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ABSTRACT

The emergence and recent ubiquity of Smartphones present new opportunities and challenges
to forensic examiners. Smartphones enable new mobile application and use paradigms by being
constantly attached to the Internet via one of several physical communication media, e.g. cellu-
lar radio, WiFi, or Bluetooth. The Smartphone’s storage medium represents a potential source
of current and historical network metadata and records of prior data transfers. By using known
ground truth data exchanges in a controlled experimental environment, this thesis identifies net-
work metadata stored by the Android operating system that can be readily retrieved from the
device’s internal non-volatile storage. The identified network metadata can ascertain the iden-
tity of prior network access points to which the device associated. An important by-product of
this research is a well-labeled Android Smartphone image corpus, allowing the mobile forensic
community to perform repeatable, scientific experiments, and to test mobile forensic tools.

v



THIS PAGE INTENTIONALLY LEFT BLANK

vi



Table of Contents

1 Introduction 1
1.1 Mobile Device’s Historical Network Access Points . . . . . . . . . . . . . 1

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Significant Findings . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 5
2.1 Mobile Forensics . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Android Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Network Forensics . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Building the Smartphone Corpus 23
3.1 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Smartphones under Test. . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Data Recovery 45
4.1 Analysis Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusions and Future Work 85
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

List of References 89

vii



Initial Distribution List 95

viii



List of Figures

Figure 2.1 Android SDK ddms GUI. . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.1 Experiment Set-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.2 Faraday Cage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.3 Android Smartphones used in experiments. . . . . . . . . . . . . . . . 29

Figure 3.4 The USB Debugging Option. . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.5 ROM Manager screen shots. . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.6 Android Factory Data Reset Option.. . . . . . . . . . . . . . . . . . . 34

Figure 4.1 DHCP ACK found in 2011-NexusOne-1/1-1 userdata partitions. . . . 54

Figure 4.2 SSIDs found in 2011-NexusOne-1/1-1 userdata partitions. . . . . . . 54

Figure 4.3 SSIDs found in 2011-NexusS-1/1-1 userdata partitions. . . . . . . . 57

Figure 4.4 IMSIs found in 2011-NexusS-1 userdata partitions. . . . . . . . . . . 58

Figure 4.5 Binary IP addresses found in userdata partitions. . . . . . . . . . . . 59

Figure 4.6 DHCP ACKs found in userdata partitions. . . . . . . . . . . . . . . 61

Figure 4.7 CIDs found in 2011-NexusOne-7/7-1 user data partitions. . . . . . . . 62

Figure 4.8 Router MAC Addresses found in 2011-NexusOne-7/7-1 userdata par-
titions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.9 D-Link MAC addresses found in userdata partitions. . . . . . . . . . 64

Figure 4.10 CIDs found in 2011/NexusS-7/7-1 userdata partitions. . . . . . . . . 64

Figure 4.11 Router MAC Addresses found in 2011-NexusS-7/7-1 userdata parti-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



Figure 4.12 wpa supplicant.conf found in userdata partitions. . . . . . . . . . . . 73

Figure 4.13 DHCP ACKs found in userdata partitions. . . . . . . . . . . . . . . 73

Figure 4.14 wpa supplicant.conf found in userdata partitions. . . . . . . . . . . . 77

Figure 4.15 DHCP ACKs found in userdata partitions. . . . . . . . . . . . . . . 78

x



List of Tables

Table 2.1 Nexus One MTD Partitions. . . . . . . . . . . . . . . . . . . . . . . . 7

Table 2.2 YAFFS2 Block States. From [11] . . . . . . . . . . . . . . . . . . . . 11

Table 2.3 Typical Commercial Tool Data Extraction Capabilities . . . . . . . . . 15

Table 2.4 NIST required digital evidence and evidence location. . . . . . . . . . . 16

Table 2.5 bulk extractor scanners and functions. . . . . . . . . . . . . . . . . . . 22

Table 3.1 GSM Base Station Network Settings. . . . . . . . . . . . . . . . . . . . 26

Table 3.2 Wireless Router Network Settings. . . . . . . . . . . . . . . . . . . . . 26

Table 3.3 Bluetooth Data for Macbook Pro. . . . . . . . . . . . . . . . . . . . . 26

Table 3.4 Files transferred via Bluetooth. . . . . . . . . . . . . . . . . . . . . . . 27

Table 3.5 Files provided by file server. . . . . . . . . . . . . . . . . . . . . . . . 27

Table 3.6 Nexus S YAFFS2 mtd blocks. . . . . . . . . . . . . . . . . . . . . . . 28

Table 3.7 Smartphone configurations. . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 3.8 Images created for study. . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 4.1 First three bytes of the bootstrap protocol. . . . . . . . . . . . . . . . . 49

Table 4.2 Network metadata signatures. . . . . . . . . . . . . . . . . . . . . . . . 50

Table 4.3 Experiment partition sizes. . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 4.4 Images created for study. . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 4.5 2011-NexusOne-1 Quick Summary. . . . . . . . . . . . . . . . . . . . 52

Table 4.6 2011-NexusOne-1-1 Quick Summary. . . . . . . . . . . . . . . . . . . 53

xi



Table 4.7 IMSI captures from the 2011-NexusOne-1/1-1 userdata partitions. . . 53

Table 4.8 2011-NexusOne-1/1-1 Binary IP Address captures. . . . . . . . . . . . 55

Table 4.9 2011-NexusS-1 Quick Summary. . . . . . . . . . . . . . . . . . . . . . 56

Table 4.10 2011-NexusS-1-1 Quick Summary. . . . . . . . . . . . . . . . . . . . . 56

Table 4.11 IMSI captures from userdata partitions. . . . . . . . . . . . . . . . . 57

Table 4.12 2011-NexusS-1/1-1 Binary IP Address captures. . . . . . . . . . . . . . 58

Table 4.13 2011-NexusOne-1.5 Quick Summary. . . . . . . . . . . . . . . . . . . 60

Table 4.14 2011-NexusOne-1.5-1 Quick Summary. . . . . . . . . . . . . . . . . . 60

Table 4.15 2011-NexusOne-1.5/1.5-1 Binary IP Address captures. . . . . . . . . . 61

Table 4.16 2011-NexusS-1.5 Quick Summary. . . . . . . . . . . . . . . . . . . . . 63

Table 4.17 2011-NexusS-1.5-1 Quick Summary. . . . . . . . . . . . . . . . . . . . 63

Table 4.18 2011-NexusS-1.5/1.5-1 Binary IP Address captures. . . . . . . . . . . . 65

Table 4.19 2011-NexusOne-3 Quick Summary. . . . . . . . . . . . . . . . . . . . 66

Table 4.20 2011-NexusOne-3-1 Quick Summary. . . . . . . . . . . . . . . . . . . 66

Table 4.21 Bluetooth MAC captures found in userdata partitions. . . . . . . . . . 67

Table 4.22 2011-NexusOne-3 files writing Bluetooth metadata by 2-gram. . . . . . 68

Table 4.23 2011-NexusS-3 Quick Summary. . . . . . . . . . . . . . . . . . . . . . 69

Table 4.24 2011-NexusS-3-1 Quick Summary. . . . . . . . . . . . . . . . . . . . . 69

Table 4.25 Bluetooth MAC captures found in userdata partitions. . . . . . . . . . 70

Table 4.26 2011-NexusS-3 files writing Bluetooth metadata by 2-gram. . . . . . . 70

Table 4.27 2011-NexusOne-4 Quick Summary. . . . . . . . . . . . . . . . . . . . 71

Table 4.28 2011-NexusOne-4-1 Quick Summary. . . . . . . . . . . . . . . . . . . 71

Table 4.29 2011-NexusOne-5 Quick Summary. . . . . . . . . . . . . . . . . . . . 72

Table 4.30 2011-NexusOne-5-1 Quick Summary. . . . . . . . . . . . . . . . . . . 72

xii



Table 4.31 Binary IP Address captures found in all Nexus One file transfer experi-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 4.32 2011-NexusS-4 Quick Summary. . . . . . . . . . . . . . . . . . . . . . 75

Table 4.33 2011-NexusS-4-1 Quick Summary. . . . . . . . . . . . . . . . . . . . . 75

Table 4.34 2011-NexusS-5 Quick Summary. . . . . . . . . . . . . . . . . . . . . . 76

Table 4.35 2011-NexusS-5-1 Quick Summary. . . . . . . . . . . . . . . . . . . . . 76

Table 4.36 2011-NexusS-4/4-1 Binary IP Address captures. . . . . . . . . . . . . . 79

Table 4.37 2011-NexusS-5/5-1 Binary IP Address captures. . . . . . . . . . . . . . 80

Table 4.38 2011-NexusOne-6 Quick Summary. . . . . . . . . . . . . . . . . . . . 81

Table 4.39 2011-NexusOne-6-1 Quick Summary. . . . . . . . . . . . . . . . . . . 81

Table 4.40 2011-NexusOne-6/6-1 Binary IP Address captures. . . . . . . . . . . . 82

Table 4.41 2011-NexusS-6 Quick Summary. . . . . . . . . . . . . . . . . . . . . . 83

Table 4.42 2011-NexusS-6-1 Quick Summary. . . . . . . . . . . . . . . . . . . . . 83

Table 4.43 2011-NexusS-6/6-1Binary IP Address captures. . . . . . . . . . . . . . 83

xiii



THIS PAGE INTENTIONALLY LEFT BLANK

xiv



List of Acronyms

AP Access Point

ASCII American Standard Code for Information Interchange

ADB Android Debug Bridge

AT Attention

BGA Ball Grid Array

BS Base Station

BSC Base Station Controller

CID Cell Identification

DHCP Dynamic Host Configuration Protocol

EEPROM Electrically Erasable Programmable Read-Only Memory

EXT Extended File System

FFL Flash File System

FTL Flash Transition Layer

GID Group Identification

GSM Global System for Mobile

IEEE Institute of Electrical and Electronics Engineers

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Identity

IP Internet Protocol

LAC Local Area Code

LAN Local Area Network

JTAG Joint Test Action Group

MAC Media Access Control

MTD Memory Technology Device

xv



MCC Mobile Country Code

MNC Mobile Network Code

MSC Mobile Switching Center

MCC Mobile Country Code

MNC Mobile Network Code

MLC Multi-Level Cell

NAT Network Address Translation

NIST National Institute of Standards and Technology

NPS Naval Postgraduate School

OS Operating System

RF Radio Frequency

RAM Random-Access Memory

ROM Read-Only Memory

SLC Single-Level Cell

SD Secure Digital

SIM Subscriber Identity Module

SDK Software Development Kit

SA Spectrum Analyzer

SSID Service Set Identifier

TAP Test Access Port

TCK Test Clock Input

TDI Test Data Input

TDO Test Data Output

TMS Test Mode Select

TRST Test-reset Input

xvi



TDD Time Division Duplex

TSOP Thin Small-Outline Packages

TCP Transport Control Protocol

UID User Identification

USB Universal Serial Bus

URL Uniform Resource Locator

WPAN Wireless Personal Area Network

YAFFS Yet Another Flash File System

xvii



THIS PAGE INTENTIONALLY LEFT BLANK

xviii



Acknowledgements

This thesis would not have been possible without the guidance and instruction from Dr. Rob
Beverly and Dr. Simson Garfinkel. I would especially like to recognize Dr. Beverly for his
tremendous enthusiasm, unparalleled patience and constant understanding.

Most of all, I would like to thank my wife Nichole, who spent many nights and weekends alone
raising our two wonderful children, Nicholas and Brianna. Without her support and dedication,
this effort would not have been possible.

xix



THIS PAGE INTENTIONALLY LEFT BLANK

xx



CHAPTER 1:

Introduction

Smartphones have seen unprecedented growth and are not showing any signs of stagnating. The
International Data Corporation expects 450 million Smartphones shipped in 2011 compared to
the 303 million shipped in 2010 [1]. Smartphones enable constant internet attachment via one
of several physical communication media. Through the existing cellular network, these devices
provide consumers data services. They also provide 802.11 (§2.3.2) wireless interfaces to send
data over local area networks and 802.15 (§2.3.3) wireless personal access network interfaces
to transfer data to other Bluetooth-enabled devices. With the increasing number of mobile
applications available, Smartphones are now powerful personal digital assistants with telephony
and data capabilities. Consumers use these devices to take photographs, send important emails,
interact with social networks, surf the internet, etc.

Smartphones are used alike by law-abiding citizens and criminals. If a Smartphone belonging
to a criminal or terrorist is captured, there are numerous commercial and open source tools
available to extract personal information: call logs, emails, and other kinds of information (§2).
In addition to contact information and photos, authorities increasingly want to know where the
phone was physically operating and where it gained access to networks.

Mobile forensic tools and efforts have mostly concentrated on personal information data that
resides on the Smartphone. This thesis will attempt to extract network metadata that will provide
investigators previous knowledge of a suspects historical network access points.

1.1 Mobile Device’s Historical Network Access Points
This thesis will focus on residual network metadata from Android non-volatile memory. Al-
though, dumping the volatile memory of the captured mobile device may provide authorities
valuable data concerning network access points. These data are dynamically changing and may
provide information on the last beacon probe the device received from a wireless network access
point used: it may also provide cellular base station data from the current physical area’s cellular
tower. Additional information may be found that reveals the suspect’s previous whereabouts.

The non-volatile memory characteristics of Smartphones provides significant valuable historical
data. NAND flash is currently the de facto standard for Smartphone non-volatile storage. Flash
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has a limited lifespan that requires the file system to carefully perform read and write operations
to the physical storage. This wear leveling technique allows data that has been marked for
deletion to persist on the storage medium potentially making substantial information available
for analysis. This opportunity to extract residual network data from non-volatile memory is
a fundamental change in traditional forensics where network data is usually stored in volatile
memory.

There exist multiple forms of data that can be useful to forensic examiners. Cellular base sta-
tions transfer their metadata to Smartphones for access purposes. This data contains information
to the particular cellular tower that can be physically geolocated. Wireless routers, commonly
found in businesses and homes share their unique Media Access Control (MAC) address and
Service Set Identifier (SSID) with the mobile devices. This information, used in conjunction
with open source wireless geographic engines can identify a known wireless router’s location,
which can be used to determine the Smartphone’s previous physical locations [2].

Other network data can also help with forensic investigations. Bluetooth MAC addresses of
associated devices will persist on memory. Subscriber Identity Modules (SIM) cards required
in GSM cellular networks will also save historical data to memory. This data is useful if a
criminal uses the mobile device with multiple SIM cards to attempt to hide his identity.

Binary Internet Protocol (IP) addresses also persist on the device’s non-volatile memory. This
data can prove to be useful if the device communicates with a wireless router that provided
addresses not found in the RFC 1918 address allocation range [3].

1.2 Research Questions
This thesis asks one primary question: do sufficient residual artifacts exist on mobile devices
to extract enough data to identify the device’s previous network access points? The primary
objective can be achieved through answering the secondary questions:

• Does a mobile device store network-relevant information in non-volatile storage?

• What encoding techniques does the mobile device use to store the information?

• How does flash wear-leveling techniques affect forensic data collection?

• Do the data reveal network usage patterns?
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To answer these questions, a carefully controlled testing environment was used to transfer data
between Android Smartphones and multiple network access point (cellular, wireless, and Blue-
tooth). This experiment provided a ground truth data set to determine any identifiers that can
be found to commonly extract network relevant information from devices with unknown prove-
nance.

1.3 Significant Findings
Using known ground truth data, two Android Smartphones were used in a controlled environ-
ment, imaged and analyzed for the known ground truth network metadata. A total of seven
controlled experiments were performed producing 7 Nexus One images and 7 Nexus S images.
The images contain YAFFS2 partitions and the Nexus S contain three EXT4 partitions. Analysis
of these images reveals:

• userdata partitions contain allocated and non-allocated pages with wireless router Ser-
vice Set Identifiers (SSID), which are ASCII coded names provides to wireless access
points.

• userdata partitions contain allocated and non-allocated pages with wireless router Sub-
scriber Identity Modules (SIM).

• userdata partitions contain allocated and non-allocated pages with DHCP ACKs from
wireless routers. DHCP ACKs contain the unsigned 32-bit IP address of the Android
Device and the wireless router providing network services.

• userdata partitions contain allocated and potentially non-allocated base station meta-
data, including the Mobile Network Code (MNC), Mobile Country Code (MCC), Local
Area Code (LAC) and Cell Identification (CID). These four base station metadata can be
used to physically locate a cellular tower.

• userdata partitions contain allocated wireless router Media Access Control (MAC) ad-
dresses coded in ASCII.

• userdata partitions contain allocated and non-allocated pages with Bluetooth MAC ad-
dresses of devices paired with the phone.
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1.4 Thesis Structure
This remainder thesis is organized as follows:

• Chapter 2 discusses prior work in mobile forensics and discusses network protocols and
the Android operating system and its components.

• Chapter 3 describes the hardware and its configuration used in the experiments and delin-
eates each produced image.

• Chapter 4 provides the results of the Android image analysis.

• Chapter 5 contains conclusions drawn from Chapter 4 and recommended future work.

4



CHAPTER 2:

Background and Related Work

2.1 Mobile Forensics
The last decade has seen unprecedented growth in the mobile computing market. Sophisticated
communications capabilities have been incorporated into new form factors such as portable
music players, tablets and Smartphones. These devices provide consumers the functionality of
personal computers and freedom of mobility, yet cost significantly less than traditional personal
computers.

Smartphones are of particular interest in forensics due to their various physical communication
media (e.g., GSM radio, WiFi, Bluetooth, etc), variety of communication applications (e.g.,
electronic mail, messaging, social network applications), and their abundance of portable fixed
storage. Mobile devices have become ubiquitous tools that are carried by owners on a daily
basis. In 2010, over 271 million Smartphones were sold worldwide [4]. Unfortunately, the rich
functionality and ease of mobility that is so attractive to everyday consumers is also proving
beneficial to criminals. Smartphones are used in the commission of many crimes, including
theft, child exploitation and extortion. Malicious applications, commonly referred to as mal-
ware, are finding a niche in the mobile market. Malware is able to download and forward data
from a mobile device to remote servers, place clandestine phone calls and text messages to
numbers that charge rates to the compromised Smartphone’s bill [5]. For investigators, the only
consolidation is that the ability to retain malicious data or a wide array of personal data, mobile
devices can represent a rich source of evidence for forensic examiners.

The National Institute of Standards and Technology (NIST) defines digital forensics as “the
application of science to the identification, collection, examination, and analysis, of data while
preserving the integrity of the information and maintaining a strict chain of custody for the
data” [6]. The forensic science applied to mobile devices is still in its infancy. Device capabili-
ties are increasing every year, and forensic techniques struggle to keep apace. For example, the
introduction of Windows pocket PCs and Apple’s iPhone have blurred any functionality differ-
ence between mobile devices and personal computers — requiring new tools and techniques for
forensic examination. With a new generation of Smartphones populating the market every year,
device storage capacity, functionality, and architecture is rapidly evolving, creating issues for
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the forensic community.

Smartphones use a variety operating systems (OS’s) and employ many different hardware in-
terfaces (e.g., USB, proprietary connectors, etc). Across the previously mentioned 271 million
Smartphones sold in 2010, four different operating systems were predominant: Apple’s iOS,
Google’s Android, RIM’s Blackberry and Nokia’s Symbian. Each Smartphone presents unique
characteristics for forensic examiners. In addition to the heterogeneity of operating systems,
some devices use proprietary USB connectors, requiring examiners to have a different cable for
each specific device in order to acquire pertinent forensic data. The examiner’s forensic soft-
ware must also be updated often to maintain compatibility with updated OS versions and for
every new Smartphone device introduced – a daunting and expensive task.

Further complicating the forensic process, access to a mobile device’s memory can be restricted
by the operating system. For instance, Android uses the standard UNIX User (UID) and Group
(GID) file permissions for each application and, by default, restricts root access.

NIST SP800-101 contains guidelines for conducting forensics on cellular devices [7]. Cellular
devices present unique challenges and certain aspects of these devices must be considered to
maintain data integrity on the device. The NIST document outlines key topics for cell phone
forensic examiners, with three topics unique to mobile devices: Forensic Tools, Preservation
and Acquisition. Cellular devices must be handled differently than standard computing devices
because incoming data or phone calls may contaminate the data residing on the device after
recovery or even during the analysis. As previously mentioned, there are multiple form factors
and interfaces which create challenges when preparing mobile forensic tools and acquiring data
from the devices.

This chapter discusses several methods to overcome these obstacles and extract data from the
mobile device’s non-volatile storage via physical or logical acquisition to support forensic ex-
amination. Some of these methods, including the Nandroid logical acquisition technique used
in this study, violate the forensic principles outlined in NIST SP 800-101. Methods to acquire
data from an evidence source should make every attempt to remove the data without modifying
the state of the mobile device. The methods used in this thesis do modify the mobile devices’s
state, but it is currently the only known acquisition technique currently available that allows us
to acquire low level network data structures and unallocated data. The remainder of this chapter
provides an overview of the Android OS, the physical and logical acquisition techniques are
discussed.
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2.2 Android Overview
The Android Operating System is based on the open source Linux 2.6 kernel. The Android ker-
nel is similar to normal Linux kernels with the exception that a flash memory driver is provided
to support internal memory (§2.2.1).

The Linux kernel is designed to support standard block storage devices. Android devices use
flash for non-volatile storage, so they must use an layer of abstraction to facilitate use of the
Linux kernel. This layer is referred to as the Memory Technology Device (MTD) system. The
MTD provides block interface, ECC, wear-leveling and other functions required to support flash
memory [8].

The Google Nexus One Smartphone MTD partitions are shown in Table 2.1. These partitions
are only representative of the HTC Nexus One as partitions vary and are manufacturer specific,
but the Nexus One partitions show how the MTD presents the flash partitions to the kernel. The
size column stipulates the actual size of the partition. The erasesize column identifies the
the flash block size in decimal [8]. NAND flash can only perform erase operations at the block
level, §2.2.1. The userdata and system partitions are the main subject of this thesis as they
store data from user interaction with the device, and interaction with external network nodes.
However, all partitions should be accounted for as they are easily manipulated through various
tools which will be shown in the logical acquisition method used in this thesis.

partition size erasesize name
mtd0 000e0000 00020000 “misc”
mtd1 00400000 00020000 “recovery”
mtd2 00380000 00020000 “boot”
mtd3 09100000 00020000 “system”
mtd4 05f00000 00020000 “cache”
mtd5 0c440000 00020000 “userdata”

Table 2.1: Nexus One MTD Partitions.

2.2.1 Flash Memory
Mobile devices use flash as secondary memory. Secondary memory is slower than other mem-
ory found in the device, but is usually the only form of storage that can retain data without a
power source. Flash memory is a variation of Electrically Erasable Programmable Read-Only
Memory (EEPROM). Like EEPROM, flash memory is non-volatile, meaning that it retains data
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after it is unpowered. Flash differs from EEPROM in that it is byte-writable. Flash erase op-
erations can only erase blocks of memory, however. Flash media allows two states: erased and
non-erased. The erased state is all ones or all zeroes depending on the media. Data can only be
written to bytes that are in an erased state.

Flash cells are floating-gate metal-oxide-semiconductor (MOS) transistors where the floating
gate (FG) is insulated by dielectrics and governed by a control gate (CG). The dielectric between
the gates is a triple-layer of oxide-nitride-oxide. The layer between the FG and the transistor
channel is a thin layer of oxide. The dielectric layers provide the isolation to the FG to retain
a charge, and are thin enough to be penetrated. A process called channel hot electron injection
allows an electron to penetrate the thin oxide layer to give the FG a negative charge. A positively
charged state indicates a logical 1 and the existence of stored electrons in the floating gate
indicates a negatively charged state relating to a logical 0 [9].

Flash cells can be Single Level Cells (SLC) or Multi-Level Cells (MLC). SLC are older forms
of flash that can store one bit per cell. MLC store more than one bit per cell and typically
can represent four different states. MLC presents greater latency and a decreased lifetime from
SLC [10]. The flash cells typically last on the order of 1×105 writing cycles [9]. The life-
time expectations present engineering challenges to the abstraction layer that interacts with the
operating system. The physical properties of flash can be found in [10].

Mobile devices utilize NAND flash memory for secondary memory purposes. NAND flash
provides increased storage capability and is relatively cheaper than other types of Flash. NAND
cells are connected in a series, where read and write operations can only be performed on the
entire series, not at the byte level. To erase a NAND cell, the entire series must be erased. The
physical nature of NAND flash is extensively covered in [10].

Operating systems expect magnetic disk drives for secondary memory, so an abstract layer
needs to be implemented between the physical flash memory and the software based operating
system. The abstraction can be in the form of a flash transition layer (FTL), allowing the OS
to use a traditional file system, or a flash file system (FFS). A FFS allows the OS to perform
write and erase operations directly to flash memory without the need for a translation layer. The
Android OS initially launched with the YAFFS2 file system (covered in the following section).

New versions of Android devices use both YAFFS and the Linux EXT4 file system. EXT4
requires the use of an FTL to perform read and write operations on the device’s flash memory.
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The FTL is a driver that presents flash memory as a block device to the OS. It accomplishes
that abstraction by creating virtual blocks of data called sectors. When the OS tells the FTL
that data needs to write to memory, the FTL provides the OS with a specific sector. The FTL
keeps track of the sector given to the OS and physically writes data at a free location on flash
memory. The FTL then maps the actual physical location of the data to the logical location the
OS expects to see. Although Android’s MTD has a software FTL, it is likely that EXT4 will be
accessed through a hardware FTL for performance and intellectual property protection.

Due to the lifetime expectations of a flash cell, the FTL and FFS write to the flash media using
a wear leveling. Wear leveling is a technique that writes rewritten logical blocks to separate
physical blocks until all blocks have been utilized. In this way, no page or block degrades faster
than the system as a whole.

This study makes both “physical” and “logical” memory dumps. A physical memory dump,
or physical image, is a complete copy of all bytes retained in flash memory. The copy will
retain all pages and the out-of-band data for each page as covered in the next section. A logical
memory dump is a copy of the files the file system currently indicates as allocated. Intuitively,
a logical dump will provide current files, while physical dumps will provide current files along
with fragments of some previously used files.

2.2.2 Yet Another Flash File System
YAFFS was released in 2002. It is the main file system for devices using Android operating
systems prior to 2011 and a secondary file system for newer devices [11]. YAFFS was designed
for low-power portable devices and incorporates the following strategies for portability and
simplicity:

• Single threaded model. YAFFS has on a per-partition lock, a design that is easy to imple-
ment and verify. The YAFFS Direct Interface uses a single lock for all partitions.

• Log structure makes for a simple allocation strategy and garbage collector.

• A modular, layered design, which is easier to understand and debug.

The smallest unit of memory in YAFFS is termed a chunk, which usually coincides to the size
of the device’s NAND flash page. A chunk can have two different chunk types, data chunks

and object headers. Data chunks hold file contents, while the object header holds metadata
regarding the object. Each chunk has the following associated metadata values:
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• ObjectId: Identifies to which object the chunk belongs

• ChunkId: Identifies where in the file this chunk belongs.

• Byte Count: Number of bytes of data if this is a data chunk.

• Sequence Number: provides a way of organizing the log in chronological order [11].

YAFFS2 is a log structured file system. It does not write to markers that identify if a chunk is
marked for deletion. Instead, it performs sequential writing to blocks. With use of the sequence
number, it builds the file system state with backwards scanning. While scanning backwards, the
most recently written chunk with a ObjectId:ChunkId pair will be considered current and the
remaining matching pairs are considered deleted [11].

YAFFS2 determines its garbage collection method by the number of erased blocks available for
use. If there are many erased blocks, YAFFS2 performs passive garbage collection, whereby it
collects blocks with very few chunks in use. If there are few erased blocks, YAFFS2 performs
an aggressive garbage collection where works harder to free more space. YAFFS2 block states
are described in Table 2.2.

YAFFS2 performs garbage collection by scanning blocks. If YAFFS2 finds a block worth col-
lecting, it creates a new block, copies the chunks in use, then erases the old block and marks
it ready for use. YAFFS2 serially logs blocks from the erased blocks. By the time a block
gets erased and then allocated again, a level of wear leveling occurs. Wear leveling spreads the
writes and erases to each block, a vital requirement when using flash, as flash memory blocks
have a finite number of writes and erases.

The YAFFS2 author describes the two heuristics for garbage collection as an attempt to delay
garbage collection to reduce the amount of collection performed to increase average system
performance [11]. This garbage collection scheme provides opportunity to retrieve remnant
data not recognized by the file system.

2.2.3 EXT4 Filesystem
In December 2010, Google announced it would use the EXT4 file system in place of YAFFS2
in Android 2.3 and later versions [12]. EXT4 is the current Linux kernel file system. The
move to EXT4 was prompted by the fact that YAFFS is single threaded and newer devices with
multi-cores perform better with a multi-threaded file system [8].
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State Summary
UNKNOWN The block state is not yet known.
NEEDS SCANNING During pre-scanning it has been

determined that this block has something on it and needs scanning.
SCANNING This block is currently being scanned.
EMPTY This block has nothing in it (is erased) and

may be used for allocation. The block can get to this state by being erased.
ALLOCATING This is the block currently being used for allocation by the chunk allocator.
FULL All the chunks in this block have been allocated and at least one chunk

contains useful information that has not yet been deleted.
DIRTY All the chunks in this block have been allocated and all have been deleted.

The block might have been in the FULL or COLLECTING state before this.
This block can now be erased and returned to EMPTY state.

CHECKPOINT This block has checkpoint data in it. When the checkpoint
is invalidated this block will be erased and returned to the EMPTY state.

COLLECTING This block is being garbage collected. As soon as all live data has
been inspected this block becomes DIRTY.

DEAD This block has been retired or was marked bad. This is a terminal state.

Table 2.2: YAFFS2 Block States. From [11]

The EXT4 filesystem was introduced in 2007 and made numerous improvements over its pre-
decessors. Most notable for this research, was the addition of extents and block pre-allocation.
Extents are descriptors which represents a range of contiguous physical blocks. They provide
an efficient data structure to map physical blocks to logical blocks.

As the name implies, EXT4’s preallocation technique allows a file to have pre-allocated blocks,
avoiding fragmentation if the file is subsequently expanded. EXT4 implements this technique
by using the extent length field to indicate whether an extent contains initialized or uninitialized
data. If the field indicates uninitialized data, then when a read occurs, the blocks are filled
with zeroes. For further discussion on EXT4 improvements over EXT2 and EXT3 filesystems,
see [13].

2.2.4 Prior Work
In his 2009 masters thesis, Regan observed the effects of write and read operations based on
a YAFFS emulator [10]. He noted that the emulator, after completing a file delete operation,
retained the intact file and added two new pages. The first new page contained object header
updates and the second page was labeled unlinked and updated the MAC times, user id, group
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id and set the remaining object metadata to zero. He also found that when a file was overwritten
or partially overwritten, YAFFS2 retained the original file, wrote the overwritten file on a new
page and updated two new pages similar to the delete operation. This behavior is consistent
with the YAFFS2 wear leveling and garbage collection techniques, which provide unique data
acquisition capabilities from a YAFFS file system. YAFFS2 allows deleted file retrieval and
possibly multiple file retrievals based on the number of writes the file committed to memory
[10].

In their 2010 work, Fairbanks Et al. noted curious behavior by the EXT4 file system. They note
that EXT4 superblocks are different than previous EXT versions, which pose a problem with
using existing forensic tools on EXT4. They show that the open source Sleuthkit took presents
invalid data as Sleuthkit’s algorithms were compiled for EXT2 superblocks. Another interesting
outcome is that the group created an EXT4 filesystem and completely filled it with 4KB files
containing the word “TEST”. The files were deleted, then a large file filled with null values was
written to the filesystem. They found 22MB of deleted data although the file system tells the
user that the file is filled with zeroes [14].

Reardon Et al. introduced three mechanisms for secure deletion in their 2011 work. To test
their solutions, they created an experiment that tested the “deletion latency” on Android devices
using the YAFFS file system. They compiled a modified Linux kernel that logged data about
block allocations and chunk writes. Using a HTC Nexus One Android device, they normally
used the device for 670 hours. Defining block reallocation as the time a block is allocated until
its reallocation by the garbage collector, their data showed that average block reallocation of
about 44 hours with a worst case of 327 hours [15].

2.2.5 Physical Acquisition Techniques
The term physical acquisition, when applied to digital forensics, is an acquisition method that
is able to retrieve every bit of a storage medium, without being restricted to the view presented
by e.g., the file system. There are three accepted physical acquisition methods in practice today.
In order of least invasive to most invasive these methods include: Flasher tools, JTAG pins, and
chip desoldering. Note, these methods require special tools and are not used in this thesis. They
are provided here for reference only. A pseudo-physical acquisition technique will be used in
this study through the Android SDK, covered in Section 2.1.2.
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Flasher Tools
Device manufacturers or service centers create flasher tools to provide debugging and diag-
nostics of corrupted flash devices. Flasher tools provide a hardware interface with embedded
software that copies all flash memory data from the target system. In his 2007 paper [16], Al-
Zarouni describes two categories of flasher boxes. The first category is “Branded boxes:” more
expensive, serialized, recognized by cellular manufacturers and widely used by service tech-
nicians. The second category he terms “Unbranded boxes.” He describes unbranded boxes as
cheaper, can match Branded box functionality and many times ships without required software
or hardware [16].

Al-Hajri claims that Flasher boxes provide more access to a mobile device’s memory than
command line tools, discussed in the next section. His theory is based on the fact that most
command line tools utilize the device’s embedded command and response protocols, like the
modem-based AT protocol. He claims these commands can query the phone, but do not have
direct access to the data as they are relegated to using the phone’s file system. Al-Zarouni does
caution against the use of Flasher boxes in an investigative process. He claims that Flasher
boxes are designed to write to the phone’s memory, as well as read the memory. Without fully
knowing what the box is doing, the process might not provide forensically sound data. He
also points out that with some boxes, vital memory areas might be skipped due to the phone’s
internal system and that some flasher software will skip spare areas of memory [16].

JTAG
A second method to obtain a physical acquisition is through the IEEE standard 1149.1-2001
Standard Test Access Port and Boundary-Scan Architecture, more informally known as the Joint
Test Action Group (JTAG) access port. The IEEE standard describes the ports as “circuitry that
may be built into an integrated circuit to assist in the test, maintenance, and support of assembled
printed circuit boards” [17]. The standard calls for a standard interface to communicate with
external testing tools.

The IEEE standards indicate that a general-purpose port, labeled the Test Access Port (TAP)
provide test support functions to external components. The TAP has three to four input con-
nections and one output connection. The test clock input (TCK), provides the clock for the test
logic. The test mode select (TMS) receives codes and passes to the TAP controller for control
test operations. The test data input (TDI) receives serial test instructions and data. The test-
reset input (TRST) is optional and provides asynchronous initializations of the TAP controller.
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Finally, the test data output (TDO) is the serial output for test instructions and data from the test
logic [17].

In their 2007 paper, Breeuwsma Et al. experimented with flash data recovery utilizing the JTAG
ports. They show that flash memory chips are not JTAG enabled, but if connected to a JTAG
enabled processor, then data can be retrieved with this method. If the processor provides an
external test mode, then the JTAG controller could be allowed to control all processor pins and
ultimately capture a complete image of the flash chip [18]. Note that JTAG support is device
dependent and not required by manufacturers.

Chip Desoldering
The most invasive acquisition technique requires physically removing the memory chip from
the circuit board and recovering the memory with an external reader. There are two commonly
used methods to attach a chip to the printed circuit board and achieve low profiles needed for
cell phone designs. The first method, the thin small-outline array (TSOP) method employs a
chip with the pin leads on the side of the chip. The second method, the Ball Grid Array method
solders tiny metal balls onto the bottom of the chip that acts as the pin leads.

Breeuwsma Et al. [18] show that removing TSOP or BGA chips can be accomplished with the
use of hot air. The hot air removes the soldered connections without damaging the chips and
without the need for a soldering iron and a vacuum air gripper removes the chip. To correctly
read from the TSOP pins, the pins require cleansing to remove old solder. The BGA will require
reballing or pogo pins to correct for the different ball sizes. With the clean chip, it can now
be analyzed with a reader. The study concludes that this method provides the most complete
forensic image for storage. However, they also stress the risk of damage to the chip and breach
of the embedded system to retrieve the chip [18].

2.2.6 Logical Acquisition Techniques
Logical acquisition is a software-based method that retrieves data based on the file system hier-
archy. This method is reliable, quick, and easy to implement. A logical acquisition of a storage
medium will provide data through the file system, but will disregard data the operating system
deleted although the data remains on the medium.

There are multiple methods and tools to obtain a logical acquisition of a cellular device. Here
we will briefly discuss proprietary solutions, an SD card solution and a solution that uses the
Android SDK tool, the adb shell. These methods are covered to provide a thorough under-
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standing of available logical solutions. This study will utilize an Android Market application
to provide logical images and the Android SDK will provide images that contain allocated and
non-allocated data.

Commercial Tools
The popularity of cellular devices has propelled multiple vendors into the mobile forensic mar-
ket. Arguably, the three most popular vendors at the time of this writing are Paraben, Cellbrite,
and Encase, all of whom provide solutions to Smartphone forensics. Commercial mobile foren-
sic tools do provide for logical acquisition of thousands of cell phones, while some tools adver-
tise physical acquisition for only a few devices. The data identified in Table 2.3, is a typical list
of personal data commercial tools advertise their methods can extract from cellular devices.

SMS Messages
Phonebook
Call History

Datebook
Scheduler
Calendar

To-Do Lists
GPS Information

Email

Table 2.3: Typical Commercial Tool Data Extraction Capabilities

The NIST Computer Forensic Tool Testing Program tests some forensic tools. NIST performs
data object extraction tests and tests for data integrity on multiple mobile devices for each tool
tested. NIST publishes a final report that provides a summary of the test results and most
importantly what tests the tool failed. These reports are also sent to vendors to provide software
patches to their tools. The itemized NIST reports can be found at [6].

In their testing, NIST categorizes mobile phone data storage into flash read only memory (ROM)
and random access memory (RAM). Flash is an EEPROM type of memory and is extensively
used in Smartphones for internal storage. Flash ROM contains the pre-loaded OS and appli-
cations and stores user data. RAM is further classified as program memory and object store.
The program memory region is volatile storage while the object store is nonvolatile. NIST tests
a forensic tool’s capability by populating memory and the SIM card with pre-defined datasets
and then running the tool. Tools are tested against “required” and “optional” digital evidence.
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Evidence Location
International Mobile Equipment Identifier (IMEI) GSM Device memory
Mobile Equipment Identifier (MEID) CDMA Device memory
Service Provider Name (SPN) SIM memory
Integrated Circuit Card Identifier (ICCID) SIM memory
International Mobile Subscriber Identity (IMSI) SIM memory
Mobile Subscriber International ISDN Number (MSISDN) SIM memory
Personal Information Management (PIM) data Device memory
Abbreviated Dialing Numbers (ADNs) SIM memory
Application Data Device memory
Internet Data Device memory
Call logs - Incoming and outgoing calls Device memory
Last Numbers Dialed (LND) SIM memory
Text messages (SMS, EMS) Device memory, SIM memory
Multi-media Messages (MMS)/email Device memory
File storage SIM memory
GPS related data - Longitude and latitude coordinates Device memory

Table 2.4: NIST required digital evidence and evidence location.

Required evidence is data that are available across all handsets. The NIST’s required digital
evidence and where the evidence resides are found in Table 2.4 [19]. Further test cases can be
found in Chapter 2 of the reports found in [6].

Mobile Internal Acquisition Tool
Currently, there exists no standard for hardware interfaces or a standard communication protocol
to interact with a mobile device. Vendors issue proprietary cables, protocols, and operating
systems. To offset the frustration mobile forensic examiners are facing, in 2008, Me and Rossi
proposed a new mobile acquisition method. Their method involves executing a data acquisition
tool from a removable SD memory card. The authors turn off the mobile device, remove the
SIM card and SD card. They load their code onto a new SD card. The new SIM card and
new memory card are inserted into the phone. The device is then booted in safe mode so only
core system processes are spawned. Finally, the algorithm loaded on the SD card iteratively
searches the file system tree, opens a file in read-only mode, computes an MD5 hash and then
copies the data to the memory card. Their method shows results comparable to a well known
commercial acquisition tool. The method was compiled with standard Symbian APIs to access
the file system and only tested on Symbian mobile devices [20].
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Later in 2008, Me and Distefano provided an assessment of the memory card acquisition
scheme, now dubbed the Mobile Internal Acquisition Tool (MIAT). The paper points out that the
source code must be manually compiled for each device and that the tool cannot open “locked”
files residing on the SIM, which might be of concern to forensic examiners. However, their
experiments showed that the MIAT performed just as well as the proprietary Paraben device
seizure suite for data acquisition, but proved to be much slower [21].

Android SDK
The Google Android Operating System provides a Software Development Kit (SDK) to poten-
tial application developers. The SDK provides elective platform tools that allow developers to
communicate with an Android device via USB using their proprietary Android Debug Bridge
(adb) tool. The adb tool is a client-server program that also includes a daemon running in the
background for each device instance [22].

When invoked with the “shell” option, adb runs the ash command shell on the attached device.
The ash shell provides access to basic UNIX commands, including the dd tool. dd provides
low-level copying of data and can convert any file and produce a new raw data file. Android
mounts its partitions at /dev/mtd and, depending on the device, can have up to six partitions. dd
can copy the raw data of these pseudo-devices and output the binary to the sdcard for extraction
via adb pull or by mounting the sdcard on the examiner’s machine. The benefit of using
this method is that the dd tool will produce a bit-for-bit replica of the file system, including
allocation tables, and deleted, but still resident, files in the flash partition.

An alternative method is using the adb pull function. This method allows a forensic examiner
to directly copy the mtd partition to the examiner’s computer. However, depending on the root-
ing method, the adb pull method requires the examiner to change the file system permissions
of the mtd partitions under the /dev/mtd directory to allow the adb shell to pull the files.

The disadvantage to these two methods is that the phone must be “rooted” to access these files.
Rooting is the process where a phone’s operating system is exploited to give an ordinary user
administrative privileges. The exploit varies by different OS types and versions and can include
a simple application addition to the phone or flashing a new boot image to the device. Rooting
may also leave the phone vulnerable to other attacks.

The Android SDK provides tools that allows examiners access to the device that doesn’t require
rooting the device. The previously mentioned adb pull command will pull certain files from
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Figure 2.1: Android SDK ddms GUI.

the Android device. The ddms application provides a graphical user interface (GUI) to explore
files on the device. Launch ddms from the SDK directory, attach the Android phone to the com-
puter running ddms, select the device under the name panel as shown in Figure 2.1. Selecting
Device, File Explorer and the application will allow the user to search files and pull files from
the GUI. The ddms application will also allow the user to dump the device state to a text file all
of the volatile data that resides on the device. The disadvantage to these techniques is that not
all files are available to pull from the device.

Nandroid Backup
The Android Market contains many applications that provide backup functionality. A notable
application that provides a logical acquisition technique is the Clockworkmod application avail-
able in the Android Market. The application loads a ROM Manager to the Android device.
Through the application, a custom recovery image is downloaded and flashed to the device.
Once the new recovery image is downloaded, it can be used to perform a logical backup of the
boot, cache, data, recovery and system partitions on the Android device. The backups are stored
on the device’s SD card [23]. Obviously, one concern is the integrity of the data on the phone.
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However, generally an Android device does not write data to the recovery.img partition, and
if the examiner uses a different SD card than what was originally attached to the device the few
data will be lost or overwritten. Due to the use of custom recovery images, the ROM Manager

is not available for use on all Android devices. As the Android Market is constantly growing,
newer applications may provide increased functionality and provide service to more Android
devices.

2.3 Network Forensics
Network Forensics examines raw network traffic packets as they traverse the network, and ana-
lyzes network logs after an incident has occurred. The objective is to piece digital clues regard-
ing an incident that may or may not be located on a compromised system. The objective may
be to verify who was logged on during an incident, determine the origin of malicious packets
or verify that a particular workstation was compromised during a breach. As with most digital
data, network traffic contains metadata that identifies unique aspects of traveling data. This
thesis applies Network Forensics towards the retrieval of residual network metadata that may
be found on an Android cellular device. Packetized network traffic contains metadata in the
form of IP addresses, MAC addresses and base station identifying information. Cellular de-
vices have multiple networking interfaces to communicate with external networks. The most
prevalent hardware interfaces that deliver and receive pertinent network metadata include the
cellular radio and the 802.11 radios.

2.3.1 Cellular Networks
A cellular network consists of hierarchy of transceivers, controllers, and gateways to provide
telephony and data services to mobile devices. The following components provide network
services to a mobile device; the Mobile Switching Center (MSC), the Base Station Controller
(BSC) and the Base Station (BS). The remaining elements are primarily administrative and can
be reviewed at [24].

The MSC authorizes mobile devices onto the network and is responsible for call setup, teardown
and call handoffs between BSCs. The MSC controls a number of BSCs and can provide Internet
gateway services.

The BSC allocates radio frequencies to BSs, performs paging and performs handoffs within its
BS domain. The BSC receives telephony service from the MSC and is usually connected to an
Internet gateway to provide Layer 3 service to the mobile device.
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The BS consists of a transceiver that delivers and receives communication from cellular de-
vices. A BS sends beacons on periodic intervals to announce services to cellular devices. These
beacons contain Layer 2 information specific to that base station, along with available Layer 3
services. The Layer 2 information of immediate interest in this thesis is the Mobile Country
Code (MCC), Mobile Network Code (MCC), Local Area Code (LAC) and the base station ID.
Collectively, these four items identify the physical location of the base station.

The International Telecommunication Union identifies the MCC and MNC for each country
[25]. The MCC is a three digit identifier that correlates to specific countries. The MNC is a two
or three digit identifier that distinguishes a cellular service provider within the country identified
in the MCC. The CID relates to a unique base station and the LAC identifies a cluster of base
stations.

A Smartphone’s IP address remains unchanged throughout different cellular network attach-
ments as described in Mobile IP. Mobile IP is a complex protocol. The reader is encouraged to
review RFC 3344 for in-depth understanding of Mobile IP, as we will only describe the main
features [26]. Mobile IP has the following main features:

• Mobile Node: Cellular device that changes it point of attachment from one network to
another.

• Home Agent: A router on mobile node’s home network that tunnels traffic to mobile node
when not on home network. Also maintains mobile nodes current network location.

• Foreign Agent: A router on Foreign network that mobile node is attached.

• Care-of-Address: Usually the foreign agent IP address to deliver traffic to mobile node.

The Smartphone’s Home Agent is usually the MSC, or equivalent, located at its home network.
When on a different network, the Foreign Agent functions are performed by the MSC, or BSC.
When the device attaches to a foreign network, the device sends a Care-of-Address notification
to the Home Agent. When traffic arrives at the Home Agent for the mobile node, the Home
Agent tunnels the traffic to the Care-of-Address for delivery to the mobile node. In the opposite
direction, normal IP routing is utilized. This allows a mobile device to keep its original IP
address when using the cellular radio [27].
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2.3.2 IEEE 802.11
The IEEE 802.11 wireless LAN standard, commonly known as WiFi, provides technical guid-
ance for the Media Access Control and Physical Layer protocols. The standard provides 11
channels in the 2.4 GHz frequency spectrum. 802.11 provides multiple services, including as-
sociation and authentication. We provide an overview of 802.11 association here, the rest of the
standard is beyond the scope of this thesis.

Association is the “service used to establish access point/station (AP/STA) mapping and enable
STA invocation of the distribution system services (DSSs)” [28]. The wireless AP periodically
broadcasts a beacon frame, which includes the AP’s SSID and MAC address. The SSID is a set
of characters that identifies the AP. The broadcast is sent on a designated channel out of the 11
channels available. Note: 11 channels are used in the U.S. and Europe; different channels are
used in Japan. A mobile node scans the 11 channels looking for beacon frames. After a mobile
node scans the channel spectrum, it displays the detected set of SSID’s for the user to choose.
When the user selects a wireless AP an associate request frame is sent from the mobile node to
the AP. The AP will send an association response frame. The mobile node will then send out
a DHCP discovery message to obtain a local IP address. The provided IP address will only be
operational when the mobile node is within the AP’s basic service set range. The mobile node’s
host OS will save the AP’s MAC address and SSID. When the device is in reach of the AP, the
mobile device will automatically associate to the AP.

2.3.3 IEEE 802.15
The IEEE Wireless Personal Access Network (WPAN) 802.15 standard is derived from the
Bluetooth v1.1 specifications [29]. Therefore, Bluetooth referenced in this document will refer
to the Bluetooth and WPAN standards. The Bluetooth standard transmits an omnidirectional
signal in the 2.4GHz frequency to devices within 10 meters. When two or more devices are
within the WPAN, they form a piconet, where one serves as a master and one or more are
slaves. To reduce interference with other networks operating in this band, Bluetooth employs a
frequency-hopping transceiver. The transceiver uses binary frequency shift keying and a time
division duplex (TDD) scheme to enable full duplex communication. A more detailed analysis
of the Bluetooth physical layer is provided in [29].

The Bluetooth TDD scheme provides slotted channels that transmit one Bluetooth packet every
625 microseconds. The packet has an access code, header and payload. The access code is
72 bits and is comprised of a preamble, sync word and a trailer. The access code allows syn-
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Scanner Name Recognizes
scan net Ethernet, IP and TCP packets
scan email RFC822 headers,

hostnames, email addresses, URLs

Table 2.5: bulk extractor scanners and functions.

chronization and identification between devices. The 18-bit header provides link control data
in six fields. The AM ADDR field distinguishes active members on the piconet. The TYPE
field identifies the type of packet. The FLOW field indicates whether to stop or go in a asyn-
chronous connectionless link. The ARQN field provides an ACK to the source. The SEQN
bit provides sequence numbers to order a data stream. Finally, the header-error-check (HEC)
provides header integrity [29].

The 802.15 protocol is similar to the 802.11 protocol. The main difference is the use of a link
key to pair two Bluetooth objects. When two objects try to authenticate for the first time, they
must pair. One Bluetooth object will send a random number to the second object. Once the
operator of the receiving Bluetooth devices accepts, a link key is maintained between the two
devices. The link is typically encrypted, using the random number as a seed for the encryption
key.

2.3.4 Network Carving
In 2010, Garfinkel created the stream-based forensic tool bulk extractor. Garfinkel describes
stream-based forensics as the processing of an entire image as a single bytestream, starting
at the beginning and reading until the end [30] . bulk extractor has a modular design that
incorporates a set of basic scanners, recursive scanners and optional scanners. A few network
relevant scanners are shown in Table 2.5. The source code, containing more information, can be
found at [31]. bulk extractor modules exist to find ASCII IP address and domain names within
both allocated and unallocated areas of carved images. When the net scanner is enabled, it can
also carve binary Ethernet and IP address structures among multiple other data objects.

Beverly Et al. used bulk extractor in their 2011 paper, [32]. The authors showed that Windows,
Linux and OS X operating systems store residual binary network data structures in non-volatile
storage. In their work, they force the OS into hibernation and carve for network data structures
with bulk extractor. Their work showed there was sufficient network forensic evidence on
digital media to determine prior network connections [32].
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CHAPTER 3:

Building the Smartphone Corpus

The forensic community lacks available standardized corpora to test for network data structures
on Android Smartphone devices. Garfinkel Et al. stress the importance of such standardized data
sets; openly available data sets enhance digital forensics through reproducibility, education, tool
testing, and research [33]. This Chapter details the testing environment and hardware used for
our environment (§3.1), the Smartphones under testing (§3.2), and the experimental procedure
and construction of an Android Smartphone corpus (§3.3).

3.1 Test Environment
Determining the existence and extent of residual network data on Android Smartphones re-
quires, for multiple phones, an image of non-volatile storage and an understanding of the de-
vice’s communications.

As part of the larger investigation of using forensics to infer the network connectivity of Smart-
phones, this thesis presents a corpus of Android images in an environment with controlled
Layer-2 and Layer-3 connections. For example, the corpus contains images of Android devices
with data transfers over a TCP/IP and Bluetooth connection to identify interesting network
metadata that persists on the device. Known ground-truth network connections provide the ba-
sis for finding discriminating markers to subsequently infer the network behavior of images of
unknown provenance. The images may be downloaded from the digitalcorpora.org website at
http://digitalcorpora.org/phones/nps/

To create known ground-truth network connections, a controlled environment was created inside
a Faraday cage as shown in Figure 3.1. The environment employs a cellular GSM wireless
network, two 802.11 wireless networks, and a Bluetooth storage device. More specifically, the
components of the test are a Tactical base station router, Cisco access point, web server, D-Link
access point, a Macbook Pro, a network packet capture tool and the Android Smartphones which
are described in detail below. Because each of these network devices are under our control in
our experiments, we can similarly control an Android device’s association and communication
with the network attachment points. Any resulting residual evidence of the network devices is
then of known origin.

23



Figure 3.1: Experiment Set-up.

3.1.1 Faraday Cage

All images are created inside a Faraday cage to ensure that the phone encounters only known and
controlled network radio frequencies (RF). A Faraday cage is a physical enclosure surrounded
by material that blocks external electromagnetic signals from penetrating the cage and internal
electromagnetic signals from leaving the cage. Our Faraday cage is surrounded by copper mesh
that has been empirically tested to block terrestrial network provider’s radio frequencies. The
use of a Faraday cage will ensure that our cellular devices will not be corrupted with external
wireless router and cellular base station metadata — thereby maintaining the integrity of the
experiment. Our Faraday cage is shown in Figure 3.2.

An Anritsu MS2721A spectrum analyzer (SA) verified that the Faraday Cage was free from
external GSM (850MHz, 1900MHz) or 2.4GHz signals. The SA measures the amplitude and
frequency of the electromagnetic spectrum within a specified frequency range. The SA can de-
termine if the amplitude exceeds a threshold and audibly alert the operator. The SA determined
that cellular signals in the 850MHz and 1900MHz bands were not penetrating the cage. Due to
the signal range and strength, during the experiments the SA was centered on 2.458 GHz with
a span of 66 MHz. The 802.11 standard claims the 2.4GHz band. The SA detected 802.11 with
the Faraday cage door open and provided frequent audible alarms. Once the Faraday cage door
was closed, with the SA inside, the SA alarms went silent and the display showed all ampli-
tudes receding below the threshold. The analyzer continued to run during experiments to ensure
integrity.
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(a) Door. (b) Workbench.

Figure 3.2: Faraday Cage.

3.1.2 TacBSR
The Tactical Base Station Router (TacBSR), manufactured by LGS Bell Labs Innovations, pro-
vides the cellular base station functionality. Manufactured to provide deployable cellular net-
works to military and other U.S. government entities, the TacBSR provides service in all four
GSM service frequency bands and can combine multiple cellular networks. The TacBSR pro-
vides two association methods; pre-provisioned and Search and Rescue (SAR) mode. The
pre-provisioned method provides network services to GSM devices that contain a SIM card that
is on the TacBSR’s access control list. The SAR setting allows any GSM based handset to ac-
cess the cellular network through the TacBSR. This setting is intended to give accident victims
cellular network access to SAR responders [34].

NPS-owned SIM cards are provisioned on the TacBSR allowing an Android phone to use the
system. Each SIM card has an IMSI of 915050000000XXX, where the final three digits are
the dialed number. The TacBSR is configured with the network information detailed in Chapter
Two and are itemized in Table 3.1.

3.1.3 WiFi Router
We use a Cisco Linksys E2000 wireless router to provide controlled 802.11n WiFi connectivity
to the Smartphone under test. Its primary function is to provide wireless services to access
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RF Band: E900Mhz
Cell ID: 2
MCC: 915
MNC: 05
LAC: 2

Table 3.1: GSM Base Station Network Settings.

the internal network as depicted in Figure 3.1. A second wireless router provides access to
an external network and the larger internet. A cat-5 copper cable leaves the Faraday cage and
provides connectivity. This second router is a D-Link DI-525 802.11g device. The wireless
router settings are shown in Table 3.2.

Settings Cisco D-Link
SSID AndroidForensics NPS
IP Address 192.168.1.1 192.168.0.1
NAT Range 192.168.1.140–.148 192.168.0.100–.199
MAC C0C1C040CDAB 0011953913D2

Table 3.2: Wireless Router Network Settings.

3.1.4 Bluetooth Device
The examiner’s laptop, a Macbook Pro, is used to transfer files via bluetooth to the Android De-
vice. When associating to the Android device, an associated PIN is prompted to the examiner’s
computer and the Android device prompting the Android user to verify the two numbers match
and accept the incoming connection. Specifics of the Macbook Pro’s Bluetooth hardware are
provided in Table 3.3 and the files transferred over the Bluetooth interface in Table 3.4

Address 00-26-08-bc-d4-14
Manufacturer Broadcom
Name Neptune

Table 3.3: Bluetooth Data for Macbook Pro.

3.1.5 Web Server
The web server runs the Ubuntu 10.04 operating system with the Linux 2.6.32 kernel. The
web server provides access to three files of varying sizes. The web server’s Ethernet interface
is assigned the primary IP address 192.168.1.117. To uniquely identify each download and
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File Name Size
to build be.txt 4KB
androidarch.jpg 201KB
trailheadmap.pdf 1.1MB

Table 3.4: Files transferred via Bluetooth.

later distinguish between network connections, the web server’s Ethernet is also assigned three
virtual IP addresses. The web server simulates Internet connections and Internet “activity,” but
in a controlled environment. The file names, sizes, and their virtual IP address are delineated in
Table 3.5

File Name Size Virtual IP Address
huge.img 10MB 192.168.77.1
large.img 1MB 192.168.77.2
small.img 10KB 192.168.77.4

Table 3.5: Files provided by file server.

3.1.6 Examiner’s Computer
The external computer used to acquire data from the phone’s partitions requires the Android
SDK in our image techniques [22]. Methods described in Chapter Two are available, but the
SDK acquisition technique is relatively well accepted and reliable. The Android SDK provides
tools to communicate via USB with the Android device from the examiner’s computer.

3.2 Smartphones under Test
Two Android-based Smartphones are used in the experiments, an HTC Nexus One and the
Samsung Nexus S. Two phones are used to show the differences, if any, between YAFFS2
and EXT4 files systems when storing network metadata. The HTC-manufactured Nexus One
was the first Android device co-developed by Google. The Nexus One uses the YAFFS2 file
system and is sold unlocked, meaning it will work with any cellular provider, and permits the
installation of arbitrary and unsigned applications.

The Samsung Nexus S was the second phone co-developed with Google. The Nexus S uses
the EXT4 file system for non-volatile storage of the system, userdata and media partitions.
However, it also uses the YAFFS2 file system in mtd partitions similar to the Nexus One shown
in Table 3.6.
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The experiments here were limited to two devices due to time considerations. Each Android OS
Smartphone manufacturer has the ability to change performance factors on their device. This
leads to the possibility that different manufactured devices will behave differently, which is not
considered in this thesis.

dev/ size erasesize name
mtd0 00200000 00040000 “bootloader”
mtd1 00140000 00040000 “misc”
mtd2 00800000 00040000 “boot”
mtd3 00800000 00040000 “recovery”
mtd4 1d580000 00040000 “cache”
mtd5 00d80000 00040000 “radio”
mtd6 006c0000 00040000 “efs”

Table 3.6: Nexus S YAFFS2 mtd blocks.

3.2.1 Smartphone Configuration
The software specifications of each device is given in Table 3.7. VERIFY NS MAC ADDY

Settings Nexus S Nexus One
Linux kernel 2.6.35.7 2.6.32.9
Android OS 2.3.1 2.3.3
Android Build GRH78 FRG83
Processor 1GHz Cortex 1GHz Tegra 2
File System EXT4 YAFFS2
Flash 16GB iNAND 16GB NAND
IMSI 915050000000120 915050000000122
MAC B4:07:F9:F0:AD:77 90:21:55:2C:4D:67
Bluetooth MAC 3C:5A:37:89:40:90 90:21:55:2C:4D:67
RAM 512 MB 512 MB

Table 3.7: Smartphone configurations.

The Android OS provides a debugging protocol adb across a USB interface to external plat-
forms that have the Android SDK installed. To use the adb protocol, the USB debugging mode
must be enabled on the device. USB debugging is enabled under Settings/ Applications/

Development as shown in Figure 3.4.

To image devices at the block level, the Smartphones must be “rooted” as discussed in Chapter
2. The Nexus S is rooted using the superboot tool. Superboot flashes a customized boot.img
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(a) Nexus One (b) Nexus S

Figure 3.3: Android Smartphones used in experiments.

file to the Android device. From the superboot directory in the examiner’s computer, the
superboot tool was used to unlock the bootloader of both devices with the ./fastboot-mac

oem unlock command. The Nexus S is then rooted using superboot’s provided install tool,
install-superboot-mac.sh command. Superboot is available for download with rooting
instructions from [35].

The two devices use different Android OS versions. Rooting techniques depend on exploita-
tions found in each version, so the two devices require different rooting applications. The
Nexus One is rooted with the Gingerbreak.exe application. From the examiner’s computer,
Gingerbreak installs itself on the Android Device which is tethered via USB to the examin-
ers computer. The Gingerbreak application on the device is selected, prompting the user to
confirm the rooting action. The Gingerbreak application is available from [36].

The logical acquisition technique we employ utilizes the ROM Manager application, available
from the Android market. The application will provide logical dumps of the file systems to
analyze and compare to the physical dumps the Android SDK provides. The download installs
the ROM Manager application onto the device. To perform logical backups, the application
needs to flash a custom recovery image to the Android device. Under the application’s main
screen, select Flash ClockworkMod Recovery, and the application prompts the user to select
the correct device. The ROM Manager downloads and flashes a recovery image for the specific
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Figure 3.4: The USB Debugging Option.

Android device. The ROM Manager main screen is show in 3.5. To perform the backup, the
Backup Current ROM is selected. The prompt to conduct a backup is show in 3.5.

(a) Main screen. (b) Backup prompt.

Figure 3.5: ROM Manager screen shots.
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3.2.2 Associating a Google Account
One of the benefits of using an Android Smartphone is associating a Google Gmail account,
which provides seamless email pushing to the mobile device and availability to use the Gmail
account to interact with other Google applications. Google has a rich set of applications familiar
with most users which can enhance everyday activities like using its calendar, Google Earth
or even Google Latitude to search for friends. As the applications run, they are constantly
streaming data to and from Google servers in the background. When the Google account is
initially associated to the Smartphone, user data is synced to the phone and other packages are
pushed to the device. One of particular interest is the Google Location package, which will
instantiate the cache.cell and cache.wifi files after the association is complete. For our
experiments, we associated the previously created nps.forensics@gmail.com account.

3.2.3 Imaging Techniques
Each mobile device was imaged inside the Faraday cage prior to conducting the experiments.
The Nexus S was a newly acquired phone which was briefly used on the campus network. Its
use was limited to downloading and testing the ROM Manager on the device. The NPS owned
Nexus One has prior limited use with student experiments. We therefore provide a close as
possible virgin, baseline copy of data on the phone’s flash memory by flashing an unused stock
userdata.img file to the device prior to each experiment, outlined in the data wiping section
below.

A Clockwordmod ROM Manager backup is performed first, which provides a logical acquisition
of the device. The following steps perform the backup:

1. Launch ROM Manager.

2. Select backup ROM.

3. The ROM Manager will prompt a data and timestamp of the backup as shown in 3.5.
Select OK.

The Nexus S device is then imaged using the adb pull command:

1. adb pull /dev/mtd/mtd0ro

2. adb pull /dev/mtd/mtd1ro
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3. adb pull /dev/mtd/mtd2ro

4. adb pull /dev/mtd/mtd3ro

5. adb pull /dev/mtd/mtd4ro

6. adb pull /dev/mtd/mtd5ro

7. adb pull /dev/mtd/mtd6ro

8. adb pull /dev/block/mmcblk0

The Nexus One rooting technique does not allow direct use of the adb pull command. To gain
superuser access, the adb shell must be initiated, and root access gained (su). In contrast,
the rooting technique for the Nexus S gave the adb shell superuser status without user input.
Therefore, the access permissions of each mtd block must be changed, using chmod, prior to
performming an adb pull. Specifically, the device is attached to the examiner’s computer via
USB, then:

1. adb shell. Initiates ash shell on Android device.

2. su. Provides superuser status to shell.

3. chmod 777 /dev/mtd/mtd0ro.

4. chmod 777 /dev/mtd/mtd1ro

5. chmod 777 /dev/mtd/mtd2ro

6. chmod 777 /dev/mtd/mtd3ro

7. chmod 777 /dev/mtd/mtd4ro

8. chmod 777 /dev/mtd/mtd5ro

9. exit. Leaves the superuser status.

10. exit. Quits the shell session.

11. adb pull /dev/mtd/mtd0ro
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12. adb pull /dev/mtd/mtd1ro

13. adb pull /dev/mtd/mtd2ro

14. adb pull /dev/mtd/mtd3ro

15. adb pull /dev/mtd/mtd4ro

16. adb pull /dev/mtd/mtd5ro

3.2.4 Data wiping method
After completion of each experiment, the logical and physical images are acquired by the ex-
aminer’s computer. Next, the mobile device’s userdata partition is erased by attaching to
the examiner’s computer via USB and performing the commands below. The ROM Manager

applications must be pushed back to the device from the SD card or the examiner’s computer.

Empirical tests have shown that the Factory Data Reset will remove data from the userdata
partition. To ensure the data doesn’t persist between experiments, we will flash an unused
userdata.img file thereby overwriting the current userdata partition. The userdata.img

file is a stock image file that is used to overwrite the existing userdata partition. The file contains
initial data to inform the file system that it’s the start of the userdata partition, and is then filled
with 0xFF values. The file is available from [37]. Zeroes are added to the userdata.img file
to create a file large enough to fill the partition to overwrite any lingering data from previous
experiments.

The following procedure is used on the Nexus S Android device:

1. Select settings.

2. Select Privacy.

3. Select Factory Data Reset, Figure 3.6

4. Select Reset Phone.

5. Select Erase everything.

The following actions are taken on the examiner’s computer:
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Figure 3.6: Android Factory Data Reset Option..

1. fastboot erase userdata.

2. Nexus One Only. fastboot flash userdata userdata2.img.

3. Nexus One Only. fastboot erase userdata.

4. fastboot flash userdata userdata.img.

5. fastboot reboot.

The ROM Manager application was stored on the Nexus One’s SD card. Since the Factory
Data Reset removes all user installed applications, it must be reinstated after every reset. The
following commands are used for readying the Nexus One:

1. adb shell

2. su

3. cd /sdcard

4. dd if=com.koushikdutta.rommanager-1.apk

of=/data/app/com.koushikdutta.rommanager-1.apk

34



5. chmod 644 /data/app/com.koushikdutta.rommanager-1.apk

6. reboot

The Nexus S ROM Manager application has to be pushed to the device after each Factory Data
Reset. The following commands are used for the readying the Nexus S:

1. adb push com.koushikdutta.rommanager-1.apk

/data/app/com.koushikdutta.rommanager-1.apk

2. adb shell reboot

3.2.5 Commercial Application Data Storage
We include an experiment with the popular Facebook Android application to explore how
such applications store network data, if any. A Facebook account with the email address
nps.forensics@gmail.com and user name NPS Forensics is used for Facebook credentials.
The account does not have any friends and is used to post status updates and pictures. While
the Nexus One has the Facebook application pre-installed, the Nexus S requires the application
to be pushed from the command prompt. For the Nexus S experiments containing Facebook
access, the following action is taken at the examiner’s computer after the ROM Manager appli-
cation is pushed to install the Facebook for Android 1.2 application to the Nexus S:

1. adb push facebook for android 1.2.apk

/data/app/facebook for android 1.2.apk

3.3 Images
Table 3.8 is an overview of the images provided by this thesis. The experiments are ordered
by smallest to largest data footprint each experiment will have on flash memory. Although a
Factory Data Reset was performed along with overwriting the user data partition with zeros,
this order helps ensure that older files are overwritten by new data.

The following experiments provide an in-depth examination of flash memory after the Android
device transfers data through different network interfaces. Two network interfaces will conduct
data transfers; the wireless 802.11 interface and the Bluetooth 802.15 interface. The stock web
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Name Summary
2011-NexusX-1 Pseudo-factory reset
2011-NexusX-1.5 Google account association
2011-NexusX-2 Network beacon metadata
2011-NexusX-3 Bluetooth metadata
2011-NexusX-4 Small file transfer over IP
2011-NexusX-5 Large file transfer over IP
2011-NexusX-6 Facebook application use
2011-NexusX-7 Combined with telephony

Table 3.8: Images created for study.

browser and a downloaded application will transfer data over 802.11. The popular Facebook
application provides an instance to study how applications store network data within the flash
data partition.

Note, all experiments are preceded by accessing an external network with Internet access. The
ROM Manager requires Internet access to download the recovery image that provides the logical
image functionality. To mitigate contaminating the device with network data, the network traffic
to and from the device was captured with the Wireshark traffic monitoring tool. The pcap output
file provides data that is verified against the resulting images, and accounts for all traffic to and
from the device.

The following list of actions are performed prior to each experiment with the exception of 2011-
NexusX-1.

1. Power on D-Link router.

2. On Android device: select Settings.

3. Select Wireless & Networks.

4. Select Wi-Fi Settings.

5. Select Wi-Fi Turn On.

6. Select NPS, then select connect.

7. Select Settings.
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8. Select Accounts & sync.

9. Enter Google Account. Our account is nps.forensics@gmail.com.

10. Initiate ROM Manager application.

11. Select Flash ClockWorkMod Recovery.

3.3.1 2011-NexusX-1
This experiment provides the baseline Factory Data Reset and flashing operation baseline to
wipe user data. The baseline includes the device associating to the D-Link router to get the
recovery image, but does not associate a google account to the device.

1. Wipe Android device in accordance with erasing methods delineated above.

2. Image Android device.

3.3.2 2011-NexusX-1.5
This will determine how associating a google account to an Android device will effect the
device. This image is processed based on the list under the Experiment section, which associates
a google account and downloads the ROM Manager recovery image.

3.3.3 2011-NexusX-2
This experiment will determine how the cellular device retains network metadata based off
associating to network nodes and processing wireless beacons.

1. Power on Cisco Router.

2. On Android device: select settings.

3. Select Wireless Networks.

4. Select Wi-Fi Settings.

5. Turn on Wi-Fi radio.

6. Select AndroidForensics.
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7. Select connect.

8. Power on TacBSR.

9. To ensure device scans TacBSR.

10. Select Settings.

11. Select Wireless & Networks.

12. Select Mobile Networks.

13. Select Network Operators.

14. Select Search Networks.

15. Power on D-Link Router.

16. Let run for 1 minute.

17. Power off D-Link.

18. Power off TacBSR.

19. Power off cisco router.

20. Image Android Device.

3.3.4 2011-NexusX-3
Associating with Bluetooth Devices This experiment show how Bluetooth network metadata
persists on the Android device. Note that the Nexus One saves Bluetooth transferred files to the
SD card, which is not imaged as part of these experiments.

1. On Android device: select Settings.

2. Select Wireless & networks.

3. Select Bluetooth settings.

4. Enable Bluetooth.
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5. On the Macbook: Power on Bluetooth radio.

6. On the Macbook: Enable Bluetooth sharing.

7. Pair Bluetooth device to Android device.

8. On the Macbook: Send to build be file.

9. On Android device: Pull down notifications list and accept incoming file.

10. On the Macbook: Send androidArch.jpg file.

11. On Android device: Pull down notifications list and accept incoming file.

12. On the Macbook: Send trailheadmap.pdf file.

13. On Android device: Pull down notifications list and accept incoming file.

14. Power off Bluetooth, Macbook.

15. Image Android Device.

3.3.5 2011-NexusX-4, 2011-NexusX- 5
This experiment will check the Android device for network data structures after downloading
different files sizes from the local file server. This test is conducted for the small and large files
as indicated in Table 3.5. The 2011-NexusX-4 image will download the small.img file. The
2011-NexusX-5 image will download the large.img file.

1. Power on TacBSR.

2. Power on cisco router.

3. Associate to TacBSR.

4. Select Settings.

5. Select Wireless & Networks.

6. Select Mobile Networks.

7. Select Network Operators.
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8. Select Search Networks.

9. Select 91505.

10. Associate Android device to cisco router.

11. Select Wireless Networks.

12. Select Wi-Fi Settings.

13. Turn on Wi-Fi radio.

14. Select AndroidForensics.

15. Select connect.

16. On Android device open web browser.

17. Point browser to specified IP address.

18. Download file.

19. Power off TacBSR.

20. Power off cisco router.

21. Image device.

3.3.6 2011-NexusX-6
This experiment intends to show how applications store network data structures and determine
how they persist on the Android device. This experiment will use the Facebook application, as
it is very popular and comes installed on some Android devices.

The Nexus S did not come with Facebook pre-installed, so it was pushed from the examiners
computer to the mobile device.

1. Power on D-Link router.

2. Associate device to router.

3. Select Wireless Networks.
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4. Select Wi-Fi Settings.

5. Turn on Wi-Fi radio.

6. Select NPS.

7. Select connect.

8. Open Facebook application.

9. Authenticate credentials to Facebook application.

10. Post a status update on Facebook application.

11. Check profile wall.

12. Upload first image.

13. Upload second photo.

14. Power off wireless router.

15. Image Android device.

3.3.7 2011-NexusX-7
This experiment encompasses all network data structures captured in previous experiments. We
will also place phone calls between two devices on the same TacBSR. The telephony data is not
relevant to this thesis, but will be useful data for the public corpus.

1. Power on D-Link router.

2. Associate to D-Link router.

3. Select Wireless Networks.

4. Select Wi-Fi Settings.

5. Select NPS.

6. Select connect.
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7. On Android device: select Settings.

8. Select Wireless & networks.

9. Select Bluetooth settings.

10. Enable Bluetooth.

11. On the Macbook: Power on Bluetooth radio.

12. On the Macbook: Enable Bluetooth sharing.

13. Pair Bluetooth to Macbook.

14. On the Macbook: Send to build be.txt file.

15. Open Facebook application. Update profile status.

16. Power on TacBSR.

17. On Android device: Select Settings.

18. Select Wireless & Networks.

19. Select Mobile Networks.

20. Select Network Operators.

21. Select Search Networks.

22. Select 91505.

23. Place phone call between devices. 20s.

24. Open Facebook application. Upload first image.

25. On the Macbook: Send AndroidArch.jpg file.

26. Power on cisco router.

27. Associate device to cisco router.

28. On Android device: Select Wireless Networks.
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29. Select Wi-Fi Settings.

30. Select AndroidForensics.

31. Select connect.

32. Open web browser.

33. Point browser to specified IP address.

34. Download the huge.img file.

35. On the Macbook: Send trailheadmap.pdf file.

36. On Android device: Select Wireless Networks.

37. Select Wi-Fi Settings.

38. Select NPS.

39. Select connect.

40. Open Facebook application. Upload second image.

41. Power off TacBSR.

42. Power off D-Link router.

43. Power off Cisco router.

44. Image Android device.
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CHAPTER 4:

Data Recovery

The following image analysis will test the hypothesis that the Android OS persists network
metadata to flash non-volatile memory. To test this hypothesis, we will determine whether the
network data structures created in Chapter 3 persist, either on currently allocated or unallocated
pages of the flash file system.

4.1 Analysis Preparation
This chapter analyzes both the physical and logical images recovered from flash memory. An-
alyzing both is important for e.g., mapping discovered network metadata to the corresponding
allocated pages within the file system, or to determine that the data is not longer current, i.e.,
unallocated, in the file system. Recovered images contain contain different file system parti-
tions: the YAFFS2 flash file system and the Linux-based EXT4 file system. Therefore, for the
image analysis, we use two file analysis methods. For YAFFS2, we will perform a physical
examination of the YAFFS2 OOB data. For EXT4, we will mount the EXT4 file system onto a
Linux machine. The two methods will provide network metadata association to files in accor-
dance with each file system. To determine what network data structures reside on non-volatile
memory, network metadata signatures are developed to search for network data structures of
interest (§4.1.1).

YAFFS2 File Analysis
Regan showed that YAFFS2 stores the file ID in ASCII within the flash out-of-band (OOB) area
that directly follows the data within a flash page [10]. After one of the carving tools identifies
relevant network metadata (§4.1.2), that data can easily be accessed through a hex editor search
function. The hex editor Synalyze It is used to conduct this analysis. Synalyze It search function
provides the user with a separate window pane to review the search results. The results show the
data’s offset within the file and shows the previous 5 bytes leading up to the data. This provides
the examiner an indication if the data is from the same file, which is manually inspected against
the OOB contents. Once the data structure is found, the OOB area will identify the original file
name given containing the network metadata. This provides a simple method to identify the file
that created the residual network metadata.
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EXT4 File Analysis
File analysis with the EXT4 file system is performed by mounting the Nexus S EXT4 partitions
(system, userdata, internal SD card) with the mount -t ext4 /filedir /mnt -o loop -r

command. Once mounted, a file can be found with the find /mnt filename -depth com-
mand for further analysis. The computer performing this service is a Ubuntu 11.04 with a Linux
2.6.38-10 kernel.

The EXT4 flash partitions do not contain the file metadata in OOB, therefore a different method
must be used. Examining the file contents found in YAFFS2 tests showed the same files stored
the network metadata in the EXT4 file system. The YAFFS2 analysis could be conducted with
a Linux kernel compiled to allow a YAFFS2 file system support. The YAFFS2 analysis method
employed for this thesis was provided to give a second analysis method that is quick and easy
to implement.

4.1.1 Carving Signatures
IMSI
The International Mobile Subscriber Identity (IMSI) value is a 15 digit value where the first
five digits are the MCC followed by the MNC. The remaining 10 digits are the device’s Mobile
Subscription Identification Number (MSIN), which is commonly referred to as the device’s
telephone number. The IMSI is stored on a Subscriber Identity Module (SIM) in GSM devices.
The Android device’s IMSI values can be found in §3.2.

Empirical tests have shown that the IMSI is commonly found in userdata partitions on Android
devices coded in ASCII. Through exhaustive YAFFS2 and EXT4 file analysis techniques, we
can attribute all discovered 15 digit IMSI strings on the physical image to two separate files;
the CheckinService.xml file located under the /data/ data/ com.google.android.gsf/

shared prefs/ directory and from the IMSI column in the accounts database file located in
the /data/ system/ registered services/ directory.

The Checkin Service is an Android service that looks for updates to the device’s firmware and
updates to applications that have been downloaded from the Android market. When the service
is invoked, it saves multiple data including the firmware and the IMSI value on the device.

The signature developed for the netcarver tool identifies the string CheckinService lastSim

and stores the value within the following XML struct > and < brackets. The signature also
searches for the string imsi and copies the following 15 digits into memory. When a userdata
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partition was loaded onto netcarver , the tool found all instances of the IMSI that was iden-
tified through the hex editor. netcarver itemizes the captures by the previous 2 hexadeci-
mal values. In each instance, there were two captures, multiple IMSI values attributed to the
CheckinService.xml file and one instance attributed to the textttaccounts database. This only
scans for IMSI numbers stored in ASCII/UTF-8.

SSID
The Service Set Identifier (SSID), initially described in §2.3.2, is the set of ASCII characters
that identifies a wireless access point. Thorough YAFFS2 and EXT4 file analysis techniques
prosecuted against SSID values of known provenance allows us to attribute all discovered SSID
strings to the wpa supplicant.conf file located under the /data/ misc/ wifi/ directory.
When a device associates to a wireless router, the wpa supplicant.conf file will store the
SSID and the associated pre-shared key password, if one is required.

The signature developed to identify SSIDs searches for the string “ssid=” and then saves the
SSID that is bookended by quotation marks. This method was implemented into netcarver

which proved to retrieve all SSID instances in the userdata partition. Allocated and when ap-
plicable, unallocated wpa supplicant.conf instances were recovered. The netcarver results
were verified against the instances found with the hex editor.

Cellular Base Stations
Cellular base stations transmit four locational metadata items of interest originally covered in
§2.3.1. The Mobile Country Code (MCC), Mobile Network Code (MNC), Base Station Iden-
tifier (CID) and Local Area Code (LAC) identify a cellular base station to a physical location.
ITU standards put MCC and MNC values as 3 and 2 digits respectively [25]. Currently, there
is not an openly available source that standardizes CID and LAC values. Empirical tests have
shown CIDs with up to 2 ASCII digits and LACs up to 4 ASCII digits present on Android
devices.

Empirical tests have shown the google location package cache.cell file, located under /data/
data/ com.google.android.location/ files directory saves base station metadata in the
MCC:MNC:CID:LAC format coded in ASCII. The cellular network metadata format was found
by examining the textttadb get-state report. The get-state command performs a RAM dump
of the connected device which includes multiple data, including CID, LAC, MNC and MCC
values. Using the values found in the get-state report, an exhaustive YAFFS2 and EXT4
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file analysis for the binary and ASCII metadata values revealed the metadata was stored by the
cache.cell file.

The signature used to identify cellular base station metadata stored by the cache.cell file
searches for a data structure in colon-digit notation, X:X:X:X, where each X represents up
to four octets. This method produces false positives, but upon manual inspection, most false
positives are easy to filter. As before, we only scan for metadata in ASCII.

MAC Addresses
Wireless access points contain a Layer 2 Media Access Control (MAC) address as articulated
in §2.3.2. The canonical MAC notation is six hexadecimal bytes separated by colons, shown
as 11:22:33:AA:BB:CC. MAC addresses are not duplicated so they are unique to each device.
Searches are conducted for MAC addresses coded in ASCII and binary.

Our file analysis methods show that the google location package cache.wifi file located un-
der the /data/ data/ com.google.android.location/ files directory accounts for all
ASCII coded MAC address data from wireless access points. The file saves the MAC address
of associated wireless access points. The file only saves the MAC address.

Bluetooth radios also have unique MAC addresses (BTADDR). Observed BTADDRs from asso-
ciated devices persist on an Android device coded in ASCII and are found in multiple files. The
files attributed to associated BTADDRs and the frequency of their activity is found in §4.2.3.

DHCP Acknowledgments
The Dynamic Host Configuration Protocol (DHCP) dynamically assigns IP addresses to nodes
on a network [38]. When a node associates to a network, it sends a DHCP Request to the DHCP
server. If all conditions are met, the DHCP server ultimately responds to the requesting node
with a DHCP ACK that contains the requesting node’s new IP address, the DHCP server’s IP
address and the requesting node’s gateway IP address. The DHCP ACK payload contains the
Bootstrap Protocol (BOOTP), which was the predecessor to DHCP. The BOOTP has multiple
fields, which includes the IP address of the client and server. The first three BOOTP bytes are
found in Table 4.1.

Multiple observations of a router’s big endian binary RFC1918 IP address persisting on the An-
droid device’s userdata partition reveals the file responsible the IP address data begins with
the hexadecimal values 0x020106. Manually inspecting the file on the Android device against
the BOOTP shows that the BOOTP section of a DHCP ACK persists on the Android userdata
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partition. File analysis shows the file preserving the data is the dhcpcd-eth0.lease file, lo-
cated under the /data / misc/ dhcp/ directory. When two routers are used, or the single
routers lease expires we find multiple DHCP ACKs all attributed to the dhcpcd-eth0.lease

file.

The signature method developed for DHCP ACKs identifies the first three BOOTP bytes when
they follow a 0xFF byte. The 0xFF byte is the end of empty space before the new page starts
at 0x020106. In first-hand experiments, when searching for 0x020106 presents hundreds of
false positives. Using the 0xFF byte as a filter presented at most two false positives. Once the
DHCP ACK is identified, the signature copies the nodes IP address which begins 17 bytes offset
from the start of the page. The search algorithm can easily be manipulated to return the DHCP
server’s IP address as well which is present at the end of the DHCP ACK.

Byte Hex value Bootstrap Protocol
1 0x02 DHCP Boot reply
2 0x01 Hardware type: Ethernet
3 0x06 Hardware address length

Table 4.1: First three bytes of the bootstrap protocol.

Binary IP Addresses
While cellular and wireless base station identifiers provide a potential record of the physical
locations of a mobile Android device, they give no indication of with whom the device commu-
nicated. One potential source of communication data is residual binary IP addresses.

To determine if binary IP addresses from the connection to the external internet and the internal
web server persist on the Android device, we use the captured corpus pcap files to determine
ground-truth IP addresses. To obtain a list of IP addresses to search for, we use Wireshark to
filter the network capture to include only the IP address given to the D-Link router. IP packets
addresses to and from the D-Link router are filtered by conversation to show the second node’s
IP address. The Cisco router’s RFC 1918 address, the web servers IP address, the D-Link
router’s and Android device’s RFC 1918 addresses are added to the Wireshark capture list.
The ipcarver network carving tool, described below, examines the flash media in search of the
binary IP addresses. If ipcarver identifies a potential IP address data structure, the data structure
is analyzed with the netcarver carving tool described below. The netcarver data is presented
as a table within each analysis section.
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Note, the system partition is not overwritten or otherwise forensically cleared (wiped) after
each experiment, therefore once binary IP addresses are written to that partition, they are pre-
sented in the appropriate section, then not referenced again, even if found in a different exper-
iment. Also, binary IP addresses correlating to DHCP ACKs are not included in the binary IP
tables.

Network Metadata Signature Summary
Table 4.2 summarizes the carving signatures based on the preceding analysis using ipcarver and
netcarver against the corpus images for each type of network metadata considered.

Metadata Signature
IMSI “CheckInService lastSim>”
SSID “ssid=”
Cellular Base Stations MCC:MNC:CID:LAC
MAC Address 11:22:33:AA:BB:CC
DHCP ACK 0xFF020106

Table 4.2: Network metadata signatures.

4.1.2 Carving Tools
To the best of our knowledge, our work is the first to recover network metadata from Android
flash memory. The bulk extractor tool carves low level binary network data structures, but the
tool disregards binary data structures that are not in an IP packet or network socket format [32].
The analysis in this chapter is therefore the result of using two tools: ipcarver and netcarver , a
tool created specifically to extract network metadata pertinent to this thesis.

The first tool, ipcarver is an NPS-internal program used to perform the N-gram frequency anal-
ysis in [32] and eventually modeled the network carving modules for bulk extractor. ipcarver

performs a grep-like search for binary IP and MAC data structures. When a data structure is
found, ipcarver will provide the operator feedback on whether the data structure is a valid bi-
nary IP address (based on checksum) and provide an N-gram frequency output to discriminate
surrounding bytes of potential IP packets. Each experiment’s network traffic capture pcap file
provides the IP and MAC address granularity to search for specific data structures that might
persist on each image.

netcarver is another network carving tool based on the ipcarver framework, but modularized to
search for data signatures identified in §4.1.1.

50



4.2 Image Analysis
The images created in Chapter §3 were analyzed for network data structures using the aforemen-
tioned ipcarver and netcarver carving tools and the signatures in Table 4.2. The 2011-NexusX-1
baseline image was analyzed for data structures resulting from the required internet access to
download the ROM Manager recovery image. The baseline images are then compared to the
2011-NexusX-1.5 images to delineate any changes. Thereafter, the 2011-NexusX-1.5 images
are considered the baseline image due to each remaining experiment’s requirement to associate
the google account, as discussed in §3.2.2, with the Android device.

The physical image partitions remain the same size through each experiment, while the cache

and data partitions fluctuate in the logical images as shown in Table 4.3.

Partition Nexus One Nexus S
mtd0ro 918 KB 2.1 MB
mtd1ro 4.2 MB 1.3 MB
mtd2ro 3.7 MB 8.4 MB
mtd3ro 152 MB 8.4 MB
mtd4ro 99.6 MB 492.3 MB
mtd5ro 205.8 MB 14.2 MB
mtd6ro N/A 7.1 MB
mmcblk0p1 N/A 536.9 MB
mmcblk0p2 N/A 1.07 GB
mmcblk0p3 N/A 14.31 GB

(a) Physical images

Partition Nexus One Nexus S
boot 3.7 MB 8.4 MB
cache 5 — 70 MB 16 KB
data 13 — 14.8 MB 24.3 — 28.2 MB
recovery 4.2 MB 8.4 MB
system 129.2 MB 155.3 MB

(b) Logical images

Table 4.3: Experiment partition sizes.

Table 4.4 reiterates the images produced in Chapter §3. These images will be scrutinized for
network metadata identified in §4.1.1. Each image contains two versions; the 2011-NexusX-Y
version represents the physical acquisition method and the 2011-NexusX-Y-1 version represents
the logical acquisition method. Both are described in §3.2.3.

The 2011-NexusX-7 images are presented in the Associating a Google Account analysis section
because the Nexus One did not instantiate the cache.wifi and cache.cell files until the final
experiment. Empirical testing shows there was no deterministic point at which these files were
written to non-volatile memory. We leave a more detailed investigation to future work.

Each image will then be analyzed and presented by relevant sections:
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• Baseline Image: 2011-NexusX-1

• Associating a Google Account: 2011-NexusX-1.5 and 2011-NexusX-7

• Effects of File Transfer via Bluetooth: 2011-NexusX-3

• Effects of File Transfers: 2011-NexusX-4 and 2011-NexusX-5

• Effects of Application Use: 2011-NexusX-6

Name Summary
2011-NexusX-1 Baseline Image
2011-NexusX-1.5 Google account association
2011-NexusX-2 Network beacon metadata
2011-NexusX-3 Bluetooth metadata
2011-NexusX-4 Small file transfer over IP
2011-NexusX-5 Large file transfer over IP
2011-NexusX-6 Facebook application use
2011-NexusX-7 Combined with telephony

Table 4.4: Images created for study.

4.2.1 Baseline Image Analysis
The 2011-NexusX-1 image provides a baseline from which to examine further network data
structures.

Nexus One Results:
Item Count
ASCII IMSI (915050000000122) 15
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
Binary IP address 192.168.0.1
in the system partition 51

Table 4.5: 2011-NexusOne-1 Quick Summary.

As indicated in Chapter 3, the baseline image required internet access to download the ROM

Manager custom recovery image. The corresponding wireless router association initiated a
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Item Count
ASCII IMSI (915050000000122) 2
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
Binary IP address 192.168.0.1
in the system partition 51

Table 4.6: 2011-NexusOne-1-1 Quick Summary.

DHCP request that prompted the D-Link wireless router to respond with a DHCP ACK. The
DHCP ACK persists in the userdata partition as shown in Figure 4.1. Both images contained
one instance of the binary IP address 192.168.0.100 from the DHCP lease file. Both instances
contain the same four-byte Bootstrap Protocol Transaction ID number 0x25C7B67F. With a fair
degree of certainty, we can conclude that these two files are the same.

The D-Link router’s SSID “NPS” persists on the userdata partition. The wpa suppliant.conf

file wrote the data to memory as shown in Figure 4.2. This data persists in one instance on both
the physical (a) and logical (b) images.

The 2011-NexusOne-1 userdata partition contains 15 instances of the IMSI number. The
CheckInService.xml file accounted for 14 of those data instances, while one instance is con-
tained in the account database file.

Count IMSI
14 915050000000122
1 915050000000122

(a) 2011-NexusOne-1

Count IMSI
1 915050000000122
1 915050000000122

(b) 2011-NexusOne-1-1

Table 4.7: IMSI captures from the 2011-NexusOne-1/1-1 userdata partitions.

Table 4.8 shows the possible binary IP addresses located in the system partition. The unsigned
32-bit integers represent the IP address of the D-Link router used to access the internet.
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(a) 2011-NexusOne-1 (b) 2011-NexusOne-1-1

Figure 4.1: DHCP ACK found in 2011-NexusOne-1/1-1 userdata partitions.

(a) 2011-NexusOne-1

(b) 2011-NexusOne-1-1

Figure 4.2: SSIDs found in 2011-NexusOne-1/1-1 userdata partitions.
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Count IP Address Preceding 2-gram Partition Endian
50 192.168.0.1 0x3CC1 mtd3 Little
01 192.168.0.1 0x16EF mtd3 Little

(a) 2011-NexusOne-1

Count IP Address Preceding 2-gram Partition Endian
50 192.168.0.1 0x3CC1 system Little
01 192.168.0.1 0x16EF system Little

(b) 2011-NexusOne-1-1

Table 4.8: 2011-NexusOne-1/1-1 Binary IP Address captures.
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Nexus S Results:
Item Count
ASCII IMSI (915050000000120) 9
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
Binary IP address 192.168.0.1
in the system partition 24
Binary IP address 192.168.0.1
in the userdata partition 2
Binary IP address 74.125.224.43
in the radio parttition (mtd5ro). 1

Table 4.9: 2011-NexusS-1 Quick Summary.

Item Count
ASCII IMSI (915050000000120) 2
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
Binary IP address 192.168.0.1
in the system partition 14
Binary IP address 192.168.0.1
in the userdata partition 2

Table 4.10: 2011-NexusS-1-1 Quick Summary.

The Nexus S show behavior very similar to the Nexus One. The required internet access results
in the D-Link router’s SSID “NPS” persisting on the userdata partition as shown in Figure
4.3. The device also stores DHCP ACKs in the userdata partition as shown in Figure 4.5.
The IP address of the Nexus S, 192.168.0.100, is highlighted in Figure 4.5 while the D-Link
router’s IP address of 192.168.0.1 can be seen in hexadecimal 0xC0A80001 on the bottom of
the Figures.

The userdata partition contains 9 instances of the IMSI number itemized in Table 4.11.

As was the case for the Nexus One, the CheckInService.xml file accounts for eight IMSI in-
stances and the /data/ system/ accounts.db file accounts for one instance. The CheckInService.xml
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file does have one instance different from the remaining seven. The difference is shown in Fig-
ure 4.4, indicated by a “no-sim” value prior to the IMSI number. We are unable to determine
why the Nexus S CheckInService.xml file wrote the no-sim value to memory, we leave this
to future work.

(a) 2011-NexusS-1

(b) 2011-NexusS-1-1

Figure 4.3: SSIDs found in 2011-NexusS-1/1-1 userdata partitions.

Count IMSI Preceding 2-gram
7 915050000000120
1 915050000000120
1 915050000000120

(a) 2011-NexusS-1

Count IMSI Preceding 2-gram
1 915050000000120 0x380A
1 915050000000120 0x7369

(b) 2011-NexusS-1-1

Table 4.11: IMSI captures from userdata partitions.

Table 4.12 shows possible binary IP addresses found in the system, userdata and radio

partitions. The 192.168.0.1 IP addresses correlate to the D-Link router’s IP address. The
74.125.224.43 IP address found in the radio partition is found in the Wireshark network
packet captures taken when the Nexus S connected to the internet and is a Google server address.
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(a) Normal.

(b) No-sim instance.

Figure 4.4: IMSIs found in 2011-NexusS-1 userdata partitions.

Count IP Address Preceding 2-gram Partition Endian
01 74.125.224.43 0xCD71 mtd5ro Little
22 192.168.0.1 0x3CC1 mmcblk0p1 Little
01 192.168.0.1 0xE901 mmcblk0p1 Little
01 192.168.0.1 0x9EC0 mmcblk0p1 Little
01 192.168.0.1 0x38C0 mmcblk0p2 Little
01 192.168.0.1 0xBA55 mmcblk0p2 Little

(a) 2011-NexusS-1

Count IP Address Preceding 2-gram Partition Endian
12 192.168.0.1 0x3CC1 system Little
01 192.168.0.1 0xE901 system Little
01 192.168.0.1 0x9EC0 system Little
01 192.168.0.1 0x38C0 data Little
01 192.168.0.1 0xBA55 data Little

(b) 2011-NexusS-1-1

Table 4.12: 2011-NexusS-1/1-1 Binary IP Address captures.
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(a) 2011-NexusS-1

(b) 2011-NexusS-1-1

Figure 4.5: Binary IP addresses found in userdata partitions.
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4.2.2 Effects of Associating Google Account to Device
The 2011-NexusX-1.5 image associates a Google account to the device to determine what
changes occur, if any, to the non-volatile flash memory partitions.

Nexus One Results:
Item Count
ASCII IMSI (915050000000122) 26
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 2
Binary IP address 192.168.0.1
in the cache partition 1

Table 4.13: 2011-NexusOne-1.5 Quick Summary.

Item Count
ASCII IMSI (915050000000122) 2
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
Binary IP address 192.168.0.1
in the cache partition 1

Table 4.14: 2011-NexusOne-1.5-1 Quick Summary.

As the quick summary indicates, associating a Google account to an Android device creates
network metadata that was found in the baseline image. The following was found to differ from
the baseline image.

The 2011-NexusOne-1.5 userdata partition contains two instances of the DHCP ACKs while
the 2011-NexusOne-1.5-1 userdata partition contained one DHCP ACK instance. As shown
in Figure 4.6, one instance from the 2011-NexusOne-1.5 image contains the same four-byte
Bootstrap Protocol Transaction ID number 0xB77DF8D4 as the 2011-NexusOne-1.5-1 image in-
stance. The second 2011-NexusOne-1.5 image instance contains the Transaction ID 0x071531B9.

Table 4.15 shows the possible binary IP addresses located in the cache partition. The first
two unsigned 32-bit integers represent the IP addresses belonging to Google and E-bay. The

60



(a) 2011-NexusOne-1.5 (b) 2011-NexusOne-1.5-1

Figure 4.6: DHCP ACKs found in userdata partitions.

remaining capture represents the D-Link router’s IP address.

Count IP Address Preceding 2-gram Partition Endian
01 74.125.224.101 0x140A mtd3 Little
01 66.211.171.194 0x91F7 mtd3 Little
01 192.168.0.1 0x4100 mtd4 Little

(a) 2011-NexusOne-1.5

Count IP Address Preceding 2-gram Partition Endian
01 74.125.224.101 0x140A system Little
01 66.211.171.194 0x91F7 system Little
01 192.168.0.1 0x4100 cache Little

(b) 2011-NexusOne-1.5-1

Table 4.15: 2011-NexusOne-1.5/1.5-1 Binary IP Address captures.

Associating the Google account allows analysis of the two Android Location cache files previ-
ously mentioned, as empirical tests have shown that the files do not reside on the device until
a Google account is associated to the phone. The cache.cell file wrote to disk in the 2011-
NexusOne-7 and 2011-NexusOne-7-1 experiments as shown in Figure 4.7. The cache.wifi

file wrote to disk in the 2011-NexusOne-7 and 2011-NexusOne-7-1 experiments as shown in
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Figure 4.8. These files are valuable in that they show cellular base station and wireless router
metadata coded in ASCII.

(a) 2011-NexusOne-7

(b) 2011-NexusOne-7-1

Figure 4.7: CIDs found in 2011-NexusOne-7/7-1 user data partitions.

(a) 2011-NexusOne-7

(b) 2011-NexusOne-7-1

Figure 4.8: Router MAC Addresses found in 2011-NexusOne-7/7-1 userdata partitions.
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Nexus S Results:
Item Count
ASCII IMSI (915050000000120) 10
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
Binary IP address 192.168.0.1
in the data partition 2
Binary IP address 66.211.171.194
in the system partition 2

Table 4.16: 2011-NexusS-1.5 Quick Summary.

Item Count
ASCII IMSI (915050000000120) 2
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
Binary IP address 192.168.0.1
in the data partition 2
Binary IP address 66.211.171.194
in the system partition 1

Table 4.17: 2011-NexusS-1.5-1 Quick Summary.

As the quick summary indicates, associating a Google account to an Android device creates
network metadata that was found in the baseline image. The following was found to differ from
the baseline image.

Associating a Google account to the Nexus S provided similar results that were found in the
Nexus One. The two Android Location package files, cache.wifi and cache.cell write cellular
base station and wireless router metadata coded in ASCII to the userdata partition. The Nexus
S differs in that it wrote the cache.wifi file in the 2011-NexusS-1.5 image whereas the Nexus
One did not. Figure 4.9 shows the 2011-NexusS-1.5 and 2011-NexusS-1.5-1 captures of the
D-Link’s MAC address written by the cache.wifi file. Figures 4.10 and 4.11 show these file’s
activities in the 2011-NexusS-7 and 2011-NexusS7-1 images. With the TacBSR present in
those experiments, the cache.cell file writes the TacBSR’s metadata as shown in Figure 4.10.

63



Figure 4.11 shows the cache.wifi file’s activities writing the D-Link and Cisco routers MAC
addresses.

(a) 2011-NexusS-1.5

(b) 2011-NexusS-1.5-1

Figure 4.9: D-Link MAC addresses found in userdata partitions.

(a) 2011-NexusS-7 (b) 2011-NexusS-7-1

Figure 4.10: CIDs found in 2011/NexusS-7/7-1 userdata partitions.

(a) 2011-NexusS-7

(b) 2011-NexusS-7-1

Figure 4.11: Router MAC Addresses found in 2011-NexusS-7/7-1 userdata partitions.
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Table 4.18 shows the possible binary IP addresses located in different partitions. 192.168.0.1
represents the IP address of the D-Link router used to access the internet. The 66.211.171.194
IP address was indicated in the Wireshark network capture and correlates to E-bay address
range.

Count IP Address Preceding 2-gram Partition Endian
02 66.211.171.194 0x91F7 mmcblk0p1 Little
01 192.168.0.1 0x38C0 mmcblk0p2 Little
01 192.168.0.1 0xBA55 mmcblk0p2 Little

(a) 2011-NexusS-1.5

Count IP Address Preceding 2-gram Partition Endian
01 66.211.171.194 0x91F7 system Little
01 192.168.0.1 0x38C0 data Little
01 192.168.0.1 0xBA55 data Little

(b) 2011-NexusS-1.5-1

Table 4.18: 2011-NexusS-1.5/1.5-1 Binary IP Address captures.
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4.2.3 Effects of File Transfer via Bluetooth
The 2011-NexusX-3 image transfers three files of different sizes across a Bluetooth connection
to determine if any Bluetooth-specific metadata persists on the non-volatile flash memory.

Nexus One Results:
The Bluetooth experiment yielded similar results to the 2011-NexusOne-1.5 experiment, due to
accessing the internet to flash a ROM Manager recovery ROM.

Item Count
ASCII IMSI (915050000000122) 23
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1

Table 4.19: 2011-NexusOne-3 Quick Summary.

Item Count
ASCII IMSI (915050000000122) 2
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1

Table 4.20: 2011-NexusOne-3-1 Quick Summary.

The 2011-NexusOne-3 userdata dump contains multiple ASCII data that correlates to the
Macbook Pro’s Bluetooth MAC address (BTADDR). A total of 1513 instances of the Macbook
Pro’s BTADDR address were retrieved. The total captured addresses, itemized by their two
preceding bytes, are shown in Table 4.21.

The file responsible for the most BTADDR instances is the btopp.db database, along with
its associated btopp.db-journal file. The Bluetooth Object Push Profile database accounted
for 1479 BTADDR instances. Those instances are the cumulative count from the 0x6E01,
0x6701 and 0x6601 Preceding 2-grams shown in Table 4.21. Those three Preceding 2-grams
relate to the to build be.txt, androidarch.jpg and trailheadmap.pdf files sent from the
Macbook Pro and saved by the btopp.db file.
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Other instances of discovered BTADDRs were within various other files totaling 34 occurrences
over 12 files. The files writing Bluetooth metadata to memory can be found in Table 4.22.

BTADDR instances from the logical dump decline relative to the 2011-NexusOne-3 dump. The
total captures totaled 22. The Preceding 2-gram breakdown is shown in Table 4.21.

BTADDR Preceding 2-gram Count
00:26:08:BC:D4:14 0x6E01 544
00:26:08:BC:D4:14 0x6701 517
00:26:08:BC:D4:14 0x6601 418
00:26:08:BC:D4:14 0xFFFF 15
00:26:08:BC:D4:14 0x795F 13
00:26:08:BC:D4:14 0x390A 3
00:26:08:BC:D4:14 0x300A 2
00:26:08:BC:D4:14 0x330A 1

(a) 2011-NexusOne-3

BTADDR Preceding 2-gram Count
00:26:08:BC:D4:14 0x6E01 1
00:26:08:BC:D4:14 0x6701 1
00:26:08:BC:D4:14 0x6601 1
00:26:08:BC:D4:14 0xFFFF 10
00:26:08:BC:D4:14 0x795F 6
00:26:08:BC:D4:14 0x390A 1
00:26:08:BC:D4:14 0x300A 1
00:26:08:BC:D4:14 0x330A 1

(b) 2011-NexusOne-3-1

Table 4.21: Bluetooth MAC captures found in userdata partitions.
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Preceding-2gram File
0x6E01 btopp.db and btopp.db-journal
0x6701 btopp.db and btopp.db-journal
0x6601 btopp.db and btopp.db-journal
0x795F settings.db and settings.db-journal
0x390A sdp
0x300A sdp
0x330A sdp
0x795F classes, eir, names, lastseen, lastused,

features, manufacturers, linkkeys, sdp, profiles

Table 4.22: 2011-NexusOne-3 files writing Bluetooth metadata by 2-gram.
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Nexus S Results:
Item Count
ASCII IMSI (915050000000120) 6
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
D-Link router MAC Address 00:11:95:39:13:d1 1

Table 4.23: 2011-NexusS-3 Quick Summary.

Item Count
ASCII IMSI (915050000000120) 2
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
D-Link router MAC Address 00:11:95:39:13:d1 1

Table 4.24: 2011-NexusS-3-1 Quick Summary.

The Nexus S BTADDR instances show similar results to those found in the Nexus One as in-
dicated in Table 4.25. When the mmcblk0p2 image is mounted, it provides greater detail on
the files writing to disk and their contents. The /data/ data/ com.android.bluetooth/ databas-
es/ btopp.db file is responsible for most of the BTADDR instances found as was the case
for the Nexus One. The top three preceding 2-grams, 0x6E01, 0x6701 and 0x6601 relate to
to build be.txt, androidarch.jpg and trailheadmap.pdf files respectively. Under the
directory /data/ misc/ bluetoothd/ 78:47:1D:B5:F1:06/ the Nexus S Bluetooth daemon contains
the files responsible for the BTADDRs found in the userdata partition, as shown in Table 4.26.
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BTADDR Preceding 2-gram Count
00:26:08:BC:D4:14 0x6E01 182
00:26:08:BC:D4:14 0x6701 173
00:26:08:BC:D4:14 0x6601 140
00:26:08:BC:D4:14 0xFFFF 10
00:26:08:BC:D4:14 0x380A 2
00:26:08:BC:D4:14 0x795F 9
00:26:08:BC:D4:14 0x390A 1
00:26:08:BC:D4:14 0x300A 1
00:26:08:BC:D4:14 0x330A 1

(a) 2011-NexusS-3

BTADDR Preceding 2-gram Count
00:26:08:BC:D4:14 0x6E01 1
00:26:08:BC:D4:14 0x6701 1
00:26:08:BC:D4:14 0x6601 1
00:26:08:BC:D4:14 0xFFFF 8
00:26:08:BC:D4:14 0x380A 2
00:26:08:BC:D4:14 0x795F 6
00:26:08:BC:D4:14 0x390A 1
00:26:08:BC:D4:14 0x300A 1
00:26:08:BC:D4:14 0x330A 1

(b) 2011-NexusS-3-1

Table 4.25: Bluetooth MAC captures found in userdata partitions.

Preceding-2gram File
0x6E01 btopp.db and btopp.db-journal
0x6701 btopp.db and btopp.db-journal
0x6601 btopp.db and btopp.db-journal
0x795F settings.db and settings.db-journal
0x390A sdp
0x300A sdp
0x330A sdp
0x380A sdp
0x795F classes, names, lastused,

features, manufacturers, linkkeys, sdp, profiles

Table 4.26: 2011-NexusS-3 files writing Bluetooth metadata by 2-gram.
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4.2.4 Effects of File Transfers
The 2011-NexusX-4 and 2011-NexusX-5 images transfer one file from a web server to the
Android device to determine whether any network metadata persists on the non-volatile flash
memory. One wireless router provides access to the external internet, while another wireless
router provides access to the internal web server.

Nexus One Results:
Item Count
ASCII IMSI (915050000000122) 26
NPS SSID instance 2
AndroidForensics SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
DHCP ACK instance containing
binary IP Addresses 192.168.1.1
and 192.168.1.146 1
Binary IP address 192.168.1.1
in the system partition 16
Binary IP address 192.168.1.1
in the data partition 3

Table 4.27: 2011-NexusOne-4 Quick Summary.

Item Count
ASCII IMSI (915050000000122) 2
NPS SSID instance 1
AndroidForensics SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.1.1
and 192.168.1.146 1
Binary IP address 192.168.1.1
in the system partition 16
Binary IP address 192.168.1.1
in the data partition 3

Table 4.28: 2011-NexusOne-4-1 Quick Summary.

The file transfers are the first case where both wireless routers are used, providing a unique look
into association behaviors. First, the wpa supplicant.conf file contents were found twice
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Item Count
ASCII IMSI (915050000000122) 26
NPS SSID instance 2
AndroidForensics SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
DHCP ACK instance containing
binary IP Addresses 192.168.1.1
and 192.168.1.144 1
Binary IP address 192.168.1.1
in the data partition 3

Table 4.29: 2011-NexusOne-5 Quick Summary.

Item Count
ASCII IMSI (915050000000122) 2
NPS SSID instance 1
AndroidForensics SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.1.1
and 192.168.1.144 1
Binary IP address 192.168.1.1
in the data partition 3

Table 4.30: 2011-NexusOne-5-1 Quick Summary.

in the 2011-NexusOne-4 userdata partition The first instance contained the association to the
D-Link router with the “NPS” SSID. The second instance had the D-Link router’s “NPS” SSID
as well as the Cisco router’s “AndroidForensics” SSID and its related password as shown
in 4.12 (a). As shown in 4.12 (b), the 2011-NexusOne-4-1 userdata partition contains one
instance of the wpa supplicant.conf file whose contents include both router’s SSIDs.

Second, the dhcp-eth0.lease file contents were found in the 2011-NexusOne-4 userdata

partition as found in the baseline image, and another instance was found in the same partition
for the association to the web server router as shown in Figure 4.13 (a). The 2011-NexusOne-
4-1 userdata partition retained one instance of the file as shown in Figure 4.13 (b). The binary
IP address found in both images has the value of 192.168.1.146 and relates to the IP address
given to the Android device.
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The 2011-NexusOne-5 and 2011-NexusOne-5-1 images show the same behavior as indicated
in the quick summary.

(a) 2011-NexusOne-4 (b) 2011-NexusOne-4-1

Figure 4.12: wpa supplicant.conf found in userdata partitions.

(a) 2011-NexusOne-4 (b) 2011-NexusOne-4

Figure 4.13: DHCP ACKs found in userdata partitions.

Table 4.31 shows the possible binary IP addresses located in the system and userdata parti-
tions. The unsigned 32-bit integers represent the IP address of the Cisco router used to access
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the web server. All possible binary IP address instances are present in the 2011-NexusOne-4,
2011-NexusOne-4-1, 2011-NexusOne-5 and 2011-NexusOne-5-1 images so they are presented
in one table.

Count IP Address Preceding 2-gram Partition Endian
01 192.168.1.1 0x04AC mtd3 Big
01 192.168.1.1 0x8101 mtd3 Big
01 192.168.1.1 0x9B01 mtd3 Little
01 192.168.1.1 0xBF01 mtd3 Little
01 192.168.1.1 0xCF01 mtd3 Little
01 192.168.1.1 0xC050 mtd3 Little
01 192.168.1.1 0xBF53 mtd3 Little
01 192.168.1.1 0x3863 mtd3 Little
01 192.168.1.1 0xC06B mtd3 Little
01 192.168.1.1 0x8601 mtd3 Little
01 192.168.1.1 0x8C01 mtd3 Little
01 192.168.1.1 0xA301 mtd3 Little
01 192.168.1.1 0xD6CB mtd3 Little
01 192.168.1.1 0xBF13 mtd3 Little
01 192.168.1.1 0xC00E mtd3 Little
01 192.168.1.1 0xC008 mtd3 Little
01 192.168.1.1 0xBF3F mtd5 Little
01 192.168.1.1 0xC021 mtd5 Little
01 192.168.1.1 0xC007 mtd5 Little

Table 4.31: Binary IP Address captures found in all Nexus One file transfer experiments.
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Nexus S Results:
Item Count
ASCII IMSI (915050000000120) 8
NPS SSID instance 1
AndroidForensics SSID instance 1
D-Link router MAC Address 00:11:95:39:13:d1 1
DHCP ACK instance containing
binary IP Addresses 192.168.1.1
and 192.168.1.147 1
Binary IP address 192.168.1.1
in the system partition 10
Binary IP address 192.168.1.1
in the userdata partition 7

Table 4.32: 2011-NexusS-4 Quick Summary.

Item Count
ASCII IMSI (915050000000120) 2
NPS SSID instance 1
AndroidForensics SSID instance 1
D-Link router MAC Address 00:11:95:39:13:d1 1
DHCP ACK instance containing
binary IP Addresses 192.168.1.1
and 192.168.1.147 1
Binary IP address 192.168.1.1
in the userdata partition 7

Table 4.33: 2011-NexusS-4-1 Quick Summary.

The Nexus S wpa supplicant.conf file contents were found in the userdata partitions as
shown in Figure 4.14. The Nexus S stored the D-Link and Cisco router’s SSIDs, but does not
have an instance with only the initial D-Link router’s SSID, NPS, as was the case with Nexus
One userdata partitions. The DHCP ACKs exhibit the same behavior as seen on the Nexus
One. The 2011-NexusS-4 userdata partition holds the DHCP ACK from the web server router,
but does not hold the DHCP ACK from the D-Link router to the internet. The 2011-NexusS-
5 and 2011-NexusS-5-1 images contain similar data when compared to the 2011-NexusS-4
images. The 2011-NexusS-5 DHCP ACKs are shown in Figure 4.15 with their 192.168.1.144
IP address highlighted.
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Item Count
ASCII IMSI (915050000000120) 8
NPS SSID instance 1
AndroidForensics SSID instance 1
D-Link router MAC Address 00:11:95:39:13:d1 1
DHCP ACK instance containing
binary IP Addresses 192.168.1.1
and 192.168.1.144 1
Binary IP address 192.168.1.1
in the userdata partition 7
Binary IP address 149.20.68.17
in the userdata partition 2

Table 4.34: 2011-NexusS-5 Quick Summary.

Item Count
ASCII IMSI (915050000000120) 2
NPS SSID instance 1
AndroidForensics SSID instance 1
D-Link router MAC Address 00:11:95:39:13:d1 1
DHCP ACK instance containing
binary IP Addresses 192.168.1.1
and 192.168.1.144 1
Binary IP address 192.168.1.1
in the userdata partition 7
Binary IP address 149.20.68.17
in the userdata partition 1

Table 4.35: 2011-NexusS-5-1 Quick Summary.
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(a) 2011-NexusS-4

(b) 2011-NexusS-4-1

Figure 4.14: wpa supplicant.conf found in userdata partitions.

77



(a) 2011-NexusS-5

(b) 2011-NexusS-5-1

Figure 4.15: DHCP ACKs found in userdata partitions.
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Count IP Address Preceding 2-gram Partition Endian
01 192.168.1.1 0xC07C mmcblk0p1 Little
01 192.168.1.1 0xBF21 mmcblk0p1 Little
01 192.168.1.1 0xC033 mmcblk0p1 Little
02 192.168.1.1 0xC009 mmcblk0p1 Little
02 192.168.1.1 0xC00A mmcblk0p1 Little
01 192.168.1.1 0xBF53 mmcblk0p1 Little
01 192.168.1.1 0xC07C mmcblk0p1 Little
01 192.168.1.1 0xBF7E mmcblk0p1 Little
01 192.168.1.1 0xF201 mmcblk0p1 Little
01 192.168.1.1 0xBF09 mmcblk0p1 Little
01 192.168.0.1 0x38C0 mmcblk0p2 Little
01 192.168.0.1 0xBA55 mmcblk0p2 Little
01 192.168.1.1 0xC002 mmcblk0p2 Little
01 192.168.1.1 0xBF31 mmcblk0p2 Little
01 192.168.1.1 0x9F01 mmcblk0p2 Little
01 192.168.1.1 0xEE01 mmcblk0p2 Little
01 192.168.1.1 0xBF09 mmcblk0p2 Little
01 192.168.1.1 0xF6A1 mmcblk0p2 Little
01 192.168.1.1 0x8001 mmcblk0p2 big

(a) 2011-NexusS-4

Count IP Address Preceding 2-gram Partition Endian
01 192.168.0.1 0x38C0 data Little
01 192.168.0.1 0xBA55 data Little
01 192.168.1.1 0xC002 data Little
01 192.168.1.1 0xBF31 data Little
01 192.168.1.1 0x9F01 data Little
01 192.168.1.1 0xEE01 data Little
01 192.168.1.1 0xBF09 data Little
01 192.168.1.1 0xF6A1 data Little
01 192.168.1.1 0x8001 data Big

(b) 2011-NexusS-4-1

Table 4.36: 2011-NexusS-4/4-1 Binary IP Address captures.
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Count IP Address Preceding 2-gram Partition Endian
02 149.20.68.17 0x4D11 system Little
01 192.168.0.1 0x38C0 mmcblk0p2 Little
01 192.168.0.1 0xBA55 mmcblk0p2 Little
01 192.168.1.1 0xC002 mmcblk0p2 Little
01 192.168.1.1 0xBF31 mmcblk0p2 Little
01 192.168.1.1 0x9F01 mmcblk0p2 Little
01 192.168.1.1 0xEE01 mmcblk0p2 Little
01 192.168.1.1 0xBF09 mmcblk0p2 Little
01 192.168.1.1 0xF6A1 mmcblk0p2 Little
01 192.168.1.1 0x8001 mmcblk0p2 big

(a) 2011-NexusS-5

Count IP Address Preceding 2-gram Partition Endian
01 149.20.68.17 0x4D11 system Little
01 192.168.1.1 0xF6A1 data Little
01 192.168.1.1 0x8001 data Big

(b) 2011-NexusS-5-1

Table 4.37: 2011-NexusS-5/5-1 Binary IP Address captures.
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4.2.5 Effects of Application Use
The 2011-NexusX-6 image is created after using the Facebook application to determine whether
the application will store relevant network metadata to the non-volatile flash memory.

Nexus One Results:
Item Count
ASCII IMSI (915050000000122) 24
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 2
Binary IP address 131.188.3.220
in the data partition 1

Table 4.38: 2011-NexusOne-6 Quick Summary.

Item Count
ASCII IMSI (915050000000122) 2
NPS SSID instance 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
Binary IP address 131.188.3.220
in the data partition 1

Table 4.39: 2011-NexusOne-6-1 Quick Summary.

Table 4.40 shows the possible binary IP addresses located in the cache partition. The discovered
IP address corresponds to a Network Time Protocol (NTP) server and similarly occurs in the
pcap file for the experiment. NTP is a protocol designed to synchronize computer clocks over
a network. Review of the Wireshark pcap file shows no indication of the 0x74EC value that
precedes the possible IP address. This indicates that the binary IP found is not in a IP packet
structure.
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Count IP Address Preceding 2-gram Partition Endian
01 131.188.3.220 0x74EC mtd4 Little

(a) 2011-NexusOne-6

Count IP Address Preceding 2-gram Partition Endian
01 131.188.3.220 0x74EC cache Little

(b) 2011-NexusOne-6-1

Table 4.40: 2011-NexusOne-6/6-1 Binary IP Address captures.
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Nexus S Results:
Item Count
ASCII IMSI (915050000000120) 2
NPS SSID instance 1
D-Link router MAC Address 00:11:95:39:13:d1 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
Binary IP address 130.149.17.8
in the userdata partition 1

Table 4.41: 2011-NexusS-6 Quick Summary.

Item Count
ASCII IMSI (915050000000120) 1
NPS SSID instance 1
D-Link router MAC Address 00:11:95:39:13:d1 1
DHCP ACK instance containing
binary IP Addresses 192.168.0.1
and 192.168.0.100 1
Binary IP address 130.149.17.8
in the userdata partition 1

Table 4.42: 2011-NexusS-6-1 Quick Summary.

Table 4.43 shows a possible binary IP address retrieved from the system partition. The address
correlates to a range of addresses that belong to NTP servers similar to the Nexus One capture.

Count IP Address Preceding 2-gram Partition Endian
01 130.149.17.8 0x0000 system Little

(a) 2011-NexusS-6

Count IP Address Preceding 2-gram Partition Endian
01 130.149.17.8 0x0000 system Little

(b) 2011-NexusS-6-1

Table 4.43: 2011-NexusS-6/6-1Binary IP Address captures.
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CHAPTER 5:

Conclusions and Future Work

5.1 Conclusions
This thesis asked one primary question: can network artifacts be retrieved from Android mobile
Smartphones to identify the device’s previous network access points. To answer this ques-
tion, a controlled environment was developed to transfer data across network nodes. Wireless
routers were used to transfer data from a web server to the Android device and another wireless
router ultimately provided access to the larger internet. An external device was paired to the
Android devices via Bluetooth and conducted file transfers. The phones associated with a cel-
lular base station to determine if any cellular network metadata persists on the phone’s internal
non-volatile memory.

We investigated this thesis with two Android Smartphones; a HTC manufactured Nexus One
and a Samsung manufactured Nexus S. The two phones were chosen for their different files
systems currently used by the Android operating system. The Nexus One has a YAFFS2 flash
file system while the Nexus S contains an EXT4 file system. For acquisition, each device’s
internal non-volatile memory was retrieved using the Android SDK adb shell to pull the data to
an examiner’s computer. Through the use of file carving tools and a hex editor, we discovered
the following residual network data structures:

Nexus One:
• Allocated and non-allocated pages containing wireless 802.11 router Service Set Identi-

fiers (SSID) recovered from the userdata partition. SSIDs are ASCII coded string iden-
tifiers that are provided to wireless access points. The wpa supplicant.conf file wrote
to disk the router’s SSID and associated password when the Android device associated to
the router.

• Allocated and non-allocated pages containing wireless router International Mobile Sub-
scriber Identity (IMSI) from the userdata partition. IMSIs are unique and can be at-
tributed to a specific user. Two files consistently provided IMSI data: the CheckinService.xml
and accounts.db files. The CheckinService.xml file is an Android service that searches
for updates to downloaded Android applications and Android OS firmware.
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• Allocated and non-allocated pages containing 802.11 access point DHCP ACKs from
the userdata partition. DHCP ACKs contain the unsigned 32-bit IPv4 address of the
Android Device and the wireless router providing network services.

• Allocated pages containing cellular base station metadata, including the Mobile Network
Code (MNC), Mobile Country Code (MCC), Local Area Code (LAC) and Cell Identifica-
tion (CID) from the userdata partition. These four base station metadata can be used to
physically locate a cellular tower. The Android location package file cache.cell located
under the /data/data/com.google.android.location/files directory provides the
retrieved metadata.

• The userdata partition contains allocated pages containing wireless router Media Access
Control (MAC) addresses coded in ASCII. The Android location package file cache.wifi
located under the /data/data/com.google.android.location/files directory pro-
vides the retrieved metadata.

• The userdata partition contains allocated and non-allocated pages containing Bluetooth
MAC addresses of devices paired with the phone. Multiple files store the Bluetooth
address of paired devices, including the Bluetooth daemon and its related files and the
btopp.db file.

Nexus S:
The data acquired from the Nexus S was identical from the Nexus One with the exception when
two wireless routers were used in an experiment. The current associated router’s DHCP ACK
was found in non-volatile memory. The allocated wpa supplicant.conf file was retrieved
containing both routers SSIDs. We were not able to retrieve a DHCP ACK from the first asso-
ciated router and an unallocated wpa supplicant.conf file as found in the Nexus One.

This thesis contributed the following to the field of mobile forensics:

• The first known Android Smartphone corpus with delineated network metadata.

• A thorough review of network data structures that reside in Android Smartphone non-
volatile storage.

• Confirms that the Factory Data Reset service performs a thorough file removal from
the user data partition on Android Smartphones.
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5.2 Future Work
This thesis provides a baseline into network forensics on Android devices. Future work to
enhance this effort along with forensic examination on Android devices may expand this work
in several ways:

• Development of acquisition methods that do not require rooting the device and are simple
to use. The acquisition method used in this thesis did not alter the user data partition,
but does require the device to be rooted which would could be legally challenged. Vidas
Et al. explored the concept of flashing a custom boot image to forensically acquire data
[39]. Their method would prove reliable in court, as it doesn’t require rooting the device.
However, custom boot images could be cumbersome for forensic experts to compile the
required number of images for each different Android build and device.

• In an operational setting, a forensic examiner might be tasked to acquire data from the
Android device before the suspect is apprehended. Acquisition methods would need to
be employed without alerting the Smartphone owner. One such method would be to
implant imaging software on the phone via the base station. This method would require
access to the cellular base station and the ability to flash a custom boot image to the
device. Recovering the data would pose another challenge to either push it back to the
base station or save it to the SD card for later retrieval.

• A different clandestine acquisition method would require physical access to the device. A
mobile computing platform could connect to the device via the USB interface and retrieve
the contents of internal memory and return the device to the owner without his knowledge.
This method would also have to flash a new boot image to the target device. Another
challenge for this method would be the time required to retrieve data. A tool would need
to be made that could ignore empty space in internal memory and pull all allocated and
unallocated data from flash. One method that fits this description is acquiring data at
charging kiosks [40].

• The development of a YAFFS2 forensic tool that provides a forensic examiner with re-
trieved data that directly relates to a file currently allocated on the file system or was
previously allocated. It would be beneficial to modularize the tool to allow capture of
personal information, network metadata or both as indicated by the operator. This tool
will allow examiners to provide more thorough data analysis from recovered YAFFS2
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partitions. Data analysis conducted in this thesis required more operator oriented analysis
which would not be efficient when analyzing large amounts of data on multiple devices.
One approach would be to develop a YAFFS2 implementation for the Sleuth Kit.

• Empirical tests have shown numerous unallocated Android location package files cache.cell
and cache.wifi persist on flash memory. The experiments conducted in this thesis did
not explore the use of multiple cellular base stations, and had only one instance of each
cache file. If the Smartphones, with an associated Google account were allowed to op-
erate for a substantial period of time, that data would prove very beneficial to forensic
examiners. It would also be beneficial to understand the criteria required for the files to
be written to memory.

• The experiments conducted in this thesis have shown when Bluetooth files are transferred
form an external device, the Android OS performs multiple saves of the btopp.db file that
stores the metadata from the transfer. Understanding why this database writes instances
to memory while transferring data across bluetooth might prove to be beneficial.

• The data retrieved in this thesis might lead the very capable Android community to com-
pile and use boot images to circumvent network metadata from writing network metadata
to non-volatile memory. Methods such as these have become known as “anti-forensics”
and could prove to be a detriment to forensic investigators. Methods to efficiently extract
volatile data could provide a counter-action to anti-forensic techniques but would not pro-
vide the residual data found in this thesis. Another counter-action would involve flashing
a customized boot image to a known criminals device as discussed previously.

With the growing use of the Android operating system at home and abroad, there is a pressing
need for more advanced tools to analyze Android-based phones. It is hoped that the methodol-
ogy presented in this thesis will help accomplish that goal.
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