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Longitudinal structure function from logarithmic slopes of F2 at low x
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Using Laplace transform techniques, I calculate the longitudinal structure function FL(x,Q2) from the scaling
violations of the proton structure function F2(x,Q2) and make a critical study of this relationship between
the structure functions at leading order (LO) up to next-to-next-to leading order (NNLO) analysis at small x.
Furthermore, I consider heavy quark contributions to the relation between the structure functions, which leads to
compact formula for Nf = 3 + Heavy. The nonlinear corrections to the longitudinal structure function at LO up
to NNLO analysis are shown in the Nf = 4 (light quark flavor) based on the nonlinear corrections at R = 2 and
R = 4 GeV−1. The results are compared with experimental data of the longitudinal proton structure function FL

in the range of 6.5 � Q2 � 800 GeV2.

DOI: 10.1103/PhysRevC.97.015206

I. INTRODUCTION

The inclusive deep inelastic scattering (DIS) measurements
are of importance to understanding the gluonic substructure of
proton at low values of the Bjorken variable x. The reduced
cross section is defined in the following form:

σ̃ (x,Q2) = F2(x,Q2) − y2

Y+
FL(x,Q2), (1)

where Y+ = 1 + (1 − y)2, y = Q2/xs is the inelasticity, s is
the center-of-mass squared energy of incoming electrons and
protons, and F2(x,Q2) and FL(x,Q2) are the transverse and
longitudinal structure functions, respectively.

The structure functions describe the momentum distribu-
tions of partons in a nucleon. A measurement of the proton
structure functions (F2 and FL) at low x is directly sensitive to
the gluon density. This provides a sensitive test for perturbative
QCD (pQCD).

The longitudinal structure function is determined by mea-
surements of differential cross sections at different values
of

√
s at the Hadron-Electron Ring Accelerator (HERA) at

DESY, where data on
√

s for electron beam energies of
Ee � 27.5 GeV and for proton beam energies of Ep = 920,
820, 575, and 460 GeV are collected [1,2]. The experimental
data for neutral current were also collected for 0.045 �
Q2 � 50 000 GeV2 and 6E − 7 � x � 0.65 at values of the
inelasticity 0.005 � y � 0.95.

The contribution of FL to reduced cross section [Eq. (1)]
is significant only at high value of the inelasticity y, i.e.,

*grboroun@gmail.com; boroun@razi.ac.ir

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

the kinematic region. The latter case corresponds to the low
values of the Bjorken variable x, and the longitudinal structure
function is related to the gluon density of the proton. Because
gluons exert the most influence at low x, the quark contribution
to the longitudinal structure function and singlet structure
function is ignored in next step.

The gluonic longitudinal structure function can be written
as

x−1FL(x,Q2) = 〈e2〉CL,g(αs,x) ⊗ g(x,Q2), (2)

where g(x,Q2) represents the gluon density, and 〈e2〉 is the
average squared charge (=5/18 for even Nf , where Nf denotes
number of active light flavors). The symbol ⊗ denotes the
Mellin convolution according to the usual prescription.

The perturbative expansion of the gluon coefficient function
can be written as

CL,g(αs,x) =
∑
n=1

(
αs

4π

)n

cn
L,g(x), (3)

where n is the order in the running coupling constant.
The reduced cross section for deep inelastic lepton-nucleon

scattering [Eq. (1)] is defined in terms of the proton structure
function F2. At low values of x, the gluon contribution to the
proton structure function F2 dominates over the flavor sin-
glet contribution. The Dokshitzer–Gribov–Lipatov–Altarelli–
Parisi (DGLAP) evolution equation for gluon dominating F2

structure function is given by

∂F s
2 (x,Q2)

∂ ln(Q2)
= αs(Q2)

2π
Pqg(αs,x)⊗G(x,Q2), (4)

where F s
2 is the singlet distribution function. The splitting func-

tion Pqg is the leading order (LO) up to high-loop corrections
to the QCD β function as

Pqg(αs,x) = P LO
qg + αs(Q2)

2π
P NLO

qg + · · · . (5)

Several methods to relate FL and F2 scaling violation to the
gluon density at small x were suggested previously [3,4]. These
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methods were proposed to isolate the gluon distribution by
its expansion around z = 1

2 . In LO analysis with Nf = 4,
the authors of Ref. [3] suggested an approximate relation
between the gluon density at the point 2.5x and the longitudinal
structure function FL at the point x in the following form:

FL(x,Q2) = 2αs

π

∑Nf

i=1 e2
i

5.9
G(2.5x,Q2). (6)

Equation (6) was derived in an expansion of gluon distribution
around z = 1

2 . A similar relation for the derivation of F2(x,Q2)
with respect to ln Q2 based on the expansion of the gluon
distribution around z = 1

2 was found in Ref. [4], where the
following result was obtained:

∂F2(x,Q2)

∂ ln Q2
= 5αs

9π

2

3
G(2x,Q2). (7)

Combining Eqs. (6) and (7), one could calculate the longitu-
dinal structure function by derivation of the structure function
at a rescaled value ζ2

ζL
x, where ζ2 � 0.5 and ζL � 0.4. The

corresponding LO expression is

FL(x,Q2) = ∂F2(ηx,Q2)

∂ ln Q2
, (8)

where η � 1.25.
In addition, two different methods were suggested [5,6],

the derivatives of the structure functions were based in the
expansion of the gluon distribution around the arbitrary point
z = α. The results were derived at an arbitrary point of
expansion as follows:

FL(x,Q2) = 10αs

27π
G

(
x

1 − α

(
3

2
− α

)
,Q2

)
, (9)

and

∂F2(x,Q2)

∂ ln Q2
= 10αs

27π
G

(
x

1 − α

(
3

2
− α

)
,Q2

)
. (10)

Equations (9) and (10) strongly depend on the momentum
fraction carried by gluons in Eqs. (2) and (4) and show
the behavior of the gluonic structure functions based on the
expansion of the gluon distribution around z = α.

In this paper I introduce a method to calculate structure
functions by using the Laplace transform techniques. The paper
is organized as follows: In Sec. II, I find the relation between
the structure functions at small x at LO analysis. In Sec. III, I
consider the high-order corrections to the relation between the
structure functions. In Sec. IV, I utilize the solution obtained to
calculate the nonlinear behavior of the longitudinal structure
function at the hot-spot point in the LO analysis and present
an analytical analysis of the longitudinal structure function.
Then I compare the result obtained with H1 experimental data.
In Sec. V, I study the high-order corrections to the nonlinear
behavior of the longitudinal structure function. My conclusion
is given in Sec. VI. In Appendix A, I present the results for
the splitting functions and coefficients in the inverse Laplace
transform method at some values of Q2. Appendix B includes
the analytical expression for F

γp
2 (x,Q2). In Appendixes C and

D, I present the high-order corrections and high-order ratios
at NLO up to NNLO at small x. Appendix E deals with a

technical detail including the inverse Laplace transform of the
nonlinear kernels at LO and high-order corrections presented
in Appendix F.

II. GENERAL METHOD

In pQCD, the evolution equations for proton and longitu-
dinal structure functions are given in terms of the nonsinglet,
singlet, and gluon coefficient functions. At small values of x
the gluon contribution to the structure functions dominate over
the flavor singlet and nonsinglet contribution. Therefore, in this
research I consider the gluonic structure functions evolution
equations.

A. Four flavours

One could write the LO equation for the evolution of the
proton structure function at low values of x as

∂F2(x,Q2)

∂ ln(Q2)
= 10

18

αs(Q2)

π

∫ 1

x

x

y2
P LO

qg

(
x

y

)
G(y,Q2)dy. (11)

The longitudinal structure function for gluon dominating is
given by

FL(x,Q2) = 20

9

αs(Q2)

π

∫ 1

x

1

y
cLO
L,g

(
x

y

)
G(y,Q2)dy. (12)

Considering the coordinate transformation as ν = ln(1/x) and
ω = ln(1/y) [7], one could rewrite Eqs. (11) and (12) with
respect to these variables:

F̂2(ν,Q2) =
∫ ν

0
Ĝ(ω)e−(ν−ω)(1 − 2e−(ν−ω) + 2e−2(ν−ω))dω,

(13)

and

F̂L(ν,Q2) =
∫ ν

0
Ĝ(ω)e−2(ν−ω)(1 − e−(ν−ω))dω, (14)

where

f̂ (ν,Q2) = f (e−ν,Q2),

F̂2(ν,Q2) = 18π

10αs

∂F̂2(ν,Q2)

∂ ln(Q2)
,

F̂L(ν,Q2) = 9π

20αs

F̂L(ν,Q2).

Defining the Laplace transforms F̂2(s,Q2) =
L[F̂2(ν,Q2); s] and F̂L(s,Q2) = L[F̂L(ν,Q2); s] explicitly
from Eqs. (13) and (14), one obtains the structure functions in
s space as

F2(s,Q2) = g(s,Q2)�2(s), (15)

and

FL(s,Q2) = g(s,Q2)�L(s). (16)

In Eqs. (15) and (16) I used the fact that the Laplace transform
of a convolution function is simply ordinary product of the
Laplace transform of that function. Taking into account the
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gluon distribution, one could extend the Laplace transforma-
tion to the high-order corrections in the following form:

F2(s,Q2) = g(s,Q2)

[
�LO

2 (s) + αs

4π
�NLO

2 (s) + · · ·
]
, (17)

and

FL(s,Q2) = g(s,Q2)

[
�LO

L (s) + αs

4π
�NLO

L (s) + · · ·
]
. (18)

The leading-order splitting functions in Laplace s space are
given by

�LO
2 (s) = 1

1 + s
− 2

2 + s
+ 2

3 + s
, (19)

and

�LO
L (s) = 1

2 + s
− 1

3 + s
. (20)

I obtain, therefore, the derivative of the structure function in
the form of the longitudinal structure function in s space as

∂F2(s,Q2)

∂ ln(Q2)
= 1

4
h(s)FL(s,Q2), (21)

or

FL(s,Q2) = 4h−1(s)
∂F2(s,Q2)

∂ ln(Q2)
, (22)

where h(s) = �LO
2 (s)

�LO
L (s)

.

The inverse Laplace transforms of h(s) and h−1(s)
is given by the kernels η̂(ν) ≡ L−1[h(s); ν] and Ĵ (ν) ≡
L−1[h−1(s); ν]. Therefore, I have

η̂(ν) = 2δ(ν) + δ′(ν) + 2e−ν, (23)

and

Ĵ (ν) = e− 3
2 ν cos

(
1

2

√
7ν

)
− 1

7

√
7e− 3

2 ν sin

(
1

2

√
7ν

)
. (24)

Consequently, the general relation between the structure func-
tions in x space is given by

∂F2(x,Q2)

∂ ln(Q2)
= 1

2
FL(x,Q2) − 1

4
x

∂FL(x,Q2)

∂x

+ 1

2

∫ 1

x

FL(y,Q2)
x

y2
dy. (25)

Finally, one could write the leading-order relation for the
longitudinal structure function for massless quarks in the form
of the derivative of the structure function as

FL(x,Q2)|Nf =4 = 4
∫ 1

x

∂F2(y,Q2)

∂ ln(Q2)

(
x

y

)3/2[
cos

(√
7

2
ln

y

x

)
−

√
7

7
sin

(√
7

2
ln

y

x

)]
dy

y
. (26)

B. Three flavors + heavy

The heavy quark contribution (charm and bottom) to the
relation between FL and F2 is define by a fixed-order number
scheme using mc = 1.5 GeV and mb = 4.5 GeV [8]. The mass

of these heavy quarks satisfies mQ 	 �QCD, and provides a
hard scale for pQCD calculations. One could consider the
perturbative predictions for the longitudinal structure function.

Equation (2) can be rewritten in the convolution form:

x−1FL(x,Q2) = 〈e2〉|Nf =3CL,g(αs,x) ⊗ g(x,Q2)

+ x−1Fc
L + x−1Fb

L, (27)

where ⊗ in the Nf = 3 for massless quarks u, d, and s denotes
the common convolution, and F

c(b)
L are heavy quark corrections

to the longitudinal structure function at small x.
These corrections in deep inelastic electron-proton-

scattering collisions serve as a test of pQCD and the heavy
quark production is directly sensitive to the gluon density and
heavy-quark mass. One should write the individual longitudi-
nal structure functions as

FL(x,Q2) = F
g
L + F

heavy
L . (28)

At small x, where the gluon distribution is dominant, the heavy-
quark contributions F i

k (x,Q2,m2
i ) with i = b,c and k = 2,L in

the proton structure function is written as

F i
k

(
x,Q2,m2

i

) = Ci
g,k(x,Q2)⊗g(x,Q2)

= 2xe2
i

αs(μ2)

2π

∫ 1

ax

dy

y
Ci

g,k

(
x

y
,Q2

)
g(y,μ2),

(29)

where a = 1 + 4 m2
i

Q2 , and the renormalization scale μ is as-

sumed to be the average 〈μ2〉 = 4m2
i + Q2

2 .
Using the Laplace transform method [7], one can rewrite the

heavy structure functions in terms of the convolution integrals
with respect to ν ′ and ω′ variables at small x as

ˆFF i
k

(
1

a
ν ′,Q2

)
=

∫ ν ′

0
Ĝ(ω′,Q2)

1

a
e−(ν ′−ω′)Ci

g,k

(
1

a
e−(ν ′−ω′)

)
dw, (30)

where

Ĥ i
k (ν ′) ≡ 1

a
e−ν ′

Ci
g,k

(
1

a
e−(ν ′)

)
. (31)

Here ν ′ = ln 1
ax

, ω′ = ln 1
ay

, and

ˆFF i
k (ν ′,Q2) ≡

(
2
αLO

s (μ2)

2π
e2
i

)−1

F̂ i
k . (32)

The Laplace transformation of Ĥ i
k (ν ′) is given by hi

k(s), where

hi
k(s) ≡ L[

Ĥ i
k (ν ′); s

] =
∫ ∞

0
Ĥk(ν ′)e−sν ′

dν ′. (33)

The convolution theorem for Laplace transforms allows one to
rewrite the heavy distribution functions as a product of their
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Laplace transforms g(s,Q2) and hi
k(s). In this case one has

FF i
2(s,Q2) = L

[∫ ν ′

0
Ĝ(ω′,Q2)Ĥ i

2(ν ′ − ω′); s

]
= g(s,Q2)hi

2(s), (34)

and

FF i
L(s,Q2) = L

[∫ ν ′

0
Ĝ(ω′,Q2)Ĥ i

L(ν ′ − ω′); s

]
= g(s,Q2)hi

L(s). (35)

Therefore the ratio of the heavy structure functions are inde-
pendent of the gluon distribution function in s space. This ratio
can be written as

F i
L(s)

F i
2(s)

= hi
L(s)

hi
2(s)

. (36)

If one takes the inverse Laplace transformation of Eq. (36),
then one has

F i
L(ν ′) = L−1

[
F i

2(s)Rhi(s); ν ′], (37)

where Rhi(s) = hi
L(s)

hi
2(s)

.
Here I used the following property for inverse Laplace

transformation:

L−1[F (s)G(s)] =
∫ t

0
f (t − τ )g(τ )dτ

=
∫ t

0
g(t − τ )f (τ )dτ. (38)

Then Eq. (37) becomes as

F i
L(ν ′,Q2) =

∫ ν ′

0
F i

2(ω′,Q2)Ĵ i(ν ′ − ω′)dw′, (39)

where Ĵ i(ν ′) = L−1[Rhi(s); ν ′].
The analytical results for the parameters Ĵ i for a particular

range of Q2 under study are given in Appendix A.
In a similar manner, the longitudinal structure function can

be determined at small x by considering the heavy corrections
to the structure function. Thus, applying the convolution
theorem, the analytical solution for the longitudinal structure
function for Nf = 3 + Heavy should be converted to the usual
(x,Q2) space. Therefore, one has

FL(x,Q2)|Nf =3+Heavy

= 16

5

∫ 1

x

∂F2(y,Q2)

∂ ln(Q2)

(
x

y

)3/2[
cos

(√
7

2
ln

y

x

)
−

√
7

7
sin

(√
7

2
ln

y

x

)]
dy

y
+

∫ 1

ax

dy

y
F c

2 (y,Q2)J c

(
x

y
,Q2

)
+

∫ 1

ax

dy

y
F b

2 (y,Q2)J b

(
x

y
,Q2

)
. (40)

One observes that the connection between the structure func-
tions [in Eqs. (26) and (40)] are independent of the running
coupling constant at LO analysis and gluon density behavior.
To calculate the right-hand side of these equations [Eqs. (26)

FIG. 1. The longitudinal structure functions FL(x,Q2) [up tri-
angle (Nf = 4)], down triangle (Nf = 3 + Heavy) compared by
H1 [1] (circles) at the given values of Q2 accompanied by total
uncertainties. The determined error bars represent the derivative of
F2(x,Q2) uncertainties. The curves represent the prediction from the
expanding of gluon behavior [3–6].

and (40)], one has to have an expression for the proton structure
function [9] and heavy quark structure [10] functions for
massless and heavy quarks.

The H1 Collaboration reported a measurement of inclusive
ep cross sections at high Q2 at

√
s = 225 and 252 GeV. HERA

provided the first measurements of FL in the region 120 �
Q2 � 800 GeV2 and 6.5 × 10−4 < x < 0.032 [1]. My results
are compared with extracted longitudinal proton structure
function FL in the range of 6.5 � Q2 � 800 GeV2.

In Fig. 1 the determined longitudinal structure function FL

is shown for Q2 = 20 GeV2 and 200 GeV2. In this figure, the
longitudinal structure functions determined for four massless
quarks at m2

c < μ2 and also to account for fixed the Nf =
3 flavor number scheme as the heavy-flavor contributions to
FL are taken as given by fixed order perturbation theory. The
results for Q2 = 20 and 200 GeV2 are presented for Nf = 4
and Nf = 3 + Heavy and are compared with H1 Collaboration
data [1]. For heavy contributions to FL, the renormalization
scale is 〈μ2〉 = 4m2

H + Q2/2. These results are accompanied

TABLE I. Parameters of Eq. (65), resulting from a global fit to
the HERA combined data.

Parameter Value

a0 −8.471 × 10−2 ± 2.62 × 10−3

a1 4.190 × 10−2 ± 1.56 × 10−3

a2 −3.976 × 10−3 ± 2.13 × 10−4

b0 1.292 × 10−2 ± 3.62 × 10−4

b1 2.473 × 10−4 ± 2.46 × 10−4

b2 1.642 × 10−3 ± 5.52 × 10−5

Fp 0.413 ± 0.003
χ 2(goodnessoffit) 1.17
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FIG. 2. The same as Fig. 1 at the given values of Q2 for Nf = 4
and Nf = 3.

with errors due to fit parametrizations of ∂F2/∂lnQ2, as listed
in Appendix B and Table I. It is seen from Fig. 1 that the results
are comparable with the experimental data as accompanied
with total errors, although those are independent of the gluon
behavior. I also present the Cooper–Prytz (CP) fit [3,4], which
depends on expanding of the gluon distribution at z = 1/2,
and the Gay Ducati–Boroun (BG) fit [5,6] which depends on
expanding of the gluon distribution at z = α.

In Fig. 2 I present the longitudinal structure function FL for
Q2 = 45 and 500 GeV2 without considering the heavy-quark
contributions in the same Fig. 1. The longitudinal proton
structure function FL(x,Q2) compared by averaging FL data
from Table 5 in Ref. [1] at the given values of Q2 and x
with total uncertainty on FL, shown in Fig. 3. A reasonable
agreement between the longitudinal structure function as
extracted from the direct measurement of the derivative of F2

with the experimental data is observed at moderate and high
Q2 values at low values of x.

These results extend from the LO up to NNLO analysis with
respect to the Laplace transform method at small x and I will
try to compare our result with experimental data in the next
section.

FIG. 3. The longitudinal structure function FL compared with
H1 data averaged over x in the region 6.5 � Q2 � 800 GeV2 (solid
points). The error bars represent the full errors as obtained by the
Monte Carlo procedure described in the Ref. [1]. For each Q2 the
average value of x is given above each data point.

III. HIGH-ORDER CORRECTIONS

An analytical solution based on the Laplace transformation
for the relation between the longitudinal structure function in
terms of a convolution of the derivative of F2 is obtained at
LO accuracy in perturbative QCD in Sec. II. Some analytical
solutions of the DGLAP evolution equation in next-to-leading
order (NLO) analysis using the Laplace transform method have
been presented in Ref. [11]. In Refs. [12,13], the authors have
been reported the complete two- and three-order coefficient
functions for the longitudinal structure functions in deep
inelastic scattering (DIS). Now, a detailed analysis has been
performed to find an analytical solutions of the longitudinal
structure function into the derivative of the proton structure
function with respect to ln Q2, using the repeated Laplace
transform, at NLO up to NNLO approximation.

In s space, one can rewrite the gluonic structure functions
equations in terms of the convolution integrals up to NNLO
analysis. The Laplace transform of these equations converted
to an ordinary first-order differential equations in s space as
one has

∂ ln F2(s,Q2)

∂ ln Q2
= 5

18

αs(Q2)

4π

∫ ν

0

[
P̂ LO(ν − ω) + αs(Q2)

4π
P̂ NLO(ν − ω) +

(
αs(Q2)

4π

)2

P̂ NNLO(ν − ω)

]
Ĝ(ω,Q2)dω

= 5

18

αs(Q2)

4π

[
�LO

2 (s) + αs(Q2)

4π
�NLO

2 (s) +
(

αs(Q2)

4π

)2

�NNLO
2 (s)

]
g(s,Q2), (41)

and

FL(s,Q2) = 〈e2〉αs(Q2)

4π

∫ ν

0

[̂
cLO(ν − ω) + αs(Q2)

4π
ĉNLO(ν − ω) +

(
αs(Q2)

4π

)2

ĉNNLO(ν − ω)

]
Ĝ(ω,Q2)dω

= 〈e2〉αs(Q2)

4π

[
�LO

L (s) + αs(Q2)

4π
�NLO

L (s) +
(

αs(Q2)

4π

)2

�NNLO
L (s)

]
g(s,Q2), (42)
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where the running coupling constants have the following forms
in NLO and NNLO analysis, respectively:

αNLO
s

4π
= 1

β0t

[
1 − β1 ln t

β2
0 t

]
, (43)

and

αNNLO
s

4π
= 1

β0t

{
1 − β1 ln t

β2
0 t

+ 1

(β0t)2

×
[(

β1

β0

)2

(ln2 t − ln t + 1) + β2

β0

]}
, (44)

where β0 = 1
3 (33 − 2nf ), β1 = 102 − 38

3 nf , and β2 = 2857
6 −

6673
18 nf + 325

54 n2
f are the one-loop,two-loop, and three-loop

corrections to the QCD β function and � is the QCD cutoff
parameter. The �QCD parameter usually defined in NLO

and NNLO analyses as �
(Nf =4)
QCD = 347 MeV and �

(Nf =4)
QCD =

251 MeV [12,13], respectively.
The NnLO expansion coefficients are defined in Ref. [13] in

Mellin space and one should present these splitting functions
and coefficient functions in Appendix C. In detail the shape of
the structure functions are dominated by the gluon density at
low values of x. Therefore, one would find

FL(x,Q2) = L−1[H (s,Q2)DF2(s,Q2); ν], (45)

where DF2 ≡ ∂F2
∂ ln Q2 . The high-order H (ν,Q2) for four Q2 val-

ues is presented in Appendix D. One can easily determine these
high-order corrections to the gluonic longitudinal structure
function based on the derivative of the proton structure function
with respect to ln Q2 at low x. Now considering the terms from
NLO up to NNLO, the gluonic longitudinal structure function
takes the following form for a given Q2 value:

F NLO
L (x,Q2)

∣∣
Q2=20 GeV2 = −0.07DF2(x,Q2) +

∫ 1

x

dy

y
DF2(y,Q2)

[
− 0.13

(
x

y

)0.08

+
(

x

y

)1.54[
3.73 cos

[
1.33 ln

(
x

y

)]
−1.68

{
sin

[
1.33 ln

(
x

y

)]}]]
,

F NNLO
L (x,Q2)

∣∣
Q2=20 GeV2 = −0.31DF2(x,Q2) +

∫ 1

x

dy

y
DF2(y,Q2)

[(
y

x

)0.06{
− 0.3 cos

[
0.26 ln

(
x

y

)]
+ 0.11

× sin

[
0.26 ln

(
x

y

)]}
+

(
x

y

)1.40(
3.82 cos

[
1.31 ln

(
x

y

)]
− 1.17

{
sin

[
1.31 ln

(
x

y

)]})]
. (46)

For my numerical investigation, the high-order corrections to
FL(x,Q2) are shown in Fig. 4 and compared with H1 data [1]
for Q2 = 20, 45, 200 and 500 GeV2. In this figure the straight
and dash lines represent the gluonic longitudinal structure
function solutions at NLO and NNLO, respectively. These
results are obtained with respect to the Laplace transform
technique as described in Appendix D. In this figure, the circles
represent the longitudinal structure functions from Ref. [1] as
accompanied with total errors. These results are in agrement
with FL(x,Q2) predicted from the global fit at LO, NLO, and
NNLO in Ref. [12]. However, it is a reflection of the behavior
of the deep inelastic structure function and the coefficient
functions at low values of x.

In the next sections, the recombination processes between
gluons in a dense system have to be taken into account.
Therefore the gluonic longitudinal structure function behavior
has to be tamed by screening effects.

IV. NONLINEAR BEHAVIOR

The screening effects are provided by a multiple gluon
interaction which leads to the nonlinear terms in the derivation
of the linear DGLAP evolution equations. Therefore, the
standard linear DGLAP evolution equations will have to be
modified to take the nonlinear corrections into account.

Gribov, Levin, Ryskin, Mueller, and Qiu (GLR-MQ) [14]
performed a detailed study of these recombination processes.
This widely known as the GLR-MQ equation and involves

the two-gluon distribution per unit area of the hadron. This
equation predicts a saturation behavior of the gluon distribution
at very small x [15,16]. A closer examination of the small-x
scattering is resummation powers of αs ln(1/x), which leads
to the kT -factorization form [17]. In the kT -factorization
approach, the large logarithms ln(1/x) are relevant for the
unintegrated gluon density in a nonlinear equation. The
solution of this equation develops a saturation scale where tame
the gluon density behavior at low values of x, and this is an
intrinsic characteristic of a dense gluon system.

Therefore, one should consider the low-x behavior of the
singlet distribution by using the nonlinear GLR-MQ evolution
equation. The shadowing correction to the evolution of the
singlet quark distribution can be written as [13,14,18]

∂xq(x,Q2)

∂ ln Q2
= ∂xq(x,Q2)

∂ ln Q2

∣∣∣∣
DGLAP

− 27α2
s

160R2Q2
[xg(x,Q2)]2.

(47)

Equation (47) can be rewritten in a convenient form as

∂F2(x,Q2)

∂ ln Q2

= ∂F2(x,Q2)

∂lnQ2

∣∣∣∣
DGLAP

− 5

18

27α2
s

160R2Q2
[xg(x,Q2)]2. (48)

The first term is the standard DGLAP evolution equation
[Eq. (11)] and the value of R is the correlation radius between
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FIG. 4. The high-order corrections to the gluonic longitudinal structure function compared with H1 data [1].

two interacting gluons. It will be of the order of the proton
radius (R � 5 GeV−1), if the gluons are distributed through
the whole of proton, or much smaller (R � 2 GeV−1) if gluons
are concentrated in the hot-spot within the proton.

One would find Eq. (48) at LO analysis in s space as

∂F2(s,Q2)

∂ ln Q2
= 10αs

18π
G(s,Q2)�LO

2 (s)

− 5

18

27α2
s

160R2Q2
G2(s,Q2). (49)

The longitudinal structure function in s-space is given in the
following form

FL(s,Q2) = 20αs

9π
G(s,Q2)�LO

L (s). (50)

Combining Eqs. (49) and (50), one could calculate the non-
linear relation between the derivative of the structure function
and longitudinal structure function in s space as I have:

∂F2(s,Q2)

∂ ln Q2
= h(s)

4
FL(s,Q2) − ζ

�2
L(s)

F 2
L(s,Q2), (51)

where ζ = 243π2

25 600R2Q2 . At ζ→0, Eq. (51) leads to the linear
relation between the structure functions [i.e., Eq. (21)].

Equation (51) yields the gluonic longitudinal structure
function with nonlinear effects as

F 2
L(s,Q2) − h(s)

4

�2
L(s)

ζ
FL(s,Q2) + �2

L(s)

ζ
DF2(s,Q2) = 0.

(52)

It is tempting, however, to discard one of the roots of Eq. (52).
The solution of Eq. (52) then leads to a solution for the nonlin-

ear gluonic longitudinal structure function. This equation can
be solved by a Taylor series expansion around a particular
choice of point of expansion. Since (ζR2Q2)n < 1, so this
series is convergent when n → ∞. This parameter decreases
with increasing n, as seen from Table II. For the longitudinal
structure function in s space, one has

FL(s,Q2) = 4h−1(s)DF2(s,Q2) + 64ζ
�L(s)

�3
2(s)

DF 2
2 (s,Q2)

+ 2048ζ 2 �L(s)

�5
2(s)

DF 3
2 (s,Q2) · · · . (53)

Equation (53) covers the whole range of expanding, as shown
in Table II. The contribution from the fourth term to the
second term (such that Fourth term

Second term ∝ ζ 3

ζ
= ζ 2) is around the

order O(∼10−2). To make a rough estimate of the accuracy
in the expansion method I find the longitudinal structure
function until a fourth-order approximation with respect to
the ζ expansion and neglecting the high-order terms O(ζ 3)
in Eq. (53). For this evolution, I retain the second-order term
in ζ . Therefore, the gluonic longitudinal structure function in

TABLE II. Higher-order terms in expansion method.

n (ζR2Q2)n

1 O(10−1)
2 O(10−2)
3 O(10−3)
4 O(10−4)
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ν space is defined as

F̂L(ν,Q2) = 4
∫ 1

0

̂DF 2(ν,Q2)Ĵ (ν − ω)dω (54)

+
∫ 1

0

̂DF
2

2(ν,Q2)P̂ (ν − ω)dω

+
∫ 1

0

̂DF
3

2(ν,Q2)T̂ (ν − ω)dω, (55)

where

Ĵ (ν) ≡ L−1[h−1(s); ν] ≡ 1
4WLO

1 (ν),

P̂ (ν) ≡ L−1

[
64ζ

�L(s)

�3
2(s)

; ν

]
≡ WLO

2 (ν,Q2),

T̂ (ν) ≡ L−1

[
2048ζ 2 �L(s)

�5
2(s)

; ν

]
≡ WLO

3 (ν,Q2).

The inverse Laplace transform of kernels can be found in
Appendix E. Applying the properties of the Dirac δ function,
I finally have the nonlinear gluonic longitudinal structure
function in x space in the following form:

FL(x,Q2)
∣∣
Nf =4

= Eq. (26) +
∫ 1

x

̂DF
2

2(ν,Q2)WLO
2 (ν − ω,Q2)dω

+
∫ 1

0

̂DF
3

2(ν,Q2)WLO
3 (ν − ω,Q2)dω, (56)

where WLO
1 is independent of the values of Q2, but WLO

2 and
WLO

3 depend on Q2. Thus I obtain an expression for the gluonic
longitudinal structure function FL(x,Q

2
) to leading order by

solving the nonlinear GLR-MQ evolution equation. Equation
(56) shows that it is independent of the gluon behavior, of
the running coupling constant, and also of the QCD cutoff
parameter in the LO approximation. One can easily solve
this equation [i.e., Eq. (56)] and extract the nonlinear gluonic
longitudinal structure function.

The nonlinear behavior of FL(x,Q2) is shown in Fig. 5 for
values of Q2 = 6.5 and 20 GeV2. It would appear that the
effect of nonlinearity at low x should observe for moderate Q2

when compared with H1 data. In this figure, the nonlinear effect
investigated at the hot-spot point (R = 2 GeV−1). It is shown
that the results obtained from the present analysis based on the
Laplace transform are in good agreement with those obtained
by the H1 Collaboration [1]. The saturation of the gluon
density at small x indirectly is significant for understanding the
nonlinear effects in Eq. (56) and also high-order corrections. In
the next section I apply high-order corrections to the nonlinear
behavior and compared with H1 data.

V. HIGH-ORDER CORRECTIONS
TO THE NONLINEAR BEHAVIOR

Using the formalism given in the previous section, I calcu-
late the high-order corrections to the nonlinear behavior of the
gluonic longitudinal structure function in the low-x region. In
terms of the derivative of proton structure function with respect

FIG. 5. Nonlinear corrections (NLCs) to the gluonic longitudinal
structure function FL at LO analysis for Nf = 4 at R = 2 GeV−1

compared with H1 data at Q2 = 6.5 and 20 GeV2 (solid points).

to ln Q2, the GLR-MQ evaluation equation can be written with
the high-order correction in s space as

∂F2(s,Q2)

∂ ln Q2
= 5

18

αs(Q2)

4π
�2(s,Q2)g(s,Q2)

− 5

18

27α2
s (Q2)

160R2Q2
g2(s,Q2), (57)

where �2(s,Q2) = �LO
2 (s) + αs (Q2)

4π
�NLO

2 (s) +
( αs (Q2)

4π
)2�NNLO

2 (s). One should consider the same method
introduced in the previous section: I find the high-order
corrections to the gluonic longitudinal structure function in
the following form:

∂F2(s,Q2)

∂ ln Q2
= 5

18

�2(s,Q2)

〈e2〉�L(s,Q2)
FL(s,Q2)

− 3π2

4R2Q2

F 2
L(s,Q2)

[〈e2〉�L(s,Q2)]2
, (58)

where �L(s,Q2) = �LO
L (s) + αs (Q2)

4π
�NLO

L (s) +
( αs (Q2)

4π
)2�NNLO

L (s). Equation (58) can be solved
simultaneously to get the desired nonlinear equation for
longitudinal structure function. Using the inverse Laplace
transform to go back from s space to x space, the simplified
solution of the above equation with high-order corrections can
be obtained by

FL(x,Q2) = Eq. (45) + L−1

[
B(s,Q2)

A3(s,Q2)
D2F2(s,Q2); ν

]
+L−1

[
2
B2(s,Q2)

A5(s,Q2)
D3F2(s,Q2); ν

]
, (59)

where A(s,Q2) = 5
18

�2(s,Q2)
〈e2〉�L(s,Q2) and B(s,Q2) =

3π2

4R2Q2[〈e2〉�L(s,Q2)]2 .
Therefore the solution of the nonlinear corrections at NLO

up to NNLO analysis leads us to nonlinear behavior of the
gluonic longitudinal structure function at moderate values of
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FIG. 6. High-order nonlinear corrections to the gluonic longitudinal structure function FL at NLO up to NNLO analysis for Nf = 4 at
R = 2 GeV−1 compared with H1 data at Q2 = 6.5, 20, and 200 GeV2 (solid points).

Q2. The analytical expressions for these corrections are given
in Appendix F. The validity of the nonlinear corrections to
the DGLAP evolution equation is in the region of small x and
intermediate values of Q2. The nonlinear corrections can be
neglected at large values of Q2, so I expect that my result is
valid in the kinematic region x � 0.01 and moderate Q2.

In Fig. 6 the nonlinear behavior for moderate and high
Q2 values are shown. One would expect this behavior to be
observed at moderate Q2 values, as considered in Fig. 6. From
these figures, it is observed that the NLO nonlinear corrections
(NLO + NLCs) show tamed behavior compared with those
obtained from only NLO corrections when compared with H1
data. Its observed that NNLO nonlinear corrections (NNLO +
NLCs) have a negative rate as x decreases at moderate Q2

values.
Indeed, comparison of the NNLO + NLCs with the NNLO

calculations shows a turnover of the gluonic longitudinal
structure function at Q2 = 6.5 and 20 GeV2. This is due to the
effect of the gluonic coefficient function to the gluonic splitting
function ratio, which decreases the limit NNLO corrections
when tamed with respect to the nonlinear saturation effect.
Since gluon recombination introduces a negative correction
to the NNLO linear behavior, the signal of its presence is a
decrease of the scaling violation and this is strongly dependent
on the correlation radius (i.e., R). In Fig. 7, the effect of the
nonlinearity in NNLO results for R = 4 GeV−1 at Q2 = 6.5
and 20 GeV2 investigated. It can be observed (in Figs. 6 and
7) that NNLO results are very sensitive to R as x decreases.
Indeed the effect of third-order corrections to the coefficients
functions and splitting functions at hot-spot points decrease the
gluonic longitudinal structure function to the negative values
as x decreases. This behavior is comparable when R increase
throughout the entire proton at NNLO approximation.

At least there is another mechanism to prevent generation
of the high-density gluon states; namely, the well-known
vacuum color screening [19]. There is a transition between
the nonperturbative and perturbative domains. In the QCD
vacuum, the nonperturbative fields form structures with sizes
∼Rc which it is smaller than �QCD. The short propagation
length for perturbative gluons is Rc ∼ 0.2–0.3 fm.

The gluon fusion effect in nonlinear regime controlled by

the new dimensionless parameter ∼ R2
c

8B
where B is the charac-

teristic size of the interaction region because this parameter can
be defined by ln(x0/x) and r where r2 ∼ Q−2. In all figures
one should observe that the nonlinear effects are small even

FIG. 7. NNLO nonlinear corrections to the gluonic longitudinal
structure function FL for Nf = 4 at R = 4 GeV−1 compared with H1
data at Q2 = 6.5 and 20 GeV2 (solid points).
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at lowest x values. This behavior is in accordance with the
smallness of the ratio R2

c

8B
. It is interesting to look at the nonlinear

limit where decreases as Q2 increases. From [19], the nonlinear
effects leads to the logarithmically ratio as the nonlinear/linear
effects are proportional to R2

c /8B(ln(x0/x),r2) ln(Q2R2
c ).

Figure 6 shows that high-order corrections to the nonlinear
behavior are very small at high Q2 values and at the lowest
available Bjorken x.

VI. CONCLUSION

In this paper I have estimated an analytical solution for
the linear and nonlinear behavior of the longitudinal structure
function with respect to the derivative of the proton structure
function inside the proton.

This solution is independent of the gluon model and the
running coupling constant at leading-order analysis and it is
free of any point expanding model for the gluon distribution
behavior. The ratio of splitting functions applying the Laplace
transform technique are calculated. I have used the heavy
coefficient functions for heavy-flavor production in DIS in
the fixed-flavor-number scheme (FFNS) with Nf = 3. In the
present calculations the high-order corrections (NLO and
NNLO) for structure functions at low x values, arising from the
coefficient functions and the splitting functions, are obtained.
I have therefore used from these results for the gluonic
longitudinal structure function at moderate and high values
of Q2.

The nonlinear GLR-MQ evolution equation predicted by
considering the general Laplace transform method and studied

the effects of adding the nonlinear corrections to the linear
longitudinal structure function at the hot-spot point (R =
2 GeV−1) with Nf = 4. For the gluonic longitudinal structure
function the nonlinear effects are found to play an increasingly
important role at x � 10−3. I have incorporated high-order
corrections to the nonlinear behavior in the kinematic range of
moderate Q2 and obtained the nonlinear longitudinal structure
function at low x at the NLO and NNLO approximations.
It is interesting to see that the NNLO analysis at moderate
Q2 depends on the proton radius as the nonlinear behavior
increases as R increases. This is due to the contribution from
the NNLO terms in the ratio of coefficient function to the
splitting function. It can be observed that, with decreasing x,
the taming of FL(x,Q2) is apparently observed in the NLO ap-
proximation at R = 2 GeV−1 and in the NNLO approximation
atR = 4 GeV−1. The method presented in this analysis enables
us to achieve strictly analytical linear and nonlinear solutions
at LO to NNLO approximation for the gluonic longitudinal
structure function in terms of the derivative of the proton
structure function with respect to ln Q2 at low values of x.
The nonlinear effects are shown to be small at large Q2, even
at lowest Bjorken values of x.
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APPENDIX A

The kernels at leading order analysis are as follows:

P LO
qg (z) = z2 + (1 − z)2, (A1)

and

cLO
L,g(z) = z2(1 − z). (A2)

The parameters Ĵ c(υ) and Ĵ b(υ) are given in the following form: At Q2 = 20 GeV2,

Ĵ c(υ) = 0.252 exp (−3.183v) cos (0.198v) + 0.424 exp (−3.183v) sin (0.198v) − 0.0232 exp (−2.050v)

−0.0624 exp (−1.127v) cos (0.305v) − 0.0692 exp (−1.127v) sin (0.305v) + 0.156δ(v),

Ĵ b(υ) = −4.035 exp (−7.471v) − 0.0745 exp (−2.246v) + 0.0445 exp (−1.313v) cos (0.393v)

−0.154 exp (−1.313v) sin (0.393v) + 0.370 exp (−0.310v) + 1.405δ(v). (A3)

At Q2 = 200 GeV2,

Ĵ c(υ) = −0.0164 exp (−3.169v) + 0.111 exp (−2.609v) − 0.003 exp (−2.005v)

−0.0912 exp (−1.164v) cos (0.218v) − 0.0293 exp (−1.164v) sin (0.218v) + 0.228δ(v),

Ĵ b(υ) = 0.222 exp (−3.146v) cos (0.152v) + 0.518 exp (−3.146v) sin (0.152v) − 0.0212 exp (−2.046v)

−0.0645 exp (−1.127v) cos (0.299v) − 0.0685 exp (−1.127v) sin (0.299v) + 0.171δ(v). (A4)

APPENDIX B

The proton structure function parametrized with a global fit function [9] to the HERA combined data for F
γp
2 (x,Q2) for

0.85 < Q2 < 3000 GeV2 and x < 0.1, which ensures that the saturated Froissart ln2(1/x) behavior dominates at small x. This
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global fit takes the form

F
γp
2 (x,Q2) = (1 − x)

[
FP

1 − xP

+ A(Q2) ln

(
xP

x

1 − x

1 − xP

)
B(Q2) ln2

(
xP

x

1 − x

1 − xP

)]
, (B1)

where

A(Q2) = a0 + a1 ln Q2 + a2 ln2 Q2,

and

B(Q2) = b0 + b1 ln Q2 + b2 ln2 Q2.

The fitted parameters are tabulated in Table I. At small x [or large ν = ln(1/x)], the global fit becomes a quadratic polynomial
in ν because F̂

γp
2 (ν,Q2)→C0f (Q2) + C1f (Q2)ν + C2f (Q2)ν2 + Ô(ν) where the coefficient functions are defined in Ref. [9].

APPENDIX C

At small x the one-loop up to three-loop splitting functions for Nf = 4 read

P LO = 2Nf (1 − 2x + 2x2),

P NLO → CATf

40

9x
, (C1)

P NNLO → E
qg
1

ln x

x
+ E

qg
2

1

x
,

where E
qg
1 � − 298.667Nf and E

qg
2 � − 1268.28Nf + 4.576 13N2

f . The gluonic longitudinal coefficient functions up to NNLO
analysis at small x can be written as

cLO = 8Nf x(1 − x),

cNLO → −5.333Nf

x
+ ( − 6.229Nf + 0.8889N2

f

)
,

cNNLO → Nf

(−2044.70

x
− 409.506

ln x

x

)
+ N2

f

88.5037

x
. (C2)

APPENDIX D

The high-order ratios for some of Q2 values at NLO and NNLO analysis are

H NLO(ν,20) = exp(−1.54ν)[3.73 cos(1.33ν) − 1.68 sin(1.33v)] − 0.13 exp(−0.82E − 1ν) − 0.68E − 1δ(ν),

H NNLO(ν,20) = exp(−1.40ν)[3.82 cos(1.31ν) − 1.17 sin(1.31v)] + exp(+0.59ν)[−0.30 cos(0.26ν) + 0.11 sin(0.26v)]

− 0.31δ(ν),

H NLO(ν,45) = exp(−1.54ν)[3.77 cos(1.33ν) − 1.66 sin(1.33v)] − 0.12 exp(−0.73E − 1ν) − 0.60E − 1δ(ν),

H NNLO(ν,45) = exp(−1.43ν)[3.84 cos(1.32ν) − 1.25 sin(1.32v)] + exp(+0.04ν)[−0.24 cos(0.23ν) + 0.01 sin(0.23v)]

− 0.25δ(ν),

H NLO(ν,200) = exp(−1.53ν)[3.81 cos(1.33ν) − 1.64 sin(1.33v)] − 0.10 exp(−0.61E − 1ν) − 0.50E − 1δ(ν),

H NNLO(ν,200) = exp(−1.45ν)[3.87 cos(1.32ν) − 1.35 sin(1.32v)] + exp(+0.22E − 1ν)[−0.17 cos(0.19ν)

+ 0.85 sin(0.19v)] − 0.18δ(ν),

H NLO(ν,500) = exp(−1.53ν)[3.83 cos(1.33ν) − 1.63 sin(1.33v)] − 0.91E − 1 exp(−0.55E − 1ν) − 0.45E − 1δ(ν),

H NNLO(ν,500) = exp(−1.46ν)[3.88 cos(1.32ν) − 1.39 sin(1.32v)] + exp(+0.16E − 1ν)[−0.15 cos(0.17ν)

+ 0.78E − 1 sin(0.17v)] − 0.15δ(ν). (D1)
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APPENDIX E

The inverse-Laplace of the nonlinear kernels is as follows:

Ĵ (ν) = Eq. (26),

P̂ (ν) = ζ [(−56768/343
√

7 + 3328/49
√

7ν + 1408/49ν2
√

7) sin(1/2
√

7ν) exp(−3/2ν)

+ (−20224/49ν + 128/7ν2 − 320) exp(−3/2ν) cos(1/2
√

7ν) + 64δ′(ν) + 256δ(ν)],

T̂ (ν) = ζ 2[(145 276 928/2401
√

7ν − 40 165 376/2401ν2
√

7 + 203 331 584/2401
√

7 − 3 866 624/1029ν3
√

7

+ 20 480/1029ν4
√

7) sin(1/2
√

7ν) exp(−3/2ν) + (−3 604 480/1029ν3 + 63 062 016/343ν

+ 22 896 640/343ν2 − 69 632/147ν4 − 100 352) exp(−3/2ν) cos(1/2
√

7ν) + 2048δ(3,ν) + 20 480δ(2,ν)

+ 49 152δ(1,ν) − 61 440δ(ν)],

WLO
1 (ν,6.5) = −0.57 exp(−1.5ν)[−7 cos(1.32ν) + 2.64 sin(1.32ν)],

WLO
2 (ν,6.5) = 0.92δ(ν) + 0.23δ(1,ν) + exp(−1.5ν)[(−1.153 − 1.49ν + 0.066ν2) cos(1.32ν)

+ (−1.58 + 0.65ν + 0.27ν2) sin(1.32ν)],

WLO
3 (ν,6.5) = −0.8δ(ν) + 0.64δ(1,ν) + 0.27δ(2,ν) + 0.026δ(3,ν)

+ exp(−1.5ν)[(−1.3 + 2.39ν + 0.87ν2 − 0.045ν3 − 0.006ν4) cos(1.32ν)

+ (2.91 + 2.08ν − 0.57ν2 − 0.13ν3 + 0.0007ν4) sin(1.32ν)],

WLO
1 (ν,20) = Constant

(
WLO

1 (ν,6.5)
)
,

WLO
2 (ν,20) = 0.30δ(ν) + 0.075δ(1,ν) + exp(−1.5ν)[(−0.37 − 0.48ν + 0.02ν2) cos(1.32ν)

+ (−0.51 + 0.21ν + 0.09ν2) sin(1.32ν)],

WLO
3 (ν,20) = −0.084δ(ν) + 0.067δ(1,ν) + 0.03δ(2,ν) + 0.003δ(3,ν) + exp(−1.5ν)[(−0.14 + 0.25ν + 0.09ν2 − 0.005ν3

− 0.0006ν4) cos(1.32ν) + (0.31 + 0.22ν − 0.061ν2 − 0.014ν3 + 0.000 07ν4) sin(1.32ν)]. (E1)

APPENDIX F

The nonlinear corrections for some of Q2 values at NLO up to NNLO analysis are

WNLO
1 (ν,6.5) = −0.08δ(ν) − 0.15 exp(−0.1ν) + exp(−1.55ν)[3.67 cos(1.33ν) − 1.70 sin(1.33ν)],

WNLO
2 (ν,6.5) = 0.57δ(ν) + 0.15δ(1,ν) − 0.004δ(2,ν) + exp(−1.55ν)[(−1.17 − 1.02ν + 0.13ν2) cos(1.33ν)

+ (−0.99 + 0.86ν + 0.2ν2) sin(1.33ν)] + exp(−0.1ν)(−0.016 + 0.003ν − 0.000 06ν2),

WNLO
3 (ν,6.5) = −0.74δ(ν) + 0.25δ(1,ν) + 0.14δ(2,ν) + 0.013δ(3,ν) − 0.0004δ(4,ν)

+ exp(−1.55ν)[(−0.017 + 2.15ν + 0.35ν2 − 0.08ν3 − 0.004ν4) cos(1.33ν)

+ (2.15 + 0.55ν − 0.67ν2 − 0.06ν3 + 0.003ν4) sin(1.33ν)]

+ exp(−0.1ν)(−0.0002 + 0.0006ν − 0.000 06ν2 + 0.13E − 5ν3 − 0.84E − 8ν4),

WNNLO
1 (ν,6.5) = −0.45δ(ν) + exp(0.1ν)[−0.50 cos(0.31ν) + 0.10 sin(0.31ν)] + exp(−1.35ν)[3.76 cos(1.3ν)

− 0.99 sin(1.3ν)],

WNNLO
2 (ν,6.5) = 0.98δ(ν) + 0.014δ(1,ν) − 0.036δ(2,ν) + exp(−1.35ν)[(0.12 − 1.85ν − 0.18ν2) cos(1.3ν)

+ (−2.38 − 0.65ν + 0.28ν2) sin(1.3ν)] + exp(0.1ν)[(−0.18 − 0.014ν + 0.002ν2) cos(0.31ν)

+ (−0.045 + 0.04ν + 0.001ν2) sin(0.31ν)],

WNNLO
3 (ν,6.5) = 0.76δ(ν) + 1.2δ(1,ν) + 0.11δ(2,ν) − 0.04δ(3,ν) − 0.006δ(4,ν)

+ exp(−1.35ν)[(−5.69 − 2.3ν + 1.22ν2 + 0.2ν3 − 0.001ν4) cos(1.3ν)

+ (−0.22 + 5ν + 1.23ν2 − 0.1ν3 − 0.01ν4) sin(1.3ν)]

+ exp(0.1ν)[(−0.26 − 0.011ν + 0.007ν2 + 0.0002ν3 − 0.12E − 5ν4) cos(0.31ν)

+ (0.047 + 0.08ν + 0.004ν2 − 0.0002ν3 − 0.35E − 5ν4) sin(0.31ν)], (F1)
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and

WNLO
1 (ν,20) = −0.07δ(ν) − 0.13 exp(−0.082ν) + exp(−1.54ν)[3.73 cos(1.33ν) − 1.68 sin(1.33ν)],

WNLO
2 (ν,20) = 0.20δ(ν) + 0.054δ(1,ν) − 0.001δ(2,ν) + exp(−1.54ν)[(−0.38 − 0.36ν + 0.04ν2) cos(1.33ν)

+ (−0.35 + 0.27ν + 0.07ν2) sin(1.33ν)] + exp(−0.082ν)(−0.005 + 0.0007ν − 0.00001ν2),

WNLO
3 (ν,20) = −0.082δ(ν) + 0.032δ(1,ν) + 0.02δ(2,ν) + 0.002δ(3,ν) − 0.000 04δ(4,ν)

+ exp(−1.54ν)[(−0.02 + 0.24ν + 0.05ν2 − 0.008ν3 − 0.0004ν4) cos(1.33ν)

+ (+0.24 + 0.083ν − 0.07ν2 − 0.008ν3 + 0.0003ν4) sin(1.33ν)]

+ exp(−0.082ν)(−0.0001 + 0.00007ν − 0.45E − 5ν2 + 0.8E − 7ν3 − 0.4E − 9ν4),

WNNLO
1 (ν,20) = −0.31δ(ν) + exp(0.06ν)[−0.30 cos(0.26ν) + 0.11 sin(0.26ν)] + exp(−1.4ν)[3.82 cos(1.31ν)

− 1.17 sin(1.31ν)],

WNNLO
2 (ν,20) = 0.32δ(ν) + 0.034δ(1,ν) − 0.007δ(2,ν) + exp(−1.4ν)((−0.15 − 0.6ν − 0.028ν2) cos(1.31ν)

+ (−0.71 − 0.035ν + 0.1ν2) sin(1.31ν)) + exp(0.06ν)[(−0.26 − 0.0006ν + 0.0002ν2) cos(0.26ν)

+ (−0.01 + 0.005ν + 0.000 01ν2) sin(0.26ν)],

WNNLO
3 (ν,20) = −0.011δ(ν) + 0.11δ(1,ν) + 0.023δ(2,ν) − 0.0007δ(3,ν) − 0.0003δ(4,ν)

+ exp(−1.4ν)[(−0.45 + 0.025ν + 0.15ν2 + 0.11ν3 − 0.0006ν4) cos(1.31ν)

+ (0.20 + 0.48ν + 0.042ν2 − 0.017ν3 − 0.0007ν4) sin(1.31ν)],

+ exp(0.06ν)[(−0.008 − 0.000 04ν + 0.0001ν2 + 0.13E − 4ν3 − 0.44E − 7ν4) cos(0.26ν)

+ (0.001 + 0.002ν + 0.000 02ν2 − 0.45E − 5ν3 − 0.23E − 7ν4) sin(0.26ν)], (F2)

where W s are inverse Laplace transforms of all coefficients at LO up to NNLO analysis in accordance with the results expanded
in nonlinear behavior.
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