
From Clicks to Models
The Wikimedia LTR Pipeline



Wikimedia 
Search 
Platform

● 300 languages
● 900 wikis
● 85% of search to top 20
● 4TB in primary shards
● 30M+ full text/day
● 50M+ autocomplete/day
● 150M+ more like/day
● 2 clusters in separate DCs
● Team of 5 engineers



MjoLniR -
Machine 
Learned 
Ranking

● https://github.com/wiki
media/search-mjolnir

● Pyspark
● Some Scala

https://github.com/wikimedia/search-mjolnir
https://github.com/wikimedia/search-mjolnir


From Zero to 
Deployment



How we got 
there

● Start with offline POC 
● Build major steps of 

transformation
● Reuse existing features 

of ranking function
● Build an ML ranker that 

learns the existing 
ranking function

● This means it works!



Click   
Logs
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Collection
● Varnish -> kafka
● App server -> kafka
● Data retention of 90 days
● ~1M sessions with clicks per day
● ~500MB compressed, with debug info, per day 
● Reused existing webrequest logging infrastructure
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timestamp: int
site: string
session_id: string
query: string
hits: array<int>
clicks: array<int>
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Challenges Solutions
● Bot filtering
● Skew when sessionizing
● Unclear search logs

● Drop logs from busy ip’s
● Iterate on logging
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Label 
Generation

Freshwater and Marine Image Bank



Click Models
● Click models provide a principled way to translate implicit 

preferences into unbiased labels
● Accounts for biases like result position and snippet attractiveness
● DbnModel implementation from python clickmodels library
● Operates on groups of sessions with the same intent
● No shared information between query groups makes this an 

embarrassingly parallel problem
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Challenges Solutions
● Shuffling data between 

JVM and python is slow
● Python implementation 

was unoptimized

● Rewrote in scala with no 
allocation in the tight 
loops for 100x speedup. 
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Challenges Solutions
● Mediocre results for 

queries with few 
sessions

● Limiting to queries with 
10 repeats drops all but 
22% of sessions. 

● Normalize query strings
● Naive grouping improves 

to 30%
● Aggressive grouping 

improves to 45%
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Normalize 
Query 
Strings

Better grouping:

● Better labels
● Inclusion of long tail

Simple but effective:

lower(trim(query))
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Can we do better?
Throw stemmers at it!
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The Good
● the lucas brother, lucas brothers, lucas brotheres, lucas 

brother, the lucas brothers
● herbes provence, le herbs de provence, herbe provence, 

etc.
● julian dates, julian date, julian dating
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The Bad
● marin, marine, mariner, mariners
● nature, natural, naturalism
● british colonial, british colonies, the british colonies
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Break up groups

Collect Top N hits for every query and apply clustering 
within query groups

Label Generation Features TrainingClick Logs



Better:

● [Marin], [marine], [mariner, mariners]
● [nature], [natural], [naturalism]

But not great:

● [marine corp rank], [marine corp ranks]
● [witches], [the witch], [witchs]
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Features
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Feature Engineering
● Initial models used 10 similarity features and 2 document 

only features
● Training captured 20% of possible improvement in 

ndcg@10
● Translated into 1.5% increase in click throughs, 0.5% 

decrease in session abandonment
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QD Features
● Match query for each field analyzed two ways
● Phrase match on specific fields
● Query explorer
● Dismax via feature expressions
● Future: SimSwitcher
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Doc only Features
● Popularity score
● Incoming link counts
● Page length in bytes and tokens
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Query only Features

● Per-field idf 
● # of unique terms with limited and aggressive analysis
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Collecting Features

Label Generation Features TrainingClick Logs

Point the hadoop cluster at the elasticsearch cluster to 
collect vectors for millions of queries. What could go 

wrong?
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Challenges Solutions
● 250 features is slow 

(~300ms)
● memory for training is 

linear with # of features

● mRMR feature selection
● Achieves 80% of the 

improvement of 250 
features with only 50

● Previous feature set 
achieved 60%



Training
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Resource Allocation
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Challenges Solutions
● Training data spans two 

orders of magnitude
● Efficient use of limited 

compute resources

● Split sites into three 
groups by size

● Heuristics to determine 
needs from data sizes



Hyper-  
parameter
Search

● Using python hyperopt 
● Customized for parallel 

search through spark
● Models train on single 

executor
● Train 50-150 models in 

parallel
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Resource Usage
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Challenges Solutions
● Yarn killing executors
● Unpredictable memory 

usage

● Don’t send training data 
through spark

● Point xgboost at files on 
HDFS directly



Other 
Thoughts
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Spark on Yarn
Never as easy as it looks



SPARK_HOME=/usr/lib/spark2 USER=ebernhardson PATH=/bin:/usr/bin HOME=/home/ebernhardson 
PYSPARK_PYTHON=venv/bin/python SPARK_CONF_DIR=/etc/spark2/conf \
       /usr/lib/spark2/bin/spark-submit \
       --conf spark.dynamicAllocation.cachedExecutorIdleTimeout=120s \
       --conf spark.dynamicAllocation.executorIdleTimeout=60s \
       --conf spark.dynamicAllocation.maxExecutors=112 \
       --conf spark.task.cpus=4 --conf spark.yarn.executor.memoryOverhead=5748 \
       --archives /home/ebernhardson/mjolnir/mjolnir_venv.zip#venv \
       --driver-memory 3G  --executor-cores 4  --executor-memory 2G \
       --master yarn --queue nice \
       --packages 
ml.dmlc:xgboost4j-spark:0.8-wmf-2,org.wikimedia.search:mjolnir:0.4,org.apache.spark:spark-streaming-kafk
a-0-8_2.11:2.1.2,sramirez:spark-infotheoret
ic-feature-selection:1.4.4,sramirez:spark-MDLP-discretization:1.4.1 \
       --repositories 
https://archiva.wikimedia.org/repository/releases,https://archiva.wikimedia.org/repository/snapshots,https://
archiva.wikimedia.org/repository/mirrored \
       /srv/deploy/mjolnir/venv/bin/mjolnir-utilities.py training_pipeline \
       --cv-jobs 130 --final-trees 100 --iterations 100 \
       --input hdfs://analytics-hadoop/user/ebernhardson/mjolnir/20180316-folds-medium \
       --output /home/ebernhardson/training_results/20180316-medium \
       itwiki ptwiki frwiki ruwiki



Challenges Solutions
● Takes a bazillion CLI 

args to configure
● Configuration driven 

script to call spark



Challenges Solutions
● Doesn’t play nice with 

large off-heap memory 
allocation

● Many values have to be 
tuned based on the size 
of data being processed

● Split pipeline into 
multiple independent 
scripts by resource needs

● Save metadata next to 
data with stats on sizes

● Heuristics to translate 
into memory reqs



Metadata

● Keep as much as possible
● Record collection parameters 

with the output data.
● Add to the metadata at each step 

of the pipeline to report on what 
happened, why, etc.

● Data retention policies may 
require data to be deleted after N 
days, but aggregated data in the 
form of models, training history, 
etc should be kept for later 
analysis.



Public Data

Weekly dumps of production 
search indices in 
elasticsearch bulk import 
format[1].

Public read-only access to 
elasticsearch with live 
updated indices in WMF 
Cloud[2].

[1] https://dumps.wikimedia.org/other/cirrussearch
[2] 
https://wikitech.wikimedia.org/wiki/Help:Cloud_Services_Introduction

Now Soon

https://dumps.wikimedia.org/other/cirrussearch


THANK 
YOU

(Camel of knowledge) 


