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ABSTRACT

A survey ol cxperime atally determined values for the laminar

burning velocity of premixcd, laminar hydrocarbon -air and

hydrogcn-oxygen-nltrogen flames shows considerable scatter between

results obtained by different investigators. Within the limits of

experimental reproducibility of burning velocities, it is possible to

correlate measured burning velocities on the assun^ption that a

single rate -controlling or globed reaction exists. Correlation of

experimental data by use of a global reaction has been made on the

basis of two simplified relations for the laminar burning velocity.

The first relation was obtained by the use of an intuitive

argument based on the idea that the laminar burning velocity is

proportional to the square root of a second order reaction rate, with

the rate -controlling reaction step depending on the first power of

the initial fuel and oxygen concentrations. For lean ir^ixturea the

global activation energy was found to have a value of about

22 Kcals/mole, and for rich mixtures it has a value of roughly

56 Kcals/naole.

The second expression for the calculation of laminar burning

velocity is based on a theoretical equation derived by Semenov for a

thermal mechanism controlling flame propagation in rich hydro-

carbon-air mixtures. Application of this relation leads to the

conclusion that a global reaction with an activation energy of

87 Kcals/mole correlates rich hydrocarbon-air burning velocities,

well within the limiits of reproducibility of experimental data.





A study of the effect of the concentration of N. in the oxidizing

anixture shows an apparent dependence of the global activation energy

on the amount of diluent gas. This observation suggests that although

good correlation of experimental data has been obtained, by using

the concept of a global activation energy, the results are not of

fundamental significance but should be regarded simply as useful

empirical methods for correlating experimental data. It is possible

that additional theoretical work will lead to a Tnodified expression

for the laminar burning velocity, which not o'-ly pernaits correlation

of experinnental data, but also yields a global activation energy which

is independent of the concentration of inert diluents.
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SYMBOLS

3

b oscygen concentration* molecules /czn

a fuel concentration, molecules /cm"

3

rOr>

c mean specific heat, T^ to T^, cal/(g)(**K)

c molar heat capacity at constant pressure, cal/(mole)("K)

D diffusion coefficient, cm /sec

£ activation energy, Kcai/mole

Np total number of moles of fuel

Njq total nximber of moles of nitrogen

N^ total nun-.ber of moles of oxygen

n /n moles of reactants per moles of products from stoichio-
^ metric equation

P steric factor

p total pressure

R molar gas constant

r stoichiometric molar fuel to oxygen ratio

T absolute tennperature, °K

Su flame velocity, cm/sec

Z collision nixmber

a mole fraction of oxygen in oxygen-nitrogen mixture

X thermal conductivity

p density of mixture

^ equivalence ratio, fraction of stoichiometric fuel-
oxygen ratio

Subscripts:

o,i initial condition

c condition at flame temperature

eff effective mean reactant concentration
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I. INTRODUCTION

During the last few years a large number of articles describing

experimental measurements of laminar burning velocity have been

published. Theoretical studies have appeared which range in com*

plexity and scope from obviously oversinaplified physical pictures to

very detailed theoretical studies carried out by J. O. Hirschfelder and

his collaborators. ^ '* ^ ' Although the essential features of the analyti-

cal problem are now well understood* and are described with great

clarity in a paper by von Karmian and Millan, ^ ' the relation of simpli-

fied theories to the published experimental data has not been exaniined

in great detail. Thus HirscMelder and his collaborators have shown

that theoretv.cal calculations lead to excellent agreement with experi-

mientally determined laminar burning velocities provided the detailed

reaction kinetics is understood, as in the ozone flamie, ' which was

(Iv)
first studied by JLewis and von Elbe. * ' For hydrazine and nitric

oxide decomposition flames, results are obtained by making intelligent

guesses about the nature of the rate -controlling reaction step. '

However, for the most important class of premixed laminar flames*

i.e. , hydrocarbon-air flames, the detailed theories of flame propaga-

tion cannot be used because the chemistry of the reaction processes is

not understood quantitatively. In fact, it appears unlikely that a

molecular theory of flame propagation for hydrocarbon-air flames can

be developed in the foreseeable future.

In the absence of detailed kinetics data it is only reasonable to

follow the suggestion of von Karman to attempt an empirical correlation
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of burning velocity data for hydrocarbon-air flames on the assunription

that a global reaction exists. It is the purpose of this paper to

demonstrate that the concept of a global reaction in hydrocarbon-air

flames leads to useful correlations provided lean and rich mixtures

are treated separately.
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U. LINEAR BURNING VELOCITY AND ACTIVATION ENEKGY FOR
THE GLOBAL REACTION ASSUMING A SECOND-ORDER RATE-
CONTROLLING REACTION STEP PROPORTIONAL TO THE
FIRST POWER OF THE INITIAL FUEL AND OXYGEN
CONCENTRATIONS

(i - v)
Theories of laminar flame propagation^ ' generally lead to the

result that the linear burning velocity* Su, Is proportional to the square

root of the specific reaction rate constant for the rate -controlling

reaction step, evaluated at the adlabatlc flarne temperature T . Vs e

shall designate the quantity E appearing In the ternn exp (-E/ZRT ) as

the activation energy for the global reaction. Experimental studies of

the effect of pressure, p, on laminar burning velocity have shown

(vll)

either a v;eak dependence^ ' for Su on p or else suggest, particularly

for hydrocarbon -air flame8« that Su Is Independent of pressure.

The latter results are well-known to be consistent with the Idea that

the rate -controlling reaction step Is of the second order. For the sake

of simplicity, and in the absence of quantitative Information to the

contrary, we shall assuine that the rate -controlling reaction step Is a

second order reaction between fuel, F, and oxygen, O^* with the re-

action rate detern^lned by the Initial concentrations of reactants.

Quantitative relations for Su show that It Is a function of co-

efficients such as an effective thermal conductivity, an effective diffu-

sion coefficient, an average heat capacity, etc. However, It Is to be

expected that these quantities may be treated. In first approximation,

as constants Independent of T , for a given fuel-oxldlzer system, as

the m,ixtare ratio is changed. Hence we postulate the following func-

tional form for the lannlnar burning velocity
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+ (N^)]
j
^/2 X CKp ( - E/2RT^) (1)

where the parameter c' is independent of T « and (N^), (N^ ), and
c . u^

(N^ ) denote, respectively, the total number of moles of fuel, oxygen,
2

and nitrogen initially present in the combustible gases. In general we

expect c* to be different for different reactive gases.

Let

r = [(Njp)/(N )
I

I- ^ ^2 -» stoichiometric (2)

represent the stoichiometric molar fuel to oxygen ratio. The equiva-

lence ratio, <j> • is then defined by the relation

^u [(Ny.)/(N^ )]/r, (3)
'2

i.e., ^ represents the actual molar fuel to oxygen ratio divided by the

corresponding stoichiometric ratio. We also introduce a parameter a

through the expression

a.(No)/[(M )MN )J. (4)
2 •- ^2

From Eq. (3) it follows that

(Nj,) » r (N^ ) 4>

whence

(N^)>/2(N^^)'/2.(N02)r 1/^1/2

and £q. (l) becomes
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Sa = c<, ^/^T^ /(N3 )/ [(N^ ) + (Nj^ ) + (Nj,)]i exp (-E/2RT^) (5)
* M £t mm J

1/2
where c = c'r ' . Replacing (N^) by r(NQ ) <j) and (Nj^ ) by

(I - o)/a (N^ ), Eq. (5) becomes
^2

Su = c«i>
*/^ T^ [a/(l + ar4>)] exp (-E/2RT^). (6)

For fixed values of a (i. e. , for air) it is apparent from Eq. (6) that

the activation energy for the global reaction is determined by the

relation

E=-2R ^In [Su(l + ar<J.)/«t)*/^ T^ ]/ ^(1/T^) (6a)

where a has the numerical value 0.21 for air. If a is not held

constant then £q. (6a) should be replaced by the expression

Ea - 2H a ln[su(l +ar<j,)/a<;^/^ T^ ] / J (I/T^). (6b)

Application of Eq. (6a) to hydrocarbon-air mixtures will be

described in the following Section IIA. The use of Eq. (6b) for lean or

stoichiortietric hydrogen-oxygcn-nitrogen mixtures is described in

Section 115.

HA. GLOBAL. REACTIONS IN HYDROCARBON-AIR MIXTURES

The attempt at correlating observed laminar burning velocities

through a global reaction is greatly complicated by the lack of agree-

ment between laminar burning velocities determined by different

Investigators and by the use of different experimental techniques.

This last remark is amplified by reference to Figs. 1 to 4 in which

laminar burning velocities Su, determined by different investigators,
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are shown as a function of volume per cent of methane* propane,

ethylene* and acetylene, respectively. The volume per cent of fuel,

Vp is related to the parameters a, r, and 4> through the expression

Vp » 100 ar<t>/ (I + ar<}>). (7)

The adiabatic flame teinperature, T , was calculated as a

function of i^ for a = 0. 21 for various fuel to air rrxixtures by using

standard procedures, which are, however, rather laborious to utilize. '

The results of these calculations are plotted according to £q, (6a) in

Figs. 5 to 13 for methane, ethane, propane, pentane, ethylene,

acetylene, propyne, 2, 2, 4-trimethyl pentane and benzene, respectively.

Reference to the data given in Figs. 5 to 13 shows extensive scatter of

the type which is to be expected on the basis of the discrepancies

between the experimental data plotted in Figs. 1 to 4. Activation

energies for the global reaction obtained for different fuels are listed

in Table I. It is perhaps noteworthy that, in general, different acti*

vation energies seem to be required for rich and lean mixtures and

that greatly different activation energies are obtained by different

investigators are employed (see, for example, the acetylene"air data

plotted in Fig. 10, which yield activation energies between 33 and

80 Kcals/mole for rich mixtures depending on the source of the data).

In view of the scatter of the experimentally determined burning

velocities it is not unreasonable to atternpt a universal correlation for

all hydrocarbon-air mixtures. The desired plot may be constructed

References referred to on the graphs are listed on reference sheet.





c
by a

- 7 -

by shifting the calculated values of In Sa (1 + aT^)/c^ ' T

UT^ed amount for each fueJ -air system.' The resulting data are 3ho%vn

in Figs. 14 and 15 for lean and for rich hydrocarbon-air mixtures,

respectively. Reference to Figs, 14 and 15 shows that at least for

rich mixtures, witliin the limits of repro'ducibility of burning velo-

cities, it is pos&ible to correlate raeasured burning velocities on the

assumption that a global chemical reaction exists. For lean mixtures

the global activation energy has a value of roughly 22 Kcals/mole,

whereas for rich mixtures the global activation energy is about

56 Kcals/mole.

UB. THE GLOBAL REACTION IM RICH OR STOICmOMETRIC
HYDROGSN-OXYGEN-MITROGEN IvlIXTURES

Burning velocities for hydrogen-oxygen-nitrogen mixtures,

listed by Sachsse and Bartholome, ' have been used in connection -with

Eq, (6b) to estimate the activation energy for the global reaction. The

resulting data are plotted in Fig. 16 and load to a value of

6. 5 Kcals/mole for E in rich m^ixtures. It is perhaps noteworthy

that the experimental data for the stoichiom.etric niixtare ratios do

not fall close to the "best" curve drawn through the rich mixture data.
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m. ACTIVATION ENERGIES FOR THE GLOBAL REACTION IN
RICH HYDROCARBON-AIR FLAxMES, OBTAINED FROM THE
SEMENOV EQUATION

An approximate theoretical equation for laminar burning velocity,

based on a thermal mechanism of energy transfer, has been given by

Semenov. 'For a bimolecular reaction between fuel molecules and

(xi)
oxygen molecules, the equation miay be written in the form. ^ '

x(n/np)2(3T^VE) eKp (-r/KT^) j
'^^

(8)

vyhere, for stoichiometric or fuel-rich mixtures (<{) Z. 1), a -andb ,,

a.„ . a„TyT /l - lA [l - Rt//e(T^_- T„)]

are to be computed from the relations

^eff

(9)

b ,- a b T /T [rT ^ /E(T - T )]eff oo'cL c'^c o'J

The quantities a ,., b £., and b are defined as the effective mean

reactive fuel concentration, the effective mean reactive oriygen concen-

tration, and the initial oxygen concentration, respectively

.

In the first approximation we may write

Su = constant x [t/ a^^b^^cxp (-E/RT^)/a^(T^-T^) ]
^/^'

(10)

From the relations in Eq. (9) we get:

a ..b ..A s (T /TJ^b RT Ve(T -T )eii ell o ^ oC o c c o'

(9a)

X (|l . l/<i>[l -RT//E(T^-Tjji

Since RT /e(T -T ) is approximately equal 0.1, Eq. (9a) becomes

Sff^eff/^o - ^T/b^(1.0.9/<|,)/E(T^-Tj (gb)
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Substituting Eq, (9b) into Eq. (10) leads to the relation

Su a constant x rT^^T^^Rb^(l - 0. 9/9) eJcp(-E/RT^)/£(T^-T^)^]
i/2

(10a)

Hence, for a given combustible mixture and fixed initial tempera-

1/2

tare, T^.

Su a constant

3y definition

7 ^1 1/2
T/b^(l-0.9/(j>)cxp(-E/RT^)/T^.T^)^J (10b)

^0= [%/<^V ^% ^ X^lo <^t)o

where (C^ ) is the total concentration. For any fixed pressure and
*o

temperature, (Crp) is a constant and hence Eq. (10b) may be written

Su = constant x f Tj,/(T^-Tj] (l -0.9/4>)^'^

[Nq A^V + ^O + ^N )J

^^^ cxp(-E/2RT^). (10c)

Utilizing Eqs. (3) and (4) developed in Section Il» we get

N^ /(Nj, + N + N^ ) = a/(l + ar<^)

whence

Su a constant x f T^/(T^-T^)1 (1 - 0. 9/4>)^'^^ [o/(l + art^))]
^^^

cxp (-E/2RT^). (lOd)

For fixed values of a it is apparent from Eq. (lOd) that the acti-

vation energy for the global reaction is determined by the relation

E = -2R J In [Sa(l + ar4>)^/2(T^-TyT^(l - 0. 9/4>)^/^] / ^(1/T^) (U)

If o is not held constant, then £q. (11) should be replaced by the

expression

E a -2R^ln[su(l•far<^)^/^T^.T^)/T^a*/^l-0.9/4>)^/^]/^{l/T^)

(11a)

Application of Eq. (11) to hydrocarbon-air mixtures will be

discussed in the following section.
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IIIA. THE GLOBAL REACTIONS IN RICH HYDROCARBON-AIR
h/:IXTURES, USING THE SEMENOV ECUATION

Equation (11) was used for the detertrination of E by utilizing

the satre data that were ennployed in Section IIA. The results are

plotted in Figs. 17 through 23 for triethane, ethane, propane, pen-

tane , ethylene, acetylene, and benzene, and the resulting activation

energies are listed in Table 11. In order to find a global activation

energy which is applicable to all rich hydrocarbon-air mixtures, the

same technique was used as has been described in Section II. These

results are plotted in Fig. 24 and give an activation energy of

87 Kcal/mole

.

The correlation with the experimental data appears to be quite

good but the activation energy is inore than half again as large as

the 56 Kcal/n:iole which was obtained using the concept of a second-

order rate-controlling reaction step proportional to the first power

of the initial fuel and oxygen concentrations.

On the basis of the available data it appears justified to con-

clude that almost any expression for Su containing the factor

cxp(-E/2RT ) will permit empirical fitting of burning velocities for

rich hydrocarbon-air flam^es

.
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IV. GLOBAL REACTIONS IN HYDROCAR3QN-OXYGEN-NITROGEN
FLAMES (a iff 0.21)

Burning velocities for propane -and ethylene -oxygen -nitrogen

mixtures, for various values of a , have been obtained by Dugger

(xi)
and Graab. * ' These investigators noted that the effect of o on

burning velocity was predicted, within approximately 5 to 15 per cent,

by simplified semi-empirical equations based either on a thermal or

on an active particle diffusion mechanism for energy transfer in

laminar flame propagation. However, neither theory was found to be

in accord with an observed linear relation to Su and a.

It Is of obvious interest to redetermine the global activation

energies for hydrocarbon flames in which air has been replaced by

various mixtures of oxygen and nitrogen. The desired correlation can

be obtained by utilizing either Eq. (6b) or Eq. (11a). The results of

these calculations are sunnmarlzed In the following paragraphs IVA

and IVB. They show considerably lower global activation energies

than were obtained for combustible mixtures utilizing air as oxidizer.

This result suggests that the relation used In Section II, as well as the

Semcnov equation employed In Section III, do not represent a fortunate

functional form for the laminar burning velocity. However, It Is

possible that additional theoretical studies of laminar flame propaga-

tion controlled by second-order reaction steps will ultimately yield a

relation that fits rich hydrocarbon flames with a global activation

Dugger and Graab speak only of a llnesr relation between the maxi-
nnum value of Su (for a fixed a) and a. However, it is easily shown
that the experimental data are In accord with the idea that Su is a
linear function of a for fixed values of (|>. Representative data are
shown in Figs. ?.5 to 28.
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energy, which is Independent of the amount of inert gas added to the

combustible mixture.

IVA. GLOBAL, ACTIVATION ENERGY FOR a y^ 0. 21, CALCULATED
FROM EQUATION (6b)

The experimental data of Dugger and Graab have been used in

conjunction with Eq, (6b) to obtain global activation energies. The

results are plotted in Figs, 29 and 30, respectively, for propane and

ethylene mixtures with oxygen and nitrogen.

Reference to Figs. 29 and 30 shows that E is appreciably less

than 56 Kcals/mole, which was obtained from the universal correlation,

shown in Fig. 15. It is possible that this result has been produced,

in part, by the fact that the data of Figs. 29 and 30 are restricted to

maximum burning velocities for fixed comipositions and hence to nearly

stoichiometric mixtures. Nevertheless the discrepancies are so large

as to suggest that Eq. (6) was not the most fortunate for correlating

burning velocity data.

IVB. GLOBAL ACTIVATION ENERGY FOR a 4 0.21, CALCULATED
FROM THE SEMENOV EQUATION (11)

The satne data which were used in the construction of Figs. 29

and 30 have been used also, in connection with Eq. (li), to obtain

Figs. 31 and 32. Comparison of the global activation energies deter-

mined from Figs. 31 and 32 with the universal correlation shown in

Fig. 24, again leads to the conclusion that the apparent global activa-

tion energy is a sensitive function of a. Hence the remarks concerning

Eq. (6) made in paragraph IVA also apply to the Semenov equation.
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Table I. Apparent Activation Energies for the Global Reaction in

Various Hydrocarbon-Air Flames Assuming a Second-

Order Rate -Controlling F%.eaction Step Proportional to

the First Power of the Initial Fuel and Oxygen Concen-

trations .

Figure Hydrocarbon £ for Rich Mixtures E for L>ean
(Kcal/mole) Mixturec

(Kcal/mole)

5 Methane 44, 108 32

6 Ethane - 10

7 Propane 56, 74 0.6

8 Pentane - 16

9 Ethylene 54 9

10 Acetylene 33, 50, 80 -

11 Propyne - 18

12 2,2,4 Trimethyl Pentane 34 -

13 Benzene 58 -

14 Rich 56 -

15 L.ean » 22





- 17 -

Table II. Apparent Activation Energies for the Global Reaction

in Various Rich Hydrocarbon-Air Flanics using the

Semenov Eqviation.

Figure Hydrocarbon £
(Kcal/mole)

17 Methane 100

18 Ethane 75

19 Propane 91

20 Pentane 60

21 Ethylene 74. 30

22 Acetylene 53. 90. 117

23 Benzene 175

24 Summary 87
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Figure 4. Burning Velocities of Acetylene -Air Mixtures as a Function of

Mixture Ratio ( p = i atmos., Tj = room temperature )
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Figure 7. Plot of ln[ioosu(i+aA0)/0'^^Tc] vs ioVTc For

Propane -Air Flames (p=i atmos., Tj = room
TEMPERATURE )
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Figure 10. Plot of ln[ioosu(i+a/i0)/0'^^Tc] vs ioVtc For

Acetylene- Air Flames. (p = i atmos., Tj = room
temperature
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Figure 11. Plot of ln[ioosu(i+aA0)/0'^2Tc] vs ioVtc

For Propyne- Air Flames. (p= i atmos., Tj =

Room temperature, data from ref. i8)
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Figure 24. Summary Plot of Rich Hydrocarbon - Air Flames.

(p = l ATMOS., T| = room TEMPERATURE)
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