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We present a short review of how the effec- 
tive action formalism, well known in 
relativistic quantum field theory, can be 
used to discuss Bose-Einstein conden- 
sation of non-relativistic gases. This method 
lends itself very naturally to an inter- 
pretation of Bose-Einstein condensation in 
terms of symmetry breaking. It also 
allows for the definition of a very elegant 
regularization technique involving 
generalized f-functions. We show how this 
method can be used to recover the well 
known results for the free boson gas, as 
well as the charged boson gas in a 
constant magnetic field. A general criterion 
for interpreting Bose-Einstein conden- 
sation in terms of a phase transition with 

symmetry breaking is given. Finally we 
present an analysis of Bose-Einstein 
condensation in a harmonic oscillator 
confining potential trap, and show how the 
results of this simple model are in excel- 
lent agreement with experiment. 
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1.    Introduction 

It is now well over seventy years since the phe- 
nomenon referred to as Bose-Einstein condensation 
(BEC) was first predicted [1,2]. For s system of non- 
relativistic spin-0 bosons in three spatial dimensions, a 
discussion of BEC is now part of any undergraduate 
course in statistical mechanics. Until recently the best 
experimental evidence that BEC could occur in a real 
physical system was liquid helium, as suggested origi- 
nally by London [3]. However although the behavior of 
liquid helium at low temperatures can be qualitatively 
described by the free boson gas model, the detailed 
behavior deviates substantially from this simple model. 
Physically this is of course because the effects of inter- 
actions which are neglected in the free boson gas model 
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are important in liquid helium. IVIore recently it was 
suggested [4,5] that BEC could occur for excitons in 
certain types of non-metallic crystals (such as CuCl for 
example). There is now good evidence for this in a 
number of experiments [6]. 

The most exciting experimental evidence for BEC has 
come from the recent observations of very cold alkali 
gases. BEC has now been observed to occur in gases of 
rubidium [7], lithium [8], and sodium [9]. These sys- 
tems are very dilute and as a first approximation are well 
described by a boson gas model with no interactions 
among the atoms. The atoms are confined in a magnetic 
trap which can be modelled by a harmonic oscillator 
potential. We have recently discussed [10,11] how the 
occurrence of BEC is to be interpreted in such a system, 
and given the details of the harmonic oscillator potential 
trap, are able to calculate a characteristic temperature 
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which is in excellent agreement with the values found in 
the experiments. This work will be reviewed briefly in 
Sec. 6. 

The main purpose of our review is to show how the 
effective action formalism may be used in a straight- 
forward and natural way to discuss BEC. The general 
formalism is presented in Sec. 2. In Sec. 3 we introduce 
a particularly useful method for defining the effective 
action, and show how the usual thermodynamic poten- 
tial may be recovered. The interpretation of BEC as 
symmetry breaking is given in Sec. 4, and used to study 
two models: the free boson gas, and a charged boson 
gas in a constant, externally applied magnetic field. A 
general criterion for deciding if BEC will occur as a 
phase transition with symmetry breaking is presented in 
Sec. 5. In Sec. 6 BEC in a harmonic oscillator confining 
potential is discussed, and we describe how this model 
compares favourably with the experimental results on 
alkali gases. 

2.    General Effective Action Formalism 

In this section we wish to discuss briefly the effective 
action approach to quantum field theory at finite tem- 
perature and density. We will then use this formalism to 
see how BEC may be understood in terms of symmetry 
breaking, since this interpretation arises in a very 
straightforward manner within the effective action 
framework. One advantage of adopting the effective 
action approach is that it may be applied to situations of 
great generality, such as curved configuration spaces of 
arbitrary dimension, spaces with boundaries or with 
complicated topologies, or situations where background 
gravitational or electromagnetic fields are present. 
Furthermore, as we will discuss in the next section, the 
effective action formalism allows for a very elegant 
mathematical regularization procedure to be used. 
Finally, the extension of the method from noninteracting 
to interacting gases may be performed in a systematic 
way. 

Our attention will be on a system described by 
a nonrelativistic Schrodinger field ^ with action func- 
tional 

-^\D^\'-U>(x)\^A. (1) 
Zm J 

(We have adopted units for which ^ = 1.) Here X repre- 
sents the spatial configuration space. It can be any 
Riemannian manifold, with or without boundary; 
however, as our applications will be confined to flat 
Euclidean space S?°, ^ may be thought of as a finite box 
in   S?° with periodic boundary conditions imposed on 

the sides of the box. The infinite box limit will be 
understood, doi represents the invariant volume element 
on X, which for ^ = 3?° is simply given by dcTj = d°x. 
D is the dimension of the space which we keep arbitrary. 
Ui(x) represents any potential, which is assumed to be 
time independent. D = \-ieA is the gauge covariant 
derivative, with A the vector potential describing any 
background electromagnetic field which might be 
present. We adopt the gauge choice 

Ao = 0,    V • A = 0 (2) 

It is possible to add a self-interaction term for the 
Schrodinger field to Eq. (1), or generalize in other ways 
by considering a number of different fields. The general 
formalism of this subsection does not depend in any 
significant way on the precise form of the action Eq. (1). 

In addition to the action describing the Schrodinger 
field, we must include the action functional for any 
background gravitational or electromagnetic fields 
which are present. In this review we will only consider 
the case of time independent background magnetic 
fields. The action for the magnetic field will be taken as 

■ jdt \ do-. •/ext-^i (3) 

Here A' are the components of A, and Fij = V,A —y,A, 
is the field strength tensor. Jext represents the compo- 
nents of the current /^xt responsible for setting up the 
background magnetic field. If we have D = 3, then the 
magnetic field vector B with components B' may be 
defined by Fy = eyi^B *, where eyt is the antisymmetric 
Levi-Civita tensor. However if we keep the spatial di- 
mension D general, the magnetic field is not described 
by a vector and we must deal with the antisymmetric 
tensor Fy. 

The Schrodinger field action Eq. (1) is invariant under 
the local gauge transformation 

i^(/,x)^e"'"">'^(f,A:), 

A(x)^Aix) + Ve(x), 

(4) 

(5) 

where 0 (jc) is an arbitrary function of the spatial coordi- 
nates X on .S . Associated with any local gauge symme- 
try is a conserved current (defined via Noether's theo- 
rem). In the case of Eqs. (1), (4), (5), the conserved 
current is 

2m m   '     ' 
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The conserved charge associated with this current is 

Q ?\ da, \^[ (7) 

Apart from a factor of e, Eqs. (6) and (7) may be seen 
to be the probability current, and probability of wave 
mechanics. Provided that we restrict the background 
electromagnetic field to sufficiently small values to 
prohibit pair production, we will have a conserved parti- 
cle number 

N=Qle: ■Ua, Xff\ (8) 

In the case of neutral systems, such as atoms confined 
by a magnetic trap, it is the number of particles which 
is conserved. We will therefore consider N, rather than 
2, to be conserved in what follows. 

The thermodynamics is described by the grand parti- 
tion function Z. In order to incorporate the conserved 
particle number A^ it is customary to introduce a 
Lagrange multiplier /A called the chemical potential. 
Then we may write 

:tr exp {-^{H -fxN)) 

define the effective action in a way we will describe 
later. These sources are also useful for obtaining the 
Green functions of the theory. The periodic boundary 
conditions imposed on the fields in the path integral 
ensure that the Green functions obey the usual boundary 
conditions for finite temperature field theory. (See Ref. 
[15] for example.) 

It is important to keep in mind what is being held 
fixed when the path integral Eq. (10) is performed. The 
path integral is computed with the temperature T, vol- 
ume and metric on X, chemical potential jx, background 
gauge field A, and Schwinger sources J^ and JJ all 
regarded as fixed. By performing Legendre transforma- 
tions on the appropriate variables, it is possible to obtain 
other functionals which hold different variables fixed. In 
place of the chemical potential /j,, we wish to keep the 
particle number fixed. In place of the Schwinger 
sources Jj and /J, it proves advantageous to introduce 
background fields ^ and ^^. Because we will only 
consider the transformation from (/A,/S/J) to 
(N, ^, ^) we will not indicate the functional depen- 
dence on any other variables which the partition func- 
tion depends on. 

We will define 

(9) W[iJi,J,JU=-\nS[iJi,J,jn (12) 

Here H is the Hamiltonian operator for the theory Eq. 
(1), and A'^is the number operator which is obtained from 
Eq. (1) by regarding ^ and ^^ as field operators. 

We will use the path integral method [12,13] to com- 
pute 2?. To do this it is easiest if we adopt the imaginary 
time formalism, where the path integral extends over all 
fields which are periodic in imaginary time with period 
;S= l/(kT). The grand partition function may be ex- 
pressed as 

/ 
^=     [d^^d^]e- (10) 

where 

iJ  — i^em + 
Jn      Js 

da,\-(^'''^-'i^''^) 

In interacting quantum field theory W is the generator 
of connected Green functions. We will eliminate the 
dependence on the Schwinger sources J^ and JJ by 
defining 

\p-- 
8/1 flJs 

(13) 

8/, i.jj 
(14) 

and then defining the Legendre transform 

+ ::—\D'if\-- ixl-i^l- + Ut(x)\^[ 
2m 

+ Jl^+ ^''J, (11) 

is obtained from Eq. (1) by performing the Wick 
rotation t -^ -it to imaginary time, and including the 
conserved particle number Eq. (8) with the Lagrange 
multiplier /A. A Schwinger [14] source Jj and its com- 
plex conjugate jJ have been introduced in order to 

r[jLi,^,if't] = W[/A,/,Jl]-| dffda-,(/Ji^-H^V,). 
Jo    H 

(15) 

/^[^^,^,^^] is called the effective action. In interacting 
quantum field theory F is the generator of one-particle 
irreducible Green functions [16]. It is important to 
realize that when F is defined in this conventional way, 
it corresponds to a fixed chemical potential rather than 
a fixed particle  number. 

473 



Volume 101, Number 4, July-August 1996 

Journal of Research of the National Institute of Standards and Technology 

The thermodynamical quantities might all be expressed 
in terms of the effective action. We are not going to 
present all of them but only the particle number, 

N={N) = hr[Ne -;8(H-MW)-I 

w 
iJt ■ 

(16) 

which is immediately seen to have the form 

N-- 
]_dr 
(3 dfx If If t 

(17) 

Furthermore, in the given formulation it can be shown 
[17], that in thermal equilibrium /^[/x,^,^^] should be 
a minimum. In particular 

= 0 = ^ (18) 

To summarize this section, if we have an expression for 
the effective action 7^, then the effective field equations 
which determine the background field follow from 
Eq. (18). The total number of particles may be com- 
puted from Eq. (17). Although there may be easier ways 
of obtaining the basic quantities of physical interest in 
the case of free quantum field theory, the effective action 
formalism has a systematic expansion which can be used 
for interacting field theories [16]. In the next section we 
will discuss a practical way for obtaining the effective 
action. 

r = In det f d_ 
dt' 2m 

(20) 

The first two terms in Eq. (19) may be recognized as 
the classical action for the background field ^with no 
Schwinger source terms. The last term of F, which we 
have written as 7^, contains the effects due to the quan- 
tum fluctuations ^' around ^^ ^ = ^+^'. 

We can now try to use our expression for 7^. The first 
problem we encounter is that we must obtain a more 
explicit result for 7^ by evaluating the determinant of a 
differential operator. The most elegant method for doing 
this makes use of generalized ^-functions [18,19], and is 
motivated by analogy with the determinant of a matrix. 
If M is any Hermitian matrix, we would define det M to 
be the product of all of its eigenvalues. If ntj where 
j = I, . . ., n, are the eigenvalues, then 

In det (€M) = In [1 (^^j) =   2 1" (^«;) •     (21) 

Suppose that we define a function ^(s) by 

(22) 
J = l 

By analogy with the Riemann Zf-function, which is 

^R(S) = X n'" for 9t(s)>l, the function defined in 

Eq. (22) is called a generalized ^-function. A simple 
computation shows that 

n 

aO) = n, r(0)= -E !"'«;• (23) 

We can therefore write Eq. (21) in the form 

In det (m) = -^'(0) + ^(0) In € . (24) 

3.    The Generalized ^-Function 

The theory described by the action Eq. (11), which 
does not involve any self-interactions, is the simplest to 
deal with because the path integral Eq. (10) defining S 
may be done exactly, since the integrand is just a 
gaussian. As a result, the effective action is found to be 

J   — i^em"'" dt    da, ^' 
Jo      Jl dt 

IX 

2m 
D^+Ut{x) ^+ r (19) 

where 

While this does not offer any practical advantages for 
ordinary finite dimensional matrices, it does suggest a 
possible way to define In det(^M) when M is a differ- 
ential operator: namely, set up the eigenvalue problem 
for the operator, work out the eigenvalues, and define a 
generalized Z^-function as in Eq. (22). Because the 
eigenvalue spectrum of a differential operator such as 
that occurring in Eq. (20) is not bounded, in general the 
sum over all eigenvalues used to define ^(s) will diverge 
unless we restrict s to some region of the complex plane. 
This is the same as occurs for the sum used to define the 

Riemann ^-function ^R(S) = X n'" which only con- 

verges for fft(s)> I; however, the Riemann ^-function 
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may be defined by analytic continuation throughout the 
entire complex ^-plane. (See Ref. [20] for example.) For 
the generalized Z^-function we can try to define ^(0) and 
^'(0) by analytic continuation from the region of the 
complex plane where the sum over all eigenvalues con- 
verges. 

For the operator in Eq. (20) we can set up the eigen- 
value problem as follows. Let/„(j::) satisfy 

2m 
D- + Ui(x) f„(x) = E„f„(x). (25) 

Suppose that we define 

F(s, a) = 2J  (ioij + a) (31) 

where Wj = 2 irj/fi. It was shown in Ref. [22] that 

F(s,a) = a- + -j^y^^. (32) 

Using this basic result, the ^-function Eq. (28) may be 
written as 

Assume that U[(x) s 0 so that£„ > 0. The eigenvalues 
denoted by E„ in Eq. (25) may be recognized as the 
energy levels for the time independent Schrodinger 
equation. We will assume that {/„ (x)} forms a complete 
set of solutions to Eq. (25) which satisfies the boundary 
conditions relevant to the problem, and which are nor- 
malized by 

I da^f',(x)fnix) = 8n„ (26) 

Because the integration over the fields ^ involved only 
those fields which were periodic in imaginary time with 
period (3, the eigenfunctions of the differential operator 
d_ 1 
dt~ 
and the eigenvalues of this differential operator are 

-^t-:r—D^+ Ui(x) take the form/,, (x)exp(27rjit/f3), 

2 Try 
A,,, — —;:;— — 11, + h„ 

where 7 = 0, ± 1, ± 2,. 
is defined to be 

(27) 

The generalized ^-function 

^(^)= E E(A„.)-^ (28) 

as) = ^{E„-,xr + ^T{s). 

where 

«'>=if)l.?,^ 
m.E„-n) 

(33) 

(34) 

If we expand  ^j is) about i = 0 we see that ^j (0) = 0 
and 

^HO)=EE^^ = -Eln 
n     k= \ K, n 

1-e -l3(E„-n) 

(35) 

(This is noted easily from using the expansion 
l/r(s) = + ys' + . . . valid near i' = 0.) As T —> 0 we 
see that ^K0)->0. Only the first term in Eq. (33), 
which has no explicit temperature dependence, will con- 
tribute to 7^ at T=0. This contribution is associated 
with the zero-point energy which arises in the path 
integral approach [23], and disappears if we normal 
order the operator H - jxN. In the ^-function method 
this normal ordering is accomplished by taking 
^(s)= ^T(S). Then Eq. (29) gives 

r = -^f(0) = /3/2 (36) 

in direct analogy with Eq. (22). We will define 

r = -r(0) + ^(0)lnf (29) 

again by analogy with Eq. (24). 
Before proceeding, it is helpful to show how this 

definition of the effective action makes contact with the 
standard thermodynamic results. The usual way of 
studying a system involves calculating the thermody- 
namic potential fl defined by [21] 

pn=^in 1-e -/?(£„-M) (30) 

from Eqs. (30) and (35). 
To summarize this section, we have shown how the 

effective action which governs the quantum theory may 
be computed for the simple Schrodinger field theory 
described by the classical action functional Eq. (1). The 
result consists of a sum of two terms; a classical part 
involving the background field ^, and a quantum part 
given formally by Eq. (20). The formal result for F was 
given meaning by the introduction of a generalized ^- 
function, and we showed how the definition of 7^ in Eq. 
(29) was equivalent to the usual thermodynamic poten- 
tial. In the next section we will show how all of this 
formalism may be used to discuss BEC. 
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4.    BEC as Symmetry Breaking 

For the free boson gas in three spatial dimensions, 
BEC can be understood as a phase transition. At the 
critical temperature characterizing the transition, the 
specific heat has a maximum, and the derivative of the 
specific heat is discontinuous. (See Refs. [24,21,25,26] 
for example.) In quantum field theory this phase transi- 
tion can be interpreted as symmetry breaking where the 
symmetry which is broken is the U(l) gauge symmetry 
associated with the change in phase of the wave func- 
tion. For charged particles coupled to electromagnetism, 
this symmetry is a local gauge symmetry; for uncharged 
particles the symmetry is a rigid, or global, symmetry. 
This was discussed in the context of relativistic field 
theory in cases where the background field was constant 
[28,27], as well as the more general case where the 
background field is not necessarily constant [29,30]. 
Nonconstant background fields are essential in cases 
where there is an applied magnetic field, or where there 
is a potential term Ui(x). 

The formalism set up in Sees. 2 and 3 is applicable 
whether the background field ^ is constant or not. The 
equations of motion for ^ and ^^ were given in 
Eq. (18). Using the result for the effective action 
obtained in Eq. (19) we find 

2m 
^ = 0, (37) 

along with the complex conjugate equation. We have 
used the fact that for static potentials and electro- 
magnetic fields the background field should be indepen- 
dent of time: ^ = ^(x). The simplicity of this result is 
also a consequence of our assumption that the theory 
does not contain any self-interactions; this assumption 
results in F containing no explicit dependence on ^. 
Symmetry breaking is associated with a nonzero value 
for ^. We may expand ^ in terms of the complete set 
of solutions {fn(x)} to Eq. (25): 

^(x) = ^CJ„(x), (38) 

where C„ are the expansion coefficients which must be 
determined. Substitution of Eq. (38) into Eq. (37), and 
using Eq. (25), results in 

^C„(E„-fi)fn(x) = 0. (39) 

Because the eigenfunctions obey the orthonormality 
condition Eq. (26), if we multiply both sides of Eq. (39) 
by /,t (x) and integrate over x we have 

C„(£„-At) = 0. (40) 

In order that the thermodynamic potential Eq. (30) 
makes sense, we must have 

/a<£o (41) 

where EQ is the lowest energy level. In terms of the 
generalized ^-function this condition ensures that the 
effective action, or Helmholtz free energy, is real. 
It also ensures that the particle occupation numbers 
l/(e'^*^" **'-1) are all non-negative. It then follows 
from Eq. (40) that if IX<EQ< E„ , the only solution to 
Eq. (40) is for all of the expansion coefficients C„ to 
vanish. In this case Eq. (38) becomes simply ^(x) = 0, 
and there is no symmetry breaking. However, if it is 
possible for the chemical potential /A to reach the critical 
value fjic defined by 

Mc (42) 

then C„ in Eq. (40) will be undetermined. In this case all 
of the C„ with n i= 0 will vanish, and the background 
field is given by 

^(x) = C^o(x), (43) 

where fo(x) is the eigenfunction corresponding to the 
ground state. If jx^ = £o is possible to attain, the symme- 
try is broken. 

We can now make a direct link between symmetry 
breaking and BEC. The particle number was given in 
terms of the effective action by Eq. (17). If we use the 
result Eq. (19) for 7^, we may write 

N = No + Nt (44) 

where 

p dfJb 
f df fd(r,^' 

dt 
/A 

2m 
xj/ 

-i do-, ^' ^ 

- \r P — Lo    , 

and 

1 ^r 
^1 = - fl 3~ /3 dix 

(45) 

(46) 
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Because Co is associated with the ground state eigen- 
function in Eq. (43), it is natural to try and associate A^o 
with the number of particles in the ground state, and A^i 
with the number of particles in excited states. If we use 
Eqs. (30) and (36) we have 

where Wj = 2 nj/p. If we are interested in the infinite 
volume limit we may take L|,. . . , LD to be very large, 
and replace the sums over «i, . . ., rto with integrals. 
These integrals may be performed with the result 

A',=E -/3(£„-M)_J (47) «..= v|i ' r(s-D/2) 
r{s) F{s-D/2,-ix) (52) 

In the next section we will see how a general criterion 
can be obtained which allows us to see if it is ever 
possible for /A to reach the critical value ^tc = £o, and 
hence to decide if symmetry breaking can occur. For the 
remainder of the present section we will look at two 
simple applications of the results we have obtained so 
far. 

where F{s,a) was defined in Eqs. (31) and (32). Defin- 
ing ^T(S) as in Eq. (33), and making use of Eq. (36) we 
find (with T=p-') 

r = -v mT 
2^ 1 

^nPiJ. 

(53) 

4.1    Free Boson Gas 

The first example we will discuss is the free boson gas 
in D spatial dimensions. The special case of D = 3 is 
treated in Refs. [24,21,25,26] using conventional statisti- 
cal mechanical methods. For the case of general D see 
also Ref. [31]. We set A = 0 and [/.(x) = 0. We take X 
to be a box of dimensions Li,. . ., Lo, and will impose 
periodic boundary conditions on the field with the 
infinite box limit taken at the end. Equation (25) simpli- 
fies to 

_l_ 
2m 

V-f„(x) = EJ„(x) 

here, and we have 

1 

2m ^, 
2Tnij 

~f7 

(48) 

(49) 

where «; = 0, ± 1, ±2,. . .. The label n on £„ stands for 
the set («i, . . ., no) characterizing the energy levels. 
The lowest energy level is £0 = 0 here, so that the critical 
value found for the chemical potential is fi^ = 0. We 
therefore require ^t < 0. The eigenfunction/o(ji:) corre- 
sponding to £0 = 0 is 

Mx) = v- (50) 

where V= L[ . . . LD is the volume of the box. (The 
factor of y "^ comes from the normalization condition 
Eq. (26)). 

The generalized ^-function is [see Eqs. (27) and (28)] 

1 
1     ^   /27T«,\2 

2m f:', Li 

(51) 

From Eq. (46) we find 

Ni = Y 
mT 
2^, E 

^«/5(i. 

(54) 

If Z) > 2 the sum in Eq. (54) is bounded for all jx^O. 
For large T we have A^i ~ T'^^. This means that for large 
enough temperatures we can put any number of parti- 
cles into excited states. In other words, for any value of 
A'^, no matter how large, we can always solve N = N\ 
where A'^i is given by Eq. (54) for ix, with ^K 0, provided 
that the temperature is large enough. From our discus- 
sion above this means that Co = 0, resulting in A^o = 0 
and ^ = 0 so that there is no symmetry breaking. 

Now consider what happens as T decreases. As this 
happens, /A must increase towards /A = 0 if we are to 
satisfy N = N\ with A^i given by Eq. (54). Eventually a 
critical temperature T^ is reached at which //, = 0. This 
temperature is defined by 

N=v{'^"" UD/2) 

where Z^R is the Riemann ^-function. If p - 
density of particles, we have 

(55) 

N/V is the 

T = ^ c — 

277 

.U{D/2) 
(56) 

For T <Tc'\i is not possible for /A to decrease beyond 
/A = 0, so it remains frozen at this critical value. From 
Eqs. (54) and (55) we have 

N,=N\Y (57) 
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It is therefore not possible to accommodate all of the 
particles in the excited states. Because A^o = N-N[, we 
have 

No = N 
Tc 

(58) 

as the number of particles in the ground state. Using Eq. 
(45) we find 

Co = ^"^ 
re 

(59) 

4.2    BEC in a Magnetic Field 

We will now consider the case where there is a 
constant applied magnetic field. We will allow the 
spatial dimension D to be general, but will only consider 
the case of a magnetic field with a single nonzero com- 
ponent. (The general case is more complicated and is 
discussed in Ref. [17].) If we choose the magnetic field 
to point in the z-direction, a suitable gauge choice for 
the vector potential is 

A = (-Bj,0, ...,0) (64) 

and from Eqs. (43) and (50) we have for T < Tc where B is the strength of the magnetic field. Eq. (25) 
reads 

'P = p' 
'-'^ 

(60) 

For the special case D = 3, the results Eqs. (56) - (58) 
reproduce the standard expressions. The generalization 
to arbitrary D was given by May [32]. 

If Z) < 2 the situation is entirely different than the one 
we have just described. If we try to let ^i, —> 0 in 
Eq. (54), it is observed that the sum is not bounded. This 
means that we may put any number of particles into the 
excited states. Equivalently, for D < 2 we can always 
solve N = Ni with A^i given in Eq. (54) for /j, with ix<0 
for any temperature. It is not possible for /x to reach the 
critical value ^u, = 0 for any T > 0 with a finite number 
density of particles. This is easy to see when D = 2 
because the sum in Eq. (54) may be easily performed to 
give 

N,= -vmrnu =P/»n (61) 

1      d 
; + ieBy 

2m \dx 

_L Y   ^ 
'2m ^^d(xJ)\ 

fAx) = E,J„{x). 
(65) 

This equation is equivalent to that for a simple harmonic 
oscillator, and the energy levels are easily found to be 
[34] 

eB       1    ^ (2Tm,Y 

where 7 = 0, 1, 2,... ; «, = 0, ±1, ±2,. . . ; and we 
have again imposed periodic boundary conditions. The 
eigenvalues Eq. (66) are degenerate with degeneracy 
eBLiL2/(2TT). The smallest energy eigenvalue is seen to 
be 

eB 
En = 

2m 
(67) 

Setting N[ = N = pV, and solving Eq. (61) for fx gives 

2Trp 

)U, = rin[l-e-^] . (62) 

and the critical value of the chemical potential is 

)U,c 
eB 
2m' 

(68) 

For small T this results in The generalized ^-function defined in Eq. (34) is 

M 
27Tp 

e    mT   . (63) 
eB T' 

There is no BEC, in the same sense as BEC for the D = 3 
gas, when D = 2. This agrees with the analysis of 
Refs. [32,33]. For Z) = 1 it is not possible to perform the 
sum in Eq. (54) in terms of simple functions for /j, < 0; 
however, since the sum is not finite for /A = 0, BEC is not 
possible in this case. 

7 = 0   /i3 = -^ n£) = — oD   k= I K, 

m.E„-u.) 
(69) 

Taking the large box limit, and replacing the sums over 
n^,. . . ,nD with integrals (which just involves a product 
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of gaussians), and noting that the sum over j is just a 
geometric series, results in 

^T(S)= V 
eB\ ImT 
4T7/   \ 277 

p-rtPlJ- 

^ y^)„ = i      o/,_j    .   ,   j neB 
n       smh 

linTj 

(70) 

state, then it may still occur even in the absence of a 
phase transition. It is important to keep the definition 
which is chosen for BEC firmly in mind. We will return 
to this matter in Sec. 6. Finally, it can be shown that even 
though there is no phase transition, the charged Bose 
gas still exhibits a Meissner-Ochsenfeld effect [35]. 
Although we have shown that there is no phase transi- 
tion if /) < 4, we have not shown that there is one for 
D> A. To do this we must show that A/^i remains 
bounded as /x —> /Xc- If we use the inequality 

From Eq. (36) we find 

E 
-n/3yu. 

" = I    „ D/2 M^'^sinh 
neB 

(71) 

Using this result in Eq. (46) leads to 

"■-(i)(f 
E 

r^-"l3(n-l^c) neB 
l—e^mT (72) 

with ^tc given by Eq. (68). 
We can now analyze whether or not BEC occurs in 

the same way as for the free boson gas in the previous 
example. First, if we use the inequality (1-e"^) ' > 1, 
valid for all x > 0, we see that 

Ni>V 
277, 277/ E 

-n/3(/i-yu,c) 

(73) 

From our earlier discussion we know that BEC is only 
possible if A^i remains bounded as /A —> fi^. Because the 
sum in Eq. (73) is not bounded as /x —> /Xc for D12- 
1 < 1, this inequality shows that BEC will not occur for 
£) < 4. This includes the physically interesting case of 
D = 3, as shown originally by Schafroth [35]. The 
absence of BEC for D < 4 was given originally by May 
[36]. 

Of course one must be precise about what is meant by 
the absence of BEC here. What we have shown is that if 
BEC is interpreted to be synonymous with symmetry 
breaking and a phase transition in the same way as BEC 
occurs for the free boson gas in three dimensions, then 
it does not occur. On the other hand, if one interprets 
BEC as a sudden build-up of particles in the ground 

neB 
l-e"mr -e^rar (74) 

valid for all n > 1, then we see that 

Ni<V 
leB^ 
\2TT 

mT 
2^ (1 

eB 
-e^mT )" E 

^-"Pdi-ixc) 

(75) 

For Z) > 5, the sum on the RHS of this inequality 
remains bounded as ^u, ^ /Xc- As in the example dis- 
cussed in Sec. 4.1, this means that it is not possible to 
place an arbitrary number of particles in excited states 
if T < T^ where T^ is the solution to 

A^ = 
_ /VfeB\ (mT, 

\mTi 277 E«' 
neB 

(76) 

Unlike the case of the free boson gas, it is not possible 
to obtain an explicit expression for T, in terms of the 
particle number, although approximate expressions can 
be obtained for strong and weak fields [17]. 

To summarize this section, we have shown the con- 
nection between BEC and symmetry breaking. The gen- 
eral results were illustrated with two examples. The first 
was the familiar case of a gas of free bosons. The second 
was a gas of charged bosons in a constant magnetic 
field. In both cases we saw how BEC interpreted as a 
phase transition corresponding to a breaking of the U{\) 
gauge symmetry could occur in some cases but was 
inhibited in others. The crucial deciding factor was the 
number of spatial dimensions. In the next section we 
will discuss a general criterion for deciding if BEC as 
symmetry breaking can occur. 

5.    General Criterion for BEC as 
Symmetry Breaking 

In the last section we saw how the free boson gas 
did not undergo BEC, at least in the sense of a phase 
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transition, if the spatial dimension Z) < 2. If a constant 
magnetic field was applied to a charged gas of bosons, 
no BEC occurs if D < 4. In this section we will discuss 
the underlying features present in these two examples 
which allows a unified treatment of these two cases, and 
in addition generalizes the analysis to a wide class of 
systems. We follow Refs. [37,38]. 

The key feature present in both examples given in the 
last section is that the energy levels may contain a dis- 
crete part as well as a continuous part. For the free Bose 
gas in D dimensions we had Eq. (49). In the infinite box 
limit «i, . . ., «D could be treated as continuous. There- 
fore EnWas labelled by D continuous quantum numbers. 
BEC was found to occur for Z) > 3. For the charged 
Bose gas in a constant magnetic field the energy levels 
were given by Eq. (66). This time, again in the large box 
limit with n^,. . . ,no treated as continuous, the energy 
levels involved (D- 2) continuous quantum numbers, and 
one discrete label corresponding to the degenerate 
Landau levels. This time BEC occurs if D > 5, which 
can be suggestively written involving the number of 
continuous quantum numbers as (D-2) > 3. The 
feature common to both examples given in Sec. 4 is that 
the dimension of the space associated with the continu- 
ous labels had to be at least 3 for BEC to occur in the 
sense of a phase transition and symmetry breaking. 

Suppose that we consider any system for which the 
energy levels can be expressed as the sum of a discrete 
part which we will denote by E^, and a continuous part 
which we deal with by box normalization with the 
infinite box limit taken at the end as in the examples 
presented in the last section. We will assume that the box 
has dimension q. We may write 

p 
^    2m ■~', 

2l7W, 
(77) 

where L|,. . . , L, are the sides of the box. Herep is just 
a set of labels for the discrete part of the spectrum. With 
the large box limit taken, the labels rii, . . ., rig may be 
regarded as continuous. The generalized ^-function (34) 
reads 

iris)-- d%] 

n j^q/2-s 

-kP(E„-n) 

(477)"^^ r(s) t 11 h. 1 +q/l-s 
(78) 

after the integration over the continuous part of the 
energy spectrum has been performed. 

We found that BEC with the associated phase transi- 
tion only occurs if it is possible for //, to reach the critical 

value (jOc determined by the lowest energy level. (See the 
discussion around Eq. (42).) In the case of Eq. (77) we 
have fjbc = Eo = Eo- Because the lowest mode is playing 
such a crucial role, it is advantageous to separate it off 
and define 

^T{S) = C¥\S)+ ^r\s) 

where 

C?\S): 
Vgdo    T"'^- 1 

^-t/3(yu,c-M) 

(47T)''' ris) ^, k'^^^^ 

(79) 

(80) 

represents the contribution of the lowest mode to the 
^-function (with do the degeneracy), and ^T*'^\S) is 
given by Eq. (78) but with the sum OVCT p restricted to 
the nonzero modes only. We have ^r(O) = 0 as before, 
and 

^r'(0) = 
V,do 

rq/l 1 
^-kp(ij.^-li,) 

l^t+1/2 

^r"(0): 
y» kl3(E'l-n) 

{Airy'        o^o .= ,   k'*'" 

(81) 

(82) 
p#0   k = 

These expressions may now be used to find the effective 
action F or the thermodynamic potential fl given in 
(36). 

The advantage of separating off the lowest mode as 
we have done is that the argument of the exponential in 
Eq. (82) will remain negative even if/A = yu-c- The conse- 
quence of this is that the sums in Eq. (82) will converge. 
This remains true even if we differentiate Eq. (82) with 
respect to ^u, to find the contribution of the excited states 
to the particle number given in terms of 7^ by Eq. (46). 
Therefore, whether or not a phase transition occurs rep- 
resenting BEC is determined by the behaviour of C'^\s). 
If we drop terms which remain finite as yu- ^ yu-c we 
have 

Af(M^Mc)-r^^r'(0) 

Vgdo 
477, 1 

k"''- 
(83) 

If the sum in Eq. (83) remains finite as yu. —> jx^, then 
the number of particles which can exist in excited states 
is bounded, and we get BEC and a phase transition with 
symmetry breaking. Clearly this can occur only for 
(7 > 2. If ^ < 2, we can conclude that BEC does not 
occur, at least in the sense of a phase transition. 
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We can obtain much more detailed information on 
exactly how A^ diverges as //, -^ iic- For ^ = 0 the sum in 
Eq. (83) is just a geometric series, and for ^ = 2 the sum 
is just the expansion of the natural logarithm. For q=\ 
the sum may be evaluated as described by Robinson 
[39]. We therefore find 

Niix -^ IX,) 
Tdo 

(for q = 0); (84) 

Af(At ^ M.) - 2 ^^'"^^ (MC-M)-'"    (for q = 1); 

(85) 

NiiJi^lJi,)=-\ TV2do In 
Mc-^i 

(for q = 2). 

(86) 

Only that part of A'^ which diverges as jx ^ jXc has been 
shown. The ground state when there is symmetry break- 
ing can be determined in the way described in Sec. 4. 

In this section we have shown how the occurrence of 
BEC is linked to the number q which characterizes the 
continuous part of the energy spectrum. For BEC to 
occur we require ^ > 3. For the free boson gas in D 
dimensions, since q = D, this recovers our earlier result 
in Sec. 4.1. For the charged boson gas in a constant 
magnetic field, we have q = D- 2, again recovering our 
earlier result in Sec. 4.2. The physical meaning of q is 
that it is the number of spatial dimensions for which the 
particles are effectively free to move. For the boson gas 
in a magnetic field in the z direction, classically the 
motion in the x-y plane is restricted to circular orbits, 
and it is only in the z-direction that the motion is free. 
A variety of other examples, often established by long 
and detailed calculations all emerge from this relatively 
simple analysis [38]. A similar approach may be used 
for relativistic gases [37,38]. 

6.    BEC in Harmonic Oscillator 
Confining Potentials 

We showed in the last section how BEC interpreted as 
symmetry breaking could occur only if the continuous 
part of the energy spectrum involved at least three con- 
tinuous labels (q > 3). A special consequence of this is 
that if the energy spectrum is entirely discrete, corre- 
sponding to ^ = 0, then BEC as symmetry breaking will 
never occur. In other words, for a system characterized 
by a discrete set of energy levels, if BEC does occur it 
cannot be interpreted as a phase transition analogously 
to the free boson gas in three dimensions. However, as 
we have discussed recently [10], it is still possible to 
have BEC in the sense that there is a critical temperature 
characterizing the system at which the number of parti- 

cles in the ground state has a sudden and dramatic 
increase (see also Ref. [40]). This is borne out in the 
experiments on alkali gases at microkelvin temperatures 
[7-9]. 

The simple model we will discuss here is a system of 
uncharged spin-0 bosons in a harmonic oscillator con- 
fining potential. This is of phenomenological interest 
since it represents a model for the magnetic traps used 
in experiments [7-9]. We will use the action Eq. (1) with 
i4 = 0, and U[(x) the harmonic oscillator potential 

U[{x) = -m(wfx^H- coly^ + oilz^) ■  (87) 

(We will only consider 3 spatial dimensions here 
although the analysis may be generalized in an obvious 
way to any number of dimensions.) The energy levels 
are simply 

£„ = (n, H- ■;z)fiwi + (^2 + 2)^'^2 + ("3 + 2)^1(03,  (88) 

where n = (111,112, «3,) with n, = 0, 1, 2,. . . and we have 
reinstated the explicit ^ dependence. The lowest energy 
level, which determines the critical value of the chemi- 
cal potential as in Eq. (42), is 

(jic = Eo=  2^(<wi + <W2 + &>3) (89) 

The total number of particles is given by the usual Bose 
distribution function 

N=2    1    1  ie 
n \ =0   n 2 = Q   "3 = 0 

I3(E„-H) ^ (90) 

Although it is possible to proceed with the anisotropic 
case, our results are most easily illustrated for the 
isotropic harmonic oscillator with coi = 0)2 = o)^ = co. 
(The general anisotropic case is dealt with in Ref. [11].) 
For the isotropic oscillator, the triple sum in Eq. (90) 
becomes the simpler result 

^=E i ('+!)(' +2) ]e<'"^>^- 1 
1 = 0 ^ 

(91) 

where we have defined the dimensionless variables x 
and e by 

lx = fi(a{-^€) . (93) 
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Since jx^ = %fiw, a phase transition with the associated 
symmetry breaking occurs only if it is possible for /A to 
reach the value € = 0. Our general analysis of the last 
section shows that this can never happen; however, for 
this particular example we can show this another way. If 
we expand 

>(' + <i)yi 1      =2e-"<'"' (94) 

then the sum over / in Eq. (91) is easily done with the 
result 

of integration in an appropriate way obtain at least an 
asymptotic expansion for some appropriate range of the 
parameters. The details of this procedure are described 
in Ref. [11]. We will illustrate the general technique for 
the number of particles as given in Eqs. (91) or (95). 

The aim is to obtain an asymptotic expansion of A^ 
valid for small x and small e. We can do this by making 
use of the Mellin-Barnes representation for the exponen- 
tial: 

iTTi] 
dLaT{a)v (97) 

A?=2e"""(l-e""T'- (95) 
n= I 

For X > 0 we have (1-e ") "* > 1, so that 

Af>2e""" = (e"-1)" (96) 

As we let e —> 0, which should be the signature for BEC, 
it is seen that N increases without bound. This is quite 
different from the free boson gas in three dimensions 
where the number of particles is bounded. This means 
that regardless of the temperature, it is always possible 
to solve Eq. (95), or equivalently Eq. (91), for € given 
any finite N, with e > 0. It is never possible for this 
system to attain the limit e = 0 for any T > 0 and any 
finite number of particles. The fact that a Rose gas in a 
harmonic oscillator potential does not condense in the 
same way as a free boson gas was noted originally in 
Ref. [41]. 

This points out a fundamental difference between our 
analysis and other treatments [42,40,43]. We have 
treated the energy spectrum for the harmonic oscillator 
as discrete with the ensuing sums. The physically inter- 
esting case occurs when WI2TT ~ 100 Hz, and T ~ ^u, K. 
In this case, x as defined in Eq. (92) is small. A plausible 
approach is to argue that for x«\, it is justified to 
replace a sum such as Eq. (95) with an integral. This is 
tantamount to regarding the energy levels as continuous 
rather than discrete, and the analysis of Sec. 5 shows that 
the underlying physics is crucially dependent on the 
number q of continuous dimensions in the energy spec- 
trum. Any approximation which effectively changes 
q from 0 to 3 is therefore suspect. 

If the correct behaviour for small x is desired, the only 
safe approach is to deal with the exact sum Eq. (95). The 
result in Eq. (95) does not converge very rapidly for 
small X, nor does it display in any transparent way the 
behaviour at small x. However, it is possible to convert 
Eq. (95) into a contour integral (which is an exact result, 
not an approximation), and by deforming the contour 

valid for ,9? (i') > 0 and c G S^ with c> 0. Equation (97) 
is easily proven by closing the contour in the left hand of 
the complex plane, enclosing the simple poles of r{a) 

at a = -n, M = 0, 1, 2, . . . with residue ^^-f-. The 
residue theorem immediately gives the Maclaurin series 
for e ". From Eqs. (91) and (94) we have 

1 

n= I    1 = 0 ^ 

2OT    „^|  ,^O2 

X dar{a)n-''. X-"(/H-€)-". (98) 

The order of summation and integration may be inter- 
changed provided that we deform the contour of integra- 
tion first so that c > 3. The sum over n can now be done 
in terms of the Riemann ^-function, and the sum over / 
in terms of the generalized, or Hurwitz, ^-function 
Ui^^a) defined by Ref. [20] 

lH{s,a)= 2 (« + «) (99) 

for yt(s) > 1 and 0 < a ^ 1. (The Riemann ^-function is 
the special case CR(S) = ^H(S, 1).) The sums in the orig- 
inal expression for the particle number have now been 
performed exactly with no approximations, and we 
have obtained an integral representation for the particle 
number: 

N 1 r" = T-^ da 
2^'Jc-,.. 

ria)x-"S,(a)^UH(a-2,€) 

+ (3-2e)Z:„(a-l, €) + (l-e) (2-6)^„(a, e)} 

(100) 
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Closing the contour in the left half of the complex plane 
and use of the residure theorem now leads to an asymp- 
totic expansion of N in powers of x: 

j,Jjl^,(^^.,]k^,±,0M.    (101) 

It is possible to extend the range of validity of the expan- 
sion to larger values of e. This can be done by treating 
the first (/ = 0) term in Eq. (91) separately and applying 
the contour integral procedure we have just described to 
the remaining terms. The result is 

N-- 
1 ^«(3)    /3      \^R(2)    ^/In 

e--l^^^^[2-'}    -^ 

(102) 

which is more accurate than Eq. (101) for larger e. 
Similar expansions may be obtained for other thermody- 
namic functions [10,11]. For the internal energy we find 

U     3^«(4)    (9    , U«(3)    13^«(2) 
1— = — H-k-3€     —-I-- 

2 

lex        \x'    X 

For the specific heat we find 

4x' 

(103) 

^„     12^«(4)     9^R(3)     2^R(2)     126^«(3) 
C/k = +  +  

9€^^^(3)^    186^^:^(2)^^ (3) 

.9i!M¥^.^(lnx,^ 
(104) 

These analytic results can be shown to be in excellent 
agreement with numerical results obtained from an eval- 
uation of the exact sums in the range in which they are 
valid ( small x and small e). 

In a similar way we are able to treat the anisotropic 
oscillator potential. Introducing the geometric mean 
O = ((U| 0)2^3.)"^ of the oscillator frequencies, we found 
for the particle number 

1 A^-,....3>c.,L...._,^(i)V.(3).r(i)V.(2), 

with 

y=-(&l|W2W3)'      , 
2 \W|(U2       C0[C03       (U2W3 

1       1        1 
+ + ■ 

(105) 

(106) 

Analogous results for U and C are given in [11]. 
Because there is no sharp phase transition, identi- 

fying a critical temperature is problematical. One 
approach which has been used in finite volume systems 
[44,45] is to calculate the maximum of the specific heat, 
and identify the temperature at which the maximum 
occurs with the BEC temperature. It is very difficult to 
obtain reliable analytic expressions for the specific heat 
in the region of the maximum for this model. However 
it is possible to compute the specific heat numerically, 
and the result is shown in Fig. 1. 

We have chosen (u/277= 416 Hz to be the geometric 
mean of the frequencies in the sodium experiment [9]. 
The number of particles N=5X 10^ is also taken from 
the sodium experiment. The maximum in the specific 
heat occurs forx — 0.0136, corresponding to a tempera- 
ture of r — 1.47 yu. K. This is in remarkably good agree- 
ment with the temperature of 2 /AK quoted in Ref. [9]. 

Another difference between our results and earlier 
work [42,43] is that we find the specific heat to be 
smooth and continuous at its maximum. A closeup of 
the specific heat in a neighbourhood of its maximum is 
shown in Fig. 2. The discontinuous behaviour found in 
Refs. [42,43] is due to approximating sums with inte- 
grals, which as stated earlier is not a reliable approxima- 
tion. 

That the specific heat is continuous has also been 
realized by the authors of Ref. [40]. The question of 
whether or not one can actually distinguish in an exper- 
iment a drop as seen in Fig. 2 from a genuine disconti- 
nuity has also been addressed there. They improved the 
analysis of [42,43] by taking into account a suitable 
density of states. In their procedure a parameter depend- 
ing on the oscillator frequencies had to be determined 
numerically. Our above described procedure gives the 
complete analytical dependence, see Eq. (106). 

Another possibility for obtaining an estimate of the 
critical temperature for BEC consists of examining the 
population of the ground state. The first term on the 
RHS of Eq. (102) may be observed as the number of 
particles in the ground state. (Put ^ = 0 in Eq. (91).) The 
remaining terms then give the number of particles in 
excited states. We could define the critical temperature 
to be the temperature at which a specified fraction of the 
total number of particles are in the ground state. If we 
define 

where 
A^o =fN, 

iVo = (e"- 1)- 

(107) 

(108) 

this fixes e, and hence the chemical potential, in terms 
of X and A^ by 

€x = ln(l+^). (109) 
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Fig. 1. The specific heat in units of ^ as a function of ;c = A(ol{kT). The total number of particles 
is W = 5X10' and ft;/2i7 = 416 Hz. 

1.34 1.345 1.35 
X in units of 0.01 

1.355 1.36 

Fig. 2. The specific heat in units of <: as a function of lOOx where x = Au>l{kT). 

For a large number of particles, € would be expected to 
be small. If we use Eq. (102) we also have 

{\-f)N =^ CRO)X- ' + ^^R(2)X-' (110) 

which gives a cubic equation for x. This may be solved 
in a straightforward way. (A more accurate result may be 
obtained by including more terms in the asymptotic 

expansion [Eq. (102)] beyond those indicated [11]). 
With A? = 5 X 10' we find x ^ 0.0136 for /= 1/100; 
x^ 0.014 for /= 1/10; x ^ 0.017 for /= 0.5; and 
X — 0.0373 for/= 0.95. For the purpose of comparison, 
we have computed the ground state population numeri- 
cally. The result is shown in Fig. 3. The approximate 
result for the number is in very good agreement with the 
exact result. 
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0.015 0.02 0.025 0.03 0.035 0.04 

Fig. 3. The number of particles in the ground state as a function of x. 

We have worked out the maximum in the specific heat 
for the two cases A? = 2 X 10^ and A? = 2 X 10^ and find 
that it corresponds to x —0.0185 and x — 0.0408, 
respectively. Using the oscillator frequencies given in 
Ref. [8] we find the temperature at which the specific 
heat has a maximum is T — 380 nK, in good agreement 
with the range of 100 nK to 400 nK for the experiment. 
For the case of rubidium with N=2X\Q'^ we find 
T —1\ nK if we use the oscillator frequencies of 
Ref. [7]. If we use the frequencies given in Ref. [46] for 
the strong trap we find T— 124 nK, again in close 
agreement with the experiment. We can also compare 
the results for the maximum in the specific heat to the 
fraction in the ground state found from Eq. (110). For 
the case N=2X 10', we find x ^ 0.0185 for/= 0.01; 
x^ 0.0191 for/= 0.1; x ^ 0.0233 for /= 0.5; and 
X ^ 0.051 for/= 0.95. If we take Af = 2X W we find 
x^ 0.0404 for /=0.01; x^ 0.0417 for /=0.1; 
X ^ 0.051 for/= 0.5; and x ^ 0.114 for/= 0.95. In all 
three cases, the maximum in the specific heat occurs 
when only about 1 % of the particles are in the ground 
state. The specific heat maximum is therefore a good 
indicator of the onset of BEC. 

For the case that BEC in the sense of a phase transi- 
tion occurs, the critical temperature is the temperature at 
which the ground state starts to become populated. (See 
Eq. (58) for the free boson gas.) Because we have seen 
that the specific heat maximum also corresponds to the 
point at which the ground state population begins to 
grow, we believe that this gives a good and reliable 
indicator for the onset of BEC in neutral atoms trapped 
by a confining potential. 
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