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ABSTRACT 
 
 
 
The accurate determination of spacecraft attitude has always been a critical issue in 

many applications. The presence of imperfect sensors introduces errors in the system and affects 

the outcome of the mission. One of the most significant sensors is the rate gyroscope. Particu-

larly, the rate gyros are known to degrade with time, introducing random noise and bias. This 

calls for estimation algorithms which process the measured data in order to reduce the effects of 

the disturbances to a minimum. This research presents an approach which takes full advantage 

on the nonlinear dynamics and possibly non-Gaussian disturbances. It is based on recent work 

involving particle filters, where the probability density functions are approximated by a rela-

tively large number of parameters. It is shown that accurate attitude estimation can be obtained 

with a manageable number of particles. 
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EXECUTIVE SUMMARY 
 
 
 

The great importance of military and civilian space systems has driven the need for ex-

tending their expected lifetime and increasing the associated components’ accuracy. The rate 

gyroscope is one of the vital sensors on a spacecraft and its performance dramatically affects 

both lifetime and performance. The reduction of the rate gyro noise level has been an issue for 

quite a long time. 

In order to mitigate the undesirable effects of bias and measurement noise in a rate gyro-

scope, various techniques have been developed. This thesis investigates how a new approach 

can be utilized in order to achieve better accuracy in a strongly nonlinear system such as a 

spacecraft attitude control system.  

At first, the particle filtering technique is discussed and compared to traditional tech-

niques such as Kalman filtering and extended Kalman filtering. Based on the kind of model and 

the type of the disturbances, the expected performance of each approach is analyzed. Initially, in 

order to understand the proposed algorithm, particle filter techniques and the Kalman filter are 

compared using a simple dynamic model. Then the results for one-axis rotation of the spacecraft 

simulator are presented in terms of attitude estimation. 

The first model of interest is a linear model in Gaussian environment. The particle filter 

is compared to the Kalman one which, as expected, is shown to be the best estimator for this 

specific case. Through a series of simulations, the number of required particles is inferred. 

The second model is the same linear one, but in additive non-Gaussian noise. In this 

case the Kalman filter can not guarantee convergence, so other techniques must be developed. 

The scope of the associated simulations is to show the particle filter robustness when enough 

particles are propagated. On the other hand, when the number of particles is insufficient, large 

errors occur in the estimation procedure. 

Finally, the particle filter is evaluated for the specific application of spacecraft attitude 

determination using a quaternion-based representation of one-axis rotation when Gaussian noise 

ia added in both the state and measurement equations of the developed nonlinear model. The 



 xvi

parameters were chosen in a way that the model included discontinuities that had to be over-

come by the proposed estimator. The extended Kalman filter cannot provide a direct solution to 

the problem since it is based on local linearization of the nonlinear model, which can only be 

performed in continuous processes. 

The particle filter proved to be an excellent estimator for this particular application. The 

objective was to minimize the mean-square error of the measured roll angle. The results showed 

that a particle filter using 2000 particles can provide a significant improvement with respect to 

the roll angle measurement error. This conclusion, in conjunction with the increasing computa-

tional power of today’s machines, indicated that the particle filter can be widely utilized in this 

and similar applications. 
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I. INTRODUCTION  

 There has been a considerable evolution in the development of space systems dur-

ing the past few decades. One of the key aspects is platform stabilization and navigation. 

The challenge is to keep the space platform at a specific orientation with respect to a 

fixed inertial reference frame. In particular, requirements can become very strict in some 

applications. For example, in laser pointing applications errors on the order of one mil-

lidegree could result in a target miss by several kilometers. 

The general approach to reducing the impact of such errors is to combine the ob-

servations from a number of sensors which include star trackers and gyroscopes measur-

ing angular rates. The dynamic equations relating the measured quantities to the platform 

orientations are nonlinear. The presence of miscellaneous errors due to various sensors 

increases the complexity of the problem. This thesis investigates a new approach and 

evaluates its effectiveness. 

 Kalman filtering applications to spacecraft attitude estimation were introduced in 

the early 1970s. Since then, many advanced algorithms based on the Kalman filter have 

been developed and implemented with varying levels of success. Most of them are based 

on local linearization of nonlinear processes in order to apply filtering. Development of a 

purely nonlinear technique that is applicable to spacecraft attitude determination and 

overcomes the problems of singularities and discontinuities is an extremely important 

issue. 

A. OBJECTIVE  
The objective of this thesis was the discretization, implementation and evaluation 

of an algorithm for attitude determination that compensates for external disturbances in 

the gyroscopes. This algorithm was based on a newly developed technique that fully ex-

ploits nonlinearities. In particular, an approach based on particle filtering was evaluated 

in various cases. Particle filter applications have already been developed in fields such as 

wireless communications, target tracking and navigation systems. Some of them can be 

found in the list of references. 
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B. THESIS OUTLINE 
The thesis starts with an overview of the various aspects of the estimation prob-

lem, and existing nonlinear algorithms are analyzed briefly. Different variations of the 

particle filter are presented along with background information on rigid body kinematics. 

Next, dynamic modeling of a rate gyro and the related algorithm development are dis-

cussed. Finally, the simulation results are presented and summarized. 

In particular, the thesis is organized as follows: 

Chapter II provides a survey on the existing filtering algorithms, the particle filter 

and its application to rigid body kinematics. The parameters used in this thesis are de-

fined and explained in this chapter, as well. 

Chapter III describes the target system, which is the NPS Three-Axis Spacecraft 

Simulator (TASS). The development of the proposed dynamic model and its discrete time 

implementation for this system is also presented here. 

Chapter IV presents the performance analysis and evaluation of the particle filter 

algorithm for all cases that it was tested. 

Chapter V summarizes the conclusions and provides recommendations for the fu-

ture research.   
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II. BACKGROUND INFORMATION 

In this chapter, the theoretical background for this thesis is presented to the 

reader. In particular, the general estimation problem is established and the associated es-

timation techniques are analyzed, emphasizing on the particle filter. Finally, an introduc-

tory discussion on the rigid body attitude representation concludes the chapter. 

A. THE GENERAL ESTIMATION PROBLEM 
In a number of applications we need to estimate a particular state of the system, 

based on observations from sensors. A mathematical model relates the state dynamics to 

the measured signals and the measurement errors. This model, also called the dynamic 

model, can be completely described by the following set of equations: 

 [ ]( ) ( ) ( )x t f x t w t= +  (1) 

 [ ]( ) ( ) ( )y t g x t v t= +  (2) 

where x(t) is the state to be estimated, y(t) is the available set of measurements, f and g 

are functions related to the state, w(t) is the state noise and v(t) is the measurement noise. 

In this general case, the functions f and g can be of any form and the statistics of the noise 

signals are assumed to be known. The state noise signal w(t) is a measure of the accuracy 

for the dynamic model, while the measurement noise signal v(t) is directly related to the 

specifications of the sensors. A basic assumption for the model is that these two noise 

signals are uncorrelated. Equation (1) is called the state equation and presents the evolu-

tion of the state in time, while Eq. (2) is called the measurement or observation equation 

and is the one that relates the state to the measurement.  

The model described above is a continuous time one. However, since most of the 

applications are based on sampled data, discrete time models are widely used. This type 

of model can be completely described by the following set of equations: 

 [ ]1k k kx f x w+ = +  (3) 

 [ ]k k ky g x v= +  (4) 
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where x is the state to be estimated, y is the available set of measurements, f and g are 

functions related to the state, w and v are uncorrelated noise sequences, and finally k is 

the index or iteration number. In this discrete time model, the state equation represents 

the evolution of the state vector while the measurement equation relates the state to the 

measurement at each sample point. 

In each application the estimation problem consists of two basic stages, mathe-

matical modeling and state estimation. Mathematical modeling includes the derivation of 

the functions f and g based on physical considerations. The statistics of the noise, as-

sumed Gaussian for convenience, are in general difficult to determine and greatly influ-

ence the performance of the estimator. The estimation stage includes an algorithm that 

provides the best estimate of the state given a set of measurements and any initial condi-

tions and constraints that apply. 

The general estimation problem can be divided in two categories, linear and 

nonlinear. Also, with respect to the statistics of the comprised noise, discrimination be-

tween Gaussian and non-Gaussian noise is useful. 

Due to the difficulty of the general problem, most applications have been based 

on simplifying assumptions. The easiest approach is based on a linear model and Gaus-

sian disturbances. This leads to the utilization of the Kalman filter introduced in the next 

section. 

B. THE LINEAR CASE IN GAUSSIAN ENVIRONMENT 

1. System Modeling 
A significant number of tracking applications can be implemented using linear 

models in a Gaussian environment. This specific type of model can be described by the 

following set of equations in discrete time: 

 1k k k kx F x w+ = +  (5) 

 k k k ky H x v= +  (6) 

where kF  is the matrix relating kx  to 1kx +  in the absence of a forcing function (similar to 

the state transition matrix for continuous time processes), kH  is the matrix corresponding 
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to the relationship between the measurement and the state vector, kw  and kv  are white 

Gaussian uncorrelated noise sequences with covariance kQ  and ,kR  respectively, while 

index k refers to the time step kt . Assuming that x is an n-dimensional vector while y is 

an m-dimensional one, kF  has to be of dimension n n×  and kH  of m n× . Both kF  and 

kH  can be time variant provided their values are known for each time step. We can ob-

serve that this model is determined by only linear relations. Also, noise sequences can be 

fully described by two values, mean and covariance, and they can be time variant as well, 

assuming that the covariance values are known for each time step. The following equa-

tions fully describe the statistical properties of the noise sequences: 

 { } [ ]E T
k i kw w Q k iδ= −  (7) 

 { } [ ]E T
k i kv v R k iδ= −  (8) 

 { }E 0 ,T
k iw v i k=     ∀  ∈ R  (9) 

where E{.} is the expected value operator, kQ  and kR  are the covariance values of the 

noise sequences kw  and kv  respectively, and δ is the Dirac function. 

2. The Kalman Filter 

A recursive algorithm providing solution to this kind of problems was developed 

by R.E. Kalman in 1960 and it is known as the Kalman filter [1]. As it is stated in the 

previous chapter, the objective is to estimate the state for each time step. For this reason, 

the state estimate at time kt  is denoted by ˆkx  and a new variable called the estimation 

error is defined by 

 ˆk k ke x x= − . (10) 

The error covariance matrix is now defined by 

 { }|T
k k k kP E e e= y  (11) 

where { }, 1,...,k iy i k=  =y is the vector containing all the available measurements up to 

time step kt . 
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It is obvious that the estimation error vector is n-dimensional, so the error covari-

ance matrix is of dimension n n× . The problem now leads to the minimization of ke , 

which is equivalent to the minimization of the trace of kP . The Kalman filter accom-

plishes this task by following the procedure indicated in Fig. 1. An overview of the in-

termediate stages is presented in the following sections. 

Define initial estimates 

0 0,x P− −  

Compute Kalman gain

kK

Update equations

ˆ ,k kx P  

Projection equations

1 1ˆ ,k kx P− −
+ +   

Repeat for k=0,1,2...

 
Figure 1.   Block Diagram of the Kalman Filter 

 
a. Initialization 
The Kalman filter is a recursive algorithm and it is repeated at each time 

step. However, initial estimates for the state vector and the error covariance have to be 
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determined. These values are denoted by 0 0ˆ andx P− −  where the minus sign in the super-

script indicates that the related measurement has not yet been taken under consideration. 

If no estimate for the initial value of the state is available, then it can be assumed that 

 0

0 0

ˆ 0x

P Q

−

−

=

= .
 (12) 

The Kalman filter is guaranteed to converge to the actual value of the 

state, no matter what value of initial estimate is used. The error of the initial estimate af-

fects only the number of iterations needed to reach convergence. 

  b. Calculation of the Kalman Gain 

Knowing the posterior estimate { }1ˆ |k k kx E x−
−= y  for each time step kt , 

the measurement at that time has to be taken into account. This happens by taking advan-

tage of the following equation: 

 ( )ˆ ˆk k k k k kx I K H x K y−= − +  (13) 

where I is the identity matrix and the quantity kK  is the Kalman gain. From Eq. (13) it is 

obvious that the Kalman gain is a weighting factor for both the measurement and a priori 

estimate, and it is related to the reliability of the observation. The optimal Kalman gain is 

constrained by the minimization criterion for the trace of the error covariance matrix. 

This leads to the following equation that provides the optimal Kalman gain: 

 ( ) 1T T
k k k k k k kK P H H P H R

−− −= + . (14) 

c. Update Equations 

In this stage the measurement is taken into account and an update to both 

state estimation and error covariance takes place. The optimal error covariance matrix is 

obtained using the Kalman gain computed in the previous stage. The equations that drive 

this stage are the following: 

 ( )ˆ ˆ ˆk k k k k kx x K y H x− −= + −  (15) 

 ( )k k k kP I K H P−= − . (16) 
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 d. Projection Equations 

The update stage concludes the estimation for time step kt . However, pre-

dictions for both state vector and error covariance matrix have to be generated in order to 

continue the recursion to the following time step 1kt + . These predictions depend only on 

the current state and carry no information based on the next time step. The equations pro-

viding these predictions are called projection equations and are as follows 

 1ˆ ˆk k kx F x−
+ =  (17) 

 1
T

k k k k kP F P F Q−
+ = + . (18) 

Once this stage is completed, recursion continues with the calculation of 

the Kalman gain for the next time step. 

C. THE NONLINEAR CASE  
The Kalman filter has been theoretically proven to be the best estimator for the 

linear case estimation problem described in the previous section [1], [2]. However, a 

number of current applications include nonlinearities and additive non-Gaussian noise 

which makes the Kalman filter inadequate. This has led to the development of advanced 

algorithms fitted to the requirements of each specific case. 

1. The General Nonlinear Case 
The general form of the nonlinear case model can be specified by Eqs. (3) and (4) 

under the assumption that either or both functions f and g are nonlinear. It is obvious that 

Kalman filter cannot be directly applied in this kind of model. Several techniques have 

been developed to overcome the difficulties introduced by the nonlinearities, considering 

the specific task to be accomplished. An overview of the most commonly used ones is the 

motivation for the following sections. 

2. The Extended Kalman Filter (EKF) 
The EKF is used in various real-time applications due to the fact that it is less 

computationally intensive when compared to other nonlinear estimation techniques. It is a 

regular Kalman filter that uses local linearization based on a first-order Taylor series ex-

pansion about the current estimate of the state and its covariance matrix. Let the model of 

interest be the one specified by Eqs. (1) and (2) and both noise sequences kw  and kv  have 
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the same properties as described in the linear case. The difference ( )x t∆  between the ac-

tual and the estimated value can be introduced and used in the model as described by the 

following set of equations: 

 [ ]ˆ ˆ( ) ( ) ( ) ( ) ( )x t x t f x t x t w t+ ∆ = + ∆ +  (19) 

 [ ]ˆ( ) ( ) ( ) ( )y t g x t x t v t= + ∆ + . (20) 

 Assuming that ( )x t∆  is small, an approximation using a Taylor-series expansion 

along with the fact that [ ]ˆ ˆ( ) ( )x t f x t=  yields: 

 [ ]ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f fx t x t f x t x t w t x t x t w t
x x

∂ ∂+ ∆ = + ∆ + ⇒ ∆ = ∆ +
∂ ∂

 (21) 

 [ ]ˆ( ) ( ) ( ) ( )gy t g x t x t v t
x

∂− = ∆ + .
∂

 (22) 

The quantity ( )x t∆  can be treated as the state, and the quantity [ ]ˆ( ) ( )y t g x t−  can be 

treated as the measurement, to provide a linear model where the Kalman filter can be di-

rectly applied. The discrete time equivalent system uses the model described by Eqs. (3) 

and (4) where 

 [ ]
ˆk

k
k

k x

f x
F

x
∂

=
∂

 (23) 

 [ ]
ˆk

k
k

k x

g x
H

x
∂

= .
∂

 (24) 

The procedure to be followed is the same as the one described in the linear case. 

A block diagram indicating the calculations that are to be executed step by step is shown 

in Fig. 2. 

 The EKF described in this section uses a first-order linearization since only the 

first term of the Taylor-series expansion is used. More accurate results may be obtained 

using a higher-order EKF that retains higher-order terms of the Taylor series, but the 

computational intensity is significantly increased. 
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Figure 2.   Block Diagram of the EKF 

 

2. The Grid-Based Methods 
In order to proceed to the analysis of the grid-based methods, first a statistical ap-

proach of the estimation problem is presented. The goal remains to provide a filtered es-

timate of the state kx  at time step k given the available set of measurements 

{ }, 1,...,k iy i k=  =y up to time step k. From a Bayesian perspective, the problem is to re-

cursively determine a measure of belief in the state kx  at time step k, taking different val-

ues and utilizing the knowledge of the available set of measurements ky [2]. Hence, the 

posterior probability density function (pdf) ( )|k kp x y  is constructed and updated in each 

time step. The whole procedure can be described as follows [2], [3]. 
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The initial density of the state vector, 0( )p x , is assumed to be known and inde-

pendent of any measurement. Estimation of the pdf in each time step is obtained recur-

sively, implementing sequentially the prediction and update stage. Assuming that the pdf 

( )1 1|k kp x − −y  in time step 1k −  is available, the estimation of the pdf at the next time step 

without knowledge of the related measurement (that is the prediction) is given by 

 ( ) ( ) ( )-1 1 1 -1 1| | |k k k k k k kp x p x x p x dx− − −= ∫y y  (25) 

where the pdf ( )1|k kp x x −  is fully defined based on the state Equation (3) and the statis-

tics of the process noise sequence kw . The update stage evolves the prediction by utiliza-

tion of the next measurement ky and updating by using: 

 ( ) ( ) ( ) ( )
( )

-1
-1

-1

| |
| | ,

|
k k k k

k k k k k
k k

p y x p x
p x p x y

p y
= =

y
y y

y
 (26) 

where the normalizing pdf ( )-1|k kp y y  is fully defined on the basis of the measurement 

Equation (4) and the statistics of the measurement noise kv . 

For the grid-based methods the discretization of the above formulation is used. 

Assuming that the state space consists of N discrete states at time step 1k −  denoted 

by 1
i
kx − , 1, ,i N= ...  and the conditional probability of that state at the same time step is 

termed as 1| 1
i
k kω − − , the posterior pdf can be written as: 

 ( ) ( ) ( )1 -1 1| 1 1 1
1

| |
N

i i
k k k k k k k k

i
p x p x x xω δ− − − − −

=

= = −∑y y  (27) 

Substitution of Eq. (27) into Eqs. (25) and (26) provides the prediction and update equa-

tions for the grid-based methods: 

 ( ) ( )-1 | 1
1

|
N

i i
k k k k k k

i
p x x xω δ−

=

= −∑y  (28) 

where ( )| 1 1| 1 1
1

|
N

i j i j
k k k k k k

j
p x xω ω− − − −

=

=∑  and 
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 ( ) ( )|
1

|
N

i i
k k k k k k

i
p x x xω δ

=

= −∑y  (29) 

where ( ) ( )| | 1 | 1
1

| |
N

i i i j j
k k k k k k k k k k

j

p y x p y xω ω ω− −
=

= ∑ . 

The recursive propagation of the pdf that is described by Eqs. (28) and (29) pro-

vides enough information to proceed to the optimal state estimate, depending on the crite-

rion that is established for any case. That is, if the minimum mean square error (MMSE) 

is the criterion, then the estimate is given by [2]: 

 { } ( )|ˆ | | .MMSE
k k k k k k k kx E x x p x dx= = ∫y y  (30) 

In the case of the maximum a posteriori (MAP) estimate, the maximum value of the pdf 

is used [2]: 

 ( )|ˆ arg max |
k

MAP
k k k kx

x x= .y  (31) 

The use of the grid-based methods is constrained by the assumption that the state 

space has to be discretized in a finite number of states [2]. These constraints, along with 

the extremely high computational cost in multi-dimensional state space cases and the re-

quirement for sufficiently dense grid [3], significantly restricts the number of applications 

to which this technique can be applied. 

3. The Particle Filter 
The concept of particle filtering was originally proposed back in 1954 [2] in the 

form of the Sequential Monte Carlo (SMC) estimation based on particle representation of 

probability densities. However, despite the continuous theoretical exploration of the ini-

tial idea during the 1960s and 1970s, no effort to apply it to a specific application took 

place. The main constraint obviously was the amount of computational effort that is re-

quired to apply such a technique. The fact that the computational power of the machines 

at that time was quite poor leads to the conclusion that the implementation of a complete 

system using the proposed technique was not feasible. Since computational power has 

been tremendously increased during the past decades, the above mentioned constraint has 

been eliminated. Particle filter applications in various fields such as wireless communica-

tions [4], target tracking [5], and navigation systems [6] have recently been proposed. 
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 a. Overview of the Particle Filter (PF) 

The idea of the PF technique is based on the statistical approach of the 

nonlinear estimation problem discussed previously. The main feature is the representation 

of the density function of interest using a random set of samples for the state value with 

associated weights. This kind of representation recursively leads to the estimation of the 

pdf for the next time step, taking into account the measurement associated with it. If the 

number of samples used in each iteration is sufficient, the representation of the pdf is 

quite accurate and it provides good estimates. 

Let kx  represent the set of the target values of the state for time step 0 to 

k. Assuming that in each time step a number of N samples are drawn, the set { }
1

,
Ni i

k k i
ω

=
x  

of the support points with the associated weights fully characterizes the posterior pdf 

( )|k kp x y . The weights are selected in such a way that the weighting vector is normal-

ized, that is 
1

1
N

i
k

i
ω

=

=∑  for each time step k. Under these assumptions, Eq. (29) may be 

used in order to provide an approximation of the posterior filtered density ( )|k kp x y . 

b. The Sequential Importance Sampling (SIS) Algorithm 
The basis of each PF technique is the SIS algorithm (or otherwise called 

Bootstrap Filtering [7]). According to this algorithm the particles, meaning the state 

samples, are propagated in each iteration by utilization of two stages, the prediction and 

the update.  

During the prediction stage, N samples of the process noise kw  are drawn 

according to the statistics of the noise sequence. Then, each sample point of the state is 

propagated using the state equation, without taking into account the corresponding impor-

tance weights. This provides a posterior prediction of the particles for the next time step 

according to the equation 

 1 ( , )i i i
k k k kx f x w+ =   (32) 

where 1, ,i N= ...  represents the index number of the sample and kf  is the function re-

lated to the state at time step k as defined in Eq. (3). 
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  During the update stage the important weights are updated using the in-

formation provided by the measurement sequence up to time step k. The related equation 

is 

 1 1 1( | )i i i
k k k kp y xω ω+ + +=  (33) 

where the likelihood function 1 1( | )i
k kp y x+ +  depends on the measurement equation intro-

duced by Eq. (4) and the statistics of the measurement noise kv . Before finalizing this 

stage, the weighting vector has to be normalized and a new value is applied to each 

weight using the equation 

 
,

1
1

,
1

1

i o
i k
k N

i o
k

i

ωω
ω

+
+

+
=

=
∑

 (34) 

where the superscript o indicates the weight value originally computed using Eq. (33) and 

1
i
kω +  is the weight value of the i-th particle to be propagated to the next iteration. 

 c. The Resampling Procedure – Sampling Importance Resampling 
(SIR) Algorithm 

Unfortunately, in practice, the SIS algorithm has a significant drawback. 

After a certain number of steps, only one particle with significant associated weight value 

is left [7]. The rest of the weights are negligible leading to two unwanted effects, low ac-

curacy and a large computational effort to propagate particles of negligible significance 

regarding their contribution to the approximation of the desired pdf ( )|k kp x y . This fact 

is known as the degeneracy problem [2] and its existence implies the need for an addi-

tional stage, resulting in a more robust algorithm than the SIS one. 

The key point to the solution of the degeneracy problem is the definition 

of a new parameter called the effective number of samples, which is estimated by the re-

lationship [3]:  

 
( )2

1

1ˆ
eff N

i
k

i

N
ω

=

=
∑

 (35) 
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where i
kω  are the normalized values of the weights obtained at the end of the update stage 

using Eq. (34). Whenever ˆ
effN  has a small value, the degeneracy phenomenon is severe 

and a new stage called resampling has to be executed. During this stage, particles with 

negligible importance weights are discarded and replaced by samples with large weights. 

The importance weight of each remaining particle is a measure of its probability of repe-

tition. Excluding the extreme cases of a uniform distribution of the importance weights 

( ˆ
effN N= ) and of 1N −  zero weights ( ˆ 1effN = ), the resampling procedure provides an 

effective scheme in avoiding degeneracy.  

  The last parameter that has to be determined in order to apply resampling 

is the decision threshold for the effective number of samples. There is no general guide-

line for its selection. However, it has to be taken into account that a small threshold leads 

to high resampling ratio implying high computational cost, while a  large value of the de-

cision threshold leads to non-effective resampling because in each iteration some parti-

cles with negligible weights are reproduced.   

  The algorithm, including the resampling stage where necessary, is called 

Sampling Importance Resampling (SIR). In this thesis, a PF based on this algorithm is 

developed and evaluated. 

D. ATTITUDE REPRESENTATION 
In this section a short description of the available attitude representation methods 

along with the basic of rigid body kinematics equations are presented. The quaternion 

representation and the related kinematics equations are emphasized due to their extensive 

use in the modeling and simulation of the system described in Chapter IV. 

The attitude representation of a rigid body can be described in terms of rotating 

the orientation of the body coordinate system to align with another one. The following 

methods can be applied to describe these kinds of rotations. 

1. The Euler Angles 
Euler angles define a series of three successive rotations around the body coordi-

nate system in order to achieve the desired orientation [8]. Each rotation occurs around 

the original body axes. Since there are twelve possible ways to arrange sequentially the 
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three axes, there are twelve different possible set of Euler angles. In this thesis the orien-

tation roll φ (rotation about the x axis), pitch θ (rotation about the y axis) and yaw ψ (rota-

tion about the z axis) is used. In this case a rotation can be represented by the following 

set of rotation matrices:  

 

1

2

3

cos sin 0
( ) sin cos 0

0 0 1

cos 0 sin
( ) 0 1 0

sin 0 cos

1 0 0
( ) 0 cos sin

0 sin cos

C

C

C

ϕ ϕ
ϕ ϕ ϕ

θ θ
θ

θ θ

ψ ψ ψ
ψ ψ

 
 = − 
  

− 
 =  
  
 
 = . 
 − 

 (36) 

The product of these three matrices is the rotation matrix between the initial and 

final orientations of the body and is a function of all three Euler angles. 

2. Quaternion Representation 

The quaternion q  is a four-element vector which fully describes a rotation in a 

three dimensional space. The first element of the quaternion is a scalar value while the 

remaining three elements are vector components. The scalar value represents a measure 

of the magnitude of rotation. The remaining three elements are proportional to the Euler 

axis e around which the rotation occurs [8]. Letting eθ  be the angle of rotation, the qua-

ternion components are defined as follows [9]: 

 

0

1

2

3

cos
2

sin
2

sin
2

sin
2

e

e
x

e
y

e
z

q

q e

q e

q e

θ

θ

θ

θ

=

=

=

=

 (37) 
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where xe , ye  and ze are the three normalized to unitary magnitude elements of the Euler 

axis with respect to x, y and z axes, respectively.  

 A very important property of the quaternions is the normalization constraint 

which is determined by 

 2 2 2 2
0 1 2 3 1q q q q+ + + = . (38) 

The above equation means that the four elements of the quaternion vector are mutually 

dependent. This makes sense since a four-dimensional vector is used to describe a rota-

tion in a three-dimensional space. The reason that the quaternion representation is exten-

sively used in attitude representation is that it does not introduce singularities [10] and 

requires less computational effort to propagate when compared to representations includ-

ing rotation matrices. However, the mapping between quaternions and Euler angles is not 

unique [11], [12] since any pair of quaternions q and −q  represent exactly the same rota-

tion. On the other hand, the Gibbs vector provides a three-dimensional one to one repre-

sentation of a rotation vector. 

3. The Gibbs Vector 
The Gibbs vector g is a representation directly related to the quaternions by the 

following relationship:  

 
1

2
0

3

1
2

g

q
q

q
q

α 
 = = . 
  

g  (39) 

In order to understand the relation between the quaternion and the Gibbs vector, recall 

that the quaternion vector is defined on a four-dimensional sphere [11]. The Gibbs vector 

can be considered as a gnomonic projection of the quaternion vector from the sphere to 

the vector g as shown in Fig. 3. The use of the Gibbs vector eliminates the 2:1 mapping 

issue of the quaternion representation. However, it is clear that it generates a singularity 

for 180o rotations which limits its use in representations of rotations in the interval 

( , )π π− . Hence, the use of the Gibbs vector is not adequate when global representation of 

rotations is desired.  
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Figure 3.   Gibbs vector as a gnomonic projection (After Ref. [11].) 
 

4. Attitude Kinematics 
In order to propagate the quaternion vector, an introduction to the quaternion 

kinematics equation is necessary. This equation describes the evolution of the quaternion 

vector in time with respect to the angular rate given by the following relationship: 

 1 ( )
2

= Ωq ω q  (40) 

where 
x

y

z

ω
ω
ω

 
 =  
  

ω  is the angular rate vector of the body and the matrix Ω  is of 4 4×  di-

mension and it can be calculated by the equation: 

 
[ ]

( )
0T

− × 
Ω =  − 

ω ω
ω

ω
 (41) 

where [ ]×ω  denotes the cross product matrix of the angular rate vector, which in the 

body coordinate system is given by: 

 
0

[ ] 0
0

z y

z x

y x

ω ω
ω ω
ω ω

 −
 × = − . 
 − 

ω  (42) 
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By discretizing Eq. (40) with small time increments and utilizing Eqs. (41) and 

(42), a discrete-time dynamic model for the quaternion propagation can be derived.  

In this chapter, various solutions to the estimation problem were discussed. The 

use of PF is of particular interest. In order to apply particle filtering, a dynamic model 

based on the attitude kinematics that were previously presented has to be developed. The 

derivation of such a model for the NPS TASS is the main point to be addressed in the 

next chapter. 
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III. DYNAMIC MODELING FOR THE NPS TASS 

The objective of this chapter is the determination of a dynamic model for the NPS 

TASS. In particular this model is based on the quaternion representation and it is used 

both for simulation of the platform and the estimation by particle filtering. At first, an 

overview of the TASS is presented, then the rate gyroscope along with the associated dis-

turbances is discussed. Finally, the dynamic model based on the attitude kinematics pre-

sented in the previous chapter, is developed. 

A. SYSTEM OVERVIEW 
The NPS TASS is a platform which can simulate the three-axis motion of a 

spacecraft. It is supported on a spherical air bearing which provides a frictionless motion 

in order to emulate a space environment. Basically, a thin film of air is trapped between 

the lower spherical end of the simulator and a semi-spherical cup of matched size which 

is mounted on the ground. A detailed description of the system is found in Refs. [13] and 

[14]. 

Various control components and sensors are installed in the TASS in order to 

provide enough data for simulation purposes. Three variable-speed control moment gyro-

scopes, rate gyros, two-axis analog sun sensors, an IR sensor and two inclinometers are 

included. In this thesis the rate gyros are of particular interest and they are described in 

terms of their dynamics and disturbances. 

B. RATE GYROSCOPES 
Rate gyroscopes are generally used to provide angular rate data to the spacecraft 

control system. Different types of rate gyroscopes, such as mechanical and laser, have 

been developed. Regardless of the type of the gyroscope, the task to be accomplished is 

to sense angular rate measurements of the satellite in all three dimensions and with re-

spect to the satellite body coordinates.  

There are two different types of errors included in a set of noisy measurements 

provided by a rate gyroscope, the bias and the noise. The main reasons for the presence of 

these errors are the manufacturing imperfections, misalignment and the degradation of 
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the gyroscope through time. The measured value of the angular rate vector provided by 

the rate gyroscopes can be modeled using the equation:  

 ( ) ( ) ( ) ( )m tt t t t= + +ω ω b n  (43) 

where vector notation is used to indicate a three-dimensional quantity, mω indicates the 

measured value, tω indicates the true value, b(t) is the bias vector and n(t) is the three-

dimensional noise vector consisting of independent white-noise sequences. 

C. DERIVATION OF THE DYNAMIC MODEL 
The availability of a set of measurements of the angular rate vector allows the 

generation of a part of the state equation using Eqs. (40) and (43). From them, an expres-

sion of the quaternion vector in terms of the measured values of the angular rate can be 

generated: 

 [ ]1( ) ( ) ( ) ( ) ( )
2 mt t t t t= Ω − −q ω b n q  (44) 

where Ω  is the matrix presented in Eq. (41). 

 The presence of a slowly varying bias can be modeled as a random walk stochas-

tic process. This results in the differential equation: 

 ( ) ( )t t=b w  (45) 

where ( )tw is a three-dimensional noise vector consisting of independent white noise se-

quences and is uncorrelated to the noise vector n(t) referred above. This statistical prop-

erty of the bias forces its inclusion as part of the state vector in the dynamic model. 

As far as the measurement equation of the model is concerned, the combined 

measurements of the two inclinometers and the IR sensor can be utilized to provide a set 

of measured Euler angles. Since the quaternion is part of the state, the following set of 

equations relating the quaternion vector to the Euler angles can be used: 
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 ( )

0 2 1 3
2 2
2 3

1 2 0 3

0 1 2 3
2 2
1 3

2 2arctan
1 2 2

arcsin 2 2

2 2arctan
1 2 2

q q q q
q q

q q q q

q q q q
q q

ϕ
θ
ψ

  −
  − −    

   = = +   
    − 

  − −   

E  (46) 

where E denotes the set of Euler angles using the orientation presented in the previous 

chapter and , 0,1,2,3iq i =  are the elements of the quaternion vector introduced by Eq. 

(37). However, since the data are provided by imperfect sensors, the modeling should in-

clude the noise term. Hence, the measurement equation can be written in the form:  

 ( ) ( ) ( )m t t t= +E Ε v  (47) 

where ( )m tE is the available set of measured Euler angles and v(t) is a three-dimensional 

noise vector consisting of independent white-noise sequences.  

Let the nonlinear function presented by Eq. (46) be denoted by h, that is 

[ ]( ) ( )t h t=E q . Encapsulating all the above, the state space model can be fully deter-

mined by the following set of equations:  

 [ ]1( ) ( ) ( ) ( ) ( )
2

( ) ( )

mt t t t t
t t

 Ω − −   =      

q ω b n q
b w

 (48) 

 [ ]( ) ( ) ( )m t h t t= + .E q v  (49) 

The final step is the discretization of the existing model. Assuming that the sam-

pling interval is equal to t∆ , Eqs. (48) and (49) lead to the following discrete-time state 

space model: 

 
[ ]
[ ]

[ ]
[ ]

[ ] [ ] [ ] [ ]
[ ]

11
2

1
mk k k k k k

t
k k k

      + Ω − −  = + ∆     +      

q q ω b n q
b b w

 (50) 
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 [ ] [ ]( ) [ ]m k h k k= + .E q v  (51) 

The accuracy of the model depends on the variances of the noise sequences 

[ ] [ ],k k n w  and [ ] ,kv  as well as the choice of the sampling interval t∆ . As indicated by 

Eq. (50) the value of the matrix Ω is considered to be constant between two successive 

iterations. This is an approximation resulting from the discretization of the model. The 

selection of a small value of the sampling interval is required in order to avoid the build-

up of large-scale errors in the estimation process. 

D. SIMPLIFIED DYNAMIC MODEL FOR THE UNBIASED ONE-AXIS 
ROTATION CASE 
The model described above contains a 7-dimensional state vector which makes 

the mathematical modeling quite complex. However, when estimating an unbiased one-

axis rotation the representation provided by Eqs. (50) and (51) can be significantly re-

duced. The assumptions for the existence of noise sequences in both angular rate and roll 

angle measurements still hold. These are the external disturbances which affect the atti-

tude determination in an undesirable way and their impact is to be eliminated using the 

particle filter implementation. 

In the one-axis rotation case described in this section, let the rotation be around 

the x-axis, so both pitch and yaw angles are equal to zero, at all times. Hence, the second 

and third elements of the Euler angle vector can be ignored. The same consideration can 

be applied to the angular rate vector, with only the x-axis component not being zero. As a 

consequence, the 2q  and 3q  elements of the quaternion vector can be ignored in Eq. (37) 

since no rotation around the y or z axis occurs. This leaves only two of the quaternion 

elements with a nonzero value, 0q  and 1q . Applying the normalization constraint intro-

duced in Eq. (38), an implementation using a scalar state can be accomplished. 

The model equations are derived using 1q  as the state of interest. The normaliza-

tion constraint becomes:  

 2 2 2
0 1 1 01 1 .q q q q+ = ⇒ = ± −  (52) 
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The 4-dimensional matrix Ω  can be expressed in terms of the measured angular 

rate around the x-axis mω  using the Eq. (41): 

 

0 0 0
0 0 0
0 0 0

0 0 0

m

m

m

m

ω
ω

ω
ω

 
 
 Ω = .
 −
 −  

 (53) 

Then, the attitude kinematics Equation (40) can be reduced to: 

 10

01

1
2

m

m

qq
qq

ω
ω
−  

= .  
   

 (54) 

Substitution of Eq. (52) into Eq. (54) and discretization yields: 

 [ ] [ ] [ ]( ) [ ]2
1 1 11 1mq k k q k t q kω+ = − ∆ + . (55) 

Similarly, the remaining Euler angle of interest (i.e., the roll angle φ), from Eq. 

(46), is given by: 

 [ ] [ ] [ ]( )
[ ]( )

2
1 1

2
1

2 1
arctan

1 2

q k q k
k

q k
ϕ

 − = . 
−  

 (56) 

Let n[k] and v[k] be the noise sequences related to the angular rate and the roll an-

gle measurement, respectively. The final state and measurement equations describing the 

one-axis rotation model can be determined as follows: 

 [ ] [ ] [ ]( ) [ ]( ) [ ]2
1 1 11 1q k k n k q k t q kω+ = + − ∆ + . (57) 

 [ ] [ ] [ ]( )
[ ]( )

[ ]
2

1 1
2

1

2 1
arctan

1 2

q k q k
k v k

q k
ϕ

 − = + . 
−  

 (58) 

In this chapter, the target system (i.e., the NPS TASS) was presented and the es-

timation problem was established. The dynamic model was derived and simplified for the 

scalar case of the one-axis rotation. The development of the PF and its evaluation in pro-
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viding an adequate solution to the compensation of the additive noise is the main topic of 

interest discussed in the following chapter. 
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IV. PERFORMANCE ANALYSIS 

This chapter presents the simulation results for evaluating the particle filter esti-

mator in various cases. Firstly, KF and PF are applied to a linear model in a Gaussian en-

vironment and the estimates are compared in terms of the mean square error (MSE). Sec-

ondly, the same model in additive biased non-Gaussian noise is tested using various PF 

implementations. Lastly, a PF estimator for the attitude determination of the spacecraft 

platform discussed in the previous chapter is presented. Throughout the chapter, the im-

portance of the right choice of the number of particles for the PF implementation is dis-

cussed.  

A. PF EVALUATION FOR THE LINEAR MODEL 
It is well known that KF is the optimal estimator for linear Gaussian models [2]. 

The reason is the fact that all a priori and a posteriori probability density functions are 

Gaussian and, therefore, fully defined by their mean and covariance. 

It is reasonable to expect that a PF with a large number of particles provides re-

sults comparable to the KF for a linear Gaussian model. In this section the tradeoff be-

tween the number of particles (and therefore the computational cost) and the PF perform-

ance is evaluated for various examples. 

The linear model that is used in this simulation section is the one described by the 

following set of equations: 

 [ ] [ ] [ ]1 0.9x k x k w k+ = +  (59) 

 [ ] [ ] [ ]y k x k v k= +  (60) 

where [ ]x k  is the state to be estimated, [ ]y k  is the available measurement, [ ]w k  and 

[ ]v k  are white noise sequences with unit variance. The convenience that this particular 

measurement equation provides is the direct association of the state to the measurement, 

so the measurement error can be directly compared to the state error provided by both 

filters. The initial state value was assumed to be equal to zero in all simulations. 
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A simulation sample result regarding the performance of the Kalman filter for this 

model is presented in Fig. 4. In this simulation a sequence of 100 points was created 

based on Eq. (59). Then the Eq. (60) was used to provide an available set of measure-

ments. The Kalman filter algorithm was implemented and the filter output is plotted 

along with the absolute error of the estimation. It is clear that the filtered output provides 

much better estimation of the state than the available set of measurements. A measure to 

evaluate the performance of the Kalman filter is the mean square error (MSE). The MSE 

of the estimation was computed to be 0.44857 while the MSE of the measurement was 

0.98838. This means that in this case the use of KF decreases the MSE of the estimation 

by 54.6%. 

 
Figure 4.   Demonstration of KF performance 

 

In order to compare the KF with the PF estimates, numerous simulations were 

executed for different number of particles for the PF. In Figs. 5 through 10 the results of 

1000 simulations per case are presented in the form of histograms. In particular, the re-
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sults testing the PF for 10, 20, 100, 500, 2000 and 5000 particles are analyzed. For each 

simulation, a sequence of 50 points (i.e., time steps), based on the model described by 

Eqs. (59) and (60), was generated and estimated using both Kalman and particle filters. 

The measure of comparison between the Kalman filter and the PF is the MSE. 

 
Figure 5.   MSE comparison for KF and PF using 10 particles 

 

In the first case, 10 particles were used for the PF implementation. For each simu-

lation the MSE of the measurement, the KF and the PF were computed and plotted as 

single points. The results are shown in Fig. 5. It is clear that in this case the KF outper-

forms the PF. The percentage of better KF performance was computed to be 99.2% of the 

tested runs. Finally, the average MSEs of all simulations were computed to be 0.99848 

for the measurement, 0.59178 for the KF estimate and 0.80476 for the PF. 

The implication of these results is that even if the PF reduces the measurement er-

ror, it is unlikely to provide a good estimate for the state. This is due to the insufficient 

number of particles used in this simulation. The next simulation where 20 particles are 



30 

used indicates the improvement of the PF performance when more particles are used. 

These results are presented in Fig. 6. 

 
Figure 6.   MSE comparison for KF and PF using 20 particles 

 

Comparing Figs. 5 and 6, the improvement of the PF is obvious. The KF still out-

performs PF by a significant percentage of 94.6%. This implies a still poor performance 

for the PF. The average MSEs of all simulations were computed to be 0.98340 for the 

measurement, 0.58888 for the KF estimate and 0.68623 for the PF. Obviously, there is 

more improvement to be accomplished by selecting more particles to be propagated by 

the PF. 

The next set of simulations was executed by choosing 100 particles for the pa-

rameter of interest. The resulting plot is shown in Fig. 7. The increase of the number of 

particles to this value has resulted in a significant improvement of the PF performance. 

The average MSEs of all simulations were computed to be 0.99105 for the measurement, 

0.59027 for the KF estimate and 0.61723 for the PF one. The improvement of the PF per-



31 

formance can be easily visualized by the reduction of the distance between the plotted KF 

and PF MSEs that can be observed in Fig. 7 when compared to Figs. 5 and 6. 

 
Figure 7.   MSE comparison for KF and PF using 100 particles 

 

Figure 8 presents the results using 500 particles. The PF performance is once 

more improved. The average MSEs of all simulations are 0.97850 for the measurement, 

0.58419 for the KF estimate and 0.58812 for the PF one. The percentage of better KF 

performance is reduced to 62.9%. Recall that the PF converges to the KF one in the theo-

retical case of infinite number of particles. This means that from a statistical point of 

view the lower bound for better KF performance is 50%. Evaluating the PF, the conclu-

sion is that 500 can establish a lower bound for the number of particles in order to get re-

sults of high accuracy for this estimation problem. 
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Figure 8.   MSE comparison for KF and PF using 500 particles 

 

Concluding the research for the linear model case, two more sets of simulations 

using 2000 and 5000 particles were executed. The resulting plots are shown in Figs. 9 

and 10, respectively. For the 2000 particles case, the average MSEs of all simulations are 

0.98517 for the measurement, 0.58908 for the KF estimate and 0.58977 for the PF one. 

The percentage of better KF performance is computed to be 62.6%. The performance of 

the PF is evaluated as sufficient, considering that the average distance ratio between the 

MSEs of the KF and the PF is less than 0.12%. This fact can be easily visualized in the 

related figure by noticing that for a significant number of simulations the green bars rep-

resenting the PF MSE lay partially over the blue bars representing the KF MSE.  
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Figure 9.   MSE comparison for KF and PF using 2000 particles 

 

The resulting plot for the 5000 particles case is shown in Fig. 10. The percentage 

of better KF performance is 66.1% indicating that the required number of particles for the 

particular application has exceeded its saturation point. The resulting average MSEs are 

0.98403 for the measurement, 0.58900 for the KF estimate and 0.58945 for the PF one. 

The performance of PF can be evaluated as excellent. However, the computational effort 

required to provide these results is considerable. The average distance ratio between the 

MSEs of the KF and the PF is less than 0.08%, verifying the tradeoff between the compu-

tational cost and the provided estimation accuracy.  

For further reference, all simulation results are also presented in Appendix A in 

the form of scatter plots. 
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Figure 10.   MSE comparison for KF and PF using 5000 particles 

 

The results of all simulation sets are summarized and tabulated in Table 1. The 

improvement ratio for each set is computed with respect to the measurement error, which 

is defined as: 
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where I stands for the improvement ratio, subscripts KF and PF represent the related fil-

ter estimates, subscript meas refers to the measurement and i represents the simulation 

index number for each set. 

Sim 

set #   

Number of 

particles used 

Average 

measMSE  

Average 

KFMSE  

Average 

PFMSE  
KFI  PFI  

1 10 0.99848 0.59178 0.80476 1.68725 1.24718 

2 20 0.98340 0.58888 0.68623 1.66995 1.43305 

3 100 0.99105 0.59027 0.61723 1.67898 1.60564 

4 500 0.97850 0.58419 0.58812 1.67497 1.66378 

5 2000 0.98517 0.58908 0.58977 1.67239 1.67043 

6 5000 0.98403 0.58900 0.58945 1.67068 1.66940 

Table 1. MSE comparison chart of KF and PF performance for the linear model case 

 

To complete the study for this section, several conclusions can be mentioned. 

First, the number of particles to be propagated through the PF is important to the filter 

performance. Second, for real-time applications the computational intensity is an impor-

tant issue. Hence, the selection of the amount of particles has to be made with respect to 

both accuracy and complexity. As a guideline, for the particular model tested, a selection 

of 500 to 2000 particles would be a wise choice. 

B. PF EVALUATION IN NON-GAUSSIAN ENVIRONMENT 
The purpose of the simulations of this section is to demonstrate the robustness of 

PF in any kind of additive noise. For this purpose the model described by Eqs. (59) and 

(60) is used to generate the state and measurement sequences. The only assumption dif-

ferent than the ones made in the previous section is that the process noise sequence [ ]w k  

is the square of a white Gaussian noise of unit variance and, therefore, non-Gaussian with 

mean value equal to 1 and standard deviation equal to 2 .  

The KF is not expected to work effectively in this case, so it was not included in 

the resulting plots. The comparison can be made between the MSE of the measurement 
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and the MSE of the estimation, since the state and the measurement are directly associ-

ated with no imposed scaling or addition factor through the measurement equation. For 

each simulation, sequences of 100 points (i.e., time steps) were generated. Each simula-

tion set consists of 1000 runs. The number of particles is the parameter of interest and the 

PF was tested for 10, 50, 100, 500 and 2000 propagating particles. The results are pre-

sented in Figs. 11 through 15. 

The resulting plot for the 10 particles case is shown in Fig. 11. The impact of the 

non-Gaussian environment is quite obvious. In most cases the PF is unable to provide 

better estimation than the measurement itself. This is due to the increased value of the 

process noise variance plus the biased conditions for the state equation. The bad perform-

ance of the PF can be outlined by the average MSEs which are 0.99083 for the measure-

ment and 1.4976 for the estimate. An increase of the number of particles is needed in or-

der to reach filter convergence. 

 
Figure 11.   MSEs for the non-Gaussian noise case using 10 particles 
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The next simulation was executed using 50 particles. It is not expected to provide 

acceptable performance, but the results can be used for comparison. The resulting plot is 

presented in Fig. 12. 

 
Figure 12.   MSEs for the non-Gaussian noise case using 50 particles 
 

The significant improvement of the PF performance is obvious when comparing 

Figs. 11 and 12. For the 50-particle case, the estimates are better than the measurements 

themselves in most cases, indicating filter convergence. The average MSEs were com-

puted to be 0.99605 for the measurement and 0.75424 for the PF estimate. 

From the results presented to this point, the conclusion made in the linear case  on 

the selection of the number of particles would be expected to hold in this case as well. 

Hence, the simulations for 500 and 2000 particles are of significant importance. For 

comparison reasons, the simulation for 100 particles was executed and the resulting plot 
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is shown in Fig. 13. The resulting plots for the other two cases (500 and 2000 particles) 

are shown in Figs. 14 and 15, respectively. 

 
Figure 13.   MSEs for the non-Gaussian noise case using 100 particles 
 

The results of Fig. 13 indicate extensive improvement for the PF. The average 

MSEs were computed to be 0.99227 for the measurement and 0.67816 for the PF esti-

mate. However, in a few simulations the PF generated large errors. This fact implies the 

necessity to hold to the initial guideline for using 500 to 2000 particles in order to guaran-

tee estimates better than the measurements. 

Obviously, both implementations for 500 and 2000 particles seem to provide good 

estimates of the state. The improved performance of the PF is indicated by the average 

MSEs as well. All of the computed values for the average MSEs for both Gaussian and 

biased non-Gaussian noise cases regarding the PF are summarized and tabulated in Table 

2. The same table contains the computed improvement ratios for the PF as presented in 

Eq. (62) in order to provide a general measure of comparison for all simulated implemen-

tations. 
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Figure 14.   MSEs for the non-Gaussian noise case using 500 particles 
 

 
Figure 15.   MSEs for the non Gaussian noise case using 2000 particles 
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Linear model in Gaussian noise Linear model in non Gaussian noise Number of 

particles used Average 

measMSE  

Average 

PFMSE  
PFI  Average 

measMSE  

Average 

PFMSE  
PFI  

10 0.99848 0.80476 1.24718 0.99083 1.49760 0.66161 

20 0.98340 0.68623 1.43305 - - - 

50 - - - 0.99605 0.75424 1.32060 

100 0.99105 0.61723 1.60564 0.99227 0.67816 1.46318 

500 0.97850 0.58812 1.66378 0.98803 0.59702 1.65494 

2000 0.98517 0.58977 1.67043 0.98525 0.58488 1.68453 

5000 0.98403 0.58945 1.66940 - - - 

Table 2. MSE comparison chart for PF performance in linear model implementations 

 

The results for the two linear model cases show that the nature of the additive 

noise significantly affects the performance of the PF when an insufficient number of par-

ticles is used. On the contrary, when enough particles are propagated in each iteration, the 

PF yields robust performance regardless of the nature of the noise.  

The simulation results obtained up to this point can be used to decide on the num-

ber of particles to be used in the attitude determination problem. In the literature [7] it is 

stated that a PF using 2000 particles would guarantee convergence for this specific appli-

cation. This statement is in agreement to the conclusions that have been derived up to this 

point.   

C. PF EVALUATION IN ATTITUDE DETERMINATION FOR THE 
UNBIASED ONE-AXIS ROTATION CASE 
In this section, the SIR algorithm developed in Chapter II is tested for attitude de-

termination based on the model described by the set of Eqs. (57) and (58). The simulation 

lasts for 20 seconds using a discretization time interval of 0.01 seconds resulting to a total 

of 2000 time samples, assuming zero initial conditions. The disturbance on the system is 
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added in the form of noise in the angular rate measurements. Despite the use of the qua-

ternion representation for the system modeling, the final evaluation is based on the error 

reduction in the roll angle using the quaternion estimation, due to the fact that, in prac-

tice, the Euler angle estimation is of interest. 

1. Data Generation 
The data are generated assuming a sinusoidal angular rate disturbance around the 

x-axis of the form: 

 ( )0( ) sint A tω ω=  (63) 

where ( )tω  is the angular rate value at time t, and the parameters A and 0ω  are the ampli-

tude and the natural frequency, respectively. Figure 16 shows the generated true values of 

the angular rate through time. 

 
Figure 16.   True values of angular rate 
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The parameters A and 0ω  were selected in such a way that the resulting roll angle 

representation included discontinuities during the simulation interval. The specific values 

used were 1A =  rad/sec and 0 0 1ω = .  rad/sec. 

The noise sequences [ ]n k  and [ ]v k  presented in the system model were assumed 

to be white Gaussian noise with standard deviations of 110nσ −=  rad/sec and 10vσ = de-

grees respectively. These values were selected in order to clearly visualize the additive 

noise in the associated plots. The resulting true and measured roll angles sequences are 

shown in Fig. 17. 

 
Figure 17.   True and measured values of the roll angle 

 

It is obvious that there are two discontinuities in the roll angle sequence that have 

to be overcome by the estimator. Due to these discontinuities, an implementation using 

the EKF can not provide satisfactory results and the PF is a better approach. 
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2. Attitude Representation 
In order to proceed to the estimation step, the required quantities have to be com-

puted. First of all, the roll angle measurement set is converted to the associated normal-

ized quaternion set. The actual quaternion values and the ones calculated by the noisy 

measurement set are shown in Fig. 18.  

 
Figure 18.   True and calculated from noisy measurements quaternion values 

 

Since the dynamic model derived in the previous chapter is expressed in terms of 

the quaternion component 1q , this is the state to be estimated. The task to be accom-

plished is the minimization of the state error which is presented in Fig. 19. It is noticeable 

that the state error is reduced around the time indices that the quaternion receives its 

boundary values 1± . This is due to the normalization constraint enforcement that pre-

vents the state from receiving invalid values. The figure also contains the measurement 

error. 
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Figure 19.   Quaternion and Euler angle error  

 

3. Estimation Analysis 
For the state estimation the PF approach and the dynamic model derived in Chap-

ter III were used. The generated noisy data set for the roll angle was given as an input to 

the estimator. Two different implementations using 500 and 2000 particles were tested. 

No initial estimation error was assumed for any of the simulations and the performance 

was compared in terms of the MMSE criterion. The resulting estimate 1̂q , of the quater-

nion component 1q , was converted to the associated roll angle generating the final esti-

mate ϕ̂ . The estimation error, ˆ ,est truee ϕ ϕ= −  was compared to the measurement error 

meas true mease ϕ ϕ= − .  

The simulation indicated that the developed PF is capable of reducing the noise to 

an acceptable level. The results are presented in the following sections. 
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a. Estimation using 500 particles 

The resulting curve of the estimated state is presented in Fig. 20. Two ran-

dom parts of the figure have been scaled-up to provide better visualization of the estima-

tion error. Obviously, there has been a significant reduction of the state error and the es-

timation algorithm is shown to be effective. 

 
Figure 20.   State estimation using 500 particles 

 

The most crucial point for the filter evaluation is the analysis of the esti-

mated roll angle curve which is presented in Fig. 21.  The estimated curve is smooth and 

approximately overlaid over the actual one indicating small estimation error. Two ran-

dom parts of the figure have been scaled-up to provide better visualization. The evalua-

tion of the PF performance is done using the MSE criterion. The MSE for the available 

set of measurements was ( )210.0255 deg while the MSE of the filtered estimate was 

( )20.64283 deg . This means that, in terms of MSE, the PF provided an improvement in 
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the error reduction by a factor of 243.23. Finally, both measurement and estimation abso-

lute errors are presented in Fig. 22 in semi-logarithmic form. 

 
Figure 21.   Roll angle estimation using 500 particles 

 
Figure 22.   Comparison of the measurement and estimation errors using 500 particles 
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b. Estimation Using 2000 Particles 

For this simulation the same set of noisy measurements was used. The in-

creased number of particles provided even better performance. The same set of plots was 

generated and the Figs. 23, 24 and 25 show the resulting state estimation, the roll angle 

estimation and the absolute error representations, respectively.  

 
Figure 23.   State estimation using 2000 particles 

 

As expected, the state error is reduced in comparison with the 500 parti-

cles case. As a result, the roll angle estimation error is also reduced as it can be clearly 

noticed by Figs. 24 and 25. The resulting MSE for the roll angle estimate in this case is 

( )20.40982deg ,  resulting in a factor of approximately 598 concerning the error reduction 

rate in terms of the MSE. Finally, all the results for both implementations are summarized 

and tabulated in Table 3. 
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Figure 24.   Roll angle estimation using 2000 particles 

 
Figure 25.   Comparison of the measurement and estimation errors 

 using 2000 particles 
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Number of 

particles used 
mease  

(deg)  

measMSE  

2(deg )  

este  

(deg)  

estMSE  

2(deg )  

meas

est

MSE
MSE

500 8.0533 100.51 0.60591 0.41323 243.23 

2000 8.0533 100.51 0.31663 0.16795 598.45 

Table 3. MSE comparison chart for PF performance in the nonlinear application 
 

D. SUMMARY 
In this chapter, the PF (based on the developed SIR algorithm) was tested on vari-

ous cases. Particular emphasis was given to the nonlinear application of attitude determi-

nation for the NPS TASS for the unbiased one-axis rotation case. 

At first, the good performance of the PF was verified for the linear model regard-

less the statistics of the disturbances. The major impact of the number of propagated par-

ticles in determining the accuracy of the estimation was underlined. On the other hand, 

the computational intensity is a constraint that has to be taken under consideration with 

respect to any particular application. 

Finally, the PF demonstrated excellent performance in the nonlinear model esti-

mation problem. Both implementations that were tested provided high accuracy results. 

The following chapter of this thesis provides the conclusions and suggests direc-

tions for future expansion of the research. 
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V. CONCLUSIONS 

The PF based on the SIR algorithm can be utilized as an accurate estimator of 

spacecraft attitude using quaternion representation. It demonstrates robust performance 

even when implemented in a nonlinear dynamic model overcoming the difficulties intro-

duced by discontinuities. 

A. SUMMARY 
A PF estimator for attitude angular determination has been presented in this the-

sis. Unlike standard implementations using the KF, the approach presented is completely 

general and can be adapted to any nonlinear, non-Gaussian statistical model, without the 

need of any linearization. In particular, the implementation to one-axis rotation has 

shown the effectiveness even in the presence of discontinuities in the model. 

B. RECOMMENDATIONS 
It is recommended that future work include the following expansions of this re-

search: 

1. Expansion to the Biased Three-axis Rotation Case 
The dynamic model for spacecraft attitude determination for the biased three-axis 

rotation scenario has been derived in this thesis. The PF implementation has to be ex-

panded to include the 7-dimensional state vector and some simulations have to be exe-

cuted. This research will provide much more realistic results regarding the final utiliza-

tion of PF in this specific application. 

2. Gibbs Vector Parameterization 
Although in this thesis the quaternion representation was used for all rotations, a 

better approach would be to represent small angular updates with the Gibbs vector and 

then project back to quaternion. The reason behind this logic is the fact that Gibbs vectors 

are additive and do not need normalization, while quaternions need to be normalized at 

every step, thus introducing possible biased estimates. 
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APPENDIX A: SCATTER PLOTS FOR THE MSE IN THE LINEAR 
MODEL 

A. GAUSSIAN ADDITIVE NOISE CASE 
The following figures are associated with the results presented by the histograms 

in Figs. 5 through 10 of the thesis, for 10, 20, 100, 500, 2000 and 5000 particles. The ex-

act value of the MSE is plotted as a single dot for every simulation and the comparison of 

the performance of the two filters can be visualized by the vertical distance of the related 

dots in the plot.  It is clearly obvious that, when the number of particles is increased, the 

distance between the red (PF MSE) and the blue (KF MSE) dots is reduced significantly 

verifying the theoretical approach that the PF converges to the KF when infinite number 

of particles is used. 
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B. NON-GAUSSIAN ADDITIVE NOISE CASE 
The following figures are associated directly to the results presented by the histo-

grams in Figs. 11 through 15 of the thesis for 10, 50, 100, 500 and 2000 particles. The 

same mapping as the previous section of the appendix is used. With these plots it is quite 

obvious that in a non-Gaussian environment, an insufficient number of particles may re-

sult in a probable nonconvergence for the PF. This can be shown by the large values of 

MSE that are noticeable in a number of simulations. As the number of particles increases, 

the phenomenon is reduced and finally eliminated in the 2000-particle case. 
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APPENDIX B: MATLAB® CODE USED FOR THE NONLINEAR 
MODEL APPLICATION 

This following section includes the code that was used with the Matlab® software 

to perform the simulations for the nonlinear application. The code consists of the main 

module (called SIR_nonlinear.m), the functions called through it (SIR_fun.m, predict.m, 

weightvector.m and resample.m) and the Simulink® model (called quat2euler.mdl) which 

provides accurate conversion of the quaternions to Euler angles. Each one of the Matlab® 

files is accompanied by the appropriate comments for further reference. Some basic ideas 

for the functions SIR_fun.m, predict.m, weightvector.m and resample.m were found in 

Ref. [15]. 

A. MAIN MODULE 

% LT IOANNIS KASSALIAS 
% DATA GENERATION AND FILTERING ALGORITHM FOR THE 
NONLINEAR PROBLEM 
% Generate the true values of angular rates given the model 
% omega=A*sin(omega_0*t+phi) for the 1 dimensional case 
% Calculate the true values of quaternions and Euler angles 
% Generate noise sequences for both angular rate and Euler angle 
% measurement 
% Calculate the related "noisy" values of the quaternion 
% Perform SIR filtering and plot the results 
clc 
clear 
format short g 
tic 
 
% Define parameters 
A=10^0;                        % Max amplitude of the angular rate  
omega_0=0.1;                   % Frequency used to generate angular rate 
values 
% phi=[0.1,0.2,0.3];           % Used as test for the initialization of the angu-
lar rate 
phi=[0 0 0];                   % Initial phase for the angular rate value 
sigma=10^-1;                   % Standard deviation for the noise added to an-
gular rate 
sigma2=10^1;                   % Standard deviation for the noise added to 
Euler angles 
q0=[0;0;0;1];                  % Quaternion initial condition 
Dt=0.01;                       % Sampling interval 
t_final=20;                    % Simulation duration 
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% Generate data for angular rates 
t=Dt:Dt:t_final;                      % Time vector 
for ii=1:3 
    if ii==1 
        omega_true(ii,:)=A*sin(omega_0*t+phi(ii));  % True value of omega 
    else 
        omega_true(ii,:)=zeros(1,t_final/Dt); 
    end 
end 
plot(t,omega_true(1,:),t,omega_true(2,:),'r',t,omega_true(3,:),'g'),grid 
title('True values of \omega') 
xlabel('Time (sec)') 
ylabel('\omega_t_r_u_e (rad/sec)') 
legend('\omega_1','\omega_2','\omega_3',0) 
 
% Generate OMEGA matrices of angular rates 
for n=1:1:t_final/Dt 
    omega_true_cross(:,:,n)=[0 -omega_true(3,n) omega_true(2,n) ; 
omega_true(3,n) 0 -omega_true(1,n) ; -omega_true(2,n) omega_true(1,n) 
0]; 
    OMEGA(:,:,n)=[-omega_true_cross(:,:,n) omega_true(:,n) ; -
(omega_true(:,n)') 0]; 
end 
 
% Compute quaternions 
% Solve differential equation q_dot=0.5*OMEGA*q*Dt 
% treating it as a difference equation in discrete time 
% and considering a time interval Dt=0.01 sec 
q_true(:,:,1)=q0;                    % Set initial condition                  
for n=2:1:t_final/Dt 
    q_true(:,:,n)=Dt*0.5*OMEGA(:,:,n-1)*q_true(:,:,n-1)+q_true(:,:,n-1); 
    q_true(:,:,n)=q_true(:,:,n)/norm(q_true(:,:,n));                     % Normalize 
quaternions 
end 
 
% Plot the quaternions 
q_1=reshape(q_true(1,1,:),1,t_final/Dt); 
q_2=reshape(q_true(2,1,:),1,t_final/Dt); 
q_3=reshape(q_true(3,1,:),1,t_final/Dt); 
q_0=reshape(q_true(4,1,:),1,t_final/Dt); 
figure 
plot(t,q_1,t,q_2,'r',t,q_3,'g',t,q_0,'m'),grid 
title('Plot of the quaternions vs. time') 
xlabel('Time (sec)') 
ylabel('Quaternion values (normalized)') 
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legend('q_1','q_2','q_3','q_0',0) 
 
% Detect the zero crossings for quaternions 
for n=2:1:t_final/Dt 
    if sign(q_1(n+1))~=sign(q_1(n)) 
        tt1=n+1; 
        break 
    end 
end 
for n=tt1:1:t_final/Dt 
    if sign(q_1(n+1))~=sign(q_1(n)) 
        tt2=n+1; 
        break 
    end 
end 
 
for n=2:1:t_final/Dt 
    if sign(q_0(n+1))~=sign(q_0(n)) 
        tt3=n+1; 
        break 
    end 
end 
for n=tt3:1:t_final/Dt 
    if sign(q_0(n+1))~=sign(q_0(n)) 
        tt4=n; 
        break 
    end 
end 
 
% Generate sign sequences in order to solve correctly the normalization 
% constraint equation q1=+-sqrt(1-q0^2) 
flag=ones(1,2000); 
for i=tt3:tt4 
    flag(i)=-flag(i); 
end 
flag2=ones(1,2000); 
for i=tt1:tt2 
    flag2(i)=-flag2(i); 
end 
 
% Conversion of quaternions to Euler angles 
E_true=[]; 
for n=1:1:t_final/Dt 
    q_true_0=q_true(1,1,n); q_true_1=q_true(2,1,n); 
q_true_2=q_true(3,1,n); q_true_3=q_true(4,1,n); 
    quaternion=[q_true_0 q_true_1 q_true_2 q_true_3]; 
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    sim('Quat2Euler') 
    E_true=[E_true,eul']; 
end 
figure 
plot(t,E_true(1,:),t,E_true(2,:),'r',t,E_true(3,:),'g'),grid 
title('True values of Euler angles versus time') 
xlabel('Time (sec)') 
ylabel('Euler angles (degrees)') 
legend('Roll angle \phi','Pitch angle \theta','Yaw angle \psi',0) 
E1=E_true(1,:); 
 
% Generate measured value of angular rate sequences 
omega_m=[]; 
for ii=1:3 
    if ii==1 
        n_w=sigma*randn(1,t_final/Dt);               % Generate noise sequence 
        omega_m(ii,:)=omega_true(ii,:)+n_w; 
    else 
        omega_m(ii,:)=omega_true(ii,:); 
    end 
end 
 
% Plot the true versus the measured values of angular rates 
figure 
subplot(311) 
plot(t,omega_true(1,:),'LineWidth',1),hold on 
plot(t,omega_m(1,:),'r:'),grid,hold off 
xlabel('Time (sec)'),ylabel('\omega_1 (rad/sec)') 
legend('True value','Noisy measurement',0) 
title('True versus measured values of angular rate') 
subplot(312) 
plot(t,omega_true(2,:),'LineWidth',1),hold on 
plot(t,omega_m(2,:),'r:'),grid,hold off 
xlabel('Time (sec)'),ylabel('\omega_2 (rad/sec)') 
legend('True value','Noisy measurement',0) 
subplot(313) 
plot(t,omega_true(3,:),'LineWidth',1),hold on 
plot(t,omega_m(3,:),'r:'),grid,hold off 
xlabel('Time (sec)'),ylabel('\omega_3 (rad/sec)') 
legend('True value','Noisy measurement',0) 
 
% Add noise to the Euler angles to generate measurement sequences 
for ii=1:3 
    if ii==1 
        n_E=sigma2*randn(1,t_final/Dt);     % Generate noise sequence 
        E_m(ii,:)=E_true(ii,:)+n_E; 
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    else 
        E_m(ii,:)=E_true(ii,:); 
    end 
end 
 
% Plot the true versus the measured values of Euler angles 
figure 
subplot(311) 
plot(t,E_true(1,:),'LineWidth',3),hold on 
plot(t,E_m(1,:),'r:'),grid,hold off 
xlabel('Time (sec)'),ylabel('\phi (degrees)') 
legend('True value','Noisy measurement',0) 
title('True versus measured values of Euler angles') 
subplot(312) 
plot(t,E_true(2,:),'LineWidth',3),hold on 
plot(t,E_m(2,:),'r:'),grid,hold off 
xlabel('Time (sec)'),ylabel('\theta angle (degrees))') 
legend('True value','Noisy measurement',0) 
subplot(313) 
plot(t,E_true(3,:),'LineWidth',3),hold on 
plot(t,E_m(3,:),'r:'),grid,hold off 
xlabel('Time (sec)'),ylabel('\psi (degrees)') 
legend('True value','Noisy measurement',0) 
 
% Conversion back to quaternions 
E_m_rad=E_m*pi/180; 
c1=cos(E_m_rad(1,:)/2);     
s1=sin(E_m_rad(1,:)/2);   
c2=cos(E_m_rad(2,:)/2);   
s2=sin(E_m_rad(2,:)/2);  
c3=cos(E_m_rad(3,:)/2);  
s3=sin(E_m_rad(3,:)/2); 
c1c2=c1.*c2;  
s1s2=s1.*s2;   
q_0_m=(c1c2.*c3-s1s2.*s3).*flag; 
q_1_m=(s1.*c2.*c3+c1.*s2.*s3).*flag; 
q_2_m=c1c2.*s3+s1s2.*c3; 
q_3_m=c1.*s2.*c3-s1.*c2.*s3; 
figure 
subplot(221) 
plot(t,q_0,t,q_0_m,'r'),xlabel('Time (sec)') 
title('q_0 true versus calculated from noisy Euler angles measurements 
values') 
subplot(222) 
plot(t,q_1,t,q_1_m,'r'),xlabel('Time (sec)') 
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title('q_1 true versus calculated from noisy Euler angles measurements 
values') 
subplot(223) 
plot(t,q_2,t,q_2_m,'r'),xlabel('Time (sec)') 
title('q_2 true versus calculated from noisy Euler angles measurements 
values') 
subplot(224) 
plot(t,q_3,t,q_3_m,'r'),xlabel('Time (sec)') 
title('q_3 true versus calculated from noisy Euler angles measurements 
values') 
t1=t; 
 
%%% FILTERING STAGE %%% 
 
% Define parameters 
N          = 2000;          % Number of iterations 
t          = 1:1:N;         % Time step index  
R          = sigma2^2;      % Measurement noise variance 
Q          = sigma^2;       % Angular rate noise variance       
numSamples = 2000;          % Number of particles used in each iteration  
     
% Generate error sequences 
v = E_true(1,:)-E_m(1,:); 
w = q_1-q_1_m; 
figure 
subplot(211) 
plot(t1,w),grid,xlabel('Time') 
ylabel('Quaternion q_1 error') 
subplot(212) 
plot(t1,v),grid,xlabel('Time') 
ylabel('Roll angle error in degrees') 
 
% Determine state and measurement 
x=q_1_m';                    % State sequence calculated by noisy angular rate 
measurement 
y=E_m(1,:)'*pi/180;          % Noisy roll angle measurement 
 
% Perform SIR filtering 
[samples,q] = SIR_fun(y,R,Q,numSamples,tt3,tt4); 
 
% Compute MMSE estimate 
q_1_est = mean(samples);     
 
% Generate estimate of the scalar value quaternion 
q_1_est=flag2.*abs(q_1_est); 
q_0_est=flag.*abs(sqrt(1-q_1_est.^2)); 
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% Plot filtered output for the quaternion 
figure 
subplot(211) 
plot(t1,q_1,t1,q_1_est,'r'),xlabel('Time'),ylabel('Quaternion value q_1'),grid 
legend('True value of q_1','Estimated value of q_1',0) 
title('True versus estimated value of q_1') 
subplot(212) 
plot(t1,q_1,t1,q_1_m,'r'),xlabel('Time (sec)'),ylabel('Quaternion value 
q_1'),grid 
legend('True value of q_1','Value estimated by the noisy Euler angle 
measurement') 
title('q_1 true versus calculated from noisy Euler angles measurements 
values') 
figure 
error_meas=abs(q_1-q_1_m); 
error_filter=abs(q_1-q_1_est); 
semilogy(t1,error_meas,t1,error_filter,'r') 
xlabel('Time'),ylabel('Absolute error'),grid 
legend('Error produced by noisy measurement','Error of the filtered out-
put',0) 
title('Error representation in terms of quaternion value q_1') 
err_rate_quat=mean(error_meas)/mean(error_filter) 
 
% Conversion to Euler angles 
E_est=[]; clear eul 
for n=1:1:t_final/Dt 
    quaternion=[q_1_est(n)  0   0   q_0_est(n)]; 
    sim('Quat2Euler') 
    E_est=[E_est,eul']; 
end 
E2=E_est(1,:); 
 
% Plot the true and the estimated values of the roll angle 
figure 
plot(t1,E1,t1,E2,'r'),grid 
xlabel('Time'),ylabel('Roll angle in degrees') 
legend('True value of roll angle','Estimated value of roll angle',0) 
title('True versus the estimated from the filter output value of roll angle')   
 
% Generate and plot the error curves 
err_m_ang=abs(E1-E_m(1,:)); 
err_est_ang=abs(E1-E2); 
semilogy(t1,err_m_ang,t1,err_est_ang,'r'),grid 
xlabel('Time'),ylabel('Absolute error in  degrees') 
legend('Initial error due to measurement','Error of the filtered output',0) 
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error_rate_angle=mean(err_m_ang)/mean(err_est_ang) 
MSE_est=sum(err_est_ang.^2)/length(err_est_ang) 
MSE_meas=sum(err_m_ang.^2)/length(err_m_ang) 
toc 

B. FUNCTION SIR_FUN.M 

function [x,q] = SIR_fun(y,R,Q,numSamples,tt3,tt4) 
% This function is used to perform SIR filtering for the specified 
% nonlinear model. The given inputs are: 
% y --> The available set of measurements 
% R --> The measurement noise variance 
% Q --> The process noise variance 
% numSamples --> The number of particles 
% tt3 --> The first zero crossing of quaternion q0 
% tt4 --> The second zero crossing of quaternion q0 
% The provided outputs are: 
% x --> The estimated state trajectories 
% q --> The normalized weighting vector 
 
if nargin < 6, error('Not enough input arguments.'); end 
 
[rows,cols] = size(y);               % rows = Number of iterations 
x=zeros(numSamples,rows);            % Initialize posterior mean estimate 
xu=zeros(numSamples,rows);           % Initialize predicted state 
q=zeros(numSamples,rows);            % Initialize weighting vector 
 
% Performing prediction and updating after resampling 
for t=1:rows-1 
  xu(:,t)  = predict(x(:,t),t,Q,tt3,tt4); 
  q(:,t+1) = weightvector(xu(:,t),y(t+1,1),R,tt3,tt4); 
  x(:,t+1) = resample(xu(:,t),q(:,t+1)); 
  x(:,t+1) = xu(:,t); 
  [q(:,t+1),xu(:,t),x(:,t+1)]; 
end 

C. FUNCTION PREDICT.M 

function xu = predict(x,t,Q,tt3,tt4) 
% This function provides the results of the prediction stage of the SIR 
% based particle filter. The inputs are: 
%  x --> The generated samples of the state 
%  t --> The iteration index number 
%  Q --> The variance of the process 
% tt3 --> The first zero crossing of quaternion q0 
% tt4 --> The second zero crossing of quaternion q0 
 
if nargin < 5, error('Not enough input arguments.'); end 
 
w  = sqrt(Q)*randn(size(x)); 
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if (t>=tt3)&&(t<=tt4) 
   xu = -0.5.*(sin(0.1*t*0.01)+w).*sqrt(1-x.^2)*0.01+ x; 
else 
   xu = 0.5.*(sin(0.1*t*0.01)+w).*sqrt(1-x.^2)*0.01+ x; 
end 

D. FUNCTION WEIGHTVECTOR.M 

function q = weightvector(xu,y,R,tt3,tt4) 
% This function computes the normalized weighting vector q 
% The given inputs are: 
%  xu --> The set of state prediction samples 
%   y --> The available set of measurements 
%   R --> The measurement noise covariance 
% tt3 --> The first zero crossing of quaternion q0 
% tt4 --> The second zero crossing of quaternion q0 
% NOTE: The equation for variable m is the measurement equation  
% for the one-axis case 
if nargin < 5, error('Not enough input arguments.'); end 
 
flag=ones(1,2000); 
for i=tt3:tt4 
    flag(i)=-flag(i); 
end 
[rows,cols] = size(xu); 
q = zeros(size(xu)); 
m = atan2(2*xu.*sqrt(1-xu.^2) , 1-2*xu.^2);      
q = exp(-.5*R^(-1)*(y.*ones(size(xu))-m).^(2)); 
q = q/sum(q);    

E. FUNCTION RESAMPLE.M 

function x = resample(xu,q) 
% This function performs the resampling stage providing the new set of 
% the particles at the end of each iteration. The inputs are: 
% xu --> The set of state prediction samples 
%  q --> The normalized weighting vector 
 
if nargin < 2, error('Not enough input arguments.'); end 
 
i = 1; 
j = 1; 
[N,M]=size(xu);   
u = rand(N+1,1); 
x = ones(size(xu)); 
S = cumsum(-log(u)); 
W = cumsum(q); 
while j <= N 
  if (W(j,1)*S(N,1)) > S(i,1) 
    x(i,1) = xu(j,1);  
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    i = i+1; 
  else 
    j = j+1; 
  end 
end 

F. SIMULINK® MODEL QUAT2EULER.MDL 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



71 

LIST OF REFERENCES 

1. Robert G. Brown and Patrick Y.C. Hwang, Introduction to Random Signals and 

Applied Kalman Filtering, John Wiley and Sons, Inc., New York, 1997. 

2. B. Ristic, M.S. Arulampalam and N. Gordon, Beyond the Kalman Filter Particle 

Filters for Tracking Applications, Artech House, Boston, 2004. 

3. M.S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, “A Tutorial on Particle 

Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,” IEEE Transac-

tions on Signal Processing, Vol. 50, No. 2, pp. 174-188, February 2002. 

4. S. Haykin, K. Huber and Z. Chen, “Bayesian Sequential State Estimation for 

MIMO Wireless Communications,” Proceedings of the IEEE, Vol. 92, No. 3, pp. 

439-454, March 2004. 

5. M.R. Morelande, S. Challa and N. Gordon, “Application of Particle Filters to Sin-

gle Target Tracking Problems,” Signal and Data Processing of Small Targets 

2003, San Diego, CA, Aug. 5-7, 2003. 

6. K. Dahia, C. Musso and D.T. Pham, “Application of the Kalman Filter to the Up-

dated Inertial Navigation System,” ONERA: Tire a Part, No. 179, pp. 1-4, 2004. 

7. Y. Cheng and J.L. Crassidis, “Particle Filtering for Sequential Spacecraft Attitude 

Estimation,” AIAA Guidance, Navigation, and Control Conference and Exhibit, 

Providence, Rhode Island, Aug. 16-19, 2004. 

8. J.L. Crassidis and J.L. Junkins, Optimal Estimation of Dynamic Systems, CRC 

Press, Boca Raton, FL, 2004.  

9. J.L. Crassidis and F.L. Markley, “Unscented Filtering for Spacecraft Attitude Es-

timation,” Journal of Guidance, Control and Dynamics, Vol. 26, No. 4, pp. 536-

542, July-August 2003. 

10. J.L. Crassidis and F.L. Markley, “Sliding Mode Using Modified Rodrigues Pa-

rameters,” Journal of Guidance, Control and Dynamics, Vol. 19, No. 6, pp. 1381-

1383, November-December 1996. 

11. F.L. Markley, “Attitude Error Representations for Kalman Filtering,” Journal of 

Guidance, Control and Dynamics, Vol. 26, No. 2, pp. 311-317, March-April 

2003. 



72 

12. J.S. Wertz, Spacecraft Attitude Determination and Control, D.Reidel Publishing 

Co., Dordrecht, The Netherlands, 1984. 

13. J. Kim, R. Cristi and B. Agrawal, “Attitude Determination for NPS Three-Axis 

Spacecraft Simulator,” AIAA/AAS Astrodynamics Specialist Conference and Ex-

hibit, Providence, Rhode Island, Aug. 16-19, 2004. 

14. M. Romano and B.N. Agrawal, “Acquisition, Tracking and Pointing of Bifocal 

Relay Mirror Spacecraft,” Acta Astronautica, Vol. 53, No. 4, pp. 509-519, Febru-

ary 2003. 

15. Nando de Freitas Software, Sequential Sampling-Importance Resampling (SIR). 

http://www.cs.ubc.ca/~nando/software.html/demo1.tar (last accessed April 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Department Chairman, Code EC/Po 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, California 
 

4. Department Chairman, Code IS/Bo 
Department of Information Sciences 
Naval Postgraduate School 
Monterey, California 
 

5. Professor Roberto Cristi, Code EC/Cr 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, California  
 

6. Professor David C. Jenn, Code EC/Jn 
Department of Electrical and Computing Engineering 
Naval Postgraduate School 
Monterey, California 
 

7. Embassy of Greece, Naval Attaché 
Washington, DC 
 

8. Ioannis Kassalias 
11142, Athens 

 GREECE 
 

 
 


