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ABSTRACT

A Galerkin-based family of numerical formulations is presented for solving nonlinear op-

timal control problems. This dissertation introduces a family of direct methods that cal-

culate optimal trajectories by discretizing the system dynamics using Galerkin numerical

techniques and approximate the cost function with Gaussian quadrature. In this numer-

ical approach, the analysis is based on L2-norms. An important result in the theoretical

foundation is that the feasibility and consistency theorems are proved for problems with

continuous and/or piecewise continuous controls. Galerkin methods may be formulated in

a number of ways that allow for efficiency and/or improved accuracy while solving a wide

range of optimal control problems with a variety of state and control constraints. Numerical

formulations using Lagrangian and Legendre test functions are derived. One formulation

allows for a weak enforcement of boundary conditions, which imposes end conditions only

up to the accuracy of the numerical approximation itself. Additionally, the multi-scale

formulation can reduce the dimension of multi-scale optimal control problems, those in

which the states and controls evolve on different timescales. Finally, numerical examples

are shown to demonstrate the versatile nature of Galerkin optimal control.
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CHAPTER 1:
INTRODUCTION

The last two decades have proven to be a time of active research for numerical meth-

ods for optimal control. Particularly, direct collocation methods, such as pseudospectral

(PS) methods, have received much attention [1–8]. PS methods produce accurate solutions

on a wide variety of optimal control problems. Two recent highlights are the success-

ful use of the Legendre PS method for the first ever zero-propellant attitude maneuver of

the International Space Station [4] and the first ever minimum-time rotational maneuver

performed in orbit by a NASA space telescope called TRACE [8]. In the Legendre PS

method [1, 2, 5, 6, 9, 10], the problem is discretized at the Legendre-Gauss-Lobatto (LGL)

points, Legendre-Gauss-Radau (LGR) points or Legendre-Gauss (LG) points. The states

are approximated with globally interpolating Lagrange polynomials and the cost function

is typically approximated using Gaussian quadrature rule. Other variants of the PS method

include the Chebyshev PS method [11], the PS knotting method [12] and the Bellman

method [13]. The Legendre PS method will be outlined in Chapter 3 of this dissertation,

preceded by a review of mathematical topics in Chapter 2.

While PS methods have shown to be good all-round methods for solving nonlinear

optimal control problems, approximating the derivative of a function using a standard PS

differentiation matrix (such as the Legendre PS differentiation matrix) may introduce errors

into the approximation. Chapter 3 highlights this issue with the use of Jackson’s Theorem.

Additionally, Chapter 3 will motivate the use of the weak integral formulation to approx-

imate the system’s dynamics. This leads to the creation of a family of Galerkin-based

formulations called, “Galerkin optimal control.”

The family of methods proposed in this dissertation are derived from Galerkin nu-

merical techniques that have been developed for numerical solutions to differential equa-

tions since the early 1970s [14–16]. In addition to the family of Galerkin optimal control

formulations that are presented, this dissertation highlights important theorems that prove

1



method feasibility and consistency for problems with continuous and/or piecewise contin-

uous controls.

The base Galerkin optimal control method is outlined in Chapter 4, where fea-

sibility and convergence theorems are presented. Chapter 5 presents a review of addi-

tional Galerkin-based formulations and strategies such as the use element-based Galerkin

techniques and a multi-scale approach. Lastly, modifications to the method such as over-

integration and the use of various quadrature rules are offered to improve computational

efficiency and/or increase accuracy of the solutions.

The remainder of the dissertation is organized as follows: Chapter 6 presents a

Petrov-Galerkin optimal control approach to discretizing the system dynamics; in place of

Lagrange polynomial test functions integrated into the base formulation, a set of Legen-

dre polynomials are used. Improved feasibility and convergence theorems are presented.

Chapter 7 demonstrates the versatile nature of the Galerkin optimal control formulations by

considering a number of example problems. Lastly, Chapter 8, highlights the potential for

Galerkin optimal control in solving a wide range of real-world optimal control problems

with a variety of state and control constraints. Additionally, Chapter 8 discusses areas of

future research.

2



CHAPTER 2:
MATHEMATICAL BACKGROUND

2.1. Optimal Control

Optimal control has a rich history that dates back to 1696, when Johann Bernoulli

posed the bachristochrone problem in the Acta Eruditorum to [17, 18] “the most astute

mathematicians of the world.” The bachristochrone problem was the following:

If in the vertical plane two points A and B are given, then it is required to

specify the orbit AMB of the movable point M, along which it, starting from A,

and under the influence of its own weight, arrives at B in the shortest possible

time. [19]

In addition to Johann Bernoulli, other mathematical giants living in Europe at this time,

such as Newton, Leibniz and Johann’s brother, Jacob Bernoulli [19] (all considered “Men

of Mathematics” by Bell [20]), solved the bachristochrone problem. Later, Euler invented a

method for solving such problems (with mathematical underpinnings created by Lagrange),

known today as the foundations of the calculus of variations. The standard calculus of

variations problems is of the form [21]

minimize J [y(·)] =

∫ tf

t0

F (t, y(t), ẏ(t))dt, (2.1)

subject to y(t0) = y0 and y(tf ) = yf , (2.2)

where J acts on a set of functions and is called a functional. Notice that problem (2.1)–(2.2)

may be written in the equivalent optimal control problem form

minimize J [x(·), u(·)] =

∫ tf

t0

F (x(t), u(t))dt, (2.3)

subject to x(t0) = [t0, y0]T , x(tf ) = [tf , yf ]
T and ẋ(t) = [1, u(t)]T , t ∈ [t0, tf ], (2.4)

3



by renaming the variables t and y as t = y1 and y = y2, and creating the new vector

x = [y1, y2]T .

Over 250 years later, after many periods of active research in the field of calculus

of variations, the Russian mathematician Lev Semenovich Pontryagin made a giant leap

forward. In 1956, Pontryagin and his group established the optimal control theory [22,

23]. In contrast to standard calculus of variations problems of the form (2.1)–(2.2), or

equivalent form (2.3)–(2.4), it was shown that optimal control theory was well suited to

handle discontinuous solutions, u(t). Additionally, Pontryagin established that problems

of optimal control involved the minimization of a functional over a set of function pairs,

t 7→ (x, u) ∈ RNx × RNu , subject to the dynamical constraint

ẋ(t) = f(x(t), u(t)),

where f : RNx × RNu → RNx and u(t) is a control function. It was soon realized that this

new theory of optimal control was well suited to solve many complex problems (that the

calculus of variations could not). Over the last half century, optimal control theory has been

developed into an extremely powerful tool that has touched many areas of mathematics,

science and engineering. Consider the following general problem of optimal control.

2.1.1. The Optimal Control Problem

Determine the state-control function pair, t 7→ (x, u) ∈ RNx ×RNu , that minimizes

the cost functional

J [x(·), u(·)] =

∫ tf

t0

F (x(t), u(t))dt+ E(x(tf )), (2.5)

subject to the dynamics,

ẋ(t) = f(x(t), u(t)), (2.6)

4



initial conditions,

x(t0) = x0, (2.7)

at specified time, t0, and endpoint conditions,

e(x(tf )) = 0, (2.8)

where the running (or Lagrange) cost F : RNx × RNu → R, the endpoint (or Mayer) cost,

E : RNx × RNx → R, f : RNx × RNu → RNx and e : RNx × RNx → RNe , are Lipschitz

continuous with respect to their arguments. A set of necessary conditions must be met in

order to find candidate solutions to problem (2.5)–(2.8). Pontryagin’s Minimum Principle

provides the necessary framework.

2.1.2. Pontryagin’s Minimum Principle

Pontryagin’s Minimum Principle was proved by Pontryagin in 1956 [22, 23]. It

provides conditions that must be met in order for a solution to be considered optimal. As

with the calculus of variations both necessary and sufficient conditions for optimality may

be established. Although sufficient conditions are beyond the scope of this dissertation

(see [24]), first order necessary conditions will be outlined with help from the calculus of

variations.

2.1.2.1. Calculus of Variations

In the calculus of variations, problems of the form (2.1)–(2.2) are solved by consid-

ering the variation of J , or ∆J , given by

∆J [y∗, y] = J [y]− J [y∗]

where y∗ is the minimizing curve, and y are all other admissible curves. For y∗ to be a

minimizing curve it is necessary that ∆J [y∗, y] ≥ 0. Additionally, if all the first order
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terms are collected in the expansion of ∆J , it is necessary that this collection (called the

first variation or shown symbolically as δJ [y∗]) must be equal to zero [21]. This same

approach may be used to define the optimality conditions for problem (2.5)–(2.8).

2.1.2.2. Necessary Conditions

In order to apply a variational approach to problem (2.5)–(2.8), consider the aug-

mented functional,

Ja[x(·), u(·), λ(·), ν(·)] =

∫ tf

t0

(
F (x(t), u(t)) + λT (f(x(t), u(t))− ẋ(t))

)
dt

+E(x(tf ))− νT e(x(tf )),

where λ(t) ∈ RNx and ν(t) ∈ RNe are Lagrange multipliers, and λ(t) is typically given the

name costate or adjoint covector. As in the calculus of variations approach, considering the

first variation, δJa[u∗] = 0, a set of necessary conditions can be obtained [21, 25–27]

ẋ(t) =
∂H

∂λ
, (2.9)

λ̇(t) =− ∂H

∂x
, (2.10)

where the Hamiltonian, H , is given by

H(x(t), u(t), λ(t)) = F (x(t), u(t)) + λTf(x(t), u(t)). (2.11)

Additionally, the Hamiltonian (2.11) reaches its minimum with respect to u at u = u∗. This

is called the Hamiltonian Minimization Condition and can be expressed as

u∗ = arg max
u∈U

H(x(t), u(t), λ(t)), (2.12)
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where U defines a region of feasible control. Finally, the following conditions must be

satisfied on the boundary

λ(tf ) =
∂Ē

∂xf
, (2.13)

H(tf ) =− ∂Ē

∂tf
, (2.14)

e(x(tf )) = 0, (2.15)

where the endpoint Lagrangian, Ē, is given by

Ē(x(tf ), ν) = E(x(tf )) + νT e(x(tf )). (2.16)

Equations (2.9), (2.10), (2.12) and (2.13)–(2.15) provide the first-order necessary condi-

tions for optimality and create the framework for Pontryagin’s Minimum Principle.

2.1.2.3. Pontryagin’s Minimum Principle

Lemma 2.1 (Pontryagin’s Minimum Principle). [26] Let, (x∗(t), u∗(t)), be a solution to

problem (2.5)–(2.8). Then in order for x∗(t) and u∗(t) to be optimal, it is necessary that

there exists a costate, λ, and covector, ν, that satisfies conditions (2.9), (2.10), (2.12) and

(2.13)–(2.15).

Remark 2.1. For problem (2.5)–(2.8), with added path condition, the following mixed

state-control inequality path constraint is included,

h(x(t), u(t)) ≤ 0, (2.17)

where h : RNx × RNu → RNh is Lipschitz continuous with respect to x and u.
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With the addition of the path constraint, candidate solutions to problem (2.5)–(2.8)

and (2.17) can be found by solving the nonlinear programing (NLP) problem

u∗ = arg max
u∈U(x)

H̄(x(t), u(t), λ(t), µ(t)),

where the constraint set, U ⊆ RNu , is given by

U(x) = {u ∈ U|h(x(t), u(t)) ≤ 0, x ∈ RNx , t ∈ [t0, tf ]}.

The augmented Hamiltonian (or Lagrangian of the Hamiltonian), H̄ , is given by

H̄(x(t), u(t), λ(t), µ(t)) =H(x(t), u(t), λ(t)) + µTh(x(t), u(t)),

where µ(t) ∈ RNh are Lagrange multipliers. The modified set of necessary conditions

are [27, 28]

ẋ(t) =
∂H̄

∂λ
, (2.18)

λ̇(t) =− ∂H̄

∂x
, (2.19)

along with the following conditions on the boundary

λ(tf ) =
∂Ē

∂xf
, (2.20)

H̄(tf ) =− ∂Ē

∂tf
, (2.21)

e(x(tf )) = 0. (2.22)

Additionally, the complementary (slackness) condition,

8



µi

≤ 0, hi(x(t), u(t)) = 0,

= 0, hi(x(t), u(t)) < 0,

(2.23)

must be satisfied.

Equations (2.18)–(2.23) provide the first-order necessary conditions for optimality

for problem (2.5)–(2.8) and (2.17).

Although Pontryagin provided a framework for finding candidate optimal solutions,

many problems of optimal control are too difficult to solve analytically. It is easy to see the

difficulty in solving the 2Nx Hamiltonian system of differential equations (2.9)–(2.10) or

(2.18 )–(2.19). For this reason, numerically methods have become extremely important in

solving optimal control problems.

2.1.3. Numerical Methods for Optimal Control

Many numerical techniques have been investigated for solving optimal control prob-

lems since Pontryagin proved the Minimum Principle in 1956. These optimal control meth-

ods take two main forms, indirect and direct. Recent surveys of these techniques are pro-

vided by Betts [29, 30], Trélat [31] and Ross [32] and a historical perspective by Stryk et

al. [33]. Indirect methods (such as the shooting and multiple shooting methods) solve Pon-

tryagin’s necessary conditions for optimality. Although these methods have been shown

to solve a wide range of problems with great accuracy, they prove to be difficult to im-

plement, due to the knowledge of the calculus of variations required and the difficulty of

providing good initial guesses. In contrast, the direct methods (such as Euler, Runge-Kutta

and collocation methods) discretize the cost function, problem dynamics, etc, at specified

time points. Due to the fact that direct methods require no knowledge of the necessary con-

ditions for optimality, and the accuracies that may be obtained, they have recently gained

much attention. Of the direct methods, specifically the global orthogonal collocation meth-

ods (a.k.a. pseudospectral methods) have proven to solve difficult problems with great ac-
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curacy [4, 8, 34, 35] after becoming an actively researched topic in the 1990s by Elnagar et

al. [1] and Fahroo et al. [2].

Pseudospectral (PS) methods for optimal control discretize the problem at speci-

fied nodes, called collocation points. Due to the properties of the orthogonal family of

collocation points (such as those found via the Legendre or Chebyshev polynomial ba-

sis) approximations converge at spectral rates [6]. The most widely used Legendre PS

method [1, 5, 6, 9, 10] is based on the LGL points [36]. However, the Legendre PS method

may be based upon LGR or LG nodes as well [36, 37]. PS methods for optimal control

have been formally implemented in the MATLAB-based software package DIDO [38] and

NASA’s Fortran-based package OTIS [39].

There are four parts to the numerical solution to an optimal control problem us-

ing a PS method: discretization of the system dynamics, discretization of the state-control

constraints, integration of the cost function and solving the nonlinear program (NLP). The

mathematical background associated with the first three steps will be discussed in the fol-

lowing sections. Spectral methods are attractive for discretizing the problem’s dynamics

due to their superior accuracy. Two global spectral methods, collocation and Galerkin,

will be outlined in Section 2.3.1. Additionally, Galerkin methods may be formulated as

element-based methods. These local spectral element methods will be outlined in Sec-

tion 2.3.2. A fundamental task in the formulation of these global and local methods is the

selection of good discretization points and the use of interpolating functions. Both will be

discussed in detail in Section 2.2. Finally, numerical integration, or quadrature, is typically

used to integrate the cost function and will also be outlined in Section 2.2.

The resulting NLP can be solved by using a commercial sequential quadratic pro-

gramming (SQP) software packages such as dense NLP solver NPSOL [40] and sparse NLP

solvers SNOPT [41, 42] and SPRNLP [43]. A feasible solution can be found that satisfies

the tolerances specified in the optimization problem by adjusting the order of polynomial

used in the approximation.
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2.2. Interpolation and Numerical Integration

Interpolation and numerical integration serve an important role in the methods out-

lined in this dissertation and will be discussed in this section. The general structure of this

section follows that provided by Giraldo in Chapters 4 and 5 of [44].

2.2.1. Interpolation

Polynomial interpolation is the method used to construct anN -th order polynomial,

or interpolant, xN(t), that approximates a function, x(t). This is typically done by ensuring

the interpolant passes through theN+1 known points, {(ti, xi)}Ni=0, so that x(ti) = xN(ti),

for i = 0, 1, . . . , N . This may be accomplished by using a finite sum such as

xN(t) =
N∑
j=0

Φj(t)x̃j, (2.24)

where {x̃j}Nj=0 are the expansion coefficients and {Φj}Nj=0 are the basis functions. Defining

the basis functions, {Φj}Nj=0, as modes (such as Legendre polynomials) leads to modal

type of interpolation. However, defining the basis functions in a nodal fashion such that

Φj(ti) = δij , for i, j = 0, 1, . . . , N , where

δij =

1, i = j,

0, i 6= j,

(such as Lagrange polynomials) leads to nodal interpolation.

2.2.1.1. Modal Interpolation

In modal interpolation, the basis functions, {Φj}Nj=0, in Equation (2.24) are typi-

cally orthogonal polynomials and the eigenfunctions of the singular Strurm-Liouville prob-

lem. Commonly used polynomials are: Legendre, Chebyshev, Fourier and Jacobi. For this
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discussion the Legendre polynomial, L(t), will be the focus, defined by [45]

Lj(t) =
(−1)j

2jj!

dj

dtj

((
1− t2

)j)
, (2.25)

and therefore will be the chosen basis. The Legendre polynomials result from the special

case of the singular Strurm-Liouville problem [45],

d

dt

(
(1− t2)

dLj(t)

dt

)
+ j(j + 1)Lj(t) = 0.

Figure 1 shows the first seven Legendre polynomials. The spectral coefficients, {aj}∞j=0,

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

t

L
n
(t

)

Figure 1: Legendre polynomials, {Ln(t)}6
n=0.

for the continuous Legendre expansion, are defined as [46]

aj =
1

γj

∫ 1

−1

x(t)Lj(t)dt, (2.26)
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where the normalizing constants, {γj}∞j=0, for the Legendre polynomials are given by

γj =
2

2j + 1
. (2.27)

The truncated Legendre modal expansion is then given by

xN(t) =
N∑
j=0

Lj(t)aj. (2.28)

However, due to the interpolatory nature of xN , it is natural to seek spectral coefficients,

{aj}Nj=0, defined by

xN(ti) =
N∑
j=0

Lj(ti)aj =
N∑
j=0

Vijaj, (2.29)

for the known points {ti}Ni=0, where V is the generalized Vandermonde matrix given by [47]

V =


L0(t0) L1(t0) · · · LN(t0)

L0(t1) L1(t1) · · · LN(t1)
...

... . . . ...

L0(tN) L1(tN) · · · LN(tN)

 . (2.30)

From Equation (2.29), the modes, {aj}Nj=0, and the nodes, {x̄Nj}Nj=0, are related by the

generalized Vandermonde matrix (2.30) by the relationships [47]

x̄Nj =
N∑
j=0

Vijaj

and

ai =
N∑
j=0

V −1
ij x̄Nj, (2.31)
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where x̄Nj = xN(tj) for j = 0, 1, . . . , N .

Remark 2.2. Note that to form Equation (2.31) the Vandermonde matrix (2.30) must be

invertible and therefore nonsingular (and more practically speaking, well-conditioned). We

will see that the invertibility of the Vandermonde matrix is dependent upon the interpolation

quality of grid, {ti}Ni=0 (see Section 2.2.1.4 for grid selection) [47]. Additionally, we take

comfort in the fact that the set of Legendre polynomials, {Li}∞i=0, is an orthogonal system

that has shown to produce well-conditioned Vandermonde matrices for carefully selected

nodes (as compared with the ill-conditioned Vandermonde matrices of non-orthogonal sys-

tems such as the the power basis, {tn}∞n=0) [48].

Note that Equation (2.28) is a sum of frequencies, {Lj}Nj=0, and amplitudes, {aj}Nj=0,

that together compose the (N+1) modes of xN(t). It is thus fitting to describe this approach

as modal interpolation.

2.2.1.2. Nodal Interpolation

In nodal interpolation, the basis functions, {Φj}Nj=0, in Equation (2.24) are the La-

grange polynomials, {φNj }Nj=0, of order N , defined on grid {ti}Ni=0, obtained from the gen-

eral definition [45]

φNj (t) =
N∏
i=0
i 6=j

(t− ti)
(tj − ti)

. (2.32)

Additionally, the Lagrange polynomials may be defined in terms of the Legendre polyno-

mial by [46]

φNj (t) =
1

N(N + 1)

(t2 − 1) L̇N(t)

(t− tj)LN(tj)
. (2.33)

Figure 2 shows the order N = 6 Lagrange polynomials, {φNj }Nj=0, defined on an equi-

spaced grid, t ∈ [−1, 1].
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Figure 2: Lagrange polynomials of order N = 6 defined on an equi-spaced grid.

The nodal interpolation of the function x(t) can be accomplished by the N -th order

expansion

xN(t) =
N∑
j=0

φNj (t)x̄Nj, (2.34)

where x̄Nj = xN(tj), for j = 0, 1, . . . , N , since the Lagrange polynomial has the property,

φNj (ti) = δij .

Additionally, the Legendre polynomial, Li(t), of order i can be written as linear

combinations of Lagrange polynomials, {φNi (t)}Ni=0, of order N defined on grid, {ti}Ni=0,

by the relationship [47]

Li(t) =
N∑
j=0

Li(tj)φ
N
j (t) =

N∑
j=0

V T
ij φ

N
j (t). (2.35)
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Likewise, the Lagrange polynomial may be written as linear combinations of Legendre

polynomials by the relationship

φNi (t) =
N∑
j=0

(
V T
)−1

ij
Lj(t) =

N∑
j=0

V −1
ji Lj(t). (2.36)

From Equations (2.31) and (2.36) we can relate the modal and nodal forms of the interplant,

xN(t), by

xN(t) =
N∑
i=0

φNi (t)x̄Ni =
N∑
i=0

(
N∑
j=0

V −1
ji Lj(t)

)
x̄Ni

=
N∑
j=0

Lj(t)

(
N∑
i=0

V −1
ji x̄

Ni

)
=

N∑
j=0

Lj(t)aj.

Therefore, Equation (2.34) is truly a nodal representation of Equation (2.28).

2.2.1.3. Transformations between grids

Consider the problem of transforming between two different grids, {tj}Nj=0 and

{τj}Mj=0, where M < N . Let {φMj }Mj=0 be the set of Lagrange polynomials of order M

defined on grid {τj}Mj=0. Also, let the function xM(t) be the Lagrange interpolating poly-

nomial

xM(t) =
M∑
j=0

φMj (t)x̄Mj,

where x̄Mj = xM(τj), for j = 0, 1, . . . , N , since φMj (τi) = δij . Then the approximation of

xM at the dense gridpoints, {tk}Nk=0, can be calculated with the linear transformation

xM(ti) =
M∑
j=0

φMj (ti)x̄
Mj =

M∑
j=0

TNMij x̄Nj, i = 0, 1, . . . , N,
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where the (N + 1)× (M + 1) linear mapping, TNM , is given by

TNM =


φM0 (t0) φM1 (t0) · · · φMM(t0)

φM0 (t1) φM1 (t1) · · · φMM(t1)
...

... . . . ...

φM0 (tN) φM1 (tN) · · · φMM(tN)

 . (2.37)

In a similar fashion, the approximation of ẋmay be transformed between two grids.

Note that the approximation of ẋ on grid {τj}Mj=0 may be given by

ẋ(t) ≈ ẋM(t) =
M∑
j=0

φ̇Mj (t)x̄Mj,

where the derivative of the Lagrange polynomial is defined as

φ̇Mj (t) =
M∑
k=0
k 6=j

(
1

tj − tk

) M∏
i=0
i 6=j
i 6=k

t− ti
tj − ti

. (2.38)

Then the approximation of ẋM at the dense gridpoints, {tj}Nj=0, can be calculated with the

with the linear transformation

ẋM(ti) =
M∑
j=0

φ̇Mj (ti)x̄
Mj =

M∑
j=0

ANMij x̄Mj, i = 0, 1, . . . , N,

where the (N + 1)× (M + 1) linear mapping, ANM , is given by

ANM =


φ̇M0 (t0) φ̇M1 (t0) · · · φ̇MM(t0)

φ̇M0 (t1) φ̇M1 (t1) · · · φ̇MM(t1)
...

... . . . ...

φ̇M0 (tN) φ̇M1 (tN) · · · φ̇MM(tN)

 . (2.39)
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Using the transformation matrices (2.37) and (2.39) to relate different grids will

serve as an important tool for the multi-scale approximation methods outlined in Chapters 3

and 5. However, the accuracy of interpolation is extremely important and will be discussed

next.

2.2.1.4. Interpolation Quality

Approximation quality is a great concern when using interpolation. The goodness

of the approximation xN(t) is directly related to the grid points, {tj}Nj=0, from which the

Lagrange polynomials, {φNj }Nj=0, are defined. A measure of interpolation goodness is the

Lebesque constant, ΛN , given by [45]

ΛN = max
t∈[−1,1]

N∑
j=0

∣∣φNj (t)
∣∣. (2.40)

The best interpolating polynomial xN(t) is one that minimizes the Lebesgue constant (2.40),

due to the following result [45],

∥∥x(t)− xN(t)
∥∥
L∞
≤ (1 + ΛN)‖x(t)− p(t)‖L∞ ,

where p(t) is the best approximating polynomial of x(t) in the L∞-norm (see Appendix A).

From [45, 49], for any set of (N + 1) distinct points, ti ∈ [−1, 1], for i = 0, 1, . . . , N , the

Lesbegue constant (2.40) has the lower bound [45],

2

π
log(N + 1) + α ≤ ΛN ,

where α = 2
π

(
γ + log 4

π

)
≈ 0.521 and γ = 0.57721566... is the Euler-Mascheroni con-

stant. So, at best the selected grid is associated with a Lebesgue constant that grows

logarithmically [45]. Common Legendre family of points used for interpolation are the

Legendre-Gauss (LG), Legendre-Gauss-Lobatto (LGL) and Legendre-Gauss-Radau (LGR)

points.
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Legendre-Gauss Points. The LG points, {ti}Ni=0, are defined by −1 < t0 < · · · < tN < 1,

and are the roots of

ξ(t) = LN+1(t), (2.41)

where LN+1(t) is the (N + 1)-th order Legendre polynomial. Note that the LG points do

not include the endpoints, t = ±1. Figure 3 shows the LG points for various orders of N .

−1 −0.5 0 0.5 1

Figure 3: LG points for N = 10, 20 and 30.

Legendre-Gauss-Lobatto Points. The LGL points, {ti}Ni=0, are defined by t0 = −1 <

t1 < · · · < tN = 1, and are the roots of

ξ(t) = (1− t2)L̇N(t), (2.42)

where L̇N(t) is the derivative of the N -th order Legendre polynomial. Note that the LGL

points include the endpoints, t = ±1. Figure 4 shows the LG points for various orders of

N .
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Figure 4: LGL points for N = 10, 20 and 30.

Additionally, Figure 5 shows the order N = 6 Lagrange polynomials, φN , defined on a

LGL grid.
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Figure 5: Lagrange polynomials of order N = 6 defined on a LGL grid.

Legendre-Gauss-Radau Points. The LGR points, {ti}Ni=0, are defined by t0 = −1 < t1 <

· · · < tN < 1, and are the roots of

ξ(t) = LN+1(t) + LN(t). (2.43)
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Note that the LGR points only include the endpoint, t = −1. Figure 6 shows the LGR

points for various orders of N .

−1 −0.5 0 0.5 1

Figure 6: LGR points for N = 10, 20 and 30.

Additionally, flipped-LGR (F-LGR) points are the negative of the LGR points and are there-

fore defined by −1 < t0 < · · · < tN = 1. Note that the F-LGR points only include the

endpoint, t = 1.

Although all three sets of Legendre points (LG, LGL and LGR) have Lebesgue

constants (2.40) that grow logarithmically or sublinearly with N , the LGL grid is asymp-

totically associated with the near optimal Lebesgue constant [45],

ΛLGL
N ≤ 2

π
log(N + 1) + 0.685...

As alluded to in Remark 2.2, the quality of interpolation can also be observed by

analyzing the conditioning of the Vandermonde matrix (2.30). Due to the relationship

between the Legendre polynomials, {Lj}Nj=0, and Lagrange polynomials, {φNj }Nj=0, shown

in (2.35), Cramer’s rule [50] provides the following relationship

φNj =
Det [L(t0), . . . ,L(tj−1),L(t),L(tj+1), . . . ,L(tN)]

Det [V T ]
, (2.44)

where L(t) = [L0(t), L1(t), . . . , LN(t)]T . As pointed out by Hesthaven et al. [47], if the

goal is to minimize the Lebesque constant (2.40), we should strive to maximize the de-

nominator of Equation (2.44), Det
[
V T
]
. This leads to the LGL grid set [51]. Additionally,
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the Chebyshev-Gauss family of points proves to have excellent interpolation quality, par-

ticularly the Chebyshev-Gauss-Lobatto points when measured by the Lebesgue constant

growth [45, 52]. However, the focus in this dissertation will be on the Legendre basis, and

thus the LG, LGL and LGR points.

Unfortunately, equi-spaced points prove to be a very poor grid selection for inter-

polation. The Lebesgue constant for the equi-spaced points grows asymptotically like [52,

53],

ΛES
N ∼

2N+1

eN(log N + γ)
,

very far from optimal.

As an example of interpolation quality consider the function

f(t) = cos(µπt), t ∈ [−1, 1], (2.45)

with µ = 3, shown in Figure 7.
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Figure 7: Plot of f(t) = cos(3πt).
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When low order approximations are used to interpolate f(t), inaccuracies are appar-

ent. Figure 8 shows the inaccuracies in the 10-th order Lagrange interpolating polynomial

approximation of f(t) with LGL points.
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−1.5

−1

−0.5

0

0.5

1

1.5

t

f(
t)

 

 
Exact

Numerical

Figure 8: Interpolation of f(t) = cos(3πt) with 10-th order LGL points.

However, as the interpolation order, N , is increased, the maximum error,

‖error‖∞ =
∥∥f(ti)− fN(ti)

∥∥
∞, i = 0, 1, . . . , N,

decreases exponentially with N , where ‖ ζ ‖∞ represents the maximum element of vector,

ζ ∈ Rn. Figure 9 shows the visual accuracy of the 30-th order Lagrange interpolating

polynomial of f(t) with LGL points.
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Figure 9: Interpolation of f(t) = cos(3πt) with 30-th order LGL points.

Additionally, Figure 10 compares interpolation of f(t) with equi-spaced, LG, LGL

and LGR points, for various orders of N . Notice that for LG, LGL and LGR points, the

maximum interpolation error drops to O(10−15) by N = 35. However, in general, the

equi-spaced points prove to have very poor interpolation quality.
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Figure 10: Comparison of interpolation errors for various orders of N and equi-spaced,
LG, LGL and LGR points.

Due to the accuracy of LGL interpolation, and inclusion of the endpoints, t = ±1,

LGL points are readily used for numerical computation. However, also related to point

selection is the accuracy of numerical integration. This is an important factor for the direct

methods for optimal control (due to the cost function that is normally approximated by

numerical integration) and will be discussed next.

2.2.2. Numerical Integration

Numerical integration, or quadrature, is a way of approximating an integral with a

sum

∫ 1

−1

x(t)dt ≈
N∑
k=0

x(tk)wk,

25



where {wk}Nk=0 are the quadrature weights and {tk}Nk=0 are the associated points. Ideally,

the numerical integration is exact, but it is reasonable to expect an error, εN , such that

εN =

∫ 1

−1

x(t)dt−
N∑
k=0

x(tk)wk.

For the special case of the numerical integration of general function x ∈ CN+1, that is

approximated by the Lagrange interpolating polynomial

x(t) ≈ xN(t) =
N∑
j=0

φNj (t)x̄Nj,

the error may be given by [54]

εN =
1

(N + 1)!

∫ 1

−1

N∏
j=0

(t− tj)
d(N+1)x(ξ(t))

dt(N+1)
dt,

for arbitrary function ξ(t) ∈ [−1, 1].

However, for certain classes of polynomial functions, the quadrature error is zero.

Consider the function x(t) ∈ PN , represented as the finite sum

x(t) =
N∑
j=0

φNj (t)x̄Nj.

Performing numerical integration on x results in

∫ 1

−1

x(t)dt =

∫ 1

−1

N∑
j=0

φNj (t)x̄Njdt =
N∑
j=0

x̄Nj
∫ 1

−1

φNj (t)dt

=
N∑
j=0

x̄Nj
N∑
k=0

φNj (tk)wk =
N∑
j=0

x̄Njwj.
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Clearly, since

∫ 1

−1

x(t)dt =
N∑
j=0

x̄Njwj, (2.46)

quadrature is exact ∀x(t) ∈ PN . Additionally, the quadrature weights, {wj}Nj=0, can be

found with the relationship

wj =

∫ 1

−1

φNj (t)dt. (2.47)

2.2.2.1. Gaussian Quadrature

Consider now the case that x(t) ∈ P2N+1 written in the form

x(t) = LN+1(t)f(t) + g(t),

where f, g ∈ PN , LN+1 is the Legendre polynomial of order (N + 1) and PN denotes

the space of all polynomials of degree ≤ N . Also consider the (N + 1) points, {tk}Nk=0,

that are the roots of LN+1(t) (known as LG points, discussed in Section 2.2.1), and the

associated quadrature weights, {wk}Nk=0 (known as LG quadrature weights, found via the

general definition (2.47) or the more specific definition (2.48)). Then x(tk) = g(tk), for all

k = 0, 1, . . . , N , and

∫ 1

−1

x(t)dt =

∫ 1

−1

(LN+1(t)f(t) + g(t)) dt

=
N∑
k=0

LN+1(tk)f(tk)wk +
N∑
k=0

g(tk)wk

=
N∑
k=0

g(tk)wk =
N∑
k=0

x(tk)wk.

This is known as LG quadrature (or simply Gauss quadrature), which is exact ∀x(t) ∈

P2N+1. In the case that the function x(t) is a polynomial, such that x(t) ∈ P2N+δ, numerical
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integration is exact for LGL and LGR quadrature, where δ = −1 and 0, respectively. The

proof of LGL and LGR quadrature exactness for polynomials is similar to that given above

for LG quadrature. The list of LG, LGL and LGR weights are presented below (provided

by [47]) and point locations are given by Equations (2.41), (2.42) and (2.43), respectively.

Legendre-Gauss Quadrature. The LG quadrature weights, {wk}Nk=0, are given by

wk =
2

[1− (tk)2][L̇N+1(tk)]2
. (2.48)

Legendre-Gauss-Lobatto Quadrature. The LGL quadrature weights, {wk}Nk=0, are given

by

wk =
2

N(N + 1)

1

[LN(tk)]
2 . (2.49)

Legendre-Gauss-Radau Quadrature. The LGR quadrature weights, {wk}Nk=0, are given

by

wk =
1

(N + 1)2

1− tk
[LN(tk)]

2 . (2.50)

Additionally, the F-LGR quadrature weights, {w̃k}Nk=0, are the reordered LGR quadrature

weights, {w̃k}Nk=0 = {wN−k}Nk=0.

2.2.2.2. Gaussian Quadrature Accuracy

The Legendre-Gaussian family of quadrature is widely used due to its integrating

accuracy and has the following error estimates for LG, LGL and LGR quadrature, respec-

tively [55]
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εNLG =
22N+3[(N + 1)!]4

(2N + 3)[(2N + 2)!]3
d(2N+2)x(ξ)

dt(2N+2)
, ξ ∈ [−1, 1],

εNLGL =
−(N + 1)N322N+1[(N − 1)!]4

(2N + 1)[(2N)!]3
d(2N)x(ξ)

dt(2N)
, ξ ∈ [−1, 1],

εNLGR =
22N+1(N + 1)(N !)4

[(2N + 1)!]3
d(2N+1)x(ξ)

dt(2N+1)
, ξ ∈ [−1, 1].

Consider again the function (2.45), with µ = 1/2. As an example of quadrature

accuracy, consider the numerical approximation,

∫ 1

−1

cos

(
πt

2

)
dt ≈

N∑
k=0

fN(tk)wk, (2.51)

where

f(t) ≈ fN(t) =
N∑
j=0

φNj (t)f̄Nj,

and f̄Nj = cos(
πtj
2

), for j = 0, 1, . . . , N . Due to the property of the Lagrange polynomial,

φNj (ti) = δij , the quadrature expression in (2.51) takes the form (2.46),

N∑
k=0

fN(tk)wk =
N∑
k=0

f̄Nkwk.

As with interpolation error, quadrature error decreases exponentially with N . Fig-

ure 11 shows numerical integration error,

error =

∣∣∣∣∣
∫ 1

−1

cos(
πt

2
)dt−

N∑
k=0

cos(
πtk
2

)wk

∣∣∣∣∣,
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for LG, LGL and LGR quadrature, all of which demonstrate similar exponential conver-

gence as N increases.
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Figure 11: Comparison of quadrature errors for various orders ofN and LG, LGL and LGR
points.

Due to the accuracy of quadrature, quality of interpolation and inclusion of the

endpoints, t = ±1, LGL points are an important part of many numerical computation ap-

plications, to include direct methods for optimal control. For instance, in the Legendre PS

method the problem state-control constraints are discretized using LGL points. Addition-

ally, the states are approximated with globally interpolating Lagrange polynomials defined

on an LGL grid and the cost function is approximated using LGL quadrature rule. LGL

interpolation and quadrature also serve an important role in the construction of the Galerkin

optimal control formulations discussed in this dissertation.

A crucial step in solving optimal control problems with direct methods—and yet to

be discussed—is the discretization of the system dynamics. Although a number of tech-

niques have been investigated to do this, spectral methods have proven to be effective and

efficient. This is a highlight in the PS direct methods for optimal control, where collocation
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methods are used to discretize system dynamics. Spectral methods also serve as the heart

of Galerkin optimal control, where Galerkin methods are employed. Both collocation and

Galerkin methods will be discussed in the next section.

2.3. Numerical Solutions to Differential Equations

Spectral methods, which have gained much popularity due to their spectral accu-

racy and versatility [56, 57], can be formulated for both local (element-based) and global

approximations. Consider the task of discretizing the dynamics of problem (2.5)–(2.8),

ẋ(t) = f(x(t), u(t)), t ∈ [t0, tf ], (2.52)

where t 7→ (x, u) ∈ RNx × RNu , with initial conditions,

x(t0) = x0, (2.53)

and endpoint conditions,

e(x(tf )) = 0, (2.54)

where f : RNx × RNu → RNx and e : RNx × RNx → RNe , are Lipschitz continuous with

respect to their argument. This can be accomplished using a number of spectral method for-

mulations. However, two methods will be discussed here, collocation and Galerkin. Addi-

tionally, of the spectral element methods, continuous and discontinuous Galerkin element-

based formulations will be outlined.
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2.3.1. Spectral Methods

The starting point for the spectral approximation of Equation (2.52) is to approxi-

mate the solutions x and u by the finite sums

x(ξ) ≈ xN(ξ) =
N∑
j=0

Φj(ξ)x̂j,

u(ξ) ≈ uN(ξ) =
N∑
j=0

Φ̃j(ξ)ûj,

where x̂j and ûj are expansion coefficients and Φj and Φ̃j are basis functions. In terms of

the approximation xN and uN , Equation (2.52) becomes

ẋN(ξ)− ∆t

2
f(xN(ξ), uN(ξ)) = εN(ξ), (2.55)

where ∆t = tf − t0 and εN is the error (or residual) in the approximation which, gener-

ally, is not zero. The relationship between the physical time domain, t ∈ [t0, tf ], and the

computational space, ξ ∈ [−1, 1], is given by

ξ =
2

∆t
(t− t0)− 1 and dξ =

2

∆t
dt,

and conversely,

t =
∆t

2
(ξ + 1) + t0 and dt =

∆t

2
dξ.

2.3.1.1. Collocation

In the collocation method the basis functions, {Φj}Nj=0 are the Lagrange polyno-

mials (2.32), {φNj }Nj=0, of order N , defined on the grid of collocation points, {ξj}Nj=0 ∈

[−1, 1]; while {Φ̃j}Nj=0 = {ψNj }Nj=0, where {ψNj }Nj=0 is any continuous function (not nec-

essarily a polynomial) with the property ψj(ξi) = δij . The expansion coefficients are,

x̂j = x̄Nj and ûj = ūNj , therefore xN(ξj) = x̄Nj and uN(ξj) = ūNj , for j = 0, 1, . . . , N .
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The approximations of x and u in the computational space, ξ, are given by

xN(ξ) =
N∑
j=0

φNj (ξ)x̄Nj,

uN(ξ) =
N∑
j=0

ψNj (ξ)ūNj.

The approximation of ẋ in the computational space, ξ, is then

ẋN(ξ) =
N∑
j=0

φ̇Nj (ξ)x̄Nj,

where the derivative of the Lagrange polynomial, {φ̇Nj }Nj=0, is given by Equation (2.38).

Additionally, in the collocation method, the error term, εN , is ideally forced to zero at each

collocation point, therefore, Equation (2.55) becomes

N∑
j=0

φ̇Nj (ξi)x̄
Nj − ∆t

2
f(x̄Ni, ūNi) = 0, i = 0, 1, . . . , N.

Collocation methods assume the title pseudospectral methods, due to the nodal

nature of the formulation—in lieu of spectral referring to a transformation from physical

to spectral space. Common Legendre family of collocation nodes used are the LGL, LG

and LGR points. When LGL nodes, {ξi}Ni=0, defined by −1 = ξ0, ξ1, . . . , ξN−1, ξN = 1,

are used for the discretization, the Legendre PS differentiation matrix, A, is given by Aij =

φ̇Nj (ξi) for i, j = 0, 1, . . . , N , resulting in the system of equations,

N∑
j=0

Aijx̄
Nj − ∆t

2
f(x̄Ni, ūNi) = 0, i = 0, 1, . . . , N. (2.56)
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In addition to Equation (2.38), the Legendre PS differentiation matrix, A, may be defined

in terms of the Legendre polynomials by [46]

Aij =



LN (ξi)
LN (ξj)

1
ξi−ξj i 6= j,

−N(N+1)
4

i = j = 0,

N(N+1)
4

i = j = N,

0 i = jε [1, . . . , N − 1] .

(2.57)

Remark 2.3. The derivative of xN(ξ) at each LGL point {ξi}Ni=0 is exactly equal to

ẋN(ξi) =
N∑
j=0

Aijx̄
Nj,

for any polynomial with degree less than or equal to N [46]. However, a feasible solution

to the equality dynamical constraint may not exist. In order to guarantee feasibility of the

discretized problem, Gong et al. [5], suggest a relaxation of the equality constraint.

Therefore, Equation (2.52) may be discretized with the following inequality constraint,∥∥∥∥∥
N∑
j=0

Aijx̄
Nj − ∆t

2
f(x̄Ni, ūNi)

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N,

where δN is the feasibility tolerance that is dependent on N and the smoothness of x and

u (see Section 3.2); and ‖ ζ ‖∞ represents the maximum element of vector, ζ ∈ Rn. The

initial conditions and endpoint conditions may be approximated similarly by

∥∥x̄N0 − x0

∥∥
∞ ≤ δN and

∥∥e(x̄NN)
∥∥
∞ ≤ δN .

Collocation methods have become popular for the discretization of system dynam-

ics in direct methods for optimal control, specifically psuedospectral methods. For the

Legendre PS method, the LGL points become the discretization of choice.
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2.3.1.2. Galerkin Numerical Methods

Galerkin methods can be subdivided into two main categories, Bubnov-Galerkin

and Petrov-Galerkin. The weighted residual method forms the basis for the development

of these approximation techniques and will help to distinguish them [57].

For the weighted residual method, the weak integral form of the Equation (2.55) is

solved by multiplying by a test function, Ψi, integrating over the domain, and ideally we

force the residual term to zero,

∫ 1

−1

Ψi(ξ)

(
ẋN(ξ)− ∆t

2
f(xN(ξ), uN(ξ))

)
dξ =

∫ 1

−1

Ψi(ξ)ε
N(t)dξ = 0, (2.58)

for i = 0, 1, . . . , N .

Remark 2.4. Setting the residual terms to zero in Equation (2.58), (
∫ 1

−1
Ψi(ξ)ε

N(ξ)dξ = 0,

for each i = 0, 1, . . . , N), is akin to forcing the orthogonality of the space spanned by Ψi

and εN in L2[−1, 1].

The approximation xN and uN can be found satisfying Equation (2.58). Common

test functions include orthogonal polynomials (such as the Legendre polynomials, L) and

the trigonometric functions. In the Bubnov-Galerkin method, the test functions are the

same as the basis functions, unlike the Petrov-Galerkin method, where the test and basis

functions are different. The general structure of these global Galerkin methods—as well

as the mathematical notation used in this dissertation—is provided by Giraldo [44] and

discussed in the following sections.

Bubnov-Galerkin In the Bubnov-Galerkin method (or often called simply the Galerkin

method) the test and basis functions are the same. These functions can be modal or nodal

in nature, however, in this section the focus will be on nodal Galerkin methods. For a nodal

Galerkin approach, it is common to use a Legendre based grid such as the LGL, LG or LGR

nodes, and define the test and basis functions as Lagrange polynomials (2.32), {φNj }Nj=0,

of order N , on the selected grid. A popular selection for interpolation points are the LGL
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nodes due to the accuracy of LGL quadrature and the inclusion of endpoints, t = ±1. For

this discussion, the LGL nodes will be the focus.

The approximations of x and u in the computational space, ξ ∈ [−1, 1], are given

by

xN(ξ) =
N∑
j=0

φNj (ξ)x̄Nj,

uN(ξ) =
N∑
j=0

ψNj (ξ)ūNj.

where {ψNj }Nj=0 is any continuous function (not necessarily a polynomial) with the property

ψj(ξi) = δij . The expansion coefficients are, x̂j = x̄Nj and ûj = ūNj , therefore xN(ξj) =

x̄Nj and uN(ξj) = ūNj , for j = 0, 1, . . . , N . Equation (2.58) becomes [44]

∫ 1

−1

φNi (t)φ̇Nj (ξ)dξ x̄Nj − ∆t

2

∫ 1

−1

φNi (ξ)f(xN(ξ), uN(ξ))dξ = 0, (2.59)

for i = 0, 1, . . . , N , or using matrix-vector notation,

N∑
j=0

Dijx̄
Nj − ci = 0, i = 0, 1, . . . , N.

The Galerkin differentiation matrix, D, and RHS vector, c are defined as

Dij =

∫ 1

−1

φNi (ξ)φ̇Nj (ξ)dξ,

ci =
∆t

2

∫ 1

−1

φNi (ξ)f(xN(ξ), uN(ξ))dξ,

for i, j = 0, 1, . . . , N .

Using LGL quadrature, D can be calculated with the relationship

Dij =

Q∑
k=0

φNi (ξk)φ̇
N
j (ξk)wk = φ̇Nj (ξi)wi = Aijwi, i, j = 0, 1, . . . , N,
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where {wi}Ni=0 are the LGL weights given by Equation (2.49) and A is the Legendre PS

differentiation matrix (2.57). Since LGL quadrature rule is exact for polynomial integrands

of degree less than or equal to 2N − 1, the numerical integration is done exactly when

Q = N LGL integration points are used.

Using LGL quadrature rule, c can be approximated by the relationship

ci ≈
∆t

2

Q∑
k=0

φNi (ξk)f(xN(ξk), u
N(ξk))wk, i = 0, 1, . . . , N.

When Q = N LGL quadrature points are used, the RHS vector approximation, c̄N , can be

expressed in the simplified form

c̄Ni =
∆t

2
f(x̄Ni, ūNi)wi, i = 0, 1, . . . , N.

Remark 2.5. Recall that for LGL quadrature rule, integration is exact for polynomial

integrands of degree less than or equal to 2N − 1. If Q = (N + 1) integration points are

used, the RHS vector will integrate exactly when f(x(t), u(t)) is linear in x and u. In the

case of a nonlinear function f , the accuracy of integration (and therefore the accuracy of

the overall approximation) can be improved by increasing the number of quadrature points

Q.

When Q = N LGL quadrature points are used to calculate the Galerkin differentiation

matrix and approximate the RHS vector, the system may be simplified as

N∑
j=0

Dijx̄
Nj − c̄Ni = 0, i = 0, 1, . . . , N. (2.60)

Remark 2.6. In form (2.60), the resulting Galerkin equations that must be satisfied are

(
N∑
j=0

Aijx̄
Nk − ∆t

2
f(x̄Ni, ūNi)

)
wi = 0, (2.61)
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for i = 0, 1, . . . , N . Note that the relationship in parentheses,

N∑
j=0

Aijx̄
Nk − ∆t

2
f(x̄Ni, ūNi) = 0,

for i = 0, 1, . . . , N , are the same equations that would be satisfied when using the col-

location method (see Equation [2.56]). For this reason, Bubnov Galerkin with numerical

integration is sometimes called the “collocation method in the weak form.” [57]

In the words of John Boyd, “collocation—with the right set of points—must inherit

the aura of invincibility of the Galerkin method.” [58]

Remark 2.7. An inequality version of (2.61) has been known and used in pseudospectral

optimal control methods. Details on its relationship with Galerkin optimal control are

addressed in Chapter 4 in Remark 4.2.

Due to the results of Gong et al. [5], we know a feasible solution to the equality

dynamical constraint may not exist. In order to guarantee feasibility of the discretized

problem, the following inequality constraint is suggested,∥∥∥∥∥
N∑
j=0

Dijx̄
Nj − c̄Ni

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N, (2.62)

where δN is the feasibility tolerance that is dependent on N and the smoothness of x and

u (see Chapter 4). The initial conditions and endpoint conditions may be approximated

similarly by

∥∥x̄N0 − x0

∥∥
∞ ≤ δN and

∥∥e(x̄NN)
∥∥
∞ ≤ δN .

Remark 2.8. The inequality formulation (2.62) introduces some fundamental differences

in numerical analysis. In the Galerkin approach, the error is measured by the L2-norm.

As a result, δN has a feasibility with a slightly relaxed bound, by a factor of
√
wi (see
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Section 4.2 for the general Galerkin optimal control computational strategies, particularly

Equations (4.10) and (4.13)).

Remark 2.9. With the Galerkin formulation outlined here, the initial conditions may be

enforced in a weak sense. In other words, ICs may be imposed only up to the order of ac-

curacy of the numerical approximation itself. Consider again Equation (2.59). Integration

by parts on the first term results in the Galerkin weak form,

−
∫ 1

−1

φ̇Ni x
Ndξ +

[
φNi x

N
]1
−1
− ∆t

2

∫ 1

−1

φNi f(xN , uN)dξ = 0.

In terms of the approximating polynomials (and introducing the true initial condition,

xN(−1)→ x(−1)) we have

−
N∑
j=0

∫ 1

−1

φ̇Ni φ
N
j dξ x̄

Nj − φNi (−1)x(−1) + φNi (1)xN(1)− ∆t

2

∫ 1

−1

φNi f(xN , uN)dξ = 0,

for i = 0, 1, . . . , N . Integration by parts, yet again, results in the Galerkin strong form,

N∑
j=0

Dijx̄
Nj + φNi (−1)

(
N∑
j=0

φNj (−1)x̄Nj − x(−1)

)

− φNi (1)

(
N∑
j=0

φNj (1)x̄Nj − xN(1)

)
− ci = 0. (2.63)

Equation (2.63) may be formulated for weak enforcement of ICs by letting x(−1) = x0 and

xN(1) = xNN . Additionally, when Q = N LGL quadrature points are used to calculate

the Galerkin differentiation matrix and approximate the RHS vector, the system may be

simplified as

N∑
j=0

Dijx̄
Nj + κi − c̄Ni = 0, (2.64)

39



for each i = 0, 1, . . . , N , where

κi =

x̄
N0 − x0, i = 0,

0, i 6= 0.

The IC term κ now provides a natural way to introduce initial conditions into the discretiza-

tion of the dynamics. Again, in order to guarantee feasibility of the discretized problem,

the following inequality constraint is suggested,∥∥∥∥∥
N∑
j=0

Dijx̄
Nj + κi − c̄Ni

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N, (2.65)

where δN is the feasibility tolerance that is dependent on N and the smoothness of x and u

(see Section 5.1). Finally, the endpoint conditions may be approximated similarly by

∥∥e(x̄NN)
∥∥
∞ ≤ δN .

Remark 2.10. In [11], the equation resulting from dividing Equation (2.64) by wi is in-

troduced for primal-only closure conditions. However, for feasibility the inequality version

of this expression, Equation (2.65), must be used for computational purposes. It should

be noted that if the equation in [11] is multiplied by wi first, then relaxed as an inequality

bounded by δN , the resulting inequality would be in agreement with the feasibility of the

Galerkin weak boundary formulation discussed in Section 5.1.2 (see Equation (5.6)).

Petrov-Galerkin In the Petrov-Galerkin method the test and basis functions are different.

As with the Bubnov-Galerkin method, these functions can be modal or nodal in nature. In

this section the focus will be on selecting a modal test function and a nodal basis. This

will create the framework that will be used in Chapter 4. For this formulation, the selected

test functions will be the Legendre polynomials, {Lj}Nj=0, and the Lagrange polynomials
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(2.32), {φNj }Nj=0, of order N , will be the basis. Again, for this discussion, the LGL node

structure will be used for the problem discretization.

The approximation of x and u in the computational space, ξ ∈ [−1, 1], are given by

xN(ξ) =
N∑
j=0

φNj (ξ)x̄Nj,

uN(ξ) =
N∑
j=0

ψNj (ξ)ūNj,

where {ψNj }Nj=0 is any continuous function (not necessarily a polynomial) with the property

ψj(ξi) = δij . The expansion coefficients are, x̂j = x̄Nj and ûj = ūNj , therefore xN(ξj) =

x̄Nj and uN(ξj) = ūNj , for j = 0, 1, . . . , N . Equation (2.58) becomes [44]

∫ 1

−1

Li(ξ)φ̇
N
j (ξ)dξ x̄Nj − ∆t

2

∫ 1

−1

Li(ξ)f(xN(ξ), uN(ξ))dξ = 0, i = 0, 1, . . . , N,

or using matrix-vector notation,

N∑
j=0

DL
ijx̄

Nj − cLi = 0, i = 0, 1, . . . , N.

The Galerkin differentiation matrix, DL, and RHS vector, cL are defined as

DL
ij =

∫ 1

−1

Li(ξ)φ̇
N
j (ξ)dξ,

cLi =
∆t

2

∫ 1

−1

Li(ξ)f(xN(ξ), uN(ξk))dξ,

for i, j = 0, 1, . . . , N .

Using LGL quadrature, DL can be calculated with the relationship

DL
ij =

Q∑
k=0

Li(ξk)φ̇
N
j (ξk)wk, i, j = 0, 1, . . . , N,
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where {wk}Nk=0 are the LGL weights given by Equation (2.49). Again, since LGL quadra-

ture rule is exact for polynomial integrands of degree less than or equal to 2N − 1, the

numerical integration is done exactly when Q = N LGL integration points are used.

Using LGL quadrature rule, cL can be approximated by the relationship

cLi ≈
∆t

2

Q∑
k=0

Li(ξk)f(xN(ξk), u
N(ξk))wk, i = 0, 1, . . . , N.

When Q = N LGL quadrature points are used, the RHS vector approximation, c̄NL , can be

expressed in the simplified form

c̄NiL =
∆t

2

N∑
k=0

Li(ξk)f(x̄Nk, ūNk)wk, i = 0, 1, . . . , N.

Remark 2.11. Again, if Q = (N + 1) integration points are used, the RHS vector will

integrate exactly when f(x(t), u(t)) is linear in x and u. If f is a nonlinear function,

accuracy of integration may be improved by increasing the number of quadrature pointsQ.

When Q = N LGL quadrature points are used to calculate DL and c̄NL , the system

may be simplified as

N∑
j=0

DL
ijx̄

Nj − c̄NiL = 0, i = 0, 1, . . . , N. (2.66)

A feasible solution to the equality dynamical constraint may not exist. In order to guarantee

feasibility of the discretized problem, the following inequality constraint is suggested,∥∥∥∥∥
N∑
j=0

DL
ijx̄

Nj − c̄NiL

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N,

where δN is the feasibility tolerance that is dependent on N and the smoothness of x and

u (see Chapter 6). The initial conditions and endpoint conditions may be approximated
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similarly by

∥∥x̄N0 − x0

∥∥
∞ ≤ δN and

∥∥e(x̄NN)
∥∥
∞ ≤ δN .

It is clear that in the Petrov-Galerkin formulation (2.66), the differentiation matrix,

DL, and RHS vector, c̄NL , do not simplify as cleanly as given for the Bubnov-Galerkin

formulation (2.60). This inevitably will have negative effects on computational efficien-

cies. However, casting the problem in the Petrov-Galerkin numerical form will have nice

consequences when applied to Galerkin optimal control, as will be shown in Chapter 6.

2.3.2. Spectral Element Methods

Spectral element methods are local (elemental) applications of spectral methods.

They combine the flexibility of finite elements with the accuracies associated with spectral

methods. This element-based numerical approach is advantageous due to its ability to

handle complicated geometries and can be easily formulated for adaptive strategies [16,

59]. In this section, the focus will be on two Galerkin formulations, continuous Galerkin

and discontinuous Galerkin element-based methods. Continuous Galerkin techniques were

first applied to ordinary differential equations (ODEs) in 1972 by Hulme [14, 15] and a

study of global error control was done by Estep et al. [60] in 1994. The first analysis of

discontinuous Galerkin methods applied to ODEs was done in 1974 by Reed et al. [61]

and an adaptive error control technique was used by Bottcher et al. [62] in 1997. More

recently, multi-adaptive continuous Galerkin and discontinuous Galerkin techniques have

been studied by Logg and presented in a series of papers [63–65]. The general structure of

these element-based Galerkin methods—as well as the mathematical notation used in this

dissertation—is provided by Giraldo [44] and discussed in the following sections.

2.3.2.1. Continuous Galerkin

Consider a continuous element-based Galerkin approach to discretizing (2.52). Again,

for this discussion, the LGL node structure will be used for the problem discretization. In

43



this approximation, the weak integral form of (2.52) inside each element, Ωe, takes the

form [44]

∫
Ωe

φ
(e)N
i (t)

(
ẋ(e)N(t)− f(x(e)N(t), u(e)N(t))

)
dt = 0, (2.67)

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N , where Ω =
⋃Ne
e=1 Ωe defines the total domain.

The state trajectory, x(t), is approximated inside each element, Ωe, by interpolating N -th

order Lagrange polynomials, {φ(e)N
j (t)}Nj=0, at the nodes {t(e)j }Nj=0 by the relationship

x(e)N(t) =
N∑
j=0

φ
(e)N
j (t)x̄(e)Nj,

for e = 1, 2, . . . , Ne, where {t(e)j }Nj=0 are the LGL nodes, {ξj}Nj=0, mapped back to the

physical space inside each element, Ωe. Also, let uN(t) be an interpolating function of

{ūNj}Nj=0,

u(e)N(t) =
N∑
j=0

ψ
(e)N
j (t)ū(e)Nj,

where {ψ(e)N
j (t)}Nj=0 are any set of continuous functions (not necessarily polynomials) with

the property ψ
(e)N
j (ti) = δij . Therefore x̄(e)Nj = x(e)N(t

(e)
j ), for e = 1, 2, . . . , Ne and

j = 0, 1, . . . , N , and similarly, ū(e)Nj = u(e)N(t
(e)
j ). The relationship between the physical

time domain, t ∈ [t0, tf ] =
[
t
(1)
0 , t

(Ne)
N

]
, and the computational space, ξ ∈ [−1, 1], is given

by [44]

ξ =
2

∆t(e)

(
t− t(e)0

)
− 1 and dξ =

2

∆t(e)
dt,

and conversely,

t =
∆t(e)

2
(ξ + 1) + t

(e)
0 and dt =

∆t(e)

2
dξ,
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where ∆t(e) = t
(e)
N −t

(e)
0 is the size of each element, Ωe, which can be nonuniform in length.

The Lagrange polynomial defined on the LGL computational domain is given by

φNi (ξ) =
N∏
j=0

j 6=i

(ξ − ξj)
(ξi − ξj)

, i = 0, . . . , N.

The state trajectory, x, can now be approximated inside each element, Ωe, by

x(e)N(ξ) =
N∑
j=0

φNj (ξ)x̄(e)Nj,

where {φNj (ξ)}Nj=0 are the Lagrange polynomials defined on the LGL grid. Likewise, uN(ξ)

is given by

u(e)N(ξ) =
N∑
j=0

ψNj (ξ)ū(e)Nj,

where ψNj (ξi) = δij .

Remark 2.12. In this formulation x̄(e)NN = x̄(e+1)N0 and ū(e)NN = ū(e+1)N0, for e =

1, 2, . . . , Ne − 1. This continuity condition is a consequence of the global formulation of

the problem discussed in Remark 2.13.

In the computational domain, ξ, the system becomes

∫ 1

−1

φNi (ξ)ẋ(e)N(ξ)dξ − ∆t(e)

2

∫ 1

−1

φNi (ξ)f(x(e)N(ξ), u(e)N(ξ))dξ = 0,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N , and in terms of the approximating polynomials

becomes

N∑
j=0

∫ 1

−1

φNi (ξ)φ̇Nj (ξ)dξ x̄(e)Nj − ∆t(e)

2

∫ 1

−1

φNi f(x(e)N(ξ), u(e)N(ξ))dξ = 0.
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In matrix-vector notation, our system can be expressed as

N∑
j=0

D
(e)
ij x̄

(e)Nj − c(e)
i = 0,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N . The local element (N + 1) × (N + 1) Galerkin

differentiation matrix, D(e), is defined as

D
(e)
ij =

∫ 1

−1

φNi (ξ)φ̇Nj (ξ)dξ, i, j = 0, 1, . . . , N. (2.68)

Using LGL quadrature, D(e), can be calculated with the relationship

D
(e)
ij =

Q∑
k=0

φNi (ξk)φ̇
N
j (ξk)wk = φ̇Nj (ξi)wi = Aijwi, i, j = 0, 1, . . . , N, (2.69)

where {wi}Ni=0 are the LGL weights given by Equation (2.49) and A is the Legendre PS

differentiation matrix (2.57). Since LGL quadrature rule is exact for polynomial integrands

of degree less than or equal to 2N − 1, the numerical integration is done exactly when

Q = N LGL integration points are used. If Q = N LGL quadrature nodes are used, the

approximation to the (N + 1)× 1 RHS vector simplifies to

c
(e)
i ≈ c̄(e)Ni =

∆t(e)

2
f(x̄(e)Ni, ū(e)Ni)wi,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N .

Remark 2.13. So far, the required objects have been identified to solve the system numer-

ically with element-based Galerkin. However, since nodal basis functions are continuous

across element boundaries and LGL nodes include both endpoints, a global solution to our

problem can be found. To do this, a global assembly or direct stiffness summation can be

done, where the direct stiffness summation operator is
∧Ne
e=1. [44]
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The global equations to the problem become

Np∑
J=1

DIJ x̄
NpJ − c̄NpI = 0, I = 1, . . . , Np. (2.70)

The global Np × Np Galerkin differentiation matrix, DIJ , and RHS vector, c̄NpI , are then

defined by

DIJ =
Ne∧
e=1

D
(e)
ij and c̄NpI =

Ne∧
e=1

c̄(e)Ni,

where Np = (NeN + 1) is the total number of grid points. Note that the direct stiffness

summation operator,
∧Ne
e=1, does the mapping (i, e), (j, e) → I, J [44]. So for the local

differentiation matrix and RHS vector

D(e) =


d

(e)
00 d

(e)
01 · · · d

(e)
0N

d
(e)
10 d

(e)
11 · · · d

(e)
1N

...
... . . . ...

d
(e)
N0 d

(e)
N1 · · · d

(e)
NN

 and c̄(e)N =


c̄(e)N0

c̄(e)N1

...

c̄(e)NN

 ,

the direct stiffness summation operations DIJ =
2∧
e=1

D
(e)
ij and c̄NpI =

2∧
e=1

c̄(e)Ni result in the

global Np ×Np differentiation matrix and Np × 1 RHS vector,

D =



d
(1)
00 d

(1)
01 · · · d

(1)
0N 0 · · · 0

d
(1)
10 d

(1)
11 · · · d

(1)
1N 0 · · · 0

...
... . . . ...

... . . . ...

d
(1)
N0 d

(1)
N1 · · · d

(1)
NN + d

(2)
00 d

(2)
01 · · · d

(2)
0N

0 · · · 0 d
(2)
10 d

(2)
11 · · · d

(2)
1N

... . . . ...
...

... . . . ...

0 · · · 0 d
(2)
N0 d

(2)
N1 · · · d

(2)
NN


and c̄Np =



c̄(1)N0

c̄(1)N1

...

c̄(1)NN + c̄(2)N0

c̄(2)N1

...

c̄(2)NN


.
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In order to guarantee feasibility of the discretized problem, the following inequality

constraint is suggested,

∥∥∥∥∥
Np∑
J=0

DIJ x̄
NpJ − c̄NpI

∥∥∥∥∥
∞

≤ δNp , I = 0, 1, . . . , Np,

where δNp is the feasibility tolerance that is dependent on Np and the smoothness of x and

u (see Section 5.2). The initial conditions and endpoint conditions may be approximated

similarly by

∥∥x̄Np0 − x0

∥∥
∞ ≤ δNp and

∥∥e(x̄NpNp)∥∥∞ ≤ δNp .

Note that although the discretization for Problem (2.67) is element-based, the con-

tinuous Galerkin formulation (2.70) is global in nature. This, however, is not the case for

the discontinuous element-based Galerkin approach.

2.3.2.2. Discontinuous Galerkin

Consider a discontinuous element-based Galerkin approach to discretizing (2.52).

Again, for this discussion, the LGL node structure will be used for the problem discretiza-

tion. In this approximation, the weak integral form of (2.52) inside each element, Ωe, takes

the form [44]

∫
Ωe

φ
(e)N
i (t)

(
ẋ(e)N(t)− f(x(e)N(t), u(e)N(t))

)
dt = 0,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N , where Ω =
⋃Ne
e=1 Ωe defines the total domain.

The state trajectory, x(t), is approximated inside each element, Ωe, by interpolating N -th

order Lagrange polynomials, {φ(e)N
j (t)}Nj=0, at the nodes {t(e)j }Nj=0 by the relationship

x(e)N(t) =
N∑
j=0

φ
(e)N
j (t)x̄(e)Nj,
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for e = 1, 2, . . . , Ne, where {t(e)j }Nj=0 are the LGL nodes, {ξj}Nj=0, mapped back to the

physical space inside each element, Ωe. Also, let uN(t) be an interpolating function of

{ūNj}Nj=0,

u(e)N(t) =
N∑
j=0

ψ
(e)N
j (t)ū(e)Nj,

where {ψ(e)N
j (t)}Nj=0 are any set of continuous functions (not necessarily polynomials) with

the property ψ
(e)N
j (ti) = δij . Therefore x̄(e)Nj = x(e)N(t

(e)
j ), for e = 1, 2, . . . , Ne and

j = 0, 1, . . . , N , and similarly, ū(e)Nj = u(e)N(t
(e)
j ). The relationship between the physical

time domain, t ∈ [t0, tf ] =
[
t
(1)
0 , t

(Ne)
N

]
, and the computational space, ξ ∈ [−1, 1], is given

by [44]

ξ =
2

∆t(e)

(
t− t(e)0

)
− 1 and dξ =

2

∆t(e)
dt,

and conversely,

t =
∆t(e)

2
(ξ + 1) + t

(e)
0 and dt =

∆t(e)

2
dξ,

where ∆t(e) = t
(e)
N −t

(e)
0 is the size of each element, Ωe, which can be nonuniform in length.

The Lagrange polynomial defined on the LGL computational domain is given by

φNi (ξ) =
N∏
j=0

j 6=i

(ξ − ξj)
(ξi − ξj)

, i = 0, . . . , N.

The state trajectory, x, can now be approximated inside each element, Ωe, by

x(e)N(ξ) =
N∑
j=0

φNj (ξ)x̄(e)Nj,
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where {φNj (ξ)}Nj=0 are the Lagrange polynomials defined on the LGL grid. Likewise, uN(ξ)

is given by

u(e)N(ξ) =
N∑
j=0

ψNj (ξ)ū(e)Nj,

where ψNj (ξi) = δij . In the computational domain, ξ, the system becomes

∫ 1

−1

φNi (ξ)ẋ(e)N(ξ)dξ − ∆t(e)

2

∫ 1

−1

φNi (ξ)f(x(e)N(ξ), u(e)N(ξ))dξ = 0,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N . Integration by parts on the first term yields the

weak form relationship

−
∫ 1

−1

φ̇Ni (ξ)x(e)N(ξ)dξ +
[
φNi (ξ)x(e)N(ξ)

]1
−1
− ∆t(e)

2

∫ 1

−1

φNi (ξ)f(x(e)N(ξ), u(e)N(ξ))dξ = 0,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N , and in terms of our approximating polynomials

we have

−
N∑
j=0

∫ 1

−1

φ̇Ni (ξ)φNj (ξ)dξ x̄(e)Nj +
N∑
j=0

[
φNi (ξ)φNj (ξ)

]1
−1

x̄
(∗)
j

−∆t(e)

2

∫ 1

−1

φNi (ξ)f(x(e)N(ξ), u(e)N(ξ))dξ = 0.

Remark 2.14. With the discontinuous element-based Galerkin approach, we let ẋ, u and

the basis functions be discontinuous across element edges. A numerical flux term x̄(∗) acts

as a jump condition between elements [44]. Here, we consider the centered flux relation-

ship, x̄ (∗) = 1
2

(
x̄ (e) + x̄ (q)

)
, proposed by Delfour et al. [66], where e and q denote the

element and its neighbor, respectively.
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Integrating by parts, yet again, results in the Galerkin strong form relationship

N∑
j=0

∫ 1

−1

φNi (ξ)φ̇Nj (ξ)dξ x̄(e)Nj + η
(e)
i −

∆t(e)

2

∫ 1

−1

φNi (ξ)f(x(e)N(ξ), u(e)N(ξ))dξ = 0,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N . Since LGL nodes are used, the boundary term,

η(e), may be simplified as

η
(1)
i =


1
2

(
x̄ (2)N0 − x̄ (1)NN

)
, i = N,

0, i 6= N,

η
(Ne)
i =


1
2

(
x̄(Ne)N0 − x̄ (Ne−1)NN

)
, i = 0,

0, i 6= 0,

for elements Ωe = Ω1 and ΩNe , respectively, and for each other element (Ωe 6= Ω1,ΩNe)

we have

η
(e)
i =


1
2

(
x̄ (e)N0 − x̄ (e−1)NN

)
, i = 0,

1
2

(
x̄ (e+1)N0 − x̄ (e)NN

)
, i = N,

0, i 6= 0, N.

In matrix-vector notation, our system may be expressed as

N∑
j=0

D
(e)
ij x̄

(e)
j + η

(e)
i − c

(e)
i = 0,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N , where the local element (N + 1) × (N + 1)

Galerkin differentiation matrix, D(e), is the same as that defined in (2.68) and (2.69). If

Q = N LGL quadrature nodes are used, the approximation to the (N + 1)× 1 RHS vector
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simplifies to

c
(e)
i ≈ c̄(e)Ni =

∆t(e)

2
f(x̄(e)Ni, ū(e)Ni)wi,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N . The local discontinuous formulation therefore

becomes

N∑
j=0

D
(e)
ij x̄

(e)
j + η

(e)
i − c̄(e)Ni = 0, (2.71)

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N . In order to guarantee feasibility of the discretized

problem, the following inequality constraint is suggested,∥∥∥∥∥
N∑
j=0

D
(e)
ij x̄

(e)Nj + η
(e)
i − c̄(e)Ni

∥∥∥∥∥
∞

≤ δN ,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N , where δN is the feasibility tolerance that is

dependent on N and the smoothness of x and u (see Section 5.3). The initial conditions

and endpoint conditions may be approximated similarly by

∥∥x̄(1)N0 − x0

∥∥
∞ ≤ δN and

∥∥e(x̄(Ne)NN)
∥∥
∞ ≤ δN .

Note that unlike the continuous element-based Galerkin approach that can easily be

formulated for a global solution (2.70), the discontinuous Galerkin formulation (2.71) is

purely local in nature. The communication between elements is done only by the boundary

term, η(e). It is therefore easy to see that the discontinuous Galerkin formulation is easy to

parallelize for computational efficiency. Additionally, the flexibility and discontinuous na-

ture of the formulation lends itself to problems with complex geometries and discontinuous

solutions.

Global spectral method techniques, specifically, collocation (or PS methods) have

become the method of choice for discretizing system dynamics in a number of direct meth-
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ods for optimal control, such as the Legendre PS method. Element-based collocation tech-

niques have also been investigated for the use in direct methods for optimal control by Ross

et al. [12]. These methods have gained attention due to their flexibility as well as compu-

tational efficiency. In Chapter 5, we will further investigate the use of the element-based

Galerkin formulations for optimal control. However, we will first consider additional mo-

tivation for the use of the weak integral formulation in Chapter 3. This will lead to the

creation of a family of Galerkin-based formulations called, Galerkin optimal control.
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CHAPTER 3:
MOTIVATION FOR GALERKIN OPTIMAL CONTROL

PS methods for optimal control have been shown to be good all-round methods for

solving nonlinear optimal control problems. In particular, the Legendre PS method has

gained much attention in recent years. As mentioned previously, two highlights are the

successful use of Legendre PS method for the first ever zero-propellant attitude maneuver

of the International Space Station [4] and the first ever minimum-time rotational maneuver

performed in orbit by a NASA space telescope called TRACE [8]. The formulation of the

Legendre PS method is provided in Section 3.2, but first consider the following problem of

optimal control.

3.1. Problem B (Bolza Problem)

Determine the state-control function pair, t 7→ (x, u) ∈ RNx ×RNu , that minimizes

the cost functional

J =

∫ 1

−1

F (x(t), u(t))dt+ E(x(−1), x(1)), (3.1)

subject to the dynamics

ẋ(t) = f(x(t), u(t)), (3.2)

endpoint conditions

e(x(−1), x(1)) = 0, (3.3)
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and mixed state-control path conditions

h(x(t), u(t)) ≤ 0. (3.4)

It is assumed that F : RNx × RNu → R, E : RNx × RNx → R, f : RNx × RNu → RNx ,

e : RNx × RNx → RNe , h : RNx × RNu → RNh are Lipschitz continuous with respect to

their argument. It is also assumed that an optimal solution (x∗(·), u∗(·)) exists. Additional

assumptions related to the smoothness of x∗(·) and u∗(·) are provided in the feasibility and

consistency theorems included in Chapters 4, 5 and 6.

3.2. Legendre Pseudospectral Method

In the Legendre PS method approximation to Problem B, the states are approxi-

mated with globally interpolating N -th order Lagrange polynomials defined on LGL grid,

{tj}Nj=0. Recall that the LGL points are defined by t0 = −1 < t1 < · · · < tN = 1 and are

the roots of Equation (2.42). The state trajectory, x(t), is approximated by

x(t) ≈ xN(t) =
N∑
j=0

φNj (t)x̄Nj.

Let

x̄Nj ≈ x(tj), j = 0, 1, . . . , N,

and similarly, ūNj ≈ u(tj). The Lagrange polynomials, {φNj }Nj=0, of order N , are given by

Equation (2.32), and have the property, φNj (ti) = δij , for i, j = 0, 1, . . . , N .

In the Legendre PS method, a solution to the differential equation ẋ− f(x, u) = 0

may be approximated at the LGL nodes with the following formulation

N∑
j=0

Aijx̄
Nj − f(x̄Ni, ūNi) = 0, i = 0, 1, . . . , N, (3.5)
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since, the derivative of xN(t) at each LGL point {ti}Ni=0 is exactly equal to

ẋN(ti) =
N∑
j=0

Aijx̄
Nj,

for any polynomial with degree less than or equal to N [46], where A is the Legendre

PS differentiation matrix (2.57). A feasible solution to the equality dynamical constraint

may not exist. In order to guarantee feasibility of the discretized problem, Gong et al. [5],

suggest the following inequality constraint,∥∥∥∥∥
N∑
j=0

Aijx̄
Nj − f(x̄Ni, ūNi)

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N.

Remark 3.1. Note that δN is the feasibility tolerance and is dependent on N and the

smoothness of x and u. For x ∈ Wm,∞ (see Appendix C), m ≥ 2 and u ∈ C0[−1, 1], it has

been proven by Gong et al. [5] that δN = (N − 1)
3
2
−m.

The endpoint conditions and path constraints are approximated similarly by

∥∥e(x̄N0, x̄NN)
∥∥
∞ ≤ δN ,

h(x̄Ni, ūNi) ≤ δN · 1, i = 0, 1, . . . , N,

where 1 denotes [1, . . . , 1]T . Lastly, the cost functional J [x(·), u(·)] is approximated by

LGL quadrature rule,

J [x(·), u(·)] ≈ J̄N(x̄N , ūN) =
N∑
i=0

F (x̄Ni, ūNi)wi + E(x̄N0, x̄NN),

where x̄N =
[
x̄N0, x̄N1, . . . , x̄NN

]
, ūN =

[
ūN0, ūN1, . . . , ūNN

]
and {wi}Ni=0 are the LGL

weights (2.49) associated with the LGL points, {ti}Ni=0. To allow for a practical search area
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for the optimal solution the following constraints are added

{x̄Ni ∈X, ūNi ∈ U , i = 0, 1, . . . , N},

where X and U are the search regions that contain the optimal solution of the discretized

nonlinear optimization.

The resulting optimization problem can be solved using existing NLP algorithms. A

feasible solution can be found that satisfies the tolerances specified in the NLP by adjusting

the order of polynomial used in the approximation. The theoretical underpinnings of the

Legendre PS method have been studied in great detail over the last two decades. Theorems

for feasibility, consistency and convergence of the Legendre PS method approximations

can be found in [3, 5, 6, 67, 68]. Although the Legendre PS method has been shown to

produce accurate solutions on a wide variety of optimal control problems, it has proven to

be a challenging task to modify this method to efficiently solve multi-scale problems, one

for which the state(s) and control(s) evolve at different timescales. An example of such a

problem is given next.

Example 3.1. Consider the following boundary value problem given by Williams [69] of

minimizing the cost function

J =
1

2

∫ tf

0

u2dt, (3.6)

subject to the dynamics

ẋ1(t) = x2 and ẋ2(t) = C sin(kt) + u, (3.7)

and with boundary conditions

x1(0) = 0, x2(0) = 0, x1(tf ) = 1 and x2(tf ) = 0. (3.8)
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The analytic solution to this problem is given by

x1(t) = −C
k2

sin(kt)− c1
t3

6
− c2

t2

2
+
C

k
t, (3.9)

x2(t) = −C
k

cos(kt)− c1
t2

2
− c2t+

C

k
, (3.10)

u(t) = −c1t− c2, (3.11)

obtained via Pontryagin’s maximum principle. The constants are defined as

c1 = −C
t2f

(
C

k
cos(ktf )−

C

k

)
+

12

t3f

(
1 +

C

k2
sin(ktf )−

C

k
tf

)
, (3.12)

c2 =
2

tf

(
C

k
cos(ktf )−

C

k

)
+

6

t2f

(
1 +

C

k2
sin(ktf )−

C

k
tf

)
, (3.13)

tf = 10, C = 0.1 and k = 8. This problem was solved using the Legendre PS method

with optimality and feasibility tolerances of 5 × 10−5 and 5 × 10−4, respectively. The

exact solution was used as an initial guess. Figure 12 shows the Legendre PS method

approximations of order, N = 50.
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Figure 12: Exact solution and Legendre PS method approximation with N = 50 for Exam-
ple 3.1.

From Figure 12, it is apparent that x1 and x2 evolve on different timescales. This

is confirmed by viewing the Legendre spectral coefficients of x1 and x2 presented in Fig-

ure 13. Note the difference in magnitude of the x1 and x2 Legendre spectral coefficients,

particularly between n = 5 and 40.
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(a) Legendre spectral coefficients for state x1.
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(b) Legendre spectral coefficients for state x2.
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(c) Legendre spectral coefficients for control u.

Figure 13: Legendre spectral coefficients for x1, x2 and u for Example 3.1.

The difference in evolution of the x1 and x2 system dynamics suggests that problem

(3.6)–(3.8) may be approximated more efficiently using a multi-scale numerical technique,

where slow state, x1, and fast state, x2 are discretized on different timescales. Consider the

following general multi-scale optimal control problem, in which the slow and fast states,
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xs(t) and xf (t), are associated with the slow and fast dynamics, respectively. This modified

Problem B is presented as Problem B̃.

3.3. Problem B̃ (Multi-scale Bolza Problem)

Problem B̃. Determine the state-control function, t 7→ (xs, xf , u) ∈ RNxs × RNxf × RNu ,

that minimizes the cost functional

J [xs(·), xf (·), u(·)] =

∫ 1

−1

F (xs(t), xf (t), u(t))dt+ E(xs(−1), xs(1), xf (−1), xf (1)),

subject to the dynamics,

ẋs(t) = f(xs(t), xf (t), u(t)),

ẋf (t) = g(xs(t), xf (t), u(t)),

endpoint conditions,

e(xs(−1), xs(1), xf (−1), xf (1)) = 0,

and mixed state-control path conditions,

h(xs(t), xf (t), u(t)) ≤ 0.

It is assumed that F : RNxs ×RNxf ×RNu → R, E: RNxs ×RNxs ×RNxf ×RNxf → R, f :

RNxs×RNxf×RNu → R, e: RNxs×RNxs×RNxf×RNxf → RNe , h: RNxs×RNxf×RNu →

RNh are Lipschitz continuous with respect to their argument. It is also assumed that an

optimal solution (x∗s(·), x∗f (·), u∗(·)) exists.

A number of methods have been investigated for solving multi-scale problems

such as Problem B̃, by casting the slow and fast dynamics of the problem onto differ-

ent timescales. Recently, Desai et al. [70] and Williams [69] provided varied techniques.
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While Desai et al. use an elemental approach where fast and slow dynamics are treated

with similar order polynomials within different size subintervals and Williams uses a tech-

nique where the slow dynamics are approximated with a weak formulation. Additionally,

in [71], Gong et al. investigate the use of a Tau-like method to discretize the slow dynamics,

after discounting a straightforward modified Legendre PS method approach. This modified

Legendre PS method will be presented next for discussion purposes.

3.4. A Modified Legendre PS Method for Multi-scale Problems

Consider the following modified Legendre PS method approach to solving Prob-

lem B̃. The states and controls are approximated with globally interpolating Lagrange

polynomials on different LGL timescales. The slow state, xs(t), is approximated on sparse

grid {τj}Mj=0 while the fast state, xf (t), on dense grid {tj}Nj=0, where M < N . The slow

and fast states are defined by the following approximating polynomials

xs(t) ≈ xMs (t) =
M∑
j=0

φMj (t)x̄Mj
s ,

xf (t) ≈ xNf (t) =
N∑
j=0

φNj (t)x̄Njf ,

where the Lagrange polynomials {φMj (t)}Mj=0 and {φNj (t)}Nj=0 are defined on grids {τj}Mj=0

and {tj}Nj=0, respectively. Let

x̄Mj
s ≈ xs(τj), j = 0, 1, . . . ,M,

x̄Njf ≈ xf (tj), j = 0, 1, . . . , N,

and similarly, ūNj ≈ u(tj), for j = 0, 1, . . . , N .

Remark 3.2. For simplicity, the control variable, u(t), is approximated on the dense grid

{tj}Nj=0, however this need not be the case. Modifications may be made to this method to

cast the control onto a unique grid, such as sparse grid {τ̃j}M̃j=0, where M̃ < N [71].
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A solution to the differential equations ẋs = f(xs, xf , u) and ẋf = g(xs, xf , u) may

be approximated by discretizing the slow dynamics over the dense grid with the following

formulation

M∑
j=0

ANMij x̄Mj
s − f(x̂Nis , x̄Nif , ūNi) = 0, i = 0, 1, . . . , N,

N∑
j=0

ANNij x̄Njf − g(x̂Nis , x̄Nif , ūNi) = 0, i = 0, 1, . . . , N,

where ANN is the standard (N + 1) × (N + 1) Legendre PS differentiation matrix (2.57)

and ANM is the (N + 1) × (M + 1) Legendre PS differentiation transformation matrix

(2.39). The slow state approximation projected to the dense grid, x̂Ns , may be calculated by

the linear mapping TNMij = φMj (ti) with the relationship

x̂Nis =
n∑
j=0

TNMij x̄Mj
s ,

for i = 0, 1, . . . , N , where TNM is the (N + 1)× (M + 1) transformation matrix (2.37).

Remark 3.3. Projecting the slow dynamics onto the dense grid provides a way of capturing

the high frequency information of the fast state [71].

The dynamical constraints therefore become∥∥∥∥∥
M∑
j=0

ANMij x̄Mj
s − f(x̂Nis , x̄Nif , ūNi)

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N,∥∥∥∥∥
N∑
j=0

ANNij x̄Njf − g(x̂Nis , x̄Nif , ūNi)

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N,
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where δN is the feasibility tolerance. The endpoint conditions and path constraints are

approximated similarly by

∥∥e(x̄M0
s , x̄MM

s , x̄N0
f , x̄NNf )

∥∥
∞ ≤ δN ,

h(x̂Nis , x̄Nif , ūNi) ≤ δN · 1, i = 0, 1, . . . , N.

Lastly, the cost functional J [x(·), u(·)] is approximated by the LGL quadrature rule,

J [x(·), u(·)] ≈ J̄N(x̄Ms , x̄
N
f , ū

N) =
N∑
i=0

F (x̂Nis , x̄Nif , ūNi)wi + E(x̄M0
s , x̄MM

s , x̄N0
f , x̄NNf ),

where {wi}Ni=0 are the LGL weights (2.49) associated with the LGL points, {ti}Ni=0 and

x̄Ms =
[
x̄M0
s , x̄M1

s , . . . , x̄MM
s

]
, x̄Nf =

[
x̄N0
f , x̄N1

f , . . . , x̄NNf
]

and ūN =
[
ūN0, ūN1, . . . , ūNN

]
.

To allow for a practical search area for the optimal solution the following constraints are

included: x̄Ms ∈Xs, x̄Nf ∈Xf and ūN ∈ U , where Xs, Xf and U are the search regions

that contain the optimal solution of the discretized nonlinear optimization.

Example 3.1 (continued). Consider again problem (3.6)–(3.8) solved with the proposed

multi-scale Legendre PS method. The following analysis follows that given by Gong et

al. in [71]. Here we discretize the slow state, x1, on LGL grid, {τj}
Nx1
j=0 , and fast state,

x2 and control, u, on LGL grid {tj}
Nx2
j=0 , such that Nx1 < Nx2 . This problem was solved

with optimality and feasibility tolerances of 5× 10−4 & 5× 10−3, respectively. The exact

solution was used as an initial guess. Figure 14 shows the visual accuracy of the multi-scale

Legendre PS method approximations with Nx1 = 40, Nx2 = 50 and Nu = 50. A decrease

in the approximation order of the slow state by 10 causes a significant decrease in the

accuracy of the overall approximation. This is particularly apparent in the approximation

of the control, u, in Figure 14.
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Figure 14: Exact solution and multi-scale Legendre PS method approximation with Nx1 =
40, Nx2 = 50 and Nu = 50 for Example 3.1.

Also note that if now the control, u, is cast on a unique LGL grid {τ̃j}Nuj=0, such that Nu <

Nx2 , the NLP becomes infeasible. However, if u is cast on a unique LGL grid such that

Nu ≥ Nx2 , an accurate solution is obtained.

Although the Legendre PS method has been shown to produce accurate solutions on

a wide variety of optimal control problems, approximating the derivative of a function using

a standard PS differentiation matrix may introduce errors into the approximation. This may

be an issue when using a multi-scale approach such as the one presented in Section 3.4. It

should be mentioned, however, that the Tau-like method of Gong et al. [71] produces accu-

rate solutions for this multi-scale approximation. However, to understand what happened

with the straightforward multi-scale approach, we look to Jackson’s Theorem.
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3.5. Jackson’s Theorem

Jackson’s Theorem allows for a bounding of the spectral coefficients (2.26), {an}∞n=0,

of a function, H(t), in terms of the function’s derivative, h(t).

Lemma 3.1 (Jackson’s Theorem). [72] Let h(ξ) be of bounded variation in [−1, 1]. Define

H(ξ) = H(−1) +

∫ ξ

−1

h(s)ds,

then {an}∞n=0, the sequence of the spectral coefficients of H(ξ) satisfies the following in-

equality

|an| <
6√
π

(U(h(ξ)) + V (h(ξ)))
1

n3/2
,

for n ≥ 1 where U(h(ξ)) is the least upper bound of |h(ξ)| and V (h(ξ)) is the total

variation of h(ξ) (see Appendix A).

To see how this theorem affects a PS approximation of a function’s derivative, let

H be the approximating polynomial error of a function, let h be its derivative, and let

{an}∞n=N+1 be the spectral coefficients of H . Jackson’s Theorem says that even though
∞∑

n=N+1

|an| may be very small (such as in the tail of the spectral coefficients dropped from

an approximation) the error in the approximation of the derivative may be relatively large,

|an|
√
π

6
n3/2 < (U(h(ξ)) + V (h(ξ))).

This factor of n3/2 could potentially add unnecessary errors when approximating a system’s

dynamics using a standard differentiation matrix.

Remark 3.4. This idea is further understood by considering the following estimates on the

approximation of any function ζ(t) ∈ H2 (see Appendix C). Consider ζ(t) approximated
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by the truncated Legendre series

pN(t) =
N∑
j=0

ajLj(t),

where Lj is the Legendre polynomial of order j and {aj}Nj=0 are spectral coefficients of ζ .

The error estimate between ζ(t) and its approximation, pN(t), is given by

∥∥ζ(t)− pN(t)
∥∥
L∞

=

∥∥∥∥∥
∞∑

j=N+1

ajLj(t)

∥∥∥∥∥
L∞

≤
∞∑

j=N+1

|aj|‖Lj(t)‖L∞ ≤
∞∑

j=N+1

|aj|,

due to the property of the Legendre polynomials [46], |Lj(t)| ≤ 1, t ∈ [−1, 1] (see Ap-

pendix A for definition of L∞-norm). Additionally, the following estimate is provided

by [46]

∥∥ζ(t)− pN(t)
∥∥
L∞
≤ C1C0N

− 3
2 , (3.14)

where C1 is a constant independent of N and C0 = V (ζ(2)), the total variation of ζ(2) (see

Appendix A). Now consider the error estimate between ζ̇(t) and its approximation

ṗN(t) =
N∑
j=0

ajL̇j(t),

given by

∥∥∥ζ̇(t)− ṗN(t)
∥∥∥
L∞

=

∥∥∥∥∥
∞∑

j=N+1

ajL̇j(t)

∥∥∥∥∥
L∞

≤
∞∑

j=N+1

|aj|
∥∥∥L̇j(t)∥∥∥

L∞
≤ 1

2

∞∑
j=N+1

|aj|j(j + 1),

due to the property of the Legendre polynomials [46],
∣∣∣L̇j(t)∣∣∣ ≤ 1

2
j(j + 1), t ∈ [−1, 1].

Additionally, the following estimate is provided by [46]

∥∥∥ζ̇(t)− ṗN(t)
∥∥∥
L∞
≤ C3C2N

1
2 , (3.15)
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where C3 is a constant independent of N and C2 = |ζ|H2;N , the Sobolev seminorm of

ζ (defined in Appendix C). The disparity between estimates (3.14) and (3.15) are clear

and thus pN(t) and ṗN(t) may converge at different rates. In fact, while estimate (3.14)

proves convergence of pN(t), estimate (3.15) shows that ṗN(t) may not converge at all.

This disproportionate convergence behavior may have compounding effects when using

the multi-scale approach for optimal control (introduced in Section 3.4).

Example 3.1 (continued). Consider again problem (3.6)–(3.8) solved with the proposed

multi-scale Legendre PS method and Nx1 = 40, Nx2 = 50 and Nu = 50. If now the

optimality and feasibility tolerances are relaxed and decreased to 5 × 10−2 and 5 × 10−1,

respectively, the NLP constraints are satisfied and an accurate approximation of the states

and control is obtained. In the context of Jackson’s Theorem and Remark 3.4, this should

not be a surprise. From Figure 13, the Legendre spectrum of the dropped x1 modes consist

of coefficients with magnitudes ofO(10−3). In fact with the lower optimality and feasibility

tolerances, the multi-scale Legendre PS method can now produce accurate solutions for

lower order approximations of x1, such as Nx1 = 10 (with Nx2 and Nu = 50). However, if

a reduction in the control approximation is also the goal such as, Nu ≤ 40 (with Nx1 = 10

and Nx2 = 50), a further reduction in the optimality and feasibility tolerances are required

in order to satisfy the NLP constraints.

The consequences of Jackson’s Theorem on multi-scale PS methods for optimal

control are significant. Certainly, the class of problems that can obtain an advantage from

this approach is limited. In general we can only hope to benefit from multi-scale PS when

reducing the polynomial order of system variables that have extremely small Legendre

expansion coefficients at the tail of the spectrum. This will require us to use a different

approach if we hope to target a larger class of optimal control problems. Proposition 3.1

highlights the advantage of an alternate method of discretizing the system dynamics, one

in which the derivative of higher order terms does not disproportionally add to the overall

error of the approximation.
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3.6. Motivation for the Weak Integral Formulation

Proposition 3.1. Let Lj(t) be the Legendre polynomial of order j. Suppose

εN(t) =
∞∑

j=N+1

ajLj(t), (3.16)

ε̇N(t) =
∞∑

j=N+1

ajL̇j(t), (3.17)

are both uniformly convergent on [−1, 1], then

∫ 1

−1

Li(t)ε̇
N(t)dt = 2

∞∑
j=N+1

i+j odd

aj, (3.18)

for all 0 ≤ i ≤ N .

Proof.

∫ 1

−1

Li(t)ε̇
N(t)dt =

∞∑
j=N+1

aj

∫ 1

−1

Li(t)L̇j(t)dt

=
∞∑

j=N+1

aj

(
Li(t)Lj(t) |1−1 −

∫ 1

−1

L̇i(t)Lj(t)dt

)

Since the order of each {L̇i(t)}Ni=0 is less thanN and the order of each {Lj(t)}∞N+1 is bigger

than N , the orthogonality of the Legendre polynomials implies

∫ 1

−1

L̇i(t)Lj(t)dt = 0.

Due to the following properties of the Legendre polynomial,

Lk(1) = 1 and Lk(−1) = (−1)k,

Equation (3.18) follows.
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Remark 3.5. A similar result is found for the case that Lagrange interpolation polynomials

are used as test functions. Let {φNi (t)}Ni=0 be the Lagrange polynomials of orderN , defined

on grid t0 = −1 < t1, . . . , tN−1 < tN = 1. Also, let Lj(t) be the Legendre polynomial of

order j; let η(t) and η̇(t) be defined by (3.16) and (3.17), respectively. Then

∫ 1

−1

φNi (t)η̇(t)dt =
∞∑

j=N+1

aj

∫ 1

−1

φNi (t)L̇j(t)dt

=
∞∑

j=N+1

aj

(
φNi (t)Lj(t) |1−1 −

∫ 1

−1

φ̇Ni (t)Lj(t)dt

)
.

Since the order of the polynomials {φ̇Ni (t)}Ni=0 isN−1 and the order of each {Lj(t)}∞j=N+1

is bigger than N , the orthogonality of the Legendre polynomials implies

∫ 1

−1

φ̇Ni (t)Lj(t)dt = 0.

Due to the following properties of the Legendre and Lagrange polynomials,

φNi (tk) = δki, Lk(1) = 1 and Lk(−1) = (−1)k,

we have

∫ 1

−1

φNi (t)ε̇N(t)dt =



∞∑
j=N+1

aj(−1)j+1, i = 0,

∞∑
j=N+1

aj, i = N,

0, i 6= 0, N.
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Remark 3.6. The weak integral approximation to the derivative ẋ(t) follows from Re-

mark 3.5. Let

xN(t) =
N∑
j=0

ajLj(t),

ẋN(t) =
N∑
j=0

ajL̇j(t).

Multiplying ẋ by a test function φN(t) then integrating over the domain gives

∫ 1

−1

φNi (t)ẋ(t)dt =

∫ 1

−1

φNi (t)ẋN(t)dt+

∫ 1

−1

φNi (t)ε̇N(t)dt,

for i = 0, 1, . . . , N , where the residual term, εN(t), and its derivative, ε̇N(t), can be ex-

pressed by

εN(t) =
∞∑

j=N+1

ajLj(t),

ε̇N(t) =
∞∑

j=N+1

ajL̇j(t).

From Remark 3.5, the weak integral residual term is

∫ 1

−1

φNi (t)ε̇N(t)dt =
∞∑

j=N+1

aj

∫ 1

−1

φNi (t)L̇j(t)dt =



∞∑
j=N+1

aj(−1)j+1, i = 0,

∞∑
j=N+1

aj, i = N,

0, i 6= 0, N.

72



Therefore, the error in the weak integral differentiation term may be bounded as

∣∣∣∣∫ 1

−1

φNi (t)ẋ(t)dt−
∫ 1

−1

φNi (t)ẋN(t)dt

∣∣∣∣ ≤


∞∑
j=N+1

|aj|, i = 0,

∞∑
j=N+1

|aj|, i = N,

0, i 6= 0, N.

In other words, the accuracy of the weak integral approximation to ẋ is related to the

Legendre spectral coefficients of the dropped modes. If the Legendre spectral coefficients

of the dropped modes are negligible, that is

∞∑
j=N+1

|aj| ≤ δ,

where δ � 1, then

∫ 1

−1

φNi (t)ẋ(t)dt ≈
∫ 1

−1

φNi (t)ẋN(t)dt,

for i = 0, 1, . . . , N . The weak integral approximation to ẋ will be similar to the accuracy

of the approximation to x itself since

∥∥εN(t)
∥∥
L∞

=

∥∥∥∥∥
∞∑

j=N+1

ajLj(t)

∥∥∥∥∥
L∞

≤
∞∑

j=N+1

|aj|‖Lj(t)‖L∞ ≤
∞∑

j=N+1

|aj|.

Jackson’s Theorem (Lemma 3.1) along with Remark 3.6 present persuasive argu-

ments for the use of the weak integral approximation (a.k.a. Galerkin methods) in place of

traditional collocation techniques for approximating system dynamics in direct methods for

optimal control. We will see that Galerkin methods may be formulated to efficiently solve

multi-scale problems (see Section 5.4). As a preview, Figure 15 shows a comparison of the

exact solution to Example 3.1 with the multi-scale Galerkin optimal control formulation

numerical solutions with Nx1 = 3, Nx2 = 43 and Nu = 1. This problem was solved with
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optimality and feasibility tolerances of 5 × 10−4 and 5 × 10−3, respectively, and the exact

solution was used as an initial guess.
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Figure 15: Exact solution and GOCM-MS approximation with Nx1 = 3, Nx2 = 43 and
Nu = 1 for Example 3.1.

Simulations show that the multi-scale Legendre PS formulation becomes infeasible for the

multi-scale approximation with orders Nx1 = 3, Nx2 = 43 and Nu = 1 for any reasonable

set of optimality and feasibility tolerances selected.

Although the multi-scale Galerkin optimal control formulation shows promise in

solving multi-scale problems, the advantages of the weak integral form are not limited to

this problem set. Additionally, Galerkin formulations allow for the weak imposition of

boundary conditions. That is, end conditions may be enforced only up to the accuracy of

the approximation itself. Remark 2.9 highlights this property. Galerkin formulations with

weak enforcement of boundary conditions have been shown to produce improved accu-

racies in many applications. A detailed discussion is given by Canuto et al. (see Section

3.7 of [46]). The Galerkin formulation with weak imposition of end conditions may also

allow for problem discretizations with other than LGL points, such as LGR and LG (see
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Sections 5.5.2.1 and 5.5.2.2, respectively). An important highlight of the Galerkin for-

mulations is that the feasibility and consistency theorems are proved for problems with

continuous and/or piecewise continuous controls (depending on the Galerkin formulation).

Lastly, Galerkin methods, as shown in Section 2.3.2, may be easily formulated

as element-based methods, both continuous and discontinuous (see Sections 5.2 and 5.3,

respectively). These element-based formulations may have benefits in approximating so-

lutions to optimal control problems with multiple stages or those with discontinuous solu-

tions, such as bang-bang control problems. As compared to global methods, these element-

based techniques may be formulated to require less computational effort and memory. Ad-

ditionally, the discontinuous Galerkin formulation may advantage from parallel computing.

Chapter 4 will introduce a new numerical technique for solving nonlinear optimal control

problems founded upon the Galerkin methods outlined in Section 2.3.
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CHAPTER 4:
GENERAL GALERKIN OPTIMAL CONTROL FORMULATION

There are four parts to the numerical solution to an optimal control problem using

the direct method: discretization of the system dynamics, discretization of the state-control

constraints, integration of the cost function and solving the NLP. In the Galerkin optimal

control approach introduced in [73, 74], we use Galerkin techniques to discretize the sys-

tem dynamics based on LGL quadrature nodes. Recall, that the LGL points, {tj}Nj=0, are

the roots of Equation (2.42) and therefore include the endpoints, t = ±1. Thus the dis-

cretization works in the interval of [−1, 1] and will then provide the framework for our

problem (e.g., the state-control constraints will be discretized at these nodes). Recall that

LGL quadrature rule will provide zero error for polynomial integrands of less than or equal

to 2N − 1 [45]. Finally, LGL quadrature rule will be used to integrate the cost function.

The resulting optimization problem can be solved using existing NLP algorithms.

In addition to the general Galerkin optimal control formulation, this chapter con-

tains a number of important feasibility and consistency results. Theorems 4.1 and 4.2 prove

that nonlinear program Problems GOCM-S̃ and GOCM-S (presented in Section 4.2) have

feasible solutions to Problem B, where controls may be piecewise continuous. Additionally,

Theorems 4.3 and 4.4 prove that the general Galerkin optimal control numerical approx-

imation is consistent. That is, nonlinear programming Problems GOCM-S̃ and GOCM-S

are consistent approximations to the continuous optimal control Problem B.

4.1. Method for Approximation

In the general Galerkin optimal control approximation to Problem B, the state tra-

jectory, x(t), is approximated with globally interpolating N -th order Lagrange polynomi-
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als, {φNj }Nj=0, defined on a grid of LGL nodes, {tj}Nj=0,

x(t) ≈ xN(t) =
N∑
j=0

φNj (t)x̄Nj.

Due to the property of the Lagrange polynomials, φNj (ti) = δij , we have

x̄Nj = xN(tj), j = 0, 1, . . . , N.

Also, let uN(t) be an interpolating function of {ūNj}Nj=0,

uN(t) =
N∑
j=0

ψNj (t)ūNj,

where {ψNj }Nj=0 is any set of continuous functions (not necessarily polynomials) with the

property ψNj (ti) = δij . In the general Galerkin optimal control approach, a solution to the

differential equation ẋ − f(x, u) = 0 may be approximated at the LGL nodes with the

following weak integral formulation [44]

∫ 1

−1

φNi (t)

(
dxN(t)

dt
− f(xN(t), uN(t))

)
dt = 0, (4.1)

for i = 0, 1, . . . , N . In terms of the approximating polynomials, the system of equations

becomes

N∑
j=0

∫ 1

−1

φNi
dφNj
dt

dt x̄Nj −
∫ 1

−1

φNi f(xN , uN)dt = 0,

for i = 0, 1, . . . , N , and in matrix-vector form is given by

N∑
j=0

Dijx̄
Nj − ci = 0, i = 0, 1, . . . , N.
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The (N + 1)× (N + 1) Galerkin differentiation matrix, D, is defined by

Dij =

∫ 1

−1

φNi (t)
dφNj (t)

dt
dt, i, j = 0, 1, . . . , N, (4.2)

and the (N + 1)× 1 right-hand-side (RHS) vector, c, is defined as

ci =

∫ 1

−1

φNi (t)f(xN(t), uN(t))dt, i = 0, 1, . . . , N,

The Lagrange polynomials, {φNi }Ni=0, and their derivatives, {φ̇Nj }Nj=0, are given by defini-

tions (2.32) and (2.38), respectively. If LGL quadrature rule is used withQ = N quadrature

points, the differentiation matrix, D, can be calculated exactly by the relationship

Dij =

Q∑
k=0

φNi (tk)
dφNj
dt

(tk)wk =
dφNj
dt

(ti)wi = Aijwi, i, j = 0, 1, . . . , N, (4.3)

where the LGL weights, {wi}Ni=0, are defined by Equation (2.49) and A is the Legendre PS

differentiation matrix (2.57). The RHS vector, c, may also be approximated with quadrature

with the relationship

ci ≈
Q∑
k=0

φNi (tk)f(xN(tk), u
N(tk))wk, (4.4)

for i = 0, 1, . . . , N . If again, LGL quadrature rule is used with Q = N quadrature points,

the RHS vector approximation, c̄N , may be simplified as

c̄Ni =
N∑
k=0

φNi (tk)f(xN(tk), u
N(tk))wk = f(x̄Ni, ūNi)wi, i = 0, 1, . . . , N. (4.5)

Remark 4.1. Recall that for LGL quadrature rule, integration is exact for polynomial

integrands of degree less than or equal to 2N − 1. If Q = (N + 1) integration points are

used, the RHS vector will integrate exactly when f(x(t), u(t)) is linear in x(t) and u(t). In

the case of a nonlinear function f , the accuracy of integration (and therefore the accuracy
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of the overall approximation) can be improved by increasing the number of quadrature

points Q. However, in most cases, increasing the accuracy of integration by increasing Q

will significantly add to computation time due to the required interpolation of the state and

control vectors. This will be discussed in greater detail in Section 5.5.1.

Therefore system (4.1) may be simplified into the form

N∑
j=0

Dij x̄
Nj − c̄Ni = 0, i = 0, 1, . . . , N. (4.6)

Remark 4.2. In form (4.6), the resulting Galerkin equations that must be satisfied are

(
N∑
j=0

Aijx̄
Nj − f(x̄Ni, ūNi)

)
wi = 0, (4.7)

for i = 0, 1, . . . , N . This implies the following,

N∑
j=0

Aijx̄
Nj − f(x̄Ni, ūNi) = 0, (4.8)

for i = 0, 1, . . . , N . Note that (4.8) is the same set of equations that would be relaxed when

using the Legendre PS method (Section 3.2). Hence, numerical solutions to system (4.8)

found via the collocation method will satisfy the Galerkin relationships in (4.6). However,

inequality versions of (4.7) and (4.8) are used for computational purposes. As suggested

by Jackson’s Theorem, a solution of the inequality version of (4.7) may not satisfy (4.8).

In fact, the analysis for the Galerkin numerical formulation is based on the L2-norm. As

a result, the inequality bound for the Galerkin formulation is not simply a multiple of the

quadrature weight. Shown in Equation (4.13), the upper bound of the inequality includes

a factor of
√
w. However, this relationship draws a clear connection between the general

Galerkin optimal control formulation and the Legendre PS method, and will be exploited

in the proof of convergence (Theorem 4.4).
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Remark 4.3. Due to the results of Gong et al. [5], we know a feasible solution to the equal-

ity dynamical constraint may not exist. In order to guarantee feasibility of the discretized

problem a relaxation of this constraint is used.

The dynamical constraint becomes∥∥∥∥∥
N∑
j=0

Dijx̄
Nj − c̄Ni

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N,

where δN is the feasibility tolerance. The endpoint conditions and path constraints are

approximated similarly by

∥∥e(x̄N0, x̄NN)
∥∥
∞ ≤ δN ,

h(x̄Ni, ūNi) ≤ δN · 1, i = 0, 1, . . . , N,

where 1 denotes [1, . . . , 1]T . Lastly, the cost functional J [x(·), u(·)] is approximated by the

LGL quadrature rule,

J [x(·), u(·)] ≈ J̄N(x̄N , ūN) =
N∑
i=0

F (x̄Ni, ūNi)wi + E(x̄N0, x̄NN),

where x̄N =
[
x̄N0, x̄N1, . . . , x̄NN

]
and ūN =

[
ūN0, ūN1, . . . , ūNN

]
. To allow for a practi-

cal search area for the optimal solution the following constraints are added

{x̄Ni ∈X, ūNi ∈ U , i = 0, 1, . . . , N},

where X and U are the search regions that contain the optimal solution of the discretized

nonlinear optimization.
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4.2. Computation Strategy

The computation strategy for the Galerkin optimal control formulation with strong

enforcement of BCs is presented in two forms. First, the strategy for the continuous prob-

lem, in terms of the approximating polynomials is outlined, denoted as GOCM-S̃. Next,

the discrete problem, discretized on a LGL grid is presented, denoted as GOCM-S.

Definition 4.1. Function g(t) is called piecewise C1 if ∃ t0 = −1 < t1 < · · · < tk = 1

such that g(t) is C1 on each subinterval (ti, ti+1), i = 0, . . . , k − 1; lim
t→t+0

g(t), lim
t→t−k

g(t) and

lim
t→t+/−i

g(t) exist for i = 1, . . . , k−1; and g(t) is either left or right continuous at each point

ti.

4.2.1. Computation Strategy for GOCM-S̃

The computational strategy of the GOCM-S̃ is to find the feasible solution xN(t) ∈

X and uN(t) ∈ U for the following cases:

Case 1. u(·) is piecewise C0 and x(·) ∈ C0 and piecewise C1,

Case 2. u(·), ẋ(·) ∈ Hm−1 (see Appendix C) and m ≥ 2,

that minimizes

J(xN(·), uN(·)) =

∫ 1

−1

F (xN(t), uN(t))dt+ E(xN(−1), xN(1)), (4.9)

subject to the Galerkin constraints

∥∥∥∥∫ 1

−1

φNi (t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt

∥∥∥∥
∞
≤Mw

1
2
i N

−α, i = 0, 1, . . . , N,∥∥e(xN(−1), xN(1))
∥∥
∞ ≤MN−α,∥∥h+(xN(t), uN(t))
∥∥
L2 ≤MN−α,

(4.10)
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where α = 1
2

and (m− 1), for Case 1 and 2, respectively; M is a constant independent of

N and

h+ =

h, h > 0,

0, h ≤ 0.

(4.11)

4.2.2. Computation Strategy for GOCM-S

The computational strategy of the GOCM-S is to find the feasible solution x̄N ∈X

and ūN ∈ U for the following cases:

Case 1. u(·) is piecewise C0 and x(·) ∈ C0 and piecewise C1,

Case 2. u(·), ẋ(·) ∈ Hm−1 (see Appendix C), m ≥ 2 and ẋ(m−1)(t) is of bounded

variation in t ∈ [−1, 1] (see Appendix A),

that minimizes

J̄N(x̄N , ūN) =
N∑
i=0

F (x̄Ni, ūNi)wi + E(x̄N0, x̄NN), (4.12)

subject to the Galerkin constraints∥∥∥∥∥
N∑
j=0

Dij x̄
Nj − c̄Ni

∥∥∥∥∥
∞

≤Mw
1
2
i N

−α, i = 0, 1, . . . , N,

∥∥e(x̄N0, x̄NN)
∥∥
∞ ≤MN−α,

h(x̄Ni, ūNi) ≤MN−α · 1, i = 0, 1, . . . , N,

(4.13)

where α = 1
2

and (m− 1), for Case 1 and 2, respectively; and M is a constant independent

of N .

4.3. Feasibility of Solutions

In order to guarantee feasibility of the discretization, Theorems 4.1 and 4.2 show

that a relaxation of the dynamical equality constraint to inequality is required, for GOCM-
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S̃ and GOCM-S, respectively. However, first a buildup of lemmas are required for each

theorem.

Lemma 4.1. [46] Let pN(t) be the N -th order truncated Legendre series polynomial ap-

proximation to ζ ∈ Hm, t ∈ [−1, 1], then

∥∥ζ(t)− pN(t)
∥∥
L2 ≤ a1a0N

−m, ∀ t ∈ [−1, 1]

and

∥∥ζ(t)− pN(t)
∥∥
L∞
≤ a3a2N

1
2
−m, ∀ t ∈ [−1, 1],

where a1 and a3 are constants independent of N ; a0 = |ζ|Hm;N , the Sobolev seminorm of ζ

(see Appendix C); a2 = V (ζ(m)), the total variation of ζ(m) (see Appendix A); and m ≥ 0.

(pN(t)with the smallest norm
∥∥ζ(t)− pN(t)

∥∥
L2 is called the N -th order best polynomial

approximation of ζ in the L2-norm.)

Lemma 4.2. Let ζ(t) = g(t) + hutc(t), t ∈ [−1, 1], where ζ , utc ∈ H0, g ∈ H1, and

utc(t) = u(t− tc) is the unit step function defined by

utc(t) =

0, −1 ≤ t < tc,

1, tc ≤ t ≤ 1.

Also, let pN(t) =
N∑
n=0

p̂nLn be the N -th order truncated Legendre series polynomial ap-

proximation to ζ . Then

∥∥ζ(t)− pN(t)
∥∥
L2 < b1b0N

−1 + b2(t0, h)N−
1
2 , ∀ t ∈ [−1, 1], tc 6= −1, 1 and |h| <∞,

where b1 and b2 are constants independent of N , and b0 = ‖g‖H1 . (pN(t) with the smallest

norm
∥∥ζ(t)− pN(t)

∥∥
L2 is called the N -th order best polynomial approximation of ζ in the

L2-norm.)
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Proof. Let

gN(t) =
N∑
n=0

gnLn and uNtc (t) =
N∑
n=0

unLn

be the truncated Legendre series of g and utc , respectively. Then

pN(t) =
N∑
n=0

pnLn = gN(t) + hutc(t)

=
N∑
n=0

gnLn + h
N∑
n=0

unLn,

for t ∈ [−1, 1], where

pn = gn + hun, n = 0, . . . , N.

Therefore,

∥∥ζ(t)− pN(t)
∥∥
L2 =

∥∥∥∥∥ζ(t)−
N∑
n=0

pnLn

∥∥∥∥∥
L2

=
∥∥(g(t)− gN(t)

)
+ h

(
utc(t)− uNtc (t)

)∥∥
L2

≤
∥∥g(t)− gN(t)

∥∥
L2 + |h|

∥∥utc(t)− uNtc (t)∥∥L2

=

∥∥∥∥∥g(t)−
N∑
n=0

gnLn

∥∥∥∥∥
L2

+ |h|

∥∥∥∥∥utc(t)−
N∑
n=0

unLn

∥∥∥∥∥
L2

.

From Lemma 4.1, ∥∥∥∥∥g(t)−
N∑
n=0

gnLn

∥∥∥∥∥
L2

≤ b1b0N
−1, t ∈ [−1, 1],
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where gN is called the polynomial of best approximation of g in the L2-norm, b1 is a

constant independent of N and b0 = ‖g‖H1 . Additionally, from [45],

|h|

∥∥∥∥∥utc(t)−
N∑
n=0

unLn

∥∥∥∥∥
L2

≤ |h|

(
∞∑

n=N+1

γnu
2
n

) 1
2

, (4.14)

where the normalizing constants, {γn}∞n=0, for the Legendre polynomials are given by

Equation (2.27) and the Legendre expansion coefficients, {un}∞n=0, are defined by Equa-

tion (2.26). Due to the properties of the Legendre polynomials,

Ln(t) =
1

2n+ 1

(
L′n+1(t)− L′n−1(t)

)
, andLn(1) = 1,

the Legendre coefficients have the relationship

un =
1

2

∫ 1

tc

(
L′n+1(t)− L′n−1(t)

)
dt =

1

2
(Ln−1(tc)− Ln+1(tc)) ,

or may be expressed by

|un| =
1

2
|(Ln−1(tc)− Ln+1(tc))| ≤

1

2
(|Ln−1(tc)|+ |Ln+1(tc)|) .

Since the Legendre polynomial has the bound [72]

|Ln(t)| <
4( 2

π
)
1
2

n
1
2 (1− t2)

1
4

, t 6= −1, 1,

we have the following bound on un,

|un| <
2( 2

π
)
1
2

|h|n 1
2 (1− t2c)

1
4

(
1

(n− 1)
1
2

+
1

(n+ 1)
1
2

)
<

b2

|h|
1

n
1
2

,
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for n ≥ 2, where

b2(tc, h) =
8

π
1
2

|h|
(1− t2c)

1
4

, tc 6= −1, 1.

This is since

1

(n− 1)
1
2

+
1

(n+ 1)
1
2

<
2

(n− 1)
1
2

≤ 2
√

2

n
1
2

, n ≥ 2.

Therefore, Equation (4.14) has the bound,

|h|

∥∥∥∥∥utc(t)−
N∑
n=0

ûnLn

∥∥∥∥∥
L2

< b2

(
∞∑

n=N+1

1

(n+ 1
2
)

1

n

) 1
2

< b2

(
∞∑

n=N+1

1

n2

) 1
2

.

However, from the Integral Test Estimate [75],

lim
b→∞

∫ b

N+1

1

x2
dx ≤

∞∑
n=N+1

1

n2
≤ lim

b→∞

∫ b

N

1

x2
dx =

1

N
.

Hence,

|h|

∥∥∥∥∥utc(t)−
N∑
i=0

ûnLn

∥∥∥∥∥
L2

< b2N
− 1

2 ,

and finally,

∥∥ζ(t)− pN(t)
∥∥
L2 < b1b0N

−1 + b2N
− 1

2 , ∀ t ∈ [−1, 1], t0 6= −1, 1 and |h| <∞.

Lemma 4.3 (Hölder’s Inequality). [76] Let the Hölder conjugates p and q be real numbers

with the property that

1

p
+

1

q
= 1,
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where p > 1 and q > 1. Then for any arbitrary complex-valued sequences x = {ξk}Nk=0

and y = {vk}Nk=0 the following property holds

N∑
k=0

|ξkvk| ≤

(
N∑
k=0

|ξk|p
) 1

p
(

N∑
k=0

|vk|q
) 1

q

.

Moreover, when extended to integrals, Hölder’s inequality takes the form

∫ b

a

|f(t)g(t)|dt ≤
(∫ b

a

|f(t)|pdt
) 1

p
(∫ b

a

|g(t)|qdt
) 1

q

,

where f and g are assumed to be p-th and q-th power summable, respectively, on t ∈ [a, b].

Lemma 4.4. Let {φNi (t)}Ni=0 be the Lagrange interpolating polynomials of order, N , de-

fined on LGL grid {ti}Ni=0. Then, there exists a positive integer, N0, such that, for any

N ≥ N0,

∥∥φNi ∥∥L2 ≤ pw
1
2
i ≤ qN−

1
2 ,

for each i = 0, 1, . . . , N , where {wi}Ni=0 are the LGL quadrature weights associated with

the LGL points, {ti}Ni=0, and p and q are positive constants independent of N .

Proof. From [46], the discrete norm, ‖ξN‖N =

(
N∑
k=0

|ξk|2wk
) 1

2

, has the property

‖ξN‖L2 ≤ p‖ξN‖N ,

for ξN ∈ PN , where p is a positive constant, independent of N . Since φN ∈ PN , we have

∥∥φNi ∥∥L2 ≤ p
∥∥φNi ∥∥N ,
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for each i = 0, 1, . . . , N . Furthermore, from the property of the Lagrange polynomial,

φNj (ti) = δij , we have

∥∥φNi ∥∥N =

(
N∑
k=0

∣∣φNi (tk)
∣∣2wk)

1
2

= w
1
2
i ,

for i = 0, 1, . . . , N . Also, from [46] we have, for i = 1, 2, . . . , N − 1,

c1

N
(1− (ti)

2)
1
2 ≤ wi ≤

c2

N
(1− (ti)

2)
1
2 ,

for constants, 0 < c1 < c2, independent of i and N ; for i = 0, N , we have

w0, wN =
2

N(N + 1)
.

Therefore,

|wi| ≤
c2

N
,

for each i = 0, 1, . . . , N . Finally,

∥∥φNi ∥∥L2 ≤ pw
1
2
i ≤ qN−

1
2

holds for all N > N0, where q is a constant independent of i and N .

4.3.1. Feasibility of GOCM-S̃

Theorem 4.1 (Feasibility of GOCM-S̃). Given any feasible solution t 7→ (x, u), for Prob-

lem B, consider the following two cases:

Case 1. u(·) is piecewise C0 and x(·) ∈ C0 and piecewise C1,

Case 2. u(·), ẋ(·) ∈ Hm−1 and m ≥ 2.

Then, there exists a positive integer N0 such that, for any N ≥ N0, GOCM-S̃ has a poly-
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nomial feasible solution, (xN(t), uN(t)) such that

∥∥x(t)− xN(t)
∥∥
L2 ≤MN−α and

∥∥u(t)− uN(t)
∥∥
L2 ≤MN−α,

where α = 1
2

and (m− 1), for Case 1 and 2, respectively; and M is a positive constant

independent of N .

Proof. Let p(t) be the (N − 1)-th order truncated Legendre polynomial approximation of

ẋ(t). By Lemmas 4.1 and 4.2 there is a constant c0 independent of N , for any N ≥ N0,

such that

‖ẋ(t)− p(t)‖L2 ≤ c0N
−α,

where α = 1
2

and (m− 1), for Case 1 and 2, respectively. Define

xN(t) =

∫ t

−1

p(s)ds+ x(−1).

Then p(t) = ẋN(t) and

∥∥x(t)− xN(t)
∥∥
L2 ≤ 2c0N

−α,

since, from Hölder’s inequality (Lemma 4.3), we have

∣∣x(t)− xN(t)
∣∣ =

∣∣∣∣∫ t

−1

(ẋ(s)− p(s)) ds
∣∣∣∣ ≤ ∫ t

−1

|ẋ(s)− p(s)|ds

≤
√

2

(∫ 1

−1

|ẋ(s)− p(s)|2ds
) 1

2

=
√

2‖ẋ(t)− p(t)‖L2 ≤
√

2c0N
−α. (4.15)

Let uN(t) be the N -th order Legendre polynomial so that

∥∥u(t)− uN(t)
∥∥
L2 ≤ c1N

−α.
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From our Galerkin approximation, Hölder’s inequality (Lemma 4.3), and Lemma 4.4, we

have for each k = 0, 1, . . . , N ,∣∣∣∣∣∣
1∫

−1

φNk (t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt

∣∣∣∣∣∣
≤

1∫
−1

∣∣φNk (t)
(
ẋN(t)− f(xN(t), uN(t))

)∣∣dt
≤
∥∥φNk (t)

∥∥
L2

∥∥ẋN(t)− f(xN(t), uN(t))
∥∥
L2

≤ c2w
1
2
k

∥∥ẋN(t)− f(xN(t), uN(t))
∥∥
L2

≤ c2w
1
2
k

∥∥ẋ(t)− ẋN(t)
∥∥
L2 + c2w

1
2
k

∥∥ẋ(t)− f(xN(t), uN(t))
∥∥
L2

= c2w
1
2
k ‖ẋ(t)− p(t)‖L2 + c2w

1
2
k

∥∥f(x(t), u(t))− f(xN(t), uN(t))
∥∥
L2

= c0c2w
1
2
kN

−α + c2l1w
1
2
k

∥∥x(t)− xN(t)
∥∥
L2 + c2l2w

1
2
k

∥∥u(t)− uN(t)
∥∥
L2

≤ c0c2w
1
2
kN

−α + c0c2l1w
1
2
kN

−α + c1c2l2w
1
2
kN

−α,

where {wk}Nk=0 are LGL quadrature weights and l1 and l2 are the Lipschitz constants of f

with respect to x and u, respectively, which are independent of N . It follows that∣∣∣∣∣∣
1∫

−1

φNk (t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt

∣∣∣∣∣∣ ≤Mw
1
2
kN

−α

holds for each k = 0, 1, . . . , N , and all N > N0, where M is a constant independent of N .

For the endpoint condition we have

∣∣x(1)− xN(1)
∣∣ =

∣∣∣∣∫ t

−1

(ẋ(s)− p(s)) ds
∣∣∣∣ ≤ ∫ t

−1

|ẋ(s)− p(s)|ds

≤
√

2

(∫ 1

−1

|ẋ(s)− p(s)|2ds
) 1

2

=
√

2‖ẋ(t)− p(t)‖L2 ≤
√

2c0N
−α,
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so we have, by Lipschitz condition,

∣∣e(xN(−1), xN(1))
∣∣ ≤MN−α.

For the path constraint let D =
{
t|h(xN(t), uN(t)) > 0

}
,D = [−1, 1] \D, since

h(x(t), u(t)) ≤ 0. Then

∥∥h+(xN(t), uN(t))
∥∥
L2 =

(∫
D

(h(xN(t), uN(t)))2dt

) 1
2

≤
(∫
D

(h(xN(t), uN(t))− h(x(t), u(t)))2dt

) 1
2

≤
(∫
D

(h(xN(t), uN(t))− h(x(t), u(t)))2dt+

∫
D

(h(xN(t), uN(t))− h(x(t), u(t)))2dt

) 1
2

=

(∫ 1

−1

(h(xN(t), uN(t))− h(x(t), u(t)))2dt

) 1
2

=
∥∥h(xN(t), uN(t))− h(x(t), u(t))

∥∥
L2

≤ l3
∥∥x(t)− xN(t))

∥∥
L2 + l4

∥∥u(t)− uN(t))
∥∥
L2 ≤MN−α,

where l3 and l4 are the Lipschitz constants of h with respect to x and u, respectively, which

are independent of N . Hence

∥∥h+(xN(t), uN(t))
∥∥
L2 ≤MN−α.

Thus a solution (xN(t), uN(t)) to GOCM-S̃ is feasible!

4.3.2. Feasibility of GOCM-S

Theorem 4.2 (Feasibility of GOCM-S). Given any feasible solution t 7→ (x, u), for Prob-

lem B, consider the following two cases:

Case 1. u(·) is piecewise C0 and x(·) ∈ C0 and piecewise C1,

Case 2. u(·), ẋ(·) ∈ Hm−1 and m ≥ 2.

Then, there exists a positive integer N0 such that, for any N ≥ N0, GOCM-S has a feasible
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solution, (x̄N , ūN) such that

∥∥x(t)− xN(t)
∥∥
L2 ≤MN−α,

where α = 1
2

and (m− 1), for Case 1 and 2, respectively; and M is a positive constant

independent of N . Additionally, uN(ti) = u(ti), for i = 0, 1, . . . , N .

Proof. Let p(t)be the (N − 1)-th order truncated Legendre polynomial approximation of

ẋ(t) in the L2-norm. By Lemma 4.1 there is a constant d1 independent of N , for any

N ≥ N1, such that

‖ẋ(t)− p(t)‖L∞ ≤ d1N
−β,

where β =
(
m− 3

2

)
, for Case 2. For Case 1, we refer to [77–79] which show the truncated

Legendre approximation for discontinuous functions with jump discontinuity (such as the

step function defined in Lemma 4.2) displays Gibbs phenomenon. However, the maximum

amplitude of the overshoot has a finite limit; we conclude that for Case 1, β = 0. Also, by

Lemma 4.2 there is a constant d2 independent of N , for any N ≥ N2, such that

‖ẋ(t)− p(t)‖L2 ≤ d2N
−α,

where α = 1
2

and (m− 1), for Case 1 and 2, respectively. Define

xN(t) =

∫ t

−1

p(s)ds+ x(−1).

Then p(t) = ẋN(t) and

∥∥x(t)− xN(t)
∥∥
L2 ≤ 2d2N

−α,
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since, from Hölder’s inequality (Lemma 4.3), we have

∣∣x(t)− xN(t)
∣∣ =

∣∣∣∣∫ t

−1

(ẋ(s)− p(s)) ds
∣∣∣∣ ≤ ∫ t

−1

|ẋ(s)− p(s)|ds (4.16)

≤
√

2

(∫ 1

−1

|ẋ(s)− p(s)|2ds
) 1

2

=
√

2‖ẋ(t)− p(t)‖L2 ≤
√

2d2N
−α. (4.17)

Also, let uN(t) be an interpolating function of u(t),

uN(t) =
N∑
j=0

ψNj (t)ūNj,

where {ψNj }Nj=0 is any set of continuous functions (not necessarily polynomials) with the

property ψNj (ti) = δij , and therefore

ūNj = u(tj).

Since xN(t) is a N -th order polynomial, we have

ẋN(tk) =
N∑
j=0

Akjx̄
Nj,

where A is the (N + 1)× (N + 1) Legendre PS differentiation matrix (2.57) and

x̄Nk = xN(tk).

Recall that the LGL quadrature weights, {wk}Nk=0, have the property

wk ≤ d3N
−1(1− (tk)

2)
1
2 , k = 1, 2, . . . , N − 1,
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for constant d3 > 0 independent of k and N ; for k = 0, N , we have

w0, wN =
2

N(N + 1)
.

So, we have ∣∣∣∣∣
N∑
j=0

Dkjx̄
Nj − c̄Nk

∣∣∣∣∣ =

∣∣∣∣∣
N∑
j=0

Akjx̄
Nj − f(x̄Nk, ūNk)

∣∣∣∣∣wk
=
∣∣ẋN(tk)− f(x̄Nk, ūNk)

∣∣wk =
∣∣p(tk)− f(x̄Nk, ūNk)

∣∣wk
≤ |p(tk)− f(x(tk), u(tk))|wk +

∣∣f(x(tk), u(tk)− f(x̄Nk, ūNk)
∣∣wk

= |p(tk)− ẋ(tk)|wk +
∣∣f(x(tk), u(tk)− f(x̄Nk, ūNk)

∣∣wk
≤ ‖p(t)− ẋ(t)‖L∞wk + l1

∣∣x(tk)− xN(tk)
∣∣wk

≤ d4wkN
−β +

√
2l1d2wkN

−α,

for each k = 0, 1, 2, . . . , N , where l1 is the Lipschitz constants of f with respect to x.

Putting this all together, we conclude that∣∣∣∣∣
N∑
j=0

Dkjx̄
Nj − c̄Nk

∣∣∣∣∣ ≤ d4wkN
−β +

√
2l1d2wkN

−α ≤Mw
1
2
kN

−α,

for each k = 0, 1, 2, . . . , N , and all N > N3, where M is a constant independent of N .

For the endpoint condition, we have

∣∣x(tN)− xN(tN)
∣∣ =

∣∣x(1)− xN(1)
∣∣ =

∫ 1

−1

|ẋ(s)− p(s)|ds

≤
√

2

(∫ 1

−1

|ẋ(s)− p(s)|2ds
) 1

2

=
√

2‖ẋ(t)− p(t)‖L2 ≤
√

2d2N
−α.

So, by Lipschitz condition,

∣∣e(xN(t0), xN(tN))
∣∣ ≤MN−α.
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For the path constraint, the following estimate holds

∣∣h(x(t), u(t))− h(xN(t), uN(t))
∣∣ ≤ l2

∣∣x(t)− xN(t)
∣∣ ≤ √2l2d2N

−α,

for each k = 0, 1, 2, . . . , N , where l2 is the Lipschitz constants of h with respect to x.

Hence,

h(x̄Nk, ūNk) ≤ h(x(tk), u(tk)) +MN−α · 1.

Thus a solution (x̄N , ūN) to GOCM-S is feasible!

Remark 4.4. Although, Theorems 4.1 and 4.2 do not provide exact feasibility tolerances for

the existence of solutions to the GOCM-S̃ and GOCM-S, we can be confident that solutions

do in fact exist. Precise bounds may be found experimentally, using a recursive refinement

process, by increasing the order of the approximation, N , until all the constraints in the

NLP are satisfied.

4.4. Consistency of Solutions

Theorems 4.1 and 4.2 show that solutions exist to the GOCM-S̃ and GOCM-S, re-

spectively. However, the question still remains—will these solutions converge to those that

we seek? The answer is yes—Theorems 4.3 and 4.4 presented below show that solutions

to GOCM-S̃ and GOCM-S, will in fact converge to the optimal solution of Problem B.

However, first a definition and lemma are required.

4.4.1. Consistency of GOCM-S̃

Definition 4.2. The orthogonal system {ψk(t)}∞k=0 is complete in L2, t ∈ [−1, 1], if and

only if, for ξ(t) ∈ L2, the condition
∫ 1

−1
ψk(t)ξ(t)(t)dt = 0, ∀k ≥ 0, implies ‖ξ(t)‖L2 = 0.
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Lemma 4.5. Let εN(t) ∈ Hm with m > 1
2

(see Appendix C). Assume

∣∣∣∣∫ 1

−1

φNi (t)εN(t)dt

∣∣∣∣ ≤ b0w
1
2
i δ

N ,

for each i = 0, 1, . . . , N , where {φNi (t)}Ni=0 is the Lagrange interpolation polynomial of

order N defined on LGL grid, {ti}Ni=0, {wi}Ni=0 are the associated LGL quadrature weights

and b0 is a constant independent of N . Also assume ∃ ε(t) ∈ Hm with m > 1
2
, so that

∥∥ε− εN∥∥
L2 ≤ b1δ

N ,

where δN ≤ N−α, α > 1
2

and b1 is a constant independent of N . Then

‖ε‖L2 = 0.

Proof. Recall from Equation (2.35) that the orthogonal Legendre polynomials, {Lj(t)}Nj=0,

can be written as linear combinations of Lagrange polynomials, {φNi (t)}Ni=0, defined on the

LGL grid, {tk}Nk=0, as

Lj(t) =
N∑
i=0

Lj(ti)φ
N
i (t) =

N∑
i=0

V T
ij φ

N
i (t),
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where V is the generalized Vandermonde matrix (2.30). From Hölder’s inequality (Lemma 4.3)

and Lemma 4.4, for each i = 0, 1, . . . , N , we have∣∣∣∣∫ 1

−1

φNi (t)ε(t)dt

∣∣∣∣ =

∣∣∣∣∫ 1

−1

φNi (t)
(
εN(t)− εN(t) + ε(t)

)
dt

∣∣∣∣
≤
∣∣∣∣∫ 1

−1

φNi (t)
(
ε(t)− εN(t)

)
dt

∣∣∣∣+

∣∣∣∣∫ 1

−1

φNi (t)εN(t)dt

∣∣∣∣
≤
∫ 1

−1

∣∣φNi (t)
(
ε(t)− εN(t)

)∣∣dt+ b0w
1
2
i δ

N

≤
∥∥φNi (t)

∥∥
L2

∥∥ε(t)− εN(t)
∥∥
L2 + b0w

1
2
i δ

N

≤ b2w
1
2
i δ

N + b0w
1
2 δN = b3w

1
2
i δ

N .

From [46], we have

b4

N
(1− (ti)

2)
1
2 ≤ wi ≤

b5

N
(1− (ti)

2)
1
2 , i = 1, 2, . . . , N − 1,

for constants 0 < b4 < b5, independent of i and N ; for i = 0, N , we have

w0, wN =
2

N(N + 1)
.

Also recall, from [72], that

|Lj(t)| <
4( 2

π
)
1
2

j
1
2 (1− t2)

1
4

, t 6= −1, 1.

98



Since
∣∣∣∫ 1

−1
φNi (t)ε(t)dt

∣∣∣ ≤ b3w
1
2
i δ

N , for each i = 0, 1, . . . , N , we have

∣∣∣∣∫ 1

−1

Lj(t)ε(t)dt

∣∣∣∣ =

∣∣∣∣∣
N∑
i=0

Lj(ti)

∫ 1

−1

φNi (t)ε(t)dt

∣∣∣∣∣
≤

N∑
i=0

|Lj(ti)|
∣∣∣∣∫ 1

−1

φNi (t)ε(t)dt

∣∣∣∣ ≤ b3

N∑
i=0

|Lj(ti)|w
1
2
i δ

N

≤ δN

(
b3

2
√

2

(N(N + 1))
1
2

+ b6

N−1∑
i=1

∣∣∣∣∣ 1

j
1
2 (1− t2i )

1
4

∣∣∣∣∣
∣∣∣∣∣(1− t2i )

1
4

N
1
2

∣∣∣∣∣
)

= δN

(
b2

2
√

2

(N(N + 1))
1
2

+ b6
N − 1

j
1
2N

1
2

)
≤ b7δ

N

(
N

j

) 1
2

,

for each j = 1, . . . , N , and constant, b7, for all N ≥ N0. Since δN ≤ N−α and α > 1
2
, it

follows that when N →∞ we have∣∣∣∣∫ 1

−1

Lj(t)ε(t)dt

∣∣∣∣ = 0,

for each j = 0, 1, . . . , N . Since the Legendre polynomials, {Lj}∞j=0, are complete in L2

space [80] and ε ⊥ Lj for all j = 0, 1, . . . , N , we can conclude,

‖ε(t)‖L2 = 0.

Theorem 4.3 (Consistency of GOCM-S̃). Suppose (xN(t), uN(t)) is a solution of GOCM-

S̃ and there exists (x(t), u(t)) such that u(·), ẋ(·) ∈ Hm−1 with m ≥ 2. Also, suppose

xN(t)→ x(t) uniformly, and

∥∥x(t)− xN(t)
∥∥
L2 ≤ KδN , (4.18)∥∥u(t)− uN(t)
∥∥
L2 ≤ KδN , (4.19)
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where δN ≤ N−α, α > 1
2

and K is a constant independent of N . Then (x(t), u(t)) satisfies


‖ẋ(t)− f(x(t), u(t))‖L2 = 0,

e(x(−1), x(1)) = 0,

h(x(t), u(t)) ≤ 0,

and is an optimal solution to Problem B.

Proof. Let εN(t) = ẋN(t) − f(xN(t), uN(t)) and ε(t) = ẋ(t) − f(x(t), u(t)). From

Lemma 4.5, to prove ‖ε(t)‖L2 = 0, it is enough to prove

∣∣∣∣∫ 1

−1

φNk (t)ε(t)dt

∣∣∣∣ ≤ c0w
1
2
k δ

N ,

for each k = 0, 1, . . . , N , where δN ≤ N−α, α > 1
2
. Consider

∣∣∣∣∫ 1

−1

φNk (t)ε(t)dt

∣∣∣∣
≤
∣∣∣∣∫ 1

−1

φNk (t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt

∣∣∣∣+

∣∣∣∣∫ 1

−1

φNk (t)
(
ẋ(t)− ẋN(t)

)
dt

∣∣∣∣
+

∣∣∣∣∫ 1

−1

φNk (t)
(
f(xN(t), uN(t))− f(x, u)

)
dt

∣∣∣∣
≤ c2w

1
2
k δ

N + w
1
2
k

∥∥ẋ(t)− ẋN(t)
∥∥
L2 + w

1
2
k

∥∥f(x(t), u(t))− f(xN(t), u(t))
∥∥
L2

≤ c2w
1
2
k δ

N + w
1
2
k

∥∥x(t)− xN(t)
∥∥
L2 + l1w

1
2
k

∥∥x(t)− xN(t)
∥∥
L2 + l2w

1
2
k

∥∥u(t)− uN(t)
∥∥
L2

≤ c2w
1
2
k δ

N +Kw
1
2
k δ

N + l1Kw
1
2
k δ

N + l2Kw
1
2
k δ

N ≤ c0w
1
2
k δ

N ,

where l1 and l2 are the Lipschitz constants of f with respect to x and u, respectively, which

are independent of N . It follows, from Lemma 4.5, that as N →∞ we have

‖ε‖L2 = ‖ẋ(t)− f(x(t), u(t))‖L2 = 0.
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For the endpoint condition, since xN(t)→ x(t) uniformly, we have

xN(1)→ x(1) and xN(−1)→ x(−1).

Since, from the formulation of the computational strategy we have
∣∣e(xN(−1), xN(1))

∣∣ ≤
MN−α, we conclude that e(x(−1), x(1)) = 0 as N →∞.

For the path constraint, since h(x(t), u(t)) is piecewise C1, if h(x(t∗), u(t∗)) > 0,

∃ an interval (a, b) in which h(x(t), u(t)) > 0. Then

‖h(x(t), u(t))‖L2(a,b) =

(∫ b

a

(h(x(t), u(t)))2dt

) 1
2

> 0. (4.20)

However,

‖h(x(t), u(t))‖L2(a,b) ≤
∥∥h(x(t), u(t))− h+(xN(t), uN(t))

∥∥
L2(a,b)

+
∥∥h+(xN(t), uN(t))

∥∥
L2(a,b)

≤
∥∥h(x(t), u(t))− h(xN(t), uN(t))

∥∥
L2(a,b)

+MN−α

≤ l3
∥∥x(t)− xN(t))

∥∥
L2 + l4

∥∥u(t)− uN(t))
∥∥
L2 +MN−α,

where l3 and l4 are the Lipschitz constants of h with respect to x and u, respectively,

which are independent of N . Hence, this is a contradiction, therefore h(x(t), u(t)) ≤ 0 as

N →∞.

Suppose that (x(t), u(t)) is not optimal. Then ∃ (x∗(t), u∗(t)), so that

J (x∗(·), u∗(·)) < J (x(·), u(·)) .

Also, ∃ (x∗(t), u∗(t)) such that

∥∥x∗N(t)− x∗(t)
∥∥
L2 ≤MN−α and

∥∥u∗N(t)− u∗(t)
∥∥
L2 ≤MN−α,
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where (x∗N(t), u∗N(t)) is a feasible trajectory of GOCM-S̃. Therefore

J
(
x∗N(·), u∗N(·)

)
≥ J

(
xN(·), uN(·)

)
. (4.21)

However,

∣∣J (xN(·), uN(·)
)
− J (x(·), u(·))

∣∣
≤
∫ 1

−1

∣∣F (xN(t), uN(t))− F (x(t), u(t))
∣∣dt+

∣∣E(xN(−1), xN(1))− E(x(−1), x(1))
∣∣

≤
√

2
∥∥F (xN(t), uN(t))− F (x(t), u(t))dt

∥∥
L2 +

∣∣E(xN(−1), xN(1))− E(x(−1), x(1))
∣∣.

Due to the Lipschitz condition and assumptions (4.18) and (4.19) we have

lim
N→∞

∣∣J (xN(·), uN(·)
)
− J (x(·), u(·))

∣∣ = 0.

Similarly,

lim
N→∞

∣∣J (x∗N(·), u∗N(·)
)
− J (x∗(·), u∗(·))

∣∣ = 0.

Therefore, from (4.21) we have

J (x∗(·), u∗(·)) ≥ J (x(·), u(·)) .

This is a contradiction, since we assumed

J (x∗(·), u∗(·)) < J (x(·), u(·)) .

We conclude that (x(t), u(t)) achieves an optimal cost and therefore is an optimal solution

to Problem B!
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4.4.2. Consistency of GOCM-S

Lemma 4.6 (Theorem 6.5.5, [81]). Let f be Riemann integrable in [−1, 1] and {φNk (t)}Nk=0

be the Lagrange polynomials of order N defined on a LGL grid, {tk}Nk=0. Define

fN(t) =
N∑
k=0

φNk (t)f̄Nk,

where f̄Nk = fN(tk), for k = 0, 1, . . . , N . Then

lim
N→∞

N∑
k=0

f(tk)wk = lim
N→∞

∫ 1

−1

fN(t)dt =

∫ 1

−1

f(t)dt,

where {wk}Nk=0 are LGL quadrature weights associated with the LGL points, {tk}Nk=0.

Theorem 4.4 (Consistency of GOCM-S). Suppose
{

(x̄Nk, ūNk), 0 ≤ k ≤ N
}∞
N=N1

is a se-

quence of solutions to GOCM-S,
{
t 7→

(
xN(t), uN(t)

)}∞
N=N1

are their interpolating func-

tions and there exists functions (x(t), u(t)) such that u(·), ẋ(·) ∈ Hm−1 with m ≥ 2 and

ẋ(m−1)(t) is of bounded variation in t ∈ [−1, 1] (see Appendix A). Also, suppose

lim
N→∞

∥∥u(t)− uN(t)
∥∥
L∞

= 0, (4.22)

lim
N→∞

∥∥ẋ(t)− ẋN(t)
∥∥
L∞

= 0. (4.23)

Then (x(t), u(t)) satisfies 
‖ẋ(t)− f(x(t), u(t))‖L∞ = 0,

e(x(−1), x(1)) = 0,

h(x(t), u(t)) ≤ 0,

and is an optimal solution to Problem B.
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Proof. This proof follows the outline of Theorem 2 given by Gong et al. in [5]. First, from

assumptions (4.22) and (4.23) it is easy to show

lim
N→∞

∥∥x(t)− xN(t)
∥∥
L∞

= 0.

Next, suppose that (x(t), u(t)) is not a solution. Then there is a time τ ∈ [−1, 1] such that

ẋ(τ)− f(x(τ), u(τ)) 6= 0.

From [82], the LGL nodes, {ti}Ni=0, are dense whenN →∞. Then there exists a sequence,

{iN}, where 0 ≤ iN ≤ N , and with property

lim
N→∞

tiN = τ,

so that

ẋ(τ)− f(x(τ), u(τ)) = lim
N→∞

(
ẋN(tiN )− f(xN(tiN ), uN(tiN ))

)
6= 0. (4.24)

Also, we have

ẋN(tiN ) =
N∑
j=0

AiN jx̄
Nj,

where A is the Legendre PS differentiation matrix (2.57). Therefore, from Theorem 4.2,∣∣∣∣∣
N∑
j=0

DiNjx̄
Nj − c̄NiN

∣∣∣∣∣ =

∣∣∣∣∣
N∑
j=0

AiNjx̄
Nj − f(x̄Ni

N

, ūNi
N

)

∣∣∣∣∣wiN
=
∣∣ẋN(tiN )− f(xN(tiN ), uN(tiN ))

∣∣wiN = MwiNN
3
2
−m,
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where wiN , is the LGL quadrature weight associated with LGL point, tiN , for each iN . This

implies

lim
N→∞

(
ẋN(tiN )− f(xN(tiN ), uN(tiN ))

)
= lim

N→∞
MN

3
2
−m = 0,

which contradicts Equation (4.24). We conclude that (x(t), u(t)) is a solution.

For the path constraint, we consider the same contradiction argument given above.

For the endpoint condition, since xN(t)→ x(t) uniformly, we have

xN(1)→ x(1) and xN(−1)→ x(−1).

Since, from Theorem 4.2, we have

∣∣e(xN(−1), xN(1))
∣∣ ≤MN1−m,

we conclude that

e(x(−1), x(1)) = lim
N→∞

e(xN(−1), xN(1)) = lim
N→∞

e(x̄N0, xNN) = 0.

For the cost functional we have

J̄N(x̄N , ūN) =
N∑
k=0

F (x̄Nk, ūNk)wk + E(x̄N0, x̄NN)

and

J(x(·), u(·)) =

∫ 1

−1

F (x(t), u(t))dt+ E(x(−1), x(1)).
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By Lemma 4.6, we have

∫ 1

−1

F (x(t), u(t))dt = lim
N→∞

N∑
k=0

F (x(tk), u(tk))wk,

and therefore

∣∣∣∣∫ 1

−1

F (x(t), u(t))dt

∣∣∣∣ =

∣∣∣∣∣ lim
N→∞

(
N∑
k=0

F (x̄Nk, ūNk)wk +
N∑
k=0

[
F (x(tk), u(tk)− F (x̄Nk, ūNk)

]
wk

)∣∣∣∣∣.
However, ∣∣∣∣∣ lim

N→∞

N∑
k=0

[
F (x(tk), u(tk))− F (x̄Nk, ūNk)

]
wk

∣∣∣∣∣
≤ lim

N→∞

N∑
k=0

∣∣F (x(tk), u(tk))− F (xN(tk), u
N(tk))

∣∣wk
≤ l1 lim

N→∞

N∑
k=0

∣∣x(tk)− xN(tk)
∣∣wk + l2 lim

N→∞

N∑
k=0

∣∣u(tk)− uN(tk)
∣∣wk = 0,

where l1 and l2 are the Lipschitz constants of F with respect to x and u. Thus we conclude,

∫ 1

−1

F (x(t), u(t))dt = lim
N→∞

N∑
k=0

F (x̄Nk, ūNk)wk.

Finally, by Lipschitz condition,

lim
N→∞

E(x̄N0, x̄NN) = E(x(−1), x(1)),

and the limit

lim
N→∞

J̄N(x̄N , ūN) = J (x(·), u(·)) (4.25)

follows.
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Let
{

(x∗Nk, u∗Nk), 0 ≤ k ≤ N
}∞
N=N1

be an optimal sequence of solutions to GOCM-

S and
{
t 7→

(
x∗N(t), u∗N(t)

)}∞
N=N1

be their interpolating functions. From Theorem 4.2,

lim
N→∞

∥∥u∗(t)− u∗N(t)
∥∥
L∞

= 0, (4.26)

lim
N→∞

∥∥x∗(t)− x∗N(t)
∥∥
L∞

= 0, (4.27)

and from (4.25) we have

J (x∗(·), u∗(·)) ≤ J (x(·), u(·)) = lim
N→∞

J̄N(x̄N(·), ūN(·)) ≤ lim
N→∞

J̄N(x∗N(·), u∗N(·)).

Finally, from conditions (4.26) and (4.27) we conclude

J (x∗(·), u∗(·)) = J (x(·), u(·)) .

Hence (x(t), u(t)) achieves an optimal cost and therefore is an optimal solution to Prob-

lem B!

Remark 4.5. Theorems 4.3 and 4.4 provide confidence that solutions not only existence to

the GOCM-S̃ and GOCM-S, but solutions will converge to the optimal solution. However,

questions still remain about the conditions under which assumptions (4.18), (4.19), (4.22)

and (4.23) exist (as pointed out by Gong et al. [5]). Answers for similar questions have been

provided for the Legendre PS method by Kang [6], but like analysis for Galerkin optimal

control is above the scope of this dissertation.
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CHAPTER 5:
ALTERNATIVE FORMS OF GALERKIN OPTIMAL CONTROL

An advantage in using Galerkin optimal control is that it is a versatile family of

formulations. There are a number of Galerkin forms that can be used to suit the problem at

hand. In Chapter 4, the general formulation, Galerkin optimal control with strong enforce-

ment of end conditions, was presented. This serves as the first of three global formulations

that are outlined in this dissertation. The second global formulation is Galerkin optimal

control with weak enforcement of boundary conditions, and will be discussed in Section

5.1. (Additionally, a third global Galerkin optimal control formulation with Legendre test

functions will be presented in Chapter 6.) Important results in this chapter include Theo-

rems 5.1 and 5.2, which prove that nonlinear program Problems GOCM-W̃ and GOCM-W

(outlined in Section 5.1.2) have feasible solutions to Problem B, where the controls may be

piecewise continuous.

Next, the element based formulations will be presented and are divided into two

forms: Galerkin optimal control with element-based continuous and discontinuous Galerkin

techniques, which will be presented in Sections 5.2 and 5.3, respectively. As alluded to in

Chapter 3, the Galerkin weak integral form improves feasibility of the multi-scale approach

highlighted. The method of approximation for the multi-scale Galerkin optimal control for-

mulation will be outlined in Section 5.4. Finally, Section 5.5 will discuss modifications to

the Galerkin optimal control formulations, such as over-integration of the RHS vector and

the use of quadrature points other than LGL, such as LG and LGR points.

5.1. Galerkin optimal control with Weak Boundary Condition Enforce-
ment

The general Galerkin optimal control strategy presented in Section 4.2 describes a

formulation in which boundary conditions are enforced in a strong sense, via a constraint
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of the form

∥∥e(x̄N0, x̄NN)
∥∥
∞ ≤ δN .

Recall, this boundary enforcement method is also incorporated into the Legendre PS method

(see Section 3.2). This section presents an alternative formulation of Galerkin optimal con-

trol introduced in [73, 83], one that allows for enforcement of the problem end conditions

in a weak sense through the dynamical constraint.

5.1.1. Method for Approximation

We now consider the Galerkin optimal control formulation with weak enforcement

of boundary conditions. In this approximation to Problem B, the state trajectory, x(t),

is approximated with globally interpolating N -th order Lagrange polynomials,{φNj }Nj=0,

defined on a grid of LGL nodes, {tj}Nj=0,

x(t) ≈ xN(t) =
N∑
j=0

φNj (t)x̄Nj.

Due to the property of the Lagrange polynomials, φNj (ti) = δij , we have

x̄Nj = xN(tj), j = 0, 1, . . . , N.

Also, let uN(t) be an interpolating function of {ūNj}Nj=0,

uN(t) =
N∑
j=0

ψNj (t)ūNj,

where {ψNj }Nj=0 is any set of continuous functions (not necessarily polynomials) with the

property ψNj (ti) = δij . As done previously, taking the weak integral form of ẋ−f(x, u) = 0
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yields [44]

∫ 1

−1

φNi (t)

(
dxN(t)

dt
− f(xN(t), uN(t))

)
dt = 0,

for i = 0, 1, . . . , N . Integration by parts on the first term results in Galerkin weak form,

−
∫ 1

−1

dφNi
dt

xNdt+
[
φNi x

N
]1
−1
−
∫ 1

−1

φNi f(xN , uN)dt = 0.

In terms of our approximating polynomials and the true boundary conditions (letting xN(−1)→

x(−1) and xN(1)→ x(1)) we have

−
N∑
j=0

∫ 1

−1

dφNi
dt

φNj dt x̄
Nj − φNi (−1)x(−1) + φNi (1)x(1)−

∫ 1

−1

φNi f(xN , uN)dt = 0,

for i = 0, 1, . . . , N . Integration by parts, yet again, results in Galerkin strong form with

weak enforcement of BCs,

N∑
j=0

∫ 1

−1

φNi
dφNj
dt

dt x̄Nj + φNi (−1)

(
N∑
j=0

φNj (−1)x̄Nj − x(−1)

)

−φNi (1)

(
N∑
j=0

φNj (1)x̄Nj − x(1)

)
−
∫ 1

−1

φNi f(xN , uN)dt = 0.

The expression may be simplified as

N∑
j=0

Dijx̄
Nj + κi − c̄Ni = 0,

for each i = 0, 1, . . . , N , where the Galerkin differentiation matrix, D, and the RHS vector

approximation, c̄, are unchanged from those given in the GOCM-S methodology—given
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by Equations (4.3) and (4.5), respectively—and

κi =


x̄N0 − x(−1), i = 0,

x(1)− x̄NN , i = N,

0, i 6= 0, N.

The BC term κ now provides a natural way to introduce end conditions into our numer-

ical scheme. BCs such as e(x(−1), x(1)) =
[
x(−1)− x0, x(1)− xf

]T
= [0, 0]T can be

imposed by defining κ as

κi =


x̄N0 − x0, i = 0,

xf − x̄NN , i = N,

0, i 6= 0, N,

for i = 0, 1, . . . , N .

Remark 5.1. A similar technique is discussed by Ross et al. in [11, 84, 85]. The ability

to weakly enforce boundary conditions is not limited to the Galerkin formulation. The

collocation method (in the context of the Legendre PS method) may be formulated for weak

enforcement of end conditions by modifying the discrete differential Equation 3.5 with a

boundary condition term κ̃

N∑
j=0

Aijx̄
Nj + κ̃i − f(x̄Ni, ūNi) = 0, i = 0, 1, . . . , N, (5.1)

where κ̃ is given by

κ̃i =


x̄N0−x0
wi

, i = 0,

xf−x̄NN
wi

, i = N,

0, i 6= 0, N,
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for fixed end conditions e(x(−1), x(1)) =
[
x(−1)− x0, x(1)− xf

]T
= [0, 0]T .

Remark 5.2. For existing direct methods for optimal control it is common to enforce the

problem’s BCs in a strong sense (or exactly) by making them a set of constraints enforced

by the nonlinear program (NLP) [5]. With the Galerkin optimal control formulation with

weak boundary enforcement, BCs can now be enforced in a weak sense. In other words,

BCs can be imposed only up to the order of accuracy of the numerical approximation itself,

which is sufficient for many applications. In the case of a problem with an incomplete

set of end conditions, such as an initial value problem with condition e(x(−1), x(1)) =

x(−1)− x0 = 0, κ may be defined as

κi =


x̄N0 − x0, i = 0,

0, i = N,

0, i 6= 0, N.

Lastly, for more complex BCs such as periodic conditions e(x(−1), x(1)) = x(−1) −

x(1) = 0, or other complicated BCs such as nonlinear functions of x(−1) and x(1), κ

may be defined as, κi = 0, for i = 0, 1, . . . , N , and the condition e(x(−1), x(1)) = 0

may be enforced as a set of constraints by the NLP. However, this last case will result in

strong enforcement of the BCs and some of the advantages of using the weak boundary

formulation may be lost.

The dynamical constraint becomes∥∥∥∥∥
N∑
j=0

Dij x̄
Nj + κi − c̄Ni

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N.

The path constraints are approximated by

h(x̄Ni, ūNi) ≤ δN · 1, i = 0, 1, . . . , N.
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Lastly, the cost functional J [x(·), u(·)] is approximated by the LGL quadrature rule,

J [x(·), u(·)] ≈ J̄N(x̄N , ūN) =
N∑
i=0

F (x̄Ni, ūNi)wk + E(x̄N0, x̄NN),

where x̄N =
[
x̄N0, x̄N1, . . . , x̄NN

]
and ūN =

[
ūN0, ūN1, . . . , ūNN

]
. To allow for a practi-

cal search area for the optimal solution the following constraints are added

{x̄Ni ∈X, ūNi ∈ U , i = 0, 1, . . . , N},

where X and U are the search regions that contain the optimal solution of the discretized

nonlinear optimization.

5.1.2. Computation Strategy

In order to guarantee feasibility of the discretization, Theorems 5.1 and 5.2 show

that a relaxation of the dynamical equality constraint to inequality is required, for GOCM-

W̃ and GOCM-W, respectively.

5.1.2.1. Computation Strategy for GOCM-W̃

The computational strategy of the GOCM-W̃ is to find the feasible solution xN(t) ∈

X and uN(t) ∈ U for the following cases:

Case 1. u(·) is piecewise C0 and x(·) ∈ C0 and piecewise C1,

Case 2. u(·), ẋ(·) ∈ Hm−1 and m ≥ 2,

that minimizes

J(xN(·), uN(·)) =

∫ 1

−1

F (xN(t), uN(t))dt+ E(xN(−1), xN(1)), (5.2)
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subject to the Galerkin constraints

∥∥∥∥∫ 1

−1

φNi (t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt+ κi

∥∥∥∥
∞
≤MN−α, i = 0, 1, . . . , N,∥∥h+(xN(t), uN(t))

∥∥
L2 ≤MN−α,

(5.3)

where α = 1
2

and (m− 1), for Case 1 and 2, respectively; M is a constant independent of

N ;

h+ =

h, h > 0,

0, h ≤ 0;

and κi =


xN(−1)− x0, i = 0,

xf − xN(1), i = N,

0, i 6= 0, N,

(5.4)

where e(x(−1), x(1)) =
[
x(−1)− x0, x(1)− xf

]
T = [0, 0]T .

5.1.2.2. Computation Strategy for GOCM-W

The computational strategy of the GOCM-W is to find the feasible solution x̄N ∈X

and ūN ∈ U for the following cases:

Case 1. u(·) is piecewise C0 and x(·) ∈ C0 and piecewise C1,

Case 2. u(·), ẋ(·) ∈ Hm−1, m ≥ 2 and ẋ(m−1)(t)is of bounded variation in t ∈

[−1, 1],

that minimizes

J̄N(x̄N , ūN) =
N∑
i=0

F (x̄Ni, ūNi)wi + E(x̄N0, x̄NN), (5.5)

subject to the Galerkin constraints∥∥∥∥∥
N∑
j=0

Dijx̄
Nj + κi − c̄Ni

∥∥∥∥∥
∞

≤MN−α, i = 0, 1, . . . , N,

h(x̄Ni, ūNi) ≤MN−α · 1, i = 0, 1, . . . , N,

(5.6)
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where α = 1
2

and (m− 1), for Case 1 and 2, respectively; M is a constant independent of

N ;

κi =


x̄N0 − x0, i = 0,

xf − x̄NN , i = N,

0, i 6= 0, N,

(5.7)

where e(x(−1), x(1)) =
[
x(−1)− x0, x(1)− xf

]
T = [0, 0]T .

5.1.3. Feasibility of Solutions

In order to guarantee feasibility of the discretization, Theorems 5.1 and 5.2 intro-

duced in [83] show that a relaxation of the dynamical equality constraint to inequality is

required, for GOCM-W̃ and GOCM-W, respectively.

5.1.3.1. Feasibility of GOCM-W̃

Theorem 5.1 (Feasibility of GOCM-W̃). Given any feasible solution t 7→ (x, u), for Prob-

lem B, consider the following two cases:

Case 1. u(·) is piecewise C0 and x(·) ∈ C0 and piecewise C1,

Case 2. u(·), ẋ(·) ∈ Hm−1 and m ≥ 2.

Then, there exists a positive integer N0 such that, for any N ≥ N0, GOCM-W̃ has a

polynomial feasible solution, (xN(t), uN(t)) such that

∥∥x(t)− xN(t)
∥∥
L2 ≤MN−α and

∥∥u(t)− uN(t)
∥∥
L2 ≤MN−α,

where α = 1
2

and (m− 1), for Case 1 and 2, respectively; and M is a positive constant

independent of N .

Proof. Let p(t) be the (N − 1)-th order truncated Legendre polynomial approximation of

ẋ(t). By Lemmas 4.1 and 4.2 there is a constant c0 independent of N , for any N ≥ N1,
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such that

‖ẋ(t)− p(t)‖L2 ≤ c0N
−α,

where α = 1
2

and (m− 1), for Case 1 and 2, respectively. Define

xN(t) =

∫ t

−1

p(s)ds+ x(−1).

Then p(t) = ẋN(t) and

∥∥x(t)− xN(t)
∥∥
L2 ≤ 2c0N

−α,

since, from Hölder’s inequality (Lemma 4.3), we have

∣∣x(t)− xN(t)
∣∣ =

∣∣∣∣∫ t

−1

(ẋ(s)− p(s)) ds
∣∣∣∣ ≤ ∫ t

−1

|ẋ(s)− p(s)|ds

≤
√

2

(∫ 1

−1

|ẋ(s)− p(s)|2ds
) 1

2

=
√

2‖ẋ(t)− p(t)‖L2 ≤
√

2c0N
−α.

Let uN(t) be the N -th order Legendre polynomial so that

∥∥u(t)− uN(t)
∥∥
L2 ≤ c1N

−α.

Recall that the LGL quadrature weights, {wk}Nk=0, have the property [46],

wk ≤ c2N
−1(1− (tk)

2)
1
2 , k = 1, 2, . . . , N − 1,

for constant c2 > 0 independent of k and N ; for k = 0, N ,

w0, wN =
2

N(N + 1)
.
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From Theorem 4.1 we have, for each i = 1, . . . , N − 1,∣∣∣∣∫ 1

−1

φNi (t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt+ κi

∣∣∣∣
=

∣∣∣∣∫ 1

−1

φNi (t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt

∣∣∣∣ ≤ c3w
1
2
i N

−α,

for all N > N2, where c3 is a constant independent of N . For i = 0, we have∣∣∣∣∫ 1

−1

φN0 (t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt+ κ0

∣∣∣∣
≤
∣∣∣∣∫ 1

−1

φN0 (t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt

∣∣∣∣+
∣∣xN(−1)− x(−1)

∣∣
≤
∣∣∣∣∫ 1

−1

φN0 (t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt

∣∣∣∣ ≤ c3w
1
2
0 N

−α,

since
∣∣xN(−1)− x(−1)

∣∣ = 0. For i = N , we have

∣∣∣∣∫ 1

−1

φNN(t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt+ κN

∣∣∣∣
≤
∣∣∣∣∫ 1

−1

φNN(t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt

∣∣∣∣+
∣∣xN(1)− x(1)

∣∣
≤ c3w

1
2
NN

−α +
√

2c0N
−α,

since

∣∣xN(−1)− x(−1)
∣∣ ≤ √2‖ẋ(t)− p(t)‖L2 ≤

√
2c0N

−α.

Finally, for each i = 0, 1, . . . , N ,∣∣∣∣∫ 1

−1

φNk (t)
(
ẋN(t)− f(xN(t), uN(t))

)
dt+ κi

∣∣∣∣ ≤MN−α,

for all N > N0, where M is a constant independent of N .

The estimates for the path constraint follow from the proof of Theorem 4.1.
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Thus a solution (xN(t), uN(t)) to GOCM-W̃ is feasible!

5.1.3.2. Feasibility of GOCM-W

Theorem 5.2 (Feasibility of GOCM-W). Given any feasible solution t 7→ (x, u), for Prob-

lem B, consider the following two cases:

Case 1. u(·) is piecewise C0 and x(·) ∈ C0 and piecewise C1,

Case 2. u(·), ẋ(·) ∈ Hm−1 and m ≥ 2.

Then, there exists a positive integerN0 such that, for anyN ≥ N0, GOCM-W has a feasible

solution, (x̄N , ūN) such that

∥∥x(t)− xN(t)
∥∥
L2 ≤MN−α,

where α = 1
2

and (m− 1), for Case 1 and 2, respectively; and M is a positive constant

independent of N . Additionally, uN(ti) = u(ti), for i = 0, 1, . . . , N .

Proof. Let p(t)be the (N − 1)-th order truncated Legendre polynomial approximation of

ẋ(t) in the L2-norm. By Lemma 4.1 there is a constant d0 independent of N , for any

N ≥ N1, such that

‖ẋ(t)− p(t)‖L∞ ≤ d0N
−β,

where β =
(
m− 3

2

)
, for Case 2. For Case 1 we refer to [77–79] which show the truncated

Legendre approximation for discontinuous functions with jump discontinuity (such as the

step function defined in Lemma 4.2) displays Gibbs phenomenon. However the maximum

amplitude of the overshoot has a finite limit; we conclude that for Case 1, β = 0. Also, by

Lemma 4.2 there is a constant d1 independent of N , for any N ≥ N2, such that

‖ẋ(t)− p(t)‖L2 ≤ d1N
−α,
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where α = 1
2

and (m− 1), for Case 1 and 2, respectively. Define

xN(t) =

∫ t

−1

p(s)ds+ x(−1).

Then p(t) = ẋN(t) and

∥∥x(t)− xN(t)
∥∥
L2 ≤ 2d1N

−α,

since, from Hölder’s inequality (Lemma 4.3),

∣∣x(t)− xN(t)
∣∣ =

∣∣∣∣∫ t

−1

(ẋ(s)− p(s)) ds
∣∣∣∣ ≤ ∫ t

−1

|ẋ(s)− p(s)|ds

≤
√

2

(∫ 1

−1

|ẋ(s)− p(s)|2ds
) 1

2

=
√

2‖ẋ(t)− p(t)‖L2 ≤
√

2d1N
−α.

Also, let uN(t) be an interpolating function of u(t),

uN(t) =
N∑
j=0

ψNj (t)ūNj,

where {ψNj }Nj=0 is any set of continuous functions with the property ψNj (ti) = δij , and

therefore

ūNj = u(tj).

Since xN(t) is a N -th order polynomial, we have

ẋN(ti) =
N∑
j=0

Aijx̄
Nj,
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where A is the (N + 1)× (N + 1) Legendre PS differentiation matrix (2.57) and

x̄Ni = xN(ti).

Recall that the LGL quadrature weights, {wi}Ni=0, have the property [46],

wi ≤ d2N
−1(1− (ti)

2)
1
2 , i = 1, 2, . . . , N − 1,

for constant d2 > 0 independent of i and N ; for i = 0, N ,

w0, wN =
2

N(N + 1)
.

Following from Theorem 4.2, for each i = 1, 2, . . . , N − 1,∣∣∣∣∣
N∑
j=0

Dijx̄
Nj + κi − c̄Ni

∣∣∣∣∣ =

∣∣∣∣∣
N∑
j=0

Dijx̄
Nj − c̄Ni

∣∣∣∣∣ ≤ d3wiN
−β,

for all N > N3, where d3 is a constant independent of N . For i = 0,∣∣∣∣∣
N∑
j=0

D0jx̄
Nj + κ0 − c̄N0

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
j=0

D0jx̄
Nj − c̄N0

∣∣∣∣∣+
∣∣xN(−1)− x(−1)

∣∣
≤ d3w0N

−β,

121



since
∣∣xN(−1)− x(−1)

∣∣ = 0. For i = N ,

∣∣∣∣∣
N∑
j=0

DNjx̄
Nj + κN − c̄NN

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
j=0

DNjx̄
Nj − c̄NN

∣∣∣∣∣+
∣∣x(1)− xN(1)

∣∣
= d3wNN

−β +
√

2d2N
−α.

Finally, for each i = 0, 1, . . . , N ,∣∣∣∣∣
N∑
j=0

Dijx̄
Nj + κi − c̄Ni

∣∣∣∣∣ ≤MN−α,

for all N > N0, where M is a constant independent of N .

The estimates for the path constraint follow from the proof of Theorem 4.2.

Thus a solution (x̄N , ūN) to GOCM-W is feasible!

5.2. Galerkin Optimal Control with Continuous Element-based Galerkin

We now consider a continuous element-based Galerkin approach.

5.2.1. Method for Approximation

In this approximation to Problem B, the weak integral form of ẋ − f(x, u) = 0 in

each element, Ωe, takes the form [44]

∫
Ωe

φ
(e)N
i (t)

(
dx(e)N(t)

dt
− f(x(e)N(t), u(e)N(t))

)
dt = 0,

where Ω =
⋃Ne
e=1 Ωe defines the total domain. The state trajectory, x(t), is approximated

inside each element, Ωe, by interpolatingN -th order Lagrange polynomials, {φ(e)N
j (t)}Nj=0,

122



at the nodes {t(e)j }Nj=0 by the relationship

x(e)N(t) =
N∑
j=0

φ
(e)N
j (t)x̄(e)Nj,

for e = 1, 2, . . . , Ne, where {t(e)j }Nj=0 are the LGL nodes, {ξj}Nj=0, mapped back to the

physical space inside each element, Ωe. Also, let uN(t) be an interpolating function of

{ūNj}Nj=0,

u(e)N(t) =
N∑
j=0

ψ
(e)N
j (t)ū(e)Nj,

where {ψ(e)N
j (t)}Nj=0 are any set of continuous functions with the property ψ(e)N

j (ti) = δij .

Therefore x̄(e)Nj = x(e)N(t
(e)
j ), for e = 1, 2, . . . , Ne and j = 0, 1, . . . , N , and similarly,

ū(e)Nj = u(e)N(t
(e)
j ). The relationship between the physical time domain, t ∈ [t0, tf ] =[

t
(1)
0 , t

(Ne)
N

]
, and the computational space, ξ ∈ [−1, 1], is given by [44]

ξ =
2

∆t(e)

(
t− t(e)0

)
− 1 and dξ =

2

∆t(e)
dt,

and conversely,

t =
∆t(e)

2
(ξ + 1) + t

(e)
0 and dt =

∆t(e)

2
dξ,

where ∆t(e) = t
(e)
N −t

(e)
0 is the size of each element, Ωe, which can be nonuniform in length.

The Lagrange polynomial defined on the LGL computational domain is given by

φNi (ξ) =
N∏
j=0

j 6=i

(ξ − ξj)
(ξi − ξj)

, i = 0, . . . , N.
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The state trajectory, x, can now be approximated inside each element, Ωe, by

x(e)N(ξ) =
N∑
j=0

φNj (ξ)x̄(e)Nj,

where {φNj (ξ)}Nj=0 are the Lagrange polynomials defined on the LGL grid. Likewise, uN(ξ)

is given by

u(e)N(ξ) =
N∑
j=0

ψNj (ξ)ū(e)Nj,

where ψNj (ξi) = δij .

Remark 5.3. In this formulation x̄(e)NN = x̄(e+1)N0 and ū(e)NN = ū(e+1)N0, for e =

1, 2, . . . , Ne − 1. This continuity condition is a consequence of the global formulation of

the problem discussed in Remark 5.4.

In the computational domain, ξ, the system becomes

∫ 1

−1

φNi (ξ)
dx(e)N(ξ)

dξ
dξ − ∆t(e)

2

∫ 1

−1

φNi (ξ)f(x(e)N(ξ), u(e)N(ξ))dξ = 0,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N , and in terms of the approximating polynomials

becomes

N∑
j=0

∫ 1

−1

φNi
dφNj
dξ

dξ x̄ (e)Nj − ∆t(e)

2

∫ 1

−1

φNi f(x(e)N , u(e)N)dξ = 0.

In matrix-vector notation, our system can be expressed as

N∑
j=0

D
(e)
ij x̄

(e)Nj − c(e)
i = 0, i = 0, 1, . . . , N,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N , where the local element (N+1)×(N+1) Galerkin

differentiation matrix, D(e), is the same as that defined in Equation (4.3). If Q = N LGL
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quadrature nodes are used, the approximation to the (N + 1)× 1 RHS vector simplifies to

c
(e)
i ≈ c̄(e)Ni =

∆t(e)

2
f(x̄(e)Ni, ū(e)Ni)wi, i = 0, 1, . . . , N,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N , where the size of each element, ∆t(e), can be

nonuniform in length.

Remark 5.4. So far the required objects have been identified to solve the system numer-

ically with element-based Galerkin. However, since nodal basis functions are continuous

across element boundaries and LGL nodes include both endpoints, a global solution to our

problem can be found. To do this, a global assembly or direct stiffness summation can be

done, where the direct stiffness summation operator is
∧Ne
e=1. [44]

The global equations to the problem become

Np∑
J=1

DIJ x̄
NpJ − c̄NpI = 0, I = 1, . . . , Np.

The global Galerkin differentiation matrix, DIJ and RHS vector, c̄NpI are then defined by

DIJ =
Ne∧
e=1

D
(e)
ij , and c̄NpI =

Ne∧
e=1

c̄(e)Ni,

where Np = (NeN + 1) is the total number of grid points. Note that the direct stiffness

summation operator does the mapping (i, e), (j, e) → I, J [44]. See Section 2.3.2.1 for

additional details. The dynamical constraint becomes

∥∥∥∥∥
Np∑
J=1

DIJ x̄
NpJ − c̄NpI

∥∥∥∥∥
∞

≤ δ, I = 1, 2, . . . , Np.
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The endpoint conditions and path constraints are approximated by

∥∥e(x̄Np0, x̄NpNp)
∥∥
∞ ≤ δ

h(x̄NpI , ūNpI) ≤ δ · 1, I = 1, 2, . . . , Np.

Lastly, the cost functional J [x(·), u(·)] is approximated by the LGL quadrature rule,

J [x(·), u(·)] ≈J̄N(x̄Np , ūNp)

=
Ne∑
e=1

∆t(e)

2

N∑
i=0

F (x̄Np((e−1)N+1+i), ūNp((e−1)N+1+i))wi + E(x̄Np0, x̄NpNp),

where x̄Np =
[
x̄Np1, x̄Np2, . . . , x̄NpNp

]
and ūNp =

[
ūNp1, ūNp2, . . . , ūNpNp

]
. To allow for a

practical search area for the optimal solution the following constraints are included: x̄Np ∈

X and ūNp ∈ U , where X and U are the search regions that contain the optimal solution

of the discretized nonlinear optimization.

5.2.2. Computation Strategy

The computational strategy of the GOCM-CG is to find the feasible solution x̄Np ∈

X and ūNp ∈ U that minimizes

J̄N(x̄Np , ūNp) =
Ne∑
e=1

∆t(e)

2

N∑
i=0

F (x̄Np((e−1)N+1+i), ūNp((e−1)N+1+i))wi

+E(x̄Np0, x̄NpNp),

subject to the Galerkin constraints

∥∥∥∥∥
Np∑
j=0

DIJ x̄
NpJ − c̄NI

∥∥∥∥∥
∞

≤ δN , I = 1, 2, . . . , Np,

∥∥e(x̄Np0, x̄NpNp)
∥∥
∞ ≤ δN ,

h(x̄NpI , ūNpI) ≤ δN · 1, I = 1, 2, . . . , Np,
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where δN is the feasibility tolerance, which is dependent upon N .

5.3. GOCM with Discontinuous Element-based Galerkin

We now consider a discontinuous element-based Galerkin approach introduced in

[74].

5.3.1. Method for Approximation

In this approximation to Problem B, the weak integral form of ẋ − f(x, u) = 0 in

each element, Ωe, yields [44]

∫
Ωe

φ
(e)N
i (t)

(
dx(e)N(t)

dt
− f(x(e)N(t), u(e)N(t))

)
dt = 0,

where Ω =
⋃Ne
e=1 Ωe defines the total domain. The state trajectory, x(t), is approximated

inside each element, Ωe, by interpolatingN -th order Lagrange polynomials, {φ(e)N
j (t)}Nj=0,

at the nodes {t(e)j }Nj=0 by the relationship

x(e)N(t) =
N∑
j=0

φ
(e)N
j (t)x̄(e)Nj,

for e = 1, 2, . . . , Ne, where {t(e)j }Nj=0 are the LGL nodes, {ξj}Nj=0, mapped back to the

physical space inside each element, Ωe. Also, let uN(t) be an interpolating function of

{ūNj}Nj=0,

u(e)N(t) =
N∑
j=0

ψ
(e)N
j (t)ū(e)Nj,

where {ψ(e)N
j (t)}Nj=0 are any set of continuous functions (not necessarily polynomials) with

the property ψ
(e)N
j (ti) = δij . Therefore x̄(e)Nj = x(e)N(t

(e)
j ), for e = 1, 2, . . . , Ne and

j = 0, 1, . . . , N , and similarly, ū(e)Nj = u(e)N(t
(e)
j ). The relationship between the physical
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time domain, t ∈ [t0, tf ] =
[
t
(1)
0 , t

(Ne)
N

]
, and the computational space, ξ ∈ [−1, 1], is given

by [44]

ξ =
2

∆t(e)

(
t− t(e)0

)
− 1 and dξ =

2

∆t(e)
dt,

and conversely,

t =
∆t(e)

2
(ξ + 1) + t

(e)
0 and dt =

∆t(e)

2
dξ,

where ∆t(e) = t
(e)
N −t

(e)
0 is the size of each element, Ωe, which can be nonuniform in length.

The Lagrange polynomial defined on the LGL computational domain is given by

φNi (ξ) =
N∏
j=0

j 6=i

(ξ − ξj)
(ξi − ξj)

, i = 0, . . . , N.

The state trajectory, x, can now be approximated inside each element, Ωe, by

x(e)N(ξ) =
N∑
j=0

φNj (ξ)x̄(e)Nj,

where {φNj (ξ)}Nj=0 are the Lagrange polynomials defined on the LGL grid. Likewise, uN(ξ)

is given by

u(e)N(ξ) =
N∑
j=0

ψNj (ξ)ū(e)Nj,

where ψNj (ξi) = δij . In the computational domain, ξ, the system becomes

∫ 1

−1

φNi (ξ)
dx(e)N(ξ)

dξ
dξ − ∆t(e)

2

∫ 1

−1

φNi (ξ)f(x(e)N(ξ), u(e)N(ξ))dξ = 0,
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for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N . Integration by parts on the first term yields the

weak form relationship

−
∫ 1

−1

dφNi
dξ

x(e)Ndξ +
[
φNi x

(e)N
]1
−1
− ∆t(e)

2

∫ 1

−1

φif(x(e)N , u(e)N)dξ = 0,

and in terms of our approximating polynomials, we have

−
N∑
j=0

∫ 1

−1

dφNi
dξ

φNj dξ x̄
(e)Nj +

N∑
j=0

[
φNi φ

N
j

]−1

1
x̄

(∗)
j −

∆t(e)

2

∫ 1

−1

φNi f(x(e)N , u(e)N)dξ = 0.

Remark 5.5. With the discontinuous element-based Galerkin approach, we let ẋ, u and the

basis functions be discontinuous across element edges. A numerical flux term x̄(∗) acts as

a jump condition between elements [44]. Here, we consider the centered flux relationship,

x̄ (∗) = 1
2

(
x̄ (e) + x̄ (q)

)
, proposed by Delfour et al. [66], where e and q denote the element

and its neighbor, respectively.

Integrating by parts, yet again, results in the Galerkin strong form relationship

N∑
j=0

∫ 1

−1

φNi
dφNj
dξ

dξ x̄(e)Nj + η
(e)
i −

∆t(e)

2

∫ 1

−1

φNi f(x(e)N , u(e)N)dξ = 0,

for e = 1, 2, . . . , Ne and i = 0, 1, . . . , N . Since LGL nodes are used, the boundary term,

η(e), may be simplified as

η
(1)
i =


1
2

(
x̄(2)N0 − x̄(1)NN

)
, i = N,

0, i 6= N,

η
(Ne)
i =


1
2

(
x̄(Ne)N0 − x̄(Ne−1)NN

)
, i = 0,

0, i 6= 0,
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for elements Ωe = Ω1 and ΩNe , respectively, and for each other element (Ωe 6= Ω1,ΩNe)

we have

η
(e)
i =


1
2

(
x̄(e)N0 − x̄(e−1)NN

)
, i = 0,

1
2

(
x̄(e+1)N0 − x̄(e)NN

)
, i = N,

0, i 6= 0, N.

Remark 5.6. The problem’s endpoint conditions have not been introduced into the bound-

ary term, η(e), and will instead be enforce in a strong sense through a set of endpoint

constraints, as done in GOCM-S. If instead BCs are to be enforced weakly, a modification

can be made to the boundary condition term, η(e).

In matrix-vector notation, our system may be expressed as

N∑
j=0

D
(e)
ij x̄

(e)
j + η

(e)
i − c

(e)
i = 0, e = 1, 2, . . . , Ne, i = 0, 1, . . . , N,

where the local element (N + 1) × (N + 1) Galerkin differentiation matrix, D(e), is the

same as that defined in Equation (4.3). If Q = N LGL quadrature nodes are used, the

approximation to the (N + 1)× 1 RHS vector simplifies to

c
(e)
i ≈ c̄(e)Ni =

∆t(e)

2
f(x̄(e)Ni, ū(e)Ni)wi, e = 1, 2, . . . , Ne, i = 0, 1, . . . , N,

where the size of each element, ∆t(e), can be nonuniform in length. The dynamical con-

straint becomes∥∥∥∥∥
N∑
j=0

D
(e)
ij x̄

(e)Nj − η(e)
i − c̄(e)Ni

∥∥∥∥∥
∞

≤ δ, e = 1, 2, . . . , Ne, i = 0, 1, . . . , N.
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The endpoint conditions and path constraints are approximated by

∥∥∥e(x̄(1)
0 , x̄

(Ne)
N )

∥∥∥
∞
≤ δ,

h(x̄
(e)
i , ū

(e)
i ) ≤ δ · 1, e = 1, 2, . . . , Ne, i = 0, 1, . . . , N,

Lastly, the cost functional J [x(·), u(·)] is approximated by LGL quadrature rule,

J [x(·), u(·)] ≈ J̄N(x̄N , ūN) =
Ne∑
e=1

∆t(e)

2

N∑
k=0

F (x̄(e)Nk, ū(e)Nk)wk + E(x̄(1)N0, x̄(Ne)NN),

where

x̄N =
[
x̄(1)N0, . . . , x̄(1)NN , . . . , x̄(Ne)N0, . . . , x̄(Ne)NN

]
,

ūN =
[
ū(1)N0, . . . , ū(1)NN , . . . , ū(Ne)N0, . . . , ū(Ne)NN

]
.

To allow for a practical search area for the optimal solution the following constraints are

included: x̄N ∈ X and ūN ∈ U , where X and U are the search regions that contain the

optimal solution of the discretized nonlinear optimization.

5.3.2. Computation Strategy

The computational strategy of the GOCM-DG is to find the feasible solution x̄N ∈

X and ūN ∈ U that minimizes

J̄N(x̄N , ūN) =
Ne∑
e=1

∆t(e)

2

N∑
i=0

F (x̄(e)Ni, ū(e)Ni)wi + E(x̄(1)N0, x̄(Ne)NN),
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subject to the Galerkin constraints∥∥∥∥∥
N∑
j=0

D
(e)
ij x̄

(e)Nj − η(e)
i − c̄(e)Ni

∥∥∥∥∥
∞

≤ δN , e = 1, 2, . . . , Ne, i = 0, 1, . . . , N,

∥∥e(x̄(1)N0, x̄(Ne)NN)
∥∥
∞ ≤ δN ,

h(x̄(e)Ni, ū(e)Ni) ≤ δN · 1, e = 1, 2, . . . , Ne, i = 0, 1, . . . , N,

where δN is the feasibility tolerance, which is dependent upon N .

5.4. Galerkin Optimal Control for Multi-scale Problems

In this section, a multi-scale Galerkin optimal control approach is proposed to solve

a specific optimal control problem, one in which the system dynamics are of different

timescales (see Problem B̃). Such a problem may consists of a fast state, xf (t), associated

with the fast dynamics and a slow state, xs(t), associated with the slow dynamics. GOCM-

S (see Chapter 4) serves as the basis for the Galerkin multi-scale approach to Problem B̃.

In particular, system (4.6) is fundamental to this alternative Galerkin optimal control for-

mulation described below. The outline shown here follows the strategy given by Gong et

al. in [71].

5.4.1. Method for Approximation

The states and controls are approximated with globally interpolating Lagrange poly-

nomials on different LGL timescales. The slow state, xs(t), is approximated on sparse grid

{τj}Mj=0 while the fast state, xf (t), on dense grid {tj}Nj=0, where M < N . The slow and

fast states are defined by the following approximating polynomials

xs(t) ≈ xMs (t) =
M∑
j=0

φMj (t)x̄Mj
s ,

xf (t) ≈ xNf (t) =
N∑
j=0

φNj (t)x̄Njf ,
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where the Lagrange polynomials {φMj (t)}Mj=0 and {φNj (t)}Nj=0 are defined on grids {τj}Mj=0

and {tj}Nj=0, respectively. Let

x̄Mj
s ≈ xs(τj), j = 0, 1, . . . ,M,

x̄Njf ≈ xf (tj), j = 0, 1, . . . , N,

and similarly, ūNj ≈ u(tj), for j = 0, 1, . . . , N .

Remark 5.7. For simplicity, the control variable, u(t), is approximated on the dense grid

{ti}Ni=0, however this need not be the case. Modifications may be made to the process

outlined in this section to cast the control onto a unique grid, such as sparse grid {τ̃k}M̃k=0,

where M̃ < N [71].

For GOCM-MS, a solution to the differential equations ẋs = f(xs, xf , u) and ẋf =

g(xs, xf , u) may be approximated by discretizing the slow dynamics over the dense grid

with the following formulation

M∑
j=0

DNM
ij x̄Mj

s − c̄Nis = 0, i = 0, 1, . . . , N,

N∑
j=0

DNN
ij x̄Njf − c̄

Ni
f = 0, i = 0, 1, . . . , N.

The (N + 1)× (M + 1), non-square, differentiation transformation matrix DNM and (N +

1)× (N + 1), square, differentiation matrix DNN are defined by

DNM
ij =

∫ 1

−1

φNi
dφMj
dt

dt =
dφMj
dt

(ti)wi = ANMij wi, i = 0, 1, . . . , N, j = 0, 1, . . . ,M,

DNN
ij =

∫ 1

−1

φNi
dφNj
dt

dt =
dφNj
dt

(ti)wi = ANNij wi, i, j = 0, 1, . . . , N,
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where {wi}Ni=0 are the LGL weights associated with LGL points {ti}Ni=0, ANN is the

standard (N + 1) × (N + 1) Legendre PS differentiation matrix (2.57) and ANM is the

(N + 1) × (M + 1) Legendre PS differentiation transformation matrix (2.39). The RHS

vectors, c̄Ns and c̄Nf , are defined by

c̄Nis = f(x̂Nis , x̄Nif , ūNi)wi = 0, i = 0, 1, . . . , N,

c̄Nif = g(x̂Nis , x̄Nif , ūNi)wi = 0, i = 0, 1, . . . , N.

The slow state approximation projected to the dense grid, x̂Ns , may be calculated by the

linear mapping TNMij = φMj (ti) with the relationship

x̂Nis =
n∑
j=0

TNMij x̄Mj
s ,

for i = 0, 1, . . . , N , where TNM is the (N + 1)× (M + 1) transformation matrix (2.37).

Remark 5.8. Projecting the slow dynamics onto the dense grid provides a way of capturing

the high frequency information of the fast state. If instead the intuitive approach is used, of

discretizing the slow dynamics over the sparse grid, the high frequency information of the

fast state is lost, resulting in a decrease in method accuracy [71].

The dynamical constraints therefore become∥∥∥∥∥
M∑
j=0

DNM
ij x̄Mj

s − c̄Nis

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N,∥∥∥∥∥
N∑
j=0

DNN
ij x̄Njf − c̄

Ni
f

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N.

The endpoint conditions and path constraints are approximated similarly by

∥∥e(x̄M0
s , x̄MM

s , x̄N0
f , x̄NNf )

∥∥
∞ ≤ δN ,

h(x̂Nis , x̄Nif , ūNi) ≤ δN · 1, i = 0, 1, . . . , N.
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Lastly, the cost functional J [x(·), u(·)] is approximated by the LGL quadrature rule,

J [x(·), u(·)] ≈ J̄N(x̄Ms , x̄
N
f , ū

N) =
N∑
i=0

F (x̂Nis , x̄Nif , ūNi)wi + E(x̄M0
s , x̄MM

s , x̄N0
f , x̄NNf ),

where

x̄Ms =
[
x̄M0
s , x̄M1

s , . . . , x̄MM
s

]
, x̄Nf =

[
x̄N0
f , x̄N1

f , . . . , x̄NNf
]

and ūN =
[
ūN0, ūN1, . . . , ūNN

]
.

To allow for a search area for the optimal solution the following constraints are included:

x̄Ms ∈ Xs, x̄Nf ∈ Xf and ūN ∈ U , where Xs, Xf and U are the search regions that

contain the optimal solution of the discretized nonlinear optimization.

5.4.2. Computation Strategy

The computational strategy of the GOCM-MS is to find the feasible solution x̄Ms ∈

Xs, x̄Nf ∈Xf and ūN ∈ U that minimizes

J̄N(x̄Ms , x̄
N
f , ū

N) =
N∑
i=0

F (x̂Nis , x̄Nif , ūNi)wi + E(x̄M0
s , x̄MM

s , x̄N0
f , x̄NNf ),

subject to the Galerkin constraints∥∥∥∥∥
M∑
j=0

DNM
ij x̄Mj

s − c̄Nis

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N,∥∥∥∥∥
N∑
j=0

DNN
ij x̄Njf − c̄

Ni
f

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N,

∥∥e(x̄M0
s , x̄MM

s , x̄N0
f , x̄NNf )

∥∥
∞ ≤ δN ,

h(x̂Nis , x̄Nif , ūNi) ≤ δN · 1, i = 0, 1, . . . , N,

where δN is the feasibility tolerance, which is dependent upon N .
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5.5. Modifications to Galerkin Optimal Control

Two modifications to the general Galerkin optimal control formulation will be dis-

cussed in this section: over-integration of the RHS vector and the use of quadrature points

other than LGL, such as LG and LGR points.

5.5.1. Over-Integration of the RHS Vector

Thus far, all the Galerkin optimal control formulations discussed have approxi-

mated the RHS vector with inexact integration, and N + 1 quadrature points. It may,

however, be advantageous to approximate the RHS vector with increased accuracy. This

may be accomplished by over-integration of the RHS vector while approximating the in-

tegral using LGL quadrature. As outlined in the GOCM-S, the state trajectory, x(t), is

approximated by

x(t) ≈ xN(t) =
N∑
j=0

φNj (t)x̄Nj.

Let

x̄Nj ≈ x(tj), j = 0, 1, . . . , N,

and similarly, ūNj is the approximation of u(tj). In the Galerkin optimal control formu-

lation, a solution to the differential equation ẋ − f(x, u) = 0 may be approximated at the

LGL nodes with the following weak integral formulation [44]

∫ 1

−1

φNi (t)

(
dxN(t)

dt
− f(xN(t), uN(t))

)
dt = 0,

and in terms of the approximating polynomials becomes

N∑
j=0

∫ 1

−1

φNi
dφNj
dt

dt x̄Nj −
∫ 1

−1

φNi f(xN , uN)dt = 0.
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In matrix-vector form the system becomes

N∑
j=0

Dijx̄
Nj − ci = 0, i = 0, 1, . . . , N,

where the (N + 1) × (N + 1) differentiation matrix D is defined by Equation (4.2) and

calculated exactly by Equation (4.3). The (N + 1)× 1 RHS vector c is defined as

ci =

∫ 1

−1

φNi (t)f(xN(t), uN(t))dt, i = 0, 1, . . . , N,

and can be approximated with LGL quadrature by the relationship

ci ≈ c̄Ni =

Q∑
k=0

φNi (tk)f(xN(tk), u
N(tk))wk, i = 0, 1, . . . , N,

where {wk}Nk=0 are the LGL quadrature weights (2.49) associated with LGL points, {tk}Nk=0.

Remark 5.9. Recall that for LGL quadrature rule, Q = N + 1 integration points will

integrate the RHS vector exactly when f(x(t), u(t)) is linear in x(t) and u(t). In the case

of a nonlinear function, f , the accuracy of the numerical integration of the RHS vector may

also be improved if Q = N + 1 integration points are used when f consists of one or more

nonlinear terms.

Using over-integration, the RHS vector approximation becomes

c̄Ni =
N+1∑
k=0

φNi (tk)f(xN(tk), u
N(tk))wk, i = 0, 1, . . . , N,

where {wk}N+1
k=0 are the LGL quadrature weights associated with LGL points, {tk}N+1

k=0 .The

dynamical constraint therefore becomes∥∥∥∥∥
N∑
j=0

Dijx̄
Nj − c̄Ni

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N.
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The endpoint conditions and path constraints are approximated similarly by

∥∥e(x̄N0, x̄NN)
∥∥
∞ ≤ δN ,

h(x̄Ni, ūNi) ≤ δN · 1, i = 0, 1, . . . , N,

where 1 denotes [1, . . . , 1]T . Lastly, the cost functional J [x(·), u(·)] is approximated by the

LGL quadrature rule,

J [x(·), u(·)] ≈ J̄N(x̄N , ūN) =
N∑
i=0

F (x̄Ni, ūNi)wi + E(x̄N0, x̄NN),

where x̄N =
[
x̄N0 x̄N1 · · · x̄NN

]
and ūN =

[
ūN0 ūN1 · · · ūNN

]
. To allow for a practical

search area for the optimal solution the following constraints are included: x̄N ∈ X and

ūN ∈ U .

5.5.2. Galerkin Optimal Control with LG and LGR/F-LGR Quadrature Points

The Galerkin weak formulation with weak boundary condition enforcement also

allows for consideration of quadrature points that do not include both endpoints, e.g., LG

and LGR (or F-LGR) nodes. This is advantageous since LG and LGR quadrature rules may

lead to increased accuracies when performing the RHS vector integration. Recall that LG

quadrature rule integration is exact for polynomial integrands of degree less than or equal

to 2N + 1, where the LG nodes, {tk}Nk=0, are defined by −1 < t0 < · · · < tN < 1 and

are the roots of Equation (2.41). LGR (and F-LGR) quadrature rule is exact for polynomial

integrands of degree less than or equal to 2N, where the LGR nodes, {tk}Nk=0, are defined

by t0 = −1 < t1 < · · · < tN < 1, and are the roots of Equation (2.43) and the F-LGR

nodes are the negative of the LGR points.
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5.5.2.1. Method for Approximation for Galerkin Optimal Control with LGR/F-LGR
Nodes

In this section, a formulation is proposed to solve a specific optimal control prob-

lem, one in which the initial or final conditions of the problem dynamics are provided (not

both). Consider Problem B such that one of the two following cases exist:

Case 1: e(x(−1), x(1)) = x(−1)− x0 = 0,

Case 2: e(x(−1), x(1)) = x(1)− xf = 0,

where x0 and xf are constants. As with the GOCM-W, we will consider the weak enforce-

ment of the end conditions, however, now we will use the Galerkin weak form. In this

approximation to Problem B, the state trajectory, x(t), is approximated with globally inter-

polating N -th order Lagrange polynomials, {φNj }Nj=0, defined on a grid of F-LGR or LGR

nodes, {tj}Nj=0, for Case 1 and 2, respectively,

x(t) ≈ xN(t) =
N∑
j=0

φNj (t)x̄Nj.

Due to the property of the Lagrange polynomials, φNj (ti) = δij , we have

x̄Nj = xN(tj), j = 0, 1, . . . , N.

Also, let uN(t) be an interpolating function of {ūNj}Nj=0,

uN(t) =
N∑
j=0

ψNj (t)ūNj,

where {ψNj }Nj=0 is any set of continuous functions with the property ψNj (ti) = δij . Taking

the weak integral form of ẋ− f(x, u) = 0 yields [44]

∫ 1

−1

φNi (t)

(
dxN(t)

dt
− f(xN(t), uN(t))

)
dt = 0,
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for i = 0, 1, . . . , N . Integration by parts on the first term results in Galerkin weak form,

−
∫ 1

−1

dφNi
dt

xNdt+
[
φNi x

N
]1
−1
−
∫ 1

−1

φNi f(xN , uN)dt = 0.

In terms of our approximating polynomials, we have

−
N∑
j=0

∫ 1

−1

dφNi
dt

φNj dt x̄
Nj − φNi (−1)xN(−1) + φNi (1)xN(1)−

∫ 1

−1

φNi f(xN , uN)dt = 0,

for i = 0, 1, . . . , N . The expression may be simplified as

N∑
j=0

D̃ijx̄
Nj + κ̃i − c̄Ni = 0,

for each i = 0, 1, . . . , N , where

κ̃i =

−φ
N
i (−1)x0, i 6= N,

−φNN(−1)x0 + x̄NN , i = N,

for Case 1 and

κ̃i =

φ
N
0 (1)xf − x̄N0, i = 0,

φNi (1)xf , i 6= 0,

for Case 2.

The (N + 1)× (N + 1) differentiation matrix D̃ is defined by

D̃ij = −
∫ 1

−1

dφNi (t)

dt
φNj (t)dt, i, j = 0, 1, . . . , N.
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If F-LGR/LGR quadrature rule is used with Q = N quadrature points, the differentiation

matrix, D̃, can be calculated exactly by the relationship

D̃ij = −
Q∑
k=0

dφNi (tk)

dt
φNj (tk)wk = −dφ

N
i

dt
(tj)wj = −ATijwj, i, j = 0, 1, . . . , N,

where {wj}Nj=0 are the F-LGR/LGR quadrature weights (2.50) and Aij = φ̇Nj (ti) is the

F-LGR/LGR PS differentiation matrix.

The RHS vector, c can be approximated by the relationship

ci ≈ c̄Ni =

Q∑
k=0

φNi (tk)f(xN(tk), u
N(tk))wk = f(x̄Ni, ūNi)wi, i = 0, 1, . . . , N.

Remark 5.10. Recall that for F-LGR/LGR quadrature rule, integration is exact for polyno-

mial integrands of degree less than or equal to 2N . If Q = N integration points are used,

the RHS vector will integrate exactly when f(x(t), u(t)) is linear in x(t) and u(t). In the

case of a nonlinear function f , the accuracy of integration may be improved by increasing

the number of quadrature points Q (See Section 2.2.2).

The dynamical constraint becomes∥∥∥∥∥
N∑
j=0

D̃ij x̄
Nj + κ̃i − c̄Ni

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N.

The path constraints are approximated by

h(x̄Ni, ūNi) ≤ δN · 1, i = 0, 1, . . . , N.

Lastly, the cost functional J [x(·), u(·)] is approximated by the F-LGR/LGR quadrature

rule,

J [x(·), u(·)] ≈ J̄N(x̄N , ūN) =
N∑
i=0

F (x̄Ni, ūNi)wi + E(x̄N0, x̄NN),
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where x̄N =
[
x̄N0 x̄N1 · · · x̄NN

]
and ūN =

[
ūN0 ūN1 · · · ūNN

]
. To allow for a practical

search area for the optimal solution the following constraints are included: x̄N ∈ X and

ūN ∈ U .

Remark 5.11. Note that the use of the Galerkin optimal control formulation outlined here

with LGR or F-LGR nodes does not automatically provide the optimal control solutions at

one endpoint of the domain (this applies to t = 1 for LGR points and t = −1 for F-LGR

points). However, if required by the application, the control solutions at t = 1 or t = −1

may be found by interpolation of the control approximation, ūN with a possible reduction

in accuracy.

5.5.2.2. Method for Approximation for Galerkin Optimal Control with LG Nodes

In this section, a formulation is proposed to solve a specific optimal control prob-

lem, one in which a complete set of boundary conditions are provided for the problem

dynamics. Consider Problem B such that

e(x(−1), x(1)) =
[
x(−1)− x0, x(1)− xf

]
T = [0, 0]T ,

where x0 and xf are constants. As with the GOCM-W, we will consider the weak enforce-

ment of the boundary conditions, however, now we will use the Galerkin weak form. In

this approximation to Problem B, the state trajectory, x(t), is approximated with globally

interpolating N -th order Lagrange polynomials,{φNj }Nj=0, defined on a grid of LG nodes,

{tj}Nj=0,

x(t) ≈ xN(t) =
N∑
j=0

φNj (t)x̄Nj.

Due to the property of the Lagrange polynomials, φNj (ti) = δij , we have

x̄Nj = xN(tj), j = 0, 1, . . . , N.
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Also, let uN(t) be an interpolating function of {ūNj}Nj=0,

uN(t) =
N∑
j=0

ψNj (t)ūNj,

where {ψNj }Nj=0 is any set of continuous functions (not necessarily polynomials) with the

property ψNj (ti) = δij . Taking the weak integral form of ẋ− f(x, u) = 0 yields [44]

∫ 1

−1

φNi (t)

(
dxN(t)

dt
− f(xN(t), uN(t))

)
dt = 0,

for i = 0, 1, . . . , N . Integration by parts on the first term results in Galerkin weak form,

−
∫ 1

−1

dφNi
dt

xNdt+
[
φNi x

N
]1
−1
−
∫ 1

−1

φNi f(xN , uN)dt = 0.

In terms of our approximating polynomials (and introducing the true initial condition,

xN(−1)→ x(−1) and xN(1)→ x(1)) we have

−
N∑
j=0

∫ 1

−1

dφNi
dt

φNj dt x̄
Nj − φNi (−1)x(−1) + φNi (1)x(1)−

∫ 1

−1

φNi f(xN , uN)dt = 0,

for i = 0, 1, . . . , N . By letting x(−1) = x0 and x(1) = xf , the expression may be

simplified as

N∑
j=0

D̃ijx̄
Nj + κ̃i − c̄Ni = 0,

for each i = 0, 1, . . . , N , where

κ̃i = −φNi (−1)x0 + φNi (1)xf .
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The (N + 1)× (N + 1) differentiation matrix, D̃, is defined by

D̃ij = −
∫ 1

−1

dφNi (t)

dt
φNj (t)dt, i, j = 0, 1, . . . , N.

If LG quadrature rule is used with Q = N quadrature points, the differentiation matrix, D̃,

can be calculated exactly by the relationship

D̃ij = −
Q∑
k=0

dφNi (tk)

dt
φNj (tk)wk = −dφ

N
i

dt
(tj)wj = −ATijwj, i, j = 0, 1, . . . , N,

where {wj}Nj=0 are the LG quadrature weights (2.48) and Aij = φ̇Nj (ti) is the LG PS

differentiation matrix.

The RHS vector, c can be approximated by the relationship

ci ≈ c̄Ni =

Q∑
k=0

φNi (tk)f(xN(tk), u
N(tk))wk = f(x̄Ni, ūNi)wi, i = 0, 1, . . . , N.

Remark 5.12. Recall that for LG quadrature rule, integration is exact for polynomial in-

tegrands of degree less than or equal to 2N + 1. If Q = N integration points are used, the

RHS vector will integrate exactly when f(x(t), u(t)) is linear in x(t) and u(t). In the case

of a nonlinear function f , the accuracy of integration may be improved by increasing the

number of quadrature points Q (See Section 2.2.2).

The dynamical constraint becomes∥∥∥∥∥
N∑
j=0

D̃ij x̄
Nj + κ̃i − c̄Ni

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N.

The path constraints are approximated by

h(x̄Ni, ūNi) ≤ δN · 1, i = 0, 1, . . . , N.

144



Lastly, the cost functional J [x(·), u(·)] is approximated by the LG quadrature rule,

J [x(·), u(·)] ≈ J̄N(x̄N , ūN) =
N∑
i=0

F (x̄Ni, ūNi)wi + E(x̄N0, x̄NN),

where x̄N =
[
x̄N0 x̄N1 · · · x̄NN

]
and ūN =

[
ūN0 ūN1 · · · ūNN

]
. To allow for a practical

search area for the optimal solution the following constraints are included: x̄N ∈ X and

ūN ∈ U .

Remark 5.13. Note that the use of the Galerkin optimal control formulation outlined here

with LG nodes does not automatically provide the optimal control solutions at the endpoints

of the domain, t = ±1. However, if required by the application, the control solutions at

t = −1 and/or t = 1 may be found by interpolation of the control approximation, ūN with

a possible reduction in accuracy.
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CHAPTER 6:
GALERKIN OPTIMAL CONTROL WITH LEGENDRE

POLYNOMIAL TEST FUNCTIONS

In this chapter, a Galerkin optimal control formulation is proposed where Legen-

dre polynomials replace Lagrange polynomials as test functions in the weak integral ap-

proximation of the problem dynamics. The purpose of this modification is highlighted in

consistency Theorem 6.2, which is valid for problems with discontinuous controls (unlike

consistency Theorems 4.3 and 4.4 for Problems GOCM-S̃ and GOCM-S, respectively).

Theorem 6.2 proves that the nonlinear programming Problems GOCM-L̃ is a consistent

approximation to the continuous optimal control Problem B, even those with piecewise

continuous controls.

6.1. Methods for Approximation

In the Galerkin optimal control approximation to Problem B, with Legendre poly-

nomial test functions, the state trajectory, x(t), is approximated with globally interpolating

N -th order Lagrange polynomials, {φNj }Nj=0, defined on a grid of LGL nodes, {tj}Nj=0,

x(t) ≈ xN(t) =
N∑
j=0

φNj (t)x̄Nj.

Due to the property of the Lagrange polynomials, φNj (ti) = δij , we have

x̄Nj = xN(tj), j = 0, 1, . . . , N.

Also, let uN(t) be an interpolating function of {ūNj}Nj=0,

uN(t) =
N∑
j=0

ψNj (t)ūNj,
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where {ψNj }Nj=0 is any set of continuous functions (not necessarily polynomials) with the

property ψNj (ti) = δij . In this formulation, a solution to the differential equation ẋ −

f(x, u) = 0 may be approximated at the LGL nodes with the following weak integral

formulation

∫ 1

−1

L̃i(t)

(
dxN(t)

dt
− f

(
xN(t), uN(t)

))
dt = 0,

for i = 0, 1, . . . , N , where the test functions, L̃i = Li
‖Li‖L2

, are the normalized Legendre

polynomials of order i. The L2-norm of Li is given by [72] as

‖Li‖L2 =

√
2

2i+ 1
.

In terms of the approximating polynomials, the system becomes

N∑
j=0

∫ 1

−1

L̃i
dφNj
dt

dt x̄Nj −
∫ 1

−1

L̃if(xN , uN)dt = 0.

In matrix-vector form, the system becomes

N∑
j=0

DL
ijx̄

Nj − cLi = 0, i = 0, 1, . . . , N,

where the (N + 1)× (N + 1) differentiation matrix DL is defined by

DL
ij =

∫ 1

−1

L̃i(t)
dφNj (t)

dt
dt, i, j = 0, 1, . . . , N,

and the (N + 1)× 1 right-hand-side (RHS) vector c is defined as

cLi =

∫ 1

−1

L̃i(t)f(xN(t), uN(t))dt, i = 0, 1, . . . , N.
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If LGL quadrature rule is used, with Q = N quadrature points, the differentiation matrix,

DL, can be calculated exactly by the relationship

DL
ij =

N∑
k=0

L̃i(tk)
dφNj
dt

(tk)wk, i, j = 0, 1, . . . , N.

If Q = N quadrature points are used, the RHS vector, cL, can be approximated by the

relationship

cLi ≈ c̄NiL =
N∑
k=0

L̃i(tk)f(x̄Nk, ūNk)wk, i = 0, 1, . . . , N.

The system may be simplified as

N∑
j=0

DL
ij x̄

Nj − c̄NiL = 0, i = 0, 1, . . . , N.

The dynamical constraint therefore becomes∥∥∥∥∥
N∑
j=0

DL
ijx̄

Nj − c̄NiL

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N.

The endpoint conditions and path constraints are approximated similarly by

∥∥e(x̄N0, x̄NN)
∥∥
∞ ≤ δN ,

h(x̄Ni, ūNi) ≤ δN · 1, i = 0, 1, . . . , N.

Lastly, the cost functional J [x(·), u(·)] is approximated by the LGL quadrature rule,

J [x(·), u(·)] ≈ J̄N(x̄N , ūN) =
N∑
i=0

F (x̄Ni, ūNi)wi + E(x̄N0, x̄NN),
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where x̄N =
[
x̄N0 x̄N1 · · · x̄NN

]
and ūN =

[
ūN0 ūN1 · · · ūNN

]
. To allow for a practical

search area for the optimal solution the following constraints are included: x̄N ∈ X and

ūN ∈ U , where X and U are the search regions that contain the optimal solution of the

discretized nonlinear optimization.

6.2. Computation Strategy

The computation strategy for Galerkin optimal control with Legendre polynomial

test functions is presented in two forms. First, the strategy for the continuous problem,

in terms of the approximating polynomials is outlined, denoted as GOCM-L̃. Next, the

discrete problem, discretized on a LGL grid is presented, denoted as GOCM-L.

6.2.1. Computation Strategy for GOCM-L̃

The computational strategy of the GOCM-L̃ is to find the feasible solution xN(t) ∈

X and uN(t) ∈ U for the following cases:

Case 1. u(·) is piecewise C0 and x(·) ∈ C0 and piecewise C1,

Case 2. u(·), ẋ(·) ∈ Hm−1 and m ≥ 2,

that minimizes

J(xN(·), u(·)) =

∫ 1

−1

F
(
xN(t), u(t)

)
dt+ E

(
xN(−1), xN(1)

)
,

subject to the Galerkin constraints∥∥∥∥∫ 1

−1

L̃i(t)
(
ẋN(t)− f

(
xN(t), u(t)

))
dt

∥∥∥∥
∞
≤MN−α, i = 0, 1, . . . , N,∥∥e (xN(−1), xN(1)

)∥∥
∞ ≤MN−α,∥∥h+

(
xN(t), uN(t)

)∥∥
L2 ≤MN−α,
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where α = 1
2

and (m− 1), for Case 1 and 2, respectively; M is a constant independent of

N and

h+ =

h, h > 0,

0, h ≤ 0.

6.2.2. Computation Strategy for GOCM-L

The computational strategy of the GOCM-L is to find the feasible solution x̄N(t) ∈

X and ūN(t) ∈ U that minimizes

J̄N
(
x̄N , ūN

)
=

N∑
i=0

F
(
x̄Ni, ūNi

)
wi + E

(
x̄N0, x̄NN

)
,

subject to the Galerkin constraints∥∥∥∥∥
N∑
j=0

DL
ijx̄

Nj − c̄NiL

∥∥∥∥∥
∞

≤ δN , i = 0, 1, . . . , N,

∥∥e (x̄N0, x̄NN
)∥∥
∞ ≤ δN ,

h
(
x̄Ni, ūNi

)
≤ δN · 1, i = 0, 1, . . . , N.

6.3. Feasibility of Solutions

Theorem 6.1 (Feasibility of GOCM-L̃). Given any feasible solution t 7→ (x, u), for Prob-

lem B, consider the following two cases:

Case 1. u(·) is piecewise C0 and x(·) ∈ C0 and piecewise C1,

Case 2. u(·), ẋ(·) ∈ Hm−1 and m ≥ 2.

Then, there exists a positive integer N0 such that, for any N ≥ N0, GOCM-L̃ has a poly-

nomial feasible solution, (xN(t), uN(t)) such that

∥∥x(t)− xN(t)
∥∥
L2 ≤MN−α and

∥∥u(t)− uN(t)
∥∥
L2 ≤MN−α,
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where α = 1
2

and (m− 1), for Case 1 and 2, respectively; and M is a positive constant

independent of N .

Proof. Let p(t) be the (N − 1)-th order truncated Legendre polynomial approximation of

ẋ(t). By Lemmas 4.1 and 4.2 there is a constant c0 independent of N , for any N ≥ N0,

such that

‖ẋ(t)− p(t)‖L2 ≤ c0N
−α,

where α = 1
2

and (m− 1), for Case 1 and 2, respectively. Define

xN(t) =

∫ t

−1

p(s)ds+ x(−1).

Then p(t) = ẋN(t) and

∥∥x(t)− xN(t)
∥∥
L2 ≤ 2c0N

−α,

since, from Hölder’s inequality (Lemma 4.3), we have

∣∣x(t)− xN(t)
∣∣ =

∣∣∣∣∫ t

−1

(ẋ(s)− p(s)) ds
∣∣∣∣ ≤ ∫ t

−1

|ẋ(s)− p(s)|ds

≤
√

2

(∫ 1

−1

|ẋ(s)− p(s)|2ds
) 1

2

=
√

2‖ẋ(t)− p(t)‖L2 ≤
√

2c0N
−α. (6.1)

Let uN(t) be the N -th order Legendre polynomial so that

∥∥u(t)− uN(t)
∥∥
L2 ≤ c1N

−α.
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From our Galerkin approximation, Hölder’s inequality (Lemma 4.3), and the property,

‖Li‖L2 =
√

2
2i+1

, we have for each i = 0, 1, . . . , N ,

∣∣∣∣∫ 1

−1

L̃i(t)
(
ẋN(t)− f

(
xN(t), uN(t)

))
dt

∣∣∣∣
≤

∥∥∥∥∥∥ Li(t)√
2

2i+1

∥∥∥∥∥∥
L2

∥∥ẋN(t)− f
(
xN(t), uN(t)

)∥∥
L2

=
∥∥ẋN(t)− f

(
xN(t), uN(t)

)∥∥
L2

≤
∥∥ẋ(t)− ẋN(t)

∥∥
L2 +

∥∥f (x(t), u(t))− f(xN(t), uN(t)
)∥∥

L2

= c0N
− 1

2 + l1
∥∥x(t)− xN(t)

∥∥
L2 + l2

∥∥u(t)− uN(t)
∥∥
L2

≤ c0N
−α + 2l1c0N

−α + l2c1N
−α,

where l1 and l2 are the Lipschitz constants of f with respect to x and u, respectively, which

are independent of N . It follows that∣∣∣∣∫ 1

−1

L̃i(t)
(
ẋN(t)− f

(
xN(t), uN(t)

))
dt

∣∣∣∣ ≤MN−α,

and holds for each i = 0, 1, . . . , N , and all N > N0, where M is a constant independent of

N .

For the endpoint condition we have

∣∣x(1)− xN(1)
∣∣ =

∣∣∣∣∫ t

−1

(ẋ(s)− p(s)) ds
∣∣∣∣ ≤ ∫ t

−1

|ẋ(s)− p(s)|ds

≤
√

2

(∫ 1

−1

|ẋ(s)− p(s)|2ds
) 1

2

=
√

2‖ẋ(t)− p(t)‖L2 ≤
√

2c0N
−α,

so we have, by Lipschitz condition,

∣∣e(xN(−1), xN(1))
∣∣ ≤MN−α.
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For the path constraint let D =
{
t|h
(
xN(t), uN(t)

)
> 0
}
,D = [−1, 1] \D, since

h (x(t), u(t)) ≤ 0. Then

∥∥h+
(
xN(t), uN(t)

)∥∥
L2 =

(∫
D

(
h(xN(t), uN(t))

)2
dt

) 1
2

≤
(∫
D

(
h
(
xN(t), uN(t)

)
− h (x(t), u(t))

)2
dt

) 1
2

≤
(∫
D

(h(xN(t), uN(t))− h(x(t), u(t)))2dt+

∫
D

(h(xN(t), uN(t))− h(x(t), u(t)))2dt

) 1
2

=

(∫ 1

−1

(
h
(
xN(t), uN(t)

)
− h (x(t), u(t))

)2
dt

) 1
2

=
∥∥h (xN(t), uN(t)

)
− h (x(t), u(t))

∥∥
L2

≤ l3
∥∥x(t)− xN(t)

∥∥
L2 + l4

∥∥u(t)− uN(t)
∥∥
L2 ≤MN−α,

where l3 and l4 are the Lipschitz constants of h with respect to x and u, respectively, which

are independent of N . Hence

∥∥h+
(
xN(t), uN(t)

)∥∥
L2 ≤MN−α.

Thus a solution
(
xN(t), uN(t)

)
to GOCM-L̃ is feasible!

6.4. Consistency of Solutions

Theorem 6.2 (Consistency of GOCM-L̃). Suppose
(
xN(t), uN(t)

)
is a solution of GOCM-

L̃ and there exists (x(t), u(t)) such that:

Case 1. u(·) is piecewise C0 and x(·) ∈ C0 and piecewise C1,

Case 2. u(·), ẋ(·) ∈ Hm−1 and m ≥ 2.

Also, suppose

lim
N→∞

∥∥u(t)− uN(t)
∥∥
L2 = 0, (6.2)
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and xN(t)→ x(t) uniformly, thus

lim
N→∞

∥∥x(t)− xN(t)
∥∥
L2 = 0. (6.3)

Then (x(t), u(t)) satisfies 
‖ẋ(t)− f (x(t), u(t))‖L2 = 0,

e (x(−1), x(1)) = 0,

h (x(t), u(t)) ≤ 0,

and is an optimal solution to Problem B.

Proof. Due to the completeness of the Legendre polynomials [80], to prove ‖ẋ(t)− f (x, u)‖L2 =

0 it is sufficient to prove

∫ 1

−1

L̃i(t) (ẋ(t)− f (x(t), u(t))) dt = 0,

for each i = 0, 1, . . . ,∞ (see definition of completeness, Definition 4.2). Consider∣∣∣∣∫ 1

−1

L̃i(t) (ẋ(t)− f (x(t), u(t))) dt

∣∣∣∣
≤
∣∣∣∣∫ 1

−1

L̃i(t)
(
ẋN(t)− f

(
xN(t), uN(t)

))
dt

∣∣∣∣+

∣∣∣∣∫ 1

−1

L̃i(t)
(
ẋ(t)− ẋN(t)

)
dt

∣∣∣∣
+

∣∣∣∣∫ 1

−1

L̃i(t)
(
f
(
xN(t), uN(t)

)
− f (x, u)

)
dt

∣∣∣∣
≤MN−α +

∥∥ẋ(t)− ẋN(t)
∥∥
L2 +

∥∥f (x(t), u(t))− f
(
xN(t), u(t)

)∥∥
L2

= MN−α +
∥∥x(t)− xN(t)

∥∥
L2 + l1

∥∥x(t)− xN(t)
∥∥
L2 + l2

∥∥u(t)− uN(t)
∥∥
L2 ,

where α = 1
2

and (m− 1), for Case 1 and 2, respectively (from Theorem 6.1); M is a

positive constant and l1 and l2 are the Lipschitz constants of f with respect to x and u,
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respectively, all independent of N . It follows that as N →∞ we have

‖ẋ(t)− f (x(t), u(t))‖L2 = 0.

For the endpoint condition, since xN(t)→ x(t) uniformly, we have xN(1)→ x(1)

and xN(−1)→ x(−1). Since, from the formulation of the computational strategy we have∣∣e (xN(−1), xN(1)
)∣∣ ≤MN−α, we conclude that e (x(−1), x(1)) = 0 as N →∞.

For the path constraint, since h(x(t), u(t)) is piecewise C1, if h (x(t∗), u(t∗)) > 0,

∃ an interval (a, b) in which h (x(t), u(t)) > 0. Then

‖h (x(t), u(t))‖L2(a,b) =

(∫ b

a

(h (x(t), u(t)))2 dt

) 1
2

> 0.

However,

‖h (x(t), u(t))‖L2(a,b) ≤
∥∥h (x(t), u(t))− h+

(
xN(t), uN(t)

)∥∥
L2(a,b)

+
∥∥h+

(
xN(t), uN(t)

)∥∥
L2(a,b)

≤
∥∥h (x(t), u(t))− h

(
xN(t), uN(t)

)∥∥
L2(a,b)

+MN−α

≤ l3
∥∥x(t)− xN(t))

∥∥
L2 + l4

∥∥u(t)− uN(t))
∥∥
L2 +MN−α,

where l3 and l4 are the Lipschitz constants of h with respect to x and u, respectively,

which are independent of N . Hence, this is a contradiction, therefore h (x(t), u(t)) ≤ 0 as

N →∞.

Suppose that (x(t), u(t)) is not optimal. Then ∃ (x∗(t), u∗(t)) so that

J (x∗(·), u∗(·)) < J (x(·), u(·)) .

Also, ∃ (x∗(t), u∗(t)) such that

∥∥x∗N(t)− x(t)
∥∥
L2 ≤MN−α and

∥∥u∗N(t)− u(t)
∥∥
L2 ≤MN−α,
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where
(
x∗N(t), u∗N(t)

)
is a feasible trajectory of GOCM-L̃. Therefore

J
(
x∗N(·), u∗N(·)

)
≥ J

(
xN(·), uN(·)

)
. (6.4)

However,

∣∣J (xN(·), uN(·)
)
− J (x(·), u(·))

∣∣
≤
∫ 1

−1

∣∣F (xN(t), uN(t)
)
− F (x(t), u(t))

∣∣dt+
∣∣E (xN(−1), xN(1)

)
− x(−1), x(1))

∣∣
≤
√

2
∥∥F (xN(t), uN(t)

)
− F (x(t), u(t)) dt

∥∥
L2 +

∣∣E (xN(−1), xN(1)
)
− x(−1), x(1))

∣∣.
Due to the Lipschitz condition and assumptions (6.2) and (6.3) we have

lim
N→∞

∣∣J (xN(·), uN(·)
)
− J (x(·), u(·))

∣∣ = 0.

Similarly,

lim
N→∞

∣∣J (x∗N(·), u∗N(·)
)
− J (x∗(·), u∗(·))

∣∣ = 0.

Therefore, from (6.4) we have

J (x∗(·), u∗(·)) ≥ J (x(·), u(·)) .

This is a contradiction, since we assumed

J (x∗(·), u∗(·)) < J (x(·), u(·)) .

We conclude that (x(t), u(t)) achieves an optimal cost and therefore is an optimal solution

to Problem B!
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Remark 6.1. Theorems 6.1 and 6.2 show that solutions to the GOCM-L̃ exist and provide

confidence that they will converge to the optimal solutions of Problem B. More importantly,

Theorem 6.2 provides a foundation to show that solutions to the GOCM-L̃ will converge to

optimal solutions with discontinuities in the control, such as solutions to bang-bang control

problems. However, as with the GOCM-S̃, questions still remain about the conditions

under which the underlying assumptions exist (in the case of the GOCM-L̃, assumptions

(6.2) and (6.3)), but the required analysis is above the scope of this dissertation.
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CHAPTER 7:
EXAMPLE PROBLEMS

A number of examples are provided in this chapter to highlight the versatility and

accuracy of the Galerkin optimal control formulations discussed in Chapters 4–6. Exam-

ples 7.1, 7.2 and 7.4 demonstrate the improved accuracy provided by the Galerkin optimal

control formulation with weak enforcement of boundary conditions over strong enforce-

ment for problems with fixed boundary conditions as well as incomplete sets of end con-

ditions. In particular, the examples show that the GOCM-W has an advantage over the

GOCM-S for low order approximations of control solutions. Examples 7.1 and 7.4 also

show the potential advantages of the Galerkin formulations with F-LGR and LG points, re-

spectively. Additionally, Example 7.3 demonstrates the effectiveness of the element-based

Galerkin optimal control formulations (such as the GOCM-DG) when employed to approx-

imated optimal control problems with discontinuous controls. Lastly, Examples 7.5 and 7.6

demonstrate the computational efficiency in which the multi-scale Galerkin optimal control

formulation may solve multi-scale problems, those with states and controls that evolve on

different timescales. In contrast to the difficulties with the multi-scale Legendre PS method

(see Section 3.4) highlighted in Chapter 3, the GOCM-MS is shown to successfully reduce

the size of multi-scale problems.

7.1. Example 7.1: Nonlinear Two-Dimensional Problem with Fixed
Initial Conditions

Consider the nonlinear two-dimensional problem with fixed initial conditions given

by Gong et al. [3] of minimizing the cost function

J = 4x1(2) + x2(2) + 4

∫ 2

0

u2dt, (7.1)
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subject to the dynamics

ẋ1(t) = x3
2(t) and ẋ2(t) = u(t),

and with initial conditions

x1(0) = 0 and x2(0) = 1.

The analytic solution to this problem is given by

x1(t) =
2

5
− 64

5(2 + t)5
,

x2(t) =
4

(2 + t)2
,

u(t) =
−8

(2 + t)3
,

obtained via Pontryagin’s maximum principle. This problem was solved using the GOCM-

W (Section 5.1) with optimality and feasibility tolerances of 10−8 and 10−8, respectively.

A two-point initial guess was provided. Figure 16 shows a comparison of the exact solution

with the GOCM-W approximation and N = 20.
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Figure 16: Exact solution and GOCM-W approximation with N = 20 for Example 7.1.

Figures 17, 18 and 19 show the maximum error of the states and control,

‖errorx1‖∞ =
∥∥x1(ti)− xN1 (ti)

∥∥
∞, i = 0, 1, . . . , N,

‖errorx2‖∞ =
∥∥x2(ti)− xN1 (ti)

∥∥
∞, i = 0, 1, . . . , N,

‖erroru‖∞ =
∥∥u(ti)− uN(ti)

∥∥
∞, i = 0, 1, . . . , N,

respectively, for the LPM (Legendre PS method, Section 3.2), GOCM-S (Chapter 4),

GOCM-W and GOCM-FLGR (Section 5.5.2.1) vs. polynomial order, N . Note that the

GOCM-S approximations show nearly the exact same exponential convergence rates as the

Legendre PS method numerical solutions throughout the displayed range of N values.
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Figure 17: State x1 approximation error vs. polynomial order, N , for Example 7.1.

However, the GOCM-W and GOCM-FLGR numerical solutions of x2 and u show a marked

improvement over that of the GOCM-S. Observations from this example show that the

GOCM-W and GOCM-FLGR formulations have the potential to provide increased accura-

cies of the control solution with lower order approximations.
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Figure 18: State x2 approximation error vs. polynomial order, N , for Example 7.1.
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Figure 19: Control u approximation error vs. polynomial order, N , for Example 7.1.
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7.2. Example 7.2: Nonlinear Two-Dimensional Problem with Fixed
Boundary Conditions

Consider the nonlinear two-dimensional problem with fixed boundary conditions

given by Kang [6] of minimizing the cost function

J =

∫ π

0

(1− x1 + x1x2 + x1u)2dt, (7.2)

subject to the dynamics

ẋ1(t) = −x2
1x2 and ẋ2(t) = −1 +

1

x1

+ x2 + sin t+ u,

and with boundary conditions

x1(0) = 1, x2(0) = 0, x1(π) =
1

π + 1
and x2(π) = 2.

The analytic solution to this problem is given by

x1(t) =
1

1− sin t+ t
,

x2(t) = 1− cos t,

u(t) = −(t+ 1) + sin t+ cos t,

obtained via Pontryagin’s maximum principle. This problem was solved using the GOCM-

W (Section 5.1) with optimality and feasibility tolerances of 10−8 and 10−8, respectively.

A two-point initial guess was provided. Figure 20 shows a comparison of the exact solution

with the GOCM-W approximation and N = 20.
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Figure 20: Exact solution and GOCM-W approximation with N = 20 for Example 7.2.

Figures 21, 22 and 23 show the maximum error of the states and control,

‖errorx1‖∞ =
∥∥x1(ti)− xN1 (ti)

∥∥
∞, i = 0, 1, . . . , N,

‖errorx2‖∞ =
∥∥x2(ti)− xN1 (ti)

∥∥
∞, i = 0, 1, . . . , N,

‖erroru‖∞ =
∥∥u(ti)− uN(ti)

∥∥
∞, i = 0, 1, . . . , N,

respectively, for the LPM (Legendre PS method, Section 3.2), GOCM-S (Chapter 4),

GOCM-W and GOCM-OI (Section 5.5.1) vs. polynomial order, N . Note that the GOCM-

W approximation represents a formulation for which the initial conditions are enforced

weakly and the final conditions are imposed in a strong sense through an endpoint con-

straint. Although enforcing all boundary conditions weakly provides accurate solutions,

a partial weak enforcement of end conditions produces higher accuracies. Also note that

the GOCM-OI approximations represent the over integration of this GOCM-W formula-

tion. The GOCM-S approximations show nearly the exact same exponential convergence
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rates as the Legendre PS method numerical solutions throughout the displayed range of N

values.
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Figure 21: State x1 approximation error vs. polynomial order, N , for Example 7.2.

The GOCM-W numerical solutions of x2 and u show a marked improvement over that

of the GOCM-S for N ≤ 22; the control error for the GOCM-W is up to two orders of

magnitude lower than that of the GOCM-S for the N values in this range. Finally, the

GOCM-OI formulation has a smoothing effect on the accuracies of the GOCM-W approxi-

mations. While the GOCM-OI approximations of x2 appear to be less superior to that of the

GOCM-W, the GOCM-OI approximations of u gain slightly in accuracy for the lower order

approximations. Observations from this example show that the GOCM-W and GOCM-OI

formulations have the potential to provide increased accuracies of the control solution with

lower order approximations.
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Figure 22: State x2 approximation error vs. polynomial order, N , for Example 7.2.
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Figure 23: Control u approximation error vs. polynomial order, N , for Example 7.2.
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7.3. Example 7.3: Two-Dimensional Bang-Bang Control Problem with
Fixed Boundary Conditions

Consider the 2-dimensional bang-bang control problem with fixed initial conditions

given by Pinch [21] of controlling the system from the initial point (a, b) at t = 0 to the

origin (0, 0) in the shortest time. Here, we minimizing the cost function

J =

∫ tf

0

dt = tf ,

subject to the dynamics

ẋ(t) = y(t) and ẏ(t) = u(t),

and with boundary conditions

x(0) = a, y(0) = b, x(tf ) = 0, y(tf ) = 0,

and control constraint |u(t)| ≤ k. For the case where a = 1, b = 3 and k = 1, the analytic

solution to this problem is given by

x(t) =

−
t2

2
+ 3t+ 1, t ≤ tξ,

t2

2
− tf t+

t2f
2
, t > tξ,

y(t) =

−t+ 3, t ≤ tξ,

t− tf , t > tξ,

,

u(t) =

−1, t ≤ tξ,

1, t > tξ,

obtained via Pontryagin’s maximum principle, where tξ = 3 +
√

11
2

and tf = 3 + 2
√

11
2

.

This problem was solved using the GOCM-S (Chapter 4), GOCM-W (Section 5.1), GOCM-
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CG (Section 5.2) and GOCM-DG (Section 5.3). A two-point initial guess was provided for

each approximation.

Figures 24 and 25 show comparisons of the exact solution with the GOCM-S and

GOCM-W numerical solutions, respectively, with approximation order, N = 20.
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Figure 24: Exact solution and GOCM-S approximation with N = 20 for Example 7.3.

From observations, we can see a slight improvement from the GOCM-S to the GOCM-

W numerical solutions, particularly in the approximation of the control, u, in the vicinity

of the discontinuity location, tξ. However, the GOCM-S and GOCM-W have difficulty

in approximating the discontinuous control solution. Even with an increased approxima-

tion order, there remains a maximum error of O(10−1) for the GOCM-S and GOCM-W

approximations of the control.
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Figure 25: Exact solution and GOCM-W approximation with N = 20 for Example 7.3.

Figures 26 and 27 show comparisons of the exact solution with the GOCM-CG and

GOCM-DG approximations, respectively, with number of nonuniform elements, Ne = 2,

polynomial order inside each element, N = 10, and the boundary of the two elements

located at tξ. It should be noted that in the element based formulations, tξ is defined as

a decision variable in the NLP. An initial guess for tξ is then provided to the NLP with

bounds prescribed. The total number of points for the GOCM-CG approximation is, Np =

(NeN + 1) = 21 while for the GOCM-DG approximation, Np = (N + 1)Ne = 22.
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Figure 26: Exact solution and GOCM-CG approximation with Np = 21, Ne = 2 and the
boundary of the elements located at tξ for Example 7.3.

Note that both the GOCM-CG and GOCM-DG approximations of the states, x and y,

achieve maximum errors of O(10−9) from the exact states. Additionally, the GOCM-DG

achieves an impressive O(10−8) maximum error from the exact control, u, as compared

with an accuracy of O(10−1) for the GOCM-CG.
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Figure 27: Exact solution and GOCM-DG approximation with Np = 22, Ne = 2 and the
boundary of the elements located at tξ for Example 7.3.

7.4. Example 7.4: Two-Dimensional Problem with Fixed Boundary
Conditions

Consider again the linear two-dimensional problem with fixed boundary conditions

given in Example 3.1 of minimizing the cost function

J =
1

2

∫ tf

0

u2dt, (7.3)

subject to the dynamics

ẋ1(t) = x2 and ẋ2(t) = C sin(kt) + u,

and with boundary conditions

x1(0) = 0, x2(0) = 0, x1(tf ) = 1 and x2(tf ) = 0.
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The analytic solution to this problem is given by Equations (3.9)–(3.13), where tf = 10,

C = 0.1 and k = 8. This problem was solved using the GOCM-W (Section 5.1) with

optimality and feasibility tolerances of 10−8 and 10−8, respectively. A two-point initial

guess was provided for each approximation.
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Figure 28: Exact solution and GOCM-W approximation with N = 50 for Example 7.4.

‖errorx1‖∞ =
∥∥x1(ti)− xN1 (ti)

∥∥
∞, i = 0, 1, . . . , N,

‖errorx2‖∞ =
∥∥x2(ti)− xN1 (ti)

∥∥
∞, i = 0, 1, . . . , N,

‖erroru‖∞ =
∥∥u(ti)− uN(ti)

∥∥
∞, i = 0, 1, . . . , N,

respectively, for the LPM (Legendre PS method, Section 3.2), GOCM-S (Chapter 4),

GOCM-W and GOCM-LG (Section 5.5.2.2) vs. polynomial order, N . Note that, as with

Example 7.2, the GOCM-W approximation represents a formulation for which the ini-

tial conditions are enforced weakly and the final conditions are imposed in a strong sense

through an endpoint constraint. Although enforcing all boundary conditions weakly pro-
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vides accurate solutions, a partial weak enforcement of end conditions produces higher

accuracies. Note that the GOCM-S approximations show nearly the exact same exponen-

tial convergence rates as the LPM numerical solutions throughout the displayed range of

N values.
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Figure 29: State x1 approximation error vs. polynomial order, N , for Example 7.4.
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Figure 30: State x2 approximation error vs. polynomial order, N , for Example 7.4.
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Figure 31: Control u approximation error vs. polynomial order, N , for Example 7.4.
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However, the GOCM-W and GOCM-LG numerical solutions for u show a marked im-

provement over that of the GOCM-S, particularly in the lower order approximations; the

control error for the GOCM-LG is one to five orders of magnitude lower than that of the

GOCM-S in this range. Observations from this example show that the GOCM-W and

GOCM-LG formulations have the potential to provide increased accuracies of the control

solution with lower order approximations.

7.5. Example 7.5: Two-Dimensional Multi-scale Problem with Fixed
Boundary Conditions

Consider again the linear two-dimensional problem with fixed boundary conditions

given in Example 3.1 and 7.4. Here we take advantage of the multi-scale nature of the

problem. The slow state, x1, fast state, x2 and control u are discretized on LGL grids,

{τj}
Nx1
j=0 , {tj}

Nx1
j=0 and {τ̃j}Nuj=0, respectively, where Nx1 , Nu < Nx2 . This problem was

solved with optimality and feasibility tolerances of 5 × 10−4 and 5 × 10−3, respectively.

The exact solution was used as an initial guess. Figure 32 shows a comparison of the exact

solution with the GOCM-MS (Section 5.4) numerical solutions with Nx1 = 10, Nx2 = 50

and Nu = 5.

176



0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

 

 x
1
 exact

x
2
 exact

u exact

x
1
 GOCM−MS

x
2
 GOCM−MS

u GOCM−MS

Figure 32: Exact solution and GOCM-MS approximation with Nx1 = 10, Nx2 = 50 and
Nu = 5 for Example 7.5.

Unlike the multi-scale Legendre PS method outlined in Section 3.4, the GOCM-MS pro-

vides a feasible solution. In fact, the maximum error of the GOCM-MS numerical solutions

all have magnitude O(10−4). It is also important to point out that the required feasibility

tolerance of 5 × 10−3 is the same order of magnitude as the largest x1 spectral coefficient

dropped from the approximation (see Figure 13). This observation is consistent with Re-

mark 3.6. Additionally, Remark 3.6 highlights the potential for a feasible solution with the

lower bounds: 3 ≤ Nx1 , 43 ≤ Nx2 and 1 ≤ Nu (note the associated magnitudes of the

Legendre spectral coefficients in Figure 13 for x1, x2 and u). This is in fact the case: Fig-

ure 33 shows a comparison of the exact solution with the GOCM-MS numerical solutions

with Nx1 = 3, Nx2 = 43 and Nu = 1, solved with optimality and feasibility tolerances of

5× 10−4 and 5× 10−3, respectively.
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Figure 33: Exact solution and GOCM-MS approximation with Nx1 = 3, Nx2 = 43 and
Nu = 1 for Example 7.5.

The maximum errors of the new GOCM-MS approximation (with Nx1 = 3, Nx2 = 43 and

Nu = 1) remain at O(10−4) for the control, u, and O(10−3) for the states, x1 and x2. Note

that when the full-scale approach was used in Example 7.4, a GOCM-W approximation

order of N > 40 was required for the same order of accuracies. It is clear that the size of

the NLP for this problem has been reduced significantly. The number of decision variables

needed for the multi-scale Galerkin optimal control formulation is nearly 33% of that re-

quired of the full-scale problem solved with the GOCM-W. Additionally, this multi-scale

approach has the potential to more efficiently solve a great number of optimal control prob-

lems. The larger the dimension of the multi-scale problem, the greater the potential savings

in computational efficiency!
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7.6. Example 7.6: Nonlinear Two-Dimensional Multi-scale Problem
with Fixed Initial Conditions

Consider the following nonlinear two-dimensional problem with fixed initial con-

ditions given by Gong et al. [71] of minimizing the cost function

J =

∫ 1

0

(x1 − t)2dt, (7.4)

subject to the dynamics

ẋ1(t) = sin (50x1) + x2 and ẋ2(t) = u, (7.5)

and with initial conditions

x1(0) = 0 and x2(0) = 1. (7.6)

The analytic solution to this problem is given by

x1(t) = t,

x2(t) = 1− sin (50t),

u(t) = −50cos (50t),

obtained via Pontryagin’s maximum principle. Figures 34 and 35 show a comparison of

the exact state and control solutions with the GOCM-W (Section 5.1) numerical solutions,

respectively, with N = 45.
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Figure 34: Exact state solutions and GOCM-W approximation with N = 45 for Exam-
ple 7.6.
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Figure 35: Exact control solution and GOCM-W approximation with N = 45 for Exam-
ple 7.6.
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It is clear from Figures 34 and 35 that problem (7.4)–(7.6) may be considered multi-

scale, where x1 is the slow state and x2 the fast state. Consider this problem now recast in

the form of Problem B̃. Here, we discretize the slow state, x1, fast state, x2, and control, u,

on LGL grids, {τj}
Nx1
j=0 , {tj}

Nx2
j=0 and {τ̃j}Nuj=0, respectively. In order to determine Nx1 , Nx2

and Nu we consider the spectral coefficients of x1, x2 and u given in Figure 36.
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(a) Legendre spectral coefficients for state x1.
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(c) Legendre spectral coefficients for control u.

Figure 36: Legendre spectral coefficients for x1, x2 and u for Example 7.6.
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If the feasibility tolerance is set to 10−3, Remark 3.6 highlights the potential for a

feasible solution with the bounds: 1 ≤ Nx1 , 39 ≤ Nx2 and 42 ≤ Nu. This is in fact the

case: Figures 37 and 38 show comparisons of the exact states and control with the GOCM-

MS (Section 5.4) numerical solutions with Nx1 = 1, Nx2 = 39 and Nu = 42, solved with

optimality and feasibility tolerances of 10−4 and 10−3, respectively.
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Figure 37: Exact state solutions and GOCM-MS approximation with Nx1 = 1 and Nx2 =
39 for Example 7.6.
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Figure 38: Exact control solution and GOCM-MS approximation with Nu = 42 for Exam-
ple 7.6.

The maximum errors of the new GOCM-MS approximation (with Nx1 = 1, Nx2 = 39 and

Nu = 42) are O(10−3) for the control, u, and O(10−6) and O(10−4) for states, x1 and x2,

respectively.

7.7. Summary

Galerkin optimal control is a versatile family of numerical formulations for solving

optimal control problems. The examples shown in this chapter demonstrate the potential

of this Galerkin-based family of formulations outlined in Chapters 4–6. Three particular

highlights of Galerkin optimal control is its ability to weakly enforce problem end condi-

tions, handle problems with discontinuous solutions and its potential to reduce the size of

multi-scale problems.

Examples 7.1, 7.2 and 7.4 demonstrate the improved accuracy provided by the

Galerkin optimal control formulation with weak enforcement of boundary conditions over

strong enforcement for both boundary value problems as well as problems with incomplete
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sets of end conditions. In particular, the GOCM-W shows an advantage over the GOCM-

S for low order approximations of control solutions. Examples 7.1 and 7.4 also show

the potential advantages of the Galerkin formulations with F-LGR and LG points, respec-

tively. Example 7.3 demonstrates the effectiveness of the element-based Galerkin optimal

control formulations (such as the GOCM-DG) when employed to approximated optimal

control problems with discontinuous controls. Lastly, Examples 7.5 and 7.6 demonstrate

the computational efficiency in which the multi-scale Galerkin optimal control formula-

tion may solve multi-scale problems, those with states and controls that evolve on different

timescales. In contrast to the difficulties with the multi-scale Legendre PS method (see

Section 3.4) highlighted in Chapter 3, the GOCM-MS is shown to successfully reduce the

size of multi-scale problems.
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CHAPTER 8:
CONCLUSIONS AND AREAS FOR FUTURE RESEARCH

8.1. Dissertation Summary

This dissertation introduced and developed the theory for a Galerkin-based family

of numerical formulations that calculate optimal trajectories by discretizing the system

dynamics using Galerkin numerical techniques and approximate the cost function with

Gaussian quadrature. An important result of the Galerkin formulations are that they can be

used to prove feasibility and consistency theorems that apply to optimal control problems

with continuous and/or piecewise continuous controls. It was shown that Galerkin optimal

control may be formulated in a variety of ways to allow for efficiency and/or improved

accuracy while solving a wide range of optimal control problems.

A highlight of Galerkin optimal control is its ability to be formulated to enforce

boundary conditions in a weak sense, imposing end conditions only up to the accuracy

of the numerical approximation itself. The increased approximation accuracy of the weak

boundary formulation (particularly in the approximation of control solutions) was shown on

several linear and nonlinear problems. It was also demonstrated that the Galerkin optimal

control formulation with weak imposition of end conditions allows for problem discretiza-

tions with other than LGL points. Galerkin optimal control with Legendre-Gauss-Radau

and Legendre-Gauss points were shown to be advantageous due to the increased accuracy

of solutions. Galerkin optimal control may also be formulated with other than Lagrangian

test functions, such as the Legendre polynomials.

In addition, Galerkin optimal control has proven to be effective in reducing the

dimension of multi-scale problems, those in which states and controls evolve on different

timescales. In one example presented the number of decision variables required by the

multi-scale Galerkin optimal control formulation was nearly 33% of that required of the

full-scale problem. The multi-scale formulation has the potential to more efficiently solve
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a great number of optimal control problems, certainly those that include fast and slow

dynamics.

For optimal control problems with discontinuities (such as bang-bang control prob-

lems), an element-based approach has shown to be beneficial. In general, using the element-

based Galerkin optimal control formations discussed (both continuous and discontinuous

Galerkin) may lead to higher computational efficiencies and the formulation may be re-

tooled to incorporate hp-adaptive techniques, such as the spectral algorithm discussed in

[86]. Additionally, the discontinuous Galerkin formulation may be advantageous from a

parallel computing standpoint.

Galerkin optimal control has demonstrated exponential convergence for a large

class of problems. It is clear that Galerkin optimal control is a versatile and accurate family

of formulations that has the potential to provide real time optimal control solutions for a

number of applications.

8.2. Future Work

Galerkin optimal control shows the potential for solving a wide range of optimal

control problems with a variety of state and control constraints. However, application of

the Galerkin optimal control formulations to real-world problems have been somewhat

limited due to research time limitations. Future application of Galerkin optimal control to

problems with real-world conditions is necessary to demonstrate its true versitiliy. Testing

Galerkin optimal control on different types of control problems will inevitably highlight the

strengths (and weaknesses) of each formulation. Lastly, this dissertation includes a number

of important theorems that serve as the theoretical foundations for Galerkin optimal control,

however, the list is not complete. Future work to increase the theoretical underpinnings of

Galerkin optimal control, to include a rate of convergence analysis, is forthcoming.
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APPENDIX A:
NORMS AND FUNCTIONAL SPACES

Throughout this dissertation, the Lp spaces, for 1 ≤ p < ∞, are used quite often.

They consist of all measurable functions v : [−1, 1]→ R, such that [87]

∫ 1

−1

|v(t)|pdt <∞,

with finite Lp-norm,

‖v‖Lp =

(∫ 1

−1

|v(t)|pdt
) 1

p

<∞.

In particular, the L2 space is referenced quite readily, defined by

‖v‖L2 =

(∫ 1

−1

|v(t)|2dt
) 1

2

,

which is induced by the inner product

(u, v) =

∫ 1

−1

u(t)v(t)dt.

Additionally, the L∞ space consist of all measurable functions v : [−1, 1] → R

such that |v(t)| ≤M for almost all t ∈ [−1, 1]. The L∞-norm can be expressed as

‖v‖L∞ = inf{M ||v(t)| ≤M almost everywhere on t ∈ [−1, 1]}.

The idea of a function of bounded variation is also used within this dissertation. To

frame this idea first we must define the total variation, V (u). For a function u : [−1, 1]→ R
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the total variation of u on [−1, 1] is defined as

V (u) = sup{
N∑
j=1

|u(tj)− u(tj−1)| {tk}Nk=0 ∈ P},

where P is the set of all finite partitions of [-1,1]. If the total variation is bounded, V (u) <

∞, then u is said to be of bounded variation in [−1, 1].
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APPENDIX B:
DISCRETE NORMS

Let grid {tj}Nj=0 be associated with quadrature weights {wj}Nj=0 (see Section 2.2.2).

Then the discrete norm, ‖v‖N , from [46] is defined as the quantity

‖v‖N = (v, v)
1
2
N ,

where the discrete inner product is accomplished by numerical integration and given by

(v, v)N =
N∑
j=0

v(tj)
2wj.

In the case that v2 ∈ P2N+δ and {tj}Nj=0 are LG, LGR or LGL points, the numerical

integration is exact and

(v, v)N =

∫ 1

−1

u2dt,

where δ = 1, 0,−1 for LG, LGR or LGL points, respectively, and {wj}Nj=0 are the associ-

ated weights.

Additionally, there exist constants α, β > 0 such that

α‖v‖L2 ≤ ‖v‖N ≤ β‖v‖L2

for all v ∈ PN .

Lastly, ‖v‖∞ denotes the maximum element of vector, v ∈ Rn.
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APPENDIX C:
SOBOLEV SPACES

Throughout this dissertation, the Sobolev spaces, Wm,p, are referenced quite often.

They consist of all functions, v : [−1, 1] → Rn having weak derivative, v(i) ∈ Lp, where

0 ≤ i ≤ m, with the norm [87]

‖v‖Wm,p =

(
m∑
i=0

∥∥v(i)
∥∥p
Lp

) 1
p

,

where ‖v‖Lp denotes,

‖v‖Lp =

(∫ 1

−1

|v(t)|pdt
) 1

p

.

The seminorm may be expressed as

|v|Wm,p;N =

 m∑
i=min(m,N+1)

∥∥v(i)
∥∥p
Lp

 1
p

.

Additionally, Sobolev spaces may be defined with a fractional order. They consist of all

measurable functions v : [−1, 1]→ R, such that [88]

W σ,p = {v ∈ Lp :

∫ 1

−1

∫ 1

−1

|v(x)− v(y)|p

|x− y|1+σp dxdy <∞},

for 0 < σ < 1 and 1 ≤ p <∞, with the norm,

‖v‖Wσ,p =

(∫ 1

−1

|v(t)|pdt+

∫ 1

−1

∫ 1

−1

|v(x)− v(y)|p

|x− y|1+σp dxdy

) 1
p

.

Lastly, due to the extensive use of the spaceWm,2, notation is simplified by lettingWm,2 =

Hm.
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