From Clicks to Models
The Wikimedia LTR Pipeline
Wikimedia Search Platform

- 300 languages
- 900 wikis
- 85% of search to top 20
- 4TB in primary shards
- 30M+ full text/day
- 50M+ autocomplete/day
- 150M+ more like/day
- 2 clusters in separate DCs
- Team of 5 engineers
Mjolnir - Machine Learned Ranking

- https://github.com/wiki media/search-mjolnir
- PySpark
- Some Scala
From Zero to Deployment
How we got there

- Start with offline POC
- Build major steps of transformation
- Reuse existing features of ranking function
- Build an ML ranker that learns the existing ranking function
- This means it works!
Click Logs
Collection

- Varnish -> kafka
- App server -> kafka
- Data retention of 90 days
- ~1M sessions with clicks per day
- ~500MB compressed, with debug info, per day
- Reused existing webrequest logging infrastructure
Click Logs → Label Generation → Features → Training

timestamp: int
site: string
session_id: string
query: string
hits: array<int>
clicks: array<int>
Challenges

- Bot filtering
- Skew when sessionizing
- Unclear search logs

Solutions

- Drop logs from busy ip’s
- Iterate on logging
Label Generation
Click Models

- Click models provide a principled way to translate implicit preferences into unbiased labels
- Accounts for biases like result position and snippet attractiveness
- DbnModel implementation from python clickmodels library
- Operates on groups of sessions with the same intent
- No shared information between query groups makes this an embarrassingly parallel problem
Challenges
- Shuffling data between JVM and python is slow
- Python implementation was unoptimized

Solutions
- Rewrote in scala with no allocation in the tight loops for 100x speedup.
<table>
<thead>
<tr>
<th>Challenges</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Mediocre results for queries with few sessions</td>
<td>● Normalize query strings</td>
</tr>
<tr>
<td>● Limiting to queries with 10 repeats drops all but 22% of sessions.</td>
<td>● Naive grouping improves to 30%</td>
</tr>
<tr>
<td></td>
<td>● Aggressive grouping improves to 45%</td>
</tr>
</tbody>
</table>

Click Logs → **Label Generation** → Features → Training
Normalize Query Strings

Better grouping:
- Better labels
- Inclusion of long tail

Simple but effective:
\[\text{lower(trim(query))} \]
Can we do better?

Throw stemmers at it!
The Good

- the lucas brother, lucas brothers, lucas brotheres, lucas brother, the lucas brothers
- herbes provence, le herbs de provence, herbe provence, etc.
- julian dates, julian date, julian dating
The Bad

- marin, marine, mariner, mariners
- nature, natural, naturalism
- british colonial, british colonies, the british colonies
Break up groups

Collect Top N hits for every query and apply clustering within query groups
Better:

- [Marin], [marine], [mariner, mariners]
- [nature], [natural], [naturalism]

But not great:

- [marine corp rank], [marine corp ranks]
- [witches], [the witch], [witchs]
Features
Feature Engineering

- Initial models used 10 similarity features and 2 document only features
- Training captured 20% of possible improvement in ndcg@10
- Translated into 1.5% increase in click throughs, 0.5% decrease in session abandonment
QD Features

- Match query for each field analyzed two ways
- Phrase match on specific fields
- Query explorer
- Dismax via feature expressions
- Future: SimSwitcher
Doc only Features

- Popularity score
- Incoming link counts
- Page length in bytes and tokens
Query only Features

- Per-field idf
- # of unique terms with limited and aggressive analysis
Collecting Features

Point the hadoop cluster at the elasticsearch cluster to collect vectors for millions of queries. What could go wrong?
<table>
<thead>
<tr>
<th>Challenges</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>● 250 features is slow (~300ms)</td>
<td>● mRMR feature selection</td>
</tr>
<tr>
<td>● memory for training is linear with # of features</td>
<td>● Achieves 80% of the improvement of 250 features with only 50</td>
</tr>
<tr>
<td></td>
<td>● Previous feature set achieved 60%</td>
</tr>
</tbody>
</table>
Training

CC by SA 2.0, Kurt Rasmussen
Resource Allocation

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training data spans two orders</td>
<td>Split sites into three groups by size</td>
</tr>
<tr>
<td>of magnitude</td>
<td></td>
</tr>
<tr>
<td>Efficient use of limited</td>
<td>Heuristics to determine needs from data sizes</td>
</tr>
<tr>
<td>compute resources</td>
<td></td>
</tr>
</tbody>
</table>
Hyperparameter Search

- Using python hyperopt
- Customized for parallel search through spark
- Models train on single executor
- Train 50-150 models in parallel

Click Logs → Label Generation → Features → Training
Resource Usage

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Yarn killing executors</td>
<td>● Don’t send training data through spark</td>
</tr>
<tr>
<td>● Unpredictable memory usage</td>
<td>● Point xgboost at files on HDFS directly</td>
</tr>
</tbody>
</table>
Other Thoughts
Spark on Yarn

Never as easy as it looks
SPARK_HOME=/usr/lib/spark2 USER=ebernhardson PATH=/bin:/usr/bin HOME=/home/ebernhardson
PYSPARK_PYTHON=venv/bin/python SPARK_CONF_DIR=/etc/spark2/conf \
 /usr/lib/spark2/bin/spark-submit \
 --conf spark.dynamicAllocation.cachedExecutorIdleTimeout=120s \
 --conf spark.dynamicAllocation.executorIdleTimeout=60s \
 --conf spark.dynamicAllocation.maxExecutors=112 \
 --conf spark.task.cpus=4 --conf spark.yarn.executor.memoryOverhead=5748 \
 --archives /home/ebernhardson/mjolnir/mjolnir_venv.zip#venv \
 --driver-memory 3G --executor-cores 4 --executor-memory 2G \
 --master yarn --queue nice \
 /srv/deploy/mjolnir/venv/bin/mjolnir-utilities.py training_pipeline \
 --cv-jobs 130 --final-trees 100 --iterations 100 \
 --input hdfs://analytics-hadoop/user/ebernhardson/mjolnir/20180316-folds-medium \
 --output /home/ebernhardson/training_results/20180316-medium \
itwiki ptwiki frwiki ruwiki
<table>
<thead>
<tr>
<th>Challenges</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takes a bazillion CLI args to configure</td>
<td>Configuration driven script to call spark</td>
</tr>
<tr>
<td>Challenges</td>
<td>Solutions</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>● Doesn’t play nice with large off-heap memory allocation</td>
<td>● Split pipeline into multiple independent scripts by resource needs</td>
</tr>
<tr>
<td>● Many values have to be tuned based on the size of data being processed</td>
<td>● Save metadata next to data with stats on sizes</td>
</tr>
<tr>
<td></td>
<td>● Heuristics to translate into memory reqs</td>
</tr>
</tbody>
</table>
● Keep as much as possible
● Record collection parameters with the output data.
● Add to the metadata at each step of the pipeline to report on what happened, why, etc.
● Data retention policies may require data to be deleted after N days, but aggregated data in the form of models, training history, etc should be kept for later analysis.
<table>
<thead>
<tr>
<th>Now</th>
<th>Soon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly dumps of production search indices in elasticsearch bulk import format[1].</td>
<td>Public read-only access to elasticsearch with live updated indices in WMF Cloud[2].</td>
</tr>
</tbody>
</table>

[1] https://dumps.wikimedia.org/other/cirrussearch
THANK YOU

(Camel of knowledge)