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In this article, we propose an aspiration-based coevolution
of link weight, and explore how this set-up affects the
evolution of cooperation in the spatial prisoner’s dilemma
game. In particular, an individual will increase the weight
of its link to its neighbours only if the payoff received via
this interaction exceeds a pre-defined aspiration. Conversely,
if the received payoff is below this aspiration, the link weight
with the corresponding neighbour will decrease. Our results
show that an appropriate aspiration level leads to a high-
cooperation plateau, whereas too high or too low aspiration
will impede the evolution of cooperation. We explain these
findings with a comprehensive analysis of transition points and
with a systematic analysis of typical configuration patterns.
The presented results provide further theoretical insights
with regards to the impact of different aspiration levels on
cooperation in human societies.

1. Introduction
The emergence and maintenance of cooperation have long
puzzled scientists of different disciplines due to the fact
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that cooperator often benefits defector at the cost of her/his own losses, which leads to the extinction of
altruistic behaviour in the competition with self-interested players and thus gives rise to various social
dilemmas. Evolutionary game theory has provided a powerful mathematical framework to solve this
problem [1–3]. In particular, the prisoner’s dilemma game (PDG) is a famous paradigm for cooperation.
The original PDG depicts the pairwise interactions of players with two independent options: the two
players must simultaneously decide whether to cooperate or to defect. Mutual cooperation (defection)
leads to reward R (punishment P). If one player defects and the other cooperates, the traitor receives
the temptation to defect T, while the latter is left with the sucker’s payoff S. These payoff parameters
satisfy T > R > P > S and 2R > T + S. According to such a ranking, one can see that defection is the best
response for an individual. However, the best solution for the group is mutual cooperation. It creates an
irreconcilable conflict between what is best for individual and what is best for group. In order to offset
the above unfavourable outcome and enhance cooperation, many frameworks have been proposed, such
as age [4–6], reputation [7–11], social diversity [12–18], asymmetric interaction [19–22], mobility [23–28],
different update rules [29–33], as well as various network topologies [34–37], to name but a few [38–44].

The vast majority of the spatial models in previous literature have used static and unweighted
networks. However, realistic social networks are not static; they can adaptively change in time. For
example, an under-performance player will break a link and look for a more beneficial interaction with
another one. Based on this fact, linking dynamics has attracted considerable attention, and the research
about the effect of dynamic network on the evolution of cooperation has confirmed that cooperation can
be boosted under certain circumstances (for a comprehensive discussion, see [45]). In spite of their great
achievements, breaking a link with unsatisfied neighbour, however, seems a little rigorous. Breaking
down the link with unsatisfied neighbour implies that except for looking for new neighbour, it is
impossible to restore the connection with the former neighbour if the focal player regrets his decision.
To overcome this shortcoming, people will reduce the probability to interact with undesired individuals
and in turn increase the opportunity to interact with well-performed individuals. Here we consider game
models on a more generous dynamically directed weighted network. In detail, individuals will reinforce
their link weight only if the gains from the neighbours exceed their aspiration. Yet, as soon as the payoffs
are lower than their aspiration, the link weight with the corresponding player will be weakened, in other
words, both cooperator and defector have the same opportunity to get higher weight as reward when
they meet certain conditions. Here the aspiration level can be interpreted as the degree of satisfaction of
individuals with their neighbours.

In view of the above situation, we first present our aspiration-based coevolution model of the PDG
where link weight will be strengthened as a reward once the focal player is satisfied with the gains from
his neighbours, otherwise link weight will be weakened as the punishment. It is found that by such a
simple coevolution rule, a plateau of high cooperation can be achieved with an appropriate aspiration
level. The remainder of this paper is organized as follows. First, we describe our coevolution model.
Next, we present the results, whereas lastly we summarize and discuss the main conclusions.

2. Model
Here we consider the PDG, which is R = 1, P = S = 0, and T = b, where b (1 < b ≤ 2) represents the
temptation to defect. As for interaction network, we choose the regular square lattice with von Neumann
neighbourhood and periodic boundary conditions of size L × L. Initially each player x is designated either
as a cooperator (sx = C) or defector (sx = D) with equal probability. Link weight is introduced into the
model in the following way: each edge linking node x and y, at the beginning, is assigned the same
weight value wxy = 1, which, however will adaptively change in accordance with the interaction (we
assume the range of link weight falls into [0, 2] in this paper).

At each time step, each player x first acquires his payoff pxy by playing the game with his neighbour
y. If the payoff pxy from neighbour y exceeds his aspiration, player x will reinforce the relationship with
player y in order to gain more benefits for the next interaction, otherwise player x will weaken the link
weight to reduce his losses. This process can be described as the following equation:{

wxy = wxy + �, if Pxy ≥ A

wxy = wxy − � if Pxy′ < A.
(2.1)

Here we define A = α * b as individual’s aspiration level. Obviously, if aspiration is too large, all
players will be dissatisfied with their neighbours and thus all the link weight will decrease to zero. In
this case, players update their strategy just like a coin toss. To avoid this extreme situation, the maximum
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of α is fixed at 0.99 in our simulation. Besides, we call � as players’ tolerance degree. � = 0 will lead the
system to the traditional case. The larger the value of �, the lower the degree of individuals’ tolerance.
Then, combing link weight and the aforementioned payoff Pxy, player x will get his accumulated utility
as follows:

Fx =
∑
y∈Ω

wxy ∗ Pxy, (2.2)

where Ω is the set of neighbours of player x. When the focal player x updates his strategy, it will pick up
randomly one neighbour y, who also gets his fitness Fy in the same way, and decides whether to adopt
the strategy of player y with a probability given by Fermi function as follows:

w = 1
1 + exp((Fx − Fy)/K)

, (2.3)

where K denotes the amplitude of noise or its inverse the so-called intensity of selection. In this paper,
we fix the value of K to be K = 0.1 [46–48].

Simulation results presented below were obtained for populations comprising 100 × 100 individuals.
Besides, the key quantities of the fraction of three strategies are determined within the last 103 full MCS
over the total 104 steps. Moreover, to avoid additional disturbances, the final results are averaged over
up to 10 independent realizations for each set of parameter values in order to ensure suitable accuracy.
Besides, we have also conducted the asynchronous updating method, which produces qualitatively
similar results. To be simple, we do not show them here.

3. Results
Figure 1 presents the colour map encoding the fraction of cooperation ρc on the α– � parameter plane for
different values of b. Evidently, there exists an intermediate aspiration level, at which the cooperation can
be optimally promoted. While too small or too large aspiration will impede the evolution of cooperation
and even lead to the complete pure D phase. Additionally, the value of phase transition point and
the maximum cooperation level will decrease with increasing b. While for the impact of the degree of
tolerance �, it is obvious that the faster the response to the opponent (the larger the value of �), the
higher the level of cooperation. For large b (figure 1b), the promotion effect of � becomes less striking.
In fact, increasing � induces the increasing of the average link weight, which plays a crucial role in
promoting cooperation as shown in [49,50]. In a word, our aspiration-based coevolution set-up can truly
promote cooperation. An intermediate aspiration level can optimally boost cooperation; however, just
slightly exceeding the transition point, cooperation disappears, and in what follows we will give a further
understanding about the above results.

Rough interfaces, which separate domains of cooperators and defctors, as the evolution along them
has been identified crucial for deciding who is the winner on the evolutionary dynamics. It is next of
significant interest to further examine the spatial configuration patterns. Since our coevolution set-up
evokes a dynamic change of link weight, we first analyse how link weight fares for different types of
strategy pairs under different aspiration levels in figure 2a. According to the definition of parameters
in PDG, we can see that players can obtain b, 1, 0, 0 units from DC, CC, CD or DD links, respectively.
When aspiration is moderate, the weights of CD and DD links always decrease, and thus the evolution
trend mainly depends on CC and DC links. When A < 1, namely, α < 1/b, both CC and DC links are
satisfied with their performance and hence the link weight wDC and wCC will get an increase. While
A > 1 (α > 1/b) only renders DC links satisfied with their performance and thus wDC will get an increase,
the other three types are not. In what follows, we will take a closer look at how aspiration level can affect
the evolution of cooperation.

Figure 2b presents some special configuration patterns. When 0 < α < 1/b, A cooperator is satisfied
with his cooperative neighbours and will reinforce the weight with C neighbours. At the same time, he
is dissatisfied with his defective neighbours and will weaken the weight with D neighbours. In this way,
we can calculate his utility as FC = 0, FC = 1 + �, and FC = 2 + 2 ∗ �, from left to right, respectively. As
for the utility of defective player, we can also get his utility in the same way as FD = b + � for these
configuration patterns. By comparing the utility of cooperation and defection of these configuration
patterns, we can easily conclude that cooperators will be wiped out by defectors for the left and middle
panel, while cooperators can effectively spread their strategies to the whole network for the right panel.
That is to say, as soon as the configuration like right panel is formed during the evolutionary dynamics,
cooperation can be extensively enhanced. When α > 1/b, DC links are satisfied and other three types are
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Figure 1. Colour-code (see bar on the right) fraction of cooperation on theα –� parameter plane for b= 1.4 (a) and b= 1.8 (b).
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Figure 2. (a) The edgeweight evolution in the PDG. The edge types between any two players can be divided into four relations: C-C, C-D,
D-C, D-D, respectively. (b) Special configuration patterns reveal their potential to expand into the territory of defectors.

not. That is to say, defectors can gain more payoffs for the appropriate aspiration, and cooperators will
obtain lower payoffs for the decreased link weight. In fact, the condition α < 1/b renders all cooperators
worthy of the reward, which is caused by an increased link weight between two cooperators, and thus
introduces an enhanced network reciprocity into the system. The evolution of cooperation then proceeds
with the support of this enhanced network reciprocity. However, the condition α > 1/b makes defectors
rewarded and cooperators punished, which weakens the network reciprocity and leads to the demise
of cooperation. What is more, one can find that in order for the spread of cooperation, two conditions
must promise. Firstly, forming clusters (at least two C neighbours surrounded him), which ensures basic
advantages over defectors in terms of payoffs. Secondly, cooperators cannot set too high aspirations such
that their satisfactions can be easily achieved. Only with the fulfilment of the above two conditions can
cooperative strategy spread to the whole network.

From the above discussion, we can see the phase transition point, where cooperation dies out, seems
equal to 1/b. To verify this guess, figure 3 depicts the relationship between the phase transition point αc

and temptation to defect b for simulation results and theoretical analysis results. Evidently, theoretical
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Figure 3. The relationship between the aspiration threshold αc , where cooperation dies out, and the temptation to defect b. We fixed
�= 0.5.
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Figure 4. Evolution of a prepared initially rough interface, as obtained for α = 0.71 (a) and α = 0.72 (b). Different from the random
distribution, there is a prepared initial statewhere interfaces separate domains of cooperators anddefectors. Obviously, just a tiny increase
inα exceedingαc (αc = 0.71 in this case) leads network reciprocity to be weakened and thus accelerate the demise of cooperation. The
snapshots were taken atMCS= 0, 10, 40, 70, 9999 for (a), and atMCS= 0, 10, 30, 60, 9999 for (b). In both cases the temptation to defect
b and the degree of tolerance were fixed to 1.4 and 0.5, respectively. What is more, cooperators and defectors are denoted by red and
green.

analytical results are quantitatively consistent with simulations although tiny deviation exists, and the
hasher the strength of social dilemma, the smaller the value of transition point.

Finally, in order to provide direct visual evidence that appropriate aspiration level will elevate
cooperation while a tiny increase will decrease cooperation. Figure 4 depicts the characteristic spatial
patterns. Different from random distribution, we start with rough interfaces, separate the domains of
cooperators and defectors, to explore the evolution of cooperation. For α = 0.71 (figure 4a), where the
aspiration level is moderate and both cooperation and defection are rewarded, cooperators can easily
expand their territory, and their expansion makes the interface become more smooth (second column).
This in turn further strengths the network reciprocity and finally results in complete C dominance.
For α = 0.72 (figure 4b), when the aspiration level slightly exceeds the transition point, the evolution is
significantly different. Here although the large and compact cooperative clusters are formed initially, the
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cooperators are inevitably exploited by defectors until pure D phase. The result of this process actually
lies in enhanced network reciprocity and weakened network reciprocity as we mentioned above.

4. Conclusion
In [51–56], the rewiring of existing links was recognized as being very beneficial to the evolution of
cooperation, and the growth of a network had a positive impact on the evolution of cooperation. Different
from these dynamical networks, we adopt static weighted network in combination with the individual’s
aspiration, but we also find that intermediate aspiration level boosts cooperation. Moreover, there exists
phase transition point in our results, which is also explicated in our work. In a sense, our work may
enrich the content of evolutionary game dynamics especially aspiration-based evolution and weighted
networks.

To conclude, we have introduced an aspiration-based coevolution set-up into the PDG, where a player
reinforces his link weight only if the payoff from his neighbour exceeds his aspiration. Yet, as soon as
the payoff is lower than his aspiration, the link weight with corresponding player will be weakened.
Interestingly, appropriate aspiration level leads to a plateau of high cooperation; too large or too small
aspiration, however, will impede the evolution of cooperation. For a comprehensive understanding,
we have also given a further explanation of the above results and phase transition points existing
in our simulation by means of configuration patterns. Finally we hope this work can inspire more
studies for resolving the social dilemma, especially from the viewpoint of weight static networks and
the individuals’ aspiration level. Finally, we hope our work can be applied to other fields, especially in
engineering [51–53].
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