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Bound-state double-β decay
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We consider alternative modes of two-neutrino and neutrinoless double-β decays in which one β electron
goes over to a continuous spectrum and the other occupies a vacant bound level of the daughter ion. We
calculate the corresponding phase-space factors of the final states, estimate the partial decay rates, and derive the
one- and two-electron energy spectra using relativistic many-electron wave functions of atoms provided by the
multiconfiguration Dirac-Hartree-Fock package GRASP2K. While the bound-state neutrinoless double-β decays
are strongly suppressed, their two-neutrino counterparts can be observed in the next-generation double-β-decay
experiments, most notably SuperNEMO.
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I. INTRODUCTION

Among the most challenging problems of modern neutrino
physics are the mechanism of neutrino mixing and the nature
of neutrino masses (Dirac or Majorana). If diagonal neutrinos
νi (i = 1, 2, 3) are Majorana fermions, then flavor neutri-
nos να (α = e, μ, τ ) are identical to their charge-conjugated
states, as a result of which the total lepton number is not
conserved (see, e.g., Ref. [1]). Observation of the neutrinoless
double-β (0νββ) decay can provide evidence for the Majorana
nature of massive neutrinos, which would be of great value
for extensions of the Standard Model [2]. Measurement of the
half-life of the 0νββ decay could provide a key to the absolute
scale of neutrino masses and also shed light on the leptonic CP
violation mechanism required to explain the observed baryon
asymmetry of the Universe [2,3]. Given the opportunity to get
answers to so many fundamental questions, the 0νββ decay
has attracted much attention of theorists and experimentalists
in recent decades.

The neutrinoless (two-neutrino) double-β decay of a parent
nucleus A

ZX into a daughter nucleus A
Z+2Y, denoted 0ν(2ν)ββ,

involves the emission of two electrons e− (and a pair of
electron antineutrinos νe) from the atom:

A
ZX −→ A

Z+2Y + e− + e− + (νe + νe ). (1)

The 2νββ decay occurs in the second order of weak interac-
tion and as such it conserves the total lepton number: �L = 0.
It forms the dominant decay channel of beta radioactivity
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of even-even isotopes for which the single-β decay into the
odd-odd intermediate nucleus is either energetically forbidden
or suppressed by spin selection rules. The double-β decay has
so far been observed in 11 out of 35 candidate isotopes, with
half-lives T

2νββ
1/2 ∼ 1019–1021 yr, making it the rarest known

spontaneous decay in nuclear physics. In contrast, the 0νββ
decay violates the total lepton number by two units: �L =
+2, and requires a Majorana mass term. This process could
be observed as a monoenergetic peak at the 2νββ spectrum
endpoint in calorimetric measurements of the sum of electron
energies. The current limits on the half-lives set T

0νββ
1/2 >

(0.18–1.07) × 1026 yr at 90% C.L. for the 136Xe and 76Ge
isotopes [4–6].

In 1961, Bahcall [7] developed a formalism for the de-
scription of bound-state β decays in which the β-electron is
produced in an atomic K or L shell, while the monochromatic
antineutrino νe carries away the entire energy of the decay.
The bound-state β decay was observed on bare 163

66 Dy66+

ions collected in the heavy-ion storage ring ESR at GSI,
Darmstadt, with a half-life of 47 d for the otherwise stable
nuclide [8].

The neutrinoless double-β decay with two bound electrons
in the final state denoted by 0νEPEP (where EP stands for the
“electron placement”)

A
ZX −→ A

Z+2Y∗ + e−
b + e−

b (2)

was discussed by the authors of Ref. [9] as an inverse pro-
cess to the neutrinoless double-electron capture. Resonant
enhancement of the 0νEPEP decay probability can occur
in the case of quasidegeneracy of the initial- and final-state
atomic energies. The ground-state 0+ −→ 0+ nuclear transi-
tion of 148Nd to an 1.921 MeV excited state of 148Sm∗ fulfills
the resonance condition with the experimental accuracy of
≈10 keV. The estimated half-life, however, was found to be
beyond the reach of experiments at the present stage.
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FIG. 1. A schematic view of the 0ν(2ν )EPβ decays. The final
state involves the daughter nucleus A

Z+2Y, a bound electron e−
b

produced above the subshells occupied by Z atomic electrons, and
a single free electron e− (and a pair of electron antineutrinos νe)
emitted from the atom. Upon the deexcitation, the bound electron
e−

b radiates photons of energy �10 eV.

In this paper, we develop a formalism for description of the
bound-state two-neutrino and neutrinoless double-β decays
denoted by 0ν(2ν)EPβ:

A
ZX −→ A

Z+2Y + e−
b + e− + (νe + νe ). (3)

The process is shown schematically in Fig. 1. The appearance
of the first β-electron in the continuous energy spectrum is
accompanied by a production of the second β-electron in a
vacant discrete ns1/2 or np1/2 level above the valence shell
of the daughter ion A

Z+2Y2+. The inclusion of atomic levels
with higher total angular momenta is not required because
their wave functions exhibit only a negligible overlap with
the nucleus. Since the 0νEPβ, 0νββ, 2νEPβ, and 2νββ decay
modes constitute 1-, 2-, 3-, and 4-body decays, respectively,
they could be distinguished by their one- and two-electron
energy distributions.

The outline of the paper is as follows. In Sec. II, the
relativistic electron wave functions as one-particle solutions to
the Dirac equation are described and expressions for the rela-
tivistic Fermi function and its bound-state analog are derived.
In Sec. III, the 0ν(2ν)EPβ decay rates are derived within
the V–A weak interaction theory including the mixing of
Majorana neutrinos. We restrict ourselves to the ground-state
0+ −→ 0+ nuclear transitions and obtain the phase-space
factors entering into the decay rates. Section IV describes
the evaluation of relativistic bound-electron wave functions at
short distances via the multiconfiguration Dirac-Hartree-Fock
package GRASP2K [10]. Numerical estimates of the half-lives
and the 0ν(2ν)EPβ to 0ν(2ν)ββ decay-rate ratios are given in
Sec. V in addition to the one- and two-electron energy spectra.
In Sec. VI, we finally draw conclusions regarding possible
experimental observation of the bound-state double-β decays
and provide motivation for further studies.

II. RELATIVISTIC ELECTRON WAVE FUNCTIONS
IN CENTRAL FIELD

The electronic structure of atoms is described by the shell-
model relativistic wave functions obtained as solutions to
the Dirac equation in a self-consistent centrally symmetric

potential which is a superposition of the nuclear Coulomb
potential and the screening potential of the electron shell.
The corresponding bispinors with separated radial (r = |r|)
and angular (n = r/|r|) variables take the form (see, e.g.,
Ref. [11]):

ψκμ(r) =
(

fκ (r ) �κμ(n)

igκ (r ) �−κμ(n)

)
, (4)

where κ = (l − j )(2j + 1) = ±1, ±2, . . . labels combina-
tions of the orbital l = 0, 1, . . . and spin s = 1/2 angular
momenta (κ = −1, +1 for ns1/2 and np1/2 states, respec-
tively), while μ = −j, . . . , +j denotes the projection of
the total angular momentum j = l + s onto the z-axis. The
spherical spinors with parity (−1)l are defined by

�κμ(n) =
∑

σ=±1/2

C
jμ

l μ−σ 1
2 σ

Yl μ−σ (n) χσ , (5)

where C
jμ

l μ−σ 1
2 σ

are the Clebsch-Gordan coefficients, χσ are

two-component spinors, and σ is the spin projection.
The radial functions fκ (r ) and gκ (r ) in the continuum

further depend on the electron energy E. In the double-β
decays, the leading s1/2 term of the partial-wave expansion
which enters the nuclear matrix elements reads [12]

ψs1/2 (p, r) =
(

f−1(E, r ) χ

g+1(E, r ) σ · p̂ χ

)
, (6)

where p̂ is a unit vector in the direction of the electron
momentum p. The continuum radial functions are normalized
to the δ function in p = |p|, while the bound states obey∫

dr r2(f 2 + g2) = 1.
The Fermi function F (Z, E), introduced to correct the

short-distance behavior of the β-electron plane waves due to
the Coulomb potential, is defined in terms of the radial wave
functions f−1(E, r ) and g+1(E, r ) evaluated at the nuclear
surface at r = R ≈ 1.2 fm A1/3:

F (Z, E) = f 2
−1(E, R) + g2

+1(E, R)

≈ 4

[ |�(γ + iν)|
�(2γ + 1)

]2

(2pR)2γ−2 eπν, (7)

where γ =
√

κ2 − (αZ)2, ν = αZE/p, p = √
E2 − m2

e , me

is the electron mass, and α ≈ 1/137 is the fine-structure con-
stant. We remark that F (Z, E) → 1 for Z → 0. For αZ � 1
and l = 0, the Fermi function F (Z, E) coincides with the
Gamow-Sommerfeld factor [13–15].

The Fermi function in Eq. (7) is given by standard approx-
imation [12] in which the relativistic electron wave function
for a uniform charge distribution in the nucleus is considered
and only the lowest-order terms in the power expansion in
r are taken into account. The exact Dirac electron wave
function accounting for a finite nuclear size and electron-shell
screening effects [16] modifies the 0νββ-decay phase-space
factor for 150Nd by 30% (see Ref. [17] and Table I therein),
which results in an increase in the 0νββ-decay half-life. The
0ν(2ν)EPβ decay rate with one electron in the continuous
spectrum is thus less sensitive to the details of the Dirac
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TABLE I. The double-β-decaying isotopes A
ZX with the Q values from Ref. [22], the Fermi sums

∑∞
n=nmin

Bn(Z + 2) (in atomic units)
over the vacant electron shells of the daughter ion, the bound-state decay phase-space factors G0ν(2ν )EPβ from Eqs. (15) to (16), the standard
phase-space factors G0ν(2ν )ββ , and the relative frequencies of bound-state to continuum-state decays �0ν(2ν )EPβ/�0ν(2ν )ββ .

A
ZX Q [MeV]

∑
n Bn [a.u.] G0νEPβ [yr−1] G0νββ [yr−1] �0νEPβ/�0νββ G2νEPβ [yr−1] G2νββ [yr−1] �2νEPβ/�2νββ

46
20Ca 0.988 2.246 ×101 9.343 ×10−22 1.499 ×10−16 6.23 ×10−6 2.262 ×10−27 4.734 ×10−23 4.78 ×10−5

48
20Ca 4.268 2.245 ×101 9.227 ×10−21 2.632 ×10−14 3.51 ×10−7 5.923 ×10−23 1.594 ×10−17 3.72 × 10−6

70
30Zn 0.997 5.180 ×101 2.302 ×10−21 2.463 ×10−16 9.34 ×10−6 8.521 ×10−27 1.239 ×10−22 6.88 × 10−5

76
32Ge 2.039 7.495 ×101 9.491 ×10−21 2.615 ×10−15 3.63 ×10−6 1.621 ×10−24 5.280 ×10−20 3.07 × 10−5

80
34Se 0.134 9.482 ×101 7.822 ×10−22 4.724 ×10−18 1.66 ×10−4 6.761 ×10−32 6.119 ×10−29 1.10 × 10−3

82
34Se 2.998 9.476 ×101 2.263 ×10−20 1.152 ×10−14 1.97 ×10−6 3.250 ×10−23 1.779 ×10−18 1.83 × 10−5

86
36Kr 1.257 1.087 ×102 7.120 ×10−21 6.798 ×10−16 1.05 ×10−5 1.068 ×10−25 1.354 × 10−21 7.88 × 10−5

94
40Zr 1.145 5.933 ×101 3.736 ×10−21 6.725 ×10−16 5.56 ×10−6 3.773 ×10−26 9.254 ×10−22 4.08 × 10−5

96
40Zr 3.356 5.928 ×101 1.867 ×10−20 2.440 ×10−14 7.65 ×10−7 5.714 ×10−23 7.899 ×10−18 7.23 × 10−6

98
42Mo 0.109 2.447 ×102 2.358 ×10−21 6.769 ×10−18 3.48 ×10−4 7.509 ×10−32 3.198 ×10−29 2.35 × 10−3

100
42 Mo 3.034 2.445 ×102 6.792 ×10−20 1.890 ×10−14 3.59 ×10−6 1.255 ×10−22 3.816 ×10−18 3.29 ×10−5

104
44 Ru 1.299 2.887 ×102 2.343 ×10−20 1.270 ×10−15 1.84 ×10−5 5.050 ×10−25 3.676 ×10−21 1.37 ×10−4

110
46 Pd 2.017 3.537 ×102 5.601 ×10−20 5.778 ×10−15 9.69 ×10−6 1.284 ×10−23 1.624 ×10−19 7.91 ×10−5

114
48 Cd 0.545 1.091 ×102 3.520 ×10−21 1.795 ×10−16 1.96 ×10−5 8.819 ×10−28 6.703 ×10−24 1.32 ×10−4

116
48 Cd 2.813 1.089 ×102 2.987 ×10−20 2.064 ×10−14 1.45 ×10−6 4.243 ×10−23 3.311 ×10−18 1.28 ×10−5

122
50 Sn 0.373 1.531 ×102 3.682 ×10−21 9.414 ×10−17 3.91 ×10−5 1.293 ×10−28 4.986 ×10−25 2.59 ×10−4

124
50 Sn 2.291 1.527 ×102 3.131 ×10−20 1.132 ×10−14 2.77 ×10−6 1.577 ×10−23 6.822 ×10−19 2.31 ×10−5

128
52 Te 0.867 1.953 ×102 1.139 ×10−20 7.291 ×10−16 1.56 ×10−5 3.634 ×10−26 3.349 ×10−22 1.09 ×10−4

130
52 Te 2.528 1.952 ×102 4.845 ×10−20 1.810 ×10−14 2.68 ×10−6 4.327 ×10−23 1.893 ×10−18 2.29 ×10−5

134
54 Xe 0.824 2.154 ×102 1.251 ×10−20 7.487 ×10−16 1.67 ×10−5 3.201 ×10−26 2.776 ×10−22 1.15 ×10−4

136
54 Xe 2.458 2.152 ×102 5.349 ×10−20 1.883 ×10−14 2.84 ×10−6 4.310 ×10−23 1.795 ×10−18 2.40 ×10−5

142
58 Ce 1.417 1.046 ×102 1.353 ×10−20 4.564 ×10−15 2.96 ×10−6 6.332 ×10−25 2.873 ×10−20 2.20 ×10−5

146
60 Nd 0.070 1.152 ×102 1.886 ×10−21 1.907 ×10−17 9.89 ×10−5 6.262 ×10−33 9.236 ×10−30 6.78 ×10−4

148
60 Nd 1.928 1.151 ×102 2.398 ×10−20 1.358 ×10−14 1.77 ×10−6 5.933 ×10−24 4.253 ×10−19 1.40 ×10−5

150
60 Nd 3.371 1.150 ×102 5.437 ×10−20 8.829 ×10−14 6.16 ×10−7 2.700 ×10−22 4.815 ×10−17 5.61 ×10−6

154
62 Sm 1.251 1.361 ×102 1.685 ×10−20 4.413 ×10−15 3.82 ×10−6 4.478 ×10−25 1.617 ×10−20 2.77 ×10−5

160
64 Gd 1.731 1.592 ×102 3.198 ×10−20 1.336 ×10−14 2.39 ×10−6 4.892 ×10−24 2.658 ×10−19 1.84 ×10−5

170
68 Er 0.655 1.963 ×102 1.464 ×10−20 1.513 ×10−15 9.68 ×10−6 1.442 ×10−26 2.202 ×10−22 6.55 ×10−5

176
70 Yb 1.085 2.297 ×102 3.150 ×10−20 6.129 ×10−15 5.14 ×10−6 4.633 ×10−25 1.272 ×10−20 3.64 ×10−5

186
74 W 0.491 3.759 ×102 2.789 ×10−20 1.508 ×10−15 1.85 ×10−5 6.473 ×10−27 5.220 ×10−23 1.24 ×10−4

192
76 Os 0.406 3.139 ×102 2.200 ×10−20 1.292 ×10−15 1.70 ×10−5 1.881 ×10−27 1.651 ×10−23 1.14 ×10−4

198
78 Pt 1.050 2.199 ×103 3.976 ×10−19 1.231 ×10−14 3.23 ×10−5 5.701 ×10−24 2.503 ×10−20 2.28 ×10−4

204
80 Hg 0.420 4.906 ×102 4.237 ×10−20 2.121 ×10−15 2.00 ×10−5 4.630 ×10−27 3.456 ×10−23 1.34 ×10−4

232
90 Th 0.837 6.081 ×102 1.508 ×10−19 2.696 ×10−14 5.59 ×10−6 8.012 ×10−25 2.070 ×10−20 3.87 ×10−5

238
92 U 1.145 5.579 ×102 2.058 ×10−19 6.981 ×10−14 2.95 ×10−6 6.096 ×10−24 2.902 ×10−19 2.10 ×10−5

electron wave function since only one Fermi function en-
ters the corresponding phase-space factor. We therefore re-
strict ourselves to the continuous-spectrum solutions of the
Coulomb problem for V (r ) = −α(Z + 2)/r , where Z + 2 is
the atomic number of the daughter nucleus A

Z+2Y.
In the discrete spectrum, the radial wave functions fnκ (r )

and gnκ (r ) in the Coulomb potential correspond to the energy

eigenvalues (see, e.g., Ref. [11])

Enκ = me

[
1 + (αZ)2

(γ + nr )2

]− 1
2

, (8)

where n = 1, 2, . . . , is the principal quantum number and
nr = n − |κ| is the radial quantum number which counts the
number of radial nodes. At small distances r ∼ R � 1/λ,
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where λ = √
m2

e − E2
nκ , the leading term from the series

expansion of the radial wave functions fnκ (r ) and gnκ (r ) for
a point-like source can be found in Ref. [9].

The radial wave functions enter the bound-state β-decay
probabilities in the combination

Bn(Z) = f 2
n,−1(R) + g2

n,+1(R), (9)

which formally coincides with the relativistic Fermi function
(7). Note that the first and second terms in the right-hand
side of Eq. (9) originate from the production of β-electrons
in the ns1/2 and np1/2 orbits, respectively. For αZ � 1 and
l = 0, we have fnκ (r ) ≈ Rnl (r ) and gnκ (r ) ≈ 0, where Rnl (r )
is the nonrelativistic radial wave function obtained by solving
the Schrödinger wave equation for a hydrogen-like atom.
The screening of the Coulomb potential modifies the short-
distance behavior of the bound-state wave functions. This
effect is taken into account in Sec. IV via the relativistic
atomic structure package GRASP2K.

III. PHASE-SPACE FACTORS

The double-β decay is the second-order process governed
by the effective β-decay Hamiltonian

Hβ = Gβ√
2

e γ μ(1 − γ 5)νe jμ + H.c. (10)

Here Gβ = GF cos θC includes the Fermi coupling constant
GF ≈ 1.166 × 10−5 GeV−2 together with the Cabibbo angle
θC ≈ 13◦ due to the quark mixing [18], e and νe are the elec-
tron and electron-neutrino fields, respectively, and the baryon
charged current jμ = p γμ(gV − gA γ 5) n couples the proton
and neutron fields via the vector gV = 1 and (unquenched)
axial-vector gA ≈ 1.27 coupling constants. The V–A structure
of Hβ ensures that only the left-handed leptons participate in
the weak interaction. The flavor- and diagonal-neutrino fields
are related by the unitary 3 × 3 Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix U :

να =
∑

i

Uαi νi . (11)

The neutrinoless double-β decay is assumed to be related to
a light Majorana-neutrino exchange between nucleons in the
parent nucleus.

The inverse 0νββ and 2νββ half-lives (see, e.g.,
Ref. [16])

(
T

0νββ
1/2

)−1 = g4
A G0νββ (Z, Q)|M0νββ |2

∣∣∣∣mββ

me

∣∣∣∣
2

,

(
T

2νββ
1/2

)−1 = g4
A G2νββ (Z, Q)|me M2νββ |2 (12)

factorize in terms of the kinematic phase-space fac-
tors G0ν(2ν)ββ (Z, Q), the nuclear matrix elements (NMEs)
M0ν(2ν)ββ , and the effective Majorana neutrino mass

mββ =
∑

i

U 2
ei mi, (13)

where mi are the masses of diagonal neutrinos. Since the
absolute scale of neutrino masses and the Majorana phases
are unknown, the value of |mββ | is treated as a parameter.

The experimental lower bounds on T
0νββ

1/2 set an upper limit
on |mββ |. The most stringent limit has so far been obtained
in the KamLAND-Zen experiment [6]: |mββ | < 61–165 meV
at 90% C.L., where the range of values accounts for the
uncertainties inherent in the nuclear-structure models. In
the case of the inverted hierarchy of neutrino masses,
the effective mass is constrained by cosmology: |mββ | =
20–50 meV. We estimate the 0νEPβ and 0νββ half-lives
assuming |mββ | = 50 meV. Since the 2νββ half-life is unam-
biguously defined within the Standard Model, the measured
values of T

2νββ
1/2 can be used to fix the phenomenological

parameters, improve the predictions of the nuclear-structure
models for M0νββ and probe the possible quenching of gA.

The energy conservation in the 0ν(2ν)ββ decays implies:
Mi = Mf + E1 + E2 + (ω1 + ω2), where Mi and Mf are the
masses of the parent and daughter nuclei, and E1 and E2 (and
ω1 and ω2) are the total energies of the emitted electrons
(and antineutrinos), respectively. The total released kinetic
energy in both scenarios equals: Q = Mi − Mf − 2me. Due
to the indistinguishability of the final-state leptons, the NMEs
contain a superposition of two (four) energy denominators
[19]

M0νββ :
1

En − Mi + E1,2 + q0
≈ 1

En − Mi+Mf

2 + q0
,

M2νββ :
1

En − Mi + E1,2 + ω1,2
≈ 1

En − Mi+Mf

2

, (14)

where En denotes the nth energy level of the interme-
diate nucleus and q = (q0, q) is the four-momentum of
the exchanged Majorana neutrino. Since q0 =

√
q2 + m2

i ≈
|q| ∼ 200 MeV, the difference between the lepton energies
can be safely neglected: −Mi + E1,2 + (ω1,2) = −Mi+Mf

2 ±
E1−E2

2 ± ( ω1−ω2
2 ) ≈ −Mi+Mf

2 . In the case of the 0ν(2ν)EPβ
decay modes, a similar approximation ensures that the corre-
sponding NMEs remain essentially unchanged: M0ν(2ν)EPβ ≈
M0ν(2ν)ββ and the distinction between the 0ν(2ν)EPβ and
0ν(2ν)ββ decay modes is fully captured by the phase-space
factors G0ν(2ν)EPβ (Z, Q).

The phase-space factors of the 0ν(2ν)EPβ decays can be
found to be

gG0νEPβ = G4
β m2

e

32π4R2 ln 2

∞∑
n=nmin

Bn(Z + 2) F (Z + 2, E) E p,

(15)

G2νEPβ = G4
β

8π6m2
e ln 2

∞∑
n=nmin

Bn(Z + 2)
∫ me+Q

me

dE

×F (Z + 2, E) E p

∫ me+Q−E

0
dω1 ω2

1 ω2
2, (16)

where nmin is the principal quantum number of the lowest
vacant electron shell (this can, in principle, be different for
the s1/2 and p1/2 states). Equations (15) to (16) can be derived
from G0νββ and G2νββ using the substitution

dp
(2π )3

F (Z + 2, E) 
−→ 1

4π
Bn(Z + 2) (17)
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and taking into account the identity of the electrons: the
integrated phase space of the 0ν(2ν)ββ decays contains a
statistical factor of 1/2!, which is not present in the case
of the 0ν(2ν)EPβ decay modes since the bound and free
electrons occupy complementary regions of the phase space.
The corresponding rule for the integrated phase space reads as
follows:

1

2!

∫
dp

(2π )3

dp′

(2π )3
F (Z + 2, E) F (Z + 2, E′)


−→ 1

4π

∫
dp

(2π )3
F (Z + 2, E)

∞∑
n=nmin

Bn(Z + 2). (18)

In the bound-state double-β decays, the binding energy of the
produced electron �10 eV can be neglected. Such an approx-
imation does not affect the required accuracy but greatly sim-
plifies the computation since the infinite sum of integrals in
Eq. (18) is factorized into the Fermi sum

∑∞
n=nmin

Bn(Z + 2)
and just one integral independent of n. The energy conserva-
tion in the 0νEPβ decay implies that the free electron carries
away the entire energy released in the decay: E = me + Q,
whereas in the 2νEPβ decay the energy is distributed between
the electron and two antineutrinos: ω2 = me + Q − E − ω1.

IV. BOUND-STATE WAVE FUNCTIONS OF ELECTRONS
IN DIRAC-HARTREE-FOCK METHOD

The multiconfiguration Dirac-Hartree-Fock package
GRASP2K solves the stationary N -body Dirac equation with
the separable central atomic Hamiltonian [10]

N∑
i=1

[
−i∇i · α + me β − αZ

ri

+ V (ri )

]
� = E�, (19)

where α = γ 0 γ and β = γ 0. The first two terms are followed
by the potential-energy terms which account for the electron-
nucleus Coulomb attraction and electron-electron Coulomb
repulsion, respectively, where the latter is approximated by
the mean field V (ri ) generated by the surrounding electron
cloud. The separability ensures that the energy eigenvalues
are additive E = ∑N

i=1 Ei , while the many-electron wave
functions are expressed in terms of the Slater determinants

� = 1√
N !

∑
P

(−1)P
N∏

i=1

ψP (i)(ri ), (20)

where ψi (rj ) = ψniκiμi
(rj ) and P is the permutation of quan-

tum numbers with parity (−1)P . The nuclear part of the
total wave function is disregarded by virtue of the Born-
Oppenheimer approximation. The self-consistent field pro-
cedure then varies the radial functions fnκ (r ) and gnκ (r ) in
iterative cycles until convergence is achieved.

The radial functions fn,−1(R) and gn,+1(R) are computed
in the nuclear Coulomb potential of the daughter nucleus
A
Z+2Y for the ground-state electron configuration of the parent
atom A

ZX with an additional β-decay electron occupying an
empty orbit. Since the convergence cannot be always guaran-
teed and the program only provides the electron-shell wave
functions up to n = 9, we employ a combined approach.

FIG. 2. The squared radial wave functions f 2
n,−1(R) and g2

n,+1(R)
(in atomic units) for the subshells 8s1/2 and 8p1/2, respectively, fitted
by the power function aZb of the initial atomic number Z. The points
represent the predictions of GRASP2K. The parameters determined
from the fit read as follows: a = 1.1 × 10−10, b = 6.2 (8s1/2) and
a = 8.1 × 10−12, b = 6.4 (8p1/2).

(1) The radial functions fn,−1(R) and gn,+1(R) are cal-
culated based on initial estimates provided by the
Thomas-Fermi model.

(2) If the convergence cannot be achieved within a speci-
fied number of iterations, the radial functions fn,−1(R)
and gn,+1(R) are calculated based on initial estimates
provided by the nonrelativistic Hartree-Fock approxi-
mation.

(3) If both methods fail for the charge Z, we are look-
ing for the values of Z′ �= Z for which the calcu-
lation can be completed. The squares of the radial
functions are then determined by fitting the available
values for a fixed orbit using the power-law function
f 2

n,−1(R), g2
n,+1(R) ≈ aZb.

(4) Finally, the squares of the radial functions with the
principal quantum numbers above n = 9 are esti-
mated for a given isotope from a fit of the avail-
able values for n � 9 using the power-law function
f 2

n,−1(R), g2
n,+1(R) ≈ cnd .

In the atomic spectroscopy, power functions are often used
to fit the dependence of observables on the atomic number Z
(see, e.g., Ref. [20]). On the other hand, the power law of the
principal quantum number n is motivated by the fact that, in
the absence of shielding, the squares of nonrelativistic radial
functions ns1/2 decrease at the origin as R2

n0(0) ∝ n−3. The
simple power law enables us to explicitly perform the summa-
tion in

∑∞
n=nmin

Bn(Z + 2) over the vacancies in the electron
shell. The sum is expressed in terms of the Riemann zeta
function ζ (z) = ∑∞

n=1 1/nz. In average, the radial functions
with n > 9 contribute to the decay rates at the level of only
≈4% of the total value.

Figure 2 shows the results for a power-law fitting of the
squared radial functions f 2

n,−1(R) and g2
n,+1(R) at the nuclear

radius r = R as functions of the initial nuclear charge Z. The
example of the 8s1/2 and 8p1/2 subshells is considered. The
convergence cannot be achieved for all nuclei. The power-
law dependence is in excellent agreement with the observed
behavior of the computed radial wave functions. The radial
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FIG. 3. The squared radial wave functions f 2
n,−1(R) and g2

n,+1(R)
(in atomic units) for the isotope 82Se fitted by the power function
cnd of the principal quantum number n. The parameters determined
from the fit read as follows: c = 1.1 × 106, d = −6.1 (ns1/2) and
c = 4.6 × 106, d = −10 (np1/2).

functions at the nuclear radius r = R as functions of the
principal quantum number n are shown in Fig. 3 for the
isotope 82Se. The results quoted in Figs. 2 to 4 are presented
in atomic units (a.u.).

A simple qualitative explanation of the dependence of the
bound-electron radial wave functions on Z and n at r = R
follows from the following considerations. The nodes of the
radial part of a nonrelativistic wave function with l = 0 are
localized partially outside the atom at r � 1 (in a.u.) and
partially inside the atom at r � 1. The number of nodes inside
the atom can be estimated for highly excited states using a
semiclassical approximation, which is justified for Z � 1 and
r � 1. At the boundary of the atom, the phase of the radial
wave function is estimated to be

∫ 1
0 dr

√
2[E − V (r )] ∼ Z1/3,

so that the number of nodes inside the atom equals na ∼ Z1/3.
In the Coulomb potential, the squared radial wave function for
small r behaves like ∼1/n3. The atomic radius ∼1 is small
compared to the average radius ∼n2 of the bound β-electron.
The ratio Rn0(1)/Rn0(0) is independent of n for large n and
tends to 0.283 at the infinity. Since na nodes moved inside the
atom, the square of the wave function at the atomic boundary
becomes R2

n0(1) ∼ 1/(n − na )3. The matching at r ∼ 1 of
the outer part of the wave function with the semiclassical

FIG. 4. The Fermi sum
∑∞

n=nmin
Bn(Z + 2) (in atomic units) as

a function of the initial atomic number Z of the parent nucleus for
nmin = 5, 6, 7.

wave function at r � 1 leads to the appearance at r ∼ 0 of
an additional factor Z (see, e.g., Ref. [21]), so finally

R2
n0(0) ∝ Z

(n − na )3
. (21)

The same result follows from the requirement of orthog-
onality of the wave function of the bound β-electron to the
electron wave functions in the atom. The number of electrons
occupying the atomic levels up to the principal quantum
number ns with a completely filled outer shell is expressed
as follows:

Z =
ns∑

n=1

n−1∑
l=0

2 (2l + 1) = 1

3
ns (2ns + 1)(ns + 1). (22)

In agreement with the semiclassical arguments given above,
ns ∼ (3Z/2)1/3. To ensure orthogonality, the bound β-
electron should have one more node inside the atom compared
to ns − 1. One can verify that for na ∼ ns Eq. (21) reproduces
the qualitative behavior of the upper radial function for r = R.
The dependence on Z for n = 6, shown in Fig. 2, appears
reasonable for Z � 20. In the case of 82

34Se, shown in Fig. 3,
the approximation (21) works reasonably well for n � 7. We
remark that Eq. (21) is justified for n � na and Z ∼ n3

a �
1. The need for detailed calculations of the electron shell
structure based on advanced programs of quantum chemistry
like GRASP2K is quite obvious. Our calculations are made
for isolated atoms, so the results are applicable directly to
gaseous substances such as krypton or xenon. We expect that
the presented calculations yield reasonable estimates also for
solids.

V. RESULTS AND DISCUSSION

In Table I, the double-β-decaying isotopes A
ZX are listed

together with (a) the Q values obtained from the recent
evaluation of atomic masses [22], (b) the Fermi sums∑∞

n=nmin
Bn(Z + 2) (in atomic units) computed using the

GRASP2K package, (c) the phase-space factors G0ν(2ν)EPβ and
G0ν(2ν)ββ associated with the ground-state 0+ −→ 0+ nuclear
transitions, and (d) the decay-rate ratios

�0ν(2ν)EPβ

�0ν(2ν)ββ
≈ G0ν(2ν)EPβ

G0ν(2ν)ββ
, (23)

which are independent of the NMEs and mββ , and hence are
free of uncertainties inherent in the nuclear-structure models
and neutrino masses.

The Fermi sum
∑∞

n=nmin
Bn(Z + 2), shown in Fig. 4 (in

atomic units), increases with the initial atomic number Z and
drops whenever the valence shell becomes fully occupied; the
very large value of 2.199 × 103 for the isotope 198

78 Pt with
nmin = 6 is out of bounds of the plot. The decay-rate ratios
�0ν(2ν)EPβ/�0ν(2ν)ββ , shown in Figs. 5 and 6, achieve their
maximum for the isotopes with very low Q values: 98Mo,
80Se, and 146Nd, and decrease with increasing both Z and
Q. The two-neutrino channels exhibit decay-rate ratios by
one order of magnitude higher than the neutrinoless channels.
The overall suppression is mainly attributed to the presence
of other electrons in the atom: the low-lying electron states
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FIG. 5. The decay-rate ratio �0νEPβ/�0νββ as a function of the
atomic number Z of the parent nucleus and the Q value. The 0νEPβ

decay rate is maximal for the isotopes: 98Mo, 80Se, and 146Nd, and
decreases rapidly with increasing both Z and Q.

(which would otherwise provide a dominant contribution) are
already occupied, while the shielding effect of nuclear charge
substantially reduces the bound-electron wave functions on
the surface of the nucleus.

In Table II, the double-β-decaying isotopes A
ZX with avail-

able NMEs are listed together with their half-lives T
0ν(2ν)EPβ

1/2

and T
0ν(2ν)ββ

1/2 . The NMEs M0νββ used for the estimates were
obtained within the spherical pn-QRPA approach including
the CD-Bonn nucleon-nucleon potential with short-range cor-
relations and the partial isospin-symmetry restoration [23],

FIG. 6. The decay-rate ratio �2νEPβ/�2νββ as a function of the
atomic number Z of the parent nucleus and the Q value. The two-
neutrino mode exhibits behavior similar to the neutrinoless mode
(see Fig. 5), but the absolute values are by one order of magnitude
higher.

except for the isotope 150Nd which was treated separately
within the deformed pn-QRPA model [24]. We estimate the
neutrinoless half-lives assuming the unquenched value of the
axial-vector coupling constant gA = 1.27 and the effective
Majorana neutrino mass at the top of the allowed inverted-
hierarchy region: |mββ | = 50 meV. The half-lives T

2νEPβ
1/2 are

derived based on the values of T
2νββ

1/2 measured experimen-
tally [25]; these are further used to extract the NMEs listed
for gA = 1.27. While the 0νEPβ decay mode is strongly
suppressed and can hardly be experimentally observed in

TABLE II. The double-β-decaying isotopes A
ZX for which the NMEs were determined theoretically or experimentally [23,24], their

corresponding half-lives T
0νEPβ

1/2 and T
0νββ

1/2 estimated for gA = 1.27 and |mββ | = 50 meV, and T
2νEPβ

1/2 derived from the measured values of

T
2νββ

1/2 [25].

A
ZX |M0νββ | T

0νEPβ
1/2 [yr] T

0νββ
1/2 [yr] |me M2νββ | T

2νEPβ
1/2 [yr] T

2νββ
1/2 [yr]

48
20Ca 0.594 1.23 ×1034 4.32 ×1027 2.341 ×10−2 1.18 ×1025 4.40 ×1019

76
32Ge 5.571 1.36 ×1032 4.95 ×1026 6.642 ×10−2 5.38 ×1025 1.65 ×1021

82
34Se 5.018 7.05 ×1031 1.38 ×1026 4.846 ×10−2 5.04 ×1024 9.20 ×1019

96
40Zr 2.957 2.46 ×1032 1.88 ×1026 4.600 ×10−2 3.18 ×1024 2.30 ×1019

100
42 Mo 5.850 1.73 ×1031 6.21 ×1025 1.191 ×10−1 2.16 ×1023 7.10 ×1018

110
46 Pd 6.255 1.83 ×1031 1.78 ×1026

116
48 Cd 4.343 7.13 ×1031 1.03 ×1026 6.360 ×10−2 2.24 ×1024 2.87 ×1019

124
50 Sn 2.913 1.51 ×1032 4.18 ×1026

128
52 Te 5.084 1.36 ×1032 2.13 ×1027 2.396 ×10−2 1.84 ×1028 2.00 ×1024

130
52 Te 4.373 4.33 ×1031 1.16 ×1026 1.716 ×10−2 3.02 ×1025 6.90 ×1020

134
54 Xe 4.119 1.89 ×1032 3.16 ×1027

136
54 Xe 2.460 1.24 ×1032 3.52 ×1026 9.888 ×10−3 9.12 ×1025 2.19 ×1021

150
60 Nd 3.367 6.51 ×1031 4.01 ×1025 3.120 ×10−2 1.46 ×1024 8.20 ×1018

238
92 U 2.573 ×10−2 9.52 ×1025 2.00 ×1021
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FIG. 7. The half-lives T
0νEPβ

1/2 and T
0νββ

1/2 for the isotopes with the
calculated NMEs [23,24] estimated assuming the unquenched axial
coupling constant: gA = 1.27 and the effective Majorana neutrino
mass: |mββ | = 50 meV.

the near future, the half-lives of its 2νEPβ counterpart are
already comparable to the present sensitivity to the 0νββ
decay. Figures 7 and 8 show the neutrinoless and two-neutrino
double-β-decay half-lives for the isotopes listed in Table II.

The 0ν(2ν)EPβ and 0ν(2ν)ββ one-electron spectra are
described by the differential decay rates (1/�) d�/dε,
conventionally normalized to unity and expressed as functions
of the dimensionless portion of the electron kinetic energy
ε = (E − me )/Q:

d�0νEPβ

dε
= g4

A

G4
β m2

e

32π4R2
|M0νββ |2

∣∣∣∣mββ

me

∣∣∣∣
2

Q

×
∞∑

n=nmin

Bn(Z + 2) F (Z + 2, E)

×E p δ(me + Q − E), (24)

d�2νEPβ

dε
= g4

A

G4
β

8π6m2
e

|me M2νββ |2Q

×
∞∑

n=nmin

Bn(Z + 2) F (Z + 2, E) E p

×
∫ (1−ε)Q

0
dω1 ω2

1 ω2
2. (25)

FIG. 8. The half-lives T
2νEPβ

1/2 and T
2νββ

1/2 [25] for the isotopes with
double-β decays observed experimentally. The 2νEPβ and 0νββ

decay rates are comparable in magnitude.

FIG. 9. The 0νEPβ and 0νββ one-electron spectra
(1/�0νββ ) d�/dε as functions of the normalized electron kinetic
energy ε = (E − me )/Q for the isotope 82Se. The 0νEPβ peak is
represented by a Gaussian with FWHM/Q = 7%/

√
Q/MeV, which

corresponds to the planned energy resolution of the SuperNEMO
calorimeters, and scaled by a factor of 104. The composition of the
0νEPβ peak beyond the endpoint ε = 1 is shown in the upper left
corner.

Shown in Figs. 9 and 10 are the one-electron spectra for the
neutrinoless and two-neutrino double-β decays of 82

34Se. The
0νEPβ peak consists of a large number of discrete contribu-
tions, each shifted above the Q value by the electron binding
energy (�10 eV); however, these are indistinguishable under
any realistic energy resolution. The 2νEPβ spectrum covers
the entire energy range, which could lead to a slight deforma-
tion of the measured 2νββ data.

The one-electron spectra are studied with unprecedented
accuracy in the tracking-and-calorimetry double-β decay
experiments based on the external-source technique at the
Modane Underground Laboratory (LSM). The NEMO-3 de-
tector [26], which operated during 2003–2011, exploited a
cylindrical geometry and observed more than 7 × 105 positive
2νββ events with a high signal-to-background ratio for 7 kg
of its primary source isotope 100Mo during 3.5 yr of data
taking (the low-radon phase) [27]. The next-generation detec-
tor SuperNEMO [28], which is currently under construction,
will deploy the source modules comprising 20 thin foils
totalling in 100 kg of enriched and purified 82Se, with the

FIG. 10. The 2νEPβ and 2νββ one-electron spectra
(1/�) d�/dε as functions of the normalized electron kinetic
energy ε = (E − me )/Q for 82Se.
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FIG. 11. The 2νEPβ and 2νββ normalized differential decay
rates (1/�) d�/dε12 as functions of the sum ε12 = ε1 + ε2 of elec-
tron energies for 76Ge.

possible addition of 48Ca or 150Nd isotopes. The tracking
chamber will consist of nine planar high-granularity drift cells
operating in Geiger regime in a magnetic field of 2.5 mT,
and thus enable charge-sign particle identification and vertex
reconstruction, secure enhanced background rejection, and
provide means to study angular correlations in addition to the
one-electron spectra. The calorimeter walls will be composed
of segmented low-Z organic-scintillator blocks connected to
photomultiplier tubes, striving to achieve the energy resolu-
tion: FWHM/Q = 7%/

√
Q/MeV in the region of interest

(ROI) 2.8–3.2 MeV around the endpoint Q ≈ 2.998 MeV.
The first planar SuperNEMO module “Demonstrator” with
7 kg of the source isotope 82Se is currently in its final stages
of the development.

While the calorimetric measurements are unable to dis-
tinguish between the 0νEPβ and 0νββ peaks, the 2νEPβ
decay mode can also be identified by studying the two-
electron spectra, which measure the total energy deposited
by the emitted electrons. The normalized 2νββ differential
decay rate (1/�2νββ ) d�2νββ/dε12 expressed as a function
of the sum of electron kinetic energies ε1 = (E1 − me )/Q
and ε2 = (E2 − me )/Q can be derived from the standard
2νββ one-electron energy distribution via the substitutions
ε12 = ε1 + ε2 and ρ = ε1/(ε1 + ε2):

d�2νββ

dε12
= g4

A

G4
β

8π7m2
e

∣∣me M2νββ
∣∣2

Q2ε12

×
∫ 1

0
dρ F (Z + 2, E1) E1 p1 F (Z + 2, E2)

× E2 p2

∫ (1−ε12 )Q

0
dω1 ω2

1 ω2
2, (26)

where E1, E2 and p1, p2 are the energies and momenta
of the β-electrons and the energy conservation yields ω2 =
(1 − ε12)Q − ω1. The spectral shapes of the 2νEPβ and 2νββ
decays are shown in Fig. 11. Since the two-electron spectra are
usually measured with much higher event rates and less com-
plicated background, a significant 2νEPβ discovery potential
is expected in the calorimetric double-β-decay experiments,
in particular, CUORE (130Te) [29], EXO-200 (136Xe) [4], and
GERDA (76Ge) [5].

FIG. 12. The ratios (27) between the integrated 2νEPβ and 2νββ

decay rates as functions of the energy intervals [εmin, εmax] and
[ε12min, ε12max]. The one-electron ratio is given for 82Se (left panel)
and the two-electron ratio refers to 76Ge (right panel). The ROIs with
the highest 2νEPβ sensitivity belong to the opposite sides of the
ε(12)-interval at ε = 1 and ε12 = 0, respectively.

For data analysis, it is often desirable to specify the ratios∫ εmax

εmin
dε (d�2νEPβ/dε)∫ εmax

εmin
dε (d�2νββ/dε)

,

∫ ε12max

ε12min
dε12 (d�2νEPβ/dε12)∫ ε12max

ε12min
dε12 (d�2νββ/dε12)

(27)

between the integrated 2νEPβ and 2νββ decay rates as func-
tions of the energy intervals [εmin, εmax] and [ε12min, ε12max]
to identify the ROIs in which the 2νEPβ decay is best visible
relative to its 2νββ counterpart. While the one-electron ratios
are maximal in a small ROI at the spectrum endpoint Q,
the two-electron ratios reveal the highest 2νEPβ sensitivity
near the opposite end of the energy domain. In these ROIs,
the 2νEPβ decay mode could for the given isotopes account
for as much as ∼100 ppm of the registered events. The ratios
from Eq. (27) for the one- and two-electron spectra associated
with the decays of 82Se and 76Ge, respectively, are shown in
Fig. 12.

At temperatures T � α2Z2me ∼ 108(Z/34)2 K, atoms
become fully ionized and the β-electrons can occupy all
discrete levels, provided that the Debye screening length λD is
sufficiently large. In this case, the Fermi sum

∑∞
n=1 Bn(Z +

2) is enhanced by 3–5 orders of magnitude and some of the
decay-rate ratios �0ν(2ν)EPβ/�0ν(2ν)ββ exceed unity. The effect
can be interpreted as follows: the sum

∑∞
n=nmin

R2
n0(0) ∼

Z/(nmin − na )2 from Eq. (21) is replaced due to the full
ionization by its hydrogen-like analog

∑∞
n=1 R2

n0(0) ∼ Z3.
For the parent isotope 82

34Se with nmin = 5 (for the ns1/2 states)
and na = (3Z/2)1/3, the enhancement factor can be estimated
to give ≈2 × 103, and it increases with Z. The 0νEPβ decay
channel becomes the only possible one for the fully ionized
atoms of 98Mo and 146Nd, in addition to 80Se, 114Cd, 122Sn,
134Xe, and the rest of double-β-decaying isotopes starting
from 170Er in the case of the 2νEPβ decay.
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In plasma conditions, there is a shift and broadening of
the atomic levels which affect the bound-state decay rates
[30]. In an extreme case when the Debye screening length
λD decreases below the Bohr radius a0, the discrete levels
of atoms are pushed to the continuum and, as a result, the
bound states cease to exist. This phenomenon is known as
the Mott transition [31]. In the cores of the Sun and Sun-
like stars where λD � a0, the discrete levels of hydrogen are
nonexistent. A similar situation occurs in the inner layers
of white dwarfs. In the radiative zone of the Sun, e.g.,
where λD = (0.7–4) a0, the lowest discrete levels of hydrogen
become a discrete part of the spectrum but remain vacant
because of the ionization. The bound-state double-β decays
can thus occur in the outer layers of stars where the screening
length is sufficiently large.

VI. CONCLUSION

In this paper, we study the bound-state two-neutrino and
neutrinoless double-β decays. The corresponding phase-space
factors are calculated in the framework of the V–A weak-
interaction theory including the mixing of Majorana neutri-
nos. The continuum wave functions of the β-electrons were
approximated by the solutions to the Dirac equation in the
Coulomb potential of the daughter nucleus, while the rela-
tivistic bound-electron wave functions, which are sensitive to
the electron-shell screening effects, were computed via the
multiconfiguration Dirac-Hartree-Fock package GRASP2K.
The ratios between the decay rates of the bound-state and
continuum-state double-β decays, which are independent of
the nuclear matrix elements and the effective Majorana neu-
trino mass, are maximal for the isotopes with lowest Q values.

The bound-state double-β decays were found to be sev-
eral orders of magnitude less probable than the continuum-

state double-β decays. The bound-state neutrinoless chan-
nel is therefore not very suitable in the searches for lepton
number violation. In contrast, the sensitivity of the modern
0νββ-decay experiments is already sufficient to observe the
2νEPβ decay mode. We propose to set experimental limits on
the 0νEPβ peak and study the 2νEPβ one-electron spectra
in the tracking-and-calorimetry double-β-decay experiment
NEMO-3 and its next-generation successor SuperNEMO, and
examine the two-electron spectra in the calorimetric experi-
ments CUORE [29], EXO-200 [4], and GERDA [5], as well
as their upcoming tonne-scale upgrades.

Since under the standard conditions for pressure and tem-
perature most of the double-β-decaying isotopes are solids,
it would be desirable to generalize the proposed formalism
to the scenario in which the electron shells belong to atoms
embedded in a crystal lattice.
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[3] A. Babič and F. Šimkovic, AIP Conf. Proc. 1572, 7 (2013).
[4] J. B. Albert et al. (EXO Collaboration), Phys. Rev. Lett. 120,

072701 (2018).
[5] M. Agostini et al. (GERDA Collaboration), Phys. Rev. Lett.

120, 132503 (2018).
[6] A. Gando et al. (KamLAND-Zen Collaboration), Phys. Rev.

Lett. 117, 082503 (2016).
[7] J. N. Bahcall, Phys. Rev. 124, 495 (1961).
[8] M. Jung, F. Bosch, K. Beckert, H. Eickhoff, H. Folger, B.

Franzke, A. Gruber, P. Kienle, O. Klepper, W. Koenig, C.
Kozhuharov, R. Mann, R. Moshammer, F. Nolden, U. Schaaf,
G. Soff, P. Spädtke, M. Steck, Th. Stöhlker, and K. Sümmerer,
Phys. Rev. Lett. 69, 2164 (1992).

[9] M. I. Krivoruchenko, F. Šimkovic, D. Frekers, and A. Faessler,
Nucl. Phys. A 859, 140 (2011).

[10] P. Jönsson, G. Gaigalas, J. Bieroń, C. F. Fischer, and I. P. Grant,
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