
N PS ARCHIVE
1997. O^
BEDIZ, M.

X 1 X M. T ± %.M-J POSTGRADUATE SCHOOL
Monterey, California

THESIS

Thesis
B34086

A COMPUTER SIMULATION STUDY OF
A SINGLE RIGID BODY DYNAMIC MODEL

FOR BIPED POSTURAL CONTROL

by

Mehmet Bediz

March 1997

Thesis Co-Advisors: Robert B.McGhee
Michael J. Zyda

Approved for public release; distribution is unlimited.

DUDLEY KNOX LIBRARY
NAVAL. POSTGRADUATE SCHOOL
MONTEREY CA 93943-5101

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information b estimated to average 1 hour per response including the time reviewing instructions searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Surte 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Pro|ect (0704-0188). Washington, DC 20503

1 . AGENCY USE ONLY (Leave Blank)

I

2. REPORT DATE
March 1997

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
A Computer Simulation Study of a Single Rigid Body Dynamic Model For Biped

Postural Control

6. AUTHOR(S)

Bediz, Mehmet

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Existing kinematics models for humans cannot simulate movement beyond geometric constraints.

On the other hand, complex dynamics models are computationally expensive for real time computer

graphics applications in Virtual Environments(VE). To be able to create a more realistic, real time, and

computationally efficient human model, a simple dynamic model needs to be developed.

The approach taken in this thesis was to develop a single rigid body dynamic human model with

massless legs. Instead of a Lagrangian model, which complicates the calculations exponentially as the

complexity of the system increases, the Newton-Euler method was chosen to derive system differential

equations. Linear state feedback was used for postural control. As part of this research, a previous realistic

looking human model is further developed.

The major conclusion of this thesis is that a single rigid body dynamic model can be used for

simulation of postural control. The simulation results contained in this thesis show that such a modeling

technique could be used to cause a detailed kinematic representation of a human figure to move in a smooth

and realistic way without resorting to complexity of a multi-link dynamic model.

14. SUBJECT TERMS

physically base modeling, virtual environment, articulated humans,

human modeling, kinematics, dynamics, postural control

15. NUMBER OF PAGES

186
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

A COMPUTER SIMULATION STUDY OF A SINGLE RIGID BODY
DYNAMIC MODEL FOR BIPED POSTURAL CONTROL

Mehmet Bediz

Lieutenant JG., Turkish Navy

B.S.E.E., Turkish Naval Academy, 1990

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 1997

IV

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOm
MONTEREY CA WwilfcS

ABSTRACT

Existing kinematics models for humans cannot simulate movement beyond

geometric constraints. On the other hand, complex dynamics models are computationally

expensive for real time computer graphics applications in Virtual Environments(VE). To

be able to create a more realistic, real time, and computationally efficient human model, a

simple dynamic model needs to be developed.

The approach taken in this thesis was to develop a single rigid body dynamic human

model with massless legs. Instead of a Lagrangian model, which complicates the

calculations exponentially as the complexity of the system increases, the Newton-Euler

method was chosen to derive system differential equations. Linear state feedback was used

for postural control. As part of this research, a previous realistic looking human model is

further developed.

The major conclusion of this thesis is that a single rigid body dynamic model can

be used for simulation of postural control. The simulation results contained in this thesis

show that such a modeling technique could be used to cause a detailed kinematic

representation of a human figure to move in a smooth and realistic way without resorting

to complexity of a multi-link dynamic model.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. MOTIVATION 1

B. GOALS 1

C. ORGANIZATION 2

II. SURVEY OF PREVIOUS WORK 3

A. INTRODUCTION 3

B. KINEMATIC MODELS 3

C. SINGLE RIGID BODY DYNAMICS 4

1. Free Body Method with Hard Constraints 4

2. Free Body Method with Soft Constraints 7

3. Generalized Coordinates with Lagrangian 8

D. ARTICULATED RIGID BODY DYNAMICS 10

E. POSTURAL CONTROL 14

F. CONTROL OF STEPPING 16

G. SUMMARY 22

III. DETAILED PROBLEM STATEMENT AND MATHEMATICAL FORMULA-

TION 23

A. INTRODUCTION 23

B. DESCRIPTION OF THE MODEL 23

C. THE LAGRANGIAN VERSION OF THE PROBLEM 25

D. NEWTON-EULER FORMULATION 30

1

.

The Newton-Euler Equations of the Massless Leg 30

2. The Newton-Euler Equations of the Body 31

3. Combining Body and Leg Equations 32

E. LINEARIZED ANALYSIS FOR CHOOSING GAINS 34

F. SUMMARY 41

IV. COMPUTER MODELS 43

Vll

A. INTRODUCTION 43

B. KINEMATIC COMPUTER MODEL (DYNAMAN) 43

1. Inverse Kinematic Equations for Three Link Planar Manipulator 45

2. Link Descriptions in the Computer Model 49

3. Stepping Algorithms 50

a. Stepping Forward Algorithm 50

b. Stepping Upward Algorithm 53

C DYNAMIC COMPUTER MODELS 54

1. Newton-Euler Rigid Body Class 54

2. Numerical Integration Methods 56

3. Dynamic Inverted Pendulum Simulations 56

a. A Single Link Single Rigid Body with Newton-Euler 56

b. Massless Leg and a Single Rigid Body with Lagrangian 58

c. Massless Leg and a Single Rigid Body with Newton-Euler 58

D. SUMMARY 58

V. RESULTS OF COMPUTER SIMULATIONS 59

A. INTRODUCTION 59

B. DYNAMIC SIMULATIONS 59

1. A Single Link Single Rigid Body with Newton-Euler Method 59

2. Massless Leg and a Single Rigid Body with Lagrangian Method 62

3. Massless Leg and a Single Rigid Body with Newton-Euler Method 66

C. RESULTS OF THE DYNAMIC SIMULATION 70

D. KINEMATIC SIMULATION OF STEPPING DYNAMAN 70

1. Stepping Forward Algorithm 70

2. Stepping Upward Algorithm 74

VI. SUMMARY AND CONCLUSIONS 77

A. SUMMARY 77

B. CONCLUSION AND FUTURE RESEARCH 78

APPENDIX A: DYNAMIC SIMULATION SOFTWARE 81

Vlll

APPENDIX B: KINEMATIC SIMULATION SOFTWARE 117

LIST OF REFERENCES 159

INITIAL DISTRIBUTION LIST 163

IX

LIST OF FIGURES

Figure 1: Inverted Pendulum 4

Figure 2: Inverted Pendulum with Soft Constrains 7

Figure 3: Free-body for Typical Link of Serial Open-chain Planar Articulated Mechanism
[KOOZ83] 13

Figure 4: Single Rigid Body Model with Variable Length Massless Supporting Legs

[GUBI74] 17

Figure 5: Stable Gait Function [GUBI74] 18

Figure 6: One Legged Hopping Machine with Control Variables [RAEB86] 20

Figure 7: Placing The Foot at The Neutral Point [RABI74] 20

Figure 8: Acceleration and Deceleration of the one Legged Hopping Machine According

to Neutral Point[RAIB86] 21

Figure 9: Single Rigid Body Model with A Constant Length Massless Supporting Leg. 23

Figure 10: Free Body Diagram for The Massless Leg 30

Figure 11: Free Body Diagram of The Body 31

Figure 12: Kinematic Computer Model: Dynaman 43

Figure 13: The Body Parts and Corresponding Dynamic Coordinate Systems (DCS) of Dy-

naman 44

Figure 14: Three Link Planar Manipulator 45

Figure 15: Dynamic Coordinate System (DCS) Hierarchy Tree of Dynaman 50

Figure 16: Forward Stepping Algorithm 51

Figure 17: Upper Body Rotation 52

Figure 18: Change in the Height of the Body During One Gait Cycle 52

Figure 19: The Amount of Elevation For Stepping Up 53

xi

Figure 20: Stepping Up Algorithm 54

Figure 21: Inverted Pendulum with Constraint Forces 57

Figure 22: Initial Position and Orientation of the Inverted Pendulum 60

Figure 23: Inverted Pendulum Moving to the Upright Orientation 60

Figure 24: Inverted Pendulum After Steady State 61

Figure 25: Body Attitude Response of the Inverted Pendulum 61

Figure 26: Initial Orientation of the Two Link Inverted Pendulum (Lagrangian) 63

Figure 27: Two Link Inverted Pendulum Moving to the Upright Orientation by Control

Torques(Lagrangian) 63

Figure 28: Two Link Pendulum Recovering the Negative Orientations (Lagrangian) 64

Figure 29: Two Link Inverted Pendulum After Steady State (Lagrangian) 64

Figure 30: Body Attitude Response of the Two Link Inverted Pendulum (Lagrangian) . 65

Figure 31: Leg Angle Response of the Two Link Inverted Pendulum (Lagrangian) 65

Figure 32: Initial Orientation of the Two Link Inverted Pendulum (Newton-Euler) 67

Figure 33: Two Link Pendulum Moving to the Upright Orientation (Newton-Euler) 67

Figure 34: Two Link Pendulum Recovering the Negative Orientations (Newton-Euler) 68

Figure 35: Two Link Inverted Pendulum In Steady State (Newton-Euler) 68

Figure 36: Body Attitude Time Response of the Two Link Inverted Pendulum (Newton-

Euler) 69

Figure 37: Leg Angle Response of the Two Link Inverted Pendulum (Newton-Euler)... 69

Figure 38: Forward Stepping (1) 71

Figure 39: Forward Stepping (2) 71

Figure 40: Forward Stepping (3) 72

Xll

Figure 41: Forward Stepping (4) 72

Figure 42: Forward Stepping (5) 73

Figure 43: Forward Stepping (6) 73

Figure 44: Upward Stepping (1) 74

Figure 45: Upward Stepping (2) 75

Figure 46: Upward Stepping (3) 75

Figure 47: Upward Stepping (4) 76

Figure 48: Upward Stepping (5) 76

Xlll

XIV

LIST OF TABLES

Table 1: Link Parameters of the Leg [CRAI89] 46

XV

XVI

ACKNOWLEDGMENTS

Many thanks to all whose help made this thesis possible. Special thanks to my two

thesis advisors. To Dr. Michael Zyda I owe much for his guidance in Computer Graphics.

My sincerest thanks to Dr. Robert McGhee for his patience, encouragement, and devotion

to his students. To be able to share his vast experience made working with him a true

delight. I would also like to thank to William Frey and Paul Skopowski for their support.

Finally many thanks to all members of NPSNET Research Group and to all of the faculty,

students and staff of the Computer Science Department who helped in numerous ways.

xvu

XVU1

I. INTRODUCTION

A. MOTIVATION

There is an increasing demand for realistic virtual environments (VE). One of the

main branches of research in VE is human motion simulation. Kinematics and dynamics

are the two disciplines which are used to create physically based mathematical models for

human motion simulation. Kinematic models are quite simple to implement and

computationally inexpensive in comparison to dynamic models. However, they are limited

to simulation of the geometric constraints of the body parts of the human. On the other

hand, dynamic models introduce additional physical properties of the body parts to the

simulation, such as mass and moment of inertia, which provides more realism. It is possible

to simulate human motion realistically with detailed dynamic models. However, the cost of

this realism is a high degree of computational complexity. When more detailed models are

chosen, the response time of the simulated human model increases. On the other hand,

reducing latency to a minimum amount of time is a important requirement for virtual

environments in which humans can interact. This places limits on the complexity of the

model which can be used in a particular situation.

B. GOALS

The purpose of this thesis is to develop a single rigid body dynamic human model

with massless legs to illustrate that such a model can simulate human motion more

smoothly and more realistically than kinematic models, and without resorting to the

complexity of multi-link dynamic models. The Newton-Euler method is chosen instead of

the Lagrangian method, since the complexity of the latter grows exponentially when the

degrees of freedom increase.

C. ORGANIZATION

Chapter II of this thesis provides background information and reviews previous

work relating to the area of kinematic and dynamic methods to simulate human motion. In

this chapter, articulated rigid body dynamics, postural control, and control of stepping are

also investigated in addition to single rigid body dynamics. Chapter III provides an

overview of the problem statement for this thesis and discusses mathematical modeling of

postural control of a single rigid body with an attached massless leg. Chapter IV introduces

the developed kinematic and dynamic computer models. Chapter V presents results and

conclusions about the work completed. The last chapter, Chapter VI, discusses

recommendations for future enhancements and further research.

II. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

Mathematical models which define human motion in detail are complex and quite

nonlinear. This provides a motivation to start with simple models at a high level of

abstraction. Models which ignore the dynamic properties of body parts are called kinematic

models. There are also models which consider only the torso to have dynamic properties.

More complex models introduce mass and moment of inertia for more than one body part.

The more dynamic properties are added, the higher becomes the complexity and non-

linearity of the resulting model.

B. KINEMATIC MODELS

Kinematics is concerned with motion without considering the forces and torques

that cause it. It establishes relations between position, velocity, acceleration, and higher

order derivatives of position variables.

The human body can be thought as a set of connected body parts (links). Each body

part (link) has four link parameters to be defined: link length, (a), link twist (a), link

offset(d) and, joint angle(9). There exists a coordinate frame attached to each link

[CRAI89].

Manipulator kinematics investigates the transformation from frame to frame as the

body articulates. Forward kinematics show how to compute the position and orientation of

the end-effector according to link parameters. On the other hand, inverse kinematics solves

for link parameters when the position and orientation of the end-effector is given.

For the human body, it can be assumed that the joint angle is the only variable link

parameter. Forward kinematics can be used to solve for the position and orientation of each

body part as joint angles are given. However, this method is difficult for the animator. The

position and orientation of each body part can also be computed with the position and

orientation of the end-effector as an input by using inverse kinematics. Even though the

second method introduces more complexity, in this approach the animator is able to define

the path for the end-effector.

C. SINGLE RIGID BODY DYNAMICS

An advanced approach to human motion simulation introduces dynamics. There are

three most often used methods: free body method with hard constraints, free body method

with soft constraints, and generalized coordinates with Lagrangian[MCGH79].

1. Free Body Method with Hard Constraints

This method looks at each body part as a separate free element, under the influences

ofjoint torques, gravity, and reaction forces and moments. The simplest possible dynamical

model for human motion is an inverted pendulum which idealizes the entire body as a

single rigid link with upright posture maintained by ankle torque.

i

y

f I

. ^^>

i ri mg

\ w
V i i 4

F.

1 M
^^

Figure 1: Inverted Pendulum

In human motion, joint torques are created by muscular contraction. The origin of

reaction forces and moments is forces from other limbs or the ground. The force and torque

equations for the inverted pendulum are [MCGH79]

mx = F
x (eq.2.1)

my = F
y
-mg (eq.2.2)

76 = F^/sinS-Fy/cosG + M (eq. 2.3)

where / is the distance from the coordinate origin to the center of gravity, I is moment of

inertia about the center of gravity, F , F are ground reaction forces, and M is the joint

control torque which is computed by some control law

M = u(x, t). (eq. 2.4)

In this equation, x is the system state vector and t is time.

After expressing reaction forces and moments, constraint equations are derived

according to the geometry of the system, and differentiated twice. Constraint equations for

this example are

x = /COS0 (eq. 2.5)

and

y = /sin

6

(eq. 2.6)

with second derivatives

x = -9/sine-e /cosG (eq.2.7)

and

y = e/cosG-G /sinG (eq.2.8)

The five equations above can be solved numerically or analytically to determine the

unknowns: i:', y, 0, F , F . The matrix form of the equations isx v

m
m

/

1 /sinO

1 -/cosG

-1 X

-1 y

/sinO /cosO e =

F
x

F
y_

-mg

M

-e /cose

-9 /sine

(eq. 2.9)

The behavior of the pendulum can also be expressed with a 3x3 matrix

multiplication by analytically eliminating x and y. The 3x3 matrix equation is

[MCGH79b]

/ -/sinO /cosO

ra/sinO 1

-m/cosO 1

Since this system has only a single degree of freedom, a suitable state vector is

e M
F
x

= . 2
-raO /cosO

F
z

.2
-m0 /sinO + mg

(eq.2.10)

X =
e^

(eq. 2.11)

so

x = &

\
x
2)

(eq.2.12)

For simulating this model, numerical integration can be used to compute x(t) for

any given x(0) . The value of (or x^) is calculated by the system dynamic equations. It

has been found in the work of this thesis that the 3x3 matrix solution is approximately two

times faster than the 5x5 one.

2. Free Body Method with Soft Constraints

A more realistic approach is to consider the connection between limb segments as

not rigid. In the soft constraint method, the constraint equations are replaced with functions

defined by joint variables and their derivatives, which are used to compute constraint forces

with some gain values. This increases the order of state equation by a factor of three in the

planar case, and by a factor of six in the three dimensional case, but avoids matrix

inversion.

The previous inverted pendulum model becomes as shown in Figure 2 for the soft

constraint method.

yb

y

i yT mg

f I

'<$L*
M

»-

F
^

*b
y

Figure 2: Inverted Pendulum with Soft Constrains

Instead of Eq. 2.5 and Eq. 2.6, the soft constraint equations are[MCGH79]

x = x
b
+ /cos6

y = y, + /sin 6

with the corresponding soft constraint forces

(eq.2.13)

(eq. 2.14)

F
x = - kxXb~ kx*b (eq.2.15)

F
y
= ~ k

y
yb~ kyyb (eq.2.16)

The state vector for the numerical solution is

• T
x = (6, 9, xb , xb , yb , yb) (eq. 2.17)

After obtaining the constraint forces by using the state vector values, Eq 2.1, Eq 2.2, and

Eq 2.3 can be solved directly for translational and angular accelerations instead of requiring

matrix inversion.

3. Generalized Coordinates with Lagrangian

Another way to derive the system equations is to use the Lagrangian method. This

method does not compute constraint forces and moments, but instead uses the difference of

kinetic and potential energies expressed in terms of generalized coordinates.

The virtual work function, for any generalized coordinate, 6 , is

hW = Qe
SQ (eq. 2.18)

The Lagrangian function is

L = K-V (eq. 2.19)

where K is the kinetic energy function and V is the potential energy function. The

differential equations of the system are obtained from [MCGH79b]

—-^-=2 (eq.2.20)
d!dq

t

oq
t

q <

where q represents the generalized coordinate for each i and Q is the coefficient of

hq- in the virtual work function.

Considering the hard constraint example, Figure 1 , the virtual work function is

§W = M86 (eq. 2.21)

where 6 is the generalized coordinate. The kinetic energy of this system is

12 2-2
T = -(mx +my +79) (eq. 2.22)

or

1 2-2 2-2 .2
T = -(ml 6 sin6 + ra/ 6 cos0 + /9) (eq. 2.23)

which simplifies to

1 2 -2
T = -(ml +7)6 (eq. 2.24)

The potential energy of the system is

V = rag/sin6 (eq. 2.25)

Thus, the Lagrangian function is

1 2 -2
L - -(ml +7)6 -rag/sin6 (eq. 2.26)

By evaluation the Lagrangian derivatives, the result is that the angular acceleration of the

pendulum is given by

e = M - msiQQ^
(eq . 2.27)

I + ml

For a numerical solution, the state vector is

"ffl-Q

The Lagrangian approach is perhaps the most effective one for simple cases.

However, with an increase in the number of degrees of freedom of the system the

complexity of the calculations grows exponentially.

D. ARTICULATED RIGID BODY DYNAMICS

It is certainly impossible to model the human body with complete realism as a single

mass rigid body. One can, however, abstract it as a system of rigid bodies connected

together with rotary joints with control torques acting at each joint. If the motion of each

limb segment is given, and the forces and torques are to be computed, this problem is called

the inverse dynamics problem. If the torques are given and the accelerations are to be

determined, this is called the direct dynamics problem [KOOZ83].

There is an algorithm, called Articulated Body(AB), for direct dynamics which

contains three 0(n) recursions [MCMI95]. In the first step of this method, which is

Forward Kinematics, velocity and velocity dependent terms are computed from the base to

the tip of each serial chain of links. The orientation of i 's coordinate system with respect

to / — 1 's specified by the rotation matrix [CRAI89], R- _ j
, can be determined by using

joint position, q-, which is an element of state vector. The position of i's coordinate

system origin according to i — 1 , p. , is a constant. Then the spatial transformation

matrix is [CRAI89]

i +
i+% =

R
t

Pl+l x R. R

(eq. 2.29)

10

The spatial transformation matrices, along with qaie used to compute velocity

values of the links by using the relation

v
i
=

*

X
i- 1

v
i-\ («* 2 - 3°)

The velocity-dependent bias forces, B-, and the vector of Coriolis and centripetal

accelerations, C , of each link are also determined from the base to the tip. Details of this

calculation can be found in [MCMI95b].

In the second step, which is backwards dynamics, 1^ and (3^ • are computed from

the tip to the base. The matrix /t • is the 6X6 inertia of links i though N . In other words,

"the inertia 'felt' at the i coordinate system when the joints from i + 1 to N are free to

move"[MCMI95]. The vector (3t- is the bias force exerted on 2th link, including all

outboard torques.

In the final step, joint and link accelerations are computed from the base to the tip

as <2q = is given and by using the equations

and

/. = /t-a'.-pt. (eq.2.32)

where / • is the spatial force exerted onto link i by its inboard link which contains the effect

of input torque, T , and where d is a six element vector containing the angular

11

acceleration, CO-, and translational acceleration vectors. Each <j). is a six element unit

vector which specifies the corresponding joint axis.

Another numerical approach to the recursive direct dynamics is based on solving

the inverse dynamics problem for a sequence of n + 1 specialized acceleration vectors. In

general, the inverse dynamic equation can be written as [KOOZ83]

T = C6 - D (eq. 2.33)

where the matrix C is given by

C = B~
l

J = [C
l
C
2
C

3
...] (eq.2.34)

and where each element of vector C is a column vector. Usually, C is not known

explicitly. However it can be computed with a numerical approach using an inverse

T
dynamics model such as that in [CRAI89]. Specifically, for the case 9 = (0, 0, ...) ,

from Eq 2.33

T = -D (eq. 2.35)

The torque T^ can be computed by using the kinematic and dynamic equations of the

articulated mechanism. As an example, the model given in [KOOZ83] which is illustrated

in Figure 3 can be used.

The kinematic equations of the planar model in Figure 3 are

.2
x

t
= x

i
_

l
-(l

i
_

l

-d
i
_

l
)(Q

i
_

l
smQ

i
_

l

+Q
i
_icosQ

i _ l
)

.2
-d

i
(Q i

sinQ
i
+ 6,- cosGp (eq. 2.36)

and

12

y'i
=

y'i-\ + (//_ i
-d

{ _ i)(8f_ icose
z
._ rQ

t _ x
sine.,^

.2
+rf.(e

l
cosere

f
cose

/)

;+

1

(eq. 2.37)

Figure 3: Free-body for Typical Link of Serial Open-chain Planar Articulated Mechanism

[KOOZ83]

Eq. 2.36 and Eq. 2.37 are used to calculate the translational accelerations of the

links from the base to the tip. By using these accelerations, joint torques can be computed

in the same recursive manner, but from out to inward with the following equations:

F „ = F„ + m-X;
ii+i i i

T
t
= Ti+rt'x

tJ lr di>*a*t* FjlJh- d
i>
a»*t

-F
'
d.sviQ. + F' d.cosQ.- + J'.9.-

^v.' I I y : I I LI

(eq. 2.38)

(eq. 2.39)

(eq. 2.40)

(eq.2.41)

13

T
For the case = (1 , 0, . .

.) , all accelerations except j would be equal to zero

which means

T
l
= C

x
-D (eq.2.42)

The joint torque, T , , can be calculated with the recursive method, which is described

above. Then C\ can be calculated as

Cj = Tl+ D = T
{
-T

Q
(eq.2.43)

With the same logic C is

C
;
= T

t

- T
Q (eq. 2.44)

Thus, the C matrix can be computed numerically by following these steps n times for a n-

link system. Then is given by

= C~
l

(T-T) (eq.2.45)

where T is any arbitrary torque and Tq is the "equilibrium" torque defined by Eq 2.35.

3
Because of the required matrix inversion, the second method has 0(n) complexity. It has

3
been shown [MCMI94], that 0(n) methods are best for simple serial chains of rigid

bodies when n < 3 , and 0(n) methods are better for n > 3 .

E. POSTURAL CONTROL

It is clearly necessary to begin with modeling stable standing of a human before

considering control of walking. All the methods derived in the previous sections show how

to compute joint angle accelerations according to joint control torques. The question is how

14

to formulate control torques. One straightforward way is linear state feedback control

[MCGH86].

A suitable state vector for postural control can be defined as

x =

6

9

(eq. 2.46)

where is an nxl vector of joint positions and 6 is the nxl vector of joint velocities. The

corresponding body state equation is[KOOZ83]

i = f(x)+E(x) T (eq.2.47)

In Eq. 2.10 / and, E are in general not available analytically. However, with the

numerical approach, explained in the previous section, the same equation can be expressed

as

x = /
x +

C
-1

(T-T
Q) (eq. 2.48)

where / is the unit matrix.

Linear feedback systems permit much flexibility to the designer, such as pole

assignment [KOOZ83]. Since C and Tq are functions of X, the system is not linear.

However, it can be linearized around for joint angular rates and 90 degrees for joint angles

for erect body position. Then the linearized body state equation can be written as

x = Fx+GT (eq. 2.49)

where F is the linearized system matrix and G is the control distribution matrix

[KOOZ83].

Under the assumption of linear state feedback, the control torques vector will be

15

T = K X (eq. 2.50)

where K is the gain matrix. If Eq. 2.12 and Eq. 2.13 are combined, the derivative of the

state vector is then

x = Fx + GKx = [F + GK]x = Hx (eq.2.51)

Gain values in K should be chosen so that all eigenvalues of H have negative real parts in

order to obtain a stable postural control [KOOZ83] [CAMA77].

F. CONTROL OF STEPPING

If all the postural control system eigenvalues have negative real parts, the

articulated mechanism can maintain its upright standing posture. The next step is to add

stepping to the system. At this point there are two options to choose: static or dynamic

balancing. "A statically balanced system avoids tipping and ensuing horizontal

accelerations by keeping the center of mass of the body over the polygon of the support,

formed by the feet." [RABI86]. On the other hand, a dynamically balanced system can

depart from static equilibrium and is permitted to tip and accelerate for short period of time.

By observing human walking, one can easily say that dynamical balancing needs to be

chosen for simulating a stepping human.

A step length control method with dynamic stability was presented by Gubina

[GUBI74]. Gubina' s model has a single rigid body with two supporting massless legs. The

system has three degrees of freedom. The state vector for the linearized system is

x = (r-r ,r,e
i

,e
1
,G

2
,e2) (eq.2.52)

where 9 , is the leg angle, 9
2

is the body attitude, r is the leg length, and Tq is the

desired leg length.

16

/
i

K / M
F A

r / n r \\ ">

7 A /

7 > \ '

/ \i
/ *

Figure 4: Single Rigid Body Model with Variable Length Massless Supporting Legs

[GUBI74]

where

and

The input vector for the linear state equations is

T
U = (W|, Uj)

u
\
= F ~ F

(eq. 2.53)

(eq. 2.54)

u
2
= M-Mq (eq. 2.55)

In these equations, F is the control force applied along the leg, M is the control torque

applied at the hip and F
Q , Mq are bias force and torque respectively.

The input vector, u , is used to control leg length, and body attitude and step control

are used to produce the desired forward motion. The leg length is controlled by u
j

as

17

Hj = h
l

(r-r) + h
2
f (eq. 2.56)

where h , and /i~ are gain constants. The body attitude is controlled by u^ as

u
2
= h

5 (Q2
-a) + h

6
Q2 (eq. 2.57)

where h<? and /i^ are gain constants and OC is the bias term to permit the desired attitude.

When the initial conditions are assumed as r(0) = 77), r(0) = 0,

0o(O) = , 62(^) =
, the leg angle is governed by the linearized system equation

Qi-b 9j = (eq. 2.58)

where

b
2
= *
Co"')

(eq. 2.59)

i M
<j>, :

^>
^

^^
**^

4>,

2
—

^ ^ ^ ^
^ 2 (l

Figure 5: Stable Gait Function [GUBI74}

As seen in Figure 5, the leg has a negative angular velocity growth rate for negative

angles and positive angular velocity growth rate for positive angles. The horizontal dotted

line which is extended from the right to the left represents the change of supporting leg. In

18

the absence of disturbances, the leg angle can be described with a periodic function, 6, (?) •

The existence of such a function provides a "stable gait". However, disturbances do occur

in locomotion systems. That is why feedback control is needed. With such a control

mechanism, the leg angle differential equation becomes

x —
s

1

/q
xs~ u

s
(k)S(t-kT) (eq. 2.60)

where 5 denotes the unit inpulse function and

T
x
s
~ (x3'*4) (eq. 2.61)

It is shown in [GUBI74] that a suitable discrete time control vector for this system is

u
s
(k) = h

3
[x

3
(kT)-Q

s
] + h

4
xAkT)—2

r
+ e (eq. 2.62)

The angle, 6 , is the desired total leg angle excursion over one cycle, while Vq is the

desired forward speed.

Another foot placement algorithm for controlling forward speed is investigated by

Raibert[RABI74]. In this work, a one legged hopping machine was developed to

investigate dynamically balanced running robots. The machine has two main parts: the

body and the leg which is connected to the body with a hinge. There also exists a hip

actuator to be able to apply a torque from the body to the leg.

19

Figure 6: One Legged Hopping Machine with Control Variables [RAIB86]

Neutral Point

Figure 7: Placing The Foot at The Neutral Point [RABI74]

For each forward speed there is a foot position which causes zero acceleration in the

direction of motion. This point is called the "neutral point". Placing the foot behind the

neutral point accelerates the machine, placing the foot in front of the neutral point

decelerates it.

20

Acceleration Deceleration

Neutral Point Neutral Point

Figure 8: Acceleration and Deceleration of the one Legged Hopping Machine According

to Neutral Point[RADB86]

To place the foot at the neutral point, the control system should extend the leg such

that [RAIB86]

(eq. 2.63)X
/o

" ~2

where X f is the forward displacement of the foot with respect to the center mass, x is

Jo

the forward speed, and T is the duration of the stance phase. An additional displacement

is needed to correct the errors in the forward speed:

X
/a

= k
x^
X ~ X

d^
(eq. 2.64)

where x f is the displacement of the foot from the neutral point, x > is the desired
/a a

forward speed and k. is the feedback gain constant.

By combining the equation Eq. 2.64 and Eq. 2.65, the total foot displacement is

21

xT
s

Xf = — + k
i
(x-x

d) (eq.2.65)

Then the required hip angle for the desired velocity is

fxT kx(x-xd)\

yd = &-arcsin\— + (eq. 2.66)

where y is the angle between the leg and the body [RAIB86].

Another research focused on biped systems was conducted by Troy [TROY96]. He

investigated locomotion of dynamically balanced biped mechanisms. Different multilink

planar and spatial biped models were developed by using feedback control for balancing

and walking. In general, his work extends the results described above while confining

locomotion to a specified sagittal plane.

G. SUMMARY

This chapter provides a survey of previous work relating to modeling and control

of posture and gait for a walking human. It starts with kinematic modeling and continues

with single and articulated rigid body dynamic models. One section discusses simulation

of postural control for erect posture of the body. The last part of the chapter illustrates two

different stepping control approaches for a given desired forward speed. The next chapter

of this thesis derives the differential equations of a human model which has two degrees of

freedom by using the Newton-Euler method. It also discusses postural control for the same

model.

22

III. DETAILED PROBLEM STATEMENT AND MATHEMATICAL
FORMULATION

A. INTRODUCTION

The model in [GUBI74], Figure 4, is designed to simulate postural and gait control

with three degrees of freedom. The body attitude and the ankle angle are used for postural

control and the variable leg length and foot placement as well as periodic stepping are used

for gait control. The model has one input control torque and one input control force.

Another similar model, dealing only with postural control, will be introduced in this

chapter. This model has two degrees of freedom with the same variable angles of the

previous model. Instead of the input control force, this model, shown in Figure 9, has a

second input control torque at the ankle.

B. DESCRIPTION OF THE MODEL

Figure 9: Single Rigid Body Model with A Constant Length Massless Supporting Leg

23

This model, Figure 9, has a single rigid body with one supporting massless leg. The

system has two degrees of freedom. The state vector for the system is

. T
x = (e

1
,e

1
,e

2
,e2) (eq.3.u

where 0, is the leg angle and 6
2

is the body attitude. The leg length, r , is constant.

The input vector for the state equations is

T
u = (Mj, u

2) (eq. 3.2)

where

«j = Af
j

(eq. 3.3)

and

In these equations, M, is the control torque applied at the ankle and Mr, is the control

torque applied at the hip.

The input vector, u , is used to control leg angle and body attitude. According to

general linear feedback control

r
M

\\
U =

[M)

= K (X ~ X0^ (eq. 3.5)

where Xq is the desired state vector. A special form of this equation, called local feedback,

has been proposed for postural control [KOOZ83][CAMA77]. In local feedback, each joint

torque is determined by angle and rotation rate of that joint only. This decouples control of

24

joints from each other. Specifically, in this form of control, the leg angle is controlled by

U-, as

u
\
= k

Q^
Q \- a + kQ^\ (eq.3.6)

where &
fi

and k. are gain constants and a, is the desired leg angle. The body

attitude is controlled by u^ as

u
2
= keS®2~ a2^ + k

a ®2 (eq. 3.7)

where kQ and k . are gain constants and 0Co is the bias term to permit the desired

body attitude. Local control will be examined further in this thesis.

C. THE LAGRANGIAN VERSION OF THE PROBLEM

The components of the linear velocity vector of the center of mass of the single rigid

body can be derived from angular variables as follows:

y = rGjCOsGj + /92 COS02 (eq.3.8)

Z = -r6 1 sinGj-Z^sii^ (eq. 3.9)

The kinetic energy of the system is thus

1 . 2 1- 2
K = -mCrGjCOsGj + /92cos0

2) + -mOrBisinOj-^sir^)

+ ^/e2
(eq.3.10)

The potential energy of the system can be expressed as

V = mgOcosGj + /cos0
2) (eq. 3.11)

Thus, the Lagrangian function becomes

25

1 • 2 1- 2
L = -raOBjCosGj + /02 cos9 9) + -m(-r8] sii^-Zf^sinSj)

1 -2
+ -79

2 - mgOcosGj + /cos6
2) (eq. 3.12)

The differential equation for the first generalized coordinate, 9 , , is

ddL dL

dtdQ ae
1

= M
l
-M

2
(eq. 3.13)

dL
The term, , in equation Eq. 3.12 can be derived as

—— = mr SjCcosSj) 2 + /mr82COs8
1
cos8

2

+ mr SiCsinSj) 2 + /mr62sin6
1

sin82 (eq. 3.14)

Then, the first term in the equation Eq. 3.12 is

ddL 2X , o ~ 2 A 2

dtdQ.
= mr Qi(cosQ^) z -2mr GjCOsO^inOj

+ lmr§2 cos 9
j
cos 9

2
-/mr929

1
sin 9

j
cos 9 9

• 2 2- 2
- /rar92Cos9jSin99 + mr 9i(sin9)

2-2
+ 2mr 9] sinGj cos9 9 + m/r92sinG

]

sin9 9

.2
+ m/r929jCOs9

1

sin9
2
+ ra/r92sin9j cos9 9 (eq. 3.15)

And the second term in the equation Eq. 3. 12 is

26

rif 2-2
= -mr^Gj sin 9 j cos 6 j -rar/9i92 sin9

1

cos9 9ae,

2-2
+ mr 9]COs9

1

sin9
1
+ mr/0i92cos0

]

sin9
2

+ ragrsin9j (eq. 3.16)

By substituting Eq. 3. 14 and Eq. 3.15 intoEq. 3.12, the following equation can be obtained:

2-
mr 0] + /rar92(sin9jSin92 + cos9

1
cos9

2)

.2
+ /mr92 (sin9j cos9 9 - cos9j sin9

2)

+ /rar929j(cos9jSin92
- sin 9

j
cos9

2)

+ Zmr9
1
92(sin9

1
cos9

2
- cos9j sin9

2)

-m^rsin9
1

= M<
[

-M1 (eq. 3.17)

After applying trigonometric conversion rules, the first differential equation of the model

can be derived as follows:

2- •• .2
mr 9j + /rar92COs(9

2
-9i) + /mr92 sin(9 1

- 9
2)

-mgr sin 9
j
= M

]

-M
2

(eq. 3.18)

The differential equation for the second generalized coordinate, 9 9 , is

27

d dL dL
-, — —=?£- - Ml (eq. 3.19)

dL
The term, , equation in Eq. 3.19 can be derived as

ae 2

r)T • 1 • 1

—r- = ra/r9
1
cos9

1
cos9

2
+ ra/ 92 (cos92)

2 2
+ m/rG

1
sine

i

sin6
2
+ m/ 92(sin9

2) +^62 (eq. 3.20)

The time derivative of Eq. 3.20 is

ddL , x ~ „ , a2

*ae-
= ra/r9 j cos 9 , cos

9

2
- mlrQ j sin 9 , cos

9

2

• 2- 2
-m/r9

1
92COs9

1
sin9

2
+ ml 92(cos9

2)

2-2
- 2ml 92COs9

2
sin9

2
+ mlrQi sin9j sin9

2

.2 . .

+ m/r9jCOs9
1

sin9
2
+ m/r0 1 02 sin 9 1 cos9

2

+ ml 92(sin92) + 2m/2 92 sin92 cos9 2
+ 792 (eq. 3.21)

Then the second term in the equation Eq. 3.18 can be derived as

r)/__ = -m/r9
1
92Cos9

1

sin9
2
+ m/r9

1
92sin9

1
cos9 9

+ rag/sin9
2

(eq. 3.22)

By substituting Eq. 3.21 andEq. 3.22 into Eq. 3.19, the following equation can be obtained:

28

.2
m/r6] cosGj cos6

2
- m/r9j sin0j cos0

2

• • 2- 2- m/rO^cosGj sin9 9 + rar02 (cos02)

2-2
- 2ml 2 cos0 9 sin0 o + ra/r0j sin0j sin0

2

.2
+ ra/r0 1 cos

l
sin

2
+ ra/r0 j 2 sin j cos 9

7 • 7 -2
+ ml 2 (sin02) + 2m/2

2 sin0 2
cos0

2
+ 702

+ mlr
1 2 cos j sin 9-m/r j 2 sin j cos 9

+ mg/sin0 9 = M
2

(eq. 3.23)

Then, the second differential equation of the model can thus be expressed as follows:

.2
m/r0

1
cos(0

1

-
2) + m/r0] sin (02

- 0j)

2 ••

+ (I + ml)02-mg/sin02
= M

2
(eq. 3.24)

The model in [GUBI74] has an additional degree of freedom comparison to the

model presented in this thesis which is variable leg length and does not have any ankle

control torque. If the time derivative values of the leg length variable r are taken out, and

the ankle torque M, is added to the dynamic equations in [GUBI74], it is seen that these

equations are identical with the equations Eq. 3.17 and Eq. 3.23.

29

D. NEWTON-EULER FORMULATION

As discussed in the previous chapter, if the Lagrangian method is used, an increase

in the number of degrees of freedom complicates the calculations exponentially for an

articulated mechanism. Even though the number of variables are not many in this case, by

considering that future research is likely to investigate more complex models, the Newton-

Euler method looks as if a better approach for this kind of problems.

The model, presented in this chapter, can be divided into two parts to simplify the

problem. These parts are the massless leg and the body itself.

1. The Newton-Euler Equations of the Massless Leg

Figure 10: Free Body Diagram for The Massless Leg

Because the leg has no mass, it is only possible to talk about the static equilibrium

of this body part. The equilibrium equations can be expressed as

30

I^ = o

i= 1

and

Y M-F r

=

i= 1

where M-, F and r are defined in Figure 10.

Equation Eq. 3.25 can also be written as

M
l
-M

2
-rF

r
=

so the reaction force, F , is given by

(eq.3.25)

(eq. 3.26)

(eq. 3.27)

F =
r

M
x
-M

2
(eq. 3.28)

2. The Newton-Euler Equations of the Body

Figure 1 1 : Free Body Diagram of The Body

31

The dynamic equations of the free body in the z and y directions can be derived as

m'z = -mg + FcosGj -F
r
sin6

1
(eq. 3.29)

and

my = FsinGj -F
r
cos0

1
(eq. 3.30)

For the angular motion of the free body, the dynamic equation of the body can be expressed

as

/02 = M2
-/F

r
cos(e

2
-e

i
) + ZFsin(e

2
-G

1) (eq.3.3l)

3. Combining Body and Leg Equations

As shown in Figure 9, the geometric constraint equations for the model can be

derived as

3; = rsinGj + /sin9
2

(eq. 3.32)

and

Z = rcosGj + /cos6
2

. (eq. 3.33)

The second time derivatives of Eq. 3.30 and Eq. 3.31 are as follows:

.2 .. -2

y = r9 1 cos 6 , - r0 j sin 9 , + /02 cos 6
2
- /02 sin

9

2
(eq. 3.34)

and

.2 .. .2

z = - rG^inGj - rGjCosOj - /92sin9 -/92Cos6 ? . (eq. 3.35)

The constraint force F . in equation Eq. 3.29 can be eliminated by using equation Eq. 3.26

resulting in the expression

32

l(M
}

-M 9)cos(6 9
-6

1)

/e 2 = M
2

— = - + ^8^(82-6!) (eq.3.36)

By combining Eq. 3.28 and 3.32, the following equation can be derived:

.2
m(rGiCOs9j - /-OjsinBj + /62Cos6

2
-/62sin9 9) =

= FsinGj +F
r
cos0

1
(eq.3.37)

On the other hand, after substituting z with Eq. 3.33, Eq. 3.27 can be written as

.2 •• .2
ra(- rGj sinGj - r0j cosGj - /62sin6

2
- /62Cos6

2) =

= -rag + Fcos6j -F
r
sinGj (eq. 3.38)

The equation Eq. 3.34 can redefined as

MM + r)-lM,
e2/-/r/sin(e

2
-e

1
) = —— -cos(e

2
-9j) (eq.3.39)

After reorganizing, Eq. 3.35 and Eq. 3.36 become

GjrarcosGj + 62m/cos6
2
- FsinGj =

.2 .2 M \~ M2
= rarGjsinGj + m/G2 sinG 9

+ cosGj (eq. 3.40)

and

GimrsinGj + G2w/sin6
2
+ FcosG! =

.2 -2 M]~ M2
= -mrG

1
cosG

1

-m/G2COsG
2
+ mg + sinGj (eq. 3.41)

Equations Eq. 3.37, Eq. 3.38, and Eq. 3.39 can be expressed in matrix form as:

33

mrcosGj ra/cosG
2

rarsinGj ra/sinG
2

/ -/sin(9
2
-e

i
)

-sin 6

cos 6

l e2

F

M
2
{l + r)-lM

x

cos(9
2
- Bj)

M, -M,.2 .2
ir± \~ 1Y±

2
rarGjsinGj + m/02sin6

2
+ cosGj

M
x
-M

2

(eq. 3.42)

.2 .2
rarOjcosGj -m/62 cos02 + mg h sinGj

An alternative to this analytic formulation of the Newton-Euler formulation is to

use the recursive approach explained in Chapter II of this thesis. Thus results in more

complex logic, but in less computation, especially as the number of links in the dynamic

model increases.

E. LINEARIZED ANALYSIS FOR CHOOSING GAINS

As mentioned in the previous sections, this system has two inputs, hip and ankle

torques. The main purpose of postural control is to determine these input torques in order

to maintain the upright orientation of the body. The approach taken in this thesis is linear

state feedback control. The control equations, Eq. 3.5 and Eq. 3.6, are presented in the

second section of this chapter. For the local control model, the problem is to compute the

required gain values: ka , k- , ka , k, .

y
i 6i y 2 e 2

It is reasonable to drop quadratic velocity components for small motion linearized

.2 -2
analysis [MCGH86]. Under this assumption, 6| and 62 - components are removed from

34

all equations. The same assumption means that 61 and G 9 can have only small values

which allows the substitutions

sinBj = Gj, (eq.3.43)

sin6
2
= 6

2 , (eq. 3.44)

COS0
1
= 1, (eq. 3.45)

and

COS0
2
= 1 • (eq. 3.46)

With these considerations, equation Eq. 3.18 can be rewritten as

2-
mr Q\+lmrQ2 = mgrQ^+ M^-M

2
. (eq. 3.47)

The linearized version of equation Eq. 3.24 is

2 •

mlrQi+(I+ml)8 2 = mg/G 9 + M2
(eq. 3.48)

2 can be evaluated from equation Eq. 3.47 as

2-
mgrQ, +M

}

-M7
- mr Oj

6 2
= (eq. 3.49)

Imr

If equation Eq. 3.49 is substituted in equation Eq. 3.48, the following equation is obtained

(mlr)
2
Q

l
+ (I+ml

2
)(mgrQ

l
+M

l
-M

2
-mr

2
Q

l)

2 2
= rm gl 6

2
+ m/rM

2
(eq. 3.50)

After reorganizing, equation Eq. 3.50, Gj can be defined as

6i =

35

2
l
2m 2rgQ 7

- mgr(I + ra/
2
)9 j -(I+ml2)M

l
+(lmr + I+ml)M

2

—Imr

(eq.3.51)

The angular acceleration, 6
\ , can be defined by using equation Eq. 3.47 as

mgrQ, + M, -M1
- ImrQj

91 = i L-^ (eq.3.52)

mr

After substitution of 9 \
, equation Eq. 3.48 can be rewritten as

/ 2 ••

-(mgrQ
l
+M

1
-M

2
- /mr6 2) + (/+ w/)9 2 =mgIQ

2
+ M

2
(eq. 3.53)

After reorganizing equation Eq. 3.53, 9 2 can be define as

92 =

mglrQ
7
- ImgrQ ,

- /M, + (r + /)M— (eq.3.54)

The general linear state feedback equation is

x = Ax + Bu (eq. 3.55)

The state vector, x, is defined by equation Eq. 3.1. If the desired values for the angles are

chosen as zero, the input vector, in equation Eq. 3.5, can be rewritten as

u = Kx (eq. 3.56)

After substituting u according to the equation Eq. 3.56, Eq 3.53 can be written as

36

x = (A + BK)x (eq. 3.57)

where

A =

1

2 2 2
mgr(I + ml) / m rg

Imr

-Imgr

Ir

Imr

1

o ^-r
Ir

and

5 =

I + ml
2

-(Imr + I + ml)

Imr Imr

/

Ir

r + /

(eq. 3.58)

(eq. 3.59)

For local feedback, 7£ can be defined as follows, according to the equations Eq. 3.2, Eq.

3.6 and Eq 3.7

K =
-K* -k.

y
i 8i

-K* -K,
(eq. 3.60)

where desired angle values Ot, and OU are taken as zero. Then, by using equation Eq.

3.58, Eq. 3.59 and Eq. 3.60, A + BK can be defined as

37

A + BK =

l

M N P

1

Q V Y Z

(eq. 3.61)

where

M =

2 2
mgr(I + ml) - Kq (I + ml)

Imr
(eq. 3.62)

N =
-K (I + ml)

t>i

Imr
(eq. 3.63)

2 2 2
-/ m rg + Ka (lmr + I + ml)

o = -±j
Imr

(eq. 3.64)

P =
K. (lmr + I + ml)

62

Im/
(eq. 3.65)

Q =
- Imgr + IKq

rl
(eq. 3.66)

V = V
r/

(eq.3.67)

Y =
mglr - Kq (r + I)

rl
(eq. 3.68)

Z =
-K.{r + l)

"2

^7
(eq. 3.69)

38

For a stable upright posture, all roots of the characteristic equation (eigenvalues)

should have negative real parts [KU095]. The characteristic equation of the closed loop

system is [KU0951

\sI-(A + BK)\ = (eq.3.70)

After substituting the equation Eq. 3.60 the equation, Eq. 3.69 can be rewritten as

s -1

C D E F

s -1

G H W Y

= (eq.3.71)

where

c =

2 2
-mgr(I + ml) + Kq (I + ml)

Imr
(eq. 3.72)

D = s +

K (I + mf)

Imr
(eq. 3.73)

E =

2 2 2
/ m rg-K^ (Imr + I + ml)

Imr
(eq. 3.74)

F =
-K. (Imr + 1 + ml)

02

Imr
(eq.3.75)

Imgr - Kq I

G = 7T^ (eq. 3.76)

39

-v
rl '

H = —

,

(eq. 3.77)

-Imgr + Kn (r + /)

W = —
, (eq.3.78)

rl

K,(r + l)

Y = s +
2—

T (eq. 3.79)
rl

If the determinant of in the equation Eq. 3.69 is evaluated, the following polynomial is

obtained:

4 2
s (r Im)

2>f 2 2 ^
+ s IrmK. + IK. + K.ml +r mK.

V ©2 ©I 01 02/

2 2 2 2 2 2
+ s (IKq -I m rg + ml Kq -r m Ig

2
+ r mKa +rmlKQ +K-K- - Imgr)

e 2 02 01 02

+ s(K
6
K.-lmgK^ + K.K

e2
-mgrK.)

+ (m g rl- mgrK
Q ^
- K

Q
Img + K

Q
K

Q ^ J

= (eq. 3.80)

It is clearly a very hard problem to determine the required gain values in equation Eq. 3.80,

which result in all roots having negative real parts. Instead, a experimental solution was

found by trying some gain values on the computer model. It was found that the following

values produce an upright stable body posture:

40

K
Qi

= 25000, (eq.3.81)

K. = 2500, (eq.3.82)

K^ = 4000, (eq.3.83)

K. = 400 (eq.3.84)

F. SUMMARY

In this chapter, a new human dynamic model, which is made of a body and a

massless leg, is introduced. The dynamic differential equations of the model are derived by

using two different methods: the Lagrangian and the Newton-Euler methods. The last

section of the chapter discusses the small motion linearized analysis of the system. It is

explained how the gain constants for the input torques should be chosen.

The next chapter will explain the implementation of computer models based on the

knowledge presented in the second and third chapters of this thesis.

41

42

IV. COMPUTER MODELS

A. INTRODUCTION

In the second chapter of this thesis, it is pointed out that there exist two major

methods to simulate human motion simulation: kinematic and dynamic models. The

present chapter first presents stepping algorithms for a human figure implementation which

is developed by using a kinematic model. The second chapter also discusses the general

approaches for dynamic simulation of human motion. Based on this knowledge, the third

chapter investigates the mathematical representation of a dynamic human model. The

present chapter also introduces the computer implementations of these models.

B. KINEMATIC COMPUTER MODEL (DYNAMAN)

Figure 12: Kinematic Computer Model: Dynaman

43

The kinematic model presented in this section is made of fifteen separate body parts

as shown in Figure 13.

DCS1

DCS 11
DCS 14

DCS 5

DCS A

DCS 9

DCS 2

DCS 1

DCS 8

Figure 13: The Body Parts and Corresponding Dynamic Coordinate Systems (DCS) of

Dynaman

The purpose of the simulation is to create a computer representation of a stepping

human. Under this requirement, it is clear that the main concern is leg and foot motion. The

other body parts are synchronized according to the legs.

Inverse kinematics is chosen for computing leg motion. Inverse kinematic

equations take the position of the end effector (foot) as the input and computes each joint

angle of the leg. The points which describe the position of the foot in space for a full gait

period produce a path. The question is to define this path as a mathematical function of

time. This function, of course, should be developed with the knowledge of the geometry of

the environment, such as height of each stair.

Forward kinematics could have been chosen for the same problem. In that case,

joint angles of the leg would be the input to the forward kinematic equations, and the

position of the end effector would be calculated. For this second case, there should exist a

44

feedback system in order to input the constraints of the environment to the model. A

collision detection mechanism between the foot and the floor seems to be appropriate to this

approach [GOET94].

1. Inverse Kinematic Equations for Three Link Planar Manipulator

Figure 14: Three Link Planar Manipulator

The leg of Dynaman can be thought as a three link planar manipulator which is

made of the upper leg, the lower leg, and the foot. The frames which are attached to the

links are shown in Figure 14. The general form of the transformation matrix to represent a

point in the frame i — 1 which is defined in frame i is [CRAI89]

1

-\t =

45

COSG, -sin0, ai-\

sinG cosoc .

1
cos G cosoc •_

1
-since _ , -dsinoc- ,

tr i i t i j tit- (j
sin G sina _ , cosGsinoc.

1
cosoc , d cosoc • ,

1

(eq.4.1)

where a , OC , G , and J are the link parameters as defined in the second chapter of this

thesis. The link parameters for the presented model are defined in Table 1

.

i
ai-\ ai-\ d

i *i

l e,

2
h e

2

3 h 9?

Table 1. Link Parameters of the Leg [CRAI89]

In this model, all z axes are parallel, and all X- axes are in the same plane. That is

why all the OC • _ i and d values are zero. The parameters L and U are the link lengths

of the first and second links. The parameter L defines the position of the toe point. Since

it is in the end effector frame, it is not included in the link parameters.

According to equation Eq. 4.1 and Table 1, the transformation matrices for the

neighbor links are

T =

cos 6
j

-sinGj

sinGj cosGj

1

1

(eq.4.2)

46

J =

cos0
2

T =

-sin6
2 /j

sin6 9 cos9
2

10
1_

cos0
3
-sinG

3
L

sin 63 cos 63

10
1

(eq.4.3)

(eq. 4.4)

The transformation matrix between the first and the last links can be derived by using the

product

1 2

3
T =

{
T

2
T

3
T (eq.4.5)

If the matrix multiplications are executed after substituting equations Eq. 4.2, Eq. 4.3, and

Eq. 4.4 into the equation Eq. 4.5, the following transformation matrix will be obtained:

008(8^62 + 63) -sin(6j + 6
2
+ 6

3) /
1
cos6

1
+/

2
cos(6

1
+ 6

2)

8111(6^62 + 63) 008(6! + 6
2
+ 63) /

1

sin6
1
+ /

2
sin(6

1
+ 6

2)10
1

(eq.4.6)

If the method in [CRAI89] is used, the transformation matrix of the end effector

according to the base link can be defined as

47

T =

cos0 -sin 6 x

sinO cosG y

10

1

(eq- 4.7)

where the position components, x and y , and the orientation, 6 , of the end effector

according to the base link are known. The following equations can be derived from

equations Eq. 4.6 and Eq. 4.7:

cosO = cos(0j + 6
2
+

3) (eq. 4.8)

sinG = sinCOj +0
2
+ 6

3)

x = /jCosOj + /
2 cos(0f +

2)

y = ZjSinOj + l
2
sin(Q^ +

2)

(eq. 4.9)

(eq.4.10)

(eq.4.11)

If the squares of equations Eq. 4.10 and Eq 4.11 are added, the following equation is

obtained:

2 2 2 2
x +y = /j + /

2
+ 2/j/2

cos0
2

In equation Eq. 4.12, the only unknown is
2
and it can be defined as

(eq.4.12)

2
= acos

- 2 2 . 2 . 2 N<x +y -/j -l
2)

(eq. 4.13)

After having found 9 , equations Eq. 4.10 and 4.1 1 can be can be written as

jc = &
1
cos0

1

- /^sinOj (eq. 4.14)

and

48

y = ^jSinGj + k
2
cosQ

]
(eq. 4.15)

where

k
x

= /j +/2
COS09 (eq. 4.16)

and

k
2
= /

2
sin9

2 (eq. 4.17)

After following the steps in [CRAI89], 9 , is defined by the equation

9, = atan - hatane> (eq.4.18)

Then foot angle can then be calculated as

9
3
= 9-9^92 (eq.4.19)

2. Link Descriptions in the Computer Model

The computer model has been developed in the IRIS Performer™ application

environment. This environment allows the programer to create a Dynamic Coordinate

Systems (DCS). DCS lets the programer to change the transformation of the objects which

are attached to that DCS node. The method followed in this application is to attach each

body part to a DCS node and connect all the DCS nodes in a tree structure which creates a

hierarchical structure. For example, if the upper leg is rotated for some degrees, all the body

parts under that DCS node, lower leg and foot, follow this rotation. DCS tree structure of

the whole body is shown in Figure 13 and Figure 15.

49

DCSO

DCS 11 DCS 5

DCS 12 DCS 15 DCS 6 DCS 7 DCS 1 DCS 4

IT T T

DCS 13 DCS 16 DCS 8 DCS 9

Figure 15: Dynamic Coordinate System (DCS) Hierarchy Tree of Dynaman

The body parts of the Dynaman are taken from an other model developed in

OpenGLR by Will Frey at the Naval Postgraduate School [FREY96]. However, while Frey

used body segment Euler angles relative to an Earth fixed reference system, as described

above, the work of this thesis is based on joint angles. The coordinates of the polygons,

taken from the other model, which produces the body parts, are loaded to the application

by using poly format files.

3. Stepping Algorithms

The inverse kinematics model takes position and orientation of the end effector and

computes each joint angle. Then, the question is to define the path of the end effector (foot)

which is the input to the inverse kinematics model. Two separate algorithms are developed

to define the path: stepping forward and stepping upward algorithms.

a. Stepping Forward Algorithm

The leg, without bending at the knee, can be assumed as a simple swinging

bar on a circular path which is shown as P, in Figure 16. The angle between the vertical

50

P
2
= p

j
cosa

and the swinging bar is defined as OC , which takes values between -20 and +20 degrees

during the gait cycle. In reality, the knees are bent during stepping. Larger values of a

introduce larger bending angles at the knee. When OC is equal to zero, knee bending angle

should also be zero. This requirement is introduced by

(eq. 4.20)

There is a difference between the supporting and the recovery leg motions. While

the supporting leg always touches the ground, the recovery leg should be moved without

touching the ground. This requirement is added to the model by using the following

equation for the recovery leg

P
3
= 0.95P

2
(eq.4.21)

Figure 16: Forward Stepping Algorithm

No kinematic computation is needed for the arms. They are synchronized

with the legs. The arm rotation is not exactly the same as leg rotation; a scale factor is

applied for a more realistic looking arm motion. Another property of the model is the

rotation of the upper body around the vector described by the general direction of motion.

This motion is caused by the roll moments which are generated by the nature of biped

51

locomotion since the supporting legs have offset from the center of mass on opposite sides

and are alternating during each step cycle.

Figure 17: Upper Body Rotation

The distance from the upper body to the ground is not constant. When the

OC parameter has larger values, the whole body gets closer to the ground. This property is

implemented by moving the whole body vertically with a cosine function of time.

Figure 18: Change in the Height of the Body During One Gait Cycle

52

The height of the upper body is calculated by

Height = 0.08cos(27i/f) (eq. 4.22)

b. Stepping Upward Algorithm

The stepping up algorithm has a major difference from the forward stepping

which is caused by the need for increase in body elevation

Figure 19: The Amount of Elevation For Stepping Up

The needed elevation for stepping up is

h = (/j +/)-(/
1
+/

2
)cosp. (eq. 4.23)

This elevation can only be handled by raising the foot to a higher position in the front. This

causes the change which is shown in Figure 20. The values of 0C change from -10 to +30

degrees for the gait cycle.

53

p3

Pi

p,

Figure 20: Stepping Up Algorithm

C. DYNAMIC COMPUTER MODELS

1. Newton-Euler Rigid Body Class

The Dynamic models in this thesis are developed in ANSI Common Lisp. The main

class for the dynamic simulation is rigid-body class which was written by Professor

McGhee. This Lisp code for this class is included as Appendix A of this thesis. This class

defines a free rigid body in space. The major method of the rigid-body class is update-rigid-

body which updates the posture vector which includes the position and the orientation of

the rigid body in an earth coordinate system. This method converts body velocity rates to

earth velocity rates to update the six element posture vector. Euler integration is used to

update body velocities by using body velocity growth rates. The body velocity growth rates

result from applied forces and torques on the body. The linear velocity growth rate is

computed by [FRAN69]

54

(eq. 4.24)

rv - qw H gsinG
m

fy
pw - ru + — + cosGsind)

m

ft
qu- pv + — + gcosGcosd)

m

where / , / , / is the force vector applied to the body, (u, v, w) is the linear velocity
jl y 4,

vector, (p, q, r) is the rotational velocity vector, (((), 0, V|/) is the body orientation

defined in Euler angles, m is the mass, and g is the gravitational acceleration. All these

vectors are defined in a body principal axis coordinate system [FRAN69]. The angular

velocity growth rate is computed by

[(/ -/a)«r + L]

/
XX

[(V-I
xx

)rp + M]

7
.vy

[('**--i„)M+m

zz

(eq. 4.25)

where (L, M, N) is the torque vector applied to the body, / , / , and / are mass

moments of inertia, (p, q, r) is the rotational velocity vector [FRAN69]. In summary, the

update-rigid-body method calculates the new position and orientation of the free rigid body

in an earth coordinate system according to the applied forces and torques to the body. An

other important method is move which takes the displacement components and orientation

Euler angles as input and moves the body according to the inputs.

55

2. Numerical Integration Methods

Two different integration methods are used in the dynamic modeling

implementations: Euler and Huen integration. The Euler integration approach can be

formalized as [KREY88]

Si+1 = *n + /<**' *n>
Al (eq.4.26)

where

y = f(xn , t) (eq. 4.27)

and At is a constant increment in the independent variable, t.

The Heun integration formula can be defined with the equation [KREY88]

'
_l 1 = X +r[f(x ,t) + fix ^ ,* t t)]A (eq. 4.28)n+1 n 2 n n n+1 «+l /J M y

where

The symbols At and f(x, t) have the same definitions for Heun integration as in Euler

integration.

3. Dynamic Inverted Pendulum Simulations

Three different dynamic inverted pendulum models are implemented in this thesis:

a. A Single Link Single Rigid Body with Newton-Euler

The second implementation simulates an inverted pendulum by using Newton-

Euler formulation of the dynamic equations of the system. The constraint forces from the

dynamic equations and the control torque are the inputs of the rigid-body class. The 3x3

matrix multiplication form of the system equations is as follows:

56

/ -/cos 6 /sin

6

m/cos9 1

m/sin9 -1

e

F

F.

M
.2
6 ra/sin6

• 2
rag - 6 m/cos6

(eq. 4.30)

where all the variables are defined as in Figure 21.

Figure 21: Inverted Pendulum with Constraint Forces

The system has only one degree of freedom. A suitable state vector is

x = [0,0] (eq.4.31)

To assume M = , makes the system behave like a natural inverted pendulum

without control. By using linear state feedback, the control moment can be determined as

M = ~K^-K.$ (eq. 4.32)

where KA and K . are control gain variables. Suitable values for KA and K . can be
9 (p y (t>

found analytically for small motion linearization of this system because its characteristic

equation is quadratic. The Lagrangian formulation, Eq 2. 27, is most useful for this purpose.

57

b. Massless Leg and a Single Rigid Body with Lagrangian

The second implementation simulates a two link structure which is

presented in the third chapter of this thesis. The dynamic equations of the system are

defined with Eq. 3.18 and Eq. 3.24 which are derived by using Lagrangian method. The

linear state feedback control equations are given by the equations Eq. 3.6 and Eq. 3.7. The

state vector is defined as Eq. 3.1.

c. Massless Leg and a Single Rigid Body with Newton-Euler

The third implementation simulates the same two link structure which is

simulated in the second simulation. However the Newton-Euler method is used to derive

the dynamic equation instead of the Lagrangian. The 3x3 matrix form of the dynamic

equations are given by Eq. 3.42. The linear state feedback control equations and the state

vector are defined as the same as in the Lagrangian version of the simulation.

D. SUMMARY

This chapter presents forward and upward kinematic stepping algorithms, of an

human model which is developed at the IRIS Performer application environment by

using C++. The second part of the chapter explains three different implementations to

simulate various inverted pendulum models developed in Lisp. The next chapter discuses

the results of these simulations.

58

V. RESULTS OF COMPUTER SIMULATIONS

A. INTRODUCTION

In this chapter, the results of the dynamic simulations are presented. The second

part of the chapter contains frames from the kinematic simulation of Dynaman which show

the model stepping forward and upward.

B. DYNAMIC SIMULATIONS

1. A Single Link Single Rigid Body with Newton-Euler Method

Figure 22, Figure 23, and Figure 24 show the behavior of the inverted pendulum

with a control torque at the pivot point. The dynamic equations of the system are derived

by using the Newton-Euler Method. The mass of the rigid body,m , is 100 lb. The body

rotary inertia, /, is 900 lb. ft. . The length of the inverted pendulum, /, is 3 ft. The

gravitational acceleration, g , is 32.2185 ft. / sec. . The gain values for the control torque

are

K
e
= 10000 (eq.5.1)

K. = 2000 (eq.5.2)

The initial state vector is

x = (1,0) (eq.5.3)

and the state vector in steady state is

X = (0,0) (eq.5.4)

Figure 25 shows inverted pendulum orientation change in time. Euler integration

with a time step of 0.02 seconds was used for the results shown in Figure 22-25.

59

strobe-cam era-image

Figure 22: Initial Position and Orientation of the Inverted Pendulum

strobe-cainera-image

Figure 23: Inverted Pendulum Moving to the Upright Orientation

60

strobe-camera-image

Figure 24: Inverted Pendulum After Steady State

BodyAttitude (theta) NEWTON-EULER

Figure 25: Body Attitude Response of the Inverted Pendulum

61

2. Massless Leg and a Single Rigid Body with Lagrangian Method

Figure 26, Figure 27, Figure 28, and Figure 29 show the behavior of the two link

inverted pendulum with control torques at the hip and at the ankle. The z axis of the body

is drawn to be able to observe the body attitude and the leg angle separately. The dynamic

equations of the system is derived by using the Lagrangian Method. The mass of the rigid

body,m , is 100 lb. The body rotary inertia, /, is 100 lb. ft.
2

. The length of the leg, r , is 3

ft. The length of the rigid body, / , is 0.5 ft. The gravitational acceleration, g , is 32.2 ft. /

sec. . The gain values for the control torques are

(eq.5.5)

(eq.5.6)

(eq- 5.7)

(eq.5.8)

The initial state vector is

x = (0.5,0, 1,0) (eq.5.9)

and the state vector in steady state is

X = (0,0,0,0) (eq.5.10)

Figure 30 and Figure 3 1 show body attitude and leg angle changes in time. Heun

integration with a time step of 0.0 1 seconds was used for the results shown in Figure 26-3 1

.

*e,
= 25000

*e,
= 2500

*e 2

= 40000

*e 2

= 400

62

j <H v 7m>im*^rfMe#amtyCd$ateit tekfiiUissli*,

Two Link Inverted Pendulum (Constant Length Massless Leg) LAGRANGIAN

Figure 26: Initial Orientation of the Two Link Inverted Pendulum (Lagrangian)

Figure 27: Two Link Inverted Pendulum Moving to the Upright Orientation by Control

Torques(Lagrangian)

63

Figure 28: Two Link Pendulum Recovering the Negative Orientations (Lagrangian)

Two Link Inverted Pendulum (Constant Length Massless Leg) LAGRANGIAN

Figure 29: Two Link Inverted Pendulum After Steady State (Lagrangian)

64

LI,/:;: ,:;::: ;y: ^U& U 1

Body Attitude (theta-2) LAGRANGIAN

1HH
Figure 30: Body Attitude Response of the Two Link Inverted Pendulum (Lagrangian)

Leg Angle (theta-1) LAGRANGIAN

Figure 31 : Leg Angle Response of the Two Link Inverted Pendulum (Lagrangian)

65

3. Massless Leg and a Single Rigid Body with Newton-Euler Method

Figure 32, Figure 33, Figure 34, and Figure 35 show the behavior of the two link

inverted pendulum with control torques at the hip and at the ankle. Again, the z axis of the

body is drawn to be able to observe the body attitude and the leg angle separately. The

dynamic equations of the system are derived using the Newton-Euler Method. The mass of

the rigid body,m , is 100 lb. The body rotary inertia, /, is 100 lb. ft.
2

. The length of the leg,

r , is 3 ft. The length of rigid body, /, is 0.5 ft. The gravitational acceleration, g , is 32.2 ft.

/ sec. . The gain values for the control torques are

(eq.5.11)

(eq.5.12)

(eq.5.13)

(eq.5.14)

The initial state vector is

x = (0.5,0, 1,0) (eq.5.15)

and the state vector in steady state is

X = (0,0,0,0) (eq.5.16)

Figures 32 through 37 show body attitude and leg angle changes in time. Heun

integration with a time step of 0.01 seconds was used for these results.

*e,
— 25000

K .

8,

= 2500

*e 2

= 40000

K .

e 2

= 400

66

lVo Link Inverted Pendulum (Constant Length Massless Leg) NEWTON-EULEF

Figure 32: Initial Orientation of the Two Link Inverted Pendulum (Newton-Euler)

«S ill WJIH II l))HMM <C 1» fjMMjTr. I \.KMm\1

Two Unk Inverted Pendulum (Constant Length Massless Leg) NEWTON-EULE

Figure 33: Two Link Pendulum Moving to the Upright Orientation (Newton-Euler)

67

rwo Link Inverted Pendulum (Constant Length Massless Leg) NEWTON-EULEF

Figure 34: Two Link Pendulum Recovering the Negative Orientations (Newton-Euler)

Two Link Inverted Pendulum (Constant Length Massless Leg) NEWTON-EULEF

Figure 35: Two Link Inverted Pendulum In Steady State (Newton-Euler)

68

1 i#-2}NEWrOt*-EVL

Body Attitude (theta-2) NEWTON-EULER

Figure 36: Body Attitude Time Response of the Two Link Inverted Pendulum (Newton-

Euler)

Leg Angle (theta-1) NEWTON-EULER

Figure 37: Leg Angle Response of the Two Link Inverted Pendulum (Newton-Euler)

69

C. RESULTS OF THE DYNAMIC SIMULATION

Euler integration was used for the single link inverted pendulum simulation. For the

two link inverted pendulum simulations, Heun integration is chosen. Heun is a more

accurate method than Euler, because it converges quadratically as the step size is decreased,

while Euler integration converges only linearly.

As seen in the previous section, the Newton-Euler and Lagrangian solutions of the

two link inverted pendulum problem give identical results. However, the running times of

these simulations are not the same. The time needed to complete the Newton-Euler version

of the simulation is 20 percent longer than the Lagrangian version. This is an expected

consequence of the matrix inversion which takes place in the Newton-Euler version. The

Lagrangian version of the problem computes the accelerations without matrix inversion.

However, it is hard to derive dynamic equations using Lagrangian methods for more

complex models with higher degrees of freedom. Moreover, due to the complexity of such

equations, it is suspected that Newton-Euler models for postural control may run faster for

more complex systems. This will certainly be true if O(n) methods are used [MCMI95].

D. KINEMATIC SIMULATION OF STEPPING DYNAMAN

1. Stepping Forward Algorithm

Figures 38 through 43 are six frames from the kinematic model simulation. These

six frames show one step cycle of Dynaman during forward stepping.

70

Figure 38: Forward Stepping (1)

^^*

Figure 39: Forward Stepping (2)

71

Figure 40: Forward Stepping (3)

Figure 41: Forward Stepping (4)

72

Figure 42: Forward Stepping (5)

Figure 43: Forward Stepping (6)

73

2. Stepping Upward Algorithm

Figure 44 through 48 are five frames from the kinematic model simulation. These

five frames show one step cycle of the Dynaman while stepping upward.

Figure 44: Upward Stepping (1)

74

Figure 45: Upward Stepping (2)

Figure 46: Upward Stepping (3)

75

Figure 47: Upward Stepping (4)

Figure 48: Upward Stepping (5)

76

VI. SUMMARY AND CONCLUSIONS

A. SUMMARY

The increasing demand for realistic 3D Virtual Environments requires more

research on modeling human motion. There exist two main approaches to this problem:

kinematic and dynamic modeling. A detailed review of previous work on kinematic

modeling, dynamic modeling and control of graphical representation of human body

motion is presented in this thesis. Kinematics uses only the geometric constraints of the

model which results in less complicated models. However, for some situations, kinematic

modeling may not be sufficient to simulate human motion realistically. Dynamics

introduces additional properties of human limb segments to the simulation, such as mass

and moment of inertia. These additional properties allow a more realistic simulation. The

cost of this realism is an increase in computational complexity. The goal of the research of

this thesis is to develop a realistic looking human model, while considering the complexity

of the simulation according to the response time based on the computational power of

current graphics hardware.

To be able to create a more realistic, real time, and computationally efficient human

model, a simple dynamic model which was proposed, but not fully developed in

[MCGH79] was implemented. The model is a two link planar inverted pendulum which is

made of a rigid body with mass and a supporting massless leg. Two different methods,

generalized coordinates with Lagrangian, and the Newton-Euler, were used to derive the

dynamic equations of the simulations. The implementation results verified models against

each other and related models in the literature [GUBI74]. The problem of determining the

gain parameters for limb segment control torques is also investigated. Since the degree of

the characteristic equation is four, an experimental solution is presented, instead of an

analytic one. Another result is the difference between the running times of the simulations.

77

The simulation which uses the Newton-Euler method takes 20% longer than the

Lagrangian version, because of matrix inversions. It is also observed that the Lagrangian

differential equations are simpler to use in deriving gain values for the system in

comparison to the Newton-Euler version of the problem. However, the Lagrangian method

would be hard to use in a more complex model with higher degrees of freedom. For such

cases, the recursive Articulated Body algorithm [MCMI95] which has O(n) complexity

needs to be used.

On the other hand, a detailed kinematic human model which contains 14 body parts

was also developed. The simulation is based on joints angle instead of the Euler angles

which used in previous work. IRIS Performer API, which interfaces to both IRIS GL™

and OpenGL. IRIS Performer and provides a hierarchy among Dynamic Coordinate

Systems (DCS), was used to implement articulated chain structures easily.

B. CONCLUSION AND FUTURE RESEARCH

This thesis covers the basics for simplified dynamic human motion simulation. The

model which is introduced in this thesis has only the torso with mass. An advanced version

of this simulation may consider leg mass as well. The existing model is planar. Another step

can be to investigate a 3D version of the model. The "Rigid-body" class could continue to

be used for this purpose since provides support for simulation of body parts in 3D.

Multilink more complex dynamic models also need to be investigated by considering

different solution methods such as Newton-Euler, iterative use of inverse dynamics

[KOOZ83], and the Articulated Body Algorithm [MCMI95]. Accuracy and time response

of the system should be taken into account, while the complexity of the model is increased.

Another issue is to integrate the existing kinematic and dynamic models. This

integration may result a more realistic human model than the developed kinematic model.

It will be computationally cheaper than a 14 link human dynamic model.

78

This thesis investigated posture control of a human model. Stepping is another

important subject in human motion simulation. An efficient automatic stepping algorithm

needs to be to investigated for a dynamically simulated human model. Active (dynamic)

balancing should be considered while studying automatic stepping control. Advance

features in further research in stepping is speed and direction control, and rough terrain

locomotion for the walking human model. For direction and speed control

implementations, user-computer interaction will become important. A speech recognition

interface could be taken in the consideration as a realistic solution [DEVI96].

VRML is a fast growing 3D modeling language. It is possible to execute the needed

computation by using Java Classes which are integrated to VRML nodes. Implementing the

simulations by using VRML and Java Scripting would provide platform independency

which would allow the simulations runable in other than graphic workstation

environments. The author hopes that the work of this thesis will provide a foundation for

continuing research in some of the above topics.

79

80

APPENDIX A: DYNAMIC SIMULATION SOFTWARE

COMMON FILES IN ALL DYNAMIC SIMULATIONS

File : robot-kinematics . cl

Author : Dr. R. McGhee
: Naval Postgraduate School
: Monterey, CA 93943

Summary : This file contains various matrix and vector operation
: functions.

(defun transpose (matrix) ;A matrix is a list of row vectors,
(cond ((null (cdr matrix)) (mapcar 'list (car matrix)))

(t (mapcar 'cons (car matrix) (transpose (cdr matrix))))))

(defun dot-product (vector-1 vector-2) ;A vector is a list of numerical atoms
(apply '+ (mapcar '* vector-1 vector-2)))

(defun vector-magnitude (vector) (sqrt (dot-product vector vector))

)

(defun post-multiply (matrix vector)

(cond ((null (rest matrix)) (list (dot-product (first matrix) vector)))
(t (cons (dot-product (first matrix) vector)

(post-multiply (rest matrix) vector))))

)

(defun pre-multiply (vector matrix)

(post-multiply (transpose matrix) vector))

(defun matrix-multiply (A B) ;A and B are conformable matrices,
(cond ((null (cdr A)) (list (pre-multiply (car A) B))

)

(t (cons (pre-multiply (car A) B) (matrix-multiply (cdr A) B))))

)

(defun chain-multiply (L) ;L is a list of names of conformable matrices,
(cond ((null (cddr L)) (matrix-multiply (eval (car L)) (eval (cadr L)))

)

(t (matrix-multiply (eval (car L)) (chain-multiply (cdr L))))))

(defun cycle-left (matrix) (mapcar 'row-cycle-left matrix))

(defun row-cycle-left (row) (append (cdr row) (list (car row))))

(defun cycle-up (matrix) (append (cdr matrix) (list (car matrix)))

)

(defun unit-vector (one-column length) ; Column count starts at 1.

(do ((n length (1- n)

)

(vector nil (cons (cond ((= one-column n) 1) (t 0)) vector)))

((zerop n) vector))

)

(defun unit-matrix (size)

(do ((row-number size (1- row-number))

81

(I nil (cons (unit-vector row-number size) I)})

((zerop row-number) I)))

(defun concat-matrix (A B) ;A and B are matrices with equal number of rows,
(cond ((null A) B)

(t (cons (append (car A) (car B)) (concat-matrix (cdr A)

(cdr B)))))

)

(defun augment (matrix)

(concat-matrix matrix (unit-matrix (length matrix))))

(defun normalize-row (row) (scalar-multiply (/ 1.0 (car row)) row))

(defun scalar-multiply (scalar vector)
(cond ((null vector) nil)

(t (cons (* scalar (car vector))
(scalar-multiply scalar (cdr vector)))))

)

(defun solve-first-column (matrix) ,-Reduces first column to (10 ... 0).

(do* ((remaining-row-list matrix (rest remaining-row-list)

)

(first-row (normalize-row (first matrix)))
(answer (list first-row)

(cons (vector-add (first remaining-row-list)
(scalar-multiply (- (caar remaining-row-list))

first-row)

)

answer))

)

((null (rest remaining-row-list)) (reverse answer)))

)

(defun vector-add (vector-1 vector-2) (mapcar '+ vector-1 vector-2))

(defun vector-subtract (vector-1 vector-2) (mapcar '- vector-1 vector-2))

(defun first-square (matrix) ; Returns leftmost square matrix from argument,
(do ((size (length matrix))

(remainder matrix (rest remainder)

)

(answer nil (cons (firstn size (first remainder)) answer)))

((null remainder) (reverse answer)))

)

(defun firstn (n list)

(cond ((zerop n) nil)

(t (cons (first list) (firstn (1- n) (rest list))))))

(defun max-car-f irstn (n list)

(append (max-car-f irst (firstn n list)) (nthcdr n list)))

(defun matrix- inverse (M)

(do ((Ml (max-car-f irst (augment M)

)

(cond ((null Ml) nil) /Abort for singular matrix.
(t (max-car-f irstn n (cycle-left (cycle-up Ml))))))

(n (1- (length M)) (1- n))

)

((or (minusp n) (null Ml)) (cond ((null Ml) nil) (t (first-square Ml))))

(setq Ml (cond ((zerop (caar Ml)) nil) (t (solve-f irst-column Ml))))))

(defun max-car-f irst (L) ;L is a list of lists. This function finds list with
(cond ((null (cdr L)) L) /largest car and moves it to head of list of lists.

82

(t (if (> (abs (caar L)) (abs (caar (max-car-f irst (cdr L))))) L
(append (max-car-f irst (cdr L)) (list (car L))))))

)

(defun dh-matrix (cosrotate sinrotate costwist sintwist length translate)
(list (list cosrotate (- (* costwist sinrotate))

(* sintwist sinrotate) (* length cosrotate))
(list sinrotate (* costwist cosrotate)

(- (* sintwist cosrotate)) (* length sinrotate))
(list 0. sintwist costwist translate) (list 0. 0. 0. 1.)))

(defun homogeneous -trans form (azimuth elevation roll x y z)

(let ((spsi (sin azimuth)) (cpsi (cos azimuth)) (sth (sin elevation))
(cth (cos elevation)) (sphi (sin roll)) (cphi (cos roll)))

(list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi))
(+ (* cpsi sth cphi) (* spsi sphi)) x)

(list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi))
(- (* spsi sth cphi) (* cpsi sphi)) y)

(list (- sth) (* cth sphi) (* cth cphi) z)

(list 0. 0. 0. 1.))))

(defun inverse-H (H) ;H is a 4x4 homogeneous transformation matrix,
(let* ((minus-P (list (- (fourth (first H))

)

(- (fourth (second H))

)

(- (fourth (third H))))

)

(inverse-R (transpose (first-square (reverse (rest (reverse H)))))

)

(inverse-P (post-multiply inverse-R minus-P)))
(append (concat-matrix inverse-R (transpose (list inverse-P)))

(list (list 1))))

)

(defun rotation-matrix (azimuth elevation roll)

(let ((spsi (sin azimuth)) (cpsi (cos azimuth)) (sth (sin elevation)

)

(cth (cos elevation)) (sphi (sin roll)) (cphi (cos roll)))

(list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi))

(+ (* cpsi sth cphi) (* spsi sphi)))

(list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi))
(- (* spsi sth cphi) (* cpsi sphi)))

(list (- sth) (* cth sphi) (* cth cphi)))))

(defun body-rate-to-euler-rate-matrix (azimuth elevation roll)

(let ((sth (sin elevation)) (cth (cos elevation)) (tth (tan elevation))

(sphi (sin roll)) (cphi (cos roll)))

(list (list 1 (* tth sphi) (* tth cphi))

(list cphi (- sphi)

)

(list (/ sphi cth) (/ cphi cth)))))

83

••••••••A***

File : harmonic-equation. cl

Author : Dr. R. McGhee
Naval Postgraduate School
Monterey, CA 93 943

Summary : This file contains functions to create a window and execute
drawing operations on the window,

•••••a***

(require :xcw)

(cw: initialize- common-windows)

(defun make-window ()

(cw : make-window- stream borders 5

left 10

bottom 280

width 600

height 600

title "Harmonic Equation"
activate-p t)) ,-Make window visible,

(defun scale-point-coordinates (x-y-list enlargement-factor)
(let ((x (first x-y-list)) (y (second x-y-list)))

(list (+ 50 (round (* enlargement- factor x))

)

(+ 225 (round (* enlargement- factor y)))))

)

(defun draw-coordinate-axes (window)

(cw:draw-line window (cw:make-position :x 20 :y 225)

(cwrmake-position :x 570 :y 225)

: brush-width 2)

(cw: draw- line window (cw: make-position :x 5 :y 20)

(cw:make-position :x 50 :y 560)

: brush-width 2))

(defun draw-line-in-window (window enlargement- factor start end)

(let ((scaled-start (scale-point-coordinates start enlargement- factor)

)

(scaled-end (scale-point-coordinates end enlargement-factor))

)

(cw: draw- line window
(cw:make-position :x (first scaled-start) :y (second scaled-start))
(cw:make-position :x (first scaled-end) :y (second scaled-end)))))

84

SINGLE LINK INVERTED PENDULUM SIMULATION WITH NEWTON-EULER

File : euler-angle-rigid-body . cl

Author : Dr. R. McGhee
Naval Postgraduate School
Monterey, CA 93943

Modified by : Mehmet Bediz
Summary : This file contains rigid body class which is implemented

by Dr. R. McGhee. The function "test-rigid-body-forces-and-
torques-three-with-M" and the other functions called by this
function are implemented by Mehmet Bediz.

r**

(defclass rigid-body

()

((posture ;The vector (xe ye ze phi theta psi)

.

: initform '(000000)
:initarg : posture
: accessor posture)
(posture-rate ;The vector (xe-dot ye-dot ze-dot phi-dot theta-dot psi-dot)

.

: initarg : posture-rate
: accessor posture-rate)

(velocity ;The six-vector (u v w p q r) in body coordinates.
: initform '(000 000)
: initarg : velocity
: accessor velocity)
(velocity-growth-rate ;The vector (u-dot v-dot w-dot p-dot q-dot r-dot)

.

: accessor velocity-growth-rate)
(forces-and- torques ;The vector (Fx Fy Fz L M N) in body coordinates.
;:initform (list (- *gravity*) 0)

rinitform (list 0)

: accessor forces-and- torques)
(moments-of-inertia ;The vector (Ix Iy Iz) in principal axis coordinates.

: initform ' (1 900 1)

: initarg :moments-of-inertia
: accessor moments-of-inertia)

(mass

: initform 100

: initarg :mass

: accessor mass)

(node-list ; (x y z 1) in body coord for each node. Starts with (0001).
:initform '((0 1) (-0.5 -0.5 0.5 1) (0.5 -0.5 0.5 1)(0.5 -0.5 -0.5 1)

(-0.5 -0.5 -0.5 1H-0.5 0.5 0.5 1)(0.5 0.5 0.5 1)

(0.5 0.5 -0.5 l)(-0.5 0.5 -0.5 1)(0 1)

(0031))
: initarg :node-list
:accessor node-list)
(polygon-list
rinitform '

((1 5 8 4) (5 6 7 8) (6 2 3 7) (2 1 4 3) (9 10))

: initarg :polygon-list
:accessor polygon-list)
(transformed-node-list ; (x y z 1) in earth coord for each node in node-list,

rinitform '((0 1) (-2 -2 1) (2 -2 1)(2 -2 -30 l)(-2 -2 -30 1)

(-2 2 1) (2 2 1) (2 2 -30 l)(-2 2 -30 1))

85

: accessor transformed-node-list)
(H-matrix
:initform (unit-matrix 4)

: accessor H-matrix)
(time-stamp
accessor time-stamp)))

(defmethod initialize ((body rigid-body)

)

(setf (transformed-node-list body) (node-list body)

)

(setf (velocity-growth-rate body) (update-velocity-growth-rate body)

)

(setf (posture-rate body) (earth-velocity body)

)

(setf (time-stamp body) (get-internal-real-time))))

(defmethod set-transformed-node-list-z ((body rigid-body) z)

(setf (third (fourth (transformed-node-list body)))(- z)

)

(setf (third(fifth (transformed-node-list body))) (- z)

)

(setf (third (eighth (transformed-node-list body))) (- z)

)

(setf (third(ninth (transformed-node-list body))) (- z))

(transformed-node-list body)))

(defun transform (obj)

(list (first obj) (second obj) (third obj)))

(defun reverse- trans form (obj)

(list (second obj) (third obj) (fourth obj) 1))

(defmethod move ((body rigid-body) azimuth elevation roll x y z)

(setf (posture body) (list x y z roll elevation azimuth))
(setf (H-matrix body)

(homogeneous - trans form azimuth elevation roll x y z)

)

(transform-node-list body))

(defmethod get-delta-t ((body rigid-body)) 0.02)

(let* ((new- time (get-internal-real-time))
(delta-t (/ (- new-time (time-stamp body)) 1000)))

(setf (time-stamp body) new-time)
delca-t)

)

(defmethod update-rigid-body ((body rigid-body)) ;Euler integration,
(let* ((delta-t (get-delta-t body)))

(update-posture body delta-t) ; EULER
(update-velocity body delta-t) ; EULER
(setf (H-matrix body) (homogeneous-transform (sixth (posture body)

)

(fifth (posture body)) (fourth (posture body)) (first (posture body))
(second (posture body)) (third (posture body))))

(transform-node-list body)

(update-velocity-growth-rate body))

)

(defmethod update-velocity-growth-rate ((body rigid-body)

)

(setf (velocity-growth-rate body) ; Assumes principal axis coordinates with
(multiple-value-bind ; origin at center of gravity of body.

(Fx Fy Fz L M N u v w p q r Ix Iy Iz) ; Declares local variables,
(values-list /Values assigned.

(append
(forces-and-torques body) (velocity body) (moments-of-inertia body)))

86

(list (+ (

(+ (

(+ (

(/ (

(/ (

(/ (

v r) (* -1 w q) (/ Fx (mass body))
gravity* (first (third (H-matrix body)))))
w p) (* -1 u r) (/ Fy (mass body))
gravity* (second (third (H-matrix body)))))
u q) (* -1 v p) (/ Fz (mass body))
gravity* (third (third (H-matrix body)))))
(* (- Iy Iz) q r) L) Ix)

(* (- Iz Ix) r p) M) Iy)

(* (- Ix Iy) p q) N) Iz))))) ;Value returned.

(defmethod update-velocity ((body rigid-body) delta-t) ;Euler integration,
(setf (velocity body)

(vector-add (velocity body)

(scalar-multiply delta-t (velocity-growth-rate body))))

)

(defmethod update-posture ((body rigid-body) delta-t) ;Euler integration,
(setf (posture-rate body) (earth-velocity body)

)

(setf (posture body)
(vector-add (posture body) (scalar-multiply delta-t (posture-rate body))))

)

(defmethod transform-node-list ((body rigid-body)

)

(setf (transformed-node-list body)

(mapcar #' (lambda (node-location)
(post-multiply (H-matrix body) node-location)

)

(node-list body)))

)

(defconstant *gravity* 32.2185)

(defmethod earth-velocity ((body rigid-body)

)

(let* ((linear-velocity (firstn 3 (velocity body)))

(rotational-velocity (cdddr (velocity body))

)

(posture (posture body)

)

(R-matrix (rotation-matrix (sixth posture) (fifth posture)
(fourth posture))

)

(linear-earth-velocity (post-multiply R-matrix linear-velocity))
(T-matrix (body-rate-to-euler-rate-matrix (sixth posture)

(fifth posture) (fourth posture)))
(rotational-earth-velocity (post-multiply T-matrix

rotational-velocity))

)

(append linear-earth-velocity rotational-earth-velocity))

)

(defun test-rigid-body ()

(setf airplane-1 (make-instance 'rigid-body))

(initialize airplane-1)
(setf camera-1 (make- instance 'strobe-camera))

(move camera-1 (- (/ pi 2)) 30)

(take-picture camera-1 airplane-1)
(dotimes (i 20 'done) (update-rigid-body airplane-1)

)

(take-picture camera-1 airplane-1)

)

87

- Inverted Pendulum (fixed leg length)
- state vector x = (theta theta-dot)
- state vector u = (M)

- control torque at the pivot (M)

- Newton-Euler Method
3x3 matrix inversion to calculate forces and moments
RIGID Body class to compute accelerations

- Heun Integration

(defmethod forces-earth-to-body (Fx-e Fy-e Fz-e theta)

(let* ((forces-earth (list Fx-e Fy-e Fz-e))

(R-matrix (rotation-matrix (- theta) 0)) ;Since planar
(forces-body (post-multiply R-matrix forces-earth)))

forces-body)

)

(defmethod update-forces-and-torques-three-with-M ((body rigid-body) M)

(let* ((equations-solution-vector (solve-three-equation-system-with-M
body M)

)

(Fx-earth (second equations-solution-vector)

)

(Fz-earth (third equations-solution-vector))
(F-body (forces-earth-to-body Fx-earth Fz-earth

(fifth (posture body)))))
(setf forces-and-torques (list (first F-body)

(third F-body)

(* (first equations-solution-vector)
(second (moments-of-inertia body))

)

0))))

(defun solve-three-equation-system-with-M (body M)

(setf m (mass body)

)

(setf 1 3)

(setf I (second (moments-of-inertia body))

)

(setf theta (fifth (posture body)))

(setf theta-dot (fifth (velocity body)))

(setf g *gravity*)

(post-multiply (matrix- inverse (list (list I (* -1 1 (cos theta))
(* 1 (sin theta))

)

(list (* m 1 (cos theta)) 1)

(list (* m 1 (sin theta)) -1)))

(list M
(* (sqr theta-dot) m 1 (sin theta))
(- (* m g) (* (sqr theta-dot) m 1 (cos theta))))))

(defun compute-M (body K- theta K- theta-dot)

(setf theta (fifth (posture body)))

(setf theta-dot (fifth (velocity body)))

(+ (* -1 K-theta theta) (* -1 K-theta-dot theta-dot))

)

(defun test-rigid-body-forces-and-torques-three-with-M (K-theta K-theta-dot)
(setf inverted-pendulum (make-instance 'rigid-body))

(initialize inverted-pendulum)
(setf camera-1 (make-instance 'strobe-camera))
(move camera-1 (deg-to-rad (- 90)) (deg-to-rad 0) (deg-to-rad 0) 10 0)

(move inverted-pendulum 0-10000)
;(take-picture camera-1 inverted-pendulum)

(setf graph- 1 -window (make-window-graph- 1)

)

(draw-coordinate-axes graph- 1-window)

(setf old-theta 0.5)

(do ((i (+ i 1)))

((> i 1000) 'end)

(setf (forces-and- torques inverted-pendulum)
(update- forces-and-torques-three-with-M inverted-pendulum

(compute-M inverted-pendulum K-theta K-theta-dot)))
(update- rigid-body inverted-pendulum)
(cw:clear (camera-window camera-1))

(take-picture camera-1 inverted-pendulum)
(draw-line-in-window graph- 1-window 80

(list
(* (get-delta-t inverted-pendulum) (- i 1))

(* -1 old-theta)

)

(list
(* (get-delta-t inverted-pendulum) i)

(* -1 (fifth (posture inverted-pendulum)))))

(setf old-theta (fifth (posture inverted-pendulum)))))

(defun sqr(x)
(* xx))

(defun make-window-graph-1 ()

(cw : make-window-s tream borders 5

left
bottom 550

width 450

height 450

title "Body Attitude (theta) NEWTON-EULER"

activate-p t)) ;Make window visible.

89

File
Author

Summary

load-euler- files . cl

Mehmet Bediz
Naval Postgraduate School
Monterey, CA 93 943

This file contains functions to load files and to test
the simulations.

Load files

(load "harmonic-equation. cl "

)

(load "robot-kinematics . cl "

)

(load " euler-angle-rigid-body . cl "

)

(load "strobe-camera . cl "

)

Tests

(defun graph_l ()

(solve-robot-attitude 0.01 1.0 10000 2000 109660 20000))

(defun graph_2 ()

(solve-robot-altitude-z_zO 0.01 1.0 10000 2000 109660 20000))

(defun graph_3 ()

(solve-robot-altitude-z 0.01 1.0 10000 2000 109660 20000))

(defun draw-converted-pendulum-test-real-parameters ()

(draw-converted-pendulum 0.01 2.0 10000 2000 109660 20000))

(defun draw-converted-pendulum-test-zero-gain ()

(draw-converted-pendulum 0.01 2. 00 0))

90

**** + ** + ** + *** + **********************•******•**** + + ***********•***•***** +

File : strobe-camera . cl

Author : Dr. R. McGhee
Naval Postgraduate School
Monterey, CA 93943

Summary : This file contains strobe-camera class definitions.

(require :xcw)

(cw: initialize-common-windows)

(defclass strobe-camera (rigid-body)

((focal-length
: accessor focal-length
: initform 6)

(camera-window
: accessor camera-window
: initform (cw: make-window- stream : borders 5

:left 500

rbottom 500

:width 650
rheight 650

: title "strobe-camera-image"
:activate-p t)

)

(H-matrix
:initform (homogeneous -trans form .3 -.3 -300 -90 -90))

(inverse-H-matrix
: accessor inverse-H-matrix
:initform (inverse-H (homogeneous-transform .3 -.3 -300 -90 -90)))

(enlargement- factor
: accessor enlargement- factor
:initform 30))

)

(defmethod move ((camera strobe-camera) azimuth elevation roll x y z)

(setf (H-matrix camera) (homogeneous-transform azimuth elevation roll x y z)

)

(setf (inverse-H-matrix camera) (inverse-H (H-matrix camera))))

(defmethod take-picture ((camera strobe-camera) (body rigid-body)

)

(let ((camera-space-node-list (mapcar #' (lambda (node-location)
(post-multiply (inverse-H-matrix camera) node-location))

(transformed-node-list body))))
(dolist (polygon (polygon-list body)

)

(clip-and-draw-polygon camera polygon camera-space-node-list)))

)

(defmethod clip-and-draw-polygon
((camera strobe-camera) polygon node-coord-list)
(do* ((initial-point (nth (first polygon) node-coord-list))

(from-point initial-point to-point)
(remaining-nodes (rest polygon) (rest remaining-nodes)

)

(to-point (nth (first remaining-nodes) node-coord-list)
(if (not (null (first remaining-nodes)))

(nth (first remaining-nodes) node-coord-list))))

((null to-point)
(draw-clipped-projection camera from-point initial-point)

)

(draw-clipped-projection camera from-point to-point))

)

91

(defmethod draw-clipped-projection ((camera strobe- camera) from-point to-point)
(cond ((and (<= (first from-point) (focal-length camera))

(<= (first to-point) (focal-length camera))) nil)

((<= (first from-point) (focal-length camera))
(draw-line-in-camera-window camera

(perspective-transform camera (from-clip camera from-point to-point))
(perspective-transform camera to-point))

)

((<= (first to-point) (focal-length camera))
(draw-line-in-camera-window camera

(perspective- transform camera from-point)
(perspective-transform camera (to-clip camera from-point to-point)))

)

(t (draw-line-in-camera-window camera
(perspective- transform camera from-point)
(perspective-transform camera to-point))))

)

(defmethod from-clip ((camera strobe-camera) from-point to-point)
(let ((scale-factor (/ (- (focal-length camera) (first from-point))

(- (first to-point) (first from-point)))))
(list (+ (first from-point)

(* scale-factor (- (first to-point) (first from-point))))
(+ (second from-point)

(* scale-factor (- (second to-point) (second from-point))))
(+ (third from-point)

(* scale-factor (- (third to-point) (third from-point)))) 1)))

(defmethod to-clip ((camera strobe-camera) from-point to-point)

(from-clip camera to-point from-point))

(defmethod draw-line-in-camera-window ((camera strobe- camera) start end)

(cw: draw- line (camera-window camera)

(cw:make-position :x (+ 150 (first start)) :y (+ 150 (second
start))

)

(cw:make-position :x (+ 150 (first end)) :y (+ 150 (second

end))

)

: brush-width 0)

)

(defmethod perspective-transform ((camera strobe- camera) point-in-camera-space)
(let* ((enlargement- factor (enlargement- factor camera)

)

(focal-length (focal-length camera))

(x (first point-in-camera-space)) ;x axis is along optical axis

(y (second point-in-camera-space)) ,-y is out right side of camera
(z (third point-in-camera-space))) ,-z is out bottom of camera

(list (+ (round (* enlargement- factor (/ (* focal-length y) x))

)

150) ; to right in camera window
(+ 150 (round (* enlargement-factor (/ (* focal-length (- z)) x)

)

))))) ,-up in camera window

(defun test-camera (z theta) ; Produces top view of default rigid-body,
(setf robot-leg (make-instance 'rigid-body))

(initialize robot-leg)
(set-transformed-node-list-z robot-leg z)

(set-transformed-node-list-theta robot-leg theta)

(setf camera-1 (make-instance 'strobe-camera))
(move camera-1 (deg-to-rad 0) (deg-to-rad 0) (deg-to-rad 0) -30 0)

92

(take-picture camera-1 robot-leg))

(defun deg-to-rad (angle) (* .01745329251994329 angle))

93

TWO LINK INVERTED PENDULUM SIMULATION WITH LAGRANGIAN

File
Author

Modified by-

Summary

euler-angle-rigid-body . cl

Dr . R . McGhee
Naval Postgraduate School
Monterey, CA 93 943

Mehmet Bediz
This file contains rigid body class which is implemented
by Dr. R. McGhee. The function "draw- inverted-pendulum"
and the other functions called by this
function are implemented by Mehmet Bediz.

••••••••A**

(defclass rigid-body

((posture ;The vector (xe ye ze phi theta psi)

.

:initform '(000000)
rinitarg :posture
accessor posture)
(posture-rate ;The vector (xe-dot ye-dot ze-dot phi-dot theta-dot psi-dot)

.

:initarg :posture-rate
: accessor posture-rate)
(velocity ;The six-vector (u v w p q r) in body coordinates.
:initform '(000 000)
:initarg : velocity
:accessor velocity)
(velocity-growth-rate ;The vector (u-dot v-dot w-dot p-dot q-dot r-dot)

.

: accessor velocity-growth-rate)
(forces-and- torques ;The vector (Fx Fy Fz L M N) in body coordinates.
:initform (list 0)

:accessor forces-and- torques)
(moments-of-inertia ;The vector (Ix Iy Iz) in principal axis coordinates.
:initform ' (1 100 1)

rinitarg :moments-of-inertia
: accessor moments-of-inertia)

(mass

:initform 100

:initarg :mass

: accessor mass)
(node-list ; (x y z 1) in body coord for each node. Starts with (0 1)

.

:initform '((0 1) (-0.5 -0.5 0.5 1) (0.5 -0.5 0.5 1)(0.5 -0.5 -0.5 1)

(-0.5 -0.5 -0.5 1M-0.5 0.5 0.5 1) (0.5 0.5 0.5 1)

(0.5 0.5 -0.5 1M-0.5 0.5 -0.5 1)(0 1)(0 3 1))

:initarg :node-list
:accessor node-list)
(polygon-list
:initform '

((1 5 8 4) (5 6 7 8) (6 2 3 7) (2 1 4 3) (9 10))

:initarg :polygon-list
:accessor polygon-list)

(transf ormed-node-list ; (x y z 1) in earth coord for each node in node-list.

:initform '((0001) (-2 -2 1) (2 -2 1) (2 -2 -30 l)(-2 -2 -30 1)

(-2 2 1) (2 2 1) (2 2 -30 l)(-2 2 -30 D)
: accessor transformed-node-list)
(H-matrix

94

:initform (unit-matrix 4)

: accessor H-matrix)
(time- stamp
:accessor time- stamp))

)

(defmethod initialize ((body rigid-body)

)

(setf (trans formed-node- list body) (node-list body)

)

(setf (velocity-growth-rate body) (update-velocity-growth-rate body)

)

(setf (posture-rate body) (earth-velocity body)

)

(setf (time-stamp body) (get-internal-real-time))))

(defmethod set-transformed-node-list-z ((body rigid-body) z)

(setf (third(fourth (transformed-node-list body)))(- z))

(setf (third(fifth (transformed-node-list body))) (- z))

(setf (third(eighth (transformed-node-list body))) (- z))

(setf (third(ninth (transformed-node-list body))) (- z)

)

(transformed-node-list body))

)

(defun transform (obj)

(list (first obj) (second obj) (third obj)))

(defun reverse- trans form (obj)

(list (second obj) (third obj) (fourth obj) 1))

(defmethod move ((body rigid-body) azimuth elevation roll x y z)

(setf (posture body) (list x y z roll elevation azimuth))
(setf (H-matrix body)

(homogeneous-transform azimuth elevation roll x y z)

)

(transform-node-list body)

)

(defmethod get-delta-t ((body rigid-body)) 0.005)

(defmethod forces-earth-to-body (Fx-e Fy-e Fz-e theta)

(let* ((forces-earth (list Fx-e Fy-e Fz-e))

(R-matrix (rotation-matrix (- theta) 0))

(forces-body (post-multiply R-matrix forces-earth)))

forces-body)

)

(defmethod update-rigid-body ((body rigid-body)) ;Euler integration,
(let* ((delta-t (get-delta-t body)))

(update-posture body delta-t) ; EULER
(update-velocity body delta-t) ; EULER
(setf (H-matrix body) (homogeneous -trans form (sixth (posture body)

)

(fifth (posture body)) (fourth (posture body)) (first (posture body))

(second (posture body)) (third (posture body)))

)

(transform-node-list body)

(update-velocity-growth-rate body))

)

(defmethod update-velocity-growth-rate ((body rigid-body)

)

(setf (velocity-growth-rate body) /Assumes principal axis coordinates with
(multiple-value-bind ; origin at center of gravity of body.

(Fx Fy Fz L M N u v w p q r Ix Iy Iz) ; Declares local variables.

95

(values-list ;Values assigned,
(append

(forces -and- torques body) (velocity body) (moments-of-inertia body)))
(list (+

(/

(/

(/

* v r) (* -1 w q) (/ Fx (mass body))
* *gravity* (first (third (H-matrix body)))))
* w p) (* -1 u r) (/ Fy (mass body))
* *gravity* (second (third (H-matrix body)))))
* u q) (* -1 v p) (/ Fz (mass body))
* *gravity* (third (third (H-matrix body))))

)

+ (* (- ly Iz) q r) L) Ix)

+ (* (- Iz Ix) r p) M) ly)

+ (* (- Ix ly) p q) N) Iz))))) ;Value returned.

(defmethod update-velocity ((body rigid-body) delta-t) ;Euler integration,
(setf (velocity body)

(vector-add (velocity body)

(scalar-multiply delta-t (velocity-growth-rate body))))

)

(defmethod update-posture ((body rigid-body) delta-t) ;Euler integration,
(setf (posture-rate body) (earth-velocity body)

)

(setf (posture body)

(vector-add (posture body) (scalar-multiply delta-t (posture-rate body)))))

(defmethod transform-node-list ((body rigid-body)

)

(setf (transformed-node-list body)

(mapcar #' (lambda (node-location)
(post-multiply (H-matrix body) node-location)

)

(node-list body)))

)

(defconstant *gravity* 32.2185)

(defmethod earth-velocity ((body rigid-body)

)

(let* ((linear-velocity (firstn 3 (velocity body)))

(rotational-velocity (cdddr (velocity body))

)

(posture (posture body)

)

(R-matrix (rotation-matrix (sixth posture) (fifth posture)
(fourth posture)))

(linear-earth-velocity (post-multiply R-matrix linear-velocity))
(T-matrix (body-rate-to-euler-rate-matrix (sixth posture)

(fifth posture) (fourth posture)))
(rotational-earth-velocity (post-multiply T-matrix

rotational-velocity))

)

(append linear-earth-velocity rotational-earth-velocity))

)

(defun test-rigid-body ()

(setf airplane-1 (make-instance 'rigid-body))

(initialize airplane-1)
(setf camera-1 (make-instance 'strobe-camera))
(move camera-1 (- (/ pi 2)) 30)

(take-picture camera-1 airplane-1)
(dotimes (i 20 'done) (update-rigid-body airplane-1)

)

(take-picture camera-1 airplane-1)

)

96

- Two Link Inverted Pendulum
- Generalized Coordinates with Lagrangian Method
- Massless leg and a single rigid body (fixed leg length)
- State vector x = (theta-1 theta-1-dot theta-2 theta-2-dot)
- State vector u = (M-l M-2)

- control torque at the ankle (M-l)

;
- control torque at the hip (M-2)

- Heun Integration

; - By Mehmet Bediz

(setf 1 0.5)

(setf r 3)

(setf time-step 0.01)

(defun euler-step-constant-leg (state-vector M-l M-2)
(mapcar '+ state-vector (scalar-multiply time-step

(derivative-state-vector
state-vector M-l M-2)))

)

(defun heun-step-constant-leg (x K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

(setf M-l (compute-M-1 x K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

)

(setf M-2 (compute-M-2 x K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

)

(mapcar ' + x (scalar-multiply (* time-step .5)

(vector-add (derivative-state-vector x M-l M-2)

(derivative- state-vector
(euler-step-constant-leg x M-l M-2) M-l M-2)))))

(defun derivative-state-vector (state-vector M-l M-2)

(list (second state-vector)
(compute-theta-1-double-dot state-vector M-l M-2)

(fourth state-vector)
(compute- theta-2-double-dot state-vector M-l M-2)))

(defun compute-theta-1-double-dot (state-vector M-l M-2) ; Eq 3.51

(first state-vector))
(second state-vector)

)

(third state-vector)

)

(fourth state-vector))

(/ (+ (* llmmrg theta-2)
(* -1 m g r (+ I (* m 1 1)) theta-1)
(* -1 (+ I (* m 1 1)) M-l)

(* (+ (* 1 m r) I (* m 1 1)) M-2)

)

(* -1 I m r r))

)

(setf m 100)

(setf 1 0.5)

(setf r 3)

(setf I 100)

(setf theta-1
(setf theta-1--dot

(setf theta-2
(setf theta-2--dot

(setf g 32 .2)

97

(defun compute- theta-2-double-dot (state-vector M-l M-2) ; Eq 3.54
(setf m 100)

(setf 1 0.5)

(setf r 3)

(setf I 100)

(setf theta-1 (first state-vector))
(setf theta-1-dot (second state-vector)

)

(setf theta-2 (third state-vector)

)

(setf theta-2-dot (fourth state-vector))
(setf g 32.2)

(/ (+ (* m g 1 r theta-2)
(* -1 m g 1 r theta-1)
(* -1 1 M-l)
(* (+ r 1) M-2)

)

r I)

)

(defun compute-M-1 (state-vector K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

(setf theta-1 (first state-vector))
(setf theta-1-dot (second state-vector)

)

(+ (* -1 K-theta-1 theta-1) (* -1 K-theta-1-dot theta-1-dot))

)

(defun compute-M-2 (state-vector K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

(setf theta-2 (third state-vector))
(setf theta-2-dot (fourth state-vector))
(+ (* -1 K-theta-2 theta-2) (* -1 K-theta-2-dot theta-2-dot))

)

(defun compute-y (state-vector)
(setf theta-1 (first state-vector))
(setf theta-1-dot (second state-vector)

)

(setf theta-2 (third state-vector))
(setf theta-2-dot (fourth state-vector))
(setf 1 0.5)

(setf r 3)

(+ (* r (sin theta-1)

)

(* 1 (sin theta-2)))

)

(defun compute-z (state-vector)
(setf theta-1 (first state-vector))
(setf theta-1-dot (second state-vector)

)

(setf theta-2 (third state-vector))
(setf theta-2-dot (fourth state-vector))
(setf 1 0.5)

(setf r 3)

(+ (* r (cos theta-1)

)

(* 1 (cos theta-2)))

)

(defun draw- inverted-pendulum (halt-time K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot

)

98

(setf robot-body (make- instance 'rigid-body))
(initialize robot-body)

(setf robot-leg (make-instance 'rigid-body))
(initialize robot-leg)

(setf camera-1 (make-instance 'strobe-camera))
(move camera-1 (deg-to-rad 0) (deg-to-rad 0) (deg-to-rad 0) -10 0)

(setf graph-1-window (make-window-graph- 1)

)

(draw- coordinate- axes graph- 1 -window)

(setf graph-2 -window (make-window-graph-2)

)

(draw- coordinate-axes graph- 2 -window)

(do ((x '(0.5 1.0 0) (heun-step-constant-leg x K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

)

(old-x ' (0.5 1.0 0) x)

(time (+ time 1))

)

((> time halt-time) 'done)

(move robot-body (deg-to-rad 0) (deg-to-rad 0) (third x)

(compute-y x) (* -l(compute-z x))

)

(setf (transformed-node-list robot-leg) (list (list 1)

(list (* r (sin (first x))

)

(* -1 r (cos (first x))) 1)

(list 1))

)

(setf (polygon-list robot-leg) (list (list 2 1)))

(cw:clear (camera-window camera-1)

)

(take-picture camera-1 robot-body)
(take-picture camera-1 robot-leg)
(draw-line-in-window graph- 1 -window 80 (list (* time-step (- time 1))

(first old-x)

)

(list (* time-step time)

(first x))

)

(draw-line-in-window graph-2 -window 80 (list (* time-step (- time 1))

(third old-x)

)

(list (* time-step time)

(third x))))

)

(defun make-window-graph- 1 ()

(cw : make-window-stream borders 5

left

bottom 5

width 450

height 450

title "Leg Angle (theta-1) LAGRANGIAN"

activate-p t)) ;Make window visible.

(defun make-window-graph-2 ()

(cw: make-window-stream : borders 5

:left

99

bottom 550

width 450

height 450

title "Body Attitude (theta-2) LAGRANGIAN'
activate-p t)) ,-Make window visible.

100

File
Author

load-euler- files . cl

Mehmet Bediz
Naval Postgraduate School
Monterey, CA 93943

Summary : This file contains functions to load files.
•••••••••••••••••••••••••A***

Load files

(load "harmonic-equation. cl "

)

(load "robot-kinematics . cl "

)

(load "euler-angle-rigid-body . cl "

)

101

**

File : s trobe- camera. cl

Author : Dr. R. McGhee
Naval Postgraduate School
Monterey, CA 93943

Summary : This file contains strobe-camera class definitions.
to********************************-************************************

(require :xcw)

(cw: initialize-common-windows)

(defclass strobe-camera (rigid-body)

((focal-length
: accessor focal-length
: initform 6

)

(camera-window
: accessor camera-window
: initform (cw : make-window- s tream rborders 5

:left 470

rbottom 500

:width 650

rheight 650

: title "Two Link Inverted Pendulum
(Constant Length Massless Leg)

LAGRANGIAN"
: activate-p t)

)

(H-matrix
:initform (homogeneous -trans form .3 -.3 -300 -90 -90))

(inverse-H-matrix
: accessor inverse-H-matrix
:initform (inverse-H (homogeneous- trans form .3 -.3 -300 -90 -90)))
(enlargement- factor

: accessor enlargement- factor
:initform 30))

)

(defmethod move ((camera strobe- camera) azimuth elevation roll x y z)

(setf (H-matrix camera) (homogeneous-transform azimuth elevation roll x y z)

)

(setf (inverse-H-matrix camera) (inverse-H (H-matrix camera))))

(defmethod take-picture ((camera strobe-camera) (body rigid-body)

)

(let ((camera-space-node-list (mapcar #' (lambda (node-location)
(post-multiply (inverse-H-matrix camera) node-location))

(transformed-node-list body))))

(dolist (polygon (polygon-list body)

)

(clip-and-draw-polygon camera polygon camera-space-node-list)))

)

(defmethod clip-and-draw-polygon
((camera strobe-camera) polygon node-coord-list)
(do* ((initial-point (nth (first polygon) node-coord-list))

(from-point initial-point to-point)
(remaining-nodes (rest polygon) (rest remaining-nodes)

)

(to-point (nth (first remaining-nodes) node-coord-list)
(if (not (null (first remaining-nodes)))

(nth (first remaining-nodes) node-coord-list))))
(-(null to-point)

102

(draw-clipped-projection camera from-point initial-point)

)

(draw-clipped-projection camera from-point to-point))

)

(defmethod draw-clipped-projection ((camera strobe-camera) from-point to-point)
(cond ((and (<= (first from-point) (focal-length camera))

(<= (first to-point) (focal-length camera))) nil)

((<= (first from-point) (focal-length camera))
(draw-line-in-camera-window camera

(perspective-transform camera (from-clip camera from-point to-point))
(perspective-transform camera to-point))

)

((<= (first to-point) (focal-length camera))
(draw-line-in-camera-window camera

(perspective-transform camera from-point)
(perspective-transform camera (to-clip camera from-point to-point))))

(t (draw-line-in-camera-window camera
(perspective- transform camera from-point)
(perspective- transform camera to-point))))

)

(defmethod from-clip ((camera strobe-camera) from-point to-point)
(let ((scale-factor (/ (- (focal-length camera) (first from-point))

(- (first to-point) (first from-point)))))
(list (+ (first from-point)

(* scale-factor (- (first to-point) (first from-point))))
(+ (second from-point)

(* scale-factor (- (second to-point) (second from-point))))
(+ (third from-point)

(* scale-factor (- (third to-point) (third from-point)))) 1)))

(defmethod to-clip ((camera strobe-camera) from-point to-point)
(from-clip camera to-point from-point))

(defmethod draw-line-in-camera-window ((camera strobe- camera) start end)

(cw: draw- line (camera-window camera)
:x (+ 150 (first start))

:y (+ 150 (second start))

)

:x (+ 150 (first end)

)

:y (+ 150 (second end))

)

: brush-width 0)

)

(cw : make-pos i tion

(cw: make-posit ion

(defmethod perspective-transform ((camera strobe-camera) point-in-camera-space)
(let* ((enlargement- factor (enlargement-factor camera))

(focal-length (focal-length camera))
(x (first point-in-camera-space)) ;x axis is along optical axis

(y (second point-in-camera-space)) ;y is out right side of camera
(z (third point-in-camera-space))) ; z is out bottom of camera

(list (+ (round (* enlargement- factor (/ (* focal-length y) x))

)

150) ; to right in camera window
(+ 150 (round (* enlargement- factor (/ (* focal-length (- z)) x)

)

))))) ; up in camera window

(defun test-camera (z theta) ; Produces top view of default rigid-body,
(setf robot-leg (make-instance 'rigid-body))
(initialize robot-leg)
(set-transformed-node-list-z robot-leg z)

(set-transformed-node-list-theta robot-leg theta)

103

(setf camera-1 (make-instance 'strobe-camera))

(move camera-1 (deg-to-rad 0) (deg-to-rad 0) (deg-to-rad 0) -30 0)

(take-picture camera-1 robot-leg))

(defun deg-to-rad (angle) (* .01745329251994329 angle))

(defun animation ()

(do ((theta-loop (+ theta-loop 1)))

((> theta-loop 90) 'end)

(test-camera 30 theta-loop))

)

104

TWO LINK INVERTED PENDULUM SIMULATION WITH NEWTON-EULER

Author

Modified by
Summary

File : euler-angle-rigid-body . cl

Dr . R . McGhee
Naval Postgraduate School
Monterey, CA 93943

Mehmet Bediz
This file contains rigid body class which is implemented
by Dr. R. McGhee. The function "draw-inverted-pendulum"
and the other functions called by this
function are implemented by Mehmet Bediz.

(defclass rigid-body
()

((posture ;The vector (xe ye ze phi theta psi).
:initform '(000000)
:initarg :posture
:accessor posture)
(posture-rate ; The vector (xe-dot ye-dot ze-dot phi-dot theta-dot psi-dot)

.

:initarg :posture-rate
:accessor posture-rate)
(velocity ;The six-vector (u v w p q r) in body coordinates.

: initform '(000 000)
: initarg : velocity
: accessor velocity)
(velocity-growth-rate ;The vector (u-dot v-dot w-dot p-dot q-dot r-dot)

.

: accessor velocity-growth-rate)
(forces-and- torques ;The vector (Fx Fy Fz L M N) in body coordinates.

: initform (list 0)

: accessor forces-and- torques)
(moments-of-inertia ;The vector (Ix Iy Iz) in principal axis coordinates.

: initform ' (1 100 1)

: initarg :moments-of-inertia
: accessor moments-of-inertia)

(mass

: initform 100

: initarg :mass

: accessor mass)
(node-list ; (x y z 1) in body coord for each node. Starts with (0 1)

.

:initform '((0 1) (-0.5 -0.5 0.5 1) (0.5 -0.5 0.5 1)(0.5 -0.5 -0.5 1)

(-0.5 -0.5 -0.5 1M-0.5 0.5 0.5 1) (0.5 0.5 0.5 1)

(0.5 0.5 -0.5 1) (-0.5 0.5 -0.5 1)(0 1)(0 3 1))

: initarg mode-list
:accessor node-list)
(polygon-list
rinitform '((1 5 8 4) (5 6 7 8)(6 2 3 7)(2 1 4 3)(9 10))

: initarg :polygon-list
:accessor polygon-list)
(transformed-node-list ; (x y z 1) in earth coord for each node in node-list.

:initform '((0 1) (-2 -2 1) (2 -2 1)(2 -2 -30 l)(-2 -2 -30 1)

(-2 2 1) (2 2 1) (2 2 -30 1) (-2 2 -30 1)

)

: accessor transformed-node-list)
(H-matrix

105

:initform (unit-matrix 4)

: accessor H-matrix)
(time-stamp
raccessor time-stamp)))

(defmethod initialize ((body rigid-body)

)

(setf (transformed-node-list body) (node-list body))
(setf (velocity-growth-rate body) (update-velocity-growth-rate body)

)

(setf (posture-rate body) (earth-velocity body)

)

(setf (time-stamp body) (get-internal-real-time))))

(defmethod set-transformed-node-list-z ((body rigid-body) z)

(setf (third (fourth (transformed-node-list body)))(- z)

)

(setf (third(fifth (transformed-node-list body))) (- z)

)

(setf (third (eighth (transformed-node-list body))) (- z)

)

(setf (third(ninth (transformed-node-list body))) (- z))

(transformed-node-list body)))

(defun transform (obj)

(list (first obj) (second obj) (third obj)))

(defun reverse-transform (obj)

(list (second obj) (third obj) (fourth obj) 1))

(defmethod move ((body rigid-body) azimuth elevation roll x y z)

(setf (posture body) (list x y z roll elevation azimuth))
(setf (H-matrix body)

(homogeneous-transform azimuth elevation roll x y z)

)

(transform-node-list body))

(defmethod get-delta-t ((body rigid-body)) 0.005)

(defmethod forces-earth-to-body (Fx-e Fy-e Fz-e theta)

(let* ((forces-earth (list Fx-e Fy-e Fz-e))

(R-matrix (rotation-matrix (- theta) 0))

(forces-body (post-multiply R-matrix forces-earth)))

forces-body)

)

(defmethod update-rigid-body ((body rigid-body)) ;Euler integration,
(let* ((delta-t (get-delta-t body)))

(update-posture body delta-t) ; EULER
(update-velocity body delta-t) ; EULER
(setf (H-matrix body) (homogeneous- transf orm (sixth (posture body)

)

(fifth (posture body)) (fourth (posture body)) (first (posture body))

(second (posture body)) (third (posture body))))
(transform-node-list body)

(update-velocity-growth-rate body))

)

(defmethod update-velocity-growth-rate ((body rigid-body)

)

(setf (velocity-growth-rate body) ;Assumes principal axis coordinates with
(multiple-value-bind ; origin at center of gravity of body.

(Fx Fy Fz L M N u v w p q r Ix Iy Iz) /Declares local variables,
(values-list ,-Values assigned.

106

(list (+ *

*

(+ *

*

(
+ *

*

(/ +

(/ +

(/ +

(append
(forces-and-torques body) (velocity body) (moments-of -inertia body)))

v r) (* -1 w q) (/ Fx (mass body))
gravity* (first (third (H-matrix body))))

)

w p) (* -1 u r) (/ Fy (mass body))
gravity* (second (third (H-matrix body))))

)

u q) (* -1 v p) (/ Fz (mass body))
gravity* (third (third (H-matrix body))))

)

(* (- Iy Iz) q r) L) Ix)

(* (- Iz Ix) r p) M) Iy)

(* (- Ix Iy) p q) N) Iz))))) ,-Value returned.

(defmethod update-velocity ((body rigid-body) delta-t) ,-Euler integration,
(setf (velocity body)

(vector-add (velocity body)

(scalar-multiply delta-t (velocity-growth-rate body))))

)

(defmethod update-posture ((body rigid-body) delta-t) ,-Euler integration,
(setf (posture-rate body) (earth-velocity body)

)

(setf (posture body)
(vector-add (posture body) (scalar-multiply delta-t (posture-rate body)))))

(defmethod transform-node-list ((body rigid-body)

)

(setf (transformed-node-list body)

(raapcar #' (lambda (node-location)

(post-multiply (H-matrix body) node-location)

)

(node-list body)))

)

(defconstant *gravity* 32.2185)

(defmethod earth-velocity ((body rigid-body)

)

(let* ((linear-velocity (firstn 3 (velocity body)))
(rotational-velocity (cdddr (velocity body))

)

(posture (posture body)

)

(R-matrix (rotation-matrix (sixth posture) (fifth posture)
(fourth posture)))

(linear-earth-velocity (post-multiply R-matrix linear-velocity))
(T-matrix (body-rate-to-euler-rate-matrix (sixth posture)

(fifth posture) (fourth posture)))
(rotational-earth-velocity (post-multiply T-matrix

rotational-velocity))

)

(append linear-earth-velocity rotational-earth-velocity))

)

(defun test-rigid-body ()

(setf airplane-1 (make-instance 'rigid-body))

(initialize airplane-1)
(setf camera-1 (make-instance ' strobe- camera)

)

(move camera-1 (- (/ pi 2)) 30)

(take-picture camera-1 airplane-1)
(dotimes (i 20 'done) (update-rigid-body airplane-1))

(take-picture camera-1 airplane-1))

107

(setf m
(setf 1

(setf r

(setf I

(setf M

two Link Inverted Pendulum
Massless leg and a single rigid body (fixed leg length)
state vector x = (theta-1 theta-1-dot theta-2 theta-2-dot)
state vector u = (M-l M-2)
- control torque at the ankle (M-l)

- control torque at the hip (M-2)

Newton-Euler Method
3x3 matrix inversion to calculate forces and moments

Heun Integration

(setf 1 0.5)

(setf r 3)

(setf time-step 0.01)

(defun solve-three-equation-system (state-vector K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

100)

0.5)

3)

100)

M-l (compute-M-1 state-vector K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

)

(setf M-2 (compute-M-2 state-vector K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

)

.(first state-vector))
(second state-vector)

)

(third state-vector))
(fourth state-vector))

(post-multiply
(matrix- inverse

(list (list I (* -1 1 (sin (- theta-2 theta-1))))
(list (* m r (cos theta-1)) (* m 1 (cos theta-2))

(* -1 (sin theta-1))

)

(list (* m r (sin theta-1)) (* m 1 (sin theta-2))
(cos theta-1)))

)

(list (/ (* (- (* M-2 (+ 1 r))
(* 1 M-l)) (cos (- theta-2 theta-1))) r)

(+ (* m r theta-1-dot theta-1-dot (sin theta-1))
(* m 1 theta-2-dot theta-2-dot (sin theta-2))

(/ (* (- M-l M-2) (cos theta-1)) r)

)

(+ (* -1 m r theta-1-dot theta-1-dot (cos theta-1))
(* -1 m 1 theta-2-dot theta-2-dot (cos theta-2))
(* m g)

(/ (* (- M-l M-2) (sin theta-1)) r))))

)

(defun euler-step-constant-leg (state-vector threeXthree-matrix)
(mapcar '+ state-vector (scalar-multiply time-step

(derivative- state-vector
state-vector threeXthree-matrix)))

)

108

(setf theta-1
(setf theta-1--dot

(setf theta-2
(setf theta-2--dot

(setf g 32 .2)

(defun heun-step-constant-leg (x K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

(setf threeXthree-matrix (solve-three-equation-system
x K-theta-1 K-theta-1-dot

K-theta-2 K-theta-2-dot)

)

(mapcar '+ x (scalar-multiply (* time-step .5)

(vector-add (derivative-state-vector x threeXthree-matrix)
(derivative- state-vector

(euler-step-constant-leg x threeXthree-matrix)
threeXthree-matrix))))

)

(defun derivative-state-vector (state-vector threeXthree-matrix)
(list (second state-vector)

(first threeXthree-matrix)
(fourth state-vector)
(second threeXthree-matrix))

)

(defun compute-M-1 (state-vector K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

(setf theta-1 (first state-vector))
(setf theta-1-dot (second state-vector))
(+ (* -1 K-theta-1 theta-1) (* -1 K-theta-1-dot theta-1-dot))

)

(defun compute-M-2 (state-vector K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

(setf theta-2 (third state-vector))
(setf theta-2-dot (fourth state-vector))
(+ (* -1 K-theta-2 theta-2) (* -1 K-theta-2-dot theta-2-dot))

)

(defun compute-y (state-vector)
(setf theta-1 (first state-vector))
(setf theta-1-dot (second state-vector)

)

(setf theta-2 (third state-vector)

)

(setf theta-2-dot (fourth state-vector))
(setf 1 0.5)

(setf r 3)

(+ (* r (sin theta-1)

)

(* 1 (sin theta-2)))

)

(defun compute-z (state-vector)
(setf theta-1 (first state-vector))

(setf theta-1-dot (second state-vector)

)

(setf theta-2 (third state-vector))

(setf theta-2-dot (fourth state-vector))

(setf 1 0.5)

(setf r 3)

(+ (* r (cos theta-1)

)

(* 1 (cos theta-2)))

)

(defun draw- inverted-pendulum (halt-time K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

(setf robot-body (make-instance 'rigid-body))

109

(initialize robot-body)

(setf robot-leg (make- instance 'rigid-body))
(initialize robot-leg)

(setf camera-1 (make- instance 'strobe-camera))
(move camera-1 (deg-to-rad 0) (deg-to-rad 0) (deg-to-rad 0) -10 0)

(setf graph- 1 -window (make-window-graph- 1)

)

(draw- coordinate-axes graph- 1 -window)

(setf graph- 2 -window (make-window-graph-2)

)

(draw- coordinate-axes graph- 2 -window)

(do ((x '(0.5 1.0 0) (heun-step-constant-leg x K-theta-1 K-theta-1-dot
K-theta-2 K-theta-2-dot)

)

(old-x ' (0.5 1.0 0) x)

(time (+ time 1))

)

((> time halt-time) 'done)

(move robot-body (deg-to-rad) (deg-to-rad 0) (third x)

(compute-y x) (* -l(compute-z x))

)

(setf (transformed-node-list robot-leg) (list (list 1)

(list (* r (sin (first x))

)

(* -1 r (cos (first x))) 1)

(list 1))

)

(setf (polygon-list robot-leg) (list (list 2 1)))

(cwiclear (camera-window camera-1))

(take-picture camera-1 robot-body)

(take-picture camera-1 robot-leg)
(draw-line-in-window graph-1-window 80 (list (* time-step (- time 1))

(first old-x)

)

(list (* time-step time)

(first x))

)

(draw-line-in-window graph-2-window 80 (list (* time-step (- time 1))

(third old-x)

)

(list (* time-step time)

(third x))))

)

(defun make-window-graph- 1 ()

(cw: make-window- stream borders 5

left
bottom 50

width 450

height 450

title "Leg Angle (theta-1) NEWTON-EULER'
activate-p t)) ,-Make window visible.

(defun make-window-graph-2 ()

(cw : make-window- s tream :borders 5

:left

10

bottom 550

width 450

height 450

title "Body Attitude (theta-2) NEWTON-EULER'
activate-p t)) ;Make window visible.

Ill

File
Author

load-euler- files . cl

Mehmet Bediz
Naval Postgraduate School
Monterey, CA 93943

Summary : This file contains functions to load files.
••••••A**

Load files

(load "harmonic -equation. cl "

)

(load "robot-kinematics . cl"

)

(load "euler-angle- rigid-body. cl "

)

(load "strobe-camera . cl "

)

112

It**

File

Author

Summary

strobe-camera . cl

Dr. R. McGhee
Naval Postgraduate School
Monterey, CA 93943
This file contains strobe-camera class definitions.

****************************+*********************************»***

(require :xcw)

(cw: initialize-common-windows

]

(defclass strobe-camera (rigid-body)

((focal-length
: accessor focal-length
: initform 6)

(camera-window
: accessor camera-window
rinitform (cw:make-window-stream : borders 5

:left 470

: bottom 500

:width 650

:height 650

: title "Two Link Inverted Pendulum
(Constant Length Massless Leg)

NEWTON-EULER"
: activate-p t)

)

(H-matrix
:initform (homogeneous-transform .3

(inverse-H-matrix
: accessor inverse-H-matrix
:initform (inverse-H (homogeneous-transform
(enlargement -factor

: accessor enlargement-factor
rinitform 30))

)

3 -300 -90 -90)

)

3 -.3 -300 -90 -90))

)

(defmethod move ((camera strobe-camera) azimuth elevation roll x y z)

(setf (H-matrix camera) (homogeneous-transform azimuth elevation roll x y z)

)

(setf (inverse-H-matrix camera) (inverse-H (H-matrix camera))))

(defmethod take-picture ((camera strobe-camera) (body rigid-body)

)

(let ((camera-space-node-list (mapcar #' (lambda (node-location)
(post-multiply (inverse-H-matrix camera) node-location))

(transformed-node-list body)))

)

(dolist (polygon (polygon-list body)

)

(clip-and-draw-polygon camera polygon camera-space-node-list)))

)

(defmethod clip-and-draw-polygon
((camera strobe-camera) polygon node-coord-list)
(do* ((initial-point (nth (first polygon) node-coord-list))

(from-point initial-point to-point)

(remaining-nodes (rest polygon) (rest remaming-nodes))

(to-point (nth (first remaining-nodes) node-coord-list)

(if (not (null (first remaining-nodes)))

(nth (first remaining-nodes) node-coord-list))))

((null to-point)
(draw-clipped-projection camera from-point initial-point))

113

(draw-clipped-projection camera from-point to-point))

)

(defmethod draw-clipped-projection ((camera strobe-camera) from-point to-point)
(cond ((and (<= (first from-point) (focal-length camera))

(<= (first to-point) (focal-length camera))) nil)

((<= (first from-point) (focal-length camera))

(draw-line-in-camera-window camera
(perspective- transform camera (from-clip camera from-point to-point))
(perspective-transform camera to-point))

)

((<= (first to-point) (focal-length camera))
(draw-line-in-camera-window camera

(perspective- transform camera from-point)
(perspective- transform camera (to-clip camera from-point to-point)))

)

(t (draw-line-in-camera-window camera
(perspective-transform camera from-point)
(perspective-transform camera to-point))))

)

(defmethod from-clip ((camera strobe-camera) from-point to-point)
(let ((scale-factor (/ (- (focal-length camera) (first from-point))

(- (first to-point) (first from-point)))))
(list (+ (first from-point)

(* scale-factor (- (first to-point) (first from-point))))
(+ (second from-point)

(* scale-factor (- (second to-point) (second from-point))))
(+ (third from-point)

(* scale-factor (- (third to-point) (third from-point)))) 1)))

(defmethod to-clip ((camera strobe-camera) from-point to-point)
(from-clip camera to-point from-point))

(defmethod draw-line-in-camera-window ((camera strobe-camera) start end)

(cw: draw- line (camera-window camera)

:x (+ 150 (first start)

)

:y (+ 150 (second start)))
:x (+ 150 (first end)

)

:y (+ 150 (second end)))

(cw: make-position

(cw: make-position

: brush-width 0)

)

(defmethod perspective-transform ((camera strobe-camera) point-in-camera-space)
(let* ((enlargement-factor (enlargement- factor camera))

(focal-length (focal-length camera))
(x (first point-in-camera-space)) ;x axis is along optical axis

(y (second point-in-camera-space)) ;y is out right side of camera
(z (third point-in-camera-space))) ; z is out bottom of camera

(list (+ (round (* enlargement-factor (/ (* focal-length y) x))

)

150) ; to right in camera window
(+ 150 (round (* enlargement-factor (/ (* focal-length (- z)) x)

)

))))) ,-up in camera window

(defun test-camera (z theta) ; Produces top view of default rigid-body,
(setf robot-leg (make- instance 'rigid-body))

(initialize robot-leg)
(set-transf ormed-node-list-z robot-leg z)

(set-transformed-node-list-theta robot-leg theta)

(setf camera-1 (make- instance 'strobe-camera))

114

(move camera-1 (deg-to-rad 0) (deg-to-rad 0) (deg-to-rad 0) -30 0)

(take-picture camera-1 robot-leg))

(defun deg-to-rad (angle) (* .01745329251994329 angle))

(defun animation ()

(do ((theta-loop (+ theta-loop 1)))

((> theta-loop 90) 'end)

(test-camera 30 theta-loop)))

115

116

APPENDIX B: KINEMATIC SIMULATION SOFTWARE

//*******************+****** ************ it****************:**************

// File : main.C

// Author : Mehmet Bediz

// : Naval Postgraduate School

// : Monterey, CA 93943

//Created : November 1996

// Summary : This file contains the main function and three motion

// : functions of the kinematic model Dynaman: forward stepping,

// : upward stepping, and jumping.

#include <string.h>

#include "main.h"

void step_forward(int number_of_steps, float X, float Y, float Z);

void step_upward(int number_of_steps, float X, float Y, float Z);

void jump(float X.float Y,float Z);

// Speed of the animation can be controlled by changing delta_t

float delta.t = 2 * 3.0;

pfNode *root;

pfDCS *dcs;

pfMatrix mat, orbit;

pfSphere sphere;

pfNode *modell, *model2, *model3. *model4;

pfNode *model8, *modell0;

pfNode *modell 1, *modell2, *modell3, *modell4

pfDCS *nodel 1, *nodel2, *nodel3, *nodel4;

pfDCS *nodel, *node2, *node3, *node4;

pfDCS *node£ , *nodel0;

pfDCS *dcs0;

pfDCS *dcsl, *dcs2, *dcs3;

pfDCS *dcs4, *dcs5, *dcs6;

pfDCS *dcs7. *dcs8, *dcs9, *dcsl0;

pfDCS *dcsl

1

, *dcsl2, *dcsl3;

pfDCS *dcsl4 , *dcsl5, *dcsl6;

pfDCS *dcs30 , *dcs31, *dcs32, *dcs33;

pfDCS *dcs34 , *dcs35, *dcs36;

pfDCS *dcs37 , *dcs38, *dcs39;

char *filel,*file2, *file3, *file4;

char *file8, *filel0;

char *filell, *filel2, *filel3, *filel4;

pfLightSource * light;

pfMatrix lightMat;

float d;

pfTexture *tex;

pfFrustum *Frust;

void * arena;

pfDCS *lightDCS;

117

int i;

float final_position;

// —
// Function: main

// Returns: None

// Parameters: None

// Summary: Initializes IRIS Performer™, loads body parts from poly format

// files to DCS nodes, creates the channels at the upper right

// corner of the window, calls step_forward, step_upward, and

// jump functions with the number of steps and the initial

// positions.

//

void

main (int argc, char *argv[])

/* choose default objects of none specified */

filel = "lowerleg.poly";

file2 = "upperleg.poly";

file3 = "head.iv";

file4= "torso.poly";

file8 = "foot.poly";

file 10 = "floor.iv";

filel 1 = "rightupperarm.poly";

filel 2 = "lowerarm.poly";

filel 3 = "hand.poly";

filel4 = "leftupperarm.poly";

if (! strcmp(argv[l],"slow")){

delta_t = 2 * 0.5;

#ifndef IRISGL

printf("Sorry, shadows doesn't work in OPENGLXn");

return 0;

#endif

/* Initialize Performer */

pflnitO;

/* Use default multiprocessing mode based on number of

* processors.

*/

pfMultiprocess(PFMP_DEFAULT);

/** allocate shared memory **/

InitSharedQ;

/* Configure multiprocessing mode and start parallel

* processes.

*/

pfConfigQ;

118

/** Initialize Performer utility and GUI functions **/

pfuInitUtilO;

pflnitClock(O.Of);

Shared->simTime = pfGetTime();

srand(Shared->simTime* 1 0000000);

/* Append to PFPATH additional standard directories where

* geometry and textures exist

*/

pfFilePath(".:/usr/share/Performer/data:/tmp_mnt/workb/bediz/Performer/data");

/* Do not use FLAT_ primitives because they look bad

* with local lighting.

*/

pfdBldrMode(PFDBLDR_MESH_LOCAL_LIGHTING, 1);

/* Read a single file, of any known type. */

if ((root = pfdLoadFile("text.iv")) == NULL)

{

pfExit();

exit(-l);

}

/* Load the files */

if ((model 1 = pfdLoadFile(filel)) == NULL)

{

pfExit();

exit(-l);

}

if ((model2 = pfdLoadFile(file2)) == NULL)

{

pfExit();

exit(-l);

}

if ((model3 = pfdLoadFile(file3))= NULL)

{

pfExitO;

exit(-l);

}

if ((model4 = pfdLoadFile(file4))= NULL)

{

pfExitO;

exit(-l);

}

if ((model8 = pfdLoadFile(file8))= NULL)

{

pfExitO;

exit(-l);

}

if ((model 10 = pfdLoadFile(filelO)) == NULL)

{

pfExitO;

exit(-l);

}

119

if ((model 1 1 = pfdLoadFile(filel 1))= NULL)

{

pfExitO;

exit(-l);

}

if ((model 12 = pfdLoadFile(filel2)) == NULL)

{

pfExit();

exit(-l);

}

if ((model 13 = pfdLoadFile(filel3)) == NULL)

{

pfExit();

exit(-l);

}

if ((modell4 = pfdLoadFile(filel4)) == NULL)

{

pfExitO;

exit(-l);

}

/* Create and attach loaded subgraph to a pfScene. */

Shared->scene = new pfScene;

dcs = new pfDCS;

dcs->addChild(root);

Shared->scene->addChild(dcs);

/* determine extent of scene's geometry */

Shared->scene->getBound(&(Shared->bsphere));

/******************* MAIN WINDOW ****************/

/* Configure and open GL window */

Shared->p = pfGetPipe(O);

Shared->p2 = pfGetPipe(O);

Shared->pw = new pfPipeWindow(Shared->p);

Shared->pw->setName("DYNAMAN");

Shared->pw->setConfigFunc(OpenPipeWin);

Shared->pw->setOriginSize(120, 120, 1100, 1100);

Shared->pw->config();

/* initializes mouse and keyboard inputs to be read from window */

pfuInitInput(Shared->pw, PFUINPUT_GL);

pfuInitGUl(Shared->pw);

pfuEnableGUI(TRUE);

/* Create and configure a pfChannel. */

Shared->chan = new pfChannel(Shared->p);

Shared->chan->setScene(Shared->scene);

Shared->chan->setNearFar(1.0f, 5.0f * Shared->bsphere.radius);

Shared->chan->setFOV(45.0f, O.Of);

Shared->view.xyz.set(1.3f * Shared->bsphere.radius,

-2.5f * Shared->bsphere. radius,

3.0f * Shared->bsphere. radius);

Shared->view.hpr.set(0.0f, -45. Of, 0.0f);

Shared->chan->setView(Shared->view.xyz, Shared->view.hpr);

120

Shared->chan->setTravFunc(PFTRAV_DRAW,DrawChannel);

/******** first CHANNEL **************************/

Shared->chan2[0] = new pfChannel(Shared->p);

Shared->pw->addChan(Shared->chan2[0]);

Shared->chan2[0]->setTravFunc(PFTRAV_DRAW,DrawChannel);

Shared->chan2[0]->setScene(Shared->scene);

Shared->chari2[0]->setNearFar(1.0f, 5.0f * Shared->bsphere.radius);

Shared->chan2[0]->setFOV(45.0f, 0.00;

Shared->view.xyz.set(Shared->bsphere. radius,

-4.Of * Shared->bsphere. radius,

0.8f * Shared->bsphere. radius);

Shared->view.hpr.set(0.0f, O.Of, O.Of);

Shared->chan2[0]->setView(Shared->view.xyz, Shared->view.hpr);

/******** SECOND CHANNEL **************************/

Shared->chan2[l] = new pfChannel(Shared->p);

Shared->pw->addChan(Shared->chan2[l]);

Shared->chan2[l]->setTravFunc(PFTRAV_DRAW,DrawChannel);

Shared->chan2[l]->setScene(Shared->scene);

Shared->chan2[l]->setNearFar(1.0f, 5.0f * Shared->bsphere.radius);

Shared->chan2[l]->setFOV(45.0f,0.0f);

Shared->view.xyz.set(1.3 * Shared->bsphere.radius,

-2.5f * Shared->bsphere.radius,

3.0f * Shared->bsphere.radius);

Shared->view.hpr.set(0.0f, -45.0f, O.Of);

Shared->chan2[1]->setView(Shared->view.xyz, Shared->view.hpr);

/******** THIRD CHANNEL **************************/

Shared->chan2[2] = new pfChannel(Shared->p);

Shared->pw->addChan(Shared->chan2[2]);

Shared->chan2[2]->setTravFunc(PFTRAV_DRAW,DrawChannel);

Shared->chan2[2]->setScene(Shared->scene);

Shared->chan2[2]->setNearFar(1.0f, 5.Of * Shared->bsphere.radius);

Shared->chan2[2]->setFOV(45.0f,0.0f);

Shared->view.xyz.set(1.6 * Shared->bsphere.radius,

-0.1 5f * Shared->bsphere.radius,

2.5f * Shared->bsphere.radius);

Shared->view.hpr.set(0.0f, -90.0f, O.Of);

Shared->chan2[2]->setView(Shared->view.xyz,Shared-> view.hpr);

/******** FOURTH CHANNEL **************************/

Shared->chan2[3] = new pfChannel(Shared->p);

Shared->pw->addChan(Shared->chan2[3]);

Shared->chan2[3]->setTravFunc(PFTRAV_DRAW,DrawChannel);

Shared->chan2[3]->setScene(Shared->scene);

Shared->chan2[3]->setNearFar(1.0f, 5.0f * Shared->bsphere.radius);

Shared->chan2[3]->setFOV(45.0f,0.0f);

Shared->view.xyz.set(4.0f * Shared->bsphere. radius,

-0.5f * Shared->bsphere. radius,

0.5 * Shared->bsphere.radius);

Shared->view.hpr.set(90.0f, O.Of, O.Of);

121

Shared->chan2[3]->setView(Shared->view.xyz, Shared->view.hpr);

Shared->chan2[3]->setViewport(0.7, 0.85, 0.7, 0.85);

Shared->chan2[2]->setViewport(0.85, 1.0, 0.7, 0.85);

Shared->chan2[l]->setViewport(0.85, 1.0,0.85, 1.0);

Shared->chan2[0]->setViewport(0.7, 0.85, 0.85, 1.0);

orbit.makeRot(1.0f, O.Of, O.Of, 1.00;

/* scale models to unit size */

nodel = new pfDCS;

node 1 ->addChild(model 1);

model l->getBound(&sphere);

if (sphere.radius > O.Of)

nodel->setScale(1.0f/sphere.radius);

node2 = new pfDCS;

node2->addChild(model2);

model2->getBound(&sphere);

if (sphere.radius > O.Of)

node2->setScale(1.0f/sphere.radius);

node3 = new pfDCS;

node3->addChild(model3);

model2->getBound(&sphere);

if (sphere.radius > O.Of)

node3->setScale(1 .Of/sphere.radius);

node4 = new pfDCS;

node4->addChild(model4);

model4->getBound(&sphere);

if (sphere.radius > O.Of)

node4->setScale(1 .Of/sphere.radius);

node8 = new pfDCS;

node8->addChild(model8);

model8->getBound(&sphere);

if (sphere.radius > O.Of)

node8->setScale(1 .Of/sphere.radius);

node 10 = new pfDCS;

node 1 0->addChild(model 10);

model 1 0->getBound(&sphere);

if (sphere.radius > O.Of)

node 10->setScale(l.Of/sphere. radius);

nodel 1 = new pfDCS;

nodel l->addChild(modell 1);

model 1 l->getBound(&sphere);

if (sphere.radius > O.Of)

node 1 0->setScale(1 .Of/sphere.radius);

node 12 = new pfDCS;

node 1 2->addChild(model 12);

model 1 2->getBound(&sphere);

if (sphere.radius > 0.00

122

node 10->setScale(l.Of/sphere, radius);

node 13 = new pfDCS;

node 1 3->addChild(model 13);

model 1 3->getBound(&sphere);

if (sphere.radius > 0.00

node 1 0->setScale(1 .Of/sphere, radius);

node 14 = new pfDCS;

nodel4->addChild(modell4);

model 1 4->getBound(&sphere)

;

if (sphere.radius > O.Of)

nodelO->setScale(1 .Of/sphere. radius);

/* Lighting without shadowing */

// put a default light source in the scene

Shared->scene->addChild(new pfLightSource);

arena = pfGetSharedArena();

// Create and configure shadow frustum. Fit frustum tightly to scene.

Frust = new(arena) pfFrustum;

Frust->makeSimple(FOV);

d = Shared->bsphere.radius / sinf(PF_DEG2RAD(FOV/2.0f));

d = PF_MAX2(d, NEAR + Shared->bsphere.radius);

Frust->setNearFar(NEAR, d + l.lf * Shared->bsphere.radius);

tex = initSpotTexO;

light = new pfLightSource;

light->setMode(PFLS_PROJTEX_ENABLE, 1);

light->setAttr(PFLS_PROJ_FRUST, Frust);

light->setAttr(PFLS_PROJ_TEX, tex);

light->setColor(PFLT_DIFFUSE, l.Of, l.Of, 1.00;

light->setVal(PFLS_INTENSITY, 3.0f);

light->setPos(17.0 , -7.0 , 13.9, l.Of);// Make light local

light->setSpotDir(O.Of, O.Of, -lO.Of);

// Make DCS to move lights around

lightDCS = new pfDCS;

lightDCS->addChild(light);

/* Main DCS */

dcsO = new pfDCS;

/* Left Foot */

dcsl = new pfDCS;

dcsl ->addChild(nodel);

/* Left lowerleg */

/* Right lowerleg */

dcs4 = new pfDCS;

dcs4 -> addChild(nodel);

123

/* Left upperleg */

dcs2 = new pfDCS;

dcs2 -> addChild(node2);

/* Right upperleg */

dcs5 = new pfDCS;

dcs5 -> addChild(node2);

/* Floor */

dcslO = new pfDCS;

dcslO -> addChild(nodelO

dcs30 = new pfDCS;

dcs30 -> addChild(nodelO

dcs31 = new pfDCS;

dcs31 -> addChild(nodelO

dcs32 = new pfDCS;

dcs32 -> addChild(nodelO

dcs33 = new pfDCS;

dcs33 -> addChild(nodelO

dcs34 = new pfDCS;

dcs34 -> addChild(nodelO

dcs35 = new pfDCS;

dcs35 -> addChild(nodelO

dcs36 = new pfDCS;

dcs36 -> addChild(nodelO

dcs37 = new pfDCS;

dcs37 -> addChild(nodelO

dcs38 = new pfDCS;

dcs38 -> addChild(nodelO

dcs39 = new pfDCS;

dcs39 -> addChild(nodelO

/* Torso (Two parts) */

dcs6 = new pfDCS;

dcs6 -> addChild(node4);

dcsO -> addChild(dcs6);

dcs3 = new pfDCS;

dcs3 -> addChild(node4);

dcsO -> addChild(dcs3);

/* Left Legs */

dcs2->addChild(dcsl);

dcsO -> addChild(dcs2);

/* Right Legs */

dcs5 -> addChild(dcs4);

dcsO -> addChild(dcs5);

/* Feet */

dcs8 = new pfDCS;

dcs8 -> addChild(node8);

dcs9 = new pfDCS;

dcs9 -> addChild(node8);

124

dcsl -> addChild(dcs8);

dcs4 -> addChild(dcs9);

/* Head */

dcs7 = new pfDCS;

dcs7 -> addChiId(node3);

dcs3 -> addChild(dcs7);

/* Right upper arm */

dcsll =newpfDCS;
dcsll ->addChild(nodell);

dcsO->addChild(dcsll);

/* Right lower arm */

dcsl2 = newpfDCS;

dcsl 2 -> addChild(nodel2);

dcsll -> addChild(dcsl2);

/* Right hand */

dcsl3 = newpfDCS;

dcsl 3 -> addChild(nodel3);

dcsl2->addChild(dcsl3);

/* Left upper arm */

dcsl4 = newpfDCS;

dcsl4 -> addChild(nodel4);

dcsO->addChild(dcsl4);

/* Left lower arm */

dcsl 5 = new pfDCS;

dcsl5 -> addChild(nodel2);

dcsl4->addChild(dcsl5);

/* Left hand */

dcsl6 = new pfDCS;

dcsl6 -> addChild(nodel3);

dcsl5->addChild(dcsl6);

// Stairs

dcs30->addChild(dcs31)

dcs31 -> addChild(dcs32)

dcs32 -> addChild(dcs33)

dcs33 -> addChild(dcs34)

dcs34 -> addChild(dcs35)

dcs35 -> addChild(dcs36)

dcs36 -> addChild(dcs37)

dcs37 -> addChild(dcs38)

dcs38 -> addChild(dcs39)

Shared->scene-> addChild(dcsO);

Shared->scene-> addChild(dcs30);

/* Create "floor letters" */

dcs -> addChild(initFloor(&Shared->bsphere));

125

/* Floor */

dcsl0->setScale(2.0f);

dcslO->setRot(0.0, -90.0 ,0.0);

dcsl0->setTrans(-1.0 , -11.0 , 0.05);

// Draw steps

dcs30->setScale(0.5f);

dcs30->setRot(-90.0, -90.0 ,0.0);

dcs30->setTrans(13.0 ,0.0,0.05);

dcs31->setTrans(0.0

dcs32->setTrans(0.0

dcs33->setTrans(0.0

dcs34->setTrans(0.0

dcs35->setTrans(0.0

dcs36->setTrans(0.0

dcs37->setTrans(0.0

dcs38->setTrans(0.0

dcs39->setTrans(0.0

-2.0 5.4)

-2.0 4.1)

-1.9 4.1)

-1.9 4.1)

-1.9 4.1)

-1.8 4.1)

-1.8 4.1)

-1.8 4.1)

-1.7 4.1)

/* Set up initial/default view */

MakeGUI();

int temp = system("sfplay runaway.wav &");

if(-l =temp){
printf("Can't play \n");

}

else{

printf("Playing %i \n",temp);

}

for (int forever = 0; forever < 50; forever ++){

step_forward(6, -9.8 , -7.0 , 3.9);

step_upward(5, 13.3 , -7.0 , 3.9);

jump(3 1.7, -7.0,12.496556);

step_forward(4, 39.137990 , -7.0
, 4.670563);

}

// Kill music

system("music_killer");

/* Terminate parallel processes and exit. */

pfExit();

}

126

// —
// Function: step_forward

// Returns: None

// Parameters: Number of steps needs to be taken, initial position

// Summary: Computes the joint angles according to the position

// of the end effector(foot) by using the inverse kinematic

// equations of the three link planar manipulator. The

// algorithm for the path of the foot is described in

Chapter IV of this thesis as "Stepping Forward Algorithm'

// -

void step_forward(int number_of_steps,float X,float Y,float Z){

float 11 = l.Of;

float 12= l.Of;

float cl_left,cl_right;

float thetal.theta2;

float kl_left,k2_left;

float kl_right,k2_right;

float x_left= 1.732f;

float y_left= O.Of;

float x_right = 1.732f;

float yright = O.Of;

// INITIAL HALF STEP
for (float z = 32 ; z < 43 ; z += 0.5 * deltaj)

{

/* Go to sleep until next frame time. */

pfSync();

Shared->simTime = pfGetTime();

/* Main Body */

dcsO->setRot(90.0, 90.0 , 0);

dcsO->setTrans(X,Y,Z);

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.0f);

dcs3->setTrans(0.3 ,2.1.0.005);

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, . 180.0);

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0);

dcs8->setTrans(0 .-1.7,0);

127

/* Left lowerleg */

dcs4->setTrans(0 ,-1.7,0);

/* Left upperleg */

dcs5->setTrans(0.6, 0, 0);

/* Right lowerleg */

dcsl->setTrans(0 , -1.7, 0);

/* Right upper arm */

dcsll->setScale(0.25f);

dcsll->sefTrans(-1.0, 1.7,0);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

/* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0, 0, 180.0);

/* Left upper arm */

dcsl4->setScale(0.25f);

dcsl4->setTrans(1.6 , 1.8,0);

/* Left lower arm */

dcsl5->setRot(0, 0, 180.0);

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

ll

II Inverse Kinematics

//

ll

II SECOND STEP
// RIGHT LEG STEP

x_right = 0.95f * cos((64 - 2* z) * DEG_TO_RAD)*

(11 + 12) * cos((64 - 2* z) * DEG_TO_RAD);
y_right = 0.95f * cos((64 - 2* z) * DEG_TO_RAD)*

(11 + 12) * sin((64 - 2* z) * DEG_TO_RAD);

cl_right= ((x_right*x_right) + (y_right*y_right)

- (11*11) - (12*12))/(2 * 11 *12);

theta2 = (1 *acos(cl_right));

kl_right = 11 + (12 * cos(theta2));

k2_right = 12 * sin(theta2);

thetal = atan(y_right/x_right) - atan(k2_right/kl_right);

// Right Leg

dcs2->setRot(0 ,(57.3 * thetal),0);

dcsl->setRot(0 ,(57.3 * theta2), 0);

128

// Left Arm
dcsl4->setRot(0 ,(0.7f *(57.3 * thetal) + 10.0f),0);

dcsl5->setRot(0 ,(1.5f *(57.3 * thetal) - lO.Of), 0);

// LEFT LEG STEP

xjeft = cos((-64 + 2* z) * DEG_TO_RAD)
* (11 + 12) *

cos((-64 + 2* z) * DEG_TO_RAD);
yjeft = cos((-64 + 2* z) * DEG_TO_RAD)

* (11 + 12) *

sin((-64 + 2* z) * DEG_TO_RAD);
cl_left= ((x_left*x_Ieft) + (y_left*y_left)

- (11*11) - (12*12))/(2 * 11 *12);

theta2 = (l *acos(cl_left));

kl_left = ll + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

thetal = atan(y_left/x_left) - atan(k2_left/kl_left);

// Left leg

dcs5->setRot(0 ,(57.3 * thetal), 0);

dcs4->setRot(0 ,(57.3 * theta2), 0);

// Right arm

dcsll->setRot(0,(0.7f *(57.3 * thetal) + 10.0f),0);

dcsl2->setRot(0,(1.5f *(57.3 * thetal)- 10.0f),0);

// Torso rotation

if(z<31){

dcs3->setRot((-(z - 21)/3.0),0 ,0);

dcs6->setRot((-(z -21)/3.0),0 ,0);

}

else{

dcs3->setRot(((-20 + ((z- 21)))/3.0),0 ,0);

dcs6->setRot(((-20 + ((z- 21)))/3.0),0 ,0);

}

dcsO->setTrans(X + (z - 32) * 0.1 , Y ,

(Z + 0.2) + 0.08f * cos(2.0f * 3.14159f * (z - 41) / 21.00);

UpdateView();

UpdateGUK);

pfFrame();

}//End of second for

for(i = 1 ; i < number_of_steps ; i++){

for(z = (i-l)*42+ 1 ;z<(i-l)*42 + 22;z+=0.5 * delta_t){

/* Go to sleep until next frame time. */

pfSync();

Shared->simTime=pfGetTime();

/* Main Body */

129

dcsO->setRot(90.0, 90.0 , 0);

dcsO->setTrans(X,Y,Z);

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.0f);

dcs3->setTrans(0.3 ,2.1,0.005);

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0);

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0);

dcs8->setTrans(0 ,-1.7,0);

/* Left lowerleg */

dcs4->setTrans(0 , -1.7, 0);

/* Left upperleg */

dcs5->setTrans(0.6, 0, 0);

/* Right lowerleg */

dcsl->setTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

dcsl l->setTrans(-1.0 , 1.7, 0);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

/* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0,0, 180.0);

/* Left upper arm */

dcsl4->setScale(0.25f);

dcsl4->setTrans(1.6 ,1.8,0);

/* Left lower arm */

dcsl5->setRot(0, 0, 180.0);

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

130

IIIIUIIHIIIIII

II Inverse Kinematics

ll

II FIRST STEP
// LEFT LEG

xjeft = 0.95f * cos((22 - 2* (z- 42 *(i - 1))) * DEG_TO_RAD)

*(11 + 12) * cos((22 - 2* (z- 42 *(i - 1))) * DEG_TO_RAD),
yjeft = 0.95f * cos((22 - 2* (z- 42 *(i - 1))) * DEG_TO_RAD)

*(11 + 12) * sin((22 - 2* (z- 42 *(i - 1))) * DEG_TO_RAD);

cl_left= ((x_left*x_left) + (y_left*y_left) - (11*11)

- (12*12))/(2 * 11 *12);

theta2 = (1 *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

thetal = atan(y_left/x_left) - atan(k2_left/kl_left);

dcs5->setRot(0 ,(57.3 * thetal),0);

dcs4->setRot(0 ,(57.3 * theta2) , 0);

// Right Arm
dcsl l->setRot(0 ,(0.7f *(57.3 * thetal) + 10.0f),0);

dcsl2->setRot(0 ,(1.5f *(57.3 * thetal) - 10.0f),0);

// Right Leg

x_right = cos((-22 + 2 * (z- 42 *(i - 1))) * DEG_TO_RAD)

* (11 + 12) * cos((-22 + 2 * (z- 42 *(i - 1))) * DEG_TO_RAD);
y_right = cos((-22 + 2 * (z- 42 *(i - 1))) * DEG_TO_RAD)

* (11 + 12) * sin((-22 + 2 * (z- 42 *(i - 1))) * DEG_TO_RAD);
cl_right= ((x_right*x_right) + (y_right*y_right)

- (11*11) -(12*12))/(2* 11 *12);

theta2 = (1 *acos(cl_right));

kl_right = 11 + (12 * cos(theta2));

k2_right = 12 * sin(theta2);

thetal = atan(y_right/x_right) - atan(k2_right/kl_right);

dcs2->setRot(0 ,(57.3 * thetal), 0);

dcsl->setRot(0 ,(57.3 * theta2), 0);

// Left Arm
dcsl4->setRot(0 ,(0.7f *(57.3 * thetal) + 10.00,0);

dcs 1 5->setRot(0 ,(1 .5f *(57.3 * thetal) - 1 0.Of). 0);

// Torso rotation

if((z- 42 *(i - 1))< 11){

dcs3->setRot(((z- 42 *(i - l))/3.0),0 ,0);

dcs6->setRot(((z- 42 *(i - l))/3.0),0 ,0);

}

else{

dcs3->setRot(((20 - (z- 42 *(i - l)))/3.0),0 ,0);

dcs6->setRot(((20 - (z- 42 *(i - l)))/3.0),0 ,0);

}

dcsO->setTrans(X + 1 .0 + z * 0. 1 . Y , Z + 0.2 + 0.08f

131

*cos(2.0f * 3. 14159f * z / 21.Of));

UpdateView();

UpdateGUIO;

pfFrame();

}

for (z = (i-l)*42 + 22 ; z < (i-l)*42 + 43 ; z += 0.5 * delta_t){

/* Go to sleep until next frame time. */

pfSyncO;

Shared->simTime = pfGetTime();

/* Main Body */

dcsO->setRot(90.0, 90.0 , 0);

dcsO->setTrans(X,Y,Z);

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.0f);

dcs3->setTrans(0.3 ,2.1,0.005);

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0);

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0);

dcs8->setTrans(0 ,-1.7,0);

/* Left lowerleg */

dcs4->setTrans(0 ,-1.7,0);

/* Left upperleg */

dcs5->setTrans(0.6, 0, 0);

/* Right lowerleg */

dcsl->setTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

dcsll->setTrans(-1.0 , 1.7,0);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

/* Right hand */

dcsl3->setTrans(0.0 . -4.2, 0.0);

dcsl3->setRot(0. 0, 180.0);

132

/* Left upper arm */

dcsl4->setScale(0.25f);

dcsl4->setTrans(1.6 ,1.8,0);

/* Left lower arm */

dcsl5->setRot(0, 0, 180.0);

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

iiiiiiiiiiiiiiiiiiiiiiiiimiiiiiiiiiiiiiiiiiiiiiiiiiiii

II Inverse Kinematics

ll

ll

II SECOND STEP
// RIGHT LEG STEP

x_right = 0.95f * cos((64 - 2* (z- 42 *(i - 1))) * DEG_TO_RAD)

* (11 + 12) * cos((64 - 2* (z- 42 *(i - 1))) * DEG_TO_RAD);
yjright = 0.95f * cos((64 - 2* (z- 42 *(i - 1))) * DEG_TO_RAD)

* (11 + 12) * sin((64 - 2* (z- 42 *(i - 1))) * DEG_TO_RAD);

cl_right= ((x_right*x_right) + (y_nght*y_right)

- (11*11) - (12*12))/(2 * 11 *12);

theta2 = (l *acos(cl_right));

kl_right = 11 + (12 * cos(theta2));

k2_right = 12 * sin(theta2);

thetal = atan(y_right/x_right) - atan(k2_right/kl_right);

// Right Leg

dcs2->setRot(0 ,(57.3 * thetal),0);

dcsl->setRot(C ,(57.3 * theta2), 0);

// Left ARM
dcsl4->setRot(0 ,(0.7f *(57.3 * thetal) + 10.0f),0):

dcsl5->setRot(0 ,(1.5f *(57.3 * thetal) - 10.00,0);

// LEFT LEG STEP
xjeft = cos((-64 + 2* (z- 42 *(i - 1))) * DEG_TO_RAD)

* (11 + 12) * cos((-64 + 2* (z- 42 *(i - 1))) * DEG_TO_RAD);
yjeft = cos((-64 + 2* (z- 42 *(i - 1))) * DEG_TO_RAD)

* (11 + 12) * sin((-64 + 2* (z- 42 *(i - 1))) * DEG_TO_RAD);

cl_left= ((x_left*x_left) + (y_left*y_left) - (11*11)

- (12*12))/(2 * 11 *12);

theta2 = (l *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

thetal-= atan(y_left/x_left) - atan(k2_left/kl_left);

133

dcs5->setRot(0 ,(57.3 * thetal), 0);

dcs4->setRot(0 ,(57.3 * theta2), 0);

// Right arm

dcsll->setRot(0 ,(0.7f *(57.3 * thetal) + 10.0f),0);

dcsl2->setRot(0 ,(1.5f *(57.3 * thetal) - lO.Of), 0);

// Torso rotation

if((z-42*(i- 1))<31){

dcs3->setRot((-(z- 42 *(i - 1) - 21)/3.0),0 ,0);

dcs6->setRot((-(z- 42 *(i - 1) -21)/3.0),0 ,0);

}

else{

dcs3->setRot(((-20 + ((z- 42 *(i - 1)- 21)))/3.0),0 ,0);

dcs6->setRot(((-20 + ((z- 42 *(i - 1)- 21)))/3.0),0 ,0);

dcsO->setTrans(X + 1.0 + z * 0.1 , Y , Z + 0.2 + 0.08f

* cos(2.0f * 3. 14159f * z / 21.Of));

UpdateView();

UpdateGUK);

pfFrameO;

}

}//Big FOR

// LAST HALF STEP /////////

for (z = 1 ; z < 12 ; z += 0.5 * delta_t){

/* Go to sleep until next frame time. */

pfSync();

Shared->simTime=pfGetTime();

/* Main Body */

dcs0->setRot(90.0, 90.0 , 0);

dcs0->setTrans(X,Y,Z);

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.0f);

dcs3->setTrans(0.3 ,2.1,0.005);

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0);

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0);

134

dcs8->setTrans(0 ,-1.7,0);

/* Left lowerleg */

dcs4->setTrans(0 ,-1.7,0);

/* Left upperleg */

dcs5->setTrans(0.6, 0, 0);

/* Right lowerleg */

dcsl->setTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

dcsll->sefTrans(-1.0, 1.7,0);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

/* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0, , 180.0);

/* Left upper arm */

dcsl4->setScale(0.25f);

dcsl4->setTrans(1.6 ,1.8,0);

/* Left lower arm */

dcsl5->setRot(0, 0, 180.0);

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

IIIHIIIIHIIIII

II Inverse Kinematics

ll

II LEFT LEG

xjeft = 0.95f * cos((22 - 2* z) * DEG_TO_RAD) *(11 + 12)

* cos((22 - 2* z) * DEG_TO_RAD);
y_left = 0.95f * cos((22 - 2* z) * DEG_TO_RAD) *(11 + 12)

* sin((22 - 2* z) * DEG_TO_RAD);

cl_left= ((x_left*x_left) + (y_left*y_left)

- (11*11) - (12*12))/(2 * 11 *12);

theta2 = (1 *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

thetal = atan(y_left/x_left) - atan(k2_left/kl_left);

dcs5->setRot(0 ,(57.3 * thetal),0);

dcs4->setRot(0 ,(57.3 * theta2) , 0);

135

}

// Right arm

dcsl l->setRot(0 ,(0.7f *(57.3 * thetal) + 10.00,0);

dcsl2->setRot(0 ,(1.5f *(57.3 * thetal) - 10.00, 0);

// RIGHT LEG

x_right = cos((-22 + 2 * z) * DEG_TO_RAD)
* (11 + 12)

* cos((-22 + 2 * z) * DEG_TO_RAD);
y_right = cos((-22 + 2 * z) * DEG_TO_RAD)

* (11 + 12)

* sin((-22 + 2 * z) * DEG_TO_RAD);
cl_right= ((x_right*x_right) + (y_right*y_right) - (11*11)

- (12*12))/(2 * 11 *12);

theta2 = (l *acos(cl_right));

kl_right = 11 + (12 * cos(theta2));

k2_right = 12 * sin(theta2);

thetal = atan(y_right/x_right) - atan(k2_right/kl_right);

dcs2->setRot(0 ,(57.3 * thetal), 0);

dcsl->setRot(0 ,(57.3 * theta2), 0);

// Left arm

dcsl4->setRot(0 ,(0.7f *(57.3 * thetal) + 10.00,0);

dcsl5->setRot(0 ,(1.5f *(57.3 * thetal) - 10.00, 0);

// TORSO rotation

if(z< 11){

dcs3->setRot((z/3.0),0 ,0);

dcs6->setRot((z/3.0),0 ,0);

}

else{

dcs3->setRot(((20 - z)/3.0),0 ,0);

dcs6->setRot(((20 - z)/3.0),0 ,0);

}

dcsO->setTrans(X + 1.0 + (i-1) * 4.2 + z * 0.1

, Y , +Z + 0.2 + 0.08f *cos(2.0f * 3.14159f * z / 21.00);

UpdateView();

UpdateGUK);

pfFrame();

}// END of step_forward

136

//

// Function: step_upward

// Returns: None

// Parameters: Number of steps needs to be taken, initial position

// Summary: Computes the joint angles according to the position

// of the end effector(foot) by using the inverse kinematic

// equations of the three link planar manipulator. The

// algorithm for the path of the foot is described in

// Chapter IV of this thesis as "Stepping Upward Algorithm.

// Height of each step is 0.267949 units.

//--

void step_upward(int number_of_steps,float X.float Y, float Z){

float 11 = l.Of;

float 12 = 1.Of;

float cl_left,cl_right;

float thetal,theta2;

float kl_left,k2_left;

float kl_right,k2_right;

float x_left= 1.732f;

float y_left= O.Of;

float x_right = 1.732f;

float y_right = O.Of;

float z;

lllllllllllllllllllllllllllllllllllll

II FIRST HALF STEP
lllllllllllllllllllllllllllllllllll

for (z = 1 1 .0 ; z < 22.0 ; z += 0.3 * delta.t)

{

/* Go to sleep until next frame time. */

pfSync();

Shared->simTime=pfGetTime();

/* Main Body */

dcsO->setRot(90.0, 90.0 , 0.0);

dcsO->setTrans(X,Y,Z);

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.0f);

dcs3->setTrans(0.3 ,2.1,0.005);

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0):

137

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0);

dcs8->setTrans(0 ,-1.7,0);

/* Left lowerleg */

dcs4->setTrans(0 ,-1.7,0);

/* Left upperleg */

dcs5->setTrans(0.6, 0, 0);

/* Right lowerleg */

dcsl->setTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

/* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0, 0, 180.0);

/* Left upper arm */

dcsl4->setScale(0.25f);

//dcsl4->setTrans(1.6 ,1.8,0);

/* Left lower arm */

dcsl5->setRot(0, 0, 180.0);

dcsl5->sefTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

ll

II Inverse Kinematics

ll

II FIRST STEP
// LEFT LEG

xjeft = 0.95f * cos((22 - 2* z - 10) * DEG_TO_RAD) *(11 + 12)

* cos((22 - 2* z - 10) * DEG_TO_RAD);
yjeft = 0.95f * cos((22 - 2* z - 10) * DEG_TO_RAD) *(11 + 12)

* sin((22 - 2* z - 10) * DEG_TO_RAD);

cl_left= ((x_left*x_left) + (y_left*y_left) - (11*11)

- (12*12))/(2 * 11 *12);

theta2 = (1 *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

thetal = atan(y_left/x_left) - atan(k2_left/kl_left);

138

dcs5->setRot(0 ,(57.3 * thetal),0);

dcs4->setRot(0 ,(57.3 * theta2) , 0);

// Right arm

dcsl l->setTrans(-1.0 . 1.7, 0.5);

dcsl l->setRot(0 ,(0.7f *(57.3 * thetal) + 10.00,0);

dcs 1 2->setRot(0 ,(1.5f *(57.3 * thetal) - 1 0.Of), 0);

RIGHT LEG
x.right = cos((-22 + 2 * z - 10) * DEG_TO_RAD)

* (11 + 12)

* cos((-22 + 2 * z - 10) * DEG_TO_RAD);
y.right = cos((-22 + 2 * z - 10) * DEG_TO_RAD)

* (11 + 12)

* sin((-22 + 2 * z - 10) * DEG_TO_RAD);
cl_right= ((x_right*x_right) + (y_right*y_right) - (11*11)

- (12*12))/(2 * 11 *12);

theta2 = (l *acos(cl_right));

kl_right = 11 + (12 * cos(theta2));

k2_right = 12 * sin(theta2);

thetal = atan(y_right/x_right) - atan(k2_right/kl_right);

dcs2->setRot(0 ,(57.3 * thetal), 0);

dcsl->setRot(0 ,(57.3 * theta2), 0);

// Left arm

dcsl4->setTrans(1.6 ,1.8,0.5);

dcsl4->setRot(0 ,(0.7f *(57.3 * thetal) + 10.00,0);

dcsl5->setRot(0,(1.5f *(57.3 * thetal)- 10.00,0);

// TORSO rotation

if(z< 11){

dcs3->setTrans(0.3 , 2.1 , 0.305);

dcs6->setTrans(0.3 ,2.1,0.305);

dcs3->setRot((z/3.0),7.0,0);

dcs6->setRot((z/3.0),7.0,0);

}

else{

dcs3->setTrans(0.3 ,2.1,0.305);

dcs6->setTrans(0.3 ,2.1,0.305);

dcs3->setRot(((20 - z)/3.0) ,7.0,0);

dcs6->setRot(((20 - z)/3.0) ,7.0,0);

}

z = z+21;

dcsO->setTrans(X + (z - 32) * 0.1 -0.4, Y ,

Z - 2.005063 + /* 0.08f *cos(2.0f * 3.14159f * z / 21.00 */0

+ 1 * 0.267949 * 3.4 *2 + ((11 + 12)

-(11 + 12) * cos((-22 + 2 * z - 10) * DEG_TO_RAD)));

z = z-21;

UpdateViewQ;

UpdateGUK);

pfFrame();

}//END FOR

139

for(i = 1 ; i < number_of_steps ; i++){

for (z = (i-l)*42 + 22.0 ; z < (i-l)*42 + 43.0 ; z += 0.35 * delta_t){

/* Go to sleep until next frame time. */

pfSync();

Shared->simTime = pfGetTime();

/* Main Body */

dcsO->setRot(90.0, 90.0 , 0.0);

dcs0->sefTrans(X,Y,Z);

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.0f);

dcs3->setTrans(0.3 ,2.1,0.005);

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0);

dcs9->setTrans(0 , -1.7, 0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0);

dcs8->setTrans(0 , -1.7, 0);

/* Left lowerleg */

dcs4->setTrans(0 ,-1.7,0);

/* Left upperleg */

dcs5->setTrans(0.6, 0, 0);

/* Right lowerleg */

dcsl->setTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

/* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0, 0, 180.0);

/* Left upper arm */

dcsl4->setScale(0.25f):

/* Left lower arm */

dcsl5.->setRot(0, , 180.0);

140

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

IIIIIIIIIIIIIIUIimillllllllllUIIIIIIIIIIIIIIIHIIIII

II Inverse Kinematics

ll

ll

II SECOND STEP
// RIGHT LEG STEP

x_right = 0.95f * cos((64 - 2* (z- 42 *(i - 1)) - 10) * DEG_TO_RAD)
* (11 + 12) * cos((64 - 2* (z- 42 *(i - 1)) - 10)

* DEG_TO_RAD);
y_right = 0.95f * cos((64 - 2* (z- 42 *(i - 1)) - 10) * DEG_TO_RAD)

* (11 + 12) * sin((64 - 2* (z- 42 *(i - 1)) - 10)

* DEG_TO_RAD);
cl_right= ((x_right*x_right) + (y_right*y_right) - (11*11)

- (12*12))/(2 * 11 *12);

theta2 = (l *acos(cl_right));

kl_right = 11 + (12 * cos(theta2));

k2_nght = 12 * sin(theta2);

thetal = atan(y_right/x_right) - atan(k2_right/kl_right);

// Right LEG
dcs2->setRot(0 ,(57.3 * thetal),0);

dcsl->setRot(0 ,(57.3 * theta2), 0);

// Left arm

dcsl4->setTrans(1.6 ,1.8,0.5);

dcsl4->setRot(0 ,(0.7f *(57.3 * thetal) + 10.0f),0);

dcsl5->setRot(0,(1.5f*(57.3 * thetal)- 10.00,0);

// LEFT LEG STEP
xjeft = cos((-64 + 2* (z- 42 *(i - 1)) - 10) * DEG_TO_RAD)

*(11 +12)

* cos((-64 + 2* (z- 42 *(i- 1)) - 10) * DEG_TO_RAD);
yjeft = cos((-64 + 2* (z- 42 *(i - 1)) - 10) * DEG_TO_RAD)

*(11 +12)

* sin((-64 + 2* (z- 42 *(i - 1)) - 10) * DEG_TO_RAD);

cl_left= ((x_left*x_left) + (y_left*y_left) - (11*11)

-(12*12))/(2*11 *12);

theta2 = (l *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

thetal = atan(yjeft/x_left) - atan(k2_left/kl_left);

dcs5->setRot(0 ,(57.3 * thetal), 0);

141

dcs4->setRot(0 ,(57.3 * theta2), 0);

// Right arm

dcsll->setTrans(-1.0, 1.7,0.5);

dcsl l->setRot(0 ,(0.7f *(57.3 * thetal) + 10.0f),0);

dcsl2->setRot(0 ,(1.5f *(57.3 * thetal) - lO.Of), 0);

// TORSO rotation

if((z-42*(i- 1))<31){

dcs3->setTrans(0.3 ,2.1,0.305);

dcs6->setTrans(0.3 ,2.1,0.305);

dcs3->setRot((-(z- 42 *(i - 1) - 21)/3.0) ,7.0,0);

dcs6->setRot((-(z- 42 *(i - 1) -21)/3.0) ,7.0,0);

}

else{

dcs3->setTrans(0.3 ,2.1,0.305);

dcs6->setTrans(0.3 , 2.1 , 0.305);

dcs3->setRot(((-20 + ((z- 42 *(i - 1)- 21)))/3.0) ,7.0,0);

dcs6->setRot(((-20 + ((z- 42 *(i - 1)- 21)))/3.0) ,7.0,0);

1

z = z-21;

dcs0->setTrans(X + 0.5 + z*0.1 ,Y,Z
+ i * 0.267949 * 3.4 *2 - ((11 + 12) - (11 + 12)

* cos((64 - 2 * (z- 42 *(i - 1))) * DEG_TO_RAD)));

z = z+21;

UpdateView();

UpdateGUIO;

pfFrameO;

for (z = (i- 1)*42 + 1 .0 ; z < (i- 1)*42 + 22.0 ; z += 0.35 * delta_t)
{

/* Go to sleep until next frame time. */

pfSync();

Shared->simTime=pfGetTime();

/* Main Body */

dcs0->setRot(90.0, 90.0 ,0);

dcsO->setTrans(X,Y,Z);

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.0f);

dcs3->setTrans(0.3 ,2.1,0.005);

142

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0);

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0);

dcs8->setTrans(0 ,-1.7,0);

/* Left lowerleg */

dcs4->setTrans(0 ,-1.7,0);

/* Left upperleg */

dcs5->setTrans(0.6, 0, 0);

/* Right lowerleg */

dcsl->setTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

I* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0, , 180.0);

/* Left upper arm */

dcsl4->setScale(0.25f);

/* Left lower arm */

dcsl5->setRot(0, 0, 180.0);

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

ll

II Inverse Kinematics

ll

II FIRST STEP
// LEFT LEG

xjeft = 0.95f * cos((22 - 2* (z- 42 *(i - 1)) - 10) * DEG_TO_RAD)

*(11 + 12) * cos((22 - 2* (z- 42 *(i - 1)) - 10) *DEG_TO_RAD);
yjeft = 0.95f * cos((22 - 2* (z- 42 *(i - 1)) - 10) * DEG_TO_RAD)

*(11 + 12) * sin((22 - 2* (z- 42 *(i - 1)) - 10) *DEG_TO_RAD);
cl_left= ((x_left*x_left) + (y_left*y_left) - (11*11)

- (12*12))/(2 * 11 *12);

theta2 = (1 *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

143

thetal = atan(y_left/x_left) - atan(k2_left/kl_left);

dcs5->setRot(0 ,(57.3 * thetal),0);

dcs4->setRot(0 ,(57.3 * theta2) , 0);

// Right arm

dcsll->setTrans(-1.0, 1.7,0.5);

dcsll->setRot(0 ,(0.7f *(57.3 * thetal) + 10.0f),0);

dcsl2->setRot(0 ,(1.5f *(57.3 * thetal) - 10.00, 0);

// RIGHT LEG
x.right = cos((-22 + 2 * (z- 42 *(i - 1)) - 10) * DEG_TO_RAD)

* (11 + 12) * cos((-22 + 2 * (z- 42 *(i - 1)) - 10)

* DEG_TO_RAD);

y.right = cos((-22 + 2 * (z- 42 *(i - 1)) - 10) * DEG_TO_RAD)

* (11 + 12) * sin((-22 + 2 * (z- 42 *(i - 1)) - 10)

* DEG_TO_RAD);
cl_right= ((x_right*x_right) + (y_right*y_right) - (11*11)

-(12*12))/(2*11 *12);

theta2 = (l *acos(cl_right));

kl_right = 11 + (12 * cos(theta2));

k2_right = 12 * sin(theta2);

thetal = atan(y_right/x_right) - atan(k2_right/kl_right);

dcs2->setRot(0 ,(57.3 * thetal), 0);

dcsl->setRot(0 ,(57.3 * theta2), 0);

// Left arm

dcsl4->setTrans(1.6 ,1.8,0.5);

dcsl4->setRot(0 ,(0.7f *(57.3 * thetal) + 10.0f),0);

dcsl5->setRot(0 ,(1.5f *(57.3 * thetal) - 10.00, 0);

// TORSO rotation

if((z-42*(i- 1))< 11){

dcs3->setTrans(0.3 ,2.1,0.305);

dcs6->setTrans(0.3 ,2.1,0.305);

dcs3->setRot(((z- 42 *(i - l))/3.0) ,7.0 ,0);

dcs6->setRot(((z- 42 *(i - l))/3.0) ,7.0 ,0);

}

else{

dcs3->setTrans(0.3 ,2.1,0.305);

dcs6->setTrans(0.3 ,2.1,0.305);

dcs3->setRot(((20 - (z- 42 *(i - l)))/3.0) ,7.0 ,0);

dcs6->setRot(((20 - (z- 42 *(i - l)))/3.0) ,7.0 ,0);

)

z = z+21;

dcsO->setTrans(X + 0.5 + z * 0. 1 , Y , Z -0. 105327

+ i * 0.267949 * 3.4 *2 + ((11 + 12) -(11 + 12)

* cos((-22 + 2 * (z- 42 *(i - 1))- 10)

* DEG_TO_RAD)));

z = z-21;

UpdateView();

UpdateGUK);

pfFrame();

}//END FOR
}//BigFOR

144

///

// LAST HALF
///

for (z = 22.0 ; z < 33.0 ; z += 0.35 * delta_t){

/* Go to sleep until next frame time. */

pfSync();

Shared->simTime = pfGetTime();

/* Main Body */

dcsO->setRot(90.0, 90.0 , 0.0);

dcsO->setTrans(X,Y ,Z)

;

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.0f);

dcs3->setTrans(0.3 ,2.1,0.005);

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0);

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0):

dcs8->setTrans(0 ,-1.7,0);

/* Left lowerleg */

dcs4->setTrans(0 ,-1.7,0);

/* Left upperleg */

dcs5->setTrans(0.6, 0, 0);

/* Right lowerleg */

dcsl->setTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

/* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0, 0, 180.0);

/* Left upper arm */

dcsl4->setScale(0.25f);

145

/* Left lower arm */

dcsl5->setRot(0, 0, 180.0);

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

//

// Inverse Kinematics

ll

llil

II SECOND STEP
// RIGHT LEG STEP

x_right = 0.95f * cos((64 - 2* z - 10) * DEG_TO_RAD)* (11 + 12)

* cos((64 - 2* z - 10) * DEG_TO_RAD);
y_right = 0.95f * cos((64 - 2* z - 10) * DEG_TO_RAD)* (11 + 12)

* sin((64 - 2* z - 10) * DEG_TO_RAD);

cl_right= ((x_right*x_right) + (y_right*y_right) - (11*11)

-(12*12))/(2*11 *12);

theta2 = (l *acos(cl_right));

kl_right = 11 + (12 * cos(theta2));

k2_right = 12 * sin(theta2);

thetal = atan(y_right/x_right) - atan(k2_right/kl_right);

// Right LEG
dcs2->setRot(0 ,(57.3 * thetal),0);

dcsl->setRot(0 ,(57.3 * theta2), 0);

// Left arm

dcsl4->setTrans(1.6 ,1.8,0.5);

dcsl4->setRot(0 ,(0.7f *(57.3 * thetal) + 10.0f),0);

dcsl5->setRot(0 ,(1.5f *(57.3 * thetal) - lO.Of), 0);

// LEFT LEG STEP
xjeft = cos((-64 + 2* z - 10) * DEG_TO_RAD) * (11 +12)

* cos((-64 + 2* z - 10) * DEG_TO_RAD);
yjeft = cos((-64 + 2* z - 10) * DEG_TO_RAD)

* (11 + 12)

* sin((-64 + 2* z - 10) * DEG_TO_RAD);

cl_left= ((x_left*x_left) + (y_left*y_left) - (11*11)

- (12*12))/(2 * 11 *12);

theta2 = (1 *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

thetal = atan(y_left/x_left) - atan(k2_left/kl_left);

dcs5->setRot(0 ,(57.3 * thetal), 0);

146

dcs4->setRot(0 ,(57.3 * theta2), 0);

// Right arm

dcsll->setTrans(-1.0, 1.7,0.5);

dcsl l->setRot(0 ,(0.7f *(57.3 * thetal) + 10.00.0);

dcsl2->setRot(0 ,(1.5f *(57.3 * thetal) - 10.00, 0);

// Torso rotation

if(z<31){

dcs3->setTrans(0.3 ,2.1,0.305);

dcs6->setTrans(0.3 ,2.1,0.305);

dcs3->setRot((-z - 21)/3.0 +13.75,7.0,0);

dcs6->setRot((-z -21)/3.0 +13.75,7.0,0);

}

else{

dcs3->setTrans(0.3 ,2.1,0.305);

dcs6->setTrans(0.3 ,2.1,0.305);

dcs3->setRot((-20+ z- 21)/3.0 ,7.0,0);

dcs6->setRot((-20 + z- 21)/3.0 ,7.0,0);

}

z = z-21;

dcs0->setTrans(X + 0.5 +(i- 1) * 4.2+ z * 0. 1 , Y , Z
+ number_of_steps * 0.267949 * 3.4 *2 - ((11 + 12)

- (11 + 12) * cos((64 - 2 * z) * DEG_TO_RAD)));

z = z+21;

UpdateView();

UpdateGUIO;

pfFrameO;

}//End of for

}//End of step_upward

147

//

// Function: jump

// Returns: None

// Parameters: Initial position

// Summary: Translate the whole body first straight upward,

// secondly along a semi circle path, then straight down

// and straight up to an upright position. While translating

// the body appropriate joint angles are applied.

//

void

jump(float X.float Y,float Z){

float 11 = 1.0f;

float 12=1.Of;

float cl_left,cl_right;

float thetal,theta2;

float kl_left,k2_left;

float kl_right,k2_right;

float x_left= 1.732f;

float y_left= O.Of;

float x_right= 1.732f;

float y_right= O.Of;

for (float j = 1 ; j < 101
;
j += delta_t){

/* Go to sleep until next frame time. */

pfSync();

Shared->simTime = pfGefTimeO;

/* Main Body */

dcsO->setRot(90.0, 90.0 , 0);

dcsO->setTrans(X+j *0. 8/1 00.0,Y,Z-j * 1.5/100.0);

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.0f);

dcs3->setTrans(0.3 ,2.1,0.005);

dcs3->setRot(0, 10.0*j/100.0 , 0.0);

dcs6->setRot(0, 10.0*j/100.0 , 0.0);

xjeft= 1.95- 1.0 *j/l 00.0;

yjeft = 0.0;

cl_left= ((x_left*x_left) + (y_left*y_left) - (11*11)

-(12*12))/(2*11 *12);

theta2 = (l *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

148

thetal = atan(y_left/x_left) - atan(k2_left/kl_left);

dcs5->setRot(0 ,(57.3 * thetal),0);

dcs4->setRot(0 ,(57.3 * theta2) , 0);

dcs2->setRot(0 ,(57.3 * thetal),0);

dcsl->setRot(0 ,(57.3 * theta2) , 0);

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0);

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0);

dcs8->setTrans(0 ,-1.7,0);

/* Left lowerleg */

dcs4->sefTrans(0 ,-1.7,0);

/* Left upperleg */

dcs5->setTrans(0.6, 0, 0);

/* Right lowerleg */

dcsl->sefTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

dcsll->setTrans(-1.0 , 1.7,0);

dcsl l->setRot(0.0,-j/5.0 ,0.0);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

dcsl2->setRot(0.0 ,-j/5.0,0.0);

/* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0, 0, 180.0);

/* Left upper arm */

dcsl4->setScale(0.25f);

dcsl4->setTrans(1.6 , 1.8,0);

dcsl4->setRot(0.0 ,-j/5.0,0.0);

/* Left lower arm */

dcsl5->setRot(0,-j/5.0, 180.0);

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

UpdateView();

UpdateGUK);

pfFrame();

149

for (float k = 1 ; k < 101 ; k += 5.0 * delta_t){

/* Go to sleep until next frame time. */

pfSyncO;

Shared->simTime = pfGetTimeQ;

x_left = 0.95 + 0.5 *k/100.0;

yjeft = 0.0;

/* Main Body */

dcs0->setRot(90.0 , 90.0 + 15.0*k/100.0 , 0);

dcsO->setTrans(X+ 100.0*0.8/100.0 + (xjeft* 1.7

* sin(15.0*k*DEG_TO_RAD/100.0)), Y ,

Z- 100.0 * 1 .5/100.0 + 0.95 * k /100.0 - xjeft* 1 .7

*(1.0 - cos(15.0*k*DEG_TO_RAD/100.0)));

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.0f);

dcs3->setTrans(0.3 ,2.1,0.005);

dcs3->setRot(0, 10.0 , 0.0);

dcs6->setRot(0, 10.0 , 0.0);

cl_left= ((x_left*x_left) + (y_left*y_left) - (11*11)

-(12*12))/(2*11 *12);

theta2 = (l *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

thetal = atan(y_left/x_left) - atan(k2_left/kl_left);

dcs5->setRot(0 ,(57.3 * thetal) ,0)

dcs4->setRot(0 ,(57.3 * theta2) ,0)

dcs2->setRot(0 ,(57.3 * thetal) ,0)

dcsl->setRot(0 ,(57.3 * theta2) ,0)

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0);

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, 0,180.0);

dcs8->setTrans(0 ,-1.7,0);

/* Left lowerleg */

dcs4->setTrans(0 ,-1.7,0);

/* Left upperleg */

dcs5->setTrans(0.6, 0, 0);

150

/* Right lowerleg */

dcsl->setTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

dcsll->setTrans(-1.0, 1.7,0);

dcsl l->setRot(0.0,-j/5.0 ,0.0);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

dcsl2->setRot(0.0 ,-j/5.0,0.0);

/* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0, 0, 180.0);

/* Left upper arm */

dcsl4->setScale(0.25f);

dcsl4->setTrans(1.6 ,1.8,0);

dcsl4->setRot(0.0 ,-j/5.0,0.0);

/* Left lower arm */

dcsl5->setRot(0,-j/5.0, 180.0);

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

UpdateView();

UpdateGUIO;

pfFrame();

}

for (float 1=1 ; 1 < 101 ; 1 += delta_t){

/* Go to sleep until next frame time. */

pfSync();

Shared->simTime = pfGetTime();

x_left=1.45;

yjeft = 0.0;

/* Main Body */

dcsO->setRot(90.0 . 90.0+ 360.0*1/100.0 , 0);

dcs0->setTrans(3.0 + 3.0*cos((180.0 - 180.0* 1/100.0)*DEG_TO_RAD)+ X
+ 100.0*0.8/100.0 +(x_left* 1.7

* sin(15.0*100.0*DEG_TO_RAD/100.0)),Y ,

3.0*sin((180.0- 180.0* 1/100.0)*DEG_TO_RAD)

+ Z- 100.0 * 1.5/100.0+ 0.95 * 100.0/100.0 - xjeft

* 1.7*(1.0- cos(15.0*100.0*DEG_TO_RAD/100.0)));

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

151

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.0f);

dcs3->sefTrans(0.3 ,2.1,0.005);

dcs3->setRot(0, 10.0,0.0);

dcs6->setRot(0, 10.0,0.0);

cl_left= ((x_left*x_left) + (y_left*y_left) - (11*11)

- (12*12))/(2 * 11 *12);

theta2 = (l *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

thetal = atan(y_left/x_left) - atan(k2_left/kl_left);

dcs5->setRot(0 ,(57.3 * thetal),0)

dcs4->setRot(0 ,(57.3 * theta2) ,0)

dcs2->setRot(0 ,(57.3 * thetal) ,0)

dcsl->setRot(0 ,(57.3 * theta2) ,0)

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0);

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0);

dcs8->setTrans(0 ,-1.7,0);

/* Left lowerleg */

dcs4->setTrans(0 ,-1.7,0);

/* Left upperleg */

dcs5->setTraiis(0.6, 0, 0);

/* Right lowerleg */

dcsl->setTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

dcsll->setTrans(-1.0 , 1.7, 0);

dcsl l->setRot(0.0,- 100.0/5.0 ,0.0);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

dcsl2->setRot(0.0 ,-100.0/5.0,0.0);

/* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0, 0, 180.0);

152

/* Left upper arm */

dcsl4->setScale(0.25f);

dcsl4->setTrans(1.6 ,1.8,0);

dcs 1 4->setRot(0.0 ,- 1 00.0/5.0,0.0)

;

/* Left lower arm */

dcs 1 5->setRot(0,- 1 00.0/5.0, 1 80.0);

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

UpdateView();

UpdateGUIO;

pfFrameO;

}

for (float m = 1 ; m < 101 ; m += 3.0 * delta_t){

/* Go to sleep until next frame time. */

pfSyncO;

Shared->simTime = pfGetTime();

x_left= 1.45;

y_left = 0.0;

/* Main Body */

dcsO->setRot(90.0 , 90.0+ 360.0*100.0/100.0 , 0);

dcs0->setTrans(3.0 + 3.0*cos((180.0 - 180.0* 100.0/1 00.0)*DEG_TO_RAD)+X
+ 100.0*0.8/100.0 + (x_left* 1.7

* sin(15.0*100.0*DEG_TO_RAD/100.0)),Y
,

3.0*sin((180.0- 180.0* 100.0/100.0)*DEG_TO_RAD)

+ Z- 100.0 * 1.5/100.0 + 0.95 * 100.0/100.0 - xjeft

* 1.7*(1.0- cos(15.0*100.0*DEG_TO_RAD/100.0))

- 9.0 l*m/ 100.0);

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.0f);

dcs3->setTrans(0.3 , 2.1 , 0.005);

dcs3->setRot(0, 10.0,0.0);

dcs6->setRot(0, 10.0 , 0.0);

cl_left= ((x_left*x_left) + (y_left*y_left) - (11*11)

- (12*12))/(2 * 11 *12);

theta2 = (1 *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

thetal = atan(y_left/x_left) - atan(k2_left/kl_left);

dcs5->setRot(0 ,(57.3 * thetal) ,0);

153

dcs4->setRot(0 ,(57.3 * theta2) ,0)

dcs2->setRot(0 ,(57.3 * thetal) ,0)

dcsl->setRot(0 ,(57.3 * theta2) ,0)

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0);

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0);

dcs8->setTrans(0 ,-1.7,0);

/* Left lowerleg */

dcs4->setTrans(0 ,-1.7,0);

/* Left upperleg */

dcs5->setTrans(0.6, 0, 0);

/* Right lowerleg */

dcsl->setTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

dcsll->setTrans(-1.0 , 1.7, 0);

dcsl l->setRot(0.0,- 100.0/5.0 ,0.0);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

dcsl2->setRot(0.0 ,-100.0/5.0,0.0);

/* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0, , 180.0);

/* Left upper arm */

dcsl4->setScale(0.25f);

dcsl4->setTrans(1.6 ,1.8,0);

dcs 1 4->setRot(0.0 ,- 1 00.0/5.0,0.0);

/* Left lower arm */

dcs 15->setRot(0,- 100.0/5.0, 180.0);

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

UpdateView();

UpdateGUIO;

pfFrameO;

}

for (float n = 1 ; n < 101 ; n += 5.0 * delta_t){

/* Go to sleep until next frame time. */

pfSyncQ;

154

Shared->simTime = pfGetTime();

x_left= 1 .45 + 0.5*n/100.0;

yjeft = 0.0;

/* Main Body */

dcs0->setRot(90.0 , 90.0+ 360.0*100.0/100.0 , 0);

dcs0->setTrans(3.0 + 3.0*cos((180.0 - 180.0* 100.0/1 00.0)*DEG_TO_RAD)+X
+ 100.0*0.8/100.0 + (1.45* 1.7

* sin(15.0*100.0*DEG_TO_RAD/100.0)),Y ,

3.0*sin((180.0- 180.0* 100.0/100.0)*DEG_TO_RAD)

+ Z- 100.0* 1.5/100.0 + 0.95 * 100.0/100.0- 1.45

* 1.7*(1.0 - cos(15.0*100.0*DEG_TO_RAD/100.0))

-9.01*100.0/100.0+ n* 1.8/100.0);

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 , 2.1 , -0.005);

dcs3->setScale(2.0f);

dcs3->setTrans(0.3 , 2.1 , 0.005);

dcs3->setRot(0, 10.0 , 0.0);

dcs6->setRot(0, 10.0,0.0);

cl_left= ((x_left*x_left) + (y_left*y_left) - (11*11)

-(12*12))/(2*11 *12);

theta2 = (1 *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

thetal = atan(y_left/x_left) - atan(k2_left/kl_left);

dcs5->setRot(0 ,(57.3
* thetal) ,0)

dcs4->setRot(0 ,(57.3 * theta2) ,0)

dcs2->setRot(0 ,(57.3 * thetal),0)

dcsl->setRot(0 ,(57.3 * theta2) ,0)

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0);

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0);

dcs8->setTrans(0 ,-1.7,0);

/* Left lowerleg */

dcs4->setTrans(0 ,-1.7,0);

/* Left-upperleg */

155

dcs5->setTrans(0.6, 0, 0);

/* Right lowerleg */

dcsl->setTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

dcsll->setTrans(-1.0, 1.7,0);

dcsl l->setRot(0.0,- 100.0/5.0 ,0.0);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

dcs 1 2->setRot(0.0 ,- 1 00.0/5.0,0.0);

/* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0, 0, 180.0);

/* Left upper arm */

dcsl4->setScale(0.25f);

dcsl4->setTrans(1.6 ,1.8,0);

dcsl4->setRot(0.0 ,-100.0/5.0,0.0);

/* Left lower arm */

dcs 1 5->setRot(0,- 1 00.0/5.0, 1 80.0)

;

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

UpdateView();

UpdateGUIO;

pfFrame();

}

for (float o=l ; o < 101 ; o += 2.0 * delta_t){

/* Go to sleep until next frame time. */

pfSync();

Shared->simTime = pfGetTime();

xjeft =1.45 + 0.5 * 100.0/100.0;

yjeft = 0.0;

/* Main Body */

dcsO->setRot(90.0 , 90.0+ 360.0*100.0/100.0 , 0);

dcs0->setTrans(3.0 + 3.0*cos((180.0 - 180.0* 100.0/100.0)*DEG_TO_RAD)+X

+ 100.0*0.8/100.0 + (1.45* 1.7

* sin(15.0*100.0*DEG_TO_RAD/100.0)),Y , 3.0

sin((180.0- 180.0 100.0/100.0)*DEG_TO_RAD)

+ Z- 100.0* 1.5/100.0 + 0.95* 100.0/100.0- 1.45* 1.7

* (1.0 - cos(l 5.0* 100.0*DEG_TO_RAD/1 00.0))

-9.01* 100.0/100.0 + n* 1.8/100.0);

/* Head */

dcs7->setTrans(0.0 , 0.4 , 0.0);

156

/* Torso */

dcs6->setScale(2.0f);

dcs6->setTrans(0.3 ,2.1,-0.005);

dcs3->setScale(2.00;

dcs3->setTrans(0.3 , 2.1 , 0.005);

dcs3->setRot(0, 10.0,0.0);

dcs6->setRot(0, 10.0,0.0);

cl_left= ((xjeft*x_left) + (y_left*y_left) - (11*11)

- (12*12))/(2 * 11 *12);

theta2 = (l *acos(cl_left));

kljeft = 11 + (12 * cos(theta2));

k2_left = 12 * sin(theta2);

thetal = atan(y_left/x_left) - atan(k2_left/kl_left);

dcs5->setRot(0 ,(57.3
* thetal) ,0)

dcs4->setRot(0 ,(57.3
* theta2) ,0)

dcs2->setRot(0 ,(57.3 * thetal) ,0)

dcsl->setRot(0 ,(57.3 * theta2) ,0)

/* Left foot */

dcs9->setScale(0.7f);

dcs9->setRot(0, , 180.0);

dcs9->setTrans(0 ,-1.7,0);

/* Right foot */

dcs8->setScale(0.7f);

dcs8->setRot(0, , 180.0);

dcs8->setTrans(0 ,-1.7,0);

/* Left lowerleg */

dcs4->setTrans(0 ,-1.7,0);

/* Left upperleg */

dcs5->setTrans(0.6, 0, 0);

/* Right lowerleg */

dcsl->setTrans(0 ,-1.7,0);

/* Right upper arm */

dcsll->setScale(0.25f);

dcsll->setTrans(-1.0, 1.7,0);

dcsl l->setRot(0.0,- 100.0/5.0 ,0.0);

/* Right lower arm */

dcsl2->setTrans(0.4 , -4.6, 0.0);

dcs 1 2->setRot(0.0 ,- 1 00.0/5.0,0.0);

/* Right hand */

dcsl3->setTrans(0.0 , -4.2, 0.0);

dcsl3->setRot(0, 0, 180.0);

/* Left-upper arm */

157

dcsl4->setScale(0.25f);

dcsl4->setTrans(1.6 , 1.8,0);

dcsl4->setRot(0.0 ,-100.0/5.0,0.0);

/* Left lower arm */

dcs 1 5->setRot(0,- 1 00.0/5.0, 1 80.0);

dcsl5->setTrans(-0.5 , -4.6, 0.0);

/* Left hand */

dcsl6->setTrans(-0.2 , -4.6, 0.0);

UpdateView();

UpdateGUIO;

pfFrameO;

158

LIST OF REFERENCES

[CAMA77] Camana, P. C, Hemami H., Stockwell C. W., "Determination of Feedback

For Human Posture Control Without Physical Intervention," Journal of

Cybernetics, 7:199-225, 1977.

[CRAI89] Craig, J., Introduction to Robotics: Mechanics and Control, Second

Edition, Addison-Wesley Publishing Company, Inc., Menlo Park,

California, 1989.

[DAVI93] Davidson, Sandra L., An Experimental Comparison of CLOS and C+ +
Implementations of an Object-Oriented Graphical Simulation of Walking

Robot Kinematics, Master's Thesis, Naval Postgraduate School, Monterey,

California, March, 1993.

[DEVI96] DeVilliers, Edward Michael, Implementing Voice Recognition and Natural

Language Processing in the NPSNET Networked Virtual Environment

Master's Thesis, Naval Postgraduate School, Monterey, California,

September 1996.

[DURL95] Durlach, N. I. and Mavor, A. S., National Research Council, Virtual

Reality: Scientific and Technological Challenges, National Academy Press,

Washington, D.C., 1995, pp. 188-204, 306-317.

[FRAN69] Frank A. A. and McGhee R. B., "Some Considerations Relating to the

Design of Autopilots for Legged Vehicles," Journal of Terramechanics,

1969, Vol. 6, No. 1, pp. 23 to 35.

[FREY96] Frey, William, IE, Application of Inertial Sensors and Flux-Gate

Magnetometer to Real-Time Human Body Motion Capture, Master's

Thesis, Naval Postgraduate School, Monterey, California, September 1996.

[GOET94] Goetz, John Robert, Graphical Simulation of Articulated Rigid Body

System Kinematics with Collision Detection, Master's Thesis, Naval

Postgraduate School, Monterey, California, March 1994.

[GUBI74] Gubina, F, Hemami, H., McGhee, R. B., "On the Dynamic Stability of

Biped Locomotion," IEEE Transactions On Biomachanical Engineering,

BME-21,No. 2, 1974.

[KREY88] Kreyszig, Erwin, Advanced Engineering Mathematics, Sixth Edition, John

Wiley & Sons, Toronto, 1988.

159

[KOOZ83] Koozekanani, S. H., Barin, K., McGhee, R. B., and Chang, H. T., "A

Recursive Free-Body Approach to Computer Simulation of Human
Postural Dynamics," IEEE Transactions on Biomedical Engineering,

December 1983, Volume BME-30, Number 12, pp. 787-792.

[KOOZ80] Koozekanani, S. H., Stockwell, C. W., McGhee, R. B., Firoozmand, F.,

"On the Role of Dynamic Models in Quantitative Posturography," IEEE
Transactions On Biomedical Engineering, BME-27, No. 10, 1980.

[KU095] Kuo C. Benjanin, Automatic Control Systems, Seventh Edition, Prentice

Hall Inc., A Simon & Schuster Company, Englewoodcliffs, New Jersey,

1995.

[MCGH74] McGhee, R. B., Pai, A. L., "An Approach to Computer Control for Legged

Vehicles," Journal ofTerramechanics, Vol. 11, No. 1, pp. 9 to 27, 1974.

[MCGH79] McGhee, R. B., "Computer Simulation of Human Movement", CISM
Courses and Lectures No. 263, International Center for Mechanical

Sciences, Springer-Verlag Wien-New York, 1980.

[MCGH86] McGhee, R. B., Nakano, E., Koyachi, N., Adachi, H., "An Approach to

Computer Coordination ofMotionfor Energy-Efficient Walking Machines,"

Bulletin of Mechanical Engineering Laboratory, JAPAN, Number 43,

1986.

[MCMI94] McMillan, Scott, Computational Dynamics for Robotic Systems on Land

and Under Water, Ph. D. Dissertation, Ohio State University, 1994.

[MCMI95] McMillan, S, Orin, D. E., and McGhee, R. B., "Efficient Dynamic

Simulation of an Underwater Vehicle with a Robotic Manipulator," IEEE
Transactions On Systems, Man, and Cybernetics, Volume 25, No. 8, 1995.

[GRAH96] Graham Paul, ANSI Common Lisp, Prentice Hall Inc., Englewoodcliffs,

New Jersey, 1996.

[RAIB86] Raibert, Marc H., Legged Robots That Balance, The MIT Press,

Cambridge, Massachusetts, London, England, 1986.

[TROY96] Troy, James J., Dynamic Balance and Walking Control of Biped

Mechanisms, Ph. D. Dissertation, Iowa State University, 1995.

[WALD95] Waldrop, Marianne S., Real-time Articulation of the Upper Body for

Simulated Humans in Virtual Environments, Master's Thesis, Naval

Postgraduate School, Monterey, California, September, 1995.

160

[WATT92] Watt, A. and Watt, M., Advanced Animation and Rendering Techniques:

Theory and Practice, Addison-Wesley Publishing Company, Inc., New
York, 1992, pp. 369-394.

161

162

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center.

8725 John J. Kingman Rd., STE 0944

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library

Naval Postgraduate School

411 DyerRd.

Monterey, CA 93943-5101

3. Chairman, Code CS
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943-5000

4. Dr. Robert B. McGhee, Professor

Computer Science Department Code CS/MZ
Naval Postgraduate School

Monterey, CA 93943-5000

5. Dr. Michael J. Zyda, Professor

Computer Science Department Code CS/ZK
Naval Postgraduate School

Monterey, CA 93943-5000

LT(jg) Mehmet Bediz.

60. sokak 144/28

Emek
Ankara 06510

Turkey

7. Deniz Kuvvetleri Komutanligi

Personel Tedarik ve Yetistirme Daire Baskanligi

Bakanliklar, Ankara 06100

Turkey

8. METU (ODTU)
06531 Ankara

Turkey

163

9. Bogazici University

80815 Bebek/Istanbul

Turkey

10. Bilkent University

Department of Computer Engineering and Information Science

06533 Bilkent/Ankara

Turkey

164

DUDLEY KNOX LIBRARY

mini EY KNOX LIBRARY

fliffff I

1

!!!

3 2768 00335823 5

