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9. On the Law 

of the Energy Distribution in the Normal Spectrum; 

by Max Planck. 
 

Max Planck's original 1901 publication was translated from German as faithfully 

as possible by Patrick MARC (patrick.marc@2newton.fr): 

“Ueber das Gesetz der Energieverteilung im Normalspectrum; 

von Max Planck.” 

(Communicated in another form in the German Physical Society, Meeting on the 

October 19 and December 14, 1900, negotiations. 

2. p. 202 and p. 237. 1900.) 

 

Introduction. 

The most recent spectral measurements by O. Lummer and E. 

Pringsheim
1
) and, even more strikingly, those of H. Rubens and F. 

Kurlbaum
2
), confirming at the same time a result previously obtained by H. 

Beckmann
3
), show that the considerations of molecular kinetics first stated 

by W. Wien and the law of energy distribution in the normal spectrum, 

subsequently derived from the theory of electromagnetic radiation, have no 

general validity. 

One must improve the theory in any case, trying to achieve this based 

on the theory of electromagnetic radiation developed previously.  For this 

purpose, it is necessary to draw a series of conclusions: Wien's energy 

distribution law led to finding the link capable of modification; it is, 

therefore, a matter of creating a suitable replacement for it. 

The physical foundations of the electromagnetic radiation theory, 

including the hypothesis of “natural radiation,” also face sharper criticism. 

In the last essay
4
) on this subject, one explained to stand our ground. 
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1) Compare with equation (8). 
2) M. Planck, l. c. p. 730 ff. 

 

Since, as far as one knows, the calculations do not contain any errors, the 

theorem remains that the law of energy distribution in the normal spectrum 

is wholly determined if it is possible to calculate the entropy S of an 

irradiated, monochromatically vibrating resonator as a function of its 

vibrational energy U. The relationship dS/dU=1/ϑ gives the dependence of 

the energy U on the temperature ϑ. However, one links the energy U by a 

simple relationship
1
) to the radiation density of the corresponding vibration 

number and the dependence of this radiation density on the temperature. 

The expected energy distribution is when the radiation densities of all 

different vibration numbers have the same temperature. 

The entire problem is, therefore, reduced to the one task of 

determining S as a function of U, and one dedicates the essential part of the 

following investigation to the solution of this task. In the first treatise on 

this subject, one presented S directly by definition, without further 

justification, as a simple expression of U, and one contented with proving 

that this form of entropy satisfies all the requirements that thermodynamics 

places on it. At that time, one believed it was the only one of its kind and 

that Wien's law, which follows from it, necessarily had general validity. 

However, during a later, more detailed investigation
2
), it became clear that 

there must also be other expressions that do the same thing and that a 

further condition is, therefore, required to be able to calculate S. One 

believed to have found such a condition in the statement, which seemed 

immediately plausible at the time, that with an infinitely small, irreversible 

change in a system of N identically constructed resonators located in the 

same stationary radiation field, which is almost in thermal equilibrium, the 

associated increase in their total entropy SN = NS only depends on its total 

energy UN = NU and its changes, but not on the energy U of the individual 

resonators. 
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1) Compare the criticisms this sentence has already found: by W. Wien 

(Report to the Paris Congress 2. p. 40.1900) and by 0. Lummer (1. c. 2. p. 92. 

1900). 

36*   

This sentence, in turn, necessarily leads to Wien’s energy distribution law. 

However, as experience does not confirm the latter, one must conclude that 

that sentence cannot be correct in its generality and remove it from the 

theory.
1
) 

So, one must introduce another condition allowing the calculation of 

S. To accomplish this, a closer look at the meaning of the concept of 

entropy is necessary. The untenability of the previously made assumptions 

gives the direction to take. In the following, one describes a path that yields 

a new, more straightforward expression of entropy and, thus, provides a 

new radiation formula consistent with the facts established so far. 

I. Calculation of the entropy of a resonator as a 

function of its energy. 

§ 1. Entropy causes disorder, and according to the electromagnetic 

radiation theory, the monochromatic vibrations of a resonator cause this 

disorder, even if it is in a stationary radiation field and changes amplitude 

and phase irregularly; if clocks time is considerable compared to the time 

of vibration, but small compared to the time of measurement. If the 

amplitude and phase were constant, i.e., the vibrations were utterly 

homogeneous, no entropy could exist, and the vibrational energy would 

have to be entirely freely convertible into work. One can only understand 

that the constant Energy U of a single stationary vibrating resonator is a 

temporal average, or, what amounts to the same thing, is the simultaneous 

average of the energies of a large number N of identical Resonators, which 

are in the same stationary radiation field, far enough apart from each other 

so as not to influence each other directly. 
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1) L. Boltzmann, Sitzungsber. d. k. Akad. d. Wissensch. zu Wien (II) 76. 

P. 428. 1877. 

In this sense, one talks about the average energy U of an individual 

resonator in the future. Then, it corresponds to the total energy: 

(1)     UN = NU, 

such a system of N resonators has a specific total entropy 

(2)     SN = NS, 

of the same system, where S represents the average entropy of a single 

resonator, and this entropy SN is due to the disorder that distributes the 

entire energy UN among the individual resonators. 

§ 2. We now set the entropy SN of the system up to an arbitrary 

additive constant, proportional to the logarithm of the probability W that 

the N resonators have a total energy UN, so: 

(3)    SN = k log W + const. 

This determination amounts to a definition of the stated probability 

W, for one has no basis in the assumptions to base the electromagnetic 

theory of radiation to speak of such a probability in any specific sense. One 

qualifies it by its simplicity and its close relationship with a theorem of the 

kinetic theory of gases.
1
) 

§ 3. Finding the probability W that the N resonators have total 

vibrational energy UN is essential. For this, one must understand UN as a 

discrete quantity composed of an integer number of finite equal parts, not a 

continuous, infinitely divisible amount. Calling this part the energy element 

ε, it gives: 

(4)    UN = P ∙ ε, 

where P is a large integer, and the value of ε is open. 
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Then, the distribution of the P energy elements to the N resonators 

can only take place in a finite, specific number of ways. One calls every 

such type of distribution a “complexion” after an expression used by L. 

Boltzmann for a similar term. The resonators are denoted by 1, 2, 3,..., N. 

One writes these side by side and allocates the energy elements under each 

resonator in any arbitrary distribution. So, one gets a table of the following 

form for each complexion: 

1 2 3 4 5 6 7 8 9 10 

7 38 11 0 9 2 20 4 4 5 

Here, considering N=10 and P=100. The number ℜ of all possible 

complexions equals the number of all possible numerical images that can 

be obtained in this way, given specific N and P, for the bottom row. For 

clarity, notice that two complexions are different if the corresponding 

number images contain the same numbers in a different arrangement. 

The number of all possible complexions results from the theory of 

combinations: 

� =
� ∙  (� + 1) ∙  (� + 2) ∙ ∙ ∙  (� + � − 1)

1 ∙         2   ∙        3     ∙ ∙ ∙         �       
=

(� + � − 1)!

(� − 1)!  �!
  

Now, according to Stirling's theorem, as a first approximation: 

     N! = N 
N
 

Consequently, in a corresponding approximation: 

     � =
(���)���

��∙ ��   

§ 4. The hypothesis based on the further calculation is as follows: 

The probability W that the N resonators have a total of vibrational energy 

UN is proportional to the number ℜ of all possible complexions, 

distributing the energy UN among the N resonators. 
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1) Joh. v. Kries, Die Principien der Wahrscheinlichkeitsrechnung p. 36. 

Freiburg 1886. 

2) W. Wien, Sitzungsber. d. k. Akad. d. Wissensch. zu Berlin, vom 9. 

Febr. 1893. P. 55. 

In other words, any particular complexion is as probable as any other one. 

Whether this hypothesis applies in nature can ultimately only be tested 

through experience. Conversely, suppose experience has decided in its 

favor. It will be possible to draw further conclusions from the validity of 

this hypothesis about the more special nature of the resonator oscillations, 

namely, the character “original amplitude indifferent and comparable in 

size” expressed by J. v. Kries
1
). However, given the current status of the 

question, pursuing this line of thought further may seem premature. 

§ 5. According to the introduced hypothesis in conjunction with 

equation (3), the entropy of the system of resonators under consideration 

when appropriately determining the additive constants is 

 (5) { 
�� = � ��� ℜ 

      = �{(� + �) ��� (� + �) − � ��� � − � ��� �} 

Then, taking into account (4) and (1): 

��  =  �� { (1 +
�

�
) ��� (1 +

�

�
) −

�

�
 ��� 

�

�
 } 

So according to (2), the entropy S of a resonator as a function of its 

energy U: 

(6)  � =  � { (1 +
�

 
) ��� (1 +

�

 
) −

�

 
 ��� 

�

 
 }  

II. Introduction of Wien’s displacement law. 

§ 6. Next to Kirchhoff's theorem of the proportionality of emission 

and absorption capacity is the so-called displacement law discovered by W. 

Wien
2
) and named after him. 
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1) M. Thiesen, Verhandl. der Deutsch. Physikal. Gesellsch. 2. p. 66. 1900. 

2) One could perhaps even more appropriately speak of “white” radiation, 

in an appropriate generalization of what is already understood by completely 

white light. 

It includes Stefan-Boltzmann's law of the dependence of total radiation on 

temperature as a particular application, the most valuable component in the 

firmly established foundation of the theory of thermal radiation. The 

version given by Thiesen
1
) reads: 

    E∙dλ = ϑ
5 
ψ(λϑ)∙dλ, 

who λ denotes the wavelength, E∙dλ the spatial density of the “black” 

radiation
2
) belonging to the spectral range λ to λ + dλ, ϑ the temperature, 

and ψ(x) denotes a particular function of the single argument x. 

§ 7. We now want to investigate what Wien's displacement law says 

about the dependence of the entropy S of our resonator on its energy U and 

its natural period in the general case that the resonator is in an arbitrarily 

diathermic medium.  For this purpose, we first generalize Thiesen’s form of 

the law to radiation in any diathermic medium with the speed of light 

propagation c. However, we do not have to consider the total radiation but 

rather monochromatic radiation; one must introduce the vibration number ν 

instead of the wavelength λ to compare different diathermic media. 

Therefore, designate the spatial density of the energy of the radiation 

belonging to the spectral region ν to ν + dν by u∙dν. One must write u∙dν 

instead of E∙dλ, c/ν instead of λ, and c∙dν/ν
2
 instead of dλ. This results in 

    ! = "# ·
%

&'   ·  ((
%)

&
)  

According to Kirchhoff-Clausius law, the energy of a temperature ϑ 

and the number of vibrations ν, when emitted by a black surface per unit of 

time into a diathermic medium, is inversely proportional to the square c
2
 of 

the propagation speed. 
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1) M. Planck, Ann. d. Phys. 1. p. 99. 1900. 

So the spatial energy density u is inversely proportional to c
3
, and one gets: 

     ! =
)*

+'%, -(
)

+
) 

So, constants of the function f are independent of c. 

Instead, one can write if f denotes a new single-argument function 

each time, including in the following: 

(7)   ! =
+,

%, -(
)

+
)  

Therefore, u∙λ
3
 for the radiation energy, in the cube of one wavelength of a 

specific temperature and number of vibrations, is the same for all 

diathermic media. 

§ 8. Next, for a stationary resonator located in the radiation field with 

the same number of vibrations ν, to move from the spatial radiation density 

u to the energy U, one uses the relationship expressed in equation (34) of 

the treatise on irreversible radiation processes
1
): 

    . =
+'

%' � 

(/ is the intensity of a monochromatic, rectilinearly polarized beam), 

which, together with the well-known equation: 

    ! =
 0 1 .

%
 

The relationship provides: 

(8)   ! =
 0 1 +'

%, � 

From this and from (7) it follows: 

    � = 2-(
 )

+
) 

Where c no longer occurs at all. Instead, one can also write 

    " = 2-(�

2
) 
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§ 9. Finally, one also introduces the entropy S of the resonator by this 

setting: 

(9)   
3

)
=

45

4�
. 

Then it happens: 

     
45

4�
=

3

&
-(

�

&
) 

And integrated: 

(10)   � = -(
�

&
), 

i.e., the entropy of the resonators vibrating in any diathermic medium 

depends on the single variable U/ν and only contains universal constants. 

That is the simplest version of Wien’s displacement law that one knows. 

§ 10. Applying Wien's displacement law in the last version to the 

expression (6) of the entropy S, one sees that the energy element ε must be 

proportional to the number of vibrations ν, so: 

     ε=h∙ν 

and thus: 

  � =  � { (1 +
�

7&
) ��� (1 +

�

7&
) −

�

7&
 ��� 

�

7&
 }  

Here, h and k are universal constants. 

Substitution in (9) gives: 

     
3

)
 =  

8

7&
 ��� (1 +

7&

�
)  

(11)    � =  
7&

9
:;
<=>3

  

Then, from (8), the required energy distribution law follows: 

(12)   ! =
 017&,

%, ∙
3

9
:;
<=>3

 

Or also, if one reintroduces the wavelength λ instead of the number of 

vibrations ν with the substitutions given in § 7: 

(13)   ? =
 01%7

@* ∙
3

9
A:

<B=>3
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1) F. Kurlbaum, Wied. Ann. 65. p. 759. 1898. 

The expressions for the intensity and entropy of the radiation 

propagating in the diathermic medium and the law for increasing the total 

entropy in non-stationary radiation processes can be derived elsewhere. 

III. Numerical values.  

§ 11. The values of the two natural constants, h and k, can be 
calculated precisely using the available measurements. F. Kurlbaum

1
) 

found that if one denotes by St the total energy radiated into the air in 1 
second by 1 square cm of a black body at t° C, then one has: 

   �3CC − �C = 0.0731 
GHII

%J' = 7.31 · 10# 9KL

%J' M9%
 

This results in the spatial density of the total radiation energy in the 

air at absolute temperature 1: 

   
N .O,P3·3C*

P·3CQR·(POPS > TOPS)
= 7,061 · 10>3# 9KL

%J, 49LK99S 

On the other hand, from (12), the spatial density of the total radiation 
energy for ϑ = l is: 

   ! = V !WX
Y

C
=

017

%Z, V
&, 4&

9
:;
< >3

Y

C
 

      =
017

%, V XP([> 
:;
< + [> 

':;
< + [> 

,:;
< +. . . ) WX

Y

C
 

Integrating term-by-term, one obtains: 

   ! =
017

%, · 6 (
8

7
)N (1 +

3

TS +
3

PS  +
3

NS  +. . . ) 

      =
N018S

%,7, · 1,0823 

As c=3∙10
10

 cm/sec, setting this = 7,061∙10
-15

 results in 

(14)   
�4

ℎ3 = 1,1682 · 1015
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1) O. Lummer, E. Pringsheim, Verhandl. der Deutschen Physikal. 

Gesellsch. 2. p. 176. 1900. 

(Received 7. January 1901.) 

 

 

§ 12. 0. Lummer and E. Pringsheim
1
) determined that the product 

λmϑ, where λm is the wavelength of the maximum of E in the air at 

temperature ϑ, was 2940 µ∙degrees. So, in absolute terms: 
   `J" = 0.294bc · W[�d[[ 

On the other hand, it follows from (13) if one sets the differential 

quotient from E to λ equal to zero, whereby λ=λm: 

    (1 −
%7

#8@e)
) · [

A:
<Be= = 1 

And, from this transcendental equation: 

    `J" =
%7

N,fg#3·8
  

Consequently: 

   
7

8
=

N,fg#3 · C,TfN

P·3CQR = 4,866 ·  10>33 

Then, from this and from (14), one obtains the values of the natural 

constants: 

(15)   ℎ = 6,55 · 10>TO[d� ∙ h[b 

(16)   � = 1,346 · 10>3g 9KL

49LK99
 

These are the same numbers indicated in a previous communication. 

 


