
From Clicks to Models
The Wikimedia LTR Pipeline

Wikimedia
Search
Platform

● 300 languages
● 900 wikis
● 85% of search to top 20
● 4TB in primary shards
● 30M+ full text/day
● 50M+ autocomplete/day
● 150M+ more like/day
● 2 clusters in separate DCs
● Team of 5 engineers

MjoLniR -
Machine
Learned
Ranking

● https://github.com/wiki
media/search-mjolnir

● Pyspark
● Some Scala

https://github.com/wikimedia/search-mjolnir
https://github.com/wikimedia/search-mjolnir

From Zero to
Deployment

How we got
there

● Start with offline POC
● Build major steps of

transformation
● Reuse existing features

of ranking function
● Build an ML ranker that

learns the existing
ranking function

● This means it works!

Click
Logs

CC by SA 2.0, Anne Burgess

Collection
● Varnish -> kafka
● App server -> kafka
● Data retention of 90 days
● ~1M sessions with clicks per day
● ~500MB compressed, with debug info, per day
● Reused existing webrequest logging infrastructure

Label Generation Features TrainingClick Logs

timestamp: int
site: string
session_id: string
query: string
hits: array<int>
clicks: array<int>

Label Generation Features TrainingClick Logs

Challenges Solutions
● Bot filtering
● Skew when sessionizing
● Unclear search logs

● Drop logs from busy ip’s
● Iterate on logging

Label Generation Features TrainingClick Logs

Label
Generation

Freshwater and Marine Image Bank

Click Models
● Click models provide a principled way to translate implicit

preferences into unbiased labels
● Accounts for biases like result position and snippet attractiveness
● DbnModel implementation from python clickmodels library
● Operates on groups of sessions with the same intent
● No shared information between query groups makes this an

embarrassingly parallel problem

Label Generation Features TrainingClick Logs

Challenges Solutions
● Shuffling data between

JVM and python is slow
● Python implementation

was unoptimized

● Rewrote in scala with no
allocation in the tight
loops for 100x speedup.

Label Generation Features TrainingClick Logs

Challenges Solutions
● Mediocre results for

queries with few
sessions

● Limiting to queries with
10 repeats drops all but
22% of sessions.

● Normalize query strings
● Naive grouping improves

to 30%
● Aggressive grouping

improves to 45%

Label Generation Features TrainingClick Logs

Normalize
Query
Strings

Better grouping:

● Better labels
● Inclusion of long tail

Simple but effective:

lower(trim(query))

Label Generation Features TrainingClick Logs

Can we do better?
Throw stemmers at it!

Label Generation Features TrainingClick Logs

The Good
● the lucas brother, lucas brothers, lucas brotheres, lucas

brother, the lucas brothers
● herbes provence, le herbs de provence, herbe provence,

etc.
● julian dates, julian date, julian dating

Label Generation Features TrainingClick Logs

The Bad
● marin, marine, mariner, mariners
● nature, natural, naturalism
● british colonial, british colonies, the british colonies

Label Generation Features TrainingClick Logs

Break up groups

Collect Top N hits for every query and apply clustering
within query groups

Label Generation Features TrainingClick Logs

Better:

● [Marin], [marine], [mariner, mariners]
● [nature], [natural], [naturalism]

But not great:

● [marine corp rank], [marine corp ranks]
● [witches], [the witch], [witchs]

Label Generation Features TrainingClick Logs

Features

CC by SA 2.0, NASAPublic Domain

Feature Engineering
● Initial models used 10 similarity features and 2 document

only features
● Training captured 20% of possible improvement in

ndcg@10
● Translated into 1.5% increase in click throughs, 0.5%

decrease in session abandonment

Label Generation Features TrainingClick Logs

QD Features
● Match query for each field analyzed two ways
● Phrase match on specific fields
● Query explorer
● Dismax via feature expressions
● Future: SimSwitcher

Label Generation Features TrainingClick Logs

Doc only Features
● Popularity score
● Incoming link counts
● Page length in bytes and tokens

Label Generation Features TrainingClick Logs

Query only Features

● Per-field idf
● # of unique terms with limited and aggressive analysis

Label Generation Features TrainingClick Logs

Collecting Features

Label Generation Features TrainingClick Logs

Point the hadoop cluster at the elasticsearch cluster to
collect vectors for millions of queries. What could go

wrong?

Label Generation Features TrainingClick Logs

Challenges Solutions
● 250 features is slow

(~300ms)
● memory for training is

linear with # of features

● mRMR feature selection
● Achieves 80% of the

improvement of 250
features with only 50

● Previous feature set
achieved 60%

Training

CC by SA 2.0, Kurt Rasmussen

Resource Allocation
Label Generation Features TrainingClick Logs

Challenges Solutions
● Training data spans two

orders of magnitude
● Efficient use of limited

compute resources

● Split sites into three
groups by size

● Heuristics to determine
needs from data sizes

Hyper-
parameter
Search

● Using python hyperopt
● Customized for parallel

search through spark
● Models train on single

executor
● Train 50-150 models in

parallel

Label Generation Features TrainingClick Logs

Resource Usage
Label Generation Features TrainingClick Logs

Challenges Solutions
● Yarn killing executors
● Unpredictable memory

usage

● Don’t send training data
through spark

● Point xgboost at files on
HDFS directly

Other
Thoughts

CC by SA 2.0, greyloch

Spark on Yarn
Never as easy as it looks

SPARK_HOME=/usr/lib/spark2 USER=ebernhardson PATH=/bin:/usr/bin HOME=/home/ebernhardson
PYSPARK_PYTHON=venv/bin/python SPARK_CONF_DIR=/etc/spark2/conf \
 /usr/lib/spark2/bin/spark-submit \
 --conf spark.dynamicAllocation.cachedExecutorIdleTimeout=120s \
 --conf spark.dynamicAllocation.executorIdleTimeout=60s \
 --conf spark.dynamicAllocation.maxExecutors=112 \
 --conf spark.task.cpus=4 --conf spark.yarn.executor.memoryOverhead=5748 \
 --archives /home/ebernhardson/mjolnir/mjolnir_venv.zip#venv \
 --driver-memory 3G --executor-cores 4 --executor-memory 2G \
 --master yarn --queue nice \
 --packages
ml.dmlc:xgboost4j-spark:0.8-wmf-2,org.wikimedia.search:mjolnir:0.4,org.apache.spark:spark-streaming-kafk
a-0-8_2.11:2.1.2,sramirez:spark-infotheoret
ic-feature-selection:1.4.4,sramirez:spark-MDLP-discretization:1.4.1 \
 --repositories
https://archiva.wikimedia.org/repository/releases,https://archiva.wikimedia.org/repository/snapshots,https://
archiva.wikimedia.org/repository/mirrored \
 /srv/deploy/mjolnir/venv/bin/mjolnir-utilities.py training_pipeline \
 --cv-jobs 130 --final-trees 100 --iterations 100 \
 --input hdfs://analytics-hadoop/user/ebernhardson/mjolnir/20180316-folds-medium \
 --output /home/ebernhardson/training_results/20180316-medium \
 itwiki ptwiki frwiki ruwiki

Challenges Solutions
● Takes a bazillion CLI

args to configure
● Configuration driven

script to call spark

Challenges Solutions
● Doesn’t play nice with

large off-heap memory
allocation

● Many values have to be
tuned based on the size
of data being processed

● Split pipeline into
multiple independent
scripts by resource needs

● Save metadata next to
data with stats on sizes

● Heuristics to translate
into memory reqs

Metadata

● Keep as much as possible
● Record collection parameters

with the output data.
● Add to the metadata at each step

of the pipeline to report on what
happened, why, etc.

● Data retention policies may
require data to be deleted after N
days, but aggregated data in the
form of models, training history,
etc should be kept for later
analysis.

Public Data

Weekly dumps of production
search indices in
elasticsearch bulk import
format[1].

Public read-only access to
elasticsearch with live
updated indices in WMF
Cloud[2].

[1] https://dumps.wikimedia.org/other/cirrussearch
[2]
https://wikitech.wikimedia.org/wiki/Help:Cloud_Services_Introduction

Now Soon

https://dumps.wikimedia.org/other/cirrussearch

THANK
YOU

(Camel of knowledge)

