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Islan(lers are stated to be worn, Mr. Ball declared he could 

not doubt the golden ornaments were worn in a similar 
manner. The Sandwiclh Island articles to which he alluded 
formed a part of the fine collection made in Cook's voyages, 

and deposited in the Museum of the University. He trusted 
he would be able to make many of the weapons and orna 

ments therein contained useful in throwing light on Irish an 
tiquities. He referred to several curious instances, where the 
use of hypothesis had misled antiquaries, and where observa 
tions of existing people had set their opinions aside. He men 
tioned that he had recently proved, that an article long exist 
ing in the University Museum, and known as the best example 
of an old form of a trumpet, had, by the discovery of its re 

maining parts, proved to be a chemical instrument for burning 
gas, or inflammable vapour; and he concluded by stating, 

that the article figured in the seventeenth volume of the Trans 
actions of the Royal Irish Academy, as an astronomical 

instrument of the ancient Irish, proved to be a piece of chain 

armour. These two last mistakes he gave as examples of a 

want of exactness of observation, and of the mischief of hy 

pothesis. 

The Secretary read a paper by Professor Young of Bel 

fast, on Diverging Infinite Series, and on certain Errors in 
Analysis connected therewith. 

The subject of diverging series is one of considerable per 
plexity in analysis, and has given occasion to theories of ex 
planation involving views and statements entirely opposed to 
the general principles of algebraical science. It has, for in 
stance, been affirmed of such series-when they present them 
selves as developmentts of finite expressions-that, though 
algebraically true, they may, nevertheless, be arithmetically 
false. By some they are considered to justify conclusions 
palpably erroneous and absurd, as, for example, that 

D2 
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1 + 2 + 4 + . . . =-1, 

while by others they are regarded as meaningless results, and 
have thus been altogether rejected from analysis. 

It is impossible to avoid the occurrence of these series: 
they present themselves at a very early stage of algebra, in 

the form of geometrical progressions and binomial develop 
ments; and thenceforward are continually met with by the 
analyst up to the remotest applications of the integral calculus. 
The existing vagueness and indecision, as to the proper mode 
of interpreting such series, is thus a matter of some concern, 

as calculated to retard the progress of science, to diminish opr 

confidence in some of the truths of analysis, and to give cur 

rency to results involving error and contradiction. 
In the present communication it will be my endeavour to 

ascertain the causes of the perplexities and discrepancies above 
adverted to, and to discover the legitimate interpretation of 

diverging infinite series; from which it will, I think, follow 
that certain expressions received into analysis as the sums of 

several of these, are erroneous. The fact that Poisson, Cauchy, 

Abel, and indeed most of the modern continental writers, re 
ject diverging infinite series, and pronounce them to have no 
sums, does not render such an endeavour the less necessary; 

inasmuch as the analytical operations, in virtue of which finite 

values have been attributed to extensive classes of these series 
by Euler and subsequent investigators, remain, I believe, un 

impugned. Widely different methods appear to concur in 
furnishing the same numerical results for such series; as, for 
instaince, the method of definite integrals, and that deduced 
fronm the differential theorem, both so frequently applied by 
Euler to effect the summations of series of this kind; and the 

numerical results obtainied by him have often, apparently, been 
verified by later computers; some of whom have employed 
methods quite distinct from those of Euler; as, for instance, 
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Horner, who arrived at Euler's results by aid of considerations 
drawn from the theory of continued fractions.* 

So long, therefore, as the admitted operations of analysis 
thus conduct to conclusions-and conclusions, too, mutually 
confirmatory of onie another, though arrived at by very diffe 
rent paths-we are surely not authorized in summarily reject 
ing them as meaningless or absurd, merely oni account of any 
inherent difficulties involved in them. The onily ground for 
such rejection, that can generally be considered as sufficiently 
cogent by analysts, must be errors in the reasoning by which 
those cotnclusions are reached. In attempting, therefore, niow 
to point out the existence of these errors, it will be perceived 
that I proceed on the assumption that nothing has as yet been 

advanced, by the rejectors of diverging infinite series, against 
the reasonings of Euler, Lacroix, and others, in reference to 

this matter; more especially that the method of definite inte 

grals, and that depending on the differential theorem, have 
Inot as yet been shewn to be erroneous. I may be wrong in 

this supposition; if so, 1 should feel most anxious to withdraw 
this Paper, rather than obtrude upon the attention of the 

Academy the discussion of a topic already disposed of-and, 
doubtless, in a more complete and satisfactory manner-else 
where. 

I.-As noticed above, the first step in the general theory 
of series occurs under the head of geometrical progression; the 
form of the series proposed for summation being 

a + ax + aX2 + aX3 + &c. () 

where it is to be observed that the " &c." implies the endless 

progression of the terms beyond ax3, according to the law ex 

hibited in the terms which precede; excluding, however, every 
thing in the form of supplement or correction. The geineral 

expression for the sum of n terms of this series is known to be 

* 
Annals of Philosophy : July, 1826, p. 50, 
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a ax" (2) 

Now it is customary to write the development of 
a 

as fol 
lows, viz. 

a _a + ax+ ax2+ ax3+&c. (3) 

and then to commit the mistake of confounding this with the 
series (I) above; overlooking the fact that the " &c." in the one, 

except under particular restrictions as to the value of x, is 

very different, as to the meaning involved in it, from that in 
the other. 

If we dispense with the c; &c." in the series (1), we may 
write that series thus: 

a + ax + ax2 + ax3 + ...+ x, (4) 

the sum of which will be truly expressed by the formula (2), 
by making n infinite; as that formula is perfectly general. 

But this same formula gives for - the development 

= _a + ax+ a2 + a3 + ... ax' + X 
(5) 

shewing that the "1 &c." in (3) differs from that in (1) by a 

quantity which is infinitely great, whenever x is not a proper 
function: except in the single case of x = - 1. When x 

is a proper fraction, the two series become identical by the 
ax 

evanescence of 

It thus appears that a is not the fraction which gene 

rates the series (1), x being unrestricted: what this fraction 
really generates is exhibited in (5) above, an equation which 
is always true, whatever arithmetical value we assign to x; 
and to obtain the general expression for the sum of (1), we 

* As the exponent in this last expression is infinite, it seems unnecessary 

to write it ao + 1. 



31 

a . ax must connect to the correction - a correction 
I1-x I --xz 

which is ambiguous as to sign, when x is negative. 
When x is > 1, the series, omittinig this correction, is m; 

the correction itself is also co, and opposite in sign: it is the 
difference of these two infinites which is the finite undeveloped 
expression. 

There is thus no discrepancy between a geometrical series 
and the expressioIn which generates it: nor is it the case that 
by connecting the two by the sign of equality, we shall have 
an equation algebraically true, but in certain cases arithme 
tically false, as has been frequently affirmed of late. The re 
verse of this affirmation is the more correct statement; inas 

much as by interposing the sign of equality between a 

and the series (1), instead of the series (5), we have an equa 
tion algebraically false, though, within certain limits, arith 

metically true: this last circumstance arising from the fact 
that the omitted correction, which renders the equation alge 
braically defective, would have vanished of itself, between the 
arithmetical limits adverted to, had it been introduced. Thus, 
the series noticed at the commencement of this paper, viz. 

1 + 2 + 4 + 8 + 16 + &c., 

and which is internded to represent the development of 1 

arises from expressing the general development of 
I 

in the 

defective form 

I + X +_2+X3+X4+ . +XIII 

instead of, in the accurate form, 

I+ X + x2 + 3+X 4+ . .. + + _ 

which defective form introduces arithmetical error only when 
x exceeds unit. When x - 2, the error arising from this de 
fect is infinitely great; the true form giving, in that case, 
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I1= I + 2 +4 +8 + 16 + . .2' 

which involves no error or contradiction. 
It hence appears that when the geometrical development 

is a converging series, for an arithmetical value of the common 

ratio, no error can arise from the omission of the supplemen 

tary correction, which is always necessary for the completion 
of the algebraic form of that development; but that when the 

arithmetical value of the ratio is such as to render the series 

divergent, the algebraic error necessarily introduces an arith 
metical error infinitely great: the correction of the algebraic 
form furnishes, in such a case, the expression Go - c, that is 
the difference of two infinites, for the finite undeveloped nume 
rical value: and in this there is nothing inexplicable or pecu 
liar. 

We see, therefore, that in passing from the convergent to 
the divergent state of a geometrical series, we have no oc 

casion for any new principle, such, for instance, as the sign of 
transition, introduced by Dr. Peacock, in the discussion of 
this subject, in his very valuable and instructive Report on 

Analysis, presented at the third meeting of the British Asso 
ciation. If there only be strict algebraic accuracy between 
the finite expression and its developed form, there will neces 
sarily be equally strict numerical accuracy, whatever arithme 
tical values be given to the arbitrary symbols: a truth which 

must indeed universally hold in all the results of analysis. 
II.-The developments of the binomial theorem, as well 

as those considered above, have also been the source of much 
perplexity and misinterpretation, when they have assumed a 
divergent form. In contemplating these developments, the 
fact has been overlooked, that although, when interminable, 
they each involve an infinite series, whose terms succeed one 

another, according to a certain uniform law, yet that series 
alone is not the complete algebraical equivalent of the unde 

veloped expression: a supplementary fuLnction of the symbols 
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employed is always necessary to such completeness. This 

has already been seen in the development of 
I - or (I -x)-1, 

which is a particular case of the binomial development: be 
x 

sides the series, the supplementary expression - is neces 
1-x 

sary to the complete algebraical equivalenice of the two mem 
bers of the equation. And it is plain, from the nature of 
common division, that a like supplementary addition must be 
made to the infinite series furnished by the development of 

(I x or 
(1 -X)-n. In the extraction of roots, too, as in 

(I -x)1, (I -x)1, &c., it is equally plain that, however far 

the extraction be extended, we approach no nearer to the ac 
tual exhaustion or annihilation of the algebraic remainder; 
and therefore we are not authorized to dismiss this remainder 
and to account it zero, when general algebraic accuracy is to 

be exhibited; although, as in geometrical series, we may do 
this in those particular numerical cases in which the remainder, 
if retained, would vanish. It thus appears that, calling the 
remainder after n terms, whether ns be finite or infinite, f(x), 
the ordinary binomial series, to n terms, will be the complete 

development, not of (1- x)m, but of (1 - x -f(x))' ; and 
I 

therefore that, if this series be equated to (I -x)m merely, it 

will require a supplemental correction to produce strict alge 
braical equivalence; which correction must be such as to 

vanish for those numerical values of x, which cause f(x) to 
vanish. 

These values are all those which render the series diver 
gent: for, as well known, we can, in every such case, approach 

by the series alone as near to the numerical value of the un 

developed expression as we please. It is thus only when the 
series ceases to be convergent, that the correction adverted to 
has any arithmetical existence, adjusting the equality of the 
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two sides of the equation, anid precluding the inconsistency so 
frequently affirmed to have place between them. 

From these simple considerations, it is easy to explain and 
reconcile such results as 

x x2 3 x2 3.5x4 
(a2 x)?=a.w2a 2.4a3 2.4.6a5 2.4.6.8 a7 

for all arithmetical values of x; the " &e." being regarded as 
comprehending all that is necessary to render the second mem 
ber of the equation a complete algebraical equivalent of the 
first. When x exceeds a2, the series becomes divergent; and 
the first member of the equation becomes imaginary: and 
since it is impossible that any imaginary quantity can enter 
the series, it follows that it is in the supplementary correction 
under the " &c." that such quantity must occur, when in that 
correction a value greater than a' is given to x. 

From what has now be shewn, it may, I think, be legiti 
mately inferred-as far, at least, as geometrical and binomial 
series are concerned 

1. That whenever any such series becomes divergent for 
particular arithmetical values, what has been called above the 
supplementary correction becomes aritlhmetically effective, 
and cannot be disregarded without arithmetical error. 

2. And that so far from such series being, as usually 
affirmed, always algebraically true, though sometimes arith 

metically false, on the contrary, they are always algebrai 
cally false, though sometimes arithmetically true:-true in 
those cases, namely, and in those only, in which the proper 
algebraic correction becomes evanescent. 

I11 .- Let us now pass to the consideration of other classes 

of diverging series. 
There are two ways of investigating the differential of 

sin x, or of sin mx: one by proceeding, as Lagrange has done, 

by actual algebraic development; and the other by employing 

the method of limits, independently of development. Accord 
ing to Lagrange, we must proceed upon the assumption that 
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sin mx = AX + BX2 + CX3 + &C. 

justifying this assumption on the ground that x and sin mx 

vanish together; which can be considered valid only so long 
as m = X is excluded. In fact, whether we seek the deve 

lopment of sinmx after the manner of Lagrange, or by the 

theorem of Maclaurin, it is essential to the very nature of the 
investigation that the unknown coefficients A B, C, &c. be all 
assumed to be finite. We cannot conclude, therefore, from 

dsin mx 
Lagrange's reasoning, that 

d 
m= cos mx, when m is 

dx 

infinite: and similar considerations forbid the conclusion that 
dcosmx _ 

dx-osm im sin mx, in like circumstances. The method of 
dx 

limits equally militates against such a conclusion; thus, if the 
function were sin x, we should have 

sin(x+h) - sinx 2sin 4kcos(x+kk), 
or 

sin (x + h) - sin x sinjk 
Ain -z 

+ 1^)-iin = 
hcos (x + k h); 

and since 
sin 

I= 1, in the limit, or when h = 0, we should 

safely infer thatdsin 
x 

= cos X. But, by proceeding in like 
dx 

manner with sin mx, we should have 

sin (mx + mh) sinimx sin m/t 
A*=m 1M cos(mx + mh), 

from which, if m be infinite, it could not be inferred that 

dsinx m cos mx; since we have no right to affirm that 
dx 

s2 --m tends to 1, as h diminishes, and finally terminates in 
2mh 

that value when h = 0; nor that, in like circumstances, 

cos (mx + l mh) = cos mx. We have nothing to justify the 

sin4 h adsin Imh assertion that 2are the same at the limits 
4k mih 
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when m is infinite: and it should create no surprise if conclu 
sions, deduced from this assumption, proveFto be absurd. 

Bearing this in remembrance, let us take the series 

2 -sinx- I sin 2x + *sin3x - &c. 

first given by Euler, and which is known to be rigorously 
true for all values of x below ,r.* 

From this series the following results have been deduced 
by differentiation, and they have been pretty generally re 
ceived into analysis: 

2I = cos x - cos 2x + cos 3x - cos 4x + &c. 

0 = siix + 2sin 2x- 3sin 3x + 4sin 4x - &c. 

O = - cosx + 22cos2x - 32cos3x + 42cos4x - &c. 

and, generally, 

0 = cosx - 22 cos 2x + 32n cos 3x 4-n coS 4x + &c. 

0 = sin x - 2'n?' sin 2x + 32n+1 sin3x-4Q2fl sin 4x + &c. 

so that putting x O in the first of these, and x = in the 

second, we have 

0 = I -2an + 32n - 42n + &c. 

0 = I _ 32n+1 + 52n+l - 72n+fI + &C. 

results which are all inadmissible; because, from the outset, 
it is assumed that 

dsin mx deos mx 
d = " cosmnx, and m sin mx; 

dx dx 

though m be infinite. 
In reference to the preceding results, Abel justly asks: 

"Peut-on imaginer rien de plus horrible que de debiter 

0 = 1 - 22n + 32n- 4 2n + &C. 

oh n est un nombre entier positif?"t 

* 
It will be shewn, towards the close of this Paper, that it is true for all 

values up to ir inclusive. 

f uvres Completes, tome ii. p. 266. 
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It is plain that, however far such a series as this be ex 

extended, a supplementary correction is always necessary to 
complete the equation; which correction must be infinite in 
value if the series be infinitely extended: and the analytical 
considerations offered above fully accord with this statement, 
the contrary of which could never have been entertained had 
not analysis seemed to justify the strange conclusion. All 
that analysis really authorizes us in saying, in reference to the 
extreme cases here considered, is-as the French analysts ex 
press it-that " la methode ordinaire est en defaute." 

Having mentioned the name of Abel in connexion with 
this subject, it may not be out of place to notice here, that 
that distinguished genius seemed inclined to trace the erro 
neous results above to another cause: " On applique aux 

series infinies toutes les operations, comme si elles &taient 
finies; mais cela est-il bien permis ? Je crois que non. Oiu 
est il demontre qu'on obtient la diff6rentielle d'un serie infinie 
en en prenant la diff6rentielle de chaque terme ?" And he 
then adduces the result, 

i = cosx - cos 2cc + cos 3 - &c. 

which he pronounces to be " resultat tout faux."' 

But I submit that no such results of differentiation can 
ever be absurd, unless the absurdity attaches to one or more 
of the individual terms. 

In the former part of this paper the examination was re 
stricted to those classes of diverging series which arise from 
the development of fractions into geometrical series, and from 
the expansion of a binomial: but it is plain that the reasonings, 

in reference to the former developments, equally apply to 

those which arise from any fraction t(x); and the reasoning, 

in reference to the latter, equally applies to any root or power 
of (x). And, in what is shewn above, we see how divergent 

* 
uvres, tome ii. p. 268. 
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trigonometrical series, arising from differentiating convergent 
forms, are to be understood. 

IV.-It remains now to be noticed that in some of the 

more advanced parts of analysis-especially in the doctrine of 
definite integrals-conclusions have been reached which seem 
to contradict the proposition endeavoured to be established in 
this Paper, viz. that convergent infinite series have no finite 
sum. But all such conclusions will be found upon examina 
tion to originate in mistake. I proeeed to examine the more 

important of these. 
The following has been recently offered, by a very cautious 

writer, in support of the statement that cc 1 + 2 + 4 + &c. ad 

infinitum, is an algebraic representative of - 1, though it only 
gives the notion of infinity to any attempt to conceive its 
arithmetical value" : 

S2dx =- 
I - 

$r2dx r -' b1, which is finite; a 

S:m2dx + w' =X-2dx- 
+ X, = --22d m. 

If, then, we construct the curve whose equation is y = X-2, 

and if OA =-m, OB= +rn, we find tbe areas PAOY... 

and QOBY.. . both positive and infi 
nite, which agrees with all our notions y 

derived from the theory of curves. Again, 
if we attempt to find the area PYQB, 

by summing PAOY and YOQB, we / 
find an infinite and positive result, which r Q 
still is strictly intelligible. But if we 

X'A 0. B X 

want to find the area by integrating at 

once from P to Q, we find, as above, - 2, a negative result, 

for the sum of two positive infinite quantities. The integral 
then, y being infinite between the limits, takes an algebraic 
character, standing in much the same relation to the required 
arithmetical result, which must have been observed in diver 
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gent series. " Thus, &c.," as quoted above.* The analogy 

thus apparently established is traceable to an oversight, of 

very easy detection, in the preceding integrations; which, in 
the correct form, will stand as follow: 

0~~~~~~~~ 

SmX2dx 

= 
+ X 

- 

V:2dX= +X 

adding, 
rm ~~~2 

-dx 2 0o- 
2 

Or thus, 

Sx-2 dx = 0 4( Z -) + b 

2 

But errors of a much more important kind occur in all the 

applications of definite integrals to the summation of diverging 
series: a mode of summation first, I believe, adopted by 

Euler, and very generally employed by subsequent analysts. 
A single example of this method will be sufficient to shew the 

character of the errors adverted to; which, though so glaring 
as almost to obtrude themselves upon the attention, have not 

hitherto, so far as I know, been noticed by any writer. Any 
one of the examples given by Euler (Institutiones Calc. Diff.), 
and afterwards by Lacroix (Traite du Calcul. &c., tome iii.), 
will answer the present purpose: I shall take that at page 

573 of the English edition of the smaller work of Lacroix, 
viz. 

s = l.t-1.2t2+ 1.2.31t-&c. (6) 
which, Sir John Herschel remarks, is such that "showever 

* 
De Morgan's Differential and Integral Calculus, p. 571. 
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small a value we attribute to t, the series must always diverge 

after a certain number of terms."* 
The reasoning by which a finite sum is determined for s, 

when t = 1, is as follows: 

sdt l.dt- 1.2tdt+ 1.2.3t2dt- &c. (7) 
it 

.-.=S t -t-l.t2+ 1.2t3-&c. (8) 

=t-st (9) 

st =-(1 s)dt -tds., dt 

or, 
ds l+t 1 

it 

and from this is found, for s, the definite integral 

s = !e Se-kdt; 

from which it is inferred that " if t = 1, or the above integral 

be taken from t = 0 to t = 1, we have the expression for the 

value of the series 

1 - 1.2 + 1.2.3 -&c. 

Now several objections lie against the preceding reasoning: 

in the first place it is assumed, in the final step, that s vanishes, 

for t = 0, notwithstanding that "c however small a value we 

attribute to t the series must always diverge," and thus at 

length furnish terms infinitely great: and in the next place it 
is assumed-and the assumption is somewhat similar to that 

* 
If, however, t be indefinitely near to zero, the "certain number of 

terms" adverted to in the text, will be indefinitely great ; that is, the diver 

gency will be indefinitely postponed : the series therefore cannot be consi 

dered as divergent up to the limit t = 0 ; yet, as the statement in the text 

seems to imply this, I have considered it to be comprehended in the hypo 

thesis; although, as I have shewn, the point is of no moment in the matter 

under discussion. 
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already animadverted upon at page 35-that the series (7) is 

strictly the differential of the series (8) which involves the 
term 1.2.3 .. . (n-1)tn, n being infinitely great, and for the 

differential of which the calculus seems to make no provision. 
But, waiving these objections, the deductioni (9) is palpably 
erroneous, and altogether fatal to the final conclusion. For 
the series s is evidently coextensive with the series (8), and 
so, of course, is st; that is, if (8) contain n terms, so also must 

st: if therefore a new term t be prefixed to - st, in order that 

t - st may commence with the same terms as the series (8), 

the series t - st will contain n + 1 terms; that is, however 

great n may be, t - st will contain, besides the whole of the 

series (8), an additional term still more remote: so that if n 

be infinite, and we assume, as above, that the two series are 

equal, we commit an error infinitely great. Anad this is the 
error, thus initroduced, which will be fountd to vitiate all 

Euler's processes for summing divergent series by definite in 
tegrals: an error which obviously has no existence for the 

convergent cases of those series; since the additional term, 
noticed above, is, in such cases, not infinite, but zero. We 
may safely infer, therefore, that the results so often quoted in 

analysis, viz. 

I-I + 1.2-1.2.3 + ....- 596J47362324 
1-1.2 + 1.2.3- . _ 621449624236 

1 - 1.2.3 + 1.2.3.4.5. = -343279002556 

&c. &c. 
all involve errors infinitely great; and this, as it ought to be, 

is quite consistent with the common-sense view of diverging 

infinite series. 
V.-There is another method of investigation by which 

these erroneous results appear to be established: the method 
suggested by the well-known differential theorem. But, as 
in the processes already considered, so here, that theorem will 
be found upon examination to be applicable only to convergent 
series. This will be manifest from what follows. 

VOL. MII. E 
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The differential theorem may be satisfactorily established 
by conducting the investigation thus: 

Let 
a -b + c2- dx3 + &c. s 

-bx+cx2- d3 +&E.= s-a (10) 
s-a 

-b+cx+dx2+ez3-&c.=--. (II) 

Consequently, by adding these two equations together, and 
representing the numerical differences b - c, c - d, d - e, &c. 
by A, A', A", &c., there will result the equation 

x+ _b- A.X+ A'.X3-A".x3+ &c. = -+(s-a) (12) 

St 
s + + a; 

that is, 

bs + - [0 a x+ A'.x2_A"1.X3+&c.] (13) 

And by treating the series within the brackets as the original 

was treated, and so on, we shall finally obtain the transfor 

mation 
bh A.x2 A2 X3 

s = a- 
$+l (x+l)2(X+1)3&C 

or putting a - 0, and dividing by - a, we have 

b - cX+ - ca,3 + &c., 

b A.X A 2.x2 'A3. a?X 
b + (Xl)2 + (X+lt + (X+'1) + &c. 

which is the usual form of the theorem. 
Now the preceding reasoning is inadmissible except the 

proposed series be convergent; that is, except rx,n approaches 
to zero as n approaches to infinity, re standing generally for 

the 7th term of (10). For in (12), which results from the sum of 
(10) and (11), this n'h, or final term, is regarded as zero, and 

is neglected; inasmuch as it is by this term that the series (10) 
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extends beyond the series (11 ) to the right; a fact which is 

of no moment when this term merges in zero, but of infinite 

consequence when it merges in infinity. In such a case there 
fore, a numerical error, of infinite amount, is committed at 
this step of the reasoning. Again, if the series within the 
brackets at (13), have its terms, like those of the original, 

tendinig to infinity, another numerical error of infinite amount 
comes to be introduced; and so on. In fact, just as in the 

method of definite integrals, before discussed, it is assumed, at 
each step of the reasoning, that terms infinitely great are ex 

cluded; and not only so, but that the terms ultimately dimi 
nish to zero. In the contrary case, therefore, the differential 
theorem is altogether inapplicable, leading to results which 
are equally inadmissible, whether the terms of the series in 
crease without limit, or remain stationary in value: forming 

what has been called a neutral series. In this latter case the 

error committed will be finite; in the former it will be infiniite. 

That an error is really committed in the application of this 

theorem to neutral series, will be more explicitly shewn pre 

sently. 
Notwithstanding the imperfections noticed above, it should 

create no surprise that, in the applications of the differential 

theorem to particular diverging series, we so often obtain the 

algebraic function whose development really gives rise to the 

series, although ino numerical approximation to the diverging 
series itself. The function, whose development gives rise to 
the series, being represented byf(x), the series itself may be 
represented by f(x) - p(x), agreeably to what has already 
been shewn in the former part of this Paper: it is the Ineglect 
of the function +(x), in the particular application considered, 
that introduces the infinite numerical error into (13); leading 
us to conclude that, for the proposed value of x, f(x) = s, in 
stead off(x) -+({) = s. Now if there exist a convergent case 
of s, that is a case in which q(x) = 0, the differential theorem 

will compute it, furnishing the proper function of r,f(r), 
E 2 
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which accurately expresses the series in all its convergent 
cases, and of which the development gives rise to the series in 

its general form. When no such functionfQ() really exists, 
then it is only to the numerical value of an approximate func 

tion that our computation tends in particular numerical cases; 
as, for instance, in such a case as that considered at p. 39. 

It may be worth while to notice here, as an immediate in 

ference from the differential theorem, that when a series, pro 
ceeding according to the powers of x, and extending to infi 

nity, has its coefficients such that their differences at length 
become zero, that series is always the development of a rational 

fraction whose denonminator is some integral power of (1 ? x). 

There is, I think, a mistake committed in always attri 

buting this theorem to Euler. It was published by Stirling, 

in his Methodus Differentialis, so early as 1730; and I believe 

no mention of it occurs in the writings of Euler till long after 

this date. 
VI.-As far as I know, there is but one other general 

analytical principle that has been affirmed to give countenance 

to doctrines opposed to those attempted to be established in 

the present Paper: the principle, namely, that when an alge 

braic expression, for continuous numerical values of the va 

riable, approaches continuously to a certain finite numerical 

value, this value properly expresses the ultimate, or limiting 
state of that expression. In virtue of this principle, it has 

been stated* that, "c Poisson would admit 12- 22+ 32- 42 + 

. . .O0, sinice there is no question that, g being less than 

unity, the mere arithmetical computer might establish, to any 

number of decimal places, the identity of 12-22g + 32g2_. . . 

and (1 -y) (1 + g)jt"t But I submit that the series here 

* 
Transactions of the Cambridge Philosophical Society, Part II. 1844. 

f In order that the series 1* ? 
22^ -j- 3S</2-may become convergent 

after n terms, there must evidently exist the condition 
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proposed exceeds the powers of computation more and more 
as y approaches to 1; inlvolving at leiigth terms infinitely 
great, anid thus tendinig to nio fiiite limit. In other words, 
however many terms of this series be summed, the results 
would diverge more and more fiom zero as g approaches to 1; 
and would actually become iinfinite when g reaches this limit. 
The conclusion, therefore, that 12-22 + 32_ = 0 is, as 
in the other inistances discussed in this Essay, erroneous to an 
infinite extent: and it thus affords one more example of the 
truth of the doctrine here advanced. 

The general analytical principle announced above has 

been misapplied, or improperly neglected, in many important 
inquiries connected with series. It may not be uninstructive 
to advert more particularly to some instances of this. 

At page 267 of the second volume of his works, Abel has 

the following remark: "1 On petut demontrer rigoureusement 
qu'oni aura, pour toutes les valeurs de x inf6rieures a 7r, 

2 = sinx-4sin2x?+sin3x-&c. 

I1 semble qu'on pourrait conclure que la meme formule aurait 

lieu pour x = 7r; mais Cela donnerait 

and as ( 
-- 

) is itself less than 1 for every finite value of n, however 
\n + 1/ 

great, it follows that g may approach so near to 1 as to postpone the point 
of convergency beyond any finite limit; which is tantamount to saying that 

this point can never actually be reached. The series, therefore, cannot tend 

to merge into zero as g approaches to 1 ; so that zero is not the limit to 

which the series continuously approaches as g approaches continuously to 1 ; 

and therefore the general principle stated in the text does not countenance 

the conclusion that 1* ? 2* -f- 32 ?_= 0. 

I cannot help regarding the criterion of convergency proposed by Cauchy 

(Cours d'Analyse, p. 152) as open to objection ; since, according to it, we 

should pronounce a series to be convergent under circumstances in which 

the point of convergency would be postponed beyond any finite limits : more 

over, what security have we that neutrality may not have place before diver 

gency commences ? 
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= sin 7r - jsin 2,7r + 
-sin 

37r - &c. = 0, 

resultat absurde." 
Now the formula, agreeably to the general principle here 

affirmed to be in fault, does really comprebend the limiting 
case x -rr, as well as all the cases up to this; for when x 

reaches this limit all the signs of the series become plus; and 

as it is known that 

1 + 2 + 3 + 4 + &c. = ac, 

the series presents a particular case of 0 Xc z; which it is wrong 

to declare to be 0, in contradiction of its legitimate interpre 

tation, , on the left. This error has led Abel into other mis 

takes of consequence: thus, at page 90 of his first volume, he 

says that the function 

" sinq-} sin2o + 4sin3o- &c. 

a la propriete remarquable pour les valeurs p =r et q = -7r 

dXetre discontinue." And at page 71 the same erroneous view 

has induced him to animadvert upon a certain principle of 

Cauchy, which the true interpretation of the matter would 
have tended to confirm. 

Fourier, Poisson, and many other modern analysts, have 

also made similar mistakes in their general investigations re 

specting series. Thus, to quote Professor Peacock as to the 
views of the former, 

"cosx=iEA2sin2x+A 4sin4x+ 6sin6x+ &c.] 

a very singular result, which is, of course, true only between 

the limits 0 and w, excluding those limits."* 

Trhe series is, however, true including the limits: for when 

d: 0, the signs are all plus; and, as it is easily shewn that 

2 4 6 + & 
+ 

j- ?&- Z+E 

* 
Proceedings of the Third Meeting of the British Association, p. 257. 
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we here again have a case of 0 x oo, correctly interpretable 
by the left hand member of the equation; that is, the right 
hand member, when x = 0, is accurately 1. When x = 7r, the 

signls of the series all become minus: therefore the true value 
in that case is - 1. 

Before concluding this subject it may be proper to observe, 

that the investigation, whence the series for 
x 

is usually de 2 
duced, is deficient in generality. Whenever logarithms are 
employed in connexion with imaginary quantities, the imagi 
nary forms of the logarithms, as well as the real, ought always 
to be introduced into the investigation: hence the logarithmic 
expression, from which the series alluded to is derived, should 
be written thus: 

2 2 3 -3 4 
u-u- u-u - _ 

loguu--U-1_ 2 + 8 - ?&c.+2k7-v 2 3 4 

By substituting in this exV- for u, and then dividing the re 

sult by 2 /-I, we shall have the correct and general form, 
sn sin2x + sin 3x sin 4 

+ 

2sinx-~2 -_~ + &c. + k7r, 2 ~ 2 3 4 

where k is any whole number, positive or niegative, deter 
minable in any particular case, so as to conform to the first 
member of the equation: regarding that first member, x not 

x ~x 
exceeding 7r, as indifferently either 2, or k7r + 

I have here used the limited logarithmic forms of Euler, 
and not the more general ones furnished by Mr. Graves's 
theory of imaginary logarithms,* since these limited forms 
are sufficient for all the real values in the general result. 

It now merely remains to be shewn that, as briefly stated 

at page 43, the differential theorem is inapplicable, itot only 
when the proposed series is divergent, but also when it ceases 
to be convergent, and becomes what Hutton has called a neu 

* 
Philosophical Transactions, Part I. 1829. 
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tral series. Thus-although the contrary has often been 
affirmed-we cannot legitimately infer from this theorem, 
without the aid of an additional principle, that 

2 
1-1+1-1+1-1+ &c._ - 

For, as already shewn, the series within the brackets at (13) 

is deficienit by a qulantity, which in this case is ? 1. Intro 

ducing this, (13) gives for s the ambiguous result J +? 1; 

that is, 1 or 0. The additional principle adverted to, and 

which is absolutely essential to the received conclusion, is that 
already stated at page 44; or, as Dr. Whewell briefly ex 

presses it, "c that what is true up to the limit, is true at the 

limit." 
The differential theorem, therefore, can never be employed 

with success to sum either a divergent or a neutral series; or 

to convert either into a convergent series. 
There has been supposed to exist a perfect analogy between 

1-1 + 1 -1 + &c., as the limitinig case of 1 -g +' _g3 + &C., 

and 12-22 + 32-42 + &c., as the limiting case of 1-22g + 

32g2 4493 + &c., anid that, in consequence of this analogy, 
we have as nmuch right to affirm that 12-22+ 32-42 + &c. 

is accurately expressed by 0, the limiting case of (1-g) 

(1 +g)-3t the fraction which generates 12 -22g t 32g2- 42g3+ 
&c., as that I - I + 1 - 1 + &c. is accurately expressed by 

I 1~~~~~~~~~~ 
, the limiting case of 1 + s the fraction which generates 

1 _g + g2_g3 + &c. But there is a total absence of analogy 

between these two instances: the series 1 _ g + g2_ g3+ &c. 

presents a series of convergent cases from g = 0, up to g = I; 

and whatever rule or formula enables us to find the summation 

in all cases must necessarily enable us to find it in the extreme 

positive limits 0 and 1; for no values, short of those limits, 

can be the first and last of the admissible cases. But this rule 

or formula of summationi, whatever it be, is constructed con 

formably to ceIrtain hypotheses; viz. that the convergent 
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series expressed by it, commences, in all cases, with a finite 
quantity, such that the terms of the series, by continual dimi 

nution, tend to zero. 
The circumstances are very different with respect to 

12 - 22g + 32g? 42g3+ &c. As observed in the foot-note at 

p. 44, the commencement of conivergency, in the limiting case, 
is at a term infinitely distant from the origin of the proposed 

series, and infinitely great. What analogy can there be be 
tween the general converging series-if it may be so called 
of which this is a limiting case, and ordinary convergent se 
ries? And can it be affirmed, of any one of its cases, that the 

terms necessarily tend to zero? The answers to these ques 
tions wll1, I think, destroy all idea of analogy in such examples 
as those adduced above. 

I have been compelled, in several parts of the present 
Paper, to dissent from certain doctrinies and opinions promul 
gated bv some very distinguished writers on analysis. In de 
veloping the principles and views here submitted to the Royal 
Irish Academy, I could not easily avoid a reference to these. 
I trust, however, that I have done so in no captious or un 
candid spirit: I have only been anxious to arrive at truth in 

an inquiry of acknowledged perplexity, and of interest, perhaps, 
in the estimation of some, sufficient to justify the attempt. 
There are onje or two points of analytical delicacy involved in 
this inquiry, which may perhaps be open to further discussion: 
if I have myself fallen into error in my treatment of these, I 
hope I shall be inidulged with the same candour and conside 
ration which I have endeavoured to exercise towards others. 

Professor Mac Cullagh made a communication on the 
subject of Total Reflexion. 

In the case of total reflexion the vibrations which take place 
in the rarer medium are in general elliptical, anid whein this 

medium is a crystal, the equations by which the ellipse of vi 
bration is determined are very complicated. The projection 


