

ass**"

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
AN INTERACTIVE ENVIRONMENT FOR

THE DEVELOPMENT OF
AN EXPERT SYSTEM IN ZOG

by

Dempsey Butler, III
June 1984

Thesis Advisor: Bruce J. MacLennan

Approved for public release; distribution unlimited

T221539

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

An Interactive Environment for the
Development of an Expert System in

ZOG

5. TYPE OF REPORT ft PERIOD COVERED
Master ' s Thesis
June 1984
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORS

Dempsey Butler, III

8. CONTRACT OR GRANT NUMBERf*,)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93943

10. PROGRAM ELEMENT. PROJECT, TASK
AREA ft WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND A.DORESS
Naval Postgraduate School
Monterey, California 93943

12. REPORT DATE

June 1984
'3. NUMBER OF PAGES

14. MONITORING AGENCY NAME ft AODRESSf// different trom Controlling Otllca) 15. SECURITY CLASS, (of this report)

UNCLASSIFIED
15«. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

'7. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, It different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If neceeaary and Identify by block number)

Expert System, Frame, Human-Computer Interface, 0PS7, Schema,
ZOG

20. ABSTRACT 'Continue on reverse aide It necessary and Identity by block number)

ZOG is a rapid-response, large-network, menu- select ion human-
computer interface implemented on the PERQ microcomputer. This
thesis develops a framework for and discusses issues relative to

implementing the 0PS7 expert system language as an interactive
programming environment in ZOG. It begins by tracing the history
of the ZOG system. The logical and physical aspects of ZOG's
frame structure are explained. A discussion of the expert system
language used in ZOG. 0PS7. is presented to acquaint (Continued)

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S N 0102- LF- 014- 660"
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE (Whan Dmtm Bnlmrm4)

ABSTRACT (Continued)

the reader with its character. The subnet schemas required to
run an 0PS7 style interpreter agent are developed and the user's
perspective of the agent is presented. Finally, recommendations
for future work in this area are made.

S' N 0)02- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS PAGEfWh»n Dmtm Snlmrmd)

Approved for public release; distribution unlimited

An Interactive Environment for
the Development of

an Expert System in ZOG

by

Dempsey Butler, III
Lieutenant, United States Navy

B.S. , United States Naval Academy, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1984

Mini cv KNOX LIBRARY /- I

MONTEREY.

ABSTEACT

ZOG is a rapid-response, large-network, menu-selection

human-computer interface implemented on the PERQ microcom-

puter. This thesis develops a framework for and discusses

issues relative to implementing the 0PS7 expert system

language as an interactive programming environment in ZOG.

It begins ty tracing the history of the ZOG system. The

logical and physical aspects of ZOG's frame structure are

explained. A discussion of the expert system language used

in ZOG, OPS7, is presented to acquaint the reader with its

character. The subnet schemas required to run an 0PS7 style

interpreter agent are developed and the user's perspective

of the agent is presented. Finally, recommendations for

future work in this area are made.

TABLE OF CONTENTS 'H 93343

I. ZCG BACKGROUND 9

A. INTRODUCTION 9

B. HISTORY OF THE ZOG PROJECT 9

C. AIRPLAN: AN EXPERT SYSTEM IN ZOG 11

II. INTRODUCTION 13

A. A PROGRAMMING ENVIRONMENT 13

B. THE ZOG ENVIRONMENT 14

III. ZCG FRAME STRUCTURE 16

A. THE LOGICAL VIEW 16

B. THE PHYSICAL VIEW 19

C. SUMMARY 20

IV. AN EXPERT SYSTEM LANGUAGE: OPS7 21

A. WORKING MEMORY ELEMENTS 21

B. RECOGNIZE AND ACT CYCLE 22

C. CONFLICT RESOLUTION 23

D. A SAMPLE PROGRAM 24

E. SUMMARY 26

V. FRAME SCHEMA DESIGNS 28

A. INTRODUCTION 28

B. THE USER SUBNETS 30

1. Type Declarations 32

2. P Rules 34

C. SYSTEM SUENETS 35

1. Global Subnet w . 36

2. Working Memory i . 37

3. Conflict Set 39

D. SUMMARY 40

VI. AN INTEEPBETEB 41

A. DESIGN NAIDEE 41

B. AGENT FEATUEES 42

C. IMPLEMENTATION ISSUES 45

1. Writing to POS files U6

2. Program Size 46

3. PEEQ Hardware Limitations 47

4- Benefits of OPS7 in ZOG 47

5. System Execution Time 48

D. SUMMABY 51

VII. CCNCLUSIONS ANI EECO MMENDATIONS 52

A. CONCLUSIONS 52

B. EECOMMENDATIONS 53

APPENDIX A: FEAME S1EUCTUEE SOUECE CODE 55

APPENDIX B: 0PS7 BNI SYNTAX 58

LIST OF EEFEEENCES 61

INITIAL EISTEIBUTION IIST 62

LIST OF TABLES

I. STANDARD GLOBAL PAD SET 29

LIST OF FIGURES

3.1 Frame Layout 17

5.1 0PS7 Environment Frame 30

5.2 Program Schema Frame 32

5-3 Type Schema Frame 33

5-4 Type Element Schema Frame 34

5.5 P Eule Condition Schema Frame 35

5.6 P Eule Action Schema Frame 36

5.7 GlobalNet Schema Frame 37

5.8 Working Memory Element Schema Frame 38

5.9 Conflict Set Schema Frame 39

I. ZOG BACK GEOON

D

A. ISTBODOCTION

Cne of the first things a prospective computer user

learns is that interaction with a machine is required if the

user expects to realize the potential power of the computer.

This interaction takes place via a human-computer interface.

Depending on the design of the interface, there are varying

degrees of usefulness which the user can achieve. It is

safe to say that the more familiar one is with the interface

the mere computer power one has available. Suppose that the

knowledge required tc become familiar with the interface was

embedded within the interface. If such an interface was

also simply structured and responded rapidly to commands, it

would allow the user to quickly understand the power of the

computer. ZOG is such an interface.

ZCG appears as a rapid-response, large-network, menu-

selection human- computer interface. [fief. 1 : p.1] The

basic data structure is a frame, which contains textual

information and selection information about the related

items. Tens of thousands of related frames exist in hier-

archical networks called ZOGNETS. Selections allow the

rapid traversal of ZCGNETS, the editing of frames, or the

execution of programs.

B. HISTCEI OP THE ZCG PROJECT

ZOG has its origin in 1972, when a group of cognitive

psychologists gathered at Carnegie-Mellon University to

investigate computer program simulations. 1 In particular,

this group was interested in devising a method of using

large scale simulations without prior knowledge of the

programs or of the operating systems on the computers which

ran the simulations. Three individuals (A. Newell, G.

Robertson, and D.M. Mccracken) developed a uniform interface

for these programs, but the first ZOG was short lived

because of the limitations in terminal technology; 300 baud

hardcopy was hardly rapid response.

In 1S75 Newell and Robertson served on a technical advi-

sory committee for a system called PROilIS (Problem Oriented

Medical Information System) implemented at the University of

Vermont Medical Schocl. PROMIS turned out to be remarkably

similar to ZOG and it utilized terminal technology which

provided a response en the order of .5 seconds.

This experience rekindled interest in ZOG, and in 1975

the Office of Naval Research (CNR) began support of a small

effort tc further develop ZOG into an interesting interface.

Several versions of ZOG exist on machines like the PBP10,

VAX/11-780, and on the PERQ microcomputer. While developing

ZOG on the minis, possible alternate implementations and

difficulties regarding hardware and operating system

constraints were explored. The desire to use the PERQ as

the ultimate target machine was influenced by the parallel

development of SPICE (scientific personal integrated

computing environment) on the PERQ at Carnegie-Mellon.

Planning included the use of some of the results of the

SPICE research in the ZOG implementation.

*Ihe historical information in this section is based on
- R. M. Akscyn. D. L. Mccracken. The ZOG Project, Computer
Science Department, Carnegie-Mellon University, 5 January

10

In 1980, Captain Richard Martin, USN, Commanding Officer

for the commissioning crew of the USS CARL VINSON, visited

the ZCG project. The Captain had previously decided to

incorporate computer science research to make CARL VINSON a

test bed for leading scientific technologies in the fleet.

After visiting many CNR research sites, he believed that ZOG

would meet his goals for creating an onboard testbed for

further research. Although the ZOG group had not envisioned

the application of ZCG in such a real-time, large scale

environment, the advantages of placing ONR sponsored

research into the fleet were too great to pass up.

The current ZOG-based management information system

onboard CARL VINSON has a data base distributed over 28 PERQ

computers. Applications cover four main areas: (1) an

on-line Ship's Organization and Regulations Manual (SORM)

;

(2) an interactive task management system which can use the

SORM to decide how tasks are to be performed; (3) a rule

based expert system tc aid Air Operations in the launch and

recovery of aircraft; (4) an on-line training manuals which

interact with videodisk display units; and (5) an electronic

nail system.

Because this thesis is involved with enhancing the

development environment for an expert system in ZOG, the

focus will be on the third item.

C. AIBPLAH: AH EXPEEI SYSTEM IN ZOG

The OSS CARL VINSON is an aircraft carrier and as such

spends a substantial amount of time in the launch and

recovery of aircraft. AIRPLAN is a rule-based expert system

used as a decision tool for air operations officers in the

launch and recovery evolution. The system is implemented in

OPS7, a rule-based language, with ZOG used as the human-

computer interface.

11

From the beginning, the development of AIRPLAN has been

incremental; a kernel of the expected system was put into

the operational environment, and the environment has and

continues to direct the direction of growth. In support of

this incremental strategy, the system allows queries about

its data base and its behavior. "This ability to ask the

system questions about its reasoning is useful for system

developers trying to track down Dugs, and for system users

to both gain confidence in the abilities of the system and

the correctness of its recommendations, and for eliciting

additional or more detailed information on which to base

decisions." [Eef. 2 : pp. 2-3]

12

II. INTRODUCTION

A. A PBCGBAMHING ESVIRONHENT

What is a programming environment? To answer this ques-

tion it is necessary to understand what is involved in the

process of writing a computer program. Initially some

problem specification must exist. With such a specifica-

tion, an algorithm which appears to satisfy it is found.

Given these two items, the algorithm must be translated into

source code, executed and debugged. The cycle of code

writing, execution and debugging continues until the human

programmer is convinced to some predetermined degree that

the program satisfies the problem specification. The task

of managing all associated files and programs falls upon the

programmer.

Experience shows that this process is composed of many

activities which are tedious, repetitive and detailed to the

point where errors are commonplace. Examples of areas which

create such problems include mastering a programming

language syntax for creating and editing programs, and

managing the compile/link/load process. It seems appro-

priate that the computer should be counted on to perform

these kinds of mechanical tasks, which it excels at, while

the programmer concentrates on cognitive ones. To this end,

the programmer should have sufficient tools available on the

computer to automate these activities [Ref. 4 : pp. 4-5].

In such an environment, creating and maintaining programs

can be the responsibility of a syntax-directed editor. The

process of compile/link/load can be reserved for final

production programs, since in the interactive environment an

interpreter is better suited for program development.

13

The above is just an example of what an interactive

programming environment can provide. For the purposes of

further discussion, the following definition of an interac-

tive programming environment will be adopted:

First- within a unified framework, they provide a large
set of tools, most of which are specific to a particular
programming language. Second, they take advantage of
the fact that programs have an underlying structure that
is mere than a string of characters. using this struc-
ture as an organizational tool. Third. they support
incremental program development, in both the design and
maintenance activities. Finally, they are highly inter-
active in nature, promoting and exploiting a fairly high
bandwidth of communication between the user and the
environment [Bef. 3].

B. TBE ZOG ENVIROHBEHT

The natural question which follows is, how does ZOG

measure up to this mere formal definition of an interactive

programming environment? The notion of a frame in a tree

structure satisfies the requirement of a unified framework.

In ZCG, the frame is used as a visual representation cf the

data base for the user to see and manipulate; at the same

time the frame is the structure used to store data in

memory. These two separate ideas work this way. In memory,

data is store in a complex PERQ PASCAL 2 record structure.

For the user, the notion of a window frame exists. When the

user requests to see data in memory, the data is unparsed

into different fields of the window and presented on the

screen.

2 PERQ PASCAL is an extension of PASCAL which, among
other features, supports high level string manipulation.
The copyright of this extension is held by Three Rivers
Computer Corporation, Pittsburgh, PA.

14

The second point cf using the underlying structure of a

language as an organizational tool is present if one

considers the language to be Pascal like. The inherent

structure of Pascal encourages hierarchical stepwise devel-

opment and modular design. ZOG develops its ZOGNETS is just

this way. The frame at the top of a subnet contains its

central theme. Options are created on this frame, and these

options link to other frames which further explain the

central theme. But this use of the underlying structure of

Pascal seems to end here. There is little evidence to show

that the developers of ZOG planned to support any particular

programming language from within the environment. The lack

cf any programming tocls, such as interpreters, compilers,

or syntax directed editors, makes this manifest.

The ability to support incremental program development

is one area where ZOG falls short. Currently it supports

development of Pascal programs by writing the programs as

text in frames and then running an agent (a program

executed from within ZOG which manipulates frames) which

strips the text off the frames and creates a text file out

in the nachine 1 s operating system. What is needed is a

method of executing parts of the program while still in the

environment; this is the focus of this thesis.

The bandwidth of communication which ZOG currently has

is highly interactive and user friendly. Users find that

movement around the subnets is intuitive and easily

mastered. Straight-forward system utilities exist for the

creation and modification of frames in the data base; time

on the system rapidly makes the user comfortable with these

utilities.

15

III. ZOG FRAME STROCTORE

Thus far, ZOG has been viewed from a logical perspec-

tive. This chapter will expound on this view and address

the physical implementation of the ZOG frame in Perq Pascal.

The intent is not to make the reader an expert in using ZOG,

manipulating ZOG frames, or generating code in this version

of Pascal. Rather it is hoped that the reader will gain a

respect for the power and complexity of this environment.

A. TBE LOGICAL VIEW

The logical view has been defined as the user's window

into ZOG. Understanding this view requires an understanding

of the tasic parts of a ZOG frame and how they are put

together.

The hierarchical arrangement of frames in ZOG is in the

form of a tree. This structure, called a net, has a root

frame (called the top frame), and branches, or connecting

frames. As implemented on the Perg Microcomputer, ZOG is

one large nat composed many subordinant nets, called

subnets. Inherent to the net are different levels of infor-

mation: the top frame of the net contains general informa-

tion and points to frames with more specific information.

This pattern continues until the most specific frames in

the net, the leaves, are reached. Tne point is that every

frame describing a particular aspect of the more general

subject has a place in the hierarchy of the tree that is

dictated by the logical structure of the subject matter

[fief . 5 : p. 11].

16

Every frame is divided into four component types called

items: the frameid (frame identification), frame title,

frame text, and selections (see figure 3.1). Selections,

which represent choices of what to Jo next, are of three

types: options, local pads, and global pads [Bef. 5 :

p.12].

THIS IS THE FRAME TITLE. IT GIVES FRAMEID
A CONCEPTUAL NOTION OF THE FRAME'S
CONTENTS.

THIS IS THE FRAME TEXT AREA. THE TEXT PROVIDES THE
CENTRAL IDEAS OF THE INFORMATION.
THE FOLLOWING OPTIONS LEAD TO ELABORATIONS
CN THE TEXT OF THIS FRAME.

1. THIS IS THE FIRST OPTION

2. THIS IS THE SECOND OPTION

L. THIS IS A LOCAL PAD. IT IS A CROSS REFERENCE
TO OTHER FRAMES.

X. ACTIONS (AGENTS) CAN BE EXECUTED HERE.

HERE ARE GLOBAL PADS. THEY ARE ENVIRONMENTAL TOOLS.

Figure 3.1 Frame Layout.

The frameid is the unique system label for every frame

in the ZOG net. It contains the subnet name and frame

number of that subnet. Frames in the same subnet have the

same frameid name.

The frame title is usually the text of the option which

points to it. It can be considered the conceptual link

between a frame and its parent. The text of the frame can

be anything the user wants.

17

Selections are used to point to other branches in a net.

The first type of selection is an option. It consists of a

selection character and text. Options are used to point to

frames that are logically more specific than the frame

containing the option.

The second type, the local pad, also consist of a selec-

tion character and text. While the difference between local

pads and options are negligible, local pads usually cross-

reference other frames rather than following a strictly

logical path.

The final type of selection is the global pad. These

are fcund across the bottom line of the frame and can be

utilized by typing the first letter (always lowercase) of

the desired pad. Glcbal pads provide more choices for the

user: more ways to move around nets, information atout the

frame's history, and utilities for tasks such as creating or

deleting frames.

One other part of a frame is the user display. Zog

communicates with the user on the last line of the frame,

directly above the global pads. The display helps the user

by suggesting what to do next, why a command from the user

was net accepted, or where or not the editor is currently

envoked [Eef. 5].

When frames in ZOG are created, they must originate from

some frame schema. A schema is the generic frame for a

subnet, and is created when a user elects to create a new

subnet. The user designs the frame with anything on it,

from options or text, to any number of local or global pads.

This frame will now exist in ZOG as the zero frame in the

subnet specified by the user. Subsequently, whenever

another frame is created in this subnet, the default frame

schema to be created will be the zero frame for the subnet.

The option exists to use another frame schema, if desired.

18

B. TBE PHYSICAL VIEW

In reality ZOG is simply a very large computer program

(over 70,000 lines of source code). The ZOG system is based

on the record structures provided by Pascal. A frame is a

record containing as many fields as there are parts to the

logical frame. Some of the parts are easily recognized,

such as the frame title, the text, and the options. Others

are less obvious, such as the frame owner (s), the frame

protection, and the action hidden behind global pads.

The field type declarations vary, depending of the

nature and quantity of information that the field hclds.

For example, the frame ID field is simply a string of no

more than 15 characters. The text field is more complex

because its data may be up to 21 lines of information

(double sized frames exists, and these could hold more

text). To handle this, its field in the frame record points

to another record, which points to a linear, doubly linked

list; each element of the list contains a line of text. The

source code for the frame structure can be found in appendix

A.

Just how is data stored into the ZOG database? By using

the utilities provided by the system, the user can create a

blank frame or a new subnet of frames into which data can be

stored. The ZOG editor (ZED) is used to insert information

into the various fields in the frame. Once the frame is

saved, ZOG parses tfce different fields of the display frame

(called the window frame) and stores the data into the phys-

ical record frame. The retrieval of data follows the

reverse path- After telling ZOG which frame you wish to

see, it finds the physical record and unparses its fields

into the window frame. It is interesting to note that the

retrieval of a specific frame over the Ethernet takes under

1.2 seconds. If the frame is located on the same machine as

the user, retrieval takes .5 seconds!

19

C. SOHHABY

From the perspective of an interactive programming envi-

ronment both the logical and physical views are important.

The logical view of the frame provides an intuitive under-

standing of stored data as well as a mechanism for input and

output for programs. The physical view provides the knowl-

edge base required to design a tool in the environment.

20

IV. AN EXPERT SYSTEM IANGOAGE: 0PS7

Because 0PS7 is the expert system currently used by ZOG,

a discussion of the language is appropriate. 0PS7 is a

member of the OPS family of production system languages

designed by Charles L. Forgy. Production systems represent

a model of computation egual in power to, but very different

in style from, procedural languages like Pascal, operator-

oriented languages like APL , and applicative languages such

as Lisp. This discussion will highlight the language's data

structure, basic control structure, and conflict resolution

scheme. Having this understanding will reveal the character-

istics which lend OPS7 to integration within ZOG. The BNF

{Backus-Naur Form) syntax for the language can be found in

appendix B. 3

A. DORKING MEMORY EIEHENTS

The only data structure used in 0PS7 is the working

memory element. It is similar in form and function to

Pascal's record structure. Fields in a working memory

element can hold scalar values, vectors, or sets. The

following is an example of a type declaration, a function

call 'MAKE,' used to create an instance of the type in

working memory, and a call to display a working memory

element. Comments in 0PS7 start with a semi-colon and

terminate at the end of the line.

(type task
kind = scalar status = set: 1 values = vector:

3

)

3 1he bulk of the information is this chapter comes from
references 5 and 6.

; This function creates an instance of
; type task in working memory.

(make task
kind = sort status = { on }

)

(vie 1)

values =[123]

Call to display Working Memory Element 1

What follows is the output.
(Assumes this instance of TASK is
working memory element 1.)

task
id* = 1

kind = sort
status = 1 on }
values = f 1 2 3]

Scalar types can be either integers or symbolic atoms.

Symbolic atcms may be any string of characters other than

integers or anything enclosed by double quotes. Floating

point operations are not implemented in 0PS7. Sets are

defined as unordered collections of non-repeating scalar

values. Curly braces delineate sets. Vectors are ordered

collections of scalar values which may repeat.

Cue must think of the working memory of an 0PS7 program

as the knowledge base about the state of a problem. It

contains instances of the declared types, which are created

by the MAKE function, altered by the MODIFY function, and

deleted by the REMOVE function. Working memory is

constantly changing. It is this change which causes the

expert system to transition from one state to another.

B. RECOGNIZE AHD ACT CYCLE

The hasic control structure of any production system is

the recognize and act cycle. On every cycle of the 0PS7

interpreter, an attempt is made to satisfy at least one left

hand side of a production rule with elements from the

working memory. This process defines a set of unique

instances in which left hand sides of productions may be

satisfied on each cycle. From here the conflict resolution

22

scheme must determine which instance from this conflict set

is suitable for firing. The following pseudo code for this

cycle is found in reference 5:

loop

RECOGNIZE:

determine the current set of instantiations;

if the set of instantiations is empty, then halt;

ACT:

select 1 instantiation and execute its right hand side

actions

repeat

C. CONFLICT RESOLOTICH

The purpose of the conflict resolution strategy is to

select the next rule to fire. Ideally the execution of

rules would be order independent so that such a strategy

would not be required. But in reality such a set of rules

rarely exists. Due to the nature of expert systems, the

conditions for different rules will be similar. And as the

working memory elements are created, modified, and deleted

rules have a tendency to fire sequentially although that may

not have been the original plan.

Seme strategy must exist to determine which instantia-

tion is to be selected from the conflict set if the set

contains more than one element. In 0PS7, conflict resolu-

tion is either special case first or mos t recent first. If

the set of conditions for a production rule P is a proper

subset of the conditions for production rule Q, then rule Q

will fire first. Rule Q is more specific than P because of

23

its additional conditions, hence the interpreter should

address the more detailed prior to the more general case.

If the working memory elements which satisfy the condi-

tions for production rules P and 2 differ only in that the

elements for P were created or modified more recently than

those for Q, then rule P will fire. Thus, expansion is

depth first in that once a path is followed, it will be

continued as far as it can go before branching out.

This strategy introduces order into a potentially

chaotic situation- Obviously, it is necessary if the

'expert 1 is to have any control over the system. Knowledge

of the mechanism at work allows programming of specific

tasks though the control flow may be subtle or possibly

convoluted.

D. A SAHE1E PBOGBAH

As with any language, learning its primitives and syntax

is the major hurdle to successful programming. But our

purpose is to determine the suitability of 0PS7 for integra-

tion into ZOG. To this end, a small sample program will be

reviewed. The particulars regarding items such as input and

output syntax are not important to this example. If the

reader has further interest in such matters, see [Ref. 7]-

24

This program asks the user to input numbers and, when

told to sort, will print out the numbers in ascending order.

To preserve simplicity no error checking is performed.

TYPE DECIARATIONS

(type cumber ; number schema
value = scalar)

(type task ; task schema
type = scalar)

PRODUCTION RULES

(p readin ; A rule called READIN

i (task type ->= sort ; Read as long as the input
) ; is anything but the word

; •sort'. NO ERROR CHECKING
;

, i l is a label.

—

>

(write "Input an Integer—>"

I / / * / l I Input message

(modify i type =
(index (accept) 1) ; Read value into task type

(make number value =
i:type) ; Make another INSTANCE of

; number using the same value)

A rule called SORT

Task is now sort
(as entered by user)

Find a number j which
is not = sort,

; (' j
f is a label)

- (number value -«= sort ; and there is NO value
; (including 'sort 1

)value < jrvalue ; which is smaller than j

) —

>

(write j: value
I / *] ; Print out the smallest value

(remove j) ; Remove this value from working memory)

INPUT DATA

(make task) ; Create an instance of task
; to start the system

(p sort •

(task type = sort)
t

j (number value -•= sort)
•

25

The order of entry is important in 0j?S7; type declara-

tions, rules, and then input data. Generally, the instances

created by the input data establish the working memory

elements required to start the system. The type declara-

tions are easy enough to understand. Two types are

declared, both of which hold scalar values. The INPUT DATA

makes an instance of type task and assigns its field type

the default scalar value of ' ?'. Placing this in working

memory causes the first p rule, READIN, to fire. READIN

assigns the input value to both number value and task type.

This rule will continue to fire until the work 'sort' is

typed and entered. Once this happens, p rule SORT will fire

because the task type = sort and there exists (at least one)

number value NOT equal to sort. The beauty of 0PS7 is seen

in this simple production: the interpreter has been

instructed to search working memory until it find a value

1 j 1 which is smaller than any other value (not equal to

•sort'). This smallest value is printed to the console and

removed from working memory. SORT continues to fire until

all number value instances, except value = sort, are removed

from working memory. At this point there are no working

memory elements which can satisfy the right hand sides of

any p rules, so the system halts. Essentially, this is a

program which will sort from one to many numbers (restricted

by memory size) using only one rule!

E. SUMMARY

This review shows that there is a structure in the

creation of an 0PS7 system which can be supported by a hier-

archical environment such as ZOG. Specifically, subnets in

ZOG can be the structures for storing type declarations,

working memory (each frame containing a single working

memory element), production rules, and the conflict set.

26

The job of the interpreter will be to know the location of

these subnets and what to do with specific types of frames.

The next chapter will discuss the design of the frames for

each such subnet.

27

?. FBAME SCHEMA DESIGNS

A. INTBCDUCTION

New that there is an understanding of the frame struc-

ture in ZOG and the format of 0PS7, the next step is to

develop subnets which the new interactive interpreter will

use, and to detail the basic design of the generic frame, or

schema frame, for each subnet. A subnet is required for: 1)

each system subnet used and maintained by the interpreter,

and 2) each user subnet upon which the user can develop his

programs- It follows that each subnet should have a unique

frame schema so that the interpreter knows what tc expect

each time it refers tc it. The unique schemas take advan-

tage of the structure and syntax of 0PS7 for writing

programs and organizing subnets.

The first consideration for schema design is whether the

information written on the frames should be frame text or

frame options. Because each of these parts of a frame are

implemented as selection pointers, it makes little differ-

ence to the system which one is used when trying to find

information on the frame. If the frame item is to point to

another frame, options are required. It is also preferable

to have frames which contain only text, without selecting

other frames. For these reasons both text and options are

used.

The use of the frame determines which global pads are

displayed. Those frames which are created by the user will

have a standard set of global pads (table I) . Those frames

created, modified, and removed by the interpreter will

contain a similar set except 'edit* will not be available.

28

TABLE I

STANDARD GLOBAL PAD SET

EDIT - RON 'edit*, THE ZOG EDITOR.
HELP - DISPLAY THE TOP FRAME OF ZOG USER'S GUIDE

IN THE OTHER WINDOW.
BACK - BACK UP ONE FRAME IN THE BACK-UP STACK.
NEXT - DISPLAY THE NEXT OPTION FROM THE SELECTION FRAME,
PREV - DISPLAY THE PREVIOUS OPTION FROM

THE SELECTION FRAME.
TOP - DISPLAY THE TOP OF THE NET (FOR THE

PARTICULAR MACHINE) .

GOTO - GO TO SPECIFIED FRAMEID. SYSTEM WILL PROMPT.
UTIL - DISPLAY THE TOP FRAME OF SUBNET ZOG. SHOWS

AVAILABLE AGENTS AND ACTIONS.
DISP - REDISPLAY THE CURRENT FRAME.
INFO - DISPLAY FRAME MAINTENANCE INFORMATION
WIN - MAKE THE OTHER WINDOW THE CURRENT WINDOW.
JUMP - PUT THE CURRENT WINDOW FRAME IN THE OTHER WINDOW

AND CHANGE WINDOWS.

The subnets for this proposed OPS7 system contain all

the iEfcriation that the interpreter requires for proper

execution. Each have uni gue characteristics causing the

appropriate results when it interacts with the interpreter.

The reguirement for subnets can be divided into two types:

those created by the user and those created by the inter-

preter. The user subnets are the working areas in which

declarations, rules, and actions are written by the

programmer. Characteristic of these subnets are frames

which allow editing for the purposes of writing 0PS7

programs. The interpreter, or system, nets are similar in

form to the user nets, except editing of the frames is

denied. This is accomplished by write protecting the frames

and by removing the 'edit* global pad from the frames. This

prevents the user frcm circumventing consistency checks done

by the system. System subnets are reguired for type decla-

rations, production rules, working memory, and the conflict

set. What follows are specific designs for the schema

frames for each subnet.

29

B. TBE USER SUBNETS

When the user elects to write OPS7 programs in ZOG, the

first frame presented to him is the environment frame for

the agent. Agents typically require one or more user-

specified parameters, such as subnet name, or output file

name, in order to run. Environment frames were created to

provide a means of passing this information to the agent.

These frames use their options as 'slots* that held this

input data. The slct editor is used in conjunction with

these frames to provide the user a simple method of

inserting the desired information.

ENVIEGNMENT FEAME OPSO

1. NAME OF THE FEOGEAM SUBNET:

X. EXECUTE

GLOBAL FADS (To include the slot editor •SLED 1

)

Figure 5.1 0PS7 Environment Frame.

[Eef. 8]. In this instance, the user selects the slot

editcr and, following a prompt for the subnet name, fills in

the name of the subnet he wishes to use. Error checking

done by the slot editcr prevents entering an invalid subnet

name. The exection local pad on the environment frame

causes the agent to begin execution on the given subnet.

30

If the subnet already exists, the agent presents the top

frame in the subnet in the current window and the user

proceeds as desired. If it is not present, the agent

creates a new subnet using the name from the input slot and

copying the PROGRAMO frame as a schema (see figure 5.2).

The system then creates the subnets for types, rules, and

actions under the respective options, using the following

naming convention. The subnet names include the subnet

function (type, rule, or action) appended to the end of the

subnet name from the input slot, not to exceed 12 charac-

ters. For example, for a program name of AIR, the subnets

are called AIRTYPE, AIRRULE, and AIRACTION. If need be,

letters are truncated from the input slot subnet name. The

development of these subnets is discussed later. The

PROGRAMO frame schema contains the standard set of glotal

pads and a set of six local pads: Load, Run, Halt/Continue,

Working Memory, Conflict Set, and Error Msgs. The Load pad

is selected once the program has been entered. It tells the

interpreter to evaluate the program statements for syntax

and type errors. The Run pad explicitly tells the system to

commence evaluation and execution of the PROGRAM frame. The

Halt/Continue pad allows the user to arbitrarily stop a

running 0PS7 program in order to go to other frames and

analyze program actions. The Working Memory pad is a link

to the existing working memory subnet. The Conflict Set pad

links this frame to the conflict set subnet. The Error Msgs

pad is the link to a frame which contains the text of the

system error messages. Having these local pads makes the

0PS7 actions, (wm) and (cs) , obsolete as debugging commands.

The top frame organizes the program into these specific

subnets to make program creation and debugging easier for

the programmer. Note that all schema figures may also

include the syntax for possible entries into the frame.

31

Cn the top frames of each of the three subordinate

subnets is where the programmer writes type declarations,

production rules, and actions. Each entry is a single

option on the frame. In the case of type declarations and p

rules, only the first line of the declaration appears on the

appropriate frame. For single actions not appearing as p

rule right-hand-sides, the entire action statement is

entered. For types and p rules, additional frames must be

created to contain the body of these parts of the program.

Program PROGRAMO

1. TYPES

2. ROLES

3. ACTIONS
L. LOAD
R. RON

H. HALT/CONTINUE
H. WORKING MEMORY
C. CONFLICT SET

E. ERROR MSGS

GLCBAL PADS

_

Figure 5.2 Program Schema Frame.

1 • llE£ Declara tion s

The schema for the type subnet is a frame with the

standard global pads and two local pads (Figure 5.3).

This top frame is created by the agent and is linked to the

top frame in the user subnet. The subnet name for this

subnet comes from appending the word 'types' on to the first

seven letters of the user program name. The local pad,

More, directs the user and the interpreter to additional

32

<SYMBOL> TYPEO

1. <SYMBOL>

2. <SYMBOL>

3. <SYMBOL>

U. <SYMBOL>

M. More types
P. Parent frame

G1CBAL PADS

-^j

Figure 5.3 Type Schema Frame.

type declarations should more than nine be needed (there

are a iraximum of nine options per normal frame). While the

More pad is not the most efficient way to traverse a list of

items, this system should not have to support a program with

more than two frames worth of types. The issue of program

size is addressed later. The parent pad directs the user to

the current frame's parent.

To create type declarations the user selects the

TYPES options on the top PEOGBAM frame. This selection

leads to the top of the type subnet. The programmer then

selects edit and enter the first type as an option. Once

out of the editor, the desired type is selected and the

ELEMENTO schema is explicitly requested. This frame is

created and the editor is automatically entered (see figure

5.4). The body of the type declaration is entered as teat,

in accordance with the 0PS7 syntax, and saved. When the

interpreter encounters the TYPE option on the top PBOGEAM

frame, as it process the frames beneth it, it enters the

types found in a subnet called GlobalNet; This process is

explained in section C.1.

33

<SYMBOL> ELEMENTO

<TYPE-FIELD>

<TYPE-FIELD>

<TYPE-FIELD>

<TYPE-FIELD>

M. More elements
P. Parent frame

GICBAI PADS

Figure 5.4 Type Element Schema Frame.

2. P Rules

The body of p rules are entered like types using a

schema similar to TYPEO, except the More pad leads to 'Mere

rules.' This schema is called RULEO. The tree below this

frame differs from the types tree because at least two

frames are needed to contain a single p rule: one for condi-

tions and one for actions. The schema frame for conditions

contains the standard global pads and the same local pads as

TYPEO. The use of a More pad is considered sufficient here

because in most cases rules can be expected to have fewer

than twenty-one conditions (there area maximum of twenty-one

line of text per normal frame) . The conditions are entered

as text on these frames. The bottom of the condition frame

contains an option •— >', which points to the actions for

the given p rule. This option does not appear if there are

more conditions on another frame. Figures 5.5 and 5.6

illustrate these schema frames.

34

The action schema frame is a frame like ELEMENTO,

with the standard set of glotal pads and the local pads,

More and Parent. Actions which appear on the right-hand-

side of production rules may also stand alone as commands in

0PS7. The standard use for these kinds of actions is to

create some initial state in working memory so the program

starts when run is selected. This subnet is modified by

selecting the ACTION option at the top of the user subnet,

selecting ^dit* on the frame, and entering the action as

text.

(P <SYMBOL>

<CCNDITION>

<CCNDITION>

<CCNDITION>

<CCNDITION>

«

—

>

G1CBAI PADS

CONDO

M. More conditions
P. Parent frame

Figure 5.5 P Rule Condition Schema Frame.

C. SISTEH SUBNETS

The system subnets are those created and maintained by

the interpreter. The subnets required by the interpreter

are for glotal variables, working memory elements, and the

conflict set. They are called GlobalNet, WM, and CS,

respectively. These subnets are created the first time the

interpreter is called to load a program. Subsequently, any

35

—

>

i

ACTICNO

<ACTION>

<ACTICN>

<ACTICN>

<ACTICN>

•

•

*

M.
P.

More actions
Parent frame

GLCBAL PADS

Figure 5.6 P Bale Action Schema Frame.

time another program is loaded, they are cleared out so the

system can start from scratch. The subnet names for these

nets are not concatenated with the name of the user program

subnet because they are independent of any particular

program. As previously mentioned, security is maintained in

these subnets by DENYING the user the ability to edit system

subnet frames.

1 . Gloral Subnet

As the interpreter is processing, each time a type

declaration is found it is inserted into the GicbalNet.

This is the system's reference mechanism whenever it is

creating an instance of a declared type for working memory.

This name comes from the fact that all variables is 0PS7 are

global [Bef. 6].

Adding an entry into this subnet is a two step

process. First, the type name (0PS7 syntax for this is

<SYMBCL>) must be written as an option in the top frame of

the subnet. Figure 5.7 shows the top frame in the GlobalNet

subnet.

36

GLOBAL VARIAELES

1. <SYMBOL>

2. <SYMBOL>

3. <SYMBOL>

U. <SYMBOL>

GLOEAL PADS (EXCLUDING 'edit 1)-

GLOBALNETO

M. More variables
P. Parent frame

Figure 5.7 GlotalNet Schema Frame.

The second step is the creation of the frame which

has the actual declaration. This frame contains information

as text. To insure security of system nets, a copy of the

type elements frame from the user subnet, TYPES, must be

copied into this frame. Simply establishing a link between

the GlotalNet and the TYPES subnet would allow the user to

edit frames used by the system. The system does not create

these frames until they have been found syntactically

correct by the interpreter.

2. Wor kin g Memory

The working memory subnet is used by the system to

hold working memory elements, which are specific instances

of the previously declared types. The top frame in this

subnet is similar to that of the GlobalNet except its subnet

name is WM (refer to figure 5.7). The subordinate frames in

this subnet use ELEMENTO frames as the schema. When the

interpreter encounters the function MAKE (implicitly or

explicitly) , it creates an option on the top WM frame and an

37

instance of that type from GlobalNet is copied into the

Working Memory subnet.

This subnet's element frame differsfrom the

GlobalNet's type schema in that the values assigned to the

various fields of the element are included in the text.

Each value is appended to the end of the text containing the

type^ field. As seen in figure 5.8, the character

1

<SYMBOL> ELEMENIO

<TYPE-FIELD> ==> <ANY-VA1UE>

<TYPE-FIELD>==> <ANY-VALDE>

<TYPE-FIELD>==> <ANY-VALUE>

<TYPE-FIELD>==> <ANY-VALUE>

•

•

P.
More elements
Parent frame

GLOBAL PADS (EXCLUDING • edit')-

i ... _ , i

Figure 5.8 Working Memory Element Schema Frame.

string »==>' separates the declaration from the value. The

creation of the working memory element requires writing the

element name (<symbcl>) on the top frame in the WM subnet,

copying the type information frame from the GlobalNet into

its element frame, and writing the explicit values (or the

defaults) assigned by Make.

A potential problem arises when one considers how

many working memory elements might be created during a

program run. It is difficult to estimate this because it

depends not only on the nature of the program, but also on

the different ways a program can be executed. What is

known, is that the conflict set must have a unigue way of

38

identifying each element in working memory. The soluticn to

this is to use the selection number of the working memory

element option appended to the number part of the frameid to

create a unique identification number. When a working

memory element satisfies a p rule condition, the above

number is passed to the conflict set subnet.

3. Con fli ct Set

The OPS7 conflict set contains the p rule name (s)

and the ID numbers cf the working memory element (s) which

satisfy conditions of the particular rules. Using the

example frcm the previous chapter, if the p rule SORT had

its two conditions satisfied ty elements 1 and 9 from the

working memory, then the response to the 0PS7 action (cs)

would be to display the conflict set 'SORT £1 9]." The

conflict set may contain zero, or more elements.

"

CONFLICT SET CSO

<SYMECI> [ELEMENT ID NUMBERS]

<SYMEC1> [ELEMENT ID NUMBERS]

<SYMECI> [ELEMENT ID NUMBEES]

<SYMECI> [ELEMENT ID NUMBERS]

•

•

•

M.
P.

More
Parent frame

GICBAL PADS (EXCLDEING • edit 1
)

.

Figure 5.9 Conflict Set Schema Frame.

39

In the ZOG implementation of 0PS7 the conflict set

is kept on frames in a specificly created subnet. The

schema frame for this subnet is a frame with the standard

global pads without •edit* , and local pads for Parent and

More. The conflict set information is written as text,

figure 5.9 illustrates this schema. This subnet is used

cnce the run command is executed at the top of the user

subnet. Every time the recognize and act cycle completes,

the information on this frame is updated because the p rule

which just fired must be removed. Remaining unfired rules

are also deleted if the change in Working Memory caused by

the firing of the previous rule invalidated a rule in the

conflict set.

D. SUHBABY

The subnets defined here are the mechanisms through

which a user can use 0PS7 in the interactive ZOG environ-

ment. Being able tc do this on ZOG frames takes advantage

of ZCG*s hierarchical organization and fast retrieval of

information. But there is still an important piece of the

puzzle missing. The OPS7 interpreter envisioned must be

called from within ZCG to create, execute and most impor-

tantly, debug programs. Hopefully, these subnets establish

an intuitive framework within ZOG for the programmer and the

interpreter.

40

¥1- AH INTERPRETER

With the foundation laid by previous chapters, this

chapter outlines the characteristics of the interpreter to

he used in this system. This is done by reviewing three

things: 1) the nature of the design for 0PS7, 2) what

features the interpreter will have, and 3) issues which will

directly affect the practicality of the implementation.

A. EESIGH NATURE

Ie trying to decide just what the interpreter for this

system should look like, two distinct choices were apparent.

First, the system could be an interface between the existing

ZOG system and the current 0PS7 interpreter. Essentially,

this would mean creating a layer of software between ZOG and

CPS7 for the purpose of formatting data into a useatle form

for each system. Although the appearance of 0PS7 in ZOG

would be hierarchical and more interactive, it really would

be the old interpreter in disguise. This approach sidesteps

the entire issue of designing a new tool for the environ-

ment. The second choice is to integrate the features of

0PS7 into ZOG itself. To do this 0PS7 must be able to

communicate to the user via ZOG mechanisms while continuing

to evaluate and execute programs correctly.

The decision of which option is preferable is based on a

number of engineering issues such as the time constraints on

the design project and the compatibility of the 0PS7 system

with ZOG. The determination of which implementation

approach is easier, is not trivial due to the complexity of

ZOG and 0PS7. If the project were time sensitive, the

method which would get a system up and running the fastest

41

is the obvious choice. Comparing this research with ether

projects may provide some insight into this decision.

Regarding compatibility, the two systems are currently

written in the same programming language, and 0PS7 programs

have an inherent hierarchical structure liJce the organiza-

tion of data in ZOG. While the use of the same programming

language does not imtly compatibility, the similarity in

organization of the two systems does.

It is because of the desire to implement 0PS7 under

ZOG's control and tie compatibility of system organization

that the latter direction is chosen.

B. AGENT FEATURES

The interpreter, which currently comprises 14 nodules,

will be integrated into ZOG as an agent. Agents are basi-

cally processes within ZOG which know about ZOG structures.

Typically agents operate on subnets of frames, or portions

thereof £Ref. 8]. Their main purpose is to extend the func-

tionality of ZOG. Agents differ from system utilities in

that the latter are components of ZOG. The former are

programs that are separate yet called from within ZOG

[fief- 5].

There are many features which will be a part of the

design of this interpreter, and will perform implicit tasks,

such as the creation of the Working Memory and Conflict Set

subnets. The user will interact with the explicit features

for the creation and debugging of programs. To illustrate

how the agent will work, a sample programming session will

be discussed.

In ZCG, the programmer will select the 0PS7 interpreter

by calling up the net utilities frame and choosing to run

the CPS7 agent. If the subnet name given to the environment

frame is not found, the agent will create a total of seven

42

subnets. For the user, the top PROGRAM frame with the three

options is created. Each option points to the respective

subnets for types, rules, and actions. When the system

initialization is complete, the top frame in the user subnet

will te in the current window. The programmer may now enter

statements on the user frames by selecting the appropriate

options. As described in chapter 5, only parts of the

statements may appear on the top user frames for types and

rules. The programmer may choose to first enter all the

required syntax for these frames in a top-down fashion, or

to enter the statements and its body (on a connecting frame)

before proceeding tc the next option on the parent frame.

The latter approach is called depth first. The top-down

method is faster because the top frame in the subnet will

only have to be opened and closed once.

When the program has been entered the user must return

to the top frame and select the Load local pad. This will

cause the interpreter to traverse the program subnet

performing type checking, creating the GiobalNet, WM, and CS

subnets, and performing any actions present. At this time

CPS7 will also put the production rules into wnat it calls

production memory. Essentially, this is a translation of

the language syntax into a more compact form for use by the

production system part of the interpreter. Any errors

detected during the load phase, will be announced to the

user's display on the current frame and written to an error

message frame. This frame is found by returning to the top

frame in the user subnet and selecting the local pad E. The

errors will be options on the Error Msgs frame; these

options will be linked backed to the frame in the user

subnet which contains the error.

Suppose the program has been correctly entered and

loaded- Now the Run local pad is selected. This action

causes the recognize and act cycle to commence.

43

Communication with the user is accomplished through the user

display of the current window (which is at the top of the

user subnet). Although the mechanics of this process are

transparent to the user, the interpreter searches through

working memory trying to find elements to match the left-

hand-sides of production rules.

As the production system is firing its rules, three main

things are happening. First, the conflict set subnet is

continually expanding and contracting as conditions are

satisfied. Closely connected with this is the second

activity, the creation, modification, and removal of items

from the working memory subnet. Most important is the third

activity: the system I/O with the user. This takes place

in the user display, and allows a somewhat limited method of

communication with the program.

While the production system is running, it would be

advantageous to allow the user to look at a system subnet,

such as WM or CS, in order to follow what the program is

doing to. A feature implemented specifically for AIRPLAN,

called incremental display, would prove useful in imple-

menting this capability. Incremental display has ZOG update

the visual representation of a frame, which is displayed in

one of the ZOG windows, whenever the physical information

for that frame, in secondary storage, has changed.

Implementing this while 0PS7 is running could prove to be

impractical because a software level interrupt would be

required to tell ZOG to update the displayed frame.

In the event that the program has a semantic error which

causes, for example, the program to terminate prematurely,

the user nay want tc survey what the system was using for

working memory or what was contained in its last conflict

set. This is done by returning to the top of the program

subnet (if not already there) and selecting the appropriate

local pad. This feature has the potential to greatly

44

enhance the process of debugging, because while the program

listing is in the bottom display window, the upper window

can be used to traverse the desired subnet for debugging.

Take the situation above. To find out why a program has

halted ore may want to view the condition frame of a p rule

while viewing the contents of particular working memory

elements. The next and previous global pads can be

extremely helpful in this situation by allowing the

programmer to move frcm condition frame to condition frame

of different p rules without returning to the parent frame

holding the selections. Similarly, elements of working

memory may be viewed.

As previously mentioned, the programmer will be denied

the ability to edit system subnets via global pads. But

there does exist an alternate method of entering the editor

on the current frame. If the user logged into ZCG is the

frame owner, the editor may be selected by typing control-d,

followed by e. One would only want to do this to manipulate

memory elements that night be hindering a program's devel-

opment. The bug creating the specific problem could be

overlooked in order to allow the program run to completion.

The freedom to do this would be restricted by having the

agent make a special owner assignment when creating the

system subnets. The password to log in as this special user

would be limited to the 0PS7 implementor (s) . It is their

responsibility to realize the unpredictable results which

may occur if illegal modifications are made to subnets main-

tained by the system.

C. IBPLEHEHTATION ISSUES

Because the interpreter and the interactive environment

are real world systems, it is appropriate to discuss seme

known issues which must eventually be dealt with if such a

45

project is to ever re implemented. While this section

attempts to bring to light implementation questions and

suggest possible solutions, in no way is the domain of solu-

tions limited to the author's knowledge nor the limitations

of the current systems. While some of the issues may seem

prohibitive, the impact of future technological capabilities

can not te dismissed.

1 • Wri tin g to PCS files

An initial question is how an 0PS7 program in the

ZOG system will be saved into a PSRQ Operating System (POS)

file. The capability to write the information from frames

into cperating systen files currently exists in ZOG. The

agents designed to do this must be modified to read the

program from the subnet in the proper sequence. The ability

to do this is necessary because programs may be smaller

components of larger 0PS7 programs too big for use in ZCG.

This integration of modules is currently envisioned to be

done outside the developement environment.

2. Pro gra m Size

Program size is an issue which impacts the design of

every subnet in the proposed 0PS7 implementation. When

considering size, cne should look at an existing expert

system. AIRPLAN is the only one currently implemented in

0PS7. In its present form, it uses about 200 p rules. Ihe

goal cf this research was to create a development environ-

ment for small programs or parts of larger programs. Hence

a program of AIRPLAN's size and complexity was not planned

to run in this environment. This decision may seem arbi-

trary, but the author felt that if this system could be

implemented with this limit, expanding it to support full

0PS7 programs could be dealt with later. Specifically, the

author envisioned tie ability to support programs about

one-fourth the size cf AIRPLAN.

46

3 • £IR£ H ar dwar e Limit ati ens

Another issue is the implementation of ZOG and 0PS7

together on the PERQ. The PERQ can support 32,000 16- bit

words of global data (in Pascal, under the PERQ Operating

System). The current version of ZOG uses about 24,000

global words. 0PS7 requires 23,000 global words. One can

reduce this number by converting large structures (frames on

down to individual strings) from static variables (currently

managed by ZOG) to dynamically allocated structures using

the Pascal NEW call. This still requires the use of a

32-bit pointer to the structures in the global word area of

memory, and the pointer will have to be dereferenced every

time the structure is referenced. Trie dereferencing will

add seme extra time overhead. It is possible to combine ZOG

and CPS7 on the PERQ using this method.

A more pressing problem is the amount of primary

memory available. When ZOG was first put on the PERQ, the

implementors tried to include a Pascal Compiler. This

resulted in the system swapping so much that it was func-

tionally brought to a standstill. The simple solution is to

hope for the availability of a larger memory board for the

PERQ. Currently, an upgrade from 1 Megabyte to 2 Megabyte

memory boards is being investigated onboard the Carl Vinson.

Without such a change, the only option available would be to

include in ZOG a subset of OPS7. The majority of the

globals for 0PS7 are concentrated in two modules. This

implies that some sort of reduction of the standard 0PS7 may

be possible £Hef. 9]«

* Benefits of CPS7 in ZOG

Cne might ask what is the benefit of having 0PS7 in

ZOG in terms of the time required to simply type in the

subject program. In other words, will the programmer spend

47

more time trying to enter a program in ZOG than he otherwise

would typing it into a text file. Based on experience with

AIRPIAN, the following can be said. Unquestionably, for an

inexperienced user, the use of a text editor is definitely

preferred over ZOG. This is because the user wculd be

spending mcst of the time trying to understand how ZOG

works, rather than concentrating on program creation. Once

the user becomes more familiar with ZOG, the time required

to create an 0PS7 program should decrease dramatically.

ZOG is designed to be an intuitive, easiy to learn,

human-computer interface, but in reality, it takes hours of

use before the user can adroitly construct trees and edit

frames. In this implementation, the ZOG environment would

be used to add organization to 0PS7 but not make it easier

to type in programs. Hopefully, the benefits of having 0PS7

in ZCG will more than compensate for the increased overhead

required to use ZOG frames.

5. Sys tem Execution Time

The time required to run this system is interesting

to analyze. Fairly good numbers exist for determining the

time it takes to read a frame from disk memory into the ZOG

Pascal record structure. For a local frame it takes 0.5

seconds to read a small frame; 1.2 seconds are required for

a remote frame. The time to modify a frame (an Open

followed by a Close) is approximately double the read time

[fief. 9]. The time required to locally create a small frame

is estimated to be approximately 2 seconds. The following

is an estimation of the time required to load and run the

number scrt program in Chapter IV.

This program has two type declarations. The inter-

preter will open the type frame to find the first type name

and the location of the element declaration frame. It will

then open the GlobalNet and write in the type name as the

48

first option, followed by copying the declaration frame into

a newly created frame pointed to by the GlobaiNet option.

This process requires the opening and closing of a minimum

of three frames and the creation of another. This must be

done for every type declaration. Therefore, about 5 seconds

will be required to lead each type, or a total of 10 seconds

for the program.

Beading the p rules into the system production

memory requires reading the rules frame for the individual

rules, and reading both the condition and action frames.

For each rule, a minimum of three frames must be opened and

closed; this will take about six seconds. Allowing time for

the reading of the rule into memory means each p rule will

required atout seven seconds. The two p rules in the

example will require 14 seconds to load.

The single action in this program is read from its

frame and the •make 1 directs the interpreter to create a

working memory element. This process requires the opening

and closing of two frames, the reading of another, and the

creation and modification of a third. It is estimated that

this will require 4.5 seconds (3.5 of which is required to

create a working memory element). The total time require!

to load this program is about 28.5 seconds.

Irogram run time is determined by following the

action of the program. When run is selected, the system

will attempt to find matches for the p rule conditions in

working memory. This process requires the system to read

every working memory element for each p rule. To do this

the top frame in the WM subnet is read for the element IDs

and the pointer to the element values. In other words, on

every recognize and act cycle at least two frames must be

read per working memory element. Then, each time a match is

found for the left-hand-side of a p rule, the CS subnet must

be opened so the new member of the conflict set may be

49

entered. It will take 3 seconds to fire the first rule. As

working memory increases the time required to read working

memory will increase linearly. The time to create the CS

subnet will depend on the nature of working memory.

The readin rule will continue to fire until the word

'sort' is entered by the user. The time between user inputs

is devoted to making a new memory element, modifying

another/ and determining the conflict set for the next

recognize and act cycle. This will take about 1 second more

for every new number added. Entering five numbers to be

sorted, plus the word sort will take at least 40 seconds.

The processes to perform the sort will take about the same

length of time-

All told, the loading and running of this small

program, assuming the subnets are local, will take at least

110 seconds. This is due mainly to the time required to

create, open, and close so many frames. The same load and

run process on the existing OPS7 system takes only about 10

secondsl This is a tenfold decrease in performance.

Extrapolating these performance figures to a program

containing 25 rules may make the new system intolerably

slow.

A method tc increase performance is not clear

because the bottleneck lies in the overhead for reading

frames from disk storage. Like the previous issue of main

memory size, the only solution to increased speed may be

found in improved CPU technology. In any case, the benefit

of having 0ES7 in ZCG will have to be weighed against this

degredation in execution performance.

50

E. SUMMARY

The issues addressed here are by no means all that need

be considered, but they do represent the real world consid-

erations that must be faced for projects in general, and

this research in particular. Should the schemas proposed by

this research be implemented, these issues must be resolved

if it to have any impact on interactive programming.

51

VII. CONCIDSIOHS AND RECOMMENDATIONS

A. CCNCIDSIONS

This research was an investigation into the design of

an interactive programming environment. The reguirements

for such an environment were initially studied. This

research showed that the environment should (1) provide

tools specific to the supported language, (2) use the under-

lying structure of the language in designing the environ-

ment, (3) support incremental program development, and (4)

support a high bandwidth of communciations between the user

and the environment.

In analyzing ZOG , one finds that it conforms nicely to

this paradigm, except it does not have any specific tools to

support the desired expert system language, 0PS7. In order

to design these tools a study of the code for both ZOG and

0PS7 was undertaken. It should be noted that the time to do

this study took much longer than expected because of the

size of the two systems and lack of instructional documenta-

tion of the system cede. The result of this study was the

design of a reasonable framework for the writing of 0PS7

programs in ZOG.

The design of the the subnet framework is the first step

in the creation of the programming environment. During the

actual inplementation, issues concerning hardware limita-

tions, the speed with which ZOG can run 0PS7, and the time

saved by developing CPS7 programs would have to be dealt

with. These issues have been analyzed and solutions

suggested.

52

B. RECCMHENDATIONS

The experience cf working with these two systems will

undoubtedly pay dividends in the future. The work experi-

ence gained by studying both ZOG and 0PS7 have instilled in

the author an appreciation for the effort, ncth in research

and manpower, required to design and implement human-

computer interfaces and new programming languages. Also,

the author will be leaving Monterey to work with the imple-

mentation cf these systems onboard USS Carl Vinson.

Additional formal instruction in these systems will be

forthcoming, but the time spent on this research has laid an

important foundation for continued work in this field.

From this experience, it appears that trying to learn

about a complex software system in a benign environment is

difficult, at best. The learning environment must be

similar to the real world environment, and have support from

personnel, as well as documentation. Personnel must be able

to provide to the student the benefits of their experience

with the system. Further, the available documentation must

extend beyond system definitions and source code to be of

any tangible value.

The time required to understand large, complex software

systems is difficult to estimate. The size of the system

will have the greatest impact on the learing process. The

next factor is the structure of the software. If the system

is written in a structured programming language, some struc-

ture is inherent. Beyond this, the different modules of

program code must be logically interrelated. Finally, the

documentation available must extend to instruction on the

design conventions used and implementations made during

system development. This kind of documentation will help

the user understand the overall design approach and prevent

him from repeating mistakes made earlier in the system

53

develop ment. Ultimately, the system size is the key. It

may he well documented, have discrete, well defined modules,

and te supported by many knowledgeable users, but with a

large system, more time is required to understand enough so

that the user can comfortably work with the system.

In future research in the area of interactive environ-

ments it is strongly recommended that implementation work in

systems of this scale include experience tour type training

in the subject system. The time required to bring the

student up to the level of understanding required to accom-

plish this kind of work, is otherwise not available. In

this instance, on-site facilities and technical expertise

were available, but not to the degree sufficient to support

further implementation work.

54

APPENDIX A

FRAME STRUCTURE SOURCE CODE

(GENERAL TYPE DEFINITIONS)

*** NOTE: The symbol 5) is used as the pointer label.

type int = integer;

Pos Typ = int;

string15 = string[15];

zstring = string [255];

SidTyp = string15; {Subnet ID}

FidTyp = string15; {Frame ID}

UsrldTyp = string15; {User ID}

{protection type}

PrctTyp = int;

{FRAME STRUCTURES}

{Short string structures}

type

Fs15ETyp = a)Fs15typ; {Pointer to frame string 15 }

Fs15Typ = record

text: string15; {a line of text }

prevstr: Fs15PTyp; {Pointer to the previous string }

nextstr: Fs15PTyp; {Pointer to the next string }

end; {Fs15PType record}

type

UsrldPTyp = Fs15Plyp; {List of user ID f s }

{String structure} type

FsPTyp = ftFsTyp; {Pointer to frame string }

FsTyp = record

55

text; string; {a line of text }

prevstr: FsPTyp; (Pointer to the previous string }

nextstr: FsPTyp; (Pointer to the next string }

end; {FsPType record}

{Selection structure}

type

SelPTyp = (DSelTyp; {Pointer to selection}

SelTyp = record

char; {Selection character}

FidTyp; {Next frame ID}

FsTyp; {Item of text }

k:

nf

:

text:

row:

column:

10:

cO:

11:

d:
action:

expand:

prevsel:

nextsel:

PosTyp; {Item row position in the frame }

PosTyp; {Item column position}

PosTyp; {Item minimum row position}

PosTyp; {Item minimum column position}

PosTyp; {Item maximum row position}

PosTyp; {Item maximum column position}

FsPTyp; {Item action }

FsPTyp; {Expansion area }

SelPTyp; {Previous selection}

SelPTyp; {Next selection }

end; {SelTyp record}

{Whole frame structure}

type

FETyp = 3FTyp; {Pointer to frame}

Hyp = record

nextfr: FPTyp ; {Next frame (save list only)}

frameid: FidTyp; {Frame ID }

owners: Usrldlyp; {List fo frame owners}

crdate: long; {creation date (longer integer) }

modifier: Usrldlyp; {modifier }

moddate: long; {modification date }

modtime: long; {modification time }

56

version: int; {version number }

prot: ProtTyp; {frame protection}

AgCrBit: boolean; {agent created indicator }

AgModBit: boolean; {agent modified indicator}

title: SelPTyp; {title info }

text: SelPTyp; {text info }

options: SelPTyp; {options lists}

lpads: SelPTyp; {local pad list }

gpads: FidTyp; {global pad frame}

ccmment: FsPTyp; {frame comment}

accessor: Fs15PTyp; {frame accessor list}

end; {FTyp record}

{Frame header structure}

type

FHPTyp = a)FHTyp; {Pointer to xrame header}

FHTyp = record

nextfr: FHPTyp; {next frame header (save list only) }

franeid: FidTyp; {Frame ID }

cwners: UsrldTyp; {List fo frame owners}

crdate: long; {creation date (longer integer) }

modifier: UsrldTyp; {modifier }

moddate: long; {modification date}

modtime: long; {modification time}

version: int; {version number }

prot: ProtTyp; {frame protection }

AgCrBit: boolean; {agent created indicator}

AgMcdBit: boolean; {agent modified indicator}

end; {FHTyp record}

57

APPEND^ B

0PS7 BNF SYNTAX

This is the BNF syntax for 0PS7. It is included in this

document for the convenience of the reader. It was

extracted in total from [Ref. 7]. The symbol ' -»' is used

for relation negation. The non-terminal <symbol> stands for

any name or label. The symbol ... means repeat the

PRECEEING item any number of times.

<type>

<type-field>

<rule>

<conditicn>

<pattern>

<lhs-term>

<lhs-value>

(type <symbol> <type-field>. . .)

<symbol> = scalar
<symbol> = set : <integer>
<symbol> = vector : <integer>

(p <symbol> <condition>. . . —

>

<action>. .

.

<pattern>
-<pattern>
<symbol> <pattern>

:= (<symbol> <lhs-term>. . .)

<symbol> <relation> <lhs-value>
<symbol> : <integer> <relation>

<lhs-value>

- %

: t

<sc ala r-const ant>
<scalar-constant>. . . }

<scalar-constant>. .

.

fldval>

<scalar-constant>

<fldval>

<relation>

<scalar- scalar >

<sy mbol>
<in teger>

<sy mbol>
<sy mbol>

<symbol>
<symbol> <integer>

<scalar-scalar>
<scalar-struct>
<str uct-scalar>
<struct-struct>

-.= | < J
-.< | > | -•>

58

<scalar-struct>

<struct-scalar>

<struct-struct>

<action>

<pm-acticn>

<wm-action>

<rhs-term>

<io-action>

<scalar-value>)

<sc a lar-value>)

<control-action>

in | -tin

has J -ihas

in tr
-intr
sub
-is ub
sup
-•sup

<wm-action>
<pm-action>
<io-action>
<v a riable-act ion

>

<control-action>

:= <rule>
:= <type>

:- (make <symbol> <rhs-tera>. . .)

;= (modify <scalar-constant>
<rhs-term>. . .)

= (remove <scaiar-constant>. - .)

= <reset>
= <implicit-make>

:= <symbol> = <any-value>

= (write <any-value>)

= (write <any-vaiue> <vector-value>)

= (write <any-value> <vector-value>
<scalar-value>)

= (ifile <scalar-value>

<variable-action>

<imp licit- make>

<any-value>

(ofile <scalar-value>

!

fclose <scalar-value>)

[load <scalar-value>)

trace <scalar-value>)

(

wme <scalar-constant>.
wm)
cs)
run)
run <scalar-value>)

'match <scalar-value>)

(let <symbol> = <any-value>)

(<symbol> <rhs-term>. . .)

[<scalar-value>. . .]

(<scalar-value>. . . }

<sc alar- const ant>

59

<rhs-field>
<f unction>

<rhs-field> <scalar-constant>
<sc a la r- con st an t>

<syrabol>
<symbol>
<integer>

<fanction> + <scalar-v
- <scalar-v
* <scalar-v
/ <scalar-v

<scalar-v
[gensym
genint
[accept
accept <Iscal
[accept <scal

<sc
(val <symbol>
(append <vect

<ve
(index <vecto

<sc
union <set-v
in tr <set-va
iget <type-na

alue> <scalar-value>
)

alue> <scalar-value>
aiue> <scaiar-valu€>
alue> <scalar-value>
alue> <scalar-value>

ar-value>)

ar-value>
alar-value>)

or- value>
ctor-value>)

r- value>
aiar-value>)

alue> <set-value>)

lue> <set-value>)

me> <scalar-value>
<scalar-value>

)

<type-name> ;= scalar j vector | set

60

LIST OF REFERENCES

1. Newell, A., D.L. McCracken, G.G. Robertson, F..M.
Akscyn. ZOG and the OSS CARL VINSON. Carnegie-Mellon
Un iversity Compter Science Research Review, T9HU78 1."

2. Sobel, A. Developing Air plan . Computer Science
Department, Carnegie-TieTlon University, 31 July 1S83.

3. Earstcw, D., H. Shrobe, E. Sandewall. Interactive
Prog r amming Environments, New York: Mc(5raw-HiTI,

4.

5. Yoder, E. , R„ Askcyn. ZOG User's Guide, Computer
Science Department, Carnegie-MelTon "University,
Version One, 6 July 1982.

6. Brownston, L. S. Elements of 0PS7 Progr amming Style
Carnegie-Mellon University, DecelEer, 7982.

7. Forgy, Charles L. Preliminary 0PS7 Manual Charles L.
Forgy, 2 Jury 1982.

8- ZOG Sys tem Operatio nal Description Carnegie-Mellon
University, DecemEer "237 19"8~7.

9. ABEANET MAIL, from D. McCracken, Carnegie-Mellon
University, to D. Butler, 18 June 1984.

61

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 2 2314

2. Dudley Knox Library, Code 0142 2
Naval Postgraduate School
Mcnterey, California 93943

3. Department Chairnan, Code 52 1

Department of Computer Science
Naval Postgraduate School
Mcnterey, California 93943

4. Office of Research Administration 1

Code 012A
Naval Postgraduate School
Mcnterey, Califorria 93943

5. Computer Technologies Curricular Office 1

Code 37
Naval Postgraduate School
Mcnterey, Califorria 93943

6. Dr. Eruce J. Maclennan 1

Code 52M1
Naval Postgraduate School
Mcnterey, CA 93943

7. ICDR Paul S. Fischbeck, USN 1

Cede 55Fb
Naval Postgraduate School
Mcnterey, Ca . 93943

8. Dr. Con L. McCracken 1

Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213

9. Dempsey Butler, III 1

1183 Arroyo Drive
Pebble Beach, CA 93953

62

1 3 37 5

110:

Thesi:

c.l
Butler

An interactive envi-
ronment for the deve-
lopment of an expert
system in ZOG.

J 1339

Thesis
B9^2
c.l

I
n 10S

Butler
An interactive envi-
ronment for the deve-
lopment of an expert
system in ZOG.

