
r'*"-"^***-^^-^-—

A MICROPROCESSOR DEVELOPMENT SYSTEM
FOR THE INTEL 8748 MICROCOMPUTER

Theodore Clark Seward

,/

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A MICROPROCESSOR DEVELOPMENT SYSTEM

FOR THE INTEL 87 48 MICROCOMPUTER

by

Theodore Clark Seward, Jr,

December 1979

Thesis Advisor R. Panholzer

Approved for public release; distribution unlimited,

T191358

UNCLASSIFIED
SECUWtTY CL ASStriCATlOM Of THIS •»CC (»*•« Dmtm Bntmrma)

REPORT DOCUMENTATION PAGE
iW

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. OOVT ACCKUIOM NO. > neCl^lCNT'S CATALOG NUMBER

4. T{rLe. (and SutilH»)

A MICROPROCESSOR DEVELOPMENT SYSTEM
FOR THE INTEL 8748 MICROCOMPUTER

». TYPe OF REPOWT k PEmoO COVERED
Master's Thesis;
December 1979
• . PCnrOHMING ORG. RERORT NUMBER

7. AuTmOR^U • . CONTRACT OR GRANT NUMBERC*;

Theodore Clark Seward, Jr

t. RERFORMINO ORGANIZATION NAME ANO AOORKtS

Naval Postgraduate School
Monterey, California 93940

10. RROGRAM ELEMENT. PROJECT TASK
ARCA * WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME ANO ADDRESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

December 1979
IS NUMBER OF PACES
101

14 MONITORING AGENCY NAME * AOORESSCff difttrmnt from Controlllnt Ome») IS. SECURITY CLASS, (ot Ihia riport)

UNCLASSIFIED
\%m. OCCL ASSI F| CATION/ DOWN GR A OINC

SCMEOULC

l«. DISTRIBUTION STATEMENT (ol Ihta Ra^orl)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (oi tf>m aamtrmet mttmnd In Blook 30, U dUtarmnl tnm JtaRortJ

It. SUPPLEMENTARY NOTES

IS KEY WORDS (Cemllnua on rmwatam aid* H nmcaaamir and Idanllty kr block nimtbat)

Microprocessor development system (MDS)
Intel 8748 Microcomputer
TRS-80

20. ABSTRACT (Contlnua an ravaraa alda II naeaaaary and Idantltr kf *loeJr iMai*oO

A microprocessor development system (MDS) for the Intel
8 748 microcomputer was designed and built around the Naval
Postgraduate School's TRS-80 computer system. This MDS pro-
vides the capability to use the TRS-80 as an editor to write
and edit 87 48 mnemonic programs and store them on a magnetic
disk. Also developed was an assembler to convert the user
generated source program into object code. As a final step.

DO ,:
(Page 1

'2:*;, 1473 EDITION OF I NOV «• IS OBSOLCTC
S/N 0103>014- 8801

i

UNCLASSIFIED
SCCURITY CLASSIFICATION OF THIS PAGE (Whan Data Kniarad)

UNCLASSIFIED
trntumrv eu *««i^'C* nox o» tmh »»qKf«»»»^ n»<« Bmtmr»a

20. (continued)

a software driven hardware programmer has been constructed to
enable the object code to be loaded into the Erasable Program-
mable Read Only Memory (EPROM) on the 8748 microcomputer chip,

DD Form 1473
1 Jan 73 ^

S/ N 0102-014-6601 ifcu*iTv eLAMirieA^ioi* o^ tni« p»4otrw»«»» omtm tni«»*tf)

'

1 Jan 3 o
UNCLASSIFIED

N OK

Approved for public release; distribution unlimited

A Microprocessor Development System
for the Intel 8748 Microcomputer

by

Theodore Clark Seward, Jr.
Lieutenant Commander, United States Navy

B.S., United States Naval Academy, June 1966

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1979

~^V O i- J L-~)

•jOl

ABSTRACT

A microprocessor development system (MDS) for the Intel

8748 microcomputer was designed and built around the Naval

Postgraduate School's TRS-80 computer system. This MDS

provides the capability to use the TRS-80 as an editor to

write and edit 8748 mnemonic programs and store them on a

magnetic disk. Also developed was an assembler to convert

the user generated source program into object code. As a

final step, a software driven hardware programmer has been

constructed to enable the object code to be loaded into the

Erasable Programmable Read Only Memory (EPROM) on the 8748

microcomputer chip.

TABLE OF CONTENTS

I

.

INTRODUCTION

II. INTEL 8748 MICROCOMPUTER

III. TRS-80 MICROCOMPUTER

IV. MICROPROCESSOR DEVELOPMENT SYSTEM SOFTWARE

-

A. EDITOR PROGRAM

B. ASSEMBLER PROGRAM

C. PROGRAMMER PROGRAM

V. PROGRAMMER HARDWARE AND OPERATION

VI. PROGRAMMER POWER SUPPLIES

- 7

- 9

- 15

- 23

- 25

- 30

- 35

- 41

.- 53

VII. CONCLUSIONS 57

Program Listing for Printer Subroutine 60

Flowchart for Editor 62

Flowchart for Assembler 66

Flowchart for Programmer 70

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

LIST OF REFERENCES

INITIAL DISTRIBUTION LIST-

8748 Editor/Assembler Operating
Instructions 7 4

80

81

84

94

98

100

101

EDTASM Program

Master Program

Assemble Program

"Program" Program

Sample Assembled Program Printout-

LIST OF FIGURES

1. Intel 8748 architecture 11

2. Data transfer instructions 14

3. TRS-80 memory map 16

4. TRS-80 system block diagram 17

5. Inter mode map 21

6. Editor program block diagram 27

7. Programmer schematic page 1 42

8. Programmer schematic page 2 43

9. Programmer circuit board 44

10. Pinout of expansion interface 46

11. Intel 8212 I/O port schematic 48

12. Programmer timing chart 52

13. 25 volt power supply 54

I. INTRODUCTION .

The Electrical Engineering (EE) Department at the Naval

Postgraduate School operates a small but growing micro-

processor/microcomputer laboratory. This laboratory supports

several EE courses in microprocessor applications as well as

student thesis efforts. Since the primary thrust of these

efforts is the implementation of microprocessors in operat-

ing circuits, the most useful tool to have available is the

microprocessor development system (MDS) . Such a system will

typically allow the user to write microprocessor programs

in assembly level language using a keyboard and cathode ray

tube (CRT) to provide for clarity and ease of editing. The

MDS will then assemble the assembly level language into

machine language and provide the capability to program an

Electrically Programmable Read Only Memory (EPROM) with the

newly generated program. Additional features normally avail-

able on an MDS are a debugging facility which allows for

dynamic operation of the program structure and an In-Circuit-

Emulator (ICE) to enable the MDS to plug into the circuit

under trial and act as the microprocessor with memory. The

system presently available in the EE laboratory for this

purpose is built around the Tektronix 8002 development sys-

tem which has modules for the Intel 8080 and the Motorola

6800 microprocessors. Because of the availability of this

development system, most projects have been designed around

the 8080 and 6800 microprocessor which until recently have

been representative of industry standards in an 8 bit word

size machine.

As an additional applications tool the school has ob-

tained a number of Intel 8748 microcomputers. This single

"chip" computer provides a complete system in one package

and is useful particularly for controller oriented applica-

tions. A more detailed description of this chip is provided

in the next section.

Because of the usefulness of the 8748 and the lack of a

software controlled development system it was decided to

design and build an MDS for the 874 8 using the TRS-8 micro-

computer. The TRS-80 had also been recently acquired by

the EE department and expanded to include 64K bytes of

memory, mini disk drive, and a printer interface.

II. INTEL 87 48 MICROCOMPUTER

A majority of the Central Processing Units (CPU) on the

market today are microprocessors only, requiring many sup-

port chips such as bus controllers, clocks, RAM, ROM, and

input/output (I/O) ports to allow for a functioning computer

system.

The Intel 8748 is technically more than a microprocessor,

It is in reality a microcomputer and is advertised as such.

The 8748 microcomputer is therefore a significant deviation

from the support chip philosophy, trending instead toward a

complete and self-contained system on one chip of silicon.

While such a trend will provide for an increased miniaturiza-

tion of many components and systems, such closed-end units

have only limited capability to be expanded for larger ap-

plications. For this reason a market will always exist for

the support chip philosophy.

The 8748 microcomputer is actually a development tool

intended for use in engineering design for systems which

will eventually be equipped with one of several microcom-

puters in the Intel MCS-48 product line. The other members

of the MCS-48 family contain varying capabilities, all of

which require off-chip memory or factory programmed ROM.

The 8748 contains all of the capabilities of the other chips

but utilizes a IK on-chip EPROM. This EPROM allows the

8748 microcomputer to be used to perfect the program for a

given system, or it may be reused for many different applica-

tions by erasing and reprogramming the EPROM. Thus, the

8748 is an excellent tool for use by students in project

work.

The architecture of the 8748 microcomputer can be seen

in Figure 1. This design utilizes NMOS technology to achieve

the following capabilities:

1. CPU with 8 bit word handling capability.

2. IK X 8 EPROM.

3. 64 X 8 RAM for data registers (in two banks)

.

4. 27 I/O lines normally used as 3-8 bit I/O ports.

5. 8 bit event counter.

6. Single +5 volt power supply requirement.

7. 8 level working stack.

8. RC, LC , crystal, or external frequency source
for clock.

9. Single step mode for use in debugging.

10. 40 pin dual inline pin (DIP) package.

By selecting a 6 MHz clock crystal, the 8748 operates

with an instruction cycle of 2.5 microseconds. This speed

is on a par with the fastest of the CPU chips presently on

the market, particularly when it is considered that 70%

of the 8748 instructions are single byte and the remainder

are only 2 byte. This compares with many of the major CPU

chips which have 2 and 3 byte instructions

.

The following pin-out from Reference 1 describes pin

utilization:

10

a: 3i a: ^
2* 3 < <

o a

« 1

1

a-. O *

7\

<x> c ^

05

XX

5 i 5
c

-

5

X

5
K

s

5
a s

X

OC

si

>

Q
Z X

L> 4

95
I'

<

i

300330

if

(D

3
P
O
<u
+J

•H

O

<C

CO

00

iH
OJ

4J

C
H

•H

11

V
ss

V

TOC 1 40 D^cc

XTAL lC 2 39 3^'

XTAL 2C 3 3« 2^21

«esetC 4 37 UP26

ssC 5 36 JP25

intC 6 35 DP24

eaC 7 34 3pi7

psenC

8

9

8048
8049

33

32

IIpis

IlPIS

wrC 10 8748 31 ::)pi4

aleC 11 8035 30 DP13

DBoi: 12 8039 29 DP12

08, C 13 28 Hpii

OBjC 14 27 ;3pio

OB3C 15 26 D^oo

08, C 16 25 Uprog

08^ C 17 24 ;]P23

-^e^C 18 23 JP22

087C 19 22 DP21

v«L 20 21 I]P20

DD

V
cc

P10-P17

P20-P27

DBq-DB^

TO & Tl

INT

RD

RESET

WR

ALE

PSEN

SS

EA

XTAL 1

XTAL 2

Ground

Programming power supply

5 volt power supply

Port 1

Port 2

Bus

Testable input pins

Interrupt input

Output read strobe

Input to initialize

Output write strobe

Address Latch Enable

Program Store Enable.
Used during fetch to
external memory.

Single step input

External Access input.
Forces all program memory
fetches to external memory.

One side of crystal input
or input for external
clock.

Other side of crystal
input.

The instruction set for the Intel-8748 consists of 96

total instructions. These instructions all execute in

either 2.5 or 5 microseconds when using the 6 MHz crystal.

Over half of them execute in a single cycle. Many of the

instructions are designed to handle BCD and single bit

operations for controller oriented applications. Figure 2

12

is a good picture of how the data transfer instructions

interact. Reference 1 contains a complete description of

both the hardware and software for the 8748.

13

PROGRAM
MEMORY

EXPANDER
I/O PORTS

4-7
c

MOVO
ANLD
ORLD

MOV AV

DATA
MEMORY

WORKING REG

(4)

Iz

ADD
MOV
MOVP
M0VP3
ANL
ORL
XRL

MOV
ADD
ANL
ORL
XRL
XCH

7\

IZ

1

Ci

MOV
ADD
ANL
ORL
XRL
XCH

XCHD iz
ACCUMULATOR

7^^ 7^
MOV

\7
TIMER

COUNTER

7^
IC

MOVX
BUS (8) ^

IN

OUTL MOV

EXTERNAL
MEMORY
AI\ID

PERIPHERALS

iz
PROGRAM

STATUS WORD

ANL
ORL

>
Iz

ON CHIP I/O

PORTS 1,2, BUS

A /\ A
(8) (8) (8)

\> \7 \>

Figure 2 - Data Transfer Instructions'

14

III. TRS-8 MICROCOMPUTER

The TRS-80 microcomputer is a small hobby and business

computer sold nationwide by Radio Shack franchises. At the

time of this writing the company is credited with having

sold over 135,000 units, making it the leader in total

computers sold. The TRS-80 is built around the Zilog Z-8

microprocessor which is an evolution from the Intel 8080.

The TRS-80 has several different levels of capability based

on a building block approach. The lowest block available

is the keyboard/computer with only 4K of RAM and a very

simple BASIC language capability. The highest block is

that which is currently available in the EE lab's model.

This includes a total 64K of memory and disk BASIC which is

loaded into the RAM from a mini-disk (5^" diskette) drive.

The TRS-80 is a memory mapped system providing fixed

addresses for various preprogrammed functions such as video

display. Figure 3 shows the 64K system memory map and re-

veals which portions of memory are available for general

user use, normally the highest 48K of RM^. The preprogram-

med functions are, of course, in ROM. The user accessible

RAM is dynamic, with a 450 millisecond access time and a

refresh period of 2 milliseconds. Figure 4 shows a macro

block diagram of the TRS-80 system.

The TRS-80 in this configuration uses an operating

system (OS) called TRSDOS (TRS Disk Operating System)

.

15

X'OOOO

X'0400

"ONBOARD" ^
MEMORY <C

X'3000

X'4000

X'4200

X'5200

X7000

X'8000

EXPANSION ^
INTERFACE ^

X'COOO

X'FFFF

1 KROM

11 K ROM

I/O

16 K ^AM

' r

16 K RAM

16 K RAM

I/O DRIVERS AND BOOTSTRAP

LEVEL II BASIC/DISK BASIC

MEMORY MAPPED I/O

BASIC VECTORS

TRSDOS

DISK BASIC

TRSDOS UTILITIES

USER MEMORY

GENERAL PURPOSE
USER MEMORY

AUXILIARY USER MEMORY

AUXILIARY USER MEMORY

Figure 3 - TRS-80 Memory Map

16

UJCClUQ LU
Q.ir>-

?S3

o 5

w 4 * / 1

> > >
4n• +

ec>:
uir*

P3O.M

DC

os<o
QD
>-

-O- • "Oo
lij<0_,

CO w>
<^

- <

K

IS

o
CC fC

oc o
t- oc
z o

I n t

a

Oo
UJa

5o

< o t-
>- < s< lU 5a oc S

00

(d

•H
Q

o
o
rH
CQ

s
<up
CO

>i
CO

o
00
I

OT
(Xi

(U

»^

•H

a.

17

This OS is analagous to the operating systems used on large

computers. It enables the user to communicate with the

computer using only high level languages and relieves him of

the need to manage such computer housekeeping functions as

where to store programs and interfacing the CPU with the

I/O and storage devices. Thus, the machine level language

operations are normally transparent to the user. Programs

written in Z-80 machine language can, however, be loaded

and run in the TRS-80 using two different methods. One is

to load the machine language from a "system" tape which has

the program already loaded on it. The other method is to

use the BASIC command POKE (address, value) to load one

word at a time. It is interesting to note that the vari-

ables in the POKE command must be in decimal, which means

converting all addresses and program instructions from

hexadecimal to decimal.

The Postgraduate School's TRS-80 system also includes

an "expansion interface." This unit interfaces directly

with the computer and contains 32K words of the total 6 4K

possible memory. It also has a number of bus outputs which

provide for parallel printer output, disk drive operations,

RS-232 serial I/O and a full system bus for user access.

Since the computer lab already had a very good line

printer in the Teletype model 40, it was decided to utilize

this printer for the TRS-80 output. The model 40 is an RS-

232 serial data unit, however, and the original TRS-80

provided no serial output for listing of programs. Instead,

18

Radio Shack sells several printers which are driven by

the TRS-80 parallel output. The first attempt at interfac-

ing was conducted as part of a student thesis. This project

involved construction of a parallel to serial conversion

device using standard Universal Asynchronous Receiver Trans-

mitter (UART) techniques. Unfortunately, the TRS-80 does

not output a carriage return on its printer bus . Both the

carriage return and line feed are driven by the line feed

output in the Radio Shack printers. Since both signals

are required individually to drive the TTY printer, it was

necessary to use an Intel 8748 microcomputer chip, in con-

junction with the UART, to provide a carriage return each

time a line feed was recognized on the bus. While this de-

vice did allow for output to the printer, it had a persist-

ent problem of also inserting random line feeds which re-

sulted in undesirable appearing printouts.

It was decided, shortly after the parallel-serial con-

version device failed completely, to purchase Radio Shack's

RS-232-C interface unit. This saved many manhours of addi-

tional engineering effort and provided for trouble-free

printer output. One drawback to using this serial output

method is that the unit is driven via special software which

must be loaded into user RAM each time the system is powered

up. The small machine language program to accomplish this

is initially stored in the highest portion of memory and

then write protected to prevent the system from putting

other data in those memory locations. This memory

19

protection feature is part of the operating system and is

implemented on power up by answering the question MEMORY

SIZE? with a decimal address. All RAM above that address

is then locked out of being utilized for BASIC programs.

The assembly level language program required for operation

of the serial printer output is provided in Appendix A.

Several switch selections on the RS-232-C board allow the

TRS-80 to also be used as a terminal for another computer

at several different baud rates. Reference 2 provides fur-

ther details on operation of the RS-232 unit.

The disk BASIC language used in this machine is a very

capable high level language. The commands are simple and

straightforward while providing maximum capabilities. It

is especially strong in the number of commands available

for manipulating "strings" of alphanumeric characters. This

ability made BASIC an excellent choice in this MDS applica-

tion References 3, 4 and 5 contain the BASIC commands

available along with descriptions and sample applications.

While the user of the MDS system does not normally re-

quire knowledge of DOS or system commands, there are sev-

eral which might be of use. To give a better picture of

how the different modes interact with one another, the map

in Figure 5 is provided. To get from one operating mode

to another, code words provided in this map are typed and

"ENTER" is depressed. In the case of going from the 8748

editor/assembler, the words "press BREAK key" are not typed.

Rather there is a key in the upper right hand corner labeled

20

~^

TRS-80 Disk Operating System (TRSDQS)

Disk BASIC

87^8 Editor/As sembler/Programmer

Press
BREAK Key

V

V
READY

CMD "Stl Q tT

V
DOS READY

8748 EDITOR/
ASSEMBLER ON

LINE

A

RUN "EDTASM"

READY

A
BASIC

Figure 5 - Inter Mode Map

21

"BREAK." Holding this key down for several seconds will

cause program execution to halt. The word READY will then

be printed, indicating the system is in BASIC mode.

The primary commands useful to the MDS user while in

TRSDOS are listed below:

DIR

DIR (A)

LIST (filename)

KILL (filename)

FREE

BASIC

Lists all user files stored on
the disk.

Lists all user files along with
the space taken up by those
files

.

Prints the contents of the
file on the CRT.

Erases the chosen file (file-
name) .

Lists total disk space remain-
ing. (Each diskette holds 48
user files and 44 maximum
granules. For a further dis-
cussion of files and granules
see Ref. 4.)

Transfers to the BASIC mode.

While in the BASIC mode the following commands are

usable:

CMD "S"

KILL (filename)

LIST

RUN

RUN "EDTASM"

Transfers to TRSDOS mode.

Erases file (filename)

.

Prints present program on the
CRT.

Runs the program currently in
TRS-80 memory.

Loads and runs the 87 4 8

editor/assembler

.

Commands to be used in the 874 8 editor/assembler mode

are covered in the next several chapters.

22

IV. MICROPROCESSOR DEVELOPMENT SYSTEM SOFTWARE

Once the topic for this thesis had been selected, most

of the bounding parameters were automatically defined. The

choice of the Intel 8748 defined the assembly level lang-

uage to be used. Selecting the TRS-80 as the computer sys-

tem in which to implement the microprocessor development

system defined the majority of the hardware as well as the

programming languages to use. The major decisions remaining

to be made involved what capabilities to include in the MDS

.

The components normally present in a typical MDS are listed

below:

1. Editor

2. Assembler

3

.

Debugger

4

.

EPROM Programmer

5. In Circuit Emulator (ICE)

Because of the finite time available to carry out this

project, it was decided to concentrate on the components

which were an absolute requirement to provide an ability

to implement a programmed 8748 microcomputer. For this

reason an editor, assembler, and EPROM programmer were in-

cluded as the most essential tools. Additional hardware

and software room has been left in the project to allow

future student projects to concern the debugger and ICE as

additions to this MDS. As a possible adjunct to the MDS,

23

groundwork was also laid for a software driven EPROM pro-

grammer for the Intel 2708 and 2716 chips. These EPROMs

would not normally be used with the 8748 microcomputer, but

their prevalence at the school for other applications, along

with a paucity of easy to use programmers, made such an

addition to the MDS desirable. Unfortunately time did not

allow for completion of that effort.

For the software portion of this project, it was decided

to use the BASIC language capability of the TRS-80 rather

than the Z-80 machine language. While the machine language

would have been more efficient and would have executed faster,

the use of BASIC was selected primarily due to the consider-

able and time consuming effort required to write the soft-

ware programs in assembly level language.

The BASIC software is broken down into four different

programs rather than loaded as one large program for several

reasons. First, it was desired to minimize the amount of

system memory taken up by the operating program to allow

for maximum room for 8748 program lines and comments. Sec-

ondly, calling another program into memory is made especial-

ly simple with the disk system because the storing of data

and loading of programs is so straightforward and rapid.

Third, the function of the editor, assembler, and EPROM

programmer are different and independent of each other.

Fourth, the writing of each program is simpler if it is an

entity independent of the other programs. Thus, the soft-

ware for the MDS is broken up into the following programs:

24

EDTASM Loads the printer serial output
machine language program into
memory and loads and runs the
editor program.

MASTER Editor program. Provides for input-
ting and editing of 8748 assembly
language programs. Transfers to
assembler upon command.

ASSEMBLE Assembles 8748 mnemonics to machine
language represented in hexadecimal
format. Provides CRT printout of
errors . Also provides hard copy
printout of assembled program.

PROGRAM Converts assembled hex code to decimal
and outputs to the programmer. Veri-
fies EPROM is correctly programmed.
Reads EPROM upon command.

A. EDITOR PROGRAM

The first portion of this thesis was development of the

editor for use in entering the Intel mnemonic code for the

8748 into the MDS . Use of mnemonics is an integral part of

an MDS because writing the programs for the 8748 or any other

computer would be a difficult and time consuming task if

machine language were used. The major advantage of mne-

monics is that they have an English language meaning while

machine language is simply a string of numbers in one of

several possible bases.

In addition to providing a neat format for entering

mnemonic instructions, the editor provides many operator

aids. Among these useful aids are an "edit" mode to allow

for changes, additions, and deletions to the program text;

a comments column to. allow the operator to describe what

various program steps do; and a capability to store the

25

program under development on magnetic disk for further

editing at a later time.

The operating format for the editor program is apparent

by examining the flowchart in Appendix B. The program is

written to provide for a number of modules, each of which

operates independently of the other. Figure 6 shows the

relationship of these modules.

To begin editing a program, the operator first loads

the system as described in Appendix E. When the statement

"enter mode selection" appears on the CRT the operator first

types in INPUT to enter that mode. INPUT is repeated on

the CRT to confirm to the operator that he is in that mode.

Using the mnemonics listed in either Ref. 1 or Ref. 6, the

desired assembly level program for the 8748 is entered.

Correct format for these line entries is accomplished by

using the right arrow key (-^) on the TRS-80 which provides

a tab to columns at 8 , 16, 24, 32, 40 and 48 spaces across.

The first column contains only labels consisting of one to

six letters and followed by a colon (:). If no label is

used, this column is left blank. The second column contains

the opcode of the desired instruction. The third column

contains the operand applicable to the opcode selected. The

operand must be in decimal rather than hex code for quanti-

ties. In the case of addresses, the operand must be a one

to six letter label which will be used to point to the cor-

rect address during assembly. The fourth column is available

26

V

^

s
cd

W
cd

o
o

CQ

fn

hO
O
u

o
-p
•H

0)

•H

y

27

for any comments the user may desire to include for the

purpose of describing program operations. These comments

must be preceded by a semicolon (;) to prevent the assembler

from confusing comments with operands. If the operand is

longer than the 8 spaces available in the third column, the

comments are started after several spaces instead of pressing

the tab key to the fifth column.

Because of the large amount of memory required to store

comments it is desirable to limit both the length and num-

ber used to a minimum. Also, the TRS-80 allows for single

strings of a maximum 256 bytes in length. Since each pro-

gram line (including comments) is stored as one string, the

256 byte limit will be exceeded if too long a comment is

included and the error "string too long" will appear. This

will result in the system dropping out of RUN and back to

BASIC mode. If this occurs, all data previously entered in

memory will be lost when the program is reinitiated. If

this or any other error results in the program "bombing," a

READY will appear on the CRT indicating the system is in

BASIC mode. To get back into the editor/assembler again

simply type RUN "EDTASM"

.

Once the complete program has been entered using the

input mode, it is desirable to check for errors in the edit

mode by typing EDIT. If the user were confident of his

input he could simply enter FILE (filename) which transfers

his 8748 program, complete with comments, to disk storage.

The filename used with this command can be any group of

28

letters from one to eight in length. One space must be

allowed between FILE and the filename when typing it in. •

Another option for leaving the input mode is to enter

QUIT which puts the program back in the command mode after

resetting the pointer to zero. This command causes all

previous lines written to be lost.

Assuming the user went directly from the input to the

edit mode, the next logical choice of action would be to type

PRINT and check the program listing on the CRT for errors.

In the event the program is too long to fit on the screen

the rapid scroll can be halted by pressing shift and @

simultaneously. The scroll is started again by striking

the space bar (or any other key)

.

When entering the edit mode the editor pointer will be

pointing to the first line in the program and that line will

be displayed on the CRT. The pointer can be moved by using

the following commands

:

UP Moves the pointer up one line.

DN Moves the pointer down one line.

EOF Moves the pointer to the end of the file.

TOF Moves the pointer to the top line of the file,

The command "L /substring/" is used to move the pointer

to the location of the first line in the text which contains

the exact substring located between the slash (/) lines.

One space must be provided between the "L" and the first

"/". Note that no quotes (") are actually used in this

command. The length of the substring is not critical but

29

it should be long enough to ensure the program does not

locate another line with that same short substring.

Once an error is located and the pointer is at that

line the following commands are used to make corrections:

C /substring 1/substring 2/ Replaces all of sub-
string 1 with all of
substring 2. Again, one
space must be inserted
between the "C" and the
first "/".

DEL Deletes the entire line.

INS Provides for insertion
of a new line above the
current pointer position.

When all editing has been completed, the operator would

use the command FILE (filename) again to place the program

on the disk. If assembly of this program is then desired,

the command ASM (filename) is entered. A single space must

be inserted between the "ASM" and the filename. This results

in the program "filename" being stored on the disk under the

name "STORE" to enable the assembler program to know which

file to assemble. The assemble program is then loaded into

memory from disk storage and executed.

B. ASSEMBLER PR0GRAI4

This program has the responsibility for converting the

assembly level mnemonics into hex code. The TRS-80 auto-

matically converts the hex code to binary for loading into

the EPROM on the computer chip. This is an extremely lengthy

program which, without a great deal of sophistication, exam-

ines each mnemonic in turn and assigns the correct hexadecimal

30

code for further action. The basic flowchart for ASSEMBLE

can be seen in Appendix C and the program listing is in

Appendix H. The following variable usage is assigned for

this program:

X(L) Full line from editor.

T Full line but with comments deleted.

BK Number of bytes in a given opcode.

D(L) Byte number in decimal.

HX$(L) Byte number in hex.

V(I) Label (if any)

.

Y(L) Hex code for opcode with 2 byte
instructions

.

Z (L) Hex code for opcode with single byte
instruction or data for 2 byte instruc-
tions .

U(L) Error for line L.

The first task carried out by this program is to load

the desired 8748 mnemonic program into memory from the disk.

The next step is to complete the first pass of the assembler

Each line of input is looked at in sequence. The first 8

spaces of the line are examined first to determine if that

line has a label. If it does, the label is stored in mem-

ory for use by the second pass assembler in determining

intra-program directives. The next step is to examine the

first line for the opcode ORIG. If this code is present,

the operand, which is the user's desired start address, is

stored for use in beginning the byte count at that address.

The program then checks each opcode in sequence to see if

31

it is a one or two byte instruction. The appropriate

number is added to the present instruction address to deter-

mine the next instruction address. When the opcode END is

recognized the first pass is completed and no address is

assigned to that line. If the opcode END is not present,

the program merely exits to the second pass assembler after

the line count number reaches that number which was passed

from the editor.

As each line is looked at and an address is assigned

in the first pass, that line, with numbering, is printed on

the CRT to keep the operator aware of assembly progress.

The format for this printout is as follows:

LINE NUMBER HEX ADDRESS MNEMONIC CODE COMMENTS

Upon completion of this phase, FIRST PASS COMPLETED is

printed on the CRT and the second pass of the assembler

begins automatically. The task of the second pass is two-

fold. First, the mnemonic opcode and operand are converted

to the appropriate machine language in hex code. Second,

each time an operand is located which requires an address,

the label representing that desired address is searched for

in the list of labels formerly made up in the first pass.

When the label is located, the corresponding address is

used as the second byte of the calling two byte instruction

As an example, consider the following lines of program:

Line Address Code Label Opcode Operand

03 03 0407 JMP BACK

04 05 8909 MOV Rl,#9

05 07 59 BACK ANL A,R1

32

In this example the programmer desires to jump to line

5 upon executing line 3. When the second pass reaches line

3 it first recognizes the opcode JMP and assigns the approp-

riate hex code of 04. The assembler then looks for what

address to JMP (jump) to and looks at the operand BACK.

The program then searches through the labels tabulated dur-

ing the first pass and locates BACK. It then brings the

address associated with that label, 07, back to add onto the

JMP code to form the two byte instruction 0407 as seen

above. The code column in this example is not added until

the second pass is actually completed.

The actual search process of the second pass is done

in two steps to increase speed of execution. Except for a

few singular instructions, the first look is at 38 groups of

instructions by type. Once the opcode group heading is

recognized, the assembler jumps to a subroutine which as-

signs the specific hex code for that opcode and operand.

Upon completion of that step the assembler returns to the

beginning of the opcode list to begin again. An attempt has

been made to arrange the opcode groups so that the more

frequently used will be at the top of the list to provide

faster average locating speed. During this process the

assembler also identifies errors which are filed for display

when assembly is completed. The recognized errors and

meanings are listed below.

SYNTAX ERROR Opcode or operand are not
recognized. Probably an
incorrect format or mis-
spelled.

33

DATA EXCEEDS BYTE SIZE A number greater than 255
is being used.

REGISTER SIZE EXCEEDS 7 Use of a non-allowed
register.

R EXCEEDS 1 Register should be or
1 only.

INCORRECT PORT # Use of port not allowed
in that instruction.

During execution of the second pass, as the code for

each line is generated, it is presented on the CRT. Again,

this presentation is provided to the operator so that he

can follow the progress of assembly. After assembly is com-

pleted, that fact will be noted on the screen along with

the statement ERRORS, or the number of errors followed by

the line number of each error and the error found in that

line. If the line printer is connected and turned on prior

to the end of assembly, a printout will be provided which

will list the following data for the entire program:

Line No . Hex Address Hex Code Label Opcode Operand Comments

See Appendix J for a sample assembled program printout.

Errors that were detected will be printed below the line

affected. At the end of this printout a tabulation is pro-

vided for reference listing the labels and the address they

are located at. If no errors were detected, the program

then loads the object code (machine language hex code) onto

the disk and calls the program PROGRAM for the purpose of

programming the assembled code into an 8748 EPROM. This

code is filed under the name assigned by the user but with

34

an "0" appended to the name after the last letter. This 0,

of course, represents object code.

If upon completion of the assembly and printout, errors

had been detected, the editor program is called and run to

enable the operator to correct his mistakes.

Under the circumstances where the operator had either

accidentally or deliberately failed to connect the TRS-80

to the line printer and to turn the printer on, the system

will "freeze up" after assembly is completed. The recovery

procedure is to press the "BREAK" key until READY appears

on the screen. The system is now in BASIC mode. If errors

have been detected and the user wants to examine the line

numbers in which errors existed, he can enter the command

RUN and use the shift key and (a key simultaneously to stop

the scroll of assembled lines to check errors. To return

to the edit mode again, simply allow the assemble program

to continue to run until it calls the edit program, or press

the break key to return to BASIC mode and type RUN "EDTASM"

.

It should be noted that if ASSEMBLE runs to completion

and does not locate any errors it will automatically load

the object file onto the disk before proceeding. If any

errors are located, however, the object code will not be

saved since it is not correct.

C. PROGRAMMER PROGRAM

The purpose of this program is to enable the system

user to load his assembled program into the EPROM of an 87 4 8

35

microcomputer. This is accomplished through associated

hardware which is discussed in the next chapter. This pro-

gram and hardware also enables the user to read an 8748

EPROM in order to verify its contents. The flowchart for

the program named "program" is located in Appendix D and

the program listing is Appendix I.

This program is normally executed upon successful com-

pletion of the assembly program, but may also be entered

directly from BASIC mode by typing RUN "PROGRAM". Before

running this program, however, the programmer assembly must

be connected to the TRS-80 I/O bus. This connection should

not be attempted while a program is running because elec-

trical transients may be generated which could halt program

execution.

When the program is initiated it will first present the

statement ENTER PROGRAM MODE. The user may then select one

of the following commands:

STOP Ends program execution and
returns to BASIC mode.

EDIT Loads and runs the editor program,

RPROM Used to read an EPROM.

WPROM (filenameO) Used to write to an EPROM. The
"0" must be added to the file-
name to designate the object
file.

Any other command will result in the statement ILLEGAL

COMMAND—TRY AGAIN being presented on the CRT.

Whether the WPROM or RPROM mode is selected, the same

setup routine is used. This routine first asks the question

36

START ADDRESS IN DECIMAL? to which the operator answers with

a decimal number indicating the EPROM address in the 8 7 48

he desires the reading or writing to start at. The next

question will be END ADDRESS IN DECIMAL? which asks for the

last EPROM address to be read or written to. If the end

address entered is ^greater than the start address, the

statement ILLEGAL ADDRESS will appear on the screen followed

by the start address question again. Likewise, if either

the start or end address are greater than the 1024 byte

capability of the EPROM, the statement ILLEGAL ADDRESS will

again appear. If the first two questions are answered

satisfactorily the next question EPROM SOCKET EMPTY? (YES

OR NO) will appear. This is to ensure that the EPROM is not

inserted in the socket before power is applied and initial

setup is completed. Other actions could result in damage

to the 874 8 chip. If the answer to the socket empty ques-

tion is YES, the next question will be IS POWER SWITCH ON?

(YES OR NO) . If power is not yet on this is the time to

turn it on. When the answer to this question is YES the

program sets the hardware to the required initial conditions

and prints the hexadecimal code of the object program about

to be loaded on the CRT. The statement INSERT 8748 CHIP

AND TYPE-GO: is then presented. It is especially important

here that the 8748 chip not be inserted incorrectly in the

socket as considerable damage to the chip would result.

Once the command GO is typed and entered, the program will

37

return to either the RPROM or WPROM routine originally

selected.

If RPROM had been selected, the desired address of the

EPROM would be queried and the data at those addresses in-

put to program memory. Since this data is input to the

BASIC mode in decimal format/ it must be converted to hexa-

decimal before presenting to the operator on the CRT. This

presentation is made in the following format:

Decimal Address XX XX XX XX XX XX XX XX XX XX XX XX XX

XX XX XX

where the decimal address is the address of the first in-

struction in that row and XX is a hexadecimal representation

of* the machine language in that address. When all desired

addresses have been printed, any spaces left in that row

will be filled with 00 and the program will reinitialize

the electronics in the programmer and provide the message

REMOVE EPROM NOW—THEN TURN POWER OFF. This is to ensure

power is not turned off before the EPROM is removed. The

program then returns to start with the statement ENTER

PROGRAM MODE.

If the user had originally selected WPROM and given the

correct name of the object code file on disk, the first

step would have been the loading of the object file into

TRS-80 memory. The initialization routine discussed above

would then have been completed and the programming process

commenced. The program is loaded into the EPROM one byte

at a time. Each address requires approximately 100 milli-

38

seconds to program so the user should expect about one second

of programming time for each 10 instructions. During the

100 msec cycle the program first inserts data into the given

address and then reads that same address. The decimal num-

ber read is compared by the program with the number which

should have been programmed. If the two numbers are not

identical the EPROM programming ceases and the statement

PROGRAMMING ERROR—ERASE EPROM AND TRY AGAIN will appear,

followed by REMOVE EPROM NOW—THEN TURN POWER OFF and a

return to program start. If this does occur, the most

likely cause is that the EPROM was not thoroughly erased

before programming. It is also possible, however, that the

EPROM is defective or that the programmer is operating

incorrectly. Check also to see that programming power is

turned on.

If no errors are detected in the verification routine,

the statement PROGRAMMING COMPLETED SATISFACTORILY will appear

followed shortly by REMOVE EPROM NOW—THEN TURN POWER OFF and

a return to program start.

If the user desires to run several RPROMs in succession

or an RPROM followed by a WPROM or vice versa, it is not

necessary to remove and reinsert the 8748 chip each time.

Simply ignore the command to remove the EPROM and proceed

with the steps in order. The questions EPROM SOCKET EMPTY?

and POWER SWITCH ON? may both be answered YES with no ill

effects. The important point to remember is to not remove

39

the EPROM until the second to last statement on the CRT is

REMOVE EPROM NOW—THEN TURN POWER OFF.

40

V. PROGRAMMER HARDWARE AND OPER?^TION

The design for the hardware portion of the 8748 EPROM

programmer was based on the requirements set forth in Ref. 1,

Reference 7 provided additional assistance in switching cir-

cuit techniques and methodology. Figures 7 and 8 show the

schematic for the final programmer design. Figure 9 shows

component arrangement on the circuit board.

In first examining the possibilities for interfacing

the TRS-80 with an EPROM programmer, the question of output

procedure arose. The TRS-80 is able to provide an output

via either memory mapped or port selection modes . Since

the memory mapped system requires memory addresses to be

used for output and input, this method had to be rejected.

With all possible 64K of addresses already in use for either

RAM or ROM, much confusion could result. The port based

system allows only 255 possible ports, but this is more

than sufficient if much of the work is done by the TRS-80

software rather than programmer hardware. In fact, for this

8748 programmer only 4 ports are needed. In the port sys-

tem the commands used are OUT (port) , (value) and INP (port)

in the BASIC language. The OUT command sets the OUT line

low, simultaneously putting the port number on the lower

eight address lines and the desired value on the eight data

lines (data bus) . Likewise, the INP command sets the IN

line low while outputting the port number on the lower eight

41

V
.-i

I I I I I I

00 r^ vo

a a a
12
o

2
a

£2 C4 ^
a a o

o_ 00
-4 y-z v> CM ec
eo o

a.

00 r*. <o
o O O
Q o a

m «^ CO <M t-i

o o o o o
a o a a a

Y

ae
Id
O
ou

U. OL

z
o
o

22

>
iri-

+

42

8748

XI

X2

PSEN

fNT

SS

22pF

138
UH

4.7K
-WV—|H

22pF

2.4K

2.4K

5V

+ 5V

P21

P20

OB7

DB6

DBS

0B4

0B3

DB2

DBl

OBO

L_
STB

+ 5

CLR

8212

PORT 2

002 012

001 Oil

DSl MO 0S2

"T"
+ 5V

c

NC
I

+ 5

_1
STB CLR

018

017

016

015

014

013

012

Oil

8212

PORT 3

008

007

006

005

004

003

002

001

031 MO 0S2

±

+ 5

T
STB

003

CLR

007

006

005

004

003

002

001

8212

PORT 1

018

017

016

015

014

013

012

Oil

DSl MO DS2

<P

DATA BUS >

-o-
OUT

7404

qo , A
74LS154

-ojl

2

3

4

0(5

8^
C^

Gl G2

—<h<h

AG

Al

A2

0^ A3

OUT

7404 _

7404

IN

TO DSl ON
PORT 4

7404 OUT

FROM 001 ON
PORT 4

Figure 8 - Programmer Schematic

43

o
-=r CM

Eh
CO W^ W
C—

O

OO O
CO

rH o
QE-

> o
^ht

EH
< ><
w oO EH

T3

O

CM

CM

CM Eh
iH K
CVJ O
OO D^

V£3 ^3-

CM r-\

-:3- cr:

Lr\ w
rH Q
CO o
J o
.=r w
^^ Q

on
rH rH

^3-

8212 PORT

CM

m

-^
rH

r-\

C\J ^
r-^ ^ \

CM o
CO CL,

vr
cv

-=r

rH
CV-)

8212 PORT

VO
CM

m

o

•H
O
u
(U

03

!h

hO
O

I

CTn

(D

in

=i

bO
•H

CV)

44

address lines. The data present on the data bus is then

read into the TRS-80.

The first major obstacle to overcome in preparing the

design of the programmer was to verify the correct pinout

from the TRS-80 I/O port.

Since Ref. 8 has no data on the TRS-80 expansion inter-

face it was largely up to the author to verify the pinout.

In connecting up to the I/O port a flat cable 40 pin connect-

or left over from another TRS-80 application was used. After

some time was spent searching for signals out of this cable

it was discovered that the cable and connectors are wired

to reverse the signal from top to bottom. That is, the top

row of signals in one end of the flat cable comes out on the

bottom row at the other end and vice versa. The similar

cable coming from the computer/keyboard to the expansion

interface of the TRS-80 also reverses the signals top to

bottom. The interface board is wired to again reverse the

signals so they are upright coming out of the interface I/O

port. Figure 10 shows the pinout of the expansion interface

port.

Once the proper pinout had been verified, the design

and construction of the programmer board could begin. Be-

cause of their ready availability, it was decided to build

the system on a 4 x 6 Vector plugboard with a 44 pin connect-

or and which was predrilled for wirewrap sockets . This

board provided for a compact unit easy to interface via 44

45

SIGNAL
P/N NAME DESCRIPTION
1 RAS* Row AddreM Strobe Output for 16-Pin Dynamic Rams
2 SYSRES* System Reset Output, Low During Power Up Initialize or

Res«t Depressed
Column Address Strobe Output for 16-Pin Dynamic Rams3 CAS*

4 A\9 Address Output
5 A12 Address Output
6 A13 Address Output
7 A15 Address Output
8 GND Siffnal Ground

Address Output9 All
10 A14 Address Output
11 A8 Address Output

Peripheral Write Strobe Output12 OUT*
13 WR« Memory Write Strobe Output
14 INTAK* Interrupt Acknowledge Output
15 RD« Memory Read Strobe Output
16 MUX Multiplexor Control Output for 16-Pin Djniamic Rams
17 A9 Address Output

Bidirectional Data Bus18 D4
19 IN* Peripheral Read Strobe Output
20 D7 Bidirectional Data Bus
21 INT* Interrupt Input (Maskable)

Bidirectional Data Bus22 Dl
23 TEST* A Logic "9" on TEST* Input Tri-States A0-A15, D0-D7,

WR*. RD*. IN*, OUT*, RAS*. CAS*, MUX*
24 D6 Bidirectional Data Bus
25 A« Address Output
26 D3 Bidirectional Data Bus
27 Al Address Output

Bidirectional Data Bus28 D5
29 GND Signal Ground
30 D0 Bidirectional Data Bus
31 A4 Address Bus
32 D2 Bidirectional Data Bus
33 WAIT* Processor Wait Input, to Allow for Slow Memory
34 A3 Address Output
35 A5 Address Output
36 A7 Address Output
37 GND Signal Ground
38 A6 Address Output
39 GND Signal Ground

Adaress Output40 A2
NOTE: *meana INegative (Logical "V) True Input or Output

13 15 17 19 21 23 25 27 29 31 33 35 37 39

-o—o-
2 4

-CD CT
8 10 12

-d Z3—n— — —CT"
16 18 20 22 24 26 28 30

-C3-
32

"— —c]—cr
34 36 38 40

Figure 10 - Pinout of Expansion Interface
8

46

pin sockets. The use of wirewrap techniques on the board

enabled the system to be put together rapidly and yet to

provide a high degree of reliability.

Intel 8212 I/O port chips were selected for the program-

mer unit because of their versatility and compactness. These

8 bit ports can be wired to operate in a number of different

ways since they include both tri-state buffers on the output

lines and latches on the input lines. An Intel schematic

for the 8212 chip is provided in Figure 11.

The next major design hurdle for the programmer hardware

was the higher voltage switching circuits. This circuitry

can be seen in programmer schematic diagram. Figure 7. While

several of the drive signals to the 8748 chip such as TESTO

and RESET require and +5 volts for off and on, the program

functions of EA, V and PROG require 23, 25, and 23 volts

respectively as the high input. In fact, EA and V also

require a low of +5 volts while PROG must have a low of

volts as well as a "float" condition. The output of the 8212

chip is easily able to provide a direct to 25 volt transi-

tion with the assistance, in some cases, of a pull-up resist-

or. Since no digital chips provide the range of to 25

volts required for the program function, it was necessary

to construct separate circuitry using switching transistors.

The design of all 3 of the 25 volt switching circuits was

basically the same. A pair of transistors, one PNP 2N3906

and one NPN 2N3904, were tied together at their collectors

and driven by a common voltage into their bases. In this

47

DEVICE SELECTION

_\
Q>DS1-cf—

^

E3>OS?-L^

|T>MO

gT>STB

(ACTIVE LOW)

(ACTIVE LOW)
I l__I

era *ID (Br,«s,i DATA OUT EQUALS CLR (SS^oSti STB

•

•« INT
~»

"

1 '

9

1

1

1

«
1

•
i

i

1

1

1

1

t

1

J-STAT€
l^ATE
OATA LATCH
DATA LATCH *
OATA LATCH
OATA IN

DATA IN

OATA IN

•
• 1

1 1 -v_
1 1

1

1 • , •
11 1

•IMTEmtALJ»FLir FLOf

CIB - RtSfTS OATA LATCH
SETSSR FLIPFLOr
INO EFFECT ON OUmjJ SUFFER)

Figure 11 - Intel 8212 I/O Port Schematic-'-

48

configuration, when the 2N390 6 PNP transistor has a ground

level at its base, current flows to ground and the transist-

or is switched on, allowing +25.4 volts at its collector

output. At the same time a low on the base of the 2N3904

shuts it off, thereby directly all current into the collector

output connection. For the reverse condition, when the 3906

is shut off and the 3904 is turned on, no current is provided

by the transistor circuitry. Instead, in the case of V and

EA, 5 volts is provided at the appropriate input pin from

the +5 volt supply. The emitter of the 3904 is also tied

to +5 volts to ensure rapid switching from +25.4 to +5 volts.

While the V high operating voltage is set at 25.4 volts

(allowable range is 24 to 26 volts) the EA high operating

voltage is 23 volts (allowable range is 21.5 to 24.5 volts).

Rather than providing two different power supplies, the 23

volts is reached, for both EA and PROG, by dropping the

25.4 volts across 3 IN 753A diodes in series. With a V of
o

.8 volts, the resultant 2.4 volt drop enables the desired

voltage to be achieved.

The switching circuitry for the PROG input is necessarily

somewhat different from the other two because of the require-

ment for 3 states, namely +23 volts, ground, and floating.

This is achieved by utilizing two inputs from the TRS-80

rather than one. One input controls the switching of the

2N3904 transistor and another controls the 2N3906. When the

3906 is on and the 3904 is off, 23 volts will be present at

the output. When the 3906 is off and the 3904 is also off.

49

no current supply or drain will exist and the input may seek

its own level (about 4 volts under operating conditions)

.

When the 3906 is off and the 3904 is on, the PROG input will

be tied to ground.

The operating sequence of one complete cycle of the

system as a whole is illustrated below for one program pulse.

To assist the reader in following this discussion, the 8 bit

output of port 4 is listed below. Underneath each bit of

port 4 is listed the item controlled by that bit.

bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1

V RESET TESTO EA PROGl PROG 2 N.C. PORT 1 MD

Before the 8748 is allowed in the socket of the program-

mer, the hex code 36, binary 00100100, is output to port 4.

This provides a +5 volts to PR0G2 and +5 volts to TESTO with

all other port outputs equal to 0. The result is proper

initial conditions for the 8748 to be inserted in the socket,

i.e. PROG is floating and TESTO is high. The next action is

to output hex 04. This switches TESTO to volts to begin

the programming process. The next step is to output 20 to

port 4 which switches EA to +23 volts. The high 2 bits of

the desired 874 8 address are then output to port 2. Port 1

is switched to the latch-on condition next by outputting a

21 to port 4. The lower 8 bits of the desired address are

now passed to port 1. An 81 is next output to port 4 which

turns RESET off with a +5 volts and turns PROG to the volt

(ground) condition. This latches the address onto the 8748

bus. The data is then passed out to port 1 followed by a

50

209 to port 4 to raise V to 25.4 volts, a 221 to port 4

to raise PROG to +23 volts, and a 50 msec delay to allow

the programming to occur. PROG is then taken low by out-

putting 209 to port 4. V is then lowered to +5 volts by

sending an 81 out to port 4. V _ is then lowered to +5

volts by sending an 81 to port 4. An 84 is next put out

to place PROG back in a floating condition and set up for

the verify. The port 1 tristate is also turned off at this

time by the same step. A 116 is then placed on the bus to

port 4 to raise TESTO to +5 volts. This action places the

data at the current 8748 address onto the 8748 output bus

where it is read into the TRS-80 using the BASIC command

INP(3) to bring it in via port 3. The software then checks

for correct programming of that address and outputs a 20 to

port 4 to lower RESET and TESTO to volts. The cycle then

begins again with the output of the high address and con-

tinues until the programmer's last desired address is reached.

The RPROM routine is basically similar to the above ex-

cept that no V or PROG pulses are used and no data is out-

put to the 8748. Instead, the addresses are put out to the

chip and the verify procedure follows immediately. A pic-

ture of the actual timing diagram for this process is avail-

able as Figure 12. These waveforms correspond favorably

with the required traces as seen on page 6-8 of Ref. 1.

51

VERIFY

TESTO PROGRAM

RESET

ADDRESS
& DATA

T
ADDRESS
VALID

DATA
VALID

+25.^ -!

V.
DD

+5

+23

PROG

i 1 i \

1

\

1 1

\ i h

20 40 60 80 100 120 l40 l60 l80 200

TIME (Milliseconds)

Figure 12 - Programmer Timing Diagram

52

VI. PROGRAMMER POWER SUPPLIES

The power for the 8748 programmer is drawn from two

separate power supplies contained within the programmer

enclosure. These supplies are not shared with the TRS-80

power supplies. The right hand circuit board within the en-

closure was a pre-built supply available from another stu-

dent's project. It is powered by a 26 volt transformer and

produces 3 separate DC voltages using on-board rectifiers

and LM 723 voltage regulators. The DC levels available from

this supply are +5, +12, and -12 volts. Variable resistors

are available for each supply to allow adjusting of output

voltages by approximately +1 volt. In this application only

the +5 volts is required and it is hard wired to the mother

board. The +12 and -12 supplies are available for future

student projects. In fact/ if a 2708 programmer is con-

structed, the +12 volt and a -5 volt supply drawn from the

-12 volts will be required.

The other power supply board in the programmer enclosure

provides a regulated 25.4 volts DC for the EPROM programming

pulses. This supply was constructed by the author. Figure

13 is a schematic diagram of the unit which uses an LM-317

for voltage regulation.

Current requirements for the 8748 programmer are fairly

significant for the +5 volt supply. In excess of 500 milli-

amps is required to power the board. Much of this current is

53

4J

o

o
=S >
C\J o
CM in

U
o
o

+4

o
-3-

ti—vw

•H

>

o
=S >
o o
O LPv

>̂- I

O

<|-^VAAr -^?V^

O
:3 >
o m
rH m

H

u

I'

P4
P.

CO

(U

O

-p

o

LTV

OJ

mi
r-i

o

faO

•H

I > (D

O cd -H

cr\ •H
rH -P

< rH O

S fj^ K
>

CM

54

taken up by the 8212 I/O port chips which operate at a higher

than ambient temperature. The 25.4 volt supply current re-

quirement is less than 40 milliamps and then only during

actual programming.

A schematic is not provided of the mother board since it

is simply an extension from the TRS-80 expansion interface

output port. It should be noted, however, that the printed

circuit lines on the top of the mother board and on the right

side of the 44 pin sockets represent the bottom row of output

pins from the expansion interface. Likewise, the top row

outputs from the interface are on the bottom of the printed

circuit board and the left side of the sockets. The 4 out-

side lines on the mother board are not connected to the TRS-80

4 pin connector and are intended for use in supplying power

from the programmer power supplies. Additionally, it should

be noted that all lines from the TRS-80 are connected to only

the first 44 pin socket. The left most 3 sockets have only

the data lines, lower 8 address lines, ground, OUT and IN.

The reason for this is that these signals are the only ones

required to provide port mode input and output. Thus, they

will suffice for most applications.

To provide maximum protection for the programmer cir-

cuitry, 3 fuses have been installed. A 120 volt, 2 amp fuse

is located in the input power line to protect against major

transformer failure. A 750 milliamp fuse is inserted in the

5 volt supply line and a 3/8 amp fuse is in the 25 volt

programming supply line to protect the programmer board

55

against major damage in the event of overload.

The light on the front panel of the programmer assembly

indicates that 120 volts have been received past the 120

volt fuse. The fuses for the 5 and 25 volt supplies must be

checked visually if the programmer is not operating correctly

56

VII. CONCLUSION

The microprocessor development system discussed in this

thesis is already in use by several groups of students who

are employing the 8748 chip in various applications. These

users have been favorably impressed with the effectiveness

and simplicity of the system, especially when compared with

the Tektronix 8002 MDS . While the 8002 has many more capa-

bilities, its sophistication is at such a high level that

the beginning student in microprocessors must spend many

hours learning how to use it. The typical requirements for

an MDS, to edit, assemble and program EPROMs , are more than

met by the author's system.

Perhaps an even more significant difference between the

TRS-80 based system and the more sophisticated systems is

cost. The TRS-80 in its present configuration is available

for about $2000, while the Tektronix system costs over

$15,000. In fact, the 8748 assembler module alone for the

8002 is worth $850 with the complete emulator card and probe

raising that price to over $4,000.

In constructing the programmer assembly for the 8748,

additional sockets were provided in a 4 socket mother board.

These sockets accept the standard 44 pin Vector plugboard.

It is recommended that future student projects and thesis

work be directed toward the construction of software and

hardware to expand this MDS. Some additions which might

prove useful to 8748 users would be an in-circuit-emulator

57

and a debugger to allow for real time execution of the

user's program in TRS-80 software. Other possible projects

could be a programmer for the Intel 2708 and 2716 or other

commonly used EPROMs. With little additional effort a

parallel to the already installed capabilities for the 8748

could be included to provide for the 8080, Z-80, 6800, and

other popular microprocessors. Since the editor program would

work for any microprocessor language, the task of program

building would be limited to only the assembler program.

Thus, a new capability for the TRS-80 MDS would consist of

only a $5 magnetic disk to store the programs.

Other capabilities could be added to the digital labora-

tory by interfacing the TRS-80 to the Tektronix 8002 to allow

for exchanging programs and data between the two. Addition-

ally, the TRS-80 might be used as a real time processor for

the IBM- 3 60 or other main frame computer, allowing for the

transfer of programs and data between several computers.

With the advent of smaller, faster, and more capable

microprocessors, the age of truly distributed processing

systems is upon us. Additionally, microprocessor systems of

the future will be the equivalent in capability of main

frame computers of the past. For these reasons the import-

ance of understanding the capabilities and limitations of

microprocessors and microcomputers cannot be over emphasized.

The microprocessor development system is one necessary and

concrete step toward this goal. To be able to rapidly and

58

effectively program and utilize the microprocessor is the

raison d'etre of the microprocessor development system and

is, not coincidentally, the path of the future.

59

APPENDIX A

PROGRAM LISTING FOR PRINTER SUBROUTINE

Location Hex Code Label Opcode Operand

FFOO E5 INIT PUSH HL
FFOl C5 PUSH BC
FF02 F5 PUSH AF
FF03 3A48FF LD A, (FLAG)
FF06 FEOl CP OIH
FF08 2820 JR Z, RESTOR
FFOA 3E01 LD A, OIH
FFOC 3248FF LD (FLAG) ,A
FFOF D3E8 OUT E8,A
FFll DBE9 IN AE9
FF13 E6F8 AND 0F8H
FF15 F604 OR 04H
FF17 3247FF LD (SWTIMG) ,A
FFIA D3EA OUT EA,A
FFIC DBE9 BAUDS

T

IN A,E9
FFIE E607 AND 07H
FF20 213FFF LD HL, BDTABL
FF23 0600 LD B,OOH
FF25 4F LD C,A
FF26 09 ADD HL,BC
FF27 7E LD A, (HL)
FF28 D3E9 OUT E9,A
FF2A Fl RESTOR POP AF
FF2B CI POP BC
FF2C El POP HL
FF2D DBEA STATIN IN A,EA
FF2F CB77 BIT 6,

A

FF31 28FA JR Z, STATIN
FF33 79 LD A,C
FF34 D3EB OUT EB,A
FF36 FEOD CP ODH
FF38 2004 JR NZ, RETRN
FF3A C350FF JMP FF50
FF3D 00 NOP
FF3E C9 RETRN RET
FF3F 22 BDTABL DEFB 22H
FF40 44 DEFB 44H
FF41 55 DEFB 55H
FF42 66 DEFB 66H
FF43 77 DEFB 77H
FF44 AA DEFB OAAH
FF45 CC DEFB OCCH
FF46 EE DEFB OEEH
FF47 00 SWTIMG DEFB OOH
FF48 00 FLAG DEFB OOH
FF49 00 NOP

60

FF50 00
FF51 00
FF52 00
FF53 00
FF54 00
FF55 00
FF56 00
FF57 E5
FF58 21FF44
FF5A 2B
FF5B 7C
FF5C B5
FF5D C254FF
FF60 El
FF61 OEOA
FF63 C32DFF

NOP
NOP
NOP
NOP
NOP
NOP
NOP
PUSH HL
LD HL,44
DEC HL
LD A,H
OR L
JP NZ,FF54
POP HL
LD C,OAH
JP FF2D

61

APPENDIX B

FLOWCHART FOR EDITOR PROGRAM

"EDTASM"

LOAD PRINTER PROGRAM FROM DISK AND EXECUTE

RUN "MASTER"
j

PRINT "8748 EDITOR/ASSEMBLER ON LINE"

o
INPUT "ENTER
MODE SELECTION"

BRING PREVIOUSLY
* FILED PROGRAM
FROM DISK

PRINT ALL LINES
IN MEMORY ON

ICRT

YES

PRINT
ILLEGAL ENTR^

YES

Q
RUN "ASSEMBLE

y
STORE FILE
NAME ON DISK
IN "STORE"

<-^

PRINT
PROGRAM ON
LINE PRINTER

62

PRINT "EDIT"

INPUT COMMAND

YES

MOVE POINTER
UP ONE

MOVE POINTER
DOWN ONE

DELETE CURREN1
LINE

INSERT NEW
LINE ABOVE
CURRENT LINE

SAVE ALL LINES
IN MEMORY ON
DISK HD

63

PRINT?
YES

PRINT ALL
LINES IN

MEMORY ON
CRT <D

L?

NO

C?

NO

YES LOCATE LINE
WITH SPECIFIED
SUBSTRING

YES CHANGE OLD
SUBSTRING TO
NEW SUBSTRING

TOP?
YES POINTER TO

rOF OF FILE

NO

EOF?
YES

PRINT
"ILLEGAL ENTRY"

POINTER TO
END OF FILE

64

PRINT "INPUT

LINE INPUT

YES

YES•0

YES
SAVE ALL
LINES IN
MEMORY ON
DISK

STORE AND
ADVANCE TO
NEXT LINE NUMBER

NO

65

APPENDIX C

FLOW CHART FOR ASSEMBLY PROGRAM

("ASSEMBLE" j

GET FILE NAME
FROM "STORE"

LOAD LINE COUNT
FROM FILE

DIMENSION
VARIABLES

LOAD FIRST
LINE FROM DISK

.LABEL PRES-> ^'^^
>
SET FIRST ADDRESS
TO OPERAND OF
"ORIG"

NO LOAD NEXT
LINE

'IRST ^^v YES
'LINE "PROG'^ > \

SET FIRST ADDRESS
TO OPERAND OF
"ORIG"

66

YES

ADD 1 TO
PREVIOUS
ADDRESS

ADD 1 to
PREVIOUS ADDRESS

ADD 2 TO
PREVIOUS ADDRESS

I
CONVERT
DECIMAL ADDRESS
TO HEX

PRINT LINE NUMBER
HEX ADDRESS, LABEL
OPCODE, OPERAND AND
COMMENTS

LOOK AT NEXT
LINE

NO

PRINT "FIRST
PASS COMPLETED"

67

GET NEXT LINI
NO

GET FIRST
LINE

DELETE
ALL COMMENTS

ASSIGN HEX CODE
TO OPCODE AND
OPERAND

PRINT HEX
CODE

PRINT
"ASSEMBLY
COMPLETED"

PRINT NUMBER
OF ERRORS

YES

INCREMENT
ERROR COUNT

STORE ERROR
AT LINE NUMBER

68

YES

PRINT ASSEMBLED
PROGRAM AT
LINE PRINTER

NO

STORE OBJECT
CODE ON DISK
UNDER FILENAME
+

NO PRINT HEADING
"LINE ERROR"

RETURN TO
LINE 1

PRINT LINE
NUMBER AND
ERROR

GET NEXT LINE

RUN "PROGRAM"

69

APPENDIX D

FLOWCHART FOR "PROGRAM" PROGRAM

("PROGRAM" j

PRINT "ENTER
PROGRAM MODE"

PRINT "ILLEGAL
COMMAND-TRY
AGAIN"

PRINT "OBJECT
CODE ONLY!
ADD TO FILE
NAME"

EXIT TO BASIC MODE9

W RUN "MASTERD

70

OUTPUT CODE
TO CRT

ADVANCE TO
NEXT LINE

.^

LOAD OBJECT
CODE FILE

CONVERT HEX
CODE TO DECIMAL

CcallsetupN
subroutine/

OUTPUT FIRST
LINE OF CODE
TO DESIRED
ADDRESS

READ CODE AT
SAME ADDRESS
IN

NO

PRINT "PROGRAMMING
ERROR-ERASE
EPROM AND TRY
AGAIN

PRINT "PROGRAMMING
COMPLETED
SATISFACTORILY"

INITIALIZE
PROGRAMMER

PRINT "REMOVE
EPROM NOW-THEN
TURN POWER OFF

71

CCALL SETUP \
SUBROUTINE I

READ EPROM
FIRST DESIRED
LINE

RESTORE
PROGRAMMER TO
INITIAL
CONDITIONS

CONVERT DECIMAL
NUMBERS TO
HEX

©
PRINT HEX CODE
IN BLOCK FORM

PRINT "REMOVE
EPROM NOW-
THEN TURN
POWER OFF"

NO READ NEXT
LINE

72

YES

(SETUP

\

SUBROUTINE J

INPUT "START
ADDRESS IN
DECIMAL?"

YES

INPUT "END
ADDRESS IN

DECIMAL?"

YES

YES

INPUT "EPROM
SOCKET EMPTY?!

(YES OR NO)

"

INPUT '

'IS

SOCKET POWER
SWITCH ON?
(YES OR NO) "

PRINT "TURN
POWER ON"

YES

PRINT
^ "ILLEGAL
ADDRESS"

INITIALIZE
PROGRAMMER

INPUT "INSERT
8748 CHIP AND
TYPE-GO :

"

73

APPENDIX E

8748 EDITOR/ASSEMBLER OPERATING INSTRUCTIONS

This development system operates under its own set of

instructions and commands and no knowledge of the TRS-8

operating system or the BASIC language is presumed or neces-

sary.

To load the 8748 program proceed as follows:

1. Turn on the master power switch on the bus strip.

2. Turn the CRT on by pushing in the button in the upper right
hand corner.

3. Turn the expansion interface on by pressing in on the
button in the center front face of the unit.

4. Turn the disk drive on by placing the toggle switch on
the rear of the drive unit up.

5. Insert the 874 8 disk in the drive with the notch up and
the label facing to the right. Close the disk drive
door

.

6. Turn the TRS-8 on by pressing in on the button located
on the rear of the keyboard just to the left of the 3

input cables.

7. The system will now load the disk operating system fol-
lowed by the BASIC system. The screen will display the
following:

HOW MANY FILES?

Answer this by typing a 1 and pressing ENTER.

The next question on the screen will read

MEMORY SIZE?

Answer this with 65000 and ENTER.

The system will then respond with

RADIO SHACK DISK BASIC VERSION 2.2
READY
>

74

Now type in RUN "EDTASM" and press ENTER.

This loads the 8 748 editor/assembler and the screen will

display

8748 EDITOR ASSEMBLER ON LINE

ENTER MODE SELECTION

—

The operator is now ready to begin entering and editing

his 8748 assembly level language program. The following com-

mands and modes provide all the assistance necessary to pro-

vide a fully assembled version of his program.

Modes available

INPUT

PRINT

LPTl

EDIT

GET (filename)

ASM (filename)

To enter program lines into system
buffer.

Prints contents of buffer on video
display.

Prints contents of buffer at the line
printer.

Provides for editing of lines in buffer
(See EDIT commands.)

Transfers (filename) program from disk
storage into buffer.

Assembles program named (filename) and
provides complete printout at the line
printer. (ensure that printer is con-
nected to TRS-80 and turned on.)

Edit Commands

UP

DN

TOF

Moves pointer up one line in the buffer

Moves pointer down one line in the
buffer.

Moves pointer to the top line in the
buffer.

75

EOF

DEL

INS

L /xxx/

C /xxx/yyy/

FILE (filename)

PRINT

INPUT

Moves the pointer to the end of the
file in buffer.

Deletes the current line.

Provides for a new line to be inserted
above the current line.

Locates the first line containing
substring xxx and moves the pointer
to that line.

Changes substring xxx to yyy in the
current line.

Transfers the contents of buffer to
disk storage under name (filename)

.

Prints contents of the buffer on the
video display.

Puts the system in the input mode.

Input operations :

Enter new program lines in the following format:

Label

Tab to 8 by pressing

Opcode

Tab to 16.

Operand

Tab to 24

Comments

Left justified, 1 to 6 alphanumeric
characters ending with a colon.
(Leave blank if no label is desired.)

-> key.

3 or 4 letter code from MCS-48 user's
manual.

Alphanumerics as given in MCS-48
user's manual. Numbers must be in
decimal.
Locations must be a 1 to 6 digit label
only.

If desired/ type a semicolon followed
by a short description of instruction
operation.

76

In general

Press ENTER to move to the next line.

After the last program line type END as an opcode.

The opcode ORIG may be used in the first line with a
decimal number as the operand to direct the
assembler to place the beginning of the program
at that address.

Input Commands ;

QUIT Resets the line pointer to zero and
returns to the executive routine.

FILE "(filename) Transfers files from the buffer to
disk storage and returns to the execu-
tive routine.

EDIT Transfers to the edit mode to allow
for program changes and corrections

.

Errors

There are a number of unlikely but possible errors which

can be made which would result in the system's dropping out

of program RUN and back to the BASIC mode. If this occurs,

in every case the word READY will appear as the last word

on the CRT. To return to that portion of the program which

was in operation, simply type RUN and press ENTER. Un-

fortunately all files in the system buffer will be lost and

must be reentered. For this reason it is wise to periodically

save portions of the new program as they are being written.

This is done by the command FILE (filename) . To continue

building on this program go to INPUT and continue writing.

77

Linking

Programs can be written by different authors or the same

author with the eventual aim of combining into one large

program for later assembly and execution. To combine two

programs they must first be written and FILEd on the disk.

Press the BREAK key and wait for the READY signal. Then

type APPEND (filename 1) TO (filename 2) , after which type

KILL "(filename 1)". To return to the executive again for

assembly type RUN. It will now be necessary to edit the

new program by deleting the END and EOF from the end of

the first subprogram.

Programming

Once the assembly of the user's 8748 program is completed

with no errors detected, the programmer program will be auto-

matically loaded. The following program modes are available:

STOP Exits the program to BASIC mode.

EDIT Returns system to editor/assembler,

RPROM Used to read an 8748 EPROM.

WPROM (filenameO) Writes a program entitled (file-
name +0) to an 8748 EPROM. (0,
for object code, must be appended
to the original filename.)

Full questions and commands are provided by the program

to prompt the user during the RPROM and WPROM modes

.

Ensure that the 8748 chip is not inserted or removed

from the socket except when so directed by the program.

78

Great caution must also be exercised to make certain the

chip is not inserted incorrectly as this could result in

severe damage to the 87 48.

Turn off sequence . (Can be followed any time except when
disk drive light is on or programmer has 8748 in the
socket.

)

1. Remove diskette from disk drive.

2. Turn off disk drive.

3. Turn off programmer.

4. Turn off keyboard/computer.

5. Turn off CRT and interface.

6. Turn off master power switch on power bus.

NOTE: The power transformers (2) in the interface unit

are not affected by any power switches on the TRS-80 com-

ponents . For this reason the master power to the plugs

must be turned off or the transformers will continue to

operate.

79

APPENDIX F

Printer Program - "EDTASM"

1 ' THIS PROG PUTS THE 3SRIAL PRINTER DRIVER
INTO MEM LOCATIONS FE00 - FF5F

2 ' ECB: +0 => ECB TYPE PRINTER STARTS G 4025
1 => IRIVER AIER LSB
2 => rRIVER AEIR MSB
3 => LINES/PAGE
4 => LINE COUNTER

3 POKE 16421, 2:P0SE 16422, 0:POKE 16423,255
4 FOR I = TO 95
5 X=-256 +1

6 REAL Y

7 POKE X,Y
8 NEXT I

s run"master"
10 ENI
11 LATA 229,197,245,56,72,255,254,1,40
12 LATA 32,62,1,50,72,255,211,232,219,233
13 LATA 230,248,246,4,50,71,255,211,234
14 DATA 219,233,230,7,33,63,255,6,0,79,9
15 LATA 126,211,233,241,193,225,219,234
16 DATA 203,119,40,250,121,211,235,254
17 DATA 13,32,4,195,80,255,00,201,34,63
18 DATA 85,102,119,170,204,238,0,0
19 DATA 0,0,0,0,0,0,0,229,33,255,68,43
20 DATA 124,181,194,84,255,225,14,10,195,45,255

80

APPENDIX G

Editor Program - "MASTER"

1 '****"master"****
2 ' executive routine
3 CLEAR 10000
4 DEFINT E-Q
5 lEESTR W,X,y,Z
6 EIM X(1000),W(1000)
7 CLS
8 PRINT TAE(15) "8748 ELITOR/ASSEMBLER ON LINE
9 print""
10 J=0
11 y="go"
12 line input "enter moie selection— " jy
13 IF Y = '"LPTl" GOTO 67
14 IF Y="INPUT" GOTO 53
15 IF Y="EDIT" GOTO 27
16 IF LEFT$(Y,32="GET" GOTO 83
17 IF Y<>"PRINT ' GOTO 19
18 GOSUB 119 :GOTO 11
19 IF LEFT$(Y,3)<>"A3M'" GOTO 24
20 Z=Mir$(Y, 5,^10)
21 open"o",i, 'store"
22 print#1,z: close
23 RUN"ASSEMSLE"
24 PRINT "ILLEGAL ENTRY-TRY AGAIN"
25 GOTO 11
26 ' EDIT ROUTINE
27 PRINT "EIIT"
28 M = l

29 PRINT X(M)
30 LINE INPUT '";Z
31 IF Z<>"UP" GOTO 34
32 IF M=0 GOTO 29
33 M=M-1: GOTO 29
34 IF Z<>"EN" GOTO 36
35 M=M+1: GOTO 29
36 IF Z="EEL" goto 113
37 IF Z = "lN5'" GOTO 104
38 IF LEFT$(Z,4)="FILE" GOTO 72
39 IF Z<>"INFUT" goto 41
40 J=J+1:G0T0 53
41 IF Z="ELIT" goto 30
42 IF Z<>"PRINT" goto 44
43 GOSUB 119 :G0T0 27
44 IF LEFT$(Z,1)="l" goto 91
45 IF LEFTi(Z,l)="c" GOTO 126
46 IF Z<>"T0F" goto 48

81

47 M=0: GOTO 2S
48 IF Z<>"E0F" goto 50
49 M=J: GOTO 29
50 PRINT "ILLEGAL ENTRY-TRY AGAIN*'

51 GOTO 29
52 ' INPUT ROUTINE
53 PRINT "input"
54 FOR I=J TO 10ei3

55 LINE INPUT "";X(I)
56 IF X(I) = "9UIT ' GOTO 10
57 IF X(I)<>'EIIT" GOTO 59
58 X(I)="£0F" : GOTO 27
59 IF LEFT$(X(I),4)<>"FILE" GOTO 62
60 Y=MID$(X(I),6,10): J=I
61 X(I)="E0F":G0T0 76
62 J=I
63 NEXT I

64 PRINT "YOU HAVE USEL ALL 8748 MEMORY
65 ENL
66 ' LFTl ROUTINE
67 FOR 0=0 TO J

68 LPRINT X(0)
69 NEXT
70 GOTO 11
71 ' FILE ROUTINE
72 Y=Mir$(Z,6,10)
73 IF LEN^(Y)<>e GOTO 76
74 PRINT 'FILENAME REQUIREEl"
75 GOTO 27
76 OPEN"o'",1,Y
77 PRINT#1,J
78 FOR K=0 TO J

79 PRINT#1,X(K)
80 NEXT K: CLOSE
81 GOTO 11
82 ' GET ROUTINE
83 Z=Mir$^(Y,5,10)
84 OPEN"!' ,1,Z
85 INPUT#1,J
86 FOR K=0 TO J

87 LINE INPUT#1,X(K)
88 NEXT K: CLOSE
89 GOTO 11
90 ' LOCATE ROUTINE
91 FOR K=4 TO 16
92 IF MID$(Z,K,1)<>"/'" GOTO 100
93 N=K-4
94 XL=MIE$(Z,4,N)
95 FOR M=0 TO J

96 L=INSTR(X{M) ,XL)
97 IF L<>0 GOTO 29
98 NEXT M

99 PRINT"STRING NOT LOCATED": GOTO 29
100 NEXT K

82

101 print"eight hant eelineator not found
102 GOTO 29
103 ' INSERT ROUTINE
104 FOR L=M TO J+1
105 W(M)="0"
106 W(L+1)=X(L)
107 X(L)=W(L)
108 NEXT
109 J=J+1
110 LINE INPUT

"' ;X(M)
111 GOTO 29
112 ' DELETE ROUTINE
113 FOR L=M TO J

114 X(L)=X(L+1)
115 NEXT L
116 J=J-1
117 GOTO 29
118 ' PRINT ROUTINE
n9 FOR K=e TO J

120 PRINT '^(K)

121 NEXT K

122 RETURN
123 ENE
124 ' TOF ROUTINE
125 M=0
126 GOTO 29
127 ' CHANGE ROUTINE
128 FOR 5=4 TO 16
129 IF MID${Z,K,1)<>'V GOTO 148
130 N=5-4
131 X0=MIE^(Z,4,N)
132 P=K+1
133 FOR 0=P TO 35
134 IF MIE$(Z, 0,1)0"/" GOTO 145
135 Q=0-P
136 L=INSTR(X(r:),X0)
137 IF L=0 GOTO 151
138 H2=L+N
139 L=L-1
140 X1=MIE$(X(M),1,L)
141 X2=MID$(Z,P,Q)
142 X3=MIE$(X(M),H2,50)
143 X(M)=X1+X2+X3
144 GOTO 29
145 NEXT
146 PRINT"LAST EELINEATOR NOT FOUNE"
147 GOTO 29
148 NEXT K
149 PRINT "SECONL EELINEATOR NOT FOUNE"
150 GOTO 29
151 print"ole string not FOUNE"
152 GOTO 29

83

APPENDIX H

Assembler Program - "ASSEMBLE"

1 '**«*"assemble"'^***
2

' assembly routine
3 CLEAR 10000
4 LSEINT H-P
5 EEFSTR A,U,V,W,X,Y,Z,T
6 DIM D(100) ,HX$(100) ,X(100)
7 EIM U(100)^V(100),Y(120) ,Z(ie0)
8 open"i",i, store"
9 input#1,,y : close
10 CPEN"I ',1,Y
11 INPUT#1,J
12 FOR 1=0 TO J-1
13 LINE INPUT#1,X(I}.
14 IF INSTR(X(I),":)=0 SOTO 17

15 E=INSTR(X(I) ,":")

16 V(I)=Mir$(X(I),l,(B-l))
17 NEXT I :CLOSE
18 IF INSTR(8,X{0) ,"ORIG")=e SOTO 20
19 W(0)=Mir$(X(0) ,17,4) :r(0)=VAL(W(0))-l
20 FOR K=0 TO J-1
21 T=X(K):IF INSTR (T ,

"
;

")=0 GOTO 23
22 H = INSTR(T,";*"j:T=Mir$(T,l,H)
23 IF INSTR(8,T, J")<>0 GOTO 91
24 IF INSTR(S,T,"#'*)<>0 GOTO 91
25 IF INSTR(S,T."CALL")<>0 GOTO 91
26 BK=1
27 IF INSTR(e,T,"ENr")<>0 GOTO 31
23 E(K+1)=E(K)^BK : E=r(K) : GOSUB 93
29 HX$(5)=A(3)+A(2)+A(1)
30 PRINT K+1;TAB(6) HX$ (K) ; TAB (12) X(K)
31 NEXT K
32 PRINT"FIRST PASS COMPLETEL"
33 FOR L=0 TO J-1
34 T=X(L):IF INSTR,(X(L)

,"
;
")=0 GOTO 36

35 H=INSTR(X(L) ,";'
) :T=MIE$ (X(L) ,1,H)

36 IF INSTR(S,T,"CLR")<>0 GOTO 201
37 IF INSTR(S,T,"mOV ")<>0 GOTO 316
38 IF INSTR(S,T,"IN)<>0 GOTO 253
39 IF INSTR(e,T,"ORL")<>0 GOTO 378
40 IF INSTR18,T,"0UTL ')<>0 GOTO 405
41 IF INSTR(8,T,"Arr ")<>0 GOTO 119
42 IF INSTR(e,T,"RST")<>0 GOTO 415
43 IF IMSTR(8,T," RL")<>0 GOTO 420
44 IF INSTR(8,T,"RR")<>0 GOTO 426
45 IF INSTR(8,T,"XCH")<)0 GOTO 446
46 IF INSTP(8,T/'LJNZ")<>0 GOTO 232

84

47
46
49
50

51
52
53
54
55
56
57
53
KQ

60
61
62
63
64
65
66'

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
62
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

IF
IF
IF
IF
IF

INSTR
INSTR
INSTR
INSTR
INSTR
INSTR
INSTR
INSTR
INSTR
INSTR
INSTR
INSTR
INSTR

Z(L)="00
IF INSTR
Z(L)="57
IF INSTR
IF INSTR
Z(L)="65
IF INSTR
Z(L)= 47
IF INSTR

INSTR
INSTR
INSTR
INSTR

__ INSTR
Z(L)="08
IF INSTR
IF INSTR
IF INSTR
IF INSTR
GOTO 125
NSXT L

PRINT"AS3
PRINT ERS
IF ERS=0
print"lin
FOR 1=0 T
IF LEN(U(
print (I+
NEXT I

GOTO 473
ENI
IF INSTR(
BfC=2 : GO
I1=FIX(S/
F(1)=E-(1
I2=FIX(I1
F(2)=Il-(
I3=FIX(I2
F(3)=I2-(
FOR N=l T
IF F(N)=

JC ")<>0 GOTO 279
JF").<>0 goto 262
JMP ')<>0 goto 239
JN")<>0 goto 296
CPL")<>0 goto 210
MOVE")<>0 goto 357
MOVP")<>0 GOTO 365
MOVX")<>0 GOTO 370
JB")<>0 GOTO 271
ALLC")<>0 GOTO 118
JT'")<>0 goto 307
JZ ")<>0 GOTO 314
NOP'")=0 GOTO 61
140

DA ")=0 GOTO 63
TO 140
DEC')<>0 GOTO 219
STOP ")=0 OR IN3TR(13,T,"TCNT")=0 GOTO 66
140

SWAP ")=0 OR INSTR(13,T,'" a'")=0 GOTO 68
140
INC")<>0 GOTO 259
SEL ")<>0 GOTO 432
ANL")<>0 goto 149
CALL")<>0 GOTO 133
5TRT ")<>0 GOTO 441
INS ")=0 GOTO 75
TO 140
EN")<>0 GOTO 244
XRL ')<>0 GOTO 458
EIS")<>0 GOTO 227
ORIG")<>0 GOTO 60

EMBLY COMPLETEr
;" ERRORS"
GOTO 473
E ERROR'"

J

I))=0 GOTO 88
1);TAB(9) U(I)

(6 .T,

(8 'T.;;

(6 •T...

(8 »T/.
(8
(6
(6 ,T,

(8 »T/.:

(8 »T,
(8 »T'..

(8 'T.

(8 .T..
(8 ,T,

• •

:(}0T0

.(8 ,T,"
: GO

(8 »T,;;

is ,T,"
•.GOTO

(8,T,"
' :GOTO
(a ,T,

(8 'T/
(8 » J-

(3 ,T,

(8 .T,"

IS ,T/'
: GO

(8

(8 'T»..

(8 ,T,

(8 ,T,"

8,T,"JMPP)<>0 GOTO 26
TO 27
16)
6*11)
/16)
16*12)
/le)
16-13)

3
THEN A(N) =

"0'"

85

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

A(N
A(N
A(N
A(N
A(N
A(N
A(N
A(N
A(N
A{
A(

A(
A(

A(
A{

)= 1

) = "2

) = "3

) = "4

) = "5

) = "6

) = "7

) = "8

) = "9

"8"
ft _ M

N) =

N) =

N) =

N) =

N) =

N) =

"a
"b
"c
"r
"e
"f

)

F(N)=1 THEN
F(N)=2 THEN
F(N)=3 THEN
F(N)=4 THEN
F(N)=5 THEN
F(N)=6 THEN
F(N)=7 THEN
F(N)=8 THEN
F(N)=9 THEN
F{N)=10 THEN
F(N)=11 THEN
F(N)=12 THEN
F(N)=13 THEN
F(N)=14 THEN
F(N)=15 THEN

NEXT N : RETURN
'—FOR "ADD" S. "ANL"—
Q=l : GOTO 120
Q=0
B=INSTR(8,T/\
IF B=0 GOTO 125
IF INSTR(B,T,",R")
IF INSTR(B,T,'\g")
IF INSTR(B,T," ,#").

EHS=ERS+1 ; U(L)='
V=Mir$(T,(B+2),3)
E=VAL(W)
IF E<256 GOTO 131
ERS=ERS+1
U(L)="rATA EXCEEDS
IF Q=0 THEN Y(L)="
GOTO 138
W=MID$(T,(B+2),1)
IF VAL(W)<8 GOTO 1

ERS=ERS+1
a(L)="REGISTER 3IZ
IF Q=0 THEN E=104
GO SUB 93
Z(L)=A(2)+A,(1)
IF Y(L)<> THEN
GOTO 80
END
W=VIID$(T,(B + 3),1)
IF VAL(W)<2 GOTO 1

ERS=ER3+1
u(l)="r exceeds l"
IF Q=0 THEN E=96+V
GOTO 138 : END
IF INSTR(8,T,"A,
B=INSTR(8,T/'j^")
IF INSTR{B,T, ,R")
W=MID$(T,(B+2) ,1)
IF E>7 GOTO 135
E=a8+E : GOTO 138

<>0 GOTO 133
<>0 GOTO 143
<>0 GOTO 126
SYNTAX error" : GOTO 30

BYTE SIZE' :GOTO 80
03'" ELSE Y(L) = "l9"

37

E EXCEEDS 7":G0T0 60
+VAL(W) ELSE E=120+VAL(V)

PRINT Y(L)+Z(L) else PRINT Z(L)

47

:G0T0 80
AL(W) else E=112+VAL(W)

)=0 GOTO 163

=e GOTO 155
: E=VALCAf)

86

155 IF INSTR(B,T,",(?'")=0 GOTO 159
156 W=MIi;$(T, (B+3),l)
157 IF VAL(W)>1 GOTO 145
158 S=80+VAL(W) : GOTO 138
159 IF INSTR(B,T,",#")=0 GOTO 164
160 W=MID$(T,(B+2),3) : E=VAL(W)
161 IF E>255 GOTO 129
162 Y(L)="53" : GOTO 138
163 E=INSTR(8,T/'")
164 IF INSTR(8.T, BUS,")=0 GOTO 168
155 W=Mir$(T,(B+2) ,3) : E=VAL{W)
166 IF E>255 GOTO 129
167 Y{L)="98" : GOTO 138
168 IF INSTR(8,T,"P")=0 GOTO 125
169 IF INSTR(8,T,"#")=0 GOTO 178
170 W=Mir$(T, (B-1) ,1)
171 IF VAL(W)<3 ANB VAL(W)>0 GOTO 174
172 ^FS=ERS+1
173 u(l)="INCORRECT PORT #":GOTO 30
174 E=152+VAL(W) : GOSUB 93
175 Y(L)=A(2)+A(1)
176 W=MII)$(T,(B+2),3) : E=VAL(W)
177 IF E>255 GOTO 129 ELSE GOTO 138
178 IF INSTR(8,T,"aNLD")=0 OR INSTR (8 ,T ,

"
, a'")=0 GOTO 125

179 W=MIB$(T,(E-1) ,1) : E=VAL(W)-4
180 IF E<0 OR E>3 GOTO 172
181 E=156+E : GOTO 138
182 '--"call"—
183 GOSUB 189
184 C=VAL(A(3))*2-^1
185 Y(L)=STR$(C)+"4"
186 Y(L)=RIGHT$(Y(L),2)
187 GOTO 140
188 '—AEIRESS SUBROUTINE—
189 IF INSTR(16,T,";")=0 GOTO 191
190 B=INSTR(18,T, '

'"

) : W=MIE$ (T , 17 , (B-17)) :GOTO 192
191 W=Mir$(T.17,3)
192 FOR M=0 TO J-1
193 IF W=V(M) GOTO 197
194 NEXT M

195 ERS=ERS+1
196 U(L)="LABEL-"+W+"-N0T FOUNT" : GOTO 80
197 E=E(M) : GCSUB 93
198 Z(L)=A(2)+A(1)
199 RETURN
200 '—"CLR"—
201 IF INSTR(13,T/'a")=0 GOTO 203
202 Z(L)="27" : GOTO 140
203 IF INSTR(13,T,'"C")=0 GOTO 205
204 Z{L)="57" : GOTO 140
205 IF INSTR(13,T,"F1")=0 GOTO 207
206 Z(L)="A5' : GOTO 140
207 IF INSTR(13,T/'F0") = GOTO 125
208 Z(L)="65" : GOTO 140

87

209 ' "CPL"
210 IF INSTR.(13,T,"a")=0 GOTO 212
211 Z(L)="3?' : GOTO 140
212 U INSTR(13,T,"C")=0 GOTO 214
213 Z(L)="A7'" : GOTO 140
214 IF INSTH(;i3,T,"F0")=0 GOTO 216
215 Z(L)="95' : GOTO 140
216 IF INSTR(13,T,"Fl")=0 GOTO 125
217 Z{L) = "B5'" : GOTO 140
218 '—lEC—
219 IF INSTR(13,T/* a'*)=0 GOTO 221
220 Z(L)="07" : GOTO JL40
221 IF INSTR(13,T/" R ")=0 GOTO 125
222 B=INSTR(13,T,"r")
223 W=MIE^(T,(B+1),1) : E=VAL(W)
224 IF E>7 GOTO 135
225 E=E+200 : GOTO 138
226 '—LIS—
227 IF INSTR(13,T," l")=0 GOTO 229
228 Z(L)="l5" : GOTO 140
229 IF INSTR(;13,T."TCNTI")=0 GOTO 125
230 Z(L)="35' : GOTO 140
231 '—rJNZ—
232 3=IN3TR(13,T,",")
233 W=MII$(T,(E-1) ,1) : E=VAL(W)
234 IF E>7 GOTO 135
235 E=E+232 : GOSUB 93
236 Y(L)=A(2)+A{1)
237 W=Mir$(T,(B + l) ,8)
238 FOR M=0 TO J-1
239 IF W=V(M) GOTO 242
240 NEXT M

241 GOTO 195
242 E=E{M):GOSUB 93 : Z (L)=A (2)+A (1) : GOTO 140
243 '— EN—
244 IF IN3TR(;13,T,"TCNTI")=0 GOTO 246
245 Z(L)="25' : GOTO 140
246 IF INSTR(13,T/' I")=0 GOTO 248
247 Z(L)="05" : GOTO 140
248 IF INSTR(13,T,"CLK")=0 GOTO 250
249 Z(L)="75" : GOTO 140
250 IF IN3TR(8,T,"ENE")=0 GOTO 125
251 GOTO 81
252 '— IN—
253 IF INSTR{13,T."A,P")=0 GOTO 125
254 B=INSTR(13,T, P")
255 W=MID$(T,{B+1),1) : E=VAL(W)
256 IF E>2 GOTO 172
257 E=S+6 : GOTO 138
258 '— INC—
259 IF INSTR(13,T,"a'")=0 GOTO 261
260 Z(L)="17' : GOTO 140
261 B=INSTR(13,T,"r")
262 IF INSTR(13,T," R")=0 GOTO 266

88

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

W=Mir$(T,(B+l),l) : E=VAL(W)
IF E>7 GOTO 135
E=E+24 : GOTO 138
IF INSTR(13,T,"GR")=0 goto 125
W=MIE$(T,{B+1),1)
E=VAL(W) : IF E>1 GOTO 145
E=E+16 : GOTO 138
'—JB—
B=INSTR(8,T,"b")
W=MID$(T,(B+l).l) : S=VAL(W)
IF E<8 GOTO 275
ERS=ERS+1 : U{L)="BIT >

7"

E=18+(E*32) : GOSUB 93
Y(L)=A(2)+A(1)
tOSUB 189 GOTO 140
'—JC—
Y(L)="F6"
GOSUB 189:G0T0 140
'—JF—
IF INSTR(8.T/'JF0
Y{L)="B6"
GOSUB 189:G0T0 140

)=0 GOTO 285

')=0 GOTO 125

)=0

)=0

GOTO

GOTO

291

125

IF INSTR(8,T,"JF1
Y(L)="76'
GOSUB 189:G0T0 140
'—JMP—
IF INSTR(8,T/'JMPP
Z(L)="B3' :G0T0 140
IF INSTR(8.T,"JMP
GOSUB 189
E=VAL(A(3))*2:G0SUB 93
Y(L)=A(1)+"4":G0T0 140
'—JN—
IF INSTR(S,T,"JNC ")=0

Y(L)="E6":G0SUB 189
IF INSTR(;8,T,"JNI

"

Y(L) = "S6' :G0SUB 189
IF INSTR(e,T,"jNT0"
Y(L) = "26'":G0SUB 189
IF INSTR(8,T,"JNT1"
Y(L) = "46*":G0SUB 189
IF INSTR(8,T,"JMZ "

Y(L)="96' :G0SUB 189
'—JT—
IF INSTR(8,T,"JTF ")=0 GOTO 309
Y(L)="l6' :GOSUB 189:G0T0 140
IF INSTR(8,T,"JT0 ")=0 GOTO 311
Y(L)="36":G0SUB 189:G0T0 140
IF INSTR(8,T,"JT1 ")=0 GOTO 125
Y(L)="56":G0SUB 189:G0T0 140
'—jZ
Y(L)="C6":G0SUB 189:G0T0 140
'—MOV-
IE U'STR(13,T,"r")=0 goto 342

GOTO 298
GOTO 140
=0 GOTO 300
GOTO 140
=0 GOTO 302
GOTO 140
=0 GOTO 304
GOTO 140
=0 GOTO 125
GOTO 140

89

317 B=INSTR(13,T,"r")
318 W=Mir$(T,(B+l) .1) :E=ViL(W)
319 IF INSTR(13,T, 'A,R")=0 GOTO 322
320 IF E>7 GOTO 135
321 S=E+248:G0T0 138
322 IF INSTR(13,T,"A,(?R")=0 GOTO 325
323 IF E>1 GOTO 146 -

324 E=E+240:GCTO 138
325 IF INSTR(13,T,",A")<>0 ANE INSTR(13 ,T

,

"QR")<>0 GOTO 329
326 IF INSTR(13,T,",A")=0 GOTO 331
327 IF E>7 GOTO 135
328 E=E+16e:G0T0 138
329 IF E>1 GOTO 146
330 E=E+160:GOTO 138
331 IF INSTR(13,T/*,#")=0 GOTO 125
332 IF INSTR(13,T/'OR")=0 GOTO 340
333 IF E>1 GOTO 146
334 E=E+176
335 GOSUB 93
336 Y(L)=A(2)+A(1)
337 W=Mir$(T,(B+4) ,3) :E=V/IL(W)
338 IF E>255 GOTO 129
339 GOTO 138
340 IF E>7 GOTO 135
341 E=E+184:G0T0 335
342 -IF INSTR(l3,T."A,#")=e GOTO 348
343 3=INSTR(13,T,",")
344 r(L)="23"
345 W=MIL$(T,(B+2),3) : S=VAL(*)
346 IF E>255 GOTO 129
347 GOTO 138
348 IF INSTR(13,T,"A,PS¥")=0 GOTO 350
349 Z(L)="C7":G0T0 140
350 IF INSTR(13,T,"A,T")=0 GOTO 352
351 Z(L) = "42'":G0T0 140
352 IF INSTR.(13,T,"PSW,A")=0 GOTO 354
353 Z(L)="r7'
354 IF INSTR(13,T,"T,A")=0 GOTO 125
355 Z{L)="62':G0T0 140
356 '--riovr—
357 B=INSTR(13,T,"P")
358 W=MIE$(T,(B+1) ,1) :E=VAL(W)-4
359 IF E<0 OR E>3 GOTO 172
360 IF IN'STR(13,T,"A,P")=0 GOTO 362
361 E=12+E:G0T0 138
362 IF INSTR(13,T/\a")=0 GOTO 125
363 E=E+60:GOTO 138
364 '—MOVP—
365 IF INSTR(8,T,"mOVP ")=0 GOTO 367
366 Z(L)="A3":G0T0 140
367 IF INSTR(;8,T,"mOVP3")=0 GOTO 125
368 Z(L)="E3' :G0T0 140
369 '—MOVX—
370 B=INSTR(13,T/'r")

90

371 W=Mir$(T,(B+l) ,1) :S=VAL(W)
372 IF E>1 GOTO 145
373 IF INSTR(13,T/'A,(?R")=0 GOTO 375
374 E=128+E:G0T0 138
375 IF INSTR(13.T,*\a")=0 GOTO 125
376 E=144-t-E:G0T0 138
377 '—ORL—
378 B=INSTR(13,T," ,")

379 IF INSTR(13,T.",#")=0 GOTO 3S2
380 W=MIL$(T,(B+2),3) :E=VAL(W)
381 IF E>255 GOTO 129
382 GOSUB 93
383 Z{L)=A(2)+A{1)
384 IF INSTR(13,T,"A,")=0 GOTO 386
385 Y(L)="43":G0T0 140
386 IF INSTR(13,T,"BUS/")=0 GOTO 388
387 Y(L)="88":G0T0 140
388 IF INSTR(13,T," P")=0 GOTO 125
389 W=Mir$(T,(B-l),l):E=VAL(W)
390 IF E<1 OR E>2 GOTO 172
391 E=E+136:G0SUB 93:Y (L)=A (2) +A (1) :GOTC 140
392 IF INSTR(8,T,"CRLr ")=0 GOTO 396
393 W=MID$(T,(B-1) ,1) :E=VAL(W)-4
394 IF E<0 OR E>3 GOTO 172
395 S=S+140:GOSUB 93 :Y (L) =A (2) +A (1) :GOTO 140
396 IF INSTR(13,T,"A,R")=0 GOTO 400
397 W=Mir$(T.(B+2) ,1) :E=VAL(W)
398 IF E>7 GOTO 135
399 E=E+72 : GOTO 136
400 IF INSTR(13,T,"A,0R")=0 GOTO 125
401 W=Mir$(T,(E+3) ,1) :S=VAL(W)
402 IF EM GOTO 145
403 E=E+64 : GOTO 138
404 '—OUTL

—

405 IF INSTR(13,T,"BUS,A")=0 GOTO 407
406 Z{L) = "02' :GOTO 140
407 IF INSTR(13,T/',a")=0 GOTO 125
408 IF IN3TR(13,T,"P0,A")<>0 GOTO 413
409 B=INSTR(13,T,",")
410 W=Mir$(T,(B-l),l):F=VAL{W)
411 IF £>2 OR E<1 GOTO 172
412 E=E+56:G0T0 138
413 Z{L)="90* :GOTO 140
414 '— RET—
415 IF IN3TR(8,T/*RSTR") = GOTO 417
416 Z(L)="93' :GOTO 140
417 IF INSTR{8,T,"RET")=0 GOTO 125
418 Z(L)="e3":G0T0 140
419 '—RL—
420 IF INSTR(13,T." A")=0 GOTO 125
421 IF IN3TR(8,T, *RLC ")=0 GOTO 423
422 Z(L)="F7' :GOTO 140
423 IF INSTR(8.T,"RL "

)=<Z> GOTO 125
424 Z(L)="E7":G0T0 140

91

425 '—RR—
426 IF INSTR(12,T/' A")=0 GOTO 125
427 IF INSTR(8,T, RRC'*)=0 GOTO 42S
42S Z(L) = "'67' :GOTO 140
429 IF INSTR(8,T,"RE ")=0 GOTO 125
430 Z(L)="77":G0T0 140
431 '—SEL—
432 IF INSTR(12,T/>B0'")=0 GOTO 434
433 Z(L)="E5":G0T0 140
434 IF INSTR(12,T,"MBi'")=0 GOTO 436
435 Z(L)="F5":G0T0 140
436 IF IN3TR(12,T,"RB0'")=0 GOTO 438
437 Z(L)="C5' :G0T0 140
438 IF INSTR(12,T,"RB1'")=0 GOTO 125
439 Z{L)="E5":G0T0 140
440 '—STRT—
441 IF INSTR(13,T,"CNT")=0 GOTO 443
442 Z{L)="45":G0T0 140
443 IF INSTR{13,T," T")=0 GOTO 125
444 Z(L)="55":G0T0 140
445 '—XCH

—

446 B=INSTR(12,T/'r'")
447 W=KIE$(T,(B+1) ,1) :E=VAL(W)
448 IF INSTR(S,T,"XCHr ")=0 OR IN3TR (12 , T

,

"A , OR") =0 GOTO 451
449 IF E>1 GOTO 145
450 S=E+48:G0TC 138
451 IF INSTR(12,T,"A,R")=0 GOTO 454
452 IF E>7 GOTO 135
453 E=E+40:GOTO 138
454 IF INSTR(12,t/'a,GR")=0 GOTO 125
455 IF E>1 GOTO 145
456 E=E+32:G0T0 138
457 '—XRL—
458 B=INSTR(12,T,"r")
459 *'=MII)$(T, (B+1) ,1) :£=VAL('«)
460 IF INSTR(12,T,"A,R")=0 GOTO 463
461 IF E>7 GOTO 135
462 E=E+216:G0T0 138
463 IF INSTR(12,T,"a,GR")=0 GOTO 466
464 IF E>1 GOTO 145
465 E=E+208:GOTO 138
466 IF INSTR(12,T."A,#")=0 GOTO 125
467 B=INSTR(12,T, #'")

468 W=MII$(T,(B+1),3):E=VAL(W)
469 IF E>255 GOTO 129
470 Y(L)="r3":G0T0 138
471 END
472 '—LINE |>RINT LISTING—
473 LPRINT " :LPRINT "ASSEMBLY OF " +

"'
'*

; y;
" '" + " COMPLETED"

474 LPRINT
""

475 LPRINT "LINE"-*-" "+'"HSX" +
'"

" + "cOEE" +
'"

" + "LABEL" +
"

"+"opcole"+" "+"operane"+" "^"comments"
476 for N=0 to J-1
477 LPRINT N + i;TAE(6) KX$ (N) ; TAB (12) Y(N) + Z (N) ;TAB(19) X(N)

92

478 IF LEN(U(N))<>0 LPEINT U(N)
479 NEXT N

480 LPRINT
481 LPRINT "SYMBOL TABLE:"
482 LPRINT
483 FOR M=0 TO J

484 IF LEN(V(M))<>0 LPRINT V(M);" "+HX$(M)
485 NEXT M

486 IF ERSO0 GOTO 490
487 LPRINT

""

488 LPRINT TAB(30) ">>> NO ASSEMBLY ERRORS EETECTZE <<<'

489 GOTO 492
490 LPRINT "":LPRINT ERS

;

" ERRORS LETECTEE"
491 RUN"MASTER"
492 Y=Y-t-"0"

493 OPEN "0",1,Y
494 FOR M=0 TO J

495 IF LEN(Y(M))=0 GOTO 497
496 PRINT #1,Y(M)
497 PRINT#1,Z(M)
498 NEXT M
499 CLOSE
500 RUN "program"

93

APPENDIX I

Programming Program - "PROGR?^"

1 '***«PROGRAM****
2 ' EPROM ROUTINE
3 CLEAR 10000
4 lEFINT A,I,J,K,M,N,0,Q,P
5 DEFSTR W,X,Y,Z
6 LIM r(1024) ,T(1024:) ,X(1024)
7 C =

8 LINE INPUT "ENTER PROGRAM M0IE--";Y
9 IF Y="STOP" ENE
10 IF Y="ELIT" RUN"ErTASM"
11 IF Y="RPR0M" goto 90
12 IF LEFT$(Y,5) = "'«/PR0M" GOTO 16
13 PRINT "illegal GOMMANE-TRY AGAIN"
14 GOTO 8
15 ' WPROM ROUTINE
16 Z=MID$(Y,7,11)
17 IF RIGHTi(Z.l)="0" GOTO 22
18 PRINT "object COLE ONLY! ALD TO FILE NAME
19 GOTO S
20 OPEN "r",l,Z
21 FOR 1=0 TO 1024
22 INPUT #1,X(I)

23 IF EOF(l) THEN 25
24 NEXT I

25 CLOSE : J=I
26 GOSUB 65
27 GOSUB 148
28 OUT 4,4
29 OUT 4,20
30 FOR M=l TO Q
31 CUT 2,N1
32 OUT 4,21
33 OUT 1,11
34 OUT 4,81
35 OUT 1,D(M)
36 OUT 4,209
37 OUT 4,221
38 GOSUE 58
39 OUT 4,209
40 OUT 4,81
41 OUT 4,84
42 OUT 4,116
43 T{M)=INP(3)
44 OUT 4,20
45 11=11+1
46 IF 110256 OR Il^>512 OR I1076S GOTO 48

94

47
46
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
S0
91
92
93
94
95
96
97
98
99
100

W(l)=Mir$(X(S),2,l)

N1=N1+1
I? r(M2=T(M) GOTO 51
PRINT 'programming ERROR-ERASE EPROM ANT TRY AGAIN'
GOTO 53
NEXT M

PRINT"PR0GRAMMING COMPLETE! SATISFACTORILY"
OUT 4,36
PRINT "REMOVE EPROM NOW-THEN TURN POWER OFF"
GOTO 8
ENL
' 50 MSEC lELAY
A=A + 1

'LELAY
IF A<2 GOTO 58
A=0
RETURN
END
' HEX TO LEG CONVERSION
FOR K=0 TO J
W(0)=LEFT$(X(5),1)
FOR N=0 TO 1

IF W(N)="e" A(N)=0
IF W(N)="l" A(N)=1
IF W(N)="2" A(N)=2
IF W(N)="3" A(N)=3
IF W(N)="4" A(N)=4
IF W(N)="5" A(N)=5
IF W(N)="6" A(N)=6
IF W(N)="7" A(N)=7
IF W(N)="6" A(N)=6
IF W(N)="9" A(N)=9
IF W(N)='"a'" A(N)=10
IF V(N)="b" A(N)=11
IF W(N)="C'" A(N)=12
IF W(N)="r" A(N)=13
IF W(N)="e" A(N)=14
IF W(N)="F" A(N)=15
IF LEN(W(N))=0 A(N)=0
next N

L{K)=16*A(0)+A(1)
NEXT K

RETURN
' REAL PROM ROUTINE
GOSUB 148
OUT
OUT
FOR
OUT
OUT
OUT
OUT
OUT
OUT

4,4
4,20
M=l TO
2,N1
4,21
l.U
4,85
4,84
4,116

(Q*l)

T{M)=INP(3)

95

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
13S
139
140
%X(
%X(
%X(
141
142
143
144
145
146
147
148
149
150
151

IF
IF
IF
IF
IF
IF
IF
IF

IF
IF
IF
IF
IF
IF
IF

OUT 4,84
OUT 4,20
11=11+1
IF IK256 GOTO 107
11=11-256
N1=N1+1
NEXT M
OUT 4,36
FOR N=l TO Q+1
E=T (N

)

N1=FIX{E/16)
F(1)=E-(16*N1)
N2=FIX(N1/16)
F(2)=N1-(16*N2)
N3=FIX(N2/16)
F(3)=N2-(16*N3)
FOR P=l TO 2

IF F(F)=0 THEN W(P)="0"
F(P)=1 THEN '*(P) = "l"
F{P)=2 THEN W(P)="2"
F(P)=3 TEEN W(P)="3"
F(P)=4 THEN W(P)="4"
F(P)=5 THEN W(P)="5"
F(P)=6 THEN W(P)="6"
F(P)=7 TEEN W(P)="7"
F(P)=8 THEN W(P)="3
F(P)=9 THEN W(P)="9"
F(P)=10 THEN W(P)="A
F(P)=11 THEN W(P)="E
F(P)=12 THEN W(P)="C
F(P)=13 TEEN W(P)="E
F(P)=14 THEN W(P)="E
F(P)=15 THEN ¥(P)="F

NEXT P

X(N)=W(2)+W(1)
NEXT N

GOSUB 139
GOTO 53
0=1
PRINT I^;TAB(6) X(0)+" "+X(0+1)+" "+X(0+2)+" "+X(0+3)+'
0+4) + " +X{0 + 5)+" "+X(0 + e)+" '+X(0+7) + " '+X(C+8) +

"

0+9) + " "+X{O+10) + " " + X(C + 11)+" "+X(0 + 12)+'" " + X(0 + 13) +
"

0+14)+" "+X(0+15)
0=0+16
IF 0>0+1 GOTO 144
IX=IX+16 : GOTO 140
PRINT
RETURN
ENL
' SETUP ROUTINE
N1 =

PRINT "START
INPUT U
IF IK1024 GOTO 15;

AELRESS IN lECIMAL?

96

152 PRINT "illegal ALLRESS" : GOTO 149
153 PRINT "ENI AIERESS IN EECIMAL?"
154 INPUT 12 : Q=I2-I1
155 IX=I1
156 IF Il>255 GOSOB 172
157 IF Q<0 GOTO 152
158 IF I2<1024 GOTO 160
159 PRINT "ILLEGAL ALLRESS" : GOTO 153
160 LINE INPUT "EPROM SOCKET E[^PTY?(YES OR NO); ";X3
161 IF X3="nc" goto 160
162 LINE INPUT "IS SOCKET POWER SrflTCH ON? (YES OR NO): ";X4
163 IF X4="no" goto 164 ELSE GOTO 165
164 PRINT "TURN POWER ON" : GOTO 162
165 OUT 4,36
166 IF LEFT$(Y,5}/>"WPR0M" GOTO 169
167 PRINT: PRINT 'FOLLOWING IS HEX CODE TO BE PRCGRAMMMSI:

"

168 GOSUB 139
169 LINE INPUT "INSERT 8748 CHIP AND TYPE-GO: ";X5
170 IF X5<>"G0" GOTO 169
171 RETURN
172 IF Il>511 GOTO 174
173 Nl=l: 11=11-256: RETURN
174 IF Il>737 GOTO 176
175 Nl=2: 11=11-512: RETURN
176 Nl=3: 11=11-768
177 RETURN

97

APPENDIX J

Sample Assembler Printout

ASSEMBLY CF 'LOUIS' COMPLETED

LINE HEX COEE LA3SL CFG OLE operant: COMMENTS
1 00 ORn 00
2 000 0405 JMF START ;PO'VER UP
3 002 00 NOP
4 003 0428 JMP INT JINTEHRUPT
5 005 £844 START: MOV R0.#68
6 007 B97r MOV Rl #127
7 009 EA0r MOV R2 #13
8 00B £B0A MOV R3.#10
9 001 20 NOP
le 00E £0 NOP
11 00F 00 .MOP

12 010 23 ei MOV A, #01
13 012 3A OUTL P2,A ;hi-z on is'
14 013 00 NOP
15 014 23 FF MOV A #255
16 016 39 C'UTL PI -A ;SNABLES ?1
17 017 00 NO?
16 015 61 MOVX A C='R1 ; BUS TO :u-z
19 019 00 NOP
22 01A 75 SNT0 r% J -r

; MAKES T0 A C!.OCK
21 01B 05 EN I

22 01C 00 NOP
23 01L 00 NOP
24 01E 00 NOP
25 01? 00 NOP
26 020 00 LOOP: NOP
27 021 F6 MOV A.R0
28 022 39 OUTL PI A ;E^JABLE 8212
29 023 0420 JMP LOOP ;loop
30 025 vi'0 NOP
31 026 00 NOP
32 027 00 NOP
33 028 2366 INT: MOV A f?102 ; INTERRUPT
34 02 A 39 OUTL PI .A ;ST0P TRS-60
35 02B 08 INS A. BUS ; I N pu r

36 02C 59 ANL A. Rl ;7 bits?
37 021 Ik XRL A,R2 ;gheg5
38 02E 00 NOP
39 02? 00 NOP
40 050 9642 JNZ STOP ; END if no cr
41 032 0^ UNTIL: NOP
42 033 8632 JNI UNTIL ;loo? til eoc---

• 1

43 035 00 NO?
44 036 £0 NOP
45 037 MOV A. #51

98

46 ^39 39 OUTL PI. A iriSABLE 3212
47 03

A

It hOV A,R3
48 03B 02 CUTL BUS .A ; OA 0:^ 3U3
49 03C 23ie MGV A.#£0
50 03S 3A OUTL P2 A ; 92 LC'//

51 03F 2311 MOV A #17
52 041 3A OUTL P2 A IZM STfiOBZ
53 042 £1 STOP: MOvX A GRl ?BJS TO dl-Z
54 043 00 BACK: NOP
55 044 8643 JNI BACK ;L00? TIL E0C=1
56 046 00 WAIT: NOP
57 047 564B JTl REALY ;JUMP TO 04A
58 049 0446 JMP WAIT ;L00P
59 04B 93 READY: RETR ; RETURN
60 ENE

SYMBOL TABLE:

START-—005
LOOP— -020
INT 028
UNTIL-~032
STOP 042
BACfC-—043
WAIT 046
READY 34B

>>> NO ASSEMBLY SnRORS LETECTED < <<

99

LIST OF REFERENCES

1. Intel Corporation, MCS-48 Microcomputer User's Manual ,

1978.

2. Radio Shack, TRS-80 RS-232-C Interface, TRS-80 Micro-
computer System / 1978.

3. Radio Shack, Level II BASIC Reference Manual, TRS-80
Microcomputer System , 1978.

4. Radio Shack, TRSDOS and Disk BASIC Reference Manual ,

TRS-80 Microcomputer System , 1979.

5. Radio Shack, TRSDOS Version 2.2 and Disk BASIC Version
2.2 , May 1979.

6. Intel Corporation, MCS-48 and UPI-41 Assembly Language
Manual , 1978.

7. Intel Corporation, Memory Design Handbook , 1977.

8. Radio Shack, TRS-80 Microcomputer Technical Reference
Handbook, 1978.

100

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2

Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 62 2

Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

4. Professor R. Panholzer, Code 62Pz 2

Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

5. Associate Professor M. L. Cotton, Code 62Co 1

Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93940

6. LCDR Theodore C. Seward, Jr., USN 1
203 Ridgewood Street
Mankato, Minnesota 56001

101

'^ Z 6

Thesis"^^"l86582
SI4I925 Seward
c.l A microprocessor

development system for
the Intel 87^8 micro-
computer.

C
J ^ ^ JUL 60 25926

Thesis 1 86582
SU1925 Seward
c.l A microprocessor

development system for

the Intel 87^8 micro-
computer.

thesS41925

A microprocessor development system for

3 2768 001 11981 1

DUDLEY KNOX LIBRARY

