herself for transmarine conquests. As a result of the war. Carthage surrendered Sicily to Rome in addition to paying a heavy indemnity. This island became the first Roman province (227 p.c.). Sardinia and Corsica, acquired soon after the war, were organized into a second province. Then by conquering the Gauls in the north of Italy ($225-222$ B.c.) the Romans extended their sway to the Alps. In the Second Punic War (2t8-20t b.c.) the Carthaginian Hannibal, one of the most eminent generals of all time. invaded Italy, defeated one Roman army after another. desolated the country, and came near wrecking the power of Rome. Her preservation was due to the wisdom of the senate, to the solidity of Roman character, and to the tie of common interests and of kindred blood which bound the Italians together against the alien intruder. This war of defense shows Rome at her best. Peace brought her two provinces in Spain and the destruction of her rival's navy So greatly superior was now her strength that the conquest of the civilized world had become merely a question of a few years. In another series of successful wars ($200-$ i46 B.c.) she acquired Nlacedon. Greece, Asia Minor. and the country about Carthage. Corinth and Carthage were destroyed, and most of the acquired territory was organized into provinces. At this date (146 B.C.) Rome was the only great power in the entire Mediterranean basin. The further growth of her empire consisted mainly in the conversion of protected and dependent countries into provinces and an occasional conquest. To Pompey belongs the subjugation of Syria ($65-62$ в.с.), which alone remained of the Seleucid empire, and to Julius Cesar the more important conquest of Gaul ($58-50$ b.c.). Egypt, long dependent, becanse a province in 30 ह.c. The Roman empire, consisting of provinces and dependent allies, now included the whole circuit of the Mediterranean.

Some advantages came to the world from Roman rulc: while in the East Greco-Oriental culture continued undisturbed, Latin civilization. which was falling more and more under Hellenic influence, gradually permeated the provinces of the Weest : throughout the empire the cities retaned their own laws and self-administration under the government of their wealthy class: all parts but the frontiers enjoyed lasting peace. Thic evil effects of the system, however. soon hegan to outweigh its advantages. To secure a monopoly of commerce for themselves, the Romans restricted or even prohibited irade among the subject communities. Over all the empire they acquired vast estates. which they worked by slave lahor, thus destroying everywhere the free peasantry. Their policy of farming the taxes was also unjust and oppressive.

HISTORY, ANCIENT

The governors, too, with rare exceptions made office a means of amassing fortunes. In these ways the administrative and capitalist classes recklessly exploited the provinces for their own profit. At the same time commercial restrictions and the competition of slave labor were ruining the farmers and business men of ltaly, and a worthless, dangerous mob was growing up in the capital.

The early govermment of Rome by magistrates, senate, and assemblies, although admirably adapted to a small community; proved unequal to its new and complex functions. The assemblies, now becoming corrupt. were in the hands of magistrates, ministers of the senate, which as a whole was controlled by a small knot of members, the curule ex-magistrates. This imner circle formed in the beginning a nobility of merit; it saved the state from Hamibal and conquered the Mediterranean world. But it soon transformed itself into an hereditary caste. which, monopolizing the domestic and imperial offices, used them as a means of absorbing the wealth of the world. In brief the nobility degenerated into a corrupt, self-seeking plutocracy. As to the general condition of the world at this time it should be noted that the want of competition, such as exists among nations of approximately equal power, by reducing the vitality of mankind, stopped progress, and decay was already setting in. Thorough reform was needed even to postpone the collapse of ancient civilization.

The Gracchi sacrificed their lives in a vain attempt to regenerate the peasantry and to restore Italy to its old condition of economic health; at the same time they showed the enormous power of the plebeian tribunate for purposes of reform or revolution. Far preferahle to government by the corrupt aristocracy or by the mob, which Gaius Gacchus organized. would be the strong rule of one man; and the task of creating in the army a solid foundation for a government of the kind was accomplished by Gaius Marius. After him the governor (proconsul) of a military province employed his position as a means of acquiring an army for political use: and the proconsuls became rivals for the mastery of Rome. Finally Gaius Julius Cresar, an aristocrat by birth but a champion of the people, allying himself with the tribunes; overthrew the republic and created a virtual monarchy. By radical reform of the entire administration this great creative statesman arrested the decay of civilization and gave the institutions of the ancient world a new lease of life. The assassination of the monarch. far from restoring the republic, was followed by a war of succession, in which his grand-neplew Octavius -after 27 B.C. Augustus - won the imperial prize (31 b.c.).
VIII. The Empire at Its Hcight, 27 B. C.180 A. D.- Instead of recurring to the autocracy of Cæsar, Augustus hit upon a compromise between republic and monarchy (27 p.c.). The senate through its magistrates and promagistrates was still to govern Romc. Italy, and the peaceful provinces, while Augustus as holder of the military authority (impcrafor, hence emperor) was to rule directly the exposed and unquiet provinces and to exercise supervision even over those administered he the senate: the republic was to continue for Italy, the monarchy
was established for the subject countries. In Rome Augustus held the tribmician power, and was sometimes elected to republican offices: but his chief influence over the home government was exercised not througl office but in the capacity of political "boss,"- a position which the Romans dignified with the name of princeps (foremost crizen). The prince and the senate had not only their separate fields of administration but also separate treasurics and separate sets of officials. Augustus concealed the independent position of the prince: Tibcrius brought the dyarchic antithesis into bold relief: the Claudian and Flavian princes, by gradual encroachment on the senatorial prerogatives, aimed to convert the dyarchy into a monarchy. As the senate declined, the officials of the prince. originally his friends and houselold servants. developed into an imperial bureancracy. After the tyranny of Domitian the "Good Emperors" (96-180 A.D.), in reconciling the nobility to the principate laid more firmly the constitutional basis of their power. The government may now be termed a monarchy, althougli some clements of the dyarchy remained. and though the semate, with its republican traditions, continued to be a material check upon the powers of the prince.

The emperors made few permanent con-gucsts,- chiefly Britain and the Danubian provinces. Their fundamental task was to extend Latin civilization to the un-Hellenized parts of their dominion. In Africa west of Egypt, notwithstanding the survival of the Phoenician language in private life, Latin civilization took deep root. Spain and southern Gaul became perhaps even more thoroughty Latinized. Northern Gaul was less affected, and Britain still less. by the Romans, while the morthern provinces east of Gaul varied greatly in their receptivity of Latin culture. The principal factor in the work of civilization was the city: in most of their European domains the Romans superscded the old tribal organization by the Italian municipal system, which gave the nations the refining and disciplining influcnce of comfortable homes, useful and artistic public works, schools, courts of justice, and local seli-government. Each city was a centre from which Latin modes of life and Latin ideas radiated. Imperial rule cured most of the ills of republican administration. Abolishing the farming of direct taxes, it placed their collection in the hands of imperial officials, and distributed them on the basis of a careful census. The governors, now drawing their salaries from Rome, and deprived of their former unlimited opportunity for extortion, were held responsible to the cmperor. The armies, placed under strict discipline and controlled by one will, no longer wasted the empire by civil wars. For the vast extent of the frontier the soldiers were few, and the burden of their support was light. The republic had looked upon the provinces as its estates: in the 2 d century A.D. the emperor came to regard himself as the parent of the subject peoples. whom he was in duty bound to treat with love as well as with justice. Though oppression was not wholly eradicated, the imperial government was in a high degree efficient, just, and humane. Thic progress of civilization was followed hy the extension of the Roman citizenship. The liberal policy of Claudins in bestowing it was continued by his successors, till shortly after the period
under discussion all freemen of the empire became Romans by the edict of Caracalla (212 A.D.).

In this period was tried the experiment of maintaining profound and lasting peace over the large area comprising the interior provinces. Prominent among the results was a material prosperity far greater than has ever blessed those countries in any other age. Another result was the development of the "feminine virtues." Men "became chaste, tender-hearted, loyal, religious, capable of infinite endurance in a good cause" (Seeley. (Roman Imperialism'). They began to regard women as their equals, to treat children and slaves humanely: 20 show kindness even to animals, and in spite of gladiatorial contests, to abhor bloodshed. Morals, at their lowest ebb in the Rome of Nero, were rapidly purified by the coming in of the best families from the provinces, so that under the Good Emperors morality in the capital reached a high level. The spirit of the age expressed itself not only in the private and social virtues, but also in the Civil Law, which rested upon the principles of justice, kindliness, and equality among men.

The unimaginative Romans failed to produce a literature of the highest rank. In the late republic lived Lucretius, a poet of real genius, and Cicero, the versatile author of orations, philosophic works, and private correspondence. The Augustan age created the epic and rural poetry of Virgil, the 'Odes' and 'Satires' of Horace on social and moral topics, and Livy's stately history of the republic. The most splendid Latin writers of the age of the Good Emperors were the satirist Juvenal and Tacitus, the historian of the early empire. Among the most famous writers in the Greek language at this time were Pausanias, author of a "Tour of Greece,' Appian, the historian, and Plutarch, the biographer of eminent men. Hellenism continued to be the chief liberalizing and refining force in the empire. Its highest intellectual product from Roman soil was Stoicism, which found its best expression in the writings and character of Marcus Aurelius.

1K. From Limited Monarchy to Despotism; the Reorganizution of Diocletion and Constantine; the Barbarian Intasions and the Pecline of the Empire, $180-500$ A. D.- IVriters generally agree in making the decline begin with the reign of Commodus (iso-r02 A.D.), though disintegrating forces had long been in operation and though for generations afferward the empirc at times, as under Septimius Severus and Diocletian, showed great recuperative power. The century which intervened between the death of Marcu: Aurelius and the accession of Diocletian (180-28+ A.D.) we may regard as a period of revolution. The happinces nf the Roman world under the rood Emperors had been chiefly due to the widom of a succession of rulers who were able in secure the good will of the senate and of the populace of Rome, the subordination of the pretorians and of the army. and the respect of surnumdins mations. The weak. brutich Commodus allowed these nicely adjusted forses to contlict. and the recult was civil war and anarchy: The revolution. sweeping away the influence of pretnrians, ponpulace, and senate. almost of Rome itzelf, brought new principles rf government into play. The emperor was to be a despot of the Oriental type, - a God on
earth, - who surrounded himself with srately splendor, and governed through a complex bureaucracy. He appointed a colleague, and two Cæsars were named as heirs of the emperors. all four dignitaries being men of eminent military ability. The empire was reorganized in prefectures, dioceses, and provinces under appropriate magistrates. These arrangements, chiefly the work of Diocletian ($284-305$ A.D.) and Constantine (sole emperor $32 \uparrow-337$ A.D.), were in the main permanent. In making better use of the resources of the empire for the purposes of defense the new organization brought fresh strength, but rivalry between the emperors again caused civil wars with all their evil consequences. Under Constantine, who removed the capital to Byzantium. thereafter called Constantinople, the two imperial offices were again vested in one person, and were not definitely separated till the accession of Areadius and Honorius, sons of Theodosius (395 A.D.) . Even then the theory of a single empire ruled by two colleagues continued: and when in 4;6 A.D. Romulus "Augustulus" was deposed at Rome and the imperial trappings were sent to Constantinople, people understood merely that the collegial government had once more given way to monarchy.

Meanwhile from the heart outward through every limb the empire was falling to decay. The underlying canse, already referred to, was declining vitality, fundamentally due to lack of interest in the welfare of the state, of the community: of future generations. As the civilized part of the human race lost love of life and hope for the future, it began to die out. A related cause was slavery. Which long before Marcus Aurelins had been destroving the free population: in his time the plague, and atter him foreign and civil wars, continued to waste life, while the burden of taxation, always increasing, made life every day more wretched. The wealth of the empire flowed to the East in exchange for useless luxuries; and for want of gold and silver the coinage was debased: at the same time the cost of living became excessive. Then, too, the growing splendor of the imperial courts added to the burden. With their scant means many found it impossible to support families, and even the slaves grew fewer. In these conditions most of the lower population, free and slave. became hereditary serfs - coloni -hound to the soil and to the payment of fixed dues to their lords. But it was not only the poor who suffered. The municipalities had once enjoyed freedom in local affairs, each governed by a scnate, whose members - dccuriones - were the wealthier men of the community: Gradually the emperors encroached upon the liberty of these citics, till they had converted even the privileges of the senators into intolerable burdens. For as these officials were responsible for the taxes due from their districts, many of them, tinable to wring the required amount from the poorer classes. were themselves reduced to powerty: Nevertheless they could in no way shirk their duty, but were held for life by an iron hand to the unenviable task of collecting and of paying oppressive taxes. Artisans and traders, tno, were hound strictly to their hereditary vocations. in order that the government might be sure of the dues to which they were subject. Iti I ref. society was forced into a rigid castelike shatent. which crushed freedom and made the life if rich and poor, bond and free, almost
equally wretched. As under these circumstances the population grew mwarlike, the government found it more and more necessary to make up the armies of Germans, who consequently settled in the empire in ever increasing numbers. Although they readily adopted Roman civilization, their independent spirit, ont of harmony with the conditions above described, acted as a new disintegrating force. Another power, which white aming to make the world over on its own model tended to destroy ancient ideas and insti-tutions,-including the empire itself,-was Christianity. Rome, essentially polytheistic, always tolerated the religions of the nations which she conquered ; in the adoption of their gods into her pantheon she found a means of political centralization. Judaism, however, she regarded with disfavor, and attempted to suppress Christianity. These exceptions to her policy of toleration were due to the irreconcilable conflict between monotheism and polytheism and to the leveling tendency of the Christian religion. The apostles of Christ taught that the gods of Rome were demons, that the worship of the emperor was sinful, that all men from the emperor to the slave were equal before God, that the heaping up of wealth was an abomination; in brief their religion seemed to the Romans subversive of all the principles on which the empire rested. But although Christianity and Germanism were disintegrating the empire, they were destined in combination to make the old world new. The estimate of their value as creative agencies belongs to the medireval period.

In appearance more formidable than internal decay were the hostile nations outside the empire. In the $3 d$ century the Germans, who had long been threatening, began to break through the northerm frontier. The Franks flung themselves upon Gaul; the Goths occupied Dacia and crossed the Danube, to defeat and kill an emperor. In the East, too, a new danger appeared; on the ruins of the old Selencid power had arisen the Parthian empire, which in the 3 d century was supplanted by a new, vigorous Persian empire. The warlike Persian monarchs nearly made good their threat to drive the Romans from Asia.

Early in the 5 th century the Germans began to establish their states within the empire,- the Visigothic kingdom in Gaul and Spain (415 A.D.), that of the Vandals in Africa, and of the Burgundians in the Rhone valley. About the middle of the century the Angles and Saxons began to overrun Britain; a little later the Franks, who long before had crossed the Rhine, began the conquest of Gaul (486 A.D.) ; and in 493 A.D. the Ostrogoths conquered Italy. Before the end of the century the western branch of the empire had fallen into the hands of Germanic chiefs, who while vaguely recognizing the emperor at Constantinople as their lord were in reality sovereign kings of the countries they ruled. Here ancient history ends: the interaction between Roman and German life under Christian influence is the subject of medireval history.

Literature. - For the method of history see Bernheim, 'Lehrbuch der historischen Methode' (4th ed., Leipsic 190.3): for an elementary sketch, Botsford, 'Ancient History' (New York I902), a philosophic view may be found in An-
drews, 'Pricf lnstitutes of Gencral History) (Gth ed., Boston 1900): by far the best detailed work is Neyer, 'Geschichte des Altertums' (I.-V., reaching to the middle of the fth century a.c., Stuttgart and Berlin 188-1002) ; for a satisfactory treatment of the period following this date it is necessary to depend on the histories of special countries and periods, for example, Ilolm, '11istory of Greece' (11I., [V., translated from the German, New Iork I8o(2)-8) : Nommsen, '1history of Rome' (translated from the German, 5 vols., conformed to the Rth ed.. New York 1895) ; 'Provinces of the Roman Empire.' 2 bols. (New York 1886) ; Duruy, 'History of Rome' (8 vols, Boston), valuable for the imperial period; cf. also Duncker, 'Geschichte des Altertums' (3d-6th ed., ovols., Leipsic 1874-86) : 6 vols. translated by Abhott (London 1877-86) ; Oncken, 'Allgemeine Geschichte in Einzeldarstellungen,' by various authors (Berlin 187890) ; Helmholt, 'History of the World' (Vols. 1.-IV., New York 1902) : Philippson, 'Das Mittelmeergebiet: seine geographische und kulturelle Eigenart' (Leipsic I904), valnable for physical environment; Cumningham, "W'estern Civilization in its Economic Aspects' (Cambridge 1898) ; Webster, 'General History of Commerce' (Boston 1903) ; Perrot et Chipiez, 'Histoire de l'Art dans l'Antiquité) (8 vols., Paris 18821903) ; for general tendencies, Freeman, 'Chief Periods of European History) (New York 1886) : especially fresh and suggestive are the articles by E. Meyer, Diels, Milamowitz-Möllendorff. Soltau, and Hirschfeld in the 'Historians' History of the World,' III.-VI. (New York and London 1904) ; the best encyclopedias for Greece and Rome, containing much information also regarding the Orient, are Daremberg et Saglio, 'Dictiomaire des Antiquités grecques el Romaines' (3 vols. ready, Paris I873-190.4) ; Pauly-IV issowa. 'Real-Encyclopädie der cl. Altertmmswisentschaft' (4 vols, ready, Stuttgart I89.4-100r) : the best periodical is 'Beiträge zur alten Geschichte.' edited by Lehmann (Leipsic 1901-) ; for bibliograplyy past and current. 'Jahresbericht iiber die Fortschritte der cl. Altertumswissenschaft,' including 'Bibliotheca plilol. cl..' edited by Bursian (Berlin) ; for bibliograplies of special countries see the articles on Egypt. Chaldea, Babylonia, Assyria, Greece, and Rome.

George Widilis Botsford,
Adjunct Professor of Anciont IIistory. Columbia Üniversity.
History, Medirval. Definition.- Medireval history may be most easily defined as the middle period between ancient and modern listory. Some scholars lave wished 10 do away with the term entirely, and to use only two divisions. ancient and modern. In fact, in Oriental history there is no mediæval period. But most students prefer to keep to the threcfold division for European history: This is chte largely to the fact that the medieval period can be presented with greater unity than either ancient or moderin.

Medinval history began with the disintegration of the Roman Empire in the 5th century. the ruin of paganism. and the migrations. Without arguing the merits of the varions dates Which may be assigned for the end of the Mictdle Ages ($\mathrm{q} . \mathrm{w}^{\circ}$), we shall here discuss the history to about isoo A.D. During this period of
one thousand years, the most marked characteristic is the dominant influence of the Church. The most important peoples are the Germanic races, who emerged slowly from barbarism, and gradually assimilated some of the features of the Roman civilization. Based upon the ruins of the older rose a new civilization, which caused a radical transformation in political, social, and religious ideals.

Contrast Betzeen Romans and Germans.The Romans had a highly developed and very complex civilization. From their Greek subjects, they had acquired the knowledge of art, literature, science, and philosophy. Under the Roman peace, an active commerce had grown up throughout the empire, supplying to each province the products of all of the others. In law and administration the Romans had reached such excellence that we still imitate them. Moreover, Christianity had become the state religion.

The Germans were barbarians, having the virtues and vices of their savage state, and resembling, in many respects, the North American Indians. But they were a vigorous race. with a great capacity for learning. Some of them had been converted to Christianity before they entered the Roman Empire, but most of them were still pagans.

Migrations. - The Roman Empire had for centuries held the barbarians in check, by the prestige of its name, by the payment of tribute. or by the policy of exciting dissension among its enemies. This last is well summed up in the Roman proverb, Dizide et impera, which may be paraplirased. "Cause divisions and strife among those whom you fear and thus rule over them." In the latter part of the fth century however, the terrors inspired by the adyance of the Huns (q.r.) into Europe, the knowledge of the weakness of the Roman Empire, and their own desire for more fertile lands, callsed the lisigothe (q.r.) to enter upon their great migratinn. Their example was followed by nther German tribes and the movement continued throughout the 5 th and 6th centuries. By the year 600, all the European portion nit the Western Empire, except a few positions in ltaly, was held by the Germans.

During the period of the migrations, there was a grcat destruction of life and property. But the conquered inlabitants were neither oxterminated nor driven nut. The German invaders were relatively fow in numher, and, in many sections, they found unocupied lands sufficient for their needs. The conquerors and the compuered lived in constant contact with one another, and the resultant civilization was partly Roman and partly German. See Migratioxs

Fusion of the Tico Civilizations. The gth and Sth centuries were the period of fusion. liy the year 8oo. the terms Roman and Barharian were no innger used. The inliabitante formed a cingle people. with a civilization much Inwer than the Roman but much higher than that of the fiermans when the latter had entered the Empise. In this new eomposite civilization, the Roman infuence was greater in languace. mechanical arts, busincse arrancements, and municipal, intellectual, and eccleciastical affair:. The German influence was greater in military matters and juslicial pencerfure

The fusion was practically eompleted by the
time of Charles the Great. He realized clearly the task of the Middle Ages, and did all in his power, on the one hand to retain all that was best of the older German customs, and, on the other hand, to introduce from Italy such Roman customs as his subjects were able to adopt. He did much 20 foster education, which followed Roman models. By his wars, he brought under his sword all of the German peoples.

The Nea Empire. In Soo. Charles"s services received fitting recognition in his election as emperor of the Roman Empire. The idea of a Roman empire which embraced all Christians had never been lost. After 476, when Romulus Augustulus was deposed by Odoacer, the people in the West. Germans and Romans alike, had regarded the emperor at Constantinople as the head of the Christian world. Even barbarians like Clovis (q.v.) had been proud to secure recognition and obtain a title from the emperor. The popes had looked to the emperors for support. In the last years of the Sth century, the East was ruled over by Irene (q.v.). who was both despised because she was a woman and for her crimes and heresy; so that it seemed to many that the imperial office was vacant. Consequently, Charles was crowned emperor and was considered the successor of Augustus. Trajan, and Constantine (qq.v.). Under bis strong rule, the Western world was governed firmly: and the western nations were held together.

Disintegration of the Empire-After Charles's death. his son was unequal to the task of ruling the empire. Under the combined effects of civil strife and constant invasions by the Northmen, the Mohammedans, and the Slare (qq.w.). the central power was weakened, and the last Carolingian rulers were unable to protect their subjects. The whole frontier was exposed $t o$ attacks and the raids of the enemy even extended far into the interior. In each district the strongest man came to be regarded as the natural leader and protector. Sometimes it was a royal official. holding a fortification: sometimes it was an abbot or a bishop; at other times, a bold adventurer. who usurped authority: In the absence of a strong central government. each leader had to police his land and administer justice. Naturally. he demanded to be paid for his services, and exacted tribute from all under his control.

Because of the lack of moner, the Carolingians (see Carloungians) bad always iurnished to their counts and other official estates from which they obtained their living. Under the weak kings, the temporary grants of both land and office became hereditary, with or without the rulers consent. The rulers, however. soon recognized the necessity of allowing this. and souglit merely the recognition of their own nerlordship and ultimate ownership of the lands. Consequently, they granted the benefices to the heirs and conferred. in addition, the immunity: or right of independent jurisdiction. Thus almost all land and power came 10 be held feudally: See Feconalsm.

Ferdal Anarely:- There was constant warfare as each strong lord sought 20 ohtain greater power or a more independent position. On the other hand, each king or suzerain tried to increase his nwn feudal holdings by conquest or marriace. Every vassal was amxious to avoid

HISTORY, MEDIEVAL

all the feudal services that he could, and, at the same time, to exact as much as possible from the people sulbject to him. Commerce was burdened with excessive tolls in each fief and exposed to the depredations of the robber barons. Little attention was paid to maintaning roads and bridges, consequently travel was difficult as well as dangerous. As a whole, the feudal régime tended to isolate cach hief and to reduce the peasantry to misery, It is significant that the term "Dark Ages," formerly applied to the whole of the Middle Ages, is often used now for the gth and toth centuries.

The Church.- The great cohesive and educating force was the Church. Soon after they entered the Roman Empire, cach tribe of Germans had been converted to Christianity. In every barbarian kingdom the bishops were important officials. They often obtained great wealth, and ruled over vast estates. On their possessions, the serfs were treated somewhat better than on the lay fiefs. Monasteries had been founded throughont Western Europe, and often these scrved both as schools and as model farms. Boniface did much to bring the tribes of Germany into direct connection with Rome, and he held frequent church councils at which the clergy and nobles of a whole district came together. These councils were very important for their effect in unifying the Church and making its work more effective.

From this time the Church gained steadily in power and influence. Charles the Great did much to increase its wealth by enforcing the payment of tithes. He insisted that the elergy should be better educated themselves and should do more for the education of the people. In the gith century the growing power of the papacy and the weakness of the kings enabled the popes to bring the bishops more directly under their own control. Thas the clergy of Western Christendom were brought into intimate association with Rome. Latin was the common language of all churchmen. Their fecling of membership in the Church was frequently stronger than any local attachment. Consequently the more able men were equally at home in every conntry and the Church had a greater unity than any lay power. This all-pervasive Church was the great unifying element amid the divisions of the feudal period.

Investiture Struggle.- After periods of weakness in the first half of the woth and again in the first half of the inth century, the Church at Rome was purified and strengthened by the support of the German emperors. Abont the middle of the ith century; the strong personalities of Pope Leo IX. ((q.v.) and of Jildebrand (later Gregory VII.) (q.v.) led to a great reform movement, and also to an cffort to make the pope's power more effective. One feature of this movement was an attempt to secure entire control of appointment to church offices. This brought the papacy into conflict with the kings who considered that they liad a right to nominate the bishops in their own kingdoms. The struggle was most acute between the German emperors and the popes, and resulted in the long investiture conflict, which was ended in ir22 by a compromise. Sce Investiture.

Roman Empire of the German Nation.But the investiture struggle was only a single phase in the relations between the empire and
the papacy (q.v.). In order to understand this it is necessary to study the fortunes of the empire after Charles the Great. Under his successors, the emperors had gradually lost their power, so that by the cand of the oth century. the title of emperor lad become almost a meaningless designation, cither conferred by a pope on anyone of whom he wished in make use, or else usurped by any ruler who chanced to be temporarily the strongest personality in lalian affairs. This continued to be the fate of the imperial title until Otto the Great (q.v.) was summoned to Italy, because of the diseord reigning among the various ltalian mobles. In 963 he was crowned emperor, and became the ruler of hoth Germany and Italy: Under his son and grandson, Otto II, and Otto III., "the Roman Empire of the German nation" was a very effective power in controlling looth the imperial lands and the papal policy. After the death of Otto III. in I002, the German rulers paid little attention to Italian affaits until roq6, when Henry III. was summoned to Rome because of the contest which was being waged between three rivals for the papal office. For Io years he wielded a power similar to that of the Ottos. But at his death, as the heir was a young child, the reformed and strengthened papacy was able to assert its independence. When Henry reached manhood and desired to regain his father's power, the contest began and took the sliape of the already mentioned investiture struggle. After the Concordat of Worms (q.v.) there was a truce which was broken by the accession of Frederick Barbarnssa (q.v.), who was determined to be emperor in fact as wel! as in name.

Empire and Papacy.- On the other hand, the papacy was strong and was determined to assert its paramount authority. There ensued a struggle of one hundred years between the Hohenstaufen emperors and the popes. In spite of the ahility of the rulers and the brilliancy of their reigns, the popes triumphed, largely by means of the assistance of the Lombard citics. which had grown tich and powerful and claimed to be independent of the imperial control. The death of Frederick IT in 1250 really marks the end of the mediaval empire, as a strong international power, although it continued, under a changed form, to be a factor in European politics for centuries longer, and cane to a close only in the 19tle century.

The Crusades.- "lle increasing power of the popes was also marked by their desire to extend their authority over the Eastern Church as well as the Western. This was in part the cause of the crusades, which were the most important manifestation of the strength and influence of the Church. The spirit of asceticism (q.v) lad long been inculcated as the most distinguishing mark of Christianity. The conscionsmess of their own sins and the teachings of the Church led many to do penance. One of the favorite forms, especially for heinous crimes, was a pilgrimage to some hallowed spot. The most difficult pilgrimage and the one to which greatest sanctity attached was the journey to Jerusalem. In the inth century, one hundred and sixteen separate pilgrimages to Jernsalem are recorded, and. in some of these cxpeditions, humdreds and even thousands took part. Thus attention was directed to the Holy

HISTORY, MEDIfeVAL

Land. Mareover, in spite oi the disorders of the feudal regime. the population was increasing. especially in France. The people were hardpressed to get iood, and were anxious ior a change of any hind. Consequently, when the Emperor Alexius appealed for aid and Pope Trban II. preached the crusade at Clermont thousands took the cross. The movement spread rapidly and affected every country in Europe. Athough Jerusalem was in the possession of the Christians for litule more than a century. the erusades to the Holy Land. which continued for 200 years, produced great results. In order to anderstand these, it is necessary now to take up the Byzantine and Muslim civilizations. See Crusades.

Byzantine Cicilization. - Until a half-century ago. the Byzantine history was misunderstood. It was looked upon as the long death struggle of a society in which all progress had ceased. and despotism, tempered by assassination. crushed out all vitality. Gibbon styled the history "a tedious and uniform tale of weakness and misery." It is known now that this was unjust. The most striking fact about the Byzantine Empire is its "constant vitality and power of recuperation." It was threatened by invaders but it repelled them all. At times it lost some of its most fertile provinces, but at other periods it would rise triumphantly and recover its lost possessions. Throughout the period betweea $; 00$ and 1100 . Constantinople was the bulwark of Europe, against which the waves of invasions rolled in vain. In addition to being a bulwark. Constantinople was, throughout the Mriddle Ages. the great storehouse of the Greek and Roman civilizations, where it was preserved until the European nations were sufficiently advanced to profit by it. Constantinople (q.w.) was also the most important commercial centre of the Middle Ages. The city was marvelously wealthy and excited the admiration of every traveler. Most oi the crusaders passed through Constantinople and the Greek lands on their way to Ierusalem: by them the influence of its civilization was widely spread throughout the West. See Brzantine Emprag.

Muslime Cisilization. - No less important was the influence of the Mohammedans. Aiter the death of the prophet in 6;2. his followers had conquered with wonderful rapidity the greater part of the civilized world. From Persia and India they held all Asia to the Hellespont. Egypt and the whole north coast of Airica. Spain. and about one third of Gaul. were under their sway within a century. Their advance in civilization was equally rapid. The Arabs had wonderful acquisitive ability and were taking almost the first step in their education. In each country they learned the arts and sciences known by the imhabitants, and they carried this knowledge wherever they ruled. The Greek philosophy, which they acquired from the peoples in the lands inomerly under Greek sway, the mathernatical knowledge of India, the irrigation practised in Egypt, are illuitrations of their acquisitions, which enabled them in the roth and 1 th centuries. to develop a civilization far in advance of any other, with the exception of the Byzantine From Bagdad to Spain this culture was spread throughout the Hussulman world. In Syria, the crucader: were in enntact with this civilization for two cen-
turies By their agency and by the association oi Christians and Mussulmans in Spain. Sicily, and other points, much of the Muslim learning was conveyed to the Christians of Western Europe

Changes in the reth and 13 th Centuries. Enriltment of Europe. - In addition to this iructifying intercourse with other civilizations. many elements in their own contributed to cause a rapid advance in the 12 th and 13 th centuries. Among these may be noted the increase in population, the cultivation of waste lands, the revival of commerce, the general progress along educational lines and the rise of strong kingdoms. But as it is impossible to isolate each factor and to determine the part which it played. the results will be considered as a whole and the changes which took place in Western Europe after 1100 will be described.

The hundreds of thousands of crusaders had to procure large sums of money for their equipment and journey. Consequently the precious metals which had been hoarded came into circulation as money. Instruments of credit were devised and the money circulated rapidly. Contact with other civilizations gave birth to new tastes and these were gratified by means of a greatly increased commerce which extended to all parts oi Europe and even to the extreme East. The merchants became numerous and prospered. Cities increased rapidly in population and new ones were iounded. The Italian cities, because of their position. prospered the most of all. The merchants became an important class because of their wealth. and by the end of the 13 th century became a political iactor which was recognized by their inclusion in the new parliamentary bodies.

Intellectual Adzance.-The investiture struggle had caused scholars to study history in order to find precedents in support of the imperial or the papal claims. The contact with other peoples broadened the intellectual horizon of the Western people. The new points of view with which they became acquainted led them to question the traditions which had ruled their lives. The new books. especially the works of Aristotle (q.r.), which fell into their hands, were studied eagerly. The new wealth gave leisure. Students flocked to the centres where teachers were to be found. and gradually universities arose. Roman law was fostered by the emperors: canon law. by the Church. Scientific knowledge. especially in medicine, was acquired irom the Greek and the Arabic works. Gothic cathedrals of exquisite beauty were built in westem Europe. The deeds of the crusaders iurnished new material to literature. The old tales were re-worked and given a literary form.

Groseth of Monastic Orders. Temporal Pocter of the Popes.-No less marked were the changes in the Church. At the close of the Ith century a great wave of asceticism spread over western Europe. The idea of sacrifice caused thousands to enter monasteries, and many new orders of monks were founded. These orders vied with one another in austerity and asceticism . Their reputation for sanctity and their services to the community brought to them sreat dnnations from the pious. Their knowledge enabled them to increase their wealth. But this wealth led many to enter the monasteries from unworthy motives, and thus caused a gradual
decline in their lofty morals. The wealth of the Church, as a whole. caused many, both monks and laymen, to attack it as liaving departed from it: Christian ideals. Heretics became numerous and had to be repressed by persecutions and the inquisition. In the 13 th century the mendicant orders became prominent, partly as a protest against the wealth of the Church, and partly as an agency to combat heresy. The ideal of service to others for which they stood became dominant in monasticism, and later orders were founded, almost universally. for some special service. See Moxacmism; Orders, Religiots.

The papacs, engaged in a struggle with the monarehs. felt the need of temporal power and strove for it. Innocent III. had monarehs as his vassals, and wielded a temporal authority greater than that of any previous pope. After the popes had triumphed over the Hohenstaufens they seemed to have achieved success. Their struggle with the French king, at the begining of the 14th century, however, led to defeat and to the "Babylonian captivity" at Avignon. Then ensued the sehism and the conciliar period when many felt that the general councils and not the popes should be supreme. Finally the papacy emerged triumphant, but with a changed ideal, laying less stress upon temporal power (q.v.) than upon control over the conscience of the individual.

Chitalry. Decadence of the Knights.-In the 12th century, the clergy and the knights formed the aristocracy. The latter. too, had their period of great splendor. The ideals of chivalry, which became prominent in the 12 th century, were inculcated by the Church, and the knights were often likened to the elergy as a class specially set apart by their religious rows. These ideals were also inculcated by the new literature. which glorified not only bravery and loyalty: but also generosity and luxury. The latter led to the ruin of many of the knights. Their income, arising from feudal dues, was relatively fixed. As their tastes expanded and they expended more upon luxuries, they fell into debt. The rate of interest was ruinous and they were unable to pay. Consequently many were compelled to alienate their fiefs, the monarchs and other lords of large fiefs absorbed the lesser fiefs. and there was a tendency for the knights to become retainers of the more wealthy. Their consequence as a class declined in comparison with the growing importance of the merchants. The development of strong infantry forces finally deprived them of their pre-eminenee in military matters. See Chwalry.

Rise of the 'Vations.-The contact with other peoples led to the rise of a national consciousress. In the earlier days, when each feudal castle or village was practically isolated and often at strife with its neighbors there had been little feeling of common interests. Association with foreigners brought a sense of national feeling in opposition to the foreigners. This is very marked in the armies of the second and third crusades. This movement was coincident with, and one cause of. the growth of the strong monarchies. The merchant class was also an important elenient in the development of the king's powers. Commerce was heavily burdened witls feudal tolls and exposed to depredations by the knights. The mereliants sought
privileges and protection from the kings. Int return they furnished them mones; which aided them in extending their power at the expense of that of their molies. The kings came to depend largely upon the cities for support in all struggles with the mobles. By their wealth the eitizens were able th rival the nolles in luxury and ostentation. The sons of the merchants frequented the universities and developed into officials of the kings. More and more the kings came to depend upon the third estate and to withdraw power from the nobles.

The Freneh Monarchy.-The development of the monarchical power took different forms in the several countries, but took place ahout the same time in the leading nations. In France, the Capetian kings (see Capet) had at first little power. They had only a small territory directly under their control, and consequently only a small income. But by fortunate tnarriages and by confiscations they enlarged their feudal domains. Several of the kings had long reigns and the evils of a minority or a change of dynasty were avoided. Gradually all the fiefs were brought under the control of the kinp. and feudal usages were made the basis for the assertion of a really monarchical power. Under Saint Louis (5226-1270) and his successors France was centralized and the kings became supreme. The prosperity of France was checked for a time by the Hundred Years" war (1328-r461). This was due in part to a failure of male heirs in the direct line, which enabled the English kings to make a claim to the throne on the ground that they were the most direct heirs. But France finally emerged trimmphant and England lost all her territory in France. The kings, supported by the third estate, became practically absolute.

The English Ifonarchy:-In England the Norman Conquest (q.v.) made William supreme lord. Following the Norman fudal nsages, he insisted upon an oath from each one of his subjects, and did not allow the intervention of the feudal nobles. In spite of the civil wars of the 12th century. Henry II was able to retain the supreme control. The tyranny and ineompetence of John led to a revolt on the part of the barons and the extortion from him of the Great Charter. (See Exgluxd-Cicil History.). The efforts of the kings to cvade the provisions of the charter caused the union of the nobles and third estate, the distinetive feature of the Englisl constitution as contrasted with that of France or of Germany: The loss of its continental possessions really strengthened England and enabled it to develop a strong government in its own island.

The German Manarhy:-Germany was a kingdom made up of great duchies. The king was strong only when he had all these duchies under his immediate control. The imperial title which he held was usually a source of weakness, because of the necessity of maintaining his authority outside of Germany. Those kings who neglected the imperial interests in 1taly and Burgundy were strongest at home. Frederick Barbarossa, 1 lenry Ti.. and Frederick II. (qq.w.). who atternpted to build up strong empires, were compelled. as the price of support from their German subjects, to make constant concessions. Thus they bartered away most of their German lands and royal rights. The towns

[^1]
HISTORY, MEDIÆVAL

and cities, in particular, acquired privileges and practical independence in payment for their support in men and money. On the extinction of the Hohenstaufen house, Germany was divided up into many separate entities, varying in size from a duchy to a village or to a knight's fee, all claiming independence of all control except the imperial. The weak emperors of the I4th and I5th centuries were unable to maintain any effective control or order. Each emperor was intent only upon retaining his position and securing such property for his family as he could. Consequently Germany became a prey to internal dissension and division.

The Other Monarchies.-The other countries were more backward. In Spain, the Christian kings were engaged in conquering Muslim territory or else in warring with one another. These movements were going on for several centuries. and culminated just at the close of the Middle Ages. In 1492, the Moors were conquered in Granada, their last stronghold. The two most powerful kingdoms, Castile and Leon, had already been united, and 20 years later the Spanish portion of Navarre was added. In Scandinaria powerful monarchies were growing up. In the eastern portions of Europe new Christian kingdoms had arisen, especially Russia and Hungary, which were destined to play an important role in the later centuries.

The Period of the Renaissonce: Discozer-ies.-The last period of the Middle Ages is often spoken of as the Age of the Renaissance (q.w.). The name is to a certain extent a misnomer. But it is sanctioned by general usage, and there are certain factors that may be brought together, which serve to mark the transition from the medirval to the modern world.

The travel and commerce of the 12 th and I 3 th centuries caused an interest in foreign lands which never abated. In particular, the taste for spices, which had become common, led to attempts to secure these more easily and more cheaply. After the loss of the Christian possessions in Syria, the importation of spices into Europe was burdened with heary tolls by the Muslim rulers through whose territories they had to be carried. To the men of the 1 sth century there seemed to be two possible routes by sea to the spice islands, one by sailing around Africa, the other by sailing directly west to India. Attempting the latter led to the discovery of America; attempting the former, to the doubling of the Cape of Good Ilope. The result of these discoveries was to make the nations on the ocean the leaders in commerce. The llediterranean ceased to be the centre of the world's commerce and the Italian cities lost their pre-eminence as commercial centres.

Inacutions: Compass, Printing-press. Gun-poader.-This exploration was possible only by the use of the compass (q.v.). This lad been known in the West by the 12 th century : in the East, centuries earlier. But it was perfected as a real aid to navigation only in the fith century. About the middle of the 1 ith century came an even more important invention, that of printing (q.v.). This resulted at once in increasing enormously the number of books in existence and in cheapening their cost to one fifth or less. so that honks were readily accessible to a much lareer number than before. At about the same time the manufacture of gunpowder was being per-
fected. Compositions similar to gunpowder (q.v.) had long been known in the East. and the knowledge of the composition of "Greck fire" had been brought to the West. But it came into general use only in the I5th century: and the guns long after that were held by many to be inferior to the cross-bow. But gunpowder. before 1500 , was revolutionizing the art of war and rendering the medieval knight obsolete.

Classical Literature and Pagan Spirit.Contemporary with these discoveries and inventions was the awakening of an interest in classical literature. In the 12th century there has been at some centres an eager study of the Latin classics, but, in the 13 th, this had been superseded to a great extent by the branches considered more practical, especially law, mathematics, and science. In the 14th and 15 th centuries men turned again to the classics, and Greek, which had long been neglected. becane a favorite study. Along with the study of the pagan authors developed a new feeling for art. which resulted in the wonderfully natural works of the Renaissance artists. Other sides of this new activity were manifested in the more scholarly spirit of criticism and in scientific study. In fact, with the period of the Renaissance modern history had dawned.

Bibliography:-Lavisse et Rambaud, 'Histoire Générale du IVe siècle à nos jours) (Paris 1893 ff.: the first three volumes form the best gen. eral history of the Middle Ages) : Gibbon, 'Decline and Fall of the Roman Empire) (edited by Bury, 7 volumes, London and New York 1896-1900): Milman, sHistory of Latin Christianity (9 volumes. 1867 : a general favorite). Of the many Church histories, two may be mentioned: Alzog, "Manual of Universal Church History" (3 volumes; a scholarly treatise from a Roman Catholic standpoint) : Schaff, 'History of the Christian Church' (4 volumes, to Gregory VII.: voluminous, scholarly, from a Protestant standpoint). Three volumes in the 'Periods of European History' ; Oman. 'Dark Ages': Tout, 'Empire and Papacy": Lodge. 'Close of the Middle Ages' (New York 1893-1901), furnish a detailed, but somewhat uninteresting, summary of the political history. Hodgkin, 'Italy and Her Invaders' (8 vols.). and Bury, 'Later Roman Empire) (2 vols.), are the best guides for the periods before Soo. Bryce, 'Holy Roman Empire) (new ed. I904; wonderfully compact and useful): Symonds, (Renaissance in Italy' (; vols.) : Burckhardt. 'Civilization of the Italian Renaissance': Voigt. 'W'iederbelebung des classischen Alterthums' (2 vols., 3d edition) : these works are to be commended for the period of the Renaissance. For special subjects: Montalembert. 'Monks of the W'est' (6 rols.): Lea, 'History of the Inquisition' (3 vols.: the masterpiece of a great historian) : Oman. "Tistory of the Art of War' (Vol. II.). for military matters: Heyd. 'Geschichte des Levantehandels im Mlittelalter' (2 vols.). very important for the commerce: Levasseur. 'Histoire des classes ouvrieres avant 1789) (2 vols.), admirable for ecommic conditions: Gregorovins, 'Rome in the Middle Ages' (8 vols.). very scholarly and interesting: Kashdall. 'History' of the Universities of Europe in the Niddle Ages) (2 vols.). the best treatise on the subject: Saintsbury, 'Flourishing of Romance,' the best brief account of the literature in the 12th and I3th centuries; Munro,

HISTORY, MODERN

'Syllabus of Medixval History' (3d ed., 1903), contains references by topics to about 250 works. mainly in English.

Dasa Carleton Muxro.
Professor of History: Linzersity of Wisconsin.
History, Modern.-General Characteristics. -When History is divided merely into Ancient and Modern, the term Modern applies to history subsequent to the th century a.d. The Amcricana, however, keeps to the more usual triple division into Ancient, Medirval, and Modern: and with this classification Modern History begins about the year 1500 .

At that date, as for several centuries preceding it, the scene of human progress was confined to Western Europe, and the actors were the Latin and Teutonic peoples. Nations, in the proper sense, were not made; and the political map bore fairt resemblance to that oi to-day. There was one Latin Christendom, binding in feeble union the several geographic units. But most of the units themselves were broken into fragments under local rulers: and these fragments, sometimes of widely separated lands, were recombined, with kaleidoscopic confusion, in loose, shifting aggregates which possessed not even permanent names. Out of this feudal chaos, strong monarchies were just emerging, to organize states, in France, England, and Spain; but there was hardly a prophecy of a Germany or an Italy. Except for Poland with its Latin church and borrowed German culture. Eastern Europe was outside the pale of civilization. The barbarous northern Slavs seemed doomed to Tartar domination, and the somewhat less barbarous southern Slavs with the neighboring Magyars were enslaved by the Turk. From the devouring victorious march of the Turk even Central Europe was in imminent peril.

This dismal political picture had its counterpart in social and economic conditions. Society was hopelessly aristocratic and predominantly militant, and it was crystallized in strata. The skilled industry of the towns was managed upon the guild system ; and agricultural labor, except in England and some other small districts, was carried on by serfs.

But Europe had heen astir with dim impulses to change for four hundred years, - ever since the Crusades broke the torpor of the Dark Ages and prepared the way for the rise of towns and the Renaissance. Near the close of the $15^{\text {th }}$ century the tendency to progress became more pronounced, and the lines of activitymore varied. Louis XI. in France. the Tudors in England, Ferdinand and Isabella in Spain. prepared the way for new consolidated political societies, and for new principles of govermment; the invention of printing made possible the preservation and utilization of the recently rediscovered Greek learning and the rapid dissemination of new ideas; the discoveries of Columbus and Vasco da Gama set free undreamed-of energies among the lands of the Atlantic seaboard, and summoned commercial Europe to a right-about from east to west; the adoption of gunpowder in the wars between Francis I. and Charles V. marked the passing of the military superionty of the knight in armor, and undermined the citadel of aristocracy in politics; the opening of the Protestant Reformation (1520) shattered the old unity of Christendom, and, to-
gether with the Catholic Counter-Reformation called out new energies in the ficlds of morals and intellect. Within two generations, the one just before and the one just aiter the year 1500 . there stood revealed not merely a ncw physical hemisphere and new continents in the old one. but also a new universe of thought and feeling. Europe had passed into a new age.

The four centuries of Modern History have been a period of constant, marvelous, increasingly rapid transformation-- intellectual. political, industrial. The stage itself has widened from a corner of the smallest continent into wellnigh the whole surface of the globe. The actors have multiplied. until they promise in the near future to include all branches of the human race. The drama has become infinitely complex, with the interaction of countless streams of influence. As compared with Ancient or Medixval History, Modern History deals with a brief time, but with vast spaces, complex relations. and accelerated progress. The separate movements that make up the bewildering maze are discussed severally in some detail, under appropriate headings. in the Americanc. This article attempts only to marshal them in such order as to bring out the essential relations between them.

It is convenient to divide the four centuries of Modern History into the age of monarchic states and the age of nation-states. The American and French Revolutions make the transition irom one to the other, and the most satisfactory dividing date is 1789.

From the Reformation to the French Revolution- - Monarchic States.-The constant warfare of the 16 th, 15 th, and 18 th centuries is the simplest thread by which to connect the other movements of the age. Speaking broadly, the contests of the first half of the period, to 1648, are "religious wars." Catholic against Protestant. while after 1648 the struggles grow out of dynastic and commercial rivalries.

The declaration of the war which split Christendom into opposing camps for over a century came in 1520 , when Luther burned the Pope's bull. The Diet of Worms at once pronounced against the rash monk the ban of the Empire; and the decree would have been eniorced, and Protestantism stifled at its birth, if the young Emperor. Charles V.. had had a free hand. But Charles had just become involved in strife with Francis 1., over the claims of Spain and France in ltaly, and he was kept busy with war against France and the Turks until 1544. For a generation, therefore, the new faith was left to spread itself unchecked over Germany and Scandinavia, while during the same period the English church cut itself off from Rome, and Presbyterian hercsy made headway in France and Switzerland. For a time. indeed. Protestantism threatened to conquer even the south of Europe; but the Catnolic CounterReformation, with equal zeal and superior skill, finally saved the Romance lands to the old faith.

Religious IV ars, JFF6-164S.- Meanwhile, entangled in his strife for European sovereignty, Charles could not strike at Protestants in Germany until ret6. It was then too late. In 1555. after brief struggles, the princes of the Schmalkald League forced upon hinn the Peace of Aussburg: and, though troubled with incessant bickerings, Germany had no further civil war for sixty years. Just that period, bow-

HISTORY，MODERN

ever．was filled with terrible religious contests in the Netherlands and France：and then the age of religious wars closed with another civil was in Germany．－the most destructive ir Eu－ ropean history．The century of strife trom the opening of the Schmalkald UWar to the close of the Thirty lears War（ $5 ⿰ \boldsymbol{L}^{\circ} 6-1648$ ）did not ma－ terially alter religious irontiers．Catholicism，to be sure．made some conquests with the sword． －Bohemia，South Germany，and the southern Setherlands．－but in most of these districts． as in the Latin countries of Southern Europe， the Counter－Reformation was making rapid gains before war began．

The close of the period oi religions war is marked by the decay of Spain．the continued dis－ ruption oi the Holy Roman Empire，and the rise of France and of the Dutch Republic．To explain these changes it is needful to dwell somewhat further upon the wars．

In $1550-\%$ after his failure in Germany， Charles V ．resigned his crowns－the Austrian possessions passing to his brother．and the Spanish to his son．Philip II．Despite the di－ vision．Philip was iar the most poweriul mon－ arch in the world．Each year the＂gold fleet＂ filled his coffers from the exhaustless wealth of the Americas．and in 1580 Portugal with her East India empire iell into his hands．This was the power－supreme in Europe and sole mistress of the New WVorlds east and west．－ against which the petty．disunited Netherland provinces dared to rebel．Besinning as a po－ litical revolt in 1568 ，the struggle soon became a religious war：and it was waged for more than forty years with a relentless iury which made it a byword for ferocity even in that brutal age．The ten southern provinces finally returned to Spanish allegiance；but the north－ ern provinces．－Dutch in blood and Protestant in religion．－foughr on with desperate courage until they won independence．At the same time they preserved political and religious lib－ erty ior the world．Nidway in the struggle， Elizabeth of England sent some tardy aid． Philip then tumed upon England：but the de－ struction of his＂Invincible Armada＂in the splendid sea－fight in the Channel not only saved England at home but also paved the way for the English colonization of North America． The war closed in 6609 ．Spain had sunk into a second－rate power，never asain to play an impor－ tant part in European politics：but the United Provinces．through the stage of the desolating war．had grown prosperous．They drew wealth． n t irom the wasted land，but from the sea， plundering the new posiessions of Spain in the Eait Indies and building there a colonial em－ pre ior themselves．For most of the century． in intellectual，commercial，and industrial activ－ ittes．the Dutch held the first place in Europe．

In France the Edict of Vantes（ 1 zos）closed the wars of religion by guaranteeng toleration and handing over certain garrisoned towns to the Huguenots as security．During the next hali century：under the wise adminstration of Henry 11．and then of Richelieu，the inductry －i the per ple restored prosperity with marvel－ Us rapidity．Richelien crushed the ie adal n？－ hes and recaptured irnm the Huguennts their garrianed t wns．In ither respects，however： he kept toward the Protetant the pledges of the Edict 4 l Nante：and as he warred upon
the Protestants within France in order to strengthen the roval power．so he aided the Protestants of Germany in the Thirty lears＂ Whar in order to make France supreme in Eu－ rope．France had long been in real peril irom the Hapsburs powers of Spain and Austria， which ringed her about in hostile embrace： but the failure of Spain against Holland and Richelieu＇s policy of weakening Austria in the German war removed the peril，and．as Spain declined from the first place in Eurane，France stepped into it．

Meantime the Thirty Iears＂War（I6is－ 4）was desolating Central Europe．The princes of North Germany proved timid and in－ capable：and the cause of Protestantism was saved only by ioreign intervention，by Denmark． by Sweden，and finally by Catholic France．At the close of the struggle，the first European Congress reorganized Europe．By the Peace of Whestphalia．France received most of Alsace and some other Rhine districts．The independ－ ence of Switzerland and of the Linted PiJッー inces was iormally recognized．Sweden，al－ ready reaching down both west and east shores of the Baltic，secured much of the south shore also，with command of the mouths of the Ger－ man Oder．Elbe and Weser．On the other hand，the Empire lost more than territory．The political rearrangements within that state re－ duced the imperial Diet to the level of a use－ less debating society and put an end to what－ ever had persisted of mational unity．From this time until it vanished，a century and a half later，the Holy Roman Empire was a meaning－ less survival．cumbering the earth，and the Hapsburg＂Emperors＂derived their only real importance from their position as hereditary archdukes oi Austria．To most of Germany the war had brought blasting ruin．Hali the pop－ ulation and two thirds the movable property were swept away．Land tilled for centuries be－ came waste，and men became savages．Not till the middle of the nineteenth century did large districts again contain as many homesteads and cattle as in 1618；while the low position of the German peasantry，until 1850 ，was due in great measure to this War．

American Colonizafion－Before the religious wars closed，the continent of Europe had ceased to be the sole scene of important historical de－ velopment．American colorization was well advanced．and political liberty had received a remarkable development borh in England and in English colonies．These topics demand at－ tention before the student enters upon the con－ sideration of the next period of European wars．

Spain made her first settlement upon the American continent at the Pearl Coast in 1513. Then sweeping to north and south．she took switt possession of all South America except Brazil．all Central America．and of the Floridas and Californias．far up both coasts of North America．while plans were afoot to plant her flay over the rest of that continent．But the min of the Armada，together with Spain＇s de－ cay at home，came in time to leave room for ther colonization．France seized upon the mouth $=$ ni the SIizissippi and the St．Lawrence． the apparent cateway：to the continent：and Eralith colonies stretched themselves in patches alnag the fringe ni the North ftlantic coast． The Dutch spent their colonizing energies main－
ly in the Orient: and, despite some ambitious beginnings, Sweden soon grew too weak to be a serious factor in North America. Thus that continent was left in dispute between Spain, France, and England. The contest was to be interwoven with the European wars of the last half of the seventeenth century and of the eighteenth century, and the outcome was big with consequence to the world. All European countries except England governed their colonies on despotic plans. The English colonists took to the New World institutions and principles of freedom, and soon gave them a wider development there than liad been possible even in the old home. Besides the rights of free speech and jury trial and habeas corpus, each English colony had from the first, or very quickly inaugurated, a representative legislature with full parliamentary privileges and with control over taxation. In several colonies, local government also was conducted on extreme democratic prineiples. Not until two hundred years later did any of these free principles appear in the colonies of any other people,and then only because of the success of the English colonies.

England in the Serenteenth Century.-In England itself the sevententh century saw an important development in free government. Through the Stuart period, from 1603 to 1688 , England was engaged in a critical struggle between the royal claims of "Divine Right" government and the rising spirit of popular government. Except for brief intervals the conflict was parliamentary, not military, but it was Constant and stubborn. Much of the time it was confused with ecelesiastical questions, which, to the men of the time, often seemed the ehief issue: and it was fortunate, indeed, that the stern heroism of Puritanism became engaged on the side of political liberty. During this century, too, England was the last remaining battle ground in Europe for free government. In the other large states,- in Spain, France, Austria, in the Seandinavian lands, even in the petty principalities of Italy and Germany, - despotism was triumphant. In England, popular principles not merely maintained themselves against the Stuart attack; they came out of the conflict with increased vitality. The great experiment of a Puritan Commonwealth failed; but after the Stuart Restoration it became apparent that the body of the monarchists themselves were now thoroughly devoted to parliamentary government, and the attempt of the later Stuarts to set up a personal absolutism called forth the "Glorious Revolution" of 1688, which established the supremacy of Parliament over the king.

Dynastic and Commercial Struggles, 1678-1783.- We now return to the general development of Europe after 1648. On the continent the period from the Peace of Westphalia to the French Revolution ($16+8-1789$) is marked (I) by absolutism within the several states and (2) by dynastic interests in their foreign relations,with incessant selfish war, as the result. The famous phrase aseribed to Louis XIV. of France, - "I am the State," - might have been used appropriately by any monarch of the time outside of England. A few great rulers dominate the period. Indeed the stage is largely filled by three monarchs,-Lonis XIV. (I643-1715), Peter
the Great ($1680-1725$) and Frelerick the Great (1740-86). The inflsence of Peter was restrieted for the most part to Russia; lut the other two belong to all Europe, and the period divides itself maturally into the Age of Louis XIV. and the Age of Frederick 11. The chief aim of statesmen was to prevent any one country from becoming too strong for the safety of its neighbors. The Peace of Westphalia had transferred political predominance from the Hapsburgs to the Bourbons. Thus, during the first half of the period France threatened the "balance of power," and league after league of other powers was organized against her. International morality, however, was low; and commonly rulers were willing to let a strong power rob a weaker one if they could find "compensation" by robbing some other state themselves. In the last wars of Lonis XIV.. just before and after 1700 (known in American history as King William's War and Queen Anne's War), the dynastic interests of European ruling families became merged in a titanic. centurylong struggle between France and England for world doninion,- though neither country was yet fully conscious of the import of the strife.

In Europe, France was no longer in peril, as she had been in the period preceding Richelieu; and Louis the Fourteenth's half-century of war was merely a struggle to enlarge his dominions. For a generation the victories of Turenne dazzled Europe; and France annexed some important strips of territory on the east, at the expense of Spain and of the decaying Empire. But in the closing period, when the Allies also had found great generals, in the English Marlborongh and the Austrian Prince Eugene, even success in the field deserted Louis: and to a comprehensive view his failure was profound. Exhausted France was crushed by taxation to pay the interest of the war debt; while, in attacks upon petty provinces in Europe, she had wasted energies and opportunities that might have made her supreme in Asia and Anlerica. Within, the economic reforms of the great Colbert were abandoned; and the revocation of the Ediet of Nantes (1685) drove into exile more than two hundred thousand of the best citizens of France. The effect corresponded in a measure to the effect upon Spain of the expulsion of the Moriscoes somewhat earlier. The Huguenots had comprised the skilled artisans and the enterprising merchant classes; and their flight added to the terrible economic demoralization and deprived France of all chance at industrial leadership.

To men of the time, however, the failure was partially disguised by the glamor that surrounded the court of the Grand Monarque. French literature, brilliant and sparkling, was in its first splendid period: and French intellectual leadership survived for more than a century. Until after 1800, the court of Lonis XIV. remained the model for every court in Europe: and French thought. French fashions, and the French language were the common property of all polite society.

The Treaty of Utrecht (1713). while it left France still one of the three greatest powers, marks her recession from predominance. Spain resigned her territories and claims in Italy and on the Rhine, and, except for her decaying
solonies. withdrem finally within her own peninsula. England gained Newfoundland and Nova Scotia irom France, and in Europe she secured ecmmand of the Jediterranean by the conquest of G:braltar and Mincra. By the same treaty and by the rearrangements that immediately iollowed, the old Spanish letherlands. the Duchy oi Milan. and the Kingdom ci Naples and Sicily fell to Austria. The Duke of Savoy (one of the faithful allies against France) acquired Sardinia. with the title of a kingdom for his enlarged state. A little before, in 1;or, the Elector of Brandenbury had secured the title of King of Prussia. Thus, out of the wars of Louis, at the beginning of the eighteenth century, arose the two kingdoms. Prussia and Sardinia. which in the latter part if the nineteenth century were to make modern Germany and modern Italy against the will of modern France.

About 1 ;oo, other important changes took place in the map of Europe. For three cerriuries. Austria had been one of the chiei bulwark oi Christendom against Mohammedanism. In 1683 Vienna had been besieged by the Turks. and had been saved only by the arrival of the gallant Sobieski with his Polish chivalry. But thereafter Austria took the offensive. She won back Hungary, and then. step by step. extended her dominions down the Danube valley and the Illyrian coast. In the latter part of the reign of Louis XIV.. the Austrian Hapsburgs. turning away irom the Rhine. definitely adopted a Danubian policy and sought to aggrandize themselves by seizing Slav territory from Turkey.

This new policy of Austria gave Louis XIV. a freer hand on the Rhine than he otherwise would have had. and so belped on the decline oi Holland. In 1640, Dutch vessels carried the commerce of the world.- even the greater part of that between England and her colonies. Soon after that date, however. England attacked the Dutch commercial supremacy by navigation laws, and at last by war. Fearful of French conquest. and deserted or timidly defended by Austria. Holland had no choice but to ally herself to her commercial rival. After 1689 in particular (when William of Orange became King of England). Holland followed the lead if England in politics. while that country drew to herself the Dutch carrying trade.

In the north of Eurcpe the former great powers, Sweden and Poland, were declining before the rise of Russaa and Prussia. Peter the Great ($1680-1 ; 25$) consolidated the qovernment in Russia. introduced a veneer of Wiestern civilization, and started his country on it deliberate march t ward distant seas, west. south. and east. Peter himselt secured the western window by seizing irom Sweden the snatheastern Baltic prownces. In the middle oi the century, the Empress Elizabeth ($17+1-62$) fobbed Sweden of the reis of the Baltuc coast up throush southern Finland. The northern hali of Finland remained Sweden's until Alexander 1. seized it m the Napoleonic wars: but toward the close oi the eighteenth century, under Catherme 11., Russia began her advance along the Black Sea at the expense of Turkey. Ǔinder the same ruler occurred the Russian gains in he partitions of Poland.-a story which can fe urderstoad only in connection with the rise of Prussia

For three centuries the Hohenzollern Margraves of Brandenburg had been pattently adding scrap by serap to theis realms. Soon aiter rtco these dominions lay mainly in three widely separated groups.- Cleves on the Rhine. Brandenburg on the E:be, and East Prussia beyond the Vistula. The object of Hohenzollern politics was to consolidate these provinces by acquiring intermediate territory. Toward the close of the Thirty lears" War, Fredertck Willian, the Great Elector, made important headway in this respect and accomplished still more for his country after the close of tha: struggle by persistenty maintaining peace and fostering industry: It was bis son who in 1;or secured the tute of King. The second king oi Prussia built up a magnificent army and reared a son who was to use it magnificently. Frederick 11. ascended the throne in $1 ; 40$ and began his long reign by an unjust but profitable war. The Hapsburg realms bad just fallen to a woman. and, disregarding solemn treaties. Frederick took unscrupulous advantage of the supposed weakness of the Archduchess. Maria Theresa. to seize irom Austria the rich province oi Si_{i} lesia. The heterogeneous Hapsburg realms seemed about to fall to pieces; and Spain. France. Savoy, and Bavaria hurried to join Prussia in dismembering the carcass. But England and Holland threw themselves into the struggle on the Austrian side, and the Treaty of Aix la Chapelle (1548) closed the Wiar of the Austrian Succession without iurther territorial changes. Frederick kept Silesia, reaching far down into the heart of Germany, and Prussia stood forth as one of the great powers.

The significance of the contest, however, lay in its wide extension into India and America. Indeed. colonial war between England and Spain had already begun before Frederick appeared on the stage, and France must soon have joined Spain in any event. In the New Worlds, too. the Peace restored the former boundaries: but the war marks a clear consciousness in Ergland and France that the two were rivals for vast realms outside Europe. The iamily interests of monarchs as a cause for war were giving place to the commercial interests of English and Dutch merchants as opposed to those of French and Spanish merchants. while back of these selfish motives lay the mighty question. big with consequence to the world. whether French or English political ideas should hold the Jew World.

In 1756 . Austria iortifed herself by alliance with Russia. Sweden, and even her old enemy France, and prepared to destroy Prussia. Frederok's suoreme military genius saved his couniry i r the moment. and the next year England came to his aid. During the brieit interval beiween the European wars. England and France had practically remained at war in America: and now that France had joined Austria. England was constrained to support Prussia. In all the period frem $16 i S_{0}$ to 1815 . no matter what the origin oi the wars. England and France soon became the chief factors: and though they were at one time or another on every side oi every question, they were rever on the same side at the same time.

This Seven Years' Wiar ($1:-56-1 ; 63$), or Great French War, as it is commonly known in

America, was literally a world-wide struggle. Red men fought by the Great Lakes of North America, and black men fought in Senegal, while Englishmen and Frenchmen grappled in India as well as in Germany, and their flects engaged on every sea. The showy battles took place in Germany, and on the whole the European conflict determined the wider results. Pitt, with vision fixed upon a coming British empire, declared that in Germany he would conquer America from France. This le did. England furnished the funds, and her navy swept the scas. Frederick, supported by British subsidies, furnished the generalship and most of the troops for the German battlefields. The striking figures in the struggle are (i) Pitt, the English imperialist and the directing genius of the war; (2) Frederick, the military genius, who won Pitt's victories in Europe; (3) WVolfe, who won French America from the great Montcalm; and (4) Clive, the East India Company's clerk, who laid the basis for England's supremacy in India.

Changes in the IVorld-Map; the American Rez'olution.- The Treaty of Paris (1763) left Europe without change; but in India France lost all except a few unfortified trading posts, while in America England received Florida from Spain, and Canada and the eastern half of the Mississippi valley from France. France ceded to Spain the western half of the Mississippi valley, in compensation for the losses Spain had incurred as her ally ; and, except for her West India islands, she ceased to be an American power. Spain still held Sonth America and half North America; but her huge bulk was decaying day by day. Holland, too, with widespread empire, was plainly in decline. Eugland, having dispossessed France in both Asia and America, stood forth as the leading world-power.

The American Revolution, a few years later, did not lessen this pre-eminence; but it had other results of supreme significance. The war came because the American colonies had really become a nation, and because the English government unwisely insisted upon managing American affairs after the Americans were quite able to take care of themselves. English interference in economic matters had long been irksome, and the danger of interference in ecclesiastical matters was feared. England had just relieved the colonies from fear of French conquest. External bonds were gone, and internal ties were dissolving. Then George III. and his ministers supplicd the necessary jar to effect separation by trying to raise revenue in America by Acts of Parliament. Astute patriots rallied the majority of the Americans by an old English shibboleth; and after a bitter eight-years conflict ($1775-83$), the thirteen English colonies became the first free American nation.

The Revolution "split the English race and doubled its influence." It paved the way for a more enlightened economic science. since, contrary to all expectations, the trade of free America from the first proved more valuable - to England than that of colonial America had been. It reacted upon England, so that, when the great wars were over, both that country and its remaining colonies made new advances in political liberty. It set up the standard of
indopendence for the states of Spanish America in both continents. But its suprome importance lay in the birth into the family of nations of the United States itself, thougli the full significance of the new nation hardly hegan to impress Europe for more than two generations.

England's European cnemics had seized the opportunity to attack her in a war of revenge. England came out of the contest with glory little tarnished. She had been fighting, not America alone, but France. Spain, and Holland, as well; and though she had lost the best part of her old American cmpire she was not without compensating gains. She seized Dutch colonies at will; she strengthened her grasp upon India: she won back the undisputed sovereignty of the ocean by shattering the navy of France; she rebuffed all assailants from the rock of Gibraltar. the key to the Mediterranean: and in some measure she made good even her American loss by the acquisition of Australlia just afterward.

The Partitions of Poland.- To return to continental Europe in the closing half of the Age of Frederick the Great:- one more territorial change calls for attention. Poland had fallen into anarchy under its clective, figurehead king and its oligarchic nobles. This anarchy gave the neighboring powers excuse for plunder. Catherine II. determined to seize a large part of the country. Frederick II. persuaded his old enemy, Austria, to join him in compelling Russia to share her booty. The First Partition of Poland (1772) pared off a deep rind. The Second and Third Partitions, which "assassinated the kingdom," had not even the pretext of misgovernment in Poland, for the Poles had earnestly taken up the work of reform. These final divisions took place in 1793 and 1795, after the death of Frederick, amid the wars of the French Revolution. Prussia gained large extent of territory, with valuable sea coast ; and, most important of all, the additions brought the principal Prussian provinces,formerly scattered, - into a compact body. But Russia gained far the greatest part of the territory, and she now bordered Germany on the east, as France had come to do earlier on the west, after the destruction of the Burgundy of Charles the Bold. The wise policy of the Germans, early and late, would have been to support the buffer states against the greed of Russia and France. Failure to do so has left Germany exposed ever since to direct attack by powerful enemies, and has compelled her to build up artificial frontiers of fortresses and bayonets, and to accept an undue militant character for all her civilization.

The Beneficent Despots of the Eighteenth Century. - In foreign relations, the Age of Frederick the Great saw little improvement over that of Louis. In the government within the several states, however, there was a beneficent and significant change. Frederick of Prussia, Catherine of Russia, Charles III. of Spain. Lcopold of Tuscany, Ferdinand of Naples, Joseph II. of Austria, all helonged to a new class of "crowned philosophers" and "benevolent despots" who sat upon the thrones of Europe in the latter half of the eightecnth century. In Sweden and Portugal, also, great ministers sought to impose a liberal policy upon the monarchs. as

HISTORY, MODERN

Turgot succeeded in doing for a while, even in France. A remarkable school of French writ-ers.-Diderot, Voltaire. Rousseau,-had created a new, enlightened sentiment in the ruling classes, and a new sense of responsibility. Government was no more by the people than before, but despots did try to govern for the people, not for themselves. Sovereigns spoke of themselyes no longer as privileged proprietors. but, in Frederick's phrase. as "the first servants of their states." All these rulers planned far reaching reforms.- the amelioration or abolition of serfdom. the correction of abuses in the church, the building up of popular education. In Prussia, for a time. much was accomplished. The condition of the peasantry was improved: the administration was rendered economical and efficient: and wealth and comfort began to increase by bounds. But these happy results were secured only by the tireless energy of one of the world's greatest geniuses. On the whole the liberal monarchs made lamentable failures. One man could not lift the weight of a nation. It remained to see what the people could do ior themselves The age of enlightened despots was the pre1ude to the French Revolution.

The Age of Natiox States.- The French Rezolution, $1_{z}^{-80-99 .-I n ~ t h e ~ l a t t e r ~ p a r t ~ o f ~ t h e ~}$ Middle Ages. Italy had given the world an intellectual revolution; Germany began Modern History with a religious revolution; and France now introduced the last great division of the Modern period by a political and social revolution. Pre-eminently among political revolutions. the French Revolution deserves the name. The English Revolution of 1688 swept away temporary interierence with ancient principles of English politics: the American Revolution made the Americans politically independent, but did not directly change the character of their society: the French Revolution cut loose from the past, and started France, with all the world. upon new lines of growth.

But if it destroyed the old. it also built the new. The work of destruction was needlessly horrible and bloody: but as a whole the Revolution was a vast and fruifful reform. The really significant thing is not the temporary mob-rule and bloodshed: the significant thing is the great national awakening which swept away an absurd society, founded on ancient riolence and warped by time. to replace it with a simpler social system, based more nearly on equal rights.

The chief institutions of France wete: (1) a monarchy., centralized, despotic. and irresponsible: but in weak hands, incumbered by complex survivals of ancient local institutions, and hampered by its respect for the good opinion of the privileged classes: (2) an aristocracy, wealthy, privileged, corrupt, skeptical , and (3) an establiched church, wealthy and often corrupt. Below these spread the masses, a necessary but ugly substructure. Over the continent. similar conditions held sway. In France the nobles had fewer duties the peasantry had more completely risen out of serfdom. and more of a middle class had grown up, than in the other large countries oi the continent. Feudal society was more decayed, and industrial society more adwanced. The great European revolution broke through at the weakest spot.

The fundamental cause of the Revolution was the unjust privileges of the favored classes and the crushing burdens of the masses. The evil was no greater than for centuries, but the consciousness of it was greater. The masses began to demand reform: and the privileged classes had begun to distrust their rights.

The Revolution is usually dated from the meeting of the States-General in $1 ; 89$. The king lad summoned that body; hoping to induce the privileged orders to give up their exemptions from taxation. and so relieve the bankrupt treasury. The Third Estate, representing the middle class, and the liberal nobles and clergy had assembled with the determination to secure far-reaching reforms and to establish a "constitution." A sharp contest. with a brief period of anarcly. left power in the hands of these liberal elements, where despite some attempts at counter-revolution and some danger of mob predominance, it remained for two years. The Constitution fashioned during this period provided for a weak kingship and abolished nobility and all special privileges before the law; but it careiully entrenched middle-class supremacy against democracy by graded property qualifications and a complex system of indirect elections.

Further changes were inevitable: but. if France had been left to herself, they might have come about as quietly as these first ones. Instead, foreign war gave the morement a new character. War was inevitable. Emigrant nobles gatbered their forces on the Rhine under the protection of German princes. The Emperor. Leopold. brother-in-law of Louis oi France, called upon the sovereigns of Europe to recognize the cause of Louis as "the cause of kings." and demanded from France such changes in her government as should protect Europe against the spread of revolution. This presumptuous dictation in their internal affairs roused a tempest of righteous wrath in the French nation: and in 1792 war began between "the cause of kings" and "the cause of peoples." For twenty-three years Europe was engaged in strife, upon a greater seale than ever before in history.

France was girdled with foes: The Empire, Prussia, and Sardinia, were at once in arms. Naples and Spain joined the coalition. Sweden and Russia both offered to do so, if meeded. Ere long England and Holland were added to the enemies who expected to partition France. Vast armies invaded France: and the French forces were demoralized by treachery of officers and by fear of royalist plots. Ii France was to be saved. it could not be done by halfmeasures, not with a king in secret alliance with the enemy. Control fell to extremists: and. while the mighty Danton roused and organized the national energies the irenzied mob. unhindered, answered the victories and boastings of the insaders by the attack on the Tuilleries and the Massacres. In September, the Consention established the French Republic with extreme democratic ieatures and with manhood suff rage. Then revolution within revnlution transferred power to more and more radical factions. The defeated Girondists raised the provinces against the capital: and for a time Paris and a score of central departments faced the remaining three fourths of France and
united Europe. Out of this crisis, in 1793. grew the great Committee of Public Safety. which ruled France for a year with despotic power. The Revolution now became constructive, and never has the French genius for organization shown itself more triumphantly. The Committee deliberately adopted a policy of "Terror" to crush plots and dissension and to secure united action. Revolt was stamped out. A million soldiers were sent to the front. The invaders were rolled back in rout, and the ragged but devoted French armies swarmed victorionsly across all the frontiers, to sow civil liberty over Europe with fire and sword. France was not again in serious danger from foreign foes until the fall of Napoleon, twenty years later.

Meantime, while the grim, crime-stained men of the Committee in war and tumult were organizing order within and victory abroad, the Convention was laying anew the foundations of French society and advancing the progress of the human race. It adopted the projects of Cambarcérès for the codification of French law, and the plans of Condorcet for a system of national education; it accepted Argobast's metric system of weights and measures; it abolished slavery in the French colonies, created provision for the public debt, instituted the first Normal School, the Polytechnic School, the Conservatory, the Institute of France. the National Library, and began the improvement of prisons and hospitals, and the reform of youthful criminals. Meantime the peasants had become free landholders, and the whole laboring class was rising rapidly in standard of living.

In 1794 the Jacobins split into factions, and these turned the "Terror" upon one another. The following year a conservative reaction gave the Republic a new constitution, which restored property qualifications and indirect voting. But the new plural executive (the Directory) proved incompetent and corrupt, and kept itself in power only by a series of coups d' étot. It was assailed by conspiracy, radical and royalist; and France breathed more easily, when. in 1799. Bonaparte overthrew it with his troops and set up a firm military despotism, veiled by plebiscites.

Napolconic Period, 1800-15.-For fifteen years. as First Consul (1800), Consul for Life (1802), and Emperor of the French (1804-14), Napoleon was sole master of France. He preserved the principle of civil equality and all the economic gains of the Revolution, but political liberty for a time was lost. True, his rule was a denial of the old doctrine of Divine Right: each new usurpation received the sanction of a popular wote, and he boasted that he was chief by will of the people. But every form of constitutional opposition was crushed or muzzled. The legislative chambers existed only to speak when and as he chose; free speech. free press, and all security for personal liberty were suppressed by a system of spies and secret police and by arbitrary imprisonment of suspects: local administration was centralized more highly than even under the old monarchy. "nor did there exist anywhere independent of him authority to light or repair the streets of the meanest village in France."

This all-peryading absolutism was directed by the penetrating intelligence and indomitable
energy of the world's most "terrible worker" and it conferred upno. France great and rapid benefits. Ordcr, precision, symmetry were introduced into every branch of the administration. The interrupted work of the Convention was resumed. Education was organized; law was simplified and codified; the church was again brought into alliance with the state: imdustry was fostered, and magnificent public works were carried out. But in all this, Napoleon was merely the last and greatest of the beneficent despots. And in the outcome, his rule fixed more firmly than before in the mind of the nation the dangerous willingness to depend upon an all-directing central power: so that in our own day, after many revolutions. the supremely difficult task of the Third Republic has been to create the spirit of local self-government.

No doubt, in ISoo, when Napoleon came into power, he sincerely desired peace, in order 10 reconstruct France. By the brilliant victorics of Marengo and Hohenlinden he dissolved the hostile coalition, and a series of treaties, closing with the Treaty of Amiens (I\&o2), gave Europe a breathing spell. But soon Napoleor again desired war. His victories in Italy, as a general of the Directory, had first brought him to the world's notice, and only military glory could keep France from murmuring at his rule. Moreover, he aspired frankly to European empire. On the other hand, the nations fel: that there could be no lasting peace with him except by complete submission to his will. In 1803. England and France renewed their strife, and between these powers there was to be no more truce until Napoleon's fall, eleven years later. In that time Napoleon fought also three wars with Austria, two with Prussia, two with Russia, a long war with Spain. and various minor conflicts. From 1 IVQ2 to 1802 , the unceasing European wars belong to the Revolutionary movement. From 1803 to 1815 , they are properly Napoleonic wars, due primarily to the ambition of a great military genitus. In the first series. Austria was the chief opponent of the Revolution: in the second series, England was the relentless foe of Napoleon.

Napoleon's insight readily divined his true enemy; but Nelson's great sea fight put an end to all possibility of directly invading England. On the continent, however, victory followed victory. After Austerlitz (1805). Austria gave up her remaining Italian and Iltyrian territory, and many of her possessions in Germany. Aifter Jena (I80-), humiliated Prussia was reduced half in size, thrust beyond the Elbe. and bound to France by a shameful treaty: Less decisive conflict with Russia was followed by the diplomatic victory of Tilsit (1807). Emperor and Tsar entered into friendly alliance. France was to have a free hand in Western Europe: Russia was to be permitted to aggrandize herself at the expense of Sweden, Turkes, and Asia: and the two were to join in ruining England by enforcing Napoleon's "continental system."

The refusal of Portugal to obey Napoleon's command for the confiscation of English commerce led to the seizure of that state. Then followed a like seizure of Spain, out of which grew the long Peninsular War. which, as Napoleon confessed afterward at St. Helena, was
really the canker that destroyed him. At the time, however. it seemed trivial, and for five years after Tilsit Napoleon was master of the contiment. At its greatest extent the huge bulk of France filled the space from the ocean to the Rhine, including not only France as we know it, but also Belgium, half of Switzerland, and large strips oi Germany, while from this central body two outward-curving arms reached toward the east, one along the North Sea to the Danish peninsula, and the other down the coast of Italy past Rome. The rest of Italy and half the rest of Germany were under Napoleon's protection, ruled as rassal states by his brothers and generals. Denmark and Switzerland were his willing allies, and Prussia and Austria were unwilling ones. Sweden and Russia, though nominally his equals, were allowed that dignity only because they upheld his policy. Only the extremities of the continent.the islands of Sicily, Sardinia, and England. and the mountainous Spanish peninsula.- kept their independence, at the cost of wasting war.

The period was filled with important rearrangements for Europe, territorial, political, and social. Nany of these were designed in selfishness: but nearly all were to bear good fruit. In particular, the Germany and Italy of to-day were made possible by Napoleons fearless clearing away of old institutions, and by the vigorous impulse he gave to the new forces of political unity and social reform.

In Germany, even the territorial rearrangements pared the way for later national unity. Not only the twelve hundred anarchic territories of the "knights," but also the three hundred petty, scattered, despotic principalities. ecclesiastical states, and oligarchic city-republics (with a few exceptions) were absorbed in larger neighbors: so that the multitudinous, ill-gorerned states of the vanished "Empire" were consolidated into less than forty. Most of these reorganized states, outside Austria and Prussia, were further combined in the Confederation of the Rhine: and in this Confederation, as well as in the German and Italian territory annexed to France, and in the various vassal states over Europe, serfdom and feudalism were abolished and civil equality and the Code Napoleon were introduced. The administration of justice was made cheap and simple. and the old clumsy and corrupt methods of government gave way to order and efficiency.

Most important of all, similar reforms were adopted in Prussia, not from French pressure. but by the influcnce of the Prussian minister, Stein, who sought to make his country strong enough to throw off the French yoke and to regenerate Germany. Napoleon's insolence had at last forced part of Germany into a new national patriotism: and that patriotism began to arm itself by borrowing weapons from the arsenal of the Revolution.

Napolcon's "continental system," if cmbarrassing to England. was ruinous to Europe. Morcover. Tsar Alexander began to suspect dapoleon of intriguing against him in Finland and Turkey: and in I8II he refused longer to follow Napoleon's commercial policy: Napoleon declared war. The destruction of his Grand Army amid Russian snows was the signal for the rising of the peoples of Central Europe in the Wiars of Liberation. Napoleon, like a
desperate gamester, refused all terms, and finally was crushed and deposed. The Bourbon dynasty was restored to the throne of France, and the powers met in the Congress of Vienna ($18 \mathrm{It}_{4}-15$) to reconstruct the map of Europe.

The Congress of licuna.- In its desires, that Congress stood for reaction. Says Fyffe, "It complacently set to work to turn back the hands of time to the historic hour at which they stood when the Bastille fell." It ignored peoples, and considered only princes. Its work, therefore, had to be slowly undone through the next half-century.

Still, its power for restoration was less than its wish; and even its most selfish work contained seeds of progress. Nobody thought of restoring the old ecclesiastical princes, nor of undoing the consolidation of Germany. That country was left in thirty-eight states, and Italy in twelve. Austria, which had lost territory in Central Europe, receired its compensation in Italy, so that its despotic energies were more than ever drawn away into Italian and Danubian questions. Renovated Prussia, in return for Slay lands, which it ceded for the Tsar's new Kingdom of Poland, received German ter-ritory,-half of Saxony, the Pomeranian sea coast. and German provinces on the Rhine taken from France. Thus, seaching down into the heart of Germany, and with distant isolated districts to defend on the Rhine and on the Niemen. Prussia stood forth the natural champion of Germany against Slay and Gaul. In like manner. Sardinia's gain of Genoa was one more step in the consolidation of Italy. In return for the vast national debt incurred in supporting coalitions against Napoleon, England added still further to her colonial supremacy by loolding South Africa, Cyprus, Malta, and other important stations. Despite its brief welcome to Napoleon at his return from Elba, France was wisely left with the boundaries she had when the Revolutionary wars began. The most serious disappointment to the liberals was the failure to secure a national union in Germany. Reactionary Austria secured instead the Germanic Confederacy - a loose league under Austrian presidency. with a Diet which was merely a meeting of ambassadors, - "a polite and ceremonious means of doing nothing."

It was worth much to Europe merely to recognize that it had common interests which could be arranged by a peaceful congress. Even this gathering of despots was an adrance from eighteenth century politics toward a better international organization. Some of its work, moreover, was distinctly progressive. such as the declaration against the African Slave Trade, the opening to commerce of the rivers flowing between or through different countrics, and especially the neutralization of Switzerland under the protection of the powers.

From 1815 to the Recolutions of 1820For more than thirty years after the Congress of \ienna, reaction held sway. The restored princes, who "had learned nothing and forgotten nothing." strove to ignore the progress from 1789 to 185.5 . In Sardinia, serfdom was restored: in Spain and the Papal States, the Inquisition and other mediæval institutions: in some places, cven street lamps were aholished along with other hateful French reforms. Five states,- Russia, Austria. Prussia, England, and

France,-determined the policy of Europe. The first three were divine-right despotisms: and though res Tsar and the King of Prussia played for a tome at liberalism, the first disorders enabled Austria to draw them over to her own frankly reactionary program. At first. France and England were not much better than these Eastern powers. Louis XVIII. had found it necessary to give France a charter; but in that document atself the theory of divine right was preserved, until the revolutionary changes of 1830 . That theory could have no place in England: but even there the government was for many years in the hands of an extreme Tory party The evil genius of the whole period was the subtle Austrian statesman, Metternich, with his motto, "Government is no more a matter for debate than religion is." The one good thing to be said for Nletternich's long supremacy is that he permitted no great war: and this was because he felt it necessary to hold the powers in friendly alliance, so as better to arrest progress within the lines drawn at the Congress of Vienna.

However, beneath the tide of reaction, the principles of the Revolution survived. The two positive forces in politics for the 19th century were to be democracy and nationality. The league of princes compelled them to work underground: but before the middle of the century they emerged in three series of revolutions - in 1820, 1830 , and 1848 .

The revolutions of 1820 started in Spain, to re-establish the Constitution of 1812 , which had been adopted first during the war for Independence. Completely successful there for the time, the movement spread swiftly over the southern peninsulas - to Portugal and to the states of North and South Italy, while it stimulated the Greek rising against the Turks. Metternich found a weapon of repression ready. After Waterloo the four great allies, Russia, Prussia, Austria, and England, had agreed to preserve their union against revolutionary France by holding occasional congresses. Metternich now summoned these powers to the Congress of Troppau. Here the despotic masters of Russia, Austria, and Prussia signed an agreement to unite in putting down revolution against any established government. England protested and withdrew from the alliance; but her place was taken by France, and the united despots, popularly known as the "Holy Alliance," proceeded to carry out the Troppau programme. With overwhelming armies they crushed constitutionalism in Naples and Piedmont, and a little later, in Spain. England's fleet preserved the little sea-coast country of Portugal from attack; and the Tsar's sympathy for his Greek coreligionists held Metternich from aiding Turkey. Portugal and Greece were the only European lands to reap good from the widespread risings of this period.

American Progress.-Greater gain there was, however, outside Europe. The "Holy Alliance," successful in Spain, wished to restore monarchic control over revolted Spanish America. Here they failed. When Napoleon seized Spain (I808), the Spanish colonies, nominally loyal to the old Spanish dyrasty. began to taste the sweets of economic and political freedom. They were powerfully influenced, too, by the
success of the United States; and soon they began, one after another, to ayow independence not only of Napolcon, bin also of the mother country. The United States had recognized their independence. England had not done this; but now she interposed her sea-power to shield them against the proposed attack by the "Holy Alliance." England, indced, urged the United States to join in a formal alliance to protect Spanish Annerica. The United States chose to act separately, but it did act along the same line: in 1823 President Mlonroe's message amounced that this country would oppose any attempt of the despotic poivers to extend their political system to America. Thus was born a group of new nations. For more than fifty years, it is true, the hest of the new states manifested anarchic tendencics; but before the close of the nineteenth century some of them began to make steady and promising progress in government and society. Their constitutions have been modeled generally upon that of the United States.

Before returning to Europe, brief attention should be given to the progress of the Lnited States itself in the generation following the French Revolution. The Constitutior of $1 ; 87$ saved the thirteen States of that time from falling apart into jangling, insignificant units, and gave the world an advanced type of federal government. The Louisiana Purchase (1803) doubled the territory of the country and confirmed its destiny as the home of a mighty continental nation. During the closing Napoleonic struggles, the contemptnous disregard of England for the rights of neutrals, together with the treacheries of Napoleon, involved America in war with England; but, beyond this, except for the enunciation of the Monroe Doctrine, the United States, busied with its marvelous growth at home, had kept free from foreign complications. At the moment of the European revolutions of 1820, the great American Republic was entering on the forty years of anti-slavery debate which preceded the Civil War.

Revolutions of 1830 .-The year 1830 is one of the notable dates in the igth century. In America the victory of Jackson had just marked a fresh advance in popular government. In England the First Reform Bill began its twoyear struggle in Parliament. On the continent of Europe, revolution struck a new blow at the system of Metternich. This time the movement started in France, where the July Revolution replaced the divine-right Bourbon monarcly with the constitutional, bourgeois monarcly of the Orleanists. Explosions followed over Europe. The Belgians rose against their Dutch masters; the Poles against Russia; Italian risings seemed for a moment to have some chance in the papal states and the duchies: and, while Russia and Austria were busied in Poland and Italy, liberal gains were secured in several German states. But soon Metternich, his hands frce once more, set himself patiently to restore the old order in Germany. France, it is truc, was lost to the "Holy Alliance," and joined England in defending liberal. Belgium against despotic intervention. But in the final result, France and Belgium were the only gainers from this period. It was to take the third great "year of revolutions," to sweep away Metternich's shattered system.

HISTORY, MODERN

To appreciate in any measure the wonderful progress of the remaining two thirds of the foth century, it is neediul to grasp the conditions of the world of 1830 , or. we may say, of 1837, when the Victorian era began. It was still a small, despotic world. far more remote from the great. progressive world of 1000 than from the world of 1600 . Civilization held only two patches on the globe,-western Europe and eastern North America. In the latter. the real frontier of the United States reached less than one third the way across the continent, and poliincs and society were dominated by the slave power. Europe knew "Germany" only as a pious aspiration of revolutionaries, and "Italy" as a "geographical expression." Metternich stood guard over central Europe. On the east hung Russia. an inert mass, in the chains of her millions of seris. Under the contemptible Orleans monarchy. France was taking breatly between spasmodic revolutions. England herself had only begun to stir under the long oligarchic rule of her landlord class. The rest of the globe hardly counted: a iringe of Australia held a conrict camp: eastern Canada was a group of jealous. petty provinces, learning to agitate in disorderly fashion for self-government: Spanish America, prostrate in anarchy, gave as yet little hope of the coming renaissance: Japan was to sleep a gemeration longer: while the two largest continents were undisturbed in their native barbarism, except for England's grasp upon the hem of India and South Arrica.

England in the 19th Century:-In Europe. England was to lead the ran of progress; and in England, almost alone in Europe, reform was to come without revolution. But the England oi 1830 was still medixval. During the great French wars irom 1690 to 1815 . except for the one development of ministerial government. England had retrograded politically and socially: Her society was marked by extreme inequalities between rich and poor. intensified by cruel class legislation: her government. superficially representative had really fallen into the hands of a selfish landlord class: her boasted local self-government was intensely aristocratic: her established church was aristocratic and unspiritual. In the last half-century had come an industrial revolution - the growth of the factory system - with marvelous increase of population and growth of city life. calling imperatively for new adjustments: but the great Tory party met all calls for reform with sullen denunciation and repressive legislation which made iree speech a crime.

Under the system of rotten and pocket borcughs. more than half the House of Commons were the appointces of less than 200 landlords. while most of the rest represented small fantastic constituencies. Thus, reform necessarily began with Parliament itself. This parliamentary reform was accomplished by three great measurec: that of 18,32 placed power in the hands of an intelligent middle class, the landed and mercantile interects: 35 years later. the Second Reform Rill (1867) gave power to the artisan class of the towns: and the bill of 188 once more doubled the electorate and left England a democracy.

The Reform Bill of 1832 was followed at once by social reform, in response to the swelling tide of humanitarianism in literature and
society. Legislation swept away negro slavery in the colonies, and the hideous white slavery of women and children in English factories an mines: reformed the barbarous and iantastic criminal code; abolished the worst abuses of the pauperizing poor-law; began the protection of workmen in factories against carelessness o? wilful neglect of capitalists: gave women legal rights: adjusted taxation more equibly: swept away the corn laws and introduced the freetrade era: removed the press gang, and brought in the penny post; enlarged the self-government of the colomies: and established a wonderfully efficient system of democratic self-government in cities at home. Subsequent political reform. despite the Irish difficulties after 18\%o, added to the rate of social reiorm. In particular should be noticed the complex industrial legislation, and. "for dependencies where the nature of the population forbids seli-government, the adoption of efficient. unselfish colonial administration, in which England has set an example for all world powers. Even India and Egypt, with their tremendons difficulties, have been touched with new life: while the great provinces of the English-speaking colonies. Canada and Australia, have organized themselves into two mighty federal states (1867 and 1901). In the rural units of England, too, the local government bills of 1888 and 1894 established true democracy:

Recolutions of 48.-Meantime, on the Continent. the next great progress after 1830 came with the revolutions of 48 . A general explosion had been preparing: but again the signal was given by France. The Orleans monarchy had become reactionary: and the socialistic February revolution set up the Second Republic. Narch saw Metternich himself a iugitive, escaping from Vienna in a laundry cart, while thrones were totuering everywhere between Russia and Turkey on one side and England on the other. Even England trembled with a Chartist movement and the threat oi an Irish rebellion. The kings of Holland, Spain, Denmark, and Sweden made constitutional concessions. In Germany and Italy there were complex movements. working (i) for constitutional liberty and social reform within the several states; (2) for the union of the fragments of the German race into a nation; and (3) for the independence of Italians. Slavs, and Hungarians, held in subjection by Austria.

The third movement resulted in wars, out of which Austria finally emerged triumphant; and her victorious army was a seady tool to restore absolutism at home. In Germany the undisciplined Liberals had wasted opportunity, Austria dispersed the Frankfort National Assembiy, and, after humiliating unready Prussia at Olimütz, restored the old coniederation (1850). It year later (185 s) the coup detat of Louis Napolcon closed the revolution in France ano prepared the way for the Second Empire oi the next jear.

But there had been great gains. Fendalism and serfdom were gone forever, even from Anstria. Sardinia. Prussia, and the minor German states kept their new constitutions. Switzerland had become a true federal republic upon the American type. Sardinia, by her sacrifices. and Prussia, in spite of the past mistakes of her timid government, were clearly marked out as
the champions of Italy and Germany against Austria. Victor Emanuel of Sardinia recognized his mission to unite and free Italy: and Prussia. so recently shamed, had statesmen who would see that next time she should be ready.

Europe from 1850 to 1880.-The next 25 years (1850-75) saw not only the adrance toward democracy in England. the victory of nationality and the abolition of slavery in the United States, the formation of the federal Canadian Dominion, on the American model, and the awakening of Japar under American constraint, but also a new federal German Empire. a united. constitutional Italy, a stable French republic, a constitutional Spain, and a constitutional, federal Austria-Hungary. The period was one of "blood and iron." Napoleon III., who had drawn England into the Crimean war (1854) to humiliate Russia, was himself drawn by the statesmanship of Cavour into the Austrian war of 1859 to help free Italy. Within a year after the resulting campaigns in Italy had closed, the American Civil War began; and before it ended, Bismarck had entered upon his trilogy of wars. In $186+$ he robbed Denmark oi the Schleswig-Holstein duchies, with the great harbor of Kiel for Prussia's projected navy, and so made trial of the new army he was at once to use (I866) in driving Austria out of Germany by the Six Weeks' War. The North German. Confederation. then formed, was expanded into the German Empire by the FrancoPrussian war ($1870-1$), into which Bismarck next tricked French ranity and the despairing ambition of the decaving French government. These struggles completed also the unity of Italy. In IS66 Italy recovered Tenetia from Austria, and in 18\%o, when France could no longer interiere, it at last marched its troops into its ancient capital, Rome. Even for conquered countries, during this period, did reform grow out of war. The Crimean catastrophe struck the chains from Russia's serfs; the shock of deteat in "59 and " 66 woke Austria to constitutional orogress: only when Germany shivered the sham of the Second Empire did France enter upon true republican life: and it was in the ashes of her old social system that our own South found regeneration.

Out of the Russian-Turkish war of $18 \%-8$ a new group of Balkan nations was born, mainly Slay in blood, with at least the forms of constitutional government. But since $18 / 1$ political progress for the most part has been peaceful. The various monarchies of Europe, except Russia and Turkey, had already all adopted constitutions modeled upon the English government, though in none of them were the ministries so truly dependent upon popular will as in England. Indeed. in some states the formal constitutional monarchy really merges into a practical despotism. Progress in politics since $T 871$ has been of two kinds: (I) a growth in ministerial responsibility. and (2) rapid extension of the franchise toward a manhood basis. Actual administration, in most European countries, is still highly aristocratic: but in the matter of ultimate control democracy is generally triumphant. and it is training itself everywhere. by compulsory school systems. for the closer management oi affairs.

International' Relations Since, 1880. Europe in Africa ond Asio-International relations
since LESo require brief statement. France longing to recorer her lost provinccs from Germany in a war of revenge, drew close to Russiz. Bismarck offended Russia by supporting Austria in the Balkans. Italy was angered by the French seizure of Tunis is i880. Thus new combinations of the powers appeared. In 1881. Germany, Austria, and ltaly (all old enemies) leagued in the Triple Alliancé; while a little later, France and Russia formally adopted a dual alliance. The Continent was thrown into two hostile camps, and has rested ever since under an armed peace. France became "the tail to the Russian kite." England. unwilling to join the Triple Alliance, as Bismarck wished. has been left in a position her statesmen have chosen to characterize as one of splendid isolation.

In the 'gos, all these arrangements were threatened by the active appearance, in the field of international politics, of two non-European powers. The Chinese war of 1894 revealed Japan as a modern and powerful state; and the Spanish-American T'ar (I\&g8) made it apparent that the United States had abandoned its exclusively American policy. Moreover, since about 1880, European politics had been merging more completely than ever before in world politics. The questions at issue ceased to be Rhenish or Danubian, and became African and Asiatic. The 19th century. indeed, had been one of expansion of civilized powers, but that expansion had hardly been conscious of its own importance. The United States had quietly filled its borders irom ocean to ocean with a homogeneous population. Russia had spread across northern Asia to the Pacific, and was reaching down in the Trans-Caspian region toward the Persian Gulf. And England had continued annexation of the keys to empire in waste spaces of the earth. These three were the worldpowers. Far behind came France, with some important possessions in North Africa and some ancient claims in southeast Asia. Until 1884 Germany had no thought of colonial empire.

About 1880 a new. conscious greed for colonial territory seized Europe. Africa, some Pacific islands, and the helpless Asiatic empires of Persia. Turker. Siam, and China were the only unappropriated lands. There iollowed a swiit, peaceful division of Africa. In I\&So, only patches here and there on the coast were European; in 1891 . except for the native states of Abyssinia. Liberia, and Morocco, the continent was mapped out between European claimants. The three important Airican powers are England. France, and Germany, though Belgium, Spain, Portugal, and Italy are also represented. England is iar in the lead. Her ambition has been to unite her two inain possessions, in the Nile Valley and in South Airica. by acquiring intermediate territory: but the Congo Free State and German East Airica were thrust between too soon. France comes second in extent of territory: but, except for Algeria and Madagascar, her districts are less valuable than those of England or Germany. France would have liked to join her holdings on the east and west of the continent: but she found English territory thrust in between. German amhition was frustrated in similar manner. The three powers seem to have mutually stale-mated one another's attempts to dominate Africa.

The accupation of Asia by European states has proceeded more slowly, but has moved with increasing rapidity in recent years. England, Russia, Japan, and France are the chiei powers concerned though Germany has shown an active disposition to take a hand in any partition. and though the commercial interests of the United States make it certain that that country will be an important factor in any further changes.

In I894, Japan and China engaged in war over the control of horea. With amazing rapidity. Japan overcame her bulky antagonist: but Russia, backed by France and Germany, stepped in to rob her of the fruits of her victory. Japan, owning not even one modern slip of war, was forced to yield - to spend all energies for the next io years in preparing for furller conflict. Russia secured from China the right to extend her Siberian railroad through Nanchuria, and in 1808 she also obtained the powerful fortress of Port Arthur. Germany and England then compelled China to grant them important disaricts, which, like the Russian acquisitions, seemed to command the heart of China and to doom that power to partition. In 1900 the Chinese resentment against "western barbarians" culminated in the Boxer massacres. The powers sent armies to rescue their beleaguered embassies at Peking; but, largely through the policy of the United States. no territorial indemnities were demanded. During the campaign, however, Russia occupied Janchuria, and, despite repeated solemn promises, it soon became plain that she meant to keep it. The powers apparently acquiesced; but when Russia in 1003 encroached also upon Korea, Japan foresaw danger to her own independence, and. in 1904. slie began war. The struggle has been tremendous, almost beyond parallel; but Japanese victory has been swift and overwhelming, and has changed the whole face of world politics. Russian aggression in the East has been checked ior a long period. See Manchuria; Portsmouth, Treaty of.

Summary.-The three mighty agents in the 19th century transformation lave been democracy in politics and industry, humane sentiment in morals, and scientific progress. The first of these has been the main theme of the latter part of this article. The gentler spirit of recent society, likewise touched upon, has abolished slavery, ameliorated law, and brought about organized, zealous, and intelligent cffort to lessen misery and crime. But perhaps the most marvelous phase of the "Wonderful Century" is the scientific advance. Since the primitive inventions of making fire, of the bow, of domesticating animals, of sinelting iron, and of the alphabet, all the inventions oi man up to the year 1800 probably count for lese than those since that year. In civilized lands, life has becn lengthened over a fourth, and the population of the civilized world has trebled. This larger amount of life has been lifted to a lrigher level. W'calth is more abundant: and the laboring masses, though still getting too little of it. get far more than formerly. The area of civilized life has been wonderfully expanded, but cteam and electricity bind the most scattered pertions togetler more closely than adjacent villages were joined in the near past. And thi: new
solidarity is not merely in material interests: it has its intellectual and moral side. There is a growing unity of sympathy and opinion.

The picture, of course, has its dark side. Crowded populations live and work under conditions of misery and disease and often oi sin. Civilized nations show callous disregard for the rights of weaker or barbarous people. And over the civilized world itself there still broods the danger of annihilating war, more terrible because of the inventions of this scientific age.

Happily this survey may close with a chronicle of a great step toward removing this last danger. The Hague Conference of I 899 , called in the interests of peace, did not find it possible to make any advance toward disarmament, but it did provide for a permanent international tribunal for arbitration between such nations as may choose to avail themselves of it. It is of supreme consequence that machinery is ready so that two nations at difference may escape war without loss of dignity, if they both desire. Even more significant and hopeful, however. is a long series of arbiration treaties between nations, two and two, beginning with the AngloFrench treaty of 1903. Despite the terrible Russo-Japanese war, the first years of the 20 h century have seen remarkable progress toward the federation of the world.

Bibliografly.-Within the space at command. no detailed bibliogtaphy is possible. Since the dawn of the scientific study of history, writers have shunned the attempt to cover the complex field of modern history except in co-operative "series." Oi such series the most important in English are 'The Cambridge Modern History;' edited by Ward (1903. 12 rols,, of which only's have appeared by 1905): and 'Periods of European History," edited by Hassall (isgo-2. 8 vols.. of which the last 5 belong to our period). Andrews' 'Historical Development of Modern Europe' (i8g6). Fyffe's 'Modern Europe to 18;8' (1884). and Seignobos' 'Europe Since 1814' (I899) deal with the 19th century. Cunningham's 'Western Civilization' (I000), and Mciev's (Nodern Industrialism' (IgO4) treat special phases. For further references the reader may consult the special bibliographies at the close of the articles on leading countries and movements. West's 'Modern History' (a highschool manual. 1904) in an appendix gives a classified bibliography of 150 standard English works. Willis Mason West.
Professor of History, L'nizersity of Mirnesula.
History, Logic of. The relation of history to the prohlems of the philozoplee has been mostly confined to those questions which are treated in the philosophy of history. The object of this discipline is to interpret the meaning of mankind's historical developmem and to comprehend the progress of humanity in the setting of a metaphysical system. It is only in recent tinies that philosophy has recognized clearly the importance of an entirely different rclation. If the philosopher studies in the science of logic the ways of thought and the special methods by which the different special sciences are able to reach the truth it must be logical and thus. ultimately. a philosophical task to examine the methods of historical investigation. The special
schemes of tine historian's technique belong to historical science proper. But as soon as the atutude which the historian has to take towards the world is in question, we stand before a logical problem which is most nearly connected with the general probiem of the meaning of truth. A rich literature devoted to this circle of problems las grown up during the last decade. partly through the activity of philosophers and psychologists, partly from the interests of historians and economists themselves.
Of course, it is possible to take the skeptical attitude and to deny the existence of a particular problem here. We can say that all science has the same kind of task, and that the logical problems are thus not other for history than for the natural sciences. l'et this attitude may lead to two different standpoints. The first is the most popular one. From that it would appear that history is not a real science at all. It collects a mass of material just as the zoologist collects his specimens; but that kind of treatment which makes zoölogy a real science, the study of the common characteristics and of the underlying laws, is not in question for the historical material. Instead of this an art enters into play, the art of historical prescrtation. The works of the great historian are thus in first line works of art parallel to the great epic narratives, with only the difference that the epic poems follow the lines of imagination while the historian reconstructs the facts as they may have happened. Scientifically history would thus stand on the lowest level, as a mere collection of facts without that read scientific treatment which makes the value of the other sciences. The best which ean be hoped, then, is that it may be brought to a kind of scientific height by introducing as much as possible the results of other sciences such as physics, biology, anthropology. geo-physics, etc., into the explanation of historical happenings. The influences of climate. of race disposition, of technical invertions, and so forth, then become predominant in the scholarly treatment of historical events. It may be said that this low opinion of the pure scientific character of history has been prevalent throughout the whole history of science.
But those who consider the natural sciences as the only type of real scientific work may be led, and have been led frequently in recent times to still another standpoint. They may say that history has the greatest possibility of being a full-fiedged science. The only step it has to take is that from the merely descriptive to the law-seeking attitude. The real task of the historian, they say, would be to find the common features which belong to the growth of every nation and to the political and social, artistic and scientific, economic and religious movement of the different periods and of the different communities. As long as isolated processes are described. history indeed remains on a pre-scientific level, but as soon as we recogrize characteristic types of development, we reach general laws like those of the biologist or the chemist. The interest concentrates itself then on the psychological factors which moulded the fate of the nations, and especially the life of the masses becomes a true historical agency. That which is unique then becomes insignificant and accidental as compared with the great typ-
ical processes which inpeat themselves under similar conditions in the most different countrjes. A kind of natural science of historical nations thus becomes the logical goal.

Those modern movements, however, which have forced the problems of the logic of history to public attention object to both these standpoints because they refuse to admit the first presupposition. They deny that the natural sciences are the only type of a real science. They claim, rather, that thrs is a prejudice which has been suggested to the world by the overwhelming influence of the Aristothan logic on the one side, and the impressive triumphs of natural science on the other. They hold that there exist two types of scientific thought in primenple commensurable, and that the historical way of thinking is in its importance and in its logical right perfectly coordinate with maturalist:c thought let here again a varicty of standpoints have been taken.

The simplest presentation of this doubleness of logical method is offered by those who hold that the whole separation is to be deduced from the doubleness of the logical attitude. They say that we can take with refcrence to everything in the universe either the attitude of interest in the general law or the attitude of interest in the particular thing The one interest can never be substituted for the other. In the one case the particular object is for us only a sample illustration for a genera! relation. We seek the law which expresses that relation and inhibits therefore the interest in the special chance case which is before us. That is the attitude of the naturalist. On the other hand we may give our whole attention to the particular object before us in its uniqueness, and there is no doubt that our practical interests of life force on us just this attitude. Our earth may be astronomically not more important than any other planet. but our practical interest belongs to this planet alone. Our friends may be to the biologist not more instructive than any other group of organisms, but for our friendship those particular men have their unique position and cannot be replaced by otlee chance copies. To develop systematically this interest in the particular is the function of the historian. and anything which has its particular existence is possible historical material. let it is evident that no science can have the task of describing every particular pebbie on the beach. There must be a principle of selection, and this is given in the reference to our values. The men who have relation to that which is valuable in the world, to the development of state and law of art and science and religion, are to be selected for the historian's account. And this ultimate reference to values binds the particular objects together, while it is eviclent that the law of natural science brings the facts under a point of view under which they have no special value at all. but are indifferent objects of theoretical observation. The antithesis is thus complete. The naturalist seeks the general, the historian secks the particular. The maturalist refers everything to the law, the historian everything to the value. Both gronps of interest create logically mdependent systems of knowlede. Their difference is thins in no way a difference of matcrial, as there is nothing in the world which cannot be considered from
both points of view．The sun which the astronomer studies in relation to the astronom－ ical laws as a chance case of a general relation which holds for myriads of suns，may be at the same time the object of interest for those who ask about the development of this one particular sun which gives us light．And on the other hand，even the Napoleon oi the historian may be brought under the laws of biology from the standpoint of the naturalist．

Others who welcome this sharp separation feel doubtful whether it is really the logical attitude which determines the difference and not the content．They claim that it is not true that natural science has to deal with laws only： －${ }^{\text {atatural science may very well give its atten－}}$ tion to particular objects too，and the develop－ ment of our sun or our earth or our mankind is not history but natural science．The true difference，they say，lies rather in the double－ ness of the objectifying and the subjectifying attitude．

The sun and earth are for us all objects．but men and their work can be considered in a double way：We can consider our neighbors as objects，as phenomena which we describe and explain，but we can consider them also as sub－ jects of will which we understand and inter－ pret and appreciate，and this doubleness of attitude reaches over the whole of mankind． TITherever there is will，there the object can be taken as a subject and it is claimed that the work of the naturalist is the study of the world in so far is it is conceived as a system of objects， while the study of the historian is the world in so far as it is conceived as a system of will relations．Only subjects of will would thus be able to enter into history at all．And the task of the historian is to understand the systematic selations between the purposive actions．The naturalist starts from the objects of his per－ ceptinn and seeks their causes and their effects． The historian starts from those will demands which reach him as the political，legal，artistic． scientific，economic，religious demands of his social world，and he seeks to interpret them by connecting them with the purposes of the pasi． The naturalist explains，while the historian in－ terprets intentions and links the will purposes into a comnected unity．

Bibliogrophy＇－W＇indelband，＇Naturwissen－ schaft und Geschichte＇：Simmel．＇Probleme der Geschichtsphilosophie＇；Rickert，＇Greazen der naturwiscenschaftlichen Begriffsbildung＇； Dünsterberg．＇Psychology and Life＇：Lam－ precht，＇What is History？＇

Hugo Méxstfrberg．

Profcssor of Psjchology，Hariord Unizersity：

History，Great Events of．The following list gives only those important events which have affected or changed the subsequent history of nations．The crose references will refer the student to the opecial information concerning these epoch－making occurrences，and the follow－ ing special articles may also be consulted：His－ tory，Inciest：Menieval：Moners；Wiars of tile Ilinrid：Peice Treities：Repleblics， 11 is－ tory of：Exploritiños IN THE IOTH CEStCry： Pol．ar Rese．trcil：Junaism－Jewish Mistory： Créshrh：Cromwell：Cuxpmber：Tuirty Ienks＂Min：Sfves Ifars＇Mar：Stimleon： Whiterloh，Battle of；Crimea；America，Dis－
corery and Colonization of；Discoveries of America to 1562．Spanish and Portuguese； Colonial lVars in AMerica；Navy of the United States，History of；Ǔited States， Thare of the；Declaration of Independence： Slaverl in the U＇sited States：Confederate States of America；Monroe Doctrine；Únited States－The American Revolution；The War with Frajice；War of 1812：Mexicaj War； Slatery：Calses of the Civil IVar；Recon： strection：War with Spain；etc；Treaties of the Usited States with Foreige Nations： The Eastern Question：The Oregon Ques－ tion；Dictatorships in Latin－America；Emañ－ capation is Latin－AMerica：Peking，Siege of； Boers：Solth African War；Riel＇s Rebel－ LION：ETC．

B．C．
1615
1111 Urodus of the Children of Israel from Egypt．
-53 Romer＇s compass（q．v．）discovered．
603 Rome（q．s．）founded．
551 Geometry and Maps（qg．v．）first used．
$501-19$ Confucius（q．v．）flourished．
± 00 Battle of Marathon．
533 Fall of Babylon（q．v．）．
636 Accession of Alexander（q．w．）；Grecian Empire 63－44 Casarian era；Britain invaded：Gaul conquered． A．${ }^{-1}$ ．

33 The Crucifixion of Christ（q．v．）．
451 Battle of Chaions．
570－623 Mohammed（q．r．）flourished．
800 Charlemagne（ $\mathrm{q} . \stackrel{\mathrm{v}}{ }$ ）．Emperor of the West．
967 Egypi conquered by the Turks．
1066 Batile of Hastings in England．
1201 Crusades（q．v．）in Holy Land begun．
1234 Gunpowder（q．v．）nirst used by Genghis Khan．
1453 End of the Roman Empire in the East．
1455． 85. War of the Roses in England．
1492 Columbus discovered America．
$16 i h$ Cent．Period of Reformation（q．v．）in Europe．
1588 Destruction of the Spanish Armada．
1615－104S Thirty Fears Mar（q．x．）．
1619 Beginning of Slavery（q．v．）in America．
1642 Beginning of the Civil War in England．
162% Barometer and Thermometer（q．v．）devised．
164－5？Civil War of the Froude in France．
1042－1724 Newton（q．v．）discovened gravitation．
1713 Peace of U＇irechi ending Whar of Spanish Succes－ $\operatorname{sion}(q-x$ ．）．
1711－45 IVar of the Austrian Succession．
1756．63 The Seven Jears War（q．v．）．
1736 Declaration of Independence（q．v．）．
1：50 140？French Revolution．
1s04－1515 Mapoleon（q．\％．）Emperor of France．
1512－14 Wンar of 1812 （q．ソ．）．
い15 Battle of Traterloo（q．＊．）．
$1 \backslash 19$ Electro－Magnetism discovered．
1s：21－29 Greek Thar of Independence．
$1531-39$ Breek War of Independence．
$1545-39$ Belgian war of Independence．United States．
1， $\mathbf{3} 3-55$ Crimean War．
1，57－59 Indian Mutiny and Was．
1001－65 Civil Wiar（q．i．）is C nited States．
wo3 Battle of Gettysburg（q．v．）．
Is66 Laying of first Atlantic Cable．
IN6－99 Cuban War of Independence．
inio－it Franco－Prussian War（q－v．）．
1s：7－78 Russo－Turkish Wiar．
1583－54．War in the Sudan．
is94 War between Japan and China．
1595 Roentgen discovery of ※－rays（q．w．）．
1497 War berween Turkey and Greece．
1：99．Spanish－American llar began．
1，9．Hawaii（q．x．）anncxed to the United Siates．
1．599 Peace Conference at The Hague（q．r．）．
1．599 Peace Conference at The Hague（q．w．）．
1002 First Anglo－Japancse Alliance．See AsGlo－Japa－ nese Trenties．
1903 Panama Canal ireaty signed．See Panama Casal． 1003 Pactic Cable complesed．
1904 Wia：between Japan and Russia，terminated 5 Sept． 1905 by Treaty of Portsmouth（q．v．）．Sce Manchliria．
1905 Second Anclo－Japanese Alliance（q．v．）．
1906 Earthquakic and fire，San Francisco；Cal．See EARTHっCAKE．
1906 Paima，l＇resident of Cuba，resigns；L＇nied Staies assumes control．
Hitchcock，hich＇kök，Charles Henry，Am－ crican geologist：b．Amherst．Nass．．23．Aug． 1830．He was a sonl of Edward Hitchcock，
geologist (q.e.). He was graduated from An:herst College in 1850, was assistant State geologist of Vermont in 185%-01. State geologist of Maine 1861-2, and of New. Hampshire 1868 --8. In ISGS he was appointed professor of geology in Dartmonth College. In connection with his survey of New Hampshire, he maintained, during the winter of 1870, a meteorological station on Alount Washington, the earliest high-mountain observatory in the United States. IIe became known as a compiler of geological maps, and for his investigations regarding the geology of the crystalline schists, ichnology; and glacial geology. The location of the terminal glacier in the United States was first suggested by him. He was a founder of the Geological Society of America, and in 1883 president of the Ainerican Association for the Advancement of Science. His publications include: (Elementary Geology) (I861, with E. Hitchock) : 'MIt. WFashington in Winter' (1871): and a 'Report on the Geology of New Hampshire) ($18 / 3-8$), with folio atlas, his most valuable work.

Hitchcock, Edward, American Congregational clergyman and geologist: b. Deerfield, Mass., 24 May 1793: d. Amherst, Mass., 27 Feb. 1864. He was principal of the academy in his native place $1815-18$; pastor of the Congregational Church in Conway, Mass., $1821-5$; professor of chemistry and natural history in Amherst College $1825-45$ and president of Amherst College and professor of natural theology and geology 1845-54. He was appointed State geologist of Massachusetts in 1830 , of the First District of New York in 1836 , and of Vermont in 185%. In 1850 he was commissioned by the government of his native State to examine the agricultural schools in Europe. His life was in a great measure identified with the history of Amherst College. Connected with it almost from the beginning. in his own presidency, he procured for it buildings, apparatus, and funds to the amount of $\$ 100,000$, doubled the number of students, and established it on a solid pecuniary as well as literary and scientific basis. His earliest scientific publications were the 'Geology of the Comnecticut Valley' (I823), and a 'Catalogue of the Flants within Twenty Niles of Amherst) (IS29). Later works were: 'Lectures on Diet, Regimen, and Employment' (1831): 'Lectures on the Peculiar Plienomena of the Four Seasons' (1850); 'Reports on the Geology of Massachusetts' ($1833-35-38-41$): 'Illustrations of Suriace Geology) (I857): 'Elementary Geology,' which passed through 25 editions in America, and one third of that number in England: 'Religion of Geology and its Connected Sciences) (1851); and 'Reminiscences of Amherst College' (I863). Dr. Hitchcock suggested as well as exceuted the geological survey of Massachusetts, the first not only in the long series of scientific surveys in the United States, but the first survey of an entire State under the authority of government in the world. He was the first to give a scientific exposition of the fossil footprints of the Connecticut Valley, and with him ichnology as a science began.

Hitchcock, Ethan Allen, American soldier: b. Vergennes, Vt., 18 May 1708; d. Sparta. Ga., 5 Aug. 18\%o. He was a grandson of Ethan Vol. $8-27$

Alten (q.w.), and was graduated at West Poirn. in 181\%, entering the corps of artillery as a third licutcnant. In 8829 he became the military commandant of the corps of cadets, in which office the contimued until 1833 . He served in Florida against the Indians, and in the war with Mexico, where he received two brevets, one as colonel and another as brigadier-general. In I855 he printed for private circulation a pamphlet in support of his opinion that genume alchemy was not an art for making gold, but that the alehemists were studemts of man, whose perfection was symbolized by their "plisiosopher's stone." He subsequently published: ‘Remarks upon Alcheny and the Alchemists) (1857) ; 'Swederborg a Hermetic Philosopher' (1858) ; (Notes on the Yita Nuova of Dante) (I 806).

Hitchcock, Ethan Allen, American politician: b. Mobile, Ala., 19 Sept. 1835. He received a secondary education, was in mercantile business at St. Louis, Mo.. in 1855-60, then went to China to enter a commission house, of which firm he became a partner in 1866. In 1872 he retired from business, in $18 / 4$ returned to the United States, and in 1874-97, was president of several manufacturing, mining, and railway companies. He was appointed envoy extraordinary and minister plenipotentiary to Russia in 1897, and in February 1898 ambassador extraordinary and minister plenipotentiary, the first ambassador aceredited from the United States to the court of Russia. In 1808 he was nominated and confirmed as sectetary of the interior, and held that position till \& March 100%.

Hitchcock, James Ripley Wellman, American art critic: b. Fitchbure, Mass., 3 July 1857. He was graduated at Harvard in 1877. and was art critic of the New York Tribunc i882-90. He has written: 'The Western Art Aloventent' (1885); 'A Study of George Inness' (1885) ; 'Aladonnas by Old Mlasters' (1888), the text to photogravures: 'The Future of Etching': 'Some American Painters in Water Colors'; 'Etching in America); (Notable Etchings by American Artists': etc.

Hitchcock, Roswell Dwight, American Congregational clergyman: b. East Machias, Maine. 15 Aug. I817; d. Somerset, Mass., I6 June 1887. Graduated from Amherst College in 1836 and from the Andover Theological Seminary in 1838 , he also studied at Ilalle and Berlin (1840) in $1845-52$ was pastor of the First Congregational Church at Exeter. N. II., and in $1852-5$ professor of revealed religion in Bowdoin College. In 1855 he became professor of chureh history at the Union Theological Scminary, of which institution he was elected president in 1880. He bicame president of the Palestine Exploration Society in 187r, and viccpresident of the American Geological Society in I 88 o. An editor of the 'American Theological Review': he wrote: 'The l.ife, Character, and Writings of Edward Robinson' (5863): ‘Complete Analysis of the 1holy Bihle) (I8(6)) ; and 'Socialisn' (1870). With Eddy and Madge, he compiled 'Carmina Sanctorum' (1885): and 'Eternal Atonement,' a volume of sermons, appeared in T8S8.

Hittell, Theodore Henry, American historian: b. Marietta, Pa., 5 April 5830 . In 1852
he was admatted io the bar at Cincinnati, in 1855 removed to Caliiornia, in $1855-61$ was connected with the Bulletin and Tintes oi San Francisco and irom 1862 practised law. He was Staie senator in ISSO-2. He wrote a 'History of Calsiornia.' bis chief work: and compiled 'The General Laws oi Caliorna," known as 'Hittell's Digest.' and 'Hitteil's Codes and Statutes of California.'

Hittites, hit'its, the name oi several peoples mentioned in the Old Testament, and in Egyptian and Assyrian inscriptions. In the Old Testament the name is applied to three more or less distinct groups, namely, the "children of Heth" from whom Abraham purchased a bury-ing-place: a people or group oi peoples which inhabited Palestine before the Hebrews and resisted their invasion: a kingdom in northeastern Syria. with which Solomon formed marriage alliances. The first group dwelt around Hebron in southern Palestine, and the Hittites mentioned in connection with David, of whom the chief was Ciriah, may be their descendants The second group of Hittites dwelt among the mountains of central Palestine. and the third group. united in some sort of empire. had their seat still iarther north. Oi this Hitrite empire we learn more from the Egyptian and Asiyrian records than from the Old Testament. The Heta, according to the hieroglyphic inscriptions. offered a rigorous resistance in northern Syria to the Egypian king Thutmosis 111. (ISth dyn.: c. $I \equiv 60 \mathrm{B.C}$.). and to his successors of the $19: 6$ dynasty. Sethos I.. Rameses II. and III., c. 1350-I 200 B.c. Carchemish. Kadesh. and Hamath were among their chief cities. The cuneiform inscriptions contain notices of a people called Hatti who irequently fought with the Assyrians irom the time of Tiglath-pilesar I. (c. 1100 B.C.) till tha: of Sargon 1I. 1-21-,O4 B.C.). aiter which they are no more heard of. The Hittite monuments and inscriptions which have been found in Carehemish. Hamath and neighboring places, as well as throughout Asia Minor. appear to belong to the Assyrian period.

Hittorf, Jacques Ignace, French architect: b. Cologne 1792: d. 186\%. He studied his profession in Parss and was employed on many public buildings and places, doing work on the Bois de Boulogne. the Champs-Elysees and the Church oi Saint V"incent de Paul. Among his publications may be mentioned 'Architecture Antique de la Sicile': 'Architecture Soderne de la Sicile' and 'Architecture polychrome chey les Grees?

Hitzig. Ferdinand. German theolocian: b. IHaungen. Baden, 23 June 1807 : d. Heidelherg. 22 Jan. 1875. He was educated at Heidelherg. Halie and Götingen. He went to Zurich in I833 as profesior of theology, where he remained until iS61, when he returned to Heidelbers. He was quite a voluminous writer on the Old Testament, composing commentaries on the Minnr Prophets (1838): Jeremiah (8_{4}) : Ezekiel ($\mathbb{S}_{4}-$): Ecclesiastes (IS \mathbf{H}_{4}): Daniel (1850): Snng of Snlomon (1855). He made a translation of the P-alms in iss.

Hive-bee. See Honey-bee: Bee-clilttre
 Hives. See Urticarla.

Hoactzin, hō-ăkt'zin nr -ak'zin, a singular South American bird (Ofisthocomus crisidfus) of the size of a pheasant. It is brown itreaked
with white, and the head lias a movaobe crest It is interesting principally irom tive exiraordinary way in which the fiecolings. as soon as they lease the nest (in a tree), 三crarobe about the branches by aid of their wings iased like hands. by reason of the iact that they luave a temporary claw on both the index and pollex. The iood oi these birds is main. leaves and iruit: and a strong musky odor is given on by the adults. so that in British Guiaua they are called "stinking pheasants."

Hoadley, hōd'li. George, American lawver: b. Jew Haven. Conn.. 35 July I\&z6: d. II athins. Š. 1. 27 Aug. 1902. He was gradvated at Hudson College. Ohio. in IEx+1: studied law at Harvard, was admitted to the bar in 184, and joined a law rimm in Cineinnati of which Salmon P. Chase (q.v.) Was the leading member. He was appointed judge of the superior court of Cincimati in 1859. and re-elected in I864. He iook a leadiry part among the "Barnburners" (q.w.). was a llar Democrat. and during the War joined the Republican party: He deteated Foraker in a contest for the governorsinip of Ohio in ISE_{3}, but iailed of re-election in a struggle against the same candidate.

Hoadly, Benjamin, English Anglican pre!ate: b. Westerham, Kent, ${ }^{1}+$ Vov. 10;0: d. Chelsea 1\% April 1-6\%. He was educated at Cambridge: took orders in 1,00 , and after being settled in London distinguished himselt in controversy with Bishop Atterbury and others. A staunch Low-Churchman, he was appointed bishop oi Bangor in 175. A sermon preached beiore the king oi I , F g gave rise to the "Bangorian Controversy" regarding the divine authority of the king and the church. He was iranslated to the see of Hererord in 1;21, to Salisbury in 1723 , and 1 inchester in $1 \% 34$

Hoang-ho. See Hwisg or Hoavig-ho.

Hoar, Ebenezer Rockwood, American jurist: b. Concord. Mass.. 21 Feb. IR16: d. there 31 Jan. IE95. He was the son of Samuel Hoar (q.i.), was graduated at Harvard (1835), and subsequently admitted to the bar. He rose to be judge oi the court oi common pleas (1849). judge of the State supreme court (1539), and attorner-general oi the (nited States (isog), and was a member of the loint High Commission that iramed the Treaty of lVashington (18,-3-5).

Hoar. George Frisbie, American statesman: b. Concord. Nasis. 29 Aug. 1826: d. Worcester. Mass.. 30 Sepi. Ho4. Senator Hoar`s paternal and inaternal inheritance was very remarkable. His grandiather was an ncricer in the Revolutionary army and his iather. Samuel Hoar, was one of the ablest lawyers and statesmen of his time. a member of Coneress irom Massachusetts. and a man of great learning and iorce of character. Senator Hoar's mnther was a daughter of Roger Sherman. a signer of the Declaration of Independence. He was graduated from Harvard in 18,6. Studied law there and began his law practice in Worcester. Mas:. The young man wa= early attracted to politics and identified himseli with the Free Soil party, and his purpose in 1805 - so characteristic of his whole career-is thus stated by himseli: "All oi us Free Soilers were drawn into politics by a great issue. It

COLRTECV OF THE BOORLOVEKS MAGAZINE.
From copyright pholograph by 11 . Schervee. GEORGE F. HOAR.
was to prevent slavery being extended into the new territory between the Mississippi and the Pacific. We were all ardent advocates of frcedom. The party and the movenent were new, and we were stirred by high ideals. Among the young men who went into the new movement at that time were my brother. Ebenezer Hoar, Erastus Hopkins, Anson Burlingame, Whittier, Lowell. Longfellow, and many others that became well known. There were no olices to gain. There was simply a cause to work for. In the campaign of 1850 the Free Suilers did not carry a single State, only a few Congressional districts." He was a member of the Republican party from the first. and in 1852 was elected to the Massachusetts house of representatives; in 1857. to the State senate. In the intervals of service he practised law. In 1800 he was city solicitor. He presided over the Republican conventions in Nassachusetts in 1871. 1877, 1882 and 1885; was a delegate to his party"s national conventions in 18;6, 8880 (the chairman in that year), 1884. 1888. i892 and 1896. He served in the national House of Representatives for four successive Congresses, $1869-\bar{i}$, elected as a representative of the Worcester district ; in 1877 he was elected to the Senate, and was reelected in I883. I889, IS95. and 1901, serving his country continuously as a mational legislator since 1869. having represented Massachusetts for a longer period in the national Congress than any other representative from that State. In 1876. he was one of the managers on behalf of the House in the Belknap impeachment trial, and was also a member of the Electoral Commission (q.w.), which decided the Hayes-Tilden contest for the Presidency, the other Republican members of that famous body being Senators George T. Edmunds. O. P. Mlorton and Frederich T. Fretinghuysen, and Representative James A. Garfield. In the Senate he was chairman of the judiciary committee, and of the committee on privileges and elections, and a member of other important committees. He was known as the old man eloquent of the Senate, having served in that body for 37 years and taken part in all the great questions that have been before the country during that time. He was a determined opponent of the retention of the Philippines, and independent enough to state his views fearlessly in the support of his own theory that the C'nited States should leave the islands to the control of the Filipinos and prevent interference from foreign mations, but his honesty and sincerity were unquestioned and he always retained the confidence of his party and the respect of all. He was a thorough American and believed in the future of his country and placed its welfare above all personal considerations. "The lesson which I have learned in life. which has been impressed upon me daily and more deeply as I grow old." he said in his autobiograply, "is the lesson of Good Will and Good Hope. I believe that to-day is better than yesterday, and that to-morrow will be better than to-day. I believe that, in spite of many errors and wrongs, and eyen crimes, my countrymen of all classes desire what is good. and not what is evil."

Senator Hoar was an idealist, and was not to be turned aside, even by his loyal love of party. from following his sincere convictions. He demanded iustice for the negroes and the

Indians, openly declared his sympatly for $\mathrm{Cu}-$ ban and Filipino, and as firmly opposed religious intolerance in Massachusctts because his actions were controlled by reatons which he considered were founded in righteonsness and truth, and therefore not subject to change.

Senator hoar was a man of considerable scholarship and took great delight in literary and historical studies. He was a member of several historical and scientific societtes, and took much interest in their work. He was president of the American Historical Society, presidemt of the American Antiquarian Socicty, tegent of the Smithsonian Institution in 188°, and trustee of the Peabody Nluseum of Archieology: He received the degree of LL.D. from the College of William and Mary: Amherst. Yale and Harvard. In 1903 he published 'Autobiography of Seventy Years.' which first appeared in 'Scribner's llagazine' as a serial. The same year, in a speech in his home city of Worcester. Senator Hoar, as if in anticipation of his approaching dissolution, thus summed up the creed of his career
"If my life has been worth anything, it has been because I have insisted, to the best of my ability, that these three things - love of God, love of country, and manhood - are the essential and fundamental things, and that race. color, and creed are unessential and accidental."

Although -8 years of age, he was in good health until the death of his beloved wife in 1903: their derotion had led many to predict that neither would long survive the other. Senator Hoar was taken seriously ill in June 1904. but lingered until 30 September, when he died at Worcester, Nass.

His death was the occasion of a remarkable display of panegyric in the press of both Republican and Democratic parties. It possessed the peculiar quality of reconciliation, one party regretting what the other considered his noblest quality. The only flaws in his judgment. said the Republican press, were his disagreements with the party leaders on the Philippine and Panama issues: but to the Democratic press his noble loyalty to the right on these occasions was convincing proof of his lofty statesmanship. The Democratic press regretted his inability to see any good in their party. while to Republican journals this virtue redecmed his errors of judgment on the matters of party policy.

One journal said: "As long as the confidence and affection of all the people are given to such a man. it is foolish and false to assume that the old standards are departing and the old ideals becoming broken. The people still know a man when they see him. Still they respect and honor the statesman who loves the republic better than he does himself, who never falters in his service, to whose fingers gold does not cling, and whose never-forgotten ideal is the people's welfare. While they honor such qualities above all others, pure and able statesmen will continue to come to their service." sentiments which were summarized in Ex-President Cleveland's statement that "Scnator Hoar's ability. his high-mirdedness, and his frecdom from political trickery, furnisli an example of a useful life which may well be imitated by all those entrusted by their countrymen with public duties."

George Edinis Rines.
Editorial Staff 'Encyclopedia Americana.'

Hoar，Samuel，American lawyer and lez－
 was graduated at Harvard in recz and three years later entered uponi a highly sacce－siul carcer as a lawyer．He served two serms as a State senator and was chosen by the Mresachu－ setto egislature to challenge the conetatato ality of certain laws in South Carolina relating i）the impriscrament of iree negrect．He was subsequently excluded frum South Caruina cours by the Stare legislature．

Hoarhound．See Horenotrd．

Ho bart，Garret Augustus，imerican law－ yer and politictan：b．Long Branch，N．J．．184． d．Paterson．N．I．． 2 Nov．IR99．He was grad－ ated at Rutgers College．New Jersey，in 1003. and admitted to the bat in 1006．At Paterson． where he mace his home till his death，lie en－ joyed a successiul law practice．He became successively city attorney，prosecuting attorney ior Passaic County，a member of the State Assembly $18,-3-8$ ，and of the State Serate 18，9－85．During his several terms he was speaker of the Assembly and president of the Serrate．In 1896 he was nominated at St．Louls ict viee－president on the ticket with William Mekinley，whose intimate iriend he was，and was elected to that office．

Hobart．George Vere，American journalist， playwright，and author：b．Cape Breton，IV．S．， 16 Jan． 186 －．He was educated in Nova Scotia， later coming to the Lnited States as a telegraph cperato ior the Lntied Press．He became edi－ ror of the Cumberland Sunday＇Scimitar．＇later writuly for the＇Herald，＇Eiening lizus and ＇American＇of Baltimore．Since then he has been writing for the Hearst newspapers the bumorous sketcles，＇Johe：Henry＇and＇Dinkelspiel．＇He Las writen＇Many Moods and Many Meters＇ （：\＆99），and＇Lill Verses for Lili Fellers＇ （t903）both puems：the＇Dinkel：piel＇series （ 1900 ：the＇John Henry＇books（ $1001-\frac{1}{1}$ ），and the flays．＇Atter Otrice Hours，＇＇Sliss Print，＇ ＇Huige，Podge \＆Co．．＇＇Saliy in Our Alley．＇ex．

Hobart，John Henry，American Protestans Epiroopal bishop：b．Phriadelphia 14 Sept．1：नミ； d．Aubura，N．．．．so Seft．is 30 ．He was edu－ cated at the College of Phladelphia（now the Univerity of Pennevivania），and the College of New Jersey（niw Prineetm），and airer wrye ommercial life in his br ther－in－laws ciowt is 11 ure．went back to Primect n as a

 past ral servee in Pamylvania．New Jertes． and L ng fiand，he became astiotamt in Trin－ ity Purioh．New York，where he remainud until his elevat1 n to the episo pate．er in hiniwz with lus other ditie－a po me：ent share mate legis－ lative coll：ci＇s of the church．as deputy to the General Conventims if kor and twin．and sec－ reily to the Howe of Deputics in th later year：In ISIt he was con－ect：d a－biht p－ －adiuter in the dilcese ni lew yrk，and
 ceeded him bith in the filll charge ni the din－ cese and in the rect rhip of Trivity Chere：s He al－0 eave prinn nal episc pal care at dif－ ierent times to New Jorey and Cinlecticut He was very aetive in errme the the etablsh－
ment－the General Theologeal Seminary．and up it location in llew York became professo： of pasziral theology．Hobari College also owed mech to him，a debt recognized by the taking of his nar：e．when，in 1852，the erigmal citle of Geneva College was changed to Hobart Free Colkege．He wrote or edited a number of theo－ logical works．some of which．especially his ＇Companion for the Festivals and Fasts＇（INos）． reacined several editions，His Apology for Apos：olic Onder（iSO2）is still used as a rexi－ bock．

Hobart，the capital of Tasmania，and up to IEsi called Hobatat Tow，is sithated at the i ot of Mount Wellington（4． 106 feet high）．on the Derwent River，I2 miles from its outlet in Storm Bay on the sorth coast．It has handsome public buidings．including governmert house， the government office＝，parliament houses，Epis－ copal and Catholic cathedrais．There are im－ portant domestic mantiactures．and in connec－ tion with its considerable shipping interests，a ine harbor with modern accommodations． Hobart is connected by rail with Launceston． Pop．（1903） $3^{17}+00$.

Hobart College，a Protestant Episcopal institution，located at Geneva．I．I．In is 85 it was chartered as Geneva College：but in 1852 the name was changed to Hobart Free Coi－ lege．and in Isco to Hebart College．Bishop Hobart（q．i．）had aided the scbool by advice and by money．An endowment from Trinity Church．New York，had greatly assisted the institution．The college offers scholarships and prizes to worthy students，and the departments are all well sustained．The courses lead to the degrees oi A．B．，B．S．．and Ph．B．The：e are abont 4.000 rolumes in the library．In rgot－5 the school had i－professors and instructers and 105 studente．The graduates number nearly 1，500． Lungon C．Stewardson： Resistrap．
Hobart Pasha，Augrette Charlfs Ho eart－Hampdex．third son of the Earl of Buck－ inghamehire．English sailor：b．Waltham－or－ the－Whlds．Leicestershire，i April 18zz；d． Milan．Ita！y，so June 1886 ．He entered the Eny－ lish nary as midshipman $1 \$ 36$ and retirea as captain at the conclusion of the Crimean War in 183．Durms the American Civil War he tark the name of＇Ciptaly Robents＇and was given ermmand if a bickade rurner，an ：．c－ c ：nt of which is to be inund in his＇Sketches ；My Life＇p：blished posthumou－iy．in 1867 he c＂tered the Sultan＇s service，teorganized the TuFki－il navy，an 1 iougtt the Ru－ians on the Phack Sea in the Wiar of $18---8$ ．He was made Fasia（IN＇on）and marshal of the Turkish Em－ Fi゙e（Iたい）

Hoobema，Meindert，mìn＇dért hib＇émā， Dutch lant－ape painter：h．Amsterdam． 163^{8} ： d．there－Dec．t\％on．He was ennsidered．next v J．Ruysaal，the hest of the Dutch landecape－ 1－…crs．and as a coloriet reckned even sm－ perive to Ruyalel The figures in his land－ seanes are printe 1 m stly by Berchem．Van de V＇de．Linzelhach，and I Van Loo．His paint．
 1 \＆etc S me ni the mote celchrated works －it is naster are t be iound in public or pri－
vate galleries in France. Germany, and Ilolland. Ilis greatest painting is 'A View in Hollanc',' with figures painted by Adrien van de Velde.

Hobbes, John Oliver. Sec Craigie, Pearl Mary leresa.

Hobbes, Thomas, English moralist, philosopher and political scientist: b. within the borough of Jalmsbury, Wiltshire, 5 April 1505 ; d. Hardwicke, Derbyshire, 4 Dec. 1079. Thomas Hobbes is eminent as writer on the theory of govermment, un psychology, and on metaphysics, and as master of a vigorous and picturesque English style. He was born in the year of the Spanth Armada, 1588 , and lived to be 91 years old, active to the end in mind and in body. He was the son of a poor English sicar, was educated by his uncle, a prosperons glover, and spent the last five of his stndent years at Magdalen College, Oxford. The Oxford of that period was given over to a restricted and arid scholasticism, barring out mathematics, for example, as a black art; and Holbes retained through life a visid memory of the pedantry and narrowness of the Oxford of his youth. At the end of these student years, in 1608 , he was employed by Cavendish, afterwards Earl of Devonshire as tutor to his son; and he remained for the next 20 years in the service of this same great family and throughout his life, in close and friendly connection with it. For two years he traveled with his pupil on the continent, and then followed Is years in England-a service terminated only by the death of his former pupil and constant friend, the second Earl. During these years, Hobbes devoted himself to classical study, which bore fruit in his vigorous translation of Thucydides, published in 1628 . The three succeeding years were spent on the Continent, at first in travel with another English yonth. later in the eager study mainly at Paris, of mathematics and natural science. Hobbes himself tells us with what astonishment and delight he first, in 1628 , when he was 40 years old. saw and read Euclid's 'Elements.' In I63I he became tutor to the third Earl of Devonshire. son of his late patron and first pupil. With him he made, in 163t. a third continental journey, learned to know Galileo during his sojourn in Italy, and was admitted. in Paris to the fellowship of a group of mathematicians and scientists. He must have been pondering on prohlems of politics and of psichology in the interrals of his study of physics and geometry, for his next book. which circulated in manuscript as early as $16 \not+0$. set forth his thenry of human nature and of the body politic. The publication even privately of this doctrine brought its author into prominence and strongly influenced the course of his life.

The psychology of Hobhes forms the basis both of his political and of his metaphysical doctrine. He distinguishes the 'cogritive (or conceptive)' faculty from the 'motive' fantly of the mind. and recognizes five senses, to which he adds 'a sixth sense, hut internal. * * * commonly called remembrance.' He defines the affective conscionsness as 'motion about the heart.' which "when it helpeth is called pleasure * * * hut when it hindereth the vital motion is called pain." And he ends with a dis-
cussion of the pascions which reduces will to desire and concenves cach emotion from a narrowly individualistic standpont. "To endeavour" he says, "is appetite"; and, in the race of life. "continually to out go the next before is felicity:"

The fomdation of the political system of Hobbes is the tuachng that men "are by mature equal," and seli-secking ; that "many men at the same time have an appetite to the same thing; which yet very often they can mether enjoy in common, nor yet divide"; that consequently "every man is encmy to every other" and that "during the time men lise withou: a common power to keep them all in awe, they seek such a Common Power, as may be able to defend them from invasion of forciguers and are in that condition which is called Nar." "The only way," Hobbes continues, "to erect such a Common Power, as may be able to defend them from invasion of Forejgners and the injurics of one another $* * *$ is to confer all their power and strength upon one man or upon one Assembly of men, that may reduce all their Viills, by plurality of voices. unto one Will." Hobbes aecordingly conceives oi a government as formed by a mutual contract of individuals, of whom each seeks simply his own preservation. happiness, and security: The contract, he insists, is between each individual "subject" and every other-not at all, between subject and sovereign. It is made, he says, "by covenant of every man with every $\operatorname{man} * * *$ as if every man should say, I authorize and give up my Right of Governing myself to this Man, or to this Assembly of men, on this condition, that thou give up thy Right to him." Upon this theory, that the covenant of every citizen with every other underlies government, Hobbes bases his wellknown doctrine of the absolute right of the sovereign. For, he argues, all the governed "are bound, every man to every man to Own and be reputed Author of all, that he that already is their Sovereign, shall do, and judge fit to be done." In other words "every Subject is Author of every Act the Sovereign doth."

Hobbes asserts unambiguously the subordination of ehurch to state. "The Kingdom of Clrist," he declares, "is not of this world: therefore neither can his ministers (unless they be Kings) require obedience in His name." It follows, he teaches, "that every Christian Sovereign [is] the supreme Pastor of his own Subjects" ; and that every subject is bound to obey the command of his sovereign with regard not only to the forms of religions worship bat to the nature of the doctrimes onenly professed. Such conformity to the will of even an "infidel sorercign" does not contiict. Hobbes insists, with our duty to God. For God requires of 11 s only faith and nhedience to his laws. "And when the Civil Sovereign is an Infidel, every one of his own Subjects that resisteth him sinneth against the Laws of God (for such are the I, aws of Vature) and rejecteth the counsel of the Apostles that admonisheth all Christians to ohey their Princes. * * * And for their Fodith it is internal and invisible: they have the license that Torman had. and need not put themselves into danger for it. But if they do, they ought to expect their reward in Ileaven, and not complain of their

Lawiu? Sovererga. much less make war upon lum.
li is not possible, withis the Jimits of this article. to outhine the ingenions argument by wheh Hobbes seeks io foisi upon a present generatict, :he respor:ibilities of a social conitaci which a past generation made. Sull less is it possithe to peesent an adequate critictem of the cuacepton of Hobbes. Psychulogsta and socio. giste have long smce agreed that mas peychelogy and his poitical theory are aline deiective: that societies and govermmerts stul, and are net manuiactured: and that sympathy no less than selishmes :s a basal manucto le: Hobbes theory ci societr is still wozin studvirg. nct only because it is expressed in such riscrous. English, nor even mamly besause cí the inturnce it exersed on Roussean and Epinoza (qq.r.). bui primarily because it so ru:hlesty depicts society as it would be if men were no more than seli-seeking and egoistic.

It is evident that the brilliant attempt of Hobhes to justify ihe absolute supremacy of the monarch could find lirtle iavor in England in the rears of the Parliamentary struggle with Charles I. Hobbes, who was morhidly timid. beleved that he stood in persomal danger and betook himseli. a volumiary exile, to Paris where he spent it years in the societs on the ore hand. of French men of science and letters, and on the other hand. oi the English royalisis. Inn 1646 Hobbes became the tutor of the young prince, later Charles II. He pabFi.hed in the neantime an epitome in Latin. 'De Cive.' of his doctrine of government, and afterward the earlier work alfeady referred to. In $16 \leqslant 1$ he brought out the work by which he s hest known. 'Leviathan, Or. The Ma:ter. Form and Power. oi a Commontealin.? This nook is the most popular. iozcible. and detai'ed liscusston of the political theory of Hobbes. It opreived hy several chapters which are proporly: peychological and which embody an egoistic and sensationalistic peychology full of acuse introspecticn and of keen discrimination. The ldier chapters of 'Leviathan' include suggestions of materalistic docirime. In spite of : = menarchical iendency. (Lev iathan' was volently opposed by the influential clerical party among the Finglish rovalis:s in Paris. Hobles oncluded that he would be safer even

Puriven Frgland, retarned acm-dingly, ard tived unancte:ed ionter the Cromwel's. At the Reinnuil n. in ifk6, he regained he myal favo: ar! he rever afterward lost the protection uf his 0 id pupil. Charles IJ.

Th- netaphysical dieetive of Hehbes is expourdud in tw be ks nu"thed a i, weors after hi- rearn :o Engiand: (De Corniee.' which annorred in ! f:s, and a tranelation. 'Cnyceraine Pady.' whroed a year later. Tr: $=$ ieachira : enecinctly stated in these woris: ©The werld I mean * * * the whole m of theres lhat are), is coppereal. :hat is hour: * * * ard that which is res bedy is re part of the universe" The dicerine ni Helhes is. in other 1 w rds. frankly materialistic: he eache= that the imnurersbe realities which wo to make up the universe are, ore and all, nornspiritial. of roa: rial s-c-1led -nitit are, he hide mere'r culte and intangille bodice: ary even God the Fira Canse of the universe is
body. The philosophy of Hoobes becomes in 1ts detail a system of mechanics of of physics: ior, since all reaity is physical, laws of space or of motion must be ufrimate laws.

7 he metaphysical doctrine of Hobbes deserves more attenton than it oiten receives, because it is so thoroughgoing and internally consistent a sysiem oi materiahsm. The arguments, implicit rather than explicit. on whach Hobbes ba-es it are none the less, in the view of the writer oi the notice. unsound. In briei, Hobbes argues for materialism pariy because of the antrustworthines oi conectuisnese, and partly on the ground that physical motions are admitted to be canse of conscomeness. 'It is evdent.' he says. while deacribing the phenomenon of vision, in the second chapter of 'Human Nezure.' "ithas irom all lucid bodies. there is a motion produced to the eve. and through the eye to the optic nerve, and so into the brain ** * and thes all rision hatla its original irom * motion." From similar obervations lie concludes that ideas (or in his own words. apparitions or phamasms) "are nothirg really but motion * ." The reasoning that consciousness because condifioncd by metion is. iherefore identical iwith mntion is evdently illicit: and it is observable that Hohbes. when he tries to define body. motion, and space. really conceive: them in terms oi ideal reality.

Iust before the appearance of the metaphysical werks, in 16三4, an essay 'Of Liberty and Necessity.' written by Hobbes eight years before in the contse of a private discussion with Bishop Bramhall. was published withont the knowledge and consent of the author. It was followed in 1656 by a longer and more polemical work. 'The Questions Conceming Liberty, Necessity, and Chance. clearly Stated and Debated between Dr. Bramhall * ${ }^{*}$ and Thomas Hobhes.' The umambiguous teaching of these work is a deierminism grounded in piychology; the doctrine "tha: volumiary actions have all oi them necessary causes and are thereiore necesivated."

Most of the works which Hohbes puhlished fromi this time onward are. indeed. controversial in character. Nost bitter of them are the hooks and essays on mathematical suthects. matnaining against Wallis and Ward, Savilian nofocors in Oxined, the posibility of squaring the ciote. The titles rifiwn of theae works ate an indicotion oi the snisit in which Hohles wrote :hem: 'Six Lessms to the Professots of the Ma:hernatic: * $\approx *$ in the char: set up by * * * Sir Hent. Savile in the Tniversity ni Oxiord': and Serymas of Marks of the thiurd Geometry. Rural Language. Scot\therefore Ch Chuch P litus and Barharisus of John W-1'is' It hhes, who was aiter ail. no trained mathematician, was always worsted in these mathematical contests, but never acknowledged himse'i defeated.

Mre cerious than the jus:ified criticisme of W ard and 1 allis on the mathematics of Pobhes were the attacke upon the orthodoxy and the m rol iv of his teaching. These atiacks. and e-rocially :he :hnttive attemp: to :uppre: "Ie-vi- ${ }^{2}{ }^{\prime}$ hy act of Parliament. cansed Hohes E- i ymeasines- In the Appendix which he added an bi- vranslation of 'Leviathan' into Latin published $\mathbf{t} 68$) he argued that the teach-
ing of 'Locviathan' is not heretical, and that there remams no Englinh court of horesy; and he wrote at the same time a wery vigoroms "Answer to a Luok I'ublished by Dr. Bramhall called Catching of the Leviathan,' a book in Which the Bishop of Derry hat maintaned "that the llobbian principles are destructive to Christianity and to all religion." Nobody doubts today that these charges are mufomded. Hobbes, it is true, inculcated a materialistio philosophy and an egoistic and necessitarian ethics: loat upon these doctrines he himself based both the philosophical conclusion that God exists, and an ethical system which exhorts to justice and socjal rirtnes, even while it derives these virtues from purcly sellish instincts. It is necessary to suppose that many of the men who decricd llobses had never read him; and that the epithets 'free-liver.' and 'atheist,' which writers of his own and the following century heaped upon him were due, in part at least. to the fact that llobbes remained throughout his life in some sense muler the protection of his former pupil, Charles 11 . Very monustly, therefore. he was held responsible for the las morals of the court. It should be added that from this time onward llobbes failed to gain from the censor license to puhlish any work on a political or on an ethical subject. The chief of the works, written at this period hat published after the death of llobbes, is 'Behemoth: The History of the Causes of the Civil Wars of England * * * from the Year 1640 to the ycar 1660.'

Hobles spent the last four years of his life with the family he had so long serverl, that of the Earl of Devonshire. In these later years he returned to the classical studies of his youth, publishing when he was 87 years old," "The lliads and Orlysses of Homer, translated ont of Greck into English, with a large preface concerning the Virtucs of an lleroic Pocm.' In his very last year he wrote a sketel?, in latin metre, of his own life. Ile hat feared many things, and death most of all, hat he died quictly after a short illness. in 1670.

Bibliography. - The authoritative exlition of Hohbes is that of Sir William Molesworth: 'English Works' (in eleven volumes): 'Opera Latina' (in five volumes) - London, 1830 - $18+5$. A recent reprint of the 'Leviathan' is that of Thornton (Oxford, ISSI). Selections, mainly from the ethical and political writings, are those of E. H. Sneatl (1808) and F. J. E. Whorlbridge (1903). 'The Metaphysical System of Hobbes, edited by 11 . WV. Calkins (Chicago 1905) contains the important chapters of 'Concerning Body.' For biography and criticism the reader is referred to G. C. Rolertson, 'Hobbes' (iS86): Leslic Stephen. (1lobles) (I884): and Tönnies, 'Hobbes L chen and Lehre) ($180(i)$. For complete list of the writings of IIobles and for further references to his critics, one should consult the works just cited, and the Pibliography of Penjamin Rand, publiched as Yol. MII., Pt. I of Paliwin's 'Dictionary of Philosophy and Psychology.'

Mary \Vhiton Calkins,
Professor of Philosophy and Psychology, I' ellesley College.
Hob'ble-Bush, a viburnum (I°. alnifolium) of the sonthern interior of the United States,
whose branches often streteh along the ground and rout at the ohber concl, tripping up the unvary; hence it has such otber names as war-faring-trece timglefoot, and devil's-shoestrings. The branches are fong. Hexuons, and redelish in color, and the leaves are nearly orbichar and turn to a decpred in the athtumn. See Viburnum.

Hobkirk's (hobkerks) Hill, Battle of, in the kevolution, 25 April 1285 . After Guilford Conrt-house (d.v.), Greme marched toward the British position at Canden muler Rawdon, amel cncamped at 1 obkirk's 1 Rill, about it, miles north. IIe had 940 men in line, prudently enn camping in order of battle: and some militia just arrived who took no part in the lattle. 11 is trains and artillery land not come up, and at renegade drmmer boy informing kawdon of this, the latter took 960 men, and making a detome to the right throngh the woods in front of Greene, drove in Greene's piclects with so sudden an onslanght that the Americans had barely time to form. Gruenc ordered the First Maryland to charge bayonets and IVilliam IVashington to take the British in the rear with his cayalry, while Ford and Camobell executed Hanking movements on Rawdon's wings. Bat Ford was killed, one of the First Maryland's captains was shot. the men fell into disorder, and Col. Gunby ordered the regiment to form on the rear companies instead of moving the latter forward: the retiring men were scized with a panic, the famons veterans broke, and though soon re-formed, the position was dangerous and? Greme had to retreat. Gumby was court-martialcel, but acquitterl of anything but grawe misjudgment. Grecne's loss was 135 , besieles missing militia; Rawdon's 220 (lris own figute) or 258 (Tarleton's). Consult Dawson. 'Pattles of the United States) (New Vork 1858): Carrington. 'Battles of the American Revolution' (New lork 1875).

Hoboken, hōhō-kēn, N. J., city in llisdson Connty; on the Hudson kiver. It is the terminus of the Delaware. L. \& W. R.R. It is opposite New lork city, north of and aklooining Jersey City, and has on the north and west the Palisades. Its area is about nne square mile. It has clectric railway comections with a number of the cities and towns of the State. and by direct ferries with the business district of New York. The principal strects rum north and sonth, nearly parallel with the riyer. Its long waterfront gives it evcellent shipping facilitics: and here are located the docks of the ncean steamship lines: the North German Lloyd, the Thingvalia, the Netherlands-American, and the Hamburw- American. The Jand unon which IInonken is located as woll as much of that adjoning. nuce formed a part of the territory of New Netherlands. It was early known as llobocan llacking, which means"the land of the tobacco-pipe." The tolaceo-pipes which were made by the Indians from the stone found in the ricinity gave rise to the name. In 1630 Nichacl Pauw, of 1 lolland, purchased from the New Netherlamls Company a tract of land a part of which is the site of the present city of Hoboken. The land around was soon cultivated and as New Ansterdam grew in numbers and importance, the gardens across the river became
more valuable. John Stevens (q.v.), in 1804, purchased the land upon which the city now stands. and began the town. At this time and for some years after the Elysian Fields of Hoboken were much used as pleasure grounds by Jew Iorkers. At first Hoboken was a part of the town of North Bergen. but on 28 March 1855 it was incorporated as a city. The disastrous fire at the wharves of the North Gernan Lloyd Steamship Company, which occurred in 1900. destroyed considerable of the city property and three steamers. The estimated number of lives lost was 200. The chief mannfactures of Hoboken are iron products. leather. silk, lead-pencils. caskets, wall-paper. beer, shipbuilding and repairing, and chenicals. It has extensive coal yards, and large lumber and brick yards. The drainage of the lowlands is now (t903) under consideration, and by this means a large tract of land will be reclaimed and the sanitary conditions of the city improved. The city is the seat of the Stevens Institute of Technology (q.r.). and of the Sacred Heart Academy. It has Saint Mary's hospital. public and parish schools. and several rine church buildings. The government is vested in a mayor. who holds office two years. and a city council. The mayor appoints the schooi, library, fire, and health commissioners, also the assessors. The police commissioners are appointed by the mayor and approved by the council. The council elects the inspectors. the city clerk and his assistants. Pop. (IE00) $+3.6 \pm 8$: (1000) 59.364 ; (1905) about 65.000 .

Hob'son, John Atkinson, English social economist: b. Derby. England. 6 Inly 1858 . He was graduated at Oxford University, and from 185- to 189 - taught English literature and economics for the University Extension Delegacy: and the London Society for the Extension of University teaching. He is one of the foremost of economic writers in England and, as a socialist, adrocates the monopolistic control of industries by government. whether municipal. or national. Among his works are 'The Physiology of Industry: Being an Exposure of Certain Fallacies in Existing Theories of Economics? (with A. F. Alumnery, 1889): 'The Evolution of Modern Capitalism' (s\&94): 'The Social Problem: Life and Work') (190t) : and (Impcrialism' (1902).

Hobson, Richmond Pearson, American naval constructor: b. Green:boro, Ala.. $1 /$ Aug. 1870. He was graduared at Annapolis Naval Academy in t\&89 and took a post-graduate course at the Ecole Nationale Supérieure des Mines, and the Ecole d'Application du Genie Maritime in Paris. During the war with Spain he was present at the bombardment of Matanzas and distinguished himelf by his heroism in sinking a collier across the entrance to Santiago Harbor, on the night of 3 July 1 Sole for the parpose if preventing the exit of Cervera's fleet. He resigned from the nary in 1903.

Hobson's Choice, a proverbial expression, denoting "without an alternative." It is sald to have hard it- nrigin in the practice of 11 ohsitn. a carrier at Cambridge. England. in Milton's time. who let horses to the students, and ohliged his enstemers to take the horses in rotation, that they might be worked equally. Milton wrote two epitapls upon him.

Hoche, Lazare, lä-zär ōsh, French soldier: b. Nontreuil 25 June 1 r68; d. Wetzler 19 Sept. 1797. He took service in the Freach guards when 16 years old. and at the revolution joined the popular party. He greatly distinguished himself at the siege of Thionville and the deience of Dunkirk, and shortly afterwards. when scarcely 25 years of age. recejved the command of the army on the Iloselle. In 1793 he drove the Austrians out of Alsace. and soon after was arrested by the Jacobins and imprisoned at Paris. In 1/94 he was released, and appointed commander of the army destined to quell the rising in the west, and aiterwards to that in La Vendee. In $1-96$ he conceived the plan of attacking Britain, and making a descent on Ireland, but expired suddenly while in camp with his army of invasion.

Hockey, a game oi ball known as hurley in Ireland and shinty in Scotland, dating in its present form from about IRS_{3}. when a definite code of rules was drawn up by the Wimbledon Club. According to standard rules the game is played between two teams of 11 players each. on a ground 100 yards long by 50 to 60 yards wide. A goal is erected at each end of the field, and consists oi two uprights iz feet ajpart supporting a horizontal bar - feet from the ground. In front of each goal a line 12 feet long is drawn parallel to the goal-line and t_{5} yards from it : and from each end of this line. with the corresponding goal-post as centre, a segment of a circle is drawn ontwards to meet the goal-line. Thus. a kind of semicircle tlatiened at the top is drawn in iront of each goal. and no goal is scored unless the ball is hit irom within this line or striking-circle. The ball used is an ordinary cricket ball painted white; and each player is provided with a stick. curved at the end. without any metal fittings, and not too thick to be passed through a ring two inclues in diameter. The players are arranged on the field as in Association football. namely, goalkeeper. two backs, three half-backs, five forwards. The game is started by one player of each side bullying the ball in the centre of the ground that is, by first striking the grourd with his stick and then striking his opponent's stick three times, after which either may strike the ball. When the ball is driven between the goalposts under the bar by a stroke from within the striking-circle. a goal is scored. and the game is won by the side with a majority of goals scored. The ball may he caught or stopped with any: port of the body, hut it must not be carricd. kicked. or knocked on except with the stick: it must be played from right to left only. The goal-kecper is allowed to kick the ball away in defending his goal. Ends are changed at lialftime.

Hock'ing. Joseph. Englisly nonconformist clergyman and novelist: b. St. Stephens, Comwall. tS59. He was educated at Owens Collesc. Manchester, and entered the monconinemist ministry in tist. Among his many published hooks are : 'Siory of Andrew Fairfax' (1003): 'The Scarlet Woman' (18 m): 'The Purple Rnbe' (1000): 'The Jradness of David Baring' (3000) : 'Greater Love' (1901) : 'Lest W'e Forget (1901). He is a brother of S. K. Ho ${ }^{-1}$ ing (qu.).

Hocking. Silas Kitto. Enclish Methonist clergyman and novelist: b. St. Stephen's, Corn-
wall， 24 March 1850 ．Jfe was ordancd a min－ ister in the Methodist Free Church in 1870，and after holding pastorates in Liverpool，Manches－ ter．and elsewhere，resigned from the mmistry in 1896．He is a prolific wruter and several of his books have been much real in America． Anrong them may be named＇Alec Green＇ （1878）：＇For Light and Liberty＇（1890）；＇One in Charity＇（1893）：＇A Son of Reuben＇（1894）： ＇God＇s Outcast＇（ 1828 ）：＇The Awatening of Anthony Weir＇（Igo1）＇Gripped＇（1902）．

Hocking River，a stream which has its rise in Fairfield County，Uno，and flows south－ east into the Ohio River．The whole length is about 80 miles：it is mavigable for about 70 miles．Along the shore．in the upper part of the course，is the Hocking Canal．

Hocking Valley Railway Company，The．

 The Mineral Railroad Company was incorporated Ifth April 1864 ，to build a railroad from Colum－ bus to Athens．Ohio，but beyond making prelimi－ nary survers and securing some rights of way， nothing was done toward the construction of the line．Mr．M．M．Greene，who was operating salt works at Salina（now Beaumont），Ohio，in the Hocking Valley；seven miles north of Athens，in 186，took up the project，and on 26 June of that vear，by decree of the Franklin County Common Pleas Court，the name was changed from Mineral Railroad Company to Columbus \＆Hocking Valley Railsoad Coni－ pany．In 1868 the line was opened for traffic from Columbus to Lancaster，and in 1869 was completed as far as Nelsonville，where it reacthed the coal field．Construction was finished 25 July 1870，to Athens with a branch from Logan to Straits－ ville，in the coal district．The ammal report of the president for the year 1870 stated：＂That the company owned 12 locomotives，eight pas－ senger cars．three baggage cars． 279 coal， 60 box， and 26 flat cars，in addition to which，private parties furnished 403 coal cars，and that with all this equipment．together with 150 other cars furnished by connecting lines，the company was unable to supply the demand for coal and would have to provide more coal cars．＂The gross earnings of the line for 18 ，o amounted to \＄372．229．

In the year 1871 ，the gross earnings increased to $\$_{548,9+2}$ and the president＇s report for that year stated that a valuable trade for coal had been comnenced through Cleveland to points on the Lakes．The report further stated that the heavy traffic made it necessary to renew some of the rails，and that．in order to have a test between iron and steel， 50 tons of steel rails were purchased as an experiment and laid in sidings in Columbus yard under the heaviest wear of any part of the road．

The coal business of the line developed rap－ idly：the gross earnings for the year 1872 being $\$ 854,822$ ．The company trebled its number of coal cars and began to feel the need of proper outlets for traffic in points beyond Columbus． connecting lines being cither mable or unwilling to furnish cars for the business offered their lines．It was thereupon determined to under－ take the construction of a line to supply the great demand of the Lakes and the Northwest for Hocking V＇alley coal，and Toledo was se－ lected as the most appropriate port．Accord－
ingly on 28 May 上゙フュ，the Columbus \＆Toled： Railroad Company was incurpor：ted by N1．N． Grecne，P．IT 11 intington．B．E．Smith，IV G． Deshler，James A．Wifonx，and Johrs L．Gill， and a prelimimary survey was at once made．

The line was permanently Incated from Co－ lumbus to Toledo on 15 （）ct．1873．The financial panic of I874．however，made it necessary to defer for nearly a year the construction，which Was commenced 17 Aug．1875；011 15 Oct．1876， the line from Colnmbus to Nlarion was opened for traffic，and on 10 Jan． $18 \% /$ ，the firsi regular train ran through to Taledo，where the com－ pany had acquired valuable frontage on the Naumee tiver for the construction of docks．

The Colambus of Hocking Valley and Co－ lumbus \＆Toledo Railrnad companies entered into a contract 22 Feb．1877，providing int the joint mamagement of the two lines and ior the joint use of terminal property and facilities in Columbus．

During the rear 187\％，extensive docks were constructed at Toledo，and comecting line at Toledo furnished an outlet to points in Dicligan and Canada．In the meantime．the Columbus \＆Hocking Valley Railroad had continued to prosper．In 1877，the Monday Creek and Snow Fork branches in the coal field were partially constructed and opened and seven iron furnaces were in blast in the coal region．

The Ohio \＆West Virginia Railway was in－ corporated 21 May 18－8，to build from Logan． in the Hocking Valley，to Gallipolis．on the Ohio river，and some little grading was done upon this line．but no iurther progress was made until one year later，21 3ay i879．when Hocking Valley interests took up the project， amended the charter to extend irom Gallipolis to Pomeroy，and commenced construction．The line was opened for traffic 15 Oct．IR४o．from Logan to Gallipolis．and 1 Tan． 188 I ，to Pomeroy：

The Columbus \＆Hocking Valles，and Co－ lumbus \＆Toledo Railroad companies and The Ohio \＆Wiest Virginia Railway Company were consolidated 20 Aug．IRSi，under the name of the Columbus．Hocking Valley \＆Toledu Rail－ way Company．

In 1895．the Wellston \＆Jackson Belt Rai？－ way was built by the Hocking Ta！ley Company from Mc．Arthur Junction to Jack min，through the Jackson County coal neld，affording a valu－ able feeder to the line and was opened for traffic to W° ellston I Dec．Iang．and to lackson 10 Feh $1 \& 96$.

During the pazt few years radical improve－ ments have been made in the capacity of the line for handling traffic：fo ton conal cars to the num－ ber of nearly 0,000 have been added to th？ equipment．nogul ireight engines have been superseded by consolidati in engines of greater capacity，making a large increase in the londing of freight trains：improved machinery for hand－ ling coal and iron ore has been placed on the company＇s docks at Toledo，and the yard． sidings，and station iacilitics of the line have been increased to take care of the constanth growing traffic．

Of the five seams of bituminous coal mined in the State of Ohio，four are to be iound on the line of the Hocking Valley Railway，and through its connection with the Kanawh \＆ Nlichigan Railway at Athens it also receivec shipments of coal and coke from the Kanawhe
\＆Nev River districts of llesi Virginia． Through its control of dock facilities at rars－ ous points on the Great Lakes it has been enabled to iransport coal ior shipment by lake to the amount of nearly 2.000 .000 toms during the navigation seas on the year 100：

The Hocking Valley is the longesi line of raitway erairely 1 ithin the limits of the State of Ohio．and occupies a centra：position irom the Ohio tive io lake Erie，passing through the capita．with ranctes in the popukus re－ sions of the coal fields．In 100 the toial mile－ ace ci the Hocking Valey Rainay was 3भ7． made ：$: ~$ is follews：Toludo t Pomer 2 2Foぶ
 branch．1－－3 miles：cther tranches．+3.7 miles． Fir ihe ：ear thition ic lame 1005，the gross carnings wore soors．21t The operating ex－ penses were E4．06． O ，thus showing net earn－ ings of Ei．ajs．313．whoch with other income di Esiz2．230 show the intal net incone of the company fot that year．ミコ，ミ2ー．ミ，

F．B．Sheidny．

Ássistent to Presiaent．
Hodder．Alfren．American armor：b． Celina．Ohio．IE Sept IEÁ；d．Jew Iork 3 Natch ioct．In iavoro he fead law in the
 \％the hat is Deaver．C 1 ．sumed in the Har－
 fill w tiere 1 ®oi－z．Ife was fos a time lecture menglish fectature and drama a：Bron Nawr
 Satic：．and puhlishe＇＇T＇se Powers that Prey wi：h fesiah Fly：．．．ignc a ctlleci－in（ismries if it criminal clasecs，and The Specious Presen：＂（19011．a metaphysical treatise．

Hodge．Archibald Alexander，American Presby：erian divine：b．Princeton．I I is Iuly 1823：d Princeton 11 Nor．INo．He was the son $=$ Charles Hodge（q．v．）and was graduated ai P－inceten College 1841，where he became ausstant professer．In is\％afier graduation in the The I gical Seminary of the same place he wen：i．Aliahabad．India．as a missicnary．He stayed in Asia for three years and returning home held pastoral charges in Maryland．Vir－ simia．and Pennsylvania until $18-7$ ．when he became his iather s assistant at Prince：on Semi－ nary．succeeding in $18-5$ to the chair oi didactic and exesetical theolow made vacant by his father＇s death．Among his works the most im－ portant are＇Outlines of Theolosy＇（18－0）： ＇The Ai nemen：＇（ISES）．

Hodge，Charles，American Presbyterian theclogian：h．Phıladelphia as Dec． $1,0-: \mathrm{d}$ Princeton．N．I．．io June $18-5$ ．He was edu－ ated ion Princeton College．graduating in 181 ． In $1816-10$ he studied in the theolosical semi－ naty ai Princcion．in ISzo was appointed instructor there and two years later made fro－
 IRo he was transierted to the chair of didactic and evegetical the logy in the seminary，and 12 years afterwards appcinted to the additional chat：ci p lemical theology．In 1825 le founded the＇Biblical Repertnry；＇afterwards was re－ named＇Biblical Repertory and Princeton Review．＇and merced in $15 \div 2$ in the＇Preshy－ ieran Quanterly and American Theological Re－ vew，From the foundation till $18,-2$ he was editr of and chicf contributor to the＇Review：＂
and two of his works．（Princeton Theological Essays＇（ISió－）：and＇Essays and Revjews＇ （185\％）．were compiled from his numerous arti－ cles in that periodical．Other works are：＇Com－ mentary on the Epistle to the Romans＇ （1855：enlarged．IS66）：＇Constitutional History of the Presbyterian Church in the United Stares＇（IS $4-41$ ）：＂The Whay of Life＂（ 1842 ）： ＂Systematic Theology）（IE；I－z），a compre－ hensive treatise giving an exposition of Calvin－ istic theology：and（What is Darwinism？＇ （18，－4）

Hodge．Frederick Webb，American ethnol－ ogist：b．Plymouth．England． 28 Oct．IS64． He was brought to this commery at the age of seven rears，and was educated at Wasbington． D．C．In IS8：he received appointment to the Unied Siates Geological Survey，in ISEO be－ came secretary of the Southern Archaeological Expedition．and in I\＆B．Was appointed to the Bureau of Ethnology．Smithsonian Insritution， He has written various papers on the lndians of the southwest．

Hodge．John Aspinwall．American Pres－ byterian theologian：b．Philadelphia．Pa．． 12 Aug．1831．He was graduated irom the Uni－ versity of Pemnsylvania（1851）and from Princeton Theological Seminary（ 1856 ）：After 35 years of pastoral work he was appointed in INo3 professor of biblical instruction and church polity in Linciln Cniversity．Amone his works are＇llhat is Presbyterian Law：（INさ2）： ＇Theology of the Shorter Catechism＇（ISSS） ＇The Ruling Elder at W＇ork＇（IRO－）．

Hodges，George，American Episcopal cler－ mman：b．Rome．ㄷ．． 6 Oci．I\＆56．He was graduated irom Hamilton College．Clinton． N ． 5．．．in IE－：and irom the Berkeley Divinity School．Viddletown．Conn．in ISE．He was assistant rector of Calvary Church．Pittsburg． Pa．，1\＄81－9，and rector $180-04$ in the year last named becoming dean of the Episcopal Theo－ logical School in Cambridge．Nass．He has published among other works：＇Christianity＂ Between Sundays＇（ISg2）：＇The Heresy of Cain＇（180．）：‘In the Present WVorld＂（1Eo6）： ＇Faith and Social Service＇（ISo6）：＇The Bar－ tles of Peace＇（ 189^{-}）：＇（The Path of Life） （I\＆oj）：＇William Penn＇（1000）．He is one of the most prominent members of the Low Broad Church Sichool in the Episconal Church．

Hodgetts，hōj＇ëts．Edward Arthur Brayley， Enclish journalist：b．Berlin．Germany： 12 June IE59．He has been connected with several influ－ ential London journals in the capacity of cor－ respondent and was foreign editor of the New Iork ${17^{\circ} \text { crld in iso A Among his published }}^{\text {An }}$ books are＇Liquid Fuel＇（1800）：＇Round About Armenia＇（1806）：＇A Russian llild Flower＇ （ $1 \times 0-$ ）：and a iramslation of＂The Swiss Fam－ ily R ．hinsern（ 180% ）．

Hodgkin，höj＇kin．Thomas，English histo－ rian and banker：b．Tottenham，Middlesex．20 Iuly 1831．He has heen fur many years the senior parner in a banking firm ai Newcastle－ on－Tyne，but since 18 －4 has given his time 10 historical writing．He has published＇Italy and her Invaders．＇a work oi much immortance，of which eight volumes have already appeared （ISSO－m）：＇Dynasty of Theodozins＇（iSSg）： ＇Life oi Genrce Fox＇（1So6）：＇Life of Charles the Great＇（ $180-$ ）：cte．

Hodgkin's Disease. Sce Psecdolectemat.
Hodgkinson, hǒj'kin-són, Eaton, English engineer: b. Anderton. Cheshire, rysa; d. ISOI. After a somewhat desultory education, and the pursuit of independent investigations in mechanics be was appointed in 184% professor of the mechanical principles of engineering at U"niversity College. London. He was one of the royal commission appointed in $18+7$ to inquire into the application of iron in railroad building. His principal experiments led him to the determination of the "neutral line" in the section of fracture, an important step in the progress of engineering science. Among his many writings is 'Researches on the Strength and Other Properties of Cast Iron' (1846).

Hodgson, hǒj'són, Shadworth Hollway, English metaphysician: b. Boston, Lincolnshire. 25 Dec. I832: He was educated at Rugby and Oxford and is the author of 'Time and Space' (1865): 'Principles of Reform in the Suffrage" (1866): 'The Theory of Practice" (1870); 'The Plailosophy of Reflection' (i8-8): 'The Metaphysic of Experience' (I80) : etc.

Hodograph, hǒd'ō-grăf, the term for a velocity diagram which facilitates the study of kinematics. It signifies the curve along which the extremities of lines drawn from a fixed point pass and exhibit in direction and magnitude the velocities of a moving object at the different points of its orbit or path.

Hoe, Richard Marsh, American inventor: 1). New Fork 12 Sept. 1812: d. Florence, Italy; 7 June 1880. He was the son of Robert Hoe (q.r.). In $18+6$ with his brother Peter S. The perfected a rotary printing-press which was called "Hoe's lightning press." Subsequently the two brothers invented the Hoe web-perfecting press. These were especially adapted to newspaper printing and made a revolution in that art. The sons of Richard MI. Hoe and of Peter S. Hoe conducted the business after the death of the brothers. and added varions improvements to the original Hoe printing-press. The factory in New lork in 1903 was said to be the largest printing-press works in the world.

Hoe, Robert, American inventor: b. Leicestershire. England, 17 S $_{4}$: d. 1833 . He came to the United States in I803, was for a time a joiner, and later entered partnership with his brothers-in-law, Nlatthew and Peter Smith, for the sale of a hand printing-press, the invention of the latter. He took over the business in 1823. The original Hoe printing-press was designed and built by him.

Hoe, Robert, American manufacturer: b. 1839. He is a nephew of Richard II. Hoe (q.v.). He became the head of the Hoe firm, and maintained its high position among establishments of its class. A founder of the Grolice Club of New Iork, he was also its first president. He published an edition (ISSO) of Naberley's 'Print Collector.)

Hoe'ber, Arthur, American artist: b. New York 23 July I85t. He studied under Beckwith in New York and moder Gerome at the Ecole des Bealix Arts, exhibited for the first time at the Salon in 1882 , and is a contributor to most American exhibitions. He is art critic to the Commercial Adzerfiser. Among his writinge are 'Treasures of the Netropolitan Museum of

Art': and 'Painting in the reth Contury in France, Selgium, Spain and Italy.'

Hoey, Frances Sarah Johnston, Irish novefist: b. near Dubhn inso. She was married to A. M. Stewart in 18.4 11 , and to Joln Cashel Hoey in 1858 . Among her books, which have circulated in America as well as in England, are: 'A House oi Cards': 'A Golden Surrow': (No Sigu'; 'A Stern Chase'; 'His Match and Mare.'

Hofer, hō fert, Andreas, Tyrolese patriot: b. Sankt Leomhard 22 Nov. 1707 ; d. Nantua 20 Feb. I810. He was landlord of the inn "Am Sand" at Sankt Leonliard, and hence often known as "Sandwirt." In I506 he led a rifle company against the Frencls on Lake Garda. and after the Peace of Luneville was prominent in the organization of the Tyrol militia. In 1809 he led in an insurrection of the Tyrolese for shaking off the yoke of Bavaria, to which their country had been transferred by the Treaty of Presburg. In a short time, with intermittent assistance from the Austrians, he defeated the French and Bavarian troops, and nearly the whole country was liberated. Hofer then carried on the military and civil administration, till the Peace of Vienna was proclamed. Misled by false reports he commenced hostilities anew, and thus forfeited the protection of the amnesty: He remained concealed for some time, but was at last betrayed to the French, and carried to Mantua, where he was tried by a court-martial and shot. His family was indemnified for the loss of their property by the Emperor of Austria in 1819, and his son ennobled. The career of Hofer furnished material for tragedies by Immermann and Anerbach. Consult thic studies by Heigel (1854) and Stampfer (I89!).

Hoff, hơf, William Bainbridge, American naval officer: b. Philadelphia, I840; d. IVashington, D. C., 23 May 1903. He entered the naval service in 1860 , and in 1863 was graduated from the Naval Academy: He took part in several naval campaigns during the Civil War. and at the torpedo school and on the U'nited States steamship Dale he gave his attention to the instruction of seamen in gunnery. In 1893 he was marine commissioner to Great Britain for the World's Fair at Chicago, and was retired in 1897. He was the author of "Elementary" Naval Tactics' : and 'Avoidance of Collisions at Sea.'

Hoffman, hŏf'man, Charles Fenno, American poet and norelist: b. Jew York 1806 : d. Harrisburg. Pa., 7 June IR8. He entered Columbia College, and studied law at Albany, being called to the bar in 1827. In I830 he became joint-editor of a New lork journal, and three years later started the 'Knickerbocker Magazine.' For many years lie edited the 'American Monthly Magazine,' also. In if\&? his mind began to give way, and from that time till his death he was an immate of Harrishurg lunatic asylum. His first scparate pulhlications was 'A W'inter in the IVest' ($T 835$), followed in 1837 by ' 1 Tild Scenes in Forcst and Prairic.' and in 18 fo by the novel 'Greyslaer: a Romance of the Mohawk,' which met with immediate and remarkahle success. An earlier novel, 'Tanderlyn,' appeared in the (American Monthly Magazine) during I837. Several of his songs have
gained great popularity. His published volumes of verse include: 'The Vigil of Faith' (I\& 4): 'The Echo' (18H): 'Lays of the Hudson, and other Poems' (18.6): "Love's Calendar, and other Poems' (1848).

Hoffman, Eugene Augustus, American Episcopal clergyman: b. Sew lork 2t March 1820; d. near Plattsburg. N. Y.. if June 1902. He was educated at Rutgers and Harvard colleges and at the General Theological Seminary. He held successive rectorships at Elizabeth, 1 J.. Burlington. ‥ J.. Brookiyn. I. I.. and Plailadelphia, and in 1859 was appointed dean oi the General Theological Seminary, New lork, and with others of his family. heasily endowed that institution. Dean Hoffman buiti Christ Church and rectory at Elizabeth. S. J.. and also churches at Woodbridge and Dilburn. X. J. He was the author of 'Free Churches' (1858): and 'The Eucharistic 11 eek) (1859 and i893).

Hoffman, Murray, American jurist: b. New York 29 Sept. I-91: d. Flushing, L. I.. J Way IS-8. He graduated from Columbia College in 1809; was admitted to the bar. became assistant vice-chancellor oi the superior court of New lork in 1830. serving till $18+3$. and was elected judge in 1853 . holding that position for eight years. He wrote: 'Office and Dities of Masters in Chancery and Practice in the Jlaster's Oifice" (1824): 'A Treatise on the Practice in the Court of Chancery.' in three volumes (I834-40):
'Reports of Cases. Court of Chancery' (1830 40): several treatises on Church Law and numerous other works.

Hoffman, Richard, American pianist and composer: b. Nanchester, England. 24 May 1831. He came to New lork in his 16 th year. He received early insuruction from Rubinstein. Liszt. Thalberg. Döbler and Mever. After his arrival in America he made a tour of the comntry as a soloist, and later accompanied Ienny Lind on her tours: he also played with Grotschalk and Von Bulow in New lork in 18.5. Later he became an important figure in American musical life. He has composed music for the piano, songs, anthems, ballads and church music.

Hoffman, William M., American inventor: b. Buffalo, … 1853 . He received only a limited education and began to earn his living when nite years of age. He prospered until he was 20. when mistortune overtook him and he hecame a fireman on the Erie Railroad. The clnmsines: in the action of the piston rod wheln runs to the driving-wheels of an engine. inbolving such a waste of power, attracted his attention and decided him to build an engine in which there should be no such starting and stopping, hut in which the power should create a direct retary movement. He studied for eight year= the technical branches of engineerms. and at the end of this perind became chief encineer of a large tannery in Buffalo. Ife there invented a new set ni "fleshing" and "puttine out" machinery for tuee in a tamery, and sold the :nvertion to obtain funds with which to experiment on his engine. He went to Detroit in reve and nrganized a cumpany to produce lis "ngine- 11 e spent the first funds in experi-inent-, and built fise models. all of which refused to atir when comnected up, nor were they in any. way operative. In the winter of rease?
he went to Buffalo. there producing Si). 6 , which was a partial success. It was it at type in which the piston revolved in the cylinder. and showed a great advance over his pecvions models in control and speed and in sustaining varying loads. The witernal iriction made in this "amular cylinder" type was too great. and he set out to lessen it or do away with it altogether. Hoffiman worked day and night, and when exhausted would ride on a trolley car all over the city tilf his brain became cleär again, then would go back to work. It was on one of these rides that he thought out the principle which. with a few perfections, achieved the long-sought end. Hoffinan thought that if the piston would not revolve inside the cylinder, the cylinder might revolve around the piston. and he immediately designed an engine in which the cylinder revolved around the eccentric abutment by introducing radial wings extending from the shell toward and against the stationary eccentric core. This engine. though proved by actual test of 18 monthe to be a success, was such a disappointment to Hoffnan that he mortgaged all his property and returned the money which he had borrowed from financiers in August 1902 to further his investigations. Hoffman's son Bertram and Randl Riehl then joined him. and together. in July igot they brought out a 28 h.p. engine which was put into operation in the basement of the Ellicott Square Building in Buffalo and which has proved a success. He then made a twelfth and last design in a 300 h.p. compound engine. which is the largest of its type ever built and which, it is claimed, shows an economy of 33 per cent and a saving in floor space of 80 per cent as compared with the highest type of reciprocating engine. while the friction load has been reduced to 1.3 per cent. All of Hoffman's patents have now been merged into one company, oi which he is president.

Hoffmann, August Heinrich, ow'goost hin'rin hôtmän, usually known as Hoffasivi yox Fillerilebes. German poet and piniloiogist: b. Fallersleben, Hanover, 2 April 1,0心: d. Corvei is Jan. 18,4. He studied at Guitingen? and Bontr. was appointed in I : 23 custodian of the university library at Breslan, and in 1830 became extraordinary in 1835 ordinary profescor of the German language and literatire in the unversity of that city. He resigned his librarianship at Breslan in 1838 , and in 1S. 2 was remoyed from his chair without a pension because of the liberal political views represented in his ' (Enpolitsche Litder' ($1840-1$). He led a ivandering lise till $18+5$. When he obtained the riglat of domicile in Necklenburs. In isfo he was granted a pension by the Prusian government. and from 1800 he was librarian to the Duke of Katibor. Of his original writing the best known are his songs, nut a bew of which. especially that begiming ' Deutschland. Deutschland itber Alles) (IEfi), have long received emphatic popular approval. For several of them he compused tumes. They were pablished in several volames. among these being: 'Cedichte' (182,-): '\lemannische lieder' (182-): "Hundert Schulliecler' (18,is): 'Deutsches Volksgesanglouch' (ISAS): 'Soldatenliciler' (IS51): 'Kinderwelt in Iiedern.' and 'the und Nene Kinderlieder' (187.3). I cemplete edition of his 'Kinderlieder' was prepared by von Domop in

18-5: 'Mein Leben' (i86R: abridged edition contimued to his death, by Gerstenberg, 1892-4), \therefore autobiographical. Consult also the 'Lite' by Wagner (1809).

Hoffmann, Heinrich, German panter: 1b. Frankfort-on-the-Jain, is Oct. 18iq. Beginning life as a roon decorator, in 1843. he adonted iandscape painting as lis proiession and studied uncler Jacob leecker with that end. Long wanderings and careful stadies of nature in the Tamms Mountains, in Obenvalel, and the Black Forest, as well as in the valleys of the Rhine and Mosel. were followed by extensive travels in Switzerland and the Tyrol. The results of this preparatory training appeared in his first large cancas in which the old romantic spirit was blent with an independent and realistic presentation of nature which at once attracted public attention. IHe has produced numberless Alpine and forest landscapes, moonlight and street scenes. most of which are in private collections at Frankfort.

Hofmann, August Wilhelm, von, German chemist: b. Giessen 8 April ISI8; d. Berlin 5 May 1892. He studied law, obtained the degree of doctor of philosophy, became assistant ander Liebig in the Giessen Laboratory, and in $18+5$ became professor of chemitry in the University of Bonn. The same year he was appointed superintendent of the new Royal College of Chemistry in London, and in 1853 became professor of chemistry in the Royal School of Mines, thongly still remaining at the head of the College of Chemistry. In 1861 he was elected president of the London Chemical Society, and in 1863 was appointed to the chair of chemistry in the University of Berlin, where he remained till his death. In 1864 he built a laboratory at Bonn and became its director, and in 1868 founded the German Chemical Society. He was judge of several industrial expositions and was a nember of many scientific societies, and for his valuable services was emobled in 1888. A statue of him is in the National Gallery of Berlin. He wrote: 'A Handbook of Organic Analysis' (1853): 'Introduction to Mlodern Chemistry" (i865); 'Zur Errimerung an vorangegangene Freunde' (1889): etc.

Hofmann, Heinrich, German painter: b. Darmstadt i9 March I824. In his mative town he began his studies as a copper-plate engraver, but subsequently under Schadow and Hildebrande turned his attention to painting, to which henceforth he deroted his life. After extensire travels in Europe, which includerl a residence of four years in Italy, he settled at Dresden as professor of painting in the Academy there. The most famous of his pictures are: 'The Burial of Christ' ; (Fing Enzio in Prison': 'The Petrayal of Christ.' in the Darmstadt Gallery: 'The Finding of Christ in the 'Temple.' in the Dresden Gallery; 'Christ Preaching on the Lake,' in the Berlin National Gallery: 'Venus and Cupid': ‘Romeo and Juliet': 'Othello and Desdemona': and 'Christ in Gethsemane.' All the creations of Hofmann testify to his sense of refined beaty and are rather remarkable for harmonious coloring and delicacy that for originality of design or composition, as lie clings to the tradition of the classic period in the ideal character of his conceptions. Ilis works are popular and have been engraved and photo-
graphed more extenswely perhaps than these of any contenuporary (iomman painter of his order.

Hofmann, Josef, yóscf, I'olish pianist: 1). Cracow 20 Jan. 185%. lle sturlied with his father, a professor in the Warsaw Conservatury and director of the Wiursaw upera, appeared as a pianist in public at the age of six, became known as one of the mont mutable of musieal prodigies, visited the United States in 1887-8. and was there prevented from playing through the action of the Society for the Prevention of Cruclty to Children. Aiter a period of study, two years of whicli were spent as a pupil of Rubinstein, he made lis debut as a virtuoso at Dresden in I894. Itis recitals in New lork in 1901 showed him to be one of the leading modern pianists. His compositions include some interesting works for the pianoforte.

Hog-feeding. See Nutrition of Farmi AniMALS.

Ho'gan, John Joseph, American Roman Catholic bishop: b. Bruff, County Limerick, Ireland. io May i820. He cane to St. Lomis, Mo., in 1848 , studied at the Roman Catholic thoological seminary there, was ordained priest in 1852. and built and became pastor of St. Nielacl's Church of St. Louis. In 1868 he was consecrated bishop of St. Joseph, Mo., and in 1880 was transferred to the sec of Kansas City:

Hogarth, hō'gärth, David George, English archeologist: b. Barton-on-1Humber, Lincolnshire, 23 Nlay 1862. He was edncated ai Oxford and has since conducted excavations at laphos, Alexandria, Fayum and clsewhere in the East. He was director of the British School at Athens 1897-1900 and has published: (Devia Cypria' (I890): "Modern and Ancient Roads in Asia Minor' (ISgz): 'A Wandering Scholar in the Levant' (1896): 'Philip and Alexancler of Macedon' (I897): 'The Nearer East' (I002).

Hogarth, William, English painter and engraver: b. London 10 Nov. 1697 ; d. there 25 Oct. r764. He studied art at Sir James Thornhill's school. James Strect. Covent Garden. About 1720 he set up for himseli, and designed plates for booksellers, the chief of which are the illustrations to Gray's edition of 'Hudibras' (7,26). The had ample employment for what are called "comersation picces." that is. groups of family portraits, united loy some commons occupation or interest, lout never cared greatly for this branch of art. In Alarch 1720 he married clandestinely the danghter of Sir james Thormhill, and shortly afterward began to clisplay his extraordinary factlty for depicting the vices and follies of his time. In 1730-1 he painted 'I Harlot's Progress.' a series of six pietures. like many of his other works, engraved by himself. It was puhlished in April 1732. The 'Harlot's Progress' was followed by other satiric delincations, such as 'A Midnight Modern Conversation' (1734). 'Southwark Fair' (r735). 'A Rake's Progress' (1735). 'The Distressed Poet' (17,36). 'The Four Times of the Day,' and the 'Strolling Actresses Dressing in a Bam' (1738). With less success he also produced the large canvases still in St. Bartholomew's Hospital - the 'Pool of Bethesda') and the 'Good Samaritan,' both executed in 1736: and also painted several portraits. The series of graphic satires was, however, continted
by the (Enraged Musician' (IFAI) and the famous 'Varriage à la Mode' (his masterpiece). six pictures now in the National Gallery; and engraved by various hands in $1 ヶ+5$. 'Industry and Idleness,' 12 plates, iollowed these in 1/47; 'Calais Gate' (1,49) came next. and in 1,50 the fine plate known familiarly as the 'Jarch to Finchley.' The minor plates of 'Beer Street' and 'Gin Lane" and the set called 'The Progress of Cruelty' belong to $1 \% 51$. In $1 \% \Sigma_{2}$ Hogath published his 'Analysis of Beauty.' a treatise containing many shrewd remarks, but confused and illiterate in its style, and the cause of much ridicule. After this he produced (with the aid of Grignion and others) the four prints of the 'Election Series' ($1 ; 55-8$), the 'Cockpit' (1759). etc. In $1 ; 62-3$ he became involved in a miserable quarreí with Wilkes and Churchill. the result of which, on his side. was the wellknown portraits of Wilkes, and of Churchill as a bear ('The Bruiser').

Most of Hogarth's pictures, which now enjoy a much higher repute for technique than formerly, are preserved in public or private collections in Britain. He was entirely uninfluenced by foreign art. His powers of invention and combination were extraordinary; and as a humorist and social satirist with the pencil he has never been surpassed. There can be no doubt also that he genuinely desired to assist by his work in the reformation of manners. Consult the biographies by Sala (1866) and Dobson (18-9).

Hoge, hōg, Moses Drury, American Presbyterian clersyman: b. Hampden-Sidney: Va.. 1; Sept. 1819: d. Richmond. I'a.. 1809. He was graduated at Hampden-Sidney College and Seminary and was pastor of the Second Presbyterian Church in Richmond. Va. ($18+5-85$). He ran the blockade in a ship from Charleston during the Civil War and secured from England a large number of copies of the Holy Scriptures for distribution among the Confederate soldiers, the British and Foreign Bible Society making a special grant at his request. After the war he was instrumental. especially during the session in 1874 of the Southern Presbyterian Church, in reconciling differences with the Northern Presbyterian Church.

Hogg. James, Scottish poet. familiarly known as "The Ettrick Shepheri" : b. Ettrick, Selkirkshire. 25 Jan. 1770: d. Altrive on the larrow, 21 Jov. 1835. After receiving a very scanty cducation, he began to carn his bread by daily labor as a shepherd. His early rhymings brought him under the notice of S_{ir} Walter Scott. by whose advice he published a volume of ballads called 'The Mountain Bard.' He then went to Edinburgh, where he pulblished the 'Forest Minstrel' (1810), and started a weekly periodical entitled 'The Spy.' The appearance of the 'Queen's Wake' in 1813. with its clarming ballad of Kilmeny, established Hogy's reputation as a poet. In i8rs he pullished 'Pilgrims of the Sun.' followed by 'Mador of the Moor) ; the (Poetic Mirror) (a collection of imitations of living poets): 'Queen Hynde,' and 'Dramatic Tales,' as well as by 'The Brownie of Bodsbeck.' ete. From 1817 he held the farm of Altrive from the Duke of Buceleuch at a merely nominal rent; but his farming
schemes never throve, and he was generally in narrow circumstances.

Hogg, James Stephens, American politi. cian and lawyer : b. near Rusk. Tex., 24 \arch 1851: d. Houston. Tex.. 3 March 1905. He took up the practice oi law, and was instice of the peace in Wood County 18,3-5. and county attorney 18-8-80. In i880 he was district attorney in the zth iudicial district of Texas: in 1886 became ationey-general of the State and from isgo to 1895 was governor. He was one of the Democratic governors who objected to the use of United States troops by President Cleveland at the time of the Pullman strike in 1894. After serving as governor he returned to the practice of lays. and remained active in politics. being prominent as a public speaker.

Hog'nose, a North American colubrine serpent (Heterodon platyrhinus), so-called because of its upturned pig-like snout. It is usually abont two feet long. gray marked with brown bars, but sometimes is so dark that the whole surface appears blackish: and dwells and seeks its prey mainly in the woods and thickets. When alarmed - and it is extremely timid it hisses riolently (whence other rustic names such as "blowing-adder"), and expands and flattens the head and neck by inhaling air and stretcling out the ribs, giving itseli a most ngly aspect. If these tactics do not succeed in terrifying the enemy sufficiently, the snake begins a series of astonishing contortions and twistings which end in the animal throwing itself upon its back and seeming dead until a chance of escape offers. Two or three other species are known in the South and West. all of which are regarded as poisonous by most country people, but are seally quite harmless.

Hogs, or Swine, hoofed quadrupeds oi the iamily suida, including several genera and many species and domesticated races. The males are called "boars," the females "sows," the young "pigs." and the flesh "pork." The hogs proper, both wild and tame. belong to the genus $5 u s$. represented in the wilderness of the Old World by the wild boar (S. scrofa), which is, or was. known throughout southern and central Europe. Algeria, Asia Minor, and sonthwestern Asia: and by the Indian boar (S. cristatus) of India and Indo-China. The wild boar stands from 30 to 40 inches high at the shoulder and will weigh on the average about 250 pounds. His snout is longer, his ears shorter than those of the domestic hog. He roots up the ground in a different manner, ploughing it in furrows: his tusks are larger. some of them being 10 inches in length, bent circularly, and exceedingly sharp at the points. The young wild boar, for the first three years of his life, iollows the sow, the whole litter living in a herd together, and although the adults are plain iron gray (the male exceedingly large and shaggy') the young are striped and spotted. Old boars range the forest alone and unsupported, dreading no single creature. not even man himself. Hunting this animal has always been a favorite amusement. and in Europe is usually pursued on foot by the aid of large dogs, the hunters armed with strong pikes termed boarspcars. A chase seldom terminates without the maiming or destruction of some of the dogs, and tests the courage of the men, for a charge from an enraged or wounded
boar is a formidable thing. In India the clase is pursued on horseback, the rider using a long spear. Hence the sport is known as "pig-sticking," and it involves much risk and danger, and the death of many horses ripped open by the boar's tusks. In addition to these. a small wild pig inhabits western eyuatorial Africa; there are two lesser species in India, one mot much bigger than a hare; and several in the islands stretching from Sumatra to Japan.

Domestic Racs.-Swine everywhere have seemed easily tamable and susceptible to domestication, breeding fertilely in confinement and easily adapting themselves to new enviromments. Since prehistoric times. therefore, the animal has been raised by man in many parts of the world to supply fond. The process of domestication seems to have gone farther toward producing a good pork-making animal in the Orient than in Enrope until the revival of agriculture there iollowing the decay of the feudal system. In Great Britain there was early introduced eastern blood called Chinese stock, and it is from the union oi these two strains - one derived from the Euronean wild boar and the other from some or many Oriental species-that European and American farmyard swine are descended. The ioremost breed, in general popularity: is the Berkshire. which originated in the English County of Berks, hut is now universal. The Berkshire hog is of large size, yields pork of griat fatuess and excellent flavor, grows rapidly and is hardy. It is usually black in color. An American breed developed first in Ohio, and known as Poland-China, is very similar to the Berkshire, and has been perfected until it has become the principal pork-producing hog of the Mississippi I'alley. The English white breeds are led by the lorkshire, which reaches a larger size than any other kind: and from which has been developed an American strain, called Chester Whites, after the county in eastern Fennsylvania where it originated. New Jersey has a local breed called Durocs, or Jersey red hogs, which have the advantage of great hardiness. For these breeds regular stock-registers have long been maintained. Various other wellknown strains of swine in Great Britain and America are the Tamworth, Victoria, Essex, etc. The domestic hog has run wild in various parts of the world. In many of the South Sea islands, and in parts of South America, they have practically returned to a feral condition, and are public game. In the southern part of the United States large numbers of pigs, nominally under ownership. range the woods, picking up their own food of herbage, roots and mast: these become gaunt, thin, high-backed, bristly and develop great running powers, cumning (the intelligence of the whole race is comparatively high), and savagery of disposition; they are localiy known as "razor backs."

For the froper care and treatment of hogs raised for their pork sce N'trition of Farm Animalis.

Domestication has changed the form and proportions of the body, the color, etc.; thus the skull is higher and broader in proportion to its length, and it is more upright in the occipital region. The sow brings forth from the 16 th to the 2oth week after conception, and has usually two litters in a year. Her offspring are very numerous, a litter consisting of from to to even

20; but slee can bring up no more than she has teats, which are 12 in number. The natural term of the life of these animals is from is to 30 years, and they continue to increase in size and strength until they are from four to five years of age. As might be supposed from their habits, they are much infeteil by vermm of different kinds, and are also lable to many disorders, partieularly those arising from gluttony. Notwithstanding repugnant (unalities the hog is of incalculable benefit to mankind. It: flesh is pleasant, substantial and nutritious. Pork takes salt better than almost anv other meat, and may be cured and preserved in many ways. The fat (lard) is one of the most important cullinary articles; the bristles are used in large quantities in the manufacture of brushes, while the skin is in demand anoong saddlers, trunk-maleers, and manuiacturers of small articles of leathr, calling for great durability with flexibility and a handsome appearance.

The family includes various wild species more or less closely. related to the typical swine, such as the babirussa. peccaries, river-hogs, wart-hogs, etc.. elsewhere described.

The principal English works on swine are Long's 'The Book of the Pig' (1889), and Spencer's 'Pigs. Breed and Itanagement' (1897). American works of note are Cohurn's 'Swine Husbandry' (1889): Harris' 'On the Pig' (I896), and pamphlets issued by the Department of Agriculture. See Nutrition of Farm Aminals: Pork: Packiyg Industry:

Hogs'bead, a liquid measure formerly in use in England. Its capacity varied in different cases. For beer it was 54 gallons, for rum 45 to so gallons. for brandy 45 to 60 gallons, and for different kinds of wine it varied from 46 to 93 gallons. In the Cnited States the measure is still in use, being equivalent to 63 American gallons or 52.485 imperial gallons; for tobacco it varies from 750 pounds in some States to 1,200 pounds in others.

Hohenlinden, ho-ĕn-lĭn'děn, Germany: a village of Bavaria, 20 miles east of Munich, celebrated for the victory gained by the French under Moreau over the Anstrians under the Archduke John, 3 Dec. 1800 . The French took nearly 80 pieces oi camnon, 200 caissons. anc more than 10.000 prisoners, with three genera officers.

Hohenlohe-Schillingsfürst, hō-ěn-lō'é shĭl'-lings-fiirst. Chlodwig Karl Victor, Prisce vos, German chancellor: b. Rutenburg-an-derFulda Narcl3 1819: d. Ragatz. Switzerland, 6 July 1901. He took courses in law and political science at Heidelberg. Göttingen and Bom. He entered public life and became in 1860 prime minister of Bavaria. In 1874 he was German ambassador at France and in 1885 became gov-ernot-general of Alsace-Lorraine: In liont he was appointed chancellor and resigned in 1900.

Hohenstaufen, hō'ĕn-stow-fĕn, House of, a German dynasty reigning from 1138 to 125.4 . After the death of the Enperor Henry V. (1125), his two nephews, Frederick II., duke of Swabia, and Conrad, duke of Franconia. aspired to the German crown; hut were opposed by the directors of the election, the Archbishop of Mayence and the papal legate; and Lothaire of Saxony was elected. This circumstance, with the demand made by the new emperor of the

Testutution of all the possessions acquired by the lords of Hohenstaufen during the preceding reign, produced a fierce war between the entperor and the two brothers. Loihaire preserved himseli by a union with Henre the Proud, duke of Bavaria, to whom he gave his daughter and the Duchy of Saxony. The Peace of Mithlhausen (i135), berween Lothaire and Conrad. put an end to this Ten Years was. Conrad renounced his title oi King oi Italy wbich he had taken, but received the first rank among the dukes, and both lee and his brother regained all their lands. After Lothaire's death (it37) Conrad, duke of Franconia, of the house of Hohenstauien. was raised to the throne of Germany, with the title of Conrad III.

After the death of Conrad III. (1152) the conndence which was felt in the Hohenstaufen family caused the choice to fall on his nephew, Frederick III. of Swabia. called Barbarossa (the Red-beard), who was followed by Henry Yí. (IITO), and he again by Otto 1 V . (i19\%) and Frederick II. (12i5-50), all belonging to the same house. Aiter the death of Frederich II. his son Conrad was acknowledged as his successor, with the title of Comrad IV... by most oi the states of the empire: but Innocent IV. laid him under an interdict, and declared him to be deprived of all his lands. The connift between Conrad and the Pope lasted until the latter's death in 12s4. The fame oi the house of Holnenstauien is based upon the political greatness to which the Fredericks in particular attained: their success in reducing to order all the states oi the empire; the encouragement which they gave to commerce and trade. and their efforts to promote the sciences and arts.

Hohenzollern, hō'ĕn-tsōl-lërn, Germany, a province of Prussia, formed in 1849 by the union of the two principalities of Hohenzollern-Hechingen and Hohenzollern-Sigmaringen. It consists of a narrow irregular strip of country encircled by 11 ürtemherg and Baden. Area H^{1} square miles: pop. (rg00) 06.583 . The princely iamily of Holumzollern dates from Thassilo, Ciunt of Zetlerm. who died about soo A.D., after hanna funmded a castle near Hechingen, on the Zollern bill in the Swabian Alb. The fine Hilenzollern castle ci ifth century architecture, built in the latter half of the igth century, occupies the site of the ancient fann!y-seat. The: lave been several lines and branches of the Holienzollerns, the first separation taking Ilace ahout 116:, when Frederick 15. i unded the cider or Swabian and Conrad III. the wenger or Franconian line. The cider lime was subdivided. in 55,6 , into the hancles of llechincen and Sigmaringen. Frederick VI., the jeprenentative of the younger line, in if15 received frem the Fmperor Sigismund the investiture of the dectcrate of Brandenburg. thus founding the reigning dynasty of Prussia. The two branches if the elder line continued unbroken till tef?. when the reigning princes ceded their serective riglits and principalitics to the king ni Pru-in. who in $18-1$ became emperor of Germany: The nam branch is the Hohenzollerns is nonv represented by the imperial family ef Facrmany. Sec Germini:

Hoisting Apparatus, mechanical devices for lifting and moving laterally heary weights. They are known under various names and in-
clude cranes, derricks, overhead trollers, crancderricks, etc. The smaller are operated by hand power, the larger by stean or electric power. By their aid the heaviest weights may be readily lifted to any desired height and "slewed" into any desired position. Their use dates from the most ancient times, and they are now in constant and general use all over the world.

Derrick. This is the simplest form oi a machine for hoisting. The name is derived from a family by that title who adapted its form from the early English style of gallows, and the name has now come into common use. In form the derrick is like the letter V, one side being fixed immorably by guy ropes, the other hinged to the bottorn of this fixed upright. sc that it can be raised or lowered at will. This movable jib is somewhat slorter than the upfight and the whole apparatus is on a platform which can turn laterally in a circle. Through the top of the jib is sun a pulley bloch, a rope passing through this and down to the base of the upright, where it is wound about a cylinder, or winch. This, when revolved by hand or other power, winds up the rope or cable, thus raising the weight attached to the other end of the rope. The jib is lowered or raised to get the proper angle for picking up the article to be lifted. This simple form of hoister is in constant use by builders in constructing modern high buildings. By its use, heary or light weights can be quickly lifted from the ground to the top of even 30 -story structures. Derricks are commonly made of wooden spars, unless the work to be done is very heavy or the jib exceedingly long. In such case. a tubulas iron spar is used. Hoisting engines oi such power and facility of control are now made that they enable the operator to more the jib up or down or sideways easily and quickly. The "stiff-leg" derrick has its upright firmly braced by timbers running from the top to the ground, but this form is not common except in stone quarries or in some work where the derrick is stationary. The more common form is the guy-rope derrick, where strong wire cables extend from the top of the upright to the ground. With this arrangement. the hoisting machine can be moved and located in a fresh position easily: Derricks that will liit and swing to position weights of from 5 tc 50 tons are now made in this commtry: In the contemplated work on the Panama Canal. derricks capable of moving ioo-ton loads of stone and rock are to be built, with a radius of over 100 feet for the jih.

Crane.-Thus named because the arm or boom resmbles the neck of the crane, which raises and lowers its meck to litt objects from the ground. It difiers fron the derrick in not having any mast or upright, usually. In the comminn form of crane the whole apparatus is centered upon a heavy platiorm which is itself an whecls. The engine which aperates the wincli also slews the boom in a circle, and, in some cases, moves the whole outfit along the rails upon which the wheeled platiorm rests. it the base of the boom. On the platform, is an inverted " 5 ") horse, to which are attached the pulley blocks through which run the ropes for raising and lowering oljects to be lifted. In large foundries, ship-yards and like places, the locomotive crane runs upon a track which usu-

FORTY TON LOCOMOTEE (R,NNE,

ally extends the lengul of the yard or shop, or perhaps elear around it . Under its own steam, the ponderous machine runs along this track to the object it is desired to move. Steam power then slews the machine laterally so that the end of the jib or boom is over the object, when the latter is attached to the rope running over the end of the jib, the winch turned by the engine and the object lifted int. the air. A second rope over another winch then raises the jib to the desired height and the machine runs back over the track to the point desired, where the object is deposited. The utmost expertness and delicacy of handling is acquired by the operator of this steam locomotive cranc, which will thus grasp and carry where desired objects weighing citen 50 tons or more. The common size is the one capable of lifting five tons only, though there are at Port Royal, in the Linited States navy yards, several large cranes which just as easily lift 50 tons. This latter machine has a boom 85 feet long and will travel under its own steam along the track 50 feet per minnte. It will hoist a 40 -ton load seven feet per minute and slew, or turn, a complete revolution in two minntes. The smaller cranes are much used on flat cars as wrecking apparatus for railroads, in excavating and dredging and in heavy construction work. Scores were used in digging the subway for New York city. A small 5 -ton locomotive crane costs about $\$ \overline{\$}, 500$. This style of hoisting apparatus is peculiarly the product of American gemins and machines made in America are found in all large contracts for bridge building, railroad construction and like work in every corner of the world. A new machine for placer mining installed in New Mexico in the smmmer of Ig03 adopts this form of crane. using the water over and over for sluicing the sand. It also operates a clam-shell shovel. In more difficult digging the "orange prel" form of shovel is used, the crane raising a ton or more of earth in the shovel and depositing it where desired.

Ozerhead Trolleys.- In the yard of a shipbuilding company at New London, Conn., has been installed a system of overhead hoisters which combine the advantages of both the derrick and the crane advantageously. The two enormons steamships, Minnesota and Dakota, were constructed by its aid solely. The two ships were built side by side and one trolley system served for both. By this method there are three steel spars, each 120 feet long, each supporting a steel cross-yard i/4 feet long. These masts are braced by immense steel guy ropes or cables. The distance between the masts is 300 feet and the tops of the yards, or jibs, are 84 feet from the ground. The working field of the trolleys is a rectangle 600 feet long and 174 feet wide. Along the jibs a track made of wire rope is laid, on which a carriage is swung, suitably centred and controlled. On the main mast, just below the yard. is the house containing the operator and engine. This one man controls the trolley carriages on all the jibs, the raising or lowering and slewing of the jihs and masts and the return of the trolley carriages to the point desired. All is done swiffly and accurately, each carriage being capable of carrying 5,000 pounds. This system can operate four of these trolleys when desired.

Crane-derrick.- This is a combination of the crane and the derrick, as its name indicates. It
resembles a figure 4 in construction. The mast can be slewed, but the yard or jib is a fixture and camot be raised or lowered. Near the juncture of the jib) and mast is the house in which sits the operator and where the engine is located. Along the under side of the jib is suspended a wire calle track on which rums a grappler carriage. The jib is usually very long, at least 60 feet, and the grappler runs to the end of this or to such point as is desired to be attached to the object to be lifted. This form of hoister is much used in bridge building and in places where a long reach of jih is desired.

At least 25,000 hoisting machines of these varions types are made amually in the United States, one fifth of which are exported. About $\$ 25,000,000$ is the annual expenditure for this class of machines, aside from the cost of hoisting engines, ropes, wire cable and the other appurtenances of the trade. The largest locomotive cranes cost $\$ 50,000$ and the small wooden derrick $\$ 300$ to $\$ 1.000$. The industry has grown to enormous proportions and new improvements in methods of hoisting are constantly being made for special purposes. Petwim Drew.

Hokusai, hö-koo-sä'ē. See Japasiese Art.
Holacan'thus. See Butterfly-fish.
Holbach, Paul Heinrich Dietrich, powl hinn'rìh dét'rír hōl’bäн (Fr. obl-bäk), Baron von, German philosophical writer: b. Heidelsheim, in the Palatinate, $1 / 23$; d. Paris 21 June 1789. He was educated in Paris, where he passed the greater part of his life. He was the centre of a circle of men of wit, but of free thinking principles, using his great fortune, says Rousseau, generously, and appearing to advantage in the learned society which he gathered round his tahle. He was the author of a great number of works, most of which were anonymous or pseadonymous. The principal work attributed to him, which appeared in 1770 under the name of MI. Mirabaud, and excited much attention in the learned world, is the 'Systeme de la Nature ou les Lois du Monde plysique et moral.' He afterward published 'Système social, or Principes maturels de la Morale et de la Politique'-a development of the previous work, showing the application of the principles promnigated in it to morals and politics: 'Bons Sens, or Idées naturelles opposées aux Idées surnaturelles'; 'Eléments de ia Norale universelle' ; etc. According to Holbach matter is the only form of existence, and everything is the effect of a blind necessity.

Holbein, Hans, hänts hoัl'- or hōl'bīn, the Elder, German painter: B. Augsburg 1460; d. Alsace 1524. His art training began under the influence of Martin Schongauer, but he quickly launched out into a new style, which left ancient precedents behind. He developed a dramatic energy, a clear and lifelike coloring and pre-eminent distinction of expression which rendered him the acknowledged head of a new school. His figures took the attitude of lifc. The pictures over the altar in the Cathedral at Augsburg, painted in 1493, are gond specimens of his hest work: in them are portrayed incidents in the life of Virgin Mary. To the same class belong the remains of an altarpicce in the Dominican Churclı at Frankfort-on-Main, representing scenes of the Passion (150I): 16 paintings of the Passion in the Municl Gallery; the
portrait of the artist with his two sons, in the gallery at Augsburg. His later pictures show traces of the intuence exercised by the Italian Iemaissance, and those painted about 1512 and later are vastly superior to his early work Among them is his 'Fount of Life' (1519), now in the royal gallery at Lisbon; the altarpiece 'St. Sebastian' (1.515), at Augsburg: the altarpiece 'St. Katharine,' in the same gallery: etc. In such works the bold and devotional conception. delicacy and directness of expression, ease of drasing and splendor of coloring, are beyond praise. Excellent also are some of his preliminary sketches and outlines, and in Basle. Berlin, and Copenhagen are collections of his pencil sketches, the most remarkable of which is that at Berlin. Consult: Woltnuann, 'Holbein und seine Zeit' (IS66).

Holbein, Hans, the Founger, German painter: b. Augsburg 1497: d. London Nor: I $5+3$. He probably received instruction in painting from his father, and about 1515 went to Basle, where he engaged in illustrating books. At Basle he also painted his earliest portraits, and in 1515 went to Lucerne. Here he painted the house of Jacob ron Hertenstein, designed windows, and executed other works. Returning to Basle in 1519. he became a burgher in the following year, and during a seven years. residence in that city he executed many works of great importance. In 1526 he went to England. Letters irom his iriend Erasmus, whose famous 'Praise of Folly' he had illustrated, procured him the patronage oi the chancellor. Sir Thomas More, who emploved him to delineate the portraits of most of his own personal friends about the court, and introduced him to the notice of Henry V'lII., who was a liberal encourager oi the fine arts. Among the portraits produced by him during this period are those of More, Archbishop Warham, Bishop Fisher, and several other distinguished persons. From 1528 till 1532 he was again in Basle, but in the latter year he returned to England, where he was destined to spend nearly all the remainder of his lite. Holbein painted most of the principal English nobility, whose portraits place him among the world's greatest portrait-painters. Some of his earlier productions, especially his 'Dance of Death.' are also celebrated. In 1538 he completed and published this series. Among the pictures of Holbein's last period are 'The Ambassadors' (1533), and portraits of Hans of Antwerp (1532), English Lady and Gentlemen (1534), Sir Richard Southwell (1538). Duke of Sorfolk (I $\Xi 39$), Thomas Cromwelli, Lady Jane Seymour. Henry VllI. (1542 , unfinished), and others. Comparatively iew of Holbein's pictures are still extant in England, great numbers of them having been destroyed by Puritan ianatics or sold and dispersed over Europe. Many oi them also perished in the great fire in London in 1666. Holbein also excelled in wood-engraving, and before his visit to England had produced a large number of wood-cuts. He was one of the earliest to paint portraits in miniature. Sce VIoltmann, 'Holbein und seine Zeit' (18-4): Wornum. 'Life and Works of Holbein' (186\%); Knackiuss, 'Holbein der Jüngere' (i8g6).

Holberg, Ludwig, lood'vig holl'běrg,

 Parns. Danish author: b. Bergen, Norway, 3 Dec. i684: d. Copenhagen. 28 Jan. IF. He studied at Copenhagen, Oxiord and Paris, andaiter paying a six months visit to Rome returned to Copenhagen in the end of $1-10$. In 1-18 he was appointed to an ordinary professorship in the university of that city. where aiter this date he chierly resided till his death. In $1 / 35$ he was unanimously elected rector, and in 1737 treasurer of the university, and in 1ラ4i was raised io the rank of baron. Holberg's uumerous productions in various departments oi literature as well as the important and salutary infuence which he exercised upon his countrimen. place him in the front rank oi the literary men oi his age. He was extremely versatile - now devoted to history, now to poetry, and now to the drama; but during his whole life he was a sworn enemy to pedantry, theological disputatiousness, and scholastic metaphysics. His works may be disided into four classes - poems, stage pieces, philosophical treatises, and historical works. His poems are chiefly of a satirical nature. The most celebrated among them is 'Peder Paars.' a comic heroic poem in $1 \downarrow$ cantos. still regarded throughout the Scandinavian countries as a masterpiece. and the hero of which has become the national comic impersonation in Deamark. It has been translated into several languages. Almost equally famous is his "Nicholas Klimm's Subterraneous Travels.' a satirical romance in prose, originally written in Latin, but translated into seven modern European languages shortly: after it appeared, into Danish first by Baggesen ($1 ;-89$). His numerous stage pieces are either comedies or farces, and nearly all characterized by true comic power. Among his philosophical writings the most important is his 'Moral Reflections) ($1 /+4$). His historical works include: The Political, Ecclesiastical, and Geographical Condition of the Danish Monarchy:' a work of great value as a source of reference: '-1 General History of the Jews.' and 'A History of Famous Men and Famous Vomen) (I-39-45).

Holbrook, John Edwards, American naturalist: b. Beauiort. S. C., 30 Dec. I;04: d. Norfolk. Mass., S Sept. IS-1. He was graduated from Brown in 1815 . from the medical sclool of the University of Pennsyluania in ISIE. began practice at Charleston. S. C., in 1822. and in I824 was appointed to the chair of anatomy in the Medical College of South Carolina, a post he held for over 30 years. In the Civil War he was head of the Soutl Carolina examining board of surgeons. His 'American Herpetology. or a Description of Reptiles Inhabiting the (nited States) ($\&_{42}$), won for him recognition among European scientists. He published but Io numbers of his "lchthyology of South Carolima) (185y if siq.). when the Civil llar compelled its discontinuance.

Hol'comb, Silas Alexander, American jurist: b. in Gibson County. Induana, 25. Aug. 1858. He received a common school training, studied law in Nebraska, and in sons was made judve of the rath judicial district. He was governor of Nebraska from 1 Sof to IN2E. having been clected by fusion of the Populist and Democratic voters. He has been justice oi the supreme court of Jobraska from 1900.

Hol'combe, Chester, American diplomatist and author: b. Winfield. N. У., 16 Oct. I\&4. He was graduated at Lion College in 186t: and served as interpreter and secretary to the United States Legation in China, $18-185$. Becoming an authority on the Chinese and Chinese

HOLDEN - HOLIDAY

affairs, in 1806 he acted for the Chinese government in its financial embarrassments. He has published: 'Travels in Western China' (1875) (The Practicat Effect of Confuciamism upon the Chinese Nation' (1882) ; 'The Real Chinaman' (1895) ; 'The Real Chinese Question' (1899).

Holden, höl'dĕn, Albert J., American musician: b. Boston 184I. He studied music in New York, and sinee 1855 has been organist at the Church of the Divine Paternity and at the Church of the Puritans. He has composed more than 300 anthems, hymms and other church music, but his compositions are not confined to sacred music; they include songs, ballads, and choruses: he has also edited and compiled numerous collections.

Holden, Albert W., English painter: b. London 6 July i848. He studied drawing and antiquities at the British Museum, and gained a studentship at the Royal Academy of Arts, where he afterward exhibited. He has painted historical and humorous genre pictures, and has a high reputation as a portrait painter. Since 1887 he has been professor of fine arts, King's College, London. Among the well known works he has exhibited are: 'A Bank Holiday' (1883); 'Naughty Polly' (1898) ; 'The Amunciation' (1806) ; etc.

Holden, Edward Singleton, American astronomer: b. St. Loutis, Ilo., 5 Nov. 1846. He was graduated at Washnngton University in I 806 , and at the United States Military Academy in 1870; was professor of mathematics at the Naval Academy in $1873-8_{1}$; and director of the Washburn Observatory (Madison, Wis.) in 1881-5. In 1885 - 7 he was president of the Liniversity of California, and in 1888-98 director of the Lick Observatory, on Mount Hamilton, San José, Cal. It was in connection with the Lick Observatory that his most important work was done, and his services to astronomy found recognition in America and from European states. Among his publications are: 'Index Catalogue of Nebule) (187\%): 'Liie of Sir William Herschel' (188r) : 'Astronomy' (with S. Newcomb, i892) : 'Mountain Observatories' (1896); 'Essays in Astronomy' (1900).

Holden, Sir Isaac, Englisli inventor: b. Hurlet, near Paisley, \% May 180 ; ; d. Reighley, Yorkshire, 13 Aug. 1897. While a worker in a cotton mill in Paisley he fitted himself for the post of a teacher. While conducting an experiment he discovered the lucifer match, but he secured no patent on the invention, the financial benefit of which fell to others. Subsequently he was manager, then owner of a wool-combing establishment, and by his mechanical improvements made significant changes in that industry. His shops at Bradford, with branches at Croix and Rheims, eventually became the largest of the kind in the world. He was several times elected to Parliament in the Liberal interest.

Holder, hōl'dèr, Charles Frederick, American naturalist: b. Lymm, Mass., 5 Aug. ISjr. He studied at the United States Naval Academy, but resigned in 1871: in $1871-5$ was assistant curator of the American Museum of Natural History, from that time turned his attention to lecturing and literary work, and became known as a leading writer on popular science. At Pasadena, Cal., whither he removed in 1885, he be-
came president of the board of education, professor of zoology in Throop University, and honorary curator of the university muscum. Among his pul)ications are: 'Elements of Zoology' (1885); (Living Lights' (I887); 'Louis Agassiz, lis Life' (I89z) ; 'Along the Florida Reef) (1892) ; 'Stories oi Animal Life' (1900): 'Half-Hours with Nature' (1901).

Holds'worth, Annie E., English novelist: b. Jamaica. She was married to Eugene LeeHamilton, the poet, in 1808 . Slre has been coeditor of 'The W'oman's Signal.' with Lady Henry Somerset, and is the author of the popular novels: 'Joanna Traill, Spinster': 'The lears that the Locust Hath Eaten': 'Spindles and Oars': 'The Gods Arrive' (INO); ; etc.

Hole, Samuel Reynolds, English Anglicari clergyman: b. 5 Dec. isig: d. Rochester. Eng., 27 Aug. 1904. He was educated at ()xiord, took orders, was ordained in It45 and was vicar of Caunton, 1845-87. From ins\% he was dean of Rochester Cathedral. He visited the United States on a lecture tour in Iisob. where his humorous, anecdotical lectures were very popular. He was a recognized authority on rose culture and wrote: 'A Book about Roses,' which has reached its 15 th edition: 'The Memories of Dean Hole'; 'More Memories': 'Addresses to Working Men'; 'A Little Tour in America'; 'Our Gardens' (1899): 'Then and Now' (1901) : etc.

Hole, William, English painter: b. Salisbury 7 Nor. 1846. He was destined for the profession of engineering but after a journey to Italy turned his attention to art. He studied at the Edinburgh school of art, and in 1889 was elected member of the Royal Scottish Academy. His versatility is shown by the excellence of his work in portrait, genre and fresco, while as an engraver he has made many famous plates after such masters as Millet. Constable and Millais. Among his best known paintings are: 'The End of Forty-Five' (1879) ; and 'News of Flodden' (i886).

Holguin, obl-gēn', Cuba, city in the province of Santiago de Cuba: about 25 miles by rail south by west of Gibara, its port: and $; 0$ miles northwest of the city of Santiago de Cuba. Fertile agricultural lands are in the vicinity, also on the southwest is a hilly section bordering on the interior mountain range. A moted cave is in the vicinity. The trade is chiefly in sugarcane and tobacco. Pop. 6. 800

Hol'ibut. See Hilibet.

Hol'iday, any day set apart as a religious or national festival. (See Festruals.) Certain days are fixed by law as bank-lolidays for England and Scotland, and it is enacted that all business transactions which would have been valid on any such holiday shall be held as valid if performed on the day following. Thus, when a bill of exchange becomes due. or notice of dishonor falls to he given, on a bank-holiclay. the bill is payable, or the notice stands good on the following day. The days fixed for England are Easter Monday, the Monday in Whitsun Week, the first Monday in August, and the 26th of Decemher if a week-day. These are in addition to Christmas Day, Good Friday, and other holidays previously established. The days fixed as bank-holidays for Scotland are New Year's

Day, Good Fricay, the first Monday of May, the irsi Nonday of August, and Christmas Day; and if either New Iear's Day or Christmas Day talls on a Sunday, the Monday after is held as 2 hcliday. The same act empowers the sovereign io appoint by proclamation a special day to be obserted as a bank-holiday, and to atrer by order in council any of the days settled by the act.

In the United States there is no national holiday. not even 4 July. The $33 d$ Congress passed an act making Labor Day a public holiday in the District of Columbia. and various Siates have followed with a similar act. The proclamation oi the President designating a day oi Thanksgiving only makes it a legal holicay in the Districi of Columbia and in the Terfutories. Vew Iear's Day is a legal holiday in all the siates except Massacbusetts. Mississippi. and Jew Hampshire. Lincolns Birihday (12 Feb.) is a legal holiday in Connecticut. Illinois, Mimesota, New Jerses, バew Jork, North Datoaa. Pennsylvania, IVashineton, and IIyoming. It ashington ${ }^{\circ}$. Eirthday (22 Feb .) is a leg̣al holiday in all ihe States except Mississippi. Decoration Day (30 May) in all the Siates except - Alabama. Floşida. Georgia. Idaho, Lousiana, Mississippi. Jorth Carolina. South Carolina. and Texas. Independence Day (\div July) in all the States and Territories. Labor Day (in sereral, the first Monday in Sepiember) in all the States excent Arizoria, Mississippi, Nevada, and Sorth Dakoia. Election Day and Christmas Day are generally observed as legal holidays in all the Staies and Territories. There are various Staies holidars. such as Patriot's Day (19 April) in Massachusetts. Pioneer"s Day (I6 Aug.) in U'tah. All Saints' Day (I Jov.) in Louisiana. Admission Day (o Sept.) in Caliiomia, and Coniederate Memorial Day (Io May) in North and Sourh Carolina. Every Saturday aiter $120^{\circ} \mathrm{cloch}$ noon is a legal holiday in New Jork. New Jersey. Pennsylvania. Maryland. Tennessee. Jirginia, in the city of New Orleans and in Newcastle County. Delaware.

Holinshed, holinz-hēd, Raphael or Ralph, an English chronicler: d. about isso. He is only known by his 'Chronicles of Englande. Sccilande and Irelande, the irst edition o: which. known as the "Shakespeare edition," because it is the one the poet is supposed to have used in collecting material ior his historical piay: was published in London in 15% In the preparation o ihis work Holinshed was assisted by severa! of the most leamed men of the day.

Holl, Frank. English portrait and genre painter: n oi Francis Hoil, an eminent engraver: b. Lendon 4 Iuly i\& $45:$ d there 31 July iss. IIe wa, a very successul siudent at the R.ya! fcademy, and exhibised onnstantly from his -iv 1en: days. Among nis be t-knawn pictures a-e: 'Faces in the Fire': 'Fern-Gatherers': ' \mathcal{O} o Tidings from the Sea': 'Leaving Hnne': and the 'Gifis of the Fairies.' In the laier pertion oi his careet he devoied himself in pr rraiture in which he greatly evcelled, and na:nted many oi the celebrities of the day.

Holland, Edmund Milton. American actor: b. Sew Y. H - Sept. tise. He becan his profesirna! career at Barnum's Museum in tish6. was ieter for 13 years a member of Lester

Wallack's company, and as a member of the Nadison Square company from 188 - created the parts of Captain Redwood in 'Jim the Penman,' Colonel Moberley in 'Alabama.' and the ititie-role in 'Colonel Carter oi Cartersville.' In IE95-- he starred with his brother Joseph, and later (1g01) appeared as Eben Holden in the dramatization oi Irving Bacheiler's book oi that name.

Holland, Frederic May, American autbor: b. Boston 2 गlay 1830 . He was graduated from Harvard in 1859, entered the ministry of the Uniarian Church in 1802, but resigned in IS-I His publications include: "The Reign of the Stoics' (I8,-9): 'Frederick Douglass, the Colored Orator' (ISos) : and 'Liberty in the Nineteenth Century (I*99).

Holland, Henry Richard Vassall Fox, 30 Lord. English statesman: b. Wiltshire 21 Nov. I-13: d. 22 Oct. 1840 . He succeeded to the peetage by the death oi his iather when less than one year old. In I-g he took his place in the House oi Lords, and as the nephew of Charles James Fox was at once acknowledged as a 1 hig leader. In iso6 he was commissioner for setrling dispures with the United States: was lord p ivy seal in $1806-7$: and chancellor of the ducny oi Lancaster. He made Holiand House the resort of the wit. talent. and beauty of his dav. He was the author of: 'Life of Lope de Vega' (IS06): ‘Three Comedies irom the Spanish' ($1 \mathrm{So}_{5}^{-}$): 'Foreign Reminiscences' (1850): " Memoirs of the Whig Party' (1852).

Holland, John P., American inrentor: b. ISq1. - As one oi the most successiul designers in the interesting field of submarine navigation. Holland is well known. His first boat was buil: in $18-5:$ a second was launched in 18.7. and a third in 188I. After a series oi severe iests. the Holland boat was ordered by the United States government ior the navy in 1000 . In 1003 eight of the submarines were put in commision. These have a speed varsing from E.8- to 8 knots, a horse-power of ico (with ane exception). and a displacement in general of 122.55 tosis. For some time the inventor was interested in the Holland Submarine Boat Company, but from this he has now retired to derote his time independently to submarines and flying devices. His more recent designs call for smaller and more compact vessels, with much less complicated mechanism. power of remaining longer submerged, and increased safety in cperation. See Stbararise Nintga tion, History of.

Holland, Josiah Gilbert, American editor and auther: b. Belchertown. Mass.. 24 July 1§19: d. Jew Jork 12 Oct. 181 . He began the study of medicine in 1840, in 184 was graduated irnai the Berkshire Medical Colleqe. and entered practice at Springrield, Mass. The years tha: iollowed were discouraging, for patients did not come to the young dactor. With true lanker versatility he turned his hand to anything.taught district school. was a traveling writingmaiter. and a daguerreotypist. Of his boyish morification at being a mill hand he has writen in 'Arthur Ronnicastle.' He tried editorial work, ard started 'The Bay State lleekly Courirr.' which ran int six months. Subeequently he taught at Richmond, Va., and for 16 months
was superintendent of public schools at V'icksburg, Miss. All these varied expericnces gave him the knowledge of American life and appreciation of workaday struggles which later made the value of his poems, essays, and novels. In $1849-66$ he was assistant editor of the Springfield Republican, and from 1851 also part owner of that journal. It was largely due to his influence that the Republican became so widcly known and popular a journal. In it his 'Letters to Young People Married and Single: By Timothy Titcomb' first attracted readers by their vivacious style, moral sincerity, and good common sense. Later, in book form (1858) they had a great and immediate success.

In 18;o Dr. Holland was one of the foumders and became editor of 'Scribner's Monthly,' later the 'Century Magazinc.' and the editorship of this periodical he retained till his death in 1881. Holland's novels: 'Arthur Bomicastle' (1873): 'Sevenoaks' (1876) ; and 'Nicholas Minturn' (1877), although showing his quick and sympathetic observation and containing fine passages, have been less popular than his poems. The latter. in their constant appeal to the moral sense, and in their accurate portrayal of the homely and picturesque in New York life, found many admirers. Several of the short lyrics, with 'Bittersweet' (1858); 'Kathrina' (1868). and 'The Nistress of the Manse) (1871), came as messages of an American poet who understood and honored his own people. Consult the 'Life' by Plunkett (1894).

Holland, Thomas Erskine, English jurist: b. Brighton 17 July 1835. He studied at Oxford, was called to the bar in 1863, in 1874 became a reader in English law at Oxford, and shortly afterward professor of international law. The University of Pertugia appointed him to an honorary professorship in recognition of his attamments. His best-known work is his 'Elements of Jurisprudence' (1880; 9th ed. 1900), to which was awarded the Swinney prize (189.4), decennially bestowed for the best book published on jurisprudence, and which is now a standard text-book in England and the United States. He wrote further: 'An Essay on Composition Deeds' (I864): 'Essays on the Form of the Law' (1870) ; 'The European Concert in the Eastern Question' (1885); 'Studies in International Law' (1898), and other works.

Holland, William J., American Presbyterian clergyman and educator: b. Jamaica, W. I., I6 Ang. 1848. He was graduated from Amherst College in 1869, from the Princeton Theological Seminary in 1874 , entered the ministry of the Presbyterian Church, and was a pastor at Pittsburg. Pa., in 18-4-91. In 1891-1901 he was chancellor of the Western University of Pennsylvania (Allcgheny), and in 1897 was appointed director of the Carnegie Museum at Pittshurg. In 1887 and 1880 he was naturalist of the United States eclipse expeditions to Japan and West Africa respectively: A recognized authority on musenm administration and zoology, he wrote numerous scientific papers in learned publications, and 'The Butterfly Book' (18,8).

Holland, a popular designation for the Kingdom of the Netherlands, derived from the provinces of North and South Holland, form-
crly constituting a feudal countship sallicd to the Holy Roman-Gcrman Empire, and from 1806 -10 with other parts of the Netherlands, Hanover, and Oldenburg, ruled by Louis Bonaparte as the Kingdom of Holland. The region is the seat of the hardy and industrious Dutch race and of the Dutch language called by the natives Nederduitsch. a dialect of Low Gicman phonology, with evolutionary periods of Old. Middle, and Modern, and an interesting historical and varied literature. Sec Netherlands.

Holland, Mich., city, in Ottawa County, at the head of Black Lake, which is really an arm of Lake Michigan, and on the Père Ilarquette railroad; about 80 miles west of Lansing and 25 miles southwest of Grand Rapids. It has direct communication by steamers with Chicago, Nilwaukee, and other lake ports. Holland was settled in 1847 by a Dutcl colony, and many of its inlabitants are of Dutch descent. In ISO7 it was chartered as a city. It is located in an agricultural region, once a lumber section. The manufactures are largely articles made of wood, but the beet-sugar industry is growing in importance. The chief manufacturing establishments are planing-mills, furniture, tub, and basket factories, flour-mills, tanneries, woodworking machinery shops, pickling-plants, beetsugar factory, grain elevators, and creameries. The manufacture of launches is also an important industry of Holland. The trade is chiefly in the mannfactures. and in grain and vegetables. The city owns and operates the electric-light plant and the waterworks. Holland is the seat of the Western Theological Seminary and of Hope College, both under the auspices of the Reformed Church in America. It has a number of fire public buildings, and a free public library. The summer resorts on Black Lake add to the industrial wealth of the city. Pop. (1890) 3.945: (1900) 7,790.

Holland-linen, a fine and close fabric, so calted from its first being manufactured in Holland; also a coarser linen fabric, unbleached or dyed brown, used for covering furniture, carpets, etc.

Hol'lander, Jacob H., American economist: b. Baltimore, Md., 23 July 1871. He was edrucated in the Baltimore schools and graduated from Joluns Hopkins University in 1891, receiving his Ph . D. degree in 1894. His ability as economist and financier was soon recognized, and he became associate professor of finance at Johns Hopkins. In 180^{-7} he was appointed secretary of the Bimetallic Commission abroad and was chosen chairman of the Baltimore municipal lighting commission in 1900 . In the same year the secretary of war appointed him special commissioner to revise the laws relating to taxation in Puerto Rico, and while engaged in this service he was made treasurer of Puerto Rico by President Mckinley.

Hollar, Wenzel or Wenceslaus, vĕnt'zěl or wěn'sęs-lấs höl'lär, Bohemian engraver: b. Prague 13 July 160%; d. London 28 March 1675. He accompanied the Earl of Arundel. English ambassadior to Cermany, to London, who employed him to engrave some of the pictures of his collection. Among his numerous works, which arc greatly estcened for their delizatc.
fir：．．．and spirited execution．and which include su：ne 2．0\％0 plates，are the set of 28 plates． entitled．Ornarus Muliebris Anglicanus．＇rep－ resenting ti．e dresses of Englishwomen of all ranks and condiaions in inll－length figures； Holbein＇＝＇Dance oi Death，＇eic．

Holleben．hül＇lä－bèn．Theodore von．Ger－ man diplonat：b．Seetin．Pomerania． 10 Sepi． IEsi．He was educated at the universities of Heidelberg．Berlin．and Göttingen：became an officer in the Body－Guard Hus：ar Reginten：； and soik a distinguished pari in the Franco－ Prusian War．He entered the diplomatic serv－ ice in N－2：was ithorsé dufuiris at Peking． China，Is－s－s．and at Tokio，Japan．in 18゙ミ： minise：at Buenos fyres in $18-0-84$ ：a：Tokio 18ミ3－9：and at Washington，D．C．，rS9z－3．In IRy；he became ambassador extraordinary and plenipuentiary to the L＇nited States．Ai the command oi Emperor William he together with Secretary Har．of the Staie Department，had conarge cif the arrangements for the official re－ ception ithe emperor＇s brozher．Admiral Prince Henry，in February 1902．Failing health causud his resignation，and in 1003 he was succeeded by Baron Speck ron Siernberg．

Hol＇ley，Alexander Lyman，American en－ gincer：b．Lateville，Conn．． 20 July Ie32：d． Brocklyn，ㄷ．V．$=0$ Jan．INs．He was grad－ nated a ：Brown Lniversity in 1853，and be－ came edisor of＇The Railroad Adrocaie＇in ISEO，changing it：name so＇The Anerican En－ gineer．＇He intooduced into the Lnited Sta：es in infs the Bessemet steel process，erecting the inst Pewimer watk in the country a：Troy： X．I．He was lec：u－ct on the manofacture of iFon and s－eel z ：Columbia Lniversity ISon－ \mathbb{E}_{2} ． Holicy secuzcl man！paiewis．the mest imporunt probahly being＊：ti：for the detacied converter－ shell，an ir，－ He publisios＇with Z．Colburn：＇Railway Economi ：a Repri on European Railways ハハミン：＇American and European Railway Prac：ic＇（R00）；＇ATreatise on Ordnance and Armor＇ 1 ， N 51 ：etc．In leyo a bronze bus：of Holley was placed in W＇ashington Square New Yosk，ny the mechanical engineers of the Linited Siates and Eurcpe．

Holley，Marietta．American author，known by he：psudumym．Jo＝MaH Alles＇＝Wife＇：b． near Adam：．Ieftersm：County．N．1．．．Itf：She began her li：erary career as a contribu：or so the＇Chri－rian Lni n．the＇Independent．＇＇Pe－ ter－in＇：Mazarime，and other periodicals：and in $18-3$ published her nerst book，＂Ily Opinions and Eevey Fubbet：which itn a nieasure re－ called the＇Ulidw Bedo：Papers＇oi F．M． Whicher．This was followed by a series of work containing many touches of di－rinctive and gcnuine humor：＇Samantha at the Con－ tennal＇（IN－O）：＇My Wayward Pardner＇ （1\＆゚）：＇Mi＝Richard ：Eny＂（IEs2）：＇Sweet Cicely＇（ $188=1$ ：＇Mis Jones＊s Quiling＇（280－）： （Samantla at Saratoza＇（IEs－）：＇Poems＇ （ISR－）：＇Samantha Amone the Erethren＇ （ient．Considered by many her beit volume： ＇Sarlayta at the liorld＇s Fair＇（tisos）．and whe：H－w：ioings have had large sale，and bec：：rastsated in：o several foreign tonsucs．

Hollidaysburg．hil＇i－dāz－bérg．Pa．．bnrough． c …… ．．．E Blair County：on tiac Junia：a

River，and ：he Pennsylvania railroad；about S_{2} miles easi of Pitisburg and nive miles south of Altoona．Rich coal－rields，iron－ore beds，and limestone quarries are in the vicinity．The chici manuiac：ures are ioundry products，agricultural and mining implements，nails．and iurniture． Mollidaysburg Female Seminary is a prosper－ ous insitation．Pop．3．000．

Hol＇lins，Alfred，English musician：b．Hull 1005．He was born blind．and was educated at an institution for the blind in lork，and a：the Royal Normal College for the Blind in Ĺpper Sorwood．where he specialized in music（piano and organ）：he also studied music in Germany： He was popular a：the Engiish and German courts．where he gave recitals；and was for a time organise ai the Lnited Free Saint George＇s Church in Edinburgh．He visited Anerica in invo and IESE．and his organ compositions are wilely known and liked throughout the L＇nited Staies．

Hollins，George Nichols，American naval officer：b．Baltimoze，Md．， 20 Sept．1799：d． there is Jan．I8－s．He entered the navy as midshipman in IEIf，and while assigned to the President．S：ephen Decatur．was captured by the Enclish and held prisoner at Bermuda until the conclusion oi peace．He served also in the Algerine war of ISIs．later assumed command of an East lndianan．and in ssy atamed com－ mander｀rank．In i\＆ss．on complaint of Ameri－ can residents who clairsed they had been in－ ju：ed by the local oficials，he bombarded Gres－ twn．Nicaragua．At ihat ：ime Nicaraşua wa＝ ynder English protection．and the property and iives of English residents having been i：n－ periiled．international complications with Grea： Bri：ain aroze．Hollins was commissioned com－ modore in the Confederate navy at the ourb－eak ci the Civil MVar，attacked the Federal blockad－ ing squadron at the passes of the Mississippi River，and was appoin：ed flag－capain of the dew Orleans station．He was stperseded in 1862．

Hol＇lister，Cal．，town．county－seat of San Bemito County：on the Southern Pacinc raik－ road：about do miles southeast of San Francisco． and 35 miles east by south of Santa Cruz．It is situated in a rich agricultural region，noted for its iruit．The chief induserial interests of the ：own are connecred with dairying，frut－growing． and the shipment oi grain and live－stock．Pop． （1900）1．315．

Holloway，hōl＇ō－nā．Laura Carter，Ameri－
 She was at one time edion of the＇Home Library Masazine＇of Chicago．111．，was for 12 years associate edioor of ile Brooklyn Duily Eug？and collaborated with Anton Seill in the preparation of musical terms for the＇Siandard Dictionary．＂She wrote：＂ladies of the White House＇（I尺－O）：＇The Mothers of Geeat Men and Women＇（sess）：＇Tlie Ilome in Pnetry＇（188 ${ }^{\prime}$ ）：＇Chinese Gordon＇（185：）： ＇The Buddhist Die：Book＇（I尺⺀－）：and o：her volumes．

Holloway．Thomas，English pa：cn：medi－ cine groprictor and philanthropist ：b．Devonme： 22 Scpt．ISoo：d．Tittenhurst ソ6 Dec． Ab ut $1 E_{37}$ he hegan to sell his well－known oinment．and snen atierwards brought his pills to the motice of the public．He ulimately
succeeded in amassing a very large fortune which he partly devoted to benevolent objects. The Royal Hulloway College for Women, on the equipment and endowment of which he expended about $\$ 4.000,000$ was opened on 30 June 1886. It contains a collection of pictures valued at $\$ 500,000$. Near it is a sanitorium founded by hin for the mentally afflicted of the lower middle class.

Holls, hōlz, George Frederick William, American lawyer and statesman: b. Zelienople, Pa.. I July I 857 ; d. Yonkers, N. Y., 23 July 1903. He was graduated from Columbia in 1878 , and from the law school there two years later. He was admitted to the bar and established a large law practice in New York city, becoming senior member of the firm of Hollis, Wagner \& Burghard; in his later life he risited Europe frequently and became widely known there, especially in Germany where he established a branch of his law firm. He was prominent in philanthropic work, being for years an officer of the Legal Aid Society and a director of the Charity Organization Society. He was also an active member of the Republican party, and much in demand as a campaign speaker, especially as he could address the Germans in their own language. In 1893 he was a delegate-atlarge to the New Lork Constitutional Conyention, where he was chairman of the committee on education, a member of the committee on cities, and author of several amendments. His frequent visits abroad gave him a wide and intelligent interest in international questions, and at the time of the Hague Conference he was yery influential in arousing interest and obtaining a large delegation from the United States. He was secretary of the American delegation at the Conference (1899), was the American nember of the committee which drafted the arbitration treaty, and author of the clause on "Special Mediation." He was afterward appointed a member of the permanent international court of arbitration. A few months before his death President Roosevelt asked him to umpire the adjustment of claims between Germany and England and Venezuela, but he declined. He has written: 'Sancta Sophia and Troitza' (I888): 'Compulsory Voting' (I891) : and 'The Peace Conference at the Hague and Its Bearings on International Law and Policy' (1900).

Hol'ly, James Theodore, American Protesant Episcopal bishop: b. Washington, D. C., 3 Oct. 1829. He was of African Roman Catholic parentage, but withdrawing from the Roman Catholic Church, entered the Foiscopal Church in 1851, studied for the minisiry and in 1856 became fector of St. Luke's. New Haven, Conn. In 1874 he became missionary bishop of Haiti.

Holly. See AQuifoliacee.
Holly Springs, Miss., a point on the Mississippi Central Railroad, about to miles southeast of Memphis and about 25 miles south of Grand Junction, on the Memphis \& Charleston Railroad, and an important strategical point. After the battle of Iuka, 19 Sept. 1862, and the Confederate defeat at Corinth, 3-4 Oct. I862, the Confederates fell back to Holly Springs. Early in November Gen. Grant had concentrated an army of 30,000 men in the vicinity of Grand

Junction to make a movement along the line of the Mississippi Central Railroad in the direction of the rear of Vickslurg. On 8 November Gen. McPherson, with 10,000 infantry and 1,500 cavalry, advanced from Grand Junction southward and pashed the Confederates under Gen. Pemberton back to Holly Springs. The main body of Grant's army moved forward, and I'emberton, abandoning Holly Springs, fell back to Grenada, Grant following to Oxford, 30 miles beyond Holly Springs. There he arrived 5 December, and arranged with Gen. Sherman a combined movement on Vicksburg. Grant was to move directly south on the line of the railroad and take the place in rear; Shernan to move a force from Memphis, accompanied by a gunboat fleet, to descend the Mississippi and attack in front. A depot of supplies was established at Holly Springs. guarded by Col. Murphy, with two regiments of Wisconsin infantry and a regiment of Illinois cavalyy, and Grant was about to move forward from Oxford, when Gen. Earl Van Dorn, at the head of 3.500 cavalry, dashed into Holly Springs at daylight, 20 December, and attacked Murphy, who lhad been warned of the impending danger on the 19 th, but neglected to take the necessary precautions and was surprised. He made a feeble resistance and surrendered his infantry; the cavalry cut its way out and escaped with the loss of only seven men. Van Dorn took about 1,500 prisoners, destroyed stores to the value of $\$ 1,500,000$, and left town in the afternoon. This disaster, in connection with Forrest's raid into West Tennessee, which destroyed Grant's communication, forced him to abandon his movement on Vicksburg and fall back to Grand Junction, leaving Pemberton at liberty to concentrate his forces at Vicksburg against Sherman. Sherman was informed of Grant's failure, but the information reached him after his bloody repulse at Chickasaw Bluff, 27-28 Dec. 1862. Consult: 'Official Records,' Vol. XVII.; Greene, 'The Mississippi.'

E. A. Carman.

Hollyhock, a tall and rather coarse flowering plant (Althea rosea) of the mallow family, said to be a native of China, but now cultivated all over the world as an ornament of oldfashioned gardens. It rises in a single leafy stalk, sometimes to the height of six or eight feet, studded with large single or douhle flowers, in varieties from white to yellow, scarlet and purple. Although rather difficult to start and slow of growti, it remains a hardy and easily nurtured perennial of highly effective beauty when suitably placed.

Holm, Saxe, a pseudonym affixed to a collection of 'Stories' (Ist series 1874; 2d 1878), originally published in 'Scrilner's Montlly's and generally believed to be by Helen Hunt Jackson (q.v.).

Holman, hollman, William Steele, American politician: 1). Veraestau, Dearborn County, Ind., 6 Sept. 1822 ; d. Washington, D. C.. 22 April 189\%. He studied at Franklin College (Ind.), was admitted to the bar, and began practice :.t Aurora, Ind. In $1847-9$ he was prosecuting attorney, in 1850 a member of the State Constitutional convention, in $1851-2$ of the State legislature. He was a judge of the court of common pleas in 1852-6, in 1856 was elected as a Democratic representative to Con-

HOLMAN-HUNT - HOLMES

gress, where with the exception of eight years, he served until his death. His vigilance in opposing unnecessary appropriations and doubtitul measures obtained for him the sobriquets of "The W"atchdog of the Treasury," and "The Great Objector."

Holman-Hunt, William. See Huxr, Writlam Holman.

Holmes, hōmz, Abiel, American Unitarian clergyman and annalist: b. Woodstock, Conn., 21 Dec. 1763: d. Cambridge, Mass., 4 June 1837. He was graduated at lale College in $1-83$, and became subsequently a turor in the college. pursuing at the same time his theological studies. In 1-85 he was settled over a parish at Midway, Ga., where he remained till 179t. Returning north he became pastor of the first parish in Cambridge. and comtinued to fill the office till 26 Sept. 1832 . Besides publishing a 'Life of President Stiles' in 1798, he was the author also of 'Annals of America' (1805), which gave him a high reputation for care and accuracy. It was republished in England in 1813. He contributed frequently to the collections of the Massachusetts Historical Society, in Vol. N.IVII, of which will be found a complete list of his publications.

Holmés, ō-měs', Augusta Mary Anne, French composer: b. Paris 1847; d, there Jan. 1903. She studied composition with Lambert. Klose, and César Franck, and began her career as a pianist. Her first work of magnitude was a setting of the psalm 'Inn Exitu,' sung for the first time in 18,3 . She later wrote considerable music, including ioo songs, characterized by mucly grace of expression. In the larger formis her compositions include the well-known symphonỵ 'Hero et Léandre'; three other simnphonies. 'Lutece,' which in 1889 won third prize in an open competition directed by the Paris municipality. (Les Argonautes' and 'Irlande'; the symphonic poems, 'Les Sept Iuresses," 'Roland,' 'Pologne,' 'Au Pays Bleu': an ode cí trimmph, 'Patrie': a iour-act lyric opera. 'Le Montagne Noire) (Grand Opera tS95), and an allegorical cantata, 'La Visicn de la Re'ne.'

Holmes, Burton, Ameri, an traveler and lecturer: h. Chicago \& Jan. 18;0. After a secondary education at Chicago he traveled in all the countries of continental Europe, as well as in Japan, Algeria, Tunis, Mcrocco, Corsica, Grecee, and Thessaly. Hawaiian Islands, the lellowstone Park, the Grand Canion of the Colerado, the Philippines, and China. About tiso lie became tnown as a platform lecturer, giving in popular form the results of his observations.

Holmes, Mary Jane Hawes, Anmerican novelist: b. Brookfield, गlass. She was married -n Daniel Holmes, a lawyer of Brockport, A. Y.. where she las since resided. She has published many volumes of domestic fiction which have had an extraordinarily wide circulation hut in which the literary elenent is slight. Among her novels are: 'Tempest and Sunshine) (1854) (perhaps the best known of them all): 'Lena Rivers' (1856): 'Mlarian Gray' (1863): "Millank' (8 8-1): 'Quecnic Hetherton' ($\mathrm{I}_{2} 8_{3}$).

Holmes, Nathaniel, American jurist and Shake-pearian scholar: b. Peterboro, ふ. $11 . .2$

Jan. 1815: d. Cambridge, Mass.. 26 Feb. 190t. He was graduated from Harvard in 18_{37} and after admission to the bar in 1839 began to practise in St. Louis. He was judge of the supreme court of Missouri 1865-9, and Royall professor of law at Harvard $1868-72$. He retired from his profession in $18 S_{3}$ and henceforth devoted himself to study and authorship. He was a strong believer in the Baconian theory of the origin of Shakespeare's plays, which he defends in his work. 'The Authorship of Shakespeare' (1866). In is88 he published 'Realistic Idealism in Philosophy Itself.'

Holmes, Oliver Wendell, American poet, essayist and physician: b. Cambridge, Mass.. 29 Ang. ISo9: d. Boston. Mass., 8 Oct. 1894. He was the son of Rev. Abiel Holmes ($q . r_{0}$). minister of the first parish in Cambridge, and on the maternal side was a descendant of Anne Bradstreet (q.v.) and related to the orator Wendell Phillips, the poet Richard Henry Dana, and the theologian, Dr. Channing. He was educated at Phillips Academy, Andorer, and at Harvard, and was graduated from the latter in 1829 in a class which contained several who afterward became famous. In the next year lue became well known through his poem 'Old Ironsides,' first published in the Boston Adrertisom, and which prevented the breaking up of the famons frigate Constitution. He spent a year in the Harvard Law School but soon turned his attention to medicine and after studying in Paris three years returned to America w here he received his degree of M.D. in 1836 , the same year in which his first rolume of poems appeared. He was professor of anatomy and physiology at Dartmouth College 1839-40. He married in the last named year and established a practice in Boston, becoming in 1847 proiessor of anatomy and plysiology in the Harvard Medical School, a post which he resigned in $\mathrm{t} \mathrm{SS}_{2}$, when he was at once made professor emeritus. In ify9, and for several succeeding years, he made his summer home at Pittsfield. Nass., the scene of his novel 'Elsie Vemner.' He was one of the first contributors to the 'Atlantic Monthly ${ }^{\text {M }}$ when it was established in 1857. the opening chapter of his 'Antocrat of the Breakfast Table' appearing in the first issue. It is this work. which has found innumerable readers both at home and abroad, by which he will be longest remembered. These brilliant, conversational papers were followed in I859 by a similar series. 'The Professor at the Breakfast Table.' and these in isiz, by 'The Poet at the Breakfast Table.' Ilany of his best poems were scattered through these volumes. In IS61 appeared his rovel 'Elsic T' aner: a Romance of Destiny,' and in 1868 'The Guardian Angel,' a less striking fiction than its predecessor, but like that exhibiting a remarkable series of studies of character. 'A llortal Antipathy' (I885) was his only other essay in fiction. His volumes of Verse '('rania' (IS 46), and 'Astrea' (1850), had made him well known as a poet ere he appeared before the public as the kindly breakfast table antocrat, and he continued to write poetry at frequent intervals for the rest of his life. He was especially happy as the poet of occasions. Int much of his verse, witty and sparkling as it is, is ephemeral from its very nature and not destined to endure. In sucli serious poems.

OIIVER WENDELL HOIMES.

Photographed by Notman.
OLIVER WENDELL HOLMES,
howevcr, as: 'The Chambered Nautilus' ; 'The V'oiceless' ; 'The Last Leaf) ; 'The Iron Gate'; and one or two hymns, he takes high rank among the poets of his time, while such poems as 'The One Hoss Shay') 'Evening, By a T'ailor,' and 'Parson Turell's Legacy,' to name no others, are inimitable examples of humorous verse. His later collections of poems comprise: 'Songs in Many Keys' (1861) ; 'Songs of Mlany Seasons' (1875): 'The Iron Gate' (1880) ; and 'Before the Curfew' (1887). As a physician and medical lecturer he was very successful, and among his purely professional works may be named: 'Lectures on Homeopathy and Its Kindred Delusions' (18 \boldsymbol{H}_{2}); 'Currents and Counter Currents in Medical Science' (1861) ; (Border Lines in some Provinces of Medical Science' (1862) ; 'Mredical Essays,') a reissue of some of his earlier work (1883). Still other volumes by Dr. Holmes are: 'Soundings from the Atlantic) (1864), a series of essays originally contributed to the 'Atlantic Monthy:' where the bulk of his writing first appeared: 'Mechanism in Thought and Morals' (1871): lives of 'John Lothrop Motley') (18;9) : and 'Ralph Waldo Emerson' (1884) ; 'Our Hundred Days in EuIope' (IS88): a sprightly record of a short visit to England in 1886, on which occasion honorary degrees were conferred upon him by the universities of Cambridge. Oxford and Edinburgh; and 'Over the Teacups' (1891). His joth birthday was celebrated by a breakfast given in his honor by the publishers of the 'Atlantic Monthly,' and on this occasion the poet read his poem 'The Iron Gate.' which many persons have considered even finer than 'The Chambered Nautilus ${ }^{2}$ which Holmes himself preferred to any other verses of his. At its best Holmes's prose style is thoroughly, admirable, characterized as it is by an merring sense of the value of words and their fitness for conveying a desired impression, and illumined by the interfused play of a delicate fancy and the most sparkling humor. Next to 'The Autocrat' unust be ranked 'The Guardian Angel' among his prose works, the same kindly tolerant spirit being dominant in hoth, and the same shrewd, wholesome perception of character. In much of his earlier poetry, excepting in his lyrics, Holmes uses the formal ten-syllabled iambic pentameter of the I8th century, but in his hands the measure seems at times more flexible than when used by Pope and his school. and it is at all events relieved from solemnity by his ever present humor. 'Urania' is the best-known of his earlier efforts in this mamner, and 'The Schoolboy' (18\%8) his most notable later one, this latter having been written for the centennial anniversary of Phillips Academy at Andover. Holmes's special characteristic was kindliness, which found its expression as well in his verse as in his prose and in his ordinary living. He could be keenly satirical on occasion but he never became in the least cynical. Perlaps no American writer, not even Longfellow or Lowell, ever won the English heart so completely as Holmes. Longfellow found a wide hearing in England for his poetry, it is true, and Lowell was thoronghly appreciated by the upper class Englishman of his time, but Holmes was the most generally beloved of the three. In his own country Holmes's gentle, tolerant writing did
not a little toward softening the asnerities of controversy and liberalizing unconsciously the heart of Puritan New England. Consult: Morse, 'Life and Letters of Oliver W'endell Holmes' (1896) ; and lives by Kennedy (1883); E. E. Brown (1884).

Holmes, Oliver Wendell, Jr., American jurist: b. Boston 8 March is 4 I . He was graduated from Ilarvard in I801, and in the same year entered the army as licutenant of the zoth Massachusetts regiment. He was wounded at the battles of Ball's Bluff, Antietam, and the second battle of Fredericksburg, and was mustered ont of the army in 1804 , with the rank of brevet lieutenant-colonel. He then studied at the Harvard Law School, and was admitted to the bar in 1866, begimning his practice in Boston. He was editor of the 'American Law Review' (1870-3) : became professor at the Harvard Law School in 1882, and in the same year justice in the Massachusetts supreme court; in 1899 he was appointed chief justice of the same court. His decisions in this position gave him wide fame among lawyers, and were characterized by originality and literary finish. In several cases his decisions were in favor of organized labor; his position being that workingmen had a right to combine and to "support their interests by arguments, persuasion, and the bestowal or refusal of those adrantages which they otherwise lawfully control, so long as they do no violence or threaten no violence." In Angust 1902, he was appointed a member of the Tnited States Supreme Court. He has published: 'The Common Law' (1881). lectures delivered before the Lowell Institute: and a collection of speeches (1900) ; he also edited the 12th edition of Kent's 'Commentaries' (1873).

Holmes, Theophilus Hunter, American soldier: b. Sampson County, Ň. C., 1804 : d. near Fayetteville, N. C.. 21 June I 880 . He was graduated from the United States AIilitary Academy in 1829 , served in the Florida wat, the occupation of Texas, and the Mexican War, and at the beginning of the Civil Was was major and superintendent of the general recruiting service. On 22 April 186I, he resigned his commission in the United States army, forthwith was appointed brigadier-general in the Confederate forces. and organized several North Ca-olina regiments. He was in command at Aquia Creek, and, promoted major-general, was in command of the transMississippi department from September 1862 to March I863, was commissioned lieutenant-general, and 3 July 1803 lost heavily in an unsuccessful attack on Helena, Ark.

Holmes, William Fienry, American geologist: b. Harrison County. ()hio, I Dec. 1846. He was graduated at the Xl.Neely Normal College in 1870, in 1872 was made an assistant on the United States geological surves: and in $1880-9$ was a geologist on the survey: In $1880-98$ he was archæologist to the United States bureau of ethnology, directing explorations, and in $1894-8$ also curator of anthropology in the Field Columbian Musemm of Chicago, and professor of anthropic geology in Chicago University. In I 808 he was appointed head curator in the dcpartment of anthropology in the United States National Mrusemm. His chief works are: 'Archæological Studies among the Cities of Mexico
(IS95) : and 'Stone Implements of the PotomacCbesapeake Tidewater, Province) (1897).

Holocaine. See Cocrine.

Holocephali, hōl-ō-sčf'a-lī. or Chimæroidea, a group of small shark-like fishes of bizarre appearance occurring in the deeper portions of all colder seas. including in all about seven species. five in American waters. They have a cartilaginous skeleton, are of no value as food. and are known to fishermen as rat-fish and elephant-fish (q.\%.). The name Chimæra, given to one genus. emplasizes the strange appearance of these fishes. See Ichthyologr.

Holophytes, bō'lō-fīts. See Fu゙xal.

Holostei, lıō-los'te-i. a gronp of fishes, the bony ganoids. largely fossil. represented by the garpikes. See Ichthyology:

Holothuria, hŏl-ō thū'ría, echinoderms of the class Holothuroidea. popularly called "seacucumbers." from their resemblance in shape and rough skin to that vegetable, in which the bodyis long. cellindrical. somewhat worm-like. less radiated than other echinoderms with a thick muscular body-wall of longitudinal and transverse muscles. The skin is usually thick, tough, and imbedded in it are in certain forms calcareous plates, wheels and anchors. The mouth is surrounded with a circle of ten branched tentacles. adapted both for respiration and for seizing the food, which consists mainly of foraminifera. The intestine is very long and slender, thus in Thyone briarcus. which lives in mud and sand on the coast south of Cape Cod. the intestine in an individual three or four inches long is nearly seven feet in length: it opens at the end of the body, and connects with the "respiratory tree," by which the water is introduced into the interior of the body. Enlike other echinoderms the so-called madreporic body is internal. Holothurians move by tubes or ambulacra feet which are filled with water, and when distended act as suckers to drag the animal over the bottom. These suckers are either arranged in five rows or with three rows on the ventral surface, and two above, the latter in some form obsolete, or they are scattered irregularly over the suriace of the body, while in Caudina arenata of the New England coast there are no suckers. A tendency to bilateral symmetry is seen in a form like Psolus, which has a creeping disk and three rows of suckers on the flattened disk-like under side.

The holothurians undergo a metamorphosis, somewhat like that of the starfish: but the transparent larva called "auricularia," is barrelshaped: what corresponds to the hoops of the barrel leeing bands of cilia. while the car-like projections in certain forms give it the name auricularia. Before the larra is fully grown. the body of the young holothurian begins to bud out from near the side of the larval stomach, the calcarcous crosc-like plates are deposited. and the tentacles besin to grow out. Finally after the larval body is absorbed the young holothurian sinks to the bottom. The degree of metamrphosis is less marked than in other echinoderms. while in two forms development is direct, the young growing in a marsupium or brood-pouch. A form (Cladodactyla crocea) living in the snuth seas at the Falkland 1slands. carries its voung in a sort of nursery where they
are densely packed in two continuous fringes adhering to the dorsal tubes. Holothurians are renarkable from the fact that when captured they eject their intestine, a new one in time being regenerated. The large forms lying about on the coral reeis are known to harbor a small slender fistz (Fieraster) which lodges in their cloaea or in the branchial tree. Many of the species are very large, being nearly two feet in length. A common species on the Florida kers and reefs is Holothuria floridana; it lives in water only a few inches deep and can be picked up in large numbers: it is fully 15 inches in length. and lives on foraminifera. It has been collected, dried and a shipload exported to China. but the trepang or beche-de-mer of commerce is either of two species (H. edulis. and H. tremuld) inhabiting the Pacific Ocean (see Trepaxg). A Calitornia species is also dried and exported by the local Chinese.

The class of Holothuroidea is divided into two orders: (1) Actimopoda represented by Holothmria, Cucumaria, Thyone, Pselus. ete: : and (2) Paractinopoda, of which Syrapta is an example. the common form living in sand at low water on the New England coast being Leftosinapta girardii. A few forms inhabit great depths. Remains of holothurians have been found fossil: certain calcareous plates attributed to them occurring in the Carboniferous. Lias, Jura. and Cretaceous strata. Minute calcareous bodies reierable to Symatita. etc. have been detected in the Paris Eocene limestones.

Holst, hōlst. Hermann Eduard von, Ger-man-American historian: b. Fellin, Livonia, Russia, i9 June 1841: d. Freiburg. Germany. 20 Jan. 190.t. He studied history in Dorpat and Heidelberg and in 1865 traveled through France. Italy: etc. His writings were looked upon with suspicion by the Russian authorities and his further stay in that country becoming unsafe he removed to the United States in 1866. Here he became American correspondent of the 'Kölnische Zeitung.' and sub-editor of the 'Deutsch-amerikanischer Conversations-Lexicon.' In 18,2 he was appointed extraordinary professor of history in the University of Strasburg and in is; + ordinary proiessor at Freiburg-im-Breisgau. In 18-6 he undertook. with means furnished by the Baden government. a journey to London for the purpose oi study and in t8-8-9 a similar journes to North America at the expense of the Prussian Academy of Science. In 1892 he accepted an appointment in the University of Chicago. Ile has published: 'Consitutional and Political History of the Unized States' (18-3): 'The French Revsiution Tested by Mirabeau's Career) (189\%), etc.

Holstein, hol'stin, Germany: a former duchy oi Denmark, and member of the Germanic Confederation, since 1866 united to Schleswig-Holstein (q...). Prussia.

Holstein Cattle. See D.irry Cattle

Holston, hol'ston, a river which rises in the southwestern part of V"irginia. flows south and southwest into Tennessee and unites with the French Broad River about five miles east of Knoxville. The Holston and the French Broad are the head-streams of the Tennessee River. The course of the liolston is throngh a mountainons country, noted for its beantiful scenery.

It has as tributaries many small mountain streams. Its length is about 200 miles.

Holt, Joseph, American jurist: b. Breckinridge County, Ky.. 6 Jan. 180^{-}; d. Washington, D. C.. 1 Aug. 1894. He began legal practice at Elizabethtown in 1828, and in 1857 was appointed commissioner of patents. In 1859 he became postmaster-general and in 1860 secretary of war. He was made by iincoln a judge-advocate general of the army, with colonel's rank, was promoted brigadier, brevetted major-general for distinguished service in the bureau of military justice, and was retired in 1875 . With the exception of Cass, he was the only member of Buchanan's cabinet that was not a Confederate sympathizer. Among the courts over which he presided were those before which Fitz-John Porter and Lincoln's assassins were tried.

Hol'ton, Kan.. city, county-seat of Jackson County; on the Missouri P.. the Chicago, R. I. \& P., and the U'nion P. R.R.'s ; about 28 miles north of Topeka and 30 miles west of Atchison. It was settled in 1859 and received its charter in 18%. It is situated in a section noted for good farms. The chief manufactures are flour, wagons. cigars, creamery products. and planed lumber. Its trade is chietly in wheat. corn, hay, live-stock, and local manufactured products. The government is vested in a mayor. who holds office two years, and a common council. Pop. (1900) 3.082.

Hölty, Ludwig Heinrich Christoph, lood'vig hiñ'rì krés'tớf hèl'ť, German lyric poet: b. Nlariensee, near Hanover, 21 Dec. 1748 : d. Hanover I Sept. $1=76$. In $1=60$ he went to Göttingen to study theology. Here, falling in with Burger, Voss, the Stolbergs, and other poets of kindred tastes, he became one of the founders of the Göttingen "Hainbund." This league of young enthusiasts was aflame for Klopstock, then considered the greatest German poet for patriotism and for friendship, detested Wieland's sensual poems and his Frenchified manner, read the classics together, and wrote poetry in friendly emulation. Hölty's poems rereal a lovable personality. The strain of sentimentality that runs through all his work is not affectation, as it was with so many of the younger poets of that age in which Ronsseau had made sentimentality fashionable. but the true expression of his nature. His range was small: but within its limits his work was excellent, and many of his songs have become the common property of the people. Consult: Voigts. 'Hölty, ein Roman' (IS41); Reute, 'Hölty, Sein Leben und Dichten' (1883).

Holub, ho'loob, Emil, Austrian explorer: b. Holics, Bohemia, 7 Oct. 1847 ; d. Vienna 21 Feb. 1902. At 25 he went to South Airica, where he practised in Kimberley and elsewhere as a physician. Later he became engaged in African exploration and in recognition of his services as an explorer received from the Austrian emperor the Order of the 1ron Crown. He published 'Beiträge zur Ornithologie Südafrikas': 'Sieben Jahre in Südafrika' (1881) ; 'The Colonization of Africa'; and 'From Cape Town to the Maskukulumbe.'

Holy Alliance, an international league proposed by Alexander $I_{\text {., emperor of Russia, }}$ 26 Sept. 1815 after the defeat of Napoleon at Waterloo had cleared the way for the exerution
of his desire of establishing a settled peace in Europe. Alexander, lirancis of Austria, and Frederick William 1II. of Prussia. signed with their own hands, and without the countersign of a minister, the act estallishing this alliance, which is said :o have been sent to the two latter in the handwriting of the first. It was not wholly, published till 2 Feb. I816, when the text was given in full in the Frankiort Journal. It consisted of a declaration, that, in accordance with the precepts of the gospel of Jesus Christ. the principles of justice, charity, and peace should be the basis of their internal administration. and of their international relations, and that the happiness and religious welfare of their subjects should be their great object. Its real aim, however. was to maintain the power and influence of the existing dymasties. It was also stipulated that the three sovereigns should invite others to become members of the Holy Alliance. In Russia and Gernany its principles were not discussed except in a spirit of eulogy, but they were uncompromisingly condemned in Britain by many of her foremost statesmen. On 4 Feb. I823 both Lansdowne and Brougham openly condemned its doctrines in their places in Parliament. Sir James Mackintosh said of the doctrine of legitimacy, in the sense in which it was used by the Holy Alliance, "Sophistry" lent her colors to the most extravagant pretensions of tyranny." The events of 1848 broke up the Holy Alliance. It had previously lost much of its authority from the death of Alexander, and the French rerolution of I830. By a special article of the treaty the members of the Bomaparte family were declared incapable of occupying any European throne.

Holy Cross, College of the, an institution in charge of the Fathers of the Society of Jesus. situated at Worcester, Mass. The school was founded in 1843. It has a preparatory department : and the college grants the usual degrees given by classical and scientific institutions. It is self-supporting; up to 1903 it had received no State aid nor any endowments. It has established six fellowships. In 1903 there were connected with the school 28 professors and instructors, and nearly 400 students. The library contained about 25.000 volumes.

Holy Cross, Mount of the, a peak of the Rocky Mlountains, in Eagle County; in the State of Colorado. The peak is about is miles southwest of Denver, and 20 miles north ly west of Leadville. It is it,006 feet high.

Holy Day, a day set apart in the Catholic Church for the commemoration of some saint or mystery. It is called "oi obligation" when attendance at Mass and abstention from servile works are prescribed.

Holy Ghost, or Holy Spirit, the third person in the Holy Trinity. The Roman Catholic Church declares the Son to be begotten by the Father, and the Holy (ihost in have proceeded from loth. The Orthodox Greek Church maintains that the Holy Ghost proceeds from the Father only; and this is one of the main pnints of doctrine on which Roman and Greek Catholics differ. The history of the controversy is shortly this: Tertultian and Origen. two distinguished Fathers of the Chutch in the 3 d century; maintained that the 1 loly Glost was begoten by the Father through the Son.

Macedonius, bishop of Constantinople in the middle of the th century. denied that the Holy Ghost was equal in essence and dignity to God the Father. The Council of Alexandria in 362 declared this bishop and his adherents, the Pneumatomachists. teachers oi heresy; and the general council at Constantinople in 351 declared expressly to the whole Christian Church. that the Holy Ghost was the third person of the Trinity, proceeding from the Faiher, and to be worshipped equally with the Father and the Son. Augustine taught that the Holy Ghost proceeds irom the Father and the Son; and the Council of Toledos in 589 . condemned all who believed otherwise. This new formulation of the dogma occasioned a controversy which lasted irom the 8 th to the 11 th century, between the Western or Latin, and the Eastern or Greek Churches, and finally led to their complete separation. The Anglican Church and the Protestant Episcopal Church in the Lnited States use the Greek form of the Nicene Creed. The worship of the Holy Ghost as the third person in the Godhead is common to both Roman and Greek churches, and to the Protestant Trinitarians, being essential to the faith in the divine Trinity. See Creed: Trisits.

Holy Ghost Flower, or Holy Spirit Dlant. See Dote Plant.

Holy Ghost, Order of, a former order of Hospitalers, founded by Guy: son of William, Count of Montpellier, in the 12th century, ior the relief of the poor, the infirm and ioundlings. In the $i 8$ th century it was united with the order of St. Lazarus by Clement XIIl. Also the name of the principal military order in France instituted in $55-8$, abolished in 589 , revived at the Restoration, and finally abolished in 1830 .

Holy Land, a name given by Mohammedans to Arabua because it was the birthplace of Mohammed; also by Buddhists to India because it was the country oi Sakya Muni. It is a common name of Palestine. because the place where Christ lived when upon earth. See Palestine.

Holy Orders, the several ranks of the ministry of a church: also the power or authority to exercise that ministry:

In the Roman Catholic Church Holy Orders is one of the sacrament- and there are seven orders of the ministry. viz.: pricsthood. deaconate, and sub-deaconate: these are the greater or sacred orders: and the four minor orders of lector, acolyte, exorcist., and doorkeeper. U'sually the episcopate is clas:ed. not as a separate order, but as the completion and extension of the priesthood. Though every candidate for the priesthood is inducted into the iour minor orders and the sub-deaconate and deaconate before he receives priestly ordination, it happens very seldom that a man enters, any of those inferior orders intending to remain therein: they are simply steps to the priesthood.

In the Oriental churches, both those in communion with the Roman See - as the Greek Lniate, the Maronite, the United Armenian, etc., and those which are separated from Rome by schism or by heresy, the number of orders is less than in the Latin Church: in all the ioregoing churches only four orders. or. counting the episcopate as a distinct order, five orders are recognized; those oi bishop, priest, deacon, and lector: and of these the first three. at least,
are held to be oi divine institution and sacramental.

By the Anglican Church and the Protestant Episcopal Church of the United States three orders are recognized ; those oi bishops, priests and deacons: but in the 25 th of the Articles of Religion those orders are expressly declared to be no sacrament.

The orders of the Oriental churches are generally recognized as valid by the Church of Rome: and when a priest of any of those churches is received into the Roman Catholic Church he is still regarded as a priest: but an Anglican or a Protestant Episcopal minister enters the Latin Church as a simple layman even thorgh he were in Anglicanisn2 a bishop; for Anglican orders have ever been held by Rome to be invalid.

Other Protestan churches, whether episcopal (as the Lutheran) or presbyterial or congregational, do not regard holy orders (or clerical order) as of divine institution or as setting up any essential difference between minister and layman. See Ciergy.

Holy Roman or German-Roman Empire, a title conferred on the German empire in 902 by Pope John XII. at the coronation in Rome of Otho I. who considered himself the lineal representative of the rulers of the ancient Roman Empire which practically had ceased to exist in 4;6. The designation ended in ISO4 with the accession of Francis II. as hereditary emperor oi Austria. See Hapsblrg.

Holy Water, in the Greek and Roman Catholic Churches, water which has been consecrated by prayers. exorcism, and other ceremonies to sprinkle the faithiul and things used ior the church. Some antiquaries think that the use oi holy or lustral water was borrowed from the Jews. The Roman Catholic Church considers holy water not oniy symbolical of the purity of the soul, but in certain cases as eifectual in exorcism. At the entrance of all churches is kept a font of holy water, in which those going in and out dip the fingers and bless themselves. The consecration of holy water takes place on Holy Saturday before Easter Sunday:

Holy Week, or Passion Week, is that which immediately precedes Easter. The name Passion Week rather refers to the days following and exclusive of Palm Sunday, since this day, strictly speaking. does not commemorate any incident oi Christ's passion, but his triumphant entry into Jerusalem. The three chiei days of the week are Maundy Thursday (or Holy Thursday), Good Friday, and Holy Saturday. the most sacred of all being Good Friday. The observance oi Holy Week is of very early origin, and it was known as Great Week. Silent Week, Penitential Week, etc. In the ancient Church of Rome, when any of the ordinary Church iestivals ialls on this week. it is not observed till after Easter. In Rome it used to be observed with much greater solemnity and penitential rigor than now: for the shops are kept open. concerts and other amusements are given, though the theatres are closed. The washing oi the feet of poor men is still practi-ed in Roman Catholic churches: and the pope washes the feet of i3 poor persons, all of whom are priests. In Austria the emperor keeps tip the old rite of feet-washing with much ceremony:

Holyoake, hōlî-ōk, George Jacob, English political reformer: b. l3irmingham 13 April 1817; d. Prighton 22 Jan. 1906 . He early became connected with various advance movements in Birminglam. In $18+1$ he was one of the lecturers chosen to explain Robert Owen's social theories, and next year was imprisoned on a charge of atheism. He supported the Chartist demands, but did not sympathize with their hostility to the Whigs. He took an important part in the agitation ior the repeal of the corn laws, and for the repeal of the so-called "taxes upon knowledge." He was the founder of a purely ethical religion, without theistic element (secularism): and was active as a lecturer and writer in the co-operative movement. His works include: 'The Logic of Death'; 'The Logic of Liie': 'The Trial of Theism') ' Nature and the Origin of Secularism'; '(Thirtythree lears of Co-operation' (1872) ; 'History of Co-operation in England, Its Literature and Its Advocates' (1875) : 'Among the Americans' (I 88 I) : 'Self Help One Hundred Years Ago' (1888): 'The Co-operative llovement of Today' (I8gI), a short, useful account of the history of co-operation: 'Sixty' Years of an Agitator's Life) (1802), an autobiography: and 'Jubilee History of the Leeds Co-operative Society' (1890).

Holyoke, hol'yōk, Mass., city in Hampden County: on the Comnecticut River. and the New York, N. H. \& H. and the Boston \& M. R.R. s; about 75 miles southwest of Boston and 8 miles north of Springfield. Holyoke was settled in the last part of the 17th century by people from Ireland, and for some time it was called Ireland Parish. It was incorporated as a part of West Springfield in 1780; but in 1850 it became a distinct town, with its own government. and it was chartered as a city in 1873. Like the other settlements along the shore of the Connecticut. the inhabitants saw the advantages to be derived from the water-power. At first only the small streams flowing into the Connecticut were dammed, and used for turning machinery: the main stream itself was the great route whereby trade intercourse was established with settlements along its shores. In 1847 the Hadiey Falls Company began to devise ways and means of using the water-power of the Connecticut River, which at Holyoke had a fall of about 60 feet. In a few years the dam, 1,000 feet in length, was placed across the river, and the water-power thus obtained gave Holyoke great opportunities for the establishment of manufacturing industries, and they have been well utilized. For some years it was noted for the number and magnitude of its paper-mills; but other industries now enrich the city. Its chief manufactures are paper, paper-products, thread, cotton and woolen goods, knit goods, alpaca, silk, automobiles, machinery, bicycles. wire. belting, screws, bricks. furniture, and schonl supplies. Some of the public institutions are the College of Music, public library. House of Providence hospital, city hospital, two orphanages located outside the city limits, St. Vincent's for girls and Holy Family for boys. A large percentage of the people are of foreign birth or foreign descent. The school census of 1902 shows the following: Public schools, 3.500 Irish, 3.200 French. Soo German, and 900

American. In the parish schools there were enrolled that same year 3.500 pupils. The law which declares: "No minur who cannot read and write the English language cin be employed in any factory or commercial enterprise" is rigidly enforced. Evening schools are provided for those who cannot attend school in the day time. Tine Holyoke Scientific Sociay has done special and excellent work in American archæology. It owns a valuable collection of 1 ndian relics. Some of the places of inturest near the city, and which may be reached by the electric railway, are Mount Holyoke (q.v.), Mount Ton (q.v.), and Springfield. In Isoo the city charter was revised, and the government is now vested in a mayor, who is elected amually: and a city council. Pop. (1890) 35,637; (1900) 45.712.

Holyoke College, Mount. See Mount Holyoke College.

Holyoke, Mount, a narrow ridge of greenstone, the highest point of which is about 1,120 feet above the sea. It is in Hampshire County: Mass., about one mile east of the Connecticut River, five miles southeast of Northampton, and eight miles northeast of Holyoke. On the summit is a hotel, built in 182I. The hotel can be reached by a carriage road which winds to the top, or by a railway which runs up a steep incline.

Holyrood, hō'lí-rood, Palace and Abbey of, Scotland, the ancient royal residence at Edinburgh (q.v.).

Homatropin, hō-măt'rō-pin. See Atropise.
Home, Henry, Lord Kames, Scottish lawyer and author: b. Kames, Berwickshire, I6g6; d. Edinhurgh 27 Dec. 1-82. He studied law at Edinburgh, and, called to the bar in 1724, soon acquired reputation by a number of publications on the civil and Scottish law. In $1 / 552$ he became a judge of session, and assumed the title of Lord Kames. In addition to legal works he published 'Essays on British Antiquities'; 'Essays on the Principles of Norality and Natural Religion,' in which he advocates the doctrine of philosophical necessity; (Introduction to the Art of Thinking'; and his best-known work, 'Elements of Criticism,' in which, discarding all arbitrary rules of literary composition, he endeavors to establish a new theory on the principles of human nature. In 1776 he published the 'Gentleman Farmet') and in $1 ; 81$ 'Loose Thoughts on Education.'

Home Education. From the earliest recorded school the conception of education has steadily broadened, till now careful thinkers recognize that education should be for adults as well as for the young, carried on at home as well as in school and through life instead of for a limited course. The agencies for this hroader education are in five distinct groups, and workers in this special field after mature deliberation have given to it the name "Home education" because it differs from school education in being carried on at home while the students are engaged in their regular callings. instead of in sclools as a chief occupation. The five groups of schools (elementary schools, high schools and academies, colleges, professional and technical schools, universities) might he called the five majors of education, while librarics, museums, study clubs, extension teaching, tests and credentials might be called the five minors.

1. Libraries. This includes reierence and lending libraries, magazine and news rooms and all reading of the conventional symbols called print. Reading courses, circles, clubs, and home study from books without instructors belong to this library group, which is the cornerstone of all home education. See Libraries: Tratelisg Libraries
2. Muscums. - This includes museums and laboratories of science. art. history, etc. As the library group includes education through the eye by means of conventional symbols, so in its broadest sense the museum group represents education also through the eye from reading the interesting and beautiful language of nature and art: and as reading may oiten have no direct connection with the public librars, so also the museum group may include detached monuments, statues. busts. pictures, and other works of art. See Mu'securs.
3. Extension Teaching. -This includes all agencies which extend personal help or teaching to those who cannot attend regular schools: for example. summer, vacation, Saturday, niglit schools or classes, extension lectures, correspondence teaching, home study under direction. classes in libraries, Y. M. C. A. or Y. W. C. A. and other organizations. Mere lectures or addresses not accompanied by class or paper werk, or instruction in the more limited sense. should be sharply distinguished from extension teaching. They represent the platform and perhaps should be counted as an independent group. Some so-called extension teaching is really little more than lectures, while under the name lecture some excellent instruction is given. The group should perhaps be called "extension teaching and lectures," to keep prominent the difference between the two. while it recognizes as their common distinguishing quality the personal aid and inspiration given by the teacher or lecturer to his class or audience. Lecturers give the inspiration and magnetism of personal contact which cannot be transmitted in print. This personal element. however, is chiefly on the side of the lecturer: the audience is a mass. In extension teaching where the lecturers are to stimulate to personal study and are supplemented by class and written work, the personal element is reciprocal; ior the teacher. dealing with each student as an individual, answers his questions, solves his difficulties and is his persomal teacher, guide and iriend. The lecture is chiefly for inspiration: the teaching, for instruction.

The chief factors in extension teaching are:
Stumber Schouls. In the last decade skepticism as to the practical value of summer schocls has given way to official recognition by the leading American universities of the demand fit such instruc:ion and of the duty to supply it of institutions with buildings, libraries, laboratories, reputation and faculty: Fortunately. many weak institutions, some of them started of maintained from commercial motives and rthers lacking funds ior proper work. have been discontinued as one by one the strongeat instututions have offered the needed inctruction and thrown open to the public during the summer months their great facilities. See Stumer Schools.

Correspondence Tiaching. - Commercial ex-
periments have proved that there is a large demand for instruction in many subjects, especially those which add most directly to wageearning capacity, irom those wholly unable to leave their positions to attend any of the established schools. The growth oi this demand is evidenced by the great number of advertisements of such instruction and by the marked success of some of the more prominent schools. One of these schools in 1903 had 650,000 students and IIf professors, and upward of $2,000.000$ persons were taking correspondence courses in this country. The method having been proved efficient is beginning to be adopred by the endowed institutions: and inevitably as they offer better instruction at less cost and with it their established reputation, correspondence teaching with full recognition of its limitations but also of its possibilities, will become an established and creditable educational iactor.

Ericnsion Cowrsis. - In America for the few years near the end of the 19th century hundreds of university extension centres were established, most of them with insufficient knowledge of what a real extension course was and with inadequate facilities and teachers inexperienced in this peculiar but important work. The result predicted naturally followed and most of the organizations which sprung into existence died out. The University of Chicago won first place by the excellence of the work it offered and still carries on. The American Society for the Extension of Lniversity Teaching in Philadelphia has been most active and successiul of all the voluntary organizations. The Sew Jork State extension work was iron the first announced to be wholly subsidiary to the more important function of the public library and study clubs. Experience has proved the great merit of the extension method in the hands of skilful teachers with a gifit for this difficult kind of teaching, where inspiration is more important than instruction. See U'sitersity Extexiston.

Liofuris.-In most cases lecturers have been desultory and have been intellectual entertainments rather than entitled to rank as educational iactor: Students of home education. however, recognize the inspirational lecture as a strong lever in their work and are using it more carefully and effectively, and organizing into courses which give better results. The Brooklyn Institute lias maintained for many years a remarkable system, giving each year hundreds of lectures from recognized authorities. and in connection wish its library and nuseum affords the best existing example of a great metropolitan home education centre. In Sew lork the free lectures ior the people have grown steadily from year to year and exert a great influence for geod on the hundreds of thousands who hear them annually. Progressive librarians are nore and more feeling the responsibility of guiding the local demand so that the lectures shall become a still more efficient ally of the library in its broad work of giving information, inspiration and intellectual recreation. See also Adult Edecatiox.
4. Associations or Clubs - This includes all forms of mutual help through associated effort, from the clab of two friends in a single house to the great summer schools like Chautauqua, where each July and Angust thousands gather

HOME RULE

from all parts of the country: This work with onc's fellows supplies something of the element of residence, which is as valuable a part of the usual college conrse as are the studies. A certain sulthle mental chemistry of the greatest practical value results from contact with other minds pursuing the same studies. If this gives a few weeks actual residence away from home. with daily student life, and a course in such company and surfoundings as our best summer schools now offer, the student gets an invaluable aste of real college residence. This mutual help elcment in home education is chiefly supplied by the numerous literary and study clubs, many of which are coming to give their annual programs, a definite educational value by limiting them to a single worthy sulbject and supplying members with hooks, pictures and, if needed, specimens or other aids.
5. Tests and Credentials. - The great problem in popularizing education is to secure continuous and systematic study from those lacking the stimulus of the schools. Experience shows that a goal is needed by most people to hold them to completion of what they begin, by giving tests and official recognition, with suitable credentials for work well done. Differing from the other gromps their field is to stimulate, test. record, and certify, rather than to give instruction. In spite of the criticisms and abuses of examinations, no satisfactory substitute for the good they accomplish when properly used has yet been found. They are last and least of the minors, but necessary to a complete system.

Educational Factors.- Most well equipped schools have all the factors of home education in active operation, but it is the use of these factors by those who cannot attend schools that constitutes home education. Schools imply residence and are attended consecutively, students advancing stage by stage from kindergarten to university. In home education the student will often use all five minors at once, and in well organized extension courses with lectures, syllabus, class, paper work, directed reading, student club and final examination we have four of the five minors, and in many subjects the museum or laboratory clement is also added. A town that aims to provide educational facilities for both old and young at lame, through life must make all five groups available. For most places the ideal would be to combine in a single building suitably arranged, the public library, musemm, extension, examination, and association or club roons, thus massing in a single institution, for which the best mame is institute, all the essential educational agencies outside regular schools.

While there should be constant co-operation and the utmost harmony between the agencies for home and school education, experience constantly proves that the best results cannot be obtained by putting home education work in clarge of school authorities. The obvions reason is that school trustees naturally and properly feel that the school system is the vital part, while libraries, museums, clubs, and extension teaching are only incidentals. The best results are always reached with independent trustees, who regard home education as quite as important as school education, and who devote all their energies to promoting their own
work. While two governing boards are thus a necessity, a larger number is more costly and less efficient in administration, so that most close students of this problem advise in all ordinary circumstances the massing of the five minors together under a single board with headquarters in a single building. While in theory the library is one of the five home education factors, in fact the rapidly growing practice is wisely making home education a part of the library. This is because the country is being rapidly dotted with library buildings supported by taxation and endowments and receiving private gifts and public appropriations and support to a degree never equaled in educational history. The public library is already one of the most popular of American institutions and is rapidly gaining ground in all civilized countries. With buildings, endowments, trustces and public sympathy and support, it is the most economical, natural and best centre for the other elements of home education. In New York the official title now used is "New York State Library and Home Education," but it is frankly stated that the words "home education" will be dropped when the public learns that library means not a mere collection of books, but the home of all this closely allied work.

At the national meeting of American librarians in 1898 the entire program was given to impressing as strongly as possible the fact that small as well as large public libraries had the privilege and duty of giving stimulus and aid not alone to readers of books, but to all citizens, young or old, who were seeking intellectual advancement. Libraries are rapidly introducing the muscum clement in collecting and lending pictures as they do books. Many have started collections in art, science, or history. Laboratories are sure to follow, where persons without such facilities at lame may pursue investigations and supplement their reading with experimental work. Even small towns now consider a library building inadequate which does not prowde rooms for literary, scientific and similar societies for mutual improvement, and lecture halls, large and sinall, for the varions phases of extension teaching. In the last few years this development has become less a matter of discussion than the rapidity with which individual librarics may take on their new and broader functions.

Melvil Dewey,

Formerly Director Nea York State Library.
Home Rule, the domestic control of local affairs in a province. colony, or dependency of an empire. The term has been employed in recent history most especially with regard to Ireland, which has been a dependency of England ever since Pope Hadrian, as is averred, handed it over to Henry II. of England in I155, on condition that a certain portion of its revenue should flow into the treasury of the Holy Sce. Since that time Ireland has bocen more or less subject to t.le government of England. English viccroys lave ruled at Dublin, and English troops kept the peace. Thi Irish are a high-spirited and proud nation, and the history of their sul)jugation has been a bloody one. For many years, however, they had their own parliament. and managed their own domestic affairs. Then came what was called the Union. The Irish
parliament was abolished, and Irish boroughs elected representatives to seats at Westminster. This was in ISor, when it is said that the Irish parliament which passed the bill for its own destruction was bribed or cajoled into what Irishmen of to-day consider a fatal and suicidal act. The first Irishman of note to attempt a remedy for Irish grievances was Daniel O'Connell. Catholic emancipation had been won largely through his agitation, seconded by the strong and clear-headed statesmanship of Wellington. In 18340° Connell brought forward in the House of Commens his metion for a repeal of the Union. By recent act of Parliament the municipal councils of Ireland had been thrown open to Roman Catholics. O° Connell vas elected lord mayor of Dublin. and while his motion for appeal was supported with but fo votes in parliament, he carried it by 45 to 15 votes in the municipal chamber at Dublin. This was undoubtedly the earliest step in the movement toward home rule, which from that time to the present micment has conrulsed I-eiand. In the town council at Dublin one of the 15 who had roted against O° Connellis motion for the repeal of the union was a brilliant young lawyer named Isaac Butt. In $18-1$ he was elected member oi Parliament for Limerick and with him the Home Rule party in the English Parliament was born. The party struggled along for many years striving by obstruction and agitation in several quarters to maintain the rights of Ireland. and obtain for her better terms in her relations with the mother country. Mr. Butt. who was a true home ruler, though a conservative was at length incensed by the obstructionist tactics of Parnell and Biggar. which he thought beneath "the digrity of Parliament." and practically surrendered the leadership of his party, in which be was succeeded by Parneil. In iS,- Parnell was elected president of the Home Rule Coniederation of Great Britain. Parnell very quickly showed that he not only had very definite views, lut possessed also the courage oi his convictions. He became an adrocate of peasant proprietorship. For the realization of this idea the Land League was constituted. At a meeting held in London 21 Oct. $18-9$ it was declared that the objects of the league were, first to bring about a reduction if rack-rents: second to facilitate the obtaining oi the ownership of the soil by the occupiers. It was rery remarkable to see how English opinion was gradually molded by the great land Leacue and Home Rule Parm. In the elections of 888 many Conservative candidates almost echoed the words of Parnell in declaring for a "liberal measure of home rule in Ireland." In the elections of 1885 the Liberals came in for a majority and Mr. Gladstone was premier for the third time. He was rot long in bringing in a bili providing for "the ennstitution oi an Irish parliament sitting in Dublin with the Queen $a=$ its head." He urged the passing of the bill with one of the most poweriul, the mnst effective, and most touching speeches which te ever delivered. But his eloquence was in vain, the measure was defeated by a majo rity of 30 . This was not the last time that Ciadstone was to attempt the liberation of Ireland. Bus bold as had been his change of opinion in putting forth a meacure he had in earlier life condemned. his conception of Honc Rule ior Ireland was quite inadequate
compared with what O° Connei. contemplated in his agitation for repeal. Such as it was, Gladstone again staked the existence of his ministry on its realization in 1893. The bill passed the House of Commons, but was rejected in the House of Lords, and sitce that time Home Rule for Ireland has been a dead issue in English politics.

Home Rule, Municipal. See Mrexicipal Gorersmest.

Homer, hōmer, a poet to whom was 2ttributed in ancient Greece the authorship oi the iwo epic poems, the 'Iliad' and the 'Odyssev.) which form the foundation of Greek, and consequentiy of European literature. Of Ho mer's personality. birth. place. and time. ve lave no cerrain knowledge. His very existense has been brougitt into doubt. and in accordance with the etymology of his name Homer, which means the same as Tyasa, to whom the Mahabharata has been attributed. he is sometimes taken merely ior the "arranger" or "compiler" oi the works that go by his name. Seven cities, however, contended for the honor of being his bisthplace: their names form the hexameter line

Symrna, Rhodos, Colophon, Salamis, Chios, Argos, Athenx.
These names cover almost the whole geographical area oil Greece and at least point to the extent oi the poet's fance and influence. Although the dates of his birth and death are equally doubtiul. critics have placed him anywhere in the orh and roth centuries beiore Christ, though some have thought these dates 300 years too early. He is traditionally said to have been blind. like Demodocus. the minstrel of the Odyssey. Some in ancient times attributed to him also the Bat:achyomachia, and the so-called Homeric hymns. but it is at least doubtiul whether these were written by the author of the 'Iliad.' as the Batrachyomachia seems a century Jater than the epics. and the hymns to Apollo. Demeter. Hermes, Aphrodite, and minor divinities were probably preludes or introductions which the rhapsodes or minstrels sang or clanted beiore beginning :"ve serious business oi the epic recitation.

The 'lliad' and 'Odyssey' deal with the war waged by European Greece against Asiatic Troy:

The 'Iliud.- This 'Poem of llium' or Troy describes some phases of the war waged by Agamemnon and his brother Menelaus against Priam, whose son Paris had carried off Helen, the heautiful wife of Menelaus. The subject of this epic is called the wrath of Achilles. the representative Greek hero, a romantic and dazzling figure. He remains in his tent without helping in the war because Agamemnon has taken from him the captive slave girl Briscis. At Jength Hector, the champion oi the Trojans. slays in fight Patroclus, the bosom friend of Achilles, who is roused by this irom his sullen inactisity, and rushes forth to the battefield, where he meets and slays Hector, whose funeral rites form the closing incidents of the poem.

The Odyssey. - The 'Odyssey' describes the return of Odysseus from the siege of Troy to his island kingdom. Ithaca. where be is restored to his iaithiul wite, Penelope, and takes vengeance on the suitors who have sought her hand and wasted her husband's substance in
revelry and debauchery during his absence. The first four books describe Odysseus detained in the magic isle of Calypso, and the despatch of his son Telemachus to bring him home. The following eight are takeal up with the hero's homeward voyage with his various adventures. In books 13-19. Odysseus in the attire of a beggar is found unrecognized at the door of his home; books 20-24 describe his vengeance on the stitors.

There were some crities of Greece, notably Xenon and Hellanicus, who held that the socalled Homeric epics were written by different men. This school of grammarians were called chorizontes, or separators. There is much indeed to give color to such a view. As has been said, the 'Iliad' was written for men, the 'Odyssey' for women. But what principally distinguishes the 'Odysscy' from the 'Iliad' is the fuller and more complete individualization of the Greek divinties, the higher tone of religious and social life. The knowledge of foreign lands and their products and the means of travel by sea seem also to have reached a more advanced stage.

It remained for F. A. Wolf in his famons 'Prolegomena ad Homerum' (1795) to make the kecnest and most scarching analysis of these epics, as regards their unity of composition and identity of origin. He relies upon the statement in Greek history that Pisistratus in 540 collected and arranged the Homeric poems in something like their present form. The epics are thus made up of separate ballads, sung by rlapsodes, probably writien by different poets, and Woli has shown much acuteness in pointing out that long epic poems could not have been transmitted from sucln early antiquity without handwriting, which did not then exist, and in indicating what portion of each epic originally formed individual and distinct songs or lays. Consult: Jebb, 'Introduction to Homer' (1887): Monro, 'Homeric Grammar' (1891) ; Eheling, 'Lexicon Homericum' (I885); Leaf, 'The Iliad' (1888): Hayman, 'The Odyssey' (:882) 。

Homer, Winslow, American painter: b. Boston 24 Fcb. I836. He studied in the National Academy of Design and was also a pupil of Frederic Rondel. He was sent to the front during the Civil War as special artist to 'Harper's 'Wcekly' and on his retirn to New York exhibited his first important work, 'Prisoners from the Front' (i864), which won him recognition. In r865 he was clected Academician. Taking up his residence in Scarboro, Maine, he painted for many years a series of pictures which indicated a marked development in style, sentiment, and power. There was a trace of conventionality at least in the subjects of such pictures as "Home, Sweet Home,' which he painted between 1864 and 1884. From the latter date he began his portrayal of the fisher population of New England. Dramatic and realistic in the highest degree is the series of seven canvases from the 'Life Line' (1884) to the 'Lookout' (1897). But this artist lias reached his finest vein in his pure marines, of which by far the greatest is 'The Maine Coast."

Homestead, hōm'stěd, Pa., borough, in Allegheny County, on the Monongahela River and on the Pittsburg \& L. E. and the PennVol. 8-29.
sylvania R.R.'s; about serch miles soutlı of Pittsburg. It was settled in 1871 and incorporated and chartered in 1880 . The chief mannfactures are foundry-products, glass, machincry, and stecl products. It is noted for its large steel plants, which employ over 6,000 men. The borough owas and operates the waterworks. At one time Andrew Carnegie (q.w.) was the principal owner of the Homestead steel works. Pop. (1890) 7.911; (1900) 12.554.

There occurred in Homestead a scrious strike which began 6 J bly 1802 . Reductions in wages, change in time of signing the schedule, and refusal to recognize the Amalgamated Iron and Steel Association, or to hold any conferences with the men, had brought on a general strike to date from a certain time, and enraged the men into burning H. C. Frick, the manager, in effigy; wheretupon the works ware at once shut down, I July, two days ahead of the agreed time, and the men armed thenselves and prepared to resist by violence any attempt to supply their places with non-union men. The advisory committce of the union took clarge of the town with regular armed companics, and allowed no one to enter the mills without their permission. On 5 July the company announced an intention to make repairs, and appealed to the sheriff for protection; he sent? small squad, who were at once driven from town by the strikers, the latter denying that any damage was intended and offering to be sworn in as deputies themselves. The company then hired a body of 300 Pinkerton detectives, who came 11p the river in barges; but the strikers broke through the fence surrounding the mill, intrenched themselves behind a barricade of steel rails and billets, and whenever the Pinkerton men attempted to climb the steep bank (which they began at 4 A.m. of 6 July), shot them down. Next day they procured a so-pounder brass cannon and bombarded the boat, splintering her wooden sides, but failing to pierce the steel plates within. They then sprayed the boats with oil from a hose, and emptied barrels of it on the river, sctting it on fire to float down and fire the boats. The detectives repeatedly ran up flags of trucc, which were at once shot down. At length the advisory committee sent delegates to offer a safe-conduct to thic detectives, if they would leave their arms and ammunition and quit the town under guard; they were forced to submit, but when leaving under escort, the mob stoned, shot, and clubbed then shockingly, one having an eye struck out by a woman in the mob. Seven were killed first and last, and 20 to 30 wounded: and II strikers and spectators were killed by their return fire from the boats. The governor (Pattison) refused to use the State power to quell the riot till the Ioth, insisting that the local anthorities nust do their utmost first, and the sheriff must summon the citizens; and the troops did not arrive till the $12 t h$, when the town was put under martial law. A comnitice of Congress was appointed to investigate the case; and later, a Senate committee in the interest of the strikers was appointed to inquire into the hiring of private armed parties to maintain public order. On 21 July Mr. Frick was shot and stabbed in his office, but recovered. On the 18th a number of the strikers were arrested for murder: and
retorted by indicting the Carnegie Company， the Pinkerton brothers，and five of their men． for murder．The advisory commitiee was also charged with treason and usurpation，in taking military possession of the town．The mills were soun supplied with new men．but the strike was not officially declared＂off＂till 20 SVor． 1 Sg2．

Homestead and Land Laws．Lider the Tinited States laws any citizen or person who declares intentions to become a citizen．male or fennale， 21 years old．or head of a iamily， may become the possessor of a homestead of so or 160 acres，by occupation and cultivation，to be taken from unreserved public lands．sur－ reged or unsurveged．A iee of Σ_{5} or $\$ 10$ is re－ ouired to be paid for filing affidavit of settle－ ment．citizenship，age or family status．Total iee is irom $\$ 26$ to $\$ 34$ ．according to the land district．Five years residence and cultivation are required，but only three are demanded where Σ or 10 acres of forest trees have been culti－ vated．Ex－Union reterans or their heirs obtain patent one year after residence．Benetits are limited to one claim，except that veterans who have made one land settlement may also take a homestead claim．Under timber－culture provi－ sions homestead locators may secure another 160 acres．including timber area，by cultivating to acres of trees．A homestead is iree from debt liability before patent issues．Locator may，on proof of settlement six months after occupancy， buy said land at pre－emption price．

Homestead discussion began in 1852 by the Free－Soil party demanding reservation for set－ tlers．1t was presented first in Congress by Galusha Grow，1854．A bill was first offered in 18：9，and passed the House；an act passed in 1860，granting homestead on payment of 25 cents an acre．was vetoed by President Bu－ chanan．The present law was signed by Presi－ dent Lincoln， 20 May 1862 ．Homestead law initiated the national land policy：It marks the third step in definite change from purchase to settlement．Pre－emption policy，granting pref－ erence to occupancy over speculating purchases． was the second step．First was sale or grants en bloc．It began in t8ot when an act was passed granting pre－emption to Miami Valley settlers on Ohio－Symmes tract．Sisteen acts were passed before that of 1832 ．which fixed the price at $\$ 1.25$ and $\$ 2.50$ ，and divisions at 40，So．120，and i60 acres．Linder Pre－emption Laws，a locator having civic rights and also able to testify that he or slte does not possess 320 acres of land in the United States or has int abandoned any to settle on public lands，can hald for cultivation and residence up to 160 acres．diter a limited period a locator may on satjofactorily proving settlement．purchase and obtain patent at minimum or maxinum rate．the latter．Ez．jo，being paid for government land within railway grant．So restriction is placed on preempt r＇s acquirement of private lands． Ender tumber－eulture acts entry additinnal to pre－emption or homestead may be made ei lugal subdivision．one fourth of which must be de－ voted for eight years to timber culture．On proof，a patent will issue for tracts；the total fice is $\$_{1} \mathbb{S}$ ．

Timber acts are in the nature of a land bounty for forest culture in sub－humid areas．

Desert land acts are designed to encourage rec－ lamation by irrigation of arid lands．Entry is of 040 acres permitted on＂dry lands＂within Cali－ fornia，Nevada．Oregon，Arizona，New Mexico， Vorth and South Dakota，Wyoming，Utah．Ida－ ho，Montana，and Washington．Three years are allowed to bring water thereon．On proof of this，same may be purchased at 25 cents an acre． Under present laws mineral lands are held for industrial development，miners＂customs being recognized by Congress and upheld by the ted－ eral judiciary：Locators form district，lode，or placer，adopt regulations，and elect recorder． Quartz or lode claims permitted of 1.500 lineal by 600 lateral feet， 300 on each side of lode． Boundaries must be marked plainly，entry re－ corded．and work to the value of $\$ 100$ or more be pertormed each I_{2} months in order to hold claim．Qualifications as to persons or asso． ciations are the same as in other land entries． No alien is permitted to hold．occupy，work，or possess public lands．Placer claims of 20 acres to the individual．or not orer 160 to associations， are similarly permitted．Patents issue on prov－ ing up and payment of fees．

The mineral land policy of the United States fluctuated till the act of i866 was passed．Lands were sold or leased at different periods，and the procedure was wasteful both to miners and people．Mill sites and right of way for ditches are prowided for．Coal lands are pre－emptible on civic and occupancy requirements by payment of from $\$_{10}$ to Σ_{20} per acre．First priced land is not within 15 miles of a railway：the other is within such distance．The individual linut is 160 acres；association 320 acres．In as－ sociation on proof of $\$ 5,000$ expenditure may enter one section．Only one entry is permitted． Saline lands being exempt from settlement，are offered for sale at $\$ 1.25$ an acre．and then be－ come subject to private entry．Public land for town site purposes is arranged for（1）by In－ terior Department setting aside suitable area and selling lots of definite size：（2）by town asso－ ciations，filing plats of 640 acres or less therein． Town associations failing to file plats，lots may be sold publicly after 12 months at increase of 50 per cent．on minimum price．The actual oc－ cupant of a 10 wn lot may prove up and pre－ empt by time of sale，paying minimum price for same．Stone and timber lands designated as unfit for cultivation，within Caliornia，Oregon， Nevada，and W＇ashington，may be purchased by persons having required civic qualifications as follows：Affidavit and prooi of non－mineral character and non－speculative purpose required， and they mus：be sworn to as for personal use and benefit．Notice of application to be pub－ lished for 60 days in land－office and nearest nuwspaper．Penalties are provided for perjury or ior trespass on timber lands．

The domain is also subject to various land－ grant and bounty laws．These include State grants for internal improvements，institutions， onmmon schools．seminaries，and agricultural colleges：land bounties，naval and military： canal，wagon，and railway grants：military and Indian reservations．U＂nder graduation act．land sunentered privately can be sold at public sale at minimum figures．The public domain area was acquired by cessions from original States， 250．tフォ．ス゚ー acres：ly purchase from Spain，

France, Mexico, Texas, and Russia 1,580,900,800 acres; total, $1,840,072,587$ acres.

Public lands are surveyed into "hundreds," Io miles square: then into "sections," of 1 mile square, again subdivided into quarters, and down to eighths. This is known as the rectangular system. A general land-office, forming a bureau of the Interior Department, is in charge of land administration. Each State and Territory has a surveyor-general, and each congressional district a land-office. In the Territories these are provided as required. A large portion of the domain acquired from Mexico still remains subject to private grants. The land laws of Hawaii were drawn up to protect small holders. See F'ublic Domain.

Gorham D. Gilman, Ex-U. S. Consul to Haz'aii.
Homicide, horm'î-sid, is either justifiable, excusable, or felonious. Of the first sort are such cases as arise from unavoidable necessity or accident, without any imputation of blame or negligence in the party killing. So where a crime is pumishable capitally according to the laws, the judge is bound to condemn the criminal to death, and the sheriff or other executive oifficer to carry the sentence into effect in the manner prescribed by the sentence of condemration. But the judge must have jurisdiction af the offense, and be duly commissioned; and the executive officer must be empowered to carry the sentence into effect, and must perform the exccution in the manner prescribed by law, otherwise the execution of the criminal will make the judge or the officer, as the case may be, guilty of criminal homicide. So, too, where an officer of justice is resisted in the execution of his office, in his attempt to arrest a person in a criminal, or, as is maintained, even in a civil case, he is not abliged to give back, but may repel force with force; and if the person resisting is unavoidably killed, the homicide is justifiable, for few men would quictly submit to arrest if, in case of resistance, the officer was obliged to give back. It is, however, laid down as law that if a felony be committed, and the felon attempts to flee from justice, it is the duty of every private citizen to use his best endeavors to prevent an escape, and if in the fresh pursuit the party be killed where he cannot be taken alive, it will be deemed a justifiable homicide. The same rule applies to cases of an attempt on the part of a felon to break away and escape after he has been arrested, and is on the way to jail. So if a party lias been indicted for felony, and will not permit himself to be arrested, the officer having a warrant for his arrest may lawfully kill him if he cannot be taken alive. But this is to be understood only of officers, and not of private persons. Magistrates and officers authorized to suppress and disperse mobs are justified by the common law in taking the requisite measurcs and using the requisite force for this purpose, though it extend to the killing of some of the rioters. The law arms every private citizen in the community with the power of life and death for the prevention of atrocious felonies accompanied with violence and personal danger to others, as in case of an attempt to murder or rob, or commit burglary or arson, the person making the attempt may, by the common law, if he cannot be otherwise prevented, be killed on the spot, and the law will
not recognize the act as a crime. In cases of this sort, in order to justify the homicide, it must appear that there were good grounds for a suspicion that the person killed had a felonious intent. A woman is justifiable in killing one who attempts to ravish her, and the husband or father may be justified in killing a man who attempts a rape on his wife or daughter.

The cases already mentioned of justifiallie homicide are those in which the public authority and laws are directly concerned. The laws of society, however, leave cvery individual a portion of that right of personal defense with which he is invested by those of nature. If one may interpose to prevent an atrocious crime against society, where he is not himself in any personal danger, the laws will, a fortiori, permit him to defend himself against attacks upon his own person. Murder is the killing of a person who is under the protection of the laws, with malice prepense, either express or implied. Nalice is the distinguishing characteristic of murder, and may be either aforethought, or expressed, or implied. It is not necessary in order to constitute the crime of murder that the slayer should have the direct intention of killing. If the act be done with a wicked, depraved. malignant spirit, a heart regardless of social duty, and deliberately bent upon mischief, it is characterized by what the law denominates malice, though it may not result from any enmity or grudge against the particular victim. So if a man wantonly discharges a gun among a multitude of people, whereby any one is killed, the act will be done with that depravity of disposition which the law considers malice. Murder can be committed only by a free agent, for the crime presupposes a will, motive, or disposition on the part of the perpetrator. An idiot or insane person cannot commit this crime. But drunkenness is in general no excuse for homicide, though the act be done under its immediate influence.

The manner of killing is not material. Whether it be by sword, poison, beating, imprisonment, starvation, or exposure to the inclemency of the atmosplere, it will be equally murder. This crime may be committed by mere advice and encouragement. An infant unborn is within the protection of the law, and it is laid down that if, in consequence of poison given or wounds inflicted before the birth of a child which is afterward born alive, it dies soon after its birth, the act is murder. The act of suicide is considered by the law to be murder, and the person making away with himself is accordingly styled a "sclf-felon."

The lines of distinction between felonious and excusable or justifiable homicide, and hetween manslatighter and murder, are in many cases difficult to define with precision. But in general the accused has the advantage of any uncertainty or obscurity that may hang over his case, since the presumptions of law are usually in his favor. The characteristic distinction laid down in the books between murder and manslaughter is the absence of malice in the latter. Sudden provocation may be an excuse for striking another without the intention to give a deadly blow; and though death ensue, the party may not be guilty of murder. One circumstance, showing the degree of malice, or rather showing its presence or absence, is the kind of weapon

HOMILY－HOMING－PIGEON

used in giving a wind on a sudden pr \quad reati n： and arither circumsiance oi imp rtance is al e fact of the weapon＇s keing already in the hand or n t．for going so seek a weap n gives thme for deliberation．The sround of excuse 5 hm － icide in case of provocation merely．is the sup－ posed sudden passion．some inturnce of which the law concules io the failty of humgn nature． But the excuse of seli－defense s es sull further： and where a man is attacked．so that his own lite is endangered，or in such way that he may －easonabiy suppcse it to be so，he may repel the attack with mosta！weapons．One of the most irequent cases of mamslaughter was that oc－ casioned by single combat，and on account of the firm held which the point of honor lad taken of European nations，was long among the most difincuit subjects of legislation．（See DeEE．） The crime cf murder in its most aggravated de－ gree is punished with death in most parts of the civilized world．

Homily（Greek，Momilia，intercourse），as an ecclesiastical term，a discourse addressed to an audience on some subiect of religion．The homily was so called to distinguish it irom the speeches of protane orators．The ancient hom－ ily was sometimes simply a conversation，the prelate talking to the people and interrogating them，and they in turn talking to and jnterro－ gating him．The difrerence between the homily and the sermon was the entire absence of orator－ ical display from the iormer，and the elucidation of the Scriptural text in natual order，without throwing the exposition into the form of an essay．

The earliest existing examples of the hom－ ily proper are those of Origen in the $3 d$ cen－ tury．In the schools of Alexandria and Antioch this form of discourse was sedulously cultivated， and Clement of Alexandria，Dionysius，and Gregory Thaumaturgus are among the names most eminent in this deparment．Augustine and Gregory the Great were among the western composers of homilies．Later still Bede several of the popes，and foreign ecclesiastics still ad－ hered to the homiletic form of exposition as the mest suitable to impress the truths of Seripture with efficacy on the popular mund．

In the Church of England there were iwo books of homilies that were long authoritative， and are still sometimes appealed to to settle disputes as to what the Anglican doctrine is in points onl which they bear．

Homing－pigeon，a variety of the common pigeon in which the love of home and power of tlight have heen develored to make the bird useful and selialle as a bearer of messages； aloo a iancy variety characterized by the possess ：\because i cerrain definite faint $=$ but not nece－arly w－enul as a homer．The law car－ rier－pige ！n i－a large．leng－necked varicty，with abn rmally develeped waties al out the b ee of the beak and round the eyes，but the true h mer is of smaller size，and lacks the enornous tu－ berculated growth．

The training and breeding of homing－pir－ e ns were lene almose cuntined to Belcium，ad inu main types of the Belgian hemer have tien divingui hed as the intwerp and the Liege va－ rieties，the i rmer beins larcer hur less sraceful in form than the latier．American pigeon fan－
ciers breed mainly from the Aniwerp type，and the birls are cummonly designated Antwerps．

The training of a homing－pigeon begins when it is a out three months old．It may then be tahen to a distance of about a mile from irs loit in a suitable direction and liberated in order that is may tly back．Aiter an interval of a day or two it should be carried ihree miles from lime in the same direction and set iree，and on the third occasion，a iew days later still，the distance is usually increased to six miles．This mode of iraining is continued steadily during the seaso：1．the siccessive distances above those already mentioned being $12,25.50$ ．$ミ .900,125$, $I ⿰ 氵$. and 200 miles．The intervals of rest must be carefully preserved，especially in times when the weather is unfavorable．During the bird＇s second season it is made to repeat something of its first year＇s periormances and to extend its Hight to 2 zo miles or possibly to a greater dis－ iance．During the following three seasons good birds will be at their best．，and even for some few years later they may do good work．Dur－ ing the training period and also at other tinses the housing and feeding of the birds must be carefully aitended to．

Telocities of over 30 yards per second have been recorded for various pigeons．but the aver－ age velocity is rather less than hali that amount． One bird．in ISob．actually covered the distance irom Thurso to London．just over soo miles， within one day，its average velocity being about 24 yards per second．In uniavorable weather the height attained varies from about 320 to rather over too ieet，but in good weather some birds will reach a height of about $\$.000$ ieet． The distance from Algiers to Paris，iully 1.100 miles，is one of the longest on record as hav－ ing been iraveled by a pigeon．

There has been much discussion regarding the means by which pigeons return to their homes over such long distances．Untrained birds oiten fail to seturn，and during training young birds are often lost．

Nany instances are recorded of the employ－ ment of pigeon messengers by ancient peoples． During the first half oi the toth century pigeons were widely used in Greaz Britain for the rapid communication of intelligence，and in particular many stockbrokers obrained early infornation of the state of the markets by this means． The introduction of the electric telegraph．how－ ever．soon led to the complete disuse of the pigeon post．The siege of Paris during the Franco－Gernan war of IE－O－1 first brought the carrier－pigecn into prominent notice as a val－ vable means of communication in time of war． During that siege more than 350 birds were sent out of the city in balloons，and of these s me 300 were liberated with messages．Only sme o o returns were made．and the were effected by Ξ－birds．By the adnption of micro－ phot graply，the space occupied by a message was so reduced that a single picepn comble carry a very large number of nessages without hav－ ing its m vements hampered in the least．One of the pigeons that succeeded in returning to Paris carried no less than 40,000 messages on eighreen olllodion films which were encloced in a sore－r：it］attached in the tail．Since that time the leading Continental powers have estab－ lished elaborate pigeon systems for use in time of
war. During the war with Spain, in 1898, the flect of vessels that patrolled the Atlantic coast was supplied with a number of carrier-pigeons' cotes. but happily there was no occasion for testing their effectivencss, though in times of peace messages are frequently successfully carried from war vessels to points on the shore. Consult books mentioned under Pigeons.

Hominidæ, hō-minn'1-dē, the family to which man was assigned in the carlier systems of animal classification; but many modern zoologists refuse him so great a distinction, making man, zoplogically considered, only a species (Homo sapicns) of a genus of the family Simiide, which also includes the genera of the arthropoid apes. See Man.

Homœopathy (Greek öpooos, like, and $\pi \alpha \theta o s$, suffering or disease). The term signinies similar affection, passion, suffering or disease. As employed in Medicine, and as understood by Hahnemann and plysicians of the homoeopathic school, it is properly defined as follows: (1) The treatment of disease by means of its similimum; (2) treatment of disease by a medicine capable of causing, in a healthy person, symptoms similar to those manifested by the patient. This definition can refer only to the symptoms producible by the drug, and the symptoms exhibited by the patient. It makes no direct reference to the name or type of the disease, nor to the type or class of the drug administered, nor to the size or strength of the dose. Nevertheless, homœopatly does hold important incidental relationship to the classification of drugs, to the facts and principles of dosage, and to diagnosis and all other departments of pathology. Under this definition, the experimental application of homeopathy requires that the drug shall cover the tout enscmble - or, as Hahnemann expresses it, the "totality" of the symptoms as exhibited by the patient; and not merely one, or a few, of the doninant or diagnostic symptoms or conditions. Neither does it imply that the homeopathic remedy can overcome any and all the adverse conditions and circumstances under whicl it may be administered.

As a system of medical practice. Homoopathy recognizes this principle of simitarity as between the symptoms of the curative drug and the symptonss appearing in the patient. In this form of practice, the symptoms exhibited by the patient are carefully ascertained and studied with reference to their significance and relations, and these furnish the indications upon which the selection of the "similar remedy" is then made with equal care. Whether the object of the prescriber be immediate and complete restoration to health in a curable case. or mere alleviation of suffering in a case not curable, the same course is pursued; since, in the experience of the profession, the similimum possesses peculiar efficacy in either class of cases.

In homæopathic practice, the finding of the curative remedy is of frst importance, as a matter of course. But, the diagnosis of the case is a most urgent consideration, because it materially aids the plyysician in his quest for the "totality" of the symptoms, suggests his general management of the case, prompts the sanitary precantions to be taken, guides him in his prognosis, etc. Moreover, it sometimes calls
to his mind a group of medicines among which the curative similimum will probably be discovered. and in this indirect way may assint in the medical treatment. J'et is must be distinctly understoor that in homeonpathic prescribing, the final clooice of the remedy is always made. not ly the name of the discase, nor even loy the symptoms usually present in the disease, but only by those occurring in the individual patient. Pathology, both structural and functional, is also a subject of careful research in commection with homcopathic practice, as under other systems; but never for the purnose of formulating "theories" of the nature of the disease, on which to base treatment.

In common with all other modern "schools" of physicians, homeopathists hold that whenever the originating or "exciting" cause of the disease can be discovered. it should be removed if possible: and they claim that when this is done the disease will often disappear spontaneously. When the disease does not so disappear after removal of the cause which had apparently produced it, homeopathic physicians are convinced that some other ("maintaining") cause has been developed. In nost cases this perpetnating cause is occult and its nature altogether undiscoverable. They also hold the view that if this latter cause be removed, the continuance of the malady is inconceivalble. Equally incredible is it that the disease can be actually "cured" so long as the cause remains operative: if it could be, it would be immediately reproduced; unless meantime the bodily susceptibility to the disease were also removed. Hence, the homeopathic profession does not concede a "cure" in any case in which the operative cause remains active, and therefore, in the view of these practitioners, the word "cure" has a much narrower meaning, and actual cures are accomplished much less frequently than is generally supposed; the majority of such so-called cures being merely recoveries - recoveries facilitated, or perhaps made possible, ly the skilful efforts of the medical practitioner - but recoveries nevertheless.

Under this view, that the disease has a central morbific cause, it is impossible that homoeopathists can accept the opinion that the malady can be cured ly the mere lopping off of one or a few of its principal symptoms, or of its prominent pathological processes or conditions. How, then, do homcoopathists explain their ability to reach with their remedies the perpetuating or "maintaining" cause of disease, conceding, as they do, their inalility to determine its nature, or even its location?

Starting out with the accepted principle tbat "like causes operating under like conditions produce like effects," the homoeopathist assumes the converse of the proposition to le likewise true; uamely, that like results appearing under like conditions and circumstances, indicate the operation of like causes. When two patients in similar conditions of health manifest similar morbid symptoms, the phenomenon is, by all pathologists, considered as indicating the operation of causes in corresponding portions of the two organisms, and acting in a similar manner. This yiew is not peculiar to any medical school, but is held lyy all physicians alike. To this doctrine, the homeopathist adds the belief that it also anplies to the effects of drugs, as well as to those of natura! (?) diseases; and that when similar
morbid manifestations result, in one case from disease and in the other irom the effects of a druz, the plenomenon still indicates a physiological or (pathological) catse operating in a similar part or parts of the organisms involved, and operating in a similar manner in both. So much as to the locality" of the cause - the "seat of the disease," upon which the "similar" drug acts. What of the manner in which it acts?

It was long ago shown by Hahnemann and others that the effects of almost any drug upon the human body are of two kinds, primary and secondary, direct action and reaction: and that these two actions are, in a measure, the opposite, one of the other. This view has been advocated by numerous physicians. not always of the homeopathic school. Oi late years the phenomenon has attracted more attention from medical writers than formerly; and is generally spoken of as "the dual action oi drugs." To illustrate: a drug may first stimulate, and afterward depress. a certain organ of iunction. Another may first depress and then stimulate: and the symptoms will. of course, take their character from the action or reaction of the drus. Some homœopathists are of opinion that this dual quality of drug action is the proper explanation of the curative potency of the similimum. Others. Hahnemann included, explain it on other grounds. Others consider it Jikely that the diiferent effects of large and small doses - a fact observed by many practitioners - may account for the cures made by the similar remedy. All homæopathists agree, however, that the question turns upon the curative fact. and not upon its explanation: and hold that one and all of these explanations mayy yet prove to be erroneous; yet firmly convinced that the main fact will remain unaffected through all changes in theory and doctrinc.

Homœopathy, like any other principle or art, has its own particular field of application and operation. Thus it does not cure directly, a mechanical injury to the tissues, or any impairment wrouglit by chemical means ; thongh it does cure the functional diseases and disorders caused by the irritation of such injuries. The homuopathic remedy acts direcily only upon function. It never alters a structure except by first modifying a function. Nor does a drug ever act homoopathically upon a iunction unless that function be disordered. When a drug acts on a healthy function, or when it causes disorder in a function, such action is never homaeopathic, whatever may be the mode of its selection and whatever the form or quantity in which it is administered. The homacopathic medicine is a specific-restoratie-stimulant, only and cludys. Such. in brief, is an exposition of hom copathic belief and practice, and of its underlying principles and doctrines as taught by Hahnemann and held by the profession as a body: The small dose used by homoopathic preacribers is considered in another part of this article.

Homoepathy as a mode of medical practice is u-ually said io have originated in $1 / 0 \%$, when Dr. Clirisian Friedrich Samuel Hahnemann publithed in 'Huicland's Iournal,' at Jena, an 'Ezay on a New Principle ior Ascertaining le Curative Power= of Druge.' In this ...ay he criticizes the state of the medical art,
and especially urges that the chemical properties and powers of drugs are not adapted to the work of curing disease, but that cures must be accomplished by an entirely different property resident in medicinal substances. Having read of cures in medical literature and observed, in his own patients, recoveries occurring under the evident influence of the "similar" remedy, he offers the following theory" of the phenomenon: "Every powerful medicinal substance produces in the luman body a kind of peculiar disease; the more powerful the medicine, the more peculiar, marked, and violent the disease. We should imitate nature, which sometimes cures a chronic disease by superadding another, and employ, in the (especially chronic) disease we wish to cure, that medicine which is able to produce another very similar artificial disease, and the former will be cured; similia similibus." Hahnemann turther explains his conception of a homoeopathic cure in his 'Organon,' section 26, in the following language: "A weaker dynamic affection is permanently extinguished in the living organism by a stronger one, if the latter (while differing in kind) is very similar to the former in its manifestations." "This language he designates the "homcopathic law of nature" The term "homcopathy" or "similar disease," as representing the new medical practice, may lrave been suggested not alone by the fact of cures produced by the similar drug, but also by Hahnemann's theoretical explanation of the phenomenon.

A correct and adequate conception of homceopathy, of the difficulties necessarily encountered in its propagation and establishment, and of the place it holds and the influence it exerts in the development of therapeutics can be obtained only through knowledge of the conditions of general medicine down to the close of the ISth century. It is essential, therefore, that reference be made to certain points in the progress of medical history from its beginnings to and including the period of the investigations that resulted in the discovery of homoopathy as a general therapeutic principle. This reference docs not need to embrace all the departments of medical science - anatomy, physiology, pathology. etc.-but the department relating to treatment, or therapentics only: It is requisite for us to know and appreciate the mental conception the basis of reason - upon which the "art of healing" was established prior to the advent of homeopathy as a system of medical practice.

The earliest efforts of men to alleviate the sufferings caused by illncss and mechanical injury were chiefly instinctive. Water, moist earth, the fleshy portions of plants, and other cooling substances, were employed by men, as well as by the lower animals, to mitigate the pain, heat, and discomfort of local inflammation: and other simple expedients were instinctively resorted to for various disordered conditions. In time the number and variety of known remedial agents, as well as of the diseases for which they were used. must have been rapidly extended by experience. And thus began the "empirical inethod" of treatment - the natural second step in the progress of medicinc.

Incficient as were these modes of treatment, thes were far more rational than most of those that occupy the pages of medical history for many* succeeding centuries. Thesc later methods were based, not on observation and experience.
but upon pure assumptions laving, as John Stuart Mill expresses it, "no limitations other than those of the inagination." (The construction of nuedical theories, or philosophical explanations of observed facts, was a still later development.)

Among the large number of these hypotheses are the following: (i) That disease is a punishment sent by some malcvolent deity; (2) that it is due to the inlltence of a comet, a planetary conjunction, an earthquake, or some other celestial or terrestrial phenomenon; (3) that it is caused by abnormal preponderance of some one of the four elements (fire, air, carth, and water) of which the human body was said to be composed: (4) that it originates in a disturbance of the bodily states of heat, coldness, moisture, and rryness; (5) that it arises from disproportion in the four humors which supply the organism --lood, mucus, black bile, and yellow bile; (6) that it is produced by a materia peccans, or offending matter, which must needs be expelled; (7) that the body contains multitudes of "invisible pores" through which circulate infinitesinually minute atoms or corpuscles, and that disease has its cause in obstruction or relaxation of these pores; (8) that disease is based upon three possible states of the organism - "strictuns," "laxum," or "mixtum" - which must be treated with laxatives, astringents, or a combination of both, as might be needed; etc., etc. All these hypotheses, and many others. arose prior to the clnse of the $2 d$ century A.D. Their absurdity is not more grotesque than that other hypothesis which underlies each and all of them; namely, that a knowledge of the cause or nature of disease can indicate the means and method of its cure; a view not held at present by any homeopathic or other scientific physician.

The period between the ad century and the 15th presents little record of therapeutic art; but with the invention of the printing-press came a stronger impetus to all forms of research, medical included. Since that time increasing knowledge of anatomy, chemistry, and physiology has led to the elaboration of therapeutic theories based upon certain facts relating to these natural sciences. The adyances in anatomy had suggested a mechanical basis for therapeutics; pnenmatics, friction of fluids in vessels, the diameters, curvatures, and angles of blood-vessels were brought forward to explain the phenomena of disease and to suggest measures for its cure. Physiology and chemistry brought out a renewal of the ancient doctrine of "four elements" and the substitution of the three "alchymistic symbols" represented by mercury, salt and sulphur, whose union is health, and their separation disease. The author of this doctrine, Paracelsus, also ascribed to the "vital force" not only the power, but also the intelligence, to resist disease and to provide for its cure. About the middle of the I8th century, or near the time at which the discovery of the general principle of similars was made, physiological hypotheses became largely identified with therapeutics; and the same might be said of chemical theories. Health and disease were the results of a contention between the acids and the alkalies. Haller held to the view that disease was due to change in the "irritability" of the tissues. Cullen revived an old doctrine that disease was cansed by "spasm" and "atony," and required to be treated in accordance with that view. Brown, the rival of Cullen, concluded that diseases were either "sthenic" or
"asthenic," and required asthenic, or sthenic medication, as the case might be.

Before the close of the i8th century the medical profession had acquired knowledge of a mumber of drugs possessed of "specific" properties for the cure of particular diseased conditions: among them Peruvian bark for intermittent and other malarial fevers, mercury for syphilitic discases, sulphur for itch, etc. These specifics exerted their curative effects by virtue of properties not at all muderstood at that time, and but imperfectly known a century later. These specific cures were limited to comparatively few diseases. For the treatment of the conditions with which the medical practitioner is contending daily, which constitutes almost his entire duty, he had nothing hut fallacious assumptions and hypotheses to depend on. Such was the condition of the medical art at the time when Hahnemann began his independent researches in therapeutics.

Hahnemann possessed unusual linguistic attainments, which gave him access to the publications not only of Germany, but of England, France, Spain, Italy, Austria, Greece, and Arabia. He was not only a literary scholar. He was also a practical expert in the fields of chemistry, pharmacy, and industrial technology. He made many discoveries in industrial chemistry, and introduced scores of improvements in the details of manufacturing chemical products. At the period of his earliest responsible connection with medicine, "there was," says Rapou, "complete anarchy in the domain of therapeutics." Hahnemann, unwilling to trust the lives of his patients to the tender mercies of this conglomeration of assumptions, adopted the use of the class of remedies known as specifics, whose effects were easily ascertainable, though their modus opcrandi was altogether unknown.

Homoeopathy was not an invention, like some of the "systems" of medicine that preceded it ; neither was it a sudden discovery. It was an evolution extending from 1790 to 1835 , a period of 45 years. The earlier portion of the process is described by Bradford, who in speaking of its beginning says: "We now come to the translation of a very important book (Cullen's 'Materia Medica'), from which must be dated the discovery of the Law of Similars. It has been asked why Hahnemann at this time happened to translate this particular book, and it has been asserted that he used it as a blind to foist on the world his pectiliar theories. It is not probable that when lie commenced upon Cullen Hahnemann had any particular medical theories, but only a growing disgust for the medical fallacies of the day. This is clearly evidenced by his writings at that time. It is not to be wondered at that he should translate the work at that particular time. He was translating for money, for the booksellers and publishers of Leipsic, and it is not likely that he selected the books which he was to translate. Dr. Cullen was an authority on the subject of the matcria medica of his day, an experienced lecturer, a talented chemist, and a brilliant and popular teacher in Edinburgh. Natırally the Germans wished to learn of his new and peculiar theories regarding discase, as well as to ohtain the use of his 'Materia Medica,' which at this time was a standard work.
"Hahnemann was the most accomplished translator of medical works of the time, and
what more natural than that the task should be gwen to h:m. Culien published the fret eaition of this book, in London, in 17/3. Another edition was issued in $1,-89$ in two volumes, and it was this edition that Hahnemann lised in his translation. In this book, Toume II., Cuilen devotes about 20 pages io Cortio Permitanis (Peruvian Bark), gives its therapentical uses in the rreatment oi intermittent and remittent fevers, advises its use to prevent tine chill, and gives minute directions for the saiesi period of the disease in which to use it. Hahremann was impressed with the use of this drug, with which be as a physician had before been iamiliar. Someihing in the manner in which Cullen wrote decided Hahnemann to experiment with it upon himseli and to see what effect is would have upon a person in periect heaith. The result of this experiment will be given in Hahnemannis orn words. In the translation of WilIiam Cullen's 'Materia Medica,' Leipsic, Schweikert, $1 \% 90$, page 108 oi Volume II., appears the following iooi-note by Habnemann: 'By combining the strongest bitters and the strongest astringents, one can obtain a compound which, in small doses. possesses much more of both these properties than the bark, and yet no specisic for iever will ever come of such a compound. This the author (Cullen) ought to have accounted for. This perhaps will not be so easily discovered ior explaining to us their action in the absence of the Cinchona principle.
"'I took. by way oi experiment, trice a day: iour drachms of good Cfina. My feet, finger ends, etc, at first became cold: I grew languid and drowsy : then my heart began to palpitate and my pulse grew hard and small ; intolerable anxiety; itembling (but without cold rigor) ; prostration throughout all my limbs; then pulsation in my head. redness of my cheeks, thirst, and, in short, all those symptoms which are characteristic of intermittent fever, made their appearance, one aiter the other, yet without the peculiar, chilly, shivering rigor.
" Brieny, even those symproms which are of regular occurrence and especially characteristic - the stupidity of mind, the kind of rigidity in all the limbs, but above all, the numb. disagreeable sensation which seems to have its seat in the periosteum, over every bone in the body-all these made their appearance. This paroxysm lasted two or three hours each time, and recurred if I repcated this dose, not utherivise; I discontinued it, and was in health.'
"The next note in the German iranslation is as follows: 'Had he (Cullen) iound in bark traces of a power to excite an arificial antagonistic fever, he certainly would not have persisted so obstinately in his mode of cxplanation.' ('Life and Letters of Dr. Samuel Hahnemann,' by T. L. Bradford. II.D., pp. 35--)

These experiments seemed to show that Peruvian bark is capable of producing in the healthy human organism a serics of symptoms quite closely resembling those of that peculiar form cif lever which it is known to curc. Instead. however, of solving any questions in the mind of Hahnemann, it only served to suggest sereral others. Does Feruvian bark then produce the same symptoms that it snecifica'ly cures? Is its specific curing property deperdent on its p-wer to cauce the sympons which it cures? If so, is this power peculiar to Persizan bark,
or is it to be discovered in other drugs? And do all drugs possess the power to cause sympioms similar to those they cure:

To obtain light upon theee questions orcupied nis efforts during the six years between the tamslazion of Cullen" the publication of the 'Essay' above mentioned. To quote irom a writer in the British 'Homneopathic IVorid," $18-5$, p. 234: "Drug aiter drug, specific aiter specinc, was rested on himself and on healthy friends with one unvarying result each remedy of recognized specific power excited a spurious disease resembling that ior which it was considered specinic. But mary more symptoms than those diagnostic of any one disease resulted from almost every medicine, and aroused a hope in the experimenter's mind of specifically treating a greater number of diseases than had ever been so treated beiore. Besides discovering many valuable phenomena undreamt oi. he verified his discoveries and observations by ransaching the volumes oi recorded experiments in materia medica and the whole history of poisoning." The members of his family and his personal and professional iriends aided in the rork of experimentation, and tests oí each medicine vere made with difierent doses, and on many different persons, all the work being conducted under his own supervision.

Dr. Bradiord tells us that at the time of Hahnemam's translation of Cullen's 'Materia Medica,' that is, at the beginning oi his independent investigations in $1 \% 90$, he had no preconceived theories or opinions to sustain. This view of his biographer is corroborated by the absence from Hahnemann's writings of even remote reierence to any a priori conception of suspicion oi a general curative relation between drugs and diseases. Nor does it appear that he then possessed the iaintest conception of the magnitude, or of the quality, of the task he was gradually assuming. His original object evidently was to ascertain why Peruvian bark cures intermittent fever, and to learn if the riew held br Cullen - that its curative property resides in a combination of bitter (tonic) and astringent qualities - was indeed irue. There is no historic evjdence that beiore $1 \% 90$ the general therapeutic principle of similars had even dawned upon his mind. Bu: we may be quite sure that the logical and philosophical principles that must necessarily govern his researches had been well thought out before the work had very far advanced.

Hahnemann and his disciples claim that in the discovery of homeopathy as a general principle oi organic science, and in its conception and development as a system of medicine, assumptinn, speculation and hypothesis have had no place: but that observation, experimentation, and inductive classification constitute the scientific and solid ioundation of iact upon which is rests. They assert that all its essential doctrines are susceptible of demonstration. that they have been verified and reverined times without number. and that for the first time in the history of intellectual development the establishment of the homoopathic principle showed that the Bacnnian method of research is as applicable in the realm of therapeutics as in any other department of scientific investigation. If we look over the records ni the processes leading to its discovery, it appears that these processes were
under the guidance of the following principles of scientific philosophy, all of which are distinctly set forth by 1Halmemann in his 'Organon':
I. That in the study of disease with a view to its cure, the only safe dependence is upon the manifestations (symptoms) perceptible to the senses, and that no safe conclusions can be drawn from mere theories erected upon these signs and symptoms. The signs and symptoms constitute the only side of the disease that is turned toward the plysician, and the totality of these signs furnishes the only true expression or portrait of the disease.
2. That the specifically curative power of a drug resides not in its physical, nor yet in its chemical properties, but in its capacity to produce changes in the functions of the organism.
3. That the dynamic properties of a drug in other words, its power to specifically cure disease - can be ascertained only by observing the signs and symptoms which it can produce in the organism, and that these specifically curative properties cannot be inferred from the physical or chemical properties of the drug substance.
4. That experiments for the purpose of ascertaining the pathogenetic properties (signs and symptoms) of drugs must be conducted under the precautions necessary in other researches; and the tests must be repeated and varied with a view to eliminate every influence and agency that can vitiate the experiment. The drug experimented with, and the person experimented upon, must both be "standard." That is, the drug must be pure and umixed with any other substance capable of disguising, modifying, or otherwise affecting its own specific activity, and the person experimented upon (prover) must be possessed of good health, and free from any unlealthful occupation or habit, and from any mental, moral, or other influence or agent that can modify the pure effects of the drug upon his organism. Aiso, that the experimentation with the drug must be continued until its whole pathogenetic effect has been elicited.
5. That the observations made from such experiments as those here indicated constitute the orly source of a pure and "standard" materia medica, and supply the only material from which general therapeutic principles can be discovered or deduced.
6. That effects observed from the action of a drug upon diseased persons (elinical effects) or those obtained from a combination of drugs (polypharmacy) are not "standard" effects and cannot serve as reliable guides in a search for therapeutic principles.

In the opening sections of the 'Organon,' Hahnemann mentions as among the plysician's essential aequirements:
(1) Knowledge of diseases: (2) knowledge of the dynamic properties of drugs; (3) knowledge of the curative relations between the two. This knowledge he holds essential both to the development of therapeutic science and to enable the physician to preseribe the curative remedy.

In order to qualify the plysician for his work his knowledge of disease must be composed of facts perceptible to the senses. Our plysiological and pathological deductions in reference to a case of disease are more or less uncertain and theoretical. Absolute knowledge of disease is limited to its signs and symptoms, besides which
there can be no certain and assured foundation for a science of therapeutics.

The knowledge of drug-properties must be equally certain and substantial. All drugs possess three classes of propertics - physical, chemical, and specific or "dymamie." The physical and chemical properties can be ascertained by physical and clemical methods. The specific or dynamic properties, that is the properties which alone impart the power to accomplish specific eures of disease, can be learned only by observing their power to cause changes in the health of the organism as shown by their capaeity to produce signs and symptoms. IIere again the signs and symptoms constitute the only sure basis of classification and induction in the construction of a science of therapeutics.

Having possessed himself of so much of such knowledge as was within his reach, Hahnemann then began the investigation of the great and dominating question: Given a knowiedge of diseases as expressed by signs and symptoms, and a knowledge of drug properties as exprassed by sigus and symptoms, can we discover between them any general relation that will guide the physician in his search for the curative drug? In this work of "interrogating nature" he had already been led to infer what her reply might be. His experiment with Peruvian bark had given him a somewhat emphatic hint. Then followed the six years of experimentation upon himself, his family, and friends; with what result we have already seen. Accompanying and following these experiments came the "ransacking of the libraries"- a work for which few men were so well fitted. This literary search resulted in two important discoveries. First, that when two diseases manifesting quite similar symptoms appear in the same organism, they antagonize or annihilate each other. This subject is carefully outlined in the 'Organon,' sec. 42-45, and in sec. 46 the writer cites a score of illustrative instances obtained from the pages of contemporaneous literature, the authority being carefully mentioned in every ciation.

The second result of this literary search is that it corroborates the view with which Hahenemann set out: namely, that even under the modes of treatment in vogue before his day, undoubted eures frequently resulted from the action of drugs possessed of the power to cause symptoms similar to those of the cases cured. Some of these cases are well worthy of study by those interested in medical subjects. In the earlier editions of the 'Organon' and in the 'Essay on a New Principle for Ascertaining the Curative Powers of Drugs,' these published cures are reported in extenso, the literary source being given, together with the name of the physician in each case. In the Dudgeon translation of the 5 th German edition the same list occupies 31 pages of the appendix. In practically, all of the cases reported, the mere name of the disease is sufficient to suggest the fact of similarity between the symptoms of the malady cured and the symptoms of the drug prescribed. In other cases the symptoms themselves are given with more attention to detail than was customary at that period of medical history. If we sum up the remedies named in the 'Essay,' together witls those mentioned in the 'Organon,' we have a total of 63 drugs to which Hahne-
mann was able to ascribe homoeopathic cures occurring in the practice of physicians who had no knowledge of the homoopathic principle.

In presenting this list of cases successtully treated with the similar remedy: Hahnemann has made nearly 500 citations oi writers who had no suspicion that any general law of therapeutics was involved in the operation of their prescriptions. The degree of similarity shown between the pathogenetic properies of the drugs administered and the symptoms manifested by the patients seemed. in most cases, to be positive and emphatic, and in some instances striking. In what he has to say regarding the curative effects of opium this fact is graphically shown. He say:
*A condition oi conrulsions without consciousness, resembling the death-agony, alternating with attacks of spasmodic and jerky, sometimes also sobbing and stertorous, respiration, with icy coldness of the face and body: lividity of the feet and hands and feebleness of the pulse (precisely resembling the symptoms of opium observed by Schweikert and others). was at First treated unsuccessifully by Stütz with potash, but afterward cured in a speedy, periect, and permanent manner by opium. According to Vicat, J. C. Grimm, and others. opium produces an extreme and almost irresistible tendency to sleep: accompanied by profuse perspiration and delirium. This is the reason why Osthoff was airaid to administer it in an epidemic iever which exhibited similar symptoms. for the system he pursued prohibited the use of it under such circumstances. It was only aiter having employed in vain all the known remedies and seeing that death was imminent that be resolved to try it at all hazards, and behold. it was always efficacious. J. Lind also arowed that opium removes the head troubles, and the burning sensation in the skin and the difficulty of perspiring during the pyrexia: under opium the head becomes free, the burning iebrile heat disappears, the skin becomes soft. and its surface is bathed in a proiuse perspiration. But Lind was not aware of the circumstance that opium produces very similar morbid symptoms in the healthy. Alston says that opium is a remedy that excites heat, notwithstanding which it certainly diminishes heat where it already exists. De la Gué rene administered opium in a case of fever attended with violent headache, tension and hardness of the pulse, drymess of the skin, burning heat, and hence difficult and debilitating perspirations, constantly interrupted by the extreme restlessness of the patient. He was successiul with this case because opium possesses the iaculty of creating an exactly similar feverish condition in healthy persons, of which he knew nothing, though it is stated by many observers. In a fever where the patients were speechless, eyes open, limbs stifi, pulse small and intermittent, respiration labored, snoring, and stertorous, and deep somnolence (all of which are symptoms pericetly similar to those which opium excites), this was the only substance which C. L. Hoffmann ssw produce any good effects. Wirthenson. Sydenham, and Marcus have in like manner cured lethargic fevers with opium. C. C. Nathai, in an obstinate case of nervous discase, where the principal symptoms were insensibility and numbness of the arms and legs, after
having for a long time treated it with inappropriate remedies, at length effected a cure by opium, which, according to Stutz, loung, and others. causes similar states in an intense degree. Hufeland periormed. by the use of opium. the cure of a case of lethargy of several days duration. How is it that opium, which, as everyone knows of all regetable substances is the one which in its primary action (in small doses) produces the most severe and obstinate constipation, should be one of the most efficient remedies in constipation of the most dangerous character, if not by virtue of the homœopathic therapeutic law, so long unrecognized? The honest Bohn was consinced by expericnce that opiates were the only remedies in the colic called (miserere': and the celebrated F. Hoffmann, in the most dangerous cases of this nature, placed his sole reliance on opium combined in the anodyne liquor called after his name. Can ali the 'theories" contained in the 200.000 medical books which cumber the earth furnish us with a rational explanation of this and so many other similar facts?"

The great German physician and philosopher was careful to credit other medical men with haring obtained foregleams of his great discovery. "How near." he says, "was the great truth sometimes of being apprehended!" And again: "There have been physicians here and there across whose minds this truth passed like a flash of lightning without ever giving birth to a suspicion of the homœopathic law of nature".

From Hahnemann's literary and experimental investigations alone, both he and his disciples have unhesitatingly justified their belief in a general curative relation between drugs, as represented by their symptoms, and diseases as represented by their symptoms, and their belief that this curative relation is properly set forth by the word "similarity." The proois herein presented are considered conclusive, although similar evidence has been constantly accumulating in the writings of medical men of all schools, and in the practice of hundreds and thousands of homcopathic physicians for more than a century.

In Hahnemann's foot-note (see Dudgeon's Appendix to the 'Organon,' p. $20 ;$) it is shown that he early became aware of the "danger which is to be anticipated from large doses of homœopathic remedies." He says, however, that "it often happens, from various causes which cannot always be discovered, that even rery large doses of homceopathic medicines effect a cure, without doing any particular harm." In most instances homoeopathic physicians came to regard the small dose as a necessity to homoopathic practice. Thus, a full dose of belladonna. or of cpium, administered to a patient already suffering with symptoms like those producible by one of these drugs. might be perilous. Experience also taught them that the curative action of the homcopathic drug could be sccured as well or even better through the small dose. The results claimed ins these small or minute doses naturally aroused the skepticism of plysicians and laymen alike, and becane a scrious hindrance to the spread of the homcopathic system. The very nature of the homcopathic principle, however, carrics with it the necessity for the use of the diminished dose.

Homocopathic physicians, when preseribing minute doses of their remedies, are under the necessity of employing great care in securing absolute purity and simplicity in the preparation of their medicines; and this has led to the need of a special plarmacy for homoopathic prescribers. Another corollary of the homwopathic law of cure is the "single remedy," without which no prescription can be strict!y homoepathic. Still another principle follows from the application of this law: namely, that a homoeopathic prescription can mever be made from the name of the disease. The similarity must be traced between the symptoms of the drug and those of the individual patient. This fact is fortmate in that it at once brands the advertised "homeopathic" proprictary medicine as a fraud and a pretense, no matter in what form it may be put upon the market.

The spread of homeopathy in the country of its birth, and in other countries of Europe, has been slow. The delay in securing its establishment has been due partly to the cause already mentioned - an unwillingness on the part of both physicians and laymen to accredit the little dose with curative potency. But the chief obstacle to its advancement is to be sought in inimical legislation and the lack of facilities and authority to educate young men and women for homoopathic professional life, and the consequent inability to supply the public need of homoeopathic physicians.

Homœopathy was introduced into the United States in 1825 by a plyysician named Hans B. Gram, who at that time settled in New York. In this country, with its free institutions and its asserted freedom of opinion, the new medical thought found less antagonism to overcome, although there were many obstacles to be encountered, chiefly of a social and legislative character. The physicians of America, less conservative, perhaps, than those of Europe, were more disposed to inquire into the scientific and practical aspects of homoopathy, with the result that in less than 20 years more than 300 of them were engaged in its practice. These physicians speedily conceived the necessity for having their own students educated under teachers of their own faith and practice, and in 1848 organized and equipped a medical callege for this purpose. This school was almost immediately succeeded by others; and these institutions have very largely contributed to the rapid spread of homcopathic practice in all parts of the United States.

When Dr. H. B. Gram arrived in New York in 1825 , the only homeopathic literature in the English language was Hahnemann's 'Geist der homöopathischen Heilkunst,' a pamphlet of 24 pages, translated by himself and published by J. \& J. Harper, of New York. The remaining homcopathic literature was all in the German language, and it is recorded that such was the interest felt in the subject that mumerous converts to Hahnemann's system, some of them past middle life, pursued the study of German in order to facilitate their investigations in homæopathy. At the close of the first quarter-century of the new practice, more than 25.000 pages in the English language had been published by the hommopathic press, and at the end of 50 years the aggregate reached more than 150.000 pages. (See 'Transactions of the Vorld's Homeopathic Convention of 1876 , Vol. II., pp. 1020-65.)

The progress that homœopatly has made in the United States can be best slown by the records of its organizations and institutions. The American Institute of Homxopathy, the national socicty of homwopathic playsicians, organized in 1844, now has a membership of over 2,000 . There are six other national organizations, formed to pronote various departments of medical and surgical interest. State societies are organized in 36 of the commonwealths, and at the present rate of increase these bodies will in a few years exist in every State. To these may be added 150 local societies of varions kinds. In the U'nited States homeopathic physicians are in charge of 220 hospitals, general and special. 66 other institutions - asylums, homes, etc., and 65 dispensaries, 20 medical colleges, and 32 medical journals.

The exact number of physicians practising homocopathy in this country camot be ascertained with accuracy, but it is known to be not less than 12,000, and has been estimated as high as 18,000 . The number of people employing these physicians, regularly or irregularly, cannot be less than $15,000,000$. Thus has the influence of homcopathy extended during its American career of 75 years.

The influence of homceopathy upon public and professional sentiment has been beneficent and pronomced. Laymen and physicians have alike learned from the practice, that large quantities of potent and dangerons drugs are not often necessary to determine recovery from disease, and physicians have reached the wise conclusion that cures sometimes occur under the influence of small doses, as well as quantities with larger.

Bibliography.-Ameke, 'History of Homœopathy"; Boericke, 'A Compend of the Principles of Homœopathy'; Bradford, 'Homceopathic Bibliography of the United States from the Year I825 to I891 inclusive"; (Life and Letters of Dr. Samuel Hahnemann') 'The Pioneers of Homcopathy'; Dake, 'Therapeutic Methods'; Dudgeon, 'The Lesser Writings of Hahnemann'; 'Lectures on Homcopatlyy'; Dunham, (Homœopathy the Science of Therapentics); Hahnemam, 'Organon of the Art of Healing'; 'Materia Medica Pura'; 'The Chronic Discases: Their Peculiar Nature and Their Homeopathic Cure' ; Mack, 'The Plilosophy of Homeopathy"; 'Transactions of the American Institute of Homœopathy' (IS +1-1903): 'Transactions of the World's Homœopathic Convention (1876). Pemberton Dudley, MI.D., LL.D.,
Professor of Institutes of Medicine, Hahnemann Medical College, Philadelphia.
Homol'ogy, a principle first enunciated by E. Geoffrey St. Hilairc. It is the anatomical or morphological identity of parts or argans, which may have entirely different functions. Thus the wing of a hird is homologous with the fore limb of a dog or the arm of man. On the other hand analogy involves the idea of physiological identity, or use. Thus the wing of a bird is analogons to the wing of an insect. Homologous organs are also present in groups of animals which have had a common origin; thus the swimming-bladder of a fish has given origin to the lungs of the higher vertebrates, the physiological differences arising from change of function. See Anatoms: Comparative: Analogy.

Homoousian, hó-mō-oo'sĭan (Greek ho-$n-$. the sme. and ous:3. substance') and Homoiousian (Greck homs ios. "like.' and usia, "subs:ance"). The Council of Nice adopted the word homousian to expeess that the Sun was f the same substance with the Father, while the followers of Arins adopted the term homoiasian, as a sort oi middie and reconciling the-2- , io express that the Son, though not of the same, was yet of a similar substance with the Father. The docirine of Arianism was not only thai the Son was subordinate to the Father, but that he was totally unlike him, being a mere created being.

Homoplasy, hōmō-plãsinturences of convergence (q.w.), upon homologous structures. The term was proposed by E . Ray Lankester and used at first with a rather broader meaning subsequently restricted and deñed by Osborn. See Ansalogr.

Homop'tera. See Hemiptera.
Homs, boms. See Hevs.
Hondo, hōn'dō (signifying "chieí island"), the largest island of Japan (q.v.), for a long time erroncously known as ぶippon or Niphou. the Japanese name for the whole empire.

Honduras, British, or Belize, a colony in Central America, bounded on the north and northwest by lucatan (Mexico). on the east by the Caribbean Sea and Guli oi Honduras. and on the south and west by Guatemala. Its chief town, Belize, has 9.113 inhabitants. The Cockscomb Mountains in the southern district rise to the height of $3 . \%$ iect. Principal rivers are the Old, the ©ew, and the Sibun. The northern part of the colony contains many lagoons. and a chain of cays streiches along the coast. The forests yield malogany and logwood in large quantities: cattle raising and the cultivation of coffee and fruits receive some aitention. The value of exports since 189 ; has been decidedly greaier than that of imports. During the year ending 31 March 1902 exports reached $\$ 1.427 .500$ in value: imports for the same period. $\$ 1,262,500$. In 1001 exports of mahogany amounied io 6.485.952 superficial feet: logwood. 19.682 tons. Registered shipping: 6 steamers and 204 sailing vessels. Vessels entering and clearing in 1901, 414.795 tons. The total number of letters. books. postal cards, parcels, and newspapers transmitted by the postoffice in 1001 was 245 .(624. That is to say. proportionately to the populaticn. from 100 to 350 per cent more than in the neighboring Guatemala and Henduras. The standard oi crersane since 15 Oct. 1824 has been United Siates gold. In commer u-e are silver coins and government note- British Honduras is gnverned as a crown col my. hy a sovernor, assisted by executive and leg-ative councils. the former composed of five m miers and the latter of eight. Expenditures since the clove of i\&n have been less itan the -urnise, the latter beang derived irem cu-toms d … . exci-e, land-tax. licen-es, and the sale or lew... g of lands. Total expenditure in the y-r conding 3t March 1902, about \$256.050:
 ate frimary schools, with $3-423$ pupils, receivive if fo m the governmen: alio a few der … nati nal secondary sch rols. Population. $\mathrm{ac}^{-1}-1 \mathrm{ag}$ th the latest cerr-us, $35-4 \cdot 9$ an ancrease ci about 17 per cent since the previous census.

For origin and early history of the settlement. -ce Bflize: aiso Central America.

Consui: 'Consolidated Laws oi the Colony i British Honduras' (London fise) : Gibbs, History of British Hooduras' : and Hendersn. 'In Account of the British Settlement of Hozduras. ${ }^{3}$

Mangion llimcox.
Authority on Spanish Ancerica.
Honduras, Gulf of, a spacious inler of the Caribbean Sea. having on the west British Honduras, and on the south Guatemala and Honduras. In it several smalier bays of which the Guli of Amatique, with its inner recess, the bay of St. Tomas, are spacious and deep. Several large rivers, the Belize. Chamelicon, Dulcc. Motagua and C’ua. flow into the guli. Along the shores are the islands of Turnefie, Mansbique, the Bay Islands including Ruatan, Ctila, and Bonacca, and numerous islets and reeis called cays.

Honduras, Republic of, a country of Cemtral America, bounded on the north and northeast by the Gulf of Honduras and the Caribbean Sea: on the southeast and south by Nicaragua: and on the southwest and west by Fonseca Bay. Salvador, and Guatemala. Estinated area. 46.250 to $£ 6.400$ square miles. The departments of the republic, with the population of each as shown by official statistics oi 1901, are as iollows: Tegucigalpa, 81,800; Copán, 62.398; Gracias, $4 \S, 242$: Choluteca, 45.340 : Olancho, 4-496: El Paraiso, 39.918; Santa Bárbara, 36,228: Valle, 33-450: Comayagua, 29,023: La Paz. 2-.384; Intibucá, 26.34S: Cortèz, 21,So1: loro, 19,988: Colón, 13.791; Atlantida, 8,-97: Bay Islands, 4.73%. The capital. Tegucigalpa. has 12.000 inhabitants. Mountain ranges. which rise to heights of 5.000 or even 10,000 feet, are massed in the western hali of the republic: the Juticalpa, Camasca, and Tompocente ranges, however, are near the irontier of Nicaragua in the east. Rivers emptying into the Caribbean Sea or Gulf of Honduras are the Coco o: llanks, and Patuca, in the east. and the C"lua, Chamelicon, etc.. in the west. The Choluteca flows southward from the Misoco Mountains near Tegucigalpa, and empties into Fonseca Bay, on the Pacific coast. Large lakes are the Caratasca. On the Mosquito coast. and lojoa, among the western mountains. The chici port on the Pacific is Amapala; other ports of entry are Puerto Cortez (on the Guli of Honduras), La Ceiba, Truxil]o, Roatan, and Iriona.

Mincrals, II"oods, and Asriculiural Products. -Gold is found between the wouth and centre; silver in almost all sections. Lead, copper, saltpeter. iron. coal. platinum, zinc. and antimony ate also widely distributed. The ralue of ores produced in 1902 was approximately $\leqslant 1.000 .000$ that is, 23.234 ounces of gold, 1.010,204 ounces oi siver, and a considerable quantity oi copper). On!y about 5 per cent of the mines of the coun:ry are being worked. The forests irom sealeiel to an altitude of 1.000 ficet. contain mah gany, ebony: dyewoods, sarsaparilla and cther medicinal plants, and cabinet woods. cedar, erc. It an elevation of 1.800 icet are denie and very extensive forests of pine and similar woode. Asticulture receives more attention than iornucrly, and the leading product is the mative maize. of which 500.049 bushels were raised in 1502. chiefly in the department: of Copan, Gracias, and Santa Barbara. Bananas and plan-

tains are grown on 12,840 acres of territory in the departments of Cortex, Atlantida, the Bay Islands, etc. The wheat crop in 1902 was 15,813 bushels; rice, 3.014 .219 pounds. Nearly 20,000 acres are devoted to the cultivation of plantains. Cocoanuts, lemons, and oranges are produced for export on a large scale. The coffee crop in 1902 amounted to $4,494,826$ pounds, and tobacco to $1,378,573$ pounds. Sugarcanc is cultivated on 13,263 acres ; indigo on about 9,000 acres. The total value of agricultural products in 1902 was about $\$ 2,482,449$. 10 . The number of catte is estimated at $57 \mathrm{I}, 120$: horses, 43.549 ; miles, about 14.000 , etc. ${ }^{2}$

Commerce and Manufactures. "The total value of imports in 1902 was $4.377,161.42$ pesos, or about $\$ \mathrm{r}, 750,684.68$ in United States currency; of exports, 6.1j0.353:27 fisos. Imports came chiefly from: the Enited States (60 per cent), Germany: Great Britain, Belize, Central America, and France. Exports were sent to: the United States (two thirds of total), Great Britain, Central America. Cuba, and Germany, with comparatively small amounts to other countries. The articles exported together with their values (in pesos), follow: Netals, 2,319,070.49; fruits, 1.943, 168.o6; cattle, 560.4 II : coffee, 275,826.68; hides and skins. 257,598.10; woods, $217,459.70$; tobacco and cigars, 200.85 I ; indigo, 105.425 ; sarsaparilla, $80,602.50$; subber, 77.552 .50 ; wheat and flour, 66,992 ; salt, 22.716.20; hats, 14.150 ; miscellaneous, 28.529.04. Exports to the United States were valued at $\mathrm{I}, 235,624.79$ pesos more than imports from that country. Native industries include the manufacture of cigars, flour, hats, and candles.

Railzoys, etc.- A contract for the completion of an interoceanic railway was entered into by an American syndicate in 1897: in 1902 the government's concession to the syndicate lapsed, but a prorogue was requested. The line from Puerto Cortéz runs southward to San Pedro and La Pimienta. Tegucigalpa is to be connected with the Pacific coast, at Sann Lorenzo, by a line which is now being constructed. Roads in the country, with a few exceptions, are mere mule-paths. A cart-road from the capital to San Lorenzo is completed as far as La Venta. There are 245 post-offices, and the number of letters (hoth internal and foreign correspondence) is not more than $1,250.000$ in a year. The republic has 3.249 miles of telegraph wire: the capital and some other towns telephone services.

Moncy. Weights, Measures, and Banking.The standard dollar, or silver peso, is worth about 40 cent, United States currency. Gold coins of the value of 20,10 , and 5 dollars, and silver pieces, fractions of one dollar, are also in circulation. While the metric system is anthorized by law, the chief measures and weights in commercial use, as in the other countries of Central America, are: Centaro $=4.263 \mathrm{I}$ gallons: fanega $(d r y)=I_{\text {. }}^{5745}$ lushels; libra $=1.043$ pounds; and vara $=33.874$ inches. Note also, manzana $=15-6$ acres. and arroba $=23 / 4-3^{1 / 2}$ gallons. The capital of the Bank of Honduras. 30 June 1902, was 600,000 pesos: hank-bills in circulation. 60,242 pisos.

Gozernment. Finances, Army and NazyThe president and vice-president of the republic, nominated and elected lyy vote of the people, serve for four years: the former is assisted by the ministers (chiefs of departments) of finance, interior, foreign relations, public works,

War, public instruction, and justice. The legislative hody is composed of deputies elected by the people, there being one deputy for each 10,000 inlahitants. The budget fior the fiscal year 1903-4 gives, as the total of receipts from all sources, $2,637,724.20$ pesos, the largest items being, customs duties, 1,100,000 pesos: tax on aguardiente, 805.000 pesos; and lottery and wharfage, 223,500 pesos. The estimate of expenditures in the same budget is $2.025 .985 \cdot+5$ pesos, the largest item being for the war depart-ment-94i,853.85 pesos. The forcign debt of the republic (that is, the loans of $1807-70$, with arrears of interest amounting nearly to two and a half times the principal sum) was determined by calculation to lee abont $\$ 96,124.940$ in United States currency ; and the internal delat was put at 1.332 .400 pesos in Igoo. But in the anmual message of the retiring president. Sr. Sierra, sent to Congress I Jan. Igo3, the assertion was made that the tota! "recognized" debt had been only $\$ \mathrm{r},-204,12467$ silver in 1899 , and that this amount was reduced to $\$ 1,221,298.00$ silver by 31 Oct. 100. President Sierra completely ignored the large faseign loans, speaking of the I.704.I24 pesos as "the entire amount of the debt existing at the begianing of my term of office," "the public debt," etc. The army on 3I July 1902 comprised, according to a statement in the same message, 480 jefes, 2,608 officers, and $47,8_{41}$ men, The permanent force consisted of 87 jefes, 226 officers and 2,481 men. Two small steamers belong to the government, and are used as reventie vessels.

Population, Education, and Religion.- The total number of inhabitants, as shown (by departments) in the first paragraph of this article, is 543.74 I exclusive of forest tribes. Very few of this number are of Spanish descent, the great mass of the people being Indians or Mestizos. Between I 899 and 1903, new schools to the number of 136 were founded, making a total of S_{51}; and 30,025 pupils received instruction in 1902. There are I3 mational "colleges" and one private school for higher education; professional schools with faculties of jurisprudence and political science, and medicine and surgery, at Tegucigalpa; the Escuela de 1)erecho at Comayagua; a national Jibrary with 6,854 volumes; and an art school. Primary instruction is compulsory, gratuitous, and secular, Freedom of worship is secured by constitutional guaranty; the government does not contribute to the support of any church; the prevailing religion is Roman Catholicism.

History- The first place of debarkation of Christopher Columbus on the American mainland was near the present Cape IJonduras, where he landed on Sunday, I4 Aug. 1502. On the following Wednesday Bartholonew Columbus landed at the month of Rio "Iinto. They sailed thence along the coast to Cape Gracias a Dios (sec Central Andrica). Jhe conquest of the conntry was effected by Iernan Cortes, who found the natives manageable, but their land "covered with awfully miry swamps," as he wrote to the Spanish emperor 3 Scpt. 1526. "I can assure your majesty," he adds, "that even on the tops of the liills our horses, led as they were by hand, and without their riders, sank to their girths in the mire." The most important fact in the history of Honduras - the fact that the Indians remained in possession of so large a portion of the country that their descendants
constitute the bulk of the population to-day is a consequence of the policy observed by Cortés and his successors. The natives were tractable: without their assistance it would have been impossible to move about among the dense iorests. swamps, and mountains: therefore the Spaniards realized that more was to be accompiished by diplomacy than by force. Massacres occurred. but exterinination was not attempted: on the contrary, Honduras became in time a nation of Spanish-speaking Indians, those of pure or nearly pure blood being more numerous now than before the conquest. For the era of independence. coniederation with the neighboring staies, etc., see Central America.

Bibliograrfy:- American Republics. International Bureau of the. 'Monthly Bulletin' (1902-3): Cortés. 'Firth Letter of Cortes to the Emperor Charles V.': Diaz. 'Historia Verdadera de la Conquista de la Nueva España'; Sierra, 'JIensaie.' etc., in 'Pabellon de Honduras.' Tegucigalpa 10 Jan. 1903; Squier, 'Honduras.' and 'Honduras Interoceanic Railway': Wells, 'Explorations and Adventures in Honduras.'

Marrtos Willcox,
Awhority on Spanish Anerica.
Hone, hōn. Philip, American merchant: b. New lork 1-81; d. there + May 1851. He was a successful auctioneer in New Iork, established there the first savings bank (18t6). was mayor in IS26. and one of the founders of the Mercantile Library Association. Prominent in national political affairs. he aided in the formation of the Whig party. His diary. a portion of which, edited by Tuckerman. appeared in 1880. contains important side-lights on the early history oi the Whigs. Hone was also at one time naval officer oi Sew lork port.

Hone, a strop or stone for sharpening knives and razors. See 16 Hetstone

Honesdale, hōnz'dāl, Pa.. borouzh, countyseat of Wayne County; on the Lackawaxen River; the Erie, and the Delaware \& H. R.R.'s: about 15 miles northeast of Carbondale and 30 miles northeast of Scranton. The first locomotive used in America, the "Stourbridge Lion," made its trial trip from this city. It is situated in a coal-mining region, with good farmins land in the valleys. Its manuiactures are silk and woolen goods. boots. and shoes, machine-shop and foundre products, axes, electric elevators, green, cut, engraved, and decorated glassware, men': clothing. and wheels for polishing glass. Large quantities of coal are shipped annually from Hene-dale. Pop. (1000) 2.864.

Honesty. A flowering herb. See Simi:flower.

Honey, a sweet sticky liquid obtained by bees and wher insects irom flowers (see HonerBee: and Finwers avid lisects) as food, or taken hume in be stored as iood ior the yulug. The care with which the honey-bee (q v.) col-lect-and st res this substance in its hive has led to bee-culture (q.v.). Honey is highly nutritibe, e-fecially as a fuel for the energies of the body, as finur fifths oi its components are carlehydrates, the remainder being water with a tritle of protein. The saccharine elements are mainly grape--ugar and some fruit-sugar, which are so readily affected by yeast that various fermented drinks are made with honey as their
basis. of which the best known are the mead and metheglin in great demand among all Teutonic peoples a thousand years ago. and the equivalents of which are still made in Russia, Abyssinia and elsewhere. Before the general manufacture and use of cane-sugar. honey was largely depended upon for purposes oi sweetening, and was put into a great number of cakes and confections now rare or only locally manufactured. Oi the place which it took among the ancients in the household, in ceremonials. worship, and folk-lore a large amount of curious information may be gathered irom such books as Beckman's (History of Invention' (18 6) : Dutt's "Materia Medica of the Hindoos' (185-). and similar works, of which lists may be found in llarring's "Bibliography of Therapeutics' (1868). and in the 'Catalogue of the ('nited States Army Medical Museum.' The importance of honey was, indeed. much greater to the ancients than to us: as might be inferred from its frequent mention in the Bible as a sign of abundance or the resource of the destiiute. It has well-recognized medicinal properties. especially as a demulcent against hoarseness, catarth, etc., in promoting expectoration in disorders of the breast, and as an ingredient in cooling and detergent gargles. Its effect is usually lanative also. It is used to sweeten certain medicines: and is sometimes mixed with vinegar in the proportion of two pounds of clarified honey to one pint of the acetic acid, boiled down to a proper consistence over a slow fire, and thus forms the oxymel simple of the shops. It enters into the composition of various sweetmeats, especially in the East, such as the genuine Oriental nougat. These properties and the flavor and color of honey vary with the qualities of the flowers from which it is made. Thus in Europe the white Narbonne honey of France, is said to owe its peculiar and delicious flavor to the rosemary and other labiate flowers on which the bees ieed. The Grecian honey also stands in high estimation. Mt. Hymettus in Attica has been famous since classic times for this product: but that yielded by the bees who range the thyme-covered hills of Corinth is said to excel it. Another famous ancient source of supply was Sicily, especially about Mt. Hybla: and Corsica is yet celebrated for its honey and wax, which in ancient times were the chief exports of that island. In the eastern United States the carly light-colored honey obraired from the blossoms of the white clover is especially csteemed: also that derived from raspbery plantations, bass-wood flowers and the like; while thas made later in the summer ir m buckwheat is in favor among darker varieties. California is an extensive producer of honey from various flowers.

As the aromatic agreeable flavors and healthful qualities of special fowers (iortunately in the majnrity) are kept and apparent in ordinary gond honey, so certain bad qualities are retained and spoil some honty: which thereby lecomes deleterious to the liuman system, acting as a nauscant, a purgative, affecting the nervecentres or even seriously poisoning those who eat 1t. This is the case in the Enited States with honey made irmm the flowers of the mountain laurel (K゙almia) and some other toxic plants. Some persons are unable to eat any
kind of honey; without disarrangement of the digestion or nerves, or botin; and all should use it in moderation.

The industry of bee-keeping is for the purpose of supplying the market demand for honcy. Modern lives are so constructed that the bees build separate combs each filling a box with glass sides, which are taken out and sent to market as the bees finish them. Another method of marketing is in the form of "strained" honey, the liquid pressed from the comb after warming, throngli sieves of linen cloth, or hy other means. There is no reason why this should not be as good as that left in the comb, if properly prepared and preserved, and it permits of saving the material of the combs for wax (q.v.) ; but it makes possible adulteration. which is freely taken advantage of. The chiei adulterant is commercial glucose, which occasionally is substituted to the extent of three fourths of the volume, leaving only enough real honcy to Havor the mass. As glucose (grape-sugar) is a large constitucnt of this substance in mature no great harm results (when the glucose is good), beyond the deception; and wholly artificial honey has been largely sold in the past as the product of bees.

The United States is probably the greatest honey-producing region of the globe, and exports a vast quantity to Europe annually. The census of 1900 reported 4,T.49,426 swarms of bees, valued at $\$ 10,186,513$; and the annual production of honey at $6 \mathrm{I}, 196,160$ pounds, which, together with $1,765,315$ pounds of wax was worth \$6,66.4.90.4.

Honey Ant, a true ant of the family Formicida, fifth sub-family Camponotina, and allied to the typical ants (Formica). The honey ant (Myrmecocystus melliger), is so called from certain of the wingless individuals being so many honey-pots, their abdomens being distended with honey fed to them by the normal workers, including both dwarfs and majors. It occurs from central Colorado (Garden of the Gods) to New Mexico and as far south as the city of Mexico. It erects mounds six or seven inches across and two or three inches in height, of the shape of a truncated cone. In the interior is the "honey chamber" or a rough dome-roofed vault or fissure, the honey-bearers (600 in a large colony) clinging by their feet to the roof. Their yellow bodies are stretched along the ceiling, their swollen, round, amber-colored abdomens of the size of currants hanging down. The "honey" is obtained in the night time by the workers which go in long processions to some distant scrub-oak bearing nectar-producing galls. The workers return with distended aldomens, and feed the honey-bearers with the nectar. C. McCook thinks the honey-bearers are not a distinct caste, but simply workers "with an overgrown abdomen." "The honey is thas stored, as bees store their honey; for food in winter or times of famine. Consult McCook, 'The Honey Ants of the Garden of the Gods,' etc. (Philadelphia t882).

Honey-badger, a small mustiline burrowing animal (Mcllizora indica) of India, which eats insects, frogs, birds' eggs, and small animals generally, and is fond of honey. The natives belicve it robs graves, but destruction of poul-
try is its worst sin. It is nearly related to the South Airican rate].

Honey-ball, or Globe-flower, the flower of an American shrub (Cephalanthus occidentalis) of the madder family, which grows in wet places, where it is callerl button or river bush, and bears extremely fragrant flowers whose small tlorets are folded or packed into balls, while "the long styles and capitate stigmas remind us of pins stuck in a cushion."

Honey Bear, the sun-bear (q.w.).

Honey-bee. Bees in gencral are Hymenoptcra, of the family Apider. Dees are distinguished from wasps and other hymenoptera in the first place by the long. broad, flattenced basal joint of the hind tarsus. which is adapted for carrying pollen to the nest. Bees are ahoo more hairy than others of their order, and some of the hairs are plumose or feathery. The month-appendages arc long and highly specialized, especially the long flexible proboscis or tongue (hypopharynx). There are no wingless adult forms. While the more primitive genera are solitary, in the more specialized or social kinds, besides the males and females, there are workers, which are, as a rule, sterile females in which the ovaries are undeveloped. Of the bee family there are now known to be abont 150 genera and 1,500 species.

Original Home of the Honey-bec.-A1though the honey-bee (Apis mellificu) has followed the white man in his migrations from the Old World to the New, and to Australia, New Zealand, etc., its original birthplace is in southern Asia, probably including the eastern shores of the Mediterranean Sea. Besides A. mollifica there are seven or eight other species, all except one southern and eastern Asiatic, including the islands of Timor and Celebes; the exceptional one (A. adamsoni) inhabiting tropical Airica and Madagascar. We know little of the honey-bees of China and Japan.

Like other domestic animals (and the honey-bee is the only domestic insect we possess). this bee is divided into races of which the Ligurian bee (variety ligustica), originally inhabiting Italy and adjoining regions, is a wellmarked one, and another is the Egyptian honcybee (variety fasciutu). There are several subvarieties of the northern form of . A. mellifica in Germany: The English naturalist Ray, who published before Linne gave the name A. domestica to the morthern dark form, our common honey-bee. This dark, northern form is the one which has been carried by the European race to various parts of the world, in some of which it is now wild. It occurs in the Whest Indies, in North America, including Mexico, in central and southorn Lirica, and in Australia and New Zealand. The varicty ligustica has also been found at the Cape of Good Hope.

Besides the honey-bec there are other social forms in Central and South America. as well as other tropical comntries, including Australia, which store up honey; these are small bees, exceedingly numerous in individuals, which belong to the genera Melipona and Trigona, and are stingless, though the sting exists in a rudimentary state. Trigona mosquito is known to send off swarms and to have but a single queen in a colony: The nests are built in hollow trunks of trees, in banks of clay or earth, and they gather pollen, nectar, and resin. On the

HONEY-BEE

Wh. e, the honew-bee siands at the head ui the hymenopte $0: 1$ series, and, in iact. at the head -i the class of insects, ibough the house-ily is in stime respects more extremely specialized.
 males of decries. and the female or queen. the coony conststs of worters: these carry on the work of the society, gathering nectar. pulen, butding the cells and feeding the young. The a.uny is permanent, difiering in this respect from that of bumblebees, which come io an end each autumn. We will itsi describe the chei points in the external anatomy of the insect. The body is divided into three regions, the head, thorax, and abdomen. The eves are ci two kinds. simple and compound. the male differing ircm the queen and the workers in the iarse compound eve meeting in the middle of the sop of the head. The mouth-appendages conest di three pairs.-- irst the jaws or mandibles: these in the queen and drone ase notched. but in the worker the edge is entire and serves for brting. and in comb-bulding ior thinning out max shreds. also for scooping and molding the wax, while the next pair of appendages of accessory jaws, are called maxillæ. and are used as a trowel. In the bumblebee the maxilize are also used ior piercing the corolla of $\begin{aligned} & \text { lowers like the }\end{aligned}$ wistaria and honeysuckle. but those oi the honey-bee appear to be too weak for this purpose. They also ensheathe the proboscis. The so-called iongue (ligula, lingua ce bypopharynx) is the long, slender. hairy appendage adapied for ga:hering the nectar of flowers. It is an outgrowth of the under lips (labiun or fused second maxalie). is situated in a tube formed by the maxillæe and labial palpi, and can be partially withdrawn into the memtum, or base of the under lip. It can move up and down in the tube thus iormed. It is covered by a hairy sheath, and is very elastic. this being due to a rod extending through its centre, enabling it to be used as a lappine tongue. Cheshire states that the rod on the under side has a gutier or trough-like hollow, which forms a false tube by the intercrossing of biack hairs. There are also two side-ducts. which extend along to the end of the tongue. where the sporn' ©r 'bouton" is situated. This is provided with very delicate split hairs. "capable of broshing up the most minute quantity of nectar. which by capmlarity is at once transierred by the gathering hairs to twn side grove-like furr ws at the back oi the boutun." The central duct, because of if smaller size and of n-equent ereater capillary attraction, receives the nee:ar, if is s: ficient in quantix: to fill the side duets. Bor.- says Cho-hire good honey-yelding pants wowd hring the centre and side int reque-i \quad. The nectar is sucked up untul it reaches the parag'ose, which are flate-like in fort, but memhran us extensi ms, like omall aprim. I ehnd: and $1 y$ these the nectar reache the iront ci tle - ongue. in be swal, wed as bei re deccrithed. The pr-cess ci gathuring the nectar $i=n o t e x-$ actly eefler a sucking or ? licking process: hut, as Cheshire sh w the action is frimatily due io caplary attrac:ira.
rgans \because Smell cons Tasto-Bees are Enid-d in fl wer= chicefly ty smell. rather than is the e lo ni the fl wer they visit. ISee Flower: 1 vo Isiects. 1 The nliactory nrgans are m"*it•udes if macroscrpic pits in the an teane - the organs of smell. The sense of
taste is lodsed in a minute soft basgy fold on the under side oi the upper lip, which is rich in taste-cups: and besides. there are a iew tastepapille or cups iound by Pachard at the base oi the paragiosse and on the base of the labial palpi. These sltes of the gustatory organs are siinated where the iood or nectar will come in contact in passing down the throat into the stomach.
F.rmation of Honey and the Honey-5rim-ait- In meects there is the iore stcmach (proventriculus) and the irue or chyle-stomach. The iormer is called by diarans the "honeysac os "horey-stomach_" "Ii." says Cheshire. it be carefully removed from a ireshly killed bee its caiyx-lite 'stomach-mouth' may be seen to sape open and shut with a rapid snapping novemeni:. The eutrance to the stomach is guarded by fout vaises, which cpen to allow the passage of food from the honey-sac to the chyle-stomach. It is closed at will by circular muscles. Thus the bee can carry iood ior a week"s necessities, either using it rapidiy in the p-oduction of wax. or eking is out if the weather is unfavorable ior the gathering of a new store. By means of a compluated mechanism a bee in suching up from composite and other flowers מectar rogether with much poilen (I) can either eat or drink from the mixed diet she carries, gulping down the polien in pellets. os swallowing the nectar as her necessities demand: (2) when the collected pollen is driven into the chyle-stomach. the iube-extension prevents the pellets forming into plug-like masses just below, ior by its action these pellets are delivered into the midst of the fiuids of the stomach to be at once broken up and digested; (3) "while the little gatherer," says Cheshire "is dying from flower to tiower. her stomach-mouth is busy in separating pollen from nectar, so that the latter may be less liable to iermentation and betier suited to winter consumption. She. in fact. carries with her, and at once puts into operation, the most ancient, and ret the most periect and beautiful, of all honey-strainers.' "

How the Honty is Madi.- Honey is made of nectar. and is due to a chemical change in the honey-sac. The bee gathers the nectar with its "tongue," swallows it: it then passes into the hones-sac. and is regurgitated as hones. The nectar when gathered is almost entirely pure saccharose, and, according to Bertrand, when regurgitated it is found to consist of dextrose and levulose: this change appears to be practically the conversion of cane-sugar into grapesugar. A little salivary fluid is poured out into the month as the bee sucks the nectar, and this effects the chemical change. Cheshire thinks that the salivary Rluid is added while the nectar is beimg sucked, and is passing over the middle part: of the under lip. so that the mectar may: be honey when swallowed by the bee.

Many and probably ail bees eat the pollen while gathering it. The plumose hairs of bees are ti uee in collecting the pollen grains which adhere to them. but the exac: method of ac: cumulation of the pollen and the mechanism of it = conveyance irem hair to hair till it reaches the fars i the 1 dy it must attain in order to be remored is packing in the cells, is not iully under: d. but the head and front less scratch un the polen-grains, and the honew-bee has a If 'len-basket on each hind leg. the hasal joint of the tarsus being broad and si:ghtly holion.
with ninc rows of short hairs to which the pol-len-grains adtiere.

Life History and Social Lifi.- In founding a new colony the young swarms consist of a queen-bee and a number of workers, a surplus population of the old colony: The swarming is not a nuptial flight, but an act of emigration. After the new swarm has been loused, the workers begin their labors by secreting wax. This is formed in glands on the inside of the ventral plates of the abdominal segments, appearing outside as thin projecting plates, which are removed by the wax-pincers on the hind legs; after being molded by the jaws they form the hexagonal cells in which the young or larve live and the food is stored, and thus the comb is gradually buit up. The queen then lays an egg in each cell, and the larve (grubs) on hatching are fed by the workers. This they do by eating honcy and pollen, which is formed in the digestive organs, intu a kind of pap. This pap looks like arrowroot made with water, and the very young grubs partly float in it, besides absorbing it by the mouth. The young grubs. as they increase in size, are weaned from this glandular secretion or pap, pollen, honey and water being added, while the pap or glandular secretion is gradually withdrawn. The queen larve, according to Cheshire, is not weaned, but the secretion or pap (the so-called "royal jelly"), which is a rich, highly nitrogenous food, is added unstintingly to the end, and owing to this the queen becomes larger and fertile. When the colony is progressing well and young bees emerge, these act as murses, the old ones going out of the hive to forage. When the grub is full-sized the worker bees seal up the cell with a cover made of pollen and wax. but pervious to the air. In this cell the grub spins a cocoon in which it pupates, finally biting its way out; the bee developing in three weeks from the time the egg is laid.

The new queen arises from an egg laid in the royal cell, which is large and slipper-shaped. She derelops in 16 days. Only one queen is allowed in the hive at one time. The males (drones) arise from unfertilized eggs. The drone cells are a little larger than the ordinary worker cells. A drone is developed in about 24 days. When a swarm leaves the hive the old queen quits with it, but when a second swarm goes off from a hive it is accompanied by a young queen, who is frequently and perhaps usually, unfertilized.

The young queens will usually mate when five to seven days old, flying from the hive for this purpose. In a day or two after mating the queen generally begins to deposit eggs, and is then ready for use in the hive or to be sent away as an "untested queen."

Bee-Culture-Spring is the best season to start a hive or apiary. In April a good colony situated in the Central States ought to have brood in five or six combs. The Langstroth hive with its modern improvements is the hest, and the novice should select those holding to to 12 frames in each story.

Swarming is the result of an abundant sccretion of honey, and combs crowded with bees and brood, that is, overpopulation. Just before swarming there is a partial cessation of fieldwork, the workers clustering or loitering about the entrance to the hives. Suddenly those which happen to be in the hive at this time rush forth,
accompanied by the old queen, a:id ciluster on some tree or shrul) neal by. Iliving the new swarn can be done after al Iitule experience and the use of smoke. Swarming may be prevented by giving abundant roon for the storage of honey early in the season, before, as Benton says, the bees get fairly into the swarming notion. The honey also should be frequently removed. Also the hives should be well ventilated and shaded in hot weather. To successfully winter bees the colony must have a good queen, and young workers, also good and abundant food. Those colonies having the most honey compactly stored in the brood department and close about the very centre when the last brood of young bees should emerge, are the one, which will winter best. A good sulbstitute for honey is a syrup made of granulated sugar, to be fed early in autumn. The bees should be kept dry and warm, and there should be no manipulation out of season. (Benton.).

Diseases and Enemies.- Diarrhœa is due to sour or fermented honey, dampness, and chilling of the bees. Foul-brood is a germ-disease, occasioned by Bacillus aivei; it affects both the brood and the adult bees. Of insect enemies the caterpillar of the wax or bee-moth is the most destructive, but with care it can be kept out of well-regulated hives.

Agency of Becs in Cross-Fertilization of Plants.- A hive is an essential thing in an orchard, and were it not for the visits of bees bue fruit in many cases would not set. Also in hothouses where chcumbers are raised, a small hive of bees is indispensable for fertilizino the flowers. See Bee-keeping; Floliers and Insects.

Consult: Cheshire, (Bees and Bee-Kecping) (2 vols., London 1886) ; Benton, 'The Honey Bee': Bulletin No. I, new series, U. S. Department of Agriculture, Division of Entomology, Washington, I896, contains a list of the best books on bee-keeping.

Alpheus S. Packird.
Late Professor of Zoology. Brozin Ľizersity.
Honey-bird, or Honey-guide. See Guidebirds.

Honey Bloom, one of the American species (Apocyurm androsamifolimm), the "spreading dogbane" of the family Apocyanaca (q.v.). It grows in fields and thickets all over temperate North America, and has the medicinal qualities characteristic of the family.

Honey-buzzards, a genus (Pernis) of Old World hawks, formerly called "perns," which subsist mainly on insects, especially burrowing wasps, and bees, with their young and foodstores, which they dig out of the ground.

Honey-creepers, a group of small warblerlike birds (the family Corebide) of gay plumage, numerous in the West Indies and neighboring lands, where they are known about gardens and plantations and admired for their agility in searching fiowers for small insects. and their cheery notes. Among them are the "banana-birds" (q.‥).

Honey-dew, the sweet secretion of certain plants and insects. (I) Some trees in warm climates yield from their leaves in very warm moist weather a saccharine liquid which may fall in drops, or may form a sticky film over each leaf. This exudation, dried, is one form of

HONEY-EATER - HONGKONG

manna. (2) Certain minute insects, chiefly plant-lice, leai-hoppers, and related bugs, yield a sweetish secretion. sometimes so copiously as to bedew a whole tree, and even fall in drops, giving the phenomena called weeping trees. The nsual canse in this case is the presence of a tree-hopper (Proconia mdata). Honey-dew in both cases attracts insects in large numbers, who feed upon it or upon the lesser insects gathered to the feast: and these, in turn, attract larger predatory animals, as birds, lizards, etc. Moreover dust sticks to it. closing the pores of the leaves to the injury of the tree: and. still worse, the honev-dew forms a highly favorable cultureground for the spores of smuts and other pernicious iungi.

Honey-eater, or Honey-sucker, any oi various small and somewhat thrush-like long-billed birds of the family Meliphogida, which inhabit the Australian regions, and seem to feed upon the nectar of flowers. They do so to some extent, but mainly are in search of insects within the corolla, collecting them easily by means of a peculiar tongue, which is divided near the end into a sort of fringe. They also eat soit fruit, and spend much of their time hunting insects on the ground. Well-known examples are the soldier-bird. parson-bird. pimlico. friarbird (qq.i.) and others familiar in Australia and ぶew Zealand.

Honey-guides. See Guide-birds.

Honey Hill, Battle of. On the night of $2 S$ Nov. ISO 4 Gen. Foster. commanding the Federal troops in the Department of the South, leit Hilton Head, S. C., with 5.000 iniantry. cavalry: and artillery, and about 500 sailors and marines, for Boyd's Neck on the south side of Broad River, the object of the movement being to cut the railroad connecting Savamah and Charleston, and otherwise co-operate with Sherman, who was marching to the coast. Owing to a thick fog many of the boats lost their way, and it was late in the afternoon of the 2gth before the troops got ashore. Gen. Hatch was put in command. with orders to push forward and cut the railroad. Hatch marched immediatels; the guides and maps proved worthless, and, aiter marching and countermarching the greater part of the night, he went into birouac about 2 oclock on the morning of the 30th. Information of Foster's appearance at Boyd's Neck was carried to Gen. Hardec at Savannah on the evening of the 2gth, and next morning at 2 coclock, the advance of G. W. Smith's Georgia militia arriving at Savannah. Hardee directed Smith to hasten it to Grahansville Station on the Charleston \& S. railroad. The station was reached at $S_{\text {A.M., and the men marched out on }}$ the road leading to Broad River landing. about three miles where, on the crest of the north bank of a small stream, a work ior light guns had been thrown up and trenches for infantry prejared. These works were about 100 yards from the little stream, and upon Honey Hill. 10 or 12 ieet above the water level. Or the right of the lattery of five guns was a dense forest, on the leit an open pine wood. The ground in iront was apen. Preparations were completed by ro riclock, at which hour about 1.000 militia filled the trenches on the right and left of the battery: Early in his march Hatch encountered the Con-
iederate outposts, drove them in, and, soon after 10 oclock, came under fire of the guns. Hatch attempted a flanking movement, but failed, and made several direct assaults during the day, all of which were repulsed, and at dusk he began his retreat to Bord's Neck. His loss was 711 killed and wounded, and 43 missing. During the action Smith was reinforced by the 47th Georgia, but at no time did he have more than 1,400 men. He lost 8 killed and 42 wounded. Consult 'Official Records,' Vol. SLIV.
E. A. Carman.

Honey-locust, or Honey-shucks. See Loct'si Tree.

Honeysuckle, a genus of plants. Lonicera, belonging to the natural order Caprifoliacea. Tpward of 100 species are native to the northern hemisphere. The honessuckle family is represented in the North American flora by different species, among which are L. sempervirens, the trumpet honeysuckle: L. grata. American woodbine: L. flase, yellow honeysuckle, etc. "Coral honeysuckle" is another name in the Crited States for L. sempereirens. It is much valued in the South, where it is native, for its flowers of beautiful color and grateful perfume. In the eastern C'nited States the Japanesc honeysuckle has escaped from cultivation. The common honersuckle, L. periclyntuum, with distinct leaves and red berries, is indigenous in Great Britain: but two others have been naturalized, Lu caprifolium, distinguished by its upper leaves being united (comnate) and perioliate, and by its smooth orange-colored berries: and L. xylostcum. an erect shrub, with small, yellowish, scentless flowers and scarlet berries. There are many* other species in America, Europe, and Asia, and the name honeysuckle is often given 0 shrubs with sweet flowers oi quite different genera.

Honey-sweet. Sce Jfeadow-sweEit.

Hongkong, hŏng'-kŏng', or Hian-Kiang, hēän-kēang (signifying "the place of sweet streams"), an island off the southeast coast of China, forming with Kau-lung on the mainland. a British crown colony and naval station. The island is on the east side of the estuary of the Chu-Kijang or Canton River, 90 miles south of Canton, and is separated from the mainland by the narrow Lyemun strait. About 10 miles long and about $7^{1,2}$ miles broad. the island is of rocky formation, attaining in Victoria Peak a maximum altitude of r.Sog iect. While almost trecless it is noted for its proiuse flora. Good water is abundant. Hongkong is a great entrepot for the ioreign commerce of China, and Victoria (g.x.) the chici town and centre of its commerce is a free port. The foreign commerce is carried on mainly with Great Britain and Germany: whence considerable quantities of goods are imported, cottons being the principal item.and to which tea. silks, hemp, ctc., are exported.

In 1002 Hongkong exported, in vessels of European construction, goods to the value of $\$ 3.963 .463$, besides $\$ 2.372 .397$ worth of gnods in transit, making a total of $\$ 6.335,860$, and showing an increase of $\$, 20.288$ over the previnus year.

Comparing 1902 with 1001 the number of steamships which entered the port of Honakong and their classification by the flags they carried, is as follows:

QUEEN STREET, HONGKONG.

Flag	Ships		Total Tonnage	
	1901	1902	1901	1902
British	321	324	2.894.519	2,965,030
German	122	123	1,242,499	1.360,524
Japanese	65	56	692.981	865,400
Norwegian	3	3	78,004	263.379
French	22	27	209,094	219, I 11
Chinese	4	17	3,349	163.396
Austrian	20	20	128,483	125.929
American	19	23	130,476	121,939
Others	33	37	119.498 ,	131.518
Totals	609	630	5,498,903	6,216,226

In 1901 the vessels entered the port 3.510 times, and in 1902 4,000 times.

The currency is chiefly in silver dollars. The revenue of the government is derived from land rents, licenses to sell opium, spirits, etc., taxes, postage, office fees, fines, etc. The colony's prosperity is due chiefly to the presence of large numbers of Chinese engaged in trade or in working building stonc, one of the island's principal products. Exclusive of the naval and military establishments which numbered 5,597 and 7,640 respectively, the population in 190I was 283,905 of which 274.543 were Chinese and one third of these by birth, British subjects. Hongkong was ceded to Great Britain in 1842 : some 376 square miles on the mainland, with 100,000 Chinese inliabitants, were leased in 1898.

Honolulu, Hawaii, capital and principal city of the Hawaiian Islands (now a United States Territory), and commercial metropolis of Polynesia: the business heart of the central Pacific. It is 2,089 miles sonthwest of San Francisco, in lat. $21^{\circ} 17^{\prime} 56^{\prime \prime}$ N., lon. $157^{\circ} 51^{\prime} 48^{\prime \prime}$ W. It lies on the southwest side of Oahn (the third island of the gronp in size, and northwest of Hawaii, with a safe harbor formed by a natural breakwater of coral reef, pierced by a broad opening. A fine lighthouse here throws a light visible for 25 miles. With its natural advantages, and the absence of rivals, the city occupies a unique position. From its central location it is a common point of touch for the three great trans-Pacific steamship routes from the United States and British Columbia to New Zealand and Australia, from the same to Japan, China, and the Philippines, and from South America to Japan and China. Scveral independent steamship routes also rim from it. It has regular communication with San Francisco, Vancouver, and Seatile, Peru, Auckland, and Sydney, New York and Boston, Lokohama and Hongkong, Liverpool, Glasgow, and Bremen, besides other places. The steamship line to Sydney touches at the Fijis: the line to Auckland. at Apia, Samoa. From Honolulu it is 3,850 miles to Auckland, about 4,000 to Sydney, and 3.445 to Yokohama. It is the port of foreign trade for the archipelago: hundreds of vessels and some $\$ 20,000,000$ worth of products pass in and out of it annually. There are numerous wharves and warchouses here and a government custom-louse. (For the items of the trade, see Hawan: the great items are sugar and molasses, rice, coffee, hides, and wool.)

Honolulu lies at the month of the valley of Nuuanu, which runs back between two high ridges to a pass between two peaks about 3,000 feet high in the great eastern range of moun-
tains; the view from the brink of the pali or precipice at this pass, is one of the notable sights of the neighborhood. The climate is mild and equable, and many sufferers from lung troubles in the United States seck it for a sanatorinm. The extreme range of temperatures is 52° to 88°, average 70°. The ramfall is very irregular, but never slight ; from 40 to 60 inches annually. The island is yolcanic, the bordering reefs coral; hence the city streets are macadamized with coral and lava, porous rock making good surface drainage. The city is well laid out in American fashion, being indeed a modern American place; the old one-story wooden huts, mingled with grass huts among the trees, have mostly given place to cottages, unpretentious indeed, but neat and comfortable, and making parts of a beautiful and picturesque whole of luxuriant gardens and surroundings of tropical trees, with which also some of the streets are abundantly shaded - the great Norfolk pine, papaya, bread-fruit, mango, and monkey-pod, numbrella-tree, tamarind tree, algaroba, bamboo and koa, date and cocoa palms, candle-nat, royalpalm and poinciana regia, alligator-pear, chinarose bush. blooming alt the year round, etc., many with rich and fantastic blossoms, others with great parasitic ferns, besides peach, oleander, banana, guava, orange, citron, and others The flowers are also of great beanty and luxuriance.

The city has nearly 200 acres of public parks. There are all modern appliances and services for civilized work and comfort; several first-class hotels, physicians, lawyers, daily and weekly newspapers, four banks and two theatres, insurance offices, several hospitals, a public library, etc. There are 22 public schools, including a high school and normal school, with a total attendance of over 4,000 pupils, besides 37 private schools, with an attendance of $2,700 \mathrm{pti}$ pils. There are a number of churches, Protestant and Catholic; the city is the seat of a Roman Catholic and an Anglican bishop. It is also the residence of the government officials, and the consular agents of many European powers. It has waterworks owned and operated by the Territorial government, and furnishing excellent water, pumped from artesian wells, supplemented by water from the adjoining valleys. Ice is made by machinery. There is an electric street lighting system operated by the govermment, and an electric street railway systen, bnilt and conducted by a chartered company; a telcphone system; and there is a sthmarine cable to San Francisco and wireless telegraph to the neighboring islands. Of manufactures the number of different lines is upward of 30 , of course claietly for local needs; the largest branch is foundry and machine-shop manufacture, which is carried on in large works, and turns out some $\$ 650,000$ a year of product. Next to this is rice-milling, with some \$150,000 a year. Minor industries are ice, harness, leather, jewelry, soap, and shipbuilding. The total number of all cmployees in 1900 was 1.854 , and the total annual wages paid $\$ 1,201,648$.

The clief building is the former royal palace, now the executive building, in the Italian style, finished in i882. The judiciary and other government bnildings are near it. The most interesting place is the musenm, with many curious
relics of early. Hawaiian history, corals, aud shells and other native curiosities. land and matine. The chier in interest and value is the grea: jeather war-cloak of Kamehameha I. the inunder oi the monarchy, valued at $\Sigma_{1} \equiv 0.000$. This was the chief treasure of the former sorereignty: and was used as a mantle oi stave by the suvereisns. It was made oi vellow ieathers from the man: bird. found only in the mountains, each bird furnishing only two small tuits of leathers ior it. one from under each wing. It is iour feet long, and has a spread as the botwom of 11° : ieet. Jine generations were enployed in making it.

Honciulu hatbe: was discovered by Capt. Brown in N wember rist. The city as a nodern foundation dates only from 1810 , when John Ioung. an Enslishman, and a iaithiul counsellor of the king. Kamehameha, adised its fortificuri n. Previousiy it had been only a native villace if hi:ts, of little commercial importance. In $18=0$ is 1 as made the capital of the archipelago. and aiterward became the seat oi government. Population (18,0) I 4.852 ; (ISgo) 22,907.: (1000) 30.300. Since the annexation of Hawait to the Lnited States, it is rapidly increasing. Oi the popuation in 1900. 24.746 were males and $14:=6$ iemales: the toral beirg divided as iollows: 11.000 Hewaiians, 0.061 Chinese, 7.229 whites. $6.1,9$ Japanese, 5.000 Portuguese, and I4, nesto. Ot these, 21.871 were born in Hawaii and $1:-135$ born in foreign countries. (This classification is based upon a census taken by the plague inspectors during the spring of 1000 . and is believed to be approximately c rect. Oi the 7.229 whites about 2,000 are classed as foreigners.)
W. D. Alexinder.

Forner Jurs è r-Gineral Haadian Isiands.
Honor, Knights of, a secret, beneinciary order founded in 18-3. In 1902, there were in the United States 36 grand lodges. $1 . g 00$ sublodge: and -4.029 members. Since its organization the orter has disbursed over $\$ 99.000 .000$ in benefits, and in 1002 the amount was $\xi_{3.0}-1.649$. The order is incorporated under the laws of Nissouri, with headquarters in St. Louts.

Honor, Knights and Ladies of, a fraternal, bener ent suchety iounded in 18\%- at Louisville. $K y$. In 1902 there were 16 grand lodges, 1.100 rub-iodges, and 63.000 members. Since its organization over $\$ 10.000 .000$ has been disbursed in bencit: and during 1902, the amount was §1.1-3.0c0.

Honorius I., hō-nō'ri-ŭs, Pope: d. 12 Oct. 635 . He was elected pope in 625 . In the hope of authing a cont-versy he temporized with the leader oi the Nonothelite heresy, which, while recegnizing the twofold nature of Christ, declared he had but one will, a doctrime condemmed by the sixth council of Constantinople. He was anathematized by the council that condemmed the heres:. Pope Leo II, in confirming the act nit this comeil. says that Ilomneiss was a metmod ior "not exting"ishing the flames ri incirmen: heresy." For a iull account of the ca-e ci H1, 7nrins, ennsult Parson, 'Studies in Church Hu-tery' Vill I.

Honorius II., Pope: d. 14 Feb. 1130. He was elected pope in sizt, and was at the time of b s clection bislnp of Velletri. A part of the bich is and cardmals had previously invest-
ed Cardinal Thibaut with the papal dignity; bu: both candidates iaving resigned Honorius was re-elected.

Honorius III., Pope: d. IS Jarch 122%. He becarne pope in 1210, on the death of Inrocent III. He at once wrote to the King oí Jerusalem to assure him of his support: to the bishaps of France, to encourage pilgrims, and to the Emperor of Constantincple to promise him assistance. Iohn, king of England. had leit to his successor. Henry 1II.. the burden of a mar with the French Prince Louis, who laid claim to the English throne, and had been encouraged in his pretensions by Innocent. Honorius reconciled the barons with Henr: and obliged Louis to renounce his pretensions. He then turned his attention to the crusades, and crowned Frederick II. emperor of Germany, on condition that he would go to Palestine within two years. In France he instigated Philip Augustus and Louis Illl. to support the war against the Albigenses. He was succeeded by Gregory IX.

Honorius IV. Pope: d. 3 ApriJ 1287. He was elected pope in 1285 , and supported the French king. Philip the Bold. in the war against Peter of Aragon.

Honorius. Flavius, Roman emperor, son of Theodosius the Great, b. Constantinople S Sept. $3^{8} 4$ A.D. : d. Ravenna. Italy. 26 Aug. +23 A.D. On the death of his iather in 395 the empire was divided into two parts, Honorius receiving the western halt. with Rome as his capital. The principal events of his reign are the adoption of rigorous measures asainst paganism in 399; the devastation of Northern Iraly by Alaric in -00-103: another irruption of barbarians under Rhadagasius $405-6$. Both invasions were repelled by his able minister Stilicho. who, however fell under the displeasure of his weak and indolent master. and was assassinated at Ravenna in fos. Taking adrantage of the death of the defender of Rome. Alaric marched upon the city and plundered it in 410 .

Hooch, or Hoogh, Pieter de, pëtèr dé hоон, or hōg, Dutch painter: b. Utrecht 1630; d. Amsterdam soon after 16\%-. His early art training was much influenced by Rembrandt. In 1655, he was enrolled in the Painters" Guild of Delft. where he resided. but later removed to Amsierdam. He was the chief representative of Dutch genre paintirg, and his specialty was the delineation of Duth interiors. with their semidarkness. surused by the witchery of sunlight. Sometimes he set out two or more rooms in perspective, the vista of which was drawn and lit up with extraordinary skill.

Hood, John Bell, American soldier: b Owingsville. Ky., 29 June 1831 ; d. New Orleans. La., 30 Aug. 18-9. He was graduated at West Point in 1853 , and bore a commission in the Lnited States Army till 1861 when he joined the army of secession. The part he took in the Virginia campaign gained for him the rank of major-general. and at Gettysburg his division. made a gallant record in its position at the extreme right of the Confederate line. He took part in the battle of Chichamanga on $19-20$ Sept. i80.3. having come to Tennessee to the support of General Brags. When General Iohnston was endeavoring in the enring of ishy to impede Sherman's adrarce on Atlanta. Hood was a lievienart-general in his army and his corps on

TIIF HARBOR OF゙ HONOLUIU

25 May 1864, was attacked by Hooker at New Hope Clurch. He succeeded Johnston the following July in the command of the Army of Temnessee, fought the battle of Peach Creek with Sherman 20 July 1864, but was compelled to retire behind the fortifications of Atlanta. After the battle of Jonesboro he retired from Atlanta, which was entered by Sherman. His attack on the forces under Schofield at Frankin being repulscd, he proceeded to Nashville, where he met General Thomas. Thomas adranced from his entrenchments on 15 December, and a two-days battle ensued. Federal preparation had been carefully and deliberately made. A general attack on the afternoon of 16 December caused the entire Confederate line to give way. Soon Hood's army was in full retreat toward Franklin, the larger part of it "in great confusion," according to Hood"s official report. After a mine-days' pursuit by the Federals, the remnant of the Confederates, now largely disintegrated, crossed the Temessee. Hood, at his request, was relieved of his command. Subsequent to the war he was a commission merchant at New Orleans. He wrote 'Advance and Retreat: Personal Experiences in the United States and Confederate States Armies' (1880), and articles for 'Batties and Leaders of the Civi] W'ar) ($\mathrm{I} 8 /$; $)$. Consult these works: see also Nishyilee, Campagen and Battle of.

Hood, Robin, English outlaw: said to have been b. 1160 and d. $124 \overline{7}$. According to the popular account, with his followers, he inhabited Sherwood Forest, in Nottinghamshire, and also the woodlands of Barnsdale in the adjoining West Riding. They supported themselves by levying toll on the wealthy, and more especially on ecclesiastics, and by hunting the deer. The principal members of his band were his lieutenant Little John, his chaplain Friar Tuck, William Scadlock. George-a-Greene, Much the miller's son, and Maid Marian. His skill with the long-bow and quarter-staff was celebrated in tradition. What basis of fact there is for the story of Robin Hood is doubtiul. Grimm maintained that he was one with the Teutonic god Woden. Other theories suppose him to have been a rebel yeoman in Lancaster's rebellion under Edward II.: a Saxon chief who defied the Normans: and a fugitive follower of Sir Simon de Alontfort after the battle of Evesham. He figures prominently in Scott's novel 'I vanhoe,' and in 'The Foresters,' a drama by Tennyson. The carliest known mention of him is in 'The V'ision of Piers Plownan?' version B. (about 13\%), in which Sloth says he knows "rymes of Rovin Hood." 'The Gest of Robin Hood' (assigned to ifoo), almost epic in length, consisting of 456 four-lime stanzas, is the oldest extant ballad on this theme. Others of the more important ballads are 'Robin Hood and the Monk,' 'Robin Hood and Guy of Gisborne,' and 'Robin Hood's Death.? The remaining ballads are, in general, of inferior merit. It seems probable that there were what may be called a Sherwood cycle and a Barnsdale cycle, respectively, Many proverbs and sayings exist in connection with Rohin Hood. Consult: Child, 'English and Scottish Ballads) (i883) : Fricke. 'Die Robin Hond Ballader' (188.3): and Ritson, (Robin Hood' (new ed. 1885).

Hood, Samuel, Yiscoc… Bretish naval officer: b. Thorneombe, Devonsbure, Iz Dec. 1724; d. Bath, Somersetshire, 27 Jan. 1816. He entered the navy in 1740 , was promotel heutenant in 1740, commander in 1754. and postcaptain in 1736. While commanding the Vestal in 1759 he took the French Bellona after a threehours' fight. From 1767 to $1 / 71$ he was com-mander-in-chief in North America. Having served as commissinner of the Portsmouth dockyard in 1778 -80, he was made admiral of the blue in 1780, and almost inmediately was sent in command of a squadron to reiniorce Rudney on the North American and West Indian stations. He remained on that duty until the signing of the peace, and distinguished himself in sereral battles. Despatched in $1,-81$ to blockade Martinique, he was interceptied by De Grasse and the French fleet. against which he fought in April and in July (under Admiral Graves). Again in the West Indies in $1: 82$, after an absence along the North American coast, he outnaneuvered De Grasse in several minor contests, and later, on 12 April, took an important part in the rictory of Dominica, when he led the rear of the British line. In $1, S_{\downarrow}$ he was elected to Parliament for Westminster, and in 1788 made a lord of the admiralty. He took command of the British fleet in the Jediterranean in 1/93, and occupicd Toulon. Hood had a great reputation as a tactician, and a high tribute was paid him by Nelson, who had been one of his subordinate officers. Consult James, 'The Naval History of Great Britain' 1 I $8=2-4$. new ed. 1837).

Hood, Thomas, English poet and humorist: 1. London 23 Nlay 1799 d. there 3 Nay 1845. In 1821 he became sub-editor of the 'London Magazine.' and from that time appears to have resolved on devoting himself entirely to a literary life. In 1826 he published (Th hims and Oddities.' This was followed by 'National Tales) in prose, and a volume of serious poetry, which, though favorably received, did not obtain much popularity: In İ 30 he started the 'Comic Annual,' which, during the eight years of its existence, was made the vehicle of many of his most remarkable productions. At the same time his pen was diligently employed on other subjects, and he published the powerful poem called 'Eugene Aram's Drean,' 'TyIney Hall,' a novel, which, thougla defective in its plan and structure, abounds in fine strokes of wit and humor. His health had begun on fail, and in consequence lie lived on the Contiment 188_{55-40} He continued his 'Comic Imual' during his residence at Coblentz and Qitend, and in 1838 published 'Hood's Own.' His continertal experiences also furnisherl materials for his ' C p the Rhine) (1839), a series of imaginaty letters after the manner of Smollett's 'Himphrey Clinker.' The whimsical cats inserted in the work, as well as its combination of gond sense and humor, made it very popular. Shotly after his return, he undertonk the editn rabip of the 'New Monthly Magazine.' and continued it until i843. His principal contrihution to it was the famous tragi-comic story in verse of (Nise Kilmansegg.' His iast periodical. entitte 'Hond's Magazine.' was commenced in Is 14 . It contains some of his beat productions, thought several of ther were wr:then after his health
had completely given way, and while he was Drepped up by pillows in bed. Hood is unrivaled as a punster, and seems to have been almost equal master of the comic and the pathetic. In the latter style his 'Song of the Shirs' is universally known, and as a burst of poetry and incignation :s not surpassed by anything in the Engish language.

Hood, Thomas, generally known as Tous Hoon. Enghth miscellaneous writer: son of the precedins: b. at Wanstead. Essex. 19 Jan. IEj5; d. Pechham Rye, Surrey, 20 Nov. ISi, He was educated a: Oxiord in 183. with a siew to a clerical career, but edited the 'Liskeard Gazette' in $1858-9$. and from I860 till I865 was a clerk in the accountant-general's departmert at the War Office. In I 805 the became editcr of the comic paper called 'Fun.' His fret separate publication was 'Pen and Pencil Pictures' (185) $)$, and among his subsequent works are: 'The Daughters of King Daher, and other Poems' (186I): Jingles and Jokes for the Little Folks' (I:65); 'Captain Masters's Childen' (1865), his best novel: ' A Golden Hearr) (IEO-1; 'The Rules oi Rhyme: A Practica: Guide to English Versification (r869). a work which has gone through two later editiors: 'From Nowhere to the North Pole' ($\mathrm{t} 8,-\mathrm{f}$). From i 86 ; he produced 'Tom Hood's Comie Annual.' A volume of his 'Favourite Poems,' with a memoir by his sister, Mrs. Broderip, was published in the United States in $18-\%$

Hood of Avalon, Arthur William Acland Hood. Bakes. English naval officer: b. Somerse:ch:re ti July Iszi; d. Glastonbury is Nor 1001. Aiser service on the coasts of Spain and of Syria, he was made lieurenant in $18+0$, and in 1854 commander in recognition of his services with ilhe naval brizade beiore Sebastopol. Assigned to the China station, he participated in the capture ci Canton (December 185J), and in 18 ze recenved the commission of post-captain. In isf $2-6$ he was in command of the Pylades of the N-I:h Armeticar station, in 180^{6-9} oi the Excel.ent and the Royal Naval College at Portsmo:?h. and in IE60-:- directur oi naval ordnance. He was promoted rear-admiral in 18;6, was frest sea lord of the admiraly in $1885-9$, and became admiral in ISX6. His attitude in connection with the development of the British navy was s:rongly conservative.

Hood, Mount. a peak of the Cascade Rance, in the northern part of Wasco Counts. in Orezon. The height is usualiy given as over 11.225 feet, but the latest explorers claim it is nearly t2.000 feet. llount llood was at one time an active volcann: the lava is iound on the stopes and some distance from its base.

Hood River, a name applied to a valley, town, and river in Wasco County, Orezon. The town is situated on the Columbia River and on the line of the Oregon Railway \& Navigation Company. 66 miles east of Portland and 22 miles helnw The Dalles, the county-seat. The Hood River strawberry ha: acquired a reputation almnet plemomenal, and is distrihuted over an immense area of comtrs extending from Derver and Omaha on the south to Wimipes in the province of Manitoba to the $1 n$ rth and eaci. The output in 1003 was 150 carloads. 'Ihe apple industry is also rapidly assuming
large proportions. grades of superior excellence are produced. and the highest priced Spitzenburgs and Yellow Newtown Pippins found in the markets of New lork and London were grown in Hood River. The valley proper extends south irom the Columbia Rtver to Mount Hood, some 20 miles, and is protected and cradled by the Cascade range of mountains on the west and a high divide putting out from Mount Hood on the east. The amount of land adapted ior iruit culture in this unique valley exceeds 50.000 acres. The river itseli drains all oi the north side of Mount Hood, has a large and constant flow oi water. and for the last to mniles of its course before entering the Columbia has an average iall of over to feet per mile, afiording ro.000 measured horse-power per mile. There are immense forests of fir and cedar about the head-waiers of this stream, and one of the largest saw-mills in the State is conveniently situated near its confluence with the Columbia. The climate is a happy mean between the moist section of western Oregon and the semi-arid plains of the Columbia. The scenery is grand in the extreme and yearly attracts the attention of many visitors. The town is pleasantly situated. overlooking the Columbia River, is suppiied with electric lights, while the telephone is universally present in both town and country: It is. however, the superlative excellence of its iruits that has given Hood River a reputation almost world-wide. The population of town and ralley (1904) is about 6,000.

E. L. Syith.

Hooded Crow, a crow native in northern Europe (Cor:us cornix), so termed in allusion to markings on the head. Head, wings. and fore parts are jet black, the rest of the bird ashgray : bill and ieet are black. It retires to the southward from its more notherly haunts at the time of the crow migration. In England it is known as the gray. dun, or Royston crow. The hooded crow found in India is similar in general appearance, but is a smaller species.

Hooded Seal, a large dark-gray sported seal oi the North Atlantic. closely related to the common harbor seal, and named Cystophors cristutu. It reaches a length oi about io feet, and is especial!y distinguished by a large inflatable sac upon the face, the expansion of which is thought to be a detensive device, calculated to territy enemies. It is occasionally seen on ice-floes along the Labrador coast.

Hooded Warbler, a fly-catching warbler (Sylanis mitrabl). common in the southern United States in summer and making its nest in low bushes. It is bright yellow except a solidly black crown, neck and breast, comparable to a hood, leaving the face golden yellow.

Hoodoo. See Mascot.

Hoof, a toe-nail which is large, envelops the terminal phalange. and is of material assistance in walking, as in the case of horses. caitle and other ruminants, and in the elephant, rhinoceros, etc. It is most highly developed in the horse. where the whole terminal part of the font is reduced to a single, we!l-bonted toe. In split-hooied or cloven-hnofed animals there are two toes approximately equal, and bonted with hoois flat on their inner sides and elosely appressed. The small non-functional
toes hanging behind the hock-joint in most split-hoofed animals are often eallect "false hoofs." Accidents and diseases affect the hoofs of domestic animals (see Foot-kot, etc.), and require careful attention, especially in the case of horses. The soundness of a horse's foot is mainly preserved by permitting it to grow uninjured by the rasp and knife, and kept clean by being washed with cold water; all other aplications are injurious and destroy the tonghness of the "horn surface." Softress and brittleness of the hoof, which are fruitful sources of cracks and corns, may be remedied by placing the feet for several hours daily in thick woolen swabs, kept cool and moist by frequent applications of cold water, and by encouraging a more healthy growth of horn by occasional mild blisters round the coronary band. Cracks (or sand-cracks) mostly occur among horses much upon the road, cause lameness, and constitute unsoundness. When serious and recent, poulticing, thinning away of the crust about the crack, and perfect rest are essential. After the earlier heat and tenderness are removed a hot iron should be drawn at right angles to the crack, both above and below, so as to separate the diseased from the sound horn. Waxed thread or fine wire should be wound round the hoof, and a sound growth of horn stimulated by a blister round the coronet.

Hooft, Pieter Corneliszoon, pē-těr kor-11ā’-lēs-zōn hōit, Dutch poet and historian: b. Amsterdam 26 March 1581; d. The Hague 21 May 1647. He was son of that Cornelius Hooft who did much to procure Elizabeth's recall of the incompetent and tyrannical Leicester in 158-. He traveled through France, Italy, and Germany in 1601, and on his return began with patriotic ardor to improve and purge the speech of his mother country. With thes aim in view he translated Tacitus into Dutch, and made that Latin writer the model of his style, as a historian. His historical writings are vivid and comprehensive. His poems are chiefly in the erotic vein. He also produced dramas in the form of pastoral, tragedy, and comedy. In his comedies the domestic life of the Netherlands is admirably portrayed. In the castle of Moritz, Prince of Orange, at Muiden, where he lived as high hailiff, he used to gather round him a coterie of brilliant men and women, and this intellectual circle famous as the "Mluiderkring" included the poets Huygens, Vondel, and Baerle. His principal works are (Hendrik' (IV.) de Grote zijn leven en bedrijf) (I67I) ; 'Nederlandsche Historien' (1656) ; the poems 'Minneliederen'; 'Afbeeldinglien van Mimne'; the pastoral drama 'Granida' (1605); the tragedies 'Geraerdt van Velzen' (1813)'; and (Baeto' (1616) ; and the comedy 'Warenar.'

Hook, Theodore Edward, English novelist and journalist: b. London 22 Sept. 1788; d. 24 Aug. 18.4. For some years Hook led a life of gaiety in London, and became notorious for practical jokes and similar escapades. I_{11} 1812 he was appointed accountant-general and treasurer of the island of Mauritius; but, owing to his gross carelessness, a large deficiency in the military chest was discovered, and in 1818 he was sent home under arrest, but no proceedings were taken against him. From 1820 to 1841 he was editor of the 'John Rull.' and at intervals from 1824 to 1828 published his 'Sayings
and Doings.' while in I836 he became editor of the 'New Monthly Magazine.' His other principal works are a series of novels, among which may be mentioned 'Love and Pride'; 'Jack Brag'; 'Gilbert Gurney'; 'Gurney Alarried.'

Hooker, huk'ér, Edward, American sailor: b: Farmington, Conn., 1822; d. Brookiyn, N. Y., I May 1903. Ile followed the sea in the merchant service until the outbreak of the Civil War when he joincd the United States navy as acting master, and served with distinguished bravery. He was commissioned as lieutenant-commander in the regular naval serrice in 1884 and full commander two years later, when he retired.

Hooker, Isabella Beecher, American philanthropist: b. Litchfield, Conn., 22 Feb. I822: d. 25 Jan. 1907. She was a dauglter of Dr. Lyman Beecher (q.w.) and in $18+1$ married Joseph Hooker, a lawyer. She made a special study of the right of women of the L"nited states to rote; was active in varions reform movements, and is known as a public speaker. She wrote "ilomanhood, Its Sanctities and Fidelities.

Hooker, Joseph, American soldier: b. Hadley, Mas5., I3 Now. I814; d. Garden City, N. 1., 31 Oct. I8;9. He was graduated at Test Point in 1837 and received a commission in the ist artillery. He served in Florida and on the northeast frontier 1837-40 and during the Mexican War was aide to Generals Smith, Harmer, Butler and Pillow. He saw much service in both the northern and southern campaigns, and resigued from the army in 1853 . From that date to the breaking out of the Civil War he was successively farmer, engincer and militia colonel. In 186I he went to the front as a briga-dier-general of volunteers. In 1862 he was commissioned major-general of voluntecrs and was present at the battle of Williamsburg, Va., and was subsequently conspicuous in the Peninsular campaign and in the battles of Bristoe Station and Chantilly. He also took part in the Maryland campaign, and in September of 1862 was appointed brigadier-general in the regular army. Two montlis later he was placed in command of the Fifth corps, and at the battle of Fredericksburg commanded the Third and Fifth corps. In I863 he was put in command of the Army of the Potomac, but although very successful in refitting and reorganizing his troops, failed to show, as head of an army, those qualities which lad claracterized him in the field as corps and division commander. At Chancellorsville the defeat of the Federal troops by General Jackson was largely due to Hooker's vacillation and his want of power to cope with the sudden surprise of his right flank by the Confederate general.

In 1863 he was despatched in command of the Army of the Cumberland to reinforce Rosecrans at Chattanooga and distinguished himself on 24 November in the so-called "Battle among the Clouds" on Lookout Mountain. He was brevetted major-general in the regular army in 1865, and a paralytic stroke forced him to retire from active service with that rank in 1869 .
An equestrian statue of General Joseph Hooker by the sculptor French, was unveiled on Beacon Hill, Boston, 25 June 1903, with imposing ceremonies. The day was made a State holiday.

Hooker, Sir Joseph Dalton, English botanist; son of Sir William Jackson Hooker (q.v.)
b. Halesworh, Suffolk, so June $1 \mathrm{~S}_{1} \%$. He was educated ai the Universiy of Glasgow. accompanied $\mathrm{Sin}_{\mathrm{i}}$ James Clark Ross's Amtarctic enpedition of $1839-43$ as assistant-surgeon and naturalist. and in 1847 published an account of its botanical results in two volumes, entitied 'The Botany of the Antarctic Vorage of H.MI. Discovers Ships Erebus and Terror in the vears IS39-43.) He went to India in IS47. in order to investigate the botany of part of the Himalayan region, and in 1854 three years aiter his return jesued his 'Himalayan Journals. or Notes of a Naturalist in Bengal, the Sikhim and Nepal Himalayas, the Khasia Mountains.' etc. In his work on the 'Rhododendrons of the Sikhim Himalaya) (${ }^{\text {\& }} 49$), he nirsi introduced to the notice of European gardeners many splendid and now iamiliar species of these favorive shrubs. In 18, I he set sail ior Morocco. and in May of that yea: he and his companions reached the summits of the Great Atlas, which till then had never been trodden by any Europan foot. . record oi this joumer is contained in the work written with John Ball. 'Journal of a Tour in Mozocco and the Great Atlas' (18-9). He traveled in the Rocky Mountains and California in 18%. In 1855 was appointed assistant to his father in the directorship oi Kew Gardens, and on his iather's death in 1865 . succeeded himn as director. He retired in 1885. He was presjdent of the Roval Society during the five years I8-3-8. Among his other works are: "Introductory Essay to the Flora of SVe Zealand" (1853); (Introductory Essay to the Flora of Indica' (IS55): 'Flora Novz Zealandæ" (1853-5): 'Flora oi Tasmania' ($1856-60$): 'The Flora of Australia: its Origin. Aftmities. Distribution. etc.' (I859): 'Genera Plantarum' ($1862-83$). with George Bentham, an epochmaking revision of the natural system of classification: "The Student's Flora of the British Islands' (I8-0: new ed. 1823). an excellent and popular work; 'The Distribution oi the North American Flora' ($18-5$): and the great 'Flora oi Eritish India) ($28 / 5-9 ;)$.

Hooker, Richard, English theoiogrian: b. Heavirsee, near Exeier, Mareh 2554 : d. Bryh psbourne, 2 Nov: 1600 . He was educated at Oxford. In 158 i he took orders, and was shorty afier made preacher at S_{L}. Patlis Cross, in Londin. In 1584 he became rector of Dravton Beauchamp. Buckinghamshire. The following year he was appointed by Archbishop Whitgit: Haster of the Temple for life. Here he became enraged in a cemtrover:y with his colleague IVfiet Travers, whose sympathies were strongly puriamical. and to this controversy we owe his celebrated work 'Oi ilue Laws of Ecclesiastical Polity.) The firt four books were printed in 1504. The fifth book of his creat work ap Inared in 159 : the last three in 1600 . The Ecciesiastical Prlity' writen in defense of the Chuich of England. is no less remarkable it learning and extent of rescarch than for the tichmess and purity of its style. which entitles its atalier io be regarded as cne of the classics oi the Elizabethan age. See Lives by Vlaiton, and Keble.

Hooker, Thomas, American colonial clerEyman: b. Markitid. Leicectershire. England. fir bably - July $1=80$; d Hartford. Conn, July 16as, Aiser being graduated at Cambridge he
took orders. preached in Londor, and was chosen lecturer at Chelmsiord in 1626 . Haring been silenced by Laud for nonconformity, he established a grammar school, and about 1650 went to Holland, where he preached at Delit and Rotterdam. In 1633 he came to NVew England with Coton and Stonc, and was settled with the latier at Newtown, now Cambridge, being ordained by the brethren of the church. In iojo he removed with about 100 others to what is now Hartiord, Conn., where he and Stone were the first ministers of the church. He was a remarkably animated and able preacher, oi commanding presence and earnest zeal, and he has been called the Luther oi New England. It was his custom to preach without notes. Some 200 of his sermons were sent to England, where about hali oi them were published. His most celebrated work. "A Surrey of the Summe oi Church Discipline. ${ }^{\circ}$ written wish John Conton. was published in England (IO4S). Many oi his works have gone through repeated editions. See WValker. 'Iife of Hooker' (I891).

Hooker, Sir William Jackson, English botanist: b. Norwich I-85; d. 12 Aug. INOミ. He applied himself to the study of botany at an early age, and in search oi botanical speciniens risited Scotland and the Scottish islands, France. Swizzerland, and Iceland. His investigations on the British 'Jungermannize and Mosses' drew attention to his attaimments, and he was elected to the chair oi botany in the University of Glasgow, a position he filled for 20 years. In 1836 he was knighted, and in iS41 was appointed director of the Royal Gardens at Kew, a post which he held up to the time oi his death. Under his management these gardens increased their area from II acres to 2,0 . They are well laid out, and coniain hot-houses and conservatories iar superior to anything of the kind on the Continent, and include museums flled with objects derived from the regetable kingdom, boianical libraries, and a most extensive and excellently arranged herbarium tmong his wortis may be mentioned 'Tour in Iceland" (181I): 'The British Flora': (Flora Boreali--tmericana': 'Illustrations of the Genera of Ferns, Icones Plantarmm'; 'British Ferns'; etc.

Hooker, Mount, Canada, a peak in the Rocky -lountains: 15.600 feet high: near the easiern boundary of British Columbia.

Hoonoomaun, hoo'noo-mãn. See ExitelLu' = llosixey.

Hoop Ash. The black or wate: ash (Fraxinas niora). See As.

Hooper, hup'er. John, English reformer/ and martyr: b. Somersetshire, about 1405: d. Glu ucester 9 Fel). I555: He embraced the principles of the Reformation and in 5 Is9. to avoid the persecution consequent on refusing to sign the new articles of faith put forth by Henry Vlli.. withdrew to the Continent. On the accession oi Eduard V'1. in IFtr, he went to Lond no and contributed greatly to the promess af the Rei masion. In 1550 he was nominaied liwhe of Gloucester. On the accession of Mary, in 553 . he was one of the first victims fixed un n, and being imprisoned in the Flect, was treated wilh great severity: In $1 \leq 55$ he was required insmally to recant his opinions. This he refused to do and was burned at the siake near his own cathedral. Ilis works con-
sist chiefly of a 'Godiy Confession and Protestation of the Christian Faith'; 'Lectures on the Creed'; 'Sermons on the Book of Jonah' ; 'Annotations on the Thirteenth Chapter of the Romans.'

Hooper, William, American patriot: one of the signers of the Declaration of Independence: b. Boston, Mass., 17 June $17 \not+2$: d. Hillsboro, N. C.. October 1/90. He was gradnated at Harvard College in $1 ; 60$, studied law with James Otis in Boston, and removed permanently to Wilmington, N. C., in 1767, where he soon rose to professional eminence and was noted for his social qualities and hospitality. He was delegated to the Continental Congress in 17/5, and was till his death a leader in the councils of North Carolina.

Hoopeston, hoops'tón, Jll., city in Vermilion County; on the Lake Eric \& W. and the Chicago \& E. I. R.R's.; about 85 miles south of Chicago and 48 miles south by east of Kankakee. It is situated in an agricultural region, and its chief industries are comected with agricultural products. It has large sweet-corn canning establishments, and factories for making the cans and the canning machinery. There are manufactured other canned goods, also horsehoe nails and agricultural implements. Grain and hay are shipped to the larger markets. The government. in accordance with the charter of 1877 , is vested in a mayor who serves for two years and in a city council. The city owns and operates the waterworks. Pop. (1890) I.911; (1900) 3.823.

Hooping-cough, a series of coughs ending in a long-drawn breath, during which a shrill whistling sound, the hoop, is produced. Several fits of coughing succeed one another, until some phlegm or mucus is expelled. Vomiting not infrequently follows a fit of conghing. It has recently been discovered that the cause of the complaint is a poison acting as an irritant on the pneumogastric nerve. Hooping-cough is contagions, and most commonly attacks children, generally but once in their lives. The first symptoms are a difficulty of breathing, and other slight febrile affections, which are succeeded by hoarseness, cough, and difficulty of expectoration. After a fortnight or more the cough becomes convulsive, and is attended by the hoop. In four or five weeks the expectoration becomes loose, and the fits of coughing gradually diminish in frequency and duration. Hooping-cough is seldom fatal to adults. but is most fatal in the first year of childhood. Bronchitis and pnemmonia are the most serious complications.

Hoopoe, hoo'pó, a peculiar bird of the Old World, which takes both its vernacular and scientific name (U'pupa) from its whooping cry. It is of the group Coccygomorpha (q.v.) and represents a family (tpupida) many species of which inhabit southern Asia and Africa, while one (U. chors) is a well known migrant in Europe. It is about 12 inches long, is brown above and white beneath, with black, whitebarred wings, and a very large cinnamon-red black-tipped crest and a long, sharp, curved bill. It seeks its food on the ground, nests in inoles in trees, cramies in walls, etc.. and has many curi.ous traits and habits which have caused the bird to take a prominent place in the folk-lore
of ail countries. The African hoopoes belong to the genus Irrisor, and are called wood-hoopoes. They have brilliant plumage, but no crest. They go about in noisy flocks, and have much the appearance and halsits of woodpeckers.

Hoorn, hōrn, or Hoorne, hōr'né, or Horn, or Hornes, orrn, Count uF (Pililip 11.. DE Montmorency-Nivelle): Flemish soldier and statesman: b. about 1520; d. Brussels 5 June 1568. His father was a descendant of the French family of Montmorency, and on the mother's side he was related to Lamoral Egmont, with whose fate his own was linked. His mothen becoming a widow when he was about eight. was married again to John, Count van Horn, one of the wealthiest nobles of the Netherlands, who, left his estates to his wife's clildren or condition that they should assume his name. Philip was thns at the outset of his career one of the most influential of his order, and received from Charles V. and Philip II. important trus is and distinctions. IIe accompanied Philip. II. to Spain, where he is supposed to have received information of the designs of the Spanish court against the Netherlands, and to have communicated them to the Prince of Orange. Returning to the Netherlands he joined Orange and Es, mont in resisting the aggressive policy of Philif; yet continued loyal to the crown. He was, however. suspected by the Spanish court, and upon the arrival of Alva in Brussels was ertticed with Egmont to that city, and arrested in September ${ }^{1567}$. on a charge of high treaso 1. Ceaseless but vain efforts were made to obtain for him a fair trial, and appeals for clemency on his behalf were made by potentates in all parts of the Continent. He was executed with Egmont in June $\mathrm{I}_{5} 68$.

Hoosac (hoo'salk) Mountain, the mame given to a spur of the Green Mountains (q.v.) which is in the northwestern part of Massachusetts, on the east side of the valley of the Hoosac River. The whole length is about 16 miles. The mountain is noted for its beautiful scenery:

Hoosac Tunnel, in the towns of Adams and Florida, in Berkshire County, in Massachusetts, and piercing the Hoosac Mountain. It is on what is now known as the Boston and Maine railroad, the route from Boston to Troy, N. Y., by way of Greenficld. From the west entrance of the tumnel to Troy is 54 miles; from the east entrance to Boston, 137 miles. The tunnel is nearly five miles in length, the longest tunnel in the United States. Before the general introduction of railroads, and, as early as 1825. the project was broached of making a canal across Massachusetts from Boston to the Hudson River. This plan was abandoned when railroads were built across the State. $1 \mathrm{n}+85 \mathrm{r}$ the tumel question had adranced so far that surveys of various routes were made and some experments were begun. The work of tunneling hegan in 1856 and was completed in 1873. For so long a tumnel the rentilation is good owing to the shaft. 1028 feet, sunk near the centre. The width is sufficient for two tracks. The total cost, including 39 miles of adjoining railroad, was about \$13,000,000.

Hoo'sic Falls, N. Y., village in Rensselaer County: on the Hoosac River and on the Boston \& M. railroad; about 28 miles northeast of Albany. The first permanent settlement was
made in 163. and the first charter was received in 282-. The chatter has been revised and the last revision was in ISoo. The village has excellent water-power. The chief mantiactures s:e asticultural implements, paper and papermaking machinery. shirts. cotton and woolen goods. and tlour. The government of the village is rested in a president who holds office three years. and a hoard oi trustees. Pop. (1sgo) T.OIf: (1000) $=0-1$.

Hoosier (hoo'zher) Schoolmaster, The, a story by Edward Eggleston (q.v.) published in 18 , and the most popular of its author's works. It is descriptive of the life of the Middie West in the pioneer days of the early igth century.

Hoosier State, a popular name for Indiana. The word is said to be a corruption oi "husher." formerly a colloq*ial name for a fighter or a bully.

Hop-hornbeam. See Inox-wood.

Hopatcong, hō-păt"kōng, Lake, in Sussex County. -lew Jerser: about 33 miles northwest of Iersey City and 25 miles west of Patersn. The lake is 725 feet above the sea. and eight and one-hali miles long and three and one-half miles wide. Its outlet is the Musconetiong River which tiows into the Delaware Lake Hopatcong is a iavorite summer resor, its beatitiful scenery is one attraction. It is surrounded by hills and low mountains. all well wooded, and many of the trees are evergreens.

Hope, Anthony. Sce Hawnins. Anthony Hope

Hope, Ascott R. See Moncrieff.

Hope College, in Holland. Wich. a coeducational institurion, iounded in 1866 , by Durch settlers. and under the auspices of the Reiormed Church in America. At the close of 1902 there were connected with the school 14 instructors and 200 students.

Hope Dlamond, a iamou: blue diamond weizning $H^{\prime}!$ carat: m possession of the famtiy of H. T. Hope, of England, until 1903, when it was sold to an Americain

Hopedale, the name of a community sounded by Rev. Adin Ballou, in 18:1, at Miliord. in IV-orcester Couniy, Mass. At the beginning there were $2=$ persons who wished to lead lives in accordance with hich ideals of Christianity. They iormed themselves into a joint-stock company. purchased a farm of 238 acres. estabhished a set:lement, and proceeded to cultivate the soil. and in manuiacture their own breadstuffs and clothing. At first a board of trustees were the chief governir:g power and had entire control of the industries. Later more responsibilities were given to the members. and the industries were, in difterent ways. apporthoned amung them. In 185 there were 200 members: but the community had beonme a financial failure and diziensions had crept in. In 1856 they were in deht, and as a joint-stock company they disbanded: hut continued as a semi-ermmunistic comnunity until about iNh? when they save up the industries they had established to privare individuals, and inrmed themelves inio Hopedale Parish with their iounder as pastor. Consult: Adin Ballou. 'Hopeds!e Ccmmunity.)

Hopkins. Alphonso Alvah. American atlthor and lecturer: b. Burlington Flats. ㄷ. I.,

27 March IS43. He was io: three years professor in the American Temperance Cniversity: from 180 -- -0 was editor of three agriculiural papers successively. Since isa8 he has lectured on temperance and other social and political subjects: in 1822 he was the prohibition candidate ior governor of New York. He has written 'Geraldine. a Romance in Verse,' a popular poem in the style of Owen Meredith's 'Iucille' ($18 S_{1}$): 'His Prison Bars' (18 -S) ; 'Sinner and Saint' (IRO): 'Tiealth and Waste) (I896): 'Bailads oi Brotherhood' (1000).

Hopkins, Edward, American colonial goremor: b. England 1600: d. London March 165\%. He was a prominent merchant oi London, and came to Boston in 1637, but soon after remored to Hattiord, where he was chosen a magistrate in 1039 , and governor of the colony oi Connecticut every other year from 1640 to 1654. alternating with Hasnes. He arterward went back to England. where he was chosea warden of the English Heet. commissioner of the admiralty and navy, and member of Pariiament. But he never lost his interest in the colonies, and at his death bequeathed much of his estate io SVw England. giving Ef.000 for the support of grammar schools in Hartiord and lew Haven. which are still flourizhing. and Ej00 which went to Harvard College and the grammar school at Cambridge.

Hophins, Edward Washburn, American philologist: b. Northampton, Mass., \& Sept 185. He was graduated from Columbia in 18,8. and going to Germany to study took the degree of $\mathrm{Ph} . \mathrm{D}$. at the University of Leipsic. In ifgs he became proiessor of compararive philology and Sanskrit ar Iale. He has written 'Caste in Ancient India' (ES S) : 'Mlanu's Lambook' (IRE4): 'Religions oi India' (IR95); 'The Great Epic of India' (Ioom): and 'India Old and New' (1901).

Hopkins, Esek, first commodore of the Amerncan navy: b. Scruate. R. I., 1/18; d. North Providence. R. I., 25 Feb. Nos. In November If 15 he recenved a commission from the Continental Congress as commodore and com-mander-in-chief of the navy. soon aiter which he put to sea with the firsi souadron sent out by the colonies. The fleet sailed for the Bahama islands, and captured the forts at New Providence. and with them \&o cannon. and a large quantity of ordnance stores. and ammunition. On his return. when B:ock Island. the commodore took the Britush schnoner Hawhe and the bomb brig Bolion. For this act the president of congress complimented Hopkins orncially. Commodore, or Admiral Honkins, as he was generally called (even by IVashington, who so addressed him in his onicia: le:ices). periormed other remarkable exploits, ilt nagh he had great difficulties to contend with. His name became a synonym for heroism. and for American patriotism. In Tune i=न0. Hopkins was ordered by Consress to appear before the naval conmirtee in Philadephia to reply to charges which had been preferred against him for not annoying the enemy's ships on the southern coast. He was defended by John Adams. and was acquitted. The unarnidable delays at a later period in getting his ships ready ior sea gave another chance for his enemies to complain; and neglecting a

HOPKINS

citation to appear at Philadelphia，because no specific clarges were made against him，and on account of his general disgust at the conduct of his opponents，he was dismissed the service， 2 Jan．17ラ八．He resided near Providence，and exerted during a long life a great political in－ fluence in Rhode 1sland，being often elected to the general assembly of that State．Consult Fieldu．＇Esek Hopkins＇（ISgS）．

Hopkins，John Henry，American Protes－ tant Episcopal bishop：b．Dublin，Ireland， 30 Jan．1792；d．Rock Point near Burlington，Vt．， 9 Jan．1808．At the age of eight，he was brought to America，his father settling in Philadelphia． He became a successful member of the bar in Pittsburg，where his interest in church work was so earnest that the vestry of Trinity Church unanimously elected him rector of the parish though he was not even a candidate for orders． He accepted the call，was ordained in 1823，and remained in Pittsburg until 1831，when he went to Trinity Clurch，Boston，as assistant，and became at the same time professor of systematic divinity in a theological school．He was con－ secrated bishop of Vermont in 1832 and com－ bined with the episcopate the rectorship of St． Paul＇s Church，Burlington．Though at the head of a small diocese，he exerted a widespread influence as a learned theologian and a con－ troversialist of uncompromising bravery and great versatility．He is said to have heen the first to suggest the idea out of which grew the important Lambeth Conferences of the en－ tire Anglican Communion，and it is unques－ tionably to his prudent and charitable efforts that the happy reunion of the northern and sonthern dioceses after the Civil War was largely due．Besides controversial works，which at the time had great effect，he published＇The Primitive Creed＇（I834）；（＇The Primitive Church＇（1835）；＇The American Citizen＇ （1857）：and＇The Law of Ritualism＇（i866） See＇Life of Bishop Hopkins by One of his Sons＇（1873）．

Hopkins，Johns，American financier and philanthropist：b．Anne Arundel County，Md．， 19 May 1795：d．Baltimore 24 Dec．1873．His parents，Quakers，gave him a fair education and the training of a farmer．At 17 he went to Baltimore，there became is grocer，and in 1822 founded the house of Hophins \＆Brothers．He built up a trade in Maryland，Virginia，and North Carolina，having practically a monopoly in his line．His credit and counsel were highly valued in financial and mercantile affairs．He retired in 1847 with a large fortune，which be employed in banking and railway operations． In 1873 he gave property wortlı $\$ 4.500,000$ to found a free hospital；he presented Baltimore with a public park，and also gave over $\$ 3.000,000$ to found the Johns Hopkins University in Balti－ more．

Hopkins，Lemuel，American physician and politica！writer：b．Waterbury，Conm．， 19 June 1750：d．Hartford，Conn．，14 April 1801．He practised medicine at Litchfield 1776－84．when he removed to Hartford，where he sustained a high reputation，and had an extensive practice til！his death．He was singular in his appear－ ance，manners，and opinions；a man of talents and learning，and also a poet．He was asso－ ciated with Trumbull，Barlow，Alsop，Theodore

Dwight，and others（called the＂Hartford wits＂），in the＇Anarchiad．＇the＇Echo，＇＇1＇olit－ ical Grecnhouse，＇the＇Guillotine，＇and similar satirical compositions：and is said to have writ－ ten for Barlow the beautiful and well known version of the 137 th psalm begiming，＂Along the Banks where Babel＇s Current Flows．＂

Hopkins，Margaret Sutton Briscoe，Amer－ ican author：b．Baltimore 7 Dec． 1804 ．She married Prof．A．J．Hopkins of Amherst Col－ lege，and has been engaged in literary work since 1800 ．She has written under the pen name of＂Margaret Sutton Briscoe＂＂Per－ chance to Dream and Other Stories）（1892）； ＇Links in a Chain＇（I893）：＇Jimty and Others＇ （1898）：＇The Sixth Sense and Other Stories＇ （1899）．

Hopkins，Mark，American college presi－ dent：b．Stockbridge，Mass．， 4 Feb．1802；d． Williamstown，Mass．， 17 June 1887．He was graduated at Williams College，Nass．，in 1824， and having filled a tutorship in the college two years received in 1828 the dcgree of M．D．，and in the same year commenced the practice of medicine in New lork．In 1830 he was re－ called to Williams College to fill the claair of moral philosoplyy and rhetoric，and in 1836 be－ came president of the college，a position which he held till 18－2．In addition to his labors as an instructor，he lectured before the Lowell Institute of Boston，the Smithsonian Institution， and various scientific and literary associations． Presiding over a college which has been called the cradle of foreign missions，he took an active part in the deliberations of the American board of commissioners for foreign missions，of which he was president from 1857．He published＇Lec－ tures on the Evidences of Christianity＇（1846）； ＇Miscellaneous Essays and Discourses＇（1847）； ＇Lectures on Nloral Science＂（I862）：＂The Law of Love and Love as Law＇（1869）；＇Outline Study of Man＇（1873）：＇Scriptural Idea of Man＇（1883）：＇Teachings and Counsels＇（I884）． See Carter，＇Life of Mark Hopkins＇（1802）．

Hopkins，Pauline Bradford Mackie，Amer－ ican novelist：b．Fairfield，Conn．，1874．In 1899 she married H．M．Hopkins；she has been in literary work since 1896．Her works include ＇Mademoiselle de Berny，a Story of Valley Forge＇（1897）：＇Ve Lyttle Salem Maide，a Story of TVitcheraft＇（I898）；＇A Georgian Actress，an Historical Romance）（1900）．

Hopkins，Samuel，American Congrega－ tional clergyman：b．Waterbury，Conn．，I7 Sept． 1721；d．Newport，R．I．， 20 Dec．1803．He was gradnated at Yale College in 1741 ，studied the－ ology under Jonathan Edwards（q．w），and in 1743 was ordained at Housatonic，now Great Barrington，Mass．，where he continued until 1769 ，when he removed to Newport，R．I．，and was pastor there till his death．He possessed almost incredible powers of application，and is said to have been sometimes engaged during is hours of the day in his stradies．He pub－ lished＇Dialogue，Showing it to be the Duty and Interest of the American States to Emancipatc all their African Slaves＇（ 1776 ）：＇System of Doctrines Contained in Divine Revelation．Ex－ plained and Defended＇（ 1 万0．3）；etc．His theo－ logical opinions gave rise to the farmous Hop－ kinsian Controversy．Hopkins differs from or－ thodox Calvinism in his opposition to the doc－
trines oi original \sin and of the atonement; moreover. he put particular stress on the virtue i altrusm and unselfishess. even claiming that selfishness, of whatever nature, was inherently and essentially siniul. Consult: West. 'Life of Hophins' (1805): Park, 'Memoir' (1853) See also IIrs. Stowe's novel, 'The Xinister's Wooing,' in which Hophins is the central figure.

Hopkins, Stephen, American statesman; a signer of the Declaration of Independence: b. Scituate. R. I., , March I;O;: d. Providence 13 July 1,85 . In $1 / 33$ at Providence he was elected a member of the general assembly, and in 1:39 became chiei justice oi the court of common pleas. In $1-55$ he was elected governor of the State, and remained in office, with the cxception of four years. until $1 ; 68$. In Ifjot he was appointed a nember oi the board of commissioners assembled at Albany, \bar{N}. V., to concert a plan of union for the colonies. In 1,0́s he was elected chairman of a committee afpointed at a special town meeting held in Providence to drait instructions to the general assembly on the stamp act. In August 1Jit. he was, with Samuel Viard, elected to represent the State in the general Congress held at Philadelphia, and was also chosen in $1 \% 5$ and $1 /-36$. On the naval committee he was placed nest aiter John Hancock. the chairman, and greatlyassisted in the iormation of a navy. For 50 years he filled some public station: he was for many years chancellor of Brown Üniversity. In 1765 he commenced a 'History of the Planting and Growth oi Providence,' published in the 'Providence Gazette.' In the same year he published 'The Rigits of the Colonies Examined.' which was reprinted in London.

Hopkins, Tighe, English author: b. S Dec. 1856. He is a irequent contributor to English and Americau periodicals and among his numerous works are "Twixt Love and Duty". (18S6): 'For Freedom' (iSNS): 'Dungeons oi Old Paris' ($18 \infty 8$): 'An Id!er in Old France" (1889): 'The Man in the Iron Mask' (1901).

Hop kinson, Francis, American jurist; one of the signers of the Declaration of Independence: b. Philadelphia 21 Sept. $1 / 3$: $:$ d. there 9 May 1701. He was graduated at the College of Philadelphia (now the University of Pennsolvania). having been the first student who contered that institution at its opening. and afterward strdied law. In $1,-6$ he was sent irom Xew Jersey as one of her representatives in Congress. During the Revolution he distinguished himseli by satirical and political writing: which attaned such popularity that it has been said that few pens effected more than Hopkinson's in educating the American people for ρ litical independence. He also ridiculed in prose and verse most of the social follies of his time In 1 gro be was matle judge of the admiralty of Pennsylvania, which affice he held for ten years. until the organization of the federal ge vernment, when it expired. As soon, however. as Wiashingern lecame President of the United States, he addressed to Hopkininn a letter encle ang a commioion as [rited States district judge ir P Pennsylvania. He was skilled in pamting and music, composing highly prpular airs for his own songe. Oi his political writinges the most preminent were: 'The Prety Story' (1774): 'The Prophece'" $(1,-6)$: 'The Political

Catechism' (1-7\%). Ihe best known of his pocms are: 'The Battle oi the Kegs,' a humorous ballad. and 'The New Roor. a Song ior Federal Mechanics.' The 'Miscellaneous Essays and Occasional VOritings of Francis Hopkinson' were published in 1792.

Hopkinson, Joseph, American jurist and poet: b. Philadelphia 12 Nov. 1750: d. there 15 Jan. 184_{2}. He was a son of Francis Hopkinson (q.v.). He was educated at the University of Pemsylyania, studied law, and began to practise at Easton. Pa., in 1791, whence he returned to Philadelphia. From 1815 to 1819 he was a member oi the House of Representatives iron Philadelphia. He opposed the recharter of the United States bank; and made a noted speech on the Seminole war. At the close oi 1819 he retired irom Congress. declining a re-election. Having gone to Bordentown to reside, he was elected to the legislature of New Jersey. In IS2S he was appointed judge of the United States court for the eastern district oi Pennsylvania. an office which had been filled by his jather under Wiashington. In 18_{3} - he was chairman of the judiciary committee of the convention to revise the constitution of Pennsylvania. He is. however. best known as the author of the national song 'Hail Columbia.' written in Ijgs for the benefit of an actor named Fox.

Hop kinsville, Ky.. city and county-seat of Christian County, on the Lousville and ふashville, and the Ohio Valley R.R.s. Here are Bethel Female and Southern Kentucky colleges, Wiestern Kentucky insane asylum, and manuiactures of tobacco. lime. brick, wagons. and carriages, a national bank and the Hopkinsville high school. The city has an assessed property valuation oi over $\$ 2,000.000$. Pop. (1900) - -2So.

Hopper, De Wolf, American actor: b. New loth 185 s. He made his first proiessional appearance in 'Our Boys' ($18-8$), and later appeared in "Hazel Kirke' and other plays. He studied rocal music for several vears and became a star in comic opera and musical comedy.

Hopper, Isaac Tatem, American philatithroplst: b. Deptiord. ふ. J., 3 Dec. 1नJt; d. Sew tork T May 1852 . He was a member of the Society of Friends, and in the division which took place in $2827-8$, joined the anti-orthodox or "Hicksite" branch. In $1820-41$ he was director oi a New lork shop for the sale of Hicksite books. in $1841-5$ was treasurer and book-agent of the Anti-Slavery Sochety, and irom ists devoted his efforts to the work of the Jew Jork Prison Association. He was widely known for his interest in benewolent objects. especially negro emancipation and the a-sistance of discharged prisoners. At Philadelphia he was a founder and the secretary of a socicty for the employment of the poor, teacher in a colored school. and otherwise interested in philanthropic measures. He was an eloquent speaker. Consult the 'Lioe' lye Child (I85.3).

Hop'pin, James Mason, American scholar and atulhor: b. Providence. R 1.. $\%$ Ian. 18.2. He was graduated imm lale in isfo. sudied law at the Harvard law school (1 \& 1 -2) , thenlogy at the Cnion and Andover seminaries ($184,3-5$) and the Eniversity of Berlin ($18_{4},-0$), was ordained to the Congregational ministry in 1850, and was
pastor at Salem, Dlass.. in 1850-9. In 186 I-79 he was professor of homiletics at lale, in 186I-3 also pastor of the College church, and from I879 until his retirement as professor emeritus in 1899 professor of the history of art. His publications include 'Notes of a Theological Student' (I854) ; 'Old England: Its Art, Scenery, and People' (1807); 'The Office, and Work of the Christian Ministry' (I869) ; 'Homiletics' (18SI): 'Pastoral Theology' (1889); 'The Early Renaissance' (1892); and 'Greek Art on Greek Soil' (1897).

Hoppner, höp'nèr, John, English portrait painter: b. London 4 April 1758: d. 23 Jan. 18Io. He entered the schools of the Royal Academy in 1775; and became a fashionable portrait ainier and the rival of Lawrence. He was a member of the Royal Acadeny in 1795. His Daintings have suffered from his use of bad mediums ; but his repute has risen, and in I896 a portrait by him was sold for 1,800 guineas.

Hopps, John Page, English Unitarian clergyman: b. London o Nos: 1834. He was educated at the Baptist College in Leicester, and first entered the Baptist minstry. Becoming a Unitarian, he held pastorates in Unitarian churches in Sheffield, Dukinfield, Glasgow, Leicester, and Croydon. He was a member of the first school board of the city of Glasgow. He was proprietor and editor of 'The Truthseeker,' 1863-87, and became editor of 'The Coming Day' in 1891 ; he has written 'Pilgrim Songs': 'A Scientific Basis of Belief in a Future Lite": 'The Alleged Prophecies concerning Jesus Christ in the Old Testament': 'The Plain Truth about the Bible'; 'First Principles of Religion and Morality.'

Hops (Humulus lupulus) are a climbing plant, often met with in the wild state in northern Europe and in North America. The hop belongs to the hemp family (Cannabinacca) and it is the sole representative of its genus, but is cultivated in many varieties. It is a diocious plant, that is, the pistillate (female) and staminate (male) infloresence is borne by different plants. In American and English hop-gardens it is customary to grow a sprinkling of male plants, but these are rigorously excluded on the Continent. In the former ease the pistillate inflorescence becomes impregnated and forms seeds, in the latter they do not. In good hops the seeds are scarce, small, shrunken and sterile, that is incapable of propagating the plant. Many belicre that the formation of seed ought to be prevented, as the seeds are useless to the brewer, the main consumer of hops, and besides they only add weight to the hops. Fop-plants are not raised from seeds, but are propagated by cutting off and transplanting portions of the underground stem or root. Only the pistillate plant is cultivated, hecause its ripe flower is the part of the hop-plant used in brewing. It has been introduced into Brazil, Australia and the Himalayas.

The hop is a perennial herbaceous plant, which produces each year several long twisting, striated stems, 15 to 20 feet in length, which clamber over hedges, brush, etc., with ease. The leaves are stalked, opposite, three to fise lobed, and coarsely serrate. They are, like the stem, rough to the touch. The male inflorescence forms a panicle; the flowers enelose five stamens
in a small greenish five-parted perianth. At an early stage the female inforescence is less conspicuous. The strobile of catkin consists of several small acute bracts or leaves at whose base are situated two sessile ovaries, each subtended by a rounded bractlet. These bracts are attached to the extremity of the stem in such a way as to form a cone, and are shaped similar to roofing tiles, being one half to three quarters of an inch long.

The ovary and the base of the bracts are covered with a yellowish puwder the "hopmeal" or lupulin, which is the active principle of the plant.

Only a very sliglt amount of hops is used in medicine, being chiefly employed as a stomachic in dyspepsia; a pillow stuffed with hops is said to induce sleep. Nevertleless by far the largest portion of the hops produced is used in the manufacture of various beers, so that here this subject is treated with that idea in view.

The pistillate plant alone is cultivated, because hop growers on the Continent, especially Germany and Austria, find that mfertilized pistillate plants produce strobiles richer in aroma, more plenteous in lupulin, and in general better than where the plants were fertilized through the pollen of the staminate plant. In the United States we always find the strobiles containing much seed, while the choice imported Bohemian and Bavarian hops are seedless: The pistillate plant flowers in Augnst, and its strobiles are ready for harvesting during September.

The continental European growers always strive to lave early, medium and late hops, so that there the hop-picking begins late in August and lasts through the early part of October. In the United States the picking is usually over in two weeks. The time at which the strobile is fit to pick is indicated by the change of color from a light golden to a somewhat deeper hue, also by the closing up at the tips and making a rustling sound when touched. The seeds should be firm and dark in appearance before the hops are gathered. Much loss can occur by too early picking, while too late haryesting is also detrimental to the value and quality of the product.

For about 1,000 years hops have been added to beer or wort, in former times to prevent its spoiling and also to give it its pleasant and characteristic flavor and aroma; and its cultivation has progressed as the manutacture of beer became more widespread. Germany and England had hop gardens in the Sth and gth centuries, but the cultivation was not rationalized until the 16 th century, and at the present is a very important agricultural product.

Abroad the finest hops are raised in Bohemia, its "Saazer" hops being known throughout the world. Next to this ranks the Bavarian "Spalter hops." and the product of the so-called "Hallertau." As a rule the Bavarian hop is stronger than the Bohemian, but somewhat inferior in quality. Würtemberg, Saxony, Bađen, Prussia and Alsace also raise a good quality of hops; and Belgium, northern France and Burgundy cultivate it on a large scale. England's most famous hops are the "Farnhams," the "Golony" and "Grape" varieties. Owing to the high import taxes, Russia has also begun to raise hops. Of all these only the "Saazer" and the "Spalter" are imported to the United States. The follow-
ing table gives an idea of the size of the world's production during the years 1900 and $190 t$:

WORLD S PRODUCCTION OF HOPS IN HUNDREDWEIGHTS.

Cotsteres	1901	1900
United States	451,000	528,000
German Empire	283.580	$5=3,600$
Austro-Hungary	308,000	214,500
France	49,500	55,000
Belgium and Holland	93,500	55,000
Russia	88,000	\$8.000
Great Britain	726,000	385,000
Australia	3.300	13,200
	2,002.58a	1.862,300

In the United States, the culture of hops was introduced as early as 1025 in New -letherlands, and 23 years later in Virginia, but although encouraged by special legislation in 1657. never assumed its present important agricultura] role until 1800 . During the first half of the 10th century Vermont produced seven eighths of the entire United States crop; since then New lork has held first place. It has always been the tendency of hop cultivation to concentrate in well-defined districts, but in spite of this accumulative tendency, the centre of cultivation has slowly but surely moved westward. At first Massachusetts, Vermont and Naine were the chief hop States, but as the quality of
the New lork hops was far superior, and the quantity three times as great, the former States soon abandoned hop culture. The result was that during $1850-65$ a small portion of New York, lying south of the New York Central Railroad between Rochester and Albany, monopolized the hop raising of the United States. Small patches were planted in Wisconsin and Michigan in 1860 and in 1866 , when the New lork crop was completely destroyed by vermin, Wisconsin hop-growers obtained exorbitant prices for their excellent product. which induced many to plant hops, expecting to realize a fortune in a few years, but the prices speedily declined owing to an owerproduction. During 18 ;o and is8o New York again was at the head, but at that time iresh competition began to develop on the Pacific coast. The "Russian River" hops of California were a marvel; their texture was "fine as silk": their color "bright golden": they were "clean picked" : their "contents of lupulin" second only to the best German brands, so that it was no wonder that hop-culture there advanced quickly to 40,000 bales, the yield of 1902 . The first of the three following tables shows the yield in pounds of the various States from 1849 to 1899 . The next table gives a comparison between the acreage. yield and value of the hop crop for 1899.1889 , and 1879 ; and in the third table this comparison has been calculated to

State	1899	18S9	1879	1869	1859	1849
New lork	17,332,340	20,063,029	21,628.931	17.558,681	9,671,931	2,536,299
Washington	6.813 .830	8,313,280	703.277	6,162		
California	10,124,660	6.547 .33 S	1,444,0-9	625.004	So	
Oregon	14,675.577	3,613,926	244.371	9.745	493	8
Wisconsin	165.346	$4=$ S. 547	1,966.827	4.630.155	135.58%	15,930
All other States	97.95I	205.350	558,895	2,626.S6:	1.183.861	944.792
Total U゙. S..	+9.209.704	39.171,270	26.546 .3 -8	25.456.669	10,991,996	3,497,029

Stati	Acres under Cultivation					Yield of Hops in ${ }^{\text {P }}$ Pounds			
	1899		1859	1879		IS99	1889		1879
New lork	25.532		36.670	39,072		17.332,240	20,053.029		21.628 .931
Washington	5.206		5.113	5341.119		6,813.830	8.313 .280		703.275
California	6,89015.433		3.974			10,124,660	6.547 .3		. $1+4.079$
Oregon			3.150	1.119304		14,6-5.575	3.613.-26		$244.3 \% 1$
Wisconsin	342		967	3044.439		165.346	428.547		.066.827
All other Siates	120		358	1.332		97.951			558,895
Total	55.6		50.232	46,80		49.209.704			.546,3:8
State	Average lield in Pounds per Acre			Value of Total Vield			Value of Crop per Acre		
	1899	1889	1879	28099	1889	1879	1899	1889	1879
Sew lork..	620.33	547.82	553.56	\$1.600.305	ミ...10,135				$\$ 106.08$
Washington	$1,280.41$	1,625.91	1.316.99	, 589.582	$8+1.206$	210.983	11.32	16.4.52	395.09
California	1.768.02	1.6.87.54	1.200.50	925.310	605.842	+33.223	137.06	152.40	387.13
Oregon	050.92	1,154.52	833.85	937.513	3 ± 2.700	73.311	60.75	103.09	240.15
Wisennsin ...	+83.47	+ 43.17	$4+3.09$	18.020	58.083	500.048	56.19	53.78	130.67
All other States	816.26	53;.60	412.09	11,190	$=7.083$	167.668	93.25	-8.11	125.12
Total	88.85	\% 80. 11	567.23	+.081.929	4.059 .697	-.063.913	73.39	80.65	1\%0.17

Spate	1899			1889			18;0		
	Per cent of Acreage	$\begin{gathered} \text { Per cent } \\ \text { of } \\ \text { lield } \end{gathered}$	Per cent of Value	Per cent of Acreage	$\begin{gathered} \text { 1'cr cent } \\ \text { of } \\ \text { rield } \end{gathered}$	Per cent of Value	Per cent of Acreage	Per cent of liseld	Per cent of Value
New York	49.5	35.*	39.3	-3.0	51.2	54.5	83.4	81.4	81.7
Washington	9.5	13.8	14.5	10.1	28.2	20.8	1.3	2.7	2.6
California	12.4	20.5	23.6	7.9	16.7	14.9	2.4	5.4	$5 \cdot 3$
Oregon	2-. 7	29.8	=2.8	6.3	9.2	7.9	0.6	0.9	- 9
Wisconsin	0.65	0.45	0.14	1.8	1.0	1.2	9.5	7.5	7.4
All other States	0.25	0.25	0.26	0.7	0.7	0.7	2.8	2.1	2.1

HOPS

percentages of the total United States crop, in order to give a clearer idea of the hop industry during these years.

New York hops are almost entirely consumed in the Cinited States, while the greater amount of the Pacific coast hops (especially Oregon) is exported. The English production is scarcely ever sufficient for its needs, so that Great Britain must import some and mostly takes Oregon hops, becanse they are especially adapted to the English ale brewer's requirements.

The hop plant is subject to many diseases, due mostly to parasites, among which are the hop plant-louse (Phordon humuli), the hopgrub (Gortyna immanis), the hop-vine snoutmoth (Hypena humuli), the hop-merchants (Polygonia interrogationis), the zebra caterpillar (Mancstra picta), the common woolly bear caterpillar (Spilisonma zirginica), the saddle-back caterpillar (Empretia stimulea), hop vine leaf-hopper (Tetfigonia confluenta); varions beetles, the "red spider" or spinning mite, and the needle-nosed hop-bug (Calocoris fulmomaculatus), which mostly produce red smut, ctc., and even destroy entire crops. Fungus pest, blight and mold (black smut), are extremely rare in the United States. although widespread in England and Europe. It is almost impossible to eradicate these pests, except by extreme measures. The best remedies for the destruction of the animal parasites is the use of bisulphide of lime or a heavy spraying of soap and tobacco emulsion. Sulphur in any form is a good remedy, and a spray of kerosene soap emu\}sion, to which a small quantity of flowers of sulphur is added, is generally effective. In extreme cases the affected plants are cut down and burned to prevent a spread of the disease.

The elements also play havoc with the development of the tender hop-vine. High winds will tear the vine from its support; drouth will tend to change the color of the light yellow strobile to the objectionable "pole redness"; and too much water will produce a lack of lustre, when the hops are said to be "blind." This is due to the fact that the entire energy of the plant is spent in the formation of leaves, the strobile being scarcely developed.

Hops contain hop-oil, hop-resins, acids, hoptannin, hop-bitter, hop-wax, nitrogenous bodies, carbolydrates and mineral substances. Diastase (an enzyme) has also been found, which is especially valuable in ale brewing. Hop-oil, the principal constituent of the lupulin, present in 0.2 per cent to 0.8 per cent, is obtained by distilling the hops with water. It is colorless and hardly soluble in water. The characteristic agreeable aromatic flavor of the hops depends on this oil. If exposed to air the oil turns to resin, passing to valerianic acid, to which the cheesy odor of old hops can be traced. According to Hayduck, there are three resins in hops, the $\boldsymbol{a}, \boldsymbol{\beta}$, and γ, of which the first two are soft and the latter lard. The preserving, antiseptic effect of hops is due to the two soft resins, as they are distinctly prejudicial to the growth of butyric acid and many other bacteria, but do not have much effect on acetic acid bacteria and sarcina. In old hops valerianic acid, malic acid, citric acid and succinic acid are present. Hoptannin is ehiefly stored in the leaves of the strobile and is a pale hrown amorphous nowder soluble in dilute alcohol, which through oxida-
tion passes into phlobaphen. The hop-bitter is obtained from the two soft resins, and imparts a pleasant bitter taste to the beer, without which it would be flat and insipid. Iop-wax is present in considerable proportions in hops, but, since it is insoluble in water and even in 90 per cent alcohol, it has no value in beer. Nitrogenous constituents of hops are about 2 per cent to 4 per cent, which calculated to albumen are 12 per cent to 24 per cent, of which 0.75 per cent to 1.6 per cent are soluble. Bungerer maintains that 30 per cent of the nitrogenous substances are asparagin. Behrens says that trimethylamin and free ammonia are also present. Griess and Harrow have discovered cholin in hops. Brown and Morris have shown the presence of an enzyme similar to diastase, which will saccharify starch, that is, clange it into sugar. This enzyme is chiefly aecumulated in the seeds. The carbohydrates contained are cellulose, sugar, dextrin. According to Brown and Morris there is present 1.55 per cent dextrose and 2.10 ner cent levulose, together 3.65 per cent of inverted sugar. According to Thausing hops contain 5.3 per cent to 15.3 per cent of ash and an average of 7.54 per cent, of which over one third is potash, one sixth phosphoric acid, one sixth silica, and some sodium, lime, magnesia, iron oxide, sulphuric acid and chlorine. The presence of an alkaloid in the seed has been ascertained by Dr. Ernst Hantke, but research on this point is still progressing.

Although it is possible to estimate with a fair degree of accuracy the several constituents of hops, it has not been so far found possible to establish any definite relation between the value of the hops and the amonnts of hop-oil, resins, tannin, etc., which they contain. Consequently up to the present time, chemistry has not afforded much assistance in this direction. Hence the value of hops is still judged according to its general properties. The color, size and appearance and lustre of the strobile, the quantity and color of the lupulin, the amount of seed, the odor, taste and cleanliness, are the essential points in the valuation of hops.

Fine hops possess a silky lustre which is lacking in inferior grades. The color is greenish yellow, varying with the origin. New York hops have a somewliat paler color of a stronger greenish shade, while the Pacific coast hops lave a more pronounced yellowish color. A reddish tint may indieate pole-redness, or, what is worse, that the hops have become overheated in the bale, which implies a darker coloration of the lupulin and deterioration of quality. The form and size of the strobile is also characteristic of the origin. Small strobiles are preferable to big ones, as they contain on an average more lupulin; and the fewer the seeds the better. The bracts ought to lap over one another and hold firmly together, whereby the lupulim is kept in better. The odor and aroma should be strong, fine, free from any off-smell such as odors of fruit, garlic, etc. Only very slight amounts of stems, foliage, or stripped cones should be present, as they impart a coarse taste to the beer. The amount of lupulin present in the strobile is an indicator of the value of the hops, because it contains those resins, volatile oils and bitter substances, which are so essentially valuable to the brewer. In fresh hops,
sligl: pressure will force out the contents of the sirt bite in a iransparent droplet. but in old heps the comtents ci the lupulin gramule wili not tow due :a resinification. and the expressed juice is more syrupy: wax-ike and opaque. In short. the preparation of the strobiles for the market shou.d be as thlows: Aiter the crop has been harvested, it is dried. The largest part of the German crop is merely ar-drsed or sun-dried. and is "s claimed that this "natural cure" preserves iat mire of the essential oils and other active principles than is possible by the artincial hes-ait cure used in the Cnited States and England. and that this at leas: in part accounts iot the peculiarities of Spalt hope that command such extrasdinaty prices. The kiln is which the hops are dried resembles in some respects the drying kiln of the malsoter. This process requices great care. as much of the hops may be easily domaged. Wlen the moisure has been completely removed. sulphur is placed on the fire. wheh las the effect of brightening the color: the evalved sulphurous acid also acts as an antiseptic destroying io some extent the germs di mould-fung: and other organisms. -iter drying. the hops are siored three or iour days. whereupon they are baled and are then ready fir the market. They are easily affected by wamth, moisture air and light, and for this -eason must be protected in storage against these influerces. For hrewing purposes it is almos: insposs:bie to pass off a substitute for hops, although lupulin and hop-extract are now manufactured. The lupulin is separated ircm the strobile. and inasmuch as it contains the essenital constituents for which hops are used in brewing. it can be beiter utilized. a'though it is impracticable and impossible to replace the entire quantity of hops with lupulin alone because it comains very litile tannin, which a!so is essential. The same remark is applicable to hopextract.

Dr. Ervst Howike
Prisidint a^{2} the Indusirial Chemical Institute $i=$ M\%ムautico.
Horace (QuIstts Hiraitts Flacctos). Roman pcet of the Augustan Age: b. Venusia. I:3ly, \& Dec. $6 \equiv$ b.c.: d. Rome $2-$ Nov. \& b.c. Our iniormation about Horace s life is derived in the main isn his own writings. which are supplemented in a jew details by a brief biogfaphy attribeted to Suetonius. He was bern at Vemusia, a sma:l town in Apulia. near the bot:mdaries of Lucania and Samnimm. His iather was a ireedman. and. acierding to Horace s own siatement. f Hlowed the trade ci a coarth or eollector. He stems to have prospered. io r he was able to purchase a small fasm. He was in t satisfed to send the boy to fle : vea! sch 4 of Flay:us. which was patronized hy the aristocraey of Venusia. but moved to K me a sive ha son the beat posible educaif nal advaniage It is to his eredit that he did this not that H race might better his pesj$\therefore \mathrm{n}$ in life but $j=\mathrm{m}$ the sake n the education it-eli At the capital he supplied his snn with - Te means of mahing a credirable appearance. and he himself acc mpanzed him in and from ! $1=$ člsses. eivine him mural instruction in a : rew 1 and h rey way by peinting out men whe ufered examy is : be inllowed or shonned. To this training Hrrace owed both his habit oi sef-evaminati n and his consequent iemperance
and self-control, and that keen nbservation oi men and thmgs wheh is one ni his marked characteristics. He nowhere makes mention of his mother, who very likely died while he was an infari.

Ai Rome Horace pursued the usual grammatical studies under the notorious "fogging Orbilius." and doubtless supplemented them by more advanced work in rheroric and literarure. It is. however, in marked contrast to the fulness our iniormation about the otler details of his lire. that we know little or sothing about the masters who influenced him or abous the particulars of his education. excent that he implies that he atienced the classes of several teachers. TVe may, however. infer something from the resu"ts. He certainly acquired a iaste for reading, both in the literature of Greece and that of his native land. a kabit which he continued to follow throughout his tive. Somewhere abovi 46 B.C. in his roth year. Horace Went to Athers to study philosophy but he does not seen to have been especially attracied by any particular school. In his early inie he leaned toward the Epicu:tean doctrine. but as time went on he ramped more and more to that oi the Stoics. without. howeser. commitring himself to either sect. The assassination oi Cxsar and the arrival of Erurus in Athens in September -1 BC.. put an end to his quiet student life. He joined the army of the liberators and received a commission as tribune. though he was in no way ritied ior the post At Fhilippi he fled iron the neld wirh the rest of the routed forces. and, as he himseli says. "leit his shield behind." His humble estate was conjscated, but on his return :o Rome in 41 . when a general amnesty was granted by Octavian. he in some way secured a position as elerk in the quastor's aftice. which iurnished him the means of livelihood.

Horace ireely admits that it was lack of money which first led him to write verse, and it was to his efforts in this line that he owed his adramement. He soon made the acquainiance of Vergil and of Varius. by whom he was introduced to Irecenas. Aiter a delay oi several months. during which the astute statesman doubuless took the young man's measure. his po-ition was established hy his admission to the select circle of Mrecnas literary iriends. This honor. as he says with pardonable pride. was due noi to high birth. but to his personal character. In 33 he received irom his parron a small estaie, the iamous Sabine tarm . situated in the vailey oi the Digentia, a small stream flowing into the Anio about 30 miles northeast of Kome. Through Mrecemas he became intimate with the most eminent men oi the day both in literary and in political dife including Angustus. Towaid the emperor his atitude was one of diminied independence. He was quick to recognize the advantages of the peaceful and established oeder of things which Angustus had brought about. and he celehrates it in many of his odes: but he did not hesitate to decline the position of private sceretary which the emperor nitered him. This he did without giving offense. int Suetonius quotes extracts from leticts of Augusius which indicate a cordial and even an intimate friendship. Horace alsn precerved his independence in his rclations with his beneiactor Maecenas. as appears irom several pas-
ages in his works, although he showed a proper gratitude for his many favors.

In the year 35 Horace issued his first book of satires, to which he himself gave the title of 'Sermones,' or familiar talks. On this branch of literature, which the Romans clamed as their own creation, sec Satire. He took as his model Lucilius, and at first seems to have followed him closely, but he soon found himself out of sympathy with the carlier poet's severity in invective and disregard of form. In the fourth and tenth Satires he subjects the work of his predecessor to a thorough criticism, and defines his own ideal of what satire should be. This book was complete in itself, and begins with an essay addressed to Mæcenas. That the reception given to his first effort, which did not lack serious defects, was not wholly favorable, and that Horace had not satisfied himself, is evident from the poet's own words in the introductory essay of the second book, which seems to have appeared in the year 30. This book marks a great advance on the first. from which it differs in its externals in having no formal dedication and in being cast almost wholly in dialogue form, whereas in the first book Horace himself had been the chief speaker. In the following year, urged by Mrecenas, Horace published his first collection of lyrics, some of which doubtless represent his earliest attempts at verse. It was a volume of 17 Epodes, or 'Tambi,' as he hinself named them. He chose as lis model the Greck iambic poet Archilochus, and followed lim closely in form. His work, however, has little of the bitter invective for which the Greek poet was notorious, and Horace shows no little originality both in his choice of themes and in his treatment of them. Six years later Horace, now a man of 42, published the first three books of the Odes, which form a work complete in itself, opening with a dedication to Mrecnus and closing with an epilogue in which he predicts his own immortality. In his choice of metres he followed especially Alcæus and Sappho, from whom he also took many of the subjects of his odes. But he shows the influence of many other Greek poets, as well as considerable independence. Although this work did not wholly escape hostile criticism, it at once placed Horace in the front rank of Roman poets. This position was formally recognized in 17 B.c. through his appointment by Angustus to write the ode, the well-known 'Carmen Sreculare,' which was sung at the celebration of the secular games in that year.

His next work was a return to the field of satire, for the 'Epistles' belong with the 'Sermones' to that branch of literature in the Roman sense of the term. They differ from the 'Sermones' in their greater finish and in their external form. Horace regarded the hexameter as the conventional form for satire, and the poetic epistle represents his third and final choice of form for his essays in that measure. The first book was apparently issued in the year 20. Horace was then a mature man, who had made his mark, and his tone is more assured and his self-appreciation is greater, though without any trace of egotisin. The practical philosophy of life seemed to him the thing most worthy of serious consideration, and to teaching this he proposed to devote the rest of his literary work. This book, which consists of 20 letters,
of which some are genuine and some fictitious, is also dedicated to Nrecenas. The second book is devoted wholly to literary criticism, a subject which lay within the dnmain of satire and had already been handled in some of the 'Sermones.' The chronology of the book is somewhat difficult. It was probably published in the year I4. Whether the Ars Poitica formed the third letter of the second book or not is uncertain. It has been assigned to various years from 20 to 8 B.C., and if it really belongs to the latter date, it must have been published separately, perhaps after Horace's death, and is the latest of his works. The title which Ilorace gave it scems to have been 'Epistula ad Pisones,' but it received its present designation at an early period. The second book of epistles begins with a letter addressed to Augustus, who is said by Suetonius to have taken Horace to task for dedicating none of his works to him. In his epistles, Horace had formally renounced lyric poetry. Nevertheless, at the express request of the emperor, he published a fourth book of odes in I3 B.C. This collection, though admirable in form and containing some of Horace's best work, is characterized by a certain perfunctoriness and lack of spontaneity. It was not addressed to Mrecenas, but is without a formal dedication. This was. however, not due to any diminution of his regard for his patron, but to the fact that the book was published by the specia! request of Augustus.

Of the remaining years of the poet's life we know very little. Suetonius says that he died 27 Noy. 8 B.C., and there secms to be no ground for rejecting this testimony. No anthentic portrait of Horace has come down to us. From his own allusions to his personal appearance, and from a letter of Augustus, quoted by Suetonius, we learn that he was stont and short. with dark eyes and hair, but prematurely gray: He further tells us that he was quick to anger, but easily appeased. He newer marricd, and of all the loves of which he sings, Canara alone seems to be other than imaginary.

It is probably safe to say that Horace has been the most widely read of all Roman writers. not excepting Vergil, and that he has appealed to a more varied circle of readers than any of his countrymen. This statement applies especially to his odes, since it is to them that his popularity with the general public is for the most part due. It has been said that the odes are not poetry of the highest type, and that when they are analyzed and their contents subjected to searching criticism, the sum total of poetic material is scanty. This is mquestionably true, yet it is equally true that their intluence and popularity have none the less been great. This is due in part to the personality of the man and the sympathetic feeling which he rouses in his readers on account of his broad humanity; and in part to the fact that the very simplicity of the odes and their ease of comprehension appeal to readers of all classes. As Mackail says, he realized that linited as was his own range of emotions, that of mankind at large was still more so. In some cases, notably in the love poems and the convivial odes, we are conscions that he did not always feel even the emotions which he describes. In spite of all criticism, the one undoulted fact remains, that the odes of Horace have pleased readers of all epochs and all sorts and conditions of men.

Horaces claim to originality is greater than is usually admitted. In his day the question of imitation of Greek models had ceased to exist. and the question was, rather, which model to choose. In the Augustan Age we find two schools, those who followed the Alexandrine writers, and those who went back for their inspiration to the Greeks of the classical period. Horace belonged to the latter class. His contempt for the followers of Alexandria is outspoken, and so undiscriminating as to include such really great poets as Calvus and Catullus. He certainly knew how to make what he borrowed his own, and many of lyis odes are so thoroughly national in character that they can have owed little except their external form to Greek sources. In his Satires, in spite of his ayowed imitation of Lucilius in the begiming, his originality is far greater, and these are in reality his greatest works. While less popular with the general reader, they are of great interest for the light which they throw on Horace's life, personality, and habits. as well as for the vivid pictures which they set before us of the complex Roman life. In his daily walks about the city, Horace used his powers of observation, and drew material from all sides and from all classes of society. Above all we can trace in them his own self-improvement and the development oi his character. and the gradual growth of that sound judgment and good taste which characterize the work oi his mature years. The Satires are further characterized by a genial and good-natured humor. Like Dickens, he chose appropriate names for many of his characters such as Vaitus, or Newman, for the parvenu, though, like those of Dickens, they were not always of his own coinage. The Satires also abound in the familiar phrases of every-day life, in puns and plays upon words, in proverbs and homely fables and stories.

Horace's works. as he limself humorously predicted, became school text-hooks at an early period. Juvenal implies that this was the case in his day. This fact and his general popularity led to the numerous commentaries on his works. which began to appear as early as the days of Nero, of which those of Perphyrin, of the early part of the 3 d century, and the collection falsely attributed to Helenins Acron, have come down to us. The great mumber of manuscripts which exists testifies to his popularity in the Middle Ages. His fame at that time was, however. much less than that of Vergil, and, though he also was regarded as a magician, it was only at Palestrina and at Venssia that such legends were current. In modern times his influence on French and English satire has been great. as well as on modern poctry in general.

The date of the first edition is uncertain, but is earlier than 1471 . Since then the editions of Herace's Hurks, or of parts of them, have been legion. Oi these may be mentioned as epochmaking that of Richard Bentley (Cambridge 1-11). Which has niten been reprinted the reprint at Lerlin ith ivion contains a word-index hy C Zancermeister) The standard critical text is that of O . Keller and 1 . Holder (1-eip) sic $1864-\%$ a secnud edtition of the first wolume containing the 'Odes.' 'Epodes.' and 'Carmen Sxeculare,' appearing in 180). A commentars on this edition is furnished by Keller's 'Epilegemmena zu Horaz' (Leipsic 1870-80).

Of editions with notes may be mentioned: J. G. Orelli, fth ed. by W. Hirschitelder and 11 . Newes (Berlin 1886-92), containing a complete word-index: A. Kiessling (Berlin, 2d ed. 1800-8): H. Schutz (Berlin 1880-3) : these two appear in new editions from time to time: L. Nitler, 'Odes' (Leipsic 1900). 'Satires and Epistles) (Leipsic tSgs-3): E. C. Wickham. 'Odes and Epodes' (3d ed. Oxford 1806). 'Satires and Epistles' (Oxiord IE9I): Page, Palmer, and Witkins (London and New York 1896). The edition of the 'Odes and Epodes' by P. Shorey (New lork 1896) is of special interest to the general reader on account of its large number of parallel passages from English poctry.

The simplicity and directness of Horaces thought have been a constant temptation to translators, and the number of English versions. particularly of the 'Odes.' is very great. But his care in composition and his inimitable skill in the use of words. his curiosa felicitas as Petronius terms it, make him exceedingly difficult to translate, and. while some brilliant successes have been achieved with single odes, no one has done justice to him as a whole. Dany of the attempts which have been made are reviewed in two articles in the 'Quarterly" Review (Vol. CIV., IS58, and Vol. CLXXX.. 1895). The following may be mentioned: Lord Lyton. 'Odes and Epodes' (London 1869): Cooper. 'Horace"s Odes Englished and Imitated by Various Hands' (London Iffo): Martin, 'Works of Horace) (Edinburgh i8S8) : Conington. 'Odes and Epodes' (3d ed.. London IR85). 'Satires and Epistles' (London 1892): Gladsione. 'Odes' (New Jork 1894): Green, 'Odes and Epodes' (London 1004). An edition of Horace's works, in six volumes. containing both text and translations, has recently been issued by the Bibliophile Society of Boston. To give an adequate literary crificism of Horace is nearly as difficult as to translate him. and is out of the question within the limits of a brief article. Consult: the various histories of Roman literature. especially that of Machail (New Jork 1900); Sellar. (Roman Poets of the Augustan Age - Horace and the Elegiac Pocts' (London 1892): Nettleship. 'Lectures and Essays' (Oxiord 1E85): Patin. 'Etudes sur la pocsic latine) (3d ed.. Paris $1 \mathrm{~S}_{3}$) : Tyrrell. "Latin Poetry" (Boston 1805): Boissier. 'The Country of Horace and Virgil) (London 18ok): Langr. 'Letters $t 0$ Dead Authors' (London 1856).

Johs C. Rolfe.
Professer of Latin Language and Literature. ['nicersity of Pennsyla
Horæ, hō're. in Greek mythology: goddesses of the scasons. They were gencrally regarded as attendants of the gods, and guardjans of the Olympian gates. Their character-i-tics, however, varied, and their number was varimuly represented as two. three, or four. ILesoid names ihree - Eusomia (good order). Dike (iustice), and Eirene (peace), and thus makes prominent their attributes as also guardians of social and political conditions.

Horatii, hō-rā'shi-i, three Roman brothers. who, in the reign of Tullus Hostilius, engaced the same number of Alban brethers (the Curiatii), in order to decide the enntest henween the two nations. A sister of the Heratii was
betrothed to one of the Curiatii ; but both sides forgot their private relations in the service of their country: Jwo of the Romans soon fell. The contest was unequal, but Horatius saw his antagonists faint with the loss of blood. In order therefore in separate them from one another, he feigned flight, and, while they pursued him as well as their wounds would permit, at unequal distances, he suddenly turned and slew one after the other. He was conducted back to the city amidst the rejoicings of the Romans, adorned with the spoils of the slain. There he saw, in the crowd, his sister in tears for the death of her betrothed. Angered that her lamentations for her lover should mingle with the rejoicings of the nation on his victory, the brother plunged his dagger into her breast. He was condemned by the duumviri to be scourged to death, but he was later pardoned.

Horeb, hórĕb, a mountain in the northern part of Arabia, of the same ridge as Mount Sinai, which lies not far distant from it, memorable in the history of lloses. The monks on Mount Sinai still point out the rock on Horeb from which water issued at the blow of Moses.

Horicon, hǒr'î-kŏn. See George, Lake.

Horizon. In its most familiar sense the horizon is the line or circle around which earth and sky seem to meet. On the ocean this circle is smooth and easily visible, and is then called the sea horizon.

In astronomy the horizon is defined by a plane at right angles to the direction of gravity, extending ont indefinitely on all sides, and called the plane of the horizon. The circle in which this plane cuts the celestial sphere is called the astronomical horizon. All points of it are apparently on a level with the eye of the observer. Owing to the rotundity of the earth

the sea lorizon is lower than this astronomical horizon-a narrow strip of sky separating the two. The angular distance between them is called the dip of the horizon. The higher the observer is above the ocean, the greater is the dip. To an eye on the surface of the water, the sea horizon and the astronomical horizon coincide. so that there is no dip. The geometrical principle which determines both the dip and the distance of the visible horizon, are seen in the figure. The circular are is here the surface of the ocean. The eye of the obscrver is situated at the point E, a short distance above the surface of the water. A tangent drawn from the eye to the surface meets the latter at the visible horizon, H. Let a horizontal line E A
be trawn from the eyc, the angle $A \mathrm{EH}$ is then the genmetric (lip of the horizon. The geom etcr will readily see that this is cqual to the angle at the surface of the earth between O and H. Since one minute of are in the curvature of the earth's surface corresponds to one nautical mile, it follows that, geometrically, the dip of the horizon in minutes is equal to its rlistance in natutical miles. But, in the actual case, the line of sight is curved in consequence of the reiraction of the air. The result of this is that the actual horizon is further than given by the geometric theory, and the dip somewhat smaller. The following table shows the relation between the apparent dip and the height of the eye above the water and the distance of the sea horizon.
Height
in Feet

3
2
3
4
9
16
25
Dip of
Horizon

1.0
1.4
1.7
2.0
2.9
3.9
4.9
Distance of
Horizon
Miles

1.3
1.8
2.3
2.6
4.0
5.3
6.6

On board a steamship the eye of an observer on the promenade deck is generally from 15 to 20 feet above the water. It follows that the distance of the horizon is about fise miles. A ship farther away than this will have more or less of her hull below the horizon. At double the distance the entire hull will be below the horizon, and only smokepipe and masts visible. As she goes yet further, these also will disappear, as if sinking below the water.

Simon Newcomb.
Horn, a tongh, flexible. semi-transparent substance derived from the epidermis, which may be developed morbidly as a corn, or naturally, as in the callosities on the legs of a horse: or in connection with important functions, as when it forms the outer sheath of the outgrowths upon the heads of ungulate animals, called "horns," the "shell" of the tortoise, the nails, claws, and hoofs of amimals, the beak of bird and turtle; and the hairs and feathers of mammals and birds, or their modification into spurs, scales, spines, bristles, whalebone, nasal horms, etc. This epidermal tissue consists largely of keratin, an albuminoid composed mainly of carbon (about one half), oxygen, nitrogen, and sulphur.

The horns of manmals are in effect modifications of the hairy integument covering parts liable to great wear, or needing to be hard and sharp. especially the outgrowths of the skull characteristic of male ruminants. Hollow horus are usually umbranched and persistent. but in the pronghorn (q.v.) they are shed annually while the bony cores grow and their vascular coverings persist and give rise to the new horns. Hollow horns are fonnd usually in both sexes. but in some genera of antelopes only in the male. In the pronghorn the horns of the female are almost hidden in the hair of the head. and are small. short. and mbranched. Such horns as these are called hollow or sheath horns, and are very different from antlers (q.v.). Another form of truc horn is that on the snout of the rhinoceros (q.w.) where, when more than one appears, the projections stand one bohind the
other in a median line, and not side by side. This nasal rhinoceros-lorn is not a hollow sheath clothing a bony core, but a solid mass of coarse agglutinated hairs, arising from the skin and supported by a thickening of the underlying bone.

Cility of Hom. - In their natural form, the horn-sheaths of oxen, sheep and antelopes have been put to a great variety of use, as weapons. receptacles, handles and musical instruments the latter surviving in certain ceremonial usages and in the general term "horn" for a wind instrument. Cleaned and polished it served many additional needs, forming the primitive drinking cups; and it is from this ancient usage tlat the general name of "horns" has been given to a species of drinking cup, and its spirituous contents. The horns of victims sacrificed to the gods were often gilded by the Romans and suspended in the temples, more especially in those of Apollo and Diana. From the most remote times the altars of the heathen divinities were likewise embellished with horms, and such as fled thither to seek an asylum embraced them. Originally the horns were doubtless symbolical of power and dignity, since they are the principal feature of gracefulness in some animals, and instrument of strength in others. Hence these ornaments were frequently bestowed in imagination and art upon gods. and were actually worn by heroes. In more modern times ox-horns have been used the world over for carrying gunpowder: and museums abound in quaint relics of this kind elaborately ornamented by soldiers and hunters. Small bottles (inkhorns) of this substance were the first receptacles for ink, and are still used in the East, where opium for smoking is usually kept in horn-boxes. Before the general adoption of glass panes in windows thin plates of horn were often used, as they still are in barbarous parts of Asia; lanterns were made of them; and the faces of the medieval horm-books were so protected. The material now lends itself to mantufacturing into many other articles by reason of its toughness, pliability and capability of being softened by heat and then molded. The heat is applied in the form of hot water; and splitting into thin shects. or welding pieces together, or molding fragments into various forms, may all be accomplished under combined moisture, heat and pressure. Both the natural horn and the molded substance may be carved, or impressed with a die, polished and dyed. Hence an enormous variety of useful and ornamental articles may be made, and the horns of cattle have commercial value.

Horn, a musical instrument, originally formed, as the name denotes, from the lorn of an animal. The name includes a large family of wind-instruments, many of which have fallen into disuse. The liunting-horn was long the chicf form extant. The French horn consists of a metallic tube of about 10 fect in length, very narrow at top, bent into rings, and gradually widening toward the end whence the sound issues, called the bell, or in French the parillon. It is blown through a cup-shaped mouth-piece of brass or silver, and the sounds are regulated by the player's lips, the pressure of his breath. and by the insertion of the hand in the bell of the instrument. The compass of the instrument
is three octaves. Music for the horn is always written on the key of C, an octave higher than it is played, with the key of the composition marked at the beginning of each movement. Great improvements lave been made in the instrument by C. J. Sax of Paris, whose saxhorn gives a greater volume of sound than the old instrument. The buglehorn is a tube of 3 feet 10 inches in lengtly bent into small compass. It is usually provided with keys, and has a range of two octaves, and notes commencing with the upper B of the bass clef.

Horn, Cape. See Cape Horr.

Horn-fly, a European fly (Hamatobia serrata). since about 1890 become widespread in North America, which have a curious habit of clustering in masses about the base of the horns of cattle. It is closely related to the house-fly and stable-fly, and although annosing does no serious harm to the cattle or their horns

Horn'aday, William Temple, American naturalist: b. Plainfield, Ind... I Dec. 1854 . He studied zoology and in 18-5-9 visited as a zoological collector South American countries, India. Ceylon, the Malay Peninsula, and islands. In $1882-90$ he was chief taxidermist of the United States National Museum, and in IS96 was appointed director of the New York Zoological Park. His publications are: 'Two Years in the Jungle' (1885): 'Free Rum on the Congo' (1887): "The Extermination of the American Bison' (IS8-) : 'Taxidermy and Zoological Collecting' (1892): 'The Man who Became a Savage' (1895).

Horn'beam (Carpints), a genus of trees of the natural order Cupulifera, of which the species C. befulus is common in Europe, in some places growing to nearly 100 feet in height, although in Great Britain, where it is much planted, it is a small tree. It is also called horn-beech, hardbeam, and yoke-elm. It has barren flowers in a cylindrical catkin: fertile flowers in a lax catkin; nuts in pairs. It grows in woods and hedges, often in a damp tenacious soil, and forms a principal part of the ancient forests on the north and east sides of London. The wood is white, tough, and hard, and burns like a candle. It is used in turnery, for cogs of wheels, etc. The inner bark vields a yellow dye. The American hornbeam (Caprinus Americana or Caroliniana) is a small tree rarely attaining the height of 30 feet, sparingly diffused over most of the United States. It is also called water-beech, blue becel and ironwood. The wood. finc-grained. temacious, and very compact, is used for handles, as of carpenter's tools, ets., its serviceability being restricted by reason of its inferior size. See Irorwood.

Horn'bill, a genus (Buceros) and of a family (Buecrotide) of birds now placed in the division Coraciiformes, and related to the hoopoes and owls. The species are numerous and are found in Africa, India, and throughout the Jalayan region as far as New Guinea, are mostly large birds, the largest being more than four feet long, the smallest rather smaller than a nagpie. They are bulky birds of heavy, noisy flight; their large bills are surmounted by bony crests or "helmets" of varied shape and sometimes of great size, but rendered light by the presence of numerous air-cells. Their foad
is principally fruits, but in certain circumstances they become to a great extent onnivorous. Thus a well-known South African ground-hornhill devours stakes, and is higlity regarded by the negroes bccause of its enmity to them, and ability to overcome the largest and deadliest vipers. Several are mainly terrestrial in their habits. The most curious fact regarding these birds is that during the breeding season the female is imprisoned on her nest in a cavity in a treetrunk, she herself apparently gradually plastering up the entrance by the use of her excrements, until there is left only a small aperture through which the male supplies her and her offspring with food until the young ones are nearly full grown. In captivity the male bird has been observed to disgorge at intervals the lining of his gizzard in the form of a bag, and it is supposed that the food supplied to the female during her term of captivity in the brceding season is enclosed in this structure. Consult: Newton, 'Dictionary of Birds' (1896).

Hornblende, hörn'blĕnd, or Amphibole, an abundant and widely diffused mineral, remarkable on account of the various forms and chemical compositions that it exhibits, and its diversified colors. Almost numberless varieties of it are recognized, to many of which distinct names have been given. It crystallizes in the monoclinic system, and is brittle, witl a hardness of from 5 to 6 and a specific gravity of from 2.9 to 3.4 , according to its composition. It has a vitreous or pearly lustre, and its fibrous varieties often have a silky appearance. The variety most commonly known as "hornblende" is usually black or greenish black, and occurs in many rock formations, notably in granites and basalts, and in certain sclists and slates. The strongly colored varieties are pleochroic. Common lornblende is a silicate of iron, aluminum, magnesiunn and calcium. The various hornblende minerals are now collectively known as the "amphibole group." See Amphibole.

Hornbook, an elementary school book in use in England down to the time of George II. It was made up of a single leaf on which was written the alphabet in large and small letters; the Roman numerals, and the Lord's Prayer. The leaf was sometimes set in a frame and sometimes pasted against a piece of sliced transparent horn; hence the name. There was a handle througle which a string was inserted whereby the book might be tied around the waist.

Horne, C. Silvester, English Congregational clergyman: b. Sussex 1865 . He was educated at Glasgow University and Mansfield College, Oxford, and after leaving the latter institution was pastor of the Kensington Congregational Church until 1903, when he became pastor of the Whiteficld Tabernacle in Tottenham Conrt Road, London. He has been active in many social and religious enterprises and is one of the most prominent men in his denomination in England. He has published 'History of the Frec Churches.'

Horne, Richard Henry, or Hengist, English poet and essayist : b. London 1 Jan. 1803; d. Mlargate 13 March 1884. He was educated at Sandhurst, and entered the Mexican navy as midshipman, serving till the close of the

Mexican war of independence. He then returned to London to begin a literary carecr. To lis early period belong two tragedies, 'Cosmo de' Medici' (1837), and 'The Death' of Marlowe' (1837), both of which contain fine passages. A poem sent to him for criticism by Elizabeth Barrett opened the way to a cordial friendship and a correspondence of seven years. In 1852 Horne removed to Australia, and remained there until I866; his book, 'Australian Facts and Principles,' being one outcome of this residence. Again returning to England, he continued literary work until his death. His last publications were tragedics, including 'Judas Iscariot: A Miracle-Play' (18+8), and a curfons prose tract, 'Sithron the Star-Stricken' (I883), which he pretended to take from the Arabian. His best known work, however, is his epic poem 'Orion' which Poe said might be called "a homily against supineness and apathy in the cause of liuman progress, and in favor of energetic action for the good of the race."

Horned Dace, Rattlesnake, Screamer, Viper, etc. See Dace, Ratilescajee

Horned Toad, lizards of the family Iguanida, popularly called toads from a certain general resemblance in form and manner to those animals. The body and head are broad, thick, and flattened, the tail short and the usual attitude a sort of squatting posture with the head elevated. About a dozen species of the genus Phrynosoma occur in the arid parts of the southwestern United States and in Mexico. The best known are P. cornutum and P. coronatum, which, because of the bizarre appearance, quaint ways and tolerance of captivity, are often brought back as souvenirs by visitors to those regions. The scales on the body bear prominent conical spines. and the long horns of the head are supported by bony cores. Their mottled brown and gray colors harmonize well with their natural surroundings. The horned toads love to bask in the sunslime in the hottest weather and to bury themselves in the burning sand. Never very active, they become extremely sluggish in cool or dull weather and hibernate in the winter. They feed on all kinds of insects, for which they search only during the hottest hours of the day, and drink copiously of water when sprinkled in the form of drops. Like many other lizards, but unlike most of the Iguanida, they are viviparous.

Horned Viper. See Viper.

Hornellsville, hôr'nĕlz-vǐl, N. Y., city in Steuben County; on the Canisteo River, and on the Erie and the Central N. Y. \& W. R.R.'s; about 57 miles south of Rochester and 46 miles northwest of Elmira. The first settlement was made in 1790, but it was a part of Canisteo and was called ['pper Canisteo unti] 1820. The present name was given in honor of George Hornell, who had done much for the early development of the town. It was incorporated as a city in 1890. Hornellsville is situated in a fertile agricultural region, noted for fruit. Its chief manufactures are sash, doors, and blinds, railroad supplies, furniture, leather, carriages and wagons, silk, bricks, tiles, wire-fencings, gloves, and agricnltural implements. It has a good public high school. St. Ann's Academy, St. James Mercy Hospital, and a number of fine

HORNER - HORSE

public and private buildings. The government is vested in a mayor, who holds office two years. and a city council. The subordinate officers are appointed by the mayor subject to confirmation by the council. Pop. (1900) 1t.918.

Horner, William George, English algebraist: b. 1886: d. Bath, 22 Sept. 183. He was educated at a private shool near Bristol, and later taught there becoming head master in 1806. In 1809 he established a school at Bath. which he conducted until the time of hrs death. His only work of importance was his discovery of a method of solving numerical equations oi any degree, which he first announced in a paper read before the Royal Society in 1819. and afterward published in the 'Philosophical Transactions.' The method is still in use, and is known by Horner's name. See Algebra, Historl of the Elements of.

Hor'net. The true hornet is a European wasp (I'espa crabro): but in America the term is applied to almost any iorm of large stinging wasp, especially sueh as make papery nests. In some portions of the Cnited States this is considered the only "hornet." but in the vicinity of New lork the European homet also cocurs: and southward a somewhat smaller species (I°. carolina) goes by this name.

Hornet. The, the name of two sloops-ofwar in the American nayy during the W'ar of 1812. The chief was a ship-rigged is-gun sloop. and did brilliant service. Through December and January i $12-13$. under Master-Commandant James Lawrence, she blockaded the 20-gun English sloop Bonne Citovenne in the harbor of Bahia, Brazil, till overmatched hy a it: Lawrence was surprised and himself had to take refuge in the harbor, but instead $n i$ being blockaded. slipped out the next night under the very guns of the man-oi-war. dier capturing a merchantman. on 24 February he fell in with the English sloop-ot-war Peacock. Capt. William Peake, each at this time having 20 gun: : they engaged at $5.25 \mathrm{P} . \mathrm{M}_{\mathrm{on}}$ and is eleven minutes the Peacock was a sinking wreck and surrendered. Her captors made every effort to keep her arloat, but in a few noinutes she sank, earrying down 13 of her own crew and three of the Homet's. Peake and inur men were killed and three wounded: the Hornet lad one killed and two wounded. besides two more hurt hy an expleding cartridere. "I secsel moored for the purposes of experiment could not have been sunk snoner." said an English paper oi the time: "it will nu,t do for our vessels to fight theirs single-landed.' On 22 Jan. $18 t 5$, under Capt. Jame: Biddle. she encountered off Tristan d' leumha, in the Suth Atlantic, the Enclish brig Penguin. Capt. James Dickinson, with 19 gun of about the same metal as her own 20 ; in 22 minutes the Penguin surrendered, but on Biddle gning iorward, two Brixich seamen slint him in the neck innt vitally), and were immediately slint dnwn themsclues. The Pencuin inst her captain and o others killed, and 38 wnunded; the Hornet, nne killed and 11 woinded. The Pencuin was shnt to pieces. and enuld not he taken away. so she was scuttied: the Hornet was almnet uninjured On $28-0$ April she had a lnng chase from the Brition shin of the line Cornwallis, the reararmiral's flasshin, and only escaped by thorructiy dismanting herseli.

Horol'ogy. See Clock: Clock-work.
 Hor oscope. See Astrology.

Horrocks, hör'öks, Jeremiah, English astronomer: b. Toxteth, near Liverpool, about 1017: d. 3 Jan. 164t. He was educated at Cambridge and was appointed in 1639 to the curacy of Hoole. Lancashire, and in that sillage made his famous observation (24 Vor: 1639. O. S.) of the transit of Venms, the first on record. - Vewton. in the 'Principia.' bears honorable testimony to the value of Horrocks" astronomical work. The observation of the transic is by no means regarded as his sole astronomical achievement, as he added to our knowledge of the physical cause of celestial motions. deduced the solar parallax, corrected the solar diameter, and. made tidal observations. Hevelius printed the 'Tenus in Sole Visa.' which was first published in Germany (t662): a translation of this work, with memoir by Whatton, appeared in 1859.

Horschelt, Theodor, German painter: b. Dunich 1829: d. I8-1. He began his early studies in the Munich Academy, and later became a pupil of Albrecht Adam. At first he painted horses. among which is 'The Poacher' (1850) , and then turned to military scenes, painting 'The Seizure of Shamyl' and 'Cossacks Returning from a Razzia.'

Horse, in a general sense. a member of the ungulate family Equida (q.s.): but in ordinary use the word designates the single domestic specics (Equus caballus), the wild original of which is unknown. It is not decided, in fact. whether a single species, or more than one was the source, nor where the domestication of the horse was first effected. The evolution of the species, elsewhere sketched, took place in the American continent, and the writings of some of the earliest yoyagers to the eastern coast of South America contain allusions which some commentators regard as evidence that horses survived and were known to the people who occupied the La Plata valley at that time, but this is open to doubt. It is probable that at the dawn of civilization the wild ancestors of our modern horses roamed in bands over the whole extent of grassy uplands stretching from northern Africa to eastern Manchuria, on the steppes of Russia, and wherever in Europe open country might be found: and it is also probable that they were among the first animals which men killed fer food and afterward captured and tamed in norder to keep a supply of food under enntrol. This act must have been one of the carliest steps toward community life and civilization. The nldest paintings and carsings left by the ancient inlabitants of the valley of the Euphrates show that saddle-horses were familiar to them: and it is fair to suppose that the supremacy primitively gained by the people ni central Asia over nther parts of the world was largely due in their tise of horses in war. civing them a great adrantage over unmounted trihes: but it was not until much later - probably sun earlier than 2000 B.C. - that the animal cance into use in Arabia and Egypt. where beinre had been only camels and asses. So tar a can be judzed, these early Acsyrian warhorses were rather small, robust, large-headed and lasgy beasts, much like Przewalsky's horse nr the kiang (q.v.). A very similar animal wa= domesticated by the men of the Polished Stone Age in Europe, excellent portraits of which
were etched by neolithic artists upon pieces of bone, and have come down to us among the contents of graves opened by archreologists in France, Switzerland and elsewhere. Later. but still in the prehistoric period. Europe was repeatedly invaded by Asiatic hosts who brought with them eastern horses. These modificd. if they did not supersede, the local stock. When Rome conquered the barlarous inhabitants of Europe its horses, which were of Asiatic stock. with perhaps some African mixture. largely superseded those of the conquered tribes. and from the mingling there sprang the big heavy lreeds which characterized the Middle Ages. and were intended for strength and weightcarrying, rather than for nimbleness and speed. It was not until near the end of the ryth century that the introduction into France and England of certain sites of Arabian breed - a clean-limbed, small-headed, agile, hardy race. which arose in Arabia and Palestinc about 2,000 years ago-began the improvement of British stock, which has reached its highest development in the modern European racehorse, hunter and lackney. From this stock was derived the American horses which have been perfected in at least one new direction - that of the trotter.

Horse. Care and Diseases of the. Breed-ing.-As heredity is the basis of all permanence in breeding, and zariation the condition of advancement, we can, under intelligent selection, environment, and control, attain to a constant improvement. In selecting horses for breeding. certain leading principles must guide. These may be shortly stated as: (1) adaptability to the use of the breed: (2) quality. style: (3) strength, endurance: (4) good conformation: (5) good constitution: (6) good pedigree: (7) prepotency: (8) no violent crossing of equally prepotent animals; cross the desirable prepotent animal on a non-prepotent cross-bred animal: (9) a speedy amelioration of a large number is most certainly obtained through a prepotent stallion. Which leaves a large number of his offspring every year: (io) sound, vigorous health; the prepotent parent must be at his best, and no non-prepotent one should be bred to nim, none that is old. feeble, or reduced by disease, overwork, underfceding, etc: the lack of prepotency will not prevent the transmission of the systemic weakness to the offspring: (11) secure an environment calculated to enhance the qualities we seek in the progeny. Systematic exercise that is not exhausting, generous tissue forming, but not fat forming regimen, and pure, dry, genial but bracing air are especially imnortant.

Contagion Through Sexual Congress.?Iany maladies may be transmitted during coition, hut some are especially liable to be so. Dourine. glanders, genital eczema. contagions acne, horse-pox. mange, and contagious abortion are to be specially guarded against. Some, like strangles, influenza. and contagions pneurnonia, may be transmitted by an animal that has already passed through the disease and acquired immunity. Special care, therefore. or even veterinary supervision of horses devoted to breeding is a desideratum.

Care of the Pregnant Mare.-Exercise is a valuable provision too often neglected. Free range on breeding ranches, or, for valuable mares, separate padd)cks, secure this, while
working mares are better to continue the work, provided it is not maduly straining nor jarting, nor profluctive of excessiyc fatiguc, exhaustion, or debility. This maintains appectite, digestion, assimilation, muscular tone, and vigor, favors the development of a stronger, better foal, and keeps the dam. fitter for foaling and nursing. Feed well, avoiding what is hard of digestion, or liable to cause impaction, indigestion, fermentation, or, above all clsc, diarrhea. On good pasture grain may be omitted, unless in the last month of gestation, or if the mare is visibly rumning down. Good, clear, sound oats or barley, or bran mash with some boiled flaxseed may be given. and heating agents like maize, buckwheat, or wheat aroided. During gestation violent purgatives and active diuretics are liable to bring on abortion.

Care of the Foal.-To avoid danger to both mare and foal in parturition, provide a roomy hox-stall with door opening outward, or a paddock. The foal born indoors is always in danger of infection through the raw surface of the navel. The common or box-stall swarming with microbes is more to be dreaded than exposure to storms outside. When severe weather forbids foaling outdoors, the box should be thoronghly cleansed, disinfected, and whitewashed to obviate this danger. Navel infection may cause simple inflammation, swelling, and abscess, or the germ may propagate itself through the inactive umbilical yein to the liver, cansing infective hepatitis with abscesses or necrosis : or, reaching the bowels, it causes infective diarrhcea (white scour) ; or it may colonize the joints. as infective arthritis (joint i11) : or again it may cause premmonia, or multiple abscesses in different organs. The gravity of the resulting disease varies with the infection. and a deadly germ, located in a stable is liable to attack all foals that come later in the season. Both stable and navel should be disinfected. The foal should be delivered on clean straw, which may be sprinkled with carbolic acid. The navel-string may be severed with an emasculator previously cleaned and boiled, or tied with a carbolized new cord painted with tincture of iodine, and. when dry dusted with tannic acid impregnated with iodine and carbolic acid.

The new-born foal may lhave the back (flexor) tendons contracted so as to stand over at the knee and fetlock, and in the worst cases the extensor pedis tendon, the opponent of these. is found to be divided across and the muscle wasted and degenerated. A succession of such cases in the same stable suggests infection. Slight cases will recover under splints and bandages. while for more severe ones an aseptic surgical operation may be required. The foal should have the first milk (colostrum) to clear away tenacions bowel contents and prepare for healthy function. A mild laxative of raw linseed or olive oil may be requisite in the absence of colostrum. In the absence of the dam's milk the foal may be raised on cow's milk reduced by adding one third boiled water and sugar to sweeten. After two or three weeks the undiluted cow's milk may be allowed. The cow should be free from tuberculosis.

For the pure bred racer or trotter the foal should have half a pint of nats daily at a month old. to be increased with his growth. Even draft breeds are bencfited by such early grainfeeding.

HORSE

Exercise is essential to the growing inal The quality of bone, muscle, brain, and other parts depends largely on physiological use, and rich blood, active digestion, and assimilation. vigorous health, strength and endurance are incompatible with confinement and inactivity. This may at first be secured by freedom to play in pasture or by careful handling and training by a judicious manager. But to put the two-year-old into a severely contested race, or full iraining, or to devote the draft colt to regular work, is but to invite disaster. The bones are as yet too soft, they contain too much organic matter and too little mineral. the muscles lack firmmess and power of endurance, the whole system is immature and imperfect. and overtaxing exhausts or deranges the functions. and direct injury or impaired development is the natural result.

CARE OF THE FEET.

Oiergroan Hoofs. With umlimited exercise on firm ground. the unshod foot is sufficiently worn down, but when confined for months indoors or in a limited straw yard overgrowth occurs. especially at the toe. and a dangerously increased strain is thrown on the joints, ligaments, and back tendons. Distorted and twisted feet, bruises of the sole Dy the ingrowing heels and quarters, ringbones. ossified cartilages. sprains of the flexor tendons, and diseases of the ietlock, pastern, and coffin joints are common. and irreparable results. The feet exposed to this should be irequently pared and adjusted. Remove excess of toe. reduce and balance the inner and outer sides of the wall. file or cut to the level the incurving heels and quarters, and round off the sharp outer edge of the hoof. Drg. imprisoned plates of horn pressing up on the sole must be set free and removed. But do not file the surface of the hoof-wall. This removes nature's protective covering and exposes open horn tubes to exhale moisture. and conduces to dryness. brittlenes. shrinking. compression. and inflammation of the sensitive parts, atrophy, and lameness.

Difectioc Groattl of Hoof. Imperfect growth of hoof may arise from shoeing. pinching, filing, paring, etc., to excess, but also from compulsory idleness. The circulation inside the hoot is greatly accelerated by the ascent and descent of the foot within the horny box in action, and a free blood supply in a healthy tissue fabors growth. Life at pasture en firm ground tends to abundant. strong, tough, durable hooit. while close confinement in a stall makes for a thin, iriable brittle and shrunken horny covering Constant soaking in water softens the hoof. reducing its temacity, and tending to fiattening of hoth wall and sole. The Belgian and nther horees bred on wet, swampy ground generally show large. flat. pliant, and most un lesirable hoofs. Such feet are especially liable !) thrush, canker, corns, bruises, grease, and laminitis. Feet habitually resting on piles of recking manure in stalls, sheds, or yards suffer the additional injury of softening and disintegration from the ammonia gas, and attacks by the swarming putrefying microbes which abound in such material.
rmod lomfs, beside use and care. depend on generous living. The fuller growth on the opring and summer grass, forming a permanent inc. illustrates this. Daily washing of the hoof
is important, and a subsequent smearing with an ointment of tar and vaseline or oil is useful in preserving the natural moisture and prevent. ing the attacks of microbes.

Shoeing.-For good feet, shoes may be dispensed with on soft ground or mud roads, but they become necessary on hard roads and for hard-worked animals. Tips, extending back to the broadest part of the foot only. are the least objectionable. Full sized shoes are too often made to pinch. distort, bruise, or injure the foot beyond repair; and a poor foot is as injurious to a horse as an unstable foundation to a building. The first consideration is the preparation of the foot. giving due balance to heel and toe, inner side and outer. sole and wall, heel and bars. IVhile removing all overgrown wall and bars. and all sole-plates that have become detached from the tough living hom beneath and now act as foreign bodies, the tough horn itseli should not be exposed. nor removed except as à thin margin around the outer edge. where it is smoothed to the same level as the wall, to which it acts as a support. and the bearing surface of which for the shoe it slightly extends. The outer surface of the wall must be spared abrasion by the file. with consequent drying and contracting as already noticed. Shoes should be removed and reset every four weeks at the utmost. to avoid pinching, setting in, bruising, and other injuries. Intelligent shoeing. conserving the feet. goes far to obviate diseases of the feet, the most common and barmful of equine diseases. Among these may be specially named coms. bruises. pricks. quittors. sanderacks, thrush. canker, sidebones, laminitis, navicular disease. contracted hoof, cleft hoot. wry hoof. crooked hoof. loose wall. hollow wall and graveling. As the integrity and easy normal function of the foot is further one of the best means of protection against distortions and diseases of the various joints of the limb, it follows that the preseryation of sound feet by good shoeing and intelligent care is one of the greatest desiderata in horse management.

FEEDING AND DIGESTIVE DISORDERS.

The natural food of the horse is grass and though charged with excess of water, and at first liable to scour, and always to cause flaccid muscles and lack of energy and endurance. yet a run at pasture, with pure air, normal, easy exercise, and stimulation of stomach, liver, bowels, metabolism, and excretion will often improse or arrest infirmities of digestion. 35similation. elimination and even innervation. Heaves (broken wind), chronic bronchitis, various forms of nasal discharges, indigestion, torpid liver, gall stones, and hidney affections are eiamples of maladies which improve at pasture. Dried grass in the form of hay is the standard food of the domesticated horse. This is hest from natural pastures with a mixture of grasses, to be followed by blue grass timothy: regrasa. and closer. the latter being the most dangerous as a horse fed. Upland hay is more arnmatic and choice than that from low, damp or irrigated meadows. and the first crop is always the hest. New hay will sometimes disagree, while the old, though lacking aroma and less palatahle, is less likely to cause digestive disorder. It a year nld and over it is brittle, dried. more fibrous and less nutritive. Bath

HORSE

cured hay is always innutritions, and often directly poisonous, when altered by bacterial ferments, molds and their products. The results are shown in heaves, gastric disorders, liver troubles, brain affections (staggers), kidney and skin diseases. Second crop hay, clover and alfalfa hay are especially dangerous in this sense, the excess of proteids in the last two, and especially of foliage, delaying curing and favoring the multiplication of ferments. Oats are the standard grain feed for horses. But like hay they must be well matured on good soil, and well cured. Mustiness brings essentially the same evils as in hay, and mewly harvested they are liable to disagree. Kiln-dried oats are to be avoided, also those that have sprouted. The composition of oats and hay shows the excess of proteids, carbohydrates and fats in the first.
with and a given weight of oats is of more value than an equal amount of similar nutritive elements in wheat or barley.

Good judgnent and regularity in feeding and watering are essential to success with any feed. Feeding in irregular amounts at varying imervals, and with ancertain watering will undo the good effects of a generous ration. The small stomach (16 quarts) cannot admit a large feed of oats and saliva without suffering, and. if overdistended, it becomes paretic or torpid, and dangerous fermentation and gaseous distension may ensue. Again, if feeding is delayed the hungry craving and nervous excitement cannot be undone by a generous feed later. Then again, if the perspiring and exlaausted animal is allowed to slake his thirst with a bucket of ice-cold water, he may have heart failure, or

	Water	Proteids	Carbohydrates	Fats	Cellulose	Salts
Meadow hay	I4. 59	10.11	40.90	2.37	25.52	6.54
Oats	14.3	12.0	60.9	6.0	150.3	3.0
Maize	10.6	10.3	20.4	5.0	2.2	1.5

Maize is notorious for the deficiency of proteids relatively to the carbolydrates and fat. With a great excess of heat and energy producing constituents and a deficiency of earthy salts it is less calculated to foster growth and development, and predisposes rather to fat. It tends more to impactions of the bowels and indigestion, with resulting skin eruptions, and above all to the destructive recurrent inflamnation of the eyes, which ruins so many young horses. Yet it is fed over large areas as the exclusive grain feed, and such is the adaptability of the living system that the minimum evil results. To obviate the evils it can be fed with cooling, laxative agents as wheat bran, carrots, or turnips, or an ounce of Glauber salts may be given daily.

Barley, rye and wheat have been successfully fed to horses but are not equal to oats in supporting the animal and fitting for hard work.

Beans, peas and other leguminous secds are fed when a horse is subjected to an extraordinary strain of work or endurance, being especially valuable for the excess of proteids they contain. They should be thoroughly matured and dried as the fully formed and partially ripened seeds of several species contain a narcotic poison.

The relative amount of hay and oats for a horse of 1,000 pounds live weight may be stated as follows: Caialry horse: Oats 12 pounds, hay it pounds. Carriage horse: Oats 10 pounds, hay 12 pounds. Draft horse: Oats 15 pounds, hay 12 pounds. The horse at rest can live on a mere maintenance ration sufficient to keep up bodily temperature and repair waste. A lorse in active work will need abont one half more. For very severe or rapid work about one third more must be added. For hard work a broad ration-proteids 1 , to carbonacenus matter 6 , is preferable to a narrow ration-proteids 1 , to carbonaceous matter 3. An economical feed can often be made of a number of agents compounded from their known chemical composifion, to form such a balanced ration, but mere chemical ingredients are not final. as palatability and adaptability have still to be reckoned
colic, or gastric congestion with sympathetic skin eruption or laminitis, or inflammation may attack any organ that has been previously weakened.

An excellent appetizing food is molasses. This has been largely neglected because of the mistaken idea that it contained heat producing elements only. But corn carbolydrates furnish energy to the acting muscles and other tissues as fuel does to an engine, and sugar, haying no need of digestion, can supply foree with less loss than can starch or fat. Not the least of its good qualities is the relish with which it is taken and that it imparts to other less attractive food taken with it. For the horsi otherwise healthy, but debilitated by poor or faulty feeding or overwork, molasses is to be depended on to restore weight and energy alike. For this purpose it may be given in the amount of two pounds per day, and even in double that amount if subjected to severe work.

Ozerdistension of the Stomach.-Sudden inflation of the stomach with gas, the product of fermentation in unwholesome contents (frosted grass, roots, apples, green potatoes, overripe ryegrass, millet, vetch, etc., irritant plants) ; from overfeeding (at the cornbin, in ripe grain, etc.), from violent excrtion on a full stomach, or from a full feed when debilitatel from starvation, disease, or overwork, is liable to cause death in two hours or a little more. The horse can rarely romit, or belch gas, the stomach docs not absorb, and the outlet by the bowels is one lundred feet long, so that the organ is usually ruptured with fatal results. Ainong the other less rapid disorders are catarrhal inflammation of the stomacln, intestinal colic, congestion. inflammation, impaction, twisting, invagination, calculi and worms. Of poisons may be named: lead through water, ctc.; molds. fungi, and bacteria in food (causing gastric, intestinal, hepatic, pulmonary, nervous, chtancous or kidney diseases) : ergot, smut (cansing gastric disorder. ulcers of the mouth, abortions, etc.) : lupines, Senecio Jacobra (causing cirrhosis of liver) : astragalus, oxytropis (loco, brain disease). equisetum (gastric and intestinal catarrh); to

HORSE

which may be added cicuta. conium. cenanthe, aconte, thus. ranunculus, larkspur, anemone, disitalis, wild cherry, wild onion, camas, helenium. byacinth, clematis, thorn apple, colchicum, belladonna, hyoscyamus, bitter sweet, euphorbium, hellebore, wild parsnip, laurel, oleander, etc.

Lizatr Diseases.-These are notorionsly prevalent in hot, damp regions in horses kept in close stables on rich, abundant feeding. in such as have dry feeding and scarcity of water in winter, and in such as have a poorly balanced ration with excess either of proteids or of heating carbohydrates. In damp tropical regions special care is needed as to the site, exposure, ventilation and purity of stables, the dietary, exercise and grooming to obviate liver complaints. Transient fevers, nervous digestion, skin and kidney disorders often originate from troubles in the liver.

Grooming is most important in the finer breeds of horses in clearing off oil and dandruff, rendering the skin pliant, and favoring secretion, exhalation. cooling and elimination. On the contrary, animals at pasture and exposed to cold and wet find a measure of protection in the sebaceous and thick hairy covering. When, however, drenched with perspiration or rain, and in a warm air, the relaxing effect on the skin and general system is very debilitating, hence clipping may become a necessity to be followed by special precautions against cold. The active friction (massage) of grooming renders circulation active, especially that of the lymph, relieving iatigue, favoring elimination and improving the tone of the muscles and general system. The heels need particular care. Clipped heels are irritated by the siubby hair in the folds back of the pastern oiten precipitating chaps and grease which would have been escaped in the unclipped. The heel is normally protecied by the abundance of sebaceous secretion, but when this is rubbed off by dust, clay, sand, etc., the part suffers readily irom cold, wet. dried gritty mud cr other irritants Wa-hing the heels, above all with caustic soap, and leaving them to dry in cold air or draft is hurtiul. Prompt drying of the heels will obviate the danger, and, if there is already any swelling, gentle masaage with a little vaseline will impenve the enndition. In obstinate cases the soutrce of the trouble may be sought in disorder of digestion, liver of kidney

Dany disorders of the nervous sy-tem, lungs, skin. eye and kidneys are due to comstitutional trnubles which cammot be dealt with here in general terms. Such diveases are usually manifeited by elevated body temperature and accelerated or modified breathing or pulse. The temperature oi the healthy, mature horse, at rest in a cool or moderate environment, is 99° to $100^{\circ} \mathrm{F}_{\text {., }}$ respirations 10 io 12 per minutc, and pulse 35 to +5.

Contagions Discases. - Tlese agree in one fundamental feature that each is due to a microbe, which passes more or less directly from the affected animal to the snund one, thus propaeating the disease. The arrect of the epizo tic and cren its complete and final extinction. is recely a question of preventing ewch transmissing and of destrying every infecting germ. Thi : truth is not yet duly appreciated by stockowner: legi-!ators nor sanitary nfficera, fat when it is fully realized we shall be near the
total extincton of most animal plagues to the unspeakable profit of humanity. The Cantagious diseases mas be divided into two classes: (1) Those in which the infection is either confined to solipeds, or mainly propagated by the equide, so that its extinction in these would mean the final extinction of the disease, and (2) those which are propagated in other genera as well, so that the extinction of the germ in other species also would be essential to its complete eradication.

To the first class belong strangles (distemper). contagious preumonia, equine influenza, glanders, tetanus, resicular exanthema. contagious acne, petechial iever, gastro-enteritis of the new born, South Airican horse sickness, dourine, surra, Nagana, Mal de Caderas, infectious paraplegia. The first four of these affections are constantly spread in the C'nited States through sales. public stables, stockyards, railroad cars. ships. and sale-stables, and no radical measure is taken to destroy the germs in such iniected places, or to prevent the infection of al! solipedes that pass through them.

In the second class must be included: Horse-pox. contagious abortion. thrush of the mouth, infectious ophthalmia, tuberculosis. rabies, malignant œedema, anthrax and emphysematous anthrax. The first six of these are propagated more by other genera than the horse. so that the burden of the work for their extinction would have to be expended on these other classes. The last three are caused by germs which can live out of the animal body in the soil, and their extinction would involve the drainage and sanitation of the infected soils as well.

Parasitic Discases.-A number of parasites that prey upon solipeds can live indiscriminately in other animals as well. Among these may be named the Tricaphyoton of ringworm; Aspergillus of pneumomycosis; Actinomyces: different species of wood ticks; Dermanyssus of poultry acariasis: Trombidiun Anericanum (and \dot{F}. Holosericium): Lingusula Derificulata: Eustrongylus Gigas: Filaria Medinensis; Distoma Hepaficum and D. Lanceolatum. By reasnn of their variety of hosts these would be less easily got rid of. But another list includes the obligato parasites which must live in the soliped at some stage or perish. These accordingly can be extinguished on the same principle as can the microbes of exclusively equine plagues. They include the larve of four species of bntfy (EEstrus Equi, EE. Hamorrhoidalio, C. Pecorum and (E. Vasalis) : three lice (Hamatofinus Macrocephalus. Trichodectes Pilosus, and Tr. Pubescius) : four mange acari (Sarcoptes Scobei 1. Equi, Psoroptes Communis 1. Eiqui Symbiotes Communis I: Equi, and Dém dor Folliculorun: \because Equi; three tapeworms (Tamis Perfoliata. T. Mamillona, and T. Plicata): two stomach worms (Spiropters Micr, stoma and Sf. Megastoma) : five intestinal worms (Iscaris Megalacehhala, Oxquris Cur:ala and O. Mastigudes. Sclerostoma Equinum and Sc. Tetracanthum): one of the serous cavities (Filaria Papellosa); one of the lunes (Strongylus Armfeldi): and four of the blond iFilaria Hamorrbasica. F. Irritans. F. Sanguinis Epui. and F. Reticulata). For the whligatn para-ites their extinction on the victim. and his removal from the source of a fresh supply matas a final extinction of the Darasite.
as the worm cannot be perpetuated without its host. In the case of worms, which survive as eggs and cmbryos in damp earth and water, the exclusion of solipeds for a year or two from infested stahles and fields, from waters (ponds. lakes, wells, streams) that receive drainage from infested places, and from food derived from such verminous localities, entails the inevitable destruction of these parasites in such habitat outside the body. An essential condition of complete success is that the infested animals must be themselves cleared of the worms, to prevent their colonizing new places with the parasite, and. in the case of such as are entertained in the blood, or serous cavities or in cysts in the tissues, this takes time to allow of their migrating into the bowels or reaching their limit of life and perishing. The mere use of anthelmintics or vermifuges alone is no radical treatment for these parasites. A veterinary samitation which is far reaching enough to do away for all time with the class of contagious and parasitic epizootics, is the only one worthy of twentieth century knowledge, or which will fulfill the duties of the age.

Director Neze York Stati Feterinary College, Cornell Unizersity.

Horse, Evolution of the. As a domestic animal the horse is to be found almost everywhere that man can live. He is spread all over the world -- from torrid to arctic climates, in all the continents. in remote oceanic islands - he is completely cosmopolitan. But as a wild animal the horse is limited to the Old World, and is found there only in the open arid or desert plains of Central Asia and Africa. There are two species in Asia, the Asiatic wild ass (Equus hemionus), and the little known Przewalsky's horse (E. praczulskii), while in Africa there are the African wild ass (E. asinus) and the several species of zebra (E, zibra, E. burchelli, E. quagga). In the Americas and Australia there are no true wild horses, the mustangs and broncos of the Western plains and South America being feral (dornesticated animals run wild) and descended from the horses brought over from Europe by the early white settlers. When the Spaniards first explored the New World they found no horses on either continent. The Indians were quite unfamiliar with them and at first regarded the strange animal which the newcomers rode with wonder and terror, like that of the ancient Romans when Pyrrhus and his Greeks brought elephants to fight against them.

The horse is distinguished from all other animals now living by the fact that he has but one toe on each foot. Comparison with other animals shows that thi. toe is the third or middle digit of the foot. The l.oof corresponds to the nail of a man or the claw of a dog or cat, and is broadened out to afford a firm, strong support on which the whole weight of the animal rests. Behind the "cannon-bone" of the foot are two slender little bones, one on each side, called splint-bones. These represent the second and fourth digits of other animals, but they do not show on the surface, and there is nothing like a separate toe. So that the horse may be said to be an animal that walks on its middle finger-nail, all the other fingers having disappeared.

The tecth of the horse are almost equally peculiar. The molats are long, square prisms which grow up from the gums as fast as they wear off on the crowns. Their grinding surface exlribits a pecnliar and complicated pattern of edges of hard enamel between which are softer spaces composed of dentine and of a material called "cement." much like the dentine in quality but formed in a different way. The dentine is formed on the inside surfaces of the chamel while the tooth is still within the jaw-bone; the cement is deposited on the outside surfaces of the enamel after the tooth has broken through the jaw-bone and before it appears above the gums.

Various other peculiarities distinguish the horse from most other animals: some of these are shared by other hoofed animals. The two long bones of the fore-arm (radius and uha) are separate in the greater number of annmals. but in the horse, and in many other hoofed animals, they are consolidated into a single bone. The same consolidation is seen in the bones of the lower leg (tibia and fibula). The lengthening of the foot and stepping on the end of the toe raises the heel in the horse, as in many other animals, to a considerable lheight above the ground, where it forms the hock joint, bending backward, as the knee bends forward. In these as in various other ways the legs of the horse are especially- fitted for swift running over hard and level ground, just as its teeth are for grinding the wiry grasses which grow on the open plain.

The zebra and the ass have the same peculiar structure of teeth and feet as the domestic horse, and differ only in the color of the skin, proportions of various parts of the body, etc.

Fossil Horses of the Age of Man.- In the early part of the Age of Stan, or Quaternary Period, wild species of horse were to be found on every continent except Australia. Remains of these true native horses have been found buried in strata of this age in all parts of the Unfed States. in Alaska, in Alexico, in Ecuador, Brazil and Argentina, as well as in Europe. Asia and Africa. All these horses were much like the living species, and most of them are included in the genus Equas. A complete skeleton of one of them (Equus scotti) was found by the American 11 userm expedition of 1899 in northern Texas. The difference between it and the domestic horse is chiefly in proportions, the skull shorter with deeper jaws, the legs rather short and feet small in proportion to the body. In these characters this fossil horse resembles an overgrown zebra rather than a domestic horse. We know nothing of its coloring. It may have been striped, and in this case would have been very zebra-like: but there are some reasons for believing that it was mot prominently striped. The bones ate petrified, brittle arid heavy, the animal matter of the bone baving entirely disappeared and having been partly replaced by mineral matter. They are not much changed in color, however, and are so perfectly: preserved that they look almost like recent bone.

All the remains of these native horses which have been found in America have been petrified more or less completely: this means that they have been buried for many thousands of years. for petrifaction is an exceedingly slow proces.

It serves as an easy method of distinguishing them from bones of the domestic horse, found buried in the earth. These cannot in any case have been buried for more than four or five centuries, and have not had time to petrify: Remains of these fossil horses are found in tarious parts of the United States, chiefly on the Niobrara River in Nebraska, and in central Oregon. Many separate teeth and bones have been found in the phosphate mines near Charleston. S. C. : other specimens have come from central Florida, from southern Texas, Arizona, Kansas, Louisiana and even from Alaska. They are, in fact, so oiten found in deposits of rivers and lakes of the latest geological epoch (the Pleistocene) that the formation in the western C"nited States has receired the name of Equus Beds.

In South America, in strata of the Pleistocene Epoch, there occurs, besides screral extinct species of the genus Equus, the Hippidium, a peculiar kind of horse characterized by very short legs and feet. and some peculiaritics about the muzzle and the grinding teetch. The legs were hardly as long as those of a cow, while the head was as large as that of a racehorse or other small breed of the domestic horse. All these horses became extinct, both in Nortly and South America. It may have been that they were unable to stand the cold of the winters, probably longer continued and much more severe during the Ice Age than now. It is very probable that man - the early tribes of prehistoric hunters - played a large part in extinguishing the race. The competition with the bison and the antelope, which had recently migrated to America - may have made it more difficult than formerly for the American horse to get a living. Or, finally, some unknown disease or prolonged season of drought may have exterminated the race.

In Central Asia, two wild races persist to the present day; others were donnesticated by man in the earlies, times, and their use in Chaldrea and Egypt for draught and riding is depicted in the ancient mural paintings. In Africa the larger species became extinct in prehistoric times, as in America, but the smaller zebras still survive in the somthern part of the continent (one species, the quagga, abundant 50 years ago. is now probably certinct), and the African wild ass is found in the fauma of the northern part. The wild horse of prelistoric Europe, a small race, short-legged and shaggyhaired, was domesticated by man, a fact that is known from the rude drawings scratched on bone or ivory by men of the Neolithic or Polished Stone Age. But the clomestic horse now in use is derived chicfly from the Asiatic race, although it is probable that in some lureceds there is a considerable strain of this shagey, short-legged European race, and it is possible also that λ frican races may have been domesticated and to some extent mixed with the Asiatic species. The domesticated ass is a descendant of the African species.

7 he Eivolution of the Morse.- The history of the evolution of the horse thrnugh the Tertiary lerind or Age of Nammals affords the best known illustration in existence of the doctrine of evolution by means of natural selection and the adaptation of a race of animals to its environment. The ancestry of this family has been tracerl back to mearly the beginming of the Tertiary without a single important break.

During this long period of time, estimated at nearly $3.000,000$ of years, these animals passed through important changes in all parts of the body, but especially in the teeth and feet, adapting them more and more perfectly to their particular environment, namely the open plains of a great plateau. region with their scanty stunted herbage, which is the natural habitat of the horse. In the series of ancestors of the horse we can trace every step in the evolution of those marked peculiarities of tecth and feet which distinguish the modern horse from an ancestor which so little suggests a horse that, when its remains were first found 40 years ago, the animal was named by the great palzontologist Richard Owen, the Hyracotherium or "Coney-like Beast." Its relation to the horse was not at that time suspected by Prof. Owen, and was recognized by scientific men only when several of the intermediate stages hetween it and its modern descendant had been discovered. On the other hand. this first ancestor of the horse line is rery difficult to distinguish from the contemporary ancestors of tapirs and rhinoeroses, and indicates how all the modern quadrupeds have diverged from a single type, each becoming adapted to the needs of its especial mode of life.

The earliest known ancestors of the horse were small animals not larger than the domestic cat, with fous complete toes on each forefoot and three on each hindfoot. There is reason to beliere that the still more ancient ancestors of this and all other mammals had five toes on each foot. In the forefoot of the earliest known stage we find a splint-bone or small, slender rudiment representing the missing first digit or thumb, which no longer appears on the surface of the foot, while in the hindfoot there is a similar rudiment representing the outer or fifth digit. but no trace is left of the innermost or first digit. The proportions of the skull, the short neck and arched back and the limbs of moderate length, were very little horsc-like; recalling, on the contrary. some modern carnivorous animals, especially the civets (I'izerrida). The teeth were short-crowned and covered with low rounded knobs of enamel, suggesting those of monkeys and of pigs or other omnivorons animals, but not at all like the long-crowned complicated grinders of the horse.

Commencing with the Hyracotherium, 12 stages have been recognized from as many successive formations, showing the gradual evoJution of the race into its modern form, and cach stage is characteristic of its particular geological horizon. Some of the stages have been found in several parts of the world. but by far the most complete and best known scries comes from the Tertiary Bad Lands of the Western States. Besides the main line of descent which led into the modern horses, asses and zebras, there were sceeral collateral branches which luave left no descendants. Of some stages all parts of the skeleton have been found, of others, only the jaws, or jaws and feet, are known. Ife can mention only the more important stages.

1. The Hyracotherium is the most primitive stage known, but only the skull has been found, so that it has not been determined exactly what the fect were like. The teeth display six rounded knohs or cusps on the upper molars and four on the lower ones, and these are just be-

grinning to show signs of fusing into crosscrests. The premolar teeth have only one main cusp, except the third and fourth premolars (next the molars) in each jaw, which have two and three, respectively. The only spccimens which have been found were in the London Clay or Lower Eocene of England and are preserved in the British Mluseum.
2. The Eohippus is much better known. It comes from the Lower Eocene of 11 yoming and New Mexico, and is very like the Hyrocotheriwn except that the molar teeth have the cusps more clearly fusing into cross-crests, and the last premolar is beginning to look like one of the itne molars. The forefoot of this animal has four complete toes and the splint of a fifth. The hindfoot has three complete toes and the splint of another.
3. Protorolippus. In these animals the splint of the first digit in the forcfoot and the splint of the fifth digit of the hindfoot have disappeared, but there are still four complete toes in the fore- and three in the hindfoot. The crests on the molars are a little clearer and the last premolar has become almost like the molars. while the next to the last premolar is beginning to become so. A skeleton of Protorohippus shows an animal of the size of a small dog, and proportioned much like the breed known as the whippct. The Protorohippus was found by Dr. J. L. Wortman in 1880 in the Wind River Bad Lands of Wyoming, and was described by Prof. Cope and others under the name of the "FourToed Horse."
4. Of Orohippus we have only parts of jaws and teeth. A specimen of the forefoot is exhibited in the Museum of Yale C'niversity.
5. Epihippus (C'pper Eocene).-Of this stage of the evolution of the horse only incomplete specimens have been found. The molar teeth have the once round cusps almost completely converted into crescents and crests, while another tooth of the premolar series has become like the molars. The toes are still four in the forefoot and three in the hindfoot, but the central toe in each foot is becoming much larger than the side toes. (This species happens to be somewhat smaller than those found in the Middle Eocene stage, but no doubt there were others of larger size living at the same time). Palcotherium and Paloplotherium of the Upper Eocene of Europe form a side branch. They were very abundant in Europe, but have not been found in the New World. On each foot they had three toes of nearly equal size, and the teeth show a rather peculiar pattern. One of these animals was thought by Prof. Huxley to be a direct ancestor of the horse. but it now is considered to be merely a collateral relative. Some species of Palcotherium were of large size, equal to a tapir. They were first described in the year iSO4 by the celebrated Baron Cuvjer from remains found in the gypsum quarries of Montmartre, Paris.
6. Mesohippus. Oligocene (White Rizer Formation). In this stage there are three toes on each foot, a splint representing the fifth digit of the forefoot of the Eocene ancestors. The middle toe is now much larger than the side toes, which bear very little of the weight of the animal. Three of the premolars lave now become entirely like the molar teeth, the crests on
the crown are completely formed, and the outside crest in the upper molars lias taken the shape of two crescents. In the Middle Oligocene is found Mesohippus buirdi about the size of a coyote. while in the Lpper Oligocene occurs Mesohippus intermedius as large as a sheep. Of both these animals all parts of the skeleton are known.
7. Anchitherium (Loaver Mioccne)-This stage has been found both in Europe and in America. It is much like its predecessor, but is larger and has the crests of the teeth somewhat higher and more complete. It probably is not in the direct line of descent of the horses, but is on a side branch.
8. Parahippus and Hypohippus (.Widdle Mio-cene).-In Parahippus the tooth-crests are much higher, and the transversc ridges on the upper molars are beginning to change shape so as to become a second pair of crescents inside the outer pair. Hypohippus is off the direct line of descent; its teeth are like those of Anchithcrium, by which name it has been generally called, but the animal was much larger, equaling a Shetland pony in size. A complete skeleton of the IHypohippus was found near Pawnee Buttes, Colorado, in igot by Barnum Brown, of the Whitney expedition. In the forefoot of Hypohippus small rudiments still remain representing the first and fifth digits, but there is no splint of the fifth, as in Mcsohippus. The second and fourth digits still touch the ground, though light].: The feet of Parahiphus were much like those of Hypohippus, but the side toes were smaller.

9 and 1o. Protohippus and Pliohippus (1fiddle and Upper Miocenc).-In this stage the crowns of the upper molars have become much longer, the two pairs of crescents on the upper molars are complete, with two half-separated cusps within the inner pair. And the valleys between the crests have become filled with cement, so that with the wear of the tecth the edges of hard enamel are backed inside by dentine and outside by cement. In this way the surface of the tooth has a series of enamel ridges always projecting a little above the grinding surface, because the soiter material on each side wears down into hollows, yet never breaking off, because they are braced so thoroughly on each side. This is a very efficient instrument for grinding hard grasses. In Protohippus and Plionipfus, especially in the former, the crowns of the teeth arc by no means as long as in the modern horses: they must therefore wear more slowly or wear out at an earlier age. The feet in these two gencra have but one toe touching the ground. The side toes (second and fourth digits) are complete, but much more slender than in the earlier stages, and are apparently useless, as they cannot reacl the ground. In some species of Pliohippus they have almost disappeared. The forefoot of Protohippus still retains tiny nodules of bone at the back of the "wrist" (sometimes improperly called in the horse the "knee-joint"), which are the remains of the first and fifth digits.
II. Hipparion (Pliocene).-This genus, prohably also a side branch of the genealogical tree of the horse family, is much like Protohippus, but larger and with more complication about the tooth pattern. It is common in the

HORSE

European Pliocene heds and has been iound in America also. The feet are still three-toed, the side toes as large as those of the older Protolispus.
12. Equus (Pleisfocere and Recent).-In this stage, that of the modern horsc. the side toes have entirely disappeared and are represented by splints on the fore- and hindioot. No trace remains on the foreioot oi the litule nodules which in Protuhippus represented the first and fith digits. The crowns of the teeth are much longer than in the last stage, and of the two hali-separated inner columns on the upper molars. one has disappeared. the other has increased in size and changed in form. The skull has lengthened and the animal is much larger.
13. Hippidium (Pleistocenc. South Americo). - The ieet are like those oi Equus, except that they were short and stout. The ieeth are like those of Plohippus, from which it is supposed to be descended. The skull is large and long. with very long slender nasal bones. Casts of the skull and limbs presented by the Museo Nacional oi Buenos Ayres, Argentine Republic, are exbibited here.

The Cibunge in Fict and Teeth.-Along with the disappearance oi the side toes in the evolution of the horse there is a considerable increase in the proportionate lensth of the limbs. and especially of the lower part of the leg and foot The surfaces of the joints, at first more or less of the ball-and-socket kind. which allows free motion of the limbs in all directions. become keeled and grooved like a pulley-wheel. permitting free motion forward and backward. but limiting the motion in all other directions and increasing considerably the strength of the joint. By this means the foot is made more efficient for locomotion over a smooth regular surface. but less so for traveling over very rough ground, and it become= oi little use for striking or grasping or the raried purposes for which the feet of polydactyl animals are used.

The increased length in the lower leg and foot increases the lensth oi the stride without decreasing its quickness. The heary muscles of the leg are chiefly in the upper part, and to increase the length of the lower part changes the centre of gravity of the limh very little. Consequently the leg swings to and iro from the socket nearly as fa-t as beiore. since in an ordinary step the action of the leg is like that oi a pendulum, and the speed of the =wing is regulated by the distance of the centre oi gravity from the point of attachment. as that oi a pendulum is by the height of the bob. To increase the length of lower leg and fort therei re gives the animal greater speed: but it put: an increased strain on the ankles and toe-joints, and these must be strengthened correspondingly by converting them from ball-and-sockit juints in "ginglymoid" or pulley joints. Additional sirengih, likewise at the expense of flexibility. is obtained by the conzolidation of the tw. lwnes of the fore-arm (uhu and radius) and of the lee (tibia and fibsta) into one, the shaft of the stmaller lone practically disappearing, while its ends become iused solidy to its larger neighbor.

The increase in iength of limb renders it neces-ary for the grazing animal that the head and neek should increase in length in order to enable the mouth to reach the ground. An ex-
ample of these changes is the modern horse in which we find the neck and head much elongated when compared with the little Hyracotherium. and this elongation has taken place puri pussu with the elongation of the legs. The reduction and disappearance oi the side toes and the concentration of the step on the single central toe serve likewise to increase the speed over smooth ground. The soit sielding surface of the polydacty foot is able to accommodate itseli to a rough irregular surface, but on smooth ground the sielding step entails a certain loss of speed. A somewhat similar case is seen in the pneumatic tire of a bicycle: a "soft" tire accommodates itseli to a rough road and makes easier riding, but a "hard" tire is faster, especially on a smooth road. Similarly, the hard, firm step irom the single toe allows of more speed over a smocth surface, although it compels the animal to pick its way slowly and with care on rough, irregular ground.

The change in the character oi the teeth from "brachydont" or short-crowned to "hypsodont" or long-crowned enables the animal to subsist on the hard. comparatively innutritious grasses of the dry plains. which require much more thorough mastication heiore they can be of any use as iood than do the soiter green foods of the swamps and forests.

- 111 these changes in the evolution oi the horse are adaptations to a life in a region of the level, smooth and open grassy plains which are now its natural habitat. At first the race was better fitted for a forest life. but it has become more and more completely adapted to live and compete with its enemies or rivals under the conditions which prevail in the high dry plains of the interior of the great continents. The great increase in size, which has occurred in almost all races of animals whose evolution we can trace. is dependent on abundance of food. A large animal, as may be shown on ordinary principles of mechanics. requires more iood in proportion to its size than does a small one. in order to keep up a proper amount of activity. On the other hand a large animal is better able than a small one to deiend itseli against its themies and rivals. Consequently, as long as food is abundant, the larger animals have the advantage over their smaller brethren, and by the laws of natura! selection the race tends to become continually larger until a linit is reached when sufficient iood becomes difficult to obtain. the animal being compelled to devote nearly all it time to getting enough to eat.

Cause of the Ezolution. - The evolution of the horse, adapting it to live on the dry plains. probably went hand in hand with the evolution of the plains themselves. At the commencement nf the Age of Mammals the western part of the North American continent was by no means as bigh above sea-levcl as now. Great parts of it had but recentiy emerged, and the Guli of Mexico still. stretched far up the valley of the Missiscippi. The climate at that tine "as probably very moist. warm and tropical, as is shown by the tropical forest trees, found fossil even as iar as Greenland. Such a climate, with the low levaticn of the land. would favor the growth ci dense iorests all over the country, and to such conditions of life the animals of the begimning of the Jlammalian period must have been adapted. During the Teriary the continent was steadily risng above the ocean-level, and at the

Courtesy of the Philadelpha Cummerval Il:ienm.
SKELETOA FROAI MHDDLE MOCENE MEDS. NEAR P.AIINEE.
BUTTE, COLORAEO.
same time other infliences were at work to make the climate continually colder and drier. The coming on of a cold, dry climate restricted and thinned the forests and caused the appearance and extension of open, grassy plains. The ancient forest inhabitants were forced either to retreat and disappear witl the forests, or to adapt themselves to the new conditions of life. The ancestors of the horse, following the latter course, changed with the changing conditions, and the race became finally as we see it to-day, one of the most highly specialized of animals in its adaptation to its peculiar environment. At the end of the Age of Mammals the continents stood at a higher elevation than at present, and there was a broad land connection between Asia and North America, as well as those now existing. At this time the loorse became cosmopolitan. and inhabited the plains of all the great continents, excepting Australia.

It is a question whether the direct ancestry of the modern horse is to be searched for in western America or in the little known interior plains of eastern Asia. It is also unknown why the rarious species which inhabited North and South America and Europe during the early part of the Age of Man should have become extinct. while those of Asia (horse and wild ass) and of Africa (wild ass and zebra) still survive. Nan, since his appearance, has played an important part in the extermination of the larger animals; but there is nothing to show how far he is responsible for the disappearance of the native American species of horse.

Paralld Eiolution in Other Races.-It is interesting to observe that while the evolution of the horse was progressing during the Tertiary Period in North America another group of hoofed animals, the Litopterna, now extinct, in South America erolved a race adapted to the broad plains of Argentina and Patagonia and singularly like the horse in many ways. These animals likewise lost the lateral toes one after another, and concentrated the step on the central toe; they also changed the form of the joint-surfaces from ball-and-socket to pulleywheel joints: they also lengthened the limbs and the neck; and they also lengthened the teeth, and complicated their pattern. Unlike the true horse, they did not form cement on the tooth, so that it was by no means so efficient a grinder. This group of animals native to South America became totally extinct, and were succeeded by the horses, immigrants from North America, which in their turn became extinct before the appearance of civilized man.

Many of the contemporaries of the horse in the northern hemisphere were likewise lengthening the limbs, lightening and strengthening the feet, elongating the tooth-crowns to adapt themselves to the changing conditions around them, but none paralleled the horse evolution quite so closely as did the pseudo-horses of South America. But the camels in America, the deer, antelope, sheep and cattle in the Old World, progressed on much the same lines of evolution, although their adaptation was not to just the same conditions of life.

Wrliay D. Matthew,

American Museum of Natural History.
Horse, the French Coach. The prevailing characteristic of a Frenchman is his devotion to those things that make life pleasant.

From an artiotic standpoint lie leads the world. Pleasure and horses go together. A Frenchman is instinctively a horseman. The French cavalry is withont an equal in the world. Since the time of Napoleon the Frencla government has taken clarge of the breeding of horses that are best adapted for cavalry uses, and in accomplishing this purpose the government has contributed to the production of a very higla-class coach horse. The cavalry horse of France is usually selected after the committee has finished their work of picking out the very best stallions for breeding purposes. Nearly every French coach stallion that stands for public service in France is owned by the French government. The French have been willing to advertise and scll their other breeds of horses, but they bave been loath to part with their coach horses. The instinct of self-preservation causes the French government and the French people to keep their French coach horses at home in order to have better horses than can be found in any other country.

The breed of Frencli coach horses has its origin from the same source as the English thoroughbred. On the one liand, the English thoroughbred surpasses in speed, while the French coach horse is superior in all of those qualities that go to make up a high-class carriage horse. Like the Percheron, the French coacher is dereloped in its highest state of perfection in Normandy, but he comes from the northern part, while the Perche is in the south of Normandy.

The French coach horse is about 16 hands high; his average weight is between 1,200 and I. 300 pounds. His color is as a rule bay, brown or chestnut. His outline is most pleasing. He is a fast trotter, and under the conditions of horse racing in France under saddle over a turf track a distance of 4,000 metres he holds the record. The French method of developing their trotters cultivates a very high, attractive style of action. Not only is the French coacher seen in every. French city hauling the most gorgeous equipages over the boulevards surrounding Paris, but he is to be seen in the best stables throughout all of the capitals of Europe, especially in London.

The French coacher supplies the English royalty with their most useful and most attractive carriage horses.

For more than 20 vears Frencli coach stallions have been brousht to America very sparingly. Where they have heen crossed with the best road mares, frotting bred mares, the result luas been most satisfactory. High-grade carriage horses that go into our best markets and sell for the highest prices usually have a strain of French coach blood flowing through their veins.

A perfect type of the French coach horse When standing or in action is impossible to describe in words. To fully realize his superiority. to appreciate and admire his style and magnificent high action, one must actually see him. Words are inadequate to describe him, and the most perfect picture falls far short of the most perfect horse.

John R. McLaughlis.
Horse, the Percheron. The Percheron horse is the production of the most patuent care and the application of the best scientific principles of breeding. From the dawn of his-
tory the French breeders of draft horses have been most successiul, and the horses they have raised have been renowned the world over.

In the 16th. 17th and 1 Sth centuries the same rules of selection in breeding have been applied that prevail to-day. The good horses were permitted to reproduce themselves and multiply. The inferior and unsound ones were never permitted to breed. The result oi this most carein! selection, based on scientific principles, has given the French the best drair horse that the world produces.

In a rery small portion of Normandy called the "Perche" the lighest result has been attained. From this district the Percheron horse has been sent to all parts of the world with such satisfactory results that the word Percheron today means the ideal drait horse the world over. From the very beginning up until the present time the object of the Percheron breeders has been to produce the kind of lorse that would move the greatest weight with the greatest speed.

In making their selections for breeding purposes the Frenchmen have not only picked out stallions and mares that would make the best horses, bu comely appearance and pleasing outline have also in a measure been their guide, and as a result the Percheron horse to-day is not only the best draft horse in the world, but he is one of the most attractive. He is indeed a handsome horse. The presailing color of the Percheron horse is from black to white, including all of the various gradations from black, dark gray, dapple gray, gray and white.

About so years ago the first Percheron stallions were imported from France to America. and those that became most famous came to Ohio. One, called Louis Napoleon, owned in Union County, Ohio, and aiterwards sold to so to Normal. Ill. both here in Ohio and in his new home in Illinois, was admired by all. In a few years, when his colts began to appear, the reputation of the Percheron breed in America tras so well established that hundreds and even thousands of them have been imported to America each year.

During the past hundred years the government in France has maintained a system of supervision over the horse-breeding industry. The government does not own every Percheron stallion. but every Percheron stallion must be approved by the government inspectors and must receive a certificate of approval before he can be used for breeding purposes in France. Many of the best stallions belong to the government. Many of those owned by private individuals reccive a subsidy from the government ii their owner will offer their services to the public.

On account of the very high tariff laws the French breeders supply ncarly all of the lorses used in France. The ups and downs of prosperity and depression do not affect the horsebrecding industry in that country. During the period of depression that prevailed in the United States ten years ago American breedere became very much discouraged. Most of the stallions were castrated and the hest mares were disposed $n f$, hut in France these conditions did mot prevail.

In in7, 'ns and ' n. when more prosperons conditions were hrought about in this country.
the demand for horses was very greatly increased. The French were able to supply the deficiency: Good stallions and mares could be lound there in abundance when a surplus could not be found anywhere else in the world. Instinctively the French breeders keep their best stallions and mares, no matter what the foreign demand may be, and as long as they pursue this policy the best Percheron horses will be found in France and the best breed of draft horses in the world will be the Percheron.

John R. McLalghlin.

Horse Bot-fly, a bot-fly (Gastrophilus cqui) parasitic in horses. The adult is about .75 inch long; the wings transparent with dark spots iorming an irregular band toward the centre: the body brown and very hairy, the head whitish in front, and the abdomen dark-spotted. The females (males are rarely seen) have an elongated tapering abdomen. The oblong light yellow eggs are glued, one by one to the hairs of the forepart of the body, where they are likely: to be licked off by the animal. The moisture oi the tongue canses the developed larva to break through the shell almost instantly. and to be carried into the mouth and thence to the stomach. Many curious facts have been observed in connection with these eggs and their development, and may be found fully discussed by Osborn in his 'Insects Affecting Domestic Animals. ${ }^{\text {J }}$ issued by the Enited States Department of Agriculture (IS96). Reaching the stomach, the larve fasten themselves to its walls by hooks in the posterior end of the body, and great masses sometimes accumulate, seriously obstructing the pyloric outlet. They remain there, absorbing nourishment and interfering with digestion through the winter, and on the return of warm weather let go their hold, pass out through the intestines, enter the ground. pupate there for a few days. and then emerge as flies. This pest chiefly affects horses out at pasture, and can be prevented only by removing the eggs, which can easily be seen. The attenpt to remove the bots from the stomach by turpentine or other drugs is a dangerous proceeding which should only be attempted under direction of a veterinarjan.

Horse-chestnut, or Buckeye, a tree of the small family Hippocostanacca and genus Aisculus, represented in Europe by the horse-chestnut (\mathcal{E}. hippocasfanem), now cultivated in all parts of the world, but native to Greece, Turkey, and soutlwwestern Asia: and three indigenous American species known as buckeyes, from the appearance of the fruit. These trees are shapely, have leaflets diverging from the stalk like fingers, and bear white or tinted flowers in large erect panicles, turning the whole tree into the semblance of a big bouquet. The fruit of the horse-chestnut much resembles a huge chestnut, and is prickly when young. In this respect the common or Ohio buckeye (A. glabra) agrees with it. but has only five leaflets in each leaf and its flowers are small and not show!. The unpleasant odor exhaled by the bark and leaves in all this genus is especially sirnog in this species. A more southern species, developed into fine trees in the southern Alleginanics, is the sweet or yellow buckeye (E. actandra) which with the red buckeve (E. $f(a, 1 a)$ bears smooth fruit. Though so hand-

HORSEFIELD - HORSE-POWER

some, rapid in growth and serviceable as ornamental or shade trees, they are otherwise of little value. The wood is light colored, soft, and useful mainly for paper pulp and small articles; it contains a large quantity of saponaceous material, so that country people use the mucilaginous sap as soap. The leaves and roots of the Ohio buckeye are poisonons. The seeds are bitter hut are eaten by cattle and sheep, with the preparation of boiling in alkaline water which is necessary in Europe; and from them a Hour is made especially adapted to bookbinders' and shoemakers' paste, as, besides having great tenacity, it will not be attacked by insects. In France starch is produced from horse-chestnut seeds on a large scale. The seeds are also used in the sonthern United States to impart a flavor of age to raw whiskey. The red buckeye has heen naturalized in Europe as a park tree. California has a species of its own, Japan another, and a third grows on the Himalaya Mountains.

Horsefield, Thomas, American naturalist and explorer: b. Bethlehem, Pa., 12 Nay 1773; d. London. England, I866. He was graduated in medicine at the University of Pennsylvania, and served as "medical apprentice" in the Pennsy]vania Hospital from $159+99$, being the fifth interne in the hospital in the order of appointment. In October I799 lie accepted service as surgeon on the "China." about to sail for Java. He returned in the latter part of 1800 , but in 1801 went again to Jawa for the purpose of thoroughly exploring the island, and was commissioned as regimental surgeon by the Dutch Colonial Government. From 1802 he devoted himself to the thorouch examination of the flora, fauma, and geology of the island. at first under the auspices of the Dutch government, and, when possession of Java was taken by the English. under the especial patronage of Sir Thomas Stamford Raffles, the lieutenant-governor. A warm friendship, due to kindred tastes, sprang up between Horsefield and his celebrated patron, and, when the English tenure of Java ceased and Sir Stamford Raffles returned to England, Horsefield accompanied him, bringing with him the collections he had made, which were placed in the museum of the East India Company in London, of which he was presently made the curator, a position which he Held for nearly fifty years until his death. Horsefield, by his explorations and writings, laid foundations for our knowledge of the natural history of the far East. IIe contributed while in Java many important papers to the publications of the Batavian Society of Arts and Sciences. In 182+ he gave to the world his great work entitled 'Zoological Researches in Java and the Neighboring Islands, ${ }^{\text {' }}$ and from $1838-52$ issued in folio parts the 'Plantre Javanicre Rariores.' Both works are sumptuously illustrated by colored plates. In IS56-58 he published the 'Catalogue of the Birds in the Museum of the East India Company,' and in 1857-59, witl Frederic Moore, the 'Catalogne of the Lepidopterous Insects in the Museum of the East India Company.' Besides these larger works he was the author of a multitude of papers published in the 'Transactions' and 'Proceedings' of societies.

To him perhaps more than to any other single naturalist are we indebted for the first correct account of the botany and zoology of the regions
with which he hecame familiar in his early life. W. J. Holland, Dircctor Carncgic Muscum, Pittsburg.
Horse-fly, Gad-fly, or Deer-fly, any species of the family Tabanida, usually large, rohust, flies, with a broad head pointed in front and concave behind, with immense eyes, and fitting closely to the thorax. The legs are long and stout; sometimes hairy, hut without stiff bristles. The females are provided with a long sharp proboscis with which they pierce the skin of animals, and are especially annoying to such short-haired kinds as horses and deer. No poison is injected into the wound, but injurions bacilli may be introduced, cansing bad sores. One of the most widely distributed in the United States is the large black Tabonus americanus. These flies attach their eggs to grass and sticks in wet places. The larve find their way into water or wet eartl, and are carnivorous, feeding on other insects, snails, etc. They pass the winter before pupating and emerge as flies in the early summer. To the same family belong many smaller green or yellow species of the woods more usually called deer-flies.

Horse-mackerel. The horse-mackerel, tuna or tunny (Thunnus thynnus), is the largest nember of the mackerel family (Scombrida), attaining a length of io feet or more and a weight of 1,000 to 1,500 pounds. It is found in all warm spas, both of the Atlantic and Pacific oceans, and wanders as far north as Newfoundland, appearing on our shores with the menhaden and mackerel. See Tunny.

Horse-power, the power of an ordinary horse or its equivalent, the force with which a horse acts when drawing. The mode of ascertaining a horse's power is to find what weight he can raise and to what height in a given time, the horse being supposed to pull horizontally: From a variety of experments it is found that a horse, at an average, can raise 160 pounds weight at the velocity of $2 \frac{1}{2}$ miles per hour. The power of a horse exerted in this way is made the standard for estimating the power of a steam-engine. Thus we speak of an engine of 60 or 80 horse-power, each horse-power being estimated as equivalent to 33.000 pounds raised one foot high per minute, but this estimate is considered much too high, 17,400 foot-pounds per minute being generally considered nearer the truth. As it matters little, however, what standard be assumed, provided it be uniformly used, that of Watt has been generally adopted. The general rule for estimating the power of a steam-engine in terms of this unit is to inultiply together the pressure in pounds on a square inch of the piston, the area of the piston in inches, the length of the stroke in feet, and the number of strokes per mimute, the result divided by 33.000 will give the horse-power deducting one tenth for friction. As a horse can exert its full force only for about six hours a day, one horsepower of machinery is equal to that of $+t$ horses.

The motive power used in the mannfacturing establishments of the United States in 1900 , according to the census report, aggregated 11.300 .08 I horse-power, as compared with 5,954.655 horse-power in $1800,3.410 .837$ horsepower in 1880 and $2,346,14^{2}$ in 1870 . Of the total power used in manufactures during the census

HORSE-RACING

year. steam-engines iurnished $S_{a}-42.416$ horsepower, or $\pi-4$ per cent of the aggregate; water wheels supplied 1.727 .258 horse-power, or 15.33 per cent : electric motors, 311.010 horse-power, or $2 .-$ per cent; gas and gasoline engines. 143.850 horse-power, or 1.3 per cent, and other iorms oi mechanical power 51490 horse-power, or five tenths oi I per cent. Rented power was used to the extent of 321.05 I horse-power, or 2.8 per cent oi the total. Oif this rented power 183.682 horse-power was electric and 137.369 horse-power was from other sources oi energy. See Power.

Horse-racing, a national pastime, which has been called the sport of kings because it has been one of their amusements since the earliest dawn of civilization. The racing horse is of three distinct trpes, the running horse. the pacing horse. and the trotting horse. For many centuries the running race has been the tradjtional turf sport in Great Britain and on the continent, with many varieties, such as flat sacing, or racing on level ground ; steeple-chasing, or racing orer ground not specially prepared for the purpose, and hurdle-racing. in which the horses have to leap orer obstacles purposely placed in the way. Trotting is primarily an fimerican institution, the outcome of thoroughbred development. Late in the 19th ceutury horse-racing made a worderiul adrance in the United States and easi]y became the great national pastime of the country.

Early History:- Thothmes I.. of the ISth Egyptian dyrnasty, letit a papyrus letter telling of his conquest of Mesopotamia, and priding himself upon the acquisition of the racing horse (the - frab) and being the first to introduce him in Africa. Somewhat later the records tell of King Solomon buying horses from Egypt, and paying as much as $\$ 3,000$ for some of them. Among the Greeks it was introduced into the Olympic games in the 33d Olympiad (648 BC). From Greece it was introduced into Rome. where it gained a place as one of the games of the circus. The institution of horse-races in England, where the sport has become a great national pastime, belongs in a very remite period. The first regular horse-races, howerer, did not take place till the reign of James I. The successors of James I. down to Queen Anne were all more or less attached to the sport. In the reign of the latter, in $1 / 11$, the lork Plates were founded, and about that date the passion for betting on the turi began to be general. Under George I., the successor of Queen Anne, horse-racing became more Hourishing. The two most celcbrated horses of that period were Flying Childers (ioaled in 1715) and Eclipse (foaled in 1704). which long had the reputation of being the flectest horses that ever ran. From the latter are descended many of the first-class thoroughbreds of the present day. None of the English sovereigns was more devoted to horse-racing than George 11'. Between $1-8_{4}$ and 1-02, while vet Prince oi 11 ales, he gained 185 prizes, including the Derby oi t-SS. Horse-racing was introduced irio France from England during the reimn of Louis Kll $^{\circ}$., and ander Louis NV°. was pursued with the utmost enthusiasm.

Brecding and Training. - The training of a running horse begine with its second year, and is a slow proces, requiring great care and at-
tention. During the period of training the horse is under the charge of a stable-boy. In the first part of the training the exercise to which the borse is subjected is comparatively gentie, but in the latter part a gallop of hali or three quarters of a mile is taken every other day. Before a race takes place the powers of the horse are put io the test by its being made 10 run over about halit a mile against an older horse, which is weighted to make up for the difierence in age. The breeding of thorougbbred horses, that is, of horses which can trace an unbroken pedisrec tbrough the best sires and the best dams, is when well conducted a very profitable business. The prices given for stallions are sometimes enormous. In 1900. when the Duke of Westminster's racing stud was sold, the average price reached the high level, and the worlds record price oi Er8-.500 was brought by Flying Fox, which had won the Derby the year beiore. Beiore this, Ormonde, another Derby wumer. had sold for $\$_{1=0.000 \text {. }}$ The large sums now given for the use of stallions in breeding studs are the cause of facehorses being withdrawn much earlier than they used to be from the turf, for as soon as they have acquired a reputation the owner oi a good race-horse can make much larger sums by hiring it out for breeding purposes than he could by entering it for races. The pedigrees of all thoroughbred horses are registered in the studbook, so that is any particular animal is omitted in that register the inference is that its pedigree is not without some blemish more or less remote. The effects of a careiul system oi breeding in improving the quality of horses are very marked. No pure Arabian horse can be compared in point oi speed with a thoroughbred. In size and shape, too, the horses oi the present day surpass those of iormer times, the average height of a thoroughbred now being 15 hands 3 inches. while formerly it seldom reached is hands. See also Horses, finericas ThorocghBRED.

Rave Meetings. - In Great Britain the chief race meetings are those at Epsom, Newmarket, Ascot in Berkshire, Doncaster. Goodwood, Liverpool. Manchester, and Leicester. Those at Newmarket are the oldest of all, dating irom the reign of Charles II. The Ascot races are considered the most iashionable, being largely attended by the aristoctacy, and sometimes honored with the presence of royalty: The Goodwood races, which are held in the Duke oi Richmond's park in Sussex, are also a iavorite rendezwous oi the aristocracy. But the most popular meeting throughout the year is the Epsom, which owes its popularity partly to the proximity of Epsom to London and partly also to its being the meeting at which the Derby and the Oaks are run. At the Oaks the ladies are the chiei bettors. and the bets are not thousands of pounds. but dozens of Paris gloves. The principal racing mectings in France are those held in spring and autumn at Chantilly and the Bois de Boulogne.

In the Cnited States the season opens at the Bennings track at 11 ashingon early in the spring and closes there in the fall. Following Bennings comes the Aqueduct, and Morris Park, Gravesend and Shcepshead. the latter track being the show track of this country, occupying the same position as the Ascot of the English

HORSE-RACING

turf, which is also named "The Ladies Mect." Then follows the Brighton Beach season during July and August. Although the classuc events of England and France are of longer standing they cannot be said to outrank or outinterest the famous Brooklyn Handicap, founded in 1887; the Suburban (1884) ; the Futurity (1888) : the Realization (1889), and numerous other events. There are racing parks and tracks in nearly every city in the conntry, and there are many famons meetings in the West and South, like the Latonia in Kentucky, the Harlem and Washington Park in Chicago, Saratoga and others.

Racing Rules.- The conditions under which the most of the races are rum are the following: Every horse that takes part in a rumning race must be entered as a yearling, that is, hefore the close of the year in which it is foated, for a horse's age is always reckoned from the ist of January of the year in which its birth takes place. On being entered a certain sum is paid by the owner, whicl is called a forfeit, because it is forfeited if the horse is afterward withdrawn, or, in the language of the turf, "scratched." The racing is conducted under association rules, and in England under regulations laid down by the Jockey Club, a body instituted in 1750. The stewards of the Jockey Club have power to grant and to withdraw licenses to racing officials, jockeys, and race-courses; to fix the dates on which all meetings shall be held, and to make inquiry into and deal with all matters relating to racing. At every regular race-meeting there must be at least two stewards, with a clerk of course, a handicapper, a stake-holder, a clerk of the scales (since the jockeys of course must be carefully weighed), a starter, and a judge, each of these officials being licensed by the club.

Handicapping.- Formerly all running races were what is called weight-for-age races, that is, all the horses entered to compete were of the same age and bore equal weights, or if in certain cases there was an inequality in point of age there was also a fixed difference in the weight carried. But it was found that when races were conducted on this plan the hest horses came to be known, and the inferior ones withdrew, not venturing to compete with them, so that the race resulted in a walk-over. Hence arose the practice of handicapping, that is, of adjusting as nearly as possible the weight to he carried to the previously ascertained powers of the horse, so as to reduce the chances of all the horses entered to an exact equality. In England the principal weight-for-age race for two-year-olds is the Middle Park Plate, and for the three-year-olds the principal for both colts and fillies are the Two Thousand Guineas, the Derby, and St. Leger, and for fillies only the One Thousand Gtineas and Oaks. The most important handicap races are the Great Northampton Stakes, the City and Surburban and Metropolitan Stakes at Epsom, the Northumberland Plate, the Goodwood Stakes, the Ascot Stakes, the Ebor Handicap (run at York), the Great Yorkshire Stakes (run at Doncaster), the Liverpool Spring. Summer, and Autumn Cups, the Cesarewitch, Cambridgeshire, and Newmarket Handicaps (run at Newmarket).

Betting and Book-making.- The prevalence of the practice of betting in connection with horse-racing is a fact so well known that it is
necdless to cnlarge upon it, although it will be of interest to sume to explain in what manner it is conducted. Bettors are divided into two classes - the backers of horses, and the bookmakers, or professional bettors, who furm the betting ring, and make a living by betting against horses according to a methodical plan. Backers of horses may be again divided into those who have special information abu the qualities of the horses which are to engage in a race, which enables them to back a particnlar horse with a certain amount of confidence: and those who have no such means of information, and accordingly back horses pretty much at random. The former class, if their information is good, have a very fair chance of strecess in their speculations, and the horse that wins any great race usually brings in to his owner vast sums in payment of bets, compared with which the stakes, considerable as they often are, are insignificant ; but the latter class are pretty certain in the long rinn to lose. By the method adopted by the professional bettor the element of cliance is as far as possible remored. Instead of backing any particular horse, the professional bettor lays the same sum against every horse that takes the field, or a certain number of them, and in doing so he has usualiy to give odds, which are greater or less according to the estimate formed of the chance of success which each of the horses has on which the odds are given. In this way, while in the event of the race being won (as is usually the case) by any of the horses entered in the betting-book of a professional hettor, the latter has always a certain fixed sum (say $\$ 5,000$) to pay, he receives from the backers of the losers sums which vary in proportion to the odds given. Thus, if a book-maker is making a $\$ 5,000$ book, and the odds against some horse is 4 to t, he will, if that horse wins, have to pay \$5.000, while, if it loses, he will receive $\$ 1,250$. If the sum of the amounts to which the horses in a particular race have been backed in some professional bettor's book is $\$ 6,500$, and if the odds against the first favorite were 5 to 2 (or $\$ 5,000$ to $\$ 2,000$), then the total sum received by the book-maker, in the event of the race being gained by the first favorite, would amount to $\$ 6,500, \$ 2,000$ or $\$ 4,500$, so that he would suffer a loss of $\$ 500$; while if a horse had won that had long odds against him (say 200 to I. or $\$ 5,000$ to $\$ 25$), his total receipts would amount to $\$ 6.475$, and his gains to $\$ 1,475$. Very frequently the receipts of the book-1naker are augmented by sums paid on account of horses which lave been backed and never rum at all.

Americans Abroad.-In 1855 an American horse had never won a race abroad and an American jockey had never ridden in an English race. The first American to go to England with a stable of thoroughbreds was Richard Ten Broeck, who sailed for England in 18:6, taking with him Lexington. Lecompte, the only horse that ever beat Lexington: Pryor, and Prioress. Lecompte died of influenza the first year, and Pryor soon followed. It was left for Prioress to retrieve the fortunes of the stable. Her great victory was in the Cesarewitch, a race at 2 miles, 2 furlongs, and 28 yards. There were 37 starters, the very best horses on the English turf. After one of the most exciting races ever run. Prioress, El Hakim, and Queen Bess finished in a dead heat. In the rmin off. the American horse won by a lengtly in 4 minutes and is

HORSE-RACING

seconds. American successes really began in IS-S, when Pierre Lorillard and James R. Keene shipped stables to England. The iormer's Parole won the Newmarket Handicap. defeating the English favorite. Isonomy, a horse that was called the best ever foaled on English soil. The American gelding next took the great Metropolitan. the Great Cheslire. and the Epsom Gold Cup in quich succession. Iroquois iollowed Parole, winning iour important stakes in I\&SO, including the St. Leger. The subsequent inrasion of England by W. C. Whitney, Clarence A. Nackey; Richard Croker and others with famous winning horses, and the successes of Sloan, Reiff, Martin and other American jockevs, have brouglit renown to the American iuri. In 1002. American horses ridden by American jockeys took part in 361 races in England. of which they won 85 . were second in So, third in 52. and unplaced 344 times. The stakes and purses won amounted to $\$ 234.120$. In 1903, up to 15 September the Americans have done even better proportionately, starting in 453 raccs. winning -4 . second in E_{1}, third in 47 , and unplaced 251 times. The winnings amount to S2s9.000. American horses were second in the Oaks and third in the Derby.

Tretting. - The evolution of the trotting horse in Anmerica, and the gradual reducing of the one mile record, is a history coincident with the improvement and progress made in breeding. Eeginning with the record of Trouble, who trotied a mile in 2.43 in 1826, of Dutclman (2.32) in 1839 , and Flora Temple (2.1974) in 1859 , the evolution proceeds to George Wilkes. Dester. Goldsmith Maid and the others who followed. \ln ISt, ai a Jockey Club dinmer. discussion drified to the trotter. and a wager was made that roo ho:se could be produced which couid trot a mile in ihree minutes. Boston Blue was named at the pust by Maj. William Jones, and the old chronicle says that he "won cleverly and gained great renown." The New York Trotting Club was crganized in 1825 , for the purpose of improving the speed of road-horses. The intitial purse weee for races of two-mile and threc-mile
heats. In 1835 trotting was in almost daily vogue in New lork. It was not until i845 that a mile was trotted in less than 2.30. In 1863, the American trotting horse was an unknown quantity abroad, while in 1903: American trotting stock was in demand throughout Europe. Germans. French, Russians, and Austrians have bought some of our best bred animals.

The Sational Trotting Association was iormed in is;o as a result of a meeting of breeders and track owners the previous year. In ISS; the American Trotting Association was iormed with headquarters in Chicago, and it works with the National Trotting Association to detect and punish iraud. Some of the ablest men in the country sit on the boards of appeals, and the decisions command respect and are accepted as final. The careers and records of famous trotters like George Wiikes; Dexter: Harrietta; Axtell (2.12): St. Julian ($2.1 \mathrm{t}^{\mathrm{T} / 4}$) ; Sunol (2.10²): Maud S. (2.085i) ; Kremlin
 (2.063) ; Directum (2.05^{5}) ; Nancy Hanks
 and the mile of Major Delmar ($2.001 / 4$). Cresceus $\left(1.59^{3} \frac{1}{4}\right)$, and Lou Dillon ($1.58^{1} \frac{1}{2}$) in 1903 , tell the brief but wonderiul story of the trotting horse in America. See also Herses. Trotting.

Record Passibilities. - The gradual lowering of the trotting record from a mile in three minutes to the $\mathrm{T} .5 \mathrm{~S}: \mathrm{z}_{2}$ record oi Lou Dilion on 24. Oct. 1903 has led many to questron if a limit is ever to be reached. The mathematician has a sule to guide him in a guess at the answer to such questions. and tile 'Scientific American' has prepared the accompanying chart which is of vast interest. The vertical lines represent the years in which the record has becn lowered. the spaces between the lines indicating the time interval, the length of eaclu vertical line indicating the record for that year. A curve is next sought that will pass through as many of the points as possible, or close to them, and the continuation of this curve.across lines indicating iuture years shows the best answer to the main question that the facts warrant. It the curve

Equilateral flyperbola Showine the Law oi Tsotting Improvement.
proves to be a hyperbota, it will afford confidence in the accuracy of the solution, for a peculiar property of the hyperbola is that it constantly approaches lut never reaches a straight line called ann asymptote, and this asymptote represents the ultimate rate of speed. With Lou Dillon at the two minute mark, a point is indicated on the chart showing this hyperbolic curve as the law of improvement. It is now possible to pass the curve of a hyperbola through the record points of Trouble in IS26, Dutchman in 1839 , Nancy Hanks in 1892 and Lou Dillon in 1903. This curve will be within a few seconds of many other records in which the time was notably reduced.

The hyperbola is represented by the equation $x y=10.000$, in which x equals the number of years since $1 ; 26, y$ equals the number of seconds over $63^{1 / 2}$ seconds to trot a mile. The notable records of Matid S. in 1881 and 1885 , with the high-wheel sulky, are $2^{11 / 4}$, to $3^{1 / 4}$ seconds above the curre, which would indicate that the change to the pricumatic sulky will account for this measurement of the improvement. This curve places the ultimate limit of trotting speed at a mile in $63^{\frac{1}{2} / 2}$ seconds, which, though constantly approached, will never be reached actually, and it indicates the minute and a half mark as two centuries away.

Horse-radish, a species of water-cress (Roripa armoracia), native to Europe, but now cultivated everywhere, and becomes naturalized in most parts of the world. Its basal leaves are oblong, finely crenelate and irregular in outline. and its flowers are white and showy. The roots furnish the highly pungent ingredient of a well-known sauce, prepared by grating them, adding vinegar and sealing. They have also some medical nse.

Horse-radish-tree. See Ben, Oil of.

Horsefoot Crab, Horse-shoe Crab, or King Crab. This marine animal (Limuluspolyplemus) was formerly regarded as a crustacean. and is the sole survivor of an extinct group of arthropods intermediate between the trilohites and arachnids. It belongs to the order Xiphosura, class Merostomata, and phylum Pulcopoda. By some English authors it is regarded as an arachnid allied to the scorpion. This difference of opinion regarding its affinities is due to the generalized structure of the animal, and to the fact that its nearest allies are extinct.

The body of the horscfoot crab is sometimes two feet in length, and consists of a head and a hind-body or abdomen, the latter cnding in a long spine (telson), which is elevated by the creature in defense. The head is in shape somewhat like a horse's hoof, and in burrowing it acts as a shovel, being bent down at nearly right angles to the hind-body. There are a pair of compound and of simple eyes; the mouth is on the under side, nearly surrounded by six pairs of walking legs, while on the hind-body are six pairs of broad swimming legs. There are no antenne, jaws, maxille, or foot-jaws, as in the lobster. The horsefoot crab hreathes by means of gills attached to the under side of the last five pairs of abdominal legs. which consist of a pile of about too thin broad sacs growing out, one pile on each side, from the base of the legs. The nervous system is peculiar from the nature of the brain. and the cesophageal ring; while
the entire system behind the brain is enversped by the arteries, the latter cuding in remarkably fine branches. The heart is large, tubular, the liver very voluminous, and the kidneys are represented by four pairs of excretory red glands, arising from a stolon-like base. The animal is bisexual, the male differing from the female in the second pair of legs ending not in a forceps, but in a sort of hand, with an opposing thumb. The ovaries and testes are voluminous, and the sexual products. eggs and sperm, pass out through a pair of papille situated on the under side of the first pair of abdominal legs.

The female lays her large round eggs loosely in the sand between ligh and low water. spawning in Nay and June; in about a month they hatch, and the young, after passing late in embryonic life through a trilobite stage, assumes the form of the parent, differing in the short rudimentary caudal spinc. It molts irequently, and during the process the front edge of the carapace or head splits open. cuabling the animal to draw itself out of the old shell. The recently hatched Limulus is strikingly like a trilobite, but while in the latter new segments are added after birth, in Limulns no new ones are added. The young horsefoot is about 4 millimetres in length. Specimens an incls long are abont a year old, and it probably requires several years to grow to the length of a foot or more.

Linulus polyphemus inhabits the eastern coast of North America from Boothbay, Maine. to the West Indies and Honduras, but is most abundant in shallow, retired, sandy. or muddy bays on the coast of New Jersey, Virginia, and North Carolina. Several other species inhabit the seas of the Eastern Archipelago, China, Pliilippines, and southern Japan. In the United States it is used as a fettilizer, while in the Malayan markets the animals are sold as food.

The Limuli date from the Devonian. An allied group, in shape and structure approaching scorpions, is the Eurypterida (q.w.), one of which (Stylonurus loccoanus) of the Devonian of New York and Pennsylvania was about five feet in length, while the British Pterygotus anglicus is estimated to have been about six feet in length and two feet across. It is now thought that the scorpions have descended from some merostome. which became adapted for a terrestrial life.

Alphel: S. Packird,
Late Professor of Zoology. Brozin Lnizersity.
Horse'heads, N. Y., village, in Chemung County; on the Erie \& Central N. I.., and branches of the Delaware, L. \& W, and the Northern C. R.R.'s; about six miles north of Elmira. It is in a fertile agricultural region. Its chief manufactures are creamery products, bricks, screens, doors, blinds, ments clothing, cigars, cattle-feed, shoes, and hardware. Pop. (1900) 1,901 .

Horsemanship. See Riding.

Horses, American Thoroughbred. The Anserican thoroughbred is the production of pure breeds imported from England. first during the 17 th and i8th centuries. They first found their way into the Old Dominior of Virginia, where they founded a tribe of early racehorses. to which trace to-day many of the most iashionable pedigrees. From Virginia the thorough
breds finaliy found their way into the Carolinas and as iar sonth as Mississippi and Lonisiana. and, upon the formation oi Tennessee and Kentucky as States, the breeding of thoroughbreds became with them what might be termed an industry.

The early part of the 20th century finds Kentucky in the lead in the production of thoronghbred horses, followed next by California and then by Tennessee. Missouri and Illinois have recentiy greatly increased their thoroughbred holdings, while both New York and New Jersey prodice a goodly number. Many of the other States take rank as fair producers of thoroughbreds. and, in fact, the breed has found its way into every section of the country, even as isolated a State as Oregon annually producing a number of thoroughbred horses.

The requirements of an American thoroughbred horse are that the pedigree contains five uncontaminated crosses, but the average pedigree traces through 16 to 18 crosses, some having as many: as 2ξ. Those reaching an origin oi a Natural Barb source are considered the most fashionable, but many great racehorses have descended from lines unknown to early English or Arabian pedigrees.

Diomed. the winner of the first English Derby, imported to this country in 1/99, when he was 20 years old. is classed as the greatest of early importations, and he has leit a marked impress upon American pedigrees. The most successinl importation of the 19th century was unquesticnably Glencoe (imported in 1836), and in later days Leamington ranks the highest. In more recent years, the ranks of the American thoroughbred have been greatly increased by almost unlimited importations from England, France. Australia, and other foreign countries. and horses are prodnced in this country now that are of entirely foreign pedigrees. while there are numerous instances where the first few crosses are strictly foreign lines.

The average height of the early thoroughbred horse was something less than 15 hands, but at this time they average over 15 hands 2 inches, and weigh 150 pounds more than they did a hali century ago. In individuality, too the improvement is very marked. the types now being far superior in form to the horses of early times.

In soundness and general service the American thoroughbred has no superior, this being the reath of judicinus breeding and iavorable rearing conditions. The statistics of the American turi (enmmenly known as Turf Guides) extend over a period of about 30 years, and in this time these records show that the thoroughbred horse has improved some 30 pounds, which is an equivalent of irom s to 6 seconds to the mile. This marked improvement can be attributed to an accepted theory of breeding that like begets like, to intelligent methods of training. and to superint riding.

The most iavorable condition which has proved in succe-siul in raising the thorouglibred in this country is that he is housed less and has. at all time-, access to lands covered by the finest of grasses. which brings his feet constantly into contact with mnisture. The freg of the ioot. being like a sponge, ahsorbs this mosture, thus creating a sentle presure which spreads the honi. It hore having bad feet naturally favors
them, which has a tendency to make bad ankles and tendons on account of their not being ireely used. and it is a conceded fact that "no foot, no horse."

In America the horse has been bred more ior business than pleasure. The invention of the elliptic spring and the nse of -American hickory in the production of light vehicles ior pleasure and business. together with the invention of macadam and Telford roads, turned the demand irom the running to the trotting horse. The first private coach was introduced into New York in 1745: but coaches were scarce unil aiter the Revolutionary War, and not until after I\&40, when the light one-borse vehicle came into use, did the changed conditions of travel develop a harness-horse ior purposes of business and pleasure. Along with the change in vehicles incident to the evolution of the trotter came as great a change in the style of harness and trappings.

About the beginning of the 19th century there came from the lines of breeding of the thoroughbred. traceable to Flying Childers. Byerly Turk, and the Darley Arabian. Messenger, a gray, stoutly built horse of wonderiul power and stamina, with a slashing, open gait. fitted to found a race of trotters. He was foaled in $1-\mathrm{zo}$, and became the progenitor of the troting families in America. In 1\%93 Justin Morgan was foaled. sired by one believed to be thoroughbred. Three of his sons. Bulrush. Sherman, and Woodbury, became noted as the sires of horses of intelligence, conrage. and speed, and the get of some oi them excelled as roadsters and stage horses. From Black Hawk Morgan, sired by Sherman out of a fast trotting English mare, has come the beautifnl. useinl. and courageons line of Morgans. The original horse (2.40) died in 1836 at the age of 23. In I849 was ioaled Rysdyck's Hambletonian, the founder oi the most noted family of trotters. sired by Abdallah, who traced to Messenger by both the sire and dam, out of a dam by Bellfounder, with Messenger crosses on the dam's side. As early as I876 the interest in breeding and rearing trotters had become so great that fabnlous prices were paid for colts, simplon the strength of their breeding. Two fillies. untrained. sold for $\$ 13.000$. The three-year-old colt Steinway was sold for $\$ 13.000$ in 18 \% 9 . Maud S., bred at Alexander's noted stock farm in Kentucky, was sold to MIr. Bonner for $\$ 21.000$ when iour years old, with a record of $2.101 / 4$, and the title "Queen of the Turf." Smuggler sold
 Maid ior $\$ 36.000$. Dexter for $\$ 36.000$, and so on, until we come to Astell. who sold for $\$ 100.000$ aiter he had eclipsed the time of all stallions, and retired to the stud, where his service fee was \$1.000. The stallion, Rysdyck's Hambletonian, was purchased with his dam ior $\$ 125$, and earned in the stud ミ20ミ. $\because=0$. Thirty-six of his get trotted in 2.30 or better. and the prices for which they could have been sold in their best days amounted to $\$ 325,000$. Among them were Sentinel, George Wilkes. Jay Gould, and Admninistrator, all noted sires. Their united progeny was worth many thousands for stud and track uses. Some of his sons, without a 2.30 record, became successful in the stud. Alexander's Abdallah was sold for about $\S_{3.500 \text {, but he got Goldsmith Maid. who }}$ made a record of 2.14 . and won on the turf close

1. English Running IIorse.
2. Percheron.
3. English Coach Horse.
4. Wilkes-Hambletonian Trotting Horse.
5. Norgan Trotting IIorse.
6. American Thoroughbred.

+ Percheron.
s. Belgian stallion.
mont got nine with records better than 2.30. So the descendants of Alexander's Abdallah have been worth to their owners hundreds of thousands of dollars. Yolunteer was another who ranked among the most successful of the noted Hambletonian sires, having to his credit 232.30 performers. Electioneer, bought by Gov. Stanford, proved a noted sire, getting the fastest yearling, $2.36 \frac{1}{2}$; the fastest two-ycar-old, 2.21 ; the fastest three-ycar-old, $2.19^{\frac{1}{2}}$; and the fastest four-year-old, $2.183 / 4$. The bracing climate of Palo Alto, and the methods of handling peculiar to Gov. Stanford's breeding farm, aided in these accomplishments. These are but a few of the thousands of good horses that owe success to the Hambletonian blood. The value of trotters has been measured largely by their speed, taken as a measure of ability to win future racce, or as evidence of blood lines that will make the animal valuable in the stud. Success in campaigning is undoubted evidence of pluck and stamina; and the breeding and training of the trotter, and his contests on the track, have developed these qualities in so high a degree that no other class can equal him. The evolution of the trotting horse has also shown the value of a training peculiar to America as a factor in breeding.

It is pertinent to notice that in the first years of the last century ruming races became common in the Middle and Southern States, while a strong sentiment against racing prevailed in the Northern States. In 1820, Pennsylvania, for example, not only forbade racing, but also enacted that no person should "print or cause to be printed, set up or cause to be set up, any adrertisement mentioning the time and place for the rumning, trotting, or pacing of any horses, mares, or geldings," etc. A similar law was in the statutes of Connecticut until within 30 years. New York passed an act to prevent horse-racing 19 March 1802, which was amended 30 March 1821, permitting the "training of pacing, trotting, and rumning horses" in Queens County for five years. The sheriff was required to be on hand to witness these "trials of speed," as called in the statute. This amendment was re-enacted 3 April 1826, without a time limit. In 1825 the New York Trotting Club was organized, with a riew of "improving the speed of road lorses." This track was probably the first trotting course in the world. The Hunting Park Association was formed in Philadelphia in February 1828, and the next year a trotting club was organized in Baltimore. These facts show a changing public sentiment, and the records begin to fall. The keeping of records became an established custom as early as 1829, when the 'American Turf Register' began. The English had not then begun to keep records. but the American custom has enabled us to mark the development of speed and establish well-defined brceds during the threescore and more years it has been in use. Wallace's 'American Trotting Register) was started in 1871 by J. H. Wallace, New York, since which time the business of breeding trotters has increased, until now it is estimated by good authority that the number of registered standardbred trotters exceeds 120,000 . In the early history of the record many animals were admitted to registry that are not now classed as standardbred. The term "standard" indicates to-day ability of one or more ancestors to trot within 2.30 .

Before the days of macadam roads and light vehicles, saddile-horses were as common as trotters are to-day. They were of 110 particular breeding. but traced to the thoroughbred, the Narragansett pacer, or the Scottish Galloway. Herbert suggests that they were of Spanish origin, their ancestors coming from Cuba. There is now a revival of interest in the saddle-horse as a luxury, the demand being beyond the supply. From the ideal set up, especially in Kentucky, it is safe to predict that there will soon be an improved breed of American saddle-horses.

Prior to the introduction of railroads Vermont had what Herbert called a distinct breed of cart-horses. He described them as "the models of what draft-horses should be, combining immense power with great quickness, a very respectable turn of speed, fine show, and good action." They had "none of the shagginess of mane, tail, and fetlocks which indicates descent from the black horse of Lincolnshire." and none of the curliness of mane and tail which marks the Canadian or Norman blood, and were characterized by short backs, close ribbing up and round barrels. The only other breed of American horses we have to notice is the Conestoga. which before the days of the Pennsylvania Railroad was common on the farms and highways of Pennsylvania. It scems to have descended from the stock brought by emigrants from Flanders, Denmark, and Germany: It was a mixture of several breeds, resulting in a large, patient burden bearer, held in high esteem by the Germans of that State. Although we have not originated and permanently established any American breed of draft-horses, the number of heavy horses has greatly increased, and the quality has improved. The increasing heavy business of factories, jobbers, importers, and transfer and express companies in our well-payed cities has called for a great number of powerful horses. This demand las led to the importing of heavy horses from France, England, Scotland, and Germany. The Vermont cart-lorse and Conestoga draft-horse excelled the types of forcign heavy horses, as a rule ; and it is to be regretted that our pride in American animals has not led our people to perpetuate and further develop these useful horses. Tens of thousands of dollars have been sent abroad since the fad of importing heavy elephantine horses became common in the Western States. The enterprising importers scoured France, England, Scotland, and Germany for the heaviest animals. They imported more than they could sell, and then adopted the plan of leasing stallions for a term of years. Since 1890 there have been many disastrous failures among this class of importers. There were, however, several importers who imported the best type of the draft and heasy coach breeds to be found abroad, establishing breeding farms not excelled in the world. The earliest importer of high-class drafthorses was Edward Harris, of Moorestown, N. J. In i839 he imported two mares and the stallion Diligence, who was in many respects similar to the MiNitt horse, but heavier and more compactly built, being a little over fifteen hands high. The next valuable importation was made by Clarles Fullington, of T'nion County, Ohio, in the spring of 185 I. He bought and brought home from France the famons Louis Napoleon, a "short-legged, closely ribbed, blocky, and compact gray, three years old." In 1853 he was sold
to A. P. Cushman, oi De Witt County, Illinois, and aiter his colts in Union County prored his worh. a company was formed for importing other horses of his type. The aurhor of the 'Percheron-Sorman Stud-Book' says of him that he was undoubtedly the best-known and most popular French horse ever brought io America. The first importations west of the Wabash were made in ISOS by IV. J. Edwards, oi Chicago, in the great stallions Success and French Emperor. The latter went to Iowa as the propenty of Hon. I. B. Grinnell Success was sold to the Fletcher Horse Compayy, of which M. W. Dunham, of Wayne. Iil., was an active member. In 185% he purchased the entire interest of the company. establishing his celebrated importing and breeding farm at W"ayne. Success"s colts at the average age of two yeass and eight months sold at the average price of Etso per bead. and in IE-: alone the sales of his get amornted to $\$ 36,000$. The Clydesdale has been the strong rival of the Percheron-Norman; is popular in Canada, and has numerons representatives in the Jorthwest. The secretary of the American Clydesdale Association, Alexande: Galbraith. says: 'No importations inio the Enited States appear to have been made until about 18 -o and $18-2$, when John Reber, of Lancaster. Ohio, and the Fulliagtons. of Union County. began the work. From that date small imporiations were made by various parties, the most prominent being the Powell Brothers. of Shadeland. Pa. Importations steadily increased up to 1888. To-day the largest breeder in America is Col. Holloway, oi Illinois: N . P : Clazke oi Minnesota, and R. B. Ogilvee of Wisconsin. coming next. These three breeders have among them about 1 İ brood-mares. and have the very cream of Scotland beth in blood and individual merit. As high as EIO_{1000} has been paid for one Clyde. Eight volumes of the 'American Clyde Stud-Book' have been published. containing 8.000 entries. ${ }^{\text {D }}$ The Shire horse is little esteemed in Canada. but in the American craze for heary horses he inds admirers. There is an American s:ud-book of three volumes, with i,100 entries, 3.500 of which represent imported horsc: See blorie-rachig; Horses. Trotting and Pacing.

Miltos lonegg.

 Lexinglun, \AA_{y}.Horses. Military. The relative importance of the horse as a factor in the progress of civilizaticn has been somewhat reduced by the introduction of steam and electricity, but mechanical devices such as the bicycle and autom bile are not like'y to wholly supplant the indispensable ally of man ior war purpoies. The value of cavalry has not, within the century, been $=0$ fully recognized as during the recent South Airican campasgns. where the supply of horees reached enormi us proportions. The kind of horse in : cavalry and arillery use is controlled by the character of service ior which he ts to be used. Hardy range herses are desirable in a campaign where the quesion of forage supply is a diffcult one, but, if iully armed and equipped men © i average size are to be tran-ported and held in readiness is mnunied conbat with opposing cavalry, then larger and better trained horses are devirable.

The source from which cavalry horses are cbtained differ: in sarious countries. Some

European nations breed and raise their remounts, whale others provide the services of selected stailions gratuitously to breeders, the foals being held subject to purchase by the state. The American plan diriers from the European practice and involves only the inspection oi such animals as are presented by contractors. This encourages all iamers io breed a iair class of horses. and whenever the requirements of the markers increase the breeding usua*ly increases vntil prices somerimes fall below a level at which colts can be pronitably reared. Only a small percentage of horses raised in the United States are adapted to the requirements of cavalry service. This arises from the existence of a special and narrowly defined obiect to be attained. and which requies animals of particular conformation and character. The inspection of remounts for soundness and conformation is a rery important duty. demanding technical training and interigence. It requires judgment. much instruction and long paactice to correctly estimate the relative value oi variocs points of the horse and to determine whether the good qualities counterbalance the existing defects. Contractors do not usually present ideal animals. but the market from which they draw is so large that there is no serious diffeulty in supplying the remounts annually required for the Tnited States cavalro

In European armies horses are accepted at four years of age and sometimes under that age. It has been ound in practice in the U'nited Siares preierable to buy no horses under six years of age for immediate use in field service. Iounger horses may be accepted during peace when there is no likelihood of immediate hard service, but they are subject to intuenza or shipperis iever to a degree which oiten renders them unserviceable ior many months. Good points in a cavalry horse are not mere maiters of beauty, but shapes which, on mechanical principles, are likely to answer required ends. Cavairy horses must have certain qualifications. the most important of which are ille possession oi sufficient mobility to execute tactical maneuvers at varying degrees of speed and the ability to stand hard service while carrying great weight. The weight of trooper and equipnsent averages about one fourth the weight in the horve Ability to carry tlesh under siress of thot rarions is a commendable quality in a casalry horse. since it enables him to s:and hard Wurk and to aroid a sire back. $A=$ a result of many years of experience the requ:rements demanded in the cavalry horse $n \mathfrak{i}$ the C'inted States are laid down in the regulations in this language:
uThe cavalry horse must be sound and well bred: gentie under the saddle: free from vicious habits: with iree and pronpt actien at the walk. trot, and gallop: without blemish ir defect: of a kind disposition: with easy mouth and sait, and otherwise to conform to the foliowng descriptivn:
"A gelding of uniorm and hardy color: in good condition: from fificen and one fourth to sixteen hands high; weight not less than 9 go nor more than $1, i 50$ pound-: irom four to eight years old: head and cars small; jorchead broad: eyes large and prominent; vision periect in every respect: shoulders long and sloping well back: chest iull, broad, and deep: iore legs
straight and standing well under: barrel large and increasing from girth toward flank; withers tlevated; back short and straight; loins and haunches broad and musctlar; hocks well bent and under the horse; pasterns slanting, and feet small and sound." See also Horses, Riding and Driving. W. H. Carter,

> Brigadicr-General, U. S. Army.

Horses, Riding and Driving. In the latter days of this country one can hardly go to even an insignificant town or village without finding that a number of its residents spend time and money in raising, training, and driving as good horses as their means will afford. Another striking feature of this country horsemanship is the rivalry and constant rying of each horsc-fancier to excel among his fellows, and the interest manifested to-day in buying, sclling and "swapping" horseflesh is typical of the American.

The county and state agricultural fairs, which now make the exhibition of horses a special feature, are largely the ontgrowth of this far-reaching interest in horses. Nearly every country fair has, besides trotting and perhaps running races, a department for harness horses and breeders' competitions. As freight and passenger rates are commonly commuted by the railroads or the fair corporations, these meetings enable the farmer to sce the best the country for miles around can produce, raise his standards and teach him the results to be attained by proper breeding.

The horse shows, held annually in many of our large cities, at regular seasons throughout the year, and so arranged that they may not conflict as to dates, invite competitors from all parts of the country, who exhibit what they have with fair prospects of making their expenses from the prize money won. These horse shows are fostered both as sporting and business institutions, and the best horsemen in the country form their directorates and act as judges. These large shows do much to establish the types of animals that meet with favor, and their growth and popularity has cultivated the taste and interest of the general public in horses more than any other factor.

The types of horses highly valued in the large cities and in the country are. of course, similar to a large extent. A good horse is good anywhere. Nevertheless, the requirements of a metropolitan market are much more exacting and extend to the many qualities which we wilt try to outline in this article. While the country is often satisfied with mere "getting there" qualities in the horse, regardless of how it is done. or perhaps a mere combination of specd and endurance, the standard of a large city calls for certain definite requisities and qualifications -"points"-which are well nigh indispensable if the horse is to command a good price.

To fill the requirements of the affluent class it is estimated that mot more than 5 per cent of the horses throughout the country, including those raised with this object solely in view, can be utilized. Indeed, taste has become so fastidious that the right kind can only be found by diligent search, and prices verge into sums that 10 years ago would have been unbelievable. It must not be thought that the general run of horses in this country, or indeed that the qual-
ity of our native bred loorses, has eleteriorated in the past few years. Such, in the writer's opinion, is not the casc. The fact is, that to fill the high requirements of the metropolitan market has become the recognized goal of all horse breeders: and it is now generally understood throughont the country that the market for the inferior horse is limited to those who can afford to pay so little that the breeder is not compensated for his care and outlay in breeding anything but the best. The general introduction of trolleys and electric vehicles has been an important factor in curtailing the market for horses that are merely "scrviceable" and has reduced it to a competitive point that is umprofitable.

The high qualifications for the metropolitan market have reduced the available horses to such a small number that expert buyers search this country and the Dominion of Canada from one end to the other. Buying as cheaply as possible, so thorough has been the scouring of the country that the prices paid would seem fabulous to the seller if the cost alone of raising the horse were taken into consideration. The buyer must also assume the risk and expense of transportation to market.

The "points" for which the brecder is striving are well defined, but the individual may vary so much in combining them that the interesting feature of personal taste remains as the determining factor in selecting horses for personal use.

Hcavy-Harness IIorse- The term "heavyharness horse" is a general one. Under it may be classed anything from the 12 hand pony for basket-phaeton or village cart, through the varions types suitable for the runabout, gig, brougham, victoria and other vehicles that fashfon prescribes for various uses, to the $16-1$ hand carriage horse for pulling the capitalist's omnibus.

The importation into this country, since 1883, of English hackneys and the cxhibition of them has undoubtedly done much to edncate the public to a type of carriage horse. While no disparagement is intended to the standard bred trotting horse, whose origin, indeed, is allied to the hackney - although his later history is somewhat different - the serviceable, shortbacked, straight-legged and intelligent horse now the standard for metropolitan use is nevertheless nearer the hackney type than the old style American trotter. It shonld he stated, however, that very few either of the trotters or hackncys of 25 years ago would generally fill the requirements of the harness horse to-day. A type having been once well established, however, horses filling the requirements can be sclected from carefully bred trotters as well as from hackneys, and one brecd is often mistaken for the other, such is their closeness in resemblance and the result of breeding with particular ends in view, The elements to be taken into consideration in the harness horse are as follows: Conformation, mamers, action, speed, color, size and age. Conformation ranks first in point of importance, but manners are an absolute essential also. These two although somewhat variable must be present in any horse required for harness; the others vary considerably according to the type and weight of the vehicle to which the horse is to be harnessed and the purchaser's personal taste.

The elements in the order of their importance from a purely selling point of view are:
I. Coniormation as to head and neck. This is probabiy the first feature the average purchaser will look ior. The horse should possess a small head, delicately molded nostrils and a small tapering muzzle. His jaw-bones should be well apart so that when the head is reined in they will not interiere with his breathing. He should have good sized eyes, well separated; a narrow jorehead or small eyes being general indications of lack of intelligence, nervousness or a tendency to iright or bad temper. The ears should be small and well apart. The neck should be gently tapering and well cut out in the throat, and the so-called "crest" from which the mante grows should have the slight convexity which indicates strength. maturity and condition. The neck should be set on sloping shoulders. so that the head will be naturally held erect. turning upward irom the forward line of the trunk nearly perpendicular. A iapering neck is an indication of breeding and finemess as distinguished from the coarseness of draft blood and the common horse in ordinary นะe.
2. Coniormation as to legs. The general requirements are that all four legs shall be approximately straight and not too long. A moderaiely short-legged horse is generally preferred, both ior looks and service, to one that depends upon long legs for height. The forelegs should be perpendicular when the borse is standing erect, bones flat, but not heavy or coarse. The hind legs. when in a natural position. should be so jormed that a plumb line dropped from postericr point oi the haunch will be nearly tangent at the point of the hock, the rear line oi the leg below the hock being approximately parallel to the plumb line. The thighs should be moderately heary at the height of the lower line oi the trunk. The modern idea is that the horse's buttocks should be round and muscular viewed from behind. The pastens of all four legs should be springy and lons rather than short.
3. In general." The horse should be "closecoupled"; in other words, there should not be too much space between the last rib and the quarter. His trunk should be round and just fleshy enough so that his ribs may be ielt - not seen. Standing on level ground the height of his withers and croup should be about the sanue. The trunk. directly under the withers, should be deep and the cheit irom the iront view broad. giving room for the heart and lungs and an appearance of power. The belly should be well picked up beneath the kidneys with a gentle. convex, upward curve from between the front legs - not enough. however. to produce the waspe effect sometimes seen in horses otherwise well formed. The back should be short, !ending to the trunk an appearance of compactness and soldity. The quarters should not iall away Lack if the kidney more than an inch or so to the root oi the tail. The tail, if set well jurward of the pusterior line of the horse"s haunches, is generally admired, and in this position will be carned at the froper angle maturally.

Under the subject of M/unners, iull technical treatment should be sought in varicus bocks relating to herse training and breaking. We will endeavor to point out. however, to what extent manners in a harness horse is supple-
mental to ordinary training; to trear the subject fully being like attempting to describe what a gentleman should do under all circumstances. .A few salient points will perhaps give a tair indication of the general subject.

The well-mannered horse should be so trained that when bitted his head is carried almost vertical, and close to his neck. which will be gently curved; the bead and neck taken together being straight with the line of direction in which he is traveling. This position is not only graceful but gives the driver the utunost command over him. He should "fill his collar" without urging, but be light mouthed and susceptible to the slightest hint from the reins, voice or whip. He should be atraid of nothing and possess sufficient inteligence so that aiter first acquaintance with motor vehicles, railroad trains and other startling objects, he will pay no attention to them.

Into this subject therefore the question oi natural disposition necessarily enters, as without a sensible but willing and high-strung disposition, it is impossible io produce a fashionable carriage horse. The horse should be trained to back and turn ior the wice or with the slighiest pressure of the reins without manifesting any disposition to slake his head or bore upon the bit. Plunging, rearing or trickiness must be absolutely eliminated. so that he is sare for a lady to drive through crowded city streets. He should be broken single, double and tandem, and to the saddle ior convenience sake, and should be ready at any moment to serve in any one of these capacities.

All this mannering constitutes a supplemental or post-graduate education, ior the horse as delivered irom the country is broken, but commonly utterly devoid of manners. To accomplish this a training extending over a period of as much as three months is often necessary even with a horse thar would be considered thoroughly broken in the country; and after mannering him as to how be shall carry his head and respond to the driver, it is necessary, so periectly must the horse be trained to suit the metropolitan purchaser to spend a week or more in thoroughly accustoming hin to city pasements and sights. It is almost suncriluous to state that many horses cannot be brought to this high state of perfiection, but the question of manners enters very largely into the price consideration. and the schooling should be carried on to as high a point as the disposition oi the individual will admit.

While Action is not absolutely indispensable, it is nevertheless the feature that many amateur horsemen will look for first, often neglecting much more important points io secure the flashiness of the high actor. Ilany dealers say, "Give me action and I can sell anything." Withont going to this extrente, it is undoubredly true that high action will cover many sins, and if a horse will only "get his head up and act" he is apt to be salable. Without action speed seldom attracts the cuty purchaser, and while it is undeniable that high action, except with careful drising and stable attention, will often cripple a horse on hard pavenents who might otherwise go sound for years, the average hich-price buver not only asks for clean. straicht action, but verges to the danger point in its heigh. The expert will seek horses having action both in

I. Pure Arabian.
2. Arabian Stallion.
3. Shetland Pony:

+ Welsh Mountain Pomy

5. English Shire Stallions.
6. Clydedale Gielding.

- French Coach Horse.
\therefore English Hackney.
front and behind as he knows that without hock action, little, if any, speed will be produced, the propelling force lying in the power of the thighs. He will look at the horse going, coming and sideways, first to see that the horse neither toes in, paddles or interferes in front; second, to see that he keeps his hocks close together as they pass, and consequently does not "straddle" or place his hind legs at the extreme forward stride outside of the line taken by his fore legs, or interfere by brushing either fetlock joint; third, that he does not forge and that his action is even when looked at from the side, each leg advancing at a stride the same distance and height as the corresponding leg on the other side.

The only gait admissible in the heavy harness horse is a trot. Pacing, racking, singlefooting, or any gait other than a square line trot, by whatever term it may be called, have no place in the metropolitan market. The horse should strike out straight from the shoulder in front, the whole leg straightening at the instant the hoof tonches the ground, the hoof striking flat. The straightened foreleg then passes under the body of the horse and is rolled up when it leaves the ground, the hoof nearly touching in extreme cases the point of the elbow joint. While still "folded" the arm bone reassumes the position for the next forward stride. As indicated above, the action of any single leg and boof should be in a single longitudinal vertical plane. Some writers have endeavored to demonstrate, by projecting upon a longitudinal vertical plane the arc described by the forward point of the hoof from the time the horse picks up his foot from the ground until he touches it again, that the ideal action thus projected would form a symmetrical are of an ellipse. While it is conceivable that such may be the case, it is practically impossible to determine slight variations from this ideal, and if the horse acts high, clean and straight without interference or forging he will not generally be open to criticisni.

The modern buyer looks more and more nowadays for strong lock action, which means that the horse will cover ground and retain much of his action regardless of the amount of weight behind him.

While Sperd is not a very important element in horses for carriage use, it would be a truism to state that people like to go fast, and of two individuals equal in other respects, the purchaser will prefer the horse that has the most "step." A discriminating dealer will commonly ain to secure horses that can go a mile under ordinary circumstances in $3^{1 / 2}$ minutes, and if possible in 3 minutes. This is, ordinarily, quite fast enough for salability, and the horse that will "road" steadily at 10 to 12 miles an hour and can increase the speed a little for a short spurt, fills the market requirements pretty fully.

In Color, modern fashion prescribes hays, chestnuts and browns, a dark seal brown being perhaps the most popular. Golden chestnuts are also popular, and blood bays are in high favor. Very few purchasers will consider a white or black horse, regardless of any number of other good qualitics. Grays, except of the dark dapple variety, are rarely used, except in a crossmatched pair. and then only as a matter of personal fancy. In a road coach four, however, they are approved by the best authorities.

The amount of white on a loorse is a matter of personal taste, many people liking white fetlocks and a star, stripe or blaze on a chestnnt or bay's head, others preferring solicl color. Bays are generally most popular with black points, but in general it may be stated that the horse possessing too nunch white will not please. One or two white legs, with white extending a short way to the knee or loock, will not be objected to, but it can be stated positively that, except for a leader or wheeler in a road coach team, where a showy effect is desired, there should be no white upon the body of the horse.

A sleek, shiny coat is a recommendation for any horse, as it usually bespeaks condition and breeding.

The question of Size is one that is a matter of personal taste primarily, and secondly, one of suiting the vehicle to which the loorse is to be harnessed. The salable horse for ordinary city use is rarely under $14 \frac{\mathrm{t}}{2}$ hands, and in the opinion of most judges should not exceed $161 / 4$ hands. For a lady's phaeton a small team with considerable substance and not usually less than $14^{5 / 2}$ hands in height is required, and for a heary omnibus sufficient weight and strength are tusually secured in the horse whose height does not exceed 16 liands. The most salable size for horses in general use is about $15-2^{1 / 2}$ hands. Most buyers will restrict their purchases to horses between $15-1$ and 16 hands, unless the animal is very remarkable in other respects, because customers for extremes in size are few in number, and such horses are consequently less readily salable.

A word should be said as to the Age of the marketable horse. It is pretty wel! understood that colts suitable for heavy harness do not attain maturity and maximum strength until they reach the age of five or six years, and the ordinary purchaser will prefer the six-year-old horse. From seven to 10 years the horse is at his best. While some horses hold their good qualities and are serviceable up to an extreme age of perhaps 20 years, - in the city horses rarely stand the strain of travel on hard pavements for many years without showing signs of usage sufficient to render them unsalable, except at small prices.

Horses kept for the show-ring and therefore not subject to usage on hard pavenients exemplify the fact that there is little or no advantage per se in the young horse. Indeed, the horse may be at his best at the age of ro years, and many of the blue ribbon wimers of the past few years are even somewhat older.

The Saddle Horsc:- Neglecting the subject of chargers and hunters, the former having but a limited market and being generally subject to army specifications, and the latter constituting too large a subject for discussion in an article of this character, and of more interest abroad, especially in England and Ireland, than in America, we shall say a few words of the saddle horse, presenting as briefly as possible some of the facts which should be borne in mind in supplying the market.

The conformation of the saddle horse will not be found to differ very materially from the carriage horse, and many private owners, who do not feel able or warranted in stabling horses for saddle purposes only, will find a combination horse for saddle and harness use a possi-
bility. A sadole horse is not improved in gait by being hamessed to a vehicle, particularly a heary one. in fact is impaired thereby. but moderate driving to light rehicles will not incapacitate him wholly for the saddle.

In a "park hack" " we should look for somewhat substantial coniormation. As in a carriage horse, depth of girth should be sought and the back should be short. all the distance possible, however, separating the forelegs from the hind, the horse having much of his length in his shoulders and quarters. The croup should be long, so that, taken in combination with high and prominent withers and heavy shonlders, the saddle will have a good seat and be prevented irom slipping forward. As in the hind legs reside the seat of propelling power the thighs should be long and muscular, and some people prefer the hocks well bent. The pasterns should be somewhat longer and have more spring than in the harmess horse.

As in the harness horse the saddle horse should be about the same width in iront as behind. Jany will not object, however, to a horse slighty wider behind than in iront. as the claim is made that, in a gallop, the hind legs will better pass outside of the forelegs; but, under no conditions should the horse be wider in front than wehind. He should have a moderately long and upright neck and a prominent crest. as this is the muscle that supports his head, and the neck should be arched. Wiith this combination a horse will usually carre his head erect without support from the reins, and the rider wilf have better control and feel that he has something in iront of him.

The manners of a saddle horse is an element worthy of particular notice. Besides the qualities and disposition valuable in a harness horse, primarily he must possess a high degree of intelligence and be absolutely featles: and he needs a iturther education to make him "bridle wise." By this term is indicated response to the slightest pressure of the rein on either side of the neck, so that the horse turns readily by the lateral movement of the sein hand. This allows the rider one hand free for use or emergency.

As to gait and action, the horse should have a fast walk, so that when ridden in company he will keep up without breaking into a jog. The frot should be even, springy and regular. so as not to jolt the rider. Extreme action is not a necessary feature, but the harse shonld possess enough action to be noticeable in company; and higlo action is not a detriment if unaceompanied by pounding. An easy canter and gallep are necessities, and particularly is this true of the horse intended for long rides or to be used in the country. These gaits should be accomplished with a maximum of forward motion and a minimum of rocking.

Types and sizes of saddle horses vary greatly :ice rding to pervonal ta-te and the weight to lie carred. Some desire a short-legged, thickset ecbby herse for weight-carrying. while those of lighter build may prefer a taller hurse of less substance and more speed. Above all things the horse slonuld be iree and willing, as no man desires, or will tolerate, a horse needing constant urging.

Brecding.-A word or two as to breeding may mul he inappropriate, as the requirements of the market are so exacting that every breeder
should take them into consideration, in order to produce and raise as large a percentage of marketable horses as possible.

Much has been written upon the subject of horse breeding and genealogy in America, and careful investigation reveals much shallow erudition. The results of recent research have shed sufficient light upon this subject to show that much of the published matter as to the ancestry of the American trotter will not bear close investigation. Heretical as it may seem, the history and origin of the Hambletonian strain of blood, which for years has been held in high esteem among breeders throughout the country, we believe is open to reasonable doubt as to its authenticity. It does not seem unlikely that some of the breeders, in their desire to create a lineage for their horses, drew on their imagination for the breeding of the ancestors. After many years of assumption that the published facts were correct, grave doubt is now cast upon the breeding of some of the original stock. Perhaps. therefore, the less we attempt to demonstrate results by referring to the lineage of the standard bred trotting horse the saier.

Oif the other breeds of this country perhaps the best known are the Morgans and Clays, but generally speaking, such numerous and often careless crosses have been tolerated that these breeds in anything like purity of blood have mostly disappeared. In the author's opinion, up to a recent date, the breeder in America has sought speed to the detriment of action, even going so far as to make conformation a secondary element.

A word should be said about the Hackney. Much confusion has resulted temporarily, and probably only temporarily, from the placing on the market of so-called Hackneys, which are such only in conformation and not in the action and speed which are characteristic oi the Hackney of honest blood. This breed lends itself exceedingly well to the requirements of the heavy harness horse when proper individuals are used in the stud. Although at present there are but few such individuals in this country, the Hackney dates back in England to the sith century. It was originally a cross between the shire or English cart horse, an animal somewhat coarse but of much substance, power and action, and the sleeker thoroughbred of delicate conformation and high strung temperament. So well has this breed been cultivated, to the elimination of the coarser individuals by a few reputable breeders in this country, that it is not difficult for the careful judge to discriminate.

Recently, American breeders have achieved extremely satistactory results by crossing hackncy stallions with clean-limbed. nicely turned trotting-bred mares, and while this cross is one that breeders claims should not be carried beyond one seneration ior tear of the infusion of cold blood in the offispring, a single cross certainly produces a harge percentage of good marketable siock. This cross commonly combines high action and much substance with speed and breedy aptiearance.

As most scientific breeders now acknowledge, the main fact of all breeding is that it is a matier primarily of individuals. good lineage counting for little in the produce if the breeding slock do not themselves fill all the requirements
desired. Not only should care be taken to use proper individuais, bu: if a slight fault exists in either parent - no horse being absolutely perfect - the other should be selected especially proficient in what the one lacks.

Back of the standard bred trotting horse, Morgan. Hackney and French coach horse - another imported breed - stand practically the same Arabian ancestors, and as all are to-day bred with one end in view, the choice of one breed as against the others is a matter of selecting the individual best filling requirements.

If the main purpose be to breed for that market which is the most profitable, that of the heayy harness horse, it seems to the author that. instead of horses becoming standard by performance on the track if they became standard by performance in the show-ring all the qualities desired as well as speed would be mose properly conserved. Of course, many practical difinculties, some of which would defeat the very ends sought, stand in the way of such a movement unless it were conducted by the government. A stud book formally conducted by the government and authentically recording the lineage and performances of stock. so that the history of a strain and the results of crosses might be generally published and read, would be of immense value to the horse breeder and to the government itself by raising the quality and value of the horses raised both for domestic use and export.

An interesting commentary on the subject of the harness horse and an evolution well worth notice is the gradual elimination of the unreliable small dealer in the metropolis: in fact, the market is fast falling into the hands of the comparatively few reputable dealers who endeavor to conduct their business on broad commercial lines. The purchasing public are beginning to recognize that it is best for their interests to patronize such dealers as can rather afford to take a loss on an unsound or unsafe animal by giving him away than to sell him under a misrepresentation and make a financial gain at the expense of reputation. This fact is not only an assurance that the interest mranifested in the horse in our large cities will not decrease, but the business being in good hands that many who have in the past been slow to venture into this field of pleasure and sport can now enter into it as beginners without a long, unsatisfactory and expensive experience as a preliminary. See also Horees, Americas Thoroughbred.

Arther Mas,
Sec'y Standard Caach Harse Ca., Veii' York.
Horses, Trotting and Pacing. The harness racing horse has iwo gaits, namely, the trot aand the pace. They were both originally the connecting link between the walk and the gallop, but by development and careful training have come to take the place of the latter so far as extreme speed in harness is concerned. The term "diagonal gait" is applied to trotting because the horse employing it raises simultaneously a front and hind foot at opposite sides of the body. In pacing the front and hind feet on the same side move together, and this is best expressed as the "lateral gait." "No one has yet been able to explain why a horse goes at one or other of these gaits when urged from the walk and guided by the rein to keep irom the gallop.

The history of liarness racing in America is practically contemporaneous with that of the Republic of the Linited States. After the Revolution the development of speed in the horse had its attractions here as in Europe. At first the running gait was the onty one considered, but the importation of an English sire called Messenger marked the beginning of a new era. He was brought over in $1-88$ and landed at Philadelphia. Though descended from stock that inclined to the gallop and practically a thoroughbred. this horse was more inclined to the trot. What is more remarkable he transmitted this habit or instinct to so marked a degree that he made a great reputation in the New World through the superiority of his progeny over all other breeds. So "Imported Mlessenger," as he was popularly known, was the patriarch of the American trotter, and nearly all of the immense troop of harness racers in this country to-day trace descent to him. His death in 1808 near Oyster Bay, N. Y., was looked upon as a national calamity. and he was buried with military honors, the funcral being attended by prominent horsemen from all the neighboring States. As this horse was the founder of a notable family and represents a type in some respects separate and distinct from others of the genus equus it seems unfortunate that no portrait or drawing of him was ever made. There is a pen picture which in some measure atones for this, and is worth quoting. It describes Messenger as of a gray color. standing full 15 hands 3 inches in height, with a thin mane and tail, ears larger than most well bred horses, but erect and lively.

At the time of Messenger's death the limit of speed at the trot was in round numbers a mile in three minutes. The saddle was chiefly in vogue for this gait as well as rumning, but the employment of a velicle with two wheels foilowed the building of better roads. According to J. H. Wallace, an authority on the thoroughbred. a chestnut horse trotted at Philadelphia in a sulky 25 Aug. I810, one mile in $2: 481 / 2$ ior $\$ 600$. The horse was fourteen years old and barely 15 hands high. There is an earlier ieat now accepted as authentic of a horse called Yankee, trotting a mile in 2:59 in I806 on Harlem Lane, a favorite driving place for New Yorkers. The breeding of these first clampions of the sulky remains in obscurity, but it was not long before the descendants of Imported Messenger began to do greater things Topgallant, who is credited with three miles in S:II and easily the best trotter of his day: was inbred to Messenger, his sire and dam borh being by the potent English stallion. Screwdriver, who went three miles to saddle in $8: 02$ a year before this, was another of the stars descended from Messenger, as was Dutchman, another long distance trotter, who went his three miles under saddle in $7: 32^{12}$; but the most famous of the Messenger brood in the nearer generations was Lady Suffolk. She was the first queen of irotters, her reign being a long and undisputed one from 1838 to 1852 . She enjoys the special distinction of being the first troter to score as fast as $2: 30$ ior a mile in harness. Following Lady Suffoik there were a few lesser lights that innproved slightly on her hest record, but her real successor as a conqueror of time was Flora Temple. She was foaled in $18+5$, her turf career
beginning in 1852 . Five times this wonderful mare reduced the figures that represented the speed limit, her greatest effort being $2: 193 \%$. Then came the naighty Dexter, who reduced the record to $2: 11^{-1}$. His public career was cut short when Robert Bonmer purchased hin and took him to New lork for his private driving on the road. Goldsmith Itaid came out in 18;1 and clipped a iraction from Dexter's mark. She was foaled in 1857 , made her debut at 10 years and continued to fill engagements in races and against time up to $18 \% /$ Rarus managed to improve Goldsmith Maids record a trifle during a very creditable career. The gelding St. Julien eclipsed him a year after by a full second. Then a new queen appeared in Maud S., and between this fleet pair was a lively duel for the championship. The figures were improved by fractions of a second until the mare reached $2: 103 / 4$ in 1880 , which proved too much for the gelding. After his surrender another candidate appeared in Jay Eye See. Meantime Maud S. had got down to 2 :10 ${ }^{\text {I }}$, but Jay Eye See enjows the distinction of being the first to touch the even 2:10. This was in 188_{4}, and then the mare showed that she was the better horse by compassing the track in $2: 093 / 4$, and again in $2: 083$.

The greatest mechanical aid to the harness horse that has yet been devised came into use during 1892. This was the application of the ball-bearing axle first applied to the bicycle, with the pneumatic tire and a wheel of about 28 inches diameter. Its first public trial was in a race at Worcester, Mass., early in May, where its manifest advantage enabled a slow horse to fairly play with a field of faster competitors. None of the prominent trainers had seen this new contrivance. and it was not until well along in July when they awoke to a full realization of its merits. The writer was privileged to see and try this sulky with its frictionless gear before it had come into general use, and on cxploiting it with a conservative opinion that a horse could go at least two scconds faster than if hitched to the high wheel sulky, was informed by Budd Doble, the leading reinsman of that day, that he was the rictim of a hoax. Less than three months after this same Doble had driven Nancy Hanks to one of these smooth running machines a mile in $\mathbf{2}: 0.4$. or nearly five seconds faster than the record of Waud S. This material reduction was only the beginning of a new era in speed, as four other trotters have taken advantage of this appliance and carned the championship in turn. Alix only clipped a quarter of a second irom the mark set by Nancy Hanks, but she did this aiter a hard race canpaign that took away from her real ability. It was six years beiore this resolute owerworked mare had to surrender the crown, when in 1000 the Abbot trotted in $2: 03^{\frac{1}{4}}$. He had previously won his spurs in several creditable races. but his successor and conqueror, Cresceus, proved to be a much more remarkable representative of his kind. Starting at three years this Hercules among trotters met and defeated older and more seasoned campaigners in his colthond, scoring $2: 11^{1 / 3}$ in the cighth heat of a winning race. Then each successive seacon found Cresceus able to add to his laurels until in troi he carned the championship twice. Ifis record of $2: 02^{1 / 4}$ was followed by the famous match against The

Abbot at Brighton track, Brooklyn, N゙: Y., I5 August, when, in the presence of an immense crowd, many of whom came hundreds of miles to see this battle of the giants, Cresceus was the victor. It was no light task at first, as The Abbot forced him to go in $2: 03$, + , the fastest mile by mearly two seconds ever scored in a trotting race. Besides these feats Cresceus has lowered many other records. including the one for two miles which he placed at $4: 17$ late in 1902. During the season of 1903 he again battled against time, and after his previous championship record had been several times beaten by Lou Dillon and Major Delmar this stout warrior trotted in $1.593 / 4$ at Wichita, Kan., in October 1903.

Before this great feat his star was momentarily eclipsed by the advent of the long expected and much desired two-minute trotter. So suddenly has this new marvel appeared, and so rapidly has she reached the goal that hitherto seemed unattainable that the workd at large cannot fully appreciate the merit of what Lou Dillon has accomplished. To begin with, she is the youngest of all the champions, being but five years old. What is even more remarkable, her turi life extends over little more than 12 months, and up to last June she had never filled a public engagement. Yet within a few weeks this marvelous mare has smashed records and on 22 Aug. 1903 she electrified the country by a mile in two minutes. This was done over the track at Readville, near Boston, where six years before the pacer Star Pointer scored the first mile ever made faster than "even time." An analysis of Lou Dillon's unparalleled flight for a trotter shows that she was rated with great skill. At the Brighton track just a week berore she had gone a first quarter in $283 / 4$ seconds, and a half mile in 59 seconds, a killing rate. which destroyed any chance slie had of finishing in time to break the record. Profiting by this experience her driver and those who handled the two gallopers hitched to separate carts that accompanied her as fáac makers, did mucl better work at Readville. This is shown by the time at the various quarters, which was $30^{1} \frac{1}{4} 30 \frac{1}{2}$, $30^{1 / 4}$, and 29 seconds, respectively. While a full meed of praise is always due to the man or horse that does something better than what has previously been achicsed, it is only iair to state that Lou Dillon has enjoyed special advantages in her preparation for record breaking. She was first trained in the winter of 1902 on the track at Pleasanton, California, her native State, and on the death of her breeder and owner this year was brought to Cleveland and sold at anction. The purchaser, C. K. G. Billings, of Chicago, got a rare bargain at $\$ 12,500$. and heing strictly an amateur he promptly canceled all engagements previously made for this promising mare. She then received special training for miles against time, and not only astonished the world by her mile in even time at Boston, but a few days later drew the old-style sulky with ligh wheels, in $2: 05$ at Cleveland, clipping thrce seconds and three quarters from the record Mand S. made nearly 20 years before. Later on, at Memphis, Lou Dillon added to her fame by another mile in $1: 581 / 2$ to sulky, and one to wagno in exactly 2 minutes. She also defeated Major Delinar in a race for the Memohis Gold Cup, and being only in the hevday of her power,
it is within the realm of possihility that she will pass the mark for pacers．This now stands at I：50\％／4，made by Dan Patch at Memplis， 22 October 1903.

The following table gives the names of all the record makers among the trotters，and shows how the figures have been reduced from 2：30 to 2 ：00：
Lady Suffolk，gr．m．foaled 1833，by Engineer 2d， dam by Don Quixote．Driven by David Bryan，Beacon Course，Hoboken，N．J．，Uct． $13,1845,2: 29^{\frac{7}{2} / 2}$ ．
Pelham，b．g．foaled 1837 ，pedigree 70 traced．Driven by William Whelan，Centreville，N．У．，July 2,1849, 2：28．
Highland Maid，b．m．foaled 18．47，by Saltram；dam Roxanna，by Hickory．Driven by F．J．Nodine，Centre－ ville，…＇．．．June 15， $1853,2: 27$.
Tacony，ro．g．foaled 1844 ；by Sportsman；dam not traced．Union Course，N．Y．．，July 14，1853，2：27．
Flora Temple，b．m．foaled 1845，by Bogus Hunter； dam Madam Tenple，by Terry Horse．Driven by Hiram W＇oodruff，L＇nion Course，East సew lork，N．Y．， Sept．2，1856， $2: 24^{1 / 2}$ ．

Florá Temple．Mriven by James D．McMann，Centre－ ville，N．Y．．，Aug． $9,1839,2: 235 / 2$.

Flora Temple．Driven by James D．McMann，Centre－ ville，N．Y．，Aug．9，1859， $2: 22$.

Flora Temple．Driven by James D．McMann，Cin－ cinnati，Ohio，Oct． 7 ： $1859,2: 211 / 2$ ．

Flora Temple．Driven by James D．McMann，Kala－ mazoo，Mich．，Oct．15，1859，2：1934．

Dexter，br．g．foaled 1858 ，by Hambletonian；dam Clara，by American Star．Driven by Budd Doble， Riverside Park，Boston，Mass．，July 30， $1867,2: 19$.
Dexter．Driven by Budd Doble，Buffalo，N．Y．，Aug． 14，1867，2：173／4．
Goldsmith Maid，b．m．foaled 1857，by Alexander＇s Abdallah；dam Ab．by Abdallah．Driven by Budd Doble，Milwaukee，Wis．，Sept．6， $1871,2: 17$
Goldsmith Maid．Driven by William H．Doble，Mys－ tic Park，Boston，Mass．，June 9， $1872,2: 163 / 4$.

Occident，br．g．foaled 1863，by Doc；dam Mater Occidentis，pedigree not traced．Driven by George Tennet，Sacramento，Cal．，Sept．I7， $1873,2: 1033^{\prime}$ ．
Goldsmith Maid．Driven by Budd Doble，East Sagi－ naw，Mich．，July 16，1874，2：16．

Goldsmith Maid．Driver by Budd Doble，Buffalo， N．Y．，Aug．7．1874． $2: 15^{1 / 2}$ ． Goldsmith Xaid．Driven by Budd Doble，Rochester， \therefore Y．Aug． $12,1874,2: 1434$ ．
Goldsmith Maid．Driven by Budd Doble，Mystic Park，Boston，Mass．，Sept．2，1874， $2: 14$.
Rarus，b．g．foaled 1867，by Conklin＇s Abdallab；dam Nancy Awful，by Telegraph．Driven by John Splan， Buffalo，N．Y．，Ang．3，1878， $2: 133 / 4$.

St．Julien，b．go foaled 3869 ，by Volunteer；dam Flora，by Harry Clay．Driven by Orrin Hickok，Oak－ land，Cal．，Oct． 25 ， 1879 ， $2: 123 / 4$ ．
Maud S．，ch．m．foaled 1874，by Harold；dam Miss Russell，by Pi＇ot Jr．Driven by W：W：Bair，Roches＊ ter，N．，Y．，lug．iz，1880，2：11葠．
St．Julien．Driven by Orrin Hickok，Rochester， N．Y．，Aug．12， 1880 ， $2: 113 / 4$.
St．Julien．Driven by Orrin Hickok，Hartford， Conn．，Aug．27，1880，2：111／4．

Maud S．Driven by W．W．Bair，Chicago Driving Park，Chicago，I11．，Sent．I8， 1880 ， $2: 103 / 4$ ．
Maud S．Driven by IV．W．Lair，Homewood Park， Pittsburg，Pa．，July 13， $188 \mathrm{~m}, \ldots 10 \%$ ．
Maud S．Driven by W．W．Nair，Rochester，N．Y．， Ang．11， $1881,2: 101 / 4$.
Jay Eye See，bl．g．foaled 1878，by Dictator；dam Midnight，by Pilot Jr．Driver by Edwin Bither， Providence，R．I．，Aug．I．1884， $2: 10$.
Jaud S．Driven by W．W＇．Bair，Cleveland，Ohio， Ang．2，1884， $2: 09$ 年 4 ．
Maud S．DFiven by W：W：Bair，Lexington，Ky．， Nov．${ }^{11}, 188_{4}, 2: 09^{1 / 4}$
Maud S．Driven by W．W．Bair，Cleveland，Ohio， July $30,1885,2: 081 / 4$ ．
Sunol，b． m ．foaled 1886 ，by Electioneer：dam Waxana，by Gen．Benton．Driven by Charles Marvin， Stockton，Cal．，Oct．20，1891， $2: 09$ \％／4．
＋Vancy Hanks，br．m．foaled 1886，by Happy Medium； dam Nancy Lee，by Dictator．Driven by Budd Doble， Chicago，Ill．，Aug．17，1892， $2: 07^{1 / 4}$ ．
Nancy Harks．Driven by Budd Doble，Independence， Ia．，Aug．31， $1892,2: 051 / 4$.
Nancy Hanks．Driven by Budd Doble．Terre Hante， Ind．，Sept． $28,1802,2: 04$.
Alix．b．m．foaled 1888 ，by Patronage：dam Atlanta， by Attorney．Driven by Andy McDowell，Galesburg， 1i1．，Sept．19，1894， $2: 03$ \％／4．

The Abbot，b．g．foaled 1893，by Chimes；dam： Nettie King，by Mambrino King．Driven hy Ed．Geers， Terre Haute，Ind．，Sept．25，1900， $2: 03^{1 / 4}$ ．

Cresceus，ch．h．foaled 1894 ，by Robert MeGregor； dam Mabel，by Mambrino Howard．Driven by George 11．Ketchum，Cleveland，Ohio，July 26，1901，z：0234．
Cresceus．Driven by George II．Ketchum，Columbus， Ohio，Aug．2，1901，2：0214．
Lou Dilion，ch．m．foaled 1808，by Sidney Dillon； dam Lou Milton，by Milton Medium．Driven by Mil－ lard 1．．Sanders，Readville，Mass．，Aug．24，1903，2：00．
Lou Dillon．Driven by M．F．＇Sanders to high wheel sulky，Cleveland，Ohio，September 12，1903，2：05．

Cresceus．Driven by George H．Ketchum，Wichita， Kan．，Oct．19，1903， 1 ： 593 ²．

Lou Dillon．Driven by M．F．Sanders，Mempbis， Tentr．，Oct．24，1903： $3: 581 / 2$
＊First champion mile to bicycle sulky．
The progress and development of the lateral or pacing gait has kept side by side with trot－ ting．Beiore Lady Suffolk had opened the door for the 2：30 list，the pacer Drover had gone a mile in $2: 28$ ．For over a century the lateral gait has kept a second or more ahead of the diagonal one．Dividing the century，since speed in har－ ness for a mile was first considered．into two decades we are able to compare the two gaits and note the progress of each by the following table．The names of pacers are in italics：

Yankee，b．g．
Poston ITorse，ch．g．
Bolton Blue，bl．g．
Topgallant，b．g．
Bowery Boy．
1800－1810．Harlem，N．Y． $2: 59$ 1810－1820．

Philadelphia，Pa．2：481／2
1820－18 8 30，
1830－1840．
1829－3 miles 8：18
 $1829-2$ miles $5: 041 / 2$

Sally Miller，b．m．
1834
Drozer，b．g．
Lady Suffolk，gr．m．
Moscow，b．g．
Pelliam，b．g．
Jomes K．Polk，cb．g．
Flora T 1850－1860．
George M．Patchen，b．b
Ethan Allen，b．h．
Pocahontas，ch．m．
Pet，го．g．
1860－1870．
Goldsmith laid，b．m．
George Wilkes，br．h．
George M．Patchen，b．h．
Ethan Allen，b．h．
Billy Boyce，b．g．
（to saddle）

St．Julien，b．g．
Rarus，b． g ．
Goldsmith Maid，b．m．
Smuggler，br．h．
Sleepy Tom．ch．g．
Rowdy＇Boy，bl，g．
Maud S．，ch．m．
Jay Eve See，bl．g．
St．Tulien，b．g
Axtell（3 yrs．），b．h．
Axterie Cobh，b．h．
Phallas，b．h．
Johnston，h．g．
Gold Leaf（4 yrs．），ch．m．
Little Broain Jug．b．g．
Brozi＇s Hal，br．h．
Lou Dillon，ch．m．
Cresceus，ch．h．
Major Delnar，b．g．
Cresceus，ch．h．
The Abbot，b．g．
Alix，b．m．
Nancy Hanks，br．m．
Azote，b．g
Directum，bl．h．
Stamboul，br．h．
Arion，b．h．
Kremlin，b．h．
Martha Wilkes，b．m．
$\begin{array}{lll}\text { Kremlin，b．h．} & 1892 & 2: 073 / 2 \\ \text { Martha Wilkes，b．m．} & 1892 & 2: 08 \\ \text { Lou Dillou．} & 1903 & 2: 05\end{array}$

2：311／2
2：37
$2: 28$
$2: 29$ 考
2：30
$2: 28$
2：27
2：1934
2：26 $: 4$
2：28
2：178年
$2: 18 \%$
2：17 1／4
2：191／2
$2: 22$
$2: 23 \sqrt{8}$
2：251／2
2：14 $1 / 4$
2：123／4
2：131／4
2：14
2：15 $1 / 4$
$2: 121 / 4$
$2: 133 / 4$
2：083／4
2：10
$2: 11^{1 / 4}$
2：12
$2: 12$
$2: 14$
$2: 133 / 4$
$2: 061 / 4$
2：061／4
$2: 111 / 4$
$2: 193 / 4$
$2: 121 / 2$
2：00
2：00
1：593／4
2：00 $1 / 3$
2：021／4
$2: 03^{1 / 4}$
$2: 03 \frac{3 / 4}{4}$
$2: 04$
$2: 04^{3} / 4$
$2: 05^{1} 1 / 4$
2：071／2
2：0713

2：05

HORSESHOE FALLS - HORTICULTURE

1891
tS91
1903
1903
$180-$
1895
1896
1902
\$897
1897
189
189.4
1802
1892
$189=$
1892

2:083:
2:083'4
2:06
1:363́
1:57
1:595/4
2:00: 2
2:00
: $011^{17} 4$
2:01 $3 / 2$
2:04
2:0.4 $1 / 2$
2:05 ${ }^{\frac{3}{2}}$

In the matter of breeding. reference has alreacy been made to the iact that the imported horse Messenger, who piaved so important a part in the generation of harness horses, was of rumning stock His descendants that have influenced this type more than any others were Ryミdyck's Hambletonian and Mamb-ino Chief. The former was the son of Abdallah. whose sire Mambrimo was by the English Messenger. This same Mamb-ino was also the grandsire of Mamtrino Chiex, so that his blood more than that of any of the get of Messenger has been potent in the production of the numerous fast exponents of the two hamess gaits. Belifounder, another English horse. brought over to Boston in 1823, had aiso much to do in iounding the American tratter. His origin seems so be obscure, but he was probably of the type krown as the Norfolk Roadster, from which the hackney has sprung. The most iamons of his progeny in the first generation was the Charles Kent Jlare, the dam of Rysdyck"s Hambletonian. At least -5 per cent of what are called "Sandard bred" trotiers trace to this sire, and as none of the rest of Abdallah's get amounted to much there is every reason to believe that this daughter oi imported Belliounder had the inherent quality which made the Hambletonian strain so valuable. Every one oi the champion ivotters that succeeded Flora Temple are descended directly from this horse, Dexter himself being one oi his sons.

Jo show how the "iast list." as it is called. has increased since the day ni Lady Suftolk and Drover, it may be stated that up to the close of 1002 there were 18.548 trot:ers with records -0: 2:30 or better, and 9.713 pacers credited with marks of $2: 25$ or better. In each case these figures represent what is known as "standard" speed at the respective gaits. See Horse-racrag.

> Charles Arvoln McCllly,

Secrcfary - Viab Jork Trotiing Associafion.

Horseshoe Falls. See Niagara Falls.

Horstmann, Ignatius F., Imerican Roman Cath lic prelate: b. Phadadelpha, Pa.. io Dec. 1 wo. In 185 , he was graduated irom the Ceniral High School, and afterward attended Saint 10-rph: Ccllege. Phladelphia. Desirous of studyar \dot{i} : the priesthnod, he went to the Preparatury Seminary oi Glen Riddle in 1859, and in ino enterud the American College. Rome. where, atter completing his course. he was crdamed priest by Cardinal Patrizzi, 10 June 1N: In ISKi he took in Rome the degree of doc:- oi theole Ex, and in the same year retuened to Philadelphia and accepted the chair of mertal fhillsophy in the dincesan seminary c: Sar: Charles Boiromeo, continuing to hold the anve - rtim in the new seminary at Overbrock. In wn- he became parto of Saint Mary's Cl urch. Philadelpha, and in $1 \mathbb{5} 5$ was named - aree is int the arclidiocese. On 20 SVor. tigt

Leo XIII. appointed hine to the vacant see of Cleveland. Ohio, and he mas consecrated bishop 25 Feb. So2. The diocese now (1905) has a Cathalic population oi $300.000: 206$ priests: 28 , churches: I seminars: if6 parcochial schools: ; orphanages: 9 hospitals, and several charitabie instit: itons.

Horticulture, the art oi growing plants, fiowers, and vegetabies for aiding in sustaining life, maintaining beaich, and fur ornamental purposes. While as an art it is the highest type of work which pertains to the cultivation of the soil. its principles are based on many branches of science. Plant physiologe, chemistry, and physics play important roles in every branch of this work and the application of their laws, directly and indirectly, constitutes the more essential features of the art

Adopting Bailey's pian of division (Annals of Horr. iEgI) horticulture may be discussed under iour heads: (1) Pomology or iruit-growing; (2) olericulture or vegetablegrowing: (3) floriculture or the growing of fiowers and plants for ornamental and orher purposes: (4) landscape sardening, or the growing of plants and the grouping of them for the purpose of enlancing the beauty and value of landscape.

In no country in the world has pomology or fruit-growing made such advances as in America. In the early history of the country iruit-growing was of necessity given minor attention. The clearing oi the wilderness and the opening of new territory always involve attention to purely utiliiarian projects first: hence there is litule record oi systematic or extensive iruit planting in this country prios to the beginning of the loth century: Vaturally, iruit was planted by the very earliest settlers, but this was done more as an effort to supply individual needs than as a means oi profit. Thins, in the middle oi the 16 th century the earlo Spanish settiers inade plantings oi iruits in Florida and elsewhere, and early in the 1 th century the English did considerable in the matter oi planting iruits in Mlaryland and Virginia and elsewhere in what is now the eastern Unirec States. Grapes especially received early attention, and numerous atiempis were made io establish vinevards oi European sorts in different parts of America. None of these carly attempts, however, was very successful : and when it was ound that the European kinds were so poorly adapted to the conditions of the regions then occupied by settlerc, attention was turned to the improvenient of our native forms. There is probably no more striking example of what can be accomplished by cateful horticultural work than the results secured in the improvement of our native forms of American grapes. From the wild types so abundant jn our native woods have come practically all of the finc table and wine varieties that are grown in the inited States and Canada east of the Rocky Moumtains to-day: The work mentioned did not involve any quections of fruit-growing on an extensive scale such as we find now. Xearly every iarm in those carly times had iruit srown upon it. partly for home use and parily for sale if there was produced more than was required ior home consumption. Writh rarying changes caused by the increase in population, the improvement in living conditions, and the demand for more fruits. iruit-crowing progressed, until ahnut 50 or 6o years ago it began to take on a new aspect. It
was at this time that fruit culture in its broadest sense showed marked development as an independent commercial industry ; hence in looking back we find the beginning of such important lines of work as commercial apple, pear, peach, and grape growing, commercial small-fruit-growing, etc. With the advancement of this work came the gradual development of horticultural sections or the localization of horticultural work in certain special localities where experience had shown that the best results were secured in the matter of production, marketing, etc. The peach districts of Delaware, Maryland, New Jersey, Michigan, Connecticut, and Georgia, the grape districts of New York and Ohio, and the apple region of western New York are examples of this movement toward centralization or specialization. With the further increase of population, especially in cities, the improvement in transportation facilities and better knowledge as to climatic and soil conditions, more and more centralization and specialization resulted. With the growth of the fruit interest of the Pacific coast and of Florida and other portions of the South, new features were added to the entire work. Thus has been developed commercial pomology as we find it to-day in this country, involving (i) the production of fruits of inigh quality, and (2) the harvesting, packing. storing, and transportation of such fruits to market so as to secure the highest prices with a minimum expenditure of outlay for the work. Still further involved in these questions are, of course, other important ones, such as tillage, pruning, spraying, etc., which it is not necessary to discuss here.

According to the figures of the 12 th census, the value of all fruits produced in the United States for I899 was, in round numbers, \$I31,000,000 . Of this amount the orchard fruits had a value of $\$ 83,000,000$, grapes $\$ 14,000,000$ small fruits $\$ 25,000,000$, and sub-tropical fruits $\$ 8,000,-$ 000 . The great fruit districts are shown by the fact that of the $\$ 131,000,000$ of fruit produced, California furnished $\$ 28,000,000$ worth. New York \$15,000,000, Pennsylvania \$10,000,000, Ohio $\$ 9,000,000$, Michigan $\$ 6,000,000$, Illinois $\$ 5.500$,000, Missouri $\$ 4.500,000$, and Indiana $\$ 4.500,000$, all in round numbers. The exportation of American fruits to foreign countries is rapidly assuming important proportions. For the fiscal year I902 the total ralue of fresh, dried, and canned fruits and nuts exported from the United States was $\$ 8,719,344$. With the rapid development of fruit-growing in this country there has been felt the need for careful systematic studies of the many varieties in cultivation and offered for cultivation. Systematic pomology, therefore, is an important branch of the work, and is being given special attention by the General Government and by the various State experiment stations and agricultural colleges.

Olericulture or vegetable gardening is an important branch of horticulture, and from time immemorial the art has been practised both for pleasure and for profit. Vegetable gardening proper does not include the growing of such crops as Irish potatoes, sweet potatoes, sugarbeets, shell beans, etc., where the same are produced in large quantities and are handled as ordinary farm produce. Vegetable gardening proper, as we understand it, emhraces market gardening, truck-growing, and the growing of vegetables under glass. No sharp lines can be
drawn between any of these industries, as they merge in many calses one into the other. Growing vegetables, as already indicated, has long been practised and was a feature in nearly every home in the early days of the country. With increasing population and the consequent demand for more luxuries and more variety, gardens began to expand, and thus was developed the work of market gardening in the vicinity of the larger cieies. Although market-gardening and truckfarming merge closely into each other, marketgardening proper, as a rule, is held to apply to the growing of vegetables for the local market, while truck-growing and truck-gardening imply the shipment of produce to a considerable distance, either by rail or in other ways. Truckgrowing proper, on a large commercial scale, has developed practically within the last 25 years and owes its rapid growth largely to the improved transportation facilities and the rapid extension of railroads north and south along the Atlantic coast. The trucking interests proper were an outgrowth from the market garden work in the vicinity of New York. Gradually this work was pushed out to Long Island, and thence it spread to the lands adjacent to Chesapeake Bay, where fast sailing boats made it possible to bring the produce quickly into the markets of the larger cities. The work at first centralized at points where good harbors made regular steamship service available, but rapidly extended south along the lines of the Atlantic coast railways, and now lias reached important developments in Virginia, North Carolina, South Carolina, Florida, and other Southern States. There is also another important truck region which has developed along the lines of the Illinois Central Railway in the Mississippi Valley, the crops grown in this region being shipped to the cities north and from them disseminated to large towns and cities, both east and west. More recently there have been large developments in this line in eastern Texas and southern and central California, each region now shipping early vegetables northward and eastward to the extent of thousands of carloads annually. The development of the winter growing of vegetables in the South and elsewhere has to some extent modified the methods of producing crops in the North. especially where glass is used. There is still, however. important work of this nature in progress in the vicinity of all large cities, particular attention being given to the growth of vegetables in greenhouses and under frames. According to figures secured by the writer in 1809 , there were at that time $4.500,000$ square feet of glass devoted to the growing of vegetables. The value of the establishments aggregated \$2.250,000; the wholesale value of the ammal product amounted to $\$ 2,250.000$, and the retail value to $\$ 4.500,000$. The number of men employed in this work that is, the growing of plants under glass - was 2,250. According to the figures of the 12th cen'Is there were devoted to the growing of vegetables for market in 1899, 1, 175.200 acres, and the ma ket value of the product was $\$ 67,399,348$. There were devoted to the production of vegetables for home use 040.370 acres, yielding a product valued at $\$+6,477,087$. This includes only miscellaneous vegetahles, and does not cover such crops as Irish potatoes, sweet potatoes, onions, sugar-heets, etc. Thus it appears that, exclusive of glass, there were devoted to the growing of vegetables for the market and for
the home $2.115 .5 ; 0$ acres. giving an annual prod. uct valued at Sirs.8,6.435.

Tbe development of Horiculture in America has been coincident with that of regetable gardening and pomology, excepting, of course, that flowers. being more or less of a luxury were the last to receive special attention. Flower gardens. to a certain extent, formed a part ci nearly all the home surroundings of the early settlers. See article Floriculture is A areric.s.

Landscape gardening literally means the creation of landscape pictures with plants. The pictures may be formal or they may be natural: that is. they may deriate widely from the bits of beautiul scenery which nature so lavishly bestows or they may attempt io copy these bits of nature or perchance improve upea them by modirying them to meet the immediate surroundings. The picture created may be a matter of taste. Hence in one country and in one place we rind extreme formality, giciesque figures. and rari-cus-colored foliage beds forming a part of these pictures, while monstrous forms carved from shrubs and evergreen trees may form another part. Again we see the true lover of nature copying as closely as possible natures own landscape, which is, aiter all. true landscape gardening. A bit of lamn, a iringe of foliage, and a clustering group of trees may be all that is required to form this picture. but it is a natural picture, and it harmony is kept in view the results are always charming. The art has long been practised. and its various types and modifications are to be iound in our public parks and in private grounds throughout the country: There has been a growing interest in landscape gardening in America in recent years, owing chiefly to the adranced ideas set forth by such men as Downing and Olmsted, who have done much to create an appreciation and love for the purely natural in this work. More recently a still broader conception has been given to landscape effort, and work in this direction has been made to cover important matters connected with the relation of landscape surroundings to buildings, the proper arrangement of roads, etc. Thus we have had developed the theld ci landscape architecture which is a broader term than landscape gardening. The landscape architect makes a study of his probiem and works out a scheme of operation involving everything that may be connected with it. The landscape gardener may be called upon to carry out part of this scheme, but the architect proper will also be involved.

The literature on horticulture is exceedingly voluminous. covering many writings and textbooks, special papers, reports, etc. The more important standard American pomolegical works are Downing's 'Fruit and Fruit Trees oi America,' Barry's 'Fruit Garden.' and Thomas's 'American Fruit Culturss.'. In vegetab'e culture. Henderson': 'Gardening ior Profit,' Bailey's 'Fcrcing Bo k' and Rawson's 'Market Gardener' are standard works. Of the American publications on landscape gardening may be mentioned: Downinc. 'Landscape Gardening': Parson, 'Landscape Gardening': Long. 'How to Plant the Home Grounds'; W'augh. 'Ornamental Gardening.' The most useful work on horticulture recently issued is Bailey's 'Cyclopedia of American Horticulture,' pub-
lished in four volumes, the last of which appeared in 1902.
B. T. Gallowai,

U. S. Department of tariculiure.

Hor'ton, Robert Forman, English Congregational clergyman and author: b. London I8 Sept. 1855. He was educated at Jew College. Oxiord, and in I8,9 be was made a fellow of New College, and lecturer on history. In r8So he became the pastor of the Congregational church at Hampstead, and in 1893 pastor oi the Lyndhurst Road church there. In INo3 he delivered the Lyman Beecher lectures at Iale: in 1903 he was chairman oi the Congregational Union of England and Wales. His writings include 'History of the Romans' ($1 \mathrm{ES}_{5}$): 'Inspiration and the Bible" (I88-): 'The Teaching oi Jesus' (I\&oz): 'Oliver Cromwell' (I\&9-); 'TV'omen of the Old Testament' (I89-): 'The Commandments of Jesus' (ISgS): 'England's Danger) (ISos): 'The Pastoral Epistles' (Ig0I): 'The Trinity') (IgoI).

Horton, Samuel Dana, American publicist: b. Pomeroy. Ohio. 16 Tan. 184 ; d. Wiashington, D. C. 23 Feb. IS95. He was graduated from Harvard in I864, and from the law school in I868, and also studied abroad. He began the practice oi law in Cincinnati, but dewoted himseli mainly to the study of monetary questions. spending much time abroad: be was one of the first to advocate the establishment and maintenance of an international ratio between gold and silver. He was a recognized authority on all questions concerning coinage, was secretary of the international monetary conierence at Paris in $18-1$, and a delegate irom the Cnited States at the conference of ISS1: shortly before his death he rent to Washington at the request 0^{-} the administration for a conference concerning the financial situation. His writings include 'Silver and Gold and their Relation to the Problem of Resumption' ($18-6$): 'The Silver Pound and England's Monetary Policy since the Restoration' (1887): 'The History of the Guinea' (ISS-) ; 'Silver in Europe' (isoo).

Hosack, hōs'ak. David, Anerican physician and author: b. New Iork 31 Aug. 1-09; d. there 23 Dec. 1835 . He was graduated iromy Princeton College in 1-So. and concluded his medical studies in Philadelphia in 1\%91. In 150 he was appointed professor of botany in Columbia College. In 1.96 the chair oi materia medica was assigned to Hosack, who held it with that of bctany unti] ISo, when he accepted the department of materia niedica and oi midwitery in the College of Physicians and Surgeons. He held at different times several public trusts. as physician to the Jew lork hospital, and the Bloomingdale asylum, resident physician of the city of New Iork. etc. He was among the original projectors of the New lork Historical Society, of the Horticultural Society. and oi the lew Iork Literary and Philosophical Society: He was the author of 'Annals ni Medicine' (1,93): 'Hortus Elginesis' (ISoS); and numerous papers en medical subjects.

Hosea, liō-zē'a. the first in order among the miner prophet= of the Old Testament. but more probably the third in order of time. Nothing is known oi his lise. except what can be gathered from the intreduction to his prophecies. namely, that he was the son of Beeri. and that his ministry belonged to the reigus of Uzziah.

Jotham. Ahaz, and ITezekiah, kings of Judah, beginning probably about the end of the reign of Jeroboam 1I., king of Israel. His prophec es are addressed almost equally to bath kingdons. His book was admitted into the canon after the Babylonish captivity. Ile has represented in the three first chapters of his look, the guilty violation of their covenant with God by an allegory, very common among the 1 Iebrew poets, of a marriage covenant which the wife has violated, referring to the covenant which God had concluded with the Israelites. The remaining chapters treat of the same subject, under different figures, with reproaches, exhortations, and threats; he predicts the approaching exile of his countrymen, and the consoling promise of the final return of an improved people forms the conclusion of this prophetical book. He is remarkable for his laconic style, hastening from image to image, and from reflection to rellection. The stream of a powerfully excited fancy forces him irresistibly onward. Hence he clocs not exlibit the roundness, grace, and harmony which characterize the other prophets.

Hosiery, hō'zhèr-ĭ, a word properly applied only to the making of hose or stockings, but used as a general term for all kinds of knittca articles. The materials used for the puriose are cotton. linen, and wool, the last of which is sometimes mixed with cotton or silk. Silk is also frequently used alone. Since I841 the Jacquard loon, and similar looms have teen employed in the manufacture of articles of hosiery. See Knitting; Textiles, under Knit-goons,

Hos'mer, Harriet, American sculptor: b.

 Watertown, Mass., 6 Oct. 1830. She early showed skill as a modeler in clay, and after receiving a general education studied anatomy in a medical college at St. Louis. Her first work, a reduced copy of Canova's Napoleon, was followed by an ideal head of Hesper (1852). She went to Rome in 1852 and studied under John Gibson, the English sculptor. About this Feriod she produced ideal busts of Daphne and Mredusa, and in 1855 completed her first life-size figure, Enone. To the same year belongs Pirck, which gained her a great reputation in the United States, and the next year she executed a Will-o'-the-Wisp. The statue of Beatrice Cenci in the public library of St. Louis was finished in 1857, and her colossal statue of Zenobia in 1859. Her next work was a statue of Benton, the Missouri statesman, a bronze cast of which was erected in Lafayctte Park, St. Louis. Offier works are: Sleeping Faun, exhibited at Dublin in 1865 and at Paris in 1867 ; a statue of the Queen of Naples as the Heroine of Gaëta ; a nıonument to Abraham Lincoln; and Waking Faun.Hosmer, James Kendall, American librarian and biographer: b. Northfield. Mass., 29 Jan. 1834. He was a professor in Antioch College, Ohio, and the University of Missouri, in 1874-92, was professor of English and German literature in Washington University (St. Louis, Nlo.), and in IS92 became librarian of the public library of Aimmeapolis. Among his works are: 'The Color Guard' (I864), a record of experiences as a private in the Civil War: 'The Thinking Bayonet' (t865). a novel: 'History of German Literature' (1870): 'Life of Samuel Adams' (1885); 'Life of Sir Henry Vane' (1888) ; 'A Short History of Anglo-Saxon Freedom' (i890): 'How Thankful was Be-
witched' (1804) ; and a 'Life of Thomas Hutchinson' (1896)

Hos'pital, an institution for the treatment of sick, injured or infirm persons, supported in most cases by voluntary contributions, but in special instances from the funds of the government, state or civic municipalities. Hospitals are of various kinds: medical; surgical; for the reception of incurables; for consumptives; for the deaf, dumb, and blind; for the aged and infirm; for the care and treatment of the insanc ; emergency and field hospitals for the care of wounded in battle, etc. Modern hospitals are so constructed and their interior is so arranged as to emable a limited staff of physicians and nurses to attend to the wants of the greatest possible number of patients with a view to the most speedy recovery.

The site selected for a hospital should be on high ground; the soil sloould be clean and dry, free from damp ravines and undrained marshy ground, and the drainage should be ample. If possible it should not be surrounded by other buildings than those belonging to the hospital itself. The structural arrangements should be such as to secure perfect, free circulation and sunshine. The size of the wards depends on the number of paticnts to be therein maintained and having a capacity of 3.000 cubic feet for each inmate. The disciplinary and economical disposition in a hospital requires that each nurse should have the patients allotted to her under constant observation and personal supervision and that the arrangements are so constructed that the greatest number of patients can be attended and nursed by a given number of nurses. From 20 to 32 beds have been taken as a basis for ward construction. In some hospitals there are wards of one and two beds for cases of unusual gravity. The general form of ward construction is governed by the question of renewal of air and the superficial area allowed to each patient, for on this depends the distance of the sick from each other, the facility of changing the beds, cleanliness and many other important features. In a ward 24 feet wide, with a window for every bed or two, a 7 foot 6 inch bed space along the outer walls is suffcient. That would give 90 superficial feet per bed, which must however be increased in pernicious fevers, surgery and lying-in cases. In the Herbert hospital the smallest allowance is 99 feet per bed. The ceilings should be 12 to I. feet high. With a view to economize heat in winter and to keep the wards cool in summer the walls should be hollow and all walls ceiled. The walls should be of an impervious polished surface, easily cleansed with soap and water. All corners should be rounded off and no cracks are to be tolerated, since they fill with impurities. Plaster, wood, paint and varnish all alisorl) organic impurities. The safest arrangement for walls is plaster, lime-whited or painted, which should often be scraped off or renewed.

The floors and woodwork throughout should be of oak, closely jointed, oiled and waxed, rubbed and polished. Confine the woodwork to absolute necessity. The forms of windows must be adapted to facilitate the entrance of light, as a factor to promote health, to promote vertilation, to facilitate nursing and to allow the patient to read in bed. In order to give cheerfulness to the ward and to renew the air casily,

HOSPITALLERS - HOST

the windows should be inserted opposite each other; should extend to 2 ieet 6 inches from the floor to within a foot of the ceiling. One cubic ioot of window glass to every 50 or $\$ 5$ cubic feet oi space will afiord a well lighted, cheeriul ward.

The ward offices are those necessary for facilitating the nursing and administration. as the nurses rooms, ward scullery, bath-rooms and lavatories.

They should all be well ventilated and lighted and all fitings finished in light color so that dirt can be at once detected. The nurses' room should command a view over the whole ward. The lavatory table should be constructed out of an impervions material, as slate or marble, with a row of sunk porcelain basins supplied with bot and cold water. The bathtubs should be porcelained iron. The toilets and urinals should invariably be placed against an outer wall, supplied with a siphon carrying a sufficient water capacity to thoroughly flush the basins. For the floor of these quarters, cement. marble or slate is preferable, and the walls are to be lined with glass, white-glazed tiles, marble, slate or Parian cement.

The administration building, that is, for offices. reception rooms, lodging the staft, operating rooms, kitchen, store-rooms, dispensary. etc.. should always be subordinate to the question of the accommodation of the sick. In hospitals where a school is to be established, the necessary lecture rooms. laboratories and amphitheatre should be kept entirely separate from the sick: the morgue and dissecting rooms should be as far removed as possible. The consensus of professional opinion is opposed to the present plan of constructing large edifices for hospital purposes; that the benefits they conier are greatly diminished by the risk of hospital diseases.fevers of certain forms. erysipelas. pyrmia. etc. and which when once installed are most difficult and often impossible to eradicate. A system of cottage and hut construction, any oi which could easily be destroved and replaced, should the emergency demand, has been seriously adrocated, but found impracticable because of the great expense and administrative difficulties. The profession to-day favors a system of contstruction known as the "pavilion plan," which can be called a compromise measure betwcen the large block edifice and the cottage and huts. According to this system the wards are separate and distinct from the administration building and should be arranged to form pavilions, one stong high, never more than two. and they should always surround the administrative blocks. This mode of construction is both applicable to large and small establishments. The Royal Infirmary of Edinburgh, the Herbert haspital of Woolwich, the Sew lork hospital, the United States Marine hospital of San Francisco are amnng the best examples of the pavilion style. There should be free circulation of air oetween the pavilions, and the space between them should be exposed to the sunshine. The arraneements should be of a character to allow a covered communicamon between the wards, and each pavilion should have its own broad stairway.

The pavilion and general construction of the administratwe building should be made quite subservient to the accommodation for the sick
and should never interfere with the light and air oi the wards.

Hospitals or asylums for inebriates, likewise hospitals for those addicted to the use of opium and other narcotics, have lately been established throughout the Enited States. Fever hospitals are maintained in all communities to secure isolation in infections diseases, and hospital ships and floating bospitals are extremely valuable to promote complete isolation in cases of virulently infective disorders, such as smallpox (q.v.), etc. Children's bospitals are often privided with swimming tanks, indoor and ourdooplaying, large ball and tennis grounds and in fact any and everything to promote healthy exercise and pastime for the inmates.

Military and naval hospitals, establishments for the care of sick and wounded soldiers and seamen, exist in all civilized nations. They are either temporary or permanent and if the former located in the immediate ricinity of the scene of operation. Hospital ships are ships fitted out as hospitals in all expeditions beyond the sea. They serve either as stationary hospitals or, if the sick accumulate sail home, or to the nearest station. See also Qüarantine: Railroad Hospitals.

Hospitallers, charitable brotherhoods who derote themselves to tend the sick in hospitals. The name is specially applied to an order of knights, the Knights of Saint John. See Orders. Religiot:

Host, or Hosta Sacra (sacred host), in the liturgy of the Roman Catholic Church, the body of Christ present in the sacrifice of the Mass under the appearance of bread. The Latin word hostio denotes that which is offered in sacrifice; hence in the Jass, where the victim is the same who offered himseli on the cross, "the cup" is no less the hostia than is "the bread"; but usage has sanctioned the appropriation of the word host to the latter. In the canon of the Mass, the priest. in offering the consecrated elements io God the Father, speaks of both the "bread" and the "cup" as hostia; and in the ancient Spanish missal (the Mozarabic) occurs the phrase "this host of bread and wine." But the word hostia is also employed to signify specially the bread before consecration: and this usage has its sancticn in the Roman liturgy itself and in the rubrics of the Missale Romannm. In the rubric of the ordo missu the altar-bread before consccration is called hostio, and after consecration it is called hostio consecropa. "Host" in the former sense. that is, the "altar-bread." is, in the Latin Church, a circular water made of fine wheaten flour inixed with water only. and it is unleavened. Usually the waiers are stamped either with an image of Christ crucified or with the letters I H S. They are of two sizes, a larger one which the celcbrant himself receives (a host of this size is also reserred for the benediction ($\mathrm{q} . \mathrm{x}^{\text {) }}$) of the Blessed Sacrament) ; and a smaller size for administration to those who may communicate at the llass or to the sick in their houses. The hosts destined for this use are kept in the pyx (called also ciborium). a silver vase gilt inside, and deposited in the tabernacle of the altar. As long as the host is thus reserved in the tabernacle the sanctuary lamp is kept alight before it. The Eastern churches in communion with the See of

Rome, excent the Maronite and Armenian churches, retain the use of leavened bread in the Eucharist.

Hostage (French, ôtage; Latin, obses; Low Latin, obstogius), a person left as pledge or surety for the performance of the articles or conditions of a treaty. The taking or giving of hostages is now scarcely known in the relations of modern communities, but was formerly almost universal, and many questions in the law of nations arose out of the practice. Writers on international law have discussed how far the rights of conquerors extend over hostages, what circumstances may release them from their obligation, and what effect their escape will produce on the treaty proposed by the contracting oarties. In modern civilized warfare hostages are not usually interchanged.

Hos'telry. See Hotel.

Hot-bed. See Horticulture.
Hot Springs, Ark., city and county seat of Garland County, and one of the most famous sanatoriums oi the United States; in the southern centre of the State, 55 miles southwest of Little Rock and 397 miles from Saint Louis; on the Choctaw, O. \& G., and Little Rock \& H. S. IV. R.R.'s. The location is 600 feet above sealevcl and lies principally at the easterly base of the mountain complex known as the Ouachita Range, the nearby peaks of which are oftentimes called the Ozark Range - in a valley between two rocky and heavily wooded ridges called West Mountain and Hot Springs Mountain, 400 feet higher-and in its sheltered situation has a mild and pleasant climate. Lat. 34° N.; lon. $93^{\circ} \mathrm{W}$. Through the valley runs the Hot Springs Creek starting two miles above; and into this the water from 47 hot mineral springs - originally 73 , but many merged artifically or run dry - springing from vents in the gray volcanic tuia near the base of the Hot Springs Mountain on the east. Forty-four are in use or usable; the others rise in the bed of the creek. The former yield 830,000 gallons a day; contain large emounts of calcium ard magmesium carbonates, and the presence of lithium, iodides and bromides, etc.; the total mineral matter in solution is between 275 and 280 parts per million and the results, as to the percentage composition of the mineral matter in each hot spring, are very much the same. The waters are prescribed for bathing and drinking and have remarkable curative properties. De Soto. it is said, sought to explore them as the veritable fountain of youth. The ordinary tub bath is the principal feature of treatment, but vapor, shower and plunge baths are also used. Pcople suffering with consumption of the lungs; those afflicted with dilation of the heart ; very old people, whose arteries are atheromatous; and paralytics, when their condition is the result of organic central lesions, should not bathe. Relief or cure may be expected in rheumatic, syphilitic. and numerous other conditions. The surgeon-general of the Cnited States army, in an official circular of information issued by the War Department, says:

The various forms of gout and rheumatism, after the acute stage, or inflammatory stage. neuralgia, especially when depending upon gout or rheumatism, metallic or malarial poisoning; paralysis, not of organic origin; the earlier stages of locomotor ataxia; chronic Bright's disease (the earlier stages ouly), and other
diseases of the urinary organs; functional discases of the liver; gastric dyspepsia, not of organic origin; chronic diarrhua: cutarmal affections of the digestive and respiratory tracis; chronic skin diseases, especially of the squamous varicties, and chronic conditions due to malarial infection.

In all forms of dyspepsia and in ulcers of the stomach and intestines the actual bathing which the diseased surfaces receive from the hot water drank materially aids in hastening cures.

As many as 90,000 patients and pleasure seekers visited here in 1902-3. The temperature of the springs varies from 97° to 147°. All issue from a space something over a quarter of a mile long and 200 to 300 feet up the slope, some 10 acres in all. By treaty with the Quapaw Indians in I8I8 and by act of Congress in 1832, four sections (2,529 acres) became a reservation, and the springs are in the centre. Dunbar and Hunter of the Lewis and Clark expedition visited the place in 1804 and settlement was made in 180%. After 1832 numerous attempts were made to enter the lands, and title to property involved many years of contention and "shot-gun right." In 1870 Congress authorized suits against the United States in the court of claims. In 18,6 title was held to be in the United States by the Supreme Court. Justice Field of the Supreme Court, in an opinion, said: "From the protracted litigation to which it has given rise the Hot Springs reservation is famous in the history of land titles of the country." And Justice Bradley: "The title to a well-known watering place in the State of Arkansas, called the Hot Springs, has been contested by a number of claimants for nearly half a century." In I877 Congress created a commission to adjudicate squatter rights, giving right of purchase from the United States and to lay off the town. Under this act the Hot Springs were reserved by the United States to prevent monopoly or injury, and 911 acres are used as permanent parks. The government has expended nearly a million dollars in arching the creek, erecting the Army and Navy hospital (open to soldiers and sailors of the Civil IVar), and in developing and beautifying a system of parks not yet finished. These parks are covered with forest trees. and some are thoroughly fitted up for public enjoyment. Large sums have been spent on boulevards, walks, artificial lakes, landscape gardening, and handsome marble hot-water fountains scattered plentifully through the city. The grand entrance to Hot Springs llountain, from Central Avenue, is a noble architectural feature, and the initial point of 15 miles of fine drives around the summits of Hot Springs, North and West Nountains.

With one exception, the springs are all enclosed in solid masonry; and the water is conducted by protected pipes into reservoirs near the base of Hot Springs Mountain or to the 23 bath-houses on and off this reservation. The exception is left open and accessible to the public. The government maintains a free bathing establishment for the indigent at which over 10,000 bathe amually, over 90 per cent being benefited. The prices of baths and fees of attendants are fixed by the Department of the Interior, with severe penalties for deviation. A rental of $\$ 30$ per annum is collected for each tub; 716,053 baths were administered in 1902-3. A handsome city has grown up to house the guests and permanent residents. Along the front of the reservation bath-houses and on the slope of Hot

Springs Mountain is a fine park of 100 acres, with the most elegant buildings facing it. The creck is covered in, and sidewalks and roadways huilt over it. Several of the hotels, as the Arlmgton, Eastman, Park and Majestic, are among the largest and best appointed in the country.

Hot Springs received its city charter in 18,6. It has a biemial mayor and a council. Being a pleasure fesort, as well as a health resort, it has a large itinerant population. Large quantities of novaculite rock, "Arkansas" and "Ouachita," are quarried in the surrounding mountains, and 5.000 bales of cotton are marketed annually: The country abounds in cold springs, some of which have remarkable curative properties, notably Mountain Valley and Potash-Sulphur, 10 and 7 miles distant from Hot Springs: these are efficacious in conditions affecting the kidneys and intestinal tract. Pop. (I870) 1.276; (ISS0) 3. 557 : (1890) S.086: (1900) 9.973.

Chas. D. Grentes.

Prest. Scitool Board. Hot Springs, Ark.
Hot Springs, S. D.. city, county-seat of Fall River County: on Fall River, the Fremoni. E. $\mathbb{\&}$ I. I. and the B. \& II. R.R.s; about 100 miles south of Deadwood. It is the trade centre for stock, lumber, and mining interests. The water-power is used for several mannfactories, a stlicco-mill. board and planing-mills, and machine shops. It has thermal and medicinal springs, and is the seat of the Black Hills College (11. E.), opened in ISoo, and the State Soldiers Home. Pop. (1900) 1.319.

Hotch'kiss, Benjamin Berkely, American inventor: b. W atertown. Conn., I Oct. 1826; d. Paris. France, If Feb. I885. He was in early life a machinist and turned his attention to the invention of deadiy weapons, among then the Hotchkiss magazine gun and the Hotchkiss machine gun. adapted ior use in the fightingtops of warships. In 1870 he established a factory at Paris. His guns were widely used by navics and armies until supplanted by other devices. He also improved heavy ordnance and projectiles.

Hotchkiss Gun. See Machine-Gu゙N: Ordsissce.

Hotel, or Hostelry, an inn or public tarern. The palatial hotels that have sprung up since the introduction of railways are too well known to require notice. One point of difference betucen the European and the American systems is that under the former, except in the case oi a twhe dobote, the charge is for each di-h ordered, while under the American plan a fixed price is charged for every meal. The modern French word is still weed for the house of a rich or distinguished man, or for a public butdine. such as the llótel de litle. Sce Hotels in Americ.s.

Hotels in America. The public house or hotel, Was estabished m the carly day: of the colonies to afford accommodation for those who might be compelled to journoy from one place to another. Is roads were poor, in those days. ant stage transportation $112=$ slow, many of thece houses were opened along the princopal ruade, or turnpikes, and the majority of these un-called inns bore such names as "Kinges" "Queens," "The Red Linn," cte. Is pullic opinion changed, however, and the colonies insuzurated thetr revoit asaint the Crown, there
was a corresponding change in the names of these hotels which brouglit them into closer harmony with the spirit of the times. From being mere public houses, wherein beds and food might be obtained by travelers, they became the meeting places of patriots, so it was but natural that the porirait of Washington, or of some other great American, should have taken the place of that of George III., and other roval personages, on the swinging signs before these doors. As time passed and the patriotic spirit rose to greater heights, these inns became the scenes of many erents that brought them into the closest relation with the progress of the Revolutionary period and with the formative days which followed the declaration of peace. There was, for example, the City Tavern, in Philadelphia (1755), at which General Wiashington was frequently a guest; the Bunch of Grapes Tavern. Bosion. where he enjoyed that "elegant dimer provided at public expense, while joy and gratitude sat on every countenance and smiled in cyery eye" (28 March 17-6); the True American Inn, at Trenton (Iन7) : Arnold's Tavern, Morristown; Sufferin's Tavern. Smith's Clove, N. I.: the Buck Tavern, near Philadelphia; Smith's Tavern, Smith's Clove. N. I. (IJ, 1) : the tavern at Easi Chester, N. 1., where he was ill (1 -80) ; the Fountain Inn, Baltimore ($1-\delta_{1}$) : Day's Tavern. Harlem. where he stopped with Governor Clinton ($1-8_{3}$) ; Fraunces Tavern, New Iork, where, in the assembly-room, he bade farewell to the men who had followed his fortunes so faithinlly: Jlan's Hotel. Annapolis, from which he proceeded to Congress on the day when he resigned his commission, and the City Hotel. Alexandria, where he was afterward entertained by the Alexandria Lodge, of which lee was a member. The tavern at East Chester. where Washington stayed, during his illness. was erected soon after the beginning of the Ifth century. At one time Lafayette was entertained in the house, and, for a season, it was practically the seat of the national government. President John Adams having taken refuge at East Chester during the yellow fever epidemic at Pliladelphia. then the federal capital. This tavern now stands within the New York city limita, and the rooms which lave the greatest historic interest still preserve the same appearance which they had in those old days.

Among the other taverns of the conmtry which are rich in historic memories, but which were not directly associated with the career of the first President. were the Catamount Tarern, at Bennington, Vt. : Gcorge Burn's Coffecllouse, in New York, long the lounging place of the British officers, althougln privately irequented by the Sons of Liberty during the occupation of the city by the Pritish: the Tum Tavern. Philadelphia, the house in which the first Masonic lodge in America was organized: the City Tavern and the Bird in Hand, at Richmond. Va., and the Rose Tree lnn, at Media, Pa.

The first hotels in this country were conducted on the so-called American plan. which provided a fixed price for a day and for each fraction of a day: In those times Si a day was considered a "good round price." and taverns were ordinarily so small that one which "as provided with 20 rooms "1as regarded is a mote enmmodious house The ronms were usually comiortable, however, and were neatly; if
plainly furnished with strongly-made furniture. Carpets were rarely found, although handwoven rag-rugs frequently appeared on the floors. Meals, which were sersed at fixed hours only: were announced by the ringing of a bell or gong, and all guents were expected to respond as quickly as prissible. The table was abundantly supplied with dishes that were both substantial and palatable, the cooking being done by the wife of the landlord. with sueh assistants as the patronage of the inn might authorize, and while meat dishes predominated, game was so plentiful that its appearance attracted no comment.

At this time in the history of the American public house there were comparatively few ims that made an extra clarge for wines. Instead decanters of liquors and of some favorite wine, like Madeira, port, or sherry, frequently stood upon the tables, and from these the guests served themselves freely. There were no printed bills of fare in these days, but practically all the food to be served was placed on the table at one time. Guests helped themselves, some slight assistance being given by the waiter who stood at hand. Wher Congress met in New York, in 1z89, the members found accommodations chiefly in the boarding-houses which abounded in the neighborhood of the Battery on lower Broadway, in Cedar street, and in Naiden Lane. It is rather amusing to note that people from other parts of the country complained about the "high prices" that were eharged at the taverns and boarding-houses in Yew lork. for that was the time when the "board of the Congressmen was paid out of the common treasury, to which every eitizen of the [nited States contributed his share." In reply to this charge of exorbitant prices it was stated that board in New Lork "ranges from $\$_{3}$ to $\$ 7$ per week," and one house was eited as furnishing "from 7 to 9 dishes a day, with 4 sorts of liquor."

The most important Ameriean taverns in 1795 were located in New York, Philadelphia, Baltimore, and Boston. The best New York tayerns were Fraunces.. opened in 1z62, and formerly known as the Queen Catherine, one of the largest inns during the Revolutionary period, as it contained some 30 rooms: the City Hotel, whieh, "as erected on the site of the George Burns' Coffee House, in 1793, and which was not only the meeting place of the fashionable City Assembly: but was patronized by the socalled "Three Hundred" of that day; Bunker's. the Washington Tavern, and the Tontine Coffee House, on Wall street.

The National Hotel, in Washington, which was for many years the lome of the most eminent public men of the nation, was opened in 1827. In 1829, the Tremont House was opened in Boston, and for years it was noted as being the grandest hotel in the land, if not the most elegant public house in the world. Prior to that time the principal hotels in Boston had been the Eastern Stage House, Doolittle's City Tavern, and the Lamb Tavern.

It was about that time. or, to be exact. in 1830, that Delmonico opened the first high-class restaurant in New York. High as his prices were, when compared to those which prevailed elsewhere, epicures and persons of fashion flocked to his support and the enterprise prospered from the day of its ineeption. In 1833 ,
the Unitud States ITotel, in New York was opened; in 1834 , the Louissille 11 otel, and, in 18.35, the Galt House, also at Loussille, all of whieh immediately became noted as fine houses. The Uninted States Hotel, at Boston, which has since been greatly enlarged and is still standing, was npened in 1835 , while, about this time, the oll Washington Ilotel, at Portland, Me., which had been established since I823. also took the name of the United States. The Rockingham, at Portsmouth, N. H., onee the home of Governor Langdon, was opened in 1834, but, like other hotels of that time it was not particularly commodious in the modern sense of the word. In fact. up to 1836 , there were comparatively few hotels in the United States that were capable of accommodating as many as 200 persons. In 1836, the Astor House, in New York, was opened. Built of massive granite. and furnished with all the conveniences of that day, it was a fitting rival to Boston's Tremont House. Barnum's Hotel, at Baltimare, whieh was opened at about this time, eclipsed the best houses which had hitherto been built in that city, while the opening of the St. Charles Hotel, at New Orleans, in the same year, was an event which was heralded from one end of the land to the other. Situated in the centre of the "American" portion of the city: its stately portico built in the style of a Corinthian temple, made it. next to the Capitol, at Washington, the most imposing structure in the land. It was also one of the best appointed and most commodious houses in America, having accommodations for more than $\underset{z}{ } \mathbf{y o}$ persons. The original buildings were burned in 1851, but it was almost immediately rebuilt, and it continued to enjoy its position as the centre of southern hotel life, until the outbreak of the Civil War. In 1894, the structure was once more burned, but it has since been rebuilt, and still ranks as one of the best hotels in America.

The Charleston Hotel, at Charleston, had the distinction of being the only hotel in the country that had been burned to the ground on the same day on which it was opened. This was in 1839 , but as it was rebuilt at once, it was again opened in 1840 , and afterward becoming the favorite resort of Calhoun and other great southern statesmen. When the Planter's House, at St. Louis, was opened in 184t, it justly prided itself upon being "the largest hotel west of the mountains." It had 215 well-furnished rooms, a classic ball-room with a floor-space " 8.911 square feet more than the celebrated Tremont House, in Boston," while the china and cutlery, all of which was made in England, bore the name of the house. Charles Dickens, who stopped there in IS+2. spoke favorably of the hospitality of this hotel in his "Ameriean Notes." The Massassoit House, at Springfield, Mass., one of the celebrated New England hotels, and the New York Hotel. were both opened in I848. The Delevan House, at Albany, was opened in 1845 . The year 1847 will always be a memorable one in the history of the American hotel, for it marks the date of the opening of the Revere House, Roston, a house which, under the management of Paran Stevens, soon became the pattern which all other hotels in this country sought to imitate.

U'p to IS55, the principal hotels in Philadelphia were the Mansion House, the U'nited States,
the Washingron City．and the Girard House， and it was in that yea－then the Butren Fouse， at Cincinnati，＂as opered with 230 bed－rooms besides mant diawing－rooms．and espectaly spa－ cious corridors．The Eagie Horel．，at Richmone where Lajayerse had stopped in IS2！was burned in ičto．ard the Exciange and Bailurd＇s we：e a：terwat opered．The Clazendon and the ITwg House in Jew Eork，were opened zbous tsys．The fost Tremont House，at Chi－ cago．which got some time was the leadng hotel in tha：city，was opened about this time．while tre Sarie House at Mobie the St．Louis Ho－ tel，as Jew Orieans，and the St．Nicholas and the Wetroporman，in New Y：rk，were opened aba ut isiz．All wese large howses．and we：e condurect upon an expersive saie，while the two lew yock howses were particuaaly con－ spic：ous in having introduced b－ical chambers ${ }^{\circ}$ and cther rove：ties

In tsion the Brevoot and ine Everes：were cpened．on the European pian is New Yotk； the ismous Pa－ker House，in Boston，a＇so on the Eusopear p！an Nas cpened it isss．while the F：ith Arenue Hotel，in New Yozk was tin－ fieed ：I rsミo．I：was tie Erst hotel to int－oduce a passenฐer elevazos．

W：llarës Hotel，at W＂ashins：2n．was the fo－ cus o wany th－ilins scenes and events during the C：vil Mjar，and among the houses tha：were opened dumas the rext fen years were the Lincell and Southem ho：e！s，at E．．Louls：the Abemat：e．Hu＝nan．St．James，and Grand．in New look，and the Aritiston，at Washington． The G：lser Howse．Which was opened in IE，I， in．New Yoth，a：ance took rath as oze of the bes：Eurnpean－plan hotels，while the Windsor House．in Jew look besan the successeul ceree：thai ended so disastopusly in the fire of tion．in reis．The Brusswat，in Boston，and the Palmer and Giand Pacifc．beth in Chicaso． were ofene：ahou：this time whie the Palace Hocel。at San F－ancisco：oze of ite mos：ia－ mus and palatial huese in the far west．began to receive guesti in ryor

The last two decales of the 19th century ween ccnspicusus，ret on＇y ipt the widea in－ crease oi new and more spiendid totels，bu： also E－：he enlargement and impr－vement of th se a：ready buit：in every part ci the cum－ try，whe on such a h－ici review of the hinel tuinees．i：：s imnsside is rame all the ho－ te＇s wreth oomericon that have been buit
 he said sur the sevival of interest in the rak－ Mg tney an ！bette－house extended toon the A：Iartic in ithe Pactive．and in m out ofoth ernos：loundzey il tee Guli．Beginning with the Yendme and younze at Bost n，the list wu＇s inc：Ode the Jar：azemsett．a：P：vilence： the Crand Cuin．Park twerce and Murray Holl in lev Y－k：the Lanayete and Staci＝d． It P＂ade＇pha：the Renret，at Raltimore：the De $5 \because$ ．at Savannah：：he Kimball．at Atlanta； the lomu is a：Banalo：the Hollender，a： Coveard：the $G_{x=a n d . ~ a t ~ C i n c m a t i, ~ a n d ~ t h e ~}^{\text {an }}$ Catrlac and Ruscell．a：De：r 3 L．La：e：case ：he Audt－7um，at Chicago：the Plarkint n，at M：lwaukee：the Ryan．at St．Paul：the Wes：－ at Minneapolis：：Le Coates House，at Kınsas Cry：Browa Pa ace Hotel，a：Denver：the P itiand，at Partand，Orezon，and the Tacma． at Tacoma．The irpetus to the hotel busines：

Which began scme 30 years asc．however．has continued up to the present time for the las： few years have wtressed the constructio n ci many ren and tree hotels than any tira：hat hitherio been built，among them being the Im－ perial．the Savoy，the Holland，the Waidori，the New Astor．and the St．Regis，while one oit the trost unique experiments it the hotel line was the establishmeit of the Marcha Washington， a hotel exclusirely ior women，which is now being successfully coerated，also in New lork．

The watering－p＇ace a．d summer－esort hotels also represent an important and rapialy increas－ thy baach of the business．At the begirning of the 19：h century there were a Bew inne at places like Sara：oga，whi＇e a tavern at the Whise Noustains was bui：by Crawiod in I8J3．In I822，the Catstill Mourtain House was opened， and．by Isبo．there were good houses at Tren－ ton Falls and Delawafe Wa：er Gap．Twenty yea：s later，Newport．Nohant the IIhite Moun－ iains．Lake George，Sa：atoga．Niagara．Cape May．Oid Point Comiert，and the Virginia springs，all bad good hoiel accommodations，but． since that time this branch of the besiness has \＄．2N：to such an extent that splendid hotels are now located on almos：every available spo： on the coast fiom Mane to Firida，whle the Adiroadacks，the Catskilis，and many interior resorts have accommodations for suests that can compare favoably with the best hocels i：1 the countr．At such hctels the American plan asu－ ally prevalts，as it dies to a considerable extent th：oughout the smaler cities and towns．In the iarge cities，however，the European plan，which Fies a price ins the roon，and which charges iss extra service and is each item on the bil！ oi iare has become move popular．i－r while． in some instances，the two plans are combined． it is the European plan that is senesally tol－ lowed by the large hotels．Moreover the charges a：the best hotels are about tuice as great as they were in I8： 0 ．

When compared with the palatial hotels of to－day even the Ene houses like the Tremont and the Astor House were primitive in their constizetion and management．The modern hotel is equipped with rurning water and set basins in every room：many rooms also have water－closets and baths with exposed plumbing： everywhere there are open grates and steam heat．improved ventilation．elevators for both passenge：s and baggace．electric bells．tele－ ph nes，and every posible device to prevent fire． o－to assure the safe escape of guests in case ni a contacrat：n．＇＇iensi＇s and machinery have also muitiplied greaty during the past few years，for the best hotels 末inw rum a thorougly up－to－da：e laundry，an electric lighting plant， appazatus fo：the disilling of water，and the mas：elaborase cold－storage c mieniences，often meitding an incividual ice－makine plant，while． among the other necessa：y conveniences ci every well－equipped hotel one may mention the realing．writing，and music ronms：the coat， Hechase．and bacrase ronms：the barber shop． －1：h 1：＊mantcurng，boot－blacking，and other accessnries：the billiard－room：telephon．e．tele－ graph，and ticket ofices：the thonk and rews－ S：and：the s：enomraphers and typerniters，and the carriaze and messenaer services．not th reroinn a score nf cthe：details that are just as imperative a necessity．It is no uncommon

ITOTTENTOTS - HOUGH

thing to-day to find single hotel structures ralued at $\$ 3,000,000$ or $\$ 4,000,000$. equilpped with furnishings costing many hundred thousand dollars.

A conservative estimate of the number of hotels in the L'nited States, in 1005 , exclusive of those in process of erection, places the numher at 4.250 . Of these about 3.850 are summer or winter resort hotels, 3.000 are family, or private hotels, while the balance are commercial houses. These hotels now give employment tn 110 less than $3.250,000$ persons, and the amount of capital invested in the business is undoubtedly in excess of $\$ 6.000,000,000$.

Hottentots, hŏt'en-tots, an African race, the aborignal occupants of the south end of that continent, near the Cape of Good Hope. The name now given to the whole race was that of the tribe in the immediate vicinity of the Cape of Good Hope, with which the Dutch settlers first became acquainted. The origin of the name is nnknown. They are, when young, of remarkable symmetry; but their faces are tigly, and this ugliness increases with age. The complexion is a pale olive, the cheek-bones project, the chin is narrow and pointed, and the face consequently is triangular. The lips are thick, the nose flat, the nostrils wide, the ears large and lobeless, the hair woolly, and the beard scanty. The women in early life are often models of proportion, and their gait by no means deficient in grace. Their bloom, however, is transient, for, marrying at twelve or thirteen, after the first child they lose their grace and proportion, and soon become hideous. Both sexes are distinguished by excessive incurvation of the spine. When the Dutch first settled at the Cape the Hottentots werc a numerous nation, and occupied a territory of 100,000 square miles. They had abundance of horned cattle and sheep; and it is supposed that the seven tribes into which they were divided made up together a population of at 1cast 200,000. At the present day this race is nearly extinct within the wide territory which formerly belonged to it. They may amount to about 20,000 . The Koras or Korannas (shoe-wearers), south of the Kalahari Desert, still remain a favorable specimen of the Hottentot race. They are taller, stronger, and more cleanly than some of the other tribes. Most of them possess cattle: those who do not, soon degenerate into Bushmen. On the eastern frontier of the colony are still some remnants of the Gona or Gonaqua tribe; but they have nowhere preserved their ancient usages and purity of blood, but are much mixed with the Amakosa Kafirs. The Namas, who are the purest type of Hottentots now existing. dwell in Namaqualand, in German Southwest Africa. The Namas are a pastoral people almost exclusively. Their dwellings are low, rude huts, surrounded by fences. Many of them have been Christianized. The Hottentots generally are very indolent and lethargic.

Hottentot's-bread. See Elefiant's-foot.

Houdon, Jean Antoine, zhŏn äñ-twän oo-dôn, French sculptor: b. Versailles 20 March 1741 ; d. Paris 15 July 182S. Having gained the first prize for sculpture in the royal academy at Paris, he visited Italy, passed io years in Rome in the study of the antique, and finished, among other works, the statue of St. Bruno in the church of St. Maria degli Angeli. Return-
ing to l'aris, he executed admirable busts of Rousseau, Diderot, D'Alembert, Franklin, Turgot, Mirabean, (ilnck, and many other distinguished men: statues of Voltaire and Tourville; the celebrated (Diana' for the empress of Russia; and other works, which placed him in the first rank of Frencli sculptors. In ig85 he accompanied Franklin to the United States, to prepare the model for the statue of Washington ordered by the State of Virginia, and passed two weeks at Washington's residence at Mt. Vernon for that purpose. The statue, bearing the sculptor's legend, "Fait par Moudon, citoven Francais. if 88 ," now stands in the hall of the capitol of Virginia at Richmond. Among Houdon's later works is the celelorated statue of Cicero in the palace of the Luxembourg.

Hough, hŭf, Emerson, American author: b. Newton, Ia., 28 Junc 1857 . Ile was graduated from the State Ciniversity of Iowa in I880, traveled extensively in the wild portions of the West, was for several years a writer in Chicago, and there became in 1899 western manager of the New York periodical 'Forest and Stream.' His publications are: 'The Singing Mouse Stories' (I895) : 'The Story of the Cowboy' (I895): 'The Girl at the Half-way Honse' (1900) ; and 'The Mississippi Bubble' (1902).

Hough, George Washington, American astronomer: b. Nontgomery County, N. Y., 24 Oct. 1836. He was graduated at Union College in 1856 : appointed astronomer at the Cincinnati Observatory in I859, and the following year became astronomer and director of the Dudley Observatory, Albany, N. Y. In iS79 he became director of the Dearborn Observatory and professor of astronomy at the Chicago University: and later accepted a similar position at the Northwestern University. He has invented several astronomical instruments and has discovered more than 600 double stars. IIe has written (Annals of the Dudley Observatory' (1866-71).

Hough, Walter, American ethnologist: b. Morgantown, W. 'a.。23 April 1859. He was graduated from the West Virginia University in 1883 and since 1885 has been commected with the ethnological department of the United States National Museum, becoming in IS95, assistant curator. He has published several important professional monographs.

Hough, Warwick, American jurist: b. Londoun County; Va., 26 Jan. 1836 . He was graduated from the University of Nissouri in 1854. subsequently studied law and was admitted to the bar in 1859 . In January I861 he was appointed adjutant-general of Missouri, as such issuing the general order under which the State military organizations went into camp on 3 May. He was for a short time secretary of statc in Missouri, resigning in IS63 to enter the Confederate service, and serving on the staffs of General Polk and other Confederate commanders. For a few years after the war he practised law in Memplis, Tenn., but afterward returned to Missouri, establishing himself in Kansas City. He was a judge of the Missouri supreme court $1874-84$. for two years of that period serving as chief justice of the State. In 188t he removed to St. Louis, wherc he has continued in the active practice of his profession.

HOUGHTON - HOUSE

Houghton, hōton. Henry Oscar, American publisher: b. Sutton. V't., 30 April 1823: d. North Andover, Mass., 25 Aug. I895. He was apprenticed to a printer in Burlington. Vt., and later entered the Cniversity of Vermont, where he was graduated in I846. Going soon after to Boston he became a member of the printing firm of Bolles \& Houghton at Cambridge in ISt9. and founded later the 'Riverside Press.' In 1864 he entered the book publishing firm of Hurd \& Houghton, now the widely known house of Houghton, Miflin \& Co.

Houghton, how'ton, Richard Monckton Milnes, Baron. English poet: b. Fryston Hall. near Pontefract. Yorkshire. 19 June 1800 : d. Vichy, France. II Aug. IS85. He was educated at Oxford and was long prominent in Parliament as a moderate Conservative. He was raised to the peerage in 1863. He was the anthor of several volumes of verse and prose, including a (Life of Keats' (1848).

Houghton, hôton. Mich., a village and the county-seat of Houghton County, 9f miles northeast of Marquette: on the south bank of Portage Lake, and on the Copper Range. Mineral Range, and Duluth. S. S. \& A. R.R.'s. Portage Lake is connected with Lake Superior at the south by ilie Portage River and at the north by a ship-canal by means of which steamers avoid the detour around Keweenaw Point.

Industrics, ctc.- Houghton is the centre of the rich mineral district in the peninsula of Leweenaw, the total output of which was in 1901 nearly $150,000,000$ pounds. The larger part of the copper export of the region is shipped from this port. There is also considerable lumbering. manuiacture and commerce, and the shipping interests are important. The various industries have about 1,000 employees.

Public Institutions, Buildings. ctc.- It is the seat of the Michigan College of Nines. which was founded in 1885 and occupies a fine structure. There are Episcopal, Methodist Episcopal, Catholic, and Presbyterian churches. Mention should also he made of the county court-house. The two banks have a combined capital of $\$_{250}$,000 and deposits of about $\$ 3,000,000$.

History and Gozernment.- Houghton was first settled in 1851 . Its government is by a president and a council of six members elected biennially, three in each year. Pop. (rooz) 4.000 .

Horace J. Stevens.
Editor of the 'Copper IIandbook.'
Houlton, hol'ton, Maine, town, countyseat of Aroostook County, in the eastern part of the State: on the Canadian P. and the Bangor \& A. R R.'s ; about 145 miles northwest of Eastport. It is the trade centre for a large lumbering region, and in the near vicinity there is quite an acreage of good agricultural land:. The chicf mannfactures are flour, butter. starch, foundry and machine-slinp products, lumber. wonlen goods. and furniture. It has a large slanghter-hnuse and planing- and moldingmills. It is the seat of Ricker Classical Institute, a Paptist schonl. It has a town public hibrary. Pop. (1000) 4.686.

Houma, hoo'ma, La., town, parislh-seat of Terrehomne Parislı: on the layou Terrebonne, and the Southern Pacific R.R.; about 72 miles
southwest oi New Orleans. It is situated in an agricultural region where the principal crops are rice. sugat-cane, and grain. The canning of oysters is one of the important industries; it has a large moss-factory and lumber yards. From I\&9o to 1900 the increase in population was over 100 per cent. Pop. 4.686.

Hound, a dog that hunts by scent, a definition which excludes the greylhound (q.v.). It is difficult to determine from what stock the English hound has originally sprung, but the old "Southern hound" or talbot was most probably the source of the various hounds now known, among which the bloodhound, foxhound, beagle, harrier, dachshund, turnspit, otterhound and hoarhound (now known as Great Dane) are the principal varieties. The mastiff (q.x.) ought also to be included in this group. See Dog.

Hour-glass, a species of chronometer or instrument for measuring time. It consists usi1ally of two hollow bulbs placed one above the other, and having a narrow neck of communication. Dry sand is introduced in quantity sufficient nearly to fill one of the bulbs and fine enough to pass freely through the orifice of the connecting neck. The quantity of sand is adjusted to the time which the glass loas been constructed to indicate. In the case of an hourglass the sand in the upper bulb takes an hour to pass into the lower bulb: and so on for any other definite division of time. This instrument is always subject to slight error in its indications of time. owing to the expansion and contraction of the glass by changes of temperature. and by the variations of drymess in the sand. The hour-glass was commonly used in churches during the 16 th and 1 -th centuries to regulate the length of the sermon, and in some places it contimued in use down to the beginning of the 19th century.

Houris, hoo' - or how'riz, the "black-eyed" nymphs of Paradise, whose company, according to the Koran, is 10 be one of the rewards of the faithful. They are described as most beautiful virgins endowed with perpetual youth. They dwell in beantiful gardens, by flowing streams. and the very meanest of the faithful will have at least 72 of them.

Housatonic, hoo-sa-tōnik, a river which has its rise in the Berkshire Hills, in the western part of Massachusetts, and flows south, through Comecticut. into Long Island Sound. Its course of about 155 miles is through a hilly, mountainous country, noted for its scenic beauty:

House, a place of abode of a family or individual. The common expression, "a man's house is his castle." is in most instances true. Except in criminal cases a man can hold his house against all comers. No sheriff can hreak oper his door to arrest him, or scize his goods for debt, except by a writ, affidavit. or searchwarrant. But the house is no protection where there has been a criminal offence. Breaking into a house with the intent to roh is burglary, and to set fire to a house constitutes arson. A man may defend his honse against trespassers and thieves attempting forcible entrance, even to the killing of the intruder, if it can be shown that he has used no greater force than was absolutely necessary:

Fouse-boat, a combination of boat and souse, used largely as pleasure craft on rivers, canals, and lakes, in Great Britain and the United States. The houseboat had its origin in England about isto. Its growth there has been comparatively slow. It was transplanted to this country late in the 19 th century, and at first found favor with only a select few; but as soon as its adrantages became manifest it began to develop rapidly, and advanced to a most remarkable state of perfection. A "house-boat" is not a boat with two, three or four decks and a number of staterooms, but a commodious, comfortable craft arranged for the accommodation of a family party, a company of bachelors or any suggestible combination of people. It might be likened to a suite of aparments afloat.

The house-boat in England has been particularly a Thames attraction and is seen to the best advantage at Henley. In Igo3 there were several hundred of these floating houses on the water of the Thames. The price of a house-boat ranges from $\$ 300$ to $\$ 25,000$. But a comfortable craft, containing saloon, kitchen and four bed-rooms, may be purchased for $\$ 2,000$. The Thames season lasts from June to September, and is at its height in July and August. A large house-boat may be hired for the season, including Henley, for $\$ 1.000$.

In the United States the house-boat is seen most frequently during the summer months on the Hudson Ruver, the St. Lawrence River, and Long Island Sound. The American vessels are even larger than the English boats and more expensive. They are constructed on approved plans, and contain every possible comfort and convenience that may be found in the best equipped dwelling or suite of apartments ashore. There are spacious sleeping rooms, larger than the staterooms on ocean steamers, a cosy sittingroom, a parlor, a library; a reception room. all the necessary storerooms, a lavatory, a cook's galley and, in fact, eversthing that a well-ordered household might demand. The properly constructed housoboat has a promenade deck and a high rail encloses it so that children may play about the deck with the utnost freedom and safety. The more pretentious are lighted with gas supplied from a naphtha gas-making machine, or electric light, with the energy supplied by storage batteries.

The great charm of the house-boat is the power that its occupants possess to move it from one place to another. On dry land when a man or a family does not fancy a place he or they move away and leave the house behind. On the house-boat they take their house along with them, and they can go wherever navigable water exists. The boat can be anchored in midstrean or moored to a pier. Nँo persons can interfere with the privacy of those on board. It is their own floating castle. When they are tired of one place they can go to another and they have the advantage over their land-living friends that they not only take their house along. but all their belongings, and without the aid of the baggage master.

A typical American house-boat is the Idler, owned by a New York gentleman and used about Alexandria Bay, in the St. Lawrence River. The cahin has a dozen or more windows of goodly size ; there is a saloon and opening from it a dining-room. The kitchen, store-fooms and
quarters for a servant or two are "aft." The promenade deck has hammocks, steamer chairs, canpp stools, rugs, tables, books, work baskets, and flowers; here the family live, move, and have their being for three quarters 5 ? the time spent on the boat. Among the wa known house-looats on the St. Lawrence, ar' the Nydia, Mavis, River God, Bohemia, Amaryllis, Merrivale, and Sumnerholme.

On the 1 lississippi River, Ohio River and other large streams in the Western States the holse-boat is utilized for business as well as for pleasure, and floating grocery stores, photograph galleries, and dry goods and notion shops are not uncommon. There is on the Aississippi at least one floating theatre built on the houseboat plan, and hundreds of small families have adopted a rudely constructed inexpensive type of boat for permanent residences.

House-Boat on the Styx, A, a humorous book by John Kendrick Bangs (q.y.) published in I895. It purports to be an account of the doings and conversations of a company of literary glosts assembled in a house-boat managed by Charon. Among the glostly personages represented are Shakespeare, Raleigh, Dr. Johnson, and many more of various degrees of renown.

House-cricket. See Gryllide.

House-finch, A familiar garden finch (Carpodacus frontalis) of California, grayish, with the head, neck and breast scarlet-carmine. It represents a group of beautiful and interesting Pacific Coast and Mexican finches also known as linnets and burions.

House-fly. See Flies.

House Industry, a modern system of labor in which the workmen carry to their homes faw materials and other goods to be manufactured within their own houses. In New York and other large cities this form of labor particularly applies to the Polish Jews, who are employed to the number of many thousands by the manufacturers of coats, cloaks, and other wearing apparel. The abuses of house industry have become notorious under the name of the sweatshop system. which will be found described more in detail in the article Factories and Factory Inspection.

House of Lords. See Parlitament.

House of Representatives, the branch of most State legislatures, and of Congress. which has the more numerous members, elected from smaller districts, and in some cases for shorter terms. It is very commonly termed the "lower house" or "popular branch," implying a misunderstanding at once of its origin and functions. The House, for instance, is commonly supposed to be related to the Senate as the British House of Commons is to the House of Lords, and to have been modeled on that relation; the former is wholly untrue and the latter largely so. The House of Commons represents popular constituencies, the House of Lords represents only itself: the former is the less dignified theoretically, in practice it has not only more power but all the power; the individual members of the former have mostly less power than those of the latter, but as a body they are incomparably more powerful. None of these things is true about the House and Senate of Congress. Both rep
resent constituencies and the public equally; both are not only theoretically but practically equal - the Senate ${ }^{\circ}$. power of confirming appoiniments and treaties being fully balanced by the House"s power of impeachment, of originating revenue bills, and elecing a President if the electors fail oi a choice. Vor are the members of either as individuals presumptively superior in porver to those oi the other. The actual superiority of the Senate is due to the longer terms, which give the older members a parliamentary experience before which the mass of raw members of the House bow; to the seats being the subject oi eager competition among the ablest politicians, so that the average public position is bigher: and to the lesser membership and smaller number of nerr bills, which enable it to Freserve more independence oi the chairman's tyrany than the House. Siill, a certain glamous always surrounds the latter as the "popular branch"; partiy due to the fact that, owing to its great number and short terms, popular movements are more quickly transiormed into legislative action than in the Senate. In this respect alone the idea is correct: a party intrenched in the Senate has often boasted that no matter what the majority of the people wished it could not be dislodged ior at least eight years, or the time of two presidential elections, in which anything might happen.

In its formation. the model in the State legislatures was simply to follow the old colonial form of council and assembly, itself not copied from Parliament but an independent development; and in Congress the model was partly those legislatures and doubtless partly Parliament - the political theory of "checks and balances ${ }^{D}$ being more potent however, in defining the distribution of powers than in creating the forms of the houses. The actual form of Congress was a compromise, without which ihe Union could not have been formed. The large Siates were averse to being outweighed by the small, and wished ior a two-chambered body, with representation in each proportionate to popuiation: the small ones were determined on a single-chambered one, with each State having ene rote. The present arrangement was the suggestion of the Connecticut members; a final fiem of the compromise was that the senators shouid vote individually and not by States. so that a State should only have its power on condition of keeping its members in place. For the general functions of the House. and its relations present and prospective to the Senate, see Congress.

The members of the House, according to the Constitution, must be 25 years of age, seven years citizens of the United States, and residents of the States which send them: by act of 25 Junc $18+2$ illey must be chosen irom disiricts formed of contiguous territory (but see Gerrymander for the observance of this). This put an end to electing on general ticket, but there is no provision that the representatives shail be residents of their districts, and the people have a periect right to choose them in the British fashica, irom any part oi the State. What preyents this is net law, but the intense local particularism which, even in State senatorial districts made up of several towns. insists on passing the office around amnng the towns; at bottom, the American conviction that
public office demands no training. The number of members is fixed by Congress after each new census.

A quorum of members is a majority of those actually chosen. The House organizes by having the clerk of the last House call the new menbers to order, and if a quorum is present he calls the roll for a rote on choice of Speaker. The members choose their seats in turn as their numbers are drawn by lot. The principal officers are the Speaker, clerk, sergeant-at-arms. doorkeeper, postmaster, and chaplain. (For the Speaker's powers, see Covgress.) The ser-geant-at-arms is the constable. The symbol of his authority is the mace, made on the patern ordered by the House It April I-Sg; a Roman device, ebony fasces, of which each rod ends in a spear-bead. bound at the ends and in the middle with silver bands, and on the end a globe surmounted by an eagle with outspread wings. The House is governed by Jefferson's Manual of Parliamentary Practice, plus its standing rules and orders and the joint rules of the two houses.

House of the Seven Gables, The, a novel by Nathaniel Hawthorne (q.v.).

House Snake, or Milk Snake, a rariety of Lameropelths doliatus, the corn-snake (q.v.) of the South, iound abundantly in most parts of the northem hali of the U'nited States westward to the Rock MIfountains. The dorsal scales are not at all keeled and the ventral plates often exceed 200 in number; the ground-color is gray with three series of rounded black-bordered brown blotches, and the bells checkered with black and white ; a length of 4 feet is sometimes attained. This is a handsonie and mild-tenpered colubroid snake, very abundant in farming districts. where it frequently enters houses. but probably in search oi mice rather than ior the purpose of drinking milk, as is popularly believed. It is an expert climber, often ascending porches and vines attacbed to the walls of houses. As usual. the eggs are deposited in a hole dug in a sandy field.

House Sparrow. From the circumstances of the chief importations into this country having been from England this species, the Passer domesticus of ornithologists. is almost exclusively known in the United States as the English sparrow, although it is distributed quite as plentifully throughout most parts of Europe. The appearance and general habits of this familiar and ubiquitous bird require no description. The presence of the house-sparrow in America is a most noteworthy instance oi the folly of disturbing the proper "balance of Nature" by the thoughtless introduction into new regions of vigorous species which are relieved from the restraining influences of those checks that usually operate in their original habitats. The motives which led to its importation seem to have been two-fold: the desire to combat the plague of measuring-worms (geonetrida), with whict. the parks of many of the eastern cities were aftected, and the sentiment which moved many of our icreign born citizens to look with favor upon the introduction of a familiar bird of the fatherland. The importations began in 1850 , when the directors of the Brooklyn Instirute, led by the Hon. Nicolas Pike, liberated 8 pairs in that city, followed by larger numbers in $18 \equiv 2$
and 1853. The following year saw their introduction into Portland, Me. Within the next is years direct importations were made to the eastern seaboard, the city of Philadelphia liberating 500 pairs in 1869 in her parks, which were carefully nurtured by a paid caretalier. During the next decade small lots were set free in nearly cvery State of the Union, including those on the Pacific coast. Thus, purposely distributed by man, carried in grain cars on the railroads and aided by its remarkable hardiness, fecundity, boldness and adaptability, the house-sparrow has in 50 years spread to practically all parts of this country, except a few remote and isolated fegions, and to many parts of British America. It keeps close to the abodes of man and has become extraordinarily abundant in many large cities and towns, where it acts as a scavenger and befouls the buildings with its droppings and slovenly nests. Because of its presence and pugnacity many smaller native birds have withdrawn from the parks and open spaces, and it has in many other ways become a nuisance, though it does not altogether lack virtues. In its relation to agriculture little that is favorable can be said of the English sparrow: About three fourths of its food consists of grain, much of which is obtained by raids on the fields and store houses; serious injury is also done by its attacks on flower and leaf buds and on all kinds of fruits. On the credit side may be mentioned the relatively small quantity of insects and the considerable quantity of weed seeds devoured. Consult, Gentry, 'The Housc-Sparrow at Home and Abroad' (1878) ; Barrows, 'The English Sparrow in North America' (1889).

Housing Problem. See Tenement House, Reform.

Hous'man, Laurence, English author and illustrator: b. London I4 July 1867. He has illustrated 'The Goblin Market' : 'Weird Tales'; 'The Were Wolf' ; 'Jump to Glory Jane' ; and other books, his work being mostly engraved on wood by his sister Clemence. He is the author of 'The Writings of William Blake' (1858); 'A Farm in Fairyland' (1894): 'The House of Joy' (1895) ; 'Green Arras' (I896): 'A11 Fellows' (1806) ; 'Gods and Their Makers' (1807): 'The Field of Clover') (1898) ; 'The Little Land' (I899) ; 'Rue' (1899) ; 'The Seven Young Goslings' (1899): 'Bethleliem' (1902), and 'Love Letters of an Englishwoman' (1901), which appeared anonymously and was attributed to various writers of the day.

Houssa, hou'sä, or Haussa, Central Soudan, a former important negro kingdom, north of the junction of the Benue and Niger rivers. After internecine divisions it was succeeded by a Mohammedan Fulah empire in I8O2, and is now incorporatec in Nigeria. The name is peri etuated by a negritic race and language distributed far beyond the ancient Houssa boundaries. The race is distinguished as able traders and craftsmen, and the language for $\mathrm{i} i=$ euphony, simplicity and literary adaptability.

Houssaye, Henrí, ời-ré oo-sā, French historian: b. Paris 24 Feb. 1848. He was educated at the Lycée Napoléon, fought with distinction in the Franco-German war, became an editor of the 'Revue des Deux Mondes' and the 'Journal des Débats,? and was chosen president of the Société des Gens de Lettres. In 1864 he obtained
election to the French Academy, which in 1873 awarded the Thiers prize to his 'Ilistoire d'Alcibiade.' He publishect in three parts - '1814,' and ' 7815 ' (2 vols. $)$ - a study of Napoleon's downfall, whicla cnjoyed wide sale in France, and is considered onc of the best extant works on the subject.

Houston, hūs'ton, Sam, American soldier and statesman: b. Lexington, Va., 2 Marcls 1793 ; d. Huntsville, Tex., 25 July 1863 . Leaving home when a boy he crossed the Tennessce River and took up his abode with the Indians, by whom he was kindly received, and with whom he lived after their own fashion for several years. Oolooteka, one of their cliiefs, adopted him as his son. In 18 r h he returned to his family, and to maintain himself opened a school. In 1813 he enlisted as a common soldier in the United States army, was promoted cnsign, and fought under Gen. Jackson against the Indians at the battle of Tallapoosa, in March 1814. In November 1817 he was appointed a subordinate Indian agent to carry out the treaty with the Cherokecs just ratified. In the following winter he conducted a delegation of Indians to Washington. On arriving he found that complaints had been made against him to the government on account of the zeal with which he had exerted himself to prevent the unlawful importation of African negroes through Florida, then a Spanish province, into the southern States. He was acquitted of all blame, but conceiving himself to be ill treated he resigned his commission in the army, and returning to Temnessee settled in Nashville and began the study of law. In 1819 he was elected district attorney, and in 1821 was chosen major-general of militia. Two years later he was elected to Congress; re-elected in 1825, and in 1827 was chosen governor of Tennessee.

In 1829, for reasons unknown, he resigned his office, separated from his family, and deserting civilization, went to Arkansas, where his former Indian friends, the Cherokees, had removed. He was kindly received and for years remained with the Indians. In 1832 he went to Texas and at the outbreak of the Mexican war was elected commander-in-chief of the Texan army.

After the massacre of the Alamo, the Mexican President-general Santa Anna was defeated by Honston at the battle of San Jacinto, 21 April 1836. Santa Anna was captured by the Texans and the independence of Texas was achieved. On 23 .July a general election for president, vice-president. and members of Congress of the republic of Texas was ordered to take place on the first Monday of the following September. Honston was solicited to be a candidate, but declined; but as the day of election approached the popular feeling in his favor became so manifest that he had no alternative but to accept. He was elected by a large majority and was inaugurated 22 Oct. 1836. One of his first acts was to liberate Santa Amma, who had been kept in captivity, and to send him to Washington to confer with the president of the United States. He next opened negotiations with the United States government for the anmexation of Texas to the Union, but the measure encountered such strong opposition in the United States that it did not succeed till several years later.

Texas became one of the Unitcd States in

HOUSTON

IEts. and Houston and Rusk were the first senators sent to Washington. Houston was reelected at the end of his term in ISS3, and remained in the Senate till March Is $59 . A 5$ a senator he was opposed to the Kansas and Nebraska bill, against which he made one of his must elaborate speeches. in which he declared that the repeal of the Missouri Compromise was a thagrant breach of iaith, which would involve the country in interminable agitation and dimcuity. He was prominently mentioned in $185+2$ as a presidential candidate of the 'Know-Nothing" party. He was elected governor ei Texas i tug. I8s0. but was deposed for adherence to the Lnion in INot. See Milliams. 'Sam Houston and the War oi Independence in Texas' (IRy3)

Houston. Texas, city and county-seat of Harris County, at the function of White Oah and Bufalo bayous: the highest inland point in the Siate permanendy accessible by water from the Guli of Mevico. Bufralo Bayou. which turnishes an outlet to the sea. so miles distant, has been navigated from the earliest days of the city"s history, and is being widened and deepened by the Federal government at a cost of § $\$ 000,000$ so as to admit of the passage of the largest ocean-going crait.

Houston was settled shortly aiter the battle of San Jacinto. which was fought on 21 April IS36, within a few miles of its location. The city was named aiter Gen. Sam Houston (q.x.). It was made the seat of government for the Republic of Texas, and so remained until I840.

Goternment.- Houston was first incorporated under an act of the Texas Congress passed 29 Dec IE3-. It now has a charter granted by special act of the legislature in 1003. Under the charter a mayor is its chiei executive oricer. and 12 aldermen (two for each of the six wards into which the city is divided) constitute the legislative division of its government. The mayor and the aldermen are elected for two years as are also the city treasurer, the city tax assessor and collector, the city atromes, the city health officer, the street commissioner, the chief of police and the judge of the corporation ccurr. which has jurisdiction of plice cases. The cost if Howion's city government. including the amount appropriated ctr of the general revenue iund for the public school:, ranges between $\$ 000.000$ and 5050,000 per annum. The city own= a cower syster with $3:=$ miles of conduits. The city lias about 3 n miles ef paved and otherwise improsed strcets. The city maintains a paid fire department at a $c-a t$ on an average of sho.000 per annum. The cost of police pr tection averages $a b^{\text {ut }}$ ut the same.

Pu*bic Buidin:s.- Housten"s chiei buildings are the city-hall and market-homse, the Central fire tati n. the Binz iffice blilding. the Cimmercial Vational Bank buidme, the Stwers tuiding, the HFu-i:n Prst buiding. the High Sch of bulding, the Masen buiding, the Carnegie Lil rary building, the Fir-t Presbyterian Church lo u-e. the Christ Epi-copal Church house, the Waddell building, the Kiam building. and a provided-it r Federal building to a it \$500.000 and the Rice Institute building it the erectinn and mairtenance i i which an end wment if between Er.momo and Es.0mo.000 has been leit. The William M. Rice institute wa: founded in the year 1892 by the late William Marsh Rice. of lew lork. This institute
contemplates the estabishmert and maintenance of an industrial or polytechnic school ior males and iemales. designed to give instruction on the application of science and art to the useinl occupations of life. It establishes and maimtains a free library and reading rooms, and galleries of art.

Eciucation.- The city bas 20 public schools (including a high school for whites and one for Degroes), and 26 private schools - and one Carnegie library building. The city's school affairs are managed by a board of seven trustees appointed by the mayor with the approval of the city council. The schools are maintained by difect appropriation irom the general revenue fund and get irom $\$ 80,000$ to $\$ 1,000,000$ irom that source annually. In addition they receive each year irom the State a per capita apportionment of the State school iund which runs irom Σ_{+50} to $\Sigma_{5.00}$ ro: each pupil between the ages of ; and 1%.

There are 5 Baptist, 5 Catholic, 3 Christian. 2 Christian Science. 3 Episcopalian, 2 German Methodist (Jorth), 5 Methodist (South): I Methodist (North), I Cumberland Presbyterian.

Presbyterian and 2 non-denominational churches for whites. besides one Episcopalian chapel and two missions, a Salvation Army barrack and a Spiritualist association. The negroes have 29 churches of all denominations. The city"s eleemosynary institutions consist of the Bayland Orphans" Home. the De Pelchin Faith Home, the Florence Crittenton Rescue Home. the Sheltering Arms Horme of Christ's Episcopalian Church and an Infants Home for poundlings. The city has one public park and zoological garden valued at $\$ 30,000$.

The city has six national banks with a combined capital stock of St. $\$ 0.000$: an average surplus of Sg00,000 and average undivided protits of $s=00.000$. Their deposits range around §ir.000.000 in amount and their loans around §-.000.000. In addition there are three private banks with combined resources of $\leqslant 3.000 .000$. Bank clearings in excess of E000.000.000 are annually effected through the city's clearing house.

Trade and Commeric.- In point of irade and commerce Houston distributes more graceries, hardware and machinery than any other city in the State. It is the most important spot cotton market in the world. barring Liverpool, 1.027.00bales, or a little less than 19 per cent of the entire crop of the Cnited States, constituting the volume of its transactions in the staple for the year 1903. said transactions involving an approximate outlay of $\$ 30.7$ f2.315. Houston is also the principal lumber market of the South-we-t. In sugar Houston is second to New Orleans only, while in rice a comparatively new industry in Texas, it ranks as one of the four principal markets west of the Misissippi.

More produce, iruit and ieed stufi is consumed and distributed in Houston than in any other city in the Southwest.

Transfurtob n.-Houston's pre-eminence as a cummercial centre is due to its supply of transportation iacilities. In 1856 these consisted, aside from a navigable outler to the sea. it 36 miles of railroad. In 186 t its rail lines extended a distance of 350 miles, there being but $q^{n} \geq$ miles of railroad in the entire State at that time. And this ratio has been pretiy well preserved until 1903 when 6.500 miles of rail-

S.DIICEI IIOLSTON.
road, or more than one half the States mileage were operated by 14 lines for which Honston is an initial point and which during that year moved $16,000,000$ tons of freight, or about three fiftlis of the tonnage which went toward making up the total of the State's railroad business. These 14 lines with their immediate system connections give Flouston 30,000 miles of direct rail facilities. In addition to this Ilouston enjoys direct rail and barge connection with a second steamship line to New York which has tri-weekly sailings from Galveston. By reason of its location at the head of ocean navigation on Buffalo Bayou, Houston enjoys water rates on freight from defined tertitories as well as from the Atlantic scaboard and finds itself in a most advantageous position for the distribution of merchandise of all classes. Freight to the value of $\$ 25,000,000$ is annually exported and imported on barges and other craft navigating Buffalo Bayou and piying between Houston and Galveston.

Manufactupes.- Honston has 507. industrial plants in operation in the city, an increase of T41 per cent during the last decade. There are $\$ 8,000,000$ invested in manufacturing enterprises with products to the value of $\$ 12,000,000$ in 1903. Manufacturing has been stumulated to a great extent by the discoverics of petroleum and the development of the rice industry. The rapid growth of the sawmill and lumber products business - the most important in the State - 85 per cent of which is carried on within easy reach of Houston and in a scction for which the city is the natural market has also contributed to the same cond. Chief among Housfon's manufacturing concerns are the cotton oil refineries of which there are five. These represent an investment of $\$ 5,250,000$ and annually, on an average, convert 144.000 tons of cotton seed into products bringing $\$ 3.168 .000$ in the markets of the world, in the aggregate. Here are also the general car shops of the Atlantic division of the Southern Pacific and allied lines and the division car shops of three other railroad companies. The city has 35 miles of electric strect car lines.

Population.- (i890) 27,557; (I900) 44,663; (1903) 65,000.
R. M. Johnston.

Houston Daily Post.
Hovey, Alvin Peterson, American soldier: b. Mount Vernon, Ind., 1821: d. Indianapolis 23 Nov. 189r. He studied law, and was admitted to the bar in 1843; was appointed successively circuit judge, judge of the supreme court, and United States district attorney. He was a major of Indiana volunteers, and afterward major-gencral during the Civil War. In 1866 he was made minister to Peru; was elected to Congress in i886, and became governor of Indiana in 1888.

Hovey, Charles Mason, American horticulturist: 's. Cambridge, Mass., 26 Oct. 18ro; d. Boston 2 Sept. IS87. Ile was the first to introduce a pistillate strawberry, known as "The Hovey." a variety that marks the beginning of strawberry culture in the United States. He edited the 'Magazine of Horticulture' for many years, and was the author of 'Fruits of America) (1880).

Hovey, Richard, American poet: b. Normal, Ill., 4 May I864; d. New York 24 March
1900. IIe was gradnated at Dartmouth I885, went abroad and led a bohemian life, being in turn actor, journalist, dramatist and poct, and finally lecturer on English literature in Barnard College, New lork. His verse was of the idealistic school and marked with the infltence of Ibsen and Miaeterlinck. His works are: 'Launcelot and Guencrere' (I 880) ; 'Taliesin: a Masque) (1900) ; (Seaward: an Elegy' (1893): 'The Laurel' (1897); 'Along the Trail' (1898) ; and with Bliss Carman (4.v.) wrote 'Songs from Vagalondia) (1893); and 'More Songs from Vagabondia' (1896).

Howard, Blanche Willis. See Teuffel, Blanche Willis Howard, Baroness Von.

Howard, Bronson, American playwright: b. Detroit, Mich.. 7 Oct. I 842 . Preparing for college he tumed to journalism instead of entering Yale, and from 1867 to 1872, was employed on the New lork Tribunc, Evening Mail and other newspapers. In 1864 he had written a dramatic piece called 'Fantine,' which was produced in Detroit, but his first important play was 'Saratoga,' produced by Augustin Daly in 1870, and the first of a long list of successes, which gave him a foremost position among American playwrights. Among his plays are: 'The Banker's Daughter' (1878) : 'Young Mrs. Winthrop' (1882): 'The Hemrietta' and 'Met by Chance' (1887) ; 'Shenandoah' (1889); 'Aristocracy' (I892); 'Peter Stuyvesant' (with Brander Matthews) ; etc.

Howard, Catharine, fifth queen of Henry VIII.: b. about 1520; d. 13 Feb. 1542. She was a granddaughter of the second duke of Norfolk.

Howard, Guy, American soldier: b. Augusta, Maine, I6 Dec. I855; d. 21 Oct. I899. He was a son of Gen. O. O. Howard (q.v.) and entered the United States army in 1876 as a second lieutenant. He was promoted chief quar-ter-master, with rank of lieutenant-colonel II Aug. isos; was assigned to duty in Manila under Gen. Lawton: and had charge of the transportation for luawton's advance movement. While on the gumboat Oceania be was attacked by Filipino insurgents, and fatally shot.

Howard, John, English philanthropist: b. probably Hackney 2 Sept. 1726: d. Kherson, Russia, 20 Jan. 1790. In I773 le was appointed high sheriff of Bedfordshite, when the subject of prison discipline came moder his notice: and finding many abuses in the manlagement of jails, he resolved to devote his time to investigation of the means of correcting then. With this view he visited most or the English county jails and houses of correction, and in March I774 laid the result of his inquiries before the House of Commons. In Iz8i and if82 he made a tour through the northern parts of Europe, including Denmark. Sweden. Russia, and Poland. In $\mathrm{I}_{7}-83$ he visited Spain and Portugal, and again surveyed the prisons of his own country. At the same time was published a complate edition of his 'State of the Prisons, with all the supplementary matter A new subject now engaged his attention. namely, the management of lazarettos, and the means of preventing the communication of the plague and other contagious diseases, In 1789 he published 'Account of the Principal Lazarettos in Enrope.' In 1789 he procecded through

Germany to St. Petersburg and Mozcow. Prisons and hospitals were everywhere thrown open for his inspection as a iriendly monitor and public benefactor. Consult: Howard's 'Correspondence' (1855): and 'Lives' by Dixon (1849): Stoughton (1853).

Howard, John Eager, American soldier: b. Baltumore County; Md., \& June 1552; d. 12 Oct. 182\%. He joined the army under Washington at Middlebrook, ㅅ. J., in the spring oi 172, and subsequently fought at Germantown and Monmouth. In 1 -So he joined the army under Greene, and in the battle of Cowpens (r -8i) he displayed great gallantry. and the bayonet charge of the Maryland troops under his command. whereby the enemy were thrown into contusion, turned the fortune of the day and secured victory to the Americans. For his services in this battle he received from Congress a silver medal. In I - 88 was elected gorernor of Maryland, a position which he filled ior three years. From 1796 to 1803 he represented Maryland in the Cnited States Senate. He was a candidate for the Vice-Presidency in 1816.

Howard, Oliver Otis, American general: b. Leeds, Maine, 8 Nor. 1830 . He was gradnated irom Bowdoin in 1850 , and from IVest Point in 1854 . He was then assigned to the ordnance department of the regular army, served in Florida against the Seminoles, and was professor oi mathematics at West Point 185\%-61. At the outbreak oi the Civil War he entered the volunteer service as colonel of the 3 d Maine regiment. He was in over 20 important battles: in 186r he was at the batrle of Bull Run, and was afterward made brigadier-general of voluntcers: in 1862 he served in the Virginia campaign, and at the battle oi Fair Oaks lost his riglit arm. He commanded at the battles oi Antietam and Fredricksburg; in 1863 was appointed to the command of the ith Army. Corps and led them at the battles of Chancellorsville and Gettysburg. IVhen the 1ith Corps was united with the 12th he was given command of the 4 th Corps of the Army of the Cumberland, but was shortly afterward transferred to the command of the Army of the Tennessce, which was the right wing of Shernan's army on his "march to the sea." In 1864 he was appointed brigadiersenctal in the recular army, and in I865 made commissioner of the Freedmen's Bureau, which he conducted very efficiently: $1860-73$ he was president of Howard University (q.v.). established in 11 ashington for the higher education of the nearo. In IS;4 he was placed in command of the Department of the Columbia, and there conducted iour campaigns against the Indians, including that against the Nez Perces tribe. In IRSI he was superintendent at TVest Point, and subsequently in command of the Departments of the Platte and of California: in :886 he was promoted to the rank of majorgeneral, and assigned to the Department of the East, where he remained until his retirement in I\&24. In ISos he founded the Lincoln Memorial University, Cumberland Gap, Tem. He has written: 'Donald's School Days' (18-9): 'Chief Joseph, or the Nez Percés in Peace and 'llar' '1881): 'freneral Zachary Taylor' (I\&o2): - Isabella of Castile' (i894): 'Fichting for Humanity': and 'Henry in the War' Consult: L. C. Holloway: 'Life of General Howard.'

Howaro Inemorial Library, established in 18S in New Orleans. La.. is one of the few complete reference libraries in the L"nited States. It was founded by Annie Turner Howard, whose gift of site, building, and endowment amounted to nearly $\$ 350,000$. The plans for the building were made by Henry Hobson Richardson (q.v.). In addition to the 45.000 volumses of the best books on all subjects. it contains special and nearly complete collections on the history, description, and literature oi Loulsiana and the Guli States. It has a dictionary card catalogue.

In the spacious and handsome reading-room are many fine bronzes, including the Houdon bust of Washington, from a life mask. This bronze is on a pedestal which brings the face to the correct height. This library is of great service to students of all the educational institutions of the Southern States, and also to writers on special subjects pertaining to the Guli States.

William Beer,
 Librarian of Howard Memorial Library.

Howard University, a coeducational institution, situated in Wrashington, D. C.. established by the United States government in 186\%. It was named ior Gen. O. O. Howard. who was head of the Frcedmen's Bureau, and had much to do with the foundation of the school. The university is supported by Congressional appropriation, except the medical department, which is maintained by tuition fees, and this is the only department in which tuition is charged. The departments are preparatory, collegiate. medical. agricultural, dentistry, pharmacy. pedagogy, theology, law, music, and agriculture. An industrial deparment provides instruction in trades for students in the preparatory and English courses. The pupils in this department liave practice unjer competent workmen, in printing, carpentry: bookbinding, and tinsmithing. The university is well known for its work in the higlaer education of the negroes of the U'nited States. The school has property valued at about $\$_{1.000 .000 \text {, and a general endowment fund }}$ of $\$ 175,000$.

Howe, Andrew Jackson, American eclectic surgeon and author: b. Paxinn. Mass.. if April 1825: d. Cincinnati, Ohio. I6 Jan 1 Soz. Educarcd in Leicester Academy and Harvard College, from which he graduated in 185.3. Attended medical lectures at Jeffersnn Medical College. Philadelphia: College of Physicians and Surgeons, and the Sew York Jledical Collese of Sew lork city, and Wiorcester Medical Institute. graduating from the latter in 1855. He was demnoserator of anatomy in his alma mater in 1855-6: professor of surgery in Cimcinnati Collecre of Eclectic Medicine and Surgery: 1856-0: demonstrator and professor of anatomy in Eclectic Medical Institute of Cincinnati, 1859-61 ; professor in same of surgery. from i\&61 to ISg2. He wrote 'A Treatise on Fractures and Dislocations' ($18-3$): 'Manual of Eye Surgery' (ISjf): 'Art and Science of Surgery' (I8-6): 'Operative Gynecolory' (1soo): 'Conversations on Animal Life.' and ' Miscellancous Papers.' published in 1801 after his death He was precident of the Sational Felectic Medical Association in 1882-3.

ELIAS HOWE．

Howe, Edgar Watson, American novelist and editor: b. Treaty, Ind., 3 May 1854. At the age of 12 he entered a printing office, and when vily 19 was publisher of the 'Golden Globe' in Golden, Col. Ten years later he became proprictor and editor of the Atehison (Kan.) Daily Globe. He has written: 'The Story of a Country Town' (1883), which attracted considerable attention: "The Mystery of the Locks" (1883) ; 'A Moonlight Boy') (1887) ; 'A Man Story' ' (S 88) ; 'An Ante-Nortem Statement'; 'The Confession of John Whitlock'; ctc.

Howe, Elias, American inventor: b. Spencer, Mass., 9 July 1819 ; (1. Brooklyn, N. Y゙., 3 Oct. 1867. He lived with his father, who was both farmer and miller, till 1836. working upon the farm and in the mill and attending the district school during the winters. He then learned the trade of a machinist, and experimented in inventing a sewing-machine. The model was completed and the patent issued io Sept. IS46. A patent was also taken out in England. but from this the inventor realized nothing. After constructing four machines in the United States, he visited England in 1847, remaining two years. He returned to Boston entirely destitute, and resumed his trade for the support of his family. From this period until i854 he was involved in expensive lawsuits, when the principal infringers of his patents acknowledged his rights, and arranged to manufacture sewing-machines under licenses from him. He served as a private in the i th Connecticut volunteers during the Civil War. He was the recipient of the Legion of Honor cross and many medals.

Howe, Henry, American publisher and historian: b. New Haven, Conn., i6 Oct. ISi6: d. 1893. He entered the publishing business in 1839, and while conducting this business began historical researches in New Jersey and New York. He later moved to Ohio, where he continued his historical studies, and published subscription books. His writings include: 'Nemoir of Eminent Mechanics' (1839) : 'The Great West' (1851); 'Travels and Adventures of Celebrated Travelers' (1853): 'Adventures and Achievement of Americans' (1858); 'Our Whole Country' (IS6I); 'Over the 'World' (1883): and 'Historical Collections' of three States, New Jersey, New York and Ohio.

Howe, John, English Puritan divine: b. Loughborough, Leicestershire, 17 May 1630; d. London 2 April 1705. He was frequently styled "The Platonic Puritan" and is ranked as the greatest of the Puritan clergymen. Ife was an eloquent preacher and a powerful controversialist, but fortunately frce from animosity or theological bitterness. Among his works, 'The Living Temple': 'The Blessedness of the Righteous'; and 'The Oracles of God' have been especially valued. See 'Life' by Rogers (1836).

Howe, John Ireland. American inventor: b. Ridgefield, Conn., zo July 1793; d. Birmingham, Conn., 10 Sept. 1876; was at first a pliysician, but in s 830 invented a pin-making machine. This be perfected later and it was the means of revolutionizing the pin manufacture.

Howe, Joseph, Canadian statesman: b. near Halifax, Nova Scotia, 13 Dec. 18o4; d. Halifax, I June 1873. He learned printing and in 1837 became connected with the 'Acadian'
and in 1828 editor ans proprictor of the Nova Scotian.' Ale contributel several remarkable articles to this paper, called "tl"estern and Fastern Rambles" and the papers "Legislative Reviews." Ile was elected to the Provincial Parliament in i836. Wle favored free common schools, one]'rovincial University and complete, responsible government and it was mainly due to his efforts that Nova Scotia finally received such government. He was a menber of the Executive Council in 1840 and Speaker of the Assembly the same year. In 5846 he succceded in making himself a popular power in the province and turned it over to the Liberals. Towe opposed confederation in the old assembly and even went to london to lay a petition before the throne against "the assertion of Federal supremacy," but lost his fight. He served as secretary of state for the provinces in the Dominion cabinet and superintendent of Indian affairs ($1869-72$), and later was a member of the Dominion Parliament for Hants County, Nova Scotia. He returned to Halifax in 1873 as lieutenant-governor, but only lived a few months to enjoy it.

Howe, Julia Ward, American author and philanthropist: 1. New York 27 May i819. In 1843 she married S. G. Ffowe ($(\ldots .)^{\text {) }}$) of Boston, and immediately became active in philanthropical work. With her husband she edited the 'Boston Commonwealth,' one of the ablest anti-slavery papers, to which she contributed leading articles, essays, poems, letters, and witty comments. At the same time she also wrote for the New York Tribune, and the 'Anti-Slavery. Standard.' Since the Civil War she has been active as writer and speaker in other social and philanthropic work, particularly in the agitation for woman's suffrage and for prison reform. She was one of the founders of the New England Women's Club, the first organization of its kind in America; she was delegate to the World's Prison Reform Congress in London (1872) ; and was president of the women's lranch of the New Orleans Exposition (1884). She has also preached occasionally in Unitarian pulpits. She has been president of the Boston Authors Club from its foundation in 1899. Her writings include: 'Passion Flowers' (1854) ; 'Words for the Hour' (I856): 'Later Lyrics' (I866): 'A Trip to Cuba,' and 'From the Oak to the Olive,' two books of travel; 'The IVorld's Own' (1855), a drama: 'Scx and Education' (1874): 'Modern Society' (I881) : 'Is Polite Society' Polite?', "Life of Margaret Fuller' (I883) ; and 'Reminiscences' (I899). Her best known poem is 'The Battle Ilymn of the Republic' (in 'Later Lyrics'), written early in the Civil War, while she was visiting the camps around Washington. It was set to the music of 'John Brown's Pody,' and immediately became popular with the soldiers.

Howe, Mark Antony de Wolfe, American editor and author: b. Bristol, R. I.. 28 Aug. 1864. He was educated at Lehigh and Harvard universities, and on leaving college entered the editorial office of 'The Youth's Companion,' Boston. In ISO.3-5 he was assistant edlitor of the 'Atlantic Monthly,' and since isg9 has been corresponding editor of 'The Youth's Companion.' He has published: 'Shadows.' verse (1897): "American Bookmen' (IS08) ; 'The Memory of

Lincoln' (edited) (1899): 'Phillips Brooks' (IS99) ; (Boston: the Place and the People) (1003). He has edited the series of (Beacon Biographies) from 1809.

Howe, Richard, Earl. English admiral: b. London 8 March 1726; d. 5 Aug. 1799. At 14 be shipped as a midshipman on board the Severn in which he sailed with Anson for the Pacific, and passed through the usual gradations of the sertjee under that admiral till 1 万45. When he ob:ained the command of the Baltimore sloop-ofwar, in which he took part in the siege of Fort William. during the last Jacobite rebellion. In 1756 he served in the Channel fleet; in $1 \pi 58$ reduced Cherbourg. In $1 ; 59$ he defeated a French squadron under De Conflans. and for two years ($1,63-5$) occupied a seat in the board of admiralty. In 1j76, as commander-in-chiei in North America, he acted against the American forces and against D'Estaing, who commanded a superior French fleet. He sailed to the relief of Gibraltar in $1-E_{2}$ and was successful in spite of the combined fleets of France and Spain. On the outbreak of war with France in I;93 he took the command of the British fleet, and on I June 1794, obtained a decisive victory off Ushant for which he received the thanks of Parliament. He was made admiral oi the fleet in 1\%06. His name is one of the highest among those of the famous naral commanders of Great Britain. He greatly improved the service by the introduction of a new system of tactics.

Howe, Robert, American colonial soldier: b. Brunswick Countr, N. C., 1732; d. there 12 Nor. 1785 . He was a member of the assembly and oi two provincial congresses, and took a prominent part in the preparation for the Revolution. At the ourbreak oi the war be was given a command and aided in driving the British out of Virginia: was promoted to the rank of major-general and commanded in the South. In 1778 he was repulsed by the British and compelled to evacuate Savannah: though then deprived oi command he was afterward acquited by the court-martial by which he was tried for the loss of the city. In i-SO he commanded at Charleston; in $1-83$ assisted Washington in putting down a mutiny: and in 1,85 was elected to the North Carolina legislature, but died before he took his seat.

Howe, Samuel Gridley, American philanthropist: b. Boston to Nor: ISon: d. there 9 Jan. 18;6. He was graduated from Brown University in 1821 , and from the Harvard Medical School in 1824. Immediately after completing his studies he joined the Greek army at the time of the war for independence; he created an excellent surgical corps for the Greeks, and was also distinguished as a brave commander in battle; at the deciaration of peace he established an industrial colony of Greeks on the Isthmus of Corinth. He returned to the United States ior a short time, but becoming interested in the work ior the blind, went back to Europe in order to study the schoois for the blind there; while in Paris he was chairman of the committee for the relief of the Poles in the time of the Polish uprising: he went to Prussia to distribute the funds collected, and was imprisoned by the Prussian authorities. In I\&32 he returned to Boston, and founded the Perkins

Institution for the Blind, of which he became superintendent; in this position he did much to improve the methods in the instruction of the blind. and to found similar schools throughout the United States. His greatest success was in the training of Laura Bridgman. (See Defectites, Edtcation of.) He also assisted in organizing the Massachusetts School for ldiots. He was active in the anti-slavery cause; was candidate of the Conscience Whig Party ior Congress, but was defeated: and was editor of the anti-slayery paper, the 'Boston Commonwealth,' assisted by his wife, Julia Ward Howe (q.r.). At the close of the Civil War be joined in the work oi the Freedmen's Bureau (q.r.). He was always active in many lines of philanthropic work, organized the Massachusetrs. State Board of Charities and went to Greece in 1867 with supplies for the Cretans. In IS;o he was one of the commission appointed by President Grant ta risit Santo Domingo and report upon the advisability oi ins annexation. He wrote: 'Historical Sketches of the Greek Revolution' (I828) : 'Reader for the Blind' (IS39). Consult: The 'Life.' by Julia Ward Howe, and Sanbom, ' $S . G$. Howe, the Philanthropist.')

Howe, Timothy Otis, American statesman: b. Livermore, Maine. 24 Feb . ISı6; d. Kenosha, Wis.. 25 March I883: He receired a common school education, studied law; was admitted to the bar, and sat in the Maine legislature in 18.45 . He remored in that year to Wisconsin, entered politics, and in $186 \mathrm{I}^{\circ}$ was chosen United States Senator. serving till 18,9. He declined a Supreme Court judgeship on the death of Salmon Chase, but in ISEI became post-master-general in President Arthur's cabinet.

Howe, Sir William, English general: b. Io Aug. 1729: d. 12 July I814. He was a brother of Admiral Richard Howe (q.v.) and was the successor of Gen. Gage in command of the British forces in America. He had previously served under Wolie at the battle of Quebec. He commanded as the battle of Bunker Hill ($1 ; / 2$). in which he lost one third of his men present in the action, and in August 17\% gained the battle of Long Island and took. New Fork city. He won the battle of Brandywine in September $17 \% \%$ in consequence of which Philadelphia was occupied by his army. At his own request ine was recalled in $1 ;-8$, and was succeeded by Sir Henty Clinton, who repulsed Washington at Germantown in ihe October following. He succeeded to the Irish peerage as riscount in 1799 .

How'ell, Clark, American journalist and politician: b. Barnwell County, S. C... 21 Sept 1863. He was graduated irom the University of Georgia in I883. entered journalism, became managing editor in I889 of the Alanta Constifution, and editor-in-chief 1So7. He was a member of the Georgia House of Representatives 1890-1 and has been a member of the Georgia Senate from 1900.

Howell, Mich.. village, countr-seat of Livingston County: on the Pere M. and the Ann A. R.R.'s: about 50 miles northwest of Detroit. It is located in a rich agricultural section of the State The chiei manufactures are flour and condensed milk: and it has a large sash, door,

Photograph copyright, 1902, by Purdy, Bosion.
JLLLIA WARD HOUE
and blind factory, and a planing-mill. Pop. (1900) 2,518.

Howells, William Dean, American novelist, poet and critic: b. Martin's Ferry, Ohio, 1 March 1837. During his boyhood his father owned and published daily papers in Hamilton and Dayton. Ohio, successively, and he learned the printer's trade and gradually the whole business of conducting a newspaper. In 1851 he was working in Columbus as a compositor; in 1856 he became Columbus correspondent of the Cincinnati Gazeffe; and in 1859 was appointed news editor of the Ohio State Journal. At this time he published a small wolume of poems, and also some pooms in the 'Atlantic Monthly.' In I860, when Lincoln was nominated. Howells wrote his life, and in 186 t was appointed United States consul at Venice, where he remained till 1865. The impressions of his stay there were embodied in ('Venetian Life) (IS66), and 'Italian Journeys' (1867). On his return to the United States, he was ior a time connected with the staff ni the New York Tribune, the Times, and the 'Nation.' In 1866 he became assistant editor of the 'Atlantic Monthly,' and editor-in-chief in 1872. In $1886-92$ he conducted the critical department of 'Harper's Monthly' called "The Editor's Study" : and in 1892 was editor of the 'Cosmopolitan' for a short time.

His first novel 'Their Wedding Journey;' was published in 1871 : his other novels include: 'A Chance Acquaintance) (18 ;-4) : 'A Foregone Conclusion' (1875): 'The Lady of the Aroostook' (18-9); 'The Tindiscovered Country" (1880) ; 'Doctor Breen's Practice" (1882); 'A Modern Instance) ($\mathrm{IS82}$) ; 'A Woman's Reason' (1883); 'The Rise of Silas Lapham' (IS85); 'Indian Summer) (1886); 'The Xinister's Charge' (I886); 'April Hopes' (1887): 'A Hazard of New Fortunes) (1889) ; 'The Shadow of a Dream' (1890); 'An Imperative Duty' (I\&92) ; 'The Quality of Mercy' (I 892) : 'The World of Chance' (1893); 'The Coast of Bohemia' (1893): 'A Traveller from Altruria' (1894) : 'The Landlord at Lion's Head' (1897); (An Open-Eyed Conspiracy' (r898); 'The Story of a Play') (1898) ; 'Ragged Lady' (1899); and 'Their Silver Wedding Journey' (1900). Howells has also written farces and comedies, including: 'The Sleeping-Car' (1883); 'The Mouse-Trap' (1897) ; 'The Unexpected Guests' (1898) ; and 'The Albany Depot' (1898) ; etc., and the following volumes of verse: (Poems of Two Friends' (1860), with J. J. Piatt; 'No Love Lost, a Romance of Travel' (1868) ; and 'Poems' (I873). His other works include: 'Tuscan Cities') (1885) ; (Modern Italian Poets) : 'Essays and Versions' (IS87) : 'Criticism and Fiction' (1891) ; and (Impressions and Experiences' (1896); 'Literary Friends and Acquaintances' (I899) : and 'Heroines of Fiction.' In American literature, Howells is the teader of the realistic school: his novels portray the average, everyday American life; he has a true and sympathetic understanding of the "common people" of the United States, and types of the American "self-made" man appear and reappear in his storics. His latest phase, that in which he seeks to understand and set forth the American social problems. - the meaning of socialism, the relations of labor and capital, and. more broadly, the mystery of poverty and of human
suffering. - is typified in a book like 'A Hazard of Sew' Fortunes'; and 'A Traveller from A1. truria,' a picture of an ideal commonwealth. The absence of idealism in Howells' writings has been cired as their gravest defect; but it is by no means true that he entirely cxcludes the ideal sides of life from treatment. His work is marked by carefulness and thoughtfulness in style and construction, and by fidelity to a high ideal of artistic excellencc. His essays, like his novels, have always that indefinable charm which is the enduring note in good literature, and to the charm are added the broad outlook and the deep ethical interest which are typical of the man.

How'ison, George Holmes, American philosopher: b. Monigomery County, Md., 29 Nov. 183ł. He was graduated from Narietta College, Ohio, in 1852 , and irom Lane Theological seminary: Cincinnati, in 1855 , and after holding various college professorships clsewhere became Mills professor of philosophy at the University of California in 1884. He has published 'Treatise on Analytic Geometry' (1869) ; 'Limits of Evolution' (1901) ; 'The Conception of God ${ }^{\text {(}}$ (897).

Howison, Henry Lycurgus, American rear-admiral: b. Washington 10 Oct. 183\%. He was graduated from the Cnited States Naval Academy in 1858. He served in various important engagements, becoming lieutenant-commander in 1865. In 1899 he became rcatadmiral and was retired 19 Oct. 1899. In I90t he was appointed a member of the Schley court of inquiry, but on being challenged, was relieved from service.

How'itt, William and Mary, English authors commonly named together. Wifliam (b. Heanor, Derbyshire. I8 Dec. 1792; d. Rome, Italy, 3 March 18\%9), showed such a bias to literature that he published verses at $\frac{13}{}$. In 1821 he married Mary Botham (b) Uhoxeter 12 March 1799; d. Rome 30 Jan. I888), who wrote both by herself and with her husband. Their first joint work, a volume of poems. 'The Forest ITinstrel,' was published in 1823 , and in 1827 appeared 'The Desolation of Eyam.' The best lines in these are by Mrs. Howitt. Howitt himself having no great poeric giit. In 187 I , however, he published a volume entitled 'The Mad War Planet and Other Poens.' William and Mary Howitt sertled arst in Staffordshire. In 1823 they removed to Nottingham, where they resided till 1837, and in 1840 visited Germany, where they resided for three years. Results of their residence in Germany appeared in 'Student Life of Germany' (18ft) and 'Rural and Domestic Life of Germany' (IS.tz), which, being translated into German, acquired flattering popularity: While at Heidelberg Mrs. Howitt set herself to translate the tales of Frederika Bremer into English, and later the works of Ilans Andersen. Their most ambitious work is 'The Literature and Romance of the North) (1852). Howitt's best works are those in which English history and life are treated of in connection with English scenery. The earliest of these was the 'Book of the Seasons' (1831), which acquired great popularity; 'Rural Life in England' (1838) was also well received. Still others are: CTisits to Remarkable Places' (1840); 'Homes and Ilaunts ni
the Bratish Poets' (IStr): 'The Year Book of the Country' (1850); and 'The Northern Heights of London' (1809). With his wife he published volumes on 'The Ruined Abbeys and Castles of Great Britain.' Mrs. Howitt's books for young people were long popular in the Tnited Siates. and 'The Pet Lamb' and a iew other unpretending verses of hers have become familiar to thousands of juvenile readers.

How'itzer. See OrdNance.

How'land, Alfred Cornelius, American painter: b. N"alpole. 犬. H.. 12 Feb. IS38. As an art student he began in the studios of Schuitz and Eppindale at Boston, and subsequently went to Dusseldori and Paris, in which latter place he painted under Lambinet. He excels in genre and landscape, and among his favorize works are - Ford's Glen' (IS-S); 'Rendezvous of the Vettrans' (IS84) ; and 'The Coming Circus' (I280).

Howland, Gardiner Greene, American journalisi: b. New lork 1834; d. there 9 May 1903. He was the intinnate and confidential friend of the elder James Gordon Bemmett, held the same relations with the younger Bennett, was general manager of the Herald for more than iwenty-five years, and one of the corporators named under the incorporation of the newspaper.

Howley, Michael Francis, Canadian ecclesiastic: b. 1843 . In 1857 he entered Saint Bonaventure's College, and in IS63 went to Rome. entering Propaganda as an ecclesiastical student. In 1868 he was ordained a priest and went 10 Scotland as sectetary to Most Rev. Dr. Ayre, but in IS,o returned to Rome with Dr. Ayre and was present on the occasion of the declaration of the dogma of papal infallibility by Pope Pius IN. He accompanied the Rt. Rev. Thomas J. Power to Sewfoundland in 18;0, and for over 30 years he has labored with great success for the spiritual and ecclesiastical adrancement of Newfoundland. In i\&86 he was made prefect apostolic of Saint Georges, in 1892 was consecrated bishop. in Saint John's and made vicar apostolic of Saint Georges, in 1002 appointed bishop of Saint John's in succession to Rt. Rev. Dr. Power, and in 1904 he was named by the Holy See archbichop of the ecclesiastical province of Newfoundland. Archbishop Howley is not only distineuished as a theological scholar and thinker. a devoted missionary and able preacher. but also as a poet, lecturer, and antiquary. He has also contributed much to the historical study of Ňewfoundland (q.v.).

Howorth, how'erth. Henry Hoyle, Sir, Enclish author and politician: b. Lisbon, Portugal. 1 Inly ist2. Ife was a Conservative member of Parliament for South Salford RR86-1000. In recognition of his works on Eastern histnty and other suhieets, he was created K. C I. E. in tisnz. Resides very many scientific memnirs. he has publihed: 'History of the Monenle'; 'The Nammoth and the Flood': 'The Glacial Nightmare and the Flond': 'Genghis Khan and has Ancestors.' ctc.

Howrah, how'rā. India, an independent municipality: suburban to Calcutta (q.v.). Pop. (tont) $157,47 \%$

Hox'ie, Vinnie Ream, American sculptor: b. Madison. Wis.. 23 Sept. Is 46 . She was educated at Christian College, Columbia, Mo., and going to Washington, D. C.. studied art, executed busts of Grant. Sherman and others, and a statue of Lincoln for the National Capitol. She then went abroad. where she designed medallions of Doré. Liszt. Buchanan, Read, and others. Among other works of hers are ideal starues of 'Sappho': 'The Spirit of the Carniral': and the statue of Admiral Farragut in Farragut Square, Washington. She was married to Major R. L. Hoxie oi United States Engineers.

Hoyle, Edmond, English writer on games: b. 1672; d. London 29 Aug. 1;69. It is said that he was educated for the law. but nothing definite is known of his career except that he was for many years in London a writer on and instructor in games. His 'Short Treatise on IThist' $(17+2)$, a compendium of the laws of the game and many rules ior play: sold largely and has been the basis of all subsequent manuals of the kind. So generally has his anthority been accepted in the game that "according to Hoyle" has attained a proverbial significance.

Hoyt, Charles Hale, American dramatist: b. Concord, X. H., I860: d. 1900. He was at one time musical and dramatic critic of the Poss of Boston. His works comprise (A Jidnight Bell) (IS8;), and a long series of farce-comedies, such as 'A Trip to Chinatown' (I\&go).

Hoyt, Henry Martyn, American lawyer and soldier: b. Kingston, Pa., \& June 1830 ; d. Wilkesbarre, Pa., I Dec. 1892. He was grad. nated from Williams College in 1849, read law, was admitted to the bar in 1853. practised at Wilkesbarre, at the opening of the Civil War was appointed lieutenant-colonel of 52 d Pennsylvania regiment. served during the Peninsular campaign in I862, and was captured in a night attack on Fort Johnson dusing the siege of Morris Island. Mustered out with the grade of brevet brigadier-general: he practised his profession until 186%, and was then appointed additional law-judge of the Luzerne County courts. In 18;9-83 he was Republican governor of Pennsylvania. His administration was particularly characterized by a wise financial policy, by means of which the State debt was reduced to $\$ 10.000 .000$ and refunded at three per cent. He published: 'The Controversy between Connecticut and Pennsylvania) (is;g): (Protection \because Free-Trade' (ISSE).

Hoyt. John Wesley, American educator: b. near Worthington. Ohio, 13 Oct. 183t. He was graduated at Ohio Wesleyan University in i849. and later studied both medicine and law. He has had charge of educational exhibits in several international expositions, and was made chairman of the SVational Committec to Promote the Establishment of the Lniversity of the Cnited States. He was the first president of the Cniversity of 11 yoming, and was governor of Wryoming $18-88_{3}$. He has puhlished 'Progress of University Education': 'Studies in Civil Service) : ctc.

Hoyt. Wayland, American Raptist clergyman and author: b. Cleveland. Ohio. He was educated at Brown University and studied for the Baptist ministry at the Rochester Thenlogical Scminary. Since then he has held pas.
turates at Pittsfield. Mass. Cincinnati, BrookIyn, Minneapolis, and Philadelphia. Among his published works are 'Hints and IIelps for the Christian Life' (IRSo): 'Gleams from Paul's Prison' (r882); 'Liglit on Life's 1lighway' (isgo).

Huaina Capac, wä-c’nā kä’päk, or Huayna Capac, itth Feruvian lnca: b. Cuzco, Peru. about 1450: d. Tumibamba, Ecuador, Nivember 1525. He began his reign in If8o, or, according to some authorities. ri91, and made many conquests, even subduing the country as far south as Chile. By his will he divided the empire between two of his sons, Huascar and Atahualpa (q.v.).

Huamanga, wā-män'gä, or Guamanga, gwä-mãn'gă, Peru, the former name of Ayacucho (q.v.).

Huanaco, hwä-nä'kō, the most numerous and widely distributed of the two species of the genus Lama (L. guanaco). of the camel family. resident in South America. It is somewhat like a large goat in form. but with a much longer neck. surmounted by a small camel-like head. and long, pointed. alert ears, but no weapons. A large male is about four feet tall at the withers, a female somewhat less. The coat is of long, woolly, redish-gray hair, the improvement of which by selective breeding in domestication has formed the alpaca breed (see Alpaca). It roams the open plains of Argentina and Patagonia. serving as the principal game animal of that region, and furnisling the scattered natives with food, clothing, and shelter. In the autumn it gathers into large herds, and behaves in general like the antelopes of the similar arid plains of other parts of the world. Consult Darwin. Hudson. Spears, and other writers on Patagonia. See Llama.

Huascar, wäs'kär, Peruvian lnca, son of Huaina Capac (q.r.). See Atahtealpa.

Hub'bard, hüb'ạrd, Elbert, American attthor: b. Bloomington. In1., I $\$ 59$. After working on a iarm as a boy, he went to C^{-}icago, where he entered a printing-office, and later was employed in a soad factory: In the latter business he rose to be manager, and finally partner of the firm: selling out his interest. he devoted himself ior a time to study and travel. and finally settled at East Aurora, where he established the Roycroft shop, deroted mainly to the artistic printing and binding of books. The organization of the shop is co-operative. and its ideal is ior every worker to do that which best expresses his ovin individuality. Hubbard is editor of the 'Philistine.' a "magazine of protest." and has written 'Little Journevs' (biographical sketches): (No Enemy but Himself': 'Message to Garcia' (i\&os): and 'Time and Chance' (igor): 'The Man of Sorrows' (1904).

Hubbard, Joseph Stillman, American astronomer: b. New Haven. Conn., - Sept. 1823; d. there 16 Aug. 1863. He was graduated from Yale in 1843 . and accompanied Frémont as observer of latitude and longitude in the latter's transcontinental journey. From 181= until his death he was stationed at the Washington observatory as professor of mathematics in the United States navy. He made important investigations regarding comets, was at two different periods editor of the 'Astronomical Journal,'
and was a member of the Natıonal Academy of Sciences.

Hubbard, Leonidas, Jr., American journalist, "riter, and explurer: b. Waldron, Nich., I2 July $1 \times \sqrt{2} 2$; d. Labrador is Oct. 1903. 11c was a teacher in the public school at Angola. Mich.. while still in his teens, and early in life showed keen interest in writing, exploration. and athletics. Graduated from Lniversity oi Nichigan in inoz. He once began reportorial work in Ann Arbor, and later on the Detroit Erening Yiaus. 11 e came to New York in the summer of 180 the staff of the Duily. Nous, but early in 1902 became associate editor of 'Outing.' in which work he was much interented. He conceived the idea of exploring into the wilds of Labrador. and 20 June 1003 , accompan' d by Dillon Wallace a New York lawyer, and George Elson. a Cree Indian guide, he left Jeln York, going by steamer from Saint Johns. ... B.. to Rigolette, a Hudson Bay trading Drst on the Grand River. From this point Fubbard and his friends traveled by canoe and on font. mapping correctly for the first time Grand Lake: then penetrating the interior in a westerls and northwesterly direction, mapping the course of the Beaver River from its source to the noint where it flows into the southeast hay of Lake Michikamau; and locating and mapping several large lakes in the interior. The party penetrated some 250 mile further into new territory than any previous expedition. Notes on the geology and general observation of the topography of the country were also made. Among Mr. Hubbard's most noted writings are: 'The Moonshiner at Home' (1902): 'Barataria' (1002): 'Children of the Bu:h' (1903); and 'Where Romance Lingers' (1001).

Hubbard, Oliver Payson, American physician: b. Pomfret. Comn. 31 March tíno: d. Ň"w York 9 March 1900. Graduated from liale in 1828, he was assistant to Silliman the clder in the laboratorv there in 1821-6. and aided Goodyear in experiments compected with the vulcanjzing of India rubber. In 1836 -60 he was professor of chemistry. pharmaci, mineralogy. and geology at Dartmouth, in 1866--1 lectured on those subjects. and from i8fi whill his retirement as professor emeritt: in $1: 88_{3}$ was nrofessor of chemistry and pharmacy. He was a founder of the American Associatinn of Geologists and Naturalists in $18+1$. and its secretary in 184t. He contributed to the 'American Iournal of Science.) and published (A History oi Dartmonth Medical College) (ISSo). etc.

Hubbard, Richard William, American artist: b. Middletoun. Comn. 15. Oct. IS10. He was educated at lale, set un his studio in New York, was elected to the National Academr in 1858, and painted mmernus American landscrapes, such as: Xansfielel Mommain at Sunset': 'Showery Day. Lake Genrge': 'Glimpse of the Adirondacks': and 'Lake Cazenovia.'

Hubbard, William, American colonial clergynan and historian: b. Tcndring, Essex. Encland. 1621: d. Inswich, Mass. it Sept. 1/204. He was graduated at Harvard College in I642, and was ordained about t6:66 as minister at Jpswich. where he continued during the remainder of his liie. He is the author of 'A natrative of the

Troubles with the Indians from 160 ; to 1677. with a Discourse' (1677), the map accompanying which is supposed to be the first executed in America. He leit in manuscript a 'General History of New England.' for which the colonv paid him $\mathrm{f}_{5} \mathrm{O}$. and which has been consulted with advantage br Mather. Hurchinson. Holmes. and other American historians and annalists. It was published by the Massachusetts Historical Society in 1815

Hubbardton, hüb’ạd-tón. V't., town in Rutland County: 13 miles from Castleton. is nearest railroai station. It is in an acricultural region, and has but little mannfacturing: its raw products are sent direct to the markets. On 7 July 1777 a battle took place here between th Americans under Colonels Francis and IVarner, and a Rrirish and Hessian force under Generals Riedesel and Fraser, \therefore whicls the British were successtul. The Americans. the rearguard of Gen. St. Clair"s army, who were retreating from Ticonderoga. lost in killed, wounded. and prisoners 324 men; and the British loss was 182 men. A monument in memors oi the American soldiers who were killed in this battle occupies a prominent position. Pop. 500.

Huber, Johannes. German philosopher and theologian: b. Munich IS Aug. 18.30: d. there 19 March 18,9. He was edncated at the University of Munich, became professor of philosophy there in 1850. and was one of the leaders of the Old Catholic party and an active opponent of the Tlitramontanes. He vigorously attacked the definition of the dogma of papal infallibility. Among his works were 'Studies' (186 -): 'Das Padsitum und der Staat' (1870) : 'Der Tesuitenarden' (187.3): and 'Zur Philosophie der Astronomie) (18;-).

Huber, Victor Aimé, German publicist and author: b. Stutgart io March 1800 ; d. Wernigerode 19 July 1860 . Educated at Wurzburg and Göttingen, he became professor of the history oi literature and of modern history at Rostock in 1833. of the languages of western Europe at Marburg in 1836 . and at Berlin in 1843. He retired in 1850 . Huber was one of the most profound of German scholars in the Snamish language and literature. Among his nublications were: 'Dic Geschichte des Cid') (182Ω): 'Crónica del Cid' (ISH); and 'Skizzen aus Spanien) (:825-35).

Hubert de Burgh, English statesman: d. London 12 May 1243 . He hekl office under Richard Crur de Lion, and was made castellan of Falaise by King John, with whom he sided in the struggle with the harons, though advising the granting of Magna Charta. In the year of Runnymede (1215) he was made justiciar (chiefjustice) of England. On 24 Aug. 1217 he won a distincuished victory over a French Reet bringing reinforcements to the arms besicging Dover Castle: the treaty of Lambeth was concluded (11 Scotember) and the enemy eracuated England. After t219 he was co-regent with Langton. archbishod of Canterlury. for Henry III. IIe vigorously onnnsed the foreigners who were endeavoring to obtain control of the envernment. and sought to end the exactions of the clergy. In 1232 he was dismisced, owing largelv to his failures in the conflict with the Welch. and thereafter he had no part in the government.

Hubert, hū'bért (Fr. ü-bãr ! Saint. apostle oi Ardennes the patron of huntsmen; d. about 52-. Legend savs that he was a keen hunter, and that being once engaged in the chase on Good Friday, in the forest of Ardemes, a stag appeared to him having a shining crucifix between its antlers, and he heard a warning woice. He was converted. entered the church, and became bishop of Maestricht and Liège. He worked many miracles. and his body, at first deposited in the church of $\mathrm{St}_{\text {t. Peter at }}$ Liege. was in 8_{17} conveyed to the Benedictine convent of Andain, in the Ardennes, which received the name St. Hubert's of Ardennes. he day of the saint is 3 November, and was formerly celebrated at many courts by a solemn chase.

Hübner, Joseph Alexander, Coust, Austrian diplomat: b. Viema 26 Nov, 1811 : d. there 30 July 1892. He was educated at Vienna, and. having entered the service of the government. became in 1849 minister at Paris, and in $1865-8$ was ambassador at Rome. In 1899 he became a member of the clerical-conservarive wing in the upper house of the Reichsrat. Among his published works are: 'Sixte-Quint-D'apres des Correspondances Diplomatiques Inédites) ($18 \% \mathrm{o}$, new ed. 1883): 'Ein Spaziergang um die Welt' (1872. 7th ed. IS91): and 'Durch das Britische Reich) (1886, 2d ed. 1891).

Hübner, Julius, German painter: b. Oels. Silesia, 2; Jan. 1806: d. Loschwitz, Saxony, ; Nov. 1882. He studied at the Berlin Academy and was also a pupil oi Schadow at Berlin and Düsseldorf. In isit he became professor in the Dresden Academy of Arts. He was an historical painter of the Dinsseldorf School, his works including 'Disputation between Luther and Eck' and 'Charles V. at Saint Just.'

Hübnerite. a native tungstate of manganese, MnWO. It always contains some ferrous iron and as its percentage increases it graduates toward wolframite (q.r.) , which it oiten much resembles, but from which it is distinguished by its brown color and nleochroism. It occurs in monoclinic erystals, ofren bladed and deeply striated. It has easy pinacoidal cleavage. is brittle, has a hardnces of 5 to 5.5 and is very heavy, its specific gravity being 7.2 to $\overline{7} .5$. lts lustre is sub-metallic or resinous, and its streah yellowish-hrown or greenish-gray. It occurs in considerable quantities near Silverton. Colo. in Aew Mexico, Nevada, Arizona, and elsewhere.

Huck'leberry, a name of uncertain derivaticn applied to a variety of shrubs. especially to species, oi the genus Gaylussacia, and to those belonging to the order loaciniacia and the genus Toaccinium. The principal species are found mainly in the northern hemisphere, thrnughout North America: Northern Britain, and Europe. The fruit of facinium is a manysided berry with four or five cells. I. Pemnsylataricum is a small plant about six inches in height. Other species range widely in size. I°. corymbesum sometimes attaining a height of nearly 10 feet. In many places in the tinited States huckleherrics are a valuable product. the fields in which they grow are preserved. and the berries are secured cither for houschold use or for profitable marketing.

Huckleberry Finn. The Adventures of, a stnry hy Samuel I. Clemens ("Mark Twain"). pulifined in sest. It is a sequel to, and fol-
lows the fortunes of, the leading claracters of the same author's 'Tom Sawyer.' In this book the author not only preserves to us a valuable record of a rapidly disappearing social order, but throws light upon some questions of moment to the student of history.

Hudibras, hū'dï-brăs, Sir, the hero of a famous satirical poem by Samuel Butler (q.w.), published 1663-78.

Hud'son, H. Lindsay, "Harry Lindsay," English novelist: b. Belfast, Ireland, to April 1858. He has been a journalist and schoolmaster by turns, and among his writings published under the signature "Harry Lindsay" are 'Methodist Idylls' (I897); 'An Up-to-Date Parson' (1899); 'Judah Pyecroft: Puritan' (1902).

Hudson, Henry, English navigator. The time and place of his birth appear to be lost. We only know that he had earned, perhaps by the time he was 40 . sufficient reputation as a bold and skilful navigator to be placed in command of the ship Hali Moon of Amsterdam. Early in 1609 he made a contract with a party of Dutch merchants to act as captain of their private exploring expedition, and in the written agreement between them he was described as "Henry Hudson, Englishman." This settles the honor of his birth country, though nothing more. At that time the one great commercial demand was for a shorter and better, all-sea trade route to the Far East. It was known that there was land to the west of Europe and it was believed that a passage could be found through these lands directly westward to the East. It is clear that Hudson believed that the western route was the most promising and, no doubt, he suggested it to his employers, but they evidently had more faith in a sea passage north and then east, round Europe and Asia to China. Thus it happened this English sea captain sailed from the Dutch port of Amsterdam in the small ship "Half Moon bound for China by the way of the North Cape. The ship's company of Dutcl and English was fortunate in having as mate one Robert Juet (perhaps aiso of England), and the mate could read and write. Juet kept the ship's log, and in this \log book on the first page are these words: "On Saturday, the five and twentieth of March, I609, after the old account (style), we set sayl from Amsterdam, and by the seven and twentieth day we were down at the Texel; and by twelve of the clock we were off the land, it being east of us two leages off."

Once "off the land" the ship was free to go where the captain pleased and it certainly did not please the crew to face the arctic cold of the attempted voyage round Europe. Solid pack ice and the open mutiny of the crew decided Hudson to turn back and he steered south and west. It is evident that he felt free to carry out his own plans and reach China by another route. His owners' plans had failed and, while his plan might fail, his success would justify his action. Hudson's decision was almost as bold as that of Columbus for, while he had, no doubt. some knowledge of the lands to the west, he evidently had no conception of the shape or size of North America nor of the width of the Pacific.

The Half Moon was a slow sailer, and four months passed before she made the land along the eastern coast of what is now the United

States. The log book described the land as "low white sandy ground" - exactly describing all the shore linc south of Sandy Hook. The book might also lave described parts of Long Island or Cape Cod and it is clear it did not describe the coast of Maine, and it is more than probable the first land mentioned in the book was south of Sandy Hook for, on reaching the land and finding no passage westward. Hudson steered "northeast by north" until, about two weeks later, he came to a great bay. The \log book, which does not give the name of the month, and which must have been September, says, "And from that lake or bay the land lyeth north by east, and we had a great streame out of the bay." The Half Moon had found the "great stream" described by \crrazano, and with the flood tide sailed into New York Bay and headed for the Narrows and, as the \log book says, "came to three great rivers." And it continues: "So wee stood along to the northmost. thinking to have gone into it." The Half Moon was off Manhattan. It was true Verrazano, in I524, had entered New York Bay and left a record of a high hill and a great bay out of which flowed a large river, but Verrazano had not the courage to pass the Narrows, except in a smal! boat. Other explorers may have looked into the bay. The Half Mloon was the first ship to pass up the "great stream" and to Hudson belonged the entire honor of discovering and exploring the river that now bears his name.

The pages of Juet's journal tell nothing of Hudson's own hopes, fears and anticipations. Yet, it is fair to think that Juet's enthusiasm over the beanty and value of the great valley was shared by his captain and that the ship's \log was, in a sense, a reflex of Hudson's own views. There is no hint of Hudson's belief that he could reach China by this ronte, yet it is reasonable to suppose he entered New Kork Bay in the hope that the "great stream" would lead through the land to the Pacific. The great size of the bay and river and the fact that the tide flowed far into the land and that for the first few days' sail the water remained salt, no doubt encouraged him to keep on through this most promising opening in the land. Favored by "fairer weather" and a favorable breeze he steered northerly over the wide salt arm of the sea until the apparent strait became a river and the sea water became fresh. At the Highlands all hope of a road to China must have faded away. Still, he would sail on, push through the mountains and see what manner of country lay beyond.

The items of the \log book plainly show that Hudson, after passing the Highlands, began to recognize the transcendent importance of his discovery. He had found a new land of surpassing beauty and fertility and everywhere clothed in splendid forests. Hudson clearly recognized the commercial value of his discovery, for the log book enumerates all the potential wealth of the river and valley in fish, game, lumber, fruits, vegetables, grains and peltry: It even mentions the fact that Hudson, while the ship was at anchor somewhere near the present city of Hudson. sent the ship's carpenter ashore to fashion a new forearm out of one of the primeval trees - the first bit of lumbering done by white men in the valley.

HUDSON

Hudson seems to have decided. after reaching the upper river and sailing to a point opposite the Catskills, that the best way to mollity his owners on his return would be to report as fully as possible the potential wealth he had discorered and he sent a boat up the river to explore the country. The boat party appears to have been absent several days, for they rowed up stream about nine leagues or perhaps beyond Albany where. as the log book says. the boat found "it bee at an end for shipping to goe in - with but seven foot water and unconstant soundings." Meanwhile Hudion evidently traded with the Indians for peltry, no doubt regarding the furs as something that would demonstrate to his zeerchant owners the ralue of his discovery.

Three weeks after the Half Moon entered "the great streame" she again passed Sandy Hook and steered away for Amsterdam. There is no record oi the return voyage nor is there any record of Hudson's report to the merchants of Amsterdam. yet it is evident that his story and perhaps the exhibit of peltry created a tremendous sensation in the commercial cities of Holland. Hudson apnears not to have cared much about this side of the affiair. He seems to have considered his voyage a iailure. He had tried to reach China and iailed, and wished to sail again, but the merchants seem to have been wholly occupied in fitting out new ships under more commercial cantains and would not listen to him. At last, afier some delay, he did secure a second ship and set forth once more to find a sea parth through America. He appears to have thought there might be a passage round by the north of America and he steered for Baffin's Bay: Once more he found a great passage leading westward into the land, once more a salt water strait seemed to promise success, but it ouly led to an inland sea. His miserable crew, ignorant. frightened at the arctic cold and gathering ice, rose in mutiny, and putting their great captain in an open boat. with his son, a boy of seven, and some invalid sailors. set them adrift in the vast waters of Hudson Bay and leit them there to perish.

Charles Bariard,
Lecturer, Board of Education, New Iork.
Hudson, Henry Norman, American Shakespearian scholar and Episcopal clergman: b. Cornwall. It., 28 Jan. 18 It : d. Cambridge. Mass. 16 Jan. 1886 . He served as chaplain in the Civil liar. was professor of Shakespeare at Boston Cniversity. and ior a tinne editor of the 'Churchmant.' He published 'Lectures on Shakerpeare" (1848) 'Campaign with General Butler' (1865); 'Shakespeare, his Liie. Art, and Characters' (4 th ed. 1 18_{3}): 'Essays on Education' (1883). He edited the Harvard and the L'mversity edition of Shakespeare.

Hudson, Thomson Jay, American philosophical writer: b. Windham. Ohio. 22 Feb. 1834; d. Detroit, Nich., 5903 . After studying law ant, being admitted to the bar in Cleveland. Ohio, in 185\%, he practised three years, was engaged i, jnurnalicm in Michigan isto--66. and was principal examiner in the U-nited States Patent Office 1NiNO 0.3. IIe has puhlished 'The Law of P-schic Phenomena' (1893): 'A Scientific I)emon-tration of the Future Life) (I尺Oラ) 'The Divine Pedigree of Man' (I $\$ 99$) ; 'Law of Mental Medicine' (1903).

Hudson, William Henry, American educator and critic: b. London, England, 2 May 1863. He was five years private secretary to Herbert Spencer (q.i.) and coming to America was assistant librarian of Cornell University, 1890-2. He has been an assistant professor of English literature at Leland Stanford University from 1892 , and has published 'The Church and the Stage" (1886): ‘An Introduction to the Philosophy of Herbert Spencer' (1893) ; 'Studies in Interpretation' (1896): 'Idle Hours in a Library) (189J): 'The Study of English Literature' (IEgS); 'The Sphins and Other Poens) (1900); 'The ITeaning and Value of Poetry' (1901): 'Life of Sir Walter Scott' (1901) ; 'Famous Missions oi Caliornia' (1901) : etc.

Hudson or Hudson's Bay, Canada, an extensive bay or inland sea extending between lat. 51° and $64^{\circ} \mathcal{1}$. and lon. 77° and $95^{\circ} \mathrm{W}$. Its greatest length north to south is about 800 miles, greatest breadrh. 600 miles. It is connected with the Atlantic Ocean by Hudson Strait and with the Arctic Ocean by Fox and other channels. Hudson Bay is navigable in summer from the middle of June to the end of October, being obstructed by drift-ice during the rest of the year. There are many islands. reefs and sand banks. The white whale is found in its waters, and there is a considerable summer fishery: Numerous rivers flow into the bay, the clief being the Nelson and Churchill on the east. The shores on the east are high and bold: those on the west are low and level. and much oi the land is favorable for stock and dairy farming, while valuable deposits of iron ore. galena, and plumbago exist. With the exception of a few fur trading stations on the west and south coast, there are. however, no setrlements.

Hudson, Mass.., town, Middlesex County, on the Assabet River. and on the Boston \& \mathbf{M}. and the Fitchburg R.R ${ }^{\prime}$; about 15 miles northwest of Worcester. The rown is situated in an agricultural region. but it is particularly noted ior its mannfactures. especially of articles made from leather and rubber. The chiei manufactures from rubber are gossamer clothing. webbing. goring, and boots and shoes. Some of the other manufactures are paper and wooden boxes, leather, and leather boots and shoes. The town owns and operates the electric-light plant and the waterworks. Pop. (1900) 5.454 .

Hudson, N. Y., city, port of entry, countyseat of Columbia County: on the Hudson River, and on the New York Central \& H. R. and the Boston \& A. R.R.'s: about 30 miles sonth of Albany. Area of the city, one square mile. Hudson was settled in $1: 83$ and was called Claverack Landing: but the year following the name was changed to Hudson. 11717,5 it was chartered as a city, and in 1,90 it was made a port of entrg: From the fir:st it was a trading station of importance and a whaling port. After the Revolution a large foreign trade was established. but the commerce of the city was injured by the destruction of its shipping in the Whar of 8812 . The surrounding country is deroted largely to agriculture, and the eity has a number of manufacturing establisthments. The chief mannfactures are foundry products. machiners. knit goods, car-wheels, and creamery products. It has a large sash and wlind factorv

HUDSON

and several small manufacturing establishments. Some of its prominent buildings are the State Volunteer Firemen's Home, the State House of Refuge for Women, an orphanage, hospital, and the city public buildings. The city owns and operates the waterworks. The government is rested in a mayor, who holds office two years, and a city council. Pop. (1900) 9.528.

Hudson, Ohio, town in Summit County, on the Pemnsylvania railroad, 20 miles south of Cleveland. This was one of the earliest settled towns on the Ohio Western Reserve, and prior to the Civil War was an abolition stronghold. The Western Reserve College, before its remoral to Cleveland, was located here. Pop. (1900) 2,240.

Hudson, Wis., city, county-seat of Saint Croix County; on Lake Saint Croix, an expansion of the Saint Croix River, and on the Chicago, St. P., M. \& O. railroad; about 65 miles northrest of Eau Claire and 20 miles east of St. Paul, Minn. The chief manufactures are flour. finished lumber, furniture, railroad cars, machinery, beer, and brooms. The city has a large cold-storage plant and ample facilities for shipping butter, poultry: vegetables, and fruits. It has a large sanatorium. The electric-light plant and the waterworks are owned and operated by the city. Pop. 3,259.

Hudson, the largest fiver in the State of New York, has its head waters in Hamilton and Essex counties, and flows southwest into Saratoga County, then nearly directly east to Sandy Hill in Washington County, and from this point south throngh New York Bay into the Atlantic Ocean. It is fed by sereral of the Adirondack lakes, a number of small streams, and by Schroon River, Batten Kill, Hoosick, M'appingers and Croton from the east, and the Sacondaga, Mohawk. Wallkill, and Esopus Creek from the west. The Mohawk (q.v.), which flows into the Hudson at Cohoes, is the largest tributary; the Rondout enters the Wallkill near the-Hudson. The head waters of the Hudson and the sources of several of the streams which flow into the Saint Lawrence are very near each other in the Adirondack Mountains. At Troy, three miles below the month of the Mohawk, the Hudson becomes a navigable tidal stream. There is a tidal rise of about one foot at Albany. Above Troy there are a number of rapids and long falls in the river; but below, the navigation is uninterrupted. At one time there were a few obstacles, the largest of which was "Overslaugh", or Castleton Bar, at Castleton. This hindrance to navigation has been almost wholly removed by the Federal and State government. The Catskill Mountains, on the west side, begin about 25 miles below Albany: Lower down are the Highlands, averaging about I.IO0 feet in height, which extend along the shore for a distance of about 20 miles. The Highlands of the Hudson are noted for their beautiful scenery. On the west bank are the famous Palisades (q.v.) about 13 miles long, their southern extremity being near Fort Lec. in New Jersey. and the northern extremity near Piermont. New York. This remarkable arrangement of rock rises.from near the water's edge, almost perpendicularly, from 350 to 550 feet. Below Verplanck and Stony Point is an expansion in the river the upper part of which is called Haverstraw Bay and the lower part Tappan Sea. Many
small islands in the river serve as foundations for lighthouses, or for the erection of dredging platforms. Iona, on which there is now a naval station, Constitution, and Becren Islands have all figured in history. Below Allany the Hudson is more an estuary or fiord than a river, which accounts ior the great depth of water. The area draned by the Hudson above where the Mohawk enters is about 30,000 square miles. The river is noted for its beautiful scencry from the source to the mouth. Along the lower part of its course there are many fine residences, as a large part of the country on both banks from New Lork to Albany is now a residential section. The Hudson is fittingly called the "Rhine of America."

Hudson River was discovered by Verrazano, an Italian navigator, in 1524: but it was explored by Henry Hudson in 1609. The Indian name for the river was Shatemuc, and the first colonists called it North River, as the Delaware was then called South River. The part of the river west of New York city is still called North River; but it was given the name Hudson in honor of its first explorer. The history of the country since its discoyery by Europeans occupies an important place in the history oi the United States. The almost unbroken waterway from the Atlantic Ocean through what is now the State of New Iork, to the Saint Lawrence River, made this an important route for missionaries, traders, and for the armies in the various wars. From the mouth of Lake Champlain to Lake George, across the portage from Lake George to the Hudson, and the Hudson to the ocean, was all disputed territory, and the scene of many a contest of the Revolutionary Thar. What a change in the map of America ii Burgoyne had succeeded in his plan of $\mathrm{t} / \mathrm{i} / \mathrm{\prime}$ "to cut the nation in two" by getting possession of Lake Champlain and the Hudson. See Chayplain, Lake; Crown Point; Haterstraw; Ticonderoga.

The river is navigable for ships of the first class for about 117 miles from the ocean. Its whole length is about 300 miles. Before the introduction of railroads, the navigable waters of the Hudson, connecting New York with a large section of country, gave the city great opportunities for development. A canal built along the Mohawk Valley, in 1817-25, connected the Hudson with Lake Eric, and the Champlain Canal completed the water route from the Hudson to Lake Champlain. Later the Erie and the Delaware and Hudson railroads brought the coal of Penusylvania to the Hudson River for transportation by water to markets in the interior. The New York Central and Hudson River Railroad is on the east side of the river and the West Shore on the west side. In 1807 Robert Fulton made on this river the first successful experiment with steam navigation. The Hudson is now a thoroughfare for an immense amount of freight, and elegant passenger steamers ply daily between New York and Albany. The government has erected and maintains 21 lighthouses and lighted beacons. Navigation ceases in winter because the river is frozen nearly its whole length. The ice crop harvested each winter on that part of the river between Albany and the Highlands is shipped, when navigation opens. chiefly to New York city. Shad fishing is one of the important Hudson River industries. Many of the cities on the Hudson were at first
only trading posts or ferry tows. but nearly all have kept pace in development with the rest of the state. The principal cities and towns on the river frem north to scuth are Glens Falis. Sandy Hill, Fcrt Edward, Mechanicsville, Cohoes. Troy. Albany, Hudson, Catskill, Kingston, Pougbkeepsie. Newburg. West Pcint. Peekskill, Haverstraw. Ossining. Xyack. Taryown, and Ionkers. At the mouth of the river are New lork and Jersey City, with the suburbs, which are important shipping ports. Hoboken and Uleehawken. The only bridge crossing the river berween New lork and Albany is the one which extends from Poughkeepsie on the east side to Highland on the west. There are 14 public ierries. The use of the water-power of the Hudson as an aid in developing electrical power ior the mechanical ars is most imporant. From Mechanicsville the power of the Hudson is transmitted to the general electric shops of Scheneciady. At Spiers Falls, at the foo oi Mount MCG-egor, about 亏רrty miles above Albany, there has been constructed a dam. -a stone wall over t,800 jeet long. too feet high, and containing $1,800,000$ cubic feet of masong: The Hudson is raised 50 feet above iss former river bed. then it waters fall So feet, and the power developed is (r904, 30.000 horse-power), iransmitted for electrical machinery, to Schenectady, Albany. Troy, Amsterdam. and other places. The electric motors at Spiers Fails get some of their power from the older plani at Mechanicsville. about 20 miles distant. At other points storage plants will be constructed, more power will be developed. the current will be sent at a high pressure to sub-stations at Saratoga, Schenectady, Ballston, Glens Falls. Fort Edward. and Watervliet. This will mean running cars, lighting streets, driving machinery by power developed hundreds of miles away: This power development of the waters oi the Hudson combined with development of like power of the waters of the Saint Lawrence a: Massena (q.v.), keeps the iwo rivers, $a s$ in carly years of our country, of vast importance to the State. Many industries are affected by ihis great new power. not the least of which are the coal-mining of Pennsylvania and the preservation of the Adirondack forests.

The Hudson occupies an important place in the historical. commercial, and mechanical development of the nation, also in its literary and artistic progress. Washington Irving who Iived at "Sunny Side" and was laid to rest in Tarrytown. introduced to the world many of the places along the Hudson. Cro Nest is assnciated with Joseph Rodman Drake and his poen. 'Culprit Fay'; West Park and the country around lave been practice observation ground for the naturalisis Ithn Burroughs and Ernest Ingersoll; Cornwall-on-the-Hudson was the home of \therefore P. Willis and E. P. Roe Arists who have received inspiration from Hudson's scenery and histong liave become sufficiently mumerous and their works of importance enough to be called "The Hudson School of Painters. ${ }^{D}$ Consult Inecreoll. 'Guide to the Hudson River': Cooper, article in 'Magazine of American Histors') Vol. IV

Hudson's Bay Company, incorporated 16,50, the great fur-trading and later landholding and administrative company of Northwest Canada. It originated in the dissatisfaction of two

French Protestant employees oi the French furtrading monopoly at Quebec, Groseilliers and Radisson, with its unwillingness to extend the trade to Hudson Bay. after vainly itying to induce Boston merchants and the French court to take up their scheme ior so doing. They gained the ear of a company of London merchants and Prince Rupert. cousin of Charles II.. brought a load of furs from the bay, and on 2 May 16;o Rupert and if associates received from Charles a charter for "The Governor and Company of Merchants-Adventurers trading into Hudson's Bay." It bad the monopoly of the right to trade in the bay or on its coasts, and could expel any one entering the territory without its license ; could build fors, send out ships of war and privateers, and declare war and make peace with any ron-Christian people. Its capital was $£ 10,500$, divided into 34 shares with an extra one for Prince Rupert, and in 16,6 it imported some fil 9.000 worth of jurs, sending in retura $£ 630$ worth of goods to the Indians. The profit was high on the petty capita! paid in, but the gross amount was not large for a century. In $17+8$ the trade was carried on with four ships, and employed about 120 men in all, including the garrisons at its forts. The furs and other imports amounted to over ± 30.000, the exported goods to $E_{3} 3.000$, and the costs of business over Er7.000. The average profit was 40 per cent. on capital. but the sum was trivial. Moreover, the company had great losses and tribulations from the French rivalry and assaults. especially in the national wars. The French laid claim to the territory on the strength of a mythical expedition of Jean Bourdon in 1656 , and in 1682 and 1686 captured several of the company's iorts, the two countries trading posts shared in the long war ended by the Peace of Ryswick in 169\%: captured each others' forts. and the peace yielded Port Nelson to the French, to the great damage of the company. The War of the Spanish succession inflicted irightful hardships on both sides: the company claimed a loss of over froo.000, "undreds of trappers and employees starved to death, and the Indians turned cannibals. The Treaty of L'trecht in r-13 rinally resigned all French claim to the Hudson's Bay ierritory: and thence till the cession of French Canada in $1:-63$. the monopoly gave the company an easy life and good profits. though still on a small scale. But when that cession opened up access to Hudson's Bay from both land and sea, the possibilities of trade were incalculably enlarged. Despire the clandestine rivalri of Montreal iraders who intercepted their boais, the gross volume increased manifold. and it was not crippled by the ravages of France in $\mathbf{1}_{1}-\varepsilon_{2}$, as part of the war begun in $1,--S$, when they captured and partly ruined the massive stone Fort Prince of W゙ales at the mouth of Churchill River. and altogether destroyed property valued by the company at half a million pounds. But a much worse rivalry was at hand, organized and powerful: the Northwest Company (q.w.). started on a co-operative plan in 1-2 by an association of Scotch merchants in Montreal. The Declaration of Rights having guaranteed free and open rade to all British subjects, this company invaded its rival's territory, and the trade competition for many years merged into actual war. In 1821 the had done each other so much harm that they consolidated. and Pasliament in view of the evils of competi-

```
HUDOSON RIVER FROM W'ES'l POIN゙T.
```


1. Looking eastward, showing the Dade monument.
2. Looking northward from the battery.
tion empowered the crown to issue licenses for the "Indian territories," which was exercised in faror of the new company. Meantime exploration had been steadily enlarging the territory: Samuel Hearne for the old company had reached the Arctic in 1771, Alexander Nackenzic for the new one reached the Pacific in 1793. With the United States, its rivalry for the far Northwest was strenuous and persistent: it planted posts in the Oregon district, repelled settlers, and there was much danger of war till the boundary scttlement of 1846 quieted the dispute. In 1849 it secured a grant of Vancouver Island. This was the time of its palmiest growth. In 1846 it had 513 employces and 35 officers, in 1856 it had over 3.000 cmployees and officers together, with 152 posts. Its trade monopoly expired by limsitation in 1859 . but there was also a great desire to settle the Northwest Territories, with which the fur-trade and administrative rights of the company were incompatible. The company, liable to be dispossessed by force if it refused to come to terms, agreed in 1869 to transfer its territorial rights to the Dominion of Canada for $£ 300,000$ and one twentieth of the lands set Dut for settlement by the government for the mext 50 years. It retained its posts and its rights of trade. The transfer to Canada, and the survey of lands for settlement, was immediately followed by the Riel rebellion (q.v.). The company, despite its lapse of administrative powers, remains the most potent influence for law and order in the unsettled parts, through its relations with the Indians. Consult Bryce, 'History of the Hudson's Bay Company" (1900) ; lVillson, 'The Great Company' (1900) ; Cawston and Keane, 'Early Chartered Companies' (1806). For the Northwest Company, see also Irring, 'Astoria.'

Hué, hoo-ä, the capital of Anam, on the river Truong, 10 miles from its mouth in the Gulf of Tonking. It is surrounded by Vaubanian fortified walls, five miles in circumference, the internal city being built on a rectangular plan with wide and straight streets. The clief building is the royal palace. Hue is the seat of a French political resident, and at Thuan-an, the port at the river mouth, there is a French garrison. Pop. estimated at 100.000 , of whom less than 400 are Europeans.

Huelen, wālãn, Chilean hero: b. about 1540 ; d. 1603 . He attained the command of the native forces in Araucania, and was for a time successful in repelling the invading Spaniards, whose methods of warfare he copied. He defeated the enemy at V'aldivia, near Concepción, and near Bio-Bio, but died at the siege of Osorno.

Hueppe, hüp'pé, Ferdinand, German hygienist : b. Heddesdorf, Rhine Province, $2 \nmid$ Aug. 1852. He studied at the Friedrich Wilhelms Institut of Berlin, and in ISgo became professor of hygiene in Prague University (German). His researches in bacteriology and disinfection have been extensive and important. He wrote (Die Methoden der Bakterienforschung' (1885) ; ' Naturwissenschaftliche Einführung in die Bakteriologie" (I896) ; 'Handbuch der Hygiene' (iS99), and other works.

Huger, ū-jē', Benjamin, American soldier: b. Santee, S. C., 22 Nov. I805; d. Charleston, S. C., 7 Dec. 1877 . He was graduated from

West Point, served in the United Stares army during the Civil War and was brevetted colonel. He resigned his commission in 1861 and entering the Confederate army became a majorgeneral.

Huger, Francis Kinloch, American soldier: b. Charleston, S. C. September I773; d. there I4 Feb. 1855. He was a nephew of I. Huger (q.v.) His father, Major Benjamin Huger, was killed before the lines of Charleston in 1780 . He joined with Dr. Eric Bollman of Philadelphia in a visit to Europe for the purpose of attempting the rescue oi Lafayette from the dungeons of Olmutz, his father having been the first to reccive that general on his arrival in Georgetown in 175\%. The enterprise resulted in their imprisonment for eight months. Huger became a captain in the United States army in 1798, was a colonel in the war of 1812 , and served in both branches of the legislature of his State.

Huger, Isaac, American general: b. Limerick Plantation, S. C., 10 March İq2; d. I7 Oct. 1797. He was one of five patriot brothers active in the revolution. Promoted to the rank of brigadier-general in 1557, he took a conspicuous part in the engagements connected with the siege of Savannah in 177S, commanded a force of cavalry at the siege of Charleston in 1780 which was surprised and dispersed by Tarleton, and commanded the Virginia brigade which formed the right wing in the battles of Guilford Court-House, and Hobkirk's Hill.

Huggins, hŭgrinz, Sir William, English astronomer: b. London 7 Feb. I824. In 1852 he was elected a member of the Nicroscopical Society, and in 1856 erected an observatory at Tulse Hill, in northeastern Surrey. When in 1859 Professor Kirchoff of the University of Heidelberg announced the true interpretation of the dark Fraunhofer lines in the solar spectrum, Huggins at once saw the possibility of using his practical knowledge of chemistry and physics in the service of astronomy: IVith W. A. Miller, professor of chemistry at King's College. London, he at once set about the task of constructing a star-spectroscope. The two then began the observation of stellar spectra. A full statement of their results was read before the Royal Society in 186\%, the essence of the statement being, in Huggins' own words, that the chemistry of the solar system prevails. essentially at lcast, wherever a star twinkles. In August i86q Huggins directed his star-spectroscope toward a planetary nebula in Draco, and found its spectrum to be a monochromatic one, thus proving that the nebula consists of a luminous gas. In I868 he was able to announce to the Royal Society the results of his first measurements of the motion of stars in the line of sight. Ile began his observations of comet spectra with that of Winnecke's comet in IS68, and in 1868-9 made spectroscopic observations of the solar prominences. About 1876 he resumed his abandoned efforts to photograph stellar spectra, using the gelatime dry plate process then recently introduced, and this time he was completely successful. His photographs of the invisible ultra-violet portions of stellar spectra have prosed extremcly valuable, providing, for example, the only reliable data for determining the relative ages of the stars. He was elected a fellow of the Royal Society in 1865, and
awarded by that body a Royal Medal (1S66), the Rumford Medal (i880), and the Copley Medal. He was president of the Royal Astronomical Society in $1876-8$. With Lady Huggins he published in $1 g 00$ a valuable 'Atlas of Representative Stellar Spectra.'

Hugh Capet, king of France, founder of the Capetian dynasty. See Caper.

Hughes, hūz. Ball, American sculptor: b. London 19 Jan. ISo6: d. Boston, Mass., 5 March iS68. He early exhibited a decided taste for modeling, and at 12 years of age made out of wax candle ends a bas-relief copy of a picture representing the wisdom of Solomon, which was afterward cast in silver. He was then placed in the studio of Edward Hodges Bailey, where he remained seven years. At this time he successyully competed for the prize awarded by the Royal Academy, winning the large silver medal for the best copy in bas-relief of the Apollo Belvidere; also the silver medal from the Society of Arts and Sciences for a copy of the Barberini faun, the large silver medal for the best original model from life, and a gold medal for an original composition. "Pandora brought by Mercury to Epimetheus.", He emigrated in 1829 to New York, where his first work of importance was a marble statue of Hamilton. for the Merchants Exchange, which was destroyed by fire in 1835 . He subsequently removed to Boston, Mass. Among later Works of his are the bronze statue of Bowditch at Mount Auburn Cemetery, a bust of Washington Irving. and a statuette of General Warren at Bunker Hill.

Hughes, David Edward, English-American inventor: b. London t6 May 1831: d. there 22 Jan. 1900. When very young came with his parents to the United States. He was educated at Bardstown College. Kentucky, where he was appointed professor of music (1850). and later of natural philosophy. In 1855 he patented his first important invention, that of the well-known printing telegraph which bears his name. It was at once adopted in America, and by 18,6 by practically every European country. In 18 ; 8 Hughes announced to the Royal Society his invention of the nuicrophone, an ingenious instrument which not only transmits sound. but so magnifies faint sounds as to make them distinctly audible. The microphone is now in universal use in the telephone. Another important invention, that of the induction balance. was completed by Hughes in 1859 , and in 1880 he was elected a fellow of the Royal Society:

Hughes, Hugh Price, English IVcsleyan elergyman: b. Caermarthen 184; d. London I V Now. 1902. He was cducated at University College, London, and the Wicsleyan Theological Crllege, Rielimond, was appointed to Dover in 1869, and was afterward at Brighton: StokeNewington: Nostyn Road. London; Oxford; Brixton Hill; and the West London Mission. From 1885 he was editor of the Methodist 'Times,' and he was also at one time president of the national council of Evangelical free churches. He was prominently identified with reform work in London, and with the Antigambling Leaguc. Among his writings are: 'Social Christianity' (I8R9) :The Atheist Shnemaker' (188 g): 'The Philanthropy of

Hughes, John, American Roman Catholic prelate: b. Annaloghan. County Tyrone, Ireland, 24 June 1797 ; d. New York 3 Jan. 1864. His parents rere poor but made sacrifices to give him the opportunity of acquiring an elementary education: and by his own efforts be continued his studies so that when he came with his parents to America in 181\% he was prepared for college. However, for lack of means be had to defer entering any school, and instead began work as a day laborer, in which occupation he continued for three years. but at 23 entered the Roman Catholic theological seminary, Mount Saint Mary's, Emmittsburg, Md. As a student, his remarkable power of reasoning and his ability in argument attracted attention. He was ordained priest in 1826, and for a time was stationed at Bedford. Pa., from which he was transferred to Philadelphia. Here he had charge of Saint Joseph's parish and later Saint Jlary's parish. In 1838 he was consecrated titular bishop of Basileopolis and appointed coadjutor to the bishop of New York. In 1812, after the death of Bishop Du Bois, he was made bishop of New lork In 1850 the diocese of New lork became an archdiocese, and on 19 July 1850 he was raised to the dignity of first archbishop of New York, which office he held until his death.

He was an active and effective worker. Asa speaker or writer he was ever ready to defend the Chureh which he represented. When a student at Mount Saint Mary's, he wrote the pamphlet. 'An Answer to Nine Objections against the Catholic Church.' When in Philadelphia, he wrote the replies to Dr. Breckenridge. a Presbyterian clergyman. The articles on both sides are issued in book form. 'Hughes and Breckenridge.) Before asking his priests to collect money to build schools and churches, he had set the example. He collected money for the rebuilding of Mount Saint Mary's after it had been burned. He established St. John's orphan asylum in Philadelphia, and a number of charitable institutions in New lork. He settled decisively the "trustee system" question which was agitating Jew York when he came there; and he defended the Church property against the attacks of the "Knownothing" element. The "school question" was to him all important. One of his first undertakings was to establish a theological seminary at La Fargeville in Jefferson County. … Y.; the distance from New York cansed the abandonment of this plan, and Saint John's College (q....) was founded at Fordham instead. In 1858 he laid the corner stone of Saint Patrick's Cathedral. In 1861 , during the Civil War, he was sent by the United States government to Europe to present the cause of the L'nion, and counteract any adverse sentiment which might exist against the attitude of the North. His diplonatic mission was most successful in France, Italy, and Ircland. Consult: Brann. 'John Hughes.' in the 'Makers of America Series' (Ilassard, 'Lifc of John Hughes' : Sadlier, 'Archbishop Hughes,' in the 'Ave Maria' magazine.

Hughes, Rupert, American author: b. Lancaster, Mo., 31 Jan. 1872. He was graduated from Adelbert College of the Westem Reserve University in 1892 , was for a time assistant editor of the Xcw York 'Criterion,' and in 1900 entered editorial work in London. In addition

HUGHES - HUGO

to many contrilbutions to periodicals, he wrote: 'The Lakerim Athlctic Club' (I898); 'One Dozen from Lakerim' (IS99); 'American Composers' (1900); 'Guide-Book to the World of Mlusic' (1901) ; and, in verse, 'Gyges' Ring' (1901).

Hughes, Thomas, English author: b. Uffington, Berkshire, 20 Oct. 1823 ; d. Brighton, Sussex, 22 . March 1896. He was educated at Rugby and Oxford, later studied law at Linn coln's Inn, was called to the bar of the Inner Temple in 1848, and began practice at once. In r86y he was appointed queen's comnsel, in 1882 county court judge. Throughout his long public career, as advanced Liberal in Parliament (r865-74), as founder with Canon Kingsley and Frederick Maurice of the Christian Socialists, as creator of Rugby; a socialistic community in the mountains of Tennessee (1880), he tried most earnestly to exercise a helpful influence upon English working-people. He early essaycd journalism, writing many sketches for the London 'Spectator.' - chiefly accounts of traveling experiences. These sketches served as his apprenticeship in writing, and afterward were collected in book form with the title 'Vacation Rambles' (1895). But authorship was a secondary interest until 'Tom Brown's School Days,' first appearing in 1856 , made him famous. This work is largely a presentation of the influence of Dr. Thomas Arnold (q.v.) in the great public school. 'The Scouring of the White Horse) (1858), a spirited account of a vacation trip, had a respectful although less cordial reception. The great success of the first story led him to continue his hero's career with 'Tom Brown at Oxford' (1861), first published serially in 'Macmillan's Ilagazine.' This second volume, which is much the longer, although often fine and spirited, sometimes waxes prolix, and has never been so popular as the earlier story. At the time of the American Civil War, Hughes was a decided abolitionist, and thus established a friendship with James Russell Lowell. Among other works of his are 'Alfred the Great' (I869) : 'Life of Livingston'; 'Memoir of a Brother' ; 'Life of Bishop Fraser' (1887).

Hughes, Thomas Patrick, American Protestant Episcopal clergyman: b. Ludlow, England. 26 March 1838 . He was educated at Islington College, was ordained priest in ${ }^{1864}$, in $1865-85$ was missionary and chaplain at Peshawar, Afghanistan, in I 885 -9 rector at Lebanon Springs. N. Y... and from 1889 of the Church of the Holy Sepulchre, New York. In I 8 -5- 85 he was also examiner in Oriental languages to the British government. Among his writings are: 'Notes on Mohammedanism'; 'The Poems of Abdur Rahman': 'A Dictionary of Islam' : 'Heroic Lives in Foreign Fields.'

Hugo, hī'gō (Fr. ï'gō), Victor Marie, French poet and novelist: b. Besancon 26 Feb. 1802: d. Paris 22 May 1885. Major Hugo, his father, having entered the service of Joseph Bonaparte. king of Italy and afterward of Spain, Victor's carlier years were partly spent in these countries. At the age of 12 he was already writing verses, and in 1823 his first novel. 'Han d'Islande,' appeared, iollowed in 1825 by 'Bug Jargal.' In 1828 a complete edition of his 'Odes et Ba!lades' appeared. In these productions Hugo's anti-classical tendencies in style and treatment of
his subject had been very visible, but the appearance of his drama, 'Cromwell' (1827), with its celebrated preface, gave the watchword to the anti-classical or romantic school. 'Cromwelp' was too long for representation, and it was only in 1830 that 'Hernani,' over which the great contest between Classicists and Romanticists took place, was brought on the stage. Other dramas followed - ‘Marion Delorme’ (I831); (Le Roi s'amuse' (I 832) ; (Lucréce Borgia) (1833) ; 'Marie Turdor' (1833) ; 'Angelo' (i835) ; (Ruy Blas' (1838); 'Les Burgraves' (i8+3). During those years he had also published a novel, 'Notre D.)ame de Paris' (1830), and several volumes of poetry, 'Les Feuilles d'Automne' (18.31); (Les Chants du Crépuscule' (1835) ; 'Les Voix intérieures' (1837): 'Les Rayons et les Ombres' (I840). The poetry of this period has a melody and grace superior perhaps to any that he afterward wrote, but wants that decp and original sense of life characteristic of his later poems. During the same period he also wrote critical essays on Nirabean, Voltaire, and a number of articles for the 'Rerue de Paris.' In IS4I, after laving been four times previously rejected, he was elected a member of the French Academy; made shortly afterward a tour in the Rhineland, of which he wrote a brilliant and interesting acconnt in (Le Rhin' (1812). In 1845 he was made a peer of France by Louis Philippe. The revolution of IS48 threw Hugo into the thick of the political struggle. At first his votes were decidedly Conservative. but afterward whether from suspicion of Napoleon's designs or from other reasons, he became one of the chiefs of the democratic party. After the coup d'état, 2 Dec. 185 , he was one of those who kept up the struggle in the streets against Napoleon to the last. He then fled to Brussels, where he published the first of his bitter satires on the founder of the Second Empire, 'Napoléon le Petit.' In Angust 1852 he went to live in Jersey, and finally settled in Guernsey, where he bought an estate called Hatteville House. In the following year (1853) the famous volume 'Les Châtiments,' a wonderful mixture of satirical invective, lyrical passion, and pathos, appeared. It was in the comparative solitude and quietness of the Channel Islands that he wrote most of the great works of his later years. (Les Contemplations' (I856) ; 'La Légende des Siècles,' Ist series (1859) : 'Chansons des Rues et des Bois' (1865), and his celebrated series of social novels, 'Les Nisérables' (r862) ; 'Les Travailleurs de la Mer) (1866); and 'L'Homme qui Rit' (1869). In 18\%o, after the fall of the Empire, Victor Hugo returned to Paris, where he spent his remaining years in occasional attendances at the senate, and in adding to the already long list of his literary works. Among these latest productions may be cited, 'Quatre-V'ingt-Treize' (1873) ; 'L'Art d'être Grand-père' (1877); 'L'Histoire d'un Crime" ($187 /$) ; 'Le Pape' (I878): ‘La Pitié Suprc̀me' (I879) ; 'Religions et Religion' (1880): 'Les Quatre Vents de l'Esprit' (1881) ; 'La Légende des Siécles' (last series, 1883): (Torquemada) (1882). If not the greatest writer that France has produced, certainly he is her greatest poet. But he had grave defects and limitations, the chief being an entire want of humor, a too frequent straining after effect through the abnormal and

HUGUENOTS－HUGUENOTS IN AMERICA

bizarre，an overreening belief in his orm inial－ libility，and an ever－p－esent consicrion that he was a sage，all of whose sayings might be re－ garded as priceless teachings，to be eagerly caught up by a lisecming wo－ld．An editinn of his complete works in 40 vols，appeared at Paris in IS86．The house in which Tictor Hugo lived． on the Place des Tosges．has recently been transierred to the city of Paris，and non iorms a Victor Huge Inseum．full of interesting rel－ ics of the poet．Consult：Swinburne．＇Study of Victor Hugo）（I886）：Barbou，Victor Hugo et son Temps＇（ISS2）：Mabilleau．＇Victor Hugo）（IS93）：Jichol．（Victor Hugo．a Skerch of his Life and Work＇（IEQs）：Dupuy，＇Tictor Hugo．1＇Homme et le Poète＇（IES－）：Bire，＇Vic－ tor Hugo après 18ミご（ISO4）．

Huguenots，hùgē－nŏts，a term of un－ known orgin，believed to be derived irem a per－ scnal name，applied to the Protestants ci France during the religious struggles oi the 16th and 1－th centuries．During the eary part of the I6th century the doctrines of Calvin．notwith－ standing the oppositicn of Francis I．．spread widely in France．Lnder his successor Henry II．， $5 \because \ddots-59$ ．the Protestant party grew strong， and cinder Francis II．became a political iorce headed by the Bourbon iamils．especially the King of Vavarse and the Prince of Condé．At the bead of the Catholic party stood the Guises． The contest between the two parties was as much poitical as religious．The result was that a Huguenot conspiracy headed by Prince Louis of Conde was iormed ior the purpose of compelling the sing to dismiss the Guises and accept the Prince of Conde as regent of the realm．But the plot was betrayed，and many of the Huguenors were executed or imprisoned．In 1560 Francis died，and during the minority of the next king．Charles IX．，it was the policy of the queen mother．Catharine de Nedici，：o en－ courage the Protestants in the iree exercise oi their religion in order to curb the Guises．In 1502 an accidental conflict between the followers of the Duke of Guise and some Prosestants at a church meeting precipitated a series of relig－ ious wars which desolated France almost to the end of the century．Catharine．however，be－ gan to iear that Protestantism might become a permanent power in the country，and sud－ denly making an alliance with the Guises． whith their help she projezted and carried out the massacre of S_{t} ．Bartholomew＇s（q．r．）． The Prutestants fied to their fortined towns and carried on a war with varying success． On the death of Charles IX．．Henry III．，a ieeble sovereign，iound himseli compelled to Lnite with the King of Savarre，head of the h use oi Bourben and heir－apparent of the French crown，against the ambitious Guises． who openly aimed at the throne，and had excited the people agains：him to such a derree that he was on the phint oi losing the crown．Alier the assassination of Henry 1II．the King of Na－ sarre was rbiged to maintain a severe strus－ gie for the racant throne：and not untal he h d． by the advice oi Sully，embraced the Catho： seliga n（15y3），did he enji y quiet possession ci the kingd m as Henry 11．Five years aiter－ ward he secured to the Huguenots their civil riahts by the Ediet of liantes（q．v．）which con－ firmed to them the free exercise of their religion． and gave them equal clams with the Catholics
to all offices and dignities．They were also left in possession of the iortresses which had been ceded to them for their security．This edici aforded them the means of foming a kind of republic within the kingdom，which Richelieu． who regarded it as a serious obstacle to the growth oi the royal power，resolved to ertsh． The was raged from I624 to 1029．when Ro－ chelle，aiter an obstinate deiense．fell beiore the royal troops；the Huguenots had to surrender all their strongholds．although they were still allowed ireedom oi conscience under the minis－ tries of Richelieu and Mazarin．Bu：under Louis XIV．a new persecution of the Prcies－ tants commenced．They were deprived oi their civil rights．and bodies oi dragoons were sent into the southera provinces to compel the Protes－ tant inhabitants to abjure their iaith．The Edict of－lantes mas revoked in 1085 and by this act about 50,000 Protestant subjects were driven out of France to other countries．（See Héglesots is America）In the reign of Louis XV．a new edict was issued repressive of Protestantism，but so many voices were raised in favor of toleration that it had to be revoked． The Code Jiapoléon and later enactments place Protestants in France on an equality with their Catholic compatriots．

Huguenots in America．The French Prot－ estant settlements in the New World divide themselves into two classes：those oi choice（or at least with time and opporunity to make choice）and those of necessity．The former ex－ tend from the middle of the 16 th century down to the capture of New lork by the English in 1664 ：the latter comprise all those dating irom the increasing severity of repression that her－ alded the Dragonnades and the Revocation of the Edict of Nantes to the end．The iomer were deliberate organized colonizations，of the same stamp as the English and from the sante motives；the latter were the desperate and gen－ erally hurried resource of crowds of ruined exiles．The former were complete iailures．and were soon suppressed，absorbed．or exter－ minated；the latter sought only life and liveli－ hood and welcomed absorption．The former in－ clude the abortive attempts in Brazil and Florida． the earliest settlements in Acadia and Can－ ada．the first settlement of lew lork，and the setilement of some of the West Indies；the latter include the ieeble attenipts at settlements in Sew England．the flood oi accessions to the French element in New lork，the founding of New Rochelle，the migrations io Pennsylvania， Delaware，and Maryland，the promising bu： aborted attempt in Tirginia and，greatest 0 ： all，the tide of immigrats that created South Carolina．

The first attempt at creating a New－Worid Huguenot asylum and magazine of supplies was undertaken in 1555 ：Nicholas Durand de Jillesa－ smon（q．v．）pretended to undertake it for Coligny and sertled a colony in Rio Janeiro harbor．But it was hali Catholics：Villegagnon was a scamp， persecuted and scattered the Protestants，and finally deserted the colony：and the Porruguese siaughtered is out in 156% ．A more honest at－ temp：was made by Jean de Ribault in 1562，at Pori Royal，S．C．，but iailed．In rs64 Rene de Laudonniere founded a colony in the S t．Jhn＇s in Florida（q．v．）at Fort Caroline；but the next year Pedro Menendez de Avilés butchered

HUGUENOTS IN AMERICA

the entire settlement. St. Bartholomew and the religious wars intervened; and no further efforts were made till after the accession of Henry of Navarre, who had imbibed the ardor for colonization from Coligny. In 1064, mander his commission, Sieur de Monts planted at settlement to be on the basis of perfect religions equality, the first in the New World-at Yort Royal, N. S.; Freach mercantile jealousy had the commission revoked, and it perished; but two years later it was refounded by Poutrincourt, and De Monts and Champlain founded Quebec. In 1613 Sir Samuel Argall (q.v.) destroyed Port Royal, but the French stayed and bands of Protestants came to reinforce them at intervals. A small settlement was made on Newfoundland, but was broken up by the govermment excent for a few who would turn Catholics. The founding of New Amsterdam, usually supposed to be by the Dutch, was in fact by Huguenots under Dutch auspices. The Huguenots - largely French-speaking Wialloons - who had crowded into the Netherlands to escape persecutions, had tried to gain permission to found settlements in the English colonies; rebuffed in this, they engaged with the Dutch, and the first shipload of emigrants that came to the future New York were entirely Huguenot, Peter Minuit himself being a Walloon. French families had been there already for years, the first white child born on Manhattan Island being French. For three generations the French element continued to be a highly important factor in the city, and composed much of the business aristocracy: even after the English occupation, all official documents were printed in both Dutch and French as well as English. Of the first shipload of emigrants, a number went up the Hudson and founded Fort Orange (Albany). In 1660 a number of Walloon and Vaudois exiles, who had taken refuge in the Lower Palatinate, settled near Kingston, N. Y.; later, the Vaudois founded New Paltz in the Wallkill Valley. In 1677 a French town was founded at Hackensack, but the fast-breeding Dutch soon swamped it. Small French groups settled in various parts of New Jersey.

Of the second class, the refugee emigration, too scattered and hurried in general to found separate French settlements, the first beginning from the north was at Boston. From 1660 on, small numbers had cone from the Channel Islands and Rochelle, but after the Dragonnades 200 or 300 families came over, including some of the most notable names in Boston history. A settlement at Oxford, Mass., was made in I687, primarily to convert the Nipunck Indians, but that tribe joined hands with the Canadian tribes in leagne with the French, and inflicted such horrors on them - onc whole summer besieging them in their blockhouse - that the settlement broke up in despair, many of them taking refuge in Nilford. Conn. Many small groups settled in Rhode Island; the largest had a miserable history, being defrauded by a New England company organized expressly to sell to innocent foreigners a tract of land to which it had no title. In Comnecticut Hartford and Milford received the greatest number. In Nev* York the arrivals strengthened the French element, but soon melted into the general mass. In Pennsylvania, Delaware, and Maryland, many
handreds settled, but as scattered members of the population, and left $n o$ ontward trace. In Virginia, whose sonthern climate was congenial to them, the IIugnenots had settled in considerable numbers for many years, but in 1690 Wi\}liam III. sent over some 300 Hugnenots who had followed him from Holland, and they made a settlement named Monacantown, from an extinct Indfan tribe. In 1700, after long negotiations, iour shiploads more came over under Marquis de La Muce; about lalf of them settled at Jamestown, Va., and in South and North Carolina, the rest at Monacantown. Several hundred more came over at different times, and the settlement seemed to have struck enduring roots; but furious religious dissensions broke it in two, and the pastor led part of them to the Trent in North Carolina, whence in fear of Indian massacre they finally went to South Carolina, the Canaan of the Iuguenots, seuling at Jamestown there. This South Carolina French immigration, due to the latitude and soil fitting their habits, began in 1670 in smal? numbers. In 1680 the city of Charleston was founded, largely under French aunspices; the same year Charles II. sent over ahout go Huguenots to raise wine, oil, and silk. After the Revocation the great tide began to flow in ; in 1687 there were four wholly or largely French settlements - Jamestown on the Santce, the "Orange Quarter" on the Cooper, St. John's Berkeley, and Charleston. In 1732 a band of 360 French-Swiss Protestants settled Purysburg on the Savannah; and in 1764 the last French colony was founded-New Bordeaux in Abbeville County. In the intervals there was a steady stream, very large for many years after 1685. Some of the greatest names in Southern history are French, and the entire character and action of the State have been deeply molded by this fiery, impulsive. gallant strain. It is jitiftl] to record that after all the sacrifice and courage of these exiles, religious persccution forced them to close their charches. All but members of the Church of England were disfranchised in ro6, and the Huguenots were bribed into submission by government support of the churches and having the liturgy translated into French.

The Huguenot settlements in the West Indies - St. Christopher, Martinique. Guadeloupe, and some smaller ones - belong in origin to the former group, that of voluntary colonization: their later history and the flight from them belongs to the latter. They were colonized by a trading company under Richelieu's patronage from 1626 on; there was nominal prohibition of public worship, but actually the law was a dead letter, as there would have been no trade but for the Huguenots; the Walloon Synod of Holland supplied ministers, and the life was one of prosperity and content. Then as the Revocation approached, atrocions penal laws were passed. but still not enforced. But the Revocation changed everything into a scene of miserg: The first result was the using of the islands as a penal settlement for the Huguenots of France: the latter were sold into service. sometimes of the worst character, and the horrors of the passage rivaled the worst of the slave-trade. Then the governor-general was ordered to extirpate heresy at all hazard, and threatened a dragonnade if the inhahitants did not recant.

The effect was a general flight: next a stern order from the governor-general to stop or he would carry out the government orders in all their severity: which produced a still greater stampede, assisted by the Catholics themselves. In a few months the islands were hali depopulated and their trade nearly ruined. The king then modified his orders: the flight ceased and a few returned; but most of the reiugees remained in the English colonies or Bermuda. Several score at least removed to New York, and some oi them founded New Rochelle: a iew to New England. and the Southern colonies naturally received the largest quota. This immigration had an important effect on the United States trade with the Wrest Indies. as the Huguenot merchants, from their familiarity with the region and their family ties, took the lead in and greatly developed it.

The "dead-line" of the French churches in America. the test of that element's separate existence, is about the middle of the i8th century: beyond that. according to Baird, few existed and fewer kept their language. French instinct was to blend, and of course it was much the best that it should do so. The element was absorbed soon and utterly, but its blood and its ideas have been very valuable to the United Stares. Consult Baird. 'History' of the Huguenot Emigration to America" (ISS5 $_{5}$).

Huichol (wē'chōl) Indians. See Ixdiavs, Americas:

Hull, Edward, Irish geologist: B. Antrim 21 May 1829. As a member of the Geological Survey of Great Britain for 20 years, he geologically mapped a large portion of the central counties of England. In 1869 he became proiessor of geology at the Royal College of Science. Dublin: and in 1883 commanded an expedition under the auspices of the Palestine Exploration Society to Arabia Petrea and Palestine. Among his important works are: 'The Coal-Fields of Great Britain') (T865); 'Building and Ornamental Stones' (18;2): 'A Text-Book of Physiography') (i888): 'Mount Seir, Sinai, and Southern Palestine' (1885): 'Volcanoes, Past and Present' (i892); 'Our Coal Resources at the Close of the 19th Century' (189)).

Hull, Isaac, American commodore: b. Derby, Conn., 9 March 1775 : d. Philadelphia 13 Feb. 1843. He commenced his career in the merchant service, and was commissioned as lieutenant in the navy at the commencement of hostilities with France in t70. In 1800 when first lieutenant of the Constitution, he cut out a French privatcer from under a strong battery in the harbor of Port Platte. San Domingo. During the war with Tripoli ($1802-5$) Hull served with distinction in the squadrons of Commoderes Preble and Barron, in command of the schooner Nautilus and brig Argus. paricipating in the several attacks on the city of Tripoli in July, August, and September tSo4, and subsequently: co-operating with Gen. Eaton in the capture of the city of Dernc. In May ISat. he was promoted to the rank of master commandant. and in April 1806 , to that of captain. At the epening of the liar of ISt? between the Cinited States and Creat Britain he was in command of the frigate Constitution, and in July of that year. while cruising off New lork, fell in with a Britioh squadron, which chased the Constitution
closely for nearly three days and nights. The wind was light and baffing. but Hull handled his vessel with superior seamanship, and finally escaped without injury: at one time he resorted to a novel and successful expedient; the boats were lowered. and all the spare rope on board was bent to a kedge anchor which was carried out nearly a mile ahead and let go. The ship was warped up to this kedge, which was weighed while another was carried out. In this way she left her pursuers before they discovered the manner in which it was done. After this remarkable escape. Hull went into Boston for a few days, whence he sailed 3 August. and 19 August met the English frigate Guerrière. which after a short conflict he reduced to a complete wreck, and forced the English to surrender. (See Constitlution. The). As this was the first naval action of the war. it was regarded as a very important one: Capt. Hull was enthusiastically received, and Congress at its next session presented him with a gold medal. Aiter the war his principal services wese in command of the nasy yards at Boston and ITashington, of the squadrons in the Pacific and Mediterranean. and as a member of the board of nary commissioners.

Hull, William, American soldier:b. Derby: Conn.. 2t Jinne t753: d. Newton. Mass., 29 Nov. 1825. He was graduated at Vale College in $1 / 12$, studied law at Litchfield. Conn.. and was admitted to the bar in 1755 . He entered the army of the Revolution at Cambridge in 1775 as captain of a Connecricut company of volunteers: was promoted to the rank of major in the Sth Massachusetts regiment in 15% and to that of lieutenant-colonel in 575 . He was in the battles at White Plains, Trenton, Princeton, Stillwater. Saratoga. Monmouth, and Stony Point. His services throughout the war receired the approbation of his superior officers, and neither his courage nor patriotism was ever doubted. He was governor of Michigan Territory from 1805 till 1812, when he was appointed as brigadier-guneral to the command oi the northwestern irmy. He masched his troops to Detroit, heard of the declaration of war, and of the fall of Michilimackinac. which let loose the Indians of the Jorthwest upon him, crossed into Canada, but found his communications cut off, recrossed, and on the arrival of Gen. Brock surrendered to that officer the post of Detroit and the territory. For this he was tried two years after by a court-martial, and scntenced to be shot. The execution of the sentence was remitted by the President in consideration of his age and Revolutionary services. Historians are now agreed that the difficulties which surrounded Gen. Hull were so great that we need not ascribe his surrender cither to treason or to cowardice. In 1824 he published a serics of letters in defense of his conduct in this campaign which l.ad a wide circulation. Consult 'Life," by his daugliter, Maria Campbell. and his grandson. James Frceman Clarke (r\& 8).

Hull, Canada. town and county-seat of Ottawa Connty. Qusbec. on the Ottawa River, at the junction of the Gatinean River, opposite the city of Ottawa, and on the Canadian Pacific railway. It is connected with its important neichbor by a fine suspension bridge spanning the Chaudiere Falls. Iron mining is carried on
in the neighborhood, and the Falls afford immense water-power. Lumbering is the chicf indu:try of the district: and 11 tull has vast lumber yards, saw- and planing-mills, and manufactorics oi pulp. paper, matches, pails, woodenware. woolens, axes, etc. It has 5 clurches, a college, a convent, many fine residences, and French and English newspapers. The population is chiefly French Canadian. The town has been rebuif since its almost total destruction by fire, 26 April 1900. Pop. (1901) 13.993.

Hull, Kingston-upon-, England. a large river port, municipal and parliamentary borough, city and county of itself, situated in the East Riding of lork, on the nortl? shore of the estnary of the Humber, where it is joined by the Hull. 34 miles east-sontheast of York. Its buildings of note are the town-hall, the exchange, the corn exchange, market-hall, post-office, the custom-house, Trinity Honse. dock offices, public rooms, royal institution (containing the rooms of the Philosophical Society, etc.), art gallery, technical schools, central library, Hymers College, grammar-school, the jail, royal infirmary. borough asylum. hospitals, crematorium. and dispensary: The town possesses three well-laid-out public parks. The industries are yaried. There are several ship-building yards, iron-foundries, machine-shops, and steam flour-mills; the other principal branches of industry comprehend seedcrusling, color-making, paper-making, canyas, rope, and cable making, tobaceo manufacturing, and oil boiling. Hull ranks as the third port in the kingdom, and has extensive ship accommodation, docks, quays, etc. The principal exports are machinery. coal, metal goods. and woolen and cottor goods. the total value in 1900 being ${ }_{£ 16.933 .07} 8$ (besides $£_{5,516.723}$ of foreign and colonial produce) : imports - timber, corn, iron, wool, flax, hemp, tallow, hides, pitch, tar, rosin. bones, etc.; in 1900 E31,168.579. The name of Kingston-upon-Hull was given by Edvard I., who erected a fortress, and constituted it a clartered town and port. When Edward III. invaded France in 1359 Hull contributed 16 ships and 470 mariners. During the civil war Hull was besieged unsuccessfrilly by the Royalists twice. Pop. (1901) 240.618.

Hul'lah, John Pyke, English musical composer: b. Worcester 2\% June 1812; d. London 21 Fcb. 1884. In 1833 he entered the Royal Academy of Music. His first important comAcsition, an opera entitled 'The Village Coatiettes,' of which the words were by Charles Dickens, was successfully produced at Sr. James, Theatre in 1836 . Early in 184$]$ he opened classes in Exeter Hall for the instruction in rocal music of schoolmasters and the general public, and from I 849 to 1860 continued them in St. Martin's Hall, built for him by his friends and supporters. His classes were remarkably successful despite much adverse criticism of his method of teacling. In I 858 he succeeded Horsley as organist at the Charterhouse, and in 1872 received the appointment of musical inspector of training schools for the United Kingdom. He conducted the Phillharmonic concerts at Edinhurgh $1866-\frac{1}{2}$, and those of the Royal Academy of Music $1870-3$. He also held professorships in King's College. Queen's College, and Bedford College. Hullah's best-known compositions are songs, of which several, such as 'The Sands of VoL. 8-35

Dee,' 'Three Fishers,' ('The Storm.' and 'O that We Two Were Niaying,' have lecome very popular. He issued many excellent collections of songs and other musical preces, among which are: 'Part Music.' in three series ($18+2$ - 5); 'Vocal Scores' (I846 mnward): 'School Songs' (1851) : 'Sea Songn': 'Singer's Library of Concerted Minsic' (1859) ; and 'Song Book' (I866). Dr. Hullah was the author of the following among other works an the history and theory of music: 'Grammar of Vocal Alusic) (I8+3): 'On Yocal Music' (ISt9) : 'Grammar of MIusical Harmony' (1852) : 'The History' of Alodern Music' (I862) 'Grammar of Counterpoint' (I864): 'Music in the House' (I877). See the 'Life' by his wife (1886).

Hulme, Frederick Edward, English botanist: b. Hanley, Staffordshite, 1841. He has long been prominent as a writer upon natural history, art, heraldry, etc.. and among his numerous works are: 'Plant Form' (1868) : 'Familiat Wild Flowers) (彳 wols. 1878-1902): (Art Instruction in England' (1882): 'History, Principles and Practice of Symbolism in Art) (ISgI): 'History. Principles and Practice of Heraldry' (I892): 'Cryptngraply) (I898); 'History of the Flags of the W'orld' (1897).

Humaita, oo-mä-ē'tä, Paraguay, town and fort; on the Paraguay River, near the mouth of the Parana River: in the southwestern part of the republic. Its situation made its possession of importance during the war of the "Triple Alliance." It withstood a siege for a whole year, the attacking forces being Argentine and Brazil soldiers. but finally, in 1868 , surrendered. At the close of the war in 18\%0, the fortifications were destroyed. It is surrounded by a fertile agricultural country: There is but little local manufacturing, but there is an extensive trade in coffee, sugar, cotton, tobacco, hides, and Jive stock. Pop. 4.000 .

Humane Association, American, a consolidation of various societies, formed at Cleveland. Ohio, in 587 , becoming a national organization for the prevention of cruelty to animals and children. The initial work of the society was in regulate the abuses in cattle-transportation by the railroads, and to secure the passage of State laws looking to this end. It offered a prize of $\$ 5.000$ for the best model of a cattle car that would make possible the feeding, watering and resting of cattle in transit, and many improved cattle cars were brought into use. See Antmals, Crlelty to ; Childrex, Suciety for the Prevection of Crcelty to.

Humane Society, RoyaI, formed in London, in 1亏न, for the purpose of resuscitating those who had been immersed in water and were apparently drowned. At the present time it distributes rewards. consisting of medals, clasps. testimonials, and sums of money to those who save or attempt to save life from drowning. Also "all cases of exceptional hravery in rescuing or attempting to rescue persons from asphyxia in mines, wells, blast-furnaces, or in sewers where foul gas may endanger !ife are recognizable by the society" It likewise gives prizes for swimming to the pupils of pullic schools and of training-ships.

Hu'manists, the name assumed at the revival of learning by those who looked upon

HUMANITARIANS - HUMBOLDT

the cultivation of classical literature as the most valuable instrument of education, in opposition to those who clung to the ancient methods of the Scholastics. In their modes of thought also the tendency of the humanists was to exalt paganism at the expense of Christianity. In the 18th century the name hecame a word of reproach for those who showed a blind zeal for the classics as the sole educational subject, opposing the Philanthropists, who asserted the value of mathematics, science, modern languages, and history.

Humanitarians, a term applied to the various classes of anti-Trinitarians. who regard Christ as a mere man. The earliest known author of the purely humanitarian theory is Theodotus of Byzantium, who lived in the second century. A contemporary of his. Artemon, taught the same doctrine, and asserted that such had been the universal belief of Christians up till the beginning of the 3d century. See UNiTARLANISM.

Hum'bert I., Ranieri Carlo Emantele Giogandi Maria Ferdinicido Efgesto, king of Italy: b. Turin 14 March I8f1: d. Nonza, near Milan, 29 July 1900. He was eldest son of Victor Emmanuel II. and Queen Marie Adelaide, daughter of the Archduke Regnier of Austria. He took part as a youth in the war of independence, and in 1866 was in command of a division at Custozza. On 22 April i868 he married his cousin, Princess Margherita of Savoy, daughter of the Duke of Genoa. On the death of his father he succeeded to the throne of Italy 9 Jan. 1878 as Humbert I. During his reign he carefully regarded constitutional limitations, and directing his choice of prime-ministers according to parliamentary conditions, selected but one, Rudini, from the Conservatives. In foreign policy he was evidently desirous of an active part in European affairs. In ISgi was comeluded the "Triple Alliance" with Germany and Austria, a compact which necessitated the maintenance of a large army and navy; and the oppressive taxation of an already burdened country: Humbert also believed in colonial expansion, which he inaugurated by the occupying of Massowah, on the Red Sea. The Italian troops suffered reverses in 188 , and 1888, when they were defeated by the Mahdi, and I March ISg6 when they lost the battle of Adowa to the Abyssinians. Humbert's attitude toward the Vatican was one of firmness, respecting all guarantees to the Pope, but insisting on the permanence of the Italian possession of Rome. His private munifiecnce it is said that he expended not less than $\$ 500,000$ yearly in benefactions - and his personal interest and conrage in the rescue work after the earthquake at Ischia (28 July i883), and in wisits to Busca and Naples during the cholera epidemic. (1884), made him greatly respected liy the Italians. 10 whom he was known as "Htmmert the Good." He was thoroughly a soldicr and cager in the interests of the army. Two unsuccessful attempts were made upon his life, one at Naples 17 Nov. 18,8 by Passanante. a fanatic, and another near Rome 22 April 1897 by Acciarito, an anarchist. On 29 July 1000 he was slont and killed at Monza, near Milan, by the anarchist Bresci. Sce Italy, Mistory.

Humbert Swindle, The, one of the most daring and extensive frauds on record. perpetrated by a $\$ 1$ me. Humbert of Paris with the
aid of various accomplices. It was alleged by Mme. Humbert that a certain Robert Henry Crawford, American millionaire, had left to her his fortune of $\$ 20,000,000$. A subsequent will divided the estate between her younger sister, Marie Daurignac. and Henry and Robert Crawford, nephews of the testator, while a third document bound the heirs to the preservation of the title-deeds and securities, and placed these in the keeping of M. and Mme. Humbert until Marie slould attain her majority: Without examination the alleged title-deeds and securities were deposited and sealed in a safe by the authorities. On this wholly fictitious basis Mme. Humbert netted about $\$ 10.000 .000$. while the amount of notes in the form of original loans and renewals equaled Sr-mo.mo.000. The fratad was discosered, and the ITumberts sentenced 22 Aur. icsz to five years' imprisonment but were released 13 Scpt. igo6.

Humble-bee. See Bt'arblebee.

Humboldt, hŭm'bōlt (Ger. hoom'bōlt), Friedrich Heinrich Alexander, Baron ron, German traveler and naturalist: b. Berlin It Sept. 1769; d. there 6 May 1859. His father was chamberlain to the king of Prussia. He studied at the universities of Frankfort-on-the-Oder, Berlin, and Gottingen, and in 1790 traveled along the Rhine to Holland, France, and England. This journey gave rise to his 'Observations on the Basalt on the Rhine,' published in 1793. In 1791 he studied mining and botany at the mining school in Freiberg, where his acquirements, his attractive and instructive conversation, his wit, and goodness of heart gained him universal esteem and affection. In 1792 he was appointed assessor in the mining and smelting department, and soon afterward removed to Baireuth, as overseer of the mines in Franconia. Here he introduced many improvements, among which was the establishment of the mining school at Steben; he likewise made valuable galvanic experinents, the results of which were published in 1796, in two rolumes. But in 1797° he gave up this office from a desire to travel. Owing to the disturbed state of the Continent, however, it was not easy for him to carry out his project. For some time he resided in various parts of Germany, particularly at Jena, where he became intimately acquainted with Gocthe and Schiller. In 1797 he went, in company with his brother, Karl Wilhelm, a Prussian minister of state, to Paris, where he became acquainted with Aimé Bonpland, a pupil of the medical school and botanic garden in Paris. He then went to Madrid, and having obtained permission from the crown to travel through the Spanish colonies in America, immediately sent for his friend Bonpland, and sailed with him from Cormnna. They landed at Teneriffe, where they ascended to the crater in Pico, in order to analyze the atmospheric air, and to make geological observations. In July they arrived at Cumana in Soutly America. For five jears they were occupied incessantly in traveling through tracts of the earth rich in all that conld interest the scientific observer, and till then never scientifically described. They explored the regions of South America watered by the Orinoco and the upper part of the Rio Negro, fully tracing the connection between the Orinoco and the Amazon; then returned to the coast and sailed

FRIEDRICI IIEINRICH ALENANDER VON IITMBMLIT

HUMBOLDT

for Cuba. where they remained some months. Leaving Cuba in roor, they returned to the South American continent, sailed up the Magdalena as far as they could, pursued their ronte iny land to Popayan and Quito, and thence as far south as Lima, crossing the Andes no fewer than five times in the course of thair journey: and, besides other mountain ascents, climbing Chimborazo (23 June 1802) to an elevation of 19.300 fcet, being the highest point of the Andes then reached by man; from Lima they sailed to Guayaquil, and thence to Acapulco, Mexico (January ISo3). Some months were spent in examining the city of Mexico and the surrounding country, and in a visit to the United States; and in January I8o4, they set sail for Europe, taking Cuba again on their way: On 3 Aug. I804, they arrived at Bordeaux, bringing with them, as the result of their labors, an immense mass of fresh knowledge in geography, geology, climatology, meteorology, botany, zoology, and cvery branch of natural science, as well as in ethnology and political statistics. Humboldt selected Paris as his residence, no other city offering so many aids to scientific study or having so many distinguished savants, and remained there till March I8o5, arranging his collections and manuscripts, and experimenting with Gay-Lussac, in the laboratory of the polytechnic school, on the chemical elements of the atmosphere. He was accompanied hy Gay-Lussac, who exerted a lasting influence on his chemical studies, in a risit to Rome and Naples, and also by Von Buch on his return through Switzerland to Berlin, where, after an absence of nine years, he arrived in November 1805. As the condition of Germany made it impracticable to publish there his large scientific works, he was permitted by King Frederick William III., as one of the eight foreign members of the French Academy of Sciences, to remain in Paris. which was his residence, excepting brief periods of absence, from 1808 to 1837 : There appeared his 'Voyage aux Régions équinoxiales du Nouveau Continent' (with Athas, 1809-25: German edition, Stuttgart 1825-32: new edition, edited by Hauff, four vols., 1850-60). When in I810 his elder brother resigned the direction of educational affairs in Prussia to become ambassador at Viemna, the former post was urged upon Humboldt by Hardenberg ; but he declined it, preferring his independence. He had also already decided upon a second scientific expcdition, through Upper India, the region of the Himalaya, and Tibct, in preparation for which he was diligently lcarning the Persian language. The political events between the Peace of Paris and the Congress of Aix-la-Chapelle gave him occasion for several excursions. He went to England in the suite of the King of Prussia in 1814: again in company with Arago, when his brother was appointed ambasjador to London: and again in 18 I8 with Valenciennes from Paris to London, and from London to Aix-laChapelle, where the king and Hardenberg wished to have him near them during the congress. He also accompanied the king to the Congress of Verona, and thence to Rome and Naples; and in 1827, at the solicitation of the monarch, gave up his residence in Paris, and returned by way of London and Hamburg to Berlin, where in the following winter he delivered a series of public lectures on the cosmos. Under
the patronage of the Czar Nicholas he undertook in 1820 an expedition to northern A sia, to explore the Crat and Altai Monntains, the Chinese 1)somgaria, and the Casplan Seat In this expedition he wats accompanied by Ehrenberg and Gustan kose. 'IMcir course lay through Muscow, Kazan, and the ruins of Old Bulghari to Ekaterinburg, the gold mines of the Ural, the platinum mines of Nijni Taghilsk. Bogoslovsk, Verloturyc, and Tololsk, to Barmaul, Schtangenberg, and ('stkamengorsk, in the Altai region, and thence to the Chincse frontier. From the snow-cosered Altai Nountains the travelers turned toward the southern part of the Cral range, and traversed the great stcppe of Ischim. passed through Petropavlovsk, Omsk, Niask, the salt lake of Ymen, Zlatousk, 'Taganay, ()renburg, Uralsk (the principal seat of the Uralian Cossacks), Saratov Duborka, Tzaritzin, and the Moravian settlement of Sarepta, to Astraklan and the Caspian Sea. They visited the Kalmuck chicf Scred Jaab, and returned by Voronesh, Tula, and Moscons. The entire journey of orer 10,000 miles was made in nine months; its results are given in Rose"s "Mineralogischgrognostische Reise nach dem Ural, Altai und dem Kaspischen Meere' (183-42) ; and Humboldt's (Asie Centrale, Recherches sut les Chaines de Montagnes et la Climatologie comparée.' It extended the knowledge of telluric magnetism, since in consequence of it the Russian Imperial Academy cstablished a series of magnetic and meteorological stations from St. Petersourg to Peking, which was followed, on Humboldt's application to the Duke of Sussex, by the establishment of similar stations in the southern hemisphere by the British government. The convulsions of 1830 gave a more political direction to Humboidt's activity for several years. On the news of the French revolution, and the accession of Louis Philippe, he was selected to convey to Paris the Prussian recognition of the new monarch, and to send political advices to Berlin. The latter office fell to him again in 1834-5, and he was called upon to fulfil it five times in the I2 following years, residing four or five montls in Paris on each mission. To this period belongs the publication of his (Examen critique de la Géographie du Nouveau Continent' ($1835-8$). He accompanied the king of Prussia in visits to Denmark, England, etc. (18+1-5), and resided for several monthis int Paris in $1847-8$, irom which time he lived in 1'russia, usually in Berlin, occupying a high position at the court until his death. His last great work, 'Cosmos' ($18+5-58$), has been unamimously recognized as onc of the most valuable contributions to science ever published. It explains the physical universe according to its dependencies and relations, grasps nature as a whole, mowed and anmated by internal forces, and by a comprehensive description shows the mity which prevails amid its varicty: It has been translated into all languages in which a book of science is required, and has been withont ant equal in giving an impulse to natural studies. See Bruhns, islexander von Hunboldt, eine Wissenschaftliche Biographie) (Eng. trans, 1873) ; Klenke, Alexander von Humboldt, ein biographische's 1)enkmal' (1859).

Humboldt, Karl Wilhelm, Bason ron, German statesman and philologist, brother of

HUMBOLDT - HUME

the preceding: b. Potadam 22 June $1 ; 6$-: d. Tegel near Spandatu. 8 April 1835 . He studied law at Berlin, at Frankfort-cn-the-Oder, and at Göttingen. and at the same time devoted equal attention to aniquities, resthetics, and the philosoply of Kant. In 1-8y-90 he lived in Eriurt and lijeimar. where a iriendship commenced with Schilher. continued without interraption till the poet's death. At valuable memorial of his friendship with Schiller is the correspondence between them (Brieiwechsel zwischen Schiller und Wilhein won Humboldt. 1830). In IRor. at the request of the Prussian government, he accepted the sicuation of ministerial resident at Rome. From ISob-s he was here minister plezipotentiary. but. having been called from Rome :o fill the office of minister of the interigr or. connection with ecclestiastical and educational matters. had a most importan: share in the educaticnal progress, which Priss:a has since made: more especially is the erection of the Berlin Coniversity to be ascribed to him. He exchanged this situation in ISIo for that of extraordinary ambassador and minister plenipotentiary to \ienna. He took an active part during the anmistice of $\mathrm{I}_{1} 13$ in the peace congress at Prague: in ISIt at the Congress of Chatillon. and the conclusion of the first Paris peace: in 1815 at the Congress of Tienna: and in 1816 at Frankfort-on-the-Main. in all matters connected with the German diet. He was afterward appointed ambasiador to Lendon. and in 1818 attended the Congress oi Aix-la-Chapelle. In 1819 he was an active member of the Prussian ministry, but sent in his resignation the same year, in iavor of a freer and more constitutional system. His collected works ($1841-52$) , melude poems. essays on subjects of taste, and in particular numerous raluable disquisitions in regard to the origin and progress of language.

Humboldt, a river which has its rise in the rortheartern part of the Staic if Nevada. fluws west and sourhwest, a d:stance of about 350 miles into Humboldt Lake, in the castern part oi the State. The streann is narrow, the waters saline. and the whole course is through a barsen region, destitute of large trees and but few shrubs, except a few clusters of willows. The ficlds are covered with sage brush. The only cast and west pass througlh the mountains of le vaik is the valley oi the Humb ldd. The Central Pacific railroad. in its course through the State, illuws this flucr. Humboldr lake has it cur!et: but the waters evaporate st rapidly that somctimes its bed is dry: but when the waier is high it overflows the banks. A dam built a fow yeare ag! prevents the crerflow irom falling in Carsen sink.

Hume, David, Scottish historian and metaphysician: b. Edmbursh 27 April 1711; d. there 2ξ Aug. 1--U. He appears to have eniered the E"nversity of Edinburgh at 12, and to have leit at 14 or 15 without taing a degree. He began the study of law. but abandoned it in order to devute humself to the 'pursuits of phile sphy and learning. ${ }^{\text {D }}$ His first w th. the 'Treatse ci Human Nature.' "as published partly in 1,39 and partly in 1;40: the book entitled ' Of the 'nderstanding' and 'Of the Passions' appear:ng in the iormer. and that entited cof Murals in the latter year.

The 'Treatise oi Human Nature' is the final and most complete exposition of the fundamental principles of the old school of empitical philos-ophy,- the school to which belonged Bacon, Locke. and Berkeley. According to Hume, the contents of the mind are embraced in the term 'perceptions.' Perceptions consist of sensuous impressions and ideas. Ideas are merely images of sensuous impressions. Knowledge is the cognition of the relation between two perceptions. There is no necessary connection between cause and effect. The idea of cause depends on the habit of the mind which expects the event that usually follows another. Mind is but a series or succession of isolated impressions and ideas. ts knowledge is dependeat on experience derived through the senses, and as the senses irequently deceive one can bare no absolute knowledge of things, but only of one"s impression of them. Hence, to give the conclusion later arrived at in the iamous 'Essay on Miracles,' a miracle even if genuine is incapable of proof.

The 'Treatise of Human Nature' is clear. iorcible, and untechnical. Its most striking cbaracteristics are its spontaneity and individuality. Hume owed little to academic training. and wrote his earlier works at a distance irom centres of learning. without access to large libraries. The literary beauties of the 'Treatise.' however. are marred by its structural defects. It is a series of brilliant iragments rather than a well-rounded whole. and is concemed more with criticism oi metaphysical opinions from the point of view of Hume's theory of knowledge than with the construction of a complete system oi philosophy.

In 1741 appeared the first volume of the 'Essays, Moral and Political.' the second volume coming out in the following year. These, with some additions and omissions, were republished in 1,48 under the expanded title. 'Essays. Moral. Political. and Literary.' which has been retained in the many subsequent editions. Hume's essays are models of their kind. iull of sparkle, imterest. and animation. Hume accompanied General Sinclair in 1546 and 1547 in his expedition against France and in a military embassy to Vienna and Turin. He now published a recasting of his 'Treatise upon Human Nature.) under the title (An Inquiry Concerning the Human ('nderstanding) (174%). In 1752 he published his 'Political Discourses.' which were well received, and his 'Inquiry Concerning the Principles of Morals.) The same year he obtained the appointment of librarian of the Advocates Library at Edinburgh, and bepan to write his 'History of England.' of which the first volume appeared in $1 / 5+$. It was, like most of the succeeding volumes. severely atracked both for its religious and political tendencie: : but, in spite of adverse criticism. after its completion in 1;61. Was recognized as a standard work. Its merits are chiefly clearness and force of narrative and philoscplical breadth of siew in the judgnent of men and events. In $1 ; 03$ lie accepsed an invitation from the Earl of Hertiord, then proceeding as ambassader to Paris, to accompany him, and was enthusiastically received by Parisian circles in his character of philosopher and historian. After the departure ci Lord Hertiord in $1 ; 36$, he remained as charge du"nires, and returned to England in 1;06, bringing with him Rousseau, ior whom he pro-

HUME - HUMMING-BIRDS

cured a pension and a retreat in Derbyshire. But the morbid sensitivity of Roussean brought about a disagreement which put an cnd to the friendship. In 1767 Hime was appointed nudersecretary of state, a post which he held till 1769 . As a philosopher, in which quality his reputation is perlaps greatest, Ilume's acute skeptical intellect did great service by directing research to the precise character of the fundamental conceptions on which our knowledge and our beliefs are based. Ilis acute negative criticism of these conceptions (for example, his reduction of the ideas of personal identity, conscience, causality, to mere effects of association) compelled philosoplyy either to come to a dead halt or to find, as Kant did, a new and profounder view of the nature of human reason. Sce Burton, (Life and Correspondence of David Hume' (1840); Jodl, 'David Humes Lehre von der Erkenntnis') (1871) ; Gizyck, 'Die Ethik David Hunes' (1878); Huxley, 'Hume) (IS79); K゙night (i886), and Hume, 'My Own Life.'

Hume, Fergus, English novelist: b. 24 July 1862. He was educated at the University of Otago, New Zealand, became a barrister, and in 1888 removed to London. His first long work, 'The Mystery of a Hansom Cab,' published in Melbourne (1887), and later in London, achieved a phenomenal circulation. Later publications are: 'The Piccadilly Puzzle) (1889) ; 'Miss Mephistophcles' (1890) : 'A Creature of Night' (180I) ; (An Island of Fantasy) (I894) ; 'The Bishop's Secret' (1900); 'The Turnpike Honse' (1902) : 'The Mlandarin's Fan' (1904).

Hume, Martin Andrew Sharp, English historian: b. London 8 Dec. 1847 . He was educated in Madrid and was attached to the Turkish army 18;8-9. He is editor of Spanish State Papers in the Public Record Office and examiner of Spanish in the University of London, and has published: 'Chronicle of Henry VIII.', (1889) ; 'Courtships of Queen Elizabeth' (1896) ; 'The Year after the Armada' (1896); 'Sir Walter Raleigh' (1897); 'Philip II. of Spain' (1897); 'The Great Lord Burghley' (1898) ; 'Spain: Its Greatness and Dccay' (1898); 'Modern Spain' (I899) ; 'History of the Spanish People' (1901); 'Treason and Plot' (1901) ; 'The Love Affairs of Mary, Queen of Scots' (1903).

Humidity. See Rainfall.
Hum'mel, Abraham H., American lawyer: b. Boston, Mass., 27 July 1849. He went to New York city in his youth, was educated in the public schools there and entered the law office of William F. Howe as an office boy. He early showed an unusual aptitude for the law, was admitted to the bar of New York in 187o, and subsequently was admitted to practice in the United States courts. In 18 ;0 he founded the law firm of Howe \& Hummel, of which he has been ever since a member, and has attained distinction as a divorce lawyer, in theatrical litigation, and important will contests. He represents nearly every important theatre in the United States, many prominent theatrical managers, and leading American and European actors. He is counsel in the United States for the Société des Auteurs Francais-organized at Paris, France, for the purpose of protecting all foreign plays produced in the United States and elsewhere.

Hummel, hoom'mël, Karl, Gcrman landscape painter: b. Weimar 31 Aug. 1821. In 2841 he studied pantung with Preller. Ilis more idealistic pictures belong to the earlier part of his career. and his later work consists largely of German laudscapes: Among his most noted works are: 'The (iardens of Armida' (i888); 'Keller Lake in IIolstein' (1884); 'Wooded Landscape near Michaclistein' (1888).

Humming-birds, a family of small birds, the Trochilida, closely allied to the swifts, peculiar to America and almost exclusively tropical. They are distinguished by small size, iridescent plumage, long slender bill and the peculiar form of the tongue, which consists of a double tube tapering and separating at the tip into two externally lacerated sheaths, which contain the extensile portion. "The horns of the hyoid apparatus are greatly elongated, and pass round and over the back of the head, meeting near the top, and thence stretching in an ample groove to terminate in front of the cyes. This arrangement, analogons to that found in woodpeckers, allows the tongue to be suddenly protruded to a considerable distance, and withdrawn again in an instant." This is a modification of parts adapted to food-getting habits, and is accompanied by others equally characteristic. Humming-birds feed almost entirely upon minute living insects, especially those which gather about flowers and loiter in the corollas, feeding upon the nectar; or dwell on the leaves and bark of plants and trees. Such honey as may be taken with them seems to be gratefully accepted, but the birds do not seck for, nor "suck" the nectar from flowers, as has been popularly supposed. They will' dart from a perch and capture an insect like a flycatcher, but ordinarily they obtain them by poising upon their wings about leaves and in front of trce-trunks, picking up morsels, not with the mandibles, but with the tonguc; and still more frequently by searching flowers. As it is in the deep, tubular, sweet corollas of trumpet-creepers, orchids, and similar great blossoms of tropical shrubs and vines that insects most abound so there does the humming-bird find its richest hunting-ground; and the Jong curved beaks of most species have been developed in the constant effort to penctrate to the nectarous depths of these deep blossoms; in truth, the head and half the tiny body may often be pushed into the flower, and in so doing gather and dispense pollen from flower to flower, so that hum-ming-hirds are important if not exclusive agents in the cross-fertilization of certain large-flowered plants. This method of obtaining food requires the power of sustaining themselves in the air in a fixed position while they explore leaves or hlossoms. since no perch is available for their fect, which are small and weak at best. Hence humming-birds have developed lightness of body coupled with extraordinary muscularity and extent of wings, which in most species reach far beyond the root of the tail. These long narrow wings are operated by pectoral muscles which proportionately exceed in size those of any other bird,- even those of the chimney-swifts; and these huge muscles actuate remarkable short wing-hones, so that extreme rapidity of movement is possible, but it is accompanied by a loss of that power secured by the relatively

HUMOR - HUMPERDINCK

Ionger alar bones of other birds. By this apparatus the humming-birds are able to beat the air with a rapidity which enables them to stand still. or to dart and dodge in pursuit of some agile insect, or in escaping danger, with a speed which defies liuman sight to trace; the moving wings at such times. indeed, appear only as a mistr halo about the body of the bird. and make a loud humming noise. Most species have rery long bills - irequently exceeding, and sometimes twice as long as the head; but some have short, owl-like beaks, with which they pierce the base oi such flowers as are too deep for them.

A characteristic of humming-birds is that flashing beauty of plumage which long ago led to calling them the gems oi the air, and is due mainly to the quality of the ieathers, upon the suriace of which are small scales that reflect the light in prismatic hues, giving an jridescent or :netallic sheen to certain parts, especially the -hroat (gorget), comparable only to the shards of some beetles. Such brilliance, howerer belongs only to the males, the females being uniformly more plainly dressed, though still highly colored. In many species, also, the males are further adorned with fanciful crests, mustaches, tuits, pendants of the chin and throat. "puffs" upon the legs, and especially with ornamental developments of the tail-feathers: and these they seem to take great delight in displaying for the admiration of the female, and the exasperation of rivals. They are extremely pugnacious, especially in the nuptial season, when constant and bitter fighting occurs, and their courage is so great that neither sex has any hesitation in attacking any bird which offends them or comes too near the nest.- even hawks and crows often flee ignominiously before the impetuous onslaughts of these little furies. On the other hand no bird is more fearless of man and easily tamed.

The nests of humming-birds are small cups of downy materials, sometimes resting upon the limb of a tree (as is the method with the conmon ruby-throat of the eastern Linied Siates: sometimes fastened in a crotch of a bush or of large leaves; or iastened to the tip of a pendant leaf. or in a bunch of hanging moss or foliage. The materials are adapted io the place in color and appearance, and further concealment is gained by coating the structure with lichens, or bit= of bark, or with cone-scales, as is the habit of the familiar Calliope hummer of Califermia, which nests in pine trees. The eggs of all species are onlv two in number, and purely white.

The family is exclusively American, and is represented from Labrador and southern Alaska to Pataconia: but the more ragrant species are few, and withdram in winter toward the equator. About 125 genera with some 500 species. are recognized by ornithologists. Nine tenths of them belong to the Amazon and Orinoco valleys or to the lowlands of Central America: yet sime species habitually spend the summer on high mountains. The varicty decreases northward, but nearly $=0$ species reach the boundary of the United States, and several are regularly precent in summer west of the great plains. as iar north as southern Alaska. One species wanrers nere the whole country, and is abundant in the Eastern States. This is the ruby-throat (TV chilus coluhris). It is about 3^{12} inclies
long. The whole upper part, sides under the wings, tail coverts, and two middle feathers oi the tail, are rich golden green; the tail is iorked, and, as well as the wings, of a deep brownish purpie: the bill and eyes black; but What constitutes their chiei ornament is the splendor of the feathers on the throat oi the male, which are ruby-red, and gleam like a great jewel. The females and immature young lack this gorget.

Consult: Jardine, (Naturalists' Library.' Vols. I and II (Edinburgh 1833) ; Lesson. "Hisioire Naturelle des Colubris' (IS_{30}) ; Gould, 'Monograph of the Trochilidx" (5 rols. I8:0-9) : Mulsant and Terreaux. 'Histoire Saturelle des Oiseanx-Mouches ou Colubric) (4 vols. 1876): Ridgway: 'The Humming-birds' (.Am, Rept. UV. S. National Museum ior 1890 (Wiashington 1892).

Ervest Ingersoll,
Hu'mor. a fluid of the living body, of which Hippocrates enumerated iour, namely, blood, phlegm, yellors bile, and black bile. These were considered to be the principal seats oi disease in man. In modern medicine humor is a term generally applied to the thinner fluids, whether natural or morbid. limpid. serous or sanious, such as the humors of the eve or the watery matter in a blister of the skin caused by heat, etc.

Hump'back Salmon, Whitefish, etc.. sereral kinds of fishes are said to be "humpbacked" becanse of an unusually raised dorsal outline. The humpback salmon of the Pacific coast is a commonly known, but litie valued species (Oncorhynchus gorbuscha), whose flesh is styled in market "pink" salmon. (See Salmoñ) The common whitefish (q.r.) is known locally as humpback or bowback: and the curious razorbacked sucker (Jyrauchon cypho), is locally called the humpback.

Humpback Whale, one of the baleen whales or forquals ($\mathrm{q} . \mathrm{r}^{\text {. }}$) of the genus Megaftera, characterized by a low hump in place of the inconspicuous dorsal fin and a tuberculous head. The genus is world-wide, and an undetermined number of species exist. of which the best known is the northern 11. longimansus, the specific name referring to the elongated pectoral in, with which the animal beats the water, itself and often its playmates. These whales reach 50 or 60 fect in length, and go about in small schools. See IV tiale.

Humped Cattle. See Indlas Huatped Cattle.

Humperdinck, Engelbert, ěng'̈l bërt hoom'-per-dink. German composer: b. Siegburs, mear Bonn, i Sept. iSミ4: aiter studying music at Cologne and clsewhere he tauglit in the conservatoriums of Barcelona and Colngne, and was musical adviser to a publishing sirm in Mainz. Wagner asked him to assist in the froduction of the latter's only symphony: and he prepared and coached the first cast of Parsifal' at Baireuth (188_{2}). He subscquently became famous as the author of the placnomenally successiul children's musical fairy play. 'Hänsel and Gretel' (1804) : followed by 'Schneewittchen' (The Snow Maiden) and 'The Royal Children.'

HUMMINGGBIRDS

Humphrey, hŭm'fry̆, Charles Frederick, American soldier: b. New liork. He scrved in the $5^{\text {th }}$ artillery in the Civil War, became ist licutenant of the th artillery in IS68, was transferred to the quartermaster's department in 18 \%9 as assistant-quartermaster with captain's rank, and in IS97 attained the post of deputy quartermastcr-general with grade of lieutenant-colonel. In 1808 he entered the volunteer service, participated in the Cuban expedition, and was promoted brigadier-general of volunteers. In 180?-1900 he was chief-quartermaster of the division of Culsa, in 1900 of the United States Chima relief expedition. In 1903 he was appointed quartermaster-general, United States army, with rank of brigadiergeneral.

Humphrey, Heman, American Congregational clergyman and college president: b. West Simsbury, Conn., 26 March 1779; d. Pittsfield, Mass, 3 April 1861. He was graduated from Yale in 1805, was pastor of the Congregational church at Fairfield, Conn.. IS07-17, and of that at Pittsfield, Mass., $181 ;-23$ while from 1823 to I $8+5$ he was president of Amherst College. He published several works, including a popular 'Tour in France, Great Britain, and Belgium,' but is best known by a famous pamphlet called 'Parailel Between Intemperance and the Slave Trade.' See Tyler, 'History of Amherst College.'

Humphreys, hǔm'frǐz. Alexander Combie, American engineer: b. Edinburgh, Scotland, 1851. He entered business in New York in 1866: in $1877-81$ studied at Stevens Institute of Technology (Hoboken, N. J.). He then held various posts first in a lighting. and then in a gas improvement, company, in 1892 became connected with a gas company of London, and in $180+$ established a branch business in Xew York. During this time he did much to improve the manufacture of commercial water-gas. In 1902 he was elected president of Stevens Institute.

Humphreys, Andrew Atkinson, American soldier: b. Philadelphia. Pa.. 2 Nor. 1810; d. Washington, D. C., 27 Dec. 1883. He was graduated at West Point $1 \mathrm{~S}_{3}$ I, receiving a commission in the artillery. Resigning in 1836 he was associated with Major Hartman Bache as a civil engineer in government work. He reentered the army in 1838, and was engaged in several government surveys. In the Civil War he was topographical engineer to the Army of the Potomac. In I862 he was made brigadiergeneral and commanded the Fifth corps of the Army of the Potomac at the battles of Fredericksburg and Chancellorsville. He commanded a division in the battle of Gettysburg and earned promotion to a major-generalship in the volunteer forces. He commanded the Second corps of the Army of the Potomac in the campaign which closed with Lee's surrender. Aiter his services at Sailor's Creek, he was brevetted major-general in the regular army and was subsequently placed in command of the cngineer corps with the regular rank of brigadiergeneral. He has written: "The Virginia Campaigns of 1864 and 1865) (1882) ; 'From Getty'sbury to the Rapidan' (1882).

Humphreys, David, American poet: b. Derby, Conn., 1753; d. New Haven 21 Feb. 1818. He was educated at Yale, entered the army at
the beginning of the Revolutionary War, and in 1780 became a colturel and aide-de-camp to Gen. Washington. In t -8 + he accompanied Jefferson to Europe as secretary of legation, in 1780 was elected to the legrslature of Connecticut, and was soon as:ociated with the "Hartiord Wits," Hopkins. Trumbull, and Baslow, in the composition of the 'Anarchiad,' being thus one of "the four batds with Scripture names" satirized in London. He was minister to Lisbon 1791-7, minister plenipotentiary to Spain in 1797-ISo2, and on his return imported from Spain 100 merino sheep, the first introduced into the United States, and engaged in the manufacture of woolens. He held command of the Comecticut militia in the War of 1812 . His principal poems are: an 'Address to the Armies of the United States' (1772) ; 'On the Happiness of America'; a tragedy, entitled the 'Widow of Malabar,' translated from the French of Le Mierre: and 'On Agriculture.) His (Niscellaneous W'orks' (I790 and I8O4) contain beside his poems 'An Essay upon the Life of Gen. Israel Putnam.' and several orations and other prose compositions.

Humphreys, Frank Landon, American Protestant Episcopal clergyman: b. Auburn, N. 1., 16 June 1808. He was educated at Columbia and Oxford universities. He was precentor and minister in charge of the Cathedral of the Incarnation, Garden City, L. I., $1885-90$, and is now canon in the Cathedral of St. John the Divine, New lork. Among his writings are: 'The Evolution of Church Music' (1896): 'The Mystery of the Passion' (1898): 'Nen of Understanding’ (1897) : ‘Christmas Carols and Caroling' (1900); and 'Clerical Education' (1896)

Humphreys, Josbua, American shipbuilder: b. İ5r; d. I838. He was the first builder of war vessels for the American colonists, and is therefore often called the "father of the American navy." Among the ships constructed by him wcre the Chesapeake, Congress, United States, Constellation, and the famous Constitution.

Hundred Years' War, the name given to the prolonged struggle between France and England which began in 13.37 and ended in 1453. Among the chiei of the immediate canses of the war was Edward III's claim to the French throne, but the keen rivalry of the two nations rendered conflict inevitable. It lasted during the reigns of five English kings, from Edward III. to Henry \"I., and of five French kings, from Philip II. to Charles Cll.. ending in the expulsion of the English irom France

Hu'neker, James Gibbons, American musical and dramatic critic: b. I'hiladelphial 31 Jan. 1859. In Paris he was a pupil of Barili, Ritter, and Dontreleau, and subsequently became an instructor in piano at the Xational Conservatory of New York. Ile was musical and dramatic critic of the New York Recorder in 189I-5. and of the Moming Adzerfiser in IS95-\%. Subsequently, he was musical editor, and from 1902 dramatic editor of the New lork Sinn. Among his writings are 'Mezzotints in Modern Music.' essays (1899) ; 'Chopin, as Man and Musician' (1900), an interesting study; and (Melomaniacs) (1902). clever but often extravagant stories satirizing the musical profession.

Hungarian Language and Literature. See Hu゙sgary.

Hungary (Hungarian, Masyar-Ország. "Land of the Magyars), a kingduin in the southeast of Europe, forming with Austria (q. $\%$.). the Austro-Hungarian monarchy. It includes, in its widest acceptation, Hungary proper, Transyivania on the east, Slavonia and Austrian Croatia on the souihwest, extending in this direction so far as to comprise a strip of coast cn the Adriatic Sea, together with the iormar military ironciers, a long strip of territory on the southern borders. Total area, 125.039 square miles. with a pupulation (1900) of $19,254.599$. The capital is Budapest. In a more restricted sense Hungary proper is limited to the territory encircled from the east rcund the north to the northwest by the Carpathian Mountains; bounded west by the river March and some ofsets of the Soric Alps: sauthwest by the Drave; south and southeast by the Danube and the Transylvaniar Alps (a continuation of the Carpathian range): with ain area of 109,00 ; square miles, and a population (1000) of $10,721,574$ Hungary proper may be considered as a large basin surrounded by mountains on every side except the south; but even there the natural boundaries of this geographical basin are completed at no great distance irom the irontier by the highlands of Croatia, Bosnia, and Servia, that meet those of Naliachia and Transylvana at the "Iron Gate', a pass iormed by the abrupt divisions of the mountains on either side of the Danube. which there iorms a celebrated rapid. From that point the Carpathians proceed by various ranges at first east. but afterward successively northwest and southwest. Several of their summits rise to between 8.000 and 9,000 feet above the sea. The Carpathians are richly wooded in many parts, and their branches are interspersed with numerons romantic and fertile valleys. On the west the Leitha Ilountains, a spur oi the Alps separating Hungary irom Styria and Austria, progressively decline toward the Danube. The Bakonywald (Bakony Forest), another Alpine spur, upward of 2.000 ieet in beight, and clothed with demse iorests oi oak, beech, and other trees, intersects the southwest region of Hungary in a northeast direction to near Waitzen, where the Danube bends south. and with the Matra Mountains, beyond that river, divides Central Hungary into a greater and a smaller plain, respectively abont 21,000 and 4.000 square miles in extent. The Danube and Theiss rivers traverse the south hali oi the country in parallel streams about oo miles apart. the former previonsly flowing from the west. and the latter frem the east or northeast to near the latitude of the capital. Near Eszek, in Slavonia, the Danube, net by the Drave, turns suddenly again to the east, and forms all the rest of the south irontier of Huncary. receiving in this part of its c urse the Theiss and scveral min ir apmpents. The March. Waag, Neutra, Gran, and Ipoli, in C"pper Hungary, fi m to the Danube irom the north: the Budres. Schain, Hernad, and Zamwa, flowing frons the same direction, unite with the Thesis: and the Szam s. Köros, Maros, etc., join that river from the east. The Poprad, in the north, flows into Galicia, and is tributary to the Vistula, it being the only Hungarian river not belonging to the basin of the Danube. The Drave iorms the southwest
frontier on the side of Croatia and Slavonia, and is joined in Hungary by the Mur from Styria. Excepting these two. the Raab, which joins the Damube neat the town of its name, is the only river of much magmatude is the southwest quarter of the commtr: but in that division of Hungary are its two principal lakes, on either side of the Bakonywald-Balaton. in the great plain. and the Jeusiedler-See iHungarian. Ferto Tara). close to the border of Austria. In the Carpathians are several smaller lakes. between 4.000 and 5.000 feet above the sea. In the lower courses of the Danube and Therss are extensive marshes and swamps, especially along the Theiss. The total area of the morasses in Hungary has been estimated at 1.500 .000 acres or upward of 2.300 square miles: within the roth century enough marsh-land was drained to furnish subsistence for 500,000 inhabitants. Mineral springs are numerous: the most celebrated are those which form the baths of Mahadia in the Banat. Among the minerals are gold, silver. copper, ison, lead, zinc, cobalt. antimony, sulphor, arsenic, salt. soda. saltpeter, alum. vitriol. marble. coals. peat: among the precious stones the opal and chalcedony are remarkably beautiful.

Hungary, including Transylvanja. used to vield nearly a hali of all the gold annually obtained in Europe Its principal localities are Kremnitz. Chemnitz. and other places in the north, and Xagy Banya on the Transylvanian frontiers. Silver is found in independent localities, though more frequently in connection with the gold. They are sometimes found pure, but generally in combination with copper. Mining is not yet carried on io a great extent: but the production of coal and iron is rapidly increasing. Hungary is one oi the healthiest countries in Europe. Owing to the variety of its suriace it possesses a great diversity of climate. which, combined with the fertility of the soil, abundantly supplies her with natural productions.

The Hungarian has a natural inclination to agriculture and the breeding of cattle. Both are however. still in a backward state, though making rapid advances. But the inexhaustible iertility of nature supplies every deficiency of indusiry and skill, and Hungary is now one of the chief corn-growing countries of Europe, much wheat and ilour being exported. Hungarian wheat is well known for its excellent quality: All kinds of grain, a species of maize, rice, kitchen vegetables, and garden plants of every description, melons (which are cultivated in open fields). Turkish pepper, fruits (particularly plums for the sake of the brandy prepared from them, called Slizocita), wines of different kinds. wood. gall-nuts. potash. tobacco. hemp, flax, hops, safiron, woad, madder, sumach, cott.n. and rhubarb are among the products of Hungary:

Many improvements are made by individual proprietors, and Hungary has a large number of iechnocal insitutes in which students are thoroughly trained in agriculture. Next to France. Hungary is the chief wine-producing country of Europe, both as regards the quantity and the varicty of the product. The annual produce of Hungary and the connected territories is estimated at between 26.000 .000 and $2-, 000,000$ eimers, oi ahnut 15 gallons each. The finest variety is the Tokay, which is produced in the I Pexyallya, in the county of Zemplin.

HUNGARY

Horses, cattle, sheep, hogs, game (in the north bears), poultry, fish (among which the sturgeon and salmon, Salmo dantex, are the principal), becs, and silkworms arc among the productions of the animal kingdon.

The principal artisans are tanners, furricrs, manufacturers of tschism (cordovan boots), lace-makers, harness-makers, makers of wooden wares, of straw-plait work, etc. There are few extensive snanufactures in Hungary. There are numerous iron and steel works, some iron-foundries, tin-plate and wire works; also potteries, glass manufactories, sugar-refineries and beetroot sugar works, soap-works, tallow, stearine, and wax-candle works; soda, saltpeter, and potash works, and brandy' distilleries. Trade is almost exclusively in the hands of the Germans, Greeks and Jews. Internal commerce is promoted by the railways and rivers, the Temes and Francis canals (the former 75 , the latter $607 / 2$ miles long), the fairs (which amount to 2,000), and the complete absence of tolls. The railways in 1901 had a total length of ro,794 miles, 4.876 miles being state lines; 3,439 worked by the state, and the rest private commercial lines. The total length of navigable rivers and canals in the monarchy is over 3.000 miles. The Danube is the most important highway of traffic, but the foreign trade by it is comparatively small. Inland navigation and roads are given careful attention.

The great number of distinct races with entirely different habits which is found in Hungary is remarkable. According to the census of 1900 on the basis of language, the races inhaliting Hungary including Croatia and Slavonia were divided as follows:

The Magyars, who are the dominant race, are located for the most part in the centre of the kingdom. They are high-spirited, brave, warlike and generous, and, according to travelers, more sincere than their Servian and Wallachian neighbors: impatience of control, pride, indolence, and ignorance are their besetting faults. Their general deportment is serious: and in many respects they resemble the Turks, who followed them out of Asia, and belong to the same great family of mankind. The Nagyar costume is remarkable for its picturesque elegance. Most of the Hungarian nobles are Nlagyars; and it is by this section of the population that the constitutional form of government and musicipal institutions have bcen mainly, if not wholly, upheld. The Slovaks are among the people apparently the earliest settled in Hungary; they inhabit the northwest, and are similar in race, customs, and language to the adjacent Moravians, to whose oxtensive empire they belonged before the Magyar conquest. The Ruthenians or Rusniaks dwell beneath the north and northeastern Carpathians. The Rumanians (Wallachians) occupy a tolerably wide tract of country on both sides of the west and north boundaries of Transylvania. They are far behind the Slovaks, and, in-
deed, nearly all the other nations of Ifungary, in education and civilization. They appear to be the descendants of Italian colonists, placed in Dacia durmg the Roman dominion there, and have been accordingly called Daco-Romans - an cpithet to wheh their classic features, easy manners, language, and antuque costume seem to give them a claim. They call themselves Romonni; and speak a dialect of Latin, but they write it with the Cyrillian or Russian character. In this last particular they unite with their Servian neighbors inhabiting the Banat on their southwest. The Croats people nearly all Slaronia and Croatia, and stretch into seven of the counties of Hungary proper as far as the county of Pesth. The Wends (Vandals) inlabit two counties of Hungary proper as far as the county Theresianopel, and a few other parts of the Banat; the Alontenegrims a part of the councy Temes; and the Armenians portions of thrce of the eastern counties. The Germans appear, in the first instance, to have emigrated into the country during or before the zth century, subsequently to which many successive immigrations took place, especially under Geysa, king of Hungary, who ascended the throne 1I41 M.D. and who established large numbers of German colonists from Franconia, Thuringia, and Alsace in several of the northern counties, and in Transylvania. They speedily became dispersed in detached settlements over all Hungary; and early in the 13 th century Pesth was described as a "large and rich German town." In the 18th century other Teutonic immigrants, with some French refugees, settled in the kingdom. The Germans are marked by their industry and thrifty condition, but also, it is said, by their litigious and avaricious propensities. They people the greater part of the western frontier, from Presburg and around the shores of Lake Neusiedler sonth nearly to the limit of Croatia; elsewhere they are most numerous in the county of Zips, the mining districts, the Banat, and especially in the towns, where they compose the bulk of the trading population.

With regard to popular education, attendance in elementary schools is compulisory from the completion of the sixth year (in Croatia and Slavonia the seventh) till the completion of the twelfth, and also in continuation-schools up to the age of 15 . Every parish or commune is also bound to maintain an infant school. The great bulk of the schools are supported by the denominations. Besides gymnasiums and realschools there are numerous technical schools for arts and industries of all kinds. There are universities at Budapest, Klauscnburg, and Agram, attended by over 6,000 students. Over two thirds of the periodicals issued are in the Magyar language. The various religious bodies have long enjoyed equal rights in 11 ungary and Transylvania.

The civil population according to religion, on the basis of the census of 1900, comprised Roman Catholics 9.846 .533 . over 51 per cent ; Greck Catholics $1,843.63+$: Grcek Oriental 2.799,846; Evangelical Augsburg, 1,2\{0,070; Evangelical Helvetian 2,423,818; Unitarians 68,005; Jews, 846.254; others 4.180 .

The Roman Catholic clergy are powerful by reason of their large landed property, and thic influence they possess over the appointments to many offices. There are three Roman Catholic
archbishops and 17 suffragan bishops, with a Greek (United) Catholic archbishop and five suffragan bishops. Among the Protestants, laymen and clergymen united manage the affairs of the different congregations under the direction of superintendents. Lutherans and Calvinists have each four superintendents in Hungary and one in Transylvania.

A sketch of the Hungarian constitution has already been given in the article At'stria. Hungary is divided into counties and districts, according to a very old division of the country: These have the right to administer their own internal affairs. At the head of each is an Oörgespant (or lord-lieutenant) and two lVice gespanne. There are three county courts in civil cases, according to the importance of the subject in question, consisting either of a judge with a jury, or of the vice-officer of the county with a judge and jury, or of the supreme tribunal of the county (Scdes Judicaria, Sidria), which also revises the decisions of the two other courts and of the seignorial courts. The courts of appellate jurisdiction are the Royal Table (which, however, in several cases has original jurisdiction! and the Table of the Seven. The former sits in Budapest and the latter in Agram. They are both comprised under the name of Curia Resia, the sentences of which have the force of law in case there is no positive law.

History.-The nations which occupied parts of Hungary before its conquest by the Magyars were the Dacians, Bastarnæ, Illyrians, Pannonians, Sarmatians, Vandals, Bulgarians, Jazyges, Alans, Huns, Marcomanni, Longobards, etc. The Romans held the southwest part of the country under the name of Pannonia, while the southeast belonged to their province of Dacia. Various Slavic tribes, together with WVallachians, Bulgarians, and Germans, were tl.: chief occupants at the time of the Magyar invasion. The गlagyars, a warlike people $<$: Turanian race, had mada varions migrations, and long dwelt in the vicinity of the Caucasian Mountains, and afterward in the region between :':e Don and the Dniester, before they approached and crossed the Carpathians (about 83%) under the lead of $\AA 1$ mos, one of their seven chieis (evzir), and elected head (fcjedclem) or duke. Arpad, the son of Almos, conquered the whole of Hungary and Transylvania, organized the government, and also made various expeditions beyond the limit. of these countries. These incursions were cxtended under his son Zoltan $(907-46)$ and grandson Taksony $(9+6-72)$, as far as the German Ocean, the south of France and Italy, and the Black Sea. These formidable cnemies were first defeated by Henry I., the Gerinan ensperor, at Kerseburg in 933: they then invaded Franconia in 937, and Saxony in 938, were defeated at Stederburg, and aiso on the river Olure. Their last incursion into Bavaria (054 and 055) terminated with their complete overthrow on the Lech, where Otho I., king of the Germans, conquered them. They gradually learned from the Slavonians and Germans whmm they conquered, and from the prisoners whom they had taken in their incursions, the arts of reace, agriculture, and manufactures. The hospitality of $\mathrm{C}_{\mathrm{c}} \mathrm{y}$:sa $(972-97)$, and the religious zeal of Sarolta his wife, did much to attract strangers from different coumtries and of all classes into Hungary. The Hungarians vio-
lently opposed the introduction of Christianity. and Geysa was obliged to leave the extension of it to his son Stephen ($997-1038$), who finally: prevailed by the assistance of Latin monks and German knights. King Stephen granted a constitution, the principal features of which were never lost, but the unsettled state of the succession to the crown, and the consequent interference of neighboring princes and of the Roman court in the domestic concerns of Hungary, long retarded the prosperity of the country: The religious zeal and bravery of St. Ladislaus (1075-95).) and the energy and prudence of Coloman (1095-11I4), shine amid the darkness of this period.

The introduction of German colonists from Flanders and Alsace into Zips and Transylvania by Geysa II. (114I-6I) had an important influence on those districts. In iIS6 Hungary became conmected with France by the second marriage of Bẻla with Margaret, sister to Henry, king of France and widow of Henry, king of England, who introduced French elegance at the Hur.garian court. The reforms of Bèla IV. (1235-70) were interrupted by the invasions of the NIongols (1241), and the kingdom was in a most deplorable condition. With Andrew III. (1290-130I) the male line of the Arpad dynasty became extinct, and the royal dignity became purely elective. Charles Robert of Anjou, by his mother a descendant of the extinct dynasty, was the first elected (1309). The reign of his descendant Sigismund (138-143\%) is interesting from the invasion by the Turks (I391) and the war with the Hussites. From their first appearance the Turks constantly disturbed the tranquillity of Hungary, which served as a bulwark to the rest of Europe. The death of Ladislaus I.. in the unfortunate battle of Tarna (Ifli) is to be regretted, as the plan of the hero John Huniades, for driving the Turks from Europe, failed through the coldness of the Christian courts and the intrigues of his enemies.

Matthias Corvinus ($145 \mathrm{~S}-90$), son of Huniades, held the reins of govermment with a firm hand, and gained the love and confidence of the nation, notwithstanding the scvere measures which he was often compelled to adopt.

During the reigus of Ladislaus II. ($490-$ I516) and Louis II. ($1516-26$) the ambition and rapacity of the optimates, headed by Stephen Zapolya, and afterward by his son John, cxcited domestic troubles and caused an insurrection of the peasants, whicli was only suppressed by the severest measures (1514), while they destroyed the foreign influence of the kingdoni. The battle of Molaács (1526), in whiclı L.ouis II. lost his life, and which for 160 years made a great part of Hungary a Turkish province, was the natural consequence of this state of things. The rest of the country was in dispute between the rivals Ferdinand of Austria and Jolnı Za- Jya. The contest was decided by the Protestants, who, fearing tile persecution of Zapolya, declared for Ferdinand. Their adherence gave him the superiority, and Zapolya was compelled to rest satisfied with the possession of Transylvania and some counties of Upper Hungary ; but this division of the kingdom caused continual disputes with the descendants of Zapolya, instigated by the Turks and the Frencl, gave rise to civil commotions, which were quieted by the treaties

HUNGARY

ot Sienna with Stephen Botskay (I6o6), of Nikelsburg with Gabriel Bethlen (1022), and of Lintz with George Rakoczy (1645). These circumstances delayed the expulsion of the Turks, in which Leopold I. finally succeeded so far that he took Buda (IG86), and by the Peace of Carlowitz (1699) recovered the rest of Hungary (except the Banat) and Transylvania. The Congress of Passarowitz (1718) restored the Banat to Hungary, and the Peace of Belgrade (1739) terminated hostilities with the Porte for a long time. Charles VI. (I7II-40) by the pragmatic sanction secured the inheritance of the Hungarian crown to the female descendants of the house of Hapsburg, and improved the adminisuration of the kingdom by giving the royal chancery and the vice-regal office an organization better suited to the age. He also formed a standing army for Hungary, and established the military contribution for its support. Joseph II. ($1 ; 80-90$), one of the greatest sovereigns of his age, was influenced by the best intentions in the changes which he undertook in the Hungarian constitution; but his zeal made him forget the necessity of proceeding gradually in such reforms, and the nation, far from entering into his views, opposed them.

The subsequent history of Hungary - the adoption of the Magyar language in its diet ; the resistance against the encroachments of Austria : the heroic struggles for independence, and the noble work of Batthyani. Deak, Kossuth, and Klauzal, along these lines; the disastrous war of 1848 and the reduction of Hungary to the position of an Austrian crown-land; its rehabilitation to independence in 1867 and the constitution of the dual Austro-Hungarian Empire, are described under Austria. See paragraphs Austria under the House of HopsburgLorraine, and Recent Politics.

Hungarion Languoge.- The language of the Magyars. as spoken and written at present in Hungary, is a phenomenon in philology, disclosing tich stores for the philosophical historian and philologist. It is classed in the Ugric branch of the northern division of the Turanian famity of languages, and as such is most closely allied to the Ostiak. Vogulic, and Mordvinic, though it is also nearly akin to the Finnish and the Turkish. Differing from all the cultivated languages of Europe in internal structure and external form, the Hungarian nevertheless was obliged to express with the Roman alphabet. adopted with Christianity, all the Asiatic shades of sounds. The alphabet contains the following 26 simple and 6 compound sounds, pronounced as in Italian, except where otherwise marked:8 vowels: a (like a in what, swallow), $\varepsilon(=\dot{e}$ French), i and y.o,u, $\ddot{\text { (}}$ (French cu or German $\ddot{0}$), ii (French w) ; is consonants: b, d, f, g. hard h (German), j (German), k, l, m, n, p, r, s (English sh). t. z (also zi°), $\underset{z}{ }$ (Frcuch), sz (English s), zs (or śs. French j) ; \ddagger compounds with y: gy' (pronounced dy. gyar, factory, pronounced dyar, in one syllable), ly (French liquid sound as in fille), ny' (French and Italian gn), ty: and two compound sibilants: ϵ (written also $c h$ and $t s=$ Englisls $t c h$), and $c z$ (English ts). If we add the long vowels, marked
 (long ii), we have 38 sounds in all, hesides x, which is used in forcign names. The Hungarian has adopted a good many Slavic, Latin, German,

Greck, and other forcign words; but it still retains the essential characteristics of its grammar and phonology: As in the other I uranian languages the root is never obscured in words, whatever changes they undergo. Determining or modifying syllables are placed at the end, and have a doulle form, always taking a different vowel when attached to a sharp-wowel root from what they have when attached to a flat-vowel root. This is a general characteristic of the Turanian languages. Theic suffixes represent the casc-endings of nouns and the conjugations of verbs in other languages, and are very namerous. Hungarian is destitute of diphthongs. At the Leginning of a syllable the Hungarian never allows more than one consonant; in ioreign words which begin with two consonants, the consonants are made to go with different syllables by putting a vowel heiore them (for example, of schola they make istola), or a vowel is put between (as from král they make kiraly). In common with the other languages allied to it, it has no distinction of sex whatever. Family names are considered as adjectives, from which they mostly originated. and hence are put before the baptismal name: for instance, Bátori Gábor (Gabriel Batori), as if it were the Batorish Gabor, the Gabor of the Batori family. The beautiful proportion between vowels and consomants, the accurate shadowing and full articulation which every syllable requires (the Hungarian suffers no mute yowels), and the fixed succession of vowels. give to the Hungarian language a character of masculine harmony; in which it will bear a comparison with any other. The richness and expressiveness of its various forms give it great energy; the regularity of its inflections and compositions. in which it is to be compared with the Sanskrit, makes it clear and distinct, and its infinite power of composition gives it the means of increasing its stores beyond almost any western language.

Hungarian Literature.- The preference given to Latin over the national language, nut only in the church, but in judicial proceedings, legal documents, and forms prevailed until past the middle of the 10th century. The use of a dead language in common life as well as on all scientific subjects, conld neither be adrantageous to the language itself, to the general improvement of the people, nor to the national literature. Despite these disadvantages, some buds of literature from time to time unfolded themselves, and native genins, notwithstanding its chains. would sometimes attain iistinction. Though with the introduction of Christianity into Hungary the Latin language acquired the ascendency in the church, in schools, and public affairs; yet Hungarian was used in commerce, in the camp. and even the resolutions of the diet were first drawn up in Iltungarian. When the missionaries addressed the people in 1atin an interpreter was nisually present: and there are several relics of poetry: sacred eloquence, and state papers extant in Hungarian. A rew impulse was given to this language on the accession of the house of Anjou to the throne of Hungary. The Latin was indeed still the language of church and state: but the Hungarian became the language of the court. Documents were drawn up in Hungarian, and the Hungarian oath, in the Corpus Juris Jungarice, dates from this time. The IIoly Scriptures were translated into Hungarian; in the imperial

library. Vienna. there is a mannscript trarslation of 1832 : and several other translations were published. In ז 45 J Janus Pannonius wre:e a Hungarian grammar, which is lost. The 16 th century was iavorable to Hungarian literature, through the religious disputes in the country, the sacred, martial, and popular songs. as well as by the histories written and published ior the people. and the multiplied translations of the Bible. It then reached a degree of perfection which it retained until the latter pant of the 18:h century. Ameng writers oi ballads or metrical tale | belonging to the 16 th century may |
| :--- | be mentioned Tiródi. Kákonyi. Tsanádi. Valkà., Tserényi. Szegedi. Iliesialvi. Fazékas. Bzlassa, etc. At higher aim was maniiested by the epic poems of Count Niklas Z-inyi (I6́s?), Ladistaus Lissthi (I653). Christcpher Paskó í663), Count Stepten fohary (rög), and in particular the numerous and excellent productions of Stephen ron Gyongyosi ($1664-1 / 3+$, as well as the lyric poems of Rumai, Balasiza. Benitziny, etc. In 1633 an encyclopædia of a!! the sciences. and in 1056 a work on logic, were drawn up in the Hungarian language by Iohn Tiere (Apatzai), A large number of grammars and dictionaries were printed from the 1oth century to the 18th. But the hopes of the further development of $\mathrm{Hun-}$ garian literature were not realized: a Latin period again succeeded, from troo to r-io. during which time numerous and finished works were composed in Latin by Hungarian writers. In if2I a Latin newspaper was established, and the state calendar, which commenced in 1;26, was reguiatly published in Latin. In $1=8 \mathrm{I}$ the nist Hungarian newspaper was printed in Presburg.

After Joseph II. died (1,90) many violent yet bloodless changes were made in the Hungarian constitution, and several laws were passed in favor of the Hungarian language. It was required to be used in all public proceedings. Courses of lectures were delivered in Hungarian in some of the schools, and it was taught in all of them. Several periodicals were established, Hungaraan theaties erected in Buda and Pesth. many works were wittein both in poetry and prose. The modern period of Hungarian literature may be said to date from the time of Ioseph II. The epic peem oi .drpad was written by Andrew Horvath. and published at Pesth in 1830 . The brothers Alexander and Charles Kistaludy acquired a great and deserved reputation as poets and dramatists, and did much toward developing the national lansuage and literature. The latter (who died in 1830) may be looked upon as the founder of the modern drama in Hungary. The mot celebrated works of the former are his lyrical masterpiece. 'Himiy Szerelmei' (Himit's Love, 18071, his 'Regek a Magyar eloidoböl' (Tales ni the Eafly. H:ngarian Times), and his hist nt ical tragedies. which were party in deled ort th se oi Schiller. The development of the Hungarian literat:se owes much to the influence of the peridical press, which spread abroad a taste in literature at the eame time as it intensified the sentiment of nationality among the peofle. In this department the name of Kossuth deserves honnrable mention. Previous to the tr- ubles of ISt\&-0. which checked for a time the satural growth of the literature, almost every
species of composition was successinilly practised. Works on politics and narratives of travel were written by Eotwōs. Szechéryi, Szalay, Szemere, etc.: on history by Stephen and Michael Horváth. Szalay and J̃aszay : on philology by Fogatassy and Bloch: works on the exact sciences. however, were contined to translations irom the German. French, and English. Novels and romances were written by Baron Josika, Eōtrō̄. Kemény, Kuthy, Nagy, Pál氏y, ecc. which, though of no great originality, showed considerable artistic shill. and helped to diffuse a more correct style. The dramatic pieces of Eotrös, Obernyik, Vobosmarty, and the prolitic Ezigligeti - who for a long time had almost the exclusive possession of the national stage have greater value and originality. It is in poetry. strictly so called, however, inat modern Hungarian literature shines. Many of the poems (songs, ballads. etc.) oi Czuczor, Vōrōsmaryy, Baiza. Garay, Bachot. Szász. Erdélyi, Kereny, and others, are among the finest things that modern literature has produced. In this field the palm must be awarded to flexander Petci. who completely ireed Hungarian poetry from its dependence on ioreign models and sub. fects, and inspised it with a life drawn iresh irom nature and national ieeling: and who, in artistic skill and masterly handling of his mother tongue. ranks as a model. Tompa. Hiador, Lisznyai, and otbers, have copied him with more or less success. The collection of ancieni Hungarian national poetry, compiled and edited by John Erdelyi. at the instance of the Kisiaiudy Society (three vols... Pesth. I845-T), contributed greatly toward bringing back the modern. poetry to pature and originality, and to impress upon it the stamp of natuonality. The ill success of the revolutionary struggle seemed for a time to have dealt a heary blow to the progress of Hungarian literature, the most gitted writers having either fallen in battle (as Petéfi), or been iraprisoned or banished. Time however, opened the prisons and brought back the exiles; to the writers alseady mentioned others were added. and an active literary life again began. The greatest recent Hungarian poet is John Arany, who surpasses even Petōi in artistic ieeling, and whose national epic. 'Toldi,' is looked upon as a masterpiece. Baron Jósika holds the first place among the novelists: Jokai, Kuths, Berczy, Palfy, Miksrath, and Dobzsa, are also favorite fiction writers. Narratives oi travel have been written by Count Andrassy, Ladislaus Magyar, Vámbéry, etc: on politics by Eengery. Szalay, Párh, and Eotrös. National histery has attracted much attention; and besides the works of Szalay and Horvath, we should mentic, Teleki's 'Age of Humyad') Jászay's 'Hungary after the Battle of Mohacs,' Salomon's 'The Rule of the Turks in Hungary,' etc. Many excellent translations of modern ioreign works have been made, some of which, such as Esengery's iranslation of Macaulay's (History of Enzland.) and Somssich's trantation of Guizot's 'Histoire de la Revolution d'Angleterre.' rival the originals in style. The beat works on Hungarian literature are those of Toldy, some of which have been translated into German.

Hunger. See Appetite; Digestion; FastING; Food.

Abstract

Hungerford, hing'ger-fōrd, Margaret Hamilton Wolfe Argles ("TuF Duciress") Irish novelist: b. Ross, Iteland: d. Bandon, County Cork, 24 Jan. 1897. She was the clatghter of a vicar choral of Cork Cathedral and the death of her first husland. Edward Argles, left leer with a young family to support, whereupon she took to writing novels, using the psendonym "Tire Duchess." Later she was married to T. H. Hungerford. Her more than 30 novels were widely popular both in Anerica and England and withont possessing a large amount of literary value are cleverly written, entertaining fictions. Among them may be cited: 'Plyyllis' (1877): 'Molly Bawn' (18-8) ; 'Airy Fairy Lillian' (I870): 'Beauty's Daughters' (1880) ; 'Mrs. Geoffrey' (1881) : 'Portia'

 (1882); 'O Tender Dolores' (I 885): 'Green Pastures and Gray Grief" (1886): ‘A Modern Circe" (1887): 'The Duchess' (1887); 'Undercurrents' (IS88) : 'Hon. Mrs. Vereker' (I888).Hunk'ers (supposably from Dutcls honk, "post" or "station :" "stick-in-the-muds"), in American politics, at present a contemptuous nickname, like "moss-backs," for the unprogressive elements of a party, which detest change. Originally, a name given about $18+4$ to the section of the New York State Democrats which opposed new issues: the points for which it then stood, however, had become party tenets from about 1835. Thence till 1840 the Hunker faction was in opposition to the Locofoco wing (q.v.) which opposed bank charters: but was obliged to yied in 1838. From 1840 to 1846 they oposed the Radicals, whon wished a revised State constitution, elective judges, and cessation of State canal building. Thence till I 852 they opposed the Barnhurners (q.v.), who, at first separately and then in alliance with the FreeSoil Party (q.v.), fought the national Democratic Party for recognition of its State power. After the election of Pierce in 1852, it divided into "hards" and "softs"; the first under Daniel S. Dickinson opposed the administration, the second under William L. Marcy supported it. The former made up the bulk of the "War Democrats" after 186I. Besides those named, Horatio Seymour is the best remembered Ilunker leader; while the opposition has the familiar names of Martin Van Buren, Silas Wright, and John A. Dix, besides others remembered ly the older generation.

Hunneus, unn-nātis, George, Chilean statesman: b. Santiago, Chile, 1831 . He was graduated at the university of his native town in 1857 , and became professor of political economy and jurisprudence at the same institution the following year. Montt, president of Clile, drove him out of the country on account of his liberal opinions, which he found carried into actuality in the government of the United States, where he spent lis time of banishment. He was recalled to his native land in 1861 , was clected to the House of Representatires and became its speaker. He was also appoisted secretary of public instruction and is now rector of Santiago University, while holding from time to time high positions in the Chilcan administration.

Hun'neweII, James Frothingham, American bibliograpleer, and historical writer: 1). Charlestown, Mass., 3 July 1832 . Ile has written: 'Historical Monuments of France' (1884) ;
'The Imperial Island: England's Chronicle in Stone" (r880): 'A Century of Town Life’ (1886) : 'The Lande wi Scutt' (187 - 1).

Huns, a people who make their appearance in authentic history alout 37.5 A. D). Ethnologists identify them with a Nongolian people of Northcrn Asia, who invaded the Chinese Empire abont 200 B.C., and after varions migrations entered Europe. They appear afterward to have sided with the Goths of Mresia against the Romans, and sometimes in alliance wit? the emperors, who purchased thesir services, and sometimes in hostility with them. they continued to extend their dominion along the Danube until the lime of Attila (434), their greatest leader, whose reign constitutes the best-known period of their history. See Artila.

Hunt, Helen. See Jackson. Hflen Fishe Hunt.

Hunt, Henry Jackson, American soldier: b. Detroit. Nich., It Sept. 1819; d. Washington, D. C., Il Feb. ISg9. He was graduated from West Point in 1839 . receiving a commission in the artillery. He saw service in the Canadian rebellion $5837-8$; afterwards in the Mexican War. In General Scolt's atlvance on the city of Mexico he distinguished himself as officer of the artillery at Contreras (i8 Aug. I8 87) and Churubusco (20 Aug. 1847) aucl subsequently received the brevet rank of major for his gallantry. In 1856 he was placed on the board engaged in revising the system of light aatillery tactics. At the outbreak of the Civil War he was stationed at Fort Pickens, Fla.. 1861, and the same year commanded the artillery at the battle of Bull Run, and in the defense of Washington. He subsequently organized and commanded the reserve artillery of the Army of the Potomac. As commander of artillery he was present at the battle of Malverin Hill (i Jtily 1862) and he also took part in the lyattle of South Mountain. He was brevetted brigadiergeneral of volunteers in 1802 . and was presert at the battles of Antictam, Fredericksburg, Chancellorsville, Gettysburg, served in the Wihderness campaign and at the end of the war retired froms his position with the rank of hrigadier-general in the United States army. In fisco he received the commission of colonel in the reorganized army. and in 1883 becante governor of the National Soldiers Home at Washington. Among lis writings are: 'Instruction for Ficld Artillery' (1860): "Batties and Leaders of the Civil WVar": "The Battle of (icttysburg.'

Hunt, James Henry Leigh, English iournalist, essayist, and critic: 1, Soutligate, Middlesex, England 10 ()ct. 1784; cl. Putney, near London, 28 . lug. 1850 . He was the youngest of a large family of chiddren, and was descended on the one side from Tory cavaliers of Wrest Indian adoption. and on the other from Americans @nakers of lriwh extraction. From luis father, an improvident and engaging clergyuan of convivial habits and of lax doctribes. Tlunt seems to lave inherited his optimism of temperament, his liberal views, and his courage of conviction; from his mother, a passionate love of mature and of books. From birth a delicatc clild, he early developed hypochomiriacal tembencies that never left him. Tlie years from 1791 to 1799 were spent
ar Christ's Hospital. and were his only formal preparation ior a literary liie. In INor his iather published 'Juvenilia.' a collection of Hunt's poems writen irom the age of iz 10 1-. They show wide reading and some fluency in versification. but are mostly poor imitations Frem 1803 to 1805 he worked in his brother Stephen's law office and. at the same time. began his long career as a journalist with coniributions to The Trasedler. The lizus, and other papers. His thearrical criticisms were reprinted separately in 180

His next position was in the office of the Secretary ei War, resigned in IBOS in order to start his political journal. The Eraminer, in its ier-reaching effects the most significant step oi his carees. With his brother John as publisher, he continued editor unt:1 1821. The Examiner was a departure from the standards oi contemporary journalism in its combination of the news-giving quality of the daily sheets with the essay style of the weeklies (FoxBourne. 'English Newspapers'). Discussion of politics was its chief object. The liberal policy and boldness of attack oi the editor caused one charge of libel by the Tory government to follow closely upon the heels oi another. The third resulted in prosecution and conviction ior applying to the Prince Regent. aiterwards George 11... the phrase. "a fat Adonis oi fifty." The two brothers were sentenced to imprisonment of two years, dating from 15 Feb . 181_{13}. in separate prisons. and a fine of $£ 1.000$ to be divided between them. They rejected offers irom the government to remit the punishment on condition that The Examinar should change its attitude, and served ihe iull sentence. Hunt s finances. which up to this tume had been good. became grearly. involved during his incarceration. Not until 184 was he iree from want. His health suiiered greatly irom the long confinement. Thic Retcictor (1810-12) had much the same political and literary character as The Examiner. The chiei measures for which Hunt labored through these journals were Catholic Emancipation. reform of Parliamentary representation. liberty oi the Press. reduction and equalization of taxes. greater discretion in increasing the public debt. education of the poor and amelioration of their sufferings. cessation oi child labor. abolition of the slave trade. reiorm of military discopline. and oi prison conditions, and oi criminal and civil laws. Aiter Hunts releave from prion. he was never again so active in poltical matters.

In 1809 Hunt married Mariamne Kent. She was an imvald the ereater part of her flie: censequen:ly, the 'hugger-mugger' condition oi domestic affairs which so greatly distressed the Carlyles. Curiou-ly enough. Hunt was allowed is continue The Examincr while in driocn. During that time, he republished from Thi Retiait r has 'Fea-s if the Poct. a whele--ale satire on comemporary poets in the manner "i Suckling's 'Scessicn of the Pocts.' It antagonized the literary world. as The Examincr hat done the politucal. and played a large part in creating the antaginnm oi Blackioud's and the Quarterly towards 11 unt, which resulted in the creati n and the long and bitter persecution of the so-called Cockney School. The 'Descent of Liberty' appeared in 1815. The
'Siory of Rimini' (18 i6), also wrinten in prison. was the most important oi Hunt's poems up to that time. and brought him into immediate notoriety. For is influence on his contemporaries, particularly Keats, in the use of idiomatic language and in the reviral of the iree. heroic couplet. it is the most imp irtant of Hunt's poems. It was at once denounced as most pernicious and immoral by the Quarterly and Blackwood's. 'Foliage (IEIS) contains some of Hunt's best epistles and somnets. 'Hero and Leander.' and 'Bacchus and Ariadne' appeared joinily in 1819. and a translation of Tasso: Amyntas in 18=0. His prose style of this period reached its best expression in The Indicator. in essays oi the occasional and personal type. They are distinguished by a unique charm and ienderness. byy delicate humor and keen observation.

During Hunt's imprisonment he had made the acquaintance of Byron. Shelley, Moore. and Lamb. The friendship with Keats probably did not begin until the winer of isto. In the case of Shelley, it was the beginning oi a wonderful iriendship that involved personal sympathy and public deience with his pen on the part of Hunt. and much financial aid on the part of Shelley. It was through the latter that Byron. in f821. invited Hunt to Italy to midertake the managenment oi The Libcral. an ultra-political-literary journal, suddenly abandoned aiter a iew mon:hs of unsuccessful runring. The failure of the project led to Byron's desertion of Hunt and his family in a oreign land. and Hunt's revenge in 1828 in the shape oi 'Lord Byron and Some oi his Contemporaries.' an error which Hunt later greatly deplored. During the stay in Italy. he edited the Literary Examiner. wrote 'Ulira Crepidarius.' a satire on William Giiford, translated the 'Bacchus in Tuscany' oi Redi. and contributed the 'Wishing-Papers' to The Examiner. He returned to England in 1825 in great poverty: From this time on his work consised of editing numerous magazines: The Companion (1828). Chat of the If eck (1830). The Tatler (1830-1832). Leigh Hunt's London Magazina (1834-1835): Monthly Repositery ($1837-1838$). Leigh Hunt's Journal (I850-1851). unsuccessful because oi the great impracticability of the schemes and the monotony of one chief contributor: of contributing to an incredible number of other magazines of publishing reprims irom previously edited journals and collected editions of his 'poetical works': oi selection: irom other writers made with running comnent or introductory essays. as 'Imagination and Fancy' (1844), 'Wit and Humor (1846). 'Stories ircm the Italian Poets' (18\&n) of guide books. as 'The Town' (1848), and 'The Old Court Suburb' (1855). ifis only novel. 'Sir Ralph Esher.' appeared in 18,32. 'TThe Legend ci Florence' was produced at Covent Garden in 1840. Ilis 'Autobiography' was published in 1850. and in a revised form in 1859; the 'Correspondence posthumonsly in 1862 .

Hunt's best prose wark is to be found in his 'Autohiography' and in his essays of the kind already mentioned as having appeared first in The Indicator. Carlyle said of the former. "except it be Boswell's of Johnson. I do not know where we have such a picture drawn of a human life as in thesc volumes." Though less of

HUNT

a poet than an essavist, some of his short poems are exquisite, nutably the famous 'Abou Ben Adhem.' 'Mohammed,.' 'Jaffar. 'The Nile,' 'On a Lock of Mikon's 1lair! 'Paganini,' and others. Is a translator, some of his work is admirable. Hunt's powers of eriticism and of selection will not be fully recognized until scattered notes and buried prefaces are collected. He had an imborn love of poctry and all beautiful things. 1lis insight was most remarkable of all in the appreciation of his contemporaries. His personal quality was as rare as his opportumty. He had a personal ascendency; a strange fascmation lorn of the sympathy and chivalry, the sweetness and joyousness of his nature. Barry Cornwall said that he was "compact of all the spicy winds that blow."

Bibliography:-Hunt's works have never been collected and as a whole are difficult of access. His poems and essays, except in small selections and cheap editions, are out of print. The best edition of the former is that edited by S. Adams Lee (Boston 1857) ; of the latter The Indicator and Companion (2 vols., London 1834). Scribner publishes in a uniform edition some of the most popular of his works. Consult also: R. P. Johnson, 'Teigh Hunt' (1896); Cosmo Ilonkhouse, 'Life of Leigh Hunt' (1893) ; Clarke, 'Recollections of Writers' (1878): Trelawney, 'Recollections of the Last Days of Shelley and Byron' (1858). Frequent references to Hunt are to be found in the writings of Byron. Shelley: Keats, Carlyle, Dickens. Lamb. Willian Hazlitt and Alexander Ireland. Excellent bibliographies of Hunt's works are to be found in Ireland's 'Lists of the Writings of IIBliam Hazlitt and Leish Hunt' (IS68): Nonkhouse's 'Life of Leigh Hunt' mentioned above, and in R. B. Johnson's 'Essays and Foems of Leigh Hunt' (Temple Library: 1891).
B.trnette Jiller.

Instructor in English in T'assar College.

Hunt, Richard Morris, American architect: b. Brattleboro. Vi., 31 Oct. 1828: d. Newport. R. I., 31 July IS95. He began the study of architecture in Europe at an early age, attended the Ecole des Beaux-Arts in Paris, traveled in Germany, ltaly. Asia, and Egypt, and under his former teacher. Lefuel. was clerk of the works on the buildings that were erected to connect the Tuileries with the Lnuvre. In 1855 he returned to the United States and procceded to signalize himself by a remarkable series of noble architectural creations, such as the Capitol extension at llashington. the Lenox Library, New Fork. the Yorktown Monument. Va.. etc. He also designed the pedestal for Bartholdi's colossal statue of 'ILiberty Enlightening the World' on Bedloe's I sland, New 'ork harbor. Some of the finest private houses in the country were buit by him on a truly palatial scale of magnificence, such as that of 11 . K . Vanderbilt in New York; the country bouse of George Vanderbilt at Biltmore N. C.: the so-called 'Varble Housc' and the 'Breakers' at Newport. He was one of the founders and president of the Institute of Architects. Through his artistic and structural faculty he exercised a profound influence over American architecture.

Hunt, Theodore Whitefield, American Presbyterian clergyman and educator: 1). Netuchen, N. J., 19 Feb. 184. He was graduated
from Princeton offis amd trom Princenton TheoIogical Scminary is b. wa maiructur m English at l'rineeton sús 刀f an l has been profecioor of English there mom tion. He his publrshed

 'Studies in Literature and Styk (rego): 'Ethical Teachings in Ohe Engholh Authors' (1892): ctc.

Hunt, Thomas Sterry, American chemiot and geologist: b. Norwich, Comn.. 5 Scpt. 1820: d. New Vork 12 Feb. INo 10 , 845 he became an as-istant to the cher Silliman at Vale College; was chemist and mmeralog'st to the Canadam Geological Sursey $184-52$ profesior wif chemistry at Laval Linseraty 1 棌 $5(6)(62$, and at NeGill University $18(0)$ cs, ams professor of geology in the Nasmachusetts In-titute of Technology 1872-8. In 1850 he invented the green ink with which greenbacks (q.v.) are printed. He was made an officer of the legion of llonor in 186%. Fellow of the Royal Socrety in 1850 and was president of the Royal Society of Canada in 1884 . Among his published books are 'Chemical and (icolugical Esiays'; 'Xew Basis for Chemistry" : ctc.

Hunt, William Henry, American lawyer: b. New Orleans, Lal. 5 Niv, 1857. JTe was educated at lale became attorney-general of Nontana in I884: and held varions public offices there aiter 110 ontana became a State. He was for a time United States agent before the Chilcan Claims Commission, lat resigned that post in 1900 to become secretary of Porto Rico, and in July Igor succeeded Charles H. Allen as governor of that island. On 1 July 1004 he was succeeded by Gov. Winthrop) and since then has been United States district judge for Nontana.

Hunt, William Holman, English PreRaphaclite painter: 1). Londs:n 2 April 1827. He entered the schools of the koyal Academy in 1845. and next year exhibited his first picture. 'Hark!' representing it child. holding a watch to her ear. About isti Hunt. D. G. Rossetti. and J. E. Jillais formed the Pre-Raphaeltte Brotherhood, afterward coularged by the adnnission of other painters and writers, and which attained a position of great influence through the eloquent support of Ruskin. Each of the three founders exhrbited m1849 a picture painted in strict accordance with the principles of the Brotherhood. Hunt's picture represented 'Rienzi Fowing to Obtain Justice for the Death of his Vounger Brother Slain in a Skirmish between the Colonna and Orsini Factions:, and was exhibited at the Royal Acadomy. The exhibition of 1854 included thon of his greatent pietures one of them the well-known 'hight of the Il orlal.' Both it and 'The Awakening Conscience' are characterized by the careinl drauglatimanship and attention io detai! which form notahle features of the lees Pre-Raphaclite work. but their full meaning is far from clear to the average spectator. In 1854.31 r . Ifunt went to Palestine in order to olitain a lising acquaintance with the scenes wi the Bihlical storics. and the first frusts of his study of Fasturn life was "The Scapegoat (1856), one of his most original and most poetical works: but much finer is lins 'Finding of the Saviour in the 'Temple,' exlib)ited in 1860 . Among subsequent works of Hunt's are: 'A Street Seene in Cairo-the

Lantern-Maker's Courtship' of D. G Rossetti) (IS50) (185s): (The Aiter-Glow' in Egypt) (I865). 'that modern masterpiece of technical art": 'Isabella, or the Pot of Basi]' (I868), based on the well-known story irom Boccaccio utilized by Keats, and in respect of coloring, the finest of the artist's works; 'The Shadow of Death' (18,3). showing a prevision oi the Crucinion in the carpenter shop where Jesus is working beside his mother; 'The Triumph of the Innocents' (I885), cae of his masterpieces: 'Christ among the Doctors' (is60). See biography by Farrar and Nleynell (IS93): VVilliamson, iLive of Holman Hunt.'

Hunt'er, David, American soldier: b. Washington, D. C., 21 July I\&oz; d. there 2 Feb. 1886. He was graduated at 11 est Point in I82?. became captain in 1833, and resigning from the arny in 1836 settled in Chicago. He, however. re-entered the ammy in IS H_{2} as parmaster with the rank of major, and in May i8ói was appointed brigadier-general of volunteers, and a few months later major-general. He recruited and organized in South Carolina the first negro resiment in the Union army. He defeated the Contederaies at Piedmont. 5 June IS64 and was chairman of the military commission which tried the conspirators engaged in the assassination of President Lincoln. He was brevetted major-general United States army, 13 March IS65, and retired on account of age in I 885.

Hunter, John, British surgeon and physiologist: b. Long Calderwood, Lanarkshire, 13 Feb. $1 ; 2$ S; d. London 16 Oct, 1/93. He was a younger brother of William Hunter (q.r.) In 1-79 and $1 \% 50$ he studied surgical pathology at Chelsea Hospital. London, and already began to make original observations. which his subsequent experience confirmed. In $1 ; 51$ he attended St. Bartholornew's Hospital and in $1\lceil 54$ entered as a surgeon pupil at St_{t}. George's Hospital. In 1754 or 1755 he was admitted to a partnership in his brother's school of anatomy, and continued to lecture there till tra. He served as staff-surgeon in France and Portugal 1-60-3. and then returned to London and commenced practice as a surgeen. In 1767 he received an unexpected proof oi the high estimation in which he was held by men of science in being clected a member of the Royal Society, and in 1,68 he was appointed surgeon to St. Grorge's Hospital. His investigations at this time extended over every branch oi natural history, particularly pathology. comparative anatomy, and physiolegy, to which he devoted his entire leisure time. In 1,00 he was appninted inspector-general oi huspitals and surgeen-general t the army: Hunter left at his death a muscum which he had built for himseli, and filled with upward $n i 10.000$ preparations illustrative of the departments of science to which lis attention had been dev ted. It was afterward purchased by government, and presemed to the Ruyal College of Surgenns. In additions to papers contributed to the 'Transactions' of learned scieties, his leading works are the 'Satural Histury of the Iluman Teeth) (1-, $)$; 'Treatise on the Vencreal Disease) ($1-\times 6$): - Diservations an Certain Parts of the Animal Ennomy' (1,-86): 'Treatice on the Blood. Inflamation, and Gun-shot Wounds' (1;94).

Hunter, Robert Mercer Taliaferro, American statesman: b. Essex County, Va.. 21 April I 809 : d. I8 Iuly 188_{7}. He was graduated at the Iniversity of Virginia, and, choosing the law for his profession, commenced practice in 1830 . He soon began to take an active part in politics and at 24 was elected to the house of delegates, where he remained until 183%, when he was elected to Congress. In the discussions growing out of the commercial convulsion of that year. he at once took his stand on the side of the administration in faror of the independent treasury bill, and in his first speech developed those principles of free trade to which he consistently adhered throughout his public career. In the succeeding Congress be was elected to the speakership; and at the close of his term of serrice, the usual vote of thanks was passed without a dissenting voice in a House of Representatives strongly marked by partisan bitterness. At the election in the spring of 1843 for members of the 28 th Congress, Hunter was deieated br a small majority: mainly on account of his adherence to that clause of the independent treasury scheme requiring all dues to the government to be paid in specie. At the next congressional election in 1845 , he was successful. In I $\& 46$ Hunter, in common with other southern representatives, resisted the application of the Wilmot Proviso. He voted for all the measures necessary to prosecute the war to a just and honorabje conclusion, but altogether opposed the proiect, fayored by some, of incorporating the whole of the Mexican states into our political srstem. During the winter of I $846-7$ he was chosen br the Iegislature of Virginia to the United States Senate, and took his seat in December IS $4 \overline{\%}$. remaining there until 1861. He was active in iraming the tarifif act of 185% and after leaving the Senate became the Confederate secretary of state. At a later period he was a Coniederate senator and in 1865 commissioner of peace. He became treasurer of Tirginia in $18 / 7$ and retired from public life in ISSO.

Hunter, William, British anatomist: b. Long Calderwood 23 May 1718; d. London 30 March 1;83. Aiter studying at Glasgow Liniversity 1/32-\% and subsequently medicine at Edinburgh. he went to London in $15+1$, and in 1746 received the appointment of lecturer on anatomy to a society of naval surgeons. In 1747 he became a member of the College of Surgeons, and practised surgery and midwifers, but at length confined himself entirely to that branch. and was appointed accoucheur to the British Lying-in Hospital. In the first volume of 'Observations and Inquiries.' published by the Mledica! Society in 155\%, appeared Hunter's 'History of an Ancurism of the Aorta.' In 1762 he published (Medical Commentaries.) and in 1;64 was appointed physician-extraordinary to the queen. Hunter was elected a icllow of the Royal Society in 1,67 ; and in 1,68 , on the establishinent of the Royal Academy of Arts. he was appointed professor oi anatony: He was made a foreign associate of the Royal Medical Society at Paris in I-So and of the Roval Academy of Sciences in $1-82$. The most elaborate of his puthlications, the 'Anatomy of the liuman Gravid ('terus.' appeared in 17jt. In 17\%O he purchased and completed a house and theatre, in which he constituted a splendid muscum At
first he only contemplated a collection of preparations in human and comparatue anatumy, but added a collection of shells, corals, and wther objects of natural history. paintings and ancumt coins and medals. He bequeathed the whole of his splendid museum, valued at $E_{150.000 \text {, to the }}$ University of Glasgow, with the sum of 88.000 in cash to be cxpended in an appropriate building for its reception, and a further sum of $£_{500}$ per annum to bear the charges of its preservatıon.

Hunter, Sir William Wilson, English statistician and author: b. Glasgow 15 July is 40 ; d. 1900. He was educated at the Lniversity of Glasgow and foreign universities, and appointed to the Bengal Civil Service in 1862. As directorgeneral of statistics he made a statistical survey of India, the results of which are embodied in the well-known ' 1 mperial Gazetteer of India) (1881 I: $1885-7$). 11e alsn published 'Innals of Rural Mengal' (i868: 5 th ed. 1872), continued in 'Oris:a' (18 -2) : 'The Life of the Narquess of Dallousie" : 'A Dictionary of the Non-Aryan Languages of India and Higls Asia': 'Brief Ilistory of the lndian Peoples,' which has been iranslated into five languages, and was editor of the series of biograplives known as 'The Rulers of India.' He was knighted in 188%.

Hunting, the sport or recreation of pursuing game, is a very anciont amusement. Alexander the Great is said to have paid a large sum oi money for a treatise on hunting by Aristotle. The true sportsman rarely kills game for any other purpose than eating. The hunting of large game, as bear, deer, tigers, lions, leopards, etc., will be found treated under the titles by which they are described. In Europe the various methods of shooting game are known as open shooting, covert shooting, river and pond shooting, and salt-water wild iowl shooting. Deer-stalking (q.w.) and wild-boar hunting are favorite amusements of royalty in Europe: in India boar-hunting is commonly known as "pigsticking." See Fox Hexting; Game Laws; Game Preseries, etc. Consult' Dodge, 'Hunting Grounds of the Great West') (1875) ; Gasper. "The Complete Sportsman' (1893) ; Mills. 'The Sportsman's Library': Long. 'American Wild-Fowl Shooting' (I\& 74) ; 11 urply, 'American Game Bird Shooting'. (1892) ; Pringle, 'Twenty Years' Snipe Shoot:ng' (I8g9): Ramsford. 'Hunting' (1896) ; Roosevelt, 'Big Game Hunting) (I899) ; Ward, (Records of Big Game' (I896).

Hunting-dog. See Hyena-dog.
Hunting Leopard. See Cheet. 1.
Hun'tingdon, Selina Shirley, Couviess of, English religious leader: b 24 Aug. 1\%07; d. 17 June 1791. She was married in 1,28 , to the Earl of Huntingdon and on his death in 15,46 became very devout, appointing the famous George Whitefield (q.v.) her private chaplain. Adopting the principles of the Methodists, she was long consideret, owing to her rank and fortune, as the head of the Calvinistic Nethodists. lier followers being known as the "Countess of Huntingdon's Connection." She founded a College at Trevecca in Wales, for the cducation of ministers, built some 64 chapels, and contributed liberally to the support of the clergy:

Huntingdon, Pa., borough, county-seat of Huntingdon County; on the Juniata River, and
on the Pennsylvanis railroad; abont 200 miles west of Philadelphia. Where Huntingdon is located was once a famoun erruncil ground for the Indians of the central part if l'ennsylvama. It was first settled by white people in 17\%0, and was chartered in i,ous. The country around is a icertile agricultural region, with valuable mineral deposits and quite extensive forests. The chici manufacture are beilers, macl.inery, radiators, sewer prpe, flour, furniture, stationery, knit goods, and stoves. The trade is in the manufactures, and grain and fruits. Hunting. don is the stat wi the State Industrial Schooh and of Juniata Ceflege, an institution opened in 1876 under the au-pleces of the (ierman Baptist Brethren. The original charter is still in force and provides for a chici burgess, who holds office three ycars, and a council. Pop. (1900) 6,053.

Huntingdon's Disease, hereditary chorea. Chorea, or St. Vitus' dance, somermes attacks adults, most frequently pregnamt women. In such cases it is hard to distinguish from locomotor ataxia. The offspring of adults thus afiected are likcly to have congenital or hereditary chorea.

Hun'tington, Collis Potter, American capitalist: b. Harwinton, Comn., 22 Oct. 1 Saı ; d. Pine Knot Camp, near Lake Raquette, N. Y., ${ }^{1} 3$ Aug. 1900. He worked on his father's farm, until his Ith year. In his Itth year he procured credit in Xew York for $\$ 3.000$ worth of clocks, and peddled them through the South and 1 Vest . He shipped goods to California in IS\&8; followed them in person in 1849 and began to make his fortune in the hardware business. In 1860 he matured a plan for a transcontinental railroad in conjunction with Leland Stanford. Chafles Crocker, and Mark Hopkins. The Central Pacific was finished in 1869. This was the crowning achievement of his life, and at his death the railroad system known as the Southern Pacific, of whose managing board he was president, comprised 26 corporations, with more than 9,000 miles of tracks and 5.000 miles of steamship line. He was one of the largest landholders in the country and his fortune was estinuated at $\$ 35.000,000$. He built a granite church, to the memory of his mother. in his native town gave C. II: Peale's portrait of Washington to the New Jork Metropolitan Museum: a library and reading-room to Westchester. \mathcal{N}. Y.. materially aided in building and equipping Hampton (Va.) Normal Agricultural Institute: and gave $\$ 50.000$ for the endowment of Tuskegec (Ala.) Normal and ludustrial 1nstitute.

Huntington, Daniel, American painter: b. New York It Oct. isis6: d. there is April 1006. He was educated at llamilton College. where he made the acquantance of Charles L. Elliott, from whom he received a decided bias for his art. In 1335 he entered the studio of Professor Morse. president of the National Academy of Design, athel soon ather produced the 'Bar-room Politician': (A Toper Asleep.') besides some landscapes and portraits. In I839 he went to Europe and in Florence painted the 'Sibyl') and the (Florentine Girl.' Removing to Rome soon after, he painted the 'Sliepherd Boy of the Campagna.' and 'Early Christian Prisoners,' both of which were
purchased by New York collectors. He became a member of the National Academy in I8 40 and was its president in 1862 and 1869, and continuously irom $18 / 7$ to 1899 . He devoted himself mainly to portraits and among portraits by him of well known people are those of Presidents Lincoln and Van Buren, and of Sir Charles Eastlake. His noted 'Mercy's Dream' is now in the Corcoran Gallery at Washington.

Huntington. Frederic Dan, American Protestant Episcopal bishop: b. Hadley, Mass., 28 May ISI9: d. Hadley. Iass., II Tuly 190+. He was graduated at Amherst in 1839 . and studied three years in the divinity scinol of Cambridge. In I8tz he was ordained pastor of the South Congregational (Unitariani) church in Boston, which he left in 1855 to become Plummer professor of Christian morals at Harvard. In i 860 he resigned and took orders in the Episcopal Church, founding Emmanuel Church, Boston, and serving as its rector 1861-9. In April I869 he was consecrated bishop of Central New York. He has published: 'Sermons for the People' (18;6): 'Christ in the Christian Year): 'Helps to a Holy Lent' (IS;2) : 'The Gospel and the People' ; etc.

Huntington, Jedidiah Vincent, American author, brother of Daniel Huntington (q.v.): b. New York 20 Jan. 1815 ; d. Pau, France, 10 March 1862. He was educated as a physician, but in 1839 entered the Episcopal ministry, officiating for a short time as rector of an Episcopal church in Niddlebury. Vt. In 1849 he became a Roman Catholic. His published works are: 'Poems' (8843); 'Lady Alice, or the New Una,' a novel ($58+9$), which is the most popular of his works: 'Alban' (IS 50) : 'The Forest,' a sequel to 'Alban' (18 §2) : etc.

Huntington, Samuel, American jurist: one of the signers of the Declaration of Independence: b. Windham. Conn., 3 July 1732 ; d. Norwich, Conn.. 5 Jan. 1796. He was educated to the law, and previous to $1 / 5 \mathrm{~s}$ held the offices of king s attomev and associate justice of the superior court of Connecticut. In January ${ }^{1 / 7 / 6}$ he entered the Continental Congress as a delegate irom his native State. Is September $17 / 9$ he succeeded Iohn Jay as president of Congress, and discharged the functions of that office until July i-so, when he resumed his seat on the Connecticut bench. He served again in Congress from Nay to June, $1-8,5$, and in the succeeding year was appointed chici justice of the superior court of Comnecticut. In $1-85$ he was elected lieutenant-governor of Connecticut, and in $1-86$ he succeeded Roger Griswold as governor, to which office he was annually reelected until his death.

Huntington, William Reed, American Episcopal clergyman: b. Lowell, Mass.., 20 Sept. 1838. Aiter graduation from Harvard in 1859 he tork orders in the Episcopal Church, was assistant at Emmanuel Church. Boston, $18{ }^{8} 51-2$, rector of All Saints, Worcester, Mass.., is 2-3, and since 1883 has been rector of Grace Church, New York. He has long been prominent in the councils of the Episcopal Church and is an acknowledged leader of the Low Broad Church school of thought.

Huntington, Ind., city, county-seat of Huntington County: on the Little River, and on the Chicago \& E. and the Wabash R.R.'s; about 20 miles southwest of Fort Wayne and -o miles southeast of South Bend. It was settled in $183+$ incorporated as a town in 1834 . and receired its charter in 1873 . The ciry has excellent water power. Its chief manuiactures arc bicycles, boots and shoes, pianos, plows, barrels. lime. and cement. It bas railroad shops, and wood-working factories. The trade. in addtion to the manufactures. is in coal and lime from the coal fields and lime-kilns nearby, and agricultural products. It is the seat of the Linited Brethren Coilege. The public library has about 12,000 volumes. The city owns and operates the electric-light plant and the waterworks. Pop. (1900) 9.491.

Huntington, $\mathrm{N} .1 .$, town in Suffolk County on Long Island. It is on Long Island Sound and on the Long Island Railroad. Huntington originally included the village of Babylon and other adjoining places. As first laid out, the area was 1 go square miles. The first settlement was made in 1653. and the first deed of land given to actual settlers was made on 2 April 1653, on behali of the Matinecock tribe of Indians, and conveying to the whites six square miles between Cold Spring and Northport. The consideration paid was six coats, six kettles. sis hatchets, six "howes," six shirts, io knives, six fathoms of wampum, 30 "muxes." and 30 needles. Additional lands were purchased in $1656-8$. The early settlers were nearly all Puritans from England. The inhabitants of Huntington were among the first of the colonists to protest against "taxation without representation." From the first agriculture was the chief occupation: but trade with the Trest Indies began at an early date. In $16 \div 5$ Thomas Fleet was listed as owning 40 vessels. Whales were often caught along the south coast. Nathan Hale (q.v.) was captured in Huntington. The place of capture is marked by a boulder, a shaft, and a drinking fountain. The town celebrated its 250th anniversary on 4 July 1903. The chief manufactures are pottery, brick, and dairy products. Large market gardens are in parts of the town. Lut much oi it is a farorite residential suburb of Jew Jork. Pop. (1900) 9.483.

Huntington, W. Va., city, the capital of Cabell County, on the Ohio River, just below the confluence of the Guyandotte River. 18 miles above Ironton, $⿰ 氵 2$ miles west of Charleston and on the Chesapeake \& O., the Guyandotte Valley; and the Ohio River R.R.'s. The city, named aiter the late Collis P. Huntington, was iounded and incorporated in 18-1. It is a:s important commercial and industrial centre, has steamship communication with all the important river ports, and among it industrial establishments are the car manufacturing slops of the Chesapeakic \& Ohio railroad. ioundry and machine shops, lumber and planing :nills, manufactures of woodwork, paints, glase, stoves, bricks. and ice. boteling and meat-packing establishments. etc. The city is regularly laid out, has electric lights and street railways, two national banks. and is noted for its educational establishments which include Marshall College (the State Normal School), the Douglas High Sclool for col-
ored students, and a Carnegie library: The West Virginia Asylum for Incurables is sitwated here. Pop. (1890) 10.108: (1900) 11.923.

Huntsville, Ala., city and county-seat of Madison County, on the Nashville, C. © St. L. and the Southern R.R.'s; 96 miles due north of Birmingham: 97 miles due west oi Chattanooga; 125 miles sonth of Nashyille. and 210 miles east of Memphis. The city is located in the heart of the famous Tennessce Valley, and is surrounded hy a large and fertile agricultural, cotton, fruit, and stock-raising comtry, making it the most important commercial centre of this entire valley tertitory: In manufacturing it is fast reaching a position among the most important in the south. As a cotton manufacturing point it is to-day without a rival in all this section, and in spindles leads the South, and is second only to Lowell. Mass. Its nine cotton mills have 203,000 spindles, with 4.374 looms, the annual product of which amounts to \$4,775,000 . Besides these, Huntsville has machine and foundry shops. cottonseed-oil mills, hoop and heading iactory, fibre iactory, spoke and handle factories, saw and planing mills, brick plants, gas and electric plants, electric car lines. paid fire department, waterworks owned and operated by the city and supplied from a magnificent spring of purest water with a daily capacity of $2,400,000$ gallons. The first settler here was John Hunt, a Virginian, and a soldier of the Revolution, who came to the "Big Spring" in I805, built his cabin, the first, near by, and in 1806 went back to Tennessce and brought his family, having lived in that State before coming to Alabama. In ISil the town was incorporated by the Territorial Legislature as "Huntsville." The first State constitutional convention sat here and framed the first constitution of the State, the convention convening 5 July isio. The first legislature sat here and assembled on the first Monday in August 1820, and this was the first capital of Alabama. The city is well supplied with a mumber of private schools, and an excellent public city school with a new modern building erected at a cost of $\$ 25.000$. Four miles north of the city" is located the "Alabama Agricultural and Mechanical College for Negroes." The government of the city, under a new charter of 1897 , is composed of a mayor and board of aldermen of eight, and it controls all of the city's affairs, including the waterworks. Pop. 16.000.

Benjamis Powel Hu゙Nt.
Hunts'ville, Mo., city, county-seat of Randolph Cotmty: on the Wabash railroad: 130 miles northwe of Saint Louns and 145 miles northeast of Nansas City: It is situated in an agricultural ad coal-mining region. Its principal industrial establishments are flour mills, machinery slops, rake and stacker factory. Its trade is chiefly in agricultural and mining implements, live stock, and farm products. Pop. (1900) 1,805.

Huntsville, Texas, city, county-seat of Walker County ; on the International \& G.N. railroad; about 200 miles sontheast of Austin and 68 miles north of Houston. The first settlement was made about 1835. It is in a fertile agricultural region in which cotton is one of the large crops. The chici manufactures are cotton
goods, cottnnseed oil, cigars, steam-engines, foundry-pruducts agricultural implements, furniture ice, corn mac:), and wagons. Ilere are the home and stanc oi Sam Houston, which are of histurt merent: the main State Penitemiary, and the S. m 1lonstom State Normal School are located iot this city: Iluntsville has an extensive trate in cotom. Pop. (I8go) I,509; (1900) 2.484

Hurlbut, hėl'bint, Stephen Augustus, American soldier and pointion: h. Charleston, S. C., 29 Nov. I8I5; d. Lmma. Peru, 27 March 1882. He was admitted to the lar in 1837 and removing to Illimois became prominent in State politics, leeing a member of the Illinois Legislature 1850, ISGI, and I8L8. At the opening of the Cisil War he became a brigadiergeneral of voluntecrs and he commanded a corps in the expedition to Meridian in 1864. He was United States minister to the United States of Colombia, Isur-73: Republican nember of Congress from Jilinois. $1873-7$; and United States minister to Peru.

Hur'ley, IVis., town, capital of Iron County, on the Montreal River, at the State boundary, opposite Ironwood, Mich. It is 49 miles by rail east by south of dsliland, on the Chicago \& N. Wr. the Milwauke, L. S. \& W., and the Wisconsin C. R.R.s. It is in a rich iron mining district and has saw-inills and considerable lumbering interests. Pop. (1900) 1.823.

Huron, hū'rón, an Indian tribe. See WYandot; INDIANs. Ayericax.

Huron, S. Dak., city, county-seat of Beadle County; on the Chicago $\& \mathcal{N}$. 11 . and the Great N. R.R.'s: about II5 miles northwest of Yankton. It is situated in an agricultural and stockraising region, where there is a large acreage of wheat and from which many cattle are shipped ammally to market. Its manufactures are four, bricks, dairy products, carriages, and wagons: and it has the Chicago \& Northwestern railroad repair-shops, and grain elevators. Pop. (1900) 2,:593.

Huron, Lake, one of the Great Lakes on the boundary between the United States and Canada. Canada is on the morth and east, Canada and Michigan on the south, and Michigan on the west. It receives the waters of Lake Superior through the Saint Mary's River, and the waters of Lake Michigan through Straits of Mackinac, and discharges its waters through Saint Clair River into Lake Saint Clair (q.ふ). Its general direction is northwest and southeavt. Its length is about 250 miles, its average width about 155 miles, and its area, 22,322 square miles. This area includes Georgian Bay and North Channel. It is 581 feet aloove the sea, the same as Lake Jichigan. 21 feet helow the level of Lake Superior. "The depth of the waters beyond the land sheli is irom 200 to 750 feet; and along the coast, from 20 to 60 feet. The waters of the whole lake are remarkably clear, and in the northern part cold. In summer the temperature of the suriace varies from 52° to 58° and of the bottom irom 42° to 52°.

The clici arm of the Lake on the east coast is Georgian Bay; which indents Ontario: and on the west, Saginaw Bay, in Michigan. Other indentations on the west coast are Thunder,

Presque Isle, and Hammond bays. A number of short streams flow into the lake from Michigan, the largest of which are Thunder Bay; Au Sable, and Black rivers. The Lake receives from Canada a large amount of water from lakes Nipissing, Simcoe, Muskoka, and several other small bodies which discharge their waters through short rivers into Georgian Bay.

There are no large islands in the main body of the Lake, but on the north and northeast shores are a number of small islands. composed chiefly of glacial deposits and limestone. Grand Nanitoulin and Cockburn islands. together with several small islands. belong to Canada. Drummond, Jackinac, and Bois Blanc islands belong to the U-nited States. The long group of islands in the northeast are separated from the mainIand of Ontario by North Channel. The greater part of the shore line is low and at one time the country on the west was well-wooded. Regular terraces showing different water levels, deposits of fine sand and clay containing freshwater shells, extend inland fully 20 miles and at heights above the Lake to 100 and 200 feet. These wide beaches show that at one time this Lake, as the other Lakes, must have been much larger than at present. The area of the whole hasin of the Lake, including the surface of the water. is about 74.000 square miles. Some picturesque clifis along the southeastern coast rise to a height from So to 150 feet. The harbors are nearly all protected by breakwaters. The chief ports on the west coast are Chehoygan, Alpena. Tawas City, Bay City (at the bead of Saginaw Bay), and Sandbeach. Mackinary and Saint Ignace. at the entrance to the Straits of Mackinac, are important ports. A railroad line from Detroit to Slackinaw is almost parallel with the west coast. There is an abundance of fish in this Lake, one kind, the whitefish. is most important.

Tiolent storms, to which the Lake is subject, make narigation dangerous. During the summer months, from the first of May to December, there are but few storms. Lake Huron as a factor in commercial enterprises is most important: it is one of the great waterways of the "orld, and the shipping on its waters is growing in amount and importance. The great bulk of the iron ore irom the Lake Superior district is now brouglt to the Cleveland and Pittsburg districts: the wheat and flour from the Northwest comes east. and nearly all are carried over Lake Iluron: and a large proportion of the products of the east which are sent to the Northwest pass over this same Lake. The Saint Mary's Falls Canal or "The Sault Canal," has been the means of greatly increasing the travei and traffic on Lake Huron.

As carly as the 17 th century this Lake was crosised by the French missionary, Pere Matquette, who, in tofis, established a mission at Sault Sainte Marie, Saint Mlarys Falls. In 1673 he was in charge of the mission at Mackinaw. from which place, on I- May 16 -3, he departed with Joliet and others in search of the "Big River." For amount of tonnage sce Greit L.akes.

Huronian Series, the name (now largely abandoned) first given by Sir William Logan to a series of strata lying in the vicinity of Lake Huron. They are about 18,000 feet thick, and
consist chiefly oi quartzite with great masses of greenish chloritic schist, sometimes containing pebbles derived from the Laurentian rocks. Ňo organic remains bave yet been found in them, and limestones are rare. They are believed io be of Lower Cambrian age, and lie unconiormably on the Laurentians. They occupy the same relative position as the upper parts of the Archæan rocks of Great Britain.

Hurricane. See Cyclone; Storms; TorJido; TypHooxs.

Hurst, herst, Hal, English artist: b. London 25 Ang. I865. He started on his artistic career by drawing eviction scenes in Ireland. He emigrated to the United States, and joined the staff of the Philadelphia Press; aiterward at New York, Paris, and London be contributed to various journals and periodicals. He became a painter, studying at the Art League in New York and under Julian at Paris. Among his paintings are 'The Siren' (I896): 'The Capture) (1898) ; and (The First Court of Henry VII.'

Hurst, John Fletcher, American Methodist bishop: b. near Salem, Md., I7 Aug. 1834; d. Washington, D. C., 4 Nay 1903. He was graduated from Dickinson College, Carlisle. Pa., in 1S54, studied theology in Halle and Heidelberg. Germany, and after holding pastorates in lew Jersey and Staten Island became bishop in ISSo, and chancellor of the American University in 18gr. He was one oi the leading men in his denomination and of much prominence as a writer. Among his many works may be cited: (Literature of Theology)": 'History of Rationalism' (I865): (Martyr to the Tract Cause' (18,7) : 'Life and Literature in the Fatherland ($18-4$) ; 'Outline of Church History' (1875): 'Our Theological Century) (18;6); 'Bibliotheca Theologica' (I883): 'Short Histories of the Church') (18S8-90) ; 'Short History of the Christian Church' : 'Indika: the Country and People of India and Ceylon') (i\&gi); 'HisIory of the Christian Church) (1897) ; translations of theological works and histories; etc.

Husband and Wife. See Law of Husbavd and TVife.

Husbandry, Patrons of. See Grisgers.
Huskisson, hŭs'kǐ-sòn, William, English statesman and financier: b. Birch-Moreton, Worcestershire, II March 1 $5 / 0$; d. 15 Sept. I830. He was sent to Paris in $1 / 83$ to study medicine. In $1-80$ he became an crthusiastic sympathizer with the French Revolution, was present at the taking of the Bastille, and joined the Club ot r-\&o, instituted the foilowing year. He made a speech at the club against the proposed creation of paper money, and withdrew from it when the assembly decreed the issue of assignats. His views of the Revolution afterward underwent a change. In troo le was appointed secretary to the British ambassador; and when the ambassador was recalled in $1 ; 02$ he returned to England. and in t-95 he became under-secretary for war and the colonies. In 1706 he was elected member of Parliament for Morpeth. He resigned in ISor, and returned in tSot. In Pitt's administration formed in this year he became secretary of the treasury, and during the Whig ministry that succeeded Pitt's death was an active member of the opposition. In 1807 be re-
sumed hls post as secretary of the treasury, which he resigned in 1809. In 1823 he was elected M.P. for Liverpool, and appointed president of the board of trade, and treasurer of the navy. In 1827 he became secretary of state for the colonies. He was killed at the opening of the Liverpool and Manchester railway I_{5} Sept. 1830. He seldom spoke in Parliament except on commercial or financial subjects, on which he was an authority. He also anticipated Peel in his advocacy of a free-trade policy. A collective edition of his speeches appeared in 1831 .

Huss, Henry Holden, American composer: b. Newark, N. J., 2I June 1861. In 1882 he entered the Munich Conservatory, Germany, and studied music. in theory and practice, under Rheinberger, Giehrl, and Abel. In 1885 he setthed in New York, where he has had a successful career as composer, performer, and teacher. He has composed 'Cleopatra's Death,' a scene for soprano and orchestra, as well as songs, anthems, and charming chamber music.

Huss, or Hus, John, Bohemian religious heresiarch: b. Husinec, Southern Bohemia, about 1369 ; d. Constance, Switzerland, 6 July 1415. He studied at the University of Prague and in 1398 began to lecture on theology and philosophy. In 140 he was made dean of the faculty of philosophy, and was made rector of the university (1400). Since 391 he had been acquainted with the writings of Wickliffe, and his denunciations of the indulgences, of masses for the dead. of auricular confession, etc., alarmed Archbishop Stynko of Prague, who had 200 volumes of Wickliffe's writings burned (1410) in the archiepiscopal palace. and the preaching of his doctrines in Bohemia prohibited. Huss appealed to the Pope John XXIII., who summoned him to appear at Bologna. Huss refused to appear and was in consequence excommunicated, and Prague threatened with an interdict as long as Huss should remain in it. Wenceslaus. the king, alarmed by this menace. thought to bring about peace; and at his demand, Huss made an orthodox profession of faith in Ifir. But the quarrel broke out again when Huss and his friend Jerome publicly condemned the papal indulgences granted for the crusade tgainst Ladislaus of Naples. Huss was again excommunicated and Prague interdicted. He now retired to Husinec to the protection of his feudal lord and here he wrote his books 'On the Six Errors' and 'On the Church,') in which he attacks transubstantiation, the belief in the papa! primacy and the saints, the efficacy of the absolution of a vicious priest, unconditional obedience to earthly rulers, and makes the Scriptures the only rule of matters of religion. In the meantime the Council of Constance had convened in 1.4t3. Huss was summoned to this council to render an account of his doctrines. The cmperor Sigismurd granted him a safe conduct to the council. After several examinations of his doctrines, and lis persistent refusal to retract the points which were regarded as heretical, he was sentenced to death and burned 6 July 1415 .

Husted, James William, American politician: b. 1833; d. Peckskill, N. Y., 25 Sept. 1892. He was graduated at Yale in 1854 , studied law, and in I869 was elected to the New York Assembly. He was re-elected 15 times, and was
chosen speaker in 1874, 1876, 1878, 1886, and 1887. Ile alno served in such varied capacities as supermemendent of public schools, deputy superintendent of insurance, harlor master, deputy captain of the port of New York, judgeadvocate of the Seventh brigade, and majorgeneral of the Fifila Division, National Guard.

Hutcheson, hŭch'ě-són, Francis, Irish philusopher: b. Drumalig, Ireland, 8 Aug. I694; d. Dublin 8 Aug. IV46. He was educated at the University of Glasgow, taught in Dublin 1717-29, and in 1729 became professor of philosophy at Glasgow: In 1725 the first edition of his celebrated 'Inquiry into the Ideas of Beauty and Virtue) appeared withont his nane. In 1728 he published his 'Treatise on the Passions,' often reprinted, and admired even by those who dispute the soundness of its philosophy. In 1775 was published from his MSS, a 'System of Moral Philosoplys.' The philosophy of Hutcheson is based primarily on that of Locke. His particular theory of conscience as a distinct sense was attacked by Kichard Price in a celebrated work, 'Principal Questions and Difficulties in Mlorals.) The views of Ilutcheson and Price are revienved in Jouffroy's 'Cours de Droit Naturel.? Hutcheson was a writer of considerable originality, and justly regarded as the precursor of Reid. and the founder of the Scottish school in philosoplyy: An admirable résumé of his works is contained in Cousin's 'Philosophic Ecossaise.'

Hutch'ins, Thomas, American geographer: b. Monmouth, N. J., 1730; d. Pitt:lhurg, Pa., 28 April 1789. In early life he enlisted in the English army, and saw active service in the Frencla and Indian war. He was in England in 1779, and was arrested in London, and thrown into prison as an advocate of American independence. He escaped to France, from which country he sailed to America, and joined the Continental army and was appointed geographergeneral by Gen. Greene. Among his published works are: 'Topographical Description of Virginia. Pennsylvania. Maryland, and North Carolina) (1728): "History; Narrative and Topographical. Description of Louisiana and Western Florida' (1;84).

Hutch'inson, Anne, Anerican religious leader, the founder of the Antinomian party in the New England colonies: b. Lincolnshire, England, about 1590; d. Westchester County, N. Y.. August 1643. She was the daughter of a Lincolnshire clergyman. In England she was interested in the preaching of John Cotton and her brother-in-law John Wheelwright, and it was her desire to enjoy the ministry of the former which induced hat to follow him to New England. She arrived in Boston with her husband. 18 Sept. 163 t, was admitted a member of the Boston church 2 November. and rapidly acquired esteen and influence. She instituted meetings of the women of the church to discuss sermoris and doctrines, in which. with a ready wit, bold spirit, and imposing familiarity with the Scripture, she gave prominence to peculiar speculations which even on her voyage had attracted the attention and caused the displeasure of her fellow passengers. Such were the tenets that the person of the Holy Spirit dwells in every believer, and that the inward revelations of the Spirit, the conscious judgments of the
mind，are of paramount authority．She had been two years in the country before the strife be－ tween her supporters and her opponents broke out into public action．Among ber partisans were the young governor Vane，Cotton．Wheel－ wright，and the whole Boston church with the exception of five members，one oi whom was the associate pastor．Wilson，while the country clergy and churches were generally united against her．＂The dispute＂，says Bancroft， uinfused its spirit into everything；it interiered with the lery of troops for the Pequot war：it influenced the respect shown to the magistrates， the distribution of town lots，the assessment of rates：and at last the continued existence of the two opposing parties was considered inconsistent with the public peace．＂The peculiar teners of Mrs．Hutchinson were among the δ_{2} opinions condemned as erroneous by the ecclesiastical synod at Newtown 30 Aug． 163 ；and in So－ rember she was summoned before the general court，and after a trial of two days sentenced， with some oi her associates，to banishment from the territory of Massachusetts，but was allowed to remain during the winter at a private house in Roxbury：She joined the larger number of her iriends，who，led by John Clarke and Wiil－ liam Coddington，had been welcomed by Roger TVilliams to his vicinity，and had obtained throngh his influence from the chief of the Sarragansetts the island of Aquidneck．subse－ quently called Rhode Island．There a body politic was iormed on democratic principles，in which no one was to be＂accounted a delinquent for doctrine．＂The church in Boston，from which she had been excommunicated．vainly sent a deputation of＂four men of a lovely and win－ ning spirit＂to the island with the hope of re－ claiming her．After the death of her husband in $16 \neq 2$ she removed with her surviving family into the territory of the Dutch，probably irom apprehensions that Rhode Island might not be a sare place of refuge from the encroachments of Massachusetts．The precive locality where she settled has been a matter of dispute．but according to the latest authorities it was near Hell Gate，Westchester County，N．Y．The Indians and the Dutch were then at war，and in an invasion of the settlement by the former her house was attacked and set on fire，and her－ self and all her family，excepting one child who was carried captive，perished either by the fames or by the weapons of the savages．

Hutchinson，Horatio Gordon，English golfer：b． 16 Nay ：S69．He was educated at Charterhouse School，London，and graduated with classical honcre in the University of Ox－ ford．He was goli champion in England IS86－7． He has publi：lied＇Hiat＝on Goli＇）＇Goli＇（in Badminton Library）：＇Creatures of Circum－ stance＇：＇Peter Steele the Cricketer＇：＇Sly Wife＇s Politics＇：＇Cricketing Laws and Sro－ sies＇：＇The Bnok of Golf and Goliers＇（ 1 Boon）： ＇Little Lady Mary＇（ I Noo）：＇Dreams and Their Meanimgs＇：＇A Friend of Nelson＇（Igoz）．

Hutchinson，John，Puritan English sol－ dier：b．Nottingham～hire tюた：：d Sandown castle．Kent，II Sept．If64．Being of a relignus turn of mind，he devoted much time to the study of disinity，from which his attention was sonn diverted by the serious pritical questions which agitated the kingdom．I careful investigation of the matters at issue betwien the king and the
parliament satisfied him of the justice of the latter＇s cause，and after the commencement of the civil war he declared for the parliament and was appointed governor of Nottingham castle，which he held until the close of the war． He afterward represented Fottingham in par－ liament，and，as a member of the high court of judiciary appointed for the trial of the king concurred in the sentence pronounced on him． The subsequent course of Cromwell，however， met with the disapproval of Hutchinson．At the restoration he was comprehended in the general act of amnestro，but was subsequently arrested on a suspicion of treasonable con－ spiracy，and after a detention of ten months in the Tower was removed to Sandown castle， where he died oi fever．

Hutchinson，John，English philosopher： founder of a mystical school of philosophy and theology：b．Spennithorne．Torkshire，1674：d． 28 Aug．173\％．In I 24 appeared the first part of his（Moses＇Principia，＇in which be disputed the Newtonian theory of gravitation．In the second part（ 1 －ユ⿱一兀 $)$ he continued his criticisms of Newton．and maintained on Biblical authority the doctrine of a flenum in opposition to that of a cacuun．From this time one or more of his uncouthly written volumes．containing a sort of cabalistic interpretation of the Hebrew Scrip－ tures，appeared annually．His leading idea is that the Scriptures contain the elements of all rational philosophy as well as of general reli－ gion．The Hebrew language has not only its literal but its typical sense．every root of it being significant of hidden meanings．With this elastic principle of exegesis he deduces a system from which the occult powers of antaction， gravitation．magnetism，and electricity are ex－ cluded．but according to which the whole mech－ anism of the heavens is the result of the agency oi fire，light，and spirit，the three material ele－ ments which were set to work in the beginning． and which typify the three persons of the Trinity：

Hutchinson，Thomas，American colonial governor：b．Boston 9 Sept．IT1I：d．Brompton． near London． 3 June $1-80$ He was the son of a merchant of Boston who was long a member of the council．and graduated at Harvard Col－ lege in $1 \% \%$ He represented Boston for 10 years in the general court，of which he was for three years speaker：became judge of probate in 1752 ，was a councillor irom $1 /+9$ to $1-66$ ．lieuten－ ant－governor from $175 S$ to $1 /-1$ ．and appointed chief justice in $1 ; 60$ ，thus holding four high offices at one time．In the disputes which led to the Revolution he sided with the British govern－ ment．Ilis brother－in－law，Andrew Oliver，was appointed distributor of stamps under the law which was to go into effect I Sov，1－65．but was compelled by mobs to resign the office before that time．The mansion of Hutchinson was also twice attacked in consequence of a report that he had written letters in favor of the act， and on the second occasion（Aug．26），when the rioters were maddened by liquor．his house was sacked，the inrniture burned in bonfires in the strect．and mary manuscripts relating to the history of the provirce．which he had been 30 yoars in collecting and which could mot be re－ placed．were lost．The inhabitants of the town on the following day in public meeting voted their abhorrence of the proceedings：but though many of the actors were well－known，no one
was punished. He, however, received compensation for his losses. When in 1 ziga Gov. Bernard was transferred to Virgmia, the government of Mlassachusetts fell to Hutchinson. The popular excitement had already been increased by the arrival of the British troops, and after the so-called Boston massacre a committee of citizens, headed by Samucl Adams, obliged him to consent to the removal of the regiments. The pepular indignation against Hutchinson became so great that he at last obtained icave of absence and sailed for England I Junc 1773. The privy council investigated his official acts, and decided in favor of "his honor, integrity, and conduct," which decision was approved by the king. He was rewarded with a pension. He published 'History of the Colony of Mlassachusetts Bay from thie First Settlement Thereof, in 1628 , until the Year 1750) (2 vols., $1760-7$, vol. 3. I828) ; 'Brief State of the Claim of the Colonies' (1,64) ; 'Collection of Original Papers Relative to the History of the Colony of Massachusetts Bay" (1869). His diary and letters appeared (ISO4-6). The sober judgment of later times has reversed the prejudiced accusations of his American contemporaries and he is now secn to have been a conscientious man. zealous in the periormance of duty but sorely perplexed between the claims of loyalty to the king and his natural inclinations in favor of the colony. See Hosmer, 'Life of Thomas H1utchinson' (ISg6) ; Fiske, 'Historical Essays. Vol. I.' (Ig02).

Hutchinson, Kan., city and county-seat of Reno County; on the Arkansas river, and on the Atchison, T. \& S. F., the Chicago, R. I. \& P., the Hutchinson \& S. and the Missouri P. R.Rs.; $\ddagger 0$ miles west of Wichita. The city has one of the largest salt interests in the world, producing about 6,000 barrels per day. It is also an important meat packing and shipping centre; and has manufactures of jumber, machinery, boilers, etc., and the railroad shops of the Hutchinson \& Southern railroad. It has a public library, high school, state reformatory, electric lights, a national bank, and an assessed property valuation of $\$ 1,500.000$. Pop. (igoo) 9.376.

Hiutch'ison, John, English sculptor: b. Edinburgh, Scotland. 1832. He served his apprenticeship in his native town at the trade of wood carving. Meanwhile he attended an art school, risited Rome and chose as his profession that of a sculptor. He exhibited in the London Royal Academy for the first time in 1862. He is hest known for his statues of Robert Bruce and John Knox, and his busts of Norman McLeod. Queen Victoria, and the Prince Consort. as well as for the four figures he coniributed to Scott's monument at Edinburgh (Paron Bradwardine, Hal-o'-the-Wynd, the Glec Maiden, Flora MacIver. Among his imaginative works are 'Greek Torch Racer'; 'Roman Dancing Girl.'

Hut'son, Charles Woodward, American cducator: b. McPhersonville, S. C.. 23 Scpt. 18.0. He was graduated from South Carolina Conlege in 1860: served in the Confederate army, 1861-5; was professor of Greck in Louisiana State University, I860-81; of modern languages in the University of Mississippi, 1881-9, and of English and history in the Texas Agricultural and Mechanical College from 1803. He has published 'Ont of a Pesieged City' (1887);
'The Pegiming of Civilization' (I888); 'French Literature' (1889) ; 'The Story of Language' (1807).

Hutten, hoot'těn, Philip von, German adventurer; cousin of Clrich won 11utten (q.v.): b. Birkenfeld albout 1490; d. V'enezuela 1546. In 1528 the limperor Charles 1 : made a grant of the province of Veneznela to the Welsers, a firm of Augsourg merchants; and IIutten sailed with one of the companies sent out by them. He accompanied the viceroy: Georg 11 ohemut, in a journey (1536-8), in which they reached the headwaters of the Rio Japura, near the equator. In 1541 he set out in scarch of the Golden City: After several years of wandering, harassed by the natives and weakened by hunger and fever, he and his followers came on a large city; the capital of the Omaguas, in the country north of the Amazons: where they were routed by the Indians. and Hutten himself severely wounded. He led those of his followers who survived back to Coro in 1546. where Juan de Caravajal had in the meantime usurped the office of viceroy; and by him Fhutten and his lieutenant. Barted Welser, were seized and beheaded. Eight years later the Welsers' grant was taken from them, and the German rule in V'enezuela was concluded. Hutten left an account of his journeyings which was published under the title 'Zeitung aus Indien) (1765). Sec Von Langegg. 'E1 Dorado' (1888).

Hutten, Ulrich von, ool'rìn fōn, German knight, distinguished for his poems and satires, and for the influence which his writings exercised upon the Reformation: 1). Steckelberg on the Main 21 April 1488: d. Úfuau, an island in the Lake of Zirrich, 23 Aug. 1523. His father placed him at Fulda, in order to cducate him for a monk. The monastic school therc was one of the most famous in all Germany, and he received an excellent education. Herc he lost his faith and the declared enemy of Christianity fled to Erfurt in 1504. where he became intimately acquainted with several scholars and poets. In 1511 he went to Wittenberg, where he published a work on versification. Clrich, duke of Wirtemberg. having murdered a cousin of Hutten, Hutten gave free course to his indignation in poems, letters, and addresses, which made him known throughout Germany. He distinguished himself no less in the Renchlinian controversy with the Dominican Hogstraaten in Cologne.

Hutten severely criticized the monastic life, and was so much the enemy of the clergy that by his edition of Laurentius Valla, 'De falso credita et ementita 1)onatione Constantini.' he declared war upon the Church and prepared the way for Luther. In 1518 he entered the service of Albert. archbishop of Mayence, and made several official journeys to Paris. He also accompanied the arehbision to the diet at Augihurg. where Luther held his well-known discussion with Cajctan, and Hutten, in a Demasthenic oration. urged the German princes to a war against the Turks. He took the field with the Swabian League in 1519. against his hereditary enemy. Ulrich of Viürtenherg. and then retired to the solitude of his paterna! castle of Steckellherg, to engage anew in the controversy with the monks. Here he puhlished work after work, violently assailing the Church,
the clergy and the state. Ieaving Steckelberg in 1822 he went first to Basel and thence to Zürich, where he died. He was a savage and violent controversialist during his life and was unsparing in the vehemence of his invective.

Hutton, hưt'n. Charles, English mathemarician: b. Newcastle-upon-Tyne it Aus. 173\%; d. 27 Tan. 1823. The destruction of the old bridge at Newcastle having attracted his attention to the sublect of the construction and properties of arches. he was led io the production of a small work on the 'Principles of Bridges) ($1,-2$) which laid the foundation of his iuture fame. He was in 1773 appointed professor of mathematics at Woolwich Academ: elected a fellow oi the Royal Society in 15-5. and in $1,-85$ published his 'Mathematical Tables.' preceded by an introduction, tracing the progress and improvement of logarithms from the date of theis discovery. Later works were: 'Tracts. Mathematical and Philosophical' ($1,-8$) ; 'Elements of Conic Sections": (Jathematical and Philosophical Dictionary' (1/95-6) ; 'Course of Mathematics' (1-9S-1Sis).

Hutton, Frederick Remsen, American mechanical engineer: b. New lork 2S May 1853. He was graduated from Columbia in 1853 and is professor oi mechanical engineering there. He has published: (1lechanical Engineering of Power Plants' (1897); 'Heat and Heat Engines' (1890): ' Nachine Tools.'

Hutton, James, Scottish geologist: b. Edinburgh 3 June 1726 ; d. there 26 March 1797. He studied medicine ar Paris and Leyden, but on his return ($5: 54$) devoted himself to agricultural pursuits and to chemistry, from which he was led to mineralogy and geolosy: In 1768 he removed to Edinburgh. and there spent his time in scientific investigations. He publislied 't Theory of the Earih' (1595) and ' A Theory of Rain' ($1-84$): "Dissertarions in Natural Philosophy' (1702): 'Considerations on the Nature of Coal and Culm' (17-5) ; and other works. See Huttosias Theory.

Hutton, Laurence, American editor and critic: b. J̌w lork \& Aug. 1843 : d. Princeton, N. J:, 10 June 1904. He was privately educated. for some time devoted himscli to the study of literature and to ioreign travel, in the early jo's became a dramatic critic, and began contributions to periodicals of many sorts. From is\&ó to tSos he was literary editor ni 'Harper's Mazazine.' and subsequently he becanse lecturer in English literature at Princeton L"niversity: Ife was a well-krown collector, posecsing among various things a iamous series of deathmasks of historical personages. He was also an -rcanizer and inunder of the Authors 'Club, and of the American Copyright Leaguc. Among his numerous writings were: 'Plays and Players' (5 -5) ; 'Literary Landmarks' ($1885-1003$), etc.

Hutton, Richard Holt, English essaṿist and journalist: b. Leeds 2 June 1826 ; d . Twickenham 7 Sept. 189\%. The son of a Unitarians clercyman, he w゚as educated at Lniversity College. London, and in Gormany, for the Lnitarian ministry, hut. conving under the intluence of F. D. Siaurice, he entered the Enclish Church. In isot he hecante editor of the 'Spectator,' which owed its prominence largely to him. Hutton's best work is in the critical "Es-
says, Theological and Literary) ($18-10$, and - Essays on Some Nodern Guides of English Thought ${ }^{3}$ (1857), and in the biography of Sir TValter Scott in the (English Nen oil Letters' ($18-8$).

Hutton, William HoIden, English Anglican clersyman and historian: b. Gate Burton, Lincolnshire, 24 May 1860 . He was educated at Oxford where he was select preacher i898-1000 and Bampron lecturer jor 1903 . He has published 'The Trisrule of Henry III.): 'Simon De Montiort' : 'St. Thomas of Canterbury' ; 'William Laud' : 'Sir Thomas More': 'Short History of the Church in Great Britain'; (Constantinople) ; etc.

Huttonian Theory, a riew of geological processes first publisined by James Hutton (q.w.) in I - 88 , in his 'Theory of the Earth,' and developed in 1595. He was the first to distinguish between cosmogony and geology, believing the latter to be in no way concerned with "questions as to the origin of things." His view was that the upraised land of the globe must be worn away by atmospheric influences and the debris be finally deposited in the bed in the sea, where it is consolidated under great pressure : it is then forced upward by subterranean heat, acting with an expansive power, and thereby split and cracked. the fissures at the same time filling with molten mineral matter: and so the process goes on. Hutton was the precursor of Sir Charles Lyell, whose views were essentially the same, and who procured for them large acceptance among geologists. See Uimformitaranio ISM.

Huxley, hŭks'\}ř, Thomas Henry, English biologist: b. Ealing. Niddlesex. England, + May 1825 ; d. Eastbourne, Sussex, 29 June $18 y 5$. When he was 12 or I 3 , he wished to become a mechanical engineer; but a medical brother-inlaw (Dr. Salt) took him in hand, and he com. menced at this early age the study of medicine Eventually he went to Charing Cross Hospital. and passed the first MI. B. examination of the University of London. Stern necessity compelled him, as soon as his medical course was over, to seek at once, even before he was of age, some post or employment. At the susgestion of a fellow student, Huxley in 1846 applied for admission to the medical service of the mary, was admitted, and was in attendance at the naval hospital at Haslar. The next year he was appointed assistant-surgeon of the Rattlesnake, which was sent on an exploring and surveving. cruise in the seas on the east and northeast of Australia. The voyage lasied four years, and gave Ifuxley an opportunity of maining ant almost unrivaled knowledge of marine zoology. larious papers on this subject were contributed by him to the Linnzean and the Royal Society inne of them gaining a medal from the latter body, of which he was clected a member in 1851), and a iurther result of his investigations was the important work published in 1859, entisled 'The Oceanic Ilydrozoa.'

The Rattlesmake returned to England at the end of the year iSso and Huxley found that the scientific papers he lrad sent home had aiready made him famous. By the aid of those who valued the promise given by lis published work, he was allowed by the admiralty for

THOMAS HEXRY HONLEY.
three years to dean pay as a nayy surgcon whilst devoting himself to the working up of the resultes of his observations when at sea. In 1854 he was appointed lecturer or professor of natural history in the Royal School of Mines, a post long combined with that of naturalist to the geological survey: In 1855 he was appointed Fullerian professor of physiology to the Royal Institution, and delivered four courses of lectures in as many years; while he was also an examiner for seven years to the University of London. The posts of Croonian lecturer to the Royal Society and Hunterian professor in the College of Surgeons were likewise filled by him.

There is no doubt that Huxley was fortumate to obtain at 27 a post, worth mearly a thousand a year, in London, and unburdened with any excessive duties. He had to give during winter (October to end of February) a course of lectures on five days of the week, and attend in his study at the Museum in Jermyn Street, but had not the cares of a laboratory. He carricd out his researches alone, and consequently was able to arrange the employment of his day in his own way. He wrote largely for the press upon such topics as belonged to his branch of science: lectured frequently in other places besides Jermyn Street ; and took an active and important part in various government commissions. to which his official position rendered it proper that he should be appointed. His lectures to workingmen, in 1860, on the 'Relation of Mian to the Lower Animals,' gave rise to much discussion, and led him to treat the subject in his 'Evidence as to Man's Place in Nature' (1863). By this time the Darwinian theory had given rise to much excited controversy, and Huxley's thorough-going Darwinism brought many a bitter attack thpon him. In 1862 he was appointed by government to assist in inquiring into the effects of the acts regarding trawling for herring; and his labors and advice had much influence in determining the course of fishery legislation and administration. In 1870 his name became more prominent than ever on the publication of his collection of papers entitled 'Lay Sermons, Essays, and Reviews,' which met with fierce denunciation in many quarters. In this year he presided over the Liverpool mecting of the British Association, and was also elected a member of the first London Schooi Board. In 1872 he was elected Lord Rector of Aberdeen Uniyersity; in 18,5-6 lectured on natural history in Edinourgh University.

In 1883 II uxley received the crowning honor of his life, being elected president of the Royal Society. But ill heaith soon compelled him to give up his official work. In 1885 he retired from his professorship, from his fishery post, and from the presidency of the Royal Society, and confined himself to such work as he could performs in his study at Eastbourne (where in 1800 he built himself a house), or in the Engadine, where he usually spent the summer.

He produced between 1885 and his death in 1895 a large series of brilliant and interesting essays, especially on the relation of science to Hebrew and Christian tradition, and on the evolution of theology and of cthics. During this period he was president of the Ifarine Biological Association, in the founding of whicn he took an active part, and in 1892 was made a member of the Privy Council.

In 1888 Huxky received the Copley medal of the Royal Socicty, and 111 tiont the Darwin medal. Huxley was one of the first scientists of his time: 1lis chicf and most valuable work was in the direction of the popularization of science, particularly of the Darwinian theory; he was active alon in hnes of sucial and political reform, and in the development and organization of scientific education. His works include 'Oceanic Hydrozoa' (1850): 'Evidence as tu Man': Place in Nature' (1863) ; 'Elementary Physiology' (1860): 'Anatomy of Vertebrated Animals' (1871): 'Elementary Biology) (with 1)r. II N. Martin) ; Anatomy of Invertebrated Aninuals' (1877): 'Physiography" (1877): 'Hume' (1878): 'The Crayfish' (1880); and mumerous essays and addresses on scientific and sociological suibjects. Consult: the 'Tife,' by Mitchell; 'Life and Letter:') by L. Huxley : and Clodd, 'Thomas IIcary Huxley

Huygens, hoi'géns or hī'gĕnz, Christian, Dutch mathematician and physicist: b . The Hague If 229 ; d. there 8 Jume 16015 . He studied at Leyden, and at Preda, where he went through a course of civil law from 1646-8. Among his most important contrihutions to science are his investigations on the oscillations of the penduhum, and his 'System of Saturn,' in which he first proved that the ring completely surrounds the planet, and determined the inclination of its plane to that of the ecliptic. In 1690 he published important treatises on light and on weight. His 'Traité de la Lumière' was founded on the undulation theory, but in consequence of the prevalence of the Newtonian theory was long neglected till tater researches established its credit.

Huygens' Principle. See Licnt.

Huysmans, hīs-mäns, Jorris Karl, French novelist: 1). Paris 5 Feb. 1848 : d. 12 May 1907. He studied law and entered the French civil service, but abandoned it for literature. At first a pronounced realist, he turued to idealism and even mysticism. Ilis first work was (Pack on Back' : then followed (Martha' (1876): 'The Vatard Sisters) (rigo): 'The Menase' (issi); 'Down There' (Lá-bas) (1880).

Hwang or Hoang-ho, hwăng'hô, or Yellow River, China, a large river which rises in the mountains oi north Tibet, in the KokoNor territory, about lat. $34^{\circ} 30^{\prime}$ N., and lon. $97^{\circ} 30^{\prime} \mathrm{E}$. It derives its mame from the vast quantities of yellow mad continually carried down by its waters. After a winding course. north, east, and south, of ahout 2,600 miles, it flows since I853 into the Gult of Pe-chi-li, prior to that year its outlet being in the Jellow Sea. It is a turbnlent, turbid, and impracticable stream, but litule used for navigation and sulject to disastrous floods, to prevent which and the former frequent changes in its bed and outlet, great expense is incurred maintaining artificial cinbankments.

Hy'acinth (i) A genus (IIyacinthus) of tilies with corolla-like, bell-slaped, six-clect perianth. six stamens fixed in the tube of the perianth, and dry capsular fruit. The Oriental hyacinth (H) orientalis), one of the chief favorites of florists' flowers, is a native of Asia Minor, Syria, and Persia. It is now naturalized in some parts of the south of Europe. It has broad linear leaves.
and a scape with a raceme oi many flowers pointing in all directions．The flowers in cuiti－ bation exhibit great variety of color，chiefly blue． purple，and white．They are very beautiful and vers－iragrant．The iragrance is strongest abour or aiter If oclock at night．Among cultivated hyacinths are many with double Howers．The hyacinth has been cultivated from a remoie period．It was introduced into Europe，probably by the Dutch，about the beginning oi the i6th cen－ tury．The grape－hyacinth is a somewhat difierent plant of the genus Muscari，of which ．M．race－ masum is common in gardens．（2）See Zircos．

Hyacinthe，Père，pãr ē－ă－sănt．See Lor：－ sos．Charles．

Hyænodon，hì－en＇ö－don，a genus of primi－ tive carnivorous mammals（credonts），fossil in the upper Eocene and lower Miocene rocks of Europe and the western United States．of whicn several species are known by well pre－ served skeletons．The skull was relatively verg large and long．with great canizes and strong hyena－itike molars，but the brain－cavity was very small．The jeet were fully nee－toed，had power－ ivel Claws，and the animal，which must have scmewhat resembled a small．cat－line bear．was pari？plantigrade．The remains of H ．cruentus are numerous in the White River beds of North Dakota．

Hyams，Henry Michael，American lawyer and poitician：b．Charleston，S．C．．ISos：d． IE－5．In I\＆se he went to New Orleans．studied law，and aiter I_{5} years of country practice in Alexandria．La．，resumed his residence in New Orleans．where his investments in landed prop－ erty made him wealthy．In politics he was criginally an cid line Whig．brt on the outbreak of Know－Nothingism joined the Demacratic party：In 18 as he was elected to the State Sen－ ate：in 1859 he was chosen lieutenant－goremor： the first Isralite to hold such an honor in the United States．He was devosed to tise Southern cause，sent his sons to boght in the Ccutederate army，and aiter the war found his large fortune ranished．Prepared io begin life anew，he tesumed the practice of law usitil his death．

Hyatt，Alpheus，American naturalist：b． TVashington 5 April 1838 ：d．Cambridge，Mass．， 15 Ian．Iyoz．He was graduated from the Law－ rence Scientific School at Harrard in iSS2，then ensered the army and served during the war in the frih Mas sachusetts regiment．being p：o－ mnied to the rank of captain．Afier leaving the army，he resumed his studies inder the instruc－ tion of Agassiz．and later studied abroad．In IN－he went to Sale：n，where he was one if the f unders of the Peabr dy－leademy of Sinences and nae of the cusat rs of the Escex Institute． In ：゙－o he was made cristncian of the cnlectinns re the Boswn Sociey of lataral Hist ry：be－ －mire curator in tesir．He was also convected With Boston Cniversity：was manager of the \because ewcher＂s School of Science．had clarge ni a labu rai nfy of natural hiztory founded by the IVamen＇s Educational Society at Annisquam， and was ine several years proiessor of $z \pi$ logy and palæontology at the Massachusets Institute of Tecknelocy：In his later life he had charge of inver：el raic fossil＝in the $\$ Juscum of Com－ tarative Z－！cgy at Cambridge．He was a mem－

Der of the American Academb of Arts and Sciences，of the Vational Academy oi Sciences． and of the American Society of Naturalists．He was one of the founders of the last mentioned society and its first president（I883）；he was also one of the founders and edizors of tive ＇Americarr Naturalist．＇His most distinctive work was the investigation of the development of the iossii Cephalotoda and of the fossil and semi－iossil Planorbis on Steinheim Lake，Ger－ many：from which insestigations he deduced laws of growth very important to the evolu－ tionary theory．His works include＇Observa－ thons on Polvzoa）（I866）：＇Fossil Cephalopods of the Miseum of Comparative Zoology＇ （18，2）：＇Revision of North American Poriferæ＇ （18－ミ－フ）．the only work on North American commercial sponges：＇Genesis of Tertiary Species of Plannrbis at Sieinheim）（ISSO）： ＇Genera of Fossil Cephalopoda＇（1883）；（Larval Theory of the Origin oi Cellular Tissue’（I884）： ＇Genesis of the Aretida＇（I\＆\＆）；＇Bioplast－ ology and the Related Branches of Biologic Research＇（I\＆93）：＇Phylogeny of an Acquired Characteriscic＇（I894）；＇Cephalopoda＇（Igoo）．

Hy＇att，John Wesley，American inventor： b．Starker，ㄱ．I．， 25 Nur．IS37．Atter an ed：－ cation in the common schools he became a printer and then an inventor．He perfected a composition billiard ball（ 1865 ），secured a ＇bonsilene＂compound（IS－S），a water－purifying system．and a method of dissolving prroxylin． He has secured about 200 patents ior his in－ ventions．

Hybridity，the crossing of two individuals oi distinct species．The result of the intercross－ ing of species is a hybrid，ior example，the mule， which is the result or breeding the horse with the ass．As the mule is invariably sterile，the infertility has always been supposed to be a test of species．But this is not an invariable rule， as net a iers so－called＂goad＂species have been crossed with one another．It may be set down as a general proposition that the difficulty of crossing increases the more distant the sys－ tematic relationship of the species experimented with．Also these difficulties are says Hertwig． by no means directiy proporticnal to the sys－ tematic divergence of the species．

Nature tends to keep species separate．in the higher animals，as well as amorg insects，eic．： mating is isually preventeci by the structure of the parts concerned with sexual mon：also the principle of preterential mating comes into lay among mammals as well as insects，as ofien be－ tween males and iemales，even of closely alijed species or varieties．When there is no struc－ tural differences there may exist an aversion which prevents any union of the sexes．

Artificial Hyridization－Jiany experiments have recently been made on the lower marine animals in which the eges are fertilized in the sea with ut sexual union，by placing the eggs of startich and sea－urchins．（te．，in a watch－glass and adding the sperm of the maies，thus secur－ ing artificial fertilization．In this way hybrids have been oltained from species belonging io quite difierent genera，while it has been found that in s．me cases closely related species wall ant cross．For example，among the sea－urchins the spermatnooa of Strmgylocentrotus liardus readily iertilize the egss oi a species of Echinus，

Wat only rarely those of the more closely allied Spherechimus granularis. Hybrids have been obtained from different genera of fishes, as those between the salmon and brown trout. It appears that sahmon eggs have been fertilized by trout sperin, but not trout egys ly salmon sperm. According to Hertwig eggs have been fertilized by sperm belonging to species of different familics, orders, and possibly classes. For example, the eggs of a flounder (Pleuronectes platessa) and of Labrus rupestris have been fertilized by the sperm of the cod; frog's eggs (Runa araalis) by sperm of a triton, and even, it is said, the eggs of a starfish by milt from a sea-urchin; in such cascs, however, the hybrids die during or at the close of segmentation of the rolk.

Firtility of HIybrids. - While the mule and many other hybrids are sterile, there are some known exceptions. Hybrids of hares and rabbits have continued fruitful for generations, and also hybrids obtained from the wild buck and she-goat, from the Chinese goose (Auser cygnoides) and the common goose (A. domesticus); from Salmo saliclinus and S. fontinalis; Cyprinus carpio and Carassius zulgaris, as well as between the two silkworm moths, Philosamia cynthia and P. ricini, the Arrhindy worm. In this country Caton has hybridized the common Virginian deer with the Ceylon deer and the Acapulco deer, and states that the hybrids seemed perfectly healthy and prolific. Ewart states that the Indian buffalo and the American bison produce fertile hybrids with the European wild ox.

In the human species it is a well-established fact that marriages between remote varieties or races tend to sterility, while crossing between allied races are fertilc, and such unions are most beneficial. Thus the most mixed white races are the most fertile and vigorous. Ewart thinks that as there are no definite limits between species and varieties, there can be "no fundamental difference between a hybrid and a cross, nor yet any a priori reason why any given hybrid should be sterile, or any given cross fertile." He also states that sterility has in some cases been slowly acquired, in others abruptly, but how it has been acquired is not known.

As the result of breeding thousands of moths Standfuss states that in no case observed by him has the female of a true hybrid been shown to be fertile. On the other hand, the occurrence of undoubted cases of fertility in male lyybrids has been proved by crossing the male hybrids with the femates of both parent species.

Excart's Experiments zivith crossing the Zibra and Horse, and the It ild Ass and Horse. - A Burchell's zelora stallion. "Matopo," became the father of mine zelora hylurids by mares of yarious sizes and brecels. The hybrids exhibited a curjous blending of characters, which seemed to have heen derived partly from their actual ancl partly from their remote ancestors; some of the hyluids strongly suggest their zelbra sire, others their respective dams, "but even the most zebra-like in form are utterly unlike their sire in their markings."

According to 'Nature,' August 1903, he succeeded in moz in securing a male wild ass (king) from Central Asin and a couple of Mongolian pony mares, one a yellow dun and the other a chestnut. The wild ass was mated
with the dun Mongol mare, a brownish-yellow Exmonr pony, and a bay Shetland-Welsh pony. The kiang hybrid in its long legs, slender joints and speed took after its kiang parent. The mane and tail "are exactly what one would expect in a mule." This kiang lybbrid also differs from the wild horse (Przewalsky's horse) in not neighing like a liorse. The result is to prove that the wild horse is not a kiang-pony male, but a "grood" species. Also in accordance with Mendel's law (sce under Herenty) the kiang proved to be dominant, the Exmoor pony recessive.

Hybridity in Plants. - The method of hybridizing hermaphroditic flowers is to cut away their stamens before they are ripe, and then enclose the Hower in a paper bag. After the stigma has ripened the pollen is placed on it, the bag is again tied over the flower and not removed until the seed begins to form. Great advantages and improvements have resulted from hybridizing plants, chief among which are many new varictics of cultivated plants, increased size and vigor, hardiness, or adaptation to warmer climates, and increased resistance to disease, as well as increase in odor of flowers and the quality and flavor of fruits.

Thus far the cause of infertility in animals is unknown, but botanists attribute the frequeut sterility of plants to the imperfect formation of the pollen. Standfuss' experiments with moths agree with Focke's statement as to the great variability of the offspring resulting from the crossing of a plant hybrit with one of the parent species. In plants, as discovered by Mendel, the proportion of the pure races is constantly increasing in the successive generations desended from a hybrid. Maltormations and sports are much more frequent, especially in the floral organs in hylrids, than in individuals of a pure descent. Dounle flowers appear to be formed especially easily in hybrids. Recent experiments and results in the study of hybridity show how intimately the subject bears un heredity (q.v.) and the origin of species.

Consult: Bailey, 'Plant Breeding' (New York 1896): De Tries, 'Die Mutationstheorie' (Leipsic 1not-3) ; Bateson, 'Xlendel's I'rinciples of Heredity' (Cambridge, England, 1goz) contains a bibliography of the subject.

Alphecs S. Packard,
Lote Professor of Zoology, Brozin L'niacrsity.
Hydatid, hī'dā-tid. Sce Bladuerworar; Tapenoras.

Hyde, Edward, Pritish colonial governor in America: b. England about 1650; d. North Carolina 8 Aug. IfI2. In 1710 he arrived as governor of the Athemarle district of North Carolina province. The provincial governor. by whom he was to be commissioned, was dead, and Thomas Carey, formerly a deputy-governor, had undertaken an armed insurrection. Hyde, at the recfuest of the better class of the population, took office as governor, and, assisted by Spottswond, governor of Virginia, crushed the revolt. Not long after massacres by the North Carolima Indians compelled him to seek aid from Virginia and South Carolina.

Hyde, Edward Wyllys, American mathematician: h. Sagimaw, Mich., is Oct. I843. He was graduated from the civil engineering school
of Compll University in 18 － 2 ．was instructor in civil engineering there in $18,1-3$ ，assiztant pro－ Eessce of mathematics in the University of Cincinnati in $18-5-8$ ．and proiessc firan $18,8$. Besides extensive contributions to mathematical journals．he wrote：＇Skew Arches＇（18－5） ＂Directional Ca＇culus＇（I80）：＇A Portion of Higher llatnematics＇（I§g6）．

Hyde，William Dewitt，－American college president；b．Wmchendon，Mass．，23 Sept isse． He was graduated from Phrilins Exeter Acad－ emy in 18,5 ．from Harrard in $18-0$ ，and studied theology at Cnion and Andove：．After com－ pleting his theologica！studies he was pastor for－ a time at Patersun． S ．J．In Ises he became president of Bowdoin College；at that time be was the youngest college president in the Cnited States，and was not widely hnown．He has since won a hight reputation as a scholar and an able executive the college having grown largely in numbers and resources during his administration．He has written（Practica！ Ethics＇（I892）：＇Social Theology）（I\＆इミ） （Practical Idealism＇（ 180, ）：＇The Erolution of a College Student＇（I\＆OS）：＇God＇s Education of Jan＇（isgo）：＇The Cu＇t of Optimism＇ （1900）．

Hyde Park，London．a park in the West End，adjoining Kensington Gardens．It derived its zame fron having been the manor oi the Hyde belorging to the Abbey of Westminster． and contains nearly 400 acres．It was opened to the public shortly after the Restoration in no60，and abound＝with tine trees and pleasing scenery．The sheet of water called the Ser－ pentine River was made between I－30 and 1－33 by order of Queen Caroline．It is much ire－ quented in summer ior bathing．and during frosts ior shating．Other attractive features of the park are the iashionable drive，oridle parb． and promenade of Rotten Row，the Ladies Nile， and Marble Arch．

Hyde Park，Mass，town in Noriolk Countr：on the leponset River，and cn the New lork．ふ．H．\＆H．raiload：about four miles s utitw $=*$ oi Boston．The toma conrains iour smail villages．It was incorporated as a fewn in Is－s．The chief mantiactures are rub－ ber gols，paper，morccoc．cc：onn and woolen goods，curled hair．chemicals．dyesunfs．loom－ and machinery．It is a residential sububb for many of the Beston busines men．It has good schools and a irce library which contains about t？．200 volumes．Pop．（1s90）10，193；1000） $13.2!4$

Hyde Park，V＇t．，village in the town of Hyte Pa：k：county－seat of Lamoille Coumty ：on he Lamonle River and on the B．in N．M． failioad；ahout 35 mites northeast of Burlingt n and 23 miles noth of Montpelier．The stne－ quartics mearty are a source of indus＊ria？ wealth．The manuiactures are funr．l：：mber， dairy pr ducts，and leather．Pop，village（ 1,00 ） ：own， $1 \rightarrow 2$

Hycer Ali，híder àhe．Indian Mohamme－ dan frince：b．Bangalore a° out ケーズ；d．Chutuze， －Dec． 1 －sz．Having dep－sed Kandih Rao，he was ch sen rajah of Mys re inn Ir－゙2，and he sp seatly extended his domini $n=$ that in toco ther o noained E＋，000 square miles，and atro－led an immense revenice．His reign was pasied in
wars with the Englistr and with the Mahrattas． A reaty which he made with the East India Company in rycg．was violated in $1-\mathbb{N O}$ ，and． forming an alliance with the Mahrattas．ise obtamed the services of French offcers．and iook Arcot on the 35st October of the same year．He was deieated by Sir Eyte Coote， I June \ddagger－Si．He was succeeded by his son Tippoo Saib（q．r．）．

Hyderabad，hí－dèr－a－bäd＇，or Haidarabad， hī－da－ra－bādr，India．（i）One of the largest native states occupying the greater pant ot the Deccan flateau oí soutbern India，in possession oi the Nizam，a Mohammedan prince，and ire－ Gnently called the Nizam＂ミ Dommions．It is bounded north by Berar，norheast by the cen－ iral provinces，southeast by Madras，and west by Bombay．Area．Ez．6gs square miles；pop． （IgOI）II．IfI．It？．The chiet rivers are the Godavery in the north and the Kismah in the south．The 三oil generally is fertile but poosly cultivated：the principal creps are rice，wheat， maize，sugarcane．tobacco，cotton，and iruits． Indigo is manufaciured，and the iorests yield valuable timber：there are coal and iron de－ posits as yet iistle exploited．and diamonds and other gems are found．The zuler belongs to the dynasty founded by Asat Jah，a distinguished soldier．whom tile Emperor Aurungzebe made viceroy of the Deccan in $1 / 13$ with the titie of Nizam or Regulato：．

2）Hyderubin，the capital，is on the Musi River，at an elevation CI $^{1} 1.0^{-1}-2$ feet above the sea．about 400 miles in a direct line southeast of Bombay，with which it is connected by rail．It is wall－girt，and its chier buldings are the ex－ tensire nondescript palace of the Nizam．the randsome Bricish Resideacy，the Charshmar，or Four ITinarets，buit about 1590 as a Moham－ medan college，but now used for warehouses： and the Jumma NIusid of cathedral mosque． a reproduction of that at Mecta．Pop．（Igot） 1！8．306．3）Hyderibid．the capital oi a dis－ trict of S：Idh．British India．on the east bank ot the Indus．is a well fortified town connecred by rail with Karachi， $10 \equiv$ miles to the southwest． Fop．（IGOI）69．3／8．

Hydra，a minute iresh－water polyp，iiving on the stems and underside oi submerged leaves The body is a club or vase－shaped sac，the mouth at the upper end surrounded by a crown cifrom five to eight long tentacles anmed with lasso or netting cells buried in the s tin．The hyciza feeds on mintie crustacea．et．，which bectme paralszed when swimming in contac： with the ams of the hydra．thus being easily drawr by the creature into its stnomach．The body is very retractile，and the hydra can slow？ nove from one place to another．by detaching the end of the body．The sexual cella a：e， during the reprofuction season，devel ped in the skin，appearing as circular swellings，one （male）just below the tentacies，the orher mas： corresponding to the ovary of lizher animals． iarther dowr the body．The hydra is iamous from its p wer of regenerating parts of irs body．Tremby in r－th experimen：ed upen this anima！：he cut them in two，also into slices，and found that each tit became a new hydra，finaily he turned one inside ort．the if mach－lining becomits the shin，this experiment having re－ cently been successifily repeated．This is due
to the lack of differentiation in the tissues and organs of the body, there being no distinet nervous, or eirculatory system, the hydra being the most generalized member of its class, except the 1'rotolyydra, which has no tentacles.

Hydrangear hî-drăn'je-a, a genus of shrubby plants of the order Siarifragaccer, with about 30 species indigenous to castern Asia and temperate America. They have large simple leaves and very large eymes of flowers, the outer ones being infertile. The II. anlgaris grows on the Allegnanies, and in other parts of the United States. H. nitca, a more ornamental shrub, is most abundant in the region of the southern Alleghanies, but is found as far north as Pennsylvania. The H. quercifolia, distinguished by its lobate leaves, inlabits the country bordering on the Gulf of Mexico. The bestknown species is H. hortensis, the Japan rose. The fruit is a multilocular capsule.

Hy'drants. See Valyes and Hydrants.
Hydras'tis, an herb, the rhizome and rootlets of which are used as a bitter stomachic tonic and a tonic to the uterus in various diseases. In poisonous doses it stops the heartaction.

Hy'drate, in chemistry, a compound containing one or more molecules of the radical "hydroxyl" (OH). In these compounds, the water may be considered as playing the part of an acid, and the compounds themselves are entirely analogous to salts. Thus water, $\mathrm{H}_{2} \mathrm{O}$, combines with sodium oxid, $\mathrm{Na}_{2} \mathrm{O}$, according to the equation $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}=2 \mathrm{NaOH}$; the reaction being accompanied by the liberation of considerable heat. The sodium hydrate (NaOH) that is produced is quite a different substance from the simple oxid, $\mathrm{Na}_{\mathrm{i}} \mathrm{O}$, and it cannot be resolved into $\mathrm{Na}_{2} \mathrm{O}$ and water by the action of heat alone. In organic elomistry hydrates are met with very frequently. The large and exceedingly important class of substances collectively known as the alcohols, for example, are hydrates of organic radicals. (See Alcohol.)

The word "liydrate" is also used in a less definite manner, to signify any compound which contains water. or from which water can be expelled by the action of heat. Thus salts or minerals which are associated with water of crystallization are said to be "hydrated.". When an aqucous solution of a salt, containing an excess of the salt in the free state, is cooled until it freezes, a mechanical mixture of ice and of the precipitated salt is obtained, which is known as a "cryohydrate," although it is not a defnite chemical compound.

Hydraulic (hi-drâ'lic) Cement. See CeMent.

Hydraulic Crane. See Hoisting AppaRATUS.

Hydraulic Engine, or Hydraulic Motor, an engine or motor driven by water under pressure. The water is admitted at a high pressure at the beginning of the stroke, and exhausted at a. low pressure at the end of the stroke, thus giving a reciprocating motion to the plunger. The velocity of the pistorn has to be kept low to avoid injurious sloocks in suddenly bringing the column of water to rest. Working under g-eater pressure than steam-engines -700 pounds to the square inch is not an uncommon
pressure - the hydraulic pressure engine ean be built much smaller than an equivalent steamengine. An additional arlvantage of the hydraulic engine for intermuttent work is the comparative ease with which it may be started or stopped; hence it is commonly used for capstans, winches, eranes, and drawbridges. Single aetion in the hydraulic engine a arrids shock at dead centres; and the threc-eslinder single-acting form is in common nse. since the three cranks make the turning forec uniform and make it possible to start the engine from any position. Another form, of very recent development, is the turlme (q.v.).

Hydraulic Engineering, that branch of civil engineering which deals with the application to the use and convenicnce of man of the natural laws governing liquids. A liquid is a suhstance appreciable to the senses of sight and touch, and the particles composing which are incompressible and offer no resistance to interchange of position from any external force applied to them. The typieal liquid is water, and the generic term hydraulics. used to denote the science and practice of handling liquids, is derived from a Greek word which means "pertaining to water." There are three distinct sets of laws or principles of science which have to be considered: hydrostatics, which relates to liquids at rest ; hydraulies, which relates to liquids in motion; and hydrodynamics or hydromechanics. which relates to the mechanical effects produced upon other substances by liquids when acted upon by external forces.

The seience of hydraulies is entirely modern. There is no evidence, either traditional or documentary, that the principles governing the action of liquids either at rest or in motion were studied and formulated at all prior to the days of Archimedes, 2.200 years ago. A few of the facts of both hydrostatics and hydraulics were established experimentally, so that aqueducts to convey water long distances were built ly the Romans, and possibly before them by the Ploenicians and the Grecks; but no record remains of any clucidation of principles or formulation of laws. After the destruction of Rome in 475 A.D. even what had been known seems to have been lost for more than 1,000 years. As late as 1630 Galileo said that the laws governing the motions of the stars were better understond than those controlfing the novement of water on the earth.

Hydrostutics.- It was Galiten who discovered and formulated the important law of hydrostatics that the pressure exerted by a column of fluid on any square unit of the surface which confines it is equal to the weight of a column of one unit square and of the lieight of the surface of the liquid above the point at which the pressure is measured, no matter whether the horizontal area of the column at that point is greater or less than at other points in its height. If the confining walls of the column are horizontal at any point, or if they are inelined to the perpendicular, the pressure of the liquid at that point is the same. whether upward or downward, as it is laterally against a vertical wall, and the wall at that point must be of such thickness that it wilf resist that pressure.

HYDRAULIC ENGINEERING

Where the pressure is upward the resisting force of the wall is increased by its own weight. and where the pressure is dowaward the resisting force is diminished by the weighi ci the wail itseli. It is essental therefore to the stabiligy of a wail which is surrounded by a liquid mass that the adjacent liquid shouid be excluded from passing under ine wall so as io permit oi an upward pressure which mould tend io liit the wall from $1 t$ sase.

In ali mechanical problems there are three units of comparison needed: the units of tine. ri distance, and of weigh:. The unit of time in modern science is the second or riso part of the average day. The unit of distance which is generally used in England and America is the foot. which is subdivided inio tweliths. called inches. of into thousandths. while the unit of weight is the pound. Which is arbitarily fixed by law. In France and Germany the unit of distance is the metre, ohich is sipposed to be one ten-millionth part of the distance irom ihe pole to the equator, and is 3.28 feet long, and is subdivided into thousandths, while the unit of weight is the gram or cubic centimetre. which is the मु? metre of pure water. E~̈ors are making by scientists to secure the universal adoption of the metric system of measures and weights, but in the English-spealing countries the foos and the pound are the only standards generally used and understood. In hydraulic science the basic hydrostatic facts are that a cubic foot of pure water weighs 62.4I- pounds, and that io exert a pressure of one pound on every square inch of slifface a column of water musi be 2.30% feet high.

Hydraulacs. - The instant that an crifice is made in the barrier comining a volume of liquid the particles of the liquid begin to move in the direcion of the orifice. The theoretical velocity with which they issue irom the orifice was discovered in 16 fil by Torricelif. a pupil of Galileo. to be equal to that acquired by a cubic unit of the liquid in falling threugh the height between the surface of the liquid and the orince. It was not until t-38 that Bernoulli formulated the fundamenta! expression for the acceleration of gravity, $:=\sqrt{2 g h}$, in which $=$ represents the sfeed per seccind of time. It represents the distance of the orifice below the striace of the liquid. and g is a quantioy determined by experiment to be the relocity acquired by any body in faling freels in a vacumm. irom a state oi resh, in one second of time. Taking the foot as the unit of distance, $g=32.10^{\circ}$ and $\sqrt{2 g}$ $=8.020$, while if the meire is the unit. $g=9.80$ and $12=1+2 \%$.

The students rif hydraulic problems snon discovered tha: the conditions under which the movement: ci fuid take place modity materially the ther retical sesulis obtained from the firme la based on the iaws ri graviation colv. For zfo years they jave been striving by a comilinaifon in reasoning and experimentation oo form12ia.e the laws which eovern the movements of waser u-der varying conditions of icm and character $n i$ matcrial crmmoing the enclosing channels in which the mements occu:- The va've nf $: a$ a found to exis: in practice is only a frac:innal part of the theoretical value, and is designated by the expression $:=c \sqrt{2 g h}$, in

Whicin c is a numerical coefficient which varies with the form of the orifice or channel through which the water passes, and with the character oi the material through which the orifice 15 made. The reason of this is that the particies of the liquid whrch are in contact with the restraining Eslid material are retarded in their tall by the solid. and they in turn retard the nevt adjacent particles of tuid. the amount of retardation decreasing as the distance from the immorable solid increases. This retarding effect varies also with the roughness of the limiting solid, and with the relocity at which the intial movement, due entirely to the iorce of gravity takes place. The quancity of water discharged is equal to the produc: of the velocity by the area of the orifice or $q=a r \sqrt{25} h$. The value of c under the mosi iavorable conditions tas been found from numerous careivlly conducted experiments to be about o.fo, or in other words. Only about oo per cent of the amount of water which the theoretical calculation of the velocity due to the head indicates as possible to be pasied throwgh ar orifice in the side or botrom of a ressel of reservoir containing a mass of water, can be actually so passed. Afier passing the orifice of entry to a long clannel, a new set of coaditions is encouniered in conreving water for long distances. as in a pipe or open canal. Gravity is the impelling jorce as beiore and to ensure flow chere must be a difference of elevation between the extremities of the chamel. but the retarding forces are numerous, consisting of variations in the slope of the channel. 181 the proportion which the length of the wetted perimeter of the channel bears to the area or the watcrway, and in the irregularity of the striace over which the water flows.

The fundamental formula for the relocity of the fiow in channels oi all kinds which is now accepted was suggested by Chezy in 1775 and is

$$
\because=c \sqrt{r_{s}}
$$

in which z^{*} represents the mean velocity of the fuid. r represents the hydraulic radius, as it is termed. or the area of waterway disided by the length of the weited boundar of the channel. and s represents the slope of the surface. or the difference of elevation of the two ends of any section of channel, divided by the length of the section. The value of s is determined by experiments on the discharge of channels of difierent iorms, materials, and dimensions. It is purely experimental. In the last 100 years numerous careiully conducied series of observztions have been made by hydraulicians with the object of determining an exact mathematical expession for this coefficient under different conditions. The formula which so far seems to approach most nearly to the obtaining of a defirite result is that proposed by Kutter. a German scientiat. about IScs, in which the dominant element is a variable quantity desimma:ed as nt the value ni which depends solely on the des-ce of irresularity in the wet surface bounding the cross section of the channel. In applying this formula in any channel the ensineer must assume that value for n which has been determined hy experiment to beleng to a channel most nearly approaching in roughness the one under consideration, and irom this he will be able to deduce with a rerg con-

HYDRAULIC ENGINEERING

siderable degree of accutccy the value of c, and use this to determine the velocity and discharge.

Ilydrodynamics or Ifydromechames.- These are terms applied to the science which treats of the dynamic effect produced upon other substances by the arrest of the movement of Huids conning in contact with them. A stationary colunn of water exerts a pressure only; a moving column exerts a dymanic pressure proportional to the velocity with which the mass is moving. If an obstacle is interposed to water llowing in a channel of any kind, the force exerted by the water in removing that obstacle can be utilized in stuch a way as to produce a mechanical energy or work. The simplest form of this is the underslot wheel, where the pressure of the water flowing in a stream canses vanes or paddles attached to a shait to revolve the shaft, and from this, by meclranical appliances, the circular motion can be directly ntilized to exert energy either by revolving or reciprocating movement of machines. The breast-wheel and the overshot wheel utilize the power generated by a fall or head of water of from one half to two thirds of the diameter of the wheel. The turbine wheel invented in France by Fourneyron in iS33 revolutionized water-power engineering, utilizing as it does nearly the entire energy of any great head or fall of water by discharging the fluid from a pipe against revolving vanes so shaped as to afford the greatest resistance to the attacking current and the least to the discharging current. When the impulse of movement of machimes. When the impulse of the moving liquid, which is that due to the product of its weight by its velocity, is at right angles to the interposing surface, it is equal to double the pressure exerted by the fluid in a state of rest. As the angle between the current and surface becomes oblique the pressure diminishes. The same rule holds good with reference to submerged surfaces exposed to the impact of waves and currents in deep water. so that the hydrodynamic forces present to the naval architect, as well as to the hydraulic engincer, innumerable problems delicate and difficult of solution.

Hydraulic Enginecring.- The improvement of natural watercourses on the face of the carth is the most ancient and the most extensive of the works which lave called for the exercise of hydranlic engincering. The remains of works for restraining the flood-waters of rivers. antedating all historical records, have been discovered in Egypt and China. In countrics where the rainfal! is ao distributed throughout the year that alternate periods of extreme wetness and dromght of long continuance occur, the retention of the excess of water in the wet season and its gradual delivery for irrigation nurposes during the season of drought was extensively carried on at an carly date. In Egypt. 2.320 years before the Cliristian era, Lake Moris was constructed as a storage reservoir for retaining the waters of the Nile, and the prosperity of that country has ever since depended upon the maintenance and progressive improvement of its system of irrigation. The earlier works, while remarkable for their extent and magnitude, were not characterized by any particular skill in design or economy in construction. During the latter part of the 19 th century and since the beginning of the present.
under the ennernl of French enginects, some very fine examples of dams and irrigation canals have been constructed. 'The Assuan dam is a feet laigh at the decpest point of the valley it crosses; 0, fuo feet 1 mg , of gramite, founded on solid rock; and it impounds water for the irrigation of 2,500 square nuiles of land 350 miles farther down the stream, where another dam, is feet high and $3,0.30$ feet long, diverts the water on to the lands to be benefited.

In India, from very early ages, irrigation has been practsed ons ant extersive scale, and enormous reservoirs were constrticterl for the storage of water at least as far back as son मi.c. There are about 90,000 such reservoirs or their remains whiclı were constructed before the Pritish occupation of India, and 2,000 were built by Engish engineers in the last half of the Igth century. In Italy about 4,000,000 acres of land are under irrigation, and it is to the 1talian engineers of the isth century that hydranlic engincering is largely inciebted for the elucidation of principles and the application of the same to practice so as to produce the greatest efficiency at the least expense.

For the successful conduct of irrigation works there is needed not only a knowledge of the laws of hydraulics, but also a thorough study of the meteorological conditions which have prevailed in the region under consideration for a long series of years, and likewise of the topography and geology of the region.

In the United States the importance of this has been fully recognized only within the last 20 years: but during that period the general government has devoted a good deal of attention to the subject, and has caused surveys, both topographical and geological, to be made of the arid region lying west of the looth meridian of longitude; while a series of measurements of the rainfall and the run-off of the streams is being instituted, which will furnish the engineer with data necessary to an intelligent designing of irrigation works. This will undoubtedly prove of great benefit, inasmuch as not more than 7 per cent of the $70,000,000$ acres in the United States susceptible and in need of irrigation are now supplied with it. In the works so far constructed are seen numerous efforts at improvement in design and methods of constraction, some of which have not yet stood the test of time long enough to determine whether they will be effective. The careful observations which have been made and are still being made lave resulted in a decided advance in knowledge of hydranlic principles.

In passing to the consideration of the next oldest class of hydraulic works, that for the regulation of rivers to protect and reclaim the riparian lands, the questions to be considered by the hydranlic engineer are materially changed. Large storage resermirs are neceled as in irrigation projects, but their capacity and arrangement with reference to the floctuations of the natural flow of the stream must be very different. The channels, ton, for the conveyance of the water are differently proportioned, and are likely to be required to be constructed of different material. In irrigation canals a low velocity of flow is desirable to avoid abrasions of the hanks, and the sizes of the channel are proportioned to convey definite quantities of water steadily. In river regulation the channels must he designed

HYDRAULIC ENGINEERING

to carry constantly varying quantities of water at different speeds of current, and the banks must be fortified against injury from sudden Huctuations of level in the water surface and irom abrasion by floating material or aceretion by deposit. The construction of levees or embankments along the banks of a river and parallel to its current is the earliest and simplest oi the methods of river improrement; but it is only within the last 200 years that this has been reduced to a science, and the most effective and economical methods of design and construction formulated. If the stream improved is of sufficient size to be ravigable, the conditions of the problem are agait changed. The course of the channel in places may have to be altered to avoid rapids of too steep descent for passage of boats, and a sufficient depth of water must be maintained at all times and in all places for boats of definite dimensions and draft. Where such artificial channels are necessary it is important that they should be so proportioned that the passage of the largest boat at the maximum permissible speed should not create a wave which would injure the banks or retard the progress of the boat.

River improvements of this class led to the construction of entirely new artificial chanmels or canals conmecting different navigable streams or bodies of water. There are some very ancient examples of such structures. The Royal Canal of Babylon was built 650 B.C., and about 102 b.c. the Fossa Mariana, connecting the River Rhone and the Mediterrattean Sea, was built. In the Sth century was built the Grand Canal of China, about 650 miles loug, utilizing several canalized rivers on its way, and thus creating an inland navigation system of 1.000 miles. On this canal there were several inclined planes, up and down which loaded boats were passed from one level to another. Locks were first invented ity 1439 by Philip Visconti, an Italiata engineer. Prior to this time there was but one method of overcoming diferences of elevation in navigable chanacls which had been constructed so as to afford long and nearly leve! stretches on which boats could pass in either direction, with approximately the same motive power, and with sudden changes of elevation at the ends of such levels. That method was the tratushipment of cargoes, the Chinese method of inclined planes not being economical in the then state of the mechanic arts. Between 1750 and 1830 , however, a numler of incliticd planes were built in England and Imerica in cases where the lift of locks was so great as to neccssitate a great wastage of water and loss of time. Since $18-6$ several vertical lifts have been constructed where very great 'eights had to be overcome. compressed air heing the power medium. The invention if locks gave a great impetus to canal c nstruction, and all over Europe large cystems of internal navigation were constructed. Indecd the improvement of river channels was necslected for a long time and canals were buit parallel to rivers, and the orinion was expressed by an emincut English engincer, near the and of the ISth contury, that 'rivers were created for the purpose of feeding canาs. ${ }^{\text { }}$

During the first half of the ioth century about 3.000 miles of canals were constructed in
the United States. Much experience in hydraulic construction was thus had, and many inmprovements in methods of construction were introduced; but there cannot be said to have been much advance in hydraulic science in this direction. In the matter of river improvement, however, the work done by the United States government on the Mississippi, and the records kept of the results attained. were of great scientific value, and enabled the Mississippi River Commission of is-o to formulate the principles which should be observed in the regulation of large rivers of that class. Both in Europe and America during the last 30 years there has been great advance made in careful observation of the phenomena of rainfall. evaporation, seepage, and infiltration as affecting the run-off of rivers and the fluctuations in their flow at different seasons of the year and for periods of years. The action of flowing water on different materials and modes of construction has been also observed more systematically than ever before, with the result of a decided advance in hydraulic science and its practical application to the economical and effective improvement of river regwlation in the interest of water transportation.

The question of the regulation of smaller non-navigable streams. so as to prevent injury to the territory along them from escaping floods, has of late been receiving attention. It is cornsidered by some engineers that it will be practicable, by the construction of large storage reservoirs with restricted outlets, so to restrain the discharge at points along the course of a stream that sudden and great floods may be prevented. Experience has not yet proved the practicability of such an automatic regulation of the flow, but there is little question that beiore long efforts will be made to accomplish this object, or at any rate to acquire data from which a practicable scheme may be devised.

It is in the application of hydraulic science to the comfort and convenience of the individual rather than of the community that the most striking progress has been made during the last few generations. The fostering of agriculture and the improvement of means of transportation of heary freights are of benefit to the public at large, but the furnishing of pure and wholesome water ior household consumption in large quatities and at reasonable cost affects the health, the comfort, and the general condition of the individual directly: There are remains of structures which were cridently designed to supply water to large communitics in the oldest partly civilized mations, but thesc are of crude design and display evidences of lack of knowledge of hydraulic principles. The Romans, about 500 B.C., built mumerous aqueduets to convey water from distant sources, not culy to the Imperial City itself, but also to the larger cities in their provinces: but for scveral hundred years after the fall of the Roman -mpire there did not appear to have been any works buit for supplying water to communities. It was not until 1582 that London was furnished with water by Peter Morrys. who pumped is from the Thames and supplicd a portion of the city. The grant under which he did so is still held by his successors.

There has beeu steady progress in the art of surplying water to towns during the last 300 years and now the questions which the
hydraulic engincer is required to consider in the design and construction of any waterworks cmbrace a great varicty of subjects. It is neecssary to consider:

1. The quantity of water likely to be necded. There is not yet any consensus of opinion among engineers on this point, the estimates varying from 100 to 150 gallons per day for each resident of the district to be supplied, at the expiration of 20 years from the inauguration of the supply. The prospective population is estimated from the records of the past growth of the district and the growth of districts of similar character of occupation.
2. The possible sources whence the required quantity of water can be obtained.
3. The character of the water obtainable from each source, as regards its chemical constituents, in order to judge of jis economical as well as its sanitary value. It sometimes happens that a water otherwise acceptable is so charged with certain chemicals that the amount of soap required for washing with it is greatly in cxcess oi that required by another water more difficult to procure, so much so that the cost to individual consumers for its constant use will be greater than the cost to the community of the introduction of the other supply.
4. The character of the water biologically: the number and nature of the organisms which are found in it. This is most important from the sanitary point of view. The identification of certain organisms as pathogenic or discase-producing is of recent origin; it marks a decided advance in sanitary science and is of great interest to the hydraulic engineer, since it is found that the remoral of the injurious organisms from water can be effected by filtration, and it is the engineer's function to design or construct works for filtration through sand or other material which experiment proves to b. adapted to the purpose.
5. The quantity of water obtainable from each source which appears generally suitable, the area of the watershed, the amount of annual rainfall upon it, the distribution of the rainfall through the year, the geological and topographical features of the surface, the range of temperature of the air, and the annount of evaporation must all be taken into consideration. Whenever the minimum rate of daily run-off from the watershed exceeds the maximum daily consumption to be provided for, reserwoirs must be constructed to retain the stream-water in times of excessive fow, and dcliver the excess gradually as required. The location of such reservoirs requires a thorough acquaintance with the topograply of the district, and their construction demands a high order of both theoretic and practical acquaintance with the action of water on various materials and with the form and method of their collocation. The construction of dams of earth and masonry has been the subject of careful study within the last few years, and the general principles have been pretty well established: but there still remain a number of unsettled problems due largely to the progress of the mechanical arts and the introduction of new modes of construction. Just how far, for instance, combinations of metal and masonry, which assure strength with a reduction in amount of material and cost, can be depended upon for durability under the
action of water in motion, can only be learned after the lapse of more time from the introduction of this clas of construction.
6. The means of conveying the water from the source to.the print where it is to be used. The conditions of this problem are unlike those which are encountercd in ripers, or in canals for either irrigation or navigation. A ncarly uniform quantity of water must be continuously carried a long distance at as great a velocity as is consistent with safety and economy. It must be protected from loss by cvaporation and by leakage of the channcls, and protected from pollution on its route. These conditions are best fulfilled by an enclosed conduit or pipe of masonry or metal, with a smooth interior surface, laid on a uniform grade so that there will not be any upward pressure tending to lift the covering of the conduit. The relations between different values of n, whinch can be obtained by using different classes of material and of construction, and values of c, obtainable by using different grades and alignments, have been for more than 30 years the subject of carefully conducted experiments by scientists, and it is the iunction of the hydraulac engineer to apply to the special case he has in hand the use of the materials which arc available and the mode of construction practicable in the casc in accordance with the latest results of scientific research. Up to the present tinse the best form and material for large conduits seem to be masonry conduits of horseshoc form, with smoothly plastered interior surface; or steelplate circular pipes with as fow irregularities caused by rivet-heads as possible, laid on uniform grades, which will ensure a relocity of two miles per hour in the water flowing in the conduit.
7. On reaching the point of distribution an entirely different set of conditions is encountered. The water heretorore concentrated in Jarge masses has to be distributed over a wide area in a great number of small pipes in which orifices are opened and shut at irregular intervals of time, these pipes, moreover, being under a great head of water producing a pressure of 50 to 100 pounds per square inch, and consequently a high velocity of efflux from any" orifice. The problem to be solved is so to arrange the connections and sizes of these pipes that, under the ordinary conditions of use, the pressure in the pipes will not be materially altered at any time, and a constant supply may be kept up in the entire system. As illustrating the magnitude and complication of the distribution system in a large city, the conditions existing on Manhattan Island alone, in the city of New Iork, may be cited. There were there, in 1900, an area of $12.5,6$ acres. 082 miles of pipes for the delivery of water, with 130,000 taps or orifices from which water is drawn at irregular intervals. The development of such a system as this involves the exercise of not only theoretical knowledge of the principles governing the flow of water under all conditions, but also a thorough acquaintance with materials of construction and the methods of using them to produce the best results at the least expenditure.

In interesting and important branch of hydraulic engineering is that which deals with larger masses of water than any of those so
far considered. The water of the ocean, when agrtated by the winds and by terrestrial iorces not thoroughly comprehended as yet, exerts a dynamic force which must sometimes be restrained and someames guided so as to produce resuits in a desired diection. Along the seacoasts of all countries there are places where the coniormatiou of the shore and the nature of the contiguous lands render the creation of harbors desirable. but where the tidal waves and listoral currents come in contlict in such a way as to make the approach from the sea dangerous to vessels. To lessen the destructive eñects of the great masses of water in motion, impelled by either the wind or the tidal currents breakwaters or piers of stone projecting from the shore are built with good results. The massiveness which such structures are required to possess may be judged from the fact that it has been learned that the foundation for a breakwater must extend out to where there is from If to 20 ieet of water at low tide: that the height of the waves by which it is likely to be assailed may be from to to 20 feer: and that the impact of the wave on the opposing structure may be as high as 6.000 pounds to the square ioot. In the open sea it is not likely that waves as high as this are formed, or that the force exerted by them is nearly as great, but the problem oi the form and resisting power ci the huil of ships has to be considered irom the standpoint of the dynamic efifect of the water which is impelled by the wind and maves against the hull, as well as the resistance offered by the water to the passage of the hull through it.

The problem of the resistance of the water to a ressel passing through it enters into the consideration of the navigation of canals and inland waters as much or possibly even more than it does into ocean navigation. The mose rapidly a vessel passes through a small channel. the greater is the work io be done in the displacement of the bu'k of water nccupied by the hull. The displaced water is prevented from flowing o.̈̈ by the adjacent banks and shallow bottom, and the pressure required to propel the boat is so increased that it is found that a greater relociry than three miles per hour is not economical.

Hydromechanics. as already stated. relates to the mechanical effects which may be produced ty utilizing the force exerted by water in motirn to senerate nower. In hydraulic weris. distinctively so called, the effort is constantly made $t a$ diminish the mechanical effect of the moving water so $a=$ to arnid injury to suriaces and substances mop:epared in resist it. In hydr dynamic wrots the effrrt is made in concentrate all the power ol:anable ir me the moring waier and tran-mit is:o machines which do efiective work. The difficulty of tranomitting the power long distances withiut great hes has him dered utilization in many cases where a great head of water is availoble in some out-oftheway spot. bui recent improvements in electrical transmission have made such water-powers arailable for use, and many developments of hydraulic generation of electricity have been made. while others are now in course of construction. The utilization of Niagara Falls is a prominent instance of work of this class, and the latest installation in perefese there is noteworthy for its boldness and promise of ere nom-
ical effectiveness, the head on the turbine wheels being obtained by sinking a vertical shati or the shore a shori distance above the falls and discharging the rater through a tumnel run under the bed of the river to the precipice behind the Horseshoe Fall.

In the present state of hydraulic science more attention is being paid than ever before to the obtaining of closely accurate results ef experiments conducted by skilled observers. in which the aid of electricity is used to register all phenomena in a manner never possible heretofore. Great as the adrances have been during the last 25 or 30 years, equal or sreater progress in the elucidation and practical application oi principles may be expected within the rext quarter of a century.

I. Tames R. Croes.

Pust Pris. Am. Soc. Ciö: Eng'rs.

Hydraulic Press. See Hidrostatic Press.

Hydraulic Ram, a machine for raising water. the force being a greater body of wate: at a lower level. It consists primarily of two pipes, one. -1 , leading from the reservoir, spring, pond or other source of supply into C, an airvessel. the opening being by a valve D; and the other pipe, B, leading out of this air-vessel. In the pipe A. or an extension of it is a ball valve E smaller than the inside of the pipe. This ball valve E is forced shut by the iree flow through A : the growing pressure forces D the ralve into the air-vessel open: and the water flows into C the air-ressel and, to a less degree because of the smaller diameter of the pipe, into the discharge pipe B. The gieater pres-

sure on the air in C counteracts the force of the liquad column from A and the value D closes. The force of the compressed air in C is then exerted to drive water from ihe arrvessel into the discharge pipe B. The efficiency di a hydraulic ram is seldom more than two thirds, so that 150 units of water falling 15 icet will list 15 units cnly 100 fect. instead of 150 fee: as it thenretically should. The ram was invenied in 1\%9- by Nontgolfies and is commonly used where there is no regular waterwork's but a plentiful supply if water.

Hydraulics, the branch of mechanics dealing with liquid flow in pipes and channels. The particles of fluids flow aver each other with less iriction than over solid substances: and as each particle is mader the influence of gravitation no quantity of homogeneous fluid having its surface free can be in a state of rest unless every part of the suriace is level. When water flows in a current, as in rivers, it is in consequence of the inclination of the channel, but all such mition is aff cted by the form it the chamel and the friction its sides. Experi-

HYDRAULICS

mental investigation gives various coefficients, whercby the resistance to the flow of water in pipes or channels can be calculated. As water in destending follows the same laws as other falling bodies its motion is accelerated; in rivers, however, the velocity and quantity discharged at different depths is not as the square roots of those depths, the friction against the hottom diminishing the rapidity of the flow. But the law of the proportionality of the velocity of discharge to the square root of the depth applies, however, to the spouting of water througla jets. Thus, if a hole be made in the side of a vessel of water, the water at this orifice, which before was only pressed by the simple weight of the perpendicuhar column above it, will be pressed by the same force as if the water were a solid hody descending from the surface to the orifice.

Machines to raise water may be divided into four classes. Machines in which water is lifted in vessels hy the application of some mechanical force to them were the carliest hydraulic engines; a type is the Persian wheel, a large vertical wheel, turned by animal power or by running water, and hawing buckets attached to the rim. and moving in a reservoir of water. The buckets are filled at the bottom and emptied at the top, so that the water is raised a height equal to the diameter of the wheet. The common dredges for rivers and harlors are modifications of this lind of machine. The Archimedian screw, the screw-pump and the bucketengine or chain-pump are all on the same principle. The chain-pump usually consists of a succession of long links of metal rods revolving like an endless rope over two wheels, one under water. On this chain, between each joint, is fixed a flat piece of wood or metal, usually square, supported and kept in place by the projecting arms of the wheels; the wheel not under water is turned by a winch, which causes the whole chain to move, one side of it passing upwards, while the other side is continually descending in the same direction. The ascending side of the chain is made to pass through a box or pipe, one end of which is immersed in the water, the other end nearly reaching the upper wheel; this box corresponds in shape with the size oi the plates, which fit pretty closely and form the pump. The succession of plates passing upward through the trunk forms a succession of cavities which are filled with water and are constantly discharged at the top. This pump will only work in decp water, and cannot drain a reservoir to the bottom; but it has the adrantage of not hecoming choked with sand or weeds. If the top and bottom wheels of this machine be retainecl, white the tube or trunk is taken away, and a number of small boxes or buckets be attached to the chain instead of the plates the machine then becomes a lucket-engine, which is only another form of the Persian wheel already described.

In the next class. more commonly called pumps, the water is raised ly the pressure of the atmosphere. These act by removing the air irom the surface of the water. which may thus he raised to the height of about 32 feet. Whenever it becomes necessary to raise water to greater heights, the third class of machines, or those which act by pressure on the water, are employed. The common suction-pump consists of a hollow cylinder A, of wood or metal, which
contains a pistom n , stuffed so as to move up or down in the cymder easily, and jet be air-tight: to this phston there is attached a rod which reaches at leave to the top of the cylinder when the piston is at the bonom. In the piston thicre is a valve c , and at the buttum of the cytinder there is another walse D also rising upwards, which covers the orifice of a tulje fixed to the bottom of the cylmoles, and reaching to the well from whence the water is to be drawn. This tube is commonly called the suction-tube, and the cylinder the hody of the pump. When the piston is at the bottom ni the cylinder there can be no air, or very little between it and the valve D . But the air in the cylinder being very muck rarcfied, the pressure of the valse D on the water at the bottom will be much less than that of the external atmos-

to a height mot exceeding 32 fect. As the valves shut downward. the water is prevented from returning. The guantity of water discharged in a given time is determined by considering that at each stroke of the piston a quantity is discharged equal to a cylinder whose base is the area of a cross section of the body of the pump, and height the play of the piton. Thus if the diameter of the cylinder of the pump be + inches, and the play of the piston 3 fect, then by mensuration we have to find thic conent of a cylinder 4 inclies diameter and 3 feet hrigh, the area of the cross 6ection of the eylinder will be .08733 square feet: hence $.08733 \times 3=.26199$ the content of the cylinder in cuhic feet and the quantity of culhic feet of water disclarged by one stroke of the pistom.

The lifting-pump, like the suction-pump, has two valves and a piston, both opening upwards; but the valve in the cylinder, instead of being placed at the bottom of the sylinder, is placed
in the body of it, and at the height where the water is intended to be delivered. The bottom of the pump is thrust into the well a considerable way, and when the piston is at the bottom as its ralve opens upwards, there will be no obstruction to the water rising in the cylinder to the height which it is in the well, for water will always endeavor to come to a level. Now when the piston is drawn up the valve in it will shut, the water in the cylinder will be lifted, the valve in the barrel will be opened, and the water will pass through it, and cannot return as the valve opens upward; another stroke of the piston repeats the same process, and in this way the water is raised from the well. But the height to which it may be raised is not in this. as in the suction pump, limited to 32 feet. To ascertain the force necessary to work this pump, we are to consider that the piston lifts a column of water whose base is the area of the piston, and height the distance between the level of the water in the well and the spout at which the water is delivered.

The forcing-pump constitutes the third class. It can raise water to any height. The piston of this pump lias no valve, but there is a valve at the bottom of the cylinder, as is shown at A. In the side of the cylinder, and immediately above the valve A, there is another valre B opening outward into a tube, which is bent upward to the height at which the water is to be delivered. When the piston is raised the valve in the bottom of the pump opens, and a yacuam being produced, the water is pressed up into the pump on the principle of the suctionpump. But when the piston is pressed down the vaire A at the bottom shuts, and the ralve B at the side which leads into the ejection-pipe opens, and the water is forced up the tube. When the piston is raised again the value \mathbf{B} shuts and the valve A opens. In this form the discharge is not continuous. To make it so an air-vessel is fastened to the top of the eduction pipe. The air-vessel is a box, with a valve opening upwards into it and covering the top of the pipe. A tube is fastened into the top of the box, and reaches nearly to the bottom; it rises out of the box, and is furnished with a stopcock. If the stop-cock be shut, and the water be sent by the action of the pump into the airressel, it cannot return because of the shatting of the valve at the bottom of the box: and because of the space occupied by the water, the air in the box is condensed, and will consequently exert a proportionate pressurc on the water in the air-vessel, and force it up through the tube. The stream of water issuing will therefore bc continuous, the pressure being continuous.

The fourth class of hydraulic machines for raising watcr consists of such engines as act either by the weight of a portion of the water which they have to raise, or of any other water that can be used for such purpose, or by its centrifugal force, momentum, or other natural powers. The centrifugal pump consists of a drum or wheel containing a series of curved vanes; this wheel is encased in a circularlyshaped casing, gradually enlarging toward the outlet. The wheel with its vancs being rapidly rotated causes the water to be impelled outward into the casing and ultimately discharged from the outlet. This machine is very similar in
form to the vortex-wheel or turbine, the direction of flow of the water being, however, in the reverse direction.

An ingenious form of pump called the pulsometer has lately been devised and extensively employed. It consists essentially of a double chamber, having a ball-walve at top, and clackvalves at bottom. Steam is admitted to one oi the chambers and presses out the water contained there. Condensation then taking place a vacuum is formed, and the ball falls orer and closes the opening through which the steam entered, and water flows up through the clackyalves and again fills the chamber. The steam in the meantime acts upon the water contained in the adjoining chamber. Condensation then taking place there the ball falls back to that side, and the operations go on alternately, the result being a steady stream of water sucked into one chamber after another, and then forced out and upward by the steam pressure. The water is drawn into the machine from the centre. To the fourth class also belongs the hydraulic ram (q.x.).

Water-wheels are either vertical or horizon\{a]. The former class is undershot, overshot, or breast-wheel, as the water is fed to it from below, above or at the middle of the wheel.

The undershot wheel, the oldest form, acts chiefly by the momentum of the water, the weight of the water being scarcely called into action, and so can be used where there is a great supply of water always in motion. It is the cheapest of all water-wheels, and is more applicable to rivers in their natural state than any other form of the wheel; it is also useful in tide-currents, where the water sets in opposite directions at different times, because it receives the impulse equally well on either side of its floats. In the overshot wheel the circumference is furnished with a series of buckets, into which the water is deliyered from above. The buckets on one side being erect, will be loaded with water, and the wheel will be thus set in motion ; the moutlhs of the loaded buckets being thus turned downwards by the revolution of the wheel, will be emptied, while the empty buckets are successively brought under the stream by the same motion and filled. The breast-wheel differs from this in receiving the water a little below the level of the axle, and in having floats instead of buckets. In these two wheels the weight of the water is used as well as its momentum, and a much greater power is therefore produced with a less supply of water than is necessary for the undershot wheel. In order to permit these wheels to work with freedom, and to the greatest advantage, it is necessary that the back or tail water, which is disclarged from the bottom of the wheel, should have an uninterrupted passage off; otherwise it accumulates and forms a resistance to the float-boards.

Turbines or horizontal water-wheels are very suitable for high falls of watcr, as the action of such wheels depends unon the impulse of the water and not upon its direct weight as in the overshot wheel. Turbines have been divided into three classcs: parallel-flow, where the water is supplied and discharged vertically; outwardflow, where the water acts from the centre outward; and inward-flow, where the water acts from the outside, the currents flowing inward toward the centre. In all cases the greatest effi-

HYDRAZINE - HYDROBROMIC ACID

ciency is obtaned when the water acts upon the blades of the wheel without cansing a shock, and leaves the wheel without having any whitling motion. Sec Hydrodynamics; HydrostatICs.

Hy'drazine, or Di-Amidogen, a substance having the formula $\mathrm{N}_{2} \mathrm{H}_{4}$ (or $\mathrm{H}_{2} \mathrm{~N}_{\mathrm{N}} \mathrm{NH}_{2}$), obtained (together with oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{U}_{4}$) by heating an aqueous solution of the complicated substance known as triazoacetic acid $\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{6}\right)_{3}(\mathrm{COOH})_{3}$. It is a gas with a peculiar penctrating odor, but the properties of the pure substance are imperfectly known, on account of the avidity with which it combines with water to form the hydrate, $\mathrm{N}_{2} \mathrm{H}_{4} \mathrm{H}_{2} \mathrm{O}$, and the consequent difficulty of isolating it. Hydrazine is a powerful base, combining with acids to produce numerous definite crystalline salts. Among these the sulphate, $\mathrm{N}_{2} \mathrm{H}_{6} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}$, and the two hydrochlorids, $\mathrm{N}_{2} \mathrm{H}_{4} \cdot 2 \mathrm{HCl}$ and $\mathrm{N}_{2} \mathrm{H}_{6} . \mathrm{HCl}$, are important. The hydrate may be prepared by boiling the sulphate with a solution of caustic soda. It is a fuming liquid, somewlat oily in appearance, and boiling at $245^{\circ} \mathrm{F}$. The hydrate reduces cold ammoniacal solutions of silver nitrate, and also reduces Fehling's solution. It attacks glass, cork and india subber, but may be kept in sifver vessels.
(2) The substances derived from hydrazine by replacing one or more of its hydrogen atoms by compound radicals are also called "hydrazines." If only one hydrogen atom is replaced the hydrazine is said to be "primary." If two hydrogen atoms are replaced, the hydrazine is said to be "sccondary." The radical which replaces the hydrogen may belong to the fatty series, or to the aromatic series. One or more of the hydrogen atoms may also be replaced by a metal, such as sodium. The most important of the organic hydrazines is phenyl hydrazine, in which one of the hydrogen atorns is replaced by the aromatic radical phenyl, $\mathrm{C}_{8} \mathrm{H}_{5}$. This substance, which has the formula (CaH_{3}) HN.NH N_{2} is an oily liquid, which solidifies to monoclinic tablets at $73^{\circ} \mathrm{F}$. It mixes with alcohol, ether, Denzene and chloroform, but hardly at all with water. It reduces Fehling's solution in the cold, and is very poisonous. A secondary hydrazine is "symmetrical" when the two substituted radicals are attached to diffeient nitrogen atoms; it is "nnsymmetrical" if they are attached to the same nitrogen atom. Thass $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{HN} . \mathrm{NH}$ $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$ is the symmetrical secondary hydrazine of phenyl ($\mathrm{C}_{0} \mathrm{H}_{5}$) and ethyl ($\mathrm{C}_{2} \mathrm{II}_{3}$), while $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \quad\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{N}_{2} \mathrm{NH}_{2}$ is the unsymmetrical secondary hydrazine of the same radicals.

Hy'dride, a chemical substance consisting of hydrogen combined with a metal, or some simple or compound metallic basc.

Hydriod'ic Acid, an acid composed of hydrogen in combination with iodine, and having the formula HI. Hydriodic acid is analogons to the more familiar hydrochloric acid, both in its chemical structure and in its general properties. It may be prepared by the direct union of hydrogen and iodine at a red heat. A more convenient method, however, consists in passing sulphuretted hydrogen gas $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ through water in which a little pulverized iodine is suspended. The reaction is $\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{I}=2 \mathrm{HI}+\mathrm{S}$. Fresh supplies of iodine are added from time to time, and the liberated :sulphur is finally removed by
agitation and filtration, the sulphuretted hydrogen remaining in solution beng also removed by the application of a gentle heat. The aqueous solution so prepared pussesses strongly acid properties, and combines with lases to form salts called iodides. From it, or ty other methods that are given in the larger treatises on chemistry, pure hydriodic acid, free irem water, may he prepared. The pure acid is a colorless gas, with an odor similar to that of hyelrochloric acid gas. It has a density ahout 63 times as great as that of hydrogen, and at a temperature of $32^{\circ} \mathrm{F}$. it condenses to a liquid when subjected to a pressure of four atmosplicres; the liquid so obtained freezing to a solicl mass at about $67^{\circ} \mathrm{F}$. below zero. The specific heat cet the gas, at ordinary temperatures, is ahout 0.055 (at constant pressure), and the ratio of its specific heat at constant pressure to its specific heat at constant volume is 1.397 . It dissolves freely in water, the specific gravity of a saturated aqueous solution, at $32^{\circ} \mathrm{F}$., being about 2.00. The aqueous solution is colorless when pure, but it is slowly decomposed by sunlight, becoming dark from the liberation of iodine.

Hydriodic Ether (more correctly known as "iodide of ethyl"), a heavy, colorless liquid with a sharp, pungent taste and a penctrating ethereal odor, obtained by acting upon pure ethyl alcohol ($\mathrm{C}_{2} \mathrm{H}_{5 .} \mathrm{OH}$) by iodine, in presence of phosphorus. It las the formula $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$, boils at $162^{\circ} \mathrm{F}$. (under ordinary atmospheric pressure), and has a specific gravity of about 1.946. When not quite pure it becomes brownish upon exposure to light, from the liberation of iodme. In chemistry, hydriodic ether (or ethyl iodide) is largely used as a fundamental substance in the preparation of the various other compounds of ethyl.

Hydrobrómic Acid, or Hydrogen Bromide, a compound having the formula HBr , and analogous in its general properties to hydrochloric and hydriodic acids. Hydrogen ancl bromide do not combine directly, even in strong sunlight: but when hydrogen that is charged with bromine vapor is burned, hydrobromic acid and water are formed. Hydrogen and bromine may also be made to combine by electric sparks, or by passing the mixed gases over hot platimum. The most convenient way of preparing the acid, however, is by the action of bromine upon water. in the presence of phosphorns, the reaction being $4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Br}+\mathrm{P}={ }_{5} \mathrm{HBr}+\mathrm{H}_{3} \mathrm{PO}_{4}$. Phosphoric acid, it will be scen, is formed at the same time: but the two are easily scparated by heat. Pure lydrobromic acid, when free from water, is a colorless gas, having a density about 30.1 times as great as that of hydrogen. Under ordinary atmospheric pressure it condenses into a liquid at $09^{\circ} \mathrm{F}$. below zero, and at a slightly lower temperature it crystallizes. It dissolyes freely in water, a saturated solution, at $32^{\circ} \mathrm{F}$., having a specific gravity of $1 .-8$. A concentrated aqueous solution of hydrobromic acid fumes strangly in the air, but does mot decompose. Hydrobromic acid is a powerful acid, forming. with metallic bases and with organic radicals, detinite salts called "bromides." The bromides of the alkalies are greatly used in medicine as sedatives. Bromide of silver in also extensively used in photography, in the manufacture of sensitive dry-plates.

HYDROCARBONS - HYDROCHLORIC ACID

Hydrocar'buns, compounds consisting solely of carbon and hydrogen. They are exceedingly numerous, and many of them occur in nature. both in petroleum, asphaltum, and other similar minerals, and in the essential oils oi plants. The hydrocarbons can be broadly divided into two general classes, according to the way in which the carbon atoms that they contain are connected to one another. In the fatty series. the atoms are all connected in open chains, while in the aromatic series the carbon atoms are connected with one another in such a manner as to form closed rings. (See Fatty Compolvas and Aromatic Compotins.) As a class, the hydrocarbons are insoluble in water: they cannot be saponified; and they are neutral, and do not combine with acids to form salts.

The classification of the hydrocarbons is as yet incomplete; but the greater number of those that are known can be included in one or another oi the iollowing groups:

1. The Parafions, having the general formula $\mathrm{C}_{\square} \mathrm{H}_{2 \square}-$ 2 $_{2}$. The lowest menber of this series is methane, or marsh gas, CH_{4}, and many other members of the series are lmown, each containing one carbon atom and two hydrogen atoms more than its immediate predecessor. (See Parafens.)

2 . The Olefines, having the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n}$. Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$, is the simplest member of this series.
3. The fictylene series, hawing the general formula $\mathrm{C}_{2} \mathrm{H}_{2 \mathrm{a}} \mathrm{a}_{2}$. Acetylene gas. $\mathrm{C}_{2} \mathrm{H}_{2}$, is the simplest representative of this series.

The foregoing all belong to the fatty subdivision. To them we may add:
4. The Benzene series, having the general formula $\mathrm{C}_{\mathrm{n}^{2}} \mathrm{H}_{2} \mathrm{n}_{6}$, and
3. The Terpenes, a class of substances having the general iormula $\mathrm{C}_{10} \mathrm{H}_{3}$. Both of these latter series belong to the aromatic subdivision of the general hydrocarbon group.

The known hydrocarbons having any one general formula may be ranged in a series, whose members exhibit a sort of regular progression in their properties. For example, the first eight members of the normal paraffin group may be arranged as follows:

Methane	CH.	Boiling point (Gaseous)
Ethane	$\mathrm{C}_{2} \mathrm{H}_{4}$	
Propane	$\mathrm{C}_{3} \mathrm{H}_{3}$	"
Butane	C. H_{5} 。	$34^{\circ} \mathrm{F}$.
Pentane	$\mathrm{C}_{5} \mathrm{H}_{2}$	$100^{\circ} \mathrm{F}$.
Hexane	$\mathrm{C}_{\text {¢ }} \mathrm{H}_{3}$,	$158^{\circ} \mathrm{F}$
Heptane	$\mathrm{C}_{5} \mathrm{H}_{16}$	$210^{\circ} \mathrm{F}$.
Octane	$\mathrm{C}_{3} \mathrm{H}_{3}$	$255^{\circ} \mathrm{F}$.

A series of this sort is said to be "homologous. ${ }^{\text {D }}$

The paraffins are said to be "normal" when they contain but two methyl groups, $\left(\mathrm{CH}_{3}\right)$. Thus normal propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, has the constitutional formula $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{3}$; and it is not possible to arrange its atoms in any other way. In proceeding from this hydrocarbon to the next in the same series (that is, butane, $\mathrm{C}_{4} \mathrm{H}_{20,}$) we may substitute the methyl group, CH_{3}, for a hydrogen atom in the $\mathrm{CH}_{\text {: }}$ of the propane, or for a hydrogen atom in one of the CH_{3} groups. Hence we may have either of the two following
constitutional formulas for ine hydrocarbon butane:

or

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{5}
$$

The latter compound, which contains only two CH_{3} groups, is called "normal butane"; while tbe former, which contains three such groups, is known as "isobutane." Two butanes, each having the empirical formula $\mathrm{C}_{4} \mathrm{H}=\cdot$ are therefore possible, and both are actually known. Uhen we pass to the higher members of the paraffin group we find that a far greater number of isomeric forms can exist. accorcing to the way in which the new CH_{3} group is introduced, in generating the new hydrocarbon from the one next below it in the general series. Thus octane, $\mathrm{C}_{s} \mathrm{H}_{1 \mathrm{E}}$, can exist in is different isomeric iorms, and ridecane. $\mathrm{C}_{1} \mathrm{H}_{3}$. in no less than E 02.

Hydrochlo'ric Acid, an important compound of hydrogen and chlorine. which under the names "spirit of salt" and "muriatic acid," has been known in aqueous solution from very early times. It has the chemical formula $\mathrm{HCl}^{\text {. }}$ and may be formed by exposing a mixture of equal volumes of hydrogens and chlorine to diffuse daylight, the combination taking place quietly under these circumstances, but explosively under the influence of direct sunlight. A more convenient and risual method of preparing hydrochloric acid is by treating common salt ("sodium chlorid," NaCl) with strong sulphuric acid ($\mathrm{H}_{5} \mathrm{SO}_{4}$). The reaction is as follows: $\mathrm{VaCl} \div \mathrm{H}_{3} \mathrm{SO}_{4}=\mathrm{H}_{-} \mathrm{VaSO}_{4}-\mathrm{HCl}_{\text {. Pure }}$ hydrochloric acid is a colorless gas, I.zro times as heavy as an equal volume of air at the same temperature and pressure. At a temperature of $50^{\circ} \mathrm{F}$. it condenses, under a pressure of 40 atmospheres, to a colorless liquid. which boils, under ordinary atmospheric pressure, at $171^{\circ} \mathrm{F}$. below zero, and solidifies at a temperature about 6° below the boiling point. The specific heat of the gas at constant pressure (compared with water) is about 0.19 ; and the ratio of its specific heat at constant pressure to its specific heat at constant volume, at ordinary temperatures, is 1.389. Hydrochloric acid gas was first prepared. in an approximately pure state. by Priestley, in I-74; but it was believed to be an oxid of a new element (provisionally called "murium") until Davy, in ISro, showed that it is a compound of hydrogen and chlorine.

Hydrochloric acid gas is exceedingly soluble in water. If a dry glass flask, which is completely filled with the dry gaseous acid. be brought mouth downward under water, and the stopper is then removed. solution takes place witl such extreme rapidity that the water is often drawn into the flask suddenly enough to break it. By passing a stream of the gaseous acid into water, an aqueous solution may be prepared which has a specific gravity, when saturated, of 1.21. The commercial acid is commonly known, to the present day, as "nuutiatic acid. Large quantities of it are obtained as a by-product in the manuiacture of sodium carbonate from common salt; but the acid so produced is not entirely pure, and the traces of iron and other impurities that are present give it a yellowish tinge. Aqueous hydrochloric acid is largely used in the laboratory, and also in the
arts in the manufacture of a great variety of substances.

Hydrochloric acid combines with metallic bases to form salts which are known as "chlorics." Common salt (chlorich of sodium, NaCl) is the most familiar and the most abundant exumple, in nature, of this elass of sulstances. The chlorids of silver, gold, mercury, barium, aluminum, platinnm, and ammonia are also important, and are described under Mercury, - LLCsix゙てs, ctc.

Hydrocyan'ic Acid, or Prussic Acid, an exceedingly poisonous substance. inscovered hy Scheele in 1 -8z. It has the chemical formula HCN, and nay be formed by passing a stries of electric sparks through a mixture of nutr gen and acetvleme (q.r.). The reaction in this case is $2 \mathrm{~N}+\dot{\mathrm{C}}_{2} \mathrm{H}_{2}=2 \mathrm{HCN}$. The pure acid is more conveniently prepared by passing sulphurettod hydrogen gas, $\mathrm{H}_{2} \mathrm{~S}$. over dry mercuric cyanide. $\mathrm{Hg}(\mathrm{C} .)_{3}$, hydrocvanic acid and mercuric sulphid being formed, according to the equation $\mathrm{Hg}(\mathrm{CN})_{2}+\mathrm{H}_{2} \mathrm{~S}=2 \mathrm{HCN}+\mathrm{HgS}$. Is thus prepared, hidrocvanic acid is a rolatile liquid, boiling at $80^{\circ} \mathrm{F}$. and freezing at $5^{\circ} \mathrm{F}$., and posscssing a peculiar smell of bitter almonds. It is so intensely poisonous that a single drop of the nhydrous acid produces instant death when sunllowed, and its vapor, even when mixed with considerable quantities of air, is also exceedingly poisonous. It mixes readily with water, cther, and alcohol. Although it is called an acid, and forms salts that are known as "cyanides," it is very weak in its acid properties. It dous not redden litmus paper, and its salts are readily decomposed by other acids.

Among the more important compounds of hydrocyanic acid are potassium cyanide and mercuric cyanide. Potassium cyanide. KCN, may be formed by passing nitrogen gas over a white-hot mixture of charcoal and potassium carbonate, the reaction being:

$$
\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{~N}+4 \mathrm{C}=2 \mathrm{KCN}+3 \mathrm{CO} .
$$

It is more conveniently prepared, however, by strongly heating potassium ferrocyanide (sce below), which breaks up into potassiun cyanide, carbide of iron, and free nitrogen. Potassium cranide is a white salt, soluble in water and in alcohol, and exceedingly poisonous. It is much used in electroplating as a solvent for gold and silver, and also in the extraction of gold from certain ores by the process known as "craniding." it melts without decomposition, and in the molten state it is a powerful reducing agent. For this reason it is often used as a flux in welding, and in other metallurgical operations.

Mercuric cvanide, which is also very" pnisonons, is used in medicine, and is prepared hy dis-sol-ing mercuric oxid in an aqueous solution of hydrocyanic acid.

Allied to hydrocyanic acid are two other acids, known respectively as "ferrocyanic acid," $\mathrm{H}_{1} \mathrm{Fe}_{2}\left(\mathrm{C}_{3} \mathrm{~N}_{3}\right)_{4}$, and ${ }^{\text {fericranic acid, } n ~} 1 \mathrm{H}_{6} \mathrm{Fe}_{2}$ $\left(\mathrm{C}_{3} \mathrm{~N}_{3}\right)_{4}$ which are not of any importance in the arts in the free state, but whose potassium salts are much used. Potassium ferrocyanide, or vellow prissiate of potash, $\mathrm{K}_{6} \mathrm{Fe}_{2}\left(\mathrm{C}_{3} \Sigma_{3}\right)_{4}+$ $6 \mathrm{H}_{2} \mathrm{O}$, is prepared on a large scale by heating a mixture of nitrogennus rrganic matter and caustic potash, and treating the mass with freshly prepared ferrous carhonate. Crude cyanide of potassium is formed in the firstinstaree, and
this combines with the ferrous carbonate to form the yellow prusshate of I wash and potassiumearbonate, from wheh the sellow prussiate may le obtained in large erystals. b! evaluratico. When pure the Jellow prussiate is me 1 rise 11 nus. It is used, in the arts as a seurce of Prussian blue amd also for the manufacture of potassium cyanicle, whoch is lilerated when the Yellow prussiate is stre nely heated.

Pitassium ferricyanide: if red prussiate of potash, K, Fe, $\left(0 \mathbb{X}_{3}\right.$, is prepared hov 1assing chlorine gas thro ugh a schlution of the yellew prussiate: two melecules of fortassum being therche abstracted irom it, with the fermation of potassium chlorid as a secendary product. The red pronssiate is used in the manufacture of sensituve paper fur making blue-prints.

Hydro-ferricyanic (fer-ō-sī-ăn'īi) Acid, and Hycro-ferrocyanic Acid. See Hydrocrasic

Hydrocele, hídrō-sel, a collection of scrous flutu formi.g tumors arcund the testicle or spermatic eord. Dumng fortal life the testicle pushes the peritonewn \vec{F} efore it as it desecnes from the abdomen into the scretum. Ak g the spernatic cord the sac is usually ubliterated. 1 ut if it is not it may become distended with cluid. The pouch of the peritoneum normally ren ains alongside of the testicle, zond is called the tumica vaginalis. Distunticns if the se pouches may be congenital. but ordinarily they begin after maturity and probably are due ti some fault in the blood-vessels, allowing the escape of the serum. Symptoms are due to the weight of the tumor, and the conly danger lies in the possibility (if the injury and rupture of the sac. Aspiraticn of the fluid, followed by the injection of a fow drops of carbolic acid, may accomplish a cure. but partial removal of the sac may be necessary

Hydrodynamics (i.ow w, water; orizoruг. force", "r Hydromechanics, is that part of Dynamies which treats of the motion or rest of fluids uncer the action of forces. A perfect fluid is defined as a body whose parts are perfectly free $t 0$ move under the action of the smallest forces, or othervisc, as a body such that the reactions between any two portions of it are normal to the surface separating them. If there is any tangential drag ending to prevent the one portion of the substance frema slipping past the other, the lluid is said to be riscous. A perfect fluid is an abstracticm, like the matorial particle or the rigid body, but many of the ordrary thuids, like water. alcohol, air, and other sases, are so slightly viscous that for many purposes they may be considered as perfect. The normal reaction. which alone we suppuse to be present, is called the pressure, and is measured by the limit of the ratio of the force excrted on an element of surface to the area of the element, when both diminish without hmit. The usual gravitational unit of pressure is the pound-weight per square inch, the usual scicntific, absolute unit (fee Mechavics), is the dyne per square centimeter. The pressure of the atmosphere may be considered as equal to one million dynes per square centimeter.

The fundamental theorem of hydrodymamics is that the pressure on an element of surface is independent of the direction of the normal to the suriace. This may be proved by consider-

HYDRODYNAMICS

ins ine equilibsium of a small tetechedron． $\rightarrow B C D$ ，Fig．I，and resolving the iorces on its

Fig． 1.
末aces in the direction $B D$ ．The pressure being In rmal，the forces on $-\{B D, B C D$ have nis c mponent along $B D$ ，while if the pressures c．$A B C \cdot A C D$ and the areas of those sides are respectiveit $\varepsilon_{1}, p_{2}, S_{1}, \Sigma_{20}$ their normals

 $5_{2} \cos ^{2}(1, B D$ are the projections of the areas on a plane perpendicular to $B D$ ．which are equal．therefore $h_{2}=h_{3}$ ．If there are $0: h e r$ froces apf lied the thid besides the pressure． such，forinstance，as its weight，these will tee proportional to the riume of the tetrahedron， and when its $s: z$ ？is diminished indefiritely： the volume vanishes to the third order of s：nail quantities，and may thus be neglected in c mparisor with the area，which is of the secund $n=d e r$ ．sn that the result is not affected．

Hydrostatics－The mill irst consider hy－ drestatics，or that part．of our subiect which deals with Huids at rest．SuFpose that the Auid is sorbect to the action of forces whose components along the condimate axes are equal to K．Y，Z per unit of mass．These tre call bodily foces．Von consider the equilib－ fium of an infinitesimal reciangular parallel． fiped，Fig．2．whose edges，parallel to the coo：－

F：フ．＝．
iinate axes，have lertoth ir cind dz．Suppose that the mean value ：the pressure on the －de $A B C D$ ，which is at a distance x from the －s．n．is f then the N^{5}－compentent of the t ree on this side is foty．On the side EFGH． Thich lies at a instance ir farther fn m the Nigin，the mean pressure will be $p-\frac{\partial p}{\partial f}$ ！τ ．
and tine component on the face $E F G H$ ，acting c_{I} the parallelopiped．being in the opposite cirection will be $-\left(2+\frac{\partial r}{\partial x} x^{x}\right)$ iviz．Now if the deasity of the fuid is o ，the amount of matter in the paralielopiped．beng the product of the density and volume．will be airdy siz．and the force exerted upon it in the k－direction Wi＇l be fo：xdyuz．We must therefore have for equilibrium
and passing io the lim：by decreasing the dimensions．f will be the fessure at any point，and dividing by insjiz，we have

$$
o K=\frac{\partial!}{\partial . i}
$$

In a simiiar manter we have
（I）

$$
\begin{aligned}
& \rho I=\frac{\partial \rho}{\partial y}, \\
& o Z=\frac{\partial g}{\partial z} .
\end{aligned}
$$

Thus the nuic can be in equilibrium only under the infiuence of bodity forces such thas the components of the bounly it coes，mults－ plied by the density，are the derivatives of the same function of the coordinates．Nuw there is in general a fhrsical relation between the pressire of a fiuid and tine density at any pornt．If re put

$$
P=1 \frac{i P}{0} \cdot \frac{\therefore P}{\Delta!}=\frac{\pi}{0} .
$$

we have

$$
\begin{aligned}
& \frac{\partial P}{\partial z}=\frac{i P}{i n} \frac{\partial n}{U}=\frac{?}{0} \dot{\partial}
\end{aligned}
$$

and our equations（i）Eccume

$$
\begin{equation*}
I^{-}=\frac{\partial P}{\partial r}, \quad I=\frac{\partial P}{\partial \xi} \quad Z=\frac{\partial P}{\partial z} \tag{2}
\end{equation*}
$$

Now this is the condition that the bodily forces are ir Msrus：でと（eee Mechavics）．In that case the fiential energy it－unit mass is called the fieraia．of the torces．and will be denoted by $\%$ Thus we shall have $P=-5$
－cant．，and dT $=-\delta P=-\frac{d h}{\rho}$ ．If two fluds of diferent densities are in coritact，we have at their common suriace
so that
ani since $\rho_{1}-\rho_{3}$ is not zen we must ha＇c $d l=0 . d!=2$ ．Consequently the suriace oi seiaration is a surface of constarit fotential and constant pressure．In the case of gratity we have，if the Z－axis is measured vertical．y upward．$f=g_{0}$ ．that the surfaces of corstant I are hinzontal plazes，and a surface where waies is in co ntact with the atmisphere must be a hinz ntal flane．or level suriace，the rressure bemg the constant atmespheric pressure．It
we suppose the fluid to be incompressible, we have ρ constant, $P=p / \rho$,
1.3) $\frac{P}{\rho}=-I+$ const. $=-g z+$ const.,

$$
\text { (4) } \quad p=-g, \rho z+\text { const., }
$$

so that, if we neglect the atmospheric pressure, and count the depth from the plane $z=0$, we have the fundamental theorem for heary licquids, namely, that the pressure is proportional to the depth. This may be proved experimentally by placing a well-fitting plate urrder a tube, Fig. 3 , communicating with a

Fig. 3.
vessel of any shape, and holding the plate up by a wire hung from a balance, while water is poured in above. The weight required to hold the plate up is found to be independent of the shape of the ressel, and to depend only on the depth and the area of the plate. The vase and plate may also be immersed in liquid, while, instead of liquid within, weights are placed on the plate; the weight supported will then be proportional to the depth.

Consider now a gas, or compressible fluid, satisfying the law of Boyle and Mariotte,

$$
p=a \rho
$$

Accordingly,
(5)

$$
P=\int \frac{d p}{\rho}=\int \frac{a d \rho}{\rho}=a \log \rho+\text { const. }
$$

and
(6)
(7)

$$
V=g z=c-a \ln g \rho
$$

$$
\rho=\rho_{0} c^{-\frac{g \pi}{a}}
$$

Thus as we ascend to heights in arithmetical progression the density decreases in geometrical progression, becoming zero at an infinite height. From equation (7) the barometric formula is obtained by which heights are found from barometer readings. The law of Boyle assumes constant temperature. It is, however, more likely that the temperature varies in accordance with what is called conyective equilibrium, so that if a portion of air is Joter than the stratum in which it lies it will rise, and, cooling and expanding, will eventually find a layer of the same density and temperature as its own. The principles of themodynamies give us the relation between pressure and temperature when the rarefaction is adiabatic, that is, when no heat is lost or gained by the air,

$$
p=b \rho^{\kappa},
$$

where k is a constant for the gas, whose value is about r.4. We then have

$$
\begin{equation*}
V=g z=-\int b_{\kappa} r_{r^{k-2}} d_{\rho}=c-\frac{b_{\kappa} p^{k-1}}{\kappa-I} . \tag{8}
\end{equation*}
$$

Since $\kappa>1$, ρ diminishes as z increases, and is equal to zero when $g \approx \quad c$, so that on this hypothesis the atmosphere has an upper himit.
lect us now consider the equilibrium of a solid body froating in a licpuid. If we consider the body removed and the space that it occuphed filled with water, since this water is in cepulhbrium, its weight is horne up by the pressure of the surrounding water, the effect of which is accortlingly to apply to each portion of the water in question an upward force just equal to its weight. Now just the same forces must lue the resultant of the pressures on the solid when it is substituted for the displaced water, so that it is borne up) by a force equal to the weight of the displaced water. This is the Principle of Archimedes. Since the resultant of the weight of all the displaced water is a single force applied at its center of mass, the resultant upward thrust on the floating body is applied at a point coinciding with the center of mass of the displaced water. This point is called the conter of buoyancy of the body. If the body is to be in cquilibrium, according to the principles of statics of a rigid body, its weight must be equal to that of the displaced body, and its center of mass and center of buoyancy must be in the same vertical line. If the first condition is satisficd. but not the second, the body will float, but will be subject to a turning couple.

Suppose the body floats without heing wholly immersed. A plane which cuts off from the body a volume equal to the volume of water having an equal weight is called a plane of fotation, and if we draw all such planes they will envelop a surface called the surjace if flotation. For every plane of flotation there will be a center of bunyancy, and the locus of all these points is called the surface of buoyancy. Suppose the floating body is lisplaced from its position of cquilibrimm by rotation through a small angle of about an exis $\cap \mathrm{N}$ through O, Fig. +, and let $\|^{\prime} L, I^{\prime} L^{\prime}$ be the original and

Fig. 4.
final planes of flotation. By turning the figure until cither is horizontail both positions of the body may be shown. let B be the original conter of buoyancy, G the center of mass of the hloating body: Then if B were the conter of buoyary in the second position,

HYDRODYNAMICS

the body rould be acted on by the couple of which either arm would be the weight $11=m$, and the amm the horizontal projection of $B G, b \dot{\partial} \theta$, where $b=B G$. The moment of the couple tending to further displace the body will then be Ifböt. But this is not the only couple, for the immersed part is not the same as before, the volume of the wedge EOE' having become imnersed, giving rise to an upward thrust, and the wedge $D O D D^{\prime}$ having emerged and lost its broyancy, both these causes giving rise to a tuming moment in the same direction, and opposite to that previously found. Since the rolume under water is to be the same in both positions, the volume of the redges of immersion and emersion must be equal. Since the wedges are infinitely thin, the thickness at any point x, y in the plane of flotation is $\varepsilon=1 \% 0$. The condition for equality of volumes is then
(9)

$$
\iint z d x y=0 \iint y d x d y=0
$$

the integral being taken over the plane of flotation. This will be the case if the axis passes through the center of mass of the area of Hotation. The thrust on any element of volume $d:=z d x d$ being god:, the moment about the 산 will be
(г)

$$
\begin{aligned}
L^{\prime}=\iiint \int_{0} y^{\prime} t= & =g_{0} o \dot{0} \theta \int_{i} \int y^{2} d x d y \\
& =g_{0} \circ \dot{y^{2} x^{2}} .
\end{aligned}
$$

Where κ_{x} is the square root of the mean of the squares of the distances of the elements from $t: \mathrm{se}-\mathrm{l}$-axis, or the so-called radius of gration of the area of flotation about the . I -axis, and S is the area of flotation. In like manner the moment about the 1 -axis is
(11) $M^{\prime}=-\iint_{d}^{0} g \cap N J=-g_{n} \theta \iint x y d x d y$

There are alrays troo axes at right angles to each other. called principal axcs. for which the integral above ranishes, and for such an axis a displacement about it sives rise only t.) a couple about that axis. Subtracting this couple L^{\prime} from the one previously fonnd wa obtain for the magnitude of the righting cuuple (12)

$$
L=g \partial \theta\left(\rho S_{\kappa_{z}}{ }^{2}-m b\right)
$$

If is evident that in moving the point of applicatton of the thrust from the center of mass of one wedge to that of the other, the center of buoyancy will be moved in a parallel direction, so that, in the limit. this direction being that of the plane of flotation, the line $B B^{\prime}$ will be parallel to that planc. or the tangent to the surface of buovancy is parallel to the corresponding plane of flotation. It is also evident that the body is under the same furces that it would be if the surface of buoyancy were material and rested on a horizontal plane, for the reaction would be vertical and equal to the weight of the body.

If B^{\prime} be the new center of buovancy, and we draw verticals from B and B^{\prime}, they will be normals to the surface of buorancy and will intersect at M, the center of curvature of the section of the surface of buoyancy. This point is called the metucerter, and its distance h_{1} above \vec{s} the metwerntric luight. Evidently
for stablc equilibrium, or a positive righting conple, M must be above G. The arm of the couple being the horiznatal projection of $\because=1$ rr is crual to $h_{x} \partial \theta$ and we liave $L=m \operatorname{migh}_{x} \partial h^{2}$. Inserting this in equation (12) we obtain for the metacentric height
(13) $m h_{x}=0 S_{x^{2}}-m b$,
and dividing by n and riting $I^{\circ}=n / \rho$ for the volume of displaced liquid.
(14)

$$
h_{x}=\frac{5 x_{2}^{2}}{1}-b
$$

The cquilibrium is stable or unstable according as this is positive or negative.

For the displacement about the 1 -axis we have in like manner a couple proportional to the angle of displacement, with a new meta. centric height,

$$
\begin{equation*}
h_{y}=\frac{C_{K_{y}}^{2}}{1}-b \tag{15}
\end{equation*}
$$

Where κ_{y} is the radius of gyration about the 1 -axis. It is evident that the metacentric height is sreater for a displacement about the slorter principal axis of the plane of flotation. Thus it is easier to roll a ship than to tip it endwisc. The above theorems concerning the surfaces of flotation and buovancy are duc to Dupin.

If the floating body is totally submerged. like a submarine boat, only the first moment mgbon comes into play, s being zero. and the center of buovancy becomes the metacenter The stability is in this case only secured 1% placing the center of gravity low:

Hydrokinematics.-Wc will now consicer the motions possible to a fluid, without regard to the forces causing them. Let the velrcity at a point be the vector q. with components $u_{\text {, }}$ i. u' and let us consider the quantity of fluid entering or leaving any closed surface in the unit of time. The amount of floid which crosses the element of surface d, Fig j,

Fig. $5 \cdot$
with a velocity q would in unit time, if q were constant. fill a prism on the base is with a slant height q. If n is the normal to $i 5$, the volume of this prism is $d S q \cos (q n)$, and the mass of fluid in it $d S p q$ ens ($q n$) or using the furmula for the projection of q on n (see Mechasics, equation (12)),
d. $\rho q_{n}=d S \rho\{u \cos (n x)+i \cos (n y y)+w \cos (n t z)\}$

Consequently if we consicier any closed surface, whose outward nomal is n, we have for the whole outflow in unit time the surface integral
(16) $\begin{aligned} \Phi=\iint \rho q_{n} d S & =\iint \rho[u \cos (n x) \\ & \left.+v \cos \left(n y^{\prime}\right)+u^{\prime} \cos (n z)\right] d \subseteq .\end{aligned}$

But we may find a different expression for the same quantity, by considering the rle-
ments of volume. Consider the parallelopiped of Fig. 2, and let x be the mean velocity on the side $\cdot 1 B C D, u+\frac{\partial_{i}}{\partial x} t x$ on the npmosite side EFGll. Then the infow on the first side will be pudniz, while the outhow through the second will be $\left\{\rho u+\frac{\partial(o u)}{\partial x} d x\right\} d y d z$. The total outllos will thus be

$$
\frac{\partial\left(n H^{\prime}\right.}{u_{i}} d x d y d z
$$

In a similar mannur we find the outflow through the two remaining pairs of sides to depend on the other two components. From the whole surface we accordingly have the outhow

$$
\left\{\frac{\partial(\rho u t)}{\partial x}+\frac{\left.\partial^{\prime} n_{i}^{\prime}\right)}{\partial_{z^{\prime}}}+\frac{\partial\left(m_{i} i^{\prime}\right)}{\partial z} ; d x d j d z,\right.
$$

and for the outflow per unit volume we have

$$
\left(I_{7}\right) \quad \frac{\partial(n z)}{\partial x}+\frac{\partial,\left(x_{i}\right)}{\partial y^{\prime}}+\frac{\partial\left(m u^{\prime}\right)}{\partial z} .
$$

On account of this kinematical interpretation, if we have any vector F, whose components $\therefore .1, Z$ are functions of the coordinates of a point, the expression

$$
\frac{\partial V}{\partial i}+\frac{\partial Y}{u j}-\frac{\partial Z}{\partial i}
$$

is called the divergence of the vector, and will be abbreviated div F. Summing up the outfow for all the elements of volume inside the surface S, it is evident that the volume integral thus found must he equal to the surface integral 19 . Thus we have
(19) $\iint \rho\left\{u \cos (n x)+z^{\prime} \cos (n y)+u^{\prime} \cos (n z)\right\} d S \quad \begin{array}{r}=\iiint\left\{\frac{\partial(n u)}{u x}+\frac{\partial(n)}{\partial y^{\prime}}+\frac{\partial\left(n u^{\prime}\right)}{\partial z}\right\} d x d y d z .\end{array}$

This may be taken as a hinematical procf of the Diecrgence Theorem, due to Gauss and Green, in which, for any vector function which is continuous and has a definite value at every point in the volume within S,

$$
\begin{array}{r}
(20) \iint\left\{\mathrm{X} \cos (n x)+\mathrm{Y} \cos \left(n y^{\prime}\right)+Z \cos (n z)\right\} d S \\
\left.=\iiint \frac{\partial \mathrm{V}}{\partial \varepsilon}+\frac{\partial Y^{*}}{\partial y}+\frac{\partial Z}{\partial z}\right\} d x d y d z,
\end{array}
$$

or in morc abbrctiated notation,
(20)

$$
\iint_{0}^{2} F_{n} d S=\iiint d i v F \cdot d=
$$

The surface-integral in (20) is called the $A_{l u}$ of the vector F through the surface S. It we have any continuously distributed vectorfunction F, that is, one whose components \mathbb{d}, I°, Z are continuous functions of the point x, y, z, we may draw curves having the property that at every point on a curve its tangent has the direction of the vector F. The differential equations of these curves are

$$
\frac{d x}{I}=\frac{d v}{V}=\frac{d z}{Z}=\frac{d s}{\Gamma},
$$

and the curves are called lines of the vector F. For instance, lines of the vector q are called lines of poui. If we draw all the lines of the vector passing through a closed contour.

We shall ithain tubular surface called a tube wi the vectir. Fig. 6.

If the flaid in ince maressible, as much fluird must flow out ifmon as minto any volume, so

Fic. 6.
that the total outfon is zero. The density is then constant, and we have, dividing (I_{7}) by "

$$
\begin{equation*}
\operatorname{div} q=\frac{\partial: t}{\partial x}+\frac{\partial^{-}}{\partial j}+\frac{\partial \ddot{ }}{\partial z}=0 . \tag{2I}
\end{equation*}
$$

A vector π hose divergence is zern is said to be solenoidul (owiyy, a tube), for its tubes have the property that the flux across a cap, or portion of a surface bounded by the tuluc, is the same wherever the surface be drawn. Analytically, applying the divergence theorm to the portion of space hounded by a portion of such a tube and two caps forming ends, since along the sides of the tube the normal component vanishes that purtion of the flux in (20) is zero. Accordingly the flux throvigh both enos is zero, or the flux out through cre is çual to that in through the other. Or, looking in the direction of the vector-lines, the flux across any cap is vhe same. If we consider a tube of infinitesimal cress-section, and 5 is the area of a right section, since the flux is $F S$, which is constant for the tube, the magnitude of the vector F is inversely pre portional to the area of the cross-section.

If the liquid is not incompressil ice the total outward Hox is equal to the time-rate of decrease of the mass insite the surface. S. so that, the mass in an clement of volume $d \tau=d x d \omega d \approx$ being $\rho d \tau$, we have

$$
\begin{align*}
-\frac{\partial m}{\partial t} & =-\frac{\partial}{\partial t} \iiint \rho t t=\iint \rho q_{n} d S \tag{22}\\
& =\iiint \operatorname{div}(\rho q) d t
\end{align*}
$$

Now since the volume over which we integrate is independent of the time, we may differentiate under the integral sign; also, both integrals being taken uvor the same volume, we may combine them into cne.

(23)

$$
\left.\iiint \frac{1}{i \rho} \frac{\partial}{\partial t}+\operatorname{div}(\rho q)\right\} d t=0
$$

This equality holding for any volume whatever, the intcgrand must vanish, so that we have
(24)

$$
\frac{\partial \rho}{\partial i}+\frac{\partial(\rho u)}{\partial x}+\frac{\partial\left(m^{\prime}\right)}{\partial \jmath^{\prime}}+\frac{\partial\left(\rho u i^{\prime}\right)}{\partial z}-0 .
$$

This is the so-called equation of contimuity, the term arising from the continuity of existence of mass, norse being created or destroyed, but being conveyed without change from place to place.

Beside the surface- and volume-integrals dealt with above, we need to consider certain

Gine-integrals. If we resolve the vecter ? along the direction of the tangent to a curre running from A to B, and multiply by the length of the are ds. and integrate from . 1 to B along the curve. the line-iutegral

$$
\begin{equation*}
\int_{0}^{2} q_{s} d s=\int_{0}^{2}\left(\sin ^{2} x-i d y+u u^{2} \Delta\right) \tag{2}
\end{equation*}
$$

is called the circulation along the curve. If we describe the curve in the reverse direction, the integral changes sign. If the curre is a closed one. We shall prove the line-integral to be equal to a certain surface-integral over any surface 5 which has the contour in question as a boundary. Suppose first the contour is a plane curve and the surface is a plane. Let us divide the area up into intinitesimal rectangles by lines parallel to the axes of I^{-} and $!^{\prime}$, Fig. $;$. If we then find the circulation

Fig. :-
around each of the rectangles in the same direction. we shall have gone around all the sides common to two adjacent rectangles twice in opposite directions, so that those parts of the circulation will have destroved each other, and there will remain only those parts which belong to the original contour. Accordingly the integral around the contour is equal to the sum of all these around the infinitesimal rectangular contours. Consider one of these, $-1 B C D$. Fig. S. Along $.1 C$ the

Fic. s.
tangential component is at, and the contribution to the integral ait. Along $B D$ the value of $: a$ is $u-\frac{\partial: t}{\partial y} d y$ and since we are guing in the opposite direction the contribution to the integral is $-\left(u-\frac{\partial: t}{\partial!} d y\right)$ or. Along . 1b the tangential component is $i=$ and. since we are mving from B to 1 . the consmbuti in in the integri! is - idy \quad. $1 / \mathrm{ng} C D$ the tangential comp onent is $z-\frac{\partial \cdot}{\partial x} d x$ and the contriloution $\left(\because+\frac{\partial u}{\partial x} d x\right) d y$ Adding these futr we have

$$
\left(\frac{\partial u}{\partial r}-\frac{\partial: l}{\partial_{3}}\right) d x d y ;
$$

and summing $f-r$ all the rectangles,
(26)

$$
\iint_{0} x^{3} s-\int_{0}^{2}\left(\frac{\partial-v}{\partial x}-\frac{\partial: t}{\partial j}\right) d x d_{y}
$$

which is a particular case of our theorcm.

If the contour is not a plane curve. so that the surface = is not plane, let us by drawing a series of planes parallel to one of the coordinate planes divide it into ininitesimal strios. Fig. 9, and then by draming planes altematers

Fig. g.
parallel to the two other coordinate planes divide each strip into infinitesimal triangles each having one side parallel to each coordinate plane. As before the sum of the circulations around all the triangles is equal to the circulation around the contour. Let us consider one of these iriangles, $B C D$, Fig. 10, and let A

Fig 10.
be the point from which lines drawn parallel to the coordinate axes will pass through B, C, D. Again, circulation around $B C D$ is equivalent to the sum of the circulations around the triangles $-\perp B C \cdot-1 C D,-A D B$, the projections of $B C D$ parallel to the coordinate planes. Lei the areas of these four triangles be respectively $d \Sigma d \Sigma=d 5 \cos (1, x), d \Sigma y=d 5 \cos \left(12 y^{\prime}\right), d x_{z}$ $=\dot{i} \cos (\pi: z)$, $: 3$ being the nonnal to S. Then we have, applying (20) to the three contours,

$$
\begin{aligned}
& \iint_{0}^{2} d=\left(\frac{\partial \bar{u}}{\partial y}-\frac{\partial z}{\partial z}\right) d s_{z}, \\
& \text { ABC. } 4 \\
& \int_{A C D . t}^{0} \text { पे }^{\lambda} \delta=\left(\frac{\partial u}{\partial z}-\frac{\partial i}{\partial x}\right) d S_{y}, \\
& \int_{i=1}^{0} i_{s}=\left(\frac{\partial i}{\partial x}-\frac{\partial i v}{\partial!}\right) \text { is } \\
& \text { ADB. } 1
\end{aligned}
$$

and consequently

$$
\begin{aligned}
& \int_{\dot{B C D B}}^{\operatorname{inc} t 5=1}\left(\frac{\partial_{i}}{\partial \vdots}-\frac{\partial_{i}}{\partial z}\right) \cos (2 n \cdot)
\end{aligned}
$$

Summing up ior all the infinitesimal triangles: we find the surface-mintegral over the surface to be equal to the circulation around the contout.
(27)
$\int\left(u \cdot l x+i^{x}\left(d y+z^{\prime} d z\right)=\right.$
$\iint i\left(\frac{\partial_{i}}{\partial y}-\frac{\partial_{i}}{\partial z}\right) \cos (13 x)$
$\left.+\left(\frac{\partial u}{\partial z}-\frac{\partial \cdot}{\partial x}\right) \cos \left(n y^{\prime}\right)+\left(\frac{\partial z^{\prime}}{\partial x}-\frac{\partial u}{\partial y^{\prime}}\right) \cos (n z)\right\} d S$.
This is known as Stokes's theorem.
If we define a vector ω witl the components $5, \%, \zeta$

$$
\begin{align*}
& 2 \xi=\frac{\partial u^{\prime}}{\partial y^{\prime}}-\frac{\partial v}{\partial z}, \\
& 2 \eta=\frac{\partial u}{\partial z}-\frac{\partial u^{\prime}}{\partial u}, \tag{28}\\
& 2 \xi-\frac{\partial \cdot}{\partial x^{\prime}}-\frac{\partial u}{\partial y},
\end{align*}
$$

we have the integrand in the surface-integral in (27).

$$
2[\xi \cos (n x)+\eta \cos (n y)+\zeta \cos (n z)]=2 \omega_{n}
$$

as the component of 2ω normal to the surface S. The veetor 2ω is called the curl of q, for the reason that if the lines of the vector "curl" about in any region, so that the tangential component along, a closed curve always has the same sign, the surface-integral. and hence the eurl, cannot vanish. We may: write Stokes's theorem in the abbreviated form

$$
\left(2_{7}\right) \quad \int q s d s=\iint(\operatorname{curl} q)_{n} d S .
$$

As an example of the kinematical significance of the eurl, let us consider a portion of fluid Which revolves like a rigid body about the Z-axis We then have $u=-a y, v=a x$, where a is a constant representing the angular velocity. We thus have

$$
2 \zeta=\frac{\partial \partial_{x}}{\partial x}-\frac{\partial_{u}}{\partial y^{\prime}}=2 a .
$$

Or applying Stokes's theorem to a circle with center on the axis of rotation, since $q=u r$,

Fig. If.
the line-integral is $2 \pi r \cdot q-2 \pi r^{2} a$, which is cqual to the area of thu circle multiplicel by $2 u$, which must rejpresent the curl. Thus we

Fig. Iz.
find that the erre of the velocity is twiec the angular relocity with which an clement of huid is revolving. On this account the vector (1) has reccived the name of inticity: and fluic moving so that w is not zero is saici
to mu゙い Vortucally: As the difference between vortical and mon-vortical motion is very important, we may illustrate it as follows: It is possible that iluid may circulate in a region either vortically ur non-vortically. Suppose that the flund is fillef wath short straws represonted by the short lanes int ligs. if and 12 ; if, as the ihnich moxes about, these all remain parallel to their miginal directom the hlow is non-vortical, Fig 11; if they turn, the flow is vortical, Pig. 12. Thus it is impossible to tell loy mercly looking at a cliagram of stream-lines whether the flow is vortical or not.

It will be shown later that the divergence and curl of a vector funetion are eharacteristic of it, and that if the y are known everywhere the complite nature of the vector is known. They are quite independent of each other. as is illustratud in Pig. 13, which shows re-
a.
b

$\operatorname{div} q=0$
$\cot q=0$
$\operatorname{div} q>0$
$\operatorname{cuct} q=0$

Fic. 13.
gions where the divergence and curl are zero or not, imelependently.

Non-iartical Womon-Let us first examine non-wortical montion, that is where curl $q=0$ everywhore, 11 we connect. 1 and B hy any two curse fi $13,1 / 1 / 3$, the circhlation around the
closed path $A C B D-1$ will be zero, hence the clrculation from A to B will be the same by wher path. Thus the circulation does mut Giepend on the path, but only on the position of its ends, so that we have
(29)

$$
\int_{-1}^{B} q_{d} d s=\phi_{B}-\phi_{A}^{A}
$$

which necessitates

$$
\begin{aligned}
q_{s} d s & =u d x+\tau d y+u d z=d \phi \\
& =\frac{\partial \dot{\phi}}{\partial x} d x+\frac{\partial \phi}{\partial y} d y+\frac{\partial \dot{\varphi}}{\partial z} d z,
\end{aligned}
$$

and therefore
(30)

$$
u=\frac{\partial \dot{\varphi}}{\partial x}, \quad u=\frac{\partial \dot{\varphi}}{\partial y}, \quad u=\frac{\partial \dot{\phi}}{\partial z} .
$$

The function ϕ is called the iclocity-fotential. The direction of the velocity q is everywhere normal to the equipotential surfaces $\phi=$ const.. for if te more along the equpotential we have

$$
d \phi=u d x-u u^{\prime} j-u d z=0,
$$

which is the condition that the vectors u, \because u, the relocity, and $d x, d y, d s$, the displacement. are perpendicular. According to the relation $q_{\alpha} d s=d \varphi$, we have the component of velocity in any direction $q_{s}=\frac{\partial \dot{d}}{d}$. equal to the space-rate of variation of potential in that directicn; and since the velocity itself is equal to the rate of change of ϕ in the direction of the normal to the surface $\phi=$ const. a vector related to a function ϕ by the relations (30) is called the gradicnt of the function. A vector Which is thus derived from a potential function is called a lamellar vecicr.

As an example of lamellar flom, let us take the case in which the velocity is directed radially outwards from a given point a, b, c with a winn $r=\sqrt{T-a^{2}-y-0^{2}-z-n^{2}}$ from that point. $q=j r$. The equipotential surfaces are contcentric spheres and re easily find the potential to be $\left.\phi=\int^{\prime} ; r\right) d r$. For, since the direction ensines of r are $\cos (r x)=\frac{r-1}{r} \cdot \cos (r y)=\frac{y-2}{r}$. $\operatorname{crs}(r z)=\frac{e-i}{r}$, whe have the components of the velucity,
(30)

$$
\begin{aligned}
& u=\dot{i}(r) \frac{r-1}{r}=\frac{d \partial}{d r} \frac{\partial r}{\partial r}=\frac{\partial \zeta}{\partial \theta^{\prime}} . \\
& \tau=j \left\lvert\, r \frac{r-b}{r}=\frac{d \phi}{i r} \frac{\partial r}{\partial y}=\frac{\dot{\sigma} \phi}{d r} .\right. \\
& w=j(r) \frac{-i}{r}=\frac{i j}{\partial r} \frac{\partial r}{\partial z}=\frac{\partial j}{\dot{\sigma} z} .
\end{aligned}
$$

The flux out thenagh any of the ance:-tric spheres is $M=4 \pi r^{2} \%$. so that if the fluid is inco mpressible we must have
(:1)

$$
q=\frac{\pi}{4 \pi r^{2}} . \quad \varphi=-\frac{M}{4 \pi r} .
$$

where $1 /$ is constant. The vector q is then silenoidal as well as lamellar, and the equation of continuity becomes

This equation for δ is known as Laplace's cquation, and the sum of the three partial derivatives of second order, which will be abbreviated as $\sqrt{ } \phi$, is called the Laplacian of q. Obriously the abore flow cannot extend as far as $r=0$, for there the velocity would be infinite. Suppose that in a smali region of volume - at the center liquid is being created just fast enough to supply the outtion, so that the volume M is created per unit of time. Such a region is called a sourci, and the whole system of flow is called a squirt. The quantity M is called the sirergth of the sourse, and the strength pet unit of volume $M_{1}:=\sigma$ the sourci-dersity: If we have several sources, and add their potentials, the sesultant relocity will be obtained as the gradient of the sun!. Thus a complicated rector-ield may be represented by its potential function. The sources may be continuously distributed through a portion of space, then σ, the source-density, will be a function of the position of the point, and the total strength will be

$$
\begin{equation*}
M=1 \int_{i} \dot{l}_{0}= \tag{33}
\end{equation*}
$$

while the total potential will be

$$
\begin{equation*}
\phi=-\frac{1}{4+} \int!\int \frac{\sigma d}{r} \tag{34}
\end{equation*}
$$

where r represents the distance from the element $d=$ to the point where ϕ is calculated The total flux through any closed surface will be

$$
\text { (35) } \left.\int^{\int} \int^{2} 4 n^{2} S=\int^{2} \frac{3 \phi}{\partial ; s} 2 S=\iint(\operatorname{grad} \phi)\right)_{n} d S \text {, }
$$

or by the divergence theorem,

$$
\begin{align*}
& \int_{\int} \int_{n} d \Sigma=\int_{!} \int^{2} \text { div } q \cdot d==\iiint d \cdot d= \tag{6}\\
& =\iint(\mathrm{grad})_{n} d^{d} S .
\end{align*}
$$

Since this flux must be equal to the strength of all the sources within the surface of integration, we must have

(3i)

$$
\text { I! }!+\dot{\varphi} \cdot d==1!10 \pi=
$$

Now as this equality holds for any volume whatsoever, the integrands must be equal; accordingly we have

$$
\begin{equation*}
J \dot{\phi}=\sigma_{,} \tag{3:}
\end{equation*}
$$

as a conserzuence of equation (34). The equaticn (ir) is cailed Poisson's equation. We may alsn pro the curverse, namely, that if O 1 s siven as a function of the point, the inteq:ai if equaticn is is given by (34). This is dene by means if Grecti's theorem.

In the divergence theorem (20) let us pu: f) the vect r^{F} the value ι^{\prime} grad 1°, where r and I are two functions, both of which. with their denvatives, are finite, singly. valued, and continuous in the region of intiegration. Thes we have

$$
\begin{aligned}
& X=\tau \frac{\partial T^{\circ}}{\partial \alpha^{\prime}}, \quad Y=\tau \frac{\partial T^{\circ}}{\partial}, \quad Z=C \frac{\partial V^{\prime}}{\partial \tilde{z}} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (30) } \int_{i}^{0} F_{n} d S=\iint V(\text { grad }!)_{n} 15 \\
& =i!\frac{\partial i}{\partial n} d S
\end{aligned}
$$

lnterchanging the fanctions U^{*} and T^{*} and subtracting from (39), we have
(+10)

$$
\begin{aligned}
\iint^{2}\left\{\frac{\partial 1}{\partial 12}-1\right. & \left.\frac{\partial U}{0 n 2}\right\} \\
& =\int^{1} \int^{2}\left\{U J V-V J U^{*}\right\} d-
\end{aligned}
$$

The equations (39) al.d (.70) are known as ireen's Theorem. Let us apply it to two tunctions, one of which, l, is the ruciprocal unstance from a fixed point $P^{\prime}, U^{\prime}=1 / r$. Lé us apply the theorem to the whale ixtent of space, bounded by the infinite sphere, with the exception of a portion bounced by゙ a small sphere with center at I, which we exclude, on account of the infinite value of \mathcal{C}° at P. We must thus take the surface-integrals over the large and small spheres. the normals being in each case drawn away from the volume considered. or out in the first case, in in the secontl. Since the direction of the n rmal coinciues with that of the radius of the sphere.

$$
\frac{\partial(I / r)}{\partial n}= \pm \frac{\partial(\Gamma / r)}{\partial r}=\mp \frac{I}{r^{2}} .
$$

in the two cases respectively, while $d S=r^{2} d \omega$, where $d \omega$ is the element of area of a sphere of radius unity, cut out by a cone of vertex P. having as basc the element $d S$. Accordingly on either sphere
(11)

$$
\iiint \frac{\partial(\mathrm{r} / r)}{\partial n} d S=\mp \iint_{0} \Gamma d \omega .
$$

and if I° vanishes at $r=\delta$, the integral over the infinite sphere ranishes. If we now let the radius of the small sphere diminish without limit, the value of f^{\prime} to be taken is the value at P, so that
$(+2)-\iint 1 \frac{\partial(1 / r)}{\partial n} d S=-I_{P} \int_{d}^{D} \int_{0}^{2} d \omega=-4-T_{P}^{\circ}$.
On the other hand the surface-integral

$$
\iint \frac{1}{r} \frac{\partial l^{\circ}}{\partial n} d \Sigma=r \int_{\int}^{1} \frac{\partial 1^{-}}{\partial n} i \omega
$$

over the spheres vanishes for $r-\infty$, on account of the vanishing of $\frac{\overline{1} 1^{\circ}}{\partial i^{2}}$ to the second order, and for the small sphere in the limit. on account of the factor r is for the volumeintugrals we have seen in (31). (32), that any multiple of ${ }^{\prime}$ 'r satisfies Laplace's erpuation, bence $\boldsymbol{d}\left(\mathrm{s} / \mathrm{r}_{\text {; }}=0\right.$, so that finally
(+3)

$$
\Gamma_{P}=-\frac{1}{4 \pi} \iiint_{0} \frac{11}{r} d \tau
$$

:he integral being taken over all space. But t his is the required theorem, the conlverse uf (3x).

Solutions of Laplace's erquation can iue furnel fir the case of uniplanar flow, where the relocity is parallel to a given plane, and inde-

Iemelent f the warimate jer endicular the rete if plane diuspont then represents the flow.
 equatwon bee mes

$$
\begin{equation*}
\frac{j:}{j:-} \quad \dot{j}=0 . \tag{+4}
\end{equation*}
$$

An infinite 1 uns ! © of collutions are furnished us by the: incthod of functions of a complex variable $x-i y$, where i is the imaginary definexl hy $i^{2}--1$.

If now we take any functicn $u=f(z)$ of the combination $z=x-i b$, on arranging it in powers of x, $i, 4$, all cien pwers if wall 1 e real, all wid ones real multiples of i; accordingly w will be of the furm $\phi+i \psi^{\prime}$, where ϕ. f^{\prime} are real functirns of the two real vanables x. 3 . Difterentiating partially.

$$
\begin{gathered}
\frac{\partial u^{\prime}}{\partial x^{\prime}}-f^{\prime}\left(=\frac{\partial z}{\partial r}=\hat{f}^{\prime}(z), \quad \frac{\hat{o}_{u^{\prime}}}{\partial y^{\prime}}-j^{\prime}(\sigma) \frac{\partial z}{\partial y^{\prime}}=i f^{\prime} z=i \frac{\partial u^{\prime}}{\partial x},\right. \\
\frac{\partial u^{\prime}}{\partial y^{\prime}}=\frac{\partial \phi}{\partial y^{\prime}}+i \frac{\partial}{\partial y^{\prime}}=i \frac{\partial u^{\prime}}{\partial x}=i \frac{\partial \phi}{\partial x}-\frac{\partial \xi^{\prime}}{\partial x},
\end{gathered}
$$

and equating real and imaginary parts,

$$
\left(+5 \quad \frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y}, \quad \frac{\partial \phi}{\partial y}=-\frac{\partial \psi^{\prime}}{\partial x},\right.
$$

Differentiating the first equation by x, the sccond by 3 , and adaing. we have

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0,
$$

and similarly

$$
\frac{\partial^{2} \varphi^{\prime}}{\partial x^{2}}+\frac{\partial^{2} \varphi^{\prime}}{\partial y^{2}}=0 .
$$

Thus either function ϕ or \therefore derived from any function of a complex variable gives us a case of uniplanar flow of an incompressible fluid. From the equations $(+5)$ we ohtain by crossmultiplication

$$
\begin{equation*}
\frac{\partial \zeta^{\prime}}{\partial x} \frac{\partial \varphi^{\prime}}{\partial y}-\frac{\partial \delta}{\partial} \frac{\partial y^{\prime}}{\partial y^{\prime}}=0 \tag{+6}
\end{equation*}
$$

Which is the conditi, in that the normals to the famill of eurves $\phi=$ comst, and these of the family $f^{\circ}=$ const. intersect each other at right angles. Such families are called orthogonal. For instance, the function

$$
\begin{equation*}
u^{\prime}-\frac{1}{z}=\frac{1}{x+i y^{\prime}}-\frac{r-i y^{\prime}}{x^{2}+y^{\prime 2}} \tag{+7}
\end{equation*}
$$

gives
(+5)

$$
y=\frac{x}{x^{2}+y^{2}} \quad \xi^{\prime}=\frac{-y}{x^{2}+y^{2,}}
$$

and the curves

$$
\frac{x}{x^{2}+y^{2}}=\text { const. } \quad \frac{1}{x^{2}+1}=\text { const. }
$$

are a sct of circles tangent to the I-axis and the - -axis respectively, the two sets intersccing each other at ripht angles:

The fux acress any erlindrical surface whese ल, nerat has the length unity parallel of the \%-axi, anl which intersects the NE-plane in a curve $f=$ on 1 to F is, if $o=1$,

$$
\begin{align*}
& \Phi_{2 S}=\int_{\therefore}^{B} q_{n} \dot{d} s=\int_{-4}^{3} \frac{\partial \dot{\partial}}{\partial ;} d s \tag{40}
\end{align*}
$$

But if tiue normal lies on the right as we go along the curve，Fig．It，

$$
\cos \left(n x x^{\prime} d s=d\right\}, \quad \cos (n ;) d s=-d^{2} x .
$$

Tsing these values and equations（ 45 ），we have for the flux
（ミ0）$\quad \Phi_{+1 B}=\int_{-\frac{1}{B}}^{B} \frac{\partial \dot{b}}{\partial x} d x+\frac{\partial \xi^{\prime}}{\partial y} i y=\varphi_{S}-y_{\dot{\prime}-A}$
so that the quantity of liquid crossing the suriace does not depend on the curte joining

$\therefore B$ ．but is the same for one as for another， as musi be the case it the liquid is incom－ Eressible．The iunction is called the fors－ Fintions，and sivce if $\div \dot{\circ} \varepsilon=4$ ，no liquid crosses， it is exident that the curves $i=$ const．are siream－ines．It is evident from equations（ 45 ） that either of the two functions ó nay be taken for the velocity－potential．the other being taken for the invixiunction．Functions satisfying equations（ 45 are called coniugate ＝：tonons，and the two states of flom just described are called conjugate．In the case iust investigated，the twh conjugate floms haffoned to be identical：this is not generally the case．

Fne instance，consider ihe function ia $=\log z$ ， and introducing polar coordinates r, θ ，

$$
\begin{aligned}
& \{=1 \quad u=\log z=\log (x+i) \\
& =\log \{r(\cos \theta-i \sin \theta)\}=\log \{r i\}=\log r \div i \theta .
\end{aligned}
$$

Thus we may put
（ミ2 $\quad \phi=\log r, \quad \zeta=\theta$ ，
cb：aining a radial flow，or uniplanar squi－t， With circuiar equipotentials，or

$$
\dot{\phi}=\theta, \quad \dot{\varphi}=\log r,
$$

$\ldots=\theta, \quad \dot{\varphi}=\theta \log r$,
$\therefore \cdots$ aing a circular flow with radial equi－ Fientials．
！r！：r．I mim－Let us now free ourselves $\therefore-$－n the－estriction n ：hat the curl of the velocity ramishes．There wall ther be no velocity－p ten－ tia！in reginns where there iscurl．Lines whose tavzati has crerywhere the direction of the
 and tubes generaied by such lines vartex－ tal ers tuhes itininitesimal cmss－sectiun being termedi rerex－thlaments．The filud within suth a tube is called a y rex．Since the curl ci any vector is＝lenvilal．as is seen by difier－ evolutug the epuaticns（z＝1 th find the d－ Oerecnce，the vurticity is a silezavidal vect r
and its tubes have the solenoidal property that the vorticity in any filament is inversely proportional to the area of the cross－section of the filament．The product $S \omega$ ，which is constant for the flament，is called the strength of the jlament．Consequently the vorticity cannot vanish at any point on a iube nor can the cross－section．The vortex－tubes must ac－ cordingly be closed，or end at a free surface of the liquid．as do those vortices formed by an oar at the surface oi water．

The properties of vortex－motion were fist investigated in an important paper by Helm－ holvz in ISミS．Following him tre shall now show that any continuous flow ranishing at infinity mar be represented as the sum of a lamellar and a solenoidal part．and that the solenoidal part may be represented as the curl of another rector．Suppose that o be the potential of the lamellar part．Q the vector with components \mathcal{L}^{-}． J^{-}． 11^{-}，whose curl represents the solenoidal part．Then we assume
（5i）

$$
\begin{aligned}
\approx & =\frac{\partial \phi}{\partial x} \div \frac{\partial I T}{\partial y}-\frac{\partial T}{\partial z} \\
\approx & =\frac{\partial \phi}{\partial y} \div \frac{\partial L^{\prime}}{\partial z}-\frac{\partial W}{\partial x} \\
u^{*} & =\frac{\partial \phi}{\partial z} \div \frac{\partial T^{*}}{\partial x}-\frac{\partial U^{*}}{\partial y}
\end{aligned}
$$

Finding the dirergence of q we have

$$
\begin{equation*}
\operatorname{div} q=\frac{\partial t u}{\partial x}+\frac{\partial z}{\partial y}+\frac{\partial w}{\partial z}=\Lambda \phi \tag{55}
\end{equation*}
$$

since the divergence of the curl ranishes．But by（ 43 ）we have

$$
\phi=-\frac{1}{4 \cdots \pi} \int_{0} \int \frac{\lrcorner \dot{\infty}}{r} \dot{j}=-\frac{1}{4 \pi} \int^{r} \int \frac{\operatorname{div} q}{r} d-
$$

Since q represents a continuous flow，div q is finite Accordingly we find that the lamellar part of the flow is completely determined by the distribution of its divergence．

Secondly，find the curl of q ．

$$
\begin{align*}
& \left.z \xi=\frac{\partial z^{\prime}}{\partial y^{\prime}}-\frac{\partial i^{\prime}}{\partial \tau}=\frac{\partial}{\partial y^{\prime}} \frac{\frac{\partial \dot{Q}}{\partial z}}{\partial z}-\frac{\partial \tau^{*}}{\partial x}-\frac{\partial \tau^{*}}{\partial y^{\prime}}\right\} \tag{56}\\
& -\frac{\partial}{\partial z}\left(\frac{\partial \bar{\phi} \dot{\partial}}{\partial y}+\frac{\partial U^{*}}{\partial z}-\frac{\partial \| 1^{*}}{\partial x}\right) \\
& =-\lambda L^{-}-\frac{\partial}{\partial x}\left(\frac{\partial \tau^{*}}{\partial x} \div \frac{\partial T^{\circ}}{\partial y}-\frac{\partial I^{\circ}}{\partial z}\right) .
\end{align*}
$$

Since the vector Q is as yet undetermined cxcept as to its curl．let us assume it to be snlenidal．which will make the divergence in 50$)$ ranish，giving

As before，we fird the integrals of these equa－ tions to be

$$
\begin{align*}
& U=\frac{I}{2 \pi} \int_{0}^{T} \iint_{0}^{2} \frac{\partial}{r} d z, \quad T=\frac{I}{2 \pi} \iiint_{0}^{T} \frac{T}{r} d, \\
& \Pi^{\circ}=\frac{1}{2-\pi} \iiint_{0}^{r} \frac{2}{r} \tag{5S}
\end{align*}
$$

The integrals are in be taken over all space， but as any part of space where the vorticity vanishes will contribute nothing to the inte－ gralk．we may sup pose them restricted to the vortices．Thus we see that the solenoidal part of the flow q ．which is due on the vortices， is completely de：crmined by the distribution （i curl y．Thus the statement is justified that

HYDRODYNAMICS

a contmuous vector - function is eompletcly determmed by its divergence and eurl. Kinematieally we maty say that any flow is the resultant of squirts and vortices. The rector Q, whose components are fomed in the manner of potentials from the components of $2(1)$, is called the vector-potential of 2ω.

Thus the velocity due to a vortex is the curl of the vector-potential of twice the vorticity. We may find this velocity by differentiation. Let as distinguish the point of integration from the joint for which the potentials are calculated, and by which we differentiate, by attaching an aecent to the coordinates of the former. W" have

$$
\text { (59) } \begin{aligned}
u & =\frac{\partial 11}{\partial y^{\prime}}-\frac{\partial V}{\partial z} \\
& =\frac{x}{2 \pi}\left[\frac{\partial}{\partial y^{\prime}} \iiint \frac{z^{\prime}}{r} d \tau^{\prime}-\frac{\partial}{\partial z} \iiint \frac{\eta^{\prime}}{r} d \tau^{\prime}\right] \\
& =\frac{1}{2 \pi} \iiint\left\{\ddot{n}^{\prime} \frac{\partial}{\partial y^{\prime}}\left(\frac{I}{r}\right)-\eta^{\prime} \frac{\partial}{\partial z}\left(\frac{I}{r}\right)\right\} d \tau^{\prime} .
\end{aligned}
$$

Thus the portions of velocity eontributed by the element of the vortex $d \tau^{\prime}$ are

$$
\begin{aligned}
& d u=\frac{1}{2 \pi r^{3}}\left\{\zeta^{\prime}\left(y^{\prime}-y\right)-\eta^{\prime}\left(z^{\prime}-z\right)\right\} d \tau^{\prime} \\
& d v=\frac{1}{2 \pi r^{3}}\left\{\xi^{\prime}\left(z^{\prime}-z\right)-\zeta^{\prime}\left(x^{\prime}-x\right)\left\{d \tau^{\prime}\right.\right. \\
& d w=\frac{1}{2 \pi r^{\prime}}\left\{\eta^{\prime}\left(x^{\prime}-x\right)-\xi^{\prime}\left(y^{\prime}-y^{\prime}\right)\right\} d \tau^{\prime}
\end{aligned}
$$

(60)

These are immediately seen to be, aside from the factor $: / 2 \pi r^{3}$, the projections of the parallelogram whose sides are the vectors ω^{\prime}, and r the vector from $x^{\prime}, y^{\prime}, z^{\prime}$ to x, y, z. If $d y$ be the magnitude of the resultant, we aecordingly obtain

$$
\begin{equation*}
d q=\frac{\omega^{\prime} \sin \left(\omega^{\prime} r\right)}{2 \pi r^{2}} d \Sigma^{\prime} \tag{61}
\end{equation*}
$$

the direction of d heing nerpendicular to both ω^{\prime} and r, as shown by (00).

Let us take for the clement of volume $d \tau^{\prime}$ a length $d s$ of a vortex-filament of crossseetion 5 . Then $d \tau^{\prime}=S d S$, and since $S \omega^{\prime}=\kappa$, the strength of the filament
(62)

$$
d q=\frac{\kappa d s \cdot \sin (\omega r)}{2 \pi r^{2}}
$$

The velocity is connected with the vorticity in the same way that the magretic ficld due to an eleetrie current is connected with the current-density, equation (62) giving us the magnetic tield produced by a eurrint of strength $\kappa / 2 \pi$.

1lyurodynamics - We now arrive at the subject of Hydrodymamies proper, in which we take account of the forces that are capable of producing the states of flow that have been previously described. Suppose that the comrdinates of a partiele are x, y, z, then $u=\frac{d x}{d t}$, $v=\frac{d y^{\prime}}{d t}, u^{\prime}=\frac{d z}{d t} . \quad$ The prineiples of dynamics tell us that the product of the mass by the aeceleration of any partiele is equal to the resultant of all the forees applied to it. Taking the mass eontained in the element of volume de. and the resultant of the bordily forces and fressures, as found under the treatment of hydrostatics.

$$
\begin{equation*}
p i=\frac{t \cdot x}{d \sigma^{r}}-\operatorname{put}=\frac{d u}{d t}-\left(p \cdot \mathrm{~V}-\frac{\partial p}{\partial u}\right) d \tau \tag{6,3}
\end{equation*}
$$

from which we ubtain the effuation with twe simular ones,

$$
\begin{gather*}
\frac{d u}{d t}-\lambda-\frac{1}{\rho} \frac{\partial \rho}{\partial t} \quad \frac{d \hat{\prime}}{d t} \Rightarrow Y-\frac{1}{\rho} \frac{\partial p}{\partial y} \\
\frac{d u}{d t}=Z-\frac{1}{\rho} \frac{\partial p}{d i} . \tag{6.4}
\end{gather*}
$$

By the demivative $\frac{d u}{d t}$ i meant the rate of change of velecity of a perticular particle as it moves ahout. If we heve any function F of the pusition of a partic lar partiele, we may write its derivative

$$
\begin{equation*}
\frac{d F}{d t}=\frac{\partial F}{\partial t}+\frac{\partial F d v}{\partial t}+\frac{\partial F}{\partial y^{\prime}} \frac{d y^{\prime}}{d t}+\frac{\partial F}{\partial z} \frac{d z}{d t t^{\prime}} \tag{65}
\end{equation*}
$$

where $\partial F / \partial t$ wrould be the rate of change of the function if the particle were at rest. The derivatives $\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}$ are the velocity-eomponents u, v, w. Accordingly we have

$$
\begin{equation*}
\frac{d F}{d t}=\frac{\partial F}{\partial t}+u \frac{\partial F}{\partial x}+i \frac{\partial F}{\partial j}+\dot{u} \frac{\partial F}{\partial z} . \tag{66}
\end{equation*}
$$

We call this mode of differentiation particle differentiation.

Introducing this terminology, our equations of mution become

$$
\begin{align*}
& \frac{\partial:}{\partial t}+u \frac{\partial: t}{\partial t}+v^{\prime \cdot} \frac{\partial u}{\partial u}+w^{\prime} \frac{\partial u}{\partial z}=X-\frac{1}{p} \frac{\partial P}{\partial x}, \\
& \frac{\partial_{i}}{\partial t}+u \frac{\partial_{i \prime}}{\partial z}+i \frac{\partial_{i}}{\partial y}+u \frac{\partial J}{\partial z}=Y-\frac{1}{\rho} \frac{\partial p}{\partial y} \text {, } \tag{67}\\
& \frac{\partial u^{\prime}}{\partial t}+u \frac{\partial u^{\prime}}{\partial x}+i \frac{\partial u^{\prime}}{\partial y^{\prime}}+u u^{\prime} \frac{\partial u^{\prime}}{\partial z}=Z-\frac{1}{\rho} \frac{\partial p}{\partial z} .
\end{align*}
$$

These equations are due to Eulcr. These three equations, with the equation of continuity, (24), and the physical relation between ρ and p furmish five equations for the determination of the inc variables u, v, u, ρ, p as functions of $x, y \quad z, t$.

Subtracting from both sides of the first of erpuatirns (67) the quantity
$\frac{\partial}{\partial x}\left(\frac{q^{2}}{2}\right)=\frac{1}{2} \frac{\partial}{\partial x}\left\{u^{2}+v^{2}+w^{2}\right\}=u \frac{\partial u}{\partial x}+2 \frac{\partial z^{\prime}}{\partial x}+u^{\prime} \frac{\partial u^{\prime}}{\partial x}$,
we olitain

$$
\begin{align*}
& \frac{\partial u l}{\partial l}+u^{u}\left(\frac{\partial u t}{\partial z}-\frac{\partial_{u}}{\partial x}\right)-z^{\prime}\left(\frac{\partial v^{\prime}}{\partial x}-\frac{\partial u}{\partial!}\right) \tag{68}\\
&\left.-X-\frac{\partial \Gamma}{\partial x}-\frac{\partial\left(\frac{q^{2}}{2}\right)}{u_{u}}\right)
\end{align*}
$$

If the boxlily forces are eonservative and derived from a potential f, the right-hanta] member is the derivative of the guentity $-\left(f+I^{2}+q^{2} / 2\right)-U$, and inserting the value: of $\begin{gathered}\text { 今, } \\ 7\end{gathered}$
(69)

$$
\begin{aligned}
& \frac{\partial i^{\prime}}{\partial t}+z\left(i=-u y_{i}\right)-\frac{\partial L}{\partial z} \text {. }
\end{aligned}
$$

If the motion is stedely, that is, independent of t, the time-d rivatives ramish. Than multiploing the equations (60) by $d x$, $7 y$, $d z$ re.
spectitely, adding and integrating along any surve, we obtain on the right the difierence between the terminal values of $1+P-q^{2} / 2$. If ihe curve is either a stream- or vortex-line, that is, if $d x, d y, d z$ are proporticnal either to \%, \because, u, or to $\xi, r_{,}, \xi$ the sum on the left will also vanish, so that aiong a strean-line or a rtex-line we have $1^{-}+P+q^{2} / 2=$ const. If i.e motion is non-rortical. the left-hand side (69) vanishes, so that the abote sum is enstant throughout the Iluid. In this case
(;)

$$
\tau^{\circ} \div P+\frac{1}{2} q^{2}=\text { const. }
$$

th:s result being called Daniel Bernoulli's theorem.

If the tuid is incompressible, $P=p / o$, and ${ }_{i f}$ there are no bodily forces $I^{\circ}=0$, so that (;o) becomes
(-1)

$$
\frac{\hbar}{0}+\frac{1}{2} ?^{2}=\text { const. }
$$

Accordingly where the velocity is small the pressure is large and rice versa. By consiricting the tube the velocity is made large and the pressure small. This is the principle of jet exhaust-pumps, like that of Bursen, the a:r being sucked in at the narrow part of the jet. The same principle is used in the Venturi water-meter. The horizontal main being reduced in diameter in a certain portion and the difierence of pressure at a point in that porti. n and in the main observed, the velocity is computed. If the pressure at the two crosssections S_{1} and S_{2} is P_{1}, P_{2}, we have

$$
(-2) \quad p_{1}-r_{2}=\frac{n}{2}\left(q_{2}^{2}-g_{1}^{2}\right) .
$$

But since the flow is solenoidal, $S_{1} q_{1}=S_{2} q_{2}$. Combining with (72),
(73)

$$
p_{1}-p_{2}=\frac{1}{2} p q_{1}^{2}\left\{\left(\frac{S_{1}}{S_{2}}\right)^{2}-1\right\} .
$$

which determines q_{2} in terms of the pressuredifference. The effiux in unit time is $\rho q_{1} S_{1}$.

For the adiabatic expansion of a gas,
(74)

$$
P=\frac{b_{\kappa} p_{\kappa}-1}{\kappa-1}=\frac{b_{\kappa}}{\kappa-1}\left(\frac{p}{b}\right)^{\frac{\kappa-1}{\kappa}} .
$$

We may use Bernoulli's theorem to calculate the erilux of gas from a reservoir. If we consider a point in the reservoir where the pressure is $?$. so far from the oritice that the air may be considered at rest and if the velocity at the orince is q and the atmospheric pressure P_{0}. Te have

which is the usual formula for the efiux of sases.
$1 f$ the external force be gravity, $\Gamma^{\circ}=g z$, and we have for an incompressible rluid.
(76)

$$
\frac{p}{\rho}-g z-\frac{1}{2} q^{2}=\text { const. }
$$

If we again consider effiux from a reservoir whose upper free surface $z=z_{1}$ is so large that q is negligible, the pressure being that of the atmosphere, the same above and at the reifice where $z=z_{2}$, the velocity of effux is giver by

$$
\frac{p_{0}}{\rho}-\xi z_{1}=\frac{r_{0}}{o}-\varepsilon z_{2}-i_{1} q^{2},
$$

'77)

$$
q^{2}=2 g\left(z_{i}-z_{2}\right),
$$

or the relocity of effiux is that acquired by a body falling freelv from a height equal to that of the free surface above the onfice. This is the theorem of Torricelli, one of the oldest on hydrodynamics.

1h"ace-motion.-The case of uniplanar waves may be dealt with by the method of the complex variable. Ne shall ind that the waves travel with constant relocity a and that it will simplify the problem if we impose upon the whole iluid a horizontal velocity equal and opposite to that of the waves. The waves then stand still, and the motion is steady, as in the case of waves about an obstruction in a larn ng river.

Let us consider waves in deep water, A^{t} t a great depth the vertical motion will dirappear, so that

$$
u=-a, \quad r^{\prime}=0, \quad \phi=-a x
$$

The function
$u=-a z+-A e^{-i k z=-a(x+i y)+A \varepsilon-i k(x+i y)}$
gives
$\dot{\phi}-i y_{n}^{\prime}=-a(x+i y)+-k \varepsilon^{k y}(\cos k x-i \sin k x)$.
$(-S) \quad \delta=-a x \div-k c^{k y} \cos k x$,

$$
y=-d y-A e^{k} y \sin k x .
$$

When $y=-x$ this makes $\delta=-a x$, as re quired. The free surface of the water being composed of stream-lines is represented by one of the lines $\varphi=$ const., and if we take the origin in the surface its equation is
(-9)

$$
a y+A, k y \sin k x=0,
$$

which shows that ? 15 a pericdic function of a with the wave-lengith $i=2,-k$. The longer the wave-length, that is the smaller k, the mire nearly does the exponential reduce to unity and the profile to a curve of sines. The velocity is given by

$$
\begin{align*}
& u=\frac{\partial \dot{\phi}}{\partial x}=\frac{\partial \dot{\varphi}}{\partial y^{\prime}}=-a-A k e^{k y} \sin k x, \\
& u^{\prime}=\frac{\partial \phi}{\partial y}=-\frac{\partial \xi^{\prime}}{\partial x}=A k e^{k} x \cos k x, \tag{So}
\end{align*}
$$

(SI) $q^{2}=u^{2}+z^{2}=u^{2}+-A^{2} k^{2} e^{2 k y}+2-4 k c^{2} k \sin k x$.
So far we have merely kinematics. The dynamical relation required is that for steady motion,

$$
\begin{equation*}
\frac{\hat{r}}{o}+g y^{3} \div \frac{1}{-q^{2}}=C . \tag{2}
\end{equation*}
$$

At the surface putting $p=0$ and making usc of (79),

$$
g y-\frac{1}{2}\left\{u^{2}+A^{2} k^{2} \varepsilon^{2} 2 k-2 a^{2} k y\right\}=C .
$$

Since the suriace passes through the origin. puiting $y^{\prime}=0$,

$$
C=\frac{1}{2}\left(a^{2}-A^{2} k^{2}\right) .
$$

(S3) $\quad\left(g-a^{2} \xi\right) y+\frac{1}{2} 1^{2} k^{2}\left(\varepsilon^{2 k} y-1\right)=0$.
This equation can be only approximately fulfilled, but if the height of the wares is s small in comparisen with the wave-length the: the square of $2 k y$ may be neglected, developins the exponential gives

$$
\left(g-a^{2} k+A^{2} k^{3}\right) y=0 .
$$

giving the relation between the velocity and the wave-length.
(く, $\quad g-a^{2} k+A^{2 k^{3}}=0$.
If $k \cdot y$ is small, the equation of the profile (79) is approximately

$$
\begin{equation*}
y=-\frac{-1}{1 z} \sin k x \tag{S5}
\end{equation*}
$$

HYDRODYNAMICS

sc that the height of the waves above the origin is $B=1 / a$, inserting which in (S_{4}) gives
(80)

$$
a^{2}\left\{\frac{2 \pi}{i}\left(1-\frac{4 \pi^{2} B^{2}}{i^{2}}\right)\right\}=g .
$$

For long waves we accordingly have $a^{2}-g \lambda / 2 \pi$, or the velocity of long waves in deep water is copual to the velocity acquired by a body an falling freely from a height equal to one hali the radius of a circle whose circumference is the wave-length.

In order to study the motions of the individual particles of water let us now impress upon the motion given by (so) a uniform vilocity a in the J-direction. Equations (80) now give the motion with respect to axes traveling with the waves, so that in order to obtain the motion with respect to fixed axes we have to add a to the u of (So) and replace x by $x-a t$, obtaining
(S_{5})

$$
\begin{aligned}
& u=-A k c^{k y} \sin k(x-a t), \\
& v=A k c^{k y} \cos k(x-a t) .
\end{aligned}
$$

If the displacement of a particle which when at rest was at x, y is s, η, the above values are $\frac{d \xi}{d t}, \frac{d \eta}{d t}$, and if we neglect the small change of relocity from x, y to $x+\xi, y+\eta$, we may integrate with respec to the time,
(88)

$$
\begin{aligned}
& \xi=-B c^{k y} \cos k(x-a t), \\
& \eta=-B c^{k y} \sin k(x-a t) .
\end{aligned}
$$

Thus each particle performs a uniform revolution in a vertical circle of radius $B c^{k y}$ in the time $T=\frac{2 \pi}{k a}=\frac{\lambda}{a}$. The rapidity of decrease of the motion as we go below the surface is seen by the fact that at a depth $y^{\prime}=-i$ the amplitude has diminished in the ratio $-2 \pi=.001867$. The form of the wave-profile is shown in Fig. 15, the crests being farther above the

Fig. 15.

level than the troughs are below it. As the height increases the waves become sharper at the crest.
lortex-molion.-Let us consider the change in circulation along a line that always contains the same particles. We have
(S9)

$$
\begin{gathered}
\frac{d \phi+B}{d t}=\frac{d}{d t} \int_{A}^{B}(u d x+\tau d u+u d z) \\
=\int_{A}^{B}\left\{\frac{d u t}{d t} d x+u \frac{d}{d t}(d x)+\frac{d v}{d t} d u+v \frac{d}{d t}(d y)\right. \\
\quad+\frac{d u}{d t}\left(t z+u x^{\prime} \frac{d}{d t}(d z)\right\}
\end{gathered}
$$

Now consider an clement d which at a time later by $d t$ has moved to a position $d s^{\prime}$, Fig. 16 . Since one end has movel in the X-direction a distance wit and the other a distance

$$
\left\{u+\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y^{\prime}} d y+\frac{\partial u}{\partial z} d z\right\} d t
$$

the new valute of its I-projection is
$d x^{\prime}=x+d x+\left\{u+\frac{\partial u}{\partial z} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z\right\} d t$

$$
-(x+w d t),
$$

from which we outain the derivatives

$$
\frac{d}{d t}(d x)=\frac{d x^{\prime}-d x}{d t}=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z,
$$

(90) $\frac{d}{d t}(d y) \quad \frac{d y^{\prime}-d y^{\prime}}{d t}=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y^{\prime}} d y+\frac{\partial z}{\partial z} d z$,

$$
\frac{d}{d t}(d z)=\frac{d^{\prime}-d z}{d t}=\frac{\partial c^{\prime}}{\partial x} d x+\frac{\partial w^{\prime}}{\partial y} d y+\frac{\partial u^{\prime}}{\partial z} d z .
$$

Fig. 16.
But the equations of motion (6\%) arc, in abbreviated form,

$$
\begin{gather*}
\frac{d u}{d t}=\frac{\partial\left(l+q^{2} / 2\right)}{\partial x}, \frac{\partial v}{\partial t}=\frac{\partial\left(U+q^{2} / 2\right)}{\partial y}, \\
\frac{\partial u}{\partial t}=\frac{\partial\left(t+q^{2} / 2\right)}{\partial z}, \tag{9I}
\end{gather*}
$$

where $U^{*}=-\left(\Gamma+P+q^{2} / 2\right)$. Accordingly,
(92) $\frac{d \phi_{A B}}{d t}-\int_{A}^{B}\left\{\frac{\partial\left(L^{2}+q^{2} / z\right)}{\partial x} d x+\frac{\partial\left(U+q^{2} / z\right)}{\partial y} d y\right.$
$+\frac{\left.\partial\left(L^{\cdot}+q^{2}\right) z\right)}{\partial z} d z+\left(u \frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}+u \frac{\partial i_{i}}{\partial x}\right) d x$
$\left.+\left(u \frac{\partial u}{\partial j^{\prime}}+i \frac{\partial u^{\prime}}{\partial y}+u^{\prime} \cdot \frac{\partial u^{\prime}}{\partial y}\right) d y+\left(u \frac{\partial u}{\partial z}+i \frac{\partial{ }^{\prime}}{\partial z}+u \frac{\partial u i}{\partial z}\right) d z\right\}$
$=\int_{A}^{B} \frac{\partial\left(L^{T}+q^{2}\right)}{\partial x} d x+\frac{\partial\left(L^{T}+q^{2}\right)}{\partial y^{\prime}} d y+\frac{\partial\left(L^{T}+q^{2}\right)}{\partial z} d z$
$=\left(U^{U}+q^{2}\right) /_{A}^{B}$,
which vanishes for a closed curre. Therefore if the bodily forces are conservative, the circulation around any chosed curve moving with the fluid is independent of the time. If the circulation around a clesed path is zero at one time, it remains zero, so that if the velocitypotential onee uxists, it always exists. This theorem is due to lagrange.

From the erquations (60). Whese righthand members are derivatives of the same quantit? U. this quantity may he climinated hy differentiation. Differentiating the last equation by y^{\prime}, the secund $1, y^{\circ} z$ and subtracting.
$\frac{1}{2} \frac{\partial}{\partial t}\left(\frac{\partial_{i u}}{\partial y^{\prime}}-\frac{\partial i}{\partial z}\right)+\xi \frac{\partial_{i j}}{\partial y_{y}}+i \frac{\partial \xi}{\partial y}-r_{i} \frac{\partial \cdot l}{\partial y^{\prime}}-u \frac{\partial \eta}{\partial y}-\frac{\partial u}{\partial z}$
$-u \frac{\partial z}{\partial z}+\xi \frac{\partial i^{\prime}}{\partial z}+u \frac{\partial \xi}{\partial z}-0$,
or otherwisc,

$$
\begin{align*}
& \frac{\partial \xi}{\partial t}+u \frac{\partial \xi}{\partial v}+v \frac{\partial \xi}{\partial u}+w \frac{\partial \xi}{\partial z}=u\left\{\frac{\partial \xi}{\partial i}+\frac{\partial r}{\partial y}+\frac{\partial \xi}{\partial z}\right\} \tag{93}\\
&-\xi\left\{\frac{\partial u}{\partial u}+\frac{\partial v}{\partial y}+\frac{\partial u}{\partial z}\right\}+\xi \frac{\partial u}{\partial x}+\eta \frac{\partial u}{\partial y}+\zeta \frac{\partial v}{\partial z} .
\end{align*}
$$

HYDROFLUORIC ACID－HYDROGEN

On the right the coefficient of u ，being the ：trergence of the rorticity，is zero，while that $i{ }^{*}$ is by the equation of continuity equal to $-\frac{d o}{d t}$ ，so that equation（93）becomes

$$
\frac{d \xi}{d_{t} t}=\frac{\xi}{\rho} \frac{d, 0}{a_{t}}+\xi \frac{\partial: t}{\partial x} \div r_{1} \frac{\partial t}{\partial y}+\frac{\partial: l}{\partial z},
$$

\rightarrow anch may be written，with its two companions，
94）

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\xi}{0}\right)=\frac{\bar{j}}{0} \frac{\partial: t}{\partial x} \div \frac{r_{1}}{\rho} \frac{\partial: t}{\partial y^{\prime}} \div \frac{\bar{\xi}}{0} \frac{\partial u}{\partial z}, \\
& \frac{d}{d t}\left(\frac{T_{f}}{\rho}\right)=\frac{\sum}{\rho} \frac{\partial i^{x}}{\partial x}+\frac{\tau_{i}}{\rho} \frac{\partial v}{\partial y^{\prime}} \div \frac{\sum}{\rho} \frac{\partial i_{i}}{\partial z^{\prime}}, \\
& \frac{d}{d t}\left(\frac{\zeta}{o}\right)=\frac{\xi}{\rho} \frac{\partial u^{\prime}}{\partial x}-\frac{\eta_{1}}{\rho} \frac{\partial u^{\prime}}{\partial y^{\prime}}+\frac{\zeta}{\rho} \frac{\partial \tilde{u}^{\prime}}{\partial z} .
\end{aligned}
$$

Thus the time－derivatives of $\frac{\sum}{\rho}, \frac{T_{i}}{\rho}, \frac{B}{\rho}$ for a given particle are homogeneous linear functions of those quantities．By゙ continued differentiation with respect to t and the substitution of the derivatives from these equations，we see that ai：the time－derivatives are homogeneous linear functions of the quantities themselves． Thus if at any time these quantities are zero， all their derivatives are zero，and developing by Taylor＇s theorem，we find that the function remans zero for all times．Thus if a particle is cace not vortically revolving，it never can acquire such rotation under conservative forces．

Let us nom consider two points f and B lying on the same vortex－line at a distance apart $d s=\frac{\omega}{\rho}$ ．where \equiv is a small constant． Since the particles lie on the rorter－line we have
（95）

$$
\frac{d r}{\frac{d}{5}}=\frac{d v}{T_{1}}=\frac{d v}{\zeta}=\frac{d s}{\omega}=\frac{\varepsilon}{\rho} .
$$

For the difierence of relocity at A and B we have

$$
\begin{align*}
u_{B}-u \approx & =\frac{\partial u}{\partial u} d x+\frac{\partial:}{\partial y} t y+\frac{\partial t}{d z} d z \tag{96}\\
& \left.=\geqq \frac{\xi}{\partial} \frac{\partial: t}{\partial x}+\frac{T_{i}}{o} \frac{\partial: i}{\partial y}+\frac{\square}{\rho} \frac{\partial: t}{\partial z}\right\}
\end{align*}
$$

or，by cquations（94）．

$$
\begin{equation*}
u_{3}-u_{A}=\varepsilon \frac{d}{d t}\left(\frac{\xi}{\frac{1}{o}}\right) . \tag{97}
\end{equation*}
$$

Now at an instant later by d_{t} ，when the parti－ cles are at A^{\prime} and B^{\prime} ，

$$
\begin{align*}
& d x^{\prime}=d x+\left(!_{B}-n_{-1}\right) d t=\varepsilon\left[\frac{\frac{亠}{\rho}}{\rho}+\frac{d}{d t}\left(\frac{\xi}{\rho}\right)+t\right], \\
& d y^{\prime}=d y^{\prime}+\left(i_{B}-i_{A 1}^{\prime}\right) d t=E\left[\frac{T_{1}}{\rho}+\frac{d}{d t}\left(\frac{r_{1}}{\rho}\right) d t\right] . \tag{98}\\
& d z^{\prime}=d z+\left(u_{B}-u_{A}^{\prime}\right) d t=\varepsilon\left[\frac{5}{\rho}-\frac{d}{d t}\left(\frac{5}{p}\right) d t\right] .
\end{align*}
$$

Therefore the projections of the arc $d s^{\prime}$ in the new position are proportional to the now values of the comporents of ω / ρ as ther originally were，so that the particles still he on a vortex－linc．Iccordingly a vortex－line is always composed of the same particles it Ruid．Also，since the compenerits of is have changed so as to be always priporti，inal to the
components of ω ，if the liquid is incom－ pressible the rotation is proportional to the dis－ tance between the particles．And whether ρ vary or not，if Σ is the cross－section of a vortex－filament，since the mass $\rho \leq d s$ of a length $d s$ remains constant，so does $\Sigma \omega$ ，the strength of the filament．Accordingly the strength of a vortex－filament is comstant．fict only at all points in the filament，but at all times．consequently a borter existing．in a perfect fluid is indestructible，howerer it mas move．It is from this remarkable property if vortices discovered by Helmholtz that Lerd Kelvin was led to imagine atoms as consist－ ing of vortices in a perfect fluid．

From the kinematical properties of flow due to rortes－motion（62），we see that the selocity at every point of a circular vortex－ring， Fig．IT，due to all the elements of the vortex，

Fig． 1 ：－
is in the same direction perpendicular to the plane of the ring．and in the directicn in which the inside of the ring is turing：the ring there－ fore adrances with a constant velocity，as if it were rolling in a tube which it just fits． Te may rerity this by an experiment due to Professor Tait，where smoke is suddenly forced out through a circular bole in a box provided with an elastic back．The smoky air rolling on the edge of the hole is endowed（by the friction，a non－conservertice force）with a vortical rotation，and issues as a rortex－ring，which advances with approximately constant veloc－ ity for a considerable distarce．That it crri－ sists always of the same air is seen by the smoke which it carries with it．Such a ring． on striking an edge or obstacle，is not destroyed or cut．Similar experiments can be performed with the rings formed by letting drops of ink fall into water．The loss of velocity finally obtaining in all these cases is due to the viscosity，that is，to non－conservative forces． The treatment of viscosity is beyond the scope of this article．

Bibliograplsy．－Lamb．（Hydrodynamics）； Bissett．＇Hydrodynamics＇：Webster，（Dy゙－ naлlics）；Tait，（Dimamics．）

Arther Gornon Webster．
Professor of Physics，Clark Livicrsity

Hydrofluor＇ic Acid．See Flưorine．

Hydrofluosilicic（hr＂drü－floo＇ū－sĭ－lis＇In）Acid． Sce FlưoriNE．

Hy＇drogen（Greck，＂producing mater，＂in reference to the fact that in buming in air or oxygen，hrodrogen forms mater－rapor）．a gascous element．discovered by Cavendish in $1-56$ ．It was at first called＂inflammable air．＂the pres－ ont name buing due to Lavoisier．Hydrngen is
the lightest known substance, and it also las the smallest linown atomic weight. The atomic weight of hydrogen is often taken as unnty in stating the rclative atomic weights of the different clements (sce Atomic Theory), but it is now more usual to assume the atomic weight of oxygen to be preciscly I6, which amotnts to making the atomic weight of hydrogen $1.00 \% 6$. According to Kegnault's experiments, hydrogen has a density equal to 0.06926 of that of an equal volume of air, at the same temperature and pressure. In absolute measure, the mass of a cubic centimetre of hydrogen, at the freezing point of water and under a pressure of 76 centimetres of mercury at Paris, is 0.00008957 gram, or 0.08957 milligram. Hydrogen has the chemical symbol H , and is one of the most abunctant clements known. It occurs in the free state in volcanic gases, and in the sum and in many of the fixed stars. Free hydrogen is also present in the earth's atmosphere in exceedingly small amount. Water (or hydrogen monoxid) is its commonest and most abundant compound, and it is an essential constituent of nearly all organic tissues. Hydrogen may be prepared very casily by many methods. One of the most convenient of these consists in acting upon metallic zine with dilute sulphuric acid, the reaction in this case being: $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{ZnSO}_{4}+2 \mathrm{H}$. Hydrogen is chemically inert towards most of the elements, at ordinary temperatures, but it combines with chlorine when exposed to light--quietly in diffused daylight, and explosively under the direct action of sunlight. At elevated temperatures it combines with other elements also, and it burns in air (or oxygen) with the development of an intense heat, but with very little light; water being produced as the result of the combustion. Hydrogen has been both liquefied and solidified. İts critical temperature is estimated, by Dewar, to be about $402^{\circ} \mathrm{F}$. below zero, and the same authority gives is atmospheres as the critical pressure. (See Critical Point, and Gases, Liquefaction of.)

Hydrogen combines with oxygen in two proportions. The monoxid, or common water, $\mathrm{H}_{2} \mathrm{O}$, is formed, as already noted, when hydrogen is burned in air or in oxygen. It is also formed in many of the double decompositions that oceur in chemistry, as when metallic oxids or hydrates are dissolved in acids. Sodinm? hydrate, for example, combines with sulphuric acid according to the equation $2 \mathrm{NaOH}+$ $\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$, sodium sulphate and water being formed.

Hydrogen peroxid (or dioxid), $\mathrm{H}_{2} \mathrm{O}_{2}$, may be prepared by acting upon barium dioxid. BaO_{2}, with dilute sulphuric acid: the reaction being: $\mathrm{BaO}_{2}+11_{2} \mathrm{SO}_{4}=\mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$. The barium sulphate that is formed at the same time is a heavy, insoluble substance, which is easily removed from the solution by filtation, or by settling and subsequent decantation. The aqueous solution of the peroxid may then be concentrater by evaporation over strong sulphuric acid, mader the receiver of an air pump. When the water has all evaporated the pure peroxid remaining behind has a specific gravity of 1.452, and is a colorless, oily liquid, devoid of odor, but having a disagreeable, metallic taste. The peroxid does not freeze, even when conled to 0° F . At $\gamma 0^{\circ} \mathrm{F}$. it slowly gives off hali its oxygen, passing into water. At $212^{\circ} \mathrm{F}$. this change
takes place very rapidly. Owng to the facility with which hydrugen peroxid gives off oxygen, it is used quite larecly as : bleachung agent, and also, in surgery, is a disinfectant in the treatment of wotinds.

When leydrogen is passed through boiling sulphur, combinatimn takes place, with the formation of ligdrogen sulphich, or suphuretted hydrogen, 11_{2} S. This componmd is more conveniently prepared, bowever, lyy treating sulphid of iron, FeS, with clilutc sulphuric acid, ferous sulphate ($\mathrm{FeSO} \mathrm{O}_{1}$) being formed at the same time. The reaction is: DeS $+11 \mathrm{SO}=1 \mathrm{CSO}+1 \mathrm{I} \mathrm{S}$. Sulphuretted hydrogen is a gas, Jevoid of color, but pussessing an overpowering ufor, suggestive of rotten eggs. It bums with a bluish thame, and is poisonous when inhaled in any considerable quantity, even though largely diluted with air. Linder ordinary atmospleric presstrec, sulphuretted hydrogen gas condenses, at $80^{\circ} \mathrm{F}$. below zero, to a colorless liquid. which freezes to an ice-like solid upon being futher cooled to 121° F. below zero. Liquefaction may also be induced at the ordinary temperature of the air by the application of a pressure of from 17 to 20 atmospheres. Sulphuretted hydrogen is an invaluable reagent in the chemical laboratory, where it is greatly used for separating the metals into groups, in inorganic analysis. (See Chemical Avalysis.)

With carbon, hydrogen forms a large number of compounds which are collectively known as hydrocarbons (q.v.). With carbon and oxygen, and with carbon, oxygen and nitrogen, hydrogen forms compounds past enumeration. For further information concerning these, constult any treatise on organic clremistry, and also, in this encyclopedia, the articles Fatty Compounds and Aromatic Compounds.

Hydrogen Peroxid, Hydrogen Sulphid, ctc. Sce Hydrogen.

Hydrograph'ic Surveying. See Survering.
Hydrography, hī-drŏg'rạ-fî (Greck hydōr or hudor, water, grapho, to describe), meaning literally a "description of water." is the name applied to that branch of physical geograplyy which describes the water on the surface of the globe, whether oecurring on land, as in springs, rivers, and lakes, or in seas and great oceans. It is sometimes used in a more restricted sense, and confined to a description of the learings of coasts, of currents, soundings, islands, shoals, ctc., with a more immediate view to navigation, and the construction of charts and nautical tables. Henry the Navigator was the first who constructed a tolerably reliable sea-chart: and laid the foundation of hydrography as a science. This was in the Isth century. In France and other comntrics, institutions specially formed for teaching navigation are called hydrographical schools. "The hydrographic office is now an important department of the naval administration, its officers ennsolidating into available maps the results of the olservations sent to them from time to time ly those engaged in exploring expeclitions, and by navigators from all parts of the world. See Surveying.

Hy'drolite. Sce Gmelinite.

Hydrom'eter, an instrument for determining the specific gravity of fluids. When a solid body floats in a liquid, and displaces a quantity of the liguid, it is supported by the same upward
pressure that formerly supported the liquid which it displaces. The weight of the solid body is thus equal to the weight of the liquid that it displaces. Hence, the depth to which

Fig. 1.- Forms of Hydrometer.
the same solid body is immersed in a liquid is steater as the density of the liquid is less, and less as the density of the iquid is greater. And. likewise, the weights required to immerse a siven body equally deep :\% tarious liquids are inverseiy proportional to the densities oi the liquids. On each ci these principles a form of lydrometer is founded. One 15 called the constant weight hydrometer. the other the constant volume hydrometer. The first, usually made of glas. is shown in Fig. in it has a large h.llow bu:lb. and below that a smaller bulb. weighised with mercury: t make the instrument Bhat upright and it is sur:mounted by a cylinjricai glass stem whach is graditated. the divisions i.eing usually :narked on a piece - i paper enclosed wi:hin the stem. The depth to winich the hytormeter sinks in the liqued gives the density.

Oi constar: volume "ydrometers. Xichuls ri= Wirometer. the lout known. powilly. is adar:3if detemunt: the specific gravities not only ni furids but oi =nids also. It is sh wn in Fig. 2. It consist of a hollow cylinter oi metal, strmnunted with a very fine metal-i- stem, to the ton ni which there is attached a fizie or pail inr weights. From the bettem
of the metailic cylinder hangs a kind of cup or basket. The whole insirument is welghted so as to float upright. On the fine metallic stem there is a marked point: and by putting weights on the upper pan the bydrometer is always made to sink precisely to the point. If the weight of the instrment itself is known. and also the standard weight, or weight required to sink it to the matked point in distilled water, the calculation of the specific gravirg of any liquid from an observation with the instrument is very easy. To deiermine the specific gravity of solids, the instrumemt is placed in distilled water and the sclid body is put on the upper pan. Weights are then added till the hydrometer sinks io the marked point. But the standard weight of the instrument being known, it is plain that the difference between it and the weights that must be added on the upper pan to the weight oi the body whose specific gravity is to be determined must be the weight in air of that body. The body is now transjerred to the basket below the instrument, and the weight of the solid in water is similarly determined. From these data the specific gravity of the solid is calculated in the ordinary way. (See Specific Gratity:)

Hydrop'athy, a name for the treatment of diseases by the use oi water. This name is now largely superseded by the term hydratherapy (q.w).

Hydrophobia (irom Greek words meaning "feas oi water') an acute or subacute infectious disease. particularly of canine animals. Ir is usually communicated by a bite of the aflicted animal, and the contagion, the exact nature of which is unknown, is resident for the most part

Fyg. 2.-Nichoison's Itydrometer.
in the caliva, athough it has been found in the periphe-al nerves, the pancreas. and the suprarenal gland. It is irequently communicated io man, although the dog. woli. fox. decs. cat. cow and ckunk are the animals most frequently af. fected: it has been known to occur also in the

HYDROPHOBIA

horse, pig, birds, and other animals. Nine tenths of all the cases are contracted through the bites of raund dugs. Hydrophobia may be produced, however, by wound oceurring during the disscetion of rabid ammals : it is said to have been caused by eating the flesh of ammals that have died of the disease; and the milk of sucklings, animal and human, is thought to contain the virus. This poison has been found to be active in a $\log 44$ days buried, and in a ralbit buried 21 days.

In dorg the disease is comparatively common. In Igoo 1. E. Salmon, chief of the (nited States Bureau of Anmal Industry, determined that the disease was prevalent thronghont the United States, and largely on the increase. The chicf symptoms in dogs may be divided into two classes. Dogs suffer from furions rabies, and from dumb rabies. In the former Pasteur thought that the brain was involved; in the latter, the spinal cord. The iurious form of the disease shows (I) a period of melancholy or depression; (2) a period of irritation; (3) a period of paralysis. The first varies from a few hours to two days. During this period the anvious and restless dog may also be cross. He hides from his master, obeys sullicnly, and changes his position frequently. Itis appetite may not be at first affected, but it soon fails; he may lick everything in sight, or bite everything within reach, swallowing all sorts of foreigit bodies. The period of irritation usually persists three or fnur days, during which the dog is spasmodically mad; restlessness increases, and the animal has an irresistible impulse to rim away. During the rumning spells dogs may bite at everything in sight; at such times they usually seem fearless, and rarely avoid other dogs or people. If caged, they tear and chew on the bars, even breaking their tecth or fracturing their jaws. The bark is modified into a peculiar howl. During the third or paralytic perind the ding is subulued and more sullen: the lower jaw becomes paralyzed and langs down, saliva dripping from the mouth; the gait is staggering; from the fourth to the eighth day after the onset he dies of paralysis or exhaustion.

In dumb rabies the characteristic second stage may be entirely absent. The most persistent feature of dumb rabies is the dropped lower jaw, the paralysis of the jaw in the later stages preventing the dog from biting. Veterinarians see many eases of dumb rabics in dogs brought to them by owners who think that the trouble is caused by a bone in the throat. Beware of a dog that becomes listless and dull and hides away, is always on the go, prowling about and restless: one that is sullen ancl walls with his had down like a bear. A dog that scrapes incrssantly and tears things wap and one that suddenly becomes excessively fond of its master, desiring to liek his hands and face, should be watched and guarded. A dog that has trouble in swallowing, that seems to lave a bone in his throat, or, having wandered away from home, returns covered with dirt, exhausted and miserable, should be put under lock and key.

So far as the water-test is concerned, it is nonsense. The mad dog is often very fond of water: he is thirsty and rushes into water, thrusts his head into it: but he may have great difficulty in swallowing it, the act of swallowing usullly bringing about severe convulsions.

In man the disease may go through somewhat
similar stages, but the course is greatly modified; males are more likely to lee affected than females, the dufference in dress and exposure accountmg for this; and two fiths of the subjects are beluw the age of 15 . Bites on the face, neck, and hands are thought to be the most liable to develop the disease, and punctured wounds are more dangerons than lacerated wounds because of the difficulty in cleansing them. In man the period of ineubation varies widely, from 20 to co days i. the ustal tange, but six montlis may represent an extreme hmit. In exceptional instances the period of incubation seems to have been greatly prolonged. The pathological changes recently discovered are fomd to be extremely characteristic, so that it is now even possible to diagnose rabres in a dog within a reasonable time after his death.

In all cases of suspected hydrophobia it is best not to kill the dog; but if, by accident or design, the death is accomplished the body should at once be sent to the health board authorities for a confirmation of the diagnusis. The characteristic changes, as deceribed by Nelis in 1900, consist in minute afterations in the pinal ganglion cells. especially in a proliferation of the endothelial cells of the ganglionic cell capsule. These changes are consthed characteristic of this disease, and are not known to occur in any other affection. The general treatment is both prophylactic and remedial. All stray dogs should be destroyed: or, if they have bitten anyone. they should be imprisoned and watched. It is best to have dogs minzzeld or held in leash. In Germany mnzzling has entirely eradicated lyydropholija. London in 1889 had 126 cases of hydrophobia. Muzzling was made compulsory, and in ISoo the number of eases of raties had fallen to 44 ; in 1801 to 28 : and in 1892 to 3. The muzzling was then allnwed to lapse, owing partly to the sentimental agitation of many socalled lovers of dumb animals, and the cases of ralies increased, 25 persons dying of the disease in five years. while ist paticn1s were sent for treatment to the Pasteur linstitate.

The direct treatment of the womel cansing rabies is important. The poison scems to diffuse slowly, so that, if a ligat:ere is promptly placed about the limb on the body side of the wound. a suction-cup or direct sucking may extract all of the virns. In the mon-alraded mouth the virus is not very poisonous. If the wound is deep it is sometimes wise to make immediately a free incision, permitting the thow of hlood to wash away the virus, and also allowing a more open surface for the actual cautery. One of the best canterizing agents to use is strong nitric acid. The after-treatment will depend very largely on the promptness and thorougliness of the first treatment. If there is reason to helieve that the carly cauterization was ineffectual, the Pasteur method of treatment (see P.sstevr, Louts) is advisalbe. This is a complicated methorl which was elaborated by Pasteur about 1880 . He found that the virus was present in the spinal cord of a rabid animal; that its virulence slowly diminislied after the death of the animal: that the rirus could be artificially weakened by passing it through a series of monkeys until it was powerless: and that, conversely, this virulence could be restored by inoculating the attenuated virus in a series of rablits. Thus Pasteur made a weak virus and a strong one at will, and he later produced immunity to the virus by the use of
his attenuated material. The final plan that was adopted was to kill a rabbit by means of his strong virus, remove its spinal cord, cut this up into short sections, and dry it for varying periods of time. In this manner he secured a graded series of cord-sections of gradually decreasing virulence. These were emulsined in salt-zolution and used to inject into animals or man, the weaker virus being first used and the stronger later. Two methods are now (1903) in rogue - the simpler method, for the less severe bites, in which 19 injections are given in I_{4} days; and the intensive method. for the severe bites about the neck and face and the large nerve-trunks, in which 28 injections are administered in 21 days. The sernm-treatment of the disease is also rapidly becoming a possibility. Two Italian insestigators. Tizzoni and Centanni, have made an anti-rabic serum that promises something for the future. For the present. however, the Pasteur method is the most reliable. It is certainly harmless, and is worthy of trial. The resuits are assuring, and the statistics. to most minds. convincing. It should not be forgotten that there is a false hydrophobia which is of purely hrsterical origin, during an attack of which some patients have died. Consult : Bradiord, 'Two Lectures on Rabies' ('Lancet.' 3 March 1900): 'Hydrophobia in Germany") ('Hygienische Runuschau.' - Nov. ISg9) ; (Report of Select Committee of the House oi Lords on Rabies in Dogs' (Blue Book. IS8-) ; Medical N゙ews) (I5 Aug. 1903): Sixteenth Annual Report Bureau of Animal Industry (i899). See Hysterla.

Smith Ely Jelliffe, M.D.

Manaming Ea:tor Journal of Verious and fal Discase.

Hydrophytes, plants which grow in water or mud. They may be wholly submerged, completely without roots, and derive their sustenance wholly from the water; or may live amphibiously, rooted in soil and lifting some or all of their leaves into the air, and so differ only in a greater or less degree from land plants. Adaptations of water plants are especially to meet the difficulty of obtaining oxygen and of effecting pollination under water. In plants which grow wholly in or under water, roots. when present, are comparatively small and free from hairs, stems are slender and abound in air-spaces, and leaves are, as a rule, cither long and narrow, or clse greatly subdivided, so as to expose the greatest p (ssible anount of surface. The cuticle oi the leaf. also, is very thin. and lacks several of the structures. such as palisade cells and stnmata, always present in aerial leaves. Water therefure enters casily into the tissues of the plant and carries with it a large amnunt, not only of oxysen, but of dissolved nutriment, so that in any oceanic plants. and plants of ponds and rivers, no roots whatever are developed, and these live practically independent if any connection with the land. The fertilization of submerged cryptoqams is effected by the passing of generative clements through the water, but only a few suhmerged phanerogams make such use of the agency of the water. The pullen of the cel-grass (Z stra) has been midtfied for under-water eficiency. It does not form round grains, but elongated thread-like filaments which have the same specific weiglt as the water, and hence neither float nor sink. but move about at the level of eel-grass growth
until they come in contact with the stigma of some neighboring flower. In the duckweeds and some other submerged plants. the male flowers break loose, rise to the surface and fleat away like little boats carrying pollen to the female blossoms, which at that time have risen to the suriace but sink again as socn as iertiiized. The hydropiytes show many examples of exceedingly wide distribution, as might be expected of oceanic plants, but is not so easiiy explained of those of iresh maters, many gencra and species of which, nevertheless, are cosmopolitan.

Hydrostatic Press, a machine, sometimes called Bramah's press, from Joseph Bramah, its presumed inventor, which by the force obtained from water under pressure performs work, especially packing, as of cotton. Two tt:bes of unequal area are connected, and the whole ressel filled with water. Let the area of the smaller tube be one square inch. and let the piston that closes it be loaded with one pound. -1 pressure of one pound per square inch wil be exerted on every part of the boundary of the flud. There will thus be a pressure of one pound per square incli put upon the piston that closes the larger tube: and if we suppose the area of the piston to be I6 square inches. it is evident that it must

Principle of the Hydraulic Press.

be loaded with 16 pounds in order that the pressure to which it is exposed may be equilibrated. Thus a load of one pound on the smaller piston supports 16 pounds on the larger.

The principle of the hydrostatic press was pointed out by Stevines; but it was Bramaly who, in 1596 . by an ingenious contrivance, gave the principle practical application. A Bramaln's press. as ordinarily constructed and used to provide immense pressure, is a simple enongh contrivance. By means of a small pump water is pumped from a cistern through a small horizontal tube into the space that reccives a large pisun. The goods to which pressure is to be applicel are placed between the plate attached to the large piston and an upper plate that is kept in position by powerful iron rods. The water. tight stuffing of the piston is the great difficulty in the construction of the machine, and it was the insention of a water-tight collar by Bramah that made the use of the press practicable. The diagram shows a section AA oi the coliar surrounding the piston P . The collat consists of a
circle of solid leather, which is stamped by means of a dic into the half-ring, of which a section is secn. When pressure is applied the water fills the channel formed ly the balf-ring, and squeczes the inner side of the ring against the piston, and this takes place with greater force the greater the pressure to which the water is subjected.

Hydrostatics, the part of hydrodymamics that treats of the application of forces to fuids at rest. It is generally divided into two parts, one, hydrostatics proper, which deals with incompressible fluids, or liquids, and the other, which deals with compressible fuids, that is, with gases. The latter part of the subject is commonly called pucumatics.

The property of fluids which distinguisles them from solids, is want of rigidity. A fluid offers no permanent resistance to forces tending

Fig. 1. to change its shape. The particles of a fluid are mobile ; and While in the case of liquids very considerable forces of coliesion are exhibited, yet the particles show great freedom to alter their relative positions, and to pass from place to place within the general mass. A very important property that follows from the nature of fluids is that of the equable transmission of pressure. Suppose a weightless liquid inclosed in a ressel A, which is fitted with a piston P. If pressure is applied to P it will be transmitted in all directions through the liquid. If other openings are made, and if they are fitted with pistons, it is erident that to keep each of these pistons in its place, pressure inward must be applied. The pressure that must be applied to any piston equal in area to the area of P is equal to the pressure on P : and if the area of one of the other pistons is greater or less than the area of P , the pressure required to keep it in its place is proportionately greater than or less than the pressure that is applied to P . This principle, which is the most important in hydrostatics, finds a practical application in the hydrostatic press (q.v.).

In measuring fluid pressure the area exposed to the pressure of the fluid is to be considered. If it were required to calculate the force that must be applied to the rod of one of the pistons in the figure in order to keep the piston in its place, it would be necessary to know the area of the piston and the pressure on it in grams per square centimetre. When the pressure over a given area is not uniform we must then know the law of rariation, or at least the average pressure over the whole area, in order to calculate the whole pressure on it; and it will be readily understood that when, in such a case as this, the pressure per umit area at a point is spoken of, it is understnorl to mean the pressurc which would be exerted on unit area were there found a unit of area pressed with a uniform pressure, the same as that at the point in question. Not only is pressure transmitted ort to the surface or emelope of the liquid, as is shown in the figure, but within the fluid itself the particles are all pressed together. The pres-
surc is transmitted to every point within the liquid and moy be observel to be actung there. When a solich is innusersed in the liequict it is presscel at chery point wif surface in the directions perpendicular io the surface at that print, and. in the catse of che hypethetical weighthess licutid, whith it prosite equal in amount per unit of the arca (u that applicel irom without to the liguice. The presente alout any point in a fluid is equall in - 11 drections, and when any surface is expused to the pressure, the direction of it is normal to the surface at every pe int.

In actua! Puids, which have weight, it is evident, in the first place, that the lower layers of the fluid sustain more pressure than the upper layers. For whatever pressure the upper laycrs are exposed (1) is transmitted to the lower layers; and besides the lower layers have to support the weight of the supermenmbent liquid. The most important case to consider is that of liquids having a free surface, that is, a surface exposerl to the air. Here the surface itself is level. Otherwise thete would be a tangential force which would make it How down till the level state is reached. In every horizontal layer throughont the liquid the pressure per unit area is the same; and this is the case independently of the shape of any vessel in which the liquid may be contained. The pressure per unit area in any horizontal layer depends only on the height of the free surface of the liquid above the laycr considered, and the specific gravity of the liquil; and it is cqual to the weight of a column of the liquid of unit sectional area whose height is the height of the frec surface. This principle gives rise to remarkable results. Take, for instance, an apparatus consisting of a pair of circular boards connected by a belt of pliable leather (like a

Fig. 2.
pair of bellows), and having a small tube inserted into an opening near the bottom, and from it a tall tube rising perpendicularly: Heary weights may lec pat on the upper circular board, and if water be then poured into the upright tuhe they will he raised up by the pressure from below of the water. For the pressure to which the mader side of the circular board is exposed is equal to the weight of a column of water whose section is that of the circular hoard, and whose height is the difference of the lieights of the under surface of the circular

HYDROTHERAPY

board and of the free surface of the water in the small upright tube. When shuwn in this form the principle here employed is often called the hydrostatic paradox. Cil account of the very great pressure that a very small quantity of water may be made to give rise to.

It is a well-known principle that liquids tend to find their own level. Thus. in the accompanying figure. showing a series of connected ressels, the liquid is seen to stand at the same height in the principal vessel and in the variously shaped tubes communicating with it, while from the short. narrow mouthed tube it spouts up to nearly the level of the water in the principal vessel.

When a solid is immersed either partially or wholly in a liquid a portion of the liquid is displaced. The solid is at the same time pressed at every point by the liquid. the pressure being always normal to the surface. The upward pressure on the solid is greater than the downward by an amount equivalent to the weight of the liquid displaced by the solid; for if. instead oi the solid. the quantity of liquid displaced by it were present, its weight would be upborne by the pressure on every side. These pressures now act on the solid and whether or not the solid floats under their influence, as much of the weight oi the solid as corresponds to this pressure is supported by the surrounding fluid. These considerations applied to the phenomenon of floating bodies illustrate the principle just explained; and the experiments that are made for the purpose of determining the specific srawity of bodies heavict than water also depend on that principle. See Spectfic GratITY.

If a body be immersed in water or other fluid. the resultant of the fluid pressures meets the suriace at a point called the centre of pressure. which will coincide with the centre of gravity of the body if the body be horizontal. but will pass below it if the plane of the body is incined to the fuid's surface.

The conditions of floatage and of stability of a body floating in a liquid are of great importance. A Hoating body displaces a certain quantity of the liquid, and the weight of the

Fig. 3.
solid body is equal to the weight of the liquid that is displaced by it. To calculate how much of the hody is submerged, and how much tloats above the liquid, it is only necessary to consider what volume of the liquid would be equal in weight to the weight of the tloating body. For example, the specific gravity of ice is about nine tenths of that of ordinary sea-water. Hence 9 cubic feet of sea water weigh as much as 10 cubic feet of ice. Thus in an iceberg nime tenths of the ice is under water, and one penth is abore the surface. In ships and other foating hodies the stability depends on the form of the body. A sphere of wood floating in water is indifferent as in position. The slightest force is sufficient to overturn it from any
given position or to set it rotating in the water. IVith a ship or other body that must foat with one side upward, the stability is quite as important as the fioating power. The accompanying figure illustrates the conditions of stability: When a solid body is slightly displaced from its ordinary position of equilibrium, the forces that act upon it are
seen to be twofold. First there is the lorce of grayity on the solid acting vertically downward. which. if G be the centre of gravity, may be considered to act downward through that point: and sec-

Fig. 4. ondly, there is the resultant of the upward pressures of the various portions of the liquid, which, if o be the centre of these upward parallel forces, may be considered as equivalent to a single force actung vertically upward through that point. In the figure these two equal parallel forces are seen io form a mechanical couple whose tendency is to right the boat. and bring it back into its ordinary floating position. But if the upward vertical line through o were on the other side of the downward vertical line through G, it is plain that the effect of the couple would be to carry the boat away from the position in which it ought to float: and the boat would thus be unstable.

The metacentre is a point in a floating body of great importance, as its position determines whether the equilibrium is stable or unstable. Let A B in the figure be a line drawn through the points G and H , the centre oi gravity of the floating body, and the centre of the figure of liquid displaced when the body is floating with A $\frac{1}{}$ vertical. Let the body be then slightly displaced, and let o be the new position of the centre of the figure of the displaced liquid, and let M be the point in which $A B$ is cut by a vertical line through $0:$ is is the metacentre when the displacement from the original position is infinitesimal. If the metacentre is above G then the equilibrium is stable; if it is below G the equilibrium is unstable, and the body being slightly displaced, it tends to fall farther and farther from its position of equilibrium.

Among the instruments and machines founded on the hydrostatic principles here laid down are the harnmeter, the siphon, the hydrostatic press, and the hydrometer (qq.w.).

Hydrotherapy (Greek, $\dot{\nu} \delta \omega \rho$, water, and, ecparela, cure), a method of treating diseases by the application of lot and cold water, which has come extensively into practice of late years, and is recognized by the medical profession as a very efficient therapeutic agent. The effico y of water as a hygienic medicine has been recognized from the earliest times. Hippocrates, Celsus, and Galen regarded water as of especial value in the treatment of acute diseases; and during the Diddle Ages the same view was advocated by many famous physicians. During the ISth century there was a growing belief in

HYDROTHERAPY

its virtue as a curative agent, though rather in acute than in chronic discases. Some physicians used water for internal tredtment, others for external treatment, but hydrotherapy, as now understood, combines both inethods. It was originated by Vincent Priessnitz, a Silesian peasant. Whers a boy of 13 , having sprained his wrist, he applied it to the pump, and aiterward bound a wet bandage upon it. Is this became dry he rewetted it, and thereby reduced the imfammation, but produced a rash on the surface of the skin. Shortly afterward he crushed his thumb, and applied the wet bandage as before, and again an eruption showed itself. He concluded that the rash was an indication of impurity of blood; and having instituted a series of observations in regard to varions wounds and ulcers on the persons of his neighbors, he was led to form a pathological theory, according to which disease is caused by an accumulation of morbific matter, which must be eliminated from the system by cold water applications and the observance of a strict regimen. His views were confirmed by an accident to limself, in which, through a cart running over him, he reccived some broken ribs and severe contusions, and was given up by the physicians; but on learning their opinion he tore off their bandages, and applied others wet with cold water. IIe also replaced his ribs ly inflating his lungs while pressing his abdomen against the window-sill. Either through or in spite of this treatment Priessnitz recovered and the carrying out of this cold-water theory became the object of his life. In rapid succession he invented the sponge-bath, the wet-sheet packing, the sitz, foot, and arm baths, the douche, the steam-bath, the dripping sheet, the plunge, the dry-blanket packing, and other appliances of the hydropathic system. In 1829 he established, at his native village of Graferberg, a range of baths, which speedily grew in reputation, and attracted visitors from all parts of Europe. The Austrian government lent him its patronage, and all the opposition of the medical faculty was unable to stem the popularity of the new system. The original establishment at Gräfenberg soon expanded jnto an extensive stite of buifdings, stretching along the slope of one of the Sudetic Mountains, and resorted to by troops of invalids, who sought to regain health by bathing, exercise, simple dict, and agrecable society. Similar institutions soon sprung up in other parts of Germany, and were at length introduced into England, a hydropathic society having been formed in London in 1842. At the present time hydropathic institutes exist in great number thronghout the world, and so universal have hydrotherapeutic procedures become that a large body of quacks thrive on the prestige given to hydrotherapy by regular physicians. The theorics of Preissnitz are now known to be fallacious.

The work of Winternitz and his disciples las put the general principles of hydrotherapy on a rational footing; there is little doult, however, that hydrotherapy, like any other therapentic agent, may be greatly abused. It is by no means a universal panacea. There are a large number of ways of applying hot and cold water to the body. One enthusiastic advocate has described over 300 separate kinds of application. In general, however, the water may be applied in the shape of tub-baths, ablutions, packs, rain-baths,
and douches. These may be divided and subdivided as indicated. Tub-baths may be fuil, half, or lucal batho, is to the pelsis, the ieet, the hands, etc. The iull qub-bath is usually given at a temperature of $55^{\circ} \mathrm{F}$., imless special indications are to be mact. If the praticnt's reaction is not of the best, the temperature should be about oo li., and vigorous friction of the skin should be maintaned. The time spent should be short, 10 to 20 seconds. The full tulb-bath is a strong tonic. In severe illness the tub-bath should be given only by a traned nurse under the physician's orders. Malf-baths are taken at a temperature of $60^{\circ}-75^{\circ} 1 \%$. After wetting the ince and chest the paticnt sits in a tub about one third to one half filled whth water, sufficient at least to cover the legs and the pelvis. The attendant splashes the cold water ofer the patient's body, maintaining at the same time a vigorons friction ly means of a dlesth-brush. The tume is from one to five minutes, but the bath should not be continued if the teeth begin to chatter or if there is any evidence of defuctive reaction, is blueness of the lips, or thin pulse. I.ocal cold baths, such as sitz-baths and foot-baths are very important hydriatric measures. The cold footbath, plunging the feet for from one to three minutes in cold rumning water, is of service in sluggish circulation of the feet, neurasthenia and hysteria. Ilarm full baths at a temperature of $90^{\circ}-98^{\circ} \mathrm{F}$., for a period of from 5 to 20 minutes are very useful as sedatives to the nervots system, particularly so in insommia and nervousness from overwork, especially when taken at night. The best effect is obtained if they are taken at the time of retiring and are followed by a brief application of cold water, either in the shape of a half-bath, or a douche. After the bath the patient should wrap up in a linen sheet and a blanket to keep up the dilatation of the bloodvessels of the skin. Perspiration is to be avoided, save in particular instances.

Ablution- This is one of the simplest of hydriatric measures. It is a valuable slin and nerve tonic, and is partictilarly aclapted for children and women. It consists in the application of water to the hody at a temperature of $50^{\circ}-60^{\circ}$ F., from the hollow of the hand, or by means of a bath-glove or wash-cloth. 'The entire hody is gone over, one part after another being systematically treated. One to two mintates' application followed by vigorous rubling with a coarse towel or flesh brush, is sufficient. Ablution is particularly valuable for reducing temperature, often bringing about quiet, restful sleep in tossing and fretful children.

Iffusion.- In this treatment a volume of water from a pitcher or a pail is poured over the entire body: or upon certain parts, the patient sitting or standing erect in a tul) or bath. The temperature should be $50^{\circ}-60^{\circ} \mathrm{F}$., and the whole procedure should not consume nyer to or 15 seconds. The reaction is obtained by rubbing. In certain muscular tremors, in netrasthenia, etc., this procedure is of service.

Packs or Comprisses.-These may be dry or wet, general or loeal. The dry and wet packs are applied in the same manner. The patient is placed on a narrow bed or couch with a rublber sheet, a blanket, and a linen sheet beneath him, the blanket and sheet falling on each side of the couch. The sheet is then brought up and. with the arms to the side, wrapped thoroughly about him. the face alone being exposed. The blanket

HYDROZOA - HYENA

is then wrapped about the patient in a similar manner. Ciutis wrung out in cold water may be applied to the head. In a wet pack the sheet is first wrung out in cold water: in the dry pack it is frequently warmed. The object of the application is to bring about free perspiration, and thes is the usual result. Hot drinks may be administered irecly. The time given to the application will depend largely or the conditions to be met. If reduction of tempcrature alone is desired. the patient may remain in the pack until the perspration is free. and he may then be wrapped up in a dry blanket. In certain uramic states, and in infantile convulsions. a longer period may be necessary. The wet pack is an excellent procedure in the treatment of alcoholic excesses. The initial effect oi a cold pack is constriction of the blood-vessels: thais is soon followed by a dilatation which continues throughout the application and is the main cause of the iree perspiration. The pulse-rate is reduced and the arterial tension falls. The stress of elimination is taken from the kidners, the amount oi blood within the brain diminishes. and sleep is encouraged. In the hot general pack a blanket only is used. This is wrung out in water at $1+0^{\circ}-150^{\circ} \mathrm{F}$., the temperature at the time of application not being over $105^{\circ}-105^{\circ} \mathrm{F}$. Local packs or compresses are of inestimable service in a variety of conditions. These are usually made of pieces of heavy muslin. canton flannel, or linen. varying in shape according to the site of application. They are wrung out in cold or hot water and applied to the head in headaclue, to the neck in sore throat, tonsillitis, diphtheria, earache: to the chest in pleurisy, pneumonia. neuralgias: to the heart in rapid overacting heart-action; to the stomach in indigestion: to the joints in sprains, rheumatism and gout: to the abdomen in gastroduodenal catarrl, irritable bladder. catarrhal appendicitis, colitis. peritonitis. Hot applications are particularly serviceable in painful menstruation. Hot water-bags have largely taken the place of hot compresses since they liave been made so handy in shape and size and so reasonable in price.

The Douche. - This application is one of the best tonics, but requires special rooms for its usc. These are found in the best appointed hydropathic institutes. The douche consists in the application of hot and cold water delivered through a hose. It combines the elements of the water, heat, cold, and force. The regulation of the pressure and temperature is an important fcature in the scientific use of the douche.

Con=rilt Cohen. (Plysiologic Therapcutics Hydrotherapy' (1002): Baruch, 'The Principles of Hydrotherapy' (1000): Kellogg, 'Hydrotherapy (1002). See Bith ANd Bitming.

> SMitil El. Jflliffe. M. D..

Instructor in Plarmacology and Theraremtios, C lum:ria ('nizersity'.
Hydrozóa, a clazs of Calentcrato (q.s.) embracing the polyns, all of which bear a general resemblance to Hydra (q.s.). There are two altemating generations, that is, (1) the sessile asexual nolyp, which (2) gives rise to a jelly fish or medusa. The hydroid polyp is like hydra, a two-layered vase-like sac, with a circle of tentacles around the mouth. This gives off by a budding process a bell-shaped medusa,
which is much more highly organized than the poiyp, having a well developed digestive and mervons system, and sense-organs (eyes and ears, or otocysts). The Hydrozod are at present divided into seven orders, the most important of which are besides Hydraria represented by loydra: the Hydrocoralline of which Millefora (q.v.) is the type; the Tubularic comprising Hydractimia. Tubsiaria. etc.: the Canspanulari of which Campanularis. Clytia, and Obelio are examples. Near this group belongs the extinct order of Graptolites, which were floating forms living in the Paleozoic seas. The las order (Siphanophora) comprises the Portuguese man-of-war (q.ッ.) and other forms, which are beautiful transparent pelagic animals, very brightly colored and highly specialized.

Hy'ena, hī-ē'nä, one of a family (Hycnidc) of carnivorous mammals, having relations in structure to the bears, the cats and the civets, familiar in Airica and southern Asia. They are of moderate size, have large, rather short heads, powerfinl forequarters. feeble and drooping hindquarters and short tails. The eyes are large, and have longitudinal pupils: the ears are long, erect, rery oper1, and directed iorwards. The teeth are numerous, massive, tuberculated, and well adapted to aid the muscular jaws cruncl2 the strongest bones, as hyenas are able to do. Hyenas are nocturnal animals which pass the day in solitude in cayes or other hiding places. which they quit at night in order to seek their prey in bands. Carrion is a farorite food, and the stench attracts the hyena by night as it does the vulture by day. In some cases they dig up dead bodies and devonr them. They also prey on living animals, and flocks of sheep and goats suffer severely from their ravages in some localities. The common or striped hyena (Hy@na siriala) is a native of Northern Africa and parts of Asia, even eastward to Burma. It is about the size of a large dog, brownish-gray and marked with transverse bands of dark brown on the body. which become oblique on the Hanks and legs. The hair upon the line of the back is much thicker and stronger than on any oller part, forming a sort of mane, extending from the rape of the neck to the origin of the tail. This species was well known to the ancients, who entertained many absurd notions respecting it, believing that its neck consisted of but one bonc: that it changed its scx every year: that it conld innitate the human roice etc. It was formerly supposed that the hyena was nntamable, lut that it can be completely tamed there is not the shadow of a doult. The spotted hyena (H. crocuta) has a considerable resemblance to the former species, but is larger. and is marked with numerous round blackishbrown spots instead of stripes, nor is the mane so large. This species inhabits many parts of Airica, and used to be peculiarly numerous around the Cape of Good Hope. There is another species, the brown hyena (H. bronnca), which differs from the preceding ly having stripes on the leas, the rest of the bidy being of a dark grayish-brown. It also inlabits the south of Airica. An extinct speciec, the cave hyena, was abundant in England. France, and Germany anterior to the glacial epoch, and has left its remains in many caves of these countrics. Thouch named H. Spclad, it seems practically identical with the cxisting H. crocuta.

The fossil ancestry goes back into the tertiary whence it seems to lave spring from the same stock that gave rise to the viveroids. Consult writers upon mature and sport in Africa and India.

Hyena-dog, an African canine animal (Lycaon pictus), whicl? takes its name from its hyena-like appearance in shape and color, and is also ealled Cape hunting-dog because it hunts in packs. It differs from the typical doge in having only four toes on both the fore and hind limbs, and in its dental fauna, and it scems to be a comparatively recent immigrant into South Africa, since its bones are found in British cares. It preys upon antelopes, cattle, etc., and was a scourge to the carly settlements, when it was more numerous and bold than now.

Hy'giene, broadly, the science and art of preserving liealth; as currently estrieted, not by curing disease but by its prevention, through the removal of its generating causes. As we cannot remove them until they are known or truly inferred, the science advances pari passu with that of medicine, and had no general basis till the past century, during which unprecedented progress was made in all branches of medicine, than which none is more important than that of preventive medicine (q.r.). Still, good sense hat been applied to it for ages, especially in regions where ignorance was speedy death. The Mosaic laws recognize the three great principles of cleanliness, isolation, and wholesome diet, with a thoroughness that leaves little to be desired. Hence, the Jews were almost immune for many centuries from the plagues which swept away their Christian neiglibors; this was one reason why they were often suspected of starting or spreading the plagues. As in most ancient religions, these sanitary principles were part of their religious observances. In the 18 th century some elementary ideas of hygiene had become known: the prevention of scurvy by lemon-juice and regetable diet, of jail-fever by less crowding and more cleanliness, and of smallpox by inoculation, were among the foremost advances. Our new scientific acquaintance with ultimate causes for the first time cnables us to make hygiene a true science on a basis of exact knowledge

The subject naturally divides itself into two main branches, those of enviromment and of the person; though there are some items which belong to neither, and the two cannot always be separated.

Encironment. - This ineludes (1) elimate: (2) private: the site. construction. eleration, warming, water-supply, and purification of dwellings; (3) public: the cleaning of strcets, disposal of the dead. prevention of befoulment either by exereta or sputa, and other methods of publie sanitatibn. The third will be dealt with under another title by an expert authority on publie health. Sce Sanitiry Setence.

Climatic conditions cannot to any extent be modified: they must be nentralized, when unsanitary: by other conditions pertaining to hygiene. All nations have more or less adapted their habits to their climate. unless acclimated so that they become part of its working: the hours of work or travel, the character of dwellings. the sites selected. the diet found wholesome by experiment, all form part of a hygienic system
batilt up by at ciai experience and tradition. Those unacelinated may have persomal advice from predeccomers; two often nothing but persomal experience can be of any avail, and frequently that is only acequireal by fatal results.

The subbect of d vellings inchudes a number of considerations. Fhe site, if possible, should not be one where the ground-water is near the surface, or freshets or tides set back the drainage of closets, or where there are great fluctuations in the level of the grotund-water, which it is better to have nearer the surface and steady than lower and more unstathle. "Nlacde" land in cities is often unhealthy, bett tenants, cannot in practicc excrcise much clinice; the eity authorilies should prevent bad results by thorough sewerage with a gond fall. The construction most important to have right is the plumbing; including the drains at the bottom: it is a commonplace which need not lee dwelt on, that leaking sewer-pipes and clogged drainage mean the infection of a house with disease-laden air. Paint is better than paper for walls, as it can be washed; and old paper shonld be scraped off before new is laic on. When possible, rooms should be large enough not to need incessant change of air; when not possible, as is usual in citics, plenty of windows and the fullest possibilities of draft should make up; if this, too, is mot availalle, the best systems of artificial ventilation. Unhappily, science is very backward in this class of invention, and small, close, unventilated rooms shorten millions of lives and prematurely break down working power in even the civilized cities of the world. The normal supply should be at least 3,000 cubic feet of air per head each hour, and this largely increased in work or sickness. The volume of consumption and other scrofulous diseases, bronchitis, pneumonia, etc., is directly dependent on foul air, which also increases the virulence of all zymotic discases. The ventilation of public buildings rests on the same principles, and has the same results. The warming of honses is of great importance, and is generally ill done, with disregard of ventilation. The vast majority of houses in America are grossly orerheated even when the air-supply is enough, giving a sensitive skin which "catches cold" as soon as it touches fresh air. Little children especially are literally killed by thousands from overheating and overdressing. The water-supply is a matter of public concern: where there is a that price, people do mot stint themselves. Where there are meters, they often do; but closets should be kept fully flushed at any cost. In country houses, where city water and sewerage are not available, it is not necessary to insist on the frequent cleaning and disinfection of receptacles for excreta. Advice on this point is obtainable gratis from plysicians, apothecaries, and others. If the dry incthods are carefully used, they have many adrantages in healthfulness over the elaborate city systems.

Personal Hysiene- This has very many divisions: the most obvious are considerations of food, and drink, nerve stimuli, clothing, cleanliness, matural necessities, work and rest, and moral self-control. In the matter of dict, there can be no one rule: "at forty," says the proverb, "one is cither a fool or a physician" : and each must use hus own experience as a guide to whether meat is a necessity or vegetarianism an advantage, what foods agree with him, whether
dry meals give him heartburn or drinking with them impedes digestion, and whether he is eating so much as to make him heary, impairing his capacity for work and enjoyment. or making his body gross. In seneral, probably professinnal and sedentary workers as a class overeat, and would find their minds more alert and their bodies ireer from disorders with less gratification of appetite. Nerve stimuli, ranging from tea, coffee, and cocoa, to tobacco, alcoholic drinks, and opium, are hard to irame a general sule upon: they, too, have infinitely varied etfects. Cocoa is most of a food; coffee with nost is an agreeable stimulant, with many an active nerve-poison, producing heary headaches and incipient stupor; tea is a real nervefood on occasion and in small quantity, while taken steadily and largely it is a poison and a rery mischicrous one: tobacco sparingly used by grown men probably does litule harm. and somerimes saves worse things, but should not be used by those under age, nor by those with weak nerves, and is highly injurious in heart disease. Bright's disease, and venereal diseases; alcoholic drinks suggest too many questions for discussion here; narcotics like opium. hashish, etc.. as well as chloral and its like, should be used only on a physician's prescription. Clothing. if there is time and means, can be aecommodated to changes of weather and occasion so ds greatly to advance health: with most, there must be a rough average. Personal cleanliness within limits is a sine qua non of reasonable immunity from disease, and with delicate persons. of reasonably good ordinary health; but even this good thing can be irrationally overused and make mischievous. Too frequent hot baths in a northern climate are a great aggravator of lung-diseases, and one great city (Pittsburg) had a marked decrease of pulmonary complaints one winter when the water-supply broke down, and people resorted greatly to dry rubbing. Especially it is possible to use too much soap, and keep the natural oil of the skin washed away. Natural necessities should be attended to more constantly thars they are: workmen especially often grudge the time, but the waiting till there is severe pressure often creates dangerous bladder and intestinal complaints. Work, for most, is not under their own control; but to some extent resting is, and the average American perhaps owes more to compulsory public holidays than he is aware. There is more temptation to overwork than to idle, for the average man. Exercise should be taken by the sedentary. even a homespun housemethod being preferable to nothing. Grotius preserved his health in prison by whipping a top two hours a day. This should be one ni the most rigidly imposed firms of self-control, which in ali forms is all-important. Excessise scxuality, either of act or imagination, is simply destructive of will-power as well as bodily. fibre; giving way to fits of anger or despondency is almost a recipe for entire neryous wreck. As to laziness, of mind or body: it is one of the worst and most incurable forms of this evil.

The management of children is really personal hygiene. only controlled by another than the subjeet, the care of the dead helongs to public hygiene; the prevention of disease belones either to medicine, by the use of drugs like quinine or inoculations, or to house-hygiene as
disinfection. The hygiene of the sick-room should be under the direction of the physician.

Hygrom'eter (Gr. "moisture-measure"), a meteorological instrument used to ascertain the quantity of moisture in the air. The first hygrometers. or rather hygroscopes (for they did not determine the quantity of humidity; but merely showed the difference between a dry day and a damp dar). were constructed of catgut, hair, or other fibrous material. baving the property of lengthening when wet, and contracting when dry: The first hygrometer properly so called was made by Professor Daniell. It consists of a glass tube, bent at right angles into arms of unequal length. Each arm terminates in a bulb, one bulb being two thirds filled with sulphuric ether, and the other bulb being, at the commencement of an experiment, empty. In process of construction the tube is exhausted of

Regnault's Hygrometer.

air, and is thus filled with vapor of cther through its entire length. A thermometer with a bulb immersed in the ether of the lower arm is inserted in the tube to register variation of temperature, and a second thermometer is attached to the stand of the instrument to show the temperature of the outer air. For use one bulb containing the sulphuric ether has a zone of polished gold. and the other bulb a muslin cover. If sulphuric ether be dropped on the latter. as it evaporates the buib is cooled, and the vapor of ether is condensed within it from the other bulb; the temperature of which rapidly falls owing to evaporation from it. The operation is carried on, ether being dropped on the second bulb as is required, till the temperature of the first is so far reduced that dew from the surrounding air just begins to condense upon it. By means oi the thermometer contained in the first bulb the temperature is read off at the instant at which sapor begins to condense, and the dew-point is thus obrained. The hygrometric condition, that is. the ratio between the quantity of moisture that the air actually contains and the quantity which it is capable of containing at the existing temperature is then easily deduced.

Regnault's hygrometer, shown in the above figure is an important modification of Daniell's instrument. D and D^{\prime} are two precisely similar cups or thimbles of polished silver; each is surmounted with a aimilar glass tube into which,
by means of a cork, two thermometers are fitted, and the buibs of the thermometers are covered with ether. Through the cork in one of the tubes a small glass tube t passes, and is carried down below the surface of the cther; while a side tube establislies communication with the vertical tube $U V$ which is connected with an aspirator A (or vessel into which air is sucked at the top to supply the place of water which escapes at the bottom). There are no corresponding side tubes connecting the left-hand tube of the hygrometer n^{\prime}. Tis means of the aspirator a current of air is drawn through t, it therefore bublules through the ether, causing evaporation and cooling the ether till the dewpoint is reached. This is observel with great nicety by means of the silver cap; for the instant the dew commences to cleposit, the brilliant polish of the silver is dulled. The temperature of the air is at the same time read off by means of the other thermometer in D^{\prime}. Regnault's hygrometer. both from its construction and from the use of the aspirator, avoids the too great proximity of the observer, which, from the nature of the experiments, is objectionable.

Mason's dry and wet bulb hygrometer consists of two thermometers arranged side by side as in the figure. The dry bulls gives the temperature of the air at the time of olservation; and the other bull, which is covered with muslin. and kept mosist by filaments of coton carried from it into a small cistern of rain or distilleci water. reduces the height of the mercury in its tube in proportion to the capacity of the air for drying, or taking up additional vapor. This insirument does not give the dew-point directly. The difference between the readings of the two thermometers is multiplicel by a special factor for every temperature of the dry bulb.

Hyksos, hǐk'sōz, according to the Egyptian amuals, a concuering nomadic race from the East, who, under Salatis, their first king, took Nemphis, and renderel the whole of Egypt tributary. Their name probably means "foreign kings," the explanation "shephere! kings" being of later origin. The date of their invasion and conquest was about Ijoo B.C., of their expulsion about 1600 b.c. The seat of their rule was the strongly garrisoned fortress of Avaris, on the northeastern border of the Delta. They followed Egyptian customs, and their six monarchs took Egyptian names. It secms likely also that a great part of Syria was subject to them. The only detailed account of them in any ancient writer is an unreliable passage of a lost work of Manctho, cited by Josephus in his rejoinder to Apion.

Hymans, Louis, loo-ce è-män, Belgian historian, journalist, novelist, and joet: 1). Rotterdam 1829: d. Brusscls 22 Mlay 188 t. He removed to Belgium in boyhood and rose rapidly to distinction as a Liberal journalist. He edited the Belgian 'Star' and the Parlianentary 'Echo' for some years, and was elected to Parliament in 1859. H1e wrote: 'History of the Marquisate of Anvers' (1848) ; 'Popular History of Belgium' (1860); 'Political and Parliamentary History of Bclgimm ($1869-70$); two popular novels, 'André lasilly) (r86r), and 'The Duvard Family' (1858) ; and some pleasing poems.

Hy'men, the god of marriage in Grecian mythology. The common legend is that he is
the son of Apollo. No marriage took place without his being invoked to sanction it. Ife is described as having around his brows the flower of marjuram, in the luft hatul the flame-colored nuptaal veil, and in has right the muptial torch.

Hymenoptera, an urdur of Hexopoda or insects. comsidered ly many entumologists to be the highest and most perfiect expression of the insect type. The metanorphonis is complete and exienssue. 1 he -artic are short, thick grubs. foothess exeept in the "all-flies (Tentherdinide) and in most cases are carcinlly murtured and felf in nests. the pupa lave nearly the form of the perfect insects. The imagos are of compact, highly complex constructon, with the three regions well marked except that the first segment of the abdomen is mited with the tharax. A considerable part of the large head is ocenpied by the conspicuons compound eyes besides which there are three ocelli. The jaws or mancibles are comspicuots biting organs, and the remaining mouth-parts usually form more or less of a proloscis with a large ligula or tongue. Although the wings are smatl they move with great papidity and sustain the body in rapid and extenceif llight : there are cwo pairs (sometimes absent), membranous, veined and transparent. The genital appendiages of the females are modificed to form a sting or, more rarely, an oripositor. Marked sexual dimorphism is very ircquent especially among the social forms, in which a third class of individual, the worker or neuter, in reality imperfect females, also occurs. Nany of the ant communities are still farther polymorphic. The orter is one of yreat extent and exceptional interest, as it includes the ants, bees and wasps, the ichncumon-flies, gall-flies and saw-flics, divided into momerous families. Among the ants and bees are exhibited most remarkable and complex social states, which are described in the articles on these groups. The habits of the numerous species of wasps, and espocially the varied architecture of their nests, are of nearly equal interest. A remarkable series of adnatations to special cunditions are presented by the parasitic ichneumon tlies and their allies, which lay their eggs within the bodies of the larvee or even in the egys of other insects, on the substance of which their own larve feed. Confming their parasitism to plants, the gall-flies produce by the irritation cansed by their eggs or secretions deposited with them in the tissues of leaves, twigs or fruits, the familiar excresccuces whose shapes ate almost as nu1merous as the species which proluce them. (See Galls.) Finaliy, the saw-flies ate least typical of the order but stand nearest to the main hexapod stem. Their larver have both thoracic and abdominal legs and closely resemble caterpillars; they are vegetarians and many of them are very destructive io plants.

Consult standard works of Entomology (see 1wsects), and the bimlingraphical list given by L. O. Howard in the appendix to his 'Insect Book' (New York t902).

Hyndman, hind'man, Henry Mayers, English socialist and author: b. London 7 March 1842. He was cducated at Trinity College. Cambridge; and entered journalism. He was special correspondent for the Pall Mall Gazetle in the war of i8G6 between France and 1taly, and wrote leading articles in favor of free education in the Alelbourne 'Argus' in 1869 . In

IC8I he was one of the founders of the Social Democratic Federation，and has since been active in the Socialist movement，being the ac－ knowledged leader of the Marxian Sucialists in England．In ISSt he founded the paper＇Jus－ tice，＇of which he is editor．His works include （Historical Basis of Socialism in England＇ （Is，）；＇Socialism and Slavery＇，a reply io Herbert Spencer：＇Tine Commercial Crises of the Xineteenth Century）（Social Science Series， i892）；and＇Economics of Socialism＇（ISg6）

Hyne，Charles John Cutliffe，English nor－ elist：b．Bibwry．Gloncestershire，II May IS66． He was graduated from Clare College．Cam－ bridge，traveled widely both overiand and by sea．and has published several rigorous stories． including：＇The Stronger Hand＇（ 1806 ）：＇The Adventures of Caprain Kettle）（isos）； ＇Through Arctic Lapland＇（I8gS）：＇Further Adventures of Captain Kettle＇（Isog）：＇The Filibusters＇（1900）：and＇Thompson＇s Pro－ gress＇（1902）．

Hypatia，hīpä＇shĭ－a，Greek philosopher of the eclectic school，daughter of Theon，a cele－ brated astronomer and mathematician，who was at the head of the N゙eo－Platonic school in Alex－ andria early in the sth century．Such was her reputation that she became a preceptress in the school of Plotinus at Alexandria，and expounded the principles of his system to a numerous auditory of students irom all parts of the East． Her hotse became the resort of all the persons of learning and distinction in Alexandria．and． among others，of Orestes the Prefect，between whon and Cyril．patriarch of Alexandria． a conflict respecting authority existed．At fanatical mob believing that Hypatia en－ couraged Orestes in his opposition to the patriarch，set upon and murdered her（March 415）．Hypatia appears as the central figure of Kingsley＇s novel of the name（q．r．）（ 18 ミ3）．

Hypatia，a work of historical fiction，by Charles Kingsley（q．v．）．named irom the prin－ cipal character，the philosopher Hypatia（q．s．）． The book presents a brilliant and stirring though not historically trustworthy picture of the zih century of the Christian era，against the background of the learned city of Alexan－ dria in Egypt．

Hyper＇bola，in geometry，a curve formed by the intersection of a plane with iw？concs united at their apexes．The intersecting plane bas such an incluation to the axis of the upper cone that it produces a

Ityperthola－D E． c A H，are opposite hy： periNas：$=i$ ，ioci；c ． centre：A B，majajor or tran－verse axis：$a b$ ． miror or ennjugate axis：s C P．a drameter． similar section oi the lower cone：the two branches thus in mmed are，called oppri＇e or conjugate hypert ias． The two points where the hranches approach nearest to each otherare called the vertice：the straight line which ioins them is called the main 5 or transverse axis，and its middle pmint the cen－ tre oi the hyperby la．At line of a certain derinite lengila drawn through the centre and continued both ways at right angles to the major or trans－
verse axis，is called the minor or conjugate axis． When the major $2 x^{-i}$ is produced beyond the rertices two points called focs occur at equal dis－ tances from the centre，and the difrerence of their distances from any one point of the hyper－ bola is always equal to the major axis．Every line drawn from any part of the hyperbola to one of the ioci is called a radius vector．If at one of the vertices a perpendicular to the major axis be erected，so as to be bisected by this axis and made equal in length to the minor axis，and if through the extremities of this perpendicu＇ar and the centre of the byperbola two indefinite straight lines be drawn，these form what are called the asymptotes．which though they lie en－ tirely outside the hyperbola，are always drawing nearer and nearer to it，but never actually reach it．The equation of the hyperbola reierred to its centre and axis is $\frac{x^{2}}{a^{2}}-\frac{y^{3}}{b^{2}}=1$

Hyperion，hī－pérĭ－on，in Greek mythology： a Titan：son of＂ranus and Ge ，and iather of Helios．Selene，and Eos．Homer and later poets apply the name as a patronymic for Helios him－ seli．The attribute of beauty has therefore been connecred with the name．as in Shake－ speare＂s comparison of＂Hyperion to a satyr．＂

Hyperion，in astronomy，the name as－ signed to ．he jth satellite of Saturn，discovered in 18，8，at the Harvard Observatory by G．P． Bond．It is outside the satellite Titan，whose mass causes perturbations in the orbii of $\mathrm{Hy}-$ perion，which have proved to be a difficult prob－ lem in celestial mechanics．and a unique case in the solar system．They apparently give large eccentricity to Hyperion＇s orbit．and cause the apparent line of apsides to iollow the conjunc－ tion points of Titan and Hyperion，in a direction contrary to the tusual motion of this line．

Hyperion，a romance，by H．W．Long－ fellow．published in 1839．It is the tale of a young man in deepest sorrow，wandering from land to land in search of occupation for his mind，and forgetiulness of grief．This motive forms the thread oi a story which connects a series of philosophical discourses，and romantic legends and poems．Many of these last are Longiellow＇s translations of German foems， and have found a place in his collected poems．

Hyperpyrexia，hī－pér－pĭ－rěk＇sĭ－a．See Fever

Hyperspaces．Dinicnsionali！．－In order to make quite intellisible the concept varions？ denoted ${ }^{2} y$ such terms as hynerspace．space of bigher amensiens or demersionality muntidi－ mensi nal space，n－space，n－fold or n－dimensional space is＝in the first place necessary to explain the meaning of dimensionality and to indicate the way in which the dimensionality，of number of simenmions．of a given space in a given cle－ ment is determined or ascertained．Becanse，in order io deternine the position of a toins in a curve or straight line．it is necessary and steffi－ c：it t k m w ine fact about the point．as，for e ？？mツ＇e，it＝distance（with alsebraic sign）from ？ixu！or irt or origin．a line is said to be a one－ cimensional space of points．Bot instead of t？e pinint，we may chonse for element of the －phe ce（line）a puir or a triplet，．．or an n－set wi points．In such cases，in order to deter－
mine the element, i.e., to pick it out or distinguish it from among all others of its tind, it is necessary and sufficient to know *io or three.... or at independent facts zbout it. Hence a line is a two or three-, or n-dimensional space of pairs or triplets, or n-sets, of points. In jike manner a flat pencil (totality of lines of a plane that have a common point) is a one-dimensional space of lines, while its dimensionality is 2 in 'ine pairs, 3 in triplets, and so on. For like easons a plane is a teo-dimensional space of points or of lines. In circles its dimensionality is 3 , in conics 5 , in curves of third order 9 , and so on. It is at once seen that the dimensionality of a given space depends on the entity chosen for primary clement, the element, i.c., in terms of which we elect to study and express the properties of the given space. Illustrations abound. A curved surface, as, say, a sphere, regarded as the envelope of (its tangent) planes, is a two-dimensional space of plates, while, conceived as the assemblage of (its tangent) lines, it is a three-dimensional space. The reader will observe that the term space is employed generically to denote any unbounded continuum of geometric entities. The generalization is, however, a natural one, for, for geometric purposes, ordinary space is viewed primarily as an assemblage of elements of one kind or another. To determine the position of a point in ordinary space, three independent data (as the distances of the point from three mutually perpendicular planes of reference) are necessary and sufficient. Ordinary space is, therefore, three-dimensional in points, and that is what is meant, consciously or unconsciously, when, without specifying the element (point), it is simply said that space is three-dimensional. But tri-dimensionality is in no strict sense a definitive property of ordinary space. For some little understood, probably economicai, certainly extra-logical, reason, the point recommended itself to primitive man as the element par excellence with which to geometrize, and so it has become traditional and proverbial that our space is essentially, uniquely, characteristically, intrinsically, exclusively three-dimensional. Such, however, it is not. It is indeed three-fold in planes as in points, but in lines it is fourdimensional. So, too, it is jour-fold in spheres, but in eireles its dimensionality is six. In general, it is possible by proper choice of element to endow any given space with any prescrived dimensionality howe ver ligh. Accordingly, if by hyperspace is meant a space of dimensionality greater than 3 , the notion is simple and near at hand, we need not go beyond ordinary space to realize it, we detect it in the line, in the plane, in ordinary space, here, there, and yonder. Well, such is one of the recognized significations of the term. But it has 'another,' namely, hyperspace usually means a space whose point dimensionality is four or more. Now this latter meaning is logically and conceptzally quite consistent with the other, it is indeed a special case of it; but a hyperspace of points is difficult or impossible to picture, to realize in visual imagination, and it is this non-logical circumstance that renders the term hyperspace at once so tantalizing, mysterious, bafling, and fascinating to the non-mathematician. To the mathe-
matician, however, whose activities, so far from being confined within the limits of the visual imagination, lie for the most part quite beyond them, the conception in fuestion offers as such no difficulty whatever, and it has long since established itself among the most approved of orthodox scientific notions.

Definition of llyperspace of Points.-What, then, is a hyperspace of joints? How is the notion arrived at? And what is its utility? The values of a single continuous variable x are familiarly representalle lyy the points of a right line; the ordered pairs of values of two independent variables x_{1} and x_{2}, by the points of a plane; and the ordered triplets of values of three independents x_{1}, x_{2}, x_{3}, by the points of ordinary space. To the analy'st with geometric bias or predilection, the suggestion immediately and forcibly presents itself that there ougit to he a space whose points would serve to represent, as in the preceding cases, all ordered sets of values of n independent variables $x_{1}, x_{2}, \ldots, x_{n}$; and, not finding such a space present to intuition, vision, or risual imagination, he posits, or, if you prefer, he creales, one in thought. This done, it becomes immediately practicable to appropriate the terse, sensuous, stimulating language of geometry to the uses of analysis. Moreover, the hyperspaces serve as boundless playgrounds for the human spirit. They are immeasurable and immeasurably interesting fields for geometric research and exploration. In them light is found for the illumination of many otherwise dark or undiscovered properties of the lower, ordinary; spaces of intuition. By their study, the geometrician discovers how such higher and higher worlds would appear to a vision capable of beholding them.

Another Mode of Generating the Concept.Another way, and, by virtue of its appeal to the intuition, possibly the best way, of arriving at the notion of hyperspaces of points, is the following: Posit two points (spaces of zero dimensionality in points). These determine a line, a space of dimensionality one in points. Next posit a point outside the line. The locus of all the points of all the lines determined by the posited point and the points of the given line is a plane, a space of two dimensions in points. Posit a point oustide of the plane. The locus of all the points of all the lines (planes) determined by the posited point and the points (lines) of the given plane is a space (like our ordinary space) of three dimensions in points. Let the process continue. If irltuition fail. reflect that in any case it is only a non-essential, extra-logical auxiliary, and hence proceed by positing conccptually, in thought, a point outside of the threefold space S_{3}, before obtained. The locus of all the points of all the lines (planes, 3 -fold spaces) determined by the posited point and the points (lines, planes) of the given S_{3} is a space of jour dimensions in points. Olviously the principle of genesis here exemplified admits of endless application and leads directly to the concept of ann n-fold space of points.

But we need not suffer ourselves to be dominated by the conception of point. Among possible elements, the point has no logical claim to preference or primacy, and the foregoing process is equally available for the generation of the concept of a space n-dimensional
in any other element. e.g. the line. Posit two intersecting lines (spaces of zero dimensionality in lines). These determine a dat pencil, a one-fold space, of lines. Posit a line outside the pencil, $i . \varepsilon$., not belonging to it but going through its rertex. The assemblage of all the lines of all the pencils determined by the posited line and the lines of the given pencil is a hyperpencil (sheaf of lines), a tuidimensional space of lines. Next posit a line outside the sheaf (but cutting all of its lines). So is determined a 3 -iold space of lines, the assemblage of lines of which each with the posited line determines a pencil. The next step luads to a 4 -fold line space; the next, to a 5 -fold line space; and so $i n t i n f i n i t u m$.

It is clear that the lower spaces are contained in the higher, as points in lines, lines in planes, etc., or as lines in pencils. pencils in sheaves, etc., etc. It should be noticed, too, that any space S is zero-dimensional in such spaces S taken as elements. The complete understanding of the geometry of a space of k dimensions demands a study of the like variety of space of $k+$ I dimensions, and so on. In particular the point geometry of ordinary 3 -fold point space is quite as much illuminated by that of s-fold point space as is the point geometry of the plane by that of 3 -space.

Coordinates, etc.-In point space of n dimensions the simplest coordinates of the point are the distances x_{1}, x_{2}. n mutually perpendicular point spaces of $n-1$ dimensions. These coordinate spaces. taten $\pi-1$ at a time, determine n coordinate axes. A linear equation $\hat{5}_{1} x_{1}+\hat{5}_{2} x_{2}+\ldots+\hat{y}_{n} r_{n}+1=0$ defines or represents an $\overline{n-r}$-dimensional space of order one, the analogue of the plane in ordinary space. The " cals of the axal intercepts of the $\overline{1-1}$-space. Holding the x 's fixed and letting the ξ 's rary, the foregoing equation will represent a point as envelope of its generating $\overline{n-1}$-spaces. Two such equations together define an $\overline{1 /-2}-$ space as their intersection or a straight line as their envelope. Similarly. three such equations serve to represent an $\overline{n-3}$-space as locus of points or a plane as envelope of $\overline{\pi-1}$-spaces, and so on. space that is n-foid in points is also r-fold in spaces of $\overline{\pi-1}$-dimensions. Its dimensionality is $2(n-1)$ alike in lines and in spaces of $n-i$ dimensions. In general. its dimensionality is $p(n-p+1)$ if the point space cither of $p-i$ or of $n-p$ dimensions be taken as generating element. Not only, however, do he two last mentioned elements furnish the same dimensionality, but they are indeed reciprocal elements of n-fold point space, for the same system of equations which on Hroper interpretation defines one of the elements admits of a second (dual) interpretaiten defining the other. It thus appears that bvitaking as elements the various simple spaces of less than n dimensions for generating elements of n-fold point space, there arise s geometries of this space; or, if we regard two reciprocal theories as but two aspects of one geometry, the elements in question vield $n: 2$ or $1+(n-1): 2$ geometries according as n is evon a, ndd, the element having $(n-1): 2$ dimensions being, in case of n odd, its own reciprocal, or selj-reciprocal. like the line in ordinary space (sce Line Geometry and Allied Theories).

Rentarks on Four-space. -Thus point space
of 4 dimensions is also f-dimensional in ordinary spaces (say liseoids), the point and the lineoid being reciprocal elements. It is 6 . dimensional in lines and also in planes, which are also reciprocal elements of this space. It appears that this space, unlike ordinary space, does not admit of seif-reciprocal construction. An equation of degree in in pcint (lineoid) coordinates $x_{1}, x_{2}, x_{3}, x_{4}\left(\hat{亏}_{2}, \hat{\xi}_{2}, \hat{N}_{3}, \hat{N}_{4}\right)$ represents a locus (envelope) of crder (closs) n. If $n=1$, the locus (envelope) is a lineoid (point). Twa linear equations define a plane as locus or a line as envelope; three. if independent, represent a line as locus or a plane asenvelope; and four give a point or a lineoid. In general, two planes have. not a line, but only a point in common: reciprocally, two planes are not in general in a same lineoid. A lineoid being determined by four independent points, it appears that two arbitrary lines determine a lineoid. In 4 -space a point can pass from the inside to the outside of a (two-dimensional) closed surface, such as an ordinary sphere, without going th:rough the surface. just as in ordinary space a point can pass from the inside to the outside of a circle mithout crossing the circumference. Accordingly, in 4 -space a 3 -fold solid like the human body could be literally seen through: and no ordinary prison-house could confine.

Do hyperspaces exist? Undoubtedy they have logical existence. the concept of hyperspace being interiorly consistent and available for thought. More mathematics does not demand. The hypothesis of their (physical') existence. 'natural' science may yet be compelled to employ. Indeed it has been conjectured that certain chemical phenomena (as of the carbon compounds) may be due to greater freedom of motion than ordinary space affords.

Bibliography:-The literature of the geometry (both pure and analytical) of hyperspaces is very extensive. It is, however. chiefly contained in the mathematical journals. All scientific nations have contributed to the suhject. the Italians probably more than any other. The best work for the beginner is P. H. Schoute's 'Mehrdimensionale Geometrie) (Igo2). An excellent explanation, addressed to the non-mathematician, of the concept of -space is found in Hermann Schubert's 'Mathematical Essays and Recreations.)

Cassices T. Keyser.
Adrain Professor of Mathematics, Colsmbia Lnicersity.
Hyphomyceteæ, hi-fü-mi-sétē-e. See FU゙NGi.
Hypnotics are agents that induce sleep. They may be mental, physical, or medicinal. Thus certain kinds of music, the human toice. and suggestion may have power to induce sleep. which may also follow from eating, or from a warm bath before retiring. All such simple measures should be used before druss are resorted to in the treatnent of insomnia (q.w.). Hypnotics fer se mayy be divided into tro brozd groups-those that induce sleep by alleviating pain and those that have no pain-reliering character. The latter are pure hypnotics. Combinations of the two are frequently employed in medicine. The pain-relieving drugs all come under the head of analgesics (q.r.). The pure hypnotics may be divided into a number of groups based on their chenaical relationship, for in this class of drugs the relation between chem-

HYPNOTISM

ical composition and plysiological action is peculiarly close. Alcohol is one of the most prominent of the hypnotics, but while it is extensively used to induce sleep, the practice of taking a "nightcap" cannot be regarded as a safe one. Substituted alcohols, however, yield some of the most widely employed of all hypnotics. Chloral, paraldehyde, amylene hydrate belong to this series, while from chloral as a basis a number of allied hypnotics have been made. These are chloralamide, chloralose, chloretone, urethane, etc. The fundamental action of thesc is to cause a peaceful sleep without leaving ill aftereffects. They all dilate blood-vessels, relieve spasm, and induce sleep. In large doses they depress the heart-action. Another group of hypnotics includes substituted sulphut compounds. The most important of these are sulphonal, trional, and tetronal. They are all closely allied in chemical structure. Sulphonal is the weakest, tetronal the strongest, trional occupies a middle position. In poisonous doses, and even in small doses if long continued, hypnotics of this group cause a form of chronic poisoning in which the red blood-cells are disintegrated. This is shown by the appearance of a cherry-red, or purple-red discoloration in the urine. A third group of hypnotics depends on some form of bromine, as bromides. Sodium bromide, potassinm bromide, bromal, bromoform, etc., are representatives. They depress the activity of the brain, and are useful hypnotics. If used very long the bromine compounds cause skin-eruptions, foul breath, and heart-depression. See Alcohol; Chloral; Insanity; Insomnia; Melancholia; Neurasthenia; Sulphonal.

Hypnotism, hịp'nō-tĭsm (Greek lyppnos, "sleep"), an artificial sleep. The nervous phenomena exhibited in hypnotism resemble those induced by aninal magnetism, thongh they arise solely from the condition of the patient, and not from any influence proceeding from others. Mr. Braid, of Manchester, England, brought this subject prominently before the public in the I7th volume of (The Monthly Journal of Medical Science' (I853), but it has been long known in India. The actual foundation of modern hypnotic suggestion was discovered by Liébault, of Nancy, France, the famous "father of the therapeutic application of suggestion." After several years of practical experience, in 1866 he wrote his first book on the subject. It was shelved and he was pronounced erratic. Hypnotism remained a curiosity and Liébault's book was not reproduced till six years after Charcot, in 1878, began his studies in hypnotism. In 1884 Bernheim urote his charming book on suggestion, and this created a demand for Liébault's book which then gave him lasting reputation. He was Bernheim's teacher. Formerly a profound skeptic, Bernheim became unavoidably converted by seeing the results of Liébault's application of suggestion to invalids. Bernheim was a clever clinical professor in the great hospital of Nancy and in his wards he convinced himself of the great value of hypnotic suggestion.

The word hypnotism is generally and largely misunderstood and misused. For example, if a person seems to be wholly influenced by another, it is commonly said that he has been hypnotized. This is a great error. The word hypnotism means putting a person to sleep and
means nothing else. If an individual scems to be subjected to another in the waking state it should be said that he is mnduly influenced. He is not hypnotized. That would mean that he was aslcep. The means by which hypnotism is used is "suggestion." A person may be influenced by suggestion in the waking state, for suggestion is a great force in daily life. As connected with hypnotism, however, suggestion is the expression of an idea or combination of ideas which becomes impressed upon the mind of the somnolent subject to whom it is addressed. Conscious or unconscious results are sure to follow. This explanation sums up the meaning, use, and results of suggestion as applied to hypnotism and the hypnotic state. If a subject be awake he can, according to the strength of his will and desire, control to a greater or lesser degree the effiect of a suggestion which he has received.

In the hypnotic state this self-control is decreased in a degree corresponding to that of the increase of the degree of slcep. Nevertheless, if merely the first degree of hypnosis has been attained, the subject, conscious of all he hears, may be influenced by the suggestion of the operator. In this way a voast amount of relief has been given to individuals who may claim that they have not been affected at all. In the hypnotic state there are nine sharply marked degrees of somnolence. In the first six degrees, notwithstanding he has been perfectly quiet and apparently asleep, the patient remembers all that has been said. In the last three degrees the patient, on waking, remembers nothing. Strange as it may seem, however, a person may be more influenced by suggestion in the lighter degrecs of sleep than in the more profound degrees, and rice erersâ. This is due to the patient's suggestibility. For example, the writer treated by hypnotic suggestion a very severe and prolonged case of intemperance. The patient claimed that not for an instant had he been sleepy, but he so responded to suggestion that from that day to this, a period of eleven years, he has not once touched alcohol. He bad been intemperate from boyhood. On the other hand, a person may fall into profound slecp and yet not respond inarkedly to suggestion. Generally, however, if the subject be made to reach any degree of somnolency he can be relieved by suggestion. In the majority of cases the relief endures. In the popular mind exists the belicf that this form of treatment is attended by danger, that the patient once hypnotized is thereafter under control of the operator, even at a distance, that the will is weakened, etc. This is all a mistake. No person can be hypnotized unless he be willing. No person can be hypnotized at a distance, unless by telephone, or if he be a good and willing subject, by letter; and the patient must first have been hypnotized by the operator at some previous time. Otherwise the operator cannot influence lim at a distance in the slightest degree. The will is not only not weakencd, but there is no other existing treatment which can so strengthen the will as can hypnotic suggestion. If any physician object to the treatment we know that this physician, however intelligent he may be in other professional matters, is ignorant of this method of relief. This treatment is not peculiarly useful in hysteria, as is commonly supposed, but has accomplished greatest benefit

HYPOCHLORITES - HYPOCHLOROUS ACID

in all cases attended by bodily distress, neuralgia, dyspepsia. headache, disturbance of menstruation, pains oi rheumatism. mental unrest, sleeplessness in particular, intemperance, opium habit, and all drug habits, vicious propensities, lack of mental vigor, fear, illusions, stammering, and wherever calmness has disappeared. In short, it will give relief in many cases which it cannot cure. It can relieve, but cannot create. It can assuage pain, for instance, in heart ailments, while it cannot dispose of damages which the heart may have received.

It is an absolutely safe and beneficent form of aid. It may not always bring relief, but never in the hands of a competent operator has it done harm. The patient will always choose the operator as he would choose a surgeon. The object of all reliable operators in the use of hyptootic suggestion is the relief of the patient, and to the rperator the treatment is a sacred thing.

The method of the operators of the school of Nancy is wholly verbal. The patient is talked to sleep, and on waking he is delighted by the changes in himself which are apparent, and he has become convinced of the agrecable effects oi the treatment.

Formerly a bright object was held between and above the patient's eyes, and he wras directed to fix his eyes upon it. This created sleep. But it was found that nerrous distress was apt to follow this method, and it has been abandoned by followers of the school of Nancy. The rationale of the treatment is that a person whose mind is in a sleepy or sleeping condition offers no resistance to the suggestions of the operator and, just as in thirst, in the waking state, "the mouth waters," just as a woman blushes, because of a personal remark, or turns pale if a pistol be pointed at her, so the suggestions of the operator made to a sleeping person will follow a nerve path which is in accordance with the quality or nature of the mental impression created by the suggestion. In other words, the suggestion is iollowed by changes in sensation, act, or idea on the part of the patient, which correspond with the nature of the suggestion. Thus, if a sleeping person be assured by the operator that he will lose his craving for alcohol, or opium, or cocaine, or, that his pain will cease, that he will sleep at night, that his nervous unrest will disappear, that his power of will or a mental concentration will increase, and so forth, it nine out of ten cases the desired result will follow. Lack of space forbids further mention of this phase of the subject.

Bricf reference should be made to an influence, wholly umappreciated by the popular mind, which is exerted by what is nothing but suggestion. For example: The sick people who were aided by the "magnetized" tree of Marquis Puysegur thoroughly believed in the therapeutic fower of the tree. and thercfore were cured or relieved. This was suggestion. The benefit of the electro-magnetic belts and rings formerly sn largely in vogue was derived from suggestion. The imfluence of the waters of Lourdes is due to suggestion. The benefits which occur from many, if not the majority, of the medicines given by regular physicians are due to suggestion and temporary unusual care of the healh. Thereiore, in the absence of better means they are wisely given.

The people who resort to these things thor-
oughly believe in their efficacy, and this belief, acting through the mind, so influences the nerve and blood supply of the part or organ for which relief is sought, that the ailment passes away:

There are indeed scores of popular forms of relief which act wholly through the patient's mind and in themselves literally have no value. The effect of the mind cure and Christian Science is due to a weak form of suggestion, behind which an intelligent knowledge of anatomy, physiology, and disease is wholly lacking. The results are owing to influences produced upon the minds of those who seek these forms of relief, which thus have accomplished a degree of benefit but are dangerous aids where serious disease exists. These forms of suggestion, exactly speaking, are auto- or seli-suggestion, that is, a beliet which creates a mental power over bodily ailments, and which, in a certain percentage of people, is capable of large development.

The wise choice of a source of needed suggestion would be to seek it at the hands oi a cultivated physician who is familiar with the application of suggestion to a somnolent patient.

With reference to causation of crime by means of hypnotic suggestion: few or no scientific men believe it possible. Habit is as strong as death. If a man's habit of mind be honest, no suggestion, sleeping or waking, can cause him to commit crime of any sort. If he be dishonest, naturally or by inclination, the suggestion would be unnecessary. In so far as physicians are concerned they are not interested in this phase of the subject because they use the treatment wholly as a means of relief, and, as a class, physicians are reliable men who would not even attempt to misuse hypnotism any more than they would use ether for evil purposes. The so-called "laboratory crimes," that is, imitation of crime in the presence of the operator who suggests it, would not occur unless he were present. The subject simply feels safe under the direction of the operator and, as has been proved many times, would not attempt suggested wrongs if he were alone.

The hypnotic sleep is a natural sleep. Those who claim that it is not natural are not intelligent in the matter, and their opinions are based upon pure and uninformed theory.

As has been shown by scores of thousands of cases, treated by brilliant and educated physicians, the treatment is absolutely innocuous. It either relieves or produces a neutral effect, and is useiul in a multitude of ailments which baffle ordinary means o: relief.

But the operator must be educated in the use of this valuable method of treatment. Hypnotism should be used only by plysicians, and amateurs should by no means experiment with it as a means of amusement.

Bibliography:-Bernheim, 'Suggestive Therapeutics' (trans. by Herter, 1889) : Tuckey, 'Psycho-therapeutics' (3d ed, 1891): and other books on hypnotism by Björnstrom (ISCo), Kingsbury (i8or), Courmelles (I\&o1), V'incent (1893), Hart (denouncing it as witcheraft. 1894).

> Hamiltos Osgood, M.D.. Boston, Mass.

Hypochlorites. See Hypociloroves Acid.
Hypochlo'rous Acid, an acid having the chemical formula HClO . which is formed when chlorine monovid, $\mathrm{Cl}_{2} \mathrm{O}$, is dissolved in water.

HYPOCHONDRIASIS - HYPOSCOPE

The most convenient method of preparing it, however, is by distilling a mixture of dilute nitric acid and a salt of hypochlorons acid. The sodium salt of hypochlorous acid. known as sodium hypoclilorite, NaClO , may be preparcd by passing a stream of chlorine gas through a cold dilute solution of caustic soda, NaOH ; the reaction being $2 \mathrm{NaOH}+2 \mathrm{Cl}=\mathrm{NaClO}+$ $\mathrm{NaCl}+\mathrm{H}: \mathrm{O}$. Potassium hypochlorite may bc prepared in a similar manner. Crude calcium hypochlorite, $\mathrm{Ca}(\mathrm{ClO})_{2}$, known in the trade as "bleaching powder" (q.v.), is prepared by acting upon slaked lime with chlorine gas. Hypochlorons acid and the hypochlorites possess powerful bleaching properties, owing to the readiness with which they part with a portion of their chlorine or of their oxygen. (See Bleaching.) Hypochlorous acid is only known in its aqueous solution, which is a colorless liquid, with a peculiar smell. It decomposes readily with the liberation of chlorine, and the formation of chloric acid, HClO_{2}, the decomposition proceeding rapidly in the sunlight. Hydrochloric and sulphuric acids also decompose it with liberation of chlorine, the reaction in the case of hydrochloric acid being $\mathrm{HClO}+\mathrm{HCl}=$ $\mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}$. Heat decomposes the hypochlorites, with formation of the corresponding cllorates and chlorides.

Hypochondriasis, hí"pō- or hĭp"-ō-kŏn-dri'a-sis, a morbid condition of the mind in which an individual fears himself afflicted with various diseases. The name comes from the ancient belief that the symptoms of this disorder came from perversions of the vital force in the liver and pylorus of the stomach. The tendency to this condition is frequently inherited; it is more common in males, and is sometimes brought on be excesses. Patients afflicted with hypochondriasis are apt to watch for any expression of abnormality in their bodies, to connect various symptoms, and to reach the conclusion that they are sufferers from some disease. In conditions of perfect health any individual may have slight, temporary twinges of pain, or may show passing changes in the functions of the organs; but by the hypochondriac these abnormalities are seriously regarded, and efforts to disabuse him are usually futile. Such constant fear and worry divert the nervous energy from its proper course, and may cause actual disturbance of the bodily functions that are serious. The condition known as neurasthenia may follow; also, more rarely, true melancholia. The milder cases continue in actual good health, but become an unhappy burden to themselves and others. In the treatment it is to be remembered that mental occupation outside of the thoughts of self is essential to a curc.

Hypoder'mic Injection (Greek, hypo, under: derma, skin), a method of introducing medicines through the skin into the subcutaneous cellular tissue, sometimes deep into the fibres of a muscle by an instrument specially made for the purpose. This instrument is the hypondermic syringe, which is made of glass, with a graduated scale engraved on it, and fitted with a long, hollow needle-shaped point of steel. It must be filled before using, to prevent the possibility of introducing air into the veins. Hypodermic injection should never be resorted to excepting under the spccific directions of a
physician, and no patient should ever employ this method upon himself.

Hypodermic Medication, as opposed to endernic medication, means the administration of medicine by piercing the skin so as to throw the drug directly into the circulation, and bring it immediately in contact with the seat of pain. if pain is to be treated. There are some drugs which act on the system in a manner which differs in accordance with the method of their administration; thus podophyllin is a powerful cholagogue when administered through the mouth; when administered hypodermically it promotes the secretion of the kidneys. There are, however, distinct advantages of a general character in this method of administering drugs. The action of the drug is more rapid, sometimes instantaneous; the effect is concentrated and intensified: it takes a smaller dose to produce the desired effect; it is sometimes easier and pleasanter than administration by the mouth, and often obviates unpleasant or even dangerous complications. The process of hypodermic injection (q.v.) was invented and brought into vogue by Dr. Alexander Wood (q.v.) of Edinburgh.

Hypophosphites, salts of hypophosphorous acid (q.v.).

Hypophosphorous Acid, an oxyacid of phosphorus, having the formula $\mathrm{H}_{3} \mathrm{PO}_{2}$. The free acid is of no importance in the arts, but its salts, which are called "hypoploosphites," are used in medicine. The acid is monobasic, only one of its hydrogen atoms being replaceable by a metallic atom. Sodium hypophosphite. $\mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{H}_{2} \mathrm{O}$, may be prepared by acting upon caustic soda with phosphorus, phosphoretted hydrogen being given off. while sodium hypophosphite remains in solution. It crystallizes in small. rectangular tablets, which are easily soluble in water and in absolute alcohol. The evaporation of solutions of this substance is often attended by explosions. Barium hypophosphite, $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$, may be prepared by heating baryta. BaO , with phosphorus and water until the elimination of phosphoretted hydrogen has ceased, the excess of BaO being then removed by a current of carbon dioxid, after which the solution is filtered and crystallized. Barium hypophosphite crystallizes in monoclinic needles, which are soluble in water, but insoluble in alcohol. Calcium hypophosphite may be prepared in the same manner as the barium salt. It has the formula $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$, and crystallizes in thin, monoclinic tablets, which are soluble in six parts of water. but insoluble in strong alcolol. Free lyypophosphorous acid may be prepared by decomposing the barium salt with sulphuric acid, and evaporating the solution at a temperature not cxceeding $230^{\circ} \mathrm{F}$. It crystallizes in large white tablets, which melt at 63° F., and are decomposed by heat, with the formation of phosphoretted hydrogen and ordinary tribasic phosploric acid.

Hy'poscope (from Greek words meaning "to see under"), is the name given to an instrument adapted to be secured to the stock of a rifle near the breech, and intended to enable a marksman to fire with accurate aim without cxposing his head to the fire of the enemy. The successful American contestants for the Palma trophy at Brisley, England, in 1903. brought
back with them this deviee, which seems likely to play an important part in the wariare of the future. It was invented by William Youlton of Brighton. England, who conceived the idea of it after the battle of Colenso in the Boer war, during which it is stated that not a single Boer was to be seen. Later in the war it was employed with good results, its use at Maieking receiving particular mention.

The hyposcope consists of a series of mirrors mounted in a tube oi inverted L shape; the shorter arm lies across the barrel of the rifle, while the longer arm hangs down at one side. The first mirror reflects the light coming in along the barrel of the rifle to a second nirror at the elbow of the instrument, which directs the rays downward to a mirror at the lower end of the tube, and thence it passes out at right angles to the eye. Thus on looking in at the eyepiece one can see the sights oi his rifle, and take accurate aim while holding the gun above his head. The vertical arm of the instrument comprises two telescoping sections so that. by means of a thumbscrew at the side, this arm may be extended to elevate the device ior longrange shooting. The amount of elevation may be accurately determined by means of a fine scale on the upper section. In order to allow for windage. a thumbicrew at the end of the horizontal arm may be rotated to move the mirror contained therein slightly to one side or the other. A scale on this arm shows just how far the mirror must be moved for different velocities and directions of the wind. The entire instrument is very compact and light, weighing about a pound. It is provided with a holster, in which it may be encased to prevent it from sustaining any injury when not in use.

The advantages of this instrument in actual wariare will be apparent to all. Only the muzzles of the rifles are exposed to the enemy., and the soldiers are entirely concealed in the trenches. But aside from its advantages as a means of protection, the device will be found greatly to increase the effectiveness of the firing. The iear of being shot while taking aim makes the soldier fire hurriedly and at random: with the hyposcope attached to his rifle no fears will be entertained, and the soldier may fire deliberately and with periect aim. By applying it to the end of a field-glass, an obierver can watch the movements of the enemy without danger of disenvery. It has also been designed for use on Naxim gums.

Hypostatic Union, the union of the divine and human nature in the one person of lesus Christ.

Hypoth'esis, in mathematics the term denotes what is assumed in order that the conclusion may follow from it as a consequence. It has sometimes been applicd in a disparaging sense to suppositions that have been made for the purpose of drawing foregone conclusions. and not with the view, as has been generally the ease in physics, to supply probable antecedents to conclusions which have already been experimentally establiched. In some cases the hypothesis may only acquire a certain degree of probability: in others it may account for all the known circumstances. and it then acquires the name of a theory: and if subsequent ohservation reveal = no exceptions to its application, it gradually amounts to certainty. The conjec-
ture of Newton that the furce of gravity, as exemplified on the earth, might extend to the moon was at first a hypothesis; but when it was found that it accounted ior all the facts it became a theory. There has an attempt been made to institute a distinction between a hypothetical cause and a true cause, but it is practically of no value.

Hypsom'etry (Greek. "height-measurement"), the art of determining differences of elevation on the earth's surface. Three distinct modes of procedure may be adopted for measuring a given difference in level. The first and most accurate oi these consists in running a "line of levels" between the two stations whose difference in height is to be determined. This operation is conducted as follows: Let -1. B. and C be any three points on the earth's surface. such that the difference in level between any two oi them is not more than a few ieet: and let us suppose that B lies between A and C, and that it is not more than a few hundred feet distant irom either of them. A precise spirit level is set up at B. so that its telescope is higher than either A or C. A graduated staff is then held in a rertical position upon the point A, and the observer at the level determines. by looking through the telescope, which division of the staff is of precisely the same height as the cross-hairs of his instrument. If the height of A is known, we have merely to add to it the known length of the graduated staff. from the ground up to the division that has been observed. in order to ascertain the exact height of the cross-hairs oi the level. The staff is next carried forward to the point C . and a second observation of the same kind is made upon it at this point. The height above the ground of the division that is here found to be on a level with the instrument is then subtracted irom the known height of the cross-hairs in the telescope. and the result is the height of the point C. The instrument is then carried forward to a point. D. situated beyond C. and the altitude of a still more remote point. E. is determined in the same manner. by observing the graduated staff at C and at E. and then calculating the height of E from the known height of C, as determined by the preceding operation. A chain of observations of this sort is called a "line of levels," and it is obvious that the difference of elevation of any two points whatever may be determined with great precision by running such a line from one of them to the other.

The labor and expense of joining two distant points by a line of precise levels are often prohibitively great : and hence when a high order of acchracy is not essential. irigonometric or barometric methods are used instead. In determining the height of a mountain (for example) by the trigonometric method. a conveniently situated station is selected, from which the summit of the mountain can be well scen, and the horizontal distance from this station to the vertical linc passing through the summit of the mountain is first determined hy any of the methods used by surveyors for determining the distance of an inaccessille object. The apparent angular elevation of the mountain is next obsetved: that is. the angle included between the horizontal plane througli the station and the line joining the station to the top of the moumtain is measured.

If the carth were flat and devoid of any atmosphere, these data would enable us to compute the height of the mountain with considerable precision. For the vertical height of the mountain above the station, and its horizontal distance from the station, and the line joining the station to its summit, would constitute the three sides of a right-angled triangle; and the base of this triangle being known, as well as one of the adjacent angles, its vertical height (that is, the height of the mountain above the observing station,) conld be easily calculated by the ordinary rules of trigonometry. In the actual case, however, the problem is complicated by the curvature of the earth's surface, and by the refraction effects due to the presence of the atmosphere. Corrections can be easily applied for the curvature, since that is constant in any given spot, and its value is well known. The refraction effects, however, are variable from time to time, according to atmospheric conditions; and it is impossible to determine them, at any given moment, with a precision sufficient to enable the trigonometric method to compete, in accuracy, with the method of leveling already described.

The third general method of determining elevations on the earth's surface depends upon the fact that the atmosphere possesses weight, so that its pressure diminishes as we pass upward. The difference in depth of two given points below the surface of the sea can be determined with a good deal of precision by noting the hydrostatic pressures at the two points. If these pressures are expressed in pounds per square foot, and their difference is divided by the weight, in pounds, of a cubic foot of the water, the quotient will be the difference in depth of the two points, expressed in feet. The same general principle applies to the determination of the differences of elevation in the atmosphere, only in this case the problem is far less simple in its actual application, because the air, instead of having a practically constant density as water has, is very elastic and compressible, and very sensitive to changes of temperature. The observations, therefore, have to be combined by means of a formula which will take these facts into account, so far as possible. In determining differences of height by this method (which is called "barometric hypsometry"), the difference in atmospheric pressure at the two points that are to be compared is usually determined by means of barometric readings, though the boiling-point method, to which reference will presently be made, is also used. The mercurial barometer gives the most accurate results, but the aneroid form is so much more convenient to manipulate and transport that it is commonly preferred for ordinary work. (See Barometer.) When the difference of elevation between two given stations is to be determined, it is preferable to make the barometric observations at both places simultaneously, simultaneous observations of the atmospheric temperature being also taken. This implies the co-operation of two observers, and the possession of two sets of instruments; and hence it is not always feasible. When the work is carried out by a single observer, or with a single set of instruments, the observations should be made first at Station A, then at Station B, and finally at Station A again; the average readings at Station A , both of baro-
metric pressure and of temperature, being adopted as the definite observations at that station. In this way the effects of variations of temperature and pressure are eliminated as far as possible. If h is the average reading of the barometer at the lower station, in inches, and H is the reading of the barometer at the upper station, also in inches, and if t and t^{1} are the temperatures obscred at the two stations, on the Fahrenheit scale, then the difference in height between the two stations, as expressed in feet, is approximately

$$
(\log h-\log H) \times 60384 \times\left(\mathrm{I}+\frac{\mathrm{t}+\mathrm{t}^{\prime}-64^{\circ}}{900}\right)
$$

In place of the barometer, an instrument called a "hypsometer" is sometimes used for determining the difference in barometric pressure between the two stations. The hypsometcr is essentially an instrument for determining the boiling point of water with a considerable degree of precision. Water, which at the normal atmospheric pressure boils at $212^{\circ} \mathrm{F}$., boils at a lower temperature on the tops of mountains, where the atmospheric pressure is less. The change in the boiling point is approximately I° F. for every 555 feet of ascent; though this relation is not exact. In the practical application of the method, the boiling point is observed, on the mountain top, by an accurate thermometer which shotild be graduated as fine as fiftieths of a degree onl the Fahrenheit scale. The difference between the temperature so obtained and $212^{\circ} \mathrm{F}$. is then multiplied by the constant factor 555 , and the product is the desired estim mate of the height of the mountain above the sea. This procedure, it will be seen, assumes that at the time the observation is made, the atmospheric pressure at the sea-level has its normal (or average) value, so that water would boil there at $212^{\circ} \mathrm{F}$. precisely. This condition will seldom be more than approximately fulfilled, and hence the method by boiling points, as usually carried out, is more uncertain than the barometric method as described above. The thermometric method is very convenient, however, and for this reason it is in strong favor among travelers and explorers, who usually are content with a more or less rougli approximation to the height to be measured. The method is capable of being refined further than has here been indicated: but when more accurate results are desired than are obtainable by the process as described above, it is better to make use of simultaneous readings of the barometer and thermometer, at the two stations to be compared.

Hyrax, híraks, the type-genus of a group of small rabbit-like animals forming the group Hyracoidca. There are two species, not very sharply defined, the daman (H.Srriacus), which spreads from the African shores of the Red Sea to Syria, and the Klipdas, or dassy (H. Capensis), which ranges from Abyssinia to the Cape of Good Hope. The former is the animal meant by the Scripture jeference to "conies," as a "feeble folk." They are gregarious, plant-feeding, and make their homes among loose rocks, where they are little seen during the day. Hence English settlers call them rock-rabbits. The zoological position of these animals is astonishing in view of their size, appearance and rodent-like habits, for they are most nearly related to the elephant and rhinoceros. In west-central Africa live two
or three smail arboreal species (Dindroliyrar). The latest monographer of these singular animals is O. Thomas (Proc, Zool. Soc. oi London 1882), who says that the rules of priority require that the family and genus should be called Procasige and Procaria. They are believed to be little modified descendants of the Concylarthra.

Hyrcanus (her-ka'nŭs) I., JoHs゙ HzRCarcs. a Jewish high-priest and prince of the Asmonean iamily, who ruled in $135-105$ B.C. He was the son and successor of Simon Naccabreus. At first dependent on the Syrians, he succeeded in throwing off their yoke, and also in subjugating the Samaritans. He next overcame the Idumaans. and obliged them to submit to Judaism. He aiterward confirmed his power by an alliance with the Romans and made Iudra more poweriul than it had been since Solomon's time. He was originally a Pharisee, but ultimately favored the Sadducees.

Hyrcanus II., high-priest of the Jews and prince of the Asmonean iamily, who ruled intermittently from 69 B.C. to 38° B.C. He was the grandson of Hyrcanus I. His younger brother. Aristobulus, seized the government, and finally Pomper remored Hyrcanus irom the kingship. and made Antipater oi Idumra governor of the colony. In ti b.C. Cæsar proclaimed Hyrcanus ietrarch and high-priest Antigonus, son of Aristobulus, deposed Hyrcanus and removed him to Seleucia whence later, at the request of Herod. he returned to Jerusalem, where he was finally put to death (30 B.C.).

Hyslop, his"lop, James Hervey, American scholar and educator: b. Senia, Ohio, is Aug. I854: He was graduated irom Wooster University (Ohio). studied also at Leipsic and the Johns Hopkins Eniversity, taught successively in Lake Forest University, Smith College, and Buchnell University, and was appointed proiessor of logic and ethics in Columbia University. He became well known for his connection with the investigations of the Society for Psychical Research, and contributed extensively to its proceedings. His further work includes articles in prominent periodicals; an edition of Hume's 'Ethics' (1893) with' introduction: a text-book on 'The Elements of Logic' (1802); one on 'The Elements of Ethics' (1895): 'Democracy: A Study of Government' (1890); 'Logic and Argument' (IS99) ; and 'A Syllabus of Psychology' (1899).

Hyssop, his'ŭp (Hyssopus), a genus of plants of the natural order Lobiata. with four straight diverging stamens, and a ${ }^{\text {I }}$-ribbed calyx. The common hyssop (H. officmalis) is a perennia! shrubby plant about two feet in heighe. The leares stand in pairs without footstalks. The tlowers are blue, growing chiefly on one side, in short verticillated spikes. It is a native of the south of Europe and the East, and is naturalized in the United States. The leaves have an agreeable aromatic color, and an extract from them is produced by water and spirits. The hyssop of Scripture (that is. the plant whose Hebrew name czob has been translated "hyssop") has not been ascertained. As it "grew out of the wall," it must have been a diminutive plant, and may have been one of the mosses. The most probable
and most widely accepted view is that it was the caper-plant (Coffaris sfinosa). but it is not unlikely that the aame was applied to several plants of somewhat similar properties. The name of hedge-hyssop is applied :o species o: plants of the genus Gratiola, belonging to the natural order Scrofhulariacea.

Hysteria, a morbid state of the nerrous system in which the clinical manifestations present a wonderiul rariety of symptoms closelysimulating some iorms of organic disase. There is often increased physical irritability; the condition is frequently maniiested by neuralgic pains, hyperesthesias, hallucinations, and conrulsive and paralytic phenomena. It may゙ be regarded as a brain artection - a mild insanity.

Among the causes of hysteria heredity plays a most important part. There may be direct transmission of the hysterical temperament irom parent to child or other nervous manifestations in the family and its branches, such as epilepsy. chorea. neuralgia, insanity, etc. It occurs more frequently in women, but it is much more common in men than is ordinarily believed; it occurs in boys and girls at a tender age or about the time of puberty. Briquet iound that one eighth of his cases were in children under ten years of age. Anything which lowers the general tone oif the nervous system may give rise to it in predisposed persons. Hzmorrhages, severe illness, poor food, anemia, overwork in uncongenial occupations, anxietr, fright. jealousy, disappointments make a profound impression: so does an education which fosters and stimulates inherited instability. The enforced social restrictions of women, which they oiten inlict upon their young children, with lack oi proper exercise for physical development and an artificial and premature education and habits heighten this predisposition. Accidents are a frequent cause ot the first appearance of hysteria, as has been clearly pointed out by Charcot. The disease may, at times, occur in young gisls who have witnessed attacks in others.

To understand the symptoms of hysteria. it must be borne in mind that there are two classes of phenomena. These have been termed the mantal stignata and the mental accidents. The stigmata are anesthesias (loss of sensation), ammesias (forgetiulness), abulias (loss of will power), motor disturbances, and modifications of character. These are the cardinal symptom-groups that characterize the mental state of the hysteric. Any or all of the mental accidents may likewise be noted - suggestibility and sub-conscious acting, fixed ideas, ecstasy, automatism, convulsive movements, sleep-walking. deliriums, etc. The occurrence of these constitutes important corroborative evidences of hysteria and while not found in all hysterics, they may be very common symptorns.

Hysterical persons often complain of some of the symptoms found in neurasthenia - neuralgic pains in various parts and hyperesthetic areas about the abdomen, chest, of back, irequently in the neighborhood of the ovary, mammary gland, etc. There may be anasthetic patches in various parts of the body, or there may be complete loss of sensation on one side associated with anæsthesia of the mucous membranes. The special senses on that side are involved - sight, taste, and hearing.

There may be irritations of the bladder and
urethra; pain in the joints, which may be mistaken for joint discase.

In some cases the senses are exccedingly acute. Persons notice odors imperceptible to others; are often made sick by odors which do not affect normal individuals; may have a liking for odors and substances disagrecable to others. Perverted sense is shown in an abnornal taste, in eating soap, slate-pencils, etc. Hysterical manifestations in some are simply emotional exaggerations; they laugh and cry without cause. In serious attacks there are likely to be various hysterical manifestations. Occasionally tactile sensibility is disturbed, and the muscular sense may be abolished. The amesthesia may affect the mucous membranes of mouth, pharynx and nose, abolishing the reflexes of the parts. The secretions may be diminished or arrested.

Spasmodic convulsions and paralytic phenomena may occur. The spasmodic attack may be rhythmic; may simulate the trembling of organic disease ; may be confined to one member or involve the entire half of the body; may be coarse, as in disseminated sclerosis, or a fine tremor, as in paralysis agitans, or the tremor may simulate the trembling of organic brain disease. It may occur in any muscle or group of muscles; may manifest itself as contracture, which may be interminttent or may last continuously for months or years. Contracture may be confined to the strong muscle of the jaw and other muscles in their neighborhood, causing trismus. Spasms of the glottis may take place, giving rise to severe difficulty in breathing; or of the pharynx, causing difficulty in swallowing. Globus hystericus is a constant symptom, but is not as frequent as it is often thought to be. Persistent and severe vomiting often occurs, but the nutrition rarely suffers materially from these attacks. Retention of urine is frequent, owing to spasm of the sphincter, and the catheter may have to be used for montlis.

Paralysis occurs in these cases; it is variable in distribution, and may come on suddenly after a convulsive attack or without it ; it may be flaccid or associated with contracture; it may come on slowly; it may be confined to one limb or be hemiplegic in type.

Hysterics are easily affected by pleasurable or painful impressions, and there is often a morbid craving for sympathy and attention. They may show moral perversion; may lie, steal, quarrel with and intrigue against their own family; may form and change attachments and dislikes without obvious reason; may manifest aversions, as to frogs, spiders, mice, cats, etc.; may deceive for deception's sake or to excite wonder. Some are painfully depressed; they have forebodings, or are compelled to do ceriain acts. Here the hysterical insanitics are approached on the one hand, and the imperative conceptions and neurasthenias, on the other.

Hystero-epileptic attacks in their greatest
severity are often preceded by general discomfort, or by hallucinations of vision and hearing. Usually sudden, they may be preceded by an "aura," globus hystericus, singing in the ear, etc. Breathing is spasmodic; consciousness is obscured; the convalsion may be similar to those of mild epilepsy. In some cases the body is thrown into all sorts of contortions. An extreme opisthotonos may be present, the body being bent backward, resting on the head and heels. Gestures and noises are made. Sometimes rcligious ideas have an influence over the attitudes assumed; at other times, ideas of demoniacal possession.

From milder forms, recovery is the rule. In graver cases, and when there is a strong neuropathic tendency, the persons will probably pass from one lysterical manifestation to another.

Treatment.- In cases where there is deterioration of the physical health, tonics and nutritious diet should be given. Hydrotherapy improves ntitrition and also the mental state. Many drugs have been recommended, but they are all uncertain in their action, at one time giving a result, and failing at another. Convulsive attacks may at times be stopped by the cold douche to the spine. Isolation from the family circle is of the utmost importance in the treatment of these cases. Every effort should be made to discover the psychic shock which has produced the attack. Only the patient may have knowledge of this, and he will not often reveal it. There is no diseasc the treatment of which it is more difficult to describe. Suggestiontherany gives by far the best results, but the great difficulty is that good results are rarely permanent.

Bibliography.-Charcot, 'Leçons sur les Maladies du Système Nerveaux,' tome 3; Jolly, 'Hysteria'; Ziemssen, 'Cyclopedia of Medicine"; Seguin, 'Hysterical Symptons in Organic Disease) : Janet, (Mental State of Hystericals' (1902). Smith Ely Jelliffe,

Managing Editor Journal of Neroous and Mental Discase.

Hysterophytes, his'të-rō-fīts. See Fungi.

Hyvernat, hēvěr-nạt, Eugene Xavier Louis Henry, American scholar: b. St. Julien-en-Jarrêt, Loire, France, 30 June 1858. He was graduated from the University of France at Lyons in 1876, studied divinity at the St. Sulpice Seminary, Issy, in 1877-9, at Paris in 1879-82, was Oriental interpreter to the Propaganda at Rome in 1885-9, and tanght in the Roman Seminary in 1885-8. In 1889 he was appointed professor of Oriental languages and archreology in the Catholic University of America at Washington, D. C. His writings include: 'Les Actes des Martyrs de l'Egypte' (Vol. I. 1886) ; 'Album de Paléographie Copte' (1888) ; and 'Du Caucase au Golfe Persique) (with Muller-Simonis 1892).
the ninth letter and third vowel of all the alphabets of western Europe, came into the Latin alphabet irom the Greek. It is named in Greek iota, which is the yod of the Hebrew and the corresponding letter of the Phanician alphabet irom which the Greeks derived it. Iota and yod (whence jot) being the smallest letter in the Hebrew and Greek. gave occasion for the New Testament phrase "one jot or one tittle." In ancient Latin the i appears to have stood for a semi-voryel like y as well as for the vowel i: thus the Latins would write Ianus. Iulia, pronouncing them lanus. Iulia. And till a comparatively recent date words beginning with I and J were in Erglish dictinnaries classed together.

The dot over the i appears rirst in MISS. of the rith century. The sound value of i in all languages except English is constant and is equal to e in he and to i in him. What is called the long sound of English i as in hide is a diphthong made up of the two rowels a and i: this ralue of i in Enghsh is believed to have been given to the letter not earlier than the t6th century : till ihen the letter had the same sound in English as in other languages.

In the standard alphabet of philologists the valucs of the vowels are about as in the languages of continental Europe, in which is sounded as English e.

It is the general rule in English pronunciation that i followed by wo consonants in the same syllable is short: yet when the two consonants are ld or nd the i is nearly always long and diphthongal, ior example mild. rind: in wind (noun) it is short. but in wind (verb) it is long. Combined with o it iorms a truc diphthong oi as in oil: or mere digraphs representing sounds in which often the i has no part: examples: bail. rein. seize. pier, iriend. Tsually a final e indicates that the i in a word is to be pronounced as the diphthong: for example, fine, fin: yet genuine is genuin: or the i is pronounced as e long. - marine, quinine, Augustine.

In Pope's time and long after oblige was prow nounced obleege and rhymed with besiege: the i in oblique is pronounced either e or i.

Ian Maclaren. See Wirson. Jons.

Iba, ēbā. Philippines, pucblo and capita] oi the prosince of Zambales. Luzon. sttuated on a riser two miles ir m its mouth. S_{5} miles northwest ni Manila. It has a good anchorage and is on the s uth coast road it is a well huilt town, and h : ceveral fine public huildines. In inot a United States meteoroligical station was established there. Pop. 3,500.

Ibach, Lawrence J. American astronomer: b. Allentown, Pa.. I- Jan. ISi6: d. Newmanstown. Pa.. 9 Oct is85. He learned the blacksmith's trade and followed it throughout his life, chienty at Sheridan, Lebanon County, Pa. He studied with the astronomer. Charles F. Engleman. who. on his death in 1860 , bequeathed all his charts, books. and instruments to Ibach. His beneiactor having promised to make several series oi astronomical calculations for almanacs Ibach filled the first order (1863), and thereaiter till his death made annual calculations for almazacs in the United States, Canada, South America, and Cuba. He was commonly known as the "blacksmith-astronomer."

Ibajay, ē-bā-hī', Philippines, pueblo of the province of Capiz. island of Panay, situated on the Ibajay River, 4^{2} miles northwest of Capiz, the capital of the province. Pop. 11.350.

Iberia, i-béria. (I) The ancient name of a district of Asia, between the Euxine and Caspian seas. It now forms part of Russian Georgia, and consists oi an extensive iertile plain. surrounded by mountains traversed by iour passes. It probably belonged to Persia, until subjected by Pompey and Trajan to the Romans empire. under which it remained till after the time of Julian. (2) The ancient nanse of Spain. the Ebro, the principal river, being called Iberus. The Iberian language still lives in the Basque. See Basques and Celtiberi.

Iberville. Pierre le Moync, pē-ār lė mıān ē-bēr-vēl. Sietr d". Fremch-Canadian naval and military commander: b. Jontreal is July 1661 : d. Havana, Cuba. 9 July 1-06. He entered the French navy. in 1086 took part in the expedition for the capture oi the English forts on James Bay. in romo in that for the destruction oi Schenectady. N. 1. He took Fort N゙elson, on Hudson Bay: captured and demolished Fort Pemaquid, built for the protection of the New England settlements: laid waste all the British posts on the island of liewioundland; and. having defeated three English vessels with his one, reduced Fort Bourbon. the last station of the Hudson's Bay. Company. In Iopo he ascended the Mississippi for some distance, and built Fort Biloxi at the head oi Biloxi Bay. This post he removed so Mobile in 1,01. In i-o6 he captured the island of Vevis. He was considered the ablest ofricer in the French naval service of his time, and is generally called the iounder of Louisiana

Ibex, any of several species of wild goa (qu.) sometimer placed apari in a sub-genus lbex, distinguished by the form of the horns of the ram, which are large (30 to 50 inches long),

THE IBIS F: MMII.

REPRESENTATIVE IBISES.

backward curving, compressed, and marked on the front with bold cross-ridges or knot-like protuberances. The ibexes are larger than other goats, that of the Himalayas standing 40 inches high at the withers. Their coats are harsh, uniformly brown, becoming much grayer in winter, whitish on the under surface and buttocks, and with darker tints on the face and fore-legs. These animals inhabit the most precipitous and inaccessible heights of lofty mountains, where they assemble in flocks, sometimes consisting of 10 or 15 individuals. During the night they feed in the highest woods, but at sunrise they again ascend the mountains, till they have reached the most perilous heights. They are remarkably swift, and display amazing agility and dexterity in leaping. They are objects of the chase, and the hunter must have great skill and hardihood to succeed. Several species are distinguished by locality and minor differences. The typical ibex, bouquetin or steinbock (capra ibex), once numerous throughout the European Alps, now exists only as a semi-domesticated animal in certain valleys on the Italian border.

Three other species are recognized: The Arabian ibex (C. sinaitica) of Palestine, Arabian and northern Egypt (see Beden) ; the Abyssinian ibex or walie (C. zellie); and the great Himalayan ibex (C. sibirica); which ranges over the high mountains and plateaus of all central Asia, keeping as near the snow-line as possible, and affording the best sport known to that region of game.

Ibicuhy, ē-bē-kwē', or Ibicui, Brazil, an afluent of the Uruguay River, which rises in the Serra de Santa Anna, province of Rio Grande do Sul, and after a westward conrse of about 400 miles joins the Uruguay at Yapeyu opposite St. Martin in Argentina.

Ibilao, è-bē-lä’ō, a head hunting Philippine tribe inhabiting the border lands of the provinces of Nueva Ecija and Nueva Vizcaya in the central part of the island of Luzon. They are heathens, of the Malay race, with an infusion of Negrito blood. See Philippine Islayds.

I'bis, a family of wading-birds (Ibidida) inhabiting warm regions. They are related to the storks on the one hand and to the spoonbills and flamingoes on the other. Their bills are long. weak, curved, and the nasal grooves are very long. The legs are long, the tibia partly naked, and the toes long with small webs. In size they are like herons, rather less than storks; and in color present a great and beantiful variety of tints, often with a metallic sheen; the sexes are similar. Ibises are shy birds, which inhabit not only watery and wooded conntry, but dry plains and rocky gorges. They perform a powerful and elevated flight, extending their neck and legs, and uttering a hoarse croak. They ordinarily wade for their food, poking in the mud with the long bill for aquatic insects, worms and small shellfish; they also catch fish, and on land eat insects. especially locusts, frogs, newts and crustaceans. Some species breed in communities. like herons, others apart, hut the nest is always a rude cradle of sticks on a tree or ledge of rocks and occasionally on marshy ground, and the eggs are usually green, with or without markings. There are I2 or I5 genera and a large number of species scattered through-
out the whole tropical zone. The typical genus, Ibis, contains the sacred ibis (I. athiopica), called by the natives of upper Egypt abu Hannes, or "Father John," which arrives in Egypt about the time that the inundation of the Nile commences, its numbers increasing or diminishing with the increase or diminution of the waters; and it migrates sonthward about the end of June. This species is about the size of a fowl; the head and neck are bare ; the body white; the wing tipped with shining, asly black, among which the white forms oblique notches; the secondaries and scapulars, which in summer curve gracefully over the himder parts, are bright black. This was one of the birds adored by the ancient Egyptians, and of which numerous mummies are found. The Greek and Roman writers give many fabulous stories relating to ibis, which Savigny lias gathered in 'Histoire Naturelle et Mythologique de l'Ibis.' He concludes that the feverence for this ibis was not due to its alleged destruction of snakes, which, in fact, does not occur, but arose from the birds' return at the time the Nile began to rise, the commencement of the season of abundance. Modern writers on Egyptian customs and antiquities may be consulted further on this point. Many other interesting species occur in Africa, Asia and the Anstralian region; and many species reside in the American tropics,two, the white ibis (Eudocimus albus) and the scarlet ibis (E. ruber), flocking in summer in the southern United States. Both are birds of extreme beauty of plumage, and both have been so ruthlessly persecuted by plume-hunters, seeking feathers of millinery purposes, that the scarlet ibises are nearly exterminated.

Wood-ibises and shell-ibises are names for birds of other groups, elsewhere described.

Ibn Sina, ìb'n sé'nä. See Avtcensa.

Ibsen, Henrik, hĕn'rǐk ĭb'sĕn, Norwegian novelist and dramatist: b. Skien, Norway, 20 March 1828: d. Christiania, 22 May 1906. At 16 he became apprentice to an apothecary at Grimstad, a small village on the sontheast coast of Norway, and here were composed his first works. 'Hösten,' a poem, and 'Catilina,' a play published in 1850 over the signature Brymjolf Bjanne. After a few months at the University of Christiania in 1850, where he wrote 'The Warrior's Mound.' played at the Christiania Theatre that year, he became manager of the new National Theatre at Bergen and turned his attention directly to dramatic composition. In 1856 his 'Banquet at Solhang,' a Norwegian historical drama, was produced here, and from 1857 to 1862 he was manager of the Norwegian Theatre at Christiania To this period belong his historical plays, 'Lady Inger of Ostraat' (I857) : and 'The Vikings at Helgeland' (I858) ; (The Comedy of Love) (IE52), and several poems. His greatest historical drama, 'The Pretenders', appeared i:1 1864, and indignant at the political position of Norway at the time, Ibsen then left Norway to be absent (save for short visits) for, as it is proved, 27 years, living for a time in Cormany and then in Trieste and Rome. His noble dramatic poem, 'Brand,' was first published in I866. and the Storthing thereupon voted him the "poet's salary." In 1867 appeared the iamous dramatic poem, 'Peer Gynt,' followed by a political com-
edy, 'The League of louth', (2869); and the play, 'Emperor and Galilean,' has longest work: (1873). In 1864 he returned to Norway for a short visit and was everywhere enthusiastically welcomed. His subsequent works include the social dramas which are the basis of his fame: 'The Pillars of Society" (1877); 'A Doll's House' (18-9) ; 'Ghosts' (1881) ; 'An Enemy of the People' (1882); 'The Wild Duck' (1884) ; 'Rosmersholm' (I866); 'The Lady from the Sea' (1888); 'Hedda Gabler' (1890); 'Master Builder Solness' (I892) : 'Little Eyoli' (1894); 'John Gabriel Borkman' (i896); (When we Dead Awaken' (1900); 'Digte' (poems) appeared in 1871. By Ibsen's countrymen the poems 'Brand' and 'Peer Gynt' are considered his greatest works, both being intensely national, but nevertheless of universal application. Brand, the hero of the first, represents a protest against compromise, while 'Peer Gynt,' sometimes styled "the Scandinavian Faust," is an analysis of the human soul. The modern life dramas are the works by which Ibsen is best known to the world at large. The setting only is Norwcgian, the lesson they convey is of world-wide extension. 'The Pillars of Society' is an attack upon hypocrisy as exemplified in the principal personages in a small town, while 'A Doll's House,' which has had a wide popularity in America, is concerned with the failure of marriage. 'Ghosts' is perhaps the most impressive and awesome of all Ib sen's works, its theme being the consequences of hereditary rices. 'The Wild Duck') and 'Rosmersholm' are gloomy, despairing dramas: 'Hedda Gabler' presents in the character of Hedda a woman of the undomestic, selfish type, while the fearful price of success forms the motive of 'Master Builder Solness.' The theme of 'A Doll's House' is in effect that of 'Little Foolf,) but in the latter Ibsen, who has hitherto scemed pessimistically to foretell the dissolution of modern society, now admits a hope of its regeneration. Over Ibsen's works a vast amount of controversy has arisen, and he has been fiercely assailed as cynical and even immoral, and as zealously defended. The truth of the matter appears to be that he was par excellence the poct of protest against social sophistry, and that he unerringly indicated the danger spots in modern life. There is nothing conventional in the construction or motive of his plays. More than once the climax of the play is represented as uccurring prior to the opening of the drama which is concerned only with the consequences. laben made a deep impression upon the literature of his century and his fame is not likely to decrease. Consult: Brandes, 'Henrik Ibsen,' in 'Eminent Authors of the 19th Century' (886) : Jaeger, 'Henrik Ihsen: a Critical Bi©graphy' (1890) ; Wicksteed, 'Four Lectures on Henrik Ibsen' (1802): Shaw, 'The Quintessence of Ibsenism' (1893) ; Boycsen, (A Commentary on the Writings of Henrik Ibsen' (1894).

Ica, è-sä’, Pertu. (1) A littoral department bounded north by the department of lluancavelica, cast by Ayacueho, south by Arequipa, and west by the Pacific Ocean. Area, 8,718 square miles; pop. (1806) 90,062. (2) A town, capital of the ahove department on a river of the same name, 46 miles southeast of Pisco on Pisco Bay, with which it is connected by rail. It was
founded in 1563 . It is in a grapevine and sugarcame producing region and has manufactures of wine and brandy. Pop. 9,000.

Ice, water in the solid state. When sufficiently cooled, water loses its fluidity, and becomes filled with multitudes of needle-like crystals belonging to the hexagonal system (see Crystal), which increase and interlace until the whole mass becomes solidified. In nature, this change begins at the surface of the water and spreads gradually downward, so that the exact course of the freezing is not so easy to trace as it is in the laboratory, where the water can be uniformly cooled throughout its entire mass. When the freezing process is complete, the crystalline nature of the solid that results from it is not at all obvious. It is clearly visible, however, in snow-flakes, where the hexagonal form is also evident. In a solid block of ice the crystalline structure can also be demonstrated by a method that was used with much success by Tyndall, as a beautiful and instructive lecture experiment. The image of a slab of pure ice is thrown upon a screen by means of a projection lantern provided with a powerful electric light. At first nothing is seen, but very shortly the heat-rays passing through the ice cause it to melt internally, and the melting takes place according to the internal crystalline structure, which is gradually brought out upon the screen in great beauty: Six-sided stars, suggestive of the snowcrystals, appear, and these enlarge and become serrated at the edges as the electric beam gradually destroys the molecular architecture, the process continuing until the ice has been again reduced to the liquid form.

Pure water normally freezes at a temperature which is denoted by 32° on the Fahrenheit scale, and by 0° on the centigrade and Réaumur scales. It is possible, however, to cool pure water to a temperature considerably lower than this. if proper precautions are taken. As long ago as i836, for example, Gay-Lussac observed that water, when placed in a vessel and covered with a layer of oil, may be cooled to $10^{\circ} \mathrm{F}$. without freezing. If the vessel be slightly shaken or jarred, however, solidification ensues at once.

Pressure has a slight effect upon the temperature at which water freezes. This effect was predicted, from theoretical considerations, by James Thomson, in 1849. Dewar has since measured its amount with much care, finding that the freezing temperature is lowered by 0.014° F. for cach atmosphere of pressure. Snuall as this quantity is, it is of importance in some liranches of physics. In 1858 Mousson, by the application of an enormous pressure, succeeded in reducing the freezing point to 4° below zero, Fahrenheit. The presence of dissolved substances in the water also depresses the freezing point. Sea-water, for example, freczes at about $27^{\circ} \mathrm{F}$. (the ice that is formed being nearly free from salt), and strong brine is used in the circulating pipes and cooling coils of refrigerating plants, since it can be cooled much below this temperature without freezing.

The effect of pressure in lowering the freczing point is illustrated in the familiar process of making a snow-ball from damp snow, - that is, from snow whose temperature is preciscly 32° F. Under the pressure of the hand, the freezing point of the snow mass is lowered slightly, with
the result that a partial melting of the crystals takes place. When the pressure is remored, the ireezing point rises to its normal position, and the water that was formed by the pressure alone freczes again. and cements the mass together. (The superficial moisture, due to the warmth of the hand, is not here contemplated. The melting from this cause is a scparate phenomenon.) The slight but real plasticity of large masses of ice, such as are met with in glaciers, is probably related to this phenomenon of the variation of The freezing point by pressure, but there is some difference of opinion among the authorities as to the precise way in which the slow downward flow of these ice masses is accomplished. The melting of ice by pressure, and its subsequent solidification upon the removal of the pressure, is known to physicists as "regelation".

Experiments that have been conducted in connection with precise thermometry, by Pernet and Marek, show that the temperature of melting ice is slightly different. according to the source of the ice, and the way in which it is treated; this variation being independent of the pressure, and existing even when the ice is sensibly pure. A variation in the melting point of as much as $0.164^{\circ} \mathrm{F}$. has been observed; and in order to eliminate the effects of error from this cause, it is necessary, for the purposes of precise thermometry, to adopt a uniform mode of procedure in the treatment of the ice that is to be used for the establishment of the freezing point upon accurate thermometers. (Consult: Guillaume, 'Thermométrie de Précision,' ch.ii.).

When water that contains solid matter in solution or in suspension is frozen, the solid matter is mostly eliminated, so that the ice is much purer than the water from which it is produced. Some of the solids are almost invariably entangled among the interlacing crystals of the ice, however, so that numerous little particles of foreign matter oiten remain in the ice, imprisoned in tiny cavities. Bacteria and other germs that may have been present in the original water appear to be largely excluded from natural ice by the freezing process, though some of them are undonbtedly caught among the crystals and retained. In artificial ice, where a mass of water is frozern simultaneonsly on all sides, so that the solidification proceeds from the outside toward the centre of the cake in al! directions, purification from this cause is hardly possible, and the middle part of the icecake is likely to be rich in whatever germs the original water may have contained. Fortmately the recent experiments of Sedgewick and others indicate that freezing and protracted storage of the ice is much more fatal to typhoid bacilli than was formerly supposed. Artificial ice, if prepared from distilled water. or from water that is certainly known to be free from disease germs. is undoubtedly safer than natural ice that is taken from streams or ponds of unknown purity; but in choosing between natural and artificial ice from the same identical water, the preference should be given to the natural product.

Water expands upon freezing, one volume of water at $32^{\circ} \mathrm{F}$. becoming transformed, by freezing, into 1.0008 volumes of ice at the same temperature; which is equivalent to saying that water expands by one-eleventh of its own bulk upon freezing. The quantity of heat required to
melt one pound of ice, from the state of ice at $32^{\circ} \mathrm{F}$. to that of water at $32^{\circ} \mathrm{F}$., is 142 times as great as the quantity of heat required to raise the temperature of a pound of water from $32^{\circ} \mathrm{F}$. to $33^{\circ} \mathrm{F}$. The specific heat of ice. near the temperature $32^{\circ} \mathrm{F}$., is approximately 0.50 .

Ice Age. See Glachal Period.
Ice, Artificial. See Ice Industry.
Ïce Boat. See Ice Yachts and Ice Yachting.

Ice-breaker, a vessel, especially a strong, heary steamer, with powerful engines, for opening up navigable channels in frozen waters. On the Great Lakes of the United States, where such vessels are extensively used. they are generally fitted for carrrying cargoes or transporting railtoad cars. Such vessels are usually so built as to run their bows up on the ice and break it by means of their great weight. An ice-breaker called the Yermak, built in England in 1899. for use in Russian waters, is 305 feet long. with 71 ieet beam and draft of 25 feet. She did good harbor work in polar ice in 1900, but proved unequal to the heavy pack of the sea. Admiral Marakoff of the Russian navy, who superintended her trials, believes that the best way to reach the north pole is by means of a poverful ice-breaker, using liquid fuel instead of coal.

Ice Industry. Though the use of natural and artificial ice as an article of commercia! value practically began only in the first part of the igtly century, yet the artificial production of cold began long before it was gencrally supposed to have been thought of.

In Greece and Rome during the early ages snow was more commonly used, being placed in cone-shaped pits 45 feet in diameter, 50 feet deep and lined with straw and prunings of trees. The snow was packed down and covered with more straw and prunings, over all of which a thatched roof was placed after the ice was formed it was cut and carticd out through a door left in the side of the pit for the purpose. During the 16th century smow and ice was stored in cellars for the purpose of cooling drinks. This custom spread from Greece and Italy to Western Europe and to France during the reign of Henry 1I1. in the 16 th century and by the end of the 1 th century the sale of snow and ice had become a profitable trade. From that time $11 n t i l$ the begimning of the 19th century the ice trade was practically at a standstill. no material advance was made in the direction of improving the methods of harvesting the ice supplied hy nature, nor was any attempt of anv importance made to produce artificial ice. For purposes of description and comparison, ice may be divided into two classes the natural and the artificial.

Natural loc.- Probably the first ice cut and shipped as an article of commercial value was sent, in 1700. from New York to Charleston, S. C. This cargo was cut from a pond near Canal street. IThile this shipment was the first recorded it was of little importance: the real beginning of the industry came in the year 1805 when Frederic Tudor, of Boston, shipped a cargo of 130 tons to the West Indies. This resulted in a loss of $\$_{4} 500$, and Tudor's second shipment. two years later to Havana. likewise
was made at a loss enormous for those days. He stuck to the business, however. and finally: in 1812 , was gramted by Great Britain a monopoly of the trade with her colonies in the West Indies, and later, in 18ı5-16. Spain granted hins the same concession to export to Havana. In 1817-18 the trade was extended to Charleston and Savammah: to New Orleans in 1820 ; to Cal clitta in IE33: and to Rio Janeiro in I834. Thus a large and lucrative trade with southern countries and southern cities of the Lrited States was built up: comperitors began to come into the field, the first of these to enter the export field being the firm of Gage. Hittinger \& Co. of Boston who introduced American ice to the people of London. They were in turn followed by a Salem merchant named Lander, and others. The Treasury Department gives the following rigures for the export trade from 1850 to 1900:

	I'ear.	Tons.	Value.
1850			\$107.038
1855		41.117	190.793
1860		49.153	183.134
1865		59.927	225.825
$18 \% 0$		65.802	267.702
$18-5$		53.224	208.249
1890		45.666	136.686
1885		38.901	89.420
1890		4.4.840	111,762
1805		17.293	41.915
1900		13.720	29.501

The harvest of natural ice is gathered on an enormous scale in the C'nited States, the demand for the article being due in a large measure to the growth of other industries to which ice was a necessity: Before Croton water was introduced into Jew Fork and as far back as 1825 , ice was cut on Sunfish pond. on the outskirts of the city, by some butchers who desired to preserve their stock of meat. In 1826 ice was cut on Rnckland Lake. and at first ? 11 the ice cut was stored in the ground but later storeliouses at Hubert street and Christopher street were bult, and as the demand for ice gradually developed in all the larger eastern cities. large storehouses were erected nearby the places where the ice was cut. The capacity of these honses range from 10.000 to 00,000 tons and in size run from too to 150 iect in length by 30 to 50 f fet in width. For gathering the ice there is an elaborate system of apparatus, but the usinal methods employed are as follow: After the snow is cleared from the ice by means of scrapers or snow-plows. at iceplow: either propelled by steam or drawn by horses - the latter means more commonly used - cuts deep grooves in the ice in one direction and then repeats the operation at right angles with the first. thus forming a perfect square measuring a little mone than o feet. As these gronves extend nearly throngh the ice it is a simple matter to saw through the remainine thicknes. pry the cakes lonce with ernwbars. and float them to the icelonuse - through channels provided for the purpose. Upon reaching the icehouse the cakes are lifted on an clevator. run into the house, and packed in sawdust or other cistable material, to be lield there in storage till neeled.

The cost of harvesting a ton of natural ice varies greatly; it depending to a great extent
upon the weather conditions, both during the process of the formation of the ice and during the process of cutting and housing. Under average conditions the cost of harvesting amounts to about So cents, though under very favorable conditions it has been known to have cost only from 25 to 30 cents per ton. but this has not been often. This of course, does not include the cost of transportation, delivery, etc., and as the maiority of the icehouses are a considerable distance from the centers of consumption. the cost of transportation is a large factor The following figures, taken from 'The Ice Iournal' give the quantities of ice harvested in Ilaine and on the Hudson River, the two most important fields of operation in the whole country:

	Year.	Maine Tons.	Hudson River Tons.
18,8			2,225,000
1879			2.371.000
1880		1,426,800	800.000
1881		904.800	2.558,000
1882		1.227,200	1.954 .700
1883		1.364.500	3.017 .600
1884		1,118,000	$3,0 \geq 6,000$
1885		1.499.400	3.010.500
ISS6		1,368,400	2.355 .500
1887		1,311,100	3.366 .000
1883		1.03-.000	3.330 .500
1889		1.529.600	2.742,000
1800		3,092,400
1891		1,285,000	2,624,000
1802		1, 435,000	-,500,000
1893		$1 .+44.000$	3,40-. 839
1804		1,600.800	2.638 .500
1895		1, +13.500	3,409,000
1896		1. 466.000	$=, 735.500$
1897		1,5 5 6,500	2,655.033
1808		1,242.500	2,172.400
1809		1,326,430	$4.300,293$
1900		723.780	1.430.670

The moving of this enormons q:antity of ice necessitates the maintainance of a large fleet of barges and other boats for the domestic trade, and of sailing vessels for the export trade, and to the cost of maintaining these vessels, when figuring the cost of harvesting. must be added the cost of towing. loading. discharging. dock and stable rent. repairs of boats. icehouses. and wagons, etc.. all this before the ice is placed in the hands of the retailer.

The tools used in harvesting this crop are many and varied, and the manufacture of them has become a large and valuable source of income to several concerns in this country who have made this a specialt: Many of the ice tools now in use were invented by Nathaniel Wyeth and Jolm Barker, of Bniton. The ice plow was invented in 1830 and the patent clear-ing-tooth in 18-2. Some of the most common thols now in use are: the snow-scraper or plane. the masher and the plow: augers and axes for tapping the ice in order in drain off surface waters: saws: forked bars for pring the cakes lonse: trimning bars for squaring the cakes after lonse: adzes, edging tongs, and chisels nsed in packing the ice when in the storelouse: saws and hars for prying loose previous to shipment: and tongs, scales, axes, etc., used on the retail debivery wamn.

Arfificial lce - The manufacture of ice as an industry was hegun as early as IS66, but onlyreached a degree of commercial importance

ICE INDUSTRY

about 20 years ago. The beginnng was naturally made in the Southern States, but as it became more generally used, iactories sprang up over the entire country: The growth of the "infant industries" throughous the United States gave this industry an added stimulus, becanse the supply of natural ice was ly far too small to meet the requirements of slaughtering and meat packing-houses, refrigerator cars, cold-storage warehouses, etc.

The growth of the industry from its inception may be seen in the following statistics:

	1900.	1870.
Number of establish- ments	7^{87}	
Capital	\$38,204,054	\$434,000
Salaried clerks, officials, etc.		
Salaries	\$1.234.803	
Wage-earners	6.933	97
Wages.................	\$3,424,305	\$40,600
Mtiscellaneous expenses..	1.779,890	
Cost of materials used..	3.339.724	82,165 258,250

The first experiments for making artificial ice for mercantile uses started with the Italians in the 16th century: The first machine used for the actual manufacture was invented by Dr. William Cullen, this being based on the vacuum principle, the atmospheric press:ure bcing reduced by means of an air pump. Later, in 1 795. several experiments were made by a Mr. Walker of Oxford. England, in the line of freezing mixtures. Prof. Leslie, of England. produced a considerable degree of refrigeration by inchuding in the exhausted receiver of an air-pump. sulphuric acid. a substance rapidy absorbing vapor. In 1834 Jacob Perkins, an American engineer residing in London. obtained a patent for a machine generally credited with being the forerumer of the modern compressor machine. The refrigerant used in this machine was ether and brine was circulated at a temperature of 5° Fahrenheit through pipes which encircled the evaporator containing the ether. After running through the pipes the brine flowed into a receptacle containing boxes filled with water and thus the water was frozen. Later experiments were made by French and German inventors, boxes were supplanted by cans and this developed into the manufacture of can ice. Many of the improvements made in the ice-making apparatus are due to the efforts of Prof. A. C. Twining, of New Haven. Conn. Ie patented an ice machine in England in 1850 and in the United States in 1853: in 1855 he invented a machine. and put into active operation in Cleveland. Ohio, which produced 1.600 pounds of ice in 24 hours; and later discovered that ice would be transparent. with the exception of a small pornus core, if frozen at a temperature slightly below the freezing point. In 1857 Dr. John Gorrie of Appalachicola. Fla.. patented his icemaking machine: this was later followed by the comoressed-air machine of Dr. Alexander Kirk ; in 1858-60 the machine. upon which the modern ammonia ahsorntion system was founded, was brought forth by Ferdinand P. E. Carre: and later the plate-ice system was introduced hy Capt. Dasid Smith, of Chatham. Mass., who
erceted the first machine of this character in the United States at ()akland, Cal. There have been nearly +500 patents taken out in the Unsted States alone for refrigeration processes.

Two systems of making ice are now used, the compressor, and the absorption systems, the former the more generally used. The first step is the compression of the anhydrous ammonia (that is, ammonia which contains no water) into the gaseous form by means of a steam pump, a pressure of from 125 to 175 pounds per square inch being exerted. The next step is to reduce the gas to a liquid state by passing the ammonia through pipes which are in contact with the cold water or some ather cold substance. The gas as the begimning contained a certain degree of heat. but by the condensation process this heat is eliminated, and, after being reduced to a liquid state, the ammonia reaches the third and last process, that of expansion. As the ammonia in the liquid state reaches the pipes which are in contact with the water to be frozen, it becomes gaseons hecause of the expansion, its temperature is thus reduced below the freezing point of water and so draws from the water the heat which was taken away ly the condensation process. This results in the freezing of the water.

In the absorption process aqua ammonia is first converted into gas by the application of heat which raises the pressure to from 120 to 160 pounds per square inch. The ammonia is then reduced to liquid form by leing passed througl? pipes in contact with cold water. The ammonia is then changed from a liquid to a gaseous form by the expansion process, the methods being the same as in the compressor system. The expansion draws out any heat in the gas, which. as it passes through the pipes in contact with the water to be frozen, absorbs the heat from them till they are of a like temperature.

A large portion of the ice monfactured in the United States is produced by the can system or the plate system. In making ice by the can system the water is first boiled and allowed to settle, in order to free the ice from any foreign substances and to reduce it to the greatest possible degree of purity. The water is then distilled, boiled again, and run through three kinds of filters. A series of tanks, containing a strong solution of brine, is placed under the freezing room, and through this brine run the pipes containing the liquefied ammonia gas. Into the tanks containing the brine are submerged the cans holding the water to he frozen. As in the compressor system, the ammonia in the pipes is expanded into gas as it passes into the brine, and absorbs enough heat from the brine and water to form the water in the can into ice. The whole process requires from 20 to 66 hours. according to the size and weight of the blocks of ice and to the temperature of the brine. The can is thon raised from the tanks by means of a hoist and dipped into a well of warm water to loosen the contents.

The production of ice br the plate system is much slower and more cumbersome. In this process the tank contains the water to be frozen and into it is placed a hollow iron plate holding the cnils of pipe filled with the freezing medium. Thus the ice is formed on the outside of the iron plate, is taken out and removed, and is then ready for use.

The cost of producing a son oi ice averages throughout the country for all seasons of the year. between $\xi_{t, 10}$ and $\xi_{1} \leqslant 0$: the average price to the wholesaler ranges from Σ_{2} to $\leqslant 225$; and the retail prices range from 15 to to cents per hundred weight according to the season. The changes and improvements in the methods of producing artincial ice have so reduced the cost of manuiacture that it can now compere with the natural product. See RefRigerition and Refrigerating Machinery.

Ice Machines. See Gas, Liqueried.

Ice in Medicine. See Cold.
Ice Yachts and Ice Yachting. The amusement or sport of sailing yachts over the ice has reached its highest development in the United States. The sport abroad is confined to Russia, Sweden and Norway. Boais of the Russian River Club are sailed over a portion of the Gulif of Finland. In 1901 the Stockholm Ice Yach:
the Centennial Exhibizion (18,6) exhibited the side-rai] yacht IThiff. built for Commodore Irving Grinnell of the New Hamburgh. N. Y.: Ice lacht club. She cartied 34 square ieet of canvas and measured to ieet from the top of the bowsprit to the end of the main-boom. The sloop-rigged Icicle built on these lines carried 1,0;o square feet oi sail, but this excess oí canlas was found impracticable and the building of large boats was abandoned. The revolution in ice yachtins began in 18,9. when H. Relyea of Pougbkeepsie buit the Robert Scott, having a single backbone and an elliptical steering box This boat carried 409 square feet of canras and easily outsailed boats of trice her size. In 1883 the Jack Frost was built by Commodore Archibald Rogers of Hyde Park-on-the-Hudson and the famous racing yacht Haze was built the same year. The Tack Frost won the world's pennant in 1883 and the Haze in 1884 . About this time the Shrewsbury Ice Iacht club oi Red

The Mos: Modern and Expensive Ice lacht (:902).

Club of Sweden built a fleet of fast-racing ice yachts from American designs by Ashley.

The first authentic ice boat in the L"nited States was built by Oliver Booth, at Poughkeepsie. -.. 1... in i;go. It was a square box mounted on three runners, shod with rough iren: with a rudder post and tiller oi wood. In is:o on the Shrewsbury River, in New Jersey. Ge rge D. Allaire. censtructed an ice yacht of the bix order, equipped with rough square iron bars for runners. harpened with cutthz edges. In iSEs. on the same river, Nathan B Clark built a threecornered plati rm boat, having sharpened runners, and added a jıb to the sprit sails previously carried. The type of side-rail boat came into use abnut 18,-3 Jacob Buckhout of Poughkeepsie was the pirneer desimer oi this type, and at

Bank. .I. J.. built a large lateen rigged boat, the Scud. carrying over 000 square feet of duck in a single sail. The Orange Lake. N. Y.., club built at the same time the catboat Shadow, carrying soo square icet of sail, and said to be the strongest ice yacht ever constructed. Both of these vessels proved unsucecsitul as prize or pennant winners. In 1903 the "sloop" remained the fastes: rig in the world, but in reality it is merely a catboat rig with a small jib. The 1003 model of the first class. carrying about 0 §o square fect ci canvas. is capable oi sailing a mile a minute, and costs to construct anywhere irom $£ 1.200$ to $£ 1.600$.

Racrig Rules.- For class racing, ice yachts are divided into four classes: (1) lachts carrying coo square feet oi sail area and over. (2)

ICE YACHTS AND ICE YACHTING

Yachts carrying 450 square feet and under 600 . (3) Yachts carrying 300 square feet and under 450. (4) Yachts carrying less than 300 square

Ice Boat of 1790 .
feet. Handicap or time allowance for mixed classes is made as follows: One second per square foot for every foot of canvas carried over
the smaller boat, providing the race is sailed in one hour. If the race is sailed in 30 minutes $3 / 2$ second per square foot is allowed, and praportionately in accordance with the time of the race.

The course is usually a triangle sailed over as required to make the number of stated miles; or a straight course to windward and return or to leeward and return. The standard distances for ice-yacht races are 20 miles, 15 miles or 5 miles. The larger the yacht the longer the course. Time limit : 20 miles, I hour i5 minutes; 15 miles, 35 minutes ; 5 miles, 20 minutes.

In the United States and Canada there are 45 ice-yacht clubs. The challenge penuant of America is open to any American or foreign built yacht. It was held in 1903 by Jack Frost the Second, owned by Commodore Archibald Rogers of the Hudson River Ice Yacht club.

The record of leading American ice yachts are given in the following table.

It will be noted that the fastest time recorded in this table was made by the Jack Frost, 9 Feb. 1893, for 20 miles; time 49 minutes 30 seconds. In 1902 these records were excelled by the Joker, owned by Commodore D. C. Olin of the Kalamazoo, Mich., cluth, which sailed 20 miles on Gull Lake in 36 minutes 59 seconds. Ice yachts have actually sailed short distances at the rate of 85 miles an hour.

Ice l'acht Construction.-In the modern ice yacht the centre timber or backbone may be made of two pieces, one solid stick or a hollow truss

RACES FOR THE ICE-YACHT CHALLENGE PENNANT OF AMERICA,

[^2]backbone. To this is joined at right angles the running plank. and a steering box or cockpit is attached at the aft extremity of the backbone. The best material is seasoned basswood, which

Side-guyed Ice liacht, 1901 .
is very light and stiff. The central objects in construction are lightness and strength and adaptability for periect handling. The centre of sail balance should agree with the centre of balance of the hull.

Plan of The iurora.
The fastest ice vachts are of the sloop pattern with about one-fith of their sail area in the jib.

Commodere H. C. Higginson's ice yacht Aurora of Oranze Lake 1. Y. C.. carrying $623^{3} \leqslant$ square ieet of sail, and equipped with hollow spars and backbone. weighs a total of 1,554 pounds, divided as follows:
on all wher sides presente a succession of bays or fiords and promontories. The best harbors are those of Reykjavik and Eyrarbakiki on the southwest, and of Akureyri on the meth. The interior of the island has ins the m-st past a desolate appearance. Lnity mourtairs of volcanic erigin ri-e or whed with snow and ice. which

ICELAND

stream into the intervening valleys and form immense glaciers. Glaciers cover a surface of upward of 4.000 square miles, and appear in all the mountains above 4,000 feet in elevation. These icy mountains, which take the common name of Jökul, have their culminating point near the southeast coast in Orxa Jukul of 6,409 feet in height. Next to it in height are the Snæfell, near the east coast, 5,965 feet ; and Eyjafjalls Jokul, in the south, 5,559 feet. The structure of these mountains is volcanic; in several of them the rolcanic agency is still active, and eruptions have occurred within the last four centuries. Lava covers a large portion of the island. Of volcanic origin and agency are the mumerous hot springs or geysers scattered throughout the island, but found more especially in the southwest, to the northeast of Reykjavik, where, from one of the principal geysers, jets of water are thrown to heights varying from 100 to 200 feet. (See Gersers.) The general effects of the rolcanic agency and the geological formations exhibited on a magnificent scale in Mount Hecla, 5,095 feet high; lat. $63^{\circ} 59^{\prime} \mathrm{N} . ;$ lon. $19^{\circ} 44^{\prime} 15^{\prime \prime} \mathrm{M}$. The hot springs are sometimes used for economical purposes; food is dressed over them, and in some places huts are built over small fountains, to form steam baths.

The immense reservoirs of snow and ice furnish supplies to numerous lakes and rivers. Of the former the most important are the Thingvalla Vatn, H-itar Vatn, and Arnar Vatn in the southwest, and the My Vatn in the northeast.

The most valuable mineral product is sulphur, of which the supply appears to be inexhaustible, and surturbrand or lignite is also worked to some extent. The other minerals are chalcedonies, rock-crystals, and the doublerefracting spar, for which the island is famous. On many parts of the coast, particularly the west, basaltic caves occur; that of Stappen is not unworthy to be compared with Fingal's Cave in Staffa.

The climate is mild for the latitude. At Reykjavik, on the southwest coast, the mean temperature of the year is 40°, that of summer 56°, and that of winter about $29^{\circ} 30^{\prime}$. The air is damp and misty, the weather is extremely variable, and storms and hurricanes frequent. The prevailing winds are north and northeast. In the southern part of the island the longest day is 20 hours, and the shortest 4 hours, but in the northernmost extremity the sun at midsummer continues above the horizon a whole week, and of course during a corresponding period in winter never rises.

Vegetation is sparse and confined within narrow limits. Almost the only tree is the birch, which is stunted, hardly exceeding 10 feet in height. Heath and whortleberry cover the surface. Among flowering plants are saxifrages, sedums. etc. The want of fuel is sometimes supplied by sheep's dung or by dritt-wood brought by the Gulf Stream and the polar currents; and the island furnishes a fine turf. Grain appears to have been at one time cultivated, but is not now grown; cole. potatoes. turnips, radishes thrive tolerably well. But the most valuable crop is grass, on which numbers of livestock are fed. Flocks and herds have been estimated at -50.000 sheep, 20.000 cattle, and 40,000 horses. The last, though small, are strong
and active and numbers of them are exported. Some of the sheep are four-horned. Reindeer were introduced about 1770 , but all that now remain are a few living in a wild state. Wild fowl, including the eider-duck, are abundant; the streams teem with salmon, and on the coast fisheries of cod, haddock, herrings, etc., are carried on.

Manufactures are entirely domestic, almost every family possessing within itself the means of supplying its wants, and occasionally furnishing a surplus, of coarse woolens, mittens, stockings, etc., to be disposed of at the markets. The exports are wool, oil, fish, horses, feathers, worsted stockings and mittens, sulphur, and Iceland-moss. The inhabitants are Scandinavians, and speak a Scandinavian dialect, the original Norse. They are of a tall manly form, open countenance. florid complexion, and flaxen hair. They are simple in manners and customs, having no distinctions of rank, pure in morals, and hospitable. Their houses are chiefly composed of drift-wood and lava; fresh meat and bread seldom appear at their tables, but fish, butter, milk, and preparations of milk constitute their staple food. Their intellectual capacity is superior, education is diffused, and it is rare to meet with an Icelander who cannot read and write.

In religious profession they are Lutherans, the whole island forming a single bishopric. The civil division is into three bailiwicks Süderamt, TYesteramt, and Norderamt with Osteramt - subdivided into 20 smaller districts called Sysler. The governor takes the name of Stiftsamtmann, and presides over the althing or parliament (from "thing," a public assembly), which meets twice a year at Revkjavik, the capital and only town in the island, and consists of 36 members, of whom 30 are chosen by popular suffrage, and 6 (2 spiritual and 4 temporal) are nominated by the king. In response to petitions and complaints Iceland was granted home rule in 1874, and now has the entire management of all matters concerning the island particularly. A minister for Iceland, nominated by the king, is at the head of the administration, but the highest local authority is rested in the governor.

Christianity was introduced in 981 , and legalized in 1000; when schools and two bishoprics, those of Holar and Skalholt, were established. The Latin language and the literature and learning of the West, introduced by Christianity. were warmly received in Iceland where poetry and history had been cultivated more than elsewhere in the north. Previously to this the Icelanders had discovered Greenland (983) and part of America (about 1000), and they were now led to make voyages and travels to Europe and the East. The most flourishing period of Icelandic history as regards church and state, - the period too when its intercourse with the outside world abroad was most active was from the middle of the 12 th to the beginning of the 13 th century

Early History:- In 1264 Magnus VI. of Norway united Iceland with his own kingdom, with which it passed to Denmark in 1380 , remaining with the latter in ISI4, when Norway was joined to Sweden. Toward the end of the 14 th century science and art, which had begun to decay with the introduction of the Norwegian rule, sank to the lowest ebb , but they gradually re-
covered their position during the following century. In the 1 toth century the island was ravaged by Algerian pirates, who in 1027 mordered or carried ofi a large number oi the inhabitants. In the 18 th century the island seffered itom 43 yearš failure oi crops and 18 famines. In $1 ; 0_{7}$ about 18,000 persons died oi smallpox. Between $1 ; 83$ and $1-85$ volcanic er:uptions, failure oi crops, and famine reduced the population irom 48.660 to $3^{8.142}$. Famine raged again in $1824-5$, principally through violent volcanic ourbreaks; and a deadly epidemic scourged the country in 182\%. In the beginning oi the last centiury the althing, which had existed for about 900 years, was abolished, but it was reorganized in 1843 . As already mentioned, a new constitution was granted in 18\%\%, and in Angust oi the same year the 1000th aniversary of the colonization of the illand was celebrated, the king of Denmatk being present.

Language and Litcrature.-The Icelandic language is the most northerly of all cultivated tongues. It 1 s rich in roots and grammatical forms, soit and sonorous to the ear, being free from guturals and excess of hissing sounds. There are 28 letters, namely. all the English
 a character ior English th. Icelandic literanure may be divided into an ancient period, extending to the fall oi the reprublic, and a modern, extending irom that date to the present time. Poetry was early cultivated. and among the most important works in Icelandic literature is the collection of ancient heathen songs called the elder or poetic Edda, compiled soon aiter the introduction oí Christianity. (See Edd..) Many orher poems. especially songs of riciory, elegies, and epigrams, belong to the ancient period of the literature. Histories and romantic works, known by the name oi Sagas, wete also numerons. Among these we may mention the Tolsunga Saga, the most important of all. the Tilkina Saga, the Saga of Hroli Kraka and his companions, the Saga of King Ragnar Lodbrok. Frithiois Saga, and the yonnger or prose Edda. Some of these are parily historical, but there is a larger and more raluabie class that are altogether historical in their character. consisting oi local and family histories and biographies. Among these we may mention the Islendingabok; the Landnamaboik, an account oi the settlement of the island: the Kristni Saga, an account oi the introduction oi Christianity: Njals Saga (translated into Enclish by G. II: Dasent); Tiga Glums Saga; Egils Saga, the biography of a well-known poet and chief; Eyrbyggja Saga, an abstract of which was published by Sir Walter Scott ; the Sturlunga Saga, a history of the important Icelandic race of the Sturlungar; the Orkneyinga Saga, a history of the jarls of Orkney (an English translation of which was published in 1873) : the Fareyinga Saga, on the Faroe islands; the Kintlinga Saga, a history oi the Danish kings irom Harold Blaatand to Canute VI.: and lastly, the famous Heimskringla or Chronicle of the Norwemian Kinks, by Snorre Sturlason. Many of these works are materpicecs of ctyle. and are still read with delizht ly the people of Iceland. The carly portinn of the secend period was harren of anythine we-the mentinn in the way of literature. nor can the moderr peric. 1 maty at all ci orks possessing the interc of those helenging t , the ancient. In the :7th c r::?-y $:^{\prime}$ - w:-
a considerable revival of literary activity, the principal names being those of Arngrimur Jonsson (1508-1648), Gudmundur Andre (died 1054), Runolint Jonsson (died 1054), Arni Magnusion (died 1;30), and Thormodnr Toriason or Torizens. The first complete edition of the Icelandic Bible was issuned nonder the direction oi Gudbrandur Thorlaksson (died 162;). The true reviral oi letrers may be said to date from the middle of the I8th century, since which time there is scarcely a department oi literature in which Icelandic writers bave not done something, not to mention works on various branches oi science. Many of the most valuable works oi Europe have been 1 ranslated into Icelandic even the poems of Milton. Pop. (1895), i3.449; (1903), 28.47°.

Consult: Yon Toil, 'Leters on Iceland' ($1 ; / ; 2$): Poestion. ' E : lland. das Land und seine Berohner) (ISSG): Burton. 'Cltima Thule. a Summer in Iccland': Horn. 'Hisiory of the Literature of the Scandinavian Xorth.)

Iceland Moss, a lichen (Cetraria islandica), found in all the northern parts of the world. It is ralued ior ite nutritions and medicinal properties. and as an arricle of commerce is collected in Iceland and Norway. In the extreme north it grows eren near the sea-level; ; iarther south, only on the monntains. In Iceiand it often thickly covers great tracis, and the gathering of it is a sumner indnstry. It grows abont $11 / 2$ to 4 inches high. consists of an almost erect thallus, and is oi a substance leathery and rather cartilaginons. It has a bitter principle which is reduced by sreeping in water. and the moss is prepared as food either by pounding and making it into bread or by boiling. with water or milk, till it makes a jelly. in which form it is an agreeable and beneficial diet in some forms of disease, especially in pulmonary disorders. It is also ntilized in dressing the warp in wearing. and for sizing paper, being mixed in the vat with pulp.

Icelandic Language and Literature. See Icelasd.

Icer'ya, a genus oi scale insects, containing the fluted scale. See Scale Is sects.

Ichneumon-fly, ik-nü'mon. the name of a large iamily (Ichncumonida) of insects of the order H_{y} mincroptera. As the species of this family are very numerous (more than 1.100 genera had been described before 1903) so their manners are extremely diversified: but, in the general outlines of their character, they all agree. particularly in their depredations among the insect tribes. In some the female has the oripositor in the iorm of a boring instrument. with which she is capable of periorating the hardest substances. The larree of wasps are the devoted prey of these insects, who no sooner discover one of their nests than they perforate the material oi which it is constrncted, and deposit their eggs within it. Others glue their ova to the ckin of a caterpillar, while others again penetrate through it. and lay their eggs in its body. In all these cases the young, as soon as they are hatched, prey on the caterpillar or larva, without. howeve?. destroying it at once, as won the liie oi its victim that of the spoiler appears to depend The caterpillar. in fact, seems healthy until the larviz of the ichneumon have spun their cocoons, and entered the chrysalis state.

1. (t) Eventerus marginatorus attacking the larva of the pine-tree moth. (2) the cocoon of the latter as leit by an ichneumon-fly: (3) as left by its rightiul occupant: 4) Baisus albosignatus attacking the larva of the \quad b. Lupa-cave of Microgaver nemorum emerging from syrpinus-flv: (5) male of the same. (6) Banchus falcaor stealing upon a caterpillar: (7) larva of the ichneu-non-11
2. Spathin clavatur, in a windon
3. Pimpla intigator. preving upon a "illow-muth. ninfented caterpillar of the pinc-tree moth.
4. Ichneumon picorius the left-hand figure being that of a female depositing eggs in a buting in the

These carnivorous insects are of various sizes; some are so small that the aphis, or plantlouse. serves as a cradle for their young : others again, from their size and strength, are formidable eren to spiders, destroying them with their stings. They are as a whole, highly beneficial to humanity, as a large part of their prey consists of insects which are injurious to crops and valuable vegetation.

Ichneumons, small carnivorous anmals of the civet family (Viverrides) and sub-family Herpestina. which are distinguished from the true civets by the straight non-retractile claws, and various skeletal characters. While there are a number of genera the typical and most important is Herperste's, many species of which inhabit Airica, southern Asia, and the neighboring islands. The teeth are numerous, usually 40 : the head is elongated, with short rounded cars: the limbs are short: and the body and stout tail are covered with long hairs. They vary in size from that of a squirrel to a cat. Their food consists of all kinds of small animals; rats and mice, birds and their eggs, snakes, lizards, etc., which they pursue chiefly on the ground but also in trees. The Egyptian ichneumon (H. ichncumon) or Plaroali's rat, is famous as one of the many animals renerated by the ancient people of that country, and because of its reputation as a destroyer of crocodile's eggs. While the eggs of this reptile may be occasionally devoured, the importance of the ichneumon in this respect is purely mythical. The Indian ichneumon or mungoose (H. innugo $^{\text {) }}$) is still better known. It lives in a semi-domesticated state, and performs an invaluable service as a destroyer of venomous serpents, whose fangs it generally manages to escape by its wonderful agility. This species has been introduced into Jamaica for the purpose of destroying rats, and has multiplied exceedingly and become a serious pest, though of late years it has been held in check by a great increase in the number of ticks.

Ichnology, řk-nol'ō-jĭ, that department of palæontology which treats of the foot-prints petrified in sedimentary rocks and made by extinct animals; the science of fossil foot-prints. Such foot-prints frequently occur in all formations, and have sometimes been the first and most instruetive intimation of the existence of the animals that made them. This was particularly true of the foot-prints of dinosaurs (q.v.) so numerous and sharply marked in the brown sandstones of the Connecticut Valley: and they have greatly assisted in arriving at a true realization of those reptiles, which were at first regarded as birds. The tracks, trails, burrows, outlines of bodies, feathers and appendages of a vast variety of animals occur in the rocks and interest the ichnologist.

Ichthyol'ogy (Gr. iथ0is, fish; Noyos, a discourse), is the science of fishes. It is that branch of human knowledge which treats of the aquatic gill-bearing vertebrates, popularly known as fishes to English-speaking people.

Classification of Fishes.- In different treatises on fishes there appear very great differences in the classification proposed or adopted. Often in two works of parallel scope searcely a group will appear in both with the same boundaries or under the same name. For this condition there are several causes. First, the tendency in some
minds toward the extreme of subdivision, and in others ioward the extrome of aggregation: second, the various values assigned by different authors to different sorts of characters, the actual value of each only to be determined by the final judgment of palrontology: third. the tendency of many writers to give new names to old groups. On this account a single class order may have half a dozen virtually synonymons names. Thus the terms Chondroptcrygii, Elasmobranchii, Plasiastomi. Selachii, Placodii, Autacea, and other less known names have been applied to the group of sharks and skates. Again various authors, recognizing the validity of a given group. may find it necesssary at times to change its boundaries. In such case a new name may be proposed, or a new definition be given to an old one. Either arrangement may lead to confusion. Thus with some writers, the groups of sharks, under various names, may include the order of Chimaroids, or, under the same names, the Chimaroids may be excluded from it.

The Chordata.- The great branch of chordate animals finds its origin probably in wormlike forms. It differs essentially from the invertebrate branches in the presence of a more

A Diphy-cercal Tail.
or less developed notochord (which in the higher forms gives place to a backbone). and in the presence of gill-slits, connected with respiration. These gill-slits and accompanying gill-structures are persistent in fishes, while in the higher vertebrates they are mostly relegated to the embryonic stages.

The Chardata include several classes of marine animals leading up to the true fishes, as follows:

Entcropucusta-Balanoglossus (q.v.).
Tınicata.- Ascidians (q.v.).
Leftocardii.-Lancelots (q.v).
Cyclostomi.-Hag-fishes and Lampreys (qq. v_{0}).

Cyclia. Extinct (palæozoic) fish-like forms.
Pisces.-Fishes, properly so called; the various primary divisions of which are usually called sub-classes.

But in view of the uncertainty attached to the mutual relations and origin of these groups, we may follow recent American custom in regarding the elasmobranchs. ostracophores, arthrodires, and teleostomes as distinct classes, the last named group containing the typical or true fishes. On anatomical grounds we must regard the Elasmobranchii (sharks) as the most primitive of these classes. As to this, palreontology" gives no certain answer. There is no doubt that fishes existed and that some of the classes were well differentiated at a period long antecedent to the deposition of the oldest known remajns. The earliest remains of fossil fishes now known occur in the Ordovician or Lower Silurian deposits at Cañon City, Colorado. Among the broken fragments are apparently parts of shields of ostracophores, scales of eros-

ICHTHYOLOGY

sulierygans and vertebre of a possible chimeroid. It is probable that primitive sharks existed still earlier than this. but no definable remains precede the Devonian.

The class or sub-class of Elusmobranchis (also called Chondrutiorygii. Anfacia, etc.) agrees with the higher fishes in the presence of lower jaw, shoulder-girdle, pelvic girdle, paired fins. well developed skill, brain, and viscera. The gills are well developed, and the geteral structure and anatomy may be described as fishlike.

In distinction from the true fishes, the gills are differently iormed, adnate by their outer margin. there are no membrane bones about the head, the ava are rery large, the rentral tins are provided with claspers. there is no trace of airbladder, the arterial bulb has three series of values, there is a spiral valve in the rectum. the upper jaw is formed of palatal clements, the tupical jawbones of the fish being undeveloped. The lower jaw is also different in structure from that of the true fishes.

The existing elasmobranchs are known as sharks, rays and chimæras. The vast majority of the known species are extinct. There are two strongly marked sub-classes among the elasmobranchs. the Sclachii or sharks and rays, and the Holocipluli or chimaras. In the Sclachii there are five to seven gill-openings, the jaws are distinct from the skull, and the teeth are distinct. In the Holociphali there is but one external gill-opening, the jaws are coalescent
veloped as an archipterygium or jointed limb with a fringe of rays on one or both sides. The dorsal fin extends along the back, and on the head is a first dorsal preceded by a long spine. There are w wo well-marked families. Pleuracanthidii and Ciododouride, abundant in the Carboniferous and Permian, but now extinet.

The dotidani or Diplospondyli have the notochord imperfectly segmented by vertical partitions, and the gill-clefts are six or seven in number instead oi five, as in other sharks. Most of the species are extinct. the teeth being found in the rocks from the Jurassic to the present time. Two families are represented, the Heranchide and the Chlamydosclachida. the latter eel-shaped sharks of the open sea, chiefly about Japan.

In the large order of -1 sterospondyli the vertebre are strengthened by secondary plates of calcified tissue. which radiate outward from the small primitive cylinder. In these typical sharks there are five gill-slits. two dorsal fins, and one anal fin.

In the most primitive group, the sub-order Cestrociontes, the dorsal fins are each armed with a spine, the numerous teeth are small and mostly blunt, differing in form in different parts of the jaw, and the vertebre are imperiectly formed. A curious fact in geological distribution is that a multitude of early types of shark disappear in the Permian or toward the end of Palrozoic time. Only cestraciont sharks are known to have any representatives in the Trias-

A Lancelet (A mplasions).

with the skull, and the teeth are united to form bony plates or lamellae. Both groups are very old in geologic times, having been separated at least since the Devonian. For this and nther reasons some writers prefer to regard the sharks and chimæras as separate and coordinate groups.

We may without serious violence divide the sharks and rays into six orders: namely, Plewropterygii. Acanthodii. Ichthyotomi. Iotiduni, Asterospondyli, and Tectospondyli, the first three of these being confined to Palrozoic time. We may regard the Pleuropterygit or the allies of Cladosclache as the most primitive, and thercfore as standing first in an ascending serics.

In this group the pectoral and ventral fins are broad and fold-like, the notochord is apparently not segmented, the tail is short and keeled. well specialized, its tip abruptly turned upward. There are no spines, the teeth are small, with many cusps. There is probahly but one family, the Cladosclachide (extinct). Cladosilache foleri, a latge elongate shark from the Devonian of Ohio, is the best known species.

The.l conthodii are small harks with a spine at the front of each fin except the caudal. The teeth are minute or wanting, and the skin is covercd with small checker-like plates. There are three families, Acantlassida (extinct), with one dorsal fin. Diplacanthide (extinet), with two, and the Ischnacanthide (extinct). small sharks found from the Devonian to the Permian.

The IChthyoromi have the pectoral fin de-
sic, and this group may be ancestral to all modern sharks.

Of the Cestraciontes the Palrozic families of Cochliodontida (extinct) and Orodontida (extinct), known mainly by the teeth. occur in the Lower Carboniferous. In some and probably all of these forms the dorsal fins were each armed with a spine. The Edestida (extinct). known only irom coiled whorls of iused teeth. are doubtless closely related to these forms. These are found in the coal measures. The principal family of Cestrocionte's, the Heterodontida, begins in the Permian, and is represented by fire living species all in the Pacific Ocean, the longest known being the Port Jackson shark of Australia (Heterodontus philifpi). Wie may here mention two families of sharks of uncertain relationship, the species confined to the Carboniferous Age. These are the Pidulodonti$c^{\prime} ⿷$ (extinct), with blunt teeth, and some of them with broad fins like rays, and the Psammodontida (extinet), known from the blunt teeth only. Still more uncertain is the group of Tamiobatida (extinct) irom the Devonian of Kentucky, resembling a ray: but probably a primitive off shoot from the sharks.

The remaining asterospondylous sharks from a sub-order, Galei, without dorsal spines, and with the vertebre more perfectly calcified. The principal family is the Carchariida. Others are the Sphyrnida or hammer-heads, Scyliorhinide or cat-sharks, Ginglymostomide. Hemiscylliida, Orcctolobida, Lomilda or man-eater sharks,

SC.ILES AND ARMOR OF TELEOST FISH
Th. Flying Gurnard (Pegasus chiropterus). 2. Seahorse (liippocampus antiqucrum). 3. Seaweed fish (Phyllopterys eques). 4. Tentacle fish (Antennarius tridens). 5-: 6 . Characteristic forms of scales amons teleost fishes: 5. 6, 7. Sparidx (sea-breams); 8-9. Percidx (perches): 10. (entriscidx (snipefish): is,

ICHTHYOLOGY

Odontaspidida, or sand-sharks, Alopiida, or thresher-sharks, Mitsukurinide or spoon-hill sharks. Cotorhinide or basking-sharks, Pscttdotriakide and Rhincodontida. Of the Lamuidc and related families fossil tecth are very numerous from the Jurassic to modern times.

The Tectospondyli have the vertchre each provided with secondary plates of calcified tissue concentrically arranged in one or more series. In these sharks there is no anal fin. To these belong the Squalida or dog-fishes, Dalatiida, Oxynotida, and Echinorhinida or bramblesharks, these families forming together the suborder Cyclospondyli, having the vertebral centrum a simple constricted cylinder pierced by the notochord. To the Tcctospondyli proper we may refer a few familics of sharks, the Squatinide or monk-fishes, and Pristiophoride or saw-sharks. A third sub-order. Batoidci, includes all the skates or rays. These agree with the true Tcctospondyli in having a number of series of concentric plates within the vertebree. The body is, however, more or less depressed, the broad pectoral fins outlining a body disk, and the gill-openings lie underneath instead of being lateral, as in all the sharks. The ray's are first certainly known from the Jurassic, although several of the Carboniferous sharks have raylike teeth, and have been referred to the group of rays.
seas, Chincride or elephant-fishes (Chimera): in the north and south tenmperate seas, and Callorhynchude (Callorhynchus) in the seas of the somhern hemisphere only. Extinct families are the Ptychodontide (extinct), the Squaloritda (extinct), and the Myriacanthide (extinct). Numerous extinct genera are referred to the Chimarida. Fossil fin-spines of many species of sharks and chimaroids. fishes otherwise unknown, occur in the rocks. These are called jchthyodoroulites, and their proner classification is often a matter of much unertainty. The earliest of these are known as Onchus, occurring in the Upper Silurian.

Class Ostracophori- The earliest vertebrates actually recognized as fossils are known as ostracophores (öøтрaкov, al box; фopte, to bear). These are most extraordinary creatures, which may be described as jawless, limbless, enveloped in a coat of mail. While they have been called mailed lampreys, the likeness to lampreys is almost wholly rregative, resting in the total absence of jaws, limbs, and limb-girdles. What the mouth was like can only be guessed, but no trace of jaws has yet been found in connection with it. The most remarkable distinctive character is found in the presence of a hard shell, made of bony plates covering the anterior part of the body, while the backbone is developed as a persistent notochord, imper-

Bullhead Shark of California (Gyroplewrodus francisci).

The recognized families of rays are the Pristidide or saw-fishes, the Rhinobatida or guitar-fishes, the Narcobatida or torpedos, the Rajida or skates, the Dasyatida or sting-rays, the Myliobatida or eagle-rays, the Mobulida or devil-fishes, and the Ptychodontida (extinct) of the Cretaccous. The earliest of these groups, the Rhinobatide. date from the Jurassic.

In the sub-class of Holoccphali or Chimayoids the upper jaw or pterygoquadrate arcade is immovably joined to the skull. The teetls are coalesced into broad plates, and a fold of skin covers the gill-clefts so that there is but one external opening. The vertebral axis is imperfectly segmented, and the notochord is surrounded by partially calcified rings. In all recent genera, and in most others, there is a strong spine in the first dorsal, and in the male the forehead has a singular cartilaginous hook with a brush of spines at the end.

There are fragments referred to the skeleton of a chimæroid found in the Lower Silurian at Cañon City, Col. Numerous forms appear in the Devonian. Four genera, representing three families, are now extant, the R/mochimaride (Rhinochimara and Harriatta) in the deep
fectly segmented. The entire absence of jaw structures, as well as the character of the armature, at once separates them widely from the mailed arthrodires of a later period.

This group was originally called Ostracodermi, a mame preoceupied for the group of bony trunk-fishes (Ostraciida). The names Protoccphali and Aspidoganoidci have also been used for them. The still earlier name Placodermi included the Arthrodircs as well.

The ostracophores are found in the Ordovician, Silurian, and Devonian rocks, after which they disappear. The species are very mumerous and varied. Their real affinities have been much disputed. Traquair regards them as much modified allies of ancient slarks, which view of the case is supported by features in the structure of the most shark-like of the orders, Anaspida. The absence of jaws and limbs separates them widely from true fishes, and there is no clear evidence in the structure of the fins and fin-supports that these structure are homologous with the fins and fin-supports of true fishes, or even of sharks. In this group are four well-marked orders. Hetcrostraci, Anaspida, Astidocephali, and Antiarcha.

ICHTHYOLOGY

The Heterostraci (є́тєpos, different; botpanov, box) have no bone-corpuscles in the coat of mail. This order includes the Pieraspida (extinct), Thelodontide (extinct), Drefanaspide (extinct), and Psammosteide (extinct).

The Anaspida are more fish-like in appearance, having the armature of the head not plate-like, but iormed of tubercles. There are two families, all of recent discovery, Birkenisda (extinct) and Euphancropide (extinct).

The Aspidoceflali (also called Osteostraci) have bone-corpuscles in the shields, and the shield of the back is of one piece. Without lateral line-channels or sense-organs. The order includes four families. Ateleaspida (extinct), Cephalaspide (extinct), Thyestida (extinct),

Class Arthrodires.- Another group of extinct mailed iishes is known as Arthrodira (6ptpor, joint; δ espr, neck). In this group jaws are developed, but of peculiar character, the mandibles being regarded as mere dermal elements. not forming part of the skeleton. The head in all the species is corered with a great bony helmet. Behind this on the nape is another large shield, and between the two is typically a hinge-joint, which has been compared to the hinge of a spring-beetle (elater). Some oif these plates are traversed by sensory gruoves. Nothing whatever is known of the internal structure, and as the skeleton is soft, the backbone notochordal, there is no trace of shouldergirdle, nor any certain evidence of limhs,

spotted Sting-ray (Aetobatias narinari).
and Odontodontida (Tremataspida) (extinct), with many genera and species.

The Antiarcha have also bone-cornuscles in the plates, which are also enameled. The senseorgans occupy open grooves, and the dorsal and yentral shields are of many pieces. The head is jointed on the trunk, and jointed to the head are paddle-like appendages covered with bony plates and resembling limbs. There is no evidence that these erectile plates are real limbs. They seem to be rather jointed appendages of the head-plate, erectile on a hinge like a pectoral spine.

There is but one family, Astcrolefida (extinct). Pterichthyodes millers, named by deassiz for Huch Miller, from the Lower Devonian, is the best-known species.
although peculiar structures have been interpreted as such. The presence of a peculiar type of jaws separates the group irom the nailed oitracophores, from which the arthrodires differ also widely in the character of the armature.

Dr. Woodward and several other recent writcrs have regarded the arthrodires as armored, widcly modified off:loots of the primitive Dipnerusia. But the cridence does not seem to justify the union of the arthrodires with the latter group, and it would seem as reasonable to regard them as derived directly from the sharks or the ostracophores. The arthrodiran fishes nccur in ahundance from the Silurian times to the Mesozoic. In the Deronian their gigantic size and thick armor gave them the leading position among the loosts of the sea, ranging in

ICHTHYOLOGY

size "from that of the perch to that of the bask-ing-shark."

The class, called by Dr. Dean Avthrognathi, is divided by him into two sub-classes, Arthrodiro, with a hinge at the neck, and Anarthrodira, without hinge. In the first of typical sub-class are two orders, Tennothoracici, with the single family Chclonichithyide (extinct), Aythrothoraci, with the families Coccosteida, Dinichthyida (extinct), Titanchifhyida (extinct), Mylostomida, and Selenostida (extinct). To the Cholonichthyida belongs the noted species Homosfeus nillcri, celebrated by Hugh Niller under the name of "the Asterolepis of Stromness." in his 'Footprints of the Creator.'

The arthrodires without joint at the neck constitute the order Stegotholami, with the families of Macropetolichthydia (extinct), and Asterostcide (extinct).

The best known of the many genera of arthrodires is Coccostius, found in the Scottish Devonian.

Class Tclcostomi.- We may unite the remaining groups of fishes under a single class for which the name Telcostomi (τ Ėdeos, true; $\sigma \tau 6 \mu a$, mouth), proposed by Bonaparte in IS 38 , may be retained. The fishes of this class are characterized by the presence of a suspensorium to the mandible, by the existence of membranebones (opercles, suborbital, etc.) on the head, by a single gill-opening, leading to gill-arches bearing bilamellate gills, and by the absence of claspers on the ventral fins. The skeleton is more or less ossified in all the Tcleostomi. More important as a primary character distinguishing these fishes from the sharks is the presence typically and primitively of the air-bladder. This arises at first as a diverticulum from the ventral side of the oesophagus, and develops as a lung, but in later forms it becomes degraded to a swim-bladder, springing from the dorsal side of the alimentary canal, and in very many forms it is altogether lost with age. The group comprises the vast majority of recent fishes, as well as a large percentage of those known only as fossils. In these, the condition of the lung can be only guessed.

The Telcostomi are doubtless derived from sharks, their relationship being perhaps nearest to the Ichthyotomi or to the primitive chimæras. The lowest Telcostomi retain the shark-like condition of the upper jaw, made of palatal elements which, as in the Chimaro, may be fused with the cranium. In the lower forms also the primitive diphycercal or protocercal form of tail is retained, as also the archipterygium or jointed axis of the paired fins, fringed with rays on one or both sides.

We may divide the teleostomes or true fishes into three sub-classes, the Crossopterygii or fringe-fins, the Dipncusti or lung-fishes, and the Actinopicrygii or ray-fins. Of these, recent writers are disposed to consider the Crossopterygii as most primitive, and to derive from this, by separate lines, each of the remaining subclasses, as well as the higher vertebrates.

Sub-closs Crossopterygii.-The earliest teleostomes constitute the class called after Huxley, Crossopterygii (кpooobs, fringe; $\pi \tau \in \rho \phi \nu$, fin). lts essential character is the retention of the jointed pectoral fin or archipterygium, its axis fringed by series of soft rays. This character it shares with the Ichthyotomi among sharks, and with the Dipncusti. From the latter it dif-
fers in the hyostylic cranium, the lower jaw being suspended from the hyomandibular - and by the presence of distinct premaxillary and maxillary elcments in the upper jaw. In these characters it agrees with the ordinary fishos. The skeleton is more or less perfectly ossified. Outside the cartilagimous skill is a bony coat of mail. The skin is covered with firm scales or bony plates. The tail is diphycercal, straight, and ending in a point. The shoulder-girdle, attached to the craniun, is cartilaginous, but overlaid with long, bony plates, and the branchiostegals are represented by a pair of gular plates.

In the single family represented among living fishes the heart has a muscular arterial bulb with many series of valves on its inner edge, and the large air-bladder is divided into two lobes, having the functions of a lung, though not cellular as in the lung-fishes.

The fossil types are very closely allied to the lung-fishes, and the two groups have no doubt a common origin in Silurian times. It is now usually considered that the crossopterygian is more primitive than the lung-fish, though at the same time more nearly related to the ganoids, and through them to the ordinary fishes.

From the primitive Crossopterygii the step to the ancestral amphibia, which are likewise mailed and semi-aquatic, scems a very short one. It is true that most writers until recently have regarded such dipneustans as the Ceratodonti$d \sigma$, as representing the parents of the amphibians. But the weight of recent authority, Gill, Boulenger, Dollo, and others, scems to place the point of separation of the higher vertebrates with the crossopterygians.

Cope and Woodward divide the Crossopterygii into four orders or sub-orders, Hoplistio, Rhipidistio, Actinistia, and Cladistiu. To the last belong the existing species (Polypterida) alone. In all these the pectorals are narrow with a single basal bone, and the nostrils, as in the dipneustans, are below the snont.

In the Haplistia the notochord is persistent, and the basal bones of dorsal and amal fins are in regular series, much fewer in number than the fin-rays. The single family Tarrossidde, regarded as lowest of the crossopterygians, are small fishes of Carboniferous Age.

In the Rhipidistia the basal bones of the median fins are found in a single piece, not separate as in the Haplisfia. Four families are recognized, Holoptychiida (extinct), Rhizodontida (extinct). Osteolepida (extinct). Onychodontida (extinct), the first of these being considered as the nearest approach of the crossoptergians to the dipnoans.

In the Aefinistia there is a single fin-ray to each basal bone, the axonosts of each ray fused in a single piece. The notochord is persistent, causing the backbone in fossils to appear hollow: the cartilaginous material leaving no trace in the rocks. The genera and species are numerous, ranging from the Suhcarboniferous to the Upper Cretaceous, and belonging to the single family Calacanthide (extinct).

In the Clodistia the axis of the pectoral limb is fan-shaped. made of two diversified bones joined by cartilage. The notochord is restricted and replaced by ossified vertebre. The axonosts of the dorsal and anal are in regular series, each bearing a fin-ray. The order contains the single family Polypteride, represented

ICHTHYOLOGY

by numerous species in the Nile, Senegal, and Kongo rivers. In this group the pectoral fin is formed differently from that of the other crossopterygians, being broad, its base of two diverging bones with cartilage between. This structure. more specialized than in any other of the crossopterygians or dipneustans. has been regarded by Gill and others, as above stated. as the origin of the fingered hand (cniropterygium) of the frogs and higher rertebrates. The base of the diverging bones has been identified as the antecedent of the homerus, the bones themselves as radius and nina. while the intervening. non-ossified cartilage breaks up imo carpal bones, from which metacarpals and digits ultimately diverge. This hypothesis is at least a reasonable one. The nostrils. as in true fishes, are superior. The body in these fishes is corered with thombic enameled scales, as in the garpike, the head is similarly mailed. but in distinction from the garpike. the anterior rays of the dorsal are developed as isolated spines.

The young have a bushy external gill, with a broad scals base. The air-bladder is double. not cellular, with a large air-duct joining the ventral surface of the œesophagus. The intestine has a spiral valve.

The cranium is remarkable for its generalized form, this forming a trait of union between the ganoids and the primitive Amphibia or Stegocephali. Without considering Polypterus. it is not possible to interpret the homologies of the cranium of the amphibians and the sharks.

Sub-class Dimueusti or Lung-Fishes. - The Dipneusli (sio, twice: $\pi \nu^{\prime} \omega$, to breathe) are a group characterized by the presence of paired fins consisting oi a jointed axis with or without rays. The skull is autostylic, the upper jaw being imade. as in the Chimara, of palatal elements fused with the cranium and without premaxillary or maxillary. Dentary bones little developed. Air-bladder cellular, used as a lung. in all living species. Heart with many valves in the muscular arierial bulb. Intestine with a spiral valve. Teeth usually of large plates of dentine covered with enamel on the pterygopalatine and splenial bones. Nostrils concealed, when the mouth is closed. under a fold of the upper lip. Scales cycloid, mostly not enameled.

This group has been nsually known as Dipnoi. But this term was first taken by Leuckart. in 1821 , as a name for amphibians, before any of the living Dipncusfi were known

The Dipncusti agree with the crossopterygians by the presence of lungs. a character which separates them irom all the earlier orders of fishes. In its origin the lung or air-bladder arises as a diverticulum from the almentary canal used by the earliest fishes as a breathingsac, the respiratory functions inst in the progrese of further divergence. Nothing of the nature of long or air-bladder is found in lancelet, lamprey. or shark. In bene of the remaining groups of fishes is it wholly wanting at all stages of development.

In the Dipneusti or dipnoans, as in the crossopterygians and higher vertabrates, the trachea or air-duct arises from the ventral side of the resophagus. In the more specialized fishes, yet to be considered, it is transferred to the dorsal side, thos ayoiding a turn in passing around the cosophagus itself. From the sharks these forms are further distinguished by the presence of membranc-bones about the head. From the

Acrinopferi (ganoids and teleosts) dipnenstans and crossoptergians are again distinguished by the retention of the iringe-fin or archipterygium as the form of the paired limbs. From the crossopterygians the dipnoans are most readily cistinguished by the absence of maxillary and premaxillary. the characteristic siructures of the jaw of the true fish. The upper jaw in the ciproan is formed of palatal elements attached directly to the skull, and the lower jaw contains no true dentary bones. The skull in the dipnoans is in the Chimara is autostylic, the mandible articulating directly with the palatal apparatus. the front of which forms the upper jaw, and of which the pterygoid hyomandibular and quadrate elements form an immovable part. The shoulder-girtle, as in the shark, is a single cartilage. bu: it supports a pair of superticial membra:e-bones.

In all the dipnoans the trunk is covered with imbricated cycloid scales and no bony plates, although sometimes the scales are firm and enameled. The head has a roof of welldeveloped bony plates made of ossified skin and not corresponding with the membrane-bones of higher fishes. The fish-like membrane-bones. opercles. branchiostegals. etc., are not yet diiferentiated. The teeth have the form of grind-ing-plates on the pterygoid areas of the palate. distinctly shark-like in structure. The paired fins are developed as archipterygia, often without rays, and the pelvic arch consists of a single cartilage, the two sides symmetrical and connected in front. There is but one external gillopening, leading to the gill-arches. which, as in ordinary fishes, are fringe-like, attached at one end. In the young, as with the embryo shark, there is a bushy external gill, which looks not unlike the archipterygium pectoral fin itself. although its rays are of different texture. In early forms, as in the ganoids, these scales were long and enameled, but in some recent forms, deep sumken in the skin. The claspers have disappeared. the nostrils. as in the frog, epen into the pharynx, the heart is three-chambered, the arterial bulb with many ralves, and the cellular structure of the skin and of other tissues is essentially as in the fuphibia.

The developed lung, fited for breathing air, which seems the most important of all these characters, can, of course. be traced only in the recent forms. although its existence in all others can be safely predicated. Besides the development of the lung we may notice the gradual forward movement of the shoulder-girdle. which, in the dipncustans, as in the crossopterygians, is attached to the head. In the fishes gencrally there is no distinct neck. as the posttemporal, the highest bone of the shouldergirdle, is articulated directly with the skull.

We may divide the dipnoans into two orders. Ctonodipterini, with the iamilies ['roncmide (extinct). Difterida (extinct), and Cfonodanfide (extinct). These iamilies occur from the Devonian to the Mesozoic. The mare specialized nrder of Sirenoides includes the families of Cirafidentide and Letidosironida, each of these represented by living forms. Nost of the Ccratodoufida are extinct, occurring in the Mesozoic: but two species. Neocerofodus forsteri and N. miolepis, live in rivers of Australia. No fossil Lcpidosircnida are known. Lefidosircn paradotus lives in the swamps of southern Brazil and Protopterus annectens, P.

ICHTHYOLOGY

dolloi, and P. athopicus, in those of the Nile region.

Sub-class Actinopteri-After setting off irom the great group of fishes primitive or archaic types, one after another, we are left at last with only those having fish-jaws, fish-fins, and in general the structure of the typical tish. For all these in all their variety, as a class or subclass, we adopt the name of Actimopteri, suggested by Prof. Cope. The name (aктls, ray; $\pi \tau \in \rho b$, fin) refers to the structure of the paired fins. In all these, the bones supporting the finrays are highly specialized. and at the same time concealed by the general integument of the body.

In general, two bones connect the pectoral fin with the shoulder-girdle. The hyperacora-
 the dorsal side of the gullet, not with the rentral side, as in the dipnoans. In all these remain more or less perfectly developed the optic chiasma, the many valves of the arterial bulb, and the spiral ralve of the intestines found in the more archaic types. But traces of some or all of these structures are found in some bony fishes, and their presence in the ganoids by no means justifies their separation with sharks, dipnoans, and crossopterygians as a great primary class, Palaichthyes. Alt forms of body may be found among the ganoids. In the earlier seas they were scarcely less varied and perhaps scarcely less abundant that the teleosts in the seas of to-day. So far as fossils show, the characteristic actinopterous fin. with its reduced and altered basal bones, appeared at once withont intervening gradations.

The name Ganoidei (yávos. brightness: eidos, resemblance), alluding to the enameled plates. was first given by Agassiz to those forms, mostly extinct, allied to the garpike, and covered with bony scales or hard plates. As originally defined, catfishes, sea-horses, Agonida, and other wholly unrelated types were included with the garpikes and sturgeons as ganoids.

These were eliminated by Johannes Müller, who recognized the archaic characters common to the existing forms. Still later Huxley removed the crossopterygians, and others have shown that the Ostracophori and Arthrodira should be placed far from the garpike in systematic classification. Cope and Woodward have dropped the name ganoid altogether as productive of confusion through the many meanings attached to it. Others have retained it as a convenient group name for the orders of archaic Actinopteri. For these varied and more or less divergent groups it secms convenient to retain it.

The order Lyisopteri (λ vors, a loosing; $\pi \tau \epsilon \rho \delta$, fin) comprises the earlicst ganoids, beginning in the Devonian, covered with enameled scales. The families are Palconiscida, Platysomida, Dictyonygida, and Doryptcrida. The order Chondrostci (χ^{δ} oopos, cartilage; $\dot{\partial} \sigma \tau \epsilon_{0} v$, bone) includes a great variety of forms, characterized by the less cartilaginous skeleton, the distinctly heterocercal tai!, and the presence of bony plates, rather than scales, on most parts of the body. These represent a degenerate offshoot from the Lysopteri, the form being less like that of the typical fishes. The earliest members of this group appear in the Tertiary.

ICHTHYOLOGY

the most primitive family being the Chondro: steide (extinct). Another family is that of Belonorisuchide (extinct). The Acipenserida (sturgeons) are well represented among living fishes. The order Sclachostomi (Gè̉axos, shark; σ tous, mouth) includes the paddle-fishes (Polyodontide), two living species, and one extinct, in the Eocene. The order Pyonodonti including the family of Pycnodonitia (extinct), consists oi a deep-bodied. compressed fishes with small mouths and a peculiar physiognomy. The order Lefidostei ($\lambda \epsilon$ tis, scale; j$\sigma \tau$ éov, bone) includes numerous iamilies with rhombic enameled scales. The families are Semionotide, Lefidotide, Isopholide, Macrosemiida, Pholidophorida, Aspidorhynchida, and Lepisosteida, all extinct save the Lepisostide. represented by four species known as garpike in the rivers of North America. The earliest fossil garpikes occur in the Eocene. The Halecomorphi (haicc. herring; $\mu \circ \rho \phi \gamma$, form) comprise the Pachivcormida, Protosphyranida. Liodesmida, Oligoplewrida, and Amida. All these have perished, except the Amiida, which group is

Traces of each of the ganoid traits may persist somewhere in some group, but as a whole we see a distinct specialization and a distinct morement toward the fish type with the loss of characters distinctive of sharks. dipnoi, and ganoids. In a general way the skeleton of all teleosts corresponds with that of the striped bass. and the visceral anatomy is in all cases sufficiently like that of the sunfish.

The mesocoracoid or pracoracoid arch, found in all ganoids. persists in the less specialized types of bony fishes, although no trace of it is found in the perch-like forms. With all this, there is found among the bony fishes, an infinite variety in details of structure. For this reason the Telcostei must be broken into many orders. and these orders are very different in value and in degrees of distinctness, the various groups being joined by numerous and puzzling intergradations.

Order Isosfondyli. Of the various subordinate groups of bony fishes there can be no question as to which is most primitive in structure or as to which stands nearest the orders

Sparada, or Viviparous Perch of California (Cymatigrster aggregatas).
represented by a single species, the Bowfin, Amia calco, in the waters of the eastern Conited States. In these forms there is a gradual transition from diamond-shaped scales. covered with enamel. to the cycloid scales of the ordinary soft-rayed fishes. The line separating the Leridostci and Halecomorphi from each other and from the Isospondyli is a very narrow one.

Sub-ciass Teleostei or Bons Fishes. - The fishes which still remain for discussion constitute the great sub-class or scries of Telcostei or bony fishes. They lack wholly or partly the ganoid traits, or show them only in the embryo. The tail is slightly if at all hetcrocercal. the fulcra disappear. the actinosts of the pectoral fins are few and large, rarely if ever over five in number, the air-bladder is no longer cellular in most specics, nor does it assist in respiration. The optic nerves are separate, one running to each eye without chiasma. The skeleton is almost entirely bony, the notochord usually disappearing entirely with age. The valves in the arterial bulb are reduced in number, and the spiral valve of the intestines disappears.
of ganoids. Earliest of the bony fishes in geological time is the order of Isospondyli (Loos, equal; $\sigma \pi$ óvodos. verrebra), containing the allies recent and fossil of the herring and the trout. This order contains those soft-rayed fishes which have the ventral fins abdominal, the mesocoracoid or precoracoid arch developed (sometimes lost in degeneration), and the anterior vertebre unmodified, essentially similar to the others.

The ganoids pass by degrees into the Isospondyli, and the soft-rayed fishes pass again by imperceptible gradations into those more specialized forms having spines in the fins, structures which are again lost in the most modified members of the same group.

Ganoid traits are present in certain families of Isospondyli. Among these are the gular platc (found in Amia and the Elopida), presumably derived from the similar plate in the earliest ganjids. additional valves in the arterial bulb in Albulida. the cellular air-bladder of Notopterus and Osteoglossum, the spiral intestimal valve in Chirocintrida, and the gancid

ICHTHYOLOGY

seales of the extinct Leptolepilla. From these characters it is inferred that the soft-rayed fishes are descended from the Lepidostei or Halecomorphi. The more primitive Isospondyli approach more nearly to these ganoid forms than to their later descendants, the catfishes, the eels, or the pikes.

Most ancient of the Isospondyli is the extinct family of Leptolepide of the Triassic. Families mostly still extant, hut nearly all of them more or less represented in fossils from the Jurassie on, are the Elopida or tarpons, the Albutida or
mesocoracoid and with the opercular bones distorted. One family, the Halosaurida, with fossil allies.

A series of soft-rayed fishes descended from the Isospondyli are grouped together to form the super-order or series called Ostariophysa. These differ from the Isospondyli in having the four anterior vertebre mueh modificd, the air-bladder being connected, by a series of ossicles called the Weberian apparatus, with the auditory organ.

This series includes the orders of Eventog-

Rat-fish or Elephant-lish of California (/Iydrolagus colliei),
lady-fishes, the Chanida or milk-fishes, the Hiodontida or moon-eyes, the Spaniodontida (extinct), the Pachyrhizodontida (extinct), the Thryptodontida (extinct), the Pterothrissida, the Chirocentrida, the Notopterida, the Enchodontida (extinct), the Ichthyodectida (extinet), the Ostcoglossida, the Phareodontida (extinct), the Clupeida or herrings, the Dussumicrida or round herrings, the Dorosonidg or gizzard-shad, the Engraulidida or anchovies, the Alepaccphalida, the Pantodontide, the Salmonida or salmon and trout, the Thymallida or graylings, the Argentinida or smelt, the Microstomida, the Salangida or ice-fish, the Galaxiida or New Zealand trout,
nathi, Heterognathi, Nematognathi, and Gymnonoti, immense groups comprising the vast majority of the fresh-water fishes of the world.

The Eventognathi and Hetcrognathi have the mouth-parts normal, the maxillary not rudimentary, and the body usually covered with ordimary scales. In the order Hetcrognathi (ë́ efpos, differing; roátos, jaw) the lower pharyngeals are not especially modified, and the jaws usuarly with teeth. This group comprises most of the river-fishes of Soutl America and Africa. It ineludes the families of Characiag and Erythrinida, the former with and the latter without the adipose fin characteristic of catfishes and salmon.

The Bowfin (Amia cal゙る).
the Haplochitonida. the Gonorhynchida, the Notopterida, and a host of other forms, mostly from the deep seas, constituting (sub-order Inomia) the families of Aulopida, Ctenohirissida (extinct), Synodontida or lizard-fishes, Benthosaurida, Bathypteroida, Ipnopida, Rondeletiida. Cetomimida, Myctophida or lanternfishes, Rhinellida (extinet), Dercetida (extinct), Chirothicida (extinet), Exococtoidida (extinct), Maurolicida. Chauliodontida or viper fislies. Gonostamida, Astronesthida. Stomiatida. Malacosteidg. Plagyodontida or lancetfishes, Evermannellida, Paralepidida, Sternoptychida, and Idacanthida.

The order of Lyopomi ($\lambda \hat{u}^{\omega}$, loose, $\pi \delta \mu a$, opercle), contains a few deep-sea fishes, without

The order Eventognathi $\epsilon \dot{v}$, well; $\epsilon \nu$, within: γ vóoos, jaw) is characterized by the absence of teeth in the jaws, and by the high degree of specialization of the lower pharyngeals, which are scytheshaped, and in typical forms are armed with a relatively small number of highly specialized teeth of peculiar forms and arranged in one two, or three rows. In all the species the gill-openings are restricted to the sides, there is no adipose fin, and the broad flat branchiostegals are but three in number. In all the species the seales, if present, are cycloid, and the ventral fins, of course, abdominal. The modification of the four anterior vertebre and their connection with the air-bladder are

ICHTHYOLOGY

essentially as seen in the catfishes. The families of Event ghathi are the Kucruda. Homalopteride, Ciortida or loaches, Cetostomida or suckers, and Cyermaja or carp. dace and minnows. The last is the largest iamily recognized in ichohyology, comprising over 2,000 species, almost all connined to the north temperate zone.

The order of Vemarogncibi of catishes is characterized amons the Ostorinhtysi by the fact that the maxillary bone is rudimental, forming the base of a long barbel. There are no true scales, the body being naked or mailed, and about the mouth are always fleshy feelers. The multitude of species imhabit chiefly the rivers of
and the shoulder-girdle has typically lost its connection with the skull. The earliest iossil eels have traces oi scales. the caudal fin separate and. according io Dr. O. P. Hay, abdominal ventral fins. These characters are lost in all or most of the living forms.

The eels may be distributed among different orders. The Symbranclia die, together; β pános, gill)-I-liftyociclali, and Holostomi-have normal fish-like jaws, and the shoulder-girdle is sometimes joined to the skull. The familses are Monopterida or rice-field eels, Symbranchada, imphibusida. and Chilobranchida.

The irue eels or apodes have the shoulder-

Channel Cat-ish (Iitaiaras turitates).
the tropics, only the rypical catrishes of the principal family of Silurida occurring in waters of the United States and Europe. The iamilies are Dirlomystida, Silurida, Bunociphalida, Plofosida. Chacida, Chlariida, Hypophthahida, Argicia. Sisorida. Pysidiaia. Loricaridas, and Calliththyuda. the members of the last three groups armed with a bony coat of mail.

The order Gymuoncis contains elongaie eellike fishes without dorsal fin and with the tail excessively long. The vertebre are modified. as in the preceding orders. but there is no mesocoracoid arch. The fanilies are Electrophorida
girdle free from the skull, the premaxillaries more or less coalesced with the romer, and the body elongate and oi many vertebra. The iamilies are Anguillazida (extinct), with distinct caudal and sometimes with ventral fins, Anguillida, or true cels. Leftacephalida or conger-eels. Simenchelida. Miranesocida. Vettustomida, Jimichthyide, Ofhichthyida, Ilyofliaa. Heferocongridá. Dysommida, Euchelida (extinct), Muranida or morays, Myrocongrida, and Moringuida.

The small order of Carenclicli contains one iamily, Dirichthyida. characterized by the

Murana.
and Gsmmofida, all river-fish ni South America.
The order scyploplart contains river-fishes of Aifica on which the small mnuth is at the end of a 1 ng snout. There are no pharyngeal tech. and the pereular bones are enntiderahy modified In all there is a deep casity on each arde of the crarium. covered hy a thin bony plate. the supertempral bone. The jamilies are I/ rmyride anl Gymmarihidaz.

Sext we may place a Inne serjes ni more cr less related families, known enllectively as eels. In all there the unper jaw is more or less decenerate, the ventral fins are wanting,
snake-like neck and the structure of the jaws.
The order Lyomeri includes deep-sea eels of ennrmous sape with the parts of the head very Imiely inined. and with the fith gill-arch min malised to form a pharyngeal. There are inn iamilies. Sacchotaryngides and Eurypharyn$\leq d=$

Sill mone aberrant is the emall order of Hefirmi êtepos, differing: むuos. shoulder). the - niny eel- elnngate fishes. having the -houlder-girdle detached irom the head and the coracoids united in an imperforate plate. This group inclades cel-like fishes of the deen

ICHTHYOLOGY

sea, with spines in the dorsal fin - the families, Protonorocanthida (extinct), Votacanthida, and Liroginyida.

Another order of uncertain relationship is that of Ofisthomi, with normal curacoids, spines in the dorsal fin, and the shoulder-girdle remote from the skull. It contains one family, the Mastucembidide, small fishes from the streams of tropical Asia and Africa.

Another small order, the Tenomi (ξ tyos, strange; Zuos, shoulder). has the coracoids rudimentary and cartilaginous, with no basal bones or actinosts to the pectoral fin. One
spine; π repor, fin or wing), may be uscd. This name is often written Acanthoptcri, a form equally correct and more cuphonious and convenient. Ihese are claracterized, with numerous eaceptions, by the presence of spines in the fins. by the connection of the ventral fins to the shoulder-girdle, by the presence, in gencral, of more than one spine in the anterior part ot dorsal and anal fins, and as a rule of one spine and five rays in the ventral fins, and by the absence in the adult of a duct to the airbladder. Minor characters are these: The pectoral fins are inserted ligh on the shoulder-

Barracuda (SAtyranal sarracuda).
family, Dalliida. characterized by the black-fish of the marslies of Alaska and Siberia.

In the order Harlomi, the mesocoracoid arch is wholly undeveloped, as is the case in all of the other groups remaining to be enumerated.

In common with the soft-rayed fishes in general, the air-bladder has a persistent air-duct, the fins are without spines, the ventral fins are abdominal, and the scales are cycloid.

There is no adipose dorsal in the Haplomi, the dorsal is inserted far back, and the head is generally scaly. Most, but not all, of the species are of small size, living in fresh or
girdle, the scales are often ctenoid, and the cdge of the upper jaw is formed by the premaxillary alone, the maxillary being always toothless.

But it is impossible to define or limit the group by any single character or group of characters. It is connected with the Isospondyli through the Harlomi, on the one hand, by transitional groups of genera which may lack any one of their characters. On the other hand. in the extreme forms, each of these distinctive characters may be lost through degeneration. Thus fin-spines, ctenoid scales, and the homocercal tail are lost in the cod-

A Flying-fish (Exocatus volitans).
brackish waters. and they are found in almost all warm regions, though scantily represented in California, Japan, and Polynesia. The ramilies are Esocida or pikes, Lmbrida or mud-minnows, Poccilicia or killifishes. and timblyorsida or blind-fishes of the caves. The Gonorhynchida and the extinct ramilies of Crossognathida and Cobilopside may be doubtiully added to this group.

Order Acanthoptcrygii- The most of the remaining bony fishes constitute a natural group for which the name Acanthopterygii (\&⿴ovoa,
fishes, the comection of rentrals with shonldergirdle fails in certain peculiar forms. and the development of the air-duct is subject to all sorts of variations. In one family even the adipose fin reappears.

The I Icanthopterygit or preferably Acanthopteri, the Physoclysti of Minler, the Theracices of older authors, and the Ctinoidei oi dgassiz, include sulbstantially the same series of forms.

Among the many subordinate groups. suborders or super-families, a few stand ont as susceptible of definition. Among these is the
group of Salmoperca, composed of perch-like fishes, with spines in the fins and with ctenoid scales. yet retaining at the same time the abdominal ventrals and the adipose fin of the salmon. This constitutes the family of $P e r-$ corsida. trout-perches or sand-rollers. The extinct Erismatopteride and Asincopida probably belong here.

The sub-order Symentognathi agree externally with the Haflomi, but have the lower pharyngeals solidly united, and the air-duct lost in the course of development. The families are Belonida, the gars. Scombresocida, the sauries. Hemiramphida or hali-beaks. and Exocafida or flying-fishes. This order and the Haplomi are joined by Hay under the name of llesichthyes, the groups forming a perfect transition from soft-raved to spiny-rayed fishes.

The group of Parcesoces has the general traits of the spiny-rayed fish. with the ventral fins abdominal. Here belong the Sphyranida or barracudas, the ftherinida or silversides, and the $/ /$ wsilide or mullets. Another sub-order, Rhegnopteri, includes the Polynemida or threadfins. Other transitional forms. with the Yentrals abdominal. and spines usually present in the fins, constitute the sub-orders of Himibramehii, Lophobranchii and Hypostomides. In all of shese the bones of the gill-arches are reduced in number. and the gill-structures are distinctly degenerate. For this reason Dr. Hay has proposed to unite them as a distinct order. Phthinobranchii (ϕ olver, waning). The Homibranchii include the iamilies Gusterosteida (sticklebacks), Protosyngnathida (extinct), Aulorhynchida, Fistuluriide (cornet-fishes). Aulostomide (trumpet-fishes). Trosphenida (extinct), Rhamphosida (extinct). Marcarhamphosida (snipe-fishes). and Centriscide (shrimp-fishes). The more degenerate suborder of Lophorbranchii includes the Solenostomida, the Syngnathida (pipe-fishes), and the Hippocampida or sea-horses. The singular order of Hypostomides includes the Pegasida (sea-moths or sea-dragons).

In another sub-order we may place the Borycoidei, fishes perch-like in general structure and usually well armed, with the ventral fins thoracic, but their number of rays never I. 5. the typical number in all perch-like forms. The berycoids are especially characterized by the presence of the orbitosphenoid bone, a s:ructure wanting in all perch-like families: are the earliest in time of the fishes of this pattern, appearing in the Cretaceous or earlier. The families are Beryside. Trachichthyide, Holucentride or soldier-fishes, Polje miriida, and Monocentrida or pine-cone fish.

Another group or sub-order Zioidei. agrees well with the beryces in the presence of more than five soft rays in the ventral fins and in the armature of the fins. It differs, however, in the character of the skeleton, the post-temporal. especially being adnate to the skull, as in the buterfly-fishes or Chatodonfida.

One family, Zcida, the John-dories, belongs here. In the same group we may place provisionally an extinct family. Amphistiida. Dr. Boulenger has susgested that to fishes allied to the Amphistiide we may trace the origin of the Jolin-dories, and of the great group of flourders as well. This is an interesting sug-
gestion, but the actual line of descent is as yet not proved.

The sub-order Selenichatyes includes the family of Lampridida or opahs. In this group is a single species, a huge nish almost as deep as long, with the hypercoracoids greatiy developed and the ventral fin with many soit rays, an archaic character unknown in other spiny-rayed fishes.

In this neighborhood belongs the sub-order of Hetcrosomata, or flounders, characterized by the twisting of the cranium. an arrangement which permits the fish to lie flat on one side on the sand. while both eves are turned to the upper or colored side. In this group there are no fin-spines. The young flounder when first

hatched has the skull and eyes symmetrical, and the modification of the head proceeds by degrees.

There are two families. Pleuronectida or flounders, and Soleide or soles.

To the group or super-family Scombroidea belong a great variety of fishes. usually swift in motion and with thin soft scales, the ventral fins, if present, having a spine and five soft rays.

The families are Rachiccutrida, the sergeantfishes. Pomatomida or bluefishes, Carangida or Cavallas. Temafistiide or papagallos, ScomsPrida or mackerels. Palaorhynchida (extinct), Lepidopida or scabbard-fishes, Trichiurida or cutlass-fishes, Istionhoride or sail-fishes,

ICHTHYOLOGY

Xiphiida or sword-fishes, Coryphenide or dolphins, Bramida or pomfrets, Pteraclidida, Stromatida or harvest-fishes, Icosteide or rag-fishes, Acrotide, Zaprorida, Luaride or Lowars. Menida, Lciognathida. Steingerida, and Tetragonurida or square-tails. The Grammicolcpider perhaps belong in this neighborhood.

The imperfectly known families, Bathyclupeida, Stethonoberycide, and Pempheride have some resemblance to berycoids, but the ventral rays are $\mathrm{I}, 5$.

The great group or super-family Pericoidca

The group or sub-order of Labyrinthici comprises fresli-water fishes of the Indian region, with a peculiar apparatus for storing water connected with the gills. The families are Osphromenida or gouramies, Anahantida or elimbing percla, Helostonida. Luciophalide, and Ophioceplatidia or snakchead-tishes.

Another group, called Pharyngognatii by Nüller, is characterized by the complete union ot the lower pharyngeals, a character developed independently in the Synentognothi and in some Scianida. It contains three sub-orders or super-families. The Chromides

Mackerel (Scomber scombras).
agrees with the mackerel-like fishes in general structure, but the scales are usually coarser and rougher, and the structure less adapted to swift movement. Many members of this group are confined to the fresh waters. The families are Centrarchida, the sunfishes. Kuhliida, the silver-bass, Elassomida, the pigmy-perch, Aphredodcrida, the pirate-perch, Percide, the river-perch and darters, Apogonida, the beardless mullets, Scombropida, Acropomida, Scranida, the bass, Lobotida, the flashers, Rypticida, the soap-fishes, Kyphoside, the chopas, Scorpidide, Theropontide, the slave-
have a single nasal opening on either side. Of these there are two families, the Pomaccutrida or damsel-fishes, chielly beautiful inhabitants of the coral reefs, and the Cichlida, river-fishes of the tropics of both continents.

The Holionoti comprise the viviparous perch or surf-fishes of California and Japan; one family. Embiotocida.

The Pharyngognathi proper, having two nostrils on either side, smooth scalcs and the gills three and one half, constitute four families, Labrida, wrasse-fishes or doncellas, Odacida Siphonognallida, and Scarida or parrot-fishes,

fishes, Hamulida, the grunts. Latianida, the snappers, Sporida, the porgies, Casionida. Gerrida, the majorras, Manida, the picarels. Scianida, the drums, Contropomida (or O.rylabracida), the robalos, Pulycentrida. Vandida, Oplegnathida or stone-wall perch, Silloginida, Pentacerotida. Priacanthida, the catalufas, Mullida. the surmullets. Remotely allied to the percoid fishes are the Psudochromidida, the Opisthognothida or jaw-fishes, the Molacanthide, the Latilida or tile-fishes, and possibly the Cepolida or band-fishes.
in which the teeth are united to form a birdlike beak.

A large group of more or less related forms, perhaps derived from ancestors of the Zcoidea is known as Squamipinnes or Clatodontoidea. These are characterized in general by the union of the post-temporal or uppermost bone of the shoulder-girdle with the skull. The ventral fins in these fishes lave one spine and five (rarely fewer) rays. The scales are small and often rough. The presence in the more primitive forms of 24 vertcbre and five soft rays in the
ventals 1mdicates the common origin oi these fines with the members of the scombroid. perc id. and labroid goups. Whiie the more promitive of the charodontoid series nuch resem. e primitive members of the other series. ihe extremes of the former represent a wice divergence, specialization, and degeneration.
known collectively as Plectograini the bones of the jaws being more or less consolidated. Tiree suburciers exist among these forms. Silirodermi, with separate rough scales and separate ieeth, the Ostracoderms, with the bady erciosed in a buny box. and the Gymmedories, with the teeth coaiescent into one of two plates in each jaw.

Sook or Specked Trou: Sato cirus forarocis).

The typical families are the llarihicia or spade-sishes. the Chatodustide or butierfly fishes characteristic of coral reets and the Zantide or Moorish idols. therrant types are the Torvidic or a-chers, Efhirside (Scato-

To the Silerocerni beiong the three families, Tricumbisce, Bulistica or trigger-ishes, and ?Ivnainntitia or file-sishes. To the Ostracodirn: belong the Ostraciide or trunk-fishes, and to the Gymmodonies, the Triodonfide, the

phagida), Antigoniida or boar-fishes, and Drifande. Still nore aberrant are the ficanthurida. targs of surgeon-fishes, the Siganida. with the das: ver:-al ray spinous like the frest. Frem the targs are dezcended the degenerate typer

Titryduntide or globefishes, the Tropidich:tyide. the Chonerhinida, the Diodonide or porcupitie fishes, the Hipsudiodonfide (extinct) and the Molide or head-fishes.

A smail groud known as the super-iamily

ICHTHYOLOGY

Cirrhitoidea is characterized by the thickened and unbranched character of the lower pectoral rays, the third suborbital being at the same time not enlarged. 11 ere belong the Cirrhitide, the Aplodactylide, the Latridide, and possibly the Trichodontide. This group seems to mark a direct transition from the perch-like fislacs to those with mailed cheeks.

The sub-order of mailed-cheek fislies, Parcioplita, is characterized by the presence of the suborbital stay, a process extending backward from the third suborbital to or toward the upward limb of the preopercle. This stay is subject to great exaggeration in some forms, while in others it is much reduced. It is however, always present in these fishes and in no others. In the more primitive types, the ventrals have one spine and five rays. There are 24 vettebræ, and the scales are normally developed. In the extremes there are remarkable cases of specialization on the one hand and of degeneration on the other.

The families of mailed-cheek fishes are the Caraconthida, the Hexagrammida, or greenfishes, the Anoplopomida, or skil-fishes, the
superfamily Trachinoidea for the most part retain the normal number of ventral rays, the spine, and five soft rays. To this group belong the Trachinida or weavers, the Cranoscopuda or stargazers, the Percophide, Notothentida, Ptcropsarida, Ilarpagiferider, Chanichthyida, Champsodontide, Buaichthyida, the Draconcttida. Callionymida or dragonets, the Plotyplteride, and perhaps the Chiasmodontide and Hemerocatides.

Other divergent or abereant families in this neighborhood are the Comephorida, or Baikalfishes, the Bothymasterida or ronquils, and the Gadopside. The Batrachoidide or toad-fishes represent the group Ilaplodoci.

The group Xchoplcrygii, withont spinous dorsal and with a large sucking disk between the ventral fins, contains the Gobiesocide or cling-fishes.

The super-family Blennioidea contains the blennies and their relatives, with the ventrals jugular and always few-rayed. Here belong the Blennidde, Pholidida, Stichaida, Xiphasiide. Cryptarcuthodide or wry-mouths, Anarthichadida or wolf-fishes, Ptilichthyida, Cor -

A Californian Globefish (Oroides setores).

Scorpanida or rose-fishes and sea-scorpions, the Platycopialida, the Bembrida, the Hoplichthyida, the Cottide or sculpins, the Cycloptcrida or lump-fishes, the Liparidide or sea-snails, the Rhamphocottida, the Agonide, sea-poachers or alligator-fishes, the Triglidec or sea-robins, the Peristodida, and the Cophalacanthide or flying gurnards. The last three families differ considerably in osteology, and are segregated by Dr. Gill as the sub-order Craniomi.

In the sub-order Discocepliali the spinous dorsal fin is modificd to form a sucking disk. This is placed on the head, and is made of two series of fat plates. There is one family, the Echincidida or remoras.

The large family of Gobiide forms a su-per-family called Gohioidea. The gobies are distinguished by numerous minor traits, the restricted gill-openings, the short spinous dorsal and usual connection of the ventral fins among others. With the gobics may be associated the small family of Oxudercida.

To the sub-order Jugulares we may refer many families which agree in having the ventral fins inserted before the pectorals. The
dalida, Patacida, Gnathanacanthida, and the extiuct family of Blochiida.

Very closely allied to the blemnoid series, and also belonging to the Jugulares, is the superfamily Ophidioidea, differing in the absence of fin-spines. Here belong the Zoarcide or eelpouts. the Ammodytide or sand-lannces, the Bleckeriida, the Brotulida, the Brotulophida, the Ophidida or cusks, the Ficrasforidee or pearl-fishes, the Menocephalidec, Scytalinida, Congrogadida, and Bregmacrotida.

A sub-order of tucertain relations, characterized by the absence of foramen in the hypercoracoid, by the peculiar form of the tail, by the jugular insertion of the ventrals and the absence of spines, is the Anacanthini. Here belong the Gadida or codfishes, the Mcrlucciide or hakes, the Macrurida or grenadiers, the Ateloupodida and Bathyonide.

Still more uncertain are the relationships of the sulb-order Taniosomi, ribbon-shaped fishes of the deep sea, soft in body and often reaching an immense size. The families are Trachypterida or deal-fishes, Regalecide or oar-fishes. The loophotide or crest-fishes show some resemblance to these.

ICHTHYOLOGY

Finally we may close the long series with the order of P ediuluti．These are jugular fishes．degenerate in suructure，the small gill－ opening beinsid the pectoral rins．The famules are Lothofuc，the anglers．Antennarida or walking－tishes，Ceraiside or sea－devils，and Ostactindiús or sea－bats．

History $v^{=}$Sustemest I－hthyalocy．－The titie of＂Father of Ichahology is justly given to Petris Atedi．a Swede，associate and intimate iriend of Linmeus．Artedi was the first to recognize the meaning of gemus and species in ichthyology，and to supply the out－ lines of a classification．After Arte ifs untimely death（by drowning in a canal in Holland）． Linnaus edited his manuscripts．publishng them in 1738 ，in tive parts．as follows：（1）Ichehy－ clogical biography：（2）Ichthyological philos－ ophy；（3）Genera of Ashes，involving a com－ plete clasisifation of the forms he knew．his genera corresponding to the grours now called iamilies；（f）Symonymy of all species recorded by authors．and（5）Description of all the spe－ cies actualiy examined by Artedi．Oi true inshes（exclusive of whales） 22 S species are

Günther．In this work 6.8_{43} species are de－ scribed and 1,682 doubttul speries are mentioned in ioot－notes，the number of species known in Is，o being estimated at 9.000 ．Since that date about 3．000 have been described．the number of living species at present according to an enu－ meration made by Dr．Boulenger，being about 12．000．The aumber of fossil species known may be estima：ed ai 3.000 to $\div .000$ ．

The systemauc arrangement of Cuvier was extended and modified by Louis Agassiz to in－ clude the multitude of fossil forms made known in his＇Poissons Fossiles．＇Still more impor－ tant corrections and changes in the generai scheme of classification were suggesied by Jo－ hannes Milier，the greatest comparature anat－ omist of the 19 th century．Other valuable contributions to taxonomy have been made by Dr．Günther，Dr．Edward Drinker Cope，and especially by Dr．Theodore Gill．a critical writer who ranks with the first of taxonomists of the age，and whose views have been accepted in substance if not in name as representing our best present knowledge of the origin and rela－ tionship of iorms among the vertebrate animals．

E．－．a a：ie R＝k－úsh（Seicustaces nigricim－iusb
：ecorled by Artedi－a smat protion i the 12.000 species now actually known in os ．

Bu：：the w rk of Artedi is maseerly in its meth id and shows a str ：nger t win than that of aty of his successurs in ichthy l sy until the ume ni Cuvier．In de＇Systema Nature＇Lin－ net：s did little m se i r fishes than ：stebstitute lomal names is the descriptive phrases cf －Artedi．

With the＇Rème Animal＇（I゚゙っーズ）of Cuver，a new era in $7-1$ gy beman．In this enoch－making wook the＂Inimal kingden．＂as the tutle indicates．w_{n} ：arranged ace rdrg t i：s crganiratı on．＂C mparatuse structure i＂．．ad＝ its reflection in the schemes of classificat n ． The applicatirn of the principles of morpholnay was carried nut in detail with the Sishes in the freat＇H－stire siaturelle des Pissons＇ 1 IN28－ in ri Gerrge－Dag bert Cuvier and tchile Va：nciennes． 1 ng the most valuable general wrk on fishes．The enly general work on finh－snce Cuvier and Valenciennes is the mon－ $\because: M$ rial＇Catalogue ti the Fishes of the Britioh Iluseum（1850－：0）by Dr．Albert C．L．G．

The contributions of Geoifroy Saint－Hilaire。 Pieter van Bleeker．Carl Gegenbaur．Ramsay H． Traquair，George ilbert Boulenger．Louis Dollo． Bashord Dean．Karl Zitrel．Arthur Smith Woodward to the systematic arrangement of the higher groups of fishes have also been of great value．

In modern times the studezts of systematic ichthy logy have been very aumerous．The local taunal work in various nations has been very extensive In Great Britam we may note Parnell＇：＇Satural Histary of the Fishes of the Firth of Furth）（ r 3 S ）：William larrell＇s ＇Histry if Bricish Fishes＇（IE59）：the earlier huspries of British Fishes by Edward Donovan and by Ililliam Turton，and the works of Jon－ athan Couch (1862) ，and Dr．Francis Day （r8w），possessing similar titles．H．G．Seelye has also a usetul＇Synopsis of the Fresh－water Fishes of Eusope，Wiiliam Swainson studied the fishes of Sicily，1V．Thompson those of Ire－ land，and Rev．Richard T．Lowe and J．I．John－ son have done excellent work on the fishes of Madeira．

In Germany and Austria the chief local works have been those of Heckel and Kiner on the fresh-water fishes of Austria (1858), and C. TY1. von Siebold on the fresh-water fishes of Central Europe (1803). The two memoirs of Eduard Ruppell on the fishes of the Red Sea and neighboring parts of Africa, 'Atlas zu der Reise im nördlichen Afrika' (1828), and 'Neuc Wirbelthiere' (1837), rank with the very best of descriptive work.

In Italy, Charles Lucien Bonaparte, Prince of Canino, has published an claborate 'Fanna Italica' (1838), and numerous minor papers. O. (. . Costa published (about 1850) a Fauna of Naples.

In France, the fresh-water fishes are the subject of works by Emile Blanchard (1866), and Entile Moreau. Leon Vaillant has written on various groups of fishes. The 'Nission Scientifique aur Mexiquc.' by Vaillant and F. Bocourt, is a most valuable contribution to our knowledge of the fishes of Mexico.

In Holland the chief great works have been those of Schlegel and Pieter van Bleeker. Pro-
same subject. Before Pocy, Guichenot of Paris hated written on the fishes collected in Cuba by Ramon de la Sagra. Philip H. Gosse (18to88) wrote on the fishes of Jamaica. Much earlier, Robett Hermam Schomburgk (180465) Wrote on the fishtes of British Guiana. Other papers on the Caribbean fishes were contributed by Johannes Nulfer and F. If. Troschel, and by Richard 11 ill and J. Hancock.

Besides the work in Solth America of Marcgrave, Agassiz. Reinhardt, Liitken, Steindachner. Jenyns, Boulenger, and others already named, we may note the local studies of Dr. Carlos Berg in Argentina. 1)r. R. A. Philippi in Chile, and special records of EIumboldt, Garman, J. F. Abbott, and others in recent times. Carl H. Eigenmann and also Jordan and Eigenmann have studied the great collections made in Brazil by Agassiz. Stemdachner has described the collection of Jolann Natteret and Gilbert those made by Dr. Joln C. Branner. The most recent extensive studies of the myriads of Brazilian river-fishes are those of Dr. Eigenmann,

A Ribbon-fish or Oarfish (Regalecus).
fessor Schlegel, of the University of Leyden, described in 'The Fanna of Japonica' the fishes collected about Nagasaki in Japan by Plı. Fr. de Siebold and Bürger.

Pieter van Blecker (1819-78), a surgeon in the Dutch East Indies, is the most voluminous writer in ichtlyyology. His chief work is the 'Atlas Iclithyologique des Indes Orientales Néerlandaises,' illustrated by colored plates. The writings of Dr. Bleeker constitute the chief source of our knowledge of the fama of the East Indies. Dr. Yan Lidth de Jente, of the University of Leyden, is the author of a few descriptive papers on fislies.

The fish fauna of Cuba lias been the lifelong study of Dr. Felipe Poey y Aloy (17(y)-1891). a pupil of Cuvier, for a half century or more the lionored professor of zoology in the University of Havana. Of his many useful papers, the most extensive are his 'Momorias solire la Historia Natural de la Isla de Cuba,' followed by a 'Repertorio' and an 'Enumeratio' on the

In New Zealand, F. W. Hutton and J. Hector have published a valuable work on the fishes of New Zealand. Later writers have given us a good knowledge of the fishes of Australia. Notable anong then are W. Nacleay, Janes Douglas Ogilby, and Edgar k. Waite. Clarke has also written on 'Fishes of New Zealand.'

The most valualle work on the fishes of Hindustan is the elaborate treatise on the 'Fishes of India,' by Francis Day.

The most recent as well as the most extensive studies of the fisltes of Japan were made in I900 by the present writer and his associate, John Otterbein Snyder.

The scanty pre-Cuvicran work on the fislics of North America has already been noticed. Contemporary with the carly work of Cuvier is the worthy attempt of Professor Samuel Latham Mitchelf $\left(1 / 204^{-18} 31\right)$ to record in systematic fashiom the fishes ni New York. Soon aiter followed the admiralle work of Charles Alexandrc Ie Sueur ($1780-1840$), artist and nat-

ICHTHYOLOGY

\#ralist, who was the first to study the fishes of the Great Lakes and the basin of Ohio. Constantine Samuel Rafinesque ($1, S_{4}-1 S_{42}$), the third of this remarkable but very dissimilar trio. published numerous papers descriptive of the species he had seen or heard of in his various botanical rambles. This culminated in his elaborate but untrustworthy 'Ichthyologia Ohiensss.? The fishes of Ohio received later a far more conscientious, though less brilliznt, ireatment at the hands oi Dr. Jared Potter Kirtland (1;93-IS-7), an eminent physician oit Cleveland, Ohic. In $I_{4}+2$ the amiable and scholar! J James Ellsworth Dekay (IT00-1851) published his detailed report on the lew lork

was barely finished at the time of his death. The work of Theodore Nicholas Gill and Edward Drinker Cope has been already noticed

The present writer began a systematic 'Catalogue of the Fishes of North America' in 1875 , in association with his gifted friend, Herbert Edson Copeland ($18,9-7$), whose sudden death. after a few excellent pieces of work, cut short the undertaking. Later, Charles

Henry Gilbert (1860 -). a student of Protessor Copeland, took up the work, and in 1883 a 'Synopsis of the Fishes of North America' was completed by Jordan and Gilbert. Dr. Gilbert has since been engaged in studies of the fishes oi Panama, Alaska, and other regions, and the second and enlarged edition of the 'Synopsis' was completed in 18os, as the 'Fishes of North and Siddle America.' in collaboration with another of the writer's students, Dr. Barton IVarren Evermann.

A:lantic P. :-fish $\because z=3$: ..Acr:iniol.
other publications of Lnuis Agassiz (tion-53) are well known. One of the first of Agassiz's students was Charles Girard (r\&zz95). who came with him iron switzerland. and in association with Spencer Fullerton Baird (IS23-S\%) described the fithes from the United States Pacific Railway Survers ($18=8$) and the United States and Nexican Boundary Surveys ($18=0$).

Inst eminent among the students and assiet?nts of Professor Baird was his successor, Gerrge Brown Gocde (IN: est work, "Oceanic Ichthyolngy.' published in collaboration with Dr. Tarleton Hofrman Bean,

As students of the extinct fishes, following the epoch-making 'Poissons Fossiles' of Louis . Igassiz. some of the notable names are those of Pander. Asmuss. Heckel. Hugh Diller, and Ramsay H. Traquair An indispensable 'Handbacla der Palrenntologie' is that of Kar! A. Zittel, translated by Charles R. Eastman. The mosi valuable general work is the 'Catalogue of the Fossil Fishes in the British Musemn' in finur volumes, by Dr. Arthur Smith lloodward. a wnrthy companion of Günther's Catalogue of the living fishes.

In America Dr. John Strong N'ewberry, and Professor Edward IV. Claypole have studied the

ICHTHYOPSIDA - ICONOCLASTS

fossil fishes of Ohio. Edward Drinker Cope and Dr. Joscph Leidy have written on the Eocene and Cretaceous fishes of the Rocky Mountains. Numerous recent papers of importance have been published by Dr. Bashford Dean, of Columbia U'niversity, Dr. Charles R. Eastman, of Ilarvard, and Dr. Ohver Perry Hay of New lork. Other important records are due to Orestes St. John, A. H. Worthen. Charles D. Walcott, J. F. Whiteares, S. WV. Williston, and the Redfields, father and son.

Besides all this there has risen, especially in the United States, Great Brjtain, Norway, Canada, and Australia, a vast literature of commercial fisheries, fish culture, and angling, the chicf workers in which fields we may not here cnumerate even by name.

See Fishes, Geographical Distribution of.

D.ivid Starr Jordax,
 President Lcland Stanford Jr. L'niucrsity.

Ichthyopsida, ik-thǐ-ŏp'sǐ-dạ. See Herpetolagy.

Ichthyopterygia. See Ichthyosauria.

Ichthyornis, ik-thĭ-or'nis, a genus oi fossil carinate birds constituting an order Ichthyornithes and family Ichthyurnithida. They were about the size of, and presumably had much the habits and appearance of, rather large gulls, but they had extremely large heads, and both mandibles of the long pointed beak were studded with sharp, backward pointing, suake-like teeth. each set in a distinct socket. These sea-birds fished in the great inland sea which during the Cretaceous Age covered so much of the present western half of the U'nited States, and the remains of two specics and of some allied forms, as Aptornis, are found in western Kansas, but they became extinct at the end of the period.

Ichthyosauria, Ichthyopterygia, or Fishlizards, an order of reptiles. embracing primitive marine forms with a fish-like body, long head and tail, and no distinct neck, whose remains are found cxclusively in the Mesozoic, and most plentifully in the Lias. They varied in length from 3 to about 30 feet, and, as shown by their numerous coprolites (q.w.), fed upon fishes and cephalopods (squids). "The members of this order," remarks Zittel, "differ conspicuously from all living reptiles and are distinguished chiefly by their fish-like form of body, paddle-shaped limbs with numerous oval or polygonal phalanges, large head with elongated rostrum, short amphicalous vertebre. and naked integument." They had no dermal armament like crocodiles, but the snout was prolonged. narrow like that of a gavial or a dolphin, the tecth were acutely conical, crocodilelike, and thickly set in a groove without separate sockets; as many as 400 have been counted in a single mouth. The eyes were surrounded by a circle of wedge-shaped sclerotic plates. That they breathed air is plain from the absence of hranchial arches, the shape of the hyoid bones, and other cridences of pulmonary respiration: and their siviparous habit is demonstrated by several well-prescryed skeletons embracing embryonic remains in the abdominal cavity,-as many as seven young in one case. As regards external form and adaptation to a
marine existence, the ichthyosaurus "depart as widely from other reptiles as whales do from land mammals, and occupy as isolated a position." Their composite character is most puzzling to the phylogenist, and nothing is certainly known as to their origin or descent, except that they certainly were modified from terrestrial ancestors. The only family is Ichthyosaurida. which existed from the Lias to the Cretaceous periods, and contains the smallsized and primitive genus Mixosaurus, the typical and exclusively Old World genus Ichthyosaurus, Baptan)don (q.v.), and Shastasaurus, the last two being American in their distribution. Consult: Zittel-Eastmann, 'Text-book of I'alæontology.' V'ol. 11. (New' York 1902); Gadow, 'Amphibia and Reptiles) (London 1901).

Ichthyosis, ik-thĭ-ö'sis, a congenital, chronic disease of the skin characterized by dryness, harithness, and a scaly appearance suggestive of the skin of fish. . Wothing is known of its causation; it is not dangerous to life ; its cure is impossible.

Iconoclasts, i-kŏn'ö-klăsts (image-breakers), that Christian party in the Chureh of the 8th and gth centuries who would not tolerate images in the clurches or places of worship. The Byzantine emperor, Leo the Isaurian, issued an edict in $; 26$ ordering the people to abstain entirely from paying religious reverence to sacred images and a second edict soon after ordered the destruction of the images. This order occasioned commotions, first in the islands of the Archipelago: and as the Popes Gregory 11. and III., as well as Germanus, the patriarch of Constantimople, declared the veneration of sacred images to be in consonance with the Church's doctrine and constant practice, and the Emperor Leo refrised to recall his edict on their command, they excommmicated him, and his subjects in Italy threw off their allegiance. Thence arose two parties, the lconolatre (image worshippers) and the Iconoclasts. Leo's son and successor. Constantine Copronymus, held the same views as his father. He convened a council at Constantinople (754), in which the use as well as the worship of images was condemned. Constantiue's son, Leo IV .. who ascended the throne 汤, followed the same course. but proceeded with more clemency and moderation. On the death of Leo 11., in 780 , he was succeeded by his son Constantinc, under the guardianship of Irene, mother of the latter, and widow of Leo. Irme favored the orthodox party, and on attaining this position of authority upenly avowed her sentiments. and summoned a council to be held in -8 - under her protection at Nicza (Nice) in Bithynia, to pass upon the question at issue. This council condemmed the loonoclasts. Among the Greeks the comtrovery concermang images broke out ancw after the bamishment of Irene (Soz), and lasted about hali a century: Her successor, Xicephorus. did mot, indecd, remove the images from the churches, but he forbade the adherents of thic imazes from persccuting their adversaries. Finally the Empress Theodora, by a council held at Constantinople ($8+2$), restored the worship of images among the Greeks, which was confirmed by a second council, held 869-70, in the same place.

Icteridæ, ik-terr i-dé, a family of birds, the American orioles. or bangnests. and blachbirds (qq.3.).

Icy Cape, Alaska, a promontory so named on account oi the immense masses of ice by which it is usually surrounded on the north coast, and projecting into the Arctic Ocean west of the Otukah River, about midway between Capes Lisburne and Barrow. It was discosered by Cook in rise. and was the tarthest point that be reached north of Bering Strait.

Ida, (i) the classical name of Kaz-Dagh, a mountain range of Asia Minor. 30 miles suutheast of the plain of Troy. with its highest peak, Gargaron (4.650 feet). near the head oi the Gulî of Adramyti. In mythology it is famous as the range where Ganymede was stolen; where Paris pronolnced judgment on the beauty of the rival goddesses and where the celestials stationed themselves to witness the battles for Troy on the nether plain. (z) The classical name also of a mountain (now Psilotri) in Crete (q.v.), the loftiest (5,500 feet) of the range which traverses the island. The most celebrated legends connected with it are those relating to the infancy of Zeus.

Ida Grove, Iowa, a town, the capital of Ida County, is miles north of Denison, on the Maple River. and on the Chicago \& N. IV. railroad. Farming and stock-raising are carried on largely in the vicinity, and the town has flour mills, grain elevators, and manufactures oi machinery, harness, brooms and bricks. Among the municipalized installations is a beating-plant. Pop. (1900) t.96-.

Idaho (Indian. "mountain gem"), a Rocky Mountain State of the United States, next east of Oregon and Washington: its slender northern prong abutting on British Columbia: Montana and Wyoming lie on the east, Nevada and Utah on the south. Capital, Boise. Length, -85 miles; breadth, 50 to 300 : area. $8_{4}, 000$ square miles, 5 ro water. Pop. (1903) est. $1 / 77.000$.

Topography. - Idaho is part of the high plateau known as the Great Basin, the main Rockies bounding it on the east and the Cascade Range on the west: it has a mean elevation of some 4.700 feet, but the Bitter Root range in the northeast. extended north by the Cour d'Alene and Cabinet, anc the Salmon range in the centre, have snow-capped peaks rising in the latter to 12.000 feet. of rugged grandeur. These send out spurs extending west entirely across the State. The Saw Tooth rance in the west centre, and the Goose Creck and Bear River ranges in the south. are the other chief ranges, the last two stretching across the State. The river system belongs alm st entirely to Columbia. with a basin ni some 60,000 square miles within the State: the Snake or Lewis Fork winding across it: whole sonthern breadth and up much of the west boundary ior some 850 miles, navigable from Salmon Fall:. in the centre. to the entrance ri i the Powder River irnm Oregom. The chici Idaho aftuents are the Salmon and Clearwater: others are the Boise and Payette. In the north are the Spokane, Pend dOrcille, Kootenai, and others, all flowing into the Columbia. A large arca in the southern part is drained by streams
which sink into the earth not far from the mountains (the "lost river" drainage system), and some reach the Snake River by subterranean channels. A small part of the south drains into Salt Lake by the Bear River. The chiei lakes are Cœur d'Alène, Pend d'Oreille. and Kaniksu, all in the extreme north, and Bear Lake. in the extreme south. half in U'tah. The State has many beautiful waterialls; four of them are on the Snake. - the 2ro-foot Shoshone Falls, the Twin. Salmon, and American.

Geologr:- The most conspicuous physical and geological feature is the vast barren lava plain. some 400 miles by to io 60 , and about 20.000 square miles in extent. stretching along the Snake River. This is a relatively recent (Tertiary) overtlow, which in enormous volume flooded the Pacific Slope to the ocean. The but recent quiescence of the volcanic activity is shown by the gersers. steam and soda springs, and hot pools. still plentitul in this region. It is rich in fossils, including those of the elephant and mastodon, tapir, simiads, and sautians.

Forests. - The timber region occupies about Ir,000 square miles, mostly in the northern part, but somewhat in the upper Boise, Payette, and Weiser valleys; a dense growth mostly of coni-iers.- white and yellow pine. red cedar, spruce, hemlock, etc. Oi the Bitter Root Timber Reservation, 5,400 square miles are in Idaho; the loftier regions, the Alpine Fir district, produce a poor quality: The forest products were over §1,000.000 in 1892.

Climate, Soil, and Agrieulfure- The upper levels have the severe winters of the northeirn latitudes, and heary snowialls from the abundant moisture; the lower ones and the sheltered valleys have a very asteeable and equable climate. The rainiall is light and the soil consequently arid in the southern parts. as in the Grear Basin generally, the mountains cutting off the vapors from either side: but in the mountainous districts rain is abundant, and agriculture can be carried on without irsigation. Here however the sandy and clayey soil makes it less prontable than ranching. In the mountain valleys and along the rivers. where irrigation can be brought into play, and the soil irom lava decomposition is exceedingly rich, production is abundant. The chiet districts irrigated are those near swift streams with shallow channels. as the headwaters of the Snake in the cast and the district around the Boisé and Payette in the west. Over 600.000 acres were irrigated in 1900 . In 1902 a great effort was made to increase this by nearly one hali. irrigating 2,6,000 acres in the Snake balley by two great canals, with power developed at Shoshone Falls. The chief crop is hay, which in 1 (002 anmounted to $955,0,6$ tons, valued at §ミ.250.2t\& Next to this was wheat, 6,021.946 bushels, valued at $\$_{4} .2 t 5.362$: other cereals, as nats and barley, produced several million bushels. but wheat made about three fourths of the total. The State raised some $\leqslant 4.000$ worth of flaxseed. The raising of vegetables to supply the mining towns is assuming importance, and the Eruits for which the Pacific Slope is becoming noted are shared by Idaho. chiefly apples and prumes, grown mainly in the Boise basin,-

the fruit product being about $\$ 400,000$ a year. The stock-raising interest is very important, nearly half the surface of the State being pasture; but the long severe winters and deep snows make it precarious and costly in precisely the sections best adapted to it, and the northern packers and cattlemen generally winter their stock and draft animals in the Snake and adjoining valleys, where they can live and forage in the winter. The most important itens is shecp, which are increasing with great rapidity: from $1,056,407$ in 1899-1900, they numbered $4.541,815$ in 1902, fourth in the United States. Idaho ranks thirt in the wool clip, which was 21.639.387 pounds in 1902. The sales of wool and mutton together in 1902 were $\$ 4.775,000$. There are some 60,000 dairy cows in the State, and nearly half a million meat cattle.

Mining.-Idaho ranks high as a mining State, having rich deposits not only of gold, silver, copper, and lead, but of iron, coal (sevcral new mines opened in r903), salt of excellent quality; and other minerals. Its lead is the purest in the country, the Cœur d'Alêne district producing about one third of all in the United States. The gold is distributed all through the State; not only in the quartz, but in the gravels of the rivers, especially the Boise (the most noted), the Salmon, and the Snake. Dredging from the Snake River bed is carried on ; hut the great cvent of the last year (1902) was the discovery of immense new quartz ledges in the Thunder Mountain district, which are expected to raise production to the old level of the days before the partial exhaustion of the placers. The yield of metals in 1902 was 92.750 ounces of fine gold, valued at $\$ 5,917,150 ; 5,591,734$ ounces of silver, valued at $\$ 2.577,789$, and 68,953 long tons of lead, hesides about 300,000 pounds of copper. The production is restricted by the American Smelting and Refining Company, in order not to glut the market.

Manufactures. - The production of lumber is the chief industry, and flour milling next. Railroad cars, harness and saddlery (always needful in a ranching country), foundry and machine-shop products, furniture, and cigars are also of some importance. There are about 1,600 persons employed in the various manufactures, earning about $\$ 1,000.000$ yearly in wages; the annual output is about $\$ 4,800,000$ in value.

Railroads. - The mountainous character of the State, and its slight devclopment, have retarded the construction of means of transportation; the Oregon Short Line through the Snake Valley in the south, and the Great Northern and Northern Pacific throngh its extreme northern tip, furnish what it has, excent a Northern Pacific branch along the Clearwater and a short distance north. There are about 1,400 miles of main track in the State.

Banks. - In 1001 there were 13 national banks in Idaho, with $\$ 650,000$ of capital stock, $\$ 223,354$ in outstanding circulation, and $\$ 231,650$ in United States honds. There were also ten State banks, thrce private banks, and a loan and trust company.

Education, Charitics, Religion, ctc.- The State has over 750 schonl buildings, and 1,100 teachers, and spends over half-million dollars annually on the schools. Besides ten public
ligh schools, and as many private academies, thare are two State normal sehools, at Abbion and Lewiston, the Cniversity of Idelhon at Moscow, State Academy at Pocatcllo, and an agricultural and technological school at Idaho Falls; with two industrial schools at De Smet for the Cour d'Alene Indians, academics at Lewiston, Poisé, Genesce, and Pocatello. The State has an insanc asylum at Blackfoot, and a State prison at Boise. In religion, it is predominantly Mormon, with the Catholics next; Methodists, Baptists, and Presbyterians follow in that order.

Indians.- There were 4,226 Indians in the State in 1900, at four reservations, Coctr d'Alêne, Fort Hall, Lemlii, and Nez Porcé. But in 1902 the Fort Hall reservation was thrown open to settlement, and about 3,000 setlers took up claims. The Indians at Conn d'Alene and Nez Percé are sclf-supporting.

Government and Finances.- The governor and legislature are clected biemnally; sessions: are limited to 60 days, except at the members. expensc. There are 21 members in the Senate and f^{6} in the House. The State has one Represcntative in Congress. After admission as a State a Republican governor was elected unti? 1897, when the Democrats and Populists united. Until 1902 the Fusion candidates for governor were elected, but in 1902 a Republican governor was elected, and the State is now Republican. The assessed valuation of property (1002) is about $\$ 52,000,000$, and the bonded debt $\$ 443 .=$ 500.

Population.- 1870, 13.999 ; 1880, 32,610; 1890, 84,$385 ; 1900,161,772$. There were about 25,000 more males than females, as natural in a mining and ranching State. Only 24,604 were forcign born. The chief place was Boise, with 5.957 inhabitants; next Pocatello, 4,046. The only others over 2,000 were Moscow, 2,484, and Lewiston, 2,425 . There were 21 counties, as follows, with their capitals: Ada, Boisé ; Bannock, Pocatello: Bcar Lakc, Paris; Bingham, Blackfoot; Blaine, Hailey; Boisć, Idaho City: Canyon, Caldwell: Cassia, Allion; Custer, Challis: Elmore, Monntainhome: Fremont, St. Anthony; Idaho, Mt. Idaho: Kootenai, Rathdrum; Latalı, Moscow; Lemhi, Salmon: Limcoln, Shoshone: Nez Percé, Lewiston: Oncida, Malad City; Owylnce, Silver City; Shoshone, Wallace; Washington, IV ciser.

History.-Idaho was first explored by Lewis and Clark in 1805 (Sce Lfurs And Clake's Expedition), and was part first of Oregon Territory, then of Utal?, Washington, and Nehraska successively. The Jesuit, Father Dc Smet established a mission at Cour d'ARne in 1842, but till the discovery of gold in 1882 it was visited only by hunters and trappers. On 3 March I883 it was organized as a Territory, but included the present Montana and most of Wyoming. In i86 Montana was set off, and in 1868 Wroming with other territory. IV1acn gold was discovered at Comer d'Alene, in 1882, a great migration set in, and in 1889 a convention framed a constitution and petitioned for admission to the Linion. In 1883 all Mormons were disfranchised, a law held constitutional by the Trited States Supreme Conrt; but in 1893, on the Mormon Churcli disclaiming polygamy, the
law was repealed．Miners strikes in $189 z$ and I899 caused great disturances：in the laster sear the United States soldiery were compelled ro intervene and imprison a great budy of miners．

Consult ：Bamerofr．＇tVashineton．Idaho．and Montana ：Ouderdonk．＇Idaho．Facis and Sta－ tistics Conceraing Its Mining．Farming，and Industries．

Lawresce 4．Gipsos．
U゙nsersity o Iduh
Idaho Sorings，Colo．．town in Clear Creek County：on the Colorado \＆$\$$ ．rai＇road：about 30 miles west of Denver．It as situated in the plateau region of the Rocht Mountains at an elevati n of about 7.60 feer．The hot and coll soda springs tead to make it a famots resork for health seekers．In 1850 gold was disar－ ered at Jackson＇s $B=$ ．now a part $口$ i the town oi Idaho Springs．This district has been most productive in its yield of rold．The chief in－ dustrial establishments are concentrating mit＂s． lumber－yards，and machine－shops．Pop．（1000） 2.502.

Idaho，University of，the State university sitnated at Moscow：Work was begun in INoz： it is open to both men and women．and there is no evition for residents of the State：a small fee is charged to man－residents．The govern－ ment is br a board of regents：the courses offered include the classical course．general aci－ ence．civil and mining engineering，and agricul－ thre．The university is also active in organiz－ ing farmers institites．The annual income． derived mostly irom State approp－iations is about s．l．mo：in mes the number students was 37 ；；the number of proiessors and in－ structors 28

Iddesleigh，ifz＂ti．Earl of．See Morthcote $S_{\text {Taffnra l＇}}$

Ide．Fanris Ogden，＂ROTH Oanex．＂Amer－ ican author：b．Lont lstand ISミ3 She has writen various iuvenile sincies，among them （1 Lnyal Little Red－Coat＂（ISQ）：＇I Iittle Q＊een of Hearis＇（ 102 ）：（Li＊：Hamespun） （i\＆，$)$ ）（His Little Roval Highness）（ISoz ＇Ta：tine＇（10m：＇Inyai Heart：and True＂ （rom）：Friendship（ronf）：＇The Gic1 and Periect ritit（100：）

Ide，Henry Clay，American juris：：b．Bar－ net．Vi．．is Sept．IELi He was graduatel at Darmouth in iso．He was a member oi the Verm ont Sif：e Senate in バズミー an 1 a delegate to the Intional Republican Convention of 1 ese．
 in Sampa．and later（ISo3－才）was chief ju：atice of Sann under the joint appointn ent of the Unite 1 Staces，Germany，and England．He be－ crme in inco a member of the Taft commis－ sinn：scce：a－y of finance and justice of the Pf：ipnin s．Sept IDOI：vice－governor I Fet． tons：नnd in thox governot－genern？

Idealism．This wnrd is not easy to desne b－iehy：as it is used in many connecti ns where the C TTT n elemeri in the vari us cia－ mi－atlo it takes ra are ant at fret simht ppprent． 15 e may say at once，however，tha： i le－liam is a iun lamental attilude or point of in in m whin mert inter，it：the wneld or －ate ：－ancial nivase i houman experience．I： a．．．．．．tial ch r tori＝otic is fund in the fact that ：－interprets the rea＇ipy with which it deals as having a meaning．an ilea．apart from its sens－
ible appearance，and assumes that in this inner stgnificance its truth and ultimate essence con－ slits．Not the outward show of things，not the jact of coexistence and sequence among sensible phenomena，but the meaning or aidea ${ }^{\text {D }}$ is ior idealism the point oi primary importance in understanding either the world as a whole． or any of its various parts．Sow as Plato perceived，this inner idea of anything is ulti－ mately identical with its＂good．＂？．ε ．what it is good ior its purpose or function in a rational system of things．Accordingly，the essence of dealsm is found in its teleological mode of explanation．This paint of tiew，when logically carried out，implies iurther that what is real is rational or intelligibie．since its idea can be grasped．That rueass．in other words．that mind or intelligence is the ulamate principle is：which things ind their explaration．More－ over，it of course follows that the material world with its mecharical laws is in some sense secondary and derivative．Idealism is thus di－ rectly opposed to materialis and mechanism （q．v．）．which take matter or enersy or some minteligent form of existence as the frius from which everything else is derived．Realism． as a philosophical theory，affrming the existence oi a reality apart irom subjective experience，is not properly contrasted with ilealism：though． as we shall see later．these terms are used it dencte opposing tendencies in literature and art． It is hovever a mistake to suppose that ideal－ ism denies objective reality and reduces the world to sensations and ideas in the mind of the individual．On the contrary，the more ade－ cuately the princinde of idealism is grasned，the nive completely is justice done to the objective side o experience．

Science，including piiosophy，religion，art， and lierature are all different ways of inter－ preting life and existence．involving．indeed． varying attitudes of the self toward reality，and varying degrees of explicimess．Religion，art． and literature differ fion science and philos－ ophy in not being reasoned interpretarions of reality，but orimarily expressions oi the emo－ tima！or feeling aspects of experience．let the 1．rious sides nf experience are ant in lependent and isolaied but act and react on one another as pats of a innctional unity：Consequently． the internctations of religion，art．and taterature fresunprse mrte or less explicit theories about if nature of things．These，however．exist in it entm of unexamined assumntinns and un－ critical standards oi value．With regard io theae incerpr tations，we can at once sav that all intal ri eligion which rise abive mere fetich－ ism necessary presuppose an idealistic view of the wath．This is pownotur ：ree if a relizion luke Christianity But even if a relison denies in livinal immortality an 1 the doctrine of a
 © the universe $i=$ in some extent gwerned by －c lleas ani flumeses it a sunerhman power i－nlurality of nower：）．ami thoi it not i ceef re a mere play of mechanicnl phennmena． try ond ’iper thic．ton，ara nowrally－at least in their lishes in：m＝－affinted with i tealism． F－r the emotinnal onl restletic satisinctina at Which thev aim can be fu！l！attained nnlv on the ．．．umption that the uitimate nature of thines $i=$ in harmany with the तemands of the lumat spirit．and that therefre these ideal＝are not

IDES - IDIOCY

van allusions. There are however, two causes which at certinn periods bring about a reaction against idealism in these helds, and give rise to what is known ats realistic art and realistic literature. In the first place, the conceptions of science and philosoply are it certain periods so prevailingly mechanical and naturalistic as to fetter the wings of imagination and render impossible any idealistic interpretation on the part of art and literature. If the world is demonstrably ummeaning and meclannical, there is $n 0$ permanent artistic satisfaction in a false idealism. The imagination cannot be divorced from reason, but must find its satisfaction in representing things in harmony with their true nature and known laws of action. But, again, realism in art and literature may be the result of a onesided idealism, which, by ignoring the aspect of things that science emphasizes. gives rise to the same divorce between the truth of fact and the truth of art. It is clear that if idealism is to prevail in these fields it must not ignore the facts and laws of the natural world, or run counter to them, but must do justice to these facts while it transcends, through its interpretations, the scientific standpoint. Mere idealism, then, is an unsatisfactory standpoint in art and literature, and the reaction toward realism to which it gives rise is justifiable and necessary. In a somewhat similar sense, "idealist" is used popularly as a term of reproach to denote a person who ignores the facts and practical coniftions of any situation, construing it in a onesided way in terms of his own ideas of what ot glat to be. But idealism, to be adequate, must gn beyond the uncritical ideas of the individual. The true idealist is the man whose ideas are adequate to the situation in all its complexity and concreteness, whose interpretation of what is and ought to de is derived from a penctrating analysis of all the objective conditions.

What of the relation of natural science and philosophy to idealism? It is obvions that the Uery task of the natural sciences necessitates the adoption of conceptions which are fundamentally different in character from those employed by idealism: for science is primarily concerned with the relations of particular phenomena. It is always concerned with the mechanism of the parts, and knows nothing of the idcal purpose or significance of wholes. As Kant said, "where mechanism ceases thete ceases also the possibility of scientific explanation." This is the ground of the long-standing quarrel between natural science on the one side, and idealistic phitosophy and religion on the other: the former can interpret the world only in mechanical terms, while the latter must read it in terms of telcology:

The history of thonght shows that both these methods of explanation liave steadily confronted each other in philosophy. Idealism and materialism were developed almost simuftancously in Greece - the fommer by Plato, and the latter by Democritus - and the division between these opposing principles under one form or another persists until the present day. Although philosophical systems necessarily yary with the changing intellectual and social conditions of slifferent periods, yet it remains true, as Fichte said. that in principle "there are and can he only two systems of philosophy. idealism. and materialism, and that neither one can directly
refute the other, since they are constructed upon totally different planes." Matcrialism, as philosophy, adopts the conceptions and methods of the natural sciences, and differs from the latter only in the greater scope and renerality of its problems. It aims to be (in Spencer phrase) "completely unified science." Idealism, as we have already seen, has a different problem from that set by science, and states its conclusions in terms that are quite foreign to the latter.

It is usual to distinguisls between subjective and objective idealism. The former is an incomplete and undeveloped form, and finds its best representative in Derkeley (q.w.). It resolves material existence into a series of ideas in the mind of the individual, holding, in Schopenhauer's phrase, that "the world is my idea." The proof that it offers for this position is based mainly on the epistemological thesis that we l:now and can know nothing but our own ideas. The difficulties and inconsistencies of this view are now generally recognized, and the idealism of the present day is known as objective idealism. This does not deny the existence of external reality, but finds implicit in it the same principles of reason and purpose that are present in the individual mind. Indeed. this is true of the great idealistic thinkers of all times - of Plato and Xristotle, no less than of Schelling and Hegel. As a philosophical system, idealism has of course, to formulate its conclusions in a series of logical propositions, and to furnish nenofs of their ralidity. In doing this it does not depend upon the Berkeleian argument mentioned above, but rather proceeds by way of a criticism of the standpoint and categories of natural science. That is idealistic philosophy attempts to show that the scientific standpoint. when taken as phlosophy, i, c, as an ultmate account of the nature of things, is in itself incomplete and inconsistent, and that when the necessary supplementations and corrections are made it Doints the way to a view of the world as a rational and purposive svatem. To make our siew of the world completely ennsistent, many idealists naintain, we are ohliger on hold that all its parts are included in an ali-embracing system of experience. which finds its mity and its utimate reality in the ideas and purposes of an Absolute Nind.

Bibliography.-Compare Plato. especially the 'Phædrus.' and 'Republic.' Books V'1. V"11.; Berkeley, 'Principles of Human Knowledge,' 'Dialogues,' etc.: I. E. W'cbb. "The Veil of Isis' (Dublin I8SF) ; IV. Knight. 'Tlealism and Experience in Literature. Art and Life) (in 'Essays in Philosophy" 1890): J. Whatson. 'Christianity and lucalism' (I897) ; W. D. Hyde. 'Practieal Idealism' (1807): L. Mramschwicg, '1,iskalisme contemporain' (too5); Willmann, 'Geschichte des Idealismus.'

James E. Crfigiltor,
Professor of Philosophy, Cormell Unizersity.
Ides, one of the thrcefoll divisions of the Roman month. See C.ilendir.

Idiocy, that state of permanent mental deficiency which arises from an affecton of the brain cither before or at the time of birth or at an early period of life. It is thus di-tinguished 1 rom insanity. which is a condition of mental derangement occurring in the de-
veloped brain. Idioct is a term of very wide applicabluty owing to the fact that very many gra ies of arrested development occur. In a general sense it is applied chieny to the worst of these iorms, while the term Imbecility is used to denote the milier forms. The distinction between idiocy and imbecility is thus a somewhat arbitrary one, in the two conditions shade into each other by almost imperceptible degrees.

Cuuses. - The causes of idiocy and imbecility are often very obscure - large proportion of cases are congenital : that is, they arise irom causes acting in wicro. The cbild is born with a brain already hopelessly impaired. Heredity is thus a very evident cause; defects in the ancestral stock and vices in the parents and near progenitors are doubtless very active Alcoholism, syphilis. and other toxemias are certainly among these causes; as well as consanguinity and various diseases in the parents. Injuries to the mother wbile pregnant may be responsible. The subject of ante-natal disease is still a very obscure one. but evidence is not lacking to sbow that the fertus may suffer from discase: and in the critical stage of development of the brain beiore birth this organ may suffer irreparable damage. The same may be said of the infant and very young child. Injurs and disease may aci most disastrously upon the undeveloped brain. Thus blows upon and injuries to the head may cause idiocy; also injuries at the time of birth, due to difficulties in the labor. may act. The various infectious discases of childhood are responsible for some cases; thus scarlet fever, measles, whooping cough, and cerebro-spinal fever have been noted as causes of permanent arrest of development. No doubt in many cases it is difficult or even impossible to detect the active cause.

The following are the most universally recognized varietics of idiocy:

Microcephalus. - In this form the brain and its enveloping skull-case remain abnormally small. In extreme grades the deformity is very striking. These are among the lowest and worst fo:ms of idiocy, and in s?me cases there is scarcely a spark of intelligence. The patient cannot be said to do mere than vegetate. The oricinal cause probably acts in these cases at a very early period in the ante-natal life. and determines an almost complete arrest of brain development.

Hydroceftelus. In this form the natural cavities or ventricles oi the bram become chormulusly distended and the skull is correspondingly enlarged. The mental impairment varies within wide limits. In sone cases the idiocy is almost if not quite as great as in microcephalus, but in other cases a fair degree of intelligence is preserved. There may be alvo various inrms of paralysis, speech defect, epileptoid seizures, and impairment nit the special senses. Hydrocephalus I rabably denend upon clesure of one is other oi the outlet inr the cerebro-spinal fluid between the ventricles of the brain.
l' riserphatus - Occlusion or sinppage of rne ef the mam arterice of the brain at an carly period $r \hat{f}$ d vel, fmest, wot nece-arily antenatal, may cau-e -uch a:s arrest of deviopment if a porti n ni the hrain-mass that a cavity re--ults, and this is called perencephatus. Such a stoppage of an artery may lue ca seed presumably by indury or by rne of the infection: diveace. The sympt ms are usually arrest of develop-
ment of the mental faculties in various degrees, speech deiects, paralysis, such as hemiplegia, athetoid movements. and epllepsy.

Mongoliar Idiocy:- In some cases the patient bears a real or fancied resemblance to certain racial types, as the Negroid, Mongolian, etc. The later of these is the best marked, and is now included (aiter Langden Down) in most descriptions. The patient's head is deficient in the posterior region; he is of short stature, has oblique and widely separated eyes, and a nattened nose. The attempt is made by some writers to construcr special mental features for the Mongolian idiot, but with not very great success. He is simply an idiot, with varying degrees of mental power, and his resemblance to a Calmuck is only accidental.

Paralyis Idiocy. - In the iotus and in the infant and sery young child certain accidents or diseases may cause cerebral hemorrhages, which, just as in the adult, cause in turn various kinds of oaralysis. The most common are hemiplegia or paralysis of the arm and leg on one side: diplegia, or paralysis oi both arms and legs; and monoplegia. or paralysis of one limb. Such an accident in early life is apt to cause more or less idiocy or imbecility in addition to the paralysis. Sone of these patients are also epileptic.

Eplleptic Idiocy-A rather large proportion of feeble-minded children are epileptic. This symptom may be associated with paralysis of rarious kinds. as already said, or it may not be complicated in any way with marked physical defects. It is only too likely, however, to induce a progressive mental deterioration; or, to speak more accurately for some cases. to prevent a normal brain development. The epileptic child is usually feeble-minded - some more, some less.

Sinsorial Idiocy:- In some cases the organs of sight or hearing, or both. may be defective, or undeveloped, and the child's brain does not develop normally merely because is is deprived of these important avenues of sensation. Such children may have more brain capacity than at first appears, and they can be educated. In some cases. however, as in some deaf-mutes, the mental faculties remain more or less undeveloped.

Ginitous ldiocy.-Ireland. a well known authority, proposes this term for a certain class of congenital jdicts, but it is not very distinctive. It includes iecble-minded children, usually of a rather low grade. who are born with undevel ping brains. The tern really applies to many members of the other groups already referred to.

Hi.h and Low' Gradz Idiots. - These terms and intermediate ones are often applied merely to designate ieeble-minded children according 10 the approximate degree of their lack of detelopment. While lacking in scientiric precision. such terms denctc conveniently various grades if idiocy. There are many idiots who are not microcephalic, nor hydrocephalic, nor Mongnlian, nor paralytic, nor cpileptic, nor in fact to be included in any tsrrally accepted class, and yet they are ummistakably idiots and often of low grade. The truth is, that all classifications must remain unsati-factory until we know more about the ca'seation and patholocy of the varions forms.

Creinism- - 1 lighly specialized form of idincy is cretinism. This is always associated with defect in the thyroid gland; sometimes this

IDOL - IGLOOLIK

gland is entirely absent, at others it is immensely hypertrophied, and thus practically destroyed. Cretinism is endemic in some countries, as in and about the Alps and Pyrenecs. The cretin is both physically and mentally stunted. He is of low stature, of peculiar and characteristic physiognomy, of pale and unhealthy skin. usually beardless, sometimes sexually undeveloped, and with many defects in the skeleton and muscular system. IIentally he is usually an imbecile at least, and in some cases even quite idiotic. Cases vary widely, however, in the degrec of feeble-mindedness. In the United States cretinism is only sporadic.

Pathology:- As already indicated, idiocy is due to a wide variety of causes, and therefore its pathology also raries extensively. Among the processes found in the brains of idiots are sclerosis, atrophy. porencephalic defects, old inflammations, occluded and destroved blood ressels, distended ventricles, and thickened membranes.

Treatment.- In recent years the effort has been made to train and educate the feeble-minded child, and to develop in it as far as possible the defective mental faculties. Training schools for these patients now exist in this country and in Europe, and the most humane and enlightened efforts are being put forth to ameliorate the condititon of these unfortunates, and to render the more hopeful of them useful nembers of society. It is needless to say, however, that not much can be accomplished with feeble-minded children of low grade, and with the very lowest nothing whatever can be done. With the imbecile and demi-imbecile, however, the results oltained sometimes justify the pains and expense. For the vast majority of feeble-minded children asylum treatnent is desirable, even indispensable. These unfortunate patients cannot associate with healthy children, and they require a special environment. The prospect for cure in most cases is quite hopeless. See also Insanity.

Bibliography:- Brush, 'Idiocy and Imbecility) in Keating's 'Cyclopedia of the Diseases of Children,' V'ol. [1. (I8go) : Ireland, 'Idiocy and Imbecility) (I887); Seguin. (Idiocy, and its Treatment by the Physiological Method' (1866); Tuke, (A Dictionary of Psychological Medicine) (i892). James Hendrie Lloyd,

Formerly Veurologist Philadelphia Hospital.
Idol, in a sense now obsolete, or nearly so, an image (Greek $\epsilon i \delta \omega$ तov) or likeness of anything: in later and chiefly present signification, any image or likeness of a deity used or designed as an object of worship. By extension the tern has also come to be applied to anything which is an object of adoration or of supreme affection or regard. (See next article.)

Idol'atry, the worship of idols in any sense; in the restricted usage ordinarily observed, it is the worship of the Deity or of a deity under a risible form: and from the point of view of the Christian, or any other religion which rejects the worship of images. consists in worshipping as God what is not god. With regard to the origin and character of idolatry. there is a wide divergence of opinion. The Christian religion conceives idolatry as a declension from the one true God, sees in the various forms of heathen worship only more or
less complete degradations of an original revelation, and ascribes to it the same origin as to sin. Some philosophical and historical writers, on the other hand. sce in idolatry an innate searching after (iod, and accordingly the first stage of human derclopment, the necessary begimning of a knowledge of God. Idolatry may assume various forms. One nation seeks its god in the powers of naturc, worships the heavenly bodies and the elements, and creates for itself a nature-worship ; another develops a hero-worship. and a third has merely an animal and image worship, the lowest form of which is fetishism (q.r.). To this last and rudest form of idolatry. that consisting in animal and image worship, the name of idojatry is sometimes confined. See Image TVorship.

Idrisi, îd'rc̄-sē. or Edrisi, Abu-Abdallah Mohammed, Arabian geographer: b. about IIoo; d. about II80. He studied at the Noorish University of Cordova, traveled through various countries bordering on the Mediterranean. visited France and England, and was then invited to the court of Roger II. of Sicily, where he resided under the patronage of Roger and his successors till his death. He constructed at the request of Roger a terrestrial globe of silver. on which the figure of the earth was shown with as much accuracy as the state of geographical knowledge then permitted. He accompanied this with a descriptive treatise bearing the title 'Nuzhat Almushtak,') completed about II5O. An old manuscript of this work was discovered at Paris in 1829. and published in a French translation by Jaubert.

I'dyl, or Idyll (from a Greek diminutive meaning a "fittle form or image"), the name originally and still most usually applied to a short and highly finished descriptive poem. especially if it treats of pastoral subjects. This last circumstance is not, however, an essential character of the idyl. Anl that is necessary to constitute a poem of this class is that it presents to view a complete picture in small compass, and accordingly the idyl may refer to a great variety of subjects, and the fact that the subjects of idyls are usually pastoral is due to this, that pastoral life, at once simple and picturesque. affords the best material for such short descriptive poems. The term idyl is sometimes used even more extensively but in a manner so capricious as to be incapable of definition.

Iglesias, José Maria, hō-sā’ inä-rē'áa ē-glā'-se-äs, Iexican historian and publicist: b. City of Mexico, 5 Jan. I823. He studied law in the University of Mexico, was appointed professor of jurisprudence there, became secretary: of justice in 185\%, and, after service as head of the treasury department, again held the post in 1853-67. In 1868 he was elected to Congress. in the same year was appointed secretary of the interior, in IS73 chosen president of the supreme court. After the fall of Lerdo de Tejada, he estalulished a government which soon yielded to the superior power of Diaz. His publications include: 'Apuntes para la Historia de la guerra entre Méjico y los Estados Unidos' (1852) : and 'Revistas históricas sobre la Intervención Francesca) (1870).

Igloo'lik, Canada, a small island in the Arctic Ocean, near the east end of Fury and

Hecla Strait in la：． $69^{\circ} 21^{\circ} \mathrm{N}$ ，and lon． $\mathrm{S}_{1}{ }^{\circ} 55^{\circ}$ W．It is ncted as the place where Party win－ tered in 1ミ22－3．

Ignacio（èg－nā＇sē－oo）Islands．Nexico，a chain of islands in the Guif of California．of the Bay of Topolobampo．in the State oi Sina－ loa．The chief are Macapule and Altamura．

Ignatius，ig－nāshī－is．Father．See Lrive， Joseply Levceiter．

Ignatius，Saint，bishop of Antioch，said to have been a discaple of the Apostle Johno and on that account reckoned among the number of the apostoln fathers．According to the most trust－ worthy tradition he was appointed bishop of Antiveh 69 AD．and thrown to wid beasts in the circus of Arrioch by the command of Trajan， about the time of that emperot＇s expectition against the Armenians and Parthians．Another account places his execution at Rome．The year of his death is rarious！y stated：by some 10，A．D．is given as the date，by others placed so late as 116 A．D．By the Greek Church his festival is celebrated on zo Decemter．by the Latin cn t February：In the literature of the early Christian churcin Isnatius holds an im－ portant place as the repured author of a number of epistles．These have come down to us in three forms．In the longest iext they are 13 in number，but siace the discovery of a shorter text containing only seven（addressed respec－ tively to the Ephesians，Sagnesians．Philadel－ phians．Ira！lians，Smyrniots，Remats，and to Polycarp），the first bas been universally recog－ rized as in great part spurious．scme of the letters entirely so．and others containing inter－ polations．But even in this shorter form the genumeness of the Ignatian epistles has been disputed by numerous scholars．Both of these texts are in Greek，but a still sborter text in the Syriac language，containing only three let－ ters（to the Romans and the Ephesians，and to Polycarp）．and even these in a shorter furm． was published in isty by Cureton．There has been much disenssion as to the genuineness of these sherter collections．At present the prev－ alent belici is that the seven are genuine and the Syriac an abridgment of them．An edition of the Greek text of the seven epistles was pub－ lished at Amsterdam by Voss in 1045．An Eng－ lish translation by Archbishop Wake was pub－ lished in teg3．Lighrioor sedition oi the Greek text in his＇Apostolic Fathers．Part II．＇（St． Ignatius and St．P（lycarp，180），supersedes all other：and presents a complete discussion of the sub．ect．

Ignatius of Loyola．See Loyol．Igrs－ Tだらぐ．

Igreous（izne－uシ）Rocks，the term app：ied in gee sy to those recks the spectal structure of whet i－due to their having been once in a m len sia＇e，from which they were soliditied into their present character．They inciule lava． baseit．gean：（qq．v．），etc．Such rocks are not stratfie 1，and may occur in connection with sedmentary or of any age，as the iqneous rock：have ustally been erupted fr m the heated irteriar of the earth and iorced up tward， ennic：rmes to．the surface．It percoictical class－ theats 7 imner＇：s r cks may be srouped under two head：－crysalline and fragmental－al－ th－esh petr eraphy has n ：yet provided any meth id oi clasifiying them which can be called
complete o：systematic．Many of the rocks considered as crystalline are rather to be classed as vitreous or glassy，whiee some others are party of non－crystailine materials．Among the crystalline rocks，some of those called ortho－ clase contain much iree silica（see Qturtz）． II st of the crystalline rocis called plagioclase contain less silica than the last－mentioned and a basile to which close zesemblance is found in nepheline and leticite rocks．Oi the other crys－ talline rocis．the olivine and serpentine are generally rather basic，the former oflen showing ruuch alteration inte the later．The fragmental isneous rochs consist of loose material which has been ejected from solcaric ofitices．These rocks are frequently consolidated and，when Ene－ grained，it is somerimes dificult without the help cif the microscope to distinguish them irom compact crystalline igneous rocks．
 foturs．foolish）．an atmospheric light or a la－ minous appearance sometimes seen in swamp－ lands．in churchyards，and over stagnant waters． The light usually appears shortly after sunset； it is common in the north of Germany，in Italy， in the south and norinwest of England，and the west of Scotland，and has been noticed in many other countries in undrained marshy dis－ tricts．

The appearance generally resembles a flame； seen closely，the color appears as bluish，red－ dish，greenish，or yellowish．merging into purple， but never a clear white．Sometimes the tlame seems frxed in position，shining steadily close to the ground or a few feet above it；again．it appears in rapid motion．sometimes rising high in the air，at others separating into smaller flames，which are seen advancing，retiring，re－ combining，etc．

Some supposed appearances oi the ：snis iatuts are probably due to luminous insects，or to the phosphorescence oi decaying vegetable matter．By setting all such possible cases aside， both fixed and moving ignes iatui have been proved to exist，although the spectrum of the light seems not to have been iuliy observed． The common hyputhesis that ignis fatuus is the flame of buming marsh－gas． CH_{40} is untenable， i s alhough this gas is produced abundantiy in many marshy places，it cannot ignut spon－ tameously．The more platsible susgestion that phosphoreited hydrogen， PH_{3} which is sponta－ neous！y innammable，might be produced in churchyards or marshes where there is decaying animal matter does not account in scme of the effects observed．The early supposition oi a Ehc sphorescent rapor is more reasonable，al－ th ugh excepting that of iree phosphorus，which could not occur un nature，no such vapor is known io exist．The phenomenon was un－ d ubtedly more common a century aso than it is now，and its disappearance in many localicies may be directly traced to the draiming of iens and marshes．

Pcpular names for the ignis iatuus－Wiil－ o－the－Wisp．Jack－a－Lantern，Spunkie，etc－ abound in folkiore，and the superstitions regard－ ing it are connected with many stories of travel－ ers mistaking the marsh－lights ior those of c tage windows，and with tales of evil spirits decoying men into dangerous places，oiten to their doom．

REPRESENTATIVE IGUANID LIZARDS.

IGNORANCE OF THE LAW-ILFRACOMBF

Ignorance of the Law. Every person is presumed to know the laws of his own comntry, and what is termed ignorance of the law is a lack of understanding of those laws. Such want of understanding furnishes no excuse for their violation, and cannot be pleaded even in extenuation of their infraction. But this presumption does not extend to the nunicipal laws of countries or States other than that in which a person resides. Such laws are regarded as forcign and a knowledge of them on the part of one who disregards them must be established by proof in the same manner as any other facts are proved. This applies only to a non-resident of such forcign state, and as soon as a person becomes evell a temporary resident thereof he is presumed to know its laws and to yield obedience to them. He cannot plead his want of opportunity to become acquainted with them.

Igorrote, è-gôr-rōtā, a name given to various wild tribes of Luzon, especially to a people of mixed blood and language living mainly in Venguet province. The name is also more loosely applied to other wild Filipinos.

Igor's (e'gǒrz) March, Song of, all antique battle song, associated witl the name of Igor, Prince of Novgorod, son of Prince Swajatoslaw II. of Tchernigof. Igor, in his fifty-first year is recorded to have engaged in an insuccessful war with nis neighbors (1202), and from that time has been looked upon as the national poet of old Russia, on account of a lyrical epic poem, or ballad, called in Russian, 'Slavo o Polku Igoreve' ('The Song of Igor's March'). It has come dowir to modern times, somewhat like the songs of Ossian. The poem was probably produced by one of the followers of Jgor, and in 1795 was fonnd by Count Alexis Mussin-Putchkin in a cell of a monastery in Jaroslay. It was discovered among some 14 th century MSS., and was first published by the Count at Noszow in 1800 . The original was lost in the fire of the Napoleonic campaign (1812), which destroyed the Count's fine library. Another copy with many variants was found in 1864 among the papers of Katharine II. and published at St. Petersburg the same year. It has been translated into several European languages. Consult: Wolfsohn, 'Schönwissenschaftliche Litteratur der Russen' (1843) : W jasemski, 'Bemerkungen zum Igorlied' (I875).
 typical genus of the family Iguanide. This family is distinguished by having pleurodont teeth, a thick, vilivies, nearly immobile tongue, a round pupil, and by various skeletal characters. The 350 species belong to about 50 genera and, with the exception of a few in the Fiji Islands and Madagascar, are confined to America, in the warm parts of which they fairly swarm. Only one species (Sceloporus undulatus) reaches as far north as the Middle States. They vary greatly in appearance and habits; most are arboreal, many terrestrial, and one, the Galapagos Amblyrhynchus, is even marine; the majority eat insects, but some are herbivorous. The true iguanas, of which I. tubcrculata is the best known, are rather widely distributed through the West Indies, Central and South America. Owing to the high crest or fringe which extends along the back and tail, the deep, fringed, gular pouch, and the loose-fitting skin, these animals
present a remarkable appearance. The trumk and tail are covered with small granule-like scalcs, and the head with larger plate-like ones; the feet are large and powerful; the tail very long, slender, and compressed; and the teeth higl2 and fincly serrated. A lengtl of five feet or more and a weight of 25 pounds is commonly attained. The iguanas are arboreal, their mottled green color serving admirably to conceal them among the foliage; but when alarmed they have the habit, remarkable in a lizard, of retreating into the water of the streams along which they live. The 20 or 30 large eggs are deposited in a burrow usually dug in the bank of a stream or sometimes in a hollow tree. Notwithstanding its formidable size and aspect, the iguana is d timid. harmless creature, and the stories some times told of its ferocity are pure fabrications moreover it is purely vegetarian in its diet The flesh is a favorite article of food with the natives, and many travelers have pronounced it to be white, tender, and sweet, and is regularly brought to the markets. Consult Wallace, Mïller, Bates, Belt, Gosse, and other authorities on South and Central America. See Lizard.

Iguan'odon, a dinosaur (q.v.)
Iguvium. See Eugubine Tables.

Ik Marvel. See Mirchell, D. G.

Ilagan, ē-lä'gän, Philippines, pueblo and capital of the province of Isabela, Luzon, situated on the Grande de Cagayuan River, 84 miles from its mouth at its junction with the Pinacanauan, 275 miles northeast of Manila. It has road and water connections with Bayombong and Manila; it is the trade centre for a large agricultural region, and also the industrial centre of the province. Pop. 13,800 .

Iles, George, American author: b. Gibraltar 20 June i852. He received a secondary education in Montreul, and from 1887 was employed in literary work in New York. His original works include: 'A Class in Geometry-Lessons in Observation and Experiment' (1894), and 'Flame, Electricity, and the Camera' (1900). Hc also edited: 'The Reader's Guide on Economic, Social and Political Science) (I8gı ; with R. R. Bowker) ; 'A List of Books for Girls and Women and their Clubs) (1895 ; with A. H. Leypoldt) : and (A Bibliography of Fine Art) (1897), and gave $\$ 10,000$ to the American Library Association to defray the cost of 'The Literature of American History' (Igo2), a bibliographical guide which appeared under the direction of the pulilishing board of the association.

I'lex, a tree often mentioned in the Latin classics, the evergreen oak or holm-oak (Qucrcus ilc x). It is a native of the Mediterranean region, and often attains large dimensions. In general it grows singly or in small gromps, and especially near the sea. Its leaves vary mucll in size, and from being very spiny at the edge to perfect evenness. Where it is indigenous, its astringent bark is used for tanning hides. Its wood is hard, heavy, and durable, and is usefn? for axles, pulleys, screws, etc. In modern botany Ilex is the generic name of the holly. See Aquifoliacee.

Ilfracombe, ̌1'frä-kōm, England, a seaport and fashionable health-resort in North Devon:

ILI - ILLEGITIMACY

on the Bristol Channel. ar miles by fail northwes: : Exete. It has a fine harbor and promenace. ad the scon builk in terraces on a hill. is - :ed i : ts picturesque situation and the beauty it the surrounding scenery. Pcr. (Igor)

Ili, :! ᄅ. a river oi Centra: Asia, frow:ng partly in China ane partly in Russla Ii is icmed in Chinese Kuidja by two streams, the Teris and Fanses, rising in the Thian-shan Meurrains, and ficws west, faling into Lake Baikash by several mouths atiter a coutse if soo or goo miles, halí of which is navigable.

Iliad. in Greek Iiterature, a ceiebrated epic poem. consestung oi 24 bocis. Ifs cempo-suti-n is genera y ascrited to Hymer, of whose yarestage, bith, and life nothing is known for certain It is. however, a matier of dispute as to whether the poem is a hemogeneous whote or a series of ballads or thapsodies. cn cifierent epissdes in the Troiza war. unl:ed into a continuous poem. It is iurther doubtul whether. in the latter case, the unica was made by Homer himself. of by seme pezson after his time It is sald that Pisistratus, पyrani of Atheas, irst co lected and arransed the (Tiad and "Odyssey" in the form in which we now have them. The chief subiect of the poern is the wrath of Achilles, and the cunsequent trocbles thence arising, whence we have the phrase Ilizs molarum =an Iliad of woes or treubles, a watld of dizasters. The reader of the poem is assumed in know that the beautiful Helen bas been ca:fied cä by Paris irvom hier husband Menelaus. The action of the poem is confined to the toth and lasi year of the siege of Tecy. See H. aler

II ion, N. Y... rillage. Herkimer Countr; on the Monawk River, the Erie Canal, and on the Wes: Shose and the New lork C. \& H. R R.R.': about three miles west of Herkimer and iz mites suutheast of Ltica. Hiton is in the vicin:y ut the lyaticns of some of the o'd "casties' ci the Indian tribes who inhabrted the Molaw valey. Whise pecpie tived here in the carly fant o: the soth century, bu: no permanerit se:-
 an agricultural county, but the vilage it nt:ed ir rite manuracturng indusiries. The chiee manwiactures are typewriters, frearms. sewing-machines, filug-cases. bieycies. knit goods, hour, and s me dairy products. Its export irade conitss chiefly of the manufacured a-ticles and Sua pey acts. It has a public library connng timis 11.500 velumes., and a nurnber of
 5.13

Ilini za, = Ilinisa, a musarain ni Ecua-$\because-$ m'ee ".is-s whwest ci Quito. It 18 - Y. 'Il yeak, the sutherrm at. as deTryeriz nimetricaliy by Reio and Sta et nag 1-, in fet high. Iniza is presumaby

 \therefore are tismzh At in. in ous in the cl cica yr. it i w un murtan: and often wholly

Ilithyia, il-ith-īyz. in Greek mythology, the goddess who assisted women in chidbirth. In aiter tames she was almos: icentifed with Attemis.

Ilium, of Ilion, a name of Troy, in Greece, which was fotuded by Ilus.

Iliyats, il èyats, a nomadic ryohammedan race of Persia, Khiva, and Turkestan. The name Iliyat is the piural of jel (eel) a trabe equ:valent to the frabic habsichs. The Iliyats are mosty of Tu-kish, Arabic and Kurdish desceat. and iorm an imporanit porticn of the Epulation oi Persia and aciacent countries; the: actual numbers a-e not known, but it is said that the Ilirat tribes tributary to Khiva number 19:000. They live in zents and have no settled nabizations. They are of the Sunni sect. Wus are ent very strict. The women are said to be chaste, and many of the best famifies in Persia atic of Illizat origin

Illampu. of Sorata. a mounsain of Bolivia, in the easiern Cordillera, overlooking Lake Titicaca: so miles चorth-northwest of La Paz. It is 21.fes feet in heighn, and is believed to be the highes mountain of tine Bolisian Andes, though this distinction is also claimed for Illimani (q.s.): it is probably exceeded by the Cerro de Huascan in Peru and by Aconcagua in Chili. Niampu is a magnificent mass, with three principal peaks. Seen irom Titicaca it is the grancest mountain in America. It has never been scaled.

Ille-et-Vilaine, ē-Ià-wē-iān'。 France, a maritime deparment iormed out of the northeast portion of the oId province of Brittany; area 2.596 square miles; pop. 622.039. mostly of Celtic race. It is watered chienty by the Vilaine and its tribuary, the Ille, which unite rear Rennes, the capital of the deparmen: Ille-et-Tilaine consists oi a granite plateau traversed by ranges of low hills. It is agricultural, chituatica haviag been greatly improved during recent years. The cider of this district is the best in France: the butter of Reancs is selebrated: the horses of the department are noted for their endurarce, and are in great request for the amtay; and bee seeping is prosecuted. Iron is mined; slates are quarried; and salo is extracted. Saint Malo is the principal seapur.

Illegitimacy, the legal status of children bern cut of wedlock. is a subiect discussed wnde: three points of view, on ral, lesal, and ec n mic. As to what censtitutes ihegitimacy, is variousiy defined in different countries where crea: variety exists both in thecre and practice. As io the legal status of illegitimate chìdeen front the incral point of view, see B-ithed.

Only in a iew European countries are statistics available to show the extent of illegiurrecy, and there are no statisics in Canad3. In the Tonted States there seems no efficient naif I ysem ci registration of marriages and lirths Some of the individual States record the i 'ecivimate births, but the figures are misleadirg because incompleie. Thus, the State of Indiana a few years ago, returned 38.370 legiti-
mate and 560 illegitinate births - the illegitimate being only about 1.46 of the whole.

In the following table is slown the comparative prevalence of illegitimacy in the principal European cities:

TLLEGITIMATE BIRTHS TO EVERY I,000 BORN.

Vienna . . . 4449	Leipzic21I	Ghent
Prague439	Dresden 208	Hamhurg ..138
Munich 439	Milan 204	Frankfort . . 132
Stockholm1 . 396	Rome194	Turin132
Moscow . . . 3 30	Venice 889	Antwerp . . 129
Budapest ... 299	Breslau 86	Cologne . . . 2.4
Copenhagen 279	Bucharest . 175	Palermo ...ioi
Paris 268	Liège 174	The Hague. 99
St. Peterslog 236	Christiania ..16z	Naples 86
Trieste2is	Berlin	Rotterdam . 70

None of the above figures are presented as absoIutely accurate. They can only be approximate in the best case, for in every country there must always be a large number of bastards who either are not registered at all, or who are registered as legitimate. But as far as they go the figures are instructive. They do not, however, enable one to form any conclusion as to the causes of illegitimacy in respect either of religion, of education, of industrial occupation, or of distribution of population. Neither can any theory be well evolved from a racial basis.

From the only available statistics the following table has been prepared showing illegitimacy in various countries, from 188 i to 1900:

Percent of illegitimates to total births.

Per cent of illegitimates to total births.

England and Wales.	4.6	Portugal	14.00
Scotland	8.34	Roumania	,o
Ireland	2.9	Russia	3.00
Austria (average)	14.89	Spain	40
Lower Austria	26.00	Sweden	14.88
Upper Austria	20.00	Norway	7.90
Dalmatia	3.50	Switzerland	4.80
Hungary	8.00	Brazil	25.00
Belgium	9.30	Canada	
Denmark	10.00	Costa Rica	24.00
France	8.20	Guatemala-Whites..	50.00
Germany (average).	9.47	Indians..	25.00
Upper Bavaria.	15.67	New South Wales	4.6
Prussia	8.24	Victoria	4.78
Alsace-Lorraine	8.10	Queensland	3.97
Greece	1.60	N'est Australia	3.95
Holland	3.22	Tasmania	3.40
Italy	7.45	New Zealand	

In Scotland, where education is general, and thrift national, the rate of illegitimacy is notoriously higli. And, as regards morals, it should be remembered that a high percentage of illegitimacy may mean that there is little or no prostitution. In Europe, generally, although not universally, there seems a tendency to decrease in the rate of illegitimacy; but how far that appearance may be due to moral causes it is impossible to say.

Illimani, ēl-yē-mä'nē, Bolivia, a volcanic mountain mass of the East Andean Cordillera, about 20 miles south of La Paz. It is a serrated ridge with four principal peaks, the loftiest of which, Condor Blanco, is 21,I49 fect above sca-level. Illimani signifies "snow-mountain"; the line of perpetual snow commences at 15,000 feet, and there are glaciers on the north side at an elevation of 16,350 feet. At an altitude of 15,950 feet there is a considerable lake also bearing the name of Illimani. Among the
first Europeans to make the ascent of the highest peaks are Wiener, Grumblow, and Ocampo in 1877 and Sir Martin Conway in 1898.

Illinois, ĭl-lĭ-noi' or -noiz', the name given to a confederacy composed of five distinct Indian tribes, who at one time occupied what is now the State of Illinois and parts of Wisconsin, Missouri, and Iowa. The tribes were the Michegamia, Peoria, Cahokia, Kaskaskia, and Tamaroa. The confederacy was most powerful and many attempts were made to secure by war the lands of the Iroquois. In 1675 Marquette visited the Illinois tribes and established missions among them. In 1769 a member of the Kaskaskia tribc murdered Pontiac, the Indian chicf, for which offense the Lake tribes destroyed the Kaskaskia and killed many of the members of the other tribes of the confederacy. In 1840 the remnant of the Illinois tribes was removed, by the govcrnment, west of the Mississippi. The few now in existence are in the Indian Territory.

Illinois, the eighth State admitted into the Federal union, and since 1890 , the third in population. It is bounded upon the north by Wisconsin, upon the east by Indiana, upon the south by Kentucky, and upon the west by Iowa and Missouri. It is separated from the two last named States by the Mississippi River; by the Wabash and the Ohio from Indiana; and by the Ohio from Kentucky. Its water courses flow generally from the north and northeast, to the southwest and south. Its soil consists of a rich black loam, or mold, underlaid by drift deposits in many places of great depth.

Topography:-By the enabling Act of Congress by virtue of which the State was organized, its boundaries were fixed as follows: "Beginning at the montli of the Wabash River, thence up the same, and with the line of Indiana, to the northwestern corner of said State; thence east with the line of the same State to the middle of Lake Michigan; thence north along the middle of the lake to north latitude 42° and 30°; thence west to the middle of the Mississippi River, and thence down along the maddle of that river to its confluence with the Ohio River, and thence up this latter river along its northwestern shore to the beginning" The total land area of the State is 56,000 square miles $35,840,000$ acres ; its extreme length 385 miles, and extreme breadth 218 miles. With the exception of Georgia its area is greater than that of any one of the original States of the Union. It comprises a territory larger than England; larger than Belgium, Switzerland and Holland united. Illinois is no longer m the class of States denoted "western" upon the old maps, but is now chief of the great interior States of the Union. With two exceptions - Louisiana and Delaware - it is the most level of the States. Its greatest elevation is 1,150 feet above the sea, and its mean elevation 550 feet. The greater part of Illinois consists of level or slightly undulating prairies: a portion of the extreme northwestern part of the State is hilly, and there are occasional bluffs upon the Illinois and Mississippi rivers. The countics lying between East St. Louis and the Wabash River are the great apple growing region, and thence southward to its border other fruits are grown in large quantities. Of its total population in the year $1900,2,459,633$.

ILLINOIS

or 51 per cent reside in its seventy principal citics and towns.

Population.-In ISio, one year after its organization as a territory, the population of Illinois was 12,282 ; in 1820 , two years after its admission its population was 55.211 , and in rank it was the 24th State in the Union; in 1830, population 157.445 and its rank the 20th; in I840 population $476,18_{3}$, and rank the 14th: in 1850 population $S_{51,470}$, and rank the IIth; in 1860 , population $1,711,951$, and rank the fourth; in 18,50 population $2,539,891$, and rank the fourth; in I8So population $3.0,7,851$, and rank the fourth; in I8go population $3,826.351$, and rank the third; in 1900 population $4,821.550$, and its rank still remains the third. Oi the aggregate population given for the year 1900 , $\$ 5,0-8$ are negroes, 1,538 Mongolian, and 16 Indian; 3.854 .803 of the population of the State are natives, and 966.747 , foreign born. The excess of the male over the female population of the State as shown by the last census is 124,014 . The population above the age of 10 years is, $3,727,745$; of this number $1.804,040$ are engaged in gainful occupations: $462,-81$ in agricultural pursuits ; 96,321 in rendering professional service; 366,342 in domestic or personal service; 397,046 in trade or transportation: and 481,550 in manufacturing or mechanical pursuits. The total number of dwellings in the State is 845,836 , and of families $1,036,158$.

Citics.- The following cities of the State have each a population exceeding 10,000, riz.: Chicago, $1,608,575$ (as shown by census of 1900 , now cxceeding $2,000,000$ as appearing by local census reports of later date); East St. Louis, 29.655 ; Joliet, 29.353; Peoria, 56,too: Quincy, 36,252; Rockford, 31,05I; Springfield, 34,159; Alton, 4.210 ; Aurora, 24.147 ; Belleville, 17.489 ; Bloomington, 23.286; Cairo, 12,566; Danville, 16,354 ; Decatur, 20,754 ; Elgin. 22.433 ; Evanston, 19,259; Freeport. 13.258; Galesburg, 18,607 ; Jacksonville, 15,078 ; Kankakee, 13,595 ; La Salle, 10.4.46; Moline, 17,2.48; Ottawa, 10,588; Rock Island, 19,493: Streator, 14.079. Fifty-seven other cities in the State have a population each, exceeding 3.000. The land surface in square miles of the largest county in the State, McLean, is $\mathrm{I}, \mathrm{t} 66$; while that of the smallest, Putnam, is 176 .

Manufactures. - The development of manufacturing in the State is unprecedented. This is due in large measure to its transportation facilitics. There were 10,99 - miles of railroad in the State in the year 1900, a mileage greater than that of any other Statc. Illinois now ranks third in the value of its manufactured products - the gross value thereof for the last mentioned year being $\$ 1,259,730,168$. The greatest number of wage carners employed in manufacturing establishments at any one time in the year 1900, was 528,009 , or 11 per cent of the total population of the Statc. As terscly stated in the last census report: "The communication with the East afforded by Lake . Nichigan and its connocting waters carly made Chicago the great distributing centre for eastern products to all points in the $W^{\circ} \mathrm{cst}$ and Southwest, while the Mississippi River bordering the western portion of the State afforded communication with the entire Mississippi Valley. Superior railroad facilitics were a direct result of the trade routes
cstablished by these operations for water transportation; for when railroad building began Chicago was the natural focusing point, and to reach that city all sections of the State were traversed and opened up to settlement." It holds the first place in the States of the Union in the manufacture of agricultural implements; its proportion of the entire capital invested in this industry in the United States being 39 per cent. It leads in the production of alcoholic liquors: the output in 1900 was $32.50 \$ 435$ gallons. This industry is concentrated in a feiw large establishments located principally in the city of Peoria. An important factor to be considered in this connection. is the abundant supply of bituminous coal in many parts of the State. In 1900, the 24 leading industries of the State embraced 8,209 establishments: capital used \$477.485.672: wage earners employed, 219.415: value of their products for the year mentioned was $\$ 810,636,482$.

Agriculture--Illinois takes high rank as an agricultural State; 32,794.;28 acres - or something over 9 f per cent of its total land area are included in farms. The total number of farms in the State as shown by the last official report is, 264.151 ; the estimated ralue being $\leqslant_{1,765,581,550 \text {; of this amount if per cent repre- }}$ sents the value of buildings, and 8.6 per cent the value of the land, and other improvements; the value of farm implements and machinery ins June 1900 was $\$ 44.937,310$, and of live stock St93, $558,03 \%$. The total value of farm products. for 1899 exceeds that of the year ' 89 by $\$ 160,800,598$. The average size of farms for the State is 124 acres. The larger farms are generally in the north and the smaller in the extremesouthern portion of the State. The value of all live stock on farms in June 1900 was $\$ 193.758,037$; of this amount 36 per cent represents the value of horses; 24 per cent that of neat cattle other than dairy cows; 17 per cent that of dairy cows, and i2 per cent that of swine. Twenty-cight counties each reported more than $\$ 1,000,000$ received from the sale of live animals for the year last named. Of the total area of cereals in the year IS99, 6I per cent was deroted to corn, 27 to oats, 10 to wheat, and the residue principally to rye, barley and buckwlieat. Some idea of the enormous yicld of what is known as "the corn belt" can be gleaned from the following: for the year 1899 the corn product of the county of Iroquois. excceded $12,000.000$ bushels; that of the countics of La Salle and Livingston, each exceeded 13.000,000, while the counties of Champaign and McLean each produced over $15,000,000$ bushels Twenty-seven other counties produced from $5,000,000$ to $10,000,000$ bushels of corn each. In the decade 1890 to 1900 the apple trecs in the State increased 100 per cent in number, and of some othcr varieties of fruit the increase was even greater. Of the total number of fruit bearing trees in the State in 1900, it per cont were apple, 13 per cent peach, and 5 per cent pear trecs. Apples were grown gencrally throughout the State, but the four countics of Clay. Jeffersnn, Marion, and Wayne produced one fifth of the entire amount. The entire vegetable product for the year 1809 exceeded $\$ 10,000,000$ in value; of this amount 45 per cent represents the valuc of potatoes. The small

ILLINOIS

fruits were grown upon 56,763 farms. Of late years there has been a steady decrease in tobacco production; in the yeat 1899 the total in tobacco being 2,242 aeres; the total walue of the production being $\$ 85,411$; Saline Comty in the extreme southern part of the State taking the lead and producing near one third of the entire anount. During the last decade the broom corn product of the State has increased almost four fold; the total value of this product for the year 1899 was $\$ 2,357,066$; five sixths of the amount produced was in the east central part of the State in the five counties of Coles, Douglas, Moultric, Edgar, and Cumberland. Sugar beets were grown in 15 counties in the year 1899, 1,370 acres being devoted to this production, and the value of the total product being $\$ 36,223$. The value of nursery stock sold in the last named year was $\$ 578,306$; area in cultivation 7,760 acres, its valuation $\$ 1,44^{2}, 220$. The area devoted to the cultivation of ornamental plants and flowers for the year 1809 was 679 acres; the value of the product $\$ 1,894,960$. The total expenditure for labor on farms in Illinois for the year I899 was $\$ 22,182,550$; this included the value of board furnished and averaged $\$ 84$ per farm. The gross value of the agricultural products of the State for 1900 was $\$ 345,649,61$ I - placing it second in rank.

Rivers.- The Illinois, the principal river of the State is formed by the junction in Grundy County, 40 miles southwest of Chicago, of the Kankakee and Des Plaines. The last named river takes its rise in Wisconsin and flows in a southerly direction, while the head waters of the Kankakee are in northern Indiana. The Illinois empties into the Mississippi after a somewhat tortuous flow of near 500 miles, at a point 40 miles above the city of St. Louis. The Illinois is navigable for 245 miles, and is connected by the llifinois and Michigan canal with Lake Michigan. Other fivers in the State are the Kaskaskia, which flowing in a southwesterly direction empties into the Mississippi near the ancient village of Kaskaskia, the first capital of the State; Rock River, which flowing in a southwesterly direction from Wisconsin empties into the Mississippi not far from the city of Rock Island; of other smaller streams, are the Little Wabash and the Embarras, which flow into the Wahash in the southeastern part of the State, and the Vermilion and the Fox, tributaties of the Illinois.

Education.- Illinois has an excellent public school system. The number of persons in the State between the ages of 6 and 21 years 30 June 1902 , wwas $1,601,175$; of these, 811,724 were males, and 789,451 females. The number of persons enrolled in the schools during the year ending as above was $971,8,1$; of these, 489,109 were males, and 482,732 females. The average daily attendance was 765,057 . The number of school houses 12,865 . The estimated value of the school properties is $\$ 52,764.922$; this includes buildings, grounds, libraries and apparatus. The number of male teachers employed in the common sehools in 1902 was 6.800 ; of female teachers 20,386; total 27,186 . The amount expended for the years 1901-2 for the salaries of teachers and superintendents was $\$ 12,132.075$. The Normal Tniversities of the State, five in number, are located as follows: the State Normal University
at Normal; the Southern Illinois State University at Carbondale; the Northern Illinois Normal School at De Kall; the Eastern Illinois Normal School at Charleston, and the Western Illinois Normal Sehool at Macomb. These universities ate appropriately located for the eonvenience of their patrons, and the attendance is large. The first to be organized was the State University at Normal, and the total number of students in attendance there for the years $1901-2$ was 1.529 . In addition to the above is the Chicago Normal School, which has since 1896 been maintained by appropriations made by the Chicago Board of Education. In large measure the teachers in the public schools of the State have received their training in some one of these Normal Schools. The purpose of the Normal Schools of the State will appear from the following clause in the organic act of one of the last to be organized: "The object of the said Northern Illinois State Normal School shall be to qualify teachers for the common schools of this State by imparting instruction in the art of teaching in all branches of study which pertain to a common school cducation, in the elements of the natural and of the physical sciences, in the fundamental laws of the United States and of the State of Illinois, in regard to the rights and duties of citizens." The University of 11 inois (q.v.) is located at Urbana, and has in its various departments a total of near 3 ,ooo students.

Charitics.- The State charitable institutions, 16 in number, are as follows: Northern Hospital for the Insane at Elgin; Eastern Insane at Kankakee; Central Insane at Jacksonville; Southern Insane at Anna; Western Insane at Watertown: Incurable Insane at Bartonville; Criminal Insane at Chester; Deaf and Dumb at Jacksonville; Blind at Jacksonville; Feeble Minded at Lincoln; Soldiers and Sailors at Quiney; Soldiers Orphans' Home at Normal; Soldiers Widows at Wilnington; Eye and Ear at Chicago; Girls Training School at Geneva: Boys Illome at St. Charles. The sums appropriated by the General Assembly for the two years ending 30 June 1903 for these institutions aggregated $\$ 4.438,024.92$.

Penal Institutions.- The lllinois State Reformatory is located at Pontiac, has execllent buildings and appointments for the care of its inruates. The total number of inmates confined in this institution during the 21 months ending 30 June 1902 was 2.352 , of whom one fifth had reached the age of 19 years. Under the law no one could be admitted who had reaclied the age of 21 at the time of the commission of the offense for which he was sentenced. Trade schoois, and a farm are provided for in the act ereating this institution, and every effort practicable made to reform its immates. The total amount appropriated ly the General Assembly for the support of this institution for the two years beginning 1 July roor was $\$ 400,000$. The State penitentiaries. two in number, are located as follows: The illinois State penitentiary at Joliet and the Southern Illinois penitentiary at Chester. The number of innuates in the former is alout I,300; and in the latter about 900.

History:- The name of the State is derived from "1llini,", an Indian word signifying "men." The euphonic termination added hy the early French explorers gives the name "Illinois." The veritable history of Illinois hegins with the coming of the Frencll explorers Marquette and Jolict.

ILLINOIS

Their names are inseparably interwoven with the early history of the great Mississippi Valley. In June $10 \% 3$ they landed upon the east bank of the Mississippi upon the soil of what is now Illinois. Their first visit was to one of the rillages of the "Illini," the ancient and once poweriul tribe from which the State takes its name. It is said that upon the first appearance of Marquette and Joliet at the door of the principal wigwam of the village they were greeted by an aged chicitain with the words: "The sun is beautiful Frenchmen when thou cometh to visit us; thou shall enter in peace into all our cabins. ${ }^{\text {D }}$

Upon this historic expedition Marquette and Joliet bore the commission of the French Commandant at Quebec - the seat of authority of France in the New World. The narrative of the adventures and discoreries of Marquette and Joliet savors rather of the romantic than of the real. But it was theirs to add the vast domain uider the name "Sew France" to the empire of the Grand Monarch. After descending the Mississippi to a point possibly within 400 miles oi the Gulf, these bold royagers reluctantly turned their faces to the northward. After his separation from Joliet, Marquette risited the Indian villages near the Mississippi and established a mission of his church at the ancient village of the Kaskaskias. He died upon the banks of a small stream within the present limits of the State of Michigan and was buried at Saint Ignace in that State. The city of Joliet in northern Illinois, was named in honor of his daring fellow-woyager, while his own statue has been given place in the great historic hall in the Capitol at IV'ashington. The names of Hennepin and La Salle likewise are associated with these events and times. The first was the scholarly historian and priest, the latter the knightly adventurer. Nuch, indeed, that is romantic surrounds the entire career of La Salle (q.s). Severing his connection with a theological school in France, his iortunes were early cast in the New World. From Quebec. the ancient French capital of this continent, he projected an expedition which was to add empire to his own country and to cast a glamor about his own name. It has been said. that his dream was of a western waterway to the Pacinic Ocean. In 1669 with an outfit that had cost him his entire fortune, with a small party, he ascended in canoes, the Saint Lawrence. and a few weeks later was upon the broad Ontario. Out of the mists that envelop much of his subsequent career. it is impossible, at all times, to gather that which is authentic. It is enough, that with Hemepin as one of his fellow-royagers, he reached the Ohio and in due time navigated the Illinois, meantime visiting many of the ancient villages. But his great achievement - and that with which abides his imperishahle fame - was his perilous descent of the Miscissippi from the falls of St. Anthony to the Guli of Mexico. On 9 April 1r82 upon the east bank of the lower Misascippi, with duc form and cercmony: and amid the solemn chanting of the Te deum and the plaudits of his comrades. La Salle took formal posscesion of "the Louisiana country." in the name of his rnyal master, louis X11 ni France. For the period of 92 years becinning with the coming of Marquette and Joliet. Itlinnis nogs a part of the French noscesainne. Sorerignty over the vast domain of which it was
a part. was exercised by the French king, by his commandant and his subordinate officers. First, the dependency of Canada. "the Illinois country;") by decree of the Royal Council in 1717 passed under the government established for Louisiana. Subsequently in $1: 21$ it became, by virtue of the same authority, one of the separate provinces into which the Louisiana country was then partitioned. A commandant and judge were duly appointed, and the seat of authority transiersed to Fort Chartres. Population mearwhile gradually increased in the great American bottom, then embracing the French settlements in Illinois. Cahokia and the other villages were, in a measure, prosperous. In the words of one of our own historians: "The early history of the French settlements reads in these dares of a higher civilization and broader culture, like a romance of Arcadia. The wants of the people were few and simple. In each hamlet was a rude chapel, with its attendant priest, who was not only in matters of religion, but in all the atrairs of everyday life, 'the guide. philosopher, and iriend, of his rude parishioners.) ". The same writer referring to this period of foreign domination, truly said: "The Fremch sought and claimed more than they had the ability to hold or possess. Their line of domain extended from the Saint Lawrence around the Great Lakes and through the ralley of the Mississippi to the Guli of Mexico, a distance of over 3,000 miles." Truly a magnificent domain, but one destined soon to pass iorever irom the possession of the French monarch and his line. Upon the North American continent, the ancient struggle for supremacy between France and her traditional enemy was to find bloody arbitrament. Great Britain claimed as a part of her colonial possessions in the New WVorld, the territory bordering upon the Great Lakes and the rich lands of the Ohio and the Mississippi Valley: As to the merits of the French and English contention as to superior right by discorery, or conquest, it were idle now to argue. Our concern is with the marvelous results of the long continued struggle which for all time determined the question of race supremacy upon this continent. Passing rapidly the minor incidents of the varying iortumes of the stupendous struggle which had been transierred for the time from the Old World to the New. we reach the hour which was to mark an epoch in histor: The time, 13 Sept. 1759 - the place, the Heights of Abraham at Quebec. Here and then, was fought out one of the pirotal battles of the ages. It was the closing act in a great drama. The question to be determined: whether the English speaking race. or their hereditary foe, was to be master oi the concinent. It was literally a strucgle for empire - the magnificent domain stretching from the Saint Lawrence to the Gulf of Mexico. The incidents of the battle need not be told. SVever were English or French soldiery led by more knightly captains. The passing years have not dispelled the romance or dimmed the glory that gathered about the names of Wiolie and of Montcalm. Dying at the self-same moment - one amid the victors, the other amid the vanquished - their names live together in history. By the treaty of Paris which iollowed. France surrendered to her successiul rival, all claim to the domain east of the Misisisippi River. In accordance with the terms ni the treaty. Gage, the commander of the British forces in America,

ILLINOIS.

STATE CAPITOL AT SPRINGFIELD,

ILLINOIS

took formal possession of the recently conquered territory, Proclamation of this fact was made to the inhabitants of the Illinois country in 1704 and a garrison soon thercaiter established at Kaskaskia. Here the rule of the British was, for the time, undisputed. British domination in the Mississippi Valley was, however, to be of short duration. Soon the events were hastening, the forces gathering, which were in turn to wrest from the English crown no small part of the splendid domain won by Wolfe's brilliant victory at Quebec. An event of transcendent interest and one of great consequence is now reached. While our Revolutionary War was in progress, General George Rogers Clark planned an expedition whose successful termination has given his name to the list of great conquerors. Partly to mete out punishment to the savage bands whose depredations upon the sparse white settlements in Kentucky were unrestrained by the British commander at Kaskaskia, and partly for the purpose of reducing to possession territory claimed by an ancient charter of the colony of Virginia - the famons expedition was undertaken. Bearing the commission of Patrick Henry, governor of Virginia, with 200 followers equally brave as himself, the heroic Clark crossed the Ohio River and began his perilous march. After enduring great hardships, the undaunted leader and his little band reached Kaskaskia. The British commander and his garrison were surprised and quickly captured. This was on 4 July I778, 15 years after the Treaty of Paris. The British flag was lowered - and the Illinois country taken possession of in the name of the commonwealth whose governor had authorized the expedition. Thus on the anniversary of our historic day, the symbol of British authority disappeared forever from the Illinois country. In the month of October following the capture of Kaskaskia, the House of Delegates of Virginia extended civil jurisdiction over what had previously been known as the Illinois Country. A l:w was enacted creating "the county of Illinois," and a commandant was appointed by Patrick Henry, who has, by one of our historians been called "Ex-officio the first Governor of Illinois." Courts were established at Cahokia and Kaskaskia and an election held for civil officers. This was the first election held in Illinois. The history of the next few years is enveloped in much obscurity: Evidently there was but little progress unti] the close of the Revolutionary War and the ratification of the treaty of peace between the colonies and Great Britain in I 583 . The event now to be mentioned, was one of deep consequence and has been called the genesis of Illinois history the cession by Virginia of the vast territory of which Illinois was a part, to the general government. The claim of Virginia to the vast area mentioned was controverted by some of the other colonies. In fact, this claim was for a time an obstacle to the ratification of the Articles of Confederation. Pending the ratification, the Continental Congress resolved: "That it be earnestly recommended to those States who have claims to the IVestern conntry, to pass such laws as may remove the only obstacle to the final ratification of the Articles of Confederation." This important resolution was, a few days later, supplemented by one declaring, "that the lands ceded to the United States pursuant to the above recommendation, shall be disposed of for the
common benefit of the United States, and slall be formed into distinct republican States, which shall become members of the Federal Union, and have the same rights of sovereignty, freedom, and independence, as the other States." In response to the above, the House of Delegates of Virginia in January 1781, proposed to cede to the general govermment the lands mentioned upon the conditions maned. After much discussion and delay the proposition of Virginia was accepted by the Congress and in time a deed of cession was duly executed. To this famous instrument - by virtue of which Illinois became a part of the United States-are attached as commissioners upon the part of Virginia, the historic names of Thomas Jefferson, Arthur Lee, and James Monroe. In the manner indicated, the territory out of which Illinois has since been carved became part and parcel of the Federal Uninn. The daring and successful expedition of George Rogers Clark and the subsequent act of Virginia, form a bright page in our history. As has been truly said "The timely campaign of Colonel Clark was the outgrowth of Virginia foresight, enterprise, and valor. But for this conquest, the Northwest, at the close of the Revolution, would have been in possession of the British and would have doubtless so remained as did Canada; and the western line of the United States would have been the ridge of the Alleghanies and the Ohio River, instead of the channel of the Mississippi.

Another milestone is now reached on the pathway of "the Illinois country," to the dignity and sovereignty of statehood; reference is had to what is well-known in our political history as the Ordinance of $1-8 \%$. Not inaptly has it been called "the second Magna Charta." On the historic day, I March $I_{7} \&_{4}$ that Virginia ceded to the United States the domain stretching from the Mississippi to the Ohio, Mr. Jefferson proposed to the Continental Congress a plan for its government. His far-seeing statesinanship is ummistakably evidenced by two provisions in the plan he formulated. One, that slavery should not exist in the territory after the year 1800; the other, that the States to be carved from the territory were to remain forever members of the American Union. This plan failed to receive the sanction of that Congress - and in later days and by other hands, the great ordinance was destined to come into being. Antedating the Federal Constitution, the ordinance for the government for the Northwestern Territory was enacted I3 July 1787 . As this was indeed the genesis of Illinois history under the Federal government, it may be well to note briefly some of the provisions of the great ordinance. By its terms, a government was established for the territory and a governor, secretary and judges duly appointed, with power to adopt such laws of the original States as were most convenient; a Legislature was anthorized when the territory should have five thousand free male inliabitants; religious freedom and civil rights - not to depend upon religious belief - were guaranteed; likewise the writ of habeas corpus and trial by jury, and judicial procedure according to the common law: private property to be taken for public use only after just compensation; and provision to be made for the encouragement of education. Two of the provisions of the famous ordinance possessed a value that cannot be measured by words. One, the States to be

ILLINOIS

formed irom said territors: were to remain forever a part of the United States of America: the other, that neither slavery nor involuntary servitude should exist in the territory, otherwise than for crime whereof the party should have been duly convicted. The value of the great ordinance to that generation and to the millions who have since found homes within the limits oi the rast area embraced within its provisions, cannot be overstated. In pursuance of the recommendation of Mr. Hamilton. Secretary of the Treasury, a General Land Office was established for the new territory and a surveyor-general, registers, and receivers duly appointed, and provision made for the sale of the public lands to actual settlers, in small holdings. and at nominal prices. The commission of General Arthur Saint Clair, the first gorernor of the Northwest Territory, bears date I Feb. I7SS, and soon thereafter judges and other officers were appointed, and the new government duly organized. The first visit of Governor Saint Clair to Kaskaskia was in 1790 , the county bearing his name meanwhile having been established. Five years later out of its territory, the county of Randolph was created and Kaskaskia established as its county-seat; Cahokia being that of the county of Saint Clair. Thus was the beginning of the historic counties - out of which so many have since been carred - and whose history is, in so large a degree, that of the two first decades of Illinois. Pursuant to the provision of the ordinance of 158 , the Northwest Territory having attained the requisite population, a General Assembly was convened in Cincinnati in February 1799. Illinois was now, for the first time, represented in a legislative chamber. In May ISoo the Congress of the United States provided by law for the division of the Northwest Territory, and the creation of a political division to be known as the "Indiana Territory:" The new territory embraced the present States of Indiana and Ilinois, and the seat of government was established at Vincennes. The first governor was General William Henry Harrison, at a later day the President of the United States. Of his wise and efficient administration of the affairs of the territory, too much cannot be said. By judicious treaties with the Indian tribes, peace was maintained and cession obtained of valuable grants which in time became the homes of the white emigrants. It is an interesting fact, that the fierce hatred of the great Shawnee chicf, Tecumsch, to the whites, was at a later day, in a measure, the result of the grants already mentioned. His own tribe allied with the Pottawattomies and the Kickapoos failed to exterminate -as was the intention of Tecumseh - the white settlers, and ended in his own disastrous defeat at Tippecanoe in ISif, by which the power of these tribes was forever broken. Events were now leading up to the separation of Illinois irom Indiana and its own organization as a territory. From the time of the presentation of the first petition to that end in 1806, the legislative clamher at Vincennes and the entire territory in fact, was the theatre of exciting controversy. Its culmination, however, was in February 1809. when ly Act of Congress. "the territory of lllnois" was duly organized. The seat of government was established at Kaskaskia - and henceforth Illinois has a history: separate and apart. A wave of emigration from the older States had now reached the new territory, and
additional counties were organized by the Territorial Assembly: The people were, in a measure, prosperous, and the question of statehood soon became the theme of earnest discussion. By the year 1818 the population of the Territory was near 40,000 and the General Assembly in January of that year forwarded a petition to Congress, praying the necessary legislation preparatory to its admission to the Union. The people frere, indeed, fortunate in having as their -erritorial delegate, Nathaniel Pope, eminent at a later day, as a United States judge. The bill providing for the legislation indicated, was introduced into Congress in April ISis. The valu. able service rendered by Judge Pope to the iuture State, will now appear. The bill as reported back to the House of Representatives, by the committee to which it had been referred, fixed the northern boundary of the new State on the north parallel of $45^{\circ}, 39^{\circ}$. Pending the consideration of the bill. Judge Pope offered an amendment to that part fixing the boundary, containing the significant words: Thence north along the middle of Lake Michigan to north latitude 42° and 30°. This amendment was adopted and became part of the bill. Thus amended, the bill became a law, under it a convention was held at Kaskaskia, a constitution iramed, and in December iSi\&, Illinois was duly admitted as a State of the Federal Cinion.

During the first decade which followed the organization of the State, the habits of the people, in the main, were simple and their wants few. Barter in a large measure supplied the place of a medium of exchange. Commerce, in so far as it had an existence with the outer world, was by wagons across the Alleghenies, and by flat boats down the Ohio, and the Mississippi. The log cabin furnished protection to the pioneer from the winter's storm. With rude implements of his own construction, he cultirated his fields, and with his rifle defended his loved ones from the incursions of the savage. At the time of its admission, there were but 23 post-offices within the limits of the entire State. At the period indicated and for years afterwards, the frontiersman regarded himself as especially iavored it located within a dozen miles of a post-office. The mails reached the settlements weckly or monthly upon horseback or by stagecoacl1. The log cabin with its puncheon floor supplied the double purpose of temple of learning, and place for public worship. Articles of apparel, were, with rare exception, of home manufacture. Railroads, colleges and universities were unknown. Less than 10.000 persons within the entire State were engaged in agricultural pursuits. Chicago had hardly a place upon the map. The rapid emigration which immediately followed its admission soon rendered the selection of a capital nearer the centre of population a recessity. The commissioners designated by the legislature, for this purpose, having in riew the possible flow of cmigration northward. chose a site for the new location. 140 miles north of the Ohio River, to which was given the name Vandalia - then a wilderness. but now a beantiful and prosperous city. During the two decades whicli followed the location of the capital at Vandalia, the population of the State increased to 476.000 . The drift of emigration was to the Wabash, to the Sangamon, to the Vermillion, to "the Military Tract," to the

ILLINOIS

rich lands drained by the Kankakee and the Fox, and to the grand prairics stretching northward and westward to Wisconsin and to the Mississippi. In 1836 Springficld became the seat of govermment. Then a village of but a few hundred inhabitants, it is now a splendid city and an honor to the commonwealth. Its nearness to the geographical centre of the State; its accessibility and the erection of a superb State House, renders the present location, for our time at least, permanent.

Constitution.-Three constitutions have been in force in Illinois since its admission as a State. The first was formulated by a convention of 32 delegates - representing the fifteen counties of the territory - which assembled in Kaskaskia in August I818. This constitution-under which the State was admitted - remained the organic law of Illinois for 30 years, and until the adoption of the constitution of 1848 . Meanwhile the State had gradually increased in wealth and in population. Many new counties had been organized and the northern boundary of actual settlement extended from the county of Madisors to the Wisconsin line. Chicago and other cities unknown to the framers of the first constitution, had sprung into being. An attempt to procure the calling of a convention to frame a constitution to supplant the first, was made in 1823. By Article 7 of the latter, the legislature was empowered, by a two thirds vote thereof, to submit to the electors of the State, the question of calling a convention to alter or amend the existing constitution. By the legislature of 1823 there was such submission under the above provision, The purpose of the originators of this movement unquestionably was to secure by constitutional provision, the introduction of slavery into the State. For more than a year this was the allabsorbing topic of debate. Political leaders and newspapers were divided and fierce personal antagonisms engendered. The discussions at the fireside, in the public press and upon the hustings, touched all phases of the question from the standpoint of material advantage, as well as from the high plane of right. The verdict of the people was rendered 2 Aug. 1824 against the proposed convention and the introduction of slavery into Illinois. The question of calling a convention was again submitted by the legislature in 1846 ; the returns showed a large majority favorable, and delegates were chosen in April 1847. This convention consisting of 162 members assembled in Springfield in June of that year and its deliberations were concluded 3I August. Unlike the first constitution, this was submitted to the people. It met popular approval and by its terms went into operation on the first Monday of April I848. This remained in force until the adoption of the present constitution. The latter was formulated by a convention consisting of 85 members which assembled in Springfield I3 Dec. I869. The constitution it framed was submitted to popular vote and approved, and has since August i870 been the fundamental law of the State. The existing constitution is in large degree an improvement upon both of those which preceded it. Some of its most important provisions are: the division of the powers of the government of the State into three departments - the legislative, the executive, and the judicial: vesting the legislative power in a General Assembly to consist of a Senatc and House of Representatives, both to be elected by
the people; senators required to be 25 , and representatives 21 years of age; also to be citizens of the United States, and five years resident of this State; 110 person convicted of infamous crime or a public defaulter to be eligible as scnator or representative or to any office of profit or trust in the State; in addition to the ordinary official oath each senator and representative is required to swear in substance that his election has in no manner been secured by bribery; the number of senators was fixed at 51 , and of representatives at 153 ; minority representation was provided for in the election of members of the House; senators to be elected for four years and members of the House for two years; a majority of the members elected to each House shall constitute a quorum ; bills may originate in either House subject to amendment in the other; upon the final passage the yeas and nays shall be taken upon each bill separately; every bill to be read at large upon three different days in each House; no act to embrace more than one subject and that to be embraced in its title; no money to be drawn from the treasury except in pursuance of an appropriation made by law; the General Assembly permitted to make appropriations for expenditures incurred in suppressing insurrection, or repelling invasion; compensation of senators and members fixed at $\$ 5.00$ per day during the session; the General Assembly prohibited from releasing the indebtedness, liability or obligation of any corporation or individual to the State, or to any municipal corporation therein; to have no power to authorize lotteries or gift enterprises for any purpose. Two important mandatory provisions upon the General Assembly were incorporated in the constitution: one requiring legislation protecting coal miners, and the other the passage of liberal homestead and exemption laws. Under the former constitution, the State and people had suffered irom special legislation. To the end that such legislation be discontinued and general laws when necessary enacted, the General Assembly was prohibited from passing local or special laws in any of the following cases, viz.: for granting divorces; changing the names of persons or places; laying out, opening, altering and working roads or highways; vacating roads, town plats, streets, alleys and public grounds; locating or changing county seats; regulating county and township affairs; regulating the practice in courts of justice; regulating the jurisdiction and duties of justices of the peace, police magistrates and constables; providing for changes of venue in civil and criminal cases: incorporating cities, towns or villages or changing or amending the charter of any town. city or village; providing for the election of a board of supervisors: summoning and impaneling grand or petit juries; providing for the management of common schools; regulating the rate of interest on money; the opening and conducting of any eiection or designating the place of voting; the sale or mortgage of real estate belonging to minors or others under disability; the protection of game or fish; chartering or licensing ferries or toll bridges; remitting fines, penaltics, or forfeitures: creating, increasing or decreasing fees, percentage or allowance of public officers during the term for which said officers are elected or appointed; changing the law of descent; granting to any corporation, association
or inciridual the right to lay down railroad trachs or amending existing charters ior such purpose; granting io any corporation, association or individual, any special or exclusive privilege immunit os iranchise whaterer.

Gciermment. - The supreme executive power of the Staie is rested in a governo-, "wbo shall iake care that the laws be faithiully executed"; his cerm of ofice fixed at four years: he is required to be 30 years oi age and for bire years Dext preceding his election, a citizen oin the Tnited States, and of this Siate: he is required at the commencement of each session to give to the Genera! Assembly, iniormaion by message of the condition of the State. and recommend such measures as be shall deem expedient; he can. by proclamation. convene the General Assembly upon extrao-dinary occasions: may remove onicers oi his appointment for incompetency, neglect of duty or malieasance in ofitice: may grant reprieves. commuations, or pardons aiter conviction ior all offenses: shall be Com-mander-in-Chief of the Military and Naval iorces of the State - except when they are called into the service of the Lnited Siates: is resied with a qualified negative upon all bills passed by the General Assembly, bu: bills can be passed over bis reto by a two-thirds wote of each House: in case of bis death, resignation. or conviction upon impeachment, the duties oi his oifice devolve upon the lieutenani-govemor: the last named oficer is president of the senate, and is, with the secretary oif state, auditor of public accountes. :reasurer. superintendert of public instruction, and attorney-general. elected in the same manner. and except the treasure. for the same length of time as the governor: two years is the ierm of the treasurer. The judicial powers of the State are vested in a supreme coutt. circuit courts, county cours. justices of the peace. police magistra:es. and in such courts as may be created by law jor cities and incorporated towns; the supreme court consists of seven judges. and their term of onice is nine years ; the terms of the circuit fudges sked at six years. inierior appellate courts of uniform organization and purisdiction to be composed of circu: judges, to be created.

Suffrasi- - One year's residence in the Stase necessary to its exercise: voting so be by ballcz: persons convicted of iniamous crimes to be excluded firon the righ: of sufirage.

Rezenue- The General Assembly to provide ior needed revenue by levying a tax. by valuaition, so that every pe:son and corporation shall pay a tax in proportion to the ralue of his, her. cr its property: certain property, religious, charitable, eti., may by general law be exempt from .2xation.

Crrfatins.-No corporation to be created ty special laws, except those cor charitable, educational, penal, or reiormatory purposes, and these to be unde: Siate patronage and control: the General Assembly to provide by general laws for the organization of all corporations hereafter to be created: no State Bank hereafte: to be created, not thall the State own any stock in any corporation for banking purposes: every stockholder in a banking corporation to be individually liable to its creditors for double the amount of his stock; the rolling stock and all other movable pronerty of all railroads in the State, to be considered personal property, and subject to execution for the debis of such com-
pany: railroad corporations prohibited irom cor-solhdating with parallel or competing lines; ali railoods in the State deciared to be public highways, and iree to all persons for the transportation of their persens and property thereon, under such regulations as may be prescribed by law - the General Assembiy to establish reasonable maximum rates oí cbarges for the transportation of passengers and freight: the right oi eminent domain by the State against such corporations never to be abridged: the General Assembly by appropriaie legislation to prevent unjust discrimination and extortion in the rates of passenger and ireight tarifis on all railroads in the State: appropriaze legislation atuhorized ior the protection of producers, shippers and receivers of grain and produce. By a iwo thirds roze in each House the General Assembly may submit to the electors. the question of calling a convention to alter or amend the Constitution. to be vored upon at the next general election: by the same vote in the General Assembly proposed amendments to the constitution (without the intervention of a convertion) may be submitted to the electors for adoption or rejection. The General Assembly prohibited from releasing the Illinois Central Railroad Company from its charter obligation io pay the State the agreed percentage oi the gross earnings of said company; no councy. city. cown or township permitted to become a subscriber to the capital stock oi any railooad. or private corporation. or to make donations to, or loan its credit in aid of anz such corporation.

Polifics.- Under the recent apportionment by viruse of the iztin census of the L-nited States. Iilinois has 2 立货presentatives in Congress. The electoral vote of the State at successive Presidential elections. since its admission has been cast as follows, viz.: In 1820, ior Monroe: in IS24 one vore for Adams and two for Jackson: in 1828 and 1832 for Jackson: in 1836 and 1840 for Van Buren: in 1 E $_{4}+\mathrm{for}$ Polk: in 18,4 for Cass: in 1852 for Pierce: in 1856 for Buchaman: in 1860 and 1864 for Lincoln: in isti and 18,2 for Grant in 18,6 for Haves: in 1880 ior Garñeld: in tist for Blaine: in ises zor Harrison: in 1892 for Cleveland: in T 806 and 1000 for Mihinley. The rote of Illinois in the electoral college during the 85 years of its existence 35 a S tate. has increased from 3 to 27 . The Black Hawk war oi 1831-2 2 and the Mormon war oi IE+; are chief among the interesting historical events of the State. As the result of the first. Indian depredations ceased, and the remnants of once powerful tribes disappeared forever from the State. What is known in local history as the Jlomon Wary occyrred in Hancock County on the Mississippi River. Nauveo in the last named county was the Mormon city, the home of Joseph Snith. "the prophet ${ }^{\text {n }}$ and head of the church: it was the seat of Mormon authority, and the site of a splendid temple. The assassination of Joseph Smith by an anti-Mormon mob in IfH was soon thereatier followed by the complete exodus of his iollowers from the State.

Bibliorrafhy:-Ford. 'History oi Illinois' : and a 'History of Illinois' by Davidson and Stuve: Moses. 'History of Illinois' : the welith census of the United Siates: the several official reports of Siate officers published by authority of the General Assembly:

Adlat E. Stetenson,

Illinois Central Railroad. The history of the Illinois Central Railroad cmbraces many interesting episodes, some of which bore directly in their effect on the building up of the nation, of the State of Illinois and of the city of Chir cago. Prior to the incorporation of this line, the State of Illinois had vainly endeavored to establish an effective and profitable central railroad. In doing this, a large State debt accumulated and the outlook for wiping ont that debt was not at all promising when the act to incorporate the Illinois Central Railroad Company was approved by Governor French, on 10 Feb. 1851. As events have proved, this act produced results more momentous in the history of the State and of the United States than any act approved by an Illinois Executive before or since.

The inception of this important enterprise dates back to 1835 . when two of the States most famous men, Hon. Sidney Breese and Hon. Stephen A. Douglas, first discussed publicly the advisability of penetrating the centre of the State by means of a railroad and thus opening up a vast ferritory which at that time was an unimhabited and partially umexplored wilderness. On I6 Jan. I836, the State Legislature passed an act incorporating "The Illinois Central Railroad Company." Two years later an attempt was made to siart this road, which was intended to run 457 miles. The sum of $\$ 3.500$.000 was appropriated for the route, but within a few months the difficulties surrounding the situation in the matter of actual track-laying became so great that, after an expenditure of $\$ 506.000$, principally on surveys and preliminary work, the plan was abandoned.

In 1843, a private corposation entitled "The Great Western Railroad" secured a charter and began work, but soon became discouraged and surrendered their charter. In 1849 this charter was renewed, only to be again surrendered to make room for the road now operating and known as The Illinois Central Railroad. At the time the road was commenced by the present corporation, it was estimated that the aggregate cost would be about $\$ 15,000,000$. The actual cost for construction, including all extension up to the present time, has been nearly $\$ 50,000,000$.

Original Charter Dircciors.- The twelve directors selected in 1851, under the charter and known as the "Charter Directors" included nine prominent New York men and three wellknown citizens of Boston. The directors from New York were Robert Schuyler, George Griswold, Governeur Morris, Jonathan Sturges, Thomas W. Ludlow; John F. A. Sanford, Ilenry Grinnell, Joseph W. Alsop and Leroy M. Wiley. Those from Boston were Franklin Haven, Robert Rantonl, Jr., and David A. Neal.

Population.-In 1850 , shortly, before the chartering of the railroad, Illinois stood IIth in population and 17 th in wealth among the States. The marked difference during the following to years is worthy of note as showing the direct effect of improved and extended railroad accommodation. In 1860 . Illinois stood fourth in population among the States, also fourth in wealth.

Railroad Conditions it 185I.- In 1851, when the charter of the present road was granted. the population of Chicagn was 30.000 . That city had no railroad connection with the east
nor in any other direction. In the same year the Hulson River Railroad, 1 \&o miles, from New York to East Albany, was opened. Other events of improtance during 1851 were the extension of the Baltimore and Ohio Railroar to Cumberland and the opening of an Erie Railroad line from Pierpont on the Hudson to Dunkirk on Lake Erie. Wisconsin had 20 miles of railroad at that time. The railroad mileage of Indiana was 228 miles, and of Kentucky, -8 miles. Just prior to the clartering of the Illinois Central there were in miles of railroad track in the State. When the 50th ammiversary of the road was held at Chicago in 1901, it was amounced that the company was then operating railroads in I3 States.

Dezelopment. - The first section of the road, covering 705.50 miles, and rumbing from Chicago to Cairo and from Centralia to Dubuque, was opened on 27 Sept. 1856, being about five and one half years after the issuing of the charter. Since the opening of this main line other lines have been purchased. including part of the Saint Louis, Peoria and Northern railroads from Springfield to East Saint Louis, Illinois, in 1900. This purchase was followed hy a number of other purcliases and absorptions.

Roads Acquired by. Purchase, ctc.- From Springfield to East Saint Lonis, I11. (part of the Saint Lonis, Peoria and Northern) ; Indiana Division of the former Pcoria, Decatur and Evansville, extending from the Illinois State line to Evansville. Ind., with a branch to New Harmony, Ind.; Evansville and Mattoon, from the State line to Mattoon, Ill. This was formerly a division of the Peoria, Decatur and Evansville; Chicago, Madison and Northern ; Kankakee and Southwestern; Clicago and Springficld: Saint Lonis, Alton and Terre Hatte; Chicago, Havana and Western: Mouncl City; Chicago and Texas; Riverside and Harlem; the parts of the Rantoul and Illinois and Indiana railroads lying in the State of Indiana, extending from West Lebanon to State line and from Switz City to State line.

Leascd Lincs.- The leased lines of the Illinois Central Railroad are Chicago and Eastern: South Chicago: Blue Island; Pcoria, Decatur and Mattoon; Peoria and Pekin Union: Dubuque and Sioux City: Chicago, Saint Louis and New Orleans, and the Canton, Aberdeen and Nasluville railroads.

Milcage. - The corporation now controls one of the most important groupings of railroad lines in the United States. The total mileage operatecl, according to the latest official report available, is 4.374 .04, exclusive of the Yazoo and Mississippi Valley Railroad ($1,209.91$ miles). The length of the main line, from Chicago to Cairo, Illinois, is given as 364.73 miles; Omaha Division, from Chicago to Comncil Bluffs, Iowa, 513.96 miles: New Orleans Division, from Cairo to New Grleans, Loursiana, 547.79 ; Louisville Division, from Memphis, Tennessee, to Louisville. Kentucky, 308 I2 miles; other lines owned or leased operated in the system, 2.549.12.

Additional Tracks.- The length of line having two tracks is 654.33 miles; third and other additional main tracks, 72.56 miles : sidings. etc.: I,5Ito4. The gange of this svstem is at feet $81 / 2$ inches. The average weight of steel rails is 72.78 lbs

ILLINOIS CENTRAL RAILROAD

Charier Tor. - The charter of the company, reserved to the State of Illinois. calls for payment, in lieu of taxes. oì i per cent oí the gress receipis if the 705.50 miles of road originally buit: uncer that charter. The total amount pand io the Siate of Illinois under the provisions of this charter, from the opening of the road in I855 to 30 June 1904, was $\$ 22,359,316.21$.

Diridends. - Between the beginning of operations in 1851 and 30 Iune 1904 . the stockholders secerved Sri\& 403.601 .59 as dividends out of the earnings of the company.

Rolling Stock. The rolling stack of the company, 30 June 1 go 4 included i. 085 locomotives. iH: passenger and chair cars, If cate dining cars. 148 basgage. mail and express cars. 42 postal cars (3 of these party owned), and 52.c5- freight cars, making a total. with minor items under this head. of 3 Esog cars.

Earnings. - The earnings of the road, ict the sear ending 30 June rgot amounted to
 ings were divided as follows: Passenger trafic. S9.554.743: freight traffic. S31.692.5.5: mail and express service, Si.60\% 280: miscellaneous earnings. E3.S80.538. For Igos, the total earnings were Si9. 0 OR.649.

Vet Eirnurgs. Receits and Dievidends.- The net earnings of the road for the year ending 30 June igat were Etr.037.S85 or 29.18 per cent; for 1005 . ミr. 396.943 : net receipts from land sales, sti.0 3 : investments and miscellaneous pronts. ミ. $6.6, \div 95-72$: surplus dividend iund (30 June 1903). Sr.1-S.IS6.92: surplus dividend fund, 30 June 1904. S1.225.,-66.92.

Exfenses.- The tctal expenses of the road for the year ending 30 June igo $\%$ amounted to $\$_{32 . \%}-93.251 .3 \mathrm{t}$, or $\mathrm{E}_{2} .555$ H per mile; for 100 . $\leqslant_{35.111, ; 06 \text {. The amount paid for taxes, rents. }}^{\text {. }}$ interest and sinking fund during the same period was $5-.888 . j 06$; in dividends at 6 per cent. $55,-02, \div 00$.

Bonded Dibt. - The bonded debt of the road, including 25 investments, aggregates §137.599.525. Oi this total the first issue yet to mature is $\$ 25,000$, issued in ISEO and maturing in 1910. An issue of $\$ 2.800 .000$, placed in 1860. matures in 191\%. The next, iollowing in order. is an issue of s,68,000 made in ISSt and maturing in 1921: an issue of $s_{4}, 0,000$ made in $1 \mathbb{R}_{3}$ and maturing in 1923 : an issue of $\Sigma_{538.000, ~}^{\text {a }}$ made in 1885 and maruring in 1931: an iss:re

Ofening $u_{\hat{f}}$ of the Stwd.- The begiming of active operations in establishing the line marked the beginning of Siate development throughou: a vast area which. up to that time, had been inaccessible to traffic of any kind except by means of the most rural contrivances. uiterly inadequate for any but the most restricted local demands. The new move toward opening up commercial possibilities immeciately doubled the price of public lands. These tracts were readily bought up as conditions improved and steadily increased in value year by year.

At a critical juncture in the nation ${ }^{\text {a hisenty. }}$ when it became necesiary to mare regiments b-igade: and divisinns ni western troops to the s-ene of active civl war noeraties. the Illingis Central Railroad prowned the onls avai ahle means i adequate rapid transportation. it
the same time. the exisience of that railroad and its excellent management made the prompt supply of rations and forage possible.

Payment of State Debt.-As mentioned in a previous paragraph. the attempt of the Staie to operate successiully a central railrcad ended in utter failure. In ISEI the people of Illinois were under a burden of some $\$ 60.000 .000$ as the outcome of the experment. The establishment and active operation. with ever continuing development of the road, enabled the whole of that debt to be paid of in due course with proper interest.

Other Bentefits to State and City- The persistency of the railroad authorities in extending their own lines and giving added vitality to smaller railroads made possible the cultivation of the Grand Prairie, previously waste, thereby raising the prestige of the Siate as a productive national iactor of extraordinary importance. It is on record that over \$3.000.000 has been expended since about 1836 by the railroad company upon the construction of dikes. piers and breakwaters to protect the city against lake encroachments. Very great beneFits, too, have been derived by Chicago irom beng brought into close commercial touch with prairie lands and the agricultural area of the Lower Mississippi Valley. Chicago has also gained an outlet by rail to the Gulif of Mexico. It is said. to the credit of the Illinois Central Company, that the extent and vigorous administration of its aftairs during the period extending from the inception of the World's Fair in 1893 until its close made the success of that enterprise possible by iumishing ample transportation within its jurisdiction for the immense passenger and ireight traffic which impended there from start to finish.

Statistical- The States in which the Illinois Central Railroad is now operating are Illincss. Indiana, Wisconsin. Iowa, Minnesota, South Dakota. Kentucky. Tennessee, Mississippi. Louisiana. Missouri and Alabama. The present total mileage of the road. including leased lines and the Yazoo and Mississippi Valley Railroad, is neatly one-halt the railway mileage of the State. The rotal number of stockholders in the company. according to the latest report of the Interstate Commerce Commission, is 9.123 . The ralue of stock outstanding. according to the latest quotations. icos. is Sos.ofo.000. The highest rate a: which stock was quoted in locus was 159 : lowest $1253 / 4$. The highes: rate quoted for igos was is, lowest 1523 .

Other lines operating in Illinois are the Santa Fe: Balimore and Ohio: Chicago and Alton; Chicago and Forthwestern: Chicago. Burlinaton and Quincy: Chicago Great Westem: Chicago, Indianapolis and Louisville: Chicago. Milwaukee and St. Panl: Chicazo, Rock Island and Pacinc: Cleveland. Cincinnati. Chicago an! St. Louiz: Erie: "Frisco Sy:sem": Grand Trurk: Great Central Route: Iowa Central: Lahe Erie and Western: Lake Shore and Michiman Southern: Louisville and Sashville: Michican Cerital: Miisonuri Pacific: Mnbile and Ohio: Xew York. Chicagn and St. Lou:s: Pennsvvania: Southern: Tiledo. Si Louis and Weriern: Vandalia: Wabash, and Wisconsin Central.

Illinois College, an institution located in facksonville. 111., the oldest college in the State, founded in 1829, largely through the efforts of the "Yale Band of Seven," an Eastern organization of college men. The courses of study are arranged according to the group system, which permits a fair amount of choice. In 1002 the attendance was 125 students with 17 instructors. In 1903 the college was affiliated with the University of Chicago. The same year the endowmont fund was increased from $\$ 155.000$, in 1902, to nearly $\$ 500,000$. The college library contains 12,000 volumes, and the literary societies 4.000, available for reference.

Illinois River, an affuent to the Mississippi, formed by the confluence of the Kankakec, Des Plaines, and Dt1 Page rivers, in Grundy County, about 44 miles southwest of Chicago. Its entire course of over 350 miles is within the State, through a fertile, undulating country, rich in bituminous coal deposits. It flows first westward to Ottawa and Lasalle, at Depue bending southwestward past Lacon, Chillicothe, Peoria, Pekin, Havana, and Beardstown, and near Naples turning due sonth and joining the Mississippi about 18 miles above Alton, at the mouth of the Missouri. The river is 1,200 feet wide at its mouth and is navigable throughout to Lasalle where a ship canal about 120 miles long connects it with Lake Nichigan at Chicago, thus ensuring a clear waterway from the Great Lakes to the Mississippi and the Missouri. The Illinois has numerous tributaries of which the Fox and Sangamon rivers are the chief.

Illinois State Normal University, located at Normal, a suburb of Bloomington, Ill., was founded in 1857. It is the oldest State normal school in the Mississippi Valley, and has furnished principals or instructors for nearly all of the younger normal schools in the central and western States. Up till 1904 it had given instruction to 15,652 normal students, nearly all of whom have hecome teachers. Its graduates number $1,5+9$. The school occupies three buildings upon a beautiful campus of 57 acres. It is well equipped with library, laboratories, gymnasium, and apparatus for instruction in all the various branches of study. Its revenue, about $\$ 60,000$ per year, appropriated from the State treasury, includes the interest derived from the College and Seminary Funds granted by the Federal government in ISi8. It is governed by the Board of Education of the State of Illinois, a hody of 15 appointed by the govemor. The State superintendent of public instruction is ex-officio secretary of the board. Its sole purpose is to prepare teachers for the schools of the State, accordingly students are required to sign a pledge declaring their intention to teach. Tuition is free. The programmes of study leading to graduation vary from two to four years, according to the preparation of the student. The required work includes courses in pedagogy, psychology, and general method, history and philosophy of education, school management and the Illinois schood system and one year of practical teaching in the training department. Along with these are provided courses in special method in the various branches of elementary and high school course. Special conrses are provided in manual training, art, voeal music, kindergarten and elementary agricultural science. The attendance in 1002-3 was t,014. besides 502 in the training
department. The faculty of instruction numbers 3I. The presidents of the institution have been: Gen. Charles E. Hovey (1857-61) ; Richard Edwards (1862-76) ; Edwin C. Hewett (187690) : Joln W. Cook ($1800-99$) ; Arnold Tompkins (1890-1900); David Felmley (1900-).

David Felmley, President.
Illinois, University of, the State thiversity situated at Urbana. It was founded in acceptance of the national land grant of 1862 (see Colleges, Land Grant), and was incorporated in 1867 as the lllinois Industrial University. In 1870 wonnen were admitted; in 1877 the State legislature granted power to confer degrees; and in 1885 the name was changed to the University of Illinois. It was the first American university to give shop instruction, a mechanical shop being equipped in 1870. It is groverned by a hoard of trustees, consisting of three c. x-officio members. inchuding the governor, and nine elective members. The undergradnate department includes the college of literature and arts, of engineering. of science, and of agriculture; corresponding graduate courses are given; other departments of the university are the academy, State library school, the school of music, the college of law. the college of medicine, the school of dentistry, and the school of pharmacy, the three latter being situated in Chicago. The university has a number of valuable scientific collections; the agricultural experiment station organized under the Federal law of 1887 is controlled by the university trustees, hut is separately supported by the national approprition; the general university library numbers 71,039 volumes besides pamphlets; other libraries under university control are the library of State Laboratory of Natural History (15.000 volumes), the library of the college of law, and the special collection of the department of education (1.500 books and 3.000 pamphlets). The annual income amounts to $\$ 900,000$; the number of students in all departments was 3.725 in 1904-5, the number of professors and insiructors, 392.

W. L. Pillsbury,

Registrar Unizersity of Illnois.
Hhinois Wesleyan University, founded in 1850 under the anspices of the Methodist Episcopal Church, at Bloomington, [1l. The college courses provide for the degrees of B.A., P.S., Ph.B., LL.B., M.A., Pl.D., and two honorary degrees. It has, also, a preparatory school. In 1902 the number of students was over 1.400 , of which 478 were non-residents: professors and instructors, 38 ; volumes in the library abont 11.000.

Illit'erates, those mable to read or to write, or to do either. The percentage of illiterates indicates the average intelligence, or at least of edncation, in the people of a country. The United States, II migary, Italy, and Portugal, and the Anstralian colonies of Victoria and Tasmania, have attempted to take an exact census of illiterates; all children below six years of age were excluded, except in the United States, where all children below 10 years of age were excluded. The following gives the result:

Per cent

United States (1880)	22.15
Italy (188:)	54.30
Hungary (1880)	57.14
Portugal (1878)	79.07

But the most exact results are gained by estimating the number of men and women who
are unable to sign their names in the marriage registers. From this estimate the following are the results for 1886 :

	Men	Women	Hean
England and Wales.	9.60	11.50	10.55
Scorland	$\stackrel{+65}{23.40}$	8.28 25.30	6.46 $=4.35$
Victoria	2.00	1.98	1.99
New South Wales	3.76	4.20	3.98
Queensland	+52	6.7.	5.62
south Australia	3.04	3.49	3. 26
Prussia (I8S4)	1.92	2.89	2.40
France (1882)	r T 4.39		18.50
Italy (38S;)	+2.36	62.80	52.58

The subjoined table gives the number of conscripts oi the countries named who were illiterate in the iullest sense of the term:

At the last general election in Great Britain and Ireland there voted in England and W'ales 38.58 ; illiterate persons, in Scotland 4.836 . in Ireland 36.722 . giving a percentage of 2.69 out of a total of 2.969 .381 voters. Illiteracy among voters, both white and black. increased greatly in the South between 18;o and i880. In Texas in 18\%o there were 17,500 illiterate voters; in 1880 there were 33.085 . But between I880 and 1800 the illiteracy in the States was reduced to 134 per cent of the zotal population.

Illuminati, ī-lū-mĭ-nā'tī ("t he illuminated"). the name given to themselves by an association of people who professed to have attained to a higher knowledge of God, and heavenly things. and a deeper insight into the spiritual world than the rest of mankind. They were represented by the Alombrados in Spain and the Guirients in France. In the last half of the ISth century a sect of mystics rose in Belgium which from its foundation 1 Nay $1 / 56$ at Ingolstadt, spread over a large portion of Catholic Gernany". At first they" called themselves "Perfectibilists." Their founder was Adam Weishaupt (q.․). a professor of canon law at Ingolstadt.

Illuminating of Manuscripts. See Books; Mancesckets, illevinatisg of.

Illusion. In mental pathology it is necessary to distinguish the term "illusion" from the ternis "delusion" and "lallucination." In common parlance these terms are often confused, and many persons in using them have not very clear ideas of what they wish to express by them. But this is not so among writers in peychiatry. for in this science these three terms are very clearly and very strictly demarcated. And it is hichly necessary that these distinctions should be observed, because these terms stand for very different phenomena in mental disease - phenomena of different value and importance, and each with $12=$ own special significance as to the pationt's welfare.

By an illusion is meant a misinterpretation of a sensory impression. Ordinarily, when the mind is acting in a perfectly normal way and there is nothing to confuse its impressions or to obstruct its proper perceptive powers, a sensation, whether of the eve, ear, taste, or skin. is convered to the consciousness and is recognized correctly. Thus a sound, as the note of a bird or the voice of a friend: or the sight of some object. as oi an animal moving in the distance, is properly convered to the intelligence and is properly recognized. But this process may be interiered with in various ways. The senses. notoriously: are not always to be relied upon. Even the normal mind may make mistakes in the interpretation of sensations, and still more so may the mind that is impaired. It thus happens that all illusions are not necessarily evidences of a diseased mind: this faulty action of the senses. or of the perception, may and oiten does happen in the cases of persons of sound mind. For instance, a person walking along a path in the dusk may mistake a bush for an animal : he simply misinterprets an object, and this object is not imaginary but has a real existence. So. too, the mirage which sometimes appears at sea: might lead a perfectly ignorant person to maintain that he saw a ship inverted sailing in the sky: These are instances of illusions in which the normal mind may be temporarily deceived. But the normal mind tends to correct its illusions, and this it does sooner or later according to its opportunity and its degree of knowledge. In this respect the insane mind differs from it: the illusions of the insane are usually firmly believed in: there is no spontaneous tendency on the part of the insane mind to correct its illusions. On the contrary, they are firmly embraced, and are often made the starting point of a train of associated morbid ideas, whereby the mental disorder is all the more confirmed.

An hallucination differs from an illusion in the fact that it is entirely subjective. In a strict sense it is a disorder of perception in which the external sense organs do not participate, and it leads to a belief on the part of the patient that he perceives some external object, whereas in fact there is no such object corresponding to the perception. In other words. it is a disorder of perception giving rise to a false belief in a sensation. For instance, a person believes that he hears the voice of an acquaintance speaking to him, when there is no voice either of the acquaintance or of any one else; or, again, a person thinks he has a vision of a deceased friend or of some other spiritual being, whereas there is no external object or person whatever giving rise to this or any other sensation. The whole process. therefore, is subjective. or within the patient's own mind: it is without any objective equivalent. It is thus readily seen that anl hallucination is much more deeply seated than an illusion, and is a much more direct evidence of a disorder of the mind. Some authorities doubt indeed whether a true hallucination ever occurs in a normal person: what appears to be so in any given case would probably be found on strict inquiry to be an illusion. Athough this may be an extreme position. the fact remains that hallucinations are very rare in the sane and very common in some forms of insanity: and that, as in the case of illusions.
the sane tend to correct them, while the insane adhere to then: with unswerving belief. The most common hallucinations of the insane are the visual and the auditory, and they are sometimes very grave symptoms. Auditory hallucinations are especially dangerous, for they may lead the patient to commit acts of violence in respouse to their suggestions.

A delusion differs from both an illusion and an hallucination in the fact that it is not a sensory disorder - but a derangement entirely within the intellectual sphere. It is an erroneous belief, but one which is due entirely to mental disorder. The latter part of this definition is essential, because a delusion is essentially something more than a mere error of belief or judgment. It is an erroneous belief that is due to insanity, or to a disordered mind. Nere errors of belief may and do occur in persons who are sane: no person, in fact, is exempt. Such errors may be due to ignorance, prejudice or faults of education, but they are not evidence of insanity; otherwise the whole world would be insane. In the case, however, of an insane pauper who believes that he is a multi-millionaire, or that he is emperor of the United States, there is obviously something more than a mere erroneous belief in the sense of an error of judgment or opinion. Such a patient has developed an idea which no sane man in similar circumstances could have developed; in other words, he has a delusion, and he is not insane because he has the delusion, but he has the delnsion because he is insane. The insanity or mental unsoundness is the fundamental fact, and is shown nsually by other symptoms besides the tendency to form delusions. As in the cases of illusions and hallucinations, the insane cling to their delusions with great tenacity: no argument, no logic moves them. The delusions of the insane are usually distinguished as systematized and unsystematized. In the former the delusion has a certain consistence, coherence and endurance: in the latter the ideas are more or less incoherent and changing. Delusions again may be expansive or depressive, according to the emotional tinge. See also Imagivation; Insanity. James Hendrie Lloyd,

Formerly Veurologist Philadelphia Hospital.

Illustration of Books, the art of making and reproducing pictures to supplement or adorn the text. In England book illustration may be said to have reached its culminating point as regards engraved and etched plates, in the first hali of the 19th century, in the series of annuals, keepsakes, and the higher class books illustrated by such masters as Stothard, Turner, etc. The revival of wood engraving by Bewick and his pupils gradually led to the restoration of that art as an illustrating medium. In this it was greatly aided by the facility with which woodengravings can be printed along with the text, together with the advance made in typographic printing. The series of Christmas books illustrated by John (afterward Sir John) Gilbert and Birket Foster had no small share in that advancement. Among the artists who have helped to raise the art to its present high position may be mentioned Cruikshank, H. K. Browne ("Phiz"), Doyle, Leech, Tenniel, Millais, F. Walker, W. J. Linton, Herkomer. etc. The development of what has been called the American school of wood-engraving has still
further increased the influence of that branch of art for illustrative purposes.

Relicf-Block Processes for Book Iltustra-tions.- Many processes have been invented to produce relief blocks with a view to supersede wood-engraving in book illustration. The object aimed at is to reproduce drawings in line or wash, in fac-simile, on a relief block capable of being printed from the surface on the typepress. That is, the lines or parts which impress the paper are to be left in celief, while the white parts are cut out so as to leave the paper unprinted. "Process" relief blocks may be divided into two kinds, those reproduced from black-and-white, or line drawings in pen and ink; and those from half-tone photographs, or wash drawings. When pen-and-ink drawings, engravings, or any other drawing in line are to be produced the subject is photographed to the required size. This process allows the drawing to be made of any convenient size, while a drawing on transier paper must be of the exact size required. There are also several gelatine processes, all of which are based on practically the same principle. The production of relief. blocks from ordinary photographs or drawings made by washes of black and white baflled all efforts till the invention of Meisenbach's process. In relief block every part which touches the paper prints black, and every part which does not touch the paper leaves it white. Some method had to be devised of turning the smoothly graded tones of a photograph into pure black and white. The method sought after was to break up the photo-tones into a grain, stipple, or line, which should be closest in the darkest parts, and become more open as the lights were approached. That patented by Meisenbach of Munich in 1882 as the one on which nearly all the most successful subsequent processes are based, may be briefly explained. A glass plate is prepared with fine paralled lines. This is exposed between the lens and the sensitive plate in the camera, at a very short distance from the plate, and when the exposure is half completed the cap is put on the lens, the lined plate is taken out and put in with the lines in the reverse direction, and the exposure is completed. The resultant negative is thus broken into minute regular dots. In a successful process invented by Jr. Ives, of Philadelphia, and patented in 1884. a surclled gelatine relief is taken of the subject, and on a plaster cast of this a stipple is impressed by means of an elastic stamp, which gives the operator greater control over the effect. He is then able to ink the plaster cast and transfer an impression of it to a sheet of india-rubber, and from that to a plate of zine. A "grained" photograph being finally obtained by means of any of the thousand and one processes, it is transferred to zinc and etched. Besides these photo-chemical processes there are various mechanical methods of producing relief blocks. Some of them are very technical. Dawson's typo-ctching process, an improvement on Palmer's glyphographic process (patented in 1848) is very extensively used for the production of maps, plans, diagrams, etc. This process is carried to great perfection in the United States, where most beautiful maps are produced by it.

These processes, though simple enough in theory, give great scope for skill in manipulation, and much of their success depends on the

ILLYRIA - ILOILO

ability of the operator. The rapidity with which they can be produced has rendered the daily illustrated paper a possible and accomplished fact. As to cost, blocks can be produced for from 8 to 30 cents a square inch of surface, according to the nature of the drawings - the stipple process being the more expensive. In France, Germany; and the United States the processes have been much more employed as a means of book illustration than in Great Britain, though even there every year shows rapid advance in their use. As to the comparative merits of wood-engraving and the processes, opinions differ greatly. Generally, it may be said that the processes are more suited for subjects on a large than on a small scale, unless they are very slight, in which case they can never pretend to be more than sketches. In wood-engraving the photograph can be transferred direct to the wood and engraved without further expense for drawing, and the result, both artistically and from a printing point of view, is much more satistactory. Though within its limits the process makes good work and the future is before it, the fact remains that as yet for finished picture work, good wood-engraving has not been superseded. See Books: Exgrativg; Lithography: Manu'scripts, Illumination of; Photo-Engraving; PhotograyURE

Director School of Fine Arts, St. Lonis.

Illyria, î-lirri-a, or Illyricum, a name anciently applied to a considerable region on the east side of the Adriatic Sea, the inhabitants of which were the ancestors of the modern Albanians. In 228 b.c. it became a Roman province. After various vicissitudes under different rulers it formed part of the Franco-Napoleonic empire as the Illyrian provinces. In ${ }_{1} \mathrm{Si}_{5}$ it reverted to Austria and became the kingdom of Illyria, a title it retained until I\&49, when it was divided into the provinces of Carinthia, Carniola, and the Coast-lands.

Il'menite, or Menaccanite, also known as titanizerous iron ore, is a black, heavy, mineral crystallizing in the hexagonal system. It is widely distributed, occurring in diorites and many other igneous rocks. It is an oxide of iron and titanium containing when pure 36.8 per cent iron and $3 I .6$ per cent titanium, and is frequently, associated with magnetite. Iron ores containing ilmenite occur in vast masses in the Adirondack region of New lork, in Quebec, Canada, and in northern Minnesota, and ilmenite is a common constituent of the black sands found on some ocean bcaches. The presence of titanium decreases the fusibility of an iron ore, hence the failure of many attempts to work black sands in the blast furnace. It is likely, however, that the titaniferous iron ores will become important sources of iron by the development of special methods for cheir treatment. See Titaniferous Iron Ores.

Llocos Norte, ē-lō'kōs nōr'tā, Philippincs, a province of Luzon, occupying the northwestern part of the island: greatest length, 79 miles; area, 1,265 square miles (including the dependent islands). Two mountain chains inland extend parallel with the coast; the surface otherwise is much broken by foothills, but it is fertile and well watered. Among the natural wonders of the province is a grotto 39 acres in extent
and of great beauty, situated in Lice Mountain The products include rice, cotton, chocolate ${ }_{8}$ corn, sugar, and a fair grade of tobacco; there are deposits of iron and copper in the mountains, the latter having been worked by the natives. The chief industries are agriculture, horse and cattle raising, fishing, and the weaving done by the women. Civil government was established in September rgor; the people of the province are among the most progressive and industrious of the native races, and the new government was received with general satisfaction. Pop. 164,000 , mostly Ilocanos.

Ilocos Sur, soor, Philippines, a province of Luzon, on the west coast, bounded on the north by Ilocos Norte and on the south by Unión; length 70 miles; area 492 square miles (including dependent islands). The eastern boundary consists of a chain of mountains which slope toward the coast in terraces; the rivers are small. The coast road runs through the province from north to south, connecting the important towns and villages. The soil is fertile, the principal products are rice, corn, sugar, indigo, chocolate, peanuts, and regetables; the chief industries, other than agriculture, are the weaving of cotton cloth, the manufacture of baskets, hats, card cases, and pipes, and cattle raising. There is also considerable trade, carried on mainly through the native markets in the different towns, and some export. Civil gorernment was established I Sept. 1goI. Pop. I80,000, mostly Ilocanos.

Iloilo, è-lō-ê'lō, Philippines, province of Panay, including the eastern and southeastern coast of the island; greatest length, III miles; area 2,102 miles (with dependent islands). A range of mountains follows the northern and western boundary lines; the rest of the surface is undulating, sloping to the sea. There are several large rivers, the most important being the Jalaur and the Jaro. This province has some of the best roads in the archipelago; the principal towns are connected with the capital, Iloilo, and some of the rivers are navigable for native boats to the foot of the mountains. The products include sugar-cane, corn, rice, coffee, chocolate, tobacco, and hemp; there are also in the province deposits of gold and iron, stone quarries, and extensive forests. The chief industries are live-stock raising, the weaving of fabrics of pineapple fibre (piña) and cotton, and the manufacture of sugar. In 1899 the United States troops occupied the province, immediately began operations against the insurgents who were located there with headquarters at Santa Barbara, and succecded in dispersing their forces. In April Igot civil government was established. The inhabitants are mostly of the Visayan race and are generally Catholics, thougls some of the mountain tribes are still heathen. Pop. 423,500.

Iloilo, Philippines, capital of the province of Iloilo, Panay situated on the Iloilo Strait at the mouth of the river of the same name. It is irregularly built, but the public buildings and the houses are of good construction. It has an excellent harbor, and is the second town of the Philippines in commercial importance: it is the centre of the trade of the province and has also a large forcign trade, exporting tobacco, rice, coffee, hides, and hemp, and im-
porting Australian coal and general merchandise. There are also several industries, chief among them being the manufacture of piña, jusi, and simay. In February 1899 the insurgents who were in possession of Iloilo fired upon the United States gunboats Petrel and Baltimore; the town was then bombarded and taken by the Americans. Pop. 10,500.

Hlopango, ē-lō-pän'gō, Illabasco, or Cojutepeque, San Salvador, Central America, a lake of volcanic origin, 6 miles southeast of the city of San Salvador, about 14 miles long by 6 miles broad. It is surrounded by high, precipitous hills, composed of scoriz and volcanic stones, and has several islets, one of conical shape about 400 feet high, formed during a volcanic eruption in 18;9-80. Fish abound, although the waters exhale a disagreeable sulphurous odor, and are unpotable. The surface of the lake is 1,200 feet below the level of the surrounding country; when ruffed by a breeze the waters have a singularly brilliant parrotgreen color.

Image, in optics, the picture or impression produced by the luminous rays from an object reflected or refracted in mirrors or lenses when they enter the eye of an observer as if they had proceeded from a representation oi the object. More correctly, the image is the locus of the foci (or circles of least confusion. See Focus) of rays from consecutive points of the object. When the light rays actually pass through the points of the image the image is real and may be thrown upon a white screen. If no screen is interposed the image can be seen by an eye placed in the pencil of rays which pass through it. When the light rays do not actually pass through the points of the image, but diverge from one another on leaving the mirror or lens, the image is said to be virtual, and cannot be thrown upon a screen; it becomes visible to an eye placed in the pencils of rays which appear to have passed through it. See Mirror; Lexs.

Images, Veneration of, the practice of venerating and honoring in public or private graven or painted representations of sacred things or persons. Because of the general prevalence of idolatrous worship of images, the Jews in the Old Law were forbidden the making of images, although evidence of the lawfulness of the practice is afforded in the positive command to "make two cherubim of beaten gold on the two sides of the oracle," to "make a brazen serpent and put it up for a sign." The walls of the catacombs, which were the refuge of the first Christians in times of persecution, show many sacred pictures, and after the period of the persecutions the use of sacred images or paintings became open and undespised. Consult Damascene, 'Treatise on Holy Images,' translated by 11 . H. Allies (1898).

Imaginary Quantity, the result of an algebraic calculation, when the application of the rules for resolving equations leads to an operation that cannot be performed. The operation referred to is the extraction of the square root of a negative quantity. Thus in the equation

$$
a^{2}=-a^{2}
$$

to find the value of x we should require to take the square root of $-a^{2}$; and this is impossible. To indicate this impossibility the roots of the equation above are written thus: $x=+\sqrt{-a^{2}}$,
$x=-\sqrt{-a^{2}}$, or more frequently and more neatly $x=+a \sqrt{-1}, x=-a \sqrt{-1}$ The name intaginary quantity is given to the $\sqrt{-1}$, and any algebraic expression containing $\sqrt{-1}$ is called an imaginary expression: thus $a+b \sqrt{-1}$ is an imaginary expression.

These imaginary roots have proved of great importance in algebraic geometry: In fact, the employment of imaginary quantities systematically is the ioundation of some of the greatest modern discoveries and improvements in geometry. Even in algebra, although it is impossible to obtain a value for the expression, or to explain the meaning of it, yet it may prove of use in indicating how to alter the statement of a problem so as to obtain a real solution.

Imagination, that mental power which, according to McCosh, puts in new iorms and dispositions what had been previously in the mind. It is therefore not a productive but a reproductive power, for it cannot create anything de nowo, but can only reproduce in new forms those ideas or images of which it has derived the elements from previous experience. This is in accord with Locke, who says that nan's power is mucla the same in the material and intellectual worlds, the elements in both being such as he hath no power either to make or to destroy.

The imagination differs from the memory, which is also one of the reproductive powers of the mind, in the following way. The memory reproduces what had formerly been before the mind in the form in which it first appeared, but the imagination separates and combines the mental contents in various ways. An act of memory is also accompanied with a belief in the past reality of what the mental picture represents, but an act of imagination (at least in the normal mind) is not accompanied with such a belief. As McCosh has expressed it, the memory may be compared with the mirror which reflects exactly what is before it; whereas the imagination may be likened to the kaleidoscope which reflects objects in an infinite variety of shapes and colors.

When an attempt is made to analyze the workings of the imagination, it is found that this faculty, like all the other mental functions, is governed by certain laws. First in importance among these are the laws of association of ideas. According to these laws the ideas which are summoned up and utilized by the imagination arise according to the principles of contiguity and correlation. By the association of ideas is meant the tendency of ideas to recur in the order or groups in which they naturally stand, either by wirtue of some resemblances or some identities of time and place. Thus br correlation is meant the association of ideas in the mind because of some mutual resemblances of parts or qualities; and by contiguity is meant such association because of the proximity in time and place, and not because of any mitual resemblances. In analyzing any act of the imagination it will be found that it follows one or other of these laws of association, although they can be variously grouped and subdivided.

The uses of the imagination and its moral and lyygienic relations open up vast questions which can scarcely be more than named
here It is almost enough to recall the activity of this faculty in the realms of poetry. of fiction and of art. but its offices are not confined to these fields. for in science also its activity is very great and of first importance. Imagination goes before theory, and theory points the way to new discoveries in science. Oi such widespread activity is this faculty that practically it is almost impossible to dissociate it from the other mental functions. It is always manitesting itself in some way in even the most prosaic affairs of daily life. The conduct or control of the imagination is a subject that suggests many moot points in pserchology. in psychiatry and in ethics. That the imagination is subject to control within certain limits may be granted, although these limits are not fixed, and outside of thern the imagination may often run riot without the possibility of control. Its action, in fact. like that of most mental iaculties. is largely automatic. and its control by the will, the intelligence and the conscience. is often a matter of the mental training and mental health of the individual. In ethics the control of the imagination, or at least its guidance, so that it shall not minister to sensuous or immoral pleasures, even though these be purely imaginary. is a self-erident rule of conduct. but one which is doubtless often broken with some degree of impunity. In mental discipline its control is also essential, for its too great or mere idle indulgence is no doubt unwholesome and wasteful.

In psychiatry, the imagination, like most or all oi the other faculties. is found to be subject to derangement. and this in various degrees. according to the patient and the form of disease. That it is active in the formation of delusions. and is much disturbed in both depressed and eralted states of the mind. is quite evident. In all insane states. except the advanced dements, the kaleidoscopic function of the imagimation is apparent. The mental pictures are broken reflections of past mental contents, arranged often at seeming haphazard, and often of only the most sombre and melancholy tints.

Bibhography.-Griesinger. Mental Patholory and Therapeutics) ($\tau \delta_{2}$): Hamilton, 'Netaphysics' (1866): Locke, 'An Essay Concerning Human (inderstanding': lĭcCosh. 'Psychology: The Cognitive Powers' (IS86).

James Hevdrie Lloyd.
Formerly Seurologist Philodelphia Hosritul.
Imam, i-mām, or -mäm', a Mohammedan chief or leader: a title given to the iour successors of Nohammed. and to the twelve great leaders of the shutes. In Turkey. applied to the functionaries who call the people to prayer from the minarets, periorm circumcision, etc. They are chosen by the people, and confirmed by the secular authority, under whosc jurisdiction they also are in criminal and civil affairs.

Imbriani, Vittorio, Italian pnet: b. Saples 24 Oct. I8:0; d. t Jan. 1886 . He pursued historical and philosophical studies at Naples. Zürich. and Berlin. but later became a soldier. serving in the wars of 1859 and $t 866$. The hest known of his works are "Canti populari delle provincie meridionali' (18 ; $1-2$) ; 'Dodici canti prmiglianesi' (18,6); and 'La novellaja ficr(ntina) (18-7).

Im'bricated Snout-bectle. Sec SroutBEETLE

Imbros, an island in European Turkey, west from the entrance to the Dardanelles. It is is miles long, east to wesh S miles broad, and terminates west in Point Autaka, and east in that of Basse. It is mountainous. rising in its lofties peak to the beight of 1.959 feet: well wooded, and intersected with richly-fertile valleys, producing wine, honey, oil, cotton, and lead. It has only two towns - Flio and Castro. Pop. 10.000, mostly Greeks.

Imide, imid, or -mid, a chemical substance derived from ammonia, NH_{2}, by replacing two of the hydrogen atoms bz a divalent radical. If all three of the hydrogen atoms of the ammonia are replaced by one trivalent radical, the compound is called a nitrile. When one or more of the hydrogen atoms of the ammonia are replaced by a corresponding number of monovalent radicals the compound thus formed is called an amide or an amine, according to the nature of the radical by which the hydrogen is replaced. See Amide; Amine

Imitation. Imitation is the process of reproducing by one's own act the observed actions of others. Its beginnings lie therefore in perception. It is the result of a desire to change from the role of spectator to that of actor. Imitation may be of two kinds (1), a primitive and (2) a developed iorm. The primitive form is an unconscious copying of some object of perception; and is simply a reaction in response to the outer stimulus which excites it. The best example of this kind of imitation is to be found in the sounds which a baby is wont to repeat when it has once heard them. It is a peculiar characteristic of the primitive imitation that the sound, for instance, when once imitated becomes in turn a new stimulus to start the process over again, the result being that the imitated sound is repeated rapidly again and again until the organs are wearjed, or the attention is diverted. The exercise is evidently found to be pleasurable, and is therefore continued indefinitely. Mr. Baldwin has given the name "circular reaction" to this kind of imitation, the phrase indicating a sort of self-perpetuating process. The name also of "suggestive imitation" has been given to this class of acts which appear imitative to an observer, but are not consciously ielt to be so by the imitator.

The second form of imitation is more complex. and marks a more developed stage of consciousness. The imitation has now become a conscious act. The object perceived has aroused some degree of interest, and there is consequently a conscious effort to reproduce it with the original set before one as a model. In imitation which is of this form, we find the process intimately connected with the attention. In attention there is always a conscious striving for a more accurate knowledge of the abject of perception. and imitation serves to gratify this desire, inasmuch as one comes to closer quarters as it were with any act when one trics to reproduce it. Knowledge oi it comes then from the inside. This means a concentration of attention, and a consequent result of more definite and satisfying knowledge. Moreover, attention will vary as the interest, for that which one attempts to co himself is always far more interesting than merely that which is observed.

In the development of consciousness imitation as a social factor plays a most conspicuous part. Through it a child acquires all of its social tendencies, and becomes a part of the social organism in which it is to live and move and have its being. Its education starts with the first rudimentary efforts at imitation: and is carried on from this initial stage to the very lighest and most advanced forms in constant dependence upon the imitative tendencies. Through inntation the knowledge of one generation is aequired by the succeeding, and a continuity in development is assured which makes for the progress of the race.

In this connection, it is to be noted, however, that with the imitative impulse there are two other tendencies which have free play and a wide scope. These tendencies mnst be reckoned with also. They are the tendency to social opposition, and the tendency to inventiveness. The tendency to social opposition is a desire for self-assertion, an impulse primarily to do something different from that which others are doing merely from a feeling of native opposition. This impulse is seen in very young children, and remains throughout life. It is often recognized as mmreasonable, but nevertheless irresistible. It is a fertile source of the differences of opinion which so early develop in childhood. It prevents a slavish imitation and the loss of initiative in action. However in order to act in a manner which differs radically from one's social environment, there is implied a preliminary training of an imitative sort; for there must be a basis of common activity in order that a departure from the accepted mode may have any significance, and there must be also a body of common beliefs, in order that there may be any such thing as a real difference of opinion. The other tendency is a more pronounced and a more definite form of opposition to imitation; it is the tendency to inventiveness, not for the sake of opposition, nor as the result of an inevitable clash of opinion in one's social setting, but for the sake of producing that which is suggested from within, and not from without. It is the working out of one's own individuality without waiting for a copy or model. It is a shifting of the centre of interest from some object which is perceived, to some object of the inner sense, a fancy born within the brain, an idea which has its origin in the depths of one's own consciousness. This tendency is scen even in early acts of imitation, a tendency to depart from the copy, to introduce variations of design, to improve upon the model.

Here again in order that there may be increased power of independent production, there must be a previous schooling in the art of exact imitation. The original artist is not one who has never copied from a model nor studied the works of the masters. It is the interplay of the imitative impulse with the tendencies to social opposition, and to inventiveness which make progress possible. Progress is not repetition nor is it on the other hand activity which swings clear of any past. Where there is progress there is imitation, but the kind of imitation which allows full range for inventive play, and independent opinion.

There is a special form of imitation which appears on a large scale in the so-called mob
impulse, where individnality scems merged in the tendencies of the mass, and imitation is in the nature of a reaction. The individual is swept along with the crowd. not because he wills it necessarily, but because the action of the crowd carries lim away as with a flood. This kind of imitation has heen given the name of "plastic imitation." Nuch study has been deyoted of recent years to the relation of imitative innpulses in animals to congenital tendencies. The instinctive furnishes a strong predisposition to imitation, and in many of the carly activities of animals it is most difficult to draw a line of distinction between instinct and imitation.

> John Grier Hibben,

Professor of Philosophy, Princeton L'nizersity.
Immaculate Conception of the Blessed Virgin Mary, a cloctrime of the Roman Catholic Church whereby it is declared that "The Blessed Virgin Mary, at the first instant of her conception, was, by a singular privilege and grace of Almighty God, in virtue of the merits of Jesus Christ, Savior of mankind. preserved immacnlate from all stain of original sin." In these words is the dnctrine proposed for the acceptance of the faithful in the Apostolic Letter of Pope Pius IX., dated \& Dec. I854. Previously, for at least 600 years, the doctrine of the lm maculate Conception had been canvassed in the theological schools, and had from an early period in the Church's history been entertained with more or less definiteness by eminent Fathers of the Church and other ecclesiastical writers. The most notable passage from th : writings of any of the Fathers relating to thi. subject is. doubtless, that quoted from St. Au. gustin's treatise on 'Nature and Grace' (c. 25) in which he makes an exception of Mary wher he declares that all mankind are in sin because of Adam, "except the Holy Virgin Mary," he writes, "concerning whom, for the honor of the Lord, 1 would have 110 question at all raised in treating of sin - nullam prorsus, cum de peccatis agitur, haberi solo quastioncm."

In the I2th century the great St. Bernard protested vigorousiy against the usage of certain churches of France in commemorating by an ammal festival the Conception of the Blessed Virgin: but the ground of St. Bernard's complaint was, not that the belief in the Immaculate Conception was erroneous, but that the See of Rome liad not signified its approval. At the same time St. Bernard refers the whole matter of his dispute with his opponents, the canons of Lyons, to the judgment of the Holy See. The atthenticity of his letter has been disputed, but on grounds, as Benedict XIV. implies, absolutely insufficient. Throughout the 13th and following centuries the doctrine of the Immaculate Conception was a subject of keen disputation in the theological schools, its chief advocates being theologians of the order of the Franciscans, its opponents the children of St. Dominic. But the doctrine won grommd steadily. In I43? the Council of Basel declared it to be ${ }^{\prime}$ A pious doctrine consonant with. Catholic faith": the Conncil of Trent abstained from formally approving it as an article of Catbolic belief: but in their definition of original sin. the Triclentine Fathers took carc, with St. Angustin. In except the Blessed Virgin out of the number of those bearing the stain of original sin.

IMMIGRATION TO THE UNITED STATES

At last, in IS49, Pope Pius IX. judging that the time had arrwed for expressing the mind of the Church upon this question, addressed letters to all the bishops of Catholic chastendum inviting them to report the opinion and feeling of their respective churches regarding the expediency of declaring the doctrine to be an asticle of Catholic belieì. Five years were allowed to elapse beiore the nexi step was taken that of pronouncing with the unanimous consent oi the chief pastors throughout the world and of the churches, the dogmatic deriniticn that "the doctrine was revealed by God. and therefore should firmly and constartiy be believed by all the raithiful." To catholic-minded men, sayis Cardinal liewman (Apologia p. 279). "there is no burden at all in believing that the Blessed Virgin was conceived without original sin: indeed it is simple iact to say. that Catholics have nct come to believe it because it is defined, but it was denned because they believed it."

Joseph Fitzgerild.

Immigration to the United States. The subject divides itself broadly into seven heads: (I) the general nistory of the foreign infux, its numbers, fuctuations, and canses; (2) its relation to the previously existent population; (3) its sources, and ibe changes in them; (4) its distributnon, the changes in it, and the constituents of the population due to it: (5) its industrial character; (0) its social effects, in occupaisens and wages of the native popuiation, politics, crime, insanity, pauperism, and illiteracy: (7) the legislation with regaid to it , and the public ieeling which produced the legislation.
I. The same causes which were bringing a smali but steady stream oi Eusopean emigrants io this country beiore the Revolution continued to operate aiter it. From $1-83$ onward. it was estimated at 4,000 a year till so4, when the French-English war raised it io 10.000 . It d:opped again to about 6,000 a year til! isós, when the British and French Continental blockades and the American Embargo practicaily annitriated it i-r a decade (Sce Exbargo.) In IN:0 the p-sienger arrivals (including returned Americans) rimmbered roward 8.000 in 1817 22.240. The numbers and hardships ircon overcrowding drew out legislation roted laier: and ir m I Oct. 1819 accourt has been kep? at all customs ports of the number. sources. and condirime ci arriving alions. The i llowing table gives the umbuer in each year since.

Totals since 1820 . 20,952,46;. But it must be remembered, first, that up to 1856 the record is of all 'alien passengers arrived." whithout discriminating passengers irom immigrants, so that much should be abated from this total; second, that the immigration overland irom Canada and Mexico is mot counted in - and in 1900 Canada was put down as the bisthplace of 1,183.255 persons, and Mexico 103.445 - 50 that a great amount should be added to the total. On the whole, it seems probable that these accessions have tar more than balanced the above duplications, though not the other duplications of the same emigrants coming and going.

IMMIGRAITON EY DECADES.

21-1830	123.439	1851-:S:0...... $2.318,5=4$
1831-1840	E99.125	1871-8830....... 2.882.191
184,-1850	.-13,235	183i-1800...... -
1551-1860	,39S.25	1891-1900...... 3.8*

Since 1900. 1.993.70-. or liali as misch in the past inree years as in the whole previous decade. The number or arrivals reported in 1503 exceeds the larges; number for one year (IE\&2) by 6S,0ミ4.

The barest gance at the firs: table shows that it has eight well-marked periods, though with notable fluctuations within them. The first is irom the beginning to 1826 imclusive, with a slow increase to about 10,000 in 1,-94. Thence to the end of 1831 it rather mure than doubles; probabiy irom reports of the iertile lands ju:st reachng a wider stratum of peoples, and the miserable European industrial conditions of the time of the Holy Alliance. Then with a sudden bound it aim st treb es, and with a slarp drop airer the panic of $18: 7$, rises to seven-i, Id in 18.46; the first leap perhaps due to the opening up of the West by steamer navigation, the steady increasc dure to the s.me and to railroads making the central iatu's easy ui access. TI c Irish famine then begins t- well it to a torrent, shostly increased by the California $g-1 \mathrm{~d}$ disenv:
 The sudden drop ihen, and it continuance leter, may de laid id sereral catses. The anti-i rcim asitation in this c untry, owing to the flod of insugners demoraluzing politics and induatry prohably had much effect: then the busines: depresion of $18:-$ and the following years, mersing into the liar. kept it down in spite of the efinets of the steamship agents. now penetrating every country for business. Later in the WVar. the scarcity of labor here, owing to the drain of the able-bodicd. drew in a larger immigration of lahnerers: but the new period fairly begins nn?.: aiter the War. From ti86 to $15 ; 3$, the gro.
inflation time, when countless new enterprises were started and new raihoads built by thonsands of miles, was maturally a palmy time of immigration. Then the great panic and the ensuing hard times struck it down and kept it down till 1879 . The revival in 1880 brought it back instantly to the mark of eight years before, and two years later it reached a climax not again attained till 1903: and it has never gone down to near its old mark except for two years, I897 and 1898 , the drop $1894-8$ being due to the panic and hard times. Of course each increase tends to widen the next, arrivals encouraging others to come.
2. The following table shows the number and proportion of the foreign-born for the past halfcentury, and also the native-born of foreign parentage, single or mixed, for 30 years, indicating the foreign strain in American blood.

Census years	Total Pop.	Foreign-born		One or both parents foreign	
		Number	Per cent	Number	Per cent
1850	23,191,876	2,244,602	9.7		
1800	31,443,321	4,138,697	13.2		
1870	38,558,371	5,567,229	14.4	$10.892,015$	28.2
1880	50,155,783	$6,679,9+3$	13.3	14,922,744	29.8
1890	62,622,250	9,249,547	14.8	20,676,0.46	33.
1900	76,303.387	10,460.085	137	26,198,939	34.3

Comparison of this table with the first two shows some striking facts. In 1850, of the $2,500,000$ (about) who had come into the country since ISiz, only one tenth were dead or had re-emigrated in the 35 years. It is true that nearly one half the whole had come in within five years; but even so, this is a sutspicious showing, and suggests a large overland cmigration from Canada (especially during the gold fever 1849-50) which does not figure on the records. Every succeeding census has shown a large and increasing discrepancy between the arrivals and the remaining foreign population, the falling-off being sometimes difficult to explain except by duplications, re-emigrations, and a heavy death-rate. As the grandchildren of the arrivals of two generations ago are now "Americans," the percentage of foreign-born is not rising, and even that of the whole foreign-
ments were still much the same: Great Britais claimed nearly $2,500,000$, or 60 per cent, Germany 1,270,000 or over 30 per cent. None others were of much account. In i8jo the totals were much larger for the older elements, but the British percentage was dropping, and other elements coming forward: Great Britain and Canada slowed 3.120,000, or about 55 per cent; Germany I,690,000, about 30 per cent as before; but there were nearly 250,000 Scandinavians against sone 60,000 the decade before, and 40,000 Bohemians. Of the Canadians, probably I 50,000 were French. In 1880 the still increasing British and EnglishCanadian contingent showed about 47.5 per cent; the Germans holding its own well, some 30 per cent; making over 2,000,000 in all. But there were 85,000 Bohemians, 48,000 Poles, 440,000 Scandinavians, 44.000 Italians, and 35.000 Russians. In y 890 the change was marked, though the Teutonic strain was still farther to the tore: the Germans and German Swiss and Austrians footed up nearly 3,000,000, or about 33 per cent, Great Britain and English Canada furnished about 2,700,000, now only about 29 per cent. But Poland, Russia, and Bohemia now showed nearly 450,000; Italy, 182.500; Hungary, 62.435; Austria. 123,271, much of it Slav; Scandinavia, 933,000 . In Iooo, the tendency had become so striking as to necessitate a further grouping for clear perceplion of its meaning: Poland, Russia, Bohemia, and Hingary in a word the Slay countries - were the birthplaces of over 1,000,000 Americans, nearly 10 per cent of all our foreignces; Italy of nearly 500,000; Mexico of over 100,000; Scandinavia of over 1,000,000; France and French Canada of about 500,000: the whole representing nearly as great a share as Great Britain. If the showing is by immigration and not by the masses still living from the old immigrations, the account is far more impressive: the percentage of Great Britain had sunk in half a century from over half the total to 19.4 per cent ; of Germany, from 38 per cent to 14: while the Scandinavian had risen from a neglectible quantity to about 10 per cent of the whole, and the East European, from practically nothing, had risen in the decade to $1.186,000$, or nearly 3 I per cent. The following table for half a century by decades, and for 1901-3 separately, tells its own story:

	England and Scotland	Ireland	Germany	$\begin{aligned} & \text { Norway } \\ & \text { and } \\ & \text { Sweden } \end{aligned}$	Italy	Russia including Poland	AustriaIlingary
1851-1860.	423,974	914,119	951,667	20,9.31	9.231	1,621	.
1861 -1870.	606,896	435,778	787.468	109,298	11,728	4.536	7.800
187 I -1880.	548.043	436,871	718182	211,245	55,759	52,254	72,969
1881-1890.	817.357	$655,4 \mathrm{~S} 2$	1, 452,970	568,362	307.309	265,088	353,759
1891.1900..	342,357	403.496	543.922	325.943	665,668	5S8,866	597.047
1901.1903..	64,065	$94.54{ }^{2}$	90,041	144,5.17	544,993	328,697	491,380

parentage class is but little greater than that of old, under the enormous flood of immigrants.
3. Nost of the early arrivals came from Great Britain; about 110,000 , or 76.5 per cent, from 1820 to 1830 , while Germany sent about 10,000. In 1850 the foreign-born of AngloSaxon blood, English, Scotch, and Canadian, must have been over 750.000. While that from Celtic Ireland was probably 650,000 - about 60 per cent from all Great Britain; the Germans furnished 584,000 , or 36 per cent. The Teutonic blood was overwhelmingly dominant still, and the Anglo-Saxon largely so. In i860 the ele-

A still further condensation will present the essential elements even more clearly:

	Teutonic and Anglo-Celtic	South and East European
1871-1880	1,914.34 5	170.982
1881 -1890	2,494.171	926,116
1895-1900	1,615,718	5,841,58t
1901-1903	393,195	5,365,070

Nearly as many lave come from southern and eastern Europe in the past three years as
in the enure preceding decace; while the Teutonte stram, even when remiorced by the great Scardinatian flood, has dropped to less than a if urth of that, and less than a sixth of what it was 20 years before.
\div The distribution of this mass of immigrants in the Cnited States may be considered in various aspecte-of foreigners as a whole. and ei special races: of iorelgu-born as bearins on politics and mdustry, and of all with tmmediate foreign blood as bearing on heredity and sociol gy. Here we shall consider both; the latier is some extent, but the second iret. In
 parertage, abou: seven eighths were in ibe North Atlantic and Siath Cearrai dinisions. where are the great manuacuring cities anc abundace o fertile land. The first division had signtily the more. Oniv 1.050 .069 were in the Suwh Atlanal and Suath Cental divisicas rogether. Oi cities, too many to ment: \because have a maiority of thes population of foreiga pasentage: of cities with 25.000 and orer, br the censts oi 1y00. 93 bad orer 30 per cent, and is cver 下: while 0-Fall River, He woke and Lawrence. Mass.. Hoboken. N. J.. Wo nsecket, R. I.. and Mimankee. Wis.- had over हo per cent. The highes: percentage was in Fal River, So.1. Oi Massachtsett:" 20 cities of this size, only i. Haverhill. had less than hali of foreign parentage, and that bac te-9.

Oi course these figures. which seem very large, have no bearing on the question it Americanism is feeing ot action. The chuldyen of iurengri parents are not less intensely. American than those of natwes: it then cma coumtry. The figure: or actua! Soreign birth are very dufferent liorth Dakota still leads, but with only 35.2 per cent: Rhode Is'and 3I.t. Massachuse:\% 29.0. Connecticur 20.1, New York 25.9,
 heve a majority of ioreign-born, and but one over io per cent. But this concentration of the sreign-b in in the cities is prectey dre of the gravest elements in the pr blem. In tor principal cities in tgoo was neazly half +9.2 per cent - ci the t-tal foreignt mo makagg 20.1 of their population, aganst $0 . \frac{\text { per }}{}$ cent if the tutal in the rent if the country.

Of the nationalities which have formed 'col nits in the ditierent places. th se with the ltsi under-t.ed tungues are if of urse the most pr-minent. Religia is cicas: hu polent. as well a- poxim:ty: thus the French Camdians beep : getler $\mathrm{a}-\mathrm{R}$ man Cat' $\mathrm{ic}=$ and ni \because ly ira New Eraland as nearest bome. The Itulians. city m ve tian iarming i k, are mise numerous in New Y rk. Busen. Chicago. New Ortans,
 azthu'uri-s. in Nivamsin, Manesora, and the Wah $t=:$ the Prle city men chictly in Nw Y゙ris, F aton. Phiadelphia. Chicar. If wa kee. D-rir. M vea and S. Pau : the Br -amans in Xul 1 in. Chings and Cevel.al: te Esert in Now Mirk, B : n, the C nneet:
 the We i $n=4$ Con an miners n it y in te Puily wamia sints. In 20 civies ri -rish the \because, gi co a srecial repet the r n- prod monate lira a cther foreimes

 pe-sun: ... 1 :n of the whole itreign pcpu-
lation, is in Cincinnati. Nilwaukee having co.5, L usville 5 S. . and S:. Louts s2.8. The Irish nave a majority in 9, the chici lead beins in Cambridge. Mass.. 36.0. The French Caradians predominate in Fall Rirer and Lowell, Mass., cotton-mull cities. with 40.3 and 35.8 per cent. The Swedes thave the greatest number in NinL.eapois, 32.8 per cent.
5. The question of occupations of the for-eign-born is of the first importance, as bearing in that of wages. whicin they are supposed to !ower. We have to discrimiate between several facts in this: (I) their distribution between cecupations: 2) the total number of working age; (3) their concentration in cities where most of the manufacturing is carried on. The dust has already been shown. For the others, the givernment volume dealing with the census of fyon is nut yet issued: but that of 180 in this regard probabiy diz̈ers istle. The report of the occupations assigned by intending immigrants year by year gives litule help. as they d-iit nto various occupations; but it may be said that in Icoz, of +5.500 male adults, only so.coo were skilled laborers, and less than 3.000 prefessional men. This is natural, the beiz men being fairly placed at home, as a rule. In t\&oo, wh:le the foreign-born over 15 , ormed 22 per cent of the whole population of that age. they iormed 30 per cent of the domestics and menials. ane it per cent of the hands in the manuiactories. In special empioyments, they showed far more striking iotals. They formed -1.I2 per cent of all tailors. $\equiv 0.52$ par cent of bakers. 53.13 per cent of huckiters and peddlers. 49.00 per cent of restautant and saloon keepers, 4-.02 per cent of lea:her-workers over 46 per cent each of stone-cutters. texti e-mill hands, and cabinetmakers, and $H .5$ per cenit of gardeners, flonsts, and that class.
6. As io social effects, where the ineionbern are of moderate numbers. and do net increase faster than the gereral development of industries, they can hardiy depress wages much; and two of the complants made against them that they lower wages by willingness to accept a poor standard of living, and demora ize industry ty readiness to strike - cancel each other. They cann t at once be satisied with poor pay and unsatnstied with fair pay. But when concentrated into special cocupations. in the cittes. as the enormpe tailoring contingent in the sweat-sh ps, where for a ture they are willing to work for starration wages to get on their feet. they can and do fir a considerable time ruin all dectat workers' prospects. depress wases below an endurable point. and drive native or better-graule foreigzers out of the trade, aiter extrente distres:

P itcaly, facts do rent warrant the belici that the freigh element exercices the corruptis intuence enth- by is rance is venality, that is ifien aterbuted ic It. There are no w. rap gremed as mi re c rrupt cuties in the U.in than : me where the inreign element is re sively small: n-r is there any emdence that as a wh e they are mire castly swayed by apreals sulfishes: They are, however, the chief ince fuen ni political and is distrial mes

Recardins crime the usual statistic= are mis'endine binth inr and against the immigrants. On he one hand. they restrict the rec rde th the seri is crimes, in which the native-born

IMMIGRATION

"tough." from his rearing and training into thorough knowledge of his surroundings, and superior chances of escape, naturally takes the lead: while the foreigncr, from his great predominance among those with short sentences, semes to swell heavily the volume of petty crime. It is believed also. probably with truth. that the na-tive-born of foreign parents are worse than their fathers and rastly worse than the native white. On the other hand. the statistics of crime are for the whole population, not for the adult males of youth and middle age, who mainly commit it : on the same basis. the foreign portion makes no worse showing than the native. Still again, it is believed that the fact of the foreign population being mostly of the lower orders in wealth and social position has much to do with it, and that, class for class, there is little difference.

In pauperism, there can be no question that the foreigners, mostly coming with nothing and having no friends to care for them. should swell the pauper population immensely. In 1890 there were over $33 / 4$ times as many foreign-born as na-tive-born panpers.

As to insanity, there is a considerably larger tendency to it in the foreigner than the native; most likely from greater average debility of constitution, which shows in the brain as well as in other organs. Between the ages of 25 and 55, the period which furnishes most of the patients, there was in I8go a percentage of insane foreigners more than lialf as large again as that of natives.

With regard to illiteracy; while the foreignborn white is naturally much less educated than the native, his children average fully as well.
7. The first legislation in the United States on the subject of immigration was of 2 March 1819, and merely provided that a record should be kept of the number of passengers arriving in each customs district. with their sex. age, occupation, and country of birth. For many years there was no thought of anything but exultation in the number of arrivals, as increasing the wealth of the country, and providing an asylum for the poor and oppressed. Ever the KnowNothing agitation of the fifties, prompted by political reasons (see American Party), led to no restrictive legislation. In 1864 the first immigration act was passed by Congress, and was to promote and not restrain it : this was repealed 1868. Several States established immigration bureaus to encourage it and draw it their way. On 3 Aug. ISS2 the first restrictive act was passed. but only 10 bar out criminals, insane, paupers, etc. Head taxes were imposed as a fund for relieving the distressed, etc. Foreign convicts (non-political), lumatics, idiots, and those liable to be a public charge, were to be returned at the expense of the owners of vessels on which they came. On 26 Feb. 1885 a more drastic one was passed, which was well meant, but from its sweeping character has been, as enforced by fanatical or interested persons, the source of much useless hardship. and has tended to make the country ridiculous. This was to prohibit any laborer coming over under contract to work: it did not except professional men or skilled laborers, and while it was aimed at strike-breakers and cheap gangs, was enforced agamst artists, musicians. architects. etc., and even clergymen, to the discredit of the country's good scnse. It has since been some-
what morlified. In risol the act of ISP_{2} was ex tended to other classes. ancl to all "assisted" immigrants not affrmatively slown to be without the terns of the act. This ate took the entire matter into the lathe of the general government. The act of 3 . Narch 1003 still further amended it hy reguring a preliminary inspection at point of departure and giving the govermment the right to deport the mmigrant landed in defiance of the act within two years after arrival; it also extended to all persons adrocating the overthrow of all gowernments and the assassination of public officials. The number of persons deported under the act of 1882 , manly for pauperism. had been 28,184 from ISigi to 1900 , out of $3.8+4.420$ immigrants.

The Law of 1007.-By the provisions of an act of Congress which took effect I July 1907. the tax levied upon every alien entering the United States is $\$ 4$, instead of $\$ 2$ as heretnfore. This law provides that the tax shall not be levied upon aliens who shall enter the United States after ant unintertupted residence of at least one year immediately preceding such entrance in Canada. Newfoundland. Cuba, or Mexico. Others exempt are such as are otherwise admissible residents of any possession of the United States, and aliens who have been lawfully admitted to the U'nited States and who later go in transit from one part of the L'nited States to another through foreign contiguous territory. Aliens arriving from Guan, Porto Rico. or Hawaii are excluded from the above exemption provisions, under special conditions.

The exclusives include. under the law of 1907, imbeciles, feeble-minded persons, epileptics, persons afflicted wit! tuberculosis and persons not in the above and other named classes who are found by the examining surgeon to be mentally or physically defective such mental or physical defect being of a nature which may affect the ability of such alien to earn a living. Persons who admit having committed a felony or other crime or misdemeanor involving moral turpitude are cxcluded by the new law, also persons who admit their belsef in the practice of polygamy; women or girls coming for the purpose of prostitution or for any other immorai purpose: persons who procure or attempt to bring in those of this last named class and persons called contract laborers, coming under some indacement.

An important provision of the Act of 1907 is that which declares "Wherever the President shall he satisfied that passports issued by any foreign government to its citizens to go to any comntry other than the United States or to any insular possession of the United States or to the canal zone are being used for the purpose of enabling the holders to come to the contincutal territory of the United States to the detriment of labor conditions therein, the President may refuse to permit such citizens of the country using snch passports to enter the United States."

For statistics. see 'Xonthly Summary of Commerce and Finance,' by the government : and U. S. Cerisus. 1890 and 1900. Sce also Reports of the United States Industrial Commission on lmmigration,' and the article 'Restriction of Immigration.' loy Francis A. Walker, in the 'Atlantic Montlily.' LAXV1I.. 23.

Forrest Morgin.

Immortality Lat immorialitas in 1 mor$\cdot .2 \%$ n : m rta:). The enc:rine that the Exul - : \because inues io exis: aiter death. or more specific.113. the d ctrone of eternal personal survival. I. ihe questra 'What becomes of the soul iver death? various answers have been given ty different phtosophers and civilizatons. The ni. st пา上eworthy of these answers may be y- uned as illows: (I) Complete annihilation the Materialists); (2) Survival of the soul ior an indefinute period in a world of filmy shadows (Aboriginal): (3) Eiemal existence in a moral world of retribution (Christian and certain idealiseic philosophies): (4) Iransmigratron (Ind.c. as early as the Lpanisbads: the Egypians. Plaio. the Pythagoreans. and sporadic amongst Abcrigines): (E) Absorption inso an Intinite or Absolu:e Being (Pantheism: the Buddhis::c Narvana, where the ind-vidual is annhilased only in the sense that the seed is anrihniaied in the iully developed plant.- he secd s life-gall; (6) The survival of the ind:vidual in the form of the posthumous induence ai his personality and achievement. which is scarcely more than a metaphorical use oi the :erm Immertality (many Evolutionis: Pesitivists: ci. also Ostwald, Mūns*erberg): - 1 Merging or diffus:on it the psychic enersy ́. the individual into an unseen hypothetical ctheric encrgy (quasi-materialistic)

Belei in some form of immortality is widespread, although not universal. It is iound in ali stages of civilization from the lowest form If aboriginal liie to the highest occidenal cul:ure. The doctrine varies irom a beliei in an indennite survival-period arier death to the beliei in eternal persertal life, the later being the legitimate use of the term Immortality.

Aberiginal Cralization.-Amongs: primitive perples, beliei in the survival of the sonl is due manly in fut things: (I) Their prevailing aninnism. which ascribes a soul to everything: (2) The then mema of dreams and apparitions: (3) The instinctive will to survive and the inainctive averston to annihilation: (41 The bel wit in the substantial character of the soul as an ent:ty. 'Li king at the religion of the lower races as a whule, we shall at least not be illadvised in aking as one oí its general and princinal elemen:s the doctrine of the soul's iuture lite (Tylor. 'Primisive Culture,' Vol. II. p. 19). By" icuture life" is not meant imm stality int the sirict =ence. but simply the soul's surv:val aticr ceath. Anumget aboriginal peoples we fint tw itrms of the doctrine: Transmigra: : ro and $t^{\text {'c }}$ inctependent personal existence of the soul. I: must be noted. however. that the d mmant tlea in the lowest civilzation is simply the e ninuance of the soul in a new life sumlar to the present life. The abode oi sus - usually in = me distant part of the earth. less ire tot:ly in the nether werld or the sky (some H ndus refscsent the seat oi happiness so be vaut m untain. on the North of India), where if irreuc- a life moduled aiter this hic. w:thout e hical enliring. To = me aborigines the dea of a bodile:- existence is unintciliguble or ludicreus (ci. Lu! bock, 'Orign of Ciwlization.' ミif ed. p. $3-$ -). In the Tonga Islands. the chiefs are thought to be immortal, while the common pe ple are held to be m rtal. Amonsst the Firana the belief prevails that everytning has -1:, and they even hope that every cocoanut
will be made anet in Paradise (Peschel. 'The Races of Man. 2 d ed. p. 259). They do not restrict future life to man or even io amimals. Is also the Itelmes of hamschatha belreve in the rebirth of all creatures 'down to the smallest Hy (Peschel. of cif. p. 259). The Fifiens think that as is their condition at death. so will their condition in the next world be. The invirm and diseased will find it difficult to make the long journey to Mbulu; consequently it is a custom to put the aged to death beiore they become too weak to travel. A common belief amongst some primitive peoples is that the individual has several souls, as amongst the Chippewa Indians, the Khonds of Hindus:an, and in Madagascar. The Sioux Indians believe that man has four souls. as has also the bear (in their view the mos: human of anima?:). The Iotemism of the Indians sests on the theory that the souls of ancestors have passed into the bodies of animals. Certain Eskimos put a dog's head in a child s grave, Decause the dog is skuliz: in find:ng its way and can guide the child's soul to the spirit-land (Tylor. of cif. p. 424). The Hottentots place the body oi the deceased in the same position as the embryo occupied in the mother's wamb. symbolizing thereby their belief that in the wimb of the earth's darkness the dead will mature and come to birth. The lower races. in general, regard the soul as a filmy body, $\therefore \varepsilon$., a curporeal entity capable of life and action, and needing. consequently, no bodily renerral. The idea of a resurrection of the body is however, oiten iound amongst primitive peoples, aithough it iorms no :mportan: ieature o otheir belief. as it does in the doctrine of immortality in Persia. later Indaism, and the Pauline Epistles. On the whole. one may say that the dirierence berween the concent:-n of lower races and that of higher civilizations regarding the immortality of the soul. is that the former $100 k$ upon the future lite as a continuance of the present type of senselife. with activities analogous to the present crass activities, a corporeally renined shadowy state, with a decrease in the struggle for exisience and an increase in the amount of pleasure. The higher civilizations. on the other hand, make the doctrine of judgment and retribution paramonnt. spiritualize the conception of the soul and its iuture life. climinate geographical definitemess from the soul's abode, and correlate the conception of immortality with a system of religion and ethics.

The Egyficl:s. In the earliest known civili--ation of Egypi, the protlems oi relng n and wolat-lagy were central interests. In the remites: period of their hisiory, the Egypians teineved 18 an invisible deity or deities and ? the finture life of the soul. The human soul is i the divize sabitance. an emanation from Ammon-Ra. At death it passes to the seat ui fudgment at the gateway of Amenti (the Helienic Hades) and there it is adoudged by the 42 assessors (representing the 42 sins of which the soul must be innocent) oi the dead beiore the supreme iribunal of Osiris. The soul that is pared pure at the judgment returr:s to its divine origin, while the soul that has led an impure life is condemned to reincarnation and pasies into an animal life to atta:n purification thre ugh probationary metempsychosis. The theory of the iuture life of the soul amongst

IMMORTALITY

the Egyptians is based on the metaplysical view that the sonl is an emanation from an original cosmic soul, on the ethical view that the present life is a prolationary period, and on the conception of the moral fitness of the soul for reabsorption into its original source, the simbgod Ra.-the head-spring of all light and life. (Sec 'Book of the Dead.')

Hebrews.- Sheol, or the realm of shadows, appears in the carly history of the Jews to be an amplifieation of the idea of the grave, as the dark aloode of departed spirits, where souls dwell bodiless, unconscious, without feeling. The references in the early part of the Old Testament Scriptures to a future life are rare and vague, and the doctrine of the immortality of the soul is nowhere explicitly taught in the early books. The rites of necromaney were discouraged by the prophets and lawgivers of ancient Israel as antagonistic to belief in the God of life, whose realm excluded Sheol (or the realm of the dead), until post-exilic times. Eternal life belongs to God alone, and to those celestial leings who have eaten of the tree of life and live forever. In comnection with the Messianie hope and under the influence of Greek and Persian ideas the later Jews adopted a doctrine of resurrection of the body which made room for belief in the soul's continuous life. The Cabalists took up the doctrine of transmigration (Gilgul, "rolling on" of souls) according to which the soul of Adam passed into David and shall pass into the Messiah, as is mystically set forth in the letters of that name (Ad[a]m). The Platonic doctrine of preexistence is also found in the rabbinical philosophy. Immortality conjoined with the dogma of the resurrection is the prevailing conception in the post-exilic literature, the latter (resurrection) becoming fixed in the Mislna and liturgy. Since the time of Moses Mendelssohn, who rehabilitated the doctrine of Plato in his 'Phædon,' progressive Judaism tends to lay less emphasis on the resurrection of the body, and greater emplasis on a purely spiritual immortality, the former dogma being discarded in the Reform rituals.

The Grecks.-The origin of the doctrine of inmortality amongst the Greeks is lost in the remotest antiquity. It is found in the early traditions of the Orphic and Dionysiac mysteries, in the poems of Homer and Hesiod, and forms a central tenet in the philosophy of Pythagoras, a contemporary of Buddha-Sidthattha and Lao-Tze. The view of Pythagoras includes the doctrine of transmigration, which may have been suggested to him by the theology of the Orpbic mysteries or by Pherecydes, rather that by the Egyptians (ef. Zeller, 'Pre-Socratic Plifosoply,' Vol. 1., pp. 7r. 514). The great problen of a man's life is moral purifieation, which he pursues in a divinely governed Cosmos, where his chief end is to become like God. The soul is imprisoned in the body because of sins committed in a preèxistent state, and after death passes into a superior or inferior state, according as it has served Good or Evil. In the ascending stages of metempsychosis the sonl is prepared for moral relemption. Although the belief in some form of immortality prevailed amongst the Greeks ihroughout their history, and probably came into their philosophy from their religion. it was not until Plato that a
philosoplic basis was furnished to the doetrine. The Platonic arguments for the immortality of the soul may be summarily stated as follows: (I) The faet that the mind brings to the study of truth a body of interpretative principles and axioms with it, as part of its native endowment, shows that they can he only reminiscential and, therefore. derived from a prëexistent state: (2) The soul is an ultimate unity (i. e. monadic in character) and, therefore, not being composite or divisible. it cannot be disintegrated; (3) The soul ($\psi v \chi \chi$) means the "principle of life." having the iflea of life essentially immanent in it, and mseparable from it, and therefore it must exclude the opposite idca, death; (4) The soul is self-moving, deriving its activity from within; consequently its motion and therewith, its life, minst he perpetual: (5) The sonl as ant immaterial reality is essentially related to the immaterial, invisible, eternal idea; and as the former is akm to the latter in nature, so is it also akin in cluration; (0) The superior dignity and value of the soul argue for its survival of the crass body, and even the crass body persists for a time; (7) The cyclical movement of nature shows cverywhere the mintenance of life by opposition, as riight, day; sleeping. waking; the dying seed, the germinating flower. This is an argument from analogy: out of the decay and death of one living organism, a new life is gencrated; (8) The instinctive aspiration of the soul towards a future existence shows that the belief is founded in natural law; (9) Things that are destructible, are destroyed by their peculiar evil or disease; the peculiar evil of the soul is vice, which corrupts the soul's nature. but does not destroy its existence; (io) The world as a moral and rational world demands a future life of rewards and punishments for the rectification of inequalties in this life. else the wrong would ultimately trimmph. as in a bad play. This argument is based on the ethical claim that there must be a final equivalence between inner worth and external condition or reward. The views of the Greeks, and especially the views of Plato, have had a profound, an incalculable influence on Cliristian thought, on early theologieal formule, and on the sum of oceidental philosophy. Plato was not merely a framer of philosopliy, an intellectual interpreter of reality, but still more a man of religion, a seer.

The question of the preëxistence or survival of the soul is not a scientific problem. Positive science is impotent either to prove or disprove the dogma. It is a problem for religion, and its ultimate appeal is to faith. So long as science keeps within its borders, it is neither philosophy nor religion, and has no verdict to pronounce upon ultimate reality. The dogma of immortality in the higher civilizations is largely based on the philosophical theory of the ideality of human life, and on the demand for an ideal completion of experience which involves a transexperiential world. It is a postulate of purposiveness, of teleology in the ethical realm.

The general tendency of modern biological science and cerebral physiology has been to discard the doctrine of immortality, although the relations between molecular movements of the brain, on the one hand, and thoughts and feelings on the other, are known to science
 ir rua has excearored io trat the fanss

 nt. dow
 unsen". w ild. is m which the itrown vistle mrs!' has artsen and on which we must resor: iat the -gn ? Emo'ecules as well as fir an explanatin the grove that amimate these mer
 physic:ses suy that the uhtimate urseen un...--se onnected hy boeds of energy with the risble taiverse ard ó capabie of receirias eners. from i: and of tanstorming the eneror tous received. To siy tha: the risible world is etthe: evera: :has the power ct aramating lie. emaradiens the res \vdots obsermation and expertment hor, at
 ursen universe os necessaty or expian the ern-
 an : the uly method o avniting a bieak in the catinuity ereaity. The isw the consetva-
 (every hurag being presurfores on antecedent 1:ie : ard the law of contimuty libere is 30 b:cain in realiey, the ouncrie is of a precel mane the assuraption of an unseen universe the easiest mode f expani-c the emprical. Forther the pos:ulere of a ra:icnal cosmic energy is necessitaied by the roiered characte= and :rrereat seleolngy ci realur. The lew of coctunctiv and consevaricn ni energy necestituie the further conclution that the pitchic ene-ry c: the indivitual is -: hes u: tran-mured int the unsen π r! "
D....ne the tien century an, the eatly part of the toth. the dyma iof immortal:y was wide'y ticu-nci. The Fremeh razetialise denied the doctine in every firm, regarema the paychac life pure! y as an equnic function In the :ystem lemou Eohelmay ant Enimrism $:$ flace i o the dowine is found. In Fichie's idea"sm the creative Eze is ar the indiviual. hat the absilue Es- : the !adiv:dual Egर yeailises itseif aniy by nezates its indivdu=l:y, hy wiversalizirg itself. and the Eq :bus
 ture- - all etemity, as an indestrac:ble par: \because the really :he theolute Enn. Hegel pand i:x:e attertion is the poslem. bu: the early Heselans soit tato iw factions the the afirming and the ther denynn the d.crine (ci. Fewe:l-ch. Rictuer. Weroee. Gasthel. C amdz. Io Lere: tele gial ideatim the immont ay othe s.in when is har 'y fore thar. cosoly me \cdots - dh : : ind a : e princip'e st valu:

 n. ay seat all hman sotals are imm stal.

 Immeraloy : e immiraluy is stmpiy a 5--1

Atorrsokam stimiso demmeranom

 finie pertaluts. a. ex. ininite periectlly
 The laws 0\% the moal itie are diawn it in ransuendenta: sphere tive stom conditions os :tme and space. and so the very essence of tran. mol being is invezed with the eternal. Mon is infintely songeessuve and periectuble on bus =. ro. and inte"ectual evolution, and this fact y.u.s incurizabiy to a Eurther extsience. If Peath were the end. the moral ideal would be it revry. and man would perish a irasment. An trir se mral imperative implies an trinite mrat abtioy. Dut demends moal pertecticn. Forter. the moral ideai :s a character-ideal.
 sha destry, and the now-il'usariness of the
 tdea.

Ore may taidy sey that since the time - han the drmazat aise in the dicuse:a arl:y has heen ethical. The main posutates on which faith :n the digma bas beer based :n the lase literwore o the sub:ers are the moral perそection İ a W :-Id-Goveनas. the tasto rati hality ci the universe, and the worth it: humaz lite ci. Gudica. Immotality and the lew Theadicy. p. $\frac{1}{0}$

The adroazes of paychical nesearci: claim to find in spitisistic phen mema a proci not only tor the existence ct tisemb-died Epitis. but aiso \%- their power : comaun case with spirite sill ircarnas. The examizazons of these phenomena. however. is E s yei in an uratiofactry stage and in any case the pien mena. so la: as we know. have 10 bearirg on the protion of the duration à survival.

The chici tradit:nal arguments adduced in support of the docrine are: II The ontategical atgument. which bases immottalty by the immateriality simphity, and irreduci-
 arguraent. which empoys the oncept of min's desory an ínction bus depositun to itee homset mire and mre fonm the cradiat ns of time and space, and to develop complezely hes intelectual and m oral p *ential:ies. which devel pmen: is :mp sishle tuder the condur: ": i earshit Itie: 3 The the legical argument: the wisd in and ristice of giarantee the self-reatization oi per:onal beines wh to he has oreasec: 4 The morai argumene i i, the mral d mand Ir the ultimate equivalence of personal deser:s a fewands, which equisalence ts not i whe in :1. If: 5 The lis ricl argument: :ne iac:
 in z :a :) be leep-sezied in human nature and the h s: : : ca. ǐc: ! the reiurrection it Christ and the staremer:s of the Jew Testamen: Sonp:ures.

As to the awtorde co men :n the presen: the Fwalls the durnne Os'er (Esience and Im-
 pater: 1 The Gaitionians of fors 综 Yt stis xwit If. . ε the Sciert -: wh tuty tie H w in the universe and wh resard - ${ }^{3}$ ama as with ut the pale if science.

 Wi the un veree, the my-rice wh llte by iath s Ha c:'e "w Il : "-lteve." who sead a purF. 17 man deongy a:ad tele. ay in the
 The Laodiceant, who s:udy neither the How
nor the Why of the miverse, who are absorbed in empirical problems and the sense-life; these have no practical concern with the doctrinc.

Biblography.-Alger, © Critical History of the Doctrine of a Future Life' (Ifth ed. New Fork 1889); Deussen, 'The Philosophy of the 'Tpanishads' (Eng. trans. by Geden. London 1906); Elbé. 'La vie future devant la sagesse antique et la science moderne' (Eng. trans. Chicago 1906): Fechner, 'Das Büchlein vom Leben nach dem Tode' (51 h ed. rgo3. Eng. trans, by Wernckke. Chicago 1006): Fiske, 'The Destiny of Slan' (5th ed. Boston 1885): Gordon. 'The Witness to Immortality' (Boston 1893) and 'Immortality and the New Theodicy' (Boston 1897) ; James, 'Human Immortality' (Boston 1898); Lubbock, 'Origin of Civilization' (6th ed. New York 1889) ; AlcConnell, 'The Evolution of Immortality) (New York 1904) : Jlendelssohn, 'Phaedon, oder über dic Unsterblichkeit der Seele) (Berlin 1767, new ed, by Badeck, Leipzig 1869) ; Nlyer, 'Himman Personality and its Survival of Bodily Death' (2 vols. London 1903) ; Münsterberg, 'The Eternal Life' (Boston 1905) ; Osler. 'Science and Immortality' (Boston 1904) ; Ostwald, 'Individuality and Immortality' (Boston 1006): Peschel, 'The Races of Man' (New York 1876) ; Pétavel-Olliff, 'Le problème de l'immortalité' (Eng. trans. by F. A. Freer. London 1902) ; Reynolds, 'The Natural History of Immortality' (London I891): Rohde, 'Psyche' (3d ed. 2 vols. Freiburg 1003); Royce. 'The Conception of Immortality' (Boston 1900) ; Salmond. 'The Christian Doctrine of Immortality' (Loondon I897): Savage, 'Life beyond Death' (New Iork I899) ; Seth, 'Study of Ethical Principles" (Edinburgh 1902) ;'Stewart and Tait. 'The Unseen Universe, or Physical Speculations on a Future State' (London I894); Teichmüller, "Ueber die Unsterblichkeit der Seele' (Leipzig i879); Tylor, 'Primitive Culture' (2 vols. London 187 I) ; Wheeler, 'Dionysos and Immortality (Boston 1899).

TVillam A. Hammond.
Professor of Ancicnt and Mclliceral Philosophy, Corncll U'nizersity:

Immortelle. See Everlasting Flowers.

Immunity. It has been a common observation that certain individuals are prone to the infectious discases, and others not. Some children in a family always "take things hard." while others are not susceptible. This resistance to the poisons of the infections diseases, or to the bacteria that cause the poisoning, is termed immunity. It is a relative quality of living matter, and is not confined to man alone. for lower animals, and even plants show marked variations in their reactions to chemical and organic poisons. Thus certain plants are capable of growing in soils impregnated with metallic poisons of sufficient strength to destroy animal life: many animals are immme to poisons that would kili man: thus birds are comparatively immune to strychnine; young children can take comparatively larger doses of belladonna than adults; the diseases of plants are almost unknown among animals, and aice zersâ; certain diseases affect the lower ammals and are rare or unknown in humans, and the reverse condition also holds true; thus swine plague is comparatively unknown in other animals than pigs. and such human diseases as typhoid fever and
cholera are not common in lower anmals: thus plants, lower ammads, and man, individnally and collectively, enioy certain relatace immanity from chatruction when exposed. ander ordinary circumstances, to disease-producing agencies.

Natural immunity maty be so modified as to be lost entirely, certain forms of clisease predisposing the sufferer to ready secondary infection, as, for instance, is secin when tuberculosis follows ineasles: or a partial immunity be made more effective or a new immanity conferred. This has becn termed acguired immunity: The evolutionary dnctrine would tend to interpret natural immunity as an inherited acquired immunity. In the case of man immunity sums up those powers of resistance which the body naturally possesses, or which it acquires in the struggle with infectious diseases. both in endeavoring to destroy the bacteriabacteriolytic power-and to counteract the toxins-antitoxic power. Modern pathology has shown that the battle-field is a large one. and that the opposing forces are numerous and their powers largely unknown; and it must be remembered that the struggle has been going on perhaps for millions of years.

The observation that certain diseases-as measles, scarlet fever, smallpox-once acquired, confer a marked immunity, led up to raccination, this inoculation against smallpox being the first conquest of disease by such means. It is certain that others will follow. Certain diseasesnotably pneumonia. influenza, erysipelas-confer an immunity, but it is not lasting; thus demonstrating the principles of variability in the "immune bodies" as a class, and of an active and a passive immunity which may be conferred by various means, an active immunity being acquired by the animal for itself by direct adaptation, a passire immanity being conferred by a body made in the blood-serum of another animal.

Former theories for explaining the varied picture in this rapidly widening study have been numerous. They may be classed under the cxhaustion theory of Pasteur. which assumed that the bacteria used up the available foodsupply and died; or as the laity often express it. "the disease wore itself ont." This theory has been thoroughly disproved. The retontion theory-that the bacteria are killed by their own prodnets-is also mintenable. The mechanical, humoral, and phagacytosis theorics, which teach that the bacteria are destroyed by the humors or cells of the hody, are partly trie, but do not convey the whole truth. which in fact may never be known. The most popular theories of the present time are chomical, and that known as Ehrlich's side-chain theory is uppermost in discussion. This theory is extremely chaborate, but its fundamental principle is that the bloodserum of man and other animals may be so modified, in whole or in part-experimentally played upon, as it were-that it can be made to overcome the effects of infections, of poisons. or of both? The devclopment of the diphtheria antitoxin in the blood-serum of the horse: to counteract the effects of the toxin of the diplitheria bacillus in man, was the first important practical deduction of this great principle. 1t was the first illustration of the production of a successful passive immunity in haman
pathology. In the discovery of the diphtheria antioxin it was hoped that all the infectious diseases were conquered, but this hope was premanure, as it was learned that cther diseases involved other factors of a more elusive character than the simple toxin. The destruction not only of the bacteria within the body, but the neutralization of the poison as well, was found necessary, and hence the terms bacteriolytic immunity and antitoxic immunity. Ehrlich's side-chain theory tries to explain antitoxic immunity in chemical terms. He asstmes that the cell-body has a number of side-chains upon it - receptors. as they are termed. These are capabie of combilling with food-products for the metabolism of the cell. There are certain receptors that can combine with toxic products as well. with damage to the cell. Antitoxins, according to Ehrlich. consist of surplus receptors made by the cell and cast off in the blood-serum. Thesc unite with the toxin in the serum, and thus save the receptors of the cell for their normal ioodtaking properties. Any surplus of receptors over and above those combined with the toxin molecules froating in the blood are available as free antitoxins in the treatment of toxin-caused disease.

The other phase of the subject of immunity is concerned with the ability of bodies themselves to destroy bacteria - bacteriolytic immunity. It is known that if the blood-serum of certain animals is injected into an animal of a different species, the red blood-cells of the injected animal are destroyed This process has been termed hamolysis, and is observed under other conditions, as in poisoning by drugs, such as acetanilid, sttlphonal. etc. A similar action of blood-serum on certain bacteria can be brought about by artificial means, thus manufacturing a bacteriolytic serum for use in destroying given bacteria in the human body. The various terms that are used in elaborating this hypothesis may best be expressed in the form of a chart, since in medical literature so many symonys have been in rogue.

Table showing various forms of adaptation products with their relationships and synonyms. (From Prudden.)
new era in physiological chemistry, and to link more closely than any other extension of knowledge in our time some of the most subtle and urgent problems of medicine to the wider ontlooks of general bioiogy:"

Consult: Welch, 'Recent Studies on Immunity" ('Medical News,' IS Oct. 1902) ; Prudden ('Medical Record,' I4 Feb. I903) ; Ritchie ('Journal of Hygiene,' Vol. Il., Nos. 2, 3. 4. 1902): and for general works, Flügge, 'Die Mikroorganismen'; Muir and Ritchie, 'Manual of Bacteriology (1903) ; Kolle and Wassermann, 'Bacteriology' (Igoz).

Smith Ely Jelliffe, MI.D.,
Profcssor of Bacteriology, College of Pharmacy, City of Siw Jork.
Impact, the action which results on the coming together of two bodies, one or both of them in motion. If an ivory ball fall on a marble table which nas a thin coating of oil, after impact the ball is found to have on its surface a patch of oil, which shows by its size that the ball must have been compressed at the moment of impact. When two bodies come into collision they compress each other at the points that touch until they hase each the same velocity; during this time of compression each body acts upon the other with exactly the same impulse, the momentum lost by the one being gained by the other; if now the bodies are perfectly inclastic no further mutual rebound will take place; if the bodies are elastic they will regain their old shape, and the mutual impulsive forces of restitution will cause separation. The impulsive forces of restitution are found to be less than those of compression; that is (see IasPCLSE), the momentum lost or gained by either of the bodies during the second or restitution part of the impact is less than the momentum lost or gained in the first or compression part of the impact in a certan ratio which is called the elasticity of the bodies. In a perfectly elastic body this ratio would be equal to I, in a perfectly inelastic body it is o.

Thus, when one ivory ball comes into direct collision with another of equal size at rest, the first comes to rest and the second moves in the direction of motion of the first vefore impact,

As Prudden writes, "there seems to be abundant ground for the belief that the protective agencies which are evoled in both natural and artificial immunization are simply those which the body makes use of in its normal metabolism. exargerated and diverted to different encls, it is true, in the face of emergencies, hut giving evidence of the bitth of no new physiological caftacitics." "The new methods of research and the far-seaching conceptions which they have stimulated and fostered seem likely to inark a
but with a slightly diminished velocity. When two equal ivory balls come together with equal and opposite velocities each returns on its old path with a velocity slighty lessened. Whe:1 D:te perfectly inelastic body overtakes or meets another directly the common velocity afier impact is cqual to the sum or difference of momenta of the bodies before impact divided by the sum of the masses.

In a collision of two balls not perfectly elastic it may be shown that the total energy of

IMPEACHMENT - IMPERIALISM

motion (see Exergy) of the two balls after collision is less than it was before, some of it having been converted into heat.

Impeach'ment, the accusation and prosecution of judicial and executive officers for misdemeanors involving an abuse of their official functions, or immediately connected with those functions. In Great Britain the tribunal before which impeachments are tried is the House of Lords. and the impeachment is made by the House of Commons. The person impeached may be either a peer or a commoner; but while a peer may be impeached for any crime whatever, a commoner cannot be impeached for a capital crine. The method of procedure is this. A member of the House of Conmons charges the accused with high crimes and misdemeanors, and moves that he be impeached. If the motion is carried the member is ordered to go to the bar of the House of Lords, and lay the impeachment before that tribunal. The lord highsteward presides at the trial. After the charges have been laid, and the answers of the accused heard, the lord high-steward puts the question whether the accused be guilty or not guilty of the crimes charged in the first article of impeachment to each of the peers in succession, beginning with the junior baron, and each of the peers answers "guilty" or "not guilty," as the case may be, "upon my honor." The lord higl-steward gives his own opinion after all the other peers. The same question is then put with regard to all the other articles of impeaclinent successively, and the result is declared by the lord high-steward. The question of guilty or not guilty is decided by a majorit ${ }^{7}$ of rotes.

By the Constitution of the United States the House of Representatives is given the sole power of impeachment: and the Senate has the sole power to try all impeachments, and provides that at the trial of a President the chief justice of the Supreme Court shall preside. Section 4 of Article II. provides that the President and Vice-President and all civil officers of the United States shall be removed irom office on impeachment for and conviction of treason, bribery, or other high crimes or misdemeanors, and the trial of officers by impeachment has been attempted seven times in the history of the Trited States. First came the Blount case. William Blount, United States Senator from Tenncssee, was in 1797 impeached for conspiring with British officers to steal part of Louisiana from Spain for England's benefit. The Senate expelled him, after putting him under bonds for trial, but his defense being that a Senator was not a civil officer liable to impeachment, on the question of jurisdiction he was acquitted. John Pickering, judge of the Federal district court for New Hampshire, being impeached in 1803 , for drunkenness and profanity on the bench, was convicted and removed from his office. Samuel Chase of Maryland, a justice of the Supreme Court of the United States, in 1804 was charged with having indulged in "highly indecent and extra-judicial reflections upon the United States government," in the course of a charge to a Maryland grand jury, and with other improper conduct on the bench. The impeachment proceedings, instigated and managed by John Randolph of Virginia, were
political in their origin and animus. Judge Chase was acquitted. The prosecution failed to obtain a two thirds yote against him on any one of the eight articles of impeachment and, resuming his seat on the benclh, he held it as long as he lived. Judge West H. Humphreys of the Federal district court of Temmessee, joined the Confederacy at the opening of the Civil War, and accepted office under it, without previously sending his resignation to Washington. He was impeached, mainly in order to vacate the office, and convicted on 26 June 1862. Andrew Johnson was impeached on 4 March 1808. He was charged in II articles with violating of the Tenure of Office act. with violating of the Constitution, conspiring to prevent the execution of the Tenure of Office act, and with utterances tending "to bring the high office of President into contempt, ridicule, and disgrace." This memorable trial lasted for mearly three months, and the ficrcest of political passions were excited by it. Thirty-six votes were needed to convict. No vote was ever taken except on the thrce strongest articles, the 2d, 3d, and irth, and on each of these the Senate stood 35 for conviction to 19 for acquittal, impeachment failing by a single vote. The seventh impeachment recorded was that of William TV. Belknap, secretary of war under President Grant. He was accused in 18,6 of corruption in office, and the House roted unanimously to impeach him. He resigned before the passage of the resolution, but, although his resignation was accepted by the President, the trial proceeded. The impeachment proccedings failed by the lack of a two thirds majority in the Senate for conviction.

Imperative Mandate. See Referevdum.
Impe'rialism, the national policy which tends toward the expansion of national domination and national ideas over a gcographical area wider than that of national boundaries. Thus ancient Rome extended her dominion and system of government, attended with her laws and language first over the whole of Italy, then over Sicily, Jorthern Africa, Spain, Gau1, Greece, and parts of Asia. Charlemagne's idea was to hold France, Germany' and Spain under one imperial head. Napoleon wished his empire to comprise all Europe. English nationalism has been partly a wide scheme of colonization, and partly as in India a plan for subjugating and Anglicizing a cluster of Oriental races. In the United States the term imperialism has been used in a more or less factitions sense. The avowed object of the government at Washington in the Spanisl1 War was the liberation of Cuba from the Spanish yoke. The term "imperialism" was cmployed as a political catchword in the presidential campaign of 1900 , especially with regard to the purchase of the Philippines. Yet the United States camnot scientifically be styled an empire, or likely to develop into an empire. The Supreme Court ori 2 Dec. Igot has, however, decided on the constitutionality of expansion. The principles settled by the decision are thus to be stated: (I) The Constitution does not follow the flag till it is planted on new territory by special act of Congress. (z) The extension of the sovereignty of the United States to new territory guarantees the enjoyment of liberty, the right to property and the protection ot the United States to the people thus affected in securng justice and public
order and promoting peaceiul progress. (3) The iscunds acqured from Spain by the trea:y ci Paris are 'propery of the Cnited States." an 1 Cingress can dispose of these islamde in any way conducive to the interests of the peoFie of the Cinited States and of these :annd.
a corviary of these propositions finds expressicn in the statement that the territory oi the Lnited Siases may be described under three heads: (i) The States. (2) Incorporated territuries. (i) Unincorporated territors. belonging to the Tnited States.

This gives to the nation :hree different classes of people dependent upon it: (t) Criizens rested with inil political perser, or the residents of the States. (2) Citizens of the incorporated tertitories, who are not veste? with full political power as long as they are residents oi the incorpcrated territories. is The people of the territory belonging to the tuited States, ${ }^{0}$ as such. who cannct become cirizens of the Lnited Siaies till Congress extends to such teriticry they occupy the privileges of the Cozstitution.

Impetigo, im-pè-tǐgō, popularly known as Pustllar Tetter, Honey Scas and Honey Sickiness, a shin disease found mosth in childien. consisting in an eruption of itcriang pustules, appearing in. clusters, and terminating in a yellew, thin scaly crust They anpear chiety on the head and iace, and sometimes on the bands. Fever:shness and sensations of chilliness accompany the diseasc. The treatment is both external and internal. the Sormer consisting in the apphcation of ontments, etc., and the latter in the administering of various medicines calculated to improve and mamtana the heaith of the patieni.

Impeyan (im'pian) Pheasant, a pheasant of the genus Lophopiorus generainy; specinically the species (L. imfcyunus) of southern Kashm:-, first brought :o notice by Lord and Lady Impey: These are a:mong the most splendidly cluthed of birds, rivaling the humming-birds in the brilliance of thens metallic hues. There are four or five spectes, each restricted to a particular regi n in st utheastern Asia. The Hımalayan species or Monal (L. refulecins) is the best hnown and is often exhibited in zonisgical gardens. The maie is perhaps the must gorgeous of the Phustandar, presenting a wonderful combination of sparking metailic purples, lices, bruwns and greens, with gulden and coppery renections and centrasting patches of showy white and deep blach; on the head is a cres: comp sed of long racquet-shaped ieathers. The femite is flamly colured. Higla up in the mountanno fear ti:e snow hre the monal lives during th. san mer. brecdua up to an elevation of 12.000 ict, l ut in the antumn, as the weather buc mis c id. it gathere into flocks and descen' - is the deen we ds or, in very severe Weat er, even th the chitarated lowlands. It buh suns a:d ficics switly, but is chictly terrestraa, and ieed-large'y on roors and erubs dug irom the es: und. The impeyan gheesant has the thack and whise areas replaced by golden gec a.

Implements, Agricultural. Sce Agrictitural Ma hinery and Taplements.

Impost, in architecture, the point at which an arcil rests on the colunn, pier. of wall. It is often marked by horizontal moldings, theugh these may be absent. Imposts have received rarious names, according to their character. Thus. a continuous impost is one in which the moldings are carried perpendicularly duwn the pier, as in the later decorated Gothic; a discontinuous imnost, one where the moldings abut, and are stapped on the pier: shaited imposts are those in which the arch moidings spring irom a capital and difier frem those of the pier.

Im'potency, a diseased condition of the male; in common law failure to consummate the marriage relation within three years is presumptive evidence, and constitutes a sufficient ground for divorce, or ann:ument of marriage.

Impress'ionism, the strle of painting adopted by the Impressionists, a group of modern French painters, who held their first exhibition in Paris in IS, - . This coterie included Claude Monet, Atired Sisiey, C. Pissarro, Auguste Pierre Renoir, and Berthe Morisot. These arists proiessed to bave cut themselves free from all traditions of color, line or technique. and to paint things, not from what they had learmed about things irom other painters, but from what tbey saw in things. Their one immediate impression of a landscape, or a group of figures. they would transter to the canyas without modifing one jot or tittle. "The Impressionist." says Theodore Duret, one of their earliest critical" interpreters, "sits down on the bank oi a river, and the water takes its tones, in accordance with the condition of the sky. the angle of vision, the hour of the day; the stillness or agitation of the air. Without hesitation he sets upon his canvas exactly all the tints and tones which he sees in the water. The sky is overcast, the weather showery, he paints the water steely gray. dull, opaque. The sky is clear. the sun brilliant, he paints the water sparkling, silvery, azure blue. The wind blows, he paints the myriad huses of the rippling suriace. The sun sets and darts his last rays into the water. The Impressionist smears yellow and crimson ou his canvas. The winter comes. The Impresionist paims the snow, and as he sees that shadows cast upon the snow are blue he unhesitatingly paint: blue shadows. Certain clayey soils seem to clothe the plains in lilaz. The Impressionist therefore paints lilac landscapes. Iat the summer sunlight under the dimlit arcades of green ioliage skin and elothes take a vi let tint. The Impressionist painrs them violet." The French Impressionists claim Corot. Courbet and Manet for their fathers in as. It is certain that they owe much to Japancse masters. "Beiore our acquaimance wich Japanese art. ${ }^{\text {p }}$ says the critic already , quoted. painting kept on its course of falsehood. and Impressionism was imp-asible."

Devertheless, 1 mpressionism is dying out. if it is not already dead in Paris, as Quiter some years ago stated. It has not raken any roor in E rland, where the Pre-Raphaclite movement. with its idealism. linked to its ireshness and originality of styie. was the most recent demimating innovation. Amons American artists it did, however, obtain some foothold, and Whistler, a great Anglo-American painter, began his

IMPRESSMENT - IMPROVED ORDER OF RED MEN

career as an Impressionist, and though he did not continue on the extreme icft of this radical school, he always was their friend and was willing to learn all they could teacin him. In New York there are some survivors of the school, and Twachtner and Chide Hassam were for some years its exponents, and the death of the latter so carly in life removed a really sincere and quickening influence in American art. It is certain that Twacintner never went to the extremes of the French Impressionists. He was one who felt their influence rather than a blind and literal follower of their theory. He was delicate and refined, as well as bold in color, and lie cultivated to perfection what the French Impressionists sometimes seemed to neglect,the sense of form as defined by the invisible line that divide the tones in a picture and in life, and which great panting defines with a magic and unerring accuracy that cannot be secured by danbing on the canvas a mass of tints in which color and value are everything and line nothing. Impressionism is chicfly notable as being a revolt from academic stiffness and conventionality, from slavery to certain pigments and methods of technique, long in use. It is a movement which lias added fresh life to art by teaching the painter to use his eycs, and to trust them. Compare Sabrin, 'Science and Philosophy in Art' (1886) ; Duret, 'Les Peintres Impressionistes' (1878) ; 'French Impressionism' (in 'The International Monthly.,' Vol. V. 1902) ; Duranty, 'La Nouvelie Peinture.

Impress'ment, The riglit of clanging one's natural allegiance (see Citizen; Embargo) was not acknowledged as a legal right in the 18 th and early igth century by any nation but the United States, which lacked power to enforce it against the world. Great Britain denied it, and Chancellor Kent early in the toth century admitted that the denial was common law. During the Napoleonic wars, that country in its struggle for life especially on the seas, demanded the help of all its citizens; and not only refused to recognize any ceremonies of naturalization, but seized its alleged subjects wherever it found them, searching neutral vessels on the high seas and impressing into its service whoever were clained as such. The naval officers were the reverse of particular whether they made mistakes and kidnaped born Americans, and many hundreds of the latter were impressed in this way. Not only this, but the right of search in itsclf, were rasping grievances which worked up the national temper to the pitch of explosion, resulting in the War of ISI2; the right of search resulted in the bloody outrage of the Leopard on the Chesapeake (q.v.), which was one of the chief agencies in bringing ahout the Embargo.

Impris'onment is one of the three classes of punishment for crime, death and penal servitude being the other two. It has always been a power inherent in courts of justice to imprison for contempt of their authority, and inder certain conditions for non-payment o[debt. In criminal proceedings a person may, by a warrant of a justice of วeace or magistrate, be imprisoned before trial, provided the justice considers it is not a proper case for allowing bail; and though in minor offenses an accused person may insist on being discharged on tendering sufficient bail,
yet in more serious crimes it is in the discretion of the justice to accept or refuse the bail tendered, and on his refusal application may be made to judges of the common law courts to accept bail. imprisomment may be with or without hard labor, or it may be solitary. Penal servitude may loe inflicted for life, or any shorter term, but in the case both of imprisonment and penal servitude the convict can at any time apply for commutation or remission. In police and other petty offenses tried summarily at common law and under a variety of statutes, imprisomment is usually awarded with the option of a fine. The unlawful detention of the person by any one, or "false imprisonment," constitutes a personal injury, and may be treated as a criminal or as a civil offense. See Deet.

Imprisonment for Debt is the restraint of the liberty of a clebtor in a civil action. An arrest for debt is usually made by some mandate of a court having jurisdiction, after the nature and amount of the debt has been established by due process of law. But sometimes a debtor is restrained of his liberty on a preliminary proceeding, by order of a court, for the purpose of holding him to bail. In the United States, imprisonment for debt is made only by virtue of statutory regulations, several States having constitutional provisions prohibiting it under certain circumstances, and seven of them having absoIntely prohibited restraint in any form of personal liberty on account of debt, by such provisions; namely, Alabama, Georgia, Maryland, Mississippi, Missouri, Tennessec, and Texas. Several of the States provide in their constitutions that there shall be no imprisonment for debt except in cases of fraud on the part of the debtor. In some of the States acts have been passed providing for imprisonment founded on contracts deliberately entered into, while others have provided that only absconding debtors shall be subject to imprisonment. The tendency of modern legislation is adverse to imprisomment for debt. Many of the States have provided in case of imprisonmont that the restraint slaall be made as free from indignity as is consistent with the safe-keeping of the debtor, and that his restraint shall be considered more in the nature of misfortune than as punishment for an offense.

Improved Order of Red Men, an American civic society, with benevolent and social characteristics, organized 14 Oct. 1833. Founded upon the manners, traditions and customs of the aborigines of the Western World, the Order adopted their unique figures of speech, which it transmits with historical accuracy. Knowing that some time the Indian race will become extinct it intends to occupy an original place in public interest as the repository of Indian customs, Indian traditions, and Indian nomenclature. The Order's motto is "Freedom, Friendship, and Charityo" Its interpretation, as promulgated by official anthority, may be concisely stated in these words: Freedom. in honor of that race to whom the forests, the plains, the hills, and the valleys of this land were as free as the air to the eagle, and in memory of the early struggles to wrest these UTnited States from dependency to foreign rule. Friendship, to commenorate the unswerving loyalty with which an Indian maintained a noble and unsclfish affection for him to whom it was plighted,
and which makes sweet and lasting the relations that one member bears to another. Charity, the dove expressed to a brother by those who mneet around the brighty burning council fire; the sympathy which is pleased at his success, and the iraternal affection that grieves over his sorrows and disappointments.

Goiernment.- The Order is organized along the jamiliar lines of civic societies. Its supreme power is the Great Council of the United States, and from this body emanates all authority for the establishment of loca! branches in towns and cities: also Great Councils in States and Territories and in the Dominion of Canada. State and Provincial Great Counciis, under restricied delegated authority: exercise governmental oversight, within their respective jurisdiction-similar to that of the Great Council of the Uniied States. Local branches of the order are: Tribes, Degree Councils, and Councils of the Degree of Pocahontas. The Great Council of the United States has for its chieis, or ofincers. the presiding and executive official, who is called the Great Incohonee: the Great Senior Sagamore, second in authority; Great Junior Sagamore, third officer: Great Prophet, who is oifen a Past Great Incohonee: the Great Chiei of Records, or Grand Secretary: the Great Keeper of 1 ampum, or Grand Treasurer: Great Tocakon, the messenger of the presiding officer. or Grand Narshal: the Great Minewa, an officer in charge of the inner wicket; and the Great Guard of the Forest, guardian oi the outer door. State Great Councils have chiefs whose duties correspond to the officers of the supreme body: as iollows: Great Sachem. presiding chief; Great Senior Sagamore. Great Jumior Sagamore, Great Prophet, Great Chief of Records. Great Kecpes of 17 ampun. Great Sannap, Great Mishinewa, Great Guard of Wigwam. Great Guard of Forest. The chieis of a tribe are: The Sachem, who presides; Senior Sagamore, Tunior Sagamore, Prophet, Chiei oi Records. Keeper oi IVampum. Collector of Wampum, First and Second Sannap, four Niarriors, four Braves, tise Guard of the Wigwam, and Guard oi the Forest. In Degree Councils the chieis governing them are similar to those of a iribe. The Cuuncils of Pocahontas admit white women to membership, and those of the order who have attained to the Chief's Degrec. The chieis of the council, whose duties are defined in an ornate ritual.are: Pocahontas, presiding officer: TVenonah: Powhatan. Keeper of Recrids. Collector oi Wamrum. Kecper of Wamrum. First and Second Scout. First and Secund Rumner. two Counce ors, four 11 arriors, G:ard of $11:$ mwam. and Guard ni the Forest. Previsinn las aisa been made for the establishment oi State Preat Councils of the Dergree oi Pocahnntas. similar in authority to those of the Tribal Branch. :he officer of which run parallel with local coustcils. The names of the chicis have the prefix of great." and these Great Councils are siver juriadiction over this desrec, all under the sorercienty of the Great Council of the Enited States. After varjous attempts to organize a branch for the "display element. ${ }^{\text {D }}$ lecislation created, in t Son, the Red Men's League, with a t:niform resembling the "Continental." and a perfect military code. Into this organization were merced prior unifnrmed hodics and henefrial councils. The adontion of consistent laws
at once secured a continued increase in this branch of the Improved Order of Red Ien.

Ritual. - The ceremonies of the Order are purely American. The ritual stands, and must ever stand, unique, and distinct, growing more raluable as the only realistic demonstration of those mystic ceremonies of the aborigines, which otherwise might iade into oblivion. Founded, as has been stated, on the manners, traditions, and customs of the American Indian, it portrays an existence more fascinating the longer it is studied, and gives the keynote to those bursts of eloquence which were at once the wonder and the admiration of the early missionaries. and of which the renowned aBlack Hawk" is a shining example. The work of the Order is divided inio three sections or degreesthe Adoprion, the W'arrior"s, and Chief"s.- each of whicb illustrates a phase of the characierisiics mentioned. The degrees of the auxiliary branches of the Order are written in harmony with the general theme of the original ritual.

- lomenclature. - The attention arrested by the recital oi this Order's official lite is greatly enhanced when its terminology is considered. The expressions used not only difierentiate the Improved Order ṑ Red Nen irom other civic societies, but these form links connecting it with prior organizations of Red Men. This is further outined in the "hisiory" following. Iime is not computed as in the common era. but according io a phraseology that has a hidden meaning and signinicance to the "initiated." Up to $186 玉$, the Jewish style, namely, the gear of the worid, was used in dating documents. This was superseded by a revised sysoem and "G. S. D.." or Grea: Sin of Discovery, was adopted, the year 1492 being considered G.S. D. I. For conventence the year begins with that of the common era, and the enumeration follows: A year. Griut Sin; a month, Moon; January, Cold IIoon; February. Smwa, Moon; March, IT orm Moon; April, Plust Moon; May, Flowier Moon; Jume, Hot Moon; July, Buck Moon; August, Siurgcon Moon; September. Carn Moon: Ociober, Traiciling ifoon; Sovember. Beat ir llaon; December, Huating Moon; a week. scöcu surrs: a day is a sun, and a night is a sleç, Noming is called the rising of the sum: evening. setfing of the sun; noon. high sur; midnight. lozt surn; an hour is a rnn, and a minute a breath. Examples: 30 July 1903 A.D. would be expressed as "zoik Sun. Buck Noon, G. S. D. $412, "$ 1903-1491 = 412 "Tribes.. shall. within two seven suns aiter the last council sleep in Hot and Hurting moons, transmit," etc. Vianspum Belt signifies treasury, and wampum or money is computed as follows: Fathom, ore dullar: f it a dimne, and an inch is one cent. To illusirate: "In case ihe wampum siaall at any time be reduced to a less amount than five icet for each member. or to less than so fathoms. the iribe." etc. Jon-members are called pule iaces; tribal jurisdicions are humfins grาumds: Great Councils governreser: uftoms; openimg and ciosing meetings consist of kindling and quenching council fires; minutes are called rerords; addresses or reports. falks or long lalks; attending to business is following the hwnf, and wronging ancither, crossing the path. If "iguam and tipee simnify the halls of meeting, and council chambir, a room therein. Voting is called fingging.

Historg:- An attempt has been made to establish a succession from the patrintic societies
of the American Revolution to the Improved Order of Red Men, but withont much historical basis. That such organizations existed, there is no doubt. Moreover, the War of 1812, with England, served to foster the assembling and banding together of men fired with patriotic ardor. It is quite likely these associations may have led to the formation of the societies of Red Men, - possessing the terminology hereinbefore mentioned, - known to have flomished between the years 1813 and 1830 , of which fragmentary records have been preserved. The impulse also may have come from the Tammany societies of the national period prior to 1812. A society of Red Men existed in Pliladelphia, Pa., in 1824, and there were branches in other cities and States at carlier and later dates; but the movement, which began in Baltimore, Md., in 1833-4, really seems to be the authentic date of foundation. The Improved Order of Red Men was anti-convivial in its character, and was first brought into public prominence by the observance of Saint Tammany's Day (still on the calendar), 12 May 1837. The Order spread, and, on 20 May 1835, the Great Council of Maryland was instituted, and soon became an incorporated body. On 30 Jan. 18.47 the Great Council of the United States was formed as the supreme govermment, and this, in turn, became a corporation, by special charter from the legislature of Pemnsylvania, approved 30 March IS66. The policy of the Order has been to possess a legal standing in the State; and a brotherly hand extended early secured the adherence of the scattered bands of Red Men to the "improved" institution, so that unity of effort soon promised much for the future. The fortunes of the "Improved Order," however, were fluctuating at first, and, itntil I88r, when it began to assume its present proud proportions of 350.000 members, embracing the entire republic, and rescrvations in Canada.

Consult: 'Official Ifistory,' edited by Charles H. Litchman, revised by Charles C. Conly (1893-9), and 'Documentary History of New York' ; 'Constitutions and Digest, I. O. R. M.'
> H. L. Stillson, Fraternity Historian.

Impulse. This is a term used in mechanics to designate the "time integral" of a force. If the force is constant, the impulse it produces in a given time is the product of the force and the time in question. If the force is variable, its time of action may be divided into an infinite number of equal intervals. Then the impulse will be the sum of the products of each variable value of the force by the common infinitesimal time interval just defined. Impulse is a quantity of the same kind as momentum; that is, it is the product of mass and linear velocity.

It should be observed that in the cases of impulses in nature the forces are never infinite and their times of action never infinitesimal, though it is sometimes convenient to adopt these fictions in analysis. For the theory of impulses see especially Thomson and Tait's 'Natural Philosophy,' part I.

Imputa'tion, as a term in Protestant theology, is used to signify three things, first the imputation of the sin of Adam to all $n f$ his posterity, second the reckoning of the sins of
man to Christ, third the reckoning of the righteoustless of Christ to believers. Thus, on the theory of imputation the sin of Adam is so attributed to each individual of the human race as to be considered in the Divine counsels as the act of that individual, who is thus rendered guilty of it. When sin is spoken of as imputed to Christ it is meant that the condition or state which was actually man's becomes by imputation judicially his, and thus in law Christ becatne fitted to be a sacrifice and sin-offering for man. Had he not been man's substitute by the imputation of sin the could not have become his substitute in the endurance of the penalty of sin. The two are inseparably connected. In the very same sense in which Christ was made sin men are made the righteousness of God in him. According to this view he was made sin, not actually and personally, but by imputation; and men are made rightconsness, not actually and personally, but by imputation.

Imus, émoos, Philippines, pueblo of the province of Cavite, Luzon, eight miles southeast of Cavite, the provincial capital ; it is an important road centre. In I8g6 it was the stronghold of the insurrection, Aguinaldo and other chiefs having their headquarters in its principal building. Pop. I4.700.

In-breeding, Evils of. See Breeding.

In Cœna Domini, ịn sénä dominnĭ, a papal bull, so called from its first words, it being anmually read "at the Lord's Supper" on Holy Thursday. Its earliest form was that promulgated in I 363 by Urban V^{T}. against all heretics and favorers of heretics. The bull was annually promulgated at Rome till the year 17j0, when a much modified document took its place, this in its turn being withdrawn by Pius I.. in i 869.

In Personam, spoken of legal rights, means such as are maintamable only against a specific person, and not against the whole world (sec in rem). Riglats in personam arise out of a specific engagement between individuals, or out of domestic or fiduciary relations. But the majority of riglats in fersonam spring from the violation of rights either in rem, or in personam. A right once violated, a right of action against the violator immediately arises. An action brought against the violator is also called an action in personant.

In Rem, spoken of legal rights, means such rights as are not only maintainable against a specific person (see in forsonam) but can be maintained against the whole world. Nor are rights in rem limited to property rights, but include all riglits, such as frecdom from personal assault, from causcless imprisomment, from trespass. The term includes the right not only of sting for damages but of seizing and detaining certain articles. In adniralty practice this is a common resort, though in ordinary processes for the recovery of land or goods, it is rarely made use of nowadays.

Inagua, $\overline{\mathrm{e}}-\mathrm{nä}$ 'gwä, Great and Little, two of the Bahama Islands in the West Indies, at the southern extremity of the group. Great Inagua has an area of 660 square miles, and Little Inagua 36 square miles. The latter has few inhabitants. There is a considerable town on Great Inagua called Matthew Town, pop. (1900) I.500.

Inaugura'tion Day, the day set aside for the mauguration of the President of the Linited States every fonr years on + March It_{t} is sald that Benjamn Franklin selected this date because 111 the next two centuries it would fall less often on Suuday than any other day in the year. Preside. 1 Washington took the oath the first time on 30 April. and Taylor and Haves were inaugurated on Monday. 5 March. The same is true of Monroe's second inauguration. but his first was on the regular day. The second Adams. Pierce and Garfield were inaugurated on Friday. Five inaugurations have been on Monday and five on Wednesday:

Incandes'cence. See Electric Lighting.
 Incandescent Gas-light. See Illuminating

 Gas.Incarnation (from later Latin, incarnatis. first used by Irenæus. A.D. 180. derived from un and carnem, into flesh), the permanent assumption of human iorm or human nature by a divine personage. In the Christian religion. the incarnation signifies the assumption of human Nature by God in Jesus Christ. The classical statement is John I:1+. "And the Word became flesh, and tented among us." This is the central teaching of the Christian religion, and the source of its clam to universal acceptance and to finality. Very intimately bound up with it, though distinguishable irom it. are the important teachings of the divine sonship of Christ. his simlessuess, his preexistence and virgin birth. and inevitable deductions affecting the Trinity (q. ی.) and the atonement (q. r.).
I. Sources in the Niui Tistument.-(a) The gospels show how the disciples became convinced of the incarnation as a tact. The impression of the greaness of Christ's personality: his miracles, which showed his sovereign power over disease and nature: his simlessness. proved not so much by express declaration and outward conduct as by a combination of the most penetrating ethical insight and moral power with an entire absence of any sense of sin or moral failure or need of forgivenes: the intimacy of his knowledge of God and communion with him; his claims that moral character and iuture salration were decided b e relation to himself: his assumption of ant thority to iorgive sin. and lis promises of rest to weary souls, who came to him: the experience oi this forgiveness and rest in their own hearts - all predisposed the disciples to this beliei. let the most powertul factor, taken in connection with the ioregoing elements, was Jesu: claim to be the Messiah (q. v). who had been prophesied in the Old Testament scriptures and was a fanniliar figure in the later current fewish literature. This clam meant nothing less than that he would be the iuture judge of all men. the bringer of the supernotural kingdnm of God, and king in that kina lom. This claim was acknowledsed by Peter at Cesarea Philippi with Christis joyful apprewal. was constantly asserted by implications of mure than luman authority and by the we of the phrase. "Son of Man." which me ne nothing more nor less than Messiah. :n! "1: - inaintained, although Christ knew that -4 is ulf cont him his life, in reply to the Iligh Prowi- quetion in the trial beture the Sonhe lrom the re-urfection, however, dectively
and forever settled the matter in the mind of the disciples. Aiter that event. they had no iurther doubis. John's gospel truly represents the growth of their faith to the climax, when Thomas calls the risen Jesus. "MIy Lord and my God."
(b) The early Church consequently proclaimed Jesus the Messiah, sitting not on David's throne. but at the right hand of God. and cited the resurrection as proof. Thes: called Jesus Lord, using the very word used oi Jehorah in the Septuagint, and in connections which exclude any other reierence. Thie opening chapter of the earliest Pauline Epistle, I Thessalonians, associates God and Clirist on terms of practical equality. 2 Cor. +4.6 , and Col. $1: 15$ assert that Christ is the image of the invisible God. cf. 2 Cor. $5: 19$. I Cor. $8: 6$, and Col. 1:Io- I\& make Christ the medator of creation. 2 Cor. $3: 1$, identifies him with the divine Spirit. and. according to the best modern expositors. Paul in Rom. $9: 5$ calls him "God blessed iorever." The earliest epistles already show that the pre-existence oi Christ is no new idea to be explained and enforced, but the common property oi Christians. cf. Rom. 8:3. 1 Cor. 15:47. 2 Cor. 8:9. Gal. 4:4. These thoughts are developed at length in Phil. $2: 6-1 \mathrm{r}$ and Col. $1: 1520$. The familiar and incidental reference to these teachings as matters of course in the belief of the Church dispose us to believe that they have their root in Christ's own declarations oi pre-existence as recorded in John's gospel, John $17: 5,24,8: 58,3: 13,6: 62,33.38,16: 28$, ete. The niher - Cw Testament writers shared these views of Christ's pre-existence. ci. Heb. 1:1-3, and i John 1:1-4. The Prologue oi John 1:118, is the climax of the development of the teaching in the Jew Testament.

Historically viewed then, the early Christians believed without any doubts in the incarnation on the basis of a synthesis of proois derived from Christ's personality, his moral spotlessness and iorce. his miracles, his Messianic claims. his resurrection and their own experience of his forgiving and renewing power, and nut on the basis oi the virgin birth. Which is never mentioned outside the opening chapters of Luke and Matthew. This teaching however, was welcomed by men, who believed the fact of the incarnation, as an explanation of its method. and is accepted by most believers to-day in the same relation. It is therefore not essential to the teaching of the incarnation, which might have taken place in other wass. but is the aospel-given history of the nethod adopted by Gind to brine the incarnation about, and. logically considered. it is burdened by no more difficulties than any, other phesible methoul would probably be. It dnes not appear improbable to those who already believe in the mearnation. The historicity of the virgm birth has recently been keenly attacked on the most diverse grounds. principally by thase who eliminate the -upernatural. Its detenders are taking the ph-ition that though the reports of it were 1. te in being diselosed, as chown by absence of mention of it in the rest of the New Testament. they are in fact the most arehaic Christian docu-ment-. 10 support of this. they poms to the Iramaic enloring of the narratives: their Helirew background: their primitive Chrstian runpoms: there cimolicity: beauty, and delicuy: the reasons which immediately suggest

INCARNATION

themselves why such a story thould be withheld till Jewish opposition had rlecreased, and the principal actors had passed from the stage; and their inexplicability on any other hypothesis than their irath.
11. The Clurch Doctrine- The New Testament fails to give any answer to the questions of the exact relationship of Father, Son, and Holy Spirit, and of the manner in which the divine and the human in Christ were related to each other, and these matters formed the subject of the first great theological controversy, during Which the teaching of the incarnation was defined and developed principally in opposition to misapprehensions of it by different parties and individuals within the Church
(a) The earliest werc the nearly opposite errors, Ebionitism (sec Ebionites) and Docetism (see Docete), both of which began in the ist century and flourished during the second. The Ebionites were a sect of Jewish Christians who held that Jesus was naturally born, was merely a prophet, received ans extraordinary enduement of the Spirit at his baptism, and was finally cxalted to Lordship at his resurrection. It was merely Judaism in semi-Christian dress: against it the Fathers asserted the full teaching of the incarnation, and it soon passed away.
(b) Gnosticism (q. y.), which started with the assumption of the inherent evil of matter. almost necessarily drifted into Docetism, the doctrine that Christ could have no real relation to matter, that his body was merely apparent, a vision and delusion, or at least of a spiritual nature different from a human body, and not subject to suffering and death. This view was held in different forms and was shared also by Manichæism (sce Manicheans). It is a practical denial of the possibility of the umion of the divine and the hmman. Docetism was very early. It seems to be opposed in I John $+: 2$, and 2 John 7. The apocryphal Gospel of Peter, discovered in 1886, is Docetic. It was attacked by Ignatius. The Fathers met it by an insistence on the real humanity of Christ. After large influence, it passed away with Gnosticism. Justin Martyr. Irenæus, Clement of Alexandria, Origen, and Tertullian were the principal theologians who defended and developed the teaching of the Church during this period.
(c) With Sabellianism (sce Monarchians, Sabellites), condemned in 262, began the real contest. Sabellius urged that the Trinity is not a trinity of persons in one substance, but merely three different or successive forms of the revelation of the one person. Christ was pre-existent because the one person persisted under the change of revelation-form. The Patripassians were Sabellians, who logically asserted that it was the Father who suffered on the cross. Sabellianism, variously modified, has constantly reappeared, and is now known as the doctrine of a modal Trinity. The controversy with Sabellianism did much to sharpen the definition of the Church.
(d) The greatest battle over the teaching of the incarnation was brought on by Arius (see Arlanism: Arius), a presbyter of Alexandria, about 318 . Arius held that Christ was a preexistent divine being, but of a different essence from the Father (heteroousios), created by the Father out of nothing, but himself the creator of the world, and the incarnate Saviour. The Semi-Arians tanght that Christ was not of a
different essence from the Father, nor as the orthodox asserted, of the same essince (homoousios), but of a similar essence (homoiousios). This was a very clastic and amhiguous view. The great defenders of the coequality of the Son and the Father were Athanasius (q. v.), the father of orthodoxy, at one time called. "Athanasius versus mundum," Basil, Gregory of Nazianzen, and Gregory of Nyssa (q. v.). The whole Christian world rang with the contest, which culminated, but did not end, with the decision of the Cotuncil of Nicæa, the first aecumenical council, in 325 A.D., in these words, "WVe believe in one God, the Father Almighty, maker of all things visible and invisible. And in one Lord Jesus Christ, the Son of Gorl, begotten of the Father (the only-begotten, that is, of the essence of the Father, God of God), Light of Light, very God of very God, begotten not made. being of one substance (homoousios) with the Father; by whom all things ware made (both in heaven and in earth): who for us men, and for our salvation, came down and was incarnate and was made man: he suffered, and the third day he rose again, ascended into heaven; from thence he shall come and judge the quick and the dead." After a renewed struggle, this creed, slightly enlarged, was reasserted at the second cecumenical council at Constantinople, 38 r A.d.
(e) Apollinarianism (see Apollinarians), as well as Arianism, was condemned at this latter council. It was a reaction against Arianism, and taught that Christ had a human body and animal life, but that the pre-existent Logos took the place in Him of the human mind and spirit. Against this extreme, the Church protested that Christ had a real human soul as well as a real human body.
(f) Nestorius (q. v.), bishop of Constantinople, objected to calling Mary "the mother of God." This position led him, however, to join the human and divine in Clirist so loosely that he was accused, probably mimustly, of giving Christ not only two natures but making Him two persons, at best a man inhabited by God. He was irregularly cieposed at Ephesus in 431 A.D. but the verdict was generally accepted that the Church must insist on two natures vitally united in one person.
(g) The opposite extreme was attempted about ψ^{8} by Eutyches (q. v.), an abbot of Constantinople. He maintained that Christ had only one nature, a fusion of the human and divine, and something different from cither. This period of controversy was closed by the celebrated formula of the council of Chalcedon (see Chalcedon) 45 I A.d. as follows: "We, then, following the Holy Fathers, all with one consent, teach men to confess one and the same Son, our Lord Jesus Christ, the same perfect in Godhead and also perfect in manhood: truly God and truly man, of a reasonable (rational) soul and body; consubstantial (coessential) with the Father according to the Godhead, and consubstantial with us according to the Manhood; in all things like nuto 115 , without sin; begotten before all ages of the Father according to the Godhead, and in these latter days, for us and for our salvation, born of the Virgin Mary, the Mother of Gorl, according to the Mamhood : one and the same Christ, Son, Lord, Only-begotten, to be acknowledged in two natures, inconfusedly. unchangeably, indizisibly, inseparably: the distinction of natures being by no means takev
away by the anion but rather the property of each nature beng preserved, and concurring in one Person and one Subsistence, not parted or divided into two persons, but one and the same Son, and onty begotten, God the Word, the Lord Jesus Christ ; as the prophets from the beginning (have declared) concerning him. and the Lord Jesus Christ himself has taught nas. and the Creed of the Holy Fathers has handed down to us." This declaration has ever since been considered by the strictly orthodox the limit of hmman wisdom on this subject.
(h_{1}) Still it did not immediately end the controversy. Eutychianism revived in Monophysitism (see Moxophysites), or the doctrine of one nature in Christ, which convulsed the Eastern Empire for more than a century: while its corollary, Monotheletism (see Moxothelites), the doctrine that Christ had one will, unfortunately induced the Church in the sixth cecumenical council at Constantinople in 689 A.D. to assert that will belongs to nature rather than to person, that consequently Christ had two wills, never at variance. This completed the orthodox statement.
III. Modern I'iez's.-Since the Chalcedonian formula (see g above) followed the lines recommended by Pope Leo I., it was accepted by the Western Church, although it subsequently iell somewhat into the background before the development of the idea of the Church as the body of Christ. Briefly, though the inearnation was discussed in the Middle Ages, no progress was made, and the great Reformed Churches made, and still make, their Christological declarations on the basis of the Chalcedonian formula.
(a) While the great creeds and the great mass of the Christian Clurch still rest here. many modern Protestant scholars insist on reexamining this great central doctrine as they do all others, seehing a restatement more in accordance with modern points of view. There is an inclination, on the one hand, to magnify the incarnation as the great specifically Christian doctrine, and on the other, to object to the ancient definition of it as too fine-spun and metaphysical, going beyond what it is given men to know. These scholars insist on a revaluation of the scripiure statements and the historical facts on which the doctrine is based. especially on giving to the iact of Christ's growth in knowledge and wisdom, and to his true lomanity generally its proper weight, on procceding on the lines of history and ethics, rather than on the lines of metaphysics. Many deem the ancient iormulas inll of bad psyehology and impossible philosophy, and demand a restatement in line with the progress of human thought in other departurents of knowledge. Many even of these, however, would agree that the general results of the carlier contert nutst be preserved as the expression of the universal faith of believers from the apostolic age to the present.
(b) The tirst of these attempte was made by the Socinians (see Socines) in Poland in the Ifth century: They rejected the Trinity, and held Christ to be not divine but more than a mere man, in that he was conceived ni a virgin. was absolutely holy, and was finally exalted to abonluse power. The Socinians gave hirth to the modern Unitarians (q. v.). Who rejert the deity of Chriat, and in varying degrees look on him as the ideal of humanity, "the best we know," or, at
least, as one of the prophets. This shades off into
(c) Pantheistic conceptions, to which Hegel gave a powerful impulse. There is an essential unity of the human and divine: humanity is itself divine. The pre-eminence of Jesus is seen in that he first awoke to the consciousuess of this fact, and represents it in its purest and strongest form. The great body of Christian believers fail to find in the Linitarian or pantheistic statements a sufficient explanation of the Christ of history and experience.
(d) The Kenotic theories propounded by Thomasius, Gess, and Martensen, have a more orthodox origin and result. They are based on Pluil. 2:6-8. especially the words "he emptied himself" (ekenosen) and are inspired by the desire to present the full human development of Christ. The Kenotists in varying degrees declare that the pre-existent Christ at the incarnation divested himself of the attributes of omnipotence, ommiscience, and omnipresence, and became man, retaining, however, the essential attributes of truth, holiness. and love. By thus depotentiating the divine nature to the level of the capacity of the lhuman, it was hoped to overcome the dualism of the ancient statement. These theories have had wide influence, but are severely criticized as metaplizsically impossible.
(e) A theory of gradual or progressive incarmation was matured by Dorner (q. \%.). There is no self-limitation of the pre-existent Logos, but a limitation of his self-communication to the human nature. Jesus Christ progressively. became conscious of his divine nature and realized it fully only at the resurrection. Christ became conscious of his Godlrood just as He became conscious of his manhood. Its opponents hold that this theory is Nestorianism in a more subtile form and does not really do away with dualism.
(f) The present dominant German theological school, the Ritschlian (see Ritschl, Albrecht , follows a new method of procedure. Instead of begimning to discuss the incarnation with a consideration of the self-witness of Jesus or of the apostolic testimony. it begins with the Cliristian's experimental knowledge of Christ as Redcemer, and consequently asserts that none but the possessor of a Christian experience can have ang real knowledge of his person. 11% nt the believer has learned of Christ in his experience leads him to call Jesus God, for none but God can do for the believer what Jesus has done. Christ is the full and perfect revelation of God in His grace and truth: Christ's will, too. is the will of God, namely, the establishment of the kingdom of God, and to found this was Christ's unique vocation in the world, a vocation to which le was alsolutele true: in all his life and sufferings lle was ahsolutely indenendent of and superior to the world, and so gained unlimited sovereignty over it. But if we meet God in Christ so as to cxperience the divine power and presence, God himself must be in Clirist and in some true sense Christ must be lind. 1low this can be is a matter of metaphysies which is insoluble and does not concern us. Ritschlianism thus attempts to prove the deity of Christ from experience, and to free Christianity from the entanglement of metaphysies on the one hond, and make it independent of the results of biblical criticism on the other. From such a

INCA - INCA SEMI-CIVILIZATION

Viewpoint, it regards the doctrine of the two natures as a hindrance, and the virgin birth as a matter of indifference, something to be decided on the grounds of historical criticism. The tendency of the leading livang theologians of the school is toward a personal pre-existence, and some form of the doctrine of the I rinity. Kaitan declares that "Christ's historical person stands in a connection of nature with God which is altogether unique and can never be repeated." (Consult Garvie, 'The Ritschlian Theology,' chap. I.‥)
(g) The modern conceptions of the universe. and especially of evolution, have had their influence on the modern belief in the incarnation. (I) In many different schools of thought, the idea gains currency that the incarnation was an ethical, not a metaphysical, necessity of God's nature, a necessity of his love and grace, and would have occurred in some form. even if sin had never entered the world. The incarnation was no afterthouglit to repair an unioreseen calamity, but has its place in the eternal purpose of God alongside of and conditioning the plan of creation which made sinning possible. (2) Theistic evolution suggests not only that Christ is the consummate flower of the race, "the end and goal of the whole ascent of life. the perfect man beyond whom there can be none ligher," but that this perfect man is raised to the throne of divinity: (3) It is also seen that the finality of the Christian religion can be guaranteed only on the ground of the deity of Jesus Christ; for if Christ was one like us, however superior to all who have yet existed, there is no certainty but that during the ages another may arise superior to Him. The incarnation is thus the central doctrine of Christianity, and its maintenance in some form or other is vital to its existence. See also Christology.

Bibliography:-Liddon, 'The Divinity' of Our Lord and Savior, Jesus Christ.' Bampton Lectures (1866); Bruce, 'The Ifumiliation of Christ' (1876): Gore, 'The Incarnation of the Son of God,' Bampton Lectures (iSgt) ; Gore, 'Dissertations on Subjects Connected with the Incarnation' (1895): Ottley, 'The Doctrine of the Incarnation' (2 vols. 1806); Ramsay, 'W'as Christ Born at Bethlehem? (1808): Briggs. 'The Incarnation of the Lord' ((1902); Lobstein. 'The Virgin Birth of Christ' (1go3): Knowling. 'Our Lord's Virgin Birth and the Criticism of To-day' (190.3): Andrews, 'Dlan and the Incarnation) (1905). Also SclattHerzog, 'Encyclopedia of Religious Knowledge': article 'Christology' by' Schaff; and Hastings: 'Bible Dictionary.' article 'Incarnation,? by R. L. Ottley: Roman Catholic Authorities. - 'Catechism of the Council of Trent,' pp. 37 sq.: Divine, 'The Creed Explained.' pp. 125 sq-: Schouppe, 'Abridged Course of Religious Instruction.' nn. I 30 sq.: Morris, 'Jesus the Son of Marv' (1851): Hunter, 'Outlines of Dogmatic Theology, vol. Il.. pp. $421-5 \not 4$ (1896). For authorsties on incarnations in other religions, see articles Brahmans, Btddha, Theosorhy, Mytiologr, etc.

Frederick L. Anderson.
Professor of New Testament Interpretation, Nerton Theological Institution, Newton Centre, Mass.
Inca or Ynca, the name of a tribe of Pernvian Indians - not exclusively that of a royal family or caste, as has been commonlv asserted.

The members of thas tribe sometimes called their war-chef "Cuzco," meammy chef or lord of Cuzco, but probably more otten "tine royal Inca," or smly "tha" Inca" (compare 'Ruyal Commentarse of the lineas,' by (iarcilatso de la V'ega: Lisbon, 1(ogy: l'art 1 , chapters viii and xv). The latter usage was in the and adopted by Spanish chronclers; and Garcilanso, half Spaniard, half lndian, in the rath chapter of his commentarics, which were written, he tells us, 71 years after the conquest, uses both the longer ancl the abbreviated forms - "V"ncas Kings" and "Yncas" - though feeling that he must explain that he means by the latter the "native kings of Peru." Throughout the tribe mother-right prevailed. and marriages were contracted between members of different clans: therefore offices could not descend from father to son; and especially the office of war-chief, or Inca par eminenco. must usually have been filled by selection. The tribal dialect was called Quichua. See also Peru and South America.

Inca Semi-Civilization, the state of advancement in arts and learning reached by the most progressive tribe of South American Indians, occupying a portion of the Andean Sierra, and exercising control, in the regions now known as Peru, Ecuador, and northwestern Bolivia, over many other tribes of the highlands and lowlands before the Spanish conquest.

In the articles Inca, Cuzzo, and Perte, reference has been made to certain popular misconceptions touching Inca government, chronology, and the tribal mame. It is necessary to add that the evidence at present available is entirely insufficient to warrant such assertions as the following, which occurs in one of the leading works of reference: "The Inca was the absolute but, in most cases, kindly ruler.

In many respects the Inca government will compare favorably with any which at that time existed in Europe" ; or this, from a popular account published in December 1903: "The far-famed lnca race had developed in pre-Columbian times an astonishing and marvellous civilization." Far from lending itself to such conclusions, the evidence furnished by Spanish writers of the 16 th and 17 th centuries, when their works are tested and corrected by a comparison with the results of modern archaological research, points to social conditions which cannot be ranked above semi-civilization. Moreover the objects collected hy archreologists to illustrate or represent industrial and artistic activity in ancient Peru (especially the important Bandelier collection which was put in order at the American Iusenm of Jatural History in 1904) in point of fact illustrate and represent the activities of a race very slightly elevated above semi-barbarism. In the customary treatment of their dead a lack of higher symbolism made itself felt oppressively: the crouched position of the body. bound in a tawdry pack, and the commonplace offerings buried with it suggested nothing better than the petty comforts, or ignoble miseries, of a life forever limited to alternating phases of servile toil. crouching rest, sensual indulgence, and childish diversions. The varinus tribes of the Sierra, from Quito to Lake Titicaca, were bound together by roads which ran from one highland village to another: the lowland Indians were held in subjection through fear alone, the Inca supremacy signifying to them a prolonged reign of terror.

Some of the war-chiefs may have been "kindly rulers': we shall, in all probability, never know whether they were or not. Cristoval de Molina, who described the "Fables and Rites of the Yicas. ${ }^{\text { }}$. and who, in order io gain the knowledge of those rites which he imparts. "assembied" as he says, "a number oi ased persons who frad seen and participated in them in the days of Huayna Ccapac." believed that some definite, if scanty, records existed. He says: "It is so that these people had no knowledge of writing. But in a house of the sun called Poquen Cancha, which is near Cuzco, they had the life of each one of the lincas, with the lands they conquered, painted zeith figures on certain boards." Another chronicler, Juan de Sania Cruz, who wrote about 1620 , says: "I affirm that I have heard, from a child. the most ancient traditions and histories, the iables and barbarism of the heathen times, which are as follows." Such as these are the sources oi our knowledge of the story of the Inca rulers. Some of the events in the lives of the war-chieis were depicted, as valuable records or as parts of an ornamental design, in a "house of the sum"; orherwise all rests upon the prattle of Indian dotards and of Indian nurses. Accounts written by the conquerors themselves (ior example, Seres) leave almost everything to the imagination. We may be certain, at least. that tradition retained most accurately the traits of the last two or three native chiefs, whom the "aged persons had seen ${ }^{\nu}$; and though we may not condemn the unknown by reason of the credibly reported misconduct of the known, we shall be obliged to suspend judgment, instead of accepting the easy platitudes now current with respect to the succession of war-chieis from Manco down to Huayna. The shameless private life of Huarna Ccapac is set forth in the 'Antiquities of Peru' by Juan de Santa Cruz. As ior that great war-chief"s still more famous son. we read in Garcilasso de la Vesa's 'Royal Commentaries of the Yncas' (Book o. chapters $35-3 \bar{\prime}$) that Atahualpa summoned all Incas of the blood royal to assemble at Cuzco. and put them to death. "The cruelty of Atahuallpa," says this historian. himseli hali lnca. "was greater than that of the Turks, ior, not content with the blood oi his own 200 brothers, the sons of the great Iluayna Ccapac, he passed on to drink that oi his neplews, uncles, and other relations so that none of the blood royal might escape. whether legitimate or bastard. They were all murdered in different ways." The same iate was meted out to all the loyal captains of his: rival Huascar: furthermore "he ordered all the women and children [of reyal blood] to be assembled. of whatever age and condition, restrvine only these who were dedicated to the sun in the convent of Cuzco. He ordered that they should be killed outside the city, by litite and little. and by various crucl tortures, so that they mizht be long in dying. ${ }^{\text {. }}$. The varictics of irgenious tortures mentioned by Garcilas:o are similar to thoce imflicted by Worth American ab rimines upen captive wrmen and children: and 'thougl? the w' rk could have been done in a horte- tinle. they prolonged it in order to en is their cruelties minre fully.?

It ane ears in he alt gether improbable that the Inca ceni civilization. if it had not been in:- Tr F'ed by the coming of the Spaniards,
would have reached the height oi 16 th or 17 th century European civilization, or by native merit have kept abreasi of the adrancing nations of the Old World. That the tribe had neglecied to provide itseli with a writen language, and failed to develop high ideals in art, we have already noticed. A third essential for progress was equally wanting: the Incas had no money, or any medium of exchange corresponding to the wampurm of the Indians who lived near the North Atlantic coast. But it is impossible for any peopie deprived oi trustwortby records of human experience to construct a convincing system of morality; and without some convenient medium of exchange an extensive and pacinc commerce is equally impossible. Both deductive and inductive methods of reasoning must, thereiore. lead an unbiased student oi old Peruvian institutions to the conclusions that. at home, inveterate and fully sanctioned practices made ior degeneration; while steady blackmail, raried by occasional slave-raids, took the place of mutually beneficial dealings with neighboring, subject or independent tribes.

Limitations of the race's genius or experience mar be exemplified in the department of music. The Inca musicians used drums which "were made by stretching a skin over a hoop of wood or over one end of a short section of the trunk oi a tree which had been hollowed our to a thin cylinder" (compare 'The Musical Instruments of the Incas.' by Charles W. Mead. assistant, Department of Archrology. American Museum of Natural History). Oiher musical instruments of percussion in common use were copper bells. in form resembling sleigh-bells; rattles. made of small shells. gourds, and nuts, often strung together and attached to the wrists. ankles, or other paris of the body, in dancing: also cymbals of rudimentary form. Wind instruments were the syrinx or pan-pipe, consisting of reeds of graduated lengths. held in position by a crosspiece of split cane lashed to the reeds with a cord made of llama wool - the reeds being sometimes closed at the lower end, sometimes open, and occasionally arranged in double rows, yielding octaves: flutes, made of cane or bone." "simply tubes. open throughout their length, and all belonging to the class known as 'end-blown'." not scientifically constructed and not attuned one to another; resonator whistles, emitting several different notes; trumpets. made either oi terra coita or of conch shells.- primitive instruments, producing only four or five distinct tones (as shown by actual test of specimens taken from the ancient tombs) : a double musical water bottle, consisting of two pottery vessels connected near the bottom in such a way that water passes freely from one to the other, and in its passage (when the vessels are swung backward and forward) iorces air through an opening near the top, producing a series of whisting sounds: and finally the "cornes: ${ }^{\text {D }}$ mentioned by Garcilasso ('Royal Conmentaries') and Herrera - instruments formed like the oboe. rather than the cornet in the modern sense. With this enumeration the list is exhauted. Such evidence as we have at the precent time disproves the existence in Peru of any inrm oi stringed instrument before the coming of the Spaniards. In other words, the unaided genius of the Inca Indians, exerting itself in the field of music. stopped short of the

INCENSE - INCLINED PLANE

more complex instruments: ancient Peruvians were satisfied, as their Quichu and Aymara descendauts are to-day, with the wild discords eroked from pan-pipes, flutes (or fifes), drums or clashing shells, all of rude construction.

And, as in music a great volume of sound not harmony - was the desideratum, so in arclitecture they meglected beanty and strove to attain resistant mass, with walls as solid and homogencous as possible - the prime essentials in a country shaken by destructive earthqualies; and their solicitude in this respect, which was less justified in Cuzco valley, suggests that the tribe, before the migration to which old legends refer, may have dwelt in the volcanic western part of the Sierra (see Peru). Hence the socalled "cyclopean" walls of the temples and palaces, structures built to endure, for which the builders utilized enormous stones of irregnlar shapes, fitted together so skilfully that mortar was not required.

It is safe to say that nearly all features of the ancient industrial life of the tribes inhabiting the Andean Sierra and Peruvian coast stri ρ are either intimated or plainly shown by specimens in the Bandelier collection. With the utmost care products which are not properly to be classified as Incan have been separated from those slowing the activities of the dominant race: and such care is obviously indispensable, for the Incan objects, though they may be discriminated by a trained archroologist, do not stand out from the rest quite unmistakably. One finds practically nothing to support the theory that there was ever a nearly unrelated, or a wholly distinct and marvellously superior, Inca civilization. Especially instructive are the examples of the potter's art which have been secured in great numbers - representing such different social classes as the warrior, musician, and water-carrier. Costumes, weapons, occupations, etc., are depicted faithfully, though without artistic charm. Fabrics of cotton, or wovent from the wool of the llama, vicuna, and alpaca; looms, spindles, and colored threads, bear witness to the wide extension of the industry of weaving so often mentioned by early writers. Offerings made to the dead in the graves which have been explored (and, in the sacred canse of science, discreetly rifled) recall the fact that agriculture shared with warfare the distinction of being the chief occupation of able-bodied men. Inca women are shown to have been, like their Quichua descendauts at the present time, eminently domestic in their tastes and employments, ruling supreme in the house, taking no part in public affairs, and perhaps never developing the characteristics of the Amazons who dwelt beyond the montaña in the region of tropical forests. Gold and silver appear to have been not less abundant - perlaps they were even more abundant - in the lowlands than in the highlands: at any rate ressels formed from the precious metals are found more commonly in the burial places near the coast. It is not to be supposed that the natives failed to appreciate the beauty and utility of silver, gold, and copper. An ingrained preference for the clumsy methods of barter - which the Quichuas have not even yet forsaken- prevented then from adopting any medium of exchange or setting apart one or more of the metals to he used as "money."

Marrion Wilcox.

In'cense, aromatic substances burned in religions rites on account of the sweet odor they emit. The custom of burning incense is ancient and widely spread. Ansong the Jews the practice was eninined as part of the worship of the sanctuary (Ex. xxx. 27), the ingredients of the incense also being laid down, and it was to be burned on a special altar called the altar of incense. This altar was made of acacia (shittim) wood, and was overlaid with gold, hence it was called the golden altar, as distinguished from the altar of burnt-offering, which was made of brass. The incense was burned daily - morning and evening. Botls the Greek and the Latin churches use incense in worship. Among Cathiolics it is used at every high mass, at consecration of churches, in processions, funerals, etc.

Inch, a lineal measure, the $12 \mathrm{l}_{1}$ part of a lineal foot, anciently said to consist of three barley corns. A statute of Edward II. (1324) makes "three barley corns round and dry" the definition of an inch. It is subdivided into halves for mechanical work, and for a scientific purpose decimally into thousandths, as in gumnery, and into ten thonsandths by the makers of ganges. The English inch is equal to 2.54 centimetres. The old Scotch inch was slightly larger than the English.

Inch-worm. See Measuring-worms.

Inch'bald, Elizabeth Simpson, English actress, dramatist, and novelist: b. Stanningfield, Suffolk, 15 Oct. 1753; d. London I Aug. 1821. In 1772 she was married to an actor named Inchbald, and the same year went upon the stage. She retired from this profession in 1789 and devoted herself to literature. Some of her plays, which belong to the class of high comedy, still keep the stage, but her greatest success was the novel 'A Simple Story' (1791), which was translated into several languages. She also wrote 'Nature and Art,' and among her plays may be cited: 'Such Things Are'; 'The Martied Man'; 'The Wedding Day'; 'The Midnight Hour') 'Every One Has His Fault' ; and 'Lovers' Vows.'

Inclina'tion, Magnetic, or Magnetic Dip. See Dipping Needle.

Inclined Plane, one of the mechanical powers. When a body lies on an inclined plane part of its weight is supported; so that if a cord be fastened to it and pulled, a force less than the weight of the body, acting in a direction parallel to the plane, will prevent it from sliding, or will move it up the plane. Thus a heavy wagon is raised on an inclined road by a horse which wonld be quite unable to exert a pull equal to a quarter of the weight of the wagon. A body lifted by means of an inclined plane is moved througly a greater distance than if it had been raised vertically, so that although the force employed may be smaller, it is cxerted through a greater space. When the plane is smooth, so that friction may be neglected, the force parallel to the plane necessary to raise the body is equal to the weight of the body, multiplied by the rertical height throngl which it is lifted, divided by the distance it is moved along the plane. For instance, when a train moves up an incline which rises 3 feet for every 100 feet of rail, the engine exerts a pull equal to $3 / 100$ of the weight (neglecting friction). Inclined plane
railroads are comnon in the United States, the best known being located in Pittsburg and Cincinnati.

Income Tax, a tax levied directly from income of every description, whether derived from iand, capital, or industry ; first imposed in Great Brutain in January 1799 , during the ministry of Pitt. after the failure of an attempt to raise a revenue adequate to the exigencies of the period by trebling the amount of the assessed taxes. In the Pitt act incomes under $\$ 200$ were exempted; the tax rose by a series of gradations till it reached 10 per cent, at which rate it was charged on all higher incomes. This tax was repealed in 1802, but was again imposed in the following year, though with a change of name to property tax, and a difference of rate.

But one incorme tax has been imposed by the United States government, arising from the necessities incident to the Rebellion. In I861 Congress authorized a tax of 3 per cent on all incomes over $\$ 800$ per annum. In July 1862 an act was passed taxing all incomes under $\$_{5,000} 5$ per cent, with an exemption of $\$ 600$ and house-rent actually paid. Incomes in excess of $\$ 5.000$ and under $\$ 10.000$ were taxed $21 / 2$ per cent additional, and incomes over $\$ 10,0005$ per cent additional with no exemptions. Further taxes of 5 per cent on incomes of Americans living abroad and of $15 / 2$ per cent on incomes irom United States securities were laid. these expiring in 1865 . In 1864 a special tax of 5 per cent was imposed on incomes above $\$ 600$. A readjustment the same year imposed a 5 per cent tax on incomes between $\$ 600$ and $\$ 5,000$; to per cent on incomes above $\$ 5,000$. During Cleveland's second administration a bill was passed imposing a tax upon all incomes above $\$ 4,000$. The constitutionality of the law was tested before the Supreme Court, which after a protracted hearing decided adversely by a majority of one.

Inconnu, in-kod-nū', Fr. ăn-kŏ-nü', the French-Canadian name of a fish of the rivers that enter the Arctic Ocean (Stenodus mackenzii), intermediate between a salmon and a whitefish in its characteristics, and of great value as food for the people of that region.

Inco-ordina'tion, a lack of control over muscular movements. In inco-ordination there may be (I) some interruption in the paths of the notor impulses as sent from the motor areas in the brain to the muscle-eentres in the spinal cord; or inco-ordination may result from (2) defficiency in the incotning sensory paths, thus causing an interference with the seme of muscular localization. One of the most familiar illustratirns of inco-ordination is seen in acute alcoholism. In this condition the lack of mutor cented) is largely due to interference in the enn-duction-paths of motor impulses. The intoxicated perion is umalie to control the movements of his hands to make them periorm in their wonted iahhion ordinary acts. In locomotor ataxia, a discase in which inco-ntination of the movernemts is very striking, the inco-nrdination - enme to result from a lose of mincle and joint cence, whereby the patient's mind is rendered unahle accurately to realize junt where his limbs are. Inco-urdmation is a sympton of a number of different iorms rif poisoning, and is extremely characteristie in diseases such as locomotor
ataxia, multiple sclerosis, chorea, and paralysis agitans. It is also found in a number of iniantile discases.

Incubator, a machine employed for the artificial hatching of chickens from eggs. Such devices were known to mankind from early ages. Pliny says that the Egyptians thus hatched $100,000,000$ chickens a year. While artificial incubation was introduced into France and England during the ISth century, the incubator was brought to greatest perfection in the Crited States in the 1gth century. The first patented invention of the modern incubator was in 1847 , but any practical success in such machines cannot be met with before $18 / \pi$, when Rouillier and Arnoult exhibited their hydro-incubators at the Paris Exposition.

There are two general classes of incubators, those in which hot air is used for the maintenance of heat and the application of it to the eggs, the other in which hot water serves this purpose. An automatic incubator of first class make is equally efficient whichever of these two heating mediums is employed, but there are many different types of machine offered for sale, and the struggle between cheapness and efficiency sometimes leads to the sacrifice of the latter. There are certain essentials to an incubator which must be attained at any cost, and the machine that is deficient in anyone of these is a failure, which means that it cannot guarantee to yield of living chicks at least so per cent. The following may be enumerated as absolute requisites in a good incubator: (I) An egg chamber heated at a uniform temperature. It is best that the heat should come from above, when it is likely to be reverberated from the floor of the chamber, and to more evenly affect the eggs, and may at once strike the germinal vesicle which from its lightness always rises to the upper surface of the yolk. (2) A source of heat which is selfregulative. The thermo-regulator in general use is actuated by an arm thrust within the cgg chamber, and must be sensitive to an atmosplece $1 / 2^{\circ}$ or at most 1° above that which is desired. (3) Good ventilation within the egg chamber, with some provision by which a certain degree of moisture may be maintained in the air. (4) Added to this, is a good turning apparatus. There are very many devices for effecting this purpose; perhaps the best is that of a tray fitting exactly over the tray in which the eggs are laid, and by the turning of which the eggs may be replaced in a reversed position in the applied tray.

Of course the aim of a true incubator is to reproduce as accurately as possible by artificial means the conditions of natural hatching under a sitting hen. Thus the supply of heat and air must be conformable to a fixed standard. The temperature is to be kent unchanged at $100^{\circ} \mathrm{F}_{\text {., }}$ or a little above that. by placing the incubator in a room not exposed to draughts. To make accident in this respect impossible, a cellar, or specially buile chamber, should be used, where no access of colder air may cause a fall in temperature, and a sensitive thermo-regulator furnish automatic means of preventing excessive heat from destroying the vitality of the eggs. Hoisture must be preserved in the air of the efg chamber that the eggs may not be shriveled by excessive evaporation. There must also be adenuate ventilation, that no harmful gases
sicken or kill the hatching chick. The turning of the cggs is considered necessary, because the sitting fowl has the labit of so doing. but the eggs should not be disturbed after the i8th day, nor the incubator be opened after that date, until the hatch is completed. With regard (1) the moisture of the air, it has been considered proper, after studying the progress of evaporation, as reckoned from the loss of weight in a fertile egg during the process of hatcling, that a humidity of 45 per cent is the safest degree of saturation.

Tarious ways have been resorted to of taking care of the chickens after they leave the incubator. They must at first be hept in an atmosphere of from 90° to 100°, at least for the first week, and heated places of shelter, known as brooders, must be prepared for them. There are many patterns and kinds of brooders, which are manufactured by the same firms as those which make incubators. The requisites for brooders are: (I) The temperature of the first week, as given above should be gradually lowered. (2) The greatest diligence should be applied to secure and maintain cleanliness, dryness, and good ventilation. (3) Their construction should be such that newly-hatched chickens may always be in riew. As the chicks grow toward fledging, facilities should be afforded them to leave the brooder for exercise. See also Poultry: Consult: Watson, 'Farm Poultry' (1901); Stoddard. 'The New Egg Farm' (1900).

In'cubus (Lat. "one who lies upon"), a spirit to whom was ascribed the oppression known by the common name of nightmare, in Greek ephialtes (from epi, and follomai. I leap uponi). These demons play an important part in the superstitions of the Middle Ages, having been perhaps not unfrequently employed, like the older gods of Greece, to cloak the adrances of earthly lovers. See Nightmare.

Incunab'ula, is a term applied by bibliographers to editions of books printed during the early period of the art, and is generally limited to works which appeared previous to 1500 . The incunabula are divided into xylographic and typographic. the former those printed from engraved blocks, the latter from movable types. Among the most highly esteemed of the incunabula are those which are first editions of the ancient classics. See Bibltographr:

In'daja PaIm. See Attalea.

Indemnity Contract, a form of contract which, while not of recent origin, is becoming much more common than formerly: Such a contract is any form of written agreement between two parties whereby one party agrees to indemnify or save harmless the other party for loss or damage arising out of a particular transaction. or against some specified claim of a third party. It is an original contract and must be in writing in order to come within the statute of frauds. Such contracts are frequently made in the form of a mortgage. But the substance and not the form is important, and the courts have usually given then a liberal construction with the intent of furnishing the party to be indemnified with all of the protection that was manifestly in the minds of the contracting parties when the contract was signed. Indemnity contracts are not adverse to public policy:
but they are not binding when they undertake to protect persons against the consequences of illegal acts. Like other contracts, they must be founded on a sufficient consideration, and furmish indemmity only to the party named as indemnitee, and do not extend to a person having only a contingent or collateral interest in the subject natter of the contract.

Indepen'dence, Iowa, city and county-seat of Buchanan County, on the Wapsipinicon River, zo miles southwest of Dubuque, and on the Rock Island and the Illinois Central R.R.'s. It is the centre of an extensive horse-breeding, farming and dairying region. There is located here the well known Rush Park, with its kiteshaped race track, the State insane asylum for northern Iowa, public library and other buildings. The electric-light plant and waterworks are owned by the mumicipality. Pop. (IS90) 3.163; (1900) 3,656.

Independence, Kan., city and county-seat of Montgomery County: on the Verdigris River, 85 miles soutliwest of Fort Scott, and on the Atchison, T. \& S. Fe and the Missouri P. R.R.'s. It is the centre and distributing point for a large agricultural section, and has cotton-mills, papermills, window-glass factories, flour-mills, cracker factories, brick works, planing-mills, and creameries. It has a public library, court house and other large huildings. Natural gas and oil wells are numerous near the city. Pop. (ISgo) 3, 27 ; (1900) 4.85 I .

Independence, $\lambda 10$., city and county-seat of Jackson Countr, five miles from Kansas City, on the Kansas C. \& I., Missouri P. and the Chicago \& A. R.R.'s. The city is considered a residential suburb of Kansas City. The town was settled in 1827, and in 1838 the Mormons' rendezvous was located here, and from hence the Latter-day Saints pursued their journey to U'tah. Under the charter of 1889 the city is governed by a mayor and city council elected every two years. The electric-light plant is owned by the municipality. Pop. (1890) 6,380; (1900) 6,974.

Independence, Declaration of. See Dectaration of Independence.

Independence Hall, Philadelphia, a low plain brick building on Clestnut Street, begun in I732 and completed in I万41, as a state-house for the colony of Pennsylvania, as closely connected with great national events as Fanenil Hall or the Old South in Boston. The architect was J. Kearsley, the builder E. Wooley. It was occupied as a state-house while unfinished, in 1735; the tower was added in 1550 . Here the Continental Congress held its sessions: here Washington was appointed conmander-in-chief of the Continental armies, on John Adams' motion; here the Declaration of Independence was adopted, and was read from its steps to the assembled crowds in iront. The Convention of 1787 (q.v.), which framed the Constitution, was also held here. It is now kept as a muscum of historical relics, especially of the Revolution.

Independent. Catholic Church of the United States, a Polish religious body organized in Clicago, among disaffected Roman Catholics. Its founder, Rev. Anthony: Kozlowski, attended one of the conferences of the Old Catholic Church in Europe and was there consecrated
a bishop. The church has acquired considerable pruperty in Chicago and has established a hospital, dispensary, orphanage, home ior the aged. primary, grammar, high, and industrial schools. The society had in 1902 over 45,000 members, and 33 ministers and 43 churches.

Independent Order of Odd Fellows. See Odd Fellow.

Independent Telephony. In 1901-2, the expiration of numerous iundamental telephone patents enabled individual and independent companics to extend the telephone service to small comnumities. rural districts and iarms in the W West and Northwest. Nany co-operative telephone lines were established in 1902 by iarmers in the llidule IVest, and in 1903 it was estimated that 300,000 iarms were in close communication by telephone with neighboring cities and commercial centres. The farmer finds that with the telephone he can keep in touch with the market, selling his produce or live stock when quotations are the most favorable. It is a common practice ior the country doctor to give directions by telephone for caring for the patient, botb diagnosing and prescribing. In Illinois the speeches of a political convention in 1903 were listened to by the farmers on a rural system as they sat in tbeir homes from is to 36 miles away. Being in speaking distance of his neighbor, not only does the fiarmer feel a new sense of personal security, but he knows that his belongings are safer from molestation than they ever were before. The telephone has been instrumental in causing the arrest of many horsethieves and outlaws, and in some districts the farmers have almost broken up chicken stealing and petty larceny by telephoning the police and commission merchants of their losses, and thus enabling prompt arrests to be made.

An innovation in the use of the telephone which promises to be the rogue is already very popular. The local grocer or butcher, realizing that time is money, pays for the monthly rent of the telephone of any oi his customers who spend $\$_{25}$ at his store during the month. or makes a corresponding discount for a smaller expenditure. He find that in the increased amount oif business coming through the greater ease of transmitting orders, and the reduction in his staff oi order men, he can well alford to throw in the telephone service. which iurthermore becomes a splendid advertisernent for his store.

In the early days of the rural telephone the farmers were content to utilize their fence wires ior intercommunication, and in many districts. particularly in the Western States, this method so reduced the cost of installation a; to enable many communities to have a tolerably effective service, which ntherwise would have had to go with ut any: But the fanners becoming more iautudieur, demanded a betier service. The systems empluyed range from a smgle line, with firm three ir isur to a dizen instruments connected, the ormpret en-ive sy-tems covering entire c untics and having hunded-of patrons. Fir instance, in reauga County, Ohio. near Cleveland, where there is a population oi about 14.000 . there are over 1 ,ono patrens, the number in each twndiç ranging irum so to nearly $\ddagger 00$. Great attention is paif to toll service, and the best construction and anparatus are insisted upon, as
being in the long run the most economical. An example of the rillage and rural exchange is New Augusta, Ind., with 75 subscribers, 50 of whom are farmers, the most distant being about seven miles. When a single neighborhood line with a jew instruments attached is desired, a switchboard is not necessary. The subscribers signal each other direct by giving different combinations of rings.

So easy has the organization of rural telephone sysiems become that it is safe to predict that within a decade the majority of the 4.000 .000 iarmers said to be yet unprovided with telephone service will have followed the example of their more enterprising brethren and brought themselves within touch of civilization. If any community wishes to install a system, no matter how limuted, it has only to communicate with a reputable installation firm to receive the fullest and the clearest instructions as to how to go about it. Al iavorite method of organizing is for the farmers to form partnerships or co-operative (mutual) companies for the furnishing of service only to the locality in which the subscribers live. Sometimes the service is furnished by nearby telephone exchanges running lines into the rural districts.

In some places service cannot be given by city companies. In such case, the farmers can form themselves into a company, subscribe for the stock on pro rata or other basis, and install the system, funning a direct line from their switchboard to that of the nearest town or city exchange. This is called the community system, the heart of which is the small switchboard. from which radiate in different directions the lines to which the various telephones are attached. See also, Telephone Sristem, Independent.

Independent Treasury, The United States. See Frvasce.

Independents. See Congregatioxalism.

In'dex Libro'rum Prohibito rum (${ }^{\text {a list }}$ of prohrbited books"), in the Roman Catholic Church, a title used to designate the catalogue or list of books prohibited by ecclesiastical authority, on account oi heretical or immoral opinions supposed to be contained in them, or maintained by the authors or editors of them; when the list or catalogue is of books allowed to be read after correction or alteration, agreeably to the orders of the Papal authorities, it is termed Inder E.r.furgatorius. Such prohibitory catalogues have been in use from a very carly period in the history of the Church, commencing with a list oi prolibited books drawn up by a council held at Rome in $49+$ or even earlier, with the proscription of the writings of Arius. These prohibutions, in fact, were often issued by other than the Papal authorities. In Ito8 a ssnod at Lind n prolibited the reading of the borks: of Wicklifie. In 1544 the Faculty of The logy in Pari: published a catalogue of books censured by them. and iu 1546 the C"niversity of Louvain published an index of books regarded as dangeruls: The indexes of the Church were a subject if consideration at the Council of Trent, which referred the business of drawing up a complete inders to a select committee under the Pope Their Index was published in 1564. and besiles the catalcgue of prohibited books contains general rules relative to such hooks. In 1536 a special ecclesiastical board, the Congre-

INDIA

gation of the Index, was formed, with authority to judge of new works, to indicate those of which the reading is entirely prohilited, and those which are permitted after correction, etc. The most important editions are those of Alexander VII. in I664, and of Benedict N1 V^{\top}. in 1744. An edition appeared in 1881, with a supplement in 1884. In 1607 the first volume of an 'Index Expurgatorius' was published at Rome. Pope Leo XIII. had a revision made of the Roman Index, and ahout 3,000 books were taken from the prohibited list.

India, also called Hindustan or Indostan, derived from the Persian form of the Sanskrit sindhur. a river. and signifying "the land beyond the Indus." is a name used both in ancient and modern times with great latitude of signification. and applied more or less comprehensively to the great central peninsula of southern Asia. The mainland of India proper is hounded north by the maiu range of the Himalaya Mountains: east by mountain ranges which divide it from Burma. southeast by the Bay of Bengal: south by the Gulf of Mlanaar, which separates it from Ceylon; west by the mountain chains enclosing the valley of the Indus, which separates it from Afghanistan and Baluchistan, and by the Indian Ocean. Its length north to south is nearly 2,000 miles: its greatest breadth east to west about t. 800 miles. It extends between lat. $8^{\circ} 5^{\prime}$ and $35^{\circ} 15^{\prime} \mathrm{N}$. . and lon. $65^{\circ} 45^{\prime}$ and $97^{\circ} \mathrm{E}$.
Political Diaisions.-Legally "British India" means all territory governed by the "KingEmperor" or "Kaisar-i-Hind." as the monarch of Great Britain is designated in Hindustan. together with any territories of native princes or rulers under the suzerainty of the King of England exercised through the Governor-General and Yiceroy of India. They are as follows:

I Madras (Area 141,726 sq. miles; pop. 38,209,436) was the most important of the three presidencie's before Clive's conquest of Bengal. The people are chiefly Hindus, although there are at least a million native Christians. The languages spoken are principally Tamid and Telagu. It is ruled by a governor. The chief cities are Madras (509,346), MLadura (5051984), and Trichinopoly (ro4.721).

Bombay (Area 125,144 sq. miles; pop. $18,584,496$). The governor of Bombay administer's sind, and other districts. 77 percent of the people of the Presidencyare Hindus, and zo percent Mosiems. The Parsis, the ancient fire worshippers from Persia, are very prominent in the City of Bombay. Marathi, Gujerati, Sindhi, and Kanarese are the principal languages. Chief cities, Bombay (977.822). Ahmadabad ($185,88 y$), Poona (153.320), Surat (II9.306), Karachi (116, t60).
${ }^{3}$ Bengal (Area 115.8 rg sq. miles; pop. 5c,722,067). Ruled by alieutenant-governor. It comprises the districts of Bengal. proper. Behar. Orissa, and Chota N゙agpur; only 5 percent of the population live in towns. Fearly 7^{8} percent are Hindus Principal languages Rengali and Hindu. Chief cities, Calewtta ($\mathrm{r}, \mathrm{ro6}, 73 \mathrm{~B}$), Patnal ($1,341,785$).

+ Eisternt Bengal and Assam (Area ro6, iso sq. miles ; pop. 30.961,459). Ruled by lieutenant-governors. Prinpal languages, Benga and Assamese. Chief city, Dacca (90,542).
${ }_{5}$ Inniled Prozinces of $A g r a$ and Oudh (Area so7, itút sq. miles; pop. q7 $^{7}, 691,782$). Principal languages. Hindi and Behari. 85 percent of the population are Hindus and 14 percent Moslem. Chief cities, Allahahad (iv2, 032), Agra (I $\$ 3,022$), Benares ($200,3,31$), Lucknow (264,049), Cawnpur 1107,170), Meervt (218,129).

6 Punfirb (Area 97.200 sq. miles; pop. $20,330.339$). Under the rule of a lientenant-governor. More than half of the population are Moslens and one-third Hindus. Sikhism, the national religion of the province, numbers more than $2.000,000$ adherents. The languages are Gurmuki or Punjabi and Handi. The chief cities, Lahore (202.064), Delhi $(200,575)$, Amritsar, the sacred city of the Sikhs (10 2,429).

7 Furma (Area 236.738 sq. miles: pop. Io 400.524), the largest province in British India. Conquered and annexed, i885. Kuled by a lientenant-governor. The in-
habitants are of Indu-Chinese stock. go percent are Buddhist. Principal language Furmese. Chief citics, Kangont (23s.88I), Mandalay (IS3.816)

8 Central Protinces and Ber ur (Area 82,635 sq. miles; pop. 0.237.654). Ruled by a chief commissioner. The people are mostly Hindus, and speak Hindi and Marathi. Chief eity, Nagpur (127,734).

9The Vorth-II ist fromice Proinnce (Area 16.466 sq. miles; pop. 2,125,4 40$)$. Mainly lioslems, speaking Pushto, or the Afphan language. A chief commissioner administers the districts of Peshawar, Hazara, Kohat, Bannu, and Dera lsmasl Khan, together with the political charges of Kurram, Nalakand, Khiber, Tochi, Gomal, and Shirani. Chief city, Peshawar (05,147).
ro $4 j m e r-$ Meruda (Area, 711 sq. mites; pop. 47 6.cis). Administered by a chief commissioner. Chief city, Ajmer (pop. 73.839).

II Coorg (Area 1.582 sq . miles; pop. 180,607). The resident of Mysore is ex-officio chief commissioner of Coorg.

12 British Baluchistan (Area 45,804 sq. miles; pop. 308.246). Under the governor-general's agent, who reides at Quetta.

13 The Andemans and. Nicobars (Area 3.143 Sq. miles: pop. 24.6.9). A chain of islands in the eastern part of the Bay of Bengal, administered by a chief commissioner and superintendent. Port Blair is a convict seltlement of British India.

The Laccadive Islands, 14 in number, belong to the Madras presidency. Aden and Perim are protected chiefships and are legally part of the Bombay presidency.

There are a number of Vatize States, ruled by native princes who are responsihle to the Viceroy of India for their good govermment. Attached to Bengal. with an area of 35.834 square miles, and a population in 1901 of 3.735 .715 , are the individual states of Orissa. Chota Nagpur, Kuch Behar, and Hill Tipperaln: to the United Provinces of Agra and Oudh, with an area of 5.109 square miles, pop. 799.675, are Rampur and Garliwal : to the Panjab, with an area of 38,299 square miles, pop. $4 \cdot 438.816$-the chief states are Patiala, Bahawalpur, Kapurthala, Jind, and Nabha: to Madras, area 9,609 square miles. pop. 4.190.322-the chief states are Travancore and Cochin; to Bombay, area 69.045 square miles, pop. 6,891,091-the chief states are the Kathiawar group. Kolhapur. Rewa Kantha, Palanpur. Mahi Kantha, Cutch, and Khairpur (Sind) ; to Central Provinces, 29.435 square miles, pop. $1,983,496$-the chief states are Patna, Kalchandi, Bastai. Bamra, and Raigarh.

The other native states and agencies are: the Rajputana Agency, including among others the states Jaipur, Jodhpur, Udaipur, Bikanir, Alwar, Bhartpur, and Jaisalmir, with a total area of 130,268 square miles and a pop. (1901) of 9,841032; Central India Agency, including among others the states Gwalior. Rewa, Indore, and Bhopal, with a total arca of 77.808 square miles and a pop. of 8,501.883: Baroda, area 8.226 square miles. pop. I.950.927: Hyderabad, area 82.698 square miles. pop. II.174.897: NIysore, area 27.936 square miles. pop. 5.538 .482 ; and Kashmir, area 80,900 square miles, pop. 2.906.173. The total area of native states and agencies is thus 595.167 square miles, and their total population in 1891 66,0 50.479 . in 190163.181 .5609.

The following native states. Whilst they are independent of British rule, are treated as within the sphere of British influence: Nepal, of which a Maharajah is ruler: Bhutan and Tibet, whose relations to the British government are somewhat unsettled. having no British resident ; and Afghanistan, governed by his Majesty Amir Abibullah Klian. (See Afgilanistan.)

Physical Features.- The natural boundaries of the peninsula of India. which forms a triangle washed on two sides by the sea, and having
its base in the great mountain chain which separates at from Tibet on the north, are completed by its three great rivers, the Indus, the Ganges, and the Brahmaputra. These all rise in the Tibetan Nountains beyond the Himalayas, and the first flowing west, the two latter east, deseend in a southern direction toward the sea: ihe Indus discharging itself into the Indian Ocean; the Ganges and the Brahmaputra, atter watering in their separate course a large part if Sorthern India. uniting to pour their waters togetluer by mumerous mouths into the Bay of Bengal. The mountains enclosing the basins of these rivers iorm the east and west boundaries ci the northern part of the peninsula. The Himsalayas. the loitiest mountain range in the world, with heights of upward of five miles above the level of the sea. descend by successive slopes to the elevated plain of Corthern India. (See lodés, Gavges, Brahmapttri. Himalaya.) The entire peninsula is sometimes distinguished by three natural divisions. The Vindhya Mountains, a range of about 3.000 feet in height, whicls extends irregularly across ine peninsula, from Gujarat to the basin of the Ganges, forms an anciently-recognized division into two parts under the names of Hindustan and the Deccan (Southern Land). The name Hindustan, given in this restricted sense to the northern part of the peninsula, is irequently applied to the whole. The ancient division of the Deccan is again subdivided into two, the name Deccan being restricted to the northern part, the sonthern from the river Krishna or Kistnah. which flows from west to east almost across the whole peninsula, being called Southern India or India south of the Krishna. The portion of India watered by the Ganges and its tributaries is by far the most fertile and populous of the whole. At no great distance from the opposite extremities of the Vindhya Mountains two great ranges proceed southward along the line of the coast. The Western Ghats. which attain a height of 5.000 io 6,000 feet, though at some parts much lower. proceed along the west coast to Cape Comorin. the southernmost point oi India. They do not generally recede more than 40 iniles from the sea, and rarely more than -0 . On the sea side their descent is generally precipitous, forming a regular sea-wall. On the land side they descend gradually, and sometimes almost imperceptibly, to the clevated plains of the interior. The Eastern Glat: recede farther from the east coast, are less elevated and precipitous. Beiore reaching as far in their southern course as Madras, they trend inward. and unite witl the transverse range of the Nilgiri Ifils, which connects them with the Western Ghats. This mountainformed triangle ercloses an elcvated table-land with a gradual slope eastward from the Western Gliats, and which is continued beyond the Eastern Ginats to the sea. The clevation of the plain of Southern India also increases toward the south. In the Deccant it is about 3.000 feet above the level of the sea. In the neighborhood ci the Nilgiri Hills. which rise 3.000 fcet above it, it reaches 7.000 feet.

Hydrestofly.-. The chief rivers of India besides the Indus, Ganges, and Brahmaputra, already named, are the Jamna. Ramganca, Gumti, Gogra. Gandak, Ku-i, etc., tributaries of the Gange: the five rivers ci the Panial. Satlej. Biae. Ravi, Chenab, and Jlhilam, tributaries of
the Indus; the Nerbudda, enclosed on its northern bank by the Vindhya Mountains, and the Tapti. which flow west into the Gulf of Cambay. the Mahamadi. the Godavari, the Kistna, Norll and South Penmar. Vellar, Kaveri. etc.. all flowing eastward into the Bay of Bengal. The uniform direction of the great rivers south of the Tapti is explained by the inclination of the land already described. The coasts of India have very few indentations, and consequently very few good natural harbors. The western coast is known by the name of the \alabar, the eastern by that of the Coromandel coast. There are no lakes of any extent in India - Chilka and Kolair mear the east coast being the largest.

Geology.- All the great mountain ranges are chiefly composed of granite and of granitic rocks, Which form also the base of the plateau of the Deccan. Both in the peninsula and in the Himalayas gneiss predominates, associated with micaschist, homblende-schist. chlorite slate, and primitive limestone. Syenite prevails in the southeast of the peninsula. In the sonthern portion of the TVestern Ghats the granitic rocks are overlaid by an iron clay, which is continuous to the end of the peninstila. and reappears in the island of Ceylon. In the upper portion of the Western Gháts and adjoining ramifications of the Vindhya rangé, basaltic trap in various forms overlies the granite to an extent umparalleled elsewhere in the world. It entirely covers a Jarge portion of the table-land of the Deccan. In this district trap and granite frequently pierce the surface in isolated masses. forming Hat-topped hills nearly perpendicular, and which can only be ascended by steps, or winding, dangerous paths. These have been converted into strongholds from a remote antiquity. They are frequently crowned with forts, and form a peculias feature of the landscape. On the lower sides of the Himalayas regular strata of the Secondary and Tertiary periods are largely developed. Many of the sandstones and shales of the Secondary period belong to the coalmeasures. The İndian Tertiary formations attain their greatest breadth toward Sind and the Panjab, where fossil remains, including many of singular forms and gigantic dimensions, are abundant.

Mineral Resouris.- The principal coal fields in India are found in the region bounded north by the Ganges, south by the Godavari. and stretching east and west from the neighborhood of Calcutta to the middle of the valley of the Narbada. Indian coal is distinguished by: it excessive lamination. The anmual production in India was $6.635 \% 2 \%$ tons in 1901, ironn +2, collieries warked throughout Bengal. Ityderabad, Assam, Rewah. the Central Provinces. Panjab. Baluchistan, and Burma. The most important mines are those of the East Indian Railway Company near Guridhi (Bengal) and the Singareni mine in Hyderabad. Oi the coal used on the railways 95 per cent is Indian coal. Iron ore is abundant in many parts of India, lut the amount produced is still small. The only large iron-work in India is at Barrakur in Bengal, hut iron is manniactured locally on a small scale in other parts of Bengal and in the central provinces. The chicf obstacle to the successful development of the iron industry of India is the difficulty of finding the ore iuel, and flum sufficienty near to one another to

make it profitable, but it is believed that ironworks near Calcutta, using Madras ore and Bengal coal, would succeed. Gold is worked to some extent. morc especially in Mysore, the total production in 1900 being 513,260 ounces. Copper. lead, antimony, and other metals are fairly abundant. Burma yiclds a large amount of petroleum anmually, and smaller quantities are obtained from Assam and the Panjal. The total output for 1900 was over 37.500 .000 gallons, but much is still imported. There are valuable ruby mines in U'pper Burma, and a few diamonds are still obtained in Central India. Salt is an important mannfacture and source of revenue: its production is treated under the head of Finance.

Soils.- The alluvial deposits along the mountain valleys and in the plains, and the soil composed of disintegrated rock masses on the plateaus, are especially rich and of great productivity. Their fertility is greatly enhanced and maintained by an claborate system of irrigation. See paragraph in this article on Canals and Irrigation.

Climate-India extends $151 / 2^{\circ}$ within north tropical latitudes, and $121 / 2^{\circ}$ within the temperate zone. Owing to modifying circumstances, the climates contained within this range are not only extremely various, but distributed with great irregularity. One of the chief modifying circumstances is the distribution of moisture, the great regulators of which are the monsoons. The northeast monsoon blows from October to March, the southwest from April to September. The latter surcharged with vapor from the Indian Ocean condenses in torrents on the heights of the western Ghats, and forms the rivers which flow to the east. Before it reaches the Coromandel coast, it becomes a dry wind which scorches up regetation. In Hindustan, on the contrary, this wind passes over the low plains in the lower valley of the Iudus, is arrested by the Himalayas, and fills the tributaries of the Ganges. The northeast monsoon runs a similar course in the opposite direction, but deriving less moisture from the Bay of Bengal, which is of less extent than the Indian Ocean, it has less influence on the climate, and its season is in general the dry one. The great plain of Southern India being exposed to greater heat than that of Hindustan, and not being watered by the snow-fed streams of the Himalayas, is naturally much less fertile. The seasons in India are divided into rainy, cool, and hot. The periods of these different seasons vary according to latitude and modifying circumstances. On the Malabar coast the rain begins earliest to the south. At Calcutta rain falls from June to October: the cool season begins about November, the hot season in February, the heat increasing gradually till May. In Calcutta where the mear annual temperature is about 79°, the range is from 50° to $\$ 5^{\circ} \mathrm{F}$. In Bombay the mean annual temperature is about 82°, the range about 10°; in Madras mean about 84°, range 7° to 8°. The annual rainfall in India is much greater than that of England; but it is distributed with great irregularity. The basin of the Indus, including all Sind and the half of the Panjab. is an arid region with an annual rainfall under 15 inches. The higlo plateau in the interior of South India has an annual rainiall generally under 30 inches. On the whole Malahar coast
the ramfall is over 75 inches; at Kananor it reaches 128 inches. On the Coromandel cuast it is very much lower, being 45 inches at Vizagapatan, 50 inches at Madras, while farther soutls it falls below 30 incles. Between the arid region of the Indus and the Ganges runs a dry zone of 100 to 200 miles wide, including Lahore, Delhi, and Igra, with a rainfall between 55 and 30 inches. The valleys of the Tapti, the Nerbudda, the lower part of the Jamma, the Ganges, and the Brahmaputra, are generally over 30 . Along the slopes of the Himalayas from Cashmere east to the boundaries of India, and southeast to the mouths of the Mahánadi runs a helt of country with a rainfall over bo inches, within which is included the lower coursc of the Ganges. Within thus is another belt. including a lower slope of the Himalayas, and the lower course of the Brahmaputra before its junction with the Ganges, in which the rainfall rises above 75 inches.

Forests. - The three most valuable timber trees of India are the teak (Tectona grandis), the sal or saul (Shorca robusta). and the deodar (Cedrus Deodara). The teak grows most luxuriantly along the Bombay coast, in Travancore and Cochin, and in Burma, but it is also abundant throughout much of Central India and elsewhere. The sál is the chief forest tree of the Himalayan slopes, from the Satlej eastward to Assam, and it grows also in the forests of Central India and the Eastern Ghats. The home of the deodar is the northwestern Himalayas. Among the most valuable trees of the densely forested Western Gháts from Kanara to Travancore and Mysore are teak, blackwood, bamboos, sandal-wood, a kind of ebony, and Caloplyylum inophyllum, whose wood is prized for the spars of ships. In the United. Provinces and neighboring districts the leading species are sal and several varieties of pines, and in the extensive jungles of the Ganges delta the most useful wood is that of the sundari (Herefiera littaralis). The forests of Assam yield sál. Pinus Kasya, caoutchouc (Ficus clastica), and other useful species, and plantations of teak, tun or toon (Cedrela toona), and sissoo (Dalbergia sissoo) have been laid out. Beside teak the Burmese forests contain ironwood and the cutchtree (catechu). Before the formation of the Indian Forest Department the forests were recklessly destroyed by timber-cutters, nomadic cultivators, and others, but large forest arcas in all the provinces have now been marked off as reserved forests under the immediate care of the forest officers, and other forest areas have been brought under partial conservancy. Timbercutting and grazing have heen either prohibited or restricted; and plantations of the more useful irees have been formed in many parts of the country. In every province a few of the most valuable timber trees are declared to be reserved trees, and can only be felled under special license. Forest revenuc is raised by royalties on, or hy the sale of, timber or other produce, and by the issue at specified fees of permits to graze cattle, or to extract for sale timber. fircwood. charcoal, bamboos, canes, and other minor forest produce. The reserved forests now cover an area of more than 8o,000 square miles, and the protected or partially conserved iorests occupy other 30,000 square miles. Some of the native states, such
as Mysore, Travancore, Baroda, and Kashmir, have followed the example oi the British government.

Flord- Where moisture is plentiful, as in the valley of the Ganges, regetation is superabundant. The delta of the Ganges, in particular. called the Sunderbunds, is covered with dense jungle full of the largest wild animals. and the excessive vegetation renders most of the mouths unnavigable. There are many other similar tracts oi extensive forest and jungle. On the Coromandel coast. on the other hand, the heat. which reaches 100° or $120^{\circ} \mathrm{F}$., destroys regetation, and the delta of the Indus from the southeast of the Panjab to the Ran, or great salt marsh of Kach (Cutch), iorms a great sandy desert. continuous across the river with the desert of Baluchistan, and with a wide band stretching across the whole continent of Asia to Central Airica. In the various altitudes of the Himalayas forms of vegetable and animal life belonging to all the various climates irom tropical to polar are to be found. These as well as the IV estern Gháts are magnificently wooded. Orchids, rhododendrons, and other valuable flowers are common. Among the staple natural products of India are rice maize. wheat, barley, cotton, flax, hemp. jute, rhea, indigo, tea, coffee. sugarcane, opium, tobacco, ginger, pepper, cardamoms, palms bearing nuts which are extensively consumed. anise, dye-woods, etc. European fruits abound, and among indigenous iruits may be mentioned the mango. plantain, pomegranate, citron, date, almond, grape, pineapple, and tamarind. Palms, including the date. cocoanut, palmyтa, betel-nut, and other species, the banyan, and bamboo, are common features of the regetation.

Faura. - The elephant, the rhinoceros, the camel, the tiger, a few lions in the northwest, the leopard, bears, hyena, jackal, wolf, and numerous smaller carnivora, the boar, antelopes, deer, wild ox, ass, sheep, and goat, monkeys in great variety, and the greater number of European quadrupeds are found. There are several large species of ox, such as the gaur or "bison" and the arnee or wild buffalo. Crocodiles, snakes (including the dreaded cobra). and reptiles in all varieties are very numerous; of birds. the eagle, vulture, falcons, peacock, parrots, kingfishers, mina-bird, partridge, quail, heron, stork, are characteristic species, and other varieties. both indigenous and common to other regions, are numerous. Fish are plentiful and in great variety both on the coasis and in the rivers.

Lond Tenure and Recenne.- In India the state, or the monarch. has alway: enjoyed a share in the rent or profits from the land. Beiore the advent of the Nohammedans and the establi-hment of the Mogul Empirc the almost universal unit for the purposes of revenue collection was the village community. In a village cemmunity land was held. not by private owners, \& ut by cultuvans cecupying it under the village arp ration, and the land revenue was collected in m the head-man as representing the commum?: With the Johammedan conquest new methi in i tevenue enllection were introduced. The -tale clamed one third of the gross produce if the 1 i as its share, and entrusted its collectik in th mern me who cach agreed to pay a definite amriunt irom the district assigned to him. These revenne farmers, known as zamindurs,
were often local magnates under the old Hindu system. Ünder British rule the aim has been to substitute private property in the sail, wherever practicable. for the older communal systems, and in consequence the zamindars, who were in no sense proprietors, have become so in several parts of British India, while in others the cultivating rayots (or ryots) have been raised to the status of peasant proprictors. The village community, however, in some form still exists both in British and in native territor:

The term "settlement" is applied in Indian revenue affairs to the process of assessing the land revenue demand. Occasionally, in newly acquired or specially backward tracts, the land revenue is assessed for a short term of years on a general review of the circumstances and capabilities of the land and people concerned: such a process is called a summary settlement. But a regular settlement is a more complicated affair, and consists of many stages. In the first place, every separate estate or holding is demarkated by permanent marks on the ground: and disputes betreeen neighboring right-holders are investigated and decided. Erery estate or holding is then surveyed and mapped, all boundarymarks, wells, and buildings being shown on the field or cadastral maps. After the field maps are prepared. the next process is to classify or record each field according to its productive value, as evidenced by its soil, the amount of its produce, or by the rent it pays. A record is at the same time drawn up of all rents paid, and of all rights, whether landlord rights, or tenant rights, or rights of user, over all the ground, buildings. wells, and trees shown in the map. Then the assessing officer (or settlement officer, as he is often called) compiles the information obtained for all the lands in a circle of villages; and on a review of all these data, of the past fiscal history of the tract. of the range of prices, of the accessibility of markets, and of other general considerations, he proposes rent rates or revenue rates for the several classes of lands in the circle. The rent rates or revenue rates proposed bythe settlement officer, and the grounds on which they were based, are then investigated by a superior officer, and are not adopted until they have been accepted or modified by the latter.

In provinces where the zamindari tenure prevails, that is, where single proprietors or proprietary brotherhoods possess large estates of several bundreds or thousands of acres, the state revenue is assessed at an aliquot part (usually about onehalf) of the ascertained or assumed rental. The revenue, though it is fixed with reference to acreage rates on the land actually cultivated, is assessed on, and is payable by. cach estate as a whole; the assessment remains unchanged for the 30 years, or other period of the settlement ; the proprictor can bring as much as he likes of his waste and fallow land under the plough: and it is only on re-assessment at the end of the term of the settlement that the state obtains any increase of revenue on account of the extensions of cultivation during the settement period. In provinces where the rayawari tenure prevails. that is, where each petty proprictor holds directly from the state, senerally cultivates his own land, and has no landlord between himseli and the gnvernment, the revenue is separately as sessed at an acreage rate on eacla petty holding, and land revenue becomes payable at once, or

INDIA.

after a short term of grace in the case of uncleared lands, on all extensions of cultivation. The rayatwari proprietor is at liberty to throw up his lolding, or any portion of it, at the beginning of any year, after reasonable notice; the zamindar, or lärge proprictor, engages to pay the revenue assessed upon him ior the term of the settlement.

The land revenue assessment was fixed permanently more than 100 years ago on the greater part of Bengal, about a third of Madras, and certain southern tracts of the Northwest now the United Provinces, paying in all about $\$ 1,4,250,000$ a year. In the temporarily settled tracts, comprising the rest of India. it is fixed periodically for terns of 12 to 30 years. In the nine chief provinces (Bengal, Bombay and Sind, Madras, the United Provinces of Agra and Oudh, Central Provinces, Panjab. Burma, Assam, Berar) the number of rayatwari holders is about 2;3.000, of whom none belong to Bengal, Panjab, and the United Provinces and Oudh. The total mumber of zamindars and village communities is about 318.500 , of which only Sind and Berar have none. The total number of holdings is thus about 591,500 . In the greater part of Bengal land is held by zamindars under a permanent settlement. but the tenants are protected by recent legislation. The rayatwari system is the prevalent one in Madras. and in Bombay a similar system has been established. In the latter province the cultivators are now protected by law against the extortions of the money-lenders. The village community is still common in the Lnited Provinces and the Panjab. In Oudh much of the land is held by talukdars, who have been granted certain privileges which are denied to the zamindars.

Agriculture.-The total area accounted for in the agricultural returns for 1901 is $\$ 46,000.000$ acres, of which $66 \frac{1}{2}$ millions are under forest, $135^{1 / 2}$ million not available for cultivation, and ${ }^{1} 45^{1 / 2}$ million culturable waste and current fallows. The net crop-yielding area is thus $1081 / 2$ million acres, or, taking account of land cropped several times in a year, $223^{1 / 2}$ million acres The three chief food-grains of India are rice, millet, and wheat. Rice is the staple food of about a third of the population, and is grown on 75 million acres, but it is nevertheless essentially a local crop, which can be cultivated with profit only under exceptional circumstances. Oi the total rice area fo million acres belong to Bengal. where it is the staple crop, and about 7 million each to Madras and Burma. Over 90 per cent of the cultivated area of Lower Burma is under rice, and it is grown on mearly three quarters of the area of Assam, about one third of that of the Central Provinces, a quarter of that of Oudh. while it is of importance also in the L'nited Provinces and Sind. It is grown to a less extent in the Panjab and Bombay. Rice is also cultivated by hill tribes in all parts of India. In Bengal there are two chici rice harvests in the year, the áus or early crop, chiefly for local consumption, and the áman or winter crop. chiefly for export; but in Lower Burma, whence most of the exported Indian rice comes, there is but one harvest, corresponding to the Bengal winter crop. The total area under wheat is 2 . million acres, inainly in the Panjab ($5^{-1 / 2}$ million), where it is the leading crop, the United Provinces of Agra and Oudh, the Central Provinces, Bombay,

Ceneral India, and Bengal. Taking India as a whole, it may be broadly affirmed that the staple food-grain is neither rice nor wheat, but millet. The area under the various kinds of millet and maize is 43 million acres, chiefly in Bombay ($131 / 2$ milhon), where these are the chief food crops; Madras, where also, though to a less extent, millets are the chief fool-grains; Panjab, Linited Provinces, Berar, in which millets are by far the most important food crops; Central Provinces, Sind, Oudh, Bengal, and Lpper Burma. The clief varieties of millet grown in India are jodr, or jucu'rí, or cholam, great millet (Sorghum zulgarc) : bájra, or kambu, spiked millet (Pennisctum typhoidcum); and ragi, or táchani (Eleusine corocana), grown chiefly in Southern India. About 8 million acres are sown with barley, chiefly in the upper Ganges valler, the Himalayan valleys, and the Panjab. Gram crops or pulses, especially chick-pea, green-gram, horse-gram, lentil, and pigcon-pea. occupy 10 million acres, mainly in the United Provinces of Agra and Oudh, the Panjab, and Bengal. The large native demand for oil has been reinforced in recent times by a rapidly-increasing foreign demand, and in consequence the cultivation of oil-seeds has greatly developed. They are grown in many parts as a second crop on ground from which rice or some other food crop has already been taken. The chief varieties cultivated are linseed, rape-seed, sesamum (til or gingelly), and castor-oil, and the total area occupied by them is 22 million acres, chiefly in Bengal, Bombay, and Sind, Madras. Central Provinces, and Panjab. The area under ground-nuts in Bombay and Madras is about 1 fo,000 acres. The cultivation of vegetables for houschold use is general. and near some of the towns it is carried on more extensively. Potatoes thrive best in the more elevated tracts. Among cultivated fruits are the mango, guava, orange, melon, citron, lime. fig, plantain, pineapple, pomegranate, tanarind, shaddock, jack, papaw, and custard-apple. The area under sugar-cane is abont 2,800,000 acres in Bengal (especially Orissa). United Provinces. Panjab, Oudh, Madras, and Bomhay. Jaggery sugar is made from the bastard date-palm, which is grown for this purpose in the neighborhood of Calcutta and in northeastern Madras. The tea crop is one of great and increasing importance, and occupies about half a million acres, of which 330,000 are in Assam, the rest being in Bengal, Panjab, U'nited Provinces, Madras, Burma, and native states. With the exception of a few hundred acres in Burma, Assam. ctc., the whole of the coffee-growing area, amounting to about 280.000 acres, is in Southern India, in Mysore, Kurg, Madras, Travancore, and Cochin. The chicf circhona plantations are the government ones at Darjiling and in the Nilgiris. The tree was introduced by the Indian govermment.

Cotton is one of the most valuable vegetable productions of India. The total area under the cotton-plant is 14,0000000 acres, distributed thus: Bombay and Sind ($3,900,000$). Berar ($2,500,000$), IIyderabad ($1,500,000$). Nadras (1, +oo.000), L'rited Provinces of Agra and Oudl? ($1,250,000$) , Panjab ($1,200,000$), Central Provinces (1,000.000), and smaller areas in Central India. Rajputana, Burma, and lBengal. Next in importance to cotton among Indian fibres comes jute, which is cultivated in eastern Bengal along tle valleys of the Ganges and the Brah-
maputra，oceupying fully two million acres．The cultivation of the mulbery，for the rearing of the silk－worm，is chierly carried on in eastern and northern Bengal．with Mursbudabad as a cenire．The indigo industry is one of the oldest in India．but it is at present in a languishing condition．The area under the plant is about 064.000 acres．chiefly in Bengal $(300,000)$ ．United Provinces of Agra and Oudh，Madras，and Pan－ jab．The opium poppy is cultivated in certain parts of western Bengal and the United Prov－ inces of Agra and Oudh，in the Panjab，and in the native staies of Rajputana and Central India，occupying in all about 600,000 acres．（See below under Finanie．）Tobacco is grown in every district for local consumption．Among the numerous minor cultivated vegetable prod－ ucts of India are turmeric，chillies．ginger．cori－ ander，aniseed．black cummin，fenugreek，pep－ per，cardamoms，betel－pepper．areca or betel－nut palm，cocoanut palm，palmyra palm．and date－ palm．Experimental cultivation of rhea．rubber． sisal－hemp，and other valuable economic plants has been carried out on the experimental farms maintained by government in sarious parts of the country：

Siockraising．－Horned cattle are used in agricultural operations throughout all India．ex－ cept Sind and the Panjab．where camels gen－ erally take their place．The total number of cattle in India is over 100 millions，of sheep and goats 40 millions．of horses， ponies，mules，and donkers， $2^{1} \frac{2}{2}$ millions，and of camels about a quarter of a million．There are large numbers oi buffaloes in all parts of the country．A public veterinary department has been organizeil to attend to the improvement of the breeds of horses，ponies，mules，and cattle， the prevertion of disease among domestic ani－ mals，and the provision oi reterinary instruction． Its operations are mainiy cenfined to Northern India，where the conditions are most farorable for the breeding oi horses for military purposes．

Commerce：－From a very early period down till comparatively recent times 11 estern traders visited India in order to obtain the gold and silver．jewels，spices．and other costly products ior which India was then celebrated，but the present foreign trade of India has developed under British rule and rests on an entirely dif－ ierent basis．In the year $1 ; 00$ the total value of the exports irom India was under $\$ \Sigma .000 .000$ ，in 1834 the value had risen to $\$ 50,000,000$ ，and now goods and treasure to the value of about \＄400．000，000 are exported every year．In isgo－ 1900 the total value of private imports by sea （excluding treasure）was $\$ 235.706 .200$ ．of g v－ emment imports of stires，$\$ 15,30 \varepsilon,-25$ ；total of all imports other than treasure．ミ2st．0r4．925． The tital value of private exports oi Indian merchandise was $\Sigma_{352.379 .510 \text { ，of foreign mer－}}$ chandie re－exported $\$ 10.95 .525$ of government exp rt of stores $\$ 357.115$ ：total of all exports other than treasure，$\$ 363-12.1 \approx 0$ ．Treasure was imported to the value of $\$ 69.912 .285$ and ex－ p red to the value of $\$ 26.521 .295$ ．Thus，in－ cluding treasure，the total exports by sea ameunted to $\$ 300,233+45$ ，and the total imports to $\mathrm{E}_{3} 30,02-, 210$ ，the total sea－borne trade being s－ir．unotss．The exports by land in the same ye r were valued at $\$ 18,800.925$ ，and the imports Iy lat 1 at $\leqslant 23.529,025$ ．Thus，the total trade of India ty land and sea amourted in $1800-1000$ to ミュミ3．4，0，605．The chief articles of import were：
cotton woven goods．metals and hardware，oils， chicily petroleum．sugar，railway mater：al．ma－ chinery and mill－work，cotton yarns，chemicals， medicines．dyes．wooien goods．silk．זaw and manufactured，provisions，liquors，and apparel． The chief exports were：jute，raw and woven， husked rice，hides and skins，oil－seeds．raw cot－ ton，tea，opium，corton yarns，wheat，indigo，coi－ iee，raw wool．and cotton woven goods．The propertion of trade directly with European countries is about $63^{i} \frac{2}{2}$ per cent，omitting the irade with Egypt．inuch of which really goes to Europe．The irade with the United Kingdom is over $; 0$ per cent of the trade with Europe and nearly 45 per cent of the total trade．lext to the Enited Kingdom．the chief countries trading with India are China，Germany：United States．Straits Setilements，France．Japan，Bel－ gium，Ceylon，tustria－Hungary；Italy，and Rus－ sia．The figures for $1900-1$ show that，while Indian imports of American goods were valued at only $\approx o m e ~ \$ 49,000$ ．Indian exports to America amounted to $\mathbb{S}_{2+1,690}$ ．The chiei articles of ex－ port appear to be gumny bags and cloth．of which latter America takes more than all other coun－ iries．The trade of India with America，how－ ever．is only of short standing，but，wisely organized，is capable of being greatly expanded． At present Germany supplies many things this country shouid funnish，particularly in the elec－ trical and chemical lines，in which it at present holds the market．Otber imporrant articles of Indian export are tea，jute and jute manufac－ tures，wheat，oil－seeds，rice，leather．wool，in－ digo，coffee．teak－rood，cotton，and lac．The share of the five chief seaports of India in the total foreign trade（excluding treasure and gor－ ernment stores）in IS99－1g00 was as follows： Calcutta，$\$ 264,130,000$ ；Bombay：$\$_{1} \$ 8.230 .000:$ Rangoon，$\$ 40.590,000$ ：Karáchi，$\$ 35.1,0.000$ ； Madras．\＄32．180，000．India has many other sea－ ports of minor importance．The value of mer－ chandise and treasure carried in coasting ves－ sels during is99－1900 was S135．4；0，000．The trade across the land frontiers is steadily in－ creasing，the chief item among imports being iood grains．and among exports corton goods． Much greater than her trade with foreign coun－ tries is the internal trade of India，but no re－ turns of its amount are available．It is mostly in the hands of natives，and to a large extent in those of particular groups or castes．It is still carried on，as it has long been，at village markets，town bazaars，religious fairs，and sim－ ilar gatherings，but the development of railway and canal communication and the transiorma－ tion in the system of agriculture have greatly altered its character in many ways．

Manwiatures．－The domestic industrics of India．such as weaving and spinning．pottery． brass－work，iron－work，and art work of many kinds，continue to be practised after ancient methods all over the continent of India．But Indian fabrics and products，made on a small scale by workers at their homes，have for years past been giving way before the cheaper，less artistic，and often less durable cotton yarn and fabrics，and the iron or steel products of Brit－ ish factories．Neanwhile an important manu－ iacturing industry has been srowing up，and steam－power factorics are at work，amone which those for spinning and weaving corton，for spinning and weaving jute，for making paper， fir lousking and cleaning rice，for sawing tim－

INDIA

ber, and for brewing beer, are the most important. Steam power is also largely employed in factories, on tea gardens, and indigo estates. In 1900 the number of cotton-mills in British India and native states was 180 , containing 38.420 looms and $4,728,000$ spindles, and giving employment to 163.000 persons. Of these mills 136 were in Bombay Province (80 in Bombay City), the rest being in Madras, Bengal, Central Provinces, United Provinces, Burma, Panjab, and Berar, besides some of the native states. The number of jute-mills was 33 in 1899-1000, containing $\mathrm{t}_{4}, 02 \mathrm{I}$ looms and 293.2 I S spindles, and employing over 100,000 persons. All the jute-mills are in Bengal, except one in Cawnpore, which is the chief manufacturing centre of the United Provinces. Four woolen mills produce blankets, serges, and cloths worn by the army and the police. The largest brewery is at Murrce, in the Panjab Himalayas. Among other industrial works of importance are silkmills, soap-factories, tanneries, iron and brass foundries, sugar-factories, coffee-works, cottonpresses and ginning-factories, jute-presses, ropefactories, oil-mills, cutch and lac factories, flourmills, ice-factories, pottery and tile factories, bone-crushing works, tobacco and cigar factories, silk filatures, glass-factories, dye-works, indigo-factories (over 5.000), printing-presses, and dairy farms. The total number of persons employed in all these mannfacturing industries is about 700,000 . The present Indian Factory Act cane into force at the beginning of 1892. The daily wages of a man employed in a factory vary, according to locality, from 2 to 4 annas (4 to 8 cents).

Shipping and Navigation.-In 1897-8, 9,759 vessels of $7,784,630$ tons burden entered and cleared the ports in British India, as against 8,613 vessels of $9,625,317$ tons in 1goI-2. Of these in the latter period 3.988 were of British nationality, 2,003 native, $\mathrm{I}, 289$ British Indian, and 1.333 foreign; included in these numbers were 1,644 steam vessels of $4,299,9,4$ tons entering and clearing via the Suez Canal. In 1901-2 II5 vessels of 4,833 tonnage, were built in Indian ports, 81 in Bombay, I3 in Madras, and 10 in Sind.

Railuays and Roads.-The first Indian railway, from Bombay to Thana, was opened in 1853. The main trunk lines constructed from that time till about 1875 were built and managed by private companies on whose capital the Indian govermment guaranteed a fixed rate of interest, generally 5 per cent. The govermment in return for this assistance, exercised a general control over the companies, and reserved the right of buying the undertakings at specified dates on stated terms. In 1870 Lord Mayo initiated the policy of railway construction by direct state agency, hut in more recent times several lines have been constructed by "assisted companies." Several of these latter lines have been taken over by government. There are also native state railways constructed from capital raised in native states, but generally worked by a staff employed by the government of India or by the trunk railway companies to whose lines they serve as feeders.

The importance of railroads in India is largely increased, in a governmental sense, by reason of their forming strategical links between the various military cantonments throngh which the vast Indian population is held in check by
a comparatively, small army of British soldiers. This, more than any other incentive, has hastened the develoment of railways in India.

The main lines are two in number, and are known as the Bombay-Calcutta and the BombayMadras lines. The former crosses the great northern plain, the latter the great southern plain of India, and are both connected by means of branch lines with all the large cities of the empire - the capitals of the rajalns, maharajahs and nabobs. These two great trunk lines have also been extended to the farthest limits of India, and even into adjoining territories, as where the line which crosses the Indus at Sulkur enters Afghanistan, the terminus being not more than 60 miles from Kandahar. There is also the Burman line, which passes itp the valley of the Irawaddy in the direction of the Chinese fronticr. These three main lines, with their several offshoots, may be roughly sketched as follows: In the north, a direct line from Bonbay on the west coast to Calcutta on the east coast; a line to Benares from Bombay; a dircct line from Calcutta to Peshawar, on the Afghanistan border, by way of Benares, Delhi and Lahore: a line from Lahore to Karachi, with the branch line between these two cities to Kandahar. In the south, the main line between Bombay and Madras through Hyderabad; the line from Bombay to Goa, and from Goa to Madras, with lines connecting with Calicut and with the line from Madras to Tuticorin in the south. In Indo-China, the main line from Rangoon to the Chinese frontier, by way of Mandalay, and with an extension to Bhamo and another to Meaday. (It is proposed to extend the Bhamo line to Bishi and the main line to Yun-nan in China with offshoots to Tching-tou and Hai-pong.)

The total milcage of railways in India on 3I December was distributed as follows: State lines worked by the state, 5,884 ; state lines worked by companies, II, 654 ; total state lines, 17,538 . Lines owned by native states and worked by state railway agency or by the states themselves, I.3I4; native state lines worked by companies, 1,560; total native state lines, 2,874 . Total of lines owned by government and native state, 20,412. Lines worked by guaranteed companies, 2,663 ; lines worked by assisted companies, 1,518 ; total private lines, $4,18 \mathrm{r}$. The total capital ontlay of these railways till the end of igoo was slightly over $\$ 1,000,000,000$; the total number of passen gers carried in 1900 was $117,613,218$; and the total weight of goods carried slightly over $43,000,000$ tons. The chicf highways are well metalled with a kind of limestone called kankar, but in Lower Bengal and similar districts, where there is no avaiiable stone, roughly-made bricks are unsed for road-metal. Many of the roads are planted with a renucs of trees. The total length of roads in India maintained by public anthorities is over 152,000 miles, of which over 36,000 miles are metalled.

Posts, Trelcgraphs, and Telephones.- The number of post-offices in India in I $890-1000$ was 10,823, and the length of postal lines 91.534 miles. The total number of letters and post-cards carried was 448,868,998; of packets of every kind, $509,006,476$. Adding the district post lines and the political and military lines administered by the Imperial post-office, the total length of the lines over which mails were carried was 127.934 miles. The Indian telegraph system now consists (1900) of 52,909 miles of line, 170,766 miles

INLIA

of wire, and 28_{3} miles of cable. The number of telegraph crices is about 5.000 , and the amnual number of messages over $6.000,000$. There are ielephore companies at important towns, such as Bombay, Calcu:ta. Karáchi, Madras, Maulmam. Rangoon, and Ahmadabad. India is now in direct telegraphic conmunication with the Straits Setilements and the Australian colories. with Europe via Suez, ria Teheran, and ria Turkey, with the East Coast of Africa, and with China ria Bhamo.

Conals and Irrigation.- In some parts of India. such as Siud, cultivation is impossible without irrigation, while in others, such as much of Lower Berggal, irrigation may be regarded as quite unnecessary; but in the greater part of all the provinces the rainfall is either insufficient for the proper cultivation of the soil, or so uncertain as to expose the agriculturists to the consiant risk of scarcity and even of actual famine. Hitherto irrigation has had only a secondary place in the governmental development of India. the atrention of the administration having run more to railways. The profit on the railways is, on an average, \mathbf{s} per cent, while on the expenditure on irrigation works on which only. Si $25,000,000$ have been spent. the profit has averaged $-1,3$ per cent; on the Eastern Jumna canals the profits rise to 25 per cent. The annual irrigation expenditure under the present Indian budget comes to only $\$-, 500,000$ for major and minor works together.

In 1903 it was proposed by a special commission that the sum of $\$ 150.000 .000$ be deroted to irrigation works, the expenditure to be spread over 25 years. This period is regarded by some as too long, and they think it should be curtailed by one-hali, as the question is urgent from both the political and economic point of view. While not considering the expenditure on railways excessive. seeing their military importance, it is felt that they have more than sufficient capacity for draining away all the produce of the country, to which it is time to cry a balt, and to devote more money and attention to works that will extend and stimulate production. The larger irrigation work have been found unprofitable in iour districts only, and in those the loss has been very small.
llany of the irrigation works now administered by the Public Works Department are simply old native works restored, and in some cases extended or improved. The total irrigated area of India is about 37 million acres. Tank irrigaiton is common in some districts, especially in Southern India, and the tanks are mostly of native origin. Many old tanks, however, have been repaired or improved by the British gorernment, and new ones have been constructed in Madras (where there are now 60.000 tanks). the Bombay Deccan. and Ajmir Merwara: In pars of Baluchistan, where the rainfall is scanty and capricious, water for irrigation purposes is drawn from underground springs by means of tunne's driven into the hill-sides. The most $\therefore \mathrm{mm} \pi$ meth 3 of irrigation in India. however. is at at by wells, which prevails over large areas in $2: 1$ the provinces. Canal irrigation was pracwed to some extent by the native rulers, but all the important canals have been constructed c..ne the British occupation. Irrigation canals a-e, itwo kind = imundation and perennial. The later a-e furni=hed with fermanent headworks and wers, and are capable of irrigating large
areas tinroughout the year, independently of the local rainfall: while the latter, which are peculiar to Sind and the Panjab, are simply earthen chanmels supplied with water by the annual rise in May of the Indus and its affuents. Many oi the perennial canals are, either in whole or in part, used for navigation, and there are, besides, a few canals used for navigation alone. The total lengih oi irrigation canals in operation was 42.352 miles, of which 12.497 miles were main canals and the rest distributaries. The total mileage of navigable canals in Bengal. Panjab, Unied Provinces oi Agra and Oudh, and Madras is iully 4.000 miles, of which about 1,600 miles are for navigation only.

The total area irrigated by canals in Bengal exceeds 720,000 acres, and the length oi irrigation canals is 3.35 r miles, of which 7.47 miles are main canals. Oi these canals 495 miles are open to navigation, and there are besides 1.339 miles of canals used for navigation only, thus giving a total length of 1.834 miles oi navigable canals. The area in the United Provinces of Agra and Oudh irrigated by canals exceeds $2,800,000$ acres, over I $5 / 2$ million acres being irrigated by the L-pper and Lower Ganges Canals (q-v.), and the total length of irrigation canals is 12,534 miles, $r .554$ miles being main canals. Of these canals 53% miles are open to navigation. Over 5.000 .000 acres in the Panjab are irrigated by canals, the total length of these being 12,069 miles, of which 3.478 are main canals, 432 miles of the latter being utilized for navigation also. Three million acres are irrigated by canals in Madras. and rather more by tanks and in other ways. The total length of irrigation canals in the province is 10.522 miles, of which $3-474$ are main canals. The rotal length of canals used for navigation is 1,252 miles, of which 262 miles are for navigation only. In Bombay proper the canals are generally small, and they are usually associated with storage reservoirs. Taking Bombay and Sind together, the total irrigated area is $1,-00,000$ acres: the length of irrigation canals 3 .Sor miles, of which 3.240 miles are main canals. There are no large irrigation works in Lower Burma, but a considerable amount has been expended on riser embankment and drainage works. and on making navigable channels. The cnief work in Upper Burma is the Mandalay Canal.

Moncy, If"eights, and Measures.- By an act passed in 18_{35} a uniform monetary system was established throughout India, with the Madras silver rupee of iSo grains, It fine, as the monetary unit. The rupee was subdivided into 16 annas. and cach ama in:o i? pies (or four pice). Silver was made the universal standard of value, and the silver rupee and halt-rupec werc declared to be legal tender to any amount. The other smaller coins were made legal tender up to the value of one rupee: 100,000 rupees are called a lakh or lac, and ico lakhs a crore. Under this system large sums are punctuated differently from the usual European method. For instance the Indian Post-Office Savings banks' statistics show that in $1900-1$ E 16.651 depositors had to their credit $100,432,569$ rupees, or, according to the Indian method, crores ro, lakhs O4, supees 32.369.

The coins inder this system are: Silver Rupec, hali-rupee, quarter-rupee: Bronze or Copper - Threc pies (or a pice), six pics, one pie. There are also gold coins called mohurs,
but they are not a legal tender, and there is no fixed ratio between them and the silver coins. Stuall payments in the bazaars are made in cowries, of which from 2.500 to 5.000 are equivalent to one rupee. The rupee was formerly valued ar 48 cents, but it has fluctuated greatly, mainly downwards. In January 1895 it was nearly as low as 24 cents; at present it is about 32 cents. In view of the steady depreciation of silver. and the consequent financial embarrassments and burdens to which the government of India was subjected in its dealings with goldstandard countries, an act was passed by the Governor-general's Legislative Conncil in 1893 under which the Indian mints were closed to the free coinage of silver. On 15 Sept. 1899 a further act was passed. by which gold coins issued from the Royal Mint in England, or any branch of the Royal Mint, were made legal tender at the rate of 15 rupees to the sovereign. Arrangements are being made for the coinage of gold in India. By an act of 1861 and some subsequent acts, promissory notes for amounts varying from 5 to 10.000 rupees have been emitted under the authority of a public issue department. Currency circles have been established from time to time, and these notes are legal tender only wirhin the circle of issue. They are payable at the place of issue and also at the capital city of the presidency in which the place of issue is sitnated.

By the Measures of Length Act of 1889 the British imperial yard of 3 feet or 36 inches was made the standard of length for the whole of British India. The most important of the old native measures of length was the guz of Bengal. which was practically equal to a yard. An act was passed in 187 I to prepare the way for the adoption of a uniform system of weights and measures of capacity throughout British India. The unit and standard of weight established by the act is the ser, which is equal to a kilogram or 2 I-5 lbs. The unit of capacity was declared to be a measure containing one ser of water, at its maximum density, weighed in a yacuum, and is thus equal to a litre or $13 / 4$ pint. Among native weights the most important are the tola (Bengal) of 180 grains, and the imperial or Indian mand of to seers, equal to $822-7 \mathrm{lbs}$.

Government. - The government of the Indian empire is regulated by an act passed in 1858 . by which all the territories formerly possessed by the East India Company are transferred to the crown, and all the powers of the said Company exercised in name of the sovereign, all taxes being received and disposed of for the purposes of the government of India alone. His majesty's secretary of state for India is invested with the powers formerly exercised by the Company or the board of control, and he must countersign all orders and warrants under his majesty's sign-manual. He is assisted by a council of from to to 15 members, the greater number of whom must be persons who have resided 10 years in India, and have not left it more than 10 years previous to their appointment. The secretary for India fills up racancies in the council. The members receive a salary of $\$ 6.000$ a year payable out of the revenues of India. and they hold their office for 10 years. All orders sent to India must be signed by the secretary, and all dispatches from the Indian government must be addressed to him. The executive anthority in Jndia is rested in the governor-genVol. 8- +5
eral or viceroy appointed by the crown, and acting under the direction of the secretary of state for India. He has a salary of 250,000 rupees, or about $\$ \$ 3.500$. The governor-general in council has power to make laws for all persons, whether British or mative, within the dominions subject to the British crown, and for all British subjects residing in allied native states. His council consists of five ordinary members and one extraordinary member, namely, the commander-inchief. The ordinary members preside over the departments of home affairs, foreign affairs, finances, revenue and agriculture. military administration, legislation, and public works, and together with a certain number (not less than 10 nor more than 16 . by the act of 1892) of "additional members for making laws and regulations," appointed by the vicerov. iorm a legislative council. The meetings of the legislative council are open to the public, and the governor of the province in which a meeting is held is a member for the time being. The members may discuss the annual financial statement, and ask questions about it, but they are not allowed to propose resolutions or to divide the council. The whole of India is now disided into a number of separate prowinces, each with a separate administration of its own, but all subordirate to the supreme government at Calcutta, the eapital. These are not all on exactly the same footing nor ruled by officials having the same title. Two of them, Bombay and Miadras, are each under the rule of a governor. appointed by the crown, and assisted by a separate executive council. Bengal, the Tinited Provinces of Agra and Oudh. the Panjah, and Burma are each under a lientenant-governor, appointed by the governor-general with the approval of the crown, and the lieutenant-governor of the United Provinces is also chief commissioner of Oudh. The head of the government in Assam and the Central Provinces is a chief commissioner, appointed by the governor-general in council. The two governors and the four lieutenant-governors are each assisted by a legislative council similar to that of the governor-general. Ajmir Merwara, Berar, and Kurg are under the more immediate control of the central government.

Finance. - The gross revenue of India in $1899-1900$ was $\$ 343.185 .820$, and the gross expenditure charged against revenue $\$ 329,312,705$. In addition, there is a capital outlay on railwajs and irrigation not charged against revenue, anounting in $1890-1900$ to over $\$ 20,000,000$. The total public debt of India on 3I March 1900, was $\$ 995.637 .675$; of which $\$ 37.415 .670$ represented the debt in India, and the rest the debt in England. The largest item in the revenue is that derived from land. which amounted in the year under review to $\$ 89.376,150$. (See paragraph on Land Tenure and Revenue.) The revenue from forests was $\$ 6,177,125$, and the total amount of tribute received from native states was $\$ 2,933$.or 5 . The revenue from opium anounted to $\$ 22.009 .610$, but the net reventue is less than that amount by about $\$ 8.500,000$. The opium revenue is raised partly by a monopoiy in Bengal, and pattly by the levy of a duty on ail opium exported from native states. The cuitivation of the opium poppy is absolntely prohibited in British territory, except in certain parts of Bengal and the United Provinces of Agra and Oudh, but a few thousand acres in the Panjal grow it for local consumption. The opium
grower in the monopoly districts receives advances from government to enable him to prepare the land ior the crop, and he is required to deliver the whole of his produce to govermment agents at the fixed price of 6 rupees per seer. The manufacture for the foreign market is carried on only in the government factories at Patna and Ghazipur. and the chests of manufactured cpium are sold by auction at monthly sales in Calcutta. Outside of British territory opium (known as Malwa opium) is cultivated in the native states of Rajputana and Central India, and some of these states have agreed to control the manufacture and sale oi opium in much the same way as the Indian government does in Britsh territory: They lery heavy duties on opium exported from their territories for the China market, and the Indan treasury imposes on all such opium a duty now fixed at \$150. 66 per chest. The revenue from taxation is $\$ 201,000$, ino, the chief item in it being the salt revenue, $\$ 29,252,315$. The sait revenue is raised by a duty on all salt imported into, or manuiactured in India, the duty being now 2! rupecs (80 cents) per maund, except in Burma, where i_{i} is 1 supee (32 cents) per maund. The native scurces of salt supply are the coast. especially the Rann oi Curch (Baragra salt) and Haurypur (Sind), the salt takes and pits (especialiy Samhiar Lake) of Rajputana, and the salt mines (especially the Mayo mine) of the Panjab. Bengal and most of Burma import their salt by sea, much of it coming from England. Several native chiefs have entrusted the management oi their sait sources to the British authorities in return for certain payments. The excise accounts for $\$ 19.299,7$ to of the revenue from taxation. The ouly excisable articles are intox:cat. ing liquors (including toddy, palm-wises, and rice-beer), and certain drugs (opium. ganja, bhang, charas), and the aim of the government in taxing these has been as much to reduce consumption as to raise revenue. The governmerin ireats the right to manufacture and the tight :o sell s!rits at state monopolies, which are granted iu individuals on special terms. Throughour Bombay and the Panjab, the most populous tracts of \iadras, the United? Provinces, Oudh, and Burma. and in some parts of Bengal and the Central Provinces, the central ditillery system in some form prevails, and a still-head duty is leviet on all spirits manufactured at the recongnized distilleries. Except in Misdras and some other part:, these central distilleries are government establishments at which proate persons disthl spirits. In other districis the spiric receante is rained ly farming cut the spirit monopu ly the highest biller, of by licensinge the entahidi-hment if privete stills, the latter methed bemge cilled the out-still sy-tem. The Indian government is rup cing the farming and nt-till symms as far as , ihise by the cenital divililery syatern. The cuatums revenue
 duties were abtrithel in India in 108z, lun in int they were reimnrsed, and now all gords, witi' the exceptio n ! i rai'way maturial and industrial machin ry, fiml grains, coal. jute, wonl. and the r raw naturi ls, gell] and unset preci us stume and come onther commolities, are suhiect to in pritt dury. The amonnt of the duty is gemeral'y 5 per cent, hut petrolerm is charged at tle rate of I antin per galon. and in in and seed are subject to a duty of or.'y 1 per cent. Since

IS96 all cotton yarns imported into or manufactured in India have been duty-free, while ali woven cotton goocis imported irom abroad, wr mannfactured at power-mills in India, pay an ad a olorem duty of $3 \frac{1}{2}$ per cent. There is an export duty on rice and rice-flour of 3 ammas per maund of unhusked rice. A countervalling duty on bounty-fed sugar came into force in Jarch IROp. The revenue from stamps wa: $\$ 10,327,385$. The provincial rates, amouthing to $\$ 12,493.923$. are levied mostly on the land to mect local charges for roads, schools, elc.. and are generally collected with the land revenue. The income tax, which yielded $\$ 6,501,425$ in $1899-1900$, is levied at the rate of four or tive pie per rupee, certan incomes being exempted. Other important heads of revenue are: Post-office, telegraphs, and mint, $s_{11,68,8 g 0: ~ c i v i l ~ d e p a r t m e n t s, ~}^{\text {, }}$ $\$ 5,8,6.500$; railways. $\$ 82.939 .225$; irrigation, Si3,087.880; buiidings and roads. \$2.209.000. The chicf elements in the expenditure are: Railways, $\$ 32.555 .430$: arms; $\$ 7,250,000$; civil salaries, ptc., Sti.98..:20; charges of collection, \$22,24.195: buildings and roads, civil and military, $\$ 20.073 .260$: miscellaneous civil charges (furlough and superanauation allowances, pensions paid in England. etc.), $\$ 17,565,690$: irrigation, $\$\{2,20 \$, 825$; famine relief and insurance, §ro.494.240; post-office, telegraphs, and mint, \$8.427.935; ;interest on public debt, etc., §0.71t,415; refundings, compensations, drawbacks, etc., \$7:295.000.

Army and Yazy- The army in India is under a commander-in-chicf. who is under the control of the Indian goverument, and has directly under him ficur lieutenant-generals commanding respectively the forces in Bengal, the Panjab, Madras, and Bombay. The Indian army numbers usually from 215.000 to 220.000 in all, the native soldiers being twice as many as the Europeans. The native iroops are officered by Englishmen. Wherever European troops are stationed there is ahways a larger native force. and in many of the smaller and less important pnots there is a native force only. Nuch mones has becn spent in recent years on defensive works and military establishments, strategic roads. etc. India has also a certain number of vessels for coast defensc.

Elinology - Ind:a is inhabited by numerous peorles belonging to several distinct groups or ianulics. Previous to the Mohammedan ascendeney the dominant race were the Hindus, who. however, were not the aboriginal imbabitants nor even the first imalcrs. lirom the northwest of India, through Kianhmir and down the valley of the] inius, and from Tibet through the passes of the Ilimalayas. the inhalitants of Northern Asi3 from a very carly perind misrated sourhward in the milder and more fertile plaine ni India. Twn great successions of these invasi, "o are recnenized as having taken place liefore the Fill d of anthentic hisury: The fire immigrames, of dubinus ethre dogical conncetrons, hat commonly known as the Tamil races, armear to h.ve over:nread the entire peninsula. Follo wing them the Sanskrit-speaking penples, called the IIm lus, nit Iryan speeclı, dispossersed the Tamil race, and supisected their language in the whole ni India morth of the Nerhudla. The 1 Findus sulsenuently descended imin the peninsula and penctrated as far as Cape Comorin: int though their influence on the languages oi Southern India was curiderable in the way of introducing

INDIA.

Y゙OCNG BRAHMN AND WIFE.
new terms, the grammar and construction of the Tamil languages maintaned their place in the districts south of the Netbudda. The native tribe were not extemmanted by these invasions, but are still tos be found under various names, as Bhals, Cattics, Coolies, Gonds, etc., inhabiting the fastnesses of the monntan-ranges in Bengal, the Vindlya and Satpura Nountains, the Ghats, etc. The hill tribes and other aborigines in all India are estimated at $70,000,000$.

Population.- The first census of all India was taken in 1871-2, but it was not till that of ISor was taken that a really reliable and comprehensive statistical account of the people of India was available. In $1851-2$ the total population of India was returned at 240,931,521, in 1881 at $253,-93.5 \frac{1}{4}$, in 1891 at $287,223,431$, in 1901 at 204,266,701, of which, as shown under Political Dia isions, 231,085,132 were under immediate British authority. The total number of Eurcpeans was only i 68,000 .

France still possesses in India Pondicherry, Karikal, and Ianaon, on the cast coast of Madras; Mahé, on the west coast of Madras, and Chandarnagar on the Hugli, north of Calcutta. To Portugal helong Goa, Damão, and the small island of Ditt, on the coast of Pombay. Thesc French and Portugucse possessions have a total area of $1,75+$ square miles and a population of 852,752 .

Educution.- A system of education for India was inaugurated in 1854 in conformity with the instructions of the home govermment, and the despatch of Sir Charles Wood (afterward Lord Halifix) of in July 1854 is the basis on which the educational system still rests. The fundamental principle of the despatch was that the native languages should be made the medium of communicating European knowledge. Examining miversities with affiliated colleges wore to be founded, and English and vernacular clementary schools were to be established. The despatch cmumerated five government colleges in Bengal; the Sanskrit College and Mohammedan Madrasa at Calcutta: five colleges in the Trinted Provinces; the Elphinstone Institution, Puna Colluge, and Grant Medical College in Homby ; the High School at Madras, and several missionary schools, as proper to be at once affiliated to the miversities, In I 857 the three umiversities of Calcutta, Madras, and Bombay were formally incorporated by law as examinng bodies based cn the model of the University of Iondon as then constituted. A somewhat different university, with teaching powers, was establishorl in 1882 at Lahore in the Panjab, and in 1887 a fifth miversity was fomded at Allahabad for the Northwest Provinces. The Education Commission of $1882-3$ extended the system of Wood's despatch by placing education on a more popular basis and giving greater recognition to indigenons schools, and the first proposals for extending education to Indian women were marle by this commission: Elucational institutimns in India are officially divided into two chasses: (I) Public Schonls, in which the course of study conforms to the standards prescribed ly the Department of Public Instruction or by the University, and which either undergo inspection by the Department, or else regularly present pupils at the public cxaminations lield by the Denartment or by the University. These institutions may he under either public or private management, and among them
are many schools receiving grants-in-itid. (2) l'rivate Schools, comprising all which do not fulfil the abore conditions. The thrce man grades of jnstitutions through which the system of education operates are: (1) Primary schools, Which aim at the teaching of reading, writing, and such clementary knowledge as will enable a peasant to look after his own interests; (2) Secondary Schools, either English or vernacnlar; and (3) Colleges, the students in which, fraving passed the matriculation examination of a university; are reading for the further examinations required for a degree. There are also many otluc colleges teaching special branches of knowietge, such as medicine, law, and engineering, and special colleges for sons of native chicfs and noblemen. In Eurma primary education is still very largely in the hands of Euddhist monks. Outside of a few exceptional districts female education is excecdingly backward in India, but slow progress is being made. There are schools of art in Madras, Calcutta, and Bombay, and many of the clief towns have good museums. Many normal schools have been established for the training of teachers.

The total number of colleges in India in 1809 was 109, of which only 5 ware for fomales. The number of pupils in these colleges was 21,006 . Sccondary schools numbered 5,396 , with 509,27 I pupils, 43.403 of the latter being females. The number of primary schools was $100,8 j 8$, with 2,834,257 male and 313,289 fomale pupils, or $3,137,5+6$ in all. The total number of training and other special schools was $; 20$, with 28,158 pupils, 2.371 of them being females. Beside all these there were 42,805 private institutions, with 558.014 male and 42,926 female scholars, in all, 601,840 . The notal number of educational institutions of all kinds was thus 149.948, of Which 5,454 were for females, and the total number of persons under instruction, 4.357,821, of whom 402,153 were females. Of these institutions 22.804 are under public managenment, GI.404 are state-aided, and 65.650 are manded private schools. It has been estimated hat 22.2 per cent of the boys of school-going age attend school, but for girls the percentage is only 2.3 . In nearly all branclics of education in India the missionaries have been the pioncers, and their work is still important.

Languages, Litcrature, and the Pross.- All the lindu languages are cognate clialects founded unon the Sanskrit, a langnage of the Aryan or Indo-European family, which has been extinct as a spoken language for more than 2,000 years, and bears a similar relation to the spoken langnages of India with that of Latin to the modern European ton:gues. See Sinskut Lavgto.dge and Liter.ititre, and \ebas. In the time of Alexander the Great. Sunskrit land already been superseded by a vingar tongue, the Prakrit, founded on it. In ancient Hindn dramas persous of rank are represented as sncaking Sansifrit, common people Prakrit. I'ali, a clialect of Prakrit, became the sacted language of the Buddhists, their seriptares bexing compiled in it. It was spuead by tirem into Ceylon and Inda-beyond-the-Cranges. It is still used for works, chiefly religious, for which a wider circulation is desired. Hindi, the provailing literary language of the non-Mohammedan pourlation, is a modernized form of an older dialect, Hindini, which flourished during the midslle ages, having grown ont of the Prakrit dialects
abcat tne ioth century. Both Hindui and Hindi are rich in puetical chronicles. Hindustani or Crien a kinc ci Hindi mixed with Persian and A :ai ic, is the language of the Mohammedan conquerurs. and grew up after the conquest of Deki at the close of the rath century. It is also rich in literature particularly in translations irme the Perstan, Arabic, and Sanskrtt. It is the larguage which has been farored by the British govertment ior purposes of admunistration and diplomacy. The Dakhni. a mixture of stmlar elements, grew up from the same cause in the Deccan. Among the numerous other descendants of the Sanskrit the most important are the Bengati. the Orissa, Üriva, or Utkala, the Maraithi, the Guiarati, the Sindhi, and the Paniabi. The languages of Southern India form a distinct group called the Dravidian, differing in structure irom those of the north. The most impertant of them are Tamil, or Malabarese, spoken on the Coromandel and Malabar zoasts, elugu or Telinga. in the middle of the Deccan, Kanarese in the Carnatic and neighborhood of Myssre, Malayàlam on the Malabar coast from Mount Dilli to Cape Comorin. From all these Burmese stands apart.

The chief vernacular languages in which books are published are: C'rdut (Bengal. N. W. Pruinces, Paniab. Bombay). Bengali (Bengal), Hindi (Bengal. N. W. Provinces, Paniab. Ecmbay, and Central Provinces), Panjabi (Panjab), Marathi (Bombay and Central Provinces). Guiaraihi (Bombay), Tamil and Telugu 1 Madras'), and Burmese (Burma), and the bilingual works are mestly either in English and ancther language. or in a classical and a vernacular langu:age. Many norks are also published in EngIish alone or in one of the three classica! langu ges, Arabic, Sanskrit, and Persiar. The greater number of these publications belong to the departments of poetry, religion, philosephy, and philology, but L'rdu and Hindi fiction has developed greatly in recent years. Tiii about 1850 newspapers were prevailingly religicus, brit since then the native press has become more and more a medium for the discnssion of social and political questions:

Religi ns.- The religions of India like the races are numerous. The most impurtant is the Hindu or Brahmanical, which is very ancient. The eariiest period of the Hindu religion is ca!led the Vedic. from the Vedas (q.v.) or sacred books in which its reards ate preserved. These exnibit several marked phases of transition. The earliest date of the Vedic literature cann-t be satistactorily determined, either irom Thit tingical or internal evidence. It: latest writinge are n $-t$ mare recent than the ad century p.f Each Veda consins: of two parts, the Sanhita. a collection of mantras or hymns, and the Brahmana. which contains the dectrinal and ceremanial develepment of the religion. The w. न- : p represented in the greater number of the hymn- is that of natural objects: Indra. the ciad'ess firmament: the Maruts, the winds: Ť shas, the tawn: Vi-hnu, Surya, Igni, ani nther deities, to whom variens attributes of the sun were attributed. These deities were inwhed irr as-istance in the common affairs of life and were ren rnded hy the suppliants of the ir inrmer glurious deeds. In the earlier Vel. m at empt is made to classify the goc's and ansion tom particuar ranks. In the panis a apectes of commentary on the Vedas,
a systernatic attempt is made to solve the problems of creation, of the nature of the supreme beng. and of his relations with the buman soul. Some of the L"panishads are legendary in form. cthers doctrinal or exegetical. These commentaries, though not in form philosophical, being professedly founded on the Jedas, contain the gernis of the great systems of Hindu philosophy which were aiterwards developed.

A new era in the history of Hinduism begins about the time of the Chiristian era with the composition of the two great epics, the Ramâyana and the Mahäbhárata, the latter of which was the product oi successive ages. The vulgar creed had by this trme experienced the inHuence of the theological and metaphysical speculations of the Upanishads, and had assumed a mystical unity. Brahmá. Vishnu. and Siva, the three emanations of the great soul Brahma, representing respectively the creative, preserving, and destroying principles, had become the leading objects of worship.

The third or Paranic period of Hinduism corresponds with the period of the Middle Ages in Europe. The Puranas are discussions upon religion and philosophy, in the form of dialogues conducted by sages. They are designed for popular instruction, and mark a rapid and extensive corrupticn of the Hindu religion. The epic legends are amplified and distorted. The Vedanta phylosophy, which bad become the basis of the educated creed. still exercises a favorable influence on the popular worshp. The creed of the Puranas is that of the masses in India.

Buddhism arose in India in the 6th century B.C. It prevailed there extensively, and spread itself through the adjoining regions of Asia. It became exiinct in India before the tath century. but still flourishes in China. Japan. and in the sontheastern regions of Asia, as well as in Nepal and Ceylon. (See Budpha.) The Jainas er Jains, whose religion is a mixture oi the Buddhist and the Brahmanical creeds, are still numerous in Hindustan. and particularly in Gujerat. There are two sects of this creed, called Digambaras and Swetàmbaras. Sikhism is another heretical iorm of Brahamanism prevalent in the Panjab. There are numerous other miner sects of Hinduism and worshippers of particular gods in the Hindu mythology. The Brahmo-Somaj (q.v.) is a modern Hindu theistic sect. The Hindu Fakirs are devotees. who give themselves up to penance, filth. and self-torture. The Parsees or tire-worshippers are descendants of the Persian followers of that religion. Who took reiuge from Mohammedan persecution on the western coast of India. Their principal emigration was to Surat, and is supposed to have taken place about the end of the sth century. They were well received in Guiarat. They are now to be found mostly in the mercantile towns in India, and are most numerous in Bombay: The Mohammedans of India are chiefly desceridants of its Asiatic conqueruts from Aighanistan, Persia, Baluchistan, and Arabia. They are said to be more liberalminded than the Nohammedans of Western lsia. There is among them a sect of Fakirs like those of the Hindus. There are also numerous Jews in India. On Christianity in India see beow under Christ:an Missions. Hinduism recosnizes four castes - the Brahmans, or sacerdotal class; the Kishatriyas, or military class;

INDIA.

the Vaisyas, or mercantile and agricultural class; and the Sudras, or servile class. These casts are hereditary (see Caste). Closely comnected with the Hindu religion is the collection of laws commonly known as the Institutes of Mann. (Sce Mant.) In the Indian census table of rcligions (1901) 8.584 .349 people are returned as heathens or aboriginals, that is, devotces of some form of animism. Practically. for the purposes of the Indian census, all are classed as animistic who are uot locally acknowledged to be Hindu, Mohammedan. Christian, Buddhist. Jew, Parsee, etc., but every stratum of Indian society is in reality more or less saturated with animistic conceptions. Of the total population of British and Native India in 1901, 207, 146,422 were registered as Hindus. the greater number of these being in Bengal, the U'nited Provinces of Agra and Oudl, Nadras, Bombay, Hyderabad and Rajputana. There were 62.458,061 Mohammedans chiefly in Bengal and the Panjab. 9.4-6. 50 Buddhists almost all in Burma: 2.923,241 Christians of whom two thirds are in Madras and in the Madras States: 2.195.268 Sikhs. chiefty in the Panjab: I.334.148 Jains, chiefly in Rajputana and in Bombay: 94.190 Parsces, and 18,228 Jews mostly in Bombay.

Christianity and Christian Missions in India. - The introduction of Christianity into India is variously ascribed by tradition to St. Thomas the Apostle, Thomas the Jranichrean of the 3d centurs, and Thomas, an Armenian merchant of the Sth century. The earliest Christian church in India of which we have any definite knowledge was Nestorian. but after the Portuguese occupation these Nestorians came into the Roman obedience. In 1663 , after the arrital of the Dutch, some of these renounced their allegiance to Rome. In 1665 these latter received from the Patriarch of Antioch a Jacobite bishop known as Mar Gregory, and to this day they have remained faithful to his Jacobite tenets. Thus. the ancient Nestorian Church of southwest India is represented now by two bodies, namely: (I) Catholics of the Syrian Rite, owning the supremacy of the pope, but retaming the Syrian language and ritual in their services; and (2) the Jacobite Catholics. rejecting the errors of Arius and Nestorius. and following the Nicene creed, though not acknowledsing papal supremacy. The spread of the Roman Catholic faith in India was mainly the work of Jestrits from the 16th century onwards. the first of these being the celebrated St. Francis Navier, who reached India in $15 t^{2}$. The Jesuits were suppressed in the 18th century, but since the re-establishment of the order in 181 4 they have made great progress. The Romann. Catholics of India are at present organized in seven archbishoprics (Goa. Agra, Bombay: Calcutta, Madras, Pondicherry, and Verapoly), and 16 bishoprics (Daman. Cochin, Mailapur, Allahabad, Lahore, Poona. Dacca, Krishnagar, Hyderbad, Nagpur, Vizagapatam. Coimbatore. Mangalore, Mysore, Trichinopoly, and Quilon), and there are also several ricars and prefectures apostolic. The earliest Protestant missionaries in India werc the Lutherans Ziegenbalg and Plutschau. who arrived in the country in 1705 and began work at the Danish settlement of Tranquebar. The Lutheran missions were supported from the first by the Society for Promoting Christian

Knowledge, and from 1719 till $18+1$ they were entirely maintained by that body. The celebrated Christran Friedrich Schwarz worked under the auspices of this society from 1750 till his death in 1 Igg. Kiernander, a Dane, was the pioneet of 1 'rotestant missionary enterprise in Bengal. Ife was allowed by the East India Company to setule at Calcunta in 1758. but soon afterwards the Company changed its policy, and began to prevent missionaties from landing in the country controlled by it. When William Carey, the great Baptist missionary, arrived in I793. he had to sttule on Danish terfitory at Serampore, 15 miles irom Calcutta, and it was not till 20 years later that the Company's opposition to missions was withdrawn. Carey was followed at Serampore by Marshman and Ward, whose names will always be associated with his and with the wondertul literary activity begun by him. Othel celebrated Irdian Protestant missionaries are Henty Martyn aud Bishop Heber of the Anglican Cliurch, and Dr. Alexander Duff, at first of the Church of Scotland, aiterwards of the Free Church of Scotland. The head of the Anglican Church in India is the bishop of Calcutta, and under him are the seven bishops of Madras Bombay: Lahore, Rangoon, Lucknow, Chutia Nagpur, and Travancore. Many American missionaries also work in India.

Judiciars:- The law administered by the courts of India is chiefly based on the enactments of the Indian legislative councils, the statutes of the British parliament relating to India, the Hindu and Mohammedan laws of inheritance and their domestic law in cases affecting Hindus and Mohammedans, and the customary law affecting particular castes and races. Bengal, Bombay, Madras, and the L'nited Prorinces liave each a Higla Ccurt supreme in civil and criminal cases (but with an ultimate appeal to the Privy Council in England), and somewhat similar tribunals exist in the other proinces. There are mumerous courts of different grades throughout the country: and many of the judges are natives of India. Tarious enactments have been passed for the establishment of local government, and there are now upwards of 760 cities and towns with municipal government in the different provinces under these acts. and local taxation for police and local improvements bas been enforced.

Local Gozernment.- All the provinces. except Madras, are divided into divisions, eaclı under an official called a commissioner, and all, inchuding Madras, are divided into sections distinctively designated districts, the district forming the unit of administration. At the head of each district is an officer called a collector-magistrate or deputy commissioner, the former name implying the twofold nature of his duties, since he is not only a fiscal officer charged with the collection of the revenue from the land and other sources but is also a vevenue and criminal iudge, both of first instance and of appeal. Police jails, cducation, mumicipalities, roads, sanitation, etc.. all come under his supervision; and he is expected to be familiar with the social life of the natives in all its phases. The districts are sub-divided into lesser tracts, known ju Bengal as sub-divisions, in Madras and Bombay as taluks. in notthern India generally as tahistls. The unit of police administration is the thand or police circle. An important portion of the
ummistrative staf consists of persons who have secerved appoinments in the Indian cival service, atier being successful in competitive exariontins held in England: these form what is called the couthanted civil service. A certam section of the civil service, known as "the statutery civil service. consists of natives specially selected. The mative states are generaliy goveined by hereditary princes, who exercise sorereign fower withn their awn dominions. They are m te or less contrclled, however. by Britisin intuence, a Bratish resident, agent, of commissioner being stationed at thei- courts. They have no power to make war or peace, to send ambassadors to each otber or to non-Indian states: they can cnly keep up a ceriain specified miltary iorce, and they may be dethroned for misgovernment.

History:-Little is known of the political histozy of India prerious to the expedition of Alexander to the Indus, 325 b.G. The zoilh satrapy of the Persians comprebended. as Herodotus states, part of the northwest of India. Alexander did not penetrate beyond the tributaries of the Indus, and between his invasion and the Mohammedan conquest there is no authentic political history of India, aithough the territory was divided among a number of sulers of whom Asoka (q.r.). the founder of Buddhism, was one of the chief. At the time of the Mohammedan invasion a Hindre monarchy was the dominant power in India. The conquest of Persia ($632-651$) brought the $s: \%-$ cessors of Mohammed to the Inous, and they subsequently acquired a temporary hold of some parts of India, as Sind, which they conquered in 710 and lost in 750 . The foundation of a more durable Mohammedan empire in India was laid some centuries later. The Kingdom of Ghazna, in Aighanistan. founded. according to Ferishta, by Alpetegin. an ex-govermor of Khorassan. in 962 , was declared independent br Mahmud in 999. This monarch, of whon as many as 12 expeditions into India are recorded, penetrated in one direction beyond the Jamna: in anotl:er he occupied Gujarai and captured Sornnatih. He annexed the territory of Lahere to his kingdom. and nominally exrended his dominion to the Ganges on the west, and to Guiarat on the south. His last expedition was to Gujarat in roz4. About the middle of the 12 th ecntury the Kingdom of Ghazne was divided, and Lahcre became the capital of the Indian portion. The Ghaznarid Kingdom of India was overthrown in 1186 by Nohammed Ghori. On his assassination in 1205 Kutb-u-din, his Evernor in India, established the Afghan or Pathan dynasty at Delhi, and conquered Behar and Bengal. His successor Altamsh conquered Sind (1225), and completed the subjugation of Hindustan. About this time Genghis Khan (Werthrew the western empire of Gharna, and i unded a great Mong slian empire, which began th ente:d cas:ward. and came into collision with the m narchs of Delhi while these were sull insting their c nonuerts to the sourh and cast if India. The Dethi kingdem was, moreover, exp -ed of frequent commations, beih irom the fex :- $\boldsymbol{r} \frac{1}{}$ it oun rajahs and from the predatory excursinns of the hill tribes. A revolt of the rajahs was supfrewed in 1250, and in 1255 . aiter an extensive slauglter of the predatory tribes, a line of forts was constructed to chack their incursions. But though frequently defeated the

Mongols continued their incursions into all parts of India. In 1240 they reached Lahore, in 1244 they invaded Bengal: Gujarat, the Deccan. and the Camatic were assailed in turn; the Panjab was subject to frequent invasions; in 1208 they were deieated as Delhi. A new dyrasty, the Khilgi dynasty, arose under the usurper Jelal-u-din in 12 SS , which was succeeded by a fresh dynasty in 1321 , the house of Ioghlal. The invasions oi the Mongols still coninned with greater or less success. During the reign of the lasi Toghlak king the celebrated Tamerlane invaced India at the head of a great host, took and sacked Delhi in $139 @$, leaving behind him his deputy Khizr Khan, who now assumed the government. At period of anarchy ensued. which ierminated in the conquest of India by the Mogul emperors. Ib:ahm, the last of the dynasty of Lodi, the third in order from that of Toghlak. was defeated in 1526 br Baber, who estabiished the Mogul dynasiy in Hindustan. His grandson Albar succeeded his father at the age of 14 (1556), and during a long :eign of about इo years, terminating in Ito , subdued nearly the whole of India, which, by introducing religious toleration, he succeeded in consolidating into an empire At the death of Akbar his empire was divided into 15 subahs or wice-royalies. which indicate its extent, namels, Allahabad. Agra. Oudh, Almir, Gujarat, Behar.' Bengal, Deihi, Cabul, Lahore, Multan, Malwa, Berar, Khandesh. Ahmadnagar. His son Seiim succeeded him under the title of Jehanghir. The Portuguese, as will be seen in another section, had already estabiished their territorial dominion in India. In 1615 an English ambassader appeared for the first time at the court of the Mogul emperor in Hindusizn. He died in 1523. ard was succeeded by his son Shah Jehan, who had disturbed his father's reign by rebellicns, and during his own reign the country was filled with civil wazs. He quarreled with the Portusuese. and expelled then from their settlement at Hugli. Daring his reign the Mahatias or Marathas, under their chief Siraji, began to be an imponant power in the Deccan. He was deposed in 1658 by his youngest son Aurengzebe, who also murdered his brothers. His reign was passed amid continual contests, boih for extending his doninion, and subduing the revolts of the numerous peoples under his sway: both within the limits of India and beyond the lncius. He made war successiully with the Aighans, the Rajputana tribes, and the rising power of the Nahrattas. The Sikhs, a Hindu sect which had been persecuted by the Mohamancdans, iormed a religious and military commonscalth in the Panjab in 1675. Aurengzebe died at Ahmadnagar. in the Deccan. in $1 ; 0 \%$ On his death the Mogul empire began to decline. The succession was disputed by his four sons. Bahadur Shah. who succeeded. died in 1;12. and was succeeded by his son Jehundar Shah, who, in the followirg year, was put to deatl by Farclishir, a great-grandson of Aurengzcbe, who usurped the crown. He was deposed and $0 \cdots$: io death in $1 ; 18$ by Hosen Ali. Mohammed Shah, grandson oi Bahadur, was raised to the threnc in 1yIs. His reign was disturbed by the incubordinate spirit of his viceroys. and through the defection of one of them the Mahrattas succecded in subduing the Deccan. In revenge inr an insult Nadir Shah of Persia inraded Hindustan in 1;38, took possession of

IN゙DIA.

INDIA

Delhi, and gave it up to be sacked and plundered by his soldjers. The country west of the lndus was ceded to Nadir Shah in 1739. Nohammed died in 1-48, and was succeeded by his son Nadir Shal. 'The empire was now tending to dissolution. The new emperor called in the Mahrattas in If51 to aid him against the Rohillas, who, in I-49, had defeated the last imperial army over called into existence. The various states were scized by the former viceroys or by independent chiefs. The Mahrattas, now the most powerful people of India, possessed, besides the Deccan, part of Malwa, and the greater part of Gujarat, Berar, and Orissa. The whole empire was at this time in extreme agitation and disorder, every government fearing the attacks and intrigues of its neighbors. Almed Shalı was deposed in 1754 by Ghazi-u-din, a former vizier of the empire, who set up Alamgir Il. In If57 Delhi was captured by the Afghans, against whom Ghazi-u-din called in the Nahrattas. In 1759 the vizier assassinated the emperor. His successor, Shah Alum, without the shadow of power, escaped from Delhi, and finally took refuge with the British. The rival powers of the Afglians and the Mahrattas, which had been brought into collision by the feebleness of the enpire, now engaged in a fierce struggle for the mastery over its ruins. This terminated at the decisive battle of Paniput, fought 6 Jan. I76i, in the complete overthrow of the Mahrattas. The victor, Ahmed Shah, recognized the grandson of Alamgir as emperor by the title of Shaln Alum II.; but the empire was now only a shadow, and the native states, which had divided its power, were destined soon to give way to the superior European commercial organizations which the pursuit of gain had brought to their shores. See Colonies and East India Companites. Henceforth the history of India follows the course of these European colonies, unti! it is merged in the Indian empire of Great Britain.

The doubling of the Cape of Good Hope opened up the way by sea to India, and led the Portuguese to the possession of a kingdom in Asia. A few years after Vaseo da Gama had landed on the coast of India they were already the most favored merchants upon the whole coast, and in spite of the active jealousy of the Mohammedans, who had hitherto monopolized the lucrative commerce of India, they formed settlements, and made commercial treaties with some Indian princes, in which the latter acknowledged the King of Portugal for their lord. By 154^{2} the Portuguese ruled from the Arabian to the Persian Gulf; nearly all the ports and islands on the coasts of Persia and India fell into their power; they possessed the whole coast of Malabar to Cape Comorin, and had settlements on the coast of Coromandel and the Bay of Bengal ; Ceylon was tributary to them; they had factories in China; and the ports of Japan, to which a tempest had shown them the way, were open to their merchant ships. For 60 years they carried on their lucrative commerce without any considerable rivals. Portugal owed this power to a few able men, among others Francis of Almeida, and Alfonso de Albuquerque (qq.v.). But the successors of the men were not endowed with the same talents, and a revolting abuse of power excited the resistance of the natives, who became united by the sight of their common danger. The union of Portugal with Spain, under Philip
11., in 1580 , decided the fall of their commercial power in India. The Portuguese, satisfied with bringing the comnserce of lndia to lisbon, had allowed the Duich to become the carriers between that port and the markets of Europe. Bint Philip Il. closed the harbor of the Portuguese capital to the Dutch ships on account of the revolt of the United Provinces, and thus obliged that enterprising people to go to the sources of this commerce. Cornelius Houtmann in 1595 was sent with four ships to India to explore the coasts and gain information concerning the inhabitants and the commercial relations in that region. Ile returned with favorable accounts, for in this very first royage treaties of commerce were made with the princes of the island of Java. The hatred of the matives against the Portugucse, who had at times landed here, assisted in the accomplisliment of the enterprise. After the Dutch East India Company had formed settlements at Java and upon other points, and had made commercial treaties with several princes of Bengal, there began the long struggle with the rival Portuguese. The stronger and better-served navy of the Dutch enabled them to take one place after another from the Portuguese. In y607 the latter were stripped by their victorious rivals of the Moluccas; in I641 of Malacca; in 1658 of Ceylon; in 1660 of Celebes, where the Portugnese had settled after the loss of the Moluccas, to retain by smuggling some part of the spice trade; and after 1663 the most important places on the coast of Malabar, Where they had longest maintained themsolves, fell into the power of the Dutch. The Dutch made Batavia the capital of their eastern dominions. Their power in India began to decline from the time of their wars with Louis XIV. The English began to form commercial settlements in India about the same time as the Dutch. A settlement was formed at Surat in 16I3, which became the chief station of the Company on the west coast in 1615, and in 1657 the seat of a presidency. A grant of a small territory around Madras was reccived from the Rajah of Bijnagar in 1639, on which was erected the fort of St. George. Madras became a presidency in 1654. and till the rise of Calcutta commanded the Company's possessions in Bengal. Calcutta, the third presidency, and ultimately the seat of government in India, was settled in I6go, and became a presidency in 1707. The English had to defend themselves against the Mahrattas in Surat in I664, and early came into collision with the Portuguese and Dutch in the Indian seas. It was, however, the struggle with the French, who followed them, and who had acquired considerable territorial possessions in India, and the alliances of both parties with the native princes, coinciding with the decay of the Mogul empire, which brought about that long succession of almost umbroken successes by which this great empire was established. The claims of rival candidates for the governments of the Deccan and the Carnatic brought the two parties into collision at various points. and after a succession of maneuvers Dupleix. the French commander, succeeded in compelling the English to take refuge in Trichinopoly. Here Clive, who had already distinguished himself in an unsuccessful attack upon Pondicherry, proposed to carry the war into the enemy's country. In I75i he besieged and took Arcot, Tinnevelly, Conjeveram, and Arani. On his return
to Fcrt St．David he was despatched by Major Lawrence on ancther expedition，which he again econducied successiully．Lawrence at the same itme gained other successes aganst the Frencin and their allies．These successes led to the Treaty or Pondicherry in December．1754．in which the French and English agreed io divide their territorial possessions on a focting of equal－ ity．and abstain from interierence in mative ajuars．This treaty procured for the English the cession from the French of the Four Circars； nevertheless．they reated it as a dead letter． and immediately began to reduce Madura and Tinnevelly．The French，after vainly remon－ stratirg．ioliowed their example in disregard－ ing ine treaty．About this time impirtant events took place in Bengal．Suraj－ud－Dowla． nabob cf Benga？in 1756 besieged Calcutta with a latge army．when it was evacuated so suddenly by the English that a considerable part oi the garrison was left behind．These had no alterna－ tive but 10 surrender（ 20 Iune 1，56）．To se－ cure the prisoners taken in the capitulation．I 46 of them were thrust，apparently mere irom mere recklessness than intentional crweity．into the common prison of the garrison，a rocm is iett square，with two smal？windows barred with iron．since famous as the Black Hole oi Cal－ cutta．Aiter a night of mparalleled suffering only 23 were found alive in the monning．Clive， Who was sent irom Madras with an armament to Bengal，recovered Caicutta cn 2 Jan．i－ミフ． War had again broken out between France and England，but the French reiused the alliance of Suraj－ud－Dowla．and maintamed ineir neu－ trality：Suajagain invested Calcutta，but Clive though he failed in a night attack，inspired him with so much respect ior his means of restitance that he restored the English facturies a：d made peace．Regardless of tle beneñ he had re－ ceived irom the neuirality of the French，Clive． in spite of the opposition of the nab b．deter－ mined to attack their sertement at Chander－ nagnr，which he succeeded in iaking．The nabob supported the French till he was atiacked by the Aighans．when lie jecame desirous of peace with the English．Clive，however，had determined to dethrane him and renlace him by Mir Jaffer，his aunt＇s hushand In the battle oi Plasser， 23 June If ミо，the nab b was over－ thrown，and afterward assassintele＇y the s n á his rival．Mir Jafier bound himili is pay ior his elevaticn a sum of oret $\$ 2.500 .000$ sici－ ling．This plunder was partitioned am 1 g the Company and the Companye servants，with the excepticn of a small share assigned to the netive allies

While the English in the Carnatic were en－ gaged as c＂ect os in Mi hammed Ali in re－ ducins the district of Madura and Tirneve．ty． the Frerch reccmmenced hotilitics．in a：iock upen Trithin of failed（Mar リーデ），lu1 Buew reduced V＇izasaņam，and ertablinited the Frencis superi rity thnwaghut the Decean．Clunt L－l！y．wl had arrived with a i m idal＇e ama－
 Davd，I Jume I－ミ心．He afterward hesieged Tanere and Arer：i！e later of winch he tok The s－nt of $i \cdots$ ）．which erippial his opera－ if me，curcllellimi ereaze with inadequate ir cee in the eqe of Madsa－which，a：er la－i－ ing twit ：n noh．enticly failed in Febrnary i－50．The Enz－h t ch Conjeveram，io w！ach the French retired，by assauth In the following
campaign the French，after some successes，were tutaily defeated by Col．Coote near VIandewash on $22 \mathrm{Jan}, 1,60$ ．Their power was now com－ pletely broken．their fortresses one after another fell into the hands of the English，and the Eng－ lish fleet，which had the command oi the seas， co－operated in the reduction of those on the coast．Pondicherry，their last stronghold．sur－ sendered on 15 lan．1765．The English had now established themselves，as a formidable if not altogether a ruling power．both in West and South India：but in both they committed the mistake oi greatly over－estimating the resources of the coumiry，and their rapacity and extortion， though they uitimately led to the exiension of their power，were the cause of scrious and pro－ tracted troubles．Mir Jaffer was deposed in favor of his son－in－law，Mir Cossim，who re－ belled against English extortions，but，notwith－ standing his skilful and vigorous preparations for a war he had anticipated，was worsted in suc－ cessive engagements，particularly at Gheriah， 2 Aug．1，63，and iorced to flee．In revence he massacred his Engivis prisoners．Sujah Dow－ lah．the nabob of Oudh，who received him，was deieated and depzived of his dommions，with the exception of Corah and Allahabad，which were given to the Nogul Emperor，who iormally invested the Company in the dewance or collec－ torship of revenues and virtual sovereignty of Bengal．Bahar，and Orissa，by a dirman dated 12 Aug．if65．The English came to terms with Nizam Alj，subahdar oi the Deccan，who op－ $p c s e d$ their occupation of them．by agreeing to pay him a fent for the territory，and assist him with their iorces，but this agreement brought them in r－66 in：o collision with Hyder Ali．the poweriul ミovereign of Mysore Nizam Ali afi－ terward joined Hyder againsi the English，and both invaded the Carnatic，and，in spite of sev－ eral defeats，laid waste the countro to the gates of Madras．Finally，Nizam Ali deserted Hyder， and the latter concluded a treaty with the Eng－ lish．April 1769．by which their conquests were mutualy io be restored．

Nowivinstanding the protests and prohibi－ tions of the direciors．ihe administration oi the Company：aiñair：left much to be desired even during Ćive $=$ governorship．and during the ad－ ministration of Verelst．who succeeded Clive in $1-6-$ ．the Company affairs were in extreme em－ barrasmment．Farliament took advantage of the discontent and clamor raised against the Com－ rany＇s servants，and in 15,3 remodeled the con－ stitution of the Company，and appu inted TVarsen Hastings（ $\mathrm{q} . \boldsymbol{\mathrm { V }}$ ）governcr－general oi India．with a salary of $\$_{125.000 \text { ，and a council oi four mem－}}^{\text {m }}$ bers，each of whom had $£ 50.000$ ．

His administration was marked by firmness and resourcefulness in uphulding British inter－ cet：and also by his unsctupulous methods in raising meney to carry ont his projects．In $1,-8^{\circ}$ war again broke out between France and Eng－ land．The English capured Pondicherry and Mahe，the last nort of the Frumeh on the Mala－ H r c ast．This place was censidered hy Hyder －Ali as cre of his dependencies．In revenge for its capture he seized the pascos of the Eastern Ghár．invaded the Carnatic with an arny of 120.000 men and laid waste the country．Sis Eyre C ic w ：ent into the Carnatic to cor－ duct the war aqainst him．Hyder Ali died in I－S2，but the war was continued with his son Iippoo Saib， 1111 II March 17S4，when it was
concluded by a treaty of mutual restitution. In 178.4 P'itt's India Bill was passed. In 1786 Lord Cornwallis succeeded Hastings as governor-general. Cornwallis made various administrative reforms for the relicf of the people from former exactions, but Tippoo Saib diverted his attention from these peaceful measures by attacking the Rajalı of Travancor, now an ally of the Britislı. Having made an alliance with the Mahrattas and the Nizam, Cornwallis invaded Mysore, besieged Tippoo in his capital, compelled him on 9 March 1792 to conclude a treaty, by which he ceded half his teryitory and undertook to pay the expenses of the war. On the death of Mohatnmed Ali in 1\%95, Lord Hobart, governor of Madras. determined to assume the government of the Carnatic, but the plan was opposed by the supreme government and was not carried out. In Ijg8 Lord Mornington arrived in India as governorgeneral, when Tippoo Sail was making arrangements to renew his enterprises against the British and soliciting the alliance of France and of Cabul. Early in 1799 Lord Mornington invaded Mysore. On 4 May he stormed Seringapatan. Tippoo was killed in defending his capital, and Mysore was divided among the British, the Nahrattas, and the Nizam. Some time before this (1775) Oudh had agreed to receive and subsidize auxiliary troops for the defense of their territory, and the fortress of Allahabad was ceded to the British, who undertook to defend Oudh against all enemies. Subsequently in 180 the subsidy was commuted for the cession of Southern Doab, Allahabad, and other territories. During the war with Tippoo, Lord Mornington, whose policy was to induce the native powers to accept British protection and mediation in their disputes, endeavored to induce his allies the Mahrattas and Nizam Ali to come under similar arrangements. The Nizam in 1798 agreed to dismiss his French troops and receive British auxiliaries. The Peshwa, the nominal head of the Mahratta Confederacy, forced by the contentions of the chiefs Holkar and Scindia, accepted the policy of the gover-nor-general. Under the Treaty of Bassein, signed 31 Dec. 1802, Sir Arthur Wellesley restored the Peshwa, driven from his capital by Holkar. Scindia and the Rajah of Berar now entered into an alliance against the British. Atter a campaign in 1803 distinguished by the successes of Generals Wellesley and Lake, the former defeating the allics at Assaye, 23 September, the latter at Laswaree, 1 November, Scindia was compolled to make peace. He ceded to the British Baroach, Ahmadnagar, and the forts in the Doab (29 Dccember) ; the Rajah of Berar ceded Cuttack (17 December). Scindia, thus weakened, accepted the British alliance, and received an auxiliary force to defend him against Holkar. 27 Feb. T804. A war with Holkar immediately followed. which the skill of that chief in predatory wal fare enabled him to sustain with some dexterity, and in t8os he was joincel by Scindia, but the British arms finally prevailed and he was forced to flee. The Marquis of Cornwallis succeeded Wellesley on 30 July 1805. He disapproved of the ensnaring alliances into which the former statesmen had drawn the native powers, and although he died before being able to carry out his views (5 Oct. 1805), Sir George Barlow, who succeeded him, adopterl his policy. New treaties were made witl Scindia, 23 November, and Holkar, 24 De-
cember, restoring their territorics and their independence. The new policy was even carried so far as to abandon the petty princes who had trusted to the British alliance. Lord Minto succecded to the governor-generalship in 180%. During his administration the chief enterprises of the English were directed against the insular possessions of the French and Dutch in the Indian seas. The Mloluccas, Java, and other islands were taken: many of which were restored at the peace. Some disturbances took place during this period at Travancorc, and among the British troops at Madras and elsewhere, which threatened at onc time serious consequences. Travancore and Cochin were placed under British management. The Earl of Moira (Marquis of Hastings) succeeded to the gov-ernor-generalship in IS13. In ISI4 a war broke out with Nepal, which was at first attended with some serious repulses, but was brouglit to a successful close by Sir D. Ocliterlony in $1 \mathrm{~S}_{15}$, and resulted in the cession of Kumaon. Hastings was also called upon to suppress the Pindaris predatory bands of the former troops of Holkar and Scindia; and the Peshwa of Indore rebelling against a treaty his capital was seized, he himself deposed, and the Mahratta Confederacy dissolved. His ally the Rajah of Nágpur, Scindia, who subuitted, and Holkar, who was defeated, were compelled to accept alliances virtually placing them under British protection. This pacification was completed in 1818, and greatly improved the reventues of the districts effected by it. The Marquis of Hastings was succeeded iin 1823 by Lord Amherst, under whom the first Burmese war was coneluded in I826 by a treaty ceding to the British the Aracan and Tenasserim provinces together with a large pecuniary indemnity. During the governor-generalship of Lord William Bentinck ($1828-35$) various administrative reforms were effected, but no great political events took place. Lord Anckland assumed the governor-generalship in 1836. The Afghan war broke out in 1838, in consequence of long and complicated intrigues arising from the advance of Russia in the East, and the mutual jealonsy of that power and Great Britain. War was declared on I October, the object of the British was to dethrone Dost Nohammed and restore Shath Sujah, a former ruler. It was at first attended by great disasters, particularly the famous massacre of the Khoord Cabul Pass. It was terminated in 1842 , under the governor-generalship of Lord Ellenlorough, by the cvacuation of Afghanistan by the British. after they had relieved their captives and vindicated the superiority of their arms by the capture of Cabul. Sind was annexed to British India after a war conducted by Sir Charles Napier in 1843. .ifter a brief war, arising out of a disputed succession, the dominions of Scindia lay at the mercy of the British, and were disposed of lyy a treaty dictated by the governor-general at Gwalior in Ianuary ISft. While he was thus engaged Lord Ellenborongh was recalled and superseded by Sir Henry Hardinge (May 1841), who was soon engaged in one of the most formidable wars the British had yet had to encomnter in India. The Sikiss, a politico-religious sect aircady mentioned, had under their leader. Runjeet Singh, conquered the Panjab about the beginning of the century. Runjeet Singh, who had always maintained friendly relations with the British. died in 1839, and the govermment. fell into a

INDIA - INDIA RUBBER

chaotic state: the arny: being without a head. began to commit disorders and threaten encroachments on the British territory. In Decemher $1 \& 1$: the Sikh army crossed the Sutlej in great force. and in the short war which followed the Sikhs were defeated by Sir Hugh Gough and Sir Henry Hardinge at Moodkee. Ferozeshah, Aliwal. and Sobraon. Peace was made at Lahore. by the surrender of the Sikh territories on the leit of the Sutlej. and between the Sutlej and the Bias (Jalindar Doab). and the payment of a: indemnity. During the governor-general--hip of the Marquis Dalhousie. 1848:6. a new war broke out with the Sikhs. and arter their final defeat by General Gough at Gujerat. 2I Feb. 184? the Paniab was annexed to the British dominion: This was immediately followed by the second Burmese war, ending in the annexation of Pegu. 20 June 1853. Sattari. Jhansi, Nágpur. and Oudh were, on the failure oi the native succession, also annexed to the British possessions. $18 \equiv 2-6$. During Lord Dalhousie's administration the extensive scheme oi Indian railways and telegraphs was planned and inzugurated. the Ganges Canal opened, and the Panjab Canal begun. His last important act त. governor-general was the annexation oi Oudh. 7 Feb. 1856. The annexation of Oudh. and other provinces. combined with a general feeling of unrest brought about the mutin of the native army: (See Indins IItivy.) He was sueceeded by his friend Lord Canning: in less than a year aiter the arrival of the new Gowernor General. a mutiny of the native troops took place at Meerut, on Sunday afternoon. Io May 185\%- The main incidents of the Indian mutiny are the massacre at Cawnpur; the defence of Lucknow. under Sir Henry Lawrence; the taking i Lincknow, by General Havelock: and the siege of Delhi. 14 Sept. 1858. The mutiny sealed the fate of the Fast India Company: atter a rule ni more than 250 years, and brought about the transier of the country to the direct authority of the Queen of England. The Royal Proclamation was read at a grand durbar at Allahabad. 1 Nor. 18 §S.
: Lnkn Caxvisg became tbe first vicerny of Ind:a. He left Ird a in March zEóz, and died shortly aiter h s arrival in EEgland.

2 THE EARL OF ELGIN, became viceroy in $18 \operatorname{Fon}^{\circ}$ and died in india November 1863 .

3 Sik Johs Lawkevee. afterward created Raron lawrence. 1 S6s- 69 . Reformed the finances. Bhutan war. Orissa Famine, 8666.

ViscotsT YAYO, 1Seq-2. Received Amir Sher Ali Kehan of Ǩabul in grear scate at पmballa igk. A Assiss:nated by a convict in the Penal Settlement at Purt islarr

EstRL OF N゙ORTHBROOK, $18,2=-5$. The Prince of Vales, now King Edward lil. visited India. A famine in liensal. The fuikwar of l3aroda deposed.

6 Fikl OF lN゙TTON, $18-5$. Famene in South Ind a The invasion of Afshanistan. The proclamation of the ()ueen of Finkland, as Kiaisar-i-Hind, or Empress of Ind a, z January \sin.

M\&RQUESS NF KIPON. $258 \sim 8$. Ex:ension of municipa! vovernment. Various reforms in favor of the natives

8 Y\&ROUESS OF DUFFERIY. 158.85. Third Kulmese War. The annexation of L'pper kirma with the Shan S-ares. The "Scientific Frontier" of India desined hn 1 strencthened.
9. \#А eningi f t e armv and the defences of India. Reform en carrency, closing the free coinake of silver. Reconan cutrencr, chosing the free coinake
! EAKL तF Eit.Gix, 13 .s-69. sin of a former vicerny. 13ry'.h control of the porthwest frontier of India srenkt ened. Farthqua'ie in Anam 1897. Cholera, plakue. and famine $\%$ Frontier Wiar. Celebration of t. Oueen-Fmpress. Wiamond Jubilee.
:s fisculnt Curzus, 18 y-igo5. Disparched 8.000

1r:0: sit tronps + S. Africa 180n. About 20,000 sent to Chinalyoo. Ose of the worst Indian famines on record A perin of reform and reconstruction. King Edward procla:med En-pero- at Delhi I Jimuary roos. Political Minisiter to Tilet sgos. seven earthquakes April 190. Resigned August 1005.

2 EARLOF MINIO, arrived in India November 1005 A descendant of a former Governor-General of india Part tion of Bengal Province toos. Visit of Amir Habio Cllah Khan of Afghanistan January igo.

Bibliografly:-Adve. 'Indian Frontier Policy' ($\mathrm{I} \mathrm{g}_{\mathrm{j}}^{-}$): Baden-Powell, 'Land Systms of British India' (1892): Balfour. 'The Cyclopredia of India' (1885): Birdwond. 'The Industrial Arts of India' (188\%): Boulger. 'India in the roth Century' (Ioor): Chesney, 'Indian Polity' (I894): Cherrillon. 'Romantic India' (ISg'): Cumningham, 'British India and its Rulers' (1881): Dubois. 'Hindu Manners. Customs and Ceremonies' (1837) ; Dutt. 'Econ mic History of British India' (Ig00) : Elliott. 'History of India' (1859): Hunter. 'The Indian Empire' (1893); Kaye. 'The Administration of the East India Company' (1853): Keene. 'History of India' (r893): Lee-llarner. 'The Protected Princes of India' (1894): Lilly. 'India and its Problems' (1902) : Malleson. 'Hisiory of the Indian Mutiny' (I89-) : Morison. 'Iniperial Rule in India' (ISog): Rousselet. 'India and its Native Princes' (1876) : Sherring. 'History of Protestant llissions in India' (1887): Strachey, 'India' (I888); Tupper. 'Our i:idian Empire' (I E93): Wheeler. 'The Tistory of India from the Earliest Ages' (1874-6). There is a complete and exhaustive list oi works on India in the Statesman's Year Book (London 1907).
C. L. Stuitit

Editorial Staft 'Encyclopedia Anicricana.
Revised by Thomis P. Heghes. -Author of 'Dictionary of Islam.'
India, Farther, or Further. See Ixpo-Chisa.
India, French. See East India Cumpinies, and lapra muder History.

India Ink. The usual basis of India ink is a finely divided solid carhon. moxed with a size to hold it in suspension whe: the ink is prepared for uic by mixing it wilh water. the depth of the shade being regulated by the quantity of water used in the mixing. This ink was originally made in China and Japan, where the ink is appled with a brish hoth for writing and drawing. In Europe at America it is now used chietly for black-and-white drawings.

India, Native States of. See Ixdin under Polttical Dizisions. Local Gozernment, and Hist.ry.

India, Portuguese. See East 1nda Compasies. and lima under History.

India Rubber, the manufactured products of caoutchouc. or gum-elastic. Some of the propertues of india rubber must have heen known in Imerica at a very carly period. because balls made by the Haytians of the gum of a tree. houncing better than the wind-balls of Castile. are mentioned by Herrera in his account of Columbus' second woyage. In a book published in 1615 Juan de Torquemada mentions the tree which yields it in Mexico. describes the mode of collecting the gum, and states that it is made into shocs: also that the Spaniards use it for waxing their canvas cloaks to make them resist water. Alore exact information was furnished by A1. de la Condamine in 1735. India rubber

INDIA RUBBER

was at first known as Elastic Gum, and received its present mame from the discovery (about 17\%O) of its use for rubbing out black-lead pencil matks. for which purpose it began to be imported into Britain in small quantitics about the end of the ISth century. Its application to the manuiacture of waterproof cloth first gave it commercial importance. About the same time a method was discovered of fabricating articles of various kinds by casting india rubber in molds. The india rubber of commerce is obtained most largely from South America, but considerable quantities are also procured from British India, the Indian Archipelago, the west coast of Africa, and the Mauritus.

Pure India rubber is now used only to a limited extent in the arts, but it is applied in the vulcanized state to a very large extent. In the process of vulcanizing, the rubber, as a preIiminary step, is either torn into slireds or crushed into thin pieces by machinery, and afterward washed. There are two principal kinds of vulcanized rubber, one hard and horny in its texture, the other soft and elastic. In the case of the former the caoutchonc is mixed with about one third of its weight of sulphur, and heated for several hours, the temperature finally rising to fully $300^{\circ} \mathrm{F}$. For the soft kind of vulcanized rubber, on the other hand, a much smaller proportion of sulphur is required-viz. from $2^{1 / 2}$ to 10 per cent, and the heat to which it is subjected in the vulcanizing chamber is considerably less. Usually, too, with this latter kind, the articles are made before the rubber is heated. The sulphur is commonly added in the ground state, but sometimes the rubber is treated with some solution containing this clement, such as the bisulphide of carbon.

Hard vulcanized rubber, termed vulcanite, and sometimes ebonite, is made into a great many small articles. such as combs. chains, bracelets, boxes, penholders, paper-knives, knife-handles, buttons, etc., as a substitute for materials like horn, bone, ivory, and jet. Like these substances themselves, it is formed into various objects by molding, cutting, carving, polishing, and other processcs. Vast numbers of these articles are now sold. The black color of vulcanite ornaments has still a tendency to turn gray, but the brittleness which was a fault of combs made of it a few years ago seems to be overcome.

More than $50,000,000$ pounds of india rubber, yalued at more than $\$ 30.000,000$, was imported into the United States in 1902. In 1890 the quantity was only $33,000,000$ pounds: in 1880 , 16.000.000; in 1870, 9:000,000, and in 1862, the earliest date at which it was separately shown in the import statements, was only $2,125,561$ jounds.

Over $\$ 100,000,000$ worth of manufactures from india rubber are now turned ont from the factories of the country every year, and about half of this total is in the form of boots and shoes. So great is the demand for india rubber for use in manufacturing that not only has the importation grown from 2,000,000 pounds in 1862 to over $50,000,000$ annually at the present period, but in addition to this the forests of the East Indies are called upon for several million
pounds annually of a new substitute for guttapercla, known as "gutta-joolatong," while at the same time the highways and byways of Europe and other countrics aic ransacked for cast-off rubber manufactures from which the rubber is "reclaimed" and re-used in conjunction with the new rubber from the forests of Brazil, Africa, and the East Indies.

The industry of importing and "rcclaiming" india rubber for re-use in manufacturing is a comparatively new one, and while it utilizes large quantities of worn-out rubber boots and shoes and other articles of this character from the scrap heaps of the United States, it has only extended to other parts of the world in recent years.

Gutta-joolatong is another comparatively new material which may be used as a substitute for or in conjunction with India rubber. Ii is a product of the East Indies, chiefly the island of Borneo, located not far from our Philippines.

The tables which follow show the quantity and value of crude India rubber imported into the United States from 1893 to 1903, also the scrap and old India rubber for use in remanufacturing, also for gutta-joolatong from ISo9, the date at which it was first separately stated, to 1903:
tMportation of crude india rubber, i893 to 1903.

importation of old and scrap rebber, fit only FOR REMANCTFACTURE, IS93 TO 1903.

Iear Ending June 30	Pounds	Value
1893.	910,543	\$25,633
189	1,774,008	55,803
189	2,032.563	63.112
1896	3,874,677	123,068
1897	3,653,945	113.722
1898.	9,488.327	339.374
1899	10,513,604	462.044
1900	19,093,547	1,249.231
1901	15.235,236	988,316
190	22,804,900	1,437.960
1903.	24.659.394	1,516,137

importation of gutta-joolatong, 1899 to igo3.

Year	Enorng Tune 30	Pounds	Value
1809		6,473,88z	\$166,419
1900		8,701.753	237.254
1901		9,371,087	248.838
1		16,850,821	501,418
19		${ }^{13,984,857}$	345,431

Year Enoing June 30	Pounds	Value
1893	582,378	§155,428
	498.763	84,340
189	1,326,794	122,261
1896	3,843,854	178,513
1897	1, 117,665	100,187
1898.	636,477	159.381
1899	518.939	167.577
1900	427,678	178,616
1901	280,560	130.957
190	525.767	252,329
1903	316,290	22,400
ee also Catutchou	Rubber	AnUfac-
ures, American.		

I-とian. See Indinis, hmerichy.

indian, Catholic Education of the. Tpon the discovery of America in $1+02$, the various religious orders of the Roman Catholic Church hastened to send missionaries to the new field. . 1 small school for the education of the natives was an acconpanving ieature of each mission station, and after Ērtcs lad conquered Dexico. Franciscans. Dusnimcans, as d lesats. in course ui time educated and converied the nitives to Christiamty. and founded missions and schou!s which exist there to-das, and in Caniornia. now an integral purtion of the Linted States. but iormerly part of Mexico. - rth and south the missions and sch ols were established and as germs of diocesan ergani zations bore frait in the foundation oi the see of Caracas in Venezuela in 1531 : that of Lima, Peru. in 1539 ; of Chiquisaca. Bolivia. in 1551: and of Santrago, Chile, in 1501 . Brazil was entered in 1500 by Franciscans who were inllowed hali-a-century later by Jesuits. The first Brazullan see was rounded at Bahai in 1501: in La Plata. now the Argentine Republic. the see of Cordoya was iounded in 15,0 , and there in course of time the Jesuits built up a magnificient college. In Central America. Franciscans began their work of education and conversion in Costa Rica in 1500 . and during the last 30 years of the century friars labored successiully in Guatemala. teaching the arts of civilized life along with the doctrines of salvation. Early in the 1 th century. Jesult fathers entered Acadia (Sova Scotia) and Canada. and in 1650 the frst episcopal diocese in the region was organized at IIontreal. Torture and martyrdi m did not deter these brave champions and pi neers oi Christianity and civilization, and the development oi the Tinited States followed the pioneer growth of Catholic congrecrations and schonls among the rative Indians. In the first half of the toth century, the Indian nations of the Roche Vountains and Xirthwest Territoric: (American and Canalian) were pagan. The Jeswit father De Smet mate the Inng and dangerous journey from S_{t} Louis, Mר.. is the lieadquarter= of the Flathead nation in Montana, inangurated the introducti n ri Ehristanity. and preparet the way for the advent of yonercer memlers of the cruer.
 States.

Indian, Education of the. Inlan cdicatinn as at present conductel in the United St?:es is in no way the nirtonme ify delherate flan on the part of the Felloral \div vernmert. $1:$ is direct'y dea-enle 1 :- \quad i'e first
 part ct. ${ }^{1}$ rly fo in like hegime ings in Massachuertc. Wire the remarkahle result of Iohn「1, (nv:1 were ant eved.

E'i t's Ψ° : $-\Gamma 1^{\prime}$ t was actuated hy hich m bircs. and his cinple meveires were chnsen with c nexmmate wis lom. Ilaving if miliarited lomzelf with the langlace. disoncitiv?, and char-a-ter i his Irrianc, he secured their contilence and resne t Tl e w wn wll fillow fim to mothered in towns: where be thersit them the 1 herties and respincihilities of inmslap goverrment and the devires and ins-itntinns ni civ:ined life. am nem which ise Clyork ant the what patumalte necurnied places of ponare at : mber of "ch ice Indian youths" he induced to
attend English schools that they might prepare themselves for massonary work among ther own peopie. He wis warmly supported by 'the corpuration iut the propagation of the Gosfel in foreign parts, by the General Court of Nassachusetts. and partictlarly by Danie! Gookins, the official stopermiendent of the Indians un Nassachusetts. Eltot began his work in 1040 In $10-\frac{1}{4}$ there were if towns of "praying Indians,' wrose schools and churches. in the majorty of instances, were administered by edncated natwes, and an Indian collese had been iounded at Cambrage. let in due time this stocees was swept away by the iears and prejudices which developed tinder the bareful influences of the Indian wars. Similar successiul work under the direction of John Cotton and Richard Bourne in Plymouth colony shared the same iate.

Other Endea:ors.- Followers of Eliot in the ISth century were lohn Sergeant at Stockbridge. Mass., and Eleazer Wheelock in Connecticut and Vew Hampshire. The work of Sergeant. which involved the establishment of day schools, of a boarding-school, and an experimental "outing srstem," was almost idea\} in conception, but ended with the deportation of his Indians to the West. Dr. Wheelock's labors led to the establishment of an effective training school and, indirectly, to the creation of Dartmouth College 'for the education and instruction of youths of the Indian tribes in this land in reading. writing. and all parts of learning which shall appear necessary and expedient for civilizing and christianizing the children of pagans, as well as in all liberal arts and sciences. and also of English youths and any others.; Only the last purpose was destined to achievenient.

Suraiaing Infincoics. - But in spite of externa! failure. the spirit and much of the iorm ci these early erterprises persisted. Their impress is observable to-day in almost every promi:sent feature of the Indian-school organization of the United States. notably in the establishment of day schools in or near Indian villages as a means of domestic and industrial uplizting ci Indian family and rillage life: of industrial hoardins-schoo's in territosy occupied by Incians, to introduce among the young a taste for the refinements. duties. and responsibilities of cirilization: ni advanced training-schnols in cublized English-speaking communties for the inller eq-ipment of choice Indian youths" in $\dot{f}: 1$ citizenshop in sich enmmunities, or for missionary wosk in the idenle, institutions and art= of civilization amneng their own penn?e. It is seen in the universal strese in all schnols t:pnn irsernction in lusbamdry, rertain trades an l - mestic ar": in the 'o...ing system.' which nlaces nartially e l+ca:e? Irdian si-! an 1 hoys as paid helpers in suitable Ergitsh-speaking families, and afforts them instruction in the n-limary public selnols: and in the impnrance anarlont on - lig o.. ar 1 enhinal training

HV \quad n: n_{i} rarlures - On the other hand, it $i=$ to be deplesed that a number ni val mahle features of the carly schanls have heer ahamdoned, and even supplanted by opp cite tenden-riec-tive mnintelligent wariare acains- t^{2} e Ircian iflinm: the int-nluction of certain brovaltifes of military discipline: an equally mistaken rafyt in wean Tndian youth from In lian asen. cine it ly thonwing contemnt unon the Intian and by stimulating a fecling akin to hatred
of Indian family ties; and in general a policy of compulsion and repression, rather than a spirit of development and benevolent helpfulness. Serious harm came to government schools because patronage entered as a factor in the appointment of officers and employees. Thanks to the Indian Rights Association, the Mohonk Conference, and a number of other societies, in 1893 civil-service rules were applied to employees of the Indian schools.

History of Organization.-The successive steps in the organization of Indian schools have been as follows: After the Revolution little heed was paid to Indian education for 30 years. Only minor appropriations are recorded on the basis of treaties with a few tribes. But in the first quarter of the igth century a religious revival directed attention 10 Indian education as a Cliristian and national duty: Congress responded in ISig with an appropriation of \$10,000 in addition to certain treaty obligations. In i820 the President was authorized to apply this sum annually in aid of societies and individuals engaged in the education of Indians. In $1823 \$ 80,000$ was expended in 21 schools maintained by missionary bodies. $\$ 12,000$ having been granted by the government. In 1825 the number of such schools had risen to 38 , their entire expenditure to $\$ 202.000$, of which the government, directly and indirectly, had contributed $\$ 25,000$. In I $8+8$ there were reported in operation 16 manual-training schools, 87 boarding-schools and other schools. These schools continued to increase in number and efficiency up to 1873 , under the control of missionary hodies, with scanty aid from the gorernment, which had established only a few small day schools directly under treaty provisions. After 18 -3, however, the government entered upon an era of great activity in the establishment of strictly government schools. In 1877 Congress appropriated for schools outside of treaty provisions, $\$ 20,000$; in $1880, \$ 75.000$; in 1885, \$992,800; in 1890, \$1,364.568: in I895, $\$ 2,060,695$; in $1899, \$ 2,638,390$; in 1900, $\$ 2,936,-$ OSO; 1901, $\$ 3.083 .103 .65$: 1902, $\$ 3.251,254: 1903,^{2}$ $\$ 3,531,220$. The expenditures have doubled within the decade, and trebled within 15 years. During the quarter century the average attendance rose in more than like satio. Increased appropriations naturally stimulated a desire on the part of the government to control expenditures. Moreover, the Constitution, by implication, at least, forbids the appropriation of public funds for denominational purposes. Conclusions unfavorable to government support of nissionary schoals were further strengthened by the fact that the Roman Catholic Church had gradually outstripped the Protestant missionary bodics and was absorbing the lion's share of government support. In 1893 the Methodist Episcopal Church witndrew from participation in government aid, but without abandoning its schools. In 1895 this example was followed by the Presbyterians and Congregationalists ; in 1896 by the Friends: and in 1897 by the remaining Protestant denominations. This left only the Catholics in the field with an appropriation, and in 1901 it was withdrawn from them also. In 1804 Congress had declared its policy of abandoning all support of denominational schools, and this policy has gradually been followed out.

The Schools of To-daj-The present Indian schools under govermment control are day
schools, rescrvation boarding-schools, non-res. ervation boarding-schools, and industrial and normal training-sclools. These in 1902 numbered 249 , with an enrollment of 24.434 pupils; 323 other pupiis were maintained by contracs at IIampton and in white public schools.

Day Schools.-Day schools in Indian villages, or near lndian camps or settements, are, as a rule in charge of a male teacher and his wife, or, as in the pucblos of New Mexico and in the Indian villages of southern California, of a white woman teacher and an Indian housekeeper. These teachers are employed for 10 months in the year; the male teacher's wife acts as housekeeper. The children spend 5 to 8 hours during the 5 days of the week under the care of these employecs, and return to their homes in the evening. The instruction is of the simplest character. The children are taught to speak. read, and write English within marrow limits, to cipher, to draw, and to sing. They get some rudimentary notions of geography, of natural history, and of Cnited States history. The methods are borrowed largely from the kindergarten and from object-teaching, and much stress is laid $11 p o n$ liabits of cleanliness and order, mutual kindliness, and prompt obedience. The boys receive some instruction in the use of tools, in gardening, and in some instances in the care of cows. The girls are taught sewing. cooking, and other arts of housekeeping. In the poorer Indian communities a noon-day lunch of a few simple articles is furnished. While these day schools accomplish comparatively little in conventional school-room work. they serve as concrete illustrations of a civilized Cliristian home which the Indians learn to respect and, in an appreciable degree, to emulate. Moreover, they reconcile the Indian with the idea of sending his children to school, and render him more willing in due time to entrust them to the care of boarding-schools, as well as more ready to appreciate and to accept the lessons of civilization. The most successful of 134 such schools in 1902, were located in Wisconsin, North Dakota, and South Dakota; the least successful, probably, among the pueblos of New Mexico, where the indians live in a state of half-civilization which they owe to their Mcxican and Spanish antecedents, and which fully satisfies their ideals.

Reservation Boarding-Schools.-There were 90 of these in 1902, averaging 125 pupils. They are in charge of a superintendent, assisted by a matron and such teacliers, industrial and domestice helpers as the capacity and character of the school may require. In addition to regular teachers, the school is provided with a cook, a seamstress, and a laundress, whose office it is not only to supervise their respective departments, but also to instruct the girls in these arts. For instruction of the boys there is a farmer, an industrial teacher, and, at larger schools, a tailor, a shoe and harness maker, a carpenter, and a blacksmith. An experiment to provide for more methodical instruction in the use of tools, by expert manual-training teacliers, failed because the Indian office would not afford a salary for this position sufficient to altract competent men. In IS94 the experimept of comecting kindergartens with these schools was tried, and proved eminenty successtul. At the present time there are to kindergartens connected with boarding-schools, and the use of kindergarten
methods and material has entered the primary classes in practically all these schools with similar good results. In the kindergarten the chitdren spend irom $1^{1} 2$ to 2 hours each halt-day. In most of the other schools children spend half a day in the school-room, and the other haltday in domestic or industrial work of a character suited to their age. Experience has proved that hali-day instruction, at first forced upon the schools as an expedient, is commended by its good results.

The aim of the school-room work is to teach reading and writing within the usual limits of primary work; arithmetic for the needs of ordinary daily life; rudimentary geography and United States history: drawing and singing; the laws of hygienic living; garden and orchard work; and familiarity with the simpler requirements of agricultural and domestic industries suited to the locality: Moreover, in a few of the larger schools, the older boys have much opportunity to acquire skill in carpentry, blacksmithing, tailoring, and shoemaking. These institutions are to the children not only school, but home and community: The institution gives them shelter, food and clothing; it accustoms them to habits of cleanliness and decency: it cultivates their restlietic tastes: it labors to secure right moral attitude, and in its Sunday-school seeks to stimulate the religions life of the chitdren. The superintendent of the reservation boarding-school is subject in his work to the control of the Indian agent. who as representative of the government, administers the reservation's affairs. Inasmuch as these agents are selected on partisan grounds, nsually at the suggestion of local politicians, this arrangement is fraught with danger to these schools.

Ir 1893 . under civil-service regulations, there came some improvement. Still with reference to minor employees the superintendents, and even the Indian office, were powerless, and frequently good superintendents were forced out of service by combinations against them anong the appointecs of the agent, or through the aid and influence of unscrupulous partisan inspectors or supervisors. But in 1896 all employees of the school service were placed under civil-service protection, and since that time there has been marked improvement in the conditions and work of these schools. To a certain degree these evils still persisted, however, because of the power and political bias of the agents; but of late the government has adopted the policy of replacing the agents with bonded school superintendents, 22 agencies now being under such control. There has been decided gain in the equipment. in the samitary condition, in the gencral character of emple sece, and in the conduct of the schor ls. For the Indian office, relieved of attention to officeseckers and their patrons, has been enabled to pay increased attention to the schools themeclues. In the renervation boarding-schools instruction crntinues through 40 wecks; but often some chuldren are kept at the school throughout the year:

Don-Resercation Bourding - Schools. - Of the there are 25. Seven of them are industrial rri.ining-schools, and three others are industrial and mormal training-chonls. The remaining 15, in the ir uriginal scope of work, differed little from the re-ervation boarding-sehnols. But the aperintundemt-nf these schools are bonded and directly re-lumsible to the Indian office. There
is no intervening Indian agency. and the consequent sense of responsibility and self-respect in the head of the school finds its reflection in the attitude of his subordinates, as well as in that of the pupils. These schools are, as a rule, located at a distance from the Indian country, and in the vicinity of American towns which afford contact with the amenities of cirilized lite. ITembers of many difierent tribes are also brought together, and tribal antagonisms are broken down. The pupils are older than those at reservation schools, and some have had previous training in day schools or reservation boarding-schools. Because far away from their Indian homes, and near to Englislu-speaking communities, they gain a better control of English: class-room work reaches far into the advanced grammar-school courses of study, with special stress upon language practice, arithmetic, geometry, geography, history, nature study: drawing, and civil government. Instruction in domestic and industrial arts is made effective by frequent opportunities directly to observe their practical applicability and value. The superintendents are paid from \$1,200 to $\$ 1,500$ per annum. Other employees are paid on the same scale as in reservation schools. The most noted and successful of these schools are located at Flandrean, S. D.; Pipestone, Minn.; Mount Pleasant. Mich.; Fort Mojave, Ariz.; Carson, Nev.; Perris, Cal.: Tomah, Wis.: Wittenberg. Wis.; Fort Lewis, Colo.; and Pierre, S. D.

Industrial. Training-Schools. - There are schools of this class at Carlisle. Pa.: Chemawa. near Salem, Ore.; Chilocco. Okla.; Genoa, Neb.; Albuquerque, N. M.; Lawrence, Kan.; (the Haskell Institute), Grand Junction, Colo.: Sante Fe. N. M.; Phoenix, Ariz.; Fort Shaw, Mont. The most strenuous effort is now carried on at Chilocco; organized ISSf: a large plant with a capacity of over 500 pupils, and a fine farm of about 9.000 acres. In organization these schools are similar to the schools just described, but in the scope of their work and in equipment they excel in a high degree. The government in I894 added normal departments at Carlisle, at the Haskell Institute, and at Santa Fe.. The experiment proved fairly successful with Carlisle and the Haskell Institute, at Santa Fé slightly so for a time, but of late it has shown better results there.

Contract Schools.- In addition to maintaining these strictly government schools, the Indian office up to tgor, as before said, paid by contract for the education of many hundreds of Indian pupils distributed in Catholic mission hoarding-schunls, in Catholic day schools; at Lincoln Institute. Philadelphia, and at Hampton Institute. Hampton, Va. In the appropriation for that year, the aid was withdrawn from all but the last-named. Where 120 pupils were contracted for. Besides the:e, the government since tion has endeavored to place Indians in white puhlic schools where there are many whites and few Indians, as the most rapid means of civilization. The antagonism of local or State authorities to this coeducation has made this plan a failure in some places; in others there has been some success. Riving from 8 to 4. between 1801 and 1886 , the number of such schenls has gradually sunk to 16 in 1902. with 1 to pupils contracted for out of $1 \varepsilon_{9}$ enrolled. and average attendance of 98 .

Supereision, - Direction of the Indian schools rests with the Indian office, which is under the supervision of the secretary of the interior. In the Indian office the details of the work are entrusted to the cducation division, to which all reports are madc, and by which all directions and orders are drafted and issued. The education division is aided in its work by the superintendent of Indian selools and by 5 supervisors, assigned in their work to 5 districts respectively: These officials constitute a branch of the Indianschool service which occupies a very uncertain position. They have dutics, but no rights. A similarly anomalons relation exists between the commissioner and the secretary of the interior with regard to all matters which the latter may wish to control directly. For this purpose the sceretary has established under his direct control an Indian division, independent of the Jndian office, to which all orders and directions the secretary may designate must be referred by the Indian office for approval. The power of this Indian division is further reinforced by a corps of inspectors in the field, appointed on partisan grounds, and responsible to him alone. Technically the superintendent of Indian schools may appeal from the commissioner to the secretary of the interior, and the commissioner from the decision of the secretary to the President. In view, however, of the hopelessly autocratic relation that runs through the chain, that is practically out of the question. Under these conditions, the fact that Indian education has prospered reflects credit upon all concerned.

Schools of Indian Tervitory:- The schools of the so-called "five civilized tribes" of Indian Territory are not included in the above sketch. The 5 tribes in 1900 included 25,639 Cherokees, 10.321 Choctaws, 7.963 Creeks, 5.372 . Chickasaws. and I,662 Seminoles. In addition there were in the Territory 36.853 freedmen and 302,680 whites. Missionary zeal availed itself promptly of this ficld for its efforts. Substantial boardingschools were erected, more particularly by the Presbyterians, Methodists, and Baptists. In due time, however, the Indian authorities began to make appropriations for these schools. Ultimately they took cntire charge of them. Unfortunately, administrative affairs were largely in the hands of whites, who, by intermarriage or bribery, had been adupted into the tribes, and there came over the schools, as well as over all other public interests, the blight of extreme partisanship and nepotism, which rapidly degraded them in character and efficiency. In 1898 the government at Washington assumed supervisory control over the affairs of all these tribes except the Seminoles. The conduct of the schools and orphan asylums in the 4 tribes involyed was placed under the direction of a superintendent of schools in Indian Territory, appointed by the secretary of the interior. Under him there is for each of the tribes or nations a supervisor of schools, whose duty it is to inspect the educational institutions in his district, and to assist in their organization and conduct. The superintendent reports to the commissioner of Indian affairs at Washington through the United States inspector for the Indian Territory, who is his immediate superior. The initial rejort of this superintendent showed in the 4 tribes 24 boarding-schools, with an enrollment of $\mathrm{I}, 758$ pupils, and an average attendance of 1,480 , tanght and cared for by 234 employees
at an annual expense of $\$ 236,824$. This does not include 303 neighlorhood schools, in which more than ro,000 children are tanght at an annual expense of $\$ 13.380$, which, in character and equipment, show great inferiority:

Whliam N. Ihinmann, E.r-Supt. Indian Schools.

Indian Affairs. The prevalent idea that the national govermment hats always striven to dispossess the Indians from the lands they occupied, or has sympathized with such efforts, is the exact reverse of the truth. From its foundation until now, its history presents anl unbroken record of quarrels between Indians and bordering or interdwelling white settlers, in which the government has been slowly and rehetantly pushed on to interfere; sympathizing with and justifying the Indians against its own citizens, its commissioners nsually reporting in their favor, and even its generals in later days blaming the whites for the trotbles; its courts deciding in their favor; attempting pacification amid local outcries against them, rebuffing appeals for aid, and only using its armies to reduce the Indians and its administrative power to remove them when it was no longer politically possible to leave them in possession. Even then, it has meant to deal righteously by them; but the complexity of the problem - one may say its insolubility till the comentry was very strong and the Indians very weak-along with the universal curse of "spoils" in the administration has hindered success. While until 188 t there was no consistently formulated plan, there has been a sequence of govermment panaceas in a steadily descending line. First, there was to be one vast Indian reservation. large enough to give them all the hunting-room they needed, and so far from the United States that our growth would never reach to them and create more troubles; then three great reservations, to prerent so formidable an Indian district and internecine Indian wars; then a number of small ones, to segregate hopelessly hostile tribes, enable better training into civilized existence, and protect them from depredations; lastly, no reservations, but severalty ownership and individnal citizenship. These changes of policy have been due not to fickleness or visionary causes, but to broadening experience and varying conditions.

The policy of removing the Indians west of the Nississippi was first formulated by Jefferson, who in a proposed constitutional amendment (1803) set off the Lousiana Purchase north of the Arkansas as a purc Indian country: in which no land was to be sold to whites. This was carried out, on a much reduced scale, in the formation of Indian Territory (q.v.) by act of 30 June 1834: by another act of same date a superintendent of Indian affairs was appointed. no one to trade or settle in the Indian comntry without permission from him or his agents. Previous to this the Indian matters had been under the War Department: in 1849 they were transferred to the new Deparment of the Interior. of which they still form a burcau. Under the commissioner of Indian affairs are cight inspectors and a large varicty of subordinate officials and employecs. The Indian agents, though under his control, are appointed by the President, for four years, with bonds; on their

INDIAN ART

action depends often peace or war to great white populations, but in too many cases they have been the football of politics, and sometimes scandalously unfit for their places.

The legal theory, until a recent date, was that each tribe was a mation, but not a foreign nor independent one; a "domestic dependent nation," but with which, nevertheless, all intercourse was to be conducted through special commissioners appointed by the President. In IS-I Congress abolished this method of procedure, and substituted immediate Congressional control. but the fiction of Indian nations remained; nor. indeed, could any other system well be applied so long as the Indians were recognized as national wards, and could not be made a part of the regular republican system or thrown into the current of unrestricted competition. It was the general plan to let the larger and better advanced ones, as the five "nations" of the Indian Territory; govern themselyes and thus develop political life, including a iull judiciary system. But the smaller ones could not be thus leit, even in leading-strings; and in all. the government has recognized its duty to watch over their ignorance improvidence, and savage instability of will and emotion from either violence or cumning on the part of the whites. Traders with them must have certificates of good character and be 1 i censed by the Indian commissioner, and the goods they sell are subject to regulation; no one can hunt. cut timber, or pasture cattle on Indian lands without the agent's permission; intoxicating liquors may not be sold to them. Still more important and beneficial is the educational work, which has not only been carried on by churches, missionary societies, and private individuals from early times, but has been actively forwarded by the government. The five civilized nations of Indian Territory had their own school system, of considerable extent : but for others, and even for those where needed, the President was empowered in 1865 to appoint instructors of Indian children in reading, writing. arithmetic, and agriculture, and in ISS2 to appoint an inspector of Indian schools. (See Indiss: Edechrion of the.)

From 18分, when a $\sum_{20,000}$ appropriation was made for Indian schooling, to 1900, when over $\$ 3.000 .000$ was appropriated, over $\$ 35.000,000$ had been thus expended by the government. It has spent since jits foundation nearly $\$+00.000 .000$ on the Indians, outside of the cost of wars against them; and the present expenditure is about $\$ 10,000.000$ a year. In 1900 it was maintaining over 45.000 wholly by rations, and 12.500 partiy, at a cost of about $\$ 1.250 .000$ per annum ; and paying annuitants (partly from trust funds derived from sales of their lands) over $\$ 1.500 .000$.

On \& Fcb. I887, however, an act was passed, amended in 1890 , to sweep away as soon as feasible all this system of tutclage and pauperization, in the belief that abolition was best for Indians and whites alike. All reservations were to lic survered; all Indians who wished to take up lands in severalty to a certain amount might do s, - and liy the act become citizens, as well as all who had previously done so under treaties and Cengressi nal enactments, over 10.000 in number. L'p to 30 Oct. $10006 .,-36.54$ acres had been so allotted, to 56,9060 Indians; about 2,000
a year comply with the permission; and a few years will see an end of Indian tribes except as historical reminiscences. Nany of these new citizens are made voters by their States: there are over 20,000 such in the Lnited States at present. See Cheroree; Cherokee Nation v. Georgla.

Indian Art. In mone of the fine arts except arcliitecture have the Hindus attained much eminence. Their paintings are of very little merit, though the walls of temples, of palaces, and of the better class of private dwellings are often ornamented at great cost with pictures illustrating the characters and events of their mythology. More attention has been paid to sculpture than to painting, and in the temples cut from the living rock great numbers of statues are contained, some single figures and others large groups. Many of these are bold and spirited in design, though the human form is not exhibited in good proportion nor with its parts well developed.

Indian -Irchitecture, however, comprehends a great variety of styles, among which we may distinguish, as the most important, the Buddhist, the Jaina. the Dravidian or Southern Indian, the Chalukyan, and the Modern Hindu or In-dian-Saracenic styles. The history of Indian architecture commences in the 3 d century b.c. with the religious buildings and monuments of the Buddhists. Among the principal forms of Buddhist architecture are first, the topcs, stupas, or towers built to mark some sacred spot, and the degobas, constructions of a similar nature, containing relics of Buddha or Buddhist saints. These buildings generally consist of a circular stone basement, varying from so or 12 to 40 feet in leight, and from to to 120 feet in diameter, on which rose a rounded domical structure. generally of brick or small stones laid in mud, the whole edifice rising sometimes 50 , sometimes 100 feet high. Sccond, the rock-cut chaitya halls or churches, and the ziharas or monasteries. Most of these are found in Bombay: some also in Bengal and Behar. In rock-cut buildings architectural skill is confined to the facade and the interior. Among the most notable for beauty of design are those at A janta, and, finest and largest of all, the great Chaitya cave at Karli, near Bombay, the date of which is probably about So b.C. Another interesting example is at Ellora. The Jaina style is a development or corruption of the pure Buddhist. It is characterized by the square or polygonal court, the twelve-pillared dome, the slenderness and elegance of the columns, the horizontal arch, the sikras or towers surmounting the cells containing the images, and, lastly, by the peculiar grouping of many temples together on hiill-tops. Prominont cxamples of Jaina architecture are found at Girnar in Gujerat, and at Mount Abu. The most flourishing epoch of the Dravidian style comprises the 16 th. 17 th, and ceven 18 th centurics of our cra. To this late period helong the great temples at Tanjore, Tiruvalur, etc. The distinctive parts of a Dravidian temple are the zimana or temple proper, with storicd pyramidal roof: the mantapas or porches, corering the door which leads to the cell: the gopuras or gate-pyramids, in the quadrangular enclosures surromding the vimanas: and the choultrics or pillared halls, used for varions purposes. The
general claracteristics of a Dravidian temple of the first class are the sturied pyramidal towers, the hall of 1,000 colunns, the bold cornice with double flexure, the detached shafts, the richly carved stylobate, and the large tanks with flights of stone steps. The Chalukyan style, so named from a dynasty which rose in the 6th century in what is now Mysore and the Nizam's Territory, reached its perfection in Mysore from the Inth to the Ifth century: The characteristic features are the open porch, the straight-lined, conical-shaped tower, the starshaped temple, and the basement terrace of stone.

The Indian-Saracenic style is a general name for a number of somewhat varying styles, the result of the mixture of Saracenic principles of architecture, brought with them by the Mohammedan conquerors of India, and the distinctive architectural features of the different localities where they settled. Under the Mogul emperors in the I6th century were erected some most magnificent buildings. such as the tomb of Humayun Shah at Old Delhi ; that of Akbar at Secundra; the palaces of Shal Jehan at Agra and Delhi; and the Taj Mahal, built by the same monarch at Agra. (See Agra.) The Moslem architecture of India contrasts with the native Indian styles in its use of the radiating arch, in the superior simplicity and grandeur of its style - its flat ornamentation not interfering with the lines of true architectural construction. A characteristic feature also is its fine conventionalism of vegetable forms for decoration and tracery. See Moslem Architecture under Architecture.

Indian Bean, a catalpa (q.v.) ; specifically the large southern tree (Catalpa catalpa), now planted as a shade or ornamental tree all over the country on account of the beauty of its masses of spring flowers and the quaint appearance in autumn of its long, bean-pod-like fruit.

Indian Bible, the first Indian translation of the Bible in the New England colonies. This translation was made in 1663 by John Eliot, "The Apostle to the North American Indians." It was in the dialect of the Naticks, a Massachusetts tribe of the Algonquins. A second revised and corrected edition was printed in 1685. only 12 copies of which are known to exist. An edition with notes by P. S. Du Poneat., and an introduction by J. Pickering, was published in Boston in 1822. When the original edition was issued. 2o copies were ordered to be sent to England. A copy of the edition of 1663 , with the Epistle Dedicatory, was sold in 1882 for $\$ 2.900$.

Indian Bread-root, a plant of the genus Psoralea; the "large" was P. esculenta; the "small" P. hypogaa. See Bread-root.

Indian Corn. See Corx, Indran.
Indian Fig. See Prickly Pear.
Indian Head, (1) the highest point of the Palisades, 550 feet; so called becanse it resembles somewhat the head of an Indian. It is in the northeastern part of New Jersey, on the Hudson and oppositc Hastings. (2) The name of a village in Fayette County, Pa. (3) A small town in Nlaryland, on the Potomac River, below Washington, the seat of a naval station.

Indian Hemp. Sometimes called Canada hemp. Sce Apocyanace.e.

Indian Hippo, an American plant. §ee Bowran's Root.

Indian Humped Cattle, a species of East Indian oxen (Bos indicus), now known only in the domesticated state, distinguished by a high fatty hump on the withers, by the prevalent ashy gray color, large drooping ears, enormous dewlap and several structural peculiarities. They vary in sizc from those as large as a European ox to the smallness of a half-grown calf. They form the working cattle and draft animals all over India and eastward more or less locally to China. They are venerated by the more pious sects of Hindus, especially in the persons of certain privileged bulls, called Brahma or Brahminy bulls, which wander about the bazaars of cities unharmed and unchecked in their depredations upon market produce.

Humped cattle are known in Madagascar, and in Abyssinia, and it has been suggested that the species was originally African. The Abyssinian form is a large animal with luge horns called "galla ox" or sunga. These animals seem to thrive only in hot countries, and have never been found profitable outside of their present range.

Indian Language and Literature. See India.

Indian Mutiny. The British occupation of India had been largely aided by native troops called Sepoys, who were enrolled under British officers in the service of the East India Company. At the close of Lord Dalhousie's sway in 1856, when the whole of India seemed to have been either reduced directly under British rule, or if retaining its native princes to have placed itself under. British protection, the Sepoy mutiny, a contingency for which the government ought not to have been altogether unprepared, occurred. Previous symptoms of disaffection had not been wanting. Mutiny had on several occasions brosen out in the native army, in a way to indicate how easily through causes which Europeans, from their defective sympathy with native thought and feeling, could not anticipate, these troops might be aljenated: but, on the other hand, the general fidelity of the Sepoys merited confidence, and this feeling prevailed over any grounds of suspicion which might have heen formed from isolated occurrences. The Sepoys in Bengal were mostly either Mohammedans, or Hindus of the Bralımanical or military castes. The recent annexations had alarmed the native chicfs, while the fanatical Hindus had been decply offended by reforms, including the successive abolition of various rites of their worship. Two European regiments had been drafted off for the Crimean war. and had not been replaced. Others had been sent to Burma, and in the beginning of 1857 fresh regineents were despatched to Persia, so that orly eighteen regiments were left $\quad 1$ all Northern India, of which nine were in the Panjab. In Oudh, where, from its recent annexation, disaffection was rife, there was only one British regiment, and Delhi and Allahabad, the two chief arsenals, were guarded by native troops. To add to these favorable cir-

INDIAN MUTINY

cumstances a Hindu devotee had prophesied the ternination of Britisb rule at 100 years aiter the ba:tle of Plassey: A slight incident sufficed to give point and direction io a spitit of disaffection which so many circumstances tended to favor. At this time the Enfield rifle was introduced into the Bengal army. This rinle was loaded with a greascd cartridge. the end of which required to be bitien ofi at the time of loading. By a natural inadvertence the authorities had neglected to consider how this seemingly trifing requirement might affect the easily excited sensitiveness of the Hindus in regard to caste. and this insigniricant circumstance temoved the last security against a united morement of disloyais among the rative troops. by establishing a bond oi sympathy between the Mohammedans and Hindus. A report gor abroad that the cartridges were to be soaked in cow and pork fat. The prejudices of Hindus and Mohammedans were thus equally involved. and $a s$ this rumor rapidly spread the excited imagination of the Sepoys conceived a conspiracy on the part oi the goverament to convert them iorcibly to Christianity, by compelling them to violate the laws of their own religion. When this grievance was explained it was at once removed, the manufacture of greased cartridges at Dumdum was stopped, and the men were instructed to grease them thenselves with materials procured at the bazaars. Suspicion once aroused, however, was not to be allayed, and easily found a new object of contention. The paper of the new cartridges was glazed, and it was again alleged that grease was used in its manufacture. The spirit of disaffection became too deep-rooted for any measures of conciliation. Conferences among the disaffected gave rise to ambitious schemes, and the original grievances became a pretext in the hands of unscrupulous leaders, whose excesses debarred them even from the plea of patriotism, to extirpate the British power in India. On 26 February the first overt act of mutiny took place at Berhampur, when a regiment refused to receive their carridges. Another dangerous outbreak tock place at Barrackpur on 29 Marclı. The arrival of a British regiment from Burma and the disbandment of the disaffected regiments was thought to have ended the trouble, but it soon became evident that disaffection. which had only wanted an occasion, was spreading sapidly not only among the Sepoys but among the Hindus generally. Anather ousbreak rook place on 2 May, near Lucknow, when a regiment of cavalry were, by some oversight of the govemments instructions. ordered to bite their cartridges. Sir Henry Lawrence succeeded by a show of force in disarming it. A more icrmidable outbreak occurred about the same time at Jeerut, 35 miles northeast oi Delhi. when the mutinects, with the assistance oi the native inhabitants, indiscriminately massacred the Europeans and escaped to Delhi. The advance-guard oi the mutineers reached Delhi on II May, and at once entered the city, where they were assisted ty the king's scrrants in ma**acring the Europeans. The native troops cantoned outside the city in the meantime joined the main hody of the mutincers, and assisted in massacring their European officers. About so Europeans sought tefuge in the palace, and placed themselves
under the protection of the king, who sad placed himseli oa the throne of the Moguls. These aiter some days were coolly murdered in an open court in presence of a general concourse oi spectators, conspicuous among whom was Mirza Mogul, the ling's eldest son, who had assumed the iitle of conmander-in-chiei. The magazine at Delhi had been blow'n up by its defenders: but the explosion was only partial, and most of jis contents fell into the hands of the mutineers. European troops were now stimoned irom all quarters. Several regiments were detached from an expedition which was proceeding under Lord Elgin to China, and the Persian war having been concluded, the troops engaged there were immediately recalled. Wiben intelligence of these events reached the Panjab the mutinous spirit which prevailed among the large body of Hindustani troops there was promptly subdued by disarmament. The Sikhs, though the Panjab had been so recently annexed. continued iaithiul. But the revolt had spread rapidly elsewhere, and British authority was almost extinct throughout the Bengal Presidency: Everywhere the mutiny was attended with savage excesses - women were outraged, and Europeans, without distinction oi age or sex, barbarously murdered. Sir Hugh IVheeler, at Cannpore, was berrayed by Nana Sahib, maharajah of Bithur, who. after offering aid, took the mutineers into his pay, and raising the Mahratta standard. besieged Cawnpore. The siege, or rather bombardment, lasted from 7-24. Tune, when a capitulation was agreed to, on a sworn promise of Nana Sahib to allow the garrison to retire to Allahabad. But as the embarkation was proceeding the boars were attacked by the Nana's troops, and the men indiscriminately massacred. The women and children were for the meantime made prisoners. Sir Henry Lawrence was besieged in Lucknow, where he died on 4 July from a wound received in a sortie.

Meanwhile mutineers had been converging on Delhi. and British reiniorcements were hastening to the besieging camp on the ridge above the city. Aiter protracied operations and repeated reinforcements on both sides Delhi was taken by assault. 14-20 Seprember. Sir Henry Havelock. who had been engaged in the Persian campaign, had arrived in Calcutta, and immediaiely set out for Allahabad. so commence operations for the relief of Lucknow and Cawnpore. While his iorce was victoriously advancing on Cawnpore ぶana Sahib, on 15 July barbarously massacted his prisoners. consisting of 210 women and children. Harelock was succeeded in the command at Lucknow by Sir James Outram, who held it till relieved by Sir Colin Campbell. on 1\% November. At first it was feared that the mutiny might extend to the Bombay and Madras presidencies, and from this cause and the occupation of the troops in Bencal the mutineets had been leit unchecked in Central India. At length columns organized in these presidencies entered Central India, and were united under Sir Hugh Rosc. By the eperations of the ce commanders the brave Rani of Jhansi, who died fighting at the head of her troops, was defeased, and Tantia Topi whose military capacity had prolonged Nana Sahib's resistance, was captured and the mutiny was
finally suppressed. The war was substantially closed by Junc 1858 , although the complete pacification of Oudh was not effected till the end of the year. Sce Indi, East India Companies. Consult: Malleson, 'History of the Indian Mutiny' (1897).

Indian Ocean, that body of water which has Asia on the north, the East Indian Islands, Nicobar and the Andaman Islands, Anstralia and Tasmania on the east. Africa on the west, and the Autarctic contivent on the south. The Cape of Good Hope, and the southern extremity of Tasmania may be considered its extreme limits from cast to west. Its length from north to south somewhat exceeds 6,500 miles, its breadth varies from 6,000 to 4.000 miles. Its gulfs dre the Red Sea, the Gulf of Adeu, the Pe:sian Gulf, the Gulf of Oman, the Arahian Sca, the Bay of Bengal, and the Great Austrafian Bight. Its islands are Ceylon, Madagascar, the Laccadives, Maldives, Socotra, Andamans, Nicobar, Mauritius, Bourbon, Kerguelen's Land, etc. Rocks aud coral reefs render navigation dangerous. The Ganges, Brahmaputra, Irrawaddy, Indus, Euphrates, Gadavari, empty into the Indian Ocean. The southeast trade-wind blows between the roth and 28 th parallels of soutl latitude from April to October, after which date its limits are contracted; south of these are the northwest winds, which prevail almost in the same latitude, in the Atlantic and Pacific. The monsoons are mainly to be found in the north, from the continent of Asia to about lat. 8^{2} S., and from the Mozambique Chanuel on the west to the western shores of Australia and the sea of China. They blow for six montlis, changing about the equinoxes. North of the equator the northeast monsoon prevails from October to April, the southwest from April to October; while south of that the northiwest monsoon blows while the northeast is blowing on the north side, and the southeast prevails during the time of the southwest monsoon north of the equator. In the hot season, likewise, when the southeast trade-wind recedes south, the northwest monsoon flows between the equator and the izth south parallel. The hurricanes of this ocean usually range between lat. 9° and 35° S., extending from Madagascar to the Island of Timor. They usually come from the northeast, and travel southwest and south, returning agaiu east. Their season is from December to April.

According to the most recent soundings the mean depth of the Indian Ocean is 2,300 fath oms, or somewhat greater than that of the Atlantic. The greatest deptlis are in the easteru part to the south of the equator, where it is estimated that there are fully 50,000 square miles with a depth of over 3.000 fathoms. Over r 3,000,000 square miles lie between the depths of 2,000 and 3.000 fathoms.

The area of land draining into the Indian Ocean is estimated at $6,813,600$ square miles, and the rainfall on this land amounts to 4.379 cubic miles of water aunually. The rivers flowing from the Asiatic continent are by far the most important, and they carry a vast amount of detritus into the Bay of Bengal and Arabian Sea, these forming immense deposits of blue mud. Along the African coasts, in deptlis from

Ioo to 1,000 fathoms, there are glauconitic sands and muds, and on these as well as other cuasts, coral muds and sands, and blue and green muds in the shallower depths. In the decper parts of the ocean, far from land, there are deposits of red clay, radiolarian-ooze, and glo-bigerina-ooze. 'Joward the Antarctic continent the ocean bed is covered with a diatom-ooze.

The temperature of the surface waters varies much in different parts of the ocean, at different seasons, and under the influence of different winds. In tropical regions the temperature usinally varies from 70° to $80^{\circ} \mathrm{F}$., and the yearly range is 7° or $8^{\circ} \mathrm{F}$. Off the Cape of Good Hope and Cape Guardafui, the annual range may be from 20° to $30^{\circ} \mathrm{F}$. Sudden changes of temperature are often noticed off Cape Guardafui when the wind blows off shore. The cold and deep water is thus drawn up along the coast to take the place of the warm surface watcr which is driven east by the wind.

The temperature of the water at the bottom is very uniform and subject to little, if any, annual variation. In the Bay of Bengal and Arabian Sea temperatures of $33.7^{\circ} \mathrm{F}$. and $34.2^{\circ} \mathrm{F}$. have been recorded; these are only very slightly higher that those recorded by the Challenger in lat. $50^{\circ} \mathrm{S}$. It is certain, therefore, that this deep cold water is slowly drawn into the Indian Ocean from the Antarctic to supply the place of the warm surface currents that are driven south by the wiuds.

The currents of the Indian Ocean are less constant than in the other occans, being largely controlled by the monsoons. Some characteristic coral atolls and islands are found toward the central part, such as the great Maldive group, the Chagos, Diego Garcia, and the Cocos Islands. The tropical shores are generally skirted by fringing and barrier reefs. Christmas Island is coral formation, while St. Paul's, Manritius, Rodriguez, and others are of volcanic origin, and Madagascar, Ceylon, and Socotra, continental islands.

The Indian Ocean was little known to the ancients. The first Europeans who explored it seem to have been the Plocnicians, who in the th century B.C., held the thalassocracy, of marine domination of the Mediterrauean. Necho, an Egyptian monarch who flourished about 610 B.C., is reported by Herodotus to have sent some of his vessels, manned by Pheenicians, into the Indian Ocean, then known as the Erythrean Sea, to circumuavigate Africa. This they did, starting from the Arabian Gulf and regaining Europe by the Columns of Hercules. In the Gth century b.c. this sea was traversed by Hanno, a Pheenician admiral of Carthage. There is still extant his account of the voyage which is translated into Greek under the title 'Hanno's Yoyage of Circumnavigation.' The Greek historian Arrian has given us an account of the coasting voyage of Nearclus, one of Alexander's generals, from the Indus to the mouth of the Tigris and Euphrates.

Hippalus, an Egyptian navigator who flourished alout the beginning of the Christian era, was the first to observe the regular monsons of the Indian Ocean, and to profit hy them. In the 9th century the Arabs made frequent voyages across the Indian Ocean. In 1486 the Portuguese rounded the Cape of Good Hope,
and in 1 qus Vasco da Gama reached the coasts of India by the same route. In 1521 a ship of Magellan's squadron crossed the Indian Ocean in completing the first circummavigation of the world. and has since been habitually traversed in a direct line between Arabia and Hindustan.

Indian Paint, the jame of two American plants: (I) the golden seal (q.v.) or orangeroot, which furnishes a yellow color; and (2) the bloodroot. (See Saiguinaria)

Indian Physic, an American plant. See Bowanas's Root.

Indian Pipe, or Corpse-plant, a smooth, waxy-looking, tleshy herb (Monotropa uniffora), of the order Ericacea, widely distributed in dark, rich woods almost throughout North America. It is said to derive some of its food irom the roots of other plants, but much is obtained from decaying vegetable matter. From a matted mass of fibrous rootlets the white scalr, but not leafy, stems rise to a height of perhaps eight inches, and bear solitary, nodding, white, inodorous flowers during summer, followed by erect many-seeded truits.

Indian Races. The numerons peoples of India belong to several distinct groups or families, speaking numerous dialects founded on two or three distinct stocks which are much blended by the intercourse of the different peoples with each other. Previous to the Johammedan ascendency the dominant race were the Hindus, whose language is spread in various dialects over a great part of India, but who were not the aboriginal inhabitants nor even the first invaders. From the northwest of India, through Kashmir and down the ralley of the Indus. and from Tibet through the passes of the Himalayas, the inhabitants of northers Asia have from a very early period migrated southward to the milder and more fertile plains oi India. Two great successions of these invasions are recognized as having taken place before the period of authentic history. The first immigrants, of dubious ethnological connections, but commonly known as the Tamil races, appear to have overspread the entire peninsula. Following them the Sanskrit-speaking peoples, called the Hindus, of Aryan speech, dispossessed the Tamil races, and superseded their language in the whole of India north of the Narbada. The Hindus subsequently descended into the peninsula and penetrated as far as Cape Comorin: but though their influence on the languages of Southern India was considerable in the way of introducing new terms. the grammar and construction of the Tamil languages maintained their place in the districts south of the Narbada. Two great groups oi languages were thus spread over India, which were further modified by the Nohammedan invasion. The native tribes were not exterminated by these invasions, but are stiil to be found under various names, as Bhils, Cattics, Cmlies, Gonds. etc.. inhabiting the fastnesses of the mountain ranges in Bencal, the Vindhya and Satpura Jountains, the Ghats, etc. The hill tribes and other aborigines in all India are e-timated at $, 0,000,000$. The leading relisirn is Brahmanism, the professed crecd of the majority of the Ilindus and the religinn most distinctive of India. It reckoned $20,000.000 \mathrm{ad}$ lerents in ino1. Large numbers in the north and northwest are Mohammedans (about 62,-

500,000). Buddhists number about $9,500,000$. Parsees or Fire-worshippers 95,000 ; Sikhs 2.200,000. Among the Hindus the caste system still prevails. European missionaries have long been active, but only a mere iraction of the people are as yet Christians ($2,284.380$). Education is now making good progress, schools and colleges of all kinds having been established throughout the country. The pupils, however, only number about $4.000,000$ in all. There are universities at Calcutta. Bombay, and Madras, besides other two at Lahore and Allahabad.

Indian Red, an impure oxid of iron, used as a pigment by painters. It was originally imported from India, but is now chiefly prepared by roasting ferrous sulphate. The sulphuric acid is expelled by the heat, and the red oxid of iron semains behind. It is very permanent, and the color varies from purplish to a yellowish red.

Indian River, an important stream in the eastern part of Florida, in Brevard and Volusia counties. It connects with the Halifax River at Titusville and extends 100 miles southeast to the ocean at Indian Inlet. Its width varies from 304 feet to 3 miles and it is navigable for vessels drawing five feet. The Indian River is famous for the excellent oranges grown along its banks.

Indian Schools, in the United States, are schools specially established either by private or denominational means or by the national government. ior the education of children and routh of the Indian population of this country. For particulars concerning these schools see Indian Affairs; Indlan, Education of the

Indian Shot. See Caña.

Indian Summer, the name given to a period of mild summer weather which generally occurs toward the end of autumn. The term first made its appearance in the last decade oi the 18 th century. During the next decade the phrase was "second summer." This indicates that the spell of weather known by this name was not generally noticed much before ISoo. The term Indian summer became established about 20 years after its first appearance. which was in western Pennsylvania, and spread to New England by 1798 , to New Jork by 1799, to Canada by IS21, and to England by 1830. The term is, then, not an Americanism: to write in praise of Indian summer is now a literary convention of three continents.

It is by no means casy to account for the origin of the term. The principal characteristics of the season which it describes are haziness, smokiness, and high temperature. Some explanations of the origin of the term are (1) that the Indians predicted such spells of weather; (2) that the smokiness was produced by Indiant fires: (3) that this was the last season of Indiant attacks on the settlements of the whites; (4) that the season partook of the Indian claracter oi deceptiveness: (5) that the name was given because one of the seasons of Fast India was similar in character. Horace Walpole used the term in $2 \%-8$, not in reference to America, but in relation to weather in the tropics. "Squaw wintern was a name for the spell of cold weather preceding the Indian summer, and perhaps the key to the nomenclature is to be sought in this latier term.

Indian Territory, an organized body of land in the southwest centre of the United States, occupied by Indian allotments and reservations; not a "Territory" in the official sense, as it has no conmon local govermment, head, or capital, and sends no delegates to Congress. It lies between Kansas north and Texas south, Arkansas and a corner of Missouri east, and Oklahoma (till recently its own western half) west. It is about 250 miles north to south, and from 75 to 200 east and west. Area, 31,400 square miles, of which 400 are water.

The topography of the district is not yet fully studied, as Indians do not make surveys, and till less than a decade ago the government had no motive bit a scientific one for undertaking them. Hence the interior was nearly as little known as central Africa, and as much misunderstood. Even yet, nearly every reference book describes the entire surface as "flat" or "gently rolling," and mostly prairie. But the government survey authorized in 1894 . When the reduction to civilized conditions was undertaken, found it to be one fourth mountainous plateau, and two thirds woodland well distributed, mainly through the east and southwest portions. The prairie section is a continuation of the Kansas plains, and occupies most of the Cherokee district north of the Arkansas, and the Creek triangle between the Arkansas and Canadian, with about a fourth of the western half below the Canadian, the rest being timber land. In the extreme northeast is a rugged platean cut by streams with a southward trend, west of which is a rolling plain with some hills. South of this the Ozark mountain chain, entering from Arkansas, stretches from northeast to southwest across the Territory, with a gradual declension; from about 2.500 feet high near the Arkansas line, they sink to about 1,000 feet in the centre. Their more pronounced elevations are termed the Boston, Poteau, Kiamichi, Sans Bois (treeless), Shawnee, etc. In the Chickasaw territory at the southwest, a set of low elevations from Tishomingo northwest, rising in the sharp spur called the Arbuckle Mountains, and again farther on in the Wichita Mountains of Oklahoma, connect the Ozarks with the ontliers of the Rockies. The highest elevation in the Territory is about 3.000 feet above sea-level, the lowest 350 . The timber north of the Canadian is mainly confined to a belt in the west, save for cottonwoods, elms, pecans, and a few other sorts along the streams; south of it the timber occupies much the greater portion, even in the west. The eastern half of the Territory is nearly all well wooded, the mountainous parts most heavily so; the woods besides the above are oak, largely in a belt from the Arkansas to the Red called the Cross Timbers (used only for fuel and railroad ties, not for construction), with saluable yellow pine and red cedar on the elevated grounds, and walnut in the bottoms.

The drainage belongs entirely to the Arkansas and Red River systems. The former, flowing across and cutting off a northern cantle, is joined east of the centre at Webber's Falls by the long Canadian, its main affluent, which forms nearly the median line of the Territory and its northern boundary with Oklahoma; and is further fed from the north by the Neosho and the Verdigris joining close together, and by the Illinois near the Canadian. The latter
has hardly any water-shed on the south. Nearly the whole southern half of the "lerritory is drained by the affluents of the Red, formning the entire boundary with Texas; the chief are the MVashita in the soulhwest and the Kiamichi in the southeast.

Gcology and Minerals.-Geologically, the Territory may be dwided into four sections: (I) The Arluckle-TVichita region, with an outlying grante field at Tishomingo. This contains coal measures on the north and asphat on the south; the former is the chief mineral product of the Territory. For the year ending 30 June 1903, there ware employed in coal mining 6,091 men and boys; there were in operation for the same year 280 coke ovens, producing 52,625 tons of coke; the coal tonnage for the same year was $3,243,092$ tons. Large lituminous asplalt deposits occur in the Choctaw and Chickasaw Nations; these have been worked some, but owing to the want of railroad facilities, and the asphalt trust, the operators have not been encouraged with very great success. There are also sandstone and limestone as well as granite. (2) The Ozark system, Carboniferous and Silurian, containing zinc and lead. (3) The northern prairie, Carboniierous, with coal and large quantities of petroleum. (4) The southern plains cropping over from Texas, underlaid by the Cretaceous, with artesian strata, and sand and marl above. There are valuable gold and silyer deposits from which Indians have long made all their trinkets, but they have kept the places secret, to prevent an influx of miners.

Fauna.- The characteristic species are the timber and prairie wolves, panthers and foxes, black bear, deer, prairie dogs, and some smaller game. The wild turkey is the most important bird.

Climate and Rainfall.-The Territory belongs to the southern division by temperature and to the middle one by precipitation. It has a mean winter temperature of 35° to 48°, and a summer one of 77° to 82°; while the rainfall, light in the north like western Kansas, is heavy in the southeast (52 inches), and steadily decreases to the west (about 35 inches at Fort Gibson and 30 in the southwest). But hardly anywhere is it too scant for favorable agricultural conditions.

Agriculturc.-Scarcely any region of the United States has greater natural advantages in fertile soil and plentiful water supply. With the opening of the Territory to white settlement and ownership, a vast increase in production will be effected. Until within the present year (1904) the word "ownership," as applied to tenures in the Indian Territory. had a peculiar meaning. To protect Indian interests, white men (except licensed traders and those made citizens by marriage to Indian wives in accordance with the laws of the tribe or adnpted into the tribe by tribal legislature) conld not hold land, except as tenauts of Indian landlords. The fee to the land in all cases was in the Indian trihes, and even the Indian citizen had only in a sense an nccupancy right, owning the improvements absolutely, and cultivating the land practically as a fee simple owner. hut always subiect in future allotment among all the members of the trihe.

Within the past few years, agreements have been made between the United States and each of the five civilized tribes by which the lands of such tribes are being allotted in severalty to

INDIAN TERRITORY

the cinzens therect, with the power of alienation in mi st of the nations, under certain resirictions. i all, except a certan anount resersed as a homestead, which, in some cases, is inalienable durng the lite of the allottee. and in others in 21 vears, if the allottee lives so lung

In the Crech Nation, iso acres oi an allotment can at present be alienated with the consent of the secretary of the interior, whech is beng rap dly accomplished, under the rules and resuathins prescribed by him, and the allotment: are being boucht by whites. who are either Jecupying them themselves or leasing them to ather whites. The real Indian, as a rule. is not much of a farmer, and, as the amonnt granted to an Indian iamily is generally greater than the head can utilize or cares to utilize, the remainder is leased to some white farmer or catt eman. The whites iarm a large proportion of the iarms a: present. In the year isco, of the 35451 farms cuitivated by whites only 3.475 were owned by them.

These allotments to the Indians vary in the different tribes. A Choctaw and Chickasam allotment is 320 acres of average allotable land. and of this the homestead consists oi 100 acres oi average allotable land, the latter inalienable during the lifetime of the allottee, not exceeding 21 years from the date of the certificate of allotment: the remainder of the land is alienable after issuance of patent. as follows: one fourth in acreage in one year, one fourth in acreage in three years, and the balance in five years; in each case from date of patent.

The Creek allotment is tto acres. 120 of which is inalienable before the expiration of five years from the Sth day oi - Angust igo3. except with the approval of the secretary of the interior: the balance of to acres constitutes a homestead, which is inalienable for 21 years. unless the allottee sooner die. in which event the homestead remains for the use and benenit of children born too late to receive an allotment : but, if there be no such issue, then the allottee may dispose oi his homestead by will free from restrictions, and, it this be not done, it descends to his heirs iree from any limitations.

In all the above cases, as well as in the Seminole Jation, where the land was divided equally: between all the members of the tribe. the allottee had the right to select his allotment so as to include any improvements owned by lim at the time. At present the allottees can rent their allotmente ior one year for grazing purposes, and five years for agricultural purposes, and loncer in some cases with the consent of the secretary of the interior. Mincral leases may also be made up to 15 years with the consent of the secretary ni the interiot.

The productions might easily be of the greatest variety in this warm moist region, but the enn liti ns of ten?re hitherto did not enenurage tenants in diversify crops or improve the condition c_{5}^{5} farmie to revert to Indian nwmere The great $c^{-} p$ at present is corn, of which in them.
 wheat. and 1.102 .200 of nats were repnrted The terntt ry is we!! within the cotton belt, and 1:4.Seo lales were-limped in 1000 . The other prod"Ct: ni whete were about Si,000,000 of vecetalle and fruit: Si ch-raising is larcely carried ont the value of domestic animals in icon excre el soneromm, and included ilo,rs- dary c $w=, 2-5.000$ herses, mules and asiec. 7,000
sheep. 10,300 soats and 650,000 swine. It has been known to many that there was a large quant:ty oi oil and gas in this country, bui owing to the lack of laws permitting leases and development in the Indian lands, nothing was done until within the last is months. The change in the laws, however, has permitted a sreat deal of development work in some of the towns as well as on outside allotments, and the prodiction is proving very satisfactory to the lessees. as well as tine lessors. The field thus far developed is in the northern portion oi the Cherokee Nation and the border of the Creek Slation.

Manufatsering. - The manufactures till recently have been mostly confined to the Indian hand-made blankets, shawls, baskets, and irinkets. But within the decade a considerable senuine manufaciure by whites has arisen. Ilith only 20 establishments in I\&go, there were -S9 in 1900: the capital had grown from Ez04.329 to $\Sigma_{2.624 .255}$. the wage-eamers from 167 to i.-14 the value of products from S248.932 $^{2} 10$ s.So2.si. The one great industry. nearly a third of the total products, was flour and grist milling: next greatest, toward half a mullion each. were cotton-seed oil and cake; and lumber, saddlery and harness, and car-shop work were also noted.

Railroads.- There are about 1.800 miles of railroad in the Territory: Several great lines cross it. giving the facilities for the rast business growth. The main lines are the Frisco System (St. L. and San F.), the St. Louis, Iron Mountain \& Southern, the Missouri, Kansas \& Texas, the Choctaw, Oklahona \& Gulf. the Atchison, Topeka \& Santa Fe, and the FL Smith \& Western.

Banks.-In 1902 there were 69 national banks. with capital of $\$ 2.7 / 9.000$, deposits of §5.896.000, cash and other resources §ミ. 8.000 , and loans and discounts of $\$ 7,2 \pi, 000$. There were also 20 private banks, having capital of \$203.975. deposits of $\$_{495.810, ~ c a s h ~ o f ~}^{\$ 56.354}$ and loans and discounts of \$6́o2.6-6.

Poprlation. The total population in 1890 was I\&c,182: in 1900, 392.060, the increase being all white. The real Indian population had probably somewhat decreased, though it showed on the face a slight increase. from $=1,2,9$ to 52.500 . But the word "Indian" is misleading: for legal purposes and tribal recognition, any one is an Indian who has even i-6t or in fact any degrec of Indian blood in him: and probably two thirds of the so-called Indians are mixtures of varions complexities and elements. The negroes. numbering 36.853 . are for the most part the former slaves of the Indians. to whom the United States aiter the war forced the tribes to grant citizenship and a share of the tribal lands and bounties. or their descendants. These two and the vast white population - married and adopted. leaseholders and tenant farmers. hired farm laborers, business men with permits, coal and railroad company employees, etc- were distributed amman the chief districts as follows (besides 2- Chinese)

Chickasaw Nation, t24.306 whites. 9.066 ne5rnes. $5.8 \% 2$ "Indians." Cherokee Nation. 66.05i whites. 9.162 nesroes 25.630 Indians. Chectaw Nation. $-0.3,32$ whites, 10,123 negrocs. $10,32 \mathrm{I}$ Indians. Seminnle S゙ation. i.i43 whites. DSi nearnes. i.6nz Indians. The other reservations - Modoc, Ottawa, Peoria, Quapaw, Seneca. Shawnee, Wyandotte - had 5.,62 whites and

r, 043 lndians. The concentration of whites in the Chichasaw district had made it the industrial leader of the territory.

The towns which grew there formerly had a peculiar status. They were "white" towns with white men occupying the buildings they had erected, and doing business insecurely, without legal title. hut the ostensible owners of the ground were the Indians. The so-called Curtis Bill and the various agrecments made with the tribes above referred to have changed this condition, and made it possible for the white man. or any other occupants of towns in the Indian Territory to purchase lots under the various provisions of these bills upon which they owned honses or other valuable improvements. The result is that all the larger towns have been platted, surveved and sold to the occupants, so that the Indian titles have become almost entirely extinguished. Within a year or eighteen months every town within the limits of the Indian Territory will have been so platted and sold. The changes are so great and constant that statistics are nearly as useless as in a new mining district, but it may be said that the present chief towns are Ardmore, and Chickasha, in the Chickasaw Nation, South McAlister in Choctaw Nation, and Nuskogee in the Creek Nation, is the handsomest town in the Territory, with good public schools, churches and four colleges of the four leading denominations - Baptist, Methodist. Presbyterian, and Roman Catholic. These towns now have a population approaching 10,000 each and there are over 20 others with over 1,000. The oldest white settlement is Vinita in Cherokee: the oldest in the southeast is Caddo: the best known has always been Tahlequah, for some generations the capital of the Cherokee Nation.

Internal Conditions and History.- The Territory was part of the Lonisiana Purchase. Early in the roth century many of the Southern Indians, their old hunting grounds invaded by the whites, removed to this virgin forest. In 1832 it was fixed on by the national government as a place for the tribes whom agreements with the Southern States had bound its to deport, and in 1834 special reservations were set apart. The Five Civilized Tribes, as they are called, established governments on the civilized model, with elected legislature, council and governor. courts and schools and responsible financial management, and even newspapers in the Cherokee tongue, with Sequoyah's famous alphabet. But the rast enclave of nearly 70,000 square miles in the heart of a swelling settlement conld not be maintained. and the Indians from some constitutional blight do not grow to fill their districts. In 1866 some $5.500,000$ acres were purchased of the Indians in the present Oklahoma: on 22 April 1889 over 3.000.000 acres were thrown open to settlement: on 2 May 18go this and other territory was formed into Oklahoma. Neantime the old system in the eastern part was going to wreck, not so much from the white immigration, following the railroads which began to cross it, as from internal development which was making the primal object of the system a mockery. It was designed to protect the half-helpless Indian from white greed till he could stand on his own feet; in fact, the halfbreeds and the intermarried whites were rapidly appropriating everything to themselves, while the full-blood was "crowded out upon the moun"
tain and umproductive land, to take care of himself as best he could." (Dawes Commission.) The tribal governments were under control of these govermment: and were "recklessly leasing the communuty lands to cattlemen and coal companies" (Hinton), to railroads, oil and lumber companies, etc. The government, therefore, under the lead of ex-Senator IIenry L. Dawes of Massachusetts. set ahout negotiations to break up the tribal governments, and tum the Territory into a set of ordinary civilized communities with ownership in severalty, protecting the Indian for a time by restraining his liberty of alienation. The Dawes Commission of 1803 began this work: in 1807 the United States extended its judicial power over the district; in 1898 the Curtis Act carried out the work. providing for the enrollment of citizens for allotment of lands, for laving out town sites and incorporating towns with power to elect officers and tax themselves for schools. etc., and giving the President a veto power over the tribal legislatures. The arrangements vary with the different tribes: the Seminoles continue their government after a fashion for the present. the Choctaws and Chickasaws with some modifications till + Narch 1906. The present government consists in reality of tour federal judges or one court of appeals and four district courts, with 20 commissioners acting as petty courts and justices of the peace, and a resident Indian Inspector. The statutory code is in the main that of Arkansas.

The educational situation has been a part of the anomalous position of all social matters. The tribes maintained schools and admitted white children on payment of a fee; and the missionaries have operated others. But all were very insufficient, and the tribal schools, once the best of the vicinity, have not kept their quality. The Curtis Act of ISOS for the first time provided a public-school system, in cities and towns, and power of towns to levy taxes for them. In 1900 it was estimated that 50.000 white children were deprived of school advantages. Of academic schools, some claiming collegiate rank, there are good ones in each nation: these have sent many pupils to Eastern colleges. By act of is May igo2 municipalities of 2.000 or more inhabitants may issue binds up to 10 per cent of their assessed valuation for school buildings, sewers and waterworks on a two-thirds rote and with a 20 -year sinking fund. Pop. (Ig00) 392.062: (1903) fully 500.000. Consult: 'Report of the Dawes Commission' (1903); Curtis Act in U. S. Statutes. Mrilliam T. Hutchings.

Muskogee, Indian Territory.

Indian or Wild Tobacco, one of the North American lobelias (Lobelia inflata), also called asthma-weed and gag-plant.-a tall plant with small light bline flowers quite overshadowed by numerous thin, oval, or obovate dentate leaves: the plant branches as a panicle, is fubescent and the pod is inflated. Its leaves have an acrid taste, and are, as Gray says, "poisonous and a quack medicine": they were dried by the Indians as a substitute for smoking tobacco, or 10 mix with it, for the sake of their marcotic propertics. The dried llowers still have a place in materia medica. It grows in dry fields and thickets through North America. Compare Kinvikisick.

Indian Turnip. See Jack-iN-the-Pulpit.

Indian Yellow, known in commerce as Preme, a pigment oi unknown origin which is exported irem India. China and probably from Arabia. It comes in the shape of balls, which are outside oi a brown tint. and inside of a brilliant yellow. It has the odor of urine, musk or castoreum, is soituble in water or alcohol. and an essential element in its composition is carbonate of euranthin. It is used in India for house decoration, and is ralned by astists all over the world as a dazzling pigment.

Indiana ("The Hoosier State"). a northcentral State of the T-nited States (No. 19 in order of admission) bounded north by Nichigan, south by Kentucky. east by Ohio. west by Ilinnois; extreme length 2,6 miles, extreme breadth 1\%) miles: area ($\overline{10} 0.34$ in U. S.) 36,350 square miles. 40 water; pop. 1900 ($\mathrm{Lo} . \mathrm{S}$ in U. S.) 2. $=16.462$, or 70.1 to the square mile. (No. 11 in density.) The State boundary in Lake Michigan is an east and west line 10 miles north of the extreme sonthern point of the Lake. The Ohio River runs along the southern boundary; but. by a provision of the Virginia cession of Northwest Terriory, Indiana extends only to low-water mark on the north bank of the Ohio. In consequence all islands in the Ohio belong to Kentuchz, the Supreme Court having recently held this as to Green River Island (Indiana τ : Kentucky, 136 U. S.) which, alhough an island at the time of the cession. became connected with the Indiana shore by alluvial deposits, and had been governed and taxed as part of Indiana for many years.

Topography.- The suriace of the State is comparatively level, the highest point, in Randolph Countr, in the centre of the eastern tier of counties. being estimated at 1,285 ieet above sea-level, and the lowest, at the sonthwest corner of the State, being 313 feet above sea-level. The Ohio at the southeast corner of the State is 436 ieet abore sea-level, and Lake Michigan at the northwest comer is 585 feet above sealevel. From the table-land of the east central part oi the State, and western Ohio, radiate low water-sheds separating the drainage basins of Indiana. The northern part of the State is quite flat. the central part slighty rolling, and the southern part rather hilly on account of the valleys cut out by water. There are no mountains, and no large lakes, but there are hundreds oi smal! lakes, chiefly in the northern part of the State.

River Systoms. - The soulhern parts of the State are drained to the Ohio River by the Whitwater and smaller tributaries. The central part of the State - about four fiths oi its area - is drained by the Wabash and its tributaries, the most important of which are the Whice. Tippecance. Eel. Salamonie and Mississinewa rivers, and Wild Cat Creck. The northeatern corner of the State is drained by the St. 1. weth's and St. Mary's rivers; these unite at Ft. Wayne to form the Maurree. which flows into Lake Erie. The extreme northern part of the State is drained by another St. Joseph's. the Calumet, and smaller streams, into Lake Michigan. A part of the northwestern section is drained by the Kankakee and its tributaries :11 the 11 inois River. The Wahash is navigated in a limited extent, by small boats, as high as Terre lianse, and also the lower part of 11 hite

River. The remaining streams are not navigable.

Clinate. - The climate of Indiana is mild, ranging from an average of $31^{\circ} \mathrm{F}$. in the winter months to an arerage of 76° in summer. The mean temperature is 53°. The average annual rainfall is 43 inches, that in the southern part of the State being slightly in excess of that in the northern part. Serious droughts and destrnctive storms are rare. In earlier years parts of the State were malarial, but with the clearing of the iorests and the drainage of lands this condition has almost wholly disappeared.

Gcology:- The earliest geological iormation that outcrops in Indiana is the Hudson and Trenion limestone, oi the Silurian Age, which appears in the southeastern corner of the State, :hroughout the Whitewater Talley and the adjacent region. West of this is a belt of Niagara limestone. which broadens at the north and extends entirely across the State, covering all oi a dozen counties and large parts of as many more. On the west of this. and also extending to the State line on the north, are belts of Hamilton limestone and sandstone of the Deronian Age. The remainder of the State - the southwestern corner and a broad belt to the north reaching beyond the Wabash - is of the subcarboniferous and carboniferous iormations. The northern and central parts of the State are covered by glacial driit, which in some regions is of a depth oi 400 feet.

Soils. Asriculture and Forests.- The soil of the State varies in character, but for the most part is fertile. Originally the southern part of the State, and as far north as the Wabash. was covered with a very heavy growth of forest, mostly of hardwood trees. North of this were low prairies interspersed with sand ridges and dotted with hundreds of small lakes. This region is now iound very productive of cucumbers, melons and small iruits in the sandy parts. The richest lands are the alluvial valleys of the streams and the drained prairies. The forests have so far disappeared that the State is now encouraging tree planting. Agriculture is the chief industry of the State, the value oi farm products in isgo being reported at $\leqslant 204+1 \leqslant 0,196$. The chief agricultural products were com, 1;8.967,0;0 bushels. wheat $34.985,280$ bushels, oats $3+.565 .0$-0 brishels, potatoes 0.209 .0So bushels, hay $3-4,0.3=8$ tons. The ralue of animal products was $\$ 8$.94\%.922. of forest products \$5.235.459. of orchard products $\$ 3.166 .33$. of dairy products $\$ 15.730 .504$. The talue oi the poultry raised in 1899 was $\$ 8,1 ; 2,993$, and of the eggs produced 5 i. 41 !.047

Minerals and Mining Industries. - Aboun one fifth oi the suriace of Indiana is underlait by coal, workable veins having been found in 19 coumtic. There are at least - distinc: veins of workable thichness, varging from 3 to 11 ieet. The coals of the State are of two clases caking or bituminous. and non-caking or block coal. The latter can be burned in blasi iurnaces without coking. The production in 1901 was $7,010,203$ tons. valued at $57,3,0,203$, the State ranking sixth in the [nion as to quantity and scremh as to value of the product. The number of people employed in coal mining was 12.008. The mineral product second in value was petrolenm, the production of which is a

comparatively new industry. In 1901 the oil product of the State was 5.749 .975 barrels, valued at $\$ 4.205,312$. This was largely increased over one third - in 1902. Next in walue of the mineral products of the State is buiiding-stone, of which the chicf varieties are the oolitic limestone, the blue Devonian limestone, the gray Niagara limestone, and sandstone. The oolitic, so called becausc composed of minnte fossil sholis resemlling a mass of fish cggs, has become celebrated throughout the United States on account of its superior qualities. In Ino1 Indiana was first in rank in the Union in the production of linnestone for building purposes, and fifth in rank as to building-stone of all kinds, the product being valued at $\$ 3,028,145$. There is also a large production of cement and lime. Good clay is abundant throughout the State, and brick and tile making are extensive indnstries. Kaolin and glass sand are also found in quantity in several counties, and are profitably mined. Natural gas has been found, by sinking wells, throughout a large part of the State. The supply at one time reached a daily flow of $900,000,000$ cubic feet. It served to draw many manufactories to the State, but the pressure is now decreasing. In many places its cessation has been followed by a flow of petroleum. Many other minerals have been found in Indiana, but not in quantities of commercial importance.

Manufactorics. - The manufactures of Indiana are chiefly a development of the past 30 years. In the earlier period manufacturing was confined almost wholly to supplies for domestic consumption, and was chiefly conducted at the homes of the people. In. 1900 there were reported 18,015 manufacturing establishments in the State, employing $155,95^{6}$ wage-earners, and producing goods to the value of $\$ 378,120,140$. The leading classes of manufactures, with the value of products in 1900 and in 1800, are as foilows:

	1900	1890
Slaughtering and meat packing	\$43,862,273	\$27,913,840
Flour and grist mills	30, 5 50,766	31,239,627
Distillerics	22,738,106	9,677,973
Lumber and wood manufactorics	34,471,902	32,725,647
Iron and stecl (including foundries)	36,566,527	14,285,259
Glass and glassware........	14,757,883	2.995,409
Carriages and wagons, and materials	15,891,820	10.531 .683
Railroad cars.	19,248,909	14,362.711
Agricultural implements	6,415.081	5,756.131
Textijes and clothing	8,618,360	7.736 .890
Clay products..	4,222,529	3,142,454

It is probable that this rate of increase will not be continued in the next decade, partly because of the decrease of natural gas, partly because of abandomment of plants under trust control, and partly for other reasons. The production of lumber in the State was ahmost stationary in the past decade, and will probably decrease in this on account of decreasing forest supplies.

Commerce and Navigation.-About one tenth of the people of Indiana (in occupations) are engaged in commerce and transportation. The navigation of the State is limited, being confined to the Ohio River on the south, with the
lower Wabash and a small part of the White River, and Lake Nichigan on the northwest. The canals of the State are practically abandoned except for water-power. The railroads furnish the chief means of transportation. Commerce is chiclly domestic, but both exportation and importation are steadily inereasing.

Fisheries.- Indiana has no tisheries of commercial importance, thongh it has waters that might be made valuable. Recently haws have been passed for the protection of fish, and some interest is being shown in their propagation.

Railroads and Strcet Raikeays.- The railroad mileage of Indiana, in 1902, was 6.051 miles, exclusive of second main and side tracks. In 1850 it was 228 miles; in 1880, 4.320. Railroad lines extend through all but 3 counties in the State. The chief railroad centre is Indianapolis, from which 14 lines radiate. These are connected outside of the cily by a belt railway. The valuation of railroad property for taxation in 1902 was $\$ 162.797 .978$. There are street railways in all of the cities and larger towns, the total aggregating i68 miles. In 1899 there began an extraordinary development of electric interurban lines. By the close of 1902 about too miles of these were in operation, and 500 miles were under construction, white new lines aggregating over 1,000 miles were projected. These lines have made a material change in the transportation of both passengers and freight, and will apparently furnish large competition with the steam railroads. One of these lines, operating between Indianapolis and Columbus, Ohio, has added sleeping-cars to its equipment.

State Finances.- The assessed valuation of the State in 1901 was $\$ 1,397.981,497$, from which deductions for mortgage exemption were made amounting to $\$ 35,169,250$. Individuals are permitted to deduct bona fide mortgage indebtedness from their schedules to the amount of $\$ 700$. The total number of polls was 436,522 . The State tax levy for general State government was 9 cents on $\$ 100$, and 50 cents poll ; for the benevolent institutions 5 cents; for sinking fund 3 cents : for State tuition - which is distributed to the school districts for support of the common schools- II cents and 50 cents poll: for State institutions of higher education $12 / 3$ cents; making a total State levy of $29^{2} / 3$ cents and $\$ 1$ poll. The reduction of the State delt was begun in 1889, when it amounted to over $\$ 10,000,000$. On 3_{1} Oct. 1902, it had been reduced to $\$ 2,887,615.12$. on which the annual interest charge was \$101. 565.

Banks.- In 1902 there were 137 national banks with $\$ 16,618.552$ capital, $\$ 4.789 .956$ surplus, $\$ 71,533.942$ deposits, and $\$ 7,210,7$ so outstanding circulation: 113 State banks with $\$ 4.884,400$ capital, $\$ 015.413$ surplis, and $\$ 24.240 .334$ deposits: 5 savings banks, with $\$ 7.812,157$ of deposits: 37 trust companies transacting bank business, with \$4.302.500 capital, \$465.947 surphus, and $\$ 12,378,348$ of deposits, and 20,3 private banks, whicls are not required to make returns by the State. Of these last named, however, 68 made returns to the comptroller of the currency, showing $\$ 0,671,733$ deposits. The only clearing-house organization in the State is at Indianapolis, and the volume of clearings in Ig02 was \$2,0,409, 456.

Eduation.-Indiana has always given much attention to education and especially since the
adoption of the present school law in 1852. At that time there was created a public school fund. the interest on which was to be distributed to the various school districts. The principal factor in this was the profits which the State had derived from the State Bank of Indiana, amounting to about $\$ 3.500 .000$, to which was added $\$ 5.3,000$ of the surplus revenue distributed by Congress in 1836 , and several smaller funds. To this additions have been made by fines and other public receipts, until in 1902 the common school fund amounted to $\$ 7,9,8.580 .68$. to which is to be added the Congressional township fund, derived from the sale of school lands donated by the mational goverument, amounting to S2. 465.304 .64 . This total fund of $\$ 10.43,885.32$ is held by the several counties, and the interest on it is applied to the support of the public schools. Added to this is a State tax of il cents on each $\$ 100$, and 50 cents on each poll. the proceeds of State liquor licenses and dog licenses, and local taxes assessed by local anthorities. From all these sources the actual revenues raised for the public schools in $1 g 02$ amounted to $\$ 8.585 \cdot 354.98$. The enumeration of children of school age - 6 to 21 years - was 761 .Sor (of whom 15.002 were colored). A large number of these attended private schools, and the attendance in the public schools for the year was $423.0-8$. The revenue was therefore in excess of $\$ 20$ to each child in attendance. There were emplored $16.0,39$ teachers, and the average number of days of school was, in townships 126. in towns 153 , in cities 179 , in the State at large 146. The number of public schoolhouses is 5.080 brick, 4.807 frame, 97 stone, and 3 log. The value of schoolhonses and grounds is $\$ 22.904 .607$ and of school apparatus $\$ 1,277.455$. In these figures are included 704 high schools, which are a part of the public school system. There are also a large number of private schools, notably those maintained by the Roman Catholics and Lutherans for children of all ages, and a number of academies. seminaries, institutes, boarding-schools, military institutions. colleges, normal schools, etc., for intermediate education.

There are three institutions of ligher education that receive aid from the State, Indiana University at Bloomington, the State Normal School at Terre Hante, and Purdue University at Lafayctte. Indiana Cuiversity has an income of about \$125.000 derived from a State tax levy and the interest on an endowment fund of $\$ 600,000$ raised by State taxation. It had 1,285 students in 1902. The State Normal is also supported by a State lery, and the city of Terre Haute pays one half the expense of keeping the huildings in repair. It has 1,406 students. Purdue has ant income of $\$ 150,000$ derived from State tax levy and interest on endowments, and including $\$ 57.000$ paid to it annually by the C'nited States government as an agricultural school. It has I, IRo students.

Among the private institutions for higher education the וnore inנportant are Wabash College (Presbyterian). Wniversity of Notre Dame and St. Meinrad's College (Roman Catholic). DePauv (Tniversity (Methodist). Earlhan College (Snciety of Friends). Franklin College (Raptint). Hanover College (l'resbrterian), Northern Indana Cormal (non-sectarian), Winona Tech:nical Institute (non-sectarian), and the University of Indianapolis. The last
named was formed by the union of Butler College (Christian) with the Medical College of Indiana, the Indiana Dental College, and the Indiana Law School, all of which are located at Indianapolis.

An important branch of educational work in Indiana is the development of libraries. A feature of the school system adopted in 1852 was the establishment of a free public library in each township in the State. The State expended $\$ 273.000$ for books, and the system was received with great public favor, but no provision was made for maintaining or increasing the libraries, and in the pressure of the war times they were allowed rery generally to fall into ruin. To some extent these have been replaced as school adjuncts by the libraries of the Young People's Reading Circle, which are found at many of the schoolhouses of the State. These libraries in 1902 contained 436.15 I volumes. There has also been a notable development of town and city libraries, 28 towns laving accepted donations from Andrew Carnegie, aggregating $\$ 660,000$, agreeing to maintain libraries in the buildings thus provided. There are 25 others that are maintaining libraries in buildings provided by themselves. The general supervision of library work is lodged in the Public Librar: Commission, which has charge of a system of traveling libraries furnished by the State. It also maintains a school for the training of librarians engaged in the work in Indiana.

Churches.- The principal religions denominations of Indiana in the order of their strength are the Methodists, Roman Catholics, Disciples or Christians, Baptists, Presbyterians, United Brethren, and Lutherans.

Charituble and Penal Insfitutions. - The State maintains 9 charitable and \ddagger penal institutions. at an annual cost of over $\$ 1,500,000$. Of the former, 4 are hospitals for the insane located respectively at Indianapolis, Logansport, Richmond and Evansville. On 31 Oct. 1902, these had 4.039 inmates. The annual cost of maintenance was $\$ 649.834 .54$. or $\$ 173.79$ per capita. The other charitable institutions are the Institution for the Blind. Indianapolis, inmates 127, per capita cost $\$ 276.40$; Institution for the Deaf, Indianapolis. inmates 318 , per capita cost \$231.66: Soldiers and Sailors ${ }^{\circ}$ Orphans. Home, Knightstown, inmates 603, per capita cost \$174.52: Soldiers' Home, Lafayette, inmates 739. per capita cost $\$ 167.30$; School for FeebleMinded, Fort WVayne, inmates 318 , per capita cost \$127.05. The correctional institutions are the State Prison. Nicligan City: inmates 706. per capita cost $\$ 133.32$, earnings $\$ 3.395 .86$; Indiana Reformatory, Jeffersonville, inmates 923. per capita cost $\$ 130.68$, carnings $\$ 62.350 .67$; Reform School for Boys, Plainfield, innates 531, per capita cost $\$ 122.13$, earnings $\$ 298.91$: Industrial School for Girls and Women's Prison, Indianapolis, inmates 52 women and $1 / 5$ girls, per capita cost $\$ 101.55$. carnings $\$ 1 .+36.69$. At the legislative session of 1903 a law was passed for the division of the last named institution and the establishment of a new lindustrial School for Girls. The State has the convict-contract-labor system, but efforts have been macle to abolish it, and the legislature of 1903 provided for a commission to investigate and report on the subject. The convict labor is all done within the prisons. The State has the indeterminate sentence system with commutation of time for

INDIANA.

INDIANA

good behavior. In addition to the State institntions each cotmty maintains a poor asylum. In these. and the Marion County asylum for the incurable insane, there were on 31 Aug. 1902, 3.046 inmates, of whom 1,975 were men and 1,071 women. Of thesc inmates 518 were classed is insanc, and 889 as feeble-minded. There are in the State 46 orphans' homes, in which there were on 31 Oct. $1902,1,505$ inmates, of whom 1,025 were boys and 540 girls. At the same date the Board of State Charities reported Sir orphan children maintained in private homes, withont public expense.

State Gozernment.-The elective State offices are held for periods of 2 years, with eligibility restricted to 4 years in any period of 6 years, except as to the governor, lientenant-governor, and geologist, whose terms are 4 ycars. No one is cligible to the office of governor or lieutenantgovernor for more than 4 years in any period of 8 years. The governor's salary is $\$ 5,000$, with an allowance of $\$ 1,800$ for house rent. The governor's yeto power extends to all laws passed by the legislature. but the reto may be overthrown by a majority wote in both Houses. The legislature mects once in 2 years, and may be called in special scssion by the governor; regular sessions are limited to 60 days and special sessions to 40 days. The Senate is composed of 50 members elected for + years each, and the House of 100 members clected for 2 years each. The members receive $\$ 6$ a day while in session, and $\$ 5$ for each 25 miles traveled in reaching the capital and returning home. The State is required to be redistricted for legislative purposes cvery 6 years. The present Constitution was adopted in 1851 , and is very generally considered unsatisfactory, especially as to legislative representation and the location of the appointing power. It can be amended only by the majority vote of both Houses of two consecutive legislatures, followed by a majority vote of the electors of the State.

Congressional Representation.- The State has i3 representatives in Congress.

Population and Dizisions.- The population of Indiana territory in 18 oo was 5.641 , but only about 2,500 of this was within the boundaries of the State. In 18 io the population of the territory, with practically the same boundaries as the State, was 24,520 . A territorial census taken in 1815 showed 63,897 inhabitants. After the admission of the State the census returns were as follows: 1820, 147,178 ; $1830,343,031$; 1840, 185,866: 1850, 988,416 ; I860, 1.350,428: 1870, 1,680,637; I880. 1,978,301; 1800, 2,192,404; 1900, $2,516,462$. Of the population in 1900, I 42,121 were foreign born, and 57,505 were negroes. The tendency of the negrocs is to gather in the cities, more than one fourth of the entire number lieing found at Indianapolis, and an ciglith at Evansville.

The State has 92 countics, whose names and county-seats are as follows:

[^3]Fulton, Rnchester.
(iibson, Pranceton.
Grant, Marion.
Greene, Lbloomfield.
ILamilton, Nollesville.
llaneock, (irecnfield.
Llarrison, Corydon.
Hendricks, Damville,
Nenry, Neweastle.
ILoward, Kokomo.
Il untingtnn, Ilumington.
Jackson. lirownstown.
Jasper, Renssclacr.
Jay, Portland
Jefferson, Madison.
Jennings, لernon.
Johnson, Franklin.
Knox, V'incenmes.
Kosciusko, Wa:saw.
Lagrange, lagrange Lake, Crown loint. Laporte, Laporte.
Lawrence, Fedford.
Madison, Inderson.
Marion, Indianapolis.
Marshall, Plymouth.
Martin, Shoals.
Miami, Peru.
Monroe, Bloomington.
Montgomery, Crawfordsville.
Morgan, Martinsville.
Newton, Kentland.
Noble, Albion.
Ohio, Rising Sun.

Orange, Paoli.
Owan, Spencer.
Parke, Rockvillc.
Perry, Cannelton.
Pike, Petersburg.
Porter, Valparaiso
Posey, Mt. Vernon.
I'ulaski, W"inamac.
T'utnam, Grecncastle.
kandoiph, Winchester.
Ripley. Versailles.
Rush. Kushville.
Scott, Scottsburg.
Shelby, Shelbyville.
Spencer, Rockport.
Starke, Knox.
Steuben, Angola.
St. Joseph, Souti Bend.
Sullivan, Sullivan.
Switzerland, Vevay
'tippecanoe, Lafayette.
Tipton, Tipton.
Union. Liberty.
Vanderburge Evansville.
Vermilion, Newport.
Vimo, Terre llaute.
Wabash, Wabash.
Warsen, W'illiamsport.
Narrick. Boonville.
Washington, Salem.
Wayne, Richmond.
Wells, Pluffton.
White, Monticello.
Whitles, Columbia City.

Chief Cities.- The largest city in Indiana is the capital, Indianapolis, with a population (1900) 169.164. Next in size are Evansville (59.007), Ft. Wayne (45,115), Terre Haute (36,673) , and South Bend (35:999). Each of thesc cities has a charter specially made for it, thongh under guise of a general law. These charters are of recent creation - the oldest made in 189r - and establish advanced forms of city government. Of cities of secondary importance may be named Muncic (20.942), New Albany (20,628), Anderson ($20,1-8$), Richmond (18,226), Lafayette (18,116), Marion (17,337), Logansport (16,204), and Elkhart (15,184). There were in all 80 citics and 330 incorporated towns in the State in igot.

History.- The first-known visits of white men to Indiana were those of Sienr de la Salle, who followed the Ohio River along its southern boundary in $1660-5$, and crossed its northwestern corner by way of the St. Josephs-Kankakee portage in 1671. There were no Indians living below the Wabash at that time, and probably not many in the morthern part of the State, but those there werc LaSalle induced to join his confederacy against the Iroquois, and they all removed to the Illimis River, leaving Indiana practically uminhabited. After some years they began moving to the East, reaching Detroit by 1712, and shortly afterward located at points along the Maumce and Wabash rivers. The Delawares. who afterward lived in the contral part of the State, on White River, cane there about ${ }_{1750}$. It is probable that the French first placed representatives at the Inclian villages near the site of Ft. Wayne, and next, alonit 1;20, at Ouiatenon- on thic north side of the Walash just below Lafaycte - and that there were stockarle forts at these places, but there is noth-: ing to indicate a permanent settlement at cither place. The post at Vincenucs was established in 1731, largely under the influcnce of Father De Beaubois, a Iesuit who had been stationed at Kaskaskia. Families located there soon afterward, and it remained a permanent settlement, though there is but one land grant recorded of
date prior to 1/36. The French posts were small and unimportant, and the history of the region under French and British rule presents no very striking features. In Ir-S Vincennes was surrendered to representatives of Gen. George Rogers Clark, and the Wabash country was brought under American control. I recapture oy the British was followed by a second taking by Clark in 1\%9. The region was ceded to the L"nited States by the Ireaty oi $1-8_{3}$, and was included in the Territory northwest of the Ohio River. by the ordinance oi 1 -S-. In was thus governed until ISoo, when Indiana Territory was formed. including all of the Northwest Territory excepr Ohio. From Indiaga Territory, Michigan Territory was cur of in IRos, and Illinois Territory in ISo9, leaving it with practically the present State boundaries. By act or Congress of 19 April 18i6. Indiana was authorized to form a State government, and the State was iormally admitted by act of II Dec. 18i6. In the meantime a State Constitution had been adopted on 29 Irne; State officials had been elected. and the State government had been actually inaugurated on - November.

There were almost continuous Indian troubles in the Ohio Valley irom 1 - 88 to $1-9$, when, aiter Gen. Wame's successiul expedition. peace was made at Ft. Greenville. Aiter that date the American immigration began, and there was no material trouble with Indians until the formation of Tecumseh's confederacy in 1Sir. The Indians were overwhelmed at the battle of Tippecanoe (q.w.) on 7 November of that year, by the troops under Gen. Harrison, and sued for peace. but when the war with England came on there were Indian hostilities of minor importance continuing until the close of the war in 1815 : After that year there was a gradual extinction of Indian titles, the Indians being concentrated in the northern part of the Stare and finally removed west of the Mississippi. The last removals occurred in 18_{36} and $18_{3} S$.

The sobriquet "Hoosier," commonly used to designate the State and irs people, was first apI lied to them about 1830 . It was not coined for that purpose, as is commonly supposed, but was a slang word signifying an uncouth rustic. which was in commen use in the South at that rime, and is still commonly used there in that sense.

The history of the State atter its admission was chiefly that of peaceful developmentclearing lands, opening roads, kuilding towns and cities. and establishing industries. The mn st notable feature was the disastrous internal improvement enterprise on which the Siate encered in 1836 . It contemplated transportation routes on 7 main lines, insolving the constructi n of las miles oi railroads and camals. That the r:utes were fairly well chosen is shown by the fact that they are now practically all occuried by successful railroad lines. The chief delect was that the improvements were mostly hish-line c nals. and the breaks in these bef te c mple:in caused such great damage that t: e cot matel crit was enormously increased. I fin acial panic of is:- added to the diffctiltie, and th eftects of this were ageravated ty i e genceal entering of the States on such entirt $-\mathrm{i}=\mathrm{s}^{2}$ it rrowel capital. The total debes n: the several States swelled from about
 is? Irdinनa was unable en realize on the sales of her bonds, and was forced to default interest
on those already issued. The canals and roads being unfinished, did not furnish the revenues anticipated. Compromises were efected by which the work done was turned over to creditors, but the State was left with a debt of about §Io.000.000 without any property to represent it. In all. Indiana built 453 miles of canals. at a cost oi ミ-, 25.262 , a11 of which are now abanconed so far as transportarion is concemed. But under private management. and more iavo-able conditions, the transportation lines developed rapidly: and in 18_{49} the one railroad originally contemplated was paying $8 \sqrt{2}$ per cent dividends on its stock. In 1860 there were 2,126 miles of railroads in successful operation in the State.

In the war with Mexico. Indiana furnished troops to the number of $+4, \mathrm{o}$. Oi these there were killed and wounded IS: and died of other causes 2I8. When the Civil Wiar began the State occupied an important position, and its resources wre utilized to the uttermost by its war governor, Oliver P. Morton. The State iumished 106,363 men for the War, and $-s_{4}$ paid ior evemption, or in other words supplied $7+3$ per cent of her total population capable of bearing arms. by the census of ts6o. Only one State in the Union surpassed or equaled this record, Delaware being credited with 74.8 per cent of her military population. But of the supply credited to Delaware nearly one tenth was in money commutation for exemption, and nearly one tenth of the men in actual service were colored. On the basis oi white troops furnished for 3 years or more of service. Indiana supplied Σ_{i} per cent of her military population of IC6o, and on this basis was surpassed only by Kansas, which is credited with $59+$ per cent. Oi the troops sent by Indiana 7.243 were killed or mortally wounded in battle, and 19,429 died of other causes, making a total death loss of over is per cent of all troops fumished. One feature of the War period in Indiana, and some adjoining States. was the formation of secret treasonable socieries known as Knights of the Golden Circle, and later Sons of Liberty. These attracted much attention at the time. and nuch comment later, but in reality they were neither extensive nor dangerous. They were organized with a system of "circles within circles. with mysterious rites and bloodcurdling oaths, but the masses of the members understood that they were merely for mutual protection, and the treasonable designs were affairs of the inner circles. Among their members there were a number of government detectives who kept the authorities intormed as to every movement. and at the final exposure the chief witness for the government was Felix Stidgers a derective who had become so prominent in the order that he was made "Grand Secretary for Kentucky. and knew all of the secrets of the order. As is aptly stated by Gov. Morton's biographer, "No one can read the history of the secret organizations in Indiana and not feel that. widespread as they were, there was not an instant in which they were not securely within the grasp of the war governor." After the W゙ar, Indiana became peculiariy a political battleground. In isfe the Republicans elected Conrad Baker governns by less than r.mo plurality, and in 18,2 the Democrats clected Thomas A. Hendrick's tn that office bu the narrow plurality of I.ti\&. al:hough Gen. Grant received the vote of the State for President. After $18 \div 2$ neither

INDIANA UNIVERSITY - INDIANAPOLIS

party carricd the State at two consccutive Presidential clections until after 1896, and neither carried it by a majority of all the votes cast, or by a plurality of as much as 20,000 . One result of this close balance las been an improvement in State legislation, the Democrats leading in the legislature of 1889 which they held although they had lost the State offices and the Presidential wote of the State in the preceding year. Indiana in that year adopted the Australian ballot system, being the second State in the Union to do so, with some improvements that have been extensively copied. Other notable reform laws are a school-book law that has made a large reduction in the cost of books used in the common scools; a Board of State Charities law that has greatly improved the charitable and penal institutions of the State; a fee and salary law putting officials on salaries and requiring the payment of all fees into the public treasuries; a compulsory education law; laws for the encouragement of public libraries; laws for the incorporation of cities which provide the most modern modes of city govermment; laws for the reform of county and township government providing, supervisory boards to which local legislation is entrusted and a tax law that has been largely effective in equalizing taxation and has been copied elsewhere. Another feature of Indiana's development that has attracted notice in later ycars is its production of native writers of poetry and fiction. Among the former may be named Joaquin Miiller, John Hay, John James Piatt and James Whitcomb Riley; among the latter Gen. Lew Wallace, Mauricc Thompson, Edward Eggleston, Charles Major, Meredith Nicholson, Booth Tarkington and Annie Fellows Johnston. These with lesser lights and some writers of mote in other lines form a notable group for a commonwealth whose settlement and development have occurred in little more than a century.

Jacob Piatt Dunn,
Secretary Indiana Historical Society.
Indiana University, the State university located near Bloomington, In accordance with a provision of the State constitution, the legislature passed an act in 1820 providing for the establishment of a State seminary, which was opened in 1824 under the name of Indiana Seminary; in 1827, it was raised to the dignity of a college, and in 1838 the name was changed to Indiana University. In IS68 the university was opened to women, and has since been cocducational in alt its departments. The university is the head of the public scliool system of Indiana, and no tuition fee is charged; the govermment is by a board of trustees which reports biemially to the governor. Courses are offered in languages, science, and history, all graduates receiving the degree of A.B. The degrees of Ph.D. and A.M1. are given for gradnate work; there is also a school of law connected with the university which confers the degree of P. L. There is a biological experiment station on Winona Lake, under university control, and a summer session is maintained. In $1904-5$ the miversity reported: faculty, 78 ; students, 1.538 : volumes in library, 53.000 .

Indianapolis, Ind., capital of the State, county-seat of Marion County, the largest city in the State and the 21 st in the United States; situated on the west fork of White River. It is
the centre for 16 radiating railroads, which connect it with Chicago, 18.4 miles northwest, Cleveland, 283 miles northeast, St. Louis, 240 miles southwest, Lonisville, so miles sonth, Cincinnati, 181 miles southeast, Columburs, 181 miles east: New York, 819 miles east, and other termini in Ohio, Nlichigan, Illinois, and Iridiana. Its area is 29.35 square miles.

The site was selected in 1820 as the location of the capital by a legislative commission, and its name was adopted by the legislature in session at Corydon, 6 Jan. 1821, The first plat included a square mile, which was laid out with broad rectangular streets and avenues radiating from a central circle. The character of the plan was undonbtedly influenced lys I'Enfant, the designer of the city of Washington, D. C., for one of the surveyors who made the town plat had aided in the work at the national capital. White the additions to the city have not been developed upon the same broad lines, most of them have been treated liberally and the city is noted for its wide streets, well payed and beautifully shaded. The city is yery level, nearly all of its area being 700 to 800 feet above sea-level. There are 439.6 miles of platted streets, of which 92 miles are paved, 44 miles with asplalt, 27 miles with brick, ${ }_{17}$ miles with wooden blocks, and 4 miles with macadan. The chief business strcets are Washington Street, which is a section of the old National road projected and partly completed to run from Baltimore to St. Louis ; Market, Maryland, and Georgia streets, all running east and west; Meridian, Pemnsylvania, Delaware, and Illinois streets, running north and south, and Massachusetts, Indiana, Virginia, and Kentucky avenues, which are diagonals, radiating from the circular Monnment Place. This central circle contains the State's monument to its soldiers and sailors, perhaps the most successfnl of the innumerable monuments erected by towns, cities, societies, and States in commemoration of the nation's defenders, and is generally regarded as one of the greatest in the world from an artistic point of view. The finest residence streets are Delaware, Meridian, and Femnsylvania. Several other residence districts are particularly well designed and cared for, such as Woodruff Place a residence park, with esplanades, fountains, statues, ctc.,- which has a town government of its own, though completely surrounded by the city; Morton Place, and Mleridian Heights.

Public Screvice.- The first water supply and the first sewer system were constructed in 18\%0 to 1875 , and but little else was done in the way of comprehensive public improvements untit after the adoption of the present efficient charter jn 189r. Prior to that year the city government had becn by mayor and council. Public-spirited citizens who recognized the impossibrlity of comprelicnsive public improvements, through the Commercial Club and Board of Trade agitated the adoption of the new charter, whili separated the legislative and administrative functions of the city government, making the mayor and lis appointees fully responsible for the latter. The first Board of Public Works devised a broad system of improvement, including sewerage, paving and street cleaning, which was supplenented in 1895 by a Park Commission. T'nder these two boards the progress in the establishment of municipal public works adding to the beauty and convenience of the city has been rapid. As a step preliminary to the era of im-
frovement which began in 18go a paring ex－ pustion was held iur the purpose of educeting the pecple of the city regarding paving materials and methods．It was the first ever held in Amer－ ica and attracted attention througbout the coun－ try．Official delegations were sent to it from many cities．Prior to I8go less than two miles of favements had been laid．The amounts expended since the adoption of the new charter in ISg1．in－ cluding the year 1902，are as follows：for pave－ ments of asphalt，s2，－26．6́G\＆．OI ：brick．St．011，－ 2I4．39：wooden block．$\$ 969.652 .82$ ；macadam， §154．ミ22．91：gravel，ミjミゥ，112．う0：for alley im－ prorements，$\leqslant 46.655 .36$ ior cement walks， $58,9 .-$ 010．21 ：for brick walks，$\$ 6.995-41$ ：making a to－ tal for paving of $\$ 6.611+31.51$ ．During the same period the expenditure for construction of 105 miles of sewers added to the 23 miles previously in use was $\$ 1,828.8,8.0 \%$ and for bridges $\sum_{2}, 40,485.32$. The grand total ior the 12 years shows $\$ 3.680,-95.50$ expended in these departments oi public improvements．The waterworks owned by the Indianapolis Water Company have de－ veloped with the ciry．The system of pumping by direct pressure is used．and a system of filter beds to purify the water taken from White River some miles above the city has been installed．The company has 226 miles of water mains and re－ ceives from the city about $\$ \$ 5.000$ a year for public water and fire protection service．Electric lights are in general use．The city pays about Si15．000 a year for about 1.350 electric arcs for sireet lighting and about 58.000 for about 400 gas and rapor lights．The police department contains 155 men and costs $\Sigma_{150,000}$ a year．The police court，city clerh，city dispensary，and central station are housed in a handsome build－ ing oi recent construction．The are department has 100 horses， 9 steam fire－engmes， 20 hose wagons，I water tower，I aerial，and 4 service trucks，$\frac{\text { chemical engines，and } i 55 \text { men，and is }}{}$ housed in 22 stations．It costs the city $\$ 155.000$ a year．There are so miles oi underground con－ duits used by the telephone．telegraph and elec－ tric light and power companies，and 125 miles of electric street railway lines，onned by the Indianapolis Siseet Railway Company．The city is the most prominent centre of interurban railway t：affic in the United States．Ten systems are in operation or in active construction．and others are early probabilities The city has re－ cently made a contraci with the Indianapolis Terminal and Traction Company，lessee of the city lines，under which a great ierminal station and belt lines for the passenger and ireight traffic of the interurban lines are under con－ struction，the whole making a model system．

Parks and Cimctirics．－The public park sys－ tem includes 9 parks of nearly 1,200 acres area． Riverside Park，purchased in 1898．contains 950 acres alnng W＂hite River，Gartield Park 108 acres，and Brookside Park So acres．Since the ertablishment oi the park commission in 1805 §300．000 has been spent in purchasing new parks and $E_{400,000}$ int improving them．There are several small parks scattered about the city．such as Military Park， 14 acres；Cniversity and St， Clair Squares，（ach＋acres：Spades Place，S acres：Indanola Place， 2 acres：Highland Square，and combinations of park，boulevard， and re－idences as Elmwood．Fletcher，Norton， and cther places，of which the largest is Wrood－ rufi Place，above noted．The city street railway company maintains two parks a short distance
outside the city limits．The first cemetery of the citw，Greenlawn，has not been used as such for many years and is kept in park form by the Board of Park Commissioners．Crown Hill cemetery，one of the notable cemeteries oi the country，embraces over 540 acres．There are also Roman Catholic，Lutheran，and Jewish cemeteries．

Buildings．－Ibe Indiana State House．costing $\$ 2.000 .000$ ，and built of Indian oolitic stone，is perhaps ihe most notable building．With its grounds it occupies two large blocks．The countr building was completed in 18－8 at a cost approximating $\xi_{1.7}=0.000$ ．The new Federal building．containing the post－office．custom－house， and Tinited．States courts，is under construction at a cost oi $\$ 2,400,000$ ．Other municipal build－ ings of note are the police building，the public library．containing also the onnces of the public schools，and some of the new public school build－ ings．Tomlinson Hall，a bequest by Dr．J．M． Tomlinson，is a public building，its lower story being used as a market．The Indianapolis Art Association is considering plans for an art museum and school．Among the prominent bus－ iness buildings ornamenting the city；special mention may be made in the order of their con－ struction of the Commercial Club．Majestic，Law． Stevenson and Newton Claypool buildings and Claypool Hotel．The Columbia Club building is an important feature of one quadrant of Monument Place，which surrounds the Indiana Stare Soldiers and Sailors monument．This massive shaft is the central and most notable decorative featuse of the city．It is 28_{5} ieet high，including the bronze statue，and its base is ornamented with symbolic groups of statuary and relieis in stone and bronze．It was designed by Bruno Schmitz and cost over $\$ 500.000$ ．Four epochs in the history of the Siate are conmem－ orated by the statues of George Rogers Clark， IVilliam Henry Harrison．James Whitcomb，and Oliver P ．Morton，which are grouped about its base．The width oi Washington street， 120 feet， and of the streets of the original plat．So and 90 feet，give space for the best possible display of architectural features．

Transportafion．－Indianapolis is the centre oi trade for the State．With the completion of the Indianapolis Southern Railway every county in the State except three，which are on the Ohio River，can be reached by railroad in less than onc dav＂s travel．Consolidations have placed most of the railsoads in two systems．One of these．the Pennsylvania lines west of Pittsburg． now operates the Madison and Jeffersonville lines，which reached the city in 184% ，and the Vincennes line．completed in ISG\＆；the In－ diana Central to Columbus and the East，com－ pleted in 1853 ，and the Terre Haute and Rich－ mond．later the landalia．completed in 1852，and now reaching Si．Louis：also a line to Chicago， partly over the Lake Erie and IVestern．The other，the Big Four system，operates the Belle－ iontaine road to Cleveland．completed in 1852； the Indianapolis and Cincinnati，which reached the city in I850；the Indianapolis and Latayette， of 1852 now reaching Chicago：the Indianapolis． Bloonington and Western to Peoria，finished in 18，0，its eastern extension to Springfield． O ． completed about 15 years later；the indianapolis and S ．Louis，completed in 18－6．Through trains are also run to Benton Harbor，Mich．，and to Louisville，over branches oi these lines．The

INDIAN゙ADOLIS.

SOLIIERA MONUMENT.

Cincinnati, Hamilton and Dayton Railroad Company operates the Cincinnati and Indianapolis Junction road, completed in 1868, and the $\ln -$ dianapolis. Decatur and Springficld road to Springfield, Ill. The Indianapolis, Cincimnati and Louisville operates a line to Chicago, which was completed about 1880. The Lake Erie and W iestern Railroad Company operates the old Peru and Indianapolis road, completed in 1854, and reaches Michigan City, Toledo and Peoria.

The construction of the system of interurban electric roads began about ISgo with the Broad Ripple line, now a suburban cily line. The next to be constructed was the Indianapolis and Greenwood line in 1900, now reaching Columbus, Ind. It was quickly followed by the Indianapolis and Eastern, which now conncets with lines to Columbus, Ohio, and other Eastern points. The Union Traction Company entered the city with a line from its centre in Anderson in 1901 and completed a new line north to Tipton and other points in 1903. The Indianapolis, Shelbyville and Southeastern is another line completed in 1901. Lines entering the city in 1903 are the Indianapolis and Martinsville, the Indianapolis and Plainfield, and the Indianapolis and Northwestern, reaching Crawfordsville and Lafayctte. The Indianapolis and Cincimati is under construction in 1903 to Rushville, and contracts have been let for the Indianapolis and Southern railroad. The steam railroads are served wilhin the city by the Union Railway Company owning the Union passenger station and the belt railway for facilitating the transfer of freight. The interurban electric roads wilt in like manner be served by the Indianapolis Terminal and Traction Company owning a large terminal station and belt lines for passenger and freight business.

Mamufactures.- During the brief natural gas era in Indiana, Indianapolis benefited largely by the cheap fuel. Since the failure of the gas supply the superior shipping facilities of the city and relatively cheap coal fuel have attracted many more manufactories, and more than 160 industries are carried on in about 2.000 establislunents. According to the United States census of 1900 there was invested in r910 establishments capital amounting to $\$ 36,828,11$.4. employing 27,478 persons, including proprietors, and turning ont products valued at $\$ 08,607.579$. Among the most important industries are slaughtering and meat packing, whose product was $\$ 18.781,44^{2}$ in the census year from 7 establishments; iron work of all sorts, $\$ 6,727,990$; flouring and grist mill products, $\$ 3,820,373$; carriages and wagons and material therefor, $\$ 2,812,498$; furniture factory product, $\$ 1,085,8,27$; saws, $\$ 1,587,827$; malt lifluors, $\$ 1,7,0,939$: printing and publishing books and newspapers, $\$ 2.924 .385$; clothing, $\$ 2,190,050$, half of it factory product; lumber and lumber-mill products, \$1,588,797.

Finances and Banking.- The assessed valuation of the city in 1870 was $\$ 24,656.460$. In 1891 at the beginning of the era of public improyements it was $\$ 93.595,930$, and in 1902 it had increased to \$1 32.927.210. The tax rate for State, county, township, city, and school purposes was $\$ 2.08$ in , 1902. The bonded debt is $\$ 2,421,000$. The city's expenses are ahout $\$ 1,200,000$ a year. The post-office receipts are $\$ 635,000$. The cus-tom-house receipts are $\$ 165.000$, and the valuation of imports $\$ 350,000$. There are it banks and trust companies, including seven national
banks. The aggregate capital of the nationat hanks is about $\$ 4.300,000$, their surplus about $\$ 1,900.000$, and deposits over $\$ 18,004000$. The six trust comptnics have a capital of $\$ 2,900,000$ and individual deposits of about $\$ 7,500,000$. The trust companics and priwate hanks carry savings accounts. There are about go building, loan and savings associations in various stages of progress and liquidation.

Churches.- Indianapolis is the seat of a Roman Catholic bishop, with an auxiliary bishop and of an Episcopal hishop. Including missions there are 12 Roman Catholic churches in the city, 77 Methodist, if Presbyterian, 7 Episcopal, 34 Baptist, 10 Congregational, 7 Lutheran, 15 Christian, 3 German Evangelical, 3 Evangelical Association, 3 Friends, 2 Cinited Presbyterian, 5 German Reformed, one each of il other denominations. There are 4 Hebrew congregations.

Charitics.- 1 n the city there are 15 hospitals, State, county, college, church, charitable, and private, 4 homes for the aged, 6 industrial schools and orphan asylums, 4 homes for women and girls, 16 organized charitahle and relief societies, and several such institutions as the I. M. C. A., I. W. C. A., Friendly Imn, Bureau of Justice, Humane Society, Day Nursery. The township trustee is a source of offcial relief. The cliarities of the city are most efficiently administered, as a result of co-operation between organizations largely brought about through the efforts of Rev. Oscar C. McCullouch. In 1894 a plan of relief for the unemployed, whereby over 5,000 people were provided with the necessaries of life throughout winter without pauperizing influences resulting, became widely known as the "Indianapolis Plan of Relicf." The plar was devised and carried out on behalf of the people of the city by a Commereial Club committee composeri of Hugh 11. Hanna, Col. Eli Lilly, and William Fortune.

Education.-There are 60 public school buildings, including 2 high schools, one giving manual training., in which ahout 700 teachers are employed, with a total enrolment of about 35.000 pupits: 22 Catholic schools, 2 Lutheran schools, 5 private schools and academies, besides the schools in connection with institutions. The University of Indianapolis is an organization formed in I 806 to unite several institutions of the eity, including Butler College, first incorporated in 1850 as the Department of Liberal Arts; the Medical College of Indiana. organized in I800; the Indiana Dental College. organized in 1878 , and the 1ndiana Law School. There are in all five medical sclinols, prominent among them being the Central College of Physicians and Surgeons, founded in 1870. two dental colleges, a law school, and 21 business, music and other special schools. The United States Arsenal grounds in the city were purchased in 1902 for a technical institute. Free kindergartens are operated under the Free Kindergarten Association, and 23 kindergartens and a normal school are maintained largely from public funds, besides a number of private kindergartens. The Art Association of Indianapolis maintains the John Herron Art Institute, including art galtery, school, and muscum. The Propylaum is a building crected by an association composed exclusively of women.

Librarics.-The most notable libraries are the public library with about 100,000 volumes, under
the control of the board of school commissioners. and the State librare with about 35,000 volumes. The State law library with 40,000 volumes, and agricultural and horticultural libraries in the State Honse, and the county library and bar association's library in the court-house may be noted. There are seven branches of the public library including the rewiy erected Bona Thompson library of Butler College and many small special libraries of schools and associations.

Newspapers and Literaturi-In 1903 the city had 9 daily papers, 23 weeklies, 38 monthlies, and 5 with other periods of issue. The list of trade and class papers published in the city is particularly notable. Indianapolis is the home of many writers whose names are familiar to the public, and it has in recent years become an important western book-publishing centre.

Orsonizafions. - The development of the city has been markedly influenced by organized work in various directions. There are a great number of literary, art, and musical societies, and largely as a result of this activity there is a high standard of cultivation in such matters. This has had a notable infiuence in establishing in the social life of the city a standard of merit rather than determining the standing of the individual on questions of lineage or wealth. There are many social clubs, among the most notable being the University, Country, Contemporary, and Woodruft Clubs, the Deutsche Haus, the Mannerchor, and the Elks, while the Columbia, Marion, and Indiana Clubs are political organizations. established in comfortable homes. The Columbia Club building, located on the Circle, is one of the finest club-houses in the Cinited States. The Commercial Club, with a membership of over 1.000, which owns as its home an eight-story office building, was a dominant force in the new era of progress and development which started in 1Sgo. and devotes itiself to the welfare of the city. The Board of Trade, an older organization with a membership of about 500 . has also been active in this direction. Organizations of various kinds, commercial. trade, fraternal, social, literary. art, musical, and miscellaneous. number over 500.

Gozernment. - The administrative department is in the hands of a mayor, elected biennially, and of boards appointed by him. The council consists oi 15 members elected one from each ward, and 6 members clected at large. with a two-vears term of office. The city clerk and police judge are also elected biennially: The mayor's appointees are the city comptroller, attorney, civil engineer, boards of puhlic works, 3 members of public health and charitics. 3 members of public safety. and of commissioners of public parks 4 members. The school system is in charge of a board of 5 school commissioners elected at special clections held for that purpose onls.

Papulation- - Beginning with two or three families in 1819 or 1820 . Indianapolis has shown a sicady and rapid growth, having a population ni 1.085 in 1830: 2.625 in 1840; 8.091 in 1850: 12 11 in $18+10$: $f^{\circ} .244$ in1 18-0: -5.056 in 1880: 105.4 .36 in 180 : and rom.164 in 1000. Since the lait census the increase in population has been s.il more rapid. The growth of the city has been almost exactly parallel with that of Buffalo, b $1 t 20$ years behind, and the parallelism promises to continue. In I8po Indianapolis was 26 th
in fopulation, and in 1900 it was 21st in the Urited States.

History:- The first settler, George Pogue, arrived in March of $1 \$ 19$ or 1820 . The legislature of Indiana, meeting at Corydon, by committee selected, in 1820, the site for a State capital. and named it Indianapolis, 6 Jan. 1821. Another committee laid out the plat. Lots were slowly sold for several years, and the government was actually removed to the new capital in 1824. the first session of the legislature being held there in 1825. The first State House, modeled after the Parthenon, was completed in 1835. A town government was instituted in $1 \delta_{32}$ under three trustees, a town council was established in $1 S_{3} 8$, and a city government under mayor and council in 1847. The present metropolitan form of government, with the mayor as the responsible administrative officer and the council as the legislative branch, was adopted in I891. A volunteer fire department was formed in 1826, which had much help from the State when the capitol building was completed. The first fire chief was appointed in 1853 , and the department was changed to a corps of paid men in 1859. The police department was first established in 1854. The new town began to support a newspaper in January 1822, and a church in 1823. The first railroad reached the city in 1847, and several others were completed in the next four years. Their effect upon the town is seen in the large increase in population. The State capital was the centre of great activity during the War, and there was great expansion in business and manufactures as well as increase in population, most of which was retained. The city did its full share in raising regiments for the War, and is said to have expended a million dollars in contributions, bounties, and war expenses. Camp Morton, on its outskirts, was first a camp for training soldiers, and later for prisoners of war. The free school system now cited as a model by educational experts, was begun in 1853 with the accumulations of several years of special taxation spent in buildings and grounds. The Citizens' Street Railway charter was granted is Jan. 1864. The slaughtering and packing business, now so large a factor in the city"s trade, began its great expansion in the same year. Public improvements were but few in number until the adoption of the new charter in 1891.

Indianapolis has numbered among her prominent citizens Benjamin Harrison, Thomas A. Hendricks, and others high in the affairs of the national government. William Fortuine,
Prest. Manicipal Engincering Co., Indianapolis.
Indiano'la, Iowa, city and county-seat of Warren County, 18 miles south of Des Moincs, on the Chicago, B. \& Q and the Chicago R. I. \& P. R.R.'s. There is a large and increasing trade here in grain, butter, eggs, fruit, live stock and garden products. Here is the scat of the Simpion Methodist Episcopal College, founded in 1867. The electric light plant is owned by the city. Pop. (i890) 2,254: (1900) 3.261.

Indians, American. Columbus, when he discovered America, believed he had reached a part of Asia, or of India, and in a letter of February it 23 wrote of "the Indions (in Spanish, Indios) I have with me." Thus the aborigines of the New World came to be called "Indians" (French Indions, German Indianer,
ete.), or, to aroid confusion with the natives of India, "American Indians," for which rather cumbrous term the word "Amerinds," susceptible of many modifications by means of prefix and sulfix, and easily adaptable to the exigencies of modern European and other civilized languages, has been snggested by an emment American lexicographer and is used more or less by a number of antliropologists and other writers. The word "American," originally applied to the Indians, is still somewhat in use, and Dr. D. G. Brinton styled his comprehensive slietelu published in ISg1, 'The American Race'; but its employment to designate the white population of the continent seems to bar its ethmological application to the aborigines without some qualifying term. By. some writers the Indians are called the "Red Race," and, more popularly, "Redskins" (in French Pcaur-Rougcs. in German Rothäutc), or "Redmen," terms of no exact somatic significance. A few American, and many European, ethnologists continue to separate the peoples who created the civilizations of Mexico, Central America, Peru, etc., from the Indians, while others exclude the Eskimo, and others, again, the "Mound-Builders." But somatic, cultural, and linguistic evidence justifies the conclusions of Powell and Brinton in using the term "American Indians" to include not only the aborigines now existing, or known to have existed since the discovery, but also all the pre-Columbian peoples of America concerting whom we have little data, the most diyergent are no more than sub-varicties of Amerjean man. This unity is the great ethnic phenomenon of American aboriginal history, The study of Indian languages, archroological scmains, arts, and industries, games, social and religious institutions, mythology and folk-lore indicates a general psychic unity, while the somatic diversities do not transcend those observable in the other great races of mankind. Whether one investigates, as McGee has so admirably done, the Seri of the Gulf of California, who represent about the lowest type of savage culture on the North American continent, or the Mayas of Yucatan, whose approach to a phonetic system of writing touches the highwater mark of Amerindian achievement, one receives the same impression : that it is a question not of very recent civilized or semi-barbaric intruders irom Asia or from Europe, but of a race (whatever their remoter origins may be) who have dwelt for ages in an American environment, which has shaped them into the peoples met witl? by the whites at the time of the Columbian discovery. The limited effect of the "discovery" of the Norsemen may be held to discount any "discoveries" by Europeans before them; while, on the other hand, the Ameri-can-Asiatic contact revealed by the investigations of the Jesup North Pacific expedition is as much American as Asiatic, and the "Bering Sea" culture is a local phenomenon no more fundanentally indigenous to the Old World than to the New. The arguments in favor of a trans-Pacific Malayo-Solynesian influence upon primitive America are no stronger than those that can be adduced to support the contrary opinion. The culture of the "MoundBuilders" does not in any way transcend the possibilities of what the American Indian was and is yet capable of, nor is it necessary to assume the prestnce of foreign culture-elements
to explain the civilizations of Mexico, Iucatan, Colombia, and Peru. Since very primitive times America has been essentially the "ethnic island" of Brinton, Keane, and other investigators. The impress of America has been upon the aborigimes so long that plysically, sucially, linguistically they have been "Ansericanized" in so marked a fashion that their right to be considered me of the "races" of mankind is not to be dismissed without cause. To group them merely as a branch of the Mongolian, or, again, of the Malay "race," is to obscure many points of great importance in the prelistory of America or to ignore them altogether. The American Indian is in too many respects a modified (and anciently so) varicty of mankind to be thought of as expressing in any serious degree the type of the Nongolian or the Malay.

Lansuage and Culture. - The ethnic isolation of the American sace has already been noticed. The apparent independence of the cul-ture-centres of North and South America is another interesting fact. With the exception of a few possible traces of the presence of tribes of Arawak limeage in ancient Florida and the spread of art-motifs of the Caribbean type over a portion of the adjacent Gulf region, no direct evidence of the influence of South America upon North American culture is forthcoming. The independent origin of Mexican and Peruvian civilizations seems certain, and convincing proofs of the community of origin of Pcruvian and Chibchan and even of Mexican and Mayan are lacking. The possibility of inter-cultural relations laving once existed is, however, not to be denicd. The Pacific coast, from the Gulf of California to the Argentine and Chile, has been a nursery of culture just as the Mediterranean area was for the Eurafrican peoples. There has been a Mexico and a "greater Mexico," a Peru and a "greater Peru," while the Mayas and the Chibchas have also had their extensive spheres of influence. To the Pucblo culture north of Mexico corresponds the Calchaqui culture south of Peru. On the northern borders of Mexico still lie the savage Seri and Y"aqui, and the cultureareas of Colombia and Peru have also their primitive frontagers, - and this was so in the time of the ancient Montezumas and the Incas. This juxtaposition of civilization and savagery is one of the characteristic facts of American ethology, as it was once likewise of the history of the Niediterranean area in the Old World. In both arcas we meet with a large number of peoples who rose above savagery, but, for some reason or other, failed to develop high stages of culture. That the more material cvidences of civilization should be so confined to the Pacific coast is, to some writers, a significant fact suggestive of Asjatic relations: but the intellectual power of such Atlantic peoples as the Iroguois and some of the Muskhogean tribes of North America, and the moderate latt distinct progress made by a fow of the Brazilian tribes of the Atlantic area relieve us from any such theory. enviromment, and historical incident in America quite sufficing to account for the phenomena involved. (See Etusnology:) Certain other resemblances and contrasts in the varions aspects of aboriginal chlture in America merit attention here. At the extreme north of the continent, one stoch, the Eskimo, with closcly related forms of speech, kindred mythology, and folk-
lore，similar customs and social institutions， etc．，extends in a narrow line from east to west， evert overflowing into -1 sia．while at the ex－ treme south（much less exiensive）the Fue－ gians．mumberi：g aliogether less than 10．000， are divided into three distinct linguistic stocks （ lahgans，Onas，Alikuluts）．Eastern and northern N $^{-1}$ th America，and the corresponding regions in Souih America，are areas oi wide dis－ tributions of single stocks．The Pacinc coast of America．as compared with the Atlantic，is a place where，in diverse spots，languages seem to pullulate．This region（including the narrow limits 0 ：Mexico and Central America）con－ tained probably more independent iongues than all the rest of the continent．Indeed．within the present bounds of the State of California alone 22 such tongues are found．with several others in Jlevada，and in Proi．Cyrus Thomas list of the stocks of Mexico and Central America，made in Iccz．nearly 30 are recognized．

The multiplicity of languages in primitive America has called forth explanatory theories of varions sorts．among them Horatio Hales suggesrion of the origin of linguistic diversity through the spontaneous langnage activity of the child．As Gatscher has noted，the very ex－ istence of such a multitude of tongues all over America is proof that neither in ancient nor in later times has this continent been the scene． cn a vast scale，of the suppression and exter－ mination of peoples one by the other，which have been characteristic ieatures of Old World history．In spite of the common belief to the contrary，murual destruction was probably never so rife as when the coming of the white man introduced new means of warfare，and， crowding the natives for subsistence，led them to attack each other more effectively．The re－ cent studies of Dison and Kroeber in Calitornia have strengthered the view oi a certain par－ allelism of language and culture．

That some culture－elements．however，have spread irom tribe to tribe is shown by the dis－ triburion of certain inventions discussed by Mason，the northward movernent of such plants as maize，the use of tobacco，the transmission of many themes and incidents oi myths and legends（as demonstrated by Boas），the modes of occurrence of certain art－iorms，etc．Inter－ minglings of culture of a more or less ixal， ih ugh often of an extensive，character．have taken place int the Bering Sea area，in the Co－ luml a River region，in the habitat of the Pu－ ebl Indians of Jew Mexico and Arizona，in the sutheastern part of the Linicd States， in the Isthmian resion of Central America．in Ecu d r ．in the Pampean coumtry of the Ar－ Fentme．etc．－larger and more significant inter－ mixtures have，perlaps．taken place in earlier time in Mlexie，the Mayan country，C lombia， a－ 1 Peru．I numi re the borrowed culture－ eitments $m \mathrm{y}$ be expluined 2 s the result of trade and commerce hy means of which usciul or arti－tc cbects，i ed．I lant：ctc．Were easiy i mssed ng di－tances under primitive cundi－ it $:$ The wide－pread cu－i in oi adnption ＂ 41 aloo acc unt it not a tew instances of a sen cuture－grafi：．So，tho，with the exngamic marige．of on the woman are culture－bearers． $W^{\text {＂．}}$ re nguage－mixture has taken place it is m re r le－．casily detectal e in monst Imerican
 the ame－oock p ssesa，in the one case（．Ilgon－

Kian）dialects which differ as much as JIicmac and Blackfoot，in the other（Iroqnoian）as much as Cberokee and Mohawk，we are justified in looking for culture－differences as well in such widely separated peoples．Doubtless the resuits of careful somatological，sociological．and other investigations of the varions tribes of American aborigines will Iurnish us ultimately with diverse ways of classifying them．At pres－ ent，however．the most serviceable classinica－ tion is a linguistic one．the result of the labors of Najor J．IT．Powell and the Bureau of American Ethnology，supplemented by the wort． of Dr．D．G．Brinton．

Linguistic Stocks．－The Bureau of Ameri－ can Ethnology has issued the Powell map showing the extent of the 58 linguistic stochis north of the Mexican boundary line：that is． of families or forms of speech，so independent oi one another as to be catalogued as distince stocks：apparently no more closely related than the Aroan and the Semitic families of the Old World．For South America no such au－ thoritative map is extant．The exacr number of such linguistic stocks in America has not yet been determined with certainty，but the follow－ ing list probably represents the best view of the matier to－day：

1．－ddaizan（Louisiana）
＝．Algonkian（northeast North America）
3．Alikulnian（Tierra del Fuego）
＋．Andaquian（Co！om－ bia）
5．Arauan（northwest Brazil）
6．Araucanian or Aucan （Chile）
7．Arawakan（Central and N．E．Sorth America）
8．itatameñan（S．Boli－ ria）
9．Athapascan（I．W． Canada，etc．）
10．Attacapan（Louisi． ana）
11．Avmaran（S，Pern，Si． Bolivia）
12．Barbacoan（S．Colom． bia）
t3．Beo：bukan N゙ew－ foundland）
54．Beroyan（Colombia－ lenezuela）
25．Cadioan（Texas）
26．Calchaquian or Cata． mareñan（N．Boli－ via）
2－．Cantchanan or Cami－ sianaz（N．Bolivia） 18．Ca：ajan（太．Mrazil）
19．Cariban（N．E．Sou：h Imerica）
ะo．Cayubaban（ぶ．Boli－ ：13）
\therefore ：．Cbarruan（N．En Ar． sentine）
2 ．Chetimachan（Louisi－ ars）
23．Chispanecan（Censral America）
\＃．Lhbehan（Coiombia and Isthmian re－ kiin）
2s．Chimakuan（Wizshing． ：n）
26． Cl im rikan（Califor－
\therefore nia）$\frac{\text { nanrecan（Oaxaca，}}{}$ Mexic）
－．Chin kan（Washing－ ：-3
29．Chiquitan（N．Bolivia） 30．Lhen3n（ N ．W：Co－ lembia and tsth－ metis）

37．Chutrashan（Califor－ Iia）
32．Churoyam（Colombia－ Venezuela）
33．Coahtilitecan（Mexico－ Texas mouth of Rio Grande）
3．Coconucan（S．Colom－ bia）
35．Copehan（Calitornia）
36．Costanoan（Calior－ nia）
37．Cunar（Istimus of Panama）
38．Doraskean or Chan－ guinan（Panama and Nicaragua）2
39．Eskimoan（Northern Armere of Siorth
40．Esselenian（Califor－ nia）
4．Guahiban（lenezuela）
$4 \therefore$ Guaratnian（lienezu－ ela）
43．Guaycuruan（Gran Chaco，Paraguay－Bo－ livia）
＋i．Huavean（Isthmus of Tehuantepec）
45．Iroquoian（Ontario－ Erie resion，wish offisboo：in S．E Lnited States）
46．Itoraman（Eoliva3）
47．Jivaroan（Peri，Ecua． do：）
48．Falaponiza（Oreson）
49．Karankiawan Texas）
50．Kechuan or Quecheran Pera）
5r．Keresan ©iew Mex－ ico，Pueblos）
5－Kiっwan（N̈ebraska－
53．Kitumhan（S．E． Rritisi Columbiz， （．．1daho）
54．Koleschan（．＇aska）
5．Kulanapar（Califor－ nia）
36．Kusan（Oregon）
ミ－．1．aman（ Ferj ）
幺S．Lencan（Central America
59．I－tulean（G：an Chaco）
60．Lutuamian（O－eson）．
68．Mainan（Ecuador，ぶ． II．B：azii）

A GROUP OF UTE INDIANS.

Oi the stocks enumerated. 51 belong to South America and 56 to North America north of Mexico. The status of investigation is such that the number assigned to South America is approximate only, and may ultimately be considerably increased or reduced. Some stocks, like the Adaizan, Beothnkan (exterminated by whites), Chetimachan, and a few of the minor stocks in South America, are extinct or nearly so. A goodly number - including, for example, many oi the stocks on the northwest Pacific coast, the Texas-Louisiana country, parts of Central America and the Pacific region of South America - were or are of lemited area: others, like the Eskimoan, Atiapascan. Algonkian, Siouan, Shoshonean, Arawakan, Cariban, Tupian, etc., are noteworthy ly reason of the extent of their domain. Some. like the Kontenay, consist of practically a single language, while others, like the Algonkion, Siouan, Athapascan, Salishan, Aztecan. Mayan, Arawakan, Ilupian, Cariban, ete., have developed numerous dialects. sometimes only remotely rescmbling the mothertongue. Douhtless, with the perfection of linguistic research, some changes will be made in the list of stocks, or perhaps a method of groups may be devised in which stocks showing certain resemblances other than those of a lexical na-
ture may be classed togetier. The studies of Dixon and Krocber indicate the possibility of this for the numerous Califormian stocks, and a similar result may be predicted for certain other regions of the continent. As said, all the American Indian stocks are far from being of the same significance, many of them having hardly any histurical importance. A few words about some of the most lypical and most important must suffice here.

North American Stocks. - The Eskimoan stock is noteworthy by reanon of being the frrsi of all the aboriginal peoples of America to be visited by representatives of European culture- the Norsemen in the roth century, cte. It is also the only primitive people who, unaided by civilized races, occupy a portion of both hemispheres, for the Eskimo stretch irom Labrador to a considerable distance within the borders of northeasterm Asia. They illustrate the vietory of man over a difficult enviromment. for they are a merry and sociable people in spite of the inclement and depressing character of their arctic surroundings. They have also a marked sense of humor, as the institution of the nithsong, or settlement of disputes by public judgment of the comparative merits of the two parties in competitive singing, would indicate,the themes of the singing being the dispute and sarcasm at the expense of the opponent. The Eskimo are also very skilinl carvers and engravers of ivory, their spirited drawings of animals, etc., resembling in marked fashion th:: similar art-products of prehistoric man of the French river-drift, a likeness which has induced some authorities (Dawkins, De Mortillet) to assume a racial connection between these two peoples. Mason has recently suggested that these drawings owe a good deal to the contact with Europeans (introduction of iron tools, etc.), but Boas considers that their close resemblance to the bark and rock pictographs of the Indians iorbids the conclusion that these drauings are of other than native origin. The unity of language, and (to a considerable degrec) oi custom, mythology, etc.. among the various Eskimo tribes is remarkable when one remembers the extent of their distribution. The use of the Eskimo dog with the sledge, the kayak, the harpoon, the snow-louse (iglu). and the invention of many mechanical devices show them to be gifted with native intelligence.

The Athapascan stock is notable for the contrasts in culture and diversities of culturecapacity presented by its members. Some of the Athapascan peoples of northwestern Canada and Alaska are among the lowest types of American man, and a few of thens have hardly yet come to knowledge of the white man, the advent of the fur-trader being, according to T. M. Bell, a matter of the last two or three years in part of their domain. To this stock helong also the Apaches, once the terror of the civilization of the Southwest, whose depredations, in earlier times. disturbed the peace of the native civilization of Old Mexico. It is fair to say however oit them that individual Apaches (Dr. Montezuma, for example) shows good capacity for adopting the chief elements of white American culture. Several small tribes of Athanascans are seattered through Washington. Oregon. and California, the most noteworthy being the Hupa, on Trinity River, the "Ronams of California." as they have been called. The Navaho, who

INDIANS

have assimilated to a considerable extent the culiure oi the whites, were good agricuinurists before the coming of ilhe Epaniards. irom whom they adopted the sheep, a fact which modined their enviromment and their response to it. The contrast between the rude tribes of the "Barren Grennds" of Camada and the Niavaho of New Mexico and Arizona is. as Horaio Hale puinted out, one of the mest remarkable instances oi culture-change by process oi environmental variation on record. The recent juanW าง Klundis: comes irom an Athapascan dialect

The Algonkian stock. members of which were found irom Labrador to Sourt Carolina, and from the contivence of the Ohio and Mississippi northwes:erly to the foot of the Rocky Mountains and the borders of the domain of the - Athapascans. ate of interest ior many teasons. The great area over which they are spread has brought members of this stock into contact with many other Indian peoples.- the Slaskopi. Crees, and northern Ojibrra with the Eskimo; the Nicmacs with the E=kimo and Beothuk: the Oiibwa and relared tribes of New England, New York, and Pennsylvania, the Lenape of New Jerser, the Nanticokes, Powhatans, etc. of Jaryland. Virginia, and the Carolinas with the lroquois (who, both north and south, form an encluti in the Algonkian territory): the western Ojibwa. etc.. with the Siouan trubes in the upper 1 lississippi region. and in the southern Mississippi country the Illinois and kindred peoples with the Caddoan and other stocks: the Blackioot in the extreme northwest of the Algonkian area witb the Athapascan Sarcees and the Kootenay. The aberrant Cheyennes and Arapaho (recenty studied by Kroeber) belons to the Algonkian stock. Another evidence of the importance of this stock is the iact that many other stocks and tribes are known to $u s b y$ names of Algonkian origin: Eskimo. Athafoscan, Sioman, and possibly also Irognoiun and Mruskogian; Chifzoun, Assiniboin. Mohazk, etc. Oif all the Indian stocks of North America none have made a greater impression upon the whites (French and English) than the Algonkian. This is seen when we remember that Powhatan and Pocahontas, King Philip. Pontiac, Tecumseh. Black Hawh. etc., the Indian= who have appealed most to our hissorians. novelists. and dramatists. have all been oi Algonkian lineage. This stock has also contributed to the yocabulary of spoken and writuen AmericanEngish s me 140 words of which many are hard!y felt io be of Indian osigin: Coriainu. Coritur, Catcus. Chipmunk. If:ikory. H miny, Man: Moskin nge. Menhaten, Mi icas:n. If si, Ifuzaturt. Opossum, Perfocsi. Pionmisun. Pësinan n. Peterer, Pung, Raccom, Suilicm. Sixum. Squash, Squais. Tammany. Tirrarin. T siñ. T mahat. Tetem. Tumr. Tusidt. etc. A pet ple who have contrihuted to such a c smrpilitan : uguc as Enclish im: rant word like Cu*rus. Muǧum!. Tunnmany. and T tem. deserse mere than pasing menti n. Our civilization owes to them aloo mose material things than these.-tohogeanning an I lacmsie. canoeine (in laree measure) and numerous devices ni agricultural and dnmestic industry adopted by the early enlonist from the aboricines From the Aleonkian Indians the whites also learred how to make maple sucar and maple syrup. (See Americans.)

The Iroquoian stocks are iamous through the confederacy of the "Five (aiterward Six) Nations" and the great "League of the Iroquas (so sympathetically studied by Morgan). Their physical characteristics ai the time oi the wat oi I851-5 were such that they exceeded the recruits oi all other faces (white included) in points of excellences demanded by miniary requirements. The high position occripied by woman among the Iroquois lifts them above many of theit Amerindian kindred. The story of the Iroquoian statesman of the I6th century, Hiawatha, and his founding of the League that was to end all war and unite all the rations in one lasting bond of peace is a historical fact. which Longiellow's coniusion of the Iroquoian patriot with the Algorkian demi-god Manabozho cannot aliogether obscure. In political and social organization the Iroquoian tribes attained a position that was largely sui sentris. The tale of their long struggle to preserve their independence against the whites will be found in Morgan and Parkman, while the Jesuit Relations contain their reaction to the efforts of the missionaries to convert them to the Christian iaith. as well as the account of the fratricidal strife resulting in the extermination of the Hurons. The fame of the Iroguoian tribes (for example. Nohawks) as fierce warriors has caused the general public to meglect them in other respects. Through the researches of Horatio Hale and others it has been shown that the Cherokee of the Carolinas (recemly so well investigated by Mooney) belong to the Iroquoian stock, together with sereral ninor tribes in the south Atlantic region. This stock has produced a number of eminent men: Hiawatha (q.v.), Ked Jacket (q.x.), Joseph Brant, and Dr. Oronhyatcha ($\mathrm{q} \cdot \mathrm{V}_{\mathrm{O}}$), the present head of the Independent Order of Foresters: J. N. B. Hewitt, of the Bureau of American Ethnology at Washington, is also of Iroquoian blood. Sequoia, the bali-blood Cherokee, who invented the alphabet now in use by his people. deserves mention here likewise. As compared with the prominent part played by them in the French-English and colonial wars. and in the Revolutionary War, Ilar of i\&12. etc. the Iroquoian people left little impression upon the culture and the speech of the English in America, - the words from their language whicin have crept into our own have been originally place-names: Chastuwqu, Conestoga (horse). Saratoga (trunk), etc. To the Erench of Canada they have given a few more words. In the place-names of the region about jakes Ontario and Erie (Ontario, Niagara. Erie. Cataraqui. Oswego, Cayuga, Seneca. Onondaga, Irscarora. Oneida. Ticonderosa. Tonawanda, Gencse. Ohio. cti.) the Iroquoian peoples are generously remembered. while their Cherokee kinsmen in the sontl? have likewise left their tmpress upon the topographical nomenclature of the countr: In both New lork and Ontario. where crossiderable atambers of Iroquois still live, with sun immediate danger oi dying out. but particularly in the latter province on the Grand River Reserve. the pacan and Claristianized Iroquois have existed side by side in the same community for so long a time as to make this phenomenon, the details of which have been pointed wu: by David Boyle. of great value to sciologisis. See Canada. Indians of.

TIIE SNAKE: DANCE OF THE MOKI INDIANS.

INDIANS

The Muskhogean stock (Choctaws, Chickasaws, Creeks, Seminoles, ctc.) as their subsequent career in the "Civilized Nations" of the Indian Territory with the Cherokee has shown, are among the most gifted intellectually of the aborigines of America. Gatschet notes as characteristic of this stock: Their color-symbolism for peace and war, their totemic system, the use of the "black drink," the doctrine of the "Master of Life," sun-worship, mound-building (some regard this stock as having been one of the socalled "Mound-Builders"), the ceremony of the busk, etc. This stock has had many intertribal wars, and the Crecks and particularly the Seminoles of Florida are famous for their contests with the whites.

The Sioulan stock (Crows, Mandans, Assiniboins, Hidatsa, Sioux, Winncbagos, Omaha, Tutelos, Catawbas. Biloxi, cte.) are noteworthy by reason of their migration from the Atlantic slope in the region of the Carolinas to the transMississippian and Missouri country, where their culture was conditioned by the presence of the buffalo and the adoption (from the whites) of the horse. Their wars with the surrounding tribes, particularly the Algonkian, and their subsequent numerous collisions with the whites (Minnesota massacre of 1862, the troubles in which Sitting Bull figured, etc.), are matter of history. The use of buffalo-skins made it possible for some of the Sioux tribes to develop pictography to a high degree. The researches of J. Owen Dorsey and Miss Alice Fletcher have shown the Omaha in particular to be gifted with a religio-social consciousness of a marked character, reflected in their mame-giving and the ceremonies associated with the passage from childhood to manhood, in which individuality is much emphasized. That their capacity for producing men of ability is not confined to those of the primitive type (Sitting Bull) is indicated by the way in which individual members of this stock (Dr. Eastman, La Flesche, the collaborator of Dorsey, etc.) have responded to the stimuli of modern culture. The Dakotan federation is well remembered by the names of the twin States of the Nortiwest: Minnesota, Nebraska, etc., are terms of Sionan origin; while the minor place-nomenclature of the northwestern States contains a multitude of names from the same source.

The Shahaptian stock is noteworthy on account of the Nez Percés and the famous chief Joseph (still living), one of the most remarkable Indians of any age, whose "retreat" in 1877 has been compared to the celebrated march of the Ten Thousand of old.

The "Pueblos" Indians, as they are called from their village life, have risen in New Mexico and Arizona above the stage of savagery into a state of semi-civilization, representing the triumph of man over the adversc conditions of the desert and the inroads of fierce enemics of the lowest culture. Their relations to the socalled "Cliff-Dweliers" has been the subject of some ethnological speculation. (See Puerbos.) The diversity of culture among the Pueblos is not as great as that of spcech. Besides the Moqui or Hopi, who belong to the Shoshonian stock, there are found in the Pueblos group three other distinct linguistic stocks,- Keresan, Tañoan and Zuñian. The Pueblos culture has apparently been developed independently in several local centres, and the studies of Bandelier, IFodge,

Fewkes, Cushing, etc., have thrown much light on the origins and interrelations of stages of culture largely the reflex of environment.

The Shoshoncan or Uto-Aztecan stock offers the most wonderful contrasts in its members of any Amerindian stock. Linguistic and other evidence appears to justify the conclusion that not only certain peoples of the Sonoran country (Cahitas, Coras, Tepehuanas, ctc), some of whom achieved a sort of half-civilization in contact with their more cultured ncighbors, but the Bannacks, Shoshones, and Utes (even the wretched "Root-diggers") are kith and kin with the ancient Aztecs upon whose civilization Cortes intruded, and the tribes of Nahuatl lincage who carried that culture more or less from central Mexico to beyoud Lake Nicaragua. The change from the low type represented by the Utes to the high type of the old Mexicans may have been due in large measure to environment. Intermediate stages are represented by some of the Sonoran tribes. The Mexican or Aztec branch of this stock has furnished to English and other civilized languages a number of interesting and valuable words: Axolotl, chocolate, coyote, cacao, tomata, occlot, chilli, copal, chinampa, jalap, etc. The Moqui group of the Pueblos Indians belong also to the Shoshonean stock.

The Mayan stock (Cakchiquels, Huastecs, Tzotzils, Kekchis, Quiché, Tzendals, Mayas, etc.). creators of the civilization destroyed by the Spaniards in Central America, left, besides graven monuments in large numbers, other evidences of their having invented a system of "writing." which is the nearest approach by any of the aboriginal peoples of America to a phonetic method of record,- the solution of the Mayan hieroglyphics is perlaps the question of American archæology. Their calendar-system, nagualism in religion, and the important role of woman in religious and social functions, deserve especial notice. The recent explorations of the Peabody Museun (Cambridge) have resulted in many new discoveries.

Contral and South Amcrican Stocks.-The Chibchan stock, whose culture varied from that of the savage Aroacos of the mountains of Sta Mrarta to the civilization of the conntry about Bogota represent a fise from barbarisn independent of that to the south in Peru, etc. There is some reason to believe that the "gold-culture" of the Chiriqui country and allied remains in the same region to the borders of Nicaragua may be due to the Chibchan stock,- the Talamanca, Guaymi, and a few other dialects of Costa Rica, etc., show affinities with Chibchan tongues. Their use and working of gold were of a high order, but neither in architecture nor in pictography could they compare with the Peruvians, the Mexicans, and the Mayas. They had a characteristic hero-legend of Bochica, and a tale of the great flood. The shrine of Lake Guatavita was a famous religions resort. Some of the famous "El Dorados" were in their territory. The Quechuan stock, which is best known through the civilization of the Incas, superimposed upon an older, widespread culture, represents but one phase of higher human activity in the Peruvian arca. The extension of Quechuan language especially von Tschudi and Brinton agrec in attributing not to the military achievements of this people, which antedated the

INDIANS

coming of the Spaniards by only a few centuries, but to intellectual and culture influences millenniums old. The marks of their language can be traced from near the equator on the north to the Pampean tribes on the south. Conmon in the Peruvian area seem to have been a highly developed agriculture (stimulated, as in the soathwestern L-nited States, by the necessity for irrigation and artificial treatment oi the soil).-maize, tobacco, potatoes, cotton, etc. the breeding of the llama and the paco, the making of pottery (useiul and artistic), metalworking of a fine and ingenious sort, stone architecture more massive and imposing than artisticaily beautiful, or oi the highest order as regards decorative art. The Inca form of government was never probably so far removed from the system common to most of the American stocks as some writers have believed. The Incasic conquest has caused the Peruvians to be styled the "Romans of America," but the analogy" is misleading. Beyond the use of pic-ture-writing and the emplosment of the quipu (knotted colored strings) for purposes of record, the Peruvians had not advanced. and the semiphonetic system, like that of the Mayas, was not developed by them. Ancestor-worship and sunworship (state religion) were professed by the Peruvians, but the most far-sighted of their thinkers touched almost upon monotheism. The hero-god of the Peruvians was the sea-born Tiracocha, about whom centred a rich and imaginative mythology. The mixture of races in the production of ancient Peruvian culture is indicated by the diversity of cranial type among the skulls from the old burial grounds and mummy-caves. North of the Quechuas, on the coast about Trujillo, were the L゙unca-Chimus, etc., whose civilization is represented by the ruins of Gran Chimu and other remains in the valley oi Trujillo, which preceded the period of Inca domination. Southeast of the Quecluan culture was that of the Aymaras on the Andean table-lands. To them are usually assigned the ruins of Tiahuanaco, near Lake Titicaca, which in their completencड़s were probably the most imposing structures raised by the hand of aboriginal man in America,- in architecture they differ in several notable ways from the buildings of Inca origin. Dr. Thile has very recently sought to show the "succession of cultures ${ }^{\prime \prime}$ at Pachacamac. Trujillo, and their relations to that of Tiahuanaco. The Peruvian tongues have furnished modern English, etc., many words: guano, condor, alpaca. pampu, paco, llama, coca, quintte. jerked (beci). ₹ictūa, etc.

In the northern part of the Argentine Republic (Province oi Jujuy, etc.) the architectural and archroological remains brought to light by recent investigators (imbrosetti in particular) indicate the presence of a "civilization." - village liic in a desert enviromment, offering striking analngies with the culture of the Pueblos Indian: of Arizona and New Mexico. This Calchaqui culture is evidently much more than the mere reflex of Quechuan-Aymaran conquest which it was formerly considered to be. Its origin and growth, however, remain to be clearly dem notrated.

The Araucanian stock, whose language has leent studted ly Lenz, are fannous for their tog resistance to the Spanish arms (the -t ry oi the "conquest" has been writen in the latt few years by Guevara), part of which
gave rise to De Ercilla's epic of 'La Araucana.' To the Araucanian stock belong tribes on both sides of the Chilean Andes and a number of the nomadic peoples of the Pampas, where they seem to be intruders rather than aborigines. Chilean Spanish has borrowed many expressive terms irom Araucanian.

The Patagonians. Tzonek, or Tehuelche, famous since the time oi Pigafetta as "giants" (many of them exceed six feet and some are said to reach seven). To them belongs the "Setebos" of Shakespeare's 'Tempest.)

The Tapuran stock of Brazil is looked upon by some authorities as the oldest people of the continent - some would affiliate with them the Fuegians, in this respect - representing a race once inhabiting a great part of South America. The man of the caves of Lagoa Santa and the man of the remarkable sambaquis or shell-heaps of the Brazilian coast are by many authorities considered to have related to the Tapuyans. Characteristic modern Tapuyans are the Botocudos, so called from the labret they wear in the lower lip. According to Ehrenreich, some oi these ancient men of Brazil show affinities with prehistoric man of eastern Europe.

The Tupian stock (or Tupi-Guaranis, as they are also called), whose language was much used by the missionaries for general intercourse with the natives and is the basis of the ligoa geral, or "common language" of the region of the Amazons. were perhaps the highest in culture of the Brazilian tribes, having the elements of agriculture, village life, potrery (well developed and rather artistic), urn-burial. etc.. but nothing beyond the Stone Age. Intermixture with both whites and negroes has taken place in the Tupi area, and the rich and imaginative tales of animals, etc., belonging to Tupi mythology have thus been given a wider extension, while negro and white influences have made themselves felt. both on the language and the literature of these people. According to Hartt, the Tupi language has influenced the Portuguese of Brazil quite as mucli as has the latter the former. TupiGuarani speech has furnished to the yarious European tongues a considerable number of words - to English, ifccacuanha, jaguar, tapioca. tapir. towican, etc.

The Cariban stock were long famous for their cannibalism (the word cunnibal is a corruption oi one of their ethnic names), real and attributive, and their skill in making and using canoes. The shaman. or medicine-man, had great power amons them, and they practised the curious and remarkable custom of the comade. Rock-inscriptions and pile-dwellings are found in their territory: Some of them have been reduced to sad straits by the contact of the whites, but some of the Venezuclan tribes of this stock are still good, typical representatives of the American Indian.

The Arawakan stock, through its representatives (the Bahamian Lucayans, the natives of Haiti. Porto Ricn, Cuba, etc.), was the first of the aboriginal peopics of the New World (exclusivc of Greenland and Labrador) to come into contact with the white race, and likewise the first to come under its devastating influcnce. Many of the tribes of this stock were of a mild and gentle disposition, good agriculturalists, pottery-makers, workers in stone, wood and gold, and excellent canoc-men (the word canoe comes from an trawak dialect). They were

INDIANS

users of cotton, and to them we owe the first Indian invention adopted by the whites (hammock, both name and thing are Arawak). From the Arawaks, 100, the Spaniards first learned the use of tobacco. Like the Caribs they practised the courade. The name of the stock is said to mean "flour-eaters," on account of their use of cassava, which has also passed over to the white. The Arawak and Carib stocks have furnished to English and to the other civilized languages of Europe a large number of important words, the cxact ethnic distribution of which is not casy to determine with exactness: Agouti, anollo (and French rouconycume), babberuc. caciquc. cuiman, camibal, canoc, cassac'a, colibri, hammock, hurvicane, iguana, macaut, maize, manati, potato, tobacco, etc. And with these names has gone the use of many of the things indicated and made known for the first time to Europeans. The debt of the Spanish and Portuguese settlers of South America and the West Ludies is in these respects very great, for, naturally new fruits, plants, trees, etc., and many of their products came to be known by their aboriginal names or by corruptions of them. Thus a number of "balms" and "balsams" and other medicinal products retain in the pharmacopœia names of American Indian origincopaiba, tolu, etc. Timber-trees, ornamental and dye-woods, have also largely kept their native appellations throughout Central and South America - the list would run into the Inundreds. Large also is the catalogue of birds and other animals bearing Indian names.

Original Habitdis. - The question of the original habitats of the important aborigimal stocks is one of the most interesting in American ethnology and archrology. The researches of Rink and Boas in particular seem to have demonstrated that the primitive home of the Eskimo was in the region west of Hudson Bay, whence they spread northward and westward to Alaska, etc., and eastward (north and south) to the Aretic islands, Greenland and Labrador. See Eskimos.

The earlicst habitat of the Athapascans was in northwestern Canada, to the westward of the home of the Eskimo. From there they migrated over the lake country, across the Rockies to the southward, leaving colonies along the Pacific to northern California, and scuding out, through Arizona and New Nexico to the borders of the Nahuatl territory, the important branches of the Apaches and Navaho - the raids of the Apaches often reaching far into Mexico.

The original habitat of the Algonkian stock was, as Brinton and Hale have assumed, "somewhere north of the St. Lawrence and east of Lake Ontario," while that of the Iroquoian lay "between the lower St. Lawrence and Hudson Bay." The final result of the migrations and wars of these two stocks was to leave the Iroquois of the Ontario-Erie country entirely surrounded by Algonkian tribes. From their primitive home the Algonkian scnt out numerous branches west, south, southwest, etc., making the extent of territory covered by them very large, and bringing them into immediate contact with many other Indian tribes and with the white settlers over a vast area. The Iroquois (in the Cherokee and the kindred tribes of the south) had branches, which were so separated from their northern kin as to be long taken for non-Iroquoian peoples.

The Muskhogean stock, according to Gatschet, have been from time immemorial inhabitants of the country between the Appalachian Mountains, the Allantic, the Gulf of Mexico, and the Mississippi. The scenc of their earlicst development was in the neighborhood of the Mississippi, or possibly even beyond it.

The clicf migrations of the Caddoan (Pawnee) peoples lave taken place in historical times northward and sonthward from the Platte River, from which region they expelled in part the Siouan tribes, ete. If their own traditions are reliable, their primitive home lay farther to the south, on the Red River of Louisiana.

The primitive home of the Siouan stock (characteristic Plains Indians since the introduction of the horse) was eastward in the region of the Carolinas. This fact has been revealed by the study of the Tutelo and Catawba languages belonging to this eastern area, and by inspection of the traditions of the various Siouan tribes. The main bodies of Siouan migrants followed the Ohio and the Missouri far to the north and west: the Mandans, Assiniboins, etc., reaching to within the borders of Canada. Other minor bodies traveled to the southwest, their representatives still existing in the Biloxi, etc., of southeastern Mississippi. The Siouan tribes seem to have followed the buffalo in its retreat westward, and their migration from the Carolinas is of considerable sociological interest. At one time their trans-Mississippian habitat included practically all the territory between the Arkansas and the Saskatchewan from the great river to mid-Montana, with the Winnebagoes jutting out on Lake Michigan. Their forays and trade-excursions led some of them from time to time across the Rocky Mountains - the present writer, in I89I, met a friendly party of them far within the Kootenay territory:

The original habitat of the Shoshonean or Uto-Aztecan stock, which embraces the Ute, the Sonoran, and the Aztecan (Nahuatl) peoples, and has representatives from the north of Idaho to the Isthmus of Panama, was probably somewhere in the northwestern section of the United States. The primitive home of the Shoshonean section was "somewhere between the Rocky Mountains and the Great Lakes." and the traditions of the other two branches bring them from the far north, as compared with their present southern abode.

The Mayan stock, creators of the civilization of Central America, according to their own traditions, came from somewhere to the north,the position of the Iluastecan branch of this stock north of Vera Cruz suggests that the Mayan emigrants from the home-land skirted along the Gulf of Mexico from some region considerably to the north.

The Arawakan stock (including the natives of the Bahamas and the Antilles, except the intrusive Caribs) had an extension in South America comparable only to that of the Algonkians and Athapascans in the northern half of the continent,- from the high Paraguay to the Goajiran peninsula in Venezuela, and in its greatest expansion from the Xingu to the Amazon and Orinoco. Its primitive habitat was in some part of the Brazilian interior, probably between the Xingi and the Paraguay, the general trend of their migrations having been northward. The Cariban stock, another very cxtensive people, who at the time of the Colombian

INDIANS

discovery were to be found in the smaller West Indian slands, and the northern part of the continent from the Essiquibo in Guiana to about the Isthmus of Panana, came originaliy, as the presence of the Carib Bakairi on the Jingu indicates, from the high interior of Brazil, at the suurces of the Xingù and Tapajos.

The Tupian stock were widely extended at the time oi the discovery along the Atlantic coast region from the La Plata to the Amazon. with branches scattered along the Paraguay and the Madeira to the foot of the Andes. Their primitive home. Brinton, with reason, assumes to have been in the central highland country to the east of Bolivia. The general direction of the earliest migrations of this stock was therefore sonthward (down the Paraguay to the Atlantic), after which the Tupi branch iollowed the coast to the Amazon. The Tapuyan stock. who once occupied the region between the Jingi and the Atlantic coast (from the latter they have been driven by the Tupis), are probably the oldest human residents of part of this area, their tenure of the seacoast reaching far back into prehistoric times.

The Chibchan stock, to which was due the civilization of the Bogota region of Colombia, lad their original habitat in the Andean highlands of central or southern Colombia, whence they wandered northwest into the Isthmus of Panama and northeastward up the Magdalena.

The Quechuan stock, authors of the most remarkable of South American civilizations. according to their own traditions spread from ytry small beginnings in the country about Lake Titicaca; but von Tschudi and Brinton, for linguistic reasons chiefly, find the primiive home of this people to have been in the extreme northwest of their characteristic area. The Aymara stock, which some authorities consider to have been a branch of, or perhaps an older member of the Quechuan, had its original habitat to the southeast of the latter. The relation of the Aymaran stock to that which produced the Calchaqui civilization of the northern Argentine is not clear.

Language and IVriting. - Although the languages of the American aborigines conslitute so many independent families of specch, the rocabularics of which are entirely divergent one from another, nearly all (if not all) of them possess centain general grammatical characteristics which justify us in claswing them together as one great group of human tongues. Brinton enumerates as points of resemblance: Development of pronominal forms, fondness for generic particles and for verbs over nouns, and incorporation,- the inclusion of subject or object (or both) in the verb. etc. Mcit American Indian tongues may be called 'holoplirastic," from the practice of compressing a whole "sentence" into a "word." the length of which is sometimes very remarkable. As an example may be cited the 11 icmac Algonkian) yülec limừtüacopokzōsi. "I am walhng about carrying a beautiful black umbrella over my head." This word, according to Rand, is derived from pekruosăn, "an umbrella": màktūãč, "I am black": wolưe, "I am beautiful": yäleư, "I walk about." From the Kooienay lanmuage may le cited: Vailthamkinc. "he carries the head in his hand" (n, verbal particie: äh, "to carryv": thäm, compnsition iorm of dakilon. "head" ${ }^{\text {a thin, "to do anything with }}$
the hand": inē, verbal); hinüpqanäpinē, "thou seest me" (him, "thou," (subject pronoun) : ïpqa, "io see" : äp, "me" (object pronoun) : inē, verbal). As typical incorporative languages the Iroquoian and Eskimo may serve. All the incorporative forms oi speech in America do not, however. proceed upon identical lines: and some that do incorporate, like Kootenay and Eskimo. oiten have one or more cases. According to Dixon and Kroeber many Californian languages do not possess the feature of incorporation at all (such are. for example, Maidu. Pomo, Yuki, etc.). As types of incorporating languages less complete than Iroquoian we have Kootenay. Siouan, Aztecan. Some of the Central and South American tongues seem also to have little incorporation. Otomi and Maya appear to be evolving in somewhat the same direction as modern English, away from incorporation and grammatical plethora. Many of the Amerindian tongues are both prefix and suffix languages: others prefer prefixes, others, again, suffixes. Some possess, and some do not. a plural form for nouns: a dual: gender-distinction in pronouns: a high development of demonstratives; reduplication; syntactical cases, etc. A few possess grammatical gender and some exhibit differences in the words used by men and women. In the matter of phonetics the languages of the American aborigines are remarkably divergent, some being extremely harsh. guttural and consonantic, others equally smooth, soft, and rocalic. The absence of certain consonant sounds and the equivalence of certain vowels and consonants characterize some forms of American speech. Euphonic changes are of major or minor importance. Sentence-construction differs greatly in yarious tongues. The position of the adjective is not always the same. The Haida language has even a distinction like that between our shall and will. Careful investigation of the many Indian languages, as yet studied imperfectly, if at all. may reveal other interesting linguistic phenomena. How much has been written about and in some of the languages of primitive America may be seen from the bibliographies of Pilling! Our knowledge of them varits from a brief vocabulary of the Esselenian to the exhaustive dictionary of Yahgan compiled by Bridges. The native literature runs from the unrecorded tales of the northernmost Athapascans to the poetry oi the ancient Mexicans and Peruvians, some of which has been handed down from pre-Columbian times. The only actually phonetic (syllabic) alphabet now in use among the Indians (except the syllabaries introduced by missionarics among the Athapazcans, Crees, etc.) is post-Columbian, - the invention of a hali-blood Cherokee. A sort of alphabet has however. sprung up more recently among the Winnebagos. The development of picture-writing varied very mucla among the numerous tribes, as may be seen from Mallery's classic study of the subject. Sometimes, as is the case with the Kootenays, ability to draw does not scem to have been accompanicd by exubcramt pictography: The Walum Olum of the Delawares, the "calendars" of the Kiowa, Sioux. Pima, ctc., are special developments of primitive records. the highest form of which is seen in the manuscripts ("books") of the Aztecs and Mayas of a religio-historical claracter. The pictographic records of the Ojibwa "medicine men" have been studied by

PICTURE WRITING OF THE OJIBWAY INDIANG

INDIANS

Heffman, and the rite-literature of the Cherokee by James Mooney. The native literature of primitive America has been the subject of special monographs by I)r. D. G. Brinton. The Span-ish-American countries have furnished several writers and insestigators of Indian descent.

Religion.- The mythology and religion of the American Indians have received particular treatment at the hands of Mäller, Brinton, Powell, cte. Perlaps the most general myth of importance is that of the divine hero, teacher, and civilizer, who after accomplishing his labors, leaves the earth, promising to return at some future time. This myth is found in Nexico (Quetzalcoatl), Yucatan (Kukulkan), Colombia (Bochica), northeast North America (Manabozho, Gluskap, etc.) Somewhat analogous is the myth of the twin reformers of the primitive world among the Pueblo Indians, Navahos, etc. The Iroquoian stock have the myth of the contest of the good and the bad mind. The Algonkians have a myth-cycle of the rabluit, the tribes of the northwest Pacific coast one of the raven and thunder-hird, the Rocky Mountain peoples one of the coyote, the Brazilian Indians one of the jaguar, etc. Some of the tribes are very rich in animal myths and, as Mr. Mooney asserts, the characteristic tales of "an 'Uncle Remus' nature" found among the Cherokee and other peoples have not, as many suppose, been borrowed from the negroes of the South. Even the famous "tar-baby" tales have their independent Amerindian analogues. Flood-legends are widespread in America and vary from the simple, locally colored stories of rude Athapascans to the elaborate conceptions of the civilized peoples of Mexico, Central America, etc. The cardinal points and the number four have developed with many tribes a rich symbolism, with which the chief colors are often connected.

The "medicine men" of the Ojibwa, the Cherokec, the Apache, have been investigated by Hoffman, Mooney, and Bourke, and a large amount of accurate and authentic information concerning shamanism among the Amerindian peoples has been accumulated. The power of the "medicine man" varics much from tribe to tribe.- with some he is a personage of little or no importance: with others he is the controlling influence in secular as well as in religious affairs. The acme of such influence is found among some of the tribes of Guiana and Brazil. These "medicine men" had often their secret societies and "lodges" into which chosen neophytes were admitted with appropriate ceremonies. They had also, with many tribes, the control of the rites to which the youth were subjected at the time of puberty, with others they performed such marriage ceremony as existed. Besides these shamans, there were "prophets" and religious reformers, especially since contact with the whites. The widesprcad "Ghost Dance," in its more recent outbreaks, has been studied in detail by Mooncy. Wiorthy of note is also the "new religion" of the Iroquois, and the "Shaker" religion of the Indians of Puget Sound. The investigations among the Fawnec by Miss Fletcher and G. A. Dorsey have demonstratcd the existence of a relatively high form of primitive religion in a rather unexpected quarter,their worship of the morning star in connection with agriculture was, however, at one time accompanied by human sacrifice. The mortuary rites of the American Indians, corresponding to
diverse ideas of the soul and its future in the other world, varied from simple neglect of the corpse to what is represemted in material form by some of the mounds of the Mississippi Vallys and the stone tombs of Peru. The mortuary customs of the aborigines of North America liave been made the sulbject of a special monograph by Dr. Yarrow, and the doctrine of "animism" among the South Amcrican peoples has been treated at length by Koch. The contemplation of the totem (properly Ojibwa odo-dena),-tribal or family inark,-- of certain Algonkian tribes has given rise to theories of "totemism," concerning which there is much dispute in the world of science. "Fetishism." as exemplified in the Zuñis, has been investigated with some detaif ly Cushing. Cannibalism (the word cannibal is the corrupted form of a South American tribal name) has been rafer in America than is generally belicved. Outside of its occurrence through necessity in ways known to civilized peoples, it was chiefly partial and ceremonial. Epicurcan cannibalism flourished along the coast of South America and on some of the Caribbean islands: ritual cannibalisin among certain tribes of the northwest lacific coast, in ancient Alexico, etc. The almost extinct Tonkaways of Texas bave the reputation of being the "last of the cannibals." while the Attacapas owe their name to this practice attributed to them by their neighbors. In the legends of the Cree and Ojilhwa tribes of the Algonkian stock, a cannibal giant (wendigo) figures, and a horror of human flesh eating is expressed at the present time, whatever may have been the case in the past. From the condition of human bones and other remains in the shell-heaps of various parts of the coast, some anthorities have come to the conclusion that cannibalism did exist in prehistoric ages among some of the Indian tribes. Religious ideas approximating to monotheism are attributed by some chroniclers and investigators to some of the more enlightened aboriginal rulers of Mexico and Peru. In these regions of the continent, as also in Central America, architecture and the arts of commemoration and record were at the service of religion. See Mythology.

Amusements.- The games of the American aborigines, some of which, like lacrosse, have passed over to their conquerors, are of sociological and religious significance in many instances. Stewart Culin has made a special study of the games of the North American Indians, and rejects the theory favored by Tylor and others, that many of them (for example, Mexican patalli), are imports from Asia. The games of the civilized Aztees seem to be but "higher developments of those of the wilder tribes." and those of the Eskimo are modifications of games found among other ahoriginal peoples of America. Among characteristic Amerindian games may be mentioned: The gambling game with sticks, the hoop-and-pole game, the ball-race of the sonthwestern United States, the ball-games of castern North America, the woman's game of double ball, foot-races, the snow-snake. etc. Culin holds that back of cvery game lurks "a ceremony in which the game was once a significant part." The variations in games do not follow linguistic lines. One centre whence games have radiated and where some of their oldest forms are still to be found, is in the southwestern United States, from which their migrations can
be traced north, northeast, east, and south. Interesting modifications arise from conditions of environment.

Arts and Inventions.- The arts and inventions of the American Indians correspond to the extent and variety of their environment. The mass of the inhabitants of the continent at the time of its discovery were hunters and fishers, or agriculturalists oi the Stone Age, most of Whom had some knowledge of pottery-making. The house followed the lines of climate and culture, from the snow iglu of the Eskimo and the rude wickiup of the Lites to communal houses of the Mohegans, the Iroquian "longhouse," phalansteries of the Pueblan and Central American areas, and the stone dwellings of a more or less pretentious sort of the cirilized peoples of Mexico, Central America, and Peru. The carate lodges and cliff-dwellings of Arizona and New Mexico, the wooden (sometimes underground) houses of the northwest Pacific coast, the slin-tents of the plains tribes and the v:igwams of the Algonkians, the earth-lodges of the Mandans, etc., correspond to environmental stimuli. A like variation may be seen in the cradles of the American aborigines. studied by Mason, and in their means of transport on the water.- kayaks, "bull-boats," woodskins and balsas, dug-outs, canoes of pine and birch bark, large and small, and of all varieties of design and finish. In North America the Algonkians and Iroquois, and in South America the Indians of the great Brazilian water-ways, have made themselves celebrated for their skill in navigation. So too has the Eshimo with his hayak and the Peruvian with his balsa. The Algonkian Etchemins are literally "the canoe-men." The seagoing canoes of the fishing tribes of the coast of Alaska and British Columbia also deserve mention. On land some of the American Indian tribes have used the dog (Eskimo in particular) and the sled (the Algonkian toboggan, adopted by the whites for amusement purposes, is a special form). while in Peru the llama has been employed for ages for "packing," but not for draft purposes. The use of the horse and the modifications of primitive culture thereby induced in the Indians of the plains of the Missouri-Mississippi valley, the dlanos of Veneztela, the pampas of the Argentine, etc., are, of course, post-Columbian. So, too, the influence of sheep culture upon the Navaho and Their primitive industries, and of the cow among certain South American tribes. The only animals domesticated by the Indians whose use amounted to a considerable factor in their social and religious life were the dog and the llama, the latter in Peru and Bolivia only. The other hali-domesticated animals and birds are of little importance as culture elements. The domesticated dngs of pre-Columbian America represent several diverse species of Canida. The absence of such domesticated animals as the cow, the horse, the sheep, etc., in pre-Columbian America account $=$ for certain limitations of its culture as compared with that of the Old Vorld. Pets. however, lird and beast. were very common, evpecially in Brazil and Guiana. The disappearance of the wild buffalo and other animals of the chase, since the coming of the whites has heen iateful for some tribes. - the contact with the latter as represented by the various "fur comparics," ctc. has caused many changes in the life of the aboricines, seldom for the better.

As Masnn has pointed out, the Amerindiar traps and other devices tor the capture of wild animals indicate intellectual skill and marvelous adaptation to the habits and actions of these creatures. The Eskimo harpoon and its appurtenances, the simple and composite bow, the arrow-poisons of some North American and many South American peoples. the manufactures of obsidian and jade in ancient Mexico, cotton weaving and dyeing in the more southern regions. maguey-paper making in Mexico and Central America, stone carving (from Mexico to the Argentine), feather-work (in the southern United States, Mexico, Central America, and parts of Scuth America), gold working (in the Isthmian segion, Colombia, etc.). the hammocks of the Venezuelan tribes. the fish-poisoning devices of many peoples of South America in particular, the fine pottery of many regions of the continent, the quipus or knotted recordstrings of the ancient Peruvians, the primitive drum-telephone of certain Brazilian Indians, the blow-gun (southeast United States and South America), cassava preparation (northern South America), the bolas of the Pampean tribes, etc., represent the diversity of invention and manufacturing skill among the American aborigines. The lamp of the Eskimo and some of the Indian tribes of northwestern North America is sui gentris (its importance has been emphasized by Hough). Methods of computing time. season, etc, vary from the slanting stich of the Algonkian Naskopi to the elaborate calendar systems of Mexico and Central America. Of musical instruments, the drum, the flute, the pan-pipe, and the "musical bow" were known to the American Indians. Songs and dances to the accompaniment of these were in rogue. Practically all stages of primitive culture were to be found in pre-Columbian America, if we may judge from the tribes now surviving, from the savage Seris to the ancient Mexicans. Mayas. and Peruvians. Moreover, within the bounds of the same linguistic stock, as noted above, there may be found tribes representing a high and a low stage of development ; as for example, the Aztecs and the Utes of the Shoshonean stock, the Dogribs and the Navahos of the Athapascan, etc. Some tribes were pre-eminently fishers, others hunters. Many excelled in both. like the Eskimo and some oi the peoples of the northwest Pacific coast. Some sort of agriculture was widespread in America - the cultivation of corm, beans, varieties of pumpkin and squash, etc., was known all over eastern North America, and the regions of the southwest, etc. - and typical tropical and semi-tropical and other plants and iruits (potato, tomato, maize, pineapple, tobacco, varieties of cotton, manioc, sweet-potato, cacao, coca, etc.) were cultivated in the more southern regions of Mexico. Central and South America. The spread of tobacco and maize in North America and of certain other plants in Central and South America indicates agricultural receptiveness on the part of the many tribes concerned. The capacity of the American Indians generally for agriculture has been underrated probably, as both the desert-born cultivation of the Pueblos Indians and the tropically stimulated cultivation of the Indians of South America indicate. The arid regions of the Peruvian coast offer another example of considerably developed agricnlture. In America the utilization of the gifts of earth varred from

INDIANS

the sced picking and root digging of the Utes to the market gardens and chinampas of ancient Mexico. How the necessities of agriculture can shape a religious system may be seen from the rites and ceremonies of the Pueblos Indians, the cult of "mother corn," cte. With some tribes tobacco was more or less of a sacred plant, also the meseal.

Position of If oman.- The sclation of women to agriculture gave them a higher standing with certain tribes than wonld otherwise have been the case. With the Iroquois the position of women was very high and to them was allotted a considerable share in the govermment, peace negotiations, etc., and female chiefs were by no means unknown, - women were the "mothers of the nation." Among the Mayan peoples of Central America woman's position was also high. Many of the priests were women, and they were also commonly the leaders of their tribes in rebellion against the Spaniards - the most famous was Maria Candelaria, "the American Joan of Arc," who led the insurgent Tzendals in the 18th century. In ancient Nexico and Peru the position of woman was perhaps not quite so high. Among some tribes the position of woman was very low, and her sexwal peculiarities added to the disesteem in which she was held, as for example, among the Tacanan Araunas of Bolivia. The Athapascan tribes vary much in their trcatment of woman, - with some she is little better than a slave or servant, while with at least one Alaskan people of this stock female chiefs existed at times. The "purification" of wonmen at the period of their menses, and the segregation of girls at the time of puberty, were accompanied with many rites and ceremonies among various tribes from the sude Athapascans to the civilized Aztecs. The curious custom of the cowvadc (imitative child-bed on the part of the husband) prevailed among many. Venezuelan, Guianian, and Brazilian peoples. The relations between environment and the share of the sexes in culture has been investigated by Mason; according to whom the zenith of virile Amerindian art is reached in Peru, while in Colombia we find woman as farmer, weaver, and potter. In the Oregon-California region one art, basket-making, reaches its acme of development in the hands of woman. A large female influence in religion is noticeable among the Pueblos Indians. Among some tribes, for example, the Hurons, the weregild for killing a woman was greater than that for a man. Some sort of matriarchal system, with maternal descent, prevailed very commonly in pre-Columbian America; among certain of the Koloschan Indians, for cxample, a man was considered to be in no sense related to his father, his sole parent being the mother. Besides this extreme form, numerous other varieties occur among the tribes now existing, the system in rogue among the Iroquois, etc., being more complicated and adapted to social needs. The systems of marriage known to the American Indians varied from the absence of any particular rite or ceremony to selection of the wife by the old women of the tribe, as among the Hurons, or the miting of the couple by the "medicine men." Some of the tribes of the Brazilian forests, ranking very low in culture, are strictly monogamons; while peoples of higher civilization, like the Chibchans, Mexicans, Peruvians, etc., were polygamous or concubinative, or both. Marriage
by purchase was found over a large area of America; but here as in other parts of the globe, the "money" received was often rather a compensation to the parents for the loss of their daughter than a real sale of her to a suitor. Divorce, in many forms, is known to the primitive Americans, both by mere word of the husband and according to set forms and rites. Consanguineous marriages were strictly avoided by many tribes; but among a few, such as some of the lowest Athapascans, incest was not condemned. In the matter of the sex-relations, as in many other fields, the American Indians cxhibit alnost all possible phases from the monoganic chastity of some of the lowest peoples to the unnatural indulgences of the Pernvians. Runaway matches and marriages for love, in spite of the contrary opinion entertained by zome authorities, have been by no means uncommon throughout the continent. Suicide on account of unsuccessful wooing by both sexes is also not at all rare. Some peoples, too, have developed love-songs of a romantic order, for example, the yarazey's of the Quechuas.

Government.-The systems of government of the American Indians and their tribal organizations range from the simple democracy of the Kootenays and some of the Brazilian Indians to the elaborate state institutions of the ancient Mexicans and Peruvians, which in several respects resembled the corresponding irstitutions of mediæval Europe or the ancient classic world. The power of the chief, however, seems everywhere to have had limitations, and some tribes distinguished the permanent peace chief and the temporary war-chief. Chiefs were generally elected, either from the body of the tribe or from certain specified families. "Totemism" and secret societies are not found to any extent, if at all, among certain tribes (the Kootenay, for example); while with many of the peoples of the northwest Pacific coast they are perhaps the chief feature of aboriginal society, as Boas has recently shown. Property rights are represented in many stages, from the semi-anarchic Eskimo to the Aztecs of Old Mexico and other peoples of Central and South America. Slavery existed anong many tribes, and on the northwest Pacific coast a sort of traffic in human chattels had arisen. See Slavery.

Trade and Commerce.- Within the spheres of the culture-centres of Mexico, Central America. Peru, etc., trade and commerce were well developed. The Colunbia River region was the scene of a less developed trade; while the southeastern United Statos, the region of the Great Lakes and country wcst and south of them, had also their important distributing points. The region of Bering Strait was likewise an AsiaticAmerican commercial centre.

Education.- With the lower tribes generally, such education as was imparted to the children was given by the father to the boys and by the mother to the girls. Pcoples like the Iroruois, the Sioman Omalnas, ctc., used the instruction of, tales, legends, and proverbs. The ancient Aztecs and some of the other semi-civilized peoples of Mexico and Central America had schools for boys and others for girls, in which the duties proper to each sex were taught under the sunervision of the priests.

Physical Characteristics. The physical characteristics of the aborigines of America mingle uniformity with diversity. The skin color, popu-

INDIANS

larly styled "red" or "copper," is designated by Mantegazza, "burnt coffee," and by Brinton "brown of various shades, with an undertone of red." This but varies from rather dark to rather light. Among the lighter tribes have been reckoned the Koloschan Tlinkit, the Bolivian lurucari, etc., and among the darker the Charmas of the Gran Chaco, the Bolivian Canisianas, and a few other tribes of South and Central America. The hair is generally termed "black," but, as Brinton notes, there is in it "a faint under-color of red," which shows up more in childhood and seems much more prominent with certain tribes than with others, Red hair is known among American lndians, but in some cases (certain South American tribes, for example), its occurrence may be due to infusion of white blood. The eyes of the Indians are, with rare exceptions, dark brown. The stature varies from rather low to rather high, represented on the one hand by some of the shorter Brazilian tribes and on the other by the Patagonian "giants." Among the peoples presenting many individua!s of tall stature, may be mentioned the Iumas and Pimas. some of the Muskhogean tribes, some of the Crees, Ojibwa and eastern Algonkians, Pawnees, Iroquois, Siouans, Huaveans, Ramas, some of the Cariban tribes, Yurucari, Cayubabas, Gnaycuruans. Patagonians, etc. So far as is known no dwarfish people comparable to the dwarf races of the Old World existed in America, although the skeletons from certain Peruvian tombs prove the existence of a dwarfish element in the general population; and the stature of many individuals among certain Brazilian tribes is so low as to induce some authorities, with Kollmann, to predicate the former existence of a dwarf race. In the relations of trunk and limbs and in the relation of one limb to another many variations occur among the Indians, due to occupation (canoeing, etc.-and, since the adrent of the whites, horse-riding). In primitive America all the chief forms of skull (often with artificial flattening, etc.) are found. Among the dolichocephalic (long-headed) peoples are the Eskimo and Iroquois generally, some of the Muskhogean tribes. Otomis, Aymaras (partly), Tapuyas, and Tupis (largely), etc. Of the brachycephalic (broad-headed) may be mentioned the Araucanjans, Caribs, Arawaks, Patagonians, Mayas, many of the tribes of the Pacific coast region of North America, etc. The civilized peoples of Mexico, Central America, and Peru appear to have been of stature below the average and of varied ckull form tending to brachycephalic. indicating mixtures of types. In the Columbia River region type-mingling is indicated also by both stature and skull-form. The Peruvian region is another centre of race-mixture, as evidenced by skull-form. The oldest skulls discovered in prehictoric burial-places or in geological sifu are not distinct irom the American types, - the latest found, the "Lansing skull." is quite Indian. The skull capacity of the Indian is below that of the white in gencral, but many exceptions occur. The brains of the less cultured Indian peoples (Fuegians, Eskimo), show no deciled anatomical inferiority to those of civilized Europcars. Great varicties of build and set of body are found among the American Indians, from the half-starved Fuegians to the well-fed and corpulent Iroquois. Small feet and hands are very common. Among matiy trives
in rarious parts of the continent handsome mer and women of consiuerable beaty are io be found. In the case of women an adminture of white blood often enhances their beauty:

Race-Fusion. - The intermingling of the American Indians with the intruding white race has been much greater than is generally believed. The extent of this fusion of races varies from certain parts of North America with their classic Pocahontas examples to Uruguay, in South America, where 90 per cent of the population are said to be of mixed blood. The Eskimo of Greenland have intermarried with the whites (Danish iathers, native mothers), so that except in the parts remote irom settlements no pure-blood Eskimo exists: and the same is true of a good deal of Labrador, where the contact has been with fishermen of English descent. The Micmac, Abnaki, and related Algonkian tribes of Maine, New Brunswick. etc., have a large admixture of white blood (French iathers, native mothers), and all orer Canada and the northwestern United States in the early days of colonization and exploration the French traders, trappers, voyageurs, and courcurs des bois mingled freely with the native women, particularly those of the various Algonkian peoples of the Great Lakes and the West. The Hudson's Bay Company, by introducing employees of English and Scotch descent into the Canadian Northwest, made possible other métis, of which those of Scotch descent on the father's side are said to be healthy and sturdy specimens of humanity, with more than ordinary capacities. As indicated by the present condition of the Iroquois on the reservations in Quebec, Ontario, and New York, some infusion of white blood has taken place from very early times. Here the combination of white mother (often an adopted captive) and native father is more common than is usual in race-mixture. The Cherokee had an admixture of white blood in ante-Revolutionary days, to which Mooney attributes much of their culture-achievement since that time. In Mexico, Central America, and South America generally, as Talcott Williams has very recently noted, the half-breed element is very large indeed. for the native population was never exterminated by the whites as some histories still teach. Oi the $40,000,000$ ithabitants of South America it has been estimated that less than $10,000,000$ can lay any claim to pure white blood. There is reason to believe that the future of some of the South American countries will be as much in the hands of the Indians as in those of the whites. In Mexico, parts of Certral America, Colombia, Peru, and Chile, the strain of Indian blood represents able and intellectual aboriginal peoples. In certain parts of South America, and, sporadically in northeastern Sorth America, intermingling of Indians and negroes has occurred, giving rise to the so-called Cafusos, etc.. of Brazil, and a few other small groups. The mixture of white-Indian-negro is also found here and there. In some of the Spanish-American coututries there is a special vocabulary to designate the mmerous degrees of métissage. In the Canadian Northwest the halibreeds have taken a prominent part in the development of the country (one noted mitis. Norquay, was premier of the province of Jlanitoba), and they are likewise noteworthy in the annals of the northwestern United States. In Mexico and Central America, not alone the métis but

INDIANS

the Indians thenselves have produced celebrated men. Juarez, the liberator of Mexico, a really great many, was a full-bloud Zapotec, and President Barrios of Guatemala a Cakchiquel (Nayan stock).

Treatment by If hites.- The ill treatment of the American Indian hy the whites has often been such as to stamp with eternal dishonor the conquering race. Massacres, broken treaties, land-robling, commercial swindles, etc., mark the path of advancing "civilization," - English, Dutch. French. Portugucse, and Spanish have all been guilty at some time or other. The English in Newfoundland, the Americans in the West, the Castilians in morthern Mexico and Yucatan, have exterminated or sought to exterminate whole tribes. We manst, however, belicve that the accounts of the early chroniclers concerning the "millions" of Indians slanghtered by the Spaniards, were the customary exaggerations of those who sing the victor's deeds. Pern and Mexico, for example, wonld not contain so many Indians to-day were those storics literally true. Against the centuries of dishonor in the treatment of the Indians by the whites, we may place the efforts of missionaries of all faiths, from the good Las Casas in New Spain to Duncan of Metlakahtla. The Jesuits among the Iroquois and Algonkians in North America, the Moravians among the Eskimo and some of the Algonkians and Iroquois, have all done good work, which only the incapacity or worse of governmental anthorities has made null. The missions in California and the "reductions" in various parts of South America (Paraguay in particular) might have succeeded in keeping the Indians gentle and loyal sons of the Church had the good fathers been forever in charge, but the oncome of the more strennous life of the whites doomed them to helplessness. The story of the Paraguayan experiment is one of $\mathrm{tt} _$most interesting in the annals of mankind, but also one of the most disheartening. Against such failures a few bright spots may be set, - the Fuegian mission, for example: but even there all is not well. Signs of a better treatment of the Indians still within the borders of the United States are not wanting, and it is to be hoped that the present educational fads with which white children are being experimented upon will be kept far from the Indian schools.

Intluence on Civilization.-The contributions of the aborigines of America to the world's stock of civilizing factors and influences are much more numerous and of greater importance than is generally thought. Besides the innumerable place-names in all parts of America of Indian origin, the Algonkian, Peruvian, Brazilian, West Indian, Guianian. Venezuclan, and Mexican words in English, French, Spanish, and Portuguese (whence many of them have spread into all the civilized languages of the world) are able remembrancers of the conquered race. The literature of the Spanish-American countrics and of Brazil has been more or less affected hy the stimuli of native theme and treatment. Many of the old dances and folk-customs still survive even where Christianity has been at least outwardly accepted and have sometimes been adopted by the descendants of the European colonists. The 'Hiawatha' of Longfellow, and the tales and dramas hased upon the deeds, adventures and romantic episodes in the lives of King Philip, Pocalontas, Pontiac, Tecumseh, etc., to
say nothing of the novels of Cooper and his successors, indicate that the Aryan mind of the Anglo-Saxon order has found treasure in the Amerindian soil. In Mexico and other parts of Spanish America the cathedrals and other religions edifices, by intention or by happy chance, often occupy sites sacred ages before the Colmmbian discovery to pagatn deities, - so the new religion gathers strength from the old, and the dislocation of faith so common in Protestant commeries is avoided to a very large extent. Of more material things, we owe largely to the Indian the paths over which our highways and our railroads run, while many of our cities and towns have only sprang up on the old campsites of onr predecessors. The great importance of some of these "Indian ways", in the history of the United States has been pointed out by Hulbert. The 1ndians' knowledge of the great water-ways of the country, of portages and trails through forest and over mountain, has made possible colonization and settlement otherwise putterly ont of the question. Indian hunters and fishers, scouts, guides, canoe-men, carriers and packers, in all sections of the American contincut, have been indispensable to the progress of white civilization. Nor have Indian slaves and servants been few or withont social significance in some quarters; while French. Spanish, and English have at times availed themselves of the services of Indian warriors, - the Iroquois enlisted for the North and some of the Cherokee for the South in the Civil War, and then the government has sometimes set one tribe off against another. In Canada and part of the northwest of the United States, where commingling of the races has taken place, the civilization of the land owes even more to the halfbreed, zoyageur, courcur des bois, etc., than to the Indian himself. (See Canada.)

Thronghout the continent - more especially, however, in parts of South America - devices fot hunting and fishing and appliances in woodcraft, primitive agriculture, etc., were transferred to the European colonists during the period of settlement, and many of them are still in active usc. Fisll-poisoning by narcotics, the use of the blow-gun for killing birds and smatl animals without damaging the skin, methods of stalking beasts of the chase, certain traps and suares, etc., belong here. In connection with agriculture we have menhaden-manure, guano, etc., the planting of corn and beans on pumpkins together, the hurning over of land before tillage. etc. But it is upon the food-supply of the world that the American Indian has exerted the greatest influence. Potatoes (common and sweet, both), maize, and the tomato, now in use by all the civilized work, were first cultivated by him and taken over by the whites after the discovery. Caeao, vanilla, jalap, the kidney bean, several varicties of squash and pumpkin, manioc, Ierusalem artichoki coca, agave, quinoa, persimmon, and perhaps also the peannt, came to $u s$ from the Indians. Maple-sugar and maplesyrup. pemmican, jerked beef, etc., are from a like source. Tobacco, the great marcotic, was onc of the first gifts of America to the Old World. Of drinks the American Indian has given us Paraguayan maté, "Iabrador tea," and several other like concoctions, chocolate, Mexican pulque, and a considerable number of other intoxicating beverages from South America.

Man mecieines and medicinal piants were mace $=\frac{1}{2}$ the whites by the Incians，and in the ea ca setternert and coonization the Itcian cicer：lmale and jemale）was 20： tuimnirn 2i－Jew E－gianc．for example hac it：fle Pre．aiter mhem the＂Ice Pye weed

 micsi imporant contioutions of zecent years io ti：e American pramacopria．S－utis America． besices fomerous jocally sonma remedies．e：c．

 f．ust unmatelt be credited to＝ie abcrisines oi America JIany drestuzs and dre－moods were F－：siven to the civilized wotd by the Indians．

 dyes fang inem the pose of zortheast No－in Ame－ica jev dyeing hasietry to the famnts －＂ucou cr anutio i Venezueia used．among cine－purnoses．En siairing crecse．Ponery and other howsehid trensils ci Indian manuiacture ase used inroughcz：Spanish America．The tammois o the Aramak Indians belongs now to all civitued poopies toll ihas india subber means，crizizadon omes to the Indian．Both in smal：things and Hin_{1} great the American abustimes，though thei－gitis to the mhite race． will ing be remercbered．eves ii．as some ar－ thorities（upon imperiect evideace）believe． they a：e sapidir passing amay．On this point one may cite the－ematic of Deniver that Hum－ boict in IE2z escimated the zotal population of America at I3．000．000 whites． 0.000 .000 haij－ breeds．6，000．000 nes－oes．and 0.000 .000 Indians， while a computation made in 1So－＝eci－ oned so．000．000 whites．37．000．000 halí－breeds． 10．000．000 ners：0es and Io．000．0co Indians．

The：e angh：be menticned here also the ＂Chime Jangon＂oi the Columbia Rive＝zegion， tie Ligra Gera：of Brazil．and the minor iargros and rtace languages of oher sections of the cminent，which frove how the Irdian has compe＂d the whice man，mo－e o－Iess．to use his language in some fom or oine fo：the pur－ poses oi iriencly of commercial intercotrse．
－indouty f y on in－imersion．The ques－ tion of ine aniquity of ine American I－dian cuiture st dizoula to senle satisiactorir． Tinne nust be äcwed so－the divergence of the original stock into the numerous（acre numer－ fos p－e－C－OM－ian e－as）iribes and peoples innal iving America a：the time ci its discovers． －Time if ife fozenction ot ihe Enmo and the It \because ts．ine Carith and the Pa：agnaan． Time，agair．mus：be al wed jo ine deve p－

 \therefore C itht：ir a the savage B ivian，the
 ：T．A：A－rica．Then the civilization－ni M－x－

 on monts it the rari us cen：－e $=1$ American cin ：：\％cic．dil－t sping ip in a day， ary wore than dis the culoure \vdots medixval $E \because, t$ The \dot{E} merication of the dog the
 $5 n_{0}:$ ：e ：nam the pore：the pineapple．
 ：ng ：ael ime Moredver．it is Juw inow：
that Arterican Incian lamguages do not now change and have now in the pas：changed at the jast fate oace assigned io inem by philologiste． So．while cae may not believe that America was the orgina tabita：ot the human race he mas be cerain tha：vert many milienniums have e＂apsed sime ine＂Rec Xan＂began inis caree－as the auiccht．one of the New Whorid．There scems every zeas：to befiere that ai tive close of the Gaciz＇Age man had spread over a consideralie porion bith Vorh and South America and Was sunsemposery witin Eviopean man oi an eartr epoch．To calculate man s residence in the Amexican chri－onment by rears is impossible on present evidence $D=$－．Siv assures us that the inguistic phenomena me：with in the Mayan ciaians aicne require thousands of years ict ：heir evolution，and some of the resuits deduced E－om the Jayan hereglyphs br certain invesi－ getors imply the exisience of civilizatica of the Cental American coder jo：vez many mil－ ienniums．Perhaps it is fai－to sey that man has been in America ai least $2 \equiv .000$ yeass and no： We－e than 200．000．and that the civilizations of Mexico．Cemiral America and South America were probably as long－lived as those of Rome． Geece．etc．They were also in many respects jus：as ispica oí numan attempt and achiere－ －me－n．Foz the American Indian was a man as we are men．

Brblicgrantay－Abbot，（Primitive Industry＇ （INS）：Anerican－finhopologist）（INS 1903）；（American Anciqua－ian＇（IN－ミー1003）： －Annaal Reports Bureat of American Eibiol－ csy（IS－0－1003）：（A－nual Report Smithsonian Institution and पnized States \ational Mrseum＂： Bancroti．＂The Native Races of the Paciic ミ：ates of North America）（ISN？）：Bastian， ＂Die Cuitu－lander des alien Amerikas＂，（IS－E）： Binnon（lytiss os the Jew Wrold＂（igco）． American Hero－Mrihs＇（IN2）．＇Esiays oi an Americanist＇（IS00）．＂The American Race＂ IEyI）：Brihl．＇Die Culwroiker tio Ameri－ has＇（ISS－）：Catlin．＂Illustrations of the Man－ ners．Customs and Conciaion of the florih American Indians＇（INó）：＇Congrès Interna－ ijonal des Américanistes＇（1902）：＇Contribu－ ：inns to Jorth American Ehnolosy＇）（Bureau ON E：2oog．TVashington．Is：－93）：De Jadaillac iprehistoric Americe？（ISBE）； Deniker．（Races of Man）（Ige0）：Do Orbigny， I＇Homme américain＇iI839：Drakic．＇Indians Ci North America＇（ISKO）：Ehrenreich．＇L＇rbe－ whaer Brasiliens＇（IS9：－＇Friederici．＇In－ eimer and Argio－Amerikanes）（Ig00）：In Than＇Amors the Indians of Gwiane＇（INE ）：
 Feame．＇Eihncics？＇（I806）：＇Library o：Ane：－ icun Aborisinai Literature）（1860－0）：ron Mariv：Beirāge zur Einn granhe und sprachenkunde Amerikas zuma！Bzasiliens’ II：：＇Jlemoirs and Builetios of the A：merican
 －Huses anc House Life of the American A ricines 1 ISM，Vol．IV：of Centr．Amer． Eiton）．＇League of the Iroquois＇（I002）：
 Pa_{1} es of the Archreol gical Institu：e cif Arnerica．American Series 1＇00－：Payne．
 Pan：Ehee：ci a Bibii mrany i the Lansuages of the North Amerian Indians ${ }^{3}$ （INミ）－and subsequen：special by ir zraphics －Asuncuian．Athapascan，Chinookar．Eshimo，

INDICATOR

Iroquoian, Muskhogean, Salishan, Siouan, Wakashan: 'Publications of the Field Museum' : Ratzel, ‘History of Mankind’ (1898) ; 'Relations des Péres Jésuites' (1902) ; 'Reports of Ontario Archeological Museum'; 'Reports of Committee of British Association on Northwestern Tribes of Canada'; 'Reports and Memoirs of Peabody Mhseum'; Von den Steinen, 'Durch Zentral-Brasilien' (1886): 'Unter den Naturvolkern Zentral-Brasiliens' (189-4); Schmidt, 'Die Vorgeschichte Nord-Amerikas' (1894): Thomas, 'American Arehaology' (1898): Tooker, 'Algonquian Series’ (190r); Winsor, 'Aboriginal America' ($188+9$).

The 'Publications of the Bureau of American Ethology,' embracing original monographs by emment specialists, are a lasting monument to the fomder of the Bureau, the late Maj. J. W. Powell. to whom all students of the aborigines of the New World owe a debt of deepest gratitude. Among workers not connected with the Bureau, the death of D. G. Brinton in 1899 removed perhaps the most gifted and representative Americanist.

Alexander F. Chamberlain,
Clark Luiversity, Worcester, Mass.
Indicator, in* steam engineering an instrument invented by James Watt, to record, graphically and automatically, the pressure in an engine cylinder at every point of the stroke. By means of the diagram that the indicator

Fig. I.
draws, it is possible to determine whether the valves of the engine are working correctly or not, and it is also possible to estimate the horsepower that the engine is developing, with con-
sidcrable accuracy. Commercially, the steamengine indicator may be had in many forms; but all are based on the same fundancolal principle, which witl be understood by reference to the diagram presented in Fig 1. The paper upon which the indicator diagram is to be drawn is here supposed to be secured, flat, to a carringe which travels back and forth upon a track; the motion of the carriage corresponding precisely

Fic. 2.
to the motion of the piston of the engine. If practice it would be inconvenient to have th? carriage travel a distance equal to the whol stroke of the engine, and hence some form ot reducing motion is used, so that the motion of the carriage may follow the motion of the engine piston accurately, but with materially reduced velocity. The indicator diagram is draw by means of a pencil-point carried on the piston rod of a small steam cylinder which is situated below the carriage, and which opens freely into the cylinder of the engine from which the diagram is to be taken. The piston of the indicator is pressed downward by means of a spring whose strength is accurately known, so that the increase of pressure corresponding to a rise of one inch in the position of the pen-cil-point is known. When the indicator is in operation, the pencil rises and falls proportionately to the pressure of the steam in the engine cylinder, and the carriage, with its attached paper, travels back and forth, horizontally, at the same time, keeping pace precisely with the motion of the piston of the engine. Under these circumstances the pencil-point traces a diagram somewhat like that shown in the illustration. In practice, the paper upon which the diagram is drawn is usually wrapped about a cylindrical drum, which rotates back and forth as the instrument works, following the motion of the engine piston just as the carriage here shown is supposed to do. In Fig. 2 an enlarged view of an indicator card (or dingram) is given, together with the technical names of some of its more important parts. The arrows show the direction in which the pencil travels as the diagram is drawn. The "admission line" is the part that is drawn white the engine is in full communication with the boiler, and drawing steam from it. The angle marked "cut-off" corresponds to the moment at which the stcam supply is cut off, and the expansion of the steant begins. The "expansion line" is "trawn during the expansion of the steam, and on the return stroke, after the exhanst valve has opened, the "ervanct line" is drawn. When the exhanst valve has closed again, the stcam remaining in the engine cylin-
der is compressed until the end of the s:roke, the mdicat-: meanwhie d-awing the 'compression line. Tire atmospheric line" is the ziraight. horizontal lire drawn by the engine shen the annect. n is broken between the engire zyincer and the indicator cylinder, and
latter is cpen ireeiy to the air. The "racurm line is the lase that would be dawn by the instrument uncer like circtmstances, if a perfect vacuum cou!d be ma!ntamed in the indi-catu- cylinier. The "racutm lize," of course, must be drawn in by hand. It is parallel to the - amosphenic line, and at a distance below it curtesponding to a pressure of about 147 pounds per square irch, on the scale 10 which the diagram is drawn. The diagram shown in Fig. 2 reies to a condensing engine. In a non-condensing engine, the exhaust line wowld not be lower than the amospheric line and wowd. in fact. be above it. if there were any sensible bacipressure in the engine during exhaust.

Fcr detailed information ccncerning the indicaior and its tses. constit: Pray, 'Twer:y lears with the Indicator': Peabody, 'The S:eam Engine Indicator': also, for less extended ireatment, any good book on steam engineering.

Indictment, in-cit'ment. a formal charge made berore a legal tribunal against an accused person. The essential requisites of a valid indictment are.-nirst, that the indictmen: be peesensed to some court having jurisdiction of the ofiense stated therein: second, that it appear to have been found by the grand jury of the proper county or district: third. that the indictment be iound a true bill, and signed by the foreman of the grand jury fourth, that it be iramed with suficient certainty; for this purpose the clarge must contain a certain description of the crime or misdemeanor of which the deiendan: is accused, and a statement of the iacts by which it is constituted, so as to identify the accusation: rith, the indictment must be in the English language. but it any document in a foreign language, as a libel, be necessarily introduced. it should be set out in the original rongue, and then translated showing its application, 6 Term. I62. The iormal requisites ni an indictmen: are. frst. that the renue, which at common law should always be laid in the county where the offense has been cramited. although the charge be in the na-t:-: e transinny, as a batiery. The venue is stated in the marcin thus: 'City and Comnty oi - to wit." Second. the presentment. which m : : : le in the present tense, and is rdinarily expresed in the following formula: "the grand i- que-t of the State of - inquiring for the ciry and county ainresaid, upon their oaths and afirmaticns prevent." Third. the name and addi: n oi the defendant: but in case an error $1-=1$ cen made in this respect. it is cured by the p'er of :he defendant. Fnurth. the names of t'in per:ons. when they must be necessarily m : inned in the indictment. should be stated w'h certainty io a common intent. so as sufficier:ly to inform the defendant who are his acco-irs. When, however, the names oi third $p^{-r}-n=$ cann i be ascertained, it is suficient in e c.zez. in state "a certain persor or percta th the iner: af -esaid irkknown Fifth,
 in general, be stated to be on a specitic year and
day. In some ofenses, $2 s$ in perjury, the day nust be precisely stated. but although it is necessary that a day certain should be laid in the indictment, yet is general the prosecutor may give evidence of an offense commitied on any other day previous to the finding of the nidicment. Sixth. the offense sha!! be proper. y described. This is done by stating the stubstantial circumstances necessary to show the nature of the crime and next the formal aliegations and terms of art required. As to the stibstantial circumstances: the whole of the facis of the case necesiary to make it appear judiciaily to the court that the indictors have gone upon sufïcient premises. should be set inth: but there should be no unnecessary matter. nor anything which on its iace makes the indiciment repugnant, inconsistent. or absurd.

Accoscing to the rules of p.eading in criminal actions at common law there are certain terms of art used, so appropriated by the law to express the precise idea which it entertains of the offense, that no other terms. however smonymous they may seem, are capable of filling the same office: such, for example, as traitorously in treason: felonously in felong: burglarious!y in burglary: maim in mayhem,

In lew lo-k, and in nearly all of the States which have adopied the code system, the common law rules of pieading in criminal actions have either been greatly relaxed or entirety abolished. Many of the statutes of the subject are similar to the New lork statute. Code Crim. Pro. $£ 273$, which in substance provides that all common law rules of pleading are abolished, and the iorms of pleading prescribed by the code shall be substituted. and 5275 oi the same code provides that all an indictment must contain is, the title of the section, specifying the name of the court to which the indictment is presented, and the names of the parties, and a plain and concise statement of the aci constituting the crime. without unnecesiary repetition. It is also provided in $\$ 283$ of the Sew lork Code Crim. Pro. that words used in a statute to define a crime reed not be sirictly pursued in the indictment: but other words conveying the same meaning may be used.

Indigestion. See Dy̌spepstat.

In'digo, the name of a genus of plants, and of the blue colcring matter obrained irom il?em. The indigo plants are tall herbs of the pea family, forming the genus Indigofers of which there are several color-yieidins species in various warm parts of the world. The one yielding the irdigo of commerce. and iommerly extensively cultivated. is I. tinctorium, which is native to India, grows five feet high. and has bipinnate leaves. The coloring matter most abounds in the leaves, and especially as the time of flowering ocurs. and that is the time when the crop is gathered by cutiong down the plant, and making immediate use of the green stems or foliage. or by drying them for subsequent ireatment. This coloring matier is a chemical subsiance called indion, the glucoside of indoryl, which is converted by oxidation in:o indico. Tntil the discovery of the searoute to India the oniy blue recetable dye available in Enrope was that derived from the woad (q.w), which was limited and cosely: this dye-substance was therefore regarded as one

INDIGO-BIRD - INDIVIDUAL PSYCHOLOGY

of the most valuable of new commorlities and a large capital was soon cmbarked in its cultivation in India, Ceylon, China, and other regions, where a profitable industry continued until after the middle of the 19th century. The indigo was olbtained by macerating the leaves and stems in rats for several hours. Fermentation arises and the water becomes clear yellow. It is then rum off into a lower basin, where it is subjected to incessant agitation and gradually turns green, whereupon the indigo begins to form in flakes and settle. The residunun is then thoroughly boiled, filtered through linen, molled into small cakes and dried. The best quality comes from Bengal and eastern India. Indigo plantations were made with more or Iess success in Brazii, Contral America, and Mexico; and one of the foremost inducements held out to settlers in the southern colonies, from Maryland to Louisiana, was the probability of its successful cultivation there. The experiments never yielded results of much intportance, parly because crops of tobacco, cotton, and food-stuffs were more profitable. Since the discovery of cheap methods of forming blue alyes from coal-tar the cultivation of indigo has declined greatly; but still supplics a steady demand from cloth-dyers who wish an imperishable blue of certain tints.

The wild indigo of the United States is any of several species of a closely related genus Baptisia, Which Hourishes especially in the Southern States. The best known is the yel-low-flowered false indigo (B. tinctoria), or indigo brown, from which country people obtain a blue dye, and a domestic medicine.

Indigo Dyving. - Before it can be employed in dyeing, the indigo mast he brought into solution: and as indigo itself is insoluble, it must be first transformed into a soluble substance, so that it can penetrate the pores of the cloth, where it is subsequently again restored to the form of indigo. To bring the indige into solution, it is ground up to a soft paste with water, after which it is thrown into vats along with ferrous sulphate, slacked line, and water. The ferrous sulphate reacts with the lime to form calcium sutphate and ferrous oxid, the latter being immediately oxidized at the expense of part of the oxygen of the indigo, which in its turn is reduced to a substance called indigowhite. This dissolves in the prescnce of excess of lime, and the fabric to be dyed is dipped into the vat after the liquid in it is clear. On removing the fabric the indigo-white which has penetrated its pores is reoxidized by the air to indigo blue: and by repeating this treatment a shade of blue of any desired depth may be obtained. The dyed fabric is finally passed through dilite acid to remove any adhering lime or ferric oxid. Indigo appears to exist in the plant in the form of a glueoside known as "indican," which has the formula C m $1_{0} N 0_{1}$ and to be developed from this glucoside in the course of the fermentation by the action of a special bacillus, which closcly resembles the bacillus of preumonia. Indigo is now made artificially; the total production of synthetic indigo being probably about one fourth of the world's consumption. Although artificial indigohine appears to have the same chemical formula $\left(\mathrm{C}_{10} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ as the natural product, and to be identical with it in every way, it is more
expensive than the natural product at the present time. If it could be marle more cheaply, it would work as ereat a revolntion its dyeing as did the introdetion of alizarin in the place of madder. (See Coal 'TAr Coloks, and the references there given.)

Indigo-bird, a muncrons and beautiful North American finch (Passerina cyanca), the male of which is dark greenish blue, while the female is grayish brown. They are migratory, but in summer spreal over most of the United States, placing their neat nest and unspotted bluish eggs in garelen bushes as well as in wild thickets. The male las one of the brightest and most persistent songs of any American bird; and he is casily habituated to captivity:

Indigo-snake. The gopher-snake (ๆ.v.).

In'direct Damages, claims for damages not directly inflicted by the illegal act complained of, but by other causes themselves due to that act. The great historical case is that of the Ünited States clam for many lundrecls of millions of dollars worth of loss, resulting from Great Britain's bad faith or carclessness in letting the Alabama ($\mathrm{q} \cdot \mathrm{v}$, and Alabama Clums) escape from her ports to prey on our commerce. It was alleged that aside from the actual loss to our shipping and cargoes, we had been damaged to a far greater extent by the resultant effects, chiefly of thrce sorts: (i) The prolongation of the Civil War due to the encouragement given to the South and the straitening of the North. (2) The destruction of commercial lines and relations, which took long to recover after the War. (3) The raising of the rates of marine insurance. As these clams exceeded the cost of a war plus the indemmity we slould have exarted if victorious, Great Britain refused to consider them; and the commission threw them out altogether as contrary to international law.

In'dium, the name given to a metal discovered by spectroscopic amalysis in 1803. It is of a silver white color. soít, and marks paper like lead; its specific gravity is $7 . f \geq 1$ at 16.8^{2} The lead indium is cclated to cadmimm and zinc, both associated with it in nature. The spectrum of indium exlibits two characteristic lines, one violet ${ }^{\alpha}$ and another blue line β; besides these two fanter blue limes are visible if the burner in which the metal is rolatilized be fed with hydrogen instead of coal gas.

Individual Psychology. This term is applied to that branch of psychology which deals with the mental variations of individuals from one another. It is thus contra-distinguished from general psychology, which undertakes to determine the facts and laws of conscions processes as a whole and without special reference to their peculiar manifestations in any particular persons or group of persons. The field of individual psycholngy may be regarded as a part of the larger field of variational or differential psychology: in which are to be included studies upon special races and upon social groups of various sorts. Such studies are carried on with special reference to detecting and describing the characteristic mental traits of such grouns, but often with little emphasis on typical variations from other similat geoups. Obviotsly the range of problems in individual psychology must be as

INDO-CHINA

bn 1 -s mind itself. i f persons may vary in -egard to ans mental charatieristic. It will only be practicahle : mention a ien of the problems thus iar investigated. $\hat{\varepsilon}$. g.. mental ispe. temperament. and gentur. the psychologs of spectal mentol defect. the psycholegy of the criminal. the percholezy of sex. and that of professtons of clueses with their peculiar variations of mental

To extribit more ancretely the kind if mater:al with whoch indisidual piychology works we may comment brieaty on the irst three of these spics. The de:ermination of mental tyre is a pooblem of :ndividual psrchology in the narrous sense of the term in sy far as it has to do with the ascertaning of the chatacteristic reatures oi the mind in any paricular person. In : fiat as it bears on the problem oi disc rering what actually are the typical groupings di woh charactenstics ameng people in general. it abriously belongs to the broader field of var:ational psychology.

1. Minds may difier irom each other as regards the delicacy or sensiveness with which they Fespond to stimulations of the sense organs. One may be more sensitive than another to slight ratiations in temperaiure in color in tone. etc- t a matier of iact. among normal persens swich differences oi sensitivity are relatively slight when the conditions of training and discipline are similar. -1 s a general rule the higher mental functions show more variation than the lower ones such as sensitruity. Minds may dirier as regards the special form of sense mate:al toward which they manires a predriectien. i. g.. the musically minded person not only finds ssunds of greater emotional interes than the untausical person. but he also has a beiter mem ry for auditery experiences and nis conschus processes in their entirety are likely io be much more influenced by auditory jactors. A further development oi such mental preierence ior one or another hind of sense material is found in the fact that certain individuals carso on muss \because their thought processes in terms of yiu:al images. whereas others emply auditery images. and st. 11 whers monor images. Probably the intmal co:id:tom is represented by an admixiture of varinus iorms with some paricular Er up dominatiog slighty owt the others. Ag.. \rightarrow, in mem ry we meei striking ditierences in ad \because in nth the di the imagery type already mentaned. Fur cxample, cerain per*ons lezs very rapidly and also i rgei rapidly Othe-= learn wi:h doticuty but retaln well that whech they have learneth. Occasionaty we find per- n s who i in ine a lnty to learn quichly with c.fucty t, retain permanenity. It seem-certain

 at Echeraily presient only in certain disec-11.- A untversally efficient memory is rarely. if ser. ì und. Pe ple differ a': very marked!y a- rezards theit abitty to concentrate them at-te:- n stme fers nis can concentrate very ar'envely if a h it time hut must then rest. Other-are able to i calize is mure extended perind. and sti: 1 ehors tind it all but impt whle
 ti i a norking kif are alon di-clused in the
 alm ? entrely i- aco-d with the objective facts fre-ersed to the:r n tice. Others are intluesced
in various degrees by subiecti: e nhuences and show themselves peculiatiy srecertible to suggestion. Is is a mat:er of common observation that persons vary =adically as regards temperament and ieeling. One the mort practically important variaticns is represented by the dio ference in the rate ai which the ennozint: processes proceed. Iust as cer:ain persons naturaï: walk and ialk more rapidly than others. s- in the mental processes vary as regards the sfeed with which they occur. Psychologis:s have demonstrated a rather characteristic darly vartatimn as regards both raie and efficiency oí mental activity Many persons work best ai negh Others are norning workers and sill others atiernoon workers.
2. The old familiar ciassincation of temperaments recomizes the four tynes: sangu:ne. melancholic. choleac and phlegmatic. Both the choleric and the sanguine are supposed to be subiect to rapid tsillations of emotional interes:bui with the sanguine individual interest is sarely intense. whereas with the choleric it is rarely anytbing cise. The melancholic and the phlegmatic represent the more persistent and dogged forms of interest bui. like the previous pait. are disinguished by differences in the intensity of the interes: the phlegmatic person being less. the melancholic more intense. These class:ficaticns are likely to be extensively revised by current investigation.
3. The modern study of genius has not on?ycentributed io a more definite conception of the nature oi genins and the general mental characteristics of the remariable ind:vidual, but it has alco revealed the hereditary character oi narked intellectual superic-is. and the relation between certain upes oi geniu: and mental defec:.

Galter has gatheed statis:tes to sh w tha: the irequency oi genius is related in a derin.ie and orderly way to the to:al number oi per. ns in any given group. He has also shown that the genius appears with a background of hereli:y which af̃ords a reasonable explanation if his peculiar characterstics. The view ofen urged by such writers as Lcmbniso that geniux is essentially a morbid and degenerate men:a! phenumerlon. seems io be sound miy in s...r as concems the liablet ci persans ni renaariable mental qual:ties it hervus derangement i various sorts. That insanity itself and reni:are 17 any intrans: sense identteal is no generaily granted. Aming the interesting problems which deserve iurther study in the case i genus may be menticned the detemmaiion of the exient : wh:ch the gerius owes his :tiperi a enduwnent: heredity. as contrasted with education and iavorable nurture: the ascertanment of the cuadrions which hinder if encourage the devel fmen: of cenis: : the disc very of the general mental rypes to wheh the v-rinus remarkat le in ividuals contim.

Btil grorty-B:ae: and Henri. 'Annee P-bchol gique (11 1apo. R. 411): Stern. Psychologie der individaclien Difierenzen: Galt A. 'Hered:tary Genius: Tarde. 'La Cr:minalite comparee': Ellis. 'Man and Wi man 'Studies in the Psychology of Sex' ; Thomp= :2 'Mental Tra:ts oi Sex.'

Iames Rowlind Aygell.
Prciesser ci Psyihlogy: Luizersity o Chicas
Indo-China, the southeastern peninsula if Asia. formerly known as Farther India, including

Anam, Burma, Camlodia, Cochin-China, French Indo-China, Tongking (qq...), and other districts.

Indo-Europe'ans, the Aryan race (q.v.). For atconuts of the Indo-European languages see Ahyin: inno-Germanic Languages.

Indo-German'ic Languages, the languages whes are ancent and modern varietics of one primeral form of spech, anciently spoken in Lentral . Sial. These languages are sometimes called the Indo-Celtic languages, the Japhetic languages, or more commonly, the Aryan languages. There are three forms of human speech, the monnsyllabic, or isolating languages, such as the Chinesc, whose words are meliangeable routs, each of which stands scparately and is modified by the juxtaposition of other monosyllabic roots; the agglutinating langurges, such as the South Africal, the Japanese, and the American Indian, in which, instead of being isolatcol, the reots are placed in close association, so as to agglutinate or agglomerate into one word. Some Eskimo words are as long as the longest compound epithet of Aristophanes. The third group are the inflectional languages. The indo-ficrmanic languages are inllectional. In these the roots of all words are not necessarily modified, hat they may be modified, in order to express certain relations, and the roots are also added to by suffixes and prefixes. The Indo-Germanic languages do not extend over so wide an area as the monosyllabic languages, but are spoken by the most civilized and intellectual peoples of the world. The Indic branches are the ancient Hindu languages, the principal of which is Sanskrit. and the modern Ifindu languages. The Iranic or Persian branch includes. Zend, Old Persian, Armenian, Parsee, modern Persian and the dialect spoken by the monntaineers to the northwest of India. The great Hellenic branch was spoken anciently by the inhabitants of Greece, of the west coast of Asia Ninor, of the islands of the Egean, as well as of the somth and southwestern coasts of Italy. It is spoken in a modified form in Grecee and the Greek islands of to-day. Parallel to the Ilcllenic is the Italic branch, which includes the primitive Italic languages, Oscan, Etruscan. Umbrian, and Jatin, as well as the classic Latin of Virgil and Cicero, which settled intos the Italian of Dante and, on being extended noer western Europe, grew through many modifications into French, Provençal, Italian, Spanish, Portugnese and Roumanian. Distiuct from this branch was the Celtic, which survives to-day in the Widsh and Gaelic dialects. The Teutonic tongues include the Gothic of Lifilas (4 th cen(ury A.D.) the Norse languages, the Low German and the 1 ligh Cierman group. The Sclavonic languages are spoken in Russia and I'oland and include the Lithuanian and the Old Prussian. There are several other Indo Germanic tongues and dialects which philoongists have not been able to classify ; such are the Etrusc.un Europe and certain languages of Asia Minor. Compare: Schleither, 'Compendium der vergleichenden Grammatik der Indo-Germanisclien Sprachen' (1871) : Corrsen, 'Techer Aussprache. V'ocalismus, whd Betonng der lateinischen Sprache'; and most important Brugmam and Dellitick, 'Grundriss der vergleichenden Grammatik der Indo-Germanischen Sprachen' (IS97 el seq.).

Incuuction. It is a familiar fact that an electrified (or magnetized) body causes clectrical (or magnetic) disturbances in other bodies in its ricinity; when it is not in direct and visible comection with them, and the process loy which these disturbances take place is called "induction." The ultimate mechanism of induction is still somewhat obscure, but something has becn learnoll of its general nature. In the early days of physical science it was believed that bodies can act upmone another even across spaces that are absolutely void, and at the present time it is sometimes convenient to assume them to act in this manner, in forming mathematical equations for the treament of physical problems. It is :1o longer belieyed, however, that this is what actually happens in hature: the phenomena of electric and magnetic induction being now attributed to motions of stresses in the ether which transmits light. (See Etmer.) Newton was of the opinion that induction is an ether-phenomenon, and in the first half of the 19th century Faraday may be said to have established the ether hypothesis upon a substantial experimental foundation. In later years Maxwell developed Faraday's concentions mathematically, and added much more evidence that was partly theoretical and partly experimental; so that at the present time there are few or no physicists who doubt that induction is a manifestation of some form of activity in the lightbearing ether. Opinion is \$ iill divided, however, as to the precise nature of this activity. In fact, we cannot hope to gain any very precise information on this point mutil much more is known about the constitution of the ether itself.

The charging of a condenser is a phenomenon in electrostatic induction. If the condenser consists of two parallel plates (for example), of a given size and set at a constant distance from each other, and we charge it to a given potential, the quantity of electricity that must be pur into it in order to charge it in this manner depends to a considerable extem upon the mature of the dielectric (or insulating material) which separates the plates. If the charge that is required when air is the dielectric is taken as amity, then with plate glass as a dielectric ilre charge will lave to be 8.45 (according to Hopkinson), in order to bring the potential of the condenser up to the same raluc as before. If the space between the plates is filled with conmon turpentine, a charge 2.23 times as great as that required with air as the dielectric mant be commonicated to the condenser. It is evadent, from these facts, and from others of the same nature, that electric iuduction depends, to a large extent at any rate, upon the nature of the medimm which separates an electrificel body from the other loodies upon which the inductive influence is felt. The constants, that are given above are known as the "specific inductive capacities" of the dielectrics to which they refer.

Elcetrodynamic induction is the basis of practically all of the dectrical machinery that has been found serviceable to man. The fundamental fact of electrodynamic induction may be stated as follows: If a closed electrical circuit. such as might be formed by joining the two ends of a copper wire, is placed in a magnetic fick, then no current will be produced so long as the circuit is everywhere stationary, and the strength of the magnetic ficld remains every

INDUCTION BALANCE

Where invariable. If the intensity oi the masnetic feld is increased. a cursent of electricity will fow around the circuit while the intenstry of tice magnetism is changing, the intensity of the current being propostional to the rapidity with which the intersity of the magnetism varies. As soci as the magnetism agan becomes ronstant, the current in the ctremt ceases. If the intensity of the magnetic feld be diminished instead oí increased. a current will ais be produced in the closed circuit but it will be cpposhe in direction to that produced by increasing the maspetic field. Currents produced in this manner are calied 'induced curreris. Instead of ratying the magnezic zeld whie the circuit is fixed in positut, we may move the carcuit about in the maszetic field. Ii the magnetic feld is everwhese unifiom in all respects, and the circuit is moved so as to always remain parallel to itseli, then no induced current will be produced; but if the circu:s is moved irom a region where the magnetism is stong io one where it is neak, of zice zersa, a curfent mill be induced in the circuit, just as in the circuit were kepi statonary and the intensity of the magnetism raried. Induced curtens, are also produced when. ins:ead ot being transia:ed from one region to anothet. the circuig is rotaied in a magretic fied. in such a way that the number of lines of magnetic force passing through it is either increased or diminished. In the induction coil the invensity of the magnetic field is raried while the circuit \beth which the matuced current is to be frocicced ss kept stationary. In dynamos. on the ciber hand. the magnetic neld is maintained semsibly constant, while the circuit in which the induced cerrent is to be produced is rotated or otherwise moved aboti.

A current moving in a closed circuit produces a magnetic field in the space above it and this magnetie field, when it varies on account of the variation of the current that produces in, caves the producticn of induced currents in any closed circuit that may happen io be rear. Let us conceive two ciosed circurs. A and B, to be sitioted rear each cther. and let :here le a curfent produced by any mears in the circuit A. So ing as the current in A is constant, no curtent will be froduced in B; but if the current in A is variable. an inouced current will be chserved in B. wl. se intersity depends up a the rate at which :he curfent in A is varying. up n the resistance of the circuit B, .nd also upnn a certain numerical facior. whose raine denends up in the sizes and shapes of the two circuits. up $\frac{1}{}$ their postions with respect to eacly cher, and unn the na:are of the medium lair. oil. or whatever it may be) in which they are placed.

Ii a pair ci circuits. A and B. ate near each other, and A is carrying a constant current of mitensity C_{i}. while B is carrying a consiart current intensty C_{5}. then the disnlacemen: f ether circurt. feltaively in the other. world calse ilducd cerrents in fo in bnth: ard herce in gen ral) ne ther circuit can be moved "it". Wt the entrey of the eysiem being affected. The difererce ketween the enerey of a pair nit $\mathrm{c}_{\mathrm{r}} \mathrm{F}=\mathrm{th}$ - are near thaeher, and the energy is :amier phir i chile th it are onneving identi(cal'y the same curremis but are iffiritely remcie
 is a musmal i-ctrr whee value depents upent the sums ?nd $4-\mathrm{nz}$: the twa circuits, upen their re: tive pitsitons, and upon the medium
in which they are placed. The factor MI is called the 'ccefficient of mutual induction" of the parr of circuizs.

The various parts ci a singie circuit act upen one ancther inductively, just as separate circuits do: and a circuit tha: is wourd upon a spool, of otherwise coiled so that its parts come near ingether, possesses greater energy than the same crrcuit would have. ii it was not so coiled. This fact is expressed by saying that every circuit has a certain amount of "self-induction.". The energy that a circuit possesses in virtue of its self-induction is proportional to the square Lf the current that it is carrying, and io a certain numerical constan: called the "coeficient if seli-induction," whose value depends upon the stze and shape oi the circuit, and upon the medium in which it is placed. Like the coefficient of mutual ircuuction of a pair of circuits, the coeficient of seli-induction of a single circhit can be computed. ior certain simple cases, Ey methods given by Jiaxwell, in his 'Treatise on Electricity and Xagnetisn' : but in the general case the computation is exceedingly cifficult. and aitogether impracticable: so that the values of these coeficients ior given circuits are ysually deiermined expermentaiy, except when a very rough estimate will serre.

The general sub ect ci induction is essentially mathematical in its character. and cannot be proferly exp'ained nor uncerstood without the use of the ca'cu'cs, Consu't Niphe-., 'Electricity and Magnetism': Maxwell, 'Treatise ca E.ectricity and Magnetism.' See also the articles Electrictity and Magretismo in this encyclopedia.
A. D. Ristees. Ph D..

Edit. rial' Stuf: 'Emoglofriia - Amerricina.'
Induction Balance, in physics an apparatus designed ior detecting the presence of fragnents of metal. or for studying the electrical. conductivity of metals. It consists eseentially of four cois of fine wire, an eleciric battery. a circuit breaier, and a telephone. Let the coils be designated. respectively, by the lerters A. B, C and D: A being stmilar to B in all respects, and C beinz likewise similar to D. Coils A and B are placed in circuit with the battery, and coils C and D are paced in circuit with the teiephone. The coils are disposed in pairs, A being placed near C, and B near D. It the current through A and B is rapidly interrupted. an induced current will is general. flow thr ugh C and D , at each make and 'reak: irs presence being indicated ty the sounds that it prodicces in the telephone that is in circuit with C and D. It is pussble. however, to ulspose the cil's and their connections so that the current that A induces in C shall he sensilly equal and opposite :o that which B induces in D. When the balance is periect: no :2and will be heard in the telephone. If a piece of metal le fow br ught near the enil A. the mormitent current in A wiil induce cyrrents in themass oi the picce of metal, and these, in turn. will act up in the cill C. producing induced curren:s in this cail which are not dimpensated hy similar currents in D. The loss of latorce wil: he at orce indicated by the recrerence of snumds in the telephone: and in this way the me:al fragment will bctray its presence Tle irduction bala"ce has been used succes filly ins Incating bullese in the human bosy: When applied ins th is nurpose to President Garfiel. however, it fa'led to give any mean! indi-cations.-owing, it is said. to difincultics लो

INDUCTION COIL-INDUCTION, MATHEMATICAL

manipulation due to the presence of metal in the mattress upon which he lay. The instrument is so sensitive that if it is balanced with a genuine coin near one of the coils, and the gentuine coin is then replaced by a counterfeit imitation, the telephone at onee betrays the substitution. The intensity of the sumbs produced in the telephone depends not only upon the size and position of the disturbing piece of metal, but also upmen its specific electrical resistance: and hence the balance may be used to compare the specific resistances of metals.

Consult Hopkins, 'Experimental Science' : Thomson, 'Recent Researches in Electricity and Magnetism' : Bell, 'The Induction Balance,' in the American Journal of Science for 1883 .

Induction Coil, an electrical instrument used for the production of high potentials, and depending for its action upon the fact that induced currents are generated in a circuit, when the strength of the magnetic field to which the circuit is exposed is varied. (See Indection.) The essential features of the instrument are represented, diagrammatically, in the accompanying cut. A soft iron core is surrounded by two

coils of wire, one outside of the other. The outer coil is the one in which the high tension induced currents are produced; it is called the "secondary coil," and is not in direct electrical connection with any other part of the instrument. The imner coil, which is called the primary coil, is wound close to the iron core, and is connected to a battery, so that when the current from the battery is flowing, the primary coil causes the inon core to become magnetised. As is explained in the article Induction, no current is generated in the secondary coil, so leng as the magnetism of the iron core remains constant; but whenever the magnetism of the core increases or diminishes, a current is prorluced in the secondary. A device called a "break" or "interrupter" is therefore provided, so that the magnetism of the iron core may be rapidly established and destroyed. The commonest form of interrupter is that indicated in the cut, which does not call for special explanation. since it is used in electric bells and other simple forms inf electrical apparatus. The Welnelt electrolytic interrupter is greatly in favor among physicists. however, and is now often used in comnection with induction coils, especially when they are to be run with the commercial current used for incandescent lighting, where the potential differ-
ence that is used is something over 100 volts. In the lich selt interrupter ithe primary coil on the 1 rom core is made of a few turns of relatively thick eepner wire, its purpose being solely to effect the magnetisation of the core; but the secondary coil. in which the induced currents are generated, is made of fine wire, and in order in muluply the inductive effect as far as possilile, the secondary is marle of great length, cften containing many miles of wire. In the celebrated Spottiswoode coil the secondary contained no less tinan 280 miles of wire. The primary coil, leing wnund directly upon a soft iron core, commonly has a very considerable amount of self-induction, so that when the eircuit is broken by the interrupter the current does mot suddenly cease, but continues to flow across the interval at the break for an appreciable fraction of a scoond, as is readily seen by the strong sparking that occurs at the moment of interruption. In order to reduce the sparking as far as possible, a condenser of suitable capacity is provided, so that when the break is made in the circuit, the "after-current" due to the self-induction of the primary can discharge into the condenser, instead of passing across the break in the circuit and causing a spark. The condenser causes the interruption of the current in the primary coil to be much more sudden, and it materially increases the potential that is developed in thic secondary coil, since this is proportional to the rate of variation of the magnetism of the core, and is much greater when the magnetism falls off abruptly than when it persists for an appreciable fraction of a second after the break has been made.

The induction coil was brought into something like its present form by Ruhmiorff, and is frequently known, in consequence, by bis name. Improvements in the winding of the secondary coil were introduced by Ritchie. of Boston, about 1857. Ritchie's most important improvement consisted in disposing the secondary wire in sections, which were so related to one another that the risk of internal distuptive discharge through the coil itself might be reduced to a minimum. Induction coils are very generally used in studying the discharge of electricity through gases, for exciting x-ray tubes, and for producing high potentials reguired in wireless telegraphy. Consult Bonney. 'Inductions Coils': Alsopp, (Induction Coils and ConlMaking' : Wright, 'The Induction Coil in Practical Work.) A. D. Risteen, Pu.D.

Editorial Staff, 'Extyclopedia Americana.'
Induction, Mathematical. Despite the agelong tyranny exercised by the Aristotelian logic -a tyramy having, at least in the domain of science. scarcely a match except in the case of Euclid's elements - the forms of thought, those diagrammatic representations of the orderliness of the teasoning processes, sustain to-day perhaps even greater interest than ever before (sce Symbolic Logic). The mathematician's interest in these forms is two-fold, attaching to them both as norms for testing the validity of arguments and as constituting exceedingly subtle matter for mathematical investigation.

Of all argument forms, there is one which, viewed as the figure of the way in which the mind gains certainty that a specified property helonging but not immediately ly definition to each element of a denumerable (see Assem-

INDUCTION

blage Theory) assemblage of elements does so belong, enjoys the distinction of being at once perhaps the most fascinating, and, in its mathematical bearings. doubtless the most important, single form in modern logic. This form is that variously known as reasoning by recurrence, induction by connection (De Morgan), mathematical induction, complete induction, and Fermatian induction - so called by C. S. Peirce, according to whom this mode of proof was first employed by Fermat. Whether or not such priority is thus properly ascribed, it is certain that the argument form in question is unknown to the Aristotelian system, for this system allows apodictic certainty in case of deduction only. while it is the distinguishing mark of mathematical induction that it sields such certainty by the reverse process, a movement from the particutar to the general, from the finite to the infinitc (see Assemblage Theory).

Of the rarious designations of this mode of argument, "mathematical induction" is undoubtedly the most appropriate, for, though one may not be able to agree with Poincaré (see Bibliography below) that the mode in question is characteristic of mathematics, it is peculiar to that science, being indeed, as he has called it, "mathematical reasoning par excellence."

The nature of mathematical induction as it is ordinarily understood may be made clear by an example. Perhaps the simplest application of the method is found in the proof of the theorem

$$
\text { (a) } 1+2+3+\ldots .+n=\frac{1}{2} n(n+1)
$$

where n denotes any positive integer whatever. Suppose it ascertained by observation or otherwise that

$$
\begin{aligned}
& \text { (1) } I+2=\frac{1}{2} 2(2+1), \\
& \text { (2) } 1+2+3=\frac{1}{2} 3(3+1) \text {. }
\end{aligned}
$$

Facts (1) and (2) justify the suspicion that (a) may be a fact. The proof by mathematical induction that (a) is indeed true runs as follows: It is assumad that (a) is true for some definte but unspecified integer n. Then by adding $n+1$ to each member of the assumed equation, n having the same meaning as in the assumption, one finds that

$$
\text { (} \beta \text {) } \quad 1+2+3+\ldots+n+n+1
$$

So it is seen that, if (a) bc true for some integer n, it is true also for the next greater integer $n+1$. But by (2), (a) is true when n is 3 : it is, therefore, true for $3+1$, or + : therefore, for $\ddagger-1$, or 5 . The argument is then usnally closed by saying "and so on, hence (a) is true for any integer whatever." or by an equivalent specch. The reader will recall that the binomial theorem, the Newtonian expansion of $(a+b) n$, where n is any positive integer, $i=$ jistified in essentially the foregoing manner. Numertus other examples of propositions similarly estahlished may be found in the better secest text-books of algebra.

The mature and the role of the foregoing cicetera, "and so on," demand consideration. Without it, the argument as stated secms obvious? incomplete. But hr w is the cicelera to be logically justified? By reference to some axiom or principle of thouglit? If sn, what? Or can the phrase be in some way dispensed with withont damage to the argument?

Before attempting to answer them it may be well to show the inevitableness of the questions
by a further analysis. Suppose it established, in regard to some property p (where, for example, p might signify the validity of the binomial theorem for some integral exponent): (1) that p belongs to the integer I, that is, referring again to the mentioned example. the theorem is valid for the exponent 1 ; (2) that, if p belong to an integer n, it belongs to $n+1$. Propositions (1) and (2) furnish the means of generating, one after another, a sequence of syllogisms by which one proves first that p belongs to 2 , then to 3 , then to 4 . and so on. Note that in order to ascertain by this analytic (syllogistic) method whether p belongs to a specified integer m, it is necessary to determine in advance the same question for each of the integers $2,3, \ldots \ldots, m^{\prime}-1$, in the order as written, a process requiring a number of syllogisms which is greater the greater the number m. Accordingly this method, of successive deductions, is not available for determining whether p belongs to each in the (infinite) totality of integers. Equally powerless to that end is experience (including observation), for this can take accomnt of the individuals of a finite assemblage of objects at most. Either analysis or experience may avail if a sequence be finite, but if it be infinite both must fail. Not less rain is it to invoke finally the aid of induction as the term is understood and employed in the physical sciences, for this latter, resting upon a purely assumed order in the external universe, is confessedly induchio imperfecta, and, being such, can yield approximate certainty only.

Nevertheless, despite the inadequacy of the means mentioned, as soon as hypotheses (1) and (2) are admitted and the indicated sequence of deductions is begun, "the judgment imposes itself upon us with irresistible evidence" that p is a property of all the integers. Why? That is, how justify the "and so on"? It appears to be clear that the answer must be the adduction or invocation of an additional presupposition of formal thought, a presupposition whose formulation shall mark a conscious extension of the domain of logic by affirming as axiomatic that apodictic certainty can and does transcend cvery limited sequence of deductions or observations. Such presupposition, which may be called the axiom of infinity; is stated by Poincare, in answer to the foregoing question, "why"," as follows: "It is the affirmation of the power of the mind which knows it is capable of conceiving the indefinite repetition of a same act as soon as this act is found to be once possible." The act or operation, which can not indeed be indefinitely repeated, but which by the axiom can be conceived as so repeated, is, in the present case, the construction of the syllogisms of the sequence above mentioned.

The efcetcra in question is capable of justificatic13 without appealing, apparently at least, :o the axiom of infinity, namely, by use of the so-called indirect method of proof. the method known as reductio ad absurdum. Thus let it be supposed that the argument sought to be indefinitely extended by means of the phrase "and so on" does not admit of indefinite extensinn atong the ordered sequence of integers. There will, then, be a first integer, say $m+1$, for which the property p fails. As, by hypothesis, $m+I$ is the first integer for which p fails, p belongs to the preceding integer m; but
since p belongs to m , it also belongs, by (2), to $m-1$. Hence the supposition that the argument does in t adn it ni indetimute extension is false: and the conclusion is nbvious. This procecture is convincing, but it is plamly less a nat:eral completion than an "unindicated" fortification of the proces. it supplements. It is, besides, not entirely clear that the axiom of infinity is not surreptitiously subsumed by it.

By far the mot penetrating investigation of the nature of mathematical induction was made originally by Richard Dedekind (see Bibliography bel w). Ilis procedure and result are. in brief, as inllows: Let S denote a system of elements (things of any kind) such that there is a scheme or law ϕ of deniction by which S may be clepicted upon itself. that is. a scheme by which each element e of S may be thought as corresponding to one and but one element c^{\prime} of S and so that no two elements of S shall be thought as corresponding to a same element of S. The correspondent c^{*} of c is called the picture or image of ε. Every part of S (including S itself as a special case) thus depicted upon itself is named chain under ϕ. Denote by A an arbitrary part of S and by in o the assemblage of 2 all the elements common to all the chains (in S) that contain A. It is obvious that, S and ϕ being given, there is one and but one A_{0} for a given part $-\frac{1}{2}$ of S. An which is easily seen to be itseli a chain, is described as the chaim of - tunder ϕ. Now let \searrow denote an assemblage of elements. Dedekind proves the following

Theorem- In ardir to proie that t_{0} is part of Σ it is sufficient to prow: (I) that 4 is part of Σ; and (2) that, if an clement of Aobelong to $\mathbf{\Sigma}$, the image of that clement belongs to $\mathbf{\Sigma}$. Dedekind's proof, simplified, runs thus: Let $A_{0}=A_{1}+A_{2}$ where A_{1} denotes the assemblage oi all those elements of f that belong to Σ. By (2), $-A_{1}$ is a chain, and, by (I), contains A. Hence, by definition of A. \mathcal{A} has mo element. whence $A_{0} \equiv A_{1}$. Suel is the beautiful and marvelously fundamental theorem which its author characterizes, perlhaps a little extravagantly, as "the scientific basis" of mathematical induction. It is at any rate a basis, and by virtue of it, as shown below, prooi by mathematical induction need have no recourse to an ctictera consisting of an endless sequence of syllogisms.

It will be instructive to apply Dedekind's thecrem to the complction of the proof by mathematical induction of the binomial theorem
(a) $(a+b)^{n}=a^{n}+n a^{n-1} b+\cdots \cdots \cdots$
for positive integral exponents. Let it be granted that

$$
\text { (} \beta \text {) } \quad(a+b)^{1}=a+b \text {. }
$$

and supposed it estab:ished in the usual way that, (γ), if (a) be valid for sume integer, as n-1, then it is so for the next, n. Denote by S the sequence of integers.

$$
\begin{equation*}
S \equiv 1,2.3 \tag{2}
\end{equation*}
$$

by o the scheme by which each number in S except 1 is the image of its predecessor, and let A be 1 . Then A_{0} is S identically. Let $\mathcal{\Sigma}$ denote the assemblage of positive integers for which (a) is valid. The reader will now observe that Dedekind's theorem enables one to prove by a singhe stroke, so to speak, that (a) is valid for all positive integers. For, by (${ }_{4} \beta$). (c) is valid iot t , that is, A is part of $\mathbb{\Sigma}$ and (1) is catisfied: and. as . H_{0}. or I_{0}, is S, it follows
from () that (2) is sattified: γ hence S is part of Z

With the modern mereasing interest in the philosophy of mathematies, mathematical induction has steadily gained in interest and acknowledged importance. Certain questions reapecting tis preappontions and field await definitive answers, it is agreed that every argument by mathematical induction is a mathematical argument, no matter what t!.e subject-matter. but there is difference of opinion as to whether every mathematical argument is mathematical induction either in terms or in disguise. Were this converse trine, mathematice (see M Mthematics) would be definable in terms of this mode of ratiocination. This and kindred questions are considered in the works cited helow.

Bibliograpley:-Dedekind. 'Was Sind und Was Sollen die Zahlen' (also in Englith) : Poincaré. 'Sur la nature du raironnement mathematique.' Revue de Métaphysique e de Morale, V'ol. II.: Schrïder, 'Algebra der Logik.' Vol. Il1.; Rusell. 'The Principles of Mathematics,' Vol. I.; Kesser, 'Concerning the Axiom of Infinity and Mathematical Induction?' Bulletin of the American Mathematical Society: Tol. IX.

Cissius J. Keyser.
Adrain Professor of Mathematies, Columbia CDinersity.
Indulgence. An indulgence is a partial of total remission by the Church, through an extra-sacramental chamel, of the temporal punishment due for sin after its guilt and eternal penalty have been removed by the sacrament of penance. The theological basis upon which the doctrine rests is that all the acts of Christ, the God-Man. were of infinite value, that the acts of the Sauts are his acts becanse vivified by divine grace, and from this treasury of divine. supereminent merit the Church is able. =o to speak, to pay the debt of temporal punishment for the repentant simer.

Certain cardinal principles of Catholic life are requisite to obtain a correct idea oi the Catholic doctrine oi indulgences. Growth and adaptation have characterized the Christian organism from the Apostolic Council of Jernsalem io the Ecumenical Council of the Vatican. The development of doctrine upon which such explicit emphasis was laid by the late Cardinai Newman, is of prime significance for the student who would institute a comparison between the teaching and practice of the Church in the matter of indulgences at the present day and during apostolic times. We may observe ir passing that the principle of doctrinal development is in perfect harmony with the scientific spirit of the present age. Growth and adaptation are now believed to be distinguishing features of every living and progressive organism. We should not therefore, expect to find the Catholic system of indulgences, in all its complex details, flourishing in the primitive Church. In harmony with the law of development, essential to every organization among men, we believe that the Church's "proud boast of semper eaden" is not defeated by cailing attention th the ricF. ness, varicty, and fexibility of the onter forms of its polity and liturgy, or to the varying emphasis given to special dogmas in the course of its history, in response to the needs of particular eras. Unity in diversity is the Church's

INDULGENCE

must apprepriate motto. The doctrine and practice of indulgences. therefore, which obiain throughout the Cath lic world at the present time must be sought for only in germ in Sacred Scripture and in the practice of the primitive Church. fust as the be'e. the branches. and the illage of an oak tree. 'the monarch of the forest. existed petentially in the acorn from which i: sprung.

Indulgences being the remission of the teniporal purishment due to sin. the interpretation of their true character should start irom the Christian idea of the nature and purpose of punishment. It is therefore stranze that writers of all schools of opinion concerning indulgences should fail to correlate the two concepts. At the present day the conviction prevails almost unibersally among non-Cathoic situdents of penology that punishment is exclusively disciplinary and correctional. So theors conld be more alien to the spirit of the entite Old Testament or to the mind of the early Christian Fathers. The inflexible and rig rius justice of God making death the wages of sin, appears in almost every page of the history of his covenant with Israel. The New Testament. founded on the atomement by Cirist, only mitigates this view by impresing on the minds of men the possibility of vicarious satisaction for their transgressions. Bu: although Conriat's atoning and vicarious sacrince wa= all-sufficient in itself. or objectively considered, to satisiy the offended justice of his Heavenly Father. nevertheless the Christian eccremy of redemption demands each individual's co-operation at every stage in order to appropriate Christ's merits and make them subjective to himself. The opposite view (that is. the helief), that the creature lias no active part in his sanctification and salvation, inclines toward Partielism, robs good works and the Christian sacrament of genuine value, and differentiates the Iutheran from the Catholic position. According to Catholic teaching, the guilt of sin is cleansed from the sons by the application of the n:erits ci the precious blood of Christ through the instrumentality f the Sacraments, whose efficacy, in the case of adults, depends on the subjective disposition of the recipient. The eternal punishment due in sin disappears with the grilt to which it is annexed. But, besides lavirg these supernatural and eternal relations and consequences. sin viewed even withun the circumscribed limits of man's natural hife on earth, is an act of treason against God in his ewn kingdom invelving forfeiture ni all figlits to life and all the god things with which Grd's previ lence has oo butifuily enriched it. This temperal consequence of sin calls irr a temp ral reparation. The canonical penalties thert ise imp eed in the Church durng the firet ceroturi = were intended to pay this temporal debt 1. the Duine justice. and were not merely disceptinary or correcti nal: and the simmer, in subnutarg to them. or in -cekitg mitiqation irnm tlem throuch the interce-atur of the martyrs. reangnized tin necesoty if his own personal \therefore it catiafy the justice if r_{i} d, ether directly or vicar! u-y hy appripriating through the charity $r i$ the Church the superabundant mernts of Cl rist and his Saints.

In indu'gence granted to the livinz is an act of juridiction, or exercise by the Church of
the power of the keys conferred on it in the well-known words of the Gospel of St. natthew: And I will give to thee the keys ci the Kingdom of Heaven, and whatever thous shalt bind on earth, it shall be bound in Heaven, and whatever thou shait loose on earth, it shall be 1.csed in Heaven.' Every Church. in so iar as it is a visib e organizati. n. clarms in some degree a power of the keys, that is, the right to admit or exclude members - to cetermire fellowship. But the antithests so emphatically expressed in the text between Heaven and Earth proves that the kingdom oi Heaven there spoken of is more comprehensive than the visible Church of Clirist. It is proclamed that the power of binding and loosing on earth bestowed upon the apost es and their successors, is ratified in its every act by the supreme tribunal of God in the Church triumpliant. In accordance with a wellknewn praciple of Catholic exegesis, the best interpretation of a text of Sacred Scripture is iurnished by the universal tradition of the Church from the age of the Apostles to the preser:i time.

St Panl. in his epistles to the Corinthians, describes how he imposed punishment on the incestuous Corinthian and how he subsequently remitied ir. The penaly was not merely an ecclesiasical censure cī excommanicatica inflicted primarily ior the purpose of saieguarding the finck of Christ. The Apostie expressly states that the chief motive which actuated him was anxiety for the incividual salvation of the transgresscr. Vor culd it have been (as lias been already shown) a mere disciplinary measure to impress upon the sinner the gravity of his crime or to test the sincerity of his repentance. Having no organic relation to contession. whether public or privaie. and no expressed or impied connection with periect contrition. it was not a part of any conceivable Christian ordinance for the remission of the guitt and eternal punishment of sim." According to Catholic reasoning. it was therefore an evercise of the power of the keys by the Apostle io remit a temporal debt ciue to God for the offense: and since. according to universal Jewish and Christian belief. the Divine Justice rigorously demanded either direct or vicarious satisfaction, the $A p=$ stle could only concede that "indulgence" by apprcpriating to the individual sinner the superabundant merits of Christ and the Saints out of the treasury of the Churcio.

It will be ohstrved that the Apostle of the Gentules granted the first recorded indulgence in the iorm of an absintution. Indulgences usual!y thok inis form in the primitive Chureh. The early Fathers irequently refer to their being thus conceded by bishops on the presentation if a Libe ly Suppex given to the penitent h. some Christian martyr nn the eve oi sufferirg an hernic death inr Christ. It is interesting is note that the present practice of never sranting those favors except to persons who are in iull commumion with the Church, and who have received the Sacrament of Penance. was suhtantially insisted upon by St. Cyprian. He demands that the martyrs should not grant "Libelli" except to persons who had abandoned their mful career and given ample evidence of heartielt c ntrition and sincere conversion. Indulgences in the first centuries of the Church

INDULGENCE

having implied a diminntion of the period of canomial pumshment (the name by which this act
 (vide Conc. Dneyra, čan. 5; Cfr:Hefele, Conciliengesehichte), such expressions as an indulgence of seven years and seven quarantines came into 11 se . In indulgence of seven vears means the condonation of as much of the temporal debt due to God for sin as canonical punishment extemding over seven years would atone firs. Likewise an indulgence of seven quarantinte comotes a canonical punishment extending over seren Lents.

We find in the writings of St. Augustine reference to the remissinn, in return for almigiving, of temporal penaltios imposed for minor ecclesiastical offorses. Thiss there gradually grew up the custom of granting indulsences under the form of commmation. Under this, form thev were encrially ennsmicunale during the neriod of the Crisades. Every peran who confessed his sins in a -incere and contrite onirit. received IInly Commumion and inined the Crusade for liberating the holy olaces from the infidels was declared to need no other penance. Iter illud pro omni Pacnitontia reputctur" was ane of the decrees of the Commcil of Clemmont. held mader Clionn IJ. in the year 1005 . The system of coramutation for almsgiving afforded opportuniv for abuse, as was evident in the practice of "farming nut" to laymen the collection of alms in return for indulgence. Thus, for example, in the case of the famous indulgence granted by Leo. X., in 1517, to the Catholic faithful on condition that they would contribute to the completion of St. Peter's basilica in Rome. the right of collecting the money was conferred, in the first instance, on Ahert hishop of Maintz, and then sold by him to an Augsburg banker. Circumstances like these gave occasion to the Protestant party to charge the Church with the "sale of indulgences." Cardinal Pallavicini, the celebrated Jesuit historian of the Council of Trent, does not hecitate to say that if Leo X . had heen surrounded by able theologians and enlightened by their counscls he would have proceeded more cantionsly in dispensing indulgences. However, it should in jnstice be recognized that the ercetion of St. Peter's in Rome, the ancient capital of the Christian world, was an enterprise of the deepest interest to every memher of the faithinl. Together with the incidental abuses connected with commutations, other circumstances combined to inspire disaffection for the Holy See in the minds of European rulers and their dependents: and, as in the case of every revolution fed loy prolonged and deeplyrooted discontent in the minds of those who control public opinion, a spark sufficed to start the conflagration. The life of Luther recently published by the Rev. Heinrich Denifle, O.P., and the abundant controversial literature which it has called forth from the ablest Protestant historians and theologians of Germany, have proved that the first Apostle of the Protestant Reformation was an epneh-maker by reason of conditions, not becanse he possessed in any high degree the qualities of the Lebermonsch. Vet the nailing of his ninety-five theses on the doors of the castle church of Wittenburg in protest against the indulgence granted by Len $\mathrm{N}^{\text {., }}$, and
preached by Tetzel, sub-delegate of Nbert. bishop of Waintz, set all Europe atlame and destroyed the dogmatic unity of Catholis christendom.

Oppreition to the doctrinc of indilgenecs arose at different time , int becallse of their alleged novelty or repurnance to the religions sence of the Christian people, but becanse they did not alway a appone of the wheet for which ahms Were shataned by the proching of indulgences, or because of the persomal defects of those cutructeil with their promulgation. It should be distinctly noted that these purposes were not alwars serictly religious. They were frequently philanthropic, such as the cronstruction of liridees, the erection nf hospitals. etc.. and in surch cases received the momalifind anoroval of princes and penple. In arder en comnroliend the outhurst which Inther was able
 I. we must bear in mind, hesides the gtectionable motives that are alleged to have oartly inspired the action of that pontiff, also the hitter memories that tarried in the minds of European monarchs after their defeat on the question of investitures, and the death-blow dealt thereby to the feudal system. The entire antipathy aronsed, for this and other reasons, against the Holy Sce in the time of Leo X. found vent in the attack initiated by Luther on indulgences

An Indulgence may be acquired directly by the living and applied by them, witin the consent of the Church, to the souls of the faithful departed. All Catholic theologians are manimous in the opinion that an indulgence shonld not be granted without grave and substantial reasons, since the ordinary Christian economy demands that each individual should make personal reparation for the temporal debt due for his sims. Norcover, in order to participate fruitfully in an indulgence, certain conditions and dispositions are necessary on the part of the subject. He must be in the state of grace have a genime desire to gain the indulxence, and perform certain acts prescribed by the IInly See.

The application of indalgences to the dead is not a juridical act of the Church, whose jurisdiction is limited to the members of the militant or visible Church on earth. Remission of the temporal dent due to God for sin by the suffering members of Christ's mystical body in Purgatory is commmicaten to them by the Church by way of suffrage or supplication. In other words. She anthorizes the living to ioin their petitions with hers that God may gracously accept the indulgences which they gain and in the measure in which they gain them. in behali of the sonls of the faitliful departed. Indulgences are now dispensed party by way of absolution and partly by way of commutation. The well-known distimetion hetween partial and plenary indulgences should be understood in an obiective sence. The degree in which any indulgence is actually gained or subjectively appropriated by the individual depends on his suhjective disposition, according to the thenlogical maxim: whatever is recelved is reccived according to the measure of the recipient. The most solemm of all plenary indulgences is that which is granted on the oceasion of a jubilee such as that which was proclaimed for tgo4 by His Holiness Pius X

INDULGENCE－INDUSTRIAL CORPORATIONS

to mark the so：h anniversary of the definition ci the Immactiate Conception by Pius IN．

Thos E Judee，STP
Fornicrly Pröessor of liental and Woral Phi－ as bi．St．Pairivés C llese，Iny：voik．Ire－ iand：queraard Prieissor of Degmatic Tiedolay in The Sam：Panl Seminery．Saint Poul．Menn．Edisor of＇Ilve Catholic＇Rěteru

Indulgence，Declaration of，the proclama－ ：1 In sistred in 108－by Tames II．of Ergland by whici te sough：to relieve his subiests from －bserving laws opposed to their consciences．As ti：e persins then suffering mest from the laws were R man Catholics，and as the laws would ieave then iree to worship according to their cnnciences，the proclamaion was opposed by many knges subiects．Seven bishops of the Cnutch of Encland reiused to order their clersy ：O read the Ging＂proclamation．Charles II． sswed two similar indulgences in 1662 and $16 ; 2$. b－tit－which were umpopular with the people $0:$ ：aside the Roman Catkolic Church．

Indus Sansirit，Suct：al the chein stream co the northwes ci India．and one c the great rivers ai the we－id．It has a length of about I．900 miles．and drains an area of more than 300.000 square miles．It rises in Tibet on the n：th of the Himalaya Moumains，neeriy 100 miles nothwest from the solices of the upper Brahmaputra（q．x）．：？the п7下h side oi the mountain mass of Kailas，ts．o00 feet above sea－ieve．In the upper pars of its course it takes a northwester！y direction along the northern ioct of the main Himalayan range，enters ine ظ゙asamir iertionies．passes through Ladak beiow the capital of which， Leh．it receives the Zansiar．rarther on the Dras，atter which it emters Balristan，Here it receives．on the right ine Gilgit．from a glacier in haraioram．the largest tributary that jo：ns it 1 n the Himalayan regons．and teies the aame c Inci：s o：Sind．thout 100 miles beiow thrs it takes a sudden bend toward the suathwest，and aiter a couree of about iso miles mure in this d：acti a it teaves the $i=$ ．iter reg 1 as． It the Brivish intress of Att cis ：al the Paniab －where it is crossed ty a great－ai＇way f－idge carring the line io Peshawar－it is coined by the Kabul ircm dighanistan，and here 0：0 ieet ${ }^{7}$ ？e the tevel of the sea，it is nearly sow ieet sile and from 30 to 60 feet deep according to the seas n．For the resi of its course（about gom miles is cminues its shuthwesterly direction all is enters the Indian Ocean．At Kalabagh． 110 mi．es ．elow Att chit，it has a breactin of ever tu00 iect Arriving in the low－lying country． its waters become charged with mud．and in the rainy seasun．and by the meiting of the sow in the muntains．it overtows its bande．Near Sithanh：it receives on the east the Panjad． o：Lmitici stream of the Five Rivers nit the Paniab．Be ow the confluence it has a width oi over 1.900 yards when the water is low．In Sind it zives oti several extensive arms or cmals，which are of great uane in irrimation an l 1 Hy Herabad it divides into a number幺 shifing mouths or estuariec．the most nav． ：2a ${ }^{2}$ e i which is at present the latho mouth． The de＇：farmed ty the cnormous amount of abuvium brought duw by the river，has a
coast－line of about izo miles，and the point or head oi it at Tatta is $; 0$ miles firom the sea． The side rises to this distance．The Indus loses much wate－iron？passing through dry and desers regions．and much is also drawn of ior irrigation：accordingly it brings down much less water to the sea than the Ganges．Vessels draw－ ing more than seven ieet of water cannot gen－ eraliy enter any of its mouths：but steamers of light drait ascend from Hyderabad io Muitan． A ：ailway ascends the valiey of the Indus irom E．importart port of Karachi to Peshawa：．

Industrial Commission，a non－partisan

 body authorized by Congress on is June IS， \mathbf{S} ， to iavestigate the subiects of＂imimigration， labor．agsicuiture．manuiactures．and business＂ in the United States，with the utmost iaimess t）both capital and labor．and report to Congress with suggested legisiation，as a basis not only for national law and administration，but for uni－ formity of State laws．It was empowered to administer oaths in order to obtain sworn testi－ wny，and send for persons and papers．as well as by a supplementary act）to purcinase relevant liteatue up to $£ 5.500$ a year．The members were to be five Senators appointed br its presi－ dent．five Representatives appointed by the Speaker．and nine private gentlemen appointed by the President and Senate，fairly representing different industries and bramehes of national life． Originally appoinsed for two years．the term was exiended to 15 Dec 1got．and then to 15 Feb．1go2．the last zeport being dated the foth．The actual work was done by the private members．who employed 27 experts on the rasious limes，and examined nearly－+00 wimnesses making a report in 19 volumes，of the highest value from the unmatched thoroughness and authoritativeness of the view on every side of ow：industial system brought out，and the cont－ petence of the witnesses．who represented all grades．from heads of trusts to presidents of colleges，and from lawyers to heads of trade unions．leasing no field untorshed．The com－ mission also digested a vast amount of facts irom judicial decisions and oficial documents． The private cornmissicrers were A．L．Harris． S．I．D．J゙＝rin（successor Aibert H．Clarke） Eilison A．Smyth（stcecessur D．A．Tompkins） I．II．Farquhar．E．D．Conger．T．IV．Phillips． C．I．Harris，II．D．Ratchiord（successor C．H． Lithman），J．L．Kemnedy．The experts were 0.7 warehowse and grain inspection laws immi－ gration（two，statistics and labor questions）． agriculture（fout．distribution．labor．spectlation， an：d iaxatio：3）．labor organizations，prison labo： （two）．railroad labor．Asiatic labor．sirikes．and arbitration，trusts，transportation（two）．rallroad legislation．iavation of corporations（iwol do－ mestic serrice．pure－iood legislation．mining industries，mining labor legislation，tobacco in－ dustries．mechanical progress，besides advisory c unsel and expert indexing．Industrial Corporations in the United States．inciude the large number of irusts，of industrial combinations ionmed between isx and 1003 ．As the individual or private business nirm gradually gave way to the limited partzer－ ship，so the limited parnership in turn prac－ tically yielded to the general corporate form of dning business，especially in respect 10

INDUSTRIAL EDUCATION

mannfacturing which followed the general tendency of business toward consolidation. This was a mathral restalt of the rapid growth of capital, which consolidated for its own benefit. In this development some of the carlier and larger trusts molonbtedy played a very prominent part. creating a precedent. setting in example, as it were, notably the Standard Oil trust and the Sugar trust, both of which have been in corporate form for some years. They were the pioneers in consolidation of mannfacturing interests, but compared with the more recent Linited States Steel Corporation, with its capital of more than a billion dollars, they are but pigmies. The great majority of these combinations have capitalizations in excess of \$5.000,000 each, while only io very few are capitalized at less than $\$ 1,000,000$. Many of these manufacturing combinations practically control a very large proportion of the entire business of the country in their particular lines and are eves extending that control to other countries.

The most notable feature in the increase in the industrial growth of the United States from IS83 to 1903 is in the iron and steel industry. in which the production is nearly six times greater than it was at the beginning of that period. The total quantity of pig iron and steel produced in IES2 was $5 \cdot 360,015$ tons. In 1892 the quantity was 14.084 .581 tons, and in 1902 it had increased to $31,255.595$ tons. The increase in the production of pig iron in 1892 over 1882 was 98.99 per cent ; and in 1902 orer IS92 it was 49.18 per cent. The increase in the amual production of steel, however, was much greater in proportion. In 1802 it was 183.38 per cent greater than in 1882, and in 1902 it was $17+3+$ per cent greater than in 1892 . Among the advantages of the corporate form over individual ownership which so largely tend to the advantage of consolidations of capital and the supplying of the demand for greater facilities for its employment in industrial fields is the fact that, while stockholders die, the corporation can
go on forcver. The ownership of these curporations is divided among lundred of thousands of individual stocklolders, who are liable only for the amount of their stock, and which can be tramsicrred without affecting the corporation or its liability and without any trouble. The number of stockholders of four of the largest corporations, fur instance-namely, the United States Stec Corporation, the American Sugar Refining Company, the Amalgamated Copper Company and the Standard Oil Company number about 100,000 persons.

The census of 1900 gave the statistics of industrial corporations (first table below):

In 1902 these figures had materially increased, there being 213 industrial combinations or trusts with a capital of $\$ 6,639,019.304$, hut even these figures are far from the estmates made in 1903 by Moody (Nannal of Corporate Securities) who places the total capital at $\$ 9,-$ $000,000,000$, and who states that the railroad consolidations would inerease this to $\$ \mathrm{~F}, 000$,000,000.

The United States Steel Corporation, the largest of the trusts, and its competition are marvelous examples of the "combination" plan of capital. The following are the figures for 1902 (see second table below) :

Industrial Education. - The industrial growth of the country created a demand for higher instruction in conmercial subjects which soon led to the establishment of separate institutions devoted exclusively to such instruction. For details see Agricultural Education; Architectiore, Education in; Commercial EDucation; Curresfondence Scilools; Education: Encinielring; Industrial: Proffessional. in America: Scientific and Technical; Enginemring, Civil: Engineering, Mechanical: Industrial Terms; Law, Auerican Subolo of; Manual Training; Medical Education: Parnting, Education in; Sculpture, Education in: Technical Education: Techinology. Schools of; Trade Schools; etc.

No. of Co.'s.	Industries	No. of plants controlled	Capital issued	
			Stocks	Bonds
40	Iron and steel companies.	489	\$763.806.295	\$20,614.000
25	Food and allied products.	277	$277,618.300$	$12,725,900$
14	Chemical products	295	$278.357 .295$	$9,294,000$
11	Metals other than iron..	113	$203.505 .600$	$8,565,000$
28	Liquors and beverages.	258	$193.301,158$	$55,529,142$
6	Velicles (land)	72	$189.680,000$	$10,300,000$
4	Tobacco	41	$197,184,628$	
8	Textiles ...	72	$109.514,175$	$36.944 .000$
5	Leather $\because \cdot$.	108	184.015,200	$13,805,000$
7	Paper and printing...	119	130.006 .500	$42,461,217$
15	Clay, glass and stone, etc	203	6,3.896,858	$5 \cdot 567.500$
8 16	Lumber, etc.	59	$39.534 .400$	$275,000$
16	Miscellancous industries		$238.367 .700$	332,000
183	Total	2,203	\$2,268,788,109	\$216.412.759
Summary			Capital Authorized	Capital Outstanding
				\$1,359.560,000
				68,478,656
				131,250,000
Grand total. Securities of 32 of larger competitors of United States Steel Corporation.			$\begin{array}{r} \$ 1,752,371,856 \\ 452,164,600 \end{array}$	\$1,605.949.856
			$385,740,100$	

INDUSTRIAL TERMS

Industrial Terms. The following list embraces many of ti:e important terms that are used technicaly in the several commercial induatries. Such terms as are usually regarded as seif explanatory. as well as those that have ro general application, have been omited. These that are oi mose than ordinary importance will be found defined more fully under their approprlate heading.
Abivnovimet.- - term used in marine insurlace to inn te that all p:operiy saved has been =eturusshed to the underw-iters in cerder that the insured may carme indemnifiction to a inta:
Asb.-In we.isetang the que iv, oi ihe woll is de. n. :e! by the terms: "rine abb, an "c-ase abo" Abeabage.-A rerm used mi marize insarance. If a co...sinn between two vesseis bappets on tie open
sea ad the danawed sea nd the danazed an wis insured tae rers ns eriviled :z relief at civil law aganst the party causing the damase.
Acteptace - A term pually used, in masine insurance. in cases of abar, niment. It is this process "hach perieuts the rights of the insured in the recovery of his l.ss.
Actrasy. - An oficer of an insurance company whose shall in the appliction of the doctrine of cbance to finazcial afairs enables him to maise the comnuiations necessary to determine the valuation ci cintragent lice ilities, as shovn in the compilation of tables, the computation of risks, eic.
AGEEEMEST.- If insmiance the contract issued prios To the delivery of the official poncy is known as the " agreement."
Ansenling.- The process of treatuag substances by hea: to remove trei- britteness and get make them toush and inclined to be elassac.
Anvertw- A Exed amoyrt paid each year, wherher in one sum, of periodica γ, in installments. When an annuity is continued for a speciric num er of years 15 is termed a "certain "ennuity. If the ferod of its, continuance is uncer:ain ir is cailed a "contingent" annuis:y. When payment has already commenced it is an ". annuity in possession." but fert a has elapsed or not begin until a specified nlace it becomes known as detinite even! bas taken ietred" annuity.
Arover of loss.- An insurance term denoting the diminution or destruction of the values of. or of tine charge upon. the insure i hy the direct conse quence of the operation oi the risk incurred, accord. ing to iss va'ue in the policy.
ASSESSMiExT.-In insurance, an assessment is made (n) as an apportionmer: it general average up a the articles at risk i-r costribution for damage and sacrifices purpisely made ior escape frym impend'ng peril, ard 2 also upon preminm notes given by members of mutual cothanies as a substiture io the in ves'ment of the pail-ap stock.
Atichlor.-A tern used in bleaching to dencte the method employed 13 remove or neutraize the in jurious efiectis of tae free chlorine left in some bieached ma:erials.
Apcss- When a porti n of a lode is leit s:anding, in minng, because if 55 tio poor to work or is needed as a support. it is called an "arcb."
AETERISQ-A term in printing. denoting the 3 asterisks sometimes placed before a senterce to call erention to it.
di. EMPERATILN.-Regulating the temperature of the eer-w ms in beewing.
Attescari : - The decrease in density of the beer. \therefore "rs in brewine is termed "atienuation."
twiy $-\frac{1}{2}$ process for clearing and brightening the c rs in ly eng.
iv-p, E Brap-il bond in marine insurance under shat the ensignees of cargo subject to general gu - riec payment of thir cu:ributen as A ascertanced in order that their got ts may be - if Fel 1 at rnce
 th its te'ween the level and the ne next ab ve it. in e $1 . \mathrm{m}$ in ro. the inmer end if a hea ing Whe a ork is he $z a$-flactel. e) the thickest an T . K . istes are terme 1 , hat ts " in the ea:her trale.

ck. emarrive oi the prester strap usel to

Balk- When a bed of coal suddenly thins out it is terme a layer of rock that is interstratified mith cicl.
Esssey:-A smal! car used in mining to push the rine-car un a stope; the pit irom which it runs is termed the "" barrev.pi?
Barratry.- In marine msurance, the commission of traudulert act in tie management l \hat{E} a ship, or i. cargo. by which the owners. consignors. or in$\$$ rers are subiect to injury.
BaRREL-WORE-- Pieces of native copper too small to be isn tled as mass-copper. but large enouzh to be supped in barrels.
D.stiad.- (a) An imare hrown sugar maje from The retuse prevous hoilngs: (b) the large moli into which the surar is dirained is also called a "basiard: ${ }^{\circ}$ (c) in printing. any tre whise iace is out i pronnrtion to tiae size of itis body is rermed " bastar in "type.
EA-TNG. - The process of steeping hides and skins to Bealuer them ste: and fit is tanning.
vent cial The timber stucture that is used to prevent coal from siling down a shute.
Bav.- In mining. an opea space for waste in a long-
Bexwing. - (a) Winding the warp-yarn on a loon in the manufacture of cloth: b workng hides with a sucker over a beam in the leather trade.
BEATER- (a) A machine reed in cotion manufacturing
to open and ciean the coiton carder: (b) a knife nsed for before it passes to the carder: (b) a knife used for breaking flax or bemp; (c) the latine of batten of tae loom used in weaving. BenE-ING.- At term apalied to the process used in gexing the coal after is is holed.
ing, as a morlartude acetate of iron used, in dyeing. as a morlant.
EleED- - (a) In bookbinding. to trim the margin too close'y: (b) in dyeins. extrac:irg the coloring matter.
BiEv-DE-ROT. - The ie:m used to denote the cobalr-blie coior in European rorceia:
Blick- The iridescence a pearing on gold and silve: a: the ent of the refining rucess
Blet-cap. - It mining, the blu'sh or b:omnish balo which, wher it appeass around the Eame oi the safety lamp, indicates a dangervas quantity of fire. damp, is termed the " hlue-cap."
Batros.- The hard paper-s:ock inserted between the prinied sheets in a press to remore an indentation of impression: often cal'ed "pres-boards."
Bese- The term used to derine the slaty portions in a coal mine.
Lusser.-The shieid used to protec: a mine shait from substance which might otherwise fall into it.
DCroer. - The rim fixed about the bed-plate used in milling to prevent the meal irom falling of before if reaches the proper onening.
Brassing. - A term that is applied both to the process of steeping cloth beire or after it is dyed, and to the steenng oi skins berore tarnias.
Grood. - The term applied in mining to all heterogeneous mixtares found with copper or tin ore.
Brish. In instrument constructed of several small trees. like the bircb, and uised by iarmers insteai oi a karrow in covering grain. ir small seed after sowing.
Bt゙CE.-- The breaking of ore into small pieces fior jugging.
BLDDLE. In mining, to wash ore iree from eathy zatter the water is ron over an incined batch which is termed a "budl e."
Blilocks Mides.- The trade name given to the saw hides of catte.
Euluy.head... The name by which the sledge-hammer used by maners is po plarly known.
Eutrow:-In the foshing industry, the ppactice of stringing many hooks on one line, used in fishing for cod off the Banhs.
Bexchy.- Used in mining to denote that the ore is irregularly distribrted thruagh the lode in small masses. or "pocke's
It: cole- - (a) in paner-making, 2 reams of printing, \& brown, paper; (b) in spinning, 20 hanks, or 6,000 yards ui irin yarn.
I צt ws.- The timbers pat acrus a mining shaft to livile it into compartments.
I. TT.- I hile of sole leather in which the belly and Meulders have been cet of
CteE- - I remm of meas rement in the fishing trade. lenoting ei:her soo berrings, or 2,000 sprats.
Cu:E $-1 T$ - The framework at the bottom of a shaft. so arranged as to reduce tbe jar when the cage drops $10-n$ it.
Calf.- 1 icrm arplied to a bookbinding in ca'iskin. T is hindine is of several erales. Divinity calf, a dark-brown binding. with blind stamping and no

INDUSTRIAL TERMS

gilth.es: talf-calf, in whet the backs and corners only are ut calf.skm, mottled calf, a calf hinding of pue color an wheln the decorations have been made by the spr nkling of acte sinooth calt. or pram, undecerative leathes; tree calt, a bright, arown cand
bindng stained hy acul to imitate the trunk and branches of a tree.
Cinch. - A term used to dersote that part of a floor or roof of a gangway that is removed 10 equalize the grade because of a faulh, or break in the strata.
CANNEL I iorm of weaving that produces a corded or rep tissuc.
Car.- A term denoting certain sizes and shapes in paper: lowble cap. 17×28 inn: exchange cap, a fine quality paper, used in printing bills of exchange; flat can, or iull cap. 14×17 in.; ioolscap, usually $12 \times 15 \mathrm{in}$.: legal, or pot caj. 3×16 in., etc.
CARDING. - The disent?nglang of wool, cotton, or other fibres preparatory to spmang.
Carrot.- In the fur tiode, to dress a pelt to pre-Cancots.- Rolls of tobacco after they have been so prepared that they require only to be ground and sifted to be made into smuff.
CAsE- (a) A shallow wooden tray, tbe partitions making the small boxes in which the various characters of type requirel by printers are kept in order for the use of compostions. (b) I hook cover tbat has been made segarately from the hook for which it is intended.
Cassefaper. - The wrinkled, troken, or otherwise imperfect paner rejected by the trade.
Casserte, - Tbe utenst in whach chinaware is baked; sumetimes called the "cotrin."
Cast.- (a) The water used in the preparation of beer. The quantity tbat is frst placed in the mash-tab is termed the "first cast: that which is subsequenty adled, the "second cast," "third cast. etc. (b) queen.
Certosina IVOrk.-A term used to denote the inlay of certain light materials - like ivory or satinwood upon dark woods like walnut.
Chop. - (a) In milling the product of the first crushing of the wbeat; (b) also used to denote the brand and quality of tea imported from Cbina, as "first chon, etc.
Clicker- The workman who cuts the uppers and soles for boots and shoes.
Clog. - The short pieces of timber used in mines to prop the rooi.
Closing-macirne. - (a) A machine that sews heavy cloth or leatber with a lock-stitch, alike on both sides. (b) amaratus used in rone-making to twist the already made strands into rope.
Cobbrag.--In mining, a process of breaking the ore that the hetter parts may be sorted out
Cockle. - (a) A larye stove used in the making of norcelain, to dry the bisctit-ware atter its glazing preparatory to burning; (b) the kiln used for drying hops.
Color.- In gold mininc, the particles of gold that are shown when auriferous sand is washed out.
CHase, - In printing, a square, open framework of Chase - To whicb tle type forms are fastened to facilitate moving and working on the press.
Coyrmercral.- A term used to denote the shape and size of paper: Comnsercia! Jetter, :1N17 in : uilfolded commercial letter, small, $10^{1 / 2} \times 16^{\frac{1}{2}}$ in.; commercial note, 8×10 in., uniolded.
Compisitosship.- In printing, a numher of compositors crployed in setting up a quantity of copy under the direction of one leader.
C $\because: 30$ st. - A mixture of various manuring substances
1 by agriculturists in fertilizing land.
Coventraior.-A mactine used, cha tly in mining in the Inited States, to separate the ore from the rock with which it was associated in the lode.
Constructtve Totar Loss.-A term used in marine insurance when the thing insured and damaged, while not entirely a total loss. is so nearly so that it is piactically beyond recovery or repair. In such cases practice of abandomment is served unon the insurers a notice of abandomment is served ow onstructive total byss" may be recovered.
Cosb.- (a) In fancy weaving, the interval between, two vertical lines of the design is fermed a "cord; " (b) the same term is used in hooklindtree when a hook is tied firmly hetween two loards to assure its
 used in weaving to dencto the ch ed which the hedalong the wooded
dies are secured.
ciendsg. - The term denotine the arfencen ent ot move ireadles in a loom by wheh the are marte to mone in such clusters ant tinie: :s the rroluction of the patiern mas necessitate.

CORE FIECE. Tic yarn running through the centie of a roper tu assure its solidity.
Cusser. Ithe twat used in bookbinding to decorate the corners of a wok.
Colch.- (a) The afcration, in brewing, of spreadng the steeped giam u, on the for or to convert it inio malt; (b) in poupermaking, the act of remoring the paper fron a the mail upon which it has been iormed that it may be flaced uf on the feit.
Cocster-lote.- A term used in mming to denote a lode ramning in such a di ection in relation to the 13 ain lodes that it of shes or intersects them.
Cuersing. - The met 1 if regulating tbe ventilation of a mine by conduc:ing the air through varous doors, stonings. cic.
Chty. - In weaving, a warp that has more than two th:sads in cach sh lit of the reed.
Cкмдtwo.- In tine futtery industry, when the glaze separates from tbe h-dy and forms blisters.
CrEsAER - I iool used in bookbinitig to define the width of the bands of a book, ant to fix the position withe lines on tie backs and sides.
Cener.- If the pillias of a mine are not sufficiently large. or the rosf is not iuly supported the pressure of the superincu bers strata simetimes calnses an apparent rising of the under-chay: Collieries have heen entirely destoyed by these "creen.
Crop.- An unirmmer hile. struck for sole-leather, is termed a "crop," or "crop-hide " in the trade.
Crutch.-A term used in soap-making to denote the perforated instrument with whicis the various ingredients are stmred t.ie her.
CuI.- The block tinon w^{-1} ich a picture is engraved and irom wbich it is impressed in printing.
Cutter.- Úsually applied, 117 minins. to a joint or crack which crosses a betzer de med systenı of cracks in the same rock. In coal-mining "cutting" is the work done in getting the coal into a condition where it may be broken down.
DABber.- The use of the "dabber" by printers has largely ceased since the introduction of the inkroller, but the same term is now applied to instruments used by etchers and stereotypers. The former is used to ink the surface of ensraved blocks or plates; the latter to dab the back of the dam paper uset in the papier-mache frocess of stereotyping, in oraer that it may be driven into the interstices of the type.
Dabstis. - The term applied to the process in stonewarking by which the surface of the stone is covered with swall indentations, after baving been made uniform.
Dam. - The term apnlied to the underground wall frequently constructed to hold back water, air, or gas.
Dampisg.- A process used in bleaching to add a cer. tain amount of moisture to a fabric, after it has been starched, that it may be properly finshed.
Daxdy. - The running-aut sire for the meiting of pigiron in tin-plate manutacturisg. cylinder beneath DAMDY-ROLLER. -he water-pulp is nassed in paper.mak. wbich the web of water-puln is passed in paper-making to drain it parsially ni water.
Dask-wheet. - The partially submerged wheel used in cotton manufacturing to wash and rinse calico in tbe piece.
DECK.- Esed in mining to denote the loading or unloading of cars upon the cage.
Deckle-strap..The contrivance used in paper-making to define the width of the sbeet hy regulating the thow of pulp.
DECREMEST.- A ierm used in insurance, usually in the sense of the "equal decrement of life." or the doctrine of annuities upon which assurance companies base their existence. It is the theory that in a given number of lises there should be an equal number of deaths within a given period.
DELE.- A term used in proofreading 10 direct the compositor or printer to remove a ietter, word, or phrase.
Dfviation- A qerm nsed in marine insurance to denote the voluntary departure of a ressel. without nccessiry or reasonable cause. from the usual course of the voyace for which sle was insured. . Nll wh. reqsonable delays are also insolved in the same law, which releases the underwriter from all risks. Devit. An errand-boy cmoployed in a printing-office. Drprog.- A ; rocess in ceramics by which a coarse clay body is coated with fine enamel by being flunged into the liquit which constitutes the coating.
Disctiares. - The term used in dveing to denote the process by which white patterns are prodaced on colored grounds.
Disccueng Cuama- In mining law, the portion of ert, d held by reason of the first discovery oi its ivineral deposits.
Distarrite.- A term ueed in nrinting for the preces of returning dead matter (type no lonzer reg's red)

INDUSTRIAL TERMS

to tie cases：throm－in is anctien term used to
defne bis process．
DeCT a．－A teris in wine－making，used to indicate that the character of tie wine has been chagged by the allition of anothe： 1 quor：（b）to al：er any c－modity fin purnose of decention．
Dipe，－t term that hes several distinctions in the res－ile manufacture： $1 a$ ．The process of strip，ing the cotton or wogl ircm the cards preoaratory to spin－ ring：b）the act of menderg broken tireais：c） the removal of iuil bobbins to sive place to the empty ones．
Dossit－The roll of clorh used to clear the int from an engraved plate prior to pritting．
Dotble－ 1 term used ty derote the size an q quality of panez：Double medium，a prizitng ga：er． $2+33$ i－：double royal，a printing faner． $26 x_{4} \rightarrow$ in
 with colors that have to afrinivy for each cther．
Dotble Issirkuce．－I iem：ise 1 mung insurance comparies as a smonstu where divers imsurances are made upon tie same in－ te－ests against the same risks in favor ithe same assured．in proportions exceeding the value of the suhiect．the party insured ma\％sue upor ali the fol cies although he is entitled to but one satis－ faction．
Dotslemalled，－ 1 term apnlied ：o terote that clotb has been fulled twice to make it finer in quality
DNeEiER－（a）A machine for doubling and draming sik：（b）a still made to irvercen：and redistit！the rapors of distillation；（c）a ielting placed between the fabric and the press before printing．
Dersicast．－A term used to denote the system of veatiation used in miatza，the shaft down which The air passes irto the mine being cailed the＂s down－ cas＂．
Dr FT．－U＇sed in weaving th describe the cording of a loom or ibe arrangement of ibe beddles．
Drag．－al thgiz ir n－rod tool with a tapering sniral eri，used by miners in cleaning ont bore－boles before ir－roducirg the charge：（b）the derice bat suiles wood to the saw in saw－milling：（c）also an－＂ed in ：rintirg in denve the thickened imrression on one sile of the le：ters produce I br the scraring ：E the
Drawisg－PapEr．－ 1 term used commercally to tee scrihe a variety of stout afeers manuiactured ex－ as intoms：Cap，i3xaw：in．The recula－sizes are metium，fixaz in，rava，toxa in：su erroyal，tox in．columbier． $23 \times 33^{2-1}$ ing in：atas， 26×33 in．

 ery．Is they are set in pairs，each i which ：urns more rapilty than any pesvious nal．the sliver nasses thr ugh thern in succession．
Drati－his．－Fnrmerly the wenver＇s assistant：now，a mecharical device used in drawing the hedfles to farm the patierm of the clnth in be woven．The machine unn which this Fgure－weaving is dowe is kn wn as the＂ה－sw I nm．＂
Denwx．－A term dencoing the meth d of freeina sub－ s：ances from al！partinles fir．n an ！stee？Dy tse ct a masnet．
D२esser．－a）The w－kman employed in twpe－isund－ tie＂r ret ve all defects ir m the orpes in prenaring ：len it－sale：（b）the too！．or m hine employet ：0 c．＂．and dress the furrowz en a milso ne：（c）a एns＇er used by flum ers in clns ne i n^{n} s in sheet． le 1：d）ne ，f the picks us－1 in minime．
 the $-1 z$ ntal exeavatinns that are freq ently made in

 buve been so anitet that the jaint forms a wister c nducent the a－rangement is known．in plumbing． as a＂ 1 ：i－joint．＂
 prin＋ing－press i at regulates the pascage of the paper sheers to imnzession
I）pertul．－The term dencong an agricultural in corment that is emel yed t to the seed an I fer （1）hee int the groind sime＇s monsty
In P．Fix， 5 s．hat are emnl vel th＇3 the shects in place 1：n＋9？t ey can be seized by she srinners are iermed ＂e＂d d－amsera
Deopper．－I term used in mini－s io denoie a branch $r \rightarrow t \operatorname{tr}$ ．cunects w th clie main load but that C $e=\pi$ ．materiaily en mich i：

Dropring．－term used to derove a defect in the Froduct of the glassmaker．It is cansed br the acci－ denal dropping of the crude slass into the molten g＇ass in the melting ressel．
$D_{\text {a }}$ p－rollez－Tised in prating to denote the roller ilat drops at specined intervas to supply ine printing in丸 foe distribution．
Dr visg asd Striping．－A process in stone－cutting by whth the shallow parallel sroves arc made zlons the leastit of the rough－hewn stone．
Dryssu ge．A term deroting the process by which an analg－m of zold is evaporared．
Drytug－plates－－Used in brewing to denote the series or irames in the malt kin．Ibey are placed one oser the otker，and，being covered with woven wied． the ho：ai－ascenis throuzh them in sach manner as to dry the mait．
Disur－U＇ied in printing io denote the act of Eemor－ irs ：ynes irom the stich ？？place them on a gallev．
DexG－bana－－In some fiocesses of dyeinz and cal co－ panting the cinth is subjected to a＂dung－bath．＂ comp－sef of warm wares．animalis dung．evc．for the I repse of remoring the supertuous mordant，
EGu S－ELL－A term used commercially to denose the t＇innesr and most reanslucent o：china or porcelain．
Elbow－piate．－A term used in faner－making when the cutter i the rag－cutring machine has been hent to something like an angle in the middle．
Electr－plating．The process of coating articles with silver or other metal by means of elect－otysis．
Electzotypsng．－The process of making plate conies of any encraved or molded surface by means of electical deposition．
ENEOWHENT．－A term used in life insurance to Eescribe 2 policy in which the face ralue．with accrued earn． ：ngs．is parable to the ingwred ith or aiter a srarel perios．of in which the tace of the policy is paid t！his ren－esentatives should be die prior to the ex－ itiration of tiat time．
Exsilage－An agracultara＇term used to deno：e the process of preserving iodder．etc．，in a green state by storms the materials in sios or pius dug in the groume
FAce－In coal－mining，the working，or portion of the seant chas：is being mined．
Fsscer．－A rod，or basket of wire used in carrying the bottle from the mold to the leez in zlass－manrfacture
Fat－Woren，In printire，when copy is parcicularly protiable io the composite owing to the fact that it bas much o en spuce ：hz：may be cilled with leals． or that in other unys iav，rs ranid execution，is termed ＂two－k．Il beã or ink＂ia：＂in printing means that a form of ty e bas been given an excess ink．
Fzentag－In fining，a ：erm denotinz the metiod of n＇acing the sheets if pafer in such pozition that they are ready to mee：the requiremen：of the press
Filstitas．－In silk－crleure，a reel by which the stik is d－ann ir me the cocoons．
Finter．－（a）In weaving，a strip of carlelothng：（b） in dairying．a nerforaied curb used to conrine tae cheese－curds：（c）a wheel－shaped tool rised in boai－ binfinz ：－impress a line．of decuration spon the avers of bovs：fl it－riong．a rule Exed witb lines that may be used as a bor：jer．
Filfisg．The term by whict the woot or weft thread or a wnven jabric is known．
F：LLivg Cas－［＇sed in rone－making to denote the can on wheh the s＇ver is contensed and wound after c rries if m the doukers．
Fine－astuinu．The erma appited is the firnshus process in cheth manuiacture．By expesing the cloth to a strong light all the minute holes due to breaks are scoverel so ihat they may be repaire 1 with 2 needle．by the motr ductiva if sund yarns in the place of ：hose that bave proved defective．
 in aper－making to retain the c arse firs and knots $s)$ that they cannot pass iar uzh with the finely ground stufi．
Fsaegrlotsc．A process of gilderg by which the Dercury is driven from the amalzam by the heat of a mutテ̈e．leavine a fac film of goll．
Fintinc But H．In tannins．the catechu－bath is isllowel by a ther known as the＂tixing＂bath．It cunssie Q waret suffictent to cover the 三kins，acidtred whb nitice acid．m－jrel with a hittle g！ycerin．
FLE：HER．－The t．ised in leather manuiacture for the furmose of ficshine hiles．
FL ar．－I term wised in weavin：to denote the passaze if the chuts＇e cr sinise above or be ow the threads Fut uithout iniersecting them．
Feve．－The combination of moist tissue paper and raste used in stereotyping by the papier－mache process i）form the mid of matrix from composed types or enzraved surfaces．

INDUSTRIAI TEIRMS

Floor. In bruwing. . cach stecping is known as a Hoor" or "prace
Froorint:- Cade in brewing to denate the operation of spreading the kram on the malt-floor, that it may be kept at an even iemperature, to clacek germina tion.
Fiow:- I term used in coramics to denote toc flux that is used to make the colors run and blend in firitg.
Frovery- A term used in calico printing to denote the condition of frothiness which is sometimes develoned by the colors during the process of printing.
Foxi.- (a) ()nce of the arms of a spinningeframe which revolves around the hobbin to twist the yarn as it is wound ugron it; (b) an cotton-spinning, the term is applied to the waste cotton: (c) in meaving, a shuttle with wheek driven through the shed by a jerk; (d) in printing. the medanism which receives and de livers the separate shects as they are printed on the press: (c) itt fatmo naking, the hinged board with which the kuss are covered when not in use.
Forso. While the word "folio" is used to denote the size of a book it is also applied as a descriptive term for several size's of phoper, each of which is designated by a specific name: Pot folio, $71 / 2 \times 121 / 2$ in.; foolscap folion ahout sxizn/2 in.: flat-cap folio, $81 / 2 \times 14$ in.: crown, or post fulio, $9^{1 / 2} \times 15$ int. ; demy folio, 10 $3 / 2 \times 16$ in.; medium folio, $12 \times 19 \mathrm{in}$; royal folio. $121 / 2 \times 20$ in.; superroyal folio, 14×22 in.; imperial folio, 16×22 in.; elephant folio, 14×23 ins: atlas folio. $16 \frac{1}{2} \times 26$ in.: columbier folio, $17 \frac{1}{1} \times 2.4 \mathrm{in}$. double elephant folio, 20×27 in.; antiquarian folio, $261 / 2 \times 31$ in.
Fonlscap. - 1 term applied to a writing paper varying in size from 12×15 to $121 / 2 \times 16$ inches. The term was derived from the water-mark, a fool's cap, which formerly appeared upon all the papers that bore this name.
Footlise I term used in printing to donote the last tine of a pase of type. It is usually left blank, although it sometines contains the number of the page or the sigoature on the slieets:
Forwarder.- I ierdi used in bookhinding to designate the workman whose duty it is to receise the sewed book, put on its lack, cover, etc., and prepare it for the finisher
Fuls.facen.- 1 term used in printing to describe a type witls the thick lines that make it print extremely black.
Ferniture. - The iwrin "furniture" in printing dee notes the pieces of wood or netal that are placed around the nages of twpe, pot only to keep them the necessary distance apart but to assist in fastening them securely in the chases. When the furniture has heen systematically cut into various lengths and widhs. so that they may be easily comhined, the pieces are known as "lahor-saving furniture.
Fustan:- The term applied to a short twilled cotton fahric, usually a cloth having a short map, like corduros, velvereen, etc.
Gaging.thrabi.-In weaving, a thread introdiced tempurarily to ston the weft-thread at a specificd point.
Galdey.- In oblong, shallow fray, now hsually made of brass, but sometimes of wood, used in printing hy compositors as a place to deposit the type they have set. Galleys in which the type may be locked are known as proof-gallevs. Standing gaileys are inclined frames fitted with cleats on which the type galleys rest. A proof taken from types heing held on galleys is termed a "galley-proof"
Castalty. I term frequently used in insurance as a synonym for accident.
Coinstrance- I form of insurance in which the insured, in view of a reduced rate uf promium agrees to maintain insurance unun a certain specified percentage of the total alue of his property, failing which loe becomes his, , 11 insurer for the difference, a fact which makes him jointly responsible with the assuring company in case of partial loss.
Gathering.- Used in class-making to dencribe the method of coiling the molten glass on the end of an iron tube preparatory to the work of hlowiog.
Giggerivg. - A process in bookhinding by which the bumbished lines are subbod upon the covers decorated in antique fashion.
Grgarag.- The process of finishing cloth hy drawing the loose ends of wool in a fahric to the surface to form a nap. Sfter the work of napping is completed the fahric is ready to be finished by shearing.
Gillisg.- A term denoting a process for making all fibres level and even in the manufacture of woolen yarns or worsted.
Gingerbread-work.-.A phrase used, somewhat as a term of contempt, in describing the fanciful shapes of the ornamental wood-work and carvings seen upon furniture. cic.

Gilsice.- I term used in mimme to designate the ce ones in whels a pectuliar lusire and e lar indocates that they are of metallificrous combmatiom.
(ilossing.- A term demotang the operation of twistans the laanks of salk, in silk-manufacture after they bave been dyed and dried. 'This moecss is sometimes trmed " stringing."
(iotitic. I term used by American printers to descrije style of squarectut pranting type very simalar in appearance to the old Roman mural letter. In Engliod this type is known as the "grotesque."
(ikovel.- U'sed in btewng to denote the appearance of the beet when yeant cols are thating about in it in the form of fine "gravel.
Cirazzlazs. In arrangement in the manc: slaice to re. ceave and cast aside a! the large stones brought down by the cunrent darang the process of washng the atiritcrous gravel.
Graverard Insurance, - I turm used to desigmate a nrettiod of swanding ansurance conpantes hy the suhstitution of a person of rubust health fors the had risk actually insurcil. . Iso used to describe other kinds of insurance swindling, or crinses committed in the collection of instrance moneys.
Hackling. - In flax-mannfacture "hackimg" is the process of prepariag the flax for spmang by the cmoval of all formen sulustances and spoothing and equalizing all the lengths of fibre-
Ifalf-tose. - A term used to designate a plootographic process in which a sercen made either of netting or raled glass, is interinosed between the lens and the sensitized plate, and fomm the inage thus produced, a positive image is made phon the prepared metal plate. This is etched into relief by the use of acids.
Hali-mark.- I term used industrially to designate any official stanyr that has been placed tapon an ohject of trade to denote genuinencss.
Ifard-curen, - I term used in the fishing indus:ry to designate that the fish specified has been cured hy heing thoroughly dried in the sun after salting, a process by which all the moisture bas been evaporated.
Hardening- A process used in hat-manufacturing, by which the bodies of the luats are rublued and pressud hard for the purpose of felting the material as well as to diminish the size and render them more dense. A hardening-kiln is a kiln in which the transfer printing process in pottery is completed: The pottery being relieved from all superfurous oils by exposure to a low heat.
IItraess. - The term anglied to the apparatus in a loom by the operation of which the warg-threads are shifted alternately to form the shed.
Harrowing. - I term used in apricutare to describe the process of dragging a many metal-teethed insertsment over plowed land, either to level it and bicak the clods, or to cover seed that has heen st wn. I "chain harrow " consists of a songeries of iron tings, instead of the metal teeth. and to cmployed to sepa. rate weeds from the carth and to cover grass seed. In a "revolving harrow" the tecth are arranged on radiating arms that have heen pivoted to the draftsear in such a mannor that, by their horizontal rotation, they add ereatly to the raking or iearing nower of the teeth.
IIfesian - I coarse cloth male of a combination of lueop, and jute and usc 1 for bagging is known as Ilessian " by the trade.
1figit-proof.- Commercialy, all highly rectified spirits are termed " high-promf.
Lollasb- - teros which, while formerly applicd only to limens imported from the Netherlands, is now uset to desigrate the glazed and unglazed linen cloths that are made in many places. "Rrown Ifollami" is a cloth that maintaios much of the original color of the retted tlax fibse it having been subjectel to but litale Whaching os boiling.
Hosevcombrse fin cintis-manufacture, a form apmlic! to desimnate a thin faloric in which the stitches. rum. ning diagonally auross the material, have been drawn up in such a manner that the spaces between them are puffer or in relicf.
Ilop-TACK. I term applied to a vat witly a false hot tom used in hrewing. It is so arranged that is retaios the solid sulostances in the mash-tuhs, but allows the wort to flow away after it has been boiled and the hons have heen added.
IHOPPER - Used, in milling, to denote the inverted-cone-shaped trough through which the grain passes on its way to the shaking-shoe.
IIorse.power.-. I term used as a unit of measurement in every industry in which power machinery is used. Nthough several values are assigned to this unit the prevaline value hoth in America and England. is IVatt's horse-power, which places it at 7.460 megaerss

INEBRIETY - INERTIA

per second. or about three-querters of the actual power of a horse.
Imposition - The act of laying pages of type, etc., upan a smooth stone slah to secute them in tie chases and prepare them ior the press.
Infentios.- -t term used in printing to deaate that a certain amouat of blank space has been left before the line. or a specified number oi lines of supe. An inde ing in every line aiter the firsi, woth an increasinz biank constantly shorter ng on both sijies is terme " diamond" in tention. An indenting of ever line excent the first that being of f 1,1 with and si ove-hanging tae atiers, is termes "banging" indention.
Laflisisi-A term used in brewing to denote the mocess of preparing the caash by treating the Irused malt with water at a temperature of irm 7 , to 15°
Instrable Interest - It is essential to the insuranice contract that the insured shoull bave a legal inserest in the obiect iot which tbe insurance was taken. In France the laws anuul ail policies that excced the irsurable mierest of the assubcd at the time of ide subscrit tion.
Instrance:-A term insed in describe a contract wherehr for an asreed premuin ne party undertakes to compensate another party ior loss 14 a specined subject by specined perils. There are several kials of insurance comparies in onerator, but neurly all are etther " stock " or "mutual" comparies. whi:e the risks corered include. life, accident, fire, health, marine, berglary, live-stock, plate-giass, etc.
Japansing. - The process of coating the su-face of metal, wool, etc., with varnish which is immediately bardened by exposure to high temperature.
Keprisu.- (a) The process of p:eparng wood for ben ling without breaking by making a series i small cuts in it with a sawing-machire, b) in c^{-1} in nufac:ure, the process of removing the wool by passing it through a shearing-mach:tie.
Kippertici. In the fish trade. the process of curing fish by ceansig them. drecsing them with conper ard salt. and curing them, either hy drying eliem in the ce en air, c-a a inccially. by subjecting them to the stake of sume repared suts:nnces.
 the process of crushing e! ids. io make the earih friable, by means of a beary rol er.
Ias ER.- The yar in which hides are left to lie in a strong solution af tannia towards the end of the tinming process.
Iavini- - The rerm is anplitd to two dicimet stages in r-permaking: (i) the twisting hi three or mi re garns to form a strand: (2) the twisting of three strands to :orm a rope. The machine tha performs this operaticn is remmel a "laying machine," the mooden cone placed between the s"-ants to prevent a slack twis: is termed a "laying*?
Mavifoldtig.- 1 term used in business circles to denote the process of moking several imntess ris of a single leter or document hy one oreration as by means $n f$ a manifolding machine, or by time use of carbon paper
Masm, - Esed in hrewins and distilline to sescribe the miviure of ground grain that has been infused in warm w?ier.
Mitlisg. - a) The process of manuiacturirg cereals in:: P Pour or meal. Therc a-e tw methe is of mil. ing: (t) low milling in which the "...in is दा t-1 but nce hefore being boliel, ans \because) hi, to milling in which it is gre und repeste 3ly: (1) in fisery, the a ef tion erindine and rivirg the slin: (e) tie process resmied to in :anming th sen and sifiten the pores of h des: (il) in c'oth man:ixcivec. :he irucess of illing $c^{\text {l-eh }}$ io thicken it. etc.
Preeser ons - The trade n me for fahrice th : li. ve leen wren in leng:hs suitable for ret. $!1$ sale by linear mesatire
Poist. - The unit of measurement in types, each point beins about one secmesescen! af ar inc ile vari tus types in use in the Cnied S-ates . ! t cir relatibe sizes in "points" are as i lows: Excul-inr. 3 . 1 ats: brilliant. $3^{2 \prime} \frac{1}{3}$ semi-brevier. $4:$ mon 1 . \dot{b}^{2}. : parl, 5 : alate. $5^{2 \frac{1}{2} ; ~} n$ mareit. 6; minion, 7 12: Pica, 12: Eng ish, 14 : iwn-l ne hrevier. 16 : gree frimer: 18 ; roragen, 20 ; iwn line small nica, $22 ;$ twe fine ica. z-: tvolime Frnclish, $2 Q$: fi ut ine hrevier. 3^{37} : thrce-line pica, $3 h_{\text {; }}$ dn she parag in, s; furl ne Sma nica, 44. nt four line pica. si pnins
Orey P ticy. - In insurarce. a policy in which the r^{-1} if the suhicet weure 1 has n i heen fixel. hit h s leen left to he determinet in c_{i} se of 1 ss, if $t_{p}-e^{\text {it has been leit men in permit nf tie aillition }}$ Q. TER-PLA-E - A term used in ithy demanils. Q. TER-PLAEE - term used in phon er-phy i, dennt.

Revifr.- The te:m apnlied to qhe process of removing iranursties from alconolic distillations and to raise its strength to the required froof.
Siler a Mrse, To.- I swindling operation by which a mine is male to seera more valuable than ft really is by the surreptitious introduction of ores obtained elsewhere.
Suelis. - Those parts of the lay in weaving in the groves of which the reed Fis. They are of two classes and are termed "upper" and "under
Sturexder- term in insurance to denote that the Eirty insured has abandoned al! right in his policy in consideration of having received a portion of the prem ums already paid to the company. The percentase of preminms returned is known as the "surrender value " of the policy
Touter. - Industrialy, a ferson who makes it his business to solicit trade for a shop.
Tostine Phicy- In insurance, a policy in which the itsured asrees that no money shall be received by him from the irsuring party. eitber in the iorm of dindends, return-piemiums. or surrender-value, for a snecifed term of years. but that. instead, the entire sumplus shall be fermitted to accumulate until the end of that periof when it may be divided between those who have kent their policy in force.
Total Loss.- In marine insurance, total less may mean that the subject insured has been absolutely destroyed by the peril against whicb it was pretected. or it inay mean that the loss by damage. seizure, or other causes hes been so great as so be practically absolute. In the latter case it is oiter termed a "constructive total
Alten Pozicr:-A term used in insurance to show that a Foicy is one in which the value has already been set uro: the subiect insured, the insertion of which fact in the policy witu the amount agreed upon. makes proof of damages in case of loss un necessary.
VAGER-POLICY:- In insurance, a policy in which the irsured has no insurable interess and. being generally resarded as a form oi gambling. such policies are not valid excent in flaces where the validity of a wager may be recognized.
Hinking Delegate.- A person selected by a trade urion or other labor organization io vsit similas bordies of workinamen, to interest them in the orler. roice tbeir demands upon their employers, direct them in their strikes, ete.
Walz.- U'sed in mining to denote the surfaces of the rozk hetreent which the ore is inclosed. If the vein is inclined at such an angle that the ore is over the miner's head it is zermed a "hanging" wall; if it is beneath him it is called a "foot " wall.
Wiarp.- (a) In agriculture, the operation of fertilicing a poor pece of land by arrificial inurdation from waters which have large quantities of earthy matter: (b) in weaving, the threads that extent lencthwise in a 1 rom. The roller upon which the threads are wound is termed the "warp-heam:" the machine which trants them with size before ther are wound is the "warp-dresscr." while the machine which draws the warn threads through the dye beck is te:med the "warn-dwer."
flissir.- Itsed in mining to dencte the process of se arating the ore irem earthy an 1 ather matter by ale employment of water. The fermented wort from which the enirit is evtracted in distiling is also termed the "w:sh."
Winstig. - The work of developing a mine preparatory ti. the wn-k of mining is termed "winning" in the tritej stares.
W. F.-In weaving the threar that is woven into the werp is also termed the "weft."

Inebri'ety. See Alcomolism

Iner'tia, a term introduced by hepler to simplif that pr perty of matter in virtme of whicl it is "inert." so that when a body is at rest. r in a state of tumiform matinst in a straight lume it frescrves is state of rest or of mmiform rectilinear montinn, mmess snme asency external 1 t te hody acts upon it in such a way as to modiff hat state. IVe cain our fisut conception of inertia hy the attempts that we make in move ! dice that are at rest, or in stop those that are in mition. Even if they are sispended freely. \&) il at fractinnal forces are megligible. we fird t' it their state of rest or mintion cammet be
modified without the exercise of a certain amount of muscular force: and by abstracting our own personality in the case, we gradually come to the conception of inertia as a playsical property inherent in all bodies. Inertia has been popularly described as a "passive resistance" to change of motion; but this expression is objectionable becanse it is entirely inaccurate. Frecly suspended bodies (that is, bodies that are free from frictional forces,) cannot be said to "resist" forces that are applied to them. On the contrary, they yield instantly to the smallest force; hut a small force, when exerted upon a given body, for a given length of time, does not produce as great a change of motion as would be producel by a large force acting upon the same body for the same length of time. The conception of inertia shades insensibly into that of "mass"; the mass of a given body being proportional (by definition) to the velocity that is communicated to the body by a force of standard intensity, acting upon it for a standard length of time. (See Mass; Matter; Molecular Theory:.)

Infallibil'ity, exemption from the possibility of error. The word is used as applied to arguments, statements, reasoning, or the formation of judgments, and does not include impeccability, or excmption from the error of sin. The infallibility of the Church as believed by Roman Catholics means that "the Church can neither deccive nor be deceived in matters of faith and morals" : and slie is limited to the definition of truths already contained in Scripture and tradition. The seat of infallibility rests in the Pope as successor of Saint Peter (Matt. XVI 18), and in the bishops in communion with the See of Rome, whether dispersed or united in a General Council (q.v.). In the acts of the Vatiean Council, held in Rome in $18 ; 0$, the following is the text defining the nature of the infallibility of the Pope: "The Roman Pontiff, when he speaks ex cathedra, that is to say, when in the exercise of his office of pastor and teacher of all Christians; he, in virtue of his supreme apostolic authority defines that a doctrine on faith and morals is to be held by the whole Clureh, by the assistance of God promised to him in the person of blessed Peter, has that infallibility with which it was the will of our Divine Redeemer that His Churcla should be furnished in defining a doctrine on faith or morals, and that therefore these definitions of the Roman Pontiff, of themselves and not through the consent of the Church, are irreformable." The Greek Churel, the Church of England, and the Protestant Episcopal Church which is its representative and in communion with it in the United States. believe that infallibility resides in the universal Church in accordance with Christ's promise of the Spirit that should guide His followers unto all truth. Consult: Allies, 'See of Saint Peter'; Ballerine, 'De Primatu' ; 'De Potestate Summ. Pontif.'

In'famy and Infamous Crimes, in common law the first means disqualification from giving legal evidence as a result of having committed the second, the theory being that a person capable of such crimes is incapable of speaking the troth. Both in Great Britain and generally in the United States this disqualification has been abolished by statute, and previous convictions
for crime have been considered to affect a person's credibility without impairing his legal capacity to give evidence. Infamous crimes are strictly those which entailed infamous punishments: The fifth amendment to the Federal Constitution speaks of "capital or ntherwise infamous crime" and we read in 2 1)anc, Abridgement. 569, 570: "Punishments clearly infamous are death, gallows, pillory, branding, whipping, confinement to hard labor and cropping." Infamous punishments include imprisonment in State prison, or penitentiary with or without hard labor, and crimes which cutail such punishments are undoubtedly to be considered infamons crimes, in the sense implied in the fifth amendment to the Constitution.

Infancy. The term infancy is used variously by different writers to include a shorter or longer period of the earliest stage of human existence. By most writers it is limited to the first 12 or 14 months, extending to the time when the baby begins to walk and to talk, and so is synonymous with a "babe in arms"; many medical authors would make it include the whole period of the first dentition, or up to about two and a half years. The characteristics of the period are utter helplessness, rapid growth of body, gradual development of muscular functions and great impressibility of the nervous system. 1n mankind this helplessness is more marked and the period of dependence is longer than in any other of the higher animals. It has been pointed out by John Fiske that the present clevation of man above other animats is due largely if not entirely to this lengthened period of plasticity,- to his prolonged immaturity. Man is born with only a few of the lowest vegetative capacities fully developed, such as digestion, respiration, and circulation; the muscular and nervous functions are latent and only gradually develop; while the higher functions of the mind go on evolving until the fifth decade of life. A long infancy or period of immaturity means a great capacity for development.

Birth and Hcredity- - The infant comes into the world with a fixed sum total of vital force, along with certain hereditary tendencies in development toward health and, perhaps, toward disease. These hereditary tendencies are all modified by the physical, social, intellectual and moral status of the chitd's fanily and surroundings: in a word, they are vastly influenced by the child's environment. Heredity was formerly regarded as the most important factor in the child's life; but heredity is really only one of three great factors.- the others being the nutrition of the clild, and his phystcal, intellectual and moral enviromment. During the plastic years of infancy, cliildhood and adolescence, a bad heredity can frequently be overcome by proper management: on the other hand, the capital of a good heredity can be squandered. Nature always tends toward the normal or healthy, so that there is always the possibility for a bad heredity to be obliterated if only the matural tendency is assisted. More then depends on the nutrition and environment of the infant than upon its heredity.

Nutrition: Brcast-Fceding.-The best method of nourishing the infant is nature's way - to have it nursed by the mother. But for various

Iefans thus is often impossible. Modern life and especially city life - has in some way rendered a large proportion of women incapable oi producing breast milk ior their offspring. And the number oi these mothers who desire to nurse their infants but cannot is increasing each year. Again, in not a jew instances, the infant does not thrive upon the breast-milk. even though it may be abundant. In both these classes of iases some form of artificial or substiiute fecing is a necessity. Good wet nurses are st difinculi to procure in the United States that artificial feeding is generally preferable unless the baby is premature or ieeble and failing: then the services of a wet nurse may be needed to save the iniant's life.

Artificial or Substifute Fieding. The best available substitute for buman milk is an adaptation of iresh. clean unadukerated cow's milk. The milk should be diluted and otherwise modified to suit the infants feeble digestive powers, and it should be given preierably, without being sealded or sterilized. In summer, or when there is any doubt as to the freshness of the milk. the cleanliness of the dairy or the careiul bandling oi the milk. "Pasteurization." or heating the food to a temperature of $155^{\circ} \mathrm{F}$. is advisable. Details as to milk modification and Pasteurization can be found in any book on "Iniant Feeding." Ready-made intant ioods. the canned or bottled proprietary foods - do not contain the right ingredients for properly nourishing the iniant, and their prolonged exclusive use is nearly always followed by some form oi malnutrition-especially scury and rickets. These proprietary foods contain large proportions of sugar or starch. and so make iat babies. but such iniants are generaily pale, have feeble powers of resistance, and are prone to succumb to disease of the lungs or of the digestive tract. Whes the prepared infant foods are used as additions to milk they are less objectionable, and may at times be of adrantage.

Ifeight ond Deتelofment.- The iniant that has been properly nourished beiore birth and is born at full term weighs on the average about $-\because \leq$ pounds - boys being somewhat beavier than girls.

During the first few days, while the nourishment irom the mother is insufficient, the baby regularly loses irom six to eight ounces: but it soon begins to gain, and if the nutrition is normal and the iniant remains well. there will be a steady increase in weight throughout the first two years. The gain during the first year is more regular. however, as well as more rapid than that during the second year. During the first three months the increase in weight each week is about hali a pound: irom the third to the sixily month the weekly gain is somewhat less, from four to six ounces: from the sixth to the ninth month about four ounces. and after the ninth month a little more, usually a weekly increase in weight of irom four to six or even eight ounces. By the end of the fith month the baby that has been periectly well and is being properly nourished should have doubled its birth-weight and weigh about 15 rounds: at the end of the isth month it should weigh three times its weight at birth. In many instances the baby will treble its original weight if the end of the first year; but $2 t$ pounds may
be considered the average weight ior the end of the 12th month. Infants that were ver large at bisth do not increase so rapidly: while small or premature babies are apt to make a gain that is greater in proportion to their original weight. "Hand-fed" or "bottle" babies should weigh on the average about the same as breast-fed babies-provided that they have had no disturbance of their digestion; the food must, however, have been perfectly adapted to the iniant, and this is often a rery difficult problem.

Height and Other Measurensents.- At birth the length of the average baby is about 20 inches: during the first six months there is an increase of four to six inches, and during the second six months from three to jour inches more: by the end of the second year the height is $32^{\frac{1}{2}}$ inches, a growth of over a foot since birth. By the end of the third year the stature is one hali of the adult height. The head grows very rapidly during iniancy and early childhood. The circumference of the head at birth is from I_{3} to $1_{1} 1^{\frac{1}{2}}$ inches: by the end of the sixth month it is $16^{1} 2$ or 57 inches: at the end of the first year is inches, and at the end of the second year it is 19 inches. By seven or eight years the circumference of the head almost equals the adult size of 21 inches. This is visible evidence that during the first months and years of life the brain is increasing in volume more rapidly than any other organ in the body.-the head or brain-box expanding to conform to the enlarging brain. The sott spot or "fontanel" usually closes between the tith and the 20th months. The chest is smalier than the head at birth (r 3 inches). but its circumference increases rapidly, so that at is months that of the chest and the head are equal. Aiter this the chest grows steadily but gradually until puberty, when there is a very rapid increase for four or five years. Aside from the regular increase in weight and measurement. the healthy infant shows other signs o* well-being. The babys flesh is firm, and the skin is satiny and elastic: the color is pink, and the body and extremities are well rounded. Vey fat babies are not necessarily stronger or healthier than those that weigh less: as has already been noted they are apt to be pale. flabby and of weak resistance to disease. The healihy baby is zappy and playiul when awake. and sleeps from 16 to 20 hours out of the 24 .longer the yourger the baby. It is desirable that the growing child have a nap during the day up to the time when kindergarten work is begun; with nervous or poorly nourished children the practice should be continued until the seventh or eighth year.

Muscular and Mental Development.- These begin with the entrance of the infant into the world. but are slow in unfolding. At first the grosier movements periormed by the muscles working over the larger joints, next more complex movernents, and during later childhood and early adolescence the finer movements requiring nice adjustment and delicate co-ordination. Hence it is that occupations or accomplishments requiring great manual dexterity, such as violin or piano-playing, should be taken up early."beñre the hand gets stiff." as the phrase is The first movements are those of the legs, arms.
and neck: they are not purposeful but merely reflex. By the sixth week the infant can hold up its head, when the back is supported, but very unsteadily until about three months old. At some time in the third or fourth month the infant makes its first voluntary movement, grasping at some object in the range of vision. Within a month or two later the baby can co-ordinate the muscles of the eyes, arm and hand sufficiently to take firm hold. Sitting alone is an accomplishment of the seventh or cighth month, and creeping also begins at about this time. if the baly is cver to creep at all. During the eighth or minth month the baby begins to stand, having made the attempt for many weeks before; at ten or cleven months the infant can stand alone, and shortly after the twelfth month the first tottering steps are taken. It is some months before the baly is secure upon the feet. the maintenance of the equilibrium requiring nice control of many groups of muscles. Healthy infants differ greatly as to the time when they can walk alone, some walking at as early as ten months, while others may not walk until eighteen months. Very fat babies walk late but, in some instances, an excess of caution seems to be a factor. If a chitd is far behind in performing any of these muscular functions, a physician should be consulted so that careful examination may be made for signs of rickets or of disease of the brain or of the spinal cord.

Development of Special Senses.- For the first few days the newly-born infant avoids the light, and for many weeks cannot endure a direct bright light. Perception of light soon develops, the color first attracting attention being red. Clear perception of objects comes during the fifth month. Hearing is in abeyance for several days, a baby at birth being practically deaf; but after a week or ten days this function begins, and later hearing becomes very acute, the infant being able to recognize the mother's voice or a footstep at about three months. Loud sounds cause the baby actual pain, so severe are their impressions on the delicate auditory apparatus. The sense of touch (contact) is early developed, especially in the tongue and lips; but sensitiveness to pain is very dull during infancy. Heat and cold are recognized frotn an early period, the variation of a few degrees in the ternperature of the food causing the baby to reflise it. Taste and smell also are present at birth, taste being very discriminating.

Development of Speech.- Speech is very closely related to the higher functions of the brain, and is therefore the last of the simple functions to develop. Usually a baly legins to say "Mamma" and "Papa." with clear knowledge of the meaning, toward the end of the first year. Next names of objects and persons are learned and soon two words are put together. Then verls are used, and about the end of the second year little sentences are made. Pronouns are regnlarly the last of all the parts of speech to he used. Wuring the third year speech develops very rapidly, the haby bringing out some new term or expression alinost daily. There are great variations in the time when children begin to talk; and for this there are many reasons. Girls generally talk earlier than
boys by two or three montlis: babies that associate in the nursery with other children talk earlier than only children. If, howeser, a young child reaches the age of two years without attempting to talk, mental backwardness or organic brain disease is apt to he the cause. Tongue-tie is seldom the cause of backwardness in talking, although it does protuce imperfect articulation.

Dentition - Teething.- The first teeth appear about the sixth or seventh month, but a perfectly healthy babs may have no teeth until to or 11 months old, or on the other hand may cut the first tooth at four montlis. The regular order is as follows: lower central incisors, upper central incisors, upper lateral incisors, lower lateral incisors - each pair coming at intervals of three to six weeks: at about the fourteenth month the front double teeth (anterior molars) appear in the two jaws, and four or five months later the canines, known popujarly as the "eye and stomach teeth." Finally, the last four molars appear sometime between the twenty-fourth and the thirticth month, and these complete the twenty teeth of the first dentition. Teething babies are apt to be fretful, they have a reduced resistance against disease, and they are prone to slight disturbances of digestion. To attribute most of the ills of infancy to the process of teething is a great mistake; usually some other and better cause for the disturbance can be found if the baby is carcfully examined. During the time when the successive pairs of teeth are coming through the gums, the usual food should be largely diluted, so as to prevent any serious indigestion.

Fever.- Sudden high temperature is readily produced in young children by slight causes, inasmuch as the heat-regulating centre in the brain is but poorly developed. Again, the temperature in discase is erratic, and is apt to be higher than in adults suffering from the same ailment. Only persistent high temperature need cause anxicty.

Convulsions.- A characteristic of infancy is the easy excitability of the motor side of the nervons system. Hence convulsions or spasms are much more frequent and less serious than in adults. The inmediate cause of the motor explosion may be an overloaded stomach, fright or mental excitement, or the fever of an oncoming disease. Severe earache, intestinal worms or a paroxysm of whooping cough may also serve as an exciting cause. Underlying or predisposing causes are a nervous leredity; malnutrition, or rickets; or there may be organic disease of the brain or the kidncys. The spasm usually begins with a turning of the eyes to one side and twitchings or grimaces of the face: there may be frothing at the mouth; then the arms and legs are rapidly contracted and relaxed: later the body stiffens ont, the breathing becomes noisy and labored, the face, -especially the lips-becomes livid. Shortly afterward the body relaxes, the breathing becomes casy, and spasm ceases for the time heing - having lasted anywhere from five to thirty minutes. Until the physician arrives certain simple measures are of value. The infant should be undressed, wholly or partially, and put into a warm bath (not warmer than $105^{\circ} \mathrm{F}$.) to which a handful of mustard flour

INFANT-INFANTA

has been added, and the baby should be rubbed all over while in the tub ior about five minutes. Then remore from the bath and lay between blankets, putting a warm botile at the feet and an ice cap or cold compress on the head. If the baby can swallow, a iull dose of castor oil should be given. Most convulsions are due to the presence of decomposing food-remains in the alimentary tract, and the spasms usually cease when the stomach and bowels have been thoroughly evacuated.

Linneets Edford LaFétra, M.D.
Instructor in Diseases of Children, I anderbilt Clinic. Columbia L'niversity.
In'fant, in law. By the common law persons come to majority at the age of 21 years, until which time they are called in law infants, but by common usage in the Cnited States the word minor prevails. Infants cannot, in general, bind themseltes by contracts, as they are supposed not to have sufficient discretion and ability for this purpose. But this is their privilege, and their contracts are accordingly held in general not to be woid, but only voidable at their election: and they may elect to awoid their contracts during their minority, except such as they may have entered inio for necessaries suited to their condition in life, but they cannot confirm them so as to be bound by them until their majority. Iniants may possess property, but it must be under the management and control of a guardian. They have not the right of citizens as to roting, and discharging other political functions. But in regard to crimes and punishments, and respasses and private wrongs. their conduct is regulated by the same laws as that of the other members of the community, in case of their being of sufficient age and discretion to understand their duties and obligathons. And for this purpose no gencral limit can be assigned, as some children are much more intelligent than others of the same age: and it will again depend, in some degree, upon the nature of the oriense committed. or the wrong done, whether a child of any given age can be considered legally guity of it. since some ofienses and wrongs can be more easily understood to be such than others. The law, in general. has a iender regard to youth. and does not permit them to be convicted and punished for offenses and trespasecs unless it appears clearly that they have sufficient knowledge and discretion to distinguish them to be such. There are exceptions to the incapacities of minors as to contractng, and these exceptions are made ior their bencfit. Thus an iniant not sufficiently furnished with necesiary clothes, iood. or instruction, by his parent or guardian, and not being uader the immediate superintendence of the parent or guardian, may make a valid contract. in respect to those subject:, and such contract may be enforced against him. Infants require the consent of parents or guardians to marry: The jurisdiction in respect to iniants is generally vested in either probate or orphans' courts. These courts appoint guardians to take ctarge oi the property of infants, and, in case of the decease of the father, to take charge of their persons: but during the life of the father he lias the guardianship and control of the persons of his children until they are 21 years of age.

Blackstone thus defines infiant: "Intants have various privileges. and rarious disabilities: but their very disabilities are privileges, in order to secure them from hurting themselves by their own improvident acts. An iniant cannor be sued but under the protection, and joining the name of his guardian, for he is to deiend him against all attacks as well by law as otherwise: but he may sue either by his guardian, or by his prochein amy, or alone for wages in the county courts. In criminal cases an infant of the age of If years may be capitally punished, but under the age of 7 be cannot. The period between ; and $I 4$ is subject to much uncertainty: for the infant shall. generally speaking, be judged prima facie innocent: yet if he was doli capar. and could discern between good and evil at the time of the offense committed, he may be conricted, and undergo judgment and execution of death, though he has not attained to years of puberty or discretion."

Infant Jesus, Daughters of the Congregation of the, is an order in the Roman Catholic Church. It owes its origin to Anna Maroni, a native of Lucca, who having come to Rome entirely destitute, succeeded by her industry in securing a competency. In more advanced years, her charitable feelings prompted her to establish an institution where poor girls should be instructed in such work as would enable them to earn a livelihood. The clergy approved of her plan, and afforded her much assistance, and it was finally established as a regular institution, and in 1673 Pope Clement \mathcal{X}. acknowledged the existence of the society, gave it bylaws, and endowed it with sundry privileges, under the appellation of a Daughters oi the Iniant Jesus." The number of the "Daughters" allotred to each convent was ixed at 33 , in commemoration of the number of years Jesus lived upon earth. The novitiate lasts three years: the sisters make rows of porerty, chastity and obedience. Such as may wish to leave the convent are allowed to do so before taking the vows. but, in that case, they are to leave to the convent all they brought to it at their admission. Prayers and fasts are strictly enforced. The regular habit of the order consists of a wide. dark brown dress, and a white hood.

Infanta, èn-fān'tā, Philippines, a iormer Spanish commandancia of the island of Luzon, consisting of a narrow strip of territory on the Pacific coast with Nueva Ecija on the north and Tayabas on the south. In 1902 it was made a sub-province of Tayabas. "the inhabitants to enjoy the same rights and privilegcs as ii the said ierritory had been originally incorporated in the province of Tayabas." The suriace is very rough and mountainous and the construction of roads impossible except at heavy cost; several trails lead over the mountains to the central provinces. The forests are valuable, among the trees most important to commerce is the balate, which produces the balate gum. The agricultural methods are most primitive; the chief crops are rice, cocoanut, chocolate and coffee: the most important industry is the manufacture of nipa wine: there was formerly a large manufacture of cocoanut oil in Inianta, but this industry was paralyzed by the hurricane oi 188. Pan. Io.80a

Infanticide, the murder of a child born alive, is a crime of frectuent occurrence. The mann cause of the crime is shame, induced by a dread of the social disgrace attaching to mothers of illegitimate children; though in many instances infanticide has been the result of violence produced by pucrperal insanity. The morbid disposition to kill the newly born has also been observed in certain of the lower animals. The sanctity of luman life, from its beginning to its close, is a maxim of modern civilization, and the law treats as a murderer whoever vilfully terminates it at any stage. According to the law of England cyery woman who employs means to procure criminal abortion is guilty of felony, and liable to penal servitude for lifc, or not less than three years; and severe penalties are inflicted on those who aid women to procure iniscarriage. The concealment of birth is a misdemeanor, and may be punislied with imprisonment for two years. In the United States, when a child's death is oceasioned by an illegal act, such act is considered either murder or manslaughter according to the circumstances. The crime, however, is rarely punished, and in large cities many eases occur each year which are never reported to the authorities.

Infanticide was prevalent in Greece and Rome. In modern times many barbarous peoples are guilty of wholesale child-murder. Among some of the Pacific Islanders and aboriginal Australians there is a great destruction of infant life. The Hindus used to destroy female children without compunction. In China infanticide is said to be very common.

Infantry, ("the juveniles," probably at first the knights' pages), foot soldiery, as distinguished at once from cavalry and artillery. In all ages this has naturally formed the numerical bulk of armies, but its tactical importance has varicd greatly with circumstances. The name cannot be given to the mere unorganized fighters of barbarian mélées; it implies some organization, and at least the rudiments of tactics. The first large armies were the Egyptian and Assyrian, continued by the Persian: the social system was aristocratic, and the large plains ideal for the nitility of cavalry: hence the infantry was rather an auxiliary, to complete a rout after the mounted lords and the clariots had broken the ranks, than the main fighting body. The first development of infantry as the chief reliance was naturally in the small Greek states, whose independence rested on their citizen soldiery, and whose rough territory made cavalry evolutions difficult. Cavalry was therefore used mainly to guard flanks and to skirmish; the Spartans for a long time would not use it at all. The infantry was divided into classes according to armor; hoplites (wihh leavy defensive arnor, long spear and dagger), psiloi and peltasts (very little armor, light barbed javelins to throw), and gymnetes (sharpshooters, light-arnored and with slings or bows). The battle formation was the famous phalans, whose one basic principle was the value of mass and momentum, and which was irresistible either for attack or defense against barbarians who lacked firmness in the ranks. It was commonly a rectangular block eight ranks deep, so that only the first two or three could use their
spears at the same time, the rear ranks serving only for instant reinforccment and for impact; the men were from 18 inches to 6 feet apart, according to conditions of defense or attack; the phalanx liad usually 2,000 to 4,000 men, but sometimes as ligh is 10,000 or more. Sometimes the formation was the triangular wedge. The first great improvement was by Epaminondas, who made the ranks 50 decp, and by the enormous impact crushed the Spartan phalanx at Lenetra. This was the Napoleonic principle of concentration at the eritical point, most of the Spartan army being allies with no heart in the fighting, and kept at lay by a few skirmishers. Nevertheless, the step was backward except for immediate necessities, as it increased the main vice of the phalanx - its immobility, which made it break up dangerously on bad gronnd, and gave little power to change front or execute flanking movements. In later tactics the larger ones were subdivided into companies of 120 with a distance equal to the front, forming an approach to the legion; and the latter was copied also in the formation by lines, increasing rapidity of movement and flexibility on difficult ground, as well as power of extension and so of flanking. The Macedonian sarissa or long pike doubled the number of ranks which could thrust at once over each other's shoulders. But the whole system went down before the Roman legion, which essentially maintained its position till the Empire too went down. It consisted normally of 1,200 each of lastati (spearmen), principes (veterans), and velites (light troops), 600 pilani (veteran reserves), and 300 equites or cavalry. It was divided into three lines and 30 maniples or companies, and combined solidity with ease of maneuvering.

In the Middle Ages, till the general use of gumpowder, the feudal system insured the degradation of the infantry, as it depended on the fighting power of the knight, and conscquently lavished all the care and expense on perfecting his armament. But even without this, the same result would have come, for without good field artillery, and with only bows and arrows at their best, the heavily armed man was invulnerable, as the Spanish conquests in the New World amply prove. Hence the logical result was the extension of defensive armor till some new missile forcc came in. But the cost of this was so great - a full suit of stcel armor cost albout $\$ 2,000-$ that only the richer even of the knights could afford them, no king could raise money to equip a standing army, and the aristocracy would combine to refuse him money for such a purpose; and the rank and file werc scattered and slaughtered in face of a charge of a small number of mailed knights. The defeat of the Frencla knights by the English bowmen was that of a disorderly and insubordinate mob, by a splendid archery which slew their horses and picrced the cheaper armor. But gumpowder at once changed the whole situation. A serf with a \$ro laacklout could stand out of reach and kill a knight with his costly armor: and a sovereign could collect. and arm a great force of these and use them to put down his unruly vassals. Hence armored knights and horses began to decrease, and standing bodies of foot soldicry with firearms to increase. The change in battle array was correspondent: theretofore, even the ablest commanders hat maintained the great deptl of 10 ranks, traditional from classic times. Gustavus

INFECTION

Adolphus reduced this to six. deploying to three under fire; while Tilly and Wallenstein and the other imperial commanders kept to the old phalanx iormation. Breitenfeld (1031) and Lutzen (1032) were mon by this and Gustavus' light artillery. The introduction of the bayonet about $16 \equiv 0$ led to a reduction to four ranks. But the greatest single improvement was due to Leopold oi Dessau early in the 18 th century: he instituted the chief feiorms usually credited to Frederick the Great, and formed the armies with which Frederick won his rictories. He reduced the ranks to three, making it posible for all io ure, trained them to maneuver with great precision. and wrote the drill-book which is still the basis of all European and American manuals. Frederick's iniantry organizationo in regiments of two or three battalions, each 500 to 600 strong, was copied by all the other nations: and the general principle of open order, made necessary irom the destructiveness of artillery on close masses of men, and possible by the confidence in each other bred by civilization, is still retained. Broadly, the difierence between ancient and modern infantry is that between mass and mobility.

For obvious reasons - cheapness of maintenance. universal availability of men untrained in horsemanship. ability to march and maneuver on all sorts of ground. less liability to be crippled by loss of the animals. etc.- all modern armies consist mainly of infantry ; and the nominal horse troops are most often dragoons, or soldiers mounted merely for quickness of movement. but who fight on foot. The quantities of other arms, as cavalry, artillery. engineer corps, etc. are based on the infantry numbers. The proportions yary in different armies and in different functions of the same army, according to nature of service: more or less cavalry and artillery being used according to need of concentration. or action in dispersed bodies. Forces like the United States Western troops a generation ago, for instance, in small squads on detached duty. would have different proportions from a great Continental army in the midst of a campaign. While there is no one system of infantry tactics which can be universally applied. the same cause whicb has made the change juse spoken of has thus far continued to act with steadily increasing iorce. Artillesy continues to grow in power and in range: the danger-line grows ever farther irom the enemy; it is nearly imposible. and would be murderously losing. to charge in close column across the 2.000 yards which is now the average range. The system adopted is called 'extended order." which means a considerable space between the men, and small bodies acting separately in a charge: each making a rush ir sime cover not so far off that they will be blown in reaching it. or will be decimated in the attempt. it certain relation between companies and regiments is kept up. to avoid destruction in detail and enable combined action. but precise parade alignment is nct attempted. This involves not only the mutual cerfidence of civilized men, but some of the independent judgment of thnie who have not had initiative cru=hed out oi them by red tape: the greatest of modern tacticians and commanders have expressed a preference for intellectual quality over mere rumbers. even in the rank and file. In the Lnited States, the ex-
tended order was first introduced in the Revolu. tion.

For the organization of the line in this cour. try: see Army of the Unifed States. In addition to this, a few facts may be given: The general orders of 19 May 18% fixed the strength of the iniantry at $9 . \overline{\mathrm{E}}$ - men, in 25 regiments. The pay ranges from $\mathrm{S}_{3,500}$ a year for the colonel to S_{13} a month for the private. The appointments are made from the United States Military Academy, from the ranks after two years service and severe examinations, or from civil life if there are no eligibles in the others. The arms are the Krag-Jorgensen and the new Springfield magazine rife, with knife-bayonet. The equipment is knapsack, haversack with implements for meals, canteen, blanket wrapped in piece of shelter tent. and waist-belt with cartridges.

Infection, the introduction oi diseaseproducing micro-organisms in the body. Infection tayy result in a number of different ways. Iicro-organisms may be introduced by means oi direct injury. When a person falls and cuts the band. the bacteria of pus-production or of tetanus may be so introduced, and bloodpoisoning or tetanus may develop. Many iniections come by means of the intestinal tract. Thus ryphoid is commonly obtained from milk or drinking-water. The intestinal worms, tapeworm, roundworm, are contracted in this manner. and a number of other parasites, particularly the trichina. may come from iniected food taken into the alimentary canal. Infection may also occur by means of the air-passages. The bacillus of tuberculosis is most often taken into the body in this way. and finding suitable soil, it causes the development of the dread disease. The bubonic plague is irequently contracted through the disease-germ entering the airpassages. At the present time it is deemed not unlikely that a number of infectious diseases. notably influenza. diphtheria, scarlet fever, measies, whooping-cough, are contracted through the respiratory tract by infection with the exciting cause. Occasionally direct contact seems necessary for infection. as in gonorrhcea and sphilis. In malaria, and probably in rellow fever. the active agent that causes the disease is introduced into the body by the bite of an insect, the mosquito. In malaria one particular genus (-inopheles) serves as an intermediate host in the developmental history of the parasite. in a manner analogous to the history of the development of a number of the intestinal worms. It is not unlikely that a large number of diseases may be disseminated by the bites of insects of one kind or another. In all the infectious diseases the element of a real, live. and active contagion should never be overlooked. Irfectious diseases do not spring out of nothing. There must be some sort of contact in order that a person become infected. A most inportant part of the treatment of all infectious diseases is the protection oi other people by proper care of all one's own excretions during sickness. The doctrine so irequently taught by some that sickness is ignorance is an important hali-truth. But ior the ignorance of pecple concerning the proper care of those arflicted with infectious dieases with reference to the protection of others. measles, diphtheria. scarler
rever, whooping-cough, typhoid fever, consumption, and a number of other maladies would be entirely eradicated from civilized communities.

In'fidel, in modern parlance, one who deliberately rejects the Christian faith after obtaining knowledge of it. In former times a man might be an infidel who had never heard of Christianity. Infidelis in ceclesiastical language means "unbelieving," and is applied to mevangelized heathen as well as doubters and apostates. Thus in the Roman Catholic Church a bishop in partibus infidelium merely means a bishop whose diocese is set in heathen countries.

In'finite, a term in metaphysies, which means a reality which has no limit or boundary, in time or space. The idea of the iufinite is as old as the Ionian philosophy, when Anaximander (610 b.c.) declared that the one in the many, the basis of being in Nature, was то a $\pi \in \iota \rho \frac{\nu}{}$, the infinite. The reality of infinitude has been the source of muel controversy, and the tendency of many modern philosophers is to deny it. "An infinite number," says Bosanquet, "would be a number which is no particular number, for every particular number is finite. It follows from this that infinite number is unreal." On the other hand F. H. Bradley states the contrary, in the clearest terms, "We may be asked whether Nature is finite, or infinite. . . . if Nature is infinite, we have the absurdity of a something which exists; and still does not exist. For actual existence is, obviously, all finite. But, on the other hand, if Nature is finite, then Nature must have an end, and this again is impossible. For a limit of extension must be relative to an extension beyond. And to fall back on empty space will not help us at all. For this (itself a mere absurdity) repeats the dilemma in an aggravated form. But we cannot escape the conclusion that Nature is infinite. And this will be true not of our physical system alone, but of every other extended world that can possibly exist. . . . Every physical world is, essentially and necessarily, infinite."

It seems as if Aristotle had a clearer and more logical view of infinity, то atetpov than many modern Positivists, such as Bosanquet. He says, $\lambda \epsilon \iota \pi \epsilon \tau a l$ oüv duváuec elval тo ärtelpov. He means of course, that, with regard to finite human intelligence, the infinite remains unrealized, although logically it could be realized, and of course, when we speak of infinite time, or infinite creative change in nature, we speak of something which potentially exists, but is only gradually hecoming actual.

Infinity is also applied to the divisibility of matter. This is termed "infinite fission." If an atom is divided into two parts, and each of these is again divided into two parts, the mind cannot conceive of any individual fragment resulting from this division as incapable of being divided.

Professor Royce of Harvard has undertaken the task of vindicating the concept of the actual Infinite against the charge of self-contradiction. He is controverting Mr. F. H. Bradley of Oxford, who while he admits "we cannot escape the conclusion that Nature is infinite." expresses also his belief that such an assertion is a contradiction in terms. Professor Royce accomplishes this vindication by proving the following theses:

1. The trine Infinite, both in multitude and in organization, althongh in one sense endiess, and so incapable in that sense of being completely grasped, is in another, and precise sense. something perfectly determinate. Nor is it a mere monotnous repetition of the same, over and over. Each of jts determinations has individuality, uniqueness, and novelty about its own nature.
2. This determinateness is a character which, indeed, includes and involves the endlessness of an infinite series; but the mere endlessness of the series is not its primary character, but simply a negatively stated result of the selfrepresentative character of the whole system.
3. The endlessness of the series means that by no merely successive process of counting, in God or in man, is its wholeness ever exhausted.
4. In consequence, the whole endless series, in so far as it is a reality, must be present, as a determinate order, but also all at once, to the absolute experience. It is the process of successive counting, as such, that remains, to the end, incomplete, so as to imply that its own possibilities are not yet realized. Hence, the recurrent processes of thought reveal eternal truth abont the infinite constitution of real Be-ing,-their everlastingly pursued Other; but themselves, - as mere processes in time - they are not that Other. The true Other is, therefore, that self-representative system of which they are at once portions, imitations and expressions.
5. The Reality is such a self-represented and infinite system. And herein lies the basis of its very union, within itself of the one and the many. For the one purpose of self-representation demands an infinite unultiplicity to express it: while no multiplicity is reducible to unity except through processes involving self-representation.
6. Nevertheless, the Real is exelusive as well as inclusive. On the side of its thought the Absolute does conceive a barely possible infinity, other than the real infinity, a possible world, whose characters, as universal characters, are present to the Absolute, and are known by virtue of the fact the Absolute thinks.

This brings netaphysics face to face with the notion of a Supreme Being, who is infinite or absolute. With the mysties God is infinite love, joy and wisdom to his human children. The Hindus tanght that God was the infinite universe, the Other, the reality. "That (that is, the Universe) art thou," was their dictum. Christianity teaches that "God is of infinite power, wisdom and goodness," of which qualities the best of men have but a finite endowment.

The term "infinite" was introduced into geometry by Kepler in his 'Nova Stereometria Doliorum: accessit Stereometrix Archimedex Supplementum.' Thus he considered a circle as formed hy an "infinite" number of triangles, having their yertices at the centre, and their bases at the circumference. A cone likewise, he taught, was composed of an "infinite" number of pyramids, having their vertices at the vertex, and standing on an "infinite" number of triangular bases, bounded by the circular base of the cone. In this sense infinite means incommensurable, not to be expressed ly a finite mathematical formula. Consult: Bradley, 'Appearance and

Reality'; Royce, 'The World and the Individual'; Bosanquet, 'Logic' ; Couturat, 'L'Infini mathematique.'

Infin'itive, the indefinite mode in which the verb is represented without a subject. As the verb expresses an action, or a state, it generally belongs to a subject whose action or state :s expressed; but if we wish to express the mere idea of this action or state we use the infinitive, which, therefore, in many languages is employed without further chance as a substantive - for instance, in Greek and German - only preceded by the neuter article; but as the verb expresses an action or state under certain conditions of time, the infinitive can also express the action or state in the present, past, or future, though these conditions are not expressed in all languages by peculiar forms. Some languages express it by some grammatical contrivance, as is the case in English, where it is denoted by to prefixed to the general uninflected form of the verb, as to loie = Latin amare; to hate loved $=$ Latin anacisse. The infinitive may be regarded as the point of transition from a verb to a substantive, and is often used as the subject of a proposition.

Infinitesimal Calculus. See Calculus, Infinitesimal.

Infin'ity, and the Infinitesimal. See InfrNite.

Inflammation, a term long used to indicate the phenomena that follow mechanical, chemical, or physical injuries to living tissues. These changes have been described for centuries as rubor (redness), calor (heat), dolor (pain), and tumor (swelling), which are the plenomena particularly seen on surface inflammations. At the present time the idea is becoming fixed that inflammation is a conservative process, the phenomena attending nature's effort to rid the tissue of harmiul substances. In the normal process of repair of an injury there are changes which closely resemble the milder types of inflammation; but when to a mechanical, chemical, or physical injury there is added a growth of micro-organisms, the reply on the part of the body-cells differs from the ordinary repair of injury. The changes witnessed depend upon the strength and kind of invading micro-organism and the particular tissue invaded. The first change is hyperamia, a suffusion of the part with blood from capillary dilatation; following this the liquid part of the blood, the serum, is poured out into the tissues and offers its resisting powers to the poisonous substance. If these measures be insufficient, the white blood-cells called phagocytes congregate in the tissues, destroying the invading organisms, by actually consuming them and neutralizing their toxic products. During this struggle there is more or less death of the cells, called "degeneration"; large masses "slough"; the remnants of the cells and the phagocytes killed form the thick fluid called pus. When an inflammation gocs on to the formation of pus, it is spoken of as purulent or suppuratiéce. Certain poisons cause a peculiar reaction on the part of the tissucs, characterized by the formation of new tissue that is unable to carry on the function of the part. This tissue is the same as the connective tissues, and the process is called productiove inflammation. The poisons that continue to act for a long time are
particularly apt to cause this reaction, and the inflammation is called chronic because of its permanency. Catarrhal inflammations are these same processes when they occur in mucous membranes; the appearance of these catarrhs, however, is different, owing to the peculiar structure of mucous membrane and to the fact of the epithelial covering offering excellent resistance to invasion. When death of cells occurs they can readily be cast off. Croupous inflammation is the term used to describe those in which there is considerable destruction of the superficial layers of the mucous membrane, which, with the fibrin of the blood, forms a coating or "false membrane" on the suriace. Granulation tissue (q.v.) is the name applied to the tissue formed during the repair of an injury. Names are given to certain types of inflammation having a characteristic appearance to the naked eye, but microscopically there is nothing absolutely distinctive in these except their arrangement. Particular examples of these are tubercular and syphilitic inflammations.

The majority of the diseases of the body that we recognize as entities are due to inflammation in some tissue or organ, but the picture depends on the various changes in the functions of different parts of the body. The kind and virulence of the generated poison, together with the reaction on the part of the body-tissues, makes the complete picture that we seek to recognize. The treatment of inflammation is, in large part, the practice of medicine and surgery. Efforts to help the tissues combat against invasion are made with more success as knowledge is gathered of the peculiar invading forces and the natural modes of defense. It is not that we wish to combat the inflammation per se, but rather to make it unnecessary by helping it to a successful issue. The actual destruction of the bacteria by drugs introduced into the body is of little use, for they would be apt to cause as much destruction of the body-cells as of the invading cells; but their toxines, which cause the actual damage, we are learning to neutralize by the administration of artificially prepared antitoxins, and by placing the body and its special tissues under the most iavorable conditions for developing its natural forces of resistance.

In exposed parts of the body, where antiseptics may be applied, the toxic germs may be killed, and various measures that change the blood-supply may be advantageous. Where death of tissue takes place, nature may require help in its removal. It has long been the rule to evacuate pus wherever it is formed, unless its escape from the tissues is easy.

The treatment of chronic inflammation is cm tirely different, as this is a process where actual structure is changed beyond repair in many instances. The all-important question is whether the tissue can carry on its proper functions: for if it can, the body need not suffer. The inflammatory process is arrested in its progress by the removal of the irritating cause, hy improving the blood-supply of the part and the vitality of the body gencrally. These constitute the measures in general applied for the cure of chronic inflammations. it being understood that the endeavor is to place the tissues in such a condition that they may carry on their functions for the good of the whole organism; and the failmre of these measures shows either that they are at

INFLEXION - INFLUENZA

fault or that the tissue-change has gone too far. Inflammation of any part is indicated by adding the suffix "itis" to the name of the organ or tissue. See Bronchitis. Colitis, Laryngitis, Meningitis; etc.

Dudley D. Roberts, M.D., Brooklyn, N. Y.

Inflexion (Latin, inflexio, a bending), that process in grammar which modifies words when placed in relation to other words in a sentence. Pronominal and predicative roots are combined to form one word in the Semitic and Aryan tongues, which are therefore called inflexional, a process impossible in monosyllabic languages like the Chinese or in languages of the agglutinate order like those of the Turanian family. In grammar, cases, numbers, persons, tenses, etc., are known as inflexions, and in many instances the original affixes can be readily recognized. The Semitic and Aryan families of languages, which admit of phonetic corruption both in the root and the terminations, are called organic or amalgamating languages. The pronominal termination varies according to the person or number. Thus the Sanskrit mi, si, ti, the endings of the three persons singular of the present of the verb, are perhaps from the personal pronouns ma, sia, $t a$, and the persons of the plural indicate the plural number by the form of the pronominal affixes. The plural oi masculine and feminine Greek and Latin nouns of the third declension is probably a contraction of the duplication of sa, the pronoun of the third person. The verbs i, to go, as and $f u$, to be, supply the inflexions of certain tenses of the verb, there being also a pronominal termination varying according to the person. In English the common auxiliary verbs am, do, have, shall, will, may, can, asserting respectively existence, action, possession, obligation, volition, liberty, power, assume the function of inflexions, and are themselves inflected to denote past time. In French the same inflexional law exists, the connection between the auxiliary and the root being closer than in English. Aimer-ai, I lave to love, that is, I shall love, is compounded of the infinitive aimer, to love, and ai, I have, the first person present indicative of aioor. The same is the case in Italian and Spanish.

Inflores'cence, Infructescence, botanical terms referring respectively to methods of flowering and fruit-bearing. The flowering shoot, says Strasburger, frequently bears only a single flower, which may then be either axillary or terminal. In many cases, however, the metamorphosis of the generative region, which results in the production of flowers, has led to the formation of a special system of fertile shoots termed an inflorescence or, after the fruit is formed, an infructescence. (See Flowers: Fruit.) Such inflorescences are wanting or ill developed among the Gymnosperms. while in the Angiosperms they are often well differentiated, constituting unities of a higher order. The modifications exhibited by the fertile shoots of such an inflorescence are due partly to a difference in their mode of branching, partly to the reduction or the metamorphosis of their leaves. These changes are the result of an adaption to pollination, in the endeavor to aggregate the flowers and at the same time render them more conspicuous by the reduction of the foliage-
leaves. Sometimes the whole system of fertile shoots is converted into an attractive apparatus, as in the Aracce, where the axis and the subtending leaf of the inflorescence have assumed the function, usually exercised by the perianth, of enticing insects. Viewed from a purely morphological standpoint, two types of inflorescences may be distinguished, the Botryose (racemose, monopodial) and the Cymose (sympodial)

Influenza, la grippe; an epidemic catarrhal iever, now believed to be due to a very minute bacillus that can be found in the various secretions. Epidemics of this disease have been traced back as far as the beginning of the 16 th century, and since 1,41 many such epidemics spreading over portions of Europe have been described. There are so many different types of the disease, and so many parts of the body may be distinctly attacked by it that it somewhat baffies close definition. The epidemics vary much in severity as well as in type. During the last decade it has become almost constantly present over portions of the United States, in some years being much worse than in others.

So great is the variation of its symptomatology that no standard description can be given, and the types are classified according to prominent ieatures. After one to four days of incubation, the disease usually sets in abruptly with chilliness or true rigor: this is followed by a fever (which may be constantly low or may run very high), headache and general aching, and a degree of prostration out of proportion to any discoverable cause. The respiratory form is characterized by inflammation of the nasal, the pharyngeal, the laryngeal, the tracheal, and the bronchial membranes. Starting in the nasal mucous membrane, the inflammation is apt to involve the other membranes in the order given. It is quite common for the lungs to show small spots of bronchopneumonia. There is frequently nothing to distinguish such an influenza from similar acute catarrhs of the respiratory passages except the known presence of an epidemic and the disproportionate prostration. The gastrointestinal form is characterized by nausea, vomiting, abdominal pain and profuse watery discharge, with prostration sometimes amounting to collapse. The typhoid form is characterized by the sudden development of rather high iever (with or without severe aches and pains), general apathy, or even a low muttering delirium. The fever runs from a few days to two weeks, and may very closely resemble typhoid. The nervous iorm is characterized by severe pains throughout the entise body, prostration, moderate fever, but no definite affection of any part or organ. The meningeal form is characterized by headache, fear of light, pain and stiffness of the muscles of the back of the neck.

Complications and extension of the inflammation to other parts are common. Pneumonia complicating influenza is father apt to be very severe, and in some epidemics the mortality rises very high. Pleurisy is quite conmmon. Great disturbance of the heart's action is seen in some cases, and the poison may actually attack the lining membrane of its chambers. Less commonly there is inflammation of the eye, car, brain, liver, intestine, or kidneys. The skin is sometimes affected, showing a general blushing rash, herpes (small painful itchy blisters), or bloody patches. A very common sequel is great
nervous depression, either an inability to make boduly or mental exertion or "low spirits," even amounting to true melancholia. Unless influenza is epidemic, differential diagnosis may be very difficult, but hasty refuge in a diagnosis of "grippe" is far too common; in doubtiul cases search should be made ior the specific bacillus and considerable reliance placed on the presence or absence of the characteristic symptom, extreme weakness.

For the disease there is no specific treatment; the infecting organism must continue to grow until the natural defenses of the body overcome it; as yet no means has been discovered of killing the bacillus in the body or overcoming its, poisons by an antitoxin. Careful isolation of the affected individual will prevent the spread of the disease to other members of the family: and much can be done for the patient \equiv relief. Useiul measures consist in securing thorough action oi the bowels, keeping up the nutrition by simple, easily digested foods, and the adminjstration of drugs such as phenacetin, acetanilid. caffeine, and bromides to relieve the distressing pains or nervous tension. The nervous exhaustion which is apt to follow is best treated by a period of mental rest, nourishing diet, and little or no bodily exertion.

$$
\text { Dcdiley D. Roberts, M.D., } \begin{aligned}
& \text { Brooklyn. }
\end{aligned}
$$

Infor'mer, a person who sues for a penalty against those who have infringed any law or peual statute. To encourage the apprehending of certain ielons, guilty of offenses not so mucli criminal as bordering on criminality, many English statutes. from 1692 downward. granted rewards to such as should prosecute to conviction. The penalty in whole or in part inflicted in the case of a successful conviction, and immunity from certain troublesome parish offices, were the inducements held out to informers. In many cases this practice has been resorted to in modern statutes. In the पnited States one who informs the government of the whereabouts of smuggled goods, counterfeit money, etc., is rewarded by a fee of ten per cent of the net value oi the confiscated goods. In criminal law an informer is said to turn state's eridence (q.s.).

Infu'sion, in pharmacy, an aqueous solution oi a medicinal substance obtamed by treating with water, usually without the aid of boiling. The water may be either hot or cold, varying with the object to be obtained. According to the directions oi the United States Pharmacopoeia. infusions are generally prepared by pouring boiling water upon the drug and macerating in a tightly closed ressel until the liquid cools. The active pronciples are in this manner extracted more rapidly and. as a rule in much larger portions than if the solution is colder. Heat is not advisable if the active principles are volatilc. If an iniusion is desired of a greater degree of concentration than that obtained by the process oi maceration, it is irequently prepared by percolation, in which operation the drug is sliced or broken up into small iragments, packed in a percolator, and the water. either hot or cold. is passed through. Infusions are sometimes made with the aid of other liquids than water, but this is the exception rather than the rule. Infusions do not keep well, and thercfore they should be made extemporancously and
in small quantities. In household medicine, iniusions are very widely employed. These may be made at home or made by the pharmacist. It is essential to remember that if they are made in hot weather in large quantities they must be sterilized.

Infusion of saline solution into the bloodvessels is a very important procedure in medicine. It is employed largely in the treatment of shock, and in severe hemorrhage, especially following operations or childbirth. The solution that is used is known as a normal saltsolution, and consists oi about one teaspoonful of common salt to a pint of water. This solution should be boiled carefully for one balf to three quarters of an hour, the amount of evaporating water being made up as the boiling proceeds, and after being made it should be kept in large bottles provided with cotton plugs for stoppers. In severe cases oi hemorrhage, infusion has often saved life, as it provides a body of fluid on which the heart and blood-vessels can act. The salt-solution is usually introduced into one of the large veins of the arm at a temperature of one to two degrees above that oi the body-temperature. See Blood; Transflsros.

Infuso'ria, Protozoa of the classes Flogellata and Cifiotu, originally so-called fror: abounding in organic infusions. While the term is now restricted to the ciliate protozoans, it often includes the flagellate protozoans as well. The latter are represented by the monads. These are exceedingly minute round or pear-shaped animals, which move by one or two lash-like processes called flagella. They contain a nucleus and contractile vesicles. Some of them are fixed by a stalk, and are prosided with a collar, as in Codosigu, out of which the flagellum projects. One of the simplest monads (Heteromita) is obtained by placing a cod's head in water at a temperature of about $70^{\circ} \mathrm{F}$. In a few days the water will swarm with these monads. The young germs will live in boiling water, but perish at a temperature of from 212° to $268^{\circ} \mathrm{F}$., while the adults are destroyed at $142^{\circ} \mathrm{F}$.

In the ciliate infusoria the body is more or less flattened and covered with cilia (Paramecium, etc.). They have on the under side of the body a slightly defined mouth (or cytostome), which is permanently open. and the iood is swept into it by the action of the cilia around it. The mouth leads into a funnel-shaped throat or cytopharynax, which ends in the protoplasm of the body. The food-particles swept into this throat and pressed into the protoplasm form a small enlargement which finally sinks farther in forming the "food vacuole," which, by the flow oi the protoplasm, is carried about the body, while the digestible portions are absorbed and the waste matter is cast out at a fixed point,- a sort of vent (cytopyge). The ire:h-water forms have contractile vesicles, and in certain species the animal possesses so-called stinging rods (trichocrsts), which are very minute and are placed vertically to the suriace of the contex: by some students they are supposed to be tactile rather than stinging structures. What corfespond to the muscular fibres of the higher ammals, cause the quick convulsive movements observed in these creatures. Two important organs are present in all ciliate in-
fusoria, that is the nuclei. The larger nueleus (macronucleus) is an oral, rod-like or spiral body, which appears to control the processes of feeding and motion. The other mucleus (micromucteus) is much smaller and is concerned with reproduction. Reproduction occurs usually by self-division, and more rarely the imfusnrians contract into a ball and divide into spores, which grow to become adults. The periods of fission are at times interrupted by the process of conjugation, which only differs from sexual reproduction in the fact that two individual infusorians meet and fuse together and then separate, the result being a process of fertilization which leads to a complete new formation of the nucleus, and thus to a new organization of the animal. (For a more detailed account see Hertwig-Kingsley's 'Zoolog:' 1903.)

The more specialized infusoria are Stentor and lorticella. The former is large enough to be seen without a lens. It is purplish, and under the microscope shows itself to be a beautiful creature. It is trumpet-shaped. with a spiral tract of thicker cilia around the mouth-end. The most highly organized infusoria are the bellanimalcules (carchesium. etc.). which are compound bell-shaped forms, forming colonies with forked branched stalks. The nucleus is sausageshaped, and near it is the micronucleus. They form a white mass like mold on the stems and leaves of aquatic plants. Some of the infusoria are parasitic itn the digestive and circulatory organs of the higher animals. Consult: Stein, 'Organismus der Infusions-Thiere) ($1859-83$); Saville Kent, 'Manual of the Infusoria' ($1880-2$) ; MI. Hartog, (Protozoa) (Vol. I., Cambridge Natural History, 1903); Ray Lankester, 'Treatise on Zoology' (1902)'; Hert-wig-Kingsley 'Zoology' (1903).

In'galls, John James, American lawyer: b. Middleton, Mass., 29 Dec. 1833; d. Las Vegas, New Mexico 16 Aug. 1900. He was graduated from Williams College in 1855, and was admitted to the bar in 185%. In 1858 he moved to Kansas and established a law practice there. He was secretary of the territorial comncil in I860, and of the State senate in 186I, and in 1862 was elected a member of the senate. In $18 ; 3$ he became a member of the United States Sernate, and was re-elected in 1870 and 1885. He was president pro tem. of the Senate from 1887-91. In 1891 he was again a candidate for senator, but was defeated by the Farmers' Alliance. From that time till his death he dewoted himself chiefly to lecturing and writing.

Ingalls, Rufus, American soldier: b. Denmark, Maine, 23 Aug. 1820; d. 15 Jan. 1893. He was graduated from Wicst Point in 1843 , fought in the Mexican War and in $1854-5$ was a member of Steptoe's expedition to the Northwest. At the outbreak of the Civil War he defended Fort Pickens, then became quartermaster of the Army. of the Potomac, and was present at many of the important engagements, and at the close of the war had attained the rank of major-general. In ${ }^{1867}$, he became quartermaster of the military: division of the Atlantic, quartermastergeneral of the United States army in 1882 and was retired in 1883.

Ingelow, ĭn'jë-lō, Jean, English poet and novelist : b. Boston, Limeolnshire, 1820: d. Kensington, London, 20 July 1897. Her first pub-
lished work appeared anonymonsly in 1030 under the title 'Rliyming Chronicle of Incidents and Feelings.' It was followed by 'Allerton and Dreux: or the War of Opinion' (1851), a story, and 'Tales of Orris' (8860) ; but not till the publication of 'l'oems,') in 1863 . did Miss Ingelow become famous. This volume won the enthusiastic praise of critics and the instant approval of the public, and passed through 23 editions. The most widely appreciated poems in it are 'The High Tide on the Coast of Lincolnshire': 'Songs of Seven'; 'Divided'; and 'Supper at the Mill.' Later' volumes were: 'Studies for Stories' (1864) ; 'Stories told to a Child' (1865): 'A Story of Doom, and Other Poems' (1866^{-}); 'Nopsa the Fairy' (I869); 'Off the Skelligs' (I872), her first long story; 'The Little Wonder Horn' (18;2), a new series of stories told to a child; 'Fated to be Free' (1875): 'Sarah de Berenger' (1880): 'Don Joln' (1881) ; and 'John Jerome' (1886). A third volume of verse. Monitions of the Unseen' was published in 1885. Her works have been even more popular in America than in her native country.

Ingeman, Bernhard Severin, Danish poet and novelist: b. Torkildstrup, on the island of Falster, 28 May 1 \% 89 ; d. Soro 24 Feb. 1862 . He was educated at the University of Copenhagen, and it was while a student there that he published his first 'Poems' (I8II-I2), of a dreamy; melancholy nature, showing the influence of German romanticism, and displaying the unhealthy state of his body and mind. In I8It he published a long allegorical poem, 'The Black Knights.' which showed a marked advance. The next six works which he produced were plays, the tragedy 'Blanca,' bronght out in I815. being the most popular and successful, though 'The Miraculous Child Reinald' (1856) was undoubtedly the best. 'The Subterranean Ones, a Story of Bortholm.' his first prose work, was written in I8IF, and the following year he started on a tour of the Continent, returning in I8s9. On his return he wrote his 'Stories and Miraculous Tales,' which was published in 1820, followed in 1821 by a comedy. (Magnetism in a Barber's Shop,' which, however, was unsuccessful, and thereafter he confined himself to prose work. In 1822 he accepted the chair of Danish language and literature at the Academy of Sorö, and then began his voluminous ivritings on historical subjects, his novels probably being inspired and copied from the Waverley novels, by Scott. The subjects and characters were taken from Danish history, and, while they were to a great extent inaccurate, were possessed of such strong nationality that they became of great interest. Among these historical romances were 'Valdemar the Victorious' (1826): 'Erik Menred's Childhood' (1828) ; 'King Erik and the Outlatws' (1833) : 'Prince Otto of Denmark and his Time' (I835). From ${ }^{183 j-9}$ he wrote a collection of 'Evening and Morning Songs:' which hecame very popular on account of their great beanty of religious expression. From this time until his death his writings were mainly religious. and the last of his works. 'The Apple of Gold.' was published in 1856. His collected works in $4 T$ volumes were published in Copenhagen ($18+3-65$).

Ingenhousz, Jan. Dutch physician and scientist: b. Breda, Holland, 1730 ; d. Bowood, the

INGERSOLL

seat of the Marquis of Lansdowne, England. ; Sept. 15/9. He studied nedicine, and after practising in his own country for several years removed to London in 176\%. In $1 ; 69$ he was appointed aulic councilor and body physician to the Austrian Empress, Nlaria Theresa, and to Joseph II. After serving for to years in that capacity he returned to London, where he began his scientific researches, later becoming a fellow of the Royal Society, and publishing in their 'Transactions' several treatises and essays. Among these were 'Experiments on Vegetab'es, Discovering Their Great Power of Purifying the Common Air in Sunshine, but Injuring it ir the Shade, or at Night' (1779): 'Aniangsgruinde der Electricität') (1-81) : 'Essay on the Food of Plants and the Renoration of Soils' (ry96). Dr. Ingenhousz is credited with being the discoverer of the use of carbonic acid for medicinal purposes, and he also invented the plate electrical machine.

Ingersoll, ing'gèr-sŏl, Charles Jared, American statesman, lawyer, and author: son of Jared Ingersoll (q.v.) : b. Philadelphia 3 Oct. 1-82; d. there 14 May 1862. After finishing his collegiate course he studied law, was admitted to practice, traveled in Europe, and became attached to the American embassy to France. In I8I2 he was elected to Congress, taking his seat in May I8t3. In 18_{15} he was appointed United States district attorney for Pemsylvania, an office which he held until i829. Shortly after he was elected to the legislature of Pennsylvania. He was a member of Congress istr-7 as representative of one of the districts of which the county of Philadelphia was then composed. He was the author of the poems 'Chiomara' (1800), and 'Julian' (1831); and of 'Inchiquin - the Jesuit's Letters on American Literature and Politics) (18 Io) ; 'Historical Sketch of the Second War between the United States and Great Britain' ($18+15-52$) ; etc. Consult Meigs, 'Charles Jared Ingersoll' (I896).

Ingersoll, Ernest, American naturalist: b. Monroe, Mich.. 13 March 1852 . He studied at Oberlin College and in the Lawrence Scientific School and IIuseum of Comparative Zoology of Harvard University, where he was a pupil of Agassiz, and in $187+$ and 1877 was connected as naturalist with the Hayden survey. He was also an expert on the United States fish commission, and hater became known as a popular writer and lecturer on scientific subiects. In noor he was lecturer in zoology at the University of Chicago. Among his works are: 'Nests and Eggs of North American Birds) (ise-1) : 'Oyster Industries of the C'nited States' (I 88 I): 'Kinacking 'Round the Rockies' (1883) : 'Country Cousinc' (1884): 'The Crest of the Continent' (IRR4) : 'Down Fast Latcl-Strings'
 of the Ocean' (isgR): 'Nature's Calendar') (1900) ; 'TVild Life of Orclard and Field) (n 02) ; and also 'The lee Queen,' and several other popular juvenile tales.

Ingersoll. Jared, American politician: b. Mlilfurd. Conn., 1722; d. 1788. Upon the passage of the Stamp. Act he was appointed. in 1765, a stamp agent in. Connecticut. and accepted the inct by the advice of Franklin. This suhjected limn to the nerennal abuse and insults from which all colonial stamp agents culfered. and finally he was forced to recign. later, in $\stackrel{\text { ino, }}{ }$
becoming an admiralty judge. He wrote and published a pamphlet called 'The Stamp Act' (1-76).

Ingersoll, Jared, American lawyer: b. Connecticut 1749: d. Philadelphia 21 Oct. 1822. Having been graduated at Yale College in $1,66$. he went to London, was entered of the Middle Temple, and passed five years in the study of law. The American Revolution breaking out while he was still in London. he espoused the cause of the colonies, although the son of a loyalist. He went from London to Paris, where he remained for 18 months, making the acquaintance of Franklin. Returning home. he took up his residence in Philadelphia. where he won almost immediately a prominent position as a lawyer. In 1787 he was chosen one of the representatives of Pennsylvania in the convention which framed the United States Constitution. Twice attorney-general of the State, he was United States district attorney for Pennsylvania, and was in 1812 the federal candidate for Vice-President of the United States.

Ingersoll, Joseph Reed, American lawyer and politician: b. Philadelphia, Pa., it June 1786; d. there 20 Feb. 1868. After graduating from Princeton in 1804, he took up the practice of law in Philadelphia. He was a Whig nember of Congress from. 1835-7, and again from I8 $12-9$. In 1852 President Fillmore appointed him minister to England, a post which he held for only a year. He wrote 'Secession a Folly and a Crime,' which appeared just previous to the outbreak of the Civil War; also a 'Memoir of Samuel Breck' (1863).

Ingersoll, Robert Green, American lawyer, lecturer and author: b. Dresden, N. Y., 11 Ȧug. 1833; d. Dobb's Ferry: N. Y., 21 July 1899 . He received a common sclool education and was admitted to the bar in 1854. He soon became prominent in the courts and in Democratic politics. In the Civil War he recruited the ith Illinois cavalry and entered the army as its colonel. On 29 Nov. 1862, while trying with a force of 600 men to intercept a Confederate raiding party, he was captured by a force of 10.000 men. but was soon paroled and given command of a camp in Saint Louis. He soon afterward resigned. After the war he became a Republican, and was made attorney-general of Illinois in 1866. He was a delegate to the Republican National Convention in 1876 and placed in momination for President James G. Blaine. whom he termed "the plumed knight." His nominating speech gave him national reputation as an orator, and he afterward lectured frequently. He was an agnostic, and in his lectures attacked the Bible and the beliefs of the Christian religion. He was prominent in politics for several years, and had he not given such frequent expressions to his agnostic views he would doubtless have been honored with high offices. He took up his permanent residence in Xew York city in 1882 and practised law there till his death. His most famous lectures include 'Some Mistakes of Moses'; 'The Family": ‘The Liberty of Man. Woman, and Child’: 'The Gods' : and 'Ghosts.' His publications include 'Lectures Complete' (IR86): 'Prose, Poms and Sclections' (IRSS); and 'Great Speeches' (1887) A complete collection of his works was published in 1900.

Ingersoll, Canada, town in Oxford County. Ontario, on the Thames River and the Grand Trumk railway, 19 miles northeast of 1 Condon. 1 is the marketing centre for a rich grain and fruit-producing section, and has an important trade in lumber, grain, cheese, and general country produce. It has manufactures of iton products, machinery, agricultural implements, woolen goods, woodenware, lumber, and creamery products: banks, and weekly newspapers. I'op. (1901) 4.573.

Ingham, Benjamin, English evangelistic leader: b. Osselt, Yorkshire, II June 1712; d. Aberford 1772. He received his education at Batley School and at Queen's College, Oxford, whence he graduated B.A. in 1733 . In 1735 he was ordained, and, becoming associated with John Wesley, went with him to Georgia, remaining two years. In 1737 he went with the Wesleys on a visit to the Mloravians in Germany: and became so strongly attached to their doctrines that he broke with the Wesleys and founded in Yorkshire several congregations of what were known as "Moravian Methodists." but more commonly as "Inghamites." He endeavored to unite in this organization the chief doctrines of the Moravians and Methodists, and so successful was he as bishop or general overseer that in a few years there were 84 of these congregations in England. He moved to Aberford about the time of his marriage with a sister of the Earl of Huntingdon in 1741, and succeeded in converting the whole surrounding neighborhood to his faith. In 1759, however, the greater part of his followers deserted him and went over to Sandeman, and in 1760 Ingham himself joined the Sandemanians and the Inghamites disappeared.

Ingham, Charles Cromwell, American painter: b. Dublin, Ireland, 1797; d. New York 1o Dec. 1863. He was a pupil of William Cunning at the Dublin Academy, came to New York in 1817, was there a founder of the National Academy of Design (1826), and its vicepresident in $1845-50$. De Witt Clinton and Lafayette were among his subjects. His works include: 'Day Dreams'; 'The White Plume'; 'The Death of Cleopatra.'

Ingham, Samuel Delucenna, American politician: b. Bucks County. Pa., 16 Sept. 1779: d Trenton, N. J., 5 June 1860. He was for some time in the Pennsylvania legislature, and was then sent to Congress, 1813-18, and again 1822-9. In the interim he was appointed prothonotary of the courts of Bucks County, but resigned in isig to become secretary to Gor: Finley. On 6 March 1829 President Jackson appointed him secretary of the treasury, a position he continued to hold till 1 Aug. 1831.

Ingleby, Clement Mansfield, English author and Shakespearean critic: 13. Edghaston, near Birmingham, 29 Oct. 1823: d. Ilford, Essex, 26 Sept. 1886. After graduating from Trinity College, Cambridge (B.A. 1847 : M.A. 1850) he entered into partnership with his father, but in 1859 gave up his law practice and moved to Ilford, where he began writing for the magazines on scientific and metaphysical subjects. His best known works are his Shakespearean studies, among which are 'The Sliakespere Fabrications' (189): 'Shakespere Controversy' (I861) ©Shakespeare's Centurie of Prayse, etc.' (1874): 'The Still Lion' (187.4:
new edition r875. entitled 'Shakespere's Ilermeneutics'): 'Shakespere: the Man and the Book' ($18 \div /-8$). Ite also wrote 'Outlines of Theoretical Logic' (1856): ‘An Introduction to Metapliysics' ($186 \not-9$) ; etc.

Inglis, ing' 1 z , Charles, American Anglican bishop: b. New York t734; d. Halifax, Nova Scotia. 1816. He was ordained priest in Eng land. and in 1765 became assistant minister at Trinity Church, New York. A stont loyalist, he refused to omit from the service the prayer for the king and royal family, and upon the occupation of New York by Washington retired for a time to Long 1:land. In 1757 he was chosen to the rectorship of Trinity, and in 1783, at the evacuation of New York by the British, went to Halifax in the emigration of the United Empire loyalists. He was consecrated in 1787 bishop of Nova Scotia (with jurisdiction over the other North American provinces), and was the first missionary bishop of the Church of England. He published sermons and pamphlets.

In'got, a small bar of metal formed by casting it in molds. The term is chiefly applied to the bars of gold and silver intended for coining.

Ingraham, ing'grạ-am, Duncan Nathaniel, American naval officer: b. Charleston, S. C., 6 Dec. 1802; d. there 16 Oct. 1891. He entered the navy as midshipman in 1812, and became a captain in 1855. While in command of the sloop-of-wat St. Louis he arrived at Sinyrna 22 June 1853, and was informed that Martin Koszta, Hungarian by birth, but entitled to the protection of the United States, was a prisoncr on board the Austrian brig of war Hussar, then lying near the St. Louis. Ingraham went on board the Hussar, had an interview with Koszta, and learned that he had resided a year and it months in New York, where he took the usulal oath of allegiance to the United States in July 1852, and was in possession of a legalized copy of a declaration of his intention to become an American citizen; that he had come to Smyrna from New York on business: that on the afternoon of 21 June he was seized by a party of armed Greeks, employed by the Austrian consul-general, carried on board the Hussar, where he was held in close confinement. Ingralarr uccordingty, on 2 July, at 8 A.s., denanded of the Austrian commander the release of Koszta by + P.M., declaring that he would otherwise take him by force. At in o'clock the Austrian consul-general proposed to deliver Koszta into the hands of the French consul, to be held by him subject to the disposition of the consuls of the United States and Austria, and not to be delivered without their joint order. As this proposition gave sufficient assurance of the personal safety of Koszta Ingralam accepted it, and the Hungarian was set at liherty. The conduct of Ingraham was fully approved by the government. and Congress by joint resolution, + Aug. 1854, requested the President to present a medal to him for his conduct on this occasion. In 1860 he resigned from the United States navy, entered the Confederate service and became a conmodore.

Ingraham, joseph Holt, American novelist: b. Portland, Maine, 1809: d. Holly Springs, Niss., December 1866. After a brief experience.
of mercantile life he became teacher in Washangton College, Natchez. Miss., and in 1836 published his first book, 'The South-West, by a Yankee.' Thenceiorh he produced in rapia succession 'Lafitte': 'Burton, or the Sieges': 'Captain Kyd': 'The Dancing Feather': and other romances of small literary merit, some of which attained a large circulation. He subsequently entered the Episcopal ministry and was rector of a parish and of Si_{i} Thomas's Hall, an academy for boys, in Holly Springs, Miss. He sull continued to write, publishing 'Prince of the House of David' (1855) and the 'Pillar of Fire' ($18=9$) ; 'The Throne of David.' wbich were widely popular, but nearly worthless irom a literary point of views

Ingraham, Prentiss, American soldier and author: b. Adams County, Jiss.. 22 Dec. is 43 . He was educated at Jefrerson College (Iliss.), also studied medicine at the Mobile Medical College, entered the army of the Confederate States in 1861 . fought later with Juarez in Mexico, with the Austrian army in the was with Prussla, and in the ien-years war for independence in Cuba. Subsequentiy he entered a literary career, and published a great quantity oi niction, including: 'Without Hean' (I8-8) : (Zuleikah) (188,): (Red Rovers on Blue Waters' (1890): 'The Vagabond' (ISg1) ; and 'The Wandering Jew of the Sea' (iser).

In'gram, John Kells, English educator and author: b. County Donegal, Ireland, ; luly 1823 : d. Dublin j May 190\%. He was educated at Trinisy College. Dublin. and was appominted proiessor of oratory and English litcrature there in 1852 . Regius proiessor of Greek in sowo. and librarian in 18;0. At one time he was vice-provost of the college, and also held the presidency ci the Roval I 1 ...h Academy. His 'History ci Polizical Economy.' originally minted in the gth dition ci the Encychpredia Eritannica.' was scparately published in $18: 8$ and widely translated. He iurher wrete: 'A Hlisiery of slavery and Seridum (1×0) : Eonnets and other Poems) (tgo0): 'Human Nazure and Morals according to Auguste Comte) (icor), etc.

Ingres, Jean Dominique Auguste, zhōn di-mérể ô-sūst ãng-r. French historical painter: b. Montauban 15 Sept. 1-Et: d. Paris ${ }_{14}$ Jan. 1814. Placed in the school of David he made such rapid progress that at 20 he had gained in two sticcessive years the first and second prizes of the Academy of Fine Arts. In 1806 he departed ior Italy, where he passed nearly 20 years. abandoning. under the inhuence of a close study of Raphael and the old matters, the dry. classic style acquired from David His works are numerous, and comprise general'y serious histr rical and classical subjects: in the great exhibition of 1855 at Paris an entire calon was appropriated to them. Many are in the Louvre on the ceiling of one of the aparments of which is painted his 'Apotheosis of Hrmer.) He painted the portraits of many distinguished personages. from Napoleon I. downward. The art of Ingres is adjudsed to hold a middle place between the elassic and the romantic schools.

Inhala'tion, in medicine, a mode of applying remedies directly to the respiratory tract.

Either steam alone, steam charged with drugvapors, or drugs finely subdivided in sprays. are breathed into the air-passages as deeply as possible. This method of medication is useiul only in relieving infammations of the upper air-passages and possibly the trachea and larger bronchi. The air in the smaller bronchi is not changed by breathing, but by the difirusion of gases, so that substances in aêrial suspension are deposited on the suriace before reaching the smaller divisions of the bronchial tubes. Steam does not penetrate far, but is cooled. and deposits moisture as far as the irachea. The old-fashioned croup-kettle and many devices for carrying out the same idea are used for the first stages of laryngitis. Many substances. such as tincture of benzoin, ete., are added to the boiling water. but render it no more efficacious. Instead of conducting the steam directly to the mouth and nose by a funnel or tube, it may be well to place the patient in a simply enclosed tent. formed of bedclothes. and io allow the steam to charge the confined air. This method is particularly adrisable for infants and older children.

Inheritance, in law, a perpetual or continuing right to an estate invested in a person and his heirs. There are nine "canons of inheritance": three may be quoted: (1) That inheritance shall. in the first place, descend to the issue oi the last purchaser in infinitum; (2) That the male issue shall be admitted before the female: (3) That where two or more of the male sex are in equal degree of consanguinity to the purchaser. the eldest only shall inherit. but the iemales all together.

Inheritance Tax, an assessment laid upon those made heirs of property. either by distribution or descent. Sometimes this assessment is conined to collateral heirs. when it is called collateral inheritance tax. The raising of public $j u n d$ in this way has been sanctioned by legislation irom the beginning of Roman law. and in England and other countries is a large and steady source of revenue. although such taxes have been stigmatized by certain economists as "death duties." During the Civil War taxes of this kind were made part of the internal revenue system of the U-nited States, but abolished soon aiter the struggle ended. The rate and method of asessment vary in different countries, and in different States oi the Union. The English inheritance tax ranges irom a 1 to a 10 per cent assessment, in accordance with the amount of the inheritance and the degree oi relationship of heirs. In the United Staies lineal. collateral and succession inheritance taxes have been instituted in several States, as a source of domestic revenue. In Connecticur the asses-ment on inherited property is 3 per cent on all sums and ralues above $\$ 1.000$. In Delaware the assessment ranges irom 1 to 5 per cent. according to the amount of propery leit. and the degree of relationship. In $1 l l i n o i s$, 1 per cent on values over $\$ 2.000$ to lineal descendants: 2 per cent to 5 per cent on all amounts to collateral relations. In Margland. $2^{1}=$ per cent on all legacies and successions. In New lork. I per cent on all property over the amount of $\$ 0.000$ to lineal heirs, \equiv per cent on all amounts over $\$=00$ to collateral relatives. In Oliio, 5 per cent on all values over $\$ s 00$. In

INIA - INJUNCTION

Vi:ginia, 5 per cent in every case. Several States leave untaxed the property descending or distributed to the lineal descendants, and place assessments of varying percentage on the amount or value of the legacy which falls to collateral heirs. These are Califormia, Maine, Massaclusetts, Minnesota, New Jersey, Temessee, West Virginia. Inheritance laws have in the United States occasioned much diseussion a...d litigation, but their justice and utility lave been testified to by experience and the decision of the law courts. The conomists of the present and other periods have seen the scientific propriety of such legal provisions, and have noted the uniformity with which they deal with all classes of the financial community.

In'ia, a gentus of toothed cetaceans similar to dolphins, but placed on structural grounds in the allied family Platanistida, with the freshwater dolphins of the Ganges and the La Plata. The single species (1 . groffrensis) is called bouto and tucuxi, and is found in some of the upper tributaries of the Amazon, and in the lakes near the Cordilleras. It measures about eight feet in length, has a long cylindrical snout with stiff hairs, and a very slight dorsal fin. It feeds chiefly on fish, and is bunted for the sake of its oil.

Initiative. See Reffrexpix.

Injunc'tion, a writ issued by a court of Equity, bidding, or forbidding, a person or persons to do a certain thing. The injunction originated in Roman law, and was anciently known as an interdict, a name it still bears in Scottish practice. It was introduced as a remedy for some of the abuses of common law, and as a preventive, when evasion of common law provisions seemed possible. It is to-day one of the most potent of the legal remedies of an equitable character which stand on the statute books.

There are three main divisions in the purposes for which a writ of injunction is issued. A writ may be prohilitive, protective, or restorative. In the first place it may forbid the commission of certain acts of a civil nature which are clarged with injustice. Second, it may be so framed as to protect such civil rights of an individual or a corporation as seem to be threatened. Third, it may order the restitution or restoration of such rights as have unlaw fully been taken away from an individual or a corporation. These characters of the writ have been clearly expounded by Blackstone, as follows:
"This writ may be had to stay proccedings at law, whatever stage they mas have reached; to restrain alienations of property pendente lite, and tenants for life and others having limited interest from committing waste. It may be granted to restrain the negotiation of bills of exchange, the sailing of a ship, the transfer of stock, or the alienation of a specific chattel, to prohibit assignees from making a dividend, to prevent parties from removing out of the jurisdiction, or from marrying, or having any intercourse, which the court disapproves of, with a ward. The infringement of a copyright or a patent frequently calls for the exercise of this beweficial process; which may also be had to restrain the fraudulent use of trade marks, or of the names, labels, or other indicize of the makers or vendors of goods and merchandise,
and in a large class of cases, far too numerous to be mentioned here."

The first two kinds of injunction are most commonly used, and a familiar example of the prohibitory writ is that which orders the abatement of a musance. A railroad which lays tracks without first gaining the right of way may be compdled by injunction to remove them. By such a writ patent rights, copyrights and trade marks are secured from infringement, or proceedings in a court of law are stayed. Sometimes a court of equity issucs an injunction prohibiting litigants within its own jurisdiction from prosceuting a suit in another jurisdiction; for example, a United States court may restrain creditors for suing in State courts for the enforcement of their claims against a bankrupt, and reserve the disposition of his estate to its own jurisdiction. A court of equity only issues a writ of injunction when a remedy of law appears inadequate to give the wronged party the complete relief to which he is entitled. Thus in recent eases the courts have issued writs forbidding laloor agitators and others from inducing or coercing workingmen, in such a way as to bring on a strike to the injury and damage of employers, who might thus be induced to sacrifice their rights in order to eseape ruin or irreparable loss.

An injunction in the United States may be preliminary or perpetual. A preliminary writ is sometimes styled interlocutory, as it is issued pendente lite. The preliminary writ may be made perpetual, if, after arguments made and heard, the court decides that the grounds advanced for the continuance are valid, and have been so proved by evidence. Failure to obey an injunction is punishable as a contempt of court (q.v.) Consult Beach, 'Treatise on the Law of Injunctions' (1895).

Injunction, Government by. See Goyernment by Injunction.

Injunction, Theatrical, a term applied to a mandate issued by a court of equity. to compel or prevent the performance of some act for which money damages would not properly compensate the injured party. Relief by injunction in matters pertaining to theatricals is probably more frequently sought than in any other business or profession, and precedents in law established in this class of cases lias become of considerable importance. At first, courts of this country and England refused to grant injunctions against actors for the purpose of compeling them to perform their contracts, a learned justice saying: "The Court could not regard as law the old adage that 'a bird that can sing and will not sing must be made to sing." " But latterly, when the service of an actor became recognized and it was made to clearly appear that an actor or singer, by intelligence, education and other arlistic accomplishments and talents, was of extreme importance to one who had invested moncy in the production of a play or opera, it was held that a court of equity would by injunction enforce a covenant in a contract. But this has simply gone to the extent of compeling a fulfiment of the contract, or forcing the artist to remain idle during its term. The services of every actor will not be enjoined. He must actually possess some exceptional merit, so that his services may be
icrmed special. unique and extraordinary, and it must be shown they cannot be fulfilled by any other person without injury to the employer. In the case of Lumley \approx : WFagner, the courts of England enjoined Johanna Wagner, a prominent prima donna of the early 50° irom appearing at Corent Garden Opera House, London, in violation of her contract with Lumley; and then for the first time the British courts asserted their authority over contracts of actors, and granted an injunction forbidding ber rendering professional services for any but her original employer.

In the Cnited States, the Federal courts recognized the right of a manager to lave the exclusive services of his employee, and in McCall \approx Braham an injunction was granted which prevented Lillian Russell from violating her contract. In the State courts, the case of Augustin Daly \%. Fanny Morant Smith (49 How. Pr. I50), Superior Court Justice Freedman also appreciated the fact that the ancient rule had been abrogated and the modern one compelling actors to live up to their agreements, as other individuals, was there enforced. The contract must unquestionably be fair. The rights of both parties to it must be equal. In other words, if the contract gives the manager the right to terminate it by giving notice before the expiration of the contract, a like right of termination must also be given the actor; and as stated before, the actor's services must be special, unique and extraordinary. In this latter connection, it seems uncertain where to draw the line. In the case of Carter \because. Ferguson the court refused to grant an injunction to Mrs. Leslie Carter against William J. Ferguson, an actor, saying that his services were not so special and unique as to warrant a court of equity's interference. In Charles Hoyt á. Loie Fuller, the court granted an injunction against the dancer, holding that a serpentine dance in the periormance of which she became famous, warranted the court's interference by injunction. In George Edwardes, the London manager, \approx Cissie Fitzgerald, the New York Supreme Court granted an injunction against Miss Fitzgerald, on the theory that a certain wink of her eye used in a play was of special merit, and a drawing card. In Harris v. Sparks, an injunction was granted against John Sparks, the Irish comedian, the ground being that his portrayal of an Irish character was special, unique and extraordinary. While in the still later case of Shubert Brothers z. Aimee Angeles, imitations given by the performer were considered so special, unique and extraordinary as to warrant the granting of an injunction. Each case, lowcwer, must be determined by its own peculiar circumstances. In the most recent case - Harrison Grey Fiske z: Tyrone Power- the court refused to grant an injunction against Tyrone Power, although his ability as an actor was exploited in the newspapers; on the ground that his services wocre not so special. unique and extraordinary, as to justify an injunction. But in guarding the rights of an actor, the courts will sce that no advantage has been taken of him by the manager, and that the manager for whom he is to perform is of such financial responsibility as to insure the salary of the actor. In the case of Rice v. D'Arville, Edward E. Rice,
the theatrical manager, sought to restrain Camille D'Arville from performing for others: tut on the defense that Rice was insolvent and indebted to her on a previous contract, Justice Oliver Wiendell Holmes, then of the Massachusetts Supreme Court, would not compel her to perform for Rice.

Injunctions in the theatrical profession are not confined to actors and actresses, but are often inwoked to prevent the piracy of a play or the use of a name. Where a play, or a scene from a play, has been copyrighted. the Federal courts alone have jurisdiction of the matter, and will by injunction prevent anybody from performing or producing it as their own. When there has been no copyright the common law protects the work, so well as its title; and the use of a similar name, or a name which is apt to deceive the public into the belief that it is the one already used by an author, will likewise be enjoined. A recent instance is the case of Charles Frohman 2'. Arthur Fraser, where the use of the title "Sherlock Holmes" was enjoined, this name having been adapted by William Gillette as the title of a play; notwithstanding the name had been used by A. Conan Doyle as the title of his novel. In that case the court held that Mr. Gillette having first used the name in connection with a theatrical production was entitled to all emoluments arising from it. Notwithstanding the numerous attempts to avoid the principles of law applicable to this class of cases, it matters not whether it is the actor who is involved or the theatrical manager, the American courts are humane, equitable, just and careful, and invariably zealously guard the interests of those engaged in the theatrical profession, so well as those engaged in any commercial business. See Injunction; Government by Injunction; Court; EQLity; Chancery; Contempt; Law; etc.

Ink, a colored liquid used for writing and printing. They are of various classes, as writing and copying, black or colored, India, printing and lithographing inks.

For long ages past the best black writingink has been made by mixing together solutions of nutgalls and of ferrous sulphate of iron, known as green vitriol, and holding in colloidal suspension, by aid of a gum, the colored substance produced. The gallo-tannic acid present in a ireshly prepared solution of galls, upon exposure to the air, changes gradually largely into gallic acid, and the protoxide of iron changes into peroxide. The color of this changed product is much deeper than that of the original mixture. It has been found that the permanency of the writing is greater if the ink is used before this conversion is fully completed. The clange is held in check by having present in the ink a sliglat amount of some iree volatile acid such as hydrochloric. The trace of acid also scrves to hold the iron color in the state of colloidal suspension or solution. The moulding to which such an ink is liable is checked by adding to it a trace of some antiseptic, such as carbolic acid. All known commercial substitutes hitherto used for mutgalls in black writingink produce a fluid somewhat inferior to that from nutgalls.

An exhaustive scientific investigation of the chemistry of ink to determine the best ingre.
dients and the proportions to be used of the same for the producing of the most permanent black writing-ink has been made in Germany by Osw. Schluttig and Dr. G. S. Neumann, and published in their work on 'Die Eisengaliustinten,' issued by Zain \& Jaensch of Dresden in 1890. Their conclusions were followed in preparing the specifications for the official "Standard Record Ink" required under the laws of Massachusetts to be used on all the public records in that state. The same specifications have since been adopted by the U. S. Treasury for the ink used in that department. This ink has also been adopted by the Danish government for its official records. The specifications, which were prepared by Dr. Bennett F. Davenport of Boston, as ink expert for the State of Massachusetts, it is to be noted are for the required quality of the ink, and not for the compounding of it. The specifications are as follows:

It must be a gallo-tannate of iron ink, not inferior in any essential quality to a typical standard for comparison whicb has been properly prepared after the following formula, in which all the ingredients are of the quality prescribed by the United States Pharmacopecia, and the per cent of true acid present in the sample of tannic acid used has been determined by the Loewenthal and Schroeder method.

Take of pure, dry Tannic Acid, 23.4 parts by weight; crystal Gallic Acid, 7.7 parts; Ferrous Sulphate, 30.0 parts; Gum Arabic, 10.0 parts; diluted Hydrochloric Acid, 25.0 parts; Carbolic Acid, I.0 part; Wiater, sufficient to make up the mixture at the temperature of $60^{\circ} \mathrm{F}$. to the volume of 1000 . parts by weight of water.

Inks submitted will be snbjected to the following tests, as compared with the typical normal standard ink described ahove: (1) A fluid ounce allowed to stand at rest in a white glass vessel, freely exposed in diffused daylight for two weeks to the light and air, at a temperature of 50° to 60°. F., protected against the entrance of dust, must remain as free from deposit upon the surface of the ink or on the bottom or sides of the vessel. (2) It must contain no less iron, and must bave a specific gravity of 1,035 to $1.0+0$ at $60^{\circ} \mathrm{F}$. (3) It must develop its color as quickly. (4) After a week's exposure to diffused daylight the color must be as intense a black when used upon the stahdard record paper, and it must equally resist changes from exposure to light, air, water, or alcohol. (5) It must be as fluid, flow as well, strike no more through the paper, nor temain more sticky immediately after drying.

To such an ink a slight amount of some one of the water soluble coal-tar colors is usually added to give the desired initial color to the ink when used in writing.

Cheaper grades of black writing-ink are produced by substituting for the nutgalls other tannin containing substances, or by using logwood. In these other iron salts, or salts of other metals are sometimes used, as of copper, aluminum or chromium. For special purposes some of these have certain advantages. For copying, for instance, the ink made from logwood with alum cake and chromate has the highest efficiency known. This ink, however, fades ont after a few years' exposure to the open air and daylight.

Within modern times colored liquid solutions have come much into general use as inks, made up with aniline and other dyestuff colors. They are easily and cheaply made, flow nicely from the pen, and allow of a great variety as to clooice in coloring, but none of them have the permanency of the ancient nutgall iron ink on exposure to light and air.

The usual basis of commercial marking inks, for use on textile fabrics, is some salt of silver. The permanent color of this ink is developed through the action of light, heat or some chemical, after the ink has been applied. The usual basis of India ink is an exceedingly finely di-
vided solid carbon, mixed with a size to hold it in suspension when the ink is prepared for use by being ground up with water. The usual base nsed for printers' ink is a linseed-oil varnish. To this the desirable color is imparted by the use of lampblack, or some other coloring substance.

Bibliography:-Astle, 'Origin and Progress of Writing' (aSo3): Carvalho, 'Forty Centuies of Ink' (1904); Chevallier, 'Dictionnaire Altérations et Falsifications) (1882); Champour \& Malepeyre, 'Fabrication des Encres' (I895) : Dieterich, 'Pharmac. Manual' (1904); Fehling, 'Handwörterbuch Chemie' (1903) vol. VII.; Haldane, 'Workshop Receipts,' serjes 2 and 5. Bennett F. Divenport, M.D., Espert on Ifritten Documents, the Writsing, Ink and Paper.

Ink'berry, or Winterberry, a shrub (Ilex glabra) of the holly family which grows upon the Atlantic coast of the United States. It is a fine evergreen, two to four feet high. Its stems are slender and flexible, and its leaves, about an inch in length, are lanceolate in form, of leathery texture, and present a shining upper surface. It bears small, very black berries. Formerly its bark and leaves were used medicinally, especially in fevers. For bouquets and decorative purposes it is much valued, and finds a ready market in large Eastern cities.

Inkerman, ĭnk-ěr-män', Russia, a village on the site of a ruined town in the Crimea, at the head of the harbor of Sebastopol, 35 miles by rail southwest of Simferopol. It gives its name to the sanguinary battle fought on the heights overlooking the town, on 5 Nov. 1854, when the Russians unexpectedly attacking the British camp were repulsed with great slaughter, losing in killed 3,000 and in wounded 6,000, the loss of British and French allies being 850 killed and 3.500 wounded.

Inlay'ing is the art of ornamenting flat surfaces of one substance by inserting into them pieces of some other substance. Various hinds of metal or wood, or pearl, ivory, etc., are employed in this process, which is now applied chiefly to the production of ornamental articles of furniture. When wood of one color is inlaid with others of different colors, as in ornamental devices in flooring, it is generally called marquetry, the various pieces of wood being usually disposed in regular geometrical figures. The art of inlaying iron or steel with other metals, as gold or silver, is called damascening. Buhl and reisner work, once highly prized, have lost much of their celebrity. The former took its name from Buhl, an Italian resident in Paris in the reign of Louis NIV., and the latter was designated after Reisner, a German who not long after settled in the same city. Buhl for the most part inlaid brass on tortoise-shell, Reisner a dark wood on a tulipwood ground. The usual instrument for cutting ont veneers for inlaying is a fine saw, mounted in a bow or arched handle, and worked in short qृuick movements. Three or four veneers are sometimes cut simultaneously in this way. Inlaying with stone, in which the Florentines have long excelled, is called pietra dura, and differs from mosaic in having the holes not cut through the ground, which is commonly of black marble, but only to a regulated depth.

The best work oi this kind is now produced at St Petersburg, the art being stimulated by encouragement from the Russian government. An Indian variety of inlaying, in which the inlaid metal occupies more of the suriace than that which forms the ground, is called Kuftgari; and in another variety, Iutenague or Bedergwork, small pieces oi silver are hammered into spaces previously cut in the ground. which consist of one part of copper to iour of pewter. and is thus both hard and easily cut. See Mosatc.

In'man, Henry, American artist: b. Ütica. N. I., 20 Oct. ILot: d. New York 1% Jan. IEfo. From early boyhood he manifested a taste for art, and in isit Jarvis. the portrait painter, offered to receive him as a pupil. and he was bound an apprentice for seven years. Lepon the conclusion of his apprenticeship he devoted himself to portrait painting. Among his most characteristic portraits are those oî Chief Justice Marshall and Bishop White. He painted also landscape, genre, and history. In I8 4 he visited England. where he was the guest of Wordsworth, whose portrait be painted, and at whose suggestion he executed his (Rydal Water.' near the poet's residence. During his residence in England he also painted poriraits of Dr. Chalmers. Lord Chancellor Cottenham, and Macaulay.

Inn, a siver of Europe which issues irom a lake at the foot of the Rhærian Alps, flows northeast through the deep and narrow valley of the Engadine, in the Swiss canton of the Grisons. enters the Tyrol at Martinsbruck. passes Innsbruck, Hall. and Kutistein, and shortly aiter enters Bavaria. At Muhldori it turns east till it receives the Salza, where it begins to form the houndary between Austria and Bavaria, and joins the right bank of the Danube at Passau, atter a course of over 300 miles.

Inn and Innkeeper. In Great Britain inns are houses where travelers are furnished, for the proit of the provider, with everything they have occasion for while on their journey, and may be set up without license by any person, provided he refrains from selling excisable liquors. which oi course require a license. Hotels, public-houses, taverns, victualing-houses. and coffee-houses are all inns when the keepers of them make it their business to furnish travelers with food and lodging: otherwise they are not. In the United States there are no inns, but hotels in cities and taverns in rural districts. See Hotels 13 Amekich: Thiveris.

Innate Ideas, certain notions or conceptions declared by many philosophers to be given to the mind of man when he first receives conccious being. Their existence has been much disputed by philosophers. The term innate, as applied to ideas, was first used by Descartes. As his definition failed in precision, the doctrine of Descartes was assailed by Hobbes and Locke. Is aiterward more strictly stated by himeeli. his views were as follnr.s: In innate idea is not one that presents itselt always to our thought. for there could be no such idea: but we have within ourselves the faculty of producing it. He has nowherc given an enumeration of the idcas that he considers innate, though he attaches particular importance t that of infinity. which he makes the ioundation of his pronfs in
the existence oi God. What the followers of Descartes designate innate ideas. those of Cousin term universal, necessary and absolute. Some of the greatest names in European philosophy are associated with the discussion of this theor: or oi cognate theories, as Clarke, Newton. Nalebranche, Kant, etc.

Innes, in'ĕs, Alexander Taylor, Scottish jurist: b. Tain, Ross and Cromarty, Scotland, If Dec. 1833 . He was educated at Edinburgh University, Was admitted to the Scottish bar in 18,0, appointed adrocate-depute in Scotland in rer, and served under later Liberal governments. Among his works are: 'The Law of Creeds in Scotland' (1867) : 'Church and State: -1 Historical Handbook') (ISgo): 'Studies in Scottish History' (ISo2) : a life of Knox in the (Famous Scots' series (t8g6): 'The Trial of Jesus Christ' (I899): and 'The Law of Creeds' (Ig02).

Inness, George, American painter: b. Newburg. Ň. $1 ., 1$ May 1825 ; d. Bridge of -1llan. Scotland. 3 Ang. ISo4. His art education began in boyhood and when 16 years of age he learned map engraving. He first attempred nature sketching in 1843 , when he showed such promise that he was admitted into the studio of Regis Gignoux, New loik; but soon opened a studio for himself and through the liberality of a parion was enabled to visit Europe. After spending r 5 months in Italy and one year (1850) in France he finally made his home at Eagleswood, near Perth Amboy, N. J. He is looked upon as the first among American landscape painters. and was not only a clever and imaginative interpreter of the scenery among which he lived, but a man of intellect. a thoughtiul yet bold theorist on art subjects and an incisive critic. He had a keen appreciation of American scenery, and the sky and atmosphere of the castern States were sympathetically portraved with an earnestness that recalls the sentiment of the FontainebleatBarbizon school. His early paintings are distinguished by conscientious care for detail, vivid perception of color. and the panoramic breadth oi a bold and unconventional origunality, Aiter is-s his style had ripened. and his technique grew simpler and less highly elaborated. He was willing to sacrifice all cleverness of touch in handling detail for the sake of portraying the emotion. or transitory effect of light and cloud inl a landscape, the perturbation oi storm or wind, the pageant of sunset, or the magic calm oi a moonlight scene. In such productions his command of color was very remarkable. His pictures are much prized by connoisseurs, and When offered for sale command high prices. Five of them are in the Merropolitan Museum oi Art, New Fork. Among the finest are: 'Under the Greenwood': 'Close of a Stormy Day'; 'Pine Groves oi Barberini Villa'; 'An Autumn Morning': 'Autumn Gold': 'The Edge of the Forest): 'Passing Storm': (\$100rrise": "Winter Morning, Montclair. Sew Jersey."

Inness, George, Jr., American painter: b. Paris. France. 5 Jan. i85: He is the son of George Inness (q. $\mathrm{H}_{\text {) }}$, the landicape painter. He was a pupil oi the clder Inness at Rome in 18,0-4 of Bonnat at Paris in 185. began to exhibit at the National Acaderny in 1857 , and lecame a member of the Natinnal Acatemy of

INNOCENCE - INNOCENT

Design in 1809 . In 1809 he obtained a gold medal at the Paris Salon. Ilis mamer is forcible, and skilful in color. Ilis work includes landscapes and animal subjeets, among thern: "The Pride of the Dairy" (I - -8): 'Pasture at Chemung' : 'A Mild 1)ay' (1887) ; and 'Morning on the River' (Igoz).

In'nocence. A wildflower. See Ifoustonid.
In'nocent, the name of thirteen popes, as follows:

Innocent I., Saint: b. Albano; d. I2 Narch 417. He succeeded Anastasius 1. as Bishop of Rome in 402 . He supported Saint Chrysostom ($q . r_{0}$) when the latter was driven from his see of Constantinople through the machinations of the Empress Eudoxia. Rome was pillaged by Alaric in fro, during luis pontificate. He is commemorated by the Roman Catholic Church on 28 July.

Innocent II, (Gregorio de' Papi, or Papareschi, grầ-gō-réo dā pä-pē pä-pä-rěs'kē): b. Rone: d. 23 Sept. ir43. He was elected pope in IIzo by a part of the cardinals, while the others elected Peter of Leon, who took the name of Anacletus. Innocent fled to France, where he was acknowledged by the Council of Etampes, by Louis VII, and soon after by Herry II. of England: also by the Emperor Lothaire, who conducted him in 1133 to Rome, where he occupied the Lateran, while Anacletus occupied the Castle of Crescentius, the Church of St. Peter, and a large part of the city and maintained himself against Innocent until his death in Ir38. He held the second Ecumenical Council in the Lateran, which condemned Arnold of Brescia and his heresy, declared all the decrees of Anacletus null, and excommunicated Roger of Sicily, who had supported the latter. Roger. however, obliged Innocent to acknowledge him as king, absolve him from excommunication, and invest him and his heirs with Apulia, Calabria, and Capua.

Innocent III. (Giovanai Lothario Conti, jō-vän'nē lō thä'rē̄̄ kōn'tē): B. Anagni, Italy, 1161: d. Perugia. Italy, 16 July 1216. On the death of Celestine 111. (1108) he was unanimously elected at the age of 37 . Innocent, in the vigor of manhood, endowed by nature with all the talents of a ruler, possessed of an erudition uncommon at that time, and favored by circumstances, was better qualified than any of his predecessors to elevate the Papal power. By his clemency and prudence he gained over the inhabitants of Rome, obliged the imperial prefect to take the oath of allegiance to him, and directed his attention to every quarter where he believed that a Papal claim of property or of feudal rights existed. He concluded treaties with many cities of Tuscany for the mutual protection of their liberties and those of the Church, and soon ohtained possession of the ecclesiastical states in their widest extent. He excommunicated Philip Augustus, king of France: laid the kingdom under an interdict in 1200 because Philip had repudiated his wife Ingeburga, and obliged the king to submit. He was still more decided in his treatment of John, king of England, who refused to confirm the election of Stephen Langton as Archbishop of Canterbury. Innocent laid the kingdom under an interdict, and in 1212 formally deposed him. John was finally obliged to sub-
mit, resigned his territories to Rome, and received thom as a Papal fief from Innocent. All Christendom acknowledged the Pope's spuritual sovereignty ; two Crusades were undertaken at lais order, and his influence extended even to Constantinople. lnnocent was one of the greatest Popes and rulers. It has been said of his rule, as of that of Gregory VII., whom he most resembles, that in those times the power of the Pope was salutary as a bond of union for Europe, in which the still firmer bond of a common civilization and knowledge did not, as at present, exist. In 1215 he held a council, the fourth Lateran and twelith general which passed the decree making confession and communion obligatory at Paschal time. Frederick II. was acknowledged as German emperor, and the Franciscan and Dominican orders were confirmed.

Innocent IV. (Semibaldi dt Fieschi, sā-mēbäl'dé dē fēĕskḕ): d. Naples 7 Dec. 1254. He became Pope in 1243 and was perpetually at feud with the German emperor Frederick and his successors.

Innocent V. (Pietro di Tarestasia, pē-ā'trō dē tä-rẻn-tä'sē-ä): b. 1225; d. Rome 22 June 1276. His pontificate lasted only from $20 \mathrm{Jan}-$ uary to 22 June of the year 1276 .

Innocent VI. (Etiense D'Albert, ä-tē-ĕn däl băr): b. Brissac, France; d. I2 Sept. 1362. His pontificate extended from 1352 to $\mathbf{1 3 6 2}$, and during this period the Papal residence was at Avignon.

Innocent VII. (Cosma de' Migltorati, kōs'mō dā mē-glō-rē-ä'tē): b. Sulmona, Abruzzi, Italy, 1366 ; d. Rome 6 Nov, 1406. He was Pope from 1404 till his death, but was opposed by the antipope, Benedict XIII., who held his court at Avignon.

Innocent VIII. (Giovanni Batitista Cibo, jō-van'nē bät-tēs'tä chē'bō): b. Genoa I432; d. 25 July I492. He became Pope in I4 84 and was for some time at war with Ferdinand of Naples and held the sultan Bajazet's brother Zelim a prisoner.

Innocent IX. (Giovanni Axtomio FacchiNETTI, jō-vän'né àn-tō-nē'ō fä-chē-nět'tē): b. Bologna, Italy, 1519 ; d. 30 Dec. 1591. He occupied the papal chair only from the zgth of October preceding his death.

Innocent X. (Giovaxsi Battista Pamfill, jō-vän'nē bät-tēs'tä päm-fé'lē): b. Rome $\bar{\gamma}$ May 1574; d. 6 Jan. 1655. In 1620 he was elevated to the cardinalate and hecame Pope in 164. Under him the temporal and spiritual power of the papacy was greatly increased. In 1651 he condemned the Treaty of Westphalia and he formally condemned Jansenism in 1653.

Innocent XI, (Benedetto Odescalciit, bā-
 d. 12 Aug. 1689 . He served in his youth as a soldier in Germany and Poland, took order, later and rose through many important posts, until he was elected Pope in 1676 , on the death of Clement X . He was eminent for his probity and austerity: zealonsly opposed nepotism and simony, and restrained luxury and excess. He condemned the New Testament of Mons and several other Jansenistic works. He also anathematized sisty-five propositions drawn from the works of modern Casuists and condemned

Molinos and the Quietists. He determined to abolish the right of asylum exercised in Rome by foreign ambassadors: but Louis NIV. would not yield to so just a claim, occupied Avignon, and imprisoned the papal nuncio in France; in consequence of which the authority of the Pope received a severe blow by the IV. Propositiones Cleri Gallicani in r682. These disputes were highly farorable to the English Revolution, as it induced the Pope in I6Sg to unite with the allies against James II., in order to lower the influence of Louis SiIV

Innocent XII. (Antonio Pigiatelli, ān-tōnéó pēn-yä-tēl'lē): b. Naples is March 1615; d. 27 Sept. 1700. He became archbishop of Naples, a cardinal in 1681 and Pope in 1692. During his pontificate Louis XIV. and the French bishops sevoked the Declaration of the French clergy, and submitted to the judgment of the Holy See in the matters in dispute during the pontificate of Innocent XI .

Innocent XIII. (Mirchelajgelo Conti, mè-kěl-ān'jē-lō kōn'tē): b. Rome I_{5} May 1655; d. 7 March ri24. In 1695 he was made archbishop of Tarsus, and became a cardinal in 170\%. He was also made bishop of Viterbo in 1512 and succeeded Clement SI. in the papal chair in 5721.

Innocents, Feast of Holy, wariously styled Innocent's Day and Childermas, a festival generally observed on the 28 th, but in the Eastern Church on 29 December, in commemoration of the massacre of the children at Bethlehem. "from two years old and under," by the order of Herod, with the purpose of destroying among them the infant Saviour. The Church of England at the Reformation retained it in its ritual among its anniversary festivals. St. Cyprian refers to these children as martyrs, as does St. Augustine with still greater explicitness. It is to them that the hymn of Prudentius, 'Salvete Flores Martyrum,' is addressed.

Innocents Abroad, The, a famous book of travels by Samuel L. Clemens ("Mark Twain"). In a vein of highly original humor this widelyread book records a pleasure excursion to Europe, the Holy Land, and Egypt, in the sixties. Descriptions of real events and the peoples and lands visited are enlivened by more or less rictitious dialogue and adventures.

In'novators, a name applied in Great Britain to educational reformers who, in the 19th century, succeeded in having corporal punishment abolished in public and private schools. The novels of Charles Dickens. particularly ' Nicholas Nickleby.' and 'Oliver Twist.' had much to do with the origin of the reform movement.

Inns of Court are certain societies in Great Britain exclusively invested with the right to call to the bar. The colleges of the English proiessors and students of common law are called inns, the old English word for the houses of noblemen, bishops, and others of cxtraordinary note, bcing of the same signification as the French hotel. The opinion is, that societies of lawyers, which before the Conquest held their chief abodes for study in ecclesiastical houses, began to be collected into permanent residences, soon after the court of common pleas was directcd to be held in a fixed place,a stipulation which occurs in the great charters
both of King John and Henry III. In these houses exercises were performed, lectures read, and degrees conferred. The inns of court are governed by masters, benchers, stewards, and other officers, and have public halls for dining, readings, etc. In London the four inns of court are: the Inner Temple and Niddle Temple (formerly the dwelling of the Knights Templars, and purchased by some professors of law more than three centuries since) ; Lincoln's Inn and Gray's Inn (anciently belonging to the Earls of Lincoln and Gray). Each inn is self-governing, and all have equal privileges.

Innsbruck, ins'brook, or Innspruck (ancient Enipontum; locally called Schpruck), Austrian town and capital of the Tyrol, beautifully situated 59 miles north of Munich, on the banks of the Inn, near the confluence of the Sill, and almost in the centre of the valley of the Inn (Inntbal), the sides of which are enclosed by mountains several miles distant. but so lofty (7,000 to 8,500 feet) as apparently almost to overhang the town. In consists of the town proper, situated on the right bank of the river, and of five suburbs. It is for the most part well built. The houses are generally of a limestone breccia, and from four to five stories high, and built in the Italian style. The buildings most deserving of notice are the Hofkirche, containing the tomb of the Emperor Maximilian I., one of the most splendid monuments of the kind in Europe, though he himseli is not interred in it; and the tomb of Hofer: the Church of St. James, with a painting by Lucas Cranach; the Jesuits' church, considered the handsomest in the town: the Capuchin church, with good paintings; the new palace, built by Maria Theresa, a very extensive edifice. with gardens which stretch along the side of the Inn, and form an excellent promenade; the old palace, in which the Archdukes of Tyrol and several of the German emperors used to reside; the university, founded in 167% and re-established in 1826. well endowed. provided with a library, botanical garden, and cabinet of natural history. and attended by about 1.000 students; a gymnasium, and several other important educational establishments; and the museum, called Ferdinandeum, rich in all the productions both of art and nature within the limits of the Tyrol. The manufactures include woolen, silk, and cotton tissues, gloves, glass, etc. As the capital of the Tyrol, Innsbruck is the place of assemblage for its states, and the seat of superior appeal, civil, and criminal courts, and of many important public offices. Many of the spots in the immediate vicinity have become memorable for the noble exploits which the Tyrolese peasantry performed in the was of Independence. Pop. (isgo) 23,325 .

Innuits, in'ū-its. Sce Eskimos.

I'no, daughter of Cadmus and Harmonia, second wife of Athamas, king of Thebes, drew upon leerself the anger of Hera by nursing Dionysus, the son by Zeus of her sister Semele. In order to favor her own children she projected the murder of her stepchildren, Phryxus and Helle. who saved themselves by flight. Hera, still more highly incensed, made Athamas, the husband of Ino, mad, and he dashed lis eldest son by Ino, against a rock. Ino fled with
her youngest son, Melicertes, and threw herself with him into the sea. 1no and Melicertes were made sea deities at the prayer of Dionysus. Ino was worshipped under the name of Leucothea.

Inocarpus, ī-nō-kär'pŭs, a genus of leguminous plants, having unifoliate leaves and yellow flowers in axillary spikes. I. cdulis is the South Sea chestnut, native of Tahiti. It is a large tree, with luxuriant ioliage, the delicate evergreen leaves being six inches or more in length. It furnishes seeds or nuts much valued in the South Sea 1slands, the inlabitants gathering them while green, and mashing them for food.

Inoculation. See Infection: Vaccination.

In'osit ($\mathrm{C}_{0} \mathrm{H}_{2} \mathrm{O}_{8}$), (from Greek is, inos, a nerve, a muscle), a saccharine substance found in the muscular tissues of the heart, as well as liver, brain, kidneys, etc. It appears both in health and, to an abnormal amount, in disease. It exisis also in a number of plants, such as foxglove, potato, kidney-bean, acacia, asparagus, cabbage. See Glucose.

Inouye Kaoru, kā-ō'roo ē-nō-oo'yā, Count, Japanese statesman: b. in Choshiu i839. pupil of Yoshida Shoin. With Ito (q.v.), in 1862, he went secretly to Europe, and returning in 1864 became an unswerving exponent in Japan of the ideas lying at the root of Western civilization. Surviving the wounds made by reactionary assassins, he has, since 1868, served his country in various high positions, as the mikado's minister at home and as envoy abroad, especially in Korea. As minister of the interior he began the rebuilding of Tokyo from wood to brick. His famous menorial of 1873 called for moral improvement. For seven years, as head of the foreign, office, he was active in treaty revision. He was created a peer in 1885 . and again called to the office as minister of the interior in 1802 . and retains the emperor's confidence as one of the surviving "elder statesmen," whose word in Japan is law: See Kitstra.

Inquiline, inn'kwǐ-linn, a ternı applied in zoology to aninnals which live as tenants within the nests or homes of other animals. The use of the term is almost entirely confined to entomology and then often restricted to the cases in which the rightiul and the intruding tenants are closely related. Similar cases among other animals are commonly designated as commensalism (q.v.), but these and similar terms are used sather loosely. Examples of the inquiline relation occur among the termites, ants, and bees, but are known especially among the gall-flies (Cymipida): indeed, one entire division, comprising more than 500 species, is named $I n$ quilince. because of the predominance of this mode of life. These insects differ but little in structure from the true gall-flies, but they lack the power to produce galls and consequently deposit their eggs within those of other species. They infest certain species of galls, as those of the blackberry and some oak-galls, in large numıbers and sometimes more than onc kind occur in a single gall. Perhaps the most remarkable feature of these inquilines is their irequent close resemblance to the insect which produces the gall which they infest.

Inquisi'tion, a tribunal or system of tribunals instituted by the Roman Catholic Church
for the discovery. examination, and conviction of heretics and their punishment by the secular arm Under the successors of Constantine in the Roman Empire the repression of heresy, or rather the enforcement of the decrees of church councils and synods, was a function of the imperial govermment, which inflicted temporal penalties upon the propagators of religious beliefs that contradicted the creeds approved by the State. When the reigning emperor was a favorer of Arianism or any other of the heterodox creeds, the orthodox bishops and their flocks were persecuted: when he was of the orthodox party the heterodox sects were put under the ban. In executing the decrees of the councils the imperial officials. called in the laws of Theodosius and Justinian "inquisitors" (inquisitores), were assisted by the bishops; but the tribunals were the ordinary secular courts, and judgment was rendered in the name of the State, not the Church. But in the 12 th century, when the supremacy of the ecclesiastical power was universally recognized in western Europe, the initiative in the work of repressing heresy was taken by the Church as of course, and the discovery, trial and conviction of the offenders were functions of the ecclesiastical power solely: the secular power simply executed the judgments of the church tribunals. Boniface VIll.'s definition of the respective powers and the mutual relations of church and state was not proclaimed till the close of the 13th century: but had a similar definition been promulgated in the 12th century it would have expressed the universal sentiment of princes and peoples at the time. The celebrated bull, Unam Sonctan, defines that "Both swords, the spiritual and the temporal, are in the power of the Church: yet the one is to be wielded for the Church's behoof, but the other by the Church herself: the one by the hand of the priest, the other by that of the king and the soldier, though at the will and sufferance of the priest ad nutum et pafientian sacerdotis. And sword must be subordinate to sword - oportet gladiun esse sub gladio, and the temporal authority subject to the spiritual power - temporalen auctoritatem spiritrali subjici potestati."

The first step toward the establishment of courts of inquisition would seem to have been taken in 1179 when the third council of the Lateran issued a decree of excommunication against the adherents of the heretical sects of southern France, who are charged not only with holding abominable heretical tenets but also with practising "unheard-of cruelties against the Catholics." demolishing the clurches and massacring widows and orplans. The council grants "an indulgence of two years to those who slall make war on them." This decree was re-enforced by the Council of Verona (IIS4) over which Pope Lucius III. presided, and at which the Emperor Frederic I. assisted: the Council directs the bishops to bring to trial persons accused of heresy and to infict fit punishment on the guilty. The fourth Council of the Lateran (1215), held in the reign of Innocent 11I.. imposed on the bishops the duty of making a visitation of their dioceses twice or at least once a year either personally or by delegates to see that the Church's laws be enforced. Bishops are authorized to bind the
irhabitants of a district by oath to search out heretics and bring thern to trial. By the Council of Toulouse (1229) in the pontificate of Gregory IN. the search for heretics (inquisitio hacretica frarifafis) was systematized. The bishops are to name ior each parish two or three respectable laymen who shall take oath zealously to search out heretics and to deliver them up to the baillis. Whosoever knowingly conceals a heretic loses all his goods. If heretics are discovered on the estate of a land-owner. he incurs the penalties: the house oi the beretic shall be torn down. Heretics who recant have to seek a new abode, and must wear on their clothing two crosses of different colors until the Pope or his legate permits them to assume the ordinary garb. Whoever abstains from use of the sacraments is held suspect of heresy. A person convicted or suspect of heresy is debarred from the practice of medicine. Lest the ordinary church authorities should be remiss in carrying out this system Gregory IX. named (I232) as "pontifical inquisitors" monks or friars from ourside, chiefly Dominicans: shortly after the pontifical inquisitors were chosen from the order of the Dominicans exclusively. Thus the duty of inquisition was taken out of the hands of the bishops and was discharged by officials responsible only to the Pope; from the judgments of the inquisitorial tribumals there was no appeal but only to the Holy See: in 1263 U'rban IV. appointed an inquisitor-general for Provence. as a means of lowering the flood of appeals to Rome. The institution passed irom southern France into the other provinces of that kingdom and into Italy. Germany and Poland. The Inquisition in England was directed by the metropolitans and their suffragans without being responsible to any inquisitor-general: but as long as Lollardism disturbed the peace oi the Church the search for heretics was prosecuted rigorously: bishops and archdeacons were required twice a year to make inquisition oi suspects: any man might be compelled under penalties to inform against persons suspected of heresy; the statute de hatretico comburendo was enacted by the Parliament in 1396.

In Spain the Inquisition, as set up in iqsi by Ferdinand and Isabella. was as much (or more) a political as an ecclesiastical institution: the officials from highest to lowest were appointed by the sovereigns and its action was directed by them without responsibility to the Holy See: Ranke calls the Spanish Inquisition "a royal tribunal iurnished with spiritual weapons"; Llorente admits as much. The number of persons put to death under sentence of the lnquisition in Spain is put by Llorente at $3 t, 000$ from first to last, that is during 330 years. But Llorente made it impossible to check his statements by burning the original documents. Ranke impeaches his honesty: Prescott says that his estimates are "most improbable." Catholic historians call attention to the fact that not only heresy, but many other offenses against the laws were judged by the courts of inquisition in Spain, viz: polygamy, seduction, unnatural crimes, smuggling, witchcraft, sorcers, false personation, etc. At the time when the Inquisition fourished, persecution for heresy was a universal practice amonest all Christian peoples, and the methods of punishment inflicted were
general throughout Europe. Protestant England persecuted as harshly and rigorously as Catholic Spain, and in both countries denial of the state religion was equivalent to treason.

Insane Asylums, Cottage System, or Village Plan. A form of construction for insane asylums and charitable institutions, much in yogue at the present time, in which large and imposing buildings are replaced by detached cottages. The cottages vary in size from those which will accommodate six to a dozen patients to larger ones which will accommodate 20 or more. They are usually constructed either in groups or along streets and avenues as a village. In the former, the several groups are given up to a particular industry as a farm group, where the patients are employed at farming, and others, as the garden, the brick yard, shop industries, etc., all of these being a part of one institution on a single large estate. In the village plan the institution is laid off in streets and avenues, and has the appearance of an ordinary village, each cottage having a flower garden in front, shade trees, etc. In either plan, there is conveniently located near the centre of the plant an administration building, a hospital for the sick and those requiring special care, a bakery. a laundro, and other utility buildings. The cottages may be constructed of wood or other material, and the cost of construction is small as compared with the old plan of asylum construction. It is, besides, more homelike, more convenient for administration and permits of indefinite expansion. Some oi the best known institutions constructed on this plan are Alt-Scherbitz near Leipsic: Gabersee near Munich, Germany; the Saint Lawrence State Hospital at Ogdensburg, N. Y.. and the Craig Colony for Epileptics at Sonyea, N. Y.

Insanity, a disease of the brain characterized by disorder or derangement of the mental iaculties. This is its strictly pathological or scientific definition. Thereiore, according to this defnition, any disease of, or accident to, the brain whatsoever, provided such disease or accident caused any derangement of the mental faculties, howsoever trifling or temporary, would furnish an example of insanity. Thus a blow on the head causing unconsciousness, or a fever giving rise to delirium, is an example of an affection of the brain characterized by disorder of the mental faculties. Practically, however, the term insanity is limited to a group of affections of the brain which is more distinctly fixed, and the members of which it will be the object of this brief sketch to define.

Couses.- The causes of insanity are many and various, and the chief of these are the following: Heredity, infection, poisoning, traumatism or injury, overwork or exhaustion, and mental and moral shock or strain. Of importance also are age, sex, race, and nationality.

Of all these causes the most important undoubtedly is heredity. As Krafft-Ebing, the German alienist, has well said, there is no ground. except in tuberculosis, upon which heredity shows itself more distinctly than in the case of mental disease. Statistics have been compiled by various authors to show as nearly as possible the exact prevalence of heredity in insanity, but the results have not been alto gether in harmony. In fact. it is extremely difficult to determine this factor in many cases
in which it has been active, and this is so for two reasons: in the first place many patients and their friends conceal or deny a licreditary taint, and in the second place not a few patients and their friends, are really ignorant of their family histories beyond a generation or two. How many persons can tell accurately of what their grandparents died? The more this subject of heredity in insanity is investigated the more reason there is to belicve that its importance has been underestimated rather than the reverse. And yet as a factor in causation it is mucls more common in some forms of insanity than in others - a fact which will be emphasized later in this article. Some authorities have limited heredity to the direct line of descent, ignoring collateral lines; but obviously this restriction cannot be maintained. And yet, if the attempt is made to trace a neurotic taint through collateral lines, the difficulty is greatly increased. the subject is vastly broadened, and, from the medico-legal standpoint, the inquiry becomes greatly involved. In mental heredity, moreover, it is not so much the particular disease that is passed on from parent to offspring, as it is the predisposition; and this predisposition, often called ncurotic, is not the result entircly of insanity in the ancestry, but may be slown by a family history of other grave nervons disorders, such as epilepsy, hysteria, neurasthenia, and imbecility. This is a fact not sufficiently apprehended by the laity.

Infections of various kinds may act as causes of insanity. The most important of thesc is syphilis, and this acts especially to cause that form of insanity known as general paresis. The various infections diseases, such as typhoid fever, septicrmin, smallpox, cerebro-spinal meningitis and, in minor degree, some others, may cause mental alienation. Post-febrile insanity may follow typhoid fever; and puerperal insanity may be due in part to a septic infection.

Poisons of various kinds may be very active causes of insanity. Chronic lead poisoning may give rise to a well-known form of delirium or mania; so in minor degree may mercury. But the most potent and most common of all poisons in the etiology of mental disease is undoubtedly alcohol. And this poison acts in two ways, for it may not only induce insanity in the individual, but it also is most active in causing that hereditary predisposition to insanity in the offspring to which reference has already been made. In fact, the subject of heredity is not a little involved with the subject of alcoholism in the progenitor.

Traumatism, or injury, may act as an exciting cause of insanity. This is true especially of injuries to the head. Tramma acts most readily in conjunction with other causes, such as alcoholism and syphilis. Injuries to other parts of the body, especially when associated with great shock, as in severe railroad accidents, may lead to various forms of mental alienation.

Overwork and exhaustion from any causes whatever may predispose to, or directly canse, a mental breakdown. This is true especially in cases in which the blood is depleted, the nutrition of ihe nervous system impared, and the mind harassed with care and anxiety. These causes are most active in persons otherwise predisposed, as by alcoholism, syphilis or heredity.

Mental and moral shock and strain, such as
sudden loss, grief, fright, mortification, intense religious and political cxcitement (as in the French Revolntion), long continued anxicty, and the larassment of ancongenial surroundings, as in the home-life, may all act as causes of insanity:

The above are the chief categorics of causes, but they do not exhaust the subject. It is in fact too extended for brief treatment. Finally, it must be borne in mind that in any individual case not onc but a combination of several of the above causes has usually been active.

Classification.-Almost every alienist of repute has attempted a classification of the forms of insanity. The subject is one of peculiar difficulty, owing largely to the fact that our intimate knowledge of many of these various forms is far from complete. One of the most satisfactory schemes is the one by Krafft-Ebing, and is as follows, slightly abridged:

$$
\text { " } 1 \text { " }
$$

mental diseases of the develofed brain.
I. Diseases without Anatomical Lesions, or Functional Discases.
(I) Psychoneuroses, or diseases of a brain otherwise sound.
ist. Melancholia.
a. Simple Melancholia.
b. Stuporons Melancholia

2d. Mania.
a. Maniacal Exaltation.
b. Frenzy.

3d. Stupor, or Acute Dementia.
4 th. Hallucinatory Delirium.
Nate. - The above affections are primarily cura. ble, but the worst of them may terminate in chronic incurable forms and in dementia.
(2) Degenerative Insanities: Affections of a brain endowed with a morbid predisposition.
ist. Constitutional Affective Insanity.
2d. Paranoia.
a. Congenital.
b. Acquired. This form includes various subgroups according to the character of the delusions entertained by the patient.
3d. Periodical Insanity.
4 th. Mental Affections arising from the constitu. tional newroses.
a. Neurasthenical.
b. Epileptic.
c. Ilysterical.
d. IIypochondriacal.
II. Organic Insanities or Mental Diseases with Recos nizable Lesions in the Brain.
1st. Acute Delirium.
2d. General Paresis.
3d. Cereliral Syphilis.
4th. Senile Dementia.
Note.-Chronic Alcoholic Insanity and Morphinism may yet have to be added to this group.
"B."
Mental affections of the undeveloped brain.
Idiocy and Imbecility.
This scheme by Krafft-Ebing, while not without defects, is excellent for practical purposes and until someone can devise a better. Its great merit is that it is flexible: it readily admits new forms. Its defect is that it draws too sharp a distinction between the so-called functional and the organic insanities; and between tho psychoneuroses and the constitutional forms. The truth is, all insanities are organic; and a constitutional taint may be present in the psychoneuroses.

Following this classification we note the following forms of insanity:
A. The whole group of insanities as distinct from idiocy is included under this head, and as a first great subdivision comes:

1. Mental Diseases withont recognizable anatonical lesions: Functional Diseases. As
was inferred above, this whole group is only tentative in oue sease, because as scientific knowledge adrances it is found more and more that insanity in all its forms depends upon anatomical cbanges. For the present, however, this group may be allowed, with some reservation, to contain the following:
(i) The Psychoneuroses. In these forms the mental disease is such as can happen in a person with an otherwise perfectly normal brain. It is in a sense fortuitous, and not dependent necessarily upon a hereditary taint. Given the same causes, and it may be presumed that any dersou might develop a psychoneurosis, just as ne might develop a fever. By this it is not implied, however, that heredity cannot act to predispose to these forms.

Melancholia is marked by depression. The affective or emotional, rather than the intellectual, faculties are involved. The patient has a seuse of persoual unworthiness; in other words, the depression centres about the patient's ego. He is not so much concerned about his misfortunes or his troubles, as about his unworthiness. Neither is he concerned about other persons: he is entirely self-centred. This may be said to be the keynote of melancholia. Delusions of a depressive character, as of having committed the unpardonable sin, may be present. The depression may become so profound and overwhelming that the patient passes into a stuporous or atonic state. (Melancholia Attonita.) In this state the physical fuuctions, such as appetite, digestion, and nutritiou, may be correspondingly depressed. Suicide may result. In some cases the patient is restless under the burden of his mental suffering (Melancholia Agitata).

Mania is marked by exaltation. The intellectual faculties are much more involved than in melancholia, and the patient is active, loquacious, sometimes destructive and combative, or else gay. He is somewhat incoherent, and his delusions are not well-defined, but fleeting and clangeable in accord with his varying moods and disordered thoughts. The physical functhons suffer as a result of exhaustion from overactivity. Frenzy is only a higher degree of mania, in which the mental functious are iu entire disorder from over-excitation. Exhaustion is rapid.

Stupor, as its name indicates, is a psychosis in which the predominaut tone is one of profound subversion of all the mental functions. Acule Dementia is another term for it. The patient may recover from a most unpromising state, especially in the case of young persons. Dementia Pracor is such a form, although the prognosis is not always good. Primary Dementia occurs without preceding acute stages.

Hallucinatory Delirium is a form of acute insanity marked by collfusion and by the presence of hallucinations of sight and hearing. Confusional insanity is a term sometimes used, especially for the types which occur after acute infection, such as post-febrile insanity, and some forms following child-birth.

All these psychoneuroses may, in unfavorable cases, pass into chronic forms, and terminate in iucurable dementia.

(2) The Degenerative Insanities.

In these forms mental deterioration is engrafted on a constitutional defect. Heredity plays a great part. The patients lave been born
with the neurotic predisposition. Their insanity is simply a logical evolution of a badly organized nervous system.

The great type of this form of insanity is Paranoia. The chief characteristic is the formation of systematized delusions. At first these may be of a persecutory tinge: the patient believes that be has enemies, who plot against his welfare or his life. He has hallucinations, especially of hearing. In a second stage, the delusions acquire a more expansive type: the patient believes that he is some great personage. As preliminary to all this, there is often a loug career of moral and mental perversion: the patient has been noted as erratic, eccentric, visionary, and even immoral. He usually has displayed but little real brain power or steadiness, but often an intense egotism and a lack of common sense. Inuumerable varieties and several stages occur. From this class are recruited in large part the criminal insane. These patients are the monomauiacs of the older writers, and they include also the moral lunatics, pyromaniacs and kleptomaniacs of more recent systematists. Among them are found also the victims of obsessious, morbid impulses and fixed ideas. The parauoiacs are the dangerous lunatics, and the prognosis is not favorable.

Periodical Insanity is a form of constitutioual iusanity in which, as the name iudicates, there is a tendency to recurrence. This recurrence is sometimes in cycles (Circular. Insanity), in which there is a period of maniacal exaltation, followed by one of melancholic depression, and then a somewhat prolonged period of appareut recovery, to be followed again by the morbid cycle. With every recurring cycle, however, the patient deteriorates somewhat, and may eventually degenerate into chronic insanity.

In the constitutional nervous diseases, such as Epilepsy, Hysteria, Hypochondria, and Neurasthenia, there are often mental changes of a morbid type, and these give rise to the forms of insanity uaused in accord with these respective neuroses. The symptoms vary widely in the several diseases.
II. In the organic iusauities, so-called, the disease is marked by recognizable changes in the braiu-structure.

Acute Delirium, or Bell's mania, is an acute infectious disease of the brain, of unknown origin, and of rapid progress, usually terminating fatally. It is marked by confusion and delirium, passing iuto coma and death. The changes in the brain are of an inflammatory kind.

General Paresis, or Dementia Paralytica, is caused by a progressive infectious or destructive process in the brain substance. Its dependence on syphilis is no doubt close, and it is further induced by alcoholism, dissipation and overwork. It is marked by change of character, erratic conduct and loss of mental and moral control, passing on into a stage of expausive delusions with progressive dementia. There are also characteristic speech defects, changes in the ocular muscles and in the gait, with increasing fecbleness and paralysis. Various crises occur, such as maniacal, epileptoid and apoplectic, and in the last stage the patient is paralyzed and demented. Death is the inevitable result in the rast majority of cases.

In Cerebral Syphilis there is a characteristic inflammatory process beginning in the coats of the small blood-vessels. Mental symptoms oc-
cur in great variety, also many forms of paralysis.

Senile Dementia is a form of deterioration occurring in old age, and is dependent primarily on changes in the blood-vessels in the brain. Progressive failure of mental powers, with occasional delusions, is the chiei feature. In some cases paralytic and epileptic crises occur.
B. Finally we have the great group in which the mental affections are the results of arrest of development of the brain. These are not included in insanity proper hy systematic writers, but are regarded as a group apart. This group includes Imbecility and Idiocy, and is defined under the latter head.

No attempt has been made in the above classification to include various debatable forms. Among such forms are Hebephenia (occurring in adolescence) and Kiatatomia (a psychoneurosis with both melancholic and confusional symptoms), and some others ahout which alienists are not yet agreed. The list must still remain open.

Pathology.- In the group of organic insanities it has been pointed out that these diseases rest upon a recognizable anatomical basis: thus in general paresis the structural changes in the blood-vessels and tissues of the brain are so marked and so well studied that this disease may be said to have as well known a morbid anatomy as pneumonia. But this is true of very few of the insanities, and the above classification is constructed largely on the distinction between forms of insanity with, and those without, welldefined anatomical changes. But while such changes camot in many cases be detected even with the most powerful microscope, there is practically no doubt in the minds of most alienists that all insanities depend upon a physical or structural basis. In other words, they are but manifestations of morbid changes in the brain-cells. To detect these changes is still one of the great problems of psychiatry. The tendency of modern pathology is to seek for the anatomical changes of insanity mainly in two directions: first, in heredity; and, second, in infection or toxæmia. Heredity makes its impressions so invisibly upon the brain-cell that there may be wise doubts whether we shall ever be able to detect them; but its signs, or stigmata, on the body at large are not so difficult to distinguish. The main difficulty is to interpret them. By these stigmata are meant defects or peculiarities in the grosser parts of the body, as in the bones, especially of the head and face, the ears, eyes, teeth, etc. As to infection, and the marks of it as found in the brain-cells, the evidence accumulates more and more that in many forms of insanity, especially those called functional, the direct agent is often a poison circulating in the blood and interfering with the nutrition and functioning of the brain plasma. Syphilis and chronic alcoholic poisoning leave definite changes in the blood-vessels, tissues, and membranes of the brain.

Treatment. - The treatment of insanity resolves itself into the preventive and the curative. Modern practice is begimning to concern itself more and more with the former, while of course it does not in any way relax its attention to the latter. The prodromal, or initiative, symntoms of many forms of insanity, especially the psychoneuroses, are now so well understood, that
it is often an easy matter to recognize the insidious changes that herald a mental breakdown, and to guard the patient from the dangers and misfortunes of a fully developed attack. Of first importance is to remove the patient from the exciting causes. Complete rest and isolation are therefore required and cannot Le instituted too early: In order to secure these, hospital treatment is often essential. Very recently it has been proposed to treat these patients in general hospitals, in special wards, and not to hurry them into asylums under legal certification. In other words, they are to be regarded simply as other sick persons, and not to be inmured merely as lunatics. The motive is thoroughly humane, and the practice is often successiful in promising and selected cases. The indications are for rest, isolation and attention to the nutrition especially. There is no specific for insanity except in cases in which syphilis is active.

In very many cases, however, the nature and course of the disease render it imperative to commit the patient to special hospitals for the insane. This is not only for the good of the patient, but also for the welfare of society. These hospitals or asylums in all civilized courntries are now among the very best of public institutions, and the prejudices once existing against them are no longer warranted. The indications for treatment vary according to the nature of the case. The weak and exhausted must be built up; the depressed must be encouraged and diverted; the violent and excited must be restrained; the chronic and demented must be cared for often as though they were children. The practice of to-day is in fasor of all humane methods. such as by recreation, useful employment, amusements, and an appeal to the best remaining or active elements of the mental life. Physical restrant is reduced to a minimum, although in the most violent cases it camot be entirely abolished. Punishment is practically abandoned. It is satisfactory to know that all our best regulated hospitals for the insane are enabled to report annually a good percentage of recoveries, and this is in accord with the teaching and practice of modern science. which regards insanity entirely from its physical aspect as a disease of the brain. With this definition this lerief article may end as it began.

Bibliography.-Bevan-Lewis, (A Text-Book of Alental Diseases' (1809): Chapin, 'A Compendium of Insanity' (1808) ; Clouston, 'Clinical Lectures on Mental Diseases' (1884); Krafft-Ebing, 'Leehrbuch der Psychiatrie" (1897) : Regis, «A Practical Manual of Mental Medicine) (IS94): Spitzka, 'Insanity: Its Classification, Diagnosis and Treatment': Tuke, 'A Dictionary of Psychological Medicine) (1892) : Kraepelin, 'Psychiatrie' (1899) : Séglas, 'Leçons. Cliniques sur les Maladies Jlentales) (8895): Ray, A Treatise on the Medical Jurisprudence of Insanity' (1871): Falret, (Des Maladies Mentales'. (1864): Berkley, 'A Treatise on Mental Diseases) (iono).

James Hendrie Lloyd.
Fornterly Vewrologist Philadelphia Hospital.
Inscriptions. The term inscriptions comprises, in its widest sense, all words or wordsigns engraved (or painted) on relatively durable materials such as natural cliffs, wrought stone, baked clas; metal, or even wood. For rea
sons of practical convenience, however, certain sorts of inscriptions are grouped apart; for example, legends on coins and the lettering on painted vases. The etymological sense of inscription (Latin inscriptio, "in-scratching") is not to be taken so strictly as to exclude raised lettering. The role of inscriptions in modern times accords in general with the ancient use, but is much less extended. Then, copies of official and religious documents were frequently promulgated in the form of inscriptions, a usage that no longer survives, though commemorative and titular inscriptions are still plentifully. employed. In general, inscriptions serve one of two purposes: (i) they constitute a record, and the material containing them is wrought for the express purpose of receiving the inscription (example, known from literature only; Noses' stone tables that held the decalogue): (2) the object on which the inscription is engraved fulfils a purpose of its own. while the lettering indicates the name. nature, purpose, maker, or owner of the material object (commemorative column, mirror, ring. etc.). To these may be added another class. (3) the incidental inscription, a notice or entry upon an object not prepared to receive it.

Inscriptions furnish materials of value to students in many fields. To the historian and we must understand history to be the liferecord of the nation and its citizens - they supply evidence of great value, all the more valuable because nearly always contemporaneous with the facts recorded. The incidental as well as the formal record may bear testimony: An example of this sort has been found on the leg of a colossal statue at Abusimbel in Nubia, whereon Greek mercenarics who had ascended the Nile under the leadership of Psammetichus - more probably the second (594-589 e.c.) than the first $(654-6 \mathrm{I}$) $)$ of that name traced a brief notice of their expedition. The incidental inscription is particularly apt to furnish details valuable for social history. To the archæologist inscriptions of the second class furnish testimony of value for topography (witness the fragments of the marble Forma Crbis, an ancient inscribed plan of the chief buildings of Rome) and for the precise identification of statues and other works of art. The discovery of inscriptions is among the express tasks of the excavating archæologist, who thus supplies the raw material, so to speak, for the historian or philologian. To the philologian inscriptions yield the key to the history of writting and, if his interests lie in the comparative and historical study of words, give him a fu!ler knowledge of their form. To the plilologian of literary interests inscriptions yield a knowledge of historical fact or of vocabulary that may lead to a correct interpretation of a difficult literary passage. For example, the Greek historian, Thucydides, records (6.54) an altar inscription set up by Peisistratus (527-510 B.C.), which, he says, was still "in clear evidence," but "in dim letters." The identical inscription was found in 1857, with lettering perfectly distinct, and the literary interpretation of "dim" had to be revised and brought into accord with the facts. Neantime, the archicologists had learned that red or blue paint was employed to bring out more clearly the lettering of Greck inscriptions, and it was casy to infer that not the incision but the coloring
of this inscription was dim in the time of Thucydides. Inscriptions previously known from literary works have for the philologian the added value of yielding testimony concerning the reilability of the manuscript iradition. Thus the best manuscript of Thucydides is of the roth century A.D. and. as the last in a long chain of copies, must have been exposed to a great deal of corruption in transmission. The fact that a treaty recorded by the historian (5.47) corresponds almost exactly with the (fragmentary) inscription recording the alliance is reassuring for the MS. tradition. The littératcur, even. may be concerned with material furnished by inscriptions. One of the most considerable fragments of the poet Simonides, for example, has reached us in a copy on stone of an epitaph (epigram) in honor of the Megarians who fell in the Persian war. Some literatures have survired only as inscriptions.

It is safe to declare that inscriptions are as widely diffused as the art of writing. Even a primitive picture, if painted to convey a message, would constitute an inscription. Hieroglyphics (conventionalized picture writing) constitute the most primitive type of writing, and inscriptions of this sort, in the Maya language, are found in Yucatan. Though probably not earlier than the discovery of America, these represent. as regards writing, the same stage of culture as the hieroglyphics of Egypt (47oo b.c.). Chinese inscriptionsthe Chinese being a highly conventionalized hieroglyphic script - of 1,200 b.c. are also extant. The Mayan (and Aztec) system is still very imperfectly understood. Egyptian hieroglyphics were likewise long undeciphered. but in 1822 the Rosetta Stone (q.v.), a trilingual in Greek, demotic Egyptian. and hieroglyphics, whereon the names Ptolemy and Cleopatra were of frequent occurrence, furnished a clue to the hieroglyphics which had been conventionalized, through a syllabary, to a pure phonetic system. - This means, to invent an instance, that a picture (symbol) representing motion [$=$ (to) go] comes to be used for the syllable go in a proper nanne like Goshen (this step was taken by Aztec hieroglyphics), or in a word like gopher: and that in the last stage the syllable sign go reduces to the letter g. - The deciplerment and interpretation of Egyptian inscriptions belongs to the science called Egyptology. See EaypT.

The cuneiform script, invented by the Accadians of Chaldæa, found its way to the Semites of Babylonia and Assyria. This was a syllabary, developed from an earlier pictorial system, and such it remained in those countries, where not only small objects like seals and cylinders, but whole libraries of clay tablets (reaching back into the 4 th millennium B.C.), have been found. These tablets contain genuine literary works as well as the documents and announcements commonly included under the term inscriptions. The University of Pennsylvania is in possession of some 35.000 cuneiform documents, a collection particularly rich in fourtly and sccond miliennium records, and outnumbered only by the British Nuseum and the Louvre collections. The Tell-el-Amarna Letters are historically among the most noteworthy cunciform inscriptions. Found by an Egyptian peasant woman in I887, the collec-

INSCRIPTIONS

tion 15 now split up between the Berlin and British muscums, though a part remains in Egypt. These tablets contain a correspondence between three kings of Egypt (I5th century B.c.) and the rulets of Babylonia, Assyria, Armenia, the states of Asia Minor, Syria, and Palestine. Of transcudent importance for the early political history of Western Asia, this correspondence is also accounted to confirm the validity of the Hebrew Scriptures as an historical record. It is noteworthy for the history of culture that the petty chief of every town could command the services of a scribe able to write a letter in Assyrian - the comman correspondence language, it would seem, of all those countries. The science of Semitic Cuneiform belongs to Assyriology (q.v.).

Fortunately the Assyrian syllabary, after being borrowed by the Medic Aryans, was converted into an alphabetic system. King Darins (521 B.C.) caused an Old Persian (Protomedic) inscription of 413 lines, averaging 6 feet each, with versions in Neo-babylonian and Neo-elamitic, to be inscribed on the Great Rock of Behistun, at a height of $400-500$ feet. The same script had been observed on other short inscriptions found at Persepolis, which evidently contained proper names chiefly. As early as I802 Grotefend allocated the names Darius, Xerxes and Hystaspes to certain script groups in these brief formulx, and correctly isolated 9 of the 13 symbols concerned. In course of time the entire Protomedic cuneiform alphabet was identified and subsequently the more complex Semitic syllabaries were worked out, resulting in the decipherment of the older cuneiform. In the Behistun inscription Darius, following precedents of Assyrian kings, summed up the history of his accession and reign. Copied in $18+4$ by Mr. H. C. Rawlinson, it has been carefully inspected again (1903) by the American scholar, Mr. A. V. W. Jackson.

Farther west, the Phonicians, also Semitic, developed, perhaps from Egyptian hieroglyphics, a true alphabet, out of which sprang, on the one hand, the scripts used by the Hebrews, Arabs, Persians and Hindus, and on the other the Greek (and Roman) type. The most notable early inscription in alphabetic Semitic is the Moabite Stone (q.v.) (9th century B.c.), which recounts the victory of Mesha, king of Moab, over Israel. The language used differs but slightly from that of the Hebrew Scriptures, of the historical validity of which the Moabite Stone, like the Tell-el-Amarna Letters, is held to be in general confirmatory. For facsimile, transcript and transtation see Hastings' 'Dictionary of the Bible' iii., p. 405 seq. Phœnician-Greek bilinguals from Cyprus, belonging to the fth century B.C., are extant ; also Phoenician-Cypriote, which furnished the key to the Cypriote syllabary. Punic inscriptions proper are chiefly of the dedicatory sort, and relatively late, all after the Greek period. Aramaic dockets on Assyrian contract tablets (8 th century B.C.) form another instance of early alphabetic Semitic.

India also has its inscriptions. The oldest (250 O B.C.) and most interesting are the religious edicts of King Piyadassi, known as the Asoka Edicts, which are engraved on rocks and pillars. They inculcate the religion and morals adopted by this king after his conversion to

Buddhism. These inscriptions, in two inknown alphabets (Karosthi and Prahmi), were deciphered chicfly by James Prinsep. who, in the winter of $1837-8$, single-handed, unravcled the Brahmi script. He grtessed that in certain brief Brahmi inscriptions, plainly of a votive character, a frecquently recurring final group of letters must stand for the notion "gift" and be equivalent. if the language was Sanskritic, to danam. He further surmised that the consonant preceding danam must be the genitive (possessive) sign - s. He thus isolated the three consonants s, d, n and, with this start, soon identified the entirc alphahet.

Greek and Roman inscriptions have been more studied and are accordingly more systematized for study than any others. The ancient Greeks were themselves conscious of the importance of inscriptions. Herodotus used them as sources, and Thucydides and Xenophon. quoted them. Decrees are sparingly mentioned by Isocrates, but freely quoted by Demosthenes, who probably made use of the papyrus originals from the department of archives, not all decrees being promulgated on stone. Euripides alludes to the custom of inscribing formal compacts on tripods and dedicating them in temples. Greek antiquaries and scholars even made collections of inscriptions and Polcmon (300 B.C.) , who was neither the first nor the last of these collectors, owing to his zeal as an inscription hunter, got the nickname of stilokopas, "tablct-picker." Roman writcrs also - Cicero, Livy, Pliny the Elder, Suetonius - occasionally mentioned inscriptions of historical interest. Varro, the antiquary, and the lexicographer. Verrins Flaccus, commented on the diction of inscriptions; while Polybius, the Greek historian of Rome, actually cited inscriptions, making a fuller use of them than Liyy: But no interest in collecting inscriptions, comparable to the Greek interest, ever developed among the Romans. From the Revival of Learning on scholars were not lacking to show an interest in classical inscriptions, but the modern impulse may be said to have had its point of departure in the first quarter of the igth century when the Prissian Academs, under the promptings of August Boeckh, inangurated the great collection known as the 'Corpus Inscriptionum Graecarum' (4 vols, 1825-56). which contained nearly 10.000 numbers. But fresh inscriptions are ever coming to light - dies diem docet-and in 180 m the number was estimated at 50,000 . There has been a steady increase ever since. Excavations are now pursued in Greece and Greekish countries with a diligence and at an nutlay never before known. Almost all the great nations have established archrological institutes in Athens, and all of these issue some form of learned journal devoted in part to the publication of the new inscriptions discovered; for example. 'Papers of the American School of Classical Studies at Athens,' (American Journal of Archaology,' 'Bulletin de Correspondance Hellénique,' 'Ephemeris Archaiologikè, 'Journal of Hellenio Studies,' 'Mittheilungen des Deutschen Archrologischen Institut.' 'ArchrologischEpigraphische Mittheilungen aus Oesterreich,' etc. Further great collections like Boeckh's have been issued, for example, the 'Corpus. Inscriptionum Atticarum' and the 'Sammlung Dia-lekt-Inschriften' (in progress). A similar ac-

INSCRIPTIONS

tivity has been exhibited at Rome also, witl the same establishment of archreological institutes. In I\&63 the first volume of the 'Corpus Inscriprionum Latinarum.' also supported by the Prussian Academy, was issued. Since then I_{5} volumes, with numerous supplements, have been published, new inscriptions being first provisionally printed in the 'Ephemeris Epigraphica.' In all. some 150,000 Latin inscriptions are now accessible in print.

Classical inscriptions require two classes of investigator, the field collector and the closet student. A knowledge of Greek and Latin acquired from printed books does not equip the student for field collecting. It is true that the decipherment of the known script of classical inscriptions does not present problems like those solved by the ingenuity of Groteiend and Prinsep but, for all that, training is needed for the accurate reading and copying of the inscription. Absolute accuracy in copying is difficult of attainment, but a "squeeze" made of (unsized) paper, wetted and packed into every crevice, or a copy made by covering the inscription with a sheet of dry paper and rubbing the same with powdered graphite secure excellent results. America has produced one collector of large and successfut experience, Mr. J. R. Sitlington Sterrett, whose collections are to be found chiefly in the 'Papers of the American School.' After correct copies have been secured it remains intelligently to divine words and letters lost by mutilation and to expand the abbreviations, but the latter have been so thoroughly listed in works on epigraphy (= the science of inscriptions) as now to present little difficulty. The same works have so classified the script-forms as greatly to simplify- the act of reading the inscription, and their topical arrangement of the subject matter of inscriptions is a great aid to interpretation.

Greek official inscriptions were chiefly recorded on marble, Roman on bronze. The latter material, being available for so many uses, proved the less enduring. But marble slabs were also converted into building material or foundation stones of ramparts. and at Rome many an inscribed stone was calcined into lime. So many were the hazards to which inscriptions were exposed that it is exceptional to find an important one in its original location. For purposes of study the modern habit of gathering inscriptions into museums is highly convenient. In Greece, besides public squares and buildings. temples were a favorite repository for mscriptions. such as state treaties, tribute and treasure lists; dress, armor. weapons and other offerings of gratitude - all with dedicatory inscriptions - made the temple a sort of museum : images of afficted parts of the body that had been curcd. with acconnts of the cave inscribed thereon, were offered to god: of healing. forming a sort of nucleus of an anatomical collection and a medical library. Commonest of all forms was the sepulchral inscription which becan with sinaple announcements but grew into counding eulogies. Amnne the Greek inscriptions none has been found so comprehensively important for history as the Great Rock of Pchistum, but Mr. C. T. Newtnn, in his essays 'On Greek Inscriptions' I'Contemporary Review' (December 1876): 'Nineteenth Century' (June and August i878, reprinted in 'Es-
says on Art and Archæology,' p. 95. seq.)]. has set forth with great charm their collective salue for history and the things pertaining to religion. At Rome, Augustus caused a succinct account of his deeds to be engraved in bronze and set up before his mausoleum. This inscription, widely diffused in the Augustus temples thronghont the empire was discovered at Ancyra (now Angora). The Jonumentum Ancyranum constitutes an extensive historical document of the very first importance. The Edict of Diocletian (303 A.D.) has quite a modern ring, being a law to control mercantile "combinations in restraint of trade" by fixing a maximum price for provisions and other commodities. The Acta Fratrum Arvalium form an important memorial of a religious guild. A fragmentary black cippus unearthed in the Roman Forum (i899). supposedly near the grave of Romulus. aroused great enthusiasm. Its early date (550 b.C.) has been held to make for the credibility of the traditional account of Roman history as given by Lisy rather than to give countenance to the skeptical method current since Niebuhr's time. Unfortunately, sase for a few words of great interest for the comparative grammarian, the inscription admits of no more definite elucidation than the conviction that the words probably belonged to a religious prescript. The graffiti (wall-scratchings) of Pompeii form a large and interesting class of incidental inscriptions which comprises quotations. paraphrases, catchwords, proverbs; lovers' messages, complaints, tarryings, rendezvous : names and greetings. Among them the painted inscriptions (dipinti) contain election notices chiefy: The dialects of Latin are known almost entirely from inscriptions. The chief remains of the C'mbrian language (dialect) are the Tabulæ Iguvinæ, seven bronze tablets found at Gubbio in $1+4$. They contain long ritual prescripts. Some 250 inscriptions. few of great importance save to the grammarian, represent the Oscan dialects. Etruscan inscriptions in considerable number have been found in Italy - one (supposedly) as far to the east as the island of Lemnos - but, pending the discovery of a long bilingual. these though written in a well-known alphabet. still await definitive interpretation. The same is true of Iberian inscriptions (some 75 in number. several of between 50 and 150 letters). Runic inscriptions, in an alphabet derived from the Greek, have been found in Scandinavia and in England: the oldest (300 A.D.) being engraved on the utensils found at Thorsbjerg, others on stone monuments, rocks, weapons, ornaments and coins: the longest containing 16 words.

Bibliography-The general reader may consult to advantage: Taylor. 'The Alphabet' (Sew Jork Igoo); Kenyon, article "Writing" in 'Hastings' Dictionary') (see above): Whitney, 'Language and the Siudy of Language" (sth ed." P. 450): the histories of Egypt by Budge (London 1002) and by Petrie (London 1897-): (Recent Lights on Ancient Egypt' 'Quarterly Review' 200, 1004. 48-75): essay by Boscawen ('llarper's.' ©S. Igo): Petrie ('Contemporary") 69. 617): Mahafy ('Nineteenth Century.' 36. $2(8)$: Price. 'Monuments of the Old Testament' (Chicago Inoo). containing facsimiles of the Rosetta Stone and other hieroglyphics, the Moabitc. Stone. Behistun Rock, a Tel el-Amarna
*ablet, and other cunciform documents; Rogers, 'History of Babylonia and Assyria' (New York 1900): Smith, 'Chaldean Acconnt of Genesis' (1880) ; Schrader, 'Cuneiform Inscriptions and the Old Testament' (London i885); Sayec, essay in 'The Living Age,' 212 (1897), 3(0); 'Rosetta Stone' ('Open Court,' 18, 531); 'Tel el-Amarna Letters,' cdition with translation by Winckler (1896); essays in 'The hiving Agc,' 197, 771, and 'The Scottish Review,' 17, 292; 'Behistun Rock,' text and translation in Rawlinson's 'Herodotus,' ii., 490-514; 'Asoka Edicts,' Rlys Davids, 'Buddhism,' pp. 220-228 (London 1894) ; Smith, (Asoka, the Buddhist Emperor of India' (London 1gor) ; 'Story of the Greek and Latin Inseriptions' ('Macmillan's Magazine,' 69 (1893), 286 ; reprinted in 'The Eclectic,' 122, 475) ; Nau-Kclsey, 'Pompeii,' indices and bibliograply (this volume illustrates the historical value of apparently insignificant inscriptions) ; 'Monumentum Ancyranum,' essay by Call in 'Fortaightly Review,' 6, 200.

Of a more special character are the following: Brinton, 'Primer of Mayan Hieroglyplics' (Univ. of Penn., Publ.); Budge, 'First Steps in Egyptian' (London 1895); Bertin, 'Grammar of the Cuneiform Inscriptions' (London 1888) ; Weissbach and Bang, 'Altpersischen Keilinschriften' (Leipsic 1893) ; 'Grundriss d. Iranischen Philologie' and 'Grundriss d. indo-arischen Philologie) (Strasburg, in progress) ; the Greek and Latin epigraplies in Mueller's 'Handbuch d. klassischen Altertumswissenschaft' (i.) ; Roberts, 'Greek Epigraphy' (Cambridgc 1887-) : Reinach, 'Traité d'epigraphie grecque' (Paris 1885) ; Solmsen, 'Inscriptiones Graece Selectæ' (Teubner) ; Roehl, 'lnagines (facsimiles) Inscriptionum Grecarum' (Berlin 1894); Hicks and Hill, 'Greek Historical Inscriptions' (Oxford 1901) : Egbert, 'Latin Inscriptions' (New York 1896) ; Cagnat, ‘Epigraphie Latine’ (Paris 1898); Lindsay, 'Handbook of Latin Inscriptions.'

> Edwin Whitfield Fay,

Professor of Latin, Liniecrsity of Texas.

Insecticide, any agent which destroys inscets. This definition includes natural as well as artificial means of control, the latter being those operated by man. The most important of the former are adverse temperatures, excessive or insufficient moisture, firc, bacteria, fungi, mites, spiders, fish, reptiles, insects, and birds. The artificial controls may be grouped according to their mode of action. Two principal groups are recognized; those intended to reach the alimentary tract through which they act, and those that act through the respiratory apparatus. The former are effective only with such insects as bite off and swallow pieces of plant tissue; the latter more or less also with these, but most frequently used upon insects which suck the plant juices from beneath the punctured epidermis. Caterpillars, beetles and their larvae, grasshoppers, etc., all chew their food and have been most effectively controlled by Paris green, hellebore, arsenate of lead, etc., applied to the infested folinge either as a spray or as a powder. Plant-lice, plant-bugs, and other sucking insects have been held in check best by kerosene emulsion, whale-oil soap, fir-tree oil, or other substances that choke the breathing-pores in the insects' hodies. Some of these insects are dreaded because of their great prolificacy, their
small size and resistance to treatment. Gases are often used under favorable circumstances to reach insects troublesome in stored grain, among clothes, upon plants in greenhouses, and even upon plants in the open air - these last being covered with tents or boxes while being funigated. Varions chewing insects which tunnel throngh the tissues cannot be controlled by sprays, and are usually beyond the reach of gases. The leaf-mincrs, which burrow just beneath the epidermis of leaves and green stems, have never been effectively controlled. Some borers (currant-borer) can be kept in check by burning the twigs they infest, (peach-borer) by prodding them in their burrows, (squash-vine-borer), by cutting them out, the method being suggested by the nature of attack. Other chewing insects (plum curculio) are jarred into kerosene. Lastly there are various oils and greases which are used upon animals and man to destroy fleas, licc, etc. Tobacco water and carbolic acid are also similarly employed.

Formula and Methods of Application.Paris green should be mixed with a little water to form a creamy lluid, and then addcd to water or Bordeaux mixture (see Fungicide) at the rate of one pound to 200 gallons or more. Arsenate of lead may be applied somewhat more liberally. Hellebore may be mixed with water (I ounce to 3 gallons) and a little glue or flour paste to increase adhesiveness. Each of these may be applied as a powder sifted on the plant, through a salt sack or blown upon them through a powder-gun. A little flour aids the sticking quality. When powders are used, the plants should still be wet with dew or rain. Kerosene emulsion is made by intimately mixing a solution of hard soap (one pound to two gallons of hot water) with four gallons of kerosene, and diluting as needed for use with from 30 to 60 gallons of water. Pure keroscne and crude petroleum can be safely applied only to dormant plants, and then only upon bright breezy days, which will hasten evaporation. Kero-water pumps mix kerosene and water drawn from separate tanks, and apply the mixture direct to plants. They have hardly passed the experimental stage. Whale oil soap is mixed with water (1 pound to I or up to 10 gallons), and applied as a wash or spray. Carbon disulphide may be used where there is no danger of its inflammable fumes coming in contact with flame. An ounce is sufficient for from 50 to 75 cubic feet of air-tight space; and the exposure should be for 24 hours or longer. Hydrocyanic acid gas is prepared by adding cyanide of potassium (98-99 per cent pure) to water and sulphuric acid (cyanide, 1 ounce: water $21 / 4$ ounces; acid. $1 \frac{1 / 2}{2}$ ounces for every 250 cubic feet of greenhouse; 100 cubic feet of nursery stockroom and 125 feet of dwelling house rooms, flour-mills, trees, ctc.). Exposures may be froni 30 to 60 minutes for trees, the former time being for plants in active growth, the latter for dormant ones; from 12 to 24 hours is usual for rooms, granaries, etc. Since these gases are considered violent poisons the greatest care sloould be exercised in their application. Oils and greases are merely rubbed on infested animals and man. Boiling water is effective in destroying both lice and eggs in clothing. but the clothing must be boiled for hours to destroy the cggs of the body-louse and the crab-louse. Dust, tobacco-dust, etc., are useful in poultry
yards for the birds to wallow in. Carbolic soap is the favorite remedy for insects on pet animals. But with all stock, poultry, pets and man, cleanliness is the great preventive.

For condensed information concerning insecticides, consult: Circular No. I, Division of Entomology, U. S. Department of Agriculture, 1891; Mlarlatt, 'Important Insecticides,' Farmers' Bulletin No. $127 . \mathrm{U}$. S. Department of Agriculture; Hinds, 'Carbon Disulphid as an Insecticide,' Farmers' Bulletin I_{45} (as aboye); Johnson, 'Fumigation Methods' (New York, 1902).
M. G. Kanss,

Horticulturist.
Insectiv'ora, an order of mammals, all of small size, usually five-toed, more or less plantigrade, and as a rule, possessing clavicles. "The snout is generally long, and is often prolonged into a smahl proboscis. There is a tendency for the teeth to be of a generalized type and their number is often the typical mammalian 44 . Moreover, trituberculate teeth, which are certainly of an ancient form, are common." These teeth are adapted to feed on worms and insects alone. Many other evidences go to show that the type is a very old one. and Beddard thinks it may have survived because of the small size, imitative adaptiveness and nocturnal habits. Woodward speaks of the group as probably the little-altered survivors of some of the most primitive placental mammals, agreeing with the Credonta in their low type of brain. Most of the families may be traced back to the upper Eocene. The order falls into two divisions, (1) True Insectivores, including the hedgehogs (Erinaceida), squirrel-shrews (Tupaiida), tanrecs (Centctida) otter-shrews (Patamagalida), hutias (Solenadontida), golden moles (Chrysochlorida), elephant-shrews (Macroscelida), aquatic moles (Tolpida), shrews (Saricida); and (2) Dermaptera, embracing only the colugos (Galeopithecida). Sec Hedgehog; Mole.

Insectiv'orous Plants. See Carxivorous

 Plajts.Insects. (Lat. insectum), a class of Arthropada characterized by the body being divided into three regions, that is, a head, thorax, and lind-body or abdomen, and by the presence, in all but the more primitive and certain degraded forms, of wings, and of three pairs of thoracic legs. The body of insccts consists of 21 scgments (somites) of which six are used together to form the head. while there are three thoracic, and from to to 12 abdominal segments. To the head are appended five pairs of jointed appendages. that is the antemre, mandibles, and two pairs of maxilla. while in the embryo of certain insects and in the adult Campodea, there has been detected a pair of vestigial appendages. Besides these appendages, there are two compound eycs, one on cach side, and usually three simple eyes (ocelli) situated in thic middle of the head. Ithile the antenne are undivided the first maxille are suldivided into three branches, an inner (lacinia), a middle (galea), and outer (palpifer), bearing the palpus. The second maxillie arc fused together, forming the under lip or labium ; each second maxilla is composed of a lacinia, the palpus, while vestiges of the galea occur in certain forms. In bees certain accessory appendages called paraglosse are present. Besides the maxillie, the so-called tongue or hypo-
pharynx is present, being highly developed in bees: it lies on the under side of the mouth, just above the labium; in caterpillars it receives the end of the salivary duct, and is called the spinneret. Attention should atso be called to the upper lip or labium, on the under side of which is the epipharynx, which bears minute taste-pits. The thorax consists of three segments, which can be easily distinguished in the primitive wingless forms (Campodecs) and in the cockroach and locust, but in the more specialized forms as beetles, moths, bees and flies, the segments are more or less fused together and, owing to the movements of the wing muscles, are subdivided into many separate pieces. In the wasps and bees the basal abdominal segment becomes toward the pupa state transferred to the thorax. The legs as a rule end in five jointed tarsi, the last joint bearing a pair of claws with a cushion (pulvilus) between them. Insects are enabled to walk on glass, etc., by means of a sticky fluid exuded from the ends of hollow hairs fringing the cushion. They climb by means of their claws.

Insects differ from all other animals except birds and bats in possessing wings. and their presence, especially that of the muscles of flight, have greatly modified the shape and structure of the thorax. The front pair of wings is attached to the middle thoracic segment (mesothorax) and the hind wings to the metathorax. In the two-winged flies (Diptera) the second pair of wings are reduced and modified to form the balancers (halteres). The wings are flat sac-like outgrowths of the skin, and are strengthened by the "veins" which form hollow rods. These veins contain a trachea, so that there is a space between the air-tube and the outer wall. When the insect emerges from the nymph or the pupa, the rein is filled with blood. The spaces enclosed by the veins and their cross-branches are called cells, and their shape often affords valuable generic and specific character. In the more primitive insects there are numerous cross-veins, and such wings as in locusts, etc., are said to be net-veined. In the Lepidoptera there are few cross-veins. In the Diptera and Hymenoptera the number of veins is limited, the cells also being few. The skin of insects is hard. dense and elastic, due to the deposition of chitin.

Internal Anatomy:-One of the distinctive characteristics of insects is their mode of respiration. This is effected by an intricate system of internal air-tubes (trachex), which are filled witl air by openings (spiracles) in the sides of the body; of these spiracles there are from one to two pairs in the thorax, and eight pairs in the abdomen. The trachere are kept pernanently open by a series of tlureads (tænidium) each of which makes from three to five turns around the thin tube: in this way the entire tracheal branch is provided with what at first was supposed to be a continuous spiral thread. The slit-like openings of the spiracles are guarded hy a grate of stiff hairs to prevent the ingress of dust. etc. It should be borne in mind that no insect breathes through its mouth, hut through the spiracles. Hence the efficacy of all oily or greasy substances in destroying every kind of insect in whatever stage of growth; wherever the oil touches the body a thin film spreads over it, covering the air-openings so that the insect soon dies by asphyxiation. Though
PROTECTIVE MIMICRY AMONG INSECTS
insects have a delicate pulsating tubular heart, they have no arteries and reins, since the air in the trachere seeks the blood in the remotest parts of the body. The blood is thin and coloriess. The aquatic larve and a very few perfect insects breathe by external tracheal gills, the spiracles being in such cases often absent. The genital opening is always situated near the end of the body, in front of the vent on the under side. Besides a complicated digestive canal, insects have urinary tubes opening into the end of the intestine.

The nervous system consists, besides the brain, of a chain of ganglia the greatest number of which is 13 , but which become more or less fused in the more specialized groups, especially in the flies. The brain is remarkably complex, in accordance with the varied and complicated movements of the segmented body and jointed appendages, all capable of different kinds of motions.

Sense of Sight.- The compound or facetted eyes (ommatea) are composed of numerous simple eyes called ommatidia, which vary in number from 12, in Lepisma, to 20,000 in the dragon-fly (Escina), and even 25,000 in a beetle (Mordella). Yet notwithstanding the wonderful complexity of these compound eyes, most insects are near-sighted, and perceive rather the movements of other animals than their exact outlines; the dragonfly and butterfly can see for a considerable distance. The simple eye probably only enables the insect to distinguish daylight from darkness, or at most very near objects. Insects, like bees and butterflies, have the color-sense, and prefer certain colors to others.

Sense of Smell.- Insects are chiefly guided by the sense of smell. This resides in the antennæ, in which there are microscopic pits filled with fluid; to this pit goes a fine nerve whose fibres end in staff-like sense cells. The number of these olfactory organs is in some insects enormous; thus in the European cockchafer there are 39,000 in the leaves of the male antennæ, and about 35,000 in those of the female; in a single antenna of the hornet (T'espa crabro) are about 13,000 to 14,000 . In the cockroach the abdominal cerci or feelers also possess such pits.

Sense of Hearing. - The auditory organs of the locust are drum-like ears situated one on each side of the base of the abdomen. directly behind the first abdominal spiracle: in the green grasshopper, katydids, etc.. a little auditory sac is lodged in the fore-legs (fibia). It is supposed that most insects are destitute of the sense of hearing. at least auditory structures have not yet been detected; yet all sound-producing insects must have ears to hear.

Seuse of Taste. - The taste organs are little pits or papilla which resemble the olfactory organs, but which occur on the inside of the upper lips, on the epipharynx, or at the base of the proboscis and maxilla in the bee.

The Egg and Groaith of Insccts.- The eggs and the fertilizing fluid of the male are produced in glands which open near the end of the body on the under side. The eggs are deposited by the female in the earth or in wood, leaves. etc., by means of the ovipositor, an apparatus composed of three pairs of hard appendages. and which in the wasps and bees form the sting. Most insects die on the approach of cold weather,
when they lay their eggs, the species being represented in the winter by the eggs alone. The eggs hatch in spring, the embryo passing through remarkable changes.

Mefamorphoses.- Most insects after hatching pass through a remarkable senies of changes called a metamorphosis. The small flies, moths or beetles, are not the young of large ones, but adult insects, while the most primitive insects have no marked metamorphosis, the mature locust only differing from the young in having wings; the more specialized forms, as beetles, moths, wasps, bees, and flies, pass through two stages of growth, that is, the larva and pupa, before becoming winged and sexually mature.

Larza. - The name was first given by the ancients to the caterpillar because they thought it masked the form of the perfect insect. Swammerdam supposed that the larva contained within itself "the germ of the future butterlly, enclosed in what will be the case of the pupa, which is itself included in three or more skins, one over the other, that will successively cover the larva." But the discovery by Weismann (q.v.) of the germs of the imago (imaginal disks or buds) in the larva completely changed our notions of the nature of metamorphosis (q.v.), and revolutionized our knowledge of the fundamental processes concerned in the change from larva to pupa or chrysalis, and from pupa to imago. Not only are the larve of each order of insects characteristic in form, so that the grub or larva of beetles is readily distinguished from the larva of other groups, or the maggots of flies from the footless larva of ants, wasps and bees, but within the limits of the larger orders there is a great diversity of larval forms, showing that they are the result of adaptation to their surroundings and mode of life.

The larve of nearly it not all the metabolous animals are probably secondary in their origin. Fritz Müller (q.v.) pointed out that this is the case with the larvæ of the higher insects. The larva of a beetle is popularly called a grub; that of a Aly a maggot. The young of the more primitive insects. such as the cockroach, locust. all bugs, etc., which undergo an incomplete metamorphosis, is called a nymph. See Larva.

Pupa.- The word pupa is Latin, meaning baby: Linnæus gave it this name from its resemblance to a baby which has been swathed or hound up, as is still the custom in Southern Europe. The term pupa should be restricted to the resting, inactive stage of the holometabolous insects, that is, those with a complete metamorphosis. The typical pupa is that of a moth or a butte:fly, popularly called a chrysalis. A lepidopterous pupa in which the appendages are more or less folded close to the body and soldered to the integument. was called by Linnæus a pupa obtecta: and when the limbs are free, as in Neuroptera, Mecoptera, Trichoptera, and the lepiclopterous genms. Micropteryx. it is called a pupa libera. When the pupa is enclosed in the old larval skin, which forms a pupal covering (puparium), the pupa was said by Linnæus to be coarctote. The pupa of certain Diptera, as that of the orthoraphous families, is nearly as much obtected as that of the tineoid families of moths. especially as regards the appendages of the head. the legs being more as in pupæ liberr. The pupæ of Coleoptera and of Hymenoptera, though there is, apparently, no near relationship between these two orders, are much alike in shape, and.
as Chapman pertinently suggests, those of both orders are helpless from their quiescence, and hence have resorted for protection to some cocoon or shell. But it is quite otherwise with the pupx of Lepidoptera and Diptera, which vary so much in adaptation to their surroundings. and hence afford important taxonomical and phylogenetic characters. This, as regards the Lepidoptera, was almost wholly overlooked until Chapman called attention to the subject. and showed that the pupe had characters of their own, of the greatest service in working out the classification. and hence the phylogeny of the different lepidopterous groups. The pupe of the Neuroptera, Coleoptera and Hymenoptera differ structurally from the imago. in the parts of the head and thorax being less differentiated. Thus in the head the limits or sutures between the epicranium and clypeus, and the occiput and gula, are ohscurely marked, while the tergal and pleural sclerites oi the imago are not well differentiated until the changes occurring just beiore the final ecdysis. It is easy. however, to homologize the appendages of the pupæ with those of the imago of all the holometabolous orders except in the case of the obtected pupa of the Lepidoptera (and probably of the obtected dipterous pupre), where the cephalic appendages are soldered together.

Classification of Insects.- The number of known species of insects is irom 200.000 to 300.000. but it is estimated that there are upward of a million species now living. In fact, the class of insects vastly outnumbers all other groups of animals. This is probably due to their being winged, and to their great fecundity. At present the class of insects is divided into two subclasses, that is, the (i) Symaplera, represented by the wingless orders Thysanura and Collembola; and (2) Pterygota, comprising is winged orders and which may be thus tabulated:
Series 1.- Heteromesobola, with an incomplete or variable, though slight, degree of metamorphosis. No distinct larra or pupa state, the young being nymphs. Order 1. Dermaptera. (Earwig.)
2. Orthoftera. (Cockroach, locus1, grasshopper, stick insect.)
4. 3. Platyptera. (Bird lice, Perla, white ant.) 4. Odonata (Dragonfy.)
5. Plectoptera (Mayfiy.)
6. Thysanoptera, Thrips
7. Hemip:era. (Bugs.)

Series 2.-Holomeioboid, or with a complete metamorphosis. Order s. Veuroptera. (Coryalus, lace-wing fy. ant-lion.
9. Mecopicra. (Panorpa, Boreus.)

- 10. Trichoptera (Caddis Gies.)
- 11. Coleopiera (Beetles.)

12. Lepidoplera. (Morhs and buttertiles.)

- 13. Siphonaptera (Flea.)

14. Diptera. (Mosquiro. fly.)
15. Hymenoptera. (Saw-Ay, ant, wasp, bee)

Fossil Insicts.- Ahout 3.000 species of fossil insects have been described, of these from 200 to 300 are Palæozoic, 500 Mesozoic, and the remainder are Tertiary: The oldest fossil insectremains is the wing of a supposed bug (Protocimix) from the Ordovician of Sweden. The wing of a cockroach (Palaoblatina) has been detected in the middle Silurian of Calvados. France. From the Devonian shales of Si. John, \therefore. B., nine species of primitive net-reined insects have been collected. The coal measures are characterized by cockroaches, primitive dragonflies. Day-flies, and grasshopper-like forms, phasmids, etc., also occurring. All of the Palæ-
ozoic insects known are very primitive. Modern forms, those having a complete metamorphosis, begin to appear in the Triassic and Jurassic, where remains of beetles, a saw-fly, and a moth occur. Ants, bees and butterflies date irom the Oligocene and Miocene Teriary.

Bibliography. - The latest general works on insects are Carpenter's 'Insects, their Siructure and Lite' (London, 1899), and Sharp's 'Insects' (Vols. V. and VI. of Cambridge Natural History, $1895-9$) ; both contain sufficient references to other works. For American insects consult: Packard's 'Text-book of Entomology' (iSg8), and 'Guide to the Study of Insects' (iS89) Comstock's (Manual for the Study of Insects' (I893): 'Insects and Crustacea' (Vol. II., Standard Natural History. 1884); Howard's 'The Insect Book'. (rgoi). The last named contains a copious bibliography, especially to the voluminous publications of the Entomological Division of the U.S. Department of Agriculture.

See Fresh-water Insects; Marine Insects, and the names of groups and species, as Flies, Hymenoptera, Moths: etc.

Alpheĺs S. Packard,

Late Professor of Zoology. Broan Unizersity.
Insects and Flowers. See Fioners avod Insects.

Insects, Fungi Affecting. See Furgr.

Insects, Injurious and Beneficial. See Extomology, Ecosomic.

Insects, Propagation of Disease by. See Filtarists: Flies : Mosqutitoes; Mylasis, etc.

Insessores, in-sĕ-sórétz, a discarded term in Ornithology designating a group styled "perchers," which included the majority of the smaller and more familiar birds. The term has been abandoned because the group denoted by it is a purely arbitrary one.

Insid'ious Flower-bug. See Flower-bug

Insolvency. In a popular sense the word insolvency applies only to persons without property or means sufficient to satisiy their creditors. The legal definition embraces alĭ who are unable to pay their debts at maturity in the ordinary course of business, even though they may possess assets exceeding their liabilities. A failure to meet overdue obligations renders a person liable to proceedings against him in a court of insolvency. in which his assets may be taken into the possession of the officers, marshaled, and distributed to his creditors. Should there be an amount in excess of what is required to pay the creditors and the expenses of administration, the balance so remaining is the property of the debtor. From a very early period in the history of civil government, laws have existed providing for proceedings by creditors against in-l solvent debtors. by which the debtor's property could be taken from his possession, to be held hy another as a trust fund to be applied to the payment oi his just debts. In case of an insufficient amount to pay all debts in full. provisions are usually made for a pro rata distribution. These laws have generally provided for classes of preferred debts, payments oi which were to be made in full. even though such payments exhausted the entire assets. Preierred claims commonly included all claims of the government or state, and often claims for labor to a limited

INSPIRATION

amount, and claims for the necessaries of life. Provisions are usually made for the exemption of certan articles to the use of the debtor, not to be included in the assets. The Constitution of the Unitcd States provides that Congress may establish umiform laws on the subject of bankruptey throughout all the States, and the first act upors that subject was passed in 1800 , since which time there lias been some Federal bankruptcy law, with brice intertegnums. A uniform national law upon the subject now exists. The first act of Congress upon this subject provided for proceedings ly the creditors only, but in 1841 an amendment provided for voluntary proceedings by the debtor, by which he could surrender his property and obtain a discharge from all of his debts, provided he had been guilty of no fraud. In the absence of a national law on the subject of insolvency, the States all have authority to enact and enforce laws upon that subject. The Federal act now provides for roluntary proceedings by the debtor, as well as proccedings against him by the creditors, with provisions for his discharge. The various State acts have usually contained such provisions. The Federal act suspends all State insolvency laws during its contimuance. See Bankryptcy Laws.

Inspiration, in theology, the communication by the Holy: Spirit, to writers and speakers, of a portion of the knowledge and fceling of God, in such fashion that they can be communicated to other men: especially used in relation to the Bible. On the fact of inspiration rests all attribution of divinity to the sacred writings above any others; but theories of its method and extent have necessarily changed with the advance of critical knowledge. They have never had an authoritative pronouncement even from the Church of Rome, which allows liberty of judgment on this; the Bible not holding the supreme place there as in Protestant bodies, and the latter being too divided for a credal statement on this point, by the very causes which call for one. All theories rest not only on the necessary implication of divine character in the Bible, but on two specific passages: 2 Tim. iii. 16: "All Seripture is given by the inspiration of God, and is profitable for doctrine" (Revised Version, "Every Scripture inspired of God is also profitable for teaching," which does not relinquish the claim of insniration) : and 2 Pet. i. 21. "Holy men of God spake as they were moved by the Holy Ghost" (Revised essentially the same). The Scriptures were the Old Testament.

The early. Church did not generally dwell on theories of inspiration, regarding it as a passive "ecstasy" in which divine truth was communicated, but rarely going on to its effects on the inspired writings or the methods which produced them. Origen, however, the great builder of doctrinal framework, formulated an exact theory of "plenary" or entire inspiration, which preserved the writers from all fants of memory, and left no iota either incorrect or superflnous in Scripture. But others held that alf believers were inspired in different clegrees: as this made all believers infallible interpreters of the Scriptures, the perilous nature of such a doctrine led to the opposite one, that there was an inspired official depositary of interpretation as well as an inspired canon of writings. The medieval schoolmen evolved the theory that
there were two kinds of inspiration in the Scriptures: direct, foumd where moral and doctrinal trutlis are directly taught; and indirect, in historical passages, whence ethical truths can only be derived by allegorical interpretation.

Regarding inspiration wot as a purpose hut a method, there are three explanations within the limits of orthodox Christianity: the "plenary" or verbal, the dynamic, and what may be termed the "irradiant" theories. "lie remaining one, which makes the inspiration only that common to all human beings - who are part of the divine mind - and laving no part in any special revelation, is really not a theory of inspiration at all. as it holds that there is none; that all things are parts of the vorld's evolution, and the sacred writers and the Bible were evolved like the rest, though the latter is the greatest moral product of the world, and to be reverenced in the moral rank as we reverence the greatest writers and thinkers in theirs.

In the early uncritical ages of the Protestant churches, the universal and obvious theory of inspiration was the plenary. The original text of the Bible was dictated word for word hy the Holy Spirit, the writers being nerely penmen, or inedia on whom were impressed certain phrases, which must not be varied on peril of distorting the divine revelation. The words of Scripture thus transmitted are God's words, to each reader as if spoken directly to him by the Deity, and no matter to what subject they relate, be it doctrine or history, the origin of man or the duty of man. That ihere are different styles, corresponding to different writers, means only that God has accommodated his expressions to their natures, for his own utilities. Hence the least particle in the Scriptures is surcharged with meaning, and if anything seems in conflict with science, history, or other portions of the Bible, it arises from corruption of text, bad translation, or other change from the actual revealed language. This is the only theory with perfect logical continuity; unhappily it can only be maintained. in face of the increasing body of knowledge of texts, facts, and natural ethics, by those willing to alnegate their own right of criticism wholly in favor of their own infallible interpretation. Indeed, the chief argument for the latter is that the divine purpose would he defeated, if its intention in giving the revelation were made null by the misunderstanding of falDihie human faculties.

The dynamic theory is the first step outside this bulwark enforced by the impossibility of maintaining verbal inspiration, and relegates the divine agency to an indirect function. In place of its dictating the exact phraseology and the precise facts, the writers are so filled with divine force that for all purposes of conveying the essential divine purpose, that of showing the truths of sin and danger and the path of salvation, they are a portion of the divine and incapable of error. Under this theory the writers are left a free hand, according to their own Jimitations and lose of their age. in dealing with narrative facts or heir own guesses at them: but are guided explicitly in all matters of faith and morals. In urder to be received, the revelation had to be accommodated to the mental conditions of different ages: and men of each received guidance from God to present it so that it was true in relation to them, and remained so for all ages under all conditions. The war-

INSTINCT

Fant of the Bible is its incomparable and super homan system of ethics, and its proof of divine orisin is that evident stiperiority to all human devices.

The irradiant ${ }^{\nu}$ theory is a secent one, and a. step iarther from the old claim oi entire divinity. In this view the record as such has no divinity, nor injallibility of any kind. There is a drvine revelation, but it acts by generating moral ideas in certain great selected men, and which. once generated. are leit to right ibeir way and take their chance like the other userul ideas of the world. and undergo disbelief and mutilation, with the certainty that according to God spurpose. truth will peevail at last. The proof of divinity in Christianity lies in the fact that its moral truths are the greatest in the world, and were original with it

Instinct. Instinctive acts are those physiological activities in which mind or consciousness is involved. Instincts may be -egarded as intermediate between simple physiological or refiex actions and acts os reason exhibited by man. Animals of a grade nisher than sponges. polyps. most ruollushs and other forms of a corresponding grade, have organs of sease, of perception, and in the higher vertebrates a brain and nersous system and other organs of the same type as those of man, and such animals react to something more than mere physical srimuli. We know by observation that the social insects, birds and mammals, at least those which have become domesticated, have sutficient intelligence to meet the ordinary exigencies of lite, and that at times the ant, bee, beaver, elephant, dog, and ape can meet extracoinary emengencies, that is. rise with the occasion; tha: they may to a very lim:ted extent be free agents : that they are not mere automata. It has been observed that the more intelligen amimals are not solely guided by the physical stimuli of light. odcris. etc., but that they exercise the power of choice, selecting this or that kind of food, this o- that mate. Animals are subject to what we call the passions: they show anger, even when no: hungry or under the domination of the reproductive instinces; their sounds expres dissatisiaction or coatentment. They possess memory: with its aid ants and bees find their way back to their nests.

Ditintinns o o^{2} nstinct-Descartes believed that animals are automata. It is pcpularly suppused that animals are automata, physiclogical maclumes in which have been implanted by supernatural power what we call instincts. This wietw is still insisted ca by two excelleat obsevers of the habits of insects, Favre and Wasmann, whe claim that instincts are spectal innate of natural profensttes, 'transcending the general inteligence co experience of the creature." But of late years the impressiun has arisen and grined i rce that instincts are innate and ©na:urai because they have arisez by a natura! process anul have been sradually acquired and trar:mitted ir m one semer:ion to an ther.

Era-mus Darwin held that ins:inc:s were the ratit ci impath n by y ung ammals of the acif as of their parents. This view is still held by IVallace, ard, as Emer claims the power of rapid learnng has p ayed a part in the evolution of cerain in-incts. Thus the fox or rat learns from its farents, and becomes mure cunning or
sagacious with age and raining. Lamarck practically regarded the lowest animals as attomata, but in the higker animals, that is, those with a nervous system, we have instinct. -Heace. instinct in atimals is an inclination which necessitates that irom semsations provoked while giving rise to wants the animal is impelled to act without the participation of any thought or any act of the will." To satisiy these wants they consract difierent kinds of habits; these are sransionmed. he says. into so many pecpensities, from which "originate their habitual actions and special propensities to which are given the name of instinct." He then adds that the same habits and the same instinct are perpetuated from generation to generation, "without ofiering any notable variation, so long as it does not suifer change in the circumstances essential to the mode of dire. He thus intimates thet instinct may vary, and he states that in birds and mammals instinct is variable.

Darwin does not give a formal derinition of instinct but aiter stating that several distinct mental actions are commonly embraced by this term. he adds that "a little dose, as Pierre Huber expresses it of judgment or reason often comes into play, ever in animals low in the scale of rature. ${ }^{*}$ He calls atention to the points of resemblance between instincts and habits, showing that habitual action may become inherited, whence it resulis that "the resemblance between what originally was a babit and an instinct becomes so close as not to be distinguished." He concludes that, by natural selection, slight modifications of instinct which are in any way useful accumutate, and thes animals have slowly and gradually acquired through successive generations, their power of acting instinctively, and that they were not suddenly or specially endowed with instincts. Herbert Epencer deñes it as compound sefiex action, and also as a h hind of organized memoze" arguing that instinctive actions grom out of eetlex, and in cime pass into intelligent acts. Romanes defines instinct as "renex action into which there is imported the element oi consciorsness. ${ }^{\text {. }}$. Lloyd Morgan also says: "It is a bit of animal automatism not :ecessarily imolving more than the lower brain centres., "but it is a bit of attomatism accom. panied by a consciousness in a broad sease. "The role of corsciousness in a chick"s pecking is to select the adequate responses, and to steady the nusctiar mechanism to its work" As the result of recent experiments Loeb regards instincts as inherited reflexes so proposeicl and so complicated in character that nothing short of intelligence and experience could have produced then. Pachard gives the illowing def:ntion: The sum of inherited retlex acts, becoming habirual and arising from blended retlex and subernscious though irvolun:ary acts, periormed at birth or through life blindly, withou: pactice or previot:s experience, efrort, training or thought."

Eromples.- It should be understood at the outset that instincts in animals are iundamentally connected with the means of obtaining i. od or with reproducrion, the latter involving case ior the youns. as in ess-laying. the selecti n of a sesting place by insects and birds, the cunstroctic:n of the nest, and the deterse of the young. and in the birds and nummals the training of the youlag to dy, or to hume for prey.

Reflex acts are simply pirysiological responses
to external physical stimuli, as muscular irritability, the different tropisms, such as response to odors, and other chemical properties, to cold, heat, etc. Many of the movensents of the lowest animals, as the protozoa, sponges, polyps, worms, etc., their modes of selecting and getting food, of escaping their entemies, are scarcely more than reflex. As examples of instinctive acts are those of very young chicks. Morgan regards as instinctive in these birds the act of "pecking, walking, scratching themselves, preening their down and feathers, stretching up and flapping their wings, squatting down and dusting themselves, scattering and crouching when alarmed, uttering the danger-warning churr, and other sounds." Young ducks afford examples in the way they "seize and mumble their food in the bill, their aptness in swimming directly on leaving their shell, piping, and smoothing the down of their breast with their bill."

It is when we observe the complicated nesting habits of the spiders, and of the social insects such as ants, wasps, bees, as well as those of birds and the muskrat and beaver, when such striking and inexplicable forms of intelligence arise that we become perplexed how to explain them. Thus take the mode in which the honeybee builds its cells. Is it simply mechanical, the result of several bees working together, and due to the mechanical pressure of the insects against each other during the formation of the cell? While some contend that if left alone to build a single cell. this would probably be round, others show that a solitary wasp will build its cells in very regular hexagons. It is now conceded by Darwin, Romanes, and others, that the process is not a purely mechanical one, but is "constantly under the control of intelligent purpose." It is most probable that the hexagonal-cell building instinct is the result of habits which gradualiy arose, and which became fixed by heredity. In birds the modifications sometimes occurring in the shape and situation of their nests show that their instincts are, owing to change of conditions, plastic, reason teaching them to modify their nests so as to adapt them to new conditions. Experience and intelligence lead to such changes. The beaver manifests in his works intelligence and reasoning capacity, both in the construction of dams, canals, and in the mode of felling trees, and in the use in certain localities of "slides." In the monkeys and apes we apparently have the nearest approach to human intelligence, judging by the instances narrated by Romanes. Were it possible to breed apes for many successive generations more light would be thrown on their psychology. Meanwhile many acts performed by the domestic animals, the horse, dog, cat. elephant and even the pig, and their susceptibility to be trained, show that they may often act intelligently, and are prompted by a low degree of reason.

Instincts Variable and Somctimes at Fault.Lemmings in their migrations, impelled by their instincts to go abead, will swim out into the sea and be drowned. Ants will store up beads instead of seeds and there are many instances where instinct is at fault. Certain instincts may also by change of the environment become directed into new channels. This is illustrated by mumerous cases of insects, reptiles, and mammals which have become adapted to an aquatic life. An entire new crop of habits and instincts may thus arise. The instincts of young animals,
particularly of larval forms, caterpillars, grubs and maggots, are of a different description from those of the pupa state, and more especially of the adult state. In fact, instincts are pliable, variable, and in certain cases may lapse altogether, to be replaced by a new set. Were this not the case we should have no progress in the evolution of life. The more generalized animals have vastly less intelligence than the highly specialized forms. Compare the instincts of so complex a being as the ant, or wasp, or bec, with that of the locust or bug, or the instinctive and intellectual acts of social insects, with their wonderful differentiation of the individual into workers of different castes and the normal and supplemental' males and females. Such are what are called complex instincts, and they are all brought into action through the principle of the division of labor.

Do Animals Rcason:- Lloyd Morgan observed that the chick rapidly profits by experience after a few practical trials: hence he concludes that intelligence is founded on experience. He allows that chicks have intelligence, this involving the association of impressions and ideas, and the power of making a choice. He then asks the question, "Do animals reason"? "Do they focus the therefore"? "Do they think the why") ? Probably not. Reason is not (as animals "reason") adaptation; they do not profit by experience of actions to varying circumstances. Hence, he thinks that animals probably do not reason as man is capable of reasoning. Here might be quoted Herbert Spencer's definition: "Reason or intelligence is the faculty which is concerned in the intentional adaptation of means to an end." Finally, it is saie to assume that the higher animals, especially the domestic animals, which have been in contact with and more or less trained by man, exhibit the germs of reason, and while they cannot make inductions and deductions or predictions, their intellectual acts differ rather in degree than in kind from those of the lowest human races.

Consult: Romanes. (Animal Intelligence) (1883) ; 'Mental Evolution in Animals' (i884) : Morgan, 'Animal Life and Intelligence' (1890-1): 'Animal Behavior' (1900); Loeb, 'Comparative Plyssiology of the Brain' (1902). Alpheus S. Packird.
Late Professor of Zoology, Brozin L'nizersity.
In'stitute of France, a learned body organized after the first outbreak of the French Revolution, during which all the academies of learning and arts in France lad been suppressed. It was formed by the decree of 25 Oct. 1795, to replace the Académic Française, the Académie des Sciences, and the Académie des Inscriptions et Belles-Lettres. Its object was the advancemenr of the arts and sciences ly contimual researches, by the publication of new discoveries, and by a correspondence with the most distinguished scholars of all countrics, and especially by promoting such sciemific and literary undertakings as would tend to the national welfare and glory. The Institute was composed of a number of members residing at Paris, and an equal number of associates in the different parts of the Republic. Each class could also choose eight learned foreigners as associates. It was at first divided into thrce classes, each of which was subdivided into several sections. The first class embraced the physical and mathematical sciences,
the second the m-ral and historicai. and the third itierature and the fine arts. The number of active members, evelusire of the associates. was limited to IH. The Institute received, however. ite final crganizatica br a decree oi 23 Tan. ISo3. Is was then dirided into four classes (I) the class of the physical and mathematical sciences. consisting of 6 位 members: (2) the class of the French language and literature, consisting oi بo members: (3) the class of history and ancient literazure, of to members: (4) the class of the fine arts. with 28 members. A royal ordinance of $2 I$ Jarch ISi6. restored the former names of the classes. so that the aame of Instimte was applied only io the whole body collectivels. The same ordinance assigned the first rank io the Academie Francaise as being the oldest; the next tari: to the Academie des Inscriptions et BellesLettres: the third to the Academie des Sciences: and the last to the Academie des Beaux-Arts, These united academies were under the personal direction of the king, and each had an independent o-ganization. To each academy were attached so honorary members. who had merely the right oi being present at the meetings. In $18_{3} z^{-}$the old ciass of Sciences Morates et Politiques was reccremuted as a separate academy, so that there are now five academies.

The -tcadémic Francaise had jor its chiei obfect the cultivation of the French language, and was chatged with the composition of a Fresch dicicarry, the merits ci which have been oiten dispuied and its plau condemned. The disposal of its racant chairs has not alwars been regulated br the bes: taste and judsment. Descantes, Pascal. Moliëre, La Bruyère. I. T. Rousseau, Baizac. Dumas pére, Daudet, and Zola haring been rejected, while in former times many a shallow cour iavirite was accepted.

The Acadennie des Inscripuicas et BellesLettres has so members. 10 irree academicians, and $\&$ inreign associates. It has fo cosrespondents at home and aht: ad. and derotes it teli chient. to subjects of a hisimical natu:e. The must distinguished sch :ars. beth in and out oi Europe, are, of have been. o nnected with it Committees of this acauemy superintend the erection of public monuments and the presertation of those already in existence. Works brought out under it auspices are: 'Hiss ise Iiteraire de France.' 'Recueil des Histeriens de France,' and 'Corpus Inscriptionum Semiticarum.'

The Acadenmie des Sciences has for its province the various branches oi knowledge connected with the rhysicai and mathematical sciences, natural hisery, medicine. etc. there being in all 11 secti-ns. It has of members, io firee academicians, and 100 corrempondents. The number of i ecim asociates is limited to eight.

The Acadernie de: Beaux-Arts has to members. 10 iree academicians, 10 inreign associates. and on o ric-pendents. it cormatiee of this academy was charged wilh the pullication oi a dicisnary of the fine arts.

The Academie des Sciences Morales et Politiques hat 40 members. 10 itce academicians. 6 iorcign aswociates, and is chrrespondents.

Members if the Institute of France are elected for life ty ballor, and have an annual salary of 1.500 francs.

Institute of Social Service, American. See Social Service

Institutional Church, a non-credal organization oi Christians, io supplement the regular church methods and ministrations-preaching. prayer-meetings, Sunday school, and pastoral visitations-by helpiul social work in the community. The moving spirit is the same as in the Y. M. C. A.. Tniversity Sertement. Salration frany, Rescue Missicas. Christian Endeavor societies. etc: but "writh the emphasis on Church, not Instituzion." The prime object is to reannex to the church the functions which other bodies have been compeiled to fill br its geglect oi its duty: and strengthen it by gathering potential Christian elements which under the old ststem do nci come io it. as well as by combining in itself all the claims to public gratitude and interest now shated between the purely ecclesiastical and the purely social institurions, or the half-way houses the the I. II. C. A. It difiers from the latter in not merely iurnishing a religious atnosphere which may lead to church membership, bur entolling members at once in a real church o: Christian wook br absorbing the secular features of the other: in a word. to do. mithout yows or uniforms. What the Catholic Church has always done with its charitable imctions - nake them an integral porion ai the church organization. Hence it is not by itself a chutch in the sense of the Roman Catholic or the Methodist Churcl, buz in a broad sense a description of any churely which adds educationai os social work ! in general use, a title oi any which throws into this work its predominant vitality. Free perss are an esscatial accompaniment, as the social aristocracy fostered by rented perrs contradicts the basal democratic principle of institutional work: bence it is somerimes called Free Church, bur preierably Open Church. The present name originated with Presideni Tucker oi Darmouth College, who applied it to Berkeley Temple. Bosion.

The movement started chiefly with the High Church element in England, modeled on the Catholic idea: it flourished ior two generations in that country before reaching the United States, about ISSO, and it has hardly been a rigorously spreading one here for abore 15 years. Now, however. a large number of churches - Episcopal. Congregational, and Baptist in the forefront, but also IIethodist. Presbyzerian, Ťniarian-have adopted the idea with increasing vigor, besides the work of this class always performed by the brotherboods and sisterboods of the Roman Catholic Church. One of the earliest of these was Plymouth Church oi Indianapolis. inspired by the memory oi Mr. Beecher. Jotable among cthers are the St . Bartholomerr. St. George, St. Paul, and Judson Memorial of lew lork, and the Tabernacle of Jersey City: Berkeley Temple. Parke: Memorial. and Ruggles Sireet Baptisi ni Boston; Grace and Bethany of Philadelphia: Ninth Sitect of Cincinnati. Pilgrim of Cleveland: Fiymouth Tabernacle oí Detroit: People’ of St Paul: and the Denver Tabermacle. In iSht the Open and Institutional Church League was organized in New lork: it held several conventions in Eastern ciries (180 --ico1) and for three years published the 'Open Cnurch' as its organ, but has practically lapsed, being merged in the National Federation of Churches and Christian Workers.' The total of its work, lowever, is no: shown by its nominal member-

INSTRUMENTS

ship; the same spirit las infected outside churches, and their methods are being more and more adopted as a general basis of work.

The platform of the League stated that it aimed to save all men by "abolishing, so far as possible, the distinetion between the religious and the secular": by "open church doors for every day and all the day; free seats, a pharality of Christian workers, the personal activity of all church members, a ministry to all the commmity through educational, reformatory, and philanthropic channels, to the end that men may be won to Christ and his service, that the Church may be brought back to the simplicity and comprehensiveness of its primitive life." It is not correct to say, as is often done, that its methods are purely secular: its additional methods beyond the regular religious ones are so, for the very reason it exists. These involve a thorough organization for social and philanthropic work; but the religious features are sedulously conserved and carefully fitted to the work, the spirit of worship being cherished and made the centre of inspiration. The service generally ends in the communion ; there is congregational singing of both hymns and clants, led by a lighly trained choir, and often responsive readings; the whole with the sermon are intended 10 be brief, varied, and attractive, Sunday schools are carefully attended to; prayer meetings given new features; in summer there are open-air meetings; and other Christian associations, endeavor societies, brotherhoods, etc., are encouraged. The officers and workers of the church are given active special duties, such as pastoral visiting, reception and welcome of strangers, canvassing for the varions activities of the church; and there are not only sub-pastors, bit deaconesscs, sisters, and nurses. The purely secular side embraces all deparuments of culture, physical, intellectual, and moral, as well as direct charities. Morally, the church work above should be sufficient. The charitable departments include not only firect aid to the poor, but wond-yards, employment bureaus, etc. ; personal endeavor to provide employment for those willing to work: dispensaries hospitals, and créches; and encouragement to thrift by savings funds. Special buildings are often erected.

That the movement is liable to perversions is admitted; such is the case with every institution. Secularization is onc: but unless it can be faced, the churches cannot influence or draw in those outside them, for the simple reason that the latter cannot be brought within hearing. Sensationalism, to draw in hearers to be benefited, is a graver one, and ill-judged; as one of its chief workers puts it, "a camp-stool congregation neither pays nor repents," and a lasting work must be content with slower processcs.

Instruments, Engineering. To attempt a definition of an engineering instrument is hardly practicable, as the wide range of departments into which the profession is now divided demands so many special appliances for their requirements that no one description is possible, and an extended cataloguc is inadmissible within the limits of this article. The earliest known engincering instrument was the Diopter of Hero of Alexandria, I 30 B.C., although rude appliances must have been used long before that time by
the ancient engincers in the construction of the public works of Chatlea and Egypt, the ruins of which even now awaken our admiration and wonder. It was not, however, until the beginning of the Igth century that the great impulsc to the construction and use of engineers instruments was given by the advance of civilization and commerce incident to the application of steam as a motive power on sea and land. Since that time great advances have been made not only in the design and accuracy of enginecring instruments but also in the invention of new instruments for the many purposes required by engineers in the construction of railroads, canals, bridges, harbors, ctc.

The characteristics of engincers' instruments differ in the various nations as the requirements of engincering practice, and thus American engincers' instruments possess a distinct character of their own as compared with other nations, having as a rule few parts and lightness of construction combined with great strength and an adaptability of parts for the special service required. It is not the purpose of this article to attempt a description of the various instruments used by engineers - this may be found in the article Survering, - but to give the reader a general idea of their construction. The metals used in the construction of engineers' instruments are principally the alloys of copper and tin with small quantities of silver, aluminum, and German silver. Great care must be constantly cxercised that these substances be
free from irom or otiner mate-ial which would aftect the masnetic needle. In the consiruction of an instrument such a distribution of the metals is aimed at that the greatest strength consistent with ight meight may be obtained and that the metals coming into contact at the bearing suriaces may he ai such varying composition as to cause the least iriction.

Take. for the p::-pose of better illustration, an American iransit, illustrated herewith, as typical. as iar as the construction is concerned. of nearly all engineering instruments. The plate of the instrument on which the magnetic needle is mounted, cr. as it is iermed, the compass circle. is tumed with great care so that the suriace inay be absolutely true, and is graduated usualy into $; 20$ spaces. each representing one hali if a degree.

Compass circles are usuaity figured in quadrants of a circle, that is from o at the point marked "S" or "Jこrth" to 90 and back again, while the figuring ci the limb varies with the custom of the maker or the requirements of the engineer.

In engineers instruments, however, the angilar measuremeats are made usually without the use oi the needle, by a telescope so mounted as to revolve in a vertical or a horizontal plane. The angular measurement of its movement being indicated on circles divided into fractional spaces of a degree and read ior convenience to finer spaces by one or more verniers. -Aecuracy of graduation of the compass circle, and especially of the limb is essential to the periection of the instrument, and great pains are taken by manuiacturers in periecting and improving engines ior graduating. The best machines are automatic in action and the spaces are so accurately laid off that there is no appreciable error in the finished work. The instrument rests on the socket or bearing surface to which the compass plate and limb are attached: the suriaces of the socket must be so accurately מitred together as so produce no error when the parts are moved on each other. The socket is mounted on a lereling head. which is actuated by three, or in the usual American practice, by fous leveling screws. as shown, by means oi which the instrument can be accurately leveled. Lpon the compass plate are placed the standards which support the telescope. the preparation of the optical parts oi which is next in imporance to the fitting of the socket and the graduation.

The telescope consists of an eye piece and object glass mounted in a sube. The eye piece is simply a magnifier of the image produced at the focus of the obiect glass. Two kinds of eye picces are wsed, one showing the image erect, and the cther showing the image inverted. The object glass is composed of two plates of optical glass of such speciric gravity and refractive index that it will magnity the image clearly without prismatic colls. To secure achromation the iwo parts of the object lens are made the one of crown and the other of fint glase the crown being a light glass of soda and silica and the flint heing a heavier glass containing notash and lead. The suriaces of each are curved to such a degree that the rays of light entering the object glass may be properly refracted and concentrated at a point called the focus.

The making of the lenses is an operation
requiring much shill in manuiacture, as upon the accurate grinding of the curved suriaces depends the quality of the telescope

At the focus of the object glass are placed the cross-wires, which are jlaments of spicer web or rery fine platinum. In conjunction with these are often used two more wires commonly called stadia wires. so placed that they intercept on a rod a space proportional to its distance frcm the instrument, thus iurnishisg an efficient method oí ascertaining distances directly by the observer. The metal parts of the instrument. having been prepared, a.e polished with some suitable material, a prepa:a*ion of rouge being generally used io minishing the suriace of the screws, and the larger suriaces being finished with fine emery paper. The larger parts are usually colcred dark to avoid reflection of the sun, while the smaller ones. such as screts. eic. are left bright in order that there may be a pleasing contrast between the different parts of the instrument. The parts, prepared as above, are covered with a thin coat of lacquer, a preparation of shellac and alcohol, applied after heating. All the parts are assembled and fitted together, and the instrument is then ready for the final complete adjustment This consists in fiting the sockets so that ibey will move ireely on each other, placing the compass plate and limb in position on the sockets, making the limb truly concentric with the socket and placing the vernier in position. The ielescope must be so adjusted that its parts may work freely, and having been supplied with optical patts, etc. it is then nitted to the standards or supports previously placed in position on the compass circle. The whole instrument is then tested for accuracy and if iound correct is packed in its case and is ready for use.

The above description is only intended to give a general idea of the construction of a typical instrument, but in the same methods will practically apply in the construction oi all engineering instruments, such as levels, plane-tables, the various kinds of compasses, etc.
IV. F. Gtrley,
of II: \& L. E. Gurliy, Troy, N.: Y.
In'sulator, a body used to separate an electrified conductor from other bodies, and which offers great resistance to the passage of electricity. Glass, sheilac. resins, sulphur, ebonite, gutta-percha, silk, and baked wood are notable insulating materials. Wires in which currents of electricity are passing are often arranged in coils. To prevent the lateral passage of electricity irom one coil to another, the wires are nsually covered with silk and shellac. Insulators on telegraph poles, to which the wires are attached. are usually made of porcelain, glass, or stoneware. Underground telegraph wires are usually of copper. insulated by means of a coating of gutta-percha or india-rubber, and protecied by tape or iron wire, metal tubes, or wooden troughs filled with bitumen. The core of a submarine cable consists of a copper wire insulated by a covering of gutta-percha whose weight is greater than that of the wire See Electricity (Conductors and Insulators).

Insurance, a contract by which one party, for a stipulated consideration. undertakes to indemnify or compensate another party againsi loss hy certain specified risks. The

INSURANCE

party undertaking to make the indemnity is usually called the insurer or underwriter, the other the insured or assured; the agreed consideration is termed the preminn: the written contract, a policy; the events or causes of loss insured against, risks or perils; and the thing insured or the subject to be protected, the insurable interest. Marine insurance relates to propefty and risks at sea; instrance of property on shore against fire is called fire insurance: life insurance, in its widest sense, is a contract entered into by the insurer to pay a certain benefit contingent upon the duration of one or more lives. Besides these classes of insurance there are many others; the traveler may insure himself against iuss entailed from damage by rail or sea: the farmer from the inroads of disease among his live stock; the employer from the fraud of a dishonest cashier, ete.

The practice of marine insurance scems to have long preceded insurances against fire and upon lives. It is impossible to state the precise period of its introduction, but it is probable that it dates from about the beginning of the 15 th century ; though it is contended, on the authority of certain ancient writers, that traces of this form of insurance are to be found among the Romans. Some Anglo-Saxon guilds insured their members against loss from fire, water, robbery, etc. Commercial insurance, however, seems to have originated in Flanders about 1300. although priority is claimed for both Italy and Spain. It is probable that insurance was introduced into England by the Lombards early in the 16 th century, but few court cases pertaining to it are found till the middle of the 18 th century.

In Great Britain fire insurance has been practised for over two centuries, but on the Continent its introduction dates considerably later. The history of life insurance, as well as that of various other forms now in practice, belongs to a still later time. For the history and development of the principal insurance systems in this country, see Inslorance, Marine: Fire Insurance in America; Insurance. Life, in America; Insurance, Fraternal.

Insurance, Accident. See Accident Insurance.

Insurance, Casualty. The definition of the word casualty is, "chance, or what happens by chance; accident: contingency; an unfortunate chance or accident. especially one resulting in bodily injury or death," etc. The term Casualty Insurance is commonly held to include those forms of indemnity providing for payment in case of bodily injury or death, or for loss or damage to property (except from fire or the elements), resulting from accident or some other such unanticipated contingency. The four great headings into which this insurance is usually divided are Personal Accident, Liability, Steam Boiler, and Plate Glass.

Personal Accident Insurance. - The first of these to be introduced into this country was personal accident insurance which had flourished, in a limited way, for many years in Enrope, but was not attempted here until iS63. The pioneer of accident insurance in America was James Goodwin Batterson of Hartford, Conn., who, while traveling in England in 1859, learned of accident tickets insuring against injuries or death resulting from railway accidents
and purchased one of these tickets in going from Leamington to London. Being at once impressed with the possibilities of developing this idea to include all forms of accidents in place of travel accidents only; he consulted with many well-known English insurance experts on the subject, all of whom with the exception of the famous statistician, Walford, expressed grave doubts as to the feasibulity of the scheme. However. Mr. Batterson came home determined to make the experiment and in 1803, the first American accident insurance company was organized at llartford, Conn. There is reliable authority for the statement that the first contract made by this company was a verbal contract entered into by the president of the company with a citizen of Hartford, whercby in consideration of a premium of 2 cents, the company agreed to become liable in the sum of $\$ 5.000$ in case of accident to the assured while journeying from the post-office to his home on Buckinghary: Street. The second contract was a more for mal one and was issued in consideration of \$3 to protect the assured against loss of life on personal injury while journeying from Hart. ford to Washington. D. C. and return.

An accident policy is a contract of insurance against loss of life, limbs, sight, or time through bodily injuries effected solely by external, volent, and accidental means. The full amount of the policy is payable in case of death, or for the loss of both hands or both feet, or both eyes, or one hand and one foot. Proportionate amounts are payable for the loss of one hand or one foot or one eye, and a fixed sum is payable per week during the term of temporary disability.

The first rates, based upon the statistics of the English companies proved inapplicable to American conditions and accident insurance had a hard struggle to obtain a legitimate foothold on American soil. However, a series of catastrophes by land and sea in the following two or three years emphasized the importance of this form of protection, and little by little the business became more firmly established. During this time about zo companies started, but all either failed or were absorbed by the pioncer company, which held the field for many years alone.

Gradually, however, other companies were organized, each newcomer profiting by the experience of its predecessors until on I Jan. 1904 25 stock companies were writing accident and health insurance in the United States, with aggregate premiums amounting to the enormous sum of \$13.337.000. The first accident policies were very primitive affairs compared with the elaborate and almost unlimited contracts of today. In the carly times, policics covered merely loss of life, limbs, or total disability, conditions were numerous and technical, and policies for small amounts were the rulc. Gradually, however, the competition of progressive and aggressive underwriters made itself felt in the broadening of the contract. One of the first important changes consisted in extending the period of weekly indemnity from 26 to 52 weeks. Some of the more conservative companies hesitated for a long time to follow this lead, but the pressure proved too great and they were finally forced to acquiesce. The policies of the leading companies have now reached the limit of liberality on this noint by providing for the payment of weekly indemnity in a sum equal to the prin-

INSURANCE

cipal sum insured. Ore of the important innovations was the antroduction of the combination policy; covering not only all of the features of the regular policy, but giving double benefits for accidents happening in or on a moving conveyance using steam, electric or cable power and provided for the thse oi passengers. This clause was later extended to include accidents in elevaiors and burning buildings, as well as in any vehicle used as a carrier oi passengers. such as carrages, coaches, ommbus limes, and the like.

Durng this persod of evolution, otber changes were taking place. Conditions and agrecments. that jor years had been considered indispensable, began to disappear one by one. The fundamental theory that accident insurance was indemnsty for loss of income. resultung from total and absolute disablement. was qualimed by the broader and more Hexible rule of partal disabinty: whereby a varying percentage of the weekly indemnity called for by the poiicy became payable in case the assured was not totalls: disabled, but was partially prevented fronl attending to his business duties. This payment was fixed at 50 per cent by some compames. irrespective of the nature and exient of the partial disablement. whereas other companies adopted what may seem to be a more logical basis, providing for not less than 25 per cent, nor more than 75 per cent of the weekly indemnity, depending upon the special circumstances of each case. Other important concessions were made by the elimination of conditions that had been deemed a sine qua non to the sate and proper conduct of the business. One of the proncipal of these conditions was that "injuries. oi which there is no visible mark on the body. the body itself in case oi death not being deemed such a mark.' were not covered by the policy, Others were the exclusion of accidents from "sunstroke or ireezing; irom injuries intentionally infleted upon the insured by himself or by any other person, iniuries from unproroked assault excepted: from voluntary overexertion: violating law: violating rules of a corporation: voluntary exposure to unnecessary danger, expeditions into wild or uncivilized countries. ${ }^{\text {etc. Many of these exceptions were }}$ reluctantly abandened by the companies. oftentimes only after long and expensive litigation, the result of which was usually against the company.

The policies now issued by most of the companies are entirely iree from all of the above-named conditions and are practically "conditionless." save as to the methods of reporting and adjusting claims. It was, however. not until ison that the m st radical imn ration yet to be introduced into the busine-s of accident insurance was brought finsward in the shape of health and disalility insurance. It was perhaps but the I sical sequence of events that aitu perfecting the accident policy in the point of the greate-t liberality, the demand should make itcelí iclt ior incurance agamst "all the ills that himan fle h is heir to ${ }^{\circ}$ and underwriters in America acain iurned to their Eurnpean neighbors, who had already taken the inisiative. Sictiness policies had become quite widely introduced into many Continental countries before that time and the system of enmpulsory incurance acainit accidents and sickness had been successfully in-tituted by many Eurncean governments. It is true that as early as $18_{4} \%$ sich-
ness insurance was attempted in America, by the organzation of companies in Massachusetrs and Pennsylvania, but these compames, aiter brief and unprofitable carcers. gave up the strug. gle and nothing further was attempted in this vay unril about the year INó. At this time a rider to accident policies, covering about eight diseases, was adopted by one or two companies. However, the statistics avarlable on sickness insurance did no: make the business appear very attractive. and hence. during the first year or two after its Seneral introduction into the United States. few companies were prepared to assume the risk and then only from a limited number of diseases. about 15 . comprising a few of the more prevalent iorms. the balance being contagious and rare diseases. Soon, however, connetitors entered this field and the number of diseases covered was increased to 30 , and upwards. until ninally all ordinary diseases were included under the policy. At first, a health policy was not issued alone. but was combined with the accident contract, the two constituting disability insurance. Many of the leading companies still adhere to this practice: others issue the so-called unlimited health policy alone, but do not write the limited health contract. which covers a specified list of about 30 diseases, except in connection with an accident policy. While a very few companies still issue either form of heaith contract separately.

The introduction oi disability insurance was the signal for a still further broadening of the benefits and conditions under accident contracts. The most important of these benefits are the "Schedule of Operations." providing ior a fixed sum. in addition to weekly indemnity, to cover the cost of a surgical operation for any of the injuries listed in the schedule: the "Schedule of Indemnities" providing for a specified sum to be payable in lieu of weelly indemnity for any of the injuries enumerated, and the "Accumulation Table" providing ior a 10 per cent increase in the principal sum insured on each annual renewal until ihis accumulation amounts to 50 per cent oi the original sum.

A starting innovation in the year 1903 consisted in the insurance oi the beneficiary, without extra charge in addition to the policy holder. This was limited. at first, to indeninity for loss oi life from travel accidents. including accidents in elevators and burning buildings. However, this was extended in 1go4 to cover loss of limbs as well, from accidents above descrited. It is difficult to predict what limit will be reached by the companies in the eager contest for business. unless a standard policy is adopted by agreement or through legislative enactment.

The figures ior 10,20 and 30 years of premitus writen and losies paid, give some astonishing results. From is-3 to 1883 . premiums
 From $1 \mathbb{N B}_{3}$ to 1803 . premiums were $\$ 30,00-822$ and insses Ers.904.155. or an increase of isi per cent in business and of 220 per cent in claims. From iso3 to 1903. premiums amounted to $\$ 64$.-$832.8-4$ and losses to $\$ 28.686,686$ or an increase of 10 per cent in business and of 106 per cent in losies over the previous 10-year period, and an increase of 48 per cent in premiums and of sko per cent in losses over the first $10-$ year perind. These figures speak eloquentiy of the cnormous strides alseady made by accident incurance in America, and are but a forerunner
of the growth and development that can reasonably be expected in the future
leiability Insurance-Liability insurance is of comparatively recent origin, and was unknown in America prior to 185%. As in the case of aceident insurance, the business was lirst exploited in Europe, and its real development began after the passage of the English Employers' liability Act of 1880 . From time innmemorial, the liability of employers for injuries caused by or suffered by their employees in the course of employment has been a part of the Common Law of all eivilized nations. An eminent authority states that, as early as 1500 b.C. the Jewish law provided that "if a master were the means of causing the loss, either intentionally or unintentionally, of the eye or of the tooth of his slave, he was bound to let him go for his eye or his tootli's sake." And again, aecording to this same law, "if an employer allowed his os to gore either his servant or a stranger, he was required to pay various compensations to the injured if he survived, or to his relatives in the event of the injury being followed hy death."

Under the Roman law, a master was responsible not only for injuries suffered by his employces if due to his own negligence, but under the legal maxim, "Respondeat Superior," was liable for any personal injury sustained by a third person, due to the wrongful acts or omissions of his servants, acting as such and within the regular scope of their employment. The legal obligation to employees was expressed in the maxim, "sic utere fuo, ut alienum non lacdas" ; but the rule becane subject to two important exceptions; firstly; that if the person injured and the one cansing the injury were fellow-servants, the master was relieved from liability for the injury; secondly, under the doctrine of "zolenti non fit injuria." if the person injured had actual knowledge or the means of knowing of and understanding the hazards incideat to the employment and then voluntarily accepted the service, he was deemed to have assumed all the usual and ordinary dangers of the work and in case of injury, resulting therefrom, no recovery could be had against the master.

The passage of the Liability Act of 1880 by the English Parliament resulted in the organization of a number of companies for the protection of employers against the provisions of the act as well as against the expenses of litigation arising out of claims and suits instituted by employees for injuries sustained.

In 188\%, the State of Massachusetts passed an Employers' Liability Act, fashioned to a great cxtent after the English statute, but with such changes and modifications as were necessary to suit the changed conditions.

One of the English companies then in successful operation abroad, deeming the time opportune to extend its field to America, determined to establish an American office and selected Boston, doubtless because of the existence of the act above referred to. It is stated that the local agency for the American branch was offered to various prominent insurance agents of Boston, but was declined by each in turn, as both the company and the class of business were unknown and there appeared to be no demand whatever for the kind of indemnity offered by the rew-eomer. It later became evident,
however, that liability insurance had come to stay, and within the next few years a number of American companies were incorporated to carry on the busincss, and several fureign companies estahlished American offices on somewhat the same lines as the first company had done.

During this carly period, the business was entirely experimental and rates were constantly altered to suit the changing eonditions, as they arose in the development of the various features of the insurance. At the outset, the indemnity was limited to employers' liability, under substantially the following form of contract: That the company, in so far as regards fatal or nonfatal injuries to any cmployee or employees of the insured at the place or places mentioned in the applieation, during the period covered by the premium paid or by any renewal premium, would pay to the insured or his legal representatives all such sums for which the insurcd might become liable in damages not exceeding the limits of liability stated in the policy, such payments to be made within one week after the reccipt by the company of satisfactory proofs of claim. Soon, however, the insurance was extended to puhlic or outside liability, wherely the insured was indemnified against loss in damages on account of common law or statutory liability for personal injuries suffered by any third person and due to the business operations of the insured or of his sub-contractors. This contract was limited for some time to contractors and buiders, but gradually the demand arose for similar protection on the part of owners and lessees of buildings, which resulted in the further broadening of the insurance scheme to inelude general liability. This contract, briefly provided indemnity to owners or occupants of hotels, apartment houses, office buildings and wholesale and retail stores "against elaims for compensation for personal injuries to any person or persons whomsocver for which the assured may be legally liable, resulting from accident (fire excepted), happening to such person or persons on or atout the premises of the assured, or caused by any of the horses or ve hicles of the assured used in his or their busi ness." It was further provided, that, subject to the limits of liahility expressed in the poliny in respect to any accident which should cause death or injury to any one person or to sevesal persons, "the company will pay to the assured or his legal represcntatives. within one week after the receipt by the company of satisfactury pronfs of claim, all sums for which the assured shall become liable for personal injuries caused and limited as aforesaid, during the period corcred by the preminm now paid or by any renewal premimm, by virtue of the common law or any statute."

It was a comparatively short step from this contract to the issuance of separate policie's covering liability for injuries caused solely by horses and velicles, known as teams insurance. and for injuries caused by elcrators, known as elevator insurance. Meantime a few of the companies were engaging quite frecly in the insurance of common carricrs' lia bility, covering "any and every accident tc or caused by the ears, lorses, plants, ways works, machinery or appliances" used in the business of steam or street railroads, steam ships, steamboats and ferries. It is but propel to say that this feature of liability insurance was
looked on very unfavorably by the more conservatue companies, and one of the compantes engagning in the busuness notined its agency iorce after the disastrous results of this underwriting became first apparent in 1893 that, "we are not now seeking to push these specialties, as we find competitors (particularly companies whose managers have a commission interest), doing such business at rates which can only be productare of serious ioss. Railways we take cnly when the lines are short, and street railways not at all in great cities.") But the handwriving was already on the wall, and in November iSg 3 one of the largest and most important companies was forced into bankruptey. largely through the losses sustained on common carriers" liability. This placed almost an embargo on that class of business, only two or three companies continuing to issue such policies. Two of these later discontinued the business entirely, and the other, aiter a somewhat meteoric carcer, collapsed in 1807 with heary liabilities and few assets. In March 1896 the first significant action was taken with a view of placing liability insurance upon a sound scientific underwriting basis in the shape of a conierence of the leading companies held in New lork. After a series of meetings and discussions extending over a period of several weeks, an organization was effected known as the Conference of Liability Companies. A bureau of statistics was formed, with a well-known underwriter in clarge, and the work of compiling the experience of the various companies was vigorously taken up. Frequent meetings oi the Conference were called at which the managers and officers of the various companies discussed the different phases of the business and compared experiences. Policy iorms were analyzed and conflicting conditions either eliminated or reconciled. As a result of these meetings, and of the work of the bureau. a manual of rules and rates was promulgated in the summer of 1896 and standard policy forms were adopted shortly afterwards. From time to time thereaiter manuals and supplements have been issued by the Conference companies altering rates already established and publishing new rates, these changes and additions resulting from the statistical work carried on by the bureau.

Logical development of liability insurance in America dates from the formation of the liability Conference. Standard rates and policies having been adopted, competition was reduced to practically legitimate methods, and ior three years the business went on smoothly and grew rapidly.

This highly satisiactory condition of affairs was rudely disturbed early in the year 1900 by the withdrawal of one of the largest companies from the agreement, and while the Conference continued in existence, its usefulness was considerably impaired. Shortly after this time three foreign companies established American offices and two additionai companies were organized in this country: and as none of these newcomers became members of the Conference, the situation grew more critieal than beiore and the companies comprising the Conference came to he the minority: while they had formerly conctituted the majority: Early in rnoz none ni the smaller companies in the agreement withdrew, being unable to withstand the competition of the outside companies. At
the beginning of 190t the Conference consisted of five companies, while twelve companies were operating independently.

Thns great discrepancy in numbers has forced the Conierence to become almosi solely a bureau of statistics and there is little attempt made to the adherence of standard rates in cases of competition, which are of course the rule rather than the exception. In spite, however, of what might be termed these unsatisfaciory condutions. the business has grown and developed astonishingly: From the inconspicuous beginning in 188, already noted, liability insurance has in the comparatively short space of is years taken its place as one oi the most important branches of underwriting in this country involving more technical and difficult features than almost any other kind of insurance business.

The liability policies of the present day are substantially the same with all companies and are known respectively as Employers Liability, Public Liability, General Liability: Teams Liability. Elevator Liability. Owners' Contingent Liability. Theatre Iiability, and Marine Vessel Liability: The dremium is based, in most cases, on the estimated annual payroll of employees, and is subject to adjustment at expiration of the policy according as the actual payroll expended is greater or less than the amount estimated. To ascertain this, the assured is required to render a payroll statement to the company which is usually verified by an audit of the assured's books.

Tnder the various forms of policies issued, protection against legal liability for damages on account of accidental death or injuries to employees and the public is afforded to manufacturers, and contractors, owners, lessees, and tenants of buildings: to owners and users of horses and vehicles. including automobiles, elevators, ressels and boats; to theatres. agricultural exhibitions and shows, and to owners and general contractors of buildings in course of construction. While at first the limits of liability were rarely in excess of $\$ 5.000$ for one person injured or killed and $\$_{10.000}$ for $t w o$ or more persons injured or killed in any one accident it is now quite common to provide double these limits and in fact the indemnity is often fixed at limits of $\$ 10,000$ for one person and $\$ 50.000$ for a number of persons injured or killed in one accident. These increased limits are due not only to the inevitable tendency of the courts in the majority of States to sustain verdiets for large amounts, but more particularly to the enactment of laws increasing and extending the liability of employers and others in cases of negligence. For example, in New York State the statutory limit for damages in case of fatal injury from negligence was $\$ 5.000$ for an individual until this limit was remored by the legislature a few years ago, leaving the amount recoverable in such cases unlimited. In Illinois, likewise, the sum of $\$ 5.000$ was formerly the maximum a mount Dayable, but an act of 1903 increased the individual limit to $\$ 10,000$. W'hile it was rare to read 10 years ago of a verdict for $\$ 5.000$, such amounts are now deemed quite reasonable in serious or fatal cases, and it is not unusual to find that verdicts of ten, twenty, and even fifty thousand dollars are sustained by the courts of last resort. In fact, legislation is playing a most important part in the evolution of liability insurance in this coun-

INSURANCE

try. The Employers Liability Act of 1887 of Hassachusetts. while the most important statute yet to be enacted on this subject. in America, has never been quite satisfactory and just as changes and amendments have been constantly suggested for the English acts of 1880 and 1897 , so the legislators of the Bay State have attempted from time to time to extend and alter the provisions of their act. The latest effort in this direction, proposed in Igot, is known as the Workingman's Compensation Act and is quite revolutionary in ite character so far as this country is concerned, for nothing of the sort has ever been attempted here before. In the words of an eminent member of Congress from Massachusetts, while discussing this measure. "One of the principal reasons for it is because there have grown up in this country, lawyers and doctors who combine together to hunt up trouble and cheat the injured person out of his money. Another great trouble and reason for the proposed legislation is the employee's habit of bringing suit at once, without trying to bring about amicable relations with the employer. As things are to-day, while employers frequently have to pay out large sums of money, in many cases the injured employee is not benefited. Now, an employee has to show that he received his injuries as the result of the neglect or fault of the employer. This new law does away with all of this and favors the compensation of an employee for the loss of an arm or other serious injury, whether the employer is to blame or not." The passage of the so-called Slater Act of 1902 by New York State was another step in the direction of absolute compensation to workingmen and it is only a question of time and probably a short time, when most of the important States will have legislated on this subject. Not only so, but there is some talk of a national act to be put forward by the United States government affecting these vital questions of the relations between capital and labor.

It may not be entirely utopian to believe that the ameliorating influences of these State laws either with or without a national statute will result ultimately in the more friendly and unselfish attitude between employers and employees and in the discontinuance of strikes and labor disturbances generally.

The growth of liability insurance has kept pace with the industrial development of this country during the past 15 years as will be noted from the following exhibit: From I889 to 1893 inclusive, premiums amounted to $\$ 9,319.591$ and losses to $\$ 3,838,665$. From 1894 to 1898 inclusive, premiums were $\$ 20.535,668$ and losses $\$ 10$,084.319, or an increase of I 20 per cent in income and of 162 per cent in claims. From 1899 to I903 inclusive, premiums were ahout $\$ 50.000 .000$ and losses about $\$ 25,000,000$ or an increase of 250 per cent in premiums and of 250 per cent in losses over the previous five-year period, and an increase of 437 per cent in premiums and of 552 per cent in losses over the first five-year period.

Steam Boiler Insurance.- The first steam boiler insurance in America was written in 1866, dating almost as early as accident insurance, and like that other branch of indemnity, it owes its origin in this country to the thrifty, practical citizens of Connecticut. It was, however, not until 1869 that the business became well established. At the close of that year total premiums amounted to $\$ 55,819$,
and total losses to $\$ 2,188$, a modest begmming considering that for the year 1903, premiums aggregated about $\$ 2,000,000$, and losses about $\$ 200,000$, while the amount of insurance in iorce had grown from $\$ 5,000,000$ over $\$ 000,000,000$.

For many years the pioneer company had a monopoly of the field, as, for some unknown teason, capitalists seemed disposed to leave this business alone, due, perhaps, to the slow growth of the premiam income, as well as to the wechanical technicalitics of the insurance.

At the outset, the form of contract was limited to indemmity for loss or damage to the boiler or boilers and other property of the assured, and to property of others for which the assured could be held legally liable, due to the explosion, rupture or collapse of the boiler or boilers. As a guarantee of the value of this indemnity: as well as a protection to the company against the insurance of old and unsafe boilers, a periodical inspection is made of each boiler during the term of the policy by an inspector of the company, and a written re port is forwarded to the policy holder showing the condition of the boiler, recommending such repairs or changes as appear necessary, and stipulating the pressure under which the boiler can safely be rum. Steam users were at first slow to grasp the many advantages offered by this new scheme, and engineers of plants strongly resented the reflection on their skill and management implied by some of the features of the insurance. Conflicts of opinion between the inspector of the company and the engineer of the assured were of frequent occurrence and oftentimes much hard feeling was engendered. Nothing daunted by these obstacles, the company vigorously pushed forward the business and at the end of the first 20 years. the premium income had grown to about $\$ 1,000,-$ 000.

In the year I 887 another company was organized which gave considerable impetus to the business and introduced a new feature, namely, indemnity against loss from legal liability for fatal or non-fatal injuries suffered by any person or persons due to the explosion, rupture, or collapse of the boiler or boilers. From this time forward the business increased rapidly.

On I Jan. 1904 nine companies were engaged in the business of the insurance of boilers, tanks, dryers, rotaries, digesters, and other objects operated under steam pressure. Nearly 150,000 boilers were regularly inspected in 1903 and a small army of inspectors are maintained by the various companies at an annual expenditure of several humdred thousand dollars. Policies are frequently issued for as much as $\$ 100,000$ limit for any one loss, and a limit of $\$ 50.000$ is quite common. Notwithstanding the great number of objects insured annually, and the large limits of liability as above mentioned, serious explosions have been comparatively rare, and the average loss ratio of the largest company for 35 years has not exceeded 10 per cent per year. This showing would seem to indicate that there is an exceptionally large profit to be made in this branch of casualty insurance, but such is not the case, for owing to the inspection system before mentioned, the management expenses range from 60 to 85 per cent of the premium income. Some of the companies maintain in connection with
the mspection department．a iorce of draughts－ men fur the purpose of furnishing plans and specticatrun for new boilers．at the request of thear plisy holders or of prospective clents． 1 his service is rendered whout charge and adds somew bat to the a！ready heary expense of con－ ducung the business．It is interesting to learn from the statistics of one of the compantes，that irom the beginning of their business io I Jan． 1903 the number of visits of inspection made was $1.815-45$ ．The total number of boilers in－ spected was $3.505,83 \mathrm{~S}$ ．The total number of delects discovered was 2.550 .592 ．oi which dan－ gerous defects numbered $2,0,850$ ．and 15.169 boilers were condemned as unfit ior use．Dur－ ing the year 1902 the company made 142.000 visits of inspection，examined zó4．－as boilers． condemned 1.004 boilers．iound $145 \cdot+8$ defects． of which 53.000 were dangerous．

The total oremiums of all companies during 35 years，to the close of 1903 ．amounted io nearly S－5，000，000，and wtal losses to almost $\mathrm{S}_{2} 500,000$ ． and with the rapid increase in the number of new manuracturing plants throughout the coun－ try，and the general expansion of business．it is saie to predict that steam boiler insurance will develop much more rapidly in the next decade than in the pasi quarter century．

Piate Gluss Insuranie．－The first American plate glass insurance company was organized in New Jersey in ISQ，but unlike the pioncers in the other casualiy lines．this company does not rank among the leading companie：in poiat of financial strength or amount of business writ－ ien．In $18, \div$ the fir：t New lork company was started．and fron that year the business steadily increased in volume，iotal premiums for 1903 amounting to over $\$ 2.000 .000$ ，and total loses to over E800．000．There have been iewer changes in the plate glass policy than in ary othe of the casualty contracts．presumably be－ cause the business is less intricate and there has been no occasion to make many changes． Plate glass insurance provides indemnity on account of loses or damage calted by breakage of glass．provided that such breakage is the result of accident and due to causes beynnd the enntrol of the aseured．No claim is paid．how－ erer．for breakage resulting directly or indi－ rectly from fire，earthquake，inundation，insur－ rection，rint．or any military or usurped power， of from the blowing up of buildings of irrm alterations or repairs to the premises． Whale in years the insurance was limited alms enturely to what is known as plain plate glass，many difierent kinds of slass，such as herelled，mitred．cathedral．leaded．chipped，beat． Fl rentine，jew elled，ribbed and wired glass are מกw incured irecly by all companies

In inom pate gla⿱二厶力八 underw？ters were con－ ir nied wath an entirely new proprsition in the shape of clamped or pateried plate glass．re－ －uling from riveting the sides and top＝of plate $\mathrm{s}^{\prime} \mathrm{a}-\mathrm{s}$ together without the th－e of woden frames that bei－e that time had been indispensable．The ratic iormulaterl i r patented glass were at first entiraly inadequate and tle companies loit a ennsideralle sum while experimenting with the cubject．Snt only was there great trouble and delay in having bonken glass replaced，but the patentecs，having a monopoly，were di＝posed to cecure the full benefit fromi the product oi their incennity ts a recult oi these conditions．the ermpanies nlaced an almost prohibitwe rate on
all patented glass in the hope that they coula successiully taboo that kind of risk，but the public demand ror it was too great and pateried glass has come more and more into general use． However．near the close of the year 1goj．the leading companies iound that the experience with patented glass had been more favorable than had been anticipated，and，as a result，the rate was materially reduced．

Plate glass insurance is now almost as gen－ eral as fire insurance，and while the average premum $1 s$ small．the business has assumed very considerable proportions．During 30 years end－ ing 31 Dec． 1903 total premiums amounted to over $\$ 20,000,000$ ，and total losses to over $\$ 8.000$ ，－ coo．Fiiteen stock companies were on that date engaged in the business．in addition to numerous lccal mutual companies located in barious parts cf the country．From time to time in the pasi Io years，compacts have been formed between the largest companies for the purpose of regulating rates．and estabishing sound underwriting prac－ iices．Lniortunately，however，these agrec－ ments have been of comparatively short dura－ tion and as orientimes happens in similar cases． the demoralization following the termination of the conipact has been even greater than before it was made．

It is difficult to predict what will be the final outcome of the admittedly unsatisiactory state of atrairs prevailing in plate glass insurance， with rates low，commissions excessively high （sometimes as much as 50 per cent）．and the cost of replacements increasing．unless the com－ panies form a national compact and place the business upon a logical underwriting basis．One company heretoiore writing plate glass insur－ ance alone．decided early in the year 1904 to add a personal accident department，and it is probably only a question of cime when every company engaged in this one line of business will be inced either to add other lines of insurance． or to consolidate with other companies engaged in the same business．

Sprinkler Leakage Insuratce－While not constituting one of the main divisions of cas－ ualty insurance，this form oi policy is written to a limited extemt by two of the casualiy com－ panies，as well as by some fire insurance com－ panies．The contract covers loss or damage to the building and contents caused by the acci－ dental discliarge or leakage（except irom fire） ni the sprinkler equipment erected in or on the premises．The premium．based at a varying rate，depending on the class of merchandise covered，is predicated upon a certain percentage． usually so per cent，of the cash value of the building，stock，and machinery．Sprinkler leak－ age insurance has been in vogue only nine years in America，d：ring which period the total pre－ miums have not amounted to any considerable sum．There is however，a slow，steady growth of the business．due to the wider use of sprink－ lers in mercantile and manufacturing plants， principally in the Eastern and Middle States．

Fly－itheed Insurance．－This is one of the less impertant branches of casualty insurance and is of recent origin in this country．One company alone is encaged in the business at this tine． and hence the statistics are limited．The con－ tract cover：loss caused by the exolosinn，burst－ ing，or disruption，during rotation of the fly－ wheels or any of them．first for lose upon the fy－wheel or fly－wheels and upon other property
of the assured; seconel, for loss from liability of the assured for loss upon property of any other person or persons; third, for loss from liability of the assured for bodily injuries or death sustained by any person or persons. Flywheel insurance is more or less allied to boiler insurance, and the linits of the company's liability in case of loss, as well as the rates of premitum and the methods of handling the business, are very much the same as in boiler insurance. The insurance against breakage of machinery in general is being introduced to some extent in one or two European countrics, but has not yet been attempted in America. There appears to be a held for such a policy, and doubtless the indemnity will be offered by some American company before very long. In fact, at the present time, a few corporations are engaged in the business of insuring the maintenance of electric machinery and of making the repairs found necessary from a periodical inspection of the premises or plants.

Physicians' Liability Insurance.-This is another of the modern schemes in casmally insurance. and provides indemnity against loss from common law or statutory liability for damages on account of bodily injuries fatal or non-fatal suffered by any person or persons in consequence of any alleged error, mistake, or malpractice by the assured in the practice of his profession. The limits of the company's liability are uniformly $\$ 5.000$ for one person injured or killed, and $\$ 10,000$ for any number of persons injured or killed during the term of the policy. Naturally, the moral hazard is the main consideration in a contract of this nature, and, while a fixed preminm is charged, a careful selection is made by the conscrvative companies of the risks offered.

Taken all in all, the field for casualty insurance is an ever widening one, and the vast interests involved have given to this branch of indemnity a place in the front rank of insurance schemes. The magnitude of the business, the great scope of the contracts, the elaborate and comprehensive machinery required to properly conduct the affairs of these great corporations, can best be understood and appreciated when it is known that during the period in which the various lines of casualty insurance heretofore enumerated have been written by the total premilums have exceeded \$221,000,000, the total losses have been more than $\$ \$ 8,000,000$, and the total amount of insurance in force on I Jan. 1904 was estimated at the bewildering sum of over $\$ 5,000,000,000$.

Edwin W. De Leon,
l'icc-President Casuatty Company of America, Nci York.
Insurance, Credit, is a business proposition which offers to the seller of merchandise on credit nrotection against excessive losses as the result of bad debts. When loss nccurs a certain percentage is to he horne by the party insured, and the balance of the loss is made good by the comnany issuing the policy of indemnity. To illustrate: Apolication is made for an insurance bond on sales amomenting to $\$ 400,000$ a year, and a bond is written on a basis of one half of t per cent loss; this one half of i per cent on sales, or \$2,000 would represent the insured's own risk in had debts, and if he lost no more than that amount he would rcceive nothing from his in-
surance. But should his losses be $\$ 5,000$ in load debis, his own loss wuuld still be only $\$ 2,000$, and the excess, or $\$ 3,000$, would be paid him by the insurer, provided the lusses had come within the terms and conditions of the bond. Credit insurance is a matural product of the present age. The first important systematic aid to the credit system was the establislment of the commercial agency: which is now recognized as indispensable to an intelligent transaction of credit business. But this first aid was not complete within itself, and a supplementary system was needed to still further minimize the risk of excessive losses through insolvency of debtors, which want is supplied by credit insurance.

The ammal losses in the United States by the insolvency of debtors cxaceed by about so per cont the losses by fire. It has long been the general custom to pay insurance companies to carry the risk of loss by fire, lutt until comparatively recent years each merchant had to carry his own risk of loss through insolvency of debtors. Credit insurance is based on the sound economic principlc which recognizes the province of the specialist. Both fire and life insurance offer protection superior to that which can be obtained through any other medium, because the principle of the law of average cannot be efficientiy employed except by the specialist. Protection is against the possibility of abnormal loss no less with fire than with credit insurance. Credit insurance from the standpoint of the instrer proceeds on the principle of average which promises a profitable return on the sale of protection. The cost of protection is assessed on the basis of normal losses accruing in any given business for a period of years. Such loss may be termed the normal loss. Normal loss is that inevitable impairment of resource which can be borne by a business and yet admit of a satisfactory dividend on capital invested Abnormal loss is loss in excess of that which permits satisfactory dividend on capital insestment, and it is against such loss that credit insurance offers protection. From the standpoint of the insured, credit protection cannot be considered a profit-earning investment. It is simply and solely protection against excessive loss by bad debts. A crop failure: an epidemic of disease, or a widespread or protracted industrial labor strike, are possibilities of danger which no man can provide against, as respects commercial credits, except through the medium of insurance protection. Experience may qualify a credit man to guard against bad debts through the rascality or impaired credit condition of those seeking credit, but no amount of cxpericnce or capacity can of themselves render it possible to provide against contingencies growing out of such cases as above mentioned.

Great care should he exercised by the insured in taking out a policy of credit indemnity. The peculiar need of his business should he intelligently considered. Precedent cannot be safely followed. for the character of every man's busincss is in more or less degree individual. Unless an intelligent application of the princinle of credit insurance is made to each individual case, the greatest amount of protection cannot be realized. The principle of credit insurance being ecomonically sound, it follows that if the insured in any given case does not realize the nratection contemplated, it is becanse the conditions of the.

INSURANCE ENGINEERING - INSURANCE, FRATERNAL

indemnity are not adjusted io the needs of the busiress. No ameunt of indemnity can be consudered a profir maker of itself; its true sphere is tha: of a pront saver. In explanation of the prop sition that an insured is always a loser. when his losses make denand on the indemnity company. it is conceivable that excess losses shoud so dovetail with the conditions of the p toy as to remburse the insured ior every do la: of excess loss, but such instances rould be sare indeed.

I: w uld he pracically impossible to limit precisely the line ci credit on every individual case to ille exact ratio of pretection. Such a conserrative policy would by no means realize the best resulte of credit pritection, and. is strictly adiered to. weuld restrict rather than expand business. Pronection can be made to operate injuriousty in both directions, and it would be as false policy to limm business to the letier of protection as it would be io expand it beyond the limits of the spirit of indemnity. A credit should not be extended inerely by reazon of the coliateral security iurnished by credi-indernnity. but such security should be used to justify a risk which would not ocherwise be undertaken. and to increase a line of credit beycnd its nazural unsecured limit. A bank will nei lend on collateral alone. The personnel oì an individual borrower is an equarion which can not be eliminated, whether the loan be in mones by a bank cs in merchandise by a merclant. Collateral security in the case cía bank operates to zeduce the inkerest rate. and the difference between the rate which would be demanded without collateral and the rate with collateral. measures the premium paid by ihe bank itr the protection. 1 n the case of a merchant, the rate paid for pretectinn is the cosi of anting the security as represenied by the premium on the policy of indemmity. The banker, therefore, pays a higher rate for collateral protection than ilhe merchant

The essential features of the contract between the insured and the insurer are: (I) The insured to bear a normal loss of an acreed percentare of his annual sales. The said ratio of nwn lmat t be deternined by facts established by the reent 4 ci the bumess ior a series of years. iz Insurance to appy io bech rated and unrated accounts at an agreed ratio, as the circumsta ces if the burmess in questien may require and 1 stify. (3) Literal ins lvency c nditions. in "hich technical di-tinctions are e iminated. and the actual and virual facte equiahly arrived at. 1$)$ Prompi payment of ln...e at the period of critiemert.
Prist. I'imingt n, N: C.. Biord AyLer. Traic.

Insurance Engincering, a sience CI

 gut 1 procedure i r the lewter appi cation ni pr:-iles and ruc in the bus ness if imecr-in- pr riy andin-t fire The decis: $: 1$ of the
 ria Ur nime has hen divizonted insurance

 vriere i liect "1 I le to morat thuse Who she the erie in the shati a and encroctive ure ci mat rial: with a view to mini-
 that in rale ps m1 retate m re directly io
 the indurace of such a schos 1 shouid soon be
jelt in every department of arcbitecture, especially if out of its work shall grow a determina:ion on the part of the fire underwriters to make such discrimination against buildings in which they are expected to take all the risks as mill make it to the adrantage of those who build or buy houses of any kind to do what is possible to share this risk by guarding against fire within pracicable limits of slow-burning construction.

The latest oficial calculations - those of Insurance Commissioner Dearth oi Minnesota jead to the conclusion that 75 per cent of the enormous annual loss from fires in this counity results from fires which are preventable. The policy of the insurance companies bas lent itself to the encouragement of indiference on the part of onners of insured property to everything except the rate of premium. Conmissioner Dearth's jurther conclusions are:

It is sot io the large number of promiscnous fires Chat heary losses to property are atribitabie, bat more to the layger selecs fisks occuriag iz beavy commercial ci-cles where greaz valnes are involved One of iae Ereatest evils in nite underwriting is in the matrer of over-insurasce. Which places a premium opon cnminal ca-clessness on the pati oi the assured, if not absolute incendiansm. For this evil the companies thenselves aioze are, of conise, to blame, and conseqnertly bave it entirely within their power to eliminate. There is very listle questica that the companies are at the present tixe exercising a iar grearer degrec of precaution in th:s direction shan hezerofore; in short, cancelations, reducang the liability of the companies on all the mo:e hazardous classes of risks, are causing not only the local agen's, but the assured, no end of rromble, and much greaier care is, berond question, being exerciscl in the lize of inspections. especially looking to the matter of ralues as compared with the amount of insurance covering on the pronery. These are all matie:s ibat are being sirenuonsly considered by the underwriters throughous the conntry, and bevond question must result in a material decrease in the fre waste.

The erecion of insurance engineerins in:o a proiession will enable the insurance companies gradually to zeorsanize their business on saier lines, and in so doing disconrage the practices which have siown up through the co-operation ot owners and asents to saddle them with lareer responsibilities than any scale of practicable premiums would warrant. The number ci mien qualined to practise as insurance engineers has never been great enough to meet the requirements of the companies. The new school should have an immediate and important practical relation to the public weliare in the safesuarding of life and property and the raising of the standards of consiruction in buildings adnuitting of classification as insurable risks.

The undertaking has the enthusiastic support and co-operation of Edward Atkinson of Boste. whose effors in recent years have materially changed the meth ads of mill construction and the theories of industrial insurance: and it has appealed so strongly to mill owners, builders, muniacturers, and cther investors to whem fire is a censtant menace that, at Mr. Atkinson's ins:ance, a iund sufficient to place it at once on a s:hstantial money basis with liberal allowance for the heary initial expense has been raised

Insurance. Fraternal. The principles which envern the system of iraiernal insurance can be gleamed only from the decisions of the connts of law, the dictum oi the insurance departments oi the different States, the files of the leading fraternal journals, and the official reports issued by the National Fraternal Congress. the asseciared iraternities of America and the fraternal sociecties themselves.

Fraternal Insurance, as popularly understood at the present time, is "The obligation of a fraternal beneficiary association to pay the benefits prescribed in jits constitntion and laws when all requirements by or on behalf of the members are fulfilled." In the early days of fraternalism in America the term "protection" was miversally used in describing the benefits furnislied by the different beneficiary socictics. Sce Fraternal Beneficiary Societies in America.

The term fraternal insurance, although originally a misnomer, and clearly inapplicable in any true conception of the real aims and objects of a fraternal beneficiary association, has, however, come into general use of late years as being synonymons with the words fraternal protection and fraternal benefits, whenever reference is made to the money benefits paid by a fraternal beneficiary society. This change has come about so gradually that it is difficult to trace its origin or fully measure its effects. The primary cause of this mingling of insurance terms with fraternal names has undoubtedly been the failure of the officials of the different soc:eties to constantly keep in mind the distinction between the insurance contract supplied by an insurance company and the fraternal protection furnished by a fraternal society, while a secondary cause has been the efforts of the insurance commissioners of the different States to compel all fraternal beneficiary associations to comply with the regulations in force as to insurance companies.

In order, therefore, to fully understand the scope and meaning of the term fraternal insurance, as now understood, it is first necessary to ascertain the meaning of the word insurance. Webster defines it as "a contract whereby for a stipulated consideration called premium one party undertakes to indemnify or guarantee another against loss by certain specified risks." The supreme conrt of Pennsylvania (1890), in the case of the Commonwealth v, the Equitable Beneficial Association (137 Pa St. 412) (18 Atl. $\mathrm{I}, \mathrm{I} 12$), thus points out the distinction between regular life insurance and fraternal protection, as then understood.
"The general object or purpose of an insurance company is to afford indemnity or security against loss. Its engagement is not founded in any philanthropic, benevolent, or charitable principle; it is a purely business venture, in which one, for a stipulated consideration or premium per cent engages to make up, wholly or in part, or int a certain agreed amornt, any specific loss which another may sustain, and it may apply to loss of property; to personal injury, or to loss of life. To grant indemnity or security against loss, for a consideration, is not only the design and purpose of an insurance company, but is also the dominant and characteristic feature of the contract of insurance.
"What is known as a beneficial association, however, has a wholly different object and purpose in view. The great underlying purpose of the association is not to indemnify or secure against loss; its design is to accumnlate a fund from the contributions of members for beneficial or protective purposes, to be used in their own aid or relief in the misfortumes of sickness, injury or death. The benefits, although secured by contract, and for that reason, to a limited extent, assimilated to the proceeds of insurance,
are not so considered. Such societies are rather of the philanthropic or benevolent character. Their hencticial features may be of a narrow or restrictive character; the motives of the members may be to some extent selfish, but the principle upon which they rest is founded in the considerations mentioned. These benefits, by the rules of the organization, are payable to their own unfortunate out of funds which the members themselves have contributed for the purpose, not as an indemnity or security against loss, but as a protective relief in cases of sickness or injury, or to provide the means of a decent burial in the event of death. Such societies have no capital stock: they yield no profit, and their contracts, althongh beneficial and protective, altogether exclude the idea of insurance, or of indemnity, or of security against loss."

We may therefore assume that insurance is a contract between an insurance company on the one hand and the insured on the other, and provides for the payment of a specific indemnity by the company in consideration of certain stipulated premium payments by or on behalf of the insured. It has been held that a verbal contract of insurance is valid, but by universal practice the contract is made in writing, and is called a policy. The policy, therefore, expresses the terms of the contract, and governs the right of the parties.

Fraternal insurance, on the other hand, is the very antithesis of insurance as above understood. A fraternal society does not, and muder the laws of the different States has no power to, make an insurance contract. It does not, and canuot, issue a policy. It does not promise indemnity against loss, and is not limited to eny stipulated premium payments. Its contract is not between the society on the one hand and the members on the other, hut between the members of the socicty, each with the others, and this contract is not expressed in the certificate of membership issued by the society. This certificate which it issues is not a policy. If it were, the society would immediately cease to be a fraternal society, and be not only classed by the insurance departments of the different States as an insurance company, but required to report and pay taxes as such. The usual form of certificate in use certifies that the holder has been duly and regularly accepted and admitted to membership in the organization, and entitled to all the rights and privileges aceruing under the specified benefit, as prescribed in its constitution and laws as then existing or subsequently altered or amended by the duly constituted supreme body of the association. The certificate, therefore, is merely evidence of membership. and certifies that the holder is entitled to the rights and privileges flowing therefrom. It is in no sense a policy, and has never been so construed by any conft of last resort.

Jf late years there has been some conflict in the decisions of the courts as to the legal effect of some peculiar certificates of membership that have been issued by fraternal associations, but in the leading cases the courts have miformly adhered to the rule that the certificate is merely evidence of membership, and that the rights of the parties. or, in other words, the contract for fraternal protection, is governed by the constitution and laws of the organization as they exist at the time the right to the benefit accrued, although in some cases the society has been held
i，have 1 un ed cer：man pr vinn：in its consti－ out．n and ows because ui fect：iar jeatures in －certificute．wnd in ther zaves，cestain prac－ teces of casic．tr＝tha：．in the judgment of the furi，iended th nisiead the members，as to
 sume clawies in the coss：itutoon，have been held $t \rightarrow$ be a warer en th－se prow：ions

The laws ithe different ミ：ates require every irsiernal berericiary astuciation io have a repre－ －chtatme irm of gremment and to be or－ garized and carried on fur the sole benent of its members and their bencficiaries．Each member． theref re has a voice in the namagement．and has roo right t ecrmplain of any lawiul changes， a＇ierations or amentments is the constitutin and iaw＝m：de during his membership．because they have been made Ly hom．of in his behalf．and iar the gencral g and oi the entire membership．

As the organization is purely mutual，every nember wh is to share in the benents ought in equity t bear his rair share of the cost．and it © luws，therei re that he is also bound by a：3y changes that nay be made in his ate ci dues or assesimerts by the constituted authorities of the ，rganizaticn．

To sum up in a word．＇insurance＂is a con－ tract．while iraternal protection is the result oi a contract：the one makes a definite promise of a cortain indemnity in consideration of certain sipulated preminm payments，while the other is the oblization of a fratemal association in pay the bencri：－prescribed in its constitution and law：when ali requirements by or on tehali of a member have been iulnlied．Many．ci course． freier th rely on the business promise oi the in－ surance company to pay the prescribed indem－ nuty．but the milions of members in the irater－ nal societies oi America prefer their fraternal pr tector．not only becalise it is cheaper．but liecanse it $\mathrm{i}=\mathrm{betner}$ and surer．Every member ni every iraternal association fully realues that any tainkering with good faith in dealing with any single member would be iatal to the or－ ganiza：1 n ，and u＇inately injure the entire mem－ her－hin In the iudement oi all true iraiernal－ is： ．：he mutnal interests of the members． there i re．constitute a safeguard that i－iar $n=r e$ reliah e．and certainly more durable．than the mere pronsie i any purely hesines com－ 1a：y．The memberchip of the varinus iraternal bencticiary a－ciati ne in Anerica that report to the ir－urance deparm：ents of the different Et ie－i－ver $2.50 \mathrm{~m}, 000$ ，and the am unt oi pro－

 lave＇u－trluted ber Ekoo．coocco armong the 1 ufin－k．it decered merbers．Iast year ＂t r ：tal paymen：is death 1 ses wore ove： ミー3． I3－1 1 ar her if an 11 －orietics sattered throumh
 Whatrance dep－rte ev：F－fl：riher int rmation Ninctit 7 he limpal ReDicti if the Incurance Deplarments of tie dyerret stares and the nefictal Kupurts of the F－aternal Bencriciary scietce．Freifrtio Gustov．

Prisident The Grand Fraiernily：

Insurance，Industrial．\cap filitin－Jrduc－ －lal in－\％．．．．e may be de Erel a－family ina！e
ance ct retail．While in scientinc principles it d es not difier at ail from orcinary life mourance as described by Jir．Nichols，in practice its dis－ incture features are：（1）that instead of having it p icies writen ior $\Sigma_{1,00}$ and multiples thereni at varying preminms according to mor－ taity tabies．is poicies call ior premiums of \equiv cents and multiples thereof，the amounts oi insurance yarying according to age；（2）the Iremiums instead of being payable arnually，or semi－anmually，or quarterls，are payabie weekly： （3）these premiums are called for weekly by col－ lect rs instead of being remitted by mail：（ 4 ） tize amounts of insurance payable are based upon mortality iables drawn frons experience in in－ dustrial insurance，and these tables differ very w：ceiv at all ages from the tabies used by the ordinary companies；（ 5 ）the insurance is taken upun lives between ages I and $\%$ o．withont dis－ timetion oi ses as to premium．and，in the larg－ est company．without disinction as to color． Industrial insurance is so called becanse it is the insurance of the working classes．For this reawn it has grown very rapicly，and no doub： in time w：ll exceed in amourt the annial pre－ mium insurance．

History－FCE its origin industrial insurance must point to the guilds of the Niddle Ages， whose place was taken in England aiter the Reformation by burial socieries or clubs．These were volumary associations，meeting periodically and co：lecting dues and undertaking to bury members out of the iunds so paid in．The dues were the same for all ages and the management so bad that up to $186-$ Is．000 ci the clubs out of $38.0 n o$ had collapsed and a large majority of the existing remainder were insolvent．In i\＆ 49 the first industrial life insurance company was i unded in England．called the Industrial and General ：three years later an offshoot called the British Indusiry Lite Insurance Company was insmed：two years after this－in 1854 －the Prudential Assurance Company：which had been in existence six years as an ordinary company， took up the indusirial business and soon absorbed the British Industry．At the outset the business was experimental．as actuaries had insufficient data upon which to base calculations：and several tables of benetits for the weekly premium of a penny succeeded each other，widely differing in amount．The first table ran from ages 10 to 50 ： age to was found too high for practical working and the table was run down to age $\overline{7}$ ；then a de－ mand arose irom the pecple for insurance at ynnnger ages which was first met privately by an agent if the Prudential on his own aciount． IIs fine business record attracted the attention ni the officers，who found it arose from his prac－ tice of himselt insuring the younger members of the family．This discovery led to the enmpany＇s making its system a real family in－ －rrance．It was not succesfiul until all ages were accented．Thereaiter the business grew rap dly，so that at the end ni 1004 the Pru－ dential had $5=-\frac{1}{2}$ ． 61 industrial policies in fneca secured by E34．0－3．052 of assets credited t）the Industrial Department．heside：fro．－ 3．n． 122 assets credited to the Ordinary Depart－ ment．The Pnard of Trade exhibit of regular industrial insurance（that is．excluding friendly －ncietic：）in Great Britain shows the steady and rapil growth of the business as will be seen in m the \＆Ihwing table

Year	No. of Companies	No. of Policies	Instrance	* Leath etaims Paid	Assets
1890.	8	9,432,778	£ $86,203,873$	$\mathcal{L}_{1,928,406}$	£8,737,936
1895.	7	14,990,581	144,142,569	$2 \times 418,754$	13,803,227
: 900.	1.4	18.653 .846	181.135 .538	$3.410 .64 \%$	21,512.384
1904.	21	$23,810,937$	234,217,606	3,944,927	32,412,434

The momber of policies in force in the industrial companies of Great Britain equals about one half of the population of the enuntry:

In America the first weekly premium experiment of importance was the connection of the Hildise Bumd, a German society which reccived
than five millions of annual premium policies the amount insured thereby being respectively: \$2,134,458.4II inclustrial insurance and \$9,360,278.728 annual preminm insurance.

The following table show's the rapid growth of the business:

INDUSTRIAL INSURANCE IN THE UNITED STATES AND CANADA.

premiums weekly and used them to pay to the Metropolitan Life Insurance Company to be credited upon quarterly premiums on policies issued by the Company on the lives of the members of the Bund. A large business was done on this plan for several years after i860. amounting at one time to $\$ 7.500$ per week. There were other similar socicties in name, but they seem not to haye done much business. The English experiment had attracted a good deal of attention in America, and variots industrial insurance companies were formed which, however, never got to the point of issuing policies. There was a good deal of literary discussion which culminated in a State report in 18;4 by Commissioncr Clarke of the Massachusetts Insnrance Department, describing the work of the English Prudential Company and setting forth the principles of industrial insurance. In 1875 the Prudential Insurance Company of America, then a small corporation in Newark, New Ierses, known as the Widows' and Orphans' Friendly Society, clanged its name to the Prudential Friendly Society and in November began the industrial business on the lines of the London company after which it was named. Before it attained much growth the John Hancock Mutual Life Insurance Company, of Boston, the Germania Life Insurance Company, of New York (which, however, soon ceased writing industrial insurance), and the Metropolitan Life Insurance Company of New York. old line companies of experience, began the industrial business: The progress of this system of insurance in the United States has been wonderful. Its first policy was issued in America only 30 yeats ago: at the end of wot there were in fnice in the United States and Canarla over fifteen and a half millions of industrial policies against less

$$
\text { Yot. } 8-52
$$

The following table shows how extensively the working classes take out this insurance, by a comparison of the population of five large cities with the number of industrial policies in force in three companies (other companies are doing business in most of these cities):

City	$\underset{\substack{\text { Population } \\ \text { 1900 }}}{ }$ in	
New York St. Louis Cincinnat	3.437,202	2,191,818
	,-93.697	1,145,172
		427,403
	3-5,902	294,540
	6,142:996	4.483.068

There are in the United States about 30,000 agents writing industrial insurance and the head office clerical force mumbers about 5.000 .

Industrial insurance was introduced in Australia in 1884, but was not vigorously prosecuted until 1887. By the end of 1902 there were six companies, with 291,198 policies in force, assuring 66.210 .58 o. In New Zcaland the (rovcrmment started the business of Industrial insurance in 1875, but quickly discontinued it. In i88, the fovernment revited the work of the insurance brancla of its Insurance Department, but finally alandoned it in 1887.

* The figures in the eolumns of payments and assets include the anmual premium business of the companies. As to these items, the reports do not separate the weekly premium business from the annual premium business. But so very large a proportion of the business of the companies is industrial that these figures are not at all misleading.
the busmess flourishes best in Anglo－ Saxon cuantries．It is scarceiy known any－ where else except in Germany，where in 1900 there were 34 companies，having two and a half milhons of policies in force for §II5．000．000．In Austria，Holland，Denmark， Sweden，Switzer：and，Hungars，and Belgium the busmess is transacted on a very smabl scale．

Policy Contracts．－We have said that the unit in industrial insurance is the five cent premium：the amounts of insurance vary with the age if the insured and the duration of the policy：The curve in the mortality table descends from birth to age 12 and then ascends，and the companies fir the same premium increase the amount oi insurance with each age up to age 10．The amount of insurance thereatiter d es not decrease ilrongh life；ior the policies are，like the annual premium policies，con－ ：tructed with a level premium carrying a reserve irom age 10 on whole hie and on endowments at a！l ages．Insurance at sounger ages is form insurance．Difterent kinds of policies are issued．The Prudential and Iohn Hancock com－ farics＊policies are nearly all whole life：the Metropolitan policies issued for the last ten years have been practically all endowments： $10-$ Fither these three companies have in insce and i＝sue vearly about 95 per cent oif the American insiness．This able of the largest of the com－ manies shows the benefits payable on clildren for a 10 cent premium with the period of en－ dowment

SREMIT゙M OF 10 CEN゙TS．IN U゙SE BY THE COM－ PANY WRICH HAS TS FURCE ABOLT ONE HALF OF THE AMERICAN Bじミ1入Eミジ。

Amount fayable provided tea：h occur after the policy has been in force fur the following perious
 ih in n 1．： e

No hethe fremium than t cents will be aken．
It will he on ticul ti as the amount payabie incrancs mat rially atier the prlicy has been in force firs several years．The reasnn is that in the eity years inatrance is not needed in wo large
amounts and the unearned par：© the fremium charged is used to increase tue ami urt of in－ surance in the later years as well as to shorten the endowment period．Teclnically in indus－ trial insurance adult insurance begins at age ten because the old actuarial tables were not carried below that age．Above that age at each adranc－ ing year at entry the amount of insurance for the same premium decreases．Thus，entering at age 10 the amount of insurance is \＄230 for 10 cents；entering at age $20 \$ 154$ ；entering at age 30 Si20－and so on．These amounts are payable（with certain dividend additions） at age So or prior death．There are other tables，whole life tables．where the insurance at certain ages for the first few years of in－ surance is slightiv higher for the same premiums：and there are also 20－year en－ dowment tables，where obrjously the death bene－ fit for the same premium is less．

The provisions of the policies in industrial insurance do not differ in principle irom the annual premium policies．Because of the small premium payable weekly the policies are only in partial benefit during the first year of in－ surance，that is，cne quarter is paid if death occurs within six months，and one－half if death occurs after six months and within a year．The insurance is payable immediately upon receipt of procis of death：and these proots are pre－ pared by the companies＇agents without charge． The intention of the insurance being mainly to provide for expenses of sickness and death． everything is done to faciliate the payment of the premiums of the company and of the claims to the insured．Conlectors call weehty for the premiums；the companies have local offices con－ venient to the policy holders and from there death claims are atiended to and paid either without reference to the bome office or on telc－ graphic instructions therefrom．Four weeks grace are allowed in the payment of premiams which in practice is las：ally extended to five weeks，within which tine clains are paid even if preminms have not been．Paid t：p policies are isstred after two，three．or five years in dif－ ferent companies．The llassachusets law pro－ vides for two years：the New Jersey law fer three years：the New Iork law does not compel paid－up insurance－but the company grants it nevertheless．Revivals are ireely granted in cases of lapsed policies，and where policies have hecn lang lapsed．so that payment of arrears is difficult，the companies loan the amount of arrears on the sccurity of the policies．Special allowances are made in cases of long strike： and locknuts．death claims usually being paid even if pulicies are lapsed．

Coidends－Policies of industrial insurance The in in meen mastly non－participating：hat i late years three American companies have begum in pay dividends and hase voluntarily dis－ thered to industrial policy holder－over nine and a hali millions of dollars－averaging over a mit lion of lollars anmally in casls dividends for the last eight years．The profits come from a very small margin upon an emormous amount of busi－ ness．It has been estimated that the reduction of pecmirm one cent a week on cach policy would bankrupt the largest ni the companies in five years．The nuly feasible way of reducing the cost to the holder is therefore the return of surplus by dividends．Two of the companies
once in five years return to the holders of life policies a cash dividend equal to ten weeks' premium - or about 20 per cent of the premiums tor a year. One of these companies, which in I8g6 practically withdrew the whole life form and lias since issued endowments, substituted as to this form of contract a reversionary dividend guaranteed in the policy; that is, after the third year a sum is amually added to the face of the policy equal to the sum of ten weeks' preniums. Thus a policy which is for $\$ 230$ after the first year (premium io cents, age io years) eventually is for $\$ 297$ payable as an endowment at age 80 . One advantage of this long endowment is that the amount of paid up policy is readily calculated by the insured - being for such a proportion of the amount of the policy as the number of years paid bears to the endowment period. The other of the large American companies provides in the policies for reversionary dividends to be paid when death occurs after 5 years; for cash dividends after I5 years and quinquennially thereafter; and for cash surrender values after 20 years.

Morfality:-When the cost of industrial insurance is considered, the first thing to be noted is the increased mortality among the industrial classes. Let us compare the number per thousand dying at each of several specified ages according to (a) Farr's English life table of the general population in Great Britain, compiled from two censuses (we have no such table in America): (b) Actuaries' table. (that is, a table of insured lives formulated from the combined experience of $I T$ companies, compiled by English actuaries, which is made the statutory basis in many of the United States for the computation of insurance liability) : and (c) the Metropolitan Life Insurance Company's industrial table (based on observation of twelve millions of insured lives):

DEATHS PER 1.000.

	Age Next Birthday	Farr	Actuaries	Metropolitan
20		7.74	7.29	10.52
21	S.4,	7.38	11.56
25	. . .	9. ${ }^{4}$	7.77	14.14
35		11.24	0.29	17.15
45		14.50	12.21	22.56
55		21.55	21.56	35.22
65		41.20	4.4 .08	64.51
70		60.80	6.4 .93	90.99

A glance at these tables shows the net cost of industrial insurance of adults to range from 140 to nearly 200 per cent of the Actuaries' table. As the experience of the American comnanies shows an actual nortality of only about So per cent of the Actuaries' table, it follows that the industrial mortality is from 170 to 230 per cent of annual premium insurances. At age 35. generally taken as an average age, the percentage is 230. A comparison of industial mortality with general mortality shows a less. but still large, percentage of difference. It is reasonable that it should be so, because. in the first place. industrial insurance in this country has not yet reached. in proportionate amounts, the agricultural and rural population, which is so large a percentage of the whole population. In the second place, the mortality
of the working people in cities is large, because of the exposure, the mode of life, the hard toil and confinement, the carelessness of self whicis the observation of everybody must have noted among working men and women. To some extent there is also a sclection against industrial companies, often unconscious, which is the correlative of the unconscious selection against tontine and endowment policies in annual premium companies. A man vaguely conscious of low vitality will insure himself more readily than his opposite, just as one vaguely conscious of superior virility will prefer tontine to whole life insurance.

Insurance of Children. - The insurance of children las been the subject of muclı discussion in England and America, and legislation against it has been proposed; but no law of prohibition has been passed : my State : there the business has been well sstablished. In England the law has remained for many years permitting the insurance of clrildren within the limits previously adopted and maintained by the companies: and this after repcated Parliamentary investigations. In America, Now Yorl: State in 1892 adopted as part of the isurance code a provision anthorizing the insurance of minors according to the table of benefits in use by the companies. The Province of Ontario, Canada, followed a few years after with a similar table. In the States of Massachusetts. New York. Pennsylvania, Ohio, Connecticut, New Hampshire, Tennessce, Missouri, \Visconsin, Michigan, Georgia, Tirginia, North Carolina and California proposed logislation forbidding the insurance of children has been defeated, in many of them repeatedly. In Massachusetts in is ; the joint legislative committee took six weeks to investigate the subject, examining hundreds of witnesses, resulting in a vote of 143 to 29 against the prohibitive bill. Colorado is the only State which forbids the business and the law was passed there without a hearing of the company which had only recently begun business in the State - in other words, in anticipation of not after experience of, evils. So France, which is withont experience of industrial insurance. recently passed a prohibitive act: while in Australasia, where such insurance has been written for years. New Zealand has passed a law on the lines of the English permissive act. The tables above printed show the American limit on child insurance by the practice of the companies. It is apparent therefrom that at the carlier ages the insurance is simply burial insurance, while at the older ages it amounts to a very respectable endowment insurance. No case of child murder or abuse for insurance has ever been shown in the U'nited States. In England the matter is thus summed up by Doctor Jones of the Royal Southern Hospital in Liverpool (where child insurance is most common and has been for many years) in a hook ' On the Perils and Protection of Infant Life": "The incentive to child neglect and child nurder is not the prospective receipt of insurance moncy." Statistics in both England and America show that the mortality of insuresd children is less than the general child mortality: The following table compares the mortality of the company which has in force one half of all the industrial policies in the United States and Canada, with that shown by Farr's English life tabie of the general population of

Gre．．：I \because an and bs t e Tnmad Siates census of バー。

DEATHS RER I．OOO ANONG CRIIDREN．

$\begin{aligned} & \text { Aez Nirt } \\ & \text { BETBDAY } \end{aligned}$	$\begin{aligned} & \text { F=Tr's } \\ & \text { Table } \end{aligned}$	Enited States Censis：		$\begin{gathered} \mathrm{Co}^{\prime} \mathrm{s} \\ \text { Emeri- } \\ \text { ence } \\ \text { igce } \end{gathered}$
		$\begin{aligned} & \text { Genery } \\ & \text { Ppexi- } \\ & \text { ika } \\ & \text { Igo0 } \end{aligned}$	$\begin{aligned} & \text { Cive } \\ & \text { Cive } \\ & 100 \end{aligned}$	
．．．	c－s． 9	－56	S－s	ミ2－：
：	$30 \cdot 3$	20：	30	
5	二：$=9$	13.3	22－9	1： 3
$8_{6} . .$.			15.9	
	ァ0－\％			
$\$$	9－5	ミ\％	So	E
12－．．．．．．．．．．				

－Tre cessas tables of silis were the last to give moth ir
 \％－it the gene＂＂opi－t．an and olec mping＇serverence is shmon is the sioining a humps．The compan＇s uiness in bowe er：ze albost eavintr in cities and a sery lige propurtion is in the ar vitic refered ：o in the cences of inc．

The comparies firnt ti：e am $\because n$ i cind ms：rance t the amount：fixet by ine New 1 －k
 the Inamaile Endowmer：tab：e provted abure； and the raie in case i over－insuranace is eiticr in all c mpantes io cat cown ite parments pr purti naiely cr in the comanats issuing the latest policies to serum the premiums． I specialtr of cheld inserance is made．In－ dustrial rusurance is as we have sam iambly m－ susamce．Ihs is striking＇y shmo by omparing the percentage i populati－n at vari us groups of the ages with the percentage ci p ，vies in furce a！the same ages in the bargest industrial o mpany

 Pivg o the nut primen ionce ourity ab it lee：in n mrons prewom c minanles：

amine every appicant．aduit and iniantile en crery apnoisation howere：small，and the third exarmes in cases of policies over ξ_{300} ），and because oit the heavy lapse rate．O－e company faid Es三o，coo in the year 1004 for medical exam－ fration of appticarts for industrial insurance． As t．：e premi：ns ase payable weekly there are इ2 coporturities each year iur lapsing，as azainsi 1 to 4 in annual premium com－ panies：and in the firs：year of insurance the lapse rati，is very high．Ail of these lapses are a pecuniary loss to the cimparies：and this arge！accounts for the high expense ra＊io．In inct it takes nearly and in some cases more than the fund accumbiated irom premims ior five years is curer the reserve．Oi the bursiness inned mithin the firs three rears，more than Wali goes of within the frst three months，and six sevenths during the first year of the life of i．．e poticy．The lapses in industrial insurance， whie they cause a heary 1 ss to the companies， d not＂sually represent any se－ious loss to the inswed．The premiums are reekly and the ？Bare carried on grace for iour weeks after fonse and they are reissued upon payment of a single week＇s premium；the loss is thereiore I 5 Ahe tivat of those who pay annally：On tire iniantrle table the policy，ii reissued，is iot the same amount as the policy lapsed would bave ca＂ed for at the age of－ejs：ue．because up \rightarrow age io the amount of death benent increases each year：so that the only loss is from the patail bereñ：ruie ior the mitial year．On the adult able a policy lapsing during the first year in i rce can be revired at any time without any 1．ss to the insured：aiter a policy has been in i rce a year it may be sevired irithin a year aite－lapje at the oniginal amount in iall benefit． Here also is no loss．If the policy has been in iorce two years and lapses，the premiums will within two years thereaiter be loaned by the company is the applicant wishes to revive and is unable to pay tive arrears．Here therefore there is no lns．If not revived and new instis－ ance is taken，the amount oi insurance at each advancing year is very little less than the fre－ ceding year．It the poiicy is kept in firce unst it is entitled $t u$ be surrendered for paid－up insurance the holder may hare paid－up insur－ ance：or he kas the a！ternative privilege of extended insurance．by which the iull reserve is applied to the payment of premiums up n a rew pllicy issued ai the attained age． If he elects to take the extended insurance he can begin paying again when the period of ex－ i．nsi－m has clap－ed and therety l－ie nothing by $1 \because:$ risinal lanse except the reducuion in the am urt－the policy by his increased are at the tre i the new policy．It gees without say－ ing toat in a．l these cases lapses are no sueat －Wheri．．．．in the insured．There can be no d Int the the lapses in industrial policies are 1．y iarce＇y by thase who suthequently iake ww in－iorce sufering no loss at a！h in ca－e ct ruvo and ctherwise surfering only the small ：ss arinirg ir mpartial bentefits during the first year an 1 the smail decrease of henents by rea－ son of advanceri age The fact is there are rany：wl inwe and lapse and remenre ac－ enrding to their diaposition of mind and their resantces．with－mal lois to the holders hot trae lo is the inmpany，which is put to the expen－e，i onmmiseions for placing the business a－1 the lurae expuse i caring ir it．Aiter

INSURANCE, LIFE

three ycars the busincss is rery perisistent; so that the average persistence of industrial business as a whole compares very favorably with annual premum business. The a.verage duration of the policies in force in the largect Erglish company is $10^{3} 4$ years, and that of the policies of the largest American company (which has been in business only about lalf as many years) over 6^{12} years. In Australia, in ISO2, the avcrage duration of the policics in the company which had two thirds of all the industrial insurance in force was about 6 years. The expense of insurance to the industrial classes has been greatly reduced by the introduction of what is known as intermediate policies. These are policies which in 1896 the two largest industrial companies designed and issured for the working classes. They are policies for an even amount of $\$ 500$ each, premiums payable ycarly or in half or quarter years. The premiums of the largest company are based on the industrial table of mortality and the loading is similar to that used in annual premium policies. The result is a moderate priced ordinary policy contract issued on all the usual forms - whole life, limited payment and endowment - and placed in a separate class for dividends. A working man who has got beyond the necessity of making small weekly payments and can afford to pay dollars annually where he has been paying cents weckly, finds in these policies insurance approximately as cheap as lis rich neighbor buys. There were at the end of 1904.308 .796 of these policies in force in the Urited States and Canada, insuring $\$ 152,710,657$. The English Prudential had at the same date $7+2,147$ ordinary policies in force, of which a very large proportion is endowment, averaging less than $£_{100}$ each, the premium averaging about E.5. The English 2 Prudential policies are participating, the dividends being applied to increasing the amount of insurance. In Ancrica the "Intermediate" policics are also participating, kept in a separate class: the dividends have been large, derived principally from saving in mortality and gains in interest; they are payable in cash reduction of the premium or in reversionary additions. The industrial companies on both sides of the water claim that by the issue of this class of policies they have perfected the system of industrial insurance and have performed their full duty to the wage-carners by furnishing insurance adapted to the condition, means, habits of life, and requirements of all: weekly premiums for those who can afford no better, and for those of an age unsuitable for large insurances; annual premiums for small policies with dividends as earned, bringing the cost down to nearly the cost of what is known as ordinary insurance.

Haley Fiske,
Tice-President of the Metropolitan Life Insurance Company:
Insurance, Life. Life insurance is the application of insurance to loss or injury caused by death. It may be defined as a contract under which one party called the insurer, in consideration of certain stipulated payments, termed premiums, agrees to pay to another a moneyed benefit upon the happening of a contingency dependent on the duration of a human life. The person whose life is the subject of the contingency is termed the insured and the party receiving the benefit the beneficiary, while the
bencfit itself is cailed the insurance money. The contract when in writing is known as a policy. In practice the contugency involved is cither the death of the continned survival of the insurct. If the benerit is to be paid upon the death of the insured, it is known as a strictly life insurance contract, if upon his survival to a given age, it is called an endowment. The issue of such contracts is confined to companies incorpurated for the purpose and to benevolent and fraternal associations. The fundamenta! object of life insurance is the protection of families and dependents, or of busimess interests from the pecuniary loss which is liable to result from the death of the party insured. It furnishes a method of at once providing a fund which shall be available in case of such misfortune, by means of a series of limited payments made during the continued life of the insured. The latter is able for a small consideration to secure the benefit of an immediate investment payable upon the expiration of the contract, instead of awaiting the slow and uncertain process of accumulating a capital which may be defeated by his untimely decease. The business man is thus emabled also to protect his creditors or liis business as well as those dependent on him. In case of the endowment the policyholder is able to unite such protection with a fund available for his own use should he survive during a stipulated period. In short, life insurance may be regarded as a method of purchasing immunity against moneyed misfortunes liable to result from death, and appeals with special force to those whose chief dependence is on their daily or yearly earnings. It offers peculiar adrantages, too, bccause it can be placed beyond the reach of creditors and need not be involved in business misfortunes, while the policies themselves can be hypothecated or sold like ordinary commercial securities.

The policies are issued by the companies upon written applications from the purchasers, in which detailed statements are required regarding the health, habits, and family history of the applicant. accompanied by the certificate of a physician based on a careful examination. The policy stipulates as to the amount and character of the benefit to be paid, the party to whom it is payable, and the premium payments to be received, together with such other provisions as may be needed to express the complcte contract with the applicant. The premiums are usually payable amnually or at shorter intervals in advance.

History:-Life insurance in its more modern form was practically unknown until it was introduced into England by the establishment of the Amicable Society in 1696. Other companies were gradually started there. But for many years afterward it was prohibited on the continent of Europe as immoral. Modifications of the system, however, known as annuities and tontines had long been familiar, and the former had been employed as a basis for national loans. It was not until the $17 \mathrm{th}^{2}$ century that sufficiently reliable obscrvations on human life were compiled to furnisis a satisfactory foundation for the business, and that the commercial elements of society attained an importance sufficient to give it the needed support. Companies thereafter multiplied in Great Britain and the business gradually extended to the continent of Europe.

INSURANCE, LIFE

Life msurance was introduced irom Great Britan to America, and the first sciety was organized in Philadelphia in 1759 for the relief of Presbyterian minnsters and their widows and chnluren. iollowed to years later by a similar corporation for the benefit of Episcopal clergynen and their widows. Their operations, howeser, were confined to the classes named. The first company to attempt a gencral business was the Insurance Company of Corth America, Irganized in the same city in roo6. A number of cther companies gradually inllowed in that and other important cities during the earlier : art of the 19th century. All these earlier effices. however, combined fire or marine insurance, or banking and trust business, as well as annuitics with life insurance, and gradually abandoned the latter. Popular prejudice proved to be too strong, and the economic condition of the couniry to be too little developed to make its prosecution successiul. The real beginning of modern life insurance in the United States dates irom the organization of the Mutnal Life Insurance Company in New lerk in IS43. which was quickly fullowed by that of others, buth there and elsewhere. some of which had already sectured charters for the purpose. The business of these new companies was confmed to life insurance, and their success led to the gradual multiplieation of such companies until within \approx rears it had attained propirtions which made these corporations among the most important financial institutions of the land. The business has since continued to expand until the enormous sums now inrested in life insurance in America far exceed those in any otl er country: Its leading institutions are unriva!ed in their size chewhere, and several are transaeting business in every quarter of the g^{\prime} be.

Insurablé Interest.-Every itrm or insurance presupposes scme pecuniary interest in the subject insured. without which it would be a mere spectulation or gamble and a temptation to crime which publis inlicy docs not permit. Where the insurance is on property, such interest on the part of the insured must ustally be comnensurate with the amount of the insurance. The insured is restricted in his recuvery on the puliey on a sum whel will indemnify him for his los. This ductrine. I wever, is relaxed in case of life inurance, since no etrictly moneyed alue can well be placed en a human life. The principle of indemmity ges no further here than a Fequirement th at the party pr curing the insura:ce chall lave cuch an interest in the life incured as chall prevert the contract from being a mere ganble en its survival. Iny reasomable expectation of recuniary advantage from the cotitin ance of the life is deemel suficient. suels as d pet dence er tl e payment if a deh: Every per- $n,: \%$ is a-enn ul to hive an interest in 1 is fun life, wl ich le may inwure to any amount. and may nothe the indey proable in any beneficiary is 1 , m be may elect on 1 Ig a the scheme is fit a ylere c wer i r ganthling.

Clarsis if C, panios-Lie insurance is carried rn iy iwn divinct casace of institutinns Dre ennsiste of th ore wlich treat it as an reilnary crmmercial or financial business. the wher, if th se which cteal with it as a form rf lemeveleres or iratertal aul. The former may Le arain dusited iv te those in which the oreinma are defisite in their amount and time
of payment. and ibose which depend on assessments from their policyolders to pay claims as they become due. Lite insurance as a business, however, is chiefly carried on by the first mentioned, which are known as old line or legal reserve companies. It has been iound the only busuress method which has successfully stood the test of experience. Two systems have been adopted in this class of companies. One is the mutual, in which the policyholders are regarded as the owners of the corporation, and all profits or surplus arising from the business are distributed among them. Such surplus performs the iunctions of an ordinary capital. The choice oi directors or irustees and consequent management of the company is usually placed in the hands of the members. The majority of companies in the United States are conducted on this system. The other is the stock plan, in which the company is owned and controlled by stockholders, who deal with the policyholders simply as customers and divide the profits of the business among themselves. Higher premiums are charged for mutual policies for the purpose of creating a surplus. which may be eventually returned in dividends to the policyholders. In the stock policy, on the contrary, the holder sacrifices the right to dividends in exchange for a lower premium rate. Nany oi the companies combine both features, nurual offices issuing also stock policies. known as non-participating. at lower rates of premium. Often, too, a stock capital is added to a mutual company which is restricted by the charter to the amount of dividends which it can receive. When the stock is allowed to share in the profits in excess of its legitimate earnings as an investment, the system is known as the nixed plan. Sometimes, t 0 , the election of directors is apportioned between the stock and policyholders. or. in a company otherwise mutual, may be restricted to the i rnser. In some of the States a capital stock is required by law in the organization of a mutual company until it can be replaced by surplus belonging to the policyholders. The distinctive feature of the legal reserve company, apart from its fixed premiums, is that it must at all times maintain a reserve fund adequatc to the payment ot its future obligations. less the future premiums which it will receive: in other words, it must in a commercial sense be financially solvent. It is also known as an old line company because conducted on the principles which have always characterized life insurance as a busine $=$ until the introduction of the assessment plan.
ississmont companics were started in the United States over 30 years ago for the purpose of furnishing life insurance at lower rates than those charged by the regular ald line companies. I: atead of a fixed premirm, assessments were laved on the policyholders to pay the losses as they oceurred. Various methods were adopted for lowing such assessments, and. as the policyholders were in thenry liable for whatever ascesments were needed, they only beeame insolvent when unable to meet their clains. The plan was an adaptation of methods employed by fraternal orders. and for a while was exceedingly popular among those secking a cheap form ii in-urance. since the actual cost of insurance being low in the early years, the assessmen:were rorrespondingly light. But the increased
cost as time went on ultimately so increased the assessments that it was found impossible to enforce them, and most of the companics were compelled to reture or change their inethods. Comparatively few now remain, and the system itself has been condemned by some of the State authoritics. Nany of the companies were accustomed to assume the character of benevolent organizations in their operations.

Stipulated premium insurance is a combination of the assessment and legal reserve systems with a view to correct the defects of the former. The premiums, as in the old line company, are definite payments, supplemented, if needed, hy assessments, and a moderate reserve is carried to reduce or render such assessments unnecessary. It has been employed by some of the assessment companies as a method of establishing their business on a firmer foundation. But life insurance as a business in the United States, as well as in other countries, is chicfly done by old line legal reserve companies, whose definite contracts, financial strength, and scientific business methods give to such contracts a commercial standing unattained under any other system.

Industrial insurance is a branch of the legal reserve system designed to furnish burial funds for the poorer classes, and especially children. Its principles do not differ from those of ordinary insurance, but its methods are essentially different in many respects owing to the small size of the policies and the character of the applicants. The premiums are payable weekly or at short intervals, and are collected by agents through house-to-house visitations. It was introduced into the United States from Great Britain about 30 years ago, having been an outgrowth of the burial clubs and friendly society system of that country, and has attained enormous proportions in America, as well as Great Britain. Sce Insurance, Industrlal,

Frafernal and bencrolent socictics h_{2}-a been popularly associated with assessment companies owing to the similarity of their methods. But they are a distinct class, having the character of social clubs solely for fraternal or benevolent purposes, with a form of insurance as merely one, though it may he their most important, feature. They are strictly mutual in their character. Their general type of organization is that of the ordinary society or club known as a lodge, whose members meet for social or fraternal purposes. The society is formed of a combination of such lodges, through chosen representatives, into a single grand lodge. by which the insurance is carried on, the subordinate lodges acting the part of agents in securing members and collecting the pavments. The insurance itself is simply a death benefit allowed to the members under provisions in the constitution, and not a business contract secured by the purchase of a policy. The premiums are paid in the form of dues and assessments, much after the manner of assessment companies, the dues heing used for expenses and other incidental featires. Efforts are being made to scientifically adjust the payments and benefits of these societies according to the cost of insuring the various members. as is done in the legal reserve companies. The insurance which they furnich is regarded as a species of fraternal aid to the members and their dependents, and their operatime are not subject to the same legal control
as those of business corporations, See lissurance, Fraternal.

Mortality Tables.-The life or mortality table, from which the premiums must be determined, is at the foundation of the business. The tables mostly employed are constructed from the experience of the companies themselves with msured lives which have been found to have a mortality distinct from that of the population at large. Such a table in its simplest form consists of a statement of the number surviving at the beginning of each succeeding year out of a given number living at any age, from which the number of deatlis and percentage of mortality at each age are readily determined. The latter is the important function employed in life insurance. In America the two tables which are chiefly used, and which have been recognized by the various States as standards for determining the liabilities of the companies, are the Actuaries or Combined Experience and the American Table. The former was constructed from the experience of 17 prominent English offices, and was published in I843. Its general accuracy has since been confirmed by later observations. The American Table was constructed from the experience of the Mutual Life Insurance Company of New York, and came prominently into use about 1868. It was found to represent the actual experience of American companies hetter than foreign tables which had been employed. Nany other mortality: tables have been constructed which have attained a recognized standing. Prominent among them were the Northampton and later the Carlisle Table both of which were framed from, mortality returns of English towns, and were successively used both in England and America, until replaced by the Actuaries' Table. Farr's Tables, constructed from the census returns in Great Britain and published in 1864. have been much used for certain purposes. Various tables, too, have been constructed from observations in other European countries and employed there as standards. The three requisites of such tables for insurance purposes are that they should be safe. should be properly graduated, and should fairly represent the mortality to be expected.

Premiums.-The premiums, which must equal the cost of insurance, are computed irom the risk of death, as shown by the mortality table: and since the former are usually fixed sums, while the risk increases with age, it is necessary to charge more than the actual cost in the early years in order to offset the deficiency later on. This excess above the cost is accumulated at compound interest by the company, and constitutes its reserve fund. The rate of interest assumed in the calculation is such as the company is justified in expecting will prevail during the continuance of the contracts. In the United States 4 per cent was formerly considered a safe rate, but the continued fall in interest has led to a general substitution of 3 or $3^{1 / 2}$ per cent for newer contracts. The payments, which, when thus aecumulated will be sufficient on the average to meet the claims on the policies as they fall due, are known as the net premiums. to which additional sums are added for expenses and other contingencies. When thus loaded they are known as gross or office premiums, and are the real amounts charged by tle company

INSURANCE, LIFE

These ! adras may rary form a trivial adcition to io et eunt $=\ldots$:e ci the ret premiom, acc-ht t the character if the c neroct. Fremiams in ordinary ins..rance are usualy yasable amua.' y :n acivance, and are then k mwa as anna.i fennori:. Frequenty the E-yments are re-tricted : a evtain natomber or ierm of years. These are kn wn as limned fayments. £ metimes the entire payment is macie at the start. This is known as a single premium nayment. The annial premiums. tco. are st netimes pay-
 ine c menience f the p icyt lder.

Exfinses.-The expenses ci a nite company are cinetly mate up oi two clases, the ci st, i securing tie busincs. and t':e office expenses incident in is care. The ptincipal element in tic i mo..- is the oumiss: n or other compersati n paid so the aynti. which alo varics
 a :...:c forcouraze ci the frot promitm paid. and a very molerate percentage, in the mat:.ee ci a collectorn ice. it those sturcecting. The fitce cxpenses aside if … the salaries it the oficers and empl-yees inciude iaves. fees. renis. and th se :umb:ous isem: invoved in sie cone and investment of iunis and the of niuct of the busiress

Lesul Résiric:-The leyal renerve is the measure of an odirary life ompanys iability ก acc unt ei its insurance erstracts to which. in adu:tar t a:y cher liabiortes its fusde mas: be equal in noter that it may be lesaliy whent. Tie process if estimating this reserve is knury as vaiuing the p icies. iwo methets ! - luasi n are used, known as net and gross. deat:ng re-pectively with If e net and s. $f: \mathrm{cm}$ thas charsed. The i mer is senerally emp yed in the Cnited Siatco. and is the ne rstaly a pted by the State auth -ities. It consist in determining what iand the enmpang
 futur rot perwiums which it expects io recti e in rder t meet juture ciaims on i:* pličis This iund is the nei - legal reser e. It aicumes t at al! :hur expendisures are cated it n by the premium ! ading:. The st : va waii n. in t':c e -rtory, deals with the so ss ir cifice frems ms, an a cert,in decucti n made in m ie re... g ivnl
 ant-t that if a cmpary's aerual E-ndition. ant

i- i. the e - if the remiums. ti.e efmpot:. . . . r.orre depend. n the int. $\%$

 Siat.

 irt. th … talts \& ble f - a numh - isaled
 ...ramar n…al cimplou- ri...d t the

F Aicyholders by this lighter mortality. Ir American comparies the moriality among lives that have mot been new? selected remains nearly stati nary aiter ase 20. or increases but slightyuril age $\div 0$ is reached. When it is not iar irom I in Ioa increasing more rapidly wich each age thereafter unit it is about 2 per cent at age 50 years and $\&$ per cent to years later.

Fur if l ns:ract- Als beitre rezarked, policies may be eit. er participasing or non-partici ating. the chief difierence being that smaller Ifemints are charged in the last and no provisi ns ate inciuded for sharing the prorits. P icies in shore terms are more irequently made $: n$-participating. The classes of policies In: it in tise are three in number. whole life, term. and endowment. In the first the insurance is simply agaimst death and covers the whie term it life while in the second it ouns \#n'y $i=a$ certain term ci years. The pure er Luwment is an insuance payabie at the end of a certain term ory years only in case the insuree is alive, and is the reverse of a term p.licy. The ordinary endowment which is alin st exclusively used. bowerer, and which has ci recent years largeiy supplanted the wholelife policy is a combination of the pure endowment and tie term policy. The insurance money is payaz le io the insured if alive at the end of the endowment period. of to some beneficiasy in case of his pievious death. Such endowments are usuäy issued for periods of from to to 30 yea:s.

The arnuity is a contract irequently ombined with life insurance in which ihe life insurance p-inciple is reversed. The purchase: buys cutright a corvact under which he is to rective an arnial payment during life Annuitics have been mamiliar since an early period. and before infe insurance became understood "as: the principal form of contracts dealt in by औhis class of comparies. It secu:es a fixed inc me during ifie to those who may wish to surronder their capital icr that purpose.

Stiol ancther iorm of contract is the iontine. in which the funds of a body of subscribers are p led atid the accumulations are divided amoner the survi人 ts after a certain time. Societies of this kind were formerly common in Europe and were occasional'sy foumd in the United Siates. d.alish fow, if any: remain.
dil these different contract forms are now irequently combined in various ways in the ordinary life policy, in order to increase its attractueness o: to better meet the requirements i p licy? "ders. Tasious meth is of premium pasments and ci paying divilend= are also combined i f the same purpose. G:eat ingenuity tas letr displayed by the companies in making t'ese cmbinations, and an almost innumerab'e va-i ty i c ntract = have resulted. Amone those awn iamiliar in the United States are the thathe or deferred dividend policies. in which dividents are accumulated ard divided among the : :rrivine policyhoter: after a certain period: Inmise l payment policies, in which the premiums are limite 1 in number: instalment policies. in which the insurance money. instead of beinz payable in a single sum, is converted ino a serics ni annual payments $\mathrm{a}=$ an annuity: ans deberture bonds. which are similar to intalmert policies. evcept that the insurance money is represented by a bond bearing an annual inier-
est and payabie at the end of a certain time. Besides, there are policies insuring the life of more than one party. When they are payable upon the death of either of the parties insured, they are known as joint life insurances; when payabie only on the death of all they are survirorship insurances. The greater part of the business in the United States is written either in the form of continued pasment life, zo-payment life, or 20 -year endowment insurance. Kenewable term insurance is another plan for reducing the cost of insurance during the carly years and avoiding the accumulation of a reserve. The premium is only sufficient to pay for the temporary cost of insuring and increases with age. The policies are written for a single year or term of years, with the right to renewal at the increased premium. The subsequent increase of cost, however, has been found a serious ohstacle to the plan. Preliminary term insurance is also insurance for a single year, but with a right of renewal for the entire period at the same rate of premium. The object of such policies is to enable the company to use the fund which, under the law, must otherwise be added to the reserve during the first year of insurance to meet the cost of securing the business, and is a favorite method with young companies having a limited surplus.

Dividends.-Dividends are apportioned from the accumulated surplus according to the equitable share of each policy: Many different methods of determining this share have been devised. That chiefly employed in the United States is what is knowr as the Contribution Plan. The surplus is treated as made up of gains from a lower mortality and expense and a larger interest earning than those assumed in computing the premiums, and the contribution of cach policy to the fund is estimated. Dividends are applied according to the provisions in the policy in various ways. They may be used as single premiums to increase the amount of insurance, which is called a bonns addition, or to shorten the term of the insurance, or to the payment of the premium, or may be received in eash. When, as in tontine dividends, they are to be apportioned among a special class, the share of surplus belonging to that class is separately dealt with. Sometimes a minimum future surphus earning, which can be relied on, is made the basis for guarantecing the payment of a certain dividend in the policy: But 15 such earnings are uncertain, the usual estimates of these amounts, as given by the companies. are simply expectations and not obligatory as promises. The fall of interest rates las tended to reduce dividends during recent years. At an earlier stage of life insurance, dividends were payable at intervals of five years or more. Afterward, as the business becaine better understood, the practice of deelaring annual dividends in the United States became miversal. Of late, however, the introduction of deferred dividend policies las again lengthened the distribu:tion periods among these special classes. Notes were at one time received by many of the companies in part payment of premiums, but the practice has been for the most part alandoned.

Policy Loans.-Practically ali forms of life insurance in which a level premium is paid involve an investment or sarings bank element, which is represented by the reserve and is now
treated hy the law and the contract as helongme, in a sense, to the policylholders. This is the basis of the policy !oans which are so generilly granted. The prortion of the reserve funcl belonging to the individual policy, or a portion of it, may be borrowed by the policyholder as a loan bearing interest, on his own note with the policy as a collateral, and is deducted from the msurance money when the policy becomes payable.

Termination of the Contract.-The life insurance eontract is terminated either by becoming a claim, which is usually payable at nuce after satisfactory proofs have been furnished, or by previous lapse or forfeiture through a violation of its conditions, especially non-payment of the premium, or through a voluntary surrender. Policies usually provide for their surfender and allow the insured to receive back a large part of the reserve held against them, called the surrender value, either in the form of paid-up insurance for such all amount as this value will purchase, or insurance of the original amount for such a term as it would pay for, called extended insurance, or else in the form of cash. Statutes in many of the States require similar returns in case of lapse for non-payment of premimm, and such provisions are also usually incorporated in the policies. Non-forfeiture laws, as these statutes are called, are designed to prevent the assumed hardship or injustice entailed on the insured through the forfeiture of the money standing to his credit in the reserve fund. This money is regarded as a saving bank accumulation for his future beueft. which is in a sense his property and which should be restored after reserving a surrender clarge to compensate the company for his loss. Since healthy lives are most likely to lapse and the cost of insurance to be made greater for those who remain, the selection against the company, as it is termed, is an important clement in determining the surrender charge.

Insurance for the Bencfit of Wife and Chit-dren.-The fundamental object of life insurance as a family protection is liable to be defeated if the policies can be attached for delot. Therefore, statutes have been enacted in many of the States excmpting from the claims of creditors policies up to a certain amount made payable to wives and children. The interests of such parties, too have been held unassignable, at least without their consent. The life insurance contract, except in the case of benerolent societies, is held to be the property of the party who is the beneficiary, when not otherwise stipulated, and not of the party who may pay the preminns, and can usually be assigned as collateral or sold outright by the owner. Policies not protected by statutes, as above, may, like other personal property, be attached for debt to the extent of their sursender value; and where, as in endowments, two interests are sometimes involved, the interests may be serered.

Medical Examinations.-Medical examinations of applicants for insurance are essential to prevent an inroad of unsomend lives that would wreck the company, whose mortality rates are based on the acceptance only of healthy lives. For this purpose medical examiners are employed, who report the health, plysical condition, and halhits of the applicant and the life history of his near relatives. These reports
are passed upon by the medical directors of the companies to determine whether the life is up to the normal standard fixed by the company, otherwise the application is rejected.

Sub-Stardard Insurance.-Parties who may nut be seriously diseased and yet who are not insurable as healthy lives, on account of constitutional weakness or predisposition, are known as sub-standard or under average lives and are insured by some companies as a separate class under special rates of premium, or under special policy conditions, according to the defects of each applicant.

Limitation of the Risk.- Formerly many restrictions were imposed in the policy as to the residence, travel, and personal habits of the insured, and military employment and suicide were debarred. These have been gradually modutied or removed, until it has become customary with some companies to issue so-called indisputable policies, which in the absence of fraud. can only be forfeited by failure to pay the premiums.

Moral Hazard.- The moral hazard in the business arises from deceptive representations as to health. the temptation to insure as a mere spectulation lives in which wo insurable interest exists, in the expectation of an early death, and the iemptation to destroy life through suicide or murder in order to secure the insurance money: The ability of an average applicant to judge of his future health is shown in the higher death rates among those classes of policies where an carly death would profit the applicant and is an element of the moral hazard.

Legislation and Superision.- Until about 1860 lit:le or no supervision was attempted wer life insurance by the various States. Legislation concerning it was chiefly confined 10 taxation of the companics or restrictions on their operations. The multiplication of irrecponsible corporations, the growing magnitude \therefore if the husiness, and the recoguition of the danaers involved in its mismanagement, led to the ereation of special departments ins its supersision, and the enactment of laws for its conduct hy the States of Mlassachusetts and New Sork: Their example has been followed by most of the cother States. The fundamental ain of these laws is to compel the companies to so utilize and apply the moners which they receive as to properly carry out the contracts with their policylonlders. This is acenmplished by requiring the funds in the company's hands to be at all times sufficient, ingether with its future accumulations and the future premiums, and their accumulations receivable from its policyholders, to met its future claims as they arise. Since the proper inventment of these funds is also c-wential, thrs becomes an important part of the invertigation, as well as the general manmer in which the business has been conducted. Anmual tatements are required from the companies, embodying the facts cssential to such an inquiry, and may be supplemented, if necescary, by a peronnal examination of the company on the part of the State official. Failure to mect the required test may be followed ly a prohibiton against additimal business metil the defect is remediced. or, if actual future insulvency is threatened, by procecdings to close the crmpany.

Theory of Life Insurante.- The fundamental problem in life insurance is to find the ayerage premimi at each age, which, with its accumulations, will be just sufficient to meet the promised future payment. This is done by first finding the present value of that future payment, or the sum which, invested immediately at compound interest, will, on the average, with its accumulations, meet this payment when due. The probability of death occurring, and consequently the payment becoming due, during any subsequent year is determined from the mortality table. This probability, multiplied by the sum which accumulated to the end of that year would equal the required payment, is the present value of the payment if made that year. The aggregate of such values computed for each successive year of life, is the entire present value of the future payment to which the present value of the premiums to be charged must be equal. These premiums are in effect so many annuities receivable by the company, and their present value is the amount which, at once invested at compound interest, would reproduce them. The problem, therefore, now becomes the determination of the present value of an annuity at any given age. The process is analogous to that already described. The value sought is the aggregate of the amounts which, at compound interest, would provide the annuity at the beginning of each year, multiplied by the probability of the insured being then alise to pay it. Having determined the present value of any given annuity it is easy to find the anmity which has the value required. This annuity is the net premium.

Life Insurance a Scicuce.-This brief explanation will serve to illustrate the general character of the problems involved in the theory of life insurance, many of which are exceedingly complicated and require a knowledse of the theory of compound interest and of the calculus of probabilities, which, when combined, form the mathematical basis of life insurance. The calculus of finite differences has also an important place, and even the infinitesimal calculus has been utilized to advantage, especially in preparing mortality tables. This whole subject has been developed into a special branch of mathematics termed actuarial science, which has become a recognized profession, whose members, known as actuaries, direct the mathcmatical computations required for the business. A special class of symbols has been devised in connection with this science, by which the processes involved in its various calculations are readily cxpresscd in the shape of ordinary algebraic formulas. Life insurance computations lave been greatly facilitated by an ingenious device known as commutation columns, through the use of which the calculations are much simplified. Published tables of premium and annuity rates and policy values, in connection witk. the more important benefits, too, relieve mucl. af the office work:

Walter S Nichols, A.M.,
Lecturer on Insurance at Yale Enizersity, an Editor of the 'Insurance Lant Jowrnol' and 'Insurance Monitor.'
Insurance, Life, Assessment. The plan ot mecting the cost of life insurance through as. sesaments was first used in the Enited Soates
about 1807 by local bodies, making no pretense to busmess standing or management. Their plan iollowed in a crude way that of the levy societies and friendly societies of Great Britain, lut witlout the variety of benefit which these give. As a rule, they confined themselves to funeral or death benefits, with, occasionally, weekly payments in case of sickness.

The disasters which, in the early screntics. overtook companies operating on the basis of fixed premiums and an accumulated reserve, turned popular attention strongly toward a systern which claimed to give corresponding benefits without the accumulation of large funds, and which confined its demands for payments to its actual needs in meeting benefits. As a result there grew up organizations operating through local councils or lodges, having a general gorerning body, representative in character, at least nominally. These grew, in time, into the great iraternal or beneficial orders, with lundreds of thousands of members obligated to pay hundreds of millions of benefit, the integrity of the obligation dependent upon the ability for perpetial renewal of membership, with perpetual willingness to respond to assessments.

The marked success of these organizations in securing large memberships and temporarily meeting claims at low cost attracted the attention of men intent upon conducting life insurance as a business. There were organized a great number of business, or open, companies. which dispensed with the lodge machinery and placed the business upon a commercial footing. In organizing these, advantage was taken of the claritable and club statutes of different States. Not until 1883 was there a special law regulating this business in New York. The law in Massachusetts was enacted in 1885.

There was no attempt at scientific niethod, and indeed, the claim of the earlier projectors of these companies was that, for the practical business of life insurance, a mortality table is useless. It was constantly set forth that, since contracts remain in force but a comparatively few years, a table based upon the theory that every man will ultimately die and become a claim on the funds, is essentially a falsehood.

At first, the simple plan was to collect from every member, on the death of another, \S_{1}, with generally io cents for expenses, and to pay to the beneficiaries of the deceased the fund formed from the dollar payments. The benefit was, therefore, indeterminate in amount, as was also the cost. An early modification of this scheme was to divide the members into classes of 1.000 or 2,000 . which classes were theoretically to be kept full by the infusion of new blood, which, it was claimed, would. by keeping a level arerage age, result in a level cost. This theory ignored the fact that death rate depends upon actual, and not average. age.

When the plan of uniform payments began to break, through its practical discrimination in favor of older lives and heavier risks, the plan of graded assessments fixed by the age of admission was adopted. This simply modified the degree of error, by substituting for the assumption that all risks were equal, the equally inconsistent assumption that, after the admission of a member to a society, the risk of death ceased to increase. The scheme thus resolved itself inta an attempt to meet the
cost of insurance, which increases witlv increasing age, ly a level premium, but without the accumulation of a reserse for the diminution of the risk. The fallacy of this was repeatedly urged by those who understoorl the scientific principles of life insurance, but obtained little or no effective lrearing. Stremons opposition was developed to the accumulation of a reserve, and a great parade was made of "the reserve in the pocket." ready to the call of the company when needed.

The irrcgular periods for calling assessments gradually merged into periodical assessments at fixed dates, barying in amount with the number of claims which had accrued since the last preceding call. Then came a tendency to call for an assessment in advance, to provide for death claims to occur, the fund thus accumulated being generally named an "emergency fund."

In the meantime, statutes regulative of the business were passed in many States, but in none was any particular regard paid to the demands of a permanent business. In fact, thesc statutes Were in very many instances addressed to securing ilhe advantage of a claim of State supervision, without the imposition of the requirements necessary to permanence. In 1885, however, Massachusetts provided by law that the amount oi the benefit must be fived in the contract, and this provision was finally adopted by New York in 1802.

Finally, as the proportion of older members became heavy, with rapid increase in the cost of the benefits aftorded, there came rapid diminution of membership, especially among the younger, and this, in turn, had a tendency to increase the death cost by depleting the character of the risks. The transfer of memberships from one association to another followed in many instances. There was no possibility in such transfers of protecting accumblated liabilities, the result being that claimants under death claims which had accrued received but a small percentage of their face. Later, many of the larger and better managed business organizations passed under the laws regulative of fixed premium insurance with accumnlated reserve, and the plant which they had established thus became foundation for new legal reserve companies. In isg9. the State of Massachusetts repealed the law permitting assessment life companies to do business therein, and provided a means by which those then anthorized to do business on the assessment plan could obiain licenses under the legal reserve〕aw:

There was an important organization of the business assessment companies, known as The National Convention of Mutual Life Underwriters, which held its first meeting in Elmira, in June 1876. Reports of the fourth meeting, in 1879, show I 36 companies, with a membership of 253,000 . This convention held its last session, at Mackinaw, in 1808 . The report made at the session in 1897 showed 650 companies, with a total membership of 4.039.000. and insurance in force to the amount of $\$ 7,800,000$. The payments to beneficiaries for the year 1806 were given at $\$ 73.000 .000$, and the total payments to beneficiaries. so far as records existed, since the organization of the business, amonnted to $\$ 711$,700.000. These statistics, to a large extent. covered the fraternal, as well as the business, organizations. The reports of the 23 seasions of this

INSURANCE，LIFE，STATISTICS

 c maecicd wih ihe muvement i great impor－ iance．

The iraternal cranizations established．in INo．the Casional Fraiennal Ccagress．which sii．h＝lds anm：．al sessions and has compiled and is compiti．g exceedingiv raluable statistios．It i mmalased the National Faternal Congress Mrinaity Table，which has been adopied as the oficua．sinndard in several oi the statuies since enacted．and which is coming quite generally to be recognized as a siandard table in connecion with iratennal msurance．Their latest compila－ rons show a memberslip oí four and ore hali mi＂nions．with beneñ obligations amounting to nearly seven billicas of insu－ance．

There is also an organization of younger ira－ iermal orders，homom as the－1ssociaied Fraterni－ ties $\cap \dot{f}$ America．ihe first meering of which was held in Igol．The published recu－ds of both of these associations af̈ord a rast amount of useful macenial to azyone who would study the hisicry oi the iraternal insurance movement oi this country：George Dire Eldridge，

Comesny：
Insurance，Life，Statistics．The business of iffe insnrance is of comparatively moden growth in this country．the oldest company transacting it being but little over 60 years of ase．It was pracised in Europe．however． many sears beiore，but its development there was s^{*} w．Tbere was much prejudice againsi it at first in this comntry，and instead of heing regarded as a most benehicent method whereby the widnws and orphans and other deperdents upon the head of a family could be provided ior in the event oi his death． it was denousced as a gambling scheme．a rager against ceath，and some clergymen went so far as to condems it from their pulpits as opposed to biblical laws．But the fioneer companies pushed the business with vigct．at the sametime carrying on an educational campaisn，unitil the public have come to recognize the value and importance of life insurance valuable alike to the rich and ihe poor．To the pnos，and so those ci moderaic means，it is lield to be an imperaive duty ior every man whose life is in－ surable to insure for as liberal a sum as he car aت̈ord．in order ihat，in the event oi his death． those dependen：upon him may not become biects of charity or be thrown upon relatives for their support．The rich men finds in life in－ －Urance a reliei ircm possible financial entangle－ ments that might otherwise．upon h is death． wreck his estate．Men whose wealih wuld sem to relieve them of all inancial anxiety c गry inswrance cman their lives in sums rangirg it 5 in $£ 20.000$ i）ミ2．000．000．Their reas ns io： s d ing are that they have investmer：that may p ：ve tronllesome ir：their evecortits to c＇ase up，necessitianz sacriñces that wound prove c－ils．The in－urance upra their lives is pay－ a＇․e immmediatcly up in thei－death．and the innds thus made armitale at noco will fevent the sacrint $\mathrm{c} i$ ans pnetion of thecir estate to neect the claims，i clamannus credionra．

Primari y life instrance $=$ dewiened for the eqecial protectinn oi tam？ of their head，the bradwinmer，up ol whine ei－ i T－Hey are dependen ir－ul intimce Tis t $\quad \mathrm{F}=\mathrm{mert} \mathrm{ct}$ a $=$ mall 5 sm annuis If a pelicy
fi insurance can be obiained whereby the com－ pany contracts to pay to the heirs of the in． swred a specified sum in the event of his death． Fot insiarce，a person 30 vears of age can ob－ tain a paicr of insurance upon his life ict Ei．ono upon the payment of an annual premiuni of S－21．18，and this rate does not increase during the lige of the polics－hence the term＂level premium．Should be dic at any time after re－ ceiving the policy the company mill pas the amy unt to his designated beneficiary immedi－ ateis upon the receipt of proois oi his death． Insurance ict a larger sum is obtainable by the payment of the same rate per Si，000 of insur－ azce．The rates increase according to the age of the applicant．for the death rate increases wids age，and the added liability musi be pro－ rided for corresponding？s．While at age 30 the premium for Si．000 of insurance is S24．18，at age 40 it is $\leqslant 32,-6$ ，and goes higher as age increases． The rates for life insurance are based unon sci－ entinc deductions．Careiully prepared mortality tables show bow many persons out of a given number oi a certain age will die each year，and While it cannot be told of an individual when he wil］die，it can be estimated with certaints how many persons in bis class will die each year．Life insurance is a business of averages． and the cost of insuring 1.000 or 2.000 or 10.000 persons at a particular age is mathematically de－ termined．The rates cbarged by all companies are substancially identical．and a person desiring insurance，if in good health，can obtain any amotni he is able to pay for from $5=00$ to ミ2，000，000－this being the largest amount car－ ried by one man．

As stated，the earis dars of life insurance in this country were days of trial and tribulation to the orgamizers of the pioneer companies．but the characterisio energy which is found in all sreat enterprises has carried the American life insurance companies iar in adrance of any̆ ouhers．A iew statistics，given in concise form． will serve to show the magniticent proportions to which the business bas attained in this coun－ try．－it ilhe beginning of 1905 there were 93 ＂oid line＂．or＂level premium＂companies．doing business in the Conied States，a few confining their operations to a particular section，but the majority oi them seeking business in all the Siates．Oi this number St had 3.369 .089 whole life policies outsianding，insuring the lives of their owners in an aggregate amounting to \＄6．，6－．10－．gyr．while the total insurance in force （inc uding endowments and other forms of poli－ cies）amonnied io ミ10．412．0－3．338．The 93 com－ panies were organized at different tinnes and several oi them have not been in business long canugh at this writing to have made a record． The i ial premium receipts of 79 of the com－ panies since their organization amounts to \S_{5}－ 214＋4r．46：they have paid to policyholders \＄3，2－6（1，051．60－：their present assets helel for the pr tection of policyliolders are $£ 2.265,8=1.182$ ． A＝these companies operate on ile mutual plan． all the assets belong to the policyholders：if the ascets on hand be added to the amonnt paid to policyl lders it gives an aggregate of $\leqslant 5.53-=$ 002．8－0．exceeding the amount paid in premiums by Es23．91．433．In other words．the companies have paid to policylnolders or now hold ine their pr：tection Eloriz ior every Sioo they have re－ ceived in premiuns．

In 1904 the total premium income of $70 \mathrm{com}-$ panies was $\$ 378,18,121$, most of this being in cash for new policies issued and for renewals on old policies. The investment of these vast sums pouring in to the several companies requires the highest order of funancial talent in order that a profit to the companies shall be sceured and no bad investments made. That these funds have been carcfully and judiciously handled is shown by the fact that the companies hold or have paid out in benefits $\$ 105.20$ for every $\$ 100$ they have received in premiums.

The vast sums received amually by the life insurance companies for investment places them in the front rank of the great financial institutions of the country. Their finance committees are constantly on the lookout for safe and profitable investments, and their detailed annual reports to the various State insurance departments show that they are large holders of Na tional. State, city, railroad, and other bonds, paying good rates of interest. Other classes of securities that are known to be safe are purchased at times, but their soundness must be absolutely guaranteed.

Other forms of policies than those referred to as "whole life" are issued by the companies, but the fundamental object of life insurance is the protection of families when the breadwinner is removed by death. Endowment policies provide for the payment of a stipulated sum at a specified period, 10,15 or 20 years from the issuance of the policy. The gives the insured himself the use of funds in his mature years, the proceeds of his savings in his younger years, when his earning capacity was at its best. This form of insurance is popular with young men, who can afford to pay the extra cost of such policies. The con-panies also sell annuities, contracting for a specific sum paid in advance, to pay to the assured a certain sum annually during his lifetime. How much can be paid annually for the advance premium paid is computed by the actuaries of the companies, according to mathematical formulas scientifically evolved. It has been the aim of the life insurance companies, in their educational campaigns, to liberalize the conditions of their insurance contracts as far as safety will permit, and to popularize them by issuing policies to suit the requirements of all classes of persons, hence there are an almost endless variety of contracts grafted unon the original "whole life" or "ordinary life" form, as the basic contract is designated. But for whatever change of form there may be, whatever of special conditions may be exacted, there must be a corresponding increase in the fremium paid.

Four of the American companies are doing business in foreign countries and have been wonderfully successful. Their active and aggressive methods have enabled them to meet in competition the native companies, and generally to excel them in the volume of business written year by year. This has led to restrictive legislation in some countries calcnlated to restrain the activities of the imerican companies. but they have been found equal to the emergencies and have generally conformed to all lawful reouirements.

In some States the law requires that a life insurance company, before beginning business shall have a certain amount of canital paid up, for the protection of its policyholders, but be-
fore the enactment of such law, some companies were organizud on the purely mutual plan, without capital. Of the 102 existing companies, including the latest additions to the number, 38 are mutual, while the others possess capital varying from $\$ 25,000$ to $\$ 2,000,000$. Dividends to stocklodders are generally limited to $\bar{\gamma}$ per cent, all profits in excess being apportioned among the rolicyholders. In IgOt the capital stock of all the stock companies amounted to \$16.019,930; the dividends paid to capital were $\$ 916,824$, while dividends to policyholders were $\$ 33,570,020$. Policylonklers thus participate in the profits of the companies, whether stock or mutual, according to the varying terms of their contracts. Dividends to policyholders are computed on the anniversaries of the dates of the policies and passed to their credit, to be applied to the payment of future premiums, to increasing the amotnt of insurance, or in some other way inuring to the benefit of the insured, as he may direct. The insured not only provides insurance upon his life for the benefit of his dependents, but he becomes a member of a dividend-paying corporation, with an interest in all its assets. No better testimony in favor of life insurance can be adduced than is to be found in the figures above quoted, slowing the millions upon millions of dollars distriluted among the beneficiaries of persons insured. The funds so distributed usually reach the beneficiaries in the hour of their direst need, when death has visited the home and removed the prop that supported it.

Clifford Thomson,
Edifor 'The Spectator,' New York.
Insurance, Marine. American marine insurance business had its birth at about the close of the I8th century. Dut suffered heavily when the American flag began to disappear from the high seas. For the past quarter of a century it has had a hard struggle to keep itself anywhere near the old standard of prosperity. To do this it has had to draw for the greater part of jts returns upon foreign commerce, and been forced to compete with English companies.

New lork's marine-insurance history is that of all the other seaboard States, for in nearly all marine insurance once flourished, but has now succumbed to English competition. The golden period of American marine insurance was between the years 1840 and 1860, when the clipper sailing ship was developed and perfected. In those times the leading merchants owned their own ships, and frequently a member of the firm would go to Chima or the East Indies to supervise the proper distribution of the cargo, and to secure a remmorative one for the retmrn. The ship and cargo were insured with an American company, and as it might be as long as nine months before the vessel was heard from, the risk was considerable and rates were high. As much as five or six per cent was charged for insurance in those times. The rate on alry goods from Liverpool to New York in the old packet sailing ships was placed at two per cent. This trade was carried in American ships, and the insurance, both on the ressel and on the cargo, was naturally placed in American companies.

But the rates of insurance have changed with the transformation of the ocean-carrying service. The East India goods are now shipned across the Pacific to San Francisco, and themse east via rail. The cost of insurance on these is now
only thre quarters ni one per cent. Rates on :he tiantic have likewise declired. Insurance cn dry-goods and like merchandise carried in the midern "liners" is placed at two tenths of one per cen: In other classes of goods depreciatil: in rates is in tike proportion.

Marine underwriters do not ascribe the decline in American marine insurance to any trouble irom unwne laws or legislative interierence, but to the changed business conditions and it English competition. The bulk of the carryine trade of the world has passed into Briush havds. and a British merchant and ship owner insures in a Brutish companto. The English marine companies have, as well, invaded American soil. and have secured a large portion of the American business. 1 When the English companies first established themselves in America, along in the early seventics. they began cutting rates. The American companies did not effect any combmation to prevent this, but followed their example. The American companies were also placed somewhat at a disadrantage by the laws governing the admission of foreign marine-insurance corporations. The ioreign companics are required to make a depesit betore they can write American business: but in New lork State, which las stringent insurance laws. the amount is nixed at the minimum capitalization allowed a home company; namely. S200.000. Sn much of the carrying trade of the world is done under the British flag and with the aid of Britislı csedit, and with countries under British control, that the American underwriter working asam-t all these disadvantages, is serimsly handicapped. Therefore, there leirg no nati nal or local tarifi associations among marine underwriters the American companies are worsted in thi rate war. There are now not enough nif them to form any surt of an association which world wield much power.

Despite the werk if the American companies to f d their Awn, through los三 if prestuge in the cean and active rivalry on iasd, there are a nunker ni st ck and mutual American marineinnorance cormanics which cartinue to do a flumbhit is brinc: The largest and one oi the dest is the At'antic Mntual of lew lork. which has ver $\$ 12,000000$ i i assets. and lias feen mont carefully managed throughout its carcer. Ii was fermed in IEt2, at the time when man to ck ompanies were turnel into mutnal companmes, and ly which chonge the frefits accrec of the I licy-hulders instead of the stockh der The company is riied forr retaining ite fa'tl ill and tried officers unti? thenr death The

 It is lise-wirk il w! 1 g up the comnany he
 II Sre at 1 I Raven, wh have been with the
 - her large ofn pance which -till in a thris$11=1 . .3$.... are the tix B -inn contraty ms. the (f na M.....t art the E . 11 Marime.

Th re lave rever fon nomy marme Llowds in the lilotl Stale, th igh t? i- i rm of marite If - Hratice has leen me ot in wrue in marine andermitt g in Creat Britain. Tle retiein of the term in beth isterentsig and fects iar The name if loyd orignated in 11 Lloy f1- Tavern. in Tower Street. London, far bick in the day. of Q een inne It was the fracuce i imas y-hp-
owners and traders to drop in at the tavern and talk over their prospective profits; and gradually a custom developed of inscribing their names cil a blackboard, certioying that the men signing would be jointly liable for the loss of a ressel during a certain voyage. From this crude begimning have grown the world-famous associations in the British Isles. In the United States there are a few Llowds, two of the principal ones being located in lew York - The United States Lloyds and the New lork Marine Underwriters.

The scope and definition oi a marine foricy is, of course, entirely different from a land fire policy: The risks insured against are many. and may be summarized as includirg all perils of the sea. There are two classes - a voyage and a time policy ; the former is generally used in insuring vessels, and the latter for cargoes There are naturally many clauses governing marine-insurance policies, such as capture, seizure, war, and so on. The life of the insurance ons a ship begins at the port from which it is insured until moored for 24 lours at the port io which it is insured. When an insurance is made on ireight to be carried under a charter, the policy attaches as soon as the ressel sails. a!thougl she may be destined to a distant pert io: her cargo.

Thoush single losses to marine underwriter: have been small. compared with some of those oi fire underwriters, there have been shipwrecks that have lived in marine insurance men's nemorics. One of the greatest losses to American marine insurance was that of the American sieamer Central America. which foundered off the Cuban coast in September i85\%. The Centro? America was bound irom Aspinwall. now Col mo to New York, and was loaded principaliz. with treasure from the Calitornia gold-mines. She carried insurance amounting to between s-on,000 and $\$ 800,0 c 0$, ail of which had to be f-id by American underwriters. Another notalle loss was that of the steamer Erie, which sailed irom Pemambuco. Brazil. loaded with c ffee. on i Jann. 1803, and was burned at sea. Cofice prices were high in those days, and the Eric went down with $\$ 500.000$ insurance.

Two loses which not only made imroads on the American marine companies, but which alsn evtionsly crippled the growth of American steam transatantic service. were the sinking of the sieamer Arctic. off Newioundland, in ISE\& hy ccllsi s1, and the disappearance of the steamship Pacific, which sailed from Liverpool for Nen lork in January I8;6, and was never heard irm. Both steamships belonged to the Collins line, which was the first one to put on steamY̌*els for the Atlantic trade. These carly isses were particularly detrimental in American narive insurance, because the companies carried evermely heavy lines in those days. Amone tl e recei h heavy losses was that of the steamer Oreg n. which was run into and sunk off the Lrye Island coasq in i\&\&6. American marine maderwriters had betwee" $\$ 700,000$ and $\$ 800,000$ on the Ceecon's carco. The loss of the Oregon alon showed underwriters how quickly even a Mronerly constructed iron thip sinks. The init duction of iron in place of wood for building vesch has not nuade any material difference in th. rates of insurance for iron has hazards which wood has net. and sice tersu.

INSURANCE PATROL - INSURANCE, SCIENCE AND ECONOMICS OF

As to the future of American marine underwriting, it is difficult to prophesy. As trade follows the flag, so marime insurance flourishes in the country with a prosperous merchant marine. The United States is again forging to the front as a great ship-building nation, and this gives American marine underwriters hope that American marine insurance may follow in the wake of the growth of American ship-building.

Insurance Patrol, an organization peculiar to New York and other large cities, which cooperates with the fire department, but is controlled by the combined insurance companies, who support it through the board of fire underwriters. The New Iork corps was organized in 1835, when there was an epidemic of incendiary fires. The patrol is provided with wagons and atn equipment designed for its special work. Its most important service is in saving goods, which it does by remoring them from burning buildings, or by covering them with rubber or oiled sheets, as a protection from water, dirt, or cinders. In some cities it is known as salvage corps, or protective association.

Insurance, Science and Economics of. Insurance, to-day, forms an integral element of our sccial and commercial life. From crude beginnings. the principle of providing, by the contributions of the many to a common fund against the financial consequences of individual losses due to the inberent uncertainties in human affairs, has been perfected until the modern practice of insurance includes all the more important contingencies affecting human welfare. In both science and economice insurance holds a most important position, which becomes more readily apparent as the practice and results of the business are inquired into and considered in their relation to individual and mational well being. As a business insurance holds rank as one of the foremost enterprises of the age. equal in importance to banking and transportation. It would, without exaggerating, be as difficult to think of commerce without insurance as of transportation without railroads or the transmission of intelligence without the telegraph. Modern life has become so completely imerwoven with the idea of insurance that there are few contingencies affecting life and property to which the principle of insurance has not been more or less successfully applied.

The scientific basis of insurance is the same in all its branches, that is, the laws of chance and probability. In considering any future event we are confronted by the uncertainty whether such an event will or will not happen, but from the facts of experience upon a large scale it is now possible to calculate with sufficient accuracy the monetary equivalent required to meet the risk assumed by an insurance company. The recognition of insurance as a science dates from $17+7$, when Corbyn Morris published his classical Essay Toward Illustrating the Science of Insurance," wherein he attempted to "fix by precise calculations several important maxims upon this subject." Accuracy and precision is the essence of all scientific method which in its practical application to insurance does not differ in any important essential from the method which underlies all other scientific processes. The larger the mass of facts considered, the more definite must be the resulting conclusions, which for prac-
tical purposes are the equivalent of natural laws and confirmed by subsequent experience vernymg the truth of the theory assumed.
linsurance science has thus far found its chief development in the department of life contingencies, due, no doubt, to the fact that the average duration of human life and its pecuniary value require to be determmed with the greatest possible accuracy, since the contracts made dependent thereon extend, as a rule, over many years. In other forms of insurance, such as fire, marine, and accident, the contracts are generally: for short periods, seldom of longer duration than a single year. Hence most of the scientific discussions and the numerous dissertations upon the subject relate chiefly to life contingencies. but there has heen a decided improvement in this direction during recent years. Thic deliberations of associations of actuaries and insurance managers extending over many years, in particular the Institute of Actuaries of Great Britain, are fully entiuled to rank, in thoroughness of research and grasp of fundamental principles, with the deliberations of other scientific bodies. It is, no doubt. due to this fact that insurance was included in the most recent classification of the sciences as represented at the International Congress of Arts and Science at Saint Louis, held in connection with the expo:ition of Igot.

Insurance as a science is a branch of economics, althongh only a few of the more recent writers on the subject have given careful attention to the theory of risk and insurance in its relation to public welfare. A fairly complete explanation of the economic theory of insurance is to be found in an essay by Allan H. Willett, published by Columbia (Eniversity in Igor. He holds, and very properly so, that "as a general rule uncertainty exercises a repellent influence in human life, and the existence of risk in an approximate static state canses an economic loss. while (on the other hand) the assumption of risk is a source of gain to society." From this point of view the business of insurance does not differ essentially from general commercial enterprises. Risk is assumed in mining and agriculture in much the same manner as risk is assumed in the business of insurance, but in life insurance, for illustration, the assumption of a risk and the equivalent premium payments required are determined by the theory of probability and the established laws of human mortality and observed experience. In general commercial enterprise the risk assumed is. as a rule. created. while in insurance the risk is pre-existing. This marks the broad division hetween gambling and insurance. Insurance is not "in the mature of a bet." for in insurance an effort is made to climinate an existing individual risk by its assumption on the part of the many, while in gambling a non-existing risk is created with resulting uncertainty and needless loss to society.

Incurance companies are chartered institutions with their powers of existence and rigits of transacting business derived from the State. They are subiect to supervision by special ikpartments in charge of commissioners or superintendents of insurance. who have ample power to inquire into csery important detail of office administration. At first the hurdens of State supervision were light, since the companies transacted but little husiness outside of their home

INSURANCE, SCIENCE AND ECONOMICS OF

St.ic as w A. the ast gereration the busi-ros- 又 erath ne it mos of the compantes have If It cer extended to oher States and wirrit ru-. Teve has, as a resut, been develof.d. $12-\mathrm{t}$-ystem of ver-supervision. accom-
 If it f whrch is inimical to the highest and It . .e-t development of the husiness. The fisiton in tie commussioner is. as a rule a political on e , subject to the changing fortunes of the par$t: s$, d new men have irequently come in rwarel with radical ideas. which, if carried to the extrome, would have resulted disastrously to the compante- ard their policy-holders. It has been very ab. pontid out by Senatar John F. Dryden. in an addres un The Regulation of Insurance hy Congress.' that "Insurance is ro-day a uriversal inst.turion reaching all classes and affecting more or less all commercial interests. It is an esiential element oi human progess and a mothod and means ior the upliring of the mases to a higher level of economic security It has lecome national in character, and itw companies confine their operations to a single State: in fact, if operations were so limited they might prove disastrous and make the conduct of the business impossible"

The taxation of insurance is a difficult problem and a matter of serious concern to the companies. In its final analysis the incidence ci frsurance taxation falls upon the policy-holders anel the cost of insurance is correspondingly increased. The fact is overlooked that insurance itseli is in the nature of a tax and that additional tax burdens are a needless hindrance io the largest development of the business. In life insurance alone the annual amount paid in taxes, fees, etc.. is not far irnm $\$ 10,000,000$ and the propertion of taxes to income is cmstantly increasing, due to additional burden= flaced upon the companies as a convenient source of public revenue. A tax upon prennums is an umust burden upon the husines. and is tooh inexcusable and unscientific. Mus tax fill: alike upnn new premiums for risks just incurred and upon renewal premitums upon risks a-sumed years ago. Since rists assumet years ago were calculated to produce a certain result on the assumption of a known mortality and f per cent interest, taxes upon premium payments must necessarily and considerably decrease the returns to participating policy-holders, and intcreaie. in consequence, the cost if insurance. If carried to the extreme, especially in the case f companies which issue only non-particinatiog plicies it is pnesible that the enmanties moy intimately be unal le to meet their obligations in cancinuence of a policy on the part, if the St, te which is as unwise as it is unncesesary.

Inswance 1y gnvermment is pot a new Irfonsition. lut it is nnly during the last laali cert"ry that there has been an effective effint theatalWish an insurance denartmert ly en,-rmment in active enmnetiti n wihh private com nompes. In life incorance the experimente of Encland anot New Zealand are the most valnal te I conce the resulse ere an the whole, fairly commarabl, with thonce of non-covernmental incitutions $P-1-$
 i- of 1. and the life ins arance 1 -partment of New Zealard in tifno. The foner eml ! y- no agent ar solicitnes, while the latter, in all isentinls eonforms th the methorls and menges of
private companies. The preminm rates and the results to poley-holders have been about the same, averagmg iairy with those of reguiar companies of giod standing. The business results i:1 England have been insigniricant, while in New Zealand a fair measure of sucuess has been achieved. In New Zealand at best and at most, the resuits have not been better, the cost has not been lower, and the security has mot been superior to that offered by private institutions, which have increased their business in force at the rate of $3 t$ per cent during the past nine vears. against an increase of 10 ner cent fur the government department. The private companies are gradually gaining on the govirmment, and while in isat to per cent oi the total policies in iorce were with the government, in 1goz the proportion was only +2 per cent. To those who believe that the government which governs best is the government which governs least, and tbat ihe limit of State duties is unduly enlarged by State trading in such directions as these, the New Zealand experiment is conclusive evidence that State effort in the field of life insurance is not likely to produce results superint to those which have made commercial life insurance the most successiul business of the age.
-1s cistinct from toluntary insurance by govermment or private companies. the so-called systcm oi compulsory insurance for workmen hoids a uniq::e ar:d important place in the social economy of certain European nations, particniarly Germany. The term compulsory insurance is seriouly misleading. for as a matter of fact, the system is not insurance at all. but a state provision for workmen against the financial consequences of accidents, sickness, invalidity, and old age. In its inception the German system of govermment insurance was a measure designed to connteract the socialistic tendency in opposition to the monarchy. In its development it has been made to include nearly the entire body of workmen and as a theory of government and social reform it has unusual attractions. Crithally examined. the system is little else than poor relief minder enother name, and inadequate in many respects as all methods of compulsory thrift must necessarily be. It is insurance in name but not in fact. ins it is not by the sole contrihutions of the beneficiaries that the required finds are prosided. but $1 y$ the joint and compulsory payments oi employer and employee, plus a state suhsidy cr grant from the general revenue raised by taxition. The evidence as to the economic and social resulte of this system is so involved and contieting and suhfect to such different interpretationc, that no final conclusion for or against the system can be adranced at the present time. This much. however. it is safe to say, that the anticimated bentits have not materialized, and the oncialistic agitation, althoush much modified and of a somewhat different character, is to-day more pronnmenced in Germany than ever before. For has compulsory insurance solved the labor problem and brought ahout a subetantial imfonvement in the relation of capital and labor. The m st serious economic aspect is the burden of the sustem upon German indusery and the resalting handicap upon competition in international trade. This explains the anxiety of the Fremman envernment th induce ather nations to follow its example and by means of exhibits,

INSURRECTION

illustratıons, and literature advance the cause of Lovernment insurance abroad. Even at the present time the system is but in its initial stage, and time alone can prove whether it will naltimately result to the advantage of the German people or otherwise. In the opinion of Prof. Farnam of Yale, an impartial student of the subject. "the supporters of the German system are claiming for it more than the facts of the case as they now stand warrant," and that "The German experience with this kind of insurance seems to show that, while it is possible with a lighly trained intelligent administration to carry through a scheme which will compel provision against various contingencies, it has thus far been impossible to create the instinct of forethought and care which is implied where insurance is volumary. There are many facts Which go to create a strong presumption that the result of this governmental care is actually to make people less careinl of the future and less judicious in their expenditure."

Insurance had its origin in private enterprise and it has attained its commanding position as a world force for the betterment of the social condition of mankind througl the initiative. ahility, and courage of a group of men as much deserving of immortal fame and glory as any other class of benefactors of the human race. State trading in the field of insurance has never advanced the cause by a single important imovation or ly a new theory or a material improvement in practice. The necessary reforms and changes as dictated by expetience have been bronght about by the companies and it is due to these and these alone that the insurance business has become one of colossal magnitude and world-wide extent. The amount of insurance of all kinds in force in the United States has been estimated by the Committee on Insurance Law of the American Bar Association to approximate $\$ 50,000,000,000$. The aggregate assets of the companies approximate $\$ 3,000,000.000$, and the American people pay ammally for insurance of all kinds approximately $\$ 1,000,000,000$. while they received from the companies during the year ended 31 Dec. ISO4, approximately \$800.000.000 . These figures are exclusive of the business of many fraternal associations and local mutual fire insurance companies, of wioh there is no trustworthy or complete record.

No other business so completely enjoys public confidence and has so successfully stood the test of long experience. As the scientific principles of insurance are examined and the highly specialized administration of the companies is considered and the results are measured by a fair standard of benefits in proportion to cost, the serdict of science and ecomomics will agree with that of the mass of mankind, that our social and commercial progress would lave been impossible without insurance. Resting upon this broad foundation of human experience and public confidence, the colossal business of modern insurance challenges the adiniration of the world.

Bibliography:- Insurance has a literature of its own and a most interesting history extending over more than four centuries, with suggestions of at least a conception of the insurance idea among the most ancient people of whom there is a recorded history. The limitations of this article preclude more than a brief reference to the more recently nullished works, among which.
however, I may mention Willett. 'Economic Theory of Risk and lnsurance) (Columbia University Press. New York Igo1) : the Yale Insurance l.ectures 2 vols.. C. C. Hine Company. New lork rnot): , Newander, "The Life lnsurance Company" (Appleton \& Co.. New York ico5) ; Foung, 'lusurance' (Isaac Pitman \& Sons, Loudon): Dean, "1Fire Rating as a Science' (J. .1. Jurply, Chicago 1901) ; Phelps. "History of Inverican linsurance During the Lact Decade' (American Enderwriter, New York 1004): Vance, 'Handbook of the Law of Insnrance (West Pub). Co., St. Paul, Winn., 1nof): Wolfe, 'Investments of Insurance Companies' (The Insurance Press, New York (rgos). These are but a few of the many books on insurance which have heen published during recent years. In addition there are the Insurance lear Books ori life, fire and miscellaneous insurance, published by Tho Spectator Company, New York, the annual reports of insurance conmisioners, sone of which contain critical observations on insurance problems of the day, the annulal proceedings of underwriters' associations, and the national conventions of insurance commissioners, the special publications of insurance companies, their histories, etc., the discussions on State supervision and Federal iegulation of insurance. of which the two more important are an address by John F. Dryden, president of the Prudential Insurance Company of America (ipof), and a report of the Conmittee of the American Bar Association on Insurance, by Ralplı II. Breckenridge, chairman, Omalia, Neb. (IqO5): But the chief source of information regarding insurance practice, the progress of the business, the organization of companies, etc.. is to be found in the technical and general insurance periodicals, the 'Insurance Nonitors' 'The Spectator.' the 'Weekly U'nderwriter.' and the 'Insurance Press,' of New York, the 'Baltimore Underwriter.' of Baltimore, the 'Standard.' of Boston, and many others. The principal publishers of works on insurance are The Spectator Company, New York, and C. and E. Layton, Lnndon.

Frederick L. Hoffman,
Statisfician of the Prudential Insurance Company of America.
Insurrec'tion, the act of rising against gotermmental authority, active upposition to the power of the state. In the United States, power to suppress insurrections by emploving the militia is given to Congress by the Constitution. Art. I., Sec. 8. Clatise 15. In 1792 and 1807 acts were passed giving the President power to call forth the militia when notified by an associate justice of the Supreme Court or a district judge that the execution of the laws is obstructed. and on application of a legislature or a governor, when the legislature could not be convened. and to emplog also the land and naval forces of the United Ştates. The Whiskey Insurrection (q.w.) was directed against the Federal authority and the President employed force to suppress it on notification by the Federal judge. Durine the Buckshot Var (q. 3) , in 1838 between the Whigs and Democrats in Pennsylvania, the governor of that State asked for assistance, but it was refused. The governor of Rhode Island nade a similar application during the Dorr Rebellion (q.v.) and the regnlars were held ready for action. but their aid proved unnecessary These last two cases came under Art. IV., Sec. \&

INTEGRAL CALCULUS - INTERCONTINENTAL RAILWAY

of ine Federal Cc:stitution. which provides "that the United Siates shall protect" each State on application of the legisiature, or of the cvelotive, agairst domestic violence.

When the Civil llar tegan the President was cbliged to take prompt stens in calling out the militia, though no application had been made to him as requred by the acts of 1,02 and 1,05 . H_{1} a action was jnstifed by Art. II. Sec. 3. of the Constimtion. providing that 'he shall take care that the law: be faithiully executed." but Cengres: on 0 Aug. IC6r jormally validated and made legal all of President Lincoln': previo:s act: proclamations. and orders. The F rece Bill (qu.) of 20 April IE-I gave the Presicient special power to use military icrce in certain cont:ngencics. In the South during the reconstrucion period. and in the North. during strike riots. Federal troops have been used.

Integral Calculus. See Calctuts. InfiniTESMMAL.

In tellect. See Mivo: Psychology:

Intent, a legal term signitying the end or object which a person had in the periormance of an act, the rabing oi an engagement. Ir the drawing up of a will. Generally the legal consiquelces oi an aci are considered quite independently of the imtention of metre of such an act. A wreng dene to the person or property of another is punishable at law withoti consideraii n of the intentions of the person commiting the wiolence or irespass. But when an engagement has been made by persin, or a writen diep-sxion of pr perty executed. the intention of the person making the ensagemeni of signing the deed is iair matter ior legal inquiry. ln ithe c nnectry a sulsequent stipulation by wird of mouth is mot competent :o nullity ce in dity the terms, i a writen engagement. Inient a!s. isms an important part in arts for deiamaii n. iraul and neroigence. Neqlisence :nust hate intent to make it criminal. so mnst defamaid 3 and iraud and malicicus mischef. C nenit Thayer 'Preliminary Treatise on Exidence' (tean! ; Black. 'Construction and Interpretation of Laws' (1 'و6): Hardcartle. 'Rules which y vern the Constructinis and Effect of Staru*ory Law) (1900).

Intent, in pischole sya according t : Tames. is that whic intelgent consciousncss 'means or intents: the intent is a feeling in c meinu-x... which is usu.iy identried co
 n-... at a perto... ar time. By thers. h wever. t e. 3 ril wien in me-ni themp to a certuin f at i i w irws wheh ant ${ }^{2}$. ect may it re-

 tu at mi wi urat $: i$ t. If the interest

 sun te ele't as yel ay leas perfecty

 trle y fore, fromer and iurther definte recificat 1\% *he den lemay re or e-t in the buckoriatid: jet the detai" is at the tithe in Q at M-T... as it were imel \because y an chated

deavor, may be called the intent of consciousness. The end pursued becomes defined in the pursuit of it, and $s o$ iar as it is yet indefinite, and therefure only partially dereloped in consciousness. it is an mient. Consult Baldwin, 'Dictionary of Philosophy and Psychology' Vol. I.

Intercollegiate Athletics. See Edtcational Athietics.

In"tercolumnia'tion, in Greek architecture, the space between two columms. This space is measured in diameters of the foot of the column. Virruvius mentions five varieties of intercolumviation. These are the pyonostyle (that is, with chlumns thickly ranged) of one diameter and a hali. which are least frequently found; the sysryle (that is, with columns harmoniously ranged) oi two diameters, the diastyle (that is, with columns far apart) of three diameters. the areostyle (that is. with columns sparsely ranged) of iour diameters: and the iustyle (that is, with columms a due distance apart) of two and a quarter diameters.

Intercontinen'tal Railway, or Pan-American Railway, a proposed line of standard gauge. to connect the railway systems of the Inted States and Mexico with those of the Argentine Republic. utilizing as far as practicable existing systems in Central and South America. At the first International Conference of American States, held in Washingion (I\&S-90) the committee on railway communications said in their report. "That a railroad connecting all or a majority of the nations represented in this conierence will contribute greatly io the develepment of cordial relations between said nations. and ihe growth of ibeir maierial interests." President Harrison on 19 Nay I\&90 recommended that Congress should make an appropriation for the shate of the Conited States in the experses of a preliminary survey. Congress complied. and the Imiercontinental Railway Commission began its work with A. I. Cassat $\mathrm{a}=$ chairman and $\mathrm{H} . \mathrm{G}$. Davis at the head of the finance c mmaitee. The commission spent about sjoo.0m for survers. inaps. etc., three corps of engineers making experimental surveys between the north of Cruatemala and Argentina in ISg2, INos, and isot. It was found that the approximate length of the line to connect the southcanern bcundary of Nexico with Buenos Ayres w uld be: in Guatemala. 230 miles: Salvador. 237: H nduras, 70; Nicaragua, 221: Custa Rica, 36:: Columbia. 1.3:2: Ecuador. 635: Peru. 1. 0,1 : lolivia, 514 and Argentina. 1, I43: iotal, to. -2 . The distance frem New lork to the Guatemalan fo meties is $3 .-00$ miles, and thus the ${ }_{t}$ tal from liew lirk io Buenos Ayres is 10.4, I mice Liaks hetween the termini of the Argentine and Nexican sysiems: In B livia, 192 micer: in Perua, 151 miles: in Nicaragua, 3n mike : in Salvad r. 20 miles: in Guatemala, 30 mi es This statement shows that alu ut hali of the distance hetween Sew lork and Buenos Ayre was curered by railways then existing.
 c anmittee of the Sec md International Conference hild in Nexico City stated that "some additicnal rarifead has been buit that could be utilized as a part ci a contincmial system" : that not m re than s.ono miles of r ad would have to be construeted to establi=h raiiway communication between the syrums of North and South Amer-
ica : that $\$ 200,000.000$ would be ample for this work; and that the surveys made by the enginecrs of the commission demonstrated the practicability of constructing all of the missing links. The concluding assertion. however, should be reccived with caution. In Central America the proposed line rums along the rulcanic const; on entering South America it is continned among the enormons volcanic Andes, still paralleling the I'acific shore, but further inland. Recommendations made by the committee on 27 Nov. rgor were that a permanent committee on PanAmerican Railway should be appointed "to further the project after the adjournment of the conference": also that the United States should take the lead in scnding "competent and reliable persons whose duty it shall be to determine accurately the resources of the different countries and the condition of railway lines in operation and the prospects for business for an intercontinental line . . . and also to ascertain what concessions or assistance each of the respective governments is willing to grant to the enterprise." The permanent committee appointed by the president of the conference compriscd Ex-Senator Henry G. Davis and four others. A special commissioner was sent to the Latiu-American republics, as suggested.

In'terdict, an ecclesiastical dccree which forbids the performance of certain acts of public worship. When an interdict was laid upon a town, district. or country, all the churches were closed, the bells were silent, the sacraments, except infant baptism and extreme unction (and sometimes even these), were withheld, the rites of burial were not performed, and all the public ceremonies of religion were suspended. Interdicts may be general, as applied to a country or city; particular, as applied to a parish or diocese; personal, as applied to a person, or some class of persons. The bishops seem to have anciently exercised the right of publishing interdicts: for in 870 Hincmar, bishop of Laon in France, issued one against a parish in his diocese. One of the earliest censures of this sort on record was imposed upon the city of Rouen in the Gil? century on account of the murder of the Arehbishop Pretextatus by order of Queen Fredegonda. In 997 Gregory ${ }^{5}$. laid the kingdom of France under an interdict becanse King Robert had married his cousin, and the king was abandoned by most of his court. The same pemalty was inflicted upon the kingdom of England muder Stephen (11.ī) by Eugenius III., under John (1207) by Innocent II1.. under Henry VIII. (I535) with little effect by Paul III, and under Elizabeth (1587) by Sixtus V. Adrian IV. laid Rome under an interdict for the purpose of compelling the Komans to drive out Arnold of Brescia. Gregory IX. made use of the same instrument of compulsion in his quarrel with the emperor Frederic II. During the middle ages the interdict was a powerful engine of attack for the popes in their contests with sorereigns, as the popular dread of its effects was so great that kings were often forced by rebellions to submit to almost any conditions in order that it might be taken off. From the time of the reformation general and local interdicts have become rare. When Paul V. laid Venice under an interdict in 1606, the churches were not
closed, and only a minority of the bishops submitted to it.

Interest ("it concerns" - the party in issue -origmally an award of damages, later used to evade the anti-interest laws), a charge for the use of money, by custom computed annually, on a basis of so many out of cach soo units loaned; but without diminishing the capital. It is possible to pay iuterest without loss, because, under conditions mow general, the borrowed money can be employed in productive industry, from which a return equal to or greater than the interest can be obtained; or bucause comfort, prestige. or moral advantages of many kinds are derivable, justifying the expenditure when enough is left. Such borrowing is now useful on the whole, because civilization has ingrained a self-restraint in the masses which makes them in most cases manage money soberly and prudently. Sut in the early ages this was not so, except in a few developed commercial cities: Babylon carried on business by interest loans, and even bottomry bonds on shipping. Tyre probably did so, the great Atlienian commerce was built up entirely by it, as Demosthenes explicitly says, but the mass of people were not fit to have the use of money, had no femuncrative employment for it, and borrowed it only to use in self-indulgence, or in desperation becatuse any rate was a choice of evils. There was little property to pledge, and the security was mostly the debtor's person; foreclosure meant selling him for a slave, and the grievance which called for Solon's legislation was the debtslavery of a large section of the citizens. Hence arose a violent prejudice against the system altogether, as immoral in itself; the law of Moses prohibited it between Jew and Jew: Aristotle says it is essentially immoral, because money cannot breed moncy (this in the age of Athenian commerce), and never was meant for any such use: the Christian Church inherited the reprobation from the Jewish, and for many centuries forbade its members to take "usury" (money for the use of money, that is, interest at any percentage), and the secular laws were correspondent. In England interest did not become legal till the time of Henry Vili., but had been actually practised for many generations, by legal fictions of partnership or breach of contract, etc. : previously it was in the hands of the Jews - who were so indispensable as fiuancial agents that a Jew who was converted to Christianity had all his property confiscated - and later of the Lombards. The first English permissive statutes fixed io per cent as the legal limit that might be charged: early in the 17 th contury it was set at 5 . No serious donbt of the power of governments to regulate the current rate of interest olbtainable was entertaincel till Benthan wrote his ' $D e f$ fence of Usury' in 1786. proving that the laws could not possibly have any effect: because if the legal rate fixed was equal to or greater than the current rate it conid not work any change in it and if less, holders of money would not lend withont oltaining their price plus an insurance for the risk of legal purnishment. The doctrine was violently disliked, and has not even yet overconne the determination of the mass to show their dislike of usury by statute, or their belief that they can affect rates: but in a few American States of late ycars the anti-usury laws have been abol-
ished. Of course a legal rate is always provided in deiauit of contract.

Interest is not a natural right, but a matter ot law or contract. The holder of a note payable without stupulation of interest cannot ciaim any until the note bas become due and remains urpaid: thenceiorward it draws money at the legal rate. The United States pays no interest on its debes, except where bonds are issued specifying it.

Oit the separate States and Territories there is no legal restriction on the rate allowable by contract in Arizona, California, Colorado, Connecticut. Maine, Massachusetts: Montana, Xerada. Rhode 1sland. Tennesisee. Utah or Washington: tho legal rate in each is o per cent except with Colorado (:), Montana (8), Nerada ($;$ I. Urah and Washngton (). The ofhers have fates as iollows. the legal rate commg first, then the contract rate permitted: Alabama. ©, S: Arkansas. 0. 10: Deiaware, 6, 0: Florida. s. 10: Georgia. i: s: Idaho; 7. 12: il inois, 5. i: Indiana, 6. : Iowa, 0. © Kansas. ©. 10; Kentucky, o. 6: Louisiana, इ. s: Maryland. © O: Michigan .5. i: Minnesota, 6. 10: Mississippi. 0. Io: Mi.souri. 6. 8; Yebraska. s. Siew Hampshire, o. 6: New Jersey, 0 , New Mexico, 6 , $12:$ New York. 6. o. North Carolina. 0. 0: North Dakota. o. Iz; Obio, 0, D; Oklahoma. i. 12; Oregon. 8. so: Pernsylvania, 6. 6: South Carolina,
 mont, 6, 6; Virzinia, 6, 6: West Tirginia, 6, 6; W:sconsin. 7 , ro; Wyuming. \& t2. The rates in the Dittrict ci Ce timbia are 6. ro.

That these jrrovisions are more the result of tenacious tradition than of any very exact reasoniug is shown by their tennis. Only in three States- Illinois, Levisiana, and Michican - has there been any recent attempt to keep down by law the rate of cuntractual interest to the rate actually current in the community; in the others. un-pecified debts bear 6 to $\$$ per cent interest while the current rate is s. As to the contract intcrest. II States stick to the attempt to forbid anything beyond the legal rate: but that assurned interest being above current rates, some leeway is left. One of these, mortover - New York faw rs its peculiar interest by allowing any contract rate on 'call lnans" over $£=.000$. Sixteen matie the rate so high - from to to 12 per cent - that any one with the least pretense of credit or sceursty can e meract ire-fy: above that, we have to deal when pawnbrokers and 'iences.' the iormer pr tected by tacit allowance. the latter anemble uly to eriminal legislation.

The therries of interest, like most economic frinciples: are much disputed by economists. the chici therries are those of "ahstintace," h.'ing interest to be a reward of abstinence from wing up the eapital in eni, yment (a variant ei ${ }^{2}$ lis regards it as a reant of the general aptrecisto it if the 1 resert atove the future): of ar luctis ity, i lumg it t be the return ior production ly capital in the same way that wases are a return for production by laber: the e mt ination oi the $t w$. Pegarding the return as fixed by eus ply an I drmand, th e latter denen 1 ing on I ductivity and the frmer on ahseimance: ant the "mirmel ly thenry: which concidners it a thll levied on the priduct of labor he the cal italices who cortrol the means of proC!:ction.

Interest, in psychology, is a term by which at least two or three different things may be meant. On the one hand interest may be detined as the consciousness which accompanies mental tendencies of any sort so far as they are concentrated on mental objects. It is manifested by a certain annount of voluntary attention to which it may be considered a stimulus. The exploiting habit, curiosity, the desire to know, may be denned as primary forms of interest, as distinguisined from custom and habit and one's way of regarding things, the iormer being regarded by Baldwin in the nature of a stinulus to the intellectual function, the latter as irequent periormance of a process.

The word also, in the vulgar sense, applies loosely to what is meant by personal advantage; as, for instance, it is "to a man"s interest" to obtain such and such.

In pedagogics interest is often looked upon as a form of amusement, a stimulus through the play-instinct to induce intellectual effort. In the science of teaching, the ideal is to awaken an interest in the ends for which pupils study, and that a permanent interest in the ends should be iostered througn the means. Baldwin well says that when interest artaches to the end, but not to the means of reaching it, we have drudgery, as in the case of workmen who think only of the dollar, taking no interest in the labor that wins it; on the other hand. when there is interest in the means, but not in the end, we have play, we do not work. When, however, there is interest in the end to be obtained, and also in the means for reaching the end. the ideal of work desirable in education is reached. See Herbart. (Science of Education': 'Doctrines of Interest' ; Baldwin, 'Story of the Mind': (Educational Review.) Vol. X : Baldwin. (Dictionary of Philosophy and Psychology, Jol. I.

Interfer'ence, in physies, is a phenomenon exhibited by wave motion of all kinds, and consists in the coming together of waves haring different phases. in such a way that the effects of the waves are either increased or diminished. Interierence may be observed when two different trains of waves come together upon the surface of water or any other liquid. Where the crest of a wase belonging to one system concides with the crest of a wave of the other systom. the elevation of the water surface is sensibly equal to the sum of the heights that the separate wases would have ii each existed in the same place alone. When a crest of one of the waves coincides with the trongh of another, the disturbance of the water surface is reduced, and the elevation (or depression) which resuits is equal to the difference between the elevation of one of the component wases and the depression of the cther cne.

The kinds of interierence that are of the greatest practical importance in plysics are those which occur among solnd waves. or among waves of light. The phenomena in these cases are ultimately of the same general sort as those observed upon the surface of water. In the case of sound, interference may even produce entire silence in curtain recions, when two trains of sound waves of equal intensity, are brought together in a suitable manner. A more familiar result of the interierence of sound wares. however, is the production of "beats," when two or
more trams of waves, having but slightly different wave-length, come together while the two are moving in nearly the same direction. This phenomenon is exhaustively treated in Helmholtz's 'Sensations of Tone,' and it also receives a more or less adequate treatment in all of the better works un physics.

The more familiar of the interference phenomena that are afforded by light are those which are obsersed in connection with soap bubbles and with very thin plates of transparent solids. Light, upon striking the soap bubble or the thim plate, is reflected toward the eye from both surfaces, and the trains of light waves that reach the eye from these two sources, since they have a slight difference of phase (which varies, morcover. from point to point of the bubble or the plate), interfere with one another so as to produce effects that are often very beantiful and striking. A soap bubble, when viewed by monochromatic light, often appears to be covered with dark strix; the dark lines being due to the fact that at the points that appear dark the two trains of light-waves, coming respectively from the inner and outer surfaces of the soap bubble, nearly or completely neutralize each other. When the bubble is viewed by white light, we do not commonly see the dark strix, their places being taken by bands of color. This is because the different colors that compose white light have different wave-lengths, so that at any given point in the bubble only a portion of the colors are destroyed by interference, leaving the remaining constituents of the white light to produce their fuli chromatic effect upon the eye. See Light; Solad; Phystcal Crystallography.

Inte'rior, Department of the, one of the executive departments of the United States goveriment whose heads are cabinet secretaries. The "home department," long existent in alf European govermments, was only constituted in this country by act of 3 March 1849 . Its functions had previously been exercised by bureaus or officials of nearly all the other departments: patents, copyrights, public documents, and the census belonged to the State Department; public lands, mines, and judicial accounts, to the Treasury: Indian affairs, to the Thar Department; and pensions to the War and Navy, cach for its own pensioners. By later laws the Interior was given charge of education, public surveys (including the geological survey; but the coast and geodetic survey belongs to the Treasury), subsidized railroads, Territories, national parks and reservations, returns of public contracts made by several other departments, some charitable institutions in the District of Columbia, and a number of other matters. The secretary makes an amnual report of the number of public documents reccired and distributed. He has a salary of $\$ 10,000$, and two assistant secretaries. His office has scren divisions: appointments, disbursements, lands and railroads. Indian affairs, pensions and miscellancous, public documents, and stationery and printing. Although most of these are nanaged by commissions appointed by the President, their work is under the secretary's direction, and their reDorts are made through him. Most of the clerks and subordinate officers in the bureans arc appointed by him. All patents issued by thic

United States must be signed by him. The first secretary was Thomas Ewing of Ohio.

Interlaken, inn'tér'läu ěn. ("bctween the lakes"). Swatzerland, sillage in the canton, and 20 miles southeast of the town of Berne, one mile southeast of Linterseen, beautifully situated near the left bank of the Aar, in the valley of Bourleli, between the lakes of Thun and Brienz. It contains a beantiful old castle and numerous hotels. It is visited annually by So,000 to 100,000 tourists. Pop. about 2,500 .

Internal Improvements, the construction and reparation of roads, bridges, canals, harlors, lighthouses, etc.. at the cxpense of the United States government. The Constitntion not having made amy provision for such improvements, the execution of public works of this character became subject to the ricissitudes of party politics. let since 1 - 89 funds have been perpetually appropriated by Congress for the carrying on of improvements throughont the country, so long as these lay strictly within Federal jurisdiction. Such would include lighthouses, bnoys, beacons and public piers, rivers and harbors. The Federalist party, and after it the Democratic party, opposed all improvements on rivers and roads, the benefit of which passes to the screral States. Iet in 1806 an appropriation was made for the construction of the Cumberland Road, which should penctrate the Western States and facilitate the mail service, as well as open up unsettled territory to the increasing tide of immigration, and serve for the transportation of troops and army supplies. The Federal Government, about the same time, undertook the construction of a road through Georgia toward New Orleans. In 1898 Congress passed a resolution in which it claimed the power to make appropriations for such internal improvements as the construction of roads and canals, and the maintenance and direction of water courses. Such roads and canals as the President should consider of Federal importance were ordered by Congress to be surveyed. and $\$ 300,000$ was subscribed to stock of the Chesapeake and Delaware Canal. But there was a wide difference of opinion with regard to the constitutionality of such legislative action, and in May 1822, President Monroe vetoed the Cumberland Road biill. He supported this procedure by the declaration that Congress had acted ultra vircs. That body; he maintained. had no right under the Constitution to carry out such internal improvements at Federal expense. President Jackson in I830 followed Jlonroe's example and vetoed the Mayssille Turnpike Road bill. Henceforth, the matter of such internal improvements was left to the legislation of the various States. Jackson had somewhat mitigated the force of his reto by adrocating the distribution of the Treasury surplus among the rarious States, but when the Whigs tricd to put this into execution in 184I, President Tyler by his veto put a stop to any such attempts, and they have never since been repeated. The introduction of railroads under the management of private corporations did away with the call for road appropriations, although something like a bonus was given to the projectors of new lines by the vast grants of lands which were made to them. Tracts of $40,000,000$ and $50,000,000$ acres were thus transferred to railroad companies. At
prese: bi \because,he great F iticel paries are inclnee is r farm so much of the public lands thes grunted, an hus net been earned by a strict fulblicti: dif.e enditicas on which the grant was made. The afpropriations for internal imprwments wier the head Rivers and Harb ri i : the yeer 1903 was $\leqslant_{32.540,199.50 ~ a s ~}^{\text {a }}$ asaitat E-. in 25.00 in 1902.

Internal Revenue System, of the United Siuits. Foperiy ati texation except that of forCin n y ds at cust ms offices: but un nee restncted to whaz were intalerly termed excises (q.v). on mternal trade and manuiactures. through a burcau oi the Treasury Department. crganized Isoz. Before that time. shough excizes had been imposed. they were umplpular and brief. An intense dislike to them had been itherited irom England. where they traditicalaly connted an independent revenue ior the soreveizns to iree them from pupular control, and arbirary interference with private business and pers me by irresponsitle officials, the raw state oi trade and manufacture in this country made a general excise system rery injurious; and the cust ms dues amply provided ior the expenses.

The first occasion when they were resonted to was just aiter the adoption cf the Constitution. The assumption of the Siate debis, and other expenses of the new government. compelled Hamiten to recemmend an excise, though in the 'Federalist' and elsewhere he had strongly urged its impolicy: he was also anxious io test the power oi the government to enforce iaxation. which the Articles of Confederati n could nct. On 3 March ifor a bill was passed taxing distilled spirits oi domestic manuiacture. In the then West (westem Pennivivania) the still was like the New England cider mill, but much mure important, because the long distances and bad roads made curn unpreritable unless condensed into whishey, hence there was open revolt, which had to he put dow: by national troops (1;04). Direct resistance ceased. but the tax was largely evaded. and it was two years beiore it was extended i. Kentucky and Tennessee, while the cllections in \cdots rth Carolina were porr. In 1 yth the syitem was extended in fear of a war with Enstand. but owing to unskiliul choice of articles of $p 5$ visions in detail, the caly one which pr-duced much was that on sugar. from the high import duty, which gave the hone market the ducstic manufacture:s, so that whit went into excise came off customs. Stamp iaxes were laid in H-9-, but were of odious assuciazi ns. Ihith the electic:1 of Jefiersn as Precident the whole system came under ban, the Democrats having alway: epplsed it, and on 6 April 1802 the entire internal taxes were repealed. with mearly \$-00.000 outstandine and und liected. and which remaines so. The distike wat umt t the taxes
 ketwin melved: and this nersised. Pert the War ri 1 sis complled a renewal i i them: uni retunatily they were laid so late that the war "as cuer bei re they began in pruduce much. They were needed to pay off the war dehs.
 Thence till the Civil War no interral tax of any knol was lewed in the linited State:.

The first real asstem ${ }^{4}-i$ r the chers inchuled but few articles-and which has beome a standing iart if our y-tem if taxation,
was inaugurazed I July rsfa. others followed placing an enormous and rery iil-distributed burden on the people, which they bore uncomplainngly for the end in riew: It is almost too complimentary to call it a system, as it was an indiscriminate heaping of taxes upon every stage ci every article. on labor and fools, raw materials and inished producis, processes and professi ms. Artucles paid sometimes a dozen faxes on the raricus stages, and another on the final one. beiore reaching even the wholesaier io begin a round of middemen's profits. aThe only principle recognized." says Darid A. Wells. is it can be called a principle. was akin io that at Donnybrook Fait, 'Wherever you see a head hit in" "\$1 herever you find an article. a prduci. a trade a profession. or a source of income. iax it! IV ithin the period 1801-; no less than 25 revenue bills were passed by Cangress. The incessant endeavor was to find new obiects of taxation. The indastrial effects oi the sudden huge unequal busdens, and the political effects of the enormous revenue to spend as discreticn. cannci be discussed here. The taxes did not begin to produce largely at once: in 1863 the receipts were § $37.040 .-8.95:$ in 1864 §100.74.136.10; in 186 . E-00 $46 \div 215.25$; in 1860 ; the summit. $\$_{300.226 . I_{3}+12 \text {. Then the items began io be }}$ siricken ofif, the total sizking by 18,3 to $\$_{113 .-20.31+14: \text { able business men have attrib- }}^{\text {and }}$ uted part of the inilation, and consequent paric, to the sudden remoral of burdens to which business had adiusted itself. The next year it touched boticm. Sroz-400,-8:90. The taxes by this time had been reduced to about the present status, and tended to iacrease with the grow:h of the country, even rising scmewhat through the bad years $18,5-9$. The iname tax. though iairly productive - the height being \sum_{3}.-.7.5. 8.3 in 18;0 - was dropped in 18,2: 70 cther tax was ever so unpep:lar, irom its prying into private secrets, and its working throngh informers. It is also the one which bears hasdest on the most heavily burdened clas: of the community, the moderately salaricd mes in varicus calings. Protection leadif: have repeatedly urged or hinted at repeal if all internal taxes, io prevent any reduction of custons duties: hut the moral reeling reinf sces the eccromic sense of the people in incting ca liquors and inbacco being taxed. Attemp:s have been made to increase the revenee ircm liquors by raising the tax; but the resuit is the reverse, the premium on iraud being too great. In liont the income iax was re-estabiished, but the Supreme Court decided it unconstitutional under its particular terms: On I Iuly roxs, to provide for the expenses of the Spanish War, fresh internal taves were laid: of which the m st iertile were stamps en all mercantile papers, telegrams. etc., and on patent medicines, and wines, which yielded in the ensuine fiscal year $\leqslant 3,83,816,66$. Special taxes an hankers and amusements, and some other things. yielded several millions. The t tal receipts in 1899 were $ミ 203+84.571+1$ In roor and 1902 the new taxes were all abolished.

International Brotherhood of Mainten-ance-of-Way Employees, an American labor union, having a department of fraternal insurance. It was iounded at Demopolis, Ala.,
in 1887, and had a membership in 1903 of 40,000 . Since its organization the society has disbursed \$500,000 in death and disability benefits. It has secured increased wages for main-tenance-of-way employees to the amount of $\$ 6,000,000$ ammally. It was actively engaged in the great strike on the Canadian Pacific Railway in 1901. The strike was settled after a struggle lasting 11 weeks, with the understanding that all members of the brotherbood would be reinstated in their former positions withim two weeks; the question of wages to he left to arbitration. Sir John A. Boyct, Chief Justice of Ontario, was chosen charman of the Board of Arbitration and awarded the employees an increase of 20 per cent over previous wages. The brotherhood holds a charter of affiliation with the American Federation of Labor, and publishes the 'Advance Advocate,' a magazine devoted to the interests of maintenance-nf-way employecs. See Railway Labor Orginiz.itions.

International Councils of Women. Sce Nationat and International Councils of Women.

International Date Line, an imaginary line

Map of the world, showing the International date line.

Europe, too, he would have been told that it is Monday noon.
let it has always been the same day to him, athd there must have been some place on the journey where he was told, for the first time, that the day was Monday instead of Sunday. At this place, if he wishes to be in accord with the people that he meets, he must arbitrarily change the name of his day from Sunday to Monday: Mariners are in the habit of making the change upen crossing the 180 h merdian from Greenwich, lingland ; but this fact is of $n 0$ service to us if we wish to compare the date carried on one of the Pacific Islands with the corresponding late (say) at New York, because the mariners pay no attention to the local dates on the isfands that they pass. The ideal way to hind out where the date actually does change would be to canvass the entire Pacific Ocean, so as to find out what date is actually in use on every one of its islands at some given instant. A line drawn from pole to pole in such a manner as to keep all islands bearing one date on one side and all islands bearing the other date on the other side, would afford a perfectly definite basis for the comparison of dates, and would be the true "International Date Line."

No such canvass has yet been made. As a general rule, it may be said that the date now in use upon most of the different islands or groups, is the date which results from the one carried there by the first European or American colonists; and this date will presumably be different according as the colonists came from the cast or the west. This is not true universally, however, because arbitrary changes in the date are known to have been made in a number of cases. For example, Alaska was first colonized by the Russians, who brought with then the Russian date. When the American
drawn through the Pacific Ocean somewhat irregularly, but tending in a general northerly and southerly direction, and separating the islands of the Pacific Ocean in such a way that all those which lie to the east of it carry the same date as the United States, while all those on the west of it carry the same date as Japan and Australia. The nature of this line may be made clear by the following illustration: A traveler leaves New York city at non on Sunday, and procceds westward just as fast as the earth turns on its axis, so that he follows the sun in its apparent westward progress with such precision that he keeps it always directly sonth of him. It will be noon, therefore, at every place he passes. If, howerer, he asks the day of the week at every point of his journey, he will be told that it is Sunday at all points in the United States, and even as far west as Hawaii. This can not hold true indefinitely, however, becanse when he has gone entirely around the world, and has returned to New York, he will have been gone 24 hours, and will therefore be told that it is Monday noon. Everywhere in
settlers moved there, they carried with them the date of the United States, and this led to some considerable confusion, the Sunday of the Americans being the Monday of the Russians, in spite of the fact that the Russians still use the Julian calendar. In 186\%, when Alaska was purchased from Russia, the date in use there was made to conform to that used in the United States. Again, the Philippines were discovered by Magellan, in 1521, and Manila was founded lyy Lagaspi in 1571. Magellan brought his date from the east, and after the islands were colonized they kept the same date as the Spanish possessions on the opposite side of the Pacific; and they therefore carried a different date from that prevailing on the neighboring Asiatic coast. This was changed in 1844 , by the omission of the 31 st day of December in that year from the Philippine calendar: this change bringing the date in use in the Philippines into harmony with that prevailing at Hong Kong and other Asiatic ports. The hest data at present available indicates that the date line follows sutstantially the course shown upon the accompanying map.

Which 15 prepared in m data iurnished by the Trined S:ates laval Observary. This date line :is subicct it m difici:1 n, as 0...r knowledge of ti:e dates carrsed c the variows Paciñ Is:áds increases.

International Law. International law as emb died in the practice of states begins with t.e Peace oi W'estpnalia (ross), which gave rine to modern international society. Internai: - - 1 law as a branch of jurisprudence begins In th the put ic-tion in 1t25 of the epoch-making treatise of Hugo Groivs entitied 'The Laws cilliar and Peace) (D_{e} Jure Baili ac Pacis), athurin the earlier worls of Albericus Gentilis entiticd (De Lesationibus' (1585) and 'De Jure
 Prtant ciniributions to the subiect, and iusrisi.ed Grotits with the patiern for a portion ci his great book. Aiter the Peace of llestphalia the teachings of Geotius made rapid conquest, and in 5661 the first chair of the law of mations was iounded at Heidelberg, with Samuel Puiendori as t..e first meumbeni. He ajierward became professor of jurnsprudence at Lund, in Sweden. a::d while there published his werk entitled 'De Iure Sature et Gentiom) ($10 ;-2$), During the It:h century tise publications of Bynkershoek.
 uled to advance and f pularize the subiect in the schocls and among statesmen and mil-ita-y leaders. The work of Tatiel in particuiar Lecame deservedty fopular for its practical value as em? odying the law of nations as it then was (1, 2 () : it has been translased into most of the languages of Eurcpe, and is still irequently referred to and cited. The first hali of the igth cennory made numerous addutions to the list of authritative w-iters, amcng whom may te especia!!y samed Henry Wheaton in the taited S_{i} :es and R bert Phillmore in England. Oif m -e recent writers the woks of Duntschli. Hefiter, Calwo, Pradier-Fodere, Ha:1, Lawreace and Tarlor are espectaty worthy of mention David Duciey Fies drafted an 'Outline oi an International C - fe, which is interesting as an a:lemf to codify the whole field of internaii ral law.

The term "Law of sations" was formetly ueed in der te the L dy oi d crines g verning the relums of independent states or sovereigntie: The m-dern term "International Law "-s fist enined by Jeremy Eentham. in $5=0$. antl is mow everwhere adopied; it has been exterile 1 to melude by th pubic intemational law and frivaie internath nal law, lut is here emFred only in the fi-t and more accurate sense. T'e thrase "cr-Aict of laws" is better adapied 1!. n priv te irternational law to decribe the d. . . that may arise in a local court as in whe her. in a case inv lving privase rights. the ircal, itri- rinl hw toold gnveror of a fo em. exterriv -ial law sly uld be applied.

In* cnational !aw co maise rif that body of
 17 the re relatims will cue an i'er, and ly which poliornt rs are cr:s d wlen anth rized in decermire is ternation-1 arves. While it has : $:$ a l the sancor $=$ i m micipal 1 w , it is, a $=$ one writer tre ric 1 enil hro.g on siates in ti rir mermati -1 te it ne with a itree comer paralle in tature an l deree to that lioding the e racient" is pron- n to, ky the laws of his country, and it is also eni rceable by apprenti-
ate means in case of infringement. These means are diplomatic negotiations. arbutration. withdrawal of diplomatic relaions, so-called pacific blockade, seizure of property, and actual war. In addition, some parts of international law are eniorced in the cours. The Supreme Court of the Cnited States has recently said: 'International law is a part of our latr: and must be administesed by the courts of justice of appropriate jurisdictions, as often as questions of sight deperding upon it are duly presented for iteir determination. For this purpese, where there is no treaty, and no controling executive co legislative aci or judicial decision. resor. nust be had to the custcms and usages of civilized nations: and, as evidence of these io the works oi jurists and commentators. who, ly years of labor. research. and experience. hove made themselves peculiarly well acquanined with the subjects of which they treat. Such works are resoried io by judicial ribunals. not for the speculations of their authors concesning what the law ought to be, but for trustworthy evidence of what the law really is." (Paquere Habana v. Unized States, IT5 L. S., 6\%-.)

Owing to the absence of a common superior or sovereign to declare or to enforce the rules of international law, a school of jurists. led by John Austin, and lnown as the analytical school. has denied that it is law at all and has relegated the system to the domain of international metality. The historical school of jurists. of whom Savigns and Sir Henry Maine are brilliant exponents, has combated this riew and has made clear that there have been and still are systems of municipal law in which it cannot be sid that there is either a sovereign or a sanction, and that imernational law corsesponds to all systems of lam at some stage oi their development and io ceriain archaic survivals still to be chserved among primitive peoples. English legal thought has been profoumdly influenced by the Ansimian conception of lan, but on the Continent, and even among English and American porists of to-day. the historical conception is generally accepted. With the assertion oi the primacy of certain great powers and with the esiallishment of an intemational tribural. internatinal law is tending toward an analogue oi the common superior and the desinite sanctions that now characterize municipal law in the more 1 igh]y civilized states. These are those wh? n.w dream of an authoritative international legi tative body, c mpulscry arbirration, and the enfoscement ci arbital decrees: but it is doubtiul whether these indicia of municipal law are adaf:ed io the peculiar conditions of international relations. It is fonbable that the same encs wil! be worked out by internarjonal conie:ences and conventions, and by voluntary arbitration ompelled and enforced by enlighiened pul' ic opinion.

The early publicists sought the basis oi internasimal law in the so-called "law of nature, " c_{r} ith se principles of justice in which the specudative fhil sopher affects 10 see an abstract body of doctrine written in the very nature of man asil ci scciets: But the law of nature of the in nati nal iurist sested upon a firmer basis tran the concepts of speculative philosophy: The 'Jus Gentinm' (Law oi the Peoples) of $t^{\text {h }}$ e R nman jurists was "the sum of the common ingredients of the customs of the old litalia
tribes." It was upon this storehouse of determined and common customs that Grotins and his successors drew for the definte and practieal rules of international law, and added them to such customs of modern states as were gencrally accepted and acted upon in internationa! affairs. Thus arose the law of nations which. mader the influmec of the revival of breck thought and speculation, was philosophized into the law of nature. Modern international law las escaped from the domination of speculative philosophy and now speaks in the language of the practical jurist; it is regarded as a branch of jurisprudence and the business of lawyers rather than a branch of philosoply and the conceris of schnolmen.

International law rests, then, upon custom, and in this respect differs not at all from motnicipal law. In the last analysis the practices of states is the authoritative test. As evidence of such practices resort is had to the decisions of courts upon points that may be bronght before them for determination, to the decisions of international tribunes to which questions have been referred for arbitration, to treaties and conventions of general application, to the writings of jurists, and to the arguments of statesmen in diplomatic correspondence and state papers. In comparatively recent times there have been negotiated numerous international conventions which correspond to legislative acts and put into definite form the rules to be observed. These sometimes codify the eustomary law, sometimes change it, and sometimes add to it. Among such great international documents may be named the Declaration of Paris (1856), the Genewa Red Cross Convention (I864), the Declaration of St. Petersburg (1868), the Convention for the Protection of Industrial Property (1883), the Convention for the Protection of Submarine Cahles ($\mathrm{I}_{\mathrm{S}}^{\mathrm{A}} 4$), the Convention for the Repression of the slave Trade (ISgo), the Universal Postal Convention ($\mathrm{I} \& \mathrm{D} \boldsymbol{1}$), The Hagne Convention for the Pacific Settlement of International Disputes (18 Sog). The Hague Conventinu with respect tu the Laws and Customs of War (1899), The 1 Iague Convention to extend to Maritime Narface the provisinns of the Geneva Red Cross Comvention (1800). This growing body of international conventions indicates the method loy which, in the future, international law may be expected to progress. The common law of internations! law is not likely to expand beyond! its present content: it has either heen settled liy concurtent custom or its disputed problems have given rise to conflicting schools. It remains for states by intermational agreement to codify, to reconcile, and to extend the doctrines of the customary law.

Independent, sovereign states are the parties to international law. States whose external sovereignty has been wholly yielded up, as is often the case with members of a confederation or tunion, cease to have any independent internatinnal status. States whose extermal sovereignty has been limited. but not wholly extinguished, have an intermational status subliect to the limitation imposed, as for example Bulgaria or Cuba. Certain states, like Belgium and Swit\%erland, have been neutralized, and while still parties to international law are forbidden to engage in offensive warfare. Any limitation upon freedom of international action tends to
rednce the state so reatricted lelow the normal status uf the parties to international law.

Of the independent, sovercign states only those whose muncipal law is cesentially similar in that originating in Europe can be satid to enjoy to the fullest extent the rights and privileges uf international law. W'ith states whose law is of non-Europuan origin, the European and American states have insisted upon treaties unter which thoy exercise throngh their consular courts an exterritorial jurisdiction inconsistent with the fall internatoonal equality of such states. Outside of Europe and America only Japan can he said to enjoy full international equality. In Enrope the position of '1 Turkey is anomalous. While admitted hy the Treaty of Paris (1856) to participate in the adrantages of the public law and system of Enrope, the powers still mamain there consular courts with exterritorial jurisdiction, as they do in most Asiatic and African states, On the other hand, such exterritorial jurssliction has been abandoned in Japan, whose municipal law is now modeled upon that of Europe. White other states like China and the Asiatic and African Moslem states, are dealt with in general upon the principles of international law, and are expected to observe the obligations imposed by it and are entitled to its privileses, there is a specific reservation as to some parts of the system, and an underlying, though often unrecognized, difference in the whole spirst of their international relations.

Theoretically the principles of international law rest upon the postulates of the independence and the equality of the states that are parties to it. Practically six states in Europe, one in America, and one in Asia are dommant, and can, and often do, impress their will upon the nther states within the sphere of their influence. Great Britain, Germany, France, Russia, AustriaIfungary, and Italy constitute the concert of Europe and settle or leave unsettled questions of European law and politics. The L'nited States ocenp)ies the same daminant position in America and las the final voice in the settlement of American questions. Japan has very recently assumed the same dominant position in Asiatic affairs, but it is yet too early to predict how potent or lasting her intluence will be in that quarter. While international law may be said to have well definer! principles throughout the greater part of its fielil of action, the play and counterplay of international politics, as practiced by these cight powers, must continue profoundly to influence its application in specific cases of general importance and to determine its progress througli international conferences and comventions.

The nommal relation of states is that which exists when they are at peace with one another. An abnormal relation is created when two or more of them encage in war. so far at least as their relation to each other and to the mentral states is enncerned. If we assume a war to be going on between State Λ and State B, the normal relation contimnes annong all other states, but the relation of State A in State B is governed by the laws of war, while the relation of each to all other states is affected by the laws of helligerency and of neturality. There are, then, three situations: the relation of peacefnl states to each other; the relation of enemy states to
each c ：her：an！the setation oi be＂igeremt states to neaceiu！states．Each has its own special code ct laws．

Pe゙がでい Reletíns＿States in times of peace stritun tuward each then a relation simi－ Fer is that of well－disposed citizens in civili－ed societies．Each passesses and enioys its oun rights with a due regard in the cirresponding rights others．These rights si infeine call for apprepriate remedies，the gravest of which is that of selthep or selt－defense．N．dem states tend more and more to the awoinorce if this u：imate i：Th ofecess，and the past cen－ tury，and purticuindy the past quarter－centurs， has shown an increasing resort to neaceiol a：－ biration when diplomatic regotiati ms have
 a permanent arbitration aribuna！a：The Hazae ma－k a decisve rict $\underset{y}{ } \mathrm{i}=$ the pancinte ci ar－ bittat n ．See HaGEE C MFERENGE
 menta！richts：：preserve its indepercience and
 ment：in açuite and dispose ci rewitry：to pretect isseli and its citize：s of sur；ects it： unjut agytesim：to exercise jurisdicticn over fersine and poperty within its teroiturg uless they be exempted by daw of by ：－azy ：：oxer－ cise jurtaitinn ouer is public and prisate ves－ sel：n the bigh seaza in exercise junisdiction cre：it put ic ves－els，ore its legati ns and cue fers ns c annected with ite prublic vesseis and rther state At mitine sowezeign or kead of a sicic is a＇so exempt ir m local juzasdiction．

Sore of thess rights may be timited by treaty．as in th．e cose－i the consular jurnadic－ it 7 exerciset in Oriental states．- by the doc－ trine＝interve：ti a as illustrated by the action of the or neert in Eurune in numernus cazes in－ volving the balance pipwer of of the United Siate in caws invorvin the II nene Doctrine （qu）．Especially has the right ：o acquire of dispose ni territ ry beev limited by comsidera－

Intervertion is a itor－ine r ：vague limias． Althnarh werally have：ypun the asserted right of selfof－evervation．it has been iustrited upon the gonums i humanity，as in the case of the interventi－n the furs in hena！itigreece in 10 and hit the Tnitet States in hehat？of Cuba in tas In such ins：asces is is a mora！ tather than a lega＇right，an \ddagger ha：heen antly deacihed as＂a high act of picy anove and reynnd ：＇e d $\quad \mathrm{in}$ ：aw．The Monroe 1nct－ine has $a=$ coce it：outpres the preven－ tinn＇Fint nenw interventin in the amatr of the ind ons＇ent tme－ican states．On the ntte： ！an！the U＂nitet S：ase＝has as a fundamertal

The terri，－ial iuri＝dir：ion of a state ex：en ls In three $\mathrm{mil}^{1=}$ ，innen sea adi inine it cons：． This＂im．．．was fixe！when that was anno x－ imatery．the dicance that c－．．d he He ended irom the shinte $\$ 10^{10}$ h the imerease in the targe ni Euns．a on mation evem！the limit in six miles．no even mone th ：ten a francer？，hut has rot peen act 1 mont $=-$ ！a change in the law

 ete il＂in sive iltri．＇．it nit the state bonnirs
the sires．and some whose mouths are wider than this are conceded to be within the juris－ diction of the locai state espectally where the indensation is deep，as in the case of Chesapeake and Dedaware bays．Siraits not more than six miles wide ate within the jurisdiction of the state of states ornning the shores；but if they＂ conneci waters open to iree naxigation other states are entivled to navigate them subject to ：casonabie regulations．The three－mile ierri－ t tial waters are also iree for the innocent navisation oi cthe＝states．be：not ior nishirg or ior naval wariare Internceanic canals are seguiated by t－eary．The Suez Canal is regu－ lated by the reaty oz Iske signed by the six geas nowers a二d by ihe ！xa！power．Turker： the Panama of che possibie isthmian canal is
 thon are by treaty to be cnen in time of war or peace on every vessel．public or priraie，without distinction of घ̀ag．Rive：navigation is now，as is all the great rivers Howing through two of more states，also regulated by ireaty：prior to s：：ch treaties mary disp：．tes arose as to the right ci an upper riverian state to navigate through the ternitag oi the lower ormer to the sea．

Exterrimoriaity is the name applied to the exercise by one sta：e of jurisdiction within the limits of ancther state．It extends to yisiting sovereigas．dipiomatic agents and theit families and suites．and visiting public ressels．It is also by The Hasue Coavention exicnded to the jufges $0 \div$ an a－bitration tribunal organized un－ der that convention Consuis do no：enicy the frivilege unless by treaz：．Ir：Oriental countries the citizens and stbjects of Europern and Amer－ ican states are by treaty generaliy subject to the jurisciction of iheir own consular courts． In all the above cases the persons concemed are exempt from all loca：judistiction beth civi！and crimina！．Moreover，local process wrll …：fun up at the deck oi a visiting publis veszel not within the gates of an embassy or legatinn． This give＝rise to the right of asyom by wh th mlitical offenders citen escape．esnecia＇ly in South American and Oriental countrice by tok－ ing refuge in a legation or on board a public vessel．This is a right which is guarded＇y ever－ cised and is，or should be，never extenced to ordinate crimina＂s．

Extadizinn is the delvery up by ore coun－ try of criminals who Hee to its tertitore irnm atinther．Is is regulated by treaty：no state is Fnund．except under treaty stipular：c：ns io de－ iiver up criminal reiugees，and it is doubted whether any consciucicnal power is lodged any－ where in the Linited States to do so except un－ der a du＇f raified treaty．Political ofrenders are mat subject to extradition．

At state has iurisdiction over aliens within it：ho－ders．except those representing ancther state．It may exclude aliers．and it it admits them it mav fix the conditions of such admis－ sinn．IVhen admitted they are subject to the local laws，except．perhaps，that they cannot be compelled to render military service．But if a state deals unjustly with an alien or iails to use due diligence to protect him，the state to which he owes alleciance may seek or compel redress．

If a srbject of nne state is naturalized in an－ Nher state，a question oi double allegiance may be raised．Frme－ly European staies asserted
the doctrine of indelible allegiance and did not recognize that a subject could expatriate himself without the consent of the parent state. This secms to have been the common law and is so ammonced by American writers and judges. But Congress, in 1808, passed an act declaring expatriation to be a natural and inherent right and that any order or decision to the contrary by any officer is inconsistent with the fundamental principles of government. Great Britain in 1870 enacted that any subject who becomes naturalized in a foreign state shall be deemed to liave ceased to he a Britich subject. The C'nited States has treaties with some governments fixing the status of its naturalized citizens. Where there are no such treaties th:e matter often becomes a delicate and difficn!t one in case the naturalized citizen returns to his parent state and military service, or some other obligation of citizenship, is there demanded of him.

The high seas are free to all and no state can claim any exclusive jurisdiction in them. The struggle for the establichment of this principle has been a long and difficult one, but with the Pering Sea arbitration of 1803 it may be said to have ended, when the claim of the United States to a property right in fur seal beyond the three-mile limit was decisively rejected. Tessels on the high seas are free from interference in time of peace unless suspected of piracy or slave-trading. Piracy is justiciable everywhere. Slave-trading is not piracy and ressels engaged in it camot lawfully be visited, searclied, or seized by vessels of other nations unless such right be given by treaty. The international convention for the repression of the slave-trade gives such a right within a specified zone adjacent to the coasts of Africa. All neutral merchant vessels are liable to visit and search in time of war by a public vessel of either helligerent. If carrying contraband of war or intending to run a blockade, a neutral metchantman is liable to seizure and detention until a prize court has determined the validity of the capture and whether the vessel or any part of its cargo is subject to condemnation as prize of war.

Relation of Belligerents to Each Other.War suspends all civil intercourse between states. Formerly the subjects of enemy states were regarded as enemies, but this doctrine is now confined to rendering illegal all contracts and commerce requiring any communication across the lines of hostilities. But a subject of one belligerent residing in the territory of the other is permitted to remain and to carry on business there so long as this does not embarrass the state of his domicile with reference to his protection or the conduct of hostilities. If required to depart or if desirous of doing so, the alien enemy is given a reasonable time in which to withdraw himself and his family and property. The last instance of the forcible detention of alien enemies who were non-combatants was the exercise of this now obsoletc right by Napoleon against resident subjects of Great Britain in ISo3.

War suspends all exccutory treatics between the belligerents except those negotiated with a view to hostilities. At the close of the war exectited treaties or those of a permanent nature zemain undisturbed, but those of a transient
nature and subject to change or extinction do not revive unless by express stipulation.

The laws governing armed hosthlities on land have been the subject of much codification. The first was that of Professor licber, prepared for the American Civil War and adopted in 1803 for the govermment of the armics of the L'nited States. In 18-4 an international European conference at Brussels framed and recommended a code for general adoption, but its work was not ratified. In isfo the lnstitute of hnternational Law reconmended one prepared by N1. Noymier In 1809 The llague Conicrence adopted and recommended one based largely on the Brussels code, and this has been ratified by the United States and many other pewers. The United States in isoo promulgated a Naval Whar Code for the guidance of jts maval cfficers and forces. No intermational naval code has yet been framed.

Modern warfure secks to distinguish between combatants and non-combatants, and to give every possible immunity to the latter, while providing for the humane treatment of the former. To this end the laws of war define combatants, provide against unnecessarily crnel weapons or missiles, against the refusal of quarter, and for the proper care of prisoners and of the sick and wounded. The Genera Red Cross Convention reutralizes hospitals. surgeons, and murses in land warfare, and The Hague Convention extends the principle to naval hospital ships and their attendants. Non-combatants who refrain from all participation in the war are free from molestation, although when a territory is occupied by the enemy they are required to give a temporary war-allegiance to the conqueror. Non-ccmbatants engaging in hostilities are liable to punishment.

Saye in the case of a levy on masse to resist invasion, persons in order to be regarded as combatants and entitled to privileges as such, must be commanded by a responsible officer, wear a fixed distinctive emblem recognizable at a distance, carry arms openly, and conduct their operations in accordance with the laws and customs of war.

All weapons are forbidden which canse needless suffering. By the Declaration of Saint Petersburg (1868) no projectile of less weight that 400 grams that is explosive or is chatged with fulminating or inflammable substances may be used. By a declaration of The llague Conference (isgo) the launching of projectiles or explosives from balloons was forhidden for five years, hut this has now expired by time limitation. The Hague Conference also declared against projectiles the object of which is the diffusion of asphyxiating gases and against bullets which expand or flatten easily in the human body, but the Trited States delegates did not assent to these propositions.

It is forbidden to use poison. to kill treacheronsly, to refuse quarter. to make imoroper use of a flag of truce or a Red Cross badge or ensign, to bombard undefended towns. or to piltage a captured place. The United States Naval Code forbids the use of false colors, though such a deceit has heen deemed to be allowable under the older practices.

Private property on the land is now regarded as exempt from capture except in case of military necessity. Pillaging and freebooting are
etrictly prohibited. Requisitions may be levied fir the suppert of an invading army with a due regard to the res-urces oi the country. It has been found dificult to reconcile the doctrine of the it 1 inability of private property with the sizht to levy contributions, and no satisfactory suies lave yet been framed to limit the exercise of this right.

Naval warfare has partaken more of the character of ireebooting than modern land wariare. Private froperty is liable to capture. Privateering was long permitted. and is nom theoretically admissible unless the belligerents have by treaty agreed to forego it. The Declaration of Paris (1856), assented to by mest civilized mations, forbids it. The U'nited States is not a party to this, but in two wars in which it has been engaged since the declaration was issued, it has observed it. Mr. Marcy. secretary of state, offered to assent to it provided the declaration was amended to read. "Privateering is and remains abolished, and the private property of the subjects or citizens of a belligerent on the high seas shall be exempt from seizure by public armed vessels of the other helligerent, excent it be contraband. D This was rot assented to by the other powers. Since that time the United States has frequently sought to secure such an exemption of private property from capture, but as yet without success. All private and public ressels and property of the enemy are liable to capiure except hospital ships. coast fishing craft. vessels on royages of science or disc very and property devoted to science. education, religion, and art. It is usual to exempt also vessels on voyage to or from a nott of the cadtor at the outbreak of the war and to permit those in its ports a reasonable time to depart. All enemy merchandise in an enemy ressel is liable to capture, but the Declariturn of Paris exempts enemy goods in a nentral ressel and neutral goods in an enemy vessel except contraband of war.

Vessels and cargoes captured during the war are taken into a prize court for adjudication. But if the captor camnot spare a prize crew, or there is dancer of recapture, they may be sold or destroyed if clearly enemy property, and the papers and other testimony sent to the prize conrt in order that a judicial decree may be entered. Title to captured property changes nnly by decree of a competent court. The pers ninel of a captured merchant ressel of the enemy may be detained as prisnners of war, or z^{2} witnesece, or they may be released. Passengers are released at the first convenient port.

Relation of Belligereuts and Veutrals. - The dectrines of nentrality have reccived their chiei aphlieation since the inndation of the American Remullic, and foreign writers give th the moly etatesmen of that Republic the credit of having done most to ascertain and estahlish the cound princinles unon which neutrals should act thward helligerent:. Iefferann summed up the wh le matter in ne of his telicitous phrases: - It is the right of every nation to prohihit acts of anvereimety from beinc exerciced by any nther witi in its limits. It is the duty of a nentral mation to prohilit such as wonld iniure me of the warring rinwer:" The conduct of M renct, the French minicter. in using our ports as a base of naval operations in $1-03$ and in settire up prize courts in them, called for the
rigotous application of the doctrines of neutrality, and led to that attitude on the part of our government which has elicited the admiration of all publicists. In Ij94 Congress passed an act iorbidding American citizens to enlist in the service of a foreign state at war with anoiher state with which the U-nited States is at peace and prohibiting the fitting out. of ships of var or armed expeditions within the territory of the United States. This and its amendments were consolidated into the Foreign Enlistment Act of 18i8, and the latter has served as a model for similar legislation by other states.

On the one hand each belligerent must observe the inviolability of neutral territory and territorial waters and on the other the neutral must observe a strict nentrality and impartiality in its attitude toward both belligerents. It may admit their war vessels to its ports but must so regulate the length of the risit and the amount and nature oi supplies as to preserve its neutral duties. The usual rule is a visit of 24 hours or, if a ressel of the other belligerent is in the same port, 24 hours after the latter has departed. The supplies furnished must be only sufficient to tale the vessel to the nearest home port and are not to be again furnished within three months. It cannot be said that the letter of these rules is universally accepted. but the principle involved in them is admitted. An international agreement may be necessary to define them with precision.

To permit a ship of war to be built and equipped by one belligerent in a neutral port is a breach of neutrality. This was so adjudged by the Geneva Arbitration Tribunal in the case of the Alabama. Florida, and Shenandoah. which were built or adapted in England by order of the Coniederate government during the American Civil War. and their equipment sent out from England in transports. It has been contended that a ship of war is a legitimate article of commerce, as much so as guns. ammunition, and the like, and that it is merely contraband of war: but the distinctions are marked enough to lead to the rule that neutral states inust use due diligence to prevent the fitting out. arming or equipping of such vessels within its jurisdiction.

A neutral state is not bound to prevent its citizens from engaging in coniraband commerce with the belligerents; but they do so at the risk that the contraband articles may be captured and condemned. Jon-contraband commerce between a neutral state and a belligerent state cannot be interfered with, except by the establishment of an effective blockade.

The right of a belligerent to cut submarine cables has been much discussed of late. Those between helligerent points may be cut anywherc, but it is contended that those between a belligerent and a neutral point can be cut only in belligerent territory: and that those between neutral points camnot be cut at all. This is the provision of the Enited States Saval Code but it is likely that an international agreement may be necescary to secure uniformity of action.

Relatinn of Veutral Indiriduals to the Bellig-cents.- Citizens of a neutral state may engage in commerce with either belligerent. subject to the right of the other belligerent to capture nentral vessels carrying enntraband of war or intending to run a blockarde. But neutral citi-
zens who render belligerent or unnentral service, such as carrying milhtary dispatches, military officers or forces, transmitting signals, and the like, may be treated as quasi-belligerents and their vessels and property may be confiscaterl. When Messrs. Mason and Slidell, agents of the Confederate government, were taken from the British steamer Trent on a voyage letween Havana and England, the British gowernment contended that the act was unwarranted. The Enited States government. White contending that the agents might lawfully be captured, admitted that in case of capture the vessel must le taken to a prize court and the legality of the capture juslicially determined, and as this was not done, released the captives. The penalty for umeutral scrvice is the confiscation of the ressel engaged in it. It is uswally stated that neutral mail vessels may le searched for bellig. erent dispatches, but this right is very cautinusly exercised.

Contraband of war consists of goods having a belligerent destination and purpose. It is impossible to fix a definite list or a specific classification of articles deemed contraband. Some are clearly so because their sole purpose is for military operations. Some are clearly not so because their use is exclusively peaceful. Between these lie many important articles which may be used for military or for peaceful purposes, and these are classed as conditionally contraband. The United States Naval Code declares the following to be conditionally contraband: "Coal, when destined for a naval station, or a ship or ships of the enemy: materials for the construction of railways or telegraphs; and money, when such materials or money are destined for the enemy's forces: provisions, when actually destined for the enemy's military or naval forces." Such a list might be extended by including clothing balloons, bicycles, barbed wire, or any other articles used in warfare and destined for a belligerent. A neutral vessel carrying contraband is liable to capture. If the yessel belongs to the owner of the contraband it also is condemned, but otherwise it is released and the contraband condemned.

The United States Supreme Court decided during the Civil War that contraband goods shipped from England to Nassau, IV. I., but with the intent to tranship them there and send them into a Southern port were liable to capture. This is known as the doctrine of "continuous voyage," and lias been condemned by some publicists who argue that the destination of the ship should be conclusive as to the destination of the goods. Great Britain seems to have acted upon the same principle, however, in the case of gonds shipped to Delagoa Bay during the Boer War in South Africa

Neutral vessels destined for a blockaded port are liahle to capture. Blockades in order to be binding mnst be effective, that is, they mu it be maintained by a force sufficient to render hazardous the ingress to or egress from a port. A neutral vessel must have notice of the blockade before being liable to capture. This may be given by a general notification to the government of the neutral: hat if the vessel sailed before such general notification it is entitled to a special notification which is entercel upon its ship papers. Neutral vessels in a port when it is blockaded are allowed a reasonable
time to load and depart. The penalty for an attempt to rum a hockade is confiscation of vesscl and catgon. The officers and crew are not to be dermer] prisomers of war but may be detained as witnesses for the hearing of the prize court.

When it vessel is captured it is the duty of the captor to take it into a convenient home port and deliver it into the custody of a prize court. In the United States the district courts are vested with admiralty jurisdiction. Any clamant maty appear and contest the legality of the capture. If the vessel or cargo is condemmerl it is sold and the proceeds paid into the public treasury. Formerly the captors were by Luw contitled to a portion of the prize money, but by an act passed in I 899 Congress repealed this provision.

The right to capture contraband and to capttre ressels bound for a blockaded port carries with it the right to visit and search neutral vessels. A nentral clam las been pressed in recent times to the effect that private merchant vessels under convoy of a public vessel of the same nationality are not subject to risit and search in case the commander of the public vessel certifies that the merchantmen have on board no contraband articles. While this is in some dispute, the United States Naval Code directs naval officers to accept such certificate. A neutral ressel is bound to submit to visit and search unless under convoy, and any attempt to escape or resist, or to destroy her papers or present fraudulent ones, renders her liable to capture. See Aliex: imerican Diplomacy: Arbitration: Hague Conference; High Seas; Law; Maritime; Neutrality; United States - Diplomace.

E. W. Hufrctu,

Late Dean Comell Lni* 'sity Colle:* of La=
International Peace Conference. See Hagce Conferexce.

International Workingmen's Association, an organization of the workingmen of all countries for the advancement of the interests of labor and the emancipation of the working classes. It grew out of a visit of French workingmen to the Worid's Exposition at London in 1862 . In 1864 an organization was formed in London, and an Gddress and Provisional Rules) published; the rules provided for a general congress to be held anmually and a central conncil appointed by that congress to sit in London: workingmen's societies were to join the International in their corporate capacity. The principles and policy were not then definitely ammonnced: the first congress held at Geneva in 1866 passed resolutions favoring the limitation of the working day and the abolishing of child labor: at the next congress at Lausamme (1867) socialistic principles were first definitely ammonnced; from this time the influence of Marx and his follnwers grew in the organization. In 1808 at the Brussels congresst the International amounced its opposition to War, and favored the general strike; at the Baiel congress in 1860 Bakunin and the anarchists were admitted; but they were expelled from the associatinn in 1872 at the congress at The llagne: this same congress transferred the seat of the General Council to New York The anarchists held a separate congress at Ge-

INTERSTATE COMMERCE COMMISSION - INTESTINE

neva in ins. In 1stot the International rendered sutstantal aid oo the serike of the bronze woriers in Paris. and the next year io the strike of the Geneva buiders: it assisted the English w -imen by preventing the importation of underpaic lab ters from the Continent in ime oi strikes. The International was accused oi c mpl:city in the Paris Commme, and while the iwo had no official connection many of the leaders if the Commune were Internationalists. and its nrincipies and aims were defended by the Iriernati na:. In the [-nited States the Social Party, a sccialist political orgamzation, was aifilnated with the International in I868, and later s:me individual trades-unicns were also affiliated: inally the North American Federaticn of the International was iormed and held its first notional congress in 18-2: its organization was in: incal sections of at least ien members, with a Federal Council of nine elected by the anmual congres. Sinotly aiter the transier of the General Counci] to New Iork the Iniernationalis:s took a prominent part in the eight-hour day dem nstraticn in Sew lork. The formal crganization ef the International was dissolved in 18-5: in Europe the Social Democratic parties of the different countries grew out of it. and in the United States the Socialist-Labot party: The amarchisi laction in the United States split into imo organizations, the Internathonal Wrakingmens Asscciation and the International IV iking Peoples Association The Intemativnal was important in the history of the lalor movement as being the first expressinnci the reccenition of the ccman anterests of labor in all cuntries, and as being the means of sp:eadng widely the km wledge of the principles ni the Marian socialsin. Consult: Ely. 'French and German Socialism.' and 'The Lab - Ml vement in America': Viletard. 'Hisit ry of the Internationai': Zacher. 'The Red Inte:naticral.

Interstate Commerce Commission. See Comenere, liveretate.

Interstate Commerce Law. See Ccm-

 MER-E, INTEREITIEIn ierval, in music, is the distance or difftence if pith, anthanctually expressed, between any tw : nes di a given scale. Occidental natims, is cludirs America, empley the $\mathrm{d} \because:$ ric scale (sce $=(L E)$, an ictave comprisin = tive thes and ceven semit.nes, named after it sitrt seven letter, if the a plabet. The afix ! a hat : sham bei ie a n :e denu ies its $\because \cdot a l+y$ l $\because: d=s m$ i fect i:s msme. and the i-hth : : e betr in unte n c mmences a new iflave sking the soale in the key i i C תlifr.

 i-C. L-1): 111 - $\quad-\mathrm{d}=\mathrm{C}-\mathrm{E}$. F-A. or $\mathrm{G}-\mathrm{B}$; Prite : irh $=C-1$. D-G. E-A. G-C. or
 i with $=1 \mathrm{j}-\mathrm{F}$: grine dimn ishel fith $=\mathrm{F}-\mathrm{F}$; crave mimh $=\mathrm{T}$ i: prict fith $=$ C-G. E-F:
 $\mathrm{B}-\mathrm{C}^{\prime} ;$ ma is vit $=\mathrm{C}-\mathrm{A}, \mathrm{D}-\mathrm{B} . \mathrm{C}_{\mathrm{m}} \mathrm{E}$: acute maitr cixth $=1-\mathrm{D}$: grave moms seventh $=$ $\mathrm{D}-\mathrm{C}$. $r_{2}-\mathrm{F}, \mathrm{B}-A^{\prime}: \min$, seven: $h=\mathrm{E}-\mathrm{D}^{\prime}$. $\therefore-\sigma_{1}:$ sereth $=C-E$. $F-E^{\prime}:$ octave $=C-C^{\prime}$: I)-1). (ut By taking vari us in tes of the diato colc as slatine p inse, and measuring ho wn itcres irmmence, we arrive at inter-
mediate notes of the scale. of which the folloning are examples: $C=$ minor third below E; $D=$ minor second beiow E; E minor ihird abore C; 12 minor sixth above C: B \sum minor seventl above $C ; B=3$ major third above C. The difference of pirch between C and $\mathrm{C}=$ or between D and $D I$ is called a semitone, and an interval increased or diminished by a semiono satd it be augmented or diminished. This applies especially to the interval of a fourth or a jith. Which with the octare are said to be periect because any augmentation or diminution mars their consonance. The major sixth $0=$ thise may, however, be diminished to a "miner" sixth or third without destroying the consenance; and the term "mino-" is also ap piied to the diminished second or seventh. Intervals confined mithin the octave are simple. when they exceed it compound: the octave beginning a new series. the ninth is the octave of the second, and so forilh.

Intestacy, the legal state of a person dying without having disposed of his property by last will and iestament. In Great Britain intestacy does not affect real estate, which is disposed of in accordance with the rule of descen:. The effect of imtestacy in Great Britain is merely that no directions have been leit for the distribution of personal property. The eifect oi intestacy in the Lnited States varies in accordance with the laws oi inheritance fived by each of them. Iniestacy may be complete. as When a valid will is not leit by the dead proprietor: or partial, when the extant will only provides for the distribution of pari of the property. In these cases the property passes to the heirs or next of kin of the decedent in accorda:ace whth the laws of the place where the property is. See Descent: Heir; IsHeritance

Intestine. Bowel, of Gut, the alimemary iube, in the higher animals limited to that portion between the stomach and the outlet at the anus. The human intestine is divided into the sinall and jarge intesine, the iwo parts varying in siructure movement, and iunction. Tho smail intestine stazts at the pylorus of the stomach, as the duodenam, and the first eight or ien inches are so distinguished. This portion is the widest and most deeply placed of the parts of the smal. intestine. About three or four inches behw the pylorus the ducts of the gall-bladder and pancreas open conjointly inio the bowel. The du demun emerges irom the cover oi the poritoneum and becomes the jejunum. The remander of the small intestine constitutes the jeinnum (about two fiths) and the ileum. Beiween thene divisi nns there is little dirierence. excopt that the jejumum is more ireely movable. ecc:pie= the upper left portion oi the abdomen IIte than the lower and right. and has thicker wal. The lumen of the small intestine gradually gr ws less from the duodenum. where it is tw inches and a hali in diameter. to little m re than an inch where the ileum empties into the large intiotine. The fleum is inserted several inche above the actual beginning of the large intestine. so that a blind pouch is fermed bel w the point oi juncture: this pouch. calied the cremm, sives off the appendix vermifornis Fec Aprexidictis! from iss lower and lack part Fr m the cacum the large bowel passes up to the under suriace of the liver as the ascending cokn (sec Colon). thence across the abd men

INTESTINE

below the lower border of the stomach as the transverse colon, turns down to the iliae fossa as the descending colon, forms a peculiar S-shaped curve, the sigmoid flexure, which passes over the brim of the pelvis, where it is called the rectum (q.v.). The large lowel is alout six feet in length. Both bowels have four coats, the mucous coat, the submueus, the muscular, and over most of the bowel an investment of peritonetun forming the sernus coat. In the small intestine the mucous membrane is thrown up into permanent folds, each extending over haslf-way around the inside of the bowel. In this way a large surface is exposed for the absorption of food. Furthermore, the imer surface is covered with finger-like projections called villi, each having a large absorbing vessel in its centre. At the bases of the villi are tubular (of Licberkuhn) and branching glands (of Brun-

d

Section of the Ilenm and Creum: a, ileum; b, creum; c, ileocrecal valve; d, opening of the appendix; appendia.
mer) that dip down into the mucous membrane. Scattered over the surface there are tiny collections of lymphoid tissue, called solitary follicles, and here and there collections of these follicles into groups one to three inches long. called Peyer's patches. It is these spots that are attacked and ulcerated in typhoid fever. The muscular coat consists in an inner layer running around the bowel and an outer longitudinal coat. The large bowel differs from the small in the absence of the folds and villi, and is but slightly movable within the abdomen, being bound down to the abdominal wall posteriorly by the peritoneum. (See Physhologr.)

Diseases of the Intestine. - These may be disturbances of the function of the bowels without actual inflammation, or they may be inflammations in different parts and of different kinds; but with infammations there is necessarily a disturbance of the various functions, and differentiation freq̨uently becomes a matter of difficulty. Diarrhcea and constipation (qq.v.)
are symptoms of many different conditions, as are also deficiencies of secretion and absorption. The nervous mechamison of the bowels may be changed, giving rise to abnormal sensations and disturbance of all the functions. True innlammation of the intestines is the most common cause of abmormal action, and therefore is descrilsed in detail.
foute Intestinal Caturh is an inflammation of the mucous membrane that varies muel in its symptomatology with the part of the bowd affected and the cansative agent. Anong the causes may be mentioned the eating of tainted fruits and other foodn: the overeating of any food: overdrinking, particularly of very cold liquids: the injestion of chemical or mechanical irritants: "catching cold"; and the poisons of the infections diseaser. "1he bowel is inhabited by numerous torms of micro-organisms, many of which are entirely harntess; but when any of the rarions agunies menticned above affect the mucous momb:ane, the micro-organisms are able to attack the damaged surface. Many forms of bacteria produce particular types of discase when they find such lodgment, because they invade the system with their peculiar products. (Sce Cheleri Lnfantem; Cholera; Disen TERY.) But to the growth of bacteria must always be ascribal some of the symptoms in any intestinal catarrh. The attack usually starts in acutely with fever: general budily discomfort, and abdominal pain. If the inflammation be confined to the upper part of the small intestine there may be constipation; but this is macommon, and diarrhea is the rule. Inflammation of the small intestime is spoken of as enteritis, but this is nsually associated with more or less inflammation of the large bowel, called colitis (q.v.), although it may occur alone even in its last portion, the rectum. The pain in colitis is apt to be confined to the sides of the abdomen, and when the inflammation is low down there is constant desire to defecate, pain accompanying the act. Passage of mucus alone also indicates an inflammation low down in the rectum. The stools in acute intestinal catarrl vary mucls with the canse of the trouble; in some observed cases of dysentery the discharges are like rice-water, Treatment of these conditions depends upon the severity and location of the inflammation. The mild cases, with ordinary loose movements, recover without medication with abstinence from food for 24 hours. Castoroil or small doses of calomel will cleanse the intestine of irritating substances. The more severe cases are kept in bed and allowed small amounts of milk after the first day, and are given small doses of castor-oil or mixtures of bismuth, opium, and other sedative drugs. If the large intestine is found to be involved, irrigation with common salt in water (teaspoonful to the quart) is valuable. Great care must be used in the selection of diet for some time.

Duodinitis occurs associated with acute gastritis (q.w.) and has the same symptoms, except for the presence of jaundice due to the chosure of the bile-ducts. The disease rums its course ordinarily in a few weeks without any treatment except rest in bed for a few dass, simple diet, and mild cathartics to relieve the constipation. Chronic intcstinal catarrb results from a severe attack of acute inflammation in which the mercous membrane is left with permanent clianges, or from repeated attacks of inflammation. Cases

INTESTINE

oi chronic inflammation may ocer withe ut prevous evidence of acute atachs. The symptoms vary much in kind and intens:ty, but pain, flatulince, and disturbance oi the buwels are usually complained $i j$. Thete may be proncuneed con-stupati-n, aliemating constipation and diarrhea. daily unf-rmed movements not distmetly diarTheal. or, what is most comminn, a constant diarthua. Mere or less admixture of inucus in the stouls is usual!s observed. Soomer or later there is apt to be a loss of Alesh and strength. When the laege bowel is much involved in such a precess there is usualiy a coating of the stools with mucus. or the passage of clear macus.

In the treatment it is best to reiy maimy on caretully reguated life - exercise, baths, fresh air. s:ificient rest, awcidance oi expusure and pr-perly selected diet In diet the obects : uyl:t are the resuiation of the bowels and the or wance of irritation. When there is darshea it is wise to arcid f-ッ:s. salads, cabbage, coarsefibred breads. sucars, hanes. pastry, sur and swect wines. and carb-nic beverages. In cases attended with constipation m osi of these may be alluwed. but sa:asages, rich dressings. cucumlurs, callace. and very coarse-fibred breads shonid be fir idden, lineral waters are freque:uly used with success. stech springs as Carlsbad and lichy i r the darrhoal cases. and such as Marienbad. Hathorn, and Congress for in se a:ternled with enstiparion. Chronic catarrly of the larse bowel is teated with small d ses of caster-cil and irrigations of the buwel with water, to which may be added antiseptics or astringent:

Intestinal Hem. rringe. or blood passed ir m the b wel, may be due to piles, tumors, dysentery. clitis. typh id iever. iuberculosis of the antcinal :rach, ulcers of the duodenum. portal obstructicn as in cirthusis of the iver. hrmoIhila, purpura, and the hemorrhagic forms of the infoctints dseases. When blood coming firm the st mach or hith up in the small intestine is paseed by rectum it is changed to a iarry appearance. This is due to the action of the digustive iusces and bacteria. The farther down the intertse the blond starts. the brighter red is it fiund when paseci.

Intistincl Obstrut l!- This is a term that includu- a great variety of condations in the abdemen having the comm ieature of obstructh n t the fas-age of the e ntunts along the lowel: and in adf.tion there is in the acute conditi n erme injury th the bowel resulting in special symt tom- Twn virieties are differentiatud. the acute and the chr noc. Acute intestnal tructi ns are caused by ioreign budes. gal -ut res, and h.ordened io large collections of jx'e in $i^{3} \mathrm{e}$ cand: $1 y$ e ntracting coars of tum r - wi the wal, twiots of the gut (6 vallo). int soumettt me cmagmation of a fortic: at ve int the part \dot{c}° w 1 : by adhestins ai the ' - -t neum, cau-me cr - -treting bands: and by wrag atels cifrime=, ithe b wel entthitud tr icrml. Bi.., itere causes. ircm 1al ir ge: era for 'rt = there is apt to be a conitio i faralite i a p rti n ni the inse. hivizri it th wome state. The symp1 ... ry c \ldots... o wh the cause of the 1- rift: n a d the prt ithe b wel affected, It in k.eral the -smp m- ase pain-irequer. y if a c icky - $r t-c$ nctipation, iqability in fan ⿷as - with resuting tympanites ons'me, first from the shock, and later froms
roversed peristalsis, until at length the vomitus is bilious and finally even trecal. Because oi these symptoms and the injury to the nerves of the intestine resulting in "shock," there is a graduaily increasing prostration. Certain features indicating that the obstruction is in the small intestme are early vomiting, the passaze of ixces from the lower bowel, and the greater swelling of the centre of the abdomen. - Tbsolute constipation from the first is apt to mean an obstruction low down in the large b wel. The cause of the obstruction may be indicated by the presence of a tumor or by something in the previous history. Intussusception is the most common cause of the obstruction in chidren; a tumor may be felt on the ourside, or the bowel may be felt in the rectnm. Frecal impacrion is indicated by a long history of constipation, and rectal examination shows the hardened masses. If intestinal obstrnction be nut relieved, the patient may die of shock. with graduai exhaustion, from gangrene of the bowel - the blood-supply being tisually shut off - and sometimes itcon peritonitis.

Medical measures for the relief of most iorms of the malady are not successiul, and temporizing is aitended with danger: but rest of the body as a whole. and especially oi the intestinal tract. Innst be absolute. Some anthorities advise the use of opiurn for iurther quieting the intestine when the diagnosis is cortain. Lavage of the stomach is oi great value, and large enemaia may be curative when the cause of the trouble is intussusception, foreign body, or hardened ireces. Most iorms of obstruction require the opening of the abdomen. search for the cause of the obstruction, and attempts at removal Results depend on the quickness with which operation is undertaken : death may ensue, in spite of the removal oi the obstruction, if interference be too long postponed. Chronic intestinal obstruction is caused by about the same conditions as the acute variets: The symptoms include various digestive disturbances, flatalency, constipation, and. when due to malignant growths, the general loss of flesh and strength.

Intéstis:al Parasites. - Three principal forms of these aifect man - tapeworms, roundworms, and pinworms (qq.v.) The list of symptoms attributed to the presence of tapeworms in the human intestine is long and varied. but evers lus of nutrition from such a parasite's presence is usually slight. Finding the worms of their eggs in the stools is the only convincing symptun. Treatment of this condition consists first in the preparation of the intestine by light diet for 24 hours before the trenifuge is given and six if eight hours before, allowing a liberal diet of onions, saliy herring. and garlic: thus rather loosens the worms hold. Mild purcatives may also be given at this time. Ear'y on the foliowing moming the selected drug is taken, and this may be either male-iem, poniegranate, pumpkin-sced. kous=o or kamala. Aitcr about 12 hours a brisk cathartic is taken and the worms is passeu. Careiul search must be made for the head. ior unless it is passed treatment must be started again while the worm is yet weak. Santonin and purgatives effect expulsion oi roundworms. In the treatment of pinwerms it is customary to take advantage of the isct that the females deposit their eggs in the large intestine and rectum. Santonin
and cathartics aid in gathering the worms where they may be killed by injections of benzine (zo drojes to the pint of water), or by solutions ef quinine, though further catharsis may be necessary:

Dudeey D. Roberts. II. D..
Brookly:2. I:
Inton'ing, the practice of delivering praycrs $1 n$ the recitative form. Intoning rlifiers little from chanting: in the latter case the cadence is more developed, the divisions more rhythmical, and the music in continuous harmony:. In intoning the greater part of the prayer is recited on one note, and then sung by several voices in unison, the closing words of the sentence being sung 20 the proximate notes of the scale and in harmony. The practice of intoning prevails in the Greek, Roman, Anglican, and Lutheran Churches.

Intoxica'tion (literally poisoning, commonly restricted to poisoning by means of alcohol, for a discussion of which latter see Alconolism). Intoxication in the sense of poisoning may result from poisons having their origin outside of the human body (exogenous poisoning), or from poisons which may be developed within the body itself (endogenous poisoning, or autointoxication). Some of the most important problens connected with the infectious diseases concern themselves with the study of the intoxications that result from the formation of toxins by specific bacteria distributed throughout the human body during the course of a disease. From the same point of view many of the most complicated intoxications result from variations in the normal metabolism of the body. Thus in diabetes mellitus (q.v.) there is developed an acid intoxication (diabetic coma), which is due to the inability of the body properly to neutralize by its alkaline salts the excessive amounts of acid produced as a result of the perverted metabolism of this disease. Similarly in Bright's disease a type of intoxication (uræmic poisoning) results from failure of the lyidneys to eliminate poisonous products from the human body. It seems not unlikely that a number of diseases such as migraine (sick headache), some forms of epileptic convulsions, different types of skin-eruptions, and some of the mild insanities result from antointoxication (q.v.). See Toxicology.

Introduced Species. A long catalogue might be made of species of animals and plants which have been transferred by accident or design from their native country or locality to other regions. Sometimes, as in the case of salmon in New Zealand, rabbits in Australia, the European house-sparrow in Ancrica and elsewhere, or western fishes in eastern waters, this is done by dcsign: but in the great majonty of cases the introduction is accidental and unwelomme, as in the case of the hundred and more suecies of injurious insects brought into the Lnited States from foreign lands (or the fewer sent abroad from here), and the very many species of "weeds" naturalized on our and other shores. Such introductions are in the main accidental, the eggs or seeds or grown individuals passing from one region to another in ships or railway trains. or cares sor discharged ballast: so many plants have been introduced by the lattor means that botanists class the group) of alion weeds as "ballast plants." See Acclimatization; ZoogeogRAPHY.

Intuba'tion, the introrluction of a tube into an wrifice or an organ, as the larynx, to kecl. it opern. Specially clesigned tubus for such a purpose are sometimes used in cases of croup. diphtheritic obstruction, etc.. as a substitute for trachentomy.

In'ulin, a substance rescmbling starch, but intermediate in nature between that body and the gums. It occurs in the ronts of elecampane, dandelons, and certain other flants, and aloo in the Jerusalem artichoke and the commom jotato. When pure it is a tasteless white powder consisting of splerical particles. Its chemical formula is prohably a multiple of $\mathrm{C}_{6} \mathrm{H} \mathrm{O}_{5}$.
 insoluble in alcohin, and but slight ty soluble in cold water, although it is very hygroscripic. It dissolves frecly in hot water. It melts at 320° F., becoming thereby converted into a different substance known as "pyro-inulin." It is not fermentable, and does not reduce Fehling's solution. Indine renders it brown or yellow.

Invariants and Covariants. I. These terms were introduced, and are still ordinarily employed, in connection with a special mathematical theorr, namely, the therry of the linear transformation of algebraic forms developed by Cayley and Sylvester during the middle third of the nincteenth century. The central idea, however, is a very general one, which has been applied in recent rears to almost all branches of mathematics. It deserves, in fact, to be ranked with such fundamental concepts as function and group. The therefore divide our sketch into three parts as follows: (1) The general concept of invariant: (2) The theory of algebraic forms, or invariants in the narrow sense; (3) Other invariant theories.

The General Concept.

2. The suggestion for the formation of the concept comes from the familiar observation, at the bottom of all science and philosophy, that, while the world about us is in a continual state of change, there are yet certain aspects or properties which are unaltered. To find the permanent in the changing is the most general statement of the problem of invariants. Abstractly, the idea may be explained more definitely as follows: Consider a set of objects or elements O of any conceivable kind, finite or infinite in number; and a set of operations or transformations T, each of which interchanges the objects in a definite manner. Then a property of an object O is said to be imariant. provided it holds for all the objects abtaincd from the given O by the transformations T. Similarly. any relation between a number of Cis which holds for the transformed O 's is satid to be au invariant relation, that is, an invariant relation of the given objects with respect to the given transformations.

The idea of cotariant involves nothing essentially rew. An abject \bar{O} is said to be a covariant of a given number of objects O_{1}, O_{2}, etc., provided \bar{O} is invariantly related to O_{1}, O_{2}, In this case, if any one of the transformations T converts \bar{O} into $\overline{O^{\prime}}, O_{1}$ into $O_{1}^{\prime}, \underline{O}_{2}$ into O_{2}^{\prime}. etc., then the relations connecting \bar{O}^{\prime} with \bar{O}_{1}. O_{2}. cic., are the same as those connecting \bar{O} with O_{2}, O_{2}, etc.
3. The idea is best illustrated by examples from seometry: Consider a number of points $P_{\text {V }}, P_{\text {, }}, \ldots$. connected with a solid body When the body is displaced, its points take new positions, $P_{1}^{\prime}, P_{2}^{\prime} \ldots .$. Many such positions are possible, since the displacement may be made in an endless number of ways. Bui in every case, of course, the distance between $P_{!}^{\prime}$ and P_{n}^{\prime} is the same as that be:treen P : and P_{2}. That is, distances ketween points are invariant with respect to rigid displacemen:

Suppose next that the solid carrying the points is not cnly displaced but is magnified (or diminished) according to any scale. We may. for cxample, p:ciure such a change as produced by subjecting the homogenecus solid to a higher or lower temperature) The solid is then converted into cne of different size but cf the same shape. that is, a similar solid. Distances are changed in the same ratio. Hence $P_{1}, P_{2}^{\prime} P_{3}^{\prime} P_{3}^{\prime}=P_{1} P_{3} \mid P_{0} P_{3}$. That is the ratio of any two distances is invariant with respect to similitude transiormations.
4. In both examples, points on a straight line are converted into points cn a straight line. Crilinearity is then a relation which is invariant with respeci to displacements and similitude transicmaticns. A more general tupe of transformation for which this is true is the homographic or projective transformation. We consider. for simplicity, only the case of figures dramn in a plane M. From a nixed point (iermed the center of projecticn) outside of M draw lines to the varir us peints of M until they intersect a second Flare W^{\prime}. Thus evers point P in I is assoclait with a definite puint P^{\prime} in M^{\prime}. The operation i fassing from a figure in M to the corresf.nding figure in M^{\prime} is termed projection. C noctetely, we may think of the center of pro:ection as a source of light and the figure in M' as the shadow of that in M. *

If we c nsider three points P_{8}, P_{8}, P_{3} on a straight line in $\%$, they are converted. by Frjecti $=$ into points $P_{1}^{\prime}, P_{2}^{\prime} . P_{3}^{\prime}$ on a straight line in M^{\prime}. But in general the distances and alsa the fati s i i distances will dificr. In fact. three foints hue n invariant, since they may be converted into three Ifints at abbitranily assigned distancts liy a stutable projecticr. If. however. we take fiur F mits (in a straight line it may be sh wn that, if any projection,

$$
\frac{P_{1} P_{3}}{P_{3} F_{3}^{\prime}}: P_{5} I_{1}^{\prime}=\frac{P_{1}^{\prime} P_{3}^{\prime}}{P_{1}^{\prime}}: \frac{P^{\prime} P_{i}^{\prime}}{P^{\prime} P_{2}^{\prime}}:=P_{1}^{\prime} P_{z}^{\prime \prime} .
$$

In each memler of this cquation we have a cretimation of the distances between frur rints which is termed their or ss ratio (anharmonic rati . Herce the cress satic of four c lluar ferts is invariant with resfect to Ir: - ive transfonation.

- lest the figures c nsidered lo all the
 ne-t an e!lyse has two invariunts. the majer -nd the min raxis. With respect to stmplitude tran-i mision, there is c:.e invariant, the ratio i the axes, or what is ceentially the same, the eccentricity. Finally in the pri iective therry there are no invariants, since onc ellifse mayy le c nvertel into any other (and cren into any ixfle ernic.

[^4]In this connection we may illustrate the notion of a covariant. The center of an ellipse is a covariant with respect to displacement and magnification, but not with respect to projection. For if the plane containing an ellipse E and its center C is displaced or magnified, so that ellipse E is converted into another ellipse E^{\prime} and the point C is converted into a point C^{\prime}. then C^{\prime} is necessarily the center of E^{\prime} : while under projection this is not the case A similar result holds for the center of gravity si any figure. plane or solid.
6. Ancther well-knowe type of transformation is that known as inversion. Take a fixet circle F with center $(c$ and radius r, ard suffese that any point P of the plane is converted in:o the point P^{\prime} situated on the line $C P$. so that $C P \cdot C P^{\prime}=r^{\prime}$. The points $P . P^{\prime}$ are then said to be inverse with respect to the circle F. By the inverse of a curve is meant the locus of the points inverse to the points of the curve. The collinear relation of points is no longer invariant, for a straight line (not passing through C) is converted into a circle. An arbitary circle is converted into a circle, but the center of the circle is not a covariant point. The most important property of the transformation is this: the angle at which any tro curres intersect is equal to the angle at which the inverse curves intersect. Angles are invariant with respec: to geometric inversion.

We pass nor to a ferr simple examples of the general detinition in No. $_{2}$, in which the objects and transformations are analytic instead of geometric.
Let the objects O be functions of any number of variables. and let the operations T performed on these functions be the permutaticn of the variables involved. A function written domn at random, for example $x^{2}-2 y$, changes its icm: when say x and y are interchanged. There are excepticial iunctions, like $x^{2}-y^{2} \div z^{2}$ and $x y \div 3-x z$, which are not altered by interchanging the variables in any way. and are termed symmetric. The symmetric functions are invariant with fespect to permutation of the variables.

In the difierential calculus it is shown that ihe exponential function ${ }^{*}$ has the property of being it own derivative. The enly functions which are invariant π ith respect to the process of difierentiation are in fact those of the form $a c^{-x}$. where a is a constant. It is obvirus that if the first defivative is equal to the original function, all the higher derivatives will also be equal to the function.

The trigenemetric functions have a period of 2:- cr 300°. Such a function $\bar{j}(x)$ is unaltered in value when x is replaced by $x+2 \pi$. It is obvicus that the dcuble application of the operation, that is. the reflacing of x by $x-4 \pi$, will alse leave ${ }^{*}(x)$ invariant. The periodic character thus invelves the invariance of the function with resf cot in all the operations ($x, x-2 k-\pi$) (this denctes the reflacing of x by $x-2 k-$), where k is any integer. Wie note here that if one of these nperations, say that oi adding $2 k^{\prime}$ to the angle is followed by another, say that of adding $2 k^{\prime \prime}-$. the result is the same as the single operation of adding $2\left(k^{\prime}-k^{\prime \prime}\right)$-. which is a momber of the set. The set of operations thus possesses the essential property of a Groutp.
8. In general, if an invariant is found with respect to certain operations, $T_{3}, T_{2} \ldots \ldots$ the

INVARIANTS

invariance also holds for all combinations of these operations. Adding these combinations to the original operations, a set is finally obtained with the group property; this is then temned the group generated lyy the gisen operations.

Thus, in comection with No. 6 , since angles are unaltered by inversion with respect to any circle, it follows that they are unaltered by successive inversion with respect to a number of circles. The inversions themselves do not constitute a group: but the totality of combinations is the important group of circular transformations which are expressed analytically by the linear transformations of a complex variable and of its conjugate.

9 . The general problem of the mathematical theory of invariants may now be restated as follows: Given any group of transformations. and any set of configurations (mathematical objects) which are converted into one another by these transformations, to find the properties of the configurations which remain unaltered. There are thus as many types of invariant theories as there are types of groups and types of configurations. The distinction according to groups is the more fundamental.
10. The relation between the concepts invariant and group is thus very intimate. Suppose that instead of assigning transformations and seeking invariants, the question is inverted: Given a property or a function, find the transformations which leave it invariant.

Thus, if space is to he deformed so as to leave the distance between every pair of points unaltered, the deformation must be simply a displacement. The totality of displacements forms a group; for if one displacement is followed by a second. the effect is the same as that due to a single displacement. In general the totality of transformations defined by one or more invariants is a grotup. Many groups are defined in this way.
ir. In connection with any group this question may be asked: Given two configurations, is it possible to convert the one into the other by a transformation belonging to the assigned group? If this is the case, the configurations are said to be equivalent with respect to the group.

Thus, two figures are equivalent with respect to the displacement group when they are congruent: they are equivalent with respect to the similitude group when they are similar. The study of equivalence with respect to the projective group is the main object of projective geometry; its systematic analytic treatment depends upon the theory of algebraic forms considered below.

The importance of the notion of equivalence depends upon the fact that equivalent configurations necessarily have the same invariant functions and properties. Thus in studying the projcetive properties of (proper) conics, it is sufficient to consider the case of a circle. The circle may thus be taken as the type or cananical form of the class of conjes.

The Theory of Algebraic Forms.

12. This part of modern algebra deals with the invariants of algebraic forms with respect to the group of linear transformations. It has been variously termed the theory of forms, the algebra of quantics, the algebra of linear transformations, the linear or projective invariant
theory. Traces of the idea may lhe found in papers by Lagrange, Gauss, and Cauchy; and simple results on quadric forms were given by G. Boole ($18+1$): but the construction of the systematic theory begins with the memoirs of A. Cayley (18.45-) and J. J. Sylvester * (1851-). The recent developments are due mainly to German and 1talian mathernaticians.
13. The objuets considered are algcbraic forms. it form or quantic is a rational integral homogerneous function of any number of variables. Forms are classified according to the number of variables and the degree in which they are involved. A binary form involves two variahles; a termary, three; a quaternary four; in the general case of p variables the adjective p-ary is employed. The degree in which the varialbles enter is termed the order of the form: we denote it in general by n. If n is one, the form is linear; if two, quadric (or quadratic) ; if three, cubic; if four, quartic (biquadratic); etc.

Thus the binary cubic form is

$$
a x^{3}+b x^{2} y+c x y^{2}+d y^{3}
$$

where x, y are the variables and a, b, c, d the coefficients. It is usual, however, to distinguish the variables and the coefficients by subscripts, a notation which has the advantage of generality and symmetry: also binomial coefficients are introduced. Thus the above form is written

$$
a_{0} x_{1}^{3} \perp 3 a_{2} x_{1}^{2} x_{2} \perp 3 a_{2} x_{1} x_{2}^{2}+a_{3} x_{2}^{3} .
$$

The temary quadric is
$a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+u_{33} x_{3}^{2}+2 a_{23} x_{2} x_{3}+2 u_{13} x_{1} x_{3}+2 a_{12} x_{1} x_{2}$.
The general binary form is
(1)

$$
\begin{aligned}
a_{0} x_{1}^{n} & +\frac{n}{1} x_{1}^{n-1} x_{2} \\
& +\frac{n(n-1)}{1 \cdot 2} x_{1}^{n-2} x_{2}^{2}+\ldots+a_{n} x_{2}^{n} .
\end{aligned}
$$

It: The group employed consists of the totality of linear transformations of the variables. A linear transformation from the origimal variables $x_{1}, x_{2}, \ldots x_{p}$ to the new variables $X_{1}, X_{2}, \ldots X_{p}$ is defined by p equations of the first degree, as follows:

$$
\begin{aligned}
& x_{1}=l_{11} X_{1}+l_{12} I_{2}+\ldots+l_{1 p} I_{p} \\
& x_{2}=l_{21} \mathrm{~J}_{1}+l_{22} \mathrm{X}_{2}+\ldots+l_{2 p} \mathrm{X}_{p} \\
& x_{p}=l_{p_{1}} X_{1}+l_{p_{2}} X_{2}+\ldots+l_{p p} X_{p}
\end{aligned}
$$

The detemminant

$$
J=\left|l_{i j}\right|,
$$

whose elements are the p^{2} coefficients in these equations, is termed the modulus of the transformation. It is assumed that 1 does mot ranish; for in the latter case the X 's cannot be expressed in terms of the x 's, that is, the transformation is not reversible.

We shall deal mainly with binary variables and then employ the simpler notation

$$
\begin{equation*}
x_{1}=l_{1} X_{1}+m_{1} X_{2}, \quad x_{2}=l_{2} X_{1}+m_{2} x_{2} \tag{2}
\end{equation*}
$$

The modulus is $J=l_{1} m_{2}-l_{2} m_{1}$.

[^5]
INVARIANTS

15. When a limear transiomation is carried out on a form, the latter is converted into a form of the same order containing the new variables. The coemincients of this transfommed quantic depend of course upon the transformation employed. Thus if in the quadric

$$
j \equiv a_{\sigma} x_{1}{ }^{2}-2 a_{1} x_{1} x_{2}+a_{2} x_{2}^{2}
$$

we make the substitution (2). the result is a new quadric.

$$
F=A_{0} I_{1}^{2}-2 \mathcal{A}_{1} X_{1} I_{2}-\mathcal{A}_{2} X_{2}^{2}
$$

where

$$
\begin{aligned}
& A_{0}=\dot{A}_{1}^{2} a_{0}-2 i_{1} l_{2} a_{1}+l_{2}^{2} a_{2} . \\
& -A_{1}=l_{1} n_{1} a_{2}-\left(i_{1} n_{2}-l_{i} m_{1} a_{2} \div l_{1} m_{2} a_{2},\right. \\
& -A_{2}-m_{1}^{2} a-2 m_{1} m_{2} m_{1} a_{1}-n_{2}^{2} a_{2} .
\end{aligned}
$$

It is easy to rerify that

$$
A_{0} f_{2}-A_{1}^{2}=\left(l_{1} ; n_{2}-l_{2} m_{1}\right)^{2}\left(a_{0} a_{2}-a_{1}^{2}\right) .
$$

According to the general defintion in No. 2 . the function $a a_{2}-a_{1}{ }^{2}$ is not an invariant function. since it is not equal to $A_{0} \mathcal{H}_{2}-A_{1}{ }^{2}$; but the relation $a_{2} a_{2}-0^{2}=0$ is invaniant, since its fulillment necessitates $-1,1_{2}-1_{1}{ }^{*}=0$. This is s metimes exp-essed by saying that the function is a relatioc invariant

I: is usual. however, to modify somernat the Seneral detinition as follows: A function of the coetricients of a guantic is said to hare the invariant property when it is equal to the same function ci the coctiocients of the transformed quantic. exce : if rafactor deperding only upon the eunficmis of the lincar iransformation. Thus if ϕa is such a functuon, where a denotes the colenents c llectively: and if A denotes the etericion:s in the new form, then
(3)

$$
\dot{\dot{C}} .11=\| \dot{\phi}(x) \text {. }
$$

where $1 /$ depends anly on the transformation c efticients

All such iuncti ns can be cxpressed in terms of rati nal i:ntewral functions with the same profery. These are termed simply invariants fhus an intariont is a rath nal integral functa n of the 4 clicients with the freperty expressed ど13.

11 1 r-arime if a quantic differs from an inwarant crily in that :t monlees b th the c et ients and the variables. Its defining Ir rety is expressed by
(3^{\prime})

Thus the linary cubic

$$
d x_{1}^{3}+\left\{a_{1} x^{2} x_{2}+3 a_{2} x_{1} x_{2}{ }^{2}-\left(t_{3} x_{2}^{3}\right.\right.
$$

has the c variant

$$
\left(a a_{2}-1_{1}^{2} n_{1}: 1_{2} a_{3}-a_{1} a_{2} r_{1} r_{2}+a_{1} a_{3}-a_{2}^{2} r_{2}^{2} ;\right.
$$

$f=$ when the cul ic is linearly transformed, it $i f$ und that the c -rre f muing expression

$$
\begin{aligned}
&\left(.1_{\sigma} i_{2}-1_{1}{ }^{2} X_{1}:+\left(.11_{3}-1,1_{2}\right) X_{1} \cdot i_{2}\right. \\
&+11_{1} \cdot 1_{2}-1_{2}{ }^{2} ._{2}{ }^{2} .
\end{aligned}
$$

1 wit ifrm the yer me: Luents and variables, roluct t h. ort-nal expressi n multiplied by

1; li. ar a: 1 un 1 e warnant: are collectivily tertic 1. -...."tants or, mure smply, c intants.

Tre give now a few of their important general properties.
-1 comitant is homogeneous in the coefficients (x) and in the rariables (x). Its dimension in the former is termed its degree ((1) : its dimension in the latter. its order (m). For an intrariant, of course. $m=0$.

The factor I produced by the linear transformation is for every comitant an entire porrer of the modulus \lrcorner Hence

$$
\begin{equation*}
\phi(\cdot 1, X)=\jmath^{\approx} \phi(a, x) \tag{4}
\end{equation*}
$$

The exponent u is termed the u'cight of the comitant

The prooi of the first theorem depends on the use of linear transfomations of the special type $x_{1}=\rho_{1} Y_{1}, x_{2}=0 Y_{2}$; that of the second theorem depends on the group property of linear transformations and the fact that J is not factorable.

IS. The weight w, order m, and degree d of any comitant of a binary ${ }^{13}$-ic are connected by the relation

$$
2 u^{\prime}=\pi d-n .
$$

This holds in the example given in No. I6, where $\eta=3, m=2, d=2, u=2$.

Taking $m=0$ and n odd. we have the corollary: A binary form of odd order cannot have an invariant of odd degree.

When n is eren, so is m. Hence a binary form of even order cannot have a covariant of odd order.
19. The preceding definitions and theorems may readily be extended to simultatous comitants. that is, invariants and covariants of two or more forms.
20. An important process for the formation of simultancous comitants depends on this principle: If in an invariant $\phi\left(a_{0}, a_{1}, \ldots a_{n}\right)$ of a single form \dot{f}_{0} we substitute $a_{0}-k^{b_{0}}$ for a_{0}, $a_{1}+\kappa b_{1}$ for a_{1}. etc.. and expand the result according to porvers of κ, the first term is the original invariant $\phi(a)$. the coefticient of κ^{d} is the corresponding invariant $\phi(b)$ of a form g with coelficients $b_{0}, b_{1} \ldots b_{n}$. and the remaining coemicients are simultaneous invaraints of f and g.

Fur example. when this pronciple is applied to the invariant $a_{0} J_{2}-a_{1}{ }^{2}$ of a quadric $j=a_{0} x_{1}{ }^{2}$ $12 a_{1} x_{1} x_{2}+a_{2} x_{2}{ }^{2}$, we have

$$
\begin{aligned}
& \left(a_{0}-\kappa b_{0}\right)\left(a_{2}-\kappa b_{2}\right)-\left(a_{1}+\kappa b_{1}\right): \\
& \quad=a_{0} a_{2}-a_{1}^{2}-\kappa\left(a_{0} b_{2}-2 a_{1} b_{1}+a_{2} b_{0}\right)+\kappa^{2}\left(b_{0} b_{2}-b_{1}^{2}\right) .
\end{aligned}
$$

It follows that $a_{c} b_{2}-2 a_{1} b_{1}-a_{i} b_{0}$ is a simul tancous invariant of f and $g=b_{\sigma} r_{1}{ }^{2}+2 b_{1} r_{1}, x_{2}+b_{2} x_{2}{ }^{2}$.

The coelticient of the first power of x, by "Tayor's theorem, is

$$
b_{0} \frac{\partial \phi}{\partial_{i I_{0}}}-b_{1} \frac{\partial \phi}{\partial a_{1}}-\ldots+b_{n} \frac{\partial \phi}{\partial a_{n}} .
$$

Hence if the operation $b_{0} \frac{\partial}{\partial a_{0}}+b_{1} \frac{a}{\partial a_{1}}+\ldots+b_{n} \frac{\partial}{\partial a_{n}}$ is applied to an invariant of a single form, the Fesuli is an invariant of two forms The operation is known as the fromtold prociss.
21. In the domann of simultaneous comatants the distmetion between invariants and covariants may be said to disappear. Ill the covariants of a form j may be obtained from the simultancous invariants of \bar{j} and a linear

INVARIANTS

form $u_{1} x_{1}+u_{2} x_{2}$ by the substitution of x_{2} for u_{1} and $-x_{1}$ for u_{2}
22. Gionctric Interpretation.-If a binary form f of 3 th onder is crpuated to zern, the resulting equation, by the fundamental theorem of algebra, determines n values of the ratio $x_{1}: x_{2}$. Taking $x_{1}: x_{2}$ as homogencous coordinates of a point on a straight hne, we thus obtain a definite set of n points correspending to the form f. Converselfy, if a set of it peints is given, the form f is determined (excopt for a mumerical factor).

Linear transformation of x_{1}, x_{2} has the same effect upon the points of the line as the projection of the given line upon a second followed by the displaecinent of the second line upor the first. Hunce an invariant of f equated to zero represents a projective relation botween the corresponding t points, that is, a relation not altered by the process of projection. Similarly, a covariant of order m represents a set of m points projectively related to points defined by f.

Thus, the vanishing of the invariant $a_{u} a_{2}-a_{1}{ }^{2}$ of a qualric form means that the two root points coincide. Again, the ranishing of $a_{0} b_{2}-2 a_{1} b_{1}+a_{2} b_{0}$, derived in No. 2I, means that the pairs of points represented by the two quadries are situated harmonically:

The interpretation often suggests the invariant character of complicated algebrajc functions. For exaniple, the resultant of two equations, $f=0, g=0$ (that is, the expression which vanishes when and only when the equations have a common root), is a simultaneous invariant of f and r. The condition that the equation $f=0$ shall have equal roots leads to an invariant termed the discriminant of f.

2,3. Ibsolute Invariants.-By considering fractional instead of integral functions of the cocfficients, it is possible to obtain absolutc inz'ariunts, that is. functions which are unaltered by linear transformation. The factor M in (3) is then unity. An absolute invarlant is neccssarily the ratio of two (relative) invariants having the same weight. We give an example in connection with the form if fourth order. Here there are two invariants I and J with weights 3 and 2 respectively. Linear transformation affects them as follows: $\left.I^{\prime}=\right\rfloor^{3} I . \quad J^{\prime}=J^{2} J$. Hence $I^{\prime 3} / J^{\prime 2}=I^{3} / J^{2}$. That is, I^{3} / J^{2} is an absolute invariant.

Geometrically, every absolutc invariant of any number of forms is expressible in terms of cross ratios of the corresponding points.
24. The Symbolic Notation. -The most powerful method for attacking the general problem of our subject, the determination of all the romitants of any number of forms and their interrclations, is the so-called symbolic method. The origin of the method is to be found in Cayley's hyperdeterminants $(18+5)$, but the symbolic notation itself is due to Aronhold (1859). The general theory was developed by Clebsch and Gordan (1870-).

A binary form of nth order is represented by the ntll power of a linear form,

$$
f=\left(\alpha_{1} \cdot r_{1}+\alpha_{2} \cdot r_{2}\right)^{n} .
$$

Here the α 's are merely symb ols which have a real meaning only in the combmations

$$
\alpha_{1}^{n}=a_{0}, \alpha_{1}^{n} \quad^{1} \alpha_{2}-a_{1}, a_{3}^{n} \quad{ }^{2} \alpha_{2}^{2} \ldots a_{2}, \ldots a_{2}^{n}-a_{n} .
$$

The Roman letters denote real confficients and
the Greek letters symbolic conefficients. The latter wrere termed umbrae (shadows of quantities) by Sylvester.
A combination of α 's of dimension $<n$ has no real meaning. Ont the other hand, if the dimension is it multiplo of n, there are several cortespondinf real quentities. Thus $\alpha_{1}{ }^{2 n-2} \alpha_{2}{ }^{2}$ represents houth $u_{10}\left(z_{2}\right.$ and $a_{1}{ }^{2}$. This ambiguity i. remuved loy introducing several equivalent sets of umbral quantitics, each cntering in preciscly the uth dimension. IVe abloreviate by Writing $a_{1} x_{2}+\alpha_{1} x_{2}=a_{x} \beta_{1} \beta_{1}+\beta_{2} x_{2}=\beta_{x}$, ctc. The given form is then

$$
f=\alpha_{x}{ }^{n}=\beta_{x^{n}}-\gamma x^{n} \text {, etc. }
$$

The fundanmental theorem is as follows: Every comitant of binary forms j is cxpressible symbolically as a combination of determinants of the type $\left(\alpha_{3}\right.$? $)=x_{14} \beta_{3}-\alpha_{26} 3_{1}$ and linear factors of the type $\alpha_{x}=\alpha_{1} x_{1}+\alpha_{1} x_{2}$. In the case of invariants, only the determinants are involved. Conversely, all combinations of these two types (in which each sut of symbols is involved in the proper dimension) represent comitants.*

Thus the quadric $f=\alpha_{x}^{2}=3_{3} x^{2}$ has the invariant $\left(a_{i}\right)^{2}$. Expanding, we have

$$
\begin{aligned}
&\left(\alpha_{14} \beta_{2}-\alpha_{21} \beta_{1}\right)^{2}=\alpha_{1}^{2} \beta_{2}^{2}-2 \alpha_{1} \alpha_{2} \beta_{1} \beta_{2}+\alpha_{2}^{2} \beta_{1}^{2} \\
&=a_{0} a_{2}-2 a_{1} a_{1}+a_{2} a_{0}
\end{aligned}
$$

which is simply twice the discriminant $a_{0} a_{2}-c_{1}{ }^{2}$.
25. Transicctants.-Ameng the comitants of two forms, $f=\alpha_{x^{n}}, g=3_{x^{m}}$ (here α and β are non-equivalent symbols), those representerl by $\left(\alpha_{1} \beta\right) \kappa \alpha_{x}^{n-\kappa} \beta_{x}^{m-\kappa}$ are of special importance, since they are of the first degrce in cach set of coefficients. They are termed the transtectants of \bar{f} and g and are denoted by $(f, g)_{\text {c }}$. Gordan has shown that all comitants may be clerived by the repeated application of the process of transvection.

The first transvectant of two forms is termed their Jacobian; its non-symbolic value is $\frac{\partial f}{\partial x_{1}} \frac{\partial g}{\partial x_{2}}-\frac{\partial f}{\partial x_{2}} \frac{\partial g}{\partial x_{1}}$. The transvectant $(f, f)_{2}$ is termed the Hessian of f_{i} its non-symbolic value is $\frac{\partial^{2} f}{\partial x_{1}{ }^{2}} \frac{\partial^{2} f}{\partial x_{2}{ }^{2}}-\left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}\right)^{2}$
26. Complete Systems. - In gencral, a set of forms has an intinite number of comitants. Tlus any entire power of a comitant, or a product of powers of two comitants, is also a comitant. It is evident, however, that there cannot cxist an infinite number of alscloraically independent comitants, since all are functions of a finite numuer of cocflicients and rarialsles. The following result is fundamental in the systematic theory: For a given set of forms there exist a finite number of comitants such that every comitant of the forms is a rational integral function of the sclected comitants. The latter constitute the complote systern of the given forms.

The proof was first given by Conclan (18;0) by means of the symbolic method. It has since locen simplified and generalized by numerous investicators-in particular, llilbert.
27. IIe now give the complete systems for the forms of order I, $2,3,4$:

[^6]
INVARIANTS

Linear form. No mvariant: the only covariant is the ive: firm $j=\alpha_{z}$
Llutri. firm. Une invariant (the discriminant $D-(a)^{3^{2}}$: une covariant $i=\alpha_{X}{ }^{2}$.
cubi fom. The only invariant is the discrmmant $R=(a,\}^{2}\left(\alpha_{\gamma}\right)(\hat{\beta} 0)(\gamma \hat{o})^{2}$: in addition to $f a_{x}{ }^{3}$. there are two corariants, $H=\left(\alpha_{x}^{3}\right)^{2} \alpha_{z} 3_{x}$ (the Hessian of i) and $Q=(a, \hat{y})^{2}(\alpha \gamma) \hat{3}_{y} \gamma_{x}{ }^{2}$ (the Jaculian of j and H).
Quartic form. Two invariants, $I=(a, 3)^{4}$. I $\left.\left.a a^{3}\right)^{2}(3)_{r}\right)^{2}\left(\right.$ ral 2 : three covariants, the given form $f=\alpha_{x}^{4}$. its Hessian $H=\left(a_{1}^{3}\right)^{2} a_{x}^{2} 3^{2} 3_{x}^{3}$, and the Jacolian if j and H. namley, $T=(a, 3)^{2}\left(\alpha_{\gamma}\right)$ $\alpha_{x, x^{2} y^{2} y^{3}}$.

Every invariant of the quartic form is thus a rational integral function of I and I; cvery comitant is a rational integral function if I. I. j. H. T.
${ }_{20}$. The sustems given are irccucible; that is, n) member of a system can be expressed as a rational integral function of the other members , if the system.
Cimplete irreducible systems have ben calculated for single forms up to the order 10 , and for pairs of forms up to the order 4 . The system of the quintic contains iventy-three members.

While the finiteness of the system is assured, no general formula for the exact number of irreducible comitants is knomn.
29. Termary Firms-Many of the results stated for the binary case apply with little change to ultrabinary forms. There are, however, certain aspects of the general theory which are disguised when only the binary case is studied.

Consider a ternary form $\dot{f}\left(x_{1}, x_{2}, x_{3}\right)$ of nth (rder. (The symbolic representation is $a_{Z^{n}}$. where $\alpha_{x}=\alpha_{1} x_{1}-\alpha_{2} x_{2} \pm \alpha_{3} x_{3}$.) If x_{1}, x_{2}, x_{3} are taken as the humogeneous coordinates of a point in a flane, the equation $j=0$ defines a curve of nth urder. The vanishing of an invariant denotes a projective property of the curve. covariant defines a curce which is projectively related to the original curve.

The principle of duality suggests the introduction of line coirdinates u_{1}, u_{2}, u_{3}, When the x 's undergo a linear transformation, the uts undergo another linear transformation which is suid it be muragredient to the first. A function involving the u 's and having the invariant proferty is termed a contracariant of f. Goometrically it represents a curve considered as the envelope of its tangent lines. A mixed commtant is one involving both point coordinates and line curdinates; geometrically it defines a - -called o m: m x.

Th : cimplete system of the ternary quadric $1-a_{x}{ }^{2}$ cinsists of the covariant f, the invariant () $x_{1}=$ the cintravariant $F=\left(\alpha^{3 \cdot a^{\prime}}\right.$. and the \because. Il 1 ddancal form u_{x}. (Here (an.ty) reire itt a determinant of thard order a $3 \boldsymbol{y}$ i_{i} is att cally, j oreferesents a conic comsidered - a c.1 rezatled as line envelepe, and $D=0$ dethen that the cnuc degenerates to a pair of itablat hincs

30 (laternary Forms.-Ilere the essentially ${ }_{n 1}$ - i iture is that in adiltion :n point coordi-
 nates $\left(u_{1}, i_{2}\right.$. $u \quad u_{0}$. it is necessary in consider
 tants may contain. lesides the coerticients of the given firm, any crmbination of these types of varialiks Litte advance has yet been made in th. complete treatment of even the simpler cases.

3I. Gordan's method for proxing the existence of a complete system applics only to binary forms. The proof for forms of any kind (including inultiple forms containing troo or more sets of variables) was first given by Hilbert (iSgo). The basis of his method is the following theorem, which has many important applications:

In any assemblage containing an infinite number of forms it is possible to select a finite number of members $F_{1}, F_{9} \ldots . F_{r}$, so that cvery member can be written $F=P_{1} F_{1}-P_{2} F_{2}$ $\div P_{r} F_{r}$. where the P 's are forms not belonging necessarily to the given assemblage.

Other Invariant Theories.

32. Special Lincar Transjorn:ations.-Worms have been treated with respect to linear transformations of special type. Thus the transformations $x_{1}=\alpha Y_{1}+\beta, Y_{1}=\alpha Y_{1}$ lead to the so-called semmeariants of binary forms.

Again, the formulas for passing from one system of rectangular coōrdinates to another,

$$
\begin{align*}
& x=K \cos \theta-\Gamma \sin \theta+h, \tag{5}\\
& y=K \sin \theta+5 \cos \theta+k,
\end{align*}
$$

constitute a special linear group. Invariants with respect to this group are termed Cartesian or metric or orthogonal. In the case of the conic $a x^{2}+b x y+c y^{2}+d x+\varepsilon y+f=0$, there are three such invariants, $a \div c, b^{2}-4 a c$, and the discriminant. The latter is the only one which is invariant in the projective theory: If $a+c=0$ the conic is a rectangular hyperbola; if $b^{2}-4 a c=0$. it is a parabola.

For any number of variables the linear trans: f.rmations which leave a given quadric form unchanged constitute a type of group which arist ? in many applications (line and circle geometros geometri on a quadric surface, etc.).
33. The general method of finding the invariants of any continuous group involving a finite number of parameters is due to Sophus Lie. An r parameter group is generated by r independent infinitesimal transformations; these determine a set of r partial differential equations whose solutions are the invariant functions.
34. A dificrential inzariant is one that contains the derivatives of the variables. Thus for the group (5) the expression $\frac{y^{\prime \prime}}{\left(1+y^{\prime}\right)^{\frac{3}{2}}}$ is a diffcrential invariant. It represents in fact the curvature of an arbitrary curve at a point; this is obviously independent of the system of axes to which the curve is referred.
35. Special theories of invariants have been constructed in connection with differential apuations. Thus an ordinary linear cquation,

$$
\frac{d^{n} y}{d x^{n}}-p_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+p_{n}(x)=0
$$

is converted into an equation of the same kind by the substitution $\left.x=\phi(N), y=1 \psi^{\prime}()^{\prime}\right)$. The totality of substitutions here forms an infinite continuous group, since ϕ and ψ are arbilrary functions. By an invariant of the equation is meant a function of the cocticients $P_{1} \cdot P_{2}$ and their derivatives, which retains its value (except perhaps for a factor depending on the transformation) when formed from the coefficients of the new equation.
36. Difierential Forms.-In the theory of surfaces the distance between two ennsecutive prints of the surface is given by the formula
$d s^{2}=E(u, v) d u^{2}+2 F(u, v) d u d v+G(u, v) d v^{2}$.
The second menber is a binary quadratic difierential form. Such forms possess a theory of invariants with respect to arbitrary change of varialles. Any change is expressed by $u=\phi\left(L^{\top}, V\right), \quad \hat{l}^{\prime}=\zeta^{\prime}\left(U^{\circ}, l^{\prime}\right)$, where $\phi, \quad \psi^{\prime}$ are arbitrary functions. The simplest example of an invariant is the expression, depending on E, F, G and their partial derivatives, which represents the Gaussian curvature.
37. Arithnefical Theory of Forms.-In this theory, inaugurated by Gauss, the cocfficients and variables involved are supposed to be whole numbers. Attention has been confined mainly to the binary quadratic $a x^{2}+2 h x y+c y^{2}$. The transformations are defined by $x=\alpha X+\beta Y$, $y=\gamma . \hat{X}+o Y^{\prime}$, where the confticients $\alpha, 3, \gamma, \delta$ are integers such that $r \dot{\alpha-3} \neq \neq 0$. In this case, then, the group is discontinuous.

3S. Automorphic Functions.-Such discontinuous groups arise also in the theory of functions. Thus in No. 7 it was seen that the trigonometric functions are unaltered by the substitutions $x=\mathbb{Y}+2 k \pi$. Similarly, a doubly periodie function (of a complex variable) is invariant with respect to $z=Z+k_{1} z_{1}^{1}+k_{2} w_{2}$. where w_{1}, w_{2} are the given periods and k_{1}^{2}, k_{2} are arbitrary integers. The modular function is invariant with respect to the linear group $z=(n Z+\beta) /(\gamma Z+\hat{o})$, where $\alpha, \beta, \gamma, \delta$ are integers such that $\alpha \hat{o}-\beta \gamma=1$. The problem of finding all functions which admit an infinite discontinuous group of linear transformations is one of the most important an recent investigation. Such functions are termed automorphic. They have been classified by Poincaré into Fuchsian and Klemian aceording as the defining group involves real or complex coefficients.

Bibliograply.-Andoyer, (Théorie des forms) (I'aris, i8gS); Boole, 'Cambridge Journat of Nathematics) (sol. 3, 18\&1); Cayley, (Memoirs upon quantics) ($1854-78$), Collected Papers, Cambridge: Clebsch, (Théorie der binären algebraischen Formen' (Lepizig, 1872); Elliott, 'Algebra of quantics' (Oxford, i895); Gordan, 'Vorlestngen über invariantentheorie' (2 vols., Leipzig, 1885-7); Grace and Young, (Algebra of invariants) (Cambridge, 100.3); Neyer, §Bericht uber die Fortschritte der projectiven Invariantentheorie, Berichte Deutsche Mathe-matiker-Teremigung' (vol. I, 1892); Salmon, 'Lessons introductory to the modern higher algebra' (Dublin, ist edition, 1859, 4th edition, 1885); Study, (Methoden zur Theorie der tirnären Formen) (Leipzig, 1889): Syłvester, 'Calculus of Forms' (i852-54), Collected Papers (Cambridge, 1903): Clebsch-Lindemann, (Vorlesungen uber Gcometrie) (Vol. I, Lepizig, 1875 , new edition in press): Hilbert, "Mathematische Annalen) (vol. 36, isno).

Edyard Kasnfr,

Instructor in Mathematics, Columbia University.
Invasion, the entry into a country by a public enemy. As early as 1795 Congress provided by law for protection against the invasion of the United States by any foreign nation of Indian tibe. The act made it lawful whencer there should be an invasion, or imminent danger of one, for the President to call orat such number of the militia of the State or States
convenient to the place of invasion as he mught think necessary to repel it. 'lhis, strengthened in some respects by amendments, has loeen $1 n$ force ever since. An invasion has tustatly all the elements of war, and the invaders may be dealt with as persons at war with the country invaded, in accordance with usages of warfare without the declaration of war by Congress. The Suprome court of the United Siates has decided that a State is invaded when there is a domestic rebellion within its territory, and that the same rukes of law maty loe enforeed as in the case of an invasion bre external fues. 'This decision practically abolishes all distinction between invasion and insurrection, and the same rules which furnish a remedy for invasion can be applied in the suppression of an insurrection or local rebellion. $1 n$ case the State militia is not sufficiently strong, or not easily available, the standing troops of the United States may le ordered out by the President, if indeed it be necessary to eall upon the State troops hefore resorting to the regular troops of the [initc.] States. It is not necessary that actual armed violence shall be resorted to in order to constitute insurrection. Any combination of persons too powerfu? to be suppressed by the ordinary course of judicial procecdings is tantamount to insurrection, and warrants the use of the effective measures provided for by law for its suppression.

As regards the rights of the invader many rules have been laid down, earefully distinguishing between inwasion and conquest, especiall: with respect to private and public property. Ii is now held that public money, military stores, and public butdings with their contents are lawful sources of plunder, and telegraph and rail way property may be used as needs require The unwarranted burning of the eapitol and other public buildings in Wrashington by the British in 1814: the removal of the Pulatine libraries liuring the Thirty V'ears' War; the confiscation of the astromomical instruments in the Observatory of Peking by the Germans during the operations of the Allies against the Chinesc capital-all these were in direct violation of the accepted rules of invasion. The terying of supplies, labor, forage, transportation facilitics. etc., upon the native people is strietly within the lawful confines of invasion; for example, during the wars of Frederick the Great, both the Austrians and the Prussians were mainty supported by these enforced contributions of supplies. Napoteon was probably the greatest exponent of the belief that a war should support itself, either during the confliet, or by imposing a large indemnity, or both; hence we sce that he exacted of Prussia, after the battle of fena, more than a hundred million francs, and Spain was also forced during the Peninsular War to pay a similar amount. The pillage of private property is strictly prohibited, but should the owners give aid to their country, the property may $1 r$ sold at the discretion of the invading general.

Inventions. The progress of the world in its numerous vast industrics and arts has been founded, to a vary large extent, upon inventions and discoveries and their subsequent development. Under the American patent law and system, inventors all over the world are stimulated to make public their inventions by reason of receiring in exchange a monopoly in the form of a patent on the invention for a
pernd of 1 －years．TEe semarsin a merease in the num：r i pr ect ：rventions is shown ty the ret adi－i the \because O．ted States Patent
 （It：0 3 paient：were iscled．In the year end－

An mwen：＝rečmuzed to be any new or usei：mevinand itrhance or article． meth d．dis very．e nowstion if mater．or sys－
 provem m：n wy kn－wn mactine art．method． or sy－am Ee w ：given in che s．．．sical or－
 the toth cewary，with the tite of the invention． the yeat ：t yos made．the rame of the iovenor and h：s＝ativt

Invesitoss	Date	Invez：0\％	Sutivity
Piano forte，played is p：．．． 12 Exร゙anu Druvine r3me in Tbe ：feumberan o： tre＂Howander of beaュะ：ensme For puigurz razs in tie marutacture os			
İ¢¢ пutie spinger．．．	$1 / 23$ $1 \% 4$	Sameel C：amp ton	E－513ニd
Cur пais Circu゙a＝mood	$1 \div 5$	ーラ ミ0゙ M：ller Branchard Si	L！！S：a：es Engian
Eッb＝？	$1 \% 9$	Mastrie：	France
ミiear ezsige．the basts of the mocert Scotland			
Ga：23i Non Pッむ゙＝g 1rot		Eny Cort	France Ecgizad
Poxe：	1－゙5	Wどるさt	Enciand
Flis：stcams－003： －he Inted Suares		Total Fitch	C゙：Sizies
Steam road macon． Fi：ざ，au：0＝obile．	120	Olirer Evans	じ：\＆iz＊es
Graí trashinz＝a	129	Andrew Meisie	Engian！
Uranian disurezed	15：9	Slan＝0：h	Germany
ェet ひi bicyらie．．．．．	180		Engtand
Rotery stear power			
rist ide3	1，	Wrm．Nicholson．	Engl
Wvos planias มra chure	$1-01$	Eamuel Beatham	Ensland
	1.92	m－Mu：doch	Enciand
C．：	1.9	Eli Ubi：ney	U＇d Siates
－hrt of Lithosanky．	1.50	，Lois Seneielder	Germany
Machne iot maling 		Louns Rober： Richart Trexi：h	France
＊eam coach	18		Ergland
Wuos Mur：isiag ME cine 1 Er M．T．Brumel Encland			
Patre\％ 100 m	101	M．J．Jacynazd	Fram
S：e3m ont obe			
Clyde．．＂Chastotie D nu	102	Wi ian Sym	Esclarid
F：Ts： $2=$ ：＂sraphic ex ert eats	ば心	Wiedsemood s $113 y$	Enaland
Plan ng machize．．	1：ご	T．Princh	Eagland
s゚eam：ᄃ．e von．	エ゙ッシ	$\begin{gathered} \text { W! ! } 120 \\ 5 x^{-1}=9 \end{gathered}$	Enzarat
	1－2う	11 ise	Eagland
ray＂	1%	Ric 3－d IEcti：2 ic：	Existand
	10.1	Jotz Stevens	U゙ใd．Sim：es
	18	Luビ3	Eras？at
－．frovter	$1: 5$	I br Edyards	En3：3r．
	İご	：c．$\because \mathrm{i}$	Italy
C．ine．f e 1n the	1 co	Teandean	France
	ざ，	Rubet Fulion	U＇td．Staites
\cdots	İ－\％	1．J．Forsyoh	Ecotiand
		F．A．U＂insor Vexber7	Enziar！！ England
str ni T	IES	Sir Humphy Dary	E－3！コニ
 \therefore M reflectirn．．．．	1ぐ，	E．I．Maius	Frasce

INVENTIONS

Inveraters	Date	İvenicr	Na：1vit	
			で－走 S：ães	
It is Luterestung to aote that between ihe				
years is－？and tyoo there were on what may be iemad the incror rell of inventors $30^{\circ} \mathrm{in}-$				
veaturs each of whom had received over 100				
paients．A fem of	ne m	mpor	were	

In the preparation of the foregning statis－ iics，credit is given to L．H．Campbell．oi the United Siates Patem：Ofice，for raluable assist－ ance．

Fremerici C．Beach．Ph．B．
Editor＇Thic Sciomfiñ－imerian＇
Inventory，a written list or schedule of goods chaitels and other personal property of an incivicual or esta：e，whether ion use in legal proceedings．or ior commercial purposes．The term is also empleyed to designite lists of as－ sets prepared in cases of insolvercy and bans－ reptcy，and lists oi property made out by guardians of estates ct infarts．These inventory lists are usually filed with the court fo：public examination．Afier an acministrator or other ofices of the court files his inven：ory he be－ comes personally accountable for the property 0^{-}goodis so listed．See also Exectucer．

Inrer＇sion，a change of order whereby the fost becomes las：and the lasi firsi．（I）In rhetoric，a reversal of the natmal order of werds for tiee sake of euphang，emphasis，of the tike： als the turning of cnes own argument agains： him hy an opponent in discussion． 21 in chemisirg．a change in inoleculat struciure which is wsually induced by iermentation or by heaing with a dilute acid．as in the case ci starch．sugar．e：c．Thus starch and dextrine are changed into glacose，cane－sugat intc in－ rers susar and maliose in：o sluense．（3）In geolecg ihe creotuming of iolairg over oi stata by igneous agency．so that the arder oi the：succession seems reversed it $^{\prime}$ In math－ matics the operation of changing the order of the temms，so inat the ansecedent shall take the place of the c nisuluent and the reverie． in bush ccuple：s．Thus．from ihe proportion $s: b:=:$ ：3．we have ky inversiont．b：
：d ：c．（5）In music the tansposition of certam phrases having a common rec：（a）The chanze of a chord by making cme of the inner n．te nct as a bass nite by which means as many imersions can be made as there are actual wus 17 the chord，nct counting the roct．the
harmony in such inversions remaining the same, though the order of component parts is changed; (b) alteration of intervals by making that which was the upper note the lower, and the reverse, the inversion of an interval within the octave being readily found in the difference be1 ween the figure 9 and the interval known; (c) the alteration of a subject produced by inverting the intervals of which it consists.

In'vertase, or In'vertin, an enzyme occurring in many fungi, notably in certain yeasts (for example, the sacclaromyces), and also in the seed-plants. It transforms cane-sugar into a mixture of dextrose and levulose; this mixture being called "invert-sugar") because it turns the plane of polarized light to the left, while the cane-sugar from which it is obtained turns it to the right. According to some writers, a yeast cannot invert cane-sngar except by secreting invertase; but Monilia candida effects the inversion, and yet produces no invertase. In this case the action is probably due to some other enzyme, hitherto unidentified. InYertase probably plays a very important part in vegetable chemistry. Like other enzymes, it can apparently perform an unlimited amount of chemical work, withont sensible diminution of its owil substance. (See Fermentation.) Invertase is most active at a temperature of from 120° to $140^{\circ} \mathrm{F}$., and in a slightly acid medium. It has been isolated in the form of a powder.

Inver'tebrates, a collective term for the lower divisions or phyla of the animal series, which agree in not having a vertebral column or back-bone, used in contradistinction to the highest group of the animal kingdom, to which the name l^{\prime} ertebrata or vertebrate animals is given. In the system of Cuvier the Ineertebrata were divided into the Radiata, Articulata, and Mollusca. Further study revealed. that these names did not distinguish natural groups; and the term Invertebrata has 110 longer any definite significance in classification (q.v.).

Inves'titure, in the feudal law, was the open delivery of a feud by a lord to his vassal, thus, by external proof, affording evidence of property. To use the words of Blackstone, "Investitures, in their original rise, were probably intended to demonstrate, in conquered countries, the actual possession of the lord, and that he did not grant a bare litigions right, but a peaceable and firm possession. At a time when writing was seldom practised, a mere oral gift, at a distance from the spot that was given, was not likely to be long or accurately retained in the memory of by-standers, who were very little interested in the grant." For this reason investiture was performed by the presentation of some symbol to the person invested, as a branch of a tree, etc. In the primitive church, after the election of a bishop, and his consecration, the early Christian emperors claimed a right of confirmation. Charlemagne is said to have introduced this practice, and to have invested the newly consecrated bishop by placing a ring and crozier in his hands. Gratian, indeed (Distinct. 63, cap. Adrianus). directly affirms that Pope Adrian positively conceded to the emperor the power of electing, even to the papacy, in 774; but neither Eginhard nor any other contemporary writer mentions this fact.

The custon, however. existed, nor does it
appear to have been objected to or opposed during the lapse of two centuries from his reign. The disorderly state of ltaly, which succeeded the death of Charlemagne, frequently interrupted the exercise of this right loy the Carlovingians: but even so late as Iof7. when the cmpire had passal to another line, Ifenry III. received an explicit admission of his prerogative, and repeatedly used it. The investiture in the lusser sees followed as a matter of course. Alexander II. issued a decree against lay investiture in general, which was revived by Gregory V11. (Ifidebrand), who, having succeeded in ammuling the prerogative of the $\mathrm{em}-$ perors to mominate or confirm popes, sought to disjoin entirely the ecclesiastical from the civil rule. It was not, however, until the papacy of Calixtus 11., in 1122, that the question was terminated, as it appears, materially to the advantage of the holy see. In France, even under the papacy of IIiddehrand, the right of investiture does not appear to have been made a subject of open quarrel. In spite of the protests of the holy see, the kings exercised the power, but at length relinquished the presentation of the ring and crozier, and contented themselves with conferring investiture by a written instrument, or orally, upon which they were left in peaceable possession of the power. But in England Paschal II. was engaged in a contest little less fierce than that which he maintained with the emperor. Anselm, the primate, refused to do homage to Henry I. for his see. The king seems to have asserted an unqualified right of vestiture, which the pope, who was appealed to, as unqualifiedly denied. After a protracted struggle, and continned threats of excommunication, the controversy ended in England, as it did afterward in Germany, by compromise. Paschal offered to concede the objections against homage provided Henry would forego the ceremony of investiture. To this he agreed (IIO) .

Invin'cibles, an Irish secret society of 1882, an off-shoot of the Fenians. One of the objects of the Invincibles was to "remove" or assassinate government officers or others who might incur the displeasures of the association or its leaders. On 6 Nlay I882 the society succeeded in "removing" Lord Frederick Cavendish, who had just arrived from England as secretary for Irelancl, and Thomas A. Burke, the under-secretary, in the Phoenix Park at Dublin. The plot was ditected against the latter gentleman, and the former, interfering to protect his friond, shared his fate. On 20 Feb. I883 20 persons clarged with complicity in the Plocenix Park murders were put on trial; on I4 July, Josepli Bradly, who had been convicted of actual perpetration of the murder of Mr. Burke, was executed, as were others subsequently. The leading witness, who revealed all the sectets of his fellow conspirators, was James Carey of Dublin. He was shot dead near Natal, on 29 July, by an Irishman, O'Donnell, who was subsequently tried, and executed for his crime.

Invocation of Saints. See Saints.

In'voice, a list or bill of goods: a detailed statement of merchandise in stock, or to be shipped. Very frequently an invoice accompanies a shipment of goods along with the bill of lading from the consignor to the consignee.

An invoice is a memorandum and is not a document oi sitle nor a contract of sale, and has no value in law other than memoranda.

Io, $i^{\prime} \bar{o}$, in Greek mythology, a daughter of Inachus; according to others of Iasus or Peiren. Zeus (Jupiter) fell in love with her. Hera (Juno) perceived the infidelity of her husband, anl resolved to be revenged on both. Zeus, to protect Io from the jealousy of Hera. changed her into a beautiful white heifer. Hera was not deceived, and set a gad-fly to torment her, and persecuted her without a moment's rest through the world. The wanderings of Io in this condition were a favorite subject with the poets of ancient Greece. Also, in astronomy (I) the first satellite of Jupiter, discovered by Galileo in 16ro. (2) The name of the 85th asteroid, discovered by Peters at Clinton, N. I., i9 Sept. 1865.

Iodine, i'ō-dĭn or -din, a non-metallic element, analogous in its general properties to chlorine and bromine. It was discovered by Courtois in 1811 , in the mother-liquor of kelp that had been used for the production of sodium carbonate; occurring there in combination with sodium and magnesium. It is still obtained irom the ashes of certain seaweeds, but the principal supply is now obtained from "caliche," a crude nitrate of sodium that occurs in immense quantities in northern Chile. In the preparation of the commercially pure nitrate of soda from caliche, the mother liquors, after the removal of the nitrate by crystallization, are found to contain large quantities of iodine, chiefly in the form of iodate of sodium, NaIO_{3}; and it is from this substance that the iodine of commerce is now chiefly prepared. The richest caliche contains about 3.5 pounds of iodine per ton.

In its ordinary iorm, iodine is a solid substance, melting at $237^{\circ} \mathrm{F}$., and boiling at about $380^{\circ} \mathrm{F}$. In a vacuum, iodine sublimes without melting. Solid jodine is soft, and dark gray in color, with a metallic lustre. The vapor is riolet in color, from which circumstance the element takes its name (Greek, "like a violet"). Chemically, iodine has the symbol I, and an atomic weight of 126.85 for $O=16$, or 125.9 for $H=1$. Solid iodine has a specific gravity of about 4.95 at ordinary temperatures, and a specific heat of about 0.05412 . Its volume increases, on account of thermal expansion, by about 0.00013 of its own value for a rise of lemperature of $1^{\circ} \mathrm{F}$. At temperatures not far above its boiling point. the vapor of iodine has a specific heat (at constant pressure) of 0.03369 ; and in this same region of temperature the ratio of its specific heat at constant pressure (u) the specific heat at constant volume is about 1.294. lodine shows an important change in is rapor density at high temperatures. Thus, below about $\mathrm{I}, 200^{\circ} \mathrm{F}$. the vapor has a density about 126 times as great as that of hydrogen under the same conditions oi temperature and pressure; but as the temperature rises the density of the vapor, relatively to hydrogen. ialls off. until it is only about 68 at $2,700^{\circ} \mathrm{F}$. It is belicred that this change in density indicates that the molecules of iodine vapor split in two as the temperature riscs: a moleculc. just above the boiling pornt, containing two atoms, while at the higher temperature the molecules are monatomic. Iodine is freely soluble in alcohol,
ether, carbon disulphid, chloroform, and glycerin. It is only slightly soluble in pure water, but dissolves readily in aqueous solutions of the iodides. It is also soluble in benzine, acetic acid, and numerous other organic fluids. Iodine is a non-conductor oi electricity.

With hydrogen, iodine forms the important compound HI, known as hydriodic acid. (See Hydriodic Acid.) With the metals it forms binary compounds called "iodides," which may also be regarded as salts of hydriodic acid. Of these the most important is potassium iodide, KI, which is largely used in medicine. It is prepared by dissolving iodine in a solution of caustic potash, evapurating to drymess, and igniting. This salt is very soluble, and crystaljizes in cubes. The iodides of ammonium, sodium, strontium, and zinc are also used to a more limited extent. Iodoform, a yellow crystalline powder with a peculiar characteristic odor when warmed, is also much used as a dressing in surgery. It has the formula CHI_{3}, and is analogous in its chemical structure and deportment to chloroform. Iodoform may be prepared by dissolving iodine in an alcoholic solution of caustic potash, the iodoform that is produced separating ont as a precipitate. It is also prepared in Germany, to a certain extent, by the electrolysis of a similar solution. (See Löb, (Electrolysis and Electrosynthesis of Organic Compounds.') Iodine and its compounds are used to some extent in photography, and to a larger extent in synthetic chemistry, for the preparation of the coal-tar colors (q.v.), and other organic substances.

Iodine iorms two important oxy-acids, known respectively as iodic acid. HIO_{3}, and periodic acid. $\mathrm{HIO}_{4}+2 \mathrm{H}=\mathrm{O}$. These are analogous, in theis chemical deportment, to chloric and perchloric acids.

Free iodine combines with starch to form a remarkable deep blue compound. whose production is a well-known test for the presence, in a given substance, of either starch or free iodine. To detect the presence of iodine in a solution, a few drops of thin, clear starch paste are added to the solution to be tested (which should be cold), and hydrochloric acid is added until the reaction is acid. A couple of drops of a concentrated solution of potassium nitrite are then added. when the dark blue color of iodide of starch will instantly be produced, if iodine is present. This test may readily be modificd so as to serve for the detection of starch. The reaction is not given by dextrin, nor by other isomers of starch.

I'odine and Iodides in Medicine. Iodine

 and the iodides have been used in medicine since the Chinese are supposed to have introduced them, 2000 B.C. or earlier. The exact method of action of the iodides is not clear, but it would seem that iodine, being a normal constituent of the human body, is a very essential element in normal metaholism. It is found in comparatively large quantities in the thyroid gland, which is known to exercise a very important action in the general body-metabolism, and it is probably by means of the stimulation of the general metabolism of the body that the iodides manifest their beneficial action. The iodides are freely absorbed from watery solutions by mucous membranes throughout the body, particularly in the stomach and intes-nue. They are taken up into tace bloorl, pass through the tissues, stimatating the lymph-flow. and are excreted in the urime in the form of salts. lodine itself possesses a local irritant action. It is soon converted into the iodides when taken internally, and causes similar intermal changes.

When the iodides are taken in large doses, or even in small doses for a long time, a form of chronic poisoning known as iodism results. In this the chief symptoms, found in the airpassages, consist of a catarth, especially of the nose, with profuse watery secretion, siseezing, and sometimes bronchitis. There is usually swelling and irritation of the throat and tonsils, and salivation. Nausea and gastric discomforts are common, and skin-eruptions are frequent. There is usually loss of weight, and if the iodide has been taken for a very long period a condition of cachexia, characterized by a great loss of flesh, weakness, depression, and restlessness, may result. The chief use of the iodides in medicine is in the treatment of syphilis, on which it has a specific effect. It is also very useful in the various joint-pains of a chronic character, usually known as chronic roumatism. Jodine is valuable in the treatment of those diseases known to result from thyroid insufficiency. notably in myxedema (q.v.), and in cretinism, its allied form in children. For stimulation of the respiratory and nasal passages, as in chronic bronchitis, asthma, and dry nasal catarrh, the iodides are of great value.

Io'la, $\overline{1}-\bar{o}^{\prime} 1 \mathrm{a}$, Kan. - The city of Iola, Allen County, Kan., is located otl the left bank of the Neosho River, about 40 miles west of the Missouri line, and about 100 miles south of Kansas City. The town is reached by the Atchison, Topeka \& Santa Fé, the Missouri. Kansas \& Texas, and the Missouri Pacific railroads.

History:- It was laid out by the Iola Town Company in 1859 . A post-office was located there the same year and a small village soon grew up. During the war the town made but little progress. In 1865 it became the countyseat of the county and grew steadily. although very slowly until 1895, when its population was 1.565. In 1896 natural gas was discovered on the town site. and as soon as it was shown that a large gas field existed in and near the town it began to grow rapilly, the population in 1904 exceeding 11,000 . This rapid growth followed the location in and near Iola of nine large zine amelters, a number of brick factories, two Portland cement plants and other manufacturing enterprises attracted to the place by the cheap fuel which the large field of natural gas supplied.

Churches, etc.- The leading church denominations are the Presbyterian, Net indist Episcopal. Christian, Baptist, Episcopal, Reformed, and Catholic. The city is well supplied with schools, its high school being one of the best in the State. There are two daily papers, the 'Record' and the 'Register.'

Busincss, Population cic.- The city is surrounded by a well-settled and prosperous agricultural community, but its chief husiness is derived from the manufacturing industries already named. The population is almost wholly American, the exceptions being a few. Poles and Swedes employed in the manufacturing plants. An electric road connects lola with a number of suburban towns, aggregating a population of about (1904) 5,000.

Charles F. Scott.

Io'na, or Icolmkill, an island on the west const of Scotland, one of the Inner Hebrides, in the county of Argyle. Iona is about 3 miles long by $11 / 2$ miles broad; area, 2,000 arres, of which 000 acres are under cultivation, the remainder being hill pasture, morass, and rock. The island derives its interest and celebrity wholly from its history and its ancient rinins, and ispecially from its commection with Saint Columhin, who took up his residence here after the middle of the oth contury (565). The existing rums are all, however, of a much more recent date. Forty-eight kings of Scotland, four kings of Ireland and ciglit kings of NorWay are said to have been burjed on Iona Island, among then being King Duncarn, made fannots by Shakespeare. About 1900 the Duke of Argyle conveyed the entire island to the Church of Scotland under certain conditions of preseriation and restoration.

Ionia, $\mathfrak{1}$-ō'nil-a, that part of the seaboard of Asia Minor which was inhahited by Ionian Greeks, a beautiful and fertile country opposite the islands of Samos and Chios, which also belonged to it. According to tradition, the Greek colonists came over from Attica about Iojo B.C., and founded 12 towns, which, though mutually independent, formed a confederacy for common purposes. These included Phociza, Ephesus, Miletus, etc., and latterly Smyrna. Commerce, navigation, and agriculture early rendered them wealthy and flourishing, but the country was made tributary by Crcesus, king of Lydia, and later by Cyrus, king of Persia (557 B.C.). With an interval of independence they remained under Persia until this empire was overthrown by Alexander the Great, $33-4$ I B.C., when they became a part of the Macedonian empire. Ionia, at a later period, became part of the Roman province of Asia. It was afterward totally devastated by the Saracens, so that few vestiges of its ancient civilization remain.

Ionia, Mich., city and county-seat of Ionia County; on the Grand River, and the Detroit, G. H. \& N.. the Pere M., and the Grand T. R.R.'s ; 34 miles east of Grand Rapids. It contains the State house of corection, the State asylum for the dangerous and criminal insane, large railroad repair shops, and manufactories of pottery, furniture, machinery, edged tools, and clothing. The industrial interests are greatly promoted by exccllent power furnished by the river. The city has a public high school, library, several daily and weekly periodicals, and an assessed property valuation of about $\$ 2,500,000$. Under the revised charter of 1897, the govermment is administered by a mayor and city council elected ammally. Jonia was settled in 183.3 and incorporated in 1873. Pop. (r890) 4.482; (1900) 5:209.

Io'nian Islands, a number of islands belonging to the kingdom of Greece, in the Ionian Sea, off the const of Albania and the western and sonthern shores of Greece, the most southern, Cerigo, and its dependent istets being off the southeastern extremity of the Morea. The principal islands, seven in number, are, reekoning from north to south, Kerkyra (Corfu), Paxos, Levkas (Santa Naura), Ithaki (Ithaca), Kephallenia (Ceplalonia), Zakynthos (Zante), and Kythira (Cerigo). To each of these larger islands a number of smaller, scattered along their respective roasts, are attached, and is-
cluded in their several lical jurisdictions．Area of the wh le．1．og，square miles．Pcp．about 300.000 ．All tirese islands belcag to the great ca cure us formatich of Greece．They are ex－ treme y meunatnous．and do not contain ent गgh arable land to preduce the corn required be the frpulation：and were it not for the sine． olive．and currant，all oi which they produce， they c uld supperi but a small number of inhab－ itants．The climate is even more temperate than that of the neighboring mainland．Snow often falls in the winter，and lies on the moun－ tains，but rarely on the plains．The staple ex－ ports are oil．currauts．valonia，wine，soap．and sal：．The ferm manufactures are chienty textile and ornamental．The religion is that of the Eastern Greek Church，to which four fifth of the pcpulation belong．Each island has its own bishop．and at the head oi the whoie is an ex－ arch or primate．The Ionian Islands so called from ！ying in that part of the Medierranean anciently knowa as the Jare Ionicum or I nian Sea．often figure in the ancient hisity of Greece．but culy，singly，not collectively．In isog－to all the islands were overrun by the Britisl troops except Coriuk，which did not come into the hands of the British till it was assigned to them by the Peace of Patis in IEIt，and the possessien of the British was frnaliy nixed and regulated by another treaty concluded at Paris in IBIz．The seven islands were then iormed into a republic，under the proteciorate of Grea： Britain．In IsE；a wish was expressed by their representatives for reunion with Greece，and the islands．with the consent of the other European powers，were iransiersed to the kingdom oif Greece in 1864.

Ionian Philosophy，the earliest school of Greek pnilosphy，a school which attempted to explain the phenomena of nature from the forces and attribrtes of matter itself．In order to do this the philosophers of this schocl iollowed two courses，some assuming a single original substance as the ground of all things．and ex－ plaining the development and formation of the phencmenal world by a process of condensation and rareiaction which they conceived as affect－ ing the mode of existence of that substance； whi e others considered all things as formed by separation and combination out oi a per－ manent and unalierable primitive firm of mat－ itr．Accurding tu the riew of the arsi class of I nian thil sophers，therefice，the onginai ma－ terial principle was conceived as itself liable to change．asd the changes which take place in it were he $\mathrm{d}: 3$ give rise to the iorms by which the wrld is kn wa to us：while according to the wiw of the seobed class of Ionian philes phers the ori－imal maierial frinciple was looked upon as in ts awn nature end qualities unchangtabie． and crerytiing was explained by a change of extern I rel，itens in space．

Ionian School，the school of philosophy If ich ratte！irm the I man city of Miletus． The leader fity $\quad 1$ was Thales，who started inm a．it in the cu－rent mythcl gical i，blou i h i day．Tliales was bart about 636 a： $11+$ y $=$ a n in if lactal activity as wel as ai deup medative haln．．．He was pro－ ficient in mathemati kn wiedge and i unded
 cerned in an inquiry as to the constitution of the universe．He pr pounded the axium that
the basis of all phenomena was water，and per－ haps he was just as near the truth as Huxley when he declared that everything came out of what he callec．by a question－begging term， protoplasm．The next philosopher of the Ion－ ian school was Anaximenes 529 b．c．He also was a materia＇istic philosopher and like Liebig be ieved that the origin and substance oi every－ thing was air．Diogenes of Apoilonia went iarther than his predecessor and raught that the basis of phenomena was mind．The lonian sciool found its highest development in Anaxi－ mender of－Miletus 610 b．c．，who taught what has been the profoundest discovery of all philos－ oply ancient or modern that the basis of being was Tò $\overline{\text { anstpoy，the Infinite．}}$

Ionian Sea，that part of the Mediterranean communicating with the Gulf of Venice by the Strant of Otranto．and having Greece and part of European Turkey on the east：Sicily and the most southern part of Italy on the west． Its greatest breadth is between Cape Matapan in the Morea，and Cape Passaro in Sicily，which is about 400 miles．

Ion＇ic Order．See Architecture（Grecie）．
Ioniza＇tion．See Electrolysis；Electroan； Solutius．

Ios，íoss，an island in the ．Egean Sea，said to nave been the birth－place of Homer．Ac－ cording to the ancients his mother was born inere．and the poet＇s grave was likewise located here．

IO U．a written acknowledgment of debt， usuaily made in this form：－＂To－1．B．I O L Ten Dollars．－C．D．May 12，I\＆9r．＂In Great Britain when the name of the creditor is stated such a document is evidence of a debt oi the amomnt stated due to him by the person whose signature it bears．In the absence of the name of the creditor the document is prima fucic evi－ dence of such a debt being due to the holder of the document．It is not negotiable．The letiers I O TV are of course used instead of the words＂I owe you，＂on account of the similarity of sound．The I O U is seldom used in the Lnited States．

Iowa，fiona（＂the Hawkeye State ${ }^{\nu}$ ），a north－central State extending from the Missis－ sippi River to the Missouri River，aud occupy－ ing three and one sixth degrees of latitude．It is bounded on the north by Minmesota，on the east by Misconsin and Hinois．on the south by Missouri，and on the west by N－ebraska and South Dakota．Area， $56.02 \bar{y}$ square miles：$⿰ 氵 乏 0$ water；it is 310 miles east and west，and 210 north and south．Capital．Des Moines．Pop． （1，00）2．231，853．It is the sixteenth State in irder of admission to the Union．

Tetarufisy：－Iowa is a part of the great central plain，and is chiefly undulating prairie， rising in gentle swells from the Mississippi River to a divide funning diagonally，from a height of 1.69 feet in the northwest io a slight clevation in the southeast，with a parallel sub－ divide in the sourbwest．There are now no swamps and few natural forests．The only rough spots are the sharp bluffs where the rivers have cut their paths through the glacial drift； the only woods，those along the streams．－ altogether about \quad ． 000 square miles of wood－ land，with oak，elm，hickory：black walnut，ma－ ple，cottoawood，linden，ash，box－elder，pine，

IOWA

cedar, etc. The eastern watershed, two thirds of the whole State, is drained to the Mississippi by a series of stream. nearly all of which are parallel and have a southeastward course. The western part is draince to the Missouri by shorter and swifter rivers. flowing first southwest and then south as the Missouri turns eastward. The chicf Mississippi affuentsare the Upper Iowa, the Turkey, the Naquoketa. the Wapsipinicon, the Iowa, and the Cedar (the "main" stream, the Iowa,- 375 miles, its "tributary," the Cedar, 400 miles, the two forming the second largest interior system of the State and joining not far from the mouth of the Iowa), the Skunk, and lastly the Des Moines with its numerous affluents, far the greatest and commercially the most important as well as the fincst scenically, rising in Minnesota and running diagonally across the entire State in a course of 550 miles, with a basin of 14.500 square miles. The State is prolonged by a southeastern corner to include the entire channel of the Des Moines. The northern part of the State has a continuation of the many small. clear, pcbbly lakes of Minnesota in glacierscored pits; some of them - the Walled Lakes - surrounded each by a natural wall of loose stones. The largest are Spirit Lake and the two Okoboji lakes in Dickinson County, and Clear Lake in Cerro Gordo County: all popular summer resorts. West Okoboji, of great depth, lies between wooded hills, and is indented by several picturesque "points" or promontories.

Climate:- The winter climate is somewhat severe, owing to the influence of the great uninterrupted plains to the northwest: but like all this region, the severity is tempered by freedom from excessive moisture. The State is one of the healthiest in the U'nion, several of the streams in the northeast having rocky channels. and none having the miasmatic bottom-lands found farther south. The dry. pure air of its rolling prairies affords a valued sanatorium for consumptives. The extreme temperatures range from 110° ahove to 40° helow zero; but the a verage range is from 95° above to 20° below. The average rainfall during the years from 1890 to 1903 inclusive was 31.4 inches - two thirds of it between April-October, and more that half during the critical crop months, May, June, July, and August.

Geology.- No less than five separate sheets of drift cover the State, giving a remarkable variety of productive soil, as well as many different clays for industrial purposes. The watershed shows the inclitation to the underlying palrozoic rocks, in lines from northwest to southeast. The oldest formation is Sioux quartzite in the northwestern corner. Cretaceous deposits overlie the older formations through the northwest part generally: along the eastern side from north and south are Cambrian. Silurian, Devonian, and Carboniferous in succession. The most taluable mineral heds are the vast fields of bituminous coal. covering more than one third of the entire area of the Statc, and turning out in the year ending 30 June 1003. 6.185 .734 tons, valued at $\$ 8.016 .274$; employing 13,192 persons, of whom 9.160 were miners. It is the leading coal State west of the Mississippi except Colorado. and a great factor in all the northwestern industries. Its limestone. the finest grade of building stone, near Marshalltown, Anamosa and other points, is quarried to
the extent of about $\$ 800,000$ a year. Its gypsum ironn the rocky lills in the vicinity of Fort Dodge is the basis oi a iant increasing mantufacture of stucco. hard-wall plaster, and paint, also clays for puttery, fire and building brick. tile. and terra-cotta. Jowa ranks cighth in the value of its clay products. Considerable minera! water is alho exported, that from the Coliax springs being in the lead.

Agriculture-- lowa is unsurpassed in the quality and extent of cultivated land. It presents mainly a iriable black loan on the top, from one to five feet deep: is easily worked, is in the main iree from stumps and stones. and requires little or no commercial fertilizers. It has thrce main varieties, the principal leing the allusial mud of the river butoms, the glacial drift of the prairies, covering most of the State, a sand and clay loam, and the loess, a rich yellow deposit containing much carbonate of lime. found at great depth on the Missouri slope and along the streanss in the central and eastern portions. There is now almost no waste land in the State. In 1900 it presented the unparalleled secord oi 86.5 per cent improved farns land. A large part of the remaining 13.5 per cent yields income as timber and pasture land. With this fertility and a steady and sufficient rainfall, the State has for many years been first in the Cnion in valus of products derived exclusively from the soil. The total value of its farm products in Igoo was $\$ 365.41 \mathrm{~T}, 528$, of which over a hundred million was fed to its own live stock. Its great crop is corn: it varies, in bushels, from 129.104.930 in 1894 to 383.453 .190 in 1900, with an average value of $\$ 100,000,000$ to $\$ 150,000,000$. A fourth of its surface is corered with cornfields. Its second crop is oats (of which it was second in the United States), with a total in 1900 oi 168.364 .170 bushels; third, barley: 18.059.060: wheat. 22.769.440: rye, I.1,70.970: and buckwheat, 151.120. Its cereals altogether occupy nearly half of its area. It also raises considerable flaxseed. Its hay product is surpassed only by New lork: in 1902 it was $5.21 \mathrm{~T}, 232$ tons, most of it used for feeding its own stock. The vegetable crops are also of great importance: in potatoes it was second in 1900 , producing 2,662,660 bushels, also 224,622 bushels sweet potatoes, altugether realizing $\$ 3.870 .746$: other regctables, $\$ 3.332 .030$: It has a considerable fruit crop, especially of apples: in 1 gno the value of orchard products was $\$ 1,849,76-$, besides $\$ 8-8,446$ of small iruits and berries. The average of Iowa's chief products during the 13 years, isgo1902, in buslicls, is: Corn, 261,200.750; wheat. 16.130.330: oats, IIT.118.483: rye. I.007.482; barley. 12.503.051 : flax. 2,182,050: potatocs. 12.108 .347 : hay, tons, 5.517 .884 . Iowa leads all the other States in the value of the implements on its farms, namely, $\$ 57.960 .660$.

Stock-Raising.- lowa stands near the top in the value of live stock, $\$_{2}-8,8,30,096$ in 1000 : and it is significant that while one State. Texas. surpassed it in mumher of neat cattle.9.428.1966 to 5.367 .630 - the difference in values was only as $\$ 163.228 .004$ to $\$ 1+2.518 .002$: the average Iowa animal being worth $\$ 26.5$ against the Texan's $\$ 17.31$. In dairy cows New York alone takes precedence, and the value of dairy products in 1900 was $\$ 18.8$ in.000. That of poultry and eggs was $\$ 10.50 \$.000$. Great care is taken to have the best breeds of stock, and

IOWA

this alone accounts for the difference in value of the Iowa and the Texas cattle. The richness it the milk is due largely to the breed. In the number í borses (I.208.010) and swine 19.-23.-01. Iowa led all the other States in 1900: and irom IEso to the last census there las been a steady increase in the number of swine, cartle. and horses.

Ifand futures. - The State's fast-growing populaiion and prosperity and its abundant and aimost inexhaustible supply of bituminous coal have, together, within the last decade given a rapid impetus to manufacturing. Small factories have enlarged and many new iactories bave sprung up. Not a iew of these are assuming large proportions. In $1 g 00$ Iowa manufactured -.800 cultivators, 5.000 equalizers. 7.360 harrows, 34.500 hoes. 13.638 plows. 2.021 seeders, Ioo drills, $3,2=0$ harsesters. 3.5 5 hay-carriers. Io.gio dozen hay-iorks, $5 . \mathrm{Cog}^{2}$ horse hay-rakes, 79.296 scythes, 58.003 separators, etc. representing a total value of $\mathrm{S}_{\mathrm{r}}, 343.455$-a gain of over $\$ 400,000$ in a single year. In the same year Iowas product of metal-working machines was valued at $\$ 273.501$. There is but one manufactory of typewriters in lowa (Des Moines), but it is fast becoming one of the foremost in the country, exporting largely to Great Britain, France, and the colonies. The output of carriages and wagons in 1000 was E4.08,700; product of paints was $\$_{336,80-}$: chemical indusuries paid s,o.022 in wages. A curious industry has sprung up in and about Muscatine - the manufacture oi pearl buttons from mussel sheils found in the beds of streams. Almost unknown. it has grown to huge proportions. and now that the manuiacturers have united in the protection of the solirces of supply, the future of this industry is assured. The value of its products in 1900 was $\$ 866.338$, more than one iouth of which went for wages. The industry is now chiefly contined to the cutting oi blanks for the eastern market. Iowa has 702 flouring and grist mills. two with a capacity of 100.000 barreis annually. The ourput of its mills in bushels is: wheat. $12.521,953$: corn. 6.352 .045 : rye, $458,-63$: buckwheat. $27-593$: barlew 538,740 : other grain, 5.859 .842 . Cedar Rapids. Fort Dodge, and Muscatine have extensive oatmeal mills: the one at Cedar Rapids is said to be the largest in the world. The grand toial of food products in 1900 was $\$$ I +2.000 .000 . The slaughict:ng and meat-packing industy represented in It 000 a tital product amounting to $\mathrm{E}_{2} 5.695 .044$. Cheese, butter and condensed-milk tactory prodUCt in 1000 was $\$ 15.8 .46,0 \%$ - an increase of nearly 50 fer cent in to years. The iruit and veretable caming product in 1 goo was $5 t .350 .95 \mathrm{~S}$ - a gann $i f$ over $\leqslant \times 00.000$ in 10 years. Iowa ranks th ird in the caming oi corm. The starch Ir I ct \because igm was $\$ 65.83 \mathrm{~m}$ - a gain of over ssoomn : 10 years: pr duct of borts and shoes
 10 years: proluct of g ves and mitiens in 1900 wa- Ert2.000: pr uct of planing mills in 2900 n. Shat. .n. I fact n i generally understood is that in re is no pe timber in Iowa to-day than at any rether time in its histry. Tlie clay product: which were $E_{\text {w }}$ w. 165 in i8go, had increased in 10 yerrs to $\leqslant 2224.920$; to this should be ar!ded brick and tule pr jucts, which in 1900 ageregated E1.97~3-2: al=, pottery, terra-cotta and fire-clay products, Srgz.joz. The paper product in $1>=0$ wa. $\$_{-43.7-6 .}$ Dubuque has the
only ship-building plant in the interior. Among the larger cities Des Moines leads in brickmaking (over 25.000 .000 annually). proprietary medicines. book and job printing and binding. rypewriters and hosiery: Sionx City. Ottumwa, Cedar Rapids, and Des Moines in meat-packing: Davemport. Dubuque, Burlington, Des Moines, and Ottumwa in foundries and machine works; Dubuque, Council Bluffis, and Grinnell in carriages: Burlington, Davenport, Des Moines, Dubuque. Ottumwa. Keokuk. and Oskaloosa in cigars: Sioux City, Des Moines. Cedar Rapids, Fort Dodge. Masor City. in flour and other iood products; Des Moines, Ortumwa, Grinnell, Newton and Fort Madison in farm and other machinery: the principal river cities in malt products. The total value of manufactured products in 1000 was $\$ 164.61-87 \%$ an increase of over 3 I per cent in 10 years; the capital represented in 14.819 factories was sio2,-33.103-an increase of cret 32 per cent; the wages paid the 58,553 employes was S-23.931.680-an increase of over If per cent. These figures, showing enormons growth in the last decade, are a surprise to those who regard lowa as distinctively an agricultural State.

Transhortation ard Commerce.- Several of the interior rivers are navigable for small boats, the Des Moines ior 100 miles, the Missouri for fair-sized steamers its whole length, and the Alississippi for large ones. But the first named are not used to any extent; they have been superseded by railroads: the shifting channel, sandbars and snags of the Missouri make its navigation dangerous and slow. Only the Mississippi remains in practical use. The State, lying in the main path of transcontinental commerce and originating much well-distributed local traffic, is a vast network of railroads. seven of the great trunk lines crossing it. Every one of the 99 counties has at least one railroad. The farthest distance between railroads at any point in the State is 13.70 miles. In 1903 it had 9,855 miles of road, exclusive of electric lines.

Banking and Insuranci-- Iowa has the greatest number oi banking institutions of any State in the United States. In fugust 1903, it had $t .482$ divided into 258 national banks, 245 State banks, 350 savings banks, and 561 private banks. The State banks had capital oi $\$ 10 .+15.800$: deposits. S $_{45.268 .974 .73: ~ s u r p l u s, ~ \$ 1.718 .832 .41 . ~}^{\text {. }}$ The savings banks had capital $\$ 11.565500$: deposits, $58-.620,375.34:$ surplus, S2.173.462.88. 2 Total capital of all banks in the State, § 53.435 .020 ; total deposits, 5264.803 .000 . Iowa is rapidly gaining prominence in the insurance world. In life insurance it promises soon to become a formidable competior with the Eastern States. In 1902 there were 42 life insurance companies having headquarters in the State, and oi this number 24 were located in Des Moines, "the Harnord of the West." Of the 42. Io were "old line" life companies, carrying insurance to the amount of $\$ 36,9,2,25 ; ; 8$ were a ssessment companies, carrying $\leqslant-09.955 .500: 16$ were fraternal benefit associations. carrying \$168.418.000. Total of insurance carried by Iowa companics. $\leqslant 415.345 . \pi 5 \%$.

Educction.- Iowa stands second in the literacy of its population: 90.63 per cent of those irom to to 14 years werc, in igoo, able to read and write, although there was no compulsory attendance law prior to 1902. In 1902 it ex-

I()II . 1.

pended $\$ 9,556,890$ on its schools, there being 18,513 schoolrooms with 22,708 teachers holding certificates. The enrollment of children in the public schools in that year reached $500,1 \% 3$. There has been a liberal increase in the wages of teachers during the school year of 1902 and 1903. About one third of the schools are located in towns and cities and two thirds in the country. Relatively few of the teachers have had normal training. One State normal school and several private normal schools were in operation in 1900. In 1902 the State normal school had 28 professors and 28 other teachers, with 2,065 students. Under a law passed in 1902,16 private schools have become accredited for the training of teachers under State supervision. For higher education there are about 200 public high schools and a number of private academies. The courses of study pursued are of high standard and generally uniform. The State L'niyersity, the head of the public school system, is at Iowa City, the former capital, with law, medical, dental, and other colleges, which in Igoz had is professors. 111 other teachers, and 1.512 students. There is also a State College of Agriculture and the Mechanic Arts, located at Ames, which in 1902 had 32 professors, 43 other teachers, and 1,480 students. In 1902 a "Alemorial University," at present a military acadeny, was opened at Nason City by the national order of the Sons of Veterans. Connected with certain of the public secondary schools there are 20 training classes for teachers. Among the private schools of the State there are 16 business colleges and 26 academies. Under the auspices of the Roman Catlolic Church there are in the State 25 schonls for higher education (academies and colleges), with an attendance of 4.040 pupils, 3 normal schools, 16; parish schools, with an attendance of 22,529 pupils. Iowa was one of the first States to pass a township school law. This law has enabled a number of towns to better their school facilities. In 1895 Buffalo Centre township, for example, was organized into a school township, and within four years all the district schools except two were closed and the pupils were transported to a central graded school. The law makes provision for the transportation, at public expense, of children living remote from the central school. The State report for 1001 shows that consolidation has been tricd in 28 counties, transportation in 35, and both in wh. Good results were reported in 27 counties, doabtful in 5 counties. Bad roads are the chief oustacle in the doubtful counties, but a vigorous "rood Roads" movement is minimizing this obstacle. Ninety-five per cent of the county superintendents for 1901 favored the plan.

Librarics. In 1803 there were 83 public libraries in Iowa, as follows: Supported by the State, I2 (volumes, IIS.974); college and academic, 24 (volumes, 95, IT4) ; association and subseription, 16 (volumes. 81,234) ; free public, ${ }_{15}$ (volumes. 68,8ar) : miscellancous, 7 (volumes. 46,176) ; pullic school, 5 (volumes, 7,850) ; total. 418,157 volumes. In 1903 the number of libraries had increased to 248 , as follows: Supnorted by State, 22 (volumes. 236.953) ; college and academic: 36 (volumes. 179,261) ; association and subscription, 32 (volumes, $\$ 2.080$) : free public, 70 (inlumes, 336,305); miscellaneous, in (volumes, 80,159);
public school, 77 (volumes, 75,982); (otal, gon, 2,40 volumes.

Churches.- In the number of chureh societics in the State the denominations rank as follows: Methodist. Lutheran (three branehes), Koman Catholic. Paptist, Christian (Disciples), Presbyterian, Congregationalist, United 13retinren, Evangelical Association, Protestant Episcopal, Friends, Reformed, Alventist. There is one Roman Catholic archdiocese, with two dioceses. The non-polygamous Mormons or "Latter-day Saints," and the Amana Colony community of Christian Socialists, have a large and prosperous membership.

Chartic's and Pcinal Institutions.- The State charitable institutions are managed by a board of control appointed ly the governor with the consent of the senate. There are four irsane retreats: at Clarinda, MIt. Pleasant, Inderendence, and Cherokee: besides four private asylums; a school for the deaf at Council Bluffs: a school for the blind at Xinton: an institution for feelle-minded children at Glenwood: a soldiers' home at Marshallown; and a home for soldiers' orphans at Davenzort. There are State penitentiaries at Anamosa and Fort Madison, both have adopted the graded syster. • an industrial school for boys at Eldora, and one for girls at Mitchellville. L. S. Coffir has established a home for ex-convicts on his farm near Fort Dodge.

State. Goternment.- The constitution was adopted in 1857. By law, the electors must rote once in io years on calling a convention to revise the constitution, which consention the legislature must call if so roted. All amendments must receive a majority vote of both houses at two successive legislatures, and then be passed by popular vote. The Senate has 50 four-year members, the House 100 two-year; legislative sessions are biennial. Bills must have a maiority of all members elected to both houses - not merely present. A two-thirds vote overcomes the governor's reto. Executive officials are clected for two years - half in one year and half in the alternates. with the exception of the railway commissioners, who are elected for three; the railroad conmission has power to regulate rates, ctc. The judiciary consists of a supreme court, with a chief justice who is such ly, reason of priority of clection, and five associate judges, one chosen every year: also 53 district judges in 20 districts, eacly sorving four years: Women may yote only en school questions involving the expenditure of mones: All incorporated towns of 2mos people and over are ranked as cities; all platied but unine orperated towns are villages. In rgoz there was a militia of 2.4 - 4 officers and enlisted men. The ummber of reprecentatives to Congress is II. 1 n politics the State has heen Renulbicarn since the organization of the party, excent in the years 18 ro-4. When the adrocacy of prolibition dirnve it into retirement. The probibitory amendment adonted in 1882 was pronnunced unconstitutional by the supreme court of the State, and was succceded by prohilitory laws which after several years' trial were in turn succeeded by a local option law. imder which 54 of the an counties were reported in 1003 as wholly free from saloons.

Finalles - The State has no debt excent one of $\$ 10.036$ to its own school fund, whicla debt by provision of the constitution is a permanent

IOWA CENTRAL RAILWAY COMPANY

one. It had a baiance in the treasury I Jan. 1903. of S926.910.05. Local taxation is limited io I per cent of raluation for current expenses, but this may be exceeded for waterwork: sewers. schools, etc. The State as a rhole cannot incur a debs greater than $\$ 250,000$ except i. - war purposes. and cannot loan its credit to any person or associarion: counties and towns cannct run in debt to orer $\begin{aligned} & \text { per cent oi their }\end{aligned}$ ac:ual raluation. The arerage income is about §3,000.000 a rear.

Portiurich and Dirisions.- Iowa ranks tenth among the States in population. The population was 43.112 in 1840; (I850), 192.214; (IS60), 674.913: (IS,0), T,194.020; (ISS0), 1.621.615: (1890), 1.911,806; (1900), 2.231.853. The criginal population was part of the great Free-State movement which peopled the central Staies except Indiana. Oi the entire population (1900). $305,9=0$ were joreign-born. Of these I23.tós mere from Germany: 72,611 irom Scandinavia, or nearly two thirds from the Teutonic nations: besides several thousands irom German Austria and Switzerland. From England and English Canada nerc 35.195 , French Canadians 14.168, Ireland 28.321, Holland 9.38S. Colored, I2.603. There were $\delta_{1} \varepsilon_{45}$ more males than iemales. There are no great centres of population. The capital, Des Moines, on the rirer of the name, is the largest, with 62.139. On the same river to the north is Fort Dodge. an old irontier fort and settlement (12,162), and below it Ottumma (I8.197) and Keokuk (Iq.641). The Nississippi River business is chiefly represented, from north to south. by Dubuque (36.297- the first sented site in the State), Clinton (22.698). Davenport (35.254), Miuscaine ($4.0-3$), Burlington (23.201). Forr Madisor $9.2-s)$, and Keokuk, the "Gate Cits") at the mouth of the Des Noines. Sioux City (33.1II). in the extreme west near the mouth of the Big Sioux, and Council Blutis (25.802), opposite Omaha, the old terminus of the Union Pacinc, represent the Missouri River: Cedar Rapils (25.656) and Whaterloo (12.580), the valiey of the Cedar River: and Marshallown (II. 54), the vailey of the Iowa River.

Histiry:- The territory now included in Iowa was originally inhabired by the Ioway and Illin is tribes of Indians. which were driven cut is the Sacs and Foxes. In 1 -61 the 'Iow y ') or Iswa tribes were on the east side ci ihe XIissouri River and near the headwaters ci tie Des M ines: but in iROs they were cormping and rot the south side of the Des If: ines River. later they leit the vicinity of the Des. It ines. Erme g fing to the reservation i the Foxes and Sacs (now Ollahona), others to a reservation in Kansas. The nissionary, Fathe: Marquette, and Inliet. the fur trader. were the first whice mrn known to have traveicd in this section. In $10,-3$ they risited the tribes ci Intians along the ITississipni River, and first lanld on Iowa scil near the mouth of the -iver now known :y the name Inwa. In I-NQ a par:y of 10 white men momer Inien Du1, ante ental ished the irst white set:lement at the ρ ce now occupied by the city of Dubuque. They were attret I to if is incality because of the !ead lerosits in the vicinity. They opened m'n - but how :uccessiul they were may be coniectured from the fact that atter the duath of DIf unve. in 18io, his associates ahandoned the strlement. All that portion of country drained
by the Mississippi wras claimed by France becanse of the explorations made by Narquette and some of his companions. and becanse of settlements made by other Frenchmen. France s claim to this territory was ceded by treaty to Spain in 1,63 , but the country was returned to France in I800-I. In ISO3 all the territory now known as the "Louisiana Purchase" (q.v.) was bought of France by the United States government. The territory now the State of Iowa was part of the Territories of Louisiana in 18os: of Missouri in ISI2; of Jichigan in I834: of Wisconsin in 1836. Iowa became an independent territory in 1838 , and was admitted as a State in 1846. The Indian claims to lands within the boundaries of the State were purchased by the United States government before its admission as a State. The last purchase was made in 1843. Remnants of the Sacs and Foxes occupy a reservation. 419 acres, in Tama County, and still receive annuities from the government. In 1832 a settlement was made at Fort Madisor, an abandoned goternment post, and soon after Surlington was founded, and in 1830 a settlement was again made at Dubuque. In 1857 the Indians attacked the settlers living near the Okoboji lakes and Spirir lake in Dickinson Countr, and about 30 whites were killed and nearly all the houses burned. This action on the part of the Indians retarded for some rears the growth of that section of the State. Iowa City was first selected for the Territorial capital (it became the State capital in 1846), but in 1857 the capital was changed to Des Moines. Iowa had in the Federal army during the Civil War 75.839 men, which was about one tenth of her population. Some of this number were in regimeats belonging to other States. Consult: Aldrich, (Annals of Iowa): State Hisiorical Society publications; Shambaugh. 'Documentary IIaterial Relating to the History of Iowa) Monette, 'History and Discovery of the Mississippi Valley": Iowa Geological Surrey publications: Shambaugl), 'History of the Constitutions oi Ioma) and (Jessages and Proclamations of the Governors of Iowa'; Gue, "History of Iowa.' Johsson Brigham,

Librarian, Iou'u State Library.

Iowa Central Railway Company.-Histors. - The Eldora Railroad and Coal Company was orgarized in 1866 to build a railroad irvin Eldora nerthward to a jumction with the Dubuque and Sionx Ciry Railroad at Ackley. lowa, a distance of aboint if miles. and to engage in the business of mining and selling coal. The contpany receised ahout 1.200 acres oi coal lands Iabout 000 actes ihereof in iee simple and the rest hy or mod lease) as a co:"itcration for completing the work within a snecifed time. The r-ud uas opened in July. 1868. It was then ducided to exien 1 the line 29 miles southward to a jemeti n with the Chicazo and Sorth-we-tern Railway ot \|orcha"town. 1 nwa. This nece-sit:ted a reargenizationt of the enmpany. Which was effected in Angust. IRGe. In the re ra apation, the coal irteresta were intmed nser to the Fithra Coal Nimine Compary and the ralload pronerty to the Iowa River Railway C.mpany: The capital stock oi the latier was limited in $\$ 30.000$ per mile and the first mnetmare honds were issued at the rate of $\$ 16.000$ per mile. abour $\$ \$ 00.000$ of them being
used to retire an issue of bonds of the Eldora Railroad and Coal Company. The extension to Marshalltown was completed in December. 1860, the line being formally opened from Ackley to Narshaltown on 7 Jan. 1870. At about the same time the Saint Louis and Sain [anl Railway Company was organized under the auspices of the lowa River Railway Company, to build a railroad from Ackley to the Mimesota State Line, and an independent corporation, the lowa Central Railroad Company, was organized to build a north and south line, starting from the Missomri State Line at a point hear the boundary of Appanoosa and Davis Comntics and ruming northerly and northeasterly through Albia, Eddyville, Oskaloosa, Grimnell. Toledo and Cedar Falls to the Minnesota State Linc. In 1870, the lowa River Railway Company, the Saint Lonis and Saint Paul Railway Company and the lowa Central Railroad Company were consolidated under the name of Central Railroad Company of lowa. The Iowa River Railway Company had in operation at the time 45.92 miles of railr ad which was turned over to the consolidated company under an even exclange of $\$ 30,000$ in stock and $\$ 15.000$ in first mortgage bonds per mile. The entire issue of bonds of the Iowa River Railway Company was retired and the mortgage cancelled. A contract was made with the Iowa Valley Construction Company to complete and equip the road from Marshalltown to the Missouri State Line and from Acklev to the Minnesota State Line in consideration of receiving $\$ 30,000$ per mile in stock and $\$ 16,000$ per mile in first mortgage bonds, together with iocal aid guaranteed at $\$ 2.500$ per mile. The entire line from Albia to Mason City, lowa, a length of 178.12 milcs, was completed and opened for traffic on 7 Feb. 1871 . On 15 June 1871, the company made final settlement with the construction company for the 132.8 miles of new road, and was released from any obligation to build the rest of the projected line. The extension from Mason City to Northwood, 20.73 nuiles, was conunenced on 1 Aug. 1871, and completed on to Oct. I87t. The total length of line in operation on t Jan. I872, was 202.II miles, the cost of the roid being represented by $\$ 4,64,630$ of capital stock, $\$ 3,700,000$ of the first mortgage londs and $\$ 609.000$ of second mnrtgage bonds. Default having been made in payment of scoond mortgage interest due 15 April 187.3. and of first mortgage interest due 15 July $18 \% 3$, the property was placed in the hands of a receiver. The company was reorganized on + June $\mathbf{1 8 7 0}$, under the Central Towa Railway Company and took over the property after foreelosure sale on is Jume IR 7 o.

In 1880 - 1882 the company constructed the following lines: Montezuma branch, 13.6 r miles: State Centre hranch, 2564 miles: Story lranch. 34.5 miles: Belmond branch, 22.20 miles; Kecthuburg branch (Oskalnoca to west bank of Mississippi River), 07.16 miles, and Newton brancho 27.25 miles. The Peoria and Farmington Railroad, extending from lowa Junction. Ill. to the east lank of the Miscissimi River. a distance of 89.65 miles, was purchased in May, 1883. the company at the same time cecurine the right to rum its trains into Peoria, Ill.. over the tracks of the Peoria and Pekin Cnion Railway. First mortgage bonds to the amount of
$\$ 1.531 .000$ were issued on the Keithshurg and Newton branches, and to the amonnt of $\$ \mathrm{r}, 200$, ooo on the Montezuma, State Centre, Story and Belmond branches, both issues being dated I April 1882, and payable 30 years thereafter, with interest at the rate of 7 per cent. per amum, payable semi-annually: Also, \$1.517.000 6 per cent. 45 year bonls dated a Junc 18 \% 0, secured by first murtgage on the Illinois division, were assumed from the Peoria and Farmingtun Railroad Company. Default was made in paymmot of interest due I Oct. 188 \&. and was followed by defanlts under the main line and Ilimois mortgages. A recciver was appointed I Dec. 1886. In pursuance of a plan of reorganization the road was sold under foreclosure of the several divisional mortgages, the sales taking place in September and Novenber, 1887, and in Narch, i888. The present company was organized ly the purchasers taking over the property on 15 May t 889 .

Lase of Iowa Central and IHestern Rail-acav:- The company leases for 50 years from I July tnor, with rights of purchase at any time during the continuance of the lease, the Iowa Central and Western Railway, from Belmond to Algona, la., a distance of 37 miles, upon condition that it shall maintain the property, paying, in addition to all taxes lawfully assessed, 20 per cent. of all gross earnings accruing from the operation of the property. The earnings are to be applied to the payment of interest and principal upon the honds of the Iowa Central and Western Rallway Company as the same may become due and payable, and the Iowa Central Railway Company guarantees to make good any deficiency that may arise.

Traffic Agrecment with Chicago, Burlington and Quincy Railroad Company.-Under an agreement effective i6 Jan. 1905, this company's freight business between Oskalonsa and Des Noines, Ia., is handled by the Chicago, Burlington and Quines Railroad Company at an agreed rate per loaded car.
F. 11. Davis.
lice-President.
Iowa City, Iowa, city and county-scat of Johnson County: on the lowa River, and the Burlington, C. R. \& N., and the Chicago, R. I. \& P. R.R.'s: 54 miles west of Davenport. The city is pleasantly buift on a succession of plateaus, rising one above another from the river banks, which are here high. The lirst plateau is laid out as a public promenade, and the third, which is about 30 feet higher than the first, is erowned by a handsome Doric edifice 120 feet long and 60 feet wick, of a beautifully marked stone quarried in the ricinity called "bird's-ese marble." This huilding was origimally intended for the State capitol, lout, on the removal of the seat of government to Des Moines, was appropriated to the State L'niversity. From 1830 to 1854 , this was the seat of the Territorial and State enveruments. It is the seat of the State [niversity of lowa the lowa State Academve the State 1 Iistoriral Society and Library, the Homeonpathic. Allopathic, and Merey hospitals. It is the farming trade centre for Tohnonn, Cedar. and Iowa conntices, with an amninal trade exceeding $\$$ r.000.000: has excellent power provided by the lowa River: and has

IOWA COLLEGE - IPHICRATES

manuiactories of flour, iron, wocien goods. perfurnery, gloves jewelry, fencing, and linseed oil. The city has eiectric light and street railroad plants, waterworks on the Holiy system. numet us churches. and an assessed property val:"ain of abou: $\$ 5: 50,000$. Besides its mamuEacturing inicrests the city bas an extensive stock-rasing and meat-paching :ndustry. Pop. (1890) 7.016: (1900) 7,98:-

Iowa College, a coeducationa: institution founded in ISt; at Grimnell, Ia.: under the auspices of the Congregaticnal Church. In rgot it had 33 professors and instructors. fir students, 2,,000 volumes in the liban: prodwetive furds. st,o,oco; grounds and btildings ralued at $\Sigma_{150,000}$; and an income of $\$+9,000$.

Iowa River, a considerable stream in the State of Lowa rising in Hancock County, near :he Minnesota Sate line and flowing southeast into the Mississippi River, noth of Burlington. It is 300 miles in length, and is navigable to Iowa City, So miles irom its mouth.

Iowa State College of Agriculture and Mechanic Arts, a coeducational institution For technical education at Ames, Iowa. It received a grant of land irom Congress under the law of IS62, and was first opened in ISS8. Regtiar courses are offered in agricultere, mechanical enginee:ing. civil eng:neering, electrical engineering. mining engineering. technology. science as relaied to industry, and seneral and C)mestic science; special shorter courses are given in the fall and winter in darying. agricuiture and mechanics, horticutwre and mechanics, and domestic science. The State AlzFicultural Experment Siation is als allied with the crilege. The annual income in 1002, in-
 there were 1.220 studenss in attendance, and S_{4} pruissors and instructes.

Iowa, State University of, an educational instution furm:- - on inteyral part of the pubIic schol system if the Siate, Eituated at Iowa Cry. It was firs upened in :-7. receiving conir 1 c $\overline{\text { I }}$ lands siven by the Federa! goverament. Eec Coule es. Land Gant.) The universisy is centrull d by a board of regents oi 2 ex x का mei er: a:ld II elective members. Its Is fis is Hr-clred in the ifll wing departments: \therefore c.ile- : ! eral ant lineluding the sumr.erses. ...inch fiers c iris leading to the A-rece : A..... BS. and Pin.B.: tire graduaze -... 1 wa sth 1 mi p intical aju a cial x - th un fergminate and sreduate - ase law : the coli.ege of mecti-
 d :i str. The \because : rary. when -ma as y nire in is, now cen-- Lei an ica: ns: Natural lis\because Bथ! : MO Transi, an engineering
 t: 11Mme ab Yruical C il eqe' : The Uni-

 § ert-wh t.:t-; t t nurn e: © professurs and : miet in, inf.

Iowa Wesleyan University, a coeducational instivution iounded in IS $: 1$ at Mount Pleasant, Iowa: under the auspices of the Methodist Episccpal. Church. In Igol it had 20 professors and insiructors, and 3 So students. There are 5.coo volumes in the librang. It has productive funds. E- 5.000 ; grourds and buildings valued at $\S r=0.000$; benefactions, $\$ 32,000$; and an income of §if:000.

I'owas, a tribe of American Indians of the Algcnquin family. In ISOO the Iowas lived in Minnescta and soon after moved southward. They were called Palinchas, or "Dusty Noses," in their own tongte. Lewis and Clark, the explocers. designate them as the Ayanways. and the eariy French traders called them the Ajowes. Ia 1835 they moved to the Woli River region west of the Mississippi, and in IS6I ceded I6,000 acres or and to the United S:ates. The zemnants of the stibe some 1.000 in number, at fresent live on zeservations in Oklahoma and Kansos. See also Implans. Averican; Iowa

Ip ecac, or Ipecacuanha, a South American plant of the order Rubiurea varously calied by botanists Ceblacits jpecacunhta and Psythotris fecouthnin. The plant, which is found mainty in moist shady forests in Brazil, is a creeping herb or sub-shrub with mostly bare stems. only the extremities procucing leaves. The smill white blessoms, which are borne in heads with long stak": s, are followed by dark purple berries. The rather fleshy more or less divided zoots were in medicinal repute among the South American Indians, and gradually found their Wey into Europan medicine under the name "ipecacuanha. They have been considered emetic. zauseant. diaploretic and expectorant, and in :arge doses are reputed poisonous. They appear in commerce in various grades (stay.. brown and sed. Which are dependent mainly upon the seascn at which they are gathered, the way they are dried, the age of the piants. etc. The chief supples are colleced daring January: February and March bst the Indians. Owing to the slow grow:h of the plant and the low price the ro $=$ command. ipecac is not cultivated ecmmercially: : has, however, been successiully grown in various parts of the world. The roots of several ciher plants are substituted for thinse of true ipecac. amsong the best known beinz those oi Tyfortira cistimestio and Sarcusterna shucum \enezuelan ipecac). beth ci the natural order Is iluadzaia, Other species of Psywisuris and ce-tain species of Riciondsunis are similarly bus uncticially empl yed.

Wric or American !pecac (G:Limio stifuCuct) of the rese family is a commen plant in the southeastern Louted States and as for norh as western Xew lit. It is a perennial herb ah out ihree feet tall, beario \& paiculate corymbs if white c: rale suse coltred :l wers. Is is Cardy, ni sim les: conture and being gracetul is trel:-ntiy nt-mitu i : crmment in flower borders where the sit is if g od quality.

Iphicrates, i-mik'ra-iēz, Athenan commander: b. .nd d. in the 4 h century z.c. Of in. 'e crisin, he raised hims'it emineze by lisc crage and sa'ents. In the war ci Corinsh (3)3-2 B.C.) he op? sed with success Agesilaus. the wa-tike kin- i Sparta. He was sent :o the Hellepont to act against Araxibius. but in spite of his victory was unabie to prevent the
conclusion of the shameful leace of Antalcidas (35% 上.c.). In 369 B.C. he was appointed to the command of the troops sent by the Athenians to the assistance of Sparta, on the invasion of Epammondas, but allowed the Theban general to retreat from the Peloponnesus. In the Social War $(357-5)$ he was one of the commanders of the fleet fitted out by the Athenians for the recovery of Byzantium. Being accused of treachery and neglect of duty in the battle at the Ilellespont, by one of his colleagues, Chares, and put on trial, be was acquitted, while his colleague Timothens was fined ion talents; but though lie lived to a great age, did not atgain engage in active service. Iphicrates was the anthor of some improvements in Greek arms and accoutrements. Ile was accustomed always to fortify his camp in the ficld even in a friendly commry; "Because," he said, "if, contraty to probability, I should be attacked, I may not be obliged to make the disgraceful excuse that I did not expect it."

Iphigenia, Îf-ĭ-jē-nía, in Greck legend, a daughter of Agamemnon and Clytemnestra (according to some ans illegitimate danghter of Theseus and Helen), who was to have been sacrificed to Artemis (Diana) at the advice of the prophet Calchas, when the goddess, enraged with Agamemnon, detained the Greek flect in Anlis by a calm. Under pretense that she was to be married to Achilles, lphigenia was led to the altar. But in the moment when the priest was about to give the death-blow lphigenia disappeared, and in her stead a beatiful hind was suthstituted, whose blood gushed out on the altar. Artemis had relented, and conveyed her in a cloud to Tauris, where she became the priestess of the goddess. Conformably with the law of the comntry, she was obliged to sacrifice every Greek that landed therc. While scrving as briestess her brother Orestes came to take away the inage of Artemis, as he had been advised by an oracle to do, that he might get rid of the madness to which he had been subject since the murder of his mother. Iphigenia having recognized him as her brother, the two contrived a means of escape, and carried off with then the image. The story of Iphigenia was dramatized by Euripides (who composed two plays upon the subiect - 'Iphigenia in Autis' and (Tphigenia in T'auris'), and Goethe, and it is also the subject of two operas by Gluck, 'Iphigenic en Anlide' (I7T4) ; and 'Iphigénie en Tauride) (I779).

Ipomæa, ip-ō-méa, a gentis of plants, including several handred specios, of the order Concolzulacca, consisting mostly of twining prostrate herbs, widely distributed in warm regions. The species of most importance is I. Purga, which yields the jalap of commerce. Some are cultivated for the beatsy of their flowers, and are known to gardeners as ennvolvuli. I. purpurea is the best known garden species. Sce Jalap.

Ips'wich, Mass., town in Essex County, on the Ipswich River near its month, and on the Boston \& Maine railroad, 27 miles northeast of Boston, and 9 miles sowh of Newburyport. As Agawam, it was settlerl in 16,33 by John Winthrop and 12 others. The manse was changed to Ipswich (after Ipswich, England), in the following year, by resolution of the llascachansetts tieneral Court. As early as 1634 it had a meet-ing-house. while in 16iz the first free school
in the town was established. Ipswich was among the foremost towns of Massachensetts in resisting the arbitrary taxation introduced under Gor. Andros in 1687 , and a number of its citizens suffered punishment in consequence of this action, which foreshadowed the stand to be taken later, by this town and the colonies grencrally, against similar policies on the part of the British government. Among the distinguished persens who at some time lived at Ipswich were Anne Bradstrect. Nicholas Easton, William Hubbard, John Norton, and others. The town has various industrics, among the articles manufactured being grist-mill products, hosicry and rmederwear, bricks, lumber and boxes, carringes cabinct-work, soap, isinglass, heels, ete. The Xlanning Tligh school, the Ipswich 1 listorical Socicty, and the excellent public library give the 10 wn rank and influence in educational and literary affairs. Pop. (1900) 4,658.

Iquique, è-kékā, Chilc, a seaport in the province of Tarapacá, till quite recently merely a small fishing village, but now a town of about 34,000 inhalitants. It owes its prosperity to the export of nitrate of soda and borax, the former of which especially is found in great quantities in the pampa of Tamarugal. The annual export of nitrate amomets to about 350,000 tons, and that of borax to ahout 1,500 tons. lodine is also exported. The pampa of Tamarugal still contains, it is estimated, abont $60,000,000$ tons of soda niter. In 1808, and again in 1877, the town was almost entirely destroyed by an earthquake. In 1879 it was bombarded and captured by Chile from Peru; and in 1891 it was much damaged by insurgents.

Iquitos, $\bar{e}-k{ }^{-1} t o ̄ s$, a native tribe in Pern, residing at Loreto, on the left bank of the Maranon, about 75 miles above the mouth of the Rio Napo. The settlement has an active trade, valued at $\$ 2,000,000$ annually; the imports are exchanged mostly for india rubber. In 1900 they numbered about 12,000 .

Irade, $\mathfrak{I}-1 \mathrm{a}^{\prime} \mathrm{dč}$, a Turkish decree or command of the Sultan, directed to his grand vizier, whose duty it is to anmomee it to the public.

Iran, \bar{e}-rän', the name given by the ancient Persians to their native land, in opposition to Amiran (that is, Not lran), the land of the barbarians, by wheh term were meant principally the 'lureo lartaric tribes bordering on the north. The l'ersian rulers of the dynasty of the Sassanide call themselves, in inseriptions on monmments and elscwhere, kings of Iran and Aniran. At the present day the name is nsed in contradistinction to Turath, the name applied to the more depressed regions of Asia inlabited by the Tureo-lartaric tribes, $t o$ designate the great table-land of Asia. which has a mean elevation of from 3.500 to 4,000 feet. The central portion of this table-land consists of an extensive salt-desert.

Iranian (ī-rā'ul̆-ạn) Languages, a family of the indo-fenropeatn languages, closely allied to the Indian group, and called by some phitologists Persian, from the best known member of the fanily. The two oldest known Iramian langunges are the Old Persian and Zend. The forner - llat of the cunciform inseriptions of the Achacmenian dynasty, and the language of the Persians proper - has only become known

IRAWADI - IRELAND

in its chief traits at a comparatively recent date through the deciphering of those inscriptions. The Zend is the language in which the Zendavesta, the sacred writings of the Parsees, are composed. By the term Widdle Iranian languages the Huzvaresh or Pehlevi and the Parsi principally are understoad, which are preserved ir the commentaries to the Zend-avesta. The latter approaches to the modern Persian. The dialect of the Pehleri coins, as well as the inscriptions of the time of the Sassanian dynasty, also belong to this section. The most important of the New Iranian languages is the Fersian. The Afglian, or Pashtu, and the dialects of the Kurds, form separate branches of the Iranian family: The isolated Ossetes of the Caucasus also speak an Iranian language. The Armenian is a branch of the same stock, and contains many peculiar elements.

Irawadi, ǐr-a-wăd'i. or Irrawady, one of the great rivers of Southern Asia, traversing Burma in a southerly course. One branch of it rises near the eastern extremity of Assam, another branch rises in East Tibet, the two branches uniting about lat. 26°. It has generally a south course, being deflected west, and its iotal length has been estimated at 1,200 miles. There are three rocky defiles in which its chanrel is suddenly contracted, the lowest near Mandalay: but from that point downward to its delta it has generally a breadth of from 1 to f miles. About 1 to miles from the Indian Ocean, which it enters by numerous mouths, the delta commences. The current of the Irawadi is commonly gentle - even in its upper part being ne more than at the rate of two miles an hour; except during the inundations, when it flows so rapidly that no sailing vessels could navigate it but for the assistance of the southwest monsoon. It is narigable from the sea upward for steamers of five feet draft to the Chinese frontier, goo miles from the sea.

Iredell, irtdĕl. James, American jurist: b. Lewes, Sussex, England, 5 Oct. I万51; d. Edenton. N. C., 20 Oct. i\%99. He was appointed comptroller of customs at Port Roanoke, now Edenton, where he arrived in 1,68 , retained this office several years, and meanwhile studied law. He was appointed by the attorney-general his deputy in 17\%t, and in 1775 was placed by the legislature on the bench of the supreme court, then just organized under the State constilution. In 1-87 he was designated by the general assembly sole commissioner to collect and revise the acts of previous assemblies, which were to be considered in furce in Nortli Carolina. This enllection of the laws, now referred to as "Iredell"¢ Revical." was publislied in 179t. In Fehruary 1,00 he became one of the justices of the Supreme Court of the United States. and held that office till his death. 'The 'life and Correspondence of Iredell was published in 185

Iredell, James, American lawyer, son of the preceling: b. Edenton. N゙. C., 2 Nov, 1 -88: d. Raleich, N. C., 13 April ISj3. He was graduated at Princetnan in 1806 and was bred to the bar. He served for 10 years in the house of enmmons of his native State, and twice as speaker in a louse of which the majority were politically grpued to him. In 1827 he was gove ernor of Sorth Carolina, and from 1828 to 1831
a member of the Senate of the Enited States. He aiterward resumed the practice of his profession at Raleigh. where he was also for many years reporter of the decisions of the supreme court of North Carolina. In 1833 he was appointed by Gov. Swain one of three commissioners to collect and revise all the statutes in force in North Carolina. The result was the work known as the 'Revised Statutes.' He afterward puhlished a "Treatise on the Law of Executors and Administrators?

Ireland, ir'latid, Alleyne, American author and lecturer: b. Manchester, England, Ig Jan. 1871. He was cducated at the University of Berlin, traveled widely, lectured on tropical colonization at Cornell University in I899, and in 1900 was appointed lecturer in politics at the University of Chicago, where his subjects were tropical colonization and Chinese foreign relations. Besides contributions to periodicals, he has written: 'Georgetown, Demerara' (1897): 'Tropical Colonization' (i899): 'The AngloBoer Conflict' (rgoo) ; 'China and the Powers' (Igoi).

Ireland, John, American Roman Catholic prelate: b. Burnchurch, County Kilkenny, Ireland, in Sept. I838. He came to America in 1849 and attended the Cathedral school at Saint Paul, Minn., and in 1853 went to France and studied theology in the seminary of Meximieux and subsequently in that of Hyeres, remaining there till 1861, when he returned to Saint Paul and was ordained priest on the 21st of December. During the early part of the Civil War Father Ireland tendered his services as chaplain of the sth Ninnesota regiment and later became rector of the cathedral, Saint Paul. An ardent advocate of temperance, he devoted much time and energy to promoting the cause, organized temperance societies and traveled about the country lecturing on the subject. For a time he was secretary to Bishop Grace of Saint Paul. whom he represented at the Vatican Council, Rome. 1870-71. and later became his coadjutor. being consecrated Titular Bishop of Maronea, 21 Dec. I875. He was likewise rery diligent in adrancing Roman Catholic colonization in the northwest and not only founded colonies but became a director in the National Colonization Association. Later, in ISS-. Bishop Ireland accompanied Bishop Keane to Rome to consult with Pope Leo XIII. upon the necessity of erecting a Catholic university in Washington, D. C. and on returning from Europe in 1888, he was made first archbishop of Saint Paul. He is a distinguished lecturer and pulpit orator, a contributor to the leading magazines, and a member of the American Federation of Labor. At present (1005) his diocese includes abont 230.000 Catholic: : 258 priests: 252 churches; itheological seminary ; 90 parochial schools; 3 orplanages: 3 hospitals, and various other religious and educational institutions.

Ireland, Mary E. Haines, American translator and author: b. Calvert, Cccil County, Md.. 9 Jan. 1834. In addition to serials and numerous other contributions to the periodical press, she wrote ' 1 lhat I Told Dorcas' (1895). and 'Grandma Elliot's Farmhouse' (1900).

Ircland, William Henry, English literary forger: b. probably London $1757: \mathrm{d}$. there 17 April i835. He imposed spurious Shakespearian

JOHN IRELAND,
ARCHBISIIOP OF ST. P.IUL.

IRELAND

MSS. upon his father. Samuel Ircland, a bookseller and engineer, who was a Shakespeare cnthusiast, and also upon other men of letters, and produced two "Shaksperian" plays, "Vortigern' and ' 1 lenry 11 .,' the former of which was purchased by Sheridan and acted at Drury Lane, but was a complete failure. The criticisms of Malone led to the exposure of the fraud, which was acknowledged by Ireland in 1796. He wrote various novels, poems, etc., besides his 'Confessions' (I8O5), containing an account of his forgeries.

Ireland, the most westerly and smaller of the two principal islands of which the United Kingdom of Great Britain and Ireland is composed, exiends from lat. $51^{\circ} 26^{\prime}$ to $55^{\circ} 21^{\prime} \mathrm{N}$.; its average width is about one fourth its length; area, 32,583 square miles. It is separated from England by Saint George's Channel and the lrish Sca, and from Scotland by a narrow passage, the North Chamel. Ireland is on the continental shelf, or sub-marine plain, which borders the continental land mass of Europe, hence it is physically a part of Europe.

Topography--The coast line is irregular : fron Dundalk Bay to Wexford Harbor on the east there are less indentations than on any other part of the coast; Dublin Bay, an arm of the 1rish Sea, is the only indentation of any size on this part of the island. Galway, Sligo and Donegal Bays are the largest on the western coast. The Atlantic currents, which beat against the western coast, have worn away the land in many places, thus causing fiords such as exist on the coasts of other countries subject to similar wave-action. Some of the many islands which fringe the coast have been formed by the washing away or the submergence of the land. The capes, promontories, and peninsulas have been formed largely by submergence. Some of the islands, all small, are Aran, Achill, Clare, and Rathlin. The chief ports are Cork, Dublin, Belfast, Waterford, and Londonderry. There are 14 harbors which will accommodate the largest ocean steamers.

The highlands are chiefly along the coast; the greater part of the interior is a plain. The mountains, more rounded hills than mountains, are short ranges with łittle or no connection except the several ranges in the southwest. Some of the mountains are Mourne, in County Down, the Wicklow Mountains, Knockmealdown and Galty in the south; Caha, Stack and other ranges in Kerry: Slieve Boughta in Galway, a number of short ranges in the countics of Mayo, Leitrim, Donegal, and Londonderry, and the Slieve Bloom between Qucens and Kings counties. The majority of the peaks are less than 3,000 fect in heizht ; Carrantuohill (Carrantual), in Kerry, near the Lakes of Killarney, is 3,40.4 feet. and Galty Mlountains, in Limerick, are 3,ory fect. The plain in the interior is about 500 feet above sea-level.

Hydrography.- The rivers of Ireland, like those of England and Scotland, are small streams. The Shamon, the largest river in the British Isles, has its rise in the northeastern part of the province of Connaught, flows east, south, and west, forming quite a curve before cntering the Attantic Ocean, between the countics of Kerry and Clare. It passes through several lakes, the largest of which are Rce, Allen, and Derg. The estuary at the mouth is about jo
miles long; the whole length of the river is about 250 milcs, 130 of which are navigable for large steancrs. lis importance for transyortation has been increased by the canals Royal and (irand, which connect it with Dublin. In the southwest, in County Rerry, is a sloort mountain stream called Roughly River, with a long, broad estuary called Remmare River. The Liffey, which flows into the lrish Sea at Dublin, the Lce which flows into Cork Harbor, the Boyne with its tributary, the Blackwater, are all short streams which have been made fanous in history and literature. The Foyle, Erne, Lagan, Moy, Slaney, and athers reach the ocean through broad estuaries or bays. Lough Neagh in the northwest is the largest lake of the British 1sles. A number of the lakes of Ireland occur along the river courses, but are really basins, and not merely uxpansions of the rivers. Lakes Corrib, Comn, Foyle, Belfast, Strangford. Carlingford, and others on the coast are estnarics or fiords, but the land-locked mouths entitle them to be called lakes, like Naracaibo in South America. The famons Lakes of Killarney are in County Kerry, in the southwestern part of the island. There is scarcely a place in 1reland that is more than 25 miles distance from water communication with the ocean.

Geology.-A limestone stratum belonging to the basal portion of the Carboniferous system underlies a large part of the interior plain. The upper Carboniferous rock has been destroyed by erosion except in a few places. Silurian rock underlies nearly all of the northern part, but the Cretaceous, Triassic, and Permian formations exist and appear at the surface in several places: Some of the eliffs of the north are of basaltic formation. The Giant's Causeway (q.v.) on the north coast of Antrim is basaltic. Its 40,000 or more, perfectly formed polygonal columns constitute remarkable specimens of this formation. Crystalline rocks form the axis of the mountains of the province of Connaught, and the highlands of Leinster. Old red sandstone and carboniferous limestone are found in the southwestern counties. Marble exists in large quantities in the county of Kilkenny and in parts of the adjacent counties coal of an anthracite variety is fonnd, but not in large quantitics: iron-ore exists in nearly every county: Copper of an excellent quality is in the western mountains, also gold and silver in small quantities.

Soil.-The erosion of the limestone rock which has been going on for ages has contributed largely to the fertility of the soil of 1reland. The igneous rocks, the fed marls, and other mineral formations, have added to the richness of the soil, and all has been distributed, by the gradual remowal of the ice-covering, over a large area of the plain. After deducting the area, about one fifth of the whole, which is covered by bog, mountain, and moorland, there is left a vast extent of arable surface covered with a decp friable loam of remarkable richness. In addition to the decomposed trap and the calcareous matter derived from the limestone, there is a large amount of vegetable mold which forms one of the most important ingredients of the soil. The bogs, useless for tillage, furnish peat for fuel. The log of Allen is the largest one in Ireland.

Climate- The warm moist winds from the Atlantic blowing over Ireland affect its climate more than any other cause except its latitude.

IRELAND

The mesn :emperature is from 20° to $30^{\circ} \mathrm{F}$. hugher than other fiaces in the same lativude on the eaztern coast oi fimerica or the interior of Europe, and a iew degrees higher than places in the same latioude on the wesi coasi of America. The summer iemperature is modined by the suis rounding waters, being lower by a few degrees than inland places of the same latiude. The moisture brought by the winds from the cean causes a heary annual rainiall, and much iog. misi, and general dampness. The low T. untams serve to some extent as condensmg agents, so that the greatest rainfall is near the coasio The average rainiall on the west and south coasts was, in 18,9, 43.56 inches: in 1896, 30.30. The averages fo the interior were in IS-9. 34.39 inches: in IEgó. $3 \div 0$, inches.

Tisefation.- The cimate and scil are very favorabie for vegetation. Its muld temperamure and bumid atmesphere enable several delicate planis, which usually in the same latitude can be cuitivated only in sheliered gardeas, to fourish heed with rigor in the open air; and freguently forest trees continue to retain their foliage aftes similar trees bave lost their leaves in the warmes: parts of England. The conditions would naturally indicate forests, and it seems that in early times. large tracis of magnificent timber were spread orer its suriace: but the grussest waste and mismanagement have prevailed. irees have almost diappeared except irom the parks of the weakhy land-owners, or the 'gentry ; and what ought to be among the besi is abaut the west wooded country in the micdie latitudes of Europe More attention is :-cw being given to the subject of furestr: in Ij01 there were 309.741 acres in lrelat.d under forest, a porion of which was a new growth Duang the year. 1.-70 acres were planted with trees. mostly nir. spruce. and laich. Grass grows luxurianty in nearly ail parts of the isiand.
 I. \quad if birds and small ridemts. Animals ace i $\cdot: . d$ here and mentitned in the ancient iatera:ure, as the dee.. bear, wildcat, weit, beaver, cante pecui:ar :o the is.and, and cerain tirces (inclưtre the geref m^{\prime}). have all di-appeared. If re are ro srakes ne: :-ads in Ireland. Fish atc r'cotitul in the streame and n the c asts

FAshoras.- The salmus nishertes ase very va: \cdots. c. and are increasins in va'ue every year.
 manoremed wing to the impreved means of 8 … -ctatin in m rem :e distrizts with the to: matricis. In srite i thr, h were. these
 rish a decree $=0$ th. y migh: be s:i. , the numer ki man ensaged in tie sula n mulatues in lecourd is tver 13.0 m , the estimated ra.tae i the -alry exp ried tong is ms-x0.000: ミ $=0.000$
 are :l e ci hereing and macke:cl. Ile herring

 the sea fober - is " w . . .it szE. Whe number
 The native $\because=$ imer, it is FiJ. ase on |w success-
fuly competing with their rivals, yet the sea Iisheries of Ireland on the whole have much declined, as shown by the decrease from 55,630 hands and $13-483$ boats employed in I860, to the figures just given.
-igriunditure and Soock-raising. The chiei occupation is agriculture. The richness of the soil, its lightness that makes tillage easy, the large percentage of arable land, the amouni of fainiall. the mildness of the climate all combine io make Ireland an agricuitural countr: Despiie the great extent oi moorland-wastes and the large amount of bog-land. few countrics faise. in proportion to the area, such a large amount of food products year after rear. Bu: with natural advantages above the average, ag--iculture as a syitem has not progressed as in mant other countries. The wholesale connscation of estates by the English gave the absentee landlord a large portion of the farm land of Ireland. The new owner usually cared only ics his rent and gave litile beed to improving the land, and showed no regard for the weliare of the man who tilled the soil. The holders and aboters received so encouragement to improve methods or make progress; on the contrary, they were haudicapped in many ways, especially in the I\&th century, when the English markets were closed to their procucts. and Ireland was excluded in a large measure from the commercial adranages given to the British possessicns in cther parts of the rorld. The holdings, or farms, originally ioo small to be occupied by iarmers of capital and enterprise. were in many cases subdivided until they were reduced to the smailest patches, on the produce of which a famrly could barely subsis:. One result of this poor policy was that the holders were obliged to Taise as much as possible each year, for immediate use, without regard to the ulimate effect of this mode of farming upen the land. Competent authorities say that this over-cropping has had a most deleterious efrect upon the land. let the soil mast have been restored to some extent. by rctation of crops or by the use of ierilizers. for the average produce of the soil per acre in 1902, was inund to have increased over the years $18=0$ and 1850 . In some cases the h-ldings were enlarged during the last years
the igth century. Statistics show that a charee in the kind of crops las been gradually taling place: a decreaze in the acreage under cencais and green crops and an increase in the area under mead. w an t clover. The following table shows the distribution of the cultivated area, griven in acres, the firs: years of the pres©:I: century

		Greer		Clove:	
Jear	Cereai,	crops	Fiax	and bay	Pasture
3	1.34-7809		4\%-- 1	1.218.71	11.510,3:0
1 :	3-315.5-2	1.v-0-443	55:-24	1.233	11 - 222,060

The namker ci acres of farm land not under c: Is, tut "esionc. was。 ! in $1000,12 . \equiv \S 0$; in 1,01. IO.N6: and $121902,0.55$.

Between ISEI and 1 Nit the farms oi i 10 I5 fer = decreasud in number by 60.363 . The total number ci holdings in i8oi was ©S6.S65 or I2. 244 less than in ISE1. Ot these 18.243 (1.3if :.. re :han $\% \mathrm{I}_{2}$) did n t exceed I acre, 55.54 decrease (f 6.10 -) were from i to 5 acres. I 30.-
 2.445 decrease) from 150.10 30 acres, and 130.401 1.22 increase) above 30 aces. Each province

shows a decrease in the tutal number of holdings, but in Munster the number is very small. Between i8.4t and 1899 there was a total decrease in holdings "above t acre" of 25 per cent.

The Land Act of 1870 greatly improved the concitions of tenure in Ireland. The chicf aims ui the act were to provide compensation to tenants ior arbitrary eviction, and especially for improvements effected by them on their holdings in case of their being disturbed in their possecsion by the landlords, and to afford facilitics to tenants for the purchase of their holdings. The act legalized what is called the Ulster tonant-right custom in all the districts in which it prevailed, and decreed the amount of compensation to be awarded in absence of such cus1om. In 188 it was supplemented by a more thorough and comprchensive measure. The benefits conferred on Irish tenants by this act were brietly summarized under the terms "fair rent," "fixity of temure," and "free sale." By the first of these every tenant who objected to his rent, or the rent the landlord wished to exact, was entitled to have a "fair rent" fixed for him by a court. The rent was to remain unaltered for 15 years, at the end of which period it might be readjusted, and raised or lowered. By the principle of "fixity of tenure" the law recognized that the tenant had a certain right in his holding in virtue of which he was not to be arbitrarily removed from it without compensation, and which enabled him on leaving his farm to obtain the best price he could for yielding up his possession. The "free sale" of this right of tenancy was restricted only in so far as that it must be to onc person orily (except under agreement with the landlord) that the landlord might object on sufficient grounds to the person purchasing, and that he also had the right of preemption. At the expiration of the is years the landlord might resume possession of the holding on paying the tenant compensation for improsements effected by him, and also paying him the value of his tenant-right, both being determined by the court should the parties be unable to agree. A tenant who sold his tenant-right on quitting ins holding was not to be entitled to compensation for disturbance, or if he had received compensation he was not entitled at that time to scll his tenancy. A tenant bolding under the Ulster tenant-right might self under that or under this system, but not partly under one and partly under the other. The scale of compensation for disturbance of tenancy was fixed as follows: Where the sent was \$1 $\$ 6 . \%$ or under, a sum not exceeding 7 years rent; rent from \$146.70 to \$24.50, not exceeding 5 years` rent; from $\$ 244=0$ to $\$ 489$, not exceeding 4 years; rent: from $\$ 485$ to $\$ 1.467$, not cxceeding 3 years rent; from $\$ 1,467$ to $\$ 2,415$, not exceeding 2 years' rent; above $\$ 2.445$. not exceeding I year's rent. The act also empowered the land commission to advance loans to tenants not exceeding three fourths of the value of their holdings. to cnable them to becone proprictors, and such loans were repayable by an anmal payment of 5 per cent for 35 years. Provision was also made for assisting emigration. A tenant whose holding, or the aggregate of whose holdings, were valned at not less than $\$ 333.50$, was entitled by writing to contract himsclf ont of any of the provisions of this act, or of the act of 1870. Another act passed in 188% extended the privileges conferred by the act of ISSI, and a
third act passed in 1806 went farther in the same direction. The lurchase of Land (lreland) Act of 1891 supplied the Land Commission with further funds for advances to temants to enable them to purchase their holdings. But the land I'urchase Act of I4 Aug. 1003, whereby the tenants may buy the farms and become independent of the landlords, is a great beginning toward a readjustment of agricultural conditions. "'he new law provides that the actual tenants or persons, or persons who have been tenants Within 25 years, may purchase all the land they occupy or desire at prices varying according to the condition of the property, to lue paid for upon the installment plan, the seller accepting a mortgage for a term of years, the govermment suarantecing .t.se payment at the ruling rate of interest. See Great Britain-The Land Laws; Agrtclittre.

Stock-raising has increased in importance during late years. Statistics show that there are now in Ireland more cattle, in proportion to area, than in any other country of Europe. The following talie will show the changes which have taken place since 1900:

Year	Horses	Cattle	Sheep	Pigs
$1900 \ldots \ldots$	491,156	$4,608,550$	$4,386,8,6$	$1,268,525$
$1901 \ldots \ldots$	491,430	$4,673,323$	$4,378,750$	$1,219,135$
$1902 \ldots$.	509,284	$4,785,204$	$4,215,740$	$1,372,592$

England is the principal market for the cattle raised in lreland. The breeds of horses vary with the locality: ponies are numerous in Connaught: hunter's in the north of Leinster; and draft horses in nearly all the counties on the eastern coast. Much good has been effected by co-operative societies. The number of co-operative organizations in 1901 were as follows: Io6 agricultural societies, 187 dairy and agricultural societies with Si auxiliaries, 29 poultry societies, 103 co-operative banks, 46 miscellaneous societies, and 2 federations. The membership of the whole was 51,000 .

Manufactures and Trade. - The linen manufacture early took root in Ireland, and still continues to be its most important staple; and in every article, except lace and cambric, competes successfully with all other countries. It has increased in a remarkable mamer within the last 40 or 50 years, and Belfast, its centre, has now become the first city of Ircland in population as well as in manufacturing industry. The linen manufacture, indeed, is of importance; a large number of the factories are in Clister. The cotton manufacture has had a very different history, the number cmployed in this industry having declined from 4.000 in 1868 to 800 . The woolen manufacture appears at the outset to have outstripped that of linen. It had at least made such progress as to alam the woolen manufacturers of England, who, in a spirit of petty jcalousy, petitioned the English parliament for its discouragement, and succeeded. The Irish were prohibited from sending their wonlens abroad, and could not cven send them into England without paying an oppressive duty. Had the manufacture been suited to the country it might have surmounted all this absurdity and injustice; and, at all events, when these ceased to operate, would have revived. But the woolens of Ireland continse to be of very secondary importance, and indeed the manufacture seems to have much decreased in recent years. The tweed has retained its popularity. The manufacture of Irish poplins (of woolen and silk, or woolen and flax

IRELAND

cr coit n : very \dot{r} urishang. The number of textile factories in INyO was 203. which employed -I.-88 pirsens. There are about 20 mills pngaged in paper-mahing. The brewing of porter and distidation i wiskey iorm imporant iems in the mational production. The making of shirts and other cluthing for men is becoming frominent. Ship-building was beguin several vears ago, and during the iast of the igth century it became quite prominent. Tbe largest ship-building yards are in Beliast, where about 10.000 men and boys are employed. The ships oi the White Star line are all built in Beifast. Ship-building is carricd on to some extent at Dublin, Londonderry, and Haulbowline. Home work still flourishes: and the Irish hand-made laces and embroideries are still popular.

Commerce:- That ei Ireland is net at all proportioned to her natural capabilities. and to the admirable facilities aftorded by the excellent harbors situated on her coasts. The laws made by the British guvernment to destroy the commerce of Ireland account in a large measure for the present condition of trade. The most important articles of export find a market in Great Britain. They consist chiefly of grain and flour, live stock, salt and iresh meat, eggs and butter. Mantiactured articles, particularly linen. rank next in importance: but as the bulk of such articles is very small in comparison with their value. the trade, or at least the shipping connected with them, holds only a secondary place. The trade with foreign cuantries is also inconsiderable. The principal imports are colonial produce, woolen and cotton goods, wheat. wool. coal, and salt. Oi the shipping employed in this trade only a mere Iraction is Irish. Beifast and Dublin are the chief shipping ports. The value of the exports diect irom Ireland to foreign potts was about $\leqslant 4.533 .000$ in $1 \mathrm{IS}_{3}$, ci imports irom inteign parts $\$_{53.160 .(20 \text {; in } 1900 \text { they were }}$ Sósto,240 and Eso,0,2,95. respectively. In 1900 the number of vessels entered from the colonies and ioreign parts was 1,048 (1,032,109 tons) ; and clearcd 48 ($4,3.758$ tons) ; entered

Transportatson- - The rivers of Ireland form excellent navigab e channels. In several of them, however. when the water was low, the navigation became seriously impeded by rocky sh als. In removing these, or in making artific.al cuts is r the purpose of avoiding them, vast swns have been expended. Imprevements oi epll imp rtance have been made by the con-s:nt:cti-1 if canals: but since the introduction of ras तlads, canals lave in Ireland, as eliewhere. : m'n t a pasio n of secondary importance. - e prancipal canals are the Grand Canal. It B^{3}; mies in 1. sth; the Reval Canal, oo ${ }^{\mathrm{t}}$, miles:
 Navigat \rightarrow. $2=$ mi.c: the Lagan Navigation. 21 - il: π the exceptirn of the Barrow Nias gat 1, the Grand Canal, and the Lagan Navige. O i.e liv lends paid by the Irish ranats it t pissee n of pullic companies are 1 m it n minal. The Royal Canal yields a -fital © $5:$. m . but it 1^{15} merged in the Midan 1 lireat Weest on Rai way: The Grand and Kuyal eamals ctrn et the impcrtant systems of tl e Shanm on Xavigation, in all $\mathrm{x}=8$ miles in lea gh. with Dum. The rair ad system oi Ire1. nd pas a'tame a a siderable development. The rads are al cenntucted on a gauge of 5
feet 3 inches. which is compulsory. The aresage cost of construction, including carring stock, is about \$\$0.000 per mile. The principal rallroads are the Beirast and Northern Counties Railway, with a cotal iensth of iso miles; the Dubin. Wichlow; and Wexiurd Rallway. I35 miles in length: the Great Southern and Western, tis miles: the IIidland Great Western Railway. 423 miles (incitdiag the Dublin and Meath, Great -lorthern and Western, etc. 1 ; the Great -Vorthern of Ireland. 503 miles (including the Dublin and Beliast Junction, 63 miles, and the C-1ster Railway. I 40 miles) : and the Waterford and Limerick Railway, IfII miles. of including the lines of other companies worked by it, reng miles in length. Few of the Irish railroads pay any dividend at all: but those that do pay represent a large proportion oi the capital invested in zailroads in Ireland, and some of them are very remunerative concerns. The most profitable of them are a short one connecting Dublin with Kingstown, the Beliast and Northera Counties, and the Clister Railway. Tbe total length of railroads completed and open for traific I Jan. 1902 was 3.208 miles. The total number of passengers for that year was about 2S.coo,000, the total amount of minerals and general merchandise carried, about $5,300,000$ tons: the total receipts from the carriage of passengers and goods amounted to nearly $\$ 20.000 .000$.

Publsc II orks.-Large sums have been advanced in loan by the sanction of the imperial parliament under various acts for public works and inprovements in Ireland. The Irish board of public works has charge of such grants and their expenditure: the objects to which they are applied include landed improvements and drainage. fishery piers and harbors, roads, bridges. and public buildings. tramways, light railways, and certain limes of inland navigation, and the preservation of ancient monuments. The commissioners have authority to lend for the purpose oi any work for which county or borough councils are authorized to borrow. Or EIzI,IfI,Igo of loans advanced for purposes that have nct yet been iully carried out ('current services"), $\$ 6-.655 .395$ have been repaid, besides interest amounting to s35,-0-, II of $\begin{gathered}-.985 .250 \\ \text { bas been remitted. The largest }\end{gathered}$ item of this expenditure, namely, \$26.r96,100, has been spent on the improvement of lands: river drainage and navigation have absorbed some EIf. 3 , -500. while on lunatic asylum buildings there has been spent $\$ 13.101 .925$: in schemes for the improvement of public health. Si3+5I.390: under the Laborers Acts, E0. 5 I 0,940 (to provide employment, etc.) : on railways, $\$ 6.000 .63 \mathrm{E}$: in advances to occupants for improvement of holdings. $s 5.355 .530$; roads and bridges. $s=.041 .220$. Other sums have been spent on harbers and decks, reclamation of lands. dwellings for the poorer classes, teachers" residences dispensaries and in advance to tenants for the purchase of their iarms. The recent Land Purchase Bill has made arailable a large sum of money to be used in aiding tenants in purchase of holdings 11003

Money. If eichts. Meusures. - The standard of value is gold. Silver is legal tender up to to shillings: bronze up to 12 pence: and farthing s only to 6 pence. Bank of England notes are lemal tender. The names of the conins used are sove-cion, hali-sovereign, crown, hali-crown, florin, shilling, sixpence, threepence, perny; half-

IREL.N.ND.

1. Albert Nemoral. lielfast.

IRELAND

penny, and farthing. The standard units are: of weight, the pound, 7,000 grains; of length, the yard; of capacity: the gallon, containing 10 pounds annirdupois of distilled water at $62^{\circ} \mathrm{F}$. the barometer at 30 inches. On these mints all other legal weights and measures are based.

The sovereign weighs 123.274 grains, and contains if3.001 grains of line golle. The shilling weighs 87.27 grains, and contains 80.727 grains of fine sitver. Bronze coins consist of a mixture of copper, tin, and zinc. The penny weighs 145.83 grains.

Banks. The institution known as the Bank of Ireland has a royal charter and unconditional liability. This bank manages, free of charge, all the public delto of Ircland, and, like the Bank of Scotland, it loans money to the British govermment, for which, since 1865 , 3 per cent is paill. In 1902 there were in I reland nime joint-stock laanks with 625 branches, all of which had adopt in limited liability. Six of the mine banks were note-issuing. Sce Great liritaln Banking.

There are two kinds of savings banks in Ireland: one the trustce sarings bank, which has been in existence since the first years of the roti century; the other, the postal savings bank, which was begun in I801. The annual amounts which may be deposited by each person are regulated by the Savings Bank Act. According to the act for 1893 the amount which may be deposited in one year by one person is 650 , or $\$ 244.50$, and not $£_{30}$. or $\$ 146.70$. as was the law under a former act. The amount of stock which may be purchased was raised from $£ 100$ or $\$ 489$, to $\$ 200$, or $\$ 978$, and the increase in the stockholding limit was changed from ℓ_{300}, or $\$ 1,467$, to $\{500$, or $\$ 2,4+15$. The post-office sarings banks are considered more secure than the trustee savings banks, and the deposits in the former are some larger than in the trustec savings banks. The trustee saving b banks received in I 897 , about $\$ 23,044,180$, and in 1902 alout $\$ 23.547 .910$. The postal savings banks received in I 897 about $\$ 10,869,735$, and in rgor about $\$ 12,298,705$.

Charities.- The Poor Law: whiclh regulates the system of public charities, is about the same for Ireland as for England and Scolland. It provides for relieving the needy in their own homes or for placing them in charitable institutions. The law is administered by the local government board through boards of guardians elected for the purpose. The number of indoor poor who received assistance for the year It,02 was 43.531 ; the number of outdoor poor for the same year was $57, \mathrm{Sin}_{3}$; and those in asylums, I. 427 . A large amount of aid is dispersed through private means; but a strong effort is being made to remore the caluses, which are about the sane in all countries, and which usually result in poverty. Eforts lave been made to improye the methods of work, and to foster habits of economy.

Gorernment- - Ireland, ly the Act of Union. became an integral part of the ['nited אinglom. and shares in its legislation by means of 28 representative peers in the llouse of Lords, and 103 representatives in the Honse of Commons. The representative peers are elected for life by the whole body of Irish peers. The Loru-Lieytenant, who represents the sovereign, holds his court in the castle of Dublin. Since 1 Rof great changes have been matle in the mamer of administering the local government. Previous to that date the ebief authority in the county was
the grand jurs, anel all local affairs pertaining to the government and local laws were attended to by the grand jurice and presentinent sesslulls. The act of isos provides fort a comencil, elected by the people, for a ham of three years. The sovernument of the boroughs, rural and itlan distriets, is also vested in an clective comncil. The unincorporated beroughs are governed by commissimers. Sec Grbar likitans.

The govermment of the incorporated boroughs is vestad in a mayor, aldermen, and comeit. The large citics are now comty boroughis. The chief sucectary; the under-scerctary, and four commissioners, whe are appointed by the Lord-lichtenant. constitute the local government board, which has supervisory anthority verer the local comeil. This board approves or rejecta nominations. made by the local authority, decicks upm salaries, and has the whole local government in charge to a certain extent.

The judiciary of |reland is similar in many respects to that of England. The highest tribunal is the Supreme Court of Judicature, composed of the lligh Court of Justice and the Court of Appeal. Other courts are the Court of Bankruptey, the Land Commissioner's Court, and the High Court of Admiralys. The English municipal law is administered by the courts of Ireland.

Finances. - In addition to local indebtedness Ireland assists in the liquitation of the national debt of the kingdom. The amount which has been apportioned to Ireland, it is claimed, is larger, in proportion to the wealth of the island, than the amount apportioned to England and Wales. The imperial revenue collected in Ireland for the fiscal year ending 31 Marcli 1902 was about as follows: Customs, $\$ 15.500,000$; excise. $\$ 15,850,000$; estate and dities, $\$ 317,300$; stamps. $\$ 15.740,000$; income tax, $\$ 5,822,000$; post-office, $\$ 3.697,000$: telegrapls, $\$ 8,6,200$; crown lands, \$163.400: miscellaneous, \$57,200; making a total, together with the non-tax revenue, of $\$ 46,792,000$. The local taxation revenue for the same year was about as follows: Customs, $\$ 7,850$; excise, $\$ 635,000$; cstate and duties, $\$ 995.000$. The expenditures for the same year were aloout as follows: Against exchequer, for the civil government, $\$ 22,200,000$: for collection of taxes, $\$ 1,215,000$; post-office, $\$ 5,435,000$. For local taxation accounts paicl the same year, $\$ 5,275,000$. The whole makes a grand total of albout, for imperia! revenue, \$284.125,000; for local reventic, $\$ 1,245,000$. The total amount raised for local expenditure was distributed about as follows: For water, gas, electric lights, $\$ 12,270,820$; tolls, ducs, \$1.213.560: rents, interest $\$ 1,220,225$: government contributions, $\$, .810,-\$ 0$: loans. $\$ 2.365 .800 ;$ miscellancons, $\$ 2,103.085$. The ehief local expenditures were aloont as follows: Town and municipal authorities (police, sanitary works, ctc.), \$8.025.450: umions, poor relief, $\$ 5.502 .420$: county, rural sanitary, and rond anthoritics, \$9,50r,165; harbor authorities, \$2,422.6zo. Gireat Pritain-Finance.

Poprtation.- Since the census of 1841. wien the inhabitants of Ireland numbered fully' 8,000 ,ovo, the population has almost steadily decreased. In i840-7 a frightiful famine, oecasioned by the potato disease, lroke out, and was followed by a visitation of fever and cholera. The population was in consequence greatly reduced, and since then emigration las talien the place of

IRELAND

famine and disease in 5 foducing it further. The extent of this emigraticil will be gathered from the following statement of the numbers that leit the comntry between 1851 and 1899:

Provisces	Number of Emigrants between Mav 1,1851 , and Dec. $31,1898$.		
	Males	Fernales	Total
Leinster	355,104	320,706	6,5,510
Munster	673.106	6;0,092	1,313,19 ${ }^{\text {S }}$
Ulister	590,314	455.761	1,066,073
Connaught	232.53	300.616	589.15
Not specitied	61.,66	$45.90=$	110.668
Total	1,962,822	1.792,075	3.754.899

From the causes just referred to the total population of Ireland, which might by natural increase have amounted to at least $10,000,000$, had dwindled away to $4,425.59-$ in 1902.

The population by privinces in 1901 was as ioliows: Leinster, $1,152.829$ (150.1 per square mile) ; Munster. $1.0,6$, ISS (112.3 per square mile) ; Ulster, $1.58_{2}, 826$ (183.8 per square mile) ; Connaught, a46.932 ($9+5$ per square mile). In that rear the average population per square mile for Ireland was 136%. In igor there were six connty boronghs with populations as follows: Dublin. 290.638; Eelfast, 349.180; Cork, 76,122 ; Immerich, 38,151 : Londonderry, 39,892 ; Tlaterford, 26.769.

Edmotion.- The present difficulties in establishing a public system of education in Ireland had their origin in the times following the efforts to make the people abandon the Roman Catholic Church. As a consequence, the parents reiused to patronize the government schools. The laws of the time of William III. and Queen Anne made it a crime for Catholics to teach or to have their children tanght by Catholics, or to send them abroad where they would be educated in Catholic schools. The sigid enforcement of these laws resulted in a large proportion of illiteracy amorg the Roman Catholics, although they had establislised schools abroad which were aitended by those with wealth sufficient to live in a ioseign country: (Consult, 'History' of Irish Schools and Scholars of the Sliddle Ages.') The principal educational institutions in Ireland are Dublin University and the three Queen's Colleges. The Queen's Colleges were iormerly comected with an examining and degree-conferring body, Queen's University, for which the R yal University of Ircland was substituted in I\& 2, in pursuance of the Lniversity Education (Ir land) Act. 1879: \$100.000 being yeariy grawnel ircm the surplus funds oi the Irish Chi.ch (y.x.). The Queen's Colleges, hnwever ate nut directly affected by this act. The Ryy: C lleze ni Scieuce for Ireland was establishel und-r the auth-rity of the Science and Art Def...tment. London. in Augus: 186-. Its objec is to cun y a mplete course of instruction in science applicable to the industrial arts, and to aid in the instructio n if teachers ior the 1 ca! sebols if science. There are professers of phy-ic: chomistry, betany, zoology, agriculiure, n ining, ke legy, applied mathematics. etc. The cuurse of insiruction exiends over three yeare Tlere are a'-r the Gencral Assemblys The logical College, Belfast; the Nagee College,

Londonderry, a Presbrterian college opened in 1805 , and embracing in its curriculum literature, science, and theology: the College of St. Columba, near Dublin, founded for the purpose of establishing a system of instruction preparatory to the university:

The Catholic University of Ireland, established in I 854 . grants degrees in theology and pliilosophy, arnd since 1882 sends its students to the Royal University for examinations for degrees in arts, medicine, law, and engineering. Affliated with the Catholic University, and now a part of it, are the following colieges: St. Patrick ミ, Maymooth; Cniversity Coilege. Dublin; University College, Blackrock: St. Patrick"s. Carlow: Holy Cross. Clonliffe; and School of Iledicine. Dublin. There are additional. in different cities and towns, about 40 Roman Catholic colleges and seminaries for men, and a large number of academies or secondary schcols for women. There are numerous non-sectarian schools, some of them of royal and private foundation and endowed, but the most prominent are those established since 1831 tinder the superintendence of the comenissioners of national edncation. These schools are open to the children of parents of all denominations. The pupils are not required to attend any religious exercises or religious instruction of which their parents or guardians disapprove and opportunity is given to pupils of each religious persuasion to receive separatcly at appointed times such religious instruction as their parents or guardians may approve of. Oi these schools there were $8,6 \%$ in operation in 1890 with -85.139 pupils on the rolls. Tine arerage daily attendance was small, being only 513.852 . In $\mathbb{8} 92$ an act was passed by which a beginning was made of free education. and a modified system of compulsion. In IS-8 an act was passed for the promotion of the intermediate secular education of bovs and girls in lreland. By this act about $\$ 5.000 .000$ from the Irish Church surplas fund was set apart, being inrested in commissioners who are to apply the revenue arising irom it to the purposes of the act, these being (I) the carrying on of a system of public examinations: (2) the awarding of exhibitions. prizes, and certificates to students; and (3) the payment of results fees to the managers of shools fulfilling certain prescribed conditions. The schools referred to in the act are of a grade superior to the nationa! schools. The subjects of examination are Latin and Greek, mocern languages, Celtic, natural science, mathematics. ctc. The system of apportion according to results is no longer in use; instead the cmounts awarded are based on average attendance.

Considerable attention is given to technical instruction. In all the convent schools the young girls have regular courses in domestic science, and in several trades are taught. The Department of Agricuiture and Technical I:astruction has an advisory board of technical instruction. In 1gol-z the course of experimental science had been adopted in $1: 32$ schools with $6.4 t 2$ science pupils. The central institutions belonging to this department are the Royal College of Science, Dublin, and the Metropolitan School of Art. Throughout the provinces the work is being organized by the councils of county beroughs, urban districts, and counties. The annual grant for the technical insiruction is $\$ 25.805 .000$. Provisions are made for the

I. Blarney Castle.
2. Innisfalien, Lake Killarney.
special training of teachers for the difficult it partments of work. See Great Britain-Fif cation.

Language and litcrature - The pretominant in the İrish literature is the heroic, pathetic, love of nature, romance, virtuc, and through all runs the traditional. Althongh the Ogham, a system of writing, was introduced into Ireland about 1.3 centuries before Christ, yet the literary productions were transmitted orally. Hyde says. "The love of literature of a traditional type, in song, in pocm, in saga, was more nearly universal in Ircland than in anyother country cf western Europe."

The modern literature of Ireland, or the litcrature produced by Irish writers of the last centuries, has been inchuded under English literature because the language used is English. Sce Celtic Langugees ; Gaelit Literature.

Music.- See Irish Mustc.
Art and Architecture. - Many of the ancient types of architecture extinct in other lands may still be found in Ireland. Their buildings and home life remained practically undisturbed for centuries; no ancient Roman arehitecture is found on the island. When Christianity was introduced, the change in form of the Drnid temple was for several centuries in accordance with the natural development of the people, except the addition of the small cross, the windows facing the east, and the altar. When the building became too small a new one was erected beside it. Some of the existing ancient specimens are a group of stone buildings on Skellig Michael, a rock rising precipitously out of the sea to the height of $\gamma 00$ feet, and about eight niles due west of the nearest headland in the County Kerry. The approach is by a flight of stone steps. Dry rubble masonry forms the walls, and in this group, as in others. the absence of the arch shows its ancient origin. It is oval outside, bee-hive in form, but rectangular within. The door has a horizontal lintel, above which is a small cross worked into the stone wall. The six cells in the interior, the common room for prayer (choir), the chapel, all show it was oceupied by monks. The doors, with inclined jambs and horizontal lintels, antedate the arch. A wider lintel above, or the double lintel, indicates progression in architecture, a method of relieving the pressure of the roofs. The roofs of the ancient buildings were of stone. There are many of these ancient ruins, some in a good state of preservation. Off the coast of Sligo, at Inishmurray, on the Isles of Aran, on islands off the coast of Kerry, and in many places are found buildings of dry rubble masonry: The change shows itself when cement is used and the walls hecome perpendicular, as at Gallarus, in Kerry, and a further advance is shown in St. Declan's orat, ry in Ardmore, with square perpendicular towers. or, more properly, supports. at the corners. Some of these were erected in the 6 th, 7 th, and Sth centuries. St. ColumCille's monastery at Kells was built about So7 A.D. In the 'Anuals of the Four Masters' mention is made of the church St. Kerin founded in ahout 1108 , and which is still in existence, at Glendalough. The Romanesque style makes its appearance in the inth century; the earliest example is in St. Flannan's, at Killatoc. Brian Boroimhe is said to have built churches at Killaloe, in County Clare. A church built about this time, at Fresifford, the ancient Achadh-ur, eight miles northwest of Kilkemny, is still in use. Ai

Clonfert Cathedral, in County Galway, there is a fine example of an 1 rish Romanesque doorway. This church is satd to have been founded by St. Brendan, "the navigator." The interlaced pateenss on the piers, the ornamented column, are all most beantiful. "There is not," says 11 r. Brasly. "a square inch of any portion of this beantiful doorway without the mark of the sculptor's thal, cvery bit of the work being finished with the greatest accuracy." The Cathedral at Ardmore, County Waterford, shows another adrance in its decoration; here may be seen The Judgment of solomon, Adam and Eve, The Nagi bringing their gifts, the stable indicated by a cow, etc. Nlany of the modern cathedrals are most beautiful.

The "Round Towers" of Ireland have been for years subjects of study and discussion. There exist in Ireland in whole or part about ioo of those towers; 18 are in a perfect condition. Nany claim that the Round Towers are of pre-Christian origin, and cite the smilar towers, two in Scotland, seven on islands off the coast, one on the Isle of $\lambda 1 \mathrm{an}$, and a few on the Continent, as examples of pagan architecture. Their average size is 100 feet in height, circumference at basc, 50 feet, walls at door lintel, $31 / 2$ fect. The interior is divided into from four to eight stories. Petrie, who has studied the subject with care, elaims that the towers are of Christian origin and were used both as bell towers and as safes or places in which to deposit the Church treasures. The Irish name for the towers, Cloigtheach, which means "house of a bell," supports the theory of Petrie and others. Petrie advances other and strong arguments in support of his theory. The 'Amals of the Four Masters' mentions the bells in some of the towers. One of the finest examples of a Romanesque doorway in a Round Tower is at Kildare. Some of the ancient pottery shows skill and artistic merit. In designing and coloring the ornamentation of the old Celtic manuscripts show great artistic power. The initial letters are most beautiful, especially in the (Book of Kells,' a copy of the four Gospels in Latin, and in 'Annals of the Four Masters.' The symbolism used by other early mations is not found in the works of the ancient Irish. The designs are geometrical patterns, interlaced ribbon work., diagonal and spiral lines, strange animals, peculiar lirds, and the key pattern. The ancient metal work slows unique and heautiful designs: the bell shrines, the brooch of Tara, and many pieces of old metal work may be seen in museums. The laces of Ireland. reyived the last of the igth century, show most intricate and charming patterns: Sculpture and oil painting are modern arts in Ireland, and in both many of Irish birth have excelled.

Relisim. - The first authentic account of the introduction of Christianity into Ireland was in the 5 th century. when Pope Celestine sent Germanus, bishop of Auxerte, and later, in 43 . Palladius as bishop. Both Germanus and Palladius found on the island believers in Christianity, but no organized body of Christians. However, the chief work of conversion and organization was accomplished ly St. Patrick. who, good authorities state, was sent to Ireland by the same pope. Killpatrick, a town of Scotland, is said to have heen Patrick's birthplace, but some authoritics claim that he was a native of France. He had been consecrated bishop
before coming to Irceand as a missionary, and he selecte 1 Armagh as his see. A large number f exnert wire minde, so many that even before Patrick ded he had other bishops and a number if pricots to assi-t him. The Roman Catholic hurch in Ireland has four archdioceses and 25 finceres. The archdioceses are Armagh, Dublin, Cashel, and Tuam. The Roman Catholic clergy atd cuturches are all supported by voluntary contribution. The college at Naynooth, for the education of those studying to become priests, was founded in 5005 . There are several other Roman C: thulic ceclesiastical seminaries and colleges. Sce Great 3ritan-Cherch of Exgland; ctc.

The Reformation never made much progress in Jrcland. and though a Protestant Episcopal church was established by law, it was only the charch of a small minority: In 186 it was discotablished. Previous to this time the clergy were supported by a tithe rent-charge, the procceds of the Church lands, etc., the total annua! income of the Church, including the value of honzes and lands in occupation, being about \$3.008.920. By the above act. taking effect from I Jatr. Is-1, the position of the Church and clergy was entirely changed, though those holding benefices at the time of its passing liave not sulfered loss. The properiy and tithes formerly belonging to the Church are now vested in commissoners, who pay to all deprised of income by the act, so long as they contime to discharge the duties of their offices, such an annual sum of money as they would otherwise have received. deduction being made of curates' sularies, and other outgoings to which the parties would have been liable, and regard being paid to the prospective increase of incomes by the falling in or cessation of such charges; or instead of an annual sum, an equivalent single paytnent has been paid to such as have commuted their claims in that manmer. The Irish Church accordingly is no longer a state Church, and none of its bishops have now a seat in Parliament. It is still a vigorous and flourishing inseitution, however, and possesses funds amotutmg to over $\$ 40,6,40,000$. Of this, upward if $\$ 20,000,000$ have been voluntarily contributed by iriends of the Church since it was disestalslished. TVhle disestablishing the Irish Church, the act at the same time declared the cessation uf the Maynouth grant and the Regium Dunum. The affars of the lrish Church are now managed by the dincesan symols and by the general yoned in c njunction with the representative lonly: The supreme legislative powers reside in te gan ral synod, which meets in Dublin, and Contpred if the archbishops of Armagh and IH, the and the 11 bichops, and of lay and bine reprenentatives from the different diocle: the lay representatives being more than '" e a numirom as the clerical. The repreFit tiv, luly incorporated in 18-o ccusists of
 -racal Hected the nhern (iliree for each dio-- ".'. and 1.3 er-qted mem er elected by the
 jumerud hy ita charter to hind Charch property. Wheet to the resentain of the general symod. Hoe ("hurch wec th. Rome of Crommon Prayer, 3. revard in ace relasice with tatute, passed by the general vanel, and flarni-bul with a preface mathing : n exponithon if formularies in the sture in wheh they are understood by the (1)irch.

Tlse Presbyterian Church of Ireland is chiefly confined to the province of Ulster, where it may be said, more especially in the counties of Down and Antrim, to be the leading religious denomination. Its ministers are supported by voluntary contributions. seat-rents, and church funds. They were formerly aided by an annual grant from govermment. called the Regium Donum, the amount of which, paid in 1869, was $\$ 202.735$. This annual grant, however, was abolished, as already mentioned, by the Irish Clurcli Act of I869, and was commuted to a single sum of $\$ 3,506,860$ paid to the Church. According to the census of IgOI there were in Ireland $3.310,028$ Roman Catholics, 579.385 Protestant Episcopalians, 43,494 Presbyterians, 61,255 Nethodists, and 56,703 members of other persuasions, besides $3: 769$ Jews.

History.-The beginning of the history of Ireland is, like that of all European nations, enveloped in fable. Among the ancients it was known at least as early as the time of Aristotle. who calls it Ierne. In Diodorus Siculus it is called Iris; in Strabo, Ierne; in Pomponius Mela, İerna; in Pliny, Hybcrnia. Plutarch calls the island Ogygian, meaning very ancient, and says: "They drew their history from remote antiquity, so that of other nations is new compared with them." I'et the information to be found about Ireland in the works of the ancient geographers and historians is altogether very scanty: The bardic historians of the country speak of Greek and Phonician colonies, and lists of kings, for which there is no authentic, but some probable, foundation. The rernacular language of the Irish proves that they are a part of the great Celtic race which was once spread all over Western Europe. The first probable records of the Irish people show that for the times they were advanced in civilization. The ancient bards were called Fileas or Feardanos, which means philosophers. Cresar mentions in his 'Gallic Wiars' their advancement. Pliny, Cæsar, and other authors say that the Druids who inlabited Ircland were learned; they knew philosophy and the sciences. In the Irish chronicles we find that in the Jeign of Eochy the First, more than a thousand years before the birth of Christ, "society was classified into seven grades, each marked by the number of colors in its dress, and that in this classification men of learning, that is, eminent scholars, were by law ranked next to royalty:" Another proof of the cxistence of an ancient civilization, marvelous for its time: was the institution of Feis Tara or the Triennial Parliament of Tara. The monarch. Ollay Feola, who reigned as Ard-Ri, or monarch, of Erinn, about 1,000 years betore Christ. cstablished this parliament. The subordinate royal princes or clieftains, constituted one branclı; the Ollavs or law-givers, and bards, judges, scholars, and historians, another branch; and the third consisted of the military commanders. Under the Ard-Ri, or monarch, were the kings of the provinces, and under each king were the clans who were governed locally by it chief, each clan selecting its own. Wars were frequent. as fighting and bloodshed were common pastimes throughont the then known world. The battle was the final court of appeal, and in most instances the first court of trial. A cause of dissension in Ireland. as in Great Britain and other countries, was the antagonism

IRELAND

existing among people of different races. The Alilesians, the Tuatha de Danaans, and the Firbolgs (q.y.) were distinct races centuries after the Milesians landed in lreland. The differences among thenselves seem not to have seriously affected their union when attacked by a common foe; as at the birth of Christ, when Rome was mistress of nearly all of Europe, she had never gained possession of Ircland. The introduction of Christianity into Ireland was not attended with bloodsled as in many other countries; indeed, afterward the nation seems to have enjoyed a season of repose from strife, although southern Europe was being overrun with the Germanic hordes. This repose favored the growth and expansion of Christianity and the progress of larning. The schools and monasteries founded by Saint Patrick and his bishops in the 5th century became the centres from which went forth many scholars; and even as early as the 6th century, Ireland became the seat of western learning; and its monasteries were the schools from whence missionaries who disseminated the Christian faith throughout continental Europe proceeded. In the 8th and 9th centuries the scholars of Ireland were among the most distinguished at the courts of the kings, especially at that of Charlemagne, but when the Northmen commenced their descents some of the schools were destroyed and the monks dispersed. The ravages of the Danes at this period had results different from the attacks of the Romans. The continued attacks for nearly two centuries fostered internal dissensions, when in the beginning of the IIth century Brian Boroimhe (Brian of the Tribute) united the greater part of the island under his sceptre, restored public tranquilfity, and subdued the northern invaders. After a contest of about 20 years he conquered Malachy, the brave warrior who "wore the collar of gold" won from the Danish invader, and became Ard-Ri of all Erinn. After the death of.Brian, the island became a place of dissension; frequent wars rendered them weak against a foreign foe. This condition was largely the result of the divisions, made by Brian, of the island among his three sons. At this time Henry II. of England, professing love for Ireland and a great desire to restore peace, sought to gain possession of the island. This was the beginning of the AngloNorman invasion of Ireland. Henry II. claimed to have received from Pope Atrian IV. a bull authorizing him to take posse ion of Ireland. (The authenticity of this bull very doubtful.) After some delays occasioned \quad internal troubles in England, Henry attempted to gain possession of 1 reland. For many years after, the history of Ireland was a record of persecution, confiscation of lands, and attempts to wrest from the people inalienable and hereditary rights. So great was the resistance that in the inth century, at the time of Richard II., the authority of England extended practically over only a small portion of country on the eastern coast, called "The Pale" (q.v.). This was governed by various nobles subject to a viceroy. The sulbjection was, however, sometimes little more than nominal. The nobles quarreled among themselves, and were very often at open feud. The beginning of the reign of Edward III. (1327) was marked in Ireland by the outbreak of civil strife in every part of the Englisi "Pale," advantage of which was taken by the

Irish for a gencral rising, which threatened the safety of the English colonists, and which the government found itself unable to sulbdue, until it yielded to the demands of the barons in Ireland, by granting them complete civil and military jurisdiction in their own districts. During the wars with France some 1rish troops served in the English armies, and the common sympathics induced by that circumstance seemed likely to promote a better state of feeling between the two races, when the breach was made wider than ever by the celebrated statute of Kilkenny (1367), framed under the viceroyalty of Lionel, duke of Clarence, son of Edward III., forbidding, under scvere penalties, intermarriages between English and Irish, the assumption of Irish names by persons of English blood, the use of the Irish language, the native (Brehon) law, etc. In consequence of this the disturbances between the Irish and English inhabitants of Ireland increased so greatly that the English viceroy found it necessary to protect The Pale by payments of money to the Irish chiefs, and this state of matters continued during the reigns of Richard II., Henry IV., and Henry V., until, in that of Henry VI., when Richard, duke of York, was appointed governor of the island, who succeeded by his politic measures in restoring peace. In the reign of Henry VII. (I 495) was passed Poyning's Act (so called from Sir Edward Poyning, lord-deputy of Ireland), which provided that all former laws passed in England should be in force in Ireland, and that no Irish Parliament should be held without previously stating the reasons on account of which it was to be summoned, and the laws which it was intended to enact. The power of the English government in Ireland was thus strengthened, but nothing was done to improve the condition of the 1 rish, whom the oppressive severity of the English yoke embittered without subduing. At the beginning of the 16th century the greater part of the island still remained unconquered by the English The Irish still lived according to their old constitution under their own chiefs. In 1541 Henry VIII. received from the Irish Parliament the title of King of Ireland; but he did nothing to extend the English sway, or to improve the social circumstances of the people. The Reformation which took place in England during this reign took but a slight hold upon Ireland even in the English districts; but the monasteries were suppressed, and the tribute to the Papal see abolished. Elizabeth's reign was marked by a series of risings, which finally terminated in a general war against England, usuaily called the Rebellion. Hugh O'Neil, who had been raised by the queen to the dignity of Earl of Tyrone, was the leader in this war, which, though successfully begun, ended with the complete defeat of the insurgents, and the reduction of the whole island by the English (1603). More than 600,000 acres of land were taken from the Irish chiefs, and for the most part distributed among English colonists. The reign of James ($1603-25$) was somewhat favorable to 1 reland; the arbitrary power of some of the chieftains was restrained, and the administration of justice improved, cte.; but the means which he took to effect some of thesc improvements were tyrannical. He denanded from every Irish chief the document nipon which he rested his claim to his property, and if it were
Vol. 8-56
not to be found, or contained even any formal error, his lands were forfeited to the crown. Of 800,000 acres of land which in this way came into the hands of the king in the north of the island, a large share was entirely withdrawn from the Irish, and divided among Scotch or English settlers. In addition to this, the Catholics, on account of the oath of supremacy by which all public officers were required to acknowledge the king as head of the church, remained excluded from all official appointments. The Roman Catholic hierarchy established in the 5 th century was still in existence. Various circumstances, led, in 164 r , to an attempt to shake off the English yoke. Dr. Lingard says of this insurrection that it has been usual, for writers to paint the atrocities of the natives, and to omit those of their opponents, but that revolting barbarities are still recorded of both, and that if among the one there were monsters who thirsted for blood, there were among the other those who had long been accustomed to deem the life of a mere Irishman beneath their notice. After the death of Charles I., Cromwell was appointed (I5 Aug. 1649) lieutenant of Ireland. With great cruelty, he reduced the whole country within nine months. All the possessions of the Catholics were confiscated, about 20,000 Irish were sold as slaves in America, and 40,000 entered into foreign service, to escape the severity of the conqueror. (See Drogheda.) Charles II. restored a portion of the lands, but fully two-thirds remained in possession of the English or of Irish who had become Protestants. Under James II. some changes were made; under his viceroy, Earl of Tyrconnell, Catholics were given a fair represcntation in Parliament. In the English Revolution of 1688 , the Catholics of Ireland sided with James, and the Protestants with William III. For a time the army favoring James were fairly successful; but the landing of William in Ireland changed matters. The battle. I July 1690 , at Boyne, won by William, proved a turning point, as it encouraged the English and in a great nreasure discouraged the Irish. Sarsfield's gallant defense of Limerick, the last place in Ircland that held out for James, saved that city from capture by Williams troops; but on 3 Oct. 1690 , the city capitulated, a trcaty being concluded with Gen. Ginkell on behalf of the English, according to which the Irish were to be allowed the frec exercisc of thei- religion, as had leen granted by Charles II. More than 12,000 lrish that had fought on the side of James went into voluntary cxile. The Treaty of Limerick was not kept by the English, a fact which is commemorated by the name which the Irish ctill give to the place at which it was conclurded. "The City of the Violated Treaty." By a decree of the English Parliament upward of $1.000,000$ acres of land were now confiscated and tivider among Protestants. In order to keep down every movement of the Catholic population, cruel penal laws were passed against those who arlhered to that form of religion. By these laws the higher Roman Catholic ecclesiastical dignitaries were lanished from the island: the prients were not allowed to leave their counties; no Roman Catholic could hold a public office, acquire landed property, enter into a marriage with a Protestant, etc. Such suppression and persecution naturally led to the formation of - ccret organizations whose object would be an
overthrow of those in power, in order to secure freedom and justice. "Whiteboys," "Levellers," and a number of kindred organizations were formed, whose methods were not always fair; but who were brought into existence by force of circumstances. All this, however, did not ameliorate the general condition of the country, and it was not till the American War of Independence taught the English government the folly of attempting to govern a people by coercion, that the severity of the laws relating to Ireland was mitigated. In I778 the penal laws against the Catholics, although not repealed, were made much more lenient. Catholics were henceforth permitted to acquire landed property, to erect schools, and to observe their own religion under fewer restrictions. In 1783 , Poyning's Act was repealed.

The outbreak of the French Revolution had naturally a great effect on the minds of the Irish people. Out of a corps of volunteers which had been formed in 1779, but which had been dissolved a few years later, a society was formed calling itself the Society of United Irishmen, which included in it many Protestants, and which sought to make Ireland an independent nation. The Catholics at the same time took advantage of the embarrassment of the British government to demand equal rights with the Protestants, and the government gave in to this demand so far as to remove the hindrances which had been placed by the law in the way of Irish trade and industry, and to repeal nearly all that remained of the penal laws against the Catholics, who now received the right of acting as counsel before the court, and of entering into marriages with Protestants. When further demands were refused, the Society of United Irishmen allowed its revolutionary aims to become more apparent, and the government then determined to quell the movement by force. The Habeas Corpus Act, which had been introduced into the country in 1782 , was repealed; the towns were strongly garrisoned, and the society dissolved and disarmed. But the conspirators, trusting to expected aid from France, were not discouraged. At the close of 1796 a considerable French Reet did actually appear off the Irish coast bearing 25,000 land troops, under the cominand of Gen. Hoche; but owing to adverse winds, and the incompetence of the commanders, it was obliged to return without having accomplished anything. I're only effect of this expedition was to induc the government to take still stronger measures in Ireland, the whole of which was placed under military law. The United Irishmen were thus prevented from taking any open steps for renewing the society, but they continued to pursue their ends in secret, and devised for themselves a very skilful military organization. At its head was a directory of five men, whose names were known only to those at the head of the provincial committees. In January 1798 the society already numbered more than 500,000 members, when a treacherous member gave information regarding the society to the government, and several of the leaders were scized. In consequence of this the conspirators, not knowing the extent of the revelations that had been made, resolved to anticipate any further preventive measures on the part of the government, and rushed into premature action. In May 1798 , simultaneous

IRELAND

risings took place at different parts of the island; but the government was fully prepared, and the main body of the insurgents, who made a brave fight, suffered a decisive defeat at Vinegar Hill on 21 June. Flying columns traversed the island, and cliceked by tbe most violent measures any further outbreaks. In August a French squadron appeared in Killala Bay with 1,500 men on board, under Gen. Humbert; but the British troops prevented a junction with the insurgents, so that they were soon compelled to surrender. Another French expedition which approached the Irish coast in September was overtaken and attacked by Admiral Warren, and nearly all the ships composing it were captured. Several subsequent attempts of the French were similarly frustrated.

The events of this insurrection brought the British government to form the resolution of uniting the Irish and English Parliaments, since in the state of feeling which that movement too plainly manifested as prevailing among the people, it was seen that the independence of legislation enjoyed by the country fostered the desire of political independence, and it was feared that new revolutionary efforts might thence derive a legal sanction. The first proposal to this effect which was made in the Irish Parliament was rejected with indignation. The government then resorted to bribery to secure its purpose, and $\$ 8,000,000$ was spent in buying up the sotten horoughs which had the majority of seats in the Irish House of Commons. The Irish landlords were from the first favorable to the project. By these means an act providing for the legislative union of the two countries passed the Irish Parliament on 26 May 1800, and the British Parliament on 2 July in the same year, in virtue of which the union was effected on I Jan. I8on. But although this measure bound the destinies of Ireland still more closely to those of England, yet it was far from putting an end to the religious and political trombles which had so long divided the two countries. In order to gain the masses the enlightened Pitt had promised a complete political emancipation of the Catholics; but the bigoted George III. could not be induced to make this concession. Enraged at this great breach of faith the Catholics in ISoz formed a Catholic Association, having for its object the accomplishment of this end; but it was not till the period of O'Connell's agitation, favored by a change of public opinion in England, that the government was induced to bring in an Emancipation Bill, which after passing both houses of Parliament, received the assent of George IV. on I3 April 1820. A new oath, which could be taken by Catholics as well as Protestants, was sulustituted for the one previously required from members of Parliament, and the Catholics were thus enabled to take a seat in the house. They were also allowed to fill all public offices except that of lord-chancellor.

This victory was greeted by the Irish Catholics with great joy; but they wanted more than emancipation which meant permission to hold certain offices, they wanted independence. The efforts of the national party were now directed to the repeal of the Union, for which purpose O'Connell founded the Repeal Asrociation, which cansed the Grey ministry in 1833 to bring before Parliament the Irish Coercion Bill (q.v.).

When this bill became law the Lord-Lientenant of Ireland was cmpowered to forbid all assemblies of the poople, and to proclaim military Jaw throughont the island; and in order to give force to the act an army of 36,000 men, hesides 6,000 armed police, was sent over. The Coercion Act was indeed soon repcaled, and from 1835, under the viceroyalty of Lord Mulgrave, a better feeling seemed to be growing up between the people and the govermment. But when the Tories came again into power in August 18q1. O.Connell began anew the repeal agitation, and with such boldness that in $18+3$ the athoritics caused him to be apprehended on a charge of conspiracy and sedition, on which he was convicted and condemned to pay a fine and suffer imprisomment for a year. These proceedings were, however declared illegal by the House of Lords, and O° Connell was released. Soon after the terrible famine which visited Ireland in the autumn of 18_{45}, and still more severely in the summer of 1846 , cast all other interests into the background. The spirit of the people seemed broken, and many of them sadly left their native land and by hundreds of thousands emigrated to America. In the midst of this crisis O'Connell died, and the place of the party which he led was taken by one still more advanced, which received the name of Young Ireland. In these circumstances of political excitement the French revolution, which took place in February i8;8, had a great effect upon Ireland. The leaders of the Young Ireland party, Smith O'Brien. Mitchel, Duffy, -ILeagher, and others, entered into relations with the provisional government at Paris, and the people generally began openly to provide themselves with arms, and to exercise themselves in the use of them. But the measures of the govermment fustrated the designs of the conspirators. The Habeas Corpus Act was suspended, the insurrectionary newspapers suppressed, and Smith O'Brien, who had been hailed by the people as King of Munster, and a number of his associates were arrested and condemmed to death. This punishment was afterward commuted to transportation. In a short time peace was restored; but the material distress remained undiminished. Famine and disease decimated the population. The agricultural holdings were deserted, whole districts remained uncultivated, and a constant and overflowing stream of emigration directed itself toward the United States.

After a time agriculture revived, and the manufacturing industries of the island began to compete with those of England. In 1849 were chartered the Qucen's Colleges, offering the same advantages to Catholies as to Protestants; but these institutions lave been taken comparatively Jittle advantage of by the former. The history of those institutions made the Catholics fear they were meant as a menace to their faith. In 1852 telegraphic conmmunication was opened with Great Britain. In I853 an industrial exhibition was held at Dublin, resembling that ::eld two years before in London; another exhibition was held in 1865 . The latter year witnessed the discovery of a new conspiracy designed to effect a separation between England and Ircland. This had its origin in America at the time of the Civil War in the United States, when the numerous Irish in that country saw an opportunity in England's attitude toward the seceding States. This crmspiracy, criginating among the

IRELAND - IRETON

members of a secret society calling themselves Fenians (see Fenians), soon spread to Ireland; but before the Fenians could take any overt action in that island their design was stifled by the proceedings of the British govermment ($1865-6$). The attention of English statesmen was now strongly drawn to the necessity of doing all that could be done to render the Irish people loyal and contented; and with this riew an act to disestablish the Irish Protestant Episcopal Church was passed in I869, and another to improve the tenure of land, in 1870. Since 1871 an agitation for what is called Home Rule has made itself prominent. In 1880 Ireland became the scene of an agitation carried on mainly by a body calling themselves the Land League. Various severe laws were passed to "coerce," but further concessions were made, and to redress Irish grievances a land act was also passed in August 188r. Under this act substantial reductions on rents were made. The Land League was suppressed, but a new body called the National League was soon organized in its place. Another act for the relief of tenants in arrear with their rents was passed, 1885. In 1885, 86 Nationalist members, headed by C. S. Parnell, were returned to Parliament, and their pressure on the government led to the production of a scheme by Mr. Gladstone, in 1886, by which Ireland was to receive a parliament of her own and the Irish members to be withdrawn from the Imperial Parliament. This scheme and the accompanying land purchase scheme were rejected by Parliament and the constituencies; and a fresh act against crime in Ireland was passed in 1887, although statistics showed the island was in a most peaceable condition, and no remarkable acts of lawlessness were being committed. In 1898 a very important Local Government (Ireland) Act was passed. It established county councils, urban district councils, rural district councils, and boards of guardians in Ireland, and transferred to them the administrative functions formerly discharged by the grand juries and presentment sessions. The first elections under the act took place early in 1899 . The results showed that the voters of Ireland realized they were gaining ground. They never lost an opportunity to proclaim their discontent with the existing land laws, and their desire for "Home Rule" The lrish members of the British Parliament kept the cause of Ireland before the people; and in 1903 a further concession was gained. On 1 Nov. 1903 a new "Land Act" went into effect whereby the tenants, sub-tenants, or the people, may purchase the land and hold it as their own. See Great Britain-The Land Laws; Irish Ilistokr:

Bibliography.-Hull, 'Gcology and Geograpliy of Ireland"; Nurray, 'Handbnok of Ireland'; Russell, 'Beauties and Antiquities of Ireland'; Johnson, 'Historic and Picturesque Ireland'; Cooke, 'llandbook for Travellers in Ireland'; Johnson, 'The lsle of the Shamrock'; McCarthy, 'Five Years in Ireland': O'Brien', '1oca! Government in Ireland'; 'The Great Famine in Ireland"; Russell, 'Ireland and the Empire.'

Art and Architecture--Petric, (Theories of the Origin of the Round Towers of Ireland'; Wimel-Martin, 'Handbook of 1rish pre-Christian' Antiquities'; Stokes, 'Irish Architecture'; Dunraven, 'Round Towers'; George (in Chambers'
'Journal,' Vols. 75 and 76). (Irish Home Industries' ; in Reliquary, Vols. V. and VI., and in Canadian Magazine, Col. IV', articles on 'The Cathedrals of Ireland.'

History and Litcrature.- Falkner, 'Studies in Irish History and Biography'; Frost. 'Fairics and Folk Lore' ; Curtin, 'Hero Tales'; 'Myths and Folk Lore of Ireland' ; 'Tales of Fairies 111 Munster' ; Lecky, 'Leaders of Public Opinion'; Hyde, 'Literary' History' : Joyce, 'Short History of Ireland'; Duffy, 'Young Ireland'; Zimmern, 'The Irish Element in Mediaval Culture' ; Bryce, 'Two Centuries of Irish History'; Richey, 'Lectures on the History of Ireland'; Wills, (The Irish Nation; Its History and Its Biography'; Richey, 'History of the Irish People': Westminster Review, Vol. 136, 'Some Notable Irish Elegies'; Haverty, 'Catalogue of Rare Books Relating to Ireland' : NacGeoghegan, 'The National History of Ireland' ; Plowdon, 'Historical Review of the State of Ireland'; Lecky, 'History of Ireland in the Eighteenth Century'; Mitchel. 'The History of Ireland'; Sullivan, 'Story of Ireland' ; McGee, 'History' of Ireland' ; Sullivan, 'Ireland of ToDay'; Healy, 'Ireland's Ancient Schools and Scholars'; Froude, 'History of Ireland'; Burke, 'Ireland's Case Stated in Reply to Froude.) See also Great Britann, and the bibliontaphies appended thereto.

Ireland, Church of. See Irelayd.
Ireland, Language of. See Celtic Language; Gaelic Literature.

Irenæus, ī-rē-néns, Saint, one of the Greek Church Fathers: b. Asia Minor: d. Lyons, France, about 202. He was a learned and zealous man, a pupil of Polycarp and Papias. He actively opposed the Gnostics, and especially the Valentinians. His works are lost, except his 'Libri V. adversus Hæreses,' of which there are fragments in the original Greek, and a Latin version, made, it is supposed, toward the end of the 4 th century. He suffered martyrdom at Lyons, of which he was bishop, in the persecution under Septimius Severus.

Irene, $\overline{\text { i-rḕnḕ, empress }}$ of Constantinople: b. Athens about 752 A.D.; d. Lesbos 15 Aug. 803. In 760 she married Leo IV., after whose death, caused, as is generally believed, by poison administered by her, she raised herself (780) and her son Constantine VI., then but nine years old, to the imperial throne. When Constantine came of age he refused to permit her to participate in the government, and seven years later was arrested at the order of his mother, blinded and at last murdered. Irene was the first woman who reigned over the Eastern Empire. Her triumphal entrance into Constantinople, her liberality, the freedom bestowed on all prisoners, and other artifices employed by her, were not sufficient to secure her from the consequences of her criminal accession. She had ordered many nobles into banishment, when Nicephorus, her treasurer, who had secretly been made emperor, exiled her in 802 to the Isle of Lesbos. Her zeal for image-worship has caused her to be regarded as a saint by the Greek Church.

Ireton, ir'ton, Henry, English general and statesman: b. Attenton, Nottinghanshire, 1611; d. Limerick, Ircland, 26 Nov. I65I. He was graduated at Trinity College, Oxford, and brought up to the law; hut when the civil contests commenced joined the parliamentary arm-

IRIDIUM - IRISH ACADEMY

and by the interest of Cromwell, whose daughter Bridget he married in 5646 , became commis-sary-general. At the battle of Naseby he commanded the left wing, which was defeated by the furious onset of Prince Rupert, and was himself wounded and made prisoner. He soon recovered his liberty, and took a prominent part in all the transactions which threw the Parliament into the power of the army. He had also a principal hand in framing the ordinance for the king's trial, and was one of the judges. Ireton accompanied Cromwell to Ireland in 1649 , and was left by him in that island as lord-deputy. He reduced the natives to obedience with great vigor, but not without cruelty. He was buried in Westminster Abbey, and after the Restoration his body was taken up, suspended from the gallows with that of Cromwell, and buried in the same pit.

Irid'ium, a metallic element resembling platinum in its general properties, and occurring in nature in the metallic form, alloyed, usually, with platinum and osmium. The commercial supply comes chiefly from the Ural district, from Brazil, and from Borneo. Small amounts have also been obtained from California. The existence of iridium was first recognized, in 1802, by Tennant, who observed that an insoluble residue remained behind after dissolving platinum ore in aqua regia. In 1804 he showed that this residtue contains two new metals, to which he gave the respective mames "iridium" and "osmium." The separation of iridium from the other metals of the platinum group is a matter of some difficulty; and for details of the processes employed the more extended treatises on metallurgy and the chemistry of the metals must be consulted. Iridium is frequently obtained in the form of a spongy gray mass, or a gray powder; but by heating either of these to whiteness, and subjecting them to compression, the metal may be brought into the form of a compact, lustrous mass resembling steel. In this form it is harder than iron. and somewhat malleable when hot, though brittle when cold. At ordinary temperatures it has a specific gravity of about 22.4 , being, with the exception of osmiun, the heaviest substance known. Its specific heat is about 0.0323 at ordinary temperatures, and its coefficient of linear expansion (Fahrenheit) is about 0.0000039 . Its melting point is very high, the estimates given by various authorities ranging from $3.600^{\circ} \mathrm{F}$. to $4.500^{\circ} \mathrm{F}$. Compact iridium, after being strongly heated, is insoluble in all acids, and is not affected by air or moisture. The metal has the symbol Ir, and an atomic weight of 193 it $\mathrm{O}=16$, or 191.5 if $\mathrm{H}=\mathrm{I}$. It forms numerous salts, but these are of no practical importance. The name "iridiun" (from Greek, "rainbow,") refers to the varied colors exhibited by the salts of this element, as they pass from one state of oxidation to another. Metallic iridium, either alone or alloyed with other metals of the platinum group, is used in the arts to a limited extent, where a hard, noncorrosible metal is needed. In particular, it is used for the tips of gold and stylographic pens, for the construction of standards of length, and for standard electrical resistance coils.

Iridosmine, ĭr-ĭ-dŏs'min, or Osmiridium, a natural alloy of iridium and osmium in varying proportions, is a hard slightly malleable mineral, crystallizing in hexagonal prisms. It occurs
as irregularly flattened grains, and contains some platinum, rhodium and other metals of the platinum group. It is found associated with platinum in the Ural Mountains, in South America, and elsewhere. It is also found in the black sands on the ocean beaches of northern Califormia, and a small amount is recovered yearly by placer miners in the Sierra Nevada. Iridosmine is used to a small extent for pointing gold pens.

Iriga, è-rētgã, Philippines, pueblo of the province of Ambos Camarines (Sur), Luzón, on the Buhi River, 23 miles southeast of Nueva Cáceres. It is on the main road, is a military and telegraph station, and one of the most important towns in the province. Pop. 17,100.

Iris, írís, in Greek mythology, daughter of Thaumas and Electra, sister of the Harpies, the fleet golden-winged messenger and servant of the Olympian gods, especially of Zeus and Hera. Iris was originally the personification of the rainbow, though she does not appear in the Homeric poems as the goddess of the rainbow. She is sometimes represented as a beautiful virgin with wings and a variegated dress, witl a rainbow above her, or a cloud on her head exhibiting all the colors of the rainbow.

Iris Family, a natural order of monocotyledonous herbs, mostly perennials with tubers, corms or rhizomes, and usually with an acrid flavor. About 800 species belonging to more than 50 genera have been described from temperate and tropical climates, mostly from South Africa and tropical America. They are characterized by two rows of leaves, the outer of which fit over and protect the inner (equitant) ; regular or irregular perfect flowers which are frequently handsome; perianth six parted, the other floral organs in threes; and many-seeded, three-celled fruits (capsules). Some species have been used as food in countries where they are native; others furnish rootstocks which are used for making perfumes, especially orris; some few have been employed to a limited extent in medicine; but the species most widely popular are cultivated for ornamental purposes. Of these last the most important genera are Iris (fleurs-de-Jis), Gladiolus, Frcesia, Crocus, Tigridia, Tritonia, Sisyrinchium, Ixia and Belemcanda, elsewhere described.

The plants of the genus Iris constitute one of the chief ornaments of the northern regions of the globe, and usually grow in wet places, bearing flowers of varions colors, but the prevailing tint is blue. The common wild iris or flag (I. pscudacorus), contmon in Europe and also found in the eastern United States, has yellow flowers of large size and long sword-like leaves. The gladdon or stinking iris (I. fotidissima) is a British species, with bluish flowers. Among favorite garden species are the English iris (I. xiphoides), the Persian iris (1. persica), the common iris (I. gcrmanica), the snake'shead iris (I. fubcrosa), and the Chalcedonian iris (I. susiana). Orris root consists of the rootstocks of the white-flowered I. florentina and some other species. Among other species found in the United States are the larger blue flag (1 . eicrsi-color). common from the Atlantic coast to the Mississippi, the slender blue flag (I. virginica), and several dwarf species.

Irish Academy, Royal, a literary and arcliæological association founded in Dublin, Ire-

IRISH CATHOLIC BENEVOLENT UNION - IRISH LAND LAWS

land. in $1-86$. Its object is to promote the study of litcrature, antiquities, and science. The library founded and owned by the association contains a large number of Irish manuscripts and documents of public interest. It has a fine collection of antiquities which have been loaned to the National Museum, Dublin. The association is governed by a council consisting of 21 members. This council meets regularly several times a year. The work is divided among the members, who are subdivided into committecs. The committees are three in number: committee of literature, committee of science, committee of antiquities. Students making historical research in Ireland have found this association of great assistance.

Irish Catholic BenevoIent Union, a fraternal organization founded in the United States in 1869. It has i49 subordinate societics and I4,000 members. The benefits disbursed since organization have amounted to over $\$ 2,500,000$, and during the year 1902 amounted to $\$ 45.37 \mathrm{I}$. The rnemberslip in the union is confined to persons of Irish extraction who are communlcants in the Roman Catholic Church.

Irish Deer, or Elk. See Elk.

Irish Language, Society for the Preserva-

 tion of, an organization estallished in 1873 , in Boston, Mass. The object is to foster the study of the Gaelic language so that it may again be one of the spoken languages of the Irish people. At first the society was called the Philo-Celtic Society. 'The headquarters are now in Dublin, where the organization was established in 1877 . It has a number of branches in different parts of the United States.Irish Land Laws. Under the Brehon laws, when the people of Ireland were divided into tribes, the land was usually the property of one of the four or five tribes which were the strongest in Erin. A large portion was given to the king or chief of the tribe, then divided among the clans that made up the tribe. Here again a large portion was given to the chief of the clan and then divided among the septs. The chief of the septs received the largest portion of the amount set apart for the sept. The free tribesmen, after the chief, received the greater part of the sept lands.

Some of the tribesmen, the Ceil, owned cattle, some, the Daer and Saer, were loaned cattle by the chicf. The Fuidhir were the tenants who performed the manual labor.

When a chief died, the tribesmen distributed his land among his descendants, and when a tribesman died, the chief distributed his property. After England took possession of Ireland, the land tenure in a large part of the island continned to be administered under the Predon laws; but within "The Palc" the Engslish feudal system prevailed; there the king alone owned the land and the tenants derived ownership from him. Gradually England fored her land laws upon Ireland. This was donc by driving the "rebellious Irish" ont of certain contutics, Kings and Queens, then all Ulster, when the Ulster platmation was established, in 1607. Other confiscations and dispossessions took place until all Ircland came under the English law. Cromwell took forcibly the best lands of Mlanster and Leinster and a large part of L'1ster. and divided the whole among his sol-
diers. Although some of the lands were restored later, it was retaken, by act of Parliamen, under Willian III. Naturally the chiefs and leaders among the people of Ireland were deprived of their lands and the friends of the king of England or the English government, were given Jrish possessions as a reward. The penal laws later made it a crime for a Catholic to acquire or hold land. Thus the Irish land question virtually began with the entrance of Henry II. into Ireland. With the Irish owners deprived of their lands there was instituted the system of "landlordism" which has been a hindrance to Ireland's progress. The majority of those who owned the land did not live upon it, and usually the money received for rent was spent in a foreign country. The landlord owned only the land, the houses had to be built and all improvements had to be made by the tenant and at his own expense. The more a holding was improved, the more rent was demanded. The "middle men" who held lands under the owner, and sublet to tenants were the means of increasing the burdens of the peasantry. The commission under Lord Devon, in 1843 , to investigate conditions in Ireland, revealed an alarming state of affairs and the famine of $1846-8$ brought the Irish Land question to the notice of the whole civilized world, even many of the English statesmen who had censured Irisli shiftlessness were astonished when they learned the nature of the land laws which gave power of eviction without any remuneration for improvements: and the wonder was that so much thrift and industry existed. In 1847 Lord Rissel endeavored to have Parliament pass an act to protect the tenant against loss by eviction. This measure failed, and others accepted by Parliament later proved ineffectisal. Two years after the terrible devastation by famine, the Tenant Right League was organized in Dublin, and its members began a systematic campaign to elect to Parliament members pledged to support measures for the relief of the tenants. The Land Acts of 1860, under the Palmerston ministry, may be said to have resulted from the agitation kept up by the Tenant Right League. Various other organizations for the betterment of the people of Ireland were established, and among them were "physical force" societies. In I870, under the Gladstone ministry, three new laws were enacted; that a tenant could not be evicted if his rent were paid; that this non-payment must be for at least three years: and that if the tenant choose. he might sell his improvements. This purchase of improvement clanse was a great advance in favor of tenants' rights. The Land League in various parts of the world, especially the United States, continued the agitation and brought the question of the wrongs of the Irish tenants before the whole world. The Ashbourne Act of I885 provided for the purchase of the lands by the tenants and nearly $\$ 25,000,000$ was set aside for that purpose. Later a like amount was added. In i89t the Balfour Law Purchase bill was passed and nearly $\$ 150,000,000$ was provided for its enactment. In ISo6 this law was improved; but for various reasons all the laws enacted by Parliament proved ineffective only in so far as the bringing of the matter to the notice of fair-minded statesmen. (See Land League.) The most radical and satisfactory "Land Purchase Bill" was enacted 14 Aug. Igo3, whereby the tenant
may purchase and own land and the government will, ander certain and fair conditions, be responsible for the payment. To George Wiyndham, who as chief sccretary for Ireland, prepared the bill, the credit is largely due for the passage of the act. (See Wrivham, George.) Consult: Reports on the "Land Purchase" acts for relief of Ireland: Hansard's 'Parliamentary Debates'; Guinell, 'The Brehon Laws': Naine, 'Lectures on the Early History of Institutions'; Fisher, "History of Landholding in Ireland": Riches, "The Irish Land Law': Fodkin, 'The Land War in lreland': Richey. 'The Irish Landlord.' See Great Britain-The Land Laws.

Irish Literary Society, an organization established in 1802, in London. Its ebject is to promote the study of lrish iiterature, music, art, and history: Some of the leading Irish literary men and women of England and Ireland are active or honorary members, and strive in many ways to promote the work of the societ f. The society provides lecture courses on topics pertaining to literary. Ireland, and it has a large library which may be used by any of its members. Some of the members are Justin McCarthy. IV. B. Ieats, Rev. Stopford Brooke, Barry O'Brien, and several of the well knowl writers among the Irish women. There were (in 1903) about 625 memhers.

Irish (Gaelic) Literature. See Celtic Literattre; Gaelic Literatlre

Irish Moss, an edible dulse or seaweed. See Carrageen.

Irish Music has been celebrated from almost prehistoric times, Irish teachers of the art as early as the 7 th century holding high rank as specialists in the faculties of continental and English colleges. While the bagpipe was the popular instrument of the common people, the harp was in great favor among the noble and educated classes, and their professional harpists were noted for their skill: The Irish scale originally consisting of five notes, gradually developed with the addition of a sixth and a serenth, unti] the Irish harp had a finely graduated scale of tones and semitones either in the key of C or G , extending through a compass of four octaves. A harp in the museum of Trinity College, Dublin, said to be that of Brian Boru, has 30 strings, and the Dallway larp, made in 1621, has 52 strings. The national temperament was so musically imbued that there were special songs and airs for different crafts and for almost every conceivable occasion. War marches were played by the pipers at the head of the clansmen marching to battle; spinning, weaving, smithy, plowing, boating, and sporting songs were in daily use, and there were even milking songs, slow and plaintive airs which had the effect of soothing the cows and induced them to submit gently to the milking operation. In Irish literature, native music is frequently classed under three different styles, known as mirth, sorrow, and sleep music, comprising (I) lively, spirited pieces, as jigs. reels, hompipes and other dance music; (2) solemn and slow pieces, as laments or dirges. commonly called caiones or keens, and sung on the occasion of a death; (3) plaintive and soothing airs, such as nurse tunes, cradle songs, lullabies, etc. In the numerous collections of these airs, about 2,000 different melodies are preserved, some of the
most popular being 'Savoumeen Dheelish,' 'Eileen Aroon' (popularly known by the Scotch appropriation (Robin Adair'), (The Coolin,' 'Garryowen,' (Langolee,' 'Molly Asthore' and 'Patrick's Day.' With the universal spread of music after the 17 th century; Irish music as a national feature became merged in the general history of the art. Turlogh Carolan, Carroll O'Daly, Reilly and the Conallons were among the clief of Ireland's ancient harpists and musicians. In modern times Ireland's musical productivity is represented by Nichael William Balfe, IVilliam Vincent Wallace, Sir Charles Villiers Stanford, and others. Consult: Graves and Stanford, 'Songs of Old Ireland and Irisly Songs and Ballads' (ISS2-92); id.. 'Songs of Erin'; Graves and Wood, 'Irish Folk Song": Graves, 'Songs of Irish Wit and Humor'); and collections of Bunting, Joyce, Moore and Petrie.

Irish Presbyterian Church, formerly called the Synod of Ulster. Its members are mostly descended from the Scotch Presbyterians, who migrated to Ireland by invitation of James I., between 1609 and 1612 , to colonize U1ster.

Irish Sea, the body of water between England and Ireland. It is connected with the Atlantic Ocean on the north by the North Channel, and on the south by Saint George's Channel. The north shore of Wales and the southwest shore of Scotland are washed by this sea. It is almost circular in form, about 1.40 miles north and south, and the same east and west. The largest arms of the sea are on the west shore. The Norecambe Bay on the coast of England, and several large fiords. Dublin and Dundalk bays are the most important on the west coast. The only large islands are the Isle of Jan in the north, about midway between England and Ireland, and Anglesey off the northwest coast and a part of Wales.

Irish Terrier, a rough-coated, strongly built terrier, sesembling the Welsh and Scotch terriers. See Dog.

Irish Texts Society, an organization established in London. Its object is to promote the study of Irish literature, - that is, of literature in the Irish text. They foster societies and issue publications to aid the work. In 1900 they published their third volume, which contained the poems of Egan O'Rahilly. In 1901 their annual volume contained Keating's 'History of Ireland," edited by David Comyn. The volume of 1903 contains an 'Irish-English Dictionary."

Iritis, i-ri'tis, inflammation of the iris, the colored curtain that shows the pupil in its centre. This disease follows several types, depending on the kind and rirulence of the causative agent. In the serous form there is an exudation of blood-serum into the space in front of the iris, and more or less fibrimous matter that tends to glue the parts together. Pain shoots through the whole eycball, and vision is dimmed by the turbid fluid. Persistent adhesions to the lens are formed, causing a permanent distortion of the shape of the pupil. Another form is the plastic, in which the pupil is actually. occluded by the fibrinous deposits. Rheumatism and syphilis are the two most irequent causes of the malady: but many constitntional diseases - as gout, diabetes, amemias, and menstrual disorders - may be factors in causing the disturbance, and it may also be secondary to diseases
in other parts of the eye, or even in the other eye, as in sympathetic ophthalmia. The treatment consists of dilating the pupil by dropping solutions of some drug, as atropine, into the conjunctival sac, treating the constitutional discase at the seat of the malady, and in relieving the pain by hot fomentations, blood letting, and the administration of drugs that are sedative. Syphilitic iritis is a lesion of the third stage of syphilis (q.w.), where tiny spots called gummata grow in the substance of the iris.

Irkutsk, ir'kootsk, a provincial government of Russia, inı eastern Siberia, separated from China by the Sayan Mountains. It has an area of 287,061 square miles. The country is generally mountainous, but produces rye, barley, oats and vegetables. The most important rivers are the Angara, Lena and its tributary the Vitim. Gold, iron, and salt figure foremost among the mineral products. Agriculture, cattle-breeding, and the transport of goods to and from China are the chief occupations of the people. Pop. 501.237 (one third exiles and forced colonists). The capital city, Irkutsk, on the Angara, is the residence of the governor-general of eastern Siberia and the seat of a bishop.

Iron, a common and exceedingly useful metallic element. which has been known and used in the arts for many centuries. It occurs in nature in the metallic form, both in meteorites and in certain lavas and volcanic rocks; but the commercial supply is obtained by the reduction of the oxids (or other ores) of the metal, by strongly heating them in a blast furnace with carbon. Iron is grayish in color, with a marked lustre. It crystallizes in the isometric system, usually in the forms of cubes or octahedra. The melting point of iron varies to a considerable extent, according to the impurities with which the metal is associated, and also, apparently, according to the physical condition of the iron itself. Pictet gives it as about $2900^{\circ} \mathrm{F}$. for iron that is sensibly pure. The specific gravity of the metal also varies to a considerable extent, the determinations ranging from 6.95 to 8.2 . The specific gravity of pure iron, at $60^{\circ} \mathrm{F}$., may be taken to be 7.85 . The specific heat of the metal is about 0.112 at ordinary temperatures, and its coefficient of expansion (on the Fahrenloeit scalc) is about 0.0000068 . Taking the electrical conductivity of mercury (at $32^{\circ} \mathrm{F}$.) as unity, the conductivity of iron is about 9.68 at $32^{\circ} \dot{F}$., and 6.19 at $212^{\circ} \mathrm{F}$. Iron is the most magnetic substance known. Soft, pure iron is capable of being magnctized very highly when surrounded by' a solenoid of wire that is conveying an clectrical current: but its magnctization persists only while the electric current is flowing, falling off, upon the cessation of the current, to a value that is practically negligeable. It is upon this property of temporary magnetization that the action of the telephone, the telegraph, and many other useful electrical inventions depends. (See $\$ 1$ agnetism : and for a full discussion of the phenomena of magnetization, consult Ewing, 'Maguctic Induction in Iron and Other Metals.') Hardened steel, when magnetized by the action of the electric current (or otherwise), retains a large proportion of its magnetism permanently. Iron hecomes nonmagnetic at a red heat, but regains its magnetic properties upon conling again. Wrought iron, when purc, is malleable to a certain extent at
all temperatures; but it yjelds to the hammer witlo special readiness when heated to whiteness, and it may then be forged and welded without difficuity. The presence of any considerable proportion of sulphur or phosphorus makes the metal "short," or brittle. When phosphorus is present in too great a proportion, the iron is brittle in the cold (that is, "cold-short") ; while if sulphur is present in excess it is brittle when hot (that is, it is "hot-short").

Chemically, iron is a dyad. It has the symbol Fe (from "ferrum," the Latin name for the metal), and an atomic weight of 56 if $\mathrm{O}=\mathrm{I} 5$, or 55.6 if $\mathrm{H}=\mathrm{I}$. It forms two basic oxids, (J) ferrous oxid, FeO , which gives rise to a series of salts known as "ferrous" salts, arid (2) ferric oxid (or ferric sesquioxid), $\mathrm{Fe}_{2} \mathrm{Q}_{3}$, which gives rise to a corresponding series of "ferric" salts. A third oxid, having the formula $\mathrm{Fe}_{3} \mathrm{O}_{4}$, is also known, which is magnetic. and occurs in nature, either amorphous or crystallized in octahedra, as the mineral "lodestone." This oxid is black in color, and is known as the black oxid, magnetic oxid. or ferroso-ferric oxid. It may be prepared, artificially, by oxidizing iron at a high temperature, either in air or in steam, or by heating carbonate of iron to $650^{\circ} \mathrm{F}$., in a current of carbon dioxid. It is not readily attacked by acids or other clemical agents, and for this reason a coating of it is often formed on articles of iron to protect them from further oxidation. The Russian iron that is used for stove-pipes is coated in this way: by a secret process. When in mass, iron does not readily decompose water at ordinary temperatures, though it does so at high temperatures. Finely divided iron decomposes water at $212^{\circ} \mathrm{F}$., and at lower temperatures according to some abithorities. When in a sufficiently fine state " i subdivision, iron will burn in the air or in oxygen, with the formation of a mixture of $\mathrm{Fe}_{3} \mathrm{O}_{3}$ and $\mathrm{Fe}_{3} \mathrm{O}_{4}$. Iron forms alloys with many metals, and combines directly with chlorine, bromine, iodine, fluorine, sulphur, carbon, boron, silicon, phosphorus, and arsenic. Nelted iron dissolves carbon to some extent, and when the molten mass is cooled the carbon is largely deposited in the graphitic form, although a part of it remains in the iron, combined with it in the form of a carbide: and it is believed that the presence of varying quantities of such carbides has much to do with the physical qualities of iron and steel. When melted iron that is saturated with carbon is allowed to cool under great pressure, the carbon is partly deposited in the form of minute crystals of diamond (q.v.) ; but the manufacture of the diamond by this method has not jet been made commercially practicable.

Ferrous Componnds.- Ferrous oxid. FeO, has not yet been prepared in a state of absolute purity, but it may be obtained approximately pure by reducing ferric oxid, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, by heating it to $600^{\circ} \mathrm{F}$. in a stream of pure hydrogen. It is black in color, and absorbs oxygen with great seadiness, passing into the higher oxids. Ferrous sulphate, otherwise known as protosulphate of iron, green vitriol, or copperas, is prepared by dissolving metallic iron in stulphuric acid. and crystallizing by evaporation. It has the formula $\mathrm{FeSO}+7 \mathrm{H}_{2} \mathrm{O}$, and is greenish in color. It is soluble in water, but the solution oxidizes readily. the salt becoming converted into ferric sulphate, $\mathrm{Fe}_{2}\left(\mathrm{SO}_{1}\right)$ s. Ferrous sulphate is largely used in the manufacture of certain black dyes,
in the preparation of writing ink, and, to a certain extent, in photography: The ferrous oxalate developer, made by mixing a solution of ferrous sulphate with one of oxalate of potassiun, was formerly in great favor, but has now fallen into comparative disuse, owing to the discovery of other developers that are more active and more convenient to handle. Ferrous chloride. FeCl_{2}, may be prepared by heating excess of iron wire or iron filings in chlorine, or by passing dry hydrochloric acid gas over hot metallic iron. It crystallizes in white, lustrous, six-sided forms, and is rolatile at a yellow heat. In air it oxidizes readily to a mixture of ferric oxide and ferric chloride. Ferrous carbonate, FeCO_{3}, is an insoluble compound. occurring in nature as "spathose iron ore," and constituting a valuable ore of iron. Ferrous sulphide, FeS, is a black or grayish-black body, which may be prepared by melting sulphur and iron together in the proportion of 56 parts (by weight) of iron to 32 of sulphur. It is insoluble in water. but dissolves readily in dilute acids. with copious liberation of sulphuretted hydrogen gas. See Chemical Analysis.

Ferric Compounds.-Ferric oxid. $\mathrm{Fe}_{2} \mathrm{O}_{3}$, occurs native as hematite ($q . v$. .), and it may be prepared artificially by heating ferrous sulphate to redness. Ferric lyydrate, $\mathrm{Fe}(\mathrm{OH})_{s}$ is preeipitated as a brownish-red powder when ammonia or caustic potash is added to the solution of a ferric salt. Ferric sulphate and ferric chloride are prepared by dissolving this hydrate in sulphuric and hydrochloric acids, respectively. In general, a ferrons salt, when in solution, is converted into the corresponding ferric salt by the action of oxidizing agents; and the ferric salts, conversely, are reduced to ferrous salts hy the action of certain reducing agents. Ferrous salts give a white precipitate with caustic alkalies, and, with potassium ferrocyanide, a light-blue precipitate which quickly turns black. Ferric salts give a reddish-brown precipitate with caustic alkalies, and a deep blue precipitate with potassium ferrocyanide.

Iron Age, (I) in mythology, the last of the four great ages of the world, supposed to be claracterized by abounding oppression, vice, and misery. (2) In archaology, an age, the third in succession, in whieln weapons and many other implements began to be made of iron, stone having been used for these purposes in the first. and bronze in the second.

Iron Founding, Chemistry of. Chemistry is the science which deals with the composition of material things; the chemistry of iron founding or iron casting is the science which deals with the composition of east iron. Cast iron implies a quality of iron which can be melted and poured into moulds and which will take the shape of the moulds. The three properties which make cast iron valuable as a cast product are fluidity, low shrinkage, and mutability of hardness. Pure iron does not have these essential claracteristics, consequently the casting properties of cast iron must be due to impuritics present with the iron. The chemistry of iron founding must therefore deal with these impurities and their reactions in making iron a cast product. The substances which occur with iron are carbon, silicon, phosphorus, sulphur, and manganese, and each of these has a decided effect upon cast iron.

Carbon--Carbon is the controlling element; in fact, east iron could not be cast iron without carbon. Iron as it comes from the blast furnace, known as pig iron, contains from two to four and one half per cent. carbon. Cast iron as it comes from the cupola generally retains from three to four per cent. carbon: special grades sometimes contain as low as two and one-quarter per cent., and as high as four and onequarter per cent.

Condition of Carbon in Cast Iron.-Chemieally, all the carbon which does not dissolve in a certain strength of nitric acid is classed as Free Carbon, while the carbon which dissolves in this acid is designated as Combined Carbon.

Free Carbon.-Free Carbon occurs as pure carbon interspersed in appreciable-sized particles between the crystals of iron. Free Carbon is subdivided according to its structure and mode of formation into Graphitic Carbon and Annealing Carbon.

Graphitic Carbon-Graphitic Carbon is the crystalline or platy form of earbon existing in all soft pig and cast iron which has been allowed to cool slowly from a molten condition.

Auncaling Carbon-Amealing Carbon is an amorphous modification of carbon which is developed in white iron by continued annealing at a high temperature.

The difference between Graphitic and Annealing Carbon is a physical one and is due to the mode of formation.

Combined Carbon.-Combined Carlon exists in east iron in two forms. Hardening Carbon and Carbide Carbon. Neither is visible to the naked eye, but each gives to iron a definite plysical structure which is discernible under the microscope. Chemically, they may be separated by treating the iron for a long period with a weak non-oxidizing acid in a non-oxidizing atmosphere.

Hordening Carbon--Carbon is held in the hardening condition by rapidly cooling iron from a ligh temperature. The exact condition of the carbon has not beer definitely determined. The writer considers that in this rapid cooling the carbon is caught and held in an atomic condition by the surrounding iron.

Carbide Carbon.-Carbide Carbon is the carbon which exists in the carbide of iron $\mathrm{Fe}_{3} \mathrm{C}$.

Factors Controlling the Condition of the Carbon.-There are three factors which control the condition of carbon in cast iron. First, the percentage of carbon in the iron; second, the rate at which the iron cools; third the percentage of other clements present with the carbon in the iron.
(1) Condition of Carbon Determined by Amonnt Prescht-The more carbon there is present in molten east iron when it begins to cool, the greater will be the percentage of carbon which will separate out in the free condition during eooling. For example-a four per cent. carbon iron would contain a greater percentage of free carbon than a three per cent. carbon iron, provided both were cooled under similar conditions and carried the same amount of other elements.
(2) Condition of Carbon Determined by Rati: of Coolins.-The slower cast iron cools the greater will be the percentage of carbon present in the free condition, and conversely, the faster

IRON FOUNDING

an iron is coolcd. the greater will be the proportion of the carbon present in the combined condition. If a portion of molten cast iron of a correct composition is poured into water the carbon will be retained in the combined condition; if another portion of the same iron is cooled very slowly, all the carbon will separate out into the free condition.
(3) Condition of Carbon Determined by Other Elements Prescnt.- The condition of the carbon in cast iron is controlled by the percentage of carbon present and the rate of cooling, consequently any clements which affect these two reactions will affect the relation of the free to the combined carbon. Silicon, sulphur, phosphorus. and manganese take a prominent part in one or both of these reactions and consequently exert an important influence upon the condition of the carbon. (This is discussed later under the individual elements.)

Effect of Carbon on the Playsical Propertics of Cast Iron.-Free carbon makes iron soft and is instrumental in prolonging the fluidity, decreasing shrinkage. and regulating strength. Hardening carbon and carbide carbon increase the hardness and strength of cast iron; they prevent the decrease in shrinkage which would occur if their carbon was present in the free condition ; they lower the melting point of cast iron.

Action of Carbon in Affecting the Physical Properfics of Cast Iront.-As cast iron cools from a molten condition the carbon separates out as free carbon, unites with the iron as carbide carbon, and is retained in the form of hardening carbon. Cast iron in the molten state is a solution of carbon in iron; as the temperature decreases the ability of the iron to hold the carbon in solution decreases, and the carbon begins to separate out as graphitic carbon. Heat is rendered latent in the solution of the carbon in the iron and this heat will be given up when the carbon separates out from the iron. This evolved heat will prolong fluidity and consequently will give a longer time for the separation of free carbon, thus increasing the softness and decreasing the shrinkage of the iron.

When cast iron cools, the carbon which did not separate out as free carbon tends to unite with the iron as carbide carbon in the compound $\mathrm{Fe}_{3} \mathrm{C}$. This occurs while the iron is passing througl the zone of :emperature in the neighborhood of $700^{\circ} \mathrm{C}$. The remainder of the carbon, which neither separates as free carbon nor unites with the iron as carbide carbon, remains present as hardening carbon.

Silicon.-Silicon is of value to cast iron on account of its intluence upon the carbon. Silicon of itself would add no bencficial quality as its effects are indirect and throngli the carbon. Pig iron generally contains from two-tenths of one per cent. to twelve per cent. silicon. The lower silicon grades are hard charcoal, hasic, or off bessemer irons, while the extremely high silfem irons are special softemers made to mix with other irons to increase the percentage of silicon. Cast iron carries from four-tenths of a per cent. to one per cent. silicon for chilled work and from one to three per cent. for different grades of grey iron work.

Condtion of Silienn in Cast Iron.-The condition of sulicon in cast iron has not been fully
determined. Certain silicides of iron have been separated from cast iron, but their composition is so indefinite and they are so easily broken up that their condition exerts no important influence upon cast iron.

Effect of Silicon on the Physical Properties of Cast Iron-Silicon through its action on the carbon softens cast iron, reduces its shrinkage, increases its fluidity, and regulates its strength.

The effect of silicon as a softener is limited. and when too much silicon is present its softening action ceases and it begins to harden iron. The same is true with regard to its effect on fluidity and strength. Cast iron with three and one-half per cent. silicon will hold almost no carbon in combination. consequently any silicon in excess of this amount exerts a direct effect upon the iron and renders it unfit for use as a cast product.

Action of Silicon on Carbon.-The importance of the action of silicon on carbon is due to the fact that silicon reduces the solubility of iron for carbon. An iron containing silicon will dissolve less carbon than an iron containing none. At a given temperature, then, the more silicon an iron contains the less carbon will the iron retain in the dissolved condition, consequently when an iron cools from a high temperature the amount of carbon that will separate out from solution is regulated by the amount of silicon present. The higher the silicon the less carbon will the iron hold in solution, and the more will separate out as free carbon.

Phosphorus.-Phosphorus confers both beneficial and harmful properties on cast iron. Cast iron generally contains from two-tenths to one and five-tenths per cent. phosphorus, but on account of its injurious effect it should be kept below one per cent. for light thin castings, and below five-tenths per cent. in heavy castings.

Condition of Phosphorus in Cast Iron.Phosphides of iron have been separated from cast iron, and phosphorus probably exists in some such form in cold cast iron. In the liguid state it presumably acts as a dissolved gas, giving greater activity to the particles of the iron and prolonging the period of cooling.

Effect of Phosphorus on the Properties of Cast Iron.-Phosphorus makes iron fluid. or at least prolongs the fluidity, and thus aids the iron in taking the exact form of the mold. It makes iron weak, brittle, and liable to break under shocks. It is advantageous in light, thin castings where fluidity and exactness of outline are important and where strength can be neglected. lt is very detrimental in large ir-regular-shape castings. especially where strength is required.

Action of Phosphorus on Cast Iron.Phosphorus by prolonging the fluidity of the iron gives the graphite a further opportunity to separate and thus tends to reduce shrinkage. By prolonging the iron in a plastic condition just after it sets, phosphorus allows the separating graphite to force the iron into the minutest corners of the mold. The phosphorus prolongs the cooling of the iron as it crystallizes out and thus allows it to separate into larger crystals, which weakens the iron and causes it to be brittle. When phosphorus is present in large quantitics it forms a eutectic with the iron which fills up the crevices between the particles

IRON. MANUFACTURE OF

which have previously solidified. When the entectic solidifies later it causes strains in the iron which makes it short and liable to break under shock.

Sulphur.-Suppur acts in two ways in cast iron. First through the carbon and second by uniting directly with the iron. On account of its injurious action sulphur is generally kept below fifteen hundredths of one per cent., and for light work below eight hundredths of one per cent.

Condition of Sulphur in Cast Iron.-Sulphur exists in cold cast iron as a sulphide of iron or as a sulphide of manganese. In molten cast iron it is probably dissolved as gaseous sulphur.

Effect of Sulphur on the Propertie's of Cast Iron.-Sulphur makes iron hard. red short, weak, and liable to contain hlow holes. Its only beneficial effect is to give a hard wearing quality to iron subjected to frictional wear.

Action of Sulphur on Cast Iron.-Sulphur, by shortening the time of cooling of cast iron, prevents the separation of graphitic carbon. The carbon which has not been able to separate as free carbon remains in the combined condition. and consequently sulphur tends to harden the iron.

When cast iron solidifies sulphur is still in a gaseous condition and surrounds each particle of iron with a covering of gaseous sulphur. When the iron is sufficiently cold. the sulphur solidifies, or unites with the iron as a sulphide of iron. In this condition it occupies less space than in the gaseous condition and thus leaves the crystals surrounded by minute spaces which makes the iron very brittle and weak.

Manganesc.-Manganese acts in two opposite ways on cast iron. It increases the power of the iron to hold carbon in solution and consequently tends to increase the combined carbon and hardness. It unites with the sulphur and forms a sulphide of iron which separates out before the iron sets and thus prevents the sulphur from exerting a hardening effect. Pig iron contains from two-tenths of one per cent. to three and one-half per cent. manganese, while cast iron ordinarily runs from one-tenth of one per cent. to one per cent. in manganese.

Condition of Manganesc in Cast Iron.Manganese exists in three conditions in cast iron. In the molten condition it tends to unite with the sulphur as manganese sulphide. As the iron cools through the critical temperature the manganese unites with the carbon to form a carbide $\ n_{3} C$. Any manganese not so united alloys with the iron.

Effect of Manganese an the Propertics of Cust Iron.- Manganese by its action on the carbon tends to harden cast iron, while its effect on sulphur tends to soften cast iron. Whether the hardening effect with the carbon or the softening effect on the sulphur predominates depends upon the amount of manganese and sulphur present.

Action of Manganese on Cast Iron.-Manganese unites with the sulphur and forms a manganese sulphide at a temperature above the solidifying temperature of cast iron. Consecquently this manganese sulphide has no more detrimental effect on the iron than so many small particles of any neutral impurity Manganese thercfore prevents the bad effect of the sulphur, and hence in the case of high sulphur
irons it acts as a softener. The manganese in excess of that which unites with the sulphur unites with the carbon to form a carbide $\lambda \mathrm{In}_{2} \mathrm{C}$. This carbide hardens the iron, for it of itself is an intensely hard substance.

Herbert E. Fiel.d.
 Pittsburgh, Pa.

Iron, Manufacture of. The metallic products extracted from iron ores for use in the arts are generally divided into three classes: (1) pig or cast iron, (2) wronglit iron, and (3) steel. See Iron and Steel: Iron and Steel Industry: Steel Industry; Steel.

Although the minerals in which iron occurs are very numerous, the only ones from which the metal can be extracted under economical conditions-that is the only ores of iron-aie those in which the iton is present as an oxide, as in magnetites, hematites, and limonites, or as a carbonate as in siderites. (See Iron Ores.) When carbonate of iron, moreover. is heated to a sufficiently high temperature either at an early stage of the process of manuiacture or in a preliminary operation (the calcining of the ore), the carbonic acid which it contains is expelled as a gas and the iron is reduced to the condition of an oxide, hence the operation of extracting metallic iron from its ores always consists in the deoxidation or reduction of iron oxide.

In order to reduce oxide of iron two conditions are essential: (i) contact with a reducing or deoxidizing substance, and (2) a high temperature. By heating iron oxide in contact with some carbonaccous fuel these two necessary conditions are realized. the carbon acting both as the needed fuel and as the needed reducing body. for at a sufficiently high temperature it has a stronger affinity for oxygen than iron and therefore deprives the latter of that element.

Iron ore, however, never consists of pure oxide of iron: in the richest varieties the iron oxide is associated with at least a small amount of other minerals, generally of an eartly character, such as quartz, clay. or limestone, and which are called the gangue or ecin stuff. In the majority of cases the gangue is silicious, that is. made up chielly of silica or quartz. Silica is per sc a very infusible compound, but when brought in contact with iros oxide at a high temperature it combines readily with it to form a silicate of iron, a readily fusible substance or slag.

Besides the earthy matters which constitute the gangue, iron ores generally contain other minerals in which are present such elements as phosphorus, sulphur, manganese. etc. See Irosi Founding. Chemistry of.

Finally. if metallic iron be kept in contact with incandescent carbon for a sufficient length of time, a considerable amount of that element will be absorbed by the metal. The conditions are then said to be carburizing. This aftinity of iron for carbon plays a most important part in its metallurgy, chicfly because of the marked influence of carbon upon the melting point of the metal. Pure or rather carbonless iron requires a very high temperature to be mehted (about $2,000^{\circ} \mathrm{F}$.), necessitating the use of special furnaces and implements capable of producing intense heat. $B y$ the introduction of some carbon in the iron, however. its melting point is greatly lowered, from which the im-

IRON, MANUFACTURE OF

portant conclusion is to be drawn that if the metallic product of the metallurgical operation be highly carburized it will be produced and maintained in a liquid state much more readily than if it were freer from carbon. If the iron contains but a small amount of carbon and if we lack the means of producing an intense heat. the product of the operation will be pasty and not molten.

The Primitiae or Direct Ifethods.- The simple operation outlined in the preceding paragraphs which consists in heating iron ore in contact with carbonaceous fuel, was the one conducted in the direct or primitive methods which for ages were the only ones used for the production of iron and steel. Charcoal was the inel employed and the simple furnace required. called a forge or bloomery, resembled a smith's iorge.

So simple is the operation required for extracting a small mass of malleable iron from some rich ore that it seems highly probable that man became acquainted with the use of iron at a very early period of his existence. A fire accidentally lighted by a primeval inan upon the ground where iron ore occurred near the surface would have resulted, under suitable conditions. in the production of some metallic iron. Indeed, the first iron furnaces of which we have any record consisted in a single excavation dug preferably on the side of a hill, facing the prevailing wind, and with suitable openings at the bottom for the necessary draft. Artificial blast was later introduced and the construction of the furnace improved. It will suffice to mention here two representative types of this class of furnaces: (I) the old catalan furnace or forge, and (2) the American bloomery, a modern adaptation of this primitive forge.

The catalan forge takes its name from the province of Catalonia, in Spain, where at one time it supplied a large proportion of the world's production of iron, and where, indeed, it is still in operation, as well as in other localities adjacent to the Pyrenees. In its more modcrn form it consists of a shallow hearth made un of thick iron plates, with the exception of the back. which generally consists of masonry lined with fire clay. while the bottom is frequently made of a movable block of granite. The blast was undoubtedly at first supplied by crude bellows, but was later produced by a water hlower or "trompe" The furnace is kept filled with charcoal and small lumps of rich iron ore until a pasty mass of metallic iron is ohtained weighing some 350 pounds, called a "bloom." and which contains much slag. It is then removed from the furnace and much of the slag expelled he hammering or squeezing.

For many years a direct process known as the American blonmery process was extensively tised in those localities of the United States v:lhere suitable ore and an abundant supply of charcoal were available. This process does not differ in any essential feature from the catalan method, which has just been descrihed, but in details nf furnace construction and in manipulatinas there are many points of difference between the two methods.

The hearth of the bloomery is kept full with lurning charcoal and coarsely pulverized ores tintil a hloom of iron weighing some 300 or soo pounds has been produced and which gencrally requires three hours. The loss of iron
in the operation is said to be about 20 per cent and the fuel consumption some $2^{1 / 2}$ tons of charcoal per ton of iron produced.

These methods are called direct because they yield iron by the direct treatment of the ore in a single operation, in contradistinction to the modern methods in which at least two distinct treatments are required for the production of iron and steel, the first operation yielding, as will be seen presently, an impure product called cast iron, which must be refined or purified in order to convert it into iron or steel.

While these methods are now obsolete, having been replaced by the more modern indirect processes, they are still in use in some countries, although only to a very limited extent.

According to James M. Swank, in 1902 and 1903 there were no forges in operation in the United States for the manufacture of blooms and billets from the ore. In igor the blooms and billets so made amounted to 2,310 gross tons, against 4.292 tons in 1900, 3.142 tons in 1899, 1.66 tons in $1898,1,455$ tons in $1897,1,346$ tons in IS96. fo tons in I895, 40 tons in I894. 864 tons in 1893, and 2.182 tons in 1892. All the ore blooms produced since 1897 were made by the Chateaugay Ore and Iron Company, of Plattsburgh. N. Y., at its Standish Works, which, however, have been idle since I\&g2.

The Blast Furnace. - In order to prevent the great waste of iron previously, alluded to and resulting from the combination of the gangue of the ore with some of the metallic iron, it is necessary to provide a substance with which the silica of the gangue will readily unite. forming with it a fusible slag, and as silica is an acid it is necessary to provide a base to that effect.

Limestone (a carbonate of lime) is the most readily obtainable and cheapest substance for such purpose. It is either burned or calcined in a preliminary operation by which it is converted into lime, the carbonic acid escaping as a gas, or if used raw, it is likewise changed to lime at an early stage of the metallurgical operation by the heat to which it is exposed.

The substances which are thus added for the purpose of forming a fusible compound with the gangue of the ore or with other impurities are called fluxes.

The use of fluxes constitutes one of the most important improvements ever introduced in the manufacture of iron, for it made it possible to extract the metal, under economical conditions, from the enormous amount of relatively lean ores which occur in nature, and to do so at a relatively very low cost. Previonsly to the use of fluxes it was unprofitable to treat ore containing less than some 60 or 70 per cent of metallic iron, while with their assistance iron ores with as little as some 25 per cent of iron may be profitably smelted.

With the addition of lime, however. it is no longer possible 10 carry on the operation in the very simple furnace or forge previously used. hecause the resulting slag or silicate of lime is a much more infusible substance than the silicate of iron prodiced without the addition of lime and a sufficiently high temperature to fuse this lime slag could not be produced in the forge furnace.

The very high temperature required to fuse the lime slag necessitates the use of a very ditferent type of apparatus (a high, chimney-like

Eirnace), together with the necessary appliances for the production of the needed heat; in other words, the reduction of the ore must be carried on in the modern blast furnace. The blast furnace was gradually evolved from the primitive forge or bloomery by a mere increase in heiglit, such furnaces as the "Osmund," the "Stuickofen," and the "Blauofen" forming as many steps in this evolution. The exact date of the origin of the blast furnace, that is, of an apparatus in which cast iron alone could be produced - and it might be added with addition of flux - is not positively known but it is generally believed that it originated in the Rhine provinces about the beginning of the 14th century:

The operation conducted in early blast furnaces consisted chiefly in smelting iron ore with the necessary amount of charcoal for fuel and of limestone to flux the gangue of the ore. The waste gases which contained a large amount of carbon monoxide were allowed to escape and to burn freely at the top of the furnace. The molten cast iron was allowed to collect at the bottom of the furnace until a sufficient quantity had accumulated, when it was withdrawn by opening a tap hole at the bottom and in the front part of the furnace. The slag was permitted to escape as soon as formed by flowing through an opening and over a stone on one side of the furnace known as the damstone. The blast was at first created by rude bellows, later by blowing cylinders, and finally by steam-blowing engines, while no attempt was made at preheating it.

The following improvements introduced in blast furnace practice, outside of mere improvements in construction, marked the most important steps which have led to the modern blast furnace operations. They are mentioned in a chronological order: (1) Use of coke instead of charcoal introduced by Abraham Darby in 1735: (2) the heating of the blast first proposed by James Beaumont Neilson in 1828; (3) the closing of the top of the furnace and utilization of the waste gases by P. Taylor in 1840; (4) the heating of the hot blast stoves by the waste gases of the furnace successfully accomplished between I833 and 1845 by Faber du Faur and James Palmer Budd: (5) the cup and cone arrangement for closing the top of the furnace invented by G. Parry in 1850 ; (6) the waste gases used for generating steam by James Palmer Budd in about 1855: (7) regenerative stoves for heating the blast introduced by E.H. Cowner in 1860.

The important and numerous improvements in construction cover every part of the furnace as well as every appliance connected with iron making. To attenpt even to mention them would occupy an amount of space which is not here available.

Modern American blast furnaces generally measure from 90 to 100 feet in height and from 20 to 30 feet in diameter at the widest part, while the hearth diameter frequently measures I3 or I4 feet, giving a capacity of from 20,000 to 30,000 cubic feet. The bosh walls which extend from the hearth to the widest part of the furnace are cooled by hollow rings of cast iron or bronze built in sections and inserted into the brick work. and through which water is constantly flowing. The water required for cooling purposes often exceeds $3,000,000$ United States
gallons in 24 hours. Two down-comers conduct the blast from the top of the furnace to the dust-catchers, from which it is led to the stoves and the boilers by means of a gas mair. Another main leads the blast from the stoves to the furnace. Before connecting with the bustle pipe surrounding the furnace the hot blast main frequently divides in order to better equalize the pressure around the complete circle. Explosion doors are provided at the furnace top, and whenever possible in all pipes and chambers carrying gas.

Blast at the rate of 40,000 to 60,000 cubic feet per minute is forced into the furnace through pipes or "tuyeres," varying between 12 and 20 in number, under a pressure of to to 15 pounds per square inch and preheated by its passage through the stoves to a temperature of 1,000 to $1,500^{\circ} \mathrm{F}$. The ontput of these furnaces frequently averages 600 tons of pigiron in 24 hours and is occasionally considerably greater, the furnace being tapped six times a day and some Ioo tons of iron being obtained at each cast. The tapping hole is frequently opened by means of compressed air drills and closed by means of a tapping hole gun which forces clay into the hole. The fuel consumption varies between 1,500 and 2,000 pounds of coke per ton of pig iron, according to conditions.

The raw materials are conveyed to the top of the furnace by an inclined plane and skip cars, which discharge the raw materials antomatically into a receiving hopper provided with a bell and placed over the main hopper. The use of an upper bell acting as a seal while the material is introduced into the furnace. prevents the escape and waste of the gases during this operation, resulting in further economy.

Modern blowing engines supplying the blast to the furnace are constructed both horizontal and vertical and are generally compound and condensing. They frequently have a capacity of some 30,000 cubic feet of air per minute which they can deliver under a pressure of 25 pounds or more per square inch if needed. Two such engines are generally employed for each furnace. A recent improvement in blowing engine construction consists in the use of gas or internal combustion engines for creating the blast. The first successful engine of this type was built at the Cockerill Steel Works at Seraing in Belgium and the results were so encouraging that many other similar engines have since been constructed, especially in Germany, Belgium, and France. It has been found by careful tests that gas blowing engines consume only from one sixth to one fourth of the gas which would be required to raise the steam for use in an ordinary engine of the same capacity. In spite of its evident superiority over steam engines, however, its introduction into American plants is proceeding very slowly.

The modern stoves employed for heating the blast before it enters the blast furmace consist, ronghly stated, in high cylindrical chambers filled with bricks placed some distance apart. The waste gases from the furnace are admitted at one end of these chambers together with sufficient air to burn them, and the hot prodincts of the combustion on their way to the chimney heat the brick work to a very high temperature. After the stove las thus been properly heaterl. the supply of gas and air is shut off and the cold blast from the engine is admitted. The heat

IRON, MANUFACTURE OF

which has been stored up in the brick work is now imparted to the blast, which in this way is highly preheated. After the stove has cooled down to a certain temperature the blast is shut off and the stove is again heated by the waste gases. Nodern furnaces are generally provided with four of these stoves, the blast passing in succession through each stove for one hour, while the three others are being heated. W'ith such regenerative system of heating the temperature can readily be maintained at $1,450^{\circ} \mathrm{F}$.: which results in a considerable economy of fued in the furnace.

Until quite recently it was the universal practice, after opening the tap hole, to allow the iron to run into sand molds, prepared for that purpose on the floor in front of the furnace, and this method is still widely used. The metallic mass filling each mold is called a pig, while the metal filling the channels connecting a number of molds is called a sow. The pigs are, of course, fastened to the sow, and, after solidification, must be broken loose, generally with sledgehammers. When the cast iron is to be used for conversion into steel by the Bessemer process the metal as it flows from the furnace is frequently received in large tanks or "Jadles" mounted on wheels, which are afterward taken to the steel mill, where the metal is converted into steel without being allowed to solidify, thus saving the cost of remelting the pig iron. In later years casting machines have been introduced to save the heavy labor connected with the handling of the pigs, and to otherwise expedite the casting operation. Nearly all these devices consist in an endless chain, the links of which are made of small iron molds, which are filled in succession by passing under the stream of molten metal. The chain then carries the partially solidified pigs or "chills" under water to promote their cooling and discharge them antomatically on cars, the empty molds returning to the ladle again to be filled, and so on.

In the modern furnace the slag tap hole or "cinder notch" is kept closed as well as the iron tap hole, being opened only at stated intervals, generally a short time before the casting of the iron. In the latest American practice the slag is generally received in ladles which carry it away to the dumping place, or it is handled by means of a device known as "slag conveyor," and which is not unlike the casting machines just described, consisting in an endless chain of shallow pans which are successively filled as they pass under the stream of molten slag. After being immersed under water the pans are automatically cmptied on cars.

The Products of the Blast Furnace--Owing to the extremely ligh temperature at which the operation must be conducted and to prolonged contact between the reduced iron and the incandescent carbonaceous fuel, the conditions in a blast furnace are strongly carburizing, the metal absorbing a large amount of carbon, (generally between 3 and 4 per cent). Norenver, nwing to the fact that highly carlmrized iron is much more fusible (melting generally between $2,100^{\circ}$ and $2,400^{\circ} \mathrm{F}$.) than iron containing little carbon, and to the intense heat of the furnace, the extracted metal, instead nf being obtained in a semi-fused, pasty condition. will be perfectly liquid, and on account of its high specific gravity will settle at the bot-
tom of the furnace. The slag also will be melted, and being lighter than the iron, will float as a separate layer above the metallic bath. The molten slag and the molten iron are withdrawn separately from the furnace, thus effecting their complete separation.

This highly carburized iron produced in the blast furnace is called pig iron, or cast iron. Owing principally to the large amount of carbon which it contains, the properties of cast iron are very different from those of wrought iron and steel.

Owing to the intensely reducing conditions prevailing in a blast furnace, to the high temperature and to the presence of metallic iron. many impurities, such as phosphorus, sulphur, manganese, and silicon, which are always present in greater or less amount in the ore, fux, and fuel, are partially or wholly reduced to the metallic state, and in this condition are retained, in part at least, by the molten cast iron. Cast iron, therefore, is not simply an association of iron and carbon, but contains also varying amonnts of the impurities just mentioned.

The following table illustrates the rapid increase in the world's production of cast iron since the beginning of the last century:

years	Production tons.	years	Production tons.
1800	825,000	1880	17,950,000
1830	1,825,000	1890	27,157,000
1850	4,750,000	1900	40,400,000
1870	. $11,900,000$	1903	46.420,000

The following table shows the wonderful growth of the manufacture of cast iron in the United States:

years	Production tons.	Years	Production tons.
1810	53.908	1901	15.878 .354
1850	563,755	1902	17,821,307
1875	2,023,73,	1903	18,009,2S2
1900	13.789,242	1904	16,497.03

The Refining of Cast Iron or the Indirect Methods for the Production of Wrought Irout and Steel.- Cast iron is not malleable - it cannot be forged; that is, it cannot be shaped into finished implements by mechanical pressure such as that exerted by hammering, rolling, etc. Cast iron, therefore. can only be used as such for casting purposes, which means that cast iron implements can only be obtained by pouring the molten metal into molds having exactly or very nearly the external shape of the objects we desire to nanufacture. Cast iron, moreover, is brittle and lacks both strength and toughness, which further greatly limits its useful application. To produce a metal which is forgeable, which possesses more strengtl and toughness and other valuable properties absent in cast iron, and, thercfore, a much more useful metal, it is necessary to subject cast iron to a refining operation by which it is converted either into steel or into wrouglit iron.

This indirect method of producing iron and steel is the prevailing modern method, for, in spite of strenuous efforts made to improve the older or direct incthod, it remains by far the cheaper of the two.

The refining of cast iron or its conversion into wrought iron or steel consists essentially in eliminating a large proportion of the impurities which it contains. especially carbon and silicon. In order to expel these impurities

IRON, MANUFACTURE OF

we must bring the cast iron in contact with a substance, either solid or gascous, possessing more affinity for them than the iron itself, and here again heat is required for such reaction to take place. Oxygen has a very great affinity both for carbon and silicon, and in general for the other impurities present in cast iron, and it is upon this element that we shall depend for the elimination of the impurities. We may for that purpose use either atmospheric oxygen or the oxygen of some oxidizing substances. The oxidizing agents generally used besides atmospheric oxygen are tich iron ore or rich slag from some previous operation, or the slag produced in the refining operation itself. These substances are composed essentially of oxide of iron, which is an oxidizing compound, for it radily parts with some of its oxygen which is taken up by the carbon of the cast iron.

When cast iron in order to be purified is exposed at a sufficiently high temperature to the action of atmospheric oxygen or of some other oxidizing substance, the silicon which it contains combines with some nxygen, being converted to silica. Some of the iron itself will be oxidized and the resulting oxide of iron will in turn enter into combination with the silica to form a fusible silicate of iron or slag.

The carbon present in the cast iron also combines with some atmospheric oxygen, or more frequently with some of the oxygen held by the slag or by some iron ore purposely added, and is converted into carbonic oxide or carbonic acid gas, in which condition it escapes from the furnace. By being deprived of its oxygen the iron ore added in some of these refining operations is reduced to the metallic state and incorporated into the refined metal.

The Products of the Refining of Cast Iron.As was the case in the treatment of the ore, the nature of the metal resulting from the refining of cast iron will likewise greatly depend upon the temperature at which the operation is conducted. If the temperature be low the refined metal will be obtained in a semi-fused or pasty condition, and will on that account inchude a relatively large amount of slag, while it will generally be quite free from carbon. In other words, the product of the refining operation conducted under these conditions will be wrought iron, or, if the conditions be made slightly more carburizing, steely iron. These are the conditions prevailing in the old forge refining of cast iron or "finery method," as well as in the more modern puddling process for the manufacture of wrought iron, which methods will be outlined briefly.

The Finery Methods for the Production of W'rought Iron.- When the ironmaster of the I3th or I4th century, through the gradual development in height of its catalan or other forge so increased the carburizing conditions that he finally obtained a small amount of molten cast iron. he was confronted with the necessity of refining this brittle, unforgeable metal in order to convert it into malleable iron, and he quitc naturally endcavored to conduct this refining operation in furnaces similar to the low hearths or forges which for so many centuries had been the only apparatus used for the direct extraction of iron from its ores. In these forges, known as "fineries," the pig iron was melted in contact with charcoal and under the oxidizing infuence of a blast issuing from a single tuyere. While
the details of the fincry operation and of the furnace differed much in various countries, and even in different sections of the same country. their essential features were identical. Four of these processes attamed especial prominence and lave not been entirely driven ont of existence by the puddling process nor later by the Bessemer process: they are the Walloon process as still conducted in Sweden, the Franche Comté process, the Lancashire process still used in England, the United States, and some other countries, and the South Wales process which was for many years extensively used in South Wales for the production of iron plates for tinning. In recent years, however, soft Bessemer and open hearth steel have taken the place of wrought iron for such purpose and this once flourishing industry is now quite, if not altogether, extinct.

These charcoal hearths or fineries are frequently used for the remelting of iron and steeJ scrap resulting in the production of wrought iron of high quality. The operation consists in filling the hearth with charcoal, upon which the scrap is placed and covered with additional charcoal and the charge melted. The slag produced in this operation is very basic and therefore promotes the removal of the phosphorus and sulphur which are eliminated to a notable extent.

The iron manufactured or remelted in these hearths is mainly used for the manufacture of plates, sheets, skelp rods, etc.. which are used in the manufacture of boiler tubes, boilers, screws, rivets, wire, etc.

According to J. M. Swank, the iron blooms produced in forges from pig iron and scrap in Igo3. in the United States, and which were for sale and not for the consumption of the makers, amounted to 9.940 tons, against 12.002 tons in 1902, 8.237 tons in 1901. 8,655 tons in 1900, 9.932 tons in IS99, 6,345 tons in $1898,7,159$ tons in I897, and 6.494 tons in 1896. All the pig and scrap blooms made in forges from 1895 to 1903. and for sale, were made in New York, Pemsylvania, and Maryland.

The Puddling Process. - The finery methods. described in the preceding paragraphs were the only ones available for the conversion of cast iron into wrought iron until an Englishman by the name of Henry Cort invented the puddling process in the year IfSt. a date which marks a very important epoch in the metallurgy of iron. It has been seen that in the finery processes the pig iron is heated in contact with solid fuel, and this necessitates the use of charcoal, because this fuel alone is sufficiently pure to yield wrought iron of good quality. If the attempt were made to use inferior fuels. such as coal or coke. it would be found that the iron absorbed so much impurity from the coal. notably sulphur, as to be of inferior quality. The necessity of using such an expensive fuel as charcoal. and a large amount of it. is a serious limitation of the finery processes, greatly increasing the price of the iron. To make the use of more impurc but cheaper fuel possihle. Cort proposed to conduct the refining of the pig iron in the hearth of a reverheratory furnace, that is, out of contact with the fuel itself. thereby preventing the contamination of the iron by the impurities of the fuel. In a reverheratory furnace the fucl is burnt in a separate fireplace, the substance to be treated coming ir
contact only with the flames and gases resulting from the combustion of the fuel. In the puddling furnace, moreover, the labor required per ton of iron was greatly reduced and it was possible to treat in one operation a considerably greater amount of pig iron.

The puddling operation as originally conducted by Cort and others is now known as the "dry puddling process," while the more modern method of conducting the operation which involves some important alteration of the original method, is known as the "wet" or "pig boiling" puddling process. Only the latter will here be described.

The Whet or Pig Boiling Puddling Process.In the original or dry puddling process, while the oxidation of the carbon, silicon, and other impurities was brought about to a certain extent by the oxide of iron formed during the operation, we depended mostly for their elimination upon the oxygen of the air, and this necessitates for reasons which cannot here be explained the use of white or refined pig iron. The modification about to be described was introduced into the puddling process for the purpose of making it possible to treat grey cast iron at once in the reverberatory furnace doing away with the preliminary refining operation and otherwise hastening the process. It is said to have been first uscd by Joseph Hall, of the firm of Barrows and Hall, of Tipton, England, about the year 1830.

The modern puddling furnace employed for the conduct of the pig boiling process resembles in its general lines the earlier puddling furnaces, the essential difference being in the nature of the lining of the hearth. The bottom of the hearth and the sides are made of iron plates which are protected by a thick layer of oxide of iron, called the "fettling" of the furnace. The substances used for fettling purposes consist of pure hematites (ferric oxide) crushed or ground to the desired size and of slags or scales obtained in the production or working of iron, and which are very rich in oxide of iron, such as roasted tap cinder or "bull-dog." This oxide lining, as previously stated, plays an important part in the operation by giving up a part of its oxygen to the carbon and other impurities present in the pig iron, thus greatly hastening their removal. From 300 to 500 pounds of grcy pig iron are generally treated in these furnaces, frequently with the addition of some hammer scale, which consists of magnetic nxide of iron and which therefore help in oxidizing the impurities. The pig iron is now molted and becomes liquid without assuming the pasty condition characteristic of white pig irnn. During the melting down perind a large proportion of the silicon is oxidized and some of the carbon chiefly by the oxygen of the air. Some iron also is oxidized and slag formerl, whilc owing to the removal of silicon the remaining carhon passes to the combine el condition.

The bath is constantly stirred or "rabhled" so as to promote contact of all portions with the oxidizing lining and with the iron oxide of the slag, thus hastening the oxidation of the silienn and carbon. As the carbon is expelled the mass becomes pasty, the metal having now "come to nature." The spongy mass of wrought iron is then divided into balls weighing some 60 monnds, which are withdrawn from the furnace and worked in the usual way.

The whole operation lasts usually about $11 / 2$ hour, but may be longer or shorter, according to the purity of the metal treated. The loss varics from 7 to 20 per cent, being chiefly dependent upon the amount of impurity in the pig iron. According to Turner, the consumption of coal in the pudding furnace per ton of puddled bars amounts generally to about 2,600 pounds. The following interesting comments are from Prof. H. M. Howe:
"While the yearly production of wrought iron in the United States more than doubled between 1870 and 1890, yet since the latter year it has shrunk very much, probably nearly 10 that of 1870 ; and between 1870 and 1900 the proportion which the production of wronght iron bears to that of steel diminished very greatly. Of the combined annual production of wrought iron and steel in the United States that of wrought iron formed 95 per cent in 1870, 63 per cent in 1880, 37 per cent in 1890 , and probably not far from 15 per cent in 1899. The corresponding numbers for Great Britain are 34 per cent for 1890 and 19 per cent for 1899 , and 16 per cent for 1901 . In the year I899 the average number of British puddling furmaces in operation is reported as 1, I.49 out of a total of 1,320 in existence. Thus in 19 years the position of wrought iron changed from that of the chief product to one of secondary importance."

Albert Sauveur, Assistant Professor of Metallurgy, Hara'ard University: and Editor of 'The Iron and Stecl Magazine.'

Iron and Steel Industry in America. The iron of commerce is classified under three groups. These are "wrought iron," "steel," and "cast" or "pig iron."

In the colonial period the British government systematically discouraged all efforts of the colonists to produce iron, in order to avoid competition with home industries. There were forges or bloomeries in nearly all the colonies from the times of earliest settlement, and as unlimited supplies of fuel were always at hand in the vast forests it was only necessary to find ore and obtain persons who could construct forges. The iron required for structural purposes, such as bars, straps, nails, sheets, etc., was obtained in the early days either by hammering the bloom from the forge or by shaping with rolls propelled hy water-power. In fact, before the invention of the puddling process in England by Cort, in 1784 , a large proportion of all forms of wrought iron were derived in this manner. The old so-called "Walloon" process of refining pig iron into the malleable or wrought form or into a crude mild steel was introduced into the colonies at an early date in their history. By the puddling process malleable iron is not directly produced from the ore, as in the older methods of manufacture, but indirectly from pig iron. The introduction of the puddling process was sccond in importance to no other invention in the history of the iron industry of this comntry.

After the Revolution the iron industry developed steadily but slowly, probably owing to the fact that, as in colonial days, much, if not most, of the irnn used along the seahoard was imported. No statistics of the production of iron were collected before the year 18io. The produc-
tion of pig and cast iron in that year was 53.908 tons: wrought and malleable iron of all kinds, 27,105 tons: having a total value of $\$ 6.081,374$, of which amount Pennsylvania produced $\$ 2,473,748$. The product of the steel iurnaces of Massachusetts, Rhode Island. New Jersey, Pennsylvania, Virginia and South Carolina in ISio was 9I7 tons. ralued at Si $4+7.736$; of the whole number of steel furnaces Pennsylvania contained five, producing 531 tons, valued at $\$ S 1,147$. An analysis of these figures gives us some idea of the state of the industry at the beginning of the century. The product of the blast-furnaces - pig, or, as it was at that time termed, cast iron - was run directly into small castings then in demand for commercial purposes; the malleable iron was probably all derived directly from the ore in iorges or bloomeries, whence it was taken to the rolling or slitting mills to be made into rods, bars, plates, nails, etc. The steel made at this period in the United States was probably all produced by the cementation or blister process, and was all of the grade now known as high-carhon or tool steel. Although Huntsman's improvement of this process, by which the steel bars thus made were fused in crucibles and subsequently cast into ingots, had been in operation in Sheffield. England, a number of years prior to 1810 , it is doubtful if his invention had been adopted in the United States at this early date. In the census of 1820 the quantities of iron made are not given; their value, however, is stated as follows: Pig or cast iron, $\$ 2,230,275$; wrought iron, $\$ 4,640,669$; total. $\$ 6,870,9+4$. The 1830 census gave: Pig iron and castings. \$4.757,403: wrought iron. $\$ 16,737,251$; total, $\$ 21,494,654$. The production of iron steadily increased upon much the same lines as before and in 1840 , $80+4$ blastfurnaces produced only 286.003 tons of iron, and 795 bloomeries, forges, and rolling-mills only 197.233 tons of malleable or bar iron. For the first time in the history of the industry the production of cast or pig iron exceeded that from the bloomeries and forges. No figures are published for the value of the product in 1840 . but it we assume the ton of pig iron to hare cost $\$ 30$, and the ton of hammered bar iron $\$ 00$, we obtain $\$ 8,607,090$ or nearly double the value of pig and cast iron produced in 1830 . The total value of the bar iron at this estimate would be \$17,750,970.

The high cost of manufacturing charcoal, and its enormous consumption in the furnace per ton of iron produced. were serious obstacles to the growth of the industry, even where a good supply of ore was well assured. As early as 1835 the adaptation of anthracite to the manufacture of iron began to attract attention, and Franklin Institute offered a gold medal "to the person who shall manufacture in the United States the greatest quantity of iron from ore during the year, using no other fuel than anthracite coal, the quantity to be not less than 20 tons." The medal was never awarded, but there is abundant evidence that from 1830 to 1840 a number of attempts to use mineral fuel in smelting iron ores were made. The first practically successful attempt to produce pig iron by the use of anthracite was made by David Thomas at Catasauqua. Pa. The furnace which he erected there for this purpose was blown in on 3 July IS:O. It was equipped with a "hot blast" operated by water-pnwer. and thus inaugurated in the

United States, two of the greatest innovations in blast-furnace practice. This furnace, producing from the start 50 tuns of iron per week, continued in profitable operation until the year t8j9, when it was dismantled. The carly forms of lot-blast apparatus consisted of nests of iron pipes heated externally by separate fires, the object being to pass the air from the blowingor blast-engine harough these pipes, thereby greatly augmenting its iemperature, and to decrease the consumption of iuel per ton of ore smelted. The lont blast was patented in $1 \$ 28$ by James B. Neilson of Glasgow, and its use is perhaps the most inuportant improvement ever made in blast-furnace practice, for without it the present large and cheap production of pigiron would have been impossible. Notwithstanding that the success in smelting iron in blast-furnaces with anthracite had been practically demonstrated in 18 fo. the general use of this fuel appears to have grown slowly; it was to or more years before the use of coal (either anthracite, coke, or a misture of the two) became general. In 1846 the first furnace constructed with the intention of using raw bituminous coal as fuel was successfully placed in operation at Lowell, Mahoning County, Ohio. Although coke had been in general use in England for a number of years, it was not until 1837 that it was successfully used in the United States in the blast-furnace at Lonaconing, Alleghany County, 11 d . The manufacture of Connellsville coke was commenced in 1841, but, according to Weeks, it was not until a number of years later, when railroad transportation had become more fully developed, that its value as a furnace fuel became thoroughly demonstrated. The period between the years 1840 and 1850 was a most eventful one in the history of the American iron industry. The introduction of the improvements in smelting already indicated, together with the use of steam-power for propelling the blast and in performing other varieties of work about the furnaces, its replacement of water-power in operating rolling-mills and hammers, in mining coal and ore, and the rapid growth of the railroads, produced a stimulating effect probably never before experienced in a similar degree by any American industry. The railroads contributed largely to the development of the iron industry in two ways: directly, by rendering transportation comparatively cheap, thereby enlarging the iron market and increasing the demand: and indirectly, by creating in their construction a new and umprecedentedly large consumption of iron. As the production of iron increased in later years, the older iron-ore deposits became exhausted, or were proved inferior to the newly discovered ore-beds of the Lake Superior region. The problem of suitably locating a modern blast-furnace producing from 9.000 to 10.000 tons of pig iron per month became a serious one, and its solution lias had the effect of moving the geographical centre of the iron industry west of the Alleglany Jountains, nearer a new and larger ore supply, yet handy to the coke of Connellsville. In 1850 there werc produced in the Tnited States 563.755 tons of pig iron by $3 / 7$ estahlishments, and wronght iron to the value of $\$ 22.629 .271$ in 552 establishments.

The evolution of iron and steel plate making. particularly boiler-plates, forms an interesting chapter in the growth of our great industry.

About 1815, when steam began to be used, Dr. Charles Lukens remodeled his mill to produce thicker plate. The bloom was reheated at the jurge and hammered thin, tusually about one and a balf inches. It then went to the rollingmill. where it was laid on a bed of coal in what was called a grate-furnace. After heating, it was rolled into plates one quarter and three sixteenths of an inch thick and sent to the boiler maker. But soon the mill began shearing into, regular commercial sizes: 48 and 49 by 26 by one quarter or three sixteenths; or, if large enougl, it was sheared into plates 6S and 69 by 26 , and the scrap was cut into nails. But when the reverbcratory furnace was introduced, the scrap was arranged into piles of such size as was necessary to produce the required plate, heated to a welding heat, and rolled in the mill. This state of things continued until the introduction of the puddling furnace. The most important adrances made in the years between 1850 and 1860 were the invention of the "three-high" roll-train: the introduction of mills for rolling beams, by Cooper.\& Hewitt, at Trenton, N. J.; and the invention in 1848 of the "universai mill," by Daclin, a German engineer, which found its way to America 12 years later. In the manufacture of the finer qualities of steel, no progress was made up to 1860. According to the census of 1860,97 establishments in the United States produced 51,220 tons of blooms, valued at $\$ 2,623,178 ; 286$ establishments produced 987.559 tons of pig iron, worth $\$ 20,870,120 ; 256$ establishments produced $5 \mp 3,213$ tons of rolled iron, worth $\$ 31,888,705 \div 13$ establishments produced 11,838 tons of steel (probably of cheap grades), worth $\$ 1,-7 / 8,240$.

During the Civil War the resources of the iron industry in the Northern States were taxed to their utnost. The industry in the South, strained at an early day beyond its feeble capacity, soon broke down, and most of the requirements of the Confederate arnies were supplied from abroad. In the train of dire disaster wronglit by the Civil! Wiar some good to the iron industry nay be found: for not only did iron slips make their appearance in the navy, but the use of iron plates had its inception. As early as 1859 the French bad buylt the frigate Gloire, armored with iron plates five inches in thickness, and in. 1861 the British constructed the frigate Warrior, which was protect:d by solid iron plates four and a half inches thick. As regards armor, either of these vesels was much better protected than any of our monitors constructed during the Civil War, for the first monitor was protected lyy six to eight thicknesses of one-inch iron phates solted one on the other with overlappiug joints, and later vessels were probably protected in much the same way by armor made up of a greater number of similar unc-incl plates.
ln 1855 and 1855 , Henry Bessemer, of Londran, had oldainued patents for a process of converting matiten pig iron into stel by forcing small jets of cold air throngla the moiten iron; bint his invention was not streces- ful until moofifici by Revert F. Mustict, who alded to the molten stecl, after the blat had beers stopped, a sufficient 'quarntity of spicerelcisen) (an alloy of iron and mangancse) th nettralize the oxide of irom caused by blewing amd to give the steel the proper degrec of hardness and fluidity.

Neither Bessemer nor his American rival, William Kelly, of Pittsburg, who secured a patent but did not utilize it, accomplished anything in America until 1866, when their interests wete combined with Mushet's and the first plant to produce the steel as a commercial article was put in successful operation by the Pennsylvania Steel Company at Steelton, near Harrisburg, Pa., June 186%. The first steel rails rolled in the United States in the way of regular business were rolled by the Cambria Iron Company, Jolinstown, Pa... August 186т, from ingots made by the Pennsylvania Steel Company. The production of Bessemcr steel in the year 1867 was 3.000 tons, the industry continuing to grow with tapid strides. In $18900,4,131,535$ tons were produced, in $15007,532,028$ tons, and in 1902 $9,138,363$ tons. Of these amounts 2,550 tons were made into rails in 1867 , $1,853,862$ in 1890 , $2,250,457$ in 1900, and 2.935:392 tons in 1902. The importance of the invention of the Bessemer process to the world in general and the United States in particular cannot be overestimated, since it has reacled a development with us greater than in any other cotutry in the world. In 1gor the total amount of all varieties of steel made in the U'nited States was 44 per cent of the entire world's product. The rapid and enormous developnent of the Bessemer-steel industry in the United States is attributable chiefly to the great extension of our railroads. Bessemer steel is also used for steel bars, merclant steel and for tin plates. The basic Bcssemer or Thomas process though used in Germany to produce 4.888 .054 tons in 1902, has not gained a foothold in this country.
The open-hearth steel process was first used in 1856 , when the Siemens Brothers of Londor perfected what is now generally known as the Siemens regenerative gas-furace, without which no open-hearth steel can be made. In i864, Messrs. Emile and Pierre Martin, of the Sirenil works in France, erected, with the assistance of Dr. Siemens, one of the regenerative gas-furnaces to convert stel in an open-hearth or reverberatory furnace of their own construction. This scheme was a success from the statt, and by a subsequent consolidation of the Siemens and Martin inventions a steel-1naking apparatus was devised, known as the Siemens-Martin or openhearth process. This process was introduced into America in 1868 by F. J. Slade for Cooper, Hewitt \& Company, at the works of the New Jersey Steel and Iron Company, at Trenton, N. J. In 1870 , the production of open-hearth stecl in the United States was 1,500 tons, and in 1890074.820 tons. the industry showing a rapid development during the intervening 20 years. Great Britain was long the largest producer of open-hearth steel in the world, and in this brancl? of the iron industry the Enited States was someerlat lichind its , great rival, until I900. In 1850 Great Britain produced 1.564,200 1ons, as agrainst 574,820 tons in the United Statcs; in ISon Great Britain produced $3.030,251$ tons and the United States a little more than $2,900,000$ tons: but in 1900 the figures are $3,398,135$ tons for the United States (following James M. Swank, 'Iron and Steel at the Close of the Igth? Century.? Igor; the census figures, always incomplete, are 3.044 .356) and $3,156,050$ for Great Pritain. This growth is all the more striking, when it is known that in 1895 the writer of this article hopefully

IRON AND STEEL INDUSTRY IN AMERICA

prophesicd that the production might reach in that year $\mathrm{r}, 000,000$ tons. Five years later it had passed the $3.000,000-$ ton mark. The so-calied "basic" open-hearth process, although is successfal operation in Europe for a number of years, was not introduced into the United States until 1888, when a number of such furnaces were constructed at the works of Carnegic, Phipps \& Company, at Homestead, near Pittsburg. Pa. Without going into teclnicalities, the basic open-hearth process may be briefly defined as att ordinary open-hearth plant whose furnace lining is made of a basic material, such as dolomitic limestone or the mineral magnesite. When pig iron containing a sufficiently great quantity of phosphorus to reuder it urafit for conversion into steel by any other method is melted in such a furnace, the basic lining, together with a basic flux which is added. removes the objectionable phosphoras and readers (other conditions being normal), the resulting steel equal to that prepared in the open-hearth furnace in the old and usual manner. The purposes for which open-hearth stecl is ordinarily adapted are quite different from those for which the Bessemer stcel is most suitable ; but the converse of this fact, however, is not truc, since open-hearth steel may be and frequently is used to an equal, if not greater, advantage wherever Bessemer steel is employed. In this country, at least, all high-grade structural material, such as boiler and ship plate, bridge and building members, high-grade castings, etc., is almost invariably of open-hearth steel, which is generally considered, and doubtless is, more uniform in quality than soft steel made by the Bessemer method.

One of the most curious phases in the history of the American iron industry is the fact that although the United States at one time consumed nearly 60 per cent of the world's entire production of tinned plates, with the exception of a few sporadic attempts in 1873 and 1875 , no tin or terne plates were made in the United States until ISg1. Great Britain furnished virtually all the tin-plate used in the United States during the 20 years ending 1890. No better evidence of the success of our domestic tin-plate industry could be afforded than the fact that our imports have zteadily decreased since 1S89, those for 1890 being $29 .+35$ tons, for $189+215,068$ tons, and for 1900 ouly 60.386 tons. The American production amounted to 999 tons in six month15 of IS91; to 6.092 tons in 1892; 44.563 tons in 1893: over 100.000 tons in 1805, and in 5,00 to 302,665 tons. The census of 1900 reports 57 establislments manufacturing tin and terneplate; gives their capital as $\$ 6.650 .047$, its wageearners as averaging $3.6-\mathrm{I}$, and their wages as $\$ 1,880.017$; and estimates the cost of materials at $\$ 20, j 28,150$, and the value of the product as $\$ 31,892,011$. In 1890 the industry was prac-
tically non-existent and was not reported in the census of that year.

If the history of the devclopment of the American blast-furnace practice were written it would form a barge book of itself. In 1870 most of the blast-furnaces in operation were still very primitive, and although no statistics for that year are given, it is probable that the best of them did not produce as an average over 50 tons of pig iron per day, whereas in ly, production of 300 tons per day was a common occurrence, and some furnaces regularly produced over 500 tons daily. The table at the botiom of the page taken from the United States census reports, exhibits the production of pig iron from 1870 to 1900.

These figures show the rapid fall in the number of establishments, resulting from the movement of concentration nowhere so strikingly shown as in the steel and iron industry. The capital invested has increased 150 per cent approximately in 30 years, the production nearly zoo per cent and the value of the product almost 200 per cent. During the 20 years between 1870 and 1890 production in the Middle States had nearly quadrupled, in the Western States increased nearly 5 times, and in the Southern States nearly to times. In 1890 the American product passed the record figures of the British furnaces, made in 1882. Between 1800 and 1895 the American trade suffered considerably and fell below the British in its total product; then it again adranced and is now. 100 per cent greater than that of Great Britain.

The wonderful growth of the world's iron industry within 50 years is slown by the following tables, in metric tons (2,204 pounds).

COUNTRY	1854	Pct cent	1902	$\begin{aligned} & \text { Per } \\ & \text { cent } \end{aligned}$
United States	750,000	12.5	18,003.4.47	40.7
Great Britain	3,000,000	50.0	8.653 .40	19.5
Crermany	400,000	6.6	$8.4{ }^{\text {n }} 2.660$	19.0
France	750,000	12.5	$2.423 .+27$	5.5
Russia	200,000	3.3	2.566 .000	5.8
Austria-IIungary	250,000	43	1,335,000	3.0
Other countries	650,000	10.3	2863 ,-80	6.5
Totals.	6,000,00	100.0	44.237.991	100.0

Even more striking is the increare in stecl output in the last 35 years, as slrown liclow:

Country	1867	$\underset{\substack{\text { Per } \\ \text { cent }}}{\text { cen }}$	190	$\mathrm{Per}_{\substack{\text { cer } \\ \text { cent }}}$
Unitcd States	19,963		15, 186, fot	
Great Britain	235,000	47.8	5,102,450.	4
France..		9.7	1.035.30-	S
Russia …......	6,271	I. 3	(.73),25)	
Alustria-II	${ }^{155.000}$	3.1	1,1+3.0	
Other countries ...	35.000	7.1	1.900.82	. 6
Totals.	491,422	100.0	34,479,783	100.0

PRODC゙CTION OF PIG IKON

The total iron and stecl exports and imports of the Linited States for the years 1890, 1900, and igoz are shown below, the totals being long tons (2240 pounds).

Year	Exports	Imports	Excess
1890 1000 190	${ }_{\text {+ }}+15.687$	603,749 2009	
1902	370,805	1,212,839	Imp. ${ }_{\text {mpl }}$

A sketch of the American iron industry would be incomplete without some reference to the introduction of the manufacture of armorplate into the United States. This class of material not only has a peculiar and limited demand, but its manufacture requires the highest degree of metallurgical and mechanical skill, together with an exceptionally expensive plant. When the reconstruction of the United States navy was begun. some 20 years ago, we had absolutely 110 facilities for making the simplest kind of aruor-plate, although we had some of the largest steel-works in the world. One of the first of the new armored vessels completed (the monitor Miantonomoh) was protected by "compound" plates imported from Ensland. All the large forgings for the guans and shafts of the earlier ships were likewise imported. Owing to the policy of Congress. the Bethlehem Iron Company, and Carnegie, Phipps \& Company, of Pittsburg, were induced to erect expensive plants necessary for making not only the heavy gunforgings required, but also for all the different grades and thicknesses of armor-plate. In 189 I these firms began to supply armor for the ships in course of construction, although at first their output of finished armor was extremely slow: The dclays have now been slowly overcome, and at the present time there is little doubt that these great steel-works will be able to supply the armor as fast as new ships are constructed. How successful these works have been in furnishing our government with the best grades of armor-plate could have no better illustration than the fact that the Bethlehem Iron Company soon began supplying foreign governments with armor for their ships. The only two important iron and steel commodities which the iron industry of the United States did not supply in 1800 (tin-plate and armor-plate) are at present being inade in large quantities, and the census fur $1 y 00$ reports during the ycar 1900 15.302 tons of armor plate all produced in P'ennsylvania, and valued at $\$ 7,526,479$. Vast improvement has been made in the machinery neccesary in manipulate iron and steel. The rethleliem Iron Company has a hammer of 125 1ons' capacity, built by John Fritz and put man successful operation in 180 s . But armorplate is $1 m$ longer rolled mor forged by hammers, hut manufactured with huge hydraulic precen, some with an energy of 15,000 tons. Cierrge Fritz is the inventor nf what i, kinwn as the "antomatic tables." which with Joln Fritz's roll train enalbes the manufacturer to successfally handle almoat any weight of ingot. I weli remember when a soo-pounel mass of iron was thmight to be so heary that the whole neichborhnod gathered in to sec it rolled. The necessity of handing such very heave weights as could be maste from ingots cart in large manes lurought into play the invention of hy-
draulic machinery, so that we now have pumps to produce any required pressure in a series of pipes which deliver the water to the hydraulic engines in any part of the works. By simply turning a ralve now a boy will pick up a heavy ingot (say of to,000-pound weight) with his hydraulic crane and deliver it anywhere within reach of the crane. If on a car, it may then be taken by a small locomotive to the rollingmill, where another crane picks it up and puts it into the furnace, and, after heating to the required degree, takes it out and delivers it to the machinery at the rolls; then the automatic tables push it back and forth through the rolls until it is reduced to the required dimensions. The same tables now take it to the shears, which are also operated by hydranlic power, and the piate, sometimes two inches thick, is sheared ready for shipment. All this is done with more case than was possible a few years ago. Within the last few vears electricity has been brought into play to do some of the heasy work.

Retised by S. Sanford,

'Engincering and Mining Journal,' New York.

Iron and Steel, Metallography of. The study of the structure of metals has been actively pursued for the last 10 or 15 years in all metallurgical countries, and has called into existence a new department of metallurgy, for it has been shown that all alloys and all industrial metals (which always contain a certain amount of impurit:es), are made up of constituents which may be regarded as minerals, and as the study of rocks created the science of petrograpliy, from the study of the constitution of metals was developed the new science of "metallograplis:"

In order to examine the structure of metals through the microscope, it is necessary to prepare surfaces almost absolutely free from the minutest scratches. To accomplish this, it is quite evident that the sample must be rubbed successively over various abrasive substances of increasing fineness. Supposing the surface to be examined has been filed with a smooth file, the tool marks would not be removed and a perfectly specular condition could not be imparted to the surface in a single operation. The transformation must be gradual. The file marks must be effaced by rubling the sample over a properly selected polishing substance, and replaced by finer markings. These, in turn, must be removed by a second rubbing with a finer abrasive agent, being replaced by still finer miarks and so on, until finally, the last operation remores the very minute marks from the previous treatnrent and leaves the surface absolutcly free from scratches or nearly so. Emery powiler of various degrecs of fineness is the abrasive sulstance which naturally suggests itself, at least for the first treatments. The powders may be used in the shape of emery whecls, emery cloths, or papers. or even spread loose over a suitable support, in which case they are kept wet during the rubbing. Emery may, of course, be replaced by carborundum for these operations. The polishing powder known as "jeweler's" or "gold" rouge suggests itself for the final polishing. It is generally spread over a piece of wawh leather or other sof. and smooth texture, which in turn is fastened to a block of wool. The powder is gencrally kept wet during the rubbing. The details of the manipulation vary greatly with differcht operators, but
it mar be said that they all use emerv (or carborundum) in some form for the rouid polishing and jeweler's rouge for the final treatment.

The markings left even by the finest emery powders, however, cannot always be removed readily by the rouge, and the operation is frequentily a long and tedious one. The need of a suitable polishing powder to be used after the last emery treatment and before the final rouge polishing was soon made evident and many substances, such as water-of-Ayr stone, crocus, tripoli, diamontine. "Brilliant Belge." etc.. Have been tried. It is in this particular that the polishing methods of the various experimenters engaged in metallographic work vary the most. Somewhat roughly stated, the method at present in use for the preparation of metallic samples, is in most cases as follows:

One or more treatments with emery (or carborundum) of increasing finesess.

One treatment with one of the powders mentioned above.

One treatment with jeweler's rouge.
The polishing may be done entirely by hand, or it may be hastened by the use of some simple power-driven machine consisting of revolving emery wheels and dises upon which the various powders are spread.

Many treatments have been tried to develop the structure of polished samples of iron and steel, i. i., to make their structure apparent when examined under the microscone. To do this, it is necessary to impart unlike appearances to the various constituents. The most successful methods and those most widely used consists in etching the polished surfaces with highly diluted aqueous solutions of acids, especially nitric acid or with absolute alcohol containing a small proportion of acid, a solution made up of $t 0$ parts of nitric acid in 90 parts of absolute alcohol being especially effective.

Microstructure of Pure Metals.-When a properly prepared sample of a pure metal is examined under the microscope it is generally found to be made up of irregular polyhedric grains as shown in figure $I_{\text {, whe }}$ which represents a drawing of the structure of pure gold under a magnification of 50 diameters.

It will be noticed that many of the grains are hexagonal, which strongly suggests that gold crystallizes in the regular cubic system, these hexagonal grains being probably due to interfering cubes and octaledra.

Many pure metals, including iron, crystallize in the cubic system, and exhibit, therefore, a structure similar to that of gold.

The dark net work shown in Fig. I mark the junction lines between adjacent grains: it is made apparent by suitable treatment of the polished surface, generally by immersing it in some acid. the acid corroding the metal more cleeply between the grains than over their surface.

These grains of which pure metals are composed are not single-crystals. If the polished sample be etched more deeply and examined under higher power, it will be found that each grain is made up of a great number of small crystals, frequently cubic. It will be found, moreover, that all these small cubes which make up a single grain are oriemted in the same direction in the same grain. but that their direction changes as we pass from one grain to another.

The size of the grains varies with the nature of the metal, some metals being made up of much larger grains than others, even when cast and solidilied under exactly the same conditions.

The presence of impurities, sometimes of an extremely small amount, frequently exert a powerful influence on the size of the crystalline grains, some impurities increasing it, others reducing it.

The size of the grain in the same metal is also greatly affected by the temperature to which the metal is heated and from which it is allowed to cool, and by the rate of cooling. Generally speaking, it niay be said that the higher the temperature. the larger the grain, and also that the slower the colitur the larger the grain. These results might have been anticipated, if it he considered that slow coaling from a high temperature are conditions farnerable to the formation and growth of crystals.

Undisturbed conling is a necessary condition to the free development of crystals. If

Fig. I.-Structure of Pure Gold (Indrews) Magnified ${ }_{50}$ Dismetrs.
the metal be agitated while solidifying, and worked-that is subjected to powertul inechanical pressure-while cooling irom a high temperature, the formation of the crystalline grains will be greatly lindered. if not altogether prerented, the metal assuming an amorphous-like structure, hence the important influence of work upon the structure of metals.

The Microstructure of Pure Iren-Pure iron is not a commercial product. It can only be obtained in small quantities by carefully conducted laboratory manipulations. and even with the most refined care it is quite impossible to produce it absolutely pure. The purest commercial iron is of Swedish origin and may contain as much as 99.8 per cent. of iron.

When a sample of this iron is properly prepared and examined under the microscope. some regions may be found which are absolutely free from slag and frotn carbon, and which exhibit, therefore, the crystalline structure of pure iron, or, at least, of carbonless iron. (See Fig. 2.) It will be noted that this structure is very similar to that of gold shown in Fig. r. Like gold, it is made up of polyhedric grains. generally hexagonal. Iron, like gold and like many other metals crystallizes in the cubic system.

Fervite:-Pure iron. or rather carbonless iron, considered as a microscopical constituent, has been called ferrite, a name which suggests its nature and which was proposed by Prof. Henry 11. Howe. This constituent necessarily makes up the whole mass of carbonless iron, while in low carbon steel and in gray cast iron, ferrite occurs in decreasing amounts as the percentage oi combined carbon increases.

The phesical properties of ferrite are evidently those of carbonless iron. It is, therefore, soit. being easily scratched by a needle, a test which will occasionally be found useful by the metallographist. It is moderately strong. having a tensile strength of some 50.000 pounds per square inch. It is very ductile, its elongation amounting to 20 or more per cent. in eight inches. Ferrite does not possess any hardening power since carbonless iron cannot be hardened by sudden cooling from a high temperature.

The Wicrostructure of Commercial It rought Iron. Longitudinal Section.-The microstruc-

Fig. z.-Structure of Carbonless Irnn. Magnified iso Diameters (Lonzs.unt) Ferrite.
fure of the longitudinal section of a wrought fron bar is shown in the accompanying illustration (Fig. 3). The ground mase or matrix of the metal will be found to be mate up of polyledric crystalline grains similar in every respect to the ce-talime grains of pure iron and of pure metals in general. Nany irregular black lines, varying much in thickness and length, but all rumning in the same direction, will also be in ted in lig. 3. These lines indicate the locit: it of the slag which is always present in c inmercial wrought iron, and which assume tee shape of stre 1 - or fibres rumning in tise Jrection of the rulling or forging, thes impartintr a fibrous appearance to the metal. Wrought if.? then is made up of a mass of ferrite, as mi he have heen anticipated, assuming its characteristic cry talline structure, and of numerous diongated particlec of slag.

It was thought for meny years that wrought irron actually had a fibrous structure, and. inrleed, the number of porsons who still hold this view is surprisingly larec. Many valuable properties were atributed to puddled iron on :.ccriunt of its "fibrous structure" which were
denied to steel because of the "crystalline structure" of that metal. The microscope has summarily disposed of this erroneous belief in showing that the ferrite which constitutes the bulk of wrought iron is in no way different from the ferrite forming the bulk of low carbon steel. Both are equally crystalline.

When wrought iron contains an appreciable amount of carbon it results in the appearance of another constitutent, soon to be described.

Fig. 3.--Structure of a Longitudinal Section of
Transaterse Scction.-The microstructure of the transverse section of a wrought iron bar is shown in Fig. 4. Like the structure of a longitudinal section (Fig. 3), it consists in a

Fig. 4.-Structure of a Transverse Section of Wrought Iron (Longmuir) Ferrite and Slag.
mass of crystalline grains of ferrite. The slag, however, which in the latter section occurred i.s Bibres ruming in a direction parallel to the rolling. here assumes the shape of irregular, dark a-cas, whicli correspond to the cross-sections of the slay fibres.

The Microstructure of Lowi Carbon Stecl.If a small amount of carbon be introduced into molten iron and the resulting product cast, the metal is converted into what is known as low carbon steel. From the fact that it was obtained in a molten condition it will follow that, unlike wronght iron, it is quite, if not altopether, free from slag. The absence or presence of slag constitutes the most distinct dif-
ference between wrought iron and low carbon stcel, for these two metals may otherwise have identical chenical composition and very similar, if not identical, physical properties.

The microstructure of a very low carbon steel is illustrated in Fig. 5. It will be noted that it consists in a mass of ferrite; that is, of carbonless iron, made up of polyhedric crys-

Fig. 5.-Structure of Low Carbon Steel. Carbon 0.08 per cent (Arnold) Ferrite and Pearlite.
talline grains and very similar to the ferrite constituting the bulk of wrought iron. At the junction lines of many ferrite grains, however, some dark areas will be seen, which indicate the presence in the metal oi another constituent. Since ferrite does not contain any carbon, it is evident that all the carbon present in the steel has segregated into these small dark masses, and thus we arrive at the interesting

Fig. 6.-Structure of Pearlite Mighly Magnified (Osmond).
conclusion that in low carbon stecl the carbon is not disseminated all through the mass, as might reasonably have been expected, but that it gathers in small particles embedded in a mass of iron.

Pcarlite.-Speculating as to the nature of this new constituent, we know that it cannot consist of pure carbon; for it is known that the carbon present in stecl does not exist in the free state, but is combined with some iron.
forming the carbide or iron FesC. This iron carbide must necessarily be located in the dark areas, but are these made up exclusive of this carbicle? To assist us in determining the character ot this consutuent. let us examine it under a ligh magnification. We then find that each clark particle breaks up into two components (liig. 6). which occur as small parallel plates alternately brighe and dark. As to the nature nif these components. it is cvident that one of them is the carbide Fe:C and the other must necessarily be iron or ierrite: for these are the only two constitutents which, to the best of our knowledge, are present in unhardened steel.

Dr. Sinbry, who was the first observer to describe the appearance of this interesting constituent. proposed for it the name of "pearly constituent," hecause it irequently exhibits a display of color very suggestive of mother of pearl. especially when viewed by oblique illumination. Later Prof. Howe suggested the name of pearlite, which has been universally adopted.

Fig. 7.-Structure of Jedium High Carbon Steel. Carbon 0.38 per cent (Arnold) Ferrite and Pearlite.
Comentiti--The carbide $\mathrm{Fe}_{3} \mathrm{C}$ has been called cementite, also by Prof. Howe, because it occurs abundantly in cemented steel, merely owing to the fact that this steel is generally a high carbon steel. Pearlite then is a mechanical mixture of ferrite and cementite after the fashion described in the preceding paragraphs.

It should be stated here that pearlite does not always assume such a distinctly laminated structurc. In many instances its structure remains ill-defined or assumes a granular rather than a lamcllar appearance. this being due chicfly to the treatment to which the steel has been subjected.

A ligh magnification is required for the resolution of pearlite. gencrally, not less than 200 diameters. The samples should also be very carefully ctched.

The Microstructure of SIedium High Carbon Stecl.-The microstructure of a steel containing 0.38 per cent. of carbon is illustrated in Fig. 7 under a magnification of 100 diameters. It will be noted in comparing this structure to that of low carbon stecls (Fig. 5), that the introduction of more carbon in the iron has resulted, as should be expected, in the presence

IRON AND STEEL, METALLOGRAPHY OF

of a greater imount of pearlite and of a correspondingly smaller proportion of ferrite. The pearlite occupics now roughly, about one-third if the total area. Under sufficiently high power the pearlite arcas exhibit the characteristic Jamellar structure illustrated in Fig. 6.

On further addition of carbon, the amount of pearlite. which is evidently proportional to the percentage of carbon, increases correspondingly, as shown in Fig. 8, which illustrates the microstructure of steel containing about 0.59

Fig. 8.-Structure of Medium High Carbon Steel. Carbon o.s9 per cent (Arnold) Ferrite and I'earlite.
nor cent. of carbon. The pearlite occupies here nuer one-half of the total area. It will be noted that the ferrite areas are not resolved into polyherlric grains, apparently because the ferrite now occurs in particles often too small to be made up of several crystalline grains. The

Firg. 9.-Sitructure of H Iigh Carbon Stcel. Carbon 0.89 per cont (.|rmold) Pearlite.
internal structure of these small masses of fersite, however, is still made up of small cubic crystals as previonsly described. A highprower photomictugraph of this steel would reveal the laminations of the pearlite shown in Fig. 6.

The Microsimeture of High Carbon Sted.It has been shown that the introrluction of an increasing amomnt of carbon in stecl results in
the formation of a correspondingly increasing proportion of pearlite and decreasing amount of ferrite. A degree of carburization, therefore, must necessarily be reached, when the whole mass will be made up of pearlite, the ferrite having finally disappeared. This critical point in the structure of steel is attained when the metal contains about 0.80 per cent. carbon. In exceptionally pure steel a little more carbon may be required to cause the complete disappearance of ferrite, while in the presence of much impurity a smaller percentage may be sufficient.

Steel made up exclusively of pearlite is sometimes saill to be saturated. it is also called "cutectic." or "cutectoid," steel, the latter term having secently been suggested by Prof. Howe. If it contains less than 0.30 per cent. carbon, and, therefore, an excess of ferrite, it is called under-saturated or "hypo-eutectoid" steel, while if it contains more than this amount of carbon

Fig. 10.-Structure of High Carbon Steel. Carbon $\mathbf{1} .20$ per cent (Arnold) Pearlite and Cementite.
(and thercfore, as will be scen, an excess of cementite) it is called over-saturated or "hypercutcctoid" steel. The use of the terms entectic and eutectoid implies that steel is considered as an alloy of two constituents, ferrite and cementite, which, upon cooling, gives rise to the formation of a third constituent, pearlite, made $11 p$ of small particles of both components. Many alloys contain a constituent possessing the same characteristics and which is called "entectic alloy."

The structure of steel made up exclusively of pearlite is shown in Fig. 9. The magnitication is not sufficiently high to show clearly the laminations of pearlite.

Let us now consider what effect a further addition of carbon will have upon the structure of the metal. Fig. 10 is the reproduction of a drawing showing the structure of a steel containing I 20 per cent. carbot. or much more carbon than the amount refuired to convert the whole mass into pearlitc. It will be noted that while the bulk of the metal is still made up of pearlite, it now contains also another constituent, which in Fig. 10 occurs chicfly as a light net-work surrounding the meshes of pearlite. This structure recalls that of medium hard steel and an incxperienced eye might be led to infer that this light constituent is fer-
rite. This net work, however, consists of cementite which is now present in excess over the amount required to form pearlite, just as in the case of low carbon steel, ferrite was in excess.

Cementite has a more metallic lustre than ferrite and remains bright and structureless even after prolonged etching, while ferrite is colored and resolved into grains after such treatment. Cementite is extremely hard and stands in relief in the structure, while ferrite is soft and is depressed by the polishing. Ferrite is readily scratched by a needle, while cementite cannot be marked. The excess of cementite, however, does not always assume the shape of a fine net work, its mode of occurrence deperding upon the treatment to which the steel is subjected.

With further increase of carbon, the amount of cementite will necessarily increase and the proportion of pearlite decrease correspondingly.

The structure of unlardened carbon steel just described may, for our purpose, be accounted for as follows: The carbon present in the steel unites with a portion of the iron to form the carbide $\mathrm{Fe}_{3} \mathrm{C}$ or cementite (which con-

Fig. 1 r.-A Graphical Representation of the Relation Between the Carbon Cuntent and the Microstructure of Iron Carbon Alloys.
tains 6.67 per cent. carbon). The remaining iron, or ferrite, and this cementite then unite structurally in definite proportion to form pearlite, leaving as the case may be, an excess either of ferrite or of cementite, the former in low carbon steel, the latter in highly carburized stecl.

The changes in the structural composition of steel, due to changes in the percentage of carbon may be represented graphically as shown in Fig. II

This diagram elearly illustrates the fact that if no carbon be present the whole of the metal is made up of ferrite, and that by introducing increasing amounts of carbon, pearlite is formed in increasing quantity, while ferrite decreases correspondingly: With o.8o per cent. of carbon the whole mass consists of pearlite. Further addition of carbon results in the introduction of cementite in the structure, which then increases in amount with the carbon, while the proportion of pearlite decreases.

In our description of the structural composition of steel we have purposicly ignored the effect of impurities, because while their influcene is not to be overlonked, quantitive information on this point is lacking.

The Microstructure of Cast Iron-Cast iron may be sharply divided into two classes: (1) White cast iron and (2) Gray Cast Iron. That is, into cast iron free from graphitic carbon and cast iron containing graphic earbon. The microstructure of these two varieties of cast iron will be considered separately.

The Microstructure of IThite Cast Iron.Like steel, white cast iron is free from graphitic carbon: it contains the whole of its carbon in the combined condition. that is, as the carbide $\mathrm{Fe}_{3} \mathrm{C}$ or cementite. We should, therefore, ex-

Fig. 12.-Structure of White Cast Iron Magnified 150 Diamelers (Longmuir) Pearlite and Cementite.
pect to find the microstructure of white cast iron very similar to that of high carbon steel that is made up of pearlite and a large excess of free cementite. In lig. iz is shown under a magnification of 56 diameters, the structure of a sample of a white cast iron, and it will be scen that as just anticipated, it is composed of pearlite and cementite, roughly in equal proportions. This iron contained about 3.50 per cent. of combined carbon, which theoretically would call for about 45 per cent. of free cementite. A higher power would as usual be re-

Fig. is.- I Craphical Representation of the Relation Betwern Percentage of Combined Carben and the Microstructure of C'ast Iron.
quired to resolve the structure of the pearlite areas.

The close analogy which exists between the structure of steel and that of white cast iron. is, therefore, evident. Indeed it is not possible to distinguish high carton steel from white cast iron ly the cxamination of the structure of these metals; nor is this possible by any other test. To distinguish between high carbon steel and white cast iron, we must necessarily adopt an arbitrary rule, consisting, for instance, in calling steel, all carburized iron containing less than 2 per cent. carbon and cast iron, those products which are more highly carlurized. Statting with carbonless iron and gradually increas-
ins the curbon content, we produce in succession, low carbon steel, medium high carbon steel, high carbon stcel, and finally white cast iron, wifhout any suggestion as to when the metal ceases to be steel and becomes cast iron. The changes of structure and of properties caused br this gradual increase of carbon are continuons and do not indicate any abrupt transformation. As the carbon increases the strength of the metal increases until the carbon content reaches about 1 per cent. and then it decreases: the hardness increases and the ductility and weldability decrease continuously: the malleablity decreases and finally disappears. but these changes occur gradually as the carbon increases and not abruptly upon reaching the composition of white cast iron.

To sum up, white cast iron may be considered as forming the most highly carburized member of the steel series.

The Microstructure of Grav Cast Iron Gray Cast Iron free from Combined Car3onPerfectly gray cast iron does not contain any combined carbon. It should, therefore, be made up of a mass of carbonless iron (ferrite) and of a certain amount of graphitic carbon. The graphite occurs as numerous plates irregular in shape and size, disseminated through the iron. and breaking up its continuity. It is because of this breaking up of the continnity of the metallic mass that the original ductility and malleability of the iron is so completely dcstroyed by the presence of a sufficient amount of graphite.

Gray cast iron is seldom free from combined carbon. It generally contains from 0.10 to I per cent. and even more of carbon in the combined condition, and it is well known that this percentage of combined carbon depends chiefly upon the amonnt of silicon present and upon the rate of cooling of the casting. Various proportions of combined carbon, and, therefore, of graphitic carbon impart different appearances to the fracture of cast iron, which was, and still is to a considerable extent, classified accordingly into the various grades "No. I, 2 and 3 Foundry," "mottled," "forge," etc.

The presence of some combined carbon in the iron must necessarily imply the presence of some pearlite in its structure. The metallic matrix which in perfectly gray iron consists of ferrite now possesses the structural characteristics (and therefore the properties also) of a low carbon stecl. Gray cast iron containing a small amount of combined carbon may be considered as a low carbon steel whose continuity is destroyed by the presence of numerous plates of graphite. Such an iron would correspond to a X゙n. I Foundry.

The presence nf a larger proportion of combined carbon must necessarily result in a correspondingly greater amount of pearlite in the structure.

By increasing the percentage of combined carbon in cast iron, we convert its metallic moleix into stect of a correspondingly higler carbon content. We must necessarily reach a point, therefore, when the matrix will become a mass of penelite, nr, in nther words, when it will ascume the character of a saturated or catectoid sterl. This will nceur when the metal onttine about 0.70 per cent. nf eombined carbon. It will be remembered that in the case of
steel some o.So per cent. of carbon was required to convert it into a mass of pearlite. In the case of cast iron, however, the amount of iron to be saturated is less (because of the space occupied by the graphite) and requires a correspondingly smaller amount of carbon, namely some 0.70 per cent.

Classified by its fracture. a cast iron of this character wonll correspond to a number 3 or 4 Foundry:

A further increase of combined carbon would result in the presence of some free cementite in the structure. Such cast iron is known, from the appearance of its fracture, as "mottled" iron.

Relation Betaecen the Structure of Cast Iron and the Percentage of Combined Carbon.- The relation between the structure of cast iron and the proportion of combined carbon may be clearly illustrated by the diagram of Fig. I3, in which the percentage of total carbon (graphitic carbon plus combined carbon) has been assumed to be 4 per cent, and to remain constant. The plan followed is the same as that used to illustrate the changes of structure in steel and will t.ierefore be readily understood. By comparing this diagram with that of Fig. 11, the close analogy between the constitution of stecl and that of cast iron is strikingly brought out. That the properties of steel and cast iron, in spite of this similarity, differ so much, is due to the presence of graphitic carbon which by breaking up the continuity of the steel mass greatly decreases its strength and ductility. and deprives it of its malleabilitv.

The structure of iron and steel which has been briefly described in the preceding paragraphs is greatly affected by the treatment or treatments, both thermal and mechanical, to which the metals are subjected during the processes of manufactures and further conversion into finished implements. Metallographic methods, therefore, afford a means of detecting cefective treatments and ot suggesting imp:ovements in manufacturing mettods throngin a careful study of the close relations existing on the one hand between the structure of iron and steel and their physical properties, and on the other hand between their structure and the treatment they have received.

Albert Sauveur,

Professor of Metallurgy, Harvard University.
Iron in Medicine. In its native form, iron is devad of action. bit when reduced to a salt. or oxide, capable of dissociation, it becomes active. Iron difiers from many of the other heavy metals in that it is an active ingredient of the tissues. In the human blood it is an absorintely cssential constituent, and its importance is great for all of the tissucs of the body. It is woll known that the presence of iron is necessary for the active processes of photosynthesis in plants, and that in its absence the higher plants are unable to devclop chlorophyll. Nencki, a Russian biologist, has shown that reduction compounds of hemoglobin and of chlorophyll are very closely allied, and he propounds the interesting speculation that probally the same iron compound was present in the living matter before a differentiation of animal and plant was made, and that as plants and animals developed along divergent lines of struc-

IRON MASK - IRON MOUNTAIN

ture the iron compounds became somewhat separated in their chemical character.

Iron combinations in medicine are usuaily divided into two classes, inorganic and organic. In the former the iron is dissociated in solution. and is usually acted upon by the hydrochloric acid of the gastric juice and converied into soluble chlorides, in which form it probably enters into the tissues. In the organic iron it is probable that the same conversion takes place, althongh there is much controversy regarding the method of its absorption: but this is true of all iron. The iron is usually taken up in the stomach and intestincs, the larger part of it being rejected, and it enters into the blood in the form of an albuminate which passes into the duodenum, some being absorbed by the epithelium, and more or less of it carried directly to the spleen and probably to the liver. In the spleen it seems to undergo some changes, and is taken up by the blood and thereatter deposited more particularly in the liver and in the bonemasow. When there is deficiency of iron in the blood or other organs, the liver gives up its store and it is absorbed ber the tissue that is most in need of it. While in the blood, iron is the great organ of oxidation. By means of the hæmoglobin the oxygen of the air is taken up and distributed to the different parts of the body. This permits of the active chemical oxidative changes that take place throughout the entire body, which changes are of such vital importance in general metabolism. and without which the body suffers. degenerates and dies.

Iron is used particularly for diseases in which the blood is poor in that metal. This is particularly the case in amemias of primary and secondary character. In primary anxmia or chlorosis (q.v.) iron is a distinct help. often curing the condition. In primary pernicious anæmia, which is a grave blood-disease. it is of secondary value. In all of the secondary anæmias, those that follow hemorthage, the acute infectious diseases, such as scarlet fever, malaria, whooping-cough. measles, typhoid, pneumonia, etc., iron is oi great service. It is particularly. valuable following childbirth or any condition in which there has been a great loss of blood. It is also useful in conditions of scanty menstruation, in tuberculosis, and is one of the best general tonics in the ralm of medicine. The effects of inorganic and iron solutions on the teeth should be borne in mind. although they are much exaggerated. Iron is apt to cause a certain amount of constipation, but this, by proper laxatives regularly taken, should be overcome.

Iron Mask, The Man with the, a famous personage who was kept a prisoner in two or three French prisons in the time of Louis SIV.. and who excited a curiosity corresponding to the care with which his identity was concealed. His first prison was the cirtle of Pignerol, of which Saint-Mars was governor. In 1086 he was carricd by Saint-Mars to the isles of St. Marguerite; and the same precantions were observed as upon his birst journey. Saint-Mars having been appointed governor of the Bastile in 1608, carried the prisoner with him there. but still masked. An apartment had been prepared for him more comvenient, and furnished with more care than those of the other unfortunate beings who inhabited this sad abode. He was not permitted to take off his mask even before
his physician. In other respects the greatest attention was shown him, and nothing which he requested was refused him. Ilis education appeared to have been carefuliy antended to; and he amused his leisure by reading, and playing upun the gutar. This unknown person died ig iov. to. at to oclock in the evening, without having undergone any severe sickness. He was buried the next day in the afternoon in the cemetery of the church of St. Pan\}. He was, it was said, ab ut 6 y years of age, alihough the register of burials for the cluurch of St. Panl, in which he is mentioned under the name of IJarchiali, makes him only aboat 45 . It is said that orders were given to burn everything which had been employed in his service; that the walls of the chamber which he laad occupied were rubbed down and whitewashed; and thal the precautions were carried so far, that ittiles of his room were removed, in the fear that he might have displaced some of them to conceal a letter behind them. Conjecture exhausted itself to discover who this mysterious personage might be.

At the time of the destruction of the Bastile, in July rrsc, there were not wanting curious persons, who sought, in the archives of this fortress, to discover some notices which might throw light upon this historical problem. But to no purpose. A widcly-accepted conjecture was first thrown out in a letter written in 15\%0 by Baron D"Heiss to the 'Journal Encyclopédique.' According to this view the Wan with the Iron Mask was Count Girolamo Magni, or Mattioli. first minister of the Duke of Mantua, who had betrayed the interests of Louis SIV. by failing to secure for him, as he had pledged himself to do, in consideration of a large bribe. possession from his master of the fortress of Casale. For this offense he was lured to the French fronticr. secretly arrested, and imprisoned in the fortress of Pignerol in 166^{-9}. The secret was preserved so carefully, on the suppnsition that Nattiol was the prisoner, because his seizure and detention were flagrant violations of international law. In a more recent investigation by \$1. Jung, 'La Térité sur le Masque de Fer) $(18,-3)$ an attempt is made to identify the Mask with a gentlemar of Lorraine. who was connected with an as:ociation for the assassination of Louis. FunckBrentano in I8gt revived the view that Mattioli was the mysterious prisoner, and many now consider the controversy settled and this view established. Consult: Hopkins, 'The Jan in the Iron Mask.'

Iron Mountain, Mich., city: county-seat of Dichinson County: on the Chicago, II. \& St. P. and the Chicago N. W. R.R. s; about $i 7$ mites southwest of Marquette and 57 miles west by north of Escanaba. It was settled in 1879 and chartered in 1888 . It is the commercial centre for a large mining section in Michigan and for a farming section in Wisconsin. The city govermment consists of a mayor and councnl, elected annually. Its trade is principally in iron-ore and farm products. Pop. (1900) 9:242.

Iron Mountain, the southern spur of the St. Francois Mountains, a low sange in the eastern part of Missouri. This mountain, which is really a hill or knob, is in St. Francois County: about 60 miles southwcst from St. Genevieve, the nearest point on the Mississippi River. It is about 300 feet above the surrounding land and
abont 2,000 ieet above the sea. It covers an area of 500 acres. It is famous for its remarkable mineral deposits, specular or hematite ironure the purest iron ore in the United States. The average elevation above the land around is 550 fect, and the area it covers is about 500 acres. Large oak trees flourish on its slope, their roots embedded in soil composed largely of fragments of peroxide of iron. Excavations were begur in 1845 . An artesian well has been sunk to the depth of 152 feet, with the result that the beds passed through from the surface were as follows: Iron ore mixed with clay, 16 feet: sandstone, 34 feet; magnesian limestone, $7^{1 / 2}$ inches; gray sandstone, $7^{1 / 2}$ inches; hard blue rock, 37 feet; pure iron ore 5 feet: porphyritic rock. 7 feet; iron ore 50 feet to the bottom. It would seem that nearly the whole mountain was a mass of magnetic iron ore. The adjacent valleys are underlaid with magnesian limestone in horizontal strata. Pilot Knob (q.v.), about six miles south of Iron Mountain, also contains an extensive deposit of iron ore: Shepherd Mountain, a short distance southwest of Pilot Knob, is the largest of the iron mountains in that immediate vicinity.

Iron Ores. Although iron is the most abundant of the useful metals, forming 5 per cent of the earth's crust, it is rarely found na-tive-one famous native occurrence of it, however, being at Orifak on the west coast of Greenland. The iron ores of chief commercial importance are hematite, magnetite, limonite, siderite and fyrite. Pure hematite contains 70 per cent iron; magnetite $72 .+$ per cent; limonite 59.89 per cent; siderite 48.27 per cent; pyrite 46.6 per cent. Iron ores. however, are practically never mined pure, but are mined in quantity averaging to per cent and over less iron than above stated, the principal impurities being silica, alumina, and lime.

Hematite, ferric oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, by far the most important iron ore, varies greatly in physical characteristics. Specular bematite is black, with a brilliant metallic lustre. Nartite is a varicty of hematite. Magnetite, a ferro-ferric oxide ($\mathrm{FeO}_{\mathrm{Cl}} \mathrm{Fe}_{2} \mathrm{O}_{2}$), is black magnetic, and erystallizes in octahedra, but as mined it is usually massive or granular. Ilmenite, an oxide of iron and titanium, is not yet an ore of commercial importance. Franklinite, an oxide of iron, manganese, and zinc, found at Franklin, N. J., is used in making spiegelcisen, an alloy of iron and manganese after the zinc bas been removed by roasting. Limonite or brown hematite, hydrated ícric oxide $\left(2 \mathrm{Fe}_{2} \mathrm{O}_{3} 3 \mathrm{H}_{2} \mathrm{O}\right)$, is brown or yellow in color and occurs im massive, earthy, or in botryoidal forms. Bog-orc is a varicty of limonite. Goethite, differing from limonite in crystalline form and containing less water, is found in large quantities in Ninnesota. Siderite. or spathic iron, ferrous carbonate $\left(\mathrm{FeCO} \mathrm{CO}_{3}\right)$, is white to gray when pure, and crystallizes in rhomboherfra. As mined, it varies munch in appearance, pwing to oxidation. Clay iron stone is siderite ningled with clay. Blackband ore is siderite mixerl with mere or less bituminous matter. Pyrites, fertic disulphide (FeS:), nfter1 called "fool's gold," is used in great quantities to make sulphuric acirl. The restue. known as "hhe-billy." or prites clinker, is in wome comntries smelted in the blast-furnace as an irnn ore.

In smeltung an ore the silica, lime, and alu-
mina are remored as slag. Ores high in silica require more limestone in the furnace-charge for fluxing, that is, for combining with the silica. Some ores contain silica and lime in such proportions as to be self-fluxing. The higher the iron content of an ore, generally speaking, the greater the yield per ton of material put through the furnace, and the lower the cost per ton of the iron made.

A very hard ore must be broken into small lumps to give best results in the furnace. Hematites often smelt easier than magnetites. A fine granular ore makes trouble in smelting, and a certain proportion may be lost as dust, which clogs furnace-flues. The really injurious impurities most often found in iron ores are sulphur, phosphorus, and titanium. Sulphur can be largely removed by roasting the orc before smelting; phosphorus cannot, and all the phosphorus in the ore goes into the iron. For making steel by the Bessemer process an ore should contain less than $1-1,000$ of its amount of iron; thus, to be classified as Bessemer, an ore containing 6I per cent iron should contain less than .06I per cent phosphorus. For making steel by the basic process, high phosphorus ores are used.

The present development of the world's iron mines is the outcome of many factors. Generally speaking, it is cheaper to bring the ore to the fuel than the fuel to the ore, hence, countries or districts that have great supplies of iron ore may be insignificant producers of pig-iron. Low-priced fuel has been the chief factor in determining the location of iron and steel industries. while the chicf factors in the development of iron mines are the quality of the ore and the cost at which it can be put down at the furnace.

Iron-Ore Supplies of the World.- The iron industry in Asia is several thousand years old, but the annual output of iron ore is small. China has vast but little-developed deposits of limonite and hematite. Japan is very poor in iron ores. The iron industry of Australia is not of importance. The only ores exported from Africa are mined in Algeria, where the annual production has fallen to about 150,000 tons. Europe has famous ore fields. The ores of Elba and those of Styria were worked by the Romans. Certain Swedish mines have been worked almost continuously since 1300 . The German output now comes chiefly from so-called minette beds of Lorraine and Luxemburg. The ore, a low-grade limonite high in phosphorus, is used in making steel by the basic process, and the present annual output is over $7,000,000$ tons annually. The total ore supply left in the field is estimated at nearly $2,000,000,000$ tons. The iron fields of Great Britain have passed their greatest productiveness. The principal districts arc Cleveland in North Yorkshire, yielding clay ironstone containing about 30 per cent iron; Cumberland and Lancashire, yielding red hematite containing 50 to 60 per cent iron: and Lincolnshirc, Leicestershire, and Northampton, yielding cheaply-mined low-grade hematite. The blackband ores of Scotland are of much less importance than formerly. The principal Spanish mines are in the Bilbao district in the province of Biscay, the productive field being 15 miles long and $2^{1 / 2}$ wide. The ores are red and purple hematite. linmonite, and carbonate, the iron content in the crude ores running from 45 to 56 per cent. The district has produced to date about $95,000,000$ tons. The greater part of the

Russian ore supply comes from the Üral Mountains, the ores on the east side of the range being magnetite, and on the west side limonite and carbonate. Near Krivoi Rog, in the Caucasus, are mines of hematite and magnetite. Fully 80 per cent of the iron ore of France is obtained from the minette beds of the Noselfe that extend into Lorraine and Luxemburg. Most of the French ores are limonites. The principal Austrian iron mines are in Styria, the Styrian Erzberg having one of the largest deposits of siderite in Europe, yielding yearly about $1,000.000$ tons of carbonate ore, containing 40 per cent of iron. In Bohemia are mines of magnetite, limonite, and siderite. Sweden has immense deposits of iron ore, chiefly magnetite with some specular hematite. The most important deposits are at Grangsberg in Central Sweden, where are specular hematite and magnetite ores containing 62 to 64 per cent iron and 0.9 to I. 5 per cent phosphorns, and at Gellivare, 100 miles from the Gulf of Bothnia, where are huge bodies of magnetite that run from 68.69 iron and 0.05 phosphorus to 60 per cent iron and 1.5 per cent phosphorus. The ores from this field and the neighboring districts of Kurunavara and Luossavara will be of great importance to British iron-masters, and shipments to the Atlantic seaboard of the United States are quite possible.

The total production was undoubtedly larger, since among the "other countries" are those that collect no returns of mineral output. The figures are for 1901 or 1902 .

The iron ore supplies of South America have been little developed, and those of Mexico are just coming into prominence. In the province of Santiago. Cuba, are deposits of high-grade hematite. From there over 690,000 tons were exported to the United States in 1902. At Belle Isle, N. F., beds of hematite are now worked on a large scale. In Ontario, Quebec, and British Columbia are deposits of good hematite and magnetite, and the Dominion will soon be a large producer. There is a possibility of iron ores being mined in Labrador.

The United States leads the world in the production of iron ore. The ores mined range from low grade limonite to the highest grade hematites and magnetites. The purest ore ever mined in the United States in quantity was probally the magnetite from the Lovers Pit at Mineville, N. Y., which ran 72 per cent iron in
carload lots, though the Lake Angeline mine at Ishpeming, Nlich., has shipped hard hematite running 08 per cent iron and 0.008 phosphorus in thousand-ton lots. Minnesota now leads the States in production, with Michigan second, Nlabama third, and Pemnsylvania fourth. The chief centre of iron-ore production is about Lake Superior, where the ores occur along five mineral betts or "ranges," in Pre-Cambrian rocks. The Alarquette Fange, in Michigan, was opened in 1856; the Menomince, mostly in Nichigan, but partly in Wisconsin, in I88;-; the Gogelic, in Michigan and Wisconsin, in 1884; the Vermilion, in Minnesota, in 1884; and the Mesali, in Minnesuta, in 1802. The ores shipped are nearly all red hematite. The Marquette produces some magnetite. As much of the ore is hanled long distances to a furnace, 60 per cent iron was once about as low grade ore as could be shipped profitably, but now some mines ship Bessemer ores containing but 45 per cent iron. The ore-bodies are sometimes of great size. The Chapin mine, on the Menominee range, is working lenses 100 feet wide and 600 feet thick in the iniddle, and 2,500 feet long. The Fayal mine, on the Mesabi range, in 1902 shipped $1.681,000$ tons, and the Chapin in the same year 927.747 tons. The Mesabi deposits are flat-lying, covered by a varying depth of clay, sand, and honlders. By stripping off the surface and working the granular ore with steam-shovels, an chormous output is possible. The output of the various ranges in 1902. was: Mesabi, I3.342, 40 long tons: Menominee, 4.627 .524 ; Marquette. 3.853 .010 ; Gogebic, 3,663.484: Vermilion, 2,084,263; making a total of $27.57 \mathrm{~T}, 121$ long tons.

In the South there are three important ironmining centres - one near Birmingham, Ala., another in southeastern Temessee, and the third in southwestern Virginia. The ores are red hematites and low-grade limonites. The growth of the Alabana industry is due to cheap ore, limestone and coking-coal being found in close proximity. Pennsylvania leads the Union in the production of magnetite, chiefly from the great ore-body at Cornwall. and also produces much limonite. New lork and New Jersey also produce magnetite, and the former State some red hematite. Carbenate ores now come chiefly from Ohio. Of the western States, Colorado produces limonite, and in Utah and $\mathrm{W}^{\prime} \mathrm{y}^{\prime}$ oming are great deposits of magnetite and hematite, destined to be of importance in the near future. The famous spccular hematite mines at Pilot Knob and Iron Mountain, Mo., are exhausted. Texas has large deposits of ore, and several other States are or will be important producers.

Hining and Handling Iron Ores-Some extraordinary records of cheap mining and transportation have been made in the Lake Superior iron-ore trade. Large ore-bodies, effi-

UNITED STATES IRON ORE TRODUCTION -IN LONG TONS.

	ISSo	I 890	1900	1902
Lake Superior	1.985,334	$7.558,076$	19,095,393	27.571,121
Southern States	627.517	2,904,322	5,100,000	4,850,000
Other States	4.884.658	4.056.469	1,758.000	2.215,000
Total	7,497,509	$14.518,867$	25.953 .393	34.636,121

IRON SKELETON CONSTRUCTION - IRONWEED

cient labor, and excellent management have been the factors in reducing mining costs, while the long lake-water laul, neariy 900 miles, in specially designed vessels, has made it possible to put down Lake Superior ores at Pittsburg, over I, 100 miles from the mine, at a total transportation cost of under $\$ 2$ per ton. On the Mesabi range, in some large mines steamshovels load the ore directly upon the cars, one showel having loaded I70,000 tons in 26 days, or at the rate of over 6,500 tons per day. The shovels are each operated by five men, and the labor cost for mining and loading averages but about 16 c per ton, and at one mine which dug and loaded 293.651 tons in 174 days, the labor cost was only 40 per ton. The loaded oretrains go 50 to II 5 miles to a shipping port. There they are run on to long, high docks having large pockets or bins into which the ore runs through openings in the bottoms of the cars. From these pockets the ore passes by gravity down along chutes into the hold of the ressel, so that no hand-labor is required. The ore-pockets hold about 160 tons each, and number from 90 to 38_{4}, according to the length of the dock.

In unloading the ore from the vessels, the use of labor-saving machinery is even more notable. A series of steel bridges, easily moved along the docks, is supplied with hinged arms which can be lowered into the hatch of the vessel. Along each arm and across the bridge runs a trolley-train to which are attached autonatic grabs similar to a double scoop. The grab or scoop holds about five tons of ore, and when it begins to draw together it digs into the ore. The grabs ean remove over half of the cargo without any assistance, and the remaining half is brought directly under the hatch by use of a scraper, operated by similar machinery. The grabs are so controlled by the engineer that he can drop them at any point over the hold he may wish, and after a grab seizes its load of ore it is raised at full speed, carried rapidly along the trolley to any given point, and dumped into railroad cars or on stock piles. This 5 -ton grab has a hoisting speed of 100 ft . a minute, and can run along the bridge at the rate of $1,000 \mathrm{ft}$. a minute. The bridges to which the arms with their grabs are attached are worked by electricity. By such a device 26 men can do the work of 300 under the old system. Another unloading device, the Hulett unluader, requires even fewer mon, and takes out is larger proportion of the cargo without aid.

Bibliography:-Uwing to the enormous growth of the iron indlustry, there is no recent single work covering the production and use of iron ores. Statistics of production can be found in 'The Ilineral Industry,' the 'Mincral Resources of the United States.' and the 'Enginecring and Mining Journal.' Deseriptions of geological occurrence and mining methods can be found in the monographs and hulletins of the United States Gcological Survey; and the 'Transactions' of the American Institute of Dining Finginecers. See Goeturte; Ilematite: lhamenite: Linonite; Nagnetite; Mlining; Ore Delosits. Simeter, Sanford. Issoc, Editor 'Enginecring and Mining Journal.'

Iron Skeleton Construction, a modern system of constructing 1 imp hubldinge, by which
architects and builders are enabled to plan and erect buildings as high as 15 or 20 stories on plots of ground 20 to 30 feet wide. By the use of this system the thickness of walls is considerably reduced, thus giving a larger foor space, a very desirable consideration, especially in office buildings. Iron and steel columns are carried up from foundation to roof, and then covered in with bricks or stone. Thus a carrying capacity equal to that of walls of much greater thickness is produced. A 12 -story building in New lork city thus constructed upon a lot 25 by 100 feet means a saving in floor space of thousands of feet.

I'ronclad. See Armor-plate.

Ironclad Oath, The, an act passed by the United States Congress in I 866 , excluding voters, in the States lately in rebellion, from the franchise. The act practically disfranchised all Southerners over 25 years of age. It was repealed shortly after its passage.

Irondale, I'èrn-dāl, Wash., a place in the northeastern part of Jefferson County, a few miles south of Port Townsend. The first blastfurnace on the Pacific const was ereeted at this place in about I880. The furnace was in opera. tion about 12 years, and was then abandoned because of the great expenses incurred in production. The ore was obtained from Texada, an island belonging to British Columbia, and I 30 miles distant. The last of the 1gth century the Pacific Steel Company, a corporation in which practical iron-makers of Pennsylvania are the chief owners, began investigations as to the nature of the ore, and the possibility with improved machinery, to manufacture iron at lrondale or vicinity at paying rates. As a result the Pacific Steel Company have taken up the work abandoned by the Puget Sound Iron Company. The works have been so improved as to be practically new, and 20 brick charcoal kilns have been erected for the use of the company. Coke is obtained in Washington.

Ironton, íèrn-tỏn, Ohio, city, county-seat of Lawrence County: on the Ohio River, and on the Detroit S., the Norfolk \& W., and the Cincimati, H. \& D. R.R.'s; about 100 miles directly southeast of Columbus. The Chesapeake \& Ohio railroad, in Kentucky, has here a ferry for passengers and freight, which practically gives the city the benefit of four important railroads. Ironton was settled in 1832 , and for some years was known as a river-trading town. It was incorporated in 1849. It is situated in a section of country noted for its clay (suitable for pottery), iron ore and bituminous coal. Its chief industrial establishments are foundrics, rolling-mills, blast-furnaces, machinesops. mail-works. furniture factories, and planing-mills. It has also among its manufactures doors and mantels, stoves, hoilers, cement, and fire-bricks. The clay in the vicinity is muely used for pottery. The parks, River View, Lincoln, and Beechwood, are attractive. Some of the principal buildings are the Briggs Public Library, the Kingsbury school, Odd Fellows' Hall, Masonic Temple, City lospital, and several churches. Ironton was the home for some time of the artist Sarah Cotter-King. Pop. (1900) 11,868.

I'ronweed, a tall, coarse, composite plant nf the genus I'ernonia, three species of which
grow abundantly in woods and along roadsides throughont the southern half of the Linon, bearing heads of magenta-colored flowers somewhat like miniature thistles. The most conspicuous species (Γ. gigonfca) is often to feet high, and blooms in August and September. A similar species (l'. noacboracensis) grows in low grounds throughout the Northern States.

I'ronwood, Mich., city in Gogebic Commty: on the Wisconsin C . and the Chicago \& X . II. R.R.s; about 12 miles south of Lake Superior and 33 miles southeast of Ashland. It was settled in 188 7 and incorporated in 188-. It is situated in a region rich in iron ore and timber; the section is known as the "Gogebic iron region." The famous Norrie mine is in this vicinity. Ironwood is the trade centre for the greater part of the mining and lumbering business of the county. Some of the principal buildings are the Carnegie library, the city-hall, the high school, and several churches. Trolley lines connect the city with Gile and Hurles: II is. The government is rested in a mayor, who is elected annually, and a council. The mayor appoints, subject to the approval of the council. all the subordinate officials except the members of the board of education. Pop. (1900) 9,705.

Ironwood, a popular name for many trees whose timber is very hard and heavy. Probably the best known species in America is also known as leverwood, Ostrya I irginica, of the natural order Cupulifera, indigenous from Nova Scotia to Florida and westward to 1 linnesota and Texas. It is a medium sized tree with furrowed bark, birch-like foliage, pistillate flowers in catkins resembling the female flowers of hop, hence its popular name hop-hornbeam. The name ironwood is also sometimes applied to Carpinus Amcricana or Caroliniono, of the same natural order. (See Horvbeam.) Among foreign "ironwoods," perhaps the most widely known is Mesus firca, an East Indian tree planted around Buddhist temples for its fragrant flowers, which are used to decorate the images of Buddha. Another Asiatic species is Mitrosideros icro. from which the Chinese and Japanese make rubbers. In Australia and Sonth Africa various species of Olco. Mclaleuca. Sideroxylon. Notelaca, and Myrtus are valued for their timber, locally called ironwood, employed where great toughness is desirable and weight no obstacle.

Iroquoian Stock, a linguistic stock of North American Indians deriving their name from the form Troquois (q.w.), the name given to the "Five Nations." The Saint Lawrence River was probably their first lrabitat, and from there they gradually spread to the Great Lakes, primarily becanse of the hostility of the Algonquins. Cartier found, in 1535, a people living between \lontreal and Qtrebec whose language showed them to be Wyandots, but ico years later these had entirely disappeared and the Algonquins occupied their territory. The Iroquoian stock is divided into four groups: the northern - Wyandot. Tionontati. IVenrorono. Tohotrenrat, Nenter, Hochelaga: the central - Mohawk, Oneida, Cayuga, Onondaga. Erie. Conestoga, Seneca: the southern-Tuscarora, Meherrin. Nottaway. Chowanoc. Coree; the Cherokee - Elati or Lower Cherokee, \lichdle Chernkee, and Atali or L'pper Cherokec.

The fribes of the lroquoian stock were all agricultural. and were moted for their houses and fortifications. They have also made considerahle advance in education. The whole population is about 43.000, of whom 10,000 are in Canada. The major mertion of the population are Churokee. See Iroguors.

Iroquois, ir-0-kwni. the name given by the French to the confederacy of North American Indians, called by the English the "Five," and afterward the "Six Nations." The Nohawks, ()neidas, Onondagas, Cayngas. Senecas. and Tuscaroras after they were driven from their hunting-grounds in North Carolina in 1512. were the members of this confederacy. They formerly resided on the Mohawk River in New York State and on the lakes which still bear their names, and extended their conquests to the Missiscippi and beyond the St. Lawrence. Their valor and successes had procured then the name of the Romans of America. Their territory abornded with lakes well stored with fish; their forests were filled with game, and they had the advantage of a fertile soil. The sachems owed their authority to public opinion: the general affairs of the confederacy were managed by a great council. composed of the chiefs, which assembled annually at Onondaga. The history of the Iroquois probably dates back to 1535, when Cartier found the peoples who had settled along the shores of the Saint Lawrence River, from Quebec to Montreal, and who, judging from the similarity in languages were undoubtedly the ancestors of the later Iroquois. The Algonquins. who at this time were more powerful. drove those people from their labitations and scattered them throughont the country, some, like the Hurons, traveling west, and the majority, among whom were the Iroquois, going south. settling mainly in North Carolina. Hiawatha, their leader, then persuaded them to form a league or confederacy for their own protection, and the league thus formed became known as the "Five Nations." and was based upon such sound and well-ordered plans that it is in existence at the prosent time. In 1-12 they were driven from their territory in North Carolina and coming north again settled in Central and Western New York. Here they gathered other tribes and merged them into the confederacy: and in 1715 took in the Tuscaroras, after which the league was known as the "Six Natinns": they bought fircarms and supplies frotn the Dutch and gradually strengthened themselves so that in 1630, they took the nffensive in a long and bloody war against the Algnnqrins, first attacking the French missinns annong the Hurons in Canada and either slaying. capturing, or sending into exile all this tribe: they then rapidly subdued the Seutral Nation, the Erie, the Ottawa, and all the remaining tribes of the Algonquin race: and conguered in quick succession the Conestogas in the south, those cast of the IIudson, among whom were the Mohicans, and the Miani and Illinois tribes of the Jiddle Wiest. the only trikes who successfully opposed them being the Ojibwas of the Northwest and the Cherokees of the South. In the long wars between the British and the French. which continued with snme interruption for nearly a contury. matil r-63, they were with a few exceptions in the leritish interest. These exceptions were notably the

Cayn-as and the Mohawks, over whom the French Jusut misswnaries exercised a great influshee, and who later withdrew from the leazue and settled in the villages of Caughnawaga and Sant Regis. In the Revolution the Iruquois as a league were neutral, but the separate tribes took up the warfare generally in fayn of the Britich, the Oneidas and some of the Tuscaroras being the only ones who sided with the Americans. Brant led the Mohawks and Cayugas into Canada. where. at the end of the war, the Canadian government gave them several reservations, and where a majority of them are at the present time. The reservations for the Iroquois in the United States are mostly: in New York, where all now live except the Oneidas, who in 1820 migrated to 11 isconsin, and a small band of Senecas, who have a small reservation in the Indian Territory: According to the lnited States census, and a Canadian report, the total number of the Iroquois in 1902 was ahout 17.000 , of whom about 8.000 were in the Cinted States. See Six Nations, The.

Irradiation, an apparent enlargement of a bright body when seen against a background darker than itself. A simple method of obser:ing this phenomenon is to view a bright sky through the spaces between a grating. If the breadth of the opening can be made equal to the breadth of the bars of the grating it will be seen that, when viewed from a little distance the bars look narrower than the spaces between them. This is obviously owing to the encroacliment of the light upon the dark spaces around it. The first question to arise and one which was long discussed was whether the encroachment was due to an excitation of the nerves of the retina outside the limits on which the light fell won the nerves, or whether it was necessary that the light should actually fall ourtside of its geometrical limits. The jatter view is found to be the correct one, unless in cases of extreme brilliancy of the light. Irradiation is almost entirely in the nature of an optical defect or aberration of light. It begins with the atmosphere, which, when light passes through long stretches of it, slightly deflects the rays, so that a point is no longer seen as such, but as a small ill-defined waving surface. No lens cuer brings the rays from a point to exactly the same focus. The lenses of the eye itself have defects which everyone who consults an oculist is acquainted with. The result of all these imperfections is to produce the enlargement we have deseribed.

Irradiation is a notable subiect in the history of astronomical observations. It was necessarily larger with the imperfect telescopes of former times than with the improved ones of our own perind. Total eclipses of the sun, the transits of Yenus and Nercury were especially productive of the phenomenon. The enlargement of the moon resulted in a star appearing as if withm the bright dise of the moon when its licht was really only grazing the surface. The sharp points or horns of light formed hy the limb of the sun during the transits of Venus and llereury were rounded off, so as to present quite an illusory view of their form. Juct at the berginning and end of total eclinces of the sinn the phenomenon known as Bailey's beads, zeally enlargements of the last points of light
from the sun's limb, which could be seen before the sun was quite covered, looked like a string of beads. Nlany learned memoirs lave been written on the subject, but the consensus of opinion to-day is toward the very simple and comprehensive theory above mentioned.

Irrawad'dy. See Irawadr.

Irredentists, an Italian political party formed in 18-8, luaving for its object the redemption and incorporation into the kingdom of Italy of all those regions near Italy having an Italian-speaking population and which they called "Italia Irredenta" (unredeemed Italy). This immense territory iricluded some of the lands now belonging to France, Austria, Switzerland. and England. The immensity of the undertaking was probably the cause of the downfall of the movement, though the formation of the Triple Alliance also gave it a setback, as Austria was the enemy against whom the main efforts of the party were directed.

Irrigation, the watering of land by artificial means 10 make it productive. Historically, irrigation seems coeval with the earliest attempts to construct complicated machinery, and the systems of irrigation used in the earliest times in the Far East, in Babylonia, and in Egypt, dating in the last-named country 20 centuries before Christ, furnish as important a clapter in the history of invention as in the story of agricultural development. In our times the systems of India (q.i.) and Egypt (see Associs; Nille) are probably the best organized, being largely under governmental control. In Europe, irrigation is widely used in northern Italy, southern France, and throughout Spain. The British colonial possessions of the southern hemisphere, notably Australia and South Africa, benefit more and more by artificial water-supply.

Early Irrigatian in America.- Irrigation was practised in prehistoric times by the fown-building Pueblo Indian tribes inhabiting portions of New Mexico and Arizona. The descendants of these Indians still utilize some of the lands which were tilled by irrigation at the time when the Spaniards first came from the south, and practise many of the primitive customs of their ancestors. The Mexicans of mixed Spanish and Indian origin, gradually extending their settlements from the south, through necessity practised irrigation. The early missions of the Pacific coast also used it, and in southern California particularly are to be found the ruins of substantial dams and headworks built of masonry and constructed by Indian labor. But the first systematic application of irrigation in the arid ilest by English-speaking people was made by the Alormons on the shores of the Great Salt Lake. The soil was so barren that crops could not be raised by ordinary means, and they turned the waters of the little cañon streams upon the ground where Salt Lake City now stands. After many years they succeeded in mastering the art of irrigation, and under the wise rules of Brigham Voung, limiting the size of irrigated farms, the Mormons have become a prosperons people. At about the time the Mormons were settling Utah, the gold-miners in California were building ditches for placerwashing, and were using water from these ditches for irrigation. The results obtained attracted public attention, and irrigation slowly

1. Scene in Southern California, showing the furrow method of irrigation.
2. Desert land reclaimed by irrigation, showing recently planted orchards.

IRRIGATION

developed as anl adjunct to mining. With the stoppage of hydraulic mining, the ditches built for mining were either abandoned or used exclusively for irrigation. Many of them have been enlarged, and have now even greater value than in the old days of mining excitement.

Development in the United States.- The successful irrigation attained by the Greeley colony in Colorado, and the wonderful results shown by the Mormon communities in Utah, Idaho, and Arizona greatly stimulated the colony idea; many organizations brought people in large bodies from the Eastern States, and even from Europe, and placed them on small farms located near each other and supplied with water from a common ditch. Individual settlers also sought opportunities for bringing land under cultivation by artificial watering; and thus, at many widely scattered points, irrigation has been introduced. There are no statistics concerning the area irrigated in IS70, but it is probable that in that year there were not over 20,000 acres under irrigation in the whole United States; but $18 ; 0-80$ saw a rapid development of small ditches, constructed by individuals and associations of farmers. At the end of that period there were probably $1,000,000$ acres 1111 der irrigation. In the decade $1880-90$ occurred the "boom" of speculative enterprise in irrigation canals. Large sums of money were obtained for irrigation works, but nearly all of these failed, and although they aided in the extension of irrigation, they did not enrich the investors. The 11 th census showed that in 1889 there were $3,631,381$ acres irrigated on 54,136 farms, with an average irrigation area of 67 acres. During the following decade the irrigated acreage doubled in extent. This was due to the extension and enlargement of the many canals existing in 1889 , and to the more complete practice of irrigation on the lands under ditch.

In addition to the statistics obtained at the Eleventh (1889), and Twelfth (I899) Censuses. a special investigation was ordered in 1902 of irrigated farms and extent of irrigation in acres in the principal arid States, and also the total in the semiarid States, namely, North and South Dakota, Nebraska, Kansas, Oklahoma, and Texas. These lie east of the truly arid region but extend in parts into regions of deficient rainfall.

nUMBER OF IRRIGATED FARMS.

States	1902	1899	1889
Arizona	3.867	2,981	1,075
California	29,255	25.611	13.732
Colorado	19,688	27.613	9.6 S9
Idaho	10.077	8.987	4.323
Montana	9.496	8.043	3.706
Nevada	2,260	1.906	1,167
New Mexico	9.314	7,884	3.085
Oregon	S. 133	4,636	3,850
Utah	21.618	17,924	9,724
Washington	4,585	3.513	1,046
Wyoming	3.721	3.721	1,917
Semiarid States	6.994	4.970	r.S52
Total	126,008	107,789	54,136

Acres irrigated.			
States	1 goz	1899	1880
Arizona	247,249	185,396	65,821
California	1,708,720	1,445.872	1,004.233
Colorado	1,747,3,32	1,611.271	890,735
Idaho	713.595	602.568	217.005
Montana	1.140.694	951,154	350, $\mathrm{S}^{8} \mathrm{z}$
Nevad?	570.001	504,168	224,40.3
New Mexico	2S4,945	203,893	91,745
	8-5S		

States	1902	1899	1889
Oregon	439,981	388,310	177.944
Utah	711,184	629,293	263.473
Washington	154,962	135,470	48,799
Wyoming	773,111	605, 878	229,676
Semiarid States	572,751	273.117	66,965
Total	34,526	7,536,390	3,631,381

National Irrigation Act.-The latest and most important step in American irrigation is marked by the National Irrigation Act, which was passed by Congress in 1902, and received the countenance of President Roosevelt. The act provides for the construction of irrigating works under the control of the secretary of the interior, the funds being derived from the disposal of public lands in the 13 States and 3 Territories. The public land is withdrawn from entry excepting under the Homestead Act. The holdings when reclaimed are to be restricted to between 40 and 160 acres, the area being limited to the acreage which in the opinion of the Secretary may be reasonably required for the support of a family. The cost of the reclamation works is to be apportioned to the reclaimed lands and is to be refunded in not exceeding 10 annual installments, the charges being determined with a view of returning to the Reclamation Fund the estimated cost of construction. For land in private ownership no right to the use of water shall be sold for tract exceeding 160 acres to any one landowner, and he must be an actual resident on or near the land. The result of the law is to give free land under the terms of the Homestead Law and supply water at cost from permanent systems without charging profit or interest to the settler. The management and operation of the irrigation works will ultimately pass to the owners of the lands to be maintained under such rules as may be acceptable to the Secretary, the title and operation of the reservoirs and similar works remaining in the government. It is believed that during each io years for the next third of a century an acreage equal to the total now under irrigation in all the West may be added to the agricultural area of the I6 States and Territories affected; thus rapidly multiplying production, furnishing new homes for millions, and providing the food products needed for shipment from the Pacific coast for use in the lands across the Pacific where new markets are now being opened for the surplus products of this country.

Upon the passage of the Reclamation Law in 1902, examinations and surveys were begun in the arid States and construction started in Arizona and Nevada. In Arizona flood water is to be stored on Salt River by a dam below the mouth of Tonto Creek, furnishing a supply for arid lands in the vicinity of Phemix. In Nevada the flood water of Truckee River is to be diverted by a canal under construction taking it to Carson River, storage being there provided for the excess water of both streams. This will be nsed upon the desert area in the vicinity of Carson Lake. Other principal projects favorably reported upon are Colorado River in Arizona and California: Gunnison River in Colorado; Snake River in Idaho: Milk River in Montana; North Platte River in Nebraska: Rio Grande and Pecos rivers in New Mexico: Yellowstone River in North Dakota; Umatilla River in Oregon: Belle Fourche in South Dakota: Bear Lake in Utah: Palouse River in Washington, and Shoshone River in Wyoming.

Surface streams stupply over 90 per cent of the irrigated land of the United States. Streams within the arid region of the United States rise high, and at one point or another flow for a time through upper valleys or parks. But after passing through rocky defiles to a fertile lower yalley, the typical stream of the arid West loses itself in a shallow sandy channel.

II ater-Supply and Regulation.- The water used in irrigation is for the most part taken from the river or creek by natural flow or grayity. The cost of lifting or pumping water is usually too great in proportion to the value of crops raised to permit the general use of pumps. Water will flow rapidly in a ditch having a fall of two feet per mile, and the stream supplying the ditch may be falling at a rate of 12 feet per mile. At the end of the first mile the water in the ditcl) will be 10 feet above that in the river, and at the end of the tenth mile will be 100 feet higher, and will thus cover land which is less than 100 feet in altitude above the stream at this locality. It is usual to construct some device at the upper end of each ditch or canal by which the amount of water entering from the river can be regulated. Without this, floodwaters would fill the ditch beyond its capacity, and would overflow and wash away the banks. In times of low water, also, the stream may fall to such an extent that it must be raised somewhat and forced into the ditch, and at all times it may be necessary to regulate the flow in order to apportion the water fairly to all concerned. In the case of the simplest ditch, a small dam of brush and stone is built diagonally or into or across the stream-bed as the water becomes low in summer, and this is made tight by means of sod and earth. More permanent dams are sometimes built of timber, or masonry. The head-gate or regulator of the canal placed at the end of the dam consists of a stont framework firmly bedded in the earth or rock with one or more openings, each of which can be closed by a gate sliding vertically. The water enters under the gates, the quantity being controlled by raising or lowering them.

A considerable slope can be used for small ditches, since the volume of water is not sufficiently great to move the large particles of sand and gravel. As a general rule, conduits of this claracter built in common earth should be so proportioned as to have an average velocity of a little less than three feet per second, or two miles per hour, when carrying their full capacity. It is necessary, thercfore, to take into consideration the amount of water to be carried and from this deduce the size and shape of the crosssection of the canal or ditch in order to obtain the desired velocity. If the grade be excessive the seepage or loss of water becomes large. The shape of the cross-scetion of a canal depends largely upon the character of the surface soil. In light or sandy soil, where the carth is easily: eroded, very gentle side slopes are given, while in harder materials the side slopes can be stecper. When the fall of the canal is so great that it is impracticable to allow the water to fow freely down the slope. devices known as drops are introduced. These consist of an arrangement wherely the water can drop to a lower level withont injury to the canal. Drops are usually built of planks with a sharp overfall edge, and a low dam or obstruction below the fall in order to maintain the pool. Occasionally
they are made in the form of an incline, with a pocket at the bottom to break the force of the falling water. They are expensive to build, and difficult to maintain, because of the rapidity with which the timbers decay and the wearing action of the water, which constantly tends to cut exposed portions.

It is necessary in the construction of nearly every ditch or canal to take water across a depression at some point in its course. This is usually done by means of a flume or long box, usually rectangular and supported above the ground by a frame or trestle of timber or iron. Such flumes are often used across rocky ground where it is impracticable to dig a ditch. This is particularly the case near the head, where the water, after being taken from the river, is often carried through a narrow, steep-walled cañon. Here the foundation for a flume is prepared along the rocky cliffs, supports being devised to suit the inequalities of the ground. A better, though more expensive, type of flume is that laving a semicircular section, and built of narrow planks or staves laid side by side and held in place by iron bands run around the flume, joined by nuts and threads by which the bands can be drawn up and the staves brought together. In crossing very deep depressions it is necessary to have a correspondingly high trestle in order to carry the flume across on grade. Such high trestles are expensive and liable to destruction from storms. In their place there have been built inverted siphons, wooden stavepipe, or aqueducts of other form. The stavepipes are similar in construction to the semicircular frame of narrow plank. carefully planned to a given dimension, and held in place by circular iron bands or hoops.

Applicotion of Water.- The methods of irrigation practised in various parts of the United States differ with the climatic conditions and soil. and especially with the early habits of training of the irrigators. The methods of conserving and applying water have been improved under the stimulus of modern invention, although there has been little if any scientific or wellconsidered information available. Water is applied to the irrigated field in three ways - by flooding, by furrows, and by sub-irrigation.

Flooding. - This is done by the check system and by wild flooding. By the latter process the irrigator turns the water from a ditch over a level field and completely submerges it. Perfectly level fields are, however, camparatively rare, and the first step in primitive agriculture by irrigation has been to build a low ridge around two or three sides of a slightly sloping field, so that the water is held in ponds. These low banks are commonly known as levees or checks. In construction they are frequently laid out at right angles, dividing the land into a number of compartments. Water is turned from a ditch into the highest of these compartments, and when the ground is flooded the bank of the lower sidc is cut or a small sluice-way opened, and the water passes into the next field, and so on until cach in turn is watered.

Furrows.-Irrigation in checks has gradually been given up, owing to the expense of leveling and lcreeing the ground. With experience the irrigator has become able to apply water to crops which are cultivated in furrows, without resorting to such expensive means. The furrows are plowed in such a direction that the water

IRRIGATION

when turned into them from the lateral ditclies will flow freely down them without washing away the soil. When the water has completely filled the furrows, and has reached the lowest points, the little streams are cut off and turned into another set of furrows. The methods of doing this differ. Sometimes the irrigator simply cuts the bank of the distributing ditch with a shovel and then closes the opening after sufficient water has escaped. A more systematic method is commonly employed in. California. Water is carried to the furrows in a small box-flume with openings in the side. These openings are closed by little shutters and a number can be opened at once, permitting a certain quantity of water to escape into each furrow. The slope given the furrows determines to a certain extent the amount of water received by the soil. If the fall is very gentle, the water moves slowly and a large portion is absorbed while the furrow is being filled. If steep, the water quickly passes to a lower end and the ground does not absorb so much. When the entire field has been watered the furrows are usually plowed out and a thin layer of the top soil stirred to make an open, porous covering or mulch, preventing excessive evaporation and allowing the air to enter the ground. Without such cultivation a hard crust may be formed. The loosening of this crust breaks the capillary connection with the moisture beneath and thus lessens the loss of water. For irrigating small grain, such as wheat. the ordinary plow furrows are not used. The fields, brought to a uniform surface, are thoronghly cultivated, and after the grain lias been sown, small parallel lines are made similar to furrows, but smaller and nearer together. These tiny channels are made either by a peculiar drag or by a roller upon which are projections so arranged as to makc small grooves in the soil. These are made in the direction of the desired slope, so that the water can flow down the marks through the grain as it would in furrows through a cornfield. The rapidly growing grain shades the surface and prevents the formation of crust, rendering subsequent cultivation unnecessary. In order to cause the water to spread from the lateral ditches into the furrows through the ground, use is made of the tappoon-a small slieet of metal of such shape as to fit across the ditch. This can be forced into the soft carth, making a small dam and causing the water to back up and overflow the field of grain. Sometimes a canvas dam is used.

Furrow-irrigation is usually employed in watering trees and vines. In some localitics, however, basin or pool irrigation is practised. The supply is conducted often in cement-lined ditches and by wooden flumes as near as possible to the trees and vines, and is then turned out into the furrows plowed around or near the trees. The water issuing from small apertures in the side of the wooden box falls into the furrows and is immediately conducted to the vicinity of the trees. Care is usually taken that the water shall not actually touch the tree-trunks, and it is extended far enongh about the extremities of the roots to encourage these to spread outward. After the water has traversed the furrows to the lower end of the orchard. the supply is cut off, and the ground is tilled as soon as the surface dries sufficiently.

Sub-Irrigation.- Attempts have been made to conduct the water beneath the surface imme-
diately to the roots of the trees, thus preventing waste by evaporation from the surface of the ground. Few devices have becn successful, owing to the fact that the roots of the trees rapidly seek and enter the openings from which the water issues, or, surrounding the pipe by a dense network, cut off the supply. Porous clay tiling has been laid through orchards, and also iron pipes perforated so as to furnish a supply of water along their length. A machine has been invented and successfuliy used for making cement-pipe in place. Small trenches are dug through the orchard between the trees and the pipe-making machine deposits the material in the trenches, which are filled with earth as soon as the cement is set. Water is thus distributed underground where needed. In orchards where sub-surface irrigation has been unsuccessful because of roots stopping up minute openings beneath the surface, the system has been reconstructed and water has been brought to the surface at or near each tree by means of small hydrants. Vertical pipes are placed at short intervals leading to the level of the ground, and in these are small iron gates or shutters so arranged that the flow can be cut off in the buried pipe. For annual or root crops sub-irrigation has been successfully practised by the use of small iron pipes partly open at the bottom, allowing a small amomnt of water to escape. These pipes are laid I2 inches or more beneath the surface, and are connected with lines of tile or clay pipes leading from the reservoir or source of supply. As the crops are removed each year, and the ground cultivated, the roots have no opportunity to stop up the pipes. The term subirrigation is occasionally applied to conditions occurring in nature where water percolates freely beneatl the ground for a considerable distance sufficiently near the surface to supply the need of crops. Where the subsoil transmits water freely, irrigation ditches may sub-irrigate large tracts of country without rendering them marshy: Thus farms may obtain an ample supply of water from ditches half a mile or more away without the necessity of distributing small streams over the surface. In the San Joaquin Valley, California, vineyards in certain localities are thus maintained in good condition, although water has not been visibly applied for many years.

Quantity of IVater:- The amount of water required for raising crops varies according to the character of the soil. The plants themselves need a certain minimum supply, but a far larger quantity is required to saturate the surrounding soil to such a degree that the vitalizing processes. can continuc. Prof. F. H. King of JJadison, Wis., has found by direct measurements that from 300 to 500 pounds of water are required for each pound of dry matter produced. When the ground is first irrigated an enormous quantity of water is sometimes required to saturate the subsoil. The quantity of water turned upon the surface during the first year or two has frequently been sufficient to cover the ground to a depth of 10 to 20 fect, and in some cases an anlount equal to a depth of 5 feet or more per annum has been thns employed for several years. Gradually. however, the dry soil is filled. The pioneers of irrigation frequently use too much water, often to their disadvantage.

The quantity of water used in irrigation is usually stated in one of two ways: (1) In

IRRIGATION

terms of depth of water on the suriace; (2) in quantities of flowing water through the irrigating season. In the humid regions the rainiall is usually from three to four inches per month during the crop season. In the arid region, where the sunlight is more continuous, and the evaporation greater, there should be for the ordinary crops at least enongh water during the growing season to cover the ground from four to six inches in depth each month. The second method of stating the quantities necessary tor irrigation is of convenience when considering a stream upon which there is no storage. It is estimated that one cubic foot per second. flowing through an irrigating season $0 i 90$ days, will irrigate too acres. One secondfoot will cover an acre nearly two feet deep during 24 hours, and in 90 days it will cover 180 acres one foot deep, or 100 acres to a depth of t. 8 feet, or $2 \pi .6$ inches. This is equivalent to a depth of water of a little over seven inches per month during the season of 90 days. Successive years of deficient rainiall in southern California from 1897 to 1900 served to prove that, with careful cultivation, crops, orchards, and vineyards can be maintained by using very small quantities of water. In some cases ant amount not exceeding six inches in depth was applied during the year, this being conducted directly to the plants, and the ground kept carefully tilled and free from weeds. As estimated by various water companies in southern California, one miner's inch of water will irrigate from five to ten acres, the miner"s inch equaling 12,960 gallons in 24 hours, or almost exactly 0.02 second-foot, this being the amount delivered under a 4 -inch head, measured from the centre of the opening. Under this assumption one second-foot should irrigate from 250 to 500 acres. If it be assumed that one miner's inch is allowed for ten acres, or one second-foot for 500 acres, this quantity of water flowing from May to October, inclusive, will cover the ground to a depth of a little over seven tenths of a foot. The method of applying water largely governs the amount used. With alfalfa fooding is practised; with small grains the water is run in furrows; while with orchards the water is sometimes applied directly to each tree, or is run in furrows, four or five in each case between two rows of trees.

The annual charges for water by the acre in southern California, where this economy of water is practised, lave been as low as $\$ 3$, and from this rising to $\$ 15$ or more per acre. For good farming in parts of the arid region outside of sottherit California, a depth of from 2_{4} to 30 inches of water during the crop season should be sufficient. The usual charge for this quantity is from $\$ \mathrm{t} .00$ to $\$ 2.00$ per acre irrigated per annum. The temperature and the windmoventent introduce so mary conditions that broad statements of this kind are merely suggestive, and not to be followed as rules.

Where an excessive amount of water is put upon irrigated land, as high as 70 per cent has been known to pass by seepage to the lower grounds. Growing plants evaporate in inany cases 300 times their own weight of water cacls year If a crop be carelessly cultivated and weeds allowed to grow with plants, the worthless plants waste as much water as is used by those that are valuable. But with careful cul-
tivation the evaporation is lessened and the waste of water is prevented. Thus the quantity of water required is only one half or one third of the amount needed where the farming is carelessly done.
'isers' Rights. - The first settlers frequently Jaid claim to the whole flow of the stream. Soon after the first ditch was built others were constructed a few miles above or below. As long as the stream is of sufficient volume to fill each of the ditches, no difficulties from this arise; but sooner or later the increasing size and number of ditches and canals result in diminishing the flow in the river to such an extent that it becomes low, and water does not reach the ditches farthest downstream.

The result has been that in many parts of the arid region, owing to scarcity of water, lawlessness has prevailed, and every man has endeavored to obtain for his own crops as much as possible of the scanty supply: Usually the irrigators elected a water-master to apportion to each claimant a certain amount of water, or assign certain days or hours upon which water can be used. Often the quantity of the water has been settled only after vexatious lawsuits or neighborhood quarrels. In some parts of the arid region, notabiy in Wyoming and Colorado and Idaho, the States have undertaken the regulation of disputes, and have created special boards or tribunals to consider the matter and apportion water.

Methods of Obtaining Water.- In the arid region water can be obtained frequently by digging or boring wells at points near stream-channels or along the foot-hills. Out on the broad valleys it may be necessary to go to a depth of from 100 to 300 feet or more before reaching moisture. Where the supply of water from wells is ample, various devices have been employed, such as windmills and gasoline engines, for bringing it to the surface. It is very important to continue the borings through the water-bearing sands or gravel, so as to take advantage of the full thickness of the pervious deposits. Perforated pipe is often driven into the layers of coarse gravel, and adds greatly to the capacity of the well. Artesian or flowing wells may be sunk wherever water held under pressure in pervious material is overlaid by clay. In a well dug through the impervious layer into the gravel the water will rise to a height equal to the line of saturation of the gravel stratum in the surrounding country. Artesian conditions occur in nearly every State, but they do not extend over any considerable portion of the country; excepting on the Geeat Plains and in California. Wherever they occur the water has especial value on account of the convenience incident to its rising above the surface. In some places, as the James River Valley of South Dakota, the pressure is too pounds or more to the square inch, throwing the water to a considerable height and enabling the wells to be used as sources of power. The quantity of water to be had from deep wells is governed by the diameter of the well, the structure and thickness of the water-bearing rocks, and the pressure sustained by the water. With relatively dense rocks a slight head of water will throw only a feeble stream, but from thick layers of oper gravel or sand rock large volumes are delivered. It frequently occurs that a 4 -

IRRIGATION

inch pipe will deliver all of the water which can reach this point, and increasing the diameter of the well will not alter the flow

While most of the water used in irrigation is diverted by gravity from flowing streams, yet, as regards value, it may be said that some of the most important sources of supply are uttilized through pumping. In some localities where horses have little value, pumping by horse-power is in vogue. The practicability of irrigation in this way is limited largely by the depth of the water and the number of animals available. The force of flowing water itself is frequently employed to bring water up to the level of the irrigable land, the bucket-wheel having been utilized from the earliest historical times up to the present. The most important source of power for pumping water is wind. Over the broad valleys and plains of the arid region the wind-movement is almost continuous for days and weeks. It is a comparatively simple and inexpensive operation to sink a well into the water and erect a windmill, attaching this to a suitable pump. A windmill once erected on the plains is operated day and night by the wind, bringing to the surface a small but continnous supply of water. This small stream if turned out on the soil would flow a short distance, then disappear into the thirsty ground, so that irrigation directly from a windmill is usually impracticable. To overcome this difficulty it has been found necessary to provide small storage reservoirs or tanks, built of earth. wood, or iron, to hold the water until it has accumulated to a volume sufficient to permit a strean of considerable size to be taken out for irrigation. Such a stream, flowing rapidly over the suriace, will penetrate to a distance and cover an area much greater than is possible with the small flow delivered by the pump. One disadvantage counected with the use of windmills is that most of them are constructed to operate only in moderate winds. As the strength of the wind increases, the wheel begiris to revolve, increasing in efficiency until the velocity of the wind is about eight or ten miles an hour. At greater speed the mills are usually so constructed that the efficiency decreases rapidly as the wind becomes more powerful. When it approaches a gale, the mill stops completely.

In many places drainage-works are a necessary adjunct of irrigation. On bench-lands or gently sloping hillsides the water which escapes from one man's farm is eagerly caught and used by his neighbor below, and there is none left to stagnate, the surplus from the cultivated lands being ofteri of great value in watering the lower meadows. There are cases, however, where the question of disposing of the water is as important as that of obtaining it. These are on the nearly level lands, where the subsoil has heen filled to saturation by the water which has no opportunity to escape. and expensive works are required in order to redeem the lower lands for agricultural purposes.

Duty of W'ater:- The amount of land which can be irrigated with a given quantity of water, or the relation which these bear to each other, is commonly, expressed by the term duty of water. The investigation of the duty of water is one of the most complicated problems of irrigation. There is such a difference in methods of measurement. localities, soils, crops, ap-
plication of water, and freguency of watering that the statements made live different persons are almost irreconcilable. In general, more water is used. or the duty is less, on the newer land than on that whicls has been cultivated by irrigation for some years. The rainfall also affects the quantity used, and as this is exceedingly irregular, the amount of water applied eacli year fluctuates. Seepage likewise complicates matters, for a field may often reccive considerable water indirectly and require less by direct application. The duty of water is quoted at from 30 to 500 acres or more to the secondfoot. For convenience the unit of too acres to the second-foot lias been considered as indicating careful irrigating, althongh in the more southwestern portion of the arid region this would be considered low, and in the northern part high.

Since the value of water per .second-foot varies largely with its duty, it will be recognived that it is exceedingly difficult to estimate. However, it is necessary to arrive at certain averages in order to approximate the possible values of river, or of storage basins, in the future development of the country. It has been estimated that a perpetual water-right is worth from $\$ 25$ to $\$ 50$ per acre in a grain or grazing country, and as high as from $\$ 100$ to $\$ 500$ per acre for fruitland. rising in southern California for the best citrus lands eiven to $\$ 1,000$ or more per acre.

Alkali.- The accumulation of alkali in irrigated lands presents one of the most serious problems encountered in this method of agriculture. The injuries from the presence in excess of earthy salts are usually evident in the corrosive action of the tender bark, especially at the root-crown. Experiments made in California show that apple-trees are severeiy injured by the presence of 3.000 pounds of common salt per acre, this amount being disseminated through four feet in depth. On the other hand, the olive thrives at Tulare, where the soil contains as higln as 5.600 pounds of salt per acre. Alfalfa, when young is easily killed by alkali, but it has been found to thrive in soil containing as much as 6.000 pounds of common salt, 3.000 pounds of carbonate, and over 1,000 pounds of sulphate, per acre, distributed through six feet in depth. Sugar-beets also lave been known to grow well where a large amount of alkali is present. Grapes apparently are least affected hy small amounts of alkali, while peaches and lemons are more susceptible to injury because of its presence. The recently introduced salt-bush is motable for its ability to grow in alkaline lands, and sorghum and alfalfa, especially when the latter has reached maturity, are almost equally vigorous.

The most effective way of removing alkali is by underdrainage through tiles laid at a depth of from three to five feet, the drainage-water being allowed to escape into a stream, or into a well from which it can be removed by pumping. Recent authorities on the subject claim that the trouble cansed ly alkali yields sometimes to careful treatment, and that science has partly solved the problem. It is shown that the tiling of land for alkaline washing costs no more than drain-tiling as practised on eastern farms. In the government demonstration at Salt Lake City, where the percentage of alkali is enormous, the lines of tile are 150 feet apart. The water de-

IRRIGATION BILL - IRVINE

scending into the soil dissolves large quantities of alkali near the suriace and carries it off in solution. Land so tiled, even if badly alkaline, can be returned to profitable cultivation in time if heavily irrigated. and within one year can be used for the production of some crops suited to the climate. Large areas of alkali land in the West may be reclaimed at a cost below the actual increase in the value of the land. It is thought that the time will soon come when drainage will be as common in the irrigated districts as are the tile-drained fields of the Middle West.

States Compared.- In the number of irrigators California stands far ahead of any other State, having about one fourth of the total number in the United States. Colorado, however, exceeds in the number of acres irrigated, although not in the value of irrigated crops. In this respect California leads, having a value double that of Colorado, and over one third that of the total value of irrigated crops in the United States. The greatest percentage of increase in the number of irrigators has been in the State of Washington, and the least in Oregon. This, doubtless, is due to the fact that in irrigation Oregon reached a certain culminating point previous to 1889 , while in Washington the construction of ditches had only begun.

Comparison of Crops.- In considering the character and value of the crops produced on irrigated land in the arid States and Territories, hay and forage form the most important item, being over one third of the whole. Cereals - principally wheat, oats, rye, and barley - come far below the forage crops; and next to these in order are regetables. orchard fruits and small fruits. In California only the orchard frnits surpass the forage crops in value. The large production of hay and forage under irrigation illustrates the fact that in these States irrigation is, to a large extent, an adjunct of stock-raising. The production of cereals under irrigation is relatively small. In California, for example, only 6.0 per cent of the wheat is irrigated, and 8.0 per cent of the barley: The total value of all the cereals produced under irrigation in the United States is far less than that of those produced in almost any one of the humid States of the East; in New lork, for example, though it is not considered a farming State, the value of the cereals raised is nore than double that of the entire amount produced under irrigation in the whole country. In many localities the irrigation of cercals and staple crops has been brought about by local conditions, such as dificulty of transportation and consequent heavy cost of importation. The irrigated cercals in such localities are raised almost wholly for local consumption, and do not enter the markets of the world.

Economic Bearings.- Irrigation has important economic aspects especially seen in the greater success of the small irrigated holding. The Salvation Army, following the cxample of the Jormon colonies of 184% in Utah, and of the Grecley community in California, has located small communities on reclaimed farms. The process of colonization will always be slow from the nature of the case, and the effect on eastern agriculture, far from being sudden and sevcre as was urged by the opponents of the Irrigation

Bill in 1902, will be gradual. It may be zery beneficial in forcing eastern farmers to more careful use of their water-supply. and perhaps to the adoption of a modified scheme of irrigation, which has been found to increase crops even in humid districts, and which would at least be a valuable resource in times of drought.

Bibliography'- Mead. 'Irrigation Institutes' (I903): Wilson. Manual of Irrigation Engineering': Wilcox, 'Irrigation Farming': Long, 'Irrigation Law'; Newell, 'Irrigation in the United States' (ig02) : King, 'Irrigation and Drainage" Dennis. 'Reports on Irrigation and Canadian Irrigation Surveys': Brough. 'Irrigation in Utah': Smythe, 'Conquest of Arid America' (Ig00): Deakin, 'Irrigation in Western America': 'Irrigation in Egypt and Italy': Markham. 'On Soanish Irrigation': Ronna, 'Les Irrigations"; Stewart, "Irrigation for the Farm, Garden, and Orchard'; United States Department of Agriculture (Bull. No. I30, I903), 'Egyptian Irrigation'; (Bull. I 33, 1903), 'Report on Irrigation Investigations for 1902'; United States Department of the Interior, 'Report on Agriculture by Irrigation) (Newell, I894) ; United States Geological Survey, "Whater Supply and Irrigation Papers,' Nos. I to 100 ; Newell, 'The Pinblic Domain and Its Water Supply:
F. H. Newele,

United States Geological Survey.

Irrigation Bill, or Reclamation Act, a

 Federal measure, dated is June Ig02, for the reclamation by irrigation of arid and semi-arid lands in Arizona, California, Colorado, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, Washington and Wyoming. See Irrigatios.Irtish, ir'tish, a river of Asia, which rises in China, in the Altai Mountains, and after expanding into Lake Zaisan, flows through the Russian territory of Semipalatinsk, passes the town of Tobolsk, and finally, after a course of about 1,800 miles, joins the Obi near Samarova.

Irus, nickname of the beggar of Ithaca who served the suitors of Penelope as a messenger. Immortalized in the I8th book of Homer's 'Odyssey,' he becomes the typical beggar of later literature.

Irvine, William, American Revolutionary general: b. near Enniskillen, Ireland, 3 Nov. 174I: d. Philadelphia 29 July I8o4. Having graduated at Dublin University, he studied niedicine and surgery, and was appointed surgeon on board a ship of war, serving during a part of the war of $1756-63$ between Great Britain and France. On the declaration of peace he emigrated to America, and in $1-64$ settled in Carlisle, Pa . At the opening of the Revolution he took part with the colonies, was a member of the provincial convention assembled 15 July IJラt, until he was appointed by Congress, Io Jan. 1 नᄀ6, colonel of the 6 th battalion of the Pennsylvania line. On 12 May if79 he was promoted to the rank of brigadier-general, and assigned to the command of the 2d brigade of the Pennsylvania line. In the autumon of 1781 he was ordered to Fort Pitt, to take command of the troops on the western frontier, and continned to fulfil the duties of this post. until after the war had closed. He was early in 1785 ap-
pointed by the State agent under an "act for directing the mode of distributing the donation lands promised to the troops of the commonwealth." About this time he suggested to Pennsylvania the purchase from the United States of the tract of land known as "the triangle," thus giving to the State an outlet upon Lake Erie. He was a member of Congress under the confederation $1 ; 8-8$, and of the Federal Congress 1793-5. In 1794 he was assigned to the command of the Pemssylvania troops for the purpose of quelling the "whiskey insurrection." and in all the most important movements in connection with this subject took an active part. He was president of the State society of the Cincimnati at the time of his death.

Irving, ér'ving, Edward, Scottish preacher, founder of the religious sect known as Irvingites: b. Annan, Dumfriesshire, $\&$ Aug. 1792: d. Glasgow December 1834. He was graduated at the University of Edinburgh, and in ISt5 became a licentiate of the Church of Scotland and subsequently Dr. Chalmer's assistant. In IS22 he became minister of the Caledonian Asylum chapel in Cross Street. Hatton Garden, London. Here he soon attracted very large congregations by the force and eloquence of his discourses, and the singularity of his appearance and gesticulation. The greatest orators and statesmen of the day crowded with the wealthy and fashionable to hear him. The appearance of the preacher tall, athletic, and sallow-displaying a profusion of jet-black glossy hair reaching to his shoulders, with a singular obliquity in one of his eyes, and a stern calm solemnity of aspect, enhanced the interest and excitement produced by his discourses. His phraseology was one of the peculiarities which gave hinn eclat with the public, for he expressed his ideas in the language of Milton, Hooker, and Jeremy. Taylor. At London he began to publish books in which he broached norel theological wiews. 'Sermons, Lectures, and Occasional Discourses,' in which his theological peculiarities were first distinctly enunciated. were published in I828. In the beginning of 1832 his aberrations had become so marked and extraordinary that his hearers, who in 1829 had erected for him a large church in Regent Square, preferred charges against their minister. On 2 May 1832 the London presbytery unanimously found him guilty of error. The consequence was that he became dispossessed of his cure. In I833 the presbytery of Annan, which had licensed him. deposed him from the ministry, on which occasion his defense of himself was a sublime effort of oratory: He retired to Scotland, broken in liealth and spirits, and was attacked with consumption. For the religious sect he founded see Catholic Apostolic Church. His life has been admirably written by Mrs. Oliphant.

Irving, Str Henty (originally John Henry Brodribs), English actor: b. near Glastonbury 6 Feb. IS38; d. Bradford, 13 Oct. 1905. He was a clerk in London. but adopted the theatrical proiession, his first appearance being at Sunderland in 1856 . He appeared first in London at the Princess' Theatre, in 1859 ; later went to Manchester, where he remained for five or six years, but returned to London in 1866, where his first marked success was as Digly Grant in Albery's 'Two Roses' (in 1870), which was
followed by his powerful impersonation of Mathias in 'The Pells.' His next noteworthy parts were Charles I., Eugene Aram, and Richelieu, in the plays so named. In 1874. at the Lyceum Theatre, he sustained the part of Hamlet so successfully as to raise himself to the first place among English actors. His chief Shakespearian parts are Macbeth, Othello, Shylock, and Richard III. In 18,8 he lcased the Lyceum Theatre for himself, and later put on the stage in excellent style 'Othello,' 'The Merchant of Venice,' 'Much Ado About Nothing.' 'Romeo and Juliet.' 'Twelfth Night,' (Faust,' 'Macbeth,' etc., playing in them the principal character with Miss Ellen Terry. His appearances in the provinces were equally successful with those in London, and he met with like favor in his repeated visits to the United States. Of his last great roles may be cited Becket in Tennyson's play of that name (t893), King Arthur in a play of that name (1895), Napoleon in (Madame Sans-Gene) (1897), the title role in his son's play of (Peter the Great' (1898), and Robespierre in a play of that name (1899), specially written for him by M. Victorien Sardou, and the title role in 'Dante' (1903). He was knighted in 1895 , and in 1898 Cambridge University conferred on him the honorary degree of LL.D.

Irving, Washington, American author: b . New Lork 3 April 1783; d. Tarrytown, N. Y., 28 Nor. 1859. His father, William Irving, merchant, came to New York from the Orkneys in 1763. having married Sarah Sanders, daughter of Cornish parents, two years before. Washington was the youngest of their II children. His school training was far from thorough, and was not directed toward academic culture - though two of his brothers had been sent to Columbia College - a decision of his father that he much regretted in maturer years. He made up for his lack of interest in school subjects by enthusiastic reading in English authors, particularly Chaucer and Spenser. At 16 he entered a law office, and in ISoz began authorship by contributing humorous sketches, over the name of "Jonathan Oldstyle", to The Morming Chronicle, a daily edited by his brother Peter. Developing symptoms of consumption, he sailed in t\&o4 for France, and spent two years in travel, on the continent and in England, which restored his health. On return he was admitted to the bar, but instead of practice began, in 1807 , with his brother William, and James K. Paulding, the issue of 'Salmagundi, the success of which determined his career, and the immediate character of his writing. At the close of the next year he set about reshaping the burlesque history of New York, which he lad begun, with Peter Irving, some time betore on a different plan. While in this work he met with the great affliction of his life, the loss of his betrothed, Matilda Hoffman, daughter of a prominent lawyer of the city: in whose office he had finished his legal studies. The completion of the book, "Dictrich Knickerbocker's History of New York,' published in ISoo, was the only solace that he permitted himself in the first months of seclusion and grief. In 18 ro he wrote a short life of the poet Campbell, and was received into partnership by his brothers Peter and Ebenezer, who were founding an importing house, and wished to provide

Wrashington the means, without contribution of time or labor to the business, of preparing himself more fully for his chosen work. In I8I3 and I8Is the edited the 'Analectic NFagazine,' published in Philadelphia, and contributed biographical articles upon some of the naval commanders in the war then in progress with Great Britain. After the burning of our national capital in ISr. he offered his services to his native State, and was made aide-de-camp to Governor Tompkins, with the rank of colonel. At the close of the war he sailed for England, and was received with distinction by the American artists Allston and Leslie, and by Scott, Campbell, Noore and other literary men. In 1818 the firm of P. and E. Irving and Co. failed, and Washington's pleasant rambles in England and Scotland came to an end. He declined a post in the navy board, at home, and set hinnself at work in London with his pen. Early in the next year he sent over for publication in New York and Philadelphia, the first number of the 'Sketch Book,' containing 'The Voyage,' (Roscoe,' 'The Wife,' and 'Rip Van Winkle.' Other numbers followed, the success was great, and in 1820 John Murray brought out an edition of the work in London. Its popularity with British readers was such that Murray became the first publisher of 'Bracebridge Hall' (1822), 'Tales of a Traveller' (8824), and other works. In 1826 Irving went to Madrid, at the instance of his friend, Alexander H. Everett. Anerican minister to Spain, who advised the translation of Naverretés 'Voyages of Columbus,' then issuing in parts. Irving found the work impracticable to translate, being a collection of sources rather than a consistent narrative, and prepared instead the 'History of the Life and Voyages of Christopher Columbus,' finished in 1828 . This first serious product of lrving's powers retained much of the case and charm of (The Sketch Booh' and "Tales of a Traveller,' and was eminently adapted to increase his fame. It was not especially successful, though IIurray paid 3,000 guineas for the copyright; an abridgment of the work had a better sale. 'The Conquest of Granada' (I829), 'Companions of Columbus' (1831), and 'The Allambra' (1832) were further fruits of his Spanish studies and travel. ln the meantime he had been made secretary of legation (1829), in London, and received the medal of the Royal Society of Literature (1830), and the degree of LL. D. (1831) from Oxford. In 1832 he returned to Amerjca, but not to rest. He accompanied an Indian commission to Fort Gilsson, on the Arkansas River, and wrote 'Tour on the Prairies,' published as the lirst volume of 'Crayon Niscellanies,' in 1835. The second volume, 'Abbotsford' and Newstead Abbey,' and the third. 'Legends of the Conguest of Spain,' followed in a few montls. Ile now bought the little Van Tassel farm, at Tarrytown, and began to enlarge its Dutch coltage, ant improve the grounds. "Oo this home, called "Sunnyside," he soon removed from the city, and eventually brought to it the brothers who had aided him in earlier years. In 1836 he finished 'Astoria,' with the help of his nephew, Pierre M. Irving, from materials furnishee] by John Jacob Astor. The next year he pullished 'The Adventures of Captain Bonneville,' properly a continuation of the preceding. He then began a history of the conquest
of Nexico, but on learning that W. H. Prescott was at work on the same subject, resigned the task to him. In 1839 he engaged to write for the 'Knickerbocker Magazine,' and furnished monthly articles for about two years. In 1842 he was appointed Minister to Spain, and for the next four years wrote little. On return he arranged with G. P. Putnam for a complete edition of his. works, in 15 volumes, to which he added (I849) the 'Life of Goldsmith,' and (I850) 'Nahomet and his Successors.' The way was now open for the 'Life of Washington,' which had long been contemplated. In 1855 appeared 'Wolfert's Roost,' mainly a reprint of the Knickerbocker papers, and two volumes of the "Life.) The work told on his strength, and the fiftl and last volume, finished in March, I859, left him a broken man. His death was from heart disease, in his 77th year. He was buried by the side of his mother, whose tastes he had inherited, and whose sympathy and nurture had made him what he was. His authorship was the outcome of his personal character, and was little modified by the literatures of the world. With all his graces of expression, he lacked the gift of deep insight, and failed to achieve much rigor of style. The best biography is still the 'Life and Letters' by his nephew, Pierre M. Irving (I863). Consult also Warner, (Washington Irving' (I88I) ; Laun, 'Washington Irving: Ein Lebens- und Charakterbild' (I870) ; Richardson, (American Literature' (I887-8) ; Wendell, 'A Literary History of America' (1900).
L. A. Sherman,

The University of Nebraska.
Ir'vingites. See Catholic Apostolic Church.

Ir'vington, N. J., a town in Essex County, adjoining Newark on the southwest. It is a pleasant residential suburb of that city, and also lias a number of manufactories, annong which are smelting-works and establishments for making wall-paper, pocket-book frames, tools, brushes, rules, etc. The town was incorporated in 1898 , although its settlement dates back almost to 1660 . Its govermmental affairs. are in the hands of a town council. Pop. (1900) 5,255.

Irvington, N. Y., village in Westchester County, on the Hudson River, and the New lork C. \& H. R. railroad, 23 miles north of New Iork, and a short distance south of Tarrytown; named in honor of Washington Irving. It is mainly, a residential village of recent growth and is noted for its beautiful dwellings and grounds, with their fine situation on the river-bank. These are largely the homes of New York business men and their families. The Guiteau Library and the town-hall are among its most noteworthy buildings. The village is a place of great interest as being the location of "Sunnyside." for many years the home of Wiashington Irving. The house, half a mile north of the railroad station, "is a many-gabled, vine-clad cottage, covered with stucco, and shad owed by grand trees." It has been rebuilt and eniarged. Pop. (1900) 2,231.

Isaac, $i^{\prime} z a \mathrm{k}$ (Heb. "he will laugh"), Hebrew patriarch, the son of Abraham ly Sarah, so called to denote the laughter and gladness occasioned by lis birth. He is remarkable for his miraculous escape from death as a burnt-

い． 1 SHINGTON HKVぱ
offering: and for the iraud perpetrated upon him, at his wife Rebecca's instigation, by his son Jacob, to the injury of Esau. He died at Hebron ISO years old, and was buried in the cave of Machpelah, the resting-place of Sarah and Abraham, and of Rebecca.

Isaac, I., Comne'nus, Byzantine emperor: d 106!. He was the son of Manuel Comnenus, an eminent general under Basil II., emperor of Constantinople, and was the first of his family to assume the purple. He had distinguished himself as a soldier and commander in the wars against the Arabs in Asia Minor, and had married a captive Bulgarian princess. I_{i} 105; he succeeded to the throne upon the deposition of the aged and incompetent Nichae! VI. He abdicated in 1059 and spent the remainder of his life in a monastery.

Isaac, II., An'gelus, Byzantine emperor: d. 1204. He became sovereign of the East in 1185, and reigned to years. Isaac was a vicious and cowardly prince, and was dethroned, blinded, and imprisoned by his brother Alexius in 1195 . Eight years later he was restored to the throne and reigned for six months, when he was again dethroned, and soon after died in prison.

Isaak Church, The, the finest building in Russia, or in northern Europe. begun by the Empress Catherine, and finished by Nicholas 1. The foundation aione is said to have cost $\$ 1,000,000$. It is a magnificent structure, one of the most remarkable sights of the Russian capital. The design is simple and majestic, the whole being surmounted by a gilded dome. The total cost of the structure was $\$ 67.500 .000$.

Isaaks, Jorge, нor'на̄ ē'säks, Columbian novelist and poet: b. Cali, State of Cauca, Colombia. 1843; d. I895. He was the son of an English Jew who had married a Spanish woman and was taken to Bogotá in childhood. and ever after made it his home. He published a volume of poems in 1864, and in 1867 his masterpiece, the novel 'Mlaria,' a story of domestic life in Colombia. told with consummate skill and tender simplicity.

Isabela, è-sä-bālä, Phitippines, province of Luzon, on the northern Pacific coast of the island with Cagayán on the north and Principe and Nueva Ecija on the south: length 118 miles: area 5.395 square miles (including dependent islands). the largest province of Luzon. The Sierra Madre mountain range runs parallel to the coast. a short distance inland; the rest of the surface is broken by low hills: the Grande de Cagayán River traverses the entire tength of the prowince: and the main highway from Aparri to llanila parallels this river. Rice, sugarcane, chocolate, coffee, corn and vegetables grow with little cultivation: tobacen is cxtensively raised and its growth and treatment is the most important industry: Cattle raising is also an important industry: Civil government was established in 1901. Pop. $48,300$.

Isabella, (iz-a-bel'a) (I.) of Castile, queen of Spain. daughter of John II.. king of Castile and Leon: b. Madrigal 23 April 1451; d. Medina del Campo 26 Nov. 150. She married. I9 Oct. 1649. Ferdinand V., king of Aragon (q.w.). surnamed "The Catholic." After the death of her brother, Henry IV., in 1474, she ascended the throne of Castile, to the exclusion of her
elder sister, Joanna. Xiter the kingdons of Iragon and Castile were unted, Ferdinand and isabella assumed the royal tulcs of Spain. She was always present at the transaction of state affairs. and insisted that her name should be placed beside that of her husband in public ordinances. The conquest oi Granada, after which the lloors were entirely expelled from Spain. was in a great degree her work; and the encouragement she gave Columbus assisted him to the discovery of America. In all her undertakings Cardinal Ximenes was her assistant. In I492 Pope Alexander VI. confirmed to the royal pair the title of "Most Catholic," already conferred on them by Innocent V11I. The zeal for the Roman Catholic religion, which procured them this title, gave rise to the Inquisition, which was instituted in Spain in 1480, at the suggestion of their confessor, Torquemada. See Ferdinand V., Ximenes, and Columbus. Consult Prescott. "History of the Reign of Ferdinand and Isabella the Catholic.'

Isabella II., ex-queen of Spain, daughter of Ferdinand III.: b. Madrid to Oct. 1830 ; d Paris. France, 9 April 1904 she succeeded her father in 1833. The early years of her reign were disturbed by a rising in favor of her uncle. Don Carlos, who. if the Salic law had not been set aside, would have ascended the throne instead of her: but this was quelled in 1839. She was declared of age in $18+3$, and in 1846 was married to her cousin, Don Francisco d'Assisi (q.v.). Her reign was so despotic that a revolution took place in 1868 , which drove her from the country. She resigned her claims to the crown in favor of her son Alfonso. who ascended the throne in 1875 as Alfonso XII.

Isabellita. See Butterfly-fish.
Isaeus, one of the "Ten Attic Orators." though probably a native of Chalcis, made his home in Athens, and there. in the first half of the tth century b.C.. we find him actively engaged in the profession of a speech-writer for clients in the law courts. He scems also to have taught rhetoric, to Demosthenes among others, according to one tradition. We have from him a dozen orations dealing with inheritance cases, tivo of them in a iragmentary condition. The best edition is that of H . Buermann (Berlin 1883). There is an English translation by II: Jones (London $1 / 79$).

Isaiah, one oi the great 1 lehrew prophets. The name Isaiah more exactly Jeshá you and Jeshă' yãhut, is derived from two Hebrew words and means "Jehovah saves." It refers to the general burden of the prophet's message. The prophet. who was the son of Amoz (q.v.). a man otherwise unknown to us. was born proially at Jerusalem, and this place, the scene of his life work, and in his thought symonymons with his country, engrosses his attention. The vear of his birth must have been about $\overline{7} 60$ R.C. his known activity begins in 7,30 and continucs to $; \mathbf{0}$ e. b.c., at least. He was married not far from the time of his call in 730 . for in 735 a soli of his, with a name symbolic oi his prophetic message to Judah. Shear-yashubh. "a remmant shall turn" (i, c., to Jehovah), was of an age suitable to accompany his father in his walks. Another son. Maher-shalal-hash-baz, was horn in 734. and his name also is sumbolic of predicted events in the national history, namels.
the iall of Damascus and Samaria. and means "hastening to booty, speeding to prey:"

It is to be remembered that Amos (750 B.C.), and Hosea (q.v.) (735 b.c.) , are the only canonical prophets that preceded Isaiah, and these had their work in the northern kingdom, though Nicalı (q.r.) prophesied in a country district of Judah during the middle and later periods of Isaiah's ministry. It is next to certain that lsaiah was of high rank, if not of the nobility in Judah. and at times might be as bold as he chose in lis utterances to the court. We cannot be certain whether the Jewish traditions that he was the nephew of King Anaziah (Megilla, lob). that he was slain by Mlanasseh (Jebamoth, 49b), and that he was sawn asunder ("The Ascension of Isaiah.' Ethimpic version: cf. Iustin Martyr. 'Dial. c. Trypho,' ch. CXX.), have a basis in fact or not.

The principal crises of the country in Isaiah's time occurred in 735.734 (during the reign of Ahaz), and in 70 (during Hezekiah's reigu). The occasion of the first was the union of Damascus and nerth lisael against the Assyrian over-lord, Tiglath-pileser III. ($\quad 155-727$) and their attempt to overcome Judah. The occasion of the second crisis was the attempt of Judah and her neighbors to avoid tribute to Assyria and their alliance with Egypt against her. At this time Sennacherib was on the throne of Assyria $\left(705-68_{1}\right)$. Besides these, there were moderate political disturbances in Judah during the reigns of Shalmanassar IV.$(727-722)$, and Sargon (-22-705), for both of these warlike kings in these times were in the west country ior conquest and subjugated north Israel, as weil as the Philistine territory:

In meeting these crises, Isaiah showed himself the most consummate statesman and the most brilliant theological teacher in Israel in the times beiore Christ. His hold of truth was strong, his presentation of it was uncompromising, his oratory was superb, and the variety and finish of his discourses and the aptness of his illustrations, as well as the measured flow of his thought, were inimitable. It is of course true that in his teaching he built upon his predecessors. Amos and Jlosea, but he put such a stamp of genius upon the ideas he cherished. that his influence has been the greatest of all the Fehrew prophets.

In general it mav he said that Isaiah's messages had to do with the safetr of the capital in the warlike times in which he lived. with the character of God in his suhlime holiness and righteousness. and with the duty of his fellowcitizens to cultivate the righteous life, and, forsaking human political wisdom and alliances with the natinns, to depend absolutely upon the Lord Gorl. 11 ith him. religion and politics go hand in hand, and theological thinking is the kernel of his most practical and stirring addresses. Incidentally he has given us a view of the circumstances of his time, its social relations and habits, the fashions, the commotions and rumors, in times of peace and war, in seasons of prosperity and distress; in all showing himself the most vivid and nowerful preacher of the olden time.

The convictions of Isaiah are due to his faith in God and arise out of the circumstances of the time. Jehovah is the Ifolv One of Isracl, hence he must punish Jerusalem for her injus-
tice to men and her falseness to God, and this he will do through the insirumentality of the most potent political powers of the age; but since Jerusalem is the throne of His glory, and the seat of true religion, however formal the people have made their worship, therefore, a portion of the Judeans will be spared, and the city will prove invincible. Indeed his own belosed capital is destined to becone the centre of religious truth for the nations, and is to have a new and perfect ruler, who will seign in wisdom and might. and will bring righteousness and peace to the people.

Charles Rufés Brown, Professor of Hebres and Cognate Languoges, The Veaton Theological Institution, Veaton, Vass.

Isaiah, Book of. It must be premised that the old prophets of Israel, for the most part, gave themselves to oral utterance, and made little use of the written roll. In the case of some of them, the issue of written discourses was an after-thought, and the latter assumed forms revised to suit the practical needs of the readers, just as the first forms had been adapted to the need of the audience that listened to the preacher's spoken words. This is undoubtedly true of the prophet Isaiah, who appears to have felt that by changes in phraseology he could the better meet the advancing needs of the men for whom he labored. In other words. the prophet's interest was not historical: he did not reproduce his sermons with the thought of preserving them for the world exactly as they were delivered, but he had the practical aim of moving a new circle of people to that faith in God which he had previously inculcated. This example was not lost upon the disciples and admirers of the prophets. and in the book of Isaiah the old messages have received modifications at different times to suit the conditions of successive generations. Indeed Isaiah in the pre-Christian centuries was held in such honor that authors added to his writings other discourses and historical material that were calculated to produce the results aimed at by our prophet, and in much of this material there is not even a kernel of Isaian authorship. It is true that such procedure is not in accord with modern ideas of literary ownership, but there is reason to suppose that in ancient times the name of the author of new material was of little consequence, and his work was often hidden in the product of some distinguished predecessor, the delivery of an exigent message being all important.

The book of Isaiah contains 66 chapters from various sources, being a combination of several collections of oracles, and divides itself naturally into seven grand divisions, viz.: chapters

I. Chs. i-xii contain several small sections or series of addresses, mostly by Isaiah himself. From the time of his call to the prophetic office in 739 B.c., he probably made notes of his discourses, and about 734 . perhaps. he began to issue combinations of these. first for his disciples, and then doubtless for a larger circle af readers. Chs. vii:t-ix:, composed of discourses delivered to Ahaz and the people of Judah in 735. 734. is probably the first of these
combinations, and not long afterward this was increased by prefixing to it the inaugural vision, ch. wi, and by affixing ix: $: 8^{-x: 4}$ (with $v: 25^{-30}$ now misplaced), the prophetic interpretation of north Israel's unhappy history and the application to Judah. Subsequently the prophet appears to have added the wne on Assuria, the instrument of Jehovah's anger against his people ($x: 5-3+$), and a prophecy of the righteous king, to whom he had already referred, and of the restoration of Israel (ch. xi).

He, or some disciple of his. prefixed to the book ii :I-iv:I; ch. i; v:I-2ł, series of discourses that present in most vivid manner the social conditions and the debased life of the age of Jotham and Ahaz, as well as the evil consequences to follow, ere the kingdom of God could be established. Ch . i, called by Ewaild "The Great Arraignment." is a general introduction to this part, and was composed after 734, possibly several years afterward, eh. i:1 being an editorial note to introduce all the prophecies of Isaiah. Ch. iv: $: 2-6$, ch. xii, are probably post-exilic additions to this division of Isaiah.
2. Chs. xiii-xxuii may be called the book of woes. The genuine Isajah passages are in substance: xiv:24-27, the removal of the Assyrian yoke, xiv: $28-32$ woe on the Philistines, both delivered during the domination of Sargon or Sennacherib: xvi:I3-It, on Moab, delivered perhaps in 7II; xvii:1-II, the fall of Damascus. 735 ; xvii::12-It, the repulse of Assyria, Zor; ch. xviii, the message to Ethiopia concerning the disaster to Assyria, 701 ; ch. xx. on Egypt. jil: xxi:it, iz, on Edom, and xxi:I3-17, on Arabia, of uncertain date, may have been readapted to the exilic situation in $5+5$ B.C.: ch. xxii, against Jerusalem and one of its prominent statesmen, belongs to 702 , 7or ; the sulstance of ch. xxiii (on Tyre), especially uss. I-It, was given abont 702 b.c. Upon these as a nucleus have been grafted oracles from various epochs and authors :namely xiii: 1 -xiv: 23 . the fall of Babylon, composed in Babyloma about 5t9 B.C.: xv: 1 -xvi:12, an old oracle quoted by Isaiah himself, possibly in 711; ch. xix, on Egypt, is a post-exilic oraele, but in vss. 1-15 there may be an Isaiah kernel. from 720, 711, or 702: xxi:1-Io, on Babylon, is exilic, dating from about $5+5$ b.c.; chs, xxiv-xxuii form a long post-exilic apocalypse, concerning the judgment on the world and the future blessedness of Israel, and may be assigned with probability to the later Persian period.
3. Chs xxviii-xxxiii are substantially from Isaiah's hand, and belong chicfly to the time of his later activity. In ch. xxviii, Isaiah's earlier message against Samaria (vss. I-6, before 722) is reiterated with reasons, in or about 704. In chs. xxix-xxxii we have in several paragraphs a representation of the straits to which Jerusalem was put just before zoI r.C., the futility of reliance on Egypt for help, the weakness of the Judean politicians. the indifference of the women of the capital. the ultimate deliverance of the city, the fall of Assuria, and the coming of the Messianic age (the latter in three passages, xxx:I8-26: xxxii:I-8, $15-20$; ch. xxxiii is supplementary to this, contains a woe upon some power hostile to Jerusalem, and the prediction of Judah's deliverance. This is probably a post-exilic expansion of Isaiah's ut-
terances in 7oI B.C. The sections xxix:16-24; xxx:18-26; ch. xxxii, have been assigned by sume writers to exilic or post-exilic times, and they may contain some elements from these pcriods.

No further prophecies in the book ean be assigned with probability to our prophet.
4. Chs. xxxiv-xxxy form a post-exilic proplecy of 450 B.C., or later, and treat of Israel's victory over Edom and of the joyful circumstances of Israel's restoration.
5. Chs xxxi-xxxix are historieal chapters taken in large measure from 2 kings. The Isaian passage omits 2 Kings xviii:I4-16, and introduces the song of Hezekiah (Isa. xxxviii: 9-20) before 2 Kings xx:12.
6. Chs. $\mathrm{x} 1-\mathrm{lv}$ are a long and developed prophecy, and comprise the great exilic predietion of about $5 \nmid 0$ B.C. concerning the return of Israel from Babylonia, through the instrumentality of Cyrus. Omitting subdivisions, of which there are many, Skinner and others divide about as follows:

Chs. xl-xlviii, the restoration: (i) xl:i-1I, the theme; (2) $\mathrm{xl:12-31}$, the infinity of God; (3) ch. xil, the historical situation, as it has been brought about by God for his servant Israel: (4) xlii:I-xliii: :\%, the work of Jehoval's ideal servant (xlii:I-4) for Israel and the world, and the contrast with the servant Israel as he is; (5) xliii:8-xliv:5, the witness of 1srael's history to the divinity of Jehovah. and the salvation of Israel and the nations through the divine internosition; (6) xliv:6-23. the folly of idolatry; (7) xliv:24-xlv:25, the mission of Cyrus, the anointed of Jehovah, for Istacl and for a world-wide religion; (8) chs. xlvi, xlvii, the fall of Babylon; (9) ch. xlviii, the closing argument, and the joyful summons to Israel to depart from Babylon and to deelare to the world their redemption by their God.

Chs. xlix-lv, the glorious future of Isracl; (I) xlix:1-13, the mission of the servant (vss. I-6) to the world; (2) xlix:I4-1:3, consoiation for afflicted Zion; (3) $1: 4^{-I I}$, the perfection of the servant through suffering: (4) li:i-lii: 12. the 1sraelites encouraged to accept the promises; (5) lii:I3-1iii:I2, the servant's saerificial work and his cxaltation; (6) chs. lis. lv, the felicity of Israel and the gracions call to accept the promised deliverance.
7. Chs. Ivi-1xri are probably for the most part of post-exilic origin, as they appear to contain detached messages of condemnation and promise to a peonle living in Palestine. Here there are details concerning the moral, social, and religious duties of the peonle, and worship in the new temple appears to have becn established. We divide: (I) lvi:r-8, the admission of foreigners and elmuchs to the Israelitish community: (2) lvi:o-lix:21, a series of rebukes to several classes, interspersed with promises for fidelity: (3) chs. 1x-1xii, the new Jerusalem: (f) 1xiii:I-6, the divine hero in Edom; (5) 1xiii: :-1xiv:12, confession of sin; (6) chs. Ixr-lxvi, the contrasted futures of true scryants of God and anostates.

The principal idea of Isaial, besides that of judgment. common to the pronhets, was the deliverance from the foes of Terusalem of the remnant of Israel, meditated by a rightenus king. The principal ideas of Isa, xl-Iv are the

ISHMAELITES -ISIIJGLASS

delverance - fisae. from exile through Cyrus. and the deliverance of the people from sin and the impartation of spiritual graces throush the suffering servant of Jehovah. Hope. therefore is the keynote of this prophecy and comiort is the opening word. In connection with the theme. the prophet deceares, in thn afier turn of speech, the reliability of God in bringing to pass his promises. the sublime grandeur of the Holy One, his creative power, the ahsurdity of idolatry: The writer makes it clear that the absolute and sole sovereign in the earth is Jehovaln, the God oi Israel. In Isa. lvi-law there is no advance upon these ideas. but many of them are reiterated there.

Bidiography:- Besides the appropriate sections in Encyclopedias. Old Testament Histories, Old Testament Introductions. Old Testament Theologies. works on Old Testament Prophecy and Messianic Prophecr. Dicticnaries of the Bible. Histories of Assyria, Babylonia, Persia. Egypt, and Syria, the iollowing selected works may be consulted. For fuller lists the reader is referted to the articles in the Bible Dictionarjes. and for the later books, to the lists of current literature in 'The Biblical Wrirl.) In the present list. works writien m other languages and translaied into English, are given in the tramalation only.

1. Commenturics-Calvin (1850) : Vitringa ($1,114-20$. Latin): Lowth (1,78); Gesenius (1821. German): Hitzig (1833. German) Ewald (18-6-81) : Henderson (ISio): Lmbreit (18.6. German) : Drechsler (ISEI-54 German) : Alexander (i865): Delitzsch (i892): Reuss (18-6. French); Nägelibach in (Lange) ($18-\mathrm{S}$); Rirks ($18-8$): Cheme (18 SO): von O-clli (1SS9): G. A. Smith (ISSZ. 18go): Nuhm (T\&O2, German): Skinner (1806. ISO8): Guthe and Ryssel in 'Tautzsch') (IS96. German): Nitchell (chs. i-xij. I\&O): Kitteis 'Kanbel-Dilhnann' (ISos. German): Marti (1000. German): Whitehouse (IOOS)
2. Other If orks-Driver. 'Isaiah. His Life and Times' (isos): Davidson. 'Theology of Isaiah xl-1xvi) ('Expositor.' I $\varepsilon_{2}-\varepsilon_{4}$): 'Thenlogy of I-aiah' ('Expository Times' 1804): Guthe. 'Das Zukwnft=1:11 de- Jea' (1885): Giesebrecht. 'Beitr z. Ies. Kritik' (1890): 'Der Knech Jahres des Deuterojes' (1002): Hackmanis. 'Die Zukunftserwartung des Jes' (1:ว3): Cherne. 'Introduction in Isaiah' (18) Pible' (i\&os): Kïnig. 'The Fxiles' Book \cap f (foms lation' (Ifon): Davidson. 'The Servant (i the Lord in Isaiah) ('Brit and For. Evan. Rev.' 18,2): Driver and Veubauer. 'The 53 d I aaiah according to Jewish Interpetere' ti8-K. 18--': Wright. (Pre-Christiam Jewish Interpretation of Isajal LIII' ('Expocitor.) May 1 ©SS: Lane. 'Die Eber-Jahme Lieder' (18cs): Bertholet. 'Zu Jesaya LIII' (ISon): Füllkrug. 'Das Gotteskinchit des Deuterojes' (igm).

Chimles Ruftes Browis.
Pr Coss r, Hobreu nd Connati Ianguases.
 in, Mass.
Ish'maelites, the descendants of Ichmacl, 11 - $n \mathrm{il}$ i thr: ham by Hacar. These are to h : 1,1 -m me the Irabians, as phrocical chatari - -ics ant lancuase prove berond a doubi. H J kismic ant Cushite monarchies in south-
ern Arabia give no indication in character and habits of having liad Ishmaelites as founders. but the Bedoums who roam over the deserts lying between the Peninsula of Sinai and the Persian Gulf are unquestionably of Ishmaelite origin. They maintain a primitive and partiarchal form oi life, and are full of Isthmaelitie traditions.

Ishmailis, Ish-mālēs, one of the 72 heretical sects of Mohammedanism (q.x.).

Ish'peming, Mich., city in Marquette County: on the Duluth, S. S. \& A., the Chicago. M. \& St. P., and the Chicago \& N. W. R.R's: about It miles west of Marquette. It was setled about 1856 and received its first charter in 1857. It is situated in the great iron ore region of Michigan, and is the centre of the iron ore mining industry of the Siate. Gold and marble are found in the vicinity and an excellent building stone. The manufactures are chiefly the machinery used in mining. There are 2 banks with a combined capital of $\$_{150.000 \text {, If church }}$ edifices. and 9 large school buildings. Municipal aftiairs are administered by a mayor and citt council of 20 members elected annually. The population is composed mainly of Scandinavians and English. Pop. (1890) 11.197: (1900) 13.255.

Isidorus. Spanish ecclesiastic: b. Carthagena. between 500 and 570 d. 4 April 636. As bishop of Seville (from about 600) he played a leading role in all affairs of church and state. and in his influence upon the though: and literature of the whole Middle Ages he is to be ranked as second only to Boethius and Cassiodorus Senator. Among his numerous theological. historical. and granmatical writings, the 'Etymologiae' or 'Origines' should be memtioned. His works are chiefly valuable today for their quotations from earlier writers. The best edition is in Migne's 'Patrologia Latina.'

I'singlass, a form of gelatine (q.v.). whitish, firm in texture, and of great purits: prepared mainly from the sounds or air-bladders of different species of fish. especially of the Russian sturgeon and, in this country of cod. sturgeon, hake, etc. In some cases the skins are also used for this purpose. Besides Russia, from which it had been principally obtamed, the United States and Canada, Brazil and the East Indies furnish considerable quantities to cornmerce. as do also Manila and the West Indics. \overbrace{i} is the basis of the Russian glue, preterred to all other kinds for strength. Isinglass receives its different shapes in the following manner: The sounds are taken from the fish while sweet and iresh. slit open, washed from their slims matter. divested of a very thin membrane which cnvelops the scund, and then exposed to stiffen a litile in the air. In the siate they are formed into rol': about the thickness of a finger. and in length according to the intended size of the staple: a thin membrane is generally selected for the eentre of the roll, around which the rest are folded alternately: and about half am inch ni each extremitw of the roll is iurned inward. Bniled in milk. it forms a mild nutritious jelly. and is tho: sometimes employed medicinally It is ued in making court-plaster. cement, mock pearls. and many other articles. also in ciarifying fermented liquors for improving soups.
jellies, ctc., and as sizing for linens, silk, gauzes, and other fabrics.

I'sis, the principal goddess of the Egyptians, the sister and wife of Osiris. representing the moon, as Osiris did the sun. The Egypuans believed that leis first taught them agriculture. She is represented in various forms. In one she has the form of a woman, with the horns of a cow, as the cow was sacred to her. She is also known by the attributes of the lotus on her head, and the sistrum in her hand, a musical instrument which the Egyptians used in the worship of the gods. She is oiten accompanied by her infant son Horus. In one celebrated Egyptian statue she was shown with her face veiled. She was particularly worshipped in Memphis. but at a later period throughout all Egypt. From Egypt her worship passed over to Greece and Rome.

Is'lam, a term which signifies the Mohammedan religion: complete submission of body and soul to God. His will and His service, as well as faith in all those articles of profession, commands, and ordinances ordained by Mohammed. Every man who makes this profession (aslama) is a Moslem. that is, has entirely given himself up to the will of God. and is, on that account. in a state of salvation (salam) It is held that Islam was once the universal religion, and that every child born in the true faith would abide in it. without defection. were it not ior parental wickedness. As Islam com* prehends the practical as well as the doctrinal tenets of the Mohammedan religion-every thing which Moslems must believe and practise - it embraces the whole of their civil and re ligious polity: for the system of Mohammed re. lates more to this werld than the next, and was designed. like the law of Moses. for the secular as well as the spiritual direction of his followers. But, taken in its more common and direct sense. it signifies the profession of the five fundamental doctrines on which, according to a traditional declaration of the prophet, the whok edifice of the faitl? is built. Those five points are: (i) The acknowledgment of the Divine L'nity and of the prophetic mission of Mohammed; (2) Observance of prayer: (3) Giving of alms: (4) Keeping the fast of Ramadan: and (5) The periormance, if possible. of the pilgrimage to Mecca. They are also often subdivided and enlarged, in order to arrange them more conveniently into the two classes of beliei (iman) and practice (din). The former relates to (1) God: (2) the angels: (3) the Sacred Book: (4) the prophets: (5) the last day: and (6) the divine decrees: the latter to (t) purification: (2) prayer; (3) alms: (4) fasting: and (5) the pilgrimage. To the Arst article of this creed the Persians and other adherents of Ali add. "Ali is the ricar of God": and that is the only essential point in which they differ from the Sunnites, or orthodox Mussulmans, who acknowledge the authority of the four first khalifs. The disputes concerning the succession to the khalifate. or supremacy of the prophet. spiritual and civil. which arose immediately after his death, split his followers, as is well known, into iwn distinct sects, the Sunnites and the Shiites, who have never since ceased to hate each other with a biter animosity : but they differ more in the degree of veneration paid to Ali than in any other point: and professing the
same creed, with the exception of one article, they derive their doctrines from the same sources. In their respective rituals, and their interpretation of particular texts, there are many minor differences: but both agree in superadding a traditional to the wruten law of Molammed. and both have sanctioned that departure from the original simplicity of his doctrine, the re-establishment of which was the professed object of the Wahabees. See Mohammed.

Island, a body oi land entirely surrounded by water. Islands are of very different extent and surface, and some are so large that authors have doubted whether they should be called continents. as Australia : this, however, is a mere matter of definition. The great mases of land forming the Eastern and Western Continents are in reality islands. The iollowing table shows the relative mainland area of the largest islands:

Islands	$\begin{aligned} & \text { Area in } \\ & \text { sq. } \mathrm{m} . \end{aligned}$	Islavds	$\begin{aligned} & \text { Area in } \\ & \text { sq. m. } \end{aligned}$
रew Guinea	303,000	Iceland	40,300
Borneo		Mind	
Sidagascar	27,000 68.000	${ }_{\text {Ireland }}^{\text {Haiti }}$	
Sumatra		${ }_{\text {Tasmania }}$	边
Great Britain		Cerlon	24,700
Celebes Zealand	76,500	(N. Istard).	
(S. Island)	E8.500	Tierra del Fu	
Java		Nora Zembia	
	45:000		
(X. Island)		Haina	
Sewioun			
$20 n$	000	sa-	

A cluster of several islands is called an archipelago. The principal clusters in the Atlantic are the West Indies, the Azores, the Canaries, the Hebrides, Orkneys. Shetlands, etc. But the great world of islands is in the Pacific, and some modern writers consider them as forming a fifth division of the world, including the Eastern Archipelago, Polynesia, and Australia. to which they have given the name of Oceania. A large island is a continent in miniature, with its chains of mountains. its rivers, lakes. and is often surrounded by a train of islets. The rivers of islands are in general little more than streams or torrents, and the smaller islands are oiten uninhabitable from want of water; but they serve as haunts and breeding-places of innumerable sea-birds. There are islands in rivers and lakes as well as in the sea. In rivers they are oiten formed by the division of the stream into varions branches, and oiten by accemulations of eartl brought down and deposited around a rocky base. Examples are not wanting of floating islands. which are formed by the roots of plants and trees interlacing with each other, and thus constituting a support for deposits of successive layers of earth. Islands have been grouped into the two distinct classes of continental and pelagic or oceanic islands. Contimental islands follow each other in succession along the margin of the continents, and are generally of the same gcological structure. Pelagic islands are mostly of volcanic or coral formation. Considerable islands have heen known to be suddenly raised uD from the sea-bottom by rolcanic action. and scon aiter to have as suddenly disappeared in the ocean. The Pacific contains a greai numher of low islands having their basis formed of coral reefs. these reefs being produced by the labors
oi innumerable coral-animals or zoophytes. (See Corta.) Submarine islands, as they have been sometimes called, are immense banks of sand above which there is no great depth of water.

Isle La Motte, V"t., in the northern part of Lake Champlain, the northern point about S miles from Rouse's Point. … Y., on the Canadian border; the southern point about 15 miles north oi Plattsburg. N. I. It is about ; miles long and 2 miles wide. The island has large marble quarries: some of the stone for Victoria Bridge, Montreal. for Fort Mlontgomery on Lake Champlain. for the Brooklyn Bridge, and for many other structures and buildings came from those quarries.

This island was a irequent resort for the Algonquin and Iroquois Indians: at the south end was once an Indian rillage. It was discorered by Samuel de Champlain in July 1609 and was named after a French officer, Sieur La Nlothe. In 1665 a wooden fort called Fort Sainte Anne was built on the south shore. The 'Jesuit Relations' contain numerous references to Fort Sainte Anne. Isle La Motte, and the visits made to this island by the early missionaries. (The chapel of Sainte Anne, crected near the ruins of Fort Sainte Anne. was consecrated 16 July 1893 by Bishop De Goesbriand of the diocese oi Burlington, and it is now a place of pilgrimage.)

On 24 Aug. 16go, Capt. John Schuyler and his company stopped at Fort Sainte Anne on their return from an expedition into Canada. The island was included in the grant made in 1-33. by M. de Beauharnois, then governor of Canada, to Sieur Pean, major of the torm and castle of Quebec, and in the French seignory granted to Sieur Pedon, councillor in the superior council of Quebec in 1-52, notwithstanding the cession of sovereignty to the crown of Great Britain by the French in the Treaty of Utrecht in 1733 over the Five Nations of Indians, who claimed Lake Champlain and the circumjacent territory. In $1 / \cos ^{2}$ Philip Schuyler remained on this island over night and joined James Montgomery near there en route for Quebec. where Montgomery lost his liie. In the spring of 5% w. when Gen. Sullivan withdrew his forces irom Canada, the sick were sent to 1sle aux Noix. Point au Fer, and Isle La Motte. On 8 Aug. $1 \%=6$. Benedict Arnold. aiter engaging the Indians in the British service on 6 August, at the Bouquet River, fell back to Isle La Motte, where his fleet remained anchored until i9 August. when he sailed south toward Cumberland Head.

Isle La Motte was setuled in I, 85 by Ebenezer Hyde, Enoch 1Tall, and William Blanchard and was organized as a thwn in 1;90. In $1814 \mathrm{Com}-$ modore Nacdnnough stationed his Hlet for a time north of this island and subsequently sailed to the bay near Cumberland Head. N. 1.. where he afterward fought the battle of Plattsburg. Sorin after Macdonough's departure irom the ieland. in September r8f4. Capt. Pring (British) erected a battery on the west shore of the island about a mile and a half south from Fort Sainte Anne and made effert: in win over the inhabitants to the Britich cause, but failed. On 8 Sept. 1814. he was ioined by Capt. Downie and three days later they sailed away to attack the Americane at Platthurg. where they were repulied. They returned in Canada. remoring
their munitions of war irom the island in their retreat.

The first permanent settlers on the island were from New England. One of those sturdypioneers was Capt. Caleb Hill, who, at the War of 1812 , organized his townsmen into a military company which was known as Company F of the $2 d$ brigade of the 3 d division of the Vermont militia. After the departure of Macdonough, Capt. Hill's house was entered one night by a squad of Britisl? soldiers, and in his efforts to take them prisoners he was killed. The first ierry established irom Isle La Notte to Alburgh. It., was by Capt. Hill, and the ferry was maintained by his descendants for three quarters of a century; until the construction of a stone bridge connecting the two islands.

There are on the island two public schools, a Methodist church, town-hall, and a government light-house. The light-house has been in charge of TVilbur F. Hill ior nearly 30 years. The island is a favorite summer resort. The strangers who visit the island and ricinity are reminded of the words by which the Indians. in 1609, told Samuel de Champlain about picturesque Lake Champlain. that "lt was filled with beautiful islands and with a fine country surrounding it."

Island Number 10, a former island in the Mississippi River, near the northwestern corner of Tennessee. and about 40 miles below Columbus, Ky: Since the Civil War it has been washed away. It was the tenth in a succession of islands lying below Cairo, Il1. Early in 1862, having been fortified by the Confederate. Gen. Polk, it was commanded by Gen. Mackall, who had about 7,000 troops of Beauregard's army. It was bombarded for three weeks by Commodore Foote. commanding seven Federal gunboats, and surrendered 7 April 1862. The evacuation was forced by Pope with a large land force. He, under cover of a vigorous fire from two gunboats. which had run past the island by night, brought his men across the river in transports. The deienders of the batteries fled, and were pursued into the swamps. Over 6.000 prisoners were taken, together with an immense quantity of ammunition and supplies. The Federal forces lost only a few men. Consult the Century Company's' 'Battles and Leaders of the Civil War,' Vol. I.

Isle of Man, in the Irish Channel, the largest island in the English seas. The principal towns are Douglas. Castletown. Ramsey, and Peel. Castletown is the ancient capital., but Douglas (pop. 15,7 19) is the chief town and the seat of government. which is "home rule" under a lieutenant-governor, who. with council and House of Keys of 24 members. makes up the Tynwald Court. The Mana people are a distinct Celtic nationality. Their language and old customs are rapidly disappearing. Area, 220 square miles. Pop. (1900) 55,608.

Isle of Pines (Isla de Pinos, ês'lā dà pè'nō), a small island belonging to Cuba, to miles southeast of Pinar del Rio. In 1000 the United States gave unofficial expression to the policy of its acquisition as a coaling station. It has an area of about \&yo square miles. It is in effect two islands connected by a marsh, the one on the north being somewhat broken by hills. the one on the south low: flat, and sandy. The climate is healthy, the soil fertile and the min-
eval resources extensive. For administrative purposes the island is a municipal district of the province of Havana. There are large marble quarries here. Cattle raising is the chief occupation of the inhabitants. Pop. (1900) 3,199.

Isle Royale, roī-al (Fr. êl rwä yäl), an island in Lake Superior, within the state boundary of Michigan. It is 45 miles long, 9 miles wide and has an area of 229 square miles. Valuable deposits are found here.

Isle of Wight, wit, the second largest island in the English seas, near the Hampshire coast. It is four miles in breadth, but only a mile in width on the west, between Hurst Castle and Cliff End, while it expands to seven miles between Southsea and the Foreland on the east. In shape the island is an elongated rhomboid. Its extreme length, from the Foreland to the Needles, is about 23 miles, and its extreme breadth, Cowes to St. Catharine's Point, is about 13 miles. The late Queen Victoria had a residence here. The area is calctlated at 145 square miles. Pop. (1901) 82.000.

Isles of Shoals, a group of eight barren islands in the Atlantic Ocean, near the New Hampshire coast, 10 miles southeast of Portland, Maine, from which a daily steamer plies during the summer months. The three principal islands are Appledore (400 acres) ; Star (150 acres), and White (55 acres). There is a revolving government light on the last named, 87 feet above the sea. On Star and Appledore islands are several large hotels for summer visitors who find sea air, boating and fishing here. A few fishermen are numbered among the permanent inhabitants.

Is'lip, N. Y., town in Suffolk County, on Long Island; on the Long 1sland railroad, 44 miles east of New York. The town comprises several small villages and covers an area 20 miles long and 10 miles wide. Here are the Mlanlattan State Hospital for the Insane, Saint Joscph's Convent (Roman Catholic), and a large fish hatchery, owned by the State. The town is popular as a summer resort and has many fine hotels along the shores of Great Sonth Bay. The Fire Island lighthouse, 166 feet high, is located eight miles from the mainland. Blue Point oysters are shipped from the town in large quantities. The government is vested in a town supervisor and town board, elected every two years. Pop. (1900) 12,545.

Isocrates, i-sōk'ra-tēz, Greek orator: b. Athens 436 b.c.; d. there 338 b.C. His principal teachers were Tisias, Gorgias, Prodicus, and Protagoras. On account of his weak voice and natural timidity he was reluctant to speak in public, but gave lessons in the art of eloquence, and made orations for others. He thus made considerable profit, for he received twenty talents $(\$ 14,375)$ for a speech that he wrote for Nicocles, king of Cyprus. He was the first who saw the value of oratory in public life. By basing it on sound moral principles he rescued it from the abuses of the Sophists. He was distinguished for a polished style and a harmonious construction of his sentences. The composition, revision, and repeated polishing of his speeches occupied so much time that he published little. His celebrated panegyric on Athens 'Panathenaicus' employed him io, or according to others, 15 years. As all his speeches were
modeled after the same pattern, their samencss excited weariness, although his subjects were the most important points of morals and politics. His patriotism was sincere, and his desire for the frecdom of Greece so intense, that he starved himself to death in his ninety-eighth year from grief at the battle of Charonea, "fatal to liberty." In Plutarch's time 60 orations went uncler his name, not half of which werc, however, deemed genuine. Twenty-one now remain, of which the principal are the 'Panegyricus' (an oration in which he exhorts the Greeks to concord, and to war against the Persians) and the 'Panathenaicus' (in which he dilates on the services rendered by Athens to Greece).

I"sodimor'phous Series. See Isomorphism.
Isoetales, ī-sō-č-tä'lēz. See Ferns and Ferx-allies.

Isola'tion, in evolution (q.v.), the separation or segregation of any set of animals in a particular area, so that incipient varieties or species are prevented from breeding with the parent species of adjoining regions. Through such isolation the swamping or leveling effects of free intercrossing, or mixing with allied varieties or incipient species, are prevented. As a consequence, variations or nascent species become fixed or localized, being prevented from spreading by some geographic or topographic barrier, with the result that there are many thousands of local races, varieties and species; indeed, probably over half of the number of known species are such forms. Not only species, but genera and higher groups are thus isolated. Thus the marsupials of Australia are, with one or two exceptions, confined to that continent, the connection once existing with Asia having been cut off. In one sense natural selection, or the inbreeding of the fittest, is a form of isolation, as also is preferential mating (q.v.) and also those cases when animals breed at slightly different seasons. What Wcismann calls Amixia is substantially the prevention of free intercrossing by the geographical isolation of a part of the individuals of a species from their parent stock. Romanes insists that "without isolation, or the prevention of free intercrossing, organic evolution is in no case possille." and he claims that isolation "has been the exclusive means of modification, or more correctly, the universal condition to it."

Examples of Isolation.-These are found among cave animals (q.v.) where animals confined to the nether world. living in total darkness, are prevented from breeding with their ancestors of the upper world. The decp-sea fauna is another such assemblage. living in gloom and in water at the freezing point, although at the surface the winter temperature of the sea may be $80-85^{\circ} \mathrm{F}$. Other examples of the result of isolation are the assemhlage of animals peculiar to certain islands, to basins walled in by mountain chains, valleys, deserts, and Alpinc summits. Interesting cases of isolation on islands are the gigantic moa birds of Ncw Zealand; the local specics of birds confined to the different islands of the Galapagos archipelago, also the land shells living in the different valleys of Oahu, one of the Hawaiian Islands.

Another form of isolation Romanes calls "physiological selection," though Seebohm suggests that physiological isolation would be a better term. The first to call attention to the

जulue i isolation was Lamarck, while Wagner has shown the great value of migration and the motervention of geographical barriers in the formation of species.

Isomerism (Greek. having equal parts"). Chemiste formerly assumed that two bodies must be identical in chemical nature, in all respects, provided they consist of the same elements, combined in the same proportions. This view was long ago iound to be uniemable, and many substances (mesily compounds oi carbon or nitrogen) are now known, which exhibit widely different properties, although possessing the same empitical formula. Bodies which possess this peculiarity are said to be "isomeric" with each other. and the property itself is cailed "isomerism." In its broadest sense. isomerism may be regarded as embracing (I) polymerism. (2) metamerism. (3) isomerism in the narrower sense, and (4) geometrical isomerism.

Bodies are "polymeric" when they have the same percentage composition. but have different molecular weights. Acetic acid. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$. and grape sugar. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ for example, are polymeric with each other, because they consist of the same elements. combined in the same proportions, and yet the molecular weight of grape sugar is three times as great as that of acezic acid. In this particular case there is no specially close relation between the polymeric substances, and the polymerism is therefore said to be "accidental." When a close relation does exist between the bodies compared. the polymerism is said to be "generic." Ordinary acetic aldehyde affords a good example oi generic polymerism. Aldehyde has the formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$, but when treated with a mineral acid it becomes transformed into paraldehyde, which has the formula $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{5}$: and the feverse transiormation (of paraldehyde into aldehyde) may be effected by the application of heat.

Compounds are said to be "metameric" when they have the same empirical formula, but diiier structurally by containing different radicals, foined by a polyvalent element such as oxygen, hitrogen, or sulphur. Ethyl ether and propylmethyl ether, ior example. both have the empirical formula $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$; but ethyl ether contains two ethyl radicals, united by an oxygen awom, and propy-methyl ether contains a propyl radical and a methyl radical united by oxygen in the same manner. Thus these two metameric bodies have the structural formule ${\underset{C}{2}}_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{H}_{5}}^{\mathrm{H}_{5}}>0$ and ${\underset{C}{2}}_{\mathrm{C}_{3} \mathrm{H}_{5}}^{\mathrm{H}_{5}}>0$, respectively. Metamerism is manifested. most commonly, by the ethers, esters, and amines.

Isemerism in its narrower sense, or "true isomerism." embraces those cases in which the bodies compared have the same empirical formule. but have difịerent structural formule. and do mot (like metameric bodies) consiti of derinite carbon radicals united by oxysen, sulphur. or nitrosen. True isomerism may be of two kinds: (t) "nucleus is memerism." and (2) "isomerism of positi n.' The hydrocarbons afford gned examples of both kinds of true isomerism. The paraffin known as propane, for example, has the empirical icrmula $\mathrm{C}-\mathrm{H}_{5}$, and the structural formula $\mathrm{CH}-\mathrm{CH}-\mathrm{CH}$. Propane may he converted into butane by replacing one of its
hydrogen atoms by the methyi fadical, CH_{s}; but the substitution may be made in two essentially different ways. according as the hydrogen that is replaced is attached to the interior arbon atom. or to one of the terminal ones. In the latter case the structural formula of the new substance is $\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$, and the substance itself is known as "normal" butane. If the hydrogen that is replaced is attached to the interior carbon atom, a different substanice, known as "isobutane" and having different properties from normal butane, is formed: its

These two substances.-normal butane and iso-butane-are said to manifest "nucleus isomerism. ${ }^{D}$ since they differ by the mode of arrangement of their fundamental carbon chains. As the number of carbon atoms in a compound increases. the possibilities of nuclens isomerism becomes enormous. Thus the general empirical formula of the saturated fatty hydrocarbons (or parafitins) is $\mathrm{CnH}_{-n}-$ - . We bave seen that in the case of butane (for which $n=4$) two nuclear isomers are possible. If the same kind of reasoning is applied to the higher members of the series, regarding each member as derived from the preceding one by the substitution of a methyl radical (CH_{3}) for a hydrogen atom, we shall find that there are 3 pentanes $(\Omega=5)$ possible: 5 hexaues ($\mathrm{n}=6$); 9 heptanes $(\mathrm{n}=\mathrm{z})$; i8 octanes $(\mathrm{n}=8): 35$ ennanes $(\mathrm{n}=9): 75$ decanes $(\mathrm{n}=10): 159$ hendecanes ($\mathrm{n}=11$) : 355 dodecanes ($\mathrm{n}=12$); and no less than 802 tridecanes $\left(n=I_{3}\right)$.

In that kind of true isomerism which is called "isomerism of position," the isomeric bodies contain substituted atoms or radicals, which occupy different positions in the main chain. Thus a parafion may be converted into an alcohol by sutstituting a hydroxyl radical OH) for one of the bydrogen atoms, and the resulting aicohol will have different properties according to the position of the hydrogen atom that was replaced. For example. four butane alcohols are possible. In normal butane, the structural formula of which is given above the hydroxyl radical may be substituted for one of the terminal hydrogen atoms, in which case an alcohol is obtained which has tbe structural formula

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}
$$

and is known as "normal primary butyl alcohol." If the hydrosyl is substituted in the place of one of the interior hydrogen atoms, an alcohol is obtained which has the structural formula

and is known as "secondary butrl alcohol."
Proceeding, now, to the consideration of isobutane. we note that two essentially different substitutions of the bydroxyl radical are here possible. We may replace a hydrogen atom in one of the three CH_{3} groups, of we mar replace the one in the CH group. In the first case the alcohol has the structural formula

and is known as «isoprimary .butyl alcohol":
and in the second case it has the structural formula

and is known as "tertiary butyl alcohol." All of these iour alcohols have been actually prepared. (For isomerism of position as manifested in the aromatic compounds, and for the nomenclature used in distinguisbing the various isomers that those compounds can exhibit, see Aromatic Compotids.)

Certain compounds are known which possess not only the same empirical formula, but the same structural formula also, and yet manifest distinctly different properties, either chemically or physically. Fumaric and maleic acids (see Frusaric Acid) are examples of this. In such cases the provisional hypothesis is made. that the geometrical structures of the molecules of the two substances are related to one another in something like the same manner that the image of an object in a mirror is related to the object itself, and the isomerism is said to be "geometrical." (See Stereo-Chemistry.)

With reference to isomerism in general, consult Hjelt, <Principles oi General Grganic Chemistry): Lothar Meyer, 'Modern Theories of Chemistry.'

Isomorphism, identity of crystalline form. Isomorphous bodies can form homogeneous mixed crystals; and each one is capable of growing in a saturated solution of the other. fresh crystals being gradually amassed around the original body as a nucleus. Carbonates of calcium. known as calcite; oi magnesium, iron, manganese and zinc (magnesite. siderite. rhodochrosite. smithsonite) all are oi the same class in crystallography (q.r.). The presence of the sanie chemical elements of composition in substances does by no means imply isomorphism and substances of very rarying components may yet be isomorphous. The isomorphous elements in isomorphous salts, as, ior instance, the metals, are generally of the same or related groups of elements. Dimorphous substances, that is, those which form crystals of more than one kind, are often connected by a third dimorphous substance, such as carbonate of lime in the case of calcite and aragonite, and form a group known as isodimorphous substances. See Crystallography.

Isopoda, i-sŏp’o-dạ, an extensive and raried group of Crustacia (q.r.) usually ranked as a suborder oi the Arthrostraca or sessileeyed Malacostraca. The body is broad and flattened. and either short or elongated; the carapace is little developed; the thorax long with seven free segments. each bearing a pais of walking limbs: the abdomen more or less shortened and bearing lamellar branchial appendages. The Isapoda are classified in seven tribes and more than 30 families, embracing an enormous number of species. They vary greatly in form and mode of life but all are of relatively small size and retiring habits. The rast majority are marine. but a few are inhabiants of fresh water or terrestrial; the latter are familjar to evervone under the names wood-lice and pill-bugs. Most oi the marine forms live a iree jifc but conceal ihemcelves in crerices or among

YoL 8-59
sessile animals and plants, others bore into wood. some, as the gribble and its allies, being destructive to piling: many are commensal or prarasitic, amons the latter being the Cymotheida. wheh iniest fishes and whales, and the great y degenerated Bopyrida, which live in the branchial chamber of prawns and similar crusıaceans. Consult Packard. 'Zoningy.' (I88-): Richardson. 'Key to Isopods of North Amexica.' in Proceedings ('nised States National Museum. Tol: XXI. and XXIII. (t899. 1901)

Isospondyli, i-sö-spān'di-lī. See Ichthyolagy.

Isothermal. See Lise; Thermonysamirs; Matter.

Ispahan, ìs-pa-hān', or Isfahan, important city and former capital of Persia, zto miles south of Teheran, in the midst of an extensive plain ratered by a broad river. In the time of Chardin the walls were 24 miles in circuit, and contained 162 mosques, i 8 colleges, 1,802 caravansaries, and 273 public baths, and the population was then estimated at 600,000 . It great parr of the city is at present a mass oi ruins. Tinder the caliphs of Bagdad it became the capital of the province of lrak. Being sitwated in the centre of the empire, and surrounded by the most fertile territories, it soon became a place oi great population, wealth and trade. In ${ }^{13} \mathbf{3}^{8}$; it was taken by Tamerlane and the citizens were given up to indiscriminate massacre, and 70.000 are said to have perished. In $1 ; 22$ it was taken by the Aighans; but in $1 / 27$ it was retaken by Nadir Shah, since which it has not been a royal residence. The great palace built by Shah Abbas is said to have been five miles in circuit. a great part of which space. however, was laid out in ten gardens. adorned with summer houses. The square called Maidan Shah was one third of a mile in length, and was iormerly encircled by a canal bordered with plane-trees; but all restiges of both are norr obliterated. The streets are narrow. winding, irregular. unpaved, and very dusty. When Ispahan was in its prosperity its suburbs were distinguished for their extent and beauty: The manufactures of the city are still extensive. including trinkets, fire-arms, swordblades, glass, and earthenware. The textile fabrics range irom the most expensive relvet and satin to the coarsest nankeen and calico. The present population is about 75,000 .

Is'raelites. See Jeirs and Jtdatsm.

Israels, Joseph, yō'sĕf ez-rä-āls', Dutch painter: b. Greningen 27 June 1824 . He was a pupil at Ansterdam oi Kruseman and at Paris of Picot, and established lis studio first at Amsterdam and later at The Hague. Having essayed historical painting with no marked success, he iurned his attention to genre work. He found his subjects among fisherfolk and the humbler classes. whose existence, particularly in its more serious or tragic phases. he depicts in a style likened to that of Millet. Among his canvases are: (Awaiting the Fishing Boats); 'Alone in the Whorld': 'X̌athing More'; 'The Struggle for Existence' ; 'On the Dunes.' He published 'Spanien, cine Reiseerzāhluns' (tgoo). Consult the study by Liebermann (I 901).

Isthmian Canals, American. The plan of uniting the Atlantic and Pacific Oceans by a
great ship canal has been a dream of navigators for several centuries, almost in fact since the days of Columbus, for as early as 1581 the first survey was made to determine the feasibility of connecting the two oceans. In that year, in obedience to instructions, Capt. Antonio Pereira, governor of Costa Rica, organized an expedition and explored a route by way of the San Juan River the lake, and the rivers emptring into Guli Nicoya, Costa Rica. In 1620 Diego de Mercado submitted to King Philip of Spain an elaborate report in favor of the construction of a canal over that route which is known as the Nicaragua route. The Panama canal project was conceived later, and other projects were adranced. one of which was the bold conception of James B. Eads, an American engineer, to construct at Tehuantepec a railroad which would be able to carry the largest ships from ocean to ocean. The scheme of connecting the two oceans has possessed a fascination for men of science and an intense interest for men of commerce ever since it was proposed. A number of surveys of the Panama and Nicaragua routes were made during the past half century but it may be said that not till I879 was the first positive step taken toward the realization of the project on which so much thought had been expended. In May of that year an International Congress was convened in Paris by MI. Ferdinand de Lesseps to discuss the olan of cutting a canal through the Istamus of Panama. The congress adopted a plan which had been prepared previously by M. de Lesseps, and immediately following that action the Panama Canal Company was formed. The company secured from Licut. Lucien Napoleon Bonaparte Wyse of the French nary the concession which he had obtained from the United States of Colombia. After the concession had been secured by the company, a commission, known as the De Lesseps Engincering Conmission, was sent to Panama to make survers and prepare estimates of cost. The commission estimated that a canal could be made ior ét3,000,000 irancs. De Lesseps reduced these figures to $600,000.000$ francs, or $\$ 120.000 .000$, and announced that a canal à niecuru, or tide level canal. could be completed for that sum. So confident was he of the accuracy of his calculations that he invited men of prominence to attend the opening of the canal, which he set for ISES.

On 21 Feb. IE8I the first detachment of canal employecs arrived at Colon. Surveys were made, and the building of camps, hospitals, and other necessary buildings followed. In is82 the Panama Canal Company purchased the Panama railway. Interest charges accumulated between 1882 and $I \mathbb{L}$, while nothing like the progress on the canal which had bcen anticipated had been made. In the autumn of 1888 further borrowing became impossible, and then came a crash which shook the financial world. On I Jan. IES, the company was forced into liquidation. This event crated a ierment throughout France, no lesa than 800,000 French shareliolders having been induced to invest in the stock of the company, largely through the appcals which had been made to their patriotism. A receiver was appointed by the Court of the Seine with unlimited power: In isoo the receiver sent a commicsion of Frencla and other engineers to l'anama to report on the actual condition of the work. The report was discouraging. Not
more than a fith of the proposed work had been done; a valuable plant, estimated at $\$ 30,000,000$, was rusting away and useless; the tide level at Colon was filling in and the harbor was shallowing, owing to the cut.

In ISgI the government of Colombia granted to the Panama Canal Company an extension of 10 years from 1893 in which to finish the contract, provided operations were resumed before February IE93. In November IS92 a member of the French Chamber of Deputies, M. Delahaye, created a profound sensation in Paris bs declaring on the floor of the Chamber that the Panama Canal Company had obtained exceptional privileges, which it had used for the purpose of defranding investors, by the bribery oi no fewer than 100 deputies. The demand for an investigation of the chatges was of sucls force and insistence as to be irresistible, and the ministry decided to submit the whole question to a committec. Following this decision, Baron Reinach, a banker accused of being the instrument or agent of much of the corruption of the company, died suddenly, and it was alleged that he had poisoned himself. Amid a popular clamor, such as Paris had not known for many years, the investigation was carried on, and the disclosures before the investigating commistee indicated that the operations of the canal company had been slimed with fraud. It was shown that the Panama Company had bribed deputies and journalists on an extensive scale in order to cover up its shortcomings and leave the way open for further imposition.

In February IS93 M. de Lesseps, his son Charles, and some of their colleagues were sentenced to various terms of imprisonment for fraud and bribery. At the time the blow fell M. de Lesseps had passed his Soth year. Bitter as was the feeling of the French toward those who were responsible for their loss of money, much sympathy was manifested toward the man who had been the presiding genius of the great enterprise. That he had been knowingly a party to the great fraud which had wrecked the hopes and fortunes of so many worthy persons in France, the public was loath to credit. The sympathy for him took such form that he was not imprisoned. But the great engineer, who had reaped so much glory through the construction of the Suez canal, was unable to withstand the blow which the Panama exposure gave him. He died in November of the year following. At the end of rS93 the only prominent person left in prison as the result of the Panama prosecutions was MI. Baihut, formerly Minister of Public Works.

In ISgt a prominent French engineer proifered a scheme by which he claimed the work could be completed in four years at an additional cost of Sito,000,000. A new company was formed, and 300,000 shares were issued. Work on the canal was resumed under French auspices. Early in IS95 a strike occurred among the laborers on the canal, and the methods of the new company were criticised severely by the stockholders. Another scandal such as had attended the operations of the original company was feared, but developments showed that the suspicions were unwarranted. Nevertheless, the confidence of the French public in the ultimate success of the enterprise had been shaken to such extent as to make it manifest that the com-

HOW THE THADE ROUTES OF THE WORLD WHL, HE SHORTENEI BY THE PANAMA CANAL

ISTHMLAN CANALS

pletion of the canal under French auspices was no longer a possibility.

That being the situation, those who were bound up in the enterprise turned toward America for relief. The United States up to that time had concerned itseli, as far as the building of a canal was considered, solely with the Nicaragua route. The first survey for a canal at Nicaragua under American auspices was made in 1852 by Col. A. W. Childs. The project as outlined by him has been the basis for all subsequent locations. A second survey was made in 18,2 by a party under the charge of Commander E. P. Lull of the United States navy. Eleven years later another survey was made by A. G. Menocal, a civil engineer, also of the United States navy. In ISS9 the Maritime Canal Company was organized to construct the Nicaragua canal on the lines of the Menocal project. As there was, for a decade following, considerable enthusiasm over the Nicaragua canal scheme in the United States, the project of the Panama Company enlisting American capital, were anything but promising.

Nevertheless an auxiliary American company was organized. In the investigation of the French company's affairs which was made by the new American company, it was ascertained that of the $\$ 56,400,000$ expended by the original company only $\$ 88,600,000$ had been expended legitimately on the excavation and construction, the rest having gone in bribery and corruption. The second French company was started with a capital of $65,000,000$ francs, about one half of which was expended cautiously on construction in four years. The second French company had abandoned the original plan of constructing a tidewater canal. Its plans contemplated the construction of a canal with locks.

The history of the isthmian canal project shows that faith in the Nicaragua route as the most practicable suffered a steady decline. This decline was due more than anything else, perhaps, to the uncertainty of the cost of carrsing out the project. The first estimate of the liaritime Company was $\$ 67,000.000$. After doing more or less work on the canal the Maritime Company ceased operations in 1893 for lack of funds. In 1895 Congress appointed the Ludlow Commission to examine and report on the Maritime Company's project. This commission placed the cost of the canal's completion at $\$ 133,472,893$. The Walker Commission, appointed subsequently, increased the estimate to $\$ 140,000,000$.

Up to the outbreak of the Spanish-American wat the project of constructing an isthmian canal, while acquiesced in by the general public in the United States, had received ardent advocacy only in quarters where a special study of the subject had been made. But at the commencement of that conflict the people of the United States received an impressive object lesson on the need of a canal. That lesson was the historic trip of the battleship Oregon. With the declaration of hostilities American attention was absorbed by the possibility of the Spanish flcet under Admiral Cervera making a sudden attack on some one of the important cities of the Atlantic coast. At that time the Oregon, a newly constructed battleship, was on the Pacific station. It was considered desirable to have the ship added to the strength of the Atiantic fleet. Orders were sent to her commander, Capt.

Clark, to bring her around Cape Horn, using all speed possible. The American pcople watched with anxiety the famous voyage. It furnished an argument for the construction of an isthmian canal more effective than a century of discussion.

But coincident with the making up of the American mind that a canal must be built, there came the conflict of opinion as to the choice of routes. Those who were interested in the Panama enterprise werc quick to sec the opportunity opened to them. When the commission that was appointed by President McKinley in iS99 to examine the American isthmus at every available point in order to determine the most practicable and feasible route for a ship canal went to Paris to examine the plans of the Panama Company, the company, realizing the improbability of its being able to raise sufficient funds in France to carry the enterprise to a successful conclusion, decided to face competition with the Nicaragua project before the Congress of the United States. At a meeting of the directors it was decided to transfer all of the property of the company, its rights and powers, together with those of the American auxiliary company, to a new American company. That company was organized under the laws of the State of New Jersey, with the title of the Panama Canal Company of America. The capital was fixed at $\$ 30,000,000$ and the company was authorized to increase the amount if necessary. The arrangement which it made with the French company in taking over its rights, was to pay the shareholders of that company partly in money, but mainly in shares of the American company: The French company retains only an equity in the shape of a lien on a specified percentage of the profits remaining after the payment of all operating expenses and fixed charges and a dividend to the stockholders of the new company. An international commission of French, German. Russian, English, and American engineers, consulted by the French company in drawing up its plans, estimated the cost of completing the Panama canal at $\$ 102,000.000$, if the two locks were made of a certain width, and $\$ 125,000,000$ if the locks were wider. The extended concession from the Colombian government suns till 3I Oct. 1910, a bonus of $\$ 15,000$,ooo having been paid to secure the extension.

After the American company was organized and the proposition for a transfer was brought definitely before the French directors, so much opposition was developed to the surrender of an enterprise that had absorbed so much French enthusiasm and entailed such sacrifices on the French people that the directors were unwilling to shoulder the responsibility of carrying out the arrangement, and all resigned. The trustees of the De Lesseps company, in particular, were reluctant to sanction the total transfer of the entire management and control from France to the United States. A new board of directors was chosen, which continued the negotiations with the American company, and the transfer was made. Congress ultimately decided on the Panama canal route as the most fcasible and practicable and passed the bill under which President Roosevelt was authorized to acquire the American Panama Canal Company's rights.

The price fixed that the United States government should pay the Panama Canal Company of America for its rights and privileges was $\$\{0,000,000$. The cost of the completed canal
was estimated at E184.233.358. Thus, the passage of the Act of Congress, approved 28 June 1902. "To provide ior the construction of a canal connecting the waters of the -ttlantic and Pacitic Oceans, ", was the first decisive action taken by the United States Government to secure an isthmian canal. The second important step was taken I- March 1903. when the Senate ratified tine treaty that had been negotiated with Colombia to secure for our country the concession necessary for the canal's construction and management.

The law of 28 Tune 1902 authorized the President to buy out the New Panama Canal Company, negotiate a treaty with Colombia for a concession, and proceed by means of a commission with the construction of the Panama Canal. If unable to secure a satisfactory title to the property of the Panama Canal Company, or "to obtain by treaty control of the necessary territory from Colombia," the President was empowered to negotiate with Costa. Rica and Vicaragua for a concession, and having secured the privileges desired, to construct the canal by the Nicaragua route. The purchase price to be paid the Panama Canal Company was not to exceed $\$ 40.000,000$ (the raluation which the Isthmian Canal Commission bad placed on the company"s entire assets, including the Panama Railroad). and before paying over the money to the company the President was required to assure gimself of the validity of the title to the property to be transferred and to await the exchange of ratifications of a satisfactory treaty with Colombia.

The first duty of the President was to investigate the title held by the Panama Canal Company and to determine whether it was a good one isee oi encumbrance, and transierable to the United States. The attornes-general was promptly instructed to make this imrestigaion, and his elaborate opinion, together with the data upon which his opinion was based, was laid beiore the President 25 Oct. 1902. The subject entrusted to the attorney-general was one of great importance, and his report is fortunately comprehensite, thorough, and entirely convincing.

Beiore the attorney-general made his inquiry, the validity and transferabulity of the Panama Canal Companyos title liad been investigated by the Isthmian Canal Commission and by the Senate committee on Interoccanic Canals. One of the important duties imposed upon the Canal Commission was to "ascertain what rights, privileges and franchises" were held by the Panama Canal Company, and "the cost of purchasing all of the rights, " and of placing the canal under the control of the United States. Accordingly, rne of the five commitees to which the several departments of the commission's investigation were committed was the Committee on Rights, Privileges, and Franchises. The report of the Isthmian Canal Commission contains a iull historical and analytical discussion of the subject of concessims. The relations of the origina! Panama Canal Company to the Jew Panama Canal Crmpany were set forth, and the npinion expressed that the Sew Panama Canal Company was albe to sell its concession and froperty to the Cinited States, provided the representative of the rights of the old company, the "liquidator, ${ }^{\text {D }}$ gave his approval of the sale, and united with the new company in the offer to
sell. Shortly aiter this report was made the Vew Panama Canal Company offered to sell out to the United States, and the liquidator gave his consent to the sale. The Commission prepared a supplemental report dealing with this offer, and came to the conclusion that the offer thus made was one that the New Canal Company was competent to make, and that Congress ought to accept.

The chairman and a majority of the Senate committee on Interoceanic Canals disagreed with the conclusions of the commission, but the report of the majority was criticised by the minority members of the committee in an ably written report that supported the conclusions reached by the Canal Commission. The latter was accepted by the Senate.

The treaty granting to the United States the concession and rights necessary for the construction, operation, and control of the Panama Canal was signed by Secretary Hay and the Colombian cbargé d"affaires, 22 Jan. 1903, and ratified without change by the United States Senate. 17 March. It is a lengthy treaty, containing 28 articles, but is remarkable for the conciseness and directness with which each provision is stated. The Canal Commission did not consider it necessary for the United States to acquire sovereignty over the territory adjacent to the canal. The desirability of our country's haring the sole and undivided ommership and control of the canal when constructed was emphasized, and the recommendation was made that the compensation to be paid by the United States should be definitely fixed either as a single payment or as a predetermined annual payment, or as a combination of these two methods. The treaty authorizes the New Panama Canal Company to sell out to the Cnited States: exempts the Panama Railroad Company from its financial obligation to Colombia, and gives the U'rited States a lease for a period of 100 years, renewable at the option of the United States, of a strip of land 10 kilometres wide across the Isthmus of Panama. The United States not only recognizes the sovereignty of Colombia over this leased strip, but "disarows any intention to impair it in any way whatever, or to increase its territory at the expense of Colombia or of any of the sister republics in Central or South America." The United States secures the right to construct the canal and harhors, to establish free ports at the termini of the canal, to maintain hospitals and drainage and sanitary works along the line of the canal and its dependencies, and to install waterworks and a sewerage system in Colon and Panama, with the authority to "collect equitable water rates during 50 years." Colombia agrees not to cede or lease to any foreign power any territory in the Department of Panama, and the United States guarantees that no country shall be allowed to seize such territory.

It is provided that the canal shall be neutral in perpetuity, in conformity with the treaty of 18 Nov. 1901, between the United States and Great Britain; but the United States secures the right to protect the canal. The new treaty in no wise limits the rights of the United States under the treaty of IS $46-8$ with New Grenada, by: which we guarantee the neutrality of the isthmian transit soute and the sovereignty of Colombia.

In the summer of 1903 came the unexpected rejection of the treaty by Colombia, and this put a new phase upon the question. It scemed possible that this act of Colombia might lead to the reopening of final negotiations with Nicaragua and Costa Rica for the construction of a canal by the Nicaragua route. At least, there arose again considerable discussion on the old problem of the two canals. The President was empowered to negotiate with those governments if unable to secure a satisfactory title to the prope:ty of the Panama Canal Company, as the Nicaragua route from an cngineering standpoint was equally as practicable and feasible as the Panama ronte. The reports of the International Commission on Panama and of the Nicaragua Canal Commission exhaustively treat the subject of both canals, and a comparison of the two routes may be obtaine: by referring in this work to the illustration under Casals, "Comparison of the Panama and Xicaragua Canal Routes." The canals projected on both routes have certain features in common. The greatest problem in both is the maintenance of the summit level and the control of the flood waters of rivers which are subject to extremely heavy freshets. In both cases the most favored plans sought to make the one difficulty cancel the other, the flood waters of the rainy season being stored by the erection of large dams across the course of the rivers, the dams being associated with spill-ways or waste weirs, by which the impounded waters may be regulated between predetermined maximum and minimum levels.

The total length of the Nicaragua route from sea to sea is 186.5 miles: the total length of the Panama route is 49 miles. But although nearly four times as long as that of Panama, the cost of the Nicaragua route is nothing like proportionate to its greater length, the estimated cost of its construction exceeding by $\$ 6,000,000$ only: the estimated cost of the Panama Canal. The controlling features at Nicaragua are the existence of a great deep water lake near the Pacific, and its comection with the Atlantic Ocean by the Rio Grande or San Juan, a river of considcrable size and discharging in the rainy season an enormons volume of water. The canalization of this river to Lake Nicaragua, a distance of 49.6 .4 miles, and the cutting of a canal from the western shore of the lake to deep water on the Pacific, 17.34 miles, through an elevation of rio feet, are the labor problems of this route. the remaining 70.51 miles being supplied by the deep waters of Lake Nicaragua.
The successful revolt of Panama from Colomb"a in November, 1903. as fully described under Panama (q. v.), and the immediate recognition of the new republic by the United States and other governments, however, confined the canal question to the Panama route.

The provisional government of Panama at once arranged a new treaty with the United States government for the construction and control of the canal, differing from the treaty with Colombia in that the Canal Zone was enlarged, and greater powers granted to the United States. This, known as the Har-Varilla Treaty: was signed at Washington 18 Nov. 1903 and ratified in Panama 2 Dec. 1903. By its terms the United States guarantees and will maintain
the independence of the Republic of Panama. Panama grants the use in perpetuity of a zonle Io miles wide, and its excluawe control for police, judicial, and other purposes; cedes territory for subsidiary canals and the coast line within the zone; and if police and other matters in the cities of Panama and Colon prove unsatisfactory: the United States government may intervenc. The canal is to be neutral and open to the world's commerce. For these grants, the United States was to pay $\$_{10,000,000}$ on the ratification of the treaty and $\$ 250.000$ yearly begirning nine years after. The sovercignty of Panama over all her territory to be recognized.

Major-General Whitfield Davis was appointed head of the Canal Commission with sabernatorial powers within the zone, his assistants being William Barclay Parsons, N. Y., Wim. H. Burr, N. Y'., Benjamin M. Harrod, La., Carl Ewald Crinsky. Cal, and Frank J. Hecker, Mich. The preparatory work of construction was begun on the plan of ligh-level locks, as favored by Congress in 1902. In this plan the physical difficulties of the Culebra cut through the continental divide near the Pacific, and the floods of the Chagres river, which latter flows down from the northeast, intercepts the line of the canal about its centre. and coincides more or less with the gencral route of the canal from the point of interception to its Atlantic terminus, had to be overcome. The problem was to be solved by cutting a tide-level canal for the first 10 miles from the Atlantic to Bohio, where a dam was to be thrown across the Chagres river, of sufficient height to form a great lake in the valley of the Chagres, at a maximum elevation of 90 feet above mean sea-level. Allowing for the greatest possible variation due to continued drought or to heavy freshets the level of the lake was to be maintained between the extremes of δ_{2} feet as a minimum, and 90 feet as a maximum level ahove the sea at meat tide. The surplus waters of the rainy season were in be discharged over a weir 2,000 feet in length, built not far from the Bohio dam, the waste waters being conducted to the Atlantic partly by the Chagres river and partly by artificial channel. At Bohio a double lift lock was to be located with a total maximum lift of 90 feet. The line of the canal would traverse the Bohio lake thus formed for a distance of about 14 miles, or until it reacned Obispo, where a set of gates too feet wide were to be placed. The purpose of the gates was to retain the waters of Lake Bohio should it at any time be desirable to drain off the waters of that portion of the summit-level lying beyond the gates. Passing through the gates the canal would enter the Culcbra section, which consists of a great cut through the continental divide, about cight miles in length. with the Pedro Miguel locks at the Pacific end. A level 1.33 miles in length would lead to the Mirafores locks, by means of which the descent to the tidelevel on the Pacific would be mate, the distance from the Miraflores locks to the six-fathom line on the Pacific being 8.5 miles.

The average summit-level proposed was to be 85 feet above mean tide. This was to be secured by the Bohio dam, the most important structure of the high-ievel canal. The dam pro-
posed by the French Panama Company was to have been of clay founded upon a variety of maternal - hard clay: soft clay, sand. gravel, etc. The Esthmian Canal Commission decided upon a core-wall-and-earth-dam. the core-wall to be carried down everywhere to rock, the latter being reached in places at a depth of I2S feet below sea-level. The cost of the dam was estimated at $\$ 6,369.040$, and as it would probably take to years to build. it would be the controlling feature in the question of time required to construct the high-level canal.

On 10 Dec. 190\% however. the chief engineer of the Isthmian Canal Commission laid his report before the Congressional Committee of Commerce. He was in favor of a return to the original plan of a sea-level canal as the best and cheapest in the end. The cost was estimated at $\$ 300,000,000$ and the time of construction 20 years.

Early in 1905 the Engineering Committee consisting of Messrs. Burr. Parsons, and Davis also issued a report recommending a sea-level canal, which they estimated could be completed in 10 or 12 years for $\$ 230.500 .000$. As outlined br them the canal is to extend 99 miles from the 36 -foot depth mark in Colon harbor on the Atlantic to the similar depth mark in Panama harbor on the Pacific, and with a bottom width oi 150 feet, is to be 30 feet in depth. A reference to the "Profile of the Panama Canal" on the map accompanying the article on PaNama reveals the course of the canal and its natural features. The first section from the Atlantic to Pas Obispo is 29 miles of low, marshy, and unhealthiul surface, thick with tropical regetation: work here is facilitated by the considerable amount of excavation done by the French Company, and a stretch oi completed waterway. The second and most difficult section of the canal is in the hill rround from Bas Obispo to Pedro Miguel. 7.91 miles, and is known as the Culebra Citt. It is so well chosen, however. that it afinrds the lowes, crossing in the ridge between the oceans. The third section from Pedro Miguel to the Pacific. nine miles is similar to the Atlantic side, low and marshy: The chief difficulties to be overcome are keeping the Hoods of the Chagres river under control and the cut through the rocky height of the Culebra ridge, the isthmian backbone and continental divide that rises 300 feet above sea-level, nine miles from the Pacific.

The intention of building the canal with high-level locks, as planned by Congress in ionz, was recommended to be waived in favor of a sea-level waterway. The general plan to construct the most important dam at Bohio was abanduned for the safer rock foundations at Gamboa where a dam 200 feet high was planned to be built, and a tunnel to miles long and 30 feet in diameter bored through the Culebra Ridge at a height of 132 feet to carry the surplus flood waters of the Chagres to the Pacific Part of the canal would utilize the course of the Bnhio Iake and the Obispo river. Althoush planned as a sea-leve waterway, the tidal differences in both oceans necessitates a lock at Miraflores, a chort distance from Panama. On the Atlantic side the tidal fluctuation is less than twin feet: on the Pacific side 20 feet. The lock, burli of concrete upon rock foundations would
be 1.000 feet long, of twin construction, with guard gates and intermediate gates oi steel. A breakwater at Colon to iorm an outer terminal harbor on the Atlantic side is also projected. and is to be built from rock quarried from the Culebra cut, the transport of which is facilitated by the Panama railroad built in 1855 . The latter is, in the main, parallel to the course of the canal, and was acquired by the United States government as indispensable to the work on the canal.

In consequence of the recommendations a series of radical alterations were made in the United States programme for 1905 , but, on 11arch 30, Secretary Taft sent to President Roosevelt a drastic statement concerning the whole sclieme, which was acted upon with such promptitude that an executive order was issued on April 3, reorganizing the Canal Commission.

The salaries of the Commissioners were resettled and their duties defined. Theodore Perry Shonts, Ill., was appointed chairman at an annual salary of $\$ 30,000$: Charles E. Magoon. Neb., to act also as governor of the Canal Zone and as U. S. minister to the Republic of Panama, $\Sigma_{1}-.500$; John F. Wallace. Ill., chief engineer, S25.000; Rear-Admiral Mordecai T. Endicott, U.. S. N.. $\$ 7.500$; Brig.-Gen. Deter C. Hains, U. S. A., retired, $\$_{7.500 ; \text { Col. Oswald H. }}^{\text {H. }}$ Ernst, corps of engineers, L'. S. A. 57,300 ; Benjamin M. Harrod, $\$ 7,500$. President Roosevelt issued a comprehensive list of instructions concerning the duties of the new com?nissioners and the administrative work of the canal. simultaneously with their appointment, and organizing at once the Executive Committee proceeded to Panama and assumed charge of the construction preparations with directions convered in a contemporaneous catch phrase "to make the dirt fly:" The Executive Committee comprised three commissioners in charge of special departments. The chairman. Theo. F. Shonts, presided over the first department, embracing the fiscal affairs of the Commission, and the purchase and delivery of materials. Governor-Gen. Chas. E. Magoon superintended the second department, embracing the government of the Canal Zone and its sanitation, and the Chief Engineer had charge of the third department, embracing the engineering work of the canal. On June 29 it was announced from Wiashington tha: the resignation of Mr. Wallace, chiet engineer, had been accepted, after a strongly-worded arraignment on public duty from Secretary Taft. He was sueceeded by Mr. J. F. Stevens of the Chicago, Rock Island and Pacific Railroad, at the time acting with the Philippine Commission as railroad expert.

Among other recommendations of Secretary Taft was the formation of an advisory board t, consider the best design of canal. A board of consulting engineers was appointed upon which were representatives of Germany: England, France, and the Netherlands, nominated by their respective governments at the invitation of President Roosevelt. The members were Gen. Ceorge W. Daris, chairman: William Barclay Parsons: W. H. Burr: Gen. Henry L. Abbot: Eugene Tincauzer (Germany): Edouard M. Quellenec (constructing engineer of the Suez Canal Staff): Adolphe Guerard (French): J. W. Welcker (Dutch): Isham Randoloh. F. P.

ISTHMIAN GAMES - ISTLE

Stearns, Joseph Ripley, W. H. Hunter (Manchester, England). After numerous sittings in II ashington the board of consulting engineers divided in vote $1 ;$ Nov. 1905 on the plan of canal to be recommended to the President as follows: For a sea-level.-Gen. George W. Davis, chairman; William Barclay Parsons and William H. Burr (America), Willian Henry Hunter (England), Adolphe Guérard and Edouard M. Quellenec (France). Eugene Tincauzer (Germany) and J. 11. Welcker (Netherlands). For a lock-canal-Gen. Henry L. Abbot. Joseph Ripley, Alfred Noble, Isham Randolph, and Fred B. Stevens (America).

Meanwhile, preparatory work proceeded upon the canal cuttings, large bodies of men and mach new machinery being employed. But during the summer of 1905 the work of excavation had to be virtually suspended. The mortality had proved alarming, and Governor Magoon diverted most of the labor upon sanitary work, which should have been undertaken at the commencement. Considerable attention was deroted to the draining and oiling of marshes for the destruction of mosquitos propagating malaria and yellow iever, to the sewerage systems of the isthmus, and to a good water supply for the cities of Panama and Colon by the construction of a dam at the headwaters of the Rio Grande, with the result that the mortality from yellow fever was soon completely reduced. The housing, provisioning, and entertainment of the laborers in the zone were also arranged on a generous scale.

The report oif the board of consulting engineers was submitted to the consideration of the Senate Committee on Interoceanic Canals, and extended deliberations took place upon the two problems of a high-levei lock canal to cost \$147.000,000, and not more than eight years to build, and a sea-level waterway to cost about $\$ 250000,000$ and irom 12 to 15 years to build. Owing to the greater cost of and longer time for constructing a sea-level canal it was considered probable that the lock-canal plan would be recommended for the decision of Congres, a view supported by Secretary Taft, Chairman Shonts. Chief Engineer Stevens, and other members of the Isthmian Canal Commission. On I7 May 1906, the majority report of the Senate Committte on Interoceanic Canals in favor of a sealevel type of canal was submitted by Senator Kittredge. Concerning the division among experts as to the best type of canal, the report says that the following propositions were considered irrefutable: The ideal canal is one at sealevel: its construction would be attended with no more, and probably with less, hazard than one with locks and dams on doubtful foundations; the sea-level canal is safer and more convenient than one with locks; it would take but little longer time to build; it is the simpler and more economical in operation and maintenance.

The dangers to which a lock canal would be exposed in case oi earthquake shocks such as had caused the recent disaster in San Francisco wire emphasized. The report further asserted that while the cost of the lock canal is uncertainly estimated at about $\$ 190,000,000$, the ultimate final cost of the sea-level plan as estimated by the majority is $\$_{2500000,000 \text {, but the cost of }}$ transforming the lock plan into a sea-level
canal after the former is completed would be at least $\$ 200,000,000$.

Ships of all classes could pass through the ※na-level canal in cight hourṣ, while hali that time would be consumed in passing ships through locks alone.

On 15 June 1906. Congress in committee of the whole roted in favor of a high-level lock canal by a majority of 110 to 36 , and on 21 June the Senate by a test vote of 36 to 31 also declared for a lock canal. President Roosevelt signed the bill on 29 June tgoó.

Isthmian Games, so called because they were celebrated on the Isthmus of Corinth. Here was a fainous termple consecrated to Poseidon, near which the Isthmian games were celebrated. On one side of the ternple were the statues of the victors in these games, and on the other was a grove of pines. In the temple stood four horses, gilded all over. with the exception of their ivory hoofs: by the side of the horses were rwo Tritons, the upper parts of which were gilt, and the rest of ivor: Behind the horses was a car, with the statues of Poseidon and Amphitrite, of gold and ivory. Not far from the temple were a considerable theatre, and the stadium, of white stone. in which the games were celebrated. The whole isthmus was sacred to Poseidon, who was thence called Isthmius. According to the common opinion the Isthmian games were founded in honor of Palæmon or Melicertes, by Sisyphus. king of Corinth. When there was war between the states oi Corinth and Athens a sacred truce was concluded, and the Athenians were solemmly invited to attend the celebration of the games. They were celebrated with the same splendor as the Olympian and other public games, in the first and third years of each Olympiad, probably in autumn : the athletic exercises were the same. The victors were at first adorned with wreaths of pinc-leaves, but aiterward with wreaths of dry and iaded ivy. The pine wreaths were afterward resumed. Victory shed a lustre not only over the individual. but over his family and the community to which he belonged.

Istle, is'tl. or Tampico. This structural fibre is produced from several species of small agaves in Mexico, chiefly fgaze hetiracantha. and -t. lechuguilla. The plants grow wild over a wide area of central and northern Mexico. the centres of the industry being located in the states of Coahuila, Tamaulipas. Juevo Leon and San Luis Potosi. The fibre is extracted by the peons by hand labor and prepared by rudest methods. The filaments are harsh anl stiff, but smooth. and in color a yellowish white. and form an admirable substitute fo- mnimal bristles in brush manufacture. Xearly \& com tons of the fibre is imported into the Linited States annually: worth almost hali a million doilars. In Mexico the fibre is used for rough cordaze and webbing (or saddle girths), and for sack: for the transportation of all kinds of merchandise. A litle fibre finds its way inte this country to mix with the cheaper cordage fibres, but it cannot amount to very much in the figures of imports. The fibre is derived irom the cogolla. or central spike of unopened leaves, these being

ITACOLUMITE-ITALIC LANGUAGES

separated by hand and each leai scraped on beth stdes with a kind of dull edged knife. in order :o release the fibre, which lies just under the epidermis. Aiter drying, the ibre is sold at the haciendas, put up in bundies of about is pounds. and iransported on the backs oi pack animals to the neighboring towns. where it is sorted, baled, and sent by rail to the port of Tampico ior shipment. hence the commercial rame Tampico. For further information see artucle on Istle Fibre in Mexico, Scientiaic American Supplement. (IOOz). See Cordage: Cordage Industries: Fibre: Mexico.

Ceis. Richards Dodge

Itacolumite, i -tap-köl'ū-mit. also known as riesible sandstone, is a mineral curiosity. It is a light colored. laminated-granular quartzie containing besides quartz grains. mica. talc and chlorite. Usually thin bedded. pieces an inch thick or more have considerable Rexibility. This property is attributed to the presence of thin lamine of mica. talc. etc.., and also to the shape oi the sand grains which have interlocking angles. due to a secondary growth oi the grains by deposition of silica. Itacolumite is found in Brazil, also at several localities in the southern Appalachians.

Itagaki, Taisuke, ti-soo'kà è-tā-gà’kè, Cowst, Japanese statesman: b. Tosa province. island of Shikoku. I8 3 \& . He received a military education, and in the war of the Restoration (i\&GE) was prominent in the imperial army. From $18 ; 1$ until his resignation in 18,3 he was a privy councillor to the emperor. He then became the centre of a movement for constitutional government which in $18 / 7$ addressed to the government a memorial asking ior a representative assembly and broaching popular rights. Itagaki aimed at a system based on that of Great Britain or the United States, as opposed to the system based on that of Germany. drafted by the Marquis Ito and promulgated in I\&go. But he would have been satified at first. it is said. with an assembly which quite excluded the popular element. He organized the Jiyufo, or Liberals, the first Japanese political party, which rapidly increased
in numbers. In as, 8 he became minister of public works. in Isso minister of the interior, and in I8go the Liberals united with the Progressists. led by Count Okuma, to form the socalled Constitutional party, which had a large majority in the lower house of Parliament. At the Mikado's request Itagaki and Okuma formed a cabinet, with Itagaki as minister of the interior. The cabinet resigned after six months, and the Constitutional party was separated into its original parts.

Italian Architecture. See Architecture: Italy.

Ital'ic Languages, the languages of ancient Italy, before it had become Latinized by the predominance of Rome. These are generally described as Umbrian. Oscan. Etruscan, and Latin. The three first only survive in some fragments and inscriptions. Thus the Eugubine Tables, seven tablets of brass discovered in 11414 near Eugubium, are engraved with a series of sacerdotal inscriptions in ancient U'mbrian. Taken together they contain about 450 lines, reading from leit to right. some in Roman. others in Etruscan letters. The most important fragment of the Oscan language is that inscribed on a bronze tablet discovered in 1\%93, and called the Bantine Table, from the neighboring city of Bantia. The Oscan Bantine inscription contains 36 lines. and is much more easy to interpret than the Eugubine Tables. The Oscan language was spoken in the south of Italy. Another important monument of Oscan is the Cippus Abellanus discovered in 1685. The bronze tablet of Agnone discovered in isf also contains an Oscan inscription. The Etruscan language is most difficult to all to interpret. The most important remains which are known were discovered in the neighborhood of Perugia in the year 1823 . The inscription is engraved on two sides of a block of stone. and consists of iorty-five lines. The learned are divided about its interpretation. The most copious and important of the legal fragments which exhibit the Latin language in its earliest form are the Twelve Tables (q.v.).

[^0]: *Towns damaged or destroyed hy earthquakes in 1902.

[^1]: YoL. S- 6

[^2]: Best two out of three races - all otber races single races. All races sailed off Hyde Park, on the Iludson River, New York.

 Vol. 8-40

[^3]: Adams, Decatur.
 Allen, Ft. Wayne.
 Bartholomew, Columbus.
 Benton, Fowler.
 Plackford, Hartford City,
 Boone, Lebanon.
 Trown, Nashville.
 Carroll. Delphi.
 Cass, Logansport.
 Clark, leffersonville.
 Clay, Brazil.
 Clinton, Frankfort.

[^4]: - It is h wever n essary : in, co the ideal shadow formed by ur du ing the rays away inna it.

[^5]: * . Host of the technical terms employed (including invariant. covariant form) are due to Sylvester, who gloried in the tutle of ' The Nathematical Adan.,

[^6]: * Selvester observed certain formal analogies between this symbehisw and that emploved in chemistry and develored a si-called chemico-alcebraic theory: See Grace and Young, (Algebra of Invariants,) Cambridge, 1003.1.366.

