

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

TEXT-BOOK ON NAVIGATION AND

NAUTICAL ASTRONOMY

TEXT-B00K ON NAVIGATION

AND

NAUTICAL ASTRONOMY

BY

J. GILL, F.R.A.S.
REVISED AND ENLARGED

by
W. V. MERRIFIELD, B.A., F.R.A.S.
head-master of the liverpool corporation nautical college

NEW EDITION

LONGMANS, GREEN AND CO. 39 Paternoster Row, LONDON fourth avenue \& 30th street, new york bombay, calcutta, and madras

$$
1918
$$

PREFACE TO NEW EDITION

This work is designed to meet the special requirements of officers of the Merchant Service, and to be a complete TextBook on Navigation, etc., for the general student.

Candidates for Board of Trade Certificates will find in it all that is needed to cope with the new regulations for the Examinations of Mates and Masters, from the lowest to the highest grades, as regards both practice and principles.

The new features in this edition are-
(1) Rearrangement, by which the proofs of the various problems are inserted at the beginning of the separate chapter instead of being collected in one chapter at the end of the book. This gives the student a better chance of comprehending each problem.
(2) All the astronomical examples are fresh, the necessary rules are given for working them, and, where possible, an example is worked direct from the figure, without using special formula; this will be found of great assistance to those contemplating going in for the "extra" examination.
(3) The necessary elements from the "Nautical Almanac" are embodied in the book in the form found in the "N.A.," and so will afford as good practice in extracting the data as the possession of the Almanac itself.
(4) The chapters on Trigonometry have been entirely rewritten, and the student is shown how to construct both Plane and Spherical Triangles to scale.

For further information in this important subject he is recommended to consult a recognised School Text-Book.
(5) New chapters have been introduced on the Projections, by which any figure may be drawn to scale, and on the Correction of Altitudes.
(6) The chapters on the Tides and Tidal Soundings have been rewritten to suit the recent Tide Tables, extracts from which are found at the end of the book.

The candidate is warned that the abridged "Nautical Almanac" is in use at the examination room, and so must be on his guard when correcting all data, as the entries are arranged in such a manner that they may be extracted at sight.

For the number of page in the new edition of Norie corresponding to the number of table as given in this book, the student is referred to the Index of that work.

Chart work and the Construction of Charts have been more fully dealt with, and it is hoped that the alterations made will ensure the appreciation of the student.

W. V. MERRIFIELD.

Liverpool, 1918.

CONTENTS

PART I.
obapter
page
page
I. Projeotions .
I. Projeotions 1 1
II. Definitions and Instroments 7
III. Logabithms 33
IV. Solution of Plane Triangles 43
V. Solution of Spherical Trianoles 60
VI. The Sailings 71
VII. Tides 93
VIII. Reduction of Soundings 97
IX. Time 107
X. Elements from tee "Nautical Almanac" 117
XI. Sidereal and Solar Time 127
XII. Correction of Altitudes 139
XiII. Latitude by Meridian Altitude 145
XIV. Latitude by Ex-Meridian Altitude 157
XV. Compass Erior by Amplitudes 168
XVI. Compass Error by Aztmeths 173
XVII. Longitude by Chronometer. 183
XVIII. Sumner's Metbod of Pbojection 195
XIX. The Chart 201
XX. Use of Napier's Diagram 208
XXI. Great Circle Sailing 216
chapter PAGE
XXII, Latitude by Double Altitudes 227
XXIII. Finding Error of Chronometer 241
XXIV. Calodlation of Altitudes 246
XXV. Longitude by Lunar Distances 250
PART II.
XXVI. Construotion of Charts 263
XXVII. Laws of Storms 271
XXVIII. Magnetism and Devtation of the Compass 278
XXIX. Syllabus 299
XXX. Miscellaneocs Problems 331
Appendix 343
Answers 403
Tide Tableg at end 1-12

PART I.

CHAPTER I.

PROJECTIONS.
A well-drawn figure is at all times a great help to a student in the solution of a problem, and for a clear understanding of new terms made use of in a fresh subject. For this some knowledge of projection is required.

Projection is the art of representing a solid body on any surface by means of lines drawn according to definite laws. In Nautical Astronomy the solid is a sphere, and the surface a plane. These projections are either Natural or Artificial : Natural when the drawings are such as they would appear to the eye situated at a given point; Artificial when they are not perspective representations. According to the relative positions of the eye, sphere and plane of projection or primitive, the methods employed in Natural Projections receive different names, of which the most important are the Orthographic, Gnomonic, and Stereographic.

In the Orthographic, the eye is supposed so distant from the sphere that the visual rays are parallel to one another, the primitive is perpendicular to this direction.

In the Gnomonic, the eye is supposed to be at the centre of the sphere, and the primitive is a tangent plane to the sphere.

In the Stereographic, the eye is on the circumference of the sphere, and the primitive is a plane cutting the sphere in a great circle, which has the eye as its pole.

Since the primitive may be parallel to the Equator, Meridian, or Horizon, the above projections may be further distinguished as Equatorial, Meridional, or Horizontal.

The one used throughout this work is the Horizontal Stereographic Projection, and its important properties are: (1) all circles on the sphere project into either circles or straight lines; (2) any figure on the sphere projects into a similar figure on the primitive.
(a) Projection on the Plane of the Equinoctial.-Here the primitive is the equinoctial, and the pole P the projecting point. The concentric circles are parallels of declination. Hour circles
are represented by straight lines, since their planes pass through the projecting point. NPS is the celestial meridian, and EPW the six-o'clock hour circle; EEW is the ecliptic (Fig. 1).

A projection of the Earth on the plane of the equator shows

Fig. 1.

Fra. 2.
the meridians of longitude as straight lines, and the parallels of latitude as concentric circles whose common centre is the pole. This is useful for showing the course of a rhumb line, also for mapping the circumpolar regions (Fig. 2).
(b) Projection on the Plane of the Meridian (Figs. 3 and

Fig. 3.

Fig. 4.
4).-The primitive circle represents the celestial meridian, the projecting point 0 being the east or west point of the horizon; Z and N are the zenith and nadir ; P and P_{1}, the north and soutin poles respectively; HR (at right angles to ZN) is the horizon ; and EQ (at right angles to PP_{1}) is the equinoctial. The elevation of the upper pole P above the horizon, viz. the are RP, is equal to the latitude of the observer's position. The are EZ also equals the
latitude. Supposing R to be the north point of the horizon, then P is the north pole (Fig. 3), and the latitude is north. For south latitude, the south pole P_{1} must be above the horizon (Fig. 4).

Hour circles are represented by arcs from P to P_{1}, and vertical or altitude circles by ares from Z to N .
(c) Projection on the Plane of the Horizon (Fig. 5.)-Here the primitive circle is the honizon, N., E., S., W. being the cardinal points. The zenith (Z) is the projecting point, hence all vertical circles appear as straight lines passing through Z, NZS being the celestial meridian, and WZE the prime vertical. P is the north pole, at a distance from N. equal to the latitude. The arc ZQ is also equal to the latitude, and PZ is the co-latitude; WQE is the equator, cutting the horizon in the E . and W. points ; $\mathrm{P} p_{1}, \mathrm{P} p_{2}$, etc.,

Fia. 5. are hour circles.

The projection on the plane of the horizon has some advantages over that on the plane of the meridian for illustrating most of the problems of nautical astronomy, and is therefore more commonly employed.

To draw a figure to scale, a "Gunter" rule is necessary; the following illustration explains the connection between the lines marked Rum., Cho., Sin., Tan., and S.T. on the rule (Fig. 6).

With centre O, distance OA, describe a semicircle. AOB is

Fig, 6.
a vertical diameter; $O X$, a horizontal line through centre; $B Y$, a tangent at B . OX divides the figure into two quadrants; the upper one is divided into eight equal parts, and with A as centre and distance the different chords from A to each point; the distances are brought back on the chord of 90°, forming the line of Rhumbs (Rum.). A3 is thus the chord of a circle described with radius OA, which subtends an angle of three points at

Fig. 7.
centre O . The line of Chords (Сно.) is similarly formed on the lower quadrant, but the quadrant is here divided into nine equal parts instead of eight, and thus gives divisions to 10°, which can be further subdivided. We can now see that the chord of 60° is the radius that must be used to describe the circle. For the line of Tangents (Tan.) through 0 and points of division in lower quadrant, draw straight lines meeting BY in required points. For the line of Semi-Tangents (S.T.) through A, and
points of division in lower quadrant, and also corresponding points in upper quadrant, draw lines to cut $O X$ in required points.

Example.-Draw a figure from following data : Latitude $40^{\circ} \mathrm{N}$. ; western hour angle $2^{\mathrm{h}} 48^{\mathrm{m}}$; declination $10^{\circ} \mathrm{N}$.; and take off the Amplitude at setting, Azimuth and Altitude (Fig. 7).

With centre Z, and radius the chord of 60°, describe a circle N.E.S.W.; draw SZNB vertically, and lay off E. and W. as the extremities of a horizontal diameter through Z . Make $\mathrm{ZM}=40^{\circ}$ (Lat.) from scale of tangents, and through \mathbf{M} draw a line perpendicular to $\mathbf{M Z}$; in this line are the centres of all hour circles. Make NO = chord of 40° (Lat.), where the line OW cuts the vertical line is the elevated pole P. At P to the right make an angle $=$ complement hour angle that is 48°; this line cuts the line through M in D , and is the centre for describing the hour circle required PXR. For the equinoctial, add the colat to $90^{\circ}=140^{\circ}$; subtract the colat from $90^{\circ}=40^{\circ}$, and from scale of S.T. make $\mathrm{ZB}=140^{\circ}$, and $\mathrm{ZQ}=40^{\circ}$; bisect BQ in 1 , this is centre for describing equinoctial WQE.

For the declination parallel, add colat to polar distance $=130^{\circ}$, subtract colat from polar distance $=30^{\circ}$; from S.T. scale make $\mathrm{ZC}=130^{\circ}$, and $\mathrm{ZL}=30^{\circ}$; bisect CL in 2; this is centre for describing the parallel TXL, where the parallel cuts the hour circle is \mathbf{X}, the position of the object. Draw ZXA the vertical circle through the object.

Measure WT on the scale of chords for the Amplitude $=15^{\circ}$, or $\mathrm{W} .15^{\circ} \mathrm{N}$.

Measure SA on the scale of chords for the Azimuth $=63^{\circ}$, or S. $63^{\circ} \mathrm{W}$.

Measure ZX on the S.T. scale for the Zenith Distance $=49^{\circ}$, or Altitude $=41^{\circ}$.

For South Latitude set off ZM to the north, and construct the figure downwards instead of upwards.

The only Artificial Projection to be considered is Mercator's (Fig. 8).

Mercator's Projection.-This is the kind of projection used in the construction of Navigating Charts, and represents the Earth's surface as a plane. The meridians of longitude are drawn as parallel straight lines, and the divisions of latitude are expanded in the same proportion as the meridian distances are lengthened. The effect of this is to make the rhumb course a straight line, which is of great advantage to the navigator.

The distance from the equator of any given parallel of latitude, and the amount of expansion of a degree of latitude, can be found from the table of Meridional Parts; for example, the

Fia. 8. parallel of 30° is 1800 geographical miles from the equator on the globe, but the meridional parts for $30^{\circ}=1888$,
which means that on a Mercator's chart drawn to the same scale this parallel would be 1888 geographical miles from the equator. Again, the meridional parts for $31^{\circ}=1958$, and $1958-1888=70$ miles, which would be the length of the expanded degree from 30° to 31°.

The meridional parts for any given latitude may be calculated by adding together the secants of all minutes of latitude up to the given latitude ; thus-

$$
\sec 0^{\prime}+\sec 1^{\prime}+\sec 2^{\prime}+\sec 3^{\prime}, \text { etc. }
$$

or they may be calculated independently from the formula-
\log of mer. parts $=3 \cdot 8984895+\log \left(\log \cot \frac{1}{2}\right.$ co-lat. -10$)$

CHAPTER II.

DEFINITIONS AND INSTRUMENTS.

1. Great Circles.-Circles whose planes pass through the centre of a sphere or globe.
2. Vertex of a Great Circle.-That point in it which is farthest from the Equator.
3. Small Circles.-Circles whose planes do not pass through the centre of the sphere.

AVB and CV'D are great cirelcs. V and V^{\prime} are vertices. EOF, a small circle.

Fig. 9.
4. Right Angle.-An angle measuring 90°, or one quarter of a circle.
5. Oblique Angle.-An angle not a right angle.
6. Obtuse Angle.-An angle greater than a right angle.
7. Acute Angle.-An angle less than a right angle.

Fro. 10.

Fig. 11.

Fig. 12.
$A O C$ and $B O C$ are right angles.
DEF and XYZ are oblique angles.
DEF is an obtuse angle.
$X Y Z$ is an acute angle.
8. Spherical Angle.-An angle included between two great circles of a sphere (Fig. 13).

AOC and BOC are spherical angles.

Fig. 13.
9. Arc.-A part of the circumference of a circle.
10. Complement of an Arc or Angle.-Its difference from 90°.
11. Supplement of an Arc or Angle.-Its difference from 180°.

Fig. 14.
$\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ are arcs. $B O C$ is complement of BOA. BC is complement of BA.
COD is complement of AOD.

Fig. 15.
PS and SR are ares. SR is supplement of PS.
RQS is snpplement of SQP.
12. The Poles.-The points where the earth's axis meets the surface.
13. Equator.-A great circle of the earth 90° distant from the poles.
14. A Meridian.-Half a great circle extending from pole to pole of the earth.
15. Parallels of Latitude.-Circles whose planes are parallel to the plane of the Equator.
16. Tropics.-Two parallels of latitude distant $23^{\circ} 28^{\prime}$ on each side of the Equator: Cancer on the north, and Capricorn on the South.
17. Difference of Latitude.-The are of a meridian intercepted between the parallels of latitude on which the places stand.
18. Prime Meridian.-The meridian from which longitudes are measured ; in this country it is the meridian of Greenwich.
19. Longitude.-Distance in arc east or west of the meridian of Greenwich. It is measured on the Equator, or on a graduated parallel.
20. Difference of Longitude.-An are of the Equator intercepted between two meridians of longitude (Fig. 16).
P and P^{\prime} are the poles.
$E Q$ is the equator.
PAP' and PBP' are meridians.
POP' the prime meridian.
$\mathrm{LL}^{\prime}, \mathrm{TT}^{\prime}, \mathrm{RR}^{\prime}$ are parallels of latitude.
TT' is tropic of Cancer.
RR' is tropic of Capricorn.
XY is difierence of latitude when places are on same side of equator, on parallels LL' and 'TT'.
$\mathbf{Z Z}$ is difference of latitude when places are on opposite sides of equator, on parallels LL' and RR'.
OA and OB are Longitudes of places on meridiaus PAP^{\prime} and PBP^{\prime}.
AB is difference of longitude, between places on meridiaus PAP' and PBP'

Fig. 16.
21. Meridional Parts.-The distance from the Equator in geographical miles of a given latitude on Mercator's Chart (Fig. 17).

$$
\begin{aligned}
& a b= \text { parallel on globe } . \\
& c d=\text { same parallel on chart } . \\
& e c=\text { meridional parts for } \\
& \text { lat. } e a .
\end{aligned}
$$

Fig. 17.
22. Departure.-The distance in geographical miles between two places in the same latitude. In the traverse table, it is the number of miles of easting or westing made on a given course and distance.
23. Nantical Mile.-The one-sixtieth part of a degree measured on a meridian. It varies slightly with the latitude, and its mean value is taken at 6080 feet.
24. Rhamb Line.-A line which makes equal angles with all the meridians it crosses.
25. Zenith.-The point in the heavens vertically over the observer's head.
26. Nadir.-The point in the heavens diametrically opposite to the Zenith.
27. Equinoctial,-A great circle in the heavens 90° from the celestial poles.
28. Ecliptic.-A great circle in the heavens representing the sun's annual apparent path.
29. First Point of Aries.-The point where the sun crosses the Equinoctial about the 21st of March.
30. Celestial Meridian of Observer.-The vertical circle which cuts the Horizon in the true North and South points (Fig. 18).

NESW., Plane of horizon.
Z is zenith.
EQW is equinoctial.
CrO ' is ecliptic.
T is first point of Aries.
NPZS is celestial meridian of observer.

Fig. 18.
31. Azimuth.-The bearing of an elevated object reckoned from the N. or S. point.
32. Amplitude.-The bearing of an object when rising or setting, reckoned from the E. or W. point.
33. Vertical Circles.-Circles passing through the Zenith and Nadir, and therefore perpendicular to the Horizon. They are also called " altitude circles " and " azimuth circles."
34. Prime Vertical.-The vertical circle which cuts the Horizon in the true East and West points.
35. Declination.-Distance in arc north or south from the Equinoctial measured on an Hour Circle.
36. Polar Distance.-The distance in are from the elevated pole, and therefore the complement of the Declination, measured on an Hour Circle.
37. Hour Circles.-Halves of great circles which pass through the celestial poles, one hour being equal to 15° (Fig. 19).

NESW, Plane of horizon.
NPZS, Celestial meridian.
P, Elevated pole.
X. a heavenly body on parallel of declination LL'.
NZA or are NA is Azimuth of \mathbf{X}.
WL, Amplitude of \mathbf{X} at setting.
ZXA, Vertical circle through \mathbf{X}.
WZ1E, Prime vertical.
$\mathbf{X D}$, Declination of \mathbf{X}.
PX, Polar distance of X.
PXD, Hour circle through X.

Fig. 19.
38. Right Ascension.-Distance eastward from the first point of Aries measured on the Equinoctial and expressed in Time.
39. Hour Angle.-The angle at the pole between the observer's Celestial Meridian and an Hour Circle.
40. Civil Time.-The time used in civil life. The day begins at midnight, and is divided into two parts of twelve hours each, a.m. from midnight to noon, and p.m. from noon to midnight.
41. Astronomical Time.-Time used for astronomical calculations. The day begins at noon, and the hours count from 0 to 24 .
42. Mean Time.-The Westerly hour angle of the Mean Sun, it is the time shown by a correctly going timepiece.

The Mean Sun is an imaginary body which is supposed to move along the equinoctial with the average velocity of the True Sun iu the ecliptic.
43. Apparent Time.--The Westerly hour angle of the true Sun.
44. Equation of Time.-The difference between Mean and Apparent Times; and therefore used to convert one time to the other.

[^0]45. Sidereal Time.-The Westerly hour angle of the first point of Aries (Fig. 20).

Figure as before on horizon plane.
CrO^{\prime} is Eeliptic.
\boldsymbol{r} is first point of Aries.
M is mean Sun.
T is true Sun.
X is any heavenly object.
Then
$r A$ is right ascension of X.
QPA is easterly hour angle of \mathbf{X}.
QPM is westerly hour angle of mean sun, or Mean Time.
QPT is westerly hour angle of true sun, or Apparent Time.
QPr is westerly hour angle of r, or Sidereal

Fig. 20. Time.
TPM is Equation of Time.
46. Visible Horizon.-The circle which bounds the observer's view at sea.
47. Sensible Horizon.-A plane touching the Earth at the observer's position and extended to the Heavens.
48. Rational Horizon.-A plane passing through the Earth's Centre parallel to the Sensible Horizon and extended to the Heavens.
49. Artificial Horizon.-A horizontal reflecting surface used for observing altitudes in the absence of a good sea-horizon.
50. Dip.-The angular depression of the Visible horizon below the Sensible, due to the observer's elevated position.
51. Observed Altitude.-The angular height of an object above the Visible horizon as measured by a Sextant.
52. Apparent Altitude.--The angular height of an object above the Sensible horizon, found by correcting the observed altitude for Index Error and Dip.
53. True Altitude.-The angular height of an object above the Rational Horizon, found by correcting the Apparent Altitude for Refraction and Parallax (Fig. 21).

AB is visible herizon.
MOA = angle OA makes with sensible horizon is Dip.

AOX $=$ observed altitude.
MOX = apparent altitude.
$\mathrm{XON}=$ true altitude.

Fig. 21,
54. Refraction.-The error of altitude caused by the bending of rays of light in passing through the atmosphere (Fig. 22).

Fig. 22.

O, Observer's position.
S, True posilion of star. S_{1}, Apparent position of star. SN_{1}, Refraotion.

OH, Horizon.
HS_{1}, Apparent altitude of a star.
RS, True altitude of a star.
55. Parallax is the angle at the centre of the object subtended by the earth's radius at the position of the observer. It is a correction for reducing an observation to the earth's centre (Fig. 23).

Fig. 23,
56. Semidiameter.-The angle subtended at the earth's centre by the radius of the sun, moon, or planet.
57. Angmentation of Moon's Semidiameter. - An apparent increase in the moon's semidiameter due to the fact that her distance from the observer decreases as her altitude increases (Fig. 24).

Fig. 24.
E, Centre of earth.
O, Observer's position.
MA, Position of moon on horizon,
MB, MC, Other positions of moon in altitude: her eentre being at fixed distanee from E. As she rises her distanee from O deereases.
MOA, Semidiameter of moon on horizon.
MOB and MOC, Semidiametere when in altitude.
MOB-MOA and MOC-MOA, Augmentation of semidiameter when in altitude.
58. Reduction of Horizontal Parallax.-A correction necessary on account of the shortening of the earth's radii towards the poles (Fíg. 25).

Fig. 25.
O, Observer's position on longest diameter of earth.
O_{1}, Position on a shorter diameter.
$O^{1} \mathbb{C}$ C, Equatorial horizontal parallax.
$\mathrm{O}_{1}, \mathbb{C}$, Horizontal parallax for latitude of observer, which is less because subtended by a shorter radius.
59. Zenith Distance.-The angular distance from the Zenith, or the complement of the true altitude measured on a vertical circle.
60. Magnetic Meridian at a place is a great circle in whose plane a compass-needle lies when under the earth's influence only.
61. Variation.-The angle between the True and Magnetic meridians, measured from True North.
62. Deviation.-The angle between the Compass-needle and the Magnetic meridian.
63. Error of the Compass.-The angle between the Compassneedle and the True meridian (Fig. 26).

T. True north. MN, Ms guetic meridian. C and C_{1}, Different directions of compass north.
TM, Variation (west).
MC, Deviation (east).
MC_{1}, " (west).
TO, Error of compass (east).
TC_{1}, \quad " (west).
CD or $\mathrm{C}_{1} \mathrm{D}$, Compass course from north.
TI, True course from north.
MD, Magnetic course from north.

Fig. 20.
64. Leeway.-The angle between the ship's keel and her "wake" (Fig. 27).

Fig. 27.
Note.-The foregoing comprise the definitions required by the Board of Trade Regulations for the examination of mates and masters.
65. Latitude.-Distance in arc north or south from the Equator measured on a Meridian.
66. Arctic Circle.-The parallel of $66^{\circ} 32^{\prime} \mathrm{N}$. lat.
67. Antarctic Circle.-The parallel of $66^{\circ} 32^{\prime}$ S. lat.
68. Obliquity of Ecliptic.-The angle between the planes of the Ecliptic and Equinoctial.
69. Equinoxes.-The points where the Ecliptic intersects the Equinoctial. The Vernal Equinox is where the sun crosses the Equinoctial in March, and the Autumnal where it crosses in September.
70. Precession.-A slow motion of the Equinoxes along the Equinoctial westwards, amounting to about $50^{\prime \prime}$ annually.
71. Solstices.-The points on the Ecliptic farthest from the Equinoctial.
N.B.—The terms "Equinoxes" (Spring and Autumn) and "Solstices" (Summer and Winter) are also applied to the times of the year when the sun is on the Equinoctial or at the Solstices.
72. Celestial Latitude.-Distance in are north or south from the Ecliptic.
73. Celestial Longitude.-Distance in arc from the "first point of Aries" measured on the Ecliptic.
74. Circumpolar Stars.-Stars whose polar distance is less than the latitude of the place, and consequently never set.

Questions on Varlation and Deviation, from the
 Board of Trade Regulations.

1. Q.-Does the variation change with time?
A.-Yes; it slowly changes in amount. At London it now decreases about 9^{\prime} annually.
2. Q.-Is the variation the same all over the world?
A.-No; all amounts from 0° to 180° may be found.
3. Q.-Where do you find the variation?
A.-On a variation chart.
4. Q.-Does the deviation change? if so, when?
A.-It changes with a change of course; also, for the same course with lapse of time, because the magnetic condition of the ship is liable to change, and from change of cargo.
5. Q.-Where is the north magnetic pole situated?
A.-In about $70^{\circ} \mathrm{N}$. lat. and $92^{\circ} \mathrm{W}$. long.
6. Q.-Where is the south magnetic pole situated?
A.-In about lat. $75^{\circ} \mathrm{S}$., and long. $150^{\circ} \mathrm{E}$.
7. Q.-Should the compass-needle point to the magnetic or the true pole of the earth ?
A. -To the magnetic pole.
8. Q. When is the altitude of an object most seriously affected by refraction?
A.-When nearest to the horizon.
9. Q.-Whore is the pole star situated?
A. - At the distance of $1^{\circ} 12^{\prime}$ from the true celestial pole.
10. Q.-Which is the most favourable time for determining the hour angle of a celestial body, and thence the longitude, and state the reason why?
A.-When it is on the prime vertical, because the hour angle is then least affected by errors in altitude or latitude.

Instruments.

Mariner's Compass.-The Mariner's Compass consists of three parts :-Bowl, Card, and Needles. The Bowl is a hollow hemisphere of brass, weighted at its lowest part to keep it horizontal. On its inside a vertical line is painted called the "lubber" line, which indicates on the card the Course of the ship. From the centre of the bottom of the bowl springs a support which holds a sharp pivot tipped with iridium to render it hard and nonrustable. The pivot fits into a brass cap having an agate or ruby centre to work on. From the cap by means of silk threads the card is suspended.

The card is circular, made of thin paper with the centre part cut out to lessen the weight, and having a band of aluminium round its circumference to strengthen it, and is graduated to quarter-points and degrees.

Fig. 28.

Fig. 29.

From the card hang the magnetised needles, which are generally 8 in number, arranged symmetrically, parallel to one another, and to the N. and S. points of the card (Fig. 28). The needles are about the size of a large knitting-needle, the longest pair with a $10^{\prime \prime}$ compass card being $3{ }^{\prime \prime}$ long.

The whole instrument is mounted on gimbals, with strong wire supports to take off the vibration of the ship as much as possible, and is placed in a binnacle (Fig. 29). Two brackets at the side support cast-iron correctors, and provision is made inside the binnacle for compensating magnets. A brass cylindrical box on the outside is provided for a Flinders Bar. A Clinometer shows the angle of "heeling."

Azimuth Compass.-The Azimuth Compass is like an ordinary Steering-compass in the mounting of the needles and card. There is a movable ring on the bowl, provided with sightvanes at opposite ends of a diameter. One of these should have
a reflecting prism for reading the graduations on the card, and the other a mirror for reflecting elevated objects (Fig. 30).

It is mounted in a box or on a tripod, and in using it the observer looks through the narrow slit, and moves the ring round until the object is bisected by the wire in the other sight-vane, and then reads off the bearing by means of the prism.

Sometimes a vertical style is fixed on the centre of the glass cover of an ordinary compass, for showing the sun's compass bearing by means of the shadow.

Fig. 30.
Pelorus.-The "Pelorus" resembles an Azimuth Compass, but has neither magnets nor bowl. The "card," usually of metal, is not suspended, but is free to move round its centre, and is mounted on gimbals and weighted to keep it horizontal. A bar carrying the two sight-vanes is pivoted at the centre of the card, and may be clamped in any position. Four "lubberpoints," 90° distant, are usually marked outside the edge of the "card" (Fig. 31).

The uses of the "Pelorus" are-
(a) To find the Deviation on any course. The sight-vane being clamped to the known correct magnetic bearing of a distant object, the card is turned round until, on looking through the slit, the object is seen bisected by the wire. The correct magnetic course is shown at the lubber-point, and the difference between this course and the course by compass is the Deviation.
(b) To place the ship's head in any desired direction for the purpose of compensating the compasses.

The sight-vanes being clamped to a known correct magnetic bearing, and the card turned round until the desired direction of ship's head is at the lubher-point, then the ship is swung until
the object is seen bisected by the wire. Her head is now on the desired point, and the magnets or correctors may be placed in position so that the Compass shall show the same course as the Pelorus.
(c) For taking Bearings when the Standard Compass is not available.

Care must be taken that the ship is upright, and that a line

Fig. 31.
through the centre of the card and the lubber-point shall be parallel to the line of the keel.

Barometers.-The atmosphere surrounds the earth to a height of two hundred miles or more, and presses on the surface with an average weight of nearly 15 lbs . on a square inch, and its average pressure at sea-level is nearly 1000 millibars. A cubic foot of atmospheric air under ordinary circumstances weighs approximately an ounce and a quarter and its density increases one per cent. with an increase of ten millibars of pressure, and decreases one per cent. with an increase of temperature of $5^{\circ} \mathrm{F}$. (see "Barometer Manual"). The pressure varies with changes of temperature and moisture and from other causes, and decreases from the sea-level upwards. A Barometer is an instrument for measuring this pressure.

Barometers are generally of two kinds, viz. "Aneroid," meaning without liquid, and "Mercurial."

The Aneroid Barometer has a shallow metal cylinder with a flexible cover, and partially exhausted of air. The tendency to collapse in consequence of the partial vacuum is balanced by a
strong spring attached to the cover and fastened to the bottom of the containing box. As the pressure of the atmosphere varies, the movements of the flexible cover inwards and outwards are, by a mechanical contrivance, conveyed to a pointer which shows on a dial the pressure of the atmosphere (Fig. 32).

The readings from an aneroid cannot be depended upon, and should be compared from time to time with those taken from a mercurial barometer, and adjusted by means of a screw at the back of the instrument, and index

Fia. 32. error recorded.

It is very portable, convenient for reading, and the readings recorded require no correction for temperature or latitude, but must be corrected for height above sea-level and index error.

The dial of the barometer is graduated on three concentric circles, the outer showing the reading in millibars, the centre in inches and tenths, and the inner in millimetres.

The converters for the three scales may be obtained from the fact that 100 centibars or 1000 millibars correspond to $29 \cdot 53$ inches of mercury at 32° Fahr., and 45° lat. and to 750 millimetres at $0^{\circ} \mathrm{C}$. and 45° lat. A table for this purpose is found in the "Seaman's Hand Book on Meteorology," and may be obtained by the student as follows :-

One inch of mercury corresponds to 33.86 millibars.
Hence to convert "inches" to "mbars." multiply reading in inches by 33.86 .

To convert " millibars" to " inches," divide reading in " mbars." by $33 \cdot 86$.

Again -03937 inch equals 1 millimetre.
Hence to convert "inches" to "mms." divide reading in inches by 03937 .

To convert " mms." to inches, multiply reading in " mms." by 03937 .

And since 1000 mbars. correspond to 750 mms .,
To convert mbars. to "mins.," subtract one-quarter of reading in mbars. for corresponding " mms."

To convert "mms." to mbars. add one-third of reading in " mms." for corresponding " mbars."

The Mercurial Barometer consists of a glass tube about 33 in.
long (whose open end dips into a quantity of mercury contained in a trough or "cistern"), enclosing a column of mercury of varying height. The height of this column measured from the surface of the mercury in the cistern at any moment is the measure of the pressure of the atmosphere on a surface equal to the section of the tube. This pressure is indicated in inches of mercury and mbars. on scales near the top. Between the top of the column, and the top of the tube there is a space called the

Fig. 33.

Fig. 34. Torricellian vacuum, because of the experiments made in 1643 by an Italian called Torricelli (v, Fig. 34).

The portable barometers (Fig. 33) used at sea have the glass tube protected by a casing of wood or iron, and the mercury in the cistern is prevented from escaping by a cover or bag of washleather, which, however, does not interfere with the air-pressure. In this form of barometer the "inches" on the scale are shortened, so as to compensate for the changing level of the mercury in the cistern as the column rises or falls.

For scientific purposes, corrections of the barometer-readings are made for temperature height above sea-level, and latitude.

Thermometer.-A Thermometer is an instrument for measuring temperatures. The common Thermometer is a glass tube of exceedingly small bore, blown out at one end into a bulb, which is filled with mercury, the other end being hermetically sealed after the air is driven out. As the mercury in the bulb expands with heat and contracts with cold to a greater degree than the glass envelope, this causes the column in the tube to advance or retire. The degree of the scale indicated by the end of the column is the temperature.

Three different scales of temperature are in use.
(a) The Fahrenheit thermometer ${ }^{1}$ (Fig. 35, a), which is the one generally used in this country, marks the freezing-point of water 32° and the boiling-point 212°, when the barometer reads 29.905 inches at 32° Fahr., a difference of 180°. Zero (0) on this scale is the temperature of a mixture of salt and snow.

[^1](b) The Centigrade or Celsius ${ }^{1}$ thermometer (Fig. 35, b) marks the freezing-point zero (0) and the boiling-point 100°.
(c) The Réaumur thermometer ${ }^{2}$ (Fig. 35, c) marks freezingpoint zero (0) and boiling-point 80°.

The attached thermometer in the barometer (T, Fig. 33) has two scales, one graduated to give the temperature Fabrenheit, the other graduated in Centigrade degrees, showing the temperature reckoned from absolute zero, which is $-273^{\circ} \mathrm{C}$. or -459° Fahr., and is the temperature at which permanent gases following the ordinary rate of contraction on decrease of temperature would occupy no volume and meet no pressure.

Mercury is the liquid generally in use in thermometers because of its low freezing-point ($-40^{\circ} \mathrm{C}$.), high boilingpoint ($358^{\circ} \mathrm{C}$.), and its steady rate of expansion through long ranges of tem-

Fig. 35. perature; other advantages are its opacity and the fact that it does not wet the glass envelope. For lower temperatures alcohol is used instead of mercury, as it solidifies at $-130^{\circ} \mathrm{C}$. and boils at $78^{\circ} \mathrm{C}$., the alcohol being coloured to render it visible.

The number of divisions on the three scales between freezing and boiling-points are therefore in the ratio of 180,100 , and 80 , or $9,5,4$, from which it is easy to compare the readings of any one of these instruments with each of the other two.

Examples. -1 . What are the readings of the Centigrade and the Réaumur seales corresponding to $72^{\circ}, 18^{\circ}$ and -40° Fahr.?

Freezing $32^{\circ}{ }^{\circ}$	$\begin{array}{r} 40 \\ 5 \end{array}$	40 4
Above freezing 40°	9) 200	9)160
	$\begin{aligned} & 22 \cdot 2^{\circ} \text { Cent. } \\ & 273 \end{aligned}$	$17 .{ }^{\circ}$ Réau.
${ }_{32}^{18^{\circ}} \text { Fahr. }$	$\begin{gathered} 295 \cdot 2^{\circ} \mathrm{A} . \\ 14 \\ 5 \end{gathered}$	$\begin{array}{r} 14 \\ 4 \end{array}$
Below freezing 14°	9)70	9)56
	$\begin{aligned} & -7 \cdot 7 \text { Cent. } \\ & 273 \end{aligned}$	-6. ${ }^{\circ} 2$ Réau.
	$265^{\circ} \cdot 3 \mathrm{~A}$.	

[^2]| $\begin{gathered} -40^{\circ} \text { Fahr. } \\ 32 \end{gathered}$ | $\begin{array}{r} 72 \\ 5 \end{array}$ | 72 4 |
| :---: | :---: | :---: |
| Below freezing | 9)360 | 9)288 |
| | $-40^{\circ} \text { Cent. }$ | -32° |
| | $233{ }^{\circ} \mathrm{A}$. | |

The amounts marked "A." being the readings when the thermometer graduations commence at absolute zero.
2. Convert 32° Cent. and 20° Réaumur into the corresponding Fahrenheit temperatures.

Chronometer (Fig. 36).-A chronometer is an accurately made and compensated timepiece with its balance so constructed that any change of temperature produces the smallest change in its error from day to day; this difference of error is called its daily rate. Most commonly it is made to work for two days, and on its face is an index hand showing how long since the instrument was wound. The winding should take place every day at the same hour in order that the operation may become a habit, and as a guarantee that a constant interval elapses between the operations, and is performed by six or seven halfturns of the key.

The keyhole at the back is protected by a sliding cap. The instrument is mounted on gimbals in a mahogany case having a glass roof and outer cover. In the case is a clamp by means of which it can be prevented from swinging in the gimbals when conveyed from ship to shore.

Its use is to obtain correct mean time at Greenwich (the error and rate being known), and thence the longitude.

Fig. 36.

Hydrometer.-The Hydrometer is an instrument for measuring Density or Specific Gravity (Fig. 37).

Specific gravity of a solid or liquid is its weight compared with the weight of an equal bulk or volume of distilled water at the temperature of 62° Fahr., or, as some scientists prefer, $39^{\circ} 2$ Fahr., which is the point of maximum density.

The hydrometer used on board ship for obtaining the density of sea-water, and the water in docks or rivers, is a glass or metal stem with two bulbs, the lower of which is weighted with mercury or small shot to make the instrument float upright. The scale on the stem reads from 0 downwards. It is seen that
in using this hydrometer we displace constant weights of different volumes: the instrument is graduated so that the S.G. may be read directly from the scale, which is effected by shortening the divisions from 0 downwards.

When in distilled water (temp. 62°), the level of the

Fig. 37. water is at 0 , but in sea-water at about 26. In brackish water it will be somewhere between those marks, according to the degree of saltness.

One thousand must be added to the figures on the scale when stating the S.G.

Hence the S.G. of distilled water (temp. 62° Fahr.) is 1000 , and the S.G. of sea-water 1025 or 1026 , whilst the S.G. of the water in a river or estuary or dock where fresh water enters might be anything between these two limits.

These facts have an important bearing on the loading of ships, since the law fixes the load-line for seagoing vessels.

It is obvious that a ship may be loaded deeper than her "load-mark" in fresh or brackisll water, for she will "rise to her marks" when she goes to sea.

The S.G. of the water at the loading-place may be obtained by a Hydrometer, and, her draught being known, a simple proportion will give the "sea draught" nearly. Also when the "draught" at sea is known, the "draught" in dock or river can be found.

Examples.-1. The S.G. of the water in the dock is 1015, and the ship's draught 23 ft .6 in . : required her draught at sea. Taking S.G. of sea-water is 1025 -

$1025: \frac{1015}{23 \cdot 5}:: 23 \cdot 5: 23 \cdot 3 \text { nearly }$
5075
3045
2030
$1025) 23852.5(23 \cdot 27$ 2050
3352
3075
2775
2050
7250
7175
55

Answer, 23.3 ft . ncarly.
2. At sea a ship draws 26 ft .9 iu . : what will her draught be in dock, where the S.G. is 1010 ?

3. The number of inches between the F.W. mark and centre of disc is given on the load-line certificate as $7 \cdot 5$: how much may the Plimsoll nark be submerged in dock when Hydrometer reads 9 ?

In diagram density at F.W. is 0 at centre of disc 25 : vessel floats in 9 . Hence for a difference in saltness of 25 , the mark is put down $7 \cdot 5$ inches: how much will it be put down for a difference in saltness of $25-9=16$?

$$
\begin{aligned}
& =\frac{7.5 \times 16}{25} \text { inches } \\
& =4.8 \text { inches }
\end{aligned}
$$

and F.W. mark would be out of water 2.7 inches.
4. The tons per inch in sea water is 40 : what would it be in water where Hydrometer

Fig. 37a. reads 16 ?

As the water is lighter, fewer tons will sink her one inch.

$$
\begin{aligned}
& =\frac{40 \times 1016}{1025} \\
& =39.65 \text { tons per inch. }
\end{aligned}
$$

The Station Pointer.-The Station Pointer is a graduated circle having three radial arms, one of which is fixed, and the other two moveable, the latter being provided with verniers and clamp and tangent screws (Fig. 38).

The use of the Station Pointer is to locate the ship's position on a chart from the angles subtended by three lighthouses or other fixed objects on shore.

With a sextant, the horizontal angles between the middle object and each of the other two are measured, and the moveable arms are set to these angles.

Then the instrument is laid on the chart with the bevelled edge of the fixed arm on the middle object, and moved about
until the bevelled edges of the other two arms fall on the other two objects. The centre of the circle gives the ship's position.

FIG. 38.
The Sextant (Fig. 39).-The "full" Sextant for sea use consists of a metal frame in the form of a Sector of about 60°, with an arc or limb graduated to degrees and 10^{\prime} spaces. An index bar, pivoted at the centre of the circle, carries the silvered Index Glass, and at the other end a Vernier or Nonius for subdividing to $10^{\prime \prime}$. The index bar is provided with clamp and tangent screws, and carries a reading microscope. The Horizon Glass-half of which is silvered-stands on the frame. Both glasses are provided with screens for taking off the glare of a strong light when the instrument is used. A handle at the back of the frame is convenient for holding, and a collar, which is moveable towards or from the frame by means of a milledhead screw, serves to hold a plain tube or a telescope.

When in correct adjustment, the index and horizon glasses are perpendicular to the plane
 of the instrument (the upper surface of the frame), and parallel to each other when the pointer on the vernier indicates 0 on the arc. The axis of the telescope when screwed into the collar is parallel to the plane of the instrument.

The first two adjustments are essential, but if the glasses are slightly out of parallelism, it is of little consequence, for the "index error" can be easily determined and applied. Screws are provided for making all the adjustments.

Questions on the Adjustments of the Sextant in Board of Trade Examinations for Mates and Masters.

1. What is the first adjustment of the sextant?
2. How do you make that adjustment?
3. What is the second adjustment?
4. Describe how to make that adjustment.
5. What is the third adjustment?
6. How would you make the third adjustment?
7. In the absence of a screw, how would you proceed?
8. How would you find the index error by the horizon?
9. How is it to be applied?
10. Place the index at error of minutes to be added, clamp it and lcave it

Note.-The examiner will see that it is correct.
11. The examiner will then place the zero of the vernier on the arc, not near any of the marked divisions, and the candidate will read it.

Note.-In all cases the applicant will name or otherwise point out the screws used in the various adjustments.
12. How do you find the index error by the sun?
13. How is the same applied?

Suppose the reading on the arc to be , and the reading off the arc to be , find the index error.
14. What proof have you that those measurements or angles have beev taken with tolerable accuracy?
15. Describe the fourth adjustment.

Answers to the Questions on the Sextant.

1. To set the Index Glass perpendicular to the plane of the sextant.
2. The index should be clamped at about 60°, and the sextant held face upwards with the limb from the observer; then, on looking into the index glass towards the limb, if the reflected and real arcs do not coincide, turn the adjusting screws at the back of the glass until they do coincide.
3. To set the Horizon Glass perpendicular to the plane of the sextant.
4. The index being clamped at 0 , the sextant should be held horizontally, face upwards-then, on looking through the telescope collar towards the horizon, if the reflected and real horizons do not coincide, turn the upper adjusting screw at the back of the glass until they do coincide. By night, look at a star and see if its reflection passes up and down through the star, if it does the horizon glass is truly perpendicular, if not, use the upper screw to make it do so.
5. To set the Horizon Glass parallel to the Index Glass when the index is at 0 on the arc.
6. The index being clamped at 0 , the sextant should be held vertically; then, on looking through the tube or telescope at the horizon, if the reflected and real horizons do not coincide, turn the lower adjusting screw at the back of the glass until they do coincide.
7. Find the Index Error.
8. Placing the index at 0 , and holding the sextant as for the third adjustment, make the reflected and real horizons coincide by means of the Tangent Screw. By night, if when the index is at 0 , the true and reflected stars do not coincide, make them do so by means of the tangent screw. The reading "On" or "Off" is the Index Error.
9. It is subtractive if "on," and additive if "off."

10 and 11 are practical and require no written answer.
12. Clamping the index at 40 " on " the arc and looking through the sight-tube or telescope at the sun, make the limbs of the retlected and real suns touch by means of the tangent screw, and note the reading; then clamp at 40^{\prime} "off," and again make the contact and note the reading. Half the difference of the readings is the Index Error.
13. If the greater reading is "on," the error is subtractive: if "off," it is additive.
14. One-fourth the sum of the readings should be the Sun's Semidiameter, as in the Nautical Almanac for the given day.
15. The Fourth Adjustment is to set the line of collimation or axis of the telescope parallel to the plane of the instrument. The adjustment is nade as follows: Screw on the Inverting Telescope, and, getting it in correct focus, turn the eye-piece round until two parallel wires in the tube are parallel to the plane of the sextant. Then select two celestial objects not less than 90° apart, and holding the sextant with its face in the plane of the objects, move the index forward until the reflected image of one object comes into view in the centre of the field of the telescope with the direct image of the other. Bring both images in contact on the wire nearest the frame, and by slightly moving the instrument get them on the other wire: if they remain in contact, the adjustment is perfect ; if they separate, the object end inclines towards the frame; but if they overlap, it declines from it. The adjustment is made by means of two screws in the collar which holds the telescope.

The effect of the collimation error is to make the observed angle too great.
Any error of centering is an essential defect of the instrument, and may be detected by comparing the distance of two stars as measured by the sextant, and as measured by a standard instrument, or deduced from calculation.

Any error due to eccentricity of the limb may be determined by Lord Ellenborough's method.

Select two stars of nearly equal zenith distances on opposite sides of the zenith, and from their altitudes calculate the latitudes. If the latitudes agree there is no error, otherwise half the difference of the latitudes is the error, additive when the latitude from the star on the equatorial side is greater, and subtractive if less.

For suitable stars to observe see "Stars and Sextants," by J. A. Sprigge and others.

Fig. 40.

Principle of the Sex-tant.--The principle of the sextant is based on the optical fact that the angle of incidence of a ray of light upon a mirror is equal to the angle of reflection, and bence "The angle between the first and last directions of a ray which has suffered two reflections in one plane is equal to twice the inclination of the reflecting surfaces to one another."

Let I and H represent the index and horizon glasses of a sextant. Light from S falling on I is reflected at an equal angle to H,
and thence reflected to the eye at E , so that the object S would be seen by reflection in the direction $\mathrm{E} r$, and if r were the horizon, the object's image would be seen on the horizon.

IO represents the index bar when the mirrors are parallel, and IP when it has been moved to P. Produce PI to a, PH to b, and EH to r.

Now, since $\angle \mathrm{HIP}=\angle \mathrm{SI} a=\angle \mathrm{EIP}($ Euc. I. 15), the $\angle \mathrm{HIE}$ is bisected by IP, making $\angle \mathrm{HIP}=\angle$ EIP.

Also, since $\angle b \mathrm{HI}=\angle \mathrm{EHP}=\angle b \mathrm{Hr}$ (Euc. I. 10), the $\angle r \mathrm{HI}$ is bisected by $b \mathrm{H}$, making $\angle r \mathrm{Hb}=\angle b \mathrm{HI}$.

The $\angle r \mathrm{HI}=\angle \mathrm{HIE}+\angle \mathrm{HEI}$ (Euc. I. 32); therefore $\angle r \mathrm{Hb}=\frac{1}{2} \angle \mathrm{HIE}+\frac{1}{2} \angle \mathrm{HEI}=\angle \mathrm{HIP}+\frac{1}{2} \angle \mathrm{HEI}$.

Again, $\angle r \mathrm{H} b(=b \mathrm{HI})=\angle \mathrm{HIP}+\angle \mathrm{HPI}$; therefore HIP $+\mathrm{HPI}=\mathrm{HIP}+\frac{1}{2} \mathrm{HEI}$.

Taking away the common angle HIP, there remains \angle HPI $=\frac{1}{2} \angle \mathrm{HEI}$; and as $\angle \mathrm{OIP}=\angle \mathrm{HPI}$, because IO and HP are parallel, it follows that the angle through which the idex bar IP has moved from zero is half the angle described by the image of the object. For this reason an arc of $\frac{1}{2}^{\circ}$ on the limb is read as 1°, and an arc of 60° will measure 120°.

Art. 87. Principle of the Vernier, or Nonius.-The value of the smallest division on an ordinary sextant is 10 , but the

Fig. 41.
vernier attached to the index bar subdivides into single minutes and $10,20,30$, etc. seconds.

This is accomplished by taking 59 divisions of the limb for the length of the vernier, and dividing it into 60 equal parts;

$$
\text { Thus, } \begin{aligned}
60 \mathrm{~V} & =59 \mathrm{~L} \\
\therefore \mathrm{IV} & =\frac{59}{60} \mathrm{~L}=\mathrm{L}-\frac{\mathrm{L}}{60}
\end{aligned}
$$

that is, one division on the vernier is $\frac{1}{60}$ of $10^{\prime}=10^{\prime \prime}$ shorter than one on the limb. Six of these vernier divisions are marked 1 , and the whole length reads 10^{\prime}.

When the pointer or 0 on the vernier coincides with a cut on the limb, the next vernier cut falls short of the one above it on the limb by $10^{\prime \prime}$, the second one by $20^{\prime \prime}$, the third by $30^{\prime \prime}$, etc. So that if the index is moved forward until the first, second,
third, etc., cut coincides with the one above it on the limb, the pointer will have moved $10^{\prime \prime}, 20^{\prime \prime}, 30^{\prime \prime}$, etc., and so on to the end of the vernier scale. When the 10^{\prime} cut coincides, the pointer will have moved a whole division of the limb, i.e. 10'. Therefore, to find how far the pointer or 0 has moved from the last limb division, it is only necessary to see what cut on the vernier coincides with a cut on the limb.

The same rule holds good when the reading is "off" the are, only in this case both scales must be read from left to right.

Star Maps and Planispheres.-A knowledge of the Star-groups or Constellations and the names of the principal bright Stars is essential to the Navigator who would make use of these objects to find the Latitude and Longitude at sea.

Many Star-maps and "Planispheres" are in use, but it is unnecessary to mention here more than the following:-

Proctor's Star Atlas.
Philip's Planisphere.
Poole's Celestial Planisphere.
On a Star-map or a Celestial Globe, the position of a star can be found from its R.A. and Dec. in the same manner as a place is located on a globe or chart by the Latitude and Longitude.

Planispheres are designed to show the principal star-groups above the Horizon at a given hour. Philip's Planisphere consists of a moveable disc turning in a leather frame about the pole as centre. On the disc is a map of the heavens, hour circles being drawn for every two hours, the equinoctial, ecliptic, and circles of declination are also shown. On the circumference of the disc the days of the month are printed. Out of the leather frame an oval is cut, and around the edge of the frame are printed the hours of the day and night. To find the stars visible at any time, turn the disc until the date is abreast the hour; the stars visible in the oval are those above the horizon at the time, and in the place for which the planisphere is constructed.

A wire stretched across the middle of the ellipse represents the Meridian.

The Planisphere gives by inspection the approximate Time of Meridian Passage of a star as well as the times of Rising and Setting. It can also be used to find by inspection what bright stars are within a given time from the Meridian at any given hour of Greenwich or local Time.

Tables of Meridian Passage of Stars.-Table xliv. of Norie gives the apparent times of Mer. Pass. of the principal stars at intervals of five days, and as a star crosses the Meridian about 4^{ma} earlier on each successive day, it is easy to find the time for intermediate days.

Table 27 of Raper gives the time of Mer. Pas. of fifty-five bright stars on the first day of each month, and by subtract-
ing 4^{m} for each day elapsed, as before, the required time is approximately found for any day, or correction found in Table 27A.

The Meridian Altitude of a selected star being computed from its Dec. and the Approximate Latitude, the sextant can be set to this angle; and as the approximate time of Mer. Pass. is known, the observer can be in readiness to measure the altitude at the moment the star is on the Meridian, and so obtain the Correct Latitude.

Exercises.

1. The meridional parts for lat. $38^{\circ} 25^{\prime}$ are 2500.08 . Calculate those for $38^{\circ} 31^{\prime}$. Ans. $2507 \cdot 6$.
2. The meridional parts for lat. $57^{\circ} 40^{\prime}$ are 4267.97 . Calculate those for $57^{\circ} 50^{\prime}$.

Ans. $4275 \cdot 5$.
3. The vernier of a sextant, the limb of which is divided to 10 ', has 40 divisions, coinciding with 119 divisions on the limb. With what accuracy may the instrument be read? Ans. $15^{\prime \prime}$.
4. The limb of a sextant is divided to 15^{\prime}, and 59 divisions on the limb are formed into 60 divisions on the vernier. With what accuracy may it be read?

Ans. $15^{\prime \prime}$.
5. If every inch on a barometer scale be divided into 10 parts, show how to form a vernier such that the reading of the instrument may be taken to 005 of an inch. Ans. Take 9 divisions and divide into 20 equal parts.
6. Describe Philip's Planisphere.
7. Where may the Meridian Passage of a star be found? Is it given in mean or apparent time?
8. On the are readings, $34^{\prime} 50^{\prime \prime}, 34^{\prime} 20^{\prime \prime}, 34^{\prime} 20^{\prime \prime}$; off the arc readings, $29^{\prime} 40^{\prime \prime}, 29^{\prime} 0^{\prime \prime}, 29^{\prime} 20^{\prime \prime}$; find the Index Error and Semidiameter.

$$
\text { Ans. }-2^{\prime} 35^{\prime \prime}: 15^{\prime} 57^{\prime \prime} 5^{\prime \prime} \text {. }
$$

9. On the arc reading, $28^{\prime} 50^{\prime \prime}$; off the arc, $34^{\prime} 40^{\prime \prime}$; find Index Error and Semidiameter. Ans. $+2^{\prime} 55^{\prime \prime}: 15^{\prime} 52 \cdot 5^{\prime \prime}$.
10. When the hydrometer marks 16, a ship's draught is 25 ft .8 in .: find her draught at sea. Ans. 25 ft .5 in.
11. At sea a ship draws 18 ft . 10 in . : what will her draught be in a dock where the reading on the hydrometer is 12 ? Aus. 19 ft .1 in .
12. Between the F.W. mark and centre of disc, the distance is 6 inches. How much can the Plimsoll mark be submerged in dock, where hydrometer reads 9 ? How much is F.W. mark above water level?

$$
\text { Ans. } 3 \cdot 8 \text { in. }: 2 \cdot 2 \mathrm{in}
$$

13. Ship's displacement is 10,000 tons. Her tons per inch in salt water 40. What will be her change in draught on entering dock where hydrometer reads 10 ?

Ans. 3.7 ins.
14. The area of a ship at load water level is $15,120 \mathrm{sq}$. ft . How many tons will sink her 1 inch in salt water? Ans. 36 tons.
15. Barometer reads 29.92 in : : find what pressure per sq. in. this is equivalent to, taking the Specific Gravity of mercury to be 13.598 . Ans. 14.72 lbs .
16. Barometer reads $29 \cdot 65$ inches: find corresponding readings in mm. and mbars.

Aus. 753.1 mm .; 1003.9 mbars.
17. Express a barometrical reading of 745.6 mm . in inches and mbars.

Ans. $29 \cdot 35$ ins. ; $994 \cdot 1$ mbars.
18. Convert a reading of 983.4 mbars . to mm . and ins.

Ans. 29.04 ins. ; 737.6 mm .
19. The temperature of the maximum density of water is $39 \cdot 4^{\circ} \mathrm{F}$., and at which salt water freezes is $26^{\circ} \mathrm{F}$. Express these as Cent. and Absolute readings. Ans. $4 \cdot 1^{\circ} \mathrm{C}$. and $277 \cdot 1^{\circ} \mathrm{A}$.; $-33^{1 \circ} \mathrm{C}$., $2699_{3}^{\circ} \mathrm{A}$.
20. Alcohol boils at $68^{\circ} \mathrm{C}$. ; absolute zero is -273 C . What are the corresponding temperatures Falır.? Ans. $154 \cdot 4^{\circ} \mathrm{F}$; $-459 \cdot 4^{\circ} \mathrm{F}$.

CHAPTER III.

LOGARITHMS.

Art. 1.-In the expression $N=a^{x}$; " N " is the number obtained by raising " a " to the power of " x "; keeping " a " fixed in value, and finding all the values of " N " obtained by performing the operation a^{x} : where " x " may be anything fractional or integral, results in a table of logarithms: the fixed, or constant, number is called the "Base," the power chosen the "Logarithm": thus a Logarithm is the index to which the Base must be raised to give the number. In common logs the base is always 10 , hence the logs used in our problems represent the power to which 10 must be raised to equal the number. Logs are chiefly fractional, since very few numbers are exact powers of 10 : the whole number, or integral part of the log., is called the index, and the decimal part the mantissa. It is the decimal part that is found on pages 2-16 in Norie's Tables, or any other nautical tables. The index is added by the computer, and is found by subtracting unity, " 1 ," from the number of figures in the integral part of the quantity; this is evident from the following considerations:-

$$
10^{0}=1,10^{1}=1,10^{2}=100,10^{3}=1000
$$

Thus from definition-

$$
\begin{aligned}
& \log 1=0 \\
& \log 10=1 \\
& \log 100 \\
& \log 100 \\
& \log 1003 ; \quad \text { and so on. }
\end{aligned}
$$

Hence the logs of all numbers between 1 and 10 , those which only have one digit in the whole number part, fall between 0 and 1, and so are wholly decimal, having 0 for index. Again, the logs of all numbers between 100 and 1000 , which are expressed by three digits in the whole number part, fall between 2 and 3, and so always have 2 for the index.

The index of a wholly decimal number is negative, and is found by adding unity, " 1 ," to the number of cyphers immediately after the decimal point, and before the first significant figure, and putting a minus sign (-) over it.

Logs of all numbers which are expressed by the same figures, but differ only in the position of the decimal point, have the same mantissa.

A minus index is made positive by adding 10 to it.
Art 2.-Finding the Logarithms of Numbers.-In Table, pp. 2-16, Norie, the first column is headed "No."; here are entered all numbers from 100 to 999 . The other columns are headed 0 to 9 ; and the end one "Diff": the first three figures of the number whose \log is required are found under "No."; the fourth figure represents the column to be used; the number found in this column abreast the figures under "No." is the mantissa of log required. The index must be placed as indicated above. Should there be fewer than four figures in the number, add cyphers to make up four and take out mantissa, using index corresponding to original number.

Examples.-

Numbers.			Logarithms.
		...	$0 \cdot 778151$
2. 34			1:531479
3. 420		.	$2 \cdot 623249$
4. $7 \cdot 856$	$0 \cdot 895201$
5. 38270	\ldots	..	$4 \cdot 582858$
6. 5			$1 \cdot 698970$
7. $\cdot 065$	$\overline{2} .812913$
8. $\cdot 0013$			$\overline{3} \cdot 113943$
9. 00000671			$\overline{6} \cdot 826723$

Note.-The negative index is generally_changed into a positive for Nautical Computations by adding 10, so that $\overline{1}$ becomes $9, \overline{2}$ becomes 8 , etc.

When the number contains more than four figures, take out the log. of the first four; then find the correction for the remaining figures by multiplying the "Diff." by these figures, and cutting off as many to the right. The remaining quantity is the correction to be added.

Note.-There is no correction for 0 's at the end of a number.

Exercises.

1. Find the Logarithms of the following numbers:-

3	3409
47	$7 \cdot 5$
50	$163 \cdot 45$
100	$704 \cdot 009$
275	$32636 \cdot 04$
8360	$\cdot 5$
$57 \cdot 29$	$\cdot 049$
$365 \cdot 74$	$\cdot 0036$
$1 \cdot 009$	$\cdot 001204$
75230	$\cdot 006728$
$62 \cdot 7014$	$\cdot 00028041$
$175 \cdot 008$	$\cdot 0000753$
$23002 \cdot 7$.0346009
$164 \cdot 3019$.075604
$21550 \cdot 007$.3670007
23460	

Art. 3.-Finding the Numbers corresponding to Given Logarithms. -When searching for the number corresponding to a log., no account is taken of the index, the mantissa is looked out in the tables, and will be found to either correspond exactly with an entry there, or fall between two entries. In the event of exact coincidence, the figures in the "No." column and at the top of the column where the log. is found, give the first four figures of the Number required: the place of the decimal point depends on the Index, and is found by counting off from the left one more than the number of figures in the index. Should the index call for more than four digits in the Number, cyphers are added to make up the required quantity.

Should the log. not agree, as is more often the case, the next less entry is taken from the tables and subtracted from the given log., cyphers are added to this difference and then divided by the number abreast in the "Diff." column. The figures in the dividend are extra ones to be placed to the right after the four figures taken from the tables corresponding to the less entry used.

卫xamples. -

Given logs.			Numbers.
1. $0 \cdot 113943$	\ldots	.	$1 \cdot 3$
2. 1.791480	61.87
3. $2 \cdot 724931$...		$530 \cdot 8$

When the Index exceeds three, and more than four figures are required, the log. next less in the tables is taken out, and the remainder divided (as in Division of Decimals) by the "Diff." gives the additional figures required.

Examples. -

Given logs. 1. 6.490379 490239	-..	.."	Numbers. 3092993
Diff. 141) $140.0(993$			
1310			
1269			
410			
423			
$\text { 2. } \begin{array}{r} 8.820006 \\ 820004 \end{array}$..	- 0	660703

Diff. 66)2.00(03
198
2
3. $4 \cdot 875003$... ... 74990

When the index is negative, and the number therefore a decimal, the position of the first figure (of value) is indicated by the index; thus, $\overline{1}$ shows it will occupy the first place after the decimal point, $\overline{2}$ requires the first figure (of value) in the second place, etc.

Examples. -

Loga.			Numbers,
1.432488	\cdots	...	-2707
$\overline{2} \cdot 715339$	$\cdot 05192$
$\overline{4} \cdot 934550$...	\ldots	$\cdot 0008601$.

Notr.-These index numbers when increased by 10 become $9,8,6$.

Exercises.

2. Find the numbers of which the following are the Logarithms:-

$3 \cdot 203577$	$5 \cdot 175801$
$2 \cdot 145818$	$6 \cdot 531481$
$1 \cdot 700271$	$7 \cdot 000435$
0.715920	$5 \cdot 361917$
0.004382	$4 \cdot 041393$
$4 \cdot 681484$	6.49606
$5 \cdot 690196$	0.00434
$6 \cdot 148900$	3.670154
7.040203	$7 \cdot 76003$
4.806044	5.380032

Note.-Since logarithms are merely the powers of " 10 ," which would make the numbers, to multiply quantities, we do as in Algebra, add the powers.

To divide quantities, subtract the powers.
To perform Involution, multiply the log. by the power.
To perform Evolution, divide the log. by the root.

Art. 4. Multiplication by Logarithms.
Rule.-Add together the logarithms of the numbers, and find the number corresponding to the sum of logarithms.

Examples.-

1. Multiply 234 by 1.76 by common logarithms.
$234 \log 2 \cdot 369216$
$1 \cdot 76 \quad \log 0.245513$
Ans. $411.8 \log 2 \cdot 614729$
2. Multiply 32640 by 00876 .
$32640 \quad \log 4.513750$
$.00876 \quad \log 7 \cdot 942504$
Ans. 285.9 $\log 2.456254$
3. Multiply together $3 \cdot 17,24 \cdot 781$, and $\cdot 067$.
$3 \cdot 17 \quad \log 0 \cdot 501059$
$24 \cdot 781 \log 1 \cdot 394119$
$\cdot 067 \log 8 \cdot 826075$
Ans. 5•263 $\log \overline{0.721253}$
4. Multiply $760 \cdot 56$ by $\cdot 0001877$.
$760 \cdot 56 \quad \log 2 \cdot 881133$
$\cdot 0001877 \log 6 \cdot 273464$
Ans. $1427 \quad \log 9 \cdot 154597$
5. Multiply *89472 by "003708.

$$
\begin{array}{rr}
\cdot 89472 & \log 9 \cdot 951687 \\
\cdot 003708 & \log 7 \cdot 569140 \\
\cdot 003318 & \log 7 \cdot 520827
\end{array}
$$

Remark.-It is evident that the product of a whole number by a whole number is a whole number, and the product of a decimal by a decimal is a decimal; but when a whole number and a decimal are multiplied together, the answer contains a whole number if the sum of indexes amounts to ten or more (in which case ten is rejected) ; but if the sum is less than ten, the answer is a decimal.

Exerciscs.

1. Multiply 479 by 41.

2.	"	4672 by 5.
3.	"	$1037 \cdot 5$ by 269.
4.	"	35890 by 10.
5.	"	16.536 by $42 \cdot 90$.
6.	"	$12 \cdot 40$ by $3 \cdot 84$.
7.	"	$7 \cdot 5642$ by 279.008.
8.	,	$2 \cdot 3467$ by $123 \cdot 006$.
9.		$164 \cdot 3019$ by $21550 \cdot 007$.

10. Multiply 356.8 by ${ }^{\circ} 0167$.

11.	"	$\cdot 001204$ by $\cdot 006728$.
12.	"	$32415 \cdot 5$ by 0002 .
13.	",	$\cdot 046009$ by 00028041.
14.	"	$\cdot 1000012$ by 00259.
15.	,,	100 by 005.
16.	",	7642 -005 by $3 \cdot 26507$.
17.	",	999999 by 1.
18.	"	-0867 by $235 \cdot 6004$.
19.	,	-98421 by ${ }^{234}$.
20.	"	$\cdot 00765$ by 23461.
21.	",	28550 by 0444.
22.	"	30000000 by 00765.
23.	Find the	product of 2.36×19.74
24.	,	$104 \cdot 26 \times{ }^{\circ} 01$

Art. 5. Division by Logarithms.
Rule.-Subtract the \log of the Divisor from the \log of the Dividend, and then find the corresponding number.

Examples. -

1. Divide 37640 by 4705.

37640	$\log 4 \cdot 576650$
4705	$\log 3 \cdot 672560$
Ans. 8.000	$\log 0.903090$

2. Divide 246.78 by 0272 .

$$
\begin{array}{rr}
246 \cdot 78 & \log 2 \cdot 392310 \\
\cdot 0272 & \log 8 \cdot 434569 \\
\text { Ans. } 9073 & \log \overline{3 \cdot 957741}
\end{array}
$$

3. Divide $\cdot 14$ by $\cdot 09876$.

$$
\begin{array}{rr}
\cdot 14 & \log 9 \cdot 146128 \\
\cdot 09876 & \log 8 \cdot 994581 \\
\text { Ans. } 1 \cdot 418 & \log 8 \cdot 151547
\end{array}
$$

4. Divide $207 \cdot 4$ by $3700 \cdot 1$.
$207 \cdot 4 \quad \log 2 \cdot 316809$
$3709 \cdot 1 \log 3 \cdot 569269$
Ans. $\cdot 05592 \log 8 \cdot 747540$
5. Divide 0076438 by 92 .
-0076438 $\log 7 \cdot 883310$
$.92 \quad \log 9 \cdot 963788$
Ans. $008308 \log 7 \cdot 919522$
Remark.-The answer always contains whole numbers (one more than the index) when the Divisor is less than the Dividend, but is all decimals when the Divisor is the greater:

Exerctses.

. Divide $32636 \cdot 04$ by 704•009.			
2.	"	$687 \cdot 31$	$2 \cdot 34$.
3.	"	45.2 by	
4.	"	985712	-0056.
5.	"	9.23 by	001.
6.	",	-64238	-026.
7.	"	99 by \cdot	0745.
8.	"	35161.9	34.24.
9.	',	746202	'52496.
10.	"	197657	by 00130.
11.	"	35 by 3	4063.
12.	"	9 by 87	
13.	"	16192.	-01086.
14.	",	1.3 by	00000290003.
15.	"	-001 by	000.
16.	,',	-000876	.0000438.
17.	",	. 012 by	09847.
18.	"	$\cdot 76591$	
19. Find the value of 198.79			
20.			$\underline{2.13 \times 856.4}$
	',	"	${ }^{0} 087$
21.	"	"	$\cdot 00175 \times 3872.4$
			$7.69 \times .0432$
			$8.32 \times 096 \times 248 \cdot 109$
22.	"	\cdots	$1.74 \times 23.42 \times 148.6{ }^{\text {. }}$
	"		$\underline{100 \cdot 108 \times \cdot 36749}$
23.		"	$\cdot 00984 \times 468.06$.
			$\cdot 0756 \times .00998 \times \cdot 247$
24.	"	"	$\cdot 0001 \times \cdot 0137 \times \cdot 142$.

Art. 6. Involution by Logarithms.

Rule.-Multiply the \log of the number by the required Power, and then find the corresponding number.

Example.-Required the 7th power of 1.09 .

$$
1.09 \quad \log 0.037426
$$

7
Ans. 1•828 $\log 0 \cdot 261982$

Exercises.

1. Required the square or 2 nd power of $23 \cdot 4$.

2.	,	cube or 3rd power of $1 \cdot 876$.
3.	$"$	5th power of $\cdot 08967$.
4.	$"$,	9th power of 1039.
5.	$"$	13 th power of $\cdot 367$.

Art. 7. Evolution by Logarithms.

Rule.-Divide the log of the given number by the required Root, and then find the corresponding number.

Examples.-

1. Required the square root of 10816 .

$$
\begin{array}{rr}
10816 & \log 2) 4034066 \\
\text { Ans. } 104 & \log \frac{2 \cdot 017033}{}
\end{array}
$$

2. Required the cube root of 42875 .

$$
\begin{array}{rr}
42875 & \log 3) 4 \cdot 632204 \\
\text { Ans. } 35 & \log \overline{1 \cdot 544068}
\end{array}
$$

3. Required the 5 th root of $9 \cdot 618$.

$$
9618 \log 5) 0.983085
$$

Ans. $1.573 \log 0 \cdot 196617$
4. Required the 7 th root of $234 \cdot 68$.
$234.68 \quad \log 7) 2 \cdot 370476$
Ans. $2 \cdot 181 \log \overline{0.338639}$
5. Required the cube (or 3 rd) root of 004913.
$\cdot 004913 \log 3) \overline{3} \cdot 691347$
Ans. $17 \quad \log \overline{1} \cdot 230443$
6. Required the cube root of 0.06174 .
$\cdot 06174 \log \overline{2} 790567$ or $-3+1 \cdot 790567$
3) $-3+1 \cdot 790567$

Ans. $3952 \log \overline{1} \cdot 596856$
7. Required the 5 th root of 007602 .

$$
\begin{aligned}
& \quad 007652 \log 5) \overline{3} \cdot 883775 \\
& \text { Ans. } 3774 \log =\overline{5}+2) \\
& \overline{1} \cdot 576755
\end{aligned}
$$

Exercises.

1. Required the square root of 306.25 .

2.	cube	",	$46 \cdot 656$.	
3.	$"$,	5 th	$"$	002435.
4.	$"$	cube	$"$	12167000.
5.	$"$	7 th	$"$,	00000002097152.

Remark.-With a Table of Logarithms containing only six places of figures, such as is used for Navigation, the answers in the preceding exercises cannot be expected to be correct to more than four or five places.

Of course, it must be understood that whenever logs are added in the calculations of problems in Navigation and Nautical Astronomy, it means that the terms are multiplied together, and when logs are subtracted, it means division. This is important to remember when one of the terms is zero (or 0).

Find by logs the values of the following:-

1. $\sqrt{20675} ; \sqrt{769 \cdot 52} ; \sqrt[3]{46976482}$.
2. $(29.865)^{2}$ and $(98 \cdot 7652)^{2}$.
3. $(91 \cdot 543)^{2} \times \sqrt[3]{8794 \cdot 027}$;
$\sqrt{\frac{4682}{99 \times 37987}}$.
4. $\frac{\sqrt{8794 \cdot 08}}{\sqrt[3]{276509}}$.

Art. 8. To find the Logarithm of a Given Ratio (Sin, Cos, Tan, etc.).-InTable $\mathbf{x x v}$.,pp. 264-353, Norie, are entered the logarithms of the Sines, Cosines, Tangents, etc., of the various angles from 0° to 90°, given to every half-minute, two pages being reserved for each degree: on the top of the page the degrees from 0° to 44° in consecutive order, the minutes and half-minutes being entered in the column on the left-hand side, the names of the ratios at the top; and in columns between two ratios the differences for each second of are to $30^{\prime \prime}$. At the bottom of the page the degrees from 45° to 89° are entered, the names of the ratios, and on the right-hand side reading upwards the minutes and half-minutes of arc. In order that there shall be no minus indices, 10 is added to each index before tabulation. Pages 240-263 at the beginning of the table are devoted to the Sines of small angles from 0° to 4° to each second of arc, and to the Cosines of large angles from 86° to 90°. To find a log, turn up the number of degrees on the top of the page if the angle is less than 44°, at the bottom of the page if the angle exceeds 44°; find the minutes on the left if the degrees are at the top, and on the right if the degrees are at the bottom, and abreast the minutes in the column corresponding to the ratio required is the log.

Examples.-

L sin	$23^{\circ} 25^{\prime}=9 \cdot 599244$	$\mathrm{L} \cos$	$40^{\circ} 36^{\prime}=9.880397$
L sin	$58^{\circ} 36^{\prime}=9.931229$	Ltan	$47^{\circ} 28^{\prime}=10 \cdot 037440$
L sin	$27^{\circ} 43 \frac{1}{2}^{\prime}=9 \cdot 667666$	$\mathrm{L} \cos$	$65^{\circ} 22 \frac{1}{\prime}^{\prime}=9 \cdot 619800$
$L \sin$	$64^{\circ} 14 \frac{1}{\prime}^{\prime}=9.954549$	L sec	$14^{\circ} 19^{\circ}=10.013701$
L cosec	$75^{\circ} 56^{\prime}=10^{\circ} 013222$	I cosec	$51^{\circ} 40^{\prime}=10 \cdot 105454$
L cot	$37^{\circ} 28 \frac{1}{2}=10 \cdot 115412$	$\mathrm{L} \tan$	$13^{\circ} 47^{\prime}=9389724$

If the angle exceeds 90°, subtract the amount from 180° and take out the same ratio of the remainder; or take 90° from the angle and take out the complementary ratio of the remainder.

Examples.-

$\mathrm{L} \sin \quad 102^{\circ} 47^{\prime}=\mathrm{L} \sin \quad 77^{\circ} 13^{\prime}=\mathrm{L} \cos 12^{\circ} 47^{\prime}=9.989100$
$\mathrm{L} \operatorname{cosec} 111^{\circ} 15^{\prime}=\mathrm{L} \operatorname{cosec} 68^{\circ} 45^{\prime}=\mathrm{L} \sec 21^{\circ} 15^{\prime}=10 \cdot 030580$
$\mathrm{L} \cot \quad 98^{\circ} 32^{\prime}=\mathrm{L} \cot \quad 81^{\circ} 28^{\prime}=\mathrm{L} \tan 8^{\circ} 32^{\prime}=9 \cdot 176224$
To correct for odd seconds in an angle, find the amount in
the proper " Diff." column corresponding to the seconds required, add to the log for sines, tangents, and secants, and subtract for cosines, cotangents, and cosecants.

Remark.-The beginning part of this table gives the L Sines of small angles (0° to 4°) to seconds of are: or the L Cos of large angles $\left(86^{\circ}\right.$ to $\left.90^{\circ}\right)$: seeing that sines and cosecants are complementary, and that the sines and tangents, also the cosecants and cotangents of small angles are approximately equal, by subtracting the L Sines from 20 we have the corresponding L Cosec, and when the angle is very small (0° to $0^{\circ} 30^{\prime}$) the L Cot. ; this avoids using the very large differences tabulated for $30^{\prime \prime}$.

Art. 9. To find the Angle corresponding to a Logarithm.Reverse the above process, looking out the log in its proper column, and taking the next less log to subtract from the given \log in the case of sines, secs, and tans, and the next greater one in the case of cosines, cosecs, and cots, to subtract the given \log from; this difference referred to the corresponding "Diff." column gives the extra seconds.

```
Examples.-
```


CHAPTER IV.

SOLU'IION OF PLANE TRIANGLES.

Art. 10. Trigonometrical Ratios.-Comparisons can only be made between two quantities which refer to the same kind of thing. A Ratio is the comparison of two quantities, and in Trigonometry the quantities compared are the lengths of the sides, or functions of the angles. A Ratio may be expressed by writing the two quantities with two dots (:) between them, or by forming a vulgar or decimal fraction of them. In every triangle there are three sides, and since two are used to form the ratio, it follows that these can be arranged in "six" different ways; and hence there are "six" Trigonometrical Ratios. Each one has received a definite name; thus there are sines, cosines, tangents, cotangents, secants, and cosecants.

In any right-angled triangle the side opposite the right angle is always called the Hypotenuse. The side which with the hypotenuse forms the angle is called the BASE. The side opposite the angle under consideration is called the Perpendicular.

The ratio $\frac{\text { perp }}{\text { hyp }}$ is called "sine" or shortly "sin."

Thus in triangle PQR , right angled at Q, the hypotenuse is always PR ; and when the ratios of P are considered, PQ is the base, RQ is the perpendicular.
But when the ratios of R are under consideration, then-
$R \mathrm{Q}$ is the base,
PQ is the perpendicular.

Fig. 42.

Thus from definition-

$$
\begin{aligned}
\sin P & =\frac{R Q}{P R} & \text { and } & \sin R
\end{aligned}=\frac{P Q}{P R}
$$

Hence-
$\sin \mathrm{P}=\cos \mathrm{l}$
$\tan P=\cot R$
$\sec \mathrm{P}=\operatorname{cosec} \mathrm{R}$
and since P and R are complementary, this is expressed by saying that-

The sine of an angle is equal to the cosine of its complement, and vice versa.

The cosine of an angle is equal to the sine of its complement.
And so with \tan and cot : sec and cosec. It will be seen that since-

$$
\operatorname{cosec}=\frac{1}{\sin } \quad \sec =\frac{1}{\cos } \quad \cot =\frac{1}{\tan }
$$

the cosec is the reciprocal of the sin, sec of the cos, and cot of the tan. This fact is useful, as it enables a divisor to be replaced by a multiplier in a formula; the same result being obtained whether we divide by \sin, cos, or tan ; or multiply by their reciprocals cosec, sec, or cot.

Art. 11.-Changes in Sign and Magnitude of Angles.-Consider two lines POQ and ROT meeting in

Fig. 43. O at right angles. It is necessary, in order to know in what direction a line is drawn, that some difference should be made when a line is drawn perpendicularly to TR up or down, or when perpendicularly to PQ towards R or T ; this is done by the use of the signs + and -. Lines drawn perpendicularly up from TR are considered + , down -. Lines drawn perpendicularly to $P Q$ to the right are considered + , to the left - .

Let a line with centre O revolve from the position OR, in a direction against the hands of a clock. In going from OR to OP, it traces out all angles from 0° to 90°, and in going from OP to OT all angles from 90° to 180°; larger values need not be considered, as the angles and arcs dealt with in this book do not exceed 180°.

Suppose the revolving line to take up positions indicated by $R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}$. Draw perpendiculars from these points meeting TR in $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}$;

Then-

$$
\begin{aligned}
& \sin \mathrm{R}_{1} \mathrm{OM}_{1}=\frac{\mathrm{R}_{1} \mathrm{M}_{1}}{\mathrm{OR}_{1}} \\
& \sin \mathrm{R}_{2} \mathrm{OM}_{2}=\frac{\mathrm{R}_{2} \mathrm{M}_{2}}{\mathrm{OR}_{2}} \\
& \sin \mathrm{R}_{6} \mathrm{OM}_{6}=\frac{\mathrm{R}_{6} \mathrm{M}_{6}}{\mathrm{OR}_{6}}
\end{aligned}
$$

Since $\mathrm{OR}_{1}=\mathrm{OR}_{2}=\ldots \mathrm{OR}_{6}$, it follows that the above fractions, which represent the values the sin has as the angle increases, also increase as the line revolves from OR to OP, and decrease as the line revolves from OP to OT. In the position OR or OT the perpendicular vanishes, consequently-

$$
\begin{array}{r}
\sin 0^{\circ}=0 \\
\sin 180^{\circ}=0
\end{array}
$$

Also, when the revolving line coincides with OP, the perpendicular coincides with and is equal to it, or-

$$
\sin 90^{\circ}=1
$$

All the time, however, the perpendicular has been above TR and is reckoned + .

We arrive at the following conclusions :-
As the angle increases from 0° to 90°, the sine takes all values from 0 to 1 .

As the angle increases from 90° to 180°, the sine takes all values from 1 to 0 .

In both the above cases the sine is positive.
Again-

$$
\begin{aligned}
& \cos \mathrm{R}_{1} \mathrm{OM}_{1}=\frac{\mathrm{OM}_{1}}{\mathrm{OR}_{1}} \\
& \cos \mathrm{R}_{4} \mathrm{OM}_{4}=\frac{\mathrm{OM}_{4}}{\mathrm{OR}_{4}} \\
& \cos \mathrm{R}_{6} \mathrm{OM}_{6}=\frac{\mathrm{OM}_{6}}{\mathrm{OR}_{6}}
\end{aligned}
$$

The value of the cosine depends on the base, and it is seen from the figure that as the angle increases from 0° to 90° the base gradually diminishes, and the cosine with it; also when the angle increases from 90° to 180° the base increases, but is now
drawn in a contrary direction, and so of opposite sign. Hence in this case-

As the angle increases from 0° to 90°, the cosine takes all values from 1 to 0 .

As the angle increases from 90° to 180°, the cosine takes all values from 0 to -1 .

The tangent depending on the ratio of perpendicular to base follows the same rule as the sine in increasing as the angle increases ; and follows the cosine by becoming a negative value in the quadrant from 90° to 180°. Reciprocals of ratios follow the same rule as the ratios themselves, only as regards sign.

Art. 12. Supplementary Angles. - Make angle $T O S=$ angle ROM, where $O R=O S$; ST and RM

Fig. 44. perpendiculars.

The angles ROM and SOM are supplementary. $\operatorname{Sin} \mathrm{ROM}=\frac{\mathrm{RM}}{\mathrm{OR}}, \sin \quad \mathrm{SOM}=\frac{\mathrm{ST}}{\overline{\mathrm{OS}}}=\frac{\mathrm{RM}}{\mathrm{OR}}$

$$
\therefore \sin \mathrm{ROM}=\sin \mathrm{SOM} .
$$

Again-
$\cos \mathrm{ROM}=\frac{\mathrm{OM}}{\mathrm{OR}}, \cos \mathrm{SOM}=\frac{\mathrm{OT}}{\mathrm{OS}}=\frac{-\mathrm{OM}}{\mathrm{OS}}$

$$
\therefore \cos \mathrm{ROM}=-\cos \mathrm{SOM}
$$

or sine of an angle equals the sine of its supplement; but cosinc of an angle equals the cosine of its supplement with - sign prefixed.

Art. 13.-Summary.-As angles increase, the sines, tangents, and secants increase.

As angles increase, the cosines, cotangents, and cosecants decrease.

All ratios are positive $(+)$ when angles fall between 0° and 90°.

When angles fall between 90° and 180° all ratios except sines and cosecants are negative (-) ; these two are positive (+).

$$
\begin{aligned}
\operatorname{Sin} A & =\cos (\text { comp. } A) \\
\operatorname{Cos} A & =\sin (\operatorname{comp} . A) \\
\operatorname{Tan} A & =\cot (\operatorname{comp.A}) \\
\operatorname{Cot} A & =\tan (\text { comp. } A) \\
\operatorname{Sin} A & =\sin (\text { supp. } A) \\
\operatorname{Cos} A & =-\cos (\text { supp. } A) \\
\operatorname{Cosec} A & =\frac{1}{\sin A} \\
\operatorname{Sec} A & =\frac{1}{\cos A} \\
\operatorname{Cot} A & =\frac{1}{\tan A}
\end{aligned}
$$

Art. 14. Solution of Right-angled Triangles.-In all triangles there are six parts (three sides and three angles). In a plane triangle the sum of the three angles is 180°; if three parts be given (one given part must be a side), the other parts may be determined. In right-angled triangles a knowledge of the ratios enables any one to effect the solution; one of the given parts being a right angle, the other two parts which are given can only be (1) two sides, or (2) one side and an angle. The tables are needed, because in them are tabulated the logarithms of all ratios of angles from 0° to 90°; consequently, when an angle is given, the \log of any ratio of that angle may be found; or if an angle is required, knowing the log of the ratio, the angle may be looked up.

Considering the first case where two sides are given. These sides put in the form of a fraction will make four different ratios of the two acute angles, and there are four different ways of starting the solution, all equally correct.

Remark.-All plane triangles should be drawn to scale. To do this the student requires a pen or pencil bow and a six-inch boxwood protractor. The advantage is that the problem may be solved graphically, and the answer obtained is a useful check on the numerical calculation, and so serious mistakes avoided. Angles are laid off or measured as with a Field's parallel rule, by placing the plain edge on the line, and the centre point at the point at which the angle with the line is to be made or measured. On the space at disposal depends the scale of the figure, and this scale should be entered at the side. Thus if we wish to represent a length of 215 inches, and choose a scale of $\frac{1}{10}$ inch to 10 inches, the total length of the line would be $21 \frac{1}{2}$ tenths of inches, or 2.15 inches. Again, to represent a length of 425 miles on a scale of $\frac{1}{10}$ inch to 25 miles, the length would be $\frac{425}{25} \times \frac{1}{10}$ inches $=17$ inches : or if in such a figure the length of a side is $2 \cdot 6$ inches, its actual size would be $\frac{2.6 \times 25}{\frac{1}{10}}$ miles
$=650$ miles.
Example 1.-In triangle $\mathrm{ABC}, \mathrm{B}=90^{\circ}, \mathrm{AB}=368, \mathrm{BC}=215$. Find the angles, and AC.

Graphical Solution.-Draw horizontal line AB and make it ${ }^{3} 188 \mathrm{~mm}$. $=36.8 \mathrm{~mm}$. in length : at B draw BC perpendioular to AB and make it $\frac{215}{10}=21.5 \mathrm{~mm}$. in length. Join AC.

$$
\begin{aligned}
\text { Measure } \quad \mathrm{AC} & =42.5 \mathrm{~mm} . \quad \therefore \mathrm{AC}=425 \\
, & \mathrm{BAC}
\end{aligned}=30^{\circ} \quad \mathrm{BCA}=60^{\circ} \quad . \quad \text { " }
$$

Trigonometrical Solution.-Since AB and BC are known, we may say-

$$
\begin{aligned}
\frac{A B}{\overline{B C}} & =\cot A \text { or } \frac{A B}{B C} \\
\text { or } \frac{B C}{A B} & =\tan C \\
\text { or } \frac{B C}{A B} & =\cot C .
\end{aligned}
$$

Using the first ratio-

$$
\cot \mathrm{A}=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{368}{215}
$$

Apply logs, and adding 10 to top index, since tabular cotangent log has been increased by 10-

$$
\begin{array}{lccc}
\mathrm{AB} & \ldots & 368 & \log =12 \cdot 565848 \\
\mathrm{BC} & \cdots & 215 & \log =\frac{2 \cdot 332438}{} \\
& 30^{\circ} 17^{\prime} 42^{\prime \prime} \mathrm{L} \cot =\overline{10 \cdot 233410} & \therefore \mathrm{~A}=\frac{90}{30^{\circ} 17^{\prime} 42^{\prime \prime}} \\
& & \text { and } \mathrm{C}=\overline{594218}
\end{array}
$$

To find $A C$, we form a fraction, putting side wanted in the numerator and side known in the denominator, and writing down the name of ratio so formed. This gives rise to several ways of solution, as we may say-

$$
\begin{aligned}
\frac{A C}{A B} & =\sec A \text { or } \frac{A C}{B C}=\operatorname{cosec} A \text { or } \frac{A C}{A B}=\operatorname{cosec} C \text { or } \frac{A C}{B C}=\sec C \\
\therefore A C & =A B \times \sec A
\end{aligned}
$$

Apply logs, rejecting 10 from index, added to make a tabular secant.

$$
\begin{array}{llll}
\mathrm{AB} & \ldots & \ldots & 368 \quad \log = \\
\mathrm{A} & \ldots & 3 \cdot 565848 \\
\mathrm{AC} & \ldots & \ldots & 420^{\circ} 17^{\prime} 42^{\prime \prime} \mathrm{L} \sec =10.063768 \\
\mathrm{AC} & =12 \cdot 629616
\end{array}
$$

$$
\text { Ans. } \mathrm{A}=30^{\circ} 17^{\prime} 42^{\prime \prime} ; \mathrm{C}=59^{\circ} 42^{\prime} 18^{\prime \prime} ; \mathrm{AC}=426 \cdot 2
$$

Example 2.-In triangle $\mathrm{PQR}, \mathrm{Q}=90^{\circ}, \mathrm{PR}=17 \cdot 8, \mathrm{PQ}=15 \cdot 5$. Solve. Graphical Solution.-Draw a horizontal line RQ; at Q make QP perpendicular to $R Q$ and $\frac{15 \cdot 5}{16}$ of an inch in length. Take $\frac{17 \cdot 8}{16}$ of an inch as a radius, and with P as centre, cut $R Q$ in R. Then $R P Q$ is triangle.

Measure $\quad R Q=8.8$ sixteenths $\quad \therefore R Q=8.8$
,, $\quad \mathrm{R} \hat{\mathrm{PQ}}=30^{\circ}$
" $\quad \mathrm{P} \hat{\mathrm{R}}=60$.
Trigonometrical Solution.-

Fig. 46.

$$
\operatorname{Sin} R=\frac{P Q}{P R}
$$

Apply logs.

$$
\begin{array}{lccrc}
P Q & \ldots & \cdots & 15 \cdot 5 & \log =11 \cdot 190332 \\
\mathrm{PR} & \cdots & \cdots & 17 \cdot 8 & \log =1 \cdot 250420 \\
\mathrm{R} & \ldots & 60^{\circ} 33^{\prime} 1^{\prime \prime} \mathrm{L} \sin =9 \\
\mathrm{P}=90-\mathrm{R}=29^{\circ} 26^{\prime} 59^{\prime \prime}
\end{array}
$$

Again-

$$
\begin{aligned}
\frac{\mathrm{RQ}}{\mathrm{PQ}} & =\cot \mathrm{R} \\
\therefore \mathbf{R Q} & =P Q \times \cot \mathrm{R}
\end{aligned}
$$

Apply logs.

$$
\begin{aligned}
& \text { PQ } 15 \cdot 5 \quad \log =1 \cdot 190332 \\
& \text { R } \quad . . . \quad 60^{\circ} 33^{\prime} 1^{\prime \prime} \mathrm{L} \text { cot }=9 \cdot 751752 \\
& \text { RQ } \quad . . \quad \text {... } 8.751 \quad \log =10.942084 \\
& \text { Ans. } \mathrm{P}=29^{\circ} 26^{\prime} 59^{\prime \prime} ; \mathrm{R}=60^{\circ} 33^{\prime} 1^{\prime \prime} ; \mathrm{RQ}=8.751 \text {. }
\end{aligned}
$$

The second case, where one side and an angle are given, is solved by remembering that the ratio to work from is formed by placing the side wanted in the numerator and the side known in the denominator. As before, there are four different ways, all equally right, of starting.

Example 3.-ln triangle LMN, M = $90^{\circ}, \mathrm{N}=55^{\circ} 15^{\prime}, \mathrm{LM}=1342$. Solve.

Graphical Solution.-Draw a horizontal line NM : at \mathbf{M} draw ML perpendicular to MN and make it equal to $\frac{1345}{100}$ inch $=1.342$ inch. At any point O in MN make an angle $=55^{\circ} 15^{\prime}:$ through L draw LN parallel to this line. Then $\mathrm{L} \hat{\mathrm{N}} \mathrm{M}=55^{\circ} 15^{\prime}$.

Measure NL	$=1 \cdot 62$ inch	$\therefore \mathrm{NL}$	$=1620$
MN	$=92 \quad$,	$\therefore \mathrm{MN}$	$=920$

$" \quad \mathrm{MN}=92 \quad, \quad \therefore \mathrm{MN}=920$
" $\mathrm{NLM}=35^{\circ}$

Fig. 47.

Trigonometrical Solution -

$$
\begin{gathered}
\frac{\mathrm{LN}}{\overline{\mathrm{LM}}=\operatorname{cosec} \mathrm{N}, \text { and } \frac{\mathrm{MN}}{\mathrm{LM}}=\cot N} \\
\therefore \mathrm{LN}=\mathrm{LM} \times \operatorname{cosec} \mathrm{N}, \text { and } \mathrm{MN}=\mathrm{LM} \times \cot N
\end{gathered}
$$

Apply logs.

$$
\begin{array}{rlrl}
\mathrm{LM} \ldots 1342 \quad \log & =3 \cdot 127752 & \log =3 \cdot 127752 \\
\mathrm{~N} 55^{\circ} 15^{\prime} \mathrm{L} \operatorname{cosec} & =10 \cdot 085315 & \mathrm{~L} \cot = & =9.841187 \\
1633 \quad \log & =\overline{43 \cdot 213067} & 931 \quad \log =\overline{\mathrm{L}} & =90^{\circ}-\mathrm{N}=34^{\circ} 45^{\prime} \\
\text { Ans. } \mathrm{L}=34^{\circ} 45^{\prime} ; \mathrm{LN}=1633 ; \mathrm{MN}=931 .
\end{array}
$$

Exercises.-Right-angled Triangles (Plane).

1. In triangle $\mathrm{ABC}, \mathrm{AB}=503, \mathrm{AC}=357, \mathrm{C}=90^{\circ}$. Find A, B, and BC .
2. In triangle $\mathrm{PQR}, \mathrm{PQ}=371, \mathrm{QR}=204, \mathrm{Q}=90^{\circ}$. Find P, R, and PR .
3. In triangle $\mathrm{OPB}, \mathrm{OP}=125^{\circ} 7, \mathrm{~PB}=695, \mathrm{O}=90^{\circ}$. Find P, B, and OB .
4. In triangle $\mathrm{ABC}, \mathrm{A}=64^{\circ} 41^{\prime}, \mathrm{C}=90^{\circ}, \mathrm{AB}=1037$. Find AC and BC .
5. In triangle $\mathrm{ABC}, \mathrm{B}=34^{\circ} 17^{\prime}, \mathrm{C}=90^{\circ}, \mathrm{BC}=905$. Find AB and AC .
6. In triangle $\mathrm{ABC}, \mathrm{AB}=147, \mathrm{BC}=116, \mathrm{C}=90^{\circ}$. Find A, B, and AC .
7. In triangle $\mathrm{PQR}, \mathrm{P}=33^{\circ} 14^{\prime}, \mathrm{PQ}=4372, \mathrm{Q}=90^{\circ}$. Find PR and RQ .
8. In triangle $\mathrm{ABC}, \mathrm{C}=90^{\circ}, \mathrm{AC}=706, \mathrm{BC}=981$. Find A, B, and AB .
9. At 145 ft . from the base of a flagstaff its angle of elevation is observed to be $32^{\circ} 16^{\prime}$. Find the leight.
10. The difference of latitude made good is 236.5 miles south, the departure 215.7 miles west. Find the conrse, and distance sailed.
11. The length of the shadow cast by a vertical post is 39 ft .6 in . when the sun has an elevation of $21^{\circ} 32^{\prime}$. Find the height of the post.
12. From a ship a promontory was observed to be $3 \frac{1}{2}$ points on the bow,
and after making 7 miles on her course, it was found to be abeam. What distance was the vessel from the point at the two bearings?
13. A lighthouse, whose top is 200 ft . above the sea-level, marks a danger situated at three cables' length from the shore. Required the vertical "danger angle."
14. From a reef awash at low water, the angle of elevation to the summit of a hill distant 2050 yards in a horizontal direction is $1^{\circ} 12^{\prime}$; height of the eye, 6 ft . ; tidal rise, 21 ft . Required the height of the hill above high water.

Art. 15. Solution of Oblique-angled Plane Triangles.-Triangles which do not contain a right angle are called oblique-angled. Facts to be remembered in connection with triangles are-

The sum of the angles is 180°.
Equal angles are subtended by equal sides.
The greater side is opposite the greater angle.
Any two sides are together greater than the third side.
According to the parts given the solution falls into three different cases.

1. Given two sides and an angle opposite to one of the known sides.

Or, given two angles and a side.
2. Given three sides.
3. Given two sides and the angle contained by the known sides.

Case I.-For the first case, the following property is used: Sides are proportional to the sines of the opposite angles.

ACB is a triangle: draw CD at right angles to AB .

$$
\begin{aligned}
& \text { Then- } \frac{C D}{\mathrm{AC}}=\sin \mathrm{A} \\
& \text { and- } \quad \frac{\mathrm{CD}}{\mathrm{BC}}=\sin \mathrm{B}
\end{aligned} . . \quad . \quad . \quad . \quad \text { II. } . ~ \$
$$

Divide I. by II.

$$
\therefore \frac{\mathrm{CD}}{\mathrm{AC}} \div \frac{\mathrm{CD}}{\mathrm{BC}}=\frac{\sin \mathrm{A}}{\sin \mathrm{~B}}
$$

Fig. 48.
that-
or, cancelling CD-

$$
\frac{\mathrm{CD}}{\overline{A C}} \times \frac{B C}{\mathrm{CD}}=\frac{\sin \mathrm{A}}{\sin \mathrm{~B}}
$$

$$
\frac{\mathrm{BC}}{\overline{\mathrm{AC}}}=\frac{\sin \mathrm{A}}{\sin \mathrm{~B}}
$$

Now, if a perpendicular were dropped from A on $B C$, it might be proved in a similar manner that-

$$
\frac{A C}{A B}=\frac{\sin B}{\sin C}
$$

Hence the proposition is established.

Example 1.-Given $P Q=350, P R=367$, and $Q=54^{\circ} 30^{\prime}$. Solve.
Draw a horizontal line RQ, and at Q make angle $54^{\circ} 30^{\prime}$, also on a scale of 1.1 inch to 350 make PQ 1.1 inch long. Find length of $P R$ on our scale $=\frac{1 \cdot 1 \times 367}{350}=1.15$ inch, take this length in compass, and with P as centre draw an arc cutting $Q R$ in R. Then $P Q R$ is triangle.

$$
\begin{aligned}
\mathrm{PRQ} & =51^{\circ} \\
\mathrm{RPQ} & =75^{\circ} \\
\mathrm{RQ} & =1 \cdot 38 \text { inch } \quad \therefore \mathrm{RQ}=439 .
\end{aligned}
$$

Two sides and an angle opposite to a given side; hence the part to be found is the angle opposite to the other given side; here we form a fraction having for its numerator the

Fig. 49. sine of the angle wanted, and for its denominator the sine of the given angle. This fraction is equal to one formed from preceding proof.

Thus-

$$
\begin{aligned}
\frac{\sin R}{\sin Q} & =\overline{P Q} \\
\therefore \sin R & =\frac{P Q \times \sin Q}{P R}
\end{aligned}
$$

Apply logs.

$$
\begin{aligned}
& \mathrm{PQ} \quad . . \quad \ldots \quad 350 \quad \log =2.544068 \\
& \mathrm{Q} \quad \cdots \quad 54^{\circ} 30^{\prime} \mathrm{L} \sin =9 \cdot 910066 \\
& \text { PR } \quad . . \quad \text {... } 367 \quad \log =\begin{array}{r}
12 \cdot 454754 \\
2.564666
\end{array} \\
& \text { R } \quad . .50^{\circ} 55^{\prime} 57^{\prime \prime} \mathrm{L} \sin =9890088 \\
& \mathrm{Q}=54^{\circ} 30^{\prime} 0^{\prime \prime} \\
& \mathbf{R}=50 \quad 55 \quad 57 \\
& Q+\mathrm{R}^{\prime}=\underset{180}{105} 2557 \\
& \mathrm{P}=7434 \quad 3
\end{aligned}
$$

Again, to find the third side RQ: form a fraction with the side wanted (RQ) as numerator, and one of the given sides (PR) as denominator ; this fraction equals one formed by placing sine of angle opposite $R Q(\sin \mathbf{P})$ in numerator and sine of angle opposite PR ($\sin Q$) in denominator.

$$
\begin{aligned}
& R Q=\frac{\sin P}{\sin Q} \\
\therefore & R Q=\frac{P R \times \sin P}{\sin Q}=P R \times \sin P \times \operatorname{cosec} Q
\end{aligned}
$$

In order to make all the logs added, $\sin Q$ as a divisor is changed into $\operatorname{cosec} Q$ as a multiplier-

$$
\text { since } \operatorname{cosec} Q=\frac{1}{\sin Q}
$$

Example 2.-Given $\mathrm{C}=118^{\circ} 30^{\prime}, \mathrm{B}=21^{\circ} 22^{\prime}$, and $\mathrm{AC}=67.5$. Solve. Graphicul Solution.-Draw horizontal line AC of length $\frac{67 \cdot 5}{100}$ inches $=68$ inch. AtC draw CB making an angle of $118^{\circ} 30^{\prime}$ with AC , and through A draw AD parallel to CB. At A draw AB

Fig. 50. making an angle $21^{\circ} 22^{\prime}$ with AD , to meet CB in B. Then $A B C$ is triangle.

Measure $A=40^{\circ}$

$$
\begin{array}{ll}
\mathrm{AB} & =1 \cdot 6 \text { inch } \\
\mathrm{BC}=1.2 \quad, & \therefore \mathrm{AB}=160 \\
\end{array}
$$

Trigonometrical Solution.-

$$
\begin{aligned}
\mathrm{A}+\mathrm{B}+\mathrm{C} & =180^{\circ} \\
\therefore \mathrm{A} & =180^{\circ}-(\mathrm{B}+\mathrm{C}) \\
& =180^{\circ}-139^{\circ} 52^{\prime} \\
& =40^{\circ} 8^{\prime}
\end{aligned}
$$

To find BC -

$$
\frac{B C}{A C}=\frac{\sin A}{\sin B}
$$

$\therefore \mathrm{BC}=\frac{\mathrm{AC} \times \sin \mathrm{A}}{\sin \mathrm{B}}=\mathrm{AC} \times \sin \mathrm{A} \times \operatorname{cosec} \mathrm{B}$

$$
\begin{array}{lllr}
\mathrm{AC} & \cdots & \cdots 7 \cdot 5 \quad \log =18829304 \\
\mathrm{~A} & \cdots & 40^{\circ} 8^{\prime} \mathrm{L} \sin =9 \cdot 809269
\end{array}
$$

$$
\text { B } \quad \text {... } \quad 21^{\circ} 22^{\prime} \mathrm{L} \operatorname{cosec}=10.438499
$$

$$
\mathrm{BC} \quad \ldots \quad . . . \quad 119 \cdot 4 \quad \log =22.077072
$$

To find $A B-$

$$
\begin{array}{lll}
\mathrm{AC} & \ldots & \ldots 67 \cdot 5 \log =1 \cdot 829304 \\
\mathrm{C} & \ldots & 118^{\circ} 30^{\prime} \mathrm{L} \sin =9.943899
\end{array}
$$

$$
\text { B } \ldots \quad 21^{\circ} 22^{\prime} \mathrm{L} \operatorname{cosec}=10.438499
$$

$$
\begin{aligned}
\frac{\mathrm{AB}}{\mathrm{AC}} & =\frac{\sin \mathrm{C}}{\sin \mathrm{~B}} \\
\therefore \mathrm{AB} & =\frac{\mathrm{AC} \times \sin \mathrm{C}}{\sin \mathrm{~B}}=\mathrm{AC} \times \sin \mathrm{C} \times \operatorname{cosec} \mathrm{B} \\
0^{\prime} \mathrm{L} \log & =1.829304 \\
\mathrm{~L} \sin & =9.943899 \quad \ldots \quad \text { (Use } \sin 61^{\circ} 30^{\prime}, \text { the } \\
\text { cosec } & =10.438499 \quad \text { supplement.) }
\end{aligned}
$$

$\mathrm{AB} \quad \ldots \quad 162.8 \quad \log =22 \cdot 211702$
Ans. $\mathrm{A}=40^{\circ} 8^{\prime} ; \mathrm{AB}=102 \cdot 8 ; \mathrm{BC}=119 \cdot 4$.
Example 3.-Given $\mathrm{AP}=1134 ; \mathbf{P M}=875 ; \mathrm{A}=35^{\circ} 20^{\prime}$. Solve.
Here is given the angle opposite to the smaller side, and when the triangle is drawn to scale, it is found that two triangles can be drawn from the data; there are thus two solntions, and it is known as the ambiguous case.

Graphical Solution.-Lay off a horizontal line of unlimited length, and at one end A male an angle equal to the given angle, viz. MAP $=35^{\circ} 20^{\prime}$.

$$
\begin{aligned}
& \text { PR } \quad . . \quad . . \quad 367 \quad \log =2.564666 \\
& \mathrm{P} \quad . . . \quad 74^{\circ} 34^{\prime} 3^{\prime \prime} \mathrm{L} \sin =9.984052 \\
& \text { Q } \quad . . \quad 54^{\circ} 30^{\prime} \mathrm{L} \operatorname{cosec}=10.089314 \\
& \text { RQ } 434 \cdot 5 \quad \log =2 \cdot 638032 \\
& \text { Ans. } \mathrm{P}=74^{\circ} 34^{\prime} 3^{\prime \prime} ; \mathrm{R}=50^{\circ} 55^{\prime} 57^{\prime \prime} ; \mathrm{RQ}=434.5 \text {. }
\end{aligned}
$$

Along AP measure the longer side $=1134$, that is 1.13 inch; and with centre P and distance equal to the shorter side 875 , that is 87 inch ; describe an are cutting $A M$ in M and M^{\prime}. Thus both PM and $\mathrm{PM}^{\prime}=875$. Hence there are two triangles, PAM and PAM', which satisfy the given conditions.

Measure AM $=1 \cdot 5$ inch, that is 1504 $\mathrm{AM}^{\prime}=\cdot 3 \overline{\mathrm{~s}}$ inch, that is 350.
Trigonometrical Solution.-To find M in triangle APM-

Fig. 51.

$$
\begin{aligned}
& \frac{\sin M}{\sin A}=\frac{A P}{P M} \\
& \therefore \sin \mathbf{M}=\frac{\mathrm{AP} \times \sin \mathrm{A}}{\mathrm{PM}} \\
& \text { AP } \quad . . \quad \text {... } 1134 \quad \log =3.054613 \\
& \text { A } \quad \ldots \quad \ldots \quad 35^{\circ} 20^{\prime} \mathrm{L} \sin =9 \cdot 762177 \\
& 12 \cdot 816790 \\
& \text { PM 8.5 } \log =2.942008 \\
& \mathrm{M} \quad \text {. . } \quad 48^{\circ} 32^{\prime} 55^{\prime \prime} \mathrm{L} \sin =9.874782 \\
& \text { A } \quad . . \quad 3 \overline{3} \quad 20 \quad 0 \\
& \mathrm{~A}+\mathrm{M} \quad \ldots \quad 83 \quad 52 \quad 55 \\
& 180 \\
& \text { P } \quad . . \quad \overline{96} \quad 7 \quad 5
\end{aligned}
$$

To find AM in triangle AMP-

$$
\begin{aligned}
& \frac{A M}{P M}=\frac{\sin P}{\sin A} \\
& \therefore A M=\frac{P M \times \sin P}{\sin A}=P M \times \sin P \times \operatorname{cosec} A
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P} \quad . \quad 96^{\circ} 7^{\prime} 5^{\prime \prime} \mathrm{L} \sin =9.997519 \\
& \text { A ... } 35^{\circ} 20^{\prime} \mathrm{L} \operatorname{cosec}=10.237823 \\
& \text { AM } 1504 \quad \log =\$ 3 \cdot 177350
\end{aligned}
$$

To find M^{\prime} in APM^{\prime} -
Since $\mathbf{P M}=\mathbf{P M}^{\prime}$, angle $\mathrm{PMMI}^{\prime}=$ angle $\mathrm{PM}^{\prime} \mathbf{i I}$
Hence $\mathbf{M}^{\prime}=180-\mathbf{M}^{\prime}$

$$
\begin{aligned}
\mathrm{A} & =131^{\circ} 27^{\prime} 5^{\prime \prime} \\
\mathbf{M}^{\prime}+\mathrm{A} & =\overline{166} \frac{475}{180} \\
\mathbf{P} & =\overline{131255}
\end{aligned}
$$

To find AM^{\prime} in triangle APMI^{\prime} -

$$
\begin{aligned}
\frac{A M^{\prime}}{\overline{P_{M}^{\prime}}} & =\frac{\sin \mathbf{P}}{\sin A} \\
\therefore A M^{\prime} & =\frac{P M^{\prime} \times \sin P}{\sin \mathbf{A}}=\mathrm{PM}^{\prime} \times \sin \mathrm{P} \times \operatorname{cosec} \mathbf{A}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llr}
\mathrm{PM}^{\prime} & \cdots & \quad{ }^{\prime} \quad 875 \log = \\
\mathbf{P} & \cdots & 2942008 \\
\mathrm{~A} & \cdots & 13^{\circ} 12^{\prime} 55^{\prime \prime} \mathrm{L} \sin =9.359096 \\
& \cdots & 35^{\circ} 20^{\prime} \mathrm{L} \operatorname{cosec}=10.237823
\end{array} \\
& \mathrm{AM}^{\prime} \quad . . . \quad \text {... } 345 \cdot 9 \quad \log =22.538927 \\
& \text { Ans. } \mathrm{M}=48^{\circ} 32^{\prime} 55^{\prime \prime}, \mathrm{P}=96^{\circ} 7^{\prime} 5^{\prime \prime}, \mathrm{AM}=1504 \\
& \text { or } 131275 \text {; or } 131255 \text {, or } 345.9
\end{aligned}
$$

Case II.-Given three sides, to find the angles. The half sum of the three sides is denoted by the letter s. If ABC is a triangle, the formula for finding an angle is-

$$
\cos \frac{\mathrm{A}}{2}=\sqrt{\frac{s \cdot(8-\mathrm{BC})}{\mathrm{AB} \cdot \mathrm{AC}}}
$$

$$
\text { where } s=\frac{1}{2}(\mathrm{AB}+\mathrm{AC}+\mathrm{BC})
$$

This is proved in any "Trigonometry," and may be expressed in writing thus-

Cosine of half an angle is equal to the square root of the amount obtained by dividing the product of the half sum of sides and the remainder by the product of the sides which contain the angles.

The remainder is obtained by subtracting the side opposite the angle required from the half sum of the sides.

Fxample 4.-Given $\mathrm{AB}=362, \mathrm{BC}=314, \mathrm{AC}$

Fig. 52. $=276$. Solve.

Graphical Solution.-Draw a horizontal line AB in length $=\frac{362}{300}$ inch $=1.21$ inch. With centre A, radius $=\frac{276}{300}=.92$ inch, describe an arc, and with centre \mathbf{B}, radius $=304=1.05$ inch, describe another arc cutting first arc in C . Then ABC is the triangle.

	asu	$57{ }^{10}$
B	,	$47{ }^{1}$
C	,"	4°

Trigonometrical Solution.-To find $\mathrm{C}-$

$$
\begin{aligned}
& \cos \frac{\mathrm{C}}{2}=\sqrt{\frac{s \cdot(s-\mathrm{AB})}{\mathrm{AC} \cdot \mathrm{BC}}} \\
& \mathrm{AB}=362 \\
& \mathrm{AC}=276 \quad \ldots \quad \text {... } \log 2.440909 \\
& \mathrm{BC}=314 \quad \ldots \quad \text {... } \log 2496930 \\
& \text { 2) } 952 \\
& \begin{array}{rlll}
s=476 & \log & 2 \cdot 677607 \\
s-\mathrm{AB} & =114 & \log & 2 \cdot 056905
\end{array} \\
& \begin{aligned}
24 \cdot 734512 \\
4.937839
\end{aligned} \quad \overline{4.937839} \\
& \text { 2) } \overline{19 \cdot 796673} \\
& 37^{\circ} 41^{\prime} 37^{\prime \prime} \mathrm{L} \cos =9 \cdot 898336 \\
& 2 \\
& \mathrm{C}=75 \quad 2314
\end{aligned}
$$

Again, to find B -

$$
\cos \frac{\mathrm{B}}{2}=\sqrt{\frac{s \cdot(s-\mathrm{AC})}{\mathrm{AB} \cdot \mathrm{BC}}}
$$

$\mathrm{AB}=362$...	$\log =2 \cdot 558709$
$\mathrm{BC}=314$	$\log =2 \cdot 496930$
$s=476$	$\log =2 \cdot 677607$	
$s-\mathrm{AC}=200$	$\log =2 \cdot 301030$	
	24.978637	$5 \cdot 055639$
	5•055639	
	2)19.922998	

$$
\begin{aligned}
& \begin{array}{c}
23^{\circ} 46^{\prime} 15^{\prime \prime} \\
2
\end{array} \\
& \mathrm{~B}= \\
& \mathrm{A}=173230 \\
& \mathrm{~A}=180^{\circ}-(\mathrm{B}+\mathrm{C})=180^{\circ}-122^{\circ} 55^{\prime} 44^{\prime \prime}=57^{\circ} 4^{\prime} 16^{\prime \prime} \\
& \text { Ans. } \mathrm{A}=57^{\circ} 4^{\prime} 16^{\prime \prime} ; \mathrm{B}=47^{\circ} 32^{\prime} 30^{\prime \prime} ; \mathrm{C}=75^{\circ} 23^{\prime} 14^{\prime \prime} .
\end{aligned}
$$

Case III.-Given two sides and the contained angle; to solve the triangle. The solution depends on the following property. In any triangle, the tangent of half the difference of two angles bears the same ratio to the tangent of half the sum of the same two angles as the difference of the sides opposite the angles bears to the sum of the same sides.

This is expressed as a formula, thus-
and since-

$$
\begin{aligned}
& \tan \frac{1}{2}(A-B) \\
& \tan \frac{1}{2}(A+B)=\frac{B C-A C}{B C+A C} \\
& \therefore \tan \frac{A-B}{2}=\frac{B C-A C}{B C+A C} \cdot \tan \frac{A+B}{2} \\
& \frac{A+B}{2}=90-\frac{C}{2} \\
& \therefore \tan \frac{A+B}{2}=\cot \frac{C}{2}
\end{aligned}
$$

and the formula used for the solution reduces to-

$$
\tan \frac{A-B}{2}=\frac{B C-A C}{\overline{B C}+A C} \cdot \cot \frac{C}{2}
$$

Example 5.-Given $\mathrm{BC}=145^{\circ} 5, \mathrm{AC}=98^{\circ} 1$, and $\mathrm{C}=87^{\circ} 20^{\prime}$. Solve the triangle.

Graphical Solution.-Draw a horizontal line BC $=1.46$ inch ; at C make angle $=87^{\circ} 20^{\prime}$ by drawing $\mathrm{CA}=\frac{98 \cdot 1}{100}=\cdot 98$ inch long.

Measure $\mathrm{A}=58^{\circ}$
" $\quad \mathbf{B}=35^{\circ}$
" $\mathrm{AB}=1.71$ inch $=171$

Fig, 53.

Trigonometrical Solution.-

$$
\frac{A+B}{2} \ldots \quad \cdots \quad 46 \quad 20 \quad 0
$$

$$
\begin{array}{llllll}
\text { A } & \ldots & \ldots & 57 & 51 & 20
\end{array}
$$

$$
\begin{array}{llllll}
\mathrm{B} & \ldots & \ldots & 34 & 48 & 40
\end{array}
$$

To find AB -

Art. 16.--The proofs of the rules used in the two last cases are inserted here for the benefit of any student who may not have a "Trigonometry" handy.

To express the cosine of an angle in terms of the sides.-

Fig. 54.

Fig. 55.

Let $A B C$ be a triangle; one figure represents B acute, the other B obtuse. Draw CD at right angles to AB or AB produced.

By Euclid II. 13 and 12-
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{AB} \cdot \mathrm{BD}$ or $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{AB} \cdot \mathrm{BD}$ using small letters for sides and observing that-

$$
\begin{aligned}
& \frac{A B}{A C}=\frac{\sin C}{\sin B} \\
& \therefore \mathrm{AB}=\frac{\mathrm{AC} \times \sin \mathrm{C}}{\sin \mathrm{~B}}=\mathrm{AC} \times \sin \mathrm{C} \times \operatorname{cosec} \mathrm{B} \\
& \mathrm{AC} \quad \ldots \quad \text {... } \ldots 981 \quad \log =1.991669 \\
& \text { C } \quad . . . \quad . . \quad 87^{\circ} 20^{\prime} \mathrm{L} \sin =9.999529 \\
& \text { B } \quad . . . \quad 34^{\circ} 48^{\prime} 40^{\prime \prime} \text { L cosec }=10 \cdot 243461 \\
& \mathrm{AB} \quad . . \quad \text {... } \quad 171 \cdot 7 \quad \log =2 \cdot 234659 \\
& \text { Ans. } \mathrm{A}=57^{\circ} 51^{\prime} 20^{\prime \prime} ; \mathrm{B}=34^{\circ} 48^{\prime} 40^{\prime \prime} ; \mathrm{AB}=171{ }^{\prime} 7 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A+B}{2}=90^{\circ}-\frac{C}{2} \\
& =90^{\circ}-43^{\circ} 40^{\prime} \\
& =46^{\circ} 20^{\prime} \\
& \tan \frac{\mathrm{A}-\mathrm{B}}{2}=\frac{\mathrm{BC}-\mathrm{AC}}{\mathrm{BC}+\mathrm{AC}} \cdot \cot _{\frac{\mathrm{C}}{2}} \\
& =\frac{145 \cdot 5-98 \cdot 1}{145 \cdot 5+98 \cdot 1} \cdot \cot 43^{\circ} 40^{\prime} \\
& =\frac{47 \cdot 4}{243 \cdot 6} \cdot \cot 43^{\circ} 40^{\prime} \\
& \mathrm{BC}-\mathrm{AC} \quad \ldots \quad \ldots \quad 47 \cdot 4 \quad \log =1 \cdot 675778 \\
& \frac{\mathrm{C}}{2} \quad \ldots \quad \ldots \quad \ldots 43^{\circ} 40^{\prime} \mathrm{L} \cot =\underline{10.020220} \\
& 11 \cdot 695998 \\
& \mathrm{BC}+\mathrm{AC} \quad \ldots \quad \text {... } 243.6 \quad \log =2 \cdot 386677 \\
& \frac{\mathrm{~A}-\mathrm{B}}{2} \ldots \quad \ldots \quad 11^{\circ} 31^{\prime} 20^{\prime \prime} \mathrm{L} \tan =\overline{9 \cdot 309321}
\end{aligned}
$$

$\frac{\mathrm{BD}}{\mathrm{BC}}=\cos \mathrm{B}$
$\therefore \mathrm{BD}=\mathrm{BC} \cdot \cos \mathrm{B}=a \cdot \cos \mathrm{~B}$

$$
\text { also } \begin{aligned}
\frac{\mathrm{BD}}{\mathrm{BC}} & =\cos \mathrm{CBD} \\
\therefore \mathrm{BD} & =\mathrm{BC} \cdot \cos \mathrm{CBD} \\
& =-a \cdot \cos \mathrm{~B}
\end{aligned}
$$

Insert these values for BD -
$\therefore b^{2}=c^{2}+a^{2}-2 c a \cos \mathrm{~B} \quad$ or $b^{2}=c^{2}+a^{2}-2 c . a \cos \mathrm{~B}$
Hence$\cos \mathrm{B}=\frac{c^{2}+a^{2}-b^{2}}{2 c a}$
Similarly for $\cos \mathrm{A}$ and $\cos \mathrm{C}$.

Now-

$$
\text { To show that } \cos \frac{\mathrm{A}}{2}=\sqrt{\frac{s \cdot(s-a)}{b c}}
$$

$$
\begin{aligned}
\cos \mathrm{A} & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
1+\cos \mathrm{A} & =1+\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{2 b c+b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{(b+c)^{2}-a^{2}}{2 b c} \\
& =\frac{(b+c+a)(b+c-a)}{2 b c}
\end{aligned}
$$

Let $s=\frac{1}{2}(b+c+a)$;

$$
\text { then } s-a=\frac{1}{2}(b+c-a)
$$

Hence-

$$
1+\cos \mathrm{A}=\frac{2 s \cdot \mathscr{2}(s-a)}{\mathscr{2 b c}}
$$

or-

$$
\begin{aligned}
& 2 \cos ^{2} \frac{\mathrm{~A}}{2}=\frac{2 s(s-a)}{b c} \\
& \therefore \cos \frac{\mathrm{~A}}{2}=\sqrt{\frac{s(s-a)}{b c}} .
\end{aligned}
$$

Again-
To show that $\tan \frac{\mathrm{A}-\mathrm{B}}{2}=\frac{a-b}{a+b} \cdot \tan \frac{\mathrm{~A}+\mathrm{B}}{2}$.
Since-

$$
\frac{\sin \mathrm{A}}{\sin \mathrm{~B}}=\frac{a}{b}
$$

$$
\therefore \frac{\sin \mathrm{A}}{\sin \mathrm{~B}}+1=\frac{a}{b}+1 . \cdots \mathrm{I} .
$$

or-
and-

$$
\frac{\sin \mathrm{A}+\sin \mathrm{B}}{\sin \mathrm{~B}}=\frac{a+b}{b}
$$

$$
\frac{\sin \mathrm{A}}{\sin \mathrm{~B}}-1=\frac{a}{b}-1
$$

or-

$$
\frac{\sin \mathrm{A}-\sin \mathrm{B}}{\sin \mathrm{~B}}=\frac{a-b}{b}
$$

Divide II. by I.

$$
\text { Hence- } \frac{\sin A-\sin B}{\sin A+\sin B}=\frac{a-b}{a+b}
$$

$$
\frac{2 \cos \frac{\mathrm{~A}+\mathrm{B}}{2} \cdot \sin \frac{\mathrm{~A}-\mathrm{B}}{2}}{2 \sin \frac{\mathrm{~A}+\mathrm{B}}{2} \cdot \cos \frac{\mathrm{~A}-\mathrm{B}}{2}}=\frac{a-b}{a+b}
$$

$$
\therefore \tan \frac{\mathrm{A}-\mathrm{B}}{2}=\frac{a-b}{a+b} \cdot \tan \frac{\mathrm{~A}+\mathrm{B}}{2}
$$

Exercises.-Oblique-angled Plane Triangles.

If ABC be any triangle, complete the solution in the following cases :-

1. $a=1056, b=359, c=1267$.
2. $a=364, b=217, c=494$.
3. $a=96, b=80, c=63$.
4. $\mathrm{A}=37^{\circ} 54^{\prime}, \mathrm{B}=74^{\circ} 25^{\prime}, a=104 \cdot 6$.
5. $\mathrm{B}=14^{\circ} 20^{\prime}, \mathrm{C}=101^{\circ} 13^{\prime}, b=296$.
6. $\mathrm{A}=97^{\circ} 34^{\prime}, \mathrm{C}=50^{\circ} 16^{\prime}, \mathrm{c}=16$.
7. $a=6954, b=4865, \mathrm{C}=39^{\circ} 40^{\prime}$.
8. $a=267, c=341, \mathrm{~B}=68^{\circ} 46^{\prime}$.
9. $b=61, c=49, \mathrm{~A}=97^{\circ} 18^{\prime}$.
10. $a=865, b=742, \mathrm{~A}=52^{\circ} 26^{\prime}$.
11. $b=469, c=348, \mathrm{C}=39^{\circ} 4^{\prime}$.
12. $a=1065, c=897, \mathrm{~A}=49^{\circ} 36^{\prime}$.
13. $a=587, b=925, \mathrm{~A}=21^{\circ} 23^{\prime}$.
14. $a=7, b=8, c=9$.
15. $a=600, b=500, c=1000$.
16. $a=50, b=60, c=70$.
17. $\mathrm{A}=18^{\circ} 20^{\prime}, \mathrm{B}=150^{\circ}, b=10,000$.
18. $\mathrm{A}=78^{\circ} 40^{\prime}, \mathrm{C}=39^{\circ} 55^{\prime}, c=135$.
19. $b=237 \cdot 09, c=130 \cdot 96, A=57^{\circ} 59^{\prime}$.
20. $c=2265{ }^{\circ} 4, a=1779, \mathrm{~B}=58^{\circ} 1^{\circ}{ }^{\prime}$.
21. $u=1300, b=500, \mathrm{~A}-\mathrm{B}=30^{\circ} 22^{\prime}$.
22. $a=1586 \cdot 6, b=5374 \cdot 5, \mathrm{~A}=15^{\circ} 11^{\prime}$.
23. $a=200, b=300, \mathrm{~A}=35^{\circ} 15^{\prime}$.
24. The angular elevation of a tower at a place \mathbf{A} due south of it is 45°, and at a place B , due west of A , the elevation is $30^{\circ} ; \mathrm{AB}=300 \mathrm{ft}$. Find height of tower.
25. AB is a line 250 ft . long, in the same horizontal plane as the foot D of a tower CD ; the angles DAB and DBA are respectively $61^{\circ} 23^{\prime}$ and $47^{\circ} 14^{\prime}$; the angle of elevation CAD is $34^{\circ} 50^{\prime}$. Find height of tower.

Miscellaneous Problems.

1. The difference between the base and perpendicular of a right-angled triangle is one-fifth of their sum. Find the angles.
2. P and Q are two stations 1000 yards apart on a straight stretch of seashore which bears east and west. At P a rock bears S. $42^{\circ} \mathrm{W}$., at Q it bears $\mathbf{S} .35^{\circ} \mathbf{E}$. Find distance of rock from shore.
3. A person on a ship, which is sailing on a straight course observes two lighthouses, one of which, L, is due north of the other, M. When \mathbf{M} is due
east, L bears 45° to the east of north, and when L is due east, M bears 60° to the east of south. Find direction of ship's course.
4. AB is a vertical pole 50 feet high, A being above $\mathrm{B} ; \mathrm{BC}$ is inclined upward at an angle of 20° to the horizontal line, BD , so that ABC is an angle of 70°; the shadow of AB on BC is 50 feet long. If the shadow fell on BD , what would be its length ?
5. From the top of a vertical cliff 100 ft . high, forming one bank of a river, the angles of depression of the top and bottom of a vertical cliff, which forms the opposite bank of the river, are $28^{\circ} 40^{\prime}$ and $64^{\circ} 30^{\prime}$ respectively. Find height of opposite cliff and width of river.
6. The summit of a spire is vertically over the middle point of a horizontal square enclosure, side $=1000 \mathrm{ft}$. When the shadow of the spire just reaches a corner of the square the altitude of the sun is $27^{\circ} 29^{\prime} 50^{\prime \prime}$. Find height of spire.
7. A tower near the coast is 197 feet high. From a rock the angle of elevation of the top of the tower is $8^{\circ} \mathbf{1 5}^{\prime}$. A ship steams so as to clear the rock by 1.5 cables. What is the angle of elevation of tower from ship?
8. At two boats 600 yds. apart, the angles of elevation of a hydroplane flying directly between the boats are observed to be 57° and $65^{\circ} 30^{\prime}$. Find the height of the hydroplane.
9. Two ships, A and B, leave harbour together. A sails $S .12^{\circ} \mathrm{W}$. at a rate of 10.5 knots, and $\mathrm{B} \mathrm{S}. 67^{\circ}$ E. at 8 knots. How far apart will they be in 21 hours, and what will be the bearing of A from B ?
10. From a ship the bearings of two objects, A and B, are $N .30^{\circ}$ E., and N. $20^{\circ} \mathrm{W}$. After the ship has sailed 5 miles due N., the bearings are N. $60^{\circ} \mathrm{E}$. and N. $40^{\circ} \mathrm{W}$. Find distance and bearing of A from B.
11. The foot, Q, of a tower and two stations, A and B, are in the same horizontal plane. The angular elevation of the tower at A is 60°, and at B is 45°, the distance from A to B is 100 feet, and the angle AQB is 60°. Find height of tower.
12. From P the bearing and distance of A is NE. 5 miles, and of B, S. $70^{\circ} \mathrm{E}$. From Q, due east of P, the bearing of A is $\mathrm{N} .25^{\circ} \mathrm{E}$. If B is due south of A, what is the bearing of B from Q ?
13. The hypotenuse of a right-angled triangle is 1000 feet long, and the difference between the other two sides is 240 feet: calculate the other sides and angles.
14. The height of a tower is 67.375 yds . At P , which is 5.35 yds . above the level of its base, the angle subtended by the tower is $74^{\circ} 40^{\prime}$. Find the angle of elevation of the top of the tower as seen from P, and horizontal distance of P from tower.

CHAPTER V.

SOLUTION OF SPHERICAL TRIANGLES.

Art. 17.-A spherical triangle is a portion of the surface of a sphere bounded by arcs of three great circles, and, like a plane triangle, has three sides and three angles. The sides, being ares of circles, are measured like angles, in degrees, minutes, and seconds (${ }^{\prime \prime}{ }^{\prime \prime}$).

When one of the angles is 90°, the triangle is right-angled; when one side is 90°, it is quadrantal; and when no side or angle is 90°, it is an oblique-angled triangle.

Unlike a plane triangle, a spherical triangle may have two or three right angles, or one, two, or three sides of 90°, but no angle or side can be as much as 180°.

The sum of any two sides is greater than the third side.
The sum of the three angles of a spherical triangle is always more than 180°, but less than 540°, and the sum of the three sides is less than 360°.

The greater angle is opposite to the greater side, as in plane triangles.

The angles at the base of an isosceles triangle are equal, as in plane triangles.

Art. 18. Solution of Right-angled Spherical Triangles.-Here one of the given parts is the right angle; any other two parts being given, the triangle can be solved. In order to simplify the solution, instead of using the five remaining parts of the triangle, Napier devised rules which refer only to his "Circular Parts."

Napier's Circular Parts.-These are five in number, and are the two sides which contain the right angle, the complement of the hypotenuse, and the complements of the two

Fig. 56. angles. Thus in triangle ABC, right-angled at A, the circular parts are-

AB ; AC ; Co. C; Co. BC; Co. B
These are split into three groups, consisting of 1 middle, 2 adjacents, 2 opposites.
Any part may be taken as middle.

Thus-

Midde,	Adjacents.	Opposites.
AC	AB; co. C	Co. B; co. $\mathbf{B O}$
$\underset{\text { Co. }}{\text { Co. }}$	$\mathrm{AC}^{\mathrm{AC}}$ co. BC	Co. $\mathrm{B} ; \mathrm{AB}$

Napier's Rules.-

I. Sine mid part $=$ tangents of adjacents multiplied.
II. Sine mid part $=$ cosines of opposites multiplied.

Each of these rules connects three parts. When used it must be arranged that two are given parts; also that the given parts are the only ones used to find the others. To do this, always start by considering whether the given parts are adjacents or opposites; then take as middle each given part in succession, and use the Rule which will connect the given parts.

Hence

$$
\begin{aligned}
\sin \mathrm{AC} & =\tan \mathrm{AB} \cdot \tan \operatorname{co} \cdot \mathrm{C} \\
& =\tan \mathrm{AB} \cdot \cot \mathrm{C} \\
\text { and } \sin \mathrm{AC} & =\cos \mathrm{co} \mathrm{\cdot} \cdot \cos \operatorname{co} \cdot \mathrm{BC} \\
& =\sin \mathrm{B} \cdot \sin \mathrm{BC} \\
\sin \operatorname{co} \cdot \mathrm{BC} & =\tan \operatorname{co} \cdot \mathrm{B} \cdot \tan \operatorname{co} \cdot \mathrm{C} \\
\text { or } \cos \mathrm{BC} & =\cot \mathrm{B} \cdot \cot \mathrm{C} \\
\text { and } \sin \operatorname{co\cdot } \mathrm{BC} & =\cos \mathrm{AB} \cdot \cos \mathrm{AC} \\
\text { or } \cos \mathrm{BC} & =\cos \mathrm{AB} \cdot \cos \mathrm{AC}
\end{aligned}
$$

Again

Art 19.-Hints on construction of Spherical Triangles.
Draw a circle as a primitive, with radius of sphere, we shall use one inch; but the larger the radius the better the result will be; with the Gunter rule it would be two inches.

Let C be the centre, then any diameter drawn will represent a great circle at right angles to the primitive: thus ACB (Fig. 57) is a right circle.

Draw DCE at right angles to AB. Then D and E are the Poles of ACB. The centres of all oblique circles through A and B lie on the line DCE. Thus with any centre F and radius FA describe an are of a circle, then

Fig. 57. AGB is an oblique circle. To find its pole, join BG and produce to b, make be equal to $\mathrm{EA}\left(90^{\circ}\right)$, join $e \mathrm{~B}$ cutting DE in P : then P is the pole of AGB.
N.B.-Great circles at right angles to AGB must pass through its pole P.

Hence great circles can be drawn through a point on or within the primitive, or through two points, one on, the other
inside the primitive. Thus in Fig. 58 let A and B be two points, A on, and B inside. Draw diameter $A C D$, and a line through C , as CO , at right angles. Join AB , and bisect it by a line cutting CO in X. Then X is centre of great circle through A and B.

If an oblique circle is to be drawn through any two points inside the primitive as through A and B, Fig. 59, proceed

Fie. 58.

Fig. 59.
thus-Draw diameter AC, and CD through C at right angles to AC. Join AD, make ADE a right angle, cutting AC in E: join AB, BE, bisect these by lines at right angles intersecting in F . F will be the centre for describing oblique circle required.

To draw a great circle at right angles to a given oblique circle through a given point, first find the pole of the given oblique circle; then by the preceding examples draw a great circle through the given point and this pole; this will be at right angles to the given oblique circle, the given point may be either on the primitive, or on the oblique circle.

A great circle is drawn making a given angle with the primitive (say 35°) through a given point as follows:-

From centre with radius $=\tan 35^{\circ}$ describe a small are, and with given point as centre and radius $=\sec 35^{\circ}$: draw another arc, this intersects the first arc at the centre from which the great circle is to be drawn with sec 35° as radius.
N.B.-With a radius of one inch, the tan and sec of any angle may be obtained from the traverse table thus-Take angle (say 35°) as course and radius (1.00) in lat. col., then sec ($1 \cdot 22$) is found in dist. col. and $\tan (0.7)$ in dep. col., the semi-tangent $=$ tangent of half the angle $=0.31$. In Fig. 60, A is given point, and o is centre of required great circle.

If $a \mathrm{C}$ be drawn as a diameter, the arc $a b$ measures the angle: $\mathrm{C} \alpha=0.52$; in traverse table find 1 in lat. 0.52 in dep.; angle $=27 \frac{1}{2}^{\circ}$, hence $\mathrm{C} a$ on scale of semi-tangents $=55^{\circ}$, or $a b=35^{\circ}$.

A small circle parallel to the primitive and at any distance from it is drawn from the centre of primitive, with radius $=$ semi-tangent of complement of required distance.

A small circle through any point parallel to a right circle at a given distance is drawn thus: let A be given point, and 35° given distance; then with sec (Co. 35°), that is sec 55°, as radius sweep an arc from centre C, where this are intersects an arc drawn from A as centre and $\tan 55^{\circ}$ as radius is the centre for describing the small circle (Fig. 61).

On scale-

$$
\text { Sec } 55^{\circ}=1 \cdot 74^{\prime \prime}
$$

$\operatorname{Tan} 55^{\circ}=1 \cdot 43^{\prime \prime}$.

Fig. 60.

Fig. 61.

To measure any arc of an oblique circle, say arc AB (Fig. 62).
Find pole P of oblique circle, join PA, PB, and produce to meet primitive in α and b, then $a b$ measured on the scale of chords is the length of $A B$.

Similarly, to measure an angle at the intersection of two great circles, first find their poles, join the point of intersection of the

Fig. 62.

Fio. 63.
circles by lines passing through the poles, and produced to cut the primitive. The measure of this arc of the primitive on the scale of chords is the measure of the angle.

Example 1.-Given $\mathrm{A}=64^{\circ} 30^{\prime}, \mathrm{B}=56^{\circ} 26^{\prime}, \mathrm{C}=90^{\circ}$. Solve.
Construction (Fig. 63).-Draw primitive, AD and EF, diameters at right angles. At A make angle of $64^{\circ} 30^{\prime}$ with primitive, centre of circle is on EF produced, radius $=\sec 64^{\circ} 30^{\prime}=2 \cdot 32$. Find pole a of circle ACD. Then
with N as centre and radius $=$ semi-tangent of angle $\mathrm{B} 56^{\circ} 25^{\prime}=0.53$ describe an arc cutting ACD in b, this point is pole of circle required. Draw diameter $b \mathbf{N}$ and BG at right angles. Since \mathbf{C} is to be a right angle, the circle drawn through $\mathrm{B} a \mathrm{G}$ is one required ; this cuts ACD at C . ABC is triangle.

By measurement $\mathrm{AB}=71^{\circ}$

$$
\begin{aligned}
& \mathrm{BC}=60^{\circ} \\
& \mathrm{AC}=51^{\circ}
\end{aligned}
$$

Calculation.-Here the given parts are opposites. We thercfore use co. A with its opposites, and then co. B with its opposites. Finally, to find AB, we use adjacents.

Fig. 64.

Example 2.-Given $\mathrm{A}=90^{\circ}, \mathrm{B}=117^{\circ}$ $20^{\prime}, \mathrm{BC}=113^{\circ} 40^{\prime}$. Solve.

Construction (Fig. 64).-Draw primitive, diameters BD and EF at right angles. At B make an angle $117^{\circ} 20^{\prime}$ with primitive; sec $=2.21$ as radius, draw circle BAD, find its pole b. Make $\mathrm{BC}=113^{\circ} 40^{\prime}$, through C draw diameter CG and through $\mathrm{C} b \mathrm{G}$ describe a circle cutting BAD in A. Then ABC is triangle. Pole of $\mathrm{C} b \mathrm{G}$ is at a.

By measurement
radius for $\mathrm{CbG}=1.63=$ sec. $52^{\circ} \mathrm{C}=52^{\circ}$

$$
\begin{aligned}
& \mathrm{AB}=45^{\circ} \\
& \mathrm{AC}=127^{\circ}
\end{aligned}
$$

Calculation.-Here the given parts are adjacents. We therefore use co. B with its adjacents ; then co. BC with its adjacents. Lastly, to find AC, we use opposites.

$$
\begin{aligned}
\operatorname{Sin}(\operatorname{co.} \cdot \mathrm{B}) & =\tan \mathrm{AB} \cdot \tan (\cos \cdot \mathrm{BC}) \\
\operatorname{or~} \cos \mathrm{B}_{+}^{+} & =\tan \mathrm{AB} \cdot \cot \mathrm{BC} \\
\therefore \tan ^{+} \mathrm{AB} & =\frac{\cos \mathrm{B}}{\cot \mathrm{BC}}=\cos \mathrm{B} \cdot \tan \mathrm{BC} \\
\text { Again, } \sin (\operatorname{co.} \mathrm{BC}) & =\tan (\operatorname{co\cdot } \cdot \mathrm{B}) \cdot \tan (\operatorname{co} \cdot \mathrm{C}) \\
\text { or } \cos \mathrm{BC} & =\cot \mathrm{B} \cdot \cot _{\mathrm{C}}^{+} \\
\therefore \cot ^{+} \mathrm{C} & =\frac{\cos \mathrm{BC}}{\cot \mathrm{~B}}=\cos \mathrm{BC} \cdot \tan ^{-} \mathrm{B} . \\
\text { And } \sin ^{+} \mathrm{AC} & =\cos (\operatorname{co} \cdot \mathrm{B}) \cdot \cos (\operatorname{co} \cdot \mathrm{BC}) \\
& =\sin ^{+} \mathrm{B} \cdot \sin ^{+} \mathrm{BC} .
\end{aligned}
$$

$$
\begin{array}{rlrl}
\mathrm{B}=117^{\circ} 20^{\prime} & \cos =9 \cdot 661970 & \tan =10.286614 & \sin =9.948584 \\
\mathrm{BC}=11340 & \tan =10.358253 & \cos =9.603594 & \sin =9 \cdot 961846 \\
46^{\circ} 20^{\prime} 1^{\prime \prime} \operatorname{tanl} & =\overline{10.020223} & \\
52^{\circ} 9^{\prime} 59^{\prime \prime} \cot =\overline{9.890208} & 54^{\circ} 27^{\prime} 10^{\prime \prime} \sin =\overline{9.910430}
\end{array}
$$

In the case of AB and C , notice that they are marked + , so these angles are in the first quadrant, and the values are those obtained direct from the tables; in the case of AC, which is marked + , the value might be the tabular value or its supplement. As angle B opposite to it exceeds 90°, use the supplement.

$$
\text { Ans. } \mathrm{AB}=46^{\circ} 20^{\prime} 1^{\prime \prime} ; \mathrm{C}=52^{\circ} 9^{\prime} 59^{\prime \prime} ; \mathrm{AC}=125^{\circ} 32^{\prime} 50^{\prime \prime}
$$

Art 20.—In solving these triangles, observe-

1. Angles and opposite sides are of the same affection, that is, are both over, or both under, 90°.
2. The hypotenuse is under 90° when the angles or sides are of the same affection.

The hypotenuse is over 90° when the angles or sides are of contrary affection.
3. When an angle and opposite side are given, the triangle admits of two solutions; this is called the Ambiguous case, and may be understood from the following figure. Let AOB and AMB be two ares of great circles intersecting at A and B. The angles at A and B are equal, and each arc is a semi-circle. Now let OM, another great circle arc, he drawn at right angles to AMB. Thus we have two right-angled triangles

Fig. 65. $A O M$ and BOM, in which angle A and arc $O M$ are equal to angle B and arc $O M$. Hence with angle $=\mathrm{A}$ and arc $=\mathrm{OM}$ given, there is nothing to indicate which of the triangles AOM or BOM is the required one.

Exercises.-Right-angled Spherical Triangles.

Solve the following triangles :-

1. $\mathrm{C}=90^{\circ}, \mathrm{AC}=65^{\circ} 12^{\prime}, \mathrm{BC}=51^{\circ} 36^{\prime}$.
2. $\mathrm{A}=78^{\circ} 11^{\prime}, \mathrm{B}=39^{\circ} 49^{\prime}, \mathrm{C}=90^{\circ}$.
3. $\mathrm{AB}=84^{\circ} 13^{\prime}, \mathrm{BC}=61^{\circ} 44, \mathrm{C}=90^{\circ}$.
4. $\mathrm{AB}=79^{\circ} 27^{\prime}, \mathrm{A}=51^{\circ} 30^{\prime}, \mathrm{C}=90^{\circ}$.
5. $\mathrm{BC}=32^{\circ} 51^{\prime}, \mathrm{B}=56^{\circ} 17^{\prime}, \mathrm{C}=90^{\circ}$.
6. $\mathrm{BC}=54^{\circ} 37^{\prime}, \mathrm{A}=67^{\circ} 53^{\prime}, \mathrm{C}=90^{\circ}$.
7. $\mathrm{B}=90^{\circ}, \mathrm{AB}=70^{\circ} 29^{\prime}, \mathrm{BC}=102^{\circ} 38^{\prime}$.
8. $\mathrm{B}=90^{\circ}, \mathrm{AB}=110^{\circ} 17^{\prime}, \mathrm{BC}=98^{\circ} 46^{\prime}$.
9. $\mathrm{B}=90^{\circ}, \mathrm{C}=114^{\circ} 51^{\prime}, \mathrm{A}=67^{\circ} 32^{\prime}$.
10. $\mathrm{B}=90^{\circ}, \mathrm{C}=92^{\circ} 31^{\prime}, \mathrm{A}=118^{\circ} 44^{\prime}$.
11. $\mathrm{B}=90^{\circ}, \mathrm{AC}=107^{\circ} 19^{\prime}, \mathrm{AB}=69^{\circ} 8^{\prime}$.
12. $\mathrm{B}=90^{\circ}, \mathrm{AC}=88^{\circ} 36^{\prime}, \mathrm{BC}=101^{\circ} 25^{\prime}$.
13. $\mathrm{A}=90^{\circ}, \mathrm{AB}=97^{\circ} 20^{\prime}, \mathrm{BC}=94^{\circ} 13^{\prime}$.
14. $\mathrm{A}=90^{\circ}, \mathrm{BC}=113^{\circ} 10^{\prime}, \mathrm{C}=74^{\circ} 32^{\prime}$.
15. $\mathrm{A}=90^{\circ}, \mathrm{BC}=83^{\circ} 12^{\prime}, \mathrm{C}=98^{\circ} 15^{\prime}$.
16. $\mathrm{A}=90^{\circ}, \mathrm{AB}=95^{\circ} 52^{\prime}, \mathrm{B}=76^{\circ} 13^{\prime}$.
17. $\mathrm{A}=90^{\circ}, \mathrm{AC}=106^{\circ} 27^{\prime}, \mathrm{C}=94^{\circ} 8^{\prime}$.
18. $\mathrm{A}=90^{\circ}, \mathrm{AB}=114^{\circ} 22^{\prime}, \mathrm{C}=108^{\circ} 19^{\prime}$.

Art. 21. Solution of Oblique-angled Spherical Triangles.-The object of this section is to give the student an insight into the solution of those triangles which refer particularly to the ordinary problems of Nautical Astronomy. Two cases only will be considered.

CASE I.-Given the three sides, to find the angles.
If ABC be a triangle, where the sides AB, AC, and BC are known.

$$
\text { Let } s=\frac{1}{2}(\mathrm{AB}+\mathrm{AC}+\mathrm{BC}) .
$$

Fio. 66.

$$
\begin{aligned}
\cos \frac{A}{2} & =\sqrt{\frac{\sin s \cdot \sin (s-C B)}{\sin \mathrm{AB} \cdot \sin \mathrm{AC}}} \\
\cos \frac{\mathrm{~B}}{2} & =\sqrt{\frac{\sin s \cdot \sin (s-\mathrm{AC})}{\sin \mathrm{AB} \cdot \sin \mathrm{BC}}} \\
\cos \frac{\mathrm{C}}{2} & =\sqrt{\frac{\sin s \cdot \sin (s-\mathrm{AB})}{\sin \mathrm{AC} \cdot \sin \mathrm{BC}}}
\end{aligned}
$$

Example 1.-In PQR , given $\mathrm{PQ}=84^{\circ} 30^{\prime}, \mathrm{QR}=108^{\circ} 44^{\prime}, \mathrm{PR}=72^{\circ} 20^{\prime}$. Find the angles.

Construction (Fig. 67).-Draw primitive,

Fig. 67. lay off $\mathrm{PQ}=84^{\circ} 30^{\prime}$. Through P draw diameter, and another $A B$ at right angles. Around P as pole describe small circle $p \mathrm{R} p$ distant $72^{\circ} 20^{\prime}$ from it or $17^{\circ} 40^{\prime}$ from $A B$: the centre for this small circle is on NP produced at distance sec $72^{\circ} 20^{\prime}=3 \cdot 24^{\prime \prime}$ from N , radius $=\tan 72^{\circ} 20^{\prime}=3 \cdot 08^{\prime \prime}$. Through Q draw diameter, and another CD at right angles. Around S as pole describe small circle $q \mathbf{R} q$ distant supplement $108^{\circ} 44^{\prime}$ or $71^{\circ} 16^{\prime}$ from it or $18^{\circ} 44^{\prime}$ from CD : the centre for this small circle is on NS produced at distance sec $71^{\circ} 16^{\prime}$ from N $=3^{\circ} 07^{\prime \prime}$, and radius is $\tan 71^{\circ} 16^{\prime}=2 \cdot 9^{\prime \prime}$. Where these two small circles intersect is R. Through PR and QR draw oblique circles.

PQR is triangle required.
By measurement $\mathrm{QPR}=112^{\circ}$ semi-tangent $=0.19$ or 22°.

$$
\mathrm{PQR}=70^{\circ} \text { semi-tangent }=0.18 \text { or } 20^{\circ} .
$$

"
"

$$
\mathrm{PRQ}=78^{\circ}
$$

Calculation.-

$$
\begin{aligned}
& \cos \begin{array}{l}
\mathrm{P} \\
2
\end{array}=\sqrt{\frac{\sin s \cdot \sin (s-Q R)}{\sin P Q \cdot \sin P R}} \\
& \cos { }_{2}^{2}=\sqrt{\frac{\sin s \cdot \sin (s-P R)}{\sin P Q \cdot \sin Q R}} \\
& \cos \begin{array}{l}
R=\sqrt{2} \\
{ }_{2}=\sqrt{\sin \frac{s i n}{}(s-P Q)}
\end{array}
\end{aligned}
$$

To make all the logs added, "sines" in denominators are changed to their reciprocals "cosecs."

$$
\begin{aligned}
& \text { 2)265 } 34 \\
& s=13247 \sin =9.865653 \sin =9.865653 \sin =9.865653 \\
& s-\mathrm{QR}=243 \sin =9 \cdot 610164 \\
& s-\mathrm{PR}=\begin{array}{lllll}
60 & 27 & \ldots & \ldots & \ldots \\
\text { sin } & =9.939482
\end{array} \\
& s-\mathrm{PQ}=\begin{array}{llllllll}
48 & 17 & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\hline
\end{array} \\
& \text { 2) } 19 \cdot 498802
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ans. } \mathrm{P}=111^{\circ} 40^{\prime} 18^{\prime \prime} ; \mathrm{Q}=69^{\circ} 13^{\prime} 46^{\prime \prime} ; \mathrm{R}=77^{\circ} 37^{\prime} 46^{\prime \prime} \text {. }
\end{aligned}
$$

Case II.-Given two sides and the contained angle. In the above triangle $A B C$, let $A B, B C$ be known and angle B; suppose AB greater than BC. The solution depends on Napier's Analogies.

$$
\begin{aligned}
& \tan \frac{1}{2}(C+A)=\frac{\cos \frac{1}{2}(A B-B C)}{\cos \frac{1}{2}(A B+B C)} \cdot \cot \frac{B}{2} \\
& \tan \frac{1}{2}(C-A)=\frac{\sin \frac{1}{2}(A B-B C)}{\sin \frac{1}{2}(A B+B C)} \cdot \cot \frac{B}{2}
\end{aligned}
$$

These by addition and subtraction determine C and A ; the third side is obtained from Gauss' theorem.

$$
\cos \frac{A C}{2}=\frac{\cos \frac{1}{2}(A B+B C)}{\cos \frac{1}{2}(C+A)} \cdot \sin \frac{B}{2}
$$

Note that the reciprocals of the ratios in the denominators are used to make the logs added, and that the half sum of angles is of the same affection as the half sum of sides.

Example 2.-In XYZ, given XY $=88^{\circ}$ $20^{\prime}, \mathrm{YZ}=60^{\circ} 50^{\prime}$, angle $\mathrm{Y}=75^{\circ} 30^{\prime}$. Solve.

Construction.-Draw primitive, measure on it $\mathrm{YX}=88^{\circ} 20^{\prime}$. Draw the diameter through Y : and $A B$ at right angles to it. At Y make angle with primitive $=75^{\circ} 30^{\prime}$ by drawing oblique circle YZ. Around Y as pole, draw a small circle $a \mathrm{Z} a$ distant $60^{\circ} 50^{\prime}$ from it at distance sec $=2.06^{\prime \prime}$, and radius $\tan =1 \cdot 8^{\prime \prime}$: this cuts the oblique circle in Z.

XYZ is triangle required.

Fig. 68.

By measurement angle $\mathrm{X}=60^{\circ}$
semi-tangent $=0.26$ or 30°
angle $Z=96^{\circ}$
$\mathrm{XZ}=77^{\circ}$
Calculation.-

$$
\begin{aligned}
& \tan \frac{\frac{1}{2}(Z+X)}{}=\frac{\cos \frac{1}{2}(X Y-Y Z)}{\cos \frac{1}{2}(X Y+Y Z)} \cdot \cot \frac{Y}{2} \\
& \tan \frac{1}{2}(Z-X)=\frac{\sin \frac{1}{2}(X Y-Y Z)}{\sin \frac{1}{2}(X Y+Y Z)} \cdot \cot \frac{Y}{2} \\
& \cos \frac{Z X}{2}=\frac{\cos \frac{1}{2}(X Y+Y Z)}{\cos \frac{1}{2}(Z+X)} \cdot \sin \frac{Y}{2}
\end{aligned}
$$

$X Y=88^{\circ} 20^{\prime}$
$\mathrm{YZ}=60 \quad 50$
$X Y+Y Z=14910$
$X Y-Y Z=2730$
$\frac{1}{2}(\mathrm{XY}+\mathrm{YZ})=7435 \mathrm{sec}=10.575385 \operatorname{cosec}=10.015915 \cos =9.424615$
$\frac{1}{2}(X Y-Y Z)=1345 \cos =9.987372 \quad \sin =9.376003$
$\frac{Y}{2}=3745 \cot =10 \cdot 111100 \quad \cot =10 \cdot 111100 \sin =9 \cdot 786906$
$\frac{1}{2}(\mathrm{Z}+\mathrm{X})=78^{\circ} 2^{\prime} 8^{\prime \prime} \tan =10.673857 \quad$ sec $=10.683391$
$\mathcal{V}(Z-X)=173948 \quad . . \quad . . \quad \tan =\overline{9 \cdot 503018}$
$\begin{array}{lc}\mathrm{Z}=\overline{954156} & 38^{\circ} 16^{\prime} 20^{\prime \prime} \cos =\overline{9 \cdot 894912} \\ \mathrm{X}=602220 & 2\end{array}$
$\mathrm{X}=602220$
$76 \quad 3240$
Ans. $\mathrm{X}=60^{\circ} 29^{\prime} 20^{\prime \prime} ; \mathrm{Z}=95^{\circ} 41^{\prime} 56^{\prime \prime} ; \mathrm{XZ}=76^{\circ} 32^{\prime} 40^{\prime \prime}$.

ART. 22.-To express the cosine of an angle of a spherical triangle in terms of the sines and cosines of the sides.

Let O be the centre of the sphere, and PQR a spherical triangle. Let tangent at \mathbf{P} to arc PR meet OR produced in T; and let tangent at P to arc $P Q$ meet $O Q$ produced in S. Join ST. Thus angle TPS is angle P of spherical triangle, and TOS measures the side $R Q$; $S O P$ the side PQ ; and TOP the side PR.

In triangle SPT-

Fig. 69.

$$
\mathrm{ST}^{2}=\mathrm{SP}^{2}+\mathrm{PT}^{2}-2 \mathrm{SP} \cdot \mathrm{PT} \cos \mathrm{P} \cdot . \cdot . \mathrm{I}
$$

Again, in triangle TOS-

$$
\begin{aligned}
\mathrm{ST}^{2} & =\mathrm{SO}^{2}+\mathrm{OT}^{2}-2 \mathrm{SO} . \mathrm{OT} \cos \mathrm{SOT} \\
& =\mathrm{SP}^{2}+\mathrm{PO}^{2}+\mathrm{PT}^{2}+\mathrm{PO}^{2}-2 \mathrm{SO} . O T \cdot \cos \mathrm{RQ}
\end{aligned}
$$

since OPS and OPT are right angles-

$$
=2 \mathrm{PO}^{2}+\mathrm{SP}^{2}+\mathrm{PT}^{2}-2 \mathrm{SO} . \mathrm{OT} \cos \mathrm{RQ} \quad \mathrm{II} .
$$

Subtract I. from II.

$$
\begin{aligned}
\therefore 0 & =2 \mathrm{PO}^{2}+2 \mathrm{SP} \cdot \mathrm{PT} \cos \mathrm{P}-2 \mathrm{SO} \cdot \mathrm{OT} \cos \mathrm{RQ} \\
\text { Hence } \cos \mathrm{RQ} & =\frac{\mathrm{PO}}{O T} \cdot \frac{\mathrm{PO}}{\mathrm{SO}}+\frac{\mathrm{PT}}{\mathrm{OT}} \cdot \frac{\mathrm{SP}}{\mathrm{SO}} \cos \mathrm{P} \\
& =\cos T O P \cdot \cos \mathrm{POS}+\sin \mathrm{TOP} \cdot \sin \mathrm{POS} \cdot \cos \mathrm{P} \\
& =\cos \mathrm{PR} \cdot \cos \mathrm{PQ}+\sin \mathrm{PR} \cdot \sin \mathrm{PQ} \cdot \cos \mathrm{P} .
\end{aligned}
$$

This is the fundamental formula, and, where ABC is the triangle and sides denoted by a, b, c, is expressed-

$$
\cos a=\cos b \cdot \cos c+\sin b \cdot \sin c \cdot \cos A .
$$

The formula used in Case I. is derived from this in the following manner:-

$$
\begin{aligned}
\cos a & =\cos b \cdot \cos c+\sin b \cdot \sin c \cdot \cos \mathrm{~A} \\
\therefore \cos \mathrm{~A} & =\frac{\cos a-\cos b \cdot \cos c}{\sin b \cdot \sin c} \\
\text { Hence } 1+\cos \mathrm{A} & =1+\frac{\cos a-\cos b \cdot \cos c}{\sin b \cdot \sin c} \\
\text { or } 2 \cos ^{2} \frac{\mathrm{~A}}{2} & =\frac{\sin b \cdot \sin c+\cos a-\cos b \cdot \cos c}{\sin b \cdot \sin c} \\
& =\frac{\cos a-\cos (b+c)}{\sin b \cdot \sin c} \\
& =\frac{2 \sin \frac{1}{2}(a+b+c) \cdot \sin \frac{1}{2}(b+c-a)}{\sin b \cdot \sin c}
\end{aligned}
$$

Let $s=\frac{1}{2}(\alpha+b+c) \quad \therefore s-a=\frac{1}{2}(b+c-a)$

$$
\therefore \cos ^{2} \frac{A}{2}=\frac{\sin s \cdot \sin (s-a)}{\sin b \cdot \sin c}
$$

$$
\text { or } \cos \frac{\mathrm{A}}{2}=\sqrt{\frac{\sin s \cdot \sin (s-a)}{\sin b \cdot \sin c}}
$$

Exercises.-Oblique-angled Spherical Triangles.

1. If $\mathrm{BC}=82^{\circ} 26^{\prime}$, $\mathrm{AC}=92^{\circ} 2^{\prime}, \mathrm{AB}=104^{\circ} 28^{\prime}$. Solve.
2. If $\mathrm{BC}=140^{\circ}, \mathrm{AC}=70^{\circ}, \mathrm{AB}=80^{\circ}$. Solve.
3. If $\mathrm{BC}=113^{\circ} 2^{\prime}, \mathrm{AC}=82^{\circ} 40^{\prime}$, and $\mathrm{C}=138^{\circ} 50^{\prime}$. Solve.
4. If $\mathrm{AC}=60^{\circ}, \mathrm{AB}=84^{\circ} 22^{\prime}$, and $\mathrm{A}=95^{\circ}$. Find BC .
5. If $\mathrm{BC}=115^{\circ} 20^{\prime}, \mathrm{AB}=84^{\circ} 42^{\prime}$, and $\mathrm{B}=65^{\circ} 30^{\prime}$. Find A and C .
6. If $\mathrm{BC}=90^{\circ}, \mathrm{AC}=75^{\circ} 29^{\prime}, \mathrm{AB}=84^{\circ} 13^{\prime}$. Find A .
7. Sun's R.A. and Dec. being $1^{1} 30^{\mathrm{m}} 10^{\circ}$, and $9^{\circ} 26^{\prime} 30^{\prime \prime} \mathrm{N}$. Find his long.
8. The R.A. of a star is $16^{\mathrm{k}} 49^{\mathrm{m}} 48^{3}$, and its Dec. is $7^{\circ} 23^{\prime} 10^{\prime \prime}$ N. ; find its long. and lat., the obliquity of the ecliptic being taken to be $23^{\circ} 27^{\prime} 30^{\prime \prime}$.
9. In a right-angled spherical triangle $\mathrm{C}=90^{\circ}$, show $\tan a=\tan c \cdot \cos \mathrm{~B}$ $=\tan \mathrm{A} \cdot \sin b$; also if $\mathrm{B}=b$, show triangle must be isosceles.
10. Two ports A and B, both in northern hemisphere, are in long. $90^{\circ} \mathrm{W}$. and $10^{\circ} \mathrm{W}$. Two ships leave A and B respectively, proceeding each upon the great circle which touches the parallel of the port at the point of departure.

Ship from A steams to the eastward at uniform rate of 12 knots, that from B to the westward at 17 knots; they meet each other in 5 days. Find lat. and long. of point of meeting.

CHAPTER VI.

THE SAILINGS.

Art. 23. Parallel Sailing.-In parallel sailing, the ship's course is supposed to continue on the same parallel of latitude. There are three things concerned, viz. the Latitude, the Departure or Meridian Distance, and the Difference of Longitude.

Definitions.-(1) Latitude: the distance of the ship north or south from the Equator.
(2) Departure (or Meridian Distance) : the distance in geographical miles between two places on the same parallel of latitude.
(3) Difference of Longitude: the arc of the Equator corresponding to the Meridian Distance.

Illustration-AB and CD are Departures at different distances from the Equator; EQ is the

Fig. 70. D. long., or corresponding Arc of the Equator.

Remark.-It is seen that the Meridian Distance decreases as the Latitude increases, and vanishes altogether at the Poles.

The formulæ which express the relation between the three terms are-

1. D. long. $=$ dep. \times sec lat.
2. Dep. $=$ diff. long. \times cos lat.
3. Sec lat. $=\frac{\text { diff. long. }}{\text { dep. }}$

These are the three cases in Parallel Sailing, and show how the D. long. or Dep. or Lat. may be found when the other two terms are given.

Let P be the pole, $P E$ and $P Q$ meridians of longitude, EQ
an arc of the Equator, DL an arc of a parallel of latitude, and C the centre of the Earth.

Fig. 71.

Then QL or ED will represent the lat. of the parallel DL, EQ is the diff. long., and DL the departure.

Join CL, and draw FL perpendicular to PC.

It is evident that FL is a radius of the small circle of which DL is a part, and CQ a radius of the great circle of which EQ is a part; that is, a radius of the Earth. And since the arcs are proportional to the radii of the two circles-
Arc DL : are EQ : : rad. FL : rad. CQ
therefore DL: EQ : : FL : CL
because CL is also a radius of the Earth;

$$
\text { or } \frac{\mathrm{DL}}{\mathrm{EQ}}=\frac{\mathrm{FL}}{\mathrm{CL}}=\sin \mathrm{FCL}, \text { or } \cos \mathrm{QCL}
$$

because CFL is a plane right-angled triangle, and QCL is the complement of FCL.

Now, the angle QCL is measured by the arc QL, which is the latitude of the parallel DL-

$$
\text { therefore } \frac{\text { dep. }}{\text { D. long. }}=\cos \text { lat. (1) }
$$

from which are derived the formulæ-

$$
\begin{align*}
\text { Dep. } & =\text { D. long. } \times \cos \text { lat. } \tag{2}\\
\text { D. long. } & =\frac{\text { dep. }}{\cos \text { lat. }} \text { or dep. } \times \mathrm{sec} \text { lat. } \tag{3}
\end{align*}
$$

Now, the formula $\frac{\text { dep. }}{\text { D. long. }}=\cos$ lat. expresses the relation
 between the base, hypotenuse, and angle at the base of a right-angled plane triangle. Such a triangle may therefore be used to derive the formulæ of parallel sailing, by calling the base departure, the hypotenuse diff. of longitude, and the angle at the base latitude.

$$
\begin{align*}
& \text { Then } \frac{\text { dep. }}{\text { D. long. }}=\cos \text { lat. . . . (1) } \tag{1}\\
& \text { and } \frac{\text { D. long. }}{\text { dep. }}=\text { sec lat. . . . (2) } \tag{2}\\
&=\text { D. long. } \times \cos \text { lat. (3) } \tag{3}\\
& \text { From (1) dep. } \tag{4}\\
& \text { from (2) D. long. }=\text { dep. } \times \text { sec lat. . (4) }
\end{align*}
$$

which are the same as those derived from the sphere.

Art. 24. Middle-latitude Sailing.-This is a combination of plane and parallel sailing, the dep. being common to both, but the latitude used is the " middle lat.," or mean of the two latitudes, for in this case the ship does not sail on a parallel of latitude.

It is evident that the formulæ for rightangled triangles will solve every case, but this method is only made use of in modern navigation for the purpose of finding the D . long. in the "day's work," the formula employed being-
D. long. $=$ dep. \times sec of middle lat.

The mean is not the true"middle lat.," being too small, but is sufficiently near for short distances.

Fig. 73.

Examples.-

1. In lat. $46^{\circ} 45^{\prime}$ the Departure made good was 110.5 miles : requircd the Difference of Longitude.

Construction.-In Fig. 74, scale $\frac{1}{10}$ inch $=10$ miles. Draw horizontal line $A B=1 \cdot 1$ inches for departure, make angle $\mathrm{BAC}=46^{\circ} 45^{\prime}$, and draw BC perpendicular to AB : then AC represents D . long.

Measure AC $=1.6$ inches or 160 miles.
Dep. 110.5 ... $\log 2.043362$
Lat. $46^{\circ} 45^{\prime} \quad$... $\sec 10 \cdot 164193$
D. long. $=161 \cdot 3 \ldots \quad \log 2 \cdot 207555$

Fig 74.
2. In lat. $53^{\circ} 14^{\prime}$ the D . long. being $3^{\circ} 16^{\prime}$, required the Meridian Distance or Departure.

In Fig. 75 draw horizontal line AB . Make angle $\mathrm{BAC}=$ $53^{\circ} 14^{\prime}$, and $\mathrm{AC}=0.98$ inch ; scale $\frac{1}{10}$ inch $=20$ miles. From C draw CB perpendicular to AB : then AB represents Dep.

Measure $A B=0.6$ inch or 120 miles.
$\begin{array}{llll}\text { D. long. } 196^{\prime} & \ldots & \ldots & \log 2 \cdot 292256 \\ \text { Lat. } 53^{\circ} \\ 14^{\prime} & \ldots & \ldots & \cos 9 \cdot 777106\end{array}$

$$
\text { Dep. }=117 \cdot 3 \quad \ldots \quad \ldots \quad \log 2 \cdot 069362
$$

Fig. 75.
3. On what parallel of latitude would a Meridian Distance of 245 miles give a difference of longitude of $5^{\circ} 54^{\prime}$?

In Fig. 76, scale $\frac{1}{10}$ inch $=20$ miles, draw $A B=1.2$ long, at B draw a perpendicular to $A B$, and with A as centre, radius $=1.77$ inch, draw an are, cutting this perpendicular in C : then $B A C$ represents lat.

Measure $\mathrm{BAC}=46^{\circ}$.

D. long. 354	\ldots	\ldots	\ldots	\ldots	$\log 2 \cdot 549003$
Dep. 245	\ldots	\ldots	\ldots	\ldots	$\log 2 \cdot 389166$

Lat. $46^{\circ} 12^{\prime} \quad . . \quad$... sec $10 \cdot 159837$

Fig. 76.

Remark.-In the first two cases 10 is rejected from the sum of indexes, and in the third case 10 is added to the upper index, because in the Table of Log Sines, etc., the proper index is always increased by 10 .

Exercises.

1. In lat. $16^{\circ} 30^{\prime} \mathrm{N}$. the dep. made good was 167.6 miles : what will the difference of longitude be by parallel sailing ?
2. The difference of longitude between two places in lat. $63^{\circ} 19^{\prime} 30^{\prime \prime}$ is $4^{\circ} 20^{\prime}$: required the distance as measured along the parallel.
3. In lat. $11^{\circ} 56^{\prime} \mathrm{N}$. the dep. made good was 365 miles: required the difference of longitude in minutes.
4. In what latitude is 200 miles of dep. equal to 600 minutes of longitude?

5 . In lat. $35^{\circ} 40^{\prime} \mathrm{S}$. the dep. made good was 976 : required the difference of longitude measured on the parallel.
6. What is the difference of latitude between two parallels of latitude on different sides of the Equator, when between the same two meridians the dep. on the northern parallel is 250 miles, on the southern 350 miles, and on the Equator 470 miles?
7. On the parallel of $48^{\circ} 12^{\prime}$ ran true west 1005 miles: if the longitude left was $9^{\circ} 30^{\prime}$ W., what was the longitude in?
8. From two ports in lat. $40^{\circ} 20^{\prime} \mathrm{N}$., distant 300 minutes of longitude, two ships sail N. for 300 miles : how many miles apart will they be, and in what latitude?
9. In lat. $33^{\circ} 15^{\prime}$ N. ran east 10.95 miles : how many minutes of longitude will that represent?
10. If two ships in lat. $51^{\circ} \mathrm{S}$. should sail directly north until the departure changes from 400 to 500 minutes, what latitude will they be in?
11. In lat. $72^{\circ} 59^{\prime}$ the dep. was 370.5 miles: convert that into minutes of longitude.
12. In what latitude does 300 miles of dep. correspond to 600 minutes of longitude?
13. The latitude by Mer. alt. was $36^{\circ} 35^{\prime}$ N.; longitude by afternoon sights, $137^{\circ} 38^{\prime}$ E.; run since noon due east, 39 miles: find noon longitude.
14. A vessel sailed due east along the parallel of $45^{\circ} 24^{\prime} \mathrm{S}$. for 29 miles from long. $43^{\circ} 40^{\prime} \mathrm{E}$.: what is her longitude in?
15. What distance must a vessel sail on the parallel $48^{\circ} 25^{\prime} \mathrm{N}$. to change her longitude $2^{\circ} 25^{\prime}$?
16. A vessel sailing due east finds her difference of longitude to be $1^{\circ} 19$, and distance made good 50^{\prime} : what is her latitude?
17. How far on the parallel of $38^{\circ} \mathrm{S}$. must a vessel sail from long. $47^{\circ} 29^{\prime}$ E. to reach long. $49^{\circ} 27^{\circ} \mathrm{E}$. ?
18. For every 1° diff. long. I have to sail 45 miles due west : along what parallel am I sailing?

ART. 25. Plane and Traverse Sailings.-For short distances, the sulface of the Earth may be regarded as a plane. In plane

Fig. 77. and traverse sailings no notice is taken of the curvature, and all cases may be solved by the formulæ for right-angled triangles.

Thus in sailing from A to B, the hypotenuse represents the distance, the perpendicular the departure, and the base the D. lat., whilst the angle which $A B$ makes with $A C$ (lying true N. and S.) is the course.

In the Traverse Table the values of D. lat. and Dep. in miles are given for every degree of course
up to 89° and all distances up to 600 miles, being computed from the formulæ-

$$
\begin{aligned}
& \frac{\text { D. lat. }}{\text { dist. }}=\cos \text { course } \\
& \frac{\text { dep. }}{\text { dist. }}=\sin \text { course }
\end{aligned}
$$

$$
\begin{equation*}
\text { whence D. lat. }=\text { dist. } \times \text { cos course } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { and dep. }=\text { dist. } \times \sin \text { course } \tag{2}
\end{equation*}
$$

When D. lat. and dep. are given, the course and distance made good may be found from the formulæ-

$$
\begin{align*}
\tan \text { course } & =\frac{\text { dep. }}{\text { D. lat. }} \cdot \cdot \cdot \cdot . \tag{3}\\
\text { distance } & =\text { D. lat. } \times \text { sec course } \tag{4}
\end{align*}
$$

Art. 25. The Day's Work and Traverse Sailing.-The purpose of the Day's Work is to find the position of the ship at noon by "Dead reckoning," that is, from the courses and distances sailed since the preceding noon. The direct course and distance made good are also determined.

The courses given are by compass as per ship's Log Book, but the true courses must be found for computing a "Traverse Table."

Directions for finding the True Courses.-(a) Allow the leeway to the Right (R.) when the wind blows on the left or Port Side of the ship, and to the Left (L.) when on the Right or Starboard Side. (b) Allow E. deviation and variation (or total correction) to the Right (R.), and W. to the Left (L.).

Nore.-The Leeway may be determined by towing the \log-ship astern and observing the angle the line makes with the keel, but it is often merely estimated.

The Deviation is found by reference to the Deviation Card, and the Variation from a chart.

When the Departure is taken from a known point of land or light, the opposite course to the bearing of the point or light from the ship is called the "Departure Course," and the distance off is the distance belonging to that course.

The "Set" and "Drift" of the current are found by chart, and are treated as a course and distance made by the ship, because the effect is the same on the Day's Work.

Nore. -Should the "Set" and "Drift" of the current be required, it is the course and distance calculated by Mercator from the D.R. position found by Traverse to the observation position given in the question.

They may also be found by turning D. long. into Dep.: then with the D. lat. and Dep. find Co. and Dist. in Traverse Table, for Set and Drift required.

Illustrations and Minor Calculations．

Opposite course to bearing．
（1） $\mathrm{S} .45^{\circ} \mathrm{R}$ ． Corr． 11 R．

S．$\overline{56} \mathrm{R}$.
（2）N． $65^{\circ} \mathrm{L}$ ．
Leeway 20 L ．
N． 86 L ． Corr． 3 R．
N．$\overline{\mathrm{s} 2} \mathrm{~L}$ ．
（3）N． $77^{\circ} \mathrm{R}$ ． 17 R．
N． 94 R ．
12 K.
N． 106 R． 1s0

S． 74 E．
（4）N． $57^{\circ} \mathrm{I}$ ．
16 L.
N． 73 I．
2 L.
N． 75 L.
（5）
． $90^{\circ} \mathrm{L}$ ．
－
S．＇71 I．
21 R．
S． 50 L ．
（6）N． $52^{\circ} \mathrm{L}$ ．
N．бб L．
Corr． 0
N． $\overrightarrow{66} \mathrm{~L}$ ．

Example 1.

寛	Course steered．	$\frac{\text { m }}{\text { 品 }}$	$\begin{aligned} & \text { 号 } \\ & \stackrel{\rightharpoonup}{E} \end{aligned}$	Wind．	Lee－ way．	Devia－ tion．	Remarks．
$\begin{aligned} & \mathbf{1} \\ & \mathbf{2} \\ & 3 \\ & \mathbf{4} \end{aligned}$	N． $65^{\circ} \mathrm{W}$ ．	$\begin{aligned} & \mathbf{5} \\ & \mathbf{5} \\ & \mathbf{5} \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \\ & 8 \\ & 1 \end{aligned}$	N．by E．	20°	$12^{\circ} \mathrm{W}$	A point of land in lat． $46^{\circ} 3^{\prime}$ S．
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	N． $77^{\circ} \mathrm{E}$ ．	$\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 9 \\ & 7 \\ & 2 \end{aligned}$	N．by E．	17°	$3^{\circ} \mathrm{W}$	E．，bore N．E． from ship，dis－ tant 12 miles， ship＇s head
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	N． $57^{\circ} \mathrm{W}$ ．	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	2 3 0 5	N．by E．$\frac{1}{2}$ E．	16°	$17^{\circ} \mathrm{W}$	Deviation $4^{\circ} \mathrm{W}$ ． Variation 15° E．
1 2 3 4	E．	5 6 6 7	7 3 8 2	N．N．E．	19°	$6^{\circ} \mathrm{E}$.	
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	N． $52^{\circ} \mathrm{W}$ ．	7 7 7 7	2 3 6 9	N．N．E．	14°	$15^{\circ} \mathrm{W}$	magnetic 24 miles during the 24 hours from the time of de－
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	S． $80^{\circ} \mathrm{E}$ ．	8 8 8 8	0 1 2 7	N．E．by N．$\frac{1}{2}$ N．	21°	$14^{\circ} \mathrm{E}$	end of the day．

Correct the courses，and find the course and distance made good； also the Latitude and Longitude in by inspection．

Traverse Table．

True courses．	Distance．	D．Lat．		Dep．	
		N．	S．	E．	W．
S． $56^{\circ} \mathrm{W}$ ．	12		67		$9 \cdot 9$
$\stackrel{N}{\mathrm{~N} .} 82^{\circ} \mathrm{W} .$	23	32			22.8
S． $74^{\circ} \mathrm{E}$ ．	23		63	$22 \cdot 1$	
N． $75^{\circ} \mathrm{W}$ ．	21	$5 \cdot 4$			$20 \cdot 3$
S． $50^{\circ} \mathrm{E}$ ．	26		16.7	199	
N． $66^{\circ} \mathrm{W}$ ．	30	$12 \cdot 2$			$27 \cdot 4$
S． $30^{\circ} \mathbf{E}$ ．	33		28.6	$\begin{array}{r} 16 \cdot 5 \\ 6 \cdot 2 \end{array}$	
N． $15^{\circ} \mathrm{E}$ ．	24	23.2		$6 \cdot 2$	
		$44^{\circ} 0$	$\begin{aligned} & 58 \cdot 3 \\ & 44 \cdot 0 \end{aligned}$	647	$\begin{aligned} & 80 \cdot \pm \\ & 64 \cdot 7 \end{aligned}$
		D．lat．14：3		Dop．15•7	

The D．lat．and dep．are found nearest together under the course 48
S. 48° dist. 21 miles, which are the course and distance made good (course

Minor Calculations.
Lat. left $46^{\circ} 3^{\prime}$ S. Long. left $146^{\circ} 15^{\prime} \mathbf{E}$.
D. lat. $14^{\prime} \mathrm{S} . \quad$ D. long. $\quad 23^{\prime} \mathrm{W}$.

Lat. in $46^{\circ} 17^{\prime} \mathrm{S}$. Long, in $145^{\circ} 52^{\prime}$ E. 2) $92^{\circ} 20^{\prime}$

Mid. lat. $46^{\circ} 10^{\prime}$
... $\sec 10 \cdot 159541$
Dep. $15 \cdot 7$
... $\quad \log 1 \cdot 195900$
Diff. long. $22 \cdot 67$
...
$\log 1 \cdot 355441$
By inspection: The M. lat. 46° as a course with dep. $15 \cdot 7$ in Lat. column gives 23^{\prime} long. in Dist. column.

In Fig. 77A, scale 1 inch $=10$ miles, let ABC represent portion of meridian.
$\mathrm{AB}=1.43$ inch is D . lat.
$B D=1 \cdot 57$ inch is Dep.
where ABD is 90°.
Lay off $\mathrm{BDC}=46^{\circ}$ Mid. lat.
Then BAD is course $=48^{\circ}$.
AD is Dist. $=2 \cdot 1$ inch.

$$
\begin{aligned}
& =21 \text { miles. } \\
& =2.3 \text { inch } \\
& =23 \text { miles }
\end{aligned}
$$

Frg. 77a.

$$
\text { DC is D. long }=2.3 \text { inch. }
$$

Example 2.

Hour.	Course steered.	Kats.	10ths.	Wind.	$\begin{aligned} & \text { Lee- } \\ & \text { way. } \end{aligned}$	$\begin{aligned} & \text { Devia- } \\ & \text { tion. } \end{aligned}$	Remarks.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	S.W.	8 8 9 9	$\begin{aligned} & 2 \\ & 4 \\ & 2 \\ & 2 \end{aligned}$	S.E. by S.	$\begin{aligned} & \text { Pts. } \\ & 1 \frac{1}{2} \end{aligned}$	$6^{\circ} \mathrm{W}$	$\left(\begin{array}{c} \text { A point of land } \\ \text { in lat. } 49^{\circ} 57^{\prime} \\ \text { N., long. } 5^{\circ} 12^{\prime} \end{array}\right.$
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	S.W. by W.	8 8 7 7	$\begin{aligned} & 9 \\ & 5 \\ & 6 \\ & 0 \end{aligned}$	S.S.E.	$1 \frac{3}{4}$	$3^{\circ} \mathrm{W}$	W., bore by $\frac{1}{2}$ N., distant 20 miles, ship's head beingS.W.,
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	S.W. by S.	6 6 6 5	$\begin{aligned} & 7 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	S.E.	112	$2^{\circ} \mathrm{E}$.	per log. Variation $19^{\circ} \mathrm{W}$.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	S.S E.	7 7 8 9	5 9 5 1	S.W.	2	$7^{\circ} \mathrm{E}$.	
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	S. by W. $\frac{1}{2}$ W.	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 3 \\ & 6 \end{aligned}$	W.	$1{ }^{3}$	$4^{\circ} \mathrm{E}$.	A current set E . by N. $\frac{1}{2}$ N. (corr. mag.) 30 miles, during the 24 hours.
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \\ \hline \end{array}$	S. $\frac{1}{4} \mathrm{E}$.	$\begin{aligned} & 11 \\ & 11 \\ & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 3 \\ & 6 \\ & 7 \\ & 4 \\ & \hline \end{aligned}$	W. by N .	$\frac{1}{2}$	$2^{\circ} \mathrm{E}$.	

Required the course and distauce made good, and the Latitude and Longitude in.

Minor
Calculations.

(2) $\begin{array}{r}\text { S. } 39^{\circ} \mathrm{L} \\ \text { Corr. } 25\end{array}$
S. 64 L
(2) $\mathrm{S} .62^{\circ} \mathrm{R}$. Corr. 25 L .
S. 37 R.
(3) $\mathrm{S} .76^{\circ} \mathrm{R}$ 22 L.
S. 54 R .
(4) $\mathrm{S} .51^{\circ} \mathrm{L}$ 17 L.
S. 34 R
(5) $\mathrm{S} .45^{\circ} \mathrm{I}$

12 L .
S. 57 L.
(6) $\mathrm{S} .3^{\circ} \mathrm{L}$.
S. 18 L.
(7) $\mathrm{S} .8^{\circ} \mathrm{L}$.
S. 25 L
N. 54
R.

Fie. 78.

Traverse Table.

True courses.	Distance.	D. Lat.		Dep.	
		N.	S.	E.	W.
S. $64^{\circ} \mathrm{E}$.	20		8.8	$18 \cdot 0$	
S. $37^{\circ} \mathrm{W}$.	35		28.0		$21 \cdot 1$
S. $54^{\circ} \mathrm{W}$.	32		$18 \cdot 8$		$25 \cdot 9$
S. $34^{\circ} \mathrm{W}$.	25		20.7		14.0
S. $57^{\circ} \mathrm{E}$.	33		$18 \cdot 0$	$27 \cdot 7$	
S. $18^{\circ} \mathrm{E}$.	41		39.0	$12 \cdot 7$	
S. $25^{\circ} \mathrm{E}$.	47		$42 \cdot 6$	19.9	
N. $54^{\circ} \mathrm{E}$.	30	$17 \cdot 6$		$24 \cdot 3$	
		$17 \cdot 6$	$\begin{array}{r} 175 \cdot 9 \\ 17 \cdot 6 \end{array}$	$\begin{array}{r} 102.6 \\ 61.0 \end{array}$	$61 \cdot 0$
			$158 \cdot 3$	$41 \cdot 6$	

Course and dist. made good S. 15° E. 164 miles.
Lat. left $49^{\circ} 57^{\prime} \mathrm{N}$.
Long. left $5^{\circ} 12^{\prime} \mathrm{W}$.
D. lat. $2^{\circ} 38^{\prime} \mathrm{S}$.

Lat. in $47^{\circ} 19^{\prime} \mathrm{N}$. 2) $97^{\circ} 16^{\prime}$

Mid. lat. $48^{\circ} 38^{\prime} \quad$... sec $10 \cdot 179880$
Dep. $41 \cdot 6$... $\log 1.619093$
D. long. $62 \cdot 95$
$\log 1798973$
In Fig. 78 scale 1 inch $=100$ miles, ABC represents meridian. $\mathrm{AB}=1.58$ inch is D . lat.
$\mathrm{BD}=0.42$ inch is Dep.
$\mathrm{ABD}=90^{\circ}$.
Make $\operatorname{BDC}=48 \frac{1}{2}=$ Mid. lat.
Then BAD is course $=15^{\circ}$.
AD is Dist. $=1.64$ inch.
$=164$ miles.
CD is D. long $=0.63$ inch.

$$
=63 \text { miles. }
$$

Note 1.-The D. long. can also be found by inspection thus: Take the mid. lat. as a course and find dep. in D. lat. column ; the dist. corresponding is the D . long.

Note 2.-When course and leeway are in " points," it is most convenient to allow the leeway before changing points into degrees, then apply the correction.

Note 3.-T'o calculate course and distance made good.

D. lat. $158 \cdot 3 \mathrm{~S} .$, dep. $41 \cdot 6 \mathrm{E}$.
In triangle $\mathrm{ABC}, \mathrm{C}=90, \mathrm{AC}=158 \cdot 3, \mathrm{BC}=41 \cdot 6$.
Find-

$$
\mathbf{A}=\text { ccurse }
$$

$\mathrm{AB}=$ distance.
Now-

$$
\tan \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{41 \cdot 6}{158 \cdot 3} \text { and } \frac{\mathrm{AB}}{\mathrm{AC}}=\sec \mathrm{A}
$$

$$
\therefore \mathrm{AB}=\mathrm{AC} \times \sec \mathrm{A}
$$

$41 \cdot 6 \log =11 \cdot 619093$
Fig. 79.

$$
158 \cdot 3 \log =2 \cdot 199481 \quad \ldots \quad \ldots \quad 2 \cdot 199481
$$

$$
\tan =9 \cdot 419612 \quad \text { sec }=10 \cdot 014501
$$

$$
163 \cdot 7 \log =2 \cdot 213982
$$

Course S. $14^{\circ} 43^{\prime} 26^{\prime \prime}$ E., distance $163 \cdot 7$ miles.

Exerisises.
1.

Hour.	Course steered.	Knts.	10ths.	Wind.	$\left\|\begin{array}{l} \text { Lee-- } \\ \text { wsy. } \end{array}\right\|$	Deच̄iation.	Remarks.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \end{aligned}$	N.N.W.	$\begin{aligned} & 17 \\ & 16 \\ & 14 \\ & 13 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$	W. $\frac{1}{4} \mathrm{~S}$.	$\begin{gathered} \text { Pis. } \\ 1 \end{gathered}$	$7^{\circ} \mathrm{E}$.	A point of land in lat. $0^{\circ} 34^{\prime} \mathrm{S}$., long. $0^{\circ} 17^{\prime} \mathrm{W}$.,
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	N. by W.	$\begin{aligned} & 13 \\ & 15 \\ & 17 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 6 \\ & 7 \\ & \hline \end{aligned}$	N.W.by W. ${ }^{\frac{3}{4} \text { W. }}$	2	$36^{\circ} \mathrm{E}$.	bearing by compass S. 妾 E., distant 49 miles, with the ship's head at N.N.W.
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \\ \hline \end{array}$	N.N.E.	15 10 12 16	$\begin{aligned} & 8 \\ & 9 \\ & 1 \\ & 2 \end{aligned}$	East	3	$19^{\circ} \mathrm{W}$	log. Variation $30^{\circ} \mathrm{W}$.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	N.E. by E. ${ }^{2} \mathrm{E}$ E.	$\begin{array}{\|l\|} \hline 13 \\ 17 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	S.E. by E.	$3 \frac{1}{2}$	$5^{\circ} \mathrm{W}$.	A current set cor-
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	S.W. ${ }^{\text {a W W }}$ W.	$\begin{aligned} & 14 \\ & 13 \\ & 15 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & 3 \\ & 9 \\ & 9 \end{aligned}$	S. by E. $\frac{1}{2} \mathrm{E}$.	$\frac{1}{2}$	$4^{\circ} \mathrm{E}$.	rect maguetic South 4 milea from the time departure was taken to the end
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	S.S.W.	11 14 13 16	$\begin{aligned} & 4 \\ & 9 \\ & 8 \\ & 9 \end{aligned}$	West	2	$5^{\circ} \mathrm{E}$.	of the day.

Correct the coursea for Deviation, Variation, and Leeway, and find the course and diatance from the given point, and the Latitude and Longitude in.
2.

Hour.	Course steered.	Knts.	10tbs.	Wind.	$\begin{aligned} & \text { Lee- } \\ & \text { wsy. } \end{aligned}$	$\begin{aligned} & \text { Devi.t- } \\ & \text { tioul. } \end{aligned}$	Remsrks.
1	N. $85^{\circ} \mathrm{W}$.	12	6	S.S.W.	-	$14^{\circ} \mathrm{E}$	
2 3		12	7 4				A point in lat. 55°
4		12	-				$14^{\prime} \mathrm{N}$. , long. 8°
5		12	2				$20^{\prime} \mathrm{W} .$, bearing
6		12	8				by compass S. 23°
7		12	5				E., ship's herd
8		12	4				N. $85^{\circ} \mathrm{W}$. Devi-
9		12	5				ation as per log.,
10		12	6				distant 7 miles.
11		12	3				
12		12	-				

Hour.	Course steered.	Knts.	10ths.	Wind.	Leeway.	Deviation.	Remarks.
1	N. $82^{\circ} \mathrm{W}$.	11	9	S.W.	-	$12^{\circ} \mathrm{E}$	
2		11	8				first 8 hours, 28°
3		11	6				W.; during se-
4		11	9				cond 8 hours, 30°
5		12	1				W.; during third
6		12	4				8 hours, $32^{\circ} \mathrm{W}$.
7		12	5				A current set cor-
8		12	3				rect magnetic
9		12	2				$\text { S.S.E. } \frac{1}{2} \quad \text { E. } 2 \frac{1}{2}$
10		12	\square				miles per hour for
11		11	9				all day.
12		11	4				

Find the course and distance made good; Latitude and Longitude of the ship.
3.

Hour.	Course steered.	Knts.	10ths.	Wind.	$\begin{array}{\|l\|l} \text { Leee- } \\ \text { way. } \end{array}$	Deviàtion.	Remarks.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	N. by E. $\frac{1}{4} \mathrm{E}$.	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 9 \\ & 7 \end{aligned}$	S.E. by E.	$\begin{gathered} \text { Pts. } \\ \frac{1}{4} \end{gathered}$	$18^{\circ} \mathrm{E}$	$\begin{array}{cc}\text { A point of land in } \\ \text { lat. } & 18^{\circ} \\ 59^{\prime} & \mathrm{S} . \\ \text { long. } & 179^{\circ} \\ \text { W. } & 53^{\prime}\end{array}$
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	S.E. by E.	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \\ & 3 \\ & 2 \end{aligned}$	S. by W.	13 $\frac{1}{2}$	$23^{\circ} \mathrm{W}$	W., bearing by compass E.S.E., distant 19 miles, with the ship's head at N .
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	E. by N. $\frac{1}{4} \mathrm{~N}$.	$\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 9 \\ & 8 \\ & 3 \end{aligned}$	N. $\frac{1}{3}$ E.	$1{ }^{\text {星 }}$	$3^{\circ} \mathrm{W}$	tion as per log. Variation $9^{\circ} \mathrm{E}$.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	S.W. $\frac{3}{4}$ W.	5 5 5 5	$\begin{aligned} & \hline 3 \\ & 1 \\ & 2 \\ & 4 \end{aligned}$	S.S.E.	21	0	A current set cor
5 6 7 8	S.S.W.	7 8 8 9	9 2 4 4	W. by N.	1	$11^{\circ} \mathrm{W}$.	S.S.E. $\frac{3}{4}$ E., 15 miles from the time departure was taken to the
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	N.N.E.	9 10 10 10	6 0 3 1 1	N.W $\frac{1}{2}$ W.	$1{ }^{11}$	$16^{\circ} \mathrm{E}$.	

Correct the courses for Deviation, Variation, and Leeway, and find the course and distance from the given point, and the Latitude and Longitude in.
4.

Hour.	Course steered.	Kats.	10ths.	Wind.	$\begin{gathered} \text { Lee- } \\ \text { way. } \end{gathered}$	Devia tion.	Remarks.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \end{aligned}$	S. by W. $\frac{1}{2}$ W.	$\begin{array}{r} 16 \\ 17 \\ 10 \\ 9 \end{array}$	$\begin{aligned} & 3 \\ & 1 \\ & 2 \\ & 4 \end{aligned}$	W. $\frac{1}{2} \mathrm{~S}$.	$\begin{aligned} & \text { Pts: } \\ & 1 \stackrel{1}{\prime} \end{aligned}$	$7{ }^{\circ} \mathrm{E}$.	A point of land in lat. $58^{\circ} 30^{\prime} \mathrm{S}$, long. $64^{\circ} 54^{\prime} \mathrm{W}$.
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	W. by S. $\frac{1}{4} \mathrm{~S}$.	$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	N.W. by N.	$\frac{3}{4}$	$9^{\circ} \mathrm{E}$.	pass N.W. $\frac{1}{1}$ N., distant 60 miles, with the ship's head at S. by
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \\ \hline \end{array}$	S.W. $\frac{1}{4}$ W.	16 14 14 13	$\begin{aligned} & 9 \\ & 8 \\ & 8 \\ & 5 \\ & \hline \end{aligned}$	S.S.E	${ }^{1}$	$8^{\circ} \mathrm{W}$.	tion as per log. Variation $21^{\circ} \mathrm{E}$.
	N.E. by N.	10 11 12 13	$\begin{aligned} & 9 \\ & 9 \\ & 8 \\ & 8 \\ & 5 \end{aligned}$	W.S.W.	0	$11^{\circ} \mathrm{W}$	A current set cor-
5 6 7 8	N. by E.	14 15 16 17	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 6 \end{aligned}$	N.W. by W.	$\frac{1}{2}$	$12^{\circ} \mathrm{W}$	rect magnetio W. $\frac{1}{2}$ S. 39 miles, from the time departure was taken to the end
9 10 11 12	W. by N.	9 1 2 6	7 7 7 9	S.W. by S.	$\frac{1}{4}$	$41^{\circ} \mathrm{W}$	of the day.

Correct the courses for Deviation, Variation, and Leeway, and find tho course and distance from the given point, and the Latitude and Longitude in.
5.

Hour.	Course steered.	Knts.	10ths.	Wind.	$\begin{array}{\|l\|l} \text { Lee- } \\ \text { way. } \end{array}$	Deviation.	Rembrks.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	N.N.W. $\frac{1}{2}$ W.	4 3 3 1	$\begin{aligned} & 1 \\ & 3 \\ & 1 \\ & 5 \end{aligned}$	N.E.	$\begin{aligned} & \text { ts, } \\ & 1 \frac{3}{8} \end{aligned}$	$2^{\circ} \mathrm{W}$	A point in lat. $29{ }^{\circ}$
$\begin{aligned} & 5 \\ & 5 \\ & 7 \\ & 8 \end{aligned}$	E.S.E.	2 3 3 3 4	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 7 \end{aligned}$	N.E.	2	$7^{\circ} \mathrm{E}$.	54^{\prime} E., bearing by compass N.N.E. $\frac{1}{2}$ E., ship's head N.W. by W. De
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	S. $\frac{3}{4} \mathrm{E}$.	6 6 5 6	3 9 4 4	E.S.E.	$2 \frac{1}{4}$	$2^{\circ} \mathrm{W}$.	distant 15 miles.

(Continued on next page.)

Hour.	Course steered.	Ents.	10tbs.	Wind.	$\left\|\begin{array}{c\|} \text { Leee- } \\ \text { way. } \end{array}\right\|$	Deviation.	Remarks.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	N.E. $\frac{1}{4} \mathrm{~N}$.	$\begin{aligned} & 9 \\ & 7 \\ & 0 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 4 \\ & 2 \\ & 7 \end{aligned}$	E.S.E.	$\overline{\text { Pts. }} \begin{aligned} & I_{1}^{2} \end{aligned}$	$8^{\circ} \mathrm{L}$.	
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	W. $\frac{1}{2} \mathrm{~N}$.	3 4 4 3 3	$\begin{aligned} & 5 \\ & 3 \\ & 6 \\ & 6 \end{aligned}$	S.S.W. $\frac{1}{2}$ W.	$1{ }^{1}$	$9{ }^{\circ} \mathrm{W}$.	Variation $1^{\text {c }}$ E.
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \\ \hline \end{array}$	N. by E.	8 1 8 9	5 1 1 3	E. by N.	$\frac{1}{4}$	$6^{\circ} \mathrm{E}$.	

The position by observation was found to be lat. $30^{\circ} 25^{\prime} \mathrm{N}$., long. 133' $7^{\prime} \mathbf{E}$. Find the set and drift of the eurrent.
6.

Hour.	Course steered.	Knots.	1016s.	Winds,	$\begin{array}{\|l\|} \hline \text { Lee- } \\ \text { way. } \end{array}$	$\begin{aligned} & \text { Devia- } \\ & \text { tion. } \end{aligned}$	1 Remarks.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	S. by W.	$\begin{aligned} & 12 \\ & 13 \\ & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	W. by S.	3 yt .	$9^{\circ} \mathrm{W}$.	
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	N. ${ }_{4}^{3} \mathrm{E}$.	12 13 14 11	$\begin{aligned} & 9 \\ & 8 \\ & 7 \\ & 6 \end{aligned}$	East	$\frac{1}{4} \mathrm{pt}$.	$6^{\circ} \mathrm{E}$.	
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	East	11 12 12 13	2 2 2 2 4	S.S.E.	$\frac{1}{2} \mathrm{pt}$.	$19^{\circ} \mathrm{E}$.	A point in lat. 54° 22^{\prime} N., long. 17° 26^{\prime} E., bearing by compass N.W.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	S.E.	9 11 12 10	$\begin{aligned} & 3 \\ & 4 \\ & 7 \\ & 6 \end{aligned}$	S.S.W.	${ }^{3} \mathrm{pt}$.	$11^{\circ} \mathrm{E}$.	N. ${ }^{\frac{3}{4}} \mathbf{E}$. Deviation as per \log, distant 8 miles. Variation $12^{\circ} \mathrm{E}$.
$\begin{aligned} & \hline 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	S.S.W. ${ }^{\frac{1}{4} \text { W. }}$	12 11 14 15	$\begin{aligned} & 6 \\ & 2 \\ & 9 \\ & 3 \end{aligned}$	N.W.	-	$12^{\circ} \mathrm{W}$.	
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	E. $\frac{3}{4} \mathrm{~N}$.	13 12 11 13	9 9 9 3	North	$\stackrel{1}{7} \mathrm{pt}$.	$18^{\circ} \mathrm{E}$.	

The ship by observation was found in lat. $51^{\circ} 59^{\prime} \mathrm{N}$., long. $178^{\circ} 5^{\prime} \mathrm{W}$. Find set and drift of current.

Art. 27. Mercator's Sailing.--The problem in Mercator's Sailing commonly used, and the only one in the Board of Trade Examination for Mates and Masters, is to find the Course and Distance from place to place, the latitudes and longitudes of both places being given.

The data used in the calculation are-
The difference of latitude.
The difference of longitude.
The meridional difference of latitude.
Definitions.-(1) D. lat.: The sum or difference of the two latitudes (according as they are of different names or of the same name) reduced to miles.
(2) D. long. : The sum or difference of the two longitudes (according as they are of different names or of the same name) reduced to minutes of arc.
N.B.-When the sum of longitudes exceeds 180°, subtract from 360°.
(3) Mer. D. lat.: The sum or difference of the meridional parts for the two latitudes.

Formulce.-(1) To find the Course-

$$
\text { Tangent of course }=\frac{\mathrm{D} . \text { long. }}{\text { mer. D. lat. }}
$$

(2) To find the Distance-

$$
\text { Distance }=\text { secant of course } \times \mathrm{D} \text {. lat. }
$$

It may be graphically represented by two similar triangles, DEC and ABC, the angle at C being the course, which is common to both triangles. The sides of the smaller triangle represent the elements of plane sailing. The extended meridian CB represents the meridional D . lat. found from the meridional parts for the two latitudes; then the side $A B$ will be the D. long. in its correct proportion to the departure. The object aimed at in Mercator's method is to find the rhumb course from point to point. For

Fig. 80. this purpose, the diff. lat. is extended by means of the meridional parts so as to bear the same proportion to the diff. long. as the true diff. lat. bears to the departure. In the right-angled triangle ABC-

$$
\begin{equation*}
\text { Tan course }=\frac{\text { D. long. }}{\text { mer. D. lat. }} \tag{1}
\end{equation*}
$$

and in the triangle DEC -

$$
\begin{align*}
\frac{\text { dist. }}{\text { D. lat. }} & =\text { sec course } \\
\text { therefore dist. } & =\text { D. lat. } \times \text { sec course } \tag{2}
\end{align*}
$$

These are the only formulæ required for computing the true rhumb course and the distance on that course. Evidently this distance is longer than the distance on a great circle, but the method has the advantage of leading to the destination without change of course.

Examples.-

1. Find the Course and Distance from A to D on Mercator's principle.

D. long. 1206 $\log 3.081347$

Mer. D. lat. 1117 $\log 3 \cdot 048053$
Course S. $47^{\circ} 111^{\prime}$ W. $\log \tan 10.033294$
Course $47^{\circ} 11 \frac{1}{2}^{\prime}$... \log sec $10 \cdot 167780$
D. lat. $784 \ldots$... $\log 28894316$

Distance 1154 miles $\log 3 \cdot 062096$
Nort.-The Course is reckoned from S because D is sonth of A, and towards W. because D is west of A.
2. Find the Course and Distance from P (Hawraki) to B (Hawaii).

Fig. 82.

Lat. of $\mathrm{P}, 35^{\circ} 59^{\prime} \mathrm{S}$; long. of $\mathrm{P}, 175^{\circ} 4^{\prime} \mathrm{E}$. , $\mathrm{B}, 19^{\circ} 50^{\prime} \mathrm{N} . ; \quad, \quad \mathrm{B}, 156^{\circ} 40^{\prime} \mathrm{W}$.

$35^{\circ} 59^{\prime} \mathrm{S}$.	Mer. parts 2317	$175^{\circ} 4^{\prime} \mathrm{E}$.
1950 N.	" 1215	15640 W .
5549	Mer. D. lat. 3532	33144
60		360
. 3349		$\underset{60}{28} 16$

D. long. 1696

D. long. 1696	\ldots	\ldots		$\log 3 \cdot 229426$
Mer. D. lat. 3532			$\log 3 \cdot 548021$
Course N. $25^{\circ} 39^{\prime}$ E.	\ldots	...		$\tan 96881405$
Course $2 \bar{o}^{\circ} 39^{\prime}$		ece 10.045056
D. lat. 3349	\ldots	...		$\log 3.524915$
Distance 3715	\ldots	...		$\log 3 \cdot 569971$

Note.-The Course is reckoned from N. because B is north of \mathbf{P}, and \mathbf{E}. because it crosses the meridian of 180°.
3. Required the Course and Distance by Mercator from A to B.

Lat. of $\mathrm{A}, 6^{\circ} 15^{\prime} \mathrm{N}$. ; long. of $\mathrm{A}, 79^{\circ} 30^{\prime} \mathrm{E}$.
Lat. $6^{\circ} 15^{\prime}$ N. Mer. parts 376 Long. ' 79° B, 30^{\prime} E. $113^{\circ} 45^{\prime}$ E.
, $36^{\circ} 10^{\prime} \mathrm{S}$. $\quad 2330 \quad, \quad 113^{\circ} 45^{\prime} \mathrm{E}$.

4225 Mer. D. lat. 2706
$34 \quad 15$
60
D. lat. $)^{2545}$
D. long. 2055
D. long. $2055 \quad$... ... $\log 3: 312812$

Mer. D. lat. 2706 $\log 3 \cdot 432328$
Course S. $37^{\circ} 13^{\prime}$ E. $\quad \log \tan 9.880484$
Course $37^{\circ} 13^{\prime} \quad \ldots \quad \log \sec 10.098894$
D. lat. 2545 $\log 3 \cdot 405688$

Fig. 83.

Distance 3196 miles ... $\log 3 \cdot 504582$
4. Required the Course and Distance by Mercator's principle from A, in lat. $57^{\circ} 42^{\prime} \mathrm{S}$. ; long. $70^{\circ} 3^{\prime} \mathrm{W}$. , to B. in lat. $46^{\circ} 58^{\prime} \mathrm{S}$. ; long. $168^{\circ} 20^{\prime} \mathrm{E}$.; also the Course to steer by compass, supposing the variation to be 22° E., and the deviation of the compass $7^{\circ} 30^{\prime} \mathrm{W}$.

In Fig. 84, ABC is portion of meridian. Scale 1 inch $=2000$ miles.

$$
\mathrm{AC}=0.53 \text { inch is Mer. D. lat. }
$$

$\mathrm{ACD}=90^{\circ}$.
$\mathrm{CD}=3 \cdot 65$ inch is D . long.
$\mathrm{AB}=0.32$ inch is D . lat.
BE parallel to CD is Dep.
Then
CAD $=82^{\circ}$ is true Course.
$\mathrm{AE}=2 \cdot 24$ inches.
$=4480$ miles is Dist.

Long. $70^{\circ} \quad 3^{\prime} \mathrm{W}$. ,, $168^{\circ} 20^{\prime}$ E.

23823
$360 \quad 0$
12137
60
D. long. 7297

D. long. 7297	\ldots	\ldots	\ldots	\ldots	$\log 3 \cdot 863144$
Mer. D. lat. $1060 \ldots$	\ldots	\ldots	\ldots	$\log 3 \cdot 025306$	

N. $81^{\circ} 44^{\prime} 5^{\prime \prime} \mathrm{W} . \ldots . \quad . . . \quad \log \tan \overline{10.837838}$

764
74 gives $5^{\prime \prime}$
Course $81^{\circ} 44^{\prime} 5^{\prime \prime} \quad$... ... $\operatorname{lo}\{\sec 10.842372$
D. lat. 644 $\log 2808886$

Distance 4480 miles $\log 3 \cdot 651258$

Note.-When the Course is large, it may be advisable to work to seconds, as in this case, in order to ensure the accuracy of the distance within a mile.

To find the Course by compass:

Exercises.

Required the Compass Course and Distance from A to B by calculation on Mercator's principle.

1. Lat. A, $50^{\circ} 49^{\prime} \mathrm{N} . ; \quad$ long. A, $0^{\circ} 0^{\prime}$. $\xrightarrow[\text { Variation } 19^{\circ}]{\prime} 45^{\prime}$ W. $\mathrm{W} . ;$ deviation $20^{\circ} \mathrm{W}$. ${ }^{\circ}$.
2. Lat. A, $11^{\circ} 11^{\prime}$ S. ; long. A, $0^{\circ} 37^{\prime}$ W. $, \quad \mathrm{B}, 0^{\circ} 0^{\prime}$; $\quad, B, 0^{\circ} 0^{\prime}$. V'ar. $23^{\circ} 30^{\prime}$ W.; dev. $10^{\circ} 17^{\prime}$ E.
3. Lat. A, $52^{\circ} 57^{\prime}$ N.; long. A, $158^{\circ} 33^{\prime}$ W. $\ddot{\mathrm{V}} \mathrm{B}, 39^{\circ} 30^{\prime} \mathrm{S}$. ; $^{\prime}, \mathrm{B}, 178^{\circ} 48^{\prime} \mathrm{E}$. Var. 25° E. ; dev. 15° W".
4. Lat. A, $14^{\circ} 9^{\prime} \mathrm{S} . ; \quad$ long. A, $180^{\circ} 0^{\prime}$. $\rightarrow B, 0^{\circ} 0^{\prime} ; \quad{ }^{\prime}, \quad \mathrm{B}, 174^{\circ} 57^{\prime} \mathrm{E}$. Var. $9^{\circ} \mathrm{E}$. ; dev. $5^{\circ} 30^{\prime} \mathrm{E}$.
5. Lat. A, $35^{\circ} 15^{\prime}$ S.; long. A, $115^{\circ} 15^{\prime}$ E.
 Var. $7 \frac{1}{2}^{\circ} \mathrm{W} . ; \operatorname{dev} .15 \frac{1}{2}^{\circ} \mathrm{W}$.
6. Lat. A, $51^{\circ} 24^{\prime}$ N.; long. A, $9^{\circ} 36^{\prime} \mathrm{W}$. , B, $38^{\circ} 36^{\prime}$ S.; \quad B, $170^{\circ} 24^{\prime}$ E. Var. $255^{1 \circ}{ }^{\circ}$ W. ; dev. $14 \frac{1}{2}^{\circ}$ E.
7. Lat. A, $0^{\circ} 0^{\prime} ; \quad$ long. $A, 81^{\circ} 27^{\prime}$ W. $\rightarrow \mathrm{B}, 61^{\circ} 10^{\prime} \mathrm{S} . ; \quad 0^{\circ} \mathrm{B}, 170^{\circ} 59^{\prime} \mathrm{E}$. Var. $2^{\circ} 20^{\prime}$ E.; dev. $20^{\circ}{ }^{\prime}{ }^{\prime} 0^{\prime} \mathrm{E}$.
8. Lat. A, $42^{\circ} 56^{\prime}$ S. ; long. A, $100^{\circ} 36^{\prime} \mathrm{W}$. , $\mathrm{B}, 10^{\circ} 36^{\prime} \mathrm{N} . ; \quad, \quad \mathrm{B}, 180^{\circ} 0^{\prime}$. Var. $17^{\circ} 10^{\prime}$ W. ; dev. $13^{\circ} 50^{\prime}$ E.
9. Lat. A, $36^{\circ} 19^{\prime}$ S.; long. A, $30^{\circ} 46^{\prime} \mathrm{W}$. "B, $36^{\circ} 12^{\prime} \mathrm{S}$; $\quad \mathrm{B}, 58^{\circ} 23^{\prime} \mathrm{W}$. Var. $31^{\circ} 15^{\prime} \mathrm{W}$.; dev. $14^{\circ} 26^{\prime} \mathrm{W}$.
10. Lat. $A, 0^{\circ} 0^{\prime}$;
long. A, $31^{\circ} 17^{\prime} \mathrm{W}$. $\stackrel{B}{\prime} \mathrm{~B}, 63^{\circ} 28^{\prime} \mathrm{N}$. ; \quad B, $28^{\circ} 16^{\prime} \mathrm{W}$. V̈ar. $1^{\prime 2} 20^{\prime}$ W.; dev. $15^{\circ} 30^{\prime}$ E.
11. Lat. A, $32^{\circ} 22^{\prime}$ N.; long. A, $33^{\circ} 15^{\prime}$ E. Var. $5^{\circ} 37^{\circ} 4^{\prime} \mathrm{N}$. ; $\quad{ }^{\prime} \mathrm{B}, 15^{\circ} 40^{\prime} \mathrm{E}$. Var. $5^{\circ} 35^{\prime}$ W. ; dev. $12^{\circ} 29^{\prime} \mathrm{W}$ W.
12. Lat. A, $0^{\circ} 17^{\prime}$ S. ; long. A, $59^{\circ} 47^{\prime} \mathrm{W}$.
 Var. $6^{\circ} 40^{\prime}$ E.; dev. 13° '50' W.

Art. 27.-Current Sailing.

1. Given the course and rate of sailing of a ship, and the "set" and "drift" of a cur-
 rent during the same interval of time, to find the course and distance made good.

Let AB represent the course and the distance sailed, and AC the "set" and "drift" of the current. Draw CD parallel to AB, and BD parallel to AC , and join $A D$; then $A D$ will represent the course and distance made good during the time elapsed.

Here the angle BAC is known, and therefore ABD is also known, because it is equal to $180^{\circ}-\mathrm{BAC}$. Also the sides AB and BD of the triangle ABD are known (because $\mathrm{BD}=\mathrm{AC}$). Hence two sides and included angle of the oblique-angled triangle ABD are known, from which the other angles and the third side AD can be computed. From the given direction of AB and the angle BAD the course of AD may be found.

Example .1.-A ship steers E. by N. at 10 miles per hour in a current setting S. by W. 3 miles per hour. Find the course and distance made good.

The angle $\mathrm{BAC}=10$ points, therefore $\mathrm{ACD}=6$ points (or $67^{\circ} 30^{\prime}$), because the two together are equal to two right angles. Applying the formula for two sides and including angle-
$\tan \frac{1}{2}(\mathrm{~A}-\mathrm{D})=\frac{\mathrm{CD}-\mathrm{AC}}{\mathrm{CD}+\mathrm{AC}} \cdot \tan \frac{1}{2}(\mathrm{~A}+\mathrm{D})$
$\mathrm{A}+\mathrm{D} 11230 \quad 11 \cdot 020205$
$\frac{1}{2}(\mathrm{~A}+\mathrm{D}) \quad 5615$
CD 10
$\mathrm{CD}+\mathrm{AC} \quad 13 \quad \ldots \quad \log 1 \cdot 113943$
$\frac{1}{2}(\mathrm{~A}-\mathrm{D}) 38 \quad 52 \quad \ldots \quad \tan 9.906262$
AC 3
$\mathrm{CD}+\mathrm{AC} 13$
$\mathrm{CD}-\mathrm{AC} 7$
$\frac{1}{2}(\mathrm{~A}+\mathrm{D}) 56 \quad 15$
\angle CDA 1723
(being the lesser angle (opposite to lesser side)

180°	0^{\prime}	$\frac{1}{2}(\mathrm{~A}+\mathrm{D}) 56^{\circ}$	15^{\prime}	\ldots	$\tan 10 \cdot 175107$	
67	30	$\mathrm{CD}-\mathrm{AC}$	7	\ldots	\log	0.845098

Fig. 86.
$10 \cdot 175107$

$$
0 \cdot 845098
$$

$11 \cdot 020205$

Course of AB N. 7845 E .
N. 968 E.
$180 \quad 0$
Course made good S. 8352 E .

To find distance made good (AD).

$$
\begin{aligned}
& \frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\sin \mathrm{ACD}}{\sin \mathrm{CDA}} \\
& \text { therefore } \mathrm{AD}=\frac{\mathrm{AC} \times \sin \mathrm{ACD}}{\sin \mathrm{CDA}} \\
& \mathrm{ACD} 67^{\circ} 30^{\prime} \quad \ldots \quad \text {... sin } 9.965615 \\
& \begin{array}{ccccc}
\text { AC } & 3 & \cdots & \ldots & \log 0 \cdot 477121
\end{array} \\
& \text { CDA } 17^{\circ} 23^{\prime} \quad \ldots \quad \operatorname{cosec} 10 \cdot 524673 \\
& \mathrm{AD} 9.3 \quad \ldots \quad \text {... } \log 0.967409
\end{aligned}
$$

2. Given the course to a given point, the set and drift of the current, and the rate of sailing of the ship; to find the course to steer and the distance made good towards the point in a given time.

Let A be the place of the ship, and B the destination, and $A C$ the set and drift of the current.

Fig. 87.

B From C set off CD equal to the distance the ship would sail in the given time, cutting $A B$ in the point D. Then CD gives the course to steer, and AD is the distance made good towards B .

In the triangle ACD, the two sides AC and CD are given, and the angle at A opposite to the latter, from which the other angles and remaining side can be found by the rule of sines (Case I.).

Example.-Given the direct course from A to B, E. by S., and the set and drift of the current S.S.E. 4 miles per hour, the ship's rate of sailing being 7 miles per hour, required the course to steer in order to counteract the effect of the current, and the distance made good towards B in 2 hours?

Draw AC in a S.S.E. direction, and set off on it 8 miles (drift in 2 hours), and from C set off 14 miles (2 hours' sailing), cutting AB in the point D, and

Fig. 88.
join CD. The line CD will give the course to steer, and AD is the distance made good.

Here $\mathrm{AO}=8, \mathrm{CD}=14$, and the angle CAD (opposite to CD) $=56^{\circ} 15^{\prime}$.

$$
\begin{aligned}
\text { Then } \begin{aligned}
& \sin D \\
& \sin A=\frac{A C}{C D} \\
& \text { and } \sin D=\frac{A C \times \sin A}{C D}
\end{aligned}
\end{aligned}
$$

Course from A to B

$$
\underset{\sim}{D} \quad 28^{\circ} 22^{\prime} \text { sine } 9 \cdot 676808
$$

S. 7845 E .
S. $107{ }^{180}{ }^{7} \mathrm{E}$.

Course to steer N. 7253 E .
To find AD .

3. The ship's position by observation and by dead reckoning being known, the set and drift of the current may be found. (Solved by right-angled triangles.)

Example.-At noon on a certain day, according to dead reckoning from the previous noon, a ship was in lat. $45^{\circ} 30^{\prime}$ N., long. $28^{\circ} 15^{\prime}$ W.; but by observation she was found to be in lat. $46^{\circ} 15^{\prime} \mathrm{N}$. , long. $27^{\circ} 8^{\prime} \mathrm{W}$. Required the set and drift of the current.

Drift in 24 hours $65 \cdot 1 \quad \log 1.813941$

$$
\text { Rate per hour }=\frac{65 \cdot 1}{24}=2.7 \text { miles. }
$$

Note.-This is a case of finding a course and distance by Mercator, and is solved by the formulæ for right-angled triangles.

Examples 1 and 3 can be solved approximately by means of the Traverse Table.

Example 1.-

Courses.	Dist.	N.	s.	E.	w.
E. by N. S. by W.	10 3	$2 \cdot 0$	$2 \cdot 9$	$9 \cdot 8$	$\overline{0.6}$
		$2 \cdot 0$	$\begin{aligned} & 2.9 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 0.6 \end{aligned}$	0.6
			09	92	

Course and disiance made good, S. 84° E. 9.3 miles.
Example 3.-D. lat. 64 and dep. 67 give course 46°
Course 46°, with D. lat. 45 , give dist. 65
Questions in current sailing may be varied in many ways, but all of them can be solved on the principles of the three foregoing examples.

Art. 28.-The "Danger Angle."-When sailing near the land where there are outlying dangers, a safe passage may be secured

Fig. 90. by calculating the angle subtended at a safe distance by the height of the top of a lighthouse or cliff above sea-level. Setting this angle on the sextant, the navigator so shapes his course that this vertical angle is not exceeded, allowance being also made for the dip of the land horizon (page 191 Norie or 35 Raper).

Referring to the figure, the height BC and the safe distance AB being known (by the chart) -

$$
\operatorname{Tan} \angle \mathrm{BAC}=\frac{\mathrm{CB}}{\mathrm{AB}}
$$

Let AO be the height of observer's eye above sea-level, OE a horizontal line, and H the base of the cliff or land horizon; then $\angle \mathrm{EOH}$ is the dip, $\mathrm{EB}=\mathrm{OA}$, and $\mathrm{CE}=\mathrm{CB}-\mathrm{EB}$.

Now, $\tan \angle \mathrm{COE}=\frac{\mathrm{CE}}{\mathrm{OE}}$, and the dip being added to $\angle \mathrm{COE}$, the danger angle COH is found.

Example.-The height of the top of a lighthouse which stands inland 500 feet is 725 feet, and, owing to the existence of a sunken rock, it is not safe to pass nearer the land than $1 \frac{1}{4}$ mile. Required the greatest vertical angle for safe navigation which the top of the lighthouse should make with the base of the cliff on which it stands, the height of eye being 20 ft .

Referring to the figure-

and $\mathbf{A B}$ or			$\begin{aligned} & =705 \mathrm{ft}, \mathrm{AH} \\ & 00=7100 \mathrm{ft} . \end{aligned}$
	t		CE -705
			$\overline{\mathrm{OE}} \overline{7100}$
705	$\log 2 \cdot 848189$
7100	$\log 3 \cdot 851258$
COE $=5^{\circ} 40^{\prime}$...		$\tan 8.996931$
+ Dip 10			

$\angle \mathrm{COH} 550$ the danger angle required.
To find the Width of a River or Channel-Let C be a prominent object on the opposite bank, and A and B two stations whose distance apart is known, B being chosen so that the $\angle A B C$ is a right angle. The horizontal angle at A, subtended by B and C, can be measured by means of a sextant or prismatic compass.

Tig. 91.

$$
\text { Then } \begin{aligned}
\frac{C B}{A B} & =\tan A \\
\text { and } C B & =A B \times \tan A
\end{aligned}
$$

Example.- Given the distance $\mathrm{AB}=600$ yards, and the angle $\mathrm{CAB}=42^{\circ} 30^{\prime}$, required the width (CB) of the river.

$$
\begin{array}{ccccc}
\mathrm{A} & 42^{\circ} 30^{\prime} & \cdots & \cdots & \tan 9 \cdot 962052 \\
\mathrm{AB} & 600 & \cdots & \cdots & \log 2 \cdot 778151 \\
\mathrm{BC}=549 \cdot 8 & \ldots & \ldots & \log 2 \cdot 740203
\end{array}
$$

therefore the width of the river is 050 yards nearly.

Miscellaneous Problems.

1. Two ports in lats. $38^{\circ} \mathrm{S}$. and $50^{\circ} \mathrm{S}$. are on the same meridian ; a vessel leaves the former, and, after sailing due W. 300 miles, steers due S . until the second parallel is reached. How far is she then distant from the second port?
2. Two places, A and B, are in the same latitude, and in longs. $10^{\circ} \mathrm{W}$. and $20^{\circ} 20^{\prime}$ W. respectively; a ship, sailing 10 knots, took exactly 48 hours to pass from one to the other. Find the latitude.
3. A vessel sailed from lat. $35^{\circ} 20^{\prime} \mathrm{N}$., long. $30^{\circ} \mathrm{W}$., 250 miles due N ., 250 miles due W., 250 miles due S., and 250 miles due \mathbb{E}. Required her latitude and longitude in.
4. A ship which sails 8 knots per hour, within 6 points of the wind, has to reach a port 120 miles S.S.W. of her, wind S.W. How long will she take?
5. A ship, after steaming S.E. by E. 12 knots per hour for 23 hours, from a position lat. $25^{\circ} 36^{\prime}$ S., long. $62^{\circ} 35^{\prime}$ E., found herself in lat. $27^{\circ} 25^{\prime} \mathrm{S}$., long. $66^{\circ} 45^{\prime}$ E. Find set and drift of current.
6. A ship has to reach a port 30 miles N.N.W. of her ; the wind is N. by E., and she can sail 7 knots within 6 points of the wind, making $\frac{1}{4}$ point leeway; she starts on the starboard tack, wishing to make her port in two tacks. After what interval must she go about?
7. An observer in a boat finds that the angle of elevation of the top of a nighthouse standing upon a cliff is 32°; after the boat has been rowed 100 yards directly towards the lighthouse, the elevation of the same point is 71°. Find the distance of the boat from the foot of the cliff at both observations; and, if at both points of observation the angle subtended by the lighthouse is found to have the same value, find the heights of cliff and lighthouse.
8. The upper part of a mast is 30 feet long, and subtends, at a point 150 feet in a horizontal line from the base, the same angle as that subtended at the same point by a man 6 feet high standing at the base. Find height of the mast.
9. A steamer is being steered S.W. $\frac{1}{2}$ W., at the rate of 12 miles per hour, in a known current setting W.N.W. $2 \frac{1}{2}$ miles per hour. Required the course and distance made good per hour.
10. Given the course and distance to a port, N. $75^{\circ} \mathrm{W} .196$ miles ; a steady current is setting $\mathrm{S} .15^{\circ} \mathrm{W} .1 \cdot 9$ mile per hour, and the vessel steams 10 knots. What course should be steered to counteract the current, and what progress is made towards the port in 12 hours?
11. A ship's position is, by dead reckoning, lat. $48^{\circ} 21^{\prime}$ S., long. $43^{\circ} 28^{\prime} \mathrm{W}$. ; and by observation, lat. $47^{\circ} 16^{\prime}$, long. $41^{\circ} 3^{\prime} \mathrm{W}$. Assuming the discrepancy to be due to a current, what was its set and drift during the time elapsed since the previous observations?
12. The true course to destination is. N. $33^{\circ} \mathrm{W}$., and distance 75 miles; but after steaming 5 hours on that course at 14 miles per hour, it was found to bear N. by W. (true), and distant by cross-bearings 10 miles. What was the effect of the current?
13. How long should it take a steamer to reach her destination, bearing W.N.W. 85 miles distant, if steering the proper course to counteract the effect of a steady current setting $S .20^{\circ} \mathrm{W}$. at the rate of 23 niles per hour, the ship's rate of steaming being 13 knots?
14. A departure is taken at 6 p.M., from a position determined by crossbearings in lat. $51^{\circ} 18^{\prime} \mathrm{N}$. , long. $9^{\circ} 42^{\prime} \mathrm{W}$.; her course is set W. $\frac{1}{2} \mathrm{~S}$., and after steaming at the rate of 14 knots per hour until noon the following day, the position is found by observation to be lat. $51^{\circ} 5^{\prime} \mathrm{N}$., long. $16^{\circ} 20^{\prime} \mathrm{W}$. Required the set and drift of the current.
15. From a place A, two ships start at same time steaming 10 knots and 8 knots respectively due E . After two hours the two ships bear $\mathrm{S} .46^{\circ} \mathrm{W}$. and $\mathrm{S} .66^{\circ} \mathrm{W}$. from a place B on the same parallel as and 30 miles E . of A . Find set and drift of current.
16. From a ship at anchor a torpedo boat known to be steaming at 15 knots
 $9^{\text {b }} 30^{\mathrm{m}} \mathrm{N} .35^{\circ} \mathrm{E}$. Determine course steamed by T. B. and her distance from ship in her last position.

CHAPTER VII.

TIDES.
Art. 29.-Observation reveals the fact that the waters around our coast are not at the same height at all hours of the day. At times great tracts are uncovered which at other times have several feet of water over them. This is a consequence of what are known as the "Tides," and is due to the attraction by the moon and sun of the waters of the ocean, combined with the rotation of the earth on its axis. The changes in the distances and relative positions of these bodies account for the general variations in the character of the tides, but local influences modify their action, and make the determination of high and low water at any place a matter of extreme difficulty. The rise and fall occurs twice in about $24{ }_{4}^{3}$ hours, which is the mean value of the lunar day, and tends to show that the moon's influence plays the most important part, being more than twice that of the sun's.

Let the figure represent the earth surrounded by an envelope of water, shown by the dotted circle.

Fig. 92.
Under the action of the moon M, the waters assume an elliptical form, being piled up on the sides nearest to and furthest from the moon, and correspondingly reduced on the sides at right angles to this direction, thus causing the waters to be higher at A and B, in the direction of the line of centres EM; and lower
at C and D at right angles to this direction. As the earth rotates from west to east, this crest moves from east to west. The action of the sun is similar to the moon, and causes two solar tides in a day.

When the centres of the sun and moon are in a line, that is, at new moon, the bodies being in conjunction, or at full moon, when they are said to be in opposition, the solar and lunar effects correspond, and we have the highest or Spring tides.

When the bodies are 90° apart or in quadrature, the solar low water corresponds with the lunar high water, and the lowest or Neap tides occur.

As the moon moves eastward faster than the sun, the combined effect will be to produce a crest to the westward of the moon during the first and third quarters, and thus the time of high water will be hastened; also an opposite effect during the second and fourth quarters, when the time of high water will be retarded. This is called the priming and lagging of the tides.

The middle between the levels of high water and low water at Springs is called the mean level of the sea (M.T.L.).

The datum line is the level of low water of ordinary Springs, (M.L.W.S.) and the height of a tide is measured above this line unless it is stated otherwise in the Admiralty Tide Tables, where full information is given at the foot of the page for each port showing what the zero of predictions is.

The interval which elapses between the moon's transit each day and the time of H.W. next following is the Lunitidal Interval; the mean of the lunitidal intervals for all days between new and full moon is the Corrected establishment of the Port ; the lunitidal interval on the days of new and full moon is the Vulgar establishment, and is registered in Roman figures on Admiralty charts as H.W.F. and C.

Art. 31.-In the Admiralty Tide Tables are given the times of High and Low Water and Heights above the zero of predictions selected for the various ports, around the British Isles and at other places chosen through the world, called "standard" ports. The Tables are in two parts, at the end of Part I. is an index of all standard ports, and of ports referred to a particular standard, and full information is tabulated for each day of the month throughout the year on the pages mentioned. At the end of Part II. is a general index, and on referring to the proper pages the lat., long., H.W.F. and C., and rise at Springs and Neaps are found for each place. Part II. is used when insufficient, or no information is given in Part I. for the required place.

The tides in Part I. are entered in order of occurrence, p.M. times and beights in block type.

The times given are STANDARD or mean time of certain meridians. Local and Greenwich times may be obtained by applying D. Long. in time. The "time differences" show how much earlier (if marked -) later (if marked +) high and low water occur at the required port than at the standard.

When no time difference is entered, or place not found in Part I., turn up index Part II. and on the page or pages will be found the Greenwich times of H.W.F. and C. at the required port and at the selected standard. The difference between these is the time difference, and is added (+) when full and change at place is greater than that at standard, subtracted (-) when less.

The port to be selected as standard is the nearest one geographically to the ship.

Remark.-When the difference is + , and the sum amounts to more than 12^{h}, reject 12^{h} and change from A.M. to P.M. on the same day, or from P.m. to A.M. on the day after: it may be necessary to take the P.m. time of tide for the day before, in order to obtain the A.m. time of tide on the required day.

When the difference is -, and the time entered in the Tables is less than the difference, borrow 12^{b}, and change from P.M. to A.m. on the same day, or from A.M. on the day after to P.m, on the required day.

Examples.

1. Find the M.T.G. and M.T.S. of H.W. on September 20th off Pembroke Dock.

2. Find the M.T.G. and M.T.S. of H.W. on August 22nd off Llanelly. M.T.G. H.W. Pemb. Dk. $0^{\mathrm{h}} 1^{\mathrm{m}}$ A.м. $\quad 0^{\mathrm{h}} 36^{\mathrm{m}}$ р.м.

Diff. +1	$+1$
M.T.G. H.W. Llanelly 0 a.m. Long. W. -17	$\begin{aligned} & 037 \text { Р.м. } \\ & -17 \end{aligned}$
M.T.S. H.W. Llanelly 1145 P.M.	020 P.M.

3. Find the M.T.G. of H.W. on July 22nd off Limerick.

4. Find the M.T.G. of H.W. on Oct. 21st off St. Mary's.

on 20th.

No P.m.
5. Find the M.T.G. and M.T.S. of H.W. on Sept. 21st off Lizard Point.
H.W. F. \& C. Devonport $\quad 6^{\text {b }} \quad 0^{\mathrm{m}}$
,, Lizard Point 521
Diff. $-\overline{0 \quad 39}$
M.T.G. H.W. Devonport $\quad 0^{\text {h }} 30^{\text {m }}$ P.M.

Diff. - 039
M.T.G. H.W. Lizard Point 1151 A.м. No р.м.

Long. W. - 021
M.T.S. Lizard Point 1130 а.m. No p.m.

Exercises.

1. Find the M.T.G. of high water-
at Bridlington on Nov. 29th.
", Spurn Point on Dec 18th.
", Dingle on Aug. 10th.
", Hilbre Island on Oct. 13th.
", Clydebank ou Sept. 10th.
2. Find the M.T.S. of high water-
at Rotterdam on Jan. 19th and 20th.
, Ayr on Noy. 9th and 10th.
" Crinan on Dec. 21st and 22nd
," Port Carlisle ou Sept. 28th and 29th.
", Wicklow on Sept. 30th and Oct. 1st.
3. Find the M.T.G. and M.T.S. of high water-
at Quaco on July 8th.
„Strangford Quay on Oct. 29th.
4. Find the M.T.G. of high water-
at Ardrishaig on Nov. 9th
H.W. F. and C. at Greenock $12^{\mathrm{h}} 24^{\mathrm{m}}$.
, Ardrishaig $12^{\mathrm{b}} 15^{\mathrm{m}}$.
Also at Southampton on Jan. 22nd.
H.W. F. and C. at Portsmouth Dockyard $11^{\mathrm{h}} 45^{\mathrm{m}}$.
$" \quad$, Southampton $\left\{\begin{array}{cc}0^{\mathrm{h}} & 39^{\mathrm{m}} \\ 11 & 2\end{array}\right.$
Times H.W. at Portsmouth $0^{\mathrm{h}} 44^{\mathrm{m}}$ A.m. $1^{\mathrm{h}} 1^{\mathrm{m}}$ P.M.

CHAPTER VIII.

REDUCTION OF SOUNDINGS.

Art. 32.-Near to land in foggy weather, the greatest security for the navigator is the frequent use of the "lead," and feeling his way by "ground navigation." A line of soundings and specimens of the bottom (brought up by the " arming" of the lead) will generally enable him to fix his position on the chart, or give him due warning of danger.

In Board of Trade inquiries into cases of stranding, the first importance is properly attached to the taking of soundings, and woe to the captain who may be found to have neglected this precaution.

The soundings marked on charts are from the Mean Low-water Level of spring tides, but the actual depth at a place varies with Springs and Neaps and the interval from high water. The difference between the sea-level at the "time of cast" and the Mean Low water of Springs is the Reduction of Soundings.

The Heights of Tides in the Admiralty Tables are measured from the same zero or datum line as used for the chart soundings, but some local tables, e.g. the Liverpool or Holden's Tables, give the heights from a datum line five feet below the Mean Sea-level.

In the diagram, let O (zero) be the mean level of low water spring tides, H the mean high water springs, and M the mean level of the sea or half-tide level; also let $h_{1}, h_{2}, h_{3}, h_{4}$ be the high-water marks of various tides, and $l_{1}, l_{2}, l_{3}, l_{4}$ the corresponding low-water marks, and B the sea-bottom.

Now, if the lead were cast when the sealevel is at O, it would give the same sounding

Fig. 93. as the chart, but at other times there would be a difference depending on the height of the tide in the tables and the interval from high water. This difference is the Reduction of Soundings.

The Half Range of any tide is found by subtracting the half mean spring range (H.M.S.R.) from the height, e.g. M $h_{1}=O h_{1}$ - O.M.

When the half-range, the time from high water and the time occupied in rising or falling are known, reference to the Tidal Diagrams No. I. to V. in the Admiralty Tables, or a diagram drawn by the student himself, gives the difference of level between M and the actual surface of the sea, which, being added to or taken from the H.M.S.R., gives the height above mean low water, or zero.

Авт. 33.-In calculating a correction to a cast or reduction of soundings we proceed in the following order. Firstly.Obtain the interval between the time of cast and the time of H.W.: from this derive the angle of swing. Secondly.-Find the Mean Tide Level (M.T.L.) and Height of Tide at ship: their difference gives the half tidal range, or half diurnal range (H.D.R.). Thirdly.-With the angle and H.D.R. take either from the traverse table in the D.Lat. column using angle as Co., and H.D.R. as dist., or from the diagram drawn, distance ship is from M.T.L. Fourthly.-Apply this distance to the M.T.L. for the distance the ship is from datum, which gives Reduction.

To find Interval and Angle.-The Interval is the elapsed time between the times of H.W. at place, and of cast: both times being reckoned from the same meridian. The time any tide takes to Rise or Fall is given at foot of column for those ports where H.W. only is predicted ; at ports for which both H.W. and L.W. are predicted it is found by subtracting preceding time of L.W. from H.W. used, for time to Rise: and by subtracting time of H.W. used from time of succeeding L. W., for time to Fall.

Interval must always be less than time of Rise or Fall used.
Times in Tide Table are not necessarily G.M.T.
Since from H. to L.W. tide sweeps through 180°,

$$
\text { Angle }=\frac{\text { Interval in minutes } \times 180^{\circ}}{\text { Time of Rise or Fall in minutes }}
$$

Examples.-Find the interval and angle:-

1. On August 29th at $9^{\mathrm{b}} 14^{\mathrm{m}}$ A.m. M.T.S. off Tenby. M.T.G. Pembroke Dock 29th $6^{\mathrm{h}} 46^{\mathrm{mi}}$ A.m.

Time Diff. - 035
M.T.G. H.W. Tenby 29 th 611 A.m. Tenby Lung. W. - 019
M.T.S. H.W. Tenby 29 th 552 A.m.

Interval 322 after H.W. \therefore Falling.

Time to fall $6^{\mathrm{h}} 15^{\mathrm{m}}$;
Hence angle $=\frac{202 \times 180}{375}=97^{\circ}$
2. On December 16th at $9^{\mathrm{h}} 40^{\mathrm{m}}$ A.m. M.T.G. off Lamlash.
M.T.G. H.W. Greenock, Dec. 16th $4^{\mathrm{h}} 27^{\mathrm{m}}$ P.M.

Time Diff. $-0 \quad 15$

H.W. Greenock $4^{\mathrm{h}} 27^{\mathrm{m}}$ P.M.
preceding L.W. ," 947 A.m.
Time to rise 640
Angle $=\frac{392 \times 180}{400}=175^{\circ}$
N.B.-Since only Time Diff. for H.W. is given, time of rise or fall at ship is taken to be the same as at standard port.
3. On July 23rd at $8^{\mathrm{h}} 15^{\mathrm{m}}$ P.m. M.T.S. off Welchpool, N.B.

Stand. time H.W. St. John, July 23rd $6^{\mathrm{h}} 38^{\mathrm{m}}$ P.M. Following L.W. $1^{\mathrm{h}} 6^{\mathrm{m}}$ A.m.
Time Diff. +02 Time Diff. 010

N.B. (1) Since Time Ditferences for both H. and L.W. are given, they must both be used to find tinne of fall at ship.
N.B. (2) Should no Time Difference be given, find its amount from H.W. F. and Cs. entered in Part II., and use 6 hours as time of rise or fall.

Exerotses.

Find the Interval and Angle :-

1. On Dec. 24th at $11^{\mathrm{h}} 30^{\mathrm{m}}$ P.M. M.T.S. off Grimsby.
2. "Nov. oth at $3^{\text {h }} 10^{\mathrm{m}}$ P.m. M.T.S. off Spurn Point.
3. , Oct. 25th at $10^{\mathrm{h}} 15^{\mathrm{m}}$ P M. M.T.G. off Bridlington.
4. "Sept. 26th at $1^{\text {h }} 10^{\mathrm{m}}$ P.M. M.T.S. off Donaghadee.
5. "Feb. 19th at $4^{\mathrm{h}} 15^{\mathrm{m}}$ A.M. M.T.S. off Beachy Head.
6. "Jan. 22nd at $8^{\mathrm{h}} 15^{\mathrm{m}}$ P.m. M.T.S. off Ramsgate.

To find the Mean Tide Level and Half Daily Range.-(a) The height of tides above Datum is entered for all standard ports at H.W., and at most ports for L.W. also. When H.W. heights only are predicted, the M.T.L. is given at the foot of the column. When both H.W. and L.W. heights are predicted the
M.T.L. is half the sum of these heights, unless the L.W. height is * signifying below Datum, when half the difference must be taken. To find the H.D.R. subtract the M.T.L. from the height of tide.

Thus on Dec. 2nd, A.m., off Hull.

On Oct. 7th, A.M., off Liverpool, rise and fall.

Ht. ft. in.	in.	ft. ln .	W. ${ }^{\text {ft. }}$ in.
Ht. H.W. 238	H.W. 238	H.W. 238	H.W.
eding L.W. 67	M	following L.W. 73	M.T
2)30 3	H.D.R. $86 \frac{1}{2}$	2)30 11	H.D.R. $82 \frac{1}{2}$
M.T.L. rise $151 \frac{1}{2}$		M.T.L. fall 15 5 $\frac{1}{2}$	

On Sept. 13th, P.M., off Liverpool, rise and fall.

Rise.		Fall.	
$\text { Ht. H.W. } 30 \underset{1}{\text { ft. in. }}$	$\text { H.W. } 30{ }_{1}^{\mathrm{ft} .} \mathrm{in.}$	H.W. ${ }^{\text {ft. }}{ }_{1}^{\text {in. }}$	H.W. ${ }_{\text {ft. }}{ }^{\text {l }}$ ln.
preceding L.W. *0 6	M.T.L. 14 91	following L.W. 04	M.T.L. 15 21
2)29 7	H.D.R. $153 \frac{1}{2}$	2)30 5	H.D.R. $1410 \frac{1}{2}$
M.T.L. 14 91		M.T.L. $15 \quad 2 \frac{1}{2}$	

(b) The height of tides for places referred to standard ports is found by applying the height differences according to sign to the heights at standard. These height differences are tabulated for Springs and Neaps, and, strictly speaking, are only correct for those days, which may be determined by reference to the Tables, when the days on which the highest H.W. occur are Springs, and those on which the lowest H.W. are entered are Neaps. These days may be on the days of full or new moon, or of quadrature, or one or two days after these phenomena. Astronomical data are entered at the beginning of the Tables. An interval of seven days may be allowed between Springs and Neaps, and so the correct height difference may be determined for any intermediate day by allowing $\frac{1}{7}$ th of the difference between the Spring and Neap difference for each day elapsed since last Spring or Neap. To find the M.T.L. for places referred to a standard at which only H.W. is predicted, or to a standard at which both H.W. and L.W. are predicted, but only the height differences for H.W. are given, apply $\frac{1}{2}$ Spring Diff. to the M.T.L. at standard.

For places at which the Difference are given for both H.W. and L.W., find the corrected Height Difference and thence the heights of H. and L.W. at the place, from which the M.T.L. for the required port may be directly obtained as for a standard.

Examples. - Find the M.T.L. and H.D.R. off Spurn Point on Dec. 13th, P.m.

On looking down the Tables, the days of Springs are seen to be on the 11 th and 27 th, our date is two days from Springs.

Off Dungeness on Feb. 9th, A.m., falling tide. Springs is on the 6th, hence three days from.

M.T.L.

110
N.B.-Always use $\frac{1}{2}$ Spring Diff. to find M.T.L. at ship.

Off Ramsgate, January 6th, A. м., rising. Our date two days to springs.

Exercises.

Find the M.T.L. and H.D.R.-

1. On August 22nd, A.m., off Mellon.
2. "Sept. 12th, f.m., off Valentia.
3. ", July $20 t \mathrm{~h}$, A.m., off Foynes Island.
4. "Feb. 14th, р.м., rise and fall off Rye Bay.
5. " Jan. 8th, A.m., ", ", Hastings.
6. " August 17th, A.m., ",,, Seal Cove.
7. " Oct. 22nd, г.м., ", ," Warren Point.
8. " Sept. 11th, A.m., rise off Amnan Foot.

To illustrate the working of the whole problem several examples will now be worked in full.

Example 1.-Find the Reduction of Soundings off Spurn Point on November $18 t \mathrm{ll}$ at $8^{\mathrm{h}} 38^{\mathrm{m}}$, P.M., M.T.G.

$$
\text { M.T.G. of H.W. Hull } \quad 0^{\mathrm{h}} \quad 3^{\mathrm{m}} \text { А.м. }
$$

Time Diff. - 14

"	H.W. Spurn	105	9 P.M.
,		83	8 А.м.

Interval 221 before, \therefore rising. Takes 6 hrs. to rise.
Hence angle $=\frac{141 \times 180}{360}=70 \frac{1}{2}^{\circ}$

	ft.	in.		ft.	in.
Ht. H.W. Hull	16	0	M.T.L. Hull	10	5
Neap Diff.	-1	7	$\frac{1}{2}$ S. Diff.	-1	1
Ht. H.W. Spurn	14	5		M.T.L. Spurn	9

Now, see Fig. 94, draw a vertical line, and a horizontal line for the M.T.L. as $O A$; from O measure down $9^{\prime} 4^{\prime \prime}$ to scale for zero, and measure up $5^{\prime} 1^{\prime \prime}$ for H.W.; with centre O, radius $=$ H.D.R. draw semicircle. At O, draw $O B$ making $70 \frac{1}{2}^{\circ}$ with vertical cutting semicircle in a point through which draw a horizontal line for "level of tide at cast," meeting vertical in V.

Measure $\mathrm{OV}=1^{\prime} 10^{\prime \prime}$, this is distance of ship at time of cast above M.T.L.
N.B. - Without the aid of a protracter, OV may be found in the D . lat. column of the Traverse Table, using angle 70 d as course, and H.D.R. $5^{\prime} 1^{\prime \prime}=61^{\prime \prime}$ as distance, this gives $22^{\prime \prime}$.

> M.T.L. $\mathrm{OV}+9^{\prime} 4^{\prime \prime}$ 10

17IG. 94.
Reduction to zero 11 2 to be subtracted from cast.

Since the zero at Hull is the level of mean low water springs, this is also the reduction to M.L. W.S.

Example 2.--Find the correction to cast on July 14th at $8^{\mathrm{h}} 5^{\mathrm{m}}$, P. M., M.T.S. off Dingle.

Dub. time H.W. Galway $4^{\text {b }} 3^{\mathrm{m}}$ P.m.

M.T.L. Galway	f. fus	
$\frac{1}{2} \mathrm{~S}$. Diff.		5
M.T.L. Dingle	5	
3 days to Spri		

M.T.S. time H.W. Dingle $3 \quad 8$ p.m. 3 days to Springs.

$$
\begin{array}{crr}
\text { Sp. Diff. } & -4 & 9 \\
\text { Np. } & -3 & -3 \\
\text { In 7 days } & - & 11 \\
" 3 \quad, & - & 5 \\
\hline \text { Ht. Diff. } & -4 & -4
\end{array}
$$

Takes $5^{\mathrm{h}} 55^{\mathrm{m}}$ to fall
\therefore angle $=\frac{297 \times 180}{35 \overline{5}}=151$.
ft. ins.
Ht. H.W. Galway $15 \quad 2$
Diff. $\quad-4 \quad 4$
Dingle 1010
M.'.L.L. , $\quad 5 \quad 9$
H.D.R. , $\overline{51}$

Now draw figure (Fig. 95).

> | | ft. |
| :--- | :---: |
| M.T. in. | |

OV $-4 \quad 4$

Fig. 95.

Reduction to zero 15 to be subtracted.
Since the zero is 75 foot $=9$ inches below the level of M.L.W.S. the Reduction to M.L.W.S. is $8^{\prime \prime}$ to be subtracted from cast.

Example 3.-Find the Reduction on Sept. 27 th at $4^{\mathrm{b}} 10^{\mathrm{m}}$, P.M., M.T.S. off Wicklow.

> Stand, time H.W. Kingstown $\quad 11^{\text {i }} 4^{\text {m }}$ P.m. Diff. - 43
> ," Wicklow 1021 p.m.
> D. Long. E. +1
> M.T.S. Wicklow 1022 p.n. M.T.S. Cast 410 p.m.
> Interval 612 (rising)

To rise takes $6^{\mathrm{h}} 25^{\mathrm{m}}$.

$$
\text { Angle }=\frac{372 \times 180}{385}=174^{\circ} .
$$

Now draw Fig. 96.

Fig. 96.

M.T.L.	5	0
O.V.	4	0

Reduction to zero 10 to be subtracted
Since zero is 84 foot $=10$ inches below the level of M.L.W.S.

Reduction to that level is $2^{\prime \prime}$ to be subtracted from cast.

Example 4.-Find the Reduction on Sept. 12 th at 5^{h}, A.M., M.T.S. off Donaghadee.
Stand. time H.W. Kingstown $\quad 11^{\mathrm{b}} 1^{\mathrm{m}}$ A.m.

Diff. - 2
Donaghadee 1059 A.m.
D. Long. E. +3
M.T.S. $\quad " \quad$ Cast $\quad \begin{array}{rl}11 & 2 \\ 5 & 0\end{array}$

Interval 62 rising.

To rise takes $6^{\mathrm{b}} 29^{\mathrm{m}}$
\therefore angle $=\frac{362 \times 180}{389}=168^{\circ}$

H.t. L.W. Kingstown	ft. ins.	H.W.	ft. ins.	
	06		12	
	-0 10		+	
Ht. L.W. Donaghadee	-0 4	H.W.	1210	
" H.W.	1210	M.T.L.	63	
	2)12 6	H.D.R.	6	7
M.T.L.	63			

Now draw Fig. 97.

Since zero is 84 foot $=10$ inclies below the level of M.L.W.S.
Reduction to M.L.W.S. is 1 foot to be added to the cast.

This problem may also be utilised to find the depth of water to be found at any time at a given spot on a chart, by adding the Reduction found to the depth marked on the chart ; if from this the ship's draught is subtracted,

Fig. 97.
the depth of water under the ship's bottom may be found; or, again, the tine may be found when a vessel of given draught will find sufficient water to pass an obstruction.

Exercises.

Find the correction to be applied to the cast, in order to reduce the soundings to datum and M.L.W.S. :-

1. On Oct. 14th, at $5^{\mathrm{h}} 56^{\mathrm{m}}$ P.M., M.T.G. off Hull.
2. "July 24th, at $4^{\text {h }} 30^{\text {mi }}$ A.m., M.T.S. off Galway.
3. ", Nov. 1st, at $1^{\mathrm{h}} 20^{\mathrm{m}}$ A.M., M.T G. off Grimsby.
4. "Aug. 15th, at $1^{\mathrm{h}} 10^{\mathrm{m}}$ A.M., M.T.S. off Limerick.
5. „Sept. 20th, at $6^{\text {h }} 20^{\mathrm{m}}$ P.m., M.T.G. off Tenby.
6. ", Dec. 18 th , at 10^{h} P.m., M.T.G. off Spurn Point.
7. "Aug. 6th, at $2^{\mathrm{h}} 10^{\mathrm{m}}$ A.M., M.T.S. off St. Jolnn (N.B.).
8. "Nov. 3rd, at $7^{\text {h }} 40^{\text {m }}$ A. m., M.T.G. off Abu Shahr.
9. "Sept. 28th, at $4^{\mathrm{h}} 45^{\mathrm{m}}$ A.m., M.T.G. off Fowey.
10. "Oct. 19th, at $5^{\text {h }} 20^{\text {m }}$ P.m., M.T.S. off Exmouth.
11. "Oct. 23rd, at $7^{\mathrm{h}} 10^{\mathrm{m}}$ P.M., M.T.S. off St. Mary's.
12. "Oct. 7 th, at $2^{\mathrm{h}} 40^{\mathrm{m}}$ P.м., M.T.G. off Beanmaris.
13. "Sept. 13th, at $6^{\mathrm{g}} 20^{\mathrm{m}}$ A M., M.T.S. off Workington.
14. ", Oct. 12th, at $0^{\mathrm{b}} 15^{\text {T }}$ P.M., M.T.S. off Dartmouth.
15. "Sept. 13 th, at $5^{\mathrm{h}} 10^{\mathrm{m}}$ A.M., M.T.S. off Whitehaven.
16. "Nov. 20th, at $5^{\mathrm{h}} 15^{\mathrm{ma}}$ A.M., M.T.S. off Henjam Island.
17. "July 15th at $10^{\mathrm{h}} 16^{\mathrm{m}}$ P.m., M.T.G. off St. Andrews (N.B.).
18. ,, a Spring-tide day $1 \frac{1}{2}$ hours from H.W. off Al Basra.
19. " a Neap-tide day 2 hours from L.W. off Kuweit.
20. The depth of water on a bar at the entrance to a harbour at mean low water springs is 10 ft .6 in . If the time of high water is $10^{\mathrm{h}} 51^{\mathrm{m}}$ A.m., find the depth of water on the bar at 9^{h} A.M., the height of tide for day being 20 ft .3 in. Spring range 22 ft .
21. On a certain day it is high water at Falmouth at $7^{\text {b }} 20^{\text {m }}$ p.m. Height of tide $15 \mathrm{ft} .6 \mathrm{in} . ;$ mean tide level 8 ft . What is the earliest time in the afternoon when there will be not less than 20 feet of water over a shoal marked 2 fathoms on the chart?
22. At St. Helier, Jersey, the M.T.L. is 15 ft .9 in , and a certain tide rises 25 ft .6 in . Find the height of the tide $1^{\mathrm{h}} 30^{\mathrm{m}}$ before high water.
23. On Deal Bank the depth marked on the chart is 18 ft . What depth of water would there be over it on Feb. 6th at $1^{\mathrm{h}} 30^{\mathrm{m}}$ A.M. M.T.G.? If a vessel's draught was 25 ft ., what depth of water would she have under her?
24. A vessel whose draught is 23 ft .6 in . wishes to berth at inner harbour where average depth on chart is 2 fathoms. Heights of tide at high and low water on the day are $14^{\prime} 10^{\prime \prime}$ and $1^{\prime} 10^{\prime \prime}$; time of H.W. $9^{\text {b }} 56^{\text {m }}$ A.m., previous time L.W. $3^{\text {h }} 43^{\mathrm{m}}$ A.M. What is the earliest time on the day when there will be sufficient water?

CHAPTER IX.

TIME.

Art. 34. Time and Arc.-It is often necessary to change Time (${ }^{\mathrm{h}}{ }^{\mathrm{m}}{ }^{9}$) into Arc (${ }^{\prime \prime}{ }^{\prime \prime}$), or the contrary.

Twenty-four hours are the equivalent of 360°;

Two rules for converting Are into Time are deduced from the above, viz.-
(1) Divide the ${ }^{\circ}$ " " by 15 .
(2) Multiply " , by 4 , and divide by 60.

Note.-The latter is generally preferred, because of the easier division.
Example.-Convert $34^{\circ} 16^{\prime} 30^{\prime \prime}$ into Time.

Exercises.

Find the equivalent values in Time of the following Arcs:-
$2^{\circ} 59^{\prime} 30^{\prime \prime} ; 179^{\circ} 0^{\prime} 45^{\prime \prime} ; 15^{\circ} 0^{\prime} 15^{\prime \prime} ; 67^{\circ} 52^{\prime} \overline{5} 5^{\prime \prime} ; 0^{\circ} 17^{\prime} 20^{\prime \prime} ; 10^{\circ} 19^{\prime} 40^{\prime \prime}$; $155^{\circ} 11^{\prime} 36^{\prime \prime} ; 93^{\circ} 0^{\prime} 45^{\prime \prime} ; 117^{\circ} 38^{\prime} 30^{\prime \prime} ; 144^{\circ} 54^{\prime} ; 176^{\circ} 39^{\prime} 35^{\prime \prime} ; 3^{\circ} 23^{\prime}$; $0^{\circ} 59^{\prime} 45^{\prime \prime} ; 0^{\circ} 0^{\prime} 15^{\prime \prime} ; 0^{\circ} 15^{\prime} ; 0^{\circ} 48^{\prime} ; 13^{\circ} ; 168^{\circ} 9^{\prime} ; 61^{\circ} 48^{\prime} 45^{\prime \prime}$.

By reversing the above rules, Time may be changed into Arc, viz.-
(1) Multiply by 15 .
(2) Multiply by 60 and divide by 4 .

Example.-Change $7^{\mathrm{h}} 32^{\mathrm{m}} 15^{\mathrm{s}}$ into arc.

$\begin{array}{r} 7^{\mathrm{b}} 32^{\mathrm{m}} 15^{\mathrm{s}} \\ 3 \end{array}$		$\begin{aligned} & 7^{\mathrm{h}} 32^{\mathrm{m}} 15^{\mathrm{a}} \\ & 60 \end{aligned}$	
223645	or	4)452 15	0
		$113^{\circ} \mathrm{U}^{\prime} 45^{\prime \prime}$	
$113^{\circ} 3^{\prime} 45^{\prime \prime}$			

Exercises.

Change into Arc the following Time intervals:-
$1^{\mathrm{h}} 12^{\mathrm{m}} 30^{\mathrm{s}} ; 10^{\mathrm{h}} 19^{\mathrm{m}} 55^{\mathrm{t}} ; 8^{\mathrm{h}} 0^{\mathrm{m}} 10^{\mathrm{a}} ; 6^{\mathrm{h}} 59^{\mathrm{m}} 18^{\mathrm{n}} ; 11^{\mathrm{h}} 59^{\mathrm{m}} 58^{\mathrm{s}} ; 3^{\mathrm{h}} 0^{\mathrm{m}} 19^{\mathrm{a}}$; $5^{\mathrm{h}} 59^{\mathrm{m}} 22^{\mathrm{A}} ; 9^{\mathrm{h}} 1^{\mathrm{m}} 37^{\mathrm{t}} ; 0^{\mathrm{h}} 15^{\mathrm{m}} 15^{\mathrm{h}} ; 2^{\mathrm{h}} 25^{\mathrm{m}} ; 0^{\mathrm{h}} 10^{\mathrm{m}} 35^{\mathrm{s}} ; 0^{\mathrm{b}} 0^{\mathrm{m}} 45^{\mathrm{s}} ; 2^{\mathrm{h}} 24^{\mathrm{m}} 44^{\mathrm{n}}$; $11^{\mathrm{b}} 0^{\mathrm{m}} 19^{\mathrm{a}} ; 11^{\mathrm{b}} 13^{\mathrm{m}} 30^{\mathrm{s}} ; 5^{\mathrm{h}} 0^{\mathrm{ma}} 5^{\mathrm{t}} ; 8^{\mathrm{h}} 28^{\mathrm{m}} 52^{\mathrm{n}} ; 10^{\mathrm{h}} 0^{\mathrm{ma}} 12^{\mathrm{a}} ; 0^{\mathrm{h}} 0^{\text {ma }} 12^{\mathrm{g}}$; $0^{\mathrm{h}} 1^{\mathrm{m}} 40^{\mathrm{c}}$.

Art. 35. Time and Longitude.-The rules for Time and Arc may be employed to find-
(1) The difference between Greenwich Time and the 'lime at a place whose Longitude is given ; and
(2) The Longitude corresponding to a given difference of Time.

But it must be borne in mind that, as the Earth rotates from west to east, places in E. longitude have sunlight earlier than Greenwich, and places in W. longitude later. Therefore the Time at a place in E. longitude is always fast of or greater than the Time at Greenwich, and at a place in W. longitude it is always slow of or less than Greenwich Time.

Art. 36.-Difference of Time due to Longitude.

Examples.

1. What is the difference between the time at a place in $72^{\circ} 50^{\prime} \mathrm{E}$. long. and the time at Greenwich?
3) $72^{\circ} 50^{\prime}$
$\frac{5)}{541640}$

$\frac{4^{\mathrm{b}} 51^{\mathrm{m}} 20^{\mathrm{a}}}{}$$\quad$ or \quad| $72^{\circ} 50^{\prime}$ |
| ---: |
| $6,0) 29,120$ |
| $4^{\mathrm{b}} 51^{\mathrm{m}} 20^{\mathrm{a}}$ |

Ans. The time at place is $4^{\mathrm{h}} 51^{\mathrm{m}} 20^{\text {a }}$ fast of Greenwich time.
2. What is the difference between Greenwich time and the time at a place in $124^{\circ} 10^{\prime} 45^{\prime \prime}$ W. long. ?

Ans. The time at place is $8^{\mathrm{b}} 16^{\mathrm{m}} 43^{8}$ behind, or slow, of Greenwich time.

Exercises.

Find the difference between time at Greenwich and corresponding time in the following longitudes, and say which is the greater:-
$10^{\circ} 20^{\prime}$ W. ; $17^{\circ} 45^{\prime} \mathrm{E} . ; 110^{\circ} 17^{\prime}$ E. ; $172^{\circ} 30^{\prime}$ W. ; $100^{\circ} 16^{\prime} 30^{\prime \prime}$ E. ; $90^{\circ} 4^{\prime} 45^{\prime \prime}$ W. ; $0^{\circ} 7^{\prime} 15^{\prime \prime}$ E. ; $179^{\circ} 56^{\prime} 45^{\prime \prime}$ W. ; $1^{\circ} 2^{\prime} 15^{\prime \prime}$ W. ; $115^{\circ} 0^{\prime} 30^{\prime \prime}$ E. ; $0^{\circ} 2^{\prime} 45^{\prime \prime}$ E. ; $165^{\circ} 0^{\prime} 15^{\prime \prime}$ W.

Art. 37.-Longitude from Difference of Time.

Examples.-

1. The mean time at ship is January $5^{\mathrm{d}} 2^{\mathrm{b}} 14^{\mathrm{m}} 40^{\text {d }}$, when mean time at Greenwich is January $5^{\mathrm{d}} 9^{\mathrm{h}} 45^{\mathrm{m}} 20^{\mathrm{s}}$: required the longitude.

M.T.S. JanuaryM.T.G.	$5^{\text {d }} 2^{\text {h }} 14^{\mathrm{m}} 40^{\text {a }}$	or	
	$\begin{array}{lllll}54 & 95 & 20\end{array}$		
Difference	$7 \quad 30$ 40 		$\begin{aligned} & 7^{\mathrm{b}} 30^{\mathrm{m}} 40^{\mathrm{a}} \\ & 60 \end{aligned}$
	22320 		4)450 $40 \quad 0$
Long. W. 1	$12^{\circ} 40^{\prime} 0^{\prime \prime}$		$112^{\circ} 40^{\prime} 0^{\prime \prime}$

2. The mean time at ship is February $14^{\mathrm{d}} 17^{\mathrm{b}} 16^{\mathrm{m}} 25^{\mathrm{s}}$ when mean time at Greenwich is February $14^{\mathrm{d}} 17^{\mathrm{b}} 19^{\mathrm{m}} 14^{\mathrm{a}}$: required the longitude.

3. Given M.T.G. March $30^{\mathrm{d}} 2^{\mathrm{b}} 19^{\mathrm{m}} 55^{\mathrm{s}}$, and M.T.S. March $29^{\mathrm{d}} 21^{\mathrm{h}} 16^{\mathrm{m}} 58^{\mathrm{s}}$: required the longitude.

M.T.G. March	30^{d}	2^{b}	19^{m}	55^{s}
M.T.S.	29^{d}	21	16	58

4. Given M.T.G. December $31^{\mathrm{d}} \quad 19^{\mathrm{h}} 11^{\mathrm{m}} 25^{\mathrm{m}}$, and M.T.S. January $1^{d} 3^{\mathrm{n}} 17^{\mathrm{na}} 50^{\mathrm{n}}$: required the longitude.

| M.T.G. December | 31^{4} | 19^{h} | 11^{m} | 25^{g} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M.T.S. January | 1^{d} | 3 | 17 | 50 |

Difference $\begin{array}{lll}8 & 6 & 25 \\ & 60 & \end{array}$
4)486 $25 \quad 0$

Long. E. $121^{\circ} 36^{\prime} 15^{\prime \prime}$
$\overline{5}$. Given M.T.S. July $2^{\text {a }} 5^{\mathrm{h}} 15^{\mathrm{m}} 45^{\mathrm{s}}$, and M.T.G. July $1^{\mathrm{d}} 22^{\mathrm{h}} 20^{\mathrm{m}} 30^{\circ}$: required the longitude.
M.T.S. July $2^{\mathrm{d}} 5^{\mathrm{b}} 15^{\mathrm{m}} 45^{\mathrm{s}}$
M.T.G. , $1^{\text {d }} 22 \quad 20 \quad 30$

$$
\begin{array}{lll}
\text { Difference } & 6 & 55 \\
& 60 & \\
& 15
\end{array}
$$

4)415 $15 \quad 0$

Long. E. $103^{\circ} 48^{\prime} 45^{\prime \prime}$
Note. - The student may change Time into Longitude by any method he prefers.

Exercises.
Find the Longitudes from the following Simultaneous Times at ship and Greenwich :-

No.	м.t.s.		M.T G.	
1	1906, January		1906, Jenuary	
2	", February	$14^{\text {d }}$ - 32233	", February	$14^{\text {a }} 102954$
3	, March	$31^{\text {d }} 19819811$	" April	$1^{\text {d }} 22881$
4	", April	$\begin{array}{llll}200^{\text {d }} & 313 & 18\end{array}$	" April	$19^{\text {d }} 19354$
5	" May	$13^{\text {a }} 224659$	" May	$14^{\text {d }}$
6	" June	$\begin{array}{llllll}1{ }^{\text {d }} & 5 & 3 & 13\end{array}$	" May	$31^{\text {d }} 211119$
7	"July	$23^{\text {d }} 111243$	", July	$23{ }^{14} 111024$
8	" August	$\begin{array}{lllllll}1{ }^{\text {d }} & 0 & 36 & 18\end{array}$	" July	$31^{\text {d }} 235948$
9	, September	$30^{\text {d }} 235845$	" October	$\begin{array}{lllll}1{ }^{\text {d }} & 0 & 1 & 5\end{array}$
10	, October	$29^{\text {d }} 111310$	" October	$29^{\text {d }} 224917$
11	" November	$22^{\text {d }} 233149$	" November	$23^{\text {d }} 11028$
12	December	$1{ }^{10} 981012$	November	$30^{\text {d }} 22212$
13	1905, December	$31{ }^{41} 185040$	" January	$\begin{array}{lllll}1{ }^{\text {d }} & 0 & 11 & 50\end{array}$
14	Deoember	$31^{\text {d }} 132025$	"January	$\begin{array}{llllll}1^{\text {d }} & 1 & 1633\end{array}$

Art. 38.-To find the Time at Greenwich when the Time at a place or at ship and the Longitude are known.

Rule.-Add the difference of time for West Longitude, and subtract for East.

Examples.-

1. When it is apparent noon at ship on May loth in long. $96^{\circ} \mathrm{W}$., what is the time at Greenwich?

A.T.S. May $10^{4} 0^{\mathrm{h}} 0^{\mathrm{m}} 0^{\text {a }}$		96°
		4
A.T.G. May	$10^{4} 6240$	B,0)38,4
		$6^{\text {b }} 24^{\text {n }}$

2. It is apparent noon at a place in $175^{\circ} 40^{\prime} \mathrm{E}$. on July 30th : required the time at Greenwich.

$$
\begin{array}{rr}
\text { A.T. at place, July } 30^{\mathrm{d}} 0^{\mathrm{h}} 0^{\mathrm{m}} 0^{\mathrm{b}} & 175^{\circ} 40^{\prime} \\
\frac{114240}{4} & \frac{4}{11^{\mathrm{n}} 42^{\mathrm{m}} 40^{\prime}}
\end{array}
$$

3. The sun is on the Meridian of ship's place in long. $100^{\circ} 35^{\prime} \mathrm{E}$. on May 15th : required the time at Greenwich.
A.T.S. May $15^{d} 0^{\text {h }} 0^{\text {ma }} 0^{4}$
$100^{\circ} 35^{\prime}$
64220
4
A.T.G. May $14^{\text {d }} 171740$
Or 15th 51740 A.m.
$6,0 \lcm{40,2 \quad 20}$
$6^{\mathrm{h}} 42^{\mathrm{m}} 20^{\mathrm{s}}$
4. When it is $6^{\text {b }} 50^{\mathrm{m}}$ P.m. apparent time on February 10th at ship in long. $75^{\circ} 50^{\prime}$ W., what is the time at Greenwich ?
A.T.S. February $10^{\mathrm{d}} \quad 6^{\mathrm{h}} 50^{\mathrm{m}} 0^{\mathrm{s}}$
$75^{\circ} 50^{\prime}$
$5 \quad 320$
4
A.T.G. February $10^{\text {d }} 115320$
$6,0) 30,320$
$5^{\text {b }} 3^{\text {m }} 20^{4}$
5. At a place in long. $115^{\circ} 56^{\prime}$ E. it is $7^{\mathrm{h}} 30^{\mathrm{m}}$ A,M. mean time on June 1oth : required the Greenwich time.

M.T. at place, June $14^{\mathrm{d}} 19^{\mathrm{d}} 30^{\mathrm{m}} 0^{\mathrm{a}}$	$115^{\circ} 56^{\prime}$
$\frac{74344}{}$	$\frac{4}{4}$
M.T.G. June $14^{\mathrm{d}} 114616$	$6,0) \overline{46,344}$

Note.-A.m. Civil time is changed into Astronomical time by adding the interval of 12 hours between noon and midnight, which makes the Astronomical day one less than the Civil day ; but when it is P.m. the Astronomical day is the same as the Civil.

Astronomical time is always written thus : February $10^{\mathrm{d}} 6^{\mathrm{n}} 50^{\mathrm{m}} 0^{\mathrm{L}}$, or June $14^{\mathrm{d}} 19^{\mathrm{h}} 30^{\mathrm{m}} 0^{4}$ being reckoned from noon onwards to 24 hours.

Civil time is written thus: February 10 th, $6^{h} 50^{\text {m }} 0^{4}$ P.m., or J une 15th, $\tau^{\mathrm{b}} 30^{\mathrm{m}} 0^{\mathrm{m}}$ A. M.

Exercises.

To find the Astronomical Time at Greenwich.
Civil time at ship.
1906. h. m. s.

1. May 16th	...	3
2. May 1st		0
3. June 13th		827
4. June 30th	...	11249
5. June 1st		150
6. February 17 th	\ldots	74328 P
7. February 28th	...	101918 A
8. August 21st...	..	61640 A
9. August 1st...		25414
10. August 10th		11955
11. October 22nd		93812
12. October 29th		105611

Longitude of ship.

 591630 W. 1362250 W. 1741445 E. 1053145 W . 961715 E. 744430 W . 1121445 W . 431330 W.165550 E . 155015 E. 155045 W . 821715 W

Art. 39.-To find the Time at Ship when the Time at Greenwich and the Longitude of Ship are known.

Rule.-Subtract the difference of time for West Longitude, and add for East, which is simply the reverse of the preceding rule. The reason has been previously explained (Art. 35).

Examples.-

1. Required the Time at ship in long. 65° E., when the A.T.G. is August 5 th, $10^{\mathrm{h}} 30^{\mathrm{m}}$ A.m.
A.T.G. August $4^{\mathrm{d}} 22^{\mathrm{h}} 30^{\mathrm{m}}$
65°
$6,0)-26,0$
420
A.T.S. August $5^{\text {d }} 250$
$6,0) 26,0$
$4^{\mathrm{h}} 20^{\mathrm{m}}$
2. What is the A.T.S. in long. $120^{\circ} 15^{\prime}$ W. when the A.T.G. is $2^{\text {h }} 35^{\mathrm{m}}$ P. M. on January 2nd?

3. Required the Mean Time at ship in long. 64° W. when the M.T.G. is August $15^{a} 5^{\text {b }} 17^{711} 35^{\text {a }}$.

M.T.G. August $15^{\mathrm{a}} 5^{\mathrm{h}} 17^{\mathrm{m}} 35^{\mathrm{s}}$	Long. $64^{\circ} \mathrm{W}$.
4160	4
M.T.S. August $15^{\text {d }} \mathbf{1} 185$	$6,0) 25,6$
	$4^{\mathrm{h}} 16^{\text {m }}$

Exercises.

1. What is the mean time at ship in long. $123^{\circ} 27^{\prime} 30^{\prime \prime} \mathrm{E}$. when the M.T.G. is October $14^{\mathrm{d}} \mathrm{g}^{\mathrm{b}} 15^{\mathrm{m}} 24^{\mathrm{a}}$?
2. What is the M.T.S. in long. 35° W. when the M.T.G. is May 6 th $2^{\text {b }} 3^{\text {m }} 46^{8}$ Р.м. ?
3. Find the M.T.S. in long. $143^{\circ} 27^{\prime} 30^{\prime \prime} \mathrm{W}$. when the M.T.G. is September 1st $4^{\mathrm{h}} 37^{\mathrm{ma}} 23^{3}$ A.m.
4. When the M.T.G. is June 2nd $11^{11} 19^{\text {m }} 14^{\text {a }}$ p.m., what is the mean time at ship in long. $95^{\circ} 46^{\prime} \mathrm{E}$?
5. Required the M.T.S. in long. $97^{\circ} 16^{\prime} 45^{\prime \prime}$ E. when the M.T.G. is October 19th $5^{\mathrm{h}} 8^{\mathrm{mm}} 40^{\mathrm{n}}$ P.M.
6. Find the M.T.S. when the M.T.G. is May 1st $5^{\mathrm{h}} 49^{\mathrm{m}} 54^{\mathrm{m}}$ a.m. in long. $164^{\circ} 48^{\prime} \mathrm{E}$.

Art. 40.-Rating Chronometers.-The ship's chronometer is relied on at sea to give the Mean Time at Greenwich (M.T.G.), its error on leaving port and its rate of gaining or losing per day being known.

An "Error" and " Rate" are usually supplied when the chronometer leaves the shop, but as the Rate is liable to be affecterl by changes of temperature and other causes during a voyage, it
is advisable to ascertain the correct Error when opportunity offers at ports the ship may visit.
"Rating a chronometer" means finding the rate at which it gains or loses per day by dividing the sum or difference of the errors on different dates by the number of days elapsed.

Examples. -

1. A chronometer was found to be $4^{\mathrm{m}} 30^{\mathrm{a}}$ fast of mean noon at Greer. wich on January 15th, 1906, and on March 30th, 1906, it was $7^{7 \times 3} 35^{\circ}$ fast of mean noon at Greenwich. Required the rate.
m.

Fast 430 on January 15.
Fast 735 on March 30.
35 gained in 74 days. 60
74)185 (2 $2^{n} \cdot 5$ gain per day. 148

370 370
2. A chronometer was $14^{\mathrm{m}} 25^{\circ}$ fast of mean noon at Greenwich on September 1st, 1906, and at mean noon at Greenwich on December 4th, 1906, it was $13^{\mathrm{m}} 14^{n} \cdot 5$ fast. Required the rate.
m. ${ }^{8}$.

Fast 1425 on September 1.
Fast 1314.5 on December 4.
110.5 lost in 94 days.

60
94)70.5(75' losing daily. 658

470
470
3. A chronometer was $1^{\mathrm{m}} 42^{\mathrm{I}}$ slow of M.T.G. at mean noon on January 1st, 1906 , and on March 31st at mean noon Greenwich time it was $6^{\text {m }} 9^{\text {a }}$ slow. Required the rate.
m. .

Slow 142 on January 1.
Slow 69 on March 31.
427 lost in 89 days.
60
89)267(3 ${ }^{\text {e }}$ losing daily. 267
4. On leaving Liverpool, January 19th, 1904, the ship's chronometer was $4^{\text {m }} 2^{\circ} \cdot 5$ slow of mean noon at Greenwich, and at Sydney on May 28th it was found to be $3^{m} 10^{n} \cdot 5$ slow of mean noon at Greenwich. Required the rate.

> m. ${ }^{\text {S. }}$ Slow 4.5 on January 19. Slow 310.5 on May 28.
$52 \cdot 0$ gained in 130 days.
130)52.0($\cdot 4^{4}$ gaining daily.
$52 \cdot 0$
5. At New York on February 27th, 1904, a ship's chronometer was 18° slow at mean noon Greenwich time, and at Southampton on March 6th, at Greenwich mean noon it was 14^{8} fast. Required the rate.

Slow $\stackrel{\text { 8. }}{18}$ on February 27.
Fast 14 on March 6.
32 gained in 8 days.
8)32
4^{1} gaining daily.
6. A chronometer was fast of mean noon at Greenwich $2^{m} 17^{\prime}$ on January 14th, 1906, and on June 1st it was $3^{m} 55^{\bullet} \cdot 5$ slow of mean noon at Greenwich. Required the rate.

Art. 41. The time by chronometer being given, and two errors or one error and daily rate, to determine the correct G.M.T.

Find the rate as explained above, multiply this by the number of days and decimals elapsed between the date of second error, and date of chronometer time. This gives the accumulated rate. Now take the time by chronometer expressed astronomically, being careful to make it correspond as far as possible with the Greenwich Time deduced from the Ship Time and approximate longitude, apply the second error and accumulated rate to obtain the correct G.M.T.

Examples.-

1. February 24 th, about $8^{\mathrm{h}} 20^{\mathrm{m}}$ A.M. at ship in long. by account $74^{\circ} 15^{\prime} \mathrm{W}$., the chronometer showed $1^{\text {h }} 12^{\text {In }} 20^{n} \cdot 5$, ant had been found $13^{\text {n }} 35^{\text {s }}$ slow of mean noon at Greenwich on October 30th, and on December 24th it was $10^{\text {m }} 55^{n} \cdot 5$ slow. Find G.M.T.

2. October 18 th, at $2^{\mathrm{h}} 30^{\mathrm{m}}$ A.M., M.T. ship nearly in long. by D.R. 50° E.; the chronometer showed $11^{\text {n }} 3^{\text {m }} 22^{\text {a }}$, which had been found $4^{\text {m }} 13^{6 \cdot 7}$ fast on July 24th, and losing daily $3^{\circ} \cdot 4$. Find G.M.T.

4	Ship time Oct. Long E .	$\begin{gathered} 17^{\mathrm{d}} 14^{\mathrm{h}} 30^{\mathrm{m}} \\ -3 \quad 20 \end{gathered}$	Elapsed time	$\begin{array}{r} 85 \cdot 5 \\ 3 \cdot 4 \end{array}$
6,0)20,0	Oct.	$17^{a} 11 \quad 10$		3420
				2565
$3^{\text {b }} 20^{\text {m }}$	Time by chron. Oct.	$17^{\text {a }} 11^{\text {b }} \quad 3^{\mathrm{m}} 22^{\text {a }}$	6,0)2	9,070
	Error fast	- $413 \cdot 7$	$4^{\text {m }} 50{ }^{\text {d }} 7$	
	Oct.	$17^{\text {a }} 10 \quad 59 \quad 8 \cdot 3$		
	Accum. rate lost	+4 507		

3. February 3rd, approximate ship time $1^{\mathrm{h}} 8^{\mathrm{m}}$ A.M., in long. about 31° W., when a chronometer, known to be $43^{\mathrm{m}} 19^{\circ}$ fast on January 13 th, and gaining daily $2^{a} 5$, showed $3^{\text {h }} 55^{\mathrm{m}} 30^{\circ} 5$. Find correct G.M.T.

31°	Ship time Feb. Long. W.	$\begin{gathered} 2^{d} 13^{\mathrm{h}} 8^{\mathrm{m}} \\ +24 \end{gathered}$	Elapsed time	$20 \cdot 6 \text { days }$
6,0)1,24	Greenwich time	$2^{\text {d }} 1512$		1030
				412
$2^{\text {b }} 4^{\text {m }}$				

Time by chron. Feb. Error fast	$\begin{gathered} 2^{\mathrm{a}} 15^{\mathrm{h}} 55^{\mathrm{m}} 30^{\mathrm{n}} 5 \\ -4319 \end{gathered}$
eb.	d 15 12 115
Accum. rate gained	515
M	$2^{\text {a }} 15 \quad 11 \quad 20$

Exercises.

Find the chronometer "Rate" from the following errors on Greenwich Mean Noon:-

No.	1 st date.	Error.	2nd date.	Error.
1	August 28th	$\begin{array}{ccc} \text { h. m. } \\ 0 & 7 & 2 \cdot 1 \text { fast } \end{array}$	December 9th	h. m . s . 0224.0 fast
2	September 30th	12119.0 slow	January 28th	11043.0 slow
3	April 12th	02519.0 slow	July 1st	01155.0 slow
4	April 1st	01024.0 fast	August 15th	01132.0 fast
5	February 27th	00019.5 fast	July 31st	$0 \quad 0 \quad 57.5$ slow
6	December 27th	correct	February 20th	0 ± 57.0 fast
7	June 1st	$\begin{array}{llll}0 & 1 & 8.8 \\ \text { slow }\end{array}$	September 30th	$0 \quad 0 \quad 40 \cdot 1$ fast
8	June 16th	01426.9 fast	September 30th	0 3 18.4 slow

9. November 27th, at about $10^{\text {h }}$ A.m., at ship in long. $123^{\circ} 15^{\prime}$ E., when a chronometer showed $1^{\mathrm{h}} 53^{\mathrm{m}} 34^{\mathrm{n}} \cdot 6$, which was slow for G.M.N. $3^{\mathrm{m}} 13^{\text {s }}$ on September 10th, and fast $2^{\mathrm{m}} 30^{\circ}$ on October 20th. Find correct G.M.T.
10. October 31st, about $2^{\text {n }} 15^{\text {m }}$ P.M., at ship in long. 124° W., when a chronometer showed $10^{\text {h }} 7^{\mathrm{m}} 33^{\text {a }}$, which was slow $10^{\mathrm{m}} 46^{\text {a }} \cdot 8$ on September 29th, and gaining $1^{\bullet} \cdot 01$ daily. Find the G.M.T.
11. March 20th, about $4^{\text {h }}$ P.M., at ship in long. $63^{\circ} 45^{\prime}$ W., when a chronometer showed $7^{\mathrm{h}} 12^{\mathrm{m}} 1^{\text {n }}$, which was slow $1^{\mathrm{h}} 2^{\mathrm{m}} 4^{\text {a }}$ on January 2 nd, and on February 1st was slow $1^{\mathrm{h}} 3^{\mathrm{m}} 54^{\mathrm{B}}$. Find the G. M.T.
12. December 10 th, about $2^{\mathrm{h}} 15^{\mathrm{m}}$ P.m., at ship in long. $161^{\circ} \mathrm{W}$., when a chronometer showed $2^{\text {b }} 1^{\mathrm{m}} 23^{\text {a }}$, which was fast $59^{\mathrm{m}} 16^{\mathrm{s}}$ on August 12 th, and on October 31st was fast $1^{\mathrm{h}} 2^{\mathrm{m}} 16^{\circ}$ on G.M.N. Find G.M.T.
13. July 4th, at $7^{\mathrm{h}} 17^{\mathrm{m}}$ A.m., at ship in long. $75^{\circ} \mathrm{W}$., when a chronometer showed 12 o'clock, it was fast of G.M. noon 38^{3} on April 15th, and gained $\cdot 75^{\text {a }}$ daily since. Find G.M.T.
14. November 27 th , at 7^{h} A.m., at ship in long. $4^{\circ} 45^{\prime}$ W., when a chronometer showed $7^{\mathrm{h}} 17^{\mathrm{m}} 58^{\circ} 5$, which had been found $6^{\mathrm{m}} 57^{\circ}$ slow for G.M. noon on August 21st, and slow $6{ }^{\mathrm{m}} 37^{\bullet} \cdot 5$ on September 20th. Find G.M.T.
15. December 14 th, about $4^{\text {h }} 5^{\mathrm{m}}$ P.M., M.T.S. in long. $11^{\circ} 6^{\prime}$ W., when a chronometer showed $5^{\text {b }} 20^{\mathrm{m}} 44^{*}$, which was fast of G.M. noon $2^{\mathrm{m}} 38^{\text {n }} 1$ on November 10th, and on November 27 th was correct. Find G.M.T.
16. May 1st, about $6^{\text {b }} 30^{m}$ P.m., at ship in long. 91° E., when a chronometer showed 12^{h}, and was slow $24^{\mathrm{m}} 54^{5}$ on January 11 th for G.M. noon, and slow $24^{\mathrm{m}} 34^{\mathrm{s}}$ on March 2nd. Find G.M.T.
17. April 16th, about $4^{\text {h }}$ P.M., at ship in long. $131^{\circ} 25^{\prime}$ E., when a chronometer showed $7^{\mathrm{h}} 18^{\mathrm{m}} 56^{n}$, which was slow of G.M. noon on February 9 th $9^{\mathrm{m}} 21^{\circ} \cdot 5$, and was slow $3^{\mathrm{m}} 19^{s} \cdot 5$ on March 17 th. Find G.M.T.

CHAPTER X.

ELEMENTS FROM THE " NAUTTCAL ALMANAC."

Art. 42.-A great part of the labour involved in the calculation of problems in Nautical Astronomy is the Reduction of the Elements from the "Nautical Almanac;" therefore it is most important that the student should master this part of the work at the outset. The advantage of a thorough acquaintance with the " Nautical Almanac" is incalculable.

The necessary extracts for working all the problems in this Book will be found in the Appendix. In the case of the stars the " mean position" only is given, and this is the one used in the calculations, as the introduction of the "apparent places" would considerably enlarge the Appendix without giving a corresponding advantage.

The Sun's Elements.-These are given for Noon at Greenwich, therefore it is always necessary to know the Greenwich Astronomical Time.

When Apparent Time is given, the elements are taken from p. I. of the month ; but when Mean Time is given, they are taken from p . II.

The variations or changes in one hour are on p. I.
All minutes and seconds in the Greenwich time are reduced to decimals of an hour.
(1) Declination.'

Examples.

1. Find the sun's declination for August 16 th $8^{\text {h }} 36^{\text {m }}$ P.m. apparent time at Greenwich.

Declination at noon $13^{\circ} 57^{\prime} 28^{\prime \prime} \cdot 0 \mathrm{~N}$. H.V. 47.03 page I., app. time

Cor. $\quad-644.5$
Dec. at $8^{\mathrm{h}} 36^{\mathrm{m}} 13 \quad 50 \quad 43.5 \mathrm{~N}$.8.6
$\overline{28218}$
37624
$6,0) 40,4 \cdot 458$

$$
6^{\prime} 44^{\prime \prime} 5
$$

The correction is subtracted because the declination is decreasing.
2. Find sun's declination for September 20th $2^{\text {b }} 45^{\mathrm{m}}$ A.M. M.T.G. ; astro. M.'I'G. $28^{\mathrm{d}} 14^{\mathrm{h}} 45^{\mathrm{m}}$.

Dec. for 29^{d} noon $2^{\circ} 9^{\prime} 24^{\prime \prime} \cdot 1 \mathrm{~S}$. H.V. $58 \cdot 41$ page I., mean time.

$$
\text { Cor. }-9003
$$

Dec. for $28^{\mathrm{d}} 14^{\mathrm{h}} 45^{\mathrm{m}} \quad 2 \quad 0 \quad 238 \quad \mathrm{~S}$.
$\frac{9 \cdot 25}{29205}$
11682
$\frac{52569}{} \frac{5(0) 5 \cdot 2925}{9^{\prime} 0^{\prime \prime} \cdot 3}$

Here we work from nearest noon, and obtain multiplier for H.V. by subtracting the $14^{\mathrm{h}} 45^{\mathrm{m}}$ in G.M.T. from $24^{\mathrm{h}}=9^{\mathrm{h}} 15^{\mathrm{m}}$.

The correction is subtracted since the declination decreases from 29th to 28 th.
3. Find sun's declination for September $23 \mathrm{rd} 11^{\mathrm{h}} 48^{\mathrm{m}}$ р.m. M.T.G.

Since the declination changes in name from \mathbf{N}. to S. , it must decrease. The declination has a maximum value twice during the year, about June 21st and December 24th, the value being about $23^{\circ} 27^{\prime} 15^{\prime \prime}$; it has no value about March 20th and September 23rd, the sun being on the equinoctial on those dates.

From March 20th to June 21st the sun's declination is N . and increasing. "June 21st to Sept. 23rd ", ", ", decreasing. " Sept. 23rd to Dec. 24th ", ", S. ", increasing. ", Dec. 24th to March 20ih ", ", ", decreasing.
(2) Equation of Time.

Examples. -

1. Find the Eq. of Time for September 24th $8^{\mathrm{h}} 21^{\mathrm{m}}$ A.m. A.T.G.
Eq. of Time for Sept. $24^{\text {d }}$ noon $7^{\text {m }} 43^{\text {e }} 36 \quad$ H. V. $\cdot 866$

Cor. $\quad-3 \cdot 16$
3.65 for nearest noon.

By looking on the top of the column, we may see how to apply this amount to A.T.G. in order to obtain M.T.G. A thick line divides the leading. There is a corresponding thick line in the Eq. of Time column between 1^{d} and $2^{\text {d }}$: this slows that all amounts above the thick line must be applied as stated above the line in the heading, and vice versa; hence the amount found, $7^{m} 40^{\circ} \cdot 2$, must be subtracted from the given A.T.G.

Thus A.T.G. Sept. $23^{\text {d }} 20^{\text {h }} 21^{\mathrm{m}} 0^{\text {d }}$
Eq. of Time - 7402
M.T.G. Sept. $23^{\text {d }} 2013198$
2. Find Eq. of Time for September 1st $8^{4} 42^{m}$ p.m. M.T.G. ; and find A.T.G.

Eq. of Time Sept. Ist noon $0^{\text {m }} 9^{\text {a }}$ Cor. 13				H.V. 779
				87
"		$1^{\text {d }} 8^{\mathrm{h}} 42^{\mathrm{m}}$	2.35	$\begin{gathered} 5453 \\ 6232 \end{gathered}$
				6.7773

M.T.G. Sept. $1^{\text {a }} 8^{\text {h }} 42^{\mathrm{m}} 0^{\text {b }}$

Eq. -2.35

$$
\text { A.T.G. },, \quad 1^{\text {d }} 841 \quad 57 \cdot 65
$$

Correction is subtracted from Eq. because it is changing its name, and the total amount is subtracted from M.T.G. because it is above the black line in column. Had the correction been more than the original amount of Eq., the corrected amount would have turned out below the line and additive.

The Eq. of Time has 4 maxima during the year, on Feb. 11th, May 15th, July 27th, Nov. 4th.

The Eq. of Time has 4 minima during the year, on April 15th, June 15th, Sept. 1st, Dec. 25th.

On the days on which the Eq. of Time vanishes, the mean and apparent suns are on the same hour circle.
(3) Right Ascension.

Examples. -

1. Find the R.A. of the apparent sun on August 19 th at $8^{\mathrm{h}} 27^{\mathrm{m}}$ P.M. M.T.G.

2. Find the R.A. of the apparent sun on August 25 th at $3^{\text {b }} 15^{\mathrm{m}}$ A.m. A.T.G.

		A.T.G.	Augusi	$24^{\text {d }} 15^{\text {b }}$		
I.A.	Aug	25th noon	$10^{\mathrm{L}} 13^{\text {r }}$	$33^{\circ} 02$	H.V.	$9 \cdot 187$
		Cor.	-1	20.39		8.75
"	',	$24^{\text {d }} 15^{\text {h }} 15^{\text {m }}$	1012	12.63		45935
,						64309
						73496
						$80 \cdot 38625$

In correcting the above elements, the H.V. as entered in the "Nautical Almanac" has been used without alteration; the H.V. differs, however, day by day, and therefore requires correcting itself; this is done by applying the amount that the H.V. changes in half the interval to be corrected for to the H.V. used: the element is then said to be corrected for $2 n d$ differences.

Example.-Find the R.A., Dec., and Eq. of Time for August 1st, $8^{\text {h }} 30^{\text {m }}$ f.M. A.T.G., correcting for 2nd Differences.

Dec. for August 1st noon $18^{\circ} 11^{\prime} 45^{\prime \prime} \cdot 0 \mathrm{~N}$. II.V. 1st $37^{\prime \prime} \cdot 26 \quad 37^{\prime \prime} \cdot 26$

$\text { , 2nd } 38.00$	Cor. ${ }^{36}+13$
74	37.39
$\frac{1}{2}$ Int. 425	$8 \cdot 5$
1700	18695
2975	29912
24)31450	$317 \cdot 815$
$\cdot 13$	

H.V. 1st 132	$\cdot 132$
,, 2nd 158	Cor. +005
. 026	137
$\frac{1}{2}$ Int. 4.25	8.5
25.50	685
850	1096
24) 11050	11645

Note. -The Polar Distance of an object is its distance from the elevated pole, and is the complement of the declination. It is found by adding 90° to the dec. when dec. and lat. are of opposite names, and by subtracting the dec. from 90° when dec. and lat. are of same name.

Exercises.

Correct the declination, equation of time, and right ascension for the fullowing Greenwich times.

1. Apparent time Aug. $3^{\mathrm{d}} 5^{\mathrm{h}} 48^{\mathrm{m}}$. 4. Mean time Sept. $14^{\mathrm{a}} 10^{\mathrm{h}} 24^{\mathrm{m}}$.
2. ,, Aug. $7^{\text {d }} 954 . \quad 5 . \quad, \quad$ Sept. $23^{\text {d }} 612$.
3. \quad, \quad Aug $14^{\text {d }} 1436 . \quad 6 . \quad, \quad$ Sept. $23^{\text {d }} 11130$.
4. \quad, \quad Sept. $23^{\text {d }} \quad 15 \quad 9$.
5. \quad - Sept. $23^{\text {d }} 2245$.
6. \quad, \quad Sept. $29^{\text {d }} \quad 18 \quad 15$
7. Find the A.T. ship when the Greenwich mean time is August $20^{\text {d }}$ $16^{\mathrm{h}} 5^{\mathrm{m}} 30^{\mathrm{n}}$ in long. $64^{\circ} \mathrm{E}$.
8. Find the M.T. ship when the A.T.G. is September $30^{d} 8^{\mathrm{b}} 4^{9^{m}}$ in long. $164^{\circ} 30^{\prime} \mathrm{W}$.
9. If the A.T.S. is September 25th $3^{\mathrm{h}} 19^{\mathrm{m}} 25^{\circ}$ A.m., in long. $84^{\circ} 20^{\prime}$ E., find the M.T.G.

Art. 43. Sidereal Time.-This is tabulated for noon of each day on p . II., and is the Sidereal Time at mean noon; another name for it is Right Ascension of the Mean Sun. Since the Mean Sun is supposed to move uniformly in the equinoctial, the H.V. is constant. A table for correcting the Sidereal Time is found in the "Nautical Almanac;" or in Norie, table xxxviii. The equivalents taken from the "Nautical Almanac" are given in the Appendix.

Example.-Find the correct Sid. Time for August $25^{\mathrm{d}} 13^{\mathrm{b}} 15^{\mathrm{m}} 25^{\circ}$, M.T.G.

Exerctses.

Correct the Sid. Times for following G.M.T.'s.

1. August	19^{a}	18^{n}	10^{m}	322^{\prime}.	
2.	,\quad,	28	3	4	47.
3.	September	5	14	54	14.
4.	,\quad,	29	2	49	24.

Art. 44. Moon's Elements-(1) Semi-diameter. (2) Horizontal Parallax. These are entered on p. III. of "Nautical Almanac" for "noon" and "midnight" of each day. The difference between any two consecutive entries is the variation in twelve hours, from which by proportion may be found the variation corresponding to the required interval. After being corrected for "time," the S.D. requires a further amount called "Augmentation" to be added to it, in consequence of the apparent increase in the dise of the moon, due to her approach to the observer as she 'increases her altitude. This is found in Table D, Norie. The H.P. also requires an amount called "Reduction" to be subtracted from it, because the H.P. entered in the almanac is the Equatorial H.P., and the observer is in some latitude where the earth's radius is shorter than the equatorial radius, and so the H.P. is reduced. This correction is found in Table E, Norie.

Example.-August 16^{d} at $5^{\mathrm{b}} 14^{\mathrm{m}} 24^{\mathrm{b}}$ M.T.G. in lat. $35^{\circ} \mathrm{S}$; app. alt. moon, 47°. Find corrected S.D. and H.P.
S.D.

Noon $15^{\prime} \mathbf{1}^{\prime \prime} .38$
Midnight 15537
Diff. in 12 hrs . $\quad 3.99$
$5 \cdot 24$
1596
798
1995
12)20.9076

H.P.
$55^{\prime} \quad 2^{\prime \prime} \cdot 42$
$55 \quad 17.04$
$14 \cdot 62$
$5 \cdot 24$
5848
2924
7310
12) $76 \cdot 6088$
6.38

Noon $55^{\prime} \quad 2^{\prime \prime} \cdot 42$
Corr. +6.38
$55 \quad 8.80$

Should the time exceed 12 hours, that is, fall between midnight and noon, the element is taken out for midnight and corrected towards the next day noon, using as a multiplier the hours in the Greenwich time reduced by 12.

Exercises.

Find the S.D. and H.P. of the Moon under the following conditions:-

	gus	$7{ }^{\text {d }}$,		$40^{\circ} \mathrm{N}$.		
2.	,	$17^{\text {d }} 16$	15	'1	'2	$50^{\circ} \mathrm{S}$.		
3.	"	$24^{\text {d }} 20$	36	,	"	$30^{\circ} \mathrm{N}$.		6
4.	"	$31^{\text {d }} 5$	45	",	,'	$20^{\circ} \mathrm{S}$.		

(3) Meridian Passage.-This is tabulated in mean time for each day at upper and lower transit on p. IV. of the month, in Greenwich astronomical time. It is the interval between the transit of the Sun and Moon. As the Earth rotates from W. to E., and the Moon is constantly changing her angular distance eastward from the Sun (about 12° daily), it follows that this interval is less when the Moon crosses the meridian of a place in E. long., and greater for a place in W. long. than the time given in the "Nautical Almanac." The change for 24 hours is found by comparing with the following day for \mathbf{W}. long. and the preceding day for E. long. The proportion of this change for the "Longitude in Time " is the correction required, and gives the time at place of the transit across the meridian of the place; by applying "Longitude in Time" to this, we obtain the M.T.G. of the transit across the ship's meridian.

Note.-(a) It is usual to ask for the Mer, pass. on a given Civil Day; therefore, if the corrected time of Mer. pass. exceeds 12 hours, it must be taken out for the preceding day, but for the same day if under 12 hours.
(b) The "Lower" Mer. pass. is used only when the Moon is observed below the pole.
(c) When two asterisks (**) are seen in the upper Mer. pass. colurnn, it is New Moon, and therefore no observation can be made.

Examples.-August 25th find the M.T.G. of Moon's Mer. pass. in long. $78^{\circ} \mathrm{W}$.

Mer. pass. Aug. $25^{\text {d }} 4^{\text {b }} 39^{\text {m }} 8$	Increase to following day because of West long. 54^{m}	78°
Cor. for long. $\quad+11.7$	long. in time $5 \cdot 2$	4
M.T. atplace $25^{\text {d }} 4515$	108	6,0)31,2
Long. +512	270	
M.T.G. $25^{\text {d }} 10 \quad 35$	4)280 8	$5^{\mathrm{h}} 12^{\mathrm{m}}$
	2.4 6) $\overline{70 \cdot 2}$	
	11.7	

August 11th find M.T.G. of Moon's Mer. pass. in long. $156^{\circ} \mathrm{E}$.
Since Mer. pass. on August 11th occurs at $17^{\mathrm{h}} 57^{\mathrm{m}} 0$, we use-
Decrease to preceding day

Mer. pass. Aug. $10^{\text {d }} 17^{\text {b }} 13^{\text {m }} 3$	because of East long. $43^{\mathrm{m}} \cdot 4$	156°
Cor. for long. $\quad-18.8$	$10 \cdot 4$	4
M.T. at place $10^{\text {d }} 16^{\text {h }} 54 \cdot 5$	1736	6,0)62,4
Long. - 1024	434	
M.T.G. $10^{\text {d }} 630 \cdot 5$	(4)451.36	
	$24\left\{\begin{array}{l}6 \longdiv { 1 1 2 \cdot 8 }\end{array}\right.$	
	18.8	

Exercises.
Find the M.T.G. of the Moon's Mer. pass. under following conditions :-

	August			172°		
2.	,,	28th	"	96	25	
3.	"	2nd	,	125	25	
4.	,,	27 th	,',	89	45	E.
5.	"	4th	,"	175	30	W.
6.	,"	15th	,"	142	48	E.
7.		9th	,	24	30	E.
8.		7 th			35	E.

(4, and 5.) The Moon's Right Ascension and Declination.-The Moon's path in the heavens is inclined to the Sun's at an approximate angle of $5^{\circ} 9^{\prime}$; and a great circle drawn through the direction of the Moon's motion at any time cuts the ecliptic in two opposite points called the nodes. At every revolution of the moon round the earth the nodes retrograde in the ecliptic, in a manner similar to the precession of the equinoxes; and are carried back $19^{\circ} 20^{\prime}$ in one year, therefore taking $18 \frac{1}{2}$ years to complete the circle. Her greatest latitude is therefore $5^{\circ} 9^{\prime}$; but her greatest declination varies from $23^{\circ} 27^{\prime}+5^{\circ} 9^{\prime}$ to $23^{\circ} 27^{\prime}-$ $5^{\circ} 9^{\circ}$. This causes very large changes in her right ascension and declination from day to day, as in addition her angular motion
in her orbit is nearly 13° per day; therefore it has been found necessary to tabulate these data for every hour of the day. This is done in the "Nautical Almanac," pp. V. to XII. of each month, and the variations are given for 10^{m}.

In reducing these elements, it is convenient to find the var. in 1^{m} by moving the decimal point one place to the left, and then multiplying by the number of minutes and decimals of a minute in the M.T.G.

Example.-Correct the Moon's R.A. and Dec. for M.T.G. August 4th $12^{\mathrm{b}} 24^{\mathrm{n}} \cdot 8$.

R.A. for $4^{\text {d }} 122^{\text {h }} 21^{\text {b }} 20^{\text {m }} 56^{8 .} 87$	Var. in $1^{\text {m }} 2^{\text {n }} 363$
Cor. for $24^{\mathrm{m}} \cdot 8+58.60$	24.8
Corrected R.A. $2121 \quad 5547$	18904
	9452
	4726
	58.6024
Dec. for $4^{\mathrm{d}} 12^{\mathrm{b}} 16^{\circ} 4^{\prime} 41^{\prime \prime} \cdot 9 \mathrm{~S}$.	Var. in $1^{\mathbf{m}} \mathbf{7}^{\prime \prime} \cdot 586$
Cor. for $24^{\mathrm{m} \cdot 8}-3^{\prime} 8 \cdot 1$	24.8
Corrected Dec. $16133 \cdot 8$ S.	60688
	30344
	15172
	6,0)18,8.1328
	$3^{\prime} 8^{\prime \prime} \cdot 1$

Using 2nd differences.

R.A. for $4^{\text {d }} 12^{\mathrm{n}} 21^{\mathrm{n}} 20^{\mathrm{m}} 56^{3.87}$	$\begin{array}{ll} 12^{\mathrm{b}} \text { Var. in } 10^{\mathrm{m}} & =23.627 \\ 13^{\mathrm{h}}, & =23.574 \end{array}$	Var. in $1^{\mathrm{m}} 2 \begin{array}{r}3616 \\ 24.8\end{array}$
Corrected R.A. $2121 \quad 55.44$	Change in $60^{\text {m }}-{ }^{\circ} 053$	188928
	$\frac{1}{2}$ Int. $\quad 12.4$	94464
	1	47232
	212	
	636	58.56768
	60) 6572	
	Ch. 011	

\therefore Req. var. $=23.616$
Dec. for $4^{\text {d }} 12^{\mathrm{b}} \quad 16^{\circ} 4^{\prime} 41 \cdot 9^{\prime \prime}$ S. 12^{h} Var. in $10^{\mathrm{m}} 75 \cdot 86 \quad$ Var. in $1^{\mathrm{m}} 7 \cdot 604$
Cor. $-3 \quad 8.6 \quad 13, \quad, \quad 76 \% 524.8$
Cor. Dcc. 161333 S .

$\overline{\text { Ch. in } 60^{m}}$+89 $\frac{1}{2}$ Int. $\overline{124}$	$\overline{60832}$
$\overline{356}$	30416
$\overline{1068}$	$6,0) \overline{15208} \overline{8.5792}$
$6,0) \overline{1,1 \cdot 036}$	$3^{\prime} 8 \cdot 6^{\prime}$

Ch. 18
\therefore Req. var. $=76.04$

Exercises.

Reduce the Moon's R.A. and Dec. to the following M. Times at Greenwich :-

	August	$5^{\text {d }} 18^{\text {b }} 19^{\text {m }} 27^{\text {a }}$					
2.		8	11		48		5.
3.		15	6		37		4.
4.	,	22	19		51		8.

Art. 45. Planets' Elements.-The planetary elements used are-
(1) Right Ascension.
(2) Declination.

These are entered for Mean noon at Greenwich on each day; no variation is given; and the corrections are found by using the difference between two consecutive days as diff. for 24 hours, and thence by proportion determining the change for hours and decimals in M.T.G.

Example.-Find the R.A. and Dec. of Jupiter for August $9^{\mathrm{d}} 10^{\mathrm{h}} \mathbf{1 5} 5^{\mathrm{m}}$ M.T.G.

R.A. August $9^{\text {a }}$ noon	$6^{\mathrm{h}} 8^{\mathrm{m}} 17^{\cdot} \cdot 24$	Dec. August	$9^{\mathrm{a}} 23^{\circ} 7^{\prime} 37^{\prime \prime} \cdot 9 \mathrm{~N}$
", ," $10^{\text {d }}$,	$6 \quad 9 \quad 0777$	" ,"	$10^{\text {d }} 23^{\circ} 7^{\prime} 31 \cdot 3$
Diff. in 24 hrs.	$+50.53$		-6.6
Int.	$10 \cdot 25$		10.25
	25265		330
	10106		132
	5053		66
	24)517.9325		24)67.650
Ch.	$21 \cdot 58$		Ch. 28

R.A. August $9^{\mathrm{d}} 6^{\mathrm{h}} 8^{\mathrm{m}} 17^{\circ} \cdot 24$

Cor. $\quad+21 \cdot 58$
Corrected R.A. 6838.82

Dec. August $9^{d} 23^{\circ} 7^{\prime} 37^{\prime \prime} \cdot 9 \mathrm{~N}$. Cor. $\quad-2.8$

Corrected Dec. 237351 N.
\{(3) Semi-diameter.
(4) Horizontal Parallax.-These elements do not require correction, and are entered for mean noon at Greenwich. The S.D. is occasionally used in "Lunar" problems.
(5) Meridian Passage.-This column in the "Nautical Almanac" is consulted to obtain the time for observing the Mer. Alt. of a planet for the purpose of finding the latitude. It also determines whether a planet is east or west of the meridian at a given time.

The correction for longitude, when necessary, is similar to that of the Moon's Mer. Pass.

Example. -Find the G.M.T. of Mer. Pass. of Jupiter on August 9th in long. $75^{\circ} \mathrm{E}$.

Exercises.

1. Correct the R.A. and Dec. of Jupiter for M.T.G. August $10^{d} 14^{\mathrm{h}} 54^{\mathrm{m}}$, and find his Mer. Pass. in long. $120^{\circ} \mathrm{W}$.
2. Correct the R.A. and Dec. of Saturn for August $11^{\text {d }} 8^{\text {b }} 24^{m}$ M.T.G., and find his Mer. Pass. in long. $150^{\circ} \mathrm{E}$.

Art. 46. Stars' Elements.-The only elements used in Navigation are Right Ascension and Declination; these do not require correction.

In the "Nautical Almanac" is a table giving the Mean Places of Stars where they are arranged in order of Right Ascension. The magnitudes are also stated by numbers, the smaller number denoting the brighter star. At the bottom of each page the proper name of the star is given; this may also be found in Table XIV., Norie. After the Mean Places, there is a very much extended table giving the Apparent Places of Stars for every 10th day of the month.

Directions.-Find the star in the table of "Mean Places," and note the R.A. This R.A. is then used to find the star in the extended table of "Apparent Places." The R.A. and Dec. are then taken out for the nearest date.

Examples.-In our table in the Appendix we find-

γ Pegasi	Mag. 29	R.A. $0^{\text {b }}$	$8{ }^{\text {m }}$	$23^{\circ \cdot 6}$	Dec. $14{ }^{\circ}$	39	' 40		
a Arietis	$2 \cdot 2$, 2	1	$52 \cdot 3$	23	1	6	6	
β Aurigre	," $2 \cdot 1$,, 5	52	38	44	56	19	N	N.
a Argûs	,, -1.0	\% 6	21	$51 \cdot 9$	52				S.

Stars like "a Argûs" whose mag. is prefixed by a " - " sign are brighter than those of mag. 0 ; and these increase in brightness as the negative number increases. Thus Sirius mag. $\mathbf{- 1 4}$ is brighter than a Argûs.

CHAPTER XI.

SIDEREAL AND SOLAR TIME.

Art. 47.-As a consequence of the Earth's rotation from W. to E., all Celestial bodies have an apparent motion from E. to W., but not all at the same rate. A star completes its apparent revolution in exactly the same time as the Earth takes to turn once on its axis, but the Sun, Moon, and Planets all change their positions with respect to the Stars. The Sun moves to the eastward about 1° daily, and the Moon about 13° daily, whilst a planet may have a motion to the E. or W., and sometimes stands still amongst the Stars.

The Apparent Motions of the Stars and the Sun are those used for measuring Time.

A Sidereal Day is the interval between two successive transits of a star over the Meridian of a place, and all Sidereal Days are equal.

A Solar Day is the interval between two successive transits of the Sun's centre, but Solar Days are not all equal, as they increase or decrease in length according to the time of the year. The Sun cannot therefore be a uniform time-keeper. Yet, as Day and Night depend on the Sun, it is the Natural Controller of time for ordinary purposes, and its position with respect to the Meridian marks Apparent Time, as indicated by a sun-dial.

To secure a Uniform Solar Time and Equal Solar Days, a Mean Sun is adopted, which gives Equal Days of 24 Equal Hours all the year round. Its position-sometimes to the E., sometimes to the W., and sometimes (four times in the year) coinciding in Right Ascension with the true Sun-marks Mean Time.

But on account of the progress Eastward (about 1° daily) of this Mean Sun, it is evident that it will take a longer time to come round to the Meridian again than would a fixed Starnearly 4^{m}, in fact.

Hence the Mean Solar Day is nearly 4^{m} longer than a Sidereal Day, but as both kinds of days are divided into 24 hours, it follows that Solar hours, minutes, and seconds are longer than the corresponding divisions of Sidereal Time. The exact relative values are given in two Tables in the "Nautical Almanac," on pp. 588 and 590 , and in the Appendix.

Any star would do to measure a Sidereal Day, but astronomers have made the Sidereal Day begin at the moment when the point where the Ecliptic cuts the Equator-corresponding to the Sun's position on March 21st, and named the "First point of Arics "-is on the Meridian of a place.

Right Ascension is also measured from this point (see Definition).
N.B.-An hour of any kind, whether of Right Ascension, Sidereal Time, or Solar Time, corresponds to an arc of 15°, because $24 \times 15^{\circ}=360^{\circ}$.

Art. 48.-To find Sidereal Time.-When the Hour Angle and the Right Ascension of any Celestial Object are known, the Sidereal Time may be found as follows :-
(a) Hour Angle West.- $A d d$ the Hour Angle to the Right Ascension (rejecting 24 if the sum exceeds 24 hours).
(b) Hour Angle East.-Subtract the H.A. from the R.A. (adding 24 hours if necessary).

Illustration. $-\mathrm{PMP}_{1}$ is the Celestial Meridian of a place, and

Fig. 98. the other projected semicircles from P to P_{1} are "Hour Circles" (15° apart). A is the "First point of Aries," and the Arc of the Equinoctial M.A. is the Sidereal Time (in this case, 4 hours). But the same Arc measured eastwards from A to M is the R.A. of the Meridian; therefore Sidereal Time and Right Ascension of Meridian are always equal.

Nore.-The student must regard the Meridian and Hour Circles as fixed, and the "First Point of Aries," as well as all celestial objects, in motion from E. to W. in the direction of the arrow.

Using the initials H.A. for Hour Angle, S.T. for Sidereal Time, R.A. for Right Ascension, and R.A.M. for Right Ascension of Meridian, the above rules may be stated concisely thus-
(a) H.A. West; S.T. or R.A.M. $=$ R.A. + H.A.
(b) H.A. East ; S.T. or R.A.M. = R.A. - H.A.

Fia. 99.

Fixamples.

1. Given the Sun's H.A. $3^{\mathrm{h}} 10^{\mathrm{m}} 30^{\circ}$ W. of the Meridian, and Sun's R.A. $14^{\mathrm{h}} 20^{\mathrm{m}} 40^{\mathrm{s}}$: required the Sidereal Time.

Here S.T. $=$ R.A. + H.A.
Sun's R.A. $14^{\mathrm{n}} 20^{\mathrm{m}} 40^{\mathrm{g}}$
Sun's H.A. 31030
S.T. 173110
2. Given the Moon's H.A. $4^{\mathrm{b}} 15^{\mathrm{m}} 50^{\mathrm{c}}$ E. of Meridian, and Moon's R.A. $10^{\mathrm{h}} 19^{\mathrm{m}} 30^{\prime}$: required the S.T.

Here S.T. = R.A. - H.A.
Moon's R.A. $10^{\text {h }} 19^{\text {m }} 35^{\prime}$
Moon's H.A. $415 \quad 50$

$$
\text { S.T. } 6 \quad 3 \quad 45
$$

3. Given a star's H.A. $6^{\mathrm{h}} 50^{\mathrm{m}} 25^{\mathrm{n}}$ E., and its R.A. $2^{\mathrm{h}} 15^{\mathrm{m}} 45^{\mathrm{s}}$: required the S.T.

> Star's R.A. $2^{\mathrm{h}} 15^{\mathrm{m}} 45^{\mathrm{a}}$ (add 24 4^{h}) Star's H.A. $650 \quad 25$
> S.T. 192520 (always counted westward)
4. Given a Planet's H.A. $4^{\mathrm{h}} 12^{\mathrm{m}} 20^{\circ}$ W., and its R.A. $22^{\mathrm{h}} 44^{\mathrm{m}} 14^{\mathrm{n}}$: required the S.T.

$$
\begin{aligned}
\text { Planet's R.A. } & 22^{\mathrm{h}} \\
\text { Planet's H.A. } & 14^{\mathrm{m}} \\
\text { P.A. } & 4 \\
\hline & 12 \\
& 20 \\
\text { S.T. } & 2
\end{aligned}
$$

Note.-The above calculation occurs in the "Lunar" and other problems, and should be clearly understood.

Art. 49. To find Sidereal Time from Solar Time-Since Apparent Time is the Westerly Hour Angle of the Sun, and Mean Time is the Westerly Hour Angle of the Mean Sun, the formula for finding Sidereal Time from the Solar Time will be-

$$
\begin{aligned}
\text { S.T. } & =\text { R.A.M.S. }+ \text { M.T.S. } \\
\text { or } ", & =\text { R.A.T.S. }+ \text { A.T.S. }
\end{aligned}
$$

Fia. 101.

Examples.-

1. Given Apparent Time at ship in long. $78^{\circ} \mathrm{W}$., August 14 th, at $8^{\mathrm{h}} 20^{\mathrm{m}}$ A.m. : required the Sidereal Time.

A.T.S. Aug. $13^{\mathrm{a}} 20^{\mathrm{b}} 20^{\mathrm{m}} 0^{\mathrm{a}}$ long. W. +5120				78°		
				4		
A.T.G. Aug. 14^{4}		1320		6,0)31,2		
		$5^{\text {b }} 12^{\text {m }}$				
	n's R.A. at noon			$9^{\text {b }} 32^{\text {m }} 39^{\text {b }} \cdot 09$		H.V.
	Cor.		14.40	$9 \cdot 41$		
				$1: 53$		
	Reduced R.A.A.T.S.	932	$53 \cdot 49$			
		2020	0	2823		
	Sid. Time			4705		
		552	$53 \cdot 49$	941		
				14.3973		

2. Given Mean Time at ship in long. $84^{\circ} 35^{\prime}$ W., September 23rd, $4^{\mathrm{h}} 36^{\mathrm{m}}$ A.M. : required the Sidereal Time.

R.A. Mean Sun at noon (or Sid. Time) $12^{\text {b }} \quad 1^{m} 44^{\text {s. }} 97$

Red. M.S.R.A. $12 \quad 5 \quad 24 \cdot 16$
M.T.S. 16360
R.A.M. or Sid. Time $441 \quad 24 \cdot 16$
3. Given M.T.G. September $28^{\mathrm{d}} 20^{\mathrm{h}} 16^{\mathrm{m}} 50^{\prime}$, long. $75^{\circ} 20^{\prime}$ E. : find S.T.
M.T.G. Sept. $28^{\mathrm{d}} 20^{\mathrm{h}} 16^{\mathrm{m}} 50^{\mathrm{a}} \quad 75^{\circ} 20^{\prime}$
long. E. +5120
4
M.T.S. Sept. $29^{\text {d }} 111810$
$\frac{6,0) 30,1 \quad 20}{5^{\mathfrak{h}} 1^{\mathrm{m}} 20^{\text {a }}}$
S.T. at noon or R.A.M.S. $12^{\text {h }} 25^{\text {m }} 24^{\text {B }} 28$

Accel. for $\left\{\begin{array}{lr}20^{\mathrm{h}} & 3 \\ 16^{\mathrm{m}} & 17 \cdot 13 \\ 50^{\mathrm{a}} & 2 \cdot 63 \\ & \cdot 14\end{array}\right\}$ see Appendix
Red. M.S.R.A. $12 \quad 28 \quad 44 \cdot 18$
M.T.S. 11810
R.A.M. or Sid. Time $13 \quad 46 \quad 54 \cdot 18$

Note.-The Mean Sun's R.A. at noon is taken from the Sidereal Time column on p. II. of "Nautical Almanac," becanse the mean Sun being on the Meridian at Mean Noon, its R.A. at that moment is the same as the R.A.M. and the S.T. at Mean Noon.

Exercises.

Compute the S.T. from the following data :-

1. A.T.S.	...	August 2nd			$\begin{aligned} & \mathrm{8} \\ & 0 \text { А.м. } \end{aligned}$	Inng.		
						$30^{\prime} \mathrm{W}$		
2. M.T.S.		,"	4th		710	0 р.m.	105	45 E.
3. M.'T. ${ }^{\text {a }}$			$8^{\text {a }}$	2314	2	36	30 E	
4. M.T.G.		Sept.	$1{ }^{\text {d }}$	515		124	37 W	
5. M.T.S.			14th	830	0 A.м.		25 W .	
6. A.T.S.			24th	540	0 р.м.		12 E .	

Art. 50.-To find the Hour Angle of a Celestial Object.-When
the Sidereal Time and the Right Ascension of a Celestial object are known, its Hour Angle can be found by subtracting one from the other, so as to obtain the least difference between them (borrowing 24 hours when necessary). The object is West of the Meridian when R.A. is less than S.T., and East when greater.

Illustration.-A is the first point of Aries. The arc MA is the S.T. of observation, $A R_{1}$ is the R.A. of a star west of the Meridian; its H.A. (the are $M R 1_{1}$) is evidently $=\mathrm{MA}-A R_{1}$, that is, S.T. -

Fig. 102. star's R.A.

Again, AR_{2} is the R.A. of the Moon, and its H.A. (the are $\left.\mathrm{MR}_{2}\right)=A R_{2}-\mathrm{MA}$, that is, Moon's R.A. - S.T., and it is East of the Meridian.

Examples.-

1. Given the S.T. $7^{\mathrm{n}} 42^{\mathrm{m}} 35^{\mathrm{g}}$, and the R.A. of a star $6^{\mathrm{b}} 40^{\mathrm{m}} 13^{\prime}$: required its H.A.

2. Given S.T. $19^{\mathrm{m}} 10^{\mathrm{m}} 40^{\mathrm{A}}$, and R.A. of an object $1^{1 \mathrm{l}} 2^{\mathrm{m}} 50^{\prime}$: required its H.A.

$$
\begin{aligned}
& \text { S.T. } 19^{\mathrm{L}} 10^{\mathrm{m}} 40^{\circ} \\
& \text { R.A. } 1 \quad \begin{array}{c}
1 \\
\hline
\end{array} \\
& \hline \text { H.A. } \\
& \hline 5
\end{aligned}
$$

Note.-In this example the Sidereal Time is subtracted from the R.A. (which is therefore the greater), because it gives a difference less than 12 hours, and no object can be farther from the Meridian than 12 hours.

Art. 51.- All the Celestial bodies are so related to each other in position that when the H.A. of one of them is known, the H.A. of any other can be found by means of their known Right Ascensions ; because it was shown in Art. 46 that S.T. is equal to the sum or difference of the R.A. and H.A. of a given object, and now it has been shown that the H.A. is the difference between the S.T. and the R.A. of any given object.

Note.-The H.A. can also be computed from the Altitude, as will be seen liereafter.

Fig. 103.

Examples.-

1. Given R.A. of Star Aldebaran $4^{\text {b }} 30^{\mathrm{m}} 7^{\text {a }}$, and its H.A. $2^{\text {h }} 10^{m} 25^{\mathrm{s}}$ west of Meridian: what is the H.A. of the Star Regulus whose R.A. is $10^{\mathrm{h}} 3^{\mathrm{m}} 0^{\mathrm{a}}$?

2. Given R.A. of Star Achernar $1^{\mathrm{h}} 33^{\mathrm{m}} 57^{\mathrm{c}}$, and H.A. $4^{\mathrm{h}} 50^{\mathrm{m}} 47^{\circ}$ east of Meridian : required the H.A. of the Moon when its R.A. is $18^{\mathrm{b}} 10^{\mathrm{m}} 25^{s}$.

3. Given M.T.G. Aug. $16^{\mathrm{d}} 8^{\mathrm{h}} 14^{\mathrm{m}} 20^{\mathrm{s}}$ in long. 80° E. : find the Meridian Distance or Hour Angle of the Moon.

ART. 52.-To find the Solar Time corresponding to given Sid. Time.

Examples. -

1. Find the M.T.S. in long. $65^{\circ} \mathrm{W}$. on Aug. 19th, when the S.T. is $7^{\mathrm{b}} 55^{\mathrm{m}} 20^{\mathrm{a}}$.

2. Find the M.T.S. in long. 82° E. on Sept. 20th, when the S.T. is $19^{\mathrm{k}} 14^{\mathrm{m}} 35^{\circ}$

Exercises.

1. Find the hour angle of Altair at $8^{\mathrm{h}} 20^{\mathrm{m}}$ P.M. M.T.S. in long. $126^{\circ} 20^{\prime}$ E. on Angust 12th.
2. Find the hour angle of Capella at $7^{\mathrm{t}} 15^{\mathrm{m}}$ A.M. M.T.S. in long. 84° 35^{\prime} W. on September 20th.
3. Find the hour angle of the Moon on August 22nd at $5^{\text {b }} 26^{\mathrm{m}}$ p.m. M.T.S. in long. $34^{\circ} \mathrm{W}$.
4. Find the hour angle of Jupiter on August $8^{\mathrm{d}} 17^{\mathrm{h}} 15^{\mathrm{m}}$ M.T.G. in long. $56^{\circ} 25^{\prime}$ E.
5. Find the M.T.S. in long. 74° E. on August 18 th, when the S.T. is $6^{\text {b }}$ $14^{\text {m }} 24^{\text {² }}$.
6. Find the M.T.S. in long. 95° W. on September 14th, when the S.T. is $18^{\mathrm{b}} 7^{\mathrm{m}} 36^{\mathrm{s}}$.

Art. 53.-To compute the Time when a given Star is on the Observer's Meridian. - When a star is on the meridian, the right
ascension of the star is the same as the right ascension of the meridian, or Sidereal Time, hence the problem is the same as finding the M.T.S. or A.T.S. corresponding to a given Sid. Time.

Examples.

1. Find the M.T.S. when the star Procyou is on the observer's meridian in long. $35^{\circ} \mathrm{W}$. on August 6 th.

Care must be taken in dating the approx. M.T.S. If the hours, as in the example, exceed 12 , the date is the day before the date in the question ; if the hours are less than 12 , the date is the same as the question. The passages are required for the civil day, and hence the $5^{\mathrm{d}} 22^{\mathrm{h}}$ (astro. time) corresponds to the 6 th 10^{h} A.m. (civil time).

In Fig. 104, NEQW represents plane of equinoctial. NPQ is meridian, and the object

Fis. 104.
 X is always found between P and Q, as this represents our upper meridian. Distance to measure QX is the declination north or south. Find position of $\Upsilon 1$ st point of Aries by measuring to the westward the R.A. of star, which since the star is on the meridian represents the R.A.M. and Sidereal Time; then from r measure to the eastward the R.A. of Mean Sun, this gives M. Draw hour circles through Υ and M.
rWQ is R.A. of star and of meridian.
TQM is R.A.M.S.
QWEM is westerly hour angle of M
is M.T.S.

$$
=24^{\mathrm{L}}+r W Q-r Q M
$$

2. Find the M.T.S. when Regulus is on the meridian in $94^{\circ} \mathbf{E}$. on August 4th.

R.A.M.S. noon	$8^{\text {b }} 44^{\text {m }} 37^{\prime \prime}$		
Accel for $\left\{18^{\text {b }}\right.$		2	
Accel. for $\left\{59^{\text {m }}\right.$			10
Red. R.A.	8	47	44
R.A.*	10	3	22
$\underset{\text { or } 4 \text { th } 1^{\mathrm{h}}}{ } 4^{\mathrm{d}}$			

In Fig. 105, projected on plane of equinoctial, measure QWr $=10^{\mathrm{h}}$, then rWM $8^{\mathrm{b}} 48^{\text {m }}$ for M.

QM is M.T.S. when \mathbf{X} is on meridian $=r W Q-r W M$.

Fla. 105.
3. Find the A.T.S. when Arcturus is on the meridian in $100^{\circ} \mathrm{E}$. on September 2nd. Also by inspection.
R.A. Arcturus or R.A.M. $=14^{\text {h }} 11^{\text {mi }} 22^{\circ} \quad 100^{\circ}$

App. R.A. page I. or P.A.T.S. 104244
4
Approx. A.T.S. $2^{\text {d }} 3 \quad 28 \quad 38$
Long. E. - 6400
$6,0) 40,0$
$6^{b} 40^{\text {m }}$
,, A.T.G. $1^{1} 2048 \quad 38$

	$\begin{aligned} & \text { н.v. } \\ & 9 \cdot 06 \\ & 3 \cdot 2 \end{aligned}$
Red. R.A. 104215	1812
R.A.* 141122	2718
A.T S. $2^{\text {d }} 3297$	28.992
or $2 \mathrm{nd} 3^{\text {b }} 39^{\text {m }} 7^{\text {n }}$ 甲.M.	

From Table xliv., Norie, Mer. pass. Arcturus Sept. $1^{\text {d }} \quad 3^{\text {h }} 26^{\text {m }}$

,$"$	6
Diff. in 5 days	3 17 ", 1 day 3

Hence by inspection 2nd 323 or $2^{\text {nd }} 3^{\text {b }} 23^{\text {m }}$ P.M.

In Fig. 106
NEQW plane of equinoctical. NPQ meridian.
X object. P'pole. A true sun.
1st point of Aries. Draw hour circles
as in Fig. 106.

$$
\begin{aligned}
\text { rWQ } & =\text { R.A.* and R.A.M. } \\
\text { rWM } & =\text { R.A.T.S. } \\
\text { QM } & =\text { Wly.H.A. of A. } \\
& =\text { A.T.S. } \\
& =\text { rWQ }- \text { rWM. }
\end{aligned}
$$

Fig. 106.

Exercises.

Find the ship time when the given star is on the observer's meridian from the following data:-

No.	Name of star.		Civil date.		Longitude.	Mean or App. Time.
1	a Audromedæ	...	August 6th	\ldots	$65^{\circ} 0^{\prime} \mathrm{E}$.	App.
2	β Ceti	\# 8th	...	480 W.	Mean
3	a Arietis.	...	10th	\ldots	1370 E.	Mean
4	Achernar	...	", 12th	...	1720 W.	App.
5	Aldebaran	...	" 14th	...	3750 E .	Mean
6	Capella	16th	...	140 W.	App.
7	Rigel	18th	...	250 E.	Mean
8	Canopus ...	\ldots	20th	...	10030 E.	App.
9	Betelgueuse	\ldots	22nd	...	15025 W.	Mean
10	Regulus	24 th	...	2945 E .	App.
11	Procyon	" 31st	...	850 W.	Mean
12	Spica	Sept. 3rd	...	390 E.	App.
13	Antares	10th		2645 W.	Mean
14	Vega.	...	, 17th	\cdots	1345 E	App.
15	Altair	...	" 24th	...	17545 W.	Mean

Art. 54.-Bright Stars and Planets.-Stars which may be considered as "bright," and suitable for Navigation purposes, are those of the first and second magnitudes. In the Table of "Mean Places of Stars" in the "Nautical Almanac," there are eighteen of the former and about twice as many of the latter, which gives the Navigator a choice of fifty-four objects suitable for observations, in addition to the Sun, Moon, and Planets.

It is not a work of much labour for the Student, by the help of a Star Atlas or a "Planisphere," to make himself familiar with most of the bright Stars and the Constellations to which they belong.

The Planets Venus, Mars, Jupiter, and Saturn are sometimes very conspicuous objects, and well adapted for observations, but they vary very much in brightness, according to their distance from the Earth. They may easily be recognized by their wanderings amongst the Stars, or by the times of their Meridian passage as given in the "Nautical Almanac."

With such an ample choice of objects, there is no excuse for the Navigator relying upon observations of the Sun only.

Arv. 55.-To find what Bright Stars are near the Meridian, or within a given Hour Angle at a Stated Time.

Directions.-Find the S.T. corresponding to the given time, then look in the "Table of Mean Places" in the "Nautical Almanac" for the names of bright Stars whose Right Ascensions do not differ from the S.T. by more than the given Hour Angle.
N.B.-The star is E. of Mer. when its R.A. is greater than the S.T. (or R.A.M.), and W. when less.

It is N . of the observer when its Declination reads N . of the latitude, and S . when it reads S .

Remark.-As the object in view is to find what stars would be suitable for finding the latitude by Meridian and Ex-Meridian Altitudes, or for finding the Time and Azimuth, in practice it will be sufficient to take the Sun's R.A. at the nearest noon at Greenwich, since the error would not amount to 2 minutes in any case; but for examination purposes the R.A.M. must be exactly determined.

Examples.-

1. What bright stars will cross the meridian of a place long. $48^{\circ} 30^{\prime} \mathrm{E}$., between the hours of 6 and 9 p.m. M.T.G. on September 30 th.
G.M.T. Sept. $30^{\mathrm{d}} 6^{\mathrm{b}} \quad 0^{\mathrm{m}} \quad 0^{3}$

Long. E. 3140
M.T.S. 30d $914 \quad 0$
R.A.M.S. 123317

Accel. for $6^{\text {h }}$
59

$$
\text { R.A.M. } 21 \quad 48 \quad 16
$$

Sept. 30 ${ }^{\text {d }}$	$\begin{array}{lll} 9^{\text {b }} & 0^{\text {m }} & 0^{\text {a }} \\ 3 & 14 & 0 \end{array}$
$30^{\text {d }}$	12140
	$12 \quad 3317$
Accel. for $9^{\text {h }}$	129
R.A.M.	244846

Hence all stars whose R.A.'s fall between $21^{\mathrm{b}} 48^{\mathrm{m}} 16^{\circ}$ and $0^{\mathrm{h}} 48^{\mathrm{m}} 46^{\circ}$ will cross the meridian during these times. These stars are a Gruis, β Gruis, Fomalhaut, Alpheratz, and β Ceti.
2. Sept. $20^{\mathrm{d}} 6^{\mathrm{b}} 19^{\mathrm{m}}$ M.T.G. in lat. 24° S., long. $125^{\circ} 36^{\prime}$ E.; find what stars not less bright than $2 \cdot 2$ magnitude are within 2 hours E. and W. of the meridian, and above the horizon; state their meridian distances, and whether \mathbf{N}. or S. of observer at transit.

M.T.G. Sept. $20^{\text {d }} 6^{\text {b }} 19^{\text {m }} 0^{\text {s }}$	$125^{\circ} 36$
Long. E. 82224	4
M.T.S. $20{ }^{\text {d }} 14141814$	$6,0) 50,224$
P.A.M.S. noon 115352	
$6^{\text {h }}$	$8^{\text {h }} 22^{\text {m }} 24^{\text {a }}$
Accel. for 19 ${ }^{\text {m }}$	
R.A.M. 23618	

Hence limits of R.A. are from $0^{\mathrm{h}} 36^{\mathrm{m}} 18^{\mathrm{g}}$ to $4^{\mathrm{h}} 36^{\mathrm{m}} 18^{\mathrm{n}}$.

Name of star.			Magnitude.	Meridian distance.	Bearing at trangit.
β Ceti	...	\ldots	$2 \cdot 2$	$1^{\mathrm{h}} 57^{\mathrm{m}} 26^{\text {a }}$ W.	N.
Achernar	\cdots	$0 \cdot 5$	1250 W.	S.
γ^{\prime} Andromedso	...	\ldots	$2 \cdot 2$	03811 W.	N.
a. Arietis	$2 \cdot 2$	03426 W.	N.
a Persei		\ldots	1.9	04118 E .	N.
Aldebaran	$1 \cdot 1$	$15 \pm 14 \mathrm{E}$.	N.

Fio. 107.

In Fig. 107, NESW is Ratl. horizon. NZS is Meridian. EQW is Equinoctial. P pole; Z zenith.
$1,2,3,4,5,6$, the stars at the intersection of their respective hour circles and parallels of declination.

ZP1, ZP2, etc., are the hour angles or meridian distances of the stars.

Exercises.

From following data find names of stars which are visible, and state their hour angles and bearings at transit.

No.	Time.	Limit.	Mag.	Longitude.	Latitude.
1	August 1at $11^{\text {h }} 50{ }^{\text {m P.mi }}$ M.T.S.	1" E. and W.	$2 \cdot 6$	$48^{\circ} 15^{\prime} \mathrm{W}$.	$33^{\circ} \mathrm{N}$.
2	" 3rd $3^{\text {h }}$ A.m. A.T.S. ...	$1 \frac{1}{1}$ E. and W.	$2 \cdot 0$	5645 E .	20 S .
3	", 28 th $3^{\mathrm{h}} 40^{\mathrm{m}}$ M.T.G. ...	1 E. and W.	$1 \cdot 0$	7230 E .	24 S .
4	Sept. $9^{\mathrm{d}} 17^{\mathrm{h}} 21^{\mathrm{m}} 20^{\text {s }}$ A.T.G.	2 E. and W.	$2 \cdot 6$	8750 W.	5 N.
5	, 19th $6^{\text {b }}$ A.M. M.T'S. ${ }^{\text {a }}$..	1 W. of Mer.	$2 \cdot 0$	9645 E .	40 N.
6	" 29th $6^{\mathrm{h}} 9^{\mathrm{m}}$ A.m. A.T.S.	1 E. of Mer.	$1 \cdot 5$	16215 W .	24 S .

7. On May 27 th at a place in long. $101^{\circ} \mathrm{W}$., time shown by a sidereal clock was $13^{\mathrm{h}} 27^{\mathrm{m}} 38^{\text {s }}$, error of clock on local sidereal time being $2^{\mathrm{h}} 17^{\mathrm{m}} 47^{\mathrm{a}}$ Find local mean time at the instant having given sidereal time at mean noon $4^{\mathrm{h}} 20^{\mathrm{m}} 15^{\mathrm{a}}$.
8. Apparent R.A. Sun on page ii for mean noon is $20^{\mathrm{h}} 57^{\mathrm{mo}} 47 \cdot 8^{\mathrm{s}}$, and sidereal time on same page is $20^{\mathrm{h}} 44^{\mathrm{m}} 33 \cdot 2^{\text {s }}$. Find equation of time and show by diagram how it is to be applied to app. time.
9. Sun's app. R.A. on page i for app. noon was $14^{\mathrm{h}} 35^{\mathrm{m}} 28.91^{\mathrm{s}}$, and on page ii for mean noon was $14^{\mathrm{h}} 35^{\mathrm{m}} 31 \cdot 6^{\mathrm{h}}$. Var. in R.A. for 1 hr . is $9 \cdot 883^{3}$. Find equation of time and show how it is to be applied to mean time.

CHAPTER XII.

CORRECTION OF ALTITUDES.

Art. 56.-The altitudes of all objects, whether observed at sea or on shore in an artificial horizon, must be corrected to reduce them to the true geocentric altitudes. The corrections employed are for index error, or correction; height of eye, or dip; semi-diameter of the object; refraction; and parallax. The method of applying them may be understood from the following remarks.
(a) Index Error.-This correction is due to an imperfection in the sextant used, by which the zero mark on the arc is placed out of position. As already explained, when the " 0 " on the vernier is in line with " 0 " on the arc, the index and horizon glasses should be parallel; if they (the zeros) are not in line an error is introduced; when the " 0 " on the vernier is to the left of the " 0 " on the arc (the glasses being parallel), it shows that the " 0 " on the arc is to the right of its true position, hence all angles will be in excess of their true value; the reading is "on" the arc and the error "subtractive." The " 0 " on the arc being to the left of its true position makes all angles smaller than their true value; the reading is "off" the are and the error "additive."

The ind. err. is always applied according to the direction in the question.
(b) Height of Eye.-This correction allows for the depression or $d i p$ of the visible horizon below the sensible horizon; observed angles, being measured above the visible horizon, are too large, hence the correction is always subtractive. Its amount is found in Norie, Table v., or Raper, Table 30. Should a table not be handy, an approximate correction is found by taking the square root of the height of the eye in feet; this gives the "dip" in minutes of arc.
(c) Semi-diameter.-The altitude of an object's centre is the one required in the calculations, and in bodies which have a visible disc, like the sun and moon, it would be a matter of impossibility for an observer to say exactly where the centre is;
an observation of its limb or boundary is therefore taken. The limb nearer the horizon is called the lower limb, "L.L."; an observation of this limb is less in altitude than that of the centre ; the S.D. is therefore added. The limb further from the horizon is called the upper limb, "U.L."; an observation of this limb gives too great an altitude, and the S.D. is subtracted.

The amount for the Sun is entered for noon of each day on page II., " Nautical Almanac."

The amount for the Moon is entered for noon and midnight of each day on page III., "Nautical Almanac."

The limb observed is always stated in the questions. When the corrections a, b, c are applied, the amount obtained is the Apparent altitude of the centre.
(d) Refraction.-Rays of light, in passing from a rarer to a denser medium, have their directions diverted towards the normal or perpendicular to the surface bounding the media. This is called the refraction or bending of the ray. Objects appear in the direction that the last portion of the rays enters the eye, and therefore, as the air is denser at the surface of the earth than higher up, the effect is to make all objects appear nearer the zenith than their true positions, hence the correction for refraction is always subtractive. Its amount is found in Norie, Table Iv., or Raper, Table 31.
(e) Parallax.-Observations are of necessity made on the surface of the earth; these have to be reduced to the centre or rational horizon, which is below but parallel to the visible horizon; as all objects would appear higher in altitude at the centre than at the surface, the correction for parallax is always additive.

Its amount depends on the latitude of the observer, and the altitude and proximity of the object, and for the Sun is entered in Norie, Table vi., or Raper, Table 34.

In the case of the Moon the amount is entered in the "Nautical Almanac," page III., and must be corrected as before directed.

Refraction and parallax decrease as the altitude increases, and vanish when the object is in the zenith.

Norie, Table xviri., gives the combined effect in the case of the Sun, and since Refraction is greater than Parallax, the amount found there is always subtractive.

Norie, Table xxx., and Raper, Table 39, give the amount of the Refraction and Parallax in altitude combined in the case of the Moon, and is additive, as the Parallax is more than the Refraction.

In practice the Refraction is taken out for the apparent altitude of the limb observed, that is, after the index error and dip have been applied.

When the Refraction and Parallax are applied to the apparent altitude, the true altitude is obtained.

Examples.-

1. September 23 rd , the obs. alt. of the sun's L.L. was $46^{\circ} 25^{\prime} 40^{\prime \prime}$; height of eye, 24 feet ; ind. cor. $+2^{\prime} 25^{\prime \prime}$. Find the true alt.

Obs. alt. © $46^{\circ} 25^{\prime} 40^{\prime \prime}$	
Ind. cor.	+225
	4628
Dip	-4 48
	462317
S.D.	$+1558$
App. alt. 463915	
	463821
Par.	$+6$
True alt.	$46 \quad 38 \quad 27$

2. August 5th, the obs. alt. of the sun's U.L. was $14^{\circ} 38^{\prime} 20^{\prime \prime}$; height of eye, 32 feet; ind. cor. $-3^{\prime} 37^{\prime \prime}$. Find the true alt.

Obs. alt. $\odot 14^{\circ} 38^{\prime} 20^{\prime \prime}$ Ind cor -337	
	143443
Dip	-532
	$14 \quad 2911$
S.D.	-1548
App. alt. 141323	
Ref. -3 38	
Par. $\begin{array}{r}14 \\ \end{array}$	
True alt.	$14 \quad 954$

The stars appearing merely as points of light have no S.D., and, as they are so far distant, no appreciable parallax.
3. August 6th, the obs. alt. of the star a Trianguli Australis was $27^{\circ} 26^{\prime} 10^{\prime \prime}$ Find the true alt., ind. cor. $-5^{\prime} 27^{\prime \prime}$, eye 41 feet.

Obs. alt. $27^{\circ} 26^{\prime} 10^{\prime \prime}$
Ind. cor. -527
Dip $\begin{array}{r}27 \quad 2043 \\ -6 \quad 16\end{array}$
App. alt. 271427
Ref. - 150
True alt. 271237
4. August 19 th, in lat. $46^{\circ} 25^{\prime}$ N., the obs. alt. of the Moon's L.L. was $42^{\circ} 19^{\prime} 30^{\prime \prime}$; ind. cor. $+3^{\prime} 11^{\prime \prime}$; height of eye, 27 feet ; M.T.G. $19^{\text {d }} 4^{\text {b }} 23^{\mathrm{m}} 50^{\circ}$. Find the true alt.

The Par. in alt. is obtained from formula-
Par. in alt. $=$ H.P. $\times \cos$ app. alt.
Or P.L. Par. in alt. = P.L. Hor. Par. + L. sec. app. alt.

Noon $15^{\prime} 28^{\prime \prime} \cdot 8$ Cor. $\quad+1 \cdot 8$		$4^{\prime \prime} \cdot 8$			$17^{\prime} \cdot 7$
		$4 \cdot 4$	Cor.	$+6.5$	$4 \cdot 4$
Tab. D.	$1530 \cdot 6$	192		$6 \quad 49 \cdot 4$	708
	$+10 \cdot 4$	192	Tab. E.	-5.7	708
	1541	12) $21 \cdot 12$		$643 \cdot 7=3403^{\prime \prime} \cdot 7$	12)77.88

Obs. alt.) $42^{\circ} 19^{\prime} 30^{\prime \prime}$

App. alt. 423317

Ref. - $1 \quad 2$
$42 \quad 32 \quad 15$
Par. +4147
$\begin{array}{llll}\text { True alt. } & 43 & 14 & 2\end{array}$

$3403 \cdot 7 \log$	$=3 \cdot 531952$	Or H P. P.L.	$=5014$
\cos	$=9 \cdot 867250$		
sec	$=1327$		
$2507 \log$	$=\overline{3 \cdot 399202}$	$41^{\prime} 48^{\prime \prime}$ P.L. $=$	$=6341$
$6,0) 250,7$			
$41^{\prime} 47^{\prime \prime}$			

Tab. xxx. $40^{\prime} 5^{\prime \prime}$
Cor. for $43^{\prime \prime}$ par. 32

$$
\% \quad 3^{\prime} \text { alt. } \quad 8
$$

Par. in alt. - ref. $=$ cor. 4045
5. August 9th, the obs. alt. of Jupiter's U.L. was $34^{\circ} 8^{\prime} 50^{\prime \prime}$; ind. cor. $+4^{\prime} 23^{\prime \prime}$; height of eye, 25 feet.

Obs. alt. $34^{\circ} 8^{\prime} 50^{\prime \prime}$
lnd. cor. +423
$\begin{array}{lll}34 \quad 13 & 13\end{array}$
Dip - 454
$34 \quad 8 \quad 19$
S.D. -16

App. alt. $34 \quad 8 \quad 3$
H.P. $=1^{\prime \prime} 5$; turn up Tab.
xurimi, which gives par. in alt. $1^{\prime \prime}$.

Par.
$34 \quad 6 \quad 39$
$+1$
True alt. 34640

Art. 57.-The Artificial Horizon is a plane horizontal mirror, or reflecting surface, used for taking altitudes when the sea horizon is obscured, or not visible. The liquid used is mercury, but treacle, oil, or tar will do as well, and they all depend on the same law in optics, viz. "The angles of incidence and reflection are equal." $A B$ is a plane

Fig. 108. horizontal mirror, S a celestial object; its image, I, is seen by an eye placed at E as far perpendicularly below the surface as S is above it. Join EI, meeting AB in M , and join SM. The object S appears in the direction of the dotted line through E, but because of the immense distance S is off, this line and MS may be considered parallel. The angle FEI is measured with the sextant, while SMA is the altitude of S.

Now, observed angle $\mathrm{FEI}=\pi-$ EMS
$=$ SMA + EMB
$=$ SMA + AMI
$=$ twice altitude of S .
Hence, when an altitude is taken with an artificial horizon the index correction is first applied, and then the result halved; moreover, as the horizon is a portion of, or parallel to, the sensible horizon, no correction for dip is necessary.

Example.-

August 12th, the obs. alt. of the sun's L.L. in artificial horizon was $103^{\circ} 56^{\prime} 20^{\prime \prime}$; ind. cor. $-4^{\prime} 18^{\prime \prime}$; height of eye, 56 ft . Find the true alt.

Exerctses.

1. August 16 th, the obs. alt. of the \odot was $50^{\circ} 3^{\prime} 10^{\prime \prime}$; ind. cor. $-4^{\prime} 19^{\prime \prime}$: eye, 20 ft . Find true alt.
2. August 8 th, the obs. alt. of $\bar{\odot}$ was $21^{\circ} 13^{\prime} 20^{\prime \prime}$; ind. cor. $+6^{\prime} 17^{\prime \prime}$; eye, 15 ft . Find true alt.
3. September 1st, the obs. alt. of \odot was $19^{\circ} 52^{\prime} 10^{\prime \prime}$; ind. cor. $-3^{\prime} 25^{\prime \prime}$; eye, 30 ft . Find true alt.
4. September 4th, the obs. alt. of \odot was $32^{\circ} 24^{\prime} 30^{\prime \prime}$; ind. cor. $+37^{\prime \prime}$; eye, 17 ft . Find true alt.
5. August 6th, the obs. alt. of \odot was $47^{\circ} 19^{\prime} 50^{\prime \prime}$; ind. cor. $+4^{\prime} 29^{\prime \prime}$; eye, 24 ft . Find true alt.
6. September 27th, the obs. alt. of \odot was $12^{\circ} 17^{\prime} 20^{\prime \prime}$; ind. cor. $-1^{\prime} 57^{\prime \prime}$; eye, 50 ft . Find true alt.
7. August 13th, at $13^{\text {d }} 6^{\mathrm{b}} 9^{\mathrm{m}} 30^{\mathrm{s}}$ M.T.G. the obs. alt. of Moon's L.L. was $55^{\circ} 36^{\prime} 20^{\prime \prime}$, in lat. $24^{\circ} \mathrm{N}$. ; ind. cor. $+2^{\prime} 41^{\prime \prime}$; eye, 10 ft . Find true alt.
8. August 15 th, $6^{\text {b }} 14^{\mathrm{m}}$ a.M. M.T.S., in lat. 43° S., long. 45° E., the obs. alt. of Moon's U.L. was $15^{\circ} 13^{\prime} 10^{\prime \prime}$; ind. cor. $-3^{\prime} 17^{\prime \prime}$; eye, 32 ft . Find true alt.
9. August 17 th , the obs. alt. of star Rigel was $29^{\circ} 17^{\prime} 20^{\prime \prime}$; eye, 50 ft ; ind. cor. $+4^{\prime} 48^{\prime \prime}$. Find true alt.
10. August 28th, the obs. alt. of star Altair was $47^{\circ} 29^{\prime} 30^{\prime \prime}$; eye, 35 ft ; ind. cor. $-3^{\prime} 26^{\prime \prime}$. Find true alt.
11. August 12th, the obs. alt. of Planet Saturn in lat. $51^{\circ} \mathrm{N}$. was $23^{\circ} 14^{\prime}$; ind. cor. $+2^{\prime} 27^{\prime \prime}$; eye, 36 ft . Find true alt.
12. August 8th, the obs. alt. of Planet Jupiter in lat. $42^{\circ} \mathrm{S}$. was $53^{\circ} 20^{\prime}$ $10^{\prime \prime}$; ind. cor. $-37^{\prime \prime}$; eye, 25 ft . Find true alt.
13. August 27 th, the obs. alt. of Sun's L.L. in artificial horizon was 78° $14^{\prime} 20^{\prime \prime}$; ind. cor. $-3^{\prime} 36^{\prime \prime}$. Find true alt.
14. August 21st, the obs. alt. of Polaris in artificial horizon was $95^{\circ} 37^{\prime}$ $40^{\prime \prime}$; ind. cor. $+2^{\prime} 56^{\prime \prime}$; eje, 27 ft . Find true alt.
15. August 20 th, when the M.T.S. was $4^{\mathrm{k}} 19^{\mathrm{m}} 32^{\mathrm{B}}$ P.M., in lat. $37^{\circ} \mathrm{N}$., long. $147^{\circ} 30^{\prime}$ W., the obs. alt. of Moon's L.L. in artificial horizon was 102° $21^{\prime} 30^{\prime \prime}$; ind. cor. 0 ; eye, $100 \mathrm{ft}$. Find true alt.

CHAPTER XIII.

LATITUDE BY MERIDIAN ALTITUDE.

Art. 58.-Latitude is the angle at the earth's centre subtended by the arc of the meridian intercepted between the equator and the place. The arc of the declination circle intercepted between the observer's zenith and the equinoctial subtends the same angle; the latitude is therefore the declination of the observer's zenith, and may be determined easiest by meridian or ex-meridian observations.

The Altitude of the Pole is equal to the Latitude of the Observer.-Let $\mathrm{ZSP}_{1} \mathrm{~N}$ represent the

Fig. 109.

Fig. IIo. celestial meridian of the observer 0 . Z is the zenith, QQ_{1} the equinoctial. E is the centre of earth. Angle OEL or latitude is subtended by arc LO or arc QZ. P is the elevated pole, $S N$ the horizon. PEN is altitude of pole.

$$
\begin{aligned}
\text { Now, } \mathrm{PEN} & =90^{\circ}-\mathrm{PEZ} \\
& =\mathrm{ZEQ} \\
\text { or altitude of pole } & =\text { latitude } .
\end{aligned}
$$

Art. 59.-Proof of Latitude by Meridian Altitude.-Let NESW represent the plane of the horizon produced to meet the celestial concave. NPZS the celestial meridian of the observer. \mathbf{P} the elevated pole, Z his zenith, EQW the equinoctial. Let X_{1}, $\mathrm{X}_{2}, \mathrm{X}_{3}$, and X_{4} be the positions of four celestial objects. Then $\mathrm{QX}_{1}, \mathrm{QX}_{2}, \mathrm{QX}_{3}$ are the declinations of the first three, and PX_{4} the polar distance of the fourth. Object 1 has south declination, the others north.

$$
\begin{align*}
\text { Lat. } & =\mathrm{QZ}=\mathrm{ZX}_{1}-\mathrm{QX}_{1} \tag{1}\\
& =\text { Mer. zen. dist. }- \text { dec. }
\end{align*}
$$

$$
\begin{align*}
\text { Lat. } & =\mathrm{QZ}=\mathrm{ZX}_{2}+\mathrm{QX} X_{2} \tag{2}\\
& =\mathrm{Mer.zen.} \mathrm{dist.}+\text { dec. } \\
\text { Lat. } & =\mathrm{QZ}=\mathrm{QX} \mathrm{QX}_{3}-\mathrm{ZX}_{3} \tag{3}\\
& =\text { Dec. }- \text { Mer. zen. dist. }
\end{align*}
$$

From these the rules for finding lat. by mer. alt. may be deduced, viz. when dec. and zen. dist. are of same name the sum is the lat.; when dec. and zen. dist. are of contrary name the difference is the lat., which is of the name of the greater.

The zen. dist. is always of contrary name to the bearing.

$$
\begin{align*}
\text { Lat. } & =\mathrm{NP}=\mathrm{PX}_{4}+\mathrm{NX}_{4} \tag{4}\\
& =\text { pol. dist. }+ \text { alt. }
\end{align*}
$$

Hence when an object is observed on the meridian between the pole and the horizon, i.e. below the pole, the lat. is the sum of pol. dist. and alt.

Therefore, to find lat. by mer. alt. the process is as follows:Object above the Pole.-
(1) Find Greenwich date, correct declination.
(2) Correct altitude, and subtract from 90° for zen. dist., which mark of contrary name to the bearing of the object.
(3) Dec. and zen. dist. of same name, add for lat. ; dec. and zen. dist. of contrary name, subtract for lat., which is of same name as the greater.

Object below the Pole.-
(1) Find Greenwich date; in the case of the sun, the observation must be taken at midnight; in the case of the moon, use the lower mer. pass Correct declination, and subtract from 90° for pol. dist.
(2) Correct altitude.
(3) Add pol. dist. to alt. for lat., which must be of same name as dec.

Examples. -

1. August 17 th, in long. $55^{\circ} 45^{\prime} \mathrm{W}$. the obs. mer, alt. of the Sun's L.L. was $35^{\circ} 10^{\prime} 30^{\prime \prime}$ bearing north; ind. cor. $-4^{\prime} 50^{\prime \prime}$; height of eye, 18 ft . Required the latitude.

A.T.S. August 17^{d}	0^{h}	0^{m}	0^{d}
Long. W.	3	43	0

Dec. $13^{\circ} 38^{\prime} 32^{\prime \prime} \cdot 5 \mathrm{~N}$.Cor.$\mathbf{2}$C6				H.V. $47^{\prime \prime} 59$
				3.7
	133	35	36.5 N .	33313
				14277
				6,0)17,6.083
				$2^{\prime} 56^{\prime \prime}$

Obs. alt. O $^{\text {a }}$	$35^{\circ} 10^{\prime} 30^{\prime \prime}$
Ind. cor.	-450
	$35 \quad 540$
Dip.	-4 9
	351131
S.D.	$+1550$
	$35 \quad 17 \quad 21$
Ref.	-120
	351010
Par.	+7

True alt. 35168 N. 90

Fig. 111.
M.Z.D. $54 \quad 43 \quad 52$ S.

Dec. 133537 N .
Lat. 41815 S .

Construction.-Draw a circle NESW radius $\frac{9}{10}$ inch to represent rational horizon, centre point is the zenith Z. The vertical diameter is the ship's meridian on which the sun is situated (Fig. 111). Since the sun bears north, measure 35° to scale from the north point for position X of sun. His declination is $14^{\circ} \mathrm{N}$., from X measure to scale 14° to the south (contrary name to declination) for the point Q where the equinoctial cuts the meridian. E and W are in the line through Z at right angles to the meridian. Through EQW draw an arc of circle for the equinoctial, the centre is somewhere on the meridian produced, and also on the perpendicular bisecting the line joining EQ, and so is at their intersection. Measure 90° from Q for the position of the elevated pole P. The centres for circles of declination passing through objects whose declination is of the same name as the latitude lie between the centre for the equinoctial and P, the greater the declination, the nearer \mathbf{P} is the centre; when declination is of contrary name to latitude, the centre is beyond this point.

```
Explanation.-NESW represents Rational Horizon.
    NZS ,, Meridian.
    EQW ,, Equinoctial.
    Z, zenith ; P , pole ; X, object.
    QX is Dec. ; NX is Mer. Alt. ; ZX is zen. dist.
    Then Lat. = ZQ
    \(=\mathrm{ZX}-\mathrm{QX}\).
```

2. August 26th, in long. $87^{\circ} \mathrm{W}$., the obs. mer. alt. of the Sun's U.L. bearing south was $56^{\circ} 30^{\prime} 30^{\prime \prime}$; ind. cor., $+3^{\prime} 20^{\prime \prime}$; eye, 16 ft . Required the lat.
A.T.S. August $26^{4} \begin{array}{llll}0^{\mathbf{k}} & 0^{m} & 0^{\mathrm{a}} \\ \text { Long. } & 5 & 48 & 0 \\ \text { A.T.G. } 26^{\mathrm{a}} & 5 & 48 & 0\end{array}$

Dec. $10^{\circ} 39^{\prime} 5^{\prime \prime}$ Cor. C c	$\begin{array}{r} \text { H.V. } 51^{\prime \prime} .92 \\ 5.8 \end{array}$
10344 N.	41536
	25960
	$6,0) 30,1 \cdot 136$
	$5^{\prime} 1^{\prime \prime}$

$$
\begin{aligned}
& \text { Obs. alt. } \bar{\odot} 56^{\circ} 30^{\prime} 30^{\prime \prime} \\
& \text { Ind. cor. } \begin{array}{c}
+320 \\
\hline 563350
\end{array}
\end{aligned}
$$

Fig. 112.

	563350
Dip.	- 355
	$56 \quad 2955$
S.D.	-15 51
	$5614 \quad 4$
Ref.	- 38

Par.

True alt. 561331 S. 90
M.Z.D. 334629 N.

Dec. $1034 \quad 4 \mathrm{~N}$.
Lat. 442033 N.

Construction (Fig. 112). -Draw NESW and NZS, as before. For X measure 56° from S, since sun bears south, and from X measure $X Q$ to the south 10°. Draw EQW; put in \mathbf{P} as explained.

Explanation.-NESW represents Rational Horizon.
NZS , Meridian.
EQW ,, Equinoctial.
Z, zenith; P, pole; X, object.
QX is Dec.; SX is Mer. Alt. ; ZX is zen. dist.
$\begin{aligned} \text { Then Lat. } & =\mathrm{ZQ} \\ & =\mathbf{Z X}+\mathrm{QX}\end{aligned}$
3. August 1st, in long. 49° E., the obs. mer. alt. of the sun's U.L. zenith south of sun was $76^{\circ} 54^{\prime} 40^{\prime \prime}$; eye, 25 ft . ; ind. cor. $-5^{\prime} 10^{\prime \prime}$. Required the lat.

Construction (Fig. 113).-Draw NESW and NZS as before.
Since zenith is south of sun, measure 77° from N to X, as sun must bear north. Complete figure.

Explanation.-As given to Fig. 111.

$$
\begin{aligned}
\text { Then Lat. } & =Z Q \\
& =Q X-Z X .
\end{aligned}
$$

Exercises.

1. August 3rd, in long. $51^{\circ} 45^{\prime}$ W., the obs. mer. alt. of the Sun's L.L. bearing lorth was $34^{\circ} 15^{\prime} 30^{\prime \prime}$; ind. cor. - $3^{\prime} 31^{\prime \prime}$; eye, 16 ft . Find the lat.
2. August 5th, in long. $33^{\circ} 30^{\prime}$ W., the obs. mer. alt. of the Sun's L. J. . zenith north of sun was $50^{\circ} 1^{\prime} 20^{\prime \prime}$; ind. cor. $+4^{\prime} 14^{\prime \prime}$; eye, 18 ft . Find the lat.
3. August 7th, in long. 60° E., the obs. mer. alt. of the Sun's L.L. bearing north was $19^{\circ} 32^{\prime} 10^{\prime \prime}$; ind. cor. $+2^{\prime} 37^{\prime \prime}$; eye, 20 ft . Find the lat.
4. August 9th, in long. $97^{\circ} 30^{\prime}$ E., the obs. mer. alt. of the Sun's U.L. zenith south of sun was $69^{\circ} 47^{\prime} 40^{\prime \prime}$; ind. cor. $+1^{\prime} 10^{\prime \prime}$; eye, 17 ft . Find the lat.
5. August 11th, in long. $20^{\circ} 15^{\prime}$ W., the obs. mer. alt. of the Sun's U.L. bearing north was $64^{\circ} 4^{\prime} 50^{\prime \prime}$; ind. cor. $-1^{\prime} 43^{\prime \prime}$; eye, 19 ft . Find the lat.
6. August 13 th , in long. $70^{\circ} 30^{\prime} E_{\text {., the obs. mer. alt. of the Sun's U.L. }}$ zenith south of sun was $50^{\circ} 6^{\prime} 10^{\prime \prime}$; ind. cor. - $1^{\prime} 56^{\prime \prime}$; eye, 21 ft . Find the lat.
7. August 15th, in long. 10° E., the obs. mer. alt. of the Sun's L.L. bearing north was $78^{\circ} 36^{\prime} 30^{\prime \prime}$; ind. cor. - $2^{\prime} 59^{\prime \prime}$; eye, 25 ft . Find the lat.

Under the following conditions find the latitude by mer. alt. of the Sun :-

	Date.	Longitude.	Mer. alt.	Limb.	Bearing.	Ind. cor.	Ht. of eye.
S	Aug. 17th	$12^{\circ} 0^{\prime} \mathrm{W}$.	$80^{\circ} 12^{\prime} 0^{\prime \prime}$	U.	N.	$-3^{\prime} 42^{\prime \prime}$	27 feet.
9	19th	1800 W.	$\begin{array}{lllll}52 & 3510\end{array}$	L.	S.	-625	29 "
10	Sept. 30th	5719 E .	$89 \quad 420$	U.	S.	+5 38	30 "
11	, 23rd	4845 W.	$48 \quad 5750$	L.	S.	+320	32 "
12	", 23rd	9730 W .	432220	L.	N.	-417	34 ,
13	" 27th	1325 E .	$\begin{array}{llll}58 & 44 & 40\end{array}$	U.	S.	-2 34	22 ",
14	, 29tb	9 ll W.	363630	U.	N.	-2 41	45
15	, 24th	1650 E.	$67 \quad 1410$	L.	S.	-358	36 "
16	", 23rd	10040 E.	$\begin{array}{llll}52 & 19 & 30\end{array}$	U.	S.	+215	34
17	, 24tb	2450 W .	$22 \quad 28 \quad 20$	L.	S.	-152	33 "
18	" 24th	3820 E.	$30 \quad 310$	U.	N.	+329	49 "

Art. 60.-Latitude by Meridian Altitude of a Star.

Example.-August 5th, the obs. mer. alt. of the star Canopus (α Argûs)

Fig. 114.

Given

Mer. alt. $=\mathbf{S X}$
Dec. $=\mathrm{QX}$
Req. lat. $=\mathrm{ZQ}$

$$
\begin{aligned}
& =Q \mathrm{Q}-\mathrm{ZX} \\
& =Q \mathrm{QX}-(90-\mathrm{SX})
\end{aligned}
$$ bearing sou'h was $54^{\circ} 17^{\prime} 30^{\prime \prime}$; ind. cor., $-6^{\prime} 10^{\prime \prime}$;

eye, 24 ft Required the lat.
Obs. alt. $54^{\circ} 17^{\prime} 30^{\prime \prime}$
Ind cor. $\quad-610$
$54 \quad 1120$
Dip. $\quad-448$
$54 \quad 6 \quad 32$
Ref.
-41
True alt. 54551 S . 90
M.Z.D. $35 \quad 54 \quad 9 \mathrm{~N}$.

Dec. $52 \quad 38 \quad 39 \mathrm{~S}$.
Lat. 164430 S .

Exercises.

1. The observed Mer. Alt. of Capella was $54^{\circ} 29^{\prime} 15^{\prime \prime}$ north of the observer; index error, $-3^{\prime} 10^{\prime \prime}$; height of eye, 20 ft . Required the latitude.
2. The observed Mer. Alt. of Rigel was $84^{\circ} 54^{\prime} 20^{\prime \prime}$ north of the observer; index error, $+1^{\prime} 10^{\prime \prime}$; height of eye, 21 ft . Required the latitude.
3. The observed Mer. Alt. of Sirius, zenith north of star, was $45^{\circ} 30^{\prime} 30^{\prime \prime}$; index error, $+1^{\prime} 30^{\prime \prime}$; height of eye, 23 ft . Required the latitude.
4. The observed Mer. Alt. of Spica bearing sonth of observer was 36° $25^{\prime} 20^{\prime \prime}$; index error, $-3^{\prime} 10^{\prime \prime}$; height of eye, 24 ft . Required the latitude.
5. The observed Mer. Alt. of Fomalhaut bearing south of the observer was $10^{\circ} 19^{\prime} 30^{\prime \prime}$; height of eye, 25 ft . Required the latitude.
6. The Mer. Alt. of Aldebaran bearing south was $56^{\circ} 23^{\prime}$; index correction, $+1^{\prime} 19^{\prime \prime}$; height of eye, 28 ft . Required the latitude.
7. The Mer. Alt. of Spica in an Artificial Horizon was $86^{\circ} 47^{\prime} 20^{\prime \prime}$; index correction, $-2^{\prime} 18^{\prime \prime}$; zenith north of the star. Find the latitude.
8. The Mer. Alt. of Markab bearing north was $30^{\circ} 59^{\prime} 10^{\prime \prime}$; index correction, $+4^{\prime} 2^{\prime \prime}$; height of eye, 33 ft . Find the latitudc.
9. The Mer. Alt. of a Arietis bearing south was $75^{\circ} 18^{\prime} 40^{\prime \prime}$; index correction, $-4^{\prime} 9^{\prime \prime}$; height of eye, 19 ft . Required the latitude.
10. The Mer. Alt. of Algenib in an Artificial Horizon was $111^{\circ} 57^{\prime} 10^{\prime \prime}$; index correction, $+8^{\prime} 6^{\prime \prime}$; zenith south of the star. Find the latitude.
11. The Mer. Alt. of Regulus in an Artificial Horizon was $114^{\circ} 20^{\prime} 30^{\prime \prime}$; index correction, $-5^{\prime} 16^{\prime \prime}$; zenith north of the star. Find the latitude.

Art. 61. Latitude by Meridian Altitude of the Moon.-It is first necessary to find the M.T.G. when the Moon is on the observer's meridian, and then reduce the "Elements" as before directed.

Example.-August 16th, in long. $126^{\circ} 5^{\prime}$ E., the obs. mer. alt. of the Moon's L.L. bearing north was $42^{\circ} 26^{\prime} 20^{\prime \prime}$; ind. cor. - $3^{\prime} 30^{\prime \prime}$; height of eye, 16 ft . Find the latitude.

The time of mer. pass. on the 16 th is $21^{\mathrm{h}} 55^{\mathrm{m}} \cdot 3$, which is really about 10 o'clock on the morning of the 17 th , hence we use the passage for the 15 th, and since we are in E. long. work from that day towards the 14th, as the transit occurs earlier.

Mer. pass. $15^{\text {d }} 21^{\mathrm{s}} 4^{\mathrm{m} \cdot 9}$
Cor.
$-17 \cdot 2$
M.T.S. $15^{\mathrm{d}} 20 \quad 47 \cdot 7$

Long. $\quad 8 \quad 24.3$
M.T.G. $15^{\star} 12 \quad 23.4$

$\begin{gathered} 49^{\mathrm{m}} \cdot 2\left(\text { for } 24^{\mathrm{b}}\right) \\ 8 \cdot 4 \end{gathered}$	126°	5 4 4
1968	6,0)50,4	20
3936		

$\left\{\begin{array}{l}4) 413 \cdot 28 \\ 6 \lcm{103 \cdot 32}\end{array}\right.$
$17 \cdot 2$

Fig. 115.

Exercises.

1. August 21st, in long. $48^{\circ} 30^{\prime}$ W., the obs. mer. alt. of the Moon's U.L. bearing north was $34^{\circ} 17^{\prime} 20^{\prime \prime}$; ind. cor. $+2^{\prime} 15^{\prime \prime}$; eye, 16 ft . Find the lat.
2. August 22nd, in long. $97^{\circ} 25^{\prime}$ W., the obs. mer. alt. of the Moon's L.L. bearing south was $53^{\circ} 26^{\prime} 10^{\prime \prime}$; ind. cor. $-3^{\prime} 20^{\prime \prime}$; eye, 17 ft . Find the lat.
3. August 30th, in long. $62^{\circ} 15^{\prime}$ E., the obs. mer. alt. of the Moon's U.L. zenith south of Moon was $61^{\circ} 34^{\prime} 40^{\prime}$; ind. cor. $+5^{\prime} 46^{\prime \prime}$; eye, 18 ft . Find the lat.
4. August 31 st, in long. $57^{\circ} 45^{\prime}$ E., the obs. mer. alt. of the Moon's L.L. zenith north of Moon was $24^{\circ} 46^{\prime} 50^{\prime \prime}$; ind. cor. - $4^{\prime} 27^{\prime \prime}$; eye, 20 ft . Find the lat.
5. August 31st, in long. 120° W., the obs. mer. alt. of the Moon's L.L. zenith north of Moon was $68^{\circ} 57^{\prime} 30^{\prime \prime}$; ind. cor. $+3^{\prime} 33^{\prime \prime}$; eye, 23 ft . Find the lat.

Under the following conditions find the latitude by mer. alt. of the Moon:-

	Date.	Longitude.	Mer, alt.	Limb.	Bearing	Ind. eor.	11t. of eye.
6	Aug. 4th	$178^{\circ} 30^{\prime} \mathrm{W}$.	$38^{\circ} 22^{\prime} 20^{\prime \prime}$	L.	N.	$-1^{\prime} 12^{\prime \prime}$	34 feet.
7	$\because 10 \mathrm{th}$	2130 E .	$42 \quad 3920$	L.	s	-2 19	36
8	" 11th	9415 E .	46 17 10	L.	S.	+3 5	43
9	, 12th	12730 E .	542940	U.	N.	-2 8	46
10	, 14th	13945 W.	$\begin{array}{ll}75 & 1640\end{array}$	L.	N .	-457	
11	" 17th	15824 E .	$73 \quad 5610$	L.	N .	+235	
12	, 25th	8835 E .	842430	L.	S.	+124	56 "

Art. 62. Latitude by Meridian Altitude of a Planet.

Fxample.-August 9th, in long. $90^{\circ} \mathrm{W} .$, the obs. mer. alt. of the Planet Jupiter bearing north was $42^{\circ} 10^{\prime} 20^{\prime \prime}$; ind. cor. $+4^{\prime} 15^{\prime \prime}$; eye, 27 ft . Find lat.

As before explained, the G.M.T. of the Planet's mer. pass. across the observer's meridian must be first found, in a similar way to the Moon's.
$\begin{array}{cc}\text { Mer. pass. August } 8^{d} 21^{\mathrm{h}} 0^{m} 4 \\ \text { Ret. } & -8\end{array}$
M.T.S. $8^{d} \overline{20 \quad 59.6}$
Long. +6
M.T.G. $9^{4} \overline{2} 59.6$

Ret. in 24 hrs. $3^{\mathrm{m}} \cdot 1$

$$
" \quad 6, \frac{3 \cdot 1 \times 6}{24}=8
$$

$$
\begin{array}{r}
90^{0} \\
4 \\
\hline 6,0) 36,0 \\
\hline 6 b
\end{array}
$$

Dec. $23^{\circ} 7^{\prime} 37^{\prime \prime} \cdot 9$ N. Diff. for 24 hours Cor. $\quad-8$ $6^{\prime \prime} \cdot 6$

3 24)19•8

Obs. alt. $42^{\circ} 10^{\prime} 20^{\prime \prime} \mathrm{N}$.
Ind. cor. +415

Fig. 116.
Given
Mer. alt. $=\mathrm{NX}$
Dec. $=\mathrm{QX}$
Req. lat. $=\mathrm{ZQ}$
$=Z Q-Q X$
$=90-N X-Q X$

Art. 63. Latitude by Meridian Altitude of an Object below the Pole.-An object whose Polar Distance is less than the elevation of the Pole above the horizon will never set, and will therefore be seen on the meridian below the Pole as well as above the Pole: when it has been proved that the lat. is found by adding together the Mer. Alt. and Pol. Dist.

Example.-August 10th, the obs. mer. alt. below the Pole in artificial horizon of the star a Ursæ Majoris was $33^{\circ} 1^{\prime} 10^{\prime \prime}$; ind. cor. $+3^{\prime} 26^{\prime \prime}$. Find the latitude.

Fig. 117.

Exergises.

1. August 11th, in long. $48^{\circ} 30^{\prime}$ W., the obs. mer. alt. of the Planet Saturn bearing north was $55^{\circ} 16^{\prime} 40^{\prime \prime}$; ind. cor. $-3^{\prime} 27^{\prime \prime}$; eye, 30 ft . Find the lat.
2. September 19th, the obs. mer. alt. below the pole in artificial horizon of the star a^{\prime} Crucis was $42^{\circ} 8^{\prime} 50^{\prime \prime}$; ind. cor. $-4^{\prime} 36^{\prime \prime}$. Find the lat.
3. August 14th, the obs. mer. alt. below the pole in artificial horizon of the star a Cygni was $18^{\circ} 11^{\prime} 20^{\prime \prime}$; ind. cor. $+5^{\prime} 42^{\prime \prime}$. Find the lat.
4. August 29th, in long. $135^{\circ} 45^{\prime}$ E., the obs. mer. alt. of the Moon's L.L. under the south pole was $13^{\circ} 27^{\prime} 50^{\prime \prime}$, taken in artificial horizon; ind. cor. $+3^{\prime} 24^{\prime \prime}$. Find the lat.
5. August 1st, in long. $94^{\circ} 25^{\prime}$ W., the obs. mer. alt. of the Sun's U.L. under the north pole in artificial horizon was $12^{\circ} 36^{\prime} 40^{\prime \prime}$; ind. cor. $-2^{\prime} 50^{\prime \prime}$. Find the lat.
6. September 9th, the obs. mer. alt. below the pole of β Centauri was $20^{\circ} 47^{\prime} 10^{\prime \prime}$; ind. cor. $+45^{\prime \prime}$; height of eye, 37 ft . Find the lat.

Art. 64.-To find the Approximate Meridian Altitude of a Star, for setting the Sextant preparatory to observing the Meridian Altitude.

Referring to the Rule for finding the Latitude by a Meridian Altitude (Art. 59), it was shown that the Latitude is equal to the sum of the Meridian Zenith Distance and Declination when they are of the same name, and the difference when of different names.

Therefore it follows that the Meridian Zenith Distance is the difference of the Lat. and Dec. when they are of the same name, and the sum when of different names.

The Meridian Zenith distance subtracted from 90° gives the Meridian Altitude.

Examples.-

1. Given lat. $25^{\circ} 30^{\prime}$ N., and a Star's Dec. $52^{\circ} 20^{\prime}$ N., required the Mer. Alt. of the Star.

$$
\begin{gathered}
\left.\begin{array}{cccc}
\begin{array}{c}
\text { Lat. } 25^{\circ} \\
\text { Dec. } 52 \\
30^{\prime}
\end{array} & \mathrm{N} . \\
\text { Mer. Zen. Dist. } & 26 & \mathrm{~N} .
\end{array}\right\} \text { Sarue name-subtract. } \\
90
\end{gathered}
$$

Mer. Alt. 6310 North of observer.
Draw NESW and NZS as before. Lat. being north measure $\mathrm{ZQ} 25^{\circ}$ to south for Q , draw EQW, and set off QX 52° to north for X (Fig. 118).

$$
\begin{aligned}
\text { Lat. } & =Z Q \\
\text { Dec. } & =Q X, \text { zen. dist. }=Z X .9 \\
\text { Then Mer. Alt. } & =\mathrm{NX}=90-Z X \\
& =90-(Q X-Z Q) .
\end{aligned}
$$

2. Suppose the latitude to be $24^{\circ} 25^{\prime} \mathrm{S}$., and the Star's Dec. $32^{\circ} 10^{\prime}$ N., required its Mer. Alt.

Lat. $24^{\circ} 25^{\prime}$ S. Different names-
Dec. 3210 N. $\}^{\text {add. }}$
Mer. Zen. Dist 5635 S.
$90 \quad 0$

Fig. 118.

Mer. Alt. 3325 North of observer.
In Fig. 119, lat. being south, measure $\mathrm{ZQ}=24^{\circ}$ to north for Q ;
make $\mathrm{QX}=32^{\circ}$ to north for X .
Lat. $=\mathrm{ZQ}$
Dec. $=\mathrm{QX}$, zen. dist. $=\mathbf{Z X}$.
Then Mer. Alt. $=\mathrm{NX}=90-\mathrm{ZX}$

$$
=90-(Q X+Z Q) .
$$

Fig. 119.

Fig. 120.
3. Given latitude of Ship $10^{\circ} 15^{\prime}$ N., what is the Mer. Alt. of a Star whose Dec. is $20^{\circ} 40^{\prime} \mathrm{S}$., and how does it bear from observer?

$$
\left.\begin{array}{l}
\text { Lat. } 10^{\circ} \\
15^{\prime} \\
\text { Dec. } \\
20
\end{array} \mathrm{~N}^{2} \mathrm{S.} \text { S. }\right\} \text { Different names-add. }
$$

Mer. Zen. Dist. 3055 N .

$$
90 \quad 0
$$

Mer. Alt. $59 \quad 5 \mathrm{~N}$. South of observer.
Here Fig. 120.

$$
\begin{aligned}
\text { Mer. Alt. } & =\mathbf{S X} \\
& =90-Z X \\
& =90-(Z Q+Q X) .
\end{aligned}
$$

N.B.-A Star is north or south of observer according as its Declination reads north or south of the latitude of observer.

If the corrections for Ref., Dip., etc., are applied to the true alt. to make an obs. alt., they must all be reckoned contrary to the manner indicated in the examples on the correction of altitudes.

Exercises.
Find the Meridian Altitudes of Stars from the following data, and state whether N. or S. of observer :-

No.	Latitude.	Name of star.	Declination.
	- ,		- ,
1	1440 N .	a Draconis	6452 N.
2	2812 S .	- ${ }_{\text {u }}$ Bootis	1942 N .
3	4410 N .	a Scorpii	2612 S .
4	1425 S .	β Gruis	4725 S.
5	5219 S .	${ }_{a}$ Piscis Aust.	309 S .
6	00	Achernar	5745 S
7	00	β Geminorum	2816 N .
8	3528 N .	Sirius	1635 S .
9	4950 N .	Polaris	8846 N.
10	356 S .	a Urıæ Majoris	613 N .

CHAPTER XIV.

Latitude By Ex-meridian altitude.

Art. 65.-Although the meridian altitude is the simplest method by which latitude may be determined, clouds or other causes may prevent an observation at the particular instant required; under these circumstances, the latitude is deduced from observations of the altitude taken when the object is near the meridian, that is, when its hour angle or meridian distance is small. There are two methods in use :-
(1) By calculating a correction which, when applied to the altitude out of the meridian, determines the object's altitude or zenith distance when on the meridian. This quantity is called a "Reduction," and the latitude by account is always used to determine its amount. The correctness of the result, therefore, depends on the accuracy with which the D.R. lat. is known.
(2) By direct spherics.

There are several variations of the first method, and the one we shall employ may be called the "log-rising" formula, which, according to Chauvenet, approximates more rapidly than the others.

Fig. 121.

In figure, let X be object near the meridian; then in triangle PZX PX is Polar Distance, PZ colatitude, ZX zenith distance at time of observation, P the hour angle.

From the fundamental equation.
$\operatorname{Cos} Z X=\cos P Z . \cos P X+\sin P Z$. \sin PX . cos P.
Let " a " denote the altitude, " l " the latitude, " h " the hour angle, and " d " the declination.
Then above becomes-
$\sin \alpha=\sin l \cdot \sin d+\cos l \cdot \cos d \cdot \cos h$

$$
\begin{aligned}
& =\sin l \cdot \sin d+\cos l \cdot \cos d-\cos l \cdot \cos d\left(2 \cdot \sin ^{2} \frac{h}{2}\right) \\
& =\cos (l \sim d)-\cos l \cdot \cos d\left(2 \cdot \sin ^{2} \frac{h}{2}\right) \\
\therefore \cos (l \sim d) & =\sin a+\cos l \cdot \cos d\left(2 \cdot \sin ^{2} \frac{h}{2}\right)
\end{aligned}
$$

The quantity $\log \left(2 \cdot \sin ^{2} \frac{h}{2}\right)$ is called the " \log rising," and is tabulated in Norie, Table xxix.

In practice the natural number corresponding to the second term on the right-hand side is found by adding together the L. cos. lat., L. cos dec., and log-rising hour angle; this number is added to the nat. sin of altitude; the nat. cos of sum is the zen. dist. when on the meridian; the lat. is then found as in meridian altitude.

Art. 66. Latitude by Ex-meridian Altitude. Direct Method.Given the hour angle (h). the declina-

Fig. 122. tion (δ), and the true altitude (a), to find the latitude.

In the figure X is the object, PX the polar distance, ZX the zenith distance, the angle ZPX (h) the hour angle, and XA an arc of a great circle at right angles to the meridian, EQW the equator.

Then QZ is the latitude, and is equal to the sum or difference of the ares ZA and QA.

In the right-angled spherical triangle PXA-

$$
\begin{aligned}
\cos h & =\cot p \cdot \tan \mathrm{PA} \\
& =\tan \delta \cdot \tan \mathrm{PA} \\
\therefore \tan \mathrm{PA} & =\cos h \cdot \cot \delta
\end{aligned}
$$

But QA (arc 1) is the complement of PA , because $\mathrm{PQ}=90^{\circ}$;

$$
\begin{equation*}
\therefore \cot \operatorname{arc} 1=\cos h \cdot \cot \delta \tag{1}
\end{equation*}
$$

Again, in the same triangle-

$$
\begin{align*}
\cos p & =\cos \mathrm{PA} \cdot \cos \mathrm{XA} \\
\text { i.e. } \sin \delta & =\sin \operatorname{arc} 1 \cdot \cos \mathrm{XA} \\
\therefore \cos \mathrm{XA} & =\sin \delta \cdot \operatorname{cosec} \operatorname{arc} 1 \tag{2}
\end{align*}
$$

Also in the right-angled triangle XZA-

$$
\begin{aligned}
\cos \mathrm{XZ} & =\cos \mathrm{XA} \cdot \cos \mathrm{ZA} \\
\text { i.e. } \sin \alpha & =\sin \delta . \operatorname{cosec} \operatorname{arc} 1 \cdot \cos \mathrm{ZA}
\end{aligned}
$$

by substituting the value of $\cos \mathrm{XA}$ in (2)-

$$
\begin{align*}
\therefore \cos Z A(\operatorname{arc} 2) & =\frac{\sin \alpha}{\sin \delta \cdot \operatorname{cosec} \operatorname{arct} 1} \\
\text { or } \cos \operatorname{arc} 2 & =\sin a \cdot \operatorname{cosec} \delta \cdot \sin \operatorname{arc} 1 \tag{3}
\end{align*}
$$

Arc 1 is named the same as the dec., and arc 2 the same as the zenith distance, and the sum or difference, according as they
are of the same or different names, gives the latitude as in the meridian altitude problem.

For computation the formulæ may be arranged as follows :-

N.B.-When X is on the equinoctial (i.e. dec. $=0$), then the perpendicular XA coincides with the equinoctial EQW and arc 1 disappears.

The lat. QZ is then found from the right-angled triangle ZXQ, in which QX measures the H.A., and $\mathrm{ZX}=$ co-alt. or zenith distance.

$$
\begin{aligned}
\text { Then } \cos Z X & =\cos Q X \times \cos Q Z \\
\therefore \cos Q Z & =\frac{\cos Z X}{\cos Q X} \\
& =\cos Z X \times \operatorname{ses} Q X \\
\text { i.e. } \cos \text { lat. } & =\sin \text { alt. } \times \sec \mathrm{H} . \mathrm{A} .
\end{aligned}
$$

Art. 67.-Latitude by Ex-meridian Altitude of the Sun, Star, etc.-The hour angle of the Sun is the time from apparent noon.

The hour angle of any other celestial object is the difference between the R.A.M. and R.A. of object.

To allow for Run since determining error, it must be noticed that when the course has been to the eastward the ship is going to a place where the time is later; when to the westward, where time is earlier. Hence the diff. long. in time must be added for easterly, and subtracted for westerly run.

The process is as follows:-
(1) Find Greenwich time and hour angle.
(2) Correct declination and altitude.
(3) a. Log-rising Method.-Add L. cos lat., L. cos dec., and log-rising hour angle (Norie, Table xxix.), increasing the index there found by " 1 "; reject 10 's from sum and find natural number in Table xxiv.

Add this nat. no. to nat. sin true alt. in Table xxvr., and find in this same table nat. cos of sum ; this is the zen. dist., which mark of contrary name to bearing. The sum or difference of zen. dist. and dec. according as they are of same or different names gives the latitude.
b. Direct Method.-Add L. cos hour angle, and L. cot dec., take back L. cot of result, which call are 1 , and name it the same as the dec.

Then add L. cosec dec., L. sin are 1, and L. sin alt., reject 10's, and take back L. cos of result for are 2 , which name contrary to the bearing.

The sum of arcs 1 and 2 when they are of the same name, or difference when they are of contrary names, gives the lat., which is of same name as the greater.

Art. 68.-Latitude by Ex-meridian Altitude of Sun.

Example.-August 7th 4.m. at ship, in lat. by account $33^{\circ} 30^{\prime}$ N., long. $10^{\circ} 57^{\prime}$ W., the obs. alt. of the Sun's. U.L. was $72^{\circ} 52^{\prime} 50^{\prime \prime}$; ind. cor. $+3^{\prime} 4^{\prime \prime}$; eye, 16 ft .; time by watch, $10^{\mathrm{h}} 57^{\mathrm{m}} 58^{\mathrm{n}}$, which was slow of A.T.S. $44^{\mathrm{m}} 10^{\mathrm{m}}$; the d. long. made to the W. since the error was determined being $17 \frac{3}{4}$ miles. Find the latitude by ex-meridian; and supposing the course and distance to be S. by W. 4 miles since observation, find the latitude at noon.

Run. W. $\quad-111$
A.T.S. $6^{\mathrm{d}} 23 \quad 40 \quad 57$

Long. W. +4348
A.T.G. $7^{\mathrm{d}} \quad 0 \quad 24 \quad 45$

First Method.
E.H.A. $19^{\mathrm{m}} 3^{3} \log$ ris. $=3.538380$

Lat. $33^{\circ} 30^{\prime} \quad 0^{\prime \prime} \cos =9.921107$
Dec. $163652 \quad \cos =9.981479$
T.A. $72^{\circ} 35^{\prime} 57^{\prime \prime}$ nat. $\sin 954236$

Obs. alt. $72^{\circ} 52^{\prime} 50^{\prime \prime}$ Ind. cor. +34

725554
Dip. - 355
$72 \quad 51 \quad 59$
S.D. -1548
$72 \quad 36 \quad 11$
R. \& P. $\quad-14$

True alt. 723557

$$
\begin{aligned}
956996 \text { N. cos. } & =16^{\circ} 51^{\prime} 51^{\prime \prime} \mathrm{N} . \\
\text { Dec. } & =\begin{array}{llll}
16 & 36 & 52 \\
\mathrm{~N} .
\end{array} \\
\text { Obs. lat. } & =332843 \mathrm{~N} .
\end{aligned}
$$

Second Method.

$\cos =9.998498$		
Dec. $16^{\circ} 36^{\prime} 52^{\prime \prime}$	$\cot =10.525219$	$\operatorname{cosec}=10 \cdot 543740$
Arc 11640	N. cot $=10.523717$	$\sin =9.457640$
	T.A. $72^{\circ} 35^{\prime} 57^{\prime \prime}$	$\sin =9.979656$
Arc 2164833 cos $=9.981036$	
bs. lat. $33 \quad 2841$ Run $3 \quad 54$	(Run S. by W. 4^{\prime} gives d. lat. $3^{\prime} \cdot 9$ to be applied to the S, as the obs. is taken before noon.)	

Fio. 123.

Third Method. Directly from figure.
X is position of object, AX its altitude, PX the pol. dist, P the hour angle, XD a perpendicular from X on the meridian.

In right-angled spherical triangle PDX, $\mathrm{D}=90^{\circ}, \mathrm{P}$ the hour angle, PX the pol. dist. Find PD and DX.

$$
\begin{align*}
\sin (c o . P) & =\tan P D \cdot \tan (\operatorname{co.} P X) \\
\therefore \tan P D & =\cos P \cdot \tan P X . \tag{I.}
\end{align*}
$$ Again-

$$
\begin{aligned}
\sin \mathrm{DX} & =\cos (c o . \mathrm{P}) \cdot \cos (\operatorname{co.} \mathbf{P X}) \\
& =\sin \mathrm{P} \cdot \sin \mathbf{P X} . \cdot \cdot \mathrm{II} .
\end{aligned}
$$

$$
\begin{array}{rlr}
\mathrm{P}=19^{\mathrm{m}} 33^{\prime} \cos = & 9.998498 & \sin =8.919209 \\
\mathrm{PX} & =73^{\circ} 23^{\prime} 8^{\prime \prime} \tan =10.525219 & \sin =9.981479 \\
\mathrm{PD} & =731952 \quad \tan =\overline{10.523717} & \mathrm{DX}=4^{\circ} 33^{\prime} 48^{\prime \prime} \sin =8.900688
\end{array}
$$

Then in right-angled triangle ZDX , given $\mathrm{D}=90^{\circ}, \mathrm{ZX}$ zen. dist., and DX, find ZD

$$
\begin{gathered}
\operatorname{Sin}(\cos \mathrm{ZX})=\cos \mathrm{ZD} \cdot \cos \mathrm{DX} \\
\therefore \cos \mathrm{ZD}=\cos \mathrm{ZX} \cdot \sec \mathrm{DX} \\
\mathrm{DX}=4^{\circ} 33^{\prime} 48^{\prime \prime} \sec =10 \cdot 001379 \\
\mathrm{ZX}=17 \\
24
\end{gathered} \quad 3 \quad \cos =9 \cdot 979656
$$

Exercises.

1. August 1st P.m. at ship, in lat. by account $37^{\circ} 20^{\prime}$ S., long. 133° E., the obs. alt. of the Sun's L.L., bearing north, was $33^{\circ} 55^{\prime} 20^{\prime \prime}$; ind. cor. $+2^{\prime}$ $5^{\prime \prime}$; eye, 30 ft .; time by watch, $3^{\mathrm{h}} 33^{\mathrm{m}} 1^{\text {t, }}$, which was found $8^{\mathrm{n}} 50^{\mathrm{m}}$ slow of A.T.S. the same morning; run since error was determined S. 38° E., 23 miles. Find the latitude by ex-meridian, and if the run since noon was 3 miles on the same course, find lat. at noon.
2. August 6 th a.m. at ship, in lat. by account $26^{\circ} 20^{\prime} \mathrm{N}$., long. $80^{\circ} 45^{\prime} \mathrm{W}$., the obs. alt. of the Sun's U.L., bearing south, was $78^{\circ} 9^{\prime} 20^{\prime \prime}$; ind. cor. $-3^{\prime} 16^{\prime \prime}$; eye, 19 ft . ; time by watch, $4^{\mathrm{A}^{\prime}} 50^{\mathrm{m}} 25^{\prime \prime}$, which had been found fast $5^{\mathrm{h}} 22^{\mathrm{m}} 18^{\mathrm{s}}$ of A.T.S. the same morning ; since error was determined the diff. long. made westward was $24^{\circ} 5$ miles. Find the lat. by ex-meridian.
3. Angust 9th P.M. at ship, in lat. by account $5^{\circ} 35^{\prime}$ S., long. 14° W., the obs. alt. of the Sun's L.L. near the meridian, bearing north, was $67^{\circ} 10^{\prime}$ $10^{\prime \prime}$; ind. cor. $-2^{\prime} 18^{\prime \prime}$; eye, 35 ft .; time by watch, $1^{\text {h }} 23^{\mathrm{m}} 7^{3}$, which was 58^{m} fast of A.T.S.; diff. of long. made to the eastward since determining the error was $37 \frac{1}{4}$ miles. Find the latitude.
4. August 13th A.m. at ship, in lat. by account $53^{\circ} 15^{\prime}$ N., long. $168^{\circ} 47^{\prime}$ E., the obs. alt. of the Sun's L.L. near the meridian, bearing south, was $51^{\circ} 26^{\prime} 50^{\prime \prime}$; ind. cer. $+3^{\prime} 5^{\prime \prime}$; eye, 26 ft .; time shown by chron., $12^{\mathrm{h}} 18^{\prime \prime}$ $44^{\text {' }}$, which was $13^{\mathrm{m}} 20^{4}$ slow of M.T.G. Find the latitude.
'5. August 17 th P.M. at ship, in lat. by account $44^{\circ} 50^{\prime}$ S., long. $180^{\circ} \mathrm{W}$.,
the obs. alt. of the Sun's U.L. near the meridian, bearing north, was $31^{\circ} 57^{\prime} 50^{\prime \prime}$; ind. cor. $+48^{\prime \prime}$; eye, 23 ft . ; time shown by watch, $1^{\text {b }} 2^{\mathrm{m}} 5^{\text {d }}$, which was $50^{\mathrm{m}} 54^{4}$ fast of M.T.G. Find the latitude.
5. August 22 nd A. M. at ship, in lat. by account $2^{\circ} 35^{\prime}$ S., long. $87^{\circ} 40^{\prime} \mathrm{E}$., the obs. alt. of the Sun's L.L. near the meridian, bearing north, was 72° $1^{\prime} 20^{\prime \prime}$; ind. cor. $-3^{\prime} 11^{\prime \prime}$; eye, 31 ft .; time shown by chron., $5^{\text {h }} 18^{\mathrm{m}} 37^{\mathrm{a}}$, which was $12^{\prime \prime} 40^{n}$ slow of G.M.T. Find the latitude at obs., and if the run to noon was S. $46^{\circ} \mathrm{E}$., 8 miles, find the lat. at noon.
6. August 26th P.m. at ship, in lat. by account $39^{\circ} 20^{\prime}$ N., long. meridian of Greenwich, the obs. alt. of the Sun's L.L. near the meridian, bearing south, was $60^{\circ} 45^{\prime} 20^{\prime \prime}$; ind. cor. $+4^{\prime} 18^{\prime \prime}$; eye, 17 ft .; time shown by chron. which had been found $14^{\mathrm{m}} 15^{\mathrm{n}}$ slow of G.M.T. was $12^{\mathrm{h}} 8^{\mathrm{m}} 14^{\prime \prime}$; run since error was determined, S. 52° W., 29 miles. Find lat. at sights, and if the run was 4 miles on the same course since noon, find lat. at noon.
7. September 1st A.m. at ship, in lat. by account $43^{\circ} 22^{\prime}$ S., long. $93^{\circ} \mathrm{W}$., the obs. alt. of the Sun's U.L. near the meridian was $38^{\circ} 16^{\prime} 50^{\prime \prime}$; ind. cor. $+2^{\prime} 13^{\prime \prime}$; eye, 40 ft . ; time by watch, $5^{\text {h }} 52^{\text {m }} 37^{3}$, which was $6^{\text {h }} 11^{\text {m }} 40^{\text {a }}$ fast of A.T.S.; diff. long. made to the westward since determining the error, 25 miles. Find the latitude, and if the run ta noon was $\mathrm{S} .65^{\circ} \mathrm{W} ., 5$ miles, find lat. at noon.
8. September 29th p.m. at ship, in lat. by account $46^{\circ} 25^{\prime}$ N., long. $40^{\circ} 30^{\prime} \mathrm{W}$., the obs. alt. of the Sun's L.L. near the meridian was $40^{\circ} 45^{\prime} 20^{\prime \prime}$; ind. cor. 0 ; eye, 25 ft .; time shown by chron. $3^{\text {h }} 30^{\text {m }} 40^{\text {s }}$, which was fast $28^{\mathrm{m}} 36^{\mathrm{s}}$ of G.M.T.; run since determining the error, S. 42° E., 18 miles. Find the latitude, and if the run since noon was 7 miles on the same course, find the lat. at noon.
9. September 24th A.m. at ship, in lat. by account $15^{\circ} 38^{\circ}$ N., long. $93^{\circ} 26^{\prime}$ E., when a chron. estimated $10^{\mathrm{m}} 15^{\mathrm{s}}$ fast of G.M.T. showed $5^{\text {h }} 25^{\mathrm{m}}$ $11^{\prime \prime}$, the obs. alt. of the Sun's L.L. was $73^{\circ} 5^{\prime} 30^{\prime \prime}$; ind. cor. $-2^{\prime} 5^{\prime \prime}$; eye, 18 ft . Find the latitude by ex-meridian.
10. September 23rd p.m. at ship, in lat. by D.R. $51^{\circ} 15^{\prime}$ N., long. $124^{\circ} 30^{\prime} \mathrm{W}$., when a watch slowed $12^{\mathrm{h}} 5^{\mathrm{m}} 14^{\text {i }}$, and had been found $6^{\mathrm{m}} 12^{\text {a }}$ slow of A.T.S., diff. long. made to the westward since determining the error was 19.5 miles; the obs. alt. of the Sun's U.L. was $39^{\circ} 5^{\prime} 40^{\prime \prime}$; ind. cor. $+2^{\prime} 9^{\prime \prime}$; eye, 22 ft . Find the latitude by ex-meridian. Run since noon S. by W. 4 miles. Find the lat. at noon.
11. September 23rd p.m. at ship, in D.R. lat. $40^{\circ} 18^{\prime}$ S., long. $165^{\circ} 54^{\prime} \mathrm{W}$., when a chron. showed $11^{\mathrm{h}} 18^{\mathrm{m}} 33^{\mathrm{s}}$, error on A.T.G. was $4^{\mathrm{mm}} 15^{\mathrm{s}}$ slow; the obs. alt. of the Sun's L.L. near the meridian was $49^{\circ} 17^{\prime} 10^{\prime \prime}$; ind. cor. $-17^{\prime \prime}$; height of eye, 41 ft . Find the latitude at sights, and if the run since noon was N. 35° E., 6 miles, find lat. at noon.

Alit. 69.-Latitude by Ex-meridian Altitude of a Star.

Example.-August 16th at ship, lat. $31^{\circ} 30^{\prime}$ S., long. $175^{\circ} 30^{\prime} 30^{\prime \prime} \mathrm{W}$; time by chron., $16^{\circ} 0^{\text {b }} 0^{\text {m }} 10^{\circ}$, which was fast of M.T.G. 10°; obs. alt. of a Cygni bearing N. and W. of the observer, $11^{\circ} 37^{\prime} 50^{\prime \prime}$; ind. cor. $+2^{\prime} 30^{\prime \prime}$; height of eye, 26 ft . Find the latitude.

Time by chron. $16^{\text {d }}$						$30^{\prime \prime}$	R.A.M.S.		$52^{4} 5$
Fast			10			4	M.T.S. 1		58
M.T.G. $16^{\text {d }}$	0	0	0	6,0)702	2	0	R.A.M. 21	53	50.5
Long. W.	11	42	2				R.A.* 20	38	$13 \cdot 6$
M.T.S. $15^{\text {d }}$	12		58				W,H.A.*	15	$36 \cdot 9$

First Method.

W.H.A. $1^{\mathrm{b}} 15^{\mathrm{m}} 37^{\mathrm{s}} \log$ ris. $=\mathbf{4 . 7 3 1 8 9 0}$

Lat. $31^{\circ} 30^{\prime} \quad$ S. $\cos =9.930766$
Dec. 445639 N. $\cos =9.849908$
$32551 \log =4.512504$
T.A. $11^{\circ} 30^{\prime} 48^{\prime \prime}$ N.S. 199596

232147 nat. $\cos 2 \mathrm{D} 76^{\circ} 34^{\prime} 35^{\prime \prime} \mathrm{S}$. Ref.
113520
Dec. 445639 N.
True alt. 113048

Second Method.

W.H.A. $1^{\text {h }} 15^{\mathrm{m}} 37^{\text {a }} \cos =9.975919$	
Dec. $44^{\circ} 56^{\prime} 39^{\prime \prime}$ N. cot $=10.000846$	$\operatorname{cosec}=10 \cdot 150939$
Arc $1463155^{\prime \prime}$ N. cot $=9.976765$	$\sin =9.860792$
T.A. $11^{\circ} 30^{\prime} 48$	$\sin =9 \cdot 300150$
Are $278 \quad 10 \quad 1 \begin{aligned} & \text { S. }\end{aligned}$	$\cos =9 \cdot 311881$

Lat. $3138 \quad 6 \mathrm{~S}$.

Third Method. From figure.
X is the star's position; XD a perpendicular on the meridian.

In triangle $\mathrm{PDX}, \mathrm{D}=90^{\circ}$; given Polar Dist. $=\mathbf{P X}$; Hour angle $=$ P. Find PD and DX.
$\operatorname{Sin}(\operatorname{co.} \mathrm{P})=\tan (\mathrm{co} . \mathrm{PX}) \cdot \tan \mathrm{PD}$
$\therefore \tan P D=\frac{\cos P}{\cot P X}=\cos P \cdot \tan P X \quad I$.
Again-

$$
\begin{aligned}
\sin \mathrm{DX} & =\cos (c o . P) \cdot \cos (c o . P X) \\
& =\sin P \cdot \sin P X \quad . \quad .
\end{aligned}
$$

Fig. 124.

$$
\begin{aligned}
& \mathrm{P}=1^{\mathrm{b}} 15^{\mathrm{m}} 37^{*} \quad \cos =9.975919 \quad \sin =9.510526 \\
& \mathrm{PX}=134^{\circ} 56^{\prime} 39^{\prime \prime} \quad \tan =10.0008+6 \quad \text { sin }=9.849908 \\
& 43^{\circ} 28^{\prime} 5^{\prime \prime} \quad \tan =9 \cdot 976765 \quad 13^{\circ} \text { ib } 24^{\prime \prime} \sin =9 \cdot 360434 \\
& \mathrm{PD}=1363155 \\
& \mathrm{DX}=13^{\circ} 15^{\prime} 24^{\prime \prime} \\
& \text { Now, in triangle } Z D X, \mathbf{D}=90^{\circ} \text {; given zen. dist. }=Z X \text { and } \mathrm{DX} \text {, find } \mathrm{ZD} \text {. } \\
& \operatorname{Sin}(\operatorname{co} . \mathrm{ZX})=\cos Z \mathrm{D} \cdot \cos \mathrm{DX} \\
& \therefore \cos Z D=\frac{\cos Z X}{\cos D X}=\cos Z X . \sec D X \\
& \mathrm{DX}=13^{\circ} 15^{\prime} 24^{\prime \prime} \quad \mathrm{sec}=10 \cdot 011730 \\
& \mathrm{ZX}=78 \quad 2912 \quad \cos =9 \cdot 300153 \\
& Z D=78^{\circ} 10^{\prime} 1^{\prime \prime} \quad \cos =\overline{9 \cdot 311883} \\
& \text { Lat. }=90^{\circ}-\mathrm{PZ}=90^{\circ}-(\mathrm{PD}-\mathrm{ZD}) \\
& =90^{\circ}-58^{\circ} 21^{\prime} 54^{\prime \prime} \\
& =31^{\circ} 38^{\prime} 6^{\prime \prime} \mathrm{S} \text {. }
\end{aligned}
$$

Exercises.

1. August 1st, about $10^{\text {h }}$ P.M. at ship, in lat. by account $38^{\circ} 52^{\prime}$ S., long. $10^{\circ} \mathrm{W}$., when a chron. showed $10^{\mathrm{h}} 45^{\mathrm{m}}$, and was fast $1^{\mathrm{m}} 48^{\circ}$ of G.M.'I', the obs. alt. of Vega near the meridian, bearing north, was $12^{\circ} 30^{\prime} 40^{\prime \prime}$; ind. cor. $+2^{\prime} 54^{\prime \prime}$; eye, 20 ft . Find lat. by ex-meridian.
2. August 4th, about $11^{\text {h }} 15^{\mathrm{m}}$ P.m. at ship, in lat. by account $51^{\circ} 27^{\prime}$ N., long. $49^{\circ} 30^{\prime}$ W., when a chron. correct for A.T.G. showed $2^{\mathrm{h}} 36^{\mathrm{m}} 53^{\prime \prime}$, the obs. alt. of Altair near the meridian, bearing south, was $46^{\circ} 49^{\prime} 20^{\prime \prime}$; ind. cor. $+2^{\prime} 14^{\prime \prime}$; eye, 45 ft . Find lat. by ex-meridian.
3. August 8 th, about $10^{\mathrm{h}} 50^{\mathrm{m}}$ P.M. at ship, in lat. by D.R. $0^{\circ} 2^{\prime}$ N., long. $169^{\circ} 15^{\prime}$ E., when a chron. correct for M.T.G. showed $11^{\mathrm{h}} 35^{\mathrm{m}} 47^{\prime}$, the obs. alt. of a Pavonis near the meridian, bearing S. $\frac{1}{2}$ E., was $32^{\circ} 56^{\prime} 30^{\prime \prime}$; ind. cor. $-37^{\prime \prime}$; eye, 39 ft . Required the lat.
4. A ugust 12th, at $1^{\mathrm{h}} 5^{\mathrm{m}} \mathbf{9} 2^{\circ}$ A.M. apparent time at ship, in lat. by D.R. $42^{\circ} 30^{\prime} \mathrm{N}$., long. $174^{\circ} 18^{\prime} \mathrm{W}$. , the obs. alt. of 'Fomalhaut near the meridian was $17^{\circ} 23^{\prime} 40^{\prime}$; ind. cor. $+1^{\prime} 11^{\prime \prime}$; eye, 42 ft . Find the lat.
5. August 17 th, about $2^{h} 45^{\prime}$ A.m. at ship, in lat. by account $17^{\circ} 15^{\prime} \mathrm{N}$., long. $57^{\circ} 12^{\prime}$ W., when a chron. correct for M.T.G. showed $6^{\mathrm{L}} 32^{\mathrm{m}} 38^{\text {T}}$, the obs. alt. of α Andromedæ near the meridian, bearing north, was $77^{\circ} 59^{\prime} 10^{\prime \prime}$; ind. cor. $-2^{\prime} 7^{\prime \prime}$; eye, 50 ft . Required the lat.
6. August 26th, about $4^{\text {h }} 10^{\text {ni }}$ A.M. at ship, in lat. by D.R. $8^{\circ} 45^{\prime}$ S., long $69^{\circ} 14^{\prime}$ E., when a watch which was $4^{\mathrm{h}} 38^{\mathrm{m}} 10^{4}$ slow of A.T.S. showed $11^{\mathrm{b}} 2 \mathrm{y}^{\mathrm{m}}$ 41°; the diff. long. made to the westward since determining the error was 18.5 miles; the obs. alt. of Achernar near the meridian, bearing south, was $40^{\circ} 11^{\prime} 30^{\prime \prime}$; ind. cor. $+3^{\prime} 17^{\prime \prime}$; height of eye, 38 ft . Find the lat.
7. September 4 th, about $2^{\mathrm{h}} 50^{\mathrm{m}}$ A. M. at ship, in lat. by account $31^{\circ} 50^{\prime} \mathrm{S}$., long. $100^{\circ} 18^{\prime}$ E., when a chron., whose error on M.T.G. was $10^{\mathrm{m}} 57^{*}$ slow, showed $7^{\mathrm{h}} 58^{\mathrm{m}} 14^{\text {s }}$, the obs. alt. of α Arietis near the meridian was $34^{\circ} 58^{\prime \prime}$ $40^{\prime \prime}$; ind. cor. $-1^{\prime} 6^{\prime \prime}$; height of eye, 41 ft . Required the lat. by exmeridian.
8. September 9th, about $5^{\text {b }} 10^{\mathrm{m}}$ A.m. at ship, in lat. by D.R. $53^{\circ} 22^{\prime}$ N., long. $158^{\circ} 35^{\prime} \mathrm{E}$. ; when a watch, which had been found $10^{\mathrm{L}} 32^{\mathrm{m}} 10^{\circ}$ slow of A.T.S., showed $6^{\mathrm{h}} 36^{\mathrm{m}} 15^{4}$, the diff. long. made good to the eastward since determining the error was 32.5 miles; the obs. alt. of Aldebaran near the meridian was $52^{\circ} 51^{\prime} 50^{\prime \prime}$; ind. cor. $+2^{\prime} 11^{\prime \prime}$; eye, 33 ft . Find the lat.
9. September 13 th, about $5^{\mathrm{b}} 15^{\text {m }}$ A.M. at ship, in lat. by account $23^{\circ} 40^{\prime}$ S., long. $50^{\circ} 19^{\prime}$ W., when a chron., whose error on M.T.G. was $13^{\mathrm{m}} 15^{\circ}$ fast, showed $8^{\circ} 49^{\mathrm{m}} 50^{\circ}$, the obs. alt. of Capella near the meridian was 20° $22^{\prime} 50^{\prime \prime}$; ind. cor. $-2^{\prime} 9^{\prime \prime}$; eye, 46 feet. Find the lat. by ex-meridian.
10. September 19 th, about $5^{\text {h }}$ A. M. at ship, in lat. by D.R. $65^{\circ} 35^{\prime}$ S., long. $60^{\circ} 15^{\prime}$ W., when a chron. showed $9^{\mathrm{L}} 10^{\mathrm{m}}$, error $7^{\mathrm{m}} 37^{\mathrm{s}}$ fast of A.T G., the obs. alt. of Rigel near the meridian was $42^{\circ} 34^{\prime} 30^{\prime \prime}$; ind. cor. $+2^{\prime} 11^{\prime \prime}$; eye, 48 ft . Find the lat.
11. September 25th, about $8^{\text {h }} 30^{\mathrm{m}}$ P. M. at ship, in lat. by D.R. 3° N., long. $68^{\circ} 14^{\prime}$ E., the obs. alt. of α Cygni (Deneb) near the meridian was 48° $16^{\prime} 10^{\prime \prime}$; ind. cor. $-2^{\prime} 3^{\prime \prime}$; height of eye, 50 ft . ; time by chron., $3^{\text {h }} 57^{\text {I }} 19^{\text { }}$ correct M.T.G. Find the lat.
12. October 1st, about 9^{h} P.M. at ship, in lat. by account $20^{\circ} 10^{\prime} \mathrm{N}$., long. $137^{\circ} 46^{\prime}$ E., the obs. alt. of a Gruis, near the meridian, was $22^{\circ} 11^{\prime} 30^{\prime \prime}$; eye, 55 ft . ; no ind. cor. ; time by chron., $12^{\text {h }}$, which was $8^{\text {ri }} 45^{4}$ fast of A.T.G. Find the lat. by ex-mcridian.

Art. 70. Latitude by the Pole Star.-On account of the proximity of the Pole Star to the North Pole, its azimuth is never large, and it is, therefore, a very suitable object for determining latitude by ex-meridian method at any time when
visible. Special formula has, however, been devised for this purpose, and tables calculated from this formula are entered in the " Nautical Almanac."

Thus, if l denote the latitude,

a	$"$	altitude,	
p	$"$	polar distance,	
h	$"$	$"$	hour angle,

it may be shown that-

$$
l=a \pm p \cdot \cos h+\frac{1}{2} \sin 1^{\prime \prime} \cdot(p \sin h)^{2} \cdot \tan a
$$

$p . \cos h$ is found in Table 1., calculated for different R.A.M.'s from $0^{\text {h }}$ to $24^{\text {h }}$; that is for different values of the hour angle and a constant value of the pol. dist.

The third term is found in Table II. and is always added; this is the second correction.

Table III. contains the third correction, always added, increased by 1^{\prime} in order to make it so; this 1^{\prime} is a constant to be subtracted from the true alt.; this correction in III. is an amount calculated for different dates to correct the mean values of R. Λ. and Dcc. of Polaris used in constructing Tables I. and II.

In figure, let X be position of

Fia. 125. Pole Star ; draw XD perpendicular on meridian ; along $N Z$ cut off NC $=\mathrm{AX}$ its altitude.
$\mathrm{PX}=$ pol. dist., $\mathrm{ZPX}=$ hour angle.

$$
\begin{aligned}
\text { Latitude } & =\mathrm{NP} \\
& =\mathrm{NC}-\mathrm{CP} \\
& =\mathrm{NC}-\mathrm{PD}+\mathrm{CD}
\end{aligned}
$$

If the hour angle had exceeded 6 hours-

$$
\text { latitude }=N C+P D+C D
$$

PD is first correction, and considering the triangle PDX as a plane one-

$$
\begin{aligned}
\mathrm{PD} & =\mathrm{PX} \cdot \cos \mathrm{P} \\
\text { or 1st cor. } & =p \cdot \cos h
\end{aligned}
$$

and is added or subtracted according as the hour angle is greater or less than 6 hours.

$$
2 n d \text { cor. }=C D
$$

In right-angled triangle ZDX-

$$
\begin{gathered}
\cos Z X=\cos Z D \cdot \cos D X \\
o r \cos Z C=\cos Z D \cdot \cos D X \\
\therefore \cos (Z D+C D)=\cos Z D \cdot \cos D X \\
\cos \mathrm{ZD} \cdot \cos \mathrm{CD}-\sin \mathrm{ZD} \cdot \sin \mathrm{CD}=\cos \mathrm{ZD} \cdot \cos \mathrm{DX} \\
\text { since } \mathrm{CD} \text { is very small, } \cos \mathrm{CD}=1
\end{gathered}
$$

$$
\begin{aligned}
\text { Hence } \cos Z D-\sin Z D \cdot \sin C D & =\cos Z D \cdot \cos D X \\
\sin Z D \cdot \sin C D & =\cos Z D(1-\cos D X) \\
\text { or } \sin C D & =\cot Z D \cdot\left(2 \sin ^{2} \frac{D X}{2}\right)
\end{aligned}
$$

As CD and DX are very small, we may write $C D^{\prime \prime} . \sin 1^{\prime \prime}$ for $\sin C D$ and $\frac{D X^{\prime \prime}}{2} \cdot \sin 1^{\prime \prime}$ for $\sin \frac{D X}{2}$; also $Z D$ is very nearly $=\mathrm{ZX}$.

$$
\text { Hence } \begin{aligned}
\mathrm{CD}^{\prime \prime} \sin 1^{\prime \prime} & =\cot Z X \cdot 2\left(\frac{\mathrm{DX}}{2}\right)^{2} \cdot\left(\sin 1^{\prime \prime}\right)^{2} \\
\text { i.e. } \mathrm{CD} & =\frac{1}{2} \sin 1^{\prime \prime} \cdot(\mathrm{DX})^{2} \cdot \cot \mathrm{ZX} \\
& =\frac{1}{2} \sin 1^{\prime \prime} \cdot(\mathrm{PX} \cdot \sin \mathrm{P})^{2} \cdot \cot Z X .
\end{aligned}
$$

Hence approximately $l=a \pm p \cdot \cos h+\frac{1}{2} \sin 1^{\prime \prime} \cdot(p \sin h)^{2}$. $\tan \alpha$
Art. 71.-The process is as follows :-
(1) Find Greenwich time, and sidereal time of observation, which is Right Ascension of Meridian.
(2) Correct altitude and subtract 1^{\prime}.
(3) Apply first correction from Table I., as there directed.
(4) Add second and third corrections from respective tables for latitude.

Example.-August 24th, at $12^{\mathrm{h}} 12^{\mathrm{m}} 20^{4}$ mean time at ship, the obs. alt. of Polaris out of the meridian was $58^{\circ} 35^{\prime} 10^{\prime \prime}$, in longitude $28^{\circ} 15^{\prime} \mathrm{W}$.; ind. cor. $+2^{\prime} 13^{\prime \prime}$; height of eye, 27 ft . Find the latitude.

Exercises.

1. August 28 th, about $5^{\mathrm{h}} 50^{\mathrm{m}}$ a.m., in long. $48^{\circ} 30^{\prime} \mathrm{W}$.; when a chron. correct for M.T.G. showed $9^{\mathrm{n}} 2^{\mathrm{m}} 14^{\mathrm{n}}$; the obs. alt. of Polaris out of mer. was $36^{\circ} 47^{\prime} 20^{\prime \prime}$; ind. cor. $-2^{\prime} 17^{\prime \prime}$; eye, 26 ft . Find the latitude.
2. August 5th, about $1^{\mathrm{h}} 50^{\mathrm{m}}$ A.m., in long. $128^{\circ} 50^{\prime}$ E.; when a chron., which was $10^{\mathrm{m}} 18^{\circ}$ fast of A.T.G., showed $5^{\mathrm{h}} 15^{\mathrm{m}} 38^{\mathrm{a}}$; the obs. alt. of Polaris out of mer. was $46^{\circ} 12^{\prime} 30^{\prime \prime}$; ind. cor. $+3^{\prime} 46^{\prime \prime}$; eye, 32 ft . Find the latitude.
3. August 1st, about $4^{\mathrm{h}} 20^{\mathrm{m}}$ P.M., in long. 180° E. ; when a chron. correct for M.T.G. showed $4^{\mathrm{b}} 19^{\mathrm{m}} 50^{\mathrm{s}}$; the obs. alt. of the Pole star out of mer. was $29^{\circ} 5^{\prime} 10^{\prime \prime}$; ind. cor. $-4^{\prime} 15^{\prime \prime}$; eye, 37 ft . Find the latitude.
4. August 2nd, at $8^{\mathrm{h}} 10^{\mathrm{m}} 20^{\circ}$ P.M., apparent time at ship in long. $68^{\circ} 34^{\prime}$ W. ; the obs. alt. of a Urs. Min. out of mer. was $53^{\circ} 36^{\prime} 40^{\prime \prime}$; ind. cor. $+55^{\prime \prime}$; eye, 29 ft . Required the latitude.
5. September $30^{\mathrm{d}} 8^{\mathrm{h}}$ M.T.G.; when in long. $162^{\circ} 36^{\prime} 15^{\prime \prime}$ E. ; the obs. alt. of Polaris out of mer. was $23^{\circ} 14^{\prime} 50^{\prime \prime}$; ind. cor. $-1^{\prime} 8^{\prime \prime}$; eye, 42 ft . Find the latitude.
6. September 10th, about $8^{\text {b }} 15^{\text {m }}$ P.m., in long. of Greenwich; when a chron. correct for A.T.G. showed $8^{\mathrm{h}} 15^{\mathrm{m}} 38^{\mathrm{s}}$, the obs. alt. of the Pole star out of mer. was $32^{\circ} 26^{\prime} 40^{\prime \prime}$; ind. cor $+3^{\prime} 25^{\prime \prime}$; eye, 34 ft . Find the latitude.
7. September 1st A.m., at ship in long. $95^{\circ} 28^{\prime}$ E. ; when a chron. correct for M.T.G. showed $7^{\text {h }} 3^{\mathrm{m}} 18^{\mathrm{a}}$; the obs. alt. of Polaris in artificial horizon out of mer. was $101^{\circ} 50^{\prime} 20^{\prime \prime}$; ind. cor. $+3^{\prime} 26^{\prime \prime}$. Find the latitude.
8. September 30 th, about $7^{\mathrm{h}} 20^{\mathrm{mm}}$ A.m., in long. $179^{\circ} 45^{\prime} \mathrm{W}$.; when a chron. 12^{b} slow of A.T.S. showed $7^{\mathrm{h}} 19^{\mathrm{m}} 32^{\mathrm{s}}$; the obs. alt. of a Urs. Min. in artificial horizon out of mer. was $96^{\circ} 37^{\prime} 40^{\prime \prime}$; ind. cor. $-2^{\prime} 48^{\prime \prime}$. Find the latitude.
9. August 4th, at $9^{\mathrm{h}} 18^{\mathrm{m}} 10^{\mathrm{m}}$ P.M., inean time at ship in long. $127^{\circ} 16^{\prime} \mathrm{W}$.; the obs. alt. of Polaris in artificial horizon out of mer. was $61^{\circ} 15^{\prime} 10^{\prime \prime}$; ind. cor. $+2^{\prime} 42^{\prime \prime}$; eye, 50 ft . Find the latitude.

CHAPTER XV.

COMPASS ERROR BY AMPLITUDES.

ART. 72.-Variation is the angle between the terrestrial and magnetic meridians. It shows how much the magnetic needle is disturbed from a true north and south direction by the action of the earth. It changes with the geographical position of the observer, and also with a lapse of time; the annual change is about 6^{\prime} annually. The amount of the variation for a particular year is entered on Admiralty charts.

Deviation is the angle the compass needle on a ship makes with the magnetic meridian. It shows how much the compass north is deflected from magnetic north by the action of iron in the ship or cargo. The amount varies with the direction of the ship's head, with the heel of the ship, and with her geographical position.

Compass Error is the angle the compass needle on a ship makes with the true meridian. It includes variation and deviation; and is the difference between the true and compass bearing of any object. The compass bearing of an object may be observed at any time, and one method of determining true bearings is by "Amplitude," which is the bearing of an object reckoned from east when rising, or from west when setting. Thus it is possible for the sun to be used for this purpose twice each day; and suitable stars can be selected continually at night.

Art. 73. Proof of Amplitude.-In the figure NESW is the horizon, X the position of an object on the horizon; the are WX is its amplitude. In the right-angled triangle PNX, $\mathrm{N}=90^{\circ} ; \mathrm{PN}=$ latitude $; \mathrm{PX}=$ pol.dist. or co. dec.; $\mathrm{NX}=$ co. amp.

$$
\begin{aligned}
\sin (c \cdot P X) & =\cos P N \cdot \cos \mathrm{NX} \\
\cos P X & =\cos \mathrm{PN} \cdot \sin \mathrm{WX} \\
\sin \cos \mathrm{NX} & =\sin \mathrm{WX} \\
\therefore \sin \mathrm{WX} & =\frac{\cos \mathrm{PX}}{\cos \mathrm{PN}} \\
& =\cos \mathrm{PX} \cdot \sec \mathrm{PN} \\
\text { or } \sin \mathrm{amp} . & =\sin \text { dec. } . \text { sec lat. }
\end{aligned}
$$

Fig. 127.

The equinoctial cuts the horizon in the east and west points, hence when an object is on the equinoctial, that is, has declination $=0^{\circ}$, it rises due east and sets due west. Again, when an
observer is on the equator the formula becomes sin amp. $=\sin$ dec., since sec $0^{\circ}=1$; hence in this case amp. $=$ dec. It is also observed that when an object has north dec., it rises to the north of east, and sets to the north of west; if south dec., it rises south of east, and sets south of west; the name of the amplitude is therefore the same as the declination.

Art. 74. To find the Time of rising or setting of a Celestial Object.-In the figure the hour angle is ZPX, which is the supplement of NPX. Then from triangle NPX-

$$
\begin{aligned}
\sin (\operatorname{co.} \mathrm{P}) & =\tan \mathrm{PN} . \tan (\mathrm{co.} \mathrm{PX}) \\
\cos \mathrm{P} & =\tan \mathrm{PN} . \cot \mathrm{PX} \\
\text { hence } \cos \mathrm{H} . \mathrm{A} . & =-\tan \text { lat. cot. pol. dist. }
\end{aligned}
$$

Art. 75.-The process for finding compass error by amplitude is as follows :-
(1) Find Greenwich time, and correct declination.
(2) To L. \sin declination add L. sec latitude, reject 10 from index, and take back sin true amp., which reckon from E. if a.m. at ship, and W. if P.M. at ship ; and same name as declination. Under true amp. place comp., bearing reckoned from E. or W. like the true amp.
(3) When the true and comp. amps. are of the same name N. or S ., their difference is the comp.err. ; when of contrary names, their sum is the comp. err. It is named E. or W. according as the true amp. reads to the right or left of the comp. amp.
(4) Under the comp. err. place the variation; if of same names subtract; if of contrary names add; this gives the deviation, which is to be named like the error, unless the error is subtracted from the variation, when it is of contrary name to error.

Examples. -

(1) September 28 th, at $5^{\text {h }} 53^{\mathrm{m}}$ a.m., mean time at ship in lat. $23^{\circ} 25^{\prime} \mathrm{S}$., long. $12^{\circ} 40^{\prime} \mathrm{W}$. , the sun's compass bearing was E. $\frac{3}{4} \mathrm{~N}$. Find the comp. err. and deviation for the position of the ship's head, if the variation from chart was $28^{\circ} 30^{\prime} \mathrm{W}$.

M.T.S. Sept. $27^{\text {d }} 17^{\text {h }} 53^{\text {m }} 0^{\text {c }}$	$12^{\circ} 40^{\prime}$
Long. W. +5040	12
M.T.G. Sept. $26^{\text {d }} 184340$	$6,0) 5,0 \quad 40$
	$50^{\text {m }} 40^{\text {a }}$
Dec. 28ih noon $1^{\circ} 46^{\prime} 1^{\prime \prime} \cdot 4 \mathrm{~S}$. Cor 58	H.V. $\quad 58^{\prime \prime} \cdot 45$
14053.4 S .	$\begin{gathered} 40915 \\ 11690 \end{gathered}$
	29225
	6,0)30,8.0315
	$58^{\prime \prime}$

Dec. $1^{\circ} 40^{\prime} 53^{\prime \prime}$
Lat. 23250
True amp. E. $1^{\circ} 49^{\prime} 57^{\prime \prime} \mathrm{S}$. Comp. bearing E. 82615 N.

Comp. err. $\overline{101612} \mathrm{E}$.

Var. $28 \quad 30 \quad 0 \quad$ W. Dev. $38 \quad 4612$ E. because they are of different

In âgure X is position of sun.
In triangle SPX, $\mathrm{S}=90^{\circ}$.
Given-
$\mathrm{SP}=\mathrm{lat}$.
$\mathrm{PX}=$ pol. dist. or co. deo.
Req. $S X=$ co. amp.
Formula as proved above.
Sin amp. $=\sin$ dec. see lat.
(Sum of comp. err. and variation
because they are of different
names ; E. because comp. err.
(Sum of comp. err. and variation
because they are of different
names; E. because comp. err. is E .)
$\sin =8.467483$
$\sec =10.037328$
$\sin =8 \cdot 504811$
(Add because true and comp. amp. differ in name; named \mathbf{E}, because true amp. reads to the right of the comp. amp.)

Fig. 128.
(2) August 1st, at $8^{\mathrm{h}} 35^{\mathrm{m}}$ P.M. apparent time at ship, in lat. $61^{\circ} 45^{\prime}$ S., long. $176^{\circ} 30^{\prime}$ E., the sun's compass bearing was $\mathrm{N} .66^{\circ} 30^{\prime} \mathrm{W}$. If the variation from chart is $22^{\circ} 15^{\prime}$ E., find conpass error and deviation.

The bearing in the question N. $66^{\circ} 30^{\prime} \mathrm{W}$. is subtracted from 90° to reckon it from W., the same point as the true amp. Since true and comp. bearings are of same name N., they are subtracted for error, which is named E., because the true amp. reads to the right of the comp.; the difference of error and variation, because of same name \mathbf{E}., is the dev., which is of contrary name to error, because error is subtracted from variation.

Fia. 129.

In figure X is position of sun. In triangle $\mathrm{SPX}, \mathrm{S}=90^{\circ}$.
Given-

$$
\begin{aligned}
\mathbf{S P} & =\text { lat. } \\
\mathbf{P X} & =\text { pol. dist. or co. doc. } \\
\text { Req. } \cdot \mathbf{S X} & =\text { co. amp. }
\end{aligned}
$$

Fixercises.

1. August 2nd, at $7^{\mathrm{h}} 10^{\mathrm{m}}$ P.m. mean time at ship, in lat. $42^{\circ} 20^{\prime}$ S., long. 65° E., the sun's comp. bearing was N.N.W. $\frac{3}{4}$ W., the variation being 28° $30^{\prime} \mathrm{W}$. Find comp. err. and dev.
2. September 28th, at $5^{\mathrm{h}} 50^{\mathrm{m}}$ A.m. mean time at ship, in lat. $50^{\circ} 25^{\prime}$ S., long. $81^{\circ} \mathrm{W}$., the sun rose by compass N. $64^{\circ} 30^{\prime} \mathrm{E}$. Find true amp. and comp. err. ; also if var. is $24^{\circ} 15^{\prime}$ E., find dev.
3. August 9 th, at $5^{\mathrm{h}} 15^{\mathrm{m}}$ A.m. mean time at ship, in lat. $33^{\circ} 51^{\prime}$ N., long. 125° W., the sun's comp. bearing was E. by N. $\frac{1}{4}$ N. Find true amp. and comp. err.; and if var. is $11^{\circ} 20^{\prime} \mathrm{E}$., find dev.
4. September 30th, at $6^{\text {b }} 23^{\mathrm{m}}$ P. M. A.T.S., in lat. $48^{\circ} 19^{\prime}$ S., long. 76° E., the sun set by compass W. $\frac{1}{2}$ S. Find true amp. and comp. err.; the var. being $29^{\circ} 45^{\prime} \mathrm{W}$., find the dev.
5. August 4th, at $5^{\mathrm{h}} 6^{\mathrm{m}}$ A.m., M.T.S., in lat. $37^{\circ} 15^{\prime}$ N., long. $20^{\circ} 30^{\prime}$ E., the sun's comp. bearing was E. by N. $\frac{1}{2}$ N. Find true amp., comp. err., and deviation, the var. being $11^{\circ} 30^{\prime} \mathrm{W}$.
6. September 26 th, at $6^{\text {b }} 5^{\mathrm{m}}$ P.M. M.T.S., in lat. $50^{\circ} 15^{\prime}$ N., long. $126^{\circ} 45^{\prime}$ W., the sun's comp. bearing was S. $69^{\circ} 30^{\prime}$ W. Find true amp., comp. err., and dev., the var. being $22^{\circ} 40^{\prime} \mathrm{E}$.
7. August 7th, about $6^{\text {b }}$ A.m., in lat. $20^{\circ} 24^{\prime}$ S. long. $134^{\circ} \mathrm{W} .$, when a chron. correct for M.T.G. showed $3^{\mathrm{h}} 20^{\mathrm{m}}$, the sun's comp. bearing was E. Find the true amp., comp. err., and dev., the var. being $7^{\circ} 15^{\prime} \mathbf{E}$.
8. September 7th, about 7^{b} P.M., in lat. $60^{\circ} 14^{\prime} \mathrm{N} .$, long. $166^{\circ} \mathrm{W}$., when a chron. correct for M.T.G. showed $6^{\mathrm{h}} 4^{\mathrm{m}}$, the sun's comp. bearing was W. Find the true amp., comp. err., and dev., the var. being $12^{\circ} 20^{\prime} \mathrm{E}$.
9. August 3rd, about $3^{\mathrm{h}} 10^{\mathrm{m}}$ A.m., in lat. $65^{\circ} 22^{\prime}$ N., long. $170^{\circ} 15^{\prime}$ W., when a chron. correct for M.T.G. showed $2^{\mathrm{h}} 35^{\mathrm{m}}$, the sun's comp. bearing was N. $\frac{1}{4}$ W. Find the true amp., comp. err., and dev., the var. being $22^{\circ} 40^{\prime} \mathrm{E}$.
10. September 23rd, at $6^{\text {b }}$ A.M. A.T.S. at ship, in lat. 0°, long. $50^{\circ} \mathrm{W}$., the sun's comp. bearing was E. $10^{\circ} \mathrm{S}$. Find the true amp., comp. err., and dev., the var. being 0°.
11. September 25 th, at $6^{\text {h }} 5^{\mathrm{m}}$ P.M. A.T.S. at ship, in lat. $13^{\circ} 15^{\prime}$ S., long. 95° E., the sun's bearing by comp. was N. $76^{\circ} 30^{\prime} \mathrm{W}$. Find the true amp., comp. crr., and dev., the var. being $2^{\circ} \mathrm{W}$.
12. September 23 rd , about $6^{\text {b }}$ P.M. at ship, in lat. 39° N., long. $78^{\circ} 45^{\prime}$ W., when a chron. correct for M.T.G. showed $11^{\mathrm{h}} 15^{\mathrm{m}} 23^{\mathrm{s}}$, the sun's comp. bearing was S. $83^{\circ} \mathrm{W}$. Find true amp., comp. err., and dev., the var. being $6^{\circ} 30^{\prime} \mathrm{E}$.
13. August 30 th, at $5^{\text {b }} 59^{\mathrm{m}}$ A.m., in lat. 0°, long. $180^{\circ} \mathrm{W}$. , the sun's comp. bearing was N.E. by E. $\frac{1}{2}$ E. Find the true amp., comp. err., and dev., the var. being $9^{\circ} 30^{\prime} \mathbf{E}$.
14. September 24th, about $6^{\text {h }}$ A.m., in lat. $2^{\circ} 20^{\prime}$ N., long. $101^{\circ} 11^{\prime}$ E., the sun's comp. bearing was E., when the chron. showed $11^{\mathrm{h}} 15^{\mathrm{m}} 14^{\mathrm{s}}$ correct M.T.G. Find the true amp., comp. err., and dev., the var. being $1^{\circ} 15^{\prime} \mathrm{E}$.
15. Find the time of sunrise on August 16th, in lat. $53^{\circ} 20^{\prime} \mathrm{N} ., 4^{\circ} \mathrm{W}$. long.
16. If a star in the equinoctial rises at $7^{\mathrm{h}} 12^{\mathrm{m}} 18^{\mathrm{s}}$ by chronometer, what should the chron. indicate when star is on meridian.
17. At a certain place the sun rose E. $25^{\circ} \mathrm{S}$. by compass, and set W. 15° N. by same compass. Find deviation, having given variation $22^{\circ} \mathrm{W}$.
18. At a certain place a star when on the prime vertical has its altitude equal to its amplitude when setting. Find lat.
19. Find the greatest amplitude the sun can have in lat. $53^{\circ} 20^{\prime} \mathrm{N}$.
20. In lat. $50^{\circ} \mathrm{S}$. when sun's declination is $18^{\circ} 40^{\prime} \mathrm{S}$. : find his altitude when on the prime vertical, and the approx. interval between then and setting.

CHAPTER XVI.

COMPASS ERROR BY AZIMUTHS.

Art. 76.-Another method of finding compass error and deviation is by Azimuths; that is, by observing the bearing of any celestial object when out of the horizon. 'I'his method has the advantage of being available at all times of the day or night when the object is visible. When an altitude is observed for time, by taking the bearing very little extra trouble is involved in working the Azimuth from the altitude; generally, however, the time is accurately taken, and the Azimuth taken from tables calculated for the purpose. Burdwood's Tables are used for latitudes 30° to 60°, and Davis's Tables for Latitudes 0° to 30°; both for declinations from 0° to 23°.

Art. 77.-The Azimuth of a Celestial Object-that is, its bearing reckoned from true North or South-is the angle at the Zenith between the Meridian of the observer and a vertical circle passing through the object, and is measured on the Horizon.

The Data required in the Calculation are the True Altitude, Latitude, and Polar Distance.

Let S be the object, PS its polar

Fig. 130. distance (p), PZ the co-lat. ($90^{\circ}-l$), ZS the zenith distance $\left(90^{\circ}-a\right)$. The angle PZS is the azimuth from N., and its supplement SZX is the azimuth from S .

PZS is a spherical triangle, of which the three sides are given to find an angle PZS.

The general formula is-

$$
\cos A=\frac{\cos a-\cos b \cdot \cos c}{\sin b \cdot \sin c}
$$

whence in the figure-

$$
\cos \mathrm{PZS} \text { or }-\cos \mathrm{SZX}=\frac{\cos \mathrm{PS}-\cos \mathrm{ZS} \cdot \cos \mathrm{P} Z}{\sin \mathrm{ZS} \cdot \sin \mathrm{PZ}}
$$

Putting the letters Z, a, l, p for the azimuth, altitude, latitude, and polar distance respectively-

$$
\begin{aligned}
-\cos Z & =\frac{\cos p-\cos \left(90^{\circ}-a\right) \cdot \cos \left(90^{\circ}-l\right)}{\sin \left(90^{\circ}-a\right) \cdot \sin \left(90^{\circ}-l\right)} \\
& =\frac{\cos p-\sin a \cdot \sin l}{\cos a \cdot \cos l}
\end{aligned}
$$

adding 1 to each side of the equation -

$$
\begin{aligned}
1-\cos Z & =1+\frac{\cos p-\sin a \cdot \sin l}{\cos a \cdot \cos l} \\
\therefore 2 \sin ^{2} \frac{Z}{2} & =\frac{(\cos a \cdot \cos l-\sin a \cdot \sin l)+\cos p}{\cos a \cdot \cos l} \\
& =\frac{\cos (a+l)+\cos p}{\cos a \cdot \cos l} \\
\sin ^{2} \frac{Z}{2} & =\frac{\cos \frac{1}{2}(\alpha+l+p) \cos \frac{1}{2}(a+l-p)}{\cos a \cdot \cos l} \\
\therefore \sin ^{2} \frac{Z}{2} & =\frac{\cos s \cdot \cos (s-p)}{\cos a \cdot \cos l} \\
\text { where } s & =\frac{1}{2}(\alpha+l+p) \\
\text { i.e. } \sin ^{2} \frac{Z}{2} & =\cos s \cdot \cos (s-p) \cdot \sec a \cdot \sec l \\
\text { or } \sin ^{\frac{Z}{2}} & =\sqrt{\cos s \cdot \cos (s-p) \cdot \sec a \cdot \sec l} l
\end{aligned}
$$

from which is derived the rule for computing the azimuth of the opposite name to the latitude, namely, add together the \log secants of the altitude and latitude, and the \log cosines of the half-sum and remainder; divide by two to get the square root, which gives the \log sine of half the azimuth.

ARt. 78.-To find azimuth from altitude proceed as fol-lows:-
(1) Find Greenwich time ; correct declination and find polar distance.
(2) Correct altitude.
(3) Add altitude, latitude, and polar distance, divide by two for half-sum; difference between half-sum and polar distance is remainder.
(4) Add sec alt., sec lat., cos half-sum, and cos remainder; divide sum of logs by two, and take back sine; this angle multiplied by two is the true azimuth which mark contrary name to lat., E. if A.M. at ship, W. if P.M. at ship. If true and comp. azimuth are different in name N . or S ., subtract true from 180° to make of same name as comp. bearing.
(5) The difference of the true and comp. bearings when of same name \mathbf{E}. or W., or their sum when of different names, gives the comp. error which is marked E. or W., according as the true reads to the right or left of the comp. bearing.
(6) Find deviation as in amplitude.

Example.

September 23rd, at $3^{\text {b }} 48^{m} 27^{\prime}$ M.T.S. P.m., in lat. $56^{\circ} 20^{\prime}$ S., long. 67° 35^{\prime} W., the obs. alt. of the Sun's U.L. was $16^{\circ} 54^{\prime} 30^{\prime \prime}$; ind. cor. $+1^{\prime} 1^{\prime \prime}$; height of eye, 27 ft . The Sun's comp. bearing was $\mathrm{W} . \frac{1}{4} \mathrm{~S}$. Required the true azimuth, and comp. error ; and, supposing the variation to be $22^{\circ} \mathrm{E}$., what is the deviation?

The true azimuth is marked N., contrary to name of lat., and W. since it is P.m. at ship. It is subtracted from 180° to change the name to S., which reckons the angle from the same point as the comp. bearing; the difference is the error, since both are named W.; and the error is named E., because the true reads to the right of the comp. bearing.

Draw circle with $\frac{9}{10}$ inch radius to represent the rational horizon; NESW ; vertical diameter NZS represents meridian of observer.

Mark off on scale $\mathrm{SP}=\mathrm{ZQ}=$ lat. $56^{\circ} 20^{\prime}$.

Fig. 131. Since declination is so small object may be considered as on the equinoctial EQW; with zenith distance as radius $=73^{\circ}$ describe an arc to westward cutting EQW in X , the position of sun; through X draw vertical circle ZXA, and hour circle PX to complete.

Then Alt. is AX; Lat. is ZQ ; Pol. dist. is PX.

Hence azimuth is PZX, the formula employed gives its supplement NZX.

From the figure.
In figure X is position of object, very nearly on the equinoctial.

In triangle PZX.

Given co-lat.	$=\mathrm{PZ} \ldots$	\ldots	\ldots	\ldots	\ldots	\ldots	33°	40^{\prime}	$0^{\prime \prime}$
Pol. dist.	$=\mathrm{PX} \ldots$	\ldots	\cdots	\cdots	\ldots	\ldots	90	2	53
Zen. dist.	$=\mathrm{ZX} \cdots$	\cdots	\cdots	\cdots	\cdots	\ldots	73	28	30

Req. azimuth $=\mathrm{Z}$.

$$
\cos \frac{Z}{2}=\sqrt{\frac{\sin s \cdot \sin (s-P X)}{\sin P Z \cdot \sin Z \bar{X}}}
$$

where $s=\begin{aligned} & \underset{2}{\frac{1}{2}}(\mathrm{PX}+\mathrm{PZ}+\mathrm{ZX}) \\ & \mathrm{PX} \quad 90^{\circ} \quad 2^{\prime} 53^{\prime \prime}\end{aligned}$
PZ $\quad 33 \quad 40 \quad 0 \quad \operatorname{cosec}=10 \cdot 256208$
ZX $\begin{array}{lllll}73 & 28 & 30\end{array} \quad \operatorname{cosec}=10.018319$
2)197 $11 \quad 23$

$$
\begin{array}{rrrr}
s & 98 & 35 & 41 \\
s-P X^{2} & 8 & 32 & 48
\end{array}
$$

581634
2
$\sin =9.995095$
$\sin =9 \cdot 172062$
2)19•441684
$\cos =9 \cdot 720842$
True az. S. 116338 W.
Comp. bearing S. 871115 W .
Comp. error $2921 \quad 53 \mathbf{E}$.
var. 22 E.
Dev. 72153 E .

Exercises.

1. August 4th, about $8^{\mathrm{h}} 30^{\mathrm{m}}$ A.m., in lat. $38^{\circ} 47^{\prime}$ S., long. $92^{\circ} 12^{\prime}$ E.; when a chron. correct for M.T.G. showed $2^{\mathrm{h}} 37^{\mathrm{m}} 35^{\text { }}$, the obs. alt. of Sun's L.L. was $16^{\circ} 42^{\prime} 10^{\prime \prime}$; ind. cor., $+2^{\prime} 15^{\prime \prime}$; eye, 29 ft . ; bearing by compass, N. $49^{\circ} 30^{\prime} \mathrm{E}$. Find the true azimuth, comp. error, and deviation, the variation being $18^{\circ} \mathrm{W}$.
2. August 19th, at $4^{\text {b }} 25^{\text {m }} 37^{\circ}$ P.M. A.T.S., in lat. $41^{\circ} 24^{\prime}$ N., long. $70^{\circ} 20^{\prime}$ W., the obs. alt. of the Sun's U.L. was $26^{\circ} 32^{\prime} 40^{\prime \prime}$; bearing by compass, W. ; ind. cor.. - $2^{\prime} 7^{\prime \prime}$; height of eye, 34 ft . Find the true azimnth aud comp. error' ; also if the variation from chart is $9^{\circ} 30^{\prime} \mathrm{W}$., find the deviation.
3. August 31st, about $9^{\text {h }} 20^{\mathrm{m}}$ A.M., in lat. $52^{\circ} 25^{\prime}$ N., long. $3^{\circ} 17^{\prime} 30^{\prime \prime}$ W.; when a chron., which was $38^{\mathrm{m}} 19^{\circ}$ slow of M.T.G., showed $8^{\mathrm{h}} 57^{\mathrm{m}} 39^{\text { }}$, the obs. alt. of the Sun's U.L. was $36^{\circ} 26^{\prime} 10^{\prime \prime}$; bearing by compass S., $28^{\circ} 30^{\prime}$ E.; ind. cor., $-26^{\prime \prime}$; eye, 41 ft . Find the true azinuth, comp. error., and deviation, the variation being $15^{\circ} 40^{\prime} \mathrm{W}$.
4. September 1st, A.m. at ship, in lat. $44^{\circ} 18^{\prime}$ N., long. $10^{\circ} 15^{\prime} \mathrm{W}$.; when a chron. correct for M.T.G. indicated $9^{\text {h }} 2 \vartheta^{\mathrm{m}} 37^{\prime}$, the obs. alt. of Sun's U.L., $34^{\circ} 21^{\prime} 30^{\prime \prime}$; ind. cor., $+4^{\prime} 15^{\prime \prime}$; height of eye, 23 ft . ; bearing by compass, S.E. $\frac{1}{2}$ E. Required the true azimuth, and comp. error; and if variation from chart is $25^{\circ} \mathrm{W}$., what is the deviation?
5. September $22^{\mathrm{d}} 18^{\mathrm{h}} 29^{\mathrm{m}} 38^{\prime \prime}$ (astronomical) M.T.G., in lat. $49^{\circ} 40^{\prime} \mathrm{S}$., long. $135^{\circ} 24^{\prime}$ E. ; the Sun's comp. bearing, N. $61^{\circ} 50^{\prime} \mathrm{W}$.; alt. of U.L., 22° $18^{\prime} 50^{\prime \prime}$; height of eye, 20 ft . Find true azimuth, comp. error, and deviation, the variation being 0°.
6. September 30 th, about $3^{\mathrm{h}} 15^{\mathrm{m}}$ P.м., in lat. $49^{\circ} 37^{\prime}$ S., long. $179^{\circ} 56^{\prime}$ E.; when a chron. showed $3^{\mathrm{h}} 20^{\mathrm{m}} 26^{\circ}$ correct M.T.G., the obs. alt. of Sun's L.L., $25^{\circ} 3^{\prime} 20^{\prime \prime}$; ind. cor., $+3^{\prime} 14^{\prime \prime}$; height of eye, 37 ft. ; bearing by compass, W.N.W. Find true azimuth, comp. error, and deviation, the variation from chart being $16^{\circ} 30^{\prime} \mathrm{E}$.

Art. 79. Time Azimuths of the Sun by the Tables.-When the Apparent Time at Ship, the Lat., and the Sun's Dec. are known, the Sun's True Azimuth can be found by inspection in Burdwood's or Davis's Tables.

The same Tables will give the true Azimuth of a Star, a Planet, or the Moon, provided the Hour Angle and Declination are within the limits of the Tables.

A description of one of the books suffices, as the only difference is that Burdwood is used with lats. 30° to 60°, and Davis with lats. 0° to 30°.

The azimuths are calculated and tabulated for each degree of lat. and dec., and at intervals of 4 mins. in time. Interpolations must be made for odd minutes of time, lat., and dec. The degrees of lat. are found at the top of the page, underneath which is a remark showing whether lat. and dec. are the same or contrary in name. The columns are headed with the degrees of dec. from 0° to 23° consecutively; 0° to 11° on left hand page, 12° to 23° on right; and at the sides the times are entered to every 4 mins. a.m. time on the left-hand side of the page, P.M. time on the right. The method of using the Tables will be illustrated, and the following rules must be observed :-
(1) Find the apparent time at ship (civil time).
(2) Correct Sun's declination.
(3) Open the tables at the degree of lat. in question, and observe whether dec. and lat. are of same or contrary names. Find in the A.m. or P.m. column the next less entry in point of time to the A.T.S. in question, and in this line under the degree of declination will be found the azimuth, which has to be corrected for odd minutes of time, declination, and latitude by proportion, for the true azimuth.
(4) The true azimuth must be named the same name as the latitude-E. if A.m. at ship, W. if P.m. at ship.

Example.

The apparent time at ship being $3^{\mathrm{n}} 56^{\mathrm{m}} 11^{\prime}$ p.m., the correct declination $0^{\circ} 3^{\prime}$ N., and latitude $56^{\circ} 20^{\prime} \mathrm{S}$. Find true azimuth from "Tables."

A.T.S.	\ldots	\ldots	$3^{\mathrm{n}} 56^{\mathrm{m}} 11^{6}$ р.м.
Dec.	\ldots	\ldots	$0^{\circ} 3^{\prime}$ N.
Lat.	\ldots	\ldots	$56^{\circ} 20^{\prime}$ S.

In Burdwood's Tables, with lat. 56°, contrary name to dec. opposite $3^{\text {h }}$ 56^{m}, under dec. 0°, the Sun's azimuth is found to be $116^{\circ} 28^{\prime}$; this has to be corrected for 11° of time, 3^{\prime} of dec., and 20^{\prime} of lat.

Az. for $3^{\text {h }} 56^{\text {m }}$	$116^{\circ} 28^{\prime}$	Az. for 0° dec.	$116^{\circ} 28^{\prime}$	Az. for 56	lat.	$116^{\circ} 28^{\prime}$
, 4	11535	, 1 ,	1171	,, 57	,,	11644
Diff. in $4^{\text {m }}$	$\begin{array}{r} -53 \\ -2 \end{array}$	Diff. in 60^{\prime},	$\begin{array}{r} +33 \\ 3 \end{array}$	Diff. in 60^{\prime}	"	$\begin{array}{r} +16 \\ 20 \end{array}$
	4)10.6		6,0)9,9			6,0)32,0
, 11'	-2.6	, 3^{\prime},	$+16$, 20^{\prime}	"	$+5.3$

$$
\begin{array}{r}
\begin{array}{r}
\text { Azimuth from Tables } \\
\text { Correction }-2^{\prime} \cdot 6+1^{\prime} \cdot 6+5^{\prime} \cdot 3
\end{array} \\
\text { True azimuth S. }
\end{array}=\frac{\begin{array}{c}
116^{\circ} 28^{\prime} \\
+4 \cdot 3
\end{array}}{11632 \cdot 3 \mathrm{~W} .}
$$

Art. 80. Time Azimuth by Calculation.-Here the hour angle ZPS, the polar distance PS, and the co-latitude PZ are given to find the angle PZS, which is the azimuth of the same name as the latitude (Fig. 130).

This is a case of two sides and the included angle being given to find one of the angles at the base. From the general formulæ-

$$
\begin{aligned}
& \tan \frac{1}{2}(\mathrm{~A}+\mathrm{B})=\frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} \cdot \cot \frac{1}{2} \mathrm{C} \\
& \tan \frac{1}{2}(\mathrm{~A}-\mathrm{B})=\frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)} \cdot \cot \frac{1}{2} \mathrm{C}
\end{aligned}
$$

by substituting the Z and S in the figure for A and B, and the letters h, p, l^{\prime} for the H.A., polar distance, and co-latitude respectively, we have-

$$
\begin{aligned}
\tan \frac{1}{2}(\mathrm{Z}+\mathrm{S}) & =\frac{\cos \frac{1}{2}\left(p-l^{\prime}\right)}{\cos \frac{1}{2}\left(p+l^{\prime}\right)} \cot \frac{1}{2} h \\
\tan \frac{1}{2}(\mathrm{Z}-\mathrm{S}) & =\frac{\sin \frac{1}{2}\left(p-l^{\prime}\right)}{\sin \frac{1}{2}\left(p+l^{\prime}\right)} \cot \frac{1}{2} h
\end{aligned}
$$

therefore, $\tan \frac{1}{2}(\mathrm{Z}+\mathrm{S})=\sec \frac{1}{2}\left(p+l^{\prime}\right) \cdot \cos \frac{1}{2}\left(p-l^{\prime}\right) \cdot \cot \frac{1}{2} h$

$$
\text { and } \tan \frac{1}{2}(\mathrm{Z}-\mathrm{S})=\operatorname{cosec} \frac{1}{2}\left(p+l^{\prime}\right) \cdot \sin \frac{1}{2}\left(p-l^{\prime}\right) \cdot \cot \frac{1}{2} h
$$

whence the following form for computation:-

$\frac{1}{2}\left(p+l^{\prime}\right)$...	sec	\ldots	cosec
$\frac{1}{2}\left(p-l^{\prime}\right)$...	\cos	\ldots	sine
$\frac{1}{2} / 4$...	cot	\ldots	cot
$3(Z+S)$...	tan		
$\frac{1}{3}(Z-s)$	\tan

The sum of these angles is the greater of the two angles Z and S , and the difference is the lesser angle; and since the greater angle is opposite to the greater side, the azimuth Z is the greater angle when p is greater than l^{\prime}, and the smaller angle when p is less than l^{\prime}.

Note.-When $\frac{1}{2}\left(p+l^{\prime}\right)$ exceeds 90°, the sec is negative, and therefore $\tan \frac{1}{2}(\mathrm{Z}+\mathrm{S})$ is negative, in which case the supplement must be taken for $\frac{1}{2}(Z+S)$.

Example.-

The apparent time at ship being $3^{h} 56^{m} 11^{*}$ P.m., correct dec. $0^{\circ} 3^{\prime} \mathrm{N}$., and lat. $56^{\circ} 20^{\prime} \mathrm{S}$., find true azimuth by calculation.

This figure is drawn similarly to Fig. 131, except that as the hour angle is given instead of the altitude, we must estimate an arc of the equinoctial equal to the hour angle $3^{41} 56^{\text {m }}$ to determine the point through which to draw the hour circle of the object: knowing that QW represents 6 hours : where this hour circle cuts the parallel of declination is the position of X.

In triangle PZX -
Given $P=3^{14} 56^{\mathrm{m}} 11^{\prime \prime}=$ hour angle
$\mathrm{PZ}=33^{\circ} 40^{\prime}=$ co-lat.
$P X=90^{\circ} 3^{\prime}=$ pol. dist.
Req. $Z=$ azimuth.

$$
\begin{aligned}
& \tan \frac{1}{2}(Z+X)=\frac{\cos \frac{1}{2}(P X-P Z)}{\cos \frac{1}{2}(P X+P Z)} \cdot \cot \frac{P}{2} \\
& \tan \frac{1}{2}(Z-X)=\frac{\sin }{\sin } \frac{1}{2}(P X-P Z)(P X+P Z) \cdot \cot \frac{\mathbf{P}}{2} \\
& \mathrm{PZ}=33^{\circ} 40^{\prime} \\
& P X=903
\end{aligned}
$$

$$
\begin{aligned}
& P X+P Z=12343 \\
& \mathbf{P X}-\mathrm{PZ}=5623 \\
& \frac{\mathbf{P}}{2}=1^{n} 58^{m} 5 \cdot 5 \\
& \frac{1}{5}(P X+P Z)=61^{\circ} 51^{\prime} 30^{\prime \prime} \quad \text { sec }=10.326377 \quad \text { cosec }=10.054638 \\
& \frac{1}{2}(P X-P Z)=281130 \quad \cos =9.945159 \quad \sin =9.674331 \\
& \frac{1}{2}(Z+X)=\begin{array}{llll}
73 & 8 & 30 & \tan =10.518489
\end{array} \\
& \frac{1}{2}(Z-X)=\begin{array}{llllll}
43 & 24 & 30 & \ldots & \ldots & \ldots
\end{array} \tan =9 \cdot 975922 \\
& Z=116 \quad 33 \quad 0 \\
& \text { True azimuth S. } 116^{\circ} 33^{\prime} \mathrm{W} \text {. }
\end{aligned}
$$

Exercises.

Under the following conditions find from the Tables or by calculation the True Azimuth, and hence the deviation :-

1. A.T.S. $2^{\mathrm{D}} 48^{\text {an }}$ P.M. ; dec. $10^{\circ} 25^{\prime}$ S. ; lat. 40 N .
2. A.T.S. $3^{\mathrm{h}} 19^{\mathrm{m}}$ P.M.; dec. $14^{\circ} 33^{\prime} \mathrm{N}$. ; lat. 49° N.

3. September 1st, M.T.G. $31^{\mathrm{d}} 15^{\mathrm{h}} 54^{\mathrm{m}} 42^{\prime}$, in lat. $51^{\circ} 25^{\prime}$ S., long. $174^{\circ} 25^{\prime}$ E., the Sun's comp. bearing was W. $\frac{3}{4} \mathrm{~N}$. ; variation $30^{\circ} \mathrm{E}$.
4. August 12 , A.m. at ship, in lat. 0°, long. $12^{\circ} 50^{\prime} \mathrm{W}$.; when a chron. showed $8^{\text {h }} 16^{\mathrm{m}} 20^{\mathrm{s}}$ M.T.G., the Sun's comp. bearing was E. $\frac{3}{4}$ N. ; var. 20° $30^{\prime} \mathrm{W}$.
5. September 3rd, at $7^{\text {h }} 57^{\mathrm{m}}$ A.m. M.T.S., in lat. $13^{\circ} 29^{\prime}$ N., long. $60^{\circ} 30^{\prime}$ E., the Sun's comp. bearing was E. by N. $\frac{3}{4} \mathrm{~N}$. ; var. $1^{\circ} 10^{\prime} \mathrm{W}$.
6. September 23rd, about $3^{\text {h }} 30^{m}$ P.m. in lat. $49^{\circ} 40^{\prime}$ S., long. $135^{\circ} 24^{\prime}$ E.; when a chron. showed $6^{\mathrm{h}} 29^{\mathrm{m}} 37^{3}$, the Sun's comp. bearing was $\mathrm{N} .61^{\circ} 50^{\prime} \mathrm{W}$.; var. 0°.
7. When the M.T.G. was August $31^{\mathrm{d}} 21^{\mathrm{b}} 22^{\mathrm{m}} 377^{\prime \prime}$, in lat. $44^{\circ} 18^{\prime}$ N., long. $10^{\circ} 15^{\prime} \mathrm{W}$. ; the Sun's comp. bearing was S.E. $\frac{1}{2} \mathrm{E}$. ; var. $25^{\circ} \mathrm{W}$.
8. About $4^{\text {b }} 15^{\mathrm{m}}$ P.M. on September 23 rd, in lat. $0^{\circ} 15^{\prime}$ S., long. $150^{\circ} 15^{\prime}$ E.; when a chron. showed $6^{\mathrm{h}} 30^{\mathrm{m}}$ M.T.G., the Sun's comp. bearing was W.; var. $9^{\circ} \mathrm{E}$.
9. August 3rd, at $3^{h} 50^{\mathrm{m}}$ P.m. A.T.S., in lat. $25^{\circ} 16^{\prime}$ S., long. $92^{\circ} 30^{\prime}$ E., the Sun bore by comp. N. $60^{\circ} \frac{1}{2} \mathrm{~W} . ;$ var. $8^{\circ} 15^{\prime} \mathrm{W}$.
10. August 5th at $8^{\mathrm{h}} 40^{\mathrm{m}}$ A.M. M.T.S., in lat. $30^{\circ} 21^{\prime}$ N., long. $51^{\circ} 15^{\prime}$ E., the Sun's comp. bearing was S.E. by E. $\frac{3}{4}$ E.; var. 2° W.
11. August 9 th at $4^{\prime \prime} 25^{m}$ P.m. M.T.S., in lat. $37^{\circ} 27^{\prime}$ N., long. $20^{\circ} 14^{\prime}$ E., the Sun bore by comp. W. $\frac{1}{4}$ N.; var. $21^{\circ} \mathrm{W}$.
12. August 23 rd about $9^{\prime} 20^{\mathrm{m}}$ A.M., in lat. $52^{\circ} 49^{\prime} \mathrm{S}$., long. $53^{\circ} 17^{\prime} \mathrm{W}$.; when a chron. showed $1^{\mathrm{h}} 17^{\mathrm{m}} 12^{\prime \prime}$ G.M.I., the Sun bore by comp. N.E. by E.; var. $15^{\circ} 30^{\prime} \mathrm{E}$.
13. August 24th about $10^{\text {b }} 40^{\mathrm{m}}$ A.M., in lat. $64^{\circ} 56^{\prime} \mathrm{N} .$, long. $170^{\circ} \mathrm{W}$.; when a chron. correct for M.T.G. showed $10^{\mathrm{h}} 1^{\mathrm{m}} 30^{\mathrm{B}}$, the Sun's comp. bearing was S. $\frac{3}{4}$ W.; var. 24° E.

Ar'c. 81. Star Time Azimuths.-As before noticed, providing the declination of the star is less than 23°, the Tables may be used for obtaining the true bearing. The Hour Angle of the star must, however, be calculated instead of the A.T.S., and always found in the P.m. column on the right-hand side of the page, otherwise the method is precisely the same.

Example. -

September 10th at $1^{\mathrm{h}} 36^{\mathrm{mo}} 20^{\circ}$ A.m. mean time at ship, in lat. $38^{\circ} 20^{\prime} \mathrm{N}$., long. $63^{\circ} 30^{\prime} \mathrm{W}$., the star a Orionis bore by compass E. by S. $\frac{1}{2}$ S. Required the comp. error, and deviation, the variation being $9^{\circ} 15^{\prime} \mathrm{W}$.

M.T.S. Sept. $9^{\text {d }} 13^{\text {b }} 36^{\text {m }} 20^{\text { }}$	$63^{\circ} 30^{\prime}$	R.A.M.S. noon 1		$29^{\circ} 8$
Long. W. + 4140	4	Accel. for 16^{6}	2	$47 \cdot 6$
M.T.G. Sept. $9^{\text {d }} 175020$	6	$50^{\text {m }}$		8.2
			13	$25 \cdot 6$
	$4^{4} 14^{\text {m }}$	M.T.G.		20
Dec.* $7^{\circ} 23^{\prime} 34^{\prime \prime}$ N.				
Lat. 3820 N.		R.A.M.	49	$45 \cdot 6$
		R.A.*	50	$4 \cdot 9$
		E.H.A.	0	$19 \cdot 3$

In Burdwood's Tables, with lat. 38°, same name as declination, under 7° Dec., abreast 5^{h} on the right-hand side (always find H.A. of star on righthand side), the star's azimuth is entered as $93^{\circ} 43^{\prime}$, which requires correction for 19^{\prime} time, 24^{\prime} of Dec., and 20^{\prime} Lat.

From the figure.

Fia. 133.

In triangle PZX , where X is position of star ; given $\mathrm{PZ}=$ colat

PX $=$ Pol. dist.
$P=$ hour angle.
Req. $Z=$ azimuth.

$$
\begin{gathered}
\operatorname{Tan} \frac{1}{2}(Z+X)=\frac{\cos \frac{1}{2}(P X-P Z)}{\cos \frac{1}{2}(P X+P Z)} \cdot \cot \frac{P}{\overline{2}} \\
\operatorname{Tan} \frac{1}{2}(Z-X)=\frac{\sin \frac{1}{2}(P X-P Z)}{\sin \frac{1}{2}(P X+P Z)} \cdot \cot \frac{P}{2} \\
P=5^{h} 0^{m} 19^{\circ} \quad P X=82^{\circ} 36^{\prime} 30^{\prime \prime} \\
\\
\hline P Z=5140
\end{gathered}
$$

$$
\mathrm{PX}+\mathrm{PZ}=1341630
$$

$$
\mathrm{PX}-\mathrm{PZ}=3056 \quad 30
$$

$$
Z=\overline{93 \quad 25 \quad 53}
$$

Tr. Az. N. $93^{\circ} 25^{\prime} 53^{\prime \prime} \mathbf{E}$.

Exercises.

1. August 18 th, about $1^{\text {h }} 20^{\mathrm{m}}$ A.m., in lat. $37^{\circ} 50^{\circ}$ N., long. $50^{\circ} \mathrm{W}$., when a chron. showed $4^{\mathrm{t}} 37^{\mathrm{m}} 40^{\circ}$ M.T.G., the comp. bearing of a Arietis was E. Find the true azimuth from the "Tables;" and if the variation is $14^{\circ} 45^{\prime} \mathrm{W}$., what is the dev.?
2. September 14th, at $2^{\mathrm{b}} 19^{\mathrm{m}}$ A M. M.T.S., in lat. $52^{\circ} 49^{\prime}$ S., long. 21° 17^{\prime} W., the comp. bearing of Sirius was S.E. Find the true azimuth from the " 'l'ables ;" and if var. from chart is $33^{\circ} 15^{\prime}$ W., find the dev.
3. September 6th, at $0^{\text {h }} 15^{\mathrm{m}}$ A.m. M.T.S., in lat. $47^{\circ} 43^{\prime}$ N., long. 48° 32^{\prime} W., the comp. bearing of Altair was N. $44^{\circ} 30^{\prime} \mathrm{W}$. Find the true azimuth from the "Tables;" and the var. being $34^{\circ} 40^{\prime} \mathrm{W}$., find the dev.
4. August 4 th, at $11^{\text {b }} 25^{m}$ P.M. A.T.S., in lat. $38^{\circ} 49^{\prime}$ S., long. 56° W., when the comp. bearing of Vega was N.N.W., calculate the true azimuth, comp. error, and dev., the var. being $17^{\circ} 10^{\prime} \mathrm{E}$.
5. August 2nd, at $3^{\text {h }} 27^{\mathrm{m}}$ a.m. A.T.S., in lat. $40^{\circ} 50^{\prime}$ N., long. $50^{\circ} 40^{\prime} \mathrm{W}$.,

$$
\begin{aligned}
& \frac{\mathrm{P}}{2}=2^{\mathrm{n}} 30^{\mathrm{m}} 9 \cdot 5^{\mathrm{n}} \quad \text { Cot }=10 \cdot 114398 \\
& \text { Cot }=10 \cdot 114398 \\
& \frac{1}{2}(\mathrm{PX}+\mathrm{PZ})=67^{\circ} 8^{\prime} 15^{\prime \prime} \\
& \text { Sec }=10 \cdot 410586 \\
& \text { Cosec }=10.035533 \\
& \frac{1}{2}(P X-P Z)=15 \quad 28 \quad 15 \\
& \text { Cos }=9.983972 \\
& \operatorname{Sin}=9 \cdot 426102 \\
& \frac{1}{2}(Z+X)=7247 \quad 18 \quad \text { Tan }=\overline{10508956} \\
& \operatorname{Tan}=\overline{9 \cdot 576033}
\end{aligned}
$$

> Az. from Tables $93^{\circ} 43^{\prime}$ Correction - $2 \cdot 8-20+57=-17$ True Az. N. 9326 E. $180 \quad 0$ S. $86 \quad 34 \mathrm{E}$. Comp. , S. 73 7E. | 13 |
| :---: |

the comp. bearing of a Orionis was E. $\frac{1}{2}$ N. Using the "Tables," find the true azimuth, and comp. error ; and the var. being. $20^{\circ} \mathrm{W}$., find the dev.
6. August 3rd, about $8^{\frac{1}{2}} 20^{m}$ P.M., in lat. $57^{\circ} 19^{\prime}$ N., long. $3^{\circ} 14^{\prime}$ E., when a chron., whose error on A.T.G. was $14^{m} 28^{\circ}$ fast, showed $8^{\mathrm{h}} 44^{\mathrm{m}} 32^{\text {n }}$, the comp. bearing of Arcturus was $\mathrm{S} .65^{\circ} 30^{\prime} \mathrm{W}$. Find from "Tables" the true azimuth; and var. being $25^{\circ} \mathrm{W}$., what is the dev. ?
7. September 11th, at $1^{\text {h }} 45^{\mathrm{m}}$ A.m. M.T.S., in lat. $42^{\circ} 35^{\prime}$ S., long. 85° 37^{\prime} E., the comp. bearing of Aldebaran was S. 50° E. Find true azimuth, comp. error, and dev., the var. being $20^{\circ} \mathrm{W}$.
8. September 21st, when the M.T.G. by chron. was $20^{\mathrm{d}} 20^{\mathrm{h}} 38^{\mathrm{m}} 20^{\mathrm{s}}$, the comp. bearing of Fomalhant, in lat. $14^{\circ} 10^{\prime}$ N., long. $94^{\circ} 50^{\prime}$ W., was S.W. $\frac{1}{2} \mathrm{~S}$. Find true azimuth, comp. error, and dev., the var. from chart. being $8^{\circ} \mathrm{E}$.
9. September 21 st, at $4^{\mathrm{h}} 15^{\mathrm{m}}$ A.m. A.T.S., in lat. $21^{\circ} 17^{\prime}$ S., long. $87^{\circ} 40^{\prime}$ E., the comp. bearing of Pollux was N. $40^{\circ} 20^{\prime}$ E., var. $2^{\circ} 15^{\prime}$ W. Find true azimuth, comp. error, and dev.
10. September 21st, about $11^{\mathrm{h}} 30^{\mathrm{m}}$ F.M., in lat. $48^{\circ} 40^{\prime}$ S., long. $167^{\circ} 30^{\prime}$ W., when a chron., whose error on M.T.G. was $19^{\mathrm{m}} 24^{8}$ fast, indicated 11^{h} $17^{m} 24^{\text {g }}$, the comp. bearing of a^{2} Centauri was S. $\frac{1}{2}$ E. Find true azimuth, comp. error, and dev., the var. being $19^{\circ} 20^{\prime} \mathrm{E}$.
11. August 2nd, at $6^{\mathrm{h}} 40^{\mathrm{m}}$ P.m. A.T.S., in lat. $5^{\circ} 12^{\prime}$ S., long. $35^{\circ} \mathrm{W}$., the comp. bearing of Dubhe (α Urs. Maj.) was N. $8^{\circ} 30^{\prime}$ E.. The var. being 11° W., find true azimuth, comp. error, and dev.
12. August 1st, at $4^{\text {a }} 30^{m} 30^{\text {a }}$ A.M. M.T.S., in lat. $21^{\circ} 30^{\prime}$ S., long. 92° 45^{\prime} E., the comp. bearing of Antares was S.W. by W. $\frac{1}{4}$ W. Find true azimuth, and comp. error; also, if var. is $9^{\circ} \mathrm{W}$., what is the dev. $?$
13. If the declination of an object be greater than the latitude of the place, both being of the same name, find the greatest azinuth of the body, the time it will have its greatest azimuth, and its altitude.
14. In lat. of Greenwich $51^{\circ} 28^{\prime} 40^{\prime \prime}$ N., find greatest azimuth of a Urs. Maj. dec. $62^{\circ} 16^{\prime} 50^{\prime \prime} \mathrm{N}$.
15. Altitude of star when on the prime vertical is 25°, altitude when on the six o'clock hour circle 15°. Find its declination, and latitude of observer.

CHAPTER XVII.

LONGITUDE BY CHRONOMETER.

Art. 82. Longitude by Chronometer.-The time by chronometer when corrected for its original Error and accumulated Rate gives the time at Greenwich, whilst the time at ship can be calculated from an observed Altitude of a Celestial Object and the known Latitude. The difference converted into Arc is the Longitude.

The Longitude is \mathbf{E}. when Greenwich time is less than ship time, and W. when greater.

The following are required in the Formula :-
(a) The true Altitude.
(b) The Polar Distance.
(c) The Latitude.

The Polar Distance is measured from the elevated Pole, which

Fic. 134. is the N. Pole in N. Lat., and the S. Pole in S. Lat. It is therefore 90° - Dec. when the Dec. is of the same name as the Lat., and 90° + Dec. when of a different name.

Ant. 83. To find the Hour Angle of a Celestial Object, the Altitude, Latitude, and Polar Distance being known.-Let O be the object, then PO is its polar distance (p), ZO its zenith distance $\left(=90^{\circ}-a\right)$, and PZ the co-latitude ($=90^{\circ}-l$); the angle ZPO is the hour angle. Therefore, in the spherical triangle PZO, three sides are given to find an angle ZPO.

The general formula for finding an angle is-

$$
\cos A=\frac{\cos a-\cos b \cdot \cos c}{\sin b \cdot \sin c}
$$

which, applied to the figure, gives-

$$
\cos Z P O=\frac{\cos Z O-\cos P O \cdot \cos \mathrm{PZ}}{\sin P O \cdot \sin \mathrm{PZ}}
$$

Let the letters a, l, p, and h stand for altitude, latitude, polar distance, and hour angle respectively ;

$$
\text { then } \begin{aligned}
\cos h & =\frac{\cos \left(90^{\circ}-\alpha\right)-\cos p \cdot \cos (90-l)}{\sin p \cdot \sin \left(90^{\circ}-l\right)} \\
& =\frac{\sin a-\cos p \cdot \sin l}{\sin p \cdot \cos l}
\end{aligned}
$$

Subtracting each side of the equation from 1-

$$
\begin{aligned}
1-\cos l l & =1-\frac{\sin a-\cos p \cdot \sin l}{\sin p \cdot \cos l} \\
\text { i.e. } 2 \sin ^{2} \frac{l}{\check{2}} & =\frac{\sin p \cdot \cos l+\cos p \cdot \sin l-\sin a}{\sin p \cdot \cos l} \\
& =\frac{\sin (p+l)-\sin a}{\sin p \cdot \cos l} \\
& =\frac{2 \cos \frac{1}{2}(p+l+a) \cdot \sin \frac{1}{2}(p+l-a)}{\sin p \cdot \cos l}
\end{aligned}
$$

Now let $s=\frac{1}{2}(p+l+a)$, then $(s-a)=\frac{1}{2}(p+l-a)$;
therefore-

$$
\begin{aligned}
\sin ^{2} \frac{h}{2} & =\frac{\cos s \cdot \sin (s-a)}{\sin p \cdot \cos l} \\
& =\operatorname{cosec} p \cdot \sec l \cdot \cos s \cdot \sin (s-a) \\
\text { and } \sin \frac{h}{2} & =\sqrt{\operatorname{coscc} p \cdot \sec l \cdot \cos s \cdot \sin (s-a)}
\end{aligned}
$$

which is the formula used for computing the hour angle in the longitude by chronometer and other time problems.

Art. 84. To find the Time when the Sun or other Celestial Object is on the Prime Vertical.-Let O be an object on the prime vertical; then PO is its polar distance, PZ is the co-latitude, and the angle P is the hour angle.

PZO is a spherical triangle, right angled at Z, of which the circular parts are PZ and ZO , and

Fig. 135. the complements of PO and the angles P and O :

Taking complement of P as middle part, PZ and the complement of PO are adjacent parts:

$$
\begin{aligned}
\text { then } \sin (\mathrm{comp} . \text { of } \mathrm{P}) & =\tan \mathrm{PZ} \times \tan (\text { comp. of } \mathrm{PO}) \\
\text { or } \mathrm{cos} \mathrm{P} & =\tan \mathrm{PZ} \times \cot \mathrm{PO} \\
\text { that is, } \cos \mathrm{H} . \mathrm{A} . & =\cot \text { lat. } \times \tan \text { dec. }
\end{aligned}
$$

In the case of the Sun, the H.A. is the interval from apparent noon.

For any other object, add its R.A. to its H.A. west to find the R.A. of meridian, from which subtract the sun's R.A. to find the time.

Art. 85.-The following rules must be observed in Sun chronometers:-
(1) Find the correct G.M.T. by applying the error when last found, and accumulated rate, to the time shown by chronometer. As in otber problems, great care must be taken to make the time shown by the chronometer agree with the rough Greenwich time deduced from D.R. long. and ship time; both as regards the date and hours.
(2) Correct declination, equation of time, and altitude. Find polar distance ; and look at the beading of the equation of time column on page I., to see how it is to be applied.
(3) Add together true alt., lat., and pol. dist.; find the half sum, and from it subtract the alt.; this gives the chron. remainder. Add the secant lat., cosec pol. dist., cos half sum, and sin remainder, reject 10 's, and look out result in Table xxxi., Norie; this is the hour angle.

Note 1.-Should the pol. dist. exceed 90°, use sec dec. for cosec pol. dist.
Note 2.-The lat. used must be the lat. at observation; if not given, it must be deduced from the lat. at noon.
(4) If p.м. at ship, the hour angle is the apparent time at ship of the same date as given in question.

If a.m. at ship subtract the hour angle from 24^{h} and date the day before day in question for app. time at ship. To the A.T.S. apply equation of time for M.T.S.
(5) The difference between the M.T.S. and M.T.G. is the longitude in time, which must be expressed in arc, for long. at obs. named west when G.M.T. is best, and east when G.M.T. is least.

Examples. -

(1) August 8th, about $3^{\text {b }} 50^{m}$ P.M. at ship, in lat. $56^{\circ} 48^{\prime}$ N., long. D. R. 7° W.; when a chron. showed $4^{\mathrm{h}} 29^{\mathrm{m}} 34^{\mathrm{s}}$, the obs. alt. of the Sun's L.L. was $30^{\circ} 57^{\prime} 10^{\prime \prime}$; ind. cor., $-2^{\prime} 10^{\prime \prime}$; height of eye, 20 ft . Find the longitude, the chron. having been found $7^{\text {m }} 46^{\circ} \cdot 2$ fast of G.M.T. on July 18 th, and losing daily $2^{a} \%$.

Time by chron., Aug. $8^{\mathrm{d}} 4^{\mathrm{h}} 29^{\mathrm{m}} 34^{\mathrm{a}}$

$$
\begin{aligned}
& \text { M.T.G. } 8^{\text {d }} 42245 \quad \text { N.P.D. } 73 \quad 4237 \\
& \text { Cor. }-3 \quad 5 \cdot 5
\end{aligned}
$$

II.V. $42 \cdot 16$

$\overline{16864}$
$6,0) 18,5.504$
16864

$3^{\prime} 5^{\prime \prime} \cdot 5$

Fig. 136.
T.A. $31 \quad 458$

Lat. $5648 \quad 0$
P.D. 734237
2) $161 \quad 3535$

half sum	$80 \quad 4747$	$\cos =9 \cdot 203967$
remainder	494249	$\sin =9 \cdot 882423$
W.H.A.	$3^{\mathrm{b}} 50^{\mathrm{m}} 26^{\text {a }}$	I $=9 \cdot 365750$

A.T.S., Aug. $8^{d} 3^{\mathrm{h}} 50^{\mathrm{m}} 26^{\mathrm{a}}$

Eq. T. $\quad+5 \quad 32$
M.T.S. $8^{4} 3 \quad 55 \quad 58$
M.T.G. $\quad 8^{\mathrm{d}} 4 \quad 22 \quad 45$

Long. in time $\quad 26 \quad 47$ Long. $\quad 6^{\circ} 41^{\prime} 45^{\prime \prime} \mathrm{W}$.
Construction of Fig. 136.-Draw circle NESW representing rational horizon, and NZS meridian. Measure NP $=Z Q=\bar{a} 7^{\circ}$ lat.; set off dec. $=16$ to north, and draw EQW for equinoctial, and dd parallel of declination. With centre Z and radius $=$ zen. dist. $=59^{\circ}$ draw an are cutting $d d$ in X for position of sun, draw hour circle PXB, and vertical circle ZXA.

$$
\begin{array}{rlrl}
\mathrm{ZQ} & =\text { lat. } & \mathrm{PZ}=\text { co. lat. } \\
\mathrm{AX} & =\text { alt. } & \mathrm{ZX}=\text { zen. dist. } \\
\mathrm{BX} & =\text { dec. } & \mathrm{PX}=\text { pol. dist. } \\
\mathrm{ZPX} & =\text { Hour angle. }
\end{array}
$$

To find H.A. from figure.

In triangle PZX ; given $\mathrm{PZ}=$ co-lat., $\mathrm{PX}=$ pol. dist., $\mathrm{ZX}=$ zen. dist. Req. $P=H$ our angle .

$$
\operatorname{Cos} \frac{P}{2}=\sqrt{\frac{\sin s \cdot \sin (s-Z X)}{\sin P Z \cdot \sin 1^{\prime} X}}
$$

where $s=\frac{1}{2}(\mathrm{PZ}+\mathrm{ZX}+\mathrm{PX})$.

$\mathrm{ZX}=58^{\circ} 55^{\prime} \quad 2^{\prime \prime}$	
$\mathrm{PZ}=33120$	cosec $=10.261566$
$\mathrm{PX}=734237$	$\operatorname{cosec}=10.017794$
2)165 $49 \quad 39$	
$s=825449$	$\sin =9 \cdot 996670$
s- $\mathrm{ZX}=235947$	$\sin =9.609252$
	2)19.8805282
$\frac{\mathrm{P}}{2}=1^{\mathrm{h}} 55^{\mathrm{m}} 13^{\mathrm{a}}$	$\cos =9.942641$
2	$\cos =9.942641$
W.H.A. 35026	

(2) September 1st, about $9^{\mathrm{b}} 15^{\mathrm{m}}$ A.m., in lat. at noon $46^{\circ} 1^{\prime} 30^{\prime \prime}$ S., D.R. long. 27° E. ; when a chron. showed $7^{\mathrm{h}} 19^{\mathrm{m}} 43^{3}$, and had been found to be fast $3^{\mathrm{m}} 11^{s} 5$ on May 3rd, and slow $12^{\prime \prime}$ on June 27 th, the alt. of Sun's L.L. was $24^{\circ} 14^{\prime} 40^{\prime \prime}$; ind. cor., $-3^{\prime} 15^{\prime \prime}$; eye, 29 ft . Find long. at sights; and if run from obs. to noon was $\mathrm{S} .70^{\circ} \mathrm{E} .30$ miles, find long. at noon.

M.T.G. Aug. $31^{\mathrm{d}} 192358$

$$
\text { Mid. Lat. } 45^{\circ} 56^{\prime} 21^{\prime \prime} \quad \mathrm{sec}=10 \cdot 157752
$$

S. 70° E., $30^{\prime}=\operatorname{dep} .28 \cdot 2 \quad \log =1 \cdot 450249$
D. long. $40 \cdot 55 \quad \log =1 \cdot 608001$
Obs. alt. $24^{\circ} 14^{\prime} 40^{\prime \prime}$
I.C. -315
241125
Dip. $\quad \mathbf{- 5} 16$
$24 \quad 6 \quad 9$
S.D. $\quad+15 \quad 53$
$24 \quad 22 \quad 2$
-1 59
T.A. $2420 \quad 3$
Lat. $45 \quad 5112$
P.D. $98 \quad 3548$

$$
\mathrm{sec}=10 \cdot 157080
$$

$$
\operatorname{cosec}=10 \cdot 004907
$$

2) $168 \quad 47 \quad 3$
half sum $8423 \quad 31.5 \quad \cos =8.989985$
remainder $\begin{array}{lllll}60 & 3 & 28 \cdot 5 & \sin =9 \cdot 937784\end{array}$
E.H.A. $\quad 2^{\mathrm{h}} 44^{\mathrm{m}} 13^{\mathrm{e}}$ XXXI. $=9 \cdot 089756$
24
A.T.S. Aug. $31^{\mathrm{d}} 21^{\mathrm{h}} 15^{\mathrm{m}} 47^{\mathrm{s}}$
Eq. T'.

	+13	
21	16	0
19	23	58
1	52	2
60		

4)112 2
Long. at obs. $\quad 28^{\circ} \quad 0^{\prime} 30^{\prime \prime} \mathrm{E}$.
D. long. 4033 E .
Long. at noon 28413 E .

Fig. 137.

To find H.A. from figure.
In triangle PZX , given $\mathrm{PZ}=$ co-lat., $\mathrm{PX}=$ pol. dist., $\mathrm{ZX}=$ zen. dist. Req. $\mathbf{P}=$ Hour angle.

$$
\operatorname{Cos} \frac{\mathrm{P}}{2}=\sqrt{\frac{\sin s \cdot \sin (s-Z \mathrm{Z})}{\sin \mathrm{PZ} \cdot \sin \mathrm{PX}}}
$$

where $s=\frac{1}{2}(\mathrm{PZ}+\mathrm{ZX}+\mathrm{PX})$.
$\mathrm{ZX}=65^{\circ} 39^{\prime} 67^{\prime \prime}$
$\mathrm{P}^{\prime} \mathrm{Z}=44 \quad 8 \quad 48 \quad \operatorname{cosec}=10 \cdot 157080$
$\mathrm{PX}=983548 \quad \operatorname{cosec}=10 \cdot 004907$
2) $208 \quad 2433$

E.H.A. 24113

In Fig. 137, drawn as before explained.

$$
\begin{array}{rlrl}
\mathrm{ZQ}=\text { lat. } & \mathrm{PZ}=\text { co. lat. } \\
\mathrm{AX} & =\text { alt. } & \mathrm{ZX}=\text { zen. dist. } \\
\mathrm{BX} & =\text { dec. } & \mathrm{PX}=\text { pol. dist. } \\
& \mathrm{ZPX} & =\text { Hour angle }
\end{array}
$$

Exercises.

1. August 4th, about $8^{k} 40^{m}$ A.m., in lat. at noon $38^{\circ} 10^{\prime}$ S., D.R. long. 92° E. ; when a chron. showed $1^{\mathrm{n}} 15^{\mathrm{m}} 5^{\mathrm{A}}$, which had been found slow $1^{\mathrm{b}} 17^{\mathrm{m}} 9^{\circ}$ on June 20th for G.M. noon, and slow $1^{\mathrm{b}} 18^{\mathrm{m}} 57^{2}$ on July 5th, the obs. alt. of the Sun's L.L. was $16^{\circ} 42^{\prime} 10^{\prime \prime}$; ind. cor., $+2^{\prime} 15^{\prime \prime}$; eye, 29 ft . Find long. at obs. ; and if run since obs. was N. 24°, E. 35 miles, find long. at noon.
2. Angust 19th, about $4^{\text {h }} 30^{\mathrm{m}}$ P. M., in lat. at noon $42^{\circ} 3^{\prime}$ N., D.R. long. 70° W.; when a chron. showed $8^{\text {n }} 58^{m} 5^{\text {s }}$, which had been found slow $15^{\text {m }} 8^{\circ} \cdot 3$ on June 27th for G.M. noon, and slow $14^{\mathrm{m}} 22^{\circ} \cdot 7$ on July 12th, the obs. alt. of the Sun's U.L. was $26^{\circ} 32^{\prime} 40^{\prime \prime}$; ind. cor., $-2^{\prime} 7^{\prime \prime}$; eye, 34 ft ., run since noon, S. 32° E. 46 miles. Find long. at obs. and noon.
3. August 31st, about $9^{b} 20^{m}$ A.m., in lat. at noon $52^{\circ} 36^{\prime}$ N., D.R. long. $3^{\circ} 15^{\prime} \mathrm{W}$.; when a chron. showed $9^{\mathrm{b}} 47^{\mathrm{m}} 53^{\circ}$, which had been found fast $12^{\mathrm{m}} 18^{\circ} 8$ on August 1st for G.M. noon, and fast $12^{\mathrm{m}} 14^{\text {a }}$ on August 7th, the obs. alt. of the Sun's U.L. was $36^{\circ} 26^{\prime} 10^{\prime \prime}$; ind. cor., $-26^{\prime \prime}$; eye, 41 ft ., run since obs. N. 64° W. 25 miles. Find long. at obs. and noon.
4. September 1st, about $8^{\text {h }} 40^{m}$ A. T., in lat. at noon $44^{\circ} 42^{\prime}$ N., long. 11° W. ; when a chron. showed $9^{\text {b }} 34^{\mathrm{m}} 3$, , which was slow 4^{\prime} on April 17 th for G.M. noon, and on June 6th was $4^{\text {m }} 8^{8}$ fast; run since sights, N.W. $\frac{1}{2}$ N. 31 miles, the obs. alt. of Sun's U.L. was $34^{\circ} 21^{\prime} 30^{\prime \prime}$; ind. cor., $+4^{\prime} 15^{\prime \prime}$; eye, 23 ft . Find long. at sts. and noon.
5. September 23rd, about $3^{\text {b }} 38^{\mathrm{m}}$ P.m., lat. at noon $49^{\circ} 40^{\prime}$ S., long. 135° E. ; ship becalmed ; obs. alt. of Sun's U.L. $22^{\circ} 18^{\prime} 50^{\prime \prime}$; eye, 20 ft . ; time by chron., $6^{\mathrm{b}} 27^{\mathrm{m}} 28^{\text {n }}$, which was slow for G.M. noon on July 10 th $2^{\mathrm{m}} 10^{\text {t }}$, and has since kept mean time; course and distance since obs., nil. Find long. at obs. and noon.
6. September 30th, about $3^{\mathrm{b}} 30^{17}$ P.m., lat. at noon $49^{\circ} 30^{\prime} 12^{\prime \prime}$ S., long. 180° E., the obs. alt. of Sun's L.L. was $25^{\circ} 3^{\prime} 20^{\prime \prime}$; ind. cor., $+3^{\prime} 14^{\prime \prime}$; eye, 37 ft . ; time by chron., $3^{\mathrm{h}} 54^{\mathrm{m}} 7^{6}$, which had been found $8^{\mathrm{m}} 16^{\mathrm{a}} 4$ fast on May 6th, and fast $20^{\mathrm{m}} 24^{\mathrm{s}} \cdot 4$ on July 15th for G.M. noon ; run since noon, S. $73^{\circ} \frac{1}{2}$ W. 24 miles. Find long. at obs. and noon.

Artr. 86.-Rules for Longitude by Star Chronometers:-
(1) Find G.M.T. as before.
(2) Take out star's R.A. and Dec., find pol. dist., and correct altitude, and R.A.M.S. (sidercal time).
(3) Find H.A. as before.
(4) If H.A. is west, add H.A. to R.A. of star for R.A.M. If H.A. is east, subtract H.A. from R.A. of star for R.A.M. From the R.A.M. subtract the R.A.M.S., this gives the M.T.S., which is of same date as question if P.M. at ship, and the day before date of question if A.M. at ship.
(5) Finish as before for longitude.

Example.-August 1st, about $2^{\mathrm{b}} 39^{\mathrm{m}}$ A.m. at ship, in lat. $30^{\circ} 26^{\prime}$ N., long. 133° E. by D.R. ; the obs. alt. of Vega was $33^{\circ} 38^{\prime} 50^{\prime \prime}$; time by chron., $4^{\mathrm{h}} 41^{\mathrm{m}} 58^{\prime \prime}$, which was slow $1^{\mathrm{b}} 2^{\mathrm{ma}} 53^{\mathrm{n}}$ of G.M. noon on June 26 th, and losing $0^{\prime} \cdot 4$ daily ; ind. cor., $-2^{\prime} 29^{\prime \prime}$; cye, 23 ft . Find the long. Approx. ship time July $31^{\mathrm{d}} 14^{\mathrm{h}} 39^{\mathrm{m}}$

Elapsed time $35 \cdot 2$
Long. E. -852
," Greenwich time July $31^{\text {d }} 547$
14.08

Time by chron., July $31^{\text {d }} 4^{\text {n }} 41^{m} 58^{\circ}$

sluw +1
31^{d}

Acc. loss +14
M.T.G. $31^{4} 5 \quad 45 \quad 5$

R A. Vega $18^{\mathrm{h}} 33^{\mathrm{m}} 45^{*} 4$
R.A.M.S. $8^{\text {h }} 36^{\mathrm{m}} 44^{\mathrm{e}} \cdot 2$ for Aug. 1 st.

Cor. $-2 \quad 59.9$
$\begin{array}{lll}8 \quad 23 & 44 \cdot 3\end{array}$
Dec. $38^{\circ} 41^{\prime} 45^{\prime \prime} \mathrm{N}$.
90
N.P.D. 511815

In Fig. 138, constructed as before.

To find H.A. from figure.
In triangle PZX, X is object, $\mathrm{PZ}=$ co-lat., $\mathrm{PX}=$ pol. dist., $\mathrm{ZX}=$ zen. dist. Req. $\mathbf{P}^{\prime}=$ Hour angle.

$$
\operatorname{Cos} \frac{\mathrm{P}}{2}=\sqrt{\frac{\sin s \cdot \sin (8-Z X)}{\sin \mathrm{PZ} \cdot \sin \mathrm{P} X^{-}}}
$$

where $s=\frac{1}{2}(Z X+P Z+Z X)$.

$\mathrm{ZX}=56^{\circ} 29^{\prime} 47^{\prime \prime}$	
$\mathrm{PZ}=59340$	cosec $=10.064382$
$\mathrm{PX}=511815$	cosee $=10 \cdot 107 \mathrm{C41}$
2)167 $22 \quad 2$	
$s=834111$	$\sin =9 \cdot 997355$
$s-Z X=271114$	$\sin =9.659820$
	2)19.829198
$\frac{\mathrm{P}}{2}=2^{\mathrm{n}} 19^{\mathrm{m}} 4^{\text {a }}$	$\cos =9.914599$
W.H.A.* 4388	

Exercises.

1. September 10th, about $4^{\text {h }} 30^{m}$ A.m., in lat. $35^{\circ} 47^{\prime} 30^{\prime \prime}$ S., long. D.R. $111^{\circ} \mathrm{E}$. ; the obs. alt. of Achernar west of meridian was $59^{\circ} 28^{\prime} 40^{\prime \prime}$; ind. cor., $+2^{\prime} 12^{\prime \prime}$; eye, 35 ft . ; when a chron. showed $9^{\mathrm{h}} 7^{\mathrm{m}} 12^{\text {n }}$, which had been found fast $1^{\text {m }} 3^{3}$ on May 12th of G.M. noon, and on August 20th was slow 40°. Find the long.
2. August 24th, about $4^{\text {h }} 40^{\text {m }}$ a.m., in lat. $10^{\circ} 14^{\prime} 20^{\prime \prime}$ N., long. D.R. 75° W.; the obs. alt. of Canopus east of the meridian was $12^{\circ} 15^{\prime} 40^{\prime \prime}$; ind. cor., $-3^{\prime} 13^{\prime \prime}$; height of eye, 48 ft .; time shown by chron., $9^{\text { }} 21^{\text {mi }} 52^{\prime \prime}$, which had been found slow of G.M. noon $17^{\mathrm{m}} 52^{1.7}$ on July 13th, and on July 31st was slow $17^{\mathrm{m}} 4^{3 \cdot} 1$. Find the long.
3. August 1st, P.M. at ship, in lat. $24^{\circ} 19^{\prime}$ S., long. by acct. $14^{\circ} 30^{\prime}$ E.; when a chron. showed $8^{\mathrm{n}} 15^{\mathrm{m}} 4^{\prime}$, which had been found fast $28^{\mathrm{m}} 19^{\prime}$ on June 24th, and losing $1^{\prime} \cdot 2$ daily; the obs. alt. of Altair east of the meridian was $42^{\circ} 5^{\prime} 30^{\prime \prime}$; ind. cor., $+3^{\prime} 54^{\prime \prime}$; height of eye, 42 ft . Required the long.
4. September 11th, P.M. at ship, in lat. equator, long. of Greenwich; the obs. alt. of Vega west of the meridian was $26^{\circ} 18^{\prime}$; ind. cor., $-1^{\prime} 55^{\prime \prime}$; eye, 31 ft . ; when a chron. showed $11^{\mathrm{h}} 10^{\mathrm{m}} 54^{\circ}$, which had been found $12^{\mathrm{m}} 29^{\circ}$ fast of G.M. noon on July 15th, and on August 9th was $13^{\text {m }} 29^{\prime}$ fast. Find the long.
5. September 21st, about $1^{\text {b }} 30^{\mathrm{m}}$ A.m., in lat. $20^{\circ} 30^{\prime}$ N., long. by acct. $31^{\circ} \mathrm{W}$.; the obs. alt. of Capella east of meridian was $37^{\circ} 14^{\prime} 30^{\prime \prime}$; ind. cor., $+3^{\prime} 49^{\prime \prime}$; eye, 19 ft ; when a chron. showed $3^{\text {b }} 21^{\text {m }} 26^{\text { }}$, which had been found 3° fast of G.M. noon on August 7th, and on August 31st was $3^{\mathrm{m}} 21^{\text {² }}$ slow. Find the long.
6. August 24th, about $1^{\text {L }} 15^{\text {m }}$ A.M., in lat. $18^{\circ} 12^{\prime} 30^{\prime \prime}$ N., long. D.R. 91° E. ; when a chron. showed $9^{\text {h }} 24^{\mathrm{m}} 17^{\prime}$, which had been found fast $11^{\text {mim }} 43^{\circ} .8$ on June 4th for G.M. noon, and on July 12 th was fast $12^{\mathrm{m}} 18^{\circ}$; the obs. alt. of Rigel east of meridian was $27^{\circ} 26^{\prime}$; ind. cor., $-3^{\prime} 5^{\prime \prime}$; eye, 46 ft . Find the long.
7. September 8 tll, about $5^{\text {h }}$ A.m., in lat. $43^{\circ} 24^{\prime}$ S., long. by acet. $110^{\circ} 45^{\prime}$ E.; when a chron. showed $9^{\text {L }} 41^{\text {II }} 51^{\prime}$, which had been found fast of G.M. noon 28.8 on August 23rd, and on August 31st showed G.M.T.; the obs. alt. of Procyon was $22^{\circ} 48^{\prime} 50^{\prime \prime}$; ind. cor., $+54^{\prime \prime}$; height of eye, 30 ft . Find the long.
8. August 30th, about 10^{h} P.M., in lat. $35^{\circ} 15^{\prime}$ N., long. D.R. $169^{\circ} 30^{\prime} \mathrm{W}$.; when a chron. showed $9^{\text {L }} 12^{\text {m }} 34^{\text {s }}$, which had been found slow of G.M. noon on June 14th $6^{m} 54^{1 \cdot 1}$, and on July 25th was correct; the obs. alt. of Fomalhaut was $15^{\circ} 54^{\prime} 10^{\prime \prime}$; ind. cor., $-1^{\prime} 26^{\prime \prime}$; eye, 25 ft . Find the long.
9. September 2nd, about $10^{\mathrm{h}} 15^{\mathrm{m}}$ f.m., in lat. $15^{\circ} 14^{\prime}$ S., long. D.R. 50° E.; when a chron. showed $6^{\mathrm{h}} 50^{\mathrm{m}} 41^{\circ}$, which had been found correct for G.M.
noon on July 4th, and on August 18th was slow $3^{m} 9^{2}$; the obs. alt. of Antares was $25^{\circ} 21^{\prime}$; no ind. cor.; eye, 27 ft . Find the long.
10. August 14 th, about 2^{h} A.M., in lat. $40^{\circ} 27^{\prime} 15^{\prime \prime}$ N., long. by acct. 180° W.; the obs. alt. of Aldebaran was $22^{\circ} 8^{\prime}$; ind. cor., $-22^{\prime \prime}$; eye, 38 ft .; when a chron. showed $2^{\mathrm{h}} 7^{\mathrm{m}} 58^{\mathrm{n}}$, which had been found slow $2^{\mathrm{m}} 33^{\mathrm{a}} .6$ on June 25th, and on Aug. 4th was $4^{\mathrm{m}} 10^{\text {s }}$ fast. Find the long.
11. August 28th, p.a. at ship, in lat. by mer. alt. of a Ophiuchi in the art. horizon on shore, $15^{\circ} 55^{\prime} \mathrm{S}$., long. by cross-bearings $4^{\circ} 45^{\prime} \mathrm{W}$.; the obs. alt. of Arcturus west of the meridian was 35°; ind. cor., - 4^{\prime}; height of eye, 15 ft . ; time by chron., $5^{\mathrm{h}} 58^{\mathrm{m}} 9^{\text {s }}$, which had been found slow of G.M. noon $1^{\mathrm{h}} 10^{\mathrm{m}} 15^{\mathrm{a}}$ on June 29th, and slow $1^{\mathrm{h}} 3^{\mathrm{m}} 33^{\mathrm{n}}$ on Aug. 8th. Find the long.
12. September 28th, about 6 p.m., in lat. $50^{\circ} 17^{\prime} \mathrm{N}$. by mer. alt. of Vega, long. D.R. 161° E. ; the obs. alt. of a Cygni was $68^{\circ} 30^{\prime}$; eye, 22 ft .; time by chron., $7^{4} 25^{5 \mathrm{~m}} 21^{\prime} \cdot 2$, which was slow $2^{\prime \prime} 4$ of G.M. noon on June 29th, and fast $25^{1.6}$ on August 3rd. Find the long.

Art. 87. Longitude and Azimuth.-As the data used in the computation of Apparent Time at Ship and the Azimuth are the same, and the Formulæ very similar, it is most convenient to find the Azimuth at the same time as the longitude by chronometer.

Example.-

Using data as in star chronometer example (Fig. 138), the logs may be conveniently arranged for chron. az. as follows :-

True alt. $33^{\circ} 30^{\prime} 13^{\prime \prime}$		sec $=10.078911$
Lat. 30260	sec $=10.064382$	sec $=10.064382$
P.D. 511815	cosec $=10 \cdot 107641$	
2)115 1428		
$57 \quad 3714$	$\cos =9.728778$	$\cos =9.728778$
Chron. remdr. $24 \quad 71$	$\sin =9 \cdot 611299$	
Az. remdr. 618189		$\cos =9.997355$
W.H.A. $\quad 4^{\mathrm{h}} 38^{\mathrm{m}} 8^{\text {a }}$	$\mathrm{XXXI} .=9.512100$	
		2)19:869426
	$\begin{gathered} 59^{\circ} 21^{\prime} 52^{\prime \prime} \\ 2 \end{gathered}$	$\sin =9 \cdot 934713$

True az. S. 1184344 W.

Exercises.

1. August 31st, about 5^{h} P.M., at ship in lat. at noon $0^{\circ} 21^{\prime}$ S., long. D.R $136^{\circ} \mathrm{W}$. ; the obs. alt. of the Sun's L.L. was $13^{\circ} 13^{\prime} 40^{\prime \prime}$; ind. cor., $+7^{\prime} 21^{\prime \prime}$; eye, 17 ft . ; bearing by compass W. $\frac{1}{4}$ N.; time shown by chron., $2^{\mathrm{h}} 5^{\mathrm{m}} \mathbf{4 4}^{\text {² }}$, which was slow $25^{\mathrm{n}} 19^{\prime \prime}$ on April 12th for G.M. noon, and on July 1st was 11^{m} 65 5^{s} slow. Find the long. at sights and noon, if the run since noon was N.E., 58 miles. Also find true azinuth, comp. error, and dev., the var. being $5^{\circ} 40^{\prime} \mathrm{E}$.
2. October 1st, about $7^{\mathrm{h}} 15^{\mathrm{m}}$ A.m. at ship, in lat. $39^{\circ} 30^{\prime}$ S., long. by acct. $16^{\circ} \mathrm{W}$. ; the obs. alt. of the Sun's L.L. was $16^{\circ} 40^{\prime} 30^{\prime \prime}$; ind. cor., $+6^{\prime} 13^{\prime \prime}$;
eye, 20 ft . ; bearing by compass S.E. by E. $\frac{1}{4}$ E.; time by chron., $8^{\mathrm{h}} 22^{\mathrm{m}} 40^{n} \cdot 4$, which had been found fast $1^{\text {m }} 41^{\bullet \cdot} 1$ for G.M. noon on March 30 th, and on June 1st was $2^{m} 25^{\prime} \cdot 2$ fast. Find the long., true bearing, and dev., the var. being $12^{\circ} 15^{\prime} \mathrm{W}$.
3. September 1st, about $3^{\mathrm{h}} 30^{\mathrm{m}}$ P.m. at ship, in lat. at noon 51° S., long. D.R. $175^{\circ} \mathrm{E}$. ; the obs. alt. of the Sun's L.L. was $14^{\circ} 52^{\prime} 20^{\prime \prime}$; ind. cor., - 7^{\prime} $10^{\prime \prime}$; eye, 15 ft ; bearing by compass $\mathrm{N} .50^{\circ} 30^{\prime} \mathrm{W}$. ; time shown by chron., $3^{\mathrm{b}} 44^{\mathrm{m}} 40^{\circ}$, which had been found $13^{\mathrm{m}} 0^{\mathrm{n}} \cdot 3$ slow for G.M. noon on February 15 th , and on August 1st was $10^{m 0} 30^{4}$ slow. Find long. at sights and noon, the run since noon being S.W. by W. $\frac{1}{2}$ W. 53 miles. Also find true bearing, comp. error, and dev., the var. being $16^{\circ} 10^{\prime} \mathrm{E}$.
4. September 23rd, about $7^{1 \mathbf{b}}$ A.M. at ship, in lat. at noon $32^{\circ} \mathrm{S}$., long. D.R. 55° E. ; the obs. alt. of the Sun's L.L. was $10^{\circ} 36^{\prime}$; ind. cor., $-2^{\prime} 10^{\prime \prime}$; eye, $19 \mathrm{ft}$. ; bearing by compass East; time shown by chron., $3^{\text {b }} 0^{\text {m }} 35^{\text {² }}$, which had been found $5^{\mathrm{m}} 45^{1.5}$ slow for G.M. noon on March 31st, and or June 14th was slow $4^{\mathrm{m}} 45^{\mathrm{s} \cdot 5}$; run since sights, N. $59^{\circ} \mathrm{W} .58$ miles. Find long. at sights and noon. The var. from chart being $15^{\circ} 40^{\prime} \mathrm{W}$., find true bearing, comp. error, and dev.
5. September 1st, about $1^{\text {h }}$ P.M. at ship, in lat. $11^{\circ} 34^{\prime} 20^{\prime \prime}$ S., long. D.R. 144° E. ; the obs. alt. of the Sun's L.L. was $65^{\circ} 2^{\prime}$; ind. cor., $-7^{\prime} 17^{\prime \prime}$; eye, 27 ft. ; bearing by compass N. $40^{\circ} \mathrm{W}$. ; time shown by chron., $2^{\text {h }} 32^{\mathrm{m}} \mathbf{4 8}^{8}$, which had been found slow $1^{\mathrm{h}} 0^{\mathrm{m}} 10^{\mathrm{s}}$ for G.M. noon on April 1 st, and on May 1st was $58^{\mathrm{m}} 40^{\circ}$ slow. Find the long. and the var. being $5^{\circ} 45^{\prime} \mathrm{E}$., find comp. error and dev.
6. September 22 nd , about $8^{\mathrm{b}} 50^{\mathrm{m}}$ A.m., when the chron. showed $0^{\mathrm{b}} 20^{\mathrm{m}} 32$; the obs. alt. of the Sun's U.L. was $30^{\prime \prime} 59^{\prime} 30^{\prime \prime}$; ind. cor., $2^{\prime} 5^{\prime \prime}$ off the are ; height of eye, 30 ft . ; bearing by compass S.E. $\frac{1}{4} \mathrm{E}$. ; var., $11^{\circ} 30^{\prime} \mathrm{W}$. ; lat. at obs., $42^{\circ} 16^{\prime} \mathrm{N}$. ; long. by acct., $70^{\circ} 40^{\prime} \mathrm{W}$.; on June 16 th the chron. was slow $1^{\text {b }} 14^{\text {m }} 30^{\text {a }}$ for G.M. noon, and on August 5th it was $1^{\text {b }} 11^{\text {m }} 8^{\circ}$ slow. Required long., true azimuth, and dev.
7. September 23rd, about $1^{\mathrm{b}} 45^{\mathrm{m}}$ P.M., lat. at noon, $40^{\circ} 18^{\prime} \mathrm{S}$.; the obs. alt. of the Sun's L.L. was $42^{\circ} 55^{\prime} 40^{\prime \prime}$; eye, 7 ft ; long by acct., 148° E.; time by chron., $3^{\mathrm{L}} 53^{\mathrm{m}} 29^{\text {, }}$, which had been found fast $16^{\mathrm{m}} 20^{\circ}$ for G.M. noon ou May 4th, and on August 2nd was $10^{\mathrm{m}} 47^{\circ}$ fast ; run from noon to obs., W.N.W. 21 miles; the sun's comp. bearing was N.W., and the var. $10^{\circ} 45^{\prime}$ E. Find the long., true bearing, and dev. for the direction of the ship's head.
8. Angust 5th, about $2^{\text {n }} 30^{\text {m }}$ P.M., in lat. at noon $30^{\circ} 4^{\prime} 45^{\prime \prime}$ S., long. by acct. $94^{\circ} \mathrm{E}$. ; the obs. alt. of the Sun's U.L. was $31^{\circ} 32^{\prime}$; ind. cor., $-4^{\prime} 44^{\prime \prime}$; height of eye, $19 \mathrm{ft} . ;$ bearing by compass, N.W. $\frac{1}{2}$ N.; the chron. showed $8^{\mathrm{b}} 19^{\mathrm{m}} 41^{\mathrm{s}}$, and had been found to be fast of G.M.T. on May 23rd $7^{\mathrm{m}} 33^{3}$, and losing daily $2 \frac{1}{4}^{\circ}$. Find the long. at sights and noon; and if the var. from chart was $14^{\circ} 20^{\prime}$ W., find true azimuth and dev. for the direction of the ship's head. Run since noon, S. 40° E. 30 miles.
9. September 1st, about $4^{\text {b }}$ P.M., in lat. $2^{\circ} 10^{\prime}$ N., long. D.R. $55^{\circ} 45^{\prime}$ E.; the chron. showed $10^{15} 57^{\text {² }} 5^{\prime \prime}$; the obs. alt. of the Sun's U.L. was $29^{\circ} 11^{\prime} 40^{\prime \prime}$; ind. cor., $-50^{\prime \prime}$; eye, 22 ft . ; bearing by compass N. $88^{\circ} 30^{\prime} \mathrm{W}$.; on March 24th the chron. was slow of G.M.T. $56^{\mathrm{m}} 34^{4}$, and on May 4th it was slow $1^{\mathrm{s}} 3^{\mathrm{m}} 27^{\text {. }}$. Find the long., true azimath, and dev., the var. being $4^{\circ} 15^{\prime} \mathrm{W}$.
10. September 1st, about $4^{\mathrm{b}} 45^{\mathrm{m}}$ P.M., in lat. at noon $0^{\circ} 36^{\prime}$ N.; long. D.R. $93^{\circ} \mathrm{W}$. ; the obs. alt. of the Sun's L.L. was $18^{\circ} 3^{\prime}$; height of eye, 32 ft . ; ind. cor., - $3^{\prime} 27^{\prime \prime}$; bearing by compass S. $87^{\circ} 15^{\prime}$ W.; the chron. showed $10^{\mathrm{L}} 57^{\mathrm{m}}$ 27°, and had been found correct for M.T.G. on June 30th, and slow $4^{\mathrm{m}} 50^{\circ}$ on July 27 th ; run from noon to obs., S. $35^{\circ} \mathrm{W} .44$ miles. Find the long. at sighis and noon; also if the var. is $2^{\circ} 30^{\prime}$ E., find true azimuth and dev.
11. August 20 th, about $8^{\text {b }} 20^{\text {m }}$ A.m., in lat. at noon $12^{\circ} 31^{\prime}$ S., long. by acct. $168^{\circ} \mathrm{W}$., when a chron. showed $7^{\mathrm{L}} 19^{\mathrm{m}} 19^{\circ}$, which had been found $18^{{ }^{\prime \prime} 1} 19^{\prime \prime}$ slow for G.M. noon on June 8th, and gaining daily ' 9 '; the obs. alt. of the Sun's L.L. was $29^{\circ} 46^{\prime} 10^{\prime \prime}$; ind. ccr., $-2^{\prime} 22^{\prime \prime}$; eye, 45 ft .; run since obs.,
S. 62° W. 34 miles ; Sun's comp. bearing was N. $68^{\circ} 30^{\prime}$ E.; var., $9^{\circ} 15^{\prime}$ E. Find long. at obs. and noon, true azimuth, and dev.
12. September 23rd P.M., in lat. at noon $8^{\circ} 44^{\prime}$ N., long. by acct. $174^{\circ} \mathrm{W}$.; the obs. alt. of the Sun's U.L. was $53^{\circ} 29^{\prime} 20^{\prime \prime}$; ind. cor., $-3^{\prime} 19^{\prime \prime}$; eye, 41 ft ; bearing by compass, W. by S. $\frac{3}{4} \mathrm{~S}$.; var., $8^{\circ} 40^{\prime} \mathrm{E}$. ; time by chron., $1^{\mathrm{h}} 47^{\mathrm{ma}} 27^{\mathrm{s}}$, which had been found $1^{\text {m }} 58^{\circ}$ slow for G.M. noon on August 18th, and losing daily $1^{\bullet} \cdot 1$; rum from noon to obs., N. $28^{\circ} \mathrm{E} .26$ miles. Find long. at sights and noon, true azimuth, and dev.

CHAPTER XVIII.

SUMNER'S METHOD BY PROJECTION.

Art. 88.-At any given moment the Sun is vertical over some place on the Earth's surface, and if a circle be drawn with this point as the centre, the Sun would have the same altitude from all points on the circumference of this circle.

Advantage is taken of this fact to find the Ship's Position by Projection on a chart.

Two points on the circumference of the circle can be found from the Sun's altitude, and two assumed latitudes; the projection on the chart of the arc of the circle of equal altitudes passing through these two positions would pass through the actual position of the ship.

After an interval of time another altitude is observed, and with the same assumed latitudes, two other points on a new circle of position are found, and projected on the chart in the same way. The intersection of the two projected lines gives the ship's position.

In practice, the longitudes computed are marked on Mercator's Chart on the parallels of assumed latitudes, and connected by straight lines called Lines of Position. The point of intersection of these lines gives the latitude and longitude of the ship.

The Sun's true bearing is at right angles to the line of position at each observation - towards the east if A.M., and towards the west if P.M.

If the ship changes place during the interval, the first line of position has to be moved (parallel to itself) according to the course and distance sailed.

Thus in figure, NESW is plane of observer's horizon, NZS the celestial meridian, X the position of object at first observation, and Y its position at second observation ; Z the zenith, $Z X$ and ZY the zenith distances of object. With X as centre and XZ as radius, describe a circle. This will be a circle of position for first observation, because the zenith of all places having the object at X would be situated on its circumference. Similarly, with Y as centre and YZ as radius, draw a second circle of
position cutting the first in the points Z and C. Hence either Z or C is the position of the observer. With suitably selected observations, these points are so wide apart that the true one may be chosen by comparison with the latitude by account. The lines ZXA, ZYB are portions of vertical circles, showing the bearings of the objects, and are seen to cut the circumferences of the circles of position at right angles, hence the bearing of the object is always at right angles to the line of position, which is a tangent to the

Fig. 139. circle of position at Z .

Art. 89. Rules for working Sumner problem-
(1) Find G.M.T.'s.
(2) Find correct declination for each time, and polar distances, correct observed altitudes.
(3) With the first altitude and polar distance, using the two assumed latitudes, work as in chronometer problem for two-hour angles, and hence two longitudes. These when projected on the chart and joined would give the first line of position.

With the second altitude and polar distance, using the two assumed latitudes, find as before two longitudes. These positions are projected on the chart and joined for the second line of position.

The direction of a line of position is taken from the chart, like a course, and may be named in either of the two ways the line trends.

The true bearings are at right angles to the lines of position, and are obtained by subtracting the direction of each line from 90°; and marked towards the east for E.H.A.'s ; and towards the west for W.H.A.'s.

The run is laid off from any point of the first line, and where a parallel line to the first line, through the end of the run, cuts the second line is the position of the ship.

Example.-

August 5th, about $9^{\mathrm{L}} 15^{\mathrm{m}}$ A. M., in long. by account $55^{\circ} 15^{\prime}$ W.; when a chron. correct for M.T.G. showed $1^{\mathrm{h}} 2^{\mathrm{m}} 21^{10}$, the obs. alt of the Sun's L.L. was $44^{\circ} 14^{\prime} 20^{\prime \prime}$; ind. cor., $-2^{\prime} 7^{\prime \prime}$; eye, 30 ft . ; and again p.m. at ship on the same day, when the chron. showed $7^{\mathrm{n}} 5^{\mathrm{m}} 23^{\prime}$, the obs. alt. of the Sun's L.L. was $39^{\circ} 21^{\prime} 25^{\prime \prime}$; run in the interval, S. $\frac{1}{2} \mathrm{~W} .63$ miles. Find the line of position and Sun's true bearing at the first obs., and position of the ship at the second obs. by Sumner's method, by projection, assuming lats. 47° and $47^{\circ} 45^{\prime} \mathrm{N}$.

First M.T.G., August $5^{\mathrm{d}} 1^{\mathrm{b}} 2^{\mathrm{m}} 21^{\mathrm{n}}$. Second M.T.G., August $5^{\mathrm{d}} 7^{\mathrm{b}} 5^{\mathrm{m}} 23^{\mathrm{n}}$.

Dec. $17^{\circ} 9^{\prime} 52^{\prime \prime} \cdot 4$ N. H.Y. $40 \cdot 14$ 413
$17 \quad 911$ 90
N.P.D. 725049

Eq. T. $5^{\mathrm{m}} 52^{\circ} \cdot 6$

-2
$5 \quad 52 \cdot 4$

Obs. alt. $\odot 44^{\circ} 14^{\prime} 20^{\prime \prime}$
I. $\overline{\mathrm{C}} \quad-2 \quad 7$
$4412 \quad 13$
Dip $\begin{array}{r}-522 \\ 44 \quad 651\end{array}$
S.D. +1548
$44 \quad 22 \quad 39$
Cor. - 53

T.A.	442146	$44^{\circ} 21^{\prime} 46^{\prime \prime}$
Lat.	$47 \quad 0$	47450
P.D.	$72 \quad 5049$	$72 \quad 5049$
	1641235	$164 \quad 57 \quad 3 \overline{0}$
$\frac{1}{2}$ Sum	82618	822848
Remdr.	374430	$38 \quad 7$
Secs	$10 \cdot 166217$	$10 \cdot 172394$
Cosecs	10.019760	10.019760
Cos	$9 \cdot 137854$	$9 \cdot 116849$
Sine	$9 \cdot 786824$	9.790471
	9•110655	

H.A.'s $\quad 2^{\mathrm{h}} 48^{\mathrm{m}} 24^{\prime} \quad 2^{\mathrm{b}} 46^{\mathrm{m}} 9^{\boldsymbol{r}}$
A.T.S. $4^{\mathrm{d}} 2111 \quad 36 \quad 4^{4} 211351$

Eq. T. $+552+552$
M.T.S. $4^{\text {a }} 211728 \quad 4^{\text {a }} 211943$
M.T.G. $5^{\text {d }} 1 \begin{array}{llllll} & 2 & 21 & 5^{d} & 1 & 221\end{array}$

Long. (a) $56^{\circ} 13^{\prime} 15^{\prime \prime} \mathrm{W}$. ; (d) $55^{\circ} 29^{\prime} 30^{\prime \prime} \mathrm{W}$.

In Fig. 140 NESW is Ratl. Horizon.
NZS is Meridian.
EQW is Equinoctial.
P, pole. Z, zenith. X and Y positions of sun. Complete figure and
also draw circles of position with X and Y as centres and $X Z$ and $Y Z$ as radii.

Fig. 140.
$A X$ and $A Y$ are alts. $Z Q$ is lat.
$B X$ and $B Y$ are decs.
PX and PY are pol. dist.
ZPX and ZPY are hour angles.
SZX and SZY are azimuths.
Projection.-Mark the longitudes (a) and (b) on their respective latitudes. The line $a b$ is the first line of position. Next set off 63 miles on a S. $\frac{1}{2}$ W. course from any point of this line, and through the end of the run draw a parallel line to $a b$. This is the corrected position of the first line in consequence of the ship's change of place during the interval. At the time of taking the second observation the ship was somewhere on this line.

Then mark the longitudes (c) and (d) on their latitudes; $c d$ is the second line of position, and at the time of taking the second observation the ship was somewhere on $c d$, consequently the intersection of $c d$ with the parallel line drawn before is the position of the ship.

To obtain the sun's bearing, take off the corresponding line of position, subtract from 90°, and mark.

Fig. 141.
Ans. Direction of first line of position, N. 28° E. or S. $28^{\circ} \mathrm{W}$. ; Sun's true bearing, S. 62° E.; ship's position, lat. $47^{\circ} 23^{\prime}$ N., long. $55^{\circ} 18^{\prime} \mathrm{W}$.

Exercises.

1. August 4 th, about $8^{\text {h }} 15^{\mathrm{m}}$ A.m. at ship, long. by account 64° E.; when a chron. showed $4^{\mathrm{b}} 11^{\mathrm{m}} 45^{\text {s }}$, the obs. alt. of the Sun's L.L. was $36^{\circ} 15^{\prime} 40^{\prime \prime}$; and again P.M. at ship on the same day, when a chron. showed $10^{\mathrm{h}} 36^{\mathrm{m}} 45^{\mathrm{a}}$, the obs. alt. of the Sun's L.L. was $43^{\circ} 36^{\prime} 40^{\prime \prime}$; chron. correct for G.M.T.; ind. cor., $+2^{\prime} 10^{\prime \prime}$; height of eye, 39 ft .; the ship made a true course of W. $\frac{1}{2}$ S. for 32 miles during the interval. Find the first line of position, the Sun's true azimuth, and position of the ship at the time of taking the second observation, by Sumner's method by projection on the chart, assuming lats. $48^{\circ} 30^{\prime} \mathrm{N}$. and $49^{\circ} \mathrm{N}$.
2. August 9 th, about $8^{\text {b }} 50^{\text {m }}$ A.m. at ship, long. by account $4^{\circ} \mathrm{W}$.; when a chron. which was correct for M.T.G. showed $9^{\frac{L}{n}} 8^{\mathrm{m}} 39^{4}$, the obs. alt. of the Sun's U.L. was $38^{\circ} 47^{\prime} 10^{\prime \prime}$; and again P.M. of the same day, when the chron. showed $3^{\text {b }} 16^{\mathrm{m}} 0^{\prime}$, the obs. alt. of the Sun's U.L. was $40^{\circ} 40^{\prime} 30^{\prime \prime}$; height of eye, 40 ft . ; ind. cor., $+2^{\prime} 17^{\prime \prime}$; the ship having made 72 miles $\mathrm{S} .60^{\circ} \mathrm{E}$. by compass, var. $20^{\circ} \mathrm{W}$., dev. $10^{\circ} \mathrm{W}$. in the interval. Find the lines of bearing and azimuths at both observations, also ship's position at second observation by Sumner's method by projection on the chart, assuming lats. $49^{\circ} 20^{\prime} \mathrm{N}$. and $50^{\circ} \mathrm{N}$.
3. August 24th, about $7^{\mathrm{b}} 40^{\mathrm{m}}$ A.m. at ship, long. Greenwich; when a chron. $7^{\mathrm{m}} 40^{\mathrm{n}}$ slow of G.M.T. showed $7^{\mathrm{h}} 30^{\mathrm{m}} 4^{\mathrm{s}}$, the obs. alt. of the Sun's U.L. was $24^{\circ} 33^{\prime} 50^{\prime \prime}$; and again A.m. on the same day, when the same chron. showed $10^{\mathrm{b}} 54^{\mathrm{m}} 1^{\prime}$, the obs. alt. of the Sun's U.L. was $49^{\circ} 9^{\prime} 20^{\prime \prime}$; ind. cor., - $1^{\prime} \mathbf{1 5}^{\prime \prime}$; height of eye, 27 ft . ; the ship's true course in the interval was W. by N., 47 miles. Required the line of position and Sun's azimuth at the first observation, and position of ship at the second observation, by Sumuer's method, assuming lats. $49^{\circ} 50^{\prime} \mathrm{N}$. and $50^{\circ} 20^{\prime} \mathrm{N}$.
4. September 1st, long. by account 180° E., with following observations find, by Sumner's method, the first line of position, the Sun's true bearing, and position of ship at second observation, assuming lats. $48^{\circ} 40^{\prime} \mathrm{N}$. and $49^{\circ} \mathbf{2 0}$ N.

Approx. ship time. $0^{\text {b }} 30^{\text {m }}$ F.M.	Time by chron. $12^{\mathrm{b}} 42^{\mathrm{m}} 57^{\bullet}$	$\bar{\odot} 48^{\circ} 51^{\prime} \quad 0^{\prime \prime}$	$\text { ind. cor. },+1^{\prime} 10^{\prime \prime}$
440 Р.м.	$450 \quad 20$	$\bigcirc 193020$	eye, 17 ft .

Run during interval W.S.W., $6 \frac{1}{2}$ knots per hour. The chron. was fast $5^{\mathrm{m}} 13^{4}$ for G.M.T. on May 12th, and gaining daily 2^{2}.
5. September 23 rd, about $8^{\text {b }} 40^{\mathrm{m}}$ A.m., long. D.R. $60^{\circ} \mathrm{W}$.; when a chron. showed $12^{\mathrm{b}} 37^{\mathrm{m}} 55^{\prime}$, the obs. alt. of the Sun's U.L. was $27^{\circ} 33^{\prime}$; and again P.m. on the same day, when a chron. showed $6^{\text {b }} 29^{\text {m }} 59^{\circ}$, the obs. alt. of the Sun's U.L. was $32^{\circ} 53^{\prime \prime} 40^{\prime \prime}$; ind. cor., $-3^{\prime} 57^{\prime \prime}$; eye, 25 ft . ; the ship having made 23 miles on a true W. by S. $\frac{3}{4}$ S. course in the interval. Required the line of position and true bearing of the Sun at the first observation, and ship's position at second observation, by Sumner's method by projection on the chart, assuming lats. $46^{\circ} 10^{\prime} \mathrm{S}$. and $46^{\circ} 50^{\prime} \mathrm{S}$.
6. September 1st, about $8^{\text {h }} 45^{\mathrm{m}}$ A.m., long. by account $110^{\circ} \mathrm{W}$.; when a chron. showed $4^{\text {b }} 4^{\mathrm{m}} 29^{\circ}$ G.M.T. ; the obs. alt. of the Sun's L.L. was $18^{\circ} 16^{\prime}$ $40^{\prime \prime}$; and again P.m. on the same day, when the chron. showed $9^{\mathrm{h}} 24^{\mathrm{m}} 43^{\circ}$, the obs. alt. of the Sun's L.L. was $25^{\circ} 52^{\prime} 50^{\prime \prime}$; ind. cor., $+40^{\prime \prime}$; eye, 12 ft .; the ship having made 42 miles on a true S.E. by S. $\frac{1}{2}$ S. course in the interval. Find the line of position and sun's true bearing when the first altitude was taken, and ship's position at the second observation, by Sumner's method by projection on the chart, assuming lats. $49^{\circ} 15^{\prime} \mathrm{S}$. and $49^{\circ} 45^{\prime} \mathrm{S}$.
7. August 1st, about $5^{\text {b }} 30^{\text {m }}$ A.m., long. by account $166^{\circ} \mathrm{E}$. ; when a chron. correct for G.M.T. showed $7^{\mathrm{b}} 39^{\mathrm{m}} 17^{\text {s }}$, the obs. alt. of the Sun's L.L. was 20°
$59^{\prime} 40^{\prime \prime}$, and again A.m. on the same day, when the chron. showed $12^{\mathrm{h}} 7^{\mathrm{mm}} 57^{3}$, the obs. alt. of the Sun's L.L. was $57^{\circ} 6^{\prime} 10^{\prime \prime}$; ind. cor., $-3^{\prime} 7^{\prime \prime}$; eye, 36 ft .; the ship having made a true N. by W. $\frac{1}{2} \mathrm{~W}$. course 40 miles in the interval. Find the first line of position, the Sun's true bearing, and ship's position at the second observation by Sumner's method by projection on the chart, assuming lats. $49^{\circ} 50^{\prime} \mathrm{N}$. and $50^{\circ} 20^{\prime} \mathrm{N}$.
8. September 29th, in long. by account $180^{\circ} \mathrm{E}$.; with following observations, assuming lats. $47^{\circ} \mathrm{N}$. and $47^{\circ} 50^{\prime} \mathrm{N}$., find by Sumner's method first line of position and Sun's true bearing; also position of ship at second observation.

Approx. ship time. Time by chron. Obs. alt. Sun's L.L.
$7^{\mathrm{b}} 30^{\mathrm{m}}$ А.м. $\quad 7^{\mathrm{b}} 29^{\mathrm{m}} 59^{\mathrm{a}} \quad 10^{\circ} 53^{\prime} 20^{\prime \prime} \quad$ eye, 16 ft .
330 р.м. $\quad 32639 \quad 264820$ ind. cor., $+1^{\prime} 15^{\prime \prime}$
Run between observations, W. by S. $\frac{3}{4}$ S. 86 miles. The chron. was $22^{\mathrm{m}} 12^{\mathrm{s}}$ fast of G.M.T. on Sept. 1st, and gaining $2^{\circ} 5$ daily.

CHAPTER XIX.

THE CHART.

Art. 90.-Charts used by Navigators are all constructed on Mercator's principle (except those of Harbours, Bays, etc.). Their characteristic is that the spaces between the Parallels of Latitude increase towards the Poles, whilst the Meridians of Longitude are also parallel instead of converging as they do on a globe. The reason for this construction is explained in Chap. I.

Latitudes are marked on the Graduated Meridians at the sides of the chart, and longitudes on the Graduated Parallels at the top and bottom.

Soundings in fathoms for Mean Low Water of Ordinary Spring Tides are given in small figures, and Roman numerals at various places give the Time of High Water, "Full and Change." The nature of the bottom is also shown by small letters and abbreviations.

Since 1911 the pattern of Compasses adopted on Admiralty Charts has been altered to show both Magnetic and Irue. The outer or true circle being graduated from 0° to 360°. The inner or magnetic circle is divided into quadrants, each one reading from 0° to 90°, and to quarter points. The variation is marked in the circle for a given indicated year, and its decrease per annum. True north is indicated by a star, magnetic north by a fleur de lis. Bearings are given both True and Magnetic, thus 161° (S. 12° E. mag.).

Variation Charts are charts of the oceans or of the globe with lines of equal variation drawn on them at intervals of one or two degrees. From these charts the variation at ship can be found, provided the latitude and longitude are known.

When out of sight of land, the ship's position is fixed by the latitude and longitude found from observation of heavenly bodies. Near the coasts the position can be obtained from soundings and from bearings of lights and other known objects.

Art. 91.-Using the following Deviation Tables it will now be shown how to convert the course from the chart into the corresponding compass course.

Ship's head by compass	Card A. Deviation.	Card B. Deviation.
N.	11 E .	36 W.
N. by E.	16 E .	36 W .
N.N.E.	21 E .	30 W.
N.E. by N.	27 E .	27 W.
N.E.	31 E .	24 W.
N.E. by E.	31 E .	21 W .
E.N.E.	28 E.	17 W.
E. by N.	26 E .	12 W.
E.	24 E .	6 W.
E. by S.	20 E .	2 E .
E.S.E.	15 E .	6 E .
C.E. by E.	9 E .	12 E .
S.E.	4 E .	17 E .
S.E. by S.	1 E .	22 E .
S.S.E.	2 W .	27 E .
S. by E.	5 W .	32 E .
S.	8 W.	36 E.
S. by W.	11 W.	38 E .
S.S.W.	14 W.	37 E.
S.W. by S.	18 W.	35 E.
S.W.	21 W.	32 E .
S.W. by W.	24 W.	27 E .
W.S.W.	27 W.	20 E .
W. by S.	30 W.	12 E .
W.	26 W .	5 E.
W. by N.	23 W.	3 W.
W.N.W.	21 W.	10 W.
N.W. by W.	19 W.	16 W.
N.W.	16 W.	22 W.
N.W. by N.	11 W.	27 W.
N.N.W.	4 W.	31 W.
N. by W.	4 E .	34 W.

It is seen that the deviations are given for the compass directions of the ship's head; when the deviation is applied to the corresponding ship's head by compass, the magnetic direction of the ship's head is obtained: thus-

Card A. Comp. co. N.N.E. dev. 21° E. gives mag. co. N. 44° E. Card B. " N.N.E. " $30^{\circ} \mathrm{W}$., " N. $7^{\circ} \mathrm{W}$.

To obtain the deviation and compass course for a given magnetic course, two consecutive compass courses must be selected from the Table, so that when converted into magnetic
courses, one will be greater and the other less than the given magnetic course, then by proportion the deviation, and hence the compass course may be obtained.

Thus using Card A: Find the Compass courses for mag. courses. (a) N. 70° E. (b) S. 12° W. (c) N. $15^{\circ} \mathrm{W}$.

Examples.
(a) N. 70° E.

Comp. co.	Tjer.	Mag. co.
N.E. by N .	$27^{\circ} \mathrm{E}$.	N. $61{ }^{\circ} \mathrm{E}$ E.
N.E.	31 E .	N. 76 E.
(Diff. of dev.) N. 70° E.)	$\stackrel{4}{9}$	15 (Diff. of courses)

(Diff. of N. 61° E. and N. 70° E.) 9
15) $\overline{36}$
2° to add to $27^{\circ} \mathrm{E}$.
Hence deviation is $29^{\circ} \mathbf{E}$.
Comp. co. N. $70^{\circ} \mathrm{E}$.
Dev. 29 E .
Mag. co. N. $\overline{41^{\circ}}$ E.
(b) S. $12^{\circ} \mathrm{W}$.

S.W. by S. 18 W . S. 16 W .
(Diff. of dev.) $\overline{4} \quad \overline{7}$ (Diff. of courses)
(Diff. of S. 9° W. and S. $12^{\circ} \mathrm{W}$) 3
7)12
2° to add to $14^{\circ} \mathrm{W}$.
Hence deviation is $16^{\circ} \mathrm{W}$.
Mag. co. S. $12^{\circ} \mathrm{W}$.
Dev. 16 W .
Comp. S. $28^{\circ} \mathrm{W}$.
(c) N. $15^{\circ} \mathrm{W}$.
Comp. co. $\stackrel{\text { Dev. }}{\mathrm{Mag}} \mathrm{co}$.
N.N.W. $\quad 4^{\circ} \mathrm{W} . \quad$ N. $27^{\circ} \mathrm{W}$.
N. by W. 4 E. N. 7 W.
(Diff. of dev.) 8
(Diff. of N. 27° W. and N. 15° W.) 12
20) 96
5° to subtract from $4^{\circ} \mathrm{W}$. Hence deviation is $1^{\circ} \mathrm{E}$.
Mag. co. N. $15^{\circ} \mathrm{W}$.
dev. $\quad 1 \mathrm{E}$.
Comp. co. N. 16° W.
Note 1.-When the chart course is true, the variation must first be applied to find the magnetic course. The bearings must also be corrected for variation.

Note 2.-The deviation can generally be found by inspection, as the difference of deviation between two adjacent points is usually small. In the tables the deviations are purposely increased to illustrate the method.

Exercises.

1. Using Card A. : find Comp. co. corresponding to following Mag. co. : (a) N. 79° E. (b) East. (c) S.E. (d) S. 28° E. (e) S. 85° W.
2. Using Card B. : find the courses to steer by compass to make good following chart courses : (a) North. (b) East. (c) N. 83 W. (d) West.

Answers.

Art. 92.-When a vessel is steaming along a given course on the chart at a known rate, her estimated or expected D.R. position on that course can always be set down as the distance run is known, the observation position can be determined by station pointer, cross bearings, or two bearings and the run between, the course and distance from the D.R. to the obs. position is the set and drift of the current experienced. Thus in Fig. 142 vessel

Fig. 142.
proceeding from X to Y, at the end of a given time expects to be at $\mathrm{E} ; \mathrm{B}$ and C are two conspicuous objects, at this time the compass bearings of B and C are taken and corrected, and then laid on the chart in the directions BO and CO, O the point of intersection of these bearings is the observed position of the ship, EO represents the set and drift of the current.

Again, at a given time let the bearing of an object A be taken, corrected and laid off as AL, after a known interval another bearing of A is taken, corrected and laid off as AF, supposing the current found to be still acting, the position of the ship at the end of the time may be found thus: Measure LM along LY equal to the distance the ship steams in the interval, set off MN in the direction of the current, and equal to the drift of the current in the interval, through N draw a parallel line to the first bearing, AL: to cut the second bearing in F. F is the position of the ship allowing for the current.

To set a course to counteract a given current is another problem of great importance to the navigator. In the previous paragraph the effect of a known current on the position of the ship at the end of the run has been considered; now it is required to find what course must be steered by a ship through a known current in order that she may make a given position.

In Fig. 143 the vessel is at P and wishes to get to Q $30 \cdot 5$ miles away: her speed is 10 knots; the current sets in the direction PR at 3 knots. Measure 3-tenths inch along

Fig. 143. PR to R, and with R as centre and 10 -tenths as radius cut the line $P Q$ in S, then $R S$ is the direction to steer to counteract the current, that is for the ship to get to point S on the line $P Q$, and $P S$ is the distance made good in one hour : this measured gives 11.8 miles.

$$
\begin{aligned}
& \text { Hence time taken to arrive at } \mathrm{Q}=\frac{30.5}{11 \cdot 8} \text { hours } \\
& =2.5 \text { hours. } \\
& \text { Total distance for ship to steam }=2.5 \times 10 \text { miles } \\
& =25 \text { miles. }
\end{aligned}
$$

Or by drawing a line through Q parallel to RS to cut direction of current in T, and measuring TQ, will also give total distance for ship to steam $=25.5$ miles.

The problem may be solved trigonometrically, as in triangle PRS are given PR, RS, and angle SPR, to find angle RSP by "rule of sines." This angle shows how much nearer south the course to steer is than the direction of PQ .
N.B.-Find the deviation for the new course, and apply to it to obtain the compass course.

Again, in Fig. 144 let the vessel be going along the line AB , and at the end of a given time, say $1 \frac{1}{2}$ hours, finds her

Fig. 144. position to be at C, find the course she must steer to arrive at B. As the speed of the ship is known, her $D R$ position would be at a fixed point on $A B$, say E,
consequently the set and drift of the current acting is the direction and length of EC in $1 \frac{1}{2}$ hours. Join CB, this is the course required to be made good. Produce EC , make $\mathrm{CD}=\mathrm{CE}$, this represents the current for $1 \frac{1}{2}$ hours, with D as centre, radius equal to $A E$ the distance the ship steams in the same time, describe an arc cutting CB in F . Then the direction of DF is the required course, and CF is the distance made good in $1 \frac{1}{2}$ hours, whence by simple proportion, the time taken to arrive at B, or the distance towards B made in any required time, may be found.
N.B.-When laying off a course to counteract a current, always allow the current to act, and the ship to steam for the same time, 1 hour, 2 hours, etc., as may be selected.

Exercises.

Using St. George's Channel Chart, Devia. Card B.

1. (a) Find the course to steer by compass from Bell Buoy, St. Tudwall Rds., to New Quay Lt. Also the deviation, variation, and distance.
(b) With the ship's head on the above compass course, Pengarn Mt. bore by compass N. 56° E. and Aberdovey Lt. bore S. 84° E. by the same compass. Find the ship's position, and set and drift experienced since course was set, ship steaming 6 knots and taking 2 h .40 nu . to reach position.
(c) With the ship's head as above, Aberystwith Lt. bore by compass S. $65^{\circ} \mathrm{E}$. and after continuing 3 h .10 m . on the above-named course it bore N. 49° E. by the same compass. Find the ship's position and distance from New Quay Lt., making allowance for current found in (b).
(d) Find the course to steer by compass from Bell buoy to New Quay in the current found in (b) vessel making 6 knots: and the distance she then makes good towards New Quay in 3 hours 50 minutos. How far would ship have to steam to reach New Quay?
(e) Horizontal angles, find position by station pointer: St. Tudwall Lt., 862 $\frac{1}{2}^{\circ}$; Aberystwith Lit., 62°; New Quay Lt.
(f) What do the small numbers indicate that are placed about the chart and at what time of tide?
(g) What do the Roman numerals indicate that are occasionally seen near the coast and in harbours?
(h) How would you find approximately the time of high water at any place, the Admiralty tables not being at hand, nor any other special tables available?
2. (a) Find the courses to steer by compass and distance on each course from Dummore Lt., Waterford Hr., to Q off Sth. Arklow Lt. V. on G. line 31 miles from Lt. V.

Note-Alter course when Coningbeg Lt. bears 360°, distance 3 miles, and again when Tuskar Rk. Lt. bears 288°, distance 2 miles.
(b) With ship's head on the 2nd compass course, Sth. Pt. S. Saltee bore by compass N. 61° W., and Carnsore Pt. bore N. $46^{\circ} \mathrm{E}$. by the same compass. Find the ship's position, set and drift experienced, if the expected position was with Barrel's Lt. V. bearing 251°, distance off 3 miles.
(c) With the ship's head on the Brd compass course, Lucifer Lt. bore by compass N. $17^{\circ} \mathrm{E}$., and after continuing 56 minutes on the above-named course, it bore N. $62^{\circ} \mathrm{W}$. by the same compass. Find the ship's position and distance from Blackwater Lt., making due allowance for a current which set N.E. mag. 3 knots, vessel steaming 15 knots.
(d) Find the courses to steer by compass from Dunmore Lt. to Q in a current which set east mag. $2 \frac{1}{2}$ knots, the vessel making 12 knots, and the distance she then makes good towards Q in 3 hours 45 minutes.
(e) Horizontal angles, find position by station pointer, Hook Pt. Lt., 58°; Coningbeg Lt. V., $24 \frac{1}{2}^{\circ}$; Tuskar Lt.
3. (a) Set the courses to steer by compass from X , lat. $51^{\circ} 35^{\prime} \mathrm{N}$. long. $5^{\circ} 18^{\prime}$ W., to Y., lat. $52^{\circ} 24 \frac{1^{\prime}}{}$ N. long. $5^{\circ} 2^{\prime}$ W., ship to pass 3 miles off S. Bishop Lt. ; then alter course to reach Y, with Cardigan Bay L.V. bearing 90°, distance $1 \frac{1}{4}$ miles; maintaining your distance of 3 miles from S . Bishop Lt., and give distance run on each course.
(b) With the ship's head on 1st compass course, St. Anne's Md. Lt. bore by compass S. 17° E., and Small's Lt. bore N. $58^{\circ} \mathrm{W}$. by the same compass. Find the ship's position, set and drift experienced, the ship having run 49 minutes on the course, steaming 11 knots.
(c) With ship's head on 2nd compass course, Strumble Hd. bore by compass $\mathrm{S} .39^{\circ}$ E., and after continuing 1 hour 38 minutes on above course, it bore S. $31^{\circ} \mathrm{W}$. by same compass. Find the ship's position and distance from Cardigan Bay L.V., allowing for a current which set S. $63^{\circ} \mathrm{W}$. mag. 21 knots, vessel steaming 11 knots.
(d) After running on second course 1 hr .22 mins. , ship making 11 knots, her position was found to be lat. $52^{\circ} 2^{\prime}$ N., long $5^{\circ} 2 \widetilde{a}^{\prime}$ W. Find course to steer by compass from this point to Y, allowing for a similar current to that experienced during earlier part of run; and distance made good in 2 hrs. 50 mins. towards Y. How long would she take to reach Y. ?

CHAPTER XX.

USE OF NAPIER'S DIAGRAM.

Art. 93.-In the list of questions proposed to candidates for Masters' Certificates in the Board of Trade Regulations, Nos. 11, 12, 13, and 14 refer to the use of Napier's Diagram.

Example.

No. 11. Having taken the following compass bearings of a distant object, find its Correct Magnetic Bearing, and thence the deviation.

Correct magnetic bearing required: S. 8° E.

Sbip's head by staudard compass.	Bearing of distant object.	Devistion required.	Sbip's bead by standard compass.	Bearing of distant object.	Devistion reguired.
N.	S. $4^{\circ} \mathrm{E}$.	$4^{\circ} \mathrm{W}$.	S.	S. $13^{\circ} \mathrm{E}$.	$5^{\circ} \mathrm{E}$.
N.E.	S.	$8^{\circ} \mathrm{W}$.	S.W.	S. $22^{\circ} \mathrm{E}$.	$14^{\circ} \mathrm{E}$.
E.	S. $4^{\circ} \mathrm{W}$.	$12^{\circ} \mathrm{W}$	W.	S. $20^{\circ} \mathrm{E}$.	$12^{\circ} \mathrm{E}$.
S.E.	S. $1^{\circ} \mathrm{W}$.	$9^{\circ} \mathrm{W}$.	N.W.	S. $11^{\circ} \mathbf{E}$.	$3^{\circ} \mathrm{E}$.

No. 12. With the deviation as above, construct a curve of deviation on a Napier's Diagram, and give the courses you would steer by the Standard Compass to make the following correct magnetic courses :-

Magnetic courees: S.S.W. W.N.W. N.N.E. E.N.E. S.S.E.
Compass courses required : S. $14^{\circ} \mathrm{W} . \mathrm{N} .77^{\circ} \mathrm{W}$. N. $29 \frac{3}{2}^{\circ} \mathrm{E} . \mathrm{N} .79^{\circ} \mathrm{E}$. S. $20^{\circ} \frac{1}{2} \mathrm{E}$.

No. 13. Supposing you have steered the following courses by the Standard Compass, find the correct magnetic courses from the above curve of deviations :-

Compass courses: W.S.W. N.N.W. E.N.E. S.S.E.
Magnetic courses required : S. $82^{\circ} \mathrm{W}$. N. $23^{\circ} \mathrm{W}$. N. $57^{\circ} \mathrm{E} . \quad$ S. $25^{\circ} \mathrm{E}$.
No. 14. You have taken the following bearings of two distant objects by your Standard Compass as above, with the ship's head at W. $\frac{1}{2}$ S. by compass: find the correct magnetic bearings.

Bearings by compass: W. by S. N. $\frac{3}{4}$ W.
Magnetic bearings required: N. 89° W. N. 3° E.
Explanation.-In No. 11 the Correct Magnetic Bearing is the mean of the eight observed bearings.
(a) When the bearings all read one way from S. or N., the mean is found by adding the eight bearings together and dividing the sum by 8 .
(b) When the bearings read different ways, viz. some towards E. and some towards W., then the mean is found by summing up the bearings of the same Name separately (as in the above example), and dividing the difference of the totals by 8 .
(c) The deviations are the differences between the correct magnetic bearing and each of the eight bearings by Compass, it being E. dev. when the correct magnetic reads to the right of the compass bearing, and W. when to the left.

Art. 94.-Napier's Diagram and Curve of Deviations.

The deviations found for the eight equidistant courses are taken with a pair of dividers from the middle line, which is graduated like a compass card, and set off from the graduated line on the dotted lines for the given courses-to the left for W. dev., and to the right for E. dev. A curve is then drawn, as in the diagram (Fig. 145). The deviation for any course (compass or magnetic) may now be found by simply measuring the part of the line (dotted or plain) intercepted by the curve.

For No. 12, place one foot of the dividers on the given course, and extend the other on the plain line to the curve. Keeping one foot on the middle line, turn the other up or down according as the line inclines upwards or downwards, and read off the required compass course.

For No. 13, proceed exactly in the same way as in No. 12, except that the dotted lines only are to be used.

Note.-The advantage of the diagram and curve is that it affords a ready mechanical way of changing magnetic courses to compass courses, and vice versâ, and so avoids the risk of error in applying deviation by adding or subtracting.

For No. 14, find the Deviation for the given direction of ship's head, by measuring the part of the dotted line intercepted by the curve, and apply it in the usual way to the bearings by compass, viz. E. to right, and W. to left.

Example.-(a) Magnetic bearing required : S. $53^{\circ} 45^{\prime} \mathrm{W}$.

Ship's head by compass.	Bearing by cumpass.	Deviation.	Ship'a head by compass.	Bearing by compass.	Deviation.
N.	S. $75^{\circ} \mathrm{W}$.	$21^{\circ} 15^{\prime} \mathrm{W}$.	S.	S. $34^{\circ} \mathrm{W}$.	$19^{\circ} 45^{\prime} \mathrm{E}$.
N.E.	S. $64^{\circ} \mathrm{W}$.	$10^{\circ} 15^{\prime} \mathrm{W}$.	S.W.	S. $31^{\circ} \mathrm{W}$.	$22^{\circ} 45^{\prime} \mathrm{E}$.
E.	S. $56^{\circ} \mathrm{W}$.	$2^{\circ} 15^{\prime} \mathrm{W}$.	W.	S. $49^{\circ} \mathrm{W}$.	$4^{\circ} 45^{\prime} \mathrm{E}$.
S.E.	S. $50^{\circ} \mathrm{W}$.	$3^{\circ} \mathbf{4 5}{ }^{\prime} \mathrm{E}$.	N.W.	S. $71^{\circ} \mathrm{W}$.	$17^{\circ} 15^{\prime} \mathrm{W}$.

Note. -The magnetic bearing required is the mean of all the bearings by compass, found by adding them and dividing by eight. The deviations are then marked on the dotted lines of a Napier's diagram, and a curve drawn.
(b) Magnetic courses : N.N.W. S.S.E. W.N.W. E.S.E.

Compass courses required : N. 1° W. S. 31° E. N. 53° W. S. 68° E.

DIAGRAM.

Fig. 145.

Explanation.-Place one leg of the compasses on the given course, and extend the other along the plain line to the curve, and turn apwards if the line tends upwards, but downwards if it tends downwards, and read off the required course.
(c) Compass courses given : N.N.E. E.N.E. S.S.W. W.S.W. Magnetic courses required : N. 6° E. N. 62° E. S.W. S. 83° W.
Explanation.-Place one leg of the compasses on the given course, and extend the other along the dotted lines to the curve, and turn up or down, as the line tends.
(d) Ship's head by compass: N.E. $\frac{1}{2}$ E. Compass bearings : S.E. by S. N.N.W. Magnetic bearings required: S. 44° E. N. $32 \frac{1}{2}^{\circ} \mathrm{W}$.
Explanation.-Find the deviation on the given compass course from the dotted line, and apply it to both bearings (east to right, west to left).

Exercises on Napier's Diagram and Curve.

1. (a) Correct magnetic bearing required :-

Ship's head by compass.	Bearing of distant object.	Deviation,	Ship's bead by compass.	Bearing of distaot object.	Deviation.
N.	N. $83^{\circ} \mathrm{E}$.		S.	N. $50^{\circ} \mathrm{E}$.	
N.E.	S. $86^{\circ} \mathrm{E}$.		S.W.	N. $34^{\circ} \mathrm{E}$.	
E.	E.		W.	N. $40^{\circ} \mathrm{E}$.	
S.E.	N. $75^{\circ} \mathrm{E}$.		N.W.	N. $61^{\circ} \mathrm{E}$.	

Find the correct magnetic bearing and the deviations.
(b) Correct magnetic courses : N.E. $\frac{1}{2}$ E. E. by N. S.E. by S. $\frac{1}{2}$ S. N. $\frac{1}{2}$ W. Required courses to steer.
(c) Courses steered : N.W. $\frac{8}{4}$ W. S. E. by S. N. by E. Required correct magnetic courses.
(d) Ship's head by compass : W.S.W.

Bearings of distant object : S.S.W. and N.E. Required the correct magnetic bearing.
2. (a) Correct magnetic bearing required :-

Suip's hesd by compass.	Beariog of distant cbject.	Deviation.	Ship's head by compass.	Bearing of distant object.	Deviation.
N.	S. $85^{\circ} \mathrm{W}$.		S.	N. $73^{\circ} \mathrm{W}$.	
N.E.	S. $79^{\circ} \mathrm{W}$.		S.W.	N. $8^{\circ} \mathrm{W}$.	
E.	S. $88^{\circ} \mathrm{W}$.		W.	N. $74^{\circ} \mathrm{W}$.	
S.E.	N. $76^{\circ} \mathrm{W}$.		N.W.	N. $79^{\circ} \mathrm{W}$.	

Required the correct magnetic bearing and the deviations.
(b) Correct magnetic courses : E. $\frac{1}{2}$ N. E.S.E. S. $\frac{3}{4}$ W. N.W. Required courses to steer.
(c) Courses steered : N. S.E. $\frac{3}{4}$ S. S.W. $\frac{2}{2}$ W. N. 35° W. Required correct magnetic courses.
(d) Ship's head S. 65° E. Bearings by compass, W. 10° S. N. 40° E. Required the deviation and the correct magnetic bearings.
3. (a) Correct magnetic:-

SLip's bead by compsss.	Bearing of distant object.	Deviation.	Suip's bead by compsss	Bzaring of distant oblect.	Deviation.
N.	S. $4^{\circ} \mathrm{W}$.		S.	S. $34^{\circ} \mathrm{W}$.	
N.E.	S. $1^{\circ} \mathrm{E}$.		S.W.	S. $32^{\circ} \mathrm{W}$.	
E.	S.		W.	S. $11^{\circ} \mathrm{W}$.	
S.E.	S. $22^{\circ} \mathrm{W}$.		N.W.	S. $9^{\circ} \mathrm{W}$.	

(b) Correct magnetic courses : N. $\frac{3}{2}$ W. W. by S. $\frac{3}{4}$ S. S. 70° E. E. $24^{\circ} \mathrm{N}$.

Courses to steer by compass.
(c) Courses steered by compass : W.N.W. $\frac{1}{2}$ N. N.E. $\frac{1}{4}$ N. S. $\frac{3}{4}$ E. N. $40^{\circ} \mathrm{W}$.

Correct magnetic courses.
(d) Ship's head at W. by N. by compass.

Bearings by compass (of distant objects) : S.W. $\frac{3}{4}$ W. N.W. by W. $\frac{1}{2}$ W. Correct magnetic bearings.
4. (a) Correct magnetic.

Ship's head by compass.	Bearing of distant object.	Deviation.	Ship's bead by compass.	Besring of distant object.	Deviation.
N.	N. $32^{\circ} \mathrm{W}$.		S.	N. $4^{\circ} \mathrm{E}$.	
N.E.	N. $27^{\circ} \mathrm{W}$.		S.W.	N. $4^{\circ} \mathrm{E}$.	
E.	N. $6^{\circ} \mathrm{E}$.		W.	N. $10^{\circ} \mathrm{W}$.	
S.E.	N. $2^{\circ} \mathrm{E}$.		N.W.	N. $15^{\circ} \mathrm{W}$.	

(b) Correct magnetic courses: S. 50° W. N. E. 5° S. E. by N. Courses to steer by compass.
(c) Courses steered by compass: W. by S. N. by E. $\frac{1}{2}$ E. S.E. $\frac{3}{4}$ S. S. by W.

Correct magnetic courses.
(d) Ship's head at N.N.W. by compass.

Bearings by compass (of distant objects): W.N.W. S.S.W. Correct magnetic bearings.
5. (a) In the following table give the correct magnetic bearing, and thence the deviation.

Correct magnetic:-

Sbip's bead by utandard compdes.	Bearing of distant object by standard compass.	Deviation required.	Ship's bead by standard compass.	Besring of distant object by atandard compass.	Deviation requlred.
N. N.E. E. S.E.	$\begin{aligned} & \mathrm{N} .62^{\circ} \mathrm{E} . \\ & \text { E. } 24^{\circ} \mathrm{N} \\ & \text { R. } 7^{\circ} \mathrm{N} . \\ & \text { S. } 77^{\circ} \mathrm{E} . \end{aligned}$		S. S.W. W. N.W.	E. $15^{\circ} \mathrm{S}$. S. $81^{\circ} \mathrm{E}$. E. $5^{\circ} \mathrm{N}$. N. 67° E.	

(b) With the deviations as above, give the courses you would steer by the Standard Compass to make the following courses correct magnetic:-

Magnetic courses : N.E. $\frac{1}{2}$ E. E. $\frac{1}{2}$ S. S. $\frac{1}{2}$ W. N. $\frac{1}{2}$ W.
Compass
"
(c) Supposing you have steered the following courses by the Standard Compass, find the correct magnctic courses.

Compass courses: N.E. $\frac{1}{2}$ N. S.E. $\frac{1}{2}$ S. W. $\frac{1}{4}$ N. N.W. $\frac{1}{2}$ N.
Magnetic.
(d) You have taken the following bearings of two distant objects by your Standard Compass as above: with the ship's head at N. $\frac{1}{4}$ W., find the bearings correct magnetic.

Compass bearings : S.S.E. $\frac{1}{4}$ E. E. $\frac{1}{2}$ N.
Correct magnetic.
6. (a) In the following table give the correct msgnetic bearing of the distant object, and thence the deviation :-

Correct magnetic :-

Ship's hesd by standard comp.ss.	Bearing of distant object by standard compass.	Devistion required.	Ship's hesd by standard compses.	Bearing of distant object by standard compass.	Deviation required.
N.	S. $32^{\circ} \quad 0^{\prime}$ E.		S.	S. $6^{\circ} 50^{\prime} \mathrm{W}$.	
N.E.	S. $4^{\circ} 45^{\prime} \mathrm{E}$.		S.W.	S. $26^{\circ} 0^{\prime}$ E.	
E.	S. $16^{\circ} 0^{\prime} \mathrm{W}$.		W.	S. $43^{\circ} 0^{\prime} \mathrm{E}$.	
S.E.	S. $21^{\circ} 30^{\prime} \mathrm{W}$.		N.W.	S. $44^{\circ} 35^{\prime} \mathrm{E}$.	

(b) With the deviations as above, give the courses you would steer by the Standard Compass to make the following courses correct magnetic :-

Magnetic: N. by E. $\frac{3}{4}$ E. E. $\frac{1}{2}$ N. S.S.W. $\frac{1}{4}$ W. N.W. $\frac{1}{2}$ W.
Courses to steer.
(c) Supposing you have steered the following courses by the Standard Compass, find the correct magnetic courses.

Standard: N.N.E. $\frac{3}{4}$ E. E. by N. $\frac{1}{2}$ N. S.S.E. $\frac{1}{4}$ E. N.W. $\frac{1}{4}$ N.
Magnetic.
(d) You lave taken the following bearings of two distant objects by your Standard Compass as above : with the ship's head at S.E. $\frac{1}{2}$ S., find the bearings correct magnetic:-

Compass bearings: N.E. $\frac{1}{2}$ E. N. by W. $\frac{1}{4}$ W. Correct magnetic.
7. (a) Magnetic bearing required-

Ship's head by compses.	Bearing by compass.	Devistion.	Ship's besd by compass.	Bearing by compses.	Devation.
N.	N. $56^{\circ} \mathrm{E}$.		S.	N. $55^{\circ} \mathrm{E}$.	
N.E.	N. $48^{\circ} \mathrm{E}$.		S.W.	N. $64^{\circ} \mathrm{E}$.	
E.	N. $45^{\circ} \mathrm{E}$.		W.	N. $68^{\circ} \mathrm{E}$.	
S.E.	N. $49^{\circ} \mathrm{E}$.		N.W.	N. $63^{\circ} \mathbf{E}$.	

(b) Magnetic courses: N. $\frac{1}{4}$ E. S. 70° E. S. 55° W. N. 8° W.

Compass courses required.
(c) Compass courses : S.S.W. N.W. $\frac{1}{2}$ W. N. S. 82° E.

Magnetic courses required.
(d) Ship's head by compass: S.W. Compass bearings: E. $\frac{1}{4}$ N. N. by E. Magnetic bearings required.

8．（a）Magnetic bearing required－

Ship＇s bead by compasa．	Bearing by con⿰亻⿱丶⿻工二木⿴囗十	Deviation．	Sbip＂a bead by сотрава．	Bearing by сотрава．	Deviation．
N.	N． $44^{\circ} \mathrm{W}$ ．		S．	S． $79^{\circ} \mathrm{W}$ ．	
N．E．	N． $47^{\circ} \mathrm{W}$		S．W．	S． $89^{\circ} \mathrm{W}$ ．	
E．	N． $80^{\circ} \mathrm{W}$ ．		W．	N． $69^{\circ} \mathrm{W}$ ．	
S．E．	S． $76^{\circ} \mathrm{W}$ ．		N．W．	N． $52^{\circ} \mathrm{W}$ ．	

（b）Magnetic courses：S．$\frac{1}{2}$ E．S．W．$\frac{1}{4}$ S．N． 80° W．N． 75° E．
Compass course required．
（c）Compass courses ：N．N．W．$\frac{3}{4}$ W．W．by S．$\frac{1}{4}$ S．S．N． 80° E． Magnetic courses required．
（d）Ship＇s head by compass：W．
Bearings by compass：E． 11° N．N． 6° W．
Magnetic bearings required．
9．（a）Magnetic bearing required－

Sblp＇a bead by compass．	Bearing by сотраяя．	Deviation．	Ship＇s head by compass．	Bearing by compass．	Deviation．
N.	N． $32^{\circ} \mathrm{W}$.		S．	N． $20^{\circ} \mathrm{E}$ ．	
N．E．	N． $20^{\circ} \mathrm{W}$ ．		S．W．	N． $9^{\circ} \mathrm{E}$ ．	
E．	N． $5^{\circ} \mathrm{E}$ ．		W．	N． $15^{\circ} \mathrm{W}$ ．	
S．E．	N． $17^{\circ} \mathrm{E}$ ．		N．W．	N． $31^{\circ} \mathrm{W}$ ．	

（b）Magnetic courses ：S． 65° W．N．W．N． 32° E．E．
Compass courses required．
（c）Compass courses：N．N．E．by N．E．by S．S．W．$\frac{1}{2}$ S．
Magnetic courses required．
（d）Ship＇s head by compass \mathbf{E} ．
Bearings by compass：W．$\frac{1}{4}$ N．S．by W．$\frac{3}{4}$ W． Magnetic bearings required．

10．（a）Magnetic bearing required－

Sbip＇s bead by compass．	Bearing by сотравя．	Deviatism．	Sbip＇s head by compass．	Bearing by сотравs．	Deviation．
N．	A． $43^{\circ} \mathrm{W}$ ．		S	W．	
N．E．	S． $50^{\circ} \mathrm{W}$ ．		S．W．	S． $83^{\circ} \mathrm{W}$ ．	
E．	S． $65^{\circ} \mathrm{W}$ ．		W．	S． $65^{\circ} \mathrm{W}$ ．	
S．E．	S． $80^{\circ} \mathrm{W}$ ．		N．W．	S． $45^{\circ} \mathrm{W}$ ．	

（b）Correct magnetic courses ：S．E．by E．N．N．E．N．W．$\frac{1}{2}$ W． S． $10^{\circ} \mathrm{W}$ ．
Compass courses required．
（c）Compass courses ：N．W．by W．N．by W．N．E．$\frac{1}{2}$ E．S． 50° E． Magnetic courses required．
（d）Ship＇s head：E．$\frac{1}{2}$ N．
Bearings by compass：S．E．$\frac{3}{4}$ E．N．E．by N． Maynetic bearings required．
11. (a) Magnetic bearing required-

Ship's head by compsss.	Bearing by compass.	Deviation.	Ship's head by compass.	Bearing by compass.	Devistion.
N.	S. $2^{\circ} \mathrm{W}$.		S.	S. $29^{\circ} \mathrm{E}$.	
N.E.	R. $7^{\circ} \mathrm{W}$.		S.W.	S. $26^{\circ} \mathrm{E}$.	
E.	S. $6^{\circ} \mathrm{E}$.		W.	S. $15^{\circ} \mathrm{E}$.	
S.E.	S. $16^{\circ} \mathrm{E}$.		N.W.	S. $3^{\circ} \mathrm{E}$.	

(b) Magnetic courses : W. N. 30° E. S. 56° E. S. 3° W. Compass courses required.
(c) Compass courses : E. N.E. by N. $\frac{1}{4}$ N. N.W. by W. S. 3° E; Magnetic courses required.
(d) Ship's head by compass: S.E.

Bearings by compass: N. E. by N. $\frac{3}{4}$ N. Magnetic bearings required.
12. (a) Magnetic bearing required-

Ship's hand by compass.	Berring by compass.	Devistion.	Ship's head by compass.	Beariog by compass.	Deviation.
N.	N.		S.	N. $21^{\circ} \mathrm{W}$.	
N.E.	N. $7^{\circ} \mathrm{E}$.		S.W.	N. $17^{\circ} \mathrm{W}$.	
E.	N. $10^{\circ} \mathrm{W}$.		W.	N. $18^{\circ} \mathrm{E}$.	
S.E.	N. $13^{\circ} \mathrm{W}$.		N.W.	N. $16^{\circ} \mathrm{E}$.	

(b) Magnetic courses : E.S.E. S.S.E. W. by N. N.E. $\frac{1}{4}$ N. Compass courses required.
(c) Compass courses: N. $\frac{1}{2}$ W. W. $\frac{3}{4}$ N. N.E. $\frac{3}{4}$ N. E. Magnetic courses required.
(d) Ship's head by compass: N.E.

Bearings by compass:S.W. $\frac{1}{4}$ S. S.E $\frac{3}{4}$ S.
Magnetic bearings required.

CHAPTER XXI.

great circle sailing.

Art. 95. -A circle is really a plane surface bounded by a line called the circumference, but it is common to speak of this line as the circle.

A great circle of the globe is one which divides it in halves. Hence the Equator is a great circle, and as all great circles bisect one another, every other great circle must intersect the Equator in two opposite points (Fig. 146). A meridian of longitude cuts the Equator at right angles, but other great circles cross it more or less obliquely, and go to equal distances north and south. The two points on the Great Circle which are farthest from the Equator are called the Vertexes, and the meridian of longitude which passes through the Vertex is called the Meridian of Vertex.

Fig. 146.

Now, the shortest distance between any two places on the globe is the arc of the Great Circle passing through them. Therefore, when this route is practicable, the navigator would save time in a sailing vessel, and coals as well as time in a steamship, by following the Great Circle track.

Illustration (Fig. 147).-Let A be the starting-point, and B the destination, AVB the arc of the Great Circle passing through the two places, P the north pole, PA and PB the meridians of longitude through A and B, and V the highest latitude reached on the parallel $L L_{1}$ and meridian of vertex PVM; then-

The $\angle \mathrm{APB}$ is the Difference of Longitude of A and B.
The $\angle P A B$ is the Initial Course.
The $\angle \mathrm{PBA}$, Final Course.
AB " Distance on the Great Circle.

Fig 147.
$v \mathrm{~V}$ is the Latitude of Vertex.
The \angle APV (or arc $a v$) is the Longitude of A from Vertex.

The $\angle \mathrm{BPV}$ (or arc $b v$) is the Longitude of B from Vertex.
PA and PB, Co-latitudes of A and B.
PV, Co-latitude of Vertex.
$1,2,3,4,5,6$, points on the Great Circle.
N.B.-The Meridian of Vertex is at right angles to the Great Circle.

Inspection of the figure shows that the course from A would first be northerly until the Vertex is reached, where it would be due east, and then southerly to B. From B to A these directions would be reversed.

In proceeding along the Great Circle the course would change at each instant, but as this would not be possible in navigation, Great Circle sailing in practice consists in fixing the latitude and longitude of a number of points on the circle, and then shaping courses from point to point by Mercator's sailing. The greater the number of points chosen the nearer would the ship's track approximate to the Great Circle.

The co-latitudes PA and PB and the distance AB are three sides of a spherical triangle, of which two sides (the co-latitudes) and the included angle (difference of longitude) are known. From these data all the other details can be found by the principles of spherical trigonometry.

These details are-
(1) The initial and final courses.
(2) The distance on the Great Circle.
(3) The latitude and longitude of Vertex.
(4) The longitude from Vertex of A and B.
(5) The latitudes and longitudes of points on the Great Circle.
(6) The courses and distances by Mercator from point to point.

Arr. 96. Great Circle Sailing (Fig. 148).-Let $A B$ be the arc of a great circle from the startingpoint (A) to the destination (B), and CA, CB ares of meridians of longitude; then the angles A and B are the initial and final courses, the angle C is the difference of longitude, and CA, CB the co-latitudes of A and B .

Also, let the arc CV be drawn at right angles to $A B$; then V is the vertex, and CV the co-latitude of vertex, putting the letters a, b, c for the sides respectively opposite the angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$,
 and using the formulæ for obliqueangled spherical triangles when two sides and included angle are known, we have -

$$
\begin{aligned}
\operatorname{Tan} \frac{1}{2}(\mathrm{~A}+\mathrm{B}) & =\frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} \cdot \cot \frac{1}{2} \mathrm{C} \\
\operatorname{Tan} \frac{1}{2}(\mathrm{~A}-\mathrm{B}) & =\frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)} \cdot \cot \frac{1}{2} \mathrm{C} \\
\text { The greater angle }(\mathrm{A}) & =\frac{1}{2}(\mathrm{~A}+\mathrm{B})+\frac{1}{2}(\mathrm{~A}-\mathrm{B}) \\
" \quad \text { lesser } \quad(\mathrm{B}) & =\frac{1}{2}(\mathrm{~A}+\mathrm{B})-\frac{1}{2}(\mathrm{~A}-\mathrm{B}) \\
\cos \frac{1}{2} c & =\frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2}(\mathrm{~A}+\mathrm{B})} \cdot \sin \frac{1}{2} \mathrm{C} \\
& =\cos \frac{1}{2}(a+b) \cdot \sec \frac{1}{2}(\mathrm{~A}+\mathrm{B}) \cdot \sin \frac{1}{2} \mathrm{C}
\end{aligned}
$$

The latitude of vertex, longitude from vertex, and the latitudes of points on the great circle are found by applying the rules for the solution of right-angled spherical triangles.

1. To find "Latitude of Vertex."-In the right-angled triangle $A C V$ are known the angle A and the side AC.

Taking CV (co-latitude of V) as middle part, the opposite parts are comp. of A and comp. of $A C$;

$$
\begin{aligned}
\text { therefore } \sin C V & =\cos (\text { comp. of } A) \times \cos (c o m p . ~ o f ~ A C) ~ \\
& =\sin A \times \sin A C
\end{aligned}
$$

2. To find "Longitude from Vertex" of A, viz. the angle ACV.-In the same triangle, taking comp. of $A C$ as middle part, comp. of ACV, and the comp. of A are adjacent parts;

$$
\begin{aligned}
\therefore \sin (\text { comp. of } A C) & =\tan (\text { comp. of } A C V) \cdot \tan (\text { comp. of } A) \\
\text { Hence } \cos A C & =\cot A C V \cdot \cot A \\
\text { or } \cot A C V & =\cos A C \cdot \tan A
\end{aligned}
$$

Similarly, the latitude of V and "longitude from V" of B can be found from the triangle BCV.

The longitude of the vertex can be found by applying the "longitude from vertex" to the longitude of A or B.
3. To find the Latitude of a Point (p) whose "Longitude from Vertex" (is assumed) (viz. the angle pCV).-In the right-angled triangle $\rho \mathrm{VC}$, the side CV and the angle $\rho \mathrm{CV}$ being known-

$$
\begin{aligned}
\sin (\text { comp. of } p \mathrm{CV}) & =\tan \mathrm{CV} \times \tan (\text { comp. of } \mathrm{C} p) \\
\text { or } \cos p \mathrm{CV} & =\tan \mathrm{CV} \times \cot \mathrm{C} p \\
\text { transposing, } \cot \mathrm{C} p & =\frac{\cos p \mathrm{CV}}{\tan \mathrm{CV}}=\cos p \mathrm{CV} \times \cot \mathrm{CV}
\end{aligned}
$$

Similarly, the latitudes of other points on the great circle track can be found. The courses and distances from point to point are calculated as in Mercator's sailing.

Art. 97. Naming the Courses.-When the Vertex falls on the portion of the G.C. arc joining the two places, it is said to be "in;" when the Vertex is not situated on this arc, but on the arc produced, it is said to be "out." This can be decided
when the initial and final courses have been computed; for if they are on the same side of 90° the vertex is "in," but if one is greater and the other less than 90° it is "out," and is in every case on the same side of the Equator as the greater latitude.

The first course is always of the same name, N. or S., as the Pole used in the calculation; the last course of contrary name to this; both are named E. or W. like a Mercator course.

Fig. 149.

Example.-Vertex "in."
Required the initial and final courses and the distance on the Great Circle from (A) San Lucas to (B) Yokohama; also the position of the Vertex, and position of points on G.C. differing 10° in longitude.

A lat. $22^{\circ} 52^{\prime} \mathrm{N} . \therefore \mathrm{PA}=67^{\circ} 8^{\prime}$ long. $109^{\circ} 53^{\prime} \mathrm{W}$.
B,

$\mathrm{PA}+\mathrm{PB}=12142$	249	32
$\frac{1}{2}(\mathrm{PA}+\mathrm{PB})=6051$	360	0
$\mathrm{PA}-\mathrm{PB}=1234$		28
$\frac{1}{2}(\mathrm{PA}-\mathrm{PB})=617$		

In triangle PAB , given PA, PB, and P , required A, B, and AB .

$$
\begin{aligned}
\operatorname{Tan} \frac{B+A}{2} & =\frac{\cos \frac{1}{2}(P A-P B)}{\cos \frac{1}{2}(P A+P B)} \cdot \cot \frac{P}{2} \\
\operatorname{Tan} \frac{B-A}{2} & =\frac{\sin \frac{1}{2}(P A-P B)}{\sin \frac{1}{2}(P A+P B)} \cdot \cot \frac{P}{2} \\
\operatorname{Cos} \frac{A B}{2} & =\frac{\cos \frac{1}{2}(P A+P B)}{\cos \frac{1}{2}(B+A)} \cdot \sin \frac{P}{2}
\end{aligned}
$$

$\frac{1}{2}(\mathrm{PA}+\mathrm{PB})=60^{\circ} 51^{\prime}$	sec $=10 \cdot 312384$	cosec $=10.058813$	$\cos =9.687616$
$\frac{1}{2}(\mathrm{PA}-\mathrm{PB})=617$	$\cos =9.997383$	$\sin =9 \cdot 039197$	
$\frac{P}{2}=55 \quad 14$	$\cot =9.841457$	$\cot =9 \cdot 841457$	$\sin =9 \cdot 914598$
$\frac{1}{2}(\mathrm{~B}+\mathrm{A})=54^{\circ} 46^{\prime} 45^{\prime \prime}$	$\tan =10 \cdot 151224$		sec $=10 \cdot 239029$
$\frac{1}{2}(B-A)=45830$	$\tan =8.939467$	
$\mathrm{B}=\mathrm{S} .594515$	W. Final course	$46^{\circ} 4^{\prime} 2^{\prime \prime}$	$\cos =9 \cdot 841243$
$\mathrm{A}=\mathrm{N} .494815$	W. Initial ",		

$$
\mathrm{AB}=9284=5528 \cdot 1 \text { miles } .
$$

Since A and B are of same affection, vertex is "in."
To find position of vertex "V."
In triangle $\mathrm{PAV}, \mathrm{V}=90^{\circ}$. Given PA and A , required $\mathrm{PV}=$ co-lat. V , $\mathbf{P}=d$ long. of \mathbf{V} from \mathbf{A}.
$\sin \mathrm{PV}=\cos (\mathrm{co} . \mathrm{A}) \cdot \cos (\mathrm{co} \mathrm{PA}$.$) and \sin (\mathrm{co} . \mathrm{PA})=\tan (\mathrm{co} . \mathrm{P}) \cdot \tan (\mathrm{co} . \mathrm{A})$
$=\sin A \cdot \sin P A \quad$ or $\cos P A=\cot P$. $\cot A$
$\therefore \cot P=\cos P A . \tan A$

$$
\begin{aligned}
& A=49^{\circ} 48^{\prime} 15^{\prime \prime} \sin =9 \cdot 883004 \quad \ldots \quad . . . \quad \tan =10 \cdot 073174 \\
& \mathrm{PA}=67 \quad 8 \quad \sin =9.964454 \quad \ldots \quad \text {... } \cos =9.589489 \\
& \mathrm{PV}=4444 \quad \sin =\overline{9.847458} \quad \ldots 65^{\circ} 18^{\prime} \cot =9 \cdot 662663 \\
& \therefore \text { Lat. } V=45^{\circ} 16^{\prime} \mathrm{N} \text {. Long. A } 109^{\circ} 53^{\prime} \mathrm{W} \text {. } \\
& \therefore \text { Long. V } 17511 \mathrm{~W} \text {. }
\end{aligned}
$$

To find "points" on the G.C. differing 10° in long.-Since no particular neridian is stated in the question as the starting-point, the simplest way is so calculate from the vertex, using the angles at P or differences of long. as $10^{\circ}, 20^{\circ}, 30^{\circ}$, etc. As the total d long. between A and V is $65^{\circ} 18^{\prime}$, the number of points will be $\frac{65}{10}=6$. The latitudes of points equally distant from the vertex are the same; hence, these lats. will do for either side of vertex.

Thus, if $1,2,3,4,5,6$ represent points, respectively $10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}$, $50^{\circ}, 60^{\circ}$ from the vertex, there are a series of triangles, PV1, PV2, PV3, etc., to solve, all right angled at V ; PV is co-lat. V , and angles at P are 10°, $20^{\circ}, 30^{\circ}$, etc., to find P1, P2, P3, etc.-

$$
\begin{aligned}
\operatorname{Sin}(\operatorname{co.P}) & =\tan P V \cdot \tan (c o . P 1) \\
\therefore \cot P 1 & =\cos P \cdot \cot P V .
\end{aligned}
$$

$\mathrm{PV}=44^{\circ} 44^{\prime} \quad$ cot $=10.004043$	\ldots	... cot $=10.004043$
$\mathrm{P}=10 \quad \cos =9.993351$ $20^{\circ} \cos =9.972986$
$4510 \frac{1}{2}$ cot $=9.997394$...	$46^{\circ} 31^{\prime} \cot =9.977029$
$\mathrm{PV}=44^{\circ} 44^{\prime} \quad$ cot $=10.004043$	\ldots	cot $=10 \cdot 004043$
$\mathbf{P}=30 \quad \cos =9.937031$...	$\ldots 40^{\circ} \cos =9.884254$
$4850{ }^{\prime}{ }^{\prime}{ }^{\prime}$ cot $=9.941574$	\ldots	$52^{\circ} 17 \frac{1}{2}^{\prime}$ cot $=9.888297$
$\mathrm{PV}=44^{\circ} 44^{\prime}$ cot $=10.004043$...	$\boldsymbol{c o t}=10 \cdot 004043$
$\mathrm{P}=50 \quad \cos =9 \cdot 808067$...	$\ldots 60^{\circ}$ cos $=9.698970$
57 13 ${ }^{\frac{1}{2}}$ cot $=9.812110$. \cdot	$63^{\circ} 13 \frac{1}{2}^{\prime} \cot =9 \cdot 703013$

These are the co-lats. of the points which may now be arranged in order from A to B, thus-

A			52^{\prime}		lon		53	W.
A	,,	26	$46 \frac{1}{2}$	N.		115	11	W.
5	,	32	58	N.	,	125	11	W.
4	"	37	42 L	N.	,"	135	11	W.
3	",	41	$9{ }^{1}$	N.	,	145	11	W.
2	",	43	29°	N.	"	155	11	W.
1	"	44	493	N.		165	11	W.
Vertex	",	45	16	N.		175	11	W.
1	,'	44	$49 \frac{1}{2}$	N.		174	49	E .
2	"	43	29	N.		164	49	E.
3	"	41	91	N.		154	49	E.
4	",	37	42 I	N.		144	49	E.
B Yokohama	"	35	26	N.		139	39	E.

These positions set off on a chart and joined by a curve, give the G.C. track.
As it is impossible to keep a ship on the track, points are taken differing very little in long., say 2°, and courses steered from point to point by Mercator. Slould a vessel be driven far from the track by stress of weather, the navigator should strike a new G.C. from the actual position of the ship, and not work back to the original one.

Example. Vertex "out."
Required the initial and final courses, and distance on the G.C. from Start to Barbadoes; also position of the vertex, and position of a succession of points differing 5° in long. commencing where the $5^{\circ} \mathrm{W}$. meridian cuts the track.

Fig. 150.

Start lat. $50^{\circ} 13^{\prime} \mathrm{N} . \mathrm{AP}=39^{\circ} 47^{\prime}$ long. $3^{\circ} 39^{\prime} \mathrm{W}$. Barb. „ 133 N. $\mathrm{BP}=7657$,, 5737 W . $\mathrm{BP}+\mathrm{AP}=11644 \quad \mathrm{P}=53 \quad 58$ $\frac{1}{2}(\mathrm{BP}+\mathrm{AP})=5822 \quad \frac{\mathrm{P}}{2}=2659$ $\mathrm{BP}-\mathrm{AP}=3710$ $\frac{1}{2}(\mathrm{BP}-\mathrm{AP})=1835$
To solve triangle APB , having given PA , PB , and P .

$$
\begin{aligned}
\operatorname{Tan} \frac{1}{2}(A+B) & =\frac{\cos \frac{1}{2}(B P-A P)}{\cos \frac{1}{2}(B P+A P)} \cdot \cot \frac{P}{2} \\
\operatorname{Tan} \frac{1}{2}(A-B) & =\frac{\sin \frac{1}{2}(B P-A P)}{\sin \frac{1}{2}(B P+A P)} \cdot \cot \frac{P}{2} \\
\operatorname{Cos} \frac{A B}{2} & =\frac{\cos \frac{1}{2}(B P+A P)}{\cos \frac{1}{2}(A+B)} \cdot \sin \frac{P}{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2}(\mathrm{BP}+\mathrm{AP}) & =58^{\circ} \quad 22^{\prime} \\
\frac{1}{2}(\mathrm{BP}-\mathrm{AP}) & =18 \quad 35 \\
\frac{\mathrm{P}}{2} & =26 \quad 59
\end{aligned}
$$

$$
\mathrm{sec}=10 \cdot 280270
$$

$$
\begin{aligned}
\cos & =9 \cdot 976745 \\
\cot & =10 \cdot 293146 \\
\tan & =10 \cdot 550161
\end{aligned}
$$

$$
\sin =9 \cdot 503360
$$

$$
\tan =9 \cdot 866361
$$

$$
\operatorname{cosec}=10 \cdot 069855 \quad \cos =9 \cdot 719730
$$

$$
\cot =10 \cdot 293146 \quad \sin =9 \cdot 656799
$$

$$
\begin{array}{lll}
(\mathrm{A}+\mathrm{B})=74^{\circ} 15^{\prime} & 57^{\prime \prime} \\
(\mathrm{A}
\end{array}
$$

$$
\mathrm{sec}=10 \cdot \delta 66751
$$

$$
\frac{1}{2}(A-B)=36 \quad 1914
$$

$\mathrm{A}=\mathrm{N} . \begin{array}{rrr}110 & 35 & 11 \mathrm{~W} . \text { or } \mathrm{S} .69^{\circ} 24^{\prime} 49^{\prime \prime} \text { W. 1st Co. } 28^{\circ} 39^{\prime} \cos =9 \cdot 943280\end{array}$ B=S. 375643 W . Final Course.

Distance $5718=3438$ miles.
Since A and B are of contrary affection, vertex is "out."
To find position of vertex "V."
In triangle $\mathrm{APV}, \mathrm{V}=90^{\circ}$. Given AP and A , to find PV and P .
$\sin P V=\cos (c o . A P) \cdot \cos (c o . A)$ and $\sin (c o . A P)=\tan (c o . A) \cdot \tan (c o . P)$ $=\sin \mathrm{AP} . \sin \mathrm{A}$
or $\cos A P=\cot A \cdot \cot P$
$\therefore \cot P=\cos A P . \tan A$

To find a succession of points.
First point where $5^{\circ} \mathrm{W}$. meridian cuts the track.
Long. from V of $1=22^{\circ} 23 \frac{1}{2}^{\prime}+5^{\circ}=27^{\circ} 23 \frac{1}{2}^{\prime}$
In triangle PV1; $\mathrm{V}=90^{\circ}$ given PV and P ; to find P1
$\sin (c o . P)=\tan (c o . P 1) \cdot \tan \mathrm{PV}$
or $\cos P=\cot P 1 . \tan P V$
$\therefore \cot \mathrm{PI}=\cos \mathrm{P} . \cot \mathrm{PV}$

$$
\begin{aligned}
& \mathrm{AP}=39^{\circ} 47^{\prime} \sin =9 \cdot 806103 \quad \ldots \quad . . . \quad \cos =9 \cdot 885627 \\
& A=6925 \sin =9.971351 \quad \ldots \quad . . . \quad \tan =10 \cdot 425340 \\
& \mathrm{PV}=3648 \sin =9.777454 \quad 26^{\circ} \quad 21_{2}^{\prime} \mathrm{E} . \cot =10.310967 \\
& \text { Lat. } V=5312 \mathrm{~N} \text {. Long. A } 33^{2} \mathrm{~W} \text {. } \\
& \text { Long. V } 22 \text { 23咅 E. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}=27^{\circ} 23 \frac{1}{2}^{\prime} \cos =9.948355 \quad \ldots 32^{\circ} 23 \underline{1}^{\prime} \cos =9.926551 \\
& \mathrm{PV}=36 \quad 48 \quad \cot =10 \cdot 126043 \quad \ldots \quad \text {... } \cot =10 \cdot 126043 \\
& \mathrm{P} 1=40 \quad 7 \quad \cot =10.074398 \mathrm{P} 2=41 \quad 32 \frac{1}{2} \cot =10.052594 \\
& \text { Points.-1, lat. } 49^{\circ} 53^{\prime} \text { N. long. } 5^{\circ} \mathrm{W} \text {. } \\
& 2, \text {, } 4827 \frac{1}{2} \mathrm{~N} ., 10 \mathrm{~W} \text {. } \\
& \text { and so on. }
\end{aligned}
$$

Art. 98. Composite Great Circle and Parallel Sailing.-When the Great Circle track would take the ship into too high a latitude, then a combination of Great Circle sailing and Parallel sailing is used to obtain the shortest route.

The highest practicable latitude is made the latitude of vertex for the arcs of two Great Circles, one passing through the starting-point, and the other through the destination. The route would then be along the first arc to the Vertex, next on

Fig. 152. the parallel of latitude to the Vertex of the other arc, and finally along this are to the destination.

Illustration (Fig. 151).-Let A be the point of departure, and B the destination, and AVB the arc of the Great Circle whose vertex is V. The parallel LL_{1} is assumed to be the highest practicable latitude. $A V_{1}$ and $B V_{2}$ are ares of two great circles touching the parallel, $V_{1} V_{2}$ is the arc of the parallel of latitude or meridian distance, $P V_{1}$ and $P V_{2}$ are arcs of the meridians of vertexes and make right angles with $A V_{1}$ and $B V_{2}$. The solutions, therefore, depend on right-angled spherical trigonometry and parallel sailing.

Example (Fig. 152).-Required the distance on the composite track from Rio to Cape Leeuwin, taking 55° as the limit of S. latitude; also the initial and final courses.

$$
\text { Lat. of Rio } 23^{\circ} 4^{\prime} \mathrm{S} .
$$

Long. of Rio $43^{\circ} 8^{\prime} \mathrm{W}$.
Lat. of C. Leeuwin $34^{\circ} 19^{\prime} \mathrm{S}$.
Long. of C. Leeuwin $115^{\circ} 6^{\prime} \mathrm{E}$.
(1) To find the distances $A T_{1}$ and BV_{2}.
In triangle $P A V_{1}, V_{1}=90^{\circ}$ given AP and $P V_{1}$
$\sin (\cos A P)=\cos A V_{1} \cdot \cos P V_{1}$
$\therefore \cos A V_{1}=\cos A P . \sec P V_{1}$
Similarly, $\cos B V_{2}=\cos B P . \sec P V_{2}$

6476 geographical miles.
(2) To find the differences of long. APV_{1} and BPV_{2}, or longitudes from Vertex.

$$
\begin{aligned}
\sin (\operatorname{co.} P) & =\tan P V_{1} \cdot \tan (c o . A P) \\
\therefore \cos P & =\tan P V_{1} \cdot \cot A P \\
\text { and } \cos P & =\tan P V_{2} \cdot \cot B P
\end{aligned}
$$

Co-lat. of A $66^{\circ} 56^{\prime} \quad \ldots \quad \cot 9 \cdot 62925 \bar{o}$

Co-lat. of V_{1} " ${ }^{\text {and }}$| V_{2} | B5 | 55 | 41 | \ldots | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- |

D. long of A and $V_{1} 72 \quad 39 \quad \ldots \quad \cos 9 \cdot 474482$
B and $\mathrm{V}_{2} 61 \quad 27 \quad \ldots \quad$... $\quad \ldots \quad$... $\quad \cos \overline{9 \cdot 679381}$
Sum $134 \quad 6$
Total D. long 15814
D. long. $\nabla_{1} V_{2} 24 \quad 8=1448$ geographical miles.
(3) To find the meridian distance between V_{1} and V_{2}.
$\begin{array}{ccccc}\text { D. long. } 1448 & \ldots & \ldots & \log 3 \cdot 160769 \\ \text { Lat. } & 55^{\circ} & \ldots & \ldots & \cos 9 \cdot 758591\end{array}$
Mer. dist. $830 \cdot 5$... ... $\log 2.919360$
Arcs of Great Circles 6476
Total dist. $7306 \cdot 5$
Note.-The distance on the Great Circle between A and B is 7131 miles.
(4) To compute the initial and final courses.
$\sin \mathrm{PV}_{1}=\cos (\mathrm{co} . \mathrm{AP}) \cdot \cos (\mathrm{co} . \mathrm{A})$
$=\sin A P \cdot \sin A$
$\therefore \sin A=\sin P V_{1} \cdot \operatorname{cosec} A P$
and $\sin \mathrm{B}=\sin \mathrm{PV}_{2} \cdot \operatorname{cosec} \mathrm{BP}$
Co-lat. of A $66^{\circ} 56^{\prime} \quad \ldots \quad \operatorname{cosec} 0.036189$

$$
\begin{array}{llllllll}
\text { B } & 55 & 41 & \cdots & \cdots & \cdots & \cdots & \operatorname{cosec} 0.083054
\end{array}
$$

Co-lat. of' V_{1} and $\mathrm{V}_{2} 35 \quad 0 \quad \ldots \quad$ sine $9 \cdot 758591 \quad \ldots \quad$ sine $9 \cdot 708591$
Initial co. S. $38 \quad 34 \mathrm{E} . .$.
Final co. N. 4359 E....

| sine 9.794780 | | |
| :--- | :--- | :--- | :--- |
| \ldots | \ldots | ... |
| ... | | |
| 9.841645 | | |

(5) To find the longitudes of V_{1} and V_{2}.
Long. of $\mathbf{A} 43^{\circ} 8^{\prime} \mathrm{W}$.
Long. of $B \quad 115^{\circ} \quad 6^{\prime} \mathbf{E}$
D. Long. to $\mathrm{V}_{1} 7239 \mathrm{E}$.
D. long. to $\mathrm{V}_{2} 6127 \mathrm{~W}$.

Long. of $V_{1} 2931 \mathrm{E}$.
Long. of $\mathrm{V}_{2} \quad 53 \quad 39 \mathrm{E}$.

Various points on the arcs AV_{1} and BV_{2} can be fixed as in G.C.S. either by assuming intervals of longitude from V_{1} towards A , and from V_{2} towards B, or by working from a fixed meridian to destination.

Arr. 99. Windward Great Circle Sailing.-What is called Windward Great Circle sailing applies only to sailing vessels, and consists in putting the ship on the tack on which her course would be nearest to the Great Circle track withont reference to the Rhumb or Chart course, which in some cases would differ four or five points or more from the former.

Illustration (Fig. 153).-Let O be the starting-point, and

Fig. 153.
suppose destination to bear E.S.E. by Chart, the Great Circle course from O being S.S.E.

With the wind at S.E., the course on the starboard tack would be E.N.E. and on the port tack S.S.W. It is evident that on the port tack the ship's head would only be four points off the shortest route, whilst on the starboard tack she would be steering at right angles to it. In sailing 100 miles on the former course the Traverse Table shows that she would make 70 miles towards her destination, but on the latter she would be no nearer to it, having sailed on a line at right angles to the direct route on the globe.

With the wind at S.E. by S., and steering S.W. by S. (apparently away from destination, according to chart), she would still gain 36 miles in 100 miles sailed, whilst on the starboard tack, steering E. by N., she would make good only 19 miles.

Other still more striking cases might be given, but the above are sufficient to show the advantage of the method.

All problems in Great Circle sailing, Composite sailing, and Windward Great Circle sailing can best be understood from a
globe. A pair of 12 -inch globes should be in every ship's equipment.

Exercises.-Great Circle Sailing.

1. Find the first and final courses from Cape of Good Hope, lat. $34^{\circ} 22^{\prime}$ S., long. $18^{\circ} 30^{\prime}$ E., to Rio Janeiro, lat. $22^{\circ} 55^{\prime}$ S., long. $43^{\circ} 9^{\prime} \mathrm{W}$. ; also find the distance, latitude, and longitude of Vertex, and a succession of points for every five degrees of longitude.
2. Find the first and last courses, and distance from San Francisco, lat. $37^{\circ} 49^{\prime}$ N., long. $122^{\circ} 29^{\prime}$ W., to Yokohama, lat. $35^{\circ} 26^{\prime}$ N., long. $139^{\circ} 39^{\prime}$ E., the latitude and longitude of Vertex, and a succession of points for every twenty degrees of longitude.
3. Find the initial and final courses, distance on the Great Circle, latitude and longitude of Vertex, and a succession of points differing 10° in longitude.

From A, lat. $33^{\circ} 51^{\prime} \mathrm{S} .$, long. $151^{\circ} 16^{\prime} \mathrm{E}$.
To B,,$~$
$\mathbf{\mathrm { N }}$.

4. Find the initial and final courses, distance on the Great Circle, latitnde and longitude of Vertex, and a succession of points differing 20° in longitnde.

From A, lat. 22°
To B,
16^{\prime}

5. Find the initial and final courses, distance on the Great Circle, latitude and longitude of Vertex, and a succession of points differing 5° in longitude.

From A, lat. $52^{\circ} 12^{\prime}$ N., long. $6^{\circ} 12^{\prime} \mathrm{W}$. To B, ,, $13 \mathrm{~N} .$, , 5925 W.
6. Find the initial and final courses, distance on the Great Circle, latitude and longitude of Vertex, in sailing.

> From R, lat. $43^{\circ} 40^{\prime} \mathrm{N} .$, long. $150^{\circ} 37^{\prime} \mathbf{E}$.
> To Q,, $43 \quad 40$ N., $150 \quad 37 \mathrm{~W}$.

Also find latitude of point where the meridian of $155^{\circ} \mathrm{E}$. cuts the track, and a succession of points differing 5° in longitude, from thence to destination.
7. Find the initial and final courses, distance on the Great Circle, position of Vertex, and a succession of points starting in long. $120^{\circ} \mathrm{W}$., and differing 5° in longitude to Equator.

> | From X., lat. $38^{\circ} 27^{\prime} \mathrm{N} .$, long. $100^{\circ} 26^{\prime} \mathrm{W}$. |
| :--- |
| To Y.,, $38 \quad 27$ |

8. A ship sails from Rio de Janeiro, lat. $22^{\circ} 54^{\prime}$ S., long. $43^{\circ} 6^{\prime}$ W., to Madeira, lat. $32^{\circ} 43^{\prime} \mathrm{N}$., long. $16^{\circ} 40^{\prime} \mathrm{W}$. Find longitude of point where the track crosses the Equator.
9. The point of "Maximum Separation in Latitude" on a Great Circle, is that point where the Great Circle course is the same as the Mercator course. Find the latitude of such a point in sailing from lat. $40^{\circ} 30^{\prime} \mathrm{N}$., long. 120 E., to lat. $45^{\circ} \mathrm{N}$., long. $172^{\circ} \mathrm{E}$.
10. One Vertex of a great circle is in lat. $50^{\circ} \mathrm{N} .70^{\circ} \mathrm{W}$. : what is position of the other Vertex? A ship sailing on a Great Circle crosses the Equator: show that the course at that time = complement lat. Vertex.
11. In sailing from lat. $34^{\circ} 51^{\prime} \mathrm{S}$., long. $20^{\circ} \mathrm{E}$., to lat. $34^{\circ} 19^{\prime} \mathrm{S}$., long. $115^{\circ} 6^{\prime} \mathrm{E}$., on a Great Circle arc, how far would the vessel be from Kerguelen island, lat. $49^{\circ} 54^{\prime} \mathrm{S}$., long. $70^{\circ} 12^{\prime} \mathrm{E}$., when upon same meridian as island?
12. A ship starts from A on the course N. $64^{\circ} 12^{\prime} E$., and sails on a Great Circle arc to \mathbf{B}; she increases her distance from the Equator till she gets into long. $19^{\circ} 26^{\prime} 30^{\prime \prime} \mathrm{W}$. on parallel $51^{\circ} 50^{\prime} 30^{\prime \prime} \mathrm{N}$., and then dimidishes it. Find lat. and long. of A and B, their diff. long. being $43^{\circ} 34^{\prime}$.

Exerctses.-Composite Sailing.

1. Find the first and last courses and distance from Bahia Blanca, lat. $38^{\circ} 59^{\prime}$ S., long. $61^{\circ} 39^{\prime}$ W., to Cape Lewin, lat. $34^{\circ} 31^{\prime}$ S., long. $115^{\circ} 6^{\prime} \mathrm{E}$. ; easting to be run on the parallel of $45^{\circ} \mathrm{S}$. Find also the longitudes of points of arrival at and departure from the parallel.
2. On a composite track from Cape S. Mary, lat. $16^{\circ} 40^{\prime}$ S., long. $50^{\circ} 4^{\prime}$ E., to Mont Video, lat. $34^{\circ} 43^{\prime}$ S., long. $56^{\circ} 16^{\prime}$ W., the westing to be run on the parallel of $40^{\circ} \mathrm{S}$. Required the first and last courses, total distance, and longitudes of points of arrival at and departure from the given parallel.
3. Find the first and last courses, distance, and longitudes of arrival at and departure from parallel of $50^{\circ} \mathrm{N}$. when sailing on a composite track from Yokohama, lat. $35^{\circ} 26^{\prime}$ N., long. $139^{\circ} 39^{\prime}$ E., to Cape Flattery, lat. $48^{\circ} 23^{\prime}$ N., long. $124^{\circ} 44^{\prime} \mathrm{W}$.
4. Find the first and last courses and distance when sailing on a composite track from Valparaiso, lat. $33^{\circ} 2^{\prime}$ S., long. $71^{\circ} 28^{\prime}$ W., to Port Lyttelton, lat. $43^{\circ} 36^{\prime}$ S., long. $172^{\circ} 50^{\prime}$ E., the westing being run on the latitude of Port Lyttelton; also the position of a succession of points from long. $73^{\circ} \mathrm{W}$., and every 5° to destination.

CHAPTER XXII.

Latitude by double altitudes.

Art. 100. Double Altitudes.-This is a problem for determining the latitude from-
(a) Two different altitudes of the same object (Sun, Moon, Star, or Planet).
(b) Simultaneous altitudes of two different objects.

The data required for the computation are-
(1) The polar angle.
(2) The two altitudes.
(3) The declination.

Definition.-The polar angle is the angle at the Pole between the hour circles passing through the two positions of the object or objects.
(1) For the Sun, the polar angle is the interval between the apparent times of observation ; therefore, if mean times are given, the equation of time must be applied to each, or the change of equation of time applied to the mean time interval.

The rule for applying this correction is-
If Eq. of Time be additive to mean time and increasing add.
", " subtractive from mean time and decreasing add.
", " additive to mean time and decreasing subtract.
"" "" subtractive from mean time and increasing subtract.
Thus, if the mean interval on August 28th is $4^{\mathrm{h}} 30^{\mathrm{m}} 18^{\mathrm{s}}$, what is the apparent interval?

$$
\text { H.V. Eq. of T. } 72
$$

Int. $4: 5$

360
288
$3 \cdot 240$

Mean Int. $4^{\mathrm{h}} 30^{\mathrm{m}} 18^{\mathrm{s}}$
Change in Int. $\quad+3.2$
App. Int. 4, $30 \quad 21.2$

The change being added because the Eq. of Time is subtractive from mean time and decreasing.
(2) A Star's polar angle is the interval of sidereal time
between the observations, and is found by accelerating the mean interval for the interval.

Thus, if the mean interval is $4^{\mathrm{n}} 30^{\mathrm{m}} 18^{\mathrm{s}}$, what is the sidereal interval?

> Mean Int. $4^{\text {h }} 30^{\mathrm{m}} 18^{\mathrm{s}}$
> Accel. for $\left\{\begin{array}{lr}4^{\mathrm{h}} & 39 \cdot 4 \\ 30^{\mathrm{m}} & 49 \\ 18^{\mathrm{s}} & \cdot 1\end{array}\right.$
> Sid. Int. 43124
(3) When simultaneous altitudes of two stars are observed, the polar angle is the difference between their right ascensions.
(4) For the Moon or a Planet, the polar angle is the sidereal interval, increased or decreased by the change in right ascension during the elapsed mean time, according as the R.A. of the object is decreasing or increasing.

Art. 101. Correction for "Run."-Both altitudes are supposed to be observed at the same place; therefore, if a ship changes her position during the interval, a correction depending on the course and distance run and the bearing of the object must be applied to one of the altitudes, in order to make it what it would be at the place where the other altitude is observed.

Thus, if the ship's course is the same as the bearing of the object at the first observation, that is, directly towards it, and the distance run ten miles, the first altitude would have to be increased by 10^{\prime}; but if the course is opposite to the bearing, that is, direetly away from the object, the first altitude will have to be decreased by 10^{\prime}; whilst if the course were at right angles to the bearing, there would be no correction.

When the course is obliquely towards or from the object, the angle between the bearing and the course must be found,

With this angle as a course in the Traverse Table and distance run in the Distance column, the correction will be found, in the Latitude column, and will be added to or subtracted from the first altitudes according as the course is tovards or from the Sun.

Illustration.-Let A and B be the ship's positions at the first and second observations respectively, and AS the direction of the object.

Fig. 154. Course directly towards the object; correction $=\mathrm{AB}+$

In Figs. 156 and 157 the angle at A is the course, and $A B$ the distance in the Traverse Table, and $\mathrm{A} b$ the latitude, since $\mathrm{B} b$ is a perpendicular upon AS.

When the bearing is given at the first observation, the computation gives the latitude at the second observation, and vice versâ.

Therefore, if the bearing at the second observation is given, the "correction for run" must be applied to the second altitude, reversing the rule for applying it; that is,

Fig. 158. if the run is towards the object, subtract the correction from the second altitude, and if from the object, add the correction. The latitude found is the latitude at the first observation.

Of the various methods for solving the problem, the best known is "Ivory's method," but the latitude found requires a correction for the change of declination in half the elapsed time.

Art. 102. Double Altitudes. Ivory's Method.--Let S and S_{1} be

Fig. 159.

Fif. 160.
the two positions of the celestial body, and SS_{1} the arc of a great
circle, bisected in M ; PS or PS_{1}, the polar distance ; ZS and ZS_{1}, the zenith distances; PZ, the co-lat. ; and ZA, a perpendicular on PM. The angle MPS $=\frac{1}{2}$ elapsed time, or $\frac{1}{2}$ polar angle. MS is are $1, \mathrm{ZA}$ are $2, \mathrm{AM}$ arc $3, \mathrm{PM}$ are 4 , and PA are 5 .

To find Arc 1 (MS).-In the right-angled triangle PMS are given PS (polar distance) and the angle MPS ($\frac{1}{2}$ polar angle), to find MS.
$\operatorname{Sin} \mathrm{MS}=\cos (\mathrm{comp}$. of MPS $) \times \cos$ (comp. of PS)
or \sin MS $=\sin$ MPS $\times \sin$ PS
that is, \sin arc $I=\sin \frac{1}{2}$ polar angle $\times \cos$ declination or cosec arc $1=\operatorname{cosec} \frac{1}{2}$ polar angle \times sec declination
To find Arc 2 (ZA).-Applying the general formula to the triangle ZMS-
$\cos Z S=\cos$ ZMS. \sin ZM.sin MS + cos ZM. \cos MS . (1) Similarly, in the triangle ZMS_{1} -
$\cos \mathrm{ZS}_{1}=-\cos \mathrm{ZMS} \cdot \sin \mathrm{ZM} \cdot \sin \mathrm{MS}+\cos \mathrm{ZM} \cdot \cos \mathrm{MS}$. (2) (because ZMS_{1} is the supplement of ZMS , and $\mathrm{MS}_{1}=\mathrm{MS}$). Subtracting (2) from (1)-

$$
\begin{align*}
& \qquad \cos \mathrm{ZS}-\cos Z S_{1}=2(\cos \mathrm{ZMS} \cdot \sin \mathrm{ZM} \cdot \sin \mathrm{MS}) \\
& \text { i.e. } \sin \mathrm{XS}-\sin \mathrm{YS} S_{1}=2(\sin \mathrm{AMZ} \cdot \sin \mathrm{ZM} \cdot \sin \mathrm{MS}) \tag{3}\\
& \text { (because the alts. } \mathrm{XS} \text { and } \mathrm{YS} \mathrm{~S}_{1} \text { and the angle } \mathrm{AMZ} \text { are the } \\
& \text { complements of } \left.\mathrm{ZS}, \mathrm{ZS} S_{1} \text {, and } \mathrm{ZMS}\right) \text {. } \\
& \text { In the right-angled triangle AMZ- } \\
& \sin \mathrm{AZ}=\sin \mathrm{AMZ} \cdot \sin \mathrm{ZM}
\end{align*}
$$

Substituting $\sin A Z$ in equation (3)-
$\sin \mathrm{XS}-\sin \mathrm{YS}_{1}=2 \sin \mathrm{AZ} . \sin \mathrm{MS}$

$$
\begin{aligned}
\therefore 2 \sin \mathrm{AZ} & =\frac{\sin \mathrm{XS}-\sin Y S_{1}}{\sin M S} \\
\sin \mathrm{AZ} & =\frac{\cos \frac{1}{2}\left(X S+Y S_{1}\right) \cdot \sin \frac{1}{2}\left(X S-Y S_{1}\right)}{\sin M S}
\end{aligned}
$$

that is, \sin arc $2=\cos \frac{1}{2}$ sum of alt $: . \sin \frac{1}{2}$ diff. of alts. . cosec arc 1

> To find Arc 3 'AM).-Adding equations (1) and (2)$\cos \mathrm{ZS}+\cos Z \mathrm{~S}_{1}=2 \cos \mathrm{ZM} \cdot \cos \mathrm{MS}$

But in the right-angled triangle $A M Z, \cos Z M=\cos A M \cdot \cos A Z$;

$$
\begin{aligned}
\therefore \cos Z S+\cos Z S_{1} & =2 \cos A M \cdot \cos A Z \cdot \cos M S \\
\text { or } \sin X S+\sin Y S_{1} & =2 \cos A M \cdot \cos A Z \cdot \cos M S \\
\therefore \cos A M & =\frac{\sin X S+\sin Y S_{1}}{2 \cos A Z \cdot \cos M S} \\
& =\frac{\sin \frac{1}{2}\left(X S+Y S_{1}\right) \cos \frac{1}{2}\left(X S-\mathrm{YS}_{1}\right)}{\cos A Z \cdot \cos M S}
\end{aligned}
$$

that is, $\cos \operatorname{arc} 3=\sin \frac{1}{2}$ sum of alts. $\times \cos \frac{1}{2}$ diff. alts. \times sec are $2 \times$ sec arc 1

To find Arc 4 (PM).-In the right-angled triangle PMS-
$\cos \mathrm{PS}=\cos \mathrm{MS} . \cos \mathrm{PM}$
$\therefore \cos \mathrm{PM}=\frac{\cos \mathrm{PS}}{\cos \mathrm{MS}}=\cos \mathrm{PS} . \sec \mathrm{MS}$
that is, $\cos \operatorname{arc} 4=\sin$ dec. $\times \sec \operatorname{arc} 1$
To find Arc 5 (PA).-Arc 5 is the difference or the sum of 3 and 4 according to circumstances.

To find the Latitude.-In the right-angled triangle PZA-

$$
\cos \mathrm{PZ}=\cos \mathrm{PA} \cdot \cos \mathrm{ZA}
$$

that is, \sin lat. $=\cos \operatorname{arc} 5 . \cos$ arc 2
and therefore cosec lat. $=$ sec are $5 . \sec$ arc 2
The foregoing formulæ are arranged for computation as follows:-
$\frac{1}{2}$ pol. angle ——" trosec
Dec. - - sec \sin

Lat. — — cosec
Logs marked thus * occur twice.
Logs marked thus \dagger are used again for finding correction to latitude.

The Ambiguous Case.-When the sum of arcs 3 and 4 is less than 90°, it may be doubtful whether they should be added or subtracted to find are 5. But if the lat. be first found by adding, and the lat. by account is not given, the correctness of the answer may be tested by computing the hour angle at the middle time, and seeing if it agrees with the known hour angle. If not, then subtract 3 from 4, and again compute the latitude.

To compute the Hour Angle (H_{1}) at the Middle Time.-In the right-angled triangle PZA-

$$
\begin{aligned}
\sin \mathrm{AZ} & =\sin \mathrm{PZ} \cdot \sin \mathrm{ZPA} \\
\therefore \sin \mathrm{ZPA} & =\frac{\sin \mathrm{AZ}}{\sin \mathrm{PZ}}=\sin \mathrm{AZ} \cdot \operatorname{cosec} \mathrm{PZ}
\end{aligned}
$$

i.e. \sin H.A. at mid. time $=\sin$ arc $2 . \sec$ lat.

To correct the lat. found by "Ivory."
(1) Find change of declination in half elapsed time.
(2) Add following logs :-log change of dec., secant approx. lat., cosec half int., sine arc 2 , reject 10^{\prime}, and take back log. This is the correction.
(3) When the second altitude is the greater.

Allow it N , when the Sun is going N .
Allow it S , when the Sun is going S .
Reverse this when the first altitude is the greater.
Art. 103.-Rule for finding latitude by "Ivory."
(1) Find polar angle as directed, and the declination for the Middle Greenwich time.
(2) Correct the altitudes, applying correction for "Run" to alt. for which bearing of object is given, as directed. Find half sum and half difference of alts.
(3) For Arc 1, add logs of cosecant half polar angle and secant dec. ; this gives cosecant are 1.

For Arc 2, add logs cosecant are 1, cosine half sum alts., sine half diff. alts. ; this gives sine are 2.

For Arc 3, add logs secant arc 1, sine half sum alts., cosine half diff. alts., secant are 2; this gives cosine arc 3.

For Arc 4, add logs sine dec, and secant arc 1; this gives cosine arc 4.

For Are 5. This are is always the difference of arcs 3 and 4 when lat. and dec. are of different names, it can never exceed 90°, so should the sum of 3 and 4 be greater than 90°, their difference must also be used for 5 ; but if the sum is less than 90°, there may be some doubt, which can be decided by computing the H.A. at middle time from the formula

$$
\sin \text { H.A. }=\operatorname{sine} \operatorname{arc} 2 \times \text { sec lat. }
$$

and selecting that lat. which gives the known H.A. at middle time.

For lat. add logs secant are 5 and secant arc 2; this gives cosecant lat. to be corrected as directed for true lat.

Remarks.
(1) When dec. is 0 , arc 4 is 90°, because $\sin 0=0$, and therefore $\cos \operatorname{arc} 4=0$.
(2) When alts. are equal, diff. $=0$, then arc $2=0$, and arc $5=\mathrm{co}-\mathrm{lat}$.
(3) Arc 4 is of same affection as polar distance. Therefore when lat. and dec. are of different names supplement of angle found is arc 4.

Example.-August 5th, lat. N., long. $55^{\circ} 17^{\prime} 30^{\prime \prime}$ W. With the following observations find the latitude at second observation-

$$
\begin{aligned}
& \begin{array}{rlllll}
\text { A.T.S. } 9^{\text {h }} & 15^{\mathrm{m}} 19^{\mathrm{n}} \text { A.m. } & \text { Obs. alt. } \bigodot^{\odot} 44^{\circ} 14^{\prime} 20^{\prime \prime} & \text { Ind. cor., }-2^{\prime} 7^{\prime \prime} \\
3 & 3 & 18 & 22 & \text { р.м. }
\end{array} \\
& \text {, } 318 \text { 22 P.M. ,, } \quad 392125 \text { Eye, } 30 \text { ft. }
\end{aligned}
$$

Sun's bearing at first observation, S. $62^{\circ} \mathrm{E}$. ; run during the interval, S. $6^{\circ} \mathrm{W}$. 63 miles.

First A.T.S. August $4^{a} 21^{11} 15^{\mathrm{m}} 19^{\prime \prime} \quad$ Dec. $17^{\circ} 9^{\prime} 48^{\prime \prime} \cdot 4$ N. H.V. $40^{\prime \prime} \cdot 14$ Second A.T.S. ,, $\quad 5 \quad 3 \quad 18 \quad 22$

Cor. $-2 \quad 39 \cdot 4$ 3.97

Interval	6	3	3
H.E.T.	3	1	$31 \cdot 5$
Mid. time 5	0	16	50
Long.	3	41	10

17	7	9	N.
		H.V. $40^{\prime \prime} \cdot 14$	

Mid. A.T.G. $5 \quad 3 \quad 58 \quad 0$
Ch. of dec. in H.E.T. $120 \cdot 42$
Bearing S. 62° E. Run S. 6 W.

Inc. angle 68 dist. 63^{\prime}
gives d. lat. $23 \cdot 6$
to be added to first alt., because angle is less than 90°.

First O.A. $44^{\circ} 14^{\prime} 20^{\prime \prime}$
I.C. $-2 \quad 7$
$44 \quad 12 \quad 13$
Dip - $5 \quad 22$
$44 \quad 6 \quad 51$
S.D. +1548
$44 \quad 22 \quad 39$
R. \& P.
-51
$44 \quad 2148$
Tun +2336
444524
$39 \quad 2842$
2)84 $14 \quad 6$

Half sum $42 \quad 7 \quad 3$
H.E.T. $3^{\text {b }} \quad 1^{\text {m }} 31^{\text {® }} 5 \quad \operatorname{cosec} 10 \cdot 147644$ Dec. $17^{\circ} \quad 7^{\prime} \quad 9^{\prime \prime} \quad \sec 10.019681$

Arc 1. $42 \quad 51 \quad 50 \quad \operatorname{cosec} 10 \cdot 167325$
$\begin{array}{lllll}\frac{1}{2} \text { sum } 42 & 7 & 3 & \cos & 9.870270\end{array}$

Second O.A. $39^{\circ} 21^{\prime} 25^{\prime \prime}$

- 27

391918 -522
$3913 \quad 56$
$+1548$
392944

- $1 \quad 2$
$39 \quad 2842$
$44 \quad 45 \quad 24$

2) 51642

Half diff. 23821
$\sin 8.663191$
$\frac{1}{2}$ diff. 23821
Arc 2. 25241
Arc 3. $23 \quad 46 \quad 16 \quad \ldots \quad$... ... $\cos 9.961498$
Arc 4. $6619 \quad 19$... cos 96603791
$\begin{array}{lllll}\text { Arc 5. } & 42 & 33 & 3 & \text { sec } 10.132723 \\ \text { H.E.T. cosec } 10 \cdot 147644\end{array}$
Arc 2. 25241 sec 10.000548 $\sin 8 \cdot 700786$
A pprox. lat. $472213 \quad$ cosec $10 \cdot 133271$... ... sec $10 \cdot 169246$ Ch. in dec. $120 \cdot 4 \log 2.080626$

Cor. $\quad+13$... $12.54 \log 1.098303$
True lat. 472226 N.

Arr. 104. Direct Method.-In the triangle PSS_{1} are given the two sides PS and PS_{1} and the included angle at P , from which can be found the third side SS_{1} and the angles $\mathrm{PS}_{1} \mathrm{~S}$ and PSS_{1}.

Then in the triangle ZSS_{1} with the three sides given, the angle $\mathrm{ZS}_{1} \mathrm{~S}$ can be found. Also the angle $\mathrm{PS}_{1} Z$ $=\mathrm{PS}_{1} \mathrm{~S}-\mathrm{ZS}_{1} \mathrm{~S}$.

Lastly, in the triangle PZS_{1} the two sides PS_{1} and ZS_{1} and the included angle $\mathrm{PS}_{1} Z$ are known, from which can be found the co-lat. PZ.

The latitude found by this method requires no correction for change of
 declination, because the actual polar distances are used, but it is subject to the same ambiguity as Ivory's method when SS_{1} produced passes near the zenith. In the latter case the angle $\mathrm{PS}_{1} \mathrm{Z}$ may be either the difference or the sum of $\mathrm{PS}_{1} \mathrm{~S}$ and $\mathrm{ZS}_{1} \mathrm{~S}$.

Example.-The same problem as before worked from figuro.
In figure X and Y are the two positions of the sun. P the polar angle $=6^{6} 3^{m} 3^{\text {s }}$

PX the 1st pol. dist. $=72^{\circ} 50^{\prime} 49^{\prime \prime}$ PY the 2nd , $=725453$
ZX the 1st zen. dist. $=451436$ ZY the 2nd,$\quad=503118$
In triangle PXY, given two sides PX and PY, and included angle P, find X and $X Y$.

$$
\begin{aligned}
\text { Tan } \frac{1}{2}(X+Y) & =\frac{\cos \frac{1}{2}(P Y-P X)}{\cos \frac{1}{2}(P Y+P X)} \cdot \cot \frac{P}{2} \\
\operatorname{Tan} \frac{1}{2}(X-Y) & =\frac{\sin \frac{1}{2}(P Y-P X)}{\sin \frac{1}{2}(P Y+P X)} \cdot \cot \frac{P}{2} \\
\operatorname{Cos} \frac{X Y}{2} & =\frac{\cos \frac{1}{2}(P Y+P X)}{\cos \frac{1}{2}(X+Y)} \cdot \sin \frac{P}{2}
\end{aligned}
$$

Fig. 162.

$$
\begin{aligned}
& \frac{\mathrm{P}}{\overline{2}}=3^{\mathrm{h}} 1^{\mathrm{m}} 31^{\mathrm{s}} 5 \quad \text { cot } 9.994220 \quad \text { cot } 9.994220 \quad \sin 9.852355 \\
& \frac{1}{2}(\mathrm{PY}+\mathrm{PX})=72^{\circ} 52^{\prime} 51^{\prime \prime} \\
& \frac{1}{2}(P Y-P X)=\begin{array}{lll}
0 & 2 & 2
\end{array} \\
& \frac{1}{2}(X+Y)=73 \quad 23 \quad 24 \quad \tan 10525342 \\
& \frac{1}{2}(X-Y)=\begin{array}{lll}
0 & 2 & 6 \\
\hline
\end{array} \\
& \mathrm{X}=73 \quad 25 \quad 30 \\
& \text { sec } 10.531122 \\
& \cos 10.000000 \\
& \begin{array}{r}
\operatorname{cosec} 10 \cdot 019682 \\
\sin 6.771935
\end{array} \\
& \cos 9 \cdot 468878 \\
& \sec 10543854 \\
& \tan 6785837 \\
& 42^{\circ} 51^{\prime} 51^{\prime \prime} \quad \cos \overline{9.805087} \\
& X Y=854342
\end{aligned}
$$

In triangle ZXY, given the three sides, to find X .

$$
\cos \frac{X}{2}=\sqrt{\frac{\sin s \cdot \sin (s-Z Y)}{\sin Z X \cdot \sin X Y}}
$$

where $s=\frac{1}{2}(Z Y+Z X+X Y)$.

$\mathrm{ZY}=50^{\circ} 31^{\prime} 18^{\prime \prime}$	
$\mathrm{XY}=854342$	cosec 10.001208
$Z X=45 \quad 1436$	cosec 10-148678
2)181 2936	
$\begin{array}{rlll} s & =\begin{array}{lll} 90 & 44 & 48 \\ 8-Z Y & =40 & 13 \end{array} 30 \end{array}$	$\sin 9 \cdot 999963$
	$\sin 9 \cdot 810092$
	2)19.959941.
$17^{\circ} 16^{\prime} 4 \cdot{ }^{\prime \prime}{ }^{\prime \prime} \cos 9 \cdot 979970$	
$\therefore \mathrm{ZXY}=3432 \quad 9$	
PXY = $73 \quad 25 \quad 30$	
Hence PXZ $=38531$	

Now in triangle PXZ, given two sides PX and ZX, and included angle PXZ , to find $\mathrm{PZ}=$ co-lat.

$$
\begin{aligned}
& \operatorname{Tan} \frac{1}{2}(Z+P)=\frac{\cos \frac{1}{2}(P X-Z X)}{\cos \frac{1}{2}(P X+Z X)} \cdot \cot \frac{X}{2} \\
& \operatorname{Cos} \frac{P Z}{2}=\frac{\cos \frac{1}{2}(P X+Z X)}{\cos \frac{1}{2}(Z+P)} \cdot \sin \frac{X}{2} \\
& \frac{\mathrm{X}}{2}=19^{\circ} 26^{\prime} 40^{\prime \prime} \quad \cot 10.452191 \quad \sin 9.522305 \\
& \frac{1}{2}(\mathrm{PX}+\mathrm{ZX})=59 \quad 242 \quad \text { sec } 10-288729 \quad \cos \quad 9711271 \\
& \frac{1}{2}(P X-Z X)=13 \quad 48 \quad 6 \quad \cos 9.987276 \\
& \frac{1}{2}(Z+P)=732432 \quad \tan 10.728196 \quad \text { sec } 10.735653 \\
& 21^{\circ} 18^{\prime} 45^{\prime \prime} \quad \cos 9.969235 \\
& \mathrm{PZ}=423730 \\
& \text { Lat. }=472230 \mathrm{~N} \text {. }
\end{aligned}
$$

Art. 105. Simultaneous Altitudes.-The altitudes of two objects are observed at the same time; the problem may be worked either by Sumner's method, when the intersection of the two lines of position is the position of the ship, as there is no allowance for "Run," or by Direct Spherics.

Example.

September 9th, A.m. at ship in long. by account $128^{\circ} \mathrm{W}$., when the G.M.T. by chron. was $8^{\mathrm{d}} 20^{\mathrm{h}} 52^{\mathrm{m}} 15^{\mathrm{s}}$; obs. alt. of α Ceti east of meridian was $26^{\circ} 10^{\prime} 20^{\prime \prime}$; obs. alt of a Ophiuchi west of meridian was $9^{\circ} 59^{\prime} 30^{\prime \prime}$; ind. cor., $-2^{\prime} 18^{\prime \prime}$; height of eye, 30 ft . Required the ship's position, and true bearings of the stars, by Sumner's method, assuming lats. 51° and 51° $30^{\prime} \mathrm{N}$., or by any other method.

By projection on a chart these longs. give一
Bearing of α Ceti S. 59° E.
Bearing by a Ophiuchi N. 81 W.

Lat. $51^{\circ} 12^{\prime} \mathrm{N}$. Long. 12751 W.

Instead of projecting, the position of the ship may be found thus-
D. long. between " a " and " c " $=8$ ' \mathbf{E}. ; call this A.

The cor. to lesser lat. $=\frac{\mathrm{A} \times \mathrm{D}}{\mathrm{A} \pm \mathrm{C}}$

$$
\text { ر } \quad \operatorname{long}(\alpha)=\frac{\mathbf{A} \times \mathbf{B}}{\mathbf{A} \pm \mathbf{C}}
$$

sum of A and C is taken when they are of contrary names (as in example) diff. of A , C "
same "

Cor. to lat. $=\frac{8 \times 30}{20}=12^{\prime}$
Lesser lat. $51^{\circ} 0^{\prime} \mathrm{N}$. Cor. \qquad 12

Lat. in 5112 N .

Cor. to long $=\frac{8 \times 27}{20}=10^{\prime} 48^{\prime \prime}$
Long. " a " $128^{\circ} 2^{\prime} 30^{\prime \prime} \mathrm{W}$.
Cor.
Long. in 1275142 W.

The azimuths may be found from the Traverse Tables thus-
1st obs. D. lat. $=30^{\prime}$
D. long. $=27^{\prime}$

This gives dep. $=17$ ', hence co. " a " to " b " from traverse or first line of position is $\mathrm{N} .30^{\circ} \mathrm{E}$.
\therefore bearing of a Ceti is S. $60^{\circ} \mathrm{E}$.
2nd obs. D. lat. $=30^{\prime}$
D. long. $=7^{\prime}$

This gives dep. $=4$ '4, hence co. " c " to " d " from traverse or second line of position is $\mathrm{N} .9^{\circ} \mathrm{E}$.
\therefore bearing of a Ophiuchi is $\mathrm{N} .81^{\circ} \mathrm{W}$.

From the figure.-

In the figure X and Y are the positions of the two stars.

Fig. 163.

PX is pol. dist. of 1 st star $=86^{\circ} 16^{\prime} 44^{\prime \prime}$
ZX is zen. $,, \quad, \quad=635916$
PY is pol. ", 2nd star $=772220$
ZY is zen. ", ", $=801330$
P is diff. of R.A.'s $\quad=g^{\mathrm{n}} 26^{\mathrm{m}} 48^{\circ}$
In triangle PXY, given two sides PX and PY, and included angle P. Find X and $X Y$.

$$
\begin{aligned}
\operatorname{Tan} \frac{1}{2}(Y+X) & =\frac{\cos \frac{1}{2}(P X-P Y)}{\cos \frac{1}{2}(P X+P Y)} \cdot \cot \frac{P}{2} \\
\operatorname{Tan} \frac{1}{2}(Y-X) & =\frac{\sin \frac{1}{2}(P X-P Y)}{\sin \frac{1}{2}(P X+P Y)} \cdot \cot \frac{P}{2} \\
\cos \frac{X Y}{2} & =\frac{\cos \frac{1}{2}(P X+P Y)}{\cos \frac{1}{2}(Y+X)} \cdot \sin \frac{P}{2}
\end{aligned}
$$

$\frac{\mathrm{P}}{2}=4^{\mathrm{b}} 43^{\mathrm{m}} 24^{\text {d }}$	cot 9.540653	cot 9.540653	sin	$9 \cdot 975277$
$\left.\frac{1}{\frac{1}{2}(\mathrm{PXX}}+\mathrm{PY}\right)=81^{\circ}{ }^{\circ} \mathrm{Ma}^{\prime} 32^{\prime \prime}$	sec 10.847138	cosee \sin 10.004435 8.890125	cos	9152862
$\frac{1}{2}(\mathrm{PX}-\mathrm{PY})=42712$				
$\begin{aligned} & \frac{1}{2}(\mathrm{Y}+\mathrm{X})=\begin{array}{ccc} 67 & 40 & 20 \\ \frac{1}{2}(\mathrm{Y}-\mathrm{X})= & 1 & 33 \end{array} \mathbf{3 9} 8 \end{aligned}$	$\tan 10.386478$	$\tan 8.435213$		10420325
$\mathrm{X}=66 \mathrm{6} 41$	$69^{\circ} 17^{\prime} 41^{\prime \prime}$	cos	$9 \cdot 548464$

In triangle ZXY, given three sides ZX, ZY, and XX , to find angles Z and X .

$$
\operatorname{Cos} \frac{Z}{2}=\sqrt{\frac{\sin s \cdot \sin (s-X Y)}{\sin Z X \cdot \sin Z Y}} \text { and } \cos \frac{X}{2}=\sqrt{\frac{\sin s \cdot \sin (s-Z Y)}{\sin Z X \cdot \sin X Y}}
$$ where $s=\frac{1}{2}(Z X+Z Y+X Y)$.

$\mathrm{XY}=138^{\circ} 35^{\prime} 22^{\prime \prime}$		cosec 10.179503
$Z Y=801330$	cosec 10.006351	
$\mathrm{ZX}=635916$	$\operatorname{cosec} 10.04638{ }^{\text {- }}$	cosec 10.046385
$\begin{array}{rll} 2) 282 & 48 & 8 \\ s=141 & 24 & 4 \end{array}$	sin 9•795090	sin 9.795090
$s-\mathrm{XY}=24842$	$\sin 8 \cdot 690667$	
$s-Z Y=611034$		$\sin 9 \cdot 942555$
	2)18.538493	
$\begin{array}{lll}79 & 17 & 14\end{array}$	$\cos 9 \cdot 269246$	2)19.963533
	$16^{\circ} 29^{\prime} 13^{\prime \prime}$	$\cos 9 \cdot 981766$
	ZXY $=325826$	
	$\mathrm{PXY}=66 \quad 641$	
	$P X Z=33 \quad 815$	

In triangle PXZ, given two sides PX and ZX, and included angle X; to find $P Z=$ co-lat., $P=H . A .1$ st star, $Z=a z .1$ st star.

$$
\begin{aligned}
& \operatorname{Tan} \frac{1}{2}(Z+P)=\frac{\cos \frac{1}{2}(P X-Z X)}{\cos \frac{1}{2}(P X+Z X)} \cdot \cot \frac{X}{2} \\
& \operatorname{Tan} \frac{1}{2}(Z-P)=\frac{\sin \frac{1}{2}(P X-Z X)}{\sin \frac{1}{2}(P X+Z \bar{X})} \cdot \cot \frac{X}{2} \\
& \operatorname{Cos} \frac{P Z}{2}=\frac{\cos \frac{1}{2}(P X+Z X)}{\cos \frac{1}{2}(Z+P)} \cdot \sin \frac{X}{\overline{2}} \\
& \frac{X}{2}=16^{\circ} 34^{\prime} \quad 7^{\prime \prime} 5_{-} \cot 10.526486 \quad \cot 10.526486 \sin 9 \cdot 455096 \\
& \frac{1}{2}(P X+Z X)=\begin{array}{lllllll}
75 & 8 & 0 & \text { sec } 10.590793 & \operatorname{cosec} 10.014787 & \cos & 9.409207
\end{array} \\
& \frac{1}{2}(\mathrm{PX}-\mathrm{ZX})=\begin{array}{lllll}
11 & 8 & 44 & \cos 9.991730 & \sin \\
9.286237
\end{array} \\
& \frac{1}{2}(\mathrm{Z}+\mathrm{P})=\begin{array}{llll}
85 & 33 & 5 & \tan 11 \cdot 109009
\end{array} \\
& \text { sec } \mathbf{1 1} \cdot 110320 \\
& \frac{1}{2}(Z-P)=335435 \\
& \mathrm{Z}=\begin{array}{lll}
119 & 27 & 40
\end{array} \\
& \mathrm{P}=513830 \\
& \therefore \text { E.H.A. } 3^{\text {b }} 26^{\mathrm{m}} 34^{\text {a }} \\
& \text { R.A.* } 2 \quad 57 \quad 22 \\
& \text { R.A.M. } 23 \quad 3048 \\
& \text { R.A.M.S. } 11 \quad 9 \quad 59 \\
& \text { M.T.S. } 8^{\mathrm{d}} 12 \quad 20 \quad 49 \\
& \text { M.T.G. } 8^{\text {d }} 20 \quad 5215 \\
& 83126 \\
& \text { Long. } 127^{\circ} 51^{\prime} 30 \mathrm{~W}
\end{aligned}
$$

Azimuth of α Ceti $=$ Z, or N. $119^{\circ} 28^{\prime}$ E., which is S. $60^{\circ} 32^{\prime} \mathrm{E}$.

$$
\begin{aligned}
\mathrm{SZX} & =60^{\circ} 32^{\prime} \\
\mathrm{YZX} & =15834 \frac{1}{2} \\
\text { Azimuth of a Ophiuchi SZY } & =98 \quad 2 \frac{1}{2}, \text { or N. } 81^{\circ} 57 \frac{1}{2}^{\prime} \mathrm{W} .
\end{aligned}
$$

Exercises.

1. August 14th, in long. $73^{\circ} 14^{\prime}$ E., lat.S.; with the following observations find the latitude at the second obs. :-

Approx. A.T.S., $9^{\mathrm{h}} 20^{\mathrm{m}}$ A.m. ; time by chron., $4^{\mathrm{h}} 26^{\mathrm{m}} 18^{\prime}$; obs. alt. Sun's L.L., $30^{\circ} 21^{\prime} 50^{\prime \prime}$. Approx. A.T.S., $3^{\mathrm{h}} 5^{\mathrm{m}}$ P.m. ; time by chron., $10^{\mathrm{h}} 12^{\mathrm{m}} 12^{\mathrm{A}}$; obs. alt. Sun's L.L., $26^{\circ} 38^{\prime} 10^{\prime \prime}$.

Chron. showed correct A.T.G. ; ind. cor., $-3^{\prime} 16^{\prime \prime}$; height of eye, 30 ft ; Sun's bearing at first obs., N. $46^{\circ} 30^{\prime} \mathrm{E}$. ; run between sights, S. $57^{\circ} 30^{\circ} \mathrm{E}$. 8 knots per hour.
2. August 18th, lat. N., long. $124^{\circ} 23^{\prime} \mathrm{W}$. ; with the following observations find the latitude at the second obs. :-

Approx. A.T.S., $10^{\text {h }} 0^{\text {m }}$ A.m. ; chron., $6^{\text {b }} 21^{\mathrm{m}} 46^{\prime}$; obs. alt. $\odot, 50^{\circ} 32^{\prime} 50^{\prime \prime}$; ind. cor., $+1^{\prime} 39^{\prime \prime}$. Approx. A.T.S., $2^{\mathrm{h}} 50^{\mathrm{m}}$ P.m. ; chron., $11^{\mathrm{h}} \overline{9^{\mathrm{m}}} 34^{\mathrm{g}}$; obs. alt. $\odot, 42^{\circ} 46^{\prime} 10^{\prime \prime}$; eye, 35 ft . ; chron. correct for M.T.G. ; Sun's bearing at first obs., S. $49^{\circ} 30^{\prime}$ E. ; run between obs., S. $67^{\circ} 30^{\prime} \mathrm{W} .10$ knots per hour.
3. August 21st, lat. N., long. $130^{\circ} 21^{\prime}$ W.; with the following observations find the latitude at the second obs. :-
M.T.S., $9^{\mathrm{h}} 21^{\mathrm{m}} 42^{\mathrm{B}}$ P.M.; obs. alt. Vega, $75^{\circ} 47^{\prime} 27^{\prime \prime}$; bearing, S. 40° W. M.T.S., $1^{1^{h}} 52^{\mathrm{m}} 50^{\prime}$ A.m. ; obs. alt. Vega, $34^{\circ} 53^{\prime} 50^{\prime \prime}$; run, S. 50° E. 9 knots per hour ; ind. cor., $+2^{\prime} 58^{\prime \prime}$; eye, 29 ft .
4. August 27 th, lat. S., long. $84^{\circ} 27^{\prime}$ E. ; with the following observations find the latitude at the second obs. ; ind. cor., $+4^{\prime} 14^{\prime \prime}$; eye, 41 ft .
M.T.S., $2^{\mathrm{h}} 12^{\mathrm{m}} 19^{\mathrm{s}}$ A.M. ; obs. alt. Aldebaran, $18^{\circ} 10^{\prime} 50^{\prime \prime}$; bearing, N. 61° E. M.T.S., $5^{\text {h }} 12^{\mathrm{m}} 30^{\mathrm{s}}$ A.m. ; obs. alt. Aldebaran, $45^{\circ} 40^{\prime} 10^{\prime \prime}$; run, S. 6° E. 11 knots per hour.
5. August 17 th, about $11^{\mathrm{h}} 15^{\mathrm{m}}$ P.m. at ship; lat. by D.R. $48^{\circ} 15^{\prime} \mathrm{N}$., long. $179^{\circ} 30^{\prime}$ W.; when a chron. $8^{\mathrm{m}} 4^{\mathrm{s}}$ fast of M.T.G. showed $11^{\mathrm{h}} 28^{\mathrm{m}} 17^{\mathrm{s}}$, the obs. alt. of a Arietis was $27^{\circ} 15^{\prime} 40^{\prime \prime}$; ind. cor., $-1^{\prime} 13^{\prime \prime}$; at the same time the obs. alt. of Altair was $47^{\circ} 6^{\prime} 30^{\prime \prime}$; ind. cor., $+2^{\prime} 20^{\prime \prime}$; height of eye, 41 ft . Find the position of the ship and true bearings of the stars by Sumner's method, assuming lats. 15^{\prime} on each side of D.R. lat., or by any other method.
6. September 3rd, in long. $50^{\circ} 25^{\prime}$ W., lat. N.; when the A.T.S. was $7^{\mathrm{h}} 14^{\mathrm{m}} 20^{\prime \prime}$ A.M., the obs. alt. of Sun's U.L, was $18^{\circ} 30^{\prime} 20^{\prime \prime}$; and again at $11^{\text {h }} 0^{\mathrm{m}} 25^{\mathrm{a}}$ A.M., A.T.S., the obs. alt. of Sun's U.L. was $47^{\circ} 26^{\prime} 20^{\prime \prime}$; ind. cor., $-2^{\prime} 11^{\prime \prime}$; eye, 28 ft .; run between observations, N. $9^{\circ} \mathrm{E} .30$ miles. If the Sun bore S. 81° E. at first sight, find lat. at second sight.
7. August 16 th, lat. 24° N., long. $14^{\circ} \mathrm{W}$.; with the following observations of Fomalhaut (a Pis. Aust.) find the lat. at second obs. :-

Approx. M.T.S., $9^{\mathrm{h}} 45^{\mathrm{m}}$ P.M.; chron., $10^{\mathrm{h}} 42^{\mathrm{m}} 22^{3}$; obs. alt., $15^{\circ} 8^{\prime} 50^{\prime \prime}$; bearing, East. Approx. M.T.S., $3^{\text {h }} 15^{\mathrm{m}}$ A.M. ; chron., $4^{\mathrm{h}} 12^{\mathrm{m}} 25^{\prime}$; obs. alt., $28^{\circ} 14^{\prime} 0^{\prime \prime}$; ind. cor., $+2^{\prime} 48^{\prime \prime}$. Run between sights, N. 64° E. 10 knots per hour; eye, 45 ft .
8. September 15th, lat. S., long. $123^{\circ} 34^{\prime}$ E., with the following observa. tions find the lat. at second obs. ; ind. cor., $-3^{\prime} 13^{\prime \prime}$; eye, 36 ft .:-

Approx. A.T.S., $0^{4} 36^{m}$ P. M. ; chron., $4^{\mathrm{h}} 21^{\mathrm{m}} 12^{\mathrm{s}}$ M.T.G.; obs. alt. Sun's L.L.,
 Sun's L.L., $14^{\circ} 14^{\prime} 50^{\prime \prime}$.

Bearing at first obs. N. by W.; run between sights, N. by W. 12 knots per hour.
9. September 21st., lat. S., long. $94^{\circ} 26^{\prime}$ E.; with the following observations of Áchernar (α Eridani) find lat. at second obs.; ind. cor., $+2^{\prime} 34^{\prime \prime}$; eye, 33 ft : -

Approx. M.T.S., $10^{\mathrm{h}} 6^{\mathrm{m}}$ P.m.; chron., $3^{\mathrm{h}} 40^{\mathrm{m}} 0^{\prime}$; obs. alt., $55^{\circ} 53^{\prime} 50^{\prime \prime}$; bearing, S. 31° E. Approx. M.T.S., $5^{\text {h }} 46^{\text {ma A.M. }}$; chron., $11^{\mathrm{h}} 20^{\mathrm{m}} 20^{\prime}$; obs. alt., $49^{\circ} 13^{\prime} 30^{\prime \prime}$; run, N. $31^{\circ} \mathrm{W} .63$ miles in the interval. The chron. was $8^{\mathrm{m}} 23^{\circ}$ slow of G.M.T.
10. August 27 th, about $2^{\text {b }} 3 \bar{o}^{\text {mim }}$ A.M. at ship, in long. D.R. 156° E.; when a chron. correct for M.T.G. showed $4^{\text {b }} 11^{\text {m }} 28^{\circ}$; the obs. alt. of Aldebaran was $35^{\circ} 11^{\prime} 20^{\prime \prime}$; no ind. cor.; at the same time the obs. alt. of Markab was $47^{\circ} 49^{\prime} 40^{\prime \prime}$; ind. cor., nil ; eye, 45 ft . Find the position of the ship and true bearings of the stars by Sumner's method, assuming lat. $49^{\circ} 30^{\prime} \mathrm{N}$. and $50^{\circ} \mathrm{N}$., or by any other method.
11. September 10th, in long. $91^{\circ} 14^{\prime}$ E., lat. D.R. $27^{\circ} \mathrm{S}$. ; with following observations find lat. at second obs.; ind. cor., nil; eye, 25 ft : :-

Approx. A.T.S., $10^{\text {b }} 40^{\text {m }}$ A.m. ; chron., $4^{\text {h }} 28^{\mathrm{m}} 3^{\text {B }}$; obs. alt. Sun's L.L., $51^{\circ} 52^{\prime}$ $10^{\prime \prime}$. Approx. A.T.S., $3^{\text {h }} 50^{m}$ P.s. ; chron., $9^{\text {h }} 38^{m} 8^{\prime \prime}$; obs. alt. Sun's L.L., $26^{\circ} 25^{\prime} 40^{\prime \prime}$.

Bearing at 1st obs., N. 35° E. ; run during interval, N. $80^{\circ} \mathrm{W} .12$ knots per hour. The chron. was correct for G.M.T.
12. September 6th, lat. D.R. 13° S., long. $30^{\circ} 25^{\prime} \mathrm{W}$.; with following observations of Altair, find lat. at second obs.; ind. cor., $+3^{\prime} 18^{\prime \prime}$; eye, 25 ft . :

Approx. M.T.S., $9^{\text {h }} 50^{\mathrm{m}}$ P.M.; G.M.T., $11^{\text {h }} 50^{\mathrm{m}} 2^{\text {n }}$; obs. alt., $62^{\circ} 13^{\prime} 40^{\prime \prime}$; bearing, N. 36° W. Approx. M.T.S., $1^{\mathrm{h}} 20^{\mathrm{m}}$ A.M. ; G.M.T., $3^{\mathrm{h}} 20^{\mathrm{m}} 15^{\mathrm{s}}$; obs. alt., $18^{\circ} 4^{\prime} 50^{\prime \prime}$.

Run during interval N. $36^{\circ} \mathrm{W}$., 14 knots per hour.
13. September 16th, about $4^{\text {h }} 45^{\mathrm{m}}$ A.M., in long. by acct. $127^{\circ} 30^{\prime}$ E.; when a chron. which was $12^{\mathrm{m}} 24^{\mathrm{\prime}}$ fast of G.M.T. showed $8^{\mathrm{h}} 23^{\mathrm{m}} 12^{\mathrm{s}}$, the obs. alt. of Rigel was $49^{\circ} 28^{\prime} 10^{\prime \prime}$; ind. cor., $-3^{\prime} 15^{\prime \prime}$; and at the same time the obs. alt. of Fomalhaut was $27^{\circ} 25^{\prime} 50^{\prime \prime}$; ind. cor., $+2^{\prime} 11^{\prime \prime}$; height of eye, 27 ft . Find the position of the ship and true bearings of the stars by Sumner's method, assuming lats. $46^{\circ} 40^{\prime} \mathrm{S}$. and $47^{\circ} 20^{\prime} \mathrm{S}$., or by any other method.
14. September 28th, in lat. N., long. $6^{\circ} 15^{\prime}$ W.; with following observations of the Sun's L.L. find lat. at first obs.; ind. cor., $-2^{\prime} 12^{\prime \prime}$; eye, 30 ft : -

Approx.A.T.S., $11^{\mathrm{h}} 10^{\mathrm{m}}$ A.M.; chron., $11^{\mathrm{h}} 10^{\mathrm{m}} 25^{4}$; obs.alt., $34^{\circ} 29^{\prime} 10^{\prime \prime}$. Approx. A.T.S., $4^{\mathrm{L}} 0^{\mathrm{m}}$ P.M. ; chron., $3^{\mathrm{L}} 59^{\mathrm{m}} 49^{\mathrm{A}}$; obs. alt., $16^{\circ} 34^{\prime} 0^{\prime \prime}$; bearing, S. 50° W.; run during interval, N. $60^{\circ} \mathrm{W} .10$ knots per hour. The chron. was $14^{\mathrm{m}} 21^{\prime \prime}$ slow of G.M.T.
15. September 1st, in lat. N., long. $128^{\circ} 35^{\prime}$ W.; with following observations of a Cygni (Deneb) find lat. at first obs. ; ind. cor., $+3^{\prime} 19^{\prime \prime}$; eye, 28 ft . :-

Approx. M.T.S., $8^{\mathrm{h}} 0^{\mathrm{m}}$ P.M.; chron., $4^{\mathrm{h}} 40^{\mathrm{m}} 10^{\prime}$; obs. alt., $66^{\circ} 5^{\prime} 20^{\prime \prime}$. Approx. M.T.S., $4^{\mathrm{n}} 10^{\mathrm{m}}$ A.M.; chron., $12^{\mathrm{h}} 50^{\mathrm{m}} 20^{\prime}$; obs. alt., $21^{\circ} 21^{\prime} 30^{\prime \prime}$; bearing, N. $20^{\circ} \mathrm{W}$. - The chron. was $1^{m} 20^{\prime}$ fast of M.T.G.; run during the interval, N. 34° E. 12 knots per hour.

CHAPTER XXIII.

FINDING ERROR OF CHRONOMETER.

Art. 106. Error of Chronometer by a Single Altitude of the Sun or a Star. - For this purpose it is necessary to know the correct latitude and longitude of the place of observation. The altitude would therefore be usually observed in port, using an artificial horizon.

The computation of the hour angle is exactly the same as in the problem of finding the longitude by chronometer. Thence the mean time at place and mean time at Greenwich are found, and the error of chronometer determined.

Example.-August 30th, at $9^{\text {b }} 3^{\mathrm{m}}$ A.m. M.T.S., in lat. $40^{\circ} 20^{\prime}$ N., long. $25^{\circ} 30^{\prime}$ W. ; the obs. alt. of the Sun's L.L. in an artificial horizon was $79^{\circ} 10^{\prime} 20^{\prime \prime}$; ind. cor., $-3^{\prime} 18^{\prime \prime}$; time by chron., $10^{\text {h }} 45^{\mathrm{m}} 15^{\prime}$. Required its error on M.T.G. and A.T.S.
M.T.S. Aug. $29^{\mathrm{d}} 21^{\mathrm{b}} \quad 3^{\mathrm{m}} 0^{\mathrm{s}} \quad 25^{\circ} 30^{\prime} \quad$ Dec. $9^{\circ} 14^{\prime} 44^{\prime \prime} \cdot 3$ N. H.V. $53^{\prime \prime} \cdot 49$

Obs. alt. $79^{\circ} 10^{\prime} 20^{\prime \prime}$
I.C. $\quad-318$
$2 \lcm{79 \quad 7 \quad 2}$
$3933 \quad 31$
S.D. +1552
$39 \quad 4923$
T. '\& P. $-1 \quad 1$
T. A. $39 \quad 48 \quad 22$

Eq. T. $0^{m} 45^{\circ} \cdot 9 \quad$ H.V. 75
Cor. $+9.9 \quad 1 \cdot 2$
$\cdot 9,00$

T.A. 394822	
Lat. 4020 0	sec $10 \cdot 117879$
P.D. 80448	cosec 10.005702
2)160 5230	
802615	$\cos 9 \cdot 220432$
$40 \quad 37 \quad 53$	sin 9.813708
E.H.A. $\quad 2^{\mathrm{h}} 58^{\mathrm{m}} 16^{6}$	xxxi. $=9 \cdot 157721$
A.'T.S. 29d $21 \quad 144$	
Eq. T. $\quad+46.8$	
M.T.S. $29{ }^{\text {d }} 21 \begin{array}{llll} & 30 \cdot 8\end{array}$	
Long. +1420	
M.T.G. $29^{\text {d }} 224430 \cdot 8$	
Chron. $29{ }^{\text {d }} 224515$	
Fast $\quad 1 \quad 44.2$	on M.T.G.
Fast 14331	on A.T.S.

Fig. 164.

The H.A. might also have been determined, direct from the figure, as in the case of the chronometer. In the triangle PZX, the three sides are given to find angle P .

Art. 107. Error of Chronometer by Equal Altitudes.-(a) Equal Altitudes of the Sun.-If the times by chronometer when the Sun has equal altitudes east and west of the meridian be noted, the mean of these times, with a correction on account of the change of declination during the interval, gives the time shown by the same chronometer when the Sun's centre crosses the meridian, that is, apparent noon. This affords a means of finding the error of the chronometer.

The observation can best be made on shore with an artificial horizon, the latitude and longitude of the place of observation being accurately known.

If there were nc change of declination, it is obvious that the hour angles \mathbf{E}. and \mathbf{W}. would be equal, and the mean of the times would be what the chronometer showed at apparent noon. But as the Sun's declination changes, the middle time would fall on one side or the other of apparent noon by a small interval called the "Equation of Equal Altitudes."

Thus, when the Sun's polar distance increases, the east H.A. would be greater than the west H.A., because it would take less time to fall to the same altitude, and the middle time would be a few seconds before apparent noon. Again, when the polar distance decreases, the west H.A. would be the greater, because it would take a longer time for the Sun to attain the same altitude, and so the middle time would then be a few seconds after apparent noon.

The object of the calculation is therefore to find the correction to be applied to the middle time to find the exact time by
chronometer when the Sun's centre was on the meridian, and thence the error of the chronometer.

Fig. 165.

Fig. 166.

The working out of the formula gives the correction in two parts.

The first part is marked + or - according as the Sun's polar distance is increasing or decreasing.

The second part is marked + or - according as the declination is increasing or decreasing.

The algebraical sum of the two parts is the Equation of Equal Altitudes with the proper sign.

The elements required for the calculation are, the Time

Fig. 167. Interval, the Sun's Declination, and the Equation of Time, with the latitude and longitude of the place of observation.
(b) Equal Altitudes of a Star.The intervals from the time when a star crosses the meridian to the times when it has equal altitude east and west of the meridian are exactly equal, because its declination does not change. Hence the middle time by chronometer would be the time of meridian passage, and as the time of meridian passage can be found independently, the error of the chronometer can be determined.

Examples.

(1) August 1st, at Valparaiso, lat. $33^{\circ} 2^{\prime}$ S., long. $71^{\circ} 42^{\prime}$ W., 'he sun had equal alts. at-

$$
2^{\mathrm{b}} 16^{\mathrm{m}} 12^{\circ} \text { A.m., and } 7^{\mathrm{b}} 20^{\mathrm{m}} 42^{\prime} \text { P.M., by chron. }
$$

Find its error on M.T.G. and A.T.S.

Exfrcises.

1. August 4th, at $8^{\mathrm{h}} 40^{\mathrm{m}}$ A.m. A.T.S., in lat. $38^{\circ} 47^{\prime}$ S., $94^{\circ} 12^{\prime}$ E.; the obs. alt. of the Sun's L.L. was $16^{\circ} 42^{\prime} 10^{\prime \prime}$; ind. cor., $+2^{\prime} 15^{\prime \prime}$; eye, 29 ft ., when a chron. showed $2^{\mathrm{L}} 45^{\mathrm{m}} 10^{\circ}$. Find its error on M.T.G. and A.T.S.
2. August 31st, at $9^{\mathrm{b}} 22^{\mathrm{m}}$ A.m. A.T.S., in lat. $52^{\circ} 25^{\prime}$ N., long. $3^{\circ} 20^{\prime}$ W. ; the obs. alt. of the Sun's U.L. was $36^{\circ} 26^{\prime} 10^{\prime \prime}$; ind. cor., $-26^{\prime \prime}$; eye, 41 ft .; if a chron. indicated $9^{\mathrm{h}} 20^{\mathrm{m}} 19^{\mathrm{s}}$, what was its error on M.T.G.
3. August 19th, at $4^{\mathrm{b}} 26^{\mathrm{mm}}$ P.m. A.T.S., when a point in lat. $41^{\circ} 35^{\prime} 30^{\prime \prime}$ N., long. $70^{\circ} 30^{\prime} 42^{\prime \prime} \mathrm{W}$., bore N. $35^{\circ} \mathrm{W}$., distant 14 miles; the obs. alt. of the Sun's U.L. in artificial horizon was $52^{\circ} 53^{\prime} 10^{\prime \prime}$; ind. cor., $-3^{\prime} 30^{\prime \prime}$; if a chron. showed $9^{\mathrm{k}} 10^{\mathrm{m}}$, find its error on M.T.G.
4. September 30th, at $3^{\mathrm{t}} 30^{\mathrm{m}}$ P.M. A.T.S., when a point in lat. $49^{\circ} 42^{\prime}$ S., long. $179^{\circ} 44^{\prime} 30^{\prime \prime}$ E., bore S. $56^{\circ} \mathrm{W}$., distant 9 miles ; the obs. alt. of the Sun's L.L. in artificial horizon was $49^{\circ} 57^{\prime} 10^{\prime \prime}$; ind. cor., $+3^{\prime} 56^{\prime \prime}$; eye, 50 ft. If a chron. showed $3^{\mathrm{b}} 15^{\mathrm{m}} 20^{3}$, find its error on M.T.G.
5. August 16 th, at $9^{\mathrm{h}} 45^{\mathrm{m}}$ P.m. M.T.S., when a point in lat. $24^{\circ} 17^{\prime} 12^{\prime \prime}$ N., long. $14^{\circ} 9^{\prime} 30^{\prime \prime}$ W., bore S. 27° E., distant 11 miles ; the obs. alt. of Fomalhaut in artificial horizon was $31^{\circ} 46^{\prime} 20^{\prime \prime}$; ind. cor., $+2^{\prime} 12^{\prime \prime}$, when a chron. showed 11^{L}. Find its error on M.T.G.
6. September 21st, at $10^{\mathrm{b}} 6^{\mathrm{m}}$ P.M. M.T.S., in lat. $43^{\circ} 19^{\prime}$ S., long. $94^{\circ} 26^{\prime}$ E. ; the obs. alt. of Achernar was $54^{\circ} 50^{\prime} 50^{\prime \prime}$, when a chron. showed $3^{\mathrm{b}} 40^{\mathrm{m}}$; ind. cor., $+2^{\prime} 34^{\prime \prime}$; eye, 33 ft . Find error on M.T.S. and M.T.G.
7. Angust 22 nd , at $1^{\mathrm{b}} 53^{\mathrm{m}}$ A.m. M.T.S., when a point in lat. $50^{\circ} 23^{\prime} 24^{\prime \prime}$ N., long. $130^{\circ} 6^{\prime} 30^{\prime \prime} \mathrm{W} .$, bore N. $70^{\circ} \mathrm{E}$., distant 10 miles ; the obs. alt. of Vega in artificial horizon was $69^{\circ} 44^{\prime} 20^{\prime \prime}$; ind. cor., $-1^{\prime} 16^{\prime \prime}$; a chron. showed $10^{\mathrm{h}} 35^{\mathrm{m}}$, find its error on M.T.G.
8. August 22nd, in lat. $27^{\circ} 10^{\prime}$ N., long. $56^{\circ} 17^{\prime}$ E., the following times were observed when the Sun had equal alts. Find the error of the chion. for A.T.S. and M.T.G.

A.M. $4^{\text {b }} 19^{\text {m }} 27^{7}$	P.ल. $0^{\text {b }} 7^{\text {m }} 30^{\text {a }}$
42532	01215

CHAPTER XXIV.

CALCULATION OF ALTITUDES.

Art. 108. Computing an Altitude. - In some problems of Nautical Astronomy it is necessary to compute the altitude of a celestial object. Especially is this the case when setting questions, so that the altitude shall be consistent with the other data.

The data required to be known are the hour angle of the object and the latitude and longitude of the place.

The following method has the advantage of requiring only one table of logarithms.

In the figure, S is the object, PS the polar distance, the angle

Fig. 168.

Fia. 169.

ZPS the hour angle, PZ the co-lat., and ZA an are of a great circle perpendicular to PS.

Let $\mathrm{PA}=\theta$;

$$
\text { then } \mathrm{SA}=(p \sim \theta)
$$

In the right-angled spherical triangle PAZ-
$\cos h=\cot \mathrm{PZ} \cdot \tan \mathrm{PA}$
$=\tan l . \tan \theta$
$\therefore \tan \theta=\cos h . \cot l$
In the same triangle-

$$
\begin{align*}
\cos \mathrm{PZ} & =\cos \mathrm{PA} \cdot \cos \mathrm{AZ} \\
i \cdot . \sin l & =\cos \theta \cdot \cos \mathrm{AZ} \\
\therefore \cos \mathrm{AZ} & =\sin l \cdot \sec \theta \tag{2}
\end{align*}
$$

Also in the triangle SAZ-

$$
\begin{aligned}
\cos \mathrm{SZ} & =\cos A Z \cdot \cos A \mathrm{~S} \\
\text { i.e. } \sin a & =\sin l \cdot \sec \theta \cdot \cos (p \sim \theta)
\end{aligned}
$$

by substituting the value of cos AZ from (2).
Note.- $(p \sim \theta)$ signifies the difference between p and θ, because one or the other may be the greater according as the perpendicular ZA falls within or without the triangle PZS.

For computation the following arrangement is convenient ($l=$ lat., $a=$ alt., $p=$ polar distance, $h=$ hour angle) : -

h	\ldots	\cos			
l	\ldots	\cot		\ldots	\sin
θ	\ldots	\tan		\ldots	scc
$\frac{p}{p \sim \theta}$	\ldots	\ldots	\ldots	\ldots	\cos
a	\ldots	\ldots	\ldots	\ldots	\sin

The altitude may also be calculated by the log rising method, by transposing formula proved in the ex-meridian chapter, which becomes-
\sin alt. $=\cos$ zen. dist. $-\cos$ lat. cos dec. log rising hour angle, or by direct spherics.

Art. 109.-The first method may be stated as follows:-
(1) Find the hour angle of the object.
(2) Correct declination, find polar distance.
(3) Add cos H.A. and cot lat.; this gives tan arc 1. Difference between are 1 and pol. dist. gives arc 2: add sin lat., sec arc 1, and cos are 2; the result is sin true alt.
(4) Apply refraction and parallax to true alt. for app. alt.

Example.
September 7th, at $8^{\mathrm{n}} 51^{\mathrm{m}} 32^{\circ}$ A.m. apparent time at ship, in lat. $48^{\circ} 10^{\prime}$ N., long. $149^{\circ} 22^{\prime} 15^{\prime \prime}$ W. Find true and apparent altitudes of the Sun.

A.T.S. Sept. $6^{\text {d }} 20^{\text {h }} 51^{\text {m }} 32^{\text {a }}$ Long. W. +95729			$149^{\circ} 22^{\prime} 15^{\prime \prime}$	Dec. $6^{\circ} 19^{\prime} 18^{\prime \prime} \cdot 6 \mathrm{~N}$. Cor. -6 L		
A.T.G. Sept. $7^{\text {d }}$	6491		6,0)59,7 $29 \quad 0$		$\begin{array}{r} 612 \\ 90 \end{array}$	56
			$9^{\text {b }} 57^{\text {m }} 29^{\text {a }}$	N.P.D. 8	8347	3
			H.V. 56.01 6.82			
	$24^{\text {b }}$	$0^{m} 0$				
	2051	32	6,0)381.99			
E.H.A.	38	28	$6^{\prime} 22^{\prime \prime}$			

Rules for \log rising method.
(1) Find the hour angle of the object.
(2) Correct declination; find zenith distance by adding dec. and lat. if of contrary name, and subtracting them if of same name.
(3) Add cos lat., cos dec., and \log rising hour angle, increasing index by 1 ; reject 10 's and take back \log, Table xxiv.; this gives "Nat. No."

Subtract " Nat. No." from Nat. cos. zen. dist., and take back Nat. sin true alt.
(4) Apply ref. and par. for app. alt.

Example. -

H.A. $3^{\text {b }} 8^{\mathrm{m}} 28^{\text {a }}$	log rising $=5.504460$
Lat. $48^{\circ} 10^{\prime} \quad 0 \mathrm{~N}$.	$\cos =9.824104$
Dec. 6121257 N.	$\cos =9.997440$
211838	$\log =5.326004$
N. $\cos 743718$	5926
N. $\sin 531880$	$\begin{gathered} 205) 7800(38 \\ 615 \end{gathered}$
	1650
	1640
	10

From flgure.
In figure X is the position of the object, AX is alt. of object.

In triangle PZX,
Given co-lat. $=P Z$
Pol. dist. $=\mathrm{PX}$
Hour angle $=P$
Required zen. dist. $=Z X$
$\operatorname{Tan} \frac{1}{2}(Z+X)=\frac{\cos \frac{1}{2}(P X-P Z)}{\cos \frac{1}{2}(P X+P Z)} \cdot \cot \frac{P}{2}$ $\cos \frac{7 X}{2}=\frac{\cos \frac{1}{2}(P X+P Z)}{\cos \frac{1}{2}(Z+X)} \cdot \sin \frac{P}{2}$

$$
\begin{aligned}
& \begin{aligned}
\mathrm{PX} & =83^{\circ} 47^{\prime} 3^{\prime \prime} \\
\mathrm{PZ} & =41500
\end{aligned} \quad \frac{\mathrm{P}}{\mathbf{2}}=1^{\mathrm{b}} 34^{\mathrm{m}} 14^{\mathrm{\prime}} \quad \cot =10.360490 \sin =9.601715 \\
& \mathrm{PX}+\mathrm{PZ}=125373 \frac{1}{2}(\mathrm{PX}+\mathrm{PZ})=62^{\circ} 48^{\prime} 32^{\prime \prime} \sec =10 \cdot 340122 \cos =9 \cdot 659878 \\
& \mathrm{PX}-\mathrm{PZ}=41573 \frac{1}{2}(\mathrm{PX}-\mathrm{P} Z)=205832 \quad \mathrm{cos}=9.970222 \\
& \text { T.A. }=\begin{array}{lll}
32 \quad 7 \quad 54
\end{array} \\
& \text { R. and P. }+123 \\
& \text { A.A. } \quad 32 \quad 9 \quad 17
\end{aligned}
$$

Exercises.

1. September 7 th, at $11^{\mathrm{h}} 14^{\mathrm{ma}} 35^{\mathrm{a}}$ A.m. apparent time at ship, in lat. 48° $10^{\prime} \mathrm{N}$., long. $149^{\circ} 22^{\prime} 15^{\prime \prime} \mathrm{W}$. Find true and appar. alts. of Sun.
2. September 29th, at $4^{\text {b }} 32^{\mathrm{m}} 46^{\circ}$ P.M. M.T.S., in lat. $46^{\circ} 50^{\prime}$ N., long. $180^{\circ} \mathrm{W}$. Find true and appar. alts. of Sun.
3. August 2nd, at $9^{\text {h }} 15^{\mathrm{m}} 20^{\prime \prime}$ P.m. M.'I'S., in lat. $23^{\circ} 12^{\prime}$ N., long. $62^{\circ} 35^{\prime}$ W. Find true and appar. alts. of Antares.
4. September 28th, at $4^{\text {h }} 5^{\mathrm{m}} 20^{\circ}$ A.M. M.T.S., in lat. $47^{\circ} 42^{\prime}$ S., long. 84° $25^{\prime} \mathrm{E}$. Find true and appar. alts. of a Hydra.
5. August 10 th at $8^{\mathrm{t}} 20^{\mathrm{m}} 41^{\prime \prime}$ A.M. M.T.S., in lat. $37^{\circ} 14^{\prime} \mathrm{N}$. , long. 14° 26^{\prime} W. Find true and appar. alts. of the Moon.
6. August 12th, at $4^{\text {n }} 58^{\mathrm{m}} 48^{\circ}$ A.M. M.T.S., in lat. $25^{\circ} 19^{\prime}$ S., long. 169° 37^{\prime} E. Find true and appar. alts. of Saturn.
7. August 30 th, at $8^{\text {¹ }} 30^{\text {m }} 25^{\circ}$ P.M. M.T.S., in lat. $10^{\circ} 15^{\prime}$ S., long. $98^{\circ} 27^{\prime}$ $15^{\prime \prime}$ E. Find true and appar. alts. of the Moon.
8. August 9th, at $5^{\text {b }} 4^{m} 2^{\prime}$ A.m. M.T.S., in lat. $5^{\circ} 14^{\prime}$ N., long. $20^{\circ} 27^{\prime}$ W. Find true and appar. alts. of Jupiter.

CHAPTER XXV.

LONGITUDE BY LUNAR DISTANCES.

Art. 110.-In a lunar observation the Greenwich time is found by measuring the distance between the moon and certain bright objects which lie in or near her path. The bodies chosen are the Sun, Venus, Mars, Jupiter, Saturn, and the bright stars a Arietis, Aldebaran, Pollux, Regulus, Spica, Antares, a Aquilæ, Fomalhaut, and a Pegasi.

In the N.A., pp. XIII. to XVIII., are given for each day the distances east or west, between the moon and certain of these objects at intervals of three hours of M.T.G. These true distances are the angles between the centres of the Moon and object selected, as measured at the Earth's centre. The M.T.G. corresponding to any other distance may be found by proportion, but owing to the variation in the uniformity of the motion a correction for "second differences" found in the N.A. must be applied before the correct G.M.T. is known. Before the invention of chronometers the "Lunar Problem" was almost the only means available at sea for finding the Greenwich time, on which the determination of longitude depends. It may still be of great use in the event of chronometers " running down " or becoming unserviceable.

The proportion referred to may be worked by arithmetic, but the use of "Proportional Logarithms" is simpler and more general. These are found in Norie, Table xxxiv.

The proportional logarithm of a given quantity is the logarithm of the ratio of some constant greater than that quantity to the given quantity. In the N.A. the constant is 3 hours, or 10,800 seconds, and the prop. \log (P.L.) for any other time, for instance, $1^{\mathrm{h}} 42^{\mathrm{m}} 11^{\mathrm{B}}$, is $=\log \frac{3^{\mathrm{h}}}{1^{\mathrm{h}} 42^{\mathrm{In}} 11^{\mathrm{s}}}$

$$
\begin{aligned}
& =\log 10800-\log 6131 \\
& =4.033424-3.787531 \\
& =0.245893
\end{aligned}
$$

which is entered in tables as 2459, the nearest fourth place only being used. This table facilitates the finding of a time corresponding to a true distance, as by it only two references are necessary, whereas by ordinary logs four entries are made before obtaining the result.

1 Discontinued since 1908.

Suppose x and y the distances in the N.A. between which the true distance d lies, and t the number of hours elapsed since the time for which x is tabulated.

Then-
$y-x$ is change in distance in three hours,
$d-x \quad$ " \quad, \quad the required time t.
Hence- $\quad y-x: d-x:: 3: t$

$$
\begin{aligned}
\text { or } \frac{3}{t} & =\frac{y-x}{d-x} \\
& =\frac{3}{d-x} \div \frac{3}{y-x}
\end{aligned}
$$

$$
\text { which is P.L. } t=\text { P.L. }(d-x)-\text { P.L. }(y-x)
$$

The quantity P.L. $(y-x)$ is tabulated in N.A. opposite the distance x.

In using these distances the instructions in the N.A. are-
"Take the difference between the reduced distance and the nearest distance preceding it, in order of time, in the ephemeris; from the P.L. of this difference subtract the P.L. in the ephemeris; the remainder will be the P.L. of a portion of time to be added to the hour answering to the nearest preceding distance, to obtain the approximate Greenwich mean time corresponding to the given distance."

When selecting a suitable object for obscrvation, it must be remembered that those objects are most favourably situated from which the moon is receding, or to which the moon is approaching most rapidly, and this is shown by the smallness of the P.L. opposite to it; attention should also be paid to the object having as small a difference in declination from the moon as possible compared with their difference in right ascension.

Examples. -

(1) The true distance between the Moon and a Arietis on August 13th is $37^{\circ} 51^{\prime} 32^{\prime \prime}$. Find G.M.T.

Tr. dist. $37^{\circ} 51^{\prime} 32^{\prime \prime}$						
N.A. " 3	372018	P.L. 3493	...	Au		$0^{\text {m }} 0^{\prime}$
	3114	P.L. 7607				
		P.L. 4114	1	948
P.L. 3527						
,, 3463	With diff	-32 of P.L. ${ }^{\text {A }}$	$\begin{gathered} \text { prox. } \\ \text { and } \end{gathered}$	M.T.	13	948
2)64	Int. $1^{\text {b }}$	cor. for 2nd	iffs.	$=$		$+9$
Mean diff. 32				M.T.	13	957

(2) The true distance between the Moon and Spica on August 26th is $43^{\circ} 1^{\prime} 29^{\prime \prime}$. Find G.M.T.

Exerctses.

1. The true distance between the Moon and Aldebaran on August 6th is $80^{\circ} 29^{\prime} 7^{\prime \prime}$. Find G.M.T.
2. The true distance between the Moon and Jupiter on August 7th is $89^{\circ} 21^{\prime} 12^{\prime \prime}$. Find G.M.T.
3. The true distance between the Moon and a Pegasi on August 12th is $69^{\circ} 40^{\prime} 15 .{ }^{\prime \prime}$ Find G.M.T.
4. The true distance between the Sun and Moon on August 22nd is 42° $35^{\prime} 17^{\prime \prime}$. Find G.M.T.
5. The true distance between the Moon and Spica on Augnst 28th is 65° 32^{\prime} 11." Find G.M.T.

Art. 111. The Lunar.-Let ZX and ZY be two vertical circles passing through the apparent positions M^{\prime} and S^{\prime} of the Moon and another celestial object (Sun, Star, or Planet) ; the true positions M and S, as seen from the Earth's centre, will be on the same vertical circles, and differ from the apparent positions by the effects of refraction and parallax. The Moon's parallax exceeds the refraction, but the parallax of any other body is less than the refraction. Hence the Moon's apparent place is lower, and that of the other body higher,

Fig. 171. than the true positions.
$M^{\prime} S^{\prime}$ and MS are ares of two great circles, and represent the apparent and true distances.
XM^{\prime} and XM are the apparent and true altitudes of the Moon, and YS' and YS the apparent and true altitudes of the other body.

The angle Z is common to the two triangles $Z M^{\prime} \mathbf{S}^{\prime}$ and ZMS.
The problem is to find the true distance MS, the apparent distance $\mathrm{M}^{\prime} \mathbf{S}^{\prime}$, and the true and apparent altitudes being given.

In the spherical triangle $Z^{\prime} M^{\prime} \mathbf{S}^{\prime}$ are given the three sides,
$Z^{\prime}, \mathrm{ZS}^{\prime}$, and $\mathrm{M}^{\prime} \mathrm{S}^{\prime}$, to find the angle Z. Then in the triangle ZMS, the two sides ZM and ZS and the included single Z being known, the third side MS or true distance can be found.

The problem can therefore be solved by simply applying the formula of Cases I. and II. of oblique-angled spherical trigonometry, but as this involves two separate computations, several methods have been devised for clearing the distance by a single logarithmic computation. The method most generally used is known as Borda's, which requires only one table of logarithms. It is obtained as follows:-

Applying the general formula, $\cos A=\frac{\cos a-\cos b \cdot \cos c}{\sin b \cdot \sin c}$
In the triangle $Z M^{\prime} S^{\prime}, \cos Z=\frac{\cos M^{\prime} \mathrm{S}^{\prime}-\cos Z M^{\prime} \cdot \cos Z S^{\prime}}{\sin Z M^{\prime} \cdot \sin Z S^{\prime}}$. (1)
In the triangle $Z M S, \cos Z=\frac{\cos M S-\cos Z M \cdot \cos Z S}{\sin Z M \cdot \sin Z S}$
Let m and m^{\prime} represent the Moon's true and apparent altitudes;
s and s^{\prime} the true and apparent altitudes of the other body;
d and d^{\prime} the true and apparent distances;
Then equation (1) becomes-

$$
\cos Z=\frac{\cos d^{\prime}-\sin m^{\prime} \cdot \sin s^{\prime}}{\cos m^{\prime} \cdot \cos s^{\prime}}
$$

and equation (2) becomes-

$$
\left.\begin{array}{rl}
\cos Z & =\frac{\cos d-\sin m \cdot \sin s}{\cos m \cdot \cos s} \\
\therefore \frac{\cos d-\sin m \cdot \sin s}{\cos m \cdot \cos s} & =\frac{\cos d^{\prime}-\sin m^{\prime} \cdot \sin s^{\prime}}{\cos m^{\prime} \cdot \cos s^{\prime}}
\end{array}\right\}
$$

by putting altitudes for zenith distances

Adding 1 to each side-
$1+\frac{\cos d-\sin m \cdot \sin s}{\cos m \cdot \cos s}=1+\frac{\cos d^{\prime}-\sin m \cdot \sin s^{\prime}}{\cos m^{\prime} \cdot \cos s^{\prime}}$
$\therefore \frac{\cos d+\cos m \cdot \cos s-\sin m \cdot \sin s}{\cos m \cdot \cos s}$

$$
=\frac{\cos d^{\prime}+\cos m^{\prime} \cdot \cos s^{\prime}-\sin m^{\prime} \cdot \sin s^{\prime}}{\cos m^{\prime} \cdot \cos s^{\prime}}
$$

that is-

$$
\begin{aligned}
\frac{\cos d+\cos (m+s)}{\cos m \cdot \cos s} & =\frac{\cos d^{\prime}+\cos \left(m^{\prime}+s^{\prime}\right)}{\cos m^{\prime} \cdot \cos s^{\prime}} \\
\therefore \cos d+\cos (m+s) & =\frac{\cos m \cdot \cos s}{\cos m^{\prime} \cdot \cos s^{\prime}} \cdot\left\{\cos d^{\prime}+\cos \left(m^{\prime}+s^{\prime}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { But } \cos d=1-2 \sin ^{2} \frac{d}{2}, \text { and } \cos (m+s)=2 \cos ^{2} \frac{m+s}{2}-1 \\
& \therefore 1-2 \sin ^{2} \frac{d}{2}+2 \cos ^{2} \frac{m+s}{2}-1=-2 \sin ^{2} \frac{d}{2}+2 \cos ^{2} \frac{m+s}{2} \\
& =\frac{\cos m \cdot \cos s}{\cos m^{\prime} \cdot \cos s^{\prime}} \cdot\left\{\cos d^{\prime}+\cos \left(m^{\prime}+s^{\prime}\right)\right\} \\
& =\frac{\cos m \cdot \cos s}{\cos m^{\prime} \cdot \cos s^{\prime}} \cdot 2 \cos \frac{m^{\prime}+s^{\prime}+d^{\prime}}{2} \cdot \cos \frac{m^{\prime}+s^{\prime}-d^{\prime}}{2}
\end{aligned}
$$

Dividing both sides by 2 , and putting $\sin ^{2} \theta$ for

$$
\frac{\cos m \cdot \cos s}{\cos m^{\prime} \cdot \cos s^{\prime}} \cdot \cos \frac{m^{\prime}+s^{\prime}+d^{\prime}}{2} \cdot \cos \frac{m^{\prime}+s^{\prime}-d^{\prime}}{2}
$$

we haye-

$$
\begin{aligned}
&-\sin ^{2} \frac{d}{2}+\cos ^{2} \frac{m+s}{2}=\sin ^{2} 0 \\
& \therefore \sin ^{2} \frac{d}{2}=\cos ^{2} \frac{m+s}{2}-\sin ^{2} \theta \\
&=\frac{1}{2}\{1+\cos (m+s)\}-\frac{1}{2}(1-\cos 20) \\
&=\frac{1}{2}\{\cos (m+s)+\cos 2 \theta\} \\
&=\frac{1}{2}\left\{2 \cos \left(\frac{m+s}{2}+\theta\right) \cdot \cos \left(\frac{m+s}{2}-\theta\right)\right\} \\
& \therefore \sin \frac{d}{2}=\sqrt{\cos \left(\frac{m+s}{2}+\theta\right) \cdot \cos \left(\frac{m+s}{2}-0\right)}
\end{aligned}
$$

Form for Computation.

$$
\begin{aligned}
& \text { App. dist. (} d^{\prime} \text {) ——— } \\
& \text { Moon's ", alt. (} m^{\prime} \text {) ——— ... sce } \\
& \text { Sun's or Star's ", " (} s^{\prime} \text {) - —— ... sec } \\
& \text { 2) }- \text { - } \\
& \frac{1}{2} \operatorname{sum}=\left(\frac{m^{\prime}+s^{\prime}+d^{\prime}}{2}\right)-\text { ——— } \ldots \cos \\
& \frac{1}{2} \operatorname{sum}-d^{\prime}=\left(\frac{m^{\prime}+s^{\prime}-d^{\prime}}{2}\right)--\quad \ldots \cos \\
& \text { Moon's true alt. (} m \text {) ——— ... cos } \\
& \text { Sun's or Star's ,, (s) ——— ... cos } \\
& \begin{array}{c}
(m+s)=2)-- \\
\left(\frac{m+s}{2}\right)-\cdots
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2) }- \text { - } \\
& \operatorname{sum}\left(\frac{m+s}{2}+\theta\right)-\cdots-\ldots \quad \sin \\
& \text { diff. }\left(\frac{m+s}{2}-\theta\right)-\ldots \ldots \cos \\
& \text { 2) } \\
& \frac{d}{2}--\frac{1}{2} \quad \sin \\
& d=
\end{aligned}
$$

Remark.-It will be noticed that the first four logs are the same as in the alt.-azimuth problems, and that all other logs taken out are cosines, whilst the angles sought correspond to sines.

Art. 112. Rule for clearing the Distance by Borda.-Add together apparent distance, app. alt. of moon, and app. alt. of body observed for distance; find half sum, and the remainder, which is the difference between the app. dist. and half sum. Then add following logs: Sec app. alt. of moon, sec app. alt. of body, cos half sum, cos remainder, cos true alt. of moon, and cos true alt. of body; reject 40 from index, and divide by 2 , and look back sine of angle, which call B. Now find half sum of two true alts., which call A. Add together the cosines of the sum and difference of A and B; divide sum by 2 , and look out sine of angle, which is half true distance.

Example-

The apparent distance between the Sun and Moon's centre is $105^{\circ} 56^{\prime}$ $46^{\prime \prime}$; Moon's app. alt., $26^{\circ} 7^{\prime} 19^{\prime \prime}$, true alt., $26^{\circ} 55^{\prime} 26^{\prime \prime}$; Sun's app. alt., 14° $24^{\prime} 27^{\prime \prime}$, true alt., $14^{\circ} 20^{\prime} 56^{\prime \prime}$. Find true distance.

| App. dist. | 105° | 56^{\prime} | $46^{\prime \prime}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Moon's A.A. | 26 | 7 | 19 | sec 10.046792 |
| Sun's A.A. | 14 | 24 | 27 | sec 10.013878 |

2) $\longdiv { 1 4 6 \quad 2 8 \quad 3 2 }$

	731416	\cos	9-459997
	324230	cos	9.925019
Moon's T.A.	265526	cos	9.950174
Sun's 'T.A.	142056	\cos	$9 \cdot 986236$
2)41 $16 \quad 22$		2)19:382096	
$\begin{array}{lllll}\text { A } & 20 & 38 & 11 \\ \mathrm{~B} & 29 & 24 & 14\end{array}$		\sin	9.691048
$\begin{aligned} & A+B \\ & B-A \end{aligned}$	$50 \quad 225$	\cos	9.807703
	8463	\cos	9.994895
		2)19•802598	
	$\begin{array}{lll} 52 & 49 & 0 \\ & 2 \end{array}$	\sin	$9 \cdot 901299$
True Dist. 105380			

From the figure.
In the figure AX and AN are the true and apparent alts. of the Sun. BY and BM are the true and app. alts. of the Moon. MN is the app. dist., and XY the true dist.

In the triangle ZMN, given the three sides, ZM, Moon's a.z.d.: ZN, Sun's a.z.d. and MN, to find Z.

$$
\cos \frac{Z}{2}=\sqrt{\frac{\sin s \cdot \sin (s-M N)}{\sin Z M \cdot \sin Z N}}
$$

where $s=\frac{1}{2}(Z M+Z N+M N)$.

Fig. 172.

$\mathrm{MN}=105^{\circ} 56^{\prime} 46^{\prime \prime}$	
$\mathrm{ZM}=635241$	cosec 10.046792
$\mathrm{ZN}=753533$	cosec 10.013877
2)245 $25 \quad 0$	
$s=122 \quad 4230$	$\sin 9 \cdot 925019$
$s-\mathrm{MN}=164544$	$\sin 9 \cdot 459995$
	2)19-445683
$\frac{Z}{2}=58 \quad 645$	cos 9.722841

Now, in triangle ZXY, given two sides, ZY, Moon's t.z.d. ; ZX, Sun's t.z.d., and included angle Z (just found), find XY, true dist.

$$
\begin{aligned}
\operatorname{Tan} \frac{1}{2}(Y+X) & =\frac{\cos \frac{1}{2}(Z X-Z Y)}{\cos \frac{1}{2}(Z X+Z Y)} \cdot \cot \frac{Z}{2} \\
\operatorname{Cos} \frac{X Y}{2} & =\frac{\cos \frac{1}{2}(Z X+Z Y)}{\cos \frac{1}{2}(Y+X)} \cdot \sin \frac{Z}{2}
\end{aligned}
$$

$\begin{aligned} & Z X=75^{\circ} 39^{\prime} 4^{\prime \prime} \\ & Z Y=63 \quad 434 \end{aligned}$	$\frac{\mathrm{Z}}{2}=58^{\circ} 6^{\prime} 45^{\prime \prime} \cot 9 \cdot 793890 \sin 9.928953$
$Z X+Z Y=1384338$	$\frac{1}{2}(Z X+Z Y)=69 \quad 2149$ sec $10 \cdot 452920 \cos 9.547080$
$Z X-Z Y=123430$	$\frac{1}{2}(\mathrm{ZX}-\mathrm{ZY})=6 \begin{array}{llll}6 & 17 & 15 & \cos 9 \cdot 997379\end{array}$
	$\frac{1}{2}(\mathrm{Y}+\mathrm{X})=60 \quad 19 \quad 13 \cdot 5 \tan 10 \cdot 244189$ sec $10 \cdot 305264$
	$52^{\circ} 49^{\prime}{\underset{2}{\prime \prime}}_{\prime \prime}^{\cos } 9 \cdot 781297$
	True dist. 105382

Exercises.

1. Given app. dist., $96^{\circ} 52^{\prime}$; Sun's app. alt., $36^{\circ} 18^{\prime} 7^{\prime \prime}$, true alt., $36^{\circ} 16^{\prime}$ $57^{\prime \prime}$; Moon's app. alt., $24^{\circ} 17^{\prime} 14^{\prime \prime}$, true alt., $25^{\circ} 5^{\prime} 27^{\prime \prime}$. Find true dist.
2. Given app. dist., $107^{\circ} 35^{\prime} 18^{\prime \prime}$; Saturn's app. alt., $9^{\circ} 51^{\prime} 21^{\prime \prime}$, true alt., $9^{\circ} 46^{\prime} 2^{\prime \prime}$; Moon's app. alt., $38^{\circ} 43^{\prime}$, true alt., $39^{\circ} 27^{\prime} 20^{\prime \prime}$. Find true dist.
3. Given app. dist., $101^{\circ} 0^{\prime} 4^{\prime \prime}$; Mars' app. alt., $14^{\circ} 36^{\prime} 7^{\prime \prime}$, true alt., $14^{\circ} 32^{\prime}$ $35^{\prime \prime}$; Moon's app. alt., $48^{\circ} 10^{\prime} 5^{\prime \prime}$, true alt., $48^{\circ} 49^{\prime} 29^{\prime \prime}$. Find true dist.
4. Given app. dist., $56^{\circ} 14^{\prime} 32^{\prime \prime}$; Sun's app. alt., $65^{\circ} 15^{\prime} 36^{\prime \prime}$, true alt., 65° $15^{\prime} 13^{\prime \prime}$; Moon's app. alt., $40^{\circ} 32^{\prime} 16^{\prime \prime}$, true alt., $41^{\circ} 15^{\prime} 48^{\prime \prime}$. Find true dist.

Art. 113.-Rules for Lunar Problem.

(1) Find the G.M.T.
(2) Correct the R.A.M.S., the Moon's R.A., Dec., S.D., and H.P. Correct the R.A., and Dec., of object observed for distance.
(3) Correct the obs. alt., finding app. and true alts., and calculate H.A. of object; if both alts. are given, either may be chosen.
(4) With H.A. just found, calculate R.A.M. and H.A. of the other object, and thence its alts. true and app. (unless given).
(5) Correct observed distance for ind. cor. and S.D., adding for Near limbs, and subtracting for Far or remote limbs. In the case of a Sun Lunar, the enlightened limbs must be the near limbs.
(6) Clear the distance.
(7) Find corresponding G.M.T. and error of chronometer.
(8) From R.A.M. in (4) find M.T.S. and longitude.

Example.

August 16th, P.M. at ship in lat. $20^{\circ} 29^{\prime}$ S., when the time by a chron. was $16^{\mathrm{a}} 2^{\mathrm{h}} 14^{\mathrm{m}} 50^{\mathrm{s}}$, which was estimated $2^{\mathrm{m}} 56^{\mathrm{a}}$ fast of M.T.G.; the obs. alt. of the Sun's L.L. was $48^{\circ} 1^{\prime} 20^{\prime \prime}$; ind. cor., $+2^{\prime} 12^{\prime \prime}$; height of eye, $27 \mathrm{ft}^{\prime \prime}$; observed distance between the enlightened limbs of Sun and Moon, $41^{\circ} 3^{\prime} 10^{\prime \prime}$; ind. cor., $-2^{\prime} 4^{\prime \prime}$. Find error of chron. for G.M.T. and longitude.

True dist. $40^{\circ} 46^{\prime} 52^{\prime}$
N.A. , $4149 \quad 2$ P.L. $3267 \quad \ldots \quad \ldots \quad$ Aug. $16^{\text {a }} 0^{\text {b }} 0^{m} \quad 0^{\text {m }}$

Approx. M.T.G. $16^{\text {d }} 211 \quad \mathbf{6 4} 5$
Cor. for, -12 , Diff. P.L.'s, and Int. $2^{\text {h }} 10^{m}$ from N.A. $+3$
M.T.G. $16^{\text {d }} 2 \quad 11 \quad 57.5$

Time by chron. $16^{\mathrm{d}} 21450$
Fast
R.A.M. $11^{\mathrm{b}} 16^{\mathrm{m}} 52^{\mathrm{B}} \cdot 2$ $\begin{array}{llll}\text { R.A.M.S. } & 9 & 36 & 14 \cdot 2\end{array}$

$$
\begin{array}{ccccc}
\text { M.T.S. } 16^{\mathrm{d}} & 1 & 40 & 38 \\
\text { M.T.G. } 16^{\mathrm{d}} & 2 & 11 & \tilde{07} \cdot 5 \\
& \begin{array}{lll}
31 & 19 \cdot 5
\end{array} \\
\text { Long. } 7^{\circ} & 49^{\prime} & 52^{\prime \prime} & \mathrm{W} .
\end{array}
$$

Fig. 173.

From the figure.-

In the figure X and A are true and app. positions of the Sun; Y and B are true and app. positions of the Moon.

First, to find Sun's H.A.-In triangle PZX , given co-lat. $=\mathrm{PZ}$, Pol. dist. $=\mathbf{P X}$, and zen. dist. $=\mathrm{ZX}$, to find P .

$$
\operatorname{Cos} \frac{P}{2}=\sqrt{\frac{\sin s \cdot \sin (s-Z X}{\sin P \overline{P X} \cdot \sin \mathrm{PZ}}}
$$

where $s=\frac{1}{2}\left(Z X+\mathbf{P X}+\mathbf{P}^{\prime}\right)$.
$\mathrm{ZX}=41^{\circ} 46^{\prime} 29^{\prime \prime}$
$\mathrm{PX}=103 \quad 55 \quad 48 \quad$ cosec $10 \cdot 012964$
$\mathrm{PZ}=6931 \quad 0 \quad \operatorname{cosec} 10 \cdot 028365$
2) $215 \quad 13 \quad 17$
$\begin{array}{rlll}s= & \begin{array}{llll}107 & 36 & 39\end{array} \quad \sin & 9.979154 \\ s-Z X & 50 & 10\end{array} \quad \begin{array}{rlll}\text { sin } & 9.960174\end{array}$
2)19.980657
$0^{\mathrm{h}} 48^{\mathrm{m}} 11^{\mathrm{s}} 5 \quad \cos \quad 9 \cdot 990328$
\odot 's W.H.A. 13623
©'s R.A. $9 \quad 40 \quad 29 \cdot 7$
R.A.M. $\overline{11} 16 \quad 527$

D's R.A. $651 \quad 26.5$
D's H.A. $\overline{425 \quad 26.2}$

Second, to find Moon's True and Apparent Altitudes.
In triangle PYZ, given PZ = co-lat., $P Y=D$'s Pol. dist., $\mathrm{P}=$ Hour angle, to find $Z Y=$ D's true Z.D.

$$
\begin{aligned}
\operatorname{Tan} \frac{1}{2}(Z+Y) & =\frac{\cos \frac{1}{2}(P Y-P Z)}{\cos \frac{1}{2}(P Y+P Z)} \cdot \cot \frac{P}{2} \\
\cos \frac{Z Y}{2} & =\frac{\cos \frac{1}{2}(P Y+P Z)}{\cos \frac{1}{2}(Z+Y)} \cdot \sin \frac{P}{2}
\end{aligned}
$$

$P Y=110^{\circ} 17^{\prime} 38^{\prime \prime}$
$\mathrm{P} Z=6931 \quad 0 \quad \frac{\mathrm{P}}{\mathrm{L}}=2^{\mathrm{h}} 12^{\mathrm{m}} 43^{\mathrm{s}} \cdot 1 \cot 10 \cdot 184507 \sin 9 \cdot 738198$
$\mathrm{PY}+\mathrm{PZ}=1794838 \quad \frac{1}{7}(\mathrm{PY}+\mathrm{PZ})=89^{\circ} 54^{\prime} 19^{\prime \prime} \sec 12 \cdot 781671 \cos 7 \cdot 218329$
$\mathrm{PY}-\mathrm{PZ}=404638 \frac{1}{2}(\mathrm{PY}-\mathrm{PZ})=20 \quad 2319 \cos 9.971902$
$89 \quad 562 \cdot 2 \tan 12.938080 \mathrm{sec} 12.938080$

D's true Z.D. $=76 \quad 38 \quad 47$
D's T.A. 132113
Cor. - 4933
D's A.A. 123140
Third, to clear the Distance.
In triangle ZAB , given $\mathrm{AB}=$ app. dist., $\mathrm{ZA}=\odot$'s A.Z.D., $\mathrm{ZB}=\mathrm{D}$'s A.Z.D. to find angle Z.

$$
\operatorname{Cos}_{\frac{Z}{2}}^{Z}=\sqrt{\frac{\sin s \cdot \sin (s-A B)}{\sin Z A \cdot \sin Z B}}
$$

where $s=\frac{1}{2}(\mathrm{AB}+\mathrm{ZA}+\mathrm{ZB})$.

$$
\begin{aligned}
& \mathrm{AB}=41^{\circ} 32^{\prime} \quad 0^{\prime \prime} \\
& \mathrm{ZA}=41 \quad 4544 \quad \operatorname{cosec} 10 \cdot 176499 \\
& \mathrm{ZB}=7 \begin{array}{llll}
77 & 28 & 20 & \text { cosec } 10.010466
\end{array} \\
& \text { 2)160 } 46 \quad 4 \\
& s=\begin{array}{lllll}
80 & 23 & 2 & \sin 9 \cdot 993855
\end{array} \\
& \begin{array}{rllll}
s & =80 & 23 & 2 & \sin \\
s-\mathrm{AB} & =38 & 51 & 2 & \sin \\
9 \cdot 797469
\end{array} \\
& \text { 2)19.978289 } \\
& \frac{\mathrm{Z}}{2}=12 \quad 45 \quad 27 \cdot 5 \quad \cos 9.989144
\end{aligned}
$$

Finally, in triangle ZXY, given $Z X=\bigcirc$'s true Z.D. $\mathrm{ZY}=\mathrm{D}$'s true Z.D, and angle Z, to find $X Y=$ true dist.

$$
\begin{aligned}
\operatorname{Tan} \frac{1}{2}(X+Y) & =\frac{\cos \frac{1}{2}(Z Y-Z X)}{\cos \frac{1}{2}(Z Y+Z X)} \cdot \cot \frac{Z}{2} \\
\operatorname{Cos} \frac{X Y}{2} & =\frac{\cos \frac{1}{2}(Z Y+Z X)}{\cos \frac{1}{2}(X+Y)} \cdot \sin \frac{Z}{2}
\end{aligned}
$$

$$
\begin{aligned}
& Z Y=76^{\circ} 38^{\prime} 47^{\prime \prime} \\
& Z X=414629 \\
& Z Y+Z X=\overline{118} \quad 25 \quad 161(Z Y+Z Y)=591238 \quad \sec 10.290898 \text { cos } 0.709172 \\
& \mathrm{ZY}-\mathrm{ZX}=345218 \frac{1}{2}(\mathrm{ZY}-\mathrm{ZX})=17 \quad 26 \quad 9 \\
& \text { sec } 10 \cdot 290828 \cos 9709172 \\
& \cos 9.979573
\end{aligned}
$$

True dist. 404652
Finish as before.
Remark.-Questions are sometimes set where it is not stated whether the object whose altitude is given is E. or W. of the meridian, but this may be determined by noticing in the "Nautical Almanac" whether the other object is E. or W. of the Moon, and, taking the H.A. in conjunction with the distance, the wrong supposition would put one of the objects too near the horizon, or even below it.

Exercises.

1. August 13 th, about $10^{\mathrm{b}} 30^{\mathrm{m}}$ A.m. at ship, in lat. $35^{\circ} 46^{\prime}$ S., long. D.R. 93° E. ; when a chron. estimated 6^{m} fast of G.M.T. showed $4^{\text {n }} 20^{\text {m }} 15^{5}$, the obs. alt. of the Sun's L.L. was $34^{\circ} 13^{\prime} 30^{\prime \prime}$; ind. cor., $-1^{\prime} 44^{\prime \prime}$; height of eye, 30 ft . ; obs. dist. between near limbs of Sun and Moon, $78^{\circ} 22^{\prime} 50^{\prime \prime}$; no ind. cor. Find long. and error of chron. on G.M.T.
2. August 28 th, about $3^{\text {b }} 35^{\text {mi }}$ P.M. at ship, in lat. $24^{\circ} 14^{\prime}$ N., long. by acct. $163^{\circ} 40^{\prime} \mathrm{W}$.; when a chron. whose supposed error on G.M.T. was $9^{\text {m }} 18^{\circ}$ slow showed $2^{\mathrm{h}} 20^{\mathrm{m}} 18^{\mathrm{s}}$, the obs. alt. of the Moon's U.L. was $14^{\circ} 27^{\prime} 40^{\prime \prime}$; ind. cor., $+1^{\prime} 11^{\prime \prime}$; eye, 35 ft ; obs. dist. between enlightened limbs of Sun and Moon, $117^{\circ} 32^{\prime} 40^{\prime \prime}$; ind. cor., $+2^{\prime} 12^{\prime \prime}$. Find the error of chron. on G.M.T. and longitude.
3. August 10th, A.M. at ship, in lat. $37^{\circ} 50^{\prime} \mathrm{N}$.; when the M.T.G. by a chron. supposed correct was $9^{d} 3^{\mathrm{h}} 49^{\mathrm{ma}} 18^{\text {s }}$, the obs. alt. of the Moon's L.L. E. of meridian was $53^{\circ} 11^{\prime} 20^{\prime \prime}$; ind. cor., $-3^{\prime} 21^{\prime \prime}$; eye, 31 ft ; obs. dist. between Aldebaran and the Moon's near limb, $49^{\circ} 17^{\prime} 50^{\prime \prime}$; ind. cor., $+2^{\prime} 13^{\prime \prime}$. Find long. and error of chron. on G.M.T.
4. August 22 nd, about $6^{\mathrm{b}} 30^{\mathrm{m}}$ P.m. at ship, in lat. $29^{\circ} 45^{\prime}$ S., long. D.R. $34^{\circ} \mathrm{E}$.; when a chron. estimated $10^{\mathrm{m}} 18^{\circ}$ fast of G.M.T. showed $4^{\mathrm{h}} 20^{\mathrm{mm}} 30^{\circ}$, the obs. alt. of a Aqnilæ (Altair) was $28^{\circ} 21^{\prime} 50^{\prime \prime}$; ind. cor., $+2^{\prime} 16^{\prime \prime}$; eye, 40 ft . ; obs. dist. between Altair and the Moon's remote $\operatorname{limb}, 113^{\circ} 44^{\prime} 10^{\prime \prime}$; ind. cor., $-3^{\prime} 11^{\prime \prime}$. Find long. and error of chron. on G.M.T.
5. August 13 th, about $2^{\text {a }}$ A.m. at ship, in lat. $30^{\circ} 27^{\prime}$ N., long. by acct., 41° W.; when a chron. supposed correct for G.M.T. showed $4^{\mathrm{h}} 38^{\mathrm{m}} 12^{\mathrm{n}}$, the obs. alt. of the Moon's L.L. was $23^{\circ} 12^{\prime} 20^{\prime \prime}$; no ind. cor.; eye, 35 ft .; obs. dist. between Saturn's centre and the Moon's further limb., $78^{\circ} 43^{\prime} 10^{\prime \prime}$; ind. cor., $-1^{\prime} 18^{\prime \prime}$. Find long. and error of chron. on G.M.T.
6. August 24th, at $11^{\text {b }} 23^{\mathrm{m}}$ A.m. at ship, in lat. $53^{\circ} 34^{\prime}$ N., long. $4^{\circ} 25^{\prime}$ E.; when a chron. which had ron down and been set going indicated $11^{\mathrm{h}} 20^{\mathrm{m}}$, the following observations were taken for determining long. and error of chron. on G.M.T.; height of eye, 28 ft . :-

Obs. alt. Sun's L.L.	Obs. slt. Moon's U.L.	Obs. dist. Sun and Moon.
$46^{\circ} 53^{\prime} 40^{\prime \prime}$	$10^{\circ} 15^{\prime} 40^{\prime \prime}$	$56^{\circ} 24^{\prime} 10^{\prime \prime}$
$1 . C .+118$	I.C. -218	I.C. -29

7. August 29 th, at $8^{\text {h }}$ P.M. at ship, in lat. $48^{\circ} 43^{\prime} \mathrm{S}$., long. $30^{\circ} 49^{\prime} 45^{\prime \prime} \mathrm{W}$.; when a chron. which had run down and been set going showed $10^{\mathrm{h}} 15^{\mathrm{m}}$, the obs. alt. of Antares was $56^{\circ} 40^{\prime} 20^{\prime \prime}$; ind. cor., $+1^{\prime} 57^{\prime \prime}$; eye, $35 \mathrm{ft}^{\prime}$; obs. dist. between Star and Moon's near limb was $35^{\circ} 57^{\prime} 20^{\prime \prime}$; ind. cor., $-3^{\prime} 33^{\prime \prime}$. Find the long. and error of chron. on G.M.T.
8. Angust 9 th, about 5^{h} A.m. at ship, in lat. $5^{\circ} 14^{\prime}$ N., long. by acct., $20^{\circ} 40^{\prime} \mathrm{W}$. ; when a chron. estimated correct for G.M.T. showed $6^{\mathrm{h}} 25^{\mathrm{m}} 48^{\prime \prime}$, the obs. alt. of Jupiter's centre was $30^{\circ} 30^{\prime} 20^{\prime \prime}$; ind. cor., - $2^{\prime} 16^{\prime \prime}$; obs. alt. of Moon's L.L. was $70^{\circ} 48^{\prime}$; ind. cor., $+2^{\prime} 9^{\prime \prime}$; eye, 32 ft ; ; obs. dist. between Jupiter's centre and Moon's near limb, $78^{\circ} 3^{\prime} 50^{\prime \prime}$; ind. cor., - $2^{\prime} 15^{\prime \prime}$. Find long. and error of chron. on M.T.G.

9 . September 1st, about $1^{\mathrm{h}} 30^{\mathrm{m}}$ A.m. at ship, in lat. equator, long. by acct., 43° E.; when a chron. supposed to be $12^{\mathrm{m}} 10^{\circ}$ slow of G.M.T. indicated $10^{\text {h }} 25^{\text {m }} 32^{\prime}$, the obs. alt. of a Pegasi (Marcab) was $67^{\circ} 52^{\prime} 50^{\prime \prime}$; obs. dist. between Marcab and the Moon's remote limb, $44^{\circ} 55^{\prime} 20^{\prime \prime}$; ind. cor. for alt., $+1^{\prime} 31^{\prime \prime}$; for dist., $-2^{\prime} 17^{\prime \prime}$; height of eye, 31 ft . Find long. and error of chron. on M.T.G.

PART II.

CHAPTER XXVI.

CONSTRUCTION OF CHARTS.

Art. 114.-Before proceeding to the actual drawing of a chart one or two matters must be considered. In the first place there are two geometrical problems which are continually in use: (1) To erect a perpendicular to a given straight line at a given point in the same. (2) To divide a given straight line into a required number of equal parts. There are several ways for performing each operation. Consider (1) when the given point is the end of the line. Let $A B$ be line. through B draw a line perpendicular to AB . Select any point C above $A B$, with C as centre and CB as radius describe an are of a circle cutting $A B$ in D. A line through DC cuts the arc again in E, which is perpendicularly above B , since angle DBE is angle in a semicircle, and therefore a right angle.

For (2) the trial method will give as good results as any to any one

Fig. 174. unaccustomed to use drawing instruments. Good practice in the above may be obtained by the construction of Diagonal Scales.

Example.

Construct a diagonal scale of $1 \frac{1}{4}$ inch to 1° long., to measure miles.
Draw a horizontal line, AB , near the bottom of the draw-ing-paper, and supposing the scale to be $1 \frac{1}{4}$ inch to 1° long., along it measure off distances A 1, 12, 2 3, each $=1 \frac{1}{4}$ inch; at A and 3 erect perpendiculars $\mathrm{AD}, 3 \mathrm{~F}$, and measure along these perpendiculars any ten equal parts-2, 4, 6,8 , show the even points; join these points by ten lines, which will be all parallel to $A B$. On the upper one mark off points 1, 2 to correspond with the points 1, 2 on AB , and join 1 to 1 and 2 to 2. Through D draw a line DO , making any angle with DF , and on DO measure any six equal parts at a, b, c, d, e, f; lines
drawn through a, b, c, d, and e parallel to $f 1$ will divide D1 into six equal parts, and since D1 represents 1°, each part represents 10^{\prime} of long.; with these distances divide A1 into six equal parts, and join up diagonally as shown in figure, by lines similar to 1 g . Considering the triangles 1 km and 1 lg , these

are seen to be similar, and since 11 is ten times $1 h$, therefore $1 g$ is ten times $h m$; but $1 g$ is 10^{\prime} of long., hence $h m$ is 1^{\prime} of long.; that is, the portions of the lines intercepted between 11 and 1 g represent the single miles from 1 to 10 .

Angles may be set off (1) directly from a protractor; (2) by using the scale of chords, marked Cho. On this scale the radius for describing the arc is the length to 60°, and the leugth of the chord subtending any required angle at the centre is the length of the scale to the angle; (3) by using the formula for finding the length of chord (l) for any convenieut radius (r) to subtend $\operatorname{angle}(\mathrm{A})$ viz., $l=2 r \times \sin \frac{\mathrm{A}}{\frac{2}{2}}$.

Thus for an angle of 37° with radius 1.5 incll-

$$
\begin{aligned}
l & =2 \times 1.5 \times \sin 181_{2}^{\circ} \text { inch } \\
& =3 \times .3173 \text { inch }=.952 \text { inch } .
\end{aligned}
$$

On a plan is sometimes found a fraction in the title space thus $\frac{10}{10974}$, called the Natural Scale, which shows the ratio that the length of a certain unit on the plan bears to the real length of that unit on the earth's surface. Hence 1 inch represents 10944 iuches.

$$
\begin{array}{lcc}
, & 109 \pm 4 & \text { feet } \\
" & 912 & 912 \\
" & 1.5 \text { cables. }
\end{array}
$$

Again, if 2 inches represent a nautical mile, the natural scale is -

$$
\frac{2}{6080 \times 12}=\frac{1}{36480} .
$$

When the scale for a minute of longitude is given the scale for a mile of latitude may be found, and vice versâ. On a Mercator Chart

$$
\begin{aligned}
\text { Mile of latitude } & =\text { minute of long. } \times \text { sec. lat. } \\
\text { or min. of long. } & =\text { mile of lat. } \times \cos . \text { lat. }
\end{aligned}
$$

and so may be calculated, or found in traverse table.

Art. 115.-Any straight line drawn in a circle and terminated at the circumference is called a chord, and the portions into which it divides the circle are called segments. When the line passes through the centre, the chord becomes a diameter, and the segments semicircles. The angle subtended by the chord at any point in the circumference of the circle is called the angle in the segment, and all angles in the same segment of a circle are equal to one another. When the segment is equal to a semicircle this angle is a right angle; when the segment is greater than a semicircle this angle is less than a right angle; when the segment is less than a semicircle this angle is obtuse. A segment of a circle may always be described on a given chord which contains an angle of a given size.

When the given angle is acute, the segment is greater than a semicircle, hence the centre for describing the are and required arc are on the same side of the chord.

When the given angle is obtuse, the segment is less than a semicircle, hence the centre for describing the arc and required arc are on different sides of the chord.

To find the centre set off the complement of the given angle at each end of the chord, these lines will intersect in the centre.

Let A, B, and C be three conspicuous objects, A on the extreme left of the observer, C on his right, B the central object, the horizontal angle (a°) between A and B may be observed and the horizontal angle (b°) between B and C. If now segments of circles be described on AB and BC as chords to contain angles of a° and b° respectively, the intersection of these arcs will give the position of the observer. Care must be taken in the selection of the objects, or the cut of the two arcs is uncertain as to position. When the two arcs coincide it shows that the observer and the three points are on one circle, and there is no fix; to avoid this the central object should be chosen as nearly in a line as possible with the other two, or should be nearer the observer than the others. The station pointer performs the operation practically and the fix is tabulated thus: A. a° B. b° C.

ARt. 116.-To construct a Mercator's Chart.-The advantages of such a chart are that all parallels of latitude are projected as parallel straight lines, and all meridians are projected as parallel straight lines cutting the parallels of latitude at right angles; a rhumb line projects as a straight line, since it cuts all meridians at the same angle, and all places of small area retain their proper form on the chart, but with increased area as the latitude increases.

Example 1 (Fig. 176).
Construct a Mereator's chart on a scale of 1.9 inch to 1° long., to extend from lat. $53^{\circ} \mathrm{N}$. to $54^{\circ} 30^{\prime} \mathrm{N}$., and from long. $3^{\circ} \mathrm{W}$. to $7^{\circ} \mathrm{W}$. Insert a
magnetic compass. Variation $17^{\circ} 20^{\prime}$ W., and the following positions. Chicken Rock $54^{\circ} 2^{\prime}$ N., $4^{\circ} 50^{\prime}$ W., Langness $54^{\circ} 3^{\prime}$ N., $4^{\circ} 37^{\prime}$ W., N.W. Lt. V. $53^{\circ} 31^{\prime}$ N., $3^{\circ} 31^{\circ}$ W.

At $2^{\mathrm{h}} 20^{\mathrm{m}}$ p.m. Chicken Rk. bore N. $32^{\circ} \mathrm{W}$., and Langness N. $39^{\circ} \mathrm{E}$. Shaped course S. 59° E., 15 knots, and at $4^{\mathrm{h}} 40^{\mathrm{m}}$ p.m. altered course to S.
9° W., at $5^{\text {h }} 50^{\mathrm{m}}$ p.m. N.W. Lt. V. bore S. 37° E. ; and at $6^{10} 10^{\mathrm{m}}$ p.m. it bore N. 64° E.; place courses on chart, find true and D. R. positions of ship at last observation, set and drift of current. Courses and bearings magnetic.

1st. To find the size of the chart.
As there are four degrees of long., 3° to 7° W., the breadth of the chart is 4×1.9 inches $=7.6$ inches.

The height of the chart is 482 incles.
2nd. To draw the frame, meridians, and parallels.
Near the bottom of the paper draw a horizontal line 7.6 ins. long and divide into four equal parts, at each end set up perpendiculars as explained (Fig. 174). The lower line represents the parallel of $53^{\circ} \mathrm{N}$. Find the distances on the chart corresponding to M.D.L.'s, viz : $50 \cdot 14=1 \cdot 09$ inch, $50.74=1 \cdot 61$ inch, $51 \cdot 35=1 \cdot 62$ inch. Now set these distances up on each perpendicular, and measure the distance between the perpendicular at the upper divisions to see if it corresponds with the base line $7 \cdot 6$ inches: if so join them and the frame is complete. Measure off the whole degrees on the top line, draw the parallel of 54°, and the meridian of $4^{\circ}, 5^{\circ}$, and 6°.

Draw around the frame two parallel lines for graduation purposes, graduate the degrees, and enclose in a thicker outside line.

3rd. To draw in the compass.
Select a portion of the chart clear away from the problem, and draw a circle of suitable radius. A diameter through the centre gives the true north and south line, measure the amount of the variation $17^{\circ} 20^{\prime} \mathrm{W}$. to the left of this diameter for magnetic north, draw the diameter and top it with a half fleur-de-lis. At right angles draw another diameter for the east and west line and graduate.
4. To complete the problem.

Insert the three given points from their lats. and longs., and from the compass set off the given bearings through Chicken Rk. and Langness, their intersection gives the point of departure. From this point set off the course S. $\delta 9^{\circ} \mathrm{E}$. for 35 miles, the distance run between $2^{\mathrm{h}} 20^{\mathrm{m}}$ p.m. and $4^{\text {n }} 40^{\mathrm{m}}$ p.m. ; here the course is altered to $\mathrm{S} .9^{\circ} \mathrm{W}$., which lay off for 22.5 miles, the distance run between $4^{\mathrm{b}} 40^{\mathrm{m}}$ p.m. and $6^{\mathrm{h}} 10^{\mathrm{m}}$ p.m. This gives the D.R. position which can be taken off. From the N.W. Lt. V. set off the two bearings observed, and fit in exactly the distance run by the ship between taking the observations (that is 5 miles run between $5^{\mathrm{h}} 50^{\text {mi }}$ p.m. and $6^{\mathrm{b}} 10^{\mathrm{mI}} \mathrm{p} . \mathrm{m}$.) on a line parallel to run made S . 9° W., the point of cut on the 2nd bearing is the true position of the ship which can now be taken off.

Set and drift of current is the course and distance from D. R. to true position.

> Answer.-True pos. lat. $53^{\circ} 29^{\prime} \mathrm{N}$.
> long. $3^{\circ} 35^{\prime}$ W.
> D.R. pos. lat. $53^{\circ} 26^{\prime} \mathrm{N}$.
> long. $3^{\circ} 40^{\prime} \mathrm{W}$.
> Set N. 54° E., $4 \frac{1}{2}$ miles.

Example 2 (Fig. 177).
Construct a plan $7^{\prime \prime}$ by $5^{\prime \prime}$. Scale $5^{\prime \prime}=1$ nautical mile : also scale of cables and 10ths. Insert compass showing 15° E., variation. © to be $1^{\prime \prime}$ from bottom and left-hand corner. From A A bore N. $8^{\circ} \mathrm{W} ., 4 \cdot 2$ cables ; B bore N. 51° E., 6.2 cables ; C bore N. $61^{\circ} \mathrm{E}$., 10 cables ; all magnetic.

| At buoy " a " | A 103° | B $43^{\circ} \mathrm{C}$. |
| :---: | :---: | :---: | :---: |
| ", b ", | A 47° | $\mathrm{B} 108^{\circ} \mathrm{C}$. |
| " c " | A $45^{\circ} \mathrm{B} 74^{\circ} \mathrm{C}$. | |

Plot buoys and give their bearings and distances from Δ.

Draw a horizontal line $7^{\prime \prime}$ long at bottom of paper, and at each end erect perpendiculars as in Art. 114, and make them $5^{\prime \prime}$ long ; measure to see if their extreme ends are $7^{\prime \prime}$ apart, if so join up and frame is complete. Inside the frame near the bottom draw scale of cables and 10ths as in
diagram, and put in a compass with magnetic north and south inclined 15° to sides of frame. Graduate compass.

Plot in $\triangle l^{\prime \prime}$ from bottom and left-hand side; and from it set off bearings and distances from your scale and compass to plot positions of A, B, and C. Join AB and BC.

For buoy " a " it is noticed that A is on the left, as seen from the buoy, and the angle between \mathbf{A} and B is 103°, the arc is less than a semicircle, and the complement of 103°, that is 13°, is laid off at each end of \mathbf{A} and \mathbf{B}, on the side away from where the fix is to be, the centre " 1 " in Fig. is the intersection of these lines, and the arc is drawn. Again the angle between B and C is 43°, so its complement 47° is laid off at each end of BC, on the same side as the fix is to be, and intersect in the centre " 2 "; where the fornier arc cuts this is buoy " a."

At buoy " b " A is again on the left, since the angle between A and B is 47°, set off lines making 43° with AB at each end to intersect in centre " 3 " on same side as fix, describe are ; then set off lines making 18° with BC at each end to intersect in centre " 4 ," on opposite side to fix, since angle between B and C is 108°; describe are : these arcs cut at position of buoy " b."

For buoy " e " it will be noticed that both angles being less than 90°, the centres " 5 " and " 6 ," determined as before, are both on the same side as the buoy.

Now take off the hearings and measure distances.

F	ring of		N. $53^{\circ} \mathrm{E} .:$		
,,		" b	N. $58^{\circ} \mathrm{E}$. :	6	
	,	" c	N. 68° E. :	6	

Exercises in Construction of Mercator's Charts.

1. Construct a Mercator's chart on a scale $2^{\prime \prime} \cdot 4$ to a degree of longitude, extending from lat. $56^{\circ} \mathrm{N}$. to $57^{\circ} 30^{\prime} \mathrm{N}$., and from long. $25^{\circ} \mathrm{W}$. to $28^{\circ} \mathrm{W}$. A ship from lat. $57^{\circ} 8^{\prime}$ N., long. $25^{\circ} 10^{\prime}$ W., sailed as follows by compass: S.W. by S. 50 miles, dev. $6^{\circ} 10^{\prime}$ W. ; W.N.W. 53 miles, dev. $6^{\circ} 50^{\circ}$ W. ; N.E. 40 miles, dev. $10^{\circ} \mathrm{E}$. ; N. by W. 52 miles, dev. $1^{\circ} 10^{\prime} \mathrm{E}$. The variation is two points W. Find latitude and longitude in.
2. Construct a Mercator's chart, scale $0 \cdot 8^{\prime \prime}$ to 1° loug., extending from $63^{\circ} 30^{\prime}$ S. to $65^{\circ} 30^{\prime} \mathrm{S}$., and from 120° to 123° E., putting in parallels at each $\frac{1}{2}^{\circ}$. A ship leaves A, lat. $65^{\circ} 7^{\prime}$ S., long. $120^{\circ} 52^{\prime}$ E., and sails the following true courses and distances: N.E. 47 miles ; N.N.W. 63 miles ; S.W. by S. 42 miles ; E. 27 miles. Find latitude and longitude in. The variation being $8^{\circ} 30^{\prime}$ W., what is the magnetic bearing of A from ship?
3. Construct a Mercator's chart to extend from lat. $54^{\circ} 30^{\prime} \mathrm{N}$. to $56^{\circ} \mathrm{N}$, and long. $30^{\circ} \mathrm{W}$. to $33^{\circ} \mathrm{W}$., scale $1^{\prime \prime} 3$ to 1° long. A point of land in lat. $54^{\circ} 32^{\prime}$ N., long. $32^{\circ} 56^{\prime}$ W., bears S.W. from the ship by compass, distant 7 miles; ship's head, E. $\frac{3}{4}$ N.; dev. $9^{\circ} 55^{\prime}$ E. ; variation, $18^{\circ} \mathrm{W}$. Ship sailed as follows by compass : E. $\frac{3}{4}$ N. 90 miles, dev. $9^{\circ} 55^{\prime}$ E. ; N.N.W. $\frac{1}{4}$ W. 40 miles, dev. $2^{\circ} 20^{\prime}$ W. ; W.S.W. 45 miles, dev. $7^{\circ} 50^{\prime}$ W.; N.E. $\frac{3}{4}$ E. 75 miles, dev. $10^{\circ} 35^{\prime}$ E. Find latitude and longitude in, true course, and distance made good.
4. Cunstruct a Mercator's chart to extend from lat. $54^{\circ} \mathrm{N}$. to $55^{\circ} 30^{\prime} \mathrm{N}$., and long. 3° to $6^{\circ} \mathrm{W}$., scale $1^{\prime \prime} 75=1^{\circ}$ long. Insert following positions : Abbey Head, lat. $54^{\circ} 47^{\prime}$ N., long. $3^{\circ} 58^{\prime}$ W. ; Little Ross, $54^{\circ} 46^{\prime}$ N., $4^{\circ} 5^{\prime}$ W. ; Burial Island, $54^{\circ} 29^{\prime}$ N., $5^{\circ} 25^{\prime}$ W.; South Rock, $54^{\circ} 22^{\prime}$ N., $5^{\circ} 26^{\prime}$ W. At the ship, Abbey Head bore N. 46° E., and Little Ross, N. $37^{\circ} \mathrm{W}$.; she then steamed S. 63° W. 12 knots for 4 hours, when her position was fixed by cross-bearings of Burial Island W. 8° N., and South Rock S. $23^{\circ} \mathrm{W}$. Find true position of ship, set and drift of current.
5. Construct a Mercator's chart, scale $24^{\prime \prime}=1^{\circ}$ long., extending from
lat. 68° to $71^{\circ} \mathrm{N}$., and 6° to $10^{\circ} \mathrm{E}$. long. A ship leaves $69^{\circ} 38^{\prime} \mathrm{N} ., 8^{\circ} 20^{\prime} \mathrm{E}$., and sails as follows by compass : N.E. $\frac{3}{4}$ E., 30^{\prime}, dev. 12° E. ; N.W. by W. $\frac{1}{\frac{8}{2} \text { W., }}$ 55^{\prime}, dev. $8^{\circ} \mathrm{W}$. ; Soutb, 80^{\prime}, dev. $40^{\circ} \mathrm{W}$. ; variation, $20^{\circ} \mathrm{W}$. Find her latitude and longitude in, course, and distance made good.
6. Construct a Mercator's chart on a scale of $1 \cdot 3$ inch to 1° long., extending from lat. $48^{\circ} 45^{\prime} \mathrm{S}$. to $52^{\circ} \mathrm{S}$., and long. $20^{\circ} \mathrm{E}$. to $26^{\circ} \mathrm{E}$. Position of lighthouse, lat. $51^{\circ} \mathrm{S}$., long. $25^{\circ} \mathrm{E}$. A peak lies 15 miles true North from Lt. Ho. Variation 20° E. A ship steamed from $50^{\circ} \mathrm{S}$., $21^{\circ} \mathrm{E}$., as follows:-

Comp. Co.	Dev.	Dist.	Soundings.	Bottom.
S. $32^{\circ} \mathrm{E}$.	$2^{\circ} \mathrm{E}$.	120 miles	100 ftms.	coral.
N. $6^{\circ} \mathrm{E}$.	$4^{\circ} \mathrm{E}$.	$180, "$	20%	no bottom.
S. $8^{\circ} \mathrm{E}$.	$2^{\circ} \mathrm{W}$.	$120, "$		

When the Lt. Ho. bore S. 45° E. true with an angle of 75° between it and the peak, give the lat. and long. of the position, amount of current experienced, and assuming the same rate of speed to have been maintained, plot the soundings in their correct positions.
7. Draw a plan on a scale 0.85 inch $=1$ mile; and insert following : $\mathrm{B}, \mathrm{C}, \mathrm{D}$ are three objects, the true bearings and distances of which from A are: B, S. 81° E., $3 \frac{1}{2}$ miles ; C, S. 85° E., $6 \frac{1}{2}$ miles; D, S.S.E. $\frac{1}{4}$ E., 3 miles. Fix the following soundings :-

A ϕ D $65^{\circ} 20^{\prime} \mathrm{C}$ (5 feet, mud).
A 41° B $65^{\circ} \mathrm{C}$ ($3 \frac{1}{4}$ fathoms, broken coral).
A 116° B $123^{\circ} \mathrm{D}$ (7 fathoms, sand and shells.
8. Construct a plan en a scale 0.8 inch to 1 mile lat., to extend from $52^{\circ} 3^{\prime} \mathrm{N}$. to $52^{\circ} 18^{\prime} \mathrm{N}$., 6° to $6^{\circ} 25^{\prime} \mathrm{W}$. Insert a compass showing $21^{\circ} \mathrm{W}$. variation and graduate.

A ship steering east magnetic, observed a lighthouse lat. $52^{\circ} 12^{\prime} \mathrm{N}$., long. $6^{\circ} 7^{\prime} \mathrm{W}$., in transit with a buoy when the horizontal angle between light vessel, lat. $52^{\circ} 7^{\prime}$ N., long. $6^{\circ} 24^{\prime}$ W., and Lt. Ho. was 81°. After steering 1.5 miles on above course, the horizontal angle was observed to be $\overline{5} 0^{\circ}$ between Lt. V. and Lt. Ho., and 22° between buoy and Lt. Ho. Find position of buoy with reference to its charted position, which was at first $\mathrm{S} .31^{\circ} \mathrm{W}$. of Lt. Ho. and 1.6 miles from it.
9. On a scale of $1 \cdot 4$ inch to 10 miles long, construct a Mercator's chart to extend from $55^{\circ} 15^{\prime} \mathrm{N}$., to $55^{\circ} 45^{\prime} \mathrm{N}$., and from 6° to $7^{\circ} 30^{\prime} \mathrm{W}$., insert a magnetic compass variation $19^{\circ} 15^{\prime} \mathrm{W}$., graduate margins.

At $7^{\text {k }} 30^{\mathrm{m}}$ a.m. a point (P) bore 130° from a ship proceeding on a magnetic course S. 80° E., 10 knots, in a current setting N. 34° E. magnetic. At $9^{\mathrm{b}} 45^{\mathrm{m}}$ a.m. it bore 206°, and at $10^{\mathrm{h}} 30^{\mathrm{m}}$ a.m. it bore 225°. P. lat. $55^{\circ} 14^{\prime}$ N., long. $6^{\circ} 39 \frac{1}{2}^{\prime} \mathrm{W}$.

Find the ship's position and distance from \mathbf{P} when the last bearing was taken, average drift of the current, course and distance made good.

CHAPTER XXVII.

LAWS OF STORMS.

Art. 117.-The facts gathered from observations, and known as the Laws of Storms, apply more particularly to the violent Hurricanes, Cyclones, and Typhoons (which may be all classed under the name "Cyclone") met with between the parallels of 10° and 35° of latitude; but also in a modified degree to the strong winds, gales, and storms of higher latitudes.

These facts may be summarized as follows:-

1. The tropical Cyclones are never met with in the belt between $10^{\circ} \mathrm{N}$. and $10^{\circ} \mathrm{S}$. lat., but outside of 10° they occur in the following regions:-
N. Atlantic : The western part near the West Indies.
N. Indian Ocean: The Bay of Bengal and Arabian Sea.
N. Pacific: The China and Java Seas.
S. Indian Ocean: The Western part, passing ncar Mauritius, and hence called " Mauritius Hurricanes."
S. Pacific: Eastern part.
2. Cyclones (as the name implies) have a rotatory motion round a centre, and a progressive motion, varying from three or four miles an hour to twelve or more.

Near their origin they cover only a small area, but afterwards expand to as much as a thousand or more miles in diameter.
3. The barometer stands lowest at the centre (often 28 inches or less), and gradually increases in height towards the circumference, whilst the wind force is generally greater the nearer the centre.
4. The bearing of the centre from the ship may be inferred approximately by counting from the wind direction 8 or 10 points to the Right in the N. Hemisphere, and the same number of points to the Left in the S. Hemisphere.
5. The path of the centre, or Line of Progression, divides the Storm Area into two semicircles, and by observing the change of wind it may be determined whether the ship is on the right- or left-hand side of the Line of Progression-a matter of great importance in the handling of the ship. Thus, if the wind changes to the Right, the ship is on the Right-hand side, but if to the left, she is in the Left-hand semicircle.

If the wind is "steady," i.e. changes very slightly in direction, it indicates that the Ship is on the Line of Progression.
6. The Direction of Rotation in the N . Hemisphere is to the Left, and in the S . Hemisphere to the Right.
7. The approach of a Cyclone is often indi-

Fia. 178. cated by well-marked signs, such as-
(a) An oppressive stillness, with threatening sky and much lightning.
(b) A long "ground swell."
(c) A clense cloud bank on the horizon.
(d) A rapid motion of the upper clouds.
8. When within the Storm Area, the approach of the centre is shown by-
(a) A rapidly falling barometer.
(b) Increase of wind, with heavy squalls, much lightning and rain, and general murkiness.
(c) Heavy and confused sea.
(d) Continuous "veering" or " backing" of the wind, except when on the Line of Progression.
The receding of the centre would be indicated by-
(a) Rising barometer.
(b) Wind becoming more "steady" and decreasing in force.
(c) Weather clearing, but the sea still confused and dangerous.
9. Vessels, especially steamships, sometimes overtake Hurricanes, because their speed is greater than the rate of progression of the Storm Centre. In this case, if the wind changes to the Left, the ship is on the Right-hand side of the storm, but if to the Right, she is in the Left-hand semicircle ; contrary to par. 5.
10. In entering the Central Area, which may be up to a hundred miles in diameter, the wind suddenly ceases, with glimpses of a clear sky and a general calm of perhaps hours' duration, interrupted by puffy squalls, whilst the sea is particularly confused and dangerous. After passing through the centre, the wind strikes the ship from the opposite point of the compass with renewed hurricane force.
11. The paths of Storm Centres follow the same general directions for the same regions of the Globe. The following are the usual tracks:-
(a) N. Atlantic: Having their origin near the Windward Islands, they first travel about W.N.W., then more northerly, and about $25^{\circ} \mathrm{N}$. to $30^{\circ} \mathrm{N}$. they recurve to the N.E. towards Mid-Atlantic.
(b) N. Pacific: The same general direction as in the N. Atlantic.
(c) N. Indian Ocean, including Bay of Bengal and Arabian Seas: A general N. and W. direction.
（d）China Scas：Between N．W．and W．S．W．
（e）Java Sea：Between N．and W．
（ f ）S．Indian Ocean：Starting from about 12° South，they travel in a S．W．direction towards Mauritius，then more southerly，and recurve to the S．E．in 25° to 30° S．lat．
12．Seasons of Greatest Frequency of Cyclones．－The following Table of recorded Cyclones from Scott＇s Meteorology shows that Cyclones are most frequent in the N．Indian Ocean at the Change of Monsoons，and in the other Cyclone Regions during the hottest months：－

Cyclone reglon．	Recorded cyclones for each mouth．												Totals of re－ obser－ cations	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { ago. } \\ \text { per } \\ \text { panam. } \end{gathered}$
	g	宫	案	专	家	骂	官	$\stackrel{\text { 部 }}{9}$	范	$\dot{8}$	高	ه́		
West Indies（In 300 yeurs）	6	7	11	6	5	10	42	96	80	69	17	7	355	118
S．Indian Ocean（39 years）	9	13	10	8	4	$-$	－	－	1	1	4	3	63	${ }_{2}^{136}$
Bombay（25 years）．．．ers．．．	$\underline{1}$		1	${ }_{9}^{5}$	21	10	${ }_{3}^{4}$	4	8	${ }_{31}^{12}$	18	5	${ }^{62}$	
Ray of Benga（139 years）	$\frac{2}{5}$	1	$\stackrel{2}{2}$	$\stackrel{9}{5}$	11	10	22	40	58	35	16	6	214	2.5

The Table also shows that the most cyclone－infested regions of the globe are the W．Indies，Arabian Sea，and China Seas，and that the worst cyclone months in the various regions are－
（a）Bay of Bengal and Arabian Sea：May，June，October，and November．
（b）N．Atlantic：July to November．
（c）China and Java Seas：July to October．
（d）S．Indian Ocean：January to March．
The same rule would give for－
（e）N．Pacific：July to November．
（f）S．Pacific：January to March．
13．The Rules of Action to be taken when a ship is caught in a Cyclone can be best understood by reference to the diagrams on p． 276.

These Rules may be summed up as follows：－
（1）If on the Line of Progression of an approaching Storm Centre，run or steam before the wind until clear of the track of the centre；then，in the N．Hemisphere，heave to on the Port Tack，but in the S．Hemisphere on the Starboard Tack．By so doing，the ship would always＂come up＂to the sea when hove to．
（2）In the Right－hand semicircle－
（a）Northern Hemisphere：Head reach or heave to on the Starboard Tack．
（b）Southern Hemisphere：Run with wind on Port Quarter， or heave to on Starboard Tack．
(3) In the Left-hand Semicircle-
(a) Northern Hemisphere: Run, having the wind on Starboard Quarter, or heave to on the Port Tack.
(b) Southern Hemisphere: Head reach or heave to on the Port Tack.
(4) When overtaking a Cyclone, it is obvious that the ship should be stopped or her course altered so that she may not approach the centre.
14. General Remarks.-The most dangerous position for a ship is the track of the Centre of a Cyclone, which should be avoided if possible. This can generally be done, if there is sea room, by attention to the foregoing Rules.

Observations tend to show that a Storm Area is more circular in front than in the rear; so that the Rule for finding the bearing of the centre is most reliable in the most dangerous situation.

The same Rules may be applied when Heavy Gales are encountered in higher latitudes.

It is common to give the name of "Dangerous Semicircle" to the Right-hand Semicircle in N. Lat., and the Left-hand Semicircle in S. Lat., because the direction of the air-currents is towards the Line of Progression in front of the Storm Centre.

If it is suspected that the ship is overtaking a storm, the engines should be stopped, or the vessel "hove to," and the barometer carefully watched. Should the barometer begin to rise, it is a sure sign of overtaking; but if it continues to fall (although less rapidly), it is a case of meeting a storm.

As these storms have their origin in the hottest parts of the earth, their cause has been thought due to the rushing in of winds from the equatorial and polar regions to fill the partial vacuum caused by a vertical sun in rarefying the air and vaporizing the water. The path of a revolving storm is at first to the westward, but in consequence of the resistance due to meeting air carried round in an opposite direction by the rotation of the earth on its axis from W. to E., the storm trends to a place where there is less resistance, that is, in both hemispheres towards the poles. This is called the "Recurving" of the storm, and takes place in about 30° latitude.

Art. 118.-

LAW OF STORMS.

Questions to be answered by candidates for Matcs' and Masters' Certificates.

1. Suppose the wind in a cyclone to blow from, state what is the probable bearing of the centre in the hemisphere.
2. If the wind in the same cyclone changes to , on what side of the line of progression is the ship, and what action would you take?
3. Under what circumstances would the change in the direction of the wind be the reverse of the above?
4. What are the usual indications that a ship is on the line of progression of the centre of a cyclone?
5. What are the usual indications that a ship is approaching the centre of a cyclone or receding from it?
6. State what are the usual tracks taken by cyclones in , and at what season of the year do they most frequently occur in those regions?

LAW OF STORMS.

Answers.

1. In the Northern Hemisphere the centre bears about eight to ten points to the right, and in the Southern Hemisphere eight to ten points to the left, from the given direction of the wind.
2. If the wind changes to the right the ship is on the right-hand side of the line of progression, if to the left she is on the left-hand side. These rules apply to both hemispheres.

The action to take is as follows:-

Northern Hemisphere--

Right-hand Side.- If possible, sail out on the starboard tack to a safer distance from the centre, or heave to on the starboard tack.

Left-hand Side.-If possible, run with the wind on starboard quarter until in a safer position, or heave to on the port tack.

Southern Hemisphere-
Right-hand Side.-If possible, run with the wind on the port quarter until in a safer position, or beave to on the starboard tack.

Left-hand Side.-If possible, sail out on the port tack to a safer position, or heave to on the port tack.
3. The wind would change the reverse way if the ship were on the other side of the line of progression, also if she were overtaking the storm on the same side as before.
4. In advance of the centre the barometer falls more and more rapidly as the centre approaches, the wind continues to blow from the same quarter, but increases in violence, with frequent heavy squalls, a confused angry sea, a dense cloud bank, and general threatening appearances of weather.

In the central area the barometer is lowest, with a confused and dangerous sea, and calms varied by strong gusts.

In the rear of the centre the barometer rises, and the wind blows at first with great violence from the opposite quarter, afterwards moderating and the squalls becoming less frequent, the sea being beavy and confused, but the weather gradually clearing.
5. (a) When approaching the centre, not on the line of progression, there are the same barometer and weather indications as stated in the preceding answer, but the wind changes in direction as it increases in force, with beavy cross- seas.
(b) When receding from the centre the barometer rises, the wind becomes more steady, with less frequent squalls and less threatening appearance of weather, though the sea is still cross and dangerous.
6. North Atlantic (Tropical).-The cyclones, in this region, are supposed to take their rise near the Windward or Leeward Islands, and first travel about W.N.W. towards Florida, then more northerly, and on reaching the parallel of 30° often recurve to the N.E. They occur most frequently from July to November; worst months, August and September.

South Atlantic (Tropical),--They travel frst about W.S.W., then
more southerly, and sometimes recurve to the S.E. They occur most frequently in the hottest months-December, January, and February.

South Indian Ocean (Tropical).-They are supposed to have their origin in the belt of calms, south of the Equator, often near Java, and travel first W.S.W., then more southerly towards the Mauritius, and sometimes recurve to the S.E. They occur from November to May, but most frequently in February and March.

China Seas.-The storms take their origin near the Philippine Islands, and travel generally between W.N.W. and W.S.W. They occur most frequently from July to November; worst months, August and September.

Bay of Bengal.-The storms in this region begin in the neighbourhood of the Andaman and Nicobar Islands, and travel between W. and N.N.W. They occur most frequently in April to June, and September to November ; worst months, May, October, and November.

Arabian Sea.-Between N. and W., and most frequent in May and October.

North Pacific (Tropical).-The cyclones of this region begin in about 10° N., and travel first W.N.W., then more northerly, and finally recurve to the N.E. July, August, and September are the worst months.

South Pacific (Tropical).-The cyclones of this region first travel about W.S.W., then more southerly, and finally to the S.E. They occur most frequently from November to April.

Outside of lat. 30°, storms in the North Atlantic and North Pacific travel to N.E., and in the South Indian Ocean and South Pacific to the S.E.

Mauritius.-Storms occur from December to April, worst months being February and March; they travel from S.S.W., recurving to S.S.E.

CHAPTER XXVIII.

MAGNETISM AND DEVIATION OF THE COMPASS.

Art. 119.-For a full and scientific discussion of the deviation of the compasses in iron ships, the student is referred to the " Admiralty Manual," or to the "Elementary Manual," edited and revised by Captain Creak, R.N. For general students Merrifield's "Magnetism and Deviation of the Compass" is recommended.

The purpose of the following remarks is to enable students to clearly understand the principles involved in the Board of Trade Syllabus of Questions dealing with the practical application of the laws of magnetism to the case of iron ships and their compasses.

Definition.-Magnetism is a property which may be acquired by masses of iron and steel, by virtue of which they attract or repel each other under certain circumstances.

Kinds of Magnets.-There are three kinds of magnets, viz. natural, artificial, and electro-magnets. The natural magnets are the Earth and pieces of magnetic iron ore or " lodestone." Artificial magnets are bars or "needles" of hard-tempered steel, which have been magnetized by rubbing contact with other magnets, or by the influence of an electric current. Electromagnets are elongated or horseshoe-shaped masses of soft iron wound round with copper wire, through which an electric current is passing. The strongest magnets are made in this way; but the magnetic properties disappear when the current ceases.

Degrees of Magnetism.-Magnetism may exist in three different states or degrees in steel or iron, viz. Permanent, sub-permanent, and transient induced.

A bar of hard-tempered steel receives magnetism slowly, but when once magnetized it retains its magnetic strength for an indefinite length of time, and is said to have permanent magnetism.

Iron or steel of a less degree of harduess is more easily magnetized, but is liable to lose a considerable portion of its magnetism with lapse of time, and is therefore said to have sub-permanent magnetism.

Soft or malleable iron becomes instantly magnetized by induction from any magnetic source, but loses it when the
inducing cause is removed. This temporary magnetic condition is known as TRANSIENT INDUCED magnetism.

Saturation.-There is a limit to the magnetic strength which

Fig. 180.-Variation chart of British Islands.
a piece of steel or iron can acquire, and when this limit is reached it is said to be saturated.

Magnetic Poles.-Every magnet has two POLES, or points
where the greatest energy is concentrated, distinguished as Red and blue poles, becanse it is common to paint artificial magnets in these colours. The red pole of a permanent magnet is the one which would point north when the magnet is suspended at its centre and free to turn round. This end is also called the N. or marked end. Therefore the end of a compass-needle which points N . is the red pole.

Art. 120. First Law of Magnetism.-It is a well-known law of magnetism that like poles repel each other, and unlike poles attract each other. This can be proved on a compass-needle, for if the red pole of a magnet be brought near to the N. or marked end, it will repel it, whilst the blue pole will attract it. Similarly, the S. end will be repelled by the blue pole, and attracted by the red. It follows from this experiment that the Earth's north magnetic pole is BLUE, because the red pole of the needle is attracted towards it. The needle, if floating on water and free to move, would not, however, travel towards the N. pole, because its length is as nothing compared with the distance from the Earth's pole, its blue end being as strongly repelled as the red end is attracted. It is the same with the action of the south magnetic pole. The only result is, therefore, to give the needle a north and south direction.

If a needle hundreds of miles in length could be supposed to be afloat in the North Atlantic, with its red pole towards north, no doubt it would travel bodily towards the N. pole of the Earth, because its red pole would then be attracted more strongly than the blue would be repelled.

Second Law.-It is another law of magnetism that the effect of a magnetic force (such as the pole of a magnet or an induced pole in soft iron) on a small magnet varies nearly in the inverse ratio of the cube of the distance; that is, at double the distance it is one-eighth $(2 \times 2 \times 2=8)$; at treble the distance it is only one twenty-seventh ($3 \times 3 \times 3=27$), etc. Also-

Third Law.-A magnet placed end on to a pivoted needle causes twice the deflection that it would do if broadside on at the same distance between the centres of the magnet and needle.

These facts have a very important bearing on the effect of the magnetic forces in a ship on her compasses, and show the advantage of placing the compasses as far as practicable from masses of iron having magnetic properties, especially when end on.

Art. 121. Transient Induced Magnetism.-When either pole of a magnet is brought near to one end of an iron rod, it develops two magnetic poles in the iron, the near end being of the opposite name to that of the pole applied. The process may be repeated through a series of rods end on, so that the N. point of a com-pass-needle would be deflected by the last one in the same manner as by the magnet itself.

The same fact may be illustrated by the familiar experiment of causing a number of soft iron bars or nails to hang on to the

Fig. 181.
end of a strong magnet; but whether in contact or not, the effect is the same.

The above are examples of magnetic induction and the acquiring of transient induced magnetism.

Lines of Force.-The mysterious action of one magnet on another at a distance, and the

Fig. 182. magnetization of iron with or without contact, are explained by the existence of lines of force, which issue from the red pole and return to the blue pole. These lines of force pass without interruption through all intervening non-magnetic substances, and it is the passing of lines of force into iron which gives it magnetic properties. Their existence and direction can be shown by experiment (Fig. 182). If a sheet of white paper be laid on a magnet and iron filings sprinkled on the paper, the filings will arrange themselves in lines corresponding to

Fig. 183. the direction of the lines of force from one pole of the magnet to the other.

If a suspended magnetic needle were enclosed in a thick iron shell, the lines of force would follow round through the iron by preference to reach the blue pole, and the consequence would be that the needle would lose its directive power. This is the reason why compass-bowls are made of copper, and not of iron. Another reason is that poles would be induced in an iron bowl, which would oppose the Earth's directive action on the needle. Therefore a ship's compass which is closely surrounded by iron would have a weakened directive power.

The Earth's Magnetism.-The Earth itself acts as a magnet, having a blue pole towards the north and a red pole towards the south. Its action on a compass needle is merely to give a directive tendency, as before explained, but it is also a powerful inducing source. No iron can escape from its influence. Hence fireirons, knife-blades, needles, etc., are nearly always magnets with two fixed poles, as may be tested on a compass-needle,
whilst bars or rods of soft iron have also induced poles from the same cause, which are not, however, fixed. A fairly strong magnet can be made by holding a bar of hardened steel in a N.-and-S. direction and tapping it with a hammer ; the vibration quickens the process of magnetization by the Earth's induction.

A Ship's Induced Magnetism.-Even a ship becomes a huge magnet from the Earth's induction in the process of building, whilst the separate parts, such as beams, stanchions, davits, rudder and stern-posts, etc., become so many temporary magnets, liable to act separately and collectively in disturbing the compasses.

Art. 122. Variation.-The magnetic poles of the Earth do not coincide with the true geographical poles, the N. or blue pole being in about lat. $70^{\circ} \mathrm{N}$. , long. $90^{\circ} \mathrm{W}$., and the S . or red pole was found by Lieut. Shackleton to be in lat. $72 \frac{1}{2}^{\circ} \mathrm{S} .$, long. $154^{\circ} \mathrm{E}$. (from which it is seen they are not exactly opposite). This is the cause of the variation of the compass, which is the difference in direction between true N. and magnetic N. The amount of variation is stated on ordinary charts, and for the entire globe on special variation charts. The variation is not constant at any place, but changes at a known rate (in the United Kingdom now about 8^{\prime} or 9^{\prime} annually).

Previous to the year 1657 the variation was E. in this country. In that year there was no variation at London, the compass pointing true N . Then it became westerly, and attained its maximum W. variation in 1816. Since then it has constantly decreased, and will again become 0 in 1977; then, becoming E. again, it will reach its maximum in the year 2290 . The explanation of this progressive change of variation is that the N . magnetic pole describes a complete circle round the true N. pole in a period of about 640 years. Twice in the course of this period the compass would point true N . at Greenwich, i.e. when the magnetic pole is on the meridian of Greenwich, and on the opnosite meridian (Fig. 184). The annual change would evidently be greatest when the magnetic pole is at or near to the points 0 and 0_{1} in the

Fig. 184. figure, and slowest when near the points W and E, when the direction of the needle is a tangent to the small circle. At present the magnetic poles are coming towards the meridian of Greenwich. The same remarks apply to other places. A line in the direction magnetic N. and S. at any place is called the magnetic meridian; hence variation may be defined as the
angle between the true and magnetic meridians. An irregular line round the Earth, about midway between the poles, is the magnetic equator, which cuts the true geographical equator in two nearly opposite points about longs. $170^{\circ} \mathrm{E}$. and $12^{\circ} \mathrm{W}$.

Magnetic Dip.-A magnetized needle, poised at its centre so as to be free to move in a vertical plane,

Fig. 185. and provided with a scale of degrees, is called a dipping-needle (Fig. 185).

At the magnetic equator, and placed in the plane of the magnetic meridian (i.e. pointing N. and S. magnetic), such a needle would lie horizontal; but if carried northwards the red pole would dip more and more, until the magnetic pole is reached, where it would stand upright, red pole downwards. South of the magnetic equator the blue pole would dip, and the needle would again assume an upright position at the S. magnetic pole, blue pole downwards. At Greenwich the dip at the present time is 68°, but in the West Atlantic and Gulf of St. Lawrence it is much greater. Like the variation, the dip at Greenwich is decreasing annually, and will be least in the year 1977, when the variation will be 0 .

These are the results of observation. The explanation is that in N. magnetic latitude the red pole of the needle points direct to the N. magnetic pole, and

Fig. 186. in S. magnetic latitude the blue pole to the S. magnetic pole of the Earth, notwithstanding the mass of the Earth intervening, whilst the horizontal plane at any place is a tangent to the Earth's surface (see Fig. 186).

The dip at any place decreases when the magnetic pole, in making its circuit round the true pole, is approaching the meridian of the place, and increases when it is receding. Thus in the Fig. 184, the dip at Greenwich decreases when the magnetic pole is moving from 0_{1} to 0 , and increases from 0 to 0_{1}, being greatest when the pole is at 0_{1}, and least when at 0 . At present the dip at Greenwich is decreasing.

The position assumed by the dipping-needle may be con-
sidered the natural one for any magnetized needle which is free to move, but the horizontal position of a compass needle is a forced one. The reason why the compass card lies horizontal under the circumstances is that the point of support is above the centre of gravity of the card and needles, and the dragging down force is not sufficient to overcome their weight. It is evident from the above that an ordinary compass would be of no use for steering purposes near the magnetic poles, and is at its best on the magnetic equator.

Art. 123. Parallelogram of Forces.-Before considering the magnetism of iron ships and its effects on their compasses, it is necessary to understand the principle of the parallelogram of forces.

It is a law in mechanics that if two adjacent sides of a parallelogram represent two given forces in direction and amount, then the diagonal from the point of meeting of these two sides will represent the resultant (or equivalent force) both

Fig. 187.

Fig. 188.
in direction and amount. Thus, if AB and AC in the parallelogram ABCD represent two given forces, then the diagonal AD will represent the joint effect or resultant. The sides of the triangle $A B D$ represent equally well the forces and resultant.

A good illustration of this principle may be taken from the case of sailing in a current. For example, let the direction from A to B (Fig. 188) be the course steered, and the length of AB the rate of sailing per hour; also let AC represent the "set" of the

Fia 189. current and "drift" in one hour. Draw BD parallel to $A C$, and $C D$ parallel to $A B$, and join $A D$; then AD will be the course and distance mate good, and represents the resultant or joint effect of wind or steam and the current acting for the same length of time.

It is the same with any other kind of force, and it will be seen how the principle applies in dealing with the magnetic forces in a ship.

AB and AC are called components, and these can be found from the resultant, as well as the resultant from the components. The finding of the components is called "resolution," and of the resultant "composition." Thus, a force represented by AD is
"resolved" into components represented by $A B$ and $A C$. This expression will be frequently used hereafter.

Art. 124. Magnetic Condition of Iron Ships.-(a) Sub-permanent Magnetism.-It has been stated that the hull of an iron ship becomes a magnet from the Earth's induction. The effect of lying for a considerable time in one direction, and the hammering to which the iron is submitted, is to fix the acquired magnetism so that it becomes sub-permanent, i.e. less than permanent. After launching there is some reduction of the strength of this sub-permanent magnetism, but it can often be traced throughout the whole existence of the ship, showing that a portion of it is almost of a permanent character.

If the hull be supposed to be divided into halves as she lies on the stocks by a plane at right angles to the line of dip (q.v.), the half towards the N . will have red polarity, and the other half blue.

Thus, if built in the United Kingdom, with head towards N., the line of dip being DP (Fig. 190) and EQ at right angles,

Fig. 190.
the ship would be an irregularly shaped magnet, red towards the bow, and blue towards the stern.

If built heading S., the red polarity would be at the stern, and blue at the bow.

If built heading E., the port side would be red, and the

Fig. 191.

Fig. 192.
starboard side blue (Fig. 192) ; but if built head W., the starboard side would be red, and the port side blue (Fig. 191).

The magnetic poles or points of greatest concentration of magnetic strength might be supposed to be about the centre of the two halves. So that in all these coses the line joining the poles would be inclined, one pole being nearer the keel than the other (unless built on the magnetic equator).

But it is only the horizontal component of the total force which causes deviation when the ship is upright. (The effect

Fig. 193.

Fig. 194.
of the vertical component will be considered later.) The parallelogram (or triangle) of forces will show the relation of the horizontal to the total force (Fig. 194).

It is clear that the greater the dip the less will be the horizontal component of the ship's magnetic force, and vice versâ. Hence, other things being equal, a ship built in a high latitude

Fig. 195.

Fig. 196.

Fig. 197.
should cause less deviation from sub-permanent magnetism than one built in a low latitude, the ship being upright.

If a ship were built heading magnetic N . or S ., the line representing the horizontal force of sub-permanent magnetism would be parallel to the keel (Fig. 195); if E. or W., it would be at right angles to the keel (Fig. 196) ; but if in any other direction it would lie obliquely (Fig. 197). In the latter case, the parallelogram of forces would again resolve the total horizontal force into two components-one represented by a line parallel to the keel, and the other at right angles to it.

Induction in Horizontal and Vertical Iron.-The effect of the Earth's induction on the horizontal and vertical iron of a ship may now be considered.

A bar of soft iron has the greatest magnetic strength from the Earth's induction when it lies in the line of dip, but is neutral when at right angles to it.

Thus, in N. magnetic latitude the end B of the horizontal bar $A B$ and the lower end of the vertical bar $C D$ are red poles, because towards the N. dipping-pole (Fig. 198).

Fig. 198.

Fig. 199.

In S. magnetic latitude, the end A of the horizontal bar and the lower end of the vertical bar are blue, because towards the S. magnetic pole (Fig. 199).

A bar lying at right angles to the line of dip would be neutral.

This explains why the stern post, rudder post, and other vertical iron below the compass attract the N. point of the compass when north of the magnetic equator and repel it when south, whilst they have no effect when the ship is on the magnetic equator. Also, why the ends of horizonal beams attract and repel alternately as the ship's head turns from one quadrant to another, but are neutral when her head is N. or S. magnetic.

Another inference is that the magnetic strength of vertical iron in a ship decreases on going towards the magnetic equator, and increases towards the poles, whilst that of a horizontal beam lying N . and S . increases towards the equator, and decreases towards the poles.

Art. 125. Coefficients.-The term coefficients is used to represent the components of magnetic forces in a ship. It may be assumed that these forces have a mechanical value, although a very small one, and could be measured by the same standard as other mechanical forces; but in reference to a ship's compass they are estimated by the amount of deviation they produce when acting most effectively. This deviation itself is often called the coefficient.

The letters A, B, C, D, E name the coefficients, of whick B, C , and D are the most important.

Coefficient B represents a magnetic force whose poles lie horizontally in the fore-and-aft midship line, and is a combination of the fore-and-aft component of sub-permanent magnetism and the induced magnetism of vertical iron before or abaft the compass. It is named $+B$ if the combined effect is to attract the N. point of the compass towards the bow, and -B if towards the stern.

Coefficient C represents a force whose poles lie horizontally at right angles to the fore-and-aft midship line, and is the athwartship component of the sub-permanent magnetism only, for vertical iron is supposed to be evenly balanced towards the sides. It is named +C when the N . point of the compass is attracted to the starboard side, and -C when to the port side.

The horizontal force of sub-permanent magnetism is therefore represented by coefficients B and C, whose signs and relation to each other depend on the direction of ship's head during her construction, as illustrated in the following figures:-

Fig. 200.

$\left\{\begin{array}{l}+B \\ +C\end{array}\right.$

$\left\{\begin{array}{l}-B \\ -C\end{array}\right.$

$\left\{\begin{array}{l}-\mathrm{B} \\ +\mathrm{C}\end{array}\right.$

Fig. 201.
Semicircular Deviation.-The deviation due to coefficient B or coefficient C is called semicircular, because it is east on courses over one half of the compass, and west in the other half.

Coefficient +B (blue pole forward) causes E . deviation when the ship's head is to the eastward, and W. deviation when to the westward; -B (blue pole aft) gives deviations of opposite name to the above. The maximum amount in both cases is found when the ship's head is E . or W. by compass.

Coefficient + C gives E. deviation when the ship's head is to the northward, and W. deviation when to the southward; -C gives the opposite, the maximum amount being found when heading N . or S . by compass. B causes no deviation when ship's
head is N . or S . by compass, and C causes no deviation when her head is E. or W., because in these cases the forces act in a line with the compass needle.

The kind of deviation due to coefficients B and C is seen at a glance in the following figures, where + stands for E . deviation, and - for W. deviation:-

Fig. 202.

Fig. 203.
Transient Induced Magnetism in Ships.-The transient induced magnetism of horizontal iron is represented by coefficients D and E. Beams from side to side, and elongated iron lying fore-andaft end on to the compass, give coefficient +D ; athwartship beams end on and fore-and-aft iron extending beyond the compass both ways, gives -D (Fig. 204).

Horizontal stringers from starboard quarter towards port bow give $+E$, and when extending from port quarter towards starboard bow they give -E. When end on to the compass, they give a coefficient of the opposite sign (Fig. 205).

Quadrantal Deviation: Coefficients D and E.-The deviations caused by coefficients D and E are called quadrantal, because they change their signs with change of course from quadrant to quadrant.

Thus, + D gives E. deviation between N . and E. and between S. and W., but W. deviation between E. and S. and between W. and N. Also, + E gives E. deviation between N.W. and N.E. and between S.E. and S.W., but W. deviation between N.E. and S.E.
and between S.W. and N.W. -D and -E give deviations of opposite sign.

Fig. 204.
Ftc. 205.
It is an instructive exercise to prove the foregoing results by tracing the influence of one of these masses of horizontal iron on the compass as the ship's head is swung round.

These figures show the magnetic polarity of a beam from side to side (giving coefficient +D) and the deviation produced in each quadrant. The zero points (i.e. points on which there is no deviation) are N., E., S., and W., and the maximum deviation is on courses halfway between these points, namely, at N.E., S.E., S.W., and N.W.

Similarly, it can be shown that the zero points for coefficient

E are N.E., S.E., S.W., and N.W., and the courses of maximum deviation N., E., S., and W.

The student should reason out for himself the effect of the various masses of horizontal iron as the ship is swung round the compass.

It is conceivable that the iron producing +D or +E might be exactly counterbalanced by iron causing -D or -E , but if not, then the balance on the side of the greater is the coefficient.

The following figures show the quadrantal deviations due to coefficients D and \mathbb{E}, and the zero and maximum points. The sign + stands for E. deviation, and - for W. deviation :-

Fig. 207.

Fig. 208.
Coefficient \mathbf{A} and its Causes.-Coefficient A is of the nature of an index error, being of the same sign or name on all courses, and is often not due to magnetism at all. It may arise from any of the following causes :-
(a) The misplacing of the lubber line.
(b) The magnetic axis of the needles not coinciding in direction with the line through the N. and S. points of the card.
(c) An error in the correct magnetic bearing used in finding the deviations.
(d) Unsymmetrical arrangement of iron with respect to the compass.
(e) Retained magnetism during the process of "swinging" the ship.

The first three causes, if detected, could be removed, but the
last two can scarcely be remedied. In any case the deviation from these causes is small, and is liable to be confounded with the deviation due to coefficient E , which is also very small.

The existence of a coefficient A is made evident in a table of deviations when the sum of the E. deviations is not equal to the sum of the W. deviations. When the former is greater, A is + ; when the latter, it is -.

Art. 126. Analysis and Compensation.-The importance of making an analysis of the causes of deviation and of knowing how much is due to each, is that suitable methods of compensation may be employed, namely, to counterbalance the permanent magnetism by means of magnets, and the transient induced magnetism by iron correctors which themselves have the same kind of magnetism from the same source (the Earth), but act on the compass in the opposite sense.

Separation of Coefficients.-It is a fortunate circumstance that the effects of the various coefficients of forces can be sorted out from the observed deviations, as explained in the answer to Question 62, and a table can be made of the deviations due to each coefficient for every point of the compass (see answer to Question 62), which, being summed up algebraically, give the total deviation for each course.

The practical method of compensation is explained in answers to Question 40.

Compensation of Coefficient B.-The most troublesome coefficient to deal with is B, because it is a combination of subpermanent and transient induced magnetism, as before explained. When on the magnetic equator, it would be easy to compensate the former with a magnet, and then, on proceeding north or south, the amount of change in the deviation when the ship's head is E. or W. could be compensated by a "Flinders bar."

But since B and C of sub-permanent magnetism stand to each other in the relationship of difference of Latitude and Departure, the ${ }_{\text {a }}$ ship's head whilst building being the course, it is possible to find this B if that direction is known. For this purpose the ship's head should be steadied on N. or S. by compass, and the deviation from coefficient C observed. Then, with the direction of ship's head whilst being built as a course, and \mathbf{C} in departure column (in the Traverse Table), the required B will be found in the latitude column. This is the amount to be compensated by the fore-and-aft magnet, and the balance of observed B with the Flinders bar, either before or abaft the compass as required.

Effect of Magnetic Forces on Different Compasses.-It may be remarked that although the same coefficients of magnetic forces in a ship disturb both steering and standard compasses, yet the measure of the coefficients as shown by the deviations will not be the same for both, because the forces act at different distances.

Consequently, observations and corrections must be made for each compass separately.

It is explained in the answer to Question 63 how this can be done for several compasses simultaneously.

Compensation good for all Latitudes.-If the compensations are properly made when a ship is ready for sea, they should stand good for all latitudes, provided the sub-permanent magnetism does not change, for on this supposition the strength of the magnets and the coefficients of sub-permanent magnetism would always be in the same relation to each other, and no deviation would occur, although the directive power of the needle varies with change of latitude, whilst the horizontal force of transient induced magnetism and of the correctors would also remain in the same relation to each other.

Changes in Deviation.-But however carefully a compass may be compensated, changes may be expected with the lapse of time, and as these changes will be chiefly in the deviation due to sub-permanent magnetism, a readjustment of the magnets will be necessary from time to time. The effect of the vibration caused by the propeller, the buffeting of heavy seas, collisions, or stranding is to considerably modify the magnetic condition of the ship when she left the builder's hands.

Retained Magnetism-Another troublesome cause of change of deviation is what is called retained magnetism; that is, if a ship remains for a considerable time in one position in dock or on the same course at sea for several days, the induced magnetism from the earth is retained for a certain length of time, and causes a deviation when the course is altered. In sailor's language, the ship tends to follow her last course. For example, a steamer in crossing the Atlantic, bound for Liverpool, lays on an easterly course for several days together, and when on rounding Tuskar her course is changed to the northward, the retained red polarity on the port side (and blue on the starboard side) causes an E. deviation, which tends to set her to the eastward of her proper course. To this cause is owing, no doubt, the fact that steamers from the westward, coming up Channel in thick weather, are apt to be found too near the Welsh coast, and steamers from the south, bound up the English Channel, too near the English coast.

Art. 127. Uncompensated Compasses.-An uncompensated compass having large deviations on some courses and very small deviations on others is very unsatisfactory for steering purposes, for two reasons :-
(1) The deviation will be subject to greater changes, because when a ship approaches the magnetic equator the directive force of the needle increases, and therefore the cocfficients of subpermanent magnetism, which are assumed to remain nearly
constant, will cause less deviation. On receding from the magnetic equator, the deviation would increase for the same reasons.
(2) The directive tendency of the needle would be much increased when a strong blue magnetism in the ship is towards the north from the compass, and correspondingly decreased when red is towards the north. The consequence would be that in some directions a considerable change of course would show only a small change in the compass course, and in other directions a small change of course would appear a large one by compass.

Horizontal Iron and Uncompensated Compass.-The deviation caused by horizontal iron would not be subject to these changes, because the horizontal component of transient induced force would vary in the same ratio as the directive force of the needle.

Diminution of Directive Force.-In an ordinary iron ship, the directive force is rarely more than six-sevenths of what it would be in a wooden ship or on shore, and in armoured war-ships not more than three-fourths, according to Captain Creak, R.N., who has had very large experience of such matters. The chief cause of this is the horizontal iron, for in most cases it has a red polarity to the north of the compass. Sub-permanent magnetism weakens the directive force on some courses, but strengthens it on others, according as a red pole is north or south of the compass, and so the mean effect all round is nil. These remarks apply to uncompensated compasses.

The consequence of a diminution of directive force is greater deviations, for the forces which cause deviation are acting on a weakened compass.

The object aimed at by compensating a compass is to secure a uniform directive force on all courses, so that if any deviations remain they will be small in amount and regular in their changes.

Art. 128. Heeling Error.-So far it has been assumed that the ship is upright, but when she has a list from the pressure of the wind, or shifting of cargo, or unequal trimming of bunker coals, further deviations-sometimes very large, and known as heeling error-occur on northerly and southerly courses, but disappear on east and west courses.

The Cause of Heeling Error.- (α) It has been already explained that there is a vertical component of sub-permanent magnetism as well as a horizontal. The upper pole of this force, nearest to the steering compass aft, is blue if the ship is built head north (Fig. 209), and red if built head south (Fig. 210), and so long as the ship is upright, it only tends to attract the N. point of the needle downwards or repel it upwards, according as the upper pole is blue or red, without causing any deviation. The case is different when the ship heels, for then this upper pole is no longer in the vertical plane passing through the centre of the compass, but
towards the higher side, deviating the N . point of the compass towards the higher or lower side. This effect is evidently

Fig. 209.

Fig. 210.
greatest on N. and S. courses, and nil on E. and W. courses, because in the former case the force acts at right angles to the needle, and in the latter case in the plane of the magnetic meridian.

Fig. 211.

Fig. 212.
(b) The upper pole of vertical iron below the compass affects the compass in exactly the same way as the sub-permanent pole when the ship heels, only it must be remembered that vertical iron has the blue pole uppermost only in N. magnetic latitude, and red pole uppermost in S. magnetic latitude, being neutral on the magnetic equator. Therefore the heeling error from this cause decreases on sailing towards the magnetic equator, and vice versâ.
(c) The athwartship iron, which gives coefficient D when the ship is upright, acquires a vertical component when she heels, which is of the same nature as the magnetism of vertical iron, and is subject to the same changes-the higher end being blue in N. magnetic latitude, and red in S. magnetic latitude.

It is evident that in some cases these three causes of heeling error would act together, and the heeling error would be large. In other cases the first would be opposed to the other two, and they would tend to neutralize each other, and give a small heeling error.

Their combined forces might be represented by a single force
acting vertically under the centre of the compass, which would therefore be the resultant of-
(1) The vertical component of sub-permanent magnetism.
(2) The induced magnetism of vertical soft iron.
(3) The vertical component of the induced magnetism of transverse beams.
This resultant force is called + if the balance on the side of the greater is blue uppermost, and - if red. The total effect may be summed up by saying that a + vertical force causes a heeling error towards the higher side, and a - force a heeling error towards the lower side (Figs. 213 and 214).

Fia. 213.

Fig. 214.

Experience shows that in the majority of sailing ships the force below the compass is + in N. latitude and - in S. latitude, with the result that N . of the magnetic equator the ship is drawn to windward on northerly courses, and to leeward on southerly courses. South of the magnetic equator the rule would generally be reversed. The same rules apply to steam ships, if "higher side" is substituted for " windward," etc.

Navigators make a practical application of these facts by keeping "away" on northerly courses, and "closer" on southerly courses, when north of the magnetic equator, and the reverse when south of it.

Since the vertical force draws the N. point of the compass to one side or the other when the ship heels, it is called a coefficient C, although it would be more logical to distinguish it in some way from the coefficient C already discussed, due to horizontal force, say by using C_{1} to represent it. ${ }^{1}$

Like coefficient C of horizontal sub-permanent force, the new coefficient C_{1} causes no deviation (heeling error) when the ship's head is E. or W. (magnetic), and the greatest deviation on N. and S. courses, because in the former case it acts in the plane of the magnetic meridian, and in the latter at right angles to the needle.

Art. 129. Compensation.-The heeling error is usually

[^3]compensated by means of one or more magnets placed vertically under the compass, and capable of being moved up or down. There are two'modes of procedure:-
(1) The ship's head being at N. or S. magnetic, she is caused to heel, say about 10°, and the error observed. Then the magnet is placed in position, and moved up or down, until the compass points correct magnetic N .
(2) The card having been removed, and the ship upright, with her head E. or W. magnetic, a dipping needle, weighted so as to lie horizontal when in the plane of the magnetic meridian on shore, is placed on the pillar in the centre of the bowl, and lying N. and S. Should the red end dip, showing a blue force below the compass, the red pole of the vertical magnet should be uppermost, and vice vers \hat{a}, being moved up or down until the needle is again horizontal.

In either of these methods, what has been done is to counteract the force below the compass by a force of opposite name; by observation of the heeling error in the first case, and in the second case by observing the vertical action of the force below the compass on the dipping needle.

In a compensated compass the vertical force of the athwartship iron (producing coefficient D) is counterbalanced for moderate angles of heeling by a vertical force developed in the correctors; which leaves only the effects of vertical iron and the sub-permanent magnetism to be dealt with.

The Flinders bar increases the heeling error, for its upper pole is of the same name as that of the vertical iron it is intended to counteract when the ship is upright. Therefore the compensating magnet has to neutralize the combined vertical forces of sub-permanent magnetism, vertical iron, and Flinders bar. But as the two latter change with change of latitude, it is evident that this mode of compensation is effective only so long as the ship remains in the same latitude, and constant shifting of the magnet would be necessary as the ship proceeds north or south, and probably a reversal of the poles on the other side of the magnetic equator.

The only efficient compensation would be to use the magnet for the part due to sub-permanent magnetism only, and a vertical soft iron bar, having its lower end above the compass, to counteract the vertical force of soft iron below the compass. Some arrangement might possibly be made for the purpose in the construction of the binnacle.

It will now be understood that the principle of compensation is to counteract the existing magnetic forces in a ship by employing counter equal forces of the same kind, to act on the compass needles.

The order of procedure recommended in the "Elementary

Manual " for ships of the Royal Navy, where the conditions are pretty constant, is-

1st. Coefficient D.
2nd. Heeling error.
3rd. Coefficients B and C.
But in the Merchant Service, where cargoes change every trip, and where the compensation is often hurriedly made when ready for sea, the "Tentative Method" of adjustment is usually carried out in the following order :-

1. Coefficient C (athwartship magnet).
2. Coefficient B. (1) Flinders bar, and (2) fore-and-aft magnet.
3. Coefficient D (soft-iron correctors).
4. Heeling error (vertical magnet).

Coefficient \mathbf{E} is rarely compensated, although a counter \mathbf{E} could be introduced by moving one of the D correctors forward, and the other a little aft. For $+\mathbf{E}$ the starboard corrector should be moved aft, and the port one as much forward; for -E , the reverse.

A table of the remaining deviations is obtained by "swinging" the ship in dock or other convenient place.

Yet, however accurately the compensation may be made, changes in the deviation, from causes already explained, will occur during a voyage, and no careful navigator will place much reliance on "deviation cards." In fact, nothing can relieve him from the obligation to find the deviation from frequent observations, which is now happily made easy by Azimuth Tables.

CHAPTER XXIX.

SYLLABUS.

Questions on Deviation of the Compass for Ordinary Manters.

The applicant is to answer correctly at least 12 of such of the following questions as are marked with a cross by the examiner.

The examiner's attention is specially called to the importance of questions $11,12,13,14$, and 39 , which must be marked in all cases.

1. State briefly the essentials of an efficient compass.
2. State briefly the chief points to be considered when selecting a position for your compass on board ship, and what should be particularly guarded against.
3. What do you mean by deviation of the compass; and how is it caused?
4. Describe how you would determine the deviation of your compass : (1) by reciprocal bearings ; (2) by figures on the dock walls ; (3) by bearings of a distant object; (4) by the bearings of the sun or other celestial body.
5. Having determined the deviation with the ship's head on the various points of the compass, how do jou know when it is easterly and when westerly?
6. Why is it necessary, in order to ascertain the deviations, to bring the ship's head in more than one direction?
7. For accuracy, what is the least number of points to which the ship's head should be brought for constructing a curve or table of deviations?
8. How would you find the deviation when sailing along a well-known coast?
9. Name some suitable objects by which you could readily obtain the deviation of the compass when sailing along the coasts of the Channel you have been accustomed to use.
10. Supposing you have no means of ascertaining the magnetic bearing of a distant object when swinging your ship for deviations, how could you find it approximately from equidistant compass bearings; and at what distance, as a rule, should the object be from the ship?
11. Having taken the following compass bearings of a distant object, find the object's magnetic bearing, and thence the deviation.

Magnetic bearing required :-

Ship's head by standard compass.	Bearing of distant object by standard compass.	Deviation required.	Ship's head by standard compass.	Bearing of distant object by standard compase.
N.	S. $4^{\circ} \mathrm{E}$.		Deviation required.	
N.E.	S.		S.	S. $13^{\circ} \mathrm{E}$.
E.	S. $4^{\circ} \mathrm{W}$.		S.W.	S. $23^{\circ} \mathrm{E}$.
S.E.	S. $1^{\circ} \mathrm{W}$.		W.	S. $21^{\circ} \mathrm{E}$.

12. With the deviation as above, construct a curve of deviations on a Napier's diagram, and give the courses you would steer by the standard compass to make the following courses, correct magnetic:-

Magnetic courses : S.S.W. W.N.W. N.N.E. E.N.E. S.S.E.
Compass courses required.
13. Supposing you have steered the following courses by the standard compass, find the correct magnetic courses made from the above curve of deviations:-

Compass courses : W.S.W. N.N.W. E.N.E. S.S.E.
Magnetic courses required.
14. You have taken the following bearings of two distant objects by your standard compass as above; with the ship's head at W. $\frac{1}{2}$ S., find the bearings, correct magnetic:-

Compass bearinge: W. by S. and N. 柔 W.
Magnetic bearings required.
15. Do you expect the deviation to change? If so, state under what circumstances.
16. How often is it desirable to test the accuracy of your table of deviations?
17. What is meant by variation of the compass? What is it caused by? And where can you find the variation for any given position?
18. The earth being regarded as a magnet, which is usually termed the blue, and which the red magnetic pole?
19. Which end of a magnet (or compass needle) is usually termed the red or "marked" end, and which the blue?
20. What effect has the pole of one magnet of either name on the poles of another magnet?
21. What is meant by transient induced magnetism?
22. Which is the red and which is the blue pole of a mass of soft vertical iron, by induction, and what effect would the upper and lower ends of it have on the compass needle (a) in the northern hemisphere, (b) in the southern hemisphere, (c) on the magnetic equator?
23. Describe what is usually termed the sub-permanent ${ }^{1}$ magnetism of an iron ship, and state when and how it is acquired, and which is the red and which is the blue pole, and why it is called sub-permanent magnetism.
24. Describe the meaning of the expression "coefficient A."
25. Describe the meaning of the expression "coefficient B," its signs and effects.
26. Describe the meaning of the expression "coefficient C," its signs and effects.
27. Describe the meaning of the expression "coefficient D," its signs and effects.
28. Describe the meaning of the expression "coefficient E," its signs and effects.
29. Would you expect any change to be caused in the error of your compass by the ship heeling over either from the effect of the wind or the cargo, etc.?
30. The compasses of iron ships being more or less affected by what is termed the heeling error, on what courses is this error usually at its minimum, and on what courses at its maximum?

[^4]31. Describe clearly the three principal causes of the heeling error on board ship.
32. State to which side of the ship in the majority of cases is the north point of the compass drawn when the ship heels over in the northern hemisphere.
33. Under what conditions (that is, as regards position of ship whilst building, and the arrangement of iron in the ship) is the north point of the compass needle usually drawn to windward or the high side of the ship in the northern hemisphere; and if not allowed for, what effect has it on the assumed position of the ship when she is steering on northerly, also on southerly courses, in the northern hemisphere?
34. Under what conditions (as in Question 33) is the north point of the compass needle usually drawn to leeward or the low side of the ship in the northern hemisphere; and, if not allowed for, what effect would it have on the assumed position of the ship, when she is steering on northerly, also on southerly courses, in the northern hemisphere?
35. The effects being as you state, on what courses would you keep away, and on what courses would you keep closer to the wind in the northern hemisphere in order to make good a given compass course (α) when north point of compass is drawn to windward or the high side of ship; and (b) when drawn to leeward or the low side?
36. Does the same rule hold good in both hemispheres with regard to the heeling error?
37. State clearly how that part of the heeling error due to the permanent part of the magnetism of the ship varies as the ship changes her position on the globe; and what is the reason of this.
38. State clearly how that part of the heeling error due to the induction in transverse iron (which was horizontal when ship was upright) and iron vertical to the ship's deck, varies as the ship changes her position on the globe.
39. Your steering compass having a large error, show by "Beall's Compass Deviascope" how you would correct it by compensating magnets and soft iron (as usually practised by compass adjusters in the Mercantile Marine) in order to reduce the error within manageable limits. Show also how the heeling error can be compensated.
40. As the coefficient \mathbf{B} (capable of being corrected) usually consists of two parts, one due to the permanent magnetism of the ship, and the other to vertical induction in soft iron, how should each of the two parts, strictly speaking, be corrected when compensating the compass?
41. If the whole of coefficient B be corrected by a permanent magnet, as is usually done, what is likely to ensue as the ship changes her magnetic latitude?
42. Provided the needles of your compass are not so long and powerful, and so near, as to cause the soft-iron correctors to become magnetized by induction, would the coefficient D , if properly compensated, be likely to remain so in all magnetic latitudes and both hemispheres? If so, state the reason why.
43. State at what distance, as a general rule, the magnets and soft-iron correctors should he placed from the compass needles, and what will be the consequence if they are placed too near the needles.
44. Is it necessary that the magnets used for compensating coefficients \mathbf{B} and C should be placed on the deck? If not, state where they may also be placed, and the rules to be observed in placing them into position.
45. Can the compensation of the heeling error be depended upon when the ship changes her latitude? If not, state the reason.

Answers to the Questions on Deviation of the Compass.

1. The card should be light, accurately centred and divided, and the needles well magnetized, the nagnetic axis coinciding with the N. and S. points of the card. The cap should be sound, and the pivot sharp and smooth. The point of the pivot should be level with the gimbals. The bowl should be of copper, and the mounting should not allow of any lateral play.
2. The standard compass should be in the midship line, and should afford a clear view all round for taking bearings, and not less than five feet from iron of any kind, especially vertical iron and any iron which is likely to change its position, such as derricks, cowls, davits, etc. Also as far as possible from a dynamo, if electric lighting is used. Steering compasses should be so placed that the card can be well seen by the steersman, and should be as far removed as possible from the influence of iron.
3. Deviation is the amount of deflection of the N. point of a compass from the correct magnetic N. caused by the magnetic influence of iron in the ship, whether in hull, equipment, or cargo.
4. (1) By reciprocal bearings: An observer is stationed at a compass on shore in a position free from local attraction, and another observer at the standard compass on board. Then, as the ship is swung round, bearings are taken of each compass by the other observer at the same time, whilst the ship's head is steadied on the required points. The difference between the bearing observed on board and the reversed shore bearing is the deviation. (2) By figures on the dock wall: These figures at Liverpool show the true bearings of the Vauxhall Chimney from the river, so that the figure in a line with the chimney as seen from the ship shows its true bearing from the observer's position. The difference between this and the bearing by the standard compass is the total error, from which the variation may be separated, and the result is the deviation. (3) By bearings of a distant object: When the correct magnetic bearing of a distant object is known, the difference between the bearing of it by compass on board, and the correct magnetic is the deviation. (4) By the bearings of a celestial object: The true azimuth of the object being found for a given moment, either by calculation or by tables, the bearing of the object at the same time is taken by compass; the difference shows the error of compass for the actual position of ship's head, and the variation being known, the deviation may be found.
5. If the correct magnetic bearing reads to the right of the compass bearing, the deviation is east ; if to the left, it is west.
6. Because the deviation changes with every change of course.
7. Eight equidistant points, viz. N., N.E., E., S.E., S., S.W., W., N.W.
8. By comparing the bearing of two known objects when in one (or in line) with the known correct magnetic direction of one from the other obtained from a chart.
9. (a) English Channel : Bolt Head and Start Lighthouse, Prawle Point and Start Point, etc. (b) Irish Channel : Skerries and South Stack, Smalls and Bishop Lights, Wolf anć Longship. (c) North Sea: South Foreland Lights, Whitby Lights, and Tyne Harbour Lights.
10. The ship's head should be steadied on eight equidistant points in succession, and the bearing of a distant object observed when on each point. The mean of these may be taken as the correct magnetic. The object should be seven or eight miles distant, so that its bearing would not be sensibly affected by the swinging of the ship.
$11,12,13$, and 14 are practical.
11. Yes, the deviation may be expected to change: (a) From lapse of time; (b) By kecping the ship's lead for a considerable time in an opposite
direction to that in which she was built ; (c) By change of latitude; (d) By shocks or strains from heavy seas; (e) By being kept for a long time on one course, magnetism is induced which is retained on a change of course.
12. The deviation table should be tested at every opportunity.
13. Variation is the difference in direction between the magnetic north and true north, and is due to the fact that the earth's magnetic poles do not coincide with its geographical poles. The amount, together with the annual change, may be found on a magnetic chart.
14. The earth's north magnetic pole is the blue pole, and the south the red.
15. The end of a magnetized needle, freely suspended, which points north is the red pole, and the other the blue pole.
16. Poles of the same name repel each other, and poles of different names attract each other.
17. Transient induced magnetism is the magnetic condition of soft iron caused by the influence of a magnetic force in its neighbourhood or that of the earth itself.
18. North of the magnetic equator the upper end is the blue pole and the lower the red, but south of the magnetic equator this rule is reversed. (a) In the northern hemisphere the upper end would attract the north end of the compass needle, and the lower end repel it. (b) In the southern hemisphere the upper end would repel and the lower attract the north end of the needle. (c) On the magnetic equator the effect would be nil.
19. The sub-permanent magnetism of an iron ship is the magnetic condition of a more or less enduring character which she has when she is launched. It is acquired in the course of building, from the earth's inductive influence, aided by the vibration due to hammering, riveting, etc. The red pole is that which was towards the north, and the blue towards the south when the ship was on the stocks. It is called sub-permanent magnetism to distinguish it from the magnetism of a tempered steel bar, and because it is liable to be weakened or modified by circumstances and by lapse of time.
20. Coefficient A is a deviation of the same amount and sign on all courses, usually due to a faulty or badly placed compass.
21. Coefficient B represents a horizontal magnetic force, whose poles are in the fore-and-aft midship line. It is called $+B$ when the blue pole is towards the bow, and $-B$ when towards the stern. $+B$ causes E . deviation on easterly courses, and W. deviation on westerly courses. -B causes W. deviation on easterly courses, and E. deviation on westerly courses. The effect is nil on N. and S. courses, and greatest on E. and W. courses.
22. Coefficient C represents a horizontal magnetic force, whose poles are in a line at right angles to the fore-and-aft midship line. It is called $+\mathbf{C}$ when the blue pole is towards the starboard side, and -C when towards the port side. +C causes E. deviation on northerly courses, and W. deviation on southerly courses. -C causes W. deviation on northerly courses, and E. deviation on southerly courses. The effect is nil on E. and W. courses, and greatest on N. and S. courses.
23. Coefficient D represents the effect of transient induced magnetism in horizontal iron in fore-and-aft and athwartship directions. The deviation due to this cause changes its name in successive quadrants, and is thence called quadrantal. +D causes E . deviation from N. to E. and S. to W. courses, and W. deviation from S. to E. and N. to W. -D gives W. deviation from N. to E. and S. to W. courses, and E. deviation from S. to E. and \mathbf{N}. to W. The deviation due to this cause is nil on the cardinal points and greatest on N.E., S.E., S.W., and N.W.
24. Coefficient E represents the effect on the compasses of induced magnetism in horizontal iron lying in a direction oblique to the fore-and-aft line. The deviation due to this cause is quadrantal, and is nil on N.E., S.E., S.W., and N.W., and greatest on the cardinal points. +E gives E. deviation
from N.W. to N.E. and S.E. to S.W., and W. deviation from N.E. to S.E. and S.W. to N.W. -E gives W. deviation from N.W. to N.E. and S.E. to S.W., and E. deviation from N.E. to S.E. and S.W. to N.W.
25. Yes, because when the ship heels, horizontal athwartship iron acquires a vertical component, and besides, the upper poles of vertical iron and the poles of sub-permanent magnetism will then not be in the same vertical plane with the centre of the compass.
26. The heeling error is usually greatest on N. and S. courses, and least on E. and W. courses, because in the former case the force cansing it acts at right angles to the compass needle, and in the latter case coincides with the direction of the needle.
27. The three principal causes of heeling error are: (1) Traverse iron acquires a vertical component. (2) The upper induced poles of vertical iron will not be in the same vertical plane with the centre of the compass. (3) The poles of the fore-and-aft component of the ship's sub-permanent magnetism fall to the right or left of the vertical plane, through the centre of the compass.
28. In the N . hemisphere the N . point is usually drawn towards the higher side.
29. In ships built with head northerly, compass aft, placed over continuous athwartship iron, the N. point of a steering compass will be attracted towards the higher side, and, if not allowed for, will draw the ship to windward on northerly courses, and to leeward on southerly courses.
30. In ships built with head towards south, with compass aft, placed over divided athwartship iron, the effect of the sub-permanent magnetism and soft iron would be to draw tbe N. point of the compass to leeward, and if these exceeded the influence of the vertical soft iron, the N. point of the compass would be drawn towards the lower side. If not allowed for, it would take the ship to leeward on northerly courses, and to windward on southerly courses.
31. (a) When the N. point is drawn to windward, I would keep away on northerly courses, and closer to the wind on southerly courses. (b) When the N . point is drawn to leeward, I would keep closer to the wind on northerly courses, and keep away on southerly courses.
32. The rule for the northern hemisphere is generally reversed in the southern, especially in ships built heading south, for the poles of vertical induction are reversed, but in ships built heading north, the same rule may still obtain, that is, when the sub-permanent vertical force exceeds the induced.
33. It decreases on approaching the magnetic equator, and increases on receding from it, because the directive force of the compass changes as the magnetic latitude changes, being greatest at the magnetic equator and nil at the magnetic poles, whilst the sub-permanent magnetism of the ship is nearly constant.
34. The induced vertical force becomes weaker on approaching the magnetic equator, is nil at the equator and the poles are reversed on crossing it. Therefore the part of the heeling error due to this cause, drawing the N. point to windward in north mag. lat., disappears at the magnetic equator, and repels the N. point to leeward in S. mag. lat.
35. Practical.
36. The part of coefficient B due to the sub-permanent magnetism should be compensated by means of a magnet, and the part due to vertical induction in soft iron by an upright bar of soft iron before or abaft the compass in the midship line.
37. It will be found to be over-compensated or under-compensated as the ship changes her mag. lat., for the part cansed by vertical induction changes with change of latitude.
38. Yes, because the horizontal inductive force of the correctors will vary in the same ratio as that of the horizontal iron which produces coefficient D.
in the same ratio as that of the horizontal iron which produces coefficient D.
39. The magnets used for compensating should not be nearer the centre of compass than twice their own length, and the soft-iron correctors should not be nearer than $1 \frac{1}{4}$ times the length of the needles. If the magnets are too near, the compensation which was made with the ship's head on the cardinal points would not be perfect on other points. If the soft-iron correctors are too near, the poles of the compass needles would have a tendency to induce opposite polarity in the correctors, rendering them useless.
40. The magnets used for compensating B and C need not be on the deck, but may be placed in any convenient position near the compass, in or outside the binnacle, provided the following conditions are complied with : (1) The ship should be upright and on even keel. (2) The fore-and-aft magnets should be parallel to the deck, and bisected by a vertical plane athwartships, passing through the centre of the compass. (3) The athwartship magnets should be parallel to the deck, and placed so as to be bisected by a fore-andaft vertical plane passing through the centre of the compass.
41. No, because a part of the heeling error is due to vertical induction in soft iron, which varies in force as the latitude changes. This part of the beeling error cannot be compensated by means of a permanent magnet fixed in position.

Questions on Deviation of the Compass for Masters (Extra).

1. Describe an artificial magnet, and how a steel bar or needle is usually magnetized.
2. Which end of the compass needle, or a magnet, is commonly termed the red, and which the blue pole?
3. Which is the red magnetic pole of the earth, and which the blue? and give their geographical positions.
4. What effect has the pole of one magnet of either name on the pole of the same name of another magnet? and what would be the consequence of the pole of one magnet of either name being brought near enough to affect the pole of contrary name, if in these cases both magnets were freely suspended?
5. By applying this law to all magnets, natural as well as artificial, describe what would be the result on a magnetic bar or needle, freely suspended, but by weight or by the nature of its mounting constrained to preserve a horizontal position ; and what would be the result, if so monnted, but free to move in every direction, the earth being regarded as a natural magnet.
6. What is the cause of the variation of the compass?
7. What is meant by the deviation of the compass?
8. What is meant by the term "local attraction"? under what circumstances have ships' compasses, from recent careful investigation, been found to be affected by it? and name some of the localities in different parts of the world where this disturbance is to be found, and consequently where increased vigilance is necessary (see page 22, "Creak's Elementary Manual," 1908).
9. What do you understand by the term "soft" iron; and what are its properties as regards acquiring and retaining magnetism?
10. What do you understand by the term "hard" iron; and what are its properties as regards acquiring and retaining magnetism?
11. Describe the meaning of the term "horizontal force" of the earth; where is it the greatest, and where the least, and what effect has it in respect to the increase or decrease of the directive force of the compass needle?
12. Does the magnetic equator coincide with the geographical equator? if not, state clearly how it is situated.
13. Where can the values of the magnetic dip, the earth's horizontal force, and the variation, be found?
14. State in what parts of the globe lying in the usual tracks of navigation the variation changes very rapidly, and what special precautions should be observed when navigating these localities; also why a "variation" chart is then very useful.
15. Why is a knowledge of the magnetic dip and the earth's horizontal force important in dealing with compass deviations?
16. Describe the meaning of the term "vertical force" of the earth; where is it the greatest, and where the least?
17. Would you expect a compass to be the more seriously affected by any given disturbing force when near the magnetic equator, or near the poles? and state the reason.
18. State briefly (a) the essentials of an efficient compass; and (b) what you would consider a good arrangement of the needles (that is, whether long or short, single or double, etc.) with the view to good compensation.
19. In stowing away spare compass cards or magnets, how would you place them with regard to each other, or what might be the probable consequence?
20. State briefly the ohief points to be considered when selecting a position for your compass on board ship, and what should be particularly guarded against.
21. What is meant by transient induced magnetism?
22. Which is the red and which the blue pole of a mass of soft vertical iron (or indeed of any soft iron not in a horizontal position) by induction; and what effect would the upper and lower ends of it have on a compass needle in the Northern hemisphere?
23. Which is the red and which the blue pole of a mass of soft vertical iron by induction; and what effect would the upper and lower ends of it have on the compass needle in the Southern hemisphere?
24. What effect would a bar of soft vertical iron have on the compass needle on the magnetic equator?
25. Describe what is usually termed the sub-permanent ${ }^{2}$ magnetism of an iron ship, and state when and how it is acquired, and which is the subpermanent red and which is the blue pole, and why it is called sub-permanent magnetism.
26. What is meant by "the composition of forces" and "the parallelogram of forces"? and show how the knowledge of these is valuable in ascertaining and compensating the sub-permanent magnetism of an iron ship.
27. Describe the nature of the coefficients B and C, plus (+) and minus (-), and the different magnetic forces they represent; also why they are said to produce semicircular deviations.
28. Can semicircular deviations be produced by any other force than the sub-permanent magnetism of the ship? If so, by what?
29. On what points, by compass bearings of the ship's head, does $+B$ give westerly deviation, and on what points does it give easterly; also on what point does - B give westerly, and on what points easterly?
30. On what points does $+C$ give westerly deviation, and on what points easterly; also on what points does - C give westerly, and on what points easterly deviation?
31. The value of either coefficient \mathbf{B} or \mathbf{C} being given, also the magnetic direction of the ship's head while she was being built, determine by the Traverse Tables the approximate value of the other coefficient C or B; and,

[^5]the value of both these coefficients being given, determine approximately the direction by compass of the ship's head whilst being built, assuming, of course, that these coefficients resulted altogether from sub-permanent magnetism.
32. Would you expect the greatest disturbance of the needle from the effects of sub-permanent magnetism alone to take place when ship's head is in same direction as when building, or when her head is at right angles to that direction, and in what direction of the ship's head would you expect to find the least disturbance?
33. Describe quadrantal deviation, and state what coefficients represent it ; also on what points of the ship's head, by compass, eack of these coefficients gives the greatest amount of deviation, and why it is called quadrantal deviation.
34. On what points of the compass will each of the coefficients D and $\mathrm{E},+$ and - , give easterly, and on what points westerly, deviation?
35. What conditions of the iron of a ship will produce +D , and what -D ?
36. State clearly, then, which end of the horizontal iron running athwartship (such as beams, etc.), and of horizontal iron running fore and aft of a ship, acquires red and which blue polarity, by induction, when ship's head is at N.E., S.E., S.W., and N.W. respectively.
37. Describe the nature of the deviation represented by coefficients +A and - A, and describe the errors in the construction of the compass, and other causes, that frequently produce it.
38. What is the object of compensating the compass by magnets, etc.; and what are the general advantages of a compensated compass over an uncompensated one?
39. Before adjusting the compass of an iron ship, what is it desirable to do with the view to eliminating, as far as possible, what may be termed the unstable part of the magnetism of the ship?
40. Describe clearly the tentative method of compass adjustment (that is, the compensation of coefficients B, C, and D, with ship upright) as generally practised by compass adjusters in ships of the Mercantile Marine.
41. State at what distance, as a general rule, the magnets and soft-iron correctors should be placed from the compass needles, and what will be the consequence if they are placed too near the needles.
42. Is it necessary that the magnets used for compensating coefficients \mathbf{B} and \mathbf{C} should be placed on the deck? If not, state where they may also be placed, and the rules to be observed in placing them into position.
43. Does the B found on board ship usually arise altogether from subpermanent magnetism, or does part of it usually arise from some other cause or causes?
44. If the part of B due to induced magnetism in vertical soft iron, as well as the part due to sub-permanent magnetism, are corrected by a magnet alone, as is generally the case, what is frequently the consequence on the ship changing her magnetic latitude and hemisphere?
45. How should each of these two parts of B then, strictly speaking, be compensated?
46. Assuming, for the sake of clearness, that your steering compass is unavoidahly placed very near to the head of the stern-post (and other vertical iron at the stern), thereby causing a very large-B from induced magnetism, describe briefly any method by which the approximate position for the compensating vertical iron bar (Flinders' or Rundell's) could be estimated in order to reduce the error; describe also bow you would proceed, in order to improve, if not to perfect, its position after observations have been made on the magnetic equator.
47. State if standard compasses, as well as steering compasses, are
generally subject to this disturbance from induced magnetism in vertical iron; also whether the attraction in all cases is found to be towards the stern; and if not, state the conditions under which it might be toward the bow, and how the compensating soft-iron bar should then be placed.
48. Generally speaking, does the magnetism induced in vertical iron usually have any effect in producing the coefficient C (ship upright), or is it generally produced by sub-permanent magnetism alone? State also your reasons for saying so.
49. Provided the needles of your compass are not so long and powerful, and so near, as to cause the soft-iron correctors to become magnetized by induction, would the coefficient D, if properly compensated as you have described (Ans. 40), be likely to remain so in all latitudes and bath hemispheres? If so, state the reason why.

50 . Under what circumstances does the character of A and E so change as to render it desirable that these coefficients should be disregarded or modified?
61. Supposing your compasses were allowed to remain uncompensated, explain clearly what would be the probable changes (ship upright) in the deviations produced separately by (1) the sub-permanent magnetism of the ship alone, (2) by the induced magnetism in vertical soft iron, (a) on reaching the equator, (b) in the southern hemisphere.
52. Assuming you were able to arrive at the proper proportions to be corrected, and were then to exactly compensate the sub-permanent magnetism of the ship by means of a permanent magnet, and the induced magnetism in vertical iron by a soft-iron bar, would you expect any deviation to take place in your compass as the ship changed her latitude and hemisphere? And state jour reasons for saying so.
53. Supposing the coefficient D from horizontal soft iron were allowed to remain uncompensated, would you, or would you not, expect the D to differ in name or amount on the ship changing her magnetic latitude, and hemisphere? And state the reason.
54. Describe how you would determine the deviation of your compass, (1) by reciprocal bearings, (2) by figures on the dock walls, (3) by bearings of a distant object.
55. Describe, in detail, how you would determine the deviation of your compass by the bearings of the Sun. Also by a star or planet.
56. Describe the uses to which the Napier's diagram can be applied, and its special advantages.
57. Describe clearly how the Napier's diagram is constructed.
58. For accuracy, what is the least number of points to which the ship's head should be brought for constructing a complete curve of deviations, or a complete table of deviations?
59. Nearing land, and being anxious to check your deviations on a few courses you may probably require to steer, what is the least number of points it would be necessary to steady the ship's head upon, if making use of a Napier's diagram, in order to ascertain the deviation on each of the points, say, in' a quadrant of the compass? and describe clearly how you would do this at sea.
60. Supposing you have no means of ascertaining the magnetic bearing of the distant object when swinging your ship for deviations, how could you find it, approximately, from equidistant compass bearings; and how far, as a rulo, should the object be from the ship when swinging, or steaming round?
61. Having taken the following equidistant compass bearings of a distant object, find the object's magnetic bearings, and thence the deviations:-
(a) Magnetic bearing required-

Sbip's head by standard compasa.	Bearing of distant object by atandard compass.	Deriation.	Ship'a bead by atandard compass.	Bearing of distant object by standard compass.	Deviation.
N.	S. $75^{\circ} \mathrm{W}$.		S.	S. $34^{\circ} \mathrm{W}$.	
N.E.	S. $64^{\circ} \mathrm{W}$.		S.W.	S. $31^{\circ} \mathrm{W}$.	
E.	S. $56^{\circ} \mathrm{W}$.		W.	S. $49^{\circ} \mathrm{W}$.	
S.E.	S. $50^{\circ} \mathrm{W}$.		N.W.	S. $71^{\circ} \mathrm{W}$.	

(b) Construct a curve of deviations on a Napier's diagram, with the deviations as above, and give the courses you would steer by the standard compass to make the following courses, correct magnetic:-

Magnetic courses : N.N.W. S.S.E. W.N.W. E.S.E.
Compass courses required.
(c) Supposing you have steered the following courses by the standard compass, find the correct magnetic courses made from the above curve of deviations:-

Compass courses : N.N.E. E.N.E. S.S.W. W.S.W.
Magnetic courses required.
(d) You have taken the following bearings of two distant objects by your standard compass as above; with the ship's head at N.E. $\frac{1}{2}$ E., find the bearings, correct magnetic:-

Compass bearings : S.E. by S. and N.N.W.
Magnetic bearings required.
62. Assuming the deviations observed with the ship's head by compass to be as follows (or as in Question 61, whichever may be given), determine the value of the coefficients $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E , and from them construct a complete table of deviations (or for as many points as the Examiner may direct).

Deviation at N.	$\left(21^{\circ} \mathrm{W}.\right)$	S.	$\left(20^{\circ} \mathrm{E}.\right)$
N.E.	$\left(10^{\circ} \mathrm{W}.\right)$	S.W.	$\left(23^{\circ} \mathrm{E}.\right)$
E.	$\left(2^{\circ} \mathrm{W}.\right)$	W.	$\left(5^{\circ} \mathrm{E}.\right)$
S.E.	$\left(4^{\circ} \mathrm{E}.\right)$	N.W. $\left(17^{\circ} \mathrm{W}.\right)$	

63. When swinging your ship, if it be required to construct Deviation Tables for two or more compasses situated in different parts of the vessel, describe the process, and how you would employ the Napier's diagram for this purpose.
64. State your rule for determining whether deviation is easterly or westerly.
65. Is a knowledge of the value of the various coefficients of any advantage? If so, state why?
66. Describe (a) what is commonly known by the term "retentive" or "retained" magnetism, and how the ship acquires it when in port and at sea; (b) its effect on the compass needle whilst ship's head continues in the same direction; (c) the immediate consequence when the direction of the ship's head is altered; and (d) the special precautions to be invariably observed at sea on the alteration of the ship's course.
67. Describe a "Dumb-card" or "Pelorus," and its use (a) in compensating a compass, (b) in determining the deviation.
68. If you determine the deviation by an azimuth or an amplitude of a heavenly body, it is then combined with variation, which together is sometimes called the correction for the compass. State when the deviation is the difference between the variation and the correction, and when the sum; and when it is of the same name as that of the correction, and when of the contrary name.
69. In observing azimuths of heavenly bodies, the best method is by " time azimuths," since these can be observed without an altitude when the ship is in port, or when the horizon cannot be defined from any cause. Given the Sun's declination, the hour of the day, and the latitude, to find the true bearing of the Sun. ${ }^{1}$
70. By night, if it be desirable to observe the correction of the compass. Given the day of the year, and time at ship, also the latitude of the place, to determine what stars will be in good position for this purpose.
71. If your correcting magnets are so mounted that their positions can be altered, describe the process by which, on open sea, you can place the ship's head correct magnetic N. (or S.), and correct magnetic E. (or W.), and can make the correction perfect.
72. Given the name of a star, the time, the place of ship, the variation of the compass, and the bearing of the star by compass, determine the deviation, and name it east or west.
73. Would you expect any change to be caused in the error of your compass by the ship heeling over, either from the effect of the wind or the cargo ?
74. Describe clearly the three principal causes of the heeling error on board an iron ship?
75. Towards which side of the ship would that part of magnetism induced in continuous transverse iron (which was horizontal while ship was upright) help to draw the north point of the needle when ship heels over, (a) in the northern hemisphere, (b) in the southern hemisphere?
76. Supposing the compass were placed between the two parts of a divided beam or other athwartship iron, towards which side of the ship would iron so situated help to draw the north point of the needle when ship heels over, (a) in the northern hemisphere, (b) in the southern hemisphere?
77. Would you expect that part of the magnetism induced in iron exactly perpendicular to the ship's deck, such as stanchions, bulkheads, etc., if below the compass, to cause any part of the heeling error when ship heels over, and if so, towards which side of the ship, (a) in the northern hemisphere, (b) in the southern hemisphere?
78. If an ordinary standard compass placed higher than the iron top sides be compensated whilst the ship is upright, what coefficient will be affected by heeling?
79. Under what conditions (that is, as regards position whilst building and the arrangement of iron in the ship) is the north point of the compass needle usually drawn to windward, or the high side of the ship, in the northern hemisphere?
80. Under what conditions, as a rule, is the north point of the compass needle usually drawn to leeward, or the low side of the ship, in the northern hemisphere?
81. State to which side of the ship, in the majority of cases, is the north point of the compass drawn when ship heels over in the northern hemisphere ; and when this is the case, and it is not allowed for, what effect has it on the assumed position of the ship when she is steering on northerly, and also on southerly courses?
82. On what courses would you keep away, and on what courses would you keep closer to the wind in both the northern and southern hemispheres in order to make good a given compass course, (a) when north point of compass is drawn to windward, or the high side of ship; and (b) when drawn to leeward or the low side?

[^6]83. If a ship is beating to windward, when she tacks, under what circumstances will the heeling error retain the same name, and under what circumstances will it take the contrary name?
84. If a ship is placed on the opposite tack by the change of wind, the ship's course being the same by compass, will the heeling error change its name?
85. In which direction of the ship's head does the heeling error attain its maximum value, and in which direction does it generally vanish ?
86. Explain clearly how that part of the heeling error due to the permanent part of the magnetism of the sbip varies as the ship changes her geographical position, and what is the reason of this?
87. Explain clearly how that part of the heeling error due to the induction in transverse iron (which was horizontal when ship was upright), and iron vertical to the ship's deck, varies as the ship changes her geographical position.
88. What, then, would be the probable nature of the heeling error, that is, whether to high or low side of the ship, and whether the error would be equal to the sum or difference, etc., of the forces-(1) in high north latitudes, (2) on magnetic equator, (3) in high south latitudes? Assuming the polarity of the sub-permanent magnetism of the ship under, and affecting, the compass to be as given below; the vertical induction in soft iron, of course, obeying the ordinary laws in the above geographical positions (1), (2), (3).
(a) In cases where the effect of red vertical sub-permanent magnetism is equal to that of the vertical induction in the soft iron of the ship.
(b) Where the effect of red vertical sub-permanent magnetism is greater than that of the vertical induction in the soft iron.
(c) Where the effect of red vertical sub-permanent magnetism is less than that of the vertical induction in the soft iron.
(d) Where the effect of blue vertical sub-permanent magnetism is equal to that of the vertical induction in the soft iron.
(e) Where the effect of blue vertical sub-permanent magnetism is greater than that of the vertical induction in the soft iron.
(f) Where the effect of blue vertical sub-permanent magnetism is less than that of the vertical induction in the soft iron.
89. Can the heeling error be compensated? If so, state the means to be employed, and how the compensation may be effected.
90. Can the compensation of the heeling error be depended on in every latitude? If not, state the reason.
91. Do the soft-iron correctors used for compensating the coefficient $+\boldsymbol{D}$ have any effect on the compass needle when the ship heels over? and, if so, do they draw the needle towards the low or the high side of the ship, and do they counteract, or otherwise, the effect produced by the vertical induction in the soft iron, (a) in the northern hemisphere, (b) in the southern hemisphere; and what is the reason of this?
92. Given the heel, the direction of the ship's head by compass, and the heeling error observed, to find the approximate heeling error, with a greater or less given heel, and with the ship's head on some other named point of the compass, the ship's magnetic latitude being in both cases the same.
93. Describe any instrument to show the ship's heel (generally called a clinometer), and state how and where it should be fixed.
94. Should the clinometer be observed when the ship is swung to determine the deviation when the ship is upright? If so, state the reason why.
95. Would you expect the Table of Deviations supplied by the compass adjuster from observations made in swinging the ship to remain good during the voyage, or would you expect the deviations to change? If so, state under what circumstances.
96. Is it desirable that a record of your observations for deviations should
be kept as a guide for any subsequent voyage, in case the ship should be in the same locality, or for further correction of the compass? If so, describe some suitable form for keeping such record.
97. Would you, under any circumstances, consider it a safe and proper procedure to place implicit confidence in your compasses, however skilfully they may have been adjusted? If not, what precautions is it your duty to take at all times?

Answers to the Questions on Compass Deviation for Masters (Extra).

1. An artificial magnet is a bar or needle of hard-tempered steel which has been magnetized by artificial means, and so distinguished from a loadstone or natural magnet.

Artificial magnets can be made in several ways:
(a) For small needles, it is sufficient to place either pole of a strong magnet on one end of the needle and draw it in contact to the other end, where it is taken off. If the pole used is the red pole, the end of the needle last in contact with it becomes a blue pole, and the other a red pole.
(b) The method of "separate touch." The bar to be magnetized is placed with its ends resting on opposite poles of two strong magnets; two other magnets are held, one in each hand, with opposite poles downwards, and brought together at the middle of the bar. The magnets are then inclined so as to make angles of about 30° with the bar, and are moved in contact with it towards the ends, where they are taken off. This process should be repeated several times on both sides of the bar, taking care that a red pole is moved towards the end supported by a red pole, and the blue pole towards the end resting on a blue pole.
(c) By using an electro-magnet. One half of the bar is drawn from the middle to the end over one pole of a strong electro-magnet, and the other half over the other pole.
(d) By suspending the bar inside a solenoid and passing a strong electric current through the latter.
2. The end which points north when the magnet is freely suspended is named the red pole, and the other end the blue pole.
3. The south magnetic pole of the Earth is the red, and the north the blue pole. The north magnetic pole is situated about $70^{\circ} \mathrm{N}$. latitude and $97^{\circ} \mathrm{W}$. longitude, and the south magnetic pole about $72_{2}^{\circ} \mathrm{S}$. latitude and 154° E. longitude.
4. Poles of the same name repel each other, whilst poles of different names attract each other. If freely suspended in the manner stated, they would assume a position of equilibrium determined by the Earth's directive force acting on the needles and the mutual attraction of their opposite poles.
5. In the first case, the needle would come to rest in the plane of the magnetic meridian, with its red pole pointing north; in the second case, the needle would still coincide with the magnetic meridian, but its red pole would dip in N. latitude, and its blue pole would dip in S. latitude at an angle from the horizontal depending on the magnetic latitude, the dip being 0 on the magnetic equator, and 90° at the magnetic poles.
6. The variation of the compass is due to the fact that the Earth's magnetic poles do not coincide with the geographical poles.
7. Deviation of the compass is the angle of deflection of its north point from magnetic north, caused by the disturbing influence of iron.
8. "Local attraction" is the name given to the magnetic influences (causing a disturbance of the compass) of the locality in which a ship may be found ; for example, when in dock near to iron ships, iron pillars, cranes, etc., also in the neighbourhood of some volcanic islands, It is said that the following places have a disturbing effect on ships' compasses: Ascension,

St. Helena, Cape St. Frances (Labrador), Cossack (North Australia), New Ireland, Solomon Islands, Tumbora, Sumbawa, coast of Madagascar, Iceland, Ile de Los (west coast of Africa), and Odessa Bay and Shoal.
9. Malleable iron and cast iron are termed ". soft iron." Soft iron has the property of being instantaneously magnetized by induction from the magnetism of the Earth or of a natural or artificial magnet; also by passing an electric current round it. This induced magnetism is only transient in its character, and is lost in great part or entirely when the inducing cause is removed.
10. "Hard iron" is iron combined with a certain percentage of carbon, and is usually termed steel. Tempered hard iron has the property of acquiring slowly and retaining permanently, or nearly so, the magnetic polarity communicated to it.
11. "Horizontal force" is the horizontal component of the Earth's total magnetic force in the line of dip, and varies as the cosine of the magnetic latitude. It is greatest at the magnetic equator, and 0 at the magnetic poles, and therefore gives the greatest directive force to the compass needle in the former case, whilst there is no directive tendency in the latter.
12. The magnetic equator does not coincide with the geographical equator, but intersects it in two nearly opposite points situated in west longitude and east longitude. From the former point in the Pacific Ocean it runs nearly parallel to the Equator to about $100^{\circ} \mathrm{W}$. long., then bends to the south on approaching South America, and in crossing Brazil it recedes from the Equator as far as 16° S. lat. ; then it bends northwards and crosses the Equator in about $6^{\circ} \mathrm{W}$. long., whence it passes across the Gulf of Guinea and the African continent, receding to about $10^{\circ} \mathrm{N}$. lat., and then very gradually approaches the Equator to the other point of intersection.
13. The values of the dip, etc., may be found on charts prepared for the purpose.
14. The variation changes rapidly in the English Channel, the western portion of the North Atlantic, the South Atlantic near the coast of Brazil, the South Indian Ocean, the neighbourhood of Japan, and especially in the Gulf of St. Lawrence.

In navigating these localities, if the ship's course is across the magnetic meridians, the precaution should be taken of altering the courses steered by compass in accordance with the change of variation. A variation chart is useful to show what magnetic meridians are crossed and the amount of variation.
15. Because the vertical induced magnetism which causes "heeling error" depends on the dip, and the directive force of the needle depends on the Earth's horizontal force.
16. The "vertical force" is the vertical component of the Earth's total magnetic force in the direction of the dip. It is greatest at the magnetic poles, and least at the magnetic equator.
17. The needle would be least affected near the magnetic equator, because the Earth's horizontal force, and therefore the directive power of the needle, are there at their greatest.
18. (a) The card should be accurately centred and graduated, the magnetic axis of the needle (or the common axis, if more than one) coinciding with the north and south points of the card. There should be the least possible friction between the centre cap and the supporting pivot, the needles should have good directive power, the " lubber-point" should be exactly in the fore and aft midship line, and the deviation should be reduced by compensation to a small amount, say under 3°. The gimbals should have little friction, and should not allow any lateral play. When in position in the binnacle, the card and lubber-point should be in full view of the man at the wheel.
(b) It is generally agreed that two or more short needles parallel to each
other in the same plane is the best arrangement for securing good compensation.
19. Care should be taken that the magnets are not stowed away with similar poles in contact, because in that position they would tend to weaken or demagnetize each other, or even reverse the poles.
20. A position should be chosen for the steering compass where it would not be near large elongated masses of iron, e.g. stern post, rudder post, tiller, stanchions, funnel, etc.

For a standard compass the same precautions are necessary, and the position chosen should be, if possible, symmetrical with regard to the various magnetic forces in the ship.
21. Transient induced magnetism is acquired by soft iron by induction from permanent magnets, from electric currents, or from the Earth. This polarity is retained only so long as the inducing cause is present.
22. The blue pole is uppermost in north magnetic latitudes when the cause of induction is the Earth's magnetism; therefore in the northern hemisphere the north end of the needle would be attracted by the upper end of a soft iron bar, and repelled by the lower end.
23. In south magnetic latitude the upper pole of soft iron by induction is red, and the lower end blue; therefore the north point of a compass needle would be repelled by the upper end, and attracted by the lower.
24. No effect.
25. The sub-permanent magnetism of an iron ship is the magnetic polarity acquired in the course of construction by induction from the Earth and retained after launching. It is liable, however, to a considerable reduction after the ship leaves the stocks, and is therefore termed "sub-permanent" to distinguish it from the fixed magnetism of tempered steel.

The red pole is that which was towards the north when the ship was being built, and the blue towards the south.
26. Composition of forces is the method of finding a single force which is equivalent to two or more forces of given amount and direction.

In the "Parallelogram of Forces," two adjacent sides represent in direction and units of amount two given forces acting at the point of meeting, and a diagonal from this point represents in direction and units of amount the equivalent force, or "resultant" of the composition of the two given forces.

A knowledge of this principle enables a compass adjuster to resolve the sub-permanent magnetic force in a ship into fore and aft, athwartship, and vertical components, and to compensate each independently of the otlers.
27. Coefficients B and C express the maximum deviations caused by magnetic forces acting horizontally in fore-and-aft and athwartship directions respectively; $+\boldsymbol{B}$ represents a blue pole at the bow, and red at the stern; -B the reverse; +C represents a blue pole at the starboard side, and red at the port side; -C the reverse. They are said to produce semicircular deviation, because the deviation due to each is easterly on one half of the compass, and westerly on the other half.
28. Yes; it may be caused by vertical soft iron, because the induced poles remain the same whatever the direction of ship's head.
29. + B gives E. deviation on all courses from N. through E. to S., and W. deviation from N. through W. to S. ; - B gives the opposite.
30. + O gives E. deviation on all courses from W. through N. to E., and W. deviation from W. through S. to E. ; -C gives the opposite.
31. See page 296.
32. The greatest disturbance from sub-permanent magnetism would be found when the ship lay at right angles to the direction in which she was when being built, and least when in the same direction.
33. Quadrantal deviation is the effect of transient induced magnetism in horizontal iron; it is represented by coefficients D and E. D gives the
greatest deviation on N.E., S.E., S.W., and N.W. courses, and E gives the greatest on N., E., S., and W. courses. It is termed quadrantal because it changes its name in successive quadrants.
34. +D gives E. deviation on courses from N. to E. and S. to W., and W. deviation from E. to S. and W. to N.; -D gives the opposite.
+E. gives E. deviation on courses from N.W. to N.E. and S.E. to S.W., and W. deviation from N.E. to S.E. and S.W. to N.W.; -E gives the opposite.
35. Continuous transverse iron produces $+D$, and continuous fore-and-aft iron - D ; but if end on to the compass, or when a beam is divided for a skylight and a compass placed between the parts, then the signs would be reversed.
36. The following table shows the results :-

Ship'a head.	Athwartship iron.	Fore-and-aft iron.	Polarity acquired.
$\begin{aligned} & \text { N.E. } \\ & \text { S.E. } \\ & \text { S.W. } \\ & \text { N.W. } \end{aligned}$	End to port. $\begin{array}{ll}" & \text { starboard. } \\ " & \text { port. } \\ \text { " } & \text { starboard. } \\ " & \text { port. } \\ " & \text { starboard. } \\ " & \text { port. }\end{array}$	End towards bow. stern. bow. stern. bow. stern.	Red. Blue. Red. Blue. Red. Blue. Red. Blue.

37. Coefficient A is a constant deviation of the same amount and sign on all courses, + A being easterly and -A westerly. It may be due to several causes-
(a) The magnetic axes of the needles not coinciding in direction with the N. and S. points of the card.
(b) The lubber-point not being correctly placed.
(c) Unsymmetrical arrangement of iron with respect to the compass.
(d) An error in the correct magnetic bearing used for finding the deviation.
(e) Retained magnetism when swinging the ship.
38. The object of compensating compasses is to reduce the deviations to the smallest possible amounts. An uncompensated compass having large deviations would be too "sensitive" on some courses, and too "sluggish" on others, so that its indications would not correspond to the actual changes of course; whilst a compass having its deviations reduced to a minimum by compensation would behave equally well on all courses.
39. When being equipped for sea, it is desirable that the ship's head should point the opposite way to the direction when building, the compensations being made just before sailing.
40. A common practice is to draw two lines on the deck where the binnacle stands-one fore and aft amidships, and the other at right angles, both passing throngh a point vertically under the centre of the compass ; then, with the ship's head at correct magnetic N. or S., a bar magnet is laid on the deck at right angles to the fore-and-aft line, with its middle point on it and approached to the compass until the needle points correct magnetic N.

Next, the ship's head is steadied on correct magnetic E. or W., and another bar is laid on the deck at right angles to the athwartship line, with its middle point on that line, and moved to or from the compass until the needle again points correct magnetic N. Both magnets are then fixed in position.

Next, the ship's head is steadied on N.E., S.E., S.W., or N.W. correct magnetic for the purpose of correcting the quadrantal deviation. This is
done by placing two soft iron correctors on the supports attached to the binnacle, and moving them towards or from the compass until the deviation is compensated.

Lastly, the ship's head is brought to N. or S. by compass, and she is heeled over, say 10°, and the heeling error observed. Then a small bar magnet is placed vertically under the centre of the compass, and moved up or down in its groove until the error disappears.
N.B.-The red pole of the magnet must be uppermost when the deviation is towards the higher side, and vice versâ.

In Thompson's compass the magnets are inside the binnacle.
41. The magnets should not be nearer to the centre of the card than twice their own length, and the quadrantal correctors not nearer the needles than once and a quarter the length of the needles.

If the magnets are too near, they cause a new deviation called sextantal error, and if the correctors are too near they are liable to receive induced magnetic polarity from the needle, and attract either end indifferently.
42. No. They may be placed either above or below the compass, on a bulkhead, or in the binnacle itself, but parallel to the deck, provided the condition is observed that they are bisected at right angles by transverse and fore-and-aft planes passing through the centre of the compass.
43. Coefficient B is partly due to sub-permanent magnetism and partly to induced magnetism in vertical iron before or abaft the compass.
44. The compass would be found to be over-compensated with respect to B on going to a lower latitude, and on crossing the magnetic equator the part due to vertical induction would be reversed, which would necessitate the shifting or removal, or perhaps reversal, of the magnet.
45. One part should be compensated by a vertical soft iron bar amidships, either before or abaft the compass, as required, and the other by a bar magnet.
46. The ship's head being at E. or W., the deviation should be observed; then the Flinders bar should be moved into position before the compass, to correct, say, one-fourth of this deviation as a first approximation, the rest being compensated by a magnet. When on the magnetic equator the whole of coefficient B is due to sub-permanent magnetism, and should be exactly compensated by the fore-and-aft magnet. Then, as the ship proceeds N. or S., the change observed in the deviation due to coefficient B would be the amount to be compensated by the Flinders bar.

A more correct method would be, when direction of ship's head whilst building is known, to enter the Traverse Table with direction of ship's head when building as a course, and coefficient C in the dep. column, then B will be found in the latitude column. This would be the part of B to be compensated by the magnet, and the remainder by the Flinders bar.
47. Standard compasses are liable to be affected by the induced magnetism of vertical iron in the form of stanchions, pillars, funnels, or bulkheads near them. The attraction is not always towards the stern, because the disturbing masses of iron might be forward of the compass, in which case the Flinders bar should be abaft the compass.
48. Vertical iron could not cause any part of coefficient C , unless it was unsymmetrically placed with regard to the compass, therefore the whole of C, when the ship is upright, is usually due to sub-permanent magnetism.
49. Yes; because the horizontal force of the correctors, the disturbing force, and the directive force of the needle would vary in the same ratio.
50. When the joint effect is small, and when the constant deviation is W. when the ship is sppung to the right, and E. when swung to the left, and consequently the effect of temporarily retained magnetism, they may be disregarded when compensating the compass.
51. (1) (a) It would be found to have decreased.
(b) It would increase again and tend to return to its original amount.
(2) (a) It would become 0 .
(b) It would liave a different sign.
52. No deviation would occur from the sub-permanent magnetism so long as it remained constant, because it is exactly counterbalanced by the correcting magnet; nor from the vertical induced magnetism, because it varies in the same ratio as that of the Flinders bar.
53. The deviation from this cause would not change its name and amount, because (a) the red induced pole is towards the north in all latitudes, and (b) the horizontal induced force changes in the same ratio as the directive force of the needle.
54. (1) A compass is set up on shore or in a boat at some distance from the ship, where it is not exposed to local attraction, and an observer stationed by it. The ship is then swung, and as her head comes to the desired points simultaneous bearings are taken by signal of each compass from the other. The bearings by shore compass reversed are correct magnetic, with which the bearings observed on board are compared, and the deviation found.
(2) Figures on dock walls show either the correct magnetic or the true bearings of a prominent distant object from the observer's position. When, therefore, the ship swings with the tide or is specially swung, the difference is noted between the figure on the wall in line with the object and the bearing of the same object by the compass on board, as the ship's head comes to each point on which the deviation is required. These differences are either "compass errors" or deviation, according as the figures on the wall are true or magnetic bearings.
(3) The correct magnetic bearings of the distant object may be found by means of a compass placed in a direct line with the ship and the object in a position free from local attraction. The deviation for the actual direction of the ship's head is the difference between the compass bearing of the object and the correct magnetic as before.
55. (a) By the sun: Take its bearing by compass and compute for the same time, or take from the Azimuth Tables its true azimuth. The difference is the compass error, from which the deviation may be found when the variation is known.
(b) By a star or planet: Find the hour angle of the body and compute, or take from the Azimuth Tables (when within their limits) its true azimuth, the difference between which and the observed bearing by compass at the time for which the calculation is made will be the compass error, whence the deviation as before.
66. Uses of Napier's diagram :-
(a) From known deviations on a few points, either correct magnetic or by compass, a curve showing the deviation on all points may be drawn.
(b) The curve so drawn may be used as a complete deviation table, from which may be found mechanically the compass course from the correct magnetic, and vice versâ. Its advantages are, that a complete curve of deviations may be drawn from the deviations observed on a few points, whether by compass or correct magnetic, and whether equidistant or not. It also gives a graphic record of the deviations which appeals to the eye, and gives a much better appreciation of the results of compensation than does an ordinary deviation table.

Again, if observations have been obtained of the deviations on two or three points of the quadrant in which the ship's course may lie, a curve will show the deviations on the other neighbouring points.

Further, the deviations obtained by drawing a curve are free from possible errors of observation and calculation.
57. The Napier's diagram consists of a vertical line graduated to points and degrees, with two sets of parallel lines drawn across it at angles of 60°, one set being continuous or plain, the other set broken or dotted, through
each of the thirty-two marks representing the "points" of the compass. The N . is at the top and bottom, the \mathbf{S}. in the middle, and the \mathbf{E}. and W. midway between the N. and S. marks, the other points following in order.
58. Eight equidistant points, viz. N., N.E., E., S.E., S., S.W., W., and N.W.
59. Two would be the least number, but three would be better, because a circle could be drawn through the three projected points.

Assuming that deviations had been observed on three compass courses in the quadrant in which my course would lie, I would project them on the dotted lines, and then draw a fair curve through the projected points, extending it to comprise the whole quadrant. The parts intercepted by the curve of the dotted lines through the other courses would give the required deviations, measured on the vertical line.

If only two observations were available, a straight line passing through the points of projection would show approximately the deviations on the intermediate courses.
N.B.-If the observations for deviation had been made on correct magnetic courses, the plain lines would be used instead of the dotted.
60. The mean of the equidistant bearings would be the correct magnetic bearing, nearly.

The object should be so far distant that its bearing by the compass on board would not be sensibly affected by the change of position in swinging the ship.
61. See page 208.
62. See page 322.
63. An observer being stationed at each compass, bearings are taken simultaneously of a distant object as the ship's head is steadied on seven or eight points correct magnetic (by Pelorus) round the compass. Comparing these bearings with the known correct magnetic, the deviations for each compass are found, and are then marked on the plain lines of a Napier's diagram. A curve is then drawn through each set of projected marks, and from these curves a complete table of deviations on compass courses may be constructed by measuring the parts of the dotted lines intercepted by the curve.
64. If the correct magnetic bearing reads to the right of the compass bearing, the deviation is easterly ; if to the left, westerly.
65. A knowledge of the coefficients is of advantage, because-
(1) From the coefficients a oomplete table of deviations can be constructed.
(2) It shows how much of the deviation is due to each of the disturbing forces in a ship.
(3) It enables a compass adjuster to employ the proper means for compensating.
66. (a) "Retentive" or " retained" magnetism is the name given to the temporary magnetic polarity acquired by a ship whilst heading for a considerable time in one direction, and retained for a longer or shorter period after that direction is changed. It is induced by the Earth's magnetism whilst the ship is in dock or on a long-continued course at sea.
(b) It has no effect on the compass needle whilst the ship's head continues on the same course.
(c) A deviation will appear tending to make the ship follow the last course steered.
(d) Allowance should be made for this effect, and an observation for deviation should be made as soon as possible after the course is changed.
67. The "Pelorus" has the general appearance of an azimuth compass, but it has no magnets. The "card" is usually a metal disc, which can be turned about its centre and clamped in any position.
(a) Its use in compensating : First clamp the sight vanes to the known
correct magnetic bearing of a distant object ; then turn the card round until the desired direction of ship's head is at the lubber-point, and clamp. Next swing the ship until the object is seen through the sight vanes, and place the magnet or corrector in position to effect the compensation.
(b) Its use to find the deviation : Clamp the sight vane to the known correct magnetic bearing of a distant object on land, or a celestial object, and turn the card round until the object is seen through the sight vanes. The course by "Pelorus" is the correct magnetic, the difference between which and the course by compass is the deviation for that course.
68. Deviation is the difference between the correction and variation when they, are of the same name, but the sum if of different names. It has the same name or sign as the correction in all cases except when the correction is less than variation of the same name.
69. See page 177.
70. See page 325.
71. When on the magnetic equator, sea smooth, and ship upright, set a watch to show apparent time at ship. Bring the ship's head to near north (or south), and clamp the sight vanes of the Pelorus to the correct magnetic bearing of the Sun-found by taking out the true bearing from the tables for some minutes in advance, and applying the variation; also bring the (N. or S.) point of the Pelorus to the lubber-point. Then steer the ship so that the centre of the Sun's image is on the sight vanes at the moment for which the bearing was computed, and steady her on that course whilst the athwartship magnet is moved into position to make the compass indicate correct magnetic.

In a similar manner place and keep ship's head on correct magnetic east or west, and adjust the position of the fore-and-aft magnet.
72. See page 180.
73. Yes; a deviation appears which is known as the heeling error.
74. (1) When the ship heels, the vertical component of sub-permanent magnetism takes effect in producing deviation, the upper pole not being vertically under the centre of the compass.
(2) Iron which is horizontal when the ship is upright acquires a vertical component of induced magnetism.
(3) The upper ends of rudder post, stern post, or other vertical iron before or abaft the binnacle, are brought out to one side of a vertical plane passing through the centre of the compass.
75. (a) Towards the higher side.
(b) Towards the lower side.
76. (a) Towards the lower side.
(b) Towards the higher side.
77. Such iron would cause a heeling error.
(a) Towards the higher side.
(b) Towards the lower side.
78. Coefficient C.
79. In the northern hemisphere, the N. point of the compass is generally drawn to windward in ships built head north, also in ships whose compasses have +D , and in others which have large masses of vertical iron below the compass.
80. In some ships built head south, and ships having a large -D.
81. In the majority of cases the N. point of the compass is drawn to windward. If not allowed for, the effect would be to draw the ship to windward on northerly courses, and to leeward on southerly.
82. (a) In N. latitude keep away by compass on either tack as the ship heels on northerly courses, and keep closer to the wind on either tack on southerly courses.
(b) In N. latitude keep closer to the wind by compass on either tack on northerly courses, and keep away on southerly courses.

This holds good in S. latitude.
83. If in tacking the ship's head is northerly on one tack, and southerly on the other, the heeling error retains the same name; but if on both tacks her head is either northerly or southerly, the error changes its name.
84. Yes.
85. The heeling error has its maximum value when heading north or south magnetic, and nearly vanishes at east and west.
86. It diminishes when the ship goes to a lower latitude, and increases when to a higher, because the directive force of the needle increases in the first case, and decreases in the second, whilst the vertical sub-permanent force is assumed to be constant.
87. It decreases on approaching the equator, and vice versá, becomes 0 on the magnetic equator, and changes its sign after crossing; because the vertical force of induced magnetism decreases to 0 at the equator, and increases with increase of latitude, the uppermost poles being blue in north magnetic latitude, and red in south. The directive force of the needle also varies with change of latitude.
88.

89. Yes; for a given magnetic latitude, by means of a vertical magnet which can be moved up or down in a groove or tube. There are two ways of proceeding-
(1) Bring the ship's head to N. or S. by compass (assumed to be correct) and give her a list of, say, 10°; then slide the magnet up or down until the error disappears, and fix in position.
(2) Bring the ship's head to E. or W. magnetic, ship upright; remove the card and place on the supporting pillar a small dipping needle, which has been balanced by a sliding weight so as to show no dip when on shore; then place the magnet in its groove and move up or down until the needle is again perfectly level.
90. No ; because the heeling error is partly due to vertical induced magnetism, which varies with change of latitude.
91. The soft iron correctors are found to correct the heeling error due to transverse iron for ordinary angles of heeling. (a) In the N. hemisphere they deflect the N. point of the needle to the low side; (b) in the S. hemisphere, towards the high side. The reason is that they produce a coefficient C due to an induced vertical force in the correctors, which has a different sign from that of the \mathbf{C} caused by transverse iron when the ship heels.
92. See page 326.
93. A clinometer consists of a graduated semicircle, which is fixed on a bulkhead with its diameter horizontal and arc downwards. The zero of the arc should coincide with a plumb-line from the middle of the diameter, so that when the ship heels the plumb-line or weighted index would show on the are the exact degrees of inclination.
94. Yes; otlerwise the deviations would be complicated with the heeling errors.
95. The deviations might be expected to change from several causes-
(1) The place where the ship is swung may have local attraction.
(2) The force of sub-permanent magnetism is liable to change from long continuance on one course, and from concussion and vibration.
(3) The compensation of coefficient B can only be regarded as provisional, there being no certainty that the just proportions were assigned to the magnet and the Flinders bar.
(4) Allowance must be made for a want of scientific knowledge on the part of the adjuster, or a careless performance of his work.
(5) Loss of power in needles or magnets.
96. It is most necessary that such a record should be kept. The following form would serve the purpose :-

Date.	Lat.	Long.	Var.	Ship's head.		Deviation.		Remarks.
				Standard compass.	Steering соmpass.	Standard compass.	Steering cumpass.	

97. No, because considerable changes in the deviation may occur. Therefore it is necessary that frequent observations for deviation may be made, especially when the course is altered, or when rapidly changing latitude.

Practical Questions in Syllabus of Deviation for Extra Masters,

31. The values of B and C being given to determine the magnetic direction of ship's head whilst building, supposing coefficients due entirely to sub-permanent magnetism.

According to the direction of ship's head whilst building, the signs of B and C can be easily remembered from the adjoining figure.

Fig. 215.

Fia. 216.

Again, let a ship be built with her head in, say, the S.E. quadrant, OB being fore-andaft line. Then if $O A$, in magnetic meridian, be taken as representing the horizontal component of the total magnetic force in the ship, it can be resolved into two forces at right angles, OB in a fore-and-aft direction, and BA in an athwartship direction.
OB represents coefficient B.
BA C.
AOB $", \quad$ magnetic direction ship's head
building.

$$
\begin{aligned}
\therefore \cot \mathrm{AOB} & =\frac{\mathrm{OB}}{\mathrm{AB}} \\
\text { or cot direction } & =\frac{\mathrm{B}}{\mathrm{C}}
\end{aligned}
$$

Hence in the Traverse Table, if the direction of ship's head whilst being built be taken as a course, the latitude and departure columns will give the relative values of \mathbf{B} and C. Therefore-
(1) With ship's head as a course and B in latitude column, C is found in departure column.
(2) Ship's head as course and C as departure give B in latitude column.
(3) B in latitude and C in departure columns give the direction of ship's head from N. or S .

Examples. -

1. Given the direction of ship's head whilst building N.E. by N., and coefficient $B=-16^{\circ} \cdot 5$. Find coefficient C.

Here the course 3 points and lat. 16%, give dep. $11 \cdot 1$. Coefficient C is therefore $+11^{\circ} \cdot 1$, because the ship's head was easterly.
2. Given ship's head S.S.W., and coefficient $\mathrm{C}=-3^{\circ} \cdot 6$. Required coefficient B.

Course 2 points and dep. 3.6 give lat. 8.7 ; therefore coefficient $\mathrm{B}=+8^{\circ} \%$, because the ship's head was southerly.
3. Given coefficient $\mathrm{B}=+7^{\circ} \cdot 3$, and coefficient $\mathrm{C}=-10^{\circ} 7$. Required the direction of the ship's head when building.

Lat. $7^{\circ} 3$ and dep. 107 give the course 56°, which is $\mathrm{S} .56^{\circ} \mathrm{W}$., because B is + and \mathbf{C} is -.

Exercises.-

1. Given coefficient $\mathrm{B}=-11^{\circ}$ and $\mathrm{C}=-8^{\circ} \cdot 5$. Find direction of ship's head whilst being built.
2. Given coeflicient $+\mathrm{C}=12^{\circ} \cdot 5$, and $-\mathrm{B}=6^{\circ} \cdot 8$. Required the direction of ship's head.
3. Given $+\mathrm{B}=14^{\circ} \cdot 7$ and $+\mathrm{C}=8^{\circ .7}$. Required ship's head.
4. Given ship's head N. 65° W., and $-\mathrm{B}=5^{\circ} 4$. Required coefficient C.
5. Given ship's head $\mathrm{S} .14^{\circ} \mathrm{W}$., and $-\mathrm{C}=3^{\circ} \cdot 5$. Required coefficient B.
6. Given ship's head S.E. $\frac{3}{4}$ E., and coefficient $\mathrm{C}=+7^{\circ}$ 5. Required coefficient B.
7. Example.-Assuming the deviations observed with the ship's head by compass to be as follows, determine the value of the coefficients $\mathrm{A}, \mathrm{B}, \mathrm{C}$, D , and E , and from them construct a table of deviations.
$\left.\begin{array}{rlll}\text { Deviation at N. } & \left(21^{\circ} \text { W. }\right) & \text { S. } & \left(20^{\circ}\right. \\ \text { N. }) \\ \text { N.E. } & (10 & \text { W. }) & \text { S.W. }(23 \\ \text { E. }\end{array}\right)$

Note.-In computing the cocficients, E. deviation is marked + , and W. deviation -.

To find coefficient A.
Add (algebraically) the deviations on N., E., S., and W., and divide by 4.

$$
\begin{aligned}
& \text { Deviation on N. }-21^{\circ} \\
& \text { E. - } 2 \\
& \text { S. }+20 \\
& \text { W. }+5 \\
& \text { 4) }+2 \\
& +\frac{1}{2}^{\circ}=\mathrm{A}, \text { i.c. }+\mathrm{A}=\frac{1}{2}^{\circ}
\end{aligned}
$$

To find coefficient B.
Add (algebraically) the deviation on E. and W., after reversing the sign of the latter, and divide by 2 .

Deviation on E. - 2°

$$
\begin{aligned}
& \text { W. } \overline{-5} \text { (reversed) } \\
& \text { 2) } \overline{-7} \\
& \frac{-3 \frac{1}{2}^{\circ}}{} \text { i.e. }-\mathrm{B}=33_{\frac{1}{2}}{ }^{\circ}
\end{aligned}
$$

To find coetficient 0 .
Add (algebraically) the deviations on N. and S., after reversing the sign of the latter.

Deviation on N. -21°
S. -20 (reversed)

$$
\frac{\text { 2) }-41}{-20 \frac{1}{2}^{\circ}} \text { i.e. }-\mathrm{C}=20 \frac{1}{2}^{\circ}
$$

To find coefficient D .
Add (algebraically) the deviations on N.E., S.W., S.E., and N.W., after reversing the signs of the two latter, and divide by 4.

Deviation on N.E. -10°
S.W. +23
$\left.\begin{array}{l}\text { S.E. }-4 \\ \text { N.W. }+17\end{array}\right\}$ (reversed)

$$
\text { 4) } \frac{+26}{+6^{\circ} 30^{\prime}} \text { i.e. }+\mathrm{D}=6_{\frac{1}{2}^{\circ}}
$$

To find coefficient E.
Add (algebraically) the deviations on N., S., E., and W., after reversing the signs of the two latter, and divide by 4.

Deviation on N. -21°
S. +20
$\left.\underset{\text { W. }}{\text { E. }}+\frac{2}{5}\right\}$ (reversed)
4) -4
-1° i.e. $-\mathbf{E}=1^{\circ}$
The formula for obtaining the deviation for any point from the above coefficients is, where $d=$ deviation, and $Z=$ azimuth or direction of ship's head by compass-

$$
d=\mathrm{A}+\mathrm{B} \cdot \sin \mathrm{Z}+\mathrm{C} \cdot \cos \mathrm{Z}+\mathrm{D} \cdot \sin 2 \mathrm{Z}+\mathbf{E} \cdot \cos 2 \mathrm{Z}
$$

Here A represents an amount constant in value and sign.
Here $B \cdot \sin Z+C \cdot \cos Z$ represents an amount depending on the azimuth for value and sign, and giving semicircular deviation.

Hore D. $\sin 2 Z+E \cdot \cos 2 Z$ represents an amount depending on twice the azimuth for value and sign, and giving quadrantal deviation.

In the following table the first column represents all the points from N. to N .

Second column. Coefficient A, and is the same for every point.
Third column. All the values of B. sin Z that can be obtained either by multiplying the value of coefficient. B by the natural sine of azimuth; or from
the Traverse Table, by taking the azimuth as "course," coefficient B as "dist.," and finding corresponding values in the "dep." column.

Fourth column. All the values of C.cos Z that can be obtained either by multiplying coefficient C by the natural cosine of azimuth; or from the Traverse Table, by taking azimuth as "course," coefficient C as "dist.," and finding corresponding values in "d. lat." column.

Fifth column. All the values of D. $\sin 2 \mathrm{Z}$ that can be obtained either by multiplying coefficient D by the natural sine of twice the azimuth; or from Traverse Table, by taking twice the azimuth as "course," coefficient D in "dist." column, and finding corresponding values in "dep." column.

Sixth column. All the values of $\mathrm{E} . \cos 2 \mathrm{Z}$ that can be obtained either by multiplying coefficient E by the natural cosine of twice the azimuth; or from Traverse Table, by taking twice the azimuth as "course," coefficient E in "dist." column, and finding corresponding values in "d. lat." column.

Seventh column contains the amount obtained by adding across columns 2 to 6 algebraically.

In forming the table, use the coefficients expressed as degrees and decimals of a degree, and all entries to be made in the same manner from the Traverse Table. It is only necessary to convert the sums found in the seventh column to degrees and miles. Begin by inserting in each column the maximum and minimum values against the proper directions of the ship's head; when a deviation passes through " 0 " it changes in name.

Ship's bead by compass.	Coefficient A	$\begin{gathered} \text { Coefficient B } \\ =-3^{0.5 .} \end{gathered}$	$\begin{gathered} \text { Coefficient C } \\ =-20^{\circ} \cdot 5 . \end{gathered}$	$\begin{gathered} \text { Coefflcient D } \\ =+6^{\circ} \cdot 5 . \end{gathered}$	$\stackrel{\text { Coefficient } \mathbf{E}}{=-2^{\circ} .}$	Total deviation.
	-	-	-		-	
North	+ 5	0	- 20.50	0	- 1	-210
N. by E.	+ 5	-0.68	- 20.11	$+2 \cdot 49$	- 0.92	- 1843
N.N.E.	+ 5	- 1.34	- 18.94	+ $4 \cdot 60$	-0.71	-1553
N.E. by N.	$+5$	- 1.94	- 17.04	+6.01	-0.38	-1251
N.E.	+ 5	- $2 \cdot 47$	- 14.50	+6.50	0	- 958
N.E. by E.	$+5$	- 2.91	- 11.39	+601	+0.38	- 725
E.N.E.	+ 5	- $3 \cdot 23$	- 7.85	+ $4 \cdot 60$	+0.71	- 516
E. by N .	+ 5	- $3 \cdot 43$	- 4.00	+2.49	+0.92	- 331
East	$+5$	-3.50	0	-	$+1$	- 20
E. by S.	+ 5	- 3.43	+ 4.00	-2.49	+0.92	- 030
E.S.E.	+ 5	-323	+ 785	- $4 \cdot 60$	+071	+ 114
S.E. by E.	+ 5	- 2.91	+11.39	-6.01	+0.38	+321
S.E.	+ 5	-2.47	+14.50	-6.50	0	+62
S.E. by S.	$+5$	- 1.94	+17.04	-6.01	-0.38	+ 913
S.S.E.	+ 5	-1.34	+18.94	- 4.60	-0.71	+1247
S. by E.	$+5$	-0.68	$+20 \cdot 11$	-2 249	-0.92	+1631
South	$+5$	0	$+20.50$	0	-1	+200
S. by W.	$+5$	+0.68	+ 20.11	$+249$	-0.92	+2252
S.S.W.	$+5$	+1.34	+18.94	+ 4.60	-0.71	+24 40
S.W. by S.	$+5$	+1.94	+17.04	+6.01	-0.38	+25 7
S.W.	$+5$	+2.47	+ 14.50	+6.50	0	+2358
S.W. by W.	+ 5	+2.91	+11.39	+6.01	$+0.38$	+2111
W.S.W.	$+5$	+ $3 \cdot 23$	+ 785	+ 4.60	+0.71	$+1653$
W, by S.	$+5$	+3.43	+ 4.00	+2.49	+0.92	+1120
West	+5	+3.50	0	0	+1	+ 50
W. by N.	$+5$	$+3 \cdot 43$	- 4.00	- $2 \cdot 49$	$+0.92$	- 138
W.N.W.	$+5$	$+3.23$	- 785	- 4.60	$+0.71$	- 81
N.W. by W.	$+5$	+291	- 11.39	-6.01	+0.38	-1837
N.W.	$+5$	+2.47	- 14.50	-6.50	0	-18 ${ }^{18}$
N.W. by N.	$+5$	$+1.94$	-17.04	-6.01	-0.38	-210
N.N.W.	$+5$	+1.34	- 18.44	- 4.60	-0.71	-2225
N. by W.	$+5$	+ 0.68	$-20 \cdot 11$	-249	-0.92	-2220

Exercises.-

1. From the following deviations on ship's head by compass, find the coefficionts $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, and construct a table of deviations from W. by N. to N.E. by E. :-

Deviation at N .	(2910 ${ }^{\circ} \mathrm{W}$.)	S. (27	E.)
N.E.	(261 $\left.{ }^{2} \mathrm{~W}.\right)$	S.W. (17)	E.)
	($6 \frac{1}{2}$ E.)	W. (4	W.)
S.E.	(301 E.)	N.W. (21-1	W.)

2. From deviations found on ship's head by compass as follows, find the coefficients A, B, C, D, E, and construct a table of deviations from E. to W. through S. :-

Deviation at N. $\left(22^{\circ} \mathrm{E}.\right)$	S. $\left(25^{\circ} \mathrm{W}.\right)$
N.E. $(15 \mathrm{E})$	S.W. $(18 \mathrm{~W})$.
E. (0)	W. (0)
S.E. $(15 \mathrm{~W})$.	N.W. $(20 \mathrm{E})$.

3. From the following deviations on ship's head by compass, find the coefficients A, B, C, D, E, and make a table of deviations for all points from E.N.E. to S. :-

4. Given the following deviations on ship's head by compass, required the coefficients A, B, C, D, E, and make a table of deviations for all points from N. through W. to S. :-

Deviation at N .	$\left(13^{\circ} \mathrm{W}.\right)$	S. ($\left.18^{\circ} \mathrm{E}.\right)$
N.E.	(18 W.)	S.W. (15 E.)
E.	(5 W.)	W. (4 E.)
S.E.	(5 E.$)$	N.W.(8 W.)

5. Given the following deviations on ship's head correct magnetic, construct a Napier's curve, find the coefficients B, C, D, and make a table of deviations for all points from N.N.W. to S.W. by S. :-

Deviation at N. by E. (mag.) (6° E.) S.W. by S. ($\left.15^{\circ} \mathrm{W}.\right)$

E.N.E.	$(15$	E. $)$	W. by S.
S.E.by E.	$(20$	E. $)$	N.W. by W.
S.S.E.	$(16$	W.	
S.	$(14$	E. $)$	N.N.W.

70. Remark.-In the short time available at an examination, it would be troublesome to find, by direct calculation, what stars would satisfy the conditions as to altitude and hour angle to render them suitable for azimuths. Therefore it is better to make use of tables, where the work is already done.

Table IV. in "Towson's Deviation" will answer the purpose, the sidereal time and latitude being known.

Example.
August 10th, at $11^{\text {h }} 30^{\text {m }}$ P.M. mean time at ship, in lat. $50^{\circ} 50^{\prime} \mathrm{N}$., long. 62° W., what stars would be in a good position for determining the correction of the compass?

To find the sidereal time-
M.T.S. Aug. $10^{\mathrm{d}} 11^{\mathrm{h}} 30^{\mathrm{m}} \quad$ Long. $62^{\circ} \mathrm{W} .=4^{\mathrm{h}} 8^{\mathrm{n}}$

Sid. time at noon	9^{t}	12^{m}	$\mathbf{1 3}$
Acceleration $\left(15^{\mathrm{h}}\right)$	2	28	
$\left(38^{\mathrm{m}}\right)$		6	
M.T.S.	11	30	0
		0	

Entering Table IV. (Towson) with the nearest hour of sidereal time and the nearest latitude, the suitable stars are found to be-

East of meridian		2		
West	",	7	8	9

Referring to map (p. 44, Towson), these numbers correspond to-
Capella (east of meridian).
a Urs. Maj., γ Urs. Maj., Arcturus (west of meridian).
In Fig. 217 NESW represents plane of horizon, NZS meridian, EQW equinoctial ; A and B are circles of altitude drawn parallel to horizon, and

Fio. 217. distance 30° and 10° from it. Stars given in Towson which are suitable fall in the space between these circles of altitude. Set off the declination parallels of the stars 2,7 , and 9 ; and where the hour circles cut these parallels, give the positions of the stars as shown at 2,7 , and 9 .

Hour angle of 2 Capella $9^{\mathrm{h}} 23^{\mathrm{m}} \mathrm{E}$.

$$
\begin{array}{ll}
, & , \quad 7 \text { Dubhe } 9^{\text {h }} 49^{m} \mathrm{~W} \\
, & , \quad 9 \text { Arcturus } 6^{\mathrm{m}} 34^{\mathrm{m}} \mathrm{~W}
\end{array}
$$

Exercises.-

1. August 15 th, $2^{\text {h }} 30^{\text {m }}$ A.m. at ship, in lat. 38° S., long. $25^{\circ} \mathrm{E}$. What stars would be suitable for azimuths?
2. August 20 th, $1^{\text {h }} 16^{\mathrm{m}}$ A.m. apparent time at ship, in lat. $42^{\circ} 30^{\prime} \mathrm{N}$., long. $130^{\circ} \mathrm{W}$.
3. August 1st, $2^{\mathrm{h}} 15^{\mathrm{m}}$ A.m. mean time at ship, in lat. 21 S., long. $93^{\circ} 30^{\prime}$ E. Give the names of suitable stars for determining the correction of the compass.
4. September 20 th, $11^{\mathrm{h}} 48^{\mathrm{m}}$ г.m. mean time at ship, in lat. 49° S., long. $168^{\circ} 15^{\prime} \mathrm{W}$. Name some stars which would be suitable for finding the correction of the compass.
5. September 23rd, $11^{\mathrm{h}} 58^{\mathrm{m}}$ P.m. mean time at ship, in lat. $35^{\circ} \mathrm{N}$., long. $44^{\circ} 36^{\prime} \mathrm{W}$. Give the names of stars suitable for finding the correction of the compass.
6. September 10th, $1^{\text {b }} 45^{\mathrm{m}}$ P.m. apparent time at ship, in lat. 55° S., long. $130^{\circ} \mathrm{W}$. Find what stars are suitable for azimuths.
7. Example.-Given the angle of heeling 15°, the course N. N.E. on the port tack, and the heeling error -12°, required the error when steering W.S.W. on the starboard tack and heeling 12°.

Since the amount of the heeling error varies directly as the heel, draw two concentric circles, whose radii CA and CB are in the ratio of the angles of hecl, i.e. CA : CB ::15:12,

$$
\text { or } \mathrm{CB}=\frac{12}{12} \mathrm{CA} .
$$

Draw CP, making with CA an angle equal to first direction of ship's head
(N.N.E.) ; and CX (W.S.W.) second direction of ship's head, X being on its own circle. Draw $P Q$ and XY perpendiculars on $A C$. Then $C Q$ represents the first heeling error 12°, and CY represents the second heeling error.

F1G. 218.

$$
\begin{aligned}
\text { Then } C Y & =C X \cdot \cos X C Y \\
& =\mathrm{CB} \cdot \cos \mathrm{XCY} \\
& =12 \cdot \mathrm{CA} \cdot \cos \mathrm{XCY} \\
& =15 \cdot \mathrm{CP} \cdot \cos \mathrm{XCY} \\
& =1 . \operatorname{Co} \cdot \mathrm{SQ} \cdot \operatorname{Sec} \mathrm{PCQ} \cdot \cos \mathrm{XCY} \\
& =\frac{12 \cdot \cos \mathrm{XCY} \cdot \mathrm{CQ}}{15 \cdot \cos \mathrm{PCQ}}
\end{aligned}
$$

This is expressed in a formula by-
New error $=\frac{\text { new heel } \times \text { cos new co. } \times \text { old error }}{\text { old heel } \times \text { cos old co. }}$

$$
\begin{aligned}
& \text { - } 8 \\
& =\frac{79 \times \cos 6 \mathrm{pts} \times 12}{\substack{95 \\
5 \\
5}} \\
& =9.6 \times \cos 6 \mathrm{pts} \times \sec 2 \mathrm{pts} . \\
& \text { apply logs. } \\
& 9.6 \log =0.982271 \\
& 6 \text { pts. L. } \cos =9 \cdot 582840 \\
& 2 \text { pts. L. } \mathrm{sec}=10.034385 \\
& 3.977 \log =0.599496
\end{aligned}
$$

The name changes with a change of tack, and also when the course is changed from the northern to the southern semicircle, or vice versâ.

A change of either changes the name.
A change in both does not change the name.
Here we have a change in hemisphere and tack, consequently the name remains the same (-).

New error $=-4^{\circ}$

Exercises.

1. Given 20° heel on the starboard tack, steering N.W. by N., and observed heeling error $+15^{\circ}$, required the error when steering W. by S. on the same tack, and heeling 17°.
2. Given 12° heel on the port tack, steering S.W. $\frac{1}{2}$ W., and observed heeling error $+9^{\circ} 30^{\prime}$, required the error when stecring S.W. by W. $\frac{3}{4} \mathrm{~W}$. on the starboard tack, and heeling 14°.
3. Given 25° heel on the starboard tack, steering E. by N. $\frac{1}{2}$ N., and observed heeling error $+5^{\circ} 30^{\prime}$, required the error when steering S . by W . $\frac{1}{4}$ W. on the port tack, and heeling 16°.
4. A ship steering S.E. $\frac{1}{2}$ E., with the wind at S.S.W., and heeling 9°, the observed heeling error was $+4^{\circ}$; the wind changes to W.N.W. in a squall, and the ship now lays S.W. $\frac{1}{2}$ S., heeling 19°. Required the new heeling error.
5. Course N., wind E.N.E., heel 13°, and error observed $+18^{\circ}$. Required the error when the ship is put on the other tack by change of wind, laying N.N.E., with a list of 20°.
6. Steering S.W. ${ }^{\frac{3}{4}} \mathrm{~W}$., wind S.S.E., heel 12°, and observed heeling error -6°. Required the error when the wind changes to S.W., and the ship lays N.W. by W. $\frac{1}{2}$ W., heeling 15°.
7. Steering N.W. $\frac{3}{4}$ N., heeling 12°, wind W.S.W., and error observed $-7^{\circ} 12^{\prime}$. Required the error when the course is changed to S ., and heel 15°, with no change of wind.
8. Steering S. by E. $\frac{1}{2}$ E., heeling 20° to starboard, heeling error observed $-13^{\circ} 30^{\prime}$. Required the error when steering E. on the same tack and heeling 18°.
9. Course N., wind W., the error observed when heeling 14° was $12^{\circ} 30^{\prime}$. Required the error when on the other tack steering S. and heeling 16°.
10. Given heel $8 \frac{1}{2}^{\circ}$, course N.W. by W. on the starboard tack, heeling error observed -2°, required the error when the wind veers so as to allow the ship to lay N. by W. on the same tack, heeling $8 \frac{1}{2}^{\circ}$ by clinometer.
11. Steering E. by S. $\frac{3}{4}$ S. on the port tack, and heeling 19°, the observed heeling error was $+4^{\circ} 40^{\prime}$. Required the error when steering S.S.W. on the same tack, the clinometer showing $13 \frac{1}{1}^{\circ}$.
12. Heeling 23° when steering E. by N. $\frac{1}{4}$ N., and wind at N. by E., the heeling error observed was $+4^{12^{\circ}}$. Required the error when steering N.W. by W. $\frac{3}{4} \mathrm{~W}$. on the starboard tack and heeling $17 \frac{1}{2}^{\circ}$.

DESCRIPTION AND USE OF BEALL'S DEVIASCOPE.

This is a model representing the after-deck of a ship, with its binnacle and steering compass. A soft-iron bar at right angles to the deck represents the stern-post, and two soft-iron bars under the deck, the athwartship beams. These bars are to give the vertical and horizontal iron effects. To imitate the effects of sub-permanent magnetism in a ship, thin steel magnets are placed in grooves in the deck, which run fore and aft, athwartship, and at intermediate angles. By this means a counterpart of a ship built with her head in any given direction may be obtained. A "Pelorus" stands on the deck. The model has horizontal and hceling motions, with clamping screws, and a clinometer on the binnacle for showing the angle of heeling.

On the sides of the binnacle are jointed brass supports for the spherical soft-iron correctors. Under the binnacle is a tube for holding a small brass case, having holes for the reception of small round magnets for the compensation of heeling error. Other flat magnets are provided for compensating coefficients B and C, and a "Flinders" bar and dipping needle complete the outfit.

To explain, by the aid of the Deviascope, the ordinary "tentative" method of compensating a ship's compass-

The deck being horizontal by clinometer, the iron bars representing the stern-post and beams in position, and the magnets in one of the grooves, the sight vanes of the Pelorus should be clamped to the assumed correct magnetic bearing of an object as far removed as possible.

1. To compensate coefficient C .

Turn the Pelorus card round until the N. or S. point is at the lubber line, then turn the model until the object is seen through the sight vanes. This represents ship's head N. or S. correct magnetic. Now taka up one of

Beall's Deviascofe.
the compensating magnets and place it on the deck before or abaft the binnacle, at right angles to the midship groove, and move it towards or from the compass until the deviation disappears. Of course, the red end of the magnet must be towards the side which attracts the N. point of the compass.
2. To compensate coefficient B.

Bring the E. or W. point of the Pelorus card to the lubber line, and turn the model until the sight vanes are again directed to the object. Now place the "Flinders" bar on the fore side of the compass (because the vertical iron is abaft), and move it nearer until a part of the deviation is corrected (say one-half for the purpose of illustration); then place a magnet on the deck on either side of the binnacle at right angles to the athwartship groove, and move it towards or from the compass until the balance of the deviation from coefficient B is corrected.
3. To compensate coefficient D.

Turn the Pelorus card until the N.E. point is at the lubber line, and then turn the model until the object is seen through the sight vanes. If the deviation is E. on this course, it shows a coefficient +D ; but if W., a -D. The soft iron correctors are then placed in position on their supports, and brought near enough to the compass to correct the deviation. For $+\mathbf{D}$ the correctors must be at the sides, and for -D they are moved round to the fore-and-aft line.

The joints in the brass supporting arms are to allow the correctors to be moved a little forward on one side, and aft on the other, for compensating coefficient \mathbf{E}.
4. To compensate the vertical force producing heeling error.
(1) By heeling the model and observing the heeling error-

Bring the model's bow to N. or S. by compass (which will now show correct magnetic), and incline the deck (say 10° by clinometer), and observe the deviation. If the N . point is drawn to the higher side (which is usually the case), place the small vertical magnet underneath, with the red pole up, and move it up or down until the deviation is corrected; but if the N. point goes towards the lower side, the blue pole of the magnet must be uppermost.
(2) By dipping needle-

Bring the model's head to E. or W. magnetic, and, after removing the compass card and pivot, place the dipping needle ${ }^{1}$ on the pillar in the bowl, with its red pole pointing N . If the needle dips, it shows a blue or + force below the compass; but if it rises, it shows the force is red or - . In the former case the red pole of the magnet must be uppermost, and in the latter the blue pole. It should then be moved up or down until the needle is horizontal.

[^7]
CHAPTER XXX.

MISCELLANEOUS PROBLEMS.

Art. 130. Freights and Commissions.-Freight is money paid to the owner of a ship for the carriage and safe delivery of goods, and its gross amount is reckoned at so much per ton. The gross freight is subject to additions and deductions, which are calculated at so much per cent., or per £ 100 ; and when made the net freight is the result. Primage is a charge paid by the shipper, over and above the freight, to the owner towards expenses of wharfage, pilotage, light dues, tug expenses, and other port charges. Commission and Brokerage are charges paid by the owner for expeditious loading of cargo, and for obtaining the contract.

Example.-Find the net freight on 5500 tons at 45 francs per ton. Brokerage $2 \frac{1}{2} \%$; primage 6%; exchange, 1 franc $=9 ; 4$.

$$
\begin{aligned}
& \text { Gross freight }=5500 \times 45= \\
& \text { Brokerage and primage }(6-247,500 \text { francs. } \\
&\left(6=31 \%=\frac{247,500 \times 7}{2 \times 100}\right.=\quad 8662.5 \quad, \\
& \text { Net freight }=256,162 \cdot 5 \quad, \\
&=2,497,584 \cdot 375 \mathrm{~d} . \\
&=£ 10,40612 \mathrm{~s} .
\end{aligned}
$$

Since the brokerage is a deduction from, and the primage an addition to the gross freight, the difference between them, $6-2 \frac{1}{2}=3 \frac{3}{2} \%$, must be added to obtain the net amount.

Art. 131. Areas, Volumes, Weights.-The area of any surface is expressed in square measure, which in a rectangle is the product of the length and breadth, both dimensions being expressed in the same unit-feet, inches, etc.-when the area is expressed as square feet or square inches, etc.

For a triangle the area is half the product of base and the perpendicular height.

For a trapezoid, that is a four-sided figure having two sides parallel, the area is half the sum of the parallel sides multiplied by the perpendicular distance between them.

The circumference of a circle is given by πd.
The area of a circle by $\frac{\pi d^{2}}{4}$

$$
\text { where } \pi=3 \cdot 1416
$$

For the area of an irregular figure bounded on one side by a curve, such as the half-section of a boat or ship, Simpson's rules are employed; or by multiplying the area of the circumscribing rectangle by a constant called the coefficient of fineness of the plane. This constant varies in value from 7 to 85 .

Examples.-

1. The circumference of an engine-room ventilator is 13 ft .6 in ., find its diameter and sectional area.

$$
\begin{aligned}
& \text { Circ. }=13 \cdot 5 \mathrm{ft} . \\
& \pi d
\end{aligned}=13 \cdot 5 \mathrm{r} \begin{aligned}
\therefore d & =\frac{13 \cdot 5}{3 \cdot 1416} \mathrm{ft} . \\
& =4 \cdot 3 \mathrm{ft} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\frac{\pi l^{2}}{4} \\
& =\frac{3 \cdot 1416 \times(4 \cdot 3)^{2}}{4} \text { sq. } \mathrm{ft} . \\
& =14.52 \text { sq. } \mathrm{ft} .
\end{aligned}
$$

2. ABCD is a quadrilateral, AB is 20 ft ., AD at right angles to AB is 12 ft ., DC parallel to AB is 30 ft . Find its area.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(A B+C D) \cdot A D \\
& =\frac{1}{2}(30+20) \cdot 12 \\
& =300 \mathrm{sq} \cdot \mathrm{ft} .
\end{aligned}
$$

Draw BE perpr. on CD.
Then area $A B C D=$ area $A B E D+$ area BCE

$$
\begin{aligned}
& =\mathrm{AB} \cdot \mathrm{BE}+\frac{1}{2} \mathrm{BE} \cdot \mathrm{EC} \\
& =20 \times 12+\frac{1}{2} \cdot 12 \times 10=240+60=300 \mathrm{sq} . \mathrm{ft}
\end{aligned}
$$

The volume of a rectangular block is the product of its length, breadth, and thickness or depth, and is expressed in cubic feet or cubic inches as case may be according to the unit used.

$$
\begin{aligned}
\mathrm{L} \times \mathrm{B} \times \mathrm{D} & =\text { Vol., and since } \mathrm{L} \times \mathrm{B}=\text { area } \\
\therefore \text { area } \times \mathrm{D} & =\text { Vol., } \\
\text { and } \mathrm{D} & =\frac{\text { Vol. }}{\text { area }, \text { or area }=\frac{\mathrm{Vol} .}{\mathrm{D}}}
\end{aligned}
$$

The ratio of the volumes of displacement and of a block having same length, breadth, and draught as a vessel is called its block coefficient of fineness.

The volume of a cylinder or pipe is its sectional area multiplied by its length $\quad=\frac{\pi d^{2} . l}{4}$

The volume of a sphere $=\frac{\pi d^{3}}{6}$
When the volume of a solid is ascertained, its weight may be found from its specific gravity (S.G.), or in the case of a floating
body by finding the number of cubic feet of water displaced, allowing 35 cubic feet of salt water to weigh one ton. A cubic foot of fresh water weighs 1000 ounces, and contains $6 \frac{1}{4}$ gallons approx. Hence taking the S.G. of cast iron as $7 \cdot 207$, the weight of a cubic foot would be 7.207×1000 ounces $=7207$ ounces.

Examples.-

1. The displacement of a ship of 15,300 tons. Her dimensions are 462 ft . long, 45 ft . beam, and 32 ft . draught : find the coeflicient of fineness.

$$
\begin{aligned}
\text { Coefft } & =\frac{\text { Displacement }}{\text { Contents of block }} \\
& =\frac{1700-70}{-465 \times-45 \times 32} \\
& =86.95
\end{aligned}
$$

2. The area of the water plane of a vessel is $21,000 \mathrm{sq}$. ft . ; what are the tons per inch immersion at that plane, and how much will 300 tons of bunkers sink her?

When she sinks 1 in . or $\frac{1}{12} \mathrm{ft}$.

$$
\begin{aligned}
& \text { The vol. displaced }=\frac{21,000}{12} \text { cubic ft. } \\
& \text { hence tons }=\frac{21,000}{12 \times 35}=50 \\
& \text { or ton per inch immersion }=50 \\
& \text { and } 300 \text { tons will put her down } \frac{300}{50} \text { ins. } \\
&=6 \text { ins. }
\end{aligned}
$$

3. Allowing 45 cubic ft . of coal to a ton, how long must a bunker be made to contain 250 tons bunkers, beam ship 51 ft ., height 'tween decks 6 ft .6 in .?

$$
\text { Coal will occupy } 45 \times 250 \text { cubic } \mathrm{ft} \text {. }
$$

Area end of bunker $51 \times 6 \frac{1}{2} \mathrm{sq} . \mathrm{ft}$.

$$
\begin{aligned}
\text { Hence length } & =\frac{\text { volume }}{\text { area }} \\
& =\frac{45 \times 250}{51 \times 6.5} \mathrm{ft} . \\
& =33.94 \mathrm{ft} .
\end{aligned}
$$

4. Find the weight of a balk of timber 31 ft . long, 30 ins . wide, and 20 ins . deep, S.G. being 72 .

$$
\begin{aligned}
& \text { Volume }=31 \times 2 \frac{1}{2} \times 1 \frac{2}{3} \text { cubic } \mathrm{ft} . \\
& \text { Weight of } 1 \mathrm{c} . \mathrm{ft} .=72 \times 1000=720 \mathrm{oz} \\
&=45 \mathrm{lbs} \\
& \text { Hence weight of } \begin{aligned}
\log & =\frac{31 \times 5 \times 5 \times 45}{2 \times 3} \mathrm{lbs} \\
& =5812.5 \mathrm{lbs}
\end{aligned}
\end{aligned}
$$

5. How many gallons of oil will a cylindrical tank 4 ft . in diameter and 6 ft . long hold? What weight will the oil be, S.G. '9 ?

$$
\begin{aligned}
\text { Volume tank } & =\frac{4^{2} \times 3 \cdot 1416 \times 6}{4} \text { cubic } \mathrm{ft} . \\
& =75 \cdot 4 \text { cubic } \mathrm{ft} .
\end{aligned}
$$

each cubic ft. holds $6 \frac{1}{4}$ gallons.

$$
\begin{aligned}
\text { Hence No. galls. in tank } & =75.4 \times 6 \frac{1}{4} \\
& =471 \frac{1}{4} .
\end{aligned}
$$

One gallon of water weighs 10 lbs ., so the weight of 1 gallon of oil is $10 \times 9=9$ lbs.

$$
\begin{aligned}
\therefore \text { Weight of oil in tank } & =9 \times 471 \frac{1}{4} \mathrm{lbs} . \\
& =4241 \frac{1}{4} \mathrm{lbs} .
\end{aligned}
$$

Art. 132. Strength of Chain, Rope, and Wire.-Chains may either be of open link or stayed link pattern, the former used for crane work, and the latter in cables. The relative strengths when of same iron may be taken as 6 to 9 . For mentally estimating the safe working load in tons of chains, a simple rule is to square the number of eighths of an inch in the diameter, and divide by 10 : thus for a chain $\frac{1}{2}$ inch diameter the safe working load would be $\frac{4^{2}}{10}=1.6$ tons.

The strength of ropes depends greatly on the quality of the hemp fibre of which it is made, and its ultimate strength is usually taken to be $6,400 \mathrm{lbs}$. per square inch of sectional area, the proof strength is one-half of the ultimate strength, and the safe working load may be considered to be one-fifth of the ultimate strength. The size of rope is measured by its circumference, and its strength deteriorates rapidly by age and use. The safe working load of a rope in tons is found by squaring the circumference and dividing by 7. Consider a rope $\mathrm{C}^{\prime \prime}$ in circumference, its sectional area is $\frac{\mathrm{C}^{2}}{4 \pi}$ sq. inches;

$$
\begin{aligned}
\text { ultimate strength } & =\frac{\mathrm{C}^{2} \times 6400}{4 \pi \times 2240} \text { tons } \\
\text { taking } \pi & =\frac{22}{7} \\
& =\frac{\mathrm{C}^{2} \times 7 \times 6400}{4 \times 22 \times 2240} \text { tons, } \\
& =\frac{\mathrm{C}^{2}}{4 \cdot 4} \text { tons }
\end{aligned}
$$

which for a 6 -inch rope would work out to about 8.2 tons.
Anderson, in his "Strength of Materials," says that from experiment the tenacity of this size rope is from 14 to 17 tons,
from which it seems that the ultimate strength is more than 6400 lbs . per sq. in. The rule given estimates the safe working load at $\frac{36}{7}$ tons $=5 \cdot 2$ tons approximately and appears to be rather excessive.

The safe working strain of a wire may be considered to be two-fifths of the square of the circumference in tons; which for a 3 -inch wire would give $\frac{2 \times 3^{2}}{5}$ tons

$$
=\frac{18}{5}=3 \cdot 6 \text { tons. }
$$

The above rules may also be used to estimate the size rope or wire to carry a certain load.

For rope, multiply the load in tons by 7 and extract the square root.

For wire, multiply the load in tons by 5 , divide by 2 , and extract the square root.

When the size rope or wire to be used with a given purchase to take out a known weight has to be determined, first find the load on the hauling part, then the size to carry that load. To find the load on the haul, add one-tenth of the weight to be lifted for each sheave in the purchase, to the weight, and divide by the number of strings at the moving block. Thus to take out a 20 -ton weight with a treble purchase and leading block: there are 7 sheaves: hence

$$
\begin{aligned}
\text { Load on haul } & =\frac{\frac{7 \times 20}{10}+20}{7} \text { tons } \\
& =\frac{34}{7} \text { tons } \\
\text { Rope to lift this load } & =\sqrt{\frac{34}{7} \times 7} \\
& =\sqrt{34} \\
& =6 \text { inches nearly } \\
\text { or, Wire to lift this load } & =\sqrt{\frac{3}{7}} \times \frac{5}{2} \\
& =\sqrt{12} \\
& =3 \frac{1}{2} \text { inches nearly. }
\end{aligned}
$$

Again, to find what weight can be lifted with a given purchase and a known rope or wire : first find the load such rope or wire will carry, multiply this load by the number of parts in the moving block, and allow one quarter of the result off for friction, etc. Thus using a 6 -inch rope and treble purchase:

$$
\text { Safe load for } 6 \text {-inch rope }=\frac{6^{2}}{7}=\frac{36}{7} \text { tons. }
$$

There are 7 parts in moving block, hence total weight it can lift $=\frac{36}{7} \times 7=36$ tons; allow one quarter or 9 tons for friction, and remainder is 27 tons; or, using a $3 \frac{1}{2}$ inch wire :

$$
\begin{aligned}
\text { Safe load } & =\frac{2}{5} \times\left(\frac{7}{2}\right)^{2}=\frac{2 \times 49}{5 \times 4} \text { tons } \\
& =4 \cdot 9 \text { tons. } \\
\text { Total lift } & =7 \times 4 \cdot 9 \text { tons } \\
& =34.3 \text { tons. } \\
\text { For friction allow } \frac{1}{4} & =8.6 \cdot 7 \text { tons to be safely lifted. } \\
\text { Remainder } & =25.7 \text {. }
\end{aligned}
$$

These rules evidently do not give similar results, but it must be remembered they are all approximations: to make them tally $\frac{9}{16}$ would certainly be a better multiplier than $\frac{3}{4}$; that is, the allowance for friction, etc., should be rather $\frac{7}{16}$ of the total lift.

Art. 133. Speed, Consumption, and Displacement.-When a screw turns in a solid bed, each complete turn advances the screw by an amount equal to the pitch; hence, if " N " be the number of revolutions per minute made, and "P" be the pitch of the screw in feet, the number of nautical miles per hour is $\frac{60 . N P}{6080}$.

Since the water in which the screw of a ship turns is not solid, the actual speed over the ground, as determined by trial on measured miles, is less than this amount; the difference between the engine and actual speeds is called the "slip," and may be expressed as a percentage on the engine speed. Thus in a ship where the number of revolutions per minute is 57 , the pitch 18 feet, determine the percentage of slip, if the trials give a speed of 9.5 knots.

$$
\begin{aligned}
& \text { Engine speed }=\frac{60 \times 57 \times 18}{6080} \text { knots } \\
&=10 \cdot 1 \mathrm{knots} . \\
& \text { Actual speed }=9 \cdot 5 \\
& \text { Slip }=\cdot 6 \\
& \text { As } 10 \cdot 1: 100:: 6:- \\
& \text { Hence percentage of slip }=6 \% \text { roughly. }
\end{aligned}
$$

The moving power in the ship is supplied by the burning of the coal, and it may be seen that the total consumption must depend on the speed, the time occupied, and the weight moved. From various experiments made it has been found that in the same ship, under the same conditions, the consumption varies as the cube of the speed obtained, if C represents consumption in tons, s the speed in knots, and t the time in hours:

> C varies as $s^{3} \times t$, and since $s \times t=$ distance " d "
> C varies as $s^{2} \times d$;
hence if the time is constant
Consumption varies as cube of speed;
if the distance is constant
Consumption varies as square of speed.
From observation it is found that in modern engines, with good coal, the consumption varies from 1.2 to 1.7 lbs. per hour per I.H.P., say $1 \frac{1}{2}$ lbs., and since the speed of the ship varies directly as the number of revolutions made per minute, hence the I.H.P. varies as cube of revolutions in a given time.

Example.-The daily consumption for a speed of 8.5 knots is 30 tons, what would it be for a speed of 10.5 knots?

Since the time is the same, consumption varies as cube of speed.

$$
\begin{aligned}
& \text { As } 8 \cdot 5^{3}: 10 \cdot 5^{3}:: 30: x \\
& \begin{aligned}
x & =\frac{10 \cdot 5^{3} \times 30}{8 \cdot 5^{3}}=\frac{34,728 \cdot 75}{614 \cdot 125} \\
& =56 \cdot 5 \text { tons. }
\end{aligned}
\end{aligned}
$$

Again, if in above ship the consumption is reduced to 20 tons per day, what speed would be developed?

$$
\begin{aligned}
& \text { As } 30: 20:: 8 \cdot 5^{3}: x^{3} \\
& x^{3}=\frac{20 \times 8 \cdot 5^{3}}{30}=409 \cdot 4 \\
& \sqrt[3]{409 \cdot 4} \log =\frac{2 \cdot 612148}{3} \\
& \therefore x=\sqrt[x]{409 \cdot 4}=7 \cdot 42 \text { knots. } \\
&=7 \cdot 425 \mathrm{log} .
\end{aligned}
$$

Again, if the ship has to make a voyage of 3570 miles, what would be the total consumption at the second speed?

As the distance is the same, consumption varies as square of speed.

$$
\begin{aligned}
& \text { Number of days taken at } 8 \cdot 5 \text { knots }=\frac{3570}{8 \cdot 5 \times 2 t}=17 \cdot 5 \\
& \text { Total consumption }=17 \cdot 5 \times 30=525 \text { tons. } \\
& \text { As } 8 \cdot 5^{2}: 10 \cdot 5^{2}:: 525: x \\
& x=\frac{10 \cdot 5^{2} \times 525}{8 \cdot 5^{2}}=\frac{57,881 \cdot 25}{72 \cdot 25} \\
& =801 \text { tons. }
\end{aligned}
$$

Number of days taken at 10.5 knots $=\frac{3570}{10.5 \times 25}=14 \frac{1}{5}$
\therefore Total consumption at 565 tons per day $=14 \frac{1}{6} \times 56.5$
$=800.5$ tons,
agreeing with amount obtained directly.
From the ahove example it is seen that 801 tons of coal will drive the ship $\$ 570$ miles at 10.5 knots, but if her speed is reduced to 8.5 knots the distance will be increased.

For 801 tons will be consumed in $\frac{801}{30}$ days at 8.5 knots ;

$$
\begin{aligned}
\text { Hence distance } & =\frac{801 \times 204}{30} \text { miles } \\
& =5446.8 \text { miles. }
\end{aligned}
$$

Again, if in the ahove ship, where the speed is 8.5 knots for a daily consumption of 30 tons, it is found that three days' coal are left at that speed when 1000 miles from port, to what speed must she be reduced to reach port?

Consumption varies as square of speed multiplied by distance.

$$
\begin{aligned}
& \text { As } s^{2} \times 1000: 8.5^{2} \times 204:: 90: 30 \\
& 3 \\
& \text { Hence } s^{2}=\frac{8.5^{2} \times 204 \times: 0}{54 \times 1000} \\
&=44.217 \\
& \therefore s=6.65 \text { knots. }
\end{aligned}
$$

It is evident that the more deeply a ship is laden the more power is required to drive her through the water at the same speed, and it is found that the consumption or I.H.P. varies as the 2 rd power of the displacement, that is as the cuhe root of the square of the displacement. Thus if in a ship of 5000 tons displacement, 4000 tons are taken on at one port, and it is found that the consumption per day is 50 tons to drive her at a speed of 9 knots, what would the consumption be per day when the 1000 tons are taken on at another port to make the same speed?

$$
\begin{aligned}
& \text { As } \sqrt[3]{4000^{2}}: \sqrt{5000^{2}}:: 50: x \\
& x=\frac{50 \times \sqrt[3]{5000^{2}}}{\sqrt[3]{4000^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \log x= \log 50+2 \log 5000-\frac{2}{3} \log 4000 \\
&= \log 50+\frac{4}{3}(\log 5000-\log 4000) \\
& 5000 \log =3.698970 \\
& 4000 \log =\frac{3.602060}{0.096910} \\
& 2
\end{aligned}
$$

$$
\text { 3) } 0 \cdot 193820
$$

$$
\begin{aligned}
\frac{3}{3}(\log 5000-\log 4000) & =0 \cdot 064607 \\
50 \log & =1 \cdot 698970 \\
58 \cdot 02 \log & =\overline{1 \cdot 763577}
\end{aligned}
$$

$$
\text { or } x=58 \cdot 02 \text { tons per day. }
$$

Exercises.

1. Find net freight on 2400 tons at 17 s .6 d . per ton, after allowing 6% loading commission and 8% primage.
2. Find the net freight of 5600 tons at 6 dollars per ton, allowing 5% loading commission and 7% primage, exchange being 4.85 dollars to $£ 1$.
3. Calculate net freight on 2700 tons at 22 s . $6 d$. per ton, if primage is $7 \frac{1}{2} \%$ and loading commission 3%.
4. Convert £6836 10s. to dollars if $£ 1=466$ dollars. Convert $567832 \cdot 5$ francs to $£$'s. if $£ 1=28 \cdot 4$ francs.
5. Wine costs 3.5 francs per litre, how much is this per gallon. The price of meat is 4 francs per kilogramme, how many pence per lb.?
6. Find displacement of a ship in tons whose dimensions are: Length 465 ft ., breadth 50 ft ., draught 28 ft ., coefficient of fineness 84.
7. Taking the height of a mercurial barometer to be 30 ins. when a water barometer reads 34 ft ., find S.G. of mercury.
8. The sectional area at load water-level is 5600 sq . ft ., how much will 320 tons of bunkers sink her?
9. Find coefficient of displacement of a liner 525 ft . long by 51 ft . broad by 25 ft . draught, her displacement being 15,300 tons.
10. A lifeboat is 24 ft . long, by 7 ft . 3 ins. wide, and 3 ft .6 ins. deep : how many people will it carry, and what air-tight space must be allowed?
N.B.-Use 6 as multiplier for finding cubical contents, and allow 10 cub. ft. per person, of which 1 cub. ft. must be air-tight.
11. How long must a bunker be made to contain 250 tons coal, allowing 42 cub. ft. to the ton, beam of ship 56 ft ., height 'tween decks 6 ft .6 ins.
12. The length of a rectangular field is to its breadth as 3 to 2 , and its area is $11,094 \mathrm{sq}$. metres. Find the cost of surrounding it with a fence at 2.25 francs per metre length of boundary.
13. If 648 boxes are stowed close together on board a ship, find the total cost of freightage at $1 s .2 d$. per cub. yard, when each box measures $4 \frac{1}{2} \mathrm{ft}$. long, 3 ft . wide, and $2 \frac{1}{4} \mathrm{ft}$. deep.
14. A rectangular tank 8 ft . long and 7 ft . wide holds when full $6 \frac{1}{4}$ tons of water: find its depth.
15. If gold is worth 3 francs 10 centimes per gramme, find its value per ounce in English money, taking a franc as equal to $9 \frac{3}{4} d$, and a gramme as 15.43 grains.
16. How many tons of coal will a bunker 10 ft .3 ins. deep, 42 ft .6 ins. long, and breadth at two ends 8 ft .6 ins., and in middle $10 \mathrm{ft} .$, hold ?
17. How many persons will a lifeboat hold whose length is $22 \mathrm{ft} .6 \mathrm{ins} .$, breadth 6 ft .6 ins., inside depth 3 ft .6 ins., and what number of cubic feet of air-tight space should it contain?
18. A supposed cubical iceberg is 100 feet abóve level of sea, S.G. of ice .921 , sea water 1.026 : find total height of berg.
19. If the displacement of a ship is 6800 tons, her length 340 ft ., breadth 35 ft ., and draught 22 ft ., find coefficient of fineness.
20. If 150 ,tons of bunker sink a ship 5 ins., find her area at that water level.
21. Taking S.G. of iron as $7 \cdot 7$, find weight in pounds of a plate $20^{\prime} \times 2^{\prime}$ $\times 1 \frac{1}{2}{ }^{\prime \prime}$.
22. Length of ship 525 ft ., beam 55 ft ., coefficient of fineness $9:$ how many tons per "inch" immersion?
23. Find approx. the daily consumption in a vessel of 5000 I.H.P.
24. Find safe working loads for chains of $\frac{3}{4} \mathrm{in}$., $1 \frac{1}{2} \mathrm{in}$., and $\frac{7}{8} \mathrm{in}$. diameter.
25. When chains are weakened by having been in use for a time, how is strength restored ?
26. Find safe working strain of manilla ropes of $3 \frac{1}{2}$ ins., 5 ins., and $6 \frac{1}{2}$ ins. circumference.
27. Find the safe working strain of wires 1 in ., $9 \frac{1}{2}$ ins., and 5 ins. circumference.
28. How many parts of a 3 -in. rope will be equal in strength to a 6 -in. rope?
29. What weight will a $3 \frac{1}{2}$-in. rope hang, when rove as a tackle having 6 parts at the travelling block?
30. What weight will a $2 \frac{1}{2}$-in. wire raise, using a double purchase?
31. What size rope or wire would you use to get out a 15 -ton weight with a fourfold purchase and leading block?
32. What size rope and wire would be required to take out a 14-ton weight with a treble block?
33. If the breaking strain of a $2-\mathrm{in}$. chain is 72 tons, what is it of a 3 -in. chain?
34. Mercury is 10,574 times as heavy as air, the S.G. of mercury is 13.597 : find the weight in grains of $1 \mathrm{cub} . \mathrm{ft}$. of air.
35. From Glazebrook's experiments the S.G. of air at 15° C. and 760 mm . pressure when $\frac{1}{4}$ saturated was 0012 . Find weight in grains of 1 cub. ft . of this air.
36. Taking the composition of air to be 77% of nitrogen, 21% of oxygen, and the remainder carbonic acid gas, and Ganot's estimates that 1 litre of nitrogen at $0^{\circ} \mathrm{C}$. and 760 mm . weighs $1 \cdot 2561$ grammes, of oxygen $1 \cdot 4298$ grammes, of carbonic acid 1.9774 grammes, find weight in grains of $1 \mathrm{cub} . \mathrm{ft}$.

37 . At $32^{\circ} \mathrm{F}$. the velocity of sound is 1090 ft . per second, and the increase is at the rate of 10 ft . per second for each $9^{\circ} \mathrm{F}$. rise in temperature.

You see the flash of a gun, and 6 seconds after bear the report, temperature $68^{\circ} \mathrm{F}$.: how far away is the gun?
38. If the velocity of light be reckoned at 299,860 kilometres per sec., how many miles per sec. is this?
39. The pitch of a propeller is 15 ft ., and it makes 60 revolutions per minute, allowing 5% slip: find actual speed.
40. The pitch of a propeller is 16 ft ., revolutions per minute 57 , aud time for measured mile is 7 minutes : find slip $\%$.
41. The speed on the trials is 9.5 knots, propeller pitch 19 ft , revolutious per minute 56 , find slip \%.
42. For a speed of 10 knots, the daily consumption is 25 tons: what would the consumption be for speeds of 12 knots and 8 knots?
43. The daily consumption for a speed of 19 knots is 150 tous: what amount would be necessary for speeds of 21 and 15 knots?
44. For a daily consumption of 55 tons, the speed is 13 knots: what speed would be developed on consumption of 30 and 80 tons per day?
45. On a daily consumption of 84 tons, the speed is 15 knots : what would it be for consumptions of 2.5 and 5 tons per hour?
46. In a ship $16 \frac{2}{3}$ tons of fuel are consumed per hour for a speed of 24 knots: how many tons will be required for a voyage of $4 \frac{1}{2}$ days if the speed is increased 1 knot?
47. The total consumption for a certain distance at 9 knots is 240 tons: what would it be for same distance if speed is increased to 13.5 knots?
48. A ship steams 10 knots on 23 tons daily: how moch coal will be required to steam 3036 miles in 11 days, and have 100 tons in reserve?
49. At 60 revolutions per minute the I.H.P. developed was 3500 , what would the I.H.P. be when revolutions were increased to $\% 5$ per minute? How much coal per day is consumed under the two conditions?
50. For 1800 miles at 10 knots, the consumption is 500 tons: how much will be required for 2500 miles at 12 knots?
51. The consumption per day for a speed of 12 knots is found to have been 51 tons. There are 150 tons of coal left in bunkers, and 1152 miles to port, speed is reduced to 10 knots, how much will there be at the end of the voyage?
52. On a daily consumption of 80 tons, the vessel makes 15 knots; with only one day's coal left at this speed and 1000 miles to go, at what speed must she proceed to reach port?
53. There are 20 days' coal on board, when steaming at 9 knots on 35 tons per day, and 100 tons reserve. When 12 days out, owing to bad weather, it is found that 45 tons daily have been consumed: at what speed nust she proceed to arrive with 50 tons in bunkers?
54. A vessel with a displacement of 3000 tons consumes 25 tons daily : what would consumption be at displacement of 2000 and 4000 tons?
55. A ship of 10,800 tons displacement burns 100 tons of coal daily, for a speed of 13.5 knots: what would be the effect on the consumption of taking in 300 tons extra cargo, and increasing speed $\frac{1}{2}$ knot?
56. A vessel of 8000 tons displacement has 7000 tons on board at one port, and develops a speed of 12 knots on 50 tons per day: what consumption will she have to make a speed of 13 knots, when the extra 1000 tons is taken in?

APPENDIX

CONTAINING EXTRACTS FROM

TIDE TABLES

AND

NAUTICAL ALMANAC

FOR THE SOLUTION OF ALL PROBLEMS IN THIS BOOK

USEFUL TABLES

AND

EXAMINATION PAPERS

AUGUST.
AT APPARENT NOON.

Date.		THE SUN'S				Sidereal Time of the Semidiameter Meridian.	Equation of Time, to be Apparent Time.	$\begin{gathered} \text { Var. } \\ \text { in } \text { hour. } \end{gathered}$
		$\begin{gathered} \text { Apparent } \\ \text { Right Ascension. } \end{gathered}$	$\begin{gathered} \text { Var. } \\ \text { in } \\ \text { i hour. } \end{gathered}$	Apparent	$\begin{gathered} \text { Var. } \\ \text { in } \\ \text { inour. } \end{gathered}$			
		h. m. s.	${ }^{8}$	1		1. ${ }^{8 .}$	$\mathrm{m}^{6}{ }^{8}$	
Wed.	1	$84255 \cdot 43$	9724	N. 181145.0	$37 \cdot 26$	16.65	610.22	$0 \cdot 132$
Thur.	2	$84648 \cdot 49$	9698	$175641 \cdot 9$	$38 \cdot 00$	16.56	$6 \quad 6.74$	0.158
Frid.	3	$85040 \cdot 93$	9672	174121.2	38.72	16.47	$6 \quad 2.64$	0.184
Sat.	4	$85432 \cdot 76$	9647	$172543 \cdot 3$	39.43	16.39	557.93	$0 \cdot 209$
Sun.	5	85823.99	9622	$17948 \cdot 4$	$40 \cdot 14$	16.30	552.61	$0 \cdot 234$
Mon,	6	$\begin{array}{llll}9 & 214.61\end{array}$	9•597	$165336 \cdot 8$	$40 \cdot 82$	16.21	546.70	0.258
Tues.	7	$964 \cdot 66$	9.573	16378.9	41.50	16.13	540.21	$0 \cdot 282$
Wed.	8	$9954 \cdot 13$	9.549	$162024 \cdot 9$	$42 \cdot 16$	16.04	533.14	$0 \cdot 307$
Tlur.	9	91343.02	9.525	16325.0	42:82	15.96	525.49	0.330
Frid.	10	$91731 \cdot 34$	9.502	154695	$43 \cdot 46$	15.87	517.28	0.354
Sat.	11	921 19•10	$9 \cdot 479$	152838.9	44.09	15.79	58.51	$0 \cdot 377$
Sun.	12	$925 \quad 631$	$9 \cdot 456$	$151053 \cdot 3$	44.70	15.71	459.19	$0 \cdot 400$
Mon.	13	$92852 \cdot 97$	$9 \cdot 433$	$145253 \cdot 1$	45.31	15.63	449.33	$0 \cdot 422$
Tues.	14	93239.09	$9 \cdot 411$	$143438 \cdot 6$	$45 \cdot 90$	15.55	438.93	0.445
Wed.	15	93624.68	9.389	$141610 \cdot 1$	$46 \cdot 47$	1547	427.99	$0 \cdot 466$
Thur.	16	940975	$9 \cdot 367$	135728.0	47.03	15.39	416.54	0.488
Frid.	17	9435430	9.346	$133832 \cdot 5$	47.59	15.31	44.57	$0 \cdot 509$
Sat.	18	9473834	9•325	$131923 \cdot 9$	$48 \cdot 12$	15.23	352.09	0.530
Sun.	19	95121.88	9.304	1300	48.65	$15 \cdot 16$	$339 \cdot 11$	0.551
Mon.	20	9554.92	9.283	$124028 \cdot 9$	$49 \cdot 16$	15.09	325.64	0.571
Tues.	21	9584748	$9 \cdot 263$	1220431	$49 \cdot 65$	15.02	311.68	0.591
Wed.	22	$10 \quad 229.56$	9.244	120457	$50 \cdot 13$	14.95	257.25	$0 \cdot 611$
Thur.	23	$10 \quad 611 \cdot 17$	$9 \cdot 224$	1140368	50.60	14.89	242.34	0.63I
Frid.	24	$10 \quad 952 \cdot 32$	9•205	1120169	51.05	14.82	226.98	0.649
Sat.	25	101333.02	$9 \cdot 187$	$105946 \cdot 2$	51.49	1476	211.17	0.668
Sun.	26	101713.28	9•169	1039 5.2	51-92	14.70	154.92	0.686
Mon.	27	$102053 \cdot 12$	$9 \cdot 151$	$101814 \cdot 1$	$52 \cdot 33$	14.64	138.25	0.703
Tues.	28	102432.55	$9 \cdot 135$	957132	52.73	14.58	121.17	0.720
Wed.	29	1028 11'58	9•119	$936 \quad 3.0$	53.12	14.53	13.70	0.736
Thur.	30	103150.24	9104	$91443 \cdot 6$	53.49	14.48	$045 \cdot 86$	0.751
Frid.	31	$103328 \cdot 55$	9.089	85315.5	53:85	14.43	027.66	0.765
Sat.	32	10396.52	9.075	N. $83138 \cdot 9$	$54 \cdot 19$	14.38	$\begin{array}{ll}0 & 9.13\end{array}$	0.779

[^8]
II.

AUGUST.

AT MEAN NOON.

Date.		THE SUN'S			Equation of Time, to be subtracted from Mean Time.	Sidereal Time.
		Apparent. Right Ascension.	Apparent	Semidiameter.*		
		b. m. s.	- ' ${ }^{\prime}$, "'		h. m. ${ }^{\text {e }}$
Wed.	1	$84254 \cdot 43$	N. 181148.8	$1547 \cdot 14$	$610 \cdot 24$	$83644 \cdot 19$
Thur.	2	$84647 \cdot 50$	$175645 \cdot 8$	1547.27	$6 \quad 6.75$	$84040 \cdot 75$
Frid.	3	$85039 \cdot 96$	$174125 \cdot 1$	$1547 \cdot 40$	$6 \quad 266$	84437.30
Sat.	4	85431.81	172547.2	1547.53	557.95	84833.86
Sun.	5	85823.05	$\begin{array}{lllll}17 & 9 & 52 \cdot 4\end{array}$	$1547 \cdot 67$	552.64	8523041
Mon.	6	$\begin{array}{llll}9 & 213 & 13\end{array}$	$165340 \cdot 8$	$1547 \cdot 81$	546.73	85626.97
Tues.	7	$\begin{array}{llll}9 & 6 & 376\end{array}$	$\begin{array}{llll}16 & 3712 \cdot 8\end{array}$	1547.95	540.24	$9 \quad 023.52$
Wed.	8	$\begin{array}{lllll}9 & 9 & 53.25\end{array}$	162028.7	1548.09	533.17	9420.08
Thur.	9	$91342 \cdot 16$	$\begin{array}{llll}16 & 3 & 288\end{array}$	$1548 \cdot 24$	525.52	98816.63
Frid.	10	91730.50	$154613 \cdot 4$	1548.39	517.32	$91213 \cdot 19$
Sat.	11	92118.29	152842.7	$1548: 54$	$5 \quad 8.55$	$916 \quad 974$
Sun.	12	$925 \quad 5.52$	151057.0	$1548 \cdot 69$	4 59'23	920629
Mon.	13	$92852 \cdot 22$	145256.8	1548.85	449.37	$\begin{array}{llll}924 & 285\end{array}$
Tues.	14	$93238 \cdot 37$	$143442 \cdot 2$	$1549 \cdot 02$	$438 \cdot 96$	92759.40
Wed.	15	93623.98	1416136	$1549 \cdot 19$	428.02	93155.96
Thur.	16	9409.08	135731.4	$1549 \cdot 36$	416.57	93552.51
Frid.	17	94353.66	133835.7	$1549 \cdot 54$	4.4 .60	$93949 \cdot 07$
Sat.	18	94737.74	$131927 \cdot 0$	154972	352.12	94345.62
Sun.	19	95121.31	$\begin{array}{llll}13 & 0 & 5.5\end{array}$	154990	339.14	$94742 \cdot 17$
Mon.	20	$955 \quad 4.39$	1240817	1550.09	325.67	95138.73
Tues.	21	$95846 \cdot 99$	$122045 \cdot 8$	$1550 \cdot 29$	311.71	95535.28
Wed.	22	$\begin{array}{lll}10 & 2 & 29.11\end{array}$	12048.1	$1550 \cdot 49$	257.28	$\begin{array}{llll}9 & 59 & 31.83\end{array}$
Thur.	23	$10 \quad 61076$	$114039 \cdot 0$	1550.69	242.37	$10 \quad 3 \quad 28 \cdot 39$
Frid.	24	$\begin{array}{ll}10 & 951.95\end{array}$	112018.9	$1550 \cdot 90$	227.00	$10 \quad 724.94$
Sat.	25	$101332 \cdot 69$	$105948 \cdot 1$	$1551 \cdot 11$	$211 \cdot 19$	$\begin{array}{llll}10 & 11 & 21.50\end{array}$
Sun.	26	$10 \quad 17 \quad 12 \cdot 99$	$1039 \quad 68$	$1551 \cdot 32$	$154 \cdot 94$	$\begin{array}{llll}10 & 15 & 18 \cdot 05 \\ 10\end{array}$
Mon.	27	$10 \quad 20 \quad 52 \cdot 87$	$101815 \cdot 5$	1551.54	138.27	101914.60
Tues.	28	$102432 \cdot 34$	95714.4	$15 \quad 51.76$	121.19	$102311 \cdot 15$
Wed.	29	$102811 \cdot 42$	$\begin{array}{llll}9 & 36 & 3.9\end{array}$	15.51 .99	$1 \begin{array}{ll}1 & 3.71\end{array}$	$1027 \quad 771$
Thur.	30	$103150 \cdot 13$	914443	$1552 \cdot 21$	$045 \cdot 87$	$1031 \quad 426$
Frid.	31	$\begin{array}{lllllllllll}10 & 35 & 28\end{array}$	$85315 \cdot 9$	$15 \quad 52 \cdot 44$	027.67	$\begin{array}{lll}1035 & 0.81\end{array}$
Sat.	32	$10 \quad 39 \quad 6.49$	N. $83139 \cdot 1$	$15 \quad 5267$	$0 \quad 9.13$	103857.37

[^9]AUGUST.
III.

MEAN TIME.

Day.	THE SUN'SApparent		Logarithm of the Radius Yector of the Earth.	Transit of the First Aries. Ares.	THE MOON'S			
	Longitude	Latitu			Senidiameter.		Horizontal Parallax.	
	on	on	oon		Noon.	Midnight.	Noon.	Mridnight
				h.		, "	' "	
1	$1281811 \cdot 6$	N. $0 \cdot 11$	$0 \cdot 006$	$152044 \cdot 55$	$1620 \cdot 78$	1620.09	$5953 \cdot 36$	5950.83
2	$1291535 \cdot 7$	0.00	$\cdot 0063306$	$151648 \cdot 64$	1618.62	$1616 \cdot 37$	$5945 \cdot 45$	$5937 \cdot 19$
3	1301306	S. $0 \cdot 14$	-0062709	15125273	16 13'34	$\begin{array}{ll}16 & 9.57\end{array}$	5926.08	$5912 \cdot 27$
4	$1311026 \cdot 3$	0.28	$0 \cdot 0062101$	$15 \quad 856.83$	$16 \quad 5 \cdot 12$	$16 \quad 0.09$	5855.98	$5837 \cdot 55$
5	$132 \quad 753.0$	$0 \cdot 42$	-0061481	15 5 0.92	1554.56	$1548 \cdot 67$	$5817 \cdot 30$	5755.68
6	$133 \quad 520 \cdot 7$	0.55	-0060850	$\begin{array}{lll}15 & 1 & 5.01\end{array}$	$1542 \cdot 52$	1536.24	$5733 \cdot 14$	$5710 \cdot 13$
7	134249.6	0.67	0.0060207	1457910	1529.96	1523.81	$5647 \cdot 15$	$5624 \cdot 62$
8	1350198	$0 \cdot 76$	-0059551	$145313 \cdot 19$	$1517 \cdot 90$	$1512: 33$	$56 \quad 2 \cdot 95$	5542.51
9	$1355751 \cdot 3$	0.83	$\cdot 0058881$	$144917 \cdot 28$	$15 \quad 7 \cdot 18$	$15 \quad 2: 53$	$5523 \cdot 65$	$55 \quad 6.64$
10	13655 24-1		0.0058197	$144521 \cdot 37$	1458.46	1455.01	$5451 \cdot 72$	5439.07
11	$1375258 \cdot 3$	$0 \cdot 91$	$\cdot 0057498$	$144125 \cdot 46$	14 52:22	$1450 \cdot 12$	$5428 \cdot 85$	$5421 \cdot 16$
12	$1385033 \cdot 9$	$0 \cdot 90$	$\cdot 0056782$	143729.55	1448.72	1448.03	5416.05	$5413: 52$
13	$1394811 \cdot 0$	0.86	$0 \cdot 0056050$	$143333 \cdot 64$	1448.04	$1448 \cdot 75$	$5413 \cdot 57$	$5416 \cdot 14$
14	$1404549 \cdot 6$	$0 \cdot 80$	-0055300	14293774	$1450 \cdot 11$	$1452 \cdot 10$	$5421 \cdot 14$	5428.44
15	1414329.6	0.71	$\cdot 0054531$	142541.83	$1454 \cdot 68$	1457 80	$5437 \cdot 87$	$5449 \cdot 29$
16	$1424111 \cdot 1$	$0 \cdot 61$	$0 \cdot 0053744$	142145.92	1515	$15 \quad 537$	$55 \quad 2 \cdot 42$	5517.04
17	$1433854 \cdot 1$	0.49	$\cdot 0052936$	141750.01	$15 \quad 970$	$1514 \cdot 30$	55 32.91	554973
18	$1443638: 5$	$0 \cdot 36$	$\cdot 0052108$	$141354 \cdot 11$	1519.06	$1523 \cdot 93$	$56 \quad 7 \cdot 22$	5625.05
19	$1453424 \cdot 4$	0.23	0.0051260	14.958 .20	1528.81	$1533 \cdot 64$	564294	$57 \quad 0.61$
20	$1463211 \cdot 7$	S. 0.09	-0050390	$14 \quad 6 \quad 2 \cdot 29$	$1538 \cdot 33$	$1542 \cdot 83$	$5717 \cdot 80$	$5734 \cdot 29$
21	$14730 \quad 0 \cdot 4$	N. 0.03	-0049500	$14 \quad 26.38$	1547.08	1551.02	$5749 \cdot 84$	$58 \quad 429$
22	$1482750 \cdot 4$	0.13	$0 \cdot 0048589$	$135810 \cdot 48$	1554.63	1557.89	5817.54	$5829 \cdot 47$
23	$1492541 \cdot 7$	$0 \cdot 20$	-0047659	$135414 \cdot 57$	$16 \quad 0.78$	$163 \cdot 30$	5840.08	584932
24	$1502334 \cdot 2$	0.24	$\cdot 0046710$	$135018 \cdot 66$	$16 \quad 5 \cdot 45$	$\begin{array}{ll}16 & 7 \cdot 25\end{array}$	$5857 \cdot 19$	$59 \quad 376$
25	1512128.0	$0 \cdot 26$	$0 \cdot 0045743$	134622.75	$16 \quad 8.68$	$16 \quad 9.78$	598.02	5913.05
26	1521923.0	0.26	-0044761	134226.85	1610.55	1610.98	$5915 \cdot 85$	$5917 \cdot 45$
27	$1531719 \cdot 2$	0.21	-0043765	$133830 \cdot 9 t$	$1611 \cdot 08$	$1610 \cdot 85$	591781	5916
28	1541516.7	$0 \cdot 13$	$0 \cdot 0042756$	133435.03	$1610 \cdot 26$	$16 \quad 9 \cdot 30$	5914.80	$5911 \cdot 29$
29	1551315.5	N. 0.03	-0041736	$133039 \cdot 12$	$16 \quad 7.97$	$16 \quad 6.23$	59640	590.02
30	$1561115 \cdot 6$	S. $0 \cdot 10$	-0040708	$132643 \cdot 22$	164.07	161 19	$5852 \cdot 12$	$5842 \cdot 66$
31	$157 \quad 917 \cdot 1$	$0 \cdot 23$	-0039672	$13 \quad 2247 \cdot 31$	$1558 \cdot 48$	1555.06	$5831 \cdot 65$	58
32	$158 \quad 720 \cdot 1$	S. 0.36	0.0038629	$131851 \cdot 40$	$1551 \cdot 25$	1547.09	$58 \quad 5 \cdot 16$	5749.88

AUGUST.
MEAN TIME.

Day.	THE MOON'S						
	Longitude.		Latitude.		Age. Noon.	Meridian Passage.	
	Noon.	Afidnight.	Noon.	Mianight.		Opper.	Lower.
	$\bigcirc{ }^{\circ}{ }^{\prime \prime}$	$\bigcirc{ }^{\circ}{ }^{\prime \prime}$,	- ,	d.		
1	$26736 \quad 27 \cdot 5$	$2745141 \cdot 4$	N. 34055.7	N. 31027.6	${ }_{10}{ }^{\text {d. }} 96$	${ }_{9} 936$.	${ }_{22} \quad 3$.
2	$\begin{array}{llll}282 & 5 & 51 \cdot 2\end{array}$	$2891815 \cdot 8$	23659.9	$\begin{array}{llll}2 & 1 & 9.3\end{array}$	11.96	1036.3	23 6.1
3	29628148	30335103	$12335 \cdot 1$	N. 04457.9	12.96	$1135 \cdot 3$	* *
4	310 3827.3	$3173734 \cdot 9$	$\begin{array}{llll}\text { N. } 0 & 5 & 58.7\end{array}$	S. $03243 \cdot 1$	13.96	$1231 \cdot 6$	$0 \quad 38$
5	3243279	$3312146 \cdot 3$	S. 110305	146500	14.96	1324.6	058.5
6	$338 \quad 616.1$	$3444529 \cdot 9$	221117	$25310 \cdot 2$	15.96	1414.3	1498
7	35119262	$\begin{array}{llll}357 & 48 & 9 \cdot 6\end{array}$	322248	34838.9	$16 \cdot 96$	$\begin{array}{ll}15 & 1.2\end{array}$	2381
8	$41150 \cdot 1$	1030427	411396	43118.2	17.96	$1546 \cdot 1$	3239
9	$\begin{array}{llll}16 & 45 & 75\end{array}$	$22 \quad 55 \quad 27.9$	447288	$5 \quad 0 \quad 7 \cdot 9$	18.96	1629.9	48.1
10	$\begin{array}{llll}29 & 2 & 107\end{array}$	$\begin{array}{llll}35 & 5 & 45 \cdot 3\end{array}$	5 5 9143	51448.8	$19 \cdot 96$	17133	451.6
11	$41 \quad 643.5$	$47 \quad 5 \quad 38 \cdot 5$	51653.0	$51530 \cdot 0$	20.96	1757.0	535.0
12	$\begin{array}{llll}53 & 3 & 46\end{array}$	$58 \quad 59363$	$51043: 5$	$5 \quad 2383$	$21 \cdot 96$	1841.8	619.2
13	$\begin{array}{lllll}64 & 55 & 48\end{array}$	705215.3	451192	436527	$22 \cdot 96$	$1927 \cdot 9$	$\begin{array}{ll}7 & 4.7\end{array}$
14	$764930 \cdot 6$	$8248 \quad 6 \cdot 6$	41925.5	$\begin{array}{llll}3 & 59 & 5 \cdot\end{array}$	$23 \cdot 96$	$2015 \cdot 7$	751.6
15	$884834 \cdot 1$	$945121 \cdot 6$	$\begin{array}{llll}3 & 36 & 1.4\end{array}$	$31024 \cdot 4$	24.96	$21 \quad 4.9$	$840 \cdot 1$
16	1005655.5	$107 \quad 539 \cdot 4$	24226.5	21221.8	25.96	21553	930.0
17	$11317 \quad 53.5$	$1193355 \cdot 0$	14027.0	S. $1 \begin{array}{lll}7 & 0.9\end{array}$	26.96	2246.2	1020.7
18	$125 \quad 53570$	$13218 \quad 8 \cdot 7$	S. 032246	N. $0 \quad 257.9$	27.96	23 37-1	11117
19	$1384635 \cdot 5$	1451918.4	N. 03840.6	114153	28.96		$12 \quad 25$
20	1515614.0	$1583715 \cdot 4$	$14911 \cdot 5$	22258.5	0.44	027.7	1252.7
21	$165 \quad 22 \quad 118$	17210484	2554.4	$32457 \cdot 6$	$1 \cdot 44$	1177	$1342 \cdot 5$
22	$\begin{array}{llll}179 & 2 & 48.8\end{array}$	1855753.6	35276	$\begin{array}{llll}4 & 16 & 5.7\end{array}$	$2 \cdot 44$	274	14322
23	$1925541 \cdot 3$	$19955 \quad 50 \cdot 1$	43625.7	$45245 \cdot 1$	$3 \cdot 44$	257.2	$15 \quad 22 \cdot 4$
24	2065757.0	$214 \quad 140.0$	5445.0	51211.2	$4 \cdot 44$	3478	16136
25	$\begin{array}{llll}221 & 6 & 367\end{array}$	2281226.4	51454.0	$51249 \cdot 1$	$5 \cdot 44$	439.8	
26	23518489	$242 \quad 25 \quad 25 \cdot 6$	$5 \quad 5 \quad 56.9$	45423.5	6.44	533.8	$18 \quad 16$
27	2493158.6	2563810.7	438192	41759.5	$7 \cdot 44$	$629 \cdot 9$	1858.6
28	2634346.1	2704828.8	353443	32557.9	8.44	$727 \cdot 6$	1956.8
29	$27752 \quad 29$	$2845412 \cdot 5$	$255 \quad 7 \cdot 5$	$22144 \cdot 1$	$9 \cdot 44$	826.1	2055.2
30	2915441.0	29853119	14620.8	N. 19325	10.44	924.0	$2152 \cdot 4$
31	$3054927 \cdot 6$	$3124310 \cdot 9$	N. 03155.2	S. $0 \quad 5 \quad 55.3$	11.44	$1020 \cdot 2$	22473
32	$\begin{array}{lll}319 & 34 & 48\end{array}$	32621520	S. 04323.4	S. 11955.5	12.44	1113.7	$2339 \cdot 4$

The Moon's Longitude and Latitude are from Hansen's Tables; the Right Ascension and Declination contain Newcomb's corrections.

THE MOON＇S RIGHT ASCENSION AND DECLINATION．

	$\begin{gathered} \text { Right } \\ \text { Ascension. } \end{gathered}$	Var． in 10 m．	Declinatio	$\begin{aligned} & \text { Var. } \\ & \text { in } 10 \mathrm{~m} . \end{aligned}$	宫	$\begin{gathered} \text { Right } \\ \text { Asceasion. } \end{gathered}$	$\begin{aligned} & \text { Var. } \\ & \text { in } 10 \mathrm{~m} . \end{aligned}$	Deciination．	$\begin{gathered} \text { Var. } \\ \text { in } 10 \mathrm{~m} . \end{gathered}$
Wednosday 1.					Friday 3.				
	｜ $174948 \cdot 87$	$25 \cdot 622$	S． 1944446	$30 \cdot 39$	0	$195248 \cdot 43$	$25 \cdot 225$	1030	35.89
	175222 －65	25.638	$194742 \cdot 9$	29.03	1	$195519 \cdot 67$	$25 \cdot 190$	1926259	37.18
	$175456 \cdot 52$	25.653	195033.0	$27 \cdot 6$	2	195750.71	25－156	192239.0	$38 \cdot 46$
	$175730 \cdot 48$	25.667	$195314 \cdot 8$	26.	3	$20 \quad 0 \quad 21 \cdot 54$	25•121	$191844 \cdot 4$	$9 \cdot 7$
	18 0	25.679	195548.3	4．8	4	$20 \quad 25216$	25.086	$191442 \cdot 3$	0.98
	$18 \quad 238.63$	25.692	195813.5	23.51		$20 \quad 522.57$	25.050	$191032 \cdot 6$	$42 \cdot 24$
	$18 \quad 512.82$	25.703	20030	$22 \cdot 1$		$20 \quad 752.76$	25.013	$19615 \cdot 4$	$43 \cdot 48$
	$18 \quad 747.07$	25.713	$20 \quad 239 \cdot 0$	20.73	7	201022.72	24.975	19150	4472
	$181021 \cdot 38$	25.723	204392	$19 \cdot 33$	8	$201252 \cdot 46$	$24 \cdot 937$	185718.8	45.94
	181255.74	25.731	$20 \quad 631 \cdot 0$	$7 \cdot 9$		$201521 \cdot 96$	24.898	185239.5	$47 \cdot 15$
0	$181530 \cdot 15$	25.738	20814.4	16.53	10	201751.23	$24 \cdot 858$	184753.0	
1	1818460	25.744	$20 \quad 949 \cdot 4$	$15 \cdot 13$	11	$202020 \cdot 25$	24.817	$184259 \cdot 2$	$49 \cdot 56$
2	$182039 \cdot 08$	25.749	201115.9	13.72	12	202249	24.776	183758.3	50.74
	$182313 \cdot 59$	25.753	201234.0	1232	13	202517	24.733	183250	3
	$182548 \cdot 12$	25.756	201343.7	10.91	14	202745	24.690	$182735 \cdot 2$	09
	$182822 \cdot 66$	25.758	$201444 \cdot 9$	9.50	15	203013.84	$24 \cdot 647$	1822132	424
	$183057 \cdot 21$	25.758	$201537 \cdot 7$	8.09	16	$203241 \cdot 59$	24.603	1816443	
7	183331.76	25.758	$201622 \cdot 0$	6.68	17	$2035 \quad 9.07$	24.558	181186	65
1	1836 6．31	25.757	$201657 \cdot 8$	$5 \cdot 26$	18	203736.29	24.513	18526.0	65
9	$183840 \cdot 84$	25	$201725 \cdot 1$	$3 \cdot 84$	19	2040 3．2	$24 \cdot 467$	1759368	58.75
	184115.3	25.752	$201743 \cdot 9$	$2 \cdot 43$	20	20422988	$24 \cdot 420$	175341.0	59.86
	1843	25.747	2017 54：3	08	21	204456	$24 \cdot 375$	174738.5	95
2	$184624 \cdot 32$	25.741	2017 56．2	$0 \cdot 39$	22	2047 22•39	24．328	$174129 \cdot 6$	03
	18	25．734	$201749 \cdot 6$	1.81	23	$204948 \cdot 21$	24－279	S． 173514.2	09
Thursday 2.					Saturday 4.				
	$185133 \cdot 13$	$25 \cdot 726$	S． 201734	$3 \cdot 22$		205213.74	$24 \cdot 231$	S． 172852.51	14
	1854746		201711.0			$205438 \cdot 98$		$172224 \cdot 5$	
	$185641 \cdot 73$	25.707	$201639 \cdot 1$		2	20573.93	$24 \cdot 133$	$171550 \cdot 3$	
	185915.94	$25 \cdot 695$	201558.7	訨	3	$205928 \cdot 58$	24.084	$\begin{array}{llll}17 & 9 & 9 \cdot 9\end{array}$	23
	19150.07	$25 \cdot 683$	$201510 \cdot 0$	8.8	4	21152.94	24.035	$17 \quad 2235$	23
	$\begin{array}{lll}19 & 424 \cdot 13\end{array}$	25.670	$201412 \cdot 8$	$10 \cdot 2$	5	2141700	23：985	$165531 \cdot 1$	923
	19658	25	2013 7．3	11.6		21640.76	23．934	$164832 \cdot 7$	70.23
	$19 \quad 932.00$	25	201153.4	13.0	7	$21 \begin{array}{lll} & 9 & 4\end{array} 21$	23．883	$164128 \cdot 4$	71.19
	19125779		$201031 \cdot 2$	14	8	211127.36	23833	1634184	14
	$191439 \cdot 48$	$25 \cdot 606$	$\begin{array}{llll}20 & 9 & 0.6\end{array}$	15.78	9	2113	23.781	$1627 \quad 27$	
	191713.06	25.588	20721.8	$17 \cdot 16$	10	211612.73	23.729	1619413	
	191946.53	25.568	$20 \quad 534.7$	18．53	11	2118349	$23 \cdot 678$	$161214 \cdot 4$	
12	192219.88	25.548	203394	$19 \cdot 90$	12	212056	$23 \cdot 627$	16441.9	$5 \cdot 86$
	1924	$25 \cdot 526$	$20 \quad 135.9$	21.27	13	212318	23.574	15574	76.75
	192726.19	$25 \cdot 503$	1959 24．2		14	21253976	23.522	$154920 \cdot 9$	77.63
	1929	$25 \cdot 478$	195743		15	$2128 \quad 073$	23．468	$154132 \cdot 5$	50
	$193231 \cdot 93$	$25 \cdot 454$	$195436 \cdot 3$	$25 \cdot 33$	16	213021.38	$23 \cdot 416$	$153338 \cdot 9$	析
	1935458	$25 \cdot 429$	195203	26.68	17	213241.72	23：364	$152540 \cdot 2$	$0 \cdot 20$
	193737.08	$25 \cdot 402$	$194916 \cdot 2$	28.0	18	$2135 \quad 175$	$23 \cdot 311$	151736.5	1.03
	19409.41	25.374	$194624 \cdot 1$	29.34	19	213721.45	23.257	159279	185
	$194241 \cdot 57$	$25 \cdot 346$	$194324 \cdot 1$	$30 \cdot 67$	20	213940	23.204	$15114 \cdot 3$	82：66
	$194513: 56$	$25 \cdot 317$	$194016 \cdot 1$	31.98	21	2141	23－152	145256.0	$3 \cdot 45$
	$194745 \cdot 37$	25．287	$19370 \cdot 3$		22	2144	23.098	$144432 \cdot 9$	8423
	195017.00	$25 \cdot 255$	$93336 \cdot 6$		23	$214637 \cdot 07$	23.044	$14365 \cdot 2$	85.00
	195248.43	25•223	193051	35	24	214855	$22 \cdot 99$	S． $142732 \cdot 9$	85.75

THE MOON'S RIGHT ASCENSION AND DECLINATION.

him. ${ }^{\text {m. }}$ $1215112 \cdot 97$
$215330 \cdot 43$
215547.58 $2158 \quad 4.41$ $22020 \cdot 92$ $22 \quad 237 \cdot 11$ $22 \quad 452 \cdot 98$ $\begin{array}{lll}22 & 7 & 8 \cdot 54\end{array}$ $22923 \cdot 78$ $10221138 \cdot 70$ $11221353 \cdot 31$
$12.2216 \quad 7 \cdot 60$
$13221821 \cdot 58$
$14-222035 \cdot 25$
$15222248 \cdot 61$ 16 22 $25 \quad 1 \cdot 65$
$17 \mid 222714 \cdot 39$
$18222926 \cdot 82$
$19223138 \cdot 95$
$20223350 \cdot 78$
$21 \quad 2236 \quad 2: 30$
$22223813 \cdot 52$ 23

Sunday 5.

$\stackrel{8}{8 .}$ 22.992
22.938
22.884
$22 \cdot 832$
22.778
22.725
22.672
22.619
$22 \cdot 567$
$22 \cdot 513$ $22 \cdot 461$ $22 \cdot 408$ $22 \cdot 356$ $22 \cdot 304$ $22 \cdot 253$ $22 \cdot 200$ $22 \cdot 148$ $22 \cdot 098$ $22 \cdot 047$ $21 \cdot 997$ $21 \cdot 946$ 21.895 21.845 S. 142732.9 $141856 \cdot 2$ $141015 \cdot 0$ 14129.5 $135239 \cdot 8$ $134345 \cdot 9$ 133447 8 $132545 \cdot 8$ $131639 \cdot 8$ $13729 \cdot 9$ 1258 16.2 $124858 \cdot 8$ $123937 \cdot 7$ $123013 \cdot 1$ $122044 \cdot 9$ $121113 \cdot 4$ 12138.5 $1152 \quad 0 \cdot 3$ $114218 \cdot 9$ $113234 \cdot 4$ $112246 \cdot 8$ $111256 \cdot 3$ $11 \quad 3 \quad 2.8$ $21 \cdot 796 \mid$ S. $1053 \quad 6.5 \mid 99.62$
$85 \cdot 75$

Monday 6.

1
2
2
3
4
5
6
6
7
8
9
9
10
11
12
13
13
14
15
16
17
18
19
19
20
21
22
23
24
24

$4235 \cdot 0$
44 45-40

$$
\left\lvert\, \begin{array}{|cc|}
22 & 46 \\
20.19 \\
\hline
\end{array}\right.
$$

$225114 \cdot 64$
$23 \quad 612 \cdot 92$
$23820 \cdot 14$
$231027 \cdot 09$
231233.78
$231440 \cdot 20$
$231646 \cdot 36$
$231852 \cdot 26$
$232057 \cdot 90$
2323 3.29
$25 \quad 8 \cdot 43$
$232713 \cdot 32$
232917.97
$233122 \cdot 38$
233326.54

$$
\begin{array}{l|l|}
40 \\
10 \\
2
\end{array}
$$

$$
\left\lvert\, \begin{aligned}
& 21.747 \\
& 21.698
\end{aligned}\right.
$$

2S.

$$
21.649
$$

$21 \cdot 600$
21.552
21.505
$21 \cdot 458$
$21 \cdot 410$
$21 \cdot 363$
$21 \cdot 318$
21-272
21.600
$21 \cdot 552$ 21.505 $21 \cdot 410$ $21 \cdot 363$ 21-272 $21 \cdot 226$ $21 \cdot 181$ 21.093 $21 \cdot 048$ 21.005 $20 \cdot 962$ 20.919 $20 \cdot 878$ $20 \cdot 836$ 20.795 20.755 $20 \cdot 714$ 20.674 S. 63236.7

S. $1043 \quad 7 \cdot 4 \mid 100 \cdot 08$ $\begin{array}{llll}1033 & 5 \cdot 6 & 100.52\end{array}$ \begin{tabular}{ll|l}
10 \& 23 \& 1.2

 100.94 $101254 \cdot 101 \cdot 37$ $\begin{array}{lllll}10 & 244.8 & 101.78\end{array}$ $95232 \cdot 9$ 102:18 $94218.7102: 56$ $\begin{array}{llll}932 & 2 \cdot 2 & 102 \cdot 93\end{array}$ $92143 \cdot 5 \quad 103 \cdot 30$

\hline 9 \& 11 \& 22.6

9 \& 0 \& 59.7

8 \& 103.69

 85034.7104 .33 $8407.8104 \cdot 64$ 82939.0 8198.4 $8836 \cdot 105.53$ $758 \quad 2 \cdot 1105 \cdot 81$

747 \& $26 \cdot 4$ \& $106 \cdot 08$

 $73649 \cdot 2$ 106:33 72610.5106 .57

$71530 \cdot 4$ \& 106.81
\end{tabular} $7448 \cdot 8$ 107.03 654 6.0 $107 \cdot 24$ $64321 \cdot 9107 \cdot 44$ 107.63

h. m. s .

Tuesday 7.

233326.54	20.674	S.	$63236 \cdot 7$	
$233530 \cdot 47$	$20 \cdot 635$		$62150 \cdot 3$	$107 \cdot 82$
$233734 \cdot 16$	20.596		61129	$107 \cdot 99$
$233937 \cdot 62$	20.558		$6 \quad 014.4$	$108 \cdot 16$
$234140 \cdot 86$	20.521		54925.0	108.31
$234343 \cdot 87$	$20 \cdot 483$		53834.7	108.46
234546.65	$20 \cdot 446$		52743.5	108.59
$234749 \cdot 22$	$20 \cdot 410$		$51651 \cdot 6$	108.72
2349 51-57	$20 \cdot 374$		$5 \quad 558 \cdot 9$	108.84
235153.71	$20 \cdot 338$		4555.5	108.94
$235355 \cdot 63$	$20 \cdot 303$		44411.6	109.04
$235557 \cdot 35$	$20 \cdot 270$		$43317 \cdot 0$	$109 \cdot 1$
235758.87	$20 \cdot 236$		422220	109.21
$0{ }_{0} 0$	20.203		41126.5	$109 \cdot 28$
$\begin{array}{llll}0 & 2 & 1.30\end{array}$	$20 \cdot 170$		$4030 \cdot 6$	109.34
$\begin{array}{llll}0 & 4 & 2\end{array}$	20.138		34934.4	$109 \cdot 40$
066295	20•106		33837.8	$109 \cdot 45$
$\begin{array}{llll}0 & 8 & 3\end{array}$	$20 \cdot 075$		32741.0	$109 \cdot 48$
0103885	$20 \cdot 044$		31644.0	109•52
0124	20.014		35468	109.53
0144	19.984		$25449 \cdot 6$	109.54
016388	19•954		$24352 \cdot 3$	109.56
$018 \quad 347$	$19 \cdot 927$		23254.9	109.55
$020 \quad 295$	19.	S.	221	3

Wednesday 8.

S. 21106	10
20836	109
14968	109
$13810 \cdot 3$	109
12714.0	10
$11618 \cdot 1$	10
$1522 \cdot 6$	109
$05427 \cdot 5$	10
043328	10
03238.7	10
$02145 \cdot 1$	108.8
$01052 \cdot 2$	
N. 00002	
01051.8	108
02142.7	10
03232.8	10
$04322 \cdot 1$	108
$05410 \cdot 5$	$108 \cdot 00$
1458.1	$107 \cdot 85$
115447	$107 \cdot 68$
$12630 \cdot 3$	107.52
137149	$107 \cdot 35$
14758.5	107-18
15841.0	
2922	

AUGUST.

MEAN TIME.

THE MOON'S RIGHT ASCENSION AND DECLINATION.

宸	Right Ascension.	Var. in 10 m.	Declination.	Var. in 10 m.

Thursday 9.

0
1
2
3
4
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

b. m . s .

94.13	19:37	N. 2922.2	1106.78
1110.33	$19 \cdot 360$	$220 \quad 23$	106.58
11256.45	$19 \cdot 346$	$23041 \cdot 2$	106.38
$11452 \cdot 48$	19.333	$24118 \cdot 9$	$106 \cdot 18$
$11648 \cdot 44$	$19: 321$	$25155 \cdot 3$	$105 \cdot 96$
11844.33	19-309	$3230 \cdot 4$	105.73
$12040 \cdot 15$	$19 \cdot 298$	3,13 4•1	$105 \cdot 50$
$12235 \cdot 90$	19-287	$32336 \cdot 4$	$105 \cdot 26$
$12431 \cdot 59$	$19 \cdot 277$	33472	$105 \cdot 02$
12627.22	$19 \cdot 267$	$34436 \cdot 6$	$104 \cdot 78$
12822.79	$19 \cdot 257$	3554.5	104 -52
$13018 \cdot 30$	19.248	$4530 \cdot 8$	$104 \cdot 26$
$13213 \cdot 76$	$19 \cdot 240$	41555.6	103.99
1349.18	19-233	42618.7	103.72
136455	$19 \cdot 225$	$43640 \cdot 2$	103•44
13759.88	19-218	$4470 \cdot 0$	103•15
13955.17	$19 \cdot 212$	45718.0	102.86
$14150 \cdot 42$	$19 \cdot 207$	57343	102.57
14345.65	19•202	51748.8	$102 \cdot 27$
$14540 \cdot 84$	19-196	52815	101.96
14736.00	19-192	$53812 \cdot 3$	101•65
$14931 \cdot 14$	19•189	$54821 \cdot 3$	101.33
15126.27	19•186	$55828 \cdot 3$	$101 \cdot 00$
$15321 \cdot 37$	19.182	N. 68	10

Friday 10.

Saturday 11.

Sunday 12.

	$32757 \cdot 03$	19:594	N. 133133.7	
1	$32954 \cdot 65$	$19 \cdot 613$	$133920 \cdot 5$	775
2	33152.38	$19 \cdot 631$	13473.7	
	$33350 \cdot 22$	$19 \cdot 649$	$135443 \cdot$	
4	$33548 \cdot 17$	19.668	14219	
5	33746.24	$19 \cdot 68$	14.951.	
6	$33944 \cdot 42$	$19 \cdot 707$	$141720 \cdot 4$	74
7	34142.72	19.727	$142445 \cdot 4$	
	$34341 \cdot 14$	19.747	143267	
9	34539.68	19767	143924	
10	$34738 \cdot 34$	19.787	144638	
11	$34937 \cdot 12$	19.808	145348.0	
12	35136.03	19.829	$15054 \cdot 1$	
13	35335.07	19×50	$15 \quad 756.3$	
14	35534.23	$19 \cdot 872$	151454	
	$35733 \cdot 53$	19.894	152149	
16	35932.96	19.916	152839	
17	$4132 \cdot 52$	19.938	153525.8	
18	$\begin{array}{lll}4 & 3 & 32 \cdot 21\end{array}$	19.960	15428.2	
19	4532.04	19.983	154846.5	
20	4732.01	$20 \cdot 007$	$155520 \cdot$	
	493212	20.029	$16150 \cdot 8$	
22	4113236	20.052	16816	
23	41332.74	20.076	$161438 \cdot 4$	
24	$41533 \cdot 27$	20-100	N. 162056.0	

THE MOON＇S RIGEI ASCENSION $\triangle N D$ りECLINATIUN．

吕	$\begin{gathered} \text { Right } \\ \text { Ascension. } \end{gathered}$	$\begin{aligned} & \text { Var. } \\ & \text { in } 10 \mathrm{~m} . \end{aligned}$	Declination．	$\begin{gathered} \text { Var. } \\ \text { in } 10^{\mathrm{m} 2} . \end{gathered}$	结	Right Ascension．	$\begin{gathered} \text { Var. } \\ \text { in } 10^{\circ 00} . \end{gathered}$	Declination．	$\begin{aligned} & \text { Var. } \\ & \text { in } 100^{\mathrm{m} .} \end{aligned}$

Monday 13.

h．m． 8. $41533 \cdot 27$ 4173394 20
20
20
20 $\cdot 100$ $41934 \cdot 75$ 42135.70 $42336 \cdot 80$ $42538 \cdot 05$
427
49.44 42940.98 $43142 \cdot 67$
$43344 \cdot 51$ $43546 \cdot 50$
$43748 \cdot 63$
43950.92
441
53.36
$44153 \cdot 36$
44355.95
$44558 \cdot 70$
$448 \quad 1 \cdot 59$ $450 \quad 4 \cdot 64$
$452 \quad 7 \cdot 84$
$45411 \cdot 20$ $45614 \cdot 71$ 45818.37 $\begin{array}{lll}5 & 0 & 22.19 \\ 5 & 2 & 26.16\end{array}$ 11 $20 \cdot 147$
$20 \cdot 171$ N． $162056 \cdot 0$ $\begin{array}{lrr}1627 & 9 \cdot 3 \\ 1633 & 18 \cdot 3\end{array}$ 163923.0 $164523 \cdot 4$ $165119 \cdot 5$ 1657 11•1 $17 \quad 258 \cdot 3$ $17841 \cdot 0$ $171419 \cdot 2$ 171952.9 $172522 \cdot 1$ $173046 \cdot 7$ $17 \quad 36 \quad 67$ $174122 \cdot 0$ 1746327 $175138 \cdot 7$ $175640 \cdot 0$ $18 \quad 136.5$ $18 \quad 628 \cdot 2$ $181115 \cdot 1$ $181557 \cdot 1$ $\begin{array}{rrr}18 & 20 & 34 \cdot 3 \\ 18 & 25 & 6.5\end{array}$
20.675 N． $1825 \quad 6.5$

Tuesday 14.
 20
20
20
20
20
20
20
20
20
20
20
21
21
21
21
21
21
21
21
21
21
21 0.72
0.75
0.778
0.80
0.82
0.85
0.88
0.90
0.93
0.9
0.98
1.0
1.03
1.0
1.0
1.10
1.1
1.1
1.1
1.2
1.2
21.2 $21 \cdot 298$

＂
62：58
61.80 $61 \cdot 14$ $60 \cdot 43$ 59.71 $58 \cdot 98$ $58 \cdot 23$ $57 \cdot 49$ 56.74 55.99 $55 \cdot 24$ 54.48 53.72
52.94 $52 \cdot 17$ 51.39 49.82
$49 \cdot 02$ $48 \cdot 22$
$47 \cdot 41$ $46 \cdot 60$ $45 \cdot 78$
$44 \cdot 96$
b．m．s．

Wednesday 15.

1N 0 ，＂| N． 19 | 50 | $36 \cdot 9$ | $22 \cdot 97$ |
| ---: | ---: | ---: | ---: |
| 19 | 52 | $51 \cdot 9$ | $22 \cdot 03$ |
| 19 | 55 | $1 \cdot 3$ | $21 \cdot 09$ |
| 19 | 57 | $5 \cdot 0$ | $20 \cdot 14$ |
| 19 | 59 | $3 \cdot 0$ | $19 \cdot 19$ |
| 20 | 0 | $55 \cdot 3$ | $18 \cdot 24$ |
| 20 | 2 | $41 \cdot 9$ | $17 \cdot 29$ |
| 20 | 4 | $22 \cdot 8$ | $16 \cdot 33$ |
| 20 | 5 | $57 \cdot 9$ | $15 \cdot 37$ |
| 20 | 7 | $27 \cdot 2$ | $14 \cdot 40$ |
| 20 | 8 | $50 \cdot 7$ | $13 \cdot 43$ |
| 20 | 10 | $8 \cdot 4$ | $12 \cdot 46$ |
| 20 | 11 | $20 \cdot 2$ | $11 \cdot 48$ |
| 20 | 12 | $26 \cdot 2$ | $10 \cdot 51$ |
| 20 | 13 | $26 \cdot 3$ | $9 \cdot 52$ |
| 20 | 14 | $20 \cdot 4$ | $8 \cdot 53$ |
| 20 | 15 | $8 \cdot 6$ | $7 \cdot 54$ |
| 20 | 15 | $50 \cdot 9$ | $6 \cdot 56$ |
| 20 | 16 | $27 \cdot 3$ | $5 \cdot 56$ |
| 20 | 16 | $57 \cdot 6$ | $4 \cdot 56$ |
| 20 | 17 | $22 \cdot 0$ | $3 \cdot 57$ |
| 20 | 17 | $40 \cdot 4$ | $2 \cdot 56$ |
| 20 | 17 | $52 \cdot 7$ | $1 \cdot 55$ |
| N .20 | 17 | $59 \cdot 0$ | $0 \cdot 54$ |

Thursday 16.

0	6	46	$38 \cdot 93$	$21 \cdot 788$	N． 20	17	$59 \cdot 2$	$0 \cdot 47$
1	6	48	$49 \cdot 71$	$21 \cdot 805$	20	17	$53 \cdot 4$	$1 \cdot 48$
2	6	51	$0 \cdot 59$	$21 \cdot 821$	20	17	$41 \cdot 5$	$2 \cdot 50$
3	6	53	$11 \cdot 56$	$21 \cdot 837$	20	17	$23 \cdot 4$	$3 \cdot 52$
4	6	55	$22 \cdot 63$	$21 \cdot 853$	20	16	$59 \cdot 3$	$4 \cdot 53$
5	6	57	$33 \cdot 79$	$21 \cdot 868$	20	16	$29 \cdot 0$	$5 \cdot 56$
6	6	59	$45 \cdot 05$	$21 \cdot 883$	20	15	$52 \cdot 6$	$6 \cdot 58$
7	7	1	$56 \cdot 39$	$21 \cdot 898$	20	15	$10 \cdot 1$	$7 \cdot 60$
8	7	4	$7 \cdot 82$	$21 \cdot 912$	20	14	$21 \cdot 4$	$8 \cdot 63$
9	7	6	$19 \cdot 33$	$21 \cdot 926$	20	13	$26 \cdot 5$	$9 \cdot 66$
10	7	8	$30 \cdot 93$	$21 \cdot 939$	20	12	$25 \cdot 5$	$10 \cdot 69$
11	7	10	$42 \cdot 60$	$21 \cdot 952$	20	11	$18 \cdot 2$	$11 \cdot 73$
12	7	12	$54 \cdot 35$	$21 \cdot 965$	20	10	$4 \cdot 8$	$12 \cdot 75$
13	7	15	$6 \cdot 18$	$21 \cdot 978$	20	8	$45 \cdot 2$	$13 \cdot 78$
14	7	17	$18 \cdot 09$	$21 \cdot 990$	20	7	$19 \cdot 4$	$14 \cdot 83$
15	7	19	$30 \cdot 06$	$22 \cdot 002$	20	5	$47 \cdot 3$	$15 \cdot 87$
16	7	21	$42 \cdot 11$	$22 \cdot 013$	20	4	$9 \cdot 0$	$16 \cdot 90$
17	7	23	$54 \cdot 22$	$22 \cdot 023$	20	2	$24 \cdot 5$	$17 \cdot 93$
18	7	26	$6 \cdot 39$	$22 \cdot 034$	20	0	$33 \cdot 8$	$18 \cdot 97$
19	7	28	$18 \cdot 63$	$22 \cdot 045$	19	58	$36 \cdot 9$	$20 \cdot 01$
20	7	30	$30 \cdot 93$	$22 \cdot 054$	19	56	$33 \cdot 7$	$21 \cdot 06$
21	7	32	$43 \cdot 28$	$22 \cdot 063$	19	54	$24 \cdot 2$	$22 \cdot 10$
22	7	34	$55 \cdot 69$	$22 \cdot 073$	19	52	$8 \cdot 5$	$23 \cdot 13$
23	7	87	$8 \cdot 15$	$22 \cdot 081$	19	49	$46 \cdot 6$	$24 \cdot 18$
24	7	39	$20 \cdot 66$	$22 \cdot 089$	$N .19$	47	$18 \cdot 4$	$25 \cdot 23$

AUGUST. IX. MEAN TIME.

THE MOON'S RIGHT ASCENSION AND DECLINATION.

$\begin{aligned} & \dot{G} \\ & \text { 荷 } \end{aligned}$	Right Ascenaion.	$\begin{gathered} \text { Var. } \\ \text { in 10m. } \end{gathered}$	Declination.	$\begin{gathered} \text { Var. } \\ \text { in } 10 \mathrm{~m} . \end{gathered}$	号	Right Aacenaion.	$\begin{aligned} & \text { Var. } \\ & \text { in } 10 \mathrm{~m} . \end{aligned}$	Declination.	Var. in 10 m .
Friday 17.									
	h. m.					h. m. ${ }^{\text {e }}$		- 11	"
0	$73920 \cdot 66$	22.089	N. 194718.4	$25 \cdot 23$	0	$92537 \cdot 74$	22.075	N. 1549 4.5	72.93
1	$74133 \cdot 22$	$22 \cdot 098$	1944440	$26 \cdot 26$	1	$92750 \cdot 17$	22.068	154144.2	$73 \cdot 83$
2	74345.83	22.105	194233	27.30	2	$930 \quad 2 \cdot 55$	22.060	$153418 \cdot 5$	74.73
3	74558.48	$22 \cdot 112$	$193916 \cdot 4$	28.34	3	93214.89	22.053	$152647 \cdot 4$	$75 \cdot 62$
4	$74811 \cdot 17$	$22 \cdot 118$	$193623 \cdot 2$	29.38	4	$93427 \cdot 18$	22.045	$151911 \cdot 0$	76.50
5	75023.90	$22 \cdot 125$	1933238	30.42	5	$93639 \cdot 43$	22.038	$151129 \cdot 4$	77.38
6	75236.67	$22 \cdot 131$	193018.2	31.45	6	$93851 \cdot 64$	22.031	$\begin{array}{llll}15 & 3 & 42 \cdot 5\end{array}$	78.25
7	$75449 \cdot 47$	22.136	$19276 \cdot 4$	32.49	7	9413.80	22.023	$145550 \cdot 4$	$79 \cdot 12$
8	$757 \quad 2 \cdot 30$	$22 \cdot 141$	$192348 \cdot 3$	33.53	8	$94315 \cdot 91$	22.014	$144753 \cdot 1$	79.98
9	$75915 \cdot 16$	$22 \cdot 146$	$192024 \cdot 0$	34.57	9	$94527 \cdot 97$	22.007	143950.7	80.82
10	8128.05	$22 \cdot 151$	$191653 \cdot 5$	$35 \cdot 60$	10	94739.99	21-998	1431433	81.66
11	$8 \quad 340 \cdot 97$	$22 \cdot 154$	1913168	36.63	11	94951.95	21.990	$142330 \cdot 8$	82.51
12	8553.90	$22 \cdot 158$	$19 \quad 933.9$	37.67	12	952387	21.983	1415132	83.34
13	$\begin{array}{llll}8 & 8 & 6.86\end{array}$	$22 \cdot 162$	$19544 \cdot 8$	$38 \cdot 69$	13	95415.74	21.973	14 6.50.7	$84 \cdot 16$
14	$81019 \cdot 84$	$22 \cdot 164$	$19 \quad 1496$	39.73	14	$95627 \cdot 55$	21.965	135823.3	84.98
15	$81232 \cdot 83$	$22 \cdot 167$	$185748 \cdot 1$	$40 \cdot 76$	15	$95839 \cdot 32$	21.957	$134951 \cdot 0$	85.78
16	$81445 \cdot 84$	$22 \cdot 168$	$185340 \cdot 5$	41.78	16	$10 \quad 051.03$	21-948	134113.9	86.58
17	81658.85	$22 \cdot 170$	1849268	42.80	17	$\begin{array}{llll}10 & 3 & 2.70\end{array}$	$21 \cdot 940$	$133232 \cdot 0$	87.38
18	$81911 \cdot 88$	$22 \cdot 172$	18456.9	43.83	18	$10 \quad 514.31$	$21 \cdot 931$	$132345 \cdot 3$	88.18
19	82124.92	$22 \cdot 173$	$184040 \cdot 9$	44.85	19	$10 \quad 725 \cdot 87$	21-922	131453.9	88.95
20	82337.96	$22 \cdot 173$	183687	45.87	20	$\begin{array}{lll}10 & 9 & 37\end{array}$	21.913	$13 \quad 557.9$	89.72
21	$82551 \cdot 00$	22-174	$183130 \cdot 5$	46.88	21	101148.83	$21 \cdot 905$	125657.3	$90 \cdot 48$
22	8284.05	22.175	$182646 \cdot 2$	$47 \cdot 89$	22	$1014 \quad 0.23$	$21 \cdot 896$	$124752 \cdot 1$	91.24
231	$83017 \cdot 10$	22.174	N. 182155.8	$48 \cdot 90$	23	10161158	21.888	N. 1238424	91.98

Saturday 18.

0
1
2
3
4
5
6
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

832	22.173	N. 1816
$83443 \cdot 18$	$22 \cdot 173$	181156.9
83656.21	$22 \cdot 171$	$18 \quad 648 \cdot 4$
$\begin{array}{lll}839 & 9 \cdot 23\end{array}$	$22 \cdot 170$	$18 \quad 133 \cdot 9$
84122.25	22-168	$175613 \cdot 4$
$84335 \cdot 25$	22.165	$175047 \cdot 0$
$84548 \cdot 23$	$22 \cdot 163$	1745147
848120	22-161	$173936 \cdot 4$
$85014 \cdot 16$	$22 \cdot 158$	$173352 \cdot 2$
$85227 \cdot 09$	$22 \cdot 153$	$1728 \quad 22$
$85440 \cdot 00$	$22 \cdot 150$	1722 6.3
85652.89	$22 \cdot 147$	$17164 \cdot 6$
$859 \quad 5 \cdot 76$	$22 \cdot 143$	17 957.1
$9 \quad 11860$	$22 \cdot 138$	$17 \quad 343 \cdot 8$
$9 \quad 331 \cdot 41$	$22 \cdot 133$	165724.8
$9 \quad 544.20$	$22 \cdot 128$	165100
9756.95	$22 \cdot 123$	$164429 \cdot 5$
$910 \quad 9.67$	$22 \cdot 118$	$163753 \cdot 4$
9122236	$22 \cdot 113$	$163111 \cdot 7$
91435.02	$22 \cdot 107$	$162424 \cdot 3$
$91647 \cdot 64$	$22 \cdot 100$	$161731 \cdot 4$
919 0.22	22.093	$161032 \cdot 9$
92112.76	$22 \cdot 088$	16 3 28
$92325 \cdot 27$	$22 \cdot 082$	$155619 \cdot 4$
92537.74	22.075	N. 15494.5

$49 \cdot 91$ $50 \cdot 92$ 51.92 52.92 53.91 5489 $55 \cdot 88$
56.87 57.85 58.83 59.80 $60 \cdot 77$

61.73

 $62 \cdot 69$ $63 \cdot 65$ $64 \cdot 61$ $65 \cdot 55$ 66.48 67. 43 $68 \cdot 36$ 69.28 $70 \cdot 21$ $71 \cdot 13$ 72.03 $72: 93$
AUGUST.

MEAN TIME.

THE MOON'S RIGHT ASCENSION AND DECLINATION.

$\begin{aligned} & \dot{G} \\ & 0 \end{aligned}$	Right Ascension.	$\begin{aligned} & \text { Var. } \\ & \text { in } 10^{\mathrm{m} .} \end{aligned}$	Declination.	$\begin{gathered} \text { Var. } \\ \text { in } 10 \mathrm{~m} . \end{gathered}$	哀	Right Ascension.	$\begin{gathered} \text { Var. } \\ \text { in } 10 \mathrm{~m} . \end{gathered}$	Declination.	$\begin{aligned} & \text { Var. } \\ & \text { in } 10 \mathrm{~m} . \end{aligned}$

Tuesday 21.

b. m \quad.

$0 \mid 111039 \cdot 68$
$1 \mid 111249 \cdot 86$

2	11	15	0.01

3	11	17	$10 \cdot 18$

4 |11 $1920 \cdot 21$
$5112130 \cdot 27$
$6 \mid 112340 \cdot 30$
$7112550 \cdot 31$
$811128 \quad 0 \cdot 30$
$9113010 \cdot 26$
$10113220 \cdot 20$
$11113430 \cdot 13$
12113640.03
$13113849 \cdot 92$
$14114059 \cdot 80$
$\begin{array}{llll}15 & 11 & 43 & 9 \cdot 66\end{array}$
$16 \mid 114519 \cdot 52$
$17114729 \cdot 37$
$18114939 \cdot 21$
19115149.05
20115358.89

21	1156	873

$22115818 \cdot 57$
$23 \mid 12 \quad 0 \quad 28 \cdot 41$
$21 \cdot 699$
21.694 $21 \cdot 689$ $21 \cdot 683$ $21 \cdot 678$ $21 \cdot 674$ $21 \cdot 670$ $21 \cdot 667$ $21 \cdot 663$
$21 \cdot 658$ $21 \cdot 656$ $21 \cdot 653$ 21.649 $21 \cdot 648$ $21 \cdot 645$ $21 \cdot 643$ $21 \cdot 643$ 21.641 $21 \cdot 640$ $21 \cdot 640$ $21 \cdot 640$ $21 \cdot 640$

Wednesday 22.

0
1
2
3
4
4
5
6
7
8
9
10
11
12
12
14
15
16
17
18
19
20
21
22
23
24

1	12	$448 \cdot 12$	$21 \cdot 644$

$12 \quad 657.99$ $\begin{array}{lll}12 & 9 & 7.87\end{array}$ $121117 \cdot 77$ $121327 \cdot 68$ 121537.61 $121747 \cdot 56$ 121957.54 $1222 \quad 7.55$ 1224 17.58
$1226 \quad 27.64$ 122837.73
123047.86
$4123258 \cdot 03$
$1235 \quad 8 \cdot 24$
$123718 \cdot 49$
$7123928 \cdot 78$
1241 39-13
) $124349 \cdot 52$
$1245 \quad 59.97$
$1248 \quad 10 \cdot 47$
$125021 \cdot 04$
$125231 \cdot 66$ $4125442 \cdot 34$

N. $82738.2 \mid 107.93$ $81649 \cdot 0 \quad 108 \cdot 45$ \begin{tabular}{lll}
8 \& 5 \& 56.8

\hline

 108.96 $\begin{array}{llll}7 & 55 & 1 \cdot 5 & 109\end{array} 46$ $\begin{array}{llll}744 & 3.3 & 109 \cdot 94\end{array}$ $\begin{array}{llll}733 & 2.2 & 110 \cdot 43\end{array}$ $72158.2110 \cdot 89$ $71051.5111 \cdot 35$ 65942.0111 .80 64829.9112 .23 $63715 \cdot 2112.67$ 62557.9113 .08 $61438 \cdot 2113 \cdot 48$ $\begin{array}{llll}6 & 3 & 16 \cdot 1 & 113.88\end{array}$ $55151 \cdot 6 \quad 114 \cdot 27$ $54024 \cdot 9114 \cdot 64$ 52855.9115 .01 $51724.8115 \cdot 36$ $\begin{array}{lllll}5 & 5 & 51 \cdot 6 & 115 \cdot 71\end{array}$ 454163116.04 $44239 \cdot 116 \cdot 37$

$43059 \cdot 9$ \& 116.68

4 \& 19 \& $18 \cdot 9$

116.98

$41918 \cdot 9$ \& $116 \cdot 98$

4 \& $76 \cdot 2$ \& $117 \cdot 27$
\end{tabular}

N. 355	$117 \cdot 55$
$3445 \cdot 6$	11782
$33217 \cdot 9$	118.08
$32028 \cdot 7$	118.33
$\begin{array}{llll}3 & 838\end{array}$	118.56
25646.0	118.78
$24452 \cdot 7$	118.99
$23258 \cdot 1$	$119 \cdot 20$
22123	119.39
$\begin{array}{llll}2 & 9 & 5 \cdot 4\end{array}$	$119 \cdot 57$
$157 \quad 7 \cdot 5$	$119 \cdot 73$
1458.6	11988
13389	$120 \cdot 03$
12183	$120 \cdot 17$
1969	$120 \cdot 29$
05748	$120 \cdot 41$
04520	$120 \cdot 51$
03258.7	$120 \cdot 59$
02054.9	$120 \cdot 67$
N. $0 \quad 850 \cdot 7$	120.73
S. 0	$120 \cdot 79$
01518.8	120.83
02723.9	$120 \cdot 86$
$03929 \cdot 1$	$120 \cdot 88$

S. 05134.412089

Thursday 23.
h. m . s.

0	12
1	12
2	1
3	1
4	1
5	1
6	1
7	1
8	1
9	
0	1
1	1
2	
3	
4	
5	
6	
7	
8	
9	
21	
23	
23	

12	54	42.34	$21 \cdot 786$
12	56	$53 \cdot 09$	$21 \cdot 798$
12	59	$3 \cdot 91$	$21 \cdot 808$
13	1	$14 \cdot 79$	$21 \cdot 820$
13	3	$25 \cdot 75$	$21 \cdot 833$
13	5	$36 \cdot 79$	$21 \cdot 846$
13	7	$47 \cdot 90$	$21 \cdot 859$
13	9	$59 \cdot 10$	$21 \cdot 873$
13	12	$10 \cdot 38$	$21 \cdot 888$
13	14	$21 \cdot 75$	$21 \cdot 902$
13	16	$33 \cdot 20$	$21 \cdot 916$
13	18	$44 \cdot 74$	$21 \cdot 932$
13	20	$56 \cdot 38$	$21 \cdot 948$
13	23	$8 \cdot 11$	$21 \cdot 964$
13	25	$19 \cdot 95$	$21 \cdot 981$
13	27	31.88	$21 \cdot 998$
13	29	$43 \cdot 92$	$22 \cdot 015$
13	31	$56 \cdot 06$	$22 \cdot 033$
13	34	$8 \cdot 31$	$22 \cdot 051$
13	36	20.67	$22 \cdot 070$
13	38	$33 \cdot 15$	$22 \cdot 089$
13	40	$45 \cdot 74$	$22 \cdot 108$
13	42	$58 \cdot 45$	$22 \cdot 129$
13	5	11.29	$22 \cdot 149$

S. $05134 \cdot 4 \mid 120.89$

1	3	39.8	120.89

$11545 \cdot 1120 \cdot 87$
$12750 \cdot 2120 \cdot 84$
$13955 \cdot 2 \quad 120 \cdot 81$
$15159 \cdot 9120 \cdot 76$
$\begin{array}{lllll}2 & 4 & 4 \cdot 3 & 120 \cdot 70\end{array}$

2	16	8.3	$120 \cdot 63$

$22811 \cdot 8 \quad 120 \cdot 53$
$24014 \cdot 7120 \cdot 43$
$25217 \cdot 0 \quad 120 \cdot 33$

| 3 | 4 | $18 \cdot 7$ | $120 \cdot 21$ |
| :--- | ---: | ---: | ---: | ---: |
| 3 | 16 | $19 \cdot 5$ | 120.07 |

$32819 \cdot 5119 \cdot 93$
$34018 \cdot 6119.78$
$35216.8 \quad 119.61$
$4 \begin{array}{llll}4 & 13 & 9 & 119 \cdot 42\end{array}$
$416 \quad 9.8119 \cdot 23$
$428 \quad 4.6119 .03$
439581118.81
$45150 \cdot 3118 \cdot 58$
$\begin{array}{lllll}5 & 3 & 41 & 118 \cdot 34\end{array}$
$51530 \cdot 4118 \cdot 08$
S. $52718 \cdot 1117.82$

Friday 24.

0
1
2
3
4
5
5
7
8
9
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

24
2
2
82
.
97
72
61

62	
2	2
2	

15

141155.63	22	
14	14	10.25
2		

$\left.69\right|^{\mathbf{S}}$ 2 $2 \cdot 192$
$2 \cdot 213$ 22.235 $22 \cdot 258$ $22 \cdot 280$ 22.303 2.328
2.352
2.375
2
$2 \cdot 400$

$22 \cdot 425$
$22 \cdot 450$

$22 \cdot 476$
22.503
$22: 529$
22.555
22.583
$22 \cdot 610$
22.638
$22 \cdot 666$
$22 \cdot 694$
22.723
$22 \cdot 753$
22.782

| 5 | 39 | 4 | 2 |
| :--- | :--- | :--- | :--- | 117.54 $55048 \cdot 6117 \cdot 26$ $6 \quad 231 \cdot 3116 \cdot 96$ $61412 \cdot 1116 \cdot 65$ $62551 \cdot 1 \quad 116 \cdot 33$ $63728 \cdot 0115 \cdot 98$ $\begin{array}{llll}649 & 2.9 & 115 \cdot 64\end{array}$ $\begin{array}{llll}7 & 0 & 35.7 & 115.28\end{array}$

712	6.2	114.90

$72334 \cdot 5114 \cdot 52$
$\begin{array}{llll}735 & 0.5 & 114 \cdot 13\end{array}$
74624.0113 .71
$75745 \cdot 0113 \cdot 29$
$\begin{array}{lllll}8 & 9 & 3.5 & 112.86\end{array}$
$\begin{array}{llllll}8 & 20 & 19 \cdot 3 & 112 \cdot 41\end{array}$
$83132 \cdot 4111.95$
$\begin{array}{llll}8 & 4242: 7 & 111 \cdot 48\end{array}$
$85350 \cdot 2111 \cdot 00$
$\begin{array}{lllll}9 & 454.7 & 110.51\end{array}$
$915563110 \cdot 01$

$93750 \cdot 2 \quad 108 \cdot 96$
94842310812
$95931 \cdot 2 \quad 107 \cdot 87$
S. 101016.7107 .30

AUGUST.
 XI.

MEAN TLME.

THE MOON'S RIGHT ASCENSION AND DECLINATION.

	$\underset{\text { Right }}{\text { Ascension. }}$	Var. in 10 m.	Declination.	$\begin{aligned} & \text { Var. } \\ & \text { in } 10 \mathrm{~m} . \end{aligned}$	㻤	$\underset{\text { Ascension. }}{\text { Right }}$	Var. in 10m.	Declination.	Tar.
Saturday 25.					Monday 27.				
)14 4118.31	22782	101016.7	107.30		$163419 \cdot 35$		S. 171818	66
	1144335.09	22:811	102058.8	10673	1	$163645 \cdot 31$	$24 \cdot 342$	$172438 \cdot 7$	65.58
	2144552.04	22:841	1031374	106.13	2	$163911 \cdot 45$	$24 \cdot 371$	173188	64.47
	1448 9•18	$22 \cdot 871$	$104212 \cdot 4$	105	3	164137.76	24.399	$173732 \cdot 3$	$63 \cdot 35$
	$145026 \cdot 49$	$22 \cdot 901$	$105243 \cdot 7$	104.92	4	1644 4-24	$24 \cdot 428$	174349.0	62.22
	$145243 \cdot 99$	$22 \cdot 932$	$11311 \cdot 4$	104:29		$164630 \cdot 89$	$24 \cdot 456$	1749589	61.08
	14551.67	$22 \cdot 963$	$111335 \cdot 2$	$103 \cdot 65$	6	164857.71	24.483	17562.0	93
	$145719 \cdot 54$	22.994	112355.2	103.01	7	165124.68	24.509	18158.1	58.78
	$145937 \cdot 60$	$23 \cdot 025$	$113411 \cdot 3$	102:35	8	$165351 \cdot 82$	24.537	187473	57.62
	$15 \quad 155.8$	23.056	$114423 \cdot 4$	101.6	9	$165619 \cdot 12$	$24 \cdot 563$	1813295	56.45
0	1541427	23.088	$115431 \cdot 4$	$100 \cdot 9$	10	165846.57	$24 \cdot 588$	181947	$55 \cdot 27$
11	$15 \quad 632 \cdot 89$	$23 \cdot 119$	$12435 \cdot 2$	$100 \cdot 29$	11	$\begin{array}{llll}17 & 114.17\end{array}$	24.613	$182432 \cdot 7$	54.08
12	$15 \quad 851.70$	$23 \cdot 151$	$121434 \cdot 9$	99.59	12	$17 \quad 341.92$	24.638	$182953 \cdot 6$	88
13	151110.70	23.183	$122430 \cdot 3$	98.87	13	$\begin{array}{llll}17 & 6 & 982\end{array}$	$24 \cdot 662$	$18357 \cdot 3$	51.68
14	151329.90	23.216	$123421 \cdot 3$	98.13	14	$17837 \cdot 86$	$24 \cdot 686$	$184013 \cdot 8$	50.48
15	$151549 \cdot 29$	23.248	124479	97.38	15	17116.05	24.709	184513.0	$49 \cdot 26$
16	1518 8.88	23.281	$125349 \cdot 9$	96.63	16	$171334 \cdot 37$	24.731	185049	48.04
17	152028.66	23.313	13 3 $27 \cdot 4$	95.87	17	$1716 \quad 2 \cdot 82$	24.753	185449.5	46.81
18	$152248 \cdot 63$	$23 \cdot 346$	$13130 \cdot 3$	95.09	18	$171831 \cdot 40$	$24 \cdot 774$	185926.6	$45 \cdot 57$
19	15258.81	$23 \cdot 379$	132228.5	94.30	19	$1721 \quad 0 \cdot 11$	24.795	$19356 \cdot 3$	44.33
20	$152729 \cdot 18$	$23 \cdot 412$	133151.9	93.50	20	172328.94	24.816	$19818 \cdot 6$	43.08
	15294975	$23 \cdot 444$	$134110 \cdot 5$	$2 \cdot 69$	21	$172557 \cdot 90$	24.836	$191233 \cdot 3$	41.83
22	153210.51	$23 \cdot 478$	$135024 \cdot 2$	91.87	22	172826.97	24.853	191640.5	40.57
23	15		$135932 \cdot 9$	91.03	23	$173056 \cdot 14$		$192040 \cdot 1$	
Sunday 26.					Tuesday 28.				
	153652.64	23.543	S. $14 \quad 838.5$	90.18		$173325 \cdot 43$	24:890	S. 192432.0	38.02
	153914.00	23.578	141735.0	89.3	1	173554.82	$24 \cdot 907$	$192816 \cdot 3$	36.75
	$154135 \cdot 57$	23.611	142628	88.4	2	$173824 \cdot 31$	24:923	193153.0	3547
3	154357.33	23.643	143516.5	87	3	174053.90	24.939	193521.9	$34 \cdot 18$
	15461929	$23 \cdot 676$	1443593	86.68	4	174323.58	24:953	$193843 \cdot 1$	32.88
	$154841 \cdot 44$	23.709	1452367	85.78	5	1745 53:34	$24 \cdot 967$	194156.5	31.58
	1551	23.743	151587	84.88	6	$174823 \cdot 18$	24.981	$1945 \quad 2 \cdot 1$	30.28
	$155326 \cdot 36$	23.776	$15 \quad 935.2$	83	7	175053.11	24:994	1947599	28.38
	$155549 \cdot 11$	23:808	$151756 \cdot 1$	83		$175323 \cdot 11$	25.005	$195049 \cdot 9$	2788
	155812.06	$23 \cdot 842$	$152611 \cdot 3$	82	9	$175553 \cdot 17$	$25 \cdot 016$	195332.0	6.36
10	$16 \quad 0 \quad 35 \% 1$	$23 \cdot 874$	$153420 \cdot 9$	$81 \cdot 12$	10	$175823 \cdot 30$	$25 \cdot 027$	$1956 \quad 62$	25.04
1	$\begin{array}{lll}16 & 258.55\end{array}$	$23 \cdot 907$	154224.7	$80 \cdot 15$	11	$18 \quad 053 \cdot 49$	$25 \cdot 037$	$195832 \cdot 5$	23.72
12	$16 \quad 5 \quad 22.09$	23.939	$155022 \cdot 7$	79.18	12	$18 \quad 323.74$	25.046	$20 \quad 050 \cdot 9$	$22 \cdot 40$
13	$\begin{array}{llll}16 & 74582\end{array}$	23.972	1558148	78.18	13	$18 \quad 554.04$	25•053	$20 \begin{array}{llll}20 & 3 & 1 \cdot 3\end{array}$	21.08
14	1610975	$24 \cdot 004$	$16 \quad 6009$	$77 \cdot 18$	14	$18 \quad 824.38$	$25 \cdot 060$	$20 \quad 5 \quad 3.8$	75
5	16123387	24.035	161341.0	76.18	15	18105476	25.067	20658.3	8.43
16	$161458 \cdot 17$	24.067	$162115 \cdot 1$	$75 \cdot 17$	16	$181325 \cdot 18$	25.073	20844.9	17.09
17	$161722 \cdot 67$	24.099	$162843 \cdot 1$	74.14	17	181555.63	25.077	$201023 \cdot 4$	1575
18	16194736	$24 \cdot 130$	163648	$78 \cdot 10$	18	$181826 \cdot 10$	25.081	201153.9	14.42
19	$162212 \cdot 23$	24-161	$164320 \cdot 3$	72.06	19	$182056 \cdot 60$	25.084	201316.4	13.08
20	$162437 \cdot 29$	24-192	165029.5	71.00	20	$182327 \cdot 11$	25.087	2014309	11.74
21	$1627 \quad 2.53$	$24 \cdot 223$	1657323	93	21	$182557 \cdot 64$	25.088	$201537 \cdot 3$	10.40
22	162927.96	$24 \cdot 253$	17428.6	85	22	$182828 \cdot 17$	25.088	201635.7	$9 \cdot 06$
23	163153.56	$24 \cdot 283$	171118.5		,	183058.70	25.088	201726.0	7
24	$163419 \cdot 35$	$24: 3$	S. 1718	66	24	183329.23	25.088	S. $2018 \quad 8.2$	6:87

XII．

AUGUST．
 MEAN TIME．

THE MOON＇S RIGHT ASCENSION AND DECLINATION．

易\|	$\underset{\text { Ascension. }}{\substack{\text { Rigbt }}}$	$\begin{aligned} & \text { Far. } \\ & \text { in } 10 \mathrm{~m} . \end{aligned}$	Declination．	$\begin{aligned} & \text { Var. } \\ & \text { in } 10 \mathrm{~m} . \end{aligned}$	容	$\begin{gathered} \text { Right } \\ \text { Ascension. } \end{gathered}$	$\begin{gathered} \text { Yar. } \\ \text { in } 10 \mathrm{~m} . \end{gathered}$	Declination．	$\begin{gathered} \text { Var. } \\ \operatorname{in} 10 \mathrm{~m} . \end{gathered}$							
Wednesday 29.					Friday 31.											
	${ }^{\text {b．}} \mathrm{m}_{0}{ }^{\text {s }}$ ．															
	183329.23	25.088	S． 2018 8．2	$6 \cdot 37$		$1203212 \cdot 15$	087	181834．7	4.27							
1	18355975	25.085	$201842 \cdot 4$	$5 \cdot 03$		$203436 \cdot 56$		1813 5．8	$55 \cdot 37$							
2	$183830 \cdot 25$	25.083	20198.5	$3 \cdot 68$		$\begin{array}{lll}20 & 37 & 0.75 \\ 20 & 39 & 24.71\end{array}$		181								
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{array}{rrrr}18 & 41 & 0.74 \\ 18 & 31 \cdot 20\end{array}$	25.079 25.074	201926.6 201936.6	$2 \cdot 34$ 1.00		20414844	23．935	175559.6	58．63							
5	1846163	25.069	$201938 \cdot 6$	0.34		$204411 \cdot 93$	$23 \cdot 896$	175047	59．68							
6	184832.03	25.063	$201932 \cdot 5$	1．68		204635.19	$23 \cdot 857$	$17443 \cdot 4$	60.74							
7	18512.38	25.055	$201918 \cdot 4$	$3 \cdot 03$		204858.21	23.817	$173755 \cdot 8$	61.79							
8	185332.69	25.048	$201856 \cdot 2$	4.37		$205120 \cdot 99$	23.777	$173141 \cdot 9$	$62 \cdot 83$							
9	$18562 \cdot 95$	25.039	201826.0	$5 \cdot 70$		$205343 \cdot 53$	23.736	$172521 \cdot 9$	$63 \cdot 85$							
10	$185833 \cdot 16$	25.030	2017478	$7 \cdot 03$		$2056 \quad 5.82$	23.695	1718557	64.87							
11	$\begin{array}{llll}19 & 1 & 3.31\end{array}$	25.018	201717	$8 \cdot 36$	11	205827.87	$23 \cdot 654$	$171223 \cdot 5$	65.87							
12	$19 \quad 3 \quad 33 \cdot 38$	25.007	$2016 \quad 7 \cdot 5$	9.69		$21 \quad 049 \cdot 67$	$23 \cdot 613$	$17545 \cdot 3$	66.87							
13	1966339	$24 \cdot 995$	$2015 \quad 5 \cdot 4$	11.02		21311.22	23．570	1659111	67.85							
14	$19 \quad 833 \cdot 32$	$24 \cdot 982$	$201355 \cdot 3$	12.35		21532.51	$23 \cdot 528$	$165211 \cdot 1$	68.82							
15	1911 3－17	$24 \cdot 968$	$201237 \cdot 2$	13.67		$21 \quad 753.55$	$23 \cdot 486$	$164515 \cdot 3$	69.78							
16	$191332 \cdot 93$	$24 \cdot 953$	$201111 \cdot 3$	14.98		211014.34	$23 \cdot 443$	$163813 \cdot 7$	$70 \cdot 73$							
17	$19162 \cdot 60$	$24 \cdot 938$	$20937 \cdot 4$	16.30	17	211234.87	23.399	16316.5	$71 \cdot 68$							
18	1918 32－18	$24 \cdot 921$	$20755 \cdot 7$	17.61	18	21145513	$23 \cdot 356$	$162353 \cdot 6$	$72 \cdot 61$							
19	1921 1＇65	$24 \cdot 903$	$2066 \cdot 1$	18.92		$211715 \cdot 14$	$23 \cdot 313$	$161635 \cdot 2$	73.53							
20	192331.02	$24 \cdot 886$	20487	$20 \cdot 22$		21193488	23.268	$16911 \cdot 3$	$74 \cdot 43$							
21	19260.28	$24 \cdot 868$	$20 \quad 23 \cdot 5$	21.52		212154.36	23.225	$16142 \cdot 0$	$75 \cdot 33$							
22	192829.43	$24 \cdot 848$	$195950 \cdot 5$	$22 \cdot 82$		$212413 \cdot 58$	23.181	155474	$76 \cdot 21$							
23	$193058 \cdot 45$	24	S． 195729.7	$24 \cdot 11$		212632	23．136		． 08							
Thursday 30.					Saturday，SEPT． 1.											
01193327.35		24－806	S． $19551.2 \mid 25$		$0{ }^{0} 212851.21$		23.091	S． $153842 \cdot 4$	77.94							
1	$193556 \cdot 12$	24.784	195225.0	26.68												
2	193824.76	24.761	194941	$27 \cdot 95$												
3	$194053 \cdot 25$	24．737	1946496	$29 \cdot 22$												
	$194321 \cdot 60$	24.713	$194350 \cdot 5$	30.48												
	$5194549 \cdot 81$	24.689	$194043 \cdot 9$	31.73		PH	ES OF	tee moon．								
	6． $194817 \cdot 87$	24.663	$193729 \cdot 7$	32.99												
	195045.76	24.636	193480	$34 \cdot 23$					h. m.							
8	195313.50	$24 \cdot 609$	$193038 \cdot 9$	35．47	g．											
9	195541.07	$24 \cdot 581$	192723	36.71												
10	$1958 \quad 8.47$	$24 \cdot 553$	$192318 \cdot 4$	$\begin{aligned} & 37 \cdot 93 \\ & 39 \cdot 14 \end{aligned}$			Last Quaster		14475							
11	$120 \quad 0 \quad 35.70$	$24 \cdot 523$	$191927 \cdot 2$	39.14												
12	20	$24 \cdot 493$	$191528 \cdot 7$ 191122.9	$40 \cdot 36$ $41 \cdot 57$		19	New Moon		1327.5							
13	320529.62	$24 \cdot 463$	19 11 $22 \cdot 9$ 19 $9 \cdot 9$	41.57 42.76												
14	20 756630	24．432	$\begin{array}{llll}19 & 7 & 9 \cdot 9 \\ 19 & 2 & 498\end{array}$	42.76 43.94	26				12425							
15	$201022 \cdot 80$ 20124910	$24 \cdot 400$ $24 \cdot 367$	$\begin{array}{r}19 \\ 18 \\ \hline 1824.8\end{array}$	43.94 45.13			First Q									
17	$201515 \cdot 20$	24：334	$185348 \cdot 3$	$46 \cdot 30$												
18	$201741 \cdot 11$	$24 \cdot 301$	1849 7．0	$47 \cdot 47$												
19	$20 \quad 20 \quad 6.81$	$24 \cdot 266$	$184418 \cdot 7$	48.63		ug． 12	pogee									
20	$202232 \cdot 30$	$24 \cdot 232$	183923.5	4977		26 『 Perigee		．．． $21 \cdot 5$								
21	202457.59	24：197	183421.5	50.91												
22	$202722 \cdot 66$	$24 \cdot 161$	182912.6	52.04												
23	$202947 \cdot 52$	$24 \cdot 124$	S． 1823537.0	54．27												
24	20321215	$24 \cdot 087$	S． 181834.7	$54 \cdot 27$												

AUGUST.

XIII.

MEAN TIME.

LUNAR DISTANCES.									
Day.	$\begin{aligned} & \text { Star's Name } \\ & \text { and } \\ & \text { Postion. } \end{aligned}$	Noon.	$\left\lvert\, \begin{gathered} \text { P.L.L. } \\ \text { of } \\ \text { diff. } \end{gathered}\right.$	IIIL.	$\begin{gathered} \text { P.L.. } \\ \text { of } \\ \text { diff. } \end{gathered}$	VI ${ }^{\text {b }}$	$\begin{gathered} \text { P.L. } \\ \text { of } \\ \text { diff. } \end{gathered}$	IXh.	P.L. ot. diff.
1						- , "			
	Spica W.	651656	2222	$67 \quad 451$	2221	685247	2220	704044	2220
	Fomalhaut E.	681317	2476	663130	2485	644955	2495	63834	2506
	Saturn E.	763521	2167	74463	2168	725647	2168	71731	2169
	a Pegasi E.	834036	2541	$82 \quad 020$	2545	80209	2550	78404	2556
2	Spica W.	79406	2231	812748	2235	831524	2239	$85 \quad 255$	2243
	Antares W.	342141	2372	$36 \quad 556$	2363	375024	2355	39354	2349
	Saturn E.	62148	2181	601252	2185	58241	2189	563517	2194
	a Pegasi E.	702216	2603	684325	2618	$67 \quad 454$	2634	652644	2651
	a Arietis E.	1132120	2380	1113716	2379	1095311	2380	10897	2381
3	Spica W.	935830	2274	95458	2282	973134	2290	991748	2299
	Antares W.	481951	2342	$\begin{array}{llll}50 & 4 & 50\end{array}$	2344	514945	2348	533435	2352
	Saturn E.	473338	2225	454547	2233	43588	2241	421041	2249
	\propto Pegasi E.	572237	2768	554727	2798	541256	2831	52398	2868
	a Arietis E.	99 29	2400	97462	2406	$96 \quad 236$	2413	941920	2421
4	Spica W.	108527	2351	1095012	2363	1113440	2375	1131850	2388
	Antares W.	621645	2387	$64 \quad 0 \quad 39$	2395	654421	2405	672749	2415
	Saturn E.	331647	2298	313045	2309	294459	2321	275930	2333
	a Arietis E.	85467	2471	$84 \quad 413$	2483	822236	2496	804117	2509
	Aldebaran E.	117436	2315	1155729	2326	114128	2337	$112 \quad 273$	2349
5	Antares	$\begin{array}{lll}76 & 1 & 16\end{array}$	2473	77437	2486	792440	2499	81554	2513
	a Arietis E.	721938	2586	704024	2604	$69 \quad 134$	2622	67238	2640
	Aldebaran E.	103464	2413	102248	2427	1001952	2441	983715	2455
6	Antares W.	892711	2586	$91 \quad 625$	2601	924519	2616	942352	2632
	a Aquilæ W.	475631	3623	491441	3584	503333	3550	51532	3520
	α Arietis E.	591739	2745	574159	2769	$56 \quad 650$	2793	543212	2818
	Aldebaran E.	$90 \quad 920$	2530	882848	2544	864836	2559	85845	2575
	Jupiter E.	1131110	2600	1113215	2616	1095342	2632	1081530	2647
7	Antares W.	1023112	2713	$104 \quad 735$	2729	1054336	2746	1071915	2762
	a Aquile W .	58376	3430	595849	3421	612042	3413	624244	3408
	a Arietis E.	464745	2962	451645	2996	434627	3031	421653	3069
	Aldebaran E.	765452	2653	75179	2668	733946	2684	$72 \quad 244$	2699
	Jupiter E.	$100 \quad 943$	2725	983336	2741	965751	2756	952225	2772
8	a Aquilæ W.	693354	3402	7056	3405	721820	3408	734027	3412
	Saturn W.	203930	2755	221457	2769	23505	$278 \pm$	25.2454	2797
	Aldebaran E.	$64 \quad 240$	2775	622739	2788	605256	2802	591831	2817
	Jupiter E.	873019	2847	855652	2862	842345	2876	83 5056	2891
	Pollux E.	$\begin{array}{llll}108 & 4 & 3\end{array}$	2826	$10630 \quad 9$	2839	1045632	2852	1032312	2866
	Sun E.	130412	3114	$12913 \quad 9$	3129	1274535	3144	1261819	3160
9	a Aquilø W.	802935	3445	81512	3453	831219	3461	84 3327	3470
	Saturn W.	331442	2819	344749	2874	362041	2886	375318	2897
	Aldebaran E.	513056	2883	495816	2895	482551	2908	465342	2919
	Jupiter E.	751116	2958	734011	2970	72921	2982	703846	2994
	Pollux E.	954047	2430	$\begin{array}{llll}94 & 9 & 6\end{array}$	2042	923741	2954	91631	2965
	Sun E.	119630	3232	1174059	32.5	1101543	3258	1145042	3270

XIV. AUGUST.

MEAN TIME.

LUNAR DISTANCES.									
Day.	$\begin{gathered} \text { Star's Name } \\ \text { Position. } \end{gathered}$	Midnight.	$\begin{aligned} & \text { P.L. } \\ & \text { of } \\ & \text { diff. } \end{aligned}$	XVh.	$\begin{aligned} & \text { P.L. } \\ & \text { of } \\ & \text { diff. } \end{aligned}$	XVIII ${ }^{\text {b }}$	$\begin{aligned} & \text { P.L. } \\ & \text { of } \\ & \text { diff. } \end{aligned}$	XXI' ${ }^{\text {. }}$	P.L.
1									
	Spica W.	722841	2222	741636	2223	$76 \quad 429$	2225	775219	2228
	Fomalhaut E.	612729	2519	594642	2533	$58 \quad 615$	2549	562610	2568
	Saturn E.	691816	2170	6729	2172	653955	2175	635049	2178
	a Pegasi E.	7708	2562	$75 \quad 2021$	2570	734045	2580	$\begin{array}{lll}72 & 1 & 23\end{array}$	2591
2	Spioa W.	865019	2248	883735	2254	902443	2260	921141	2267
	Antares W.	411953	2344	$43 \quad 448$	2341	444948	2339	463450	2340
	Saturn E.	544640	2199	525811	2205	51951	2211	492140	2217
	a Pegasi E.	634858	2670	621138	2690	603445	2713	585823	2740
	a Arietis E.	10625	2883	104415	2386	1025710	2889	1011320	2394
3	Spica W.	$\begin{array}{lll}101 & 3 & 49\end{array}$	2309	1024936	2319	10435	2329	1062025	2340
	Antares W.	551919	2358	$57 \quad 355$	2364	584822	2371	603239	2379
	Saturn E.	402326	2258	$38 \quad 3625$	2268	364938	2277	$35 \quad 3$	2287
	a Pegasi E.	$\begin{array}{lll}51 & 6 & 8\end{array}$	2908	493359	2952	$48 \quad 246$	3000	463233	3053
	a Arietis E.	923615	2429	905322	2439	891043	2449	872818	2459
4	Spica W.	$115 \quad 242$	2401	1164615	2416	1182927	2430	1201219	2444
	Antares W.	69112	2426	70540	2437	723642	2449	74197	2460
	Saturn E.	261418	2345	242924	2358	224449	2371	$\begin{array}{llll}21 & 0 & 33\end{array}$	2384
	${ }_{\text {a Arietis }}$ E.	79016	2523	771935	2538	753915	255	735916	2569
	Aldebaran E.	1104215	2362	1085745	2374	1071333	2387	1052939	2400
5	Antares W.	824649	2527	842724	2541	86740	2556	874736	2571
	a Arietis E.	65458	2660	$64 \quad 734$	2681	623028	2701	605349	272
	Aldebaran E.	965459	2470	9513	2485	933128	2499	915014	2514
6	Antares W.	$96 \quad 2$	2649	973952	2665	991720	2681	1005426	2696
	a Aquilæ W.	5313	3496	543333	3475	555425	3457	571537	3442
	a Arietis E.	5258	2844	512437	2872	495142	2901	481924	2931
	Aldebaran E.	832916	2591	81508	2607	801122	2622	783257	2637
	Jupiter E.	1063739	2663	105009	2678	1032259	2694	1014611	2709
7	Antares W.	1085433	2779	1102929	2795	$\begin{array}{llll}112 & 4 & 4\end{array}$	2811	1133817	2828
	a Aquilæ W.	$64 \quad 452$	3404	6527	3401	664920	3400	681137	3400
	a Arietis E.	4048	3110	39208	3153	37531	3199	362650	3249
	Aldebaran E.	$70 \quad 263$	2715	684943	2729	671342	2744	6538	2760
	Japiter E.	934720	2787	921235	2802	903810	2818	894	28
8	a Aquilæ W.	$75 \quad 230$	3418	762427	3424	774616	3430	79759	3437
	Saturn W.	265926	2811	283340	2824	$\begin{array}{lll}30 & 7 & 37\end{array}$	2836	314118	2849
	Aldebaran E.	574425	2831	561037	2844	$\begin{array}{llll}54 & 37 & 7\end{array}$	2857	$\begin{array}{llll}53 & 3 & 53\end{array}$	2870
	Jupiter E.	811825	2905	794612	2919	781417	2931	764238	2945
	Pollux E.	1015010	2879	1001725	2892	984456	2905	971244	2917
	Son E.	1245122	3175	1232443	3190	1215822	3204	1203218	3218
9	a Aquilæ W.	855425	3479	871513	3488	883550	3498	895617	3508
	Saturn W.	392541	2908	405749	2919	4242 44	2929	$\begin{array}{llll}44 & 1 & 25\end{array}$	2939
	Aldebaran E.	452147	2931	4350	2942	421841	2952	404728	2962
	Jupiter E.	$69 \quad 826$	3006	673821	3018	$\begin{array}{llll}66 & 8 & 30\end{array}$	3028	643852	3039
	Pollux E.	893535	2977	88	2988	863426	2999	$\begin{array}{llll}85 & 4 & 12\end{array}$	3009
	Sun E.	1132556	3283	$112 \quad 125$	3295	11037	3306	10913	3317

AUGUST.
MEAN TIME.

Lunar distances.										
Day.	$\begin{gathered} \text { Star's Name } \\ \text { and } \\ \text { Position. } \end{gathered}$		Noon.	$\begin{aligned} & \text { P.L. } \\ & \text { diff. } \end{aligned}$	III ${ }^{\text {b }}$	$\begin{gathered} \text { P.L.L. } \\ \text { diff. } \end{gathered}$	$\mathrm{Vl} \mathrm{l}^{\text {. }}$	$\begin{aligned} & \text { P.L. } \\ & \begin{array}{c} \text { of } \\ \text { diff. } \end{array} \end{aligned}$	[xb.	P.L. of diff.
10					- ' "		- , "		$\bigcirc{ }^{\circ}$ ' "	
	a Aquilæ		911632	3519	923635	3529	$\begin{array}{llll}93 & 56 & 27\end{array}$	3540	9516	3551
	Fomalhaut		565654	3327	582034	3324	$\begin{array}{llll}59 & 44 & 17\end{array}$	33	61 50	2976
	Saturn		453254	2949	$47 \quad 410$	2958	483515	3705	$\begin{array}{llll}50 & 6 & 9\end{array}$	2976
	a Pegasi		434713	3765	$45 \quad 252$	3733	$\begin{array}{llll}46 & 19 & 4\end{array}$	3705	473546	3680
	Aldebaran		391628	2972	374541	2981	$\begin{array}{llll}36 & 15 & 5\end{array}$	2990	344440	2999
	Jupiter		63927	3049	614015	3058	601114	3067	58 79 79 12 51	3076
	Pollux		833410	3019	$82 \quad 4 \quad 21$	3029	803445	30	795	7
	Son		1074912	3328	1062533	3338	10	3348	103	58
11	a. Aquilæ		1015117	3611	$103 \quad 939$	3624	1042748	3637	1054542	3651
	Fomalhaut		$68 \quad 656$	3321	693043	3322	705429	3321	721816	21
	Saturn	W.	573812	3010	59812	3017	60384	30	62750	26
	a Pegasi		5454	3587	$55 \quad 2355$	3573	564259	3560	$\begin{array}{lll}58 & 2 & 17\end{array}$	3549
	Aldebaran		27157	3035	254538	3042	241617	3047	22472	3052
	Jupiter	.	512048	3114	495255	3120	4825	3126	465732	3131
	Poilux		714049	3086	701223	3093	6844	3100	671555	3105
	SUN		964458	3396	$95 \quad 2237$	3403	$94 \quad 024$	3408	923817	34
12	Fomalha	V.	79177	3322	804053	3322	82439	3321	832826	3321
	Saturn	V.	693523	3043	71443	3045	7234	3046	$74 \quad 316$	3047
	a Pegasi	W.	644140	3501	$66 \quad 2 \quad 3$	3494	672234	3486	684314	3478
	Jupiter	.	394048	3151	381341	3154	364637	3157	351936	3159
	Pollux	.	595646	3130	582914	3134	57146	3138	553422	3142
	Sun	.	854858	3432	842718	3434	$83 \quad 540$	34	81444	3437
13	Fomalhaut	W	902733	3316	915126	3314	931521	3313	943918	3311
	Saturn	W.	812931	3044	825849	3042	8428	3039	855733	3037
	a Pegasi	W.	752835	3444	76501	3438	781135	3431	793316	3425
	a Arietis	W.	$32 \quad 5 \quad 5$	3652	332243	3606	344111	3565	$\begin{array}{llll}36 & 0 & 24 \\ 23 & 44 \\ 42\end{array}$	3527
	Jupiter	E.	$28 \quad 5 \quad 5$	3167	263816	3168	25 11 29 45 24 0	3168 3160	23 43 474 57 2	3163
	Pollux	E.	481822	3155	465119	3158	$45 \quad 2420$		43 70 518	
	SUN	E.	745610	3434	733432	3432	721252	3430		342
14	Fomalhaut	W.	1013936	3301	$\begin{array}{lll}103 & 3 & 47\end{array}$	3299	104280	3296	1055216	3294
	Saturn	W.	932533	3016	945526	301	$\begin{array}{llll}96 & 25 & 25 \\ 89 & 8 & 29\end{array}$	3005	$\begin{array}{lllll}97 & 55 & 31 \\ 90 & 30 & 59\end{array}$	32998
	a Pegasi	W	862328	3394	874552	3388	$\begin{array}{llll}89 & 8 & 22 \\ 45 & 31 & 23\end{array}$	3382		3376
	a Arietis	W.	424543	3382	448820	3359	$\begin{array}{llll}45 & 31 & 23 \\ 33 & 50 & 31\end{array}$	3337 3192	46 54 32 24	3200
	Pollux	E.	364331	3180	351658	3185	${ }_{63} 51731$	3192 3393	59 5439	3386
	Sun	E.	$64 \quad 133$	3405	623922	3399	6117	3593		330
15	Saturn	W.	1052810	2962	1065910	2954	1083020	2946	$110 \begin{array}{lll}11 & 41\end{array}$	2936
	a Pegasi	W.	972547	3347	98494	3342	1001228	3337	$\begin{array}{r}10135157 \\ 58 \\ \hline 16\end{array}$	3332 3174
	a Arietis	W	53580	3224	552341	3207	564941	3190	5816 48 50	3319
	SUN	E.	$\begin{array}{llll}53 & 0 & 30\end{array}$	3347	513713	3338	501345	3328		3319
16	a. Arietis	W.	653228	3098	$67 \quad 040$	3083	$68 \quad 2910$	3069	695758	3055
	Sun	E.	41492	3267	402412	3255	38598	3244	373351	
17	Arietio	W.	772617	2985	785649	2972	802737	2958	815842	2945
	Sun	$\mathrm{E} .$	3024	3173	285718	31	2730		263	
22	Sun	W.	304740	2723	322349	271	340		353635	2702

XVI.

AUGUST.
MEAN TIME.
LUNAR DISTANCES.

Day.	$\begin{aligned} & \text { Star's Name } \\ & \text { and } \\ & \text { Position. } \end{aligned}$	Mfidnight.	$\begin{array}{\|l} \text { P.L. } \\ \text { of } \\ \text { diff. } \end{array}$	XVa.	$\begin{array}{\|c\|} \hline \text { P.L. } \\ \text { of } \\ \text { diff. } \end{array}$	XVIIrs.	$\begin{aligned} & \text { P.L. } \\ & \text { of. } \\ & \text { diff. } \end{aligned}$	XXI'	$\begin{array}{\|c\|c} \text { P.L. L. } \\ \text { diff. } \\ \text { diff } \end{array}$
10								- "	
	\boldsymbol{a} Aquilm W.	963535	35	975450	3575	991352	3587	1003241	3598
	Fomalhaut W.	623148	3322	635534	3321	651921	3321	6643	3320
	Saturn W.	513652	2984	53725	2991	543749	2997	568	3004
	a Pegasi W.	485254	3657	501027	3637	512821	3619	524635	3602
	Aldebaran E.	331426	3008	314423	3015	301429	3022	284444	3029
	Jupiter E.	571345	3085	554517	3093	541658	3101	524849	3107
	Pollux E.	77365	3056	$\begin{array}{llll}76 & 7\end{array}$	3065	7438	3072	73	3079
	Sun E.	1021545	3366	1005250	3374	9930	3382	$\begin{array}{ll}98 & 727\end{array}$	3389
11	a Aquilm W.	107322	3665	1082046	3679	1093755	3694	1105448	3709
	Fomalhaut W.	73423	3322	$75 \quad 549$	3322	762935	3322	775321	3322
	Saturn W.	633730	3030	$\begin{array}{llll}65 & 7 & 4\end{array}$	3034	663634	3037	68 6	3040
	${ }_{\text {a }}$ Pegasi W.	592147	3538	604129	3528	$\begin{array}{lll}62 & 1 & 22\end{array}$	3518	$\begin{array}{llll}63 & 21 & 26\end{array}$	3509
	Aldebaran E.	211754	3056	194851	3061	181954	306	16512	3069
	Jnpiter E.	$45 \quad 30 \quad 0$	3136	$44 \quad 235$	3140	423515	3144	$\begin{array}{llll}41 & 759\end{array}$	314
	Pollux E.	654752	3111	641956	3117	62527	3122	612424	3126
	Sun E.	911615	3418	895419	3422	883228	3426	871041	3429
12	Fomalhaut W.	845213	3320	8616161	3319	873950	3318	$89 \quad 341$	3317
	Saturn W.	753231	3047	77145	3047	783059	3046	$80 \quad 014$	3045
	a Pegasi \quad W.	$70 \quad 4 \quad 3$	3471	712459	3464	7246	3457	$\begin{array}{llll}74 & 715\end{array}$	3450
	Jupiter E.	335238	3161	322542	31	305848	3164	293156	3165
	Pollux E.	5473	3145	523948	3148	511236	3150	494527	3153
	Sun E.	802229	3438	$79 \quad 055$	3438	773921	343	761746	3436
13	Fomalhaut W.	$\begin{array}{llll}96 & 317\end{array}$	3309	972718	3307	985122	3305	1001528	3303
	Saturn W.	87270	3034	885631	3030	9026	3026	915546	3021
	a Pegasi W.	80554	3419	821659	3412	83392	340	85112	340
	$\boldsymbol{\alpha}$ Arietis W.	372018	3493	384050	346	$\begin{array}{llll}40 & 1 & 56\end{array}$	3434	412334	340
	Jupiter E.	221756	3171	205112	3173	192431	3177	175754	3182
	Pollux E.	423030	3166	$41 \quad 340$	3169	393653	3172	38 65 103	3176
	Sun E.	692923	3423	$\begin{array}{lll}68 & 733\end{array}$	3419	664538	3415	652338	10
14	Fomalhaut W.	1071635	3292	1084056	3290	$\begin{array}{ll}110 & 519 \\ 102\end{array}$	3288	1112945	3286
	Satura W.	99 2546	299	100 93 93 16	2985	102 94 94 51		$\begin{array}{rrrr}103 & 57 & 20 \\ 96 & 2 & 36\end{array}$	${ }_{3352}^{2970}$
	${ }_{\text {a Pegasi }}$ W.	$\begin{array}{llll}91 & 53 & 43 \\ 48 & 18 \\ 4\end{array}$	337	$\begin{array}{lllr}93 & 16 & 34 \\ 49 & 43 & 1\end{array}$	3364 3277	$\begin{array}{cccc}94 & 39 & 32 \\ 51 & 7 & 39\end{array}$	3358 3259	$\begin{array}{rrr} 96 & 2 & 36 \\ 52 & 32 & 39 \end{array}$	3352
	${ }_{\text {a A Arietis }} \mathrm{W}$.	481845	329 C		3277	$\begin{array}{lll}51 & 7 & 39 \\ 28 & 6 & 19\end{array}$	3259		${ }_{3253}^{3241}$
	Pollux SUN	30 58 58 8	3209	$\begin{array}{llll}29 & 32 & 3 \\ 57 & 9 & 25\end{array}$	3221 3372	$\begin{array}{rrrr}28 & 6 & 19 \\ 55 & 46 & 36\end{array}$	3364	54 54 26	3555
15	Saturn W.	1113314	2927	113458	2918	1143654	2908	$\begin{array}{llll}116 & 9 & 3\end{array}$	2898
	${ }_{\text {a Pegasi }}$ W.	1025932	3327	1042313	3323	1054658	3319	1971048	3314
	a Arietis W.	594242	315	$61 \quad 941$	3143	623658	3128	$64 \quad 434$	3113
	Sun E.	472617	3310	$\begin{array}{lll}46 & 2 & 17\end{array}$	3299	4438	3288	431339	3278
16	a Arietis W.	7127	3041	725625	3026	$74 \quad 26 \quad 5$	3012	$75 \quad 56 \quad 2$	2998
	SUn E.	$\begin{array}{llll}36 & 8 & 21\end{array}$	3221	344237	3209	331639	3198	315027	3185
17	rietis W.	8330	2933	$85 \quad 141$	2920	863335	2907	$88 \quad 545$	2894
	Sun E.	243546	3124	238	3112	214011	310	20	308
22	Sun W.	371313	2695	384959	2689	$40 \quad 2654$	2683	$42 \quad 358$	2677

AUGUST.
XVII.

MEAN TIME.

LUNAR DISTANCES.

Day.	$\begin{gathered} \text { Star's Name } \\ \text { and } \\ \text { Position. } \end{gathered}$	Noon.	$\begin{aligned} & \text { P.I. } .{ }_{2} \\ & \text { of } \\ & \text { diff. } \end{aligned}$	IIIL.	$\begin{gathered} \text { P.L. } \\ \text { of } \\ \text { d.ff. } \end{gathered}$	VIh.	$\begin{gathered} \text { P.L. } \\ \text { of } \\ \text { ofif. } \end{gathered}$	IXb.	($\begin{gathered}\text { P.L. } \\ \text { of. } \\ \text { diff. }\end{gathered}$
22	a Aquilæ E.							, "	
		1145211	3081	1132338	3057	1115436	3035	11025	3015
23	Sun W.	4341	2671	451828	2666	465553	2660	483326	2655
	a Aquilæ E.	1025154	2935	1012019	2922	994828	2912	981624	2903
24	Sun W.	564245	2635	582053	2631	5959	2627	613724	2624
	a Aquilæ E.	903331	2872	$89 \quad 036$	2869	$87 \quad 2737$	2867	855436	2867
25	Sun W.	694955	2610	712836	2608	73720	2606	74467	04
	a Aquilæ E.	$78 \quad 950$	2881	7637	2887	$\begin{array}{ll}75 & 432\end{array}$	2895	73327	2905
	Femalhaut E.	1115235	2588	1101324	2580	$10834 \quad 2$	2573	1065430	2566
26	Sun W.	$\begin{array}{llll}83 & 0 & 34\end{array}$	2597	843933	259	861833	259	875734	2595
	Spica W.	333038	2393	351423	2384	365821	2375	384231	2368
	a Aquilæ E.	655338	2975	642254	2995	625235	3017	612243	3041
	Femalhaut E.	983446	2542	965431	2539	951412	2537	933350	2535
	Saturn E.	1071029	2267	1052341	2266	1033652	2265	101501	2264
	a Pegasi E.	1131654	2708	1114025	2697	$110 \quad 341$	2687	1082644	2679
27	Sun W.	961253	2593	975158	2594	9931	2594	101105	94
	Spica W.	472535	2344	491030	2341	505530	2339	524034	2337
	a Aquilæ E .	$\begin{array}{llll}54 & 2 & 2\end{array}$	3209	$\begin{array}{llll}52 & 36 & 3\end{array}$	3255	511059	3305	494653	3360
	Fomalhaut E.	851141	2536	833117	2538	815056	2540	801038	2543
	Saturn E.	925533	2262	$91 \quad 838$	2263	892144	2264	873451	2263
	a Pegasi E.	1001927	2649	984138	2645	$97 \quad 344$	2643	952547	2640
28	SUn W.	109259	2599	$\begin{array}{llll}111 & 4 & 5\end{array}$	2601	1124259	2602	1142151	2604
	Spica W.	612625	2332	631138	2331	645652	2332	66426	233
	Femalhaut E.	715031	2569	701053	2577	683126	2585	665211	2594
	Saturn E.	784032	2267	765344	2268	$75 \quad 658$	2270	$73 \quad 2014$	2272
	a Pegasi E.	871546	2643	853750	2647	835959	2651	822213	2655
29	Sun W.	1223524	2618	1241355	2621	1255222	2624	1273045	2628
	Spica W.	752749	2340	771251	2342	$78 \quad 5749$	2344	804244	2347
	Antares W.	301855	252	315934	2507	334037	2493	35220	2481
	Fomalhaut E.	583937	2660	57	2677	552451	2696	53486	2716
	Saturn E.	642717	2283	624052	2285	605431	2288	$\begin{array}{llll}59 & 814\end{array}$	2291
	a Pegasi E.	741518	2692	723827	2702	$\begin{array}{ll}71 & 149\end{array}$	2713	692526	2726
	\sim Arietis E.	1172513	2499	1154359	2497	$114 \quad 242$	2495	1122122	94
30	Spica W.	$8926 \quad 6$	2366	911030	2371	925446	2376	943856	2381
	Antares W.	435212	2450	453436	2448	47173	2446	485932	2445
	Saturn E.	50187	2311	483223	2315	464646	2320	$\begin{array}{llll}45 & 116\end{array}$	2325
	a Pegasi E.	612822	2810	59547	2831	582020	2855	56474	2882
	a Arietio E.	1035430	2497	1021312	2499	1003158	2502	985048	2506
31	Spica W.	1031740	2412	$\begin{array}{llll}105 & 0 & 57\end{array}$	2420	106443	2427	1082659	2435
	Antares W.	573139	2456	591354	2460	6056	2465	62386	2470
	Saturn E.	361545	2355	3431	2362	324636	2368	$31 \quad 216$	2376
	a Pegasi E.	49108	3054	$4741 \quad 2$	3099	$\begin{array}{lllll}46 & 12 & 51\end{array}$	3149	444540	3204
	\boldsymbol{a} Arietis E.	902627	2532	884558	2539	$\begin{array}{llll}87 & 5 & 39\end{array}$	2546	$85 \quad 2530$	2554
	Aldebaran E.	1223324	2379	1204919	2385	$119 \quad 523$	2392	1172137	2399

XVIII.

AUGUST.

mean time.

LUNAR DISTANCES									
Day.	$\begin{aligned} & \text { Star's Name } \\ & \text { and } \\ & \text { Position. } \end{aligned}$	Nidnight.	$\begin{gathered} \text { P.L. } \\ \text { of } \\ \text { offir. } \end{gathered}$	XV	$\begin{gathered} \text { P.L. } \\ \text { of } \\ \text { diff. } \end{gathered}$	XVIII ${ }^{\text {b }}$	$\begin{aligned} & \text { L. } \\ & \text { if. } \\ & \text { ifr. } \end{aligned}$	EXI	P.L.
22	a Aquilæ E.		2996		2978	${ }_{\circ}^{\circ}$	2962	1042313	2948
		1085513							
23	$\begin{array}{ll} \text { Sun } & \text { W. } \\ \boldsymbol{a} \text { Aquilæ } & \text { E. } \end{array}$	$\left.\begin{array}{lll} 50 & 11 & 6 \\ 96 & 44 & 8 \end{array} \right\rvert\,$	2651	514852	2646	532644	2642	42	2638
			2894	$95 \quad 1141$	2887	$\begin{array}{llll}53 & 39 & 5\end{array}$	2881	$92 \quad 621$	6
24		$\begin{array}{lll} 63 & 15 & 47 \\ 84 & 21 & 35 \end{array}$	$\begin{array}{\|l\|} 2621 \\ 2867 \end{array}$	$\left.\begin{array}{lll} 64 & 54 & 13 \\ 82 & 48 & 34 \end{array} \right\rvert\,$	$\begin{array}{\|l} 2618 \\ 2869 \end{array}$	$\left.\begin{array}{lll} 66 & 32 & 43 \\ 81 & 15 & 35 \end{array} \right\rvert\,$	$\left\|\begin{array}{l} 2615 \\ 2872 \end{array}\right\|$	681117	2612
								794240	2876
25	$\begin{array}{ll} \text { Sun } & \text { W. } \\ \text { a Aquilæ } & \mathbf{E} . \\ \text { Fomalhaut } & \mathbf{E} . \end{array}$	7624	2603	$\begin{array}{ll}78 & 3 \\ 70\end{array}$	26	794241		812137	7
		715954	2915	$70 \quad 2754$	2927	685610	2942	672444	2958
		1051449	2560	1033459	2554	10155	254	1001456	2545
26	Sun W. Spica W. a Aquila E. Fomalhaut E. Saturn E. a Pegasi E.	8936	2594	911540	25	925444	2593	943348	25
		402652	2362	421122	2357	435559	2352	454044	2347
		595321	3068	582432	3099	$\begin{array}{llll}56 & 56 & 21\end{array}$	3132	552850	3168
		915325	2534	901259	2534	883233	253	8652	2534
		$100 \quad 3 \quad 9$	2264	981616	2263	962922	2263	944228	2262
		1064936	2671	1051217	2663	1033448	265	1015711	2653
27	Sun W.	102498	2595	1042810	2596	$106 \quad 711$	2596	1074611	2598
	Spica W.	542540	2335	$56 \quad 1049$	2334	575559	2333	594112	2332
	a Aquilæ E.	$48 \quad 2351$	3422	$47 \begin{array}{lll}47 & 1 & 59\end{array}$	3491	$\begin{array}{llll}45 & 41 & 25\end{array}$	3568	442216	3653
	Fomalhaut E.	783024	2547	765015	2551	751013	255	733018	2562
	Saturn E.	854757	2264	84814	2264	821412	226	802721	2266
	${ }_{\sim}$ Pegasi E.	934747	2640	$92 \quad 946$	2640	903145	264	885345	2641
28	Su	116040	2607	1173926	2609	11918	2612	1205648	2615
	Spica W.	682718	2333	701229	2335	715738	2336	734245	2338
	Fomalhaut E.	$\begin{array}{llll}6513 & 8\end{array}$	2605	633419	2617	615547	263	601732	2644
	Saturn E.	713333	2274	694654	2276	$\begin{array}{lll}68 & 0 & 19\end{array}$	2278	661346	2280
	a Pegasi E.	804433	2660	797	2667	772936	267	$75 \quad 5221$	2683
29	Sun	$\begin{array}{llll}129 & 9 & 2\end{array}$	2632	1304713	2636	1322519	2641	$134 \quad 319$	2646
	$\left\|\begin{array}{ll} \text { Spica } & \mathbf{W} \\ \text { Avtares } & \mathrm{W} \end{array}\right\|$	$\left\|\begin{array}{rrr} 82 & 27 & 35 \\ 37 & 3 & 40 \end{array}\right\|$	2471	$\begin{array}{lll} 84 & 12 & 21 \\ 38 & 45 & 34 \end{array}$	2455	$\left.\begin{array}{lll} 85 & 57 & 1 \\ 40 & 27 & 39 \end{array} \right\rvert\,$	$\begin{aligned} & 2358 \\ & 2458 \end{aligned}$	87 41 36 42 9 52	2385
	$\begin{array}{ll} \text { Autares } & \text { W. } \\ \text { Fomalhant } & \text { E. } \end{array}$	$\begin{array}{lll} 37 & 3 & 40 \\ 52 & 11 & 48 \end{array}$	2471		2464	$\begin{array}{rrrr}40 & 27 & 39 \\ 49 & 0 & 48\end{array}$	$\begin{aligned} & 2458 \\ & 2794 \\ & \hline \end{aligned}$	472612	2825
	Saturn E.	$\begin{array}{lll}57 & 22 & 2 \\ 67 & 49 & 21\end{array}$	$\left.\begin{aligned} & 2295 \\ & 2740 \end{aligned} \right\rvert\,$	$\begin{array}{llll}55 & 35 & 55 \\ 66 & 13 & 34\end{array}$	$\left\lvert\, \begin{aligned} & 2298 \\ & 2755 \\ & \hline \end{aligned}\right.$	$\begin{array}{llll}53 & 49 & 53 \\ 64 & 38 & 7\end{array}$	$\begin{aligned} & 2302 \\ & 2772 \end{aligned}$	$\left.\begin{array}{lll} 52 & 3 & 57 \\ 63 & 3 & 3 \end{array} \right\rvert\,$	$\left\lvert\, \begin{aligned} & 2307 \\ & 2790 \end{aligned}\right.$
	a Pegasi E.								
	a Arietis E.	110400	2493	1085837	2493	1071714	249	1053551	2495
30	Spica		2387	$98 \quad 652$	2393	995037	2399	1013413	2405
	Antares Saturn		$\left\|\begin{array}{l} 2447 \\ 2331 \end{array}\right\|$	$\begin{array}{lll} 52 & 24 & 30 \\ 41 & 30 & 38 \end{array}$	2448	54 6 56 39 45 5 3	$\left\|\begin{array}{l} 2450 \\ 2342 \end{array}\right\|$		2453
	$\left.\right\|_{\text {Satura }} \begin{array}{ll} \text { S Pegasi } & \mathrm{E} \end{array}$	$\begin{array}{lll} 43 & 15 & 53 \\ 55 & 14 & 22 \end{array}$	$\begin{aligned} & 2331 \\ & 2910 \end{aligned}$	$\begin{array}{lll} 41 & 30 & 38 \\ 53 & 42 & 16 \end{array}$	23337	39 45 32 52 10 29	$\begin{aligned} & 2342 \\ & 2975 \end{aligned}$	$\begin{array}{ccc} 38 & 0 & 34 \\ 50 & 40 & 5 \end{array}$	3348
	a Arietis E.	$97 \quad 942$	25	$95 \quad 2842$	2515	934750	2520	$\begin{array}{llll}92 & 7 & 5\end{array}$	2525
31	Spica W. Antares W. Satarn E. a Pegasi E. a Arietis E. Aldebarau E.	$\left\lvert\, \begin{array}{rrr} 110 & 9 & 44 \\ 64 & 20 & 3 \\ 29 & 18 & 7 \\ 43 & 19 & 35 \\ 83 & 45 & 32 \\ 115 & 38 & 1 \end{array}\right.$	$\begin{aligned} & 2444 \\ & 2476 \\ & 2383 \\ & 3265 \\ & 2563 \\ & 2407 \end{aligned}$	$\left\|\begin{array}{rrr} 111 & 52 & 17 \\ 66 & 1 & 52 \\ 27 & 34 & 8 \\ 41 & 54 & 42 \\ 82 & 5 & 46 \\ 113 & 54 & 36 \end{array}\right\|$	2453	1133437	2461	1151645	2470
					2481	674332	248	$6925 \quad 2$	2494
					2391	255021	2399	$24 \quad 645$	2408
					3333	4031	3408	39859	3492
					2572	802612	258	784651	2592
					2415	1121122	2423	11028	2431

SEPTEMBER.
AT APPARENT NOON.

Date.		THE SUN'S				Sidereal Time of the Semidiameter psssing the Meridian.*	Equation of Time, to be added to	Var. in 1 hour.
		Apparent Right Ascension.	Var. in 1 hour.	Apparent Declination.	Vrr. in 1 hour.		subtracted from Apparent Time.	
		h. m.	,	${ }^{\circ}{ }^{\prime \prime}$	"	m.	m. ${ }^{\mathbf{8}}$.	ค
Sat.	1	$\begin{array}{llll}10 & 39 & 6.52\end{array}$	$9 \cdot 075$	N. $83138 \cdot 9$	54.19	$1 \begin{array}{ll}1 & 4 \\ 1\end{array}$	$\underline{9 \cdot 13}$	0.779
Sun.	2	$104244 \cdot 17$	$9 \cdot 063$	$\begin{array}{llll}8 & 9 & 54\end{array}$	54.53	14.34	0.9 .73	0.792
Mon.	3	$1046 \quad 21 \cdot 53$	$9 \cdot 051$	$\begin{array}{lll}7 & 48 & 1.6\end{array}$	54.85	$1 \quad 4 \cdot 30$	028.87	0.803
Tuea.	4	$104958 \cdot 62$	$9 \cdot 040$	$\begin{array}{lll}7 & 26 & 1.4\end{array}$	$55 \cdot 16$	14.26	048.28	0.814
Wed.	5	$105335 \cdot 45$	9.030	$7 \quad 3 \quad 54.0$	55.45	$1 \quad 4 \cdot 22$	17.94	0.824
Thur.	6	$10 \quad 5712.06$	9.021	$64139 \cdot 6$	55.74	$1 \quad 4 \cdot 18$	127.83	0.833
Frid.	7	$11048 \cdot 46$	9.012	$61918 \cdot 6$	56.01	$14 \cdot 15$	147.93	0.841
Sat.	8	11424.66	$9 \cdot 005$	$55651 \cdot 3$	56.26	$1 \quad 4 \cdot 12$	28.22	0.849
Sun.	9	$\begin{array}{lll}11 & 8 & 0.70\end{array}$	8.999	$53418 \cdot 0$	56.51	$1 \quad 4 \cdot 10$	228.67	$0 \cdot 855$
Mon.	10	11113659	8.993	51139.0	56.74	14.08	$249 \cdot 28$	0.861
Tuea.	11	11151235	8.988	$44854 \cdot 6$	56.95	14.06	310.02	0.866
Wed.	12	111848.00	8.983	$426 \quad 52$	57-16	14.04	330.87	0.871
Thur.	13	112223.55	8.980	$\begin{array}{lllll}4 & 3 & 11 & 1\end{array}$	57.35	14.02	351.81	0.874
Frid.	14	$1125 \quad 59 \cdot 03$	8.977	34012.6	57.52	14.01	$412 \cdot 83$	0.877
Sat.	15	$112934 \cdot 45$	8.975	31710.0	57.69	14.00	433.90	0.879
Sun.	16	$\begin{array}{llll}11 & 33 & 9884\end{array}$	8.974	254537	57.83	13.99	455.01	0.880
Mon.	17	$1113645 \cdot 20$	8.973	23054.1	$57 \cdot 96$	$1 \quad 3.99$	$516 \cdot 14$	$0 \cdot 881$
Tuea.	18	$1140 \quad 20 \cdot 55$	8.973	2741.4	58.08	13.99	$537 \cdot 28$	0.881
Wed.	19	$11 \quad 43 \quad 55.91$	8.974	$14426 \cdot 1$	$58 \cdot 19$	$1 \quad 3.99$	558.41	0.880
Thur.	20	$114731 \cdot 30$	8.975	1218.4	58.28	14.00	619.52	0.879
Frid.	21	1151673	8.977	05748.9	58.35	14.01	$640 \cdot 58$	0.876
Sat.	22	$\begin{array}{llll}11 & 54 & 42\end{array} 22$	8.980	03427.7	58.41	14.02	$\begin{array}{ll}7 & 1.59\end{array}$	0.874
Sun.	23	$\begin{array}{lllll}11 & 58 & 1779\end{array}$	$8 \cdot 984$	N. $011 \quad 5.3$	58.45	14.04	722.52	0.870
Men.	24	$12 \quad 153.44$	8.988	S. $0 \quad 12 \quad 17.9$	58.48	14.06	$743 \cdot 36$	0.866
Tuea.	25	$\begin{array}{llll}12 & 5 & 29.21\end{array}$	8.993	$03541 \cdot 7$	58.49	14.08	$8 \quad 409$	0.861
Wed.	26	$\begin{array}{llll}12 & 9 & 511\end{array}$	8.999	$\begin{array}{llll}0 & 59 & 5.6\end{array}$	$58 \cdot 49$	1 4 10	824.68	0.855
Thur.	27	$121241 \cdot 17$	$9 \cdot 006$	$12229 \cdot 3$	$58 \cdot 48$	14.13	$845 \cdot 12$	0.848
Frid.	28	$121617 \cdot 40$	$9 \cdot 014$	14552.5	58.45	$1 \quad 4 \cdot 16$	$\begin{array}{lll}9 & 5 \cdot 38\end{array}$	0.840
Sat.	29	121953.84	$9 \cdot 023$	2914.9	58.41	$1 \quad 4 \cdot 19$	925.44	0.831
Sun.	30	122330.50	$9 \cdot 033$	23236.0	58.35	14.23	945.28	$0 \cdot 822$
Mon.	31	$12 \quad 27 \quad 7 \cdot 40$	$9 \cdot 043$	S. $25555 \cdot 7$	$58 \cdot 28$	14.27	$10 \quad 4.88$	0.811

[^10]SEPTEMBER.
at mean noon.

Date		THE SUN'S			Equation oftime,to besubtractedfrom $\|$added to Hean Time.	Sidereal Time.
		Apparent Right Ascension.	Apparent Decllnation	Semidiameter.*		
		b. m. ${ }^{\text {s. }}$	- '		m. ${ }^{\text {m. }}$	h. m. ${ }^{\text {en }}$
Sat.	1	10396.49	N. $83139 \cdot 1$	15 52.67	$\begin{array}{ll}0 & 9 \cdot 13\end{array}$	103857×37
Sun.	2	$104244 \cdot 19$	$8 \quad 954 \cdot 0$	155290	$0{ }^{0} 9 \cdot 73$	104253.92
Mon.	3	$1046 \quad 21 \cdot 60$	748111	$1553 \cdot 13$	028.87	$104650 \cdot 47$
Tues.	4	104958.74	726807	1553.36	048.29	105047.03
Wed.	5	$1053 \quad 35 \cdot 62$	7 3 52.9	$1553 \cdot 60$	17.95	$105443 \cdot 58$
Thur.	6	$105712 \cdot 28$	$64138 \cdot 2$	1553.83	127.85	$105840 \cdot 13$
Frid.	7	$11 \quad 048.73$	61916.9	1554.07	147.95	$11 \quad 236.68$
Sat.	8	$\begin{array}{ll}11 & 424.99\end{array}$	556493	1554.30	28.25	$11 \quad 633 \cdot 24$
Sun.	9	$\begin{array}{llll}11 & 8 & 1.08\end{array}$	534157	15 54:54	228.71	111029.79
Mon.	10	$\begin{array}{lll}11 & 11 & 37.02\end{array}$	511363	1554.78	24932	11142634
Tues.	11	$111512 \cdot 83$	$44851 \cdot 6$	1555.03	310.06	$111822: 89$
Wed.	12	$111848 \cdot 53$	4261.9	1555.27	3 30.92	$112219 \cdot 44$
Thur.	13	112224.13	$\begin{array}{llll}4 & 3 & 7 \cdot 4\end{array}$	1555.52	351.87	112616.00
Frid.	14	$1125 \quad 59 \cdot 66$	34085	1555.77	$412 \cdot 89$	$113012 \cdot 55$
Sat.	15	$112935 \cdot 13$	31756	1556.03	$433 \cdot 97$	1134 910
Sun.	16	113310.57	253590	1556.28	455.08	1138565
Mon.	17	$113645 \cdot 98$	230490	1556.54	516.22	1142 2.21
Tues.	18	$114021 \cdot 39$	27360	15 56:80	$537 \cdot 36$	114558.76
Wed.	19	114356.81	144203	1557.06	558.50	114955.31
Thar.	20	$114732 \cdot 25$	$121 \quad 23$	1557.33	619.61	$115351 \cdot 86$
Frid.	21	1151773	057424	1557.60	$640 \cdot 68$	$115748 \cdot 41$
Sat.	22	115443.27	034209	1557.87	$7 \quad 1.69$	$12 \quad 144.97$
Sun.	23	$115818 \cdot 89$	N. 01058.1	1558.15	$722 \cdot 63$	12 5 41
Mon.	24	12154.60	S. 01225.4	1558.42	$743 \cdot 47$	$\begin{array}{lll}12 & 9 & 38.07\end{array}$
Tnes.	25	$\begin{array}{lll}12 & 5 & 30 \cdot 42\end{array}$	03549.5	1558.70	$8 \quad 4.20$	121334.62
Wed.	26	$\begin{array}{llll}12 & 9 & 6.37\end{array}$	05913.8	15 58.98	824.80	$121731 \cdot 17$
Thar.	27	$121242 \cdot 48$	122379	15 59.26	$845 \cdot 24$	$122127 \cdot 73$
Frid.	28	$\begin{array}{llll}12 & 1618 \cdot 77\end{array}$	14614	15 59:53	$9 \quad 5.51$	122524.28
Sat.	29	$121955 \cdot 26$	$2924 \cdot 1$	$1559 \cdot 81$	925.58	$12 \quad 2920 \cdot 83$
Sun.	30	$12 \quad 2331 \cdot 97$	232456	$16 \quad 0.09$	$945 \cdot 42$	$123317 \cdot 38$
Mon.	31	12278.92	S. $256 \quad 5.5$	$\begin{array}{ll}16 & 0.37\end{array}$	$10 \quad 5.01$	123713.94

[^11]
SEPTEMBER.

III.

MEAN TIME.

Day.	THE SUN'S Apparent		$\begin{gathered} \text { Logarithm } \\ \text { of the } \\ \text { Radius } \\ \text { Vector of } \\ \text { the Earth. } \end{gathered}$	Transit of the First Point of Aries.	THE MOON'S			
	Longitude	Latitud			Semidiameter.		Horizontal Parallax.	
	Noon.	Noon.	Noon.		Noon.	Midnight.	Noon.	Midni
	1587201	"			${ }^{\prime}{ }^{\prime \prime}$	15	'5-1	' ${ }^{\prime \prime}$
1	$158720 \cdot 1$	S. 0.36	0.0038629	$131851 \cdot 40$	$1551 \cdot 25$	$1547 \cdot 09$	588	5749.88
2	159	0.50	-0037580	$131455 \cdot 50$	$1542 \cdot 60$	1537.85	$5733 \cdot 43$	5716.04
3	$160 \quad 3 \begin{array}{ll}1607\end{array}$	0.62	-0036526	131059.58	1532.92	1527.88	$5657 \cdot 98$	$5639 \cdot 53$
	$\begin{array}{lll}161 & 138.6\end{array}$	0.72	0.0035466	$\begin{array}{llll}13 & 7 & 3.68\end{array}$	$1522 \cdot 80$	151779	562093	$56 \quad 2 \cdot 58$
5	$1615948 \cdot 4$	0.81	-0034402	$1383 \begin{array}{llll}13 & 7 & 78\end{array}$	$1512 \cdot 94$	1588.31	554475	5527.79
6	$16258 \quad 00$	0.86	-0033332	125911.87	$15 \quad 3.99$	$15 \quad 0.06$	55 11.96	5457.57
7	$1635613: 5$	8	0.0032256	$125515 \cdot 96$	1456.59	1458.64	5444.86	5434.06
8	1645429.0	0.88	-0031173	125120.05	1451.27	1449.52	$5425 \cdot 37$	5418.99
9	$1655246 \cdot 6$	0.85	$\cdot 0030082$	$124724 \cdot 15$	$1448 \cdot 43$	1448.03	5415.00	$5413 \cdot 53$
10	$16651 \quad 6.2$	0.81	0.0028984	124328.24	$1448 \cdot 34$	$1449 \cdot 37$	5414.66	5418.42
11	$1674927 \cdot 9$	0.74	-0027877	$123932 \cdot 34$	1451.09	$1453 \cdot 52$	542474	$5433 \cdot 64$
12	$1684751 \cdot 7$	0.63	$\cdot 0026761$	$123536 \cdot 43$	$1456 \cdot 63$	$15 \quad 0.36$	5445.01	5458.68
13	$1694617 \cdot 6$	0.51	0.0025635	$123140 \cdot 52$	15 4.68	159.53	5514.51	$5532 \cdot 26$
14	$1704445 \cdot 5$	0.38	-0024498	$122744 \cdot 62$	1514.83	$1520 \cdot 49$	5551.69	561245
15	$1714315 \cdot 6$	0.25	-0023349	$122348 \cdot 71$	$1526 \cdot 42$	$1532 \cdot 51$	$5634 \cdot 16$	$5656 \cdot 48$
16	17241478	S. 0.12	0.0022189	$121952 \cdot 80$	1538.64	1544.70	5718.95	$5741 \cdot 14$
17	$1734021 \cdot 9$	0.00	-0021016	$121556 \cdot 90$	$1550 \cdot 55$	1556.08	$58 \quad 2 \cdot 59$	5822.85
18	1743858.1	N. $0 \cdot 11$	$\cdot 0019830$	12120.99	16 1 18	$16 \quad 575$	5841.54	5858.27
19	$1753736 \cdot 2$	$0 \cdot 19$	0.0018681	$\begin{array}{llll}12 & 8 & 5.09\end{array}$	$16 \quad 9.70$	1612.96	5912.73	5924.70
20	1763616.2	$0 \cdot 24$	-0017419	$12 \begin{array}{lll}12 & 4 & 9 \cdot 18\end{array}$	$1615 \cdot 50$	$1617 \cdot 31$	5934.01	5940.62
1	177	0.28	-0016196	$12 \quad 013.27$	1618.37	1618.73	5944.52	$5945 \cdot 84$
22	$1783341 \cdot 5$	0.27	0.0014963	$115617 \cdot 37$	$1618 \cdot 43$	161752	5944.73	59 41'40
23	1793226.7	0.24	0013721	$115221 \cdot 46$	1616.06	$1614 \cdot 15$	59 36.06	59 29.03
24	1803118.6	$0 \cdot 17$	-0012471	114825.55	$1611 \cdot 82$	$\begin{array}{ll}16 & 9 \cdot 15\end{array}$	$5920 \cdot 51$	591075
25	$18130 \quad 22$	N. 0.06	0.0011216	$114429 \cdot 65$	$16 \quad 6.22$	$16 \quad 3 \cdot 07$	590.01	584845
26	$1822852 \cdot 6$	S. 0.05	-0009957	114033.74	1559.72	1556.22	$5836 \cdot 18$	$5823 \cdot 38$
27	18327446	$0 \cdot 18$	-00086	$113637 \cdot 8 \pm$	1552.61	1548.89	$5810 \cdot 13$	5756.50
28	$1842638 \cdot 3$	0.31	0.0007434	$113241 \cdot 93$	1545.09	$1541 \cdot 19$	$5742 \cdot 55$	$5728 \cdot 28$
29	$1852533 \cdot 8$	$0 \cdot 13$	-0006174	112846.02	1537.22	1533.20	5713.75	5659.02
30	18:5 $2431 \cdot 2$	0.55	-0004917	$112450 \cdot 12$	15 29-13	1525.03	$5644 \cdot 11$	5629.09
31	1872330.5	S. 0.66	$0 \cdot 0003662$	112054.21	1520.93	1516.85	5614.06	5559.11

IV.

SEPTEMBER
mean time.

Day.	THE MOON'S						
	Longitude.		Latitude.		$\frac{\text { Age. }}{\text { Noon. }}$	Meridian Passage.	
	Noon.	Midni	Noon.	midnight.		Opper.	Lower.
		- , "	- , "		a.	h. m.	
1	3193448	$3262152 \cdot 0$	S. $043 \quad 23.4$	S. 11955.5	12:44	1113.7	$2339 \cdot 4$
2	$333 \quad 617 \cdot 3$	$33947 \quad 6 \cdot 2$	15504	${ }_{2}^{2} 28 \quad 93$	13.44	124	
3	$346 \quad 24 \quad 7 \cdot 0$	3525710.5	$25857 \cdot 2$	$\begin{array}{lll}327 & 28\end{array}$	$14 \cdot 44$	$1252 \cdot 4$	028.7
4	$3592610 \cdot 6$	$\begin{array}{lll}5 & 51 & 47\end{array}$	$\begin{array}{lll}3 & 52 & 8.3\end{array}$	$414 \quad 0 \cdot 1$	$15 \cdot 44$	1338.4	115.6
5	1211548	182846.4	$43228 \cdot 0$	$44725 \cdot 4$	16.44	1423.0	$\begin{array}{ll}2 & 0.8\end{array}$
6	2441492	$305117 \cdot 0$	$45848 \cdot 6$	56367	$17 \cdot 44$	$15 \quad 69$	2450
7	365728.0	$43 \quad 043.4$	51050.7	$51133 \cdot 6$	18.44	$1550 \cdot 9$	328.9
8	$49 \quad 128.5$	$55 \quad 0 \quad 11.2$	$5 \begin{array}{llll}5 & 8 & 497\end{array}$	$5244 \cdot 6$	$19 \cdot 44$	$1635 \cdot 4$	413.0
9	605722.2	$66 \quad 53 \quad 34 \cdot 6$	45324.9	$44057 \cdot 5$	$20 \cdot 44$	1721.0	458.0
10	724923.5	7845248	$42530 \cdot 2$	$4 \quad 711 \cdot 6$	21.44	$18 \quad 78$	44.2
11	$844215 \cdot 9$	$904033 \cdot 9$	$34610 \cdot 5$	3 $2236 \cdot 9$	$22 \cdot 44$	$1856 \cdot 1$	631.8
12	964056.5	$10244 \quad 0 \cdot 3$	25641.7	$22836 \cdot 9$	$23 \cdot 44$	1945.6	720.7
13	$1085020 \cdot 4$	$115 \quad 0302$	15836.2	12654.8	24.44	20359	810.7
14	$121150 \cdot 1$	1273416.6	S. $05350 \cdot 5$	S. $01942 \cdot 8$	25.44	2126.7	${ }_{9} 1 \cdot 3$
15	$1335841 \cdot 9$	$1402833 \cdot 0$	N. $015 \quad 5.3$	N. 050	26.44	$2217 \cdot 5$	$952 \cdot 1$
16	$\begin{array}{lll}147 & 4 & 0.7\end{array}$	1534588	$\begin{array}{lll}1 & 25 & 0.4\end{array}$	$\begin{array}{lll}1 & 59 & 9.3\end{array}$	27.44	$\begin{array}{lll}23 & 8.2\end{array}$	$1042 \cdot 9$
17	$1603153 \cdot 3$	$167 \quad 24 \quad 2 \cdot 8$	$\begin{array}{llll}232 & 3\end{array}$	$3 \quad 310 \cdot 0$	$28 \cdot 44$	2358.8	1133.5
18	1742118.1	$1812311 \cdot 4$	33154.3	$35743 \cdot 6$	$29 \cdot 44$		$12 \quad 24.2$
19	1882992	$1953831 \cdot 2$	$420 \quad 6 \cdot 4$	438350	0.98	049.8	13155
20	$2025033 \cdot 3$	210 428.5	452450	$5 \quad 218 \cdot 2$	1.98	141.4	$14 \quad 77$
21	2171928.7	22434479	$\begin{array}{llll}5 & 7 & 22\end{array}$	$5 \quad 6 \quad 50 \cdot 6$	298	$234 \cdot 3$	15
22	$2314942 \cdot 0$	$239 \quad 3 \begin{array}{lll} & 31 & 8\end{array}$	$\begin{array}{llll}5 & 1 & 44\end{array}$	45149.6	$3 \cdot 98$	328.9	1556.9
23	$2461543 \cdot 0$	$2532547 \cdot 8$	437197	$41832 \cdot 6$	4.98	$425 \cdot 2$	1653.9
24	2603324.3	2673816.8	$35550 \cdot 2$	$32938 \cdot 8$	$5 \cdot 98$	522.9	17520
25	2744014.8	28139126	$31026 \cdot 7$	22844.7	6.98	$621 \cdot 1$	1850.0
26	2883581	2952816	15545	$11958 \cdot 7$	7.98	718.5	19467
27	3021756.0	309454.0	N. 04359.9	N. $0 \quad 7404$	$8 \cdot 98$	8143	2041.2
28	3154859.0	32230136	S. 02828.3	S. $1 \quad 3 \quad 56.0$	$9 \cdot 98$	$\begin{array}{ll}9 & 7.5\end{array}$	$2133 \cdot 1$
29	$\begin{array}{lllll}329 & 8 & 39 \cdot 7\end{array}$	$3354417 \cdot 4$	$1 \begin{array}{ll}1 & 38 \\ 14 \cdot 1\end{array}$	$\begin{array}{llll}2 & 10 & 55 \cdot 7 \\ 3 & 9 & 54.8\end{array}$	10.98	9 58.0	${ }_{23}^{22} 22 \cdot 4$
30	$\begin{array}{llll}342 & 17 & 6.2\end{array}$	348474	241364	3 O 54.8	11.9	$1046 \cdot 1$	23
31	$\begin{array}{llll}355 & 14 & 9 \cdot 2\end{array}$	13818.0	S. $33531 \cdot 3$	S. 358103	1298	11323	23548

The Moon's Longitude and Latitude are from Hansen's Tables; the Right Ascension and Declination contain Newcomb's corrections.

JUPITER'S ELEMENTS.

Date.	Apparent Right Ascension.	Apparent Dechmation.			Polar S.D.	Hor. Par.	Meridian Passage.	
	Noon.	Noon.						
	h. m. s.	\bigcirc	,	"	"	"	h.	
Aug. 7	$\begin{array}{llll}6 & 6 & 35 \cdot 2\end{array}$	N. 23	7	$48 \cdot 2$	15.7	1.5	21	$3 \cdot 5$
8	$\begin{array}{lll}6 & 7 & 26 \cdot 4\end{array}$	23	7	43.5	$15 \cdot 7$	1.5	21	$0 \cdot 4$
9	$\begin{array}{llll}6 & 8 & 17.2\end{array}$		7	37.9	$15 \cdot 7$	1.5	20	57.3
10	$\begin{array}{llll}6 & 9 & 7.8\end{array}$	23	7	313	15.7	1.5	20	54.2
11	$\begin{array}{lll}6 & 9 & 58.0\end{array}$		7	23.8	15.8	1.5	20	51.1

SATURN'S ELEMENTS.

Aug. 9				S. ${ }^{\circ} \mathrm{8}$ (ccc			n8.7	${ }_{1}^{\prime \prime} 0$	h.13	m.$51 \cdot 9$
10	23	2	$18 \cdot 4$	8	22	$46 \cdot 9$	8.8	$1 \cdot 0$	13	$47 \cdot 7$
11	23	2	$4 \cdot 3$	8	24	$24 \cdot 9$	8.8	1.0	13	$43 \cdot 5$
12	23	1	50.0	8	26	$4 \cdot 0$	8.8	1.0	13	$39 \cdot 4$
13	23	1	35.5	8	27	44 1	8.8	$1 \cdot 0$	13	$35 \cdot 2$

MEAN PLACES OF STARS.

Star's Name.		Mrg.	Right Ascension.			Decilination.		
				m.		\bigcirc	,	"
α Andromedæ	...	$2 \cdot 1$	0	3	$31 \cdot 6$	N. 28	34	17.3
γ Pegasi	2.9	0	8	$23 \cdot 6$	N. 14	39	$39 \cdot 6$
a Phoønieis ..		$2 \cdot 4$		21	38.4	S. 42	48	59.3
β Ceti ..		$2 \cdot 2$		38	$52 \cdot 3$	S. 18	30	$8 \cdot 6$
a Ursw Minoris		$2 \cdot 1$		25	8.2	N. 88	48	$18 \cdot 9$
a Eridani		0.5		34	12:8	S. 57	42	$51 \cdot 3$
γ^{1} Andromedæ	\ldots	$2 \cdot 2$	1	58	7.5	N. 41	52	44.3
a Arietis	\ldots	$2 \cdot 2$	2	1	$52 \cdot 3$	N. 23	1	$5 \cdot 7$
a Ceti		$2 \cdot 8$	2	57	$21 \cdot 9$	N. 3		$16 \cdot 4$
a Persei	...	$1 \cdot 9$	3	17	$36 \cdot 4$	N. 49	31	$37 \cdot 6$
a Tauri	$1 \cdot 1$			31.5	N. 16		148

MEAN PLACES OF STARS (continued).

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Star's Nams. \& Mag. \& \multicolumn{3}{|l|}{Right Ascension.} \& \multicolumn{3}{|c|}{Declination.}

\hline a Aurigr \& 0.2 \& $\stackrel{\text { b }}{5}$ \& $\stackrel{m}{9}$ \& ${ }_{4}^{\text {8. }}$ \& N. 45 \& 54 \& 0,8

\hline B Orionis ... \& 0.3 \& 5 \& 10 \& 1.2
1.2 \& N. 45 \& 54 \& 10.8

\hline γ Orionis \& $1 \cdot 7$ \& 5 \& 20 \& $5 \cdot 3$ \& N. 6 \& 15 \& 53.8

\hline $\boldsymbol{\beta}$ Tauri \& 1.8 \& 5 \& 20 \& $20 \cdot 9$ \& N. 28 \& 31 \& $42 \cdot 8$

\hline ¢ Orionis \& $1 \cdot 7$ \& 5 \& 31 \& $26 \cdot 6$ \& S. 1 \& 15 \& $41 \cdot 4$

\hline ${ }^{a}$ Orionis \& var. \& 5 \& 50 \& 49 \& N. 7 \& \& 24.0

\hline ${ }_{\beta}^{\beta}$ Aurigæ Canis Majoris \& $2 \cdot 1$ \& 5 \& 52 \& 38.0 \& N. 44 \& 56 \& 18.6

\hline ¢ Canis Majoris
a Argas

γ \& $2 \cdot 0$ \& 6 \& 18 \& $33 \cdot 6$ \& S. 17 \& 54 \& 31.7

\hline a Argus
γ
γ Geminorum \& -1.0 \& 6 \& 21 \& $51 \cdot 9$ \& S. 52 \& 38 \& 39.0

\hline ${ }_{\text {a }}{ }_{\text {a Ganis Majoris }}$ \& 1.9 \& 6 \& 32 \& 16.9 \& N. 16 \& 28 \& 47.9

\hline ${ }_{\text {a }}^{\text {Canis Majoris }}$ \& -1.4 \& 6 \& 41 \& 0.2 \& S. 16 \& 35 \& $12 \cdot 2$

\hline ${ }_{\text {¢ Canis Majoris }}$ \& 1.6 \& 6 \& 54 \& 55.9 \& S. 28 \& 50 \& $37 \cdot 6$

\hline δ Canis Majoris
a Geminorum \& $2 \cdot 0$ \& 7 \& 4 \& $34 \cdot 1$ \& S. 26 \& 14 \& 36.9

\hline ${ }_{\text {a }}^{\text {a Cominorum }}$ \& $2 \cdot 0$ \& 7 \& 28 \& 36.2 \& N. 32 \& 5 \& $43 \cdot 4$

\hline ${ }^{\alpha}{ }^{\text {a }}$ Camis Mininoris \& 0.5
1.2 \& 7 \& 34
39 \& $22 \cdot 9$
$33 \cdot 9$ \& N. 5 \& 27 \& 57.3

\hline £ Argûs ... \& 1.7 \& 8 \& 20 \& $35 \cdot 1$ \& N. 28 \& 15 \& ${ }_{24 \cdot 6}$

\hline δ Argûs \& $2 \cdot 0$ \& 8 \& 42 \& 6.3 \& S. 54 \& 21 \& 24.6
49

\hline β Argús ... \& 1.7 \& 9 \& 12 \& 103 \& S. 69 \& 19 \& 47.8

\hline - Hydra ... \& $2 \cdot 2$ \& 9 \& 22 \& 58.1 \& S. 8 \& 15 \& $2 \cdot 9$

\hline «. Leonis \& $1 \cdot 3$ \& 10 \& 3 \& 22.0 \& N. 12 \& 25 \& 36.7

\hline a Ursw Majoris \& 2.0 \& 10 \& 57 \& $56 \cdot 1$ \& N. 62 \& 15 \& 31.0

\hline al Crucis \& 1.0 \& 12 \& 21 \& 21.8 \& S. 62 \& 35 \& 41.5

\hline a^{2} Crucis \& $1{ }^{13}$ \& Δa \& + \& $0 \cdot 6$ \& $\Delta \delta$ \& - \& $3 \cdot 1$

\hline γ Orucis \& $1 \cdot 6$ \& 12 \& 25 \& 56.7 \& S. 56 \& 35 \& $12 \cdot 3$

\hline β Crucis \& 1.5 \& 12 \& 42 \& $13 \cdot 4$ \& S. 59 \& 10 \& $30 \cdot 1$

\hline ¢ Ursm Majoris \& 1.8 \& 12 \& 49 \& 53.8 \& N. 56 \& 28 \& 11.9

\hline a Virginis ... \& 1.2 \& 13 \& 20 \& $14 \cdot 4$ \& S. 10 \& 40 \& $14 \cdot 8$

\hline η Urem Majoris \& $1 \cdot 9$ \& 13 \& 43 \& $50 \cdot 3$ \& N. 49 \& 46 \& 56.0

\hline β Centauri ... \& 0.8 \& 13 \& 57 \& $11 \cdot 0$ \& S. 59 \& 55 \& 11.0

\hline a Boötis ... \& $0 \cdot 3$ \& 14 \& 11 \& $22 \cdot 4$ \& N. 19 \& 40 \& $17 \cdot 6$

\hline α^{2} Centauri ... \& 1 \& 14 \& 33 \& 13.2 \& S. 60 \& 26 \& $43 \cdot 3$

\hline a Scorpii ... \& 13 \& 16 \& 23 \& 38.5 \& S. 26 \& 13 \& 25.7

\hline a Trianguli Australis \& $1 \cdot 9$ \& 16 \& 38 \& $42 \cdot 2$ \& S. 68 \& 51 \& 20.9

\hline λ Scorpii ${ }^{\text {... }}$ \& $1 \cdot 8$ \& 17 \& 27 \& 13.5 \& S. 37 \& 2 \& $8 \cdot 2$

\hline a Ophiuchi ... \& $2 \cdot 1$ \& 17 \& 30 \& $34 \cdot 2$ \& N. 12 \& 37 \& 40.7

\hline ¢ Sagittarii ... \& 1.9 \& 18 \& 17 \& 56.0 \& S. 34 \& 25 \& 45.8

\hline a Lyra \& $0 \cdot 1$ \& 18 \& 33 \& $45 \cdot 4$ \& N. 38 \& 41 \& $45 \cdot 0$

\hline a Aquilæ ... \& 0.9 \& 19 \& 46 \& $11 \cdot 8$ \& N. 8 \& 37 \& 10.6

\hline a Pavonis \& $2 \cdot 0$ \& 20 \& 18 \& 129 \& S. 57 \& 2 \& 123

\hline γ Oygai \& $2 \cdot 3$ \& 20 \& 18 \& $51 \cdot 3$ \& N. 39 \& 57 \& 19.7

\hline a Cygni \& 1.3 \& 20 \& 38 \& 13.6 \& N. 44 \& 56 \& $38 \cdot 9$

\hline ${ }^{\text {a Cephei }}$ \& $2 \cdot 6$ \& 21 \& 16 \& $20 \cdot 2$ \& N. 62 \& 11 \& 13.7

\hline ϵ Pegasi \& $2 \cdot 5$ \& 21 \& 39 \& $34 \cdot 1$ \& N. 9 \& 26 \& 37.5

\hline α Gruia \& 1.9 \& 22 \& 2 \& 18.7 \& S. 47 \& 24 \& 59.7

\hline β Gruis \& $2 \cdot 1$ \& 22 \& 37 \& 3.5 \& S. 47 \& 22 \& 35.0

\hline a Piscis Australis \& 1.3 \& 22 \& 52 \& 27.5 \& S. 30 \& 7 \& 14.2

\hline a Pegasi \& 2.6 \& 23 \& 0 \& 4.7 \& N. 14 \& 41 \& 57.8

\hline
\end{tabular}

THE CORRECTION FOR SECOND DIFFERENCES, IN FINDING THE GREENWICH TIME CORRESPONDING TO A REDUCED LUNAR DISTANCE.

Tho Correction is to be added to the approximate Greenwich Time when the Proportional Logarithms in the Ephemeris are decreasing, and sultracted when they are increasing.

TABLES USED IN DETERMINING THE LATITUDE BY OBSERVATIONS OF TEE POLE STAR OUT OF THE MERIDIAN.

TABLE I.
Containing the First Correction.
Arguments :-Sidereal Time of Observation.

Sidereal Time.	Correction.	Sidereal Time.	Sidereal Time.	Correction.	$\begin{aligned} & \text { Sidereal } \\ & \text { T'ime. } \end{aligned}$
h. m.	- , "	h. m.	h. m.	- "	h. m.
$0 \quad 0$	$-176+$	120	60	-026 $5+$	18.
10	1811	10	10°	0238	10
20	197	20	20	0209	20
30	1956	30	30	0177	30
40	11037	40	40	0143	40
50	11110	50	50	01057	50
10	11135	130	70	0750	190
10	11151	10	10	0442	10
20	11159	20	20	-0 134 +	20
30	11159	30	30	+0134-	30
40	11151	40	40	0442	40
50	11135	50	50	0750	50
20	11110	140	80	01057	$20 \quad 0$
10	11037	10	10	0143	10
20	1956	20	20	0177	20
30	197	30	30	0209	30
40	1811	40	40	0238	40
50	176	50	50	0265	50
30	1554	150	90	0290	210
10	$1 \begin{array}{llll}1 & 4\end{array}$	10	10	03151	10
20	$\begin{array}{lll}1 & 3 & 7\end{array}$	20	20	03438	20
30	$\begin{array}{llll}1 & 1 & 33\end{array}$	30	30	03721	30
40	05952	40	40	0400	40
50	0584	50	50	04234	50
40	0569	160	$10 \quad 0$	0454	220
10	0548	10	10	04729	10
20	0521	20	20	04948	20
30	04948	30	30	0521	30
40	04729	40	40	0548	40
50	0454	50	50	0569	50
	04234	170	110	0584	230
10	0400	10	10	05952	10
20	03721	20	20	$\begin{array}{llll}1 & 1 & 34\end{array}$	20
30	03438	30	30	$1 \begin{array}{lll}1 & 3\end{array}$	30
40	03151	40	40	1434	40
50	0290	50	50	1554	50
60	$-0265+$	180	120	$+176-$	240

TABLE II.
Containing the Second Correction (always to be added),
Arguments:-Sidereal Time and Altitude.

Sidereal Time.	Altitude.								Sidereal Time.
	0°	5°	10°	15°	20°	25°	30°	35°	
h. m.	, n_{1}	, "	, "	1 "	, "	, "	' "	, "	
00	00	01	0 1	02	02	0	03	04	120
30	00	$0 \quad 0$	$0 \quad 0$	01	0 1	0	01	02	30
10	0 0	00	$0 \quad 0$	00	00	00	0	0	130
30	00	00	0	00	00	0	0	0	30
20	0	00	00	0	00	0	01	01	140
30	00	00	01	01	0 1	0	0	03	30
30	00	01	01	02	03	03	0	05	150
30	00	01	02	03	04	06	07	$0 \quad 9$	30
40	00	02	03	0	06	$\begin{array}{ll}0 & 8\end{array}$	010	012	160
30	00	02	04	06	0	011	014	017	30
50	0	03	05	08	011	014	017	021	170
30	00	03	06	$0 \quad 9$	013	016	020	024	30
60	00	03	07	011	014	018	023	028	180
30	00	04	07	011	016	020	025	030	30
70	0	04	08	012	016	021	026	031	190
30	00	04		012	016	021	026	032	30
80	00	0	08	012	016	021	025	031	$20 \quad 0$
30	0 0	04		011	015	019	024	029	30
90	0	0	07	010	014	018	022	027	210
30	00	03		0	012	015	019	023	30
100	0	0	0	0	$\begin{array}{lll}0 & 10\end{array}$	013	016	$\begin{array}{ll}0 & 19\end{array}$	220
30	0	02		06	08	010	012	015	30
110	0	0	0	0	06	07	0	011	230
30	00	01	$0 \quad 2$	03	04	$0 \quad 5$	06	07	30
120	00	0	01	02	02	$0 \quad 3$	03	0	240

TABLE III.
Containing the Third Correction (always to be added).
Arguments:-Sidereal Time and Date.

Sidereal Time.	Jan. 1.	Feb. 1.	March 1.	April 1.	May 1.	June 1.	July 1.
h.	, "	, "	, "	' 1	' "	, "	, "
0	135	131	124	115	17	12	13
2	130	132	129	121	112	14	10
4	117	124	126	121	114	15	057
6	10	110	115	116	112	14	054
8	043	053	11	17	17	12	053
10	030	038	047	056	10	10	054
12	025	029	036	045	053	058	057
14	030	028	031	039	048	056	10
16	043	036	034	039	046	055	13
18	10	050	045	044	048	056	16
20	117	17	059	053	053	058	17
22	130	122	113	14	10	10	16
24	135	131	124	115	17	12	13

TABLE IT.
Containing the Second Correction (alvoays to be added).
Arguments:-Sidereal Time and Altitude.

Sidereal Time.	Altitude.								Sidereal Time.
	35°	40°	45°	50°	55°	60°	65°	70°	
h. m.	' "	' "	' 1	' "	"	' "	, "	,	h. m.
00	04	05	06	07	08	010	013	016	120
30	0	0	03	03	04	04	05	07	30
10	$0 \quad 0$	0	01	01	01	01	01	01	130
30	00	00	00	00	0 0	0 0	00	0	30
20	01	01	01	01	02	$0 \quad 2$	$0 \quad 2$	03	140
30	03	03	04	04	05	06	$0 \quad 8$	010	30
30	05	06	07	09	010	013	016	020	150
30	09	010	012	014	017	021	026	034	30
40	012	015	018	021	025	031	038	049	160
30	017	020	024	028	034	041	051	15	30
50	021	025	029	035	042	051	13	121	170
30	024	029	035	041	050	10	114	136	30
60	028	033	039	047	056	18	124	148	180
30	030	036	043	051	11	114	131	157	30
70	031	038	045	053	14	117	136	23	190
30	032	038	045	054	15	118	137	24	30
80	031	037	044	053	13	116	135	22	$20 \quad 0$
30	029	035	042	050	10	112	129	155	30
90	$0 \cdot 27$	032	038	045	054	16	121	144	210
30	023	028	033	039	047	057	111	131	30
100	019	023	0:28	033	039	048	059	116	220
30	015	018	022	026	031	037	046	059	30
110	011	013	016	019	023	027	034	043	230
30	07	09	010	012	015	018	022	029	30
120	04	05	06	07	08	010	013	016	240

TABLE ILI.
Containing the Third Correction (always to be added).
Arguments :-Sidereal Time and Date.

Sldereal Time.	July 1.	Aug. 1.	Sept. 1.	Oct. 1.	Nov. 1.	Dec. 1.	Dec. 31.
h.	' "	' "	' "	' "	-"	, "	' "
0	13	110	120	131	142	150	153
2	10	12	18	117	128	139	147
4	057	053	054	058	17	117	128
6	054	046	041	040	044	051	11
8	053	043	033	027	025	027	034
10	054	045	033	023	015	012	014
12	057	050	040	029	018	010	07
14	10	058	052	043	032	021	013
16	13	17	16	12	053	043	032
18	16	114	119	120	116	19	059
20	17	117	127	133	135	133	126
22	16	115	127	137	145	148	146
24	13	110	120	131	142	150	153

For converting Intervals of Mean Solar Time into Equivalent Iniervals of Sidereal Time.

HOURS.		minutes.				SECONDS.			
	$\begin{aligned} & \text { Equivalents } \\ & \text { int } \\ & \text { Sidereal Time. } \end{aligned}$		$\begin{aligned} & \text { Equivalents } \\ & \text { in } \\ & \text { Sidereal } \\ & \text { Time. } \end{aligned}$		$\begin{gathered} \text { Equivalents } \\ \text { ln } \\ \text { Sidereal } \\ \text { Time. } \end{gathered}$		Equivalents in Sideres Time.		Equivalents in Time.
1		1	$\begin{array}{ccc}\text { m. } & \text { s. } \\ 1 & 0.1643\end{array}$	31	${ }_{31}{ }^{\text {m. }}$ 5.0925	1	${ }^{\text {s. }} 1.0027$	31	${ }_{31}{ }^{\text {¢ }}$. 0849
2	20197130	2	20.3286	32	325.2568	2	2.0055	32	32.0876
3	$3029 \cdot 5694$	3	$30 \cdot 4928$	33	335.4211		3.0082	33	33.0904
4	$4039 \cdot 4259$	4	40.6571	34	345.5853	4	4.0110	34	34.0931
5	$5049 \cdot 2824$	5	50.8214	35	355.7496	5	$5 \cdot 0137$	35	35.0958
6	$6059 \cdot 1388$	6	60.9857	36	365.9139	6	6.0164	36	36.0986
7	7118.9953	7	71.1499	37	376.0782	7	7.0192	37	37-1013
8	8118.8518	8	81.3142	38	386.2424	8	$8 \cdot 0219$	38	$38 \cdot 1040$
9	9128.7083	9	$91 \cdot 4785$	39	396.4067	9	$9 \cdot 0246$	39	39•1068
10	10138.5647	10	101.6428	40	406.5710	10	10.0274	40	40-1095
11	$11148 \cdot 4212$	11	111.8070	41	416.7353	11	11.0301	41	41-1123
12	12158.2777	12	121.9713	42	426.8995	12	12.0329	42	42:1150
13	132 8 1342	13	1321356	43	437.0638	13	13.0356	43	$43 \cdot 1177$
14	$14217 \cdot 9906$	14	1422998	44	$447 \cdot 2281$	14	14.0383	44	44'1205
15	152278471	15	$15 \quad 24641$	45	4573924	15	15.0411	45	$45 \cdot 1232$
16	162377036	16	162.6284	46	467.5566	16	16.0438	46	46.1259
17	17247.5600	17	$17 \quad 2 \cdot 7927$	47	477.7209	17	17.0465	47	47.1287
18	$18257 \cdot 4165$	18	$18 \quad 2 \cdot 9569$	48	487.8852	18	18.0493	48	$48 \cdot 1314$
19	$\begin{array}{lll}19 & 3 & 7 \cdot 2730\end{array}$	19	$193 \cdot 1212$	49	498.0495	19	$19 \cdot 0520$	49	49•1342
20	$20317 \cdot 1295$	20	203.2855	50	508.2137	20	20.0548	50	$50 \cdot 1369$
21	21326.9859	21	213.4498	51	5183780	21	21.0575	51	51-1396
22	$22336 \cdot 8424$	22	223.6140	52	528.5423	22	22.0602	52	52:1424
23	23 3 46.6989	23	233.7783	53	5387066	23	23.0630	53	$53 \cdot 1451$
24	24356.5554	24	2439426	54	548.8708	24	24.0657	54	$54 \cdot 1479$
		25	$254 \cdot 1069$	55	559.0351	25	25.0685	55	55•1506
		26	2642711	56	$569 \cdot 1994$	26	26.0712	56	56.1533
		27	27 4.4354	57	$579 \cdot 3637$	27	$27 \cdot 0739$	57	57•1561
		28	2845997	58	589.5279	28	28.0767	58	$58 \cdot 1588$
		29	2947640	59	5996922	29	29.0794	59	59.1615
		30	304.9282	60	609.8565	30	30.0821	60	60.1643

SUMMARY OF USEFUL FORMULA.

I. Plane Trigonometry.

1. $\quad \sin A=\frac{1}{\operatorname{cosec} A}, \cos A=\frac{1}{\sec A}, \tan A=\frac{1}{\cot A}$
$\operatorname{Cosec} A=\frac{1}{\sin A}, \sec A=\frac{1}{\cos A}, \cot A=\frac{1}{\tan A}$
2. $\operatorname{Tan} A=\frac{\sin A}{\cos A}, \cot A=\frac{\cos A}{\sin A}$
3. $\operatorname{Sin}^{2} A+\cos ^{2} A=1$
whence, $\sin ^{2} A=1-\cos ^{2} A$, and $\cos ^{2} A=1-\sin ^{2} A$
4. $\operatorname{Sec}^{2} A=1+\tan ^{2} A$, and therefore $\tan ^{2} A=\sec ^{2} A-1$
$\operatorname{Cosec}^{2} A=1+\cot ^{2} A$, and therefore $\cot ^{2} A=\operatorname{cosec}^{2} A-1$
5. $\operatorname{Sin} A=\cos \left(90^{\circ}-A\right)=\sin \left(180^{\circ}-A\right)$
$\cos A=\sin \left(90^{\circ}-A\right)=-\cos \left(180^{\circ}-A\right)$
6. $\sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B$
$\sin (A-B)=\sin A \cdot \cos B-\cos A \cdot \sin B$
$\operatorname{Cos}(A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B$
$\operatorname{Cos}(A-B)=\cos A \cdot \cos B+\sin A \cdot \sin B)$
7. $\left.\operatorname{Tan}(A+B)=\frac{\tan A+\tan B}{1-\tan A \cdot \tan B}\right)$
$\operatorname{Tan}(A-B)=\frac{\tan A-\tan B}{1+\tan A \cdot \tan B}$
$\operatorname{Cot}(A+B)=\frac{\cot A \cdot \cot B-1}{\cot A+\cot B}$
$\left.\operatorname{Cot}(A-B)=\frac{\cot A \cdot \cot B+1}{\cot B-\cot A}\right)$
8. $\operatorname{Sin} A+\sin B=2 \sin \frac{1}{2}(A+B) \cdot \cos \frac{1}{2}(A-B)$
$\sin A-\sin B=2 \cos \frac{1}{2}(A+B) \cdot \sin \frac{1}{2}(A-B)$
$\operatorname{Cos} A+\cos B=2 \cos \frac{1}{2}(A+B) \cdot \cos \frac{1}{2}(A-B)$
$\operatorname{Cos} A-\cos B=2 \sin \frac{1}{2}(A+B) \cdot \sin \frac{1}{2}(B-A)$
9. $\sin 2 \mathrm{~A}=2 \sin \mathrm{~A} \cdot \cos \mathrm{~A}$
10. $\operatorname{Cos} 2 A=\cos ^{2} A-\sin ^{2} A$

$$
=1-2 \sin ^{2} A
$$

$$
=2 \cos ^{2} A-1
$$

$\operatorname{Cos} A=2 \cos ^{2} \frac{1}{2} A-1$

$$
=1-2 \sin ^{2} \frac{1}{2} \mathrm{~A}
$$

$\operatorname{Cos}^{2} \frac{1}{2} \mathrm{~A}=\frac{1}{2}(1+\cos \mathrm{A})$
$\left.\operatorname{Sin}^{2} \frac{1}{2} A=\frac{1}{2}(1-\cos A) \quad\right)$
Note.-These formulæ are equally true of the angles of spherical triangles.
Relations of sides and angles of a plane triangle whose angles are A, B, C, and opposite sides a, b, c.
11. $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$.
12. $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin O}{0}$
13. $\operatorname{Cos} \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
14. $\operatorname{Cos} \frac{1}{2} \mathrm{~A}=\sqrt{\frac{s \cdot(s-a)}{b c}}$
$\operatorname{Sin} \frac{1}{2} \mathrm{~A}=\sqrt{\frac{(s-b) \cdot(s-c)}{b c}}$ where $s=\frac{1}{2}(a+b+c)$
$\operatorname{Tan} \frac{1}{2} \mathrm{~A}=\sqrt{\left.\frac{(s-b) \cdot(s-c)}{s \cdot(s-a)}\right)}$
15. $\operatorname{Cot} \frac{1}{2} \mathrm{~A}=\frac{b+c}{b-c} \cdot \tan \frac{1}{2}(\mathrm{~B}-\mathrm{C})$

II. Spherical Trigonometry.

Relations of sides and angles of an oblique-angled spherical triangle.

1. $\operatorname{Cos} \mathrm{A}=\frac{\cos a-\cos b \cdot \cos c}{\sin b \cdot \sin c}$
$\operatorname{Cos} a=\cos b \cdot \cos c+\sin b \cdot \sin c \cdot \cos A$
2. $\frac{\operatorname{Sin} A}{\sin a}=\frac{\sin B}{\sin b}=\frac{\sin C}{\sin c}$
3. $\sin \frac{1}{2} \mathrm{~A}=\sqrt{\frac{\sin (s-b) \cdot \sin (s-c)}{\sin b \cdot \sin c}}$
$\operatorname{Cos} \frac{1}{2} \mathrm{~A}=\sqrt{\frac{\sin s \cdot \sin (s-a)}{\sin b \cdot \sin c}} \quad$ where $s=\frac{1}{2}(a+b+c)$
$\operatorname{Tan} \frac{1}{2} \mathrm{~A}=\sqrt{\frac{\sin (s-b) \cdot \sin (s-c)}{\sin s \cdot \sin (s-\cdot a)}}$
4. $\operatorname{Tan} \frac{1}{2}(A+B)=\frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} \cdot \cot \frac{1}{2} C$
$\left.\operatorname{Tan} \frac{1}{2}(\mathrm{~A}-\mathrm{B})=\frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)} \cdot \cot \frac{1}{2} \mathrm{C}\right\}$
5. $\operatorname{Tan} \frac{1}{2}(a+b)=\frac{\cos \frac{1}{2}(\mathbf{A}-\mathbf{B})}{\cos \frac{1}{2}(\mathbf{A}+\mathbf{B})} \cdot \tan \frac{1}{2} c$
$\left.\operatorname{Tan} \frac{1}{2}(a-b)=\frac{\sin \frac{1}{2}(\mathbf{A}-\mathbf{B})}{\sin \frac{1}{2}(\mathbf{A}+\mathbf{B})} \cdot \tan \frac{1}{2} c\right\}$
6. $\operatorname{Sin} \frac{1}{2} c=\frac{\sin \frac{1}{2}(a+b)}{\cos \frac{1}{2}(\mathrm{~A}+\mathrm{B})} \cdot \sin \frac{1}{2} \mathrm{C}$
$\left.\cos \frac{1}{2} c=\frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2}(\mathrm{~A}+\mathrm{B})} \cdot \sin \frac{1}{2} \mathrm{C}\right\}$

WEIGHTS AND MEASURES.

Angular.
60 seconds (") $=1$ minute .
60 minutes $\left(^{\prime}\right)=1$ degree.
90 degrees (${ }^{\circ}$) $=1$ quadrant.
4 quadrants $=1$ circumference.
Apothecaries' (dry).
20 grains $=1$ scruple (.).
3 scruples $=1$ drachm (3).
8 drachms $=1$ ounce (3).
12 ounces $=1$ pound.
Apothecaries' (wet).
60 minims or drops $=1$ drachm.
8 drachms $=1$ ounce (oz.).
20 ounces $\quad=1$ pint.
8 pints $\quad=1$ gallon.
4 drachms $\quad=1$ tablespoonful.
2 ounces $\quad=1$ wineglassful.
3 ounces $\quad=1$ teacupful.
Avoirdupois.
16 drachms (dr.) = 1 ounce (oz.).
16 ounces $\quad=1$ pound (lb.).
28 pounds $\quad=1$ quarter (qr.).
4 quarters $\quad=1$ hundred weight (cwt.).
20 hundredweights $=1$ ton.
Troy.

24 grains (gr.)	$=1$ pennyweight (dwt.).
20 pennyweights	$=1$ ounce (oz.).
12 ounces	$=1$ pound.
7000 grains Troy	$=1$ lb. Avoirdupois.

Lineal.

12 inches (in.)	$=1$ foot (ft.).
3 feet	$=1$ yard (yd.).
$5 \frac{1}{2}$ yards	$=1$ rod, pole, or perch (po.).
40 poles	$=1$ furlong (fur.).
8 furlongs	$=1$ mile (m.).

Square.
144 square inches (sq. in.) $=1$ square foot (sq. ft.).
9 square feet
$30 \frac{1}{4}$ square yards
40 poles
4 roods
640 acres
$=1$ square yard (sq. yd.).
$=1$ square rod, pole or perch (sq.po.).
$=1$ rood (rd.).
$=1$ acre (ac.).
$=1$ square mile (sq. m.).

Cubic or solid.
1728 cubic inches (cub. in.) $=1$ cubic foot (cub. ft.).
27 cubic feet $=1$ cubic yard (cub. yd.).
Capacity or dry.
4 gills (gi.) $=1$ pint (pt.).
2 pints $=1$ quart (qt.).
4 quarts $=1$ gallon (gal.).
2 gallons $=1$ peck (pk.).
4 pecks $=1$ bushel (bush.).
8 bushels $=1$ quarter (qr.).
36 bushels $=1$ chaldron (chal.).
Wine or Ale.
4 noggins $=1$ pint.
2 pints $=1$ quart.
4 quarts $=1$ gallon.
9 gallons $=1$ irkin (fir.).
18 gallons $=1$ kilderkin (kil.) ale.
36 gallons $=1$ barrel (bar.) ale.
54 gallons $=1$ hogshead (hhd.) ale.
2 barrels $=1$ puncheon (pun.) ale.
3 barrels $=1$ butt (ale).
42 gallons $=1$ Tierce (wine).
63 gallons $=1$ hogshead (wine).
84 gallons $=1$ puncheon (wine).
126 gallons $=1$ pipe.
252 gallons $=1$ tun.
Pipes of wine vary in quantity.
Metric system derives its name from the metre which is the unit of length in the system, and is equal to a ten-millionth part of the distance from the equator to the pole, or $39 \cdot 3708$ inches.

To indicate multiples of the unit Greek prefixes are used thus-

Deka means	10 times unit			
Hekto	,	100	,,	,
Kilo	$"$,	1000	",	,
Myria	,$"$	10,000	,$"$,

To indicate sub-multiples Latin prefixes are used thus-

Unit of weight is gramme $\{=1 \mathrm{cu}$. centimetre
of water at $4^{\circ} \mathrm{C} . \quad\{=15.43$ grains
Unit of capacity is litre $=1 \mathrm{cu}$. decimetre
$=1.76$ pints
1 litre of water weighs 1 kilogram $=2.2$ lbs.
Thus

10 millimetres make	1 centimetre
10 centimetres	,$"$
10 decimetres	1 decimetre
10 metre	
10 metres	1 metre
10 dekametres	1 dekametre
10 hektometres	1 1 hektometre
10 kilometres	1 kilometre
10	1 myriametre.

Specific gravity of solids at zero as compared with distilled water at $4^{\circ} \mathrm{C}$.
Platinum 22.069
Gold $19 \cdot 362$
Silver $10 \cdot 474$
Steel 7816
Cast iron $7 \cdot 207$
Marble $2 \cdot 837$
Common salt $2 \cdot 220$
Sugar $1 \cdot 600$
Ice930
Beech •852
Oak •845
Elm 800
Pine •657
Cork 240
Snow •183
Specific gravity of liquids under same conditions-
Mercury 13.598
Glycerine 12260
Blood $1 \cdot 060$
Milk 1029
Olive oil 915
Turpentine 870
Petroleum 836
Alcohol 793
Vapour density under same conditions-
Air 1×0
Hydrogen0693
Nitrogen 8714
Oxygen 1•1057
Carbonic acid $1 \cdot 5291$
Water in a saturated space . . 6225

Boiling points.
Alcohol . . . $78^{\circ} \mathrm{C} \quad-202^{\circ} \mathrm{C}$. Turpentine . . $157 \quad-27$ Mercury . . . 358 - 38.8 Salt water . . . $102-3 \cdot 3$

EXAMINATION PAPERS.

Paper I.

1. Multiply 142.07 by 0.00347 , by logs.
2. Divide 0.0004629 by 0.00000542 , by logs.
3.

Hoar.	Courses.	Kats.	$10 \mathrm{ths}$.	Winds.	$\begin{aligned} & \text { Lee- } \\ & \text { way. } \end{aligned}$	Devia tion.	Remarks.
1 2 3 4 4	S.	$\begin{aligned} & 7 \\ & 7 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 9 \\ & 7 \end{aligned}$	W.S.W.	$\overline{\substack { \text { Ptg. } \\ \begin{subarray}{c}{0{ \text { Ptg. } \\ \begin{subarray} { c } { 0 } }\end{subarray}}$	$3^{\circ} \mathrm{W}$.	
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	W. by S. $\frac{1}{3}$ S.	$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{3} \\ & \mathbf{4} \\ & 5 \\ & \hline \end{aligned}$	S.	4	$8^{\circ} \mathrm{W}$.	
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \\ \hline \end{array}$	S.W. by W. $\frac{1}{2}$ W.	$\begin{aligned} & 8 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \overline{2} \\ & 7 \\ & 1 \end{aligned}$	N.W.	$\frac{1}{4}$	$\overline{7^{\circ} \mathrm{W}}$.	$50^{\circ} 44^{\prime}$ N., long. $0^{\circ} 13^{\prime}$ E.; bearing by compass N.E. 㝵E. ; ship's
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	N.E. $\frac{1}{2}$ N.	$\begin{aligned} & 6 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 3 \end{aligned}$	N.N.W.	13	-	S.; deviation as per \log, distant 12 miles.
$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	W. by N. $\frac{1}{2}$ N.	$\begin{aligned} & 7 \\ & 7 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 9 \\ & 9 \\ & 4 \\ & 3 \end{aligned}$	N.	4	$7^{\circ} \mathrm{W}$	
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	N.E. $\frac{1}{2}$ E.	7 6 6 6	$\begin{aligned} & 4 \\ & 5 \\ & 5 \\ & 3 \\ & 8 \end{aligned}$	N. $\frac{1}{2} \mathrm{~W}$.	$1 \frac{1}{4}$	$\overline{2^{\circ} \mathrm{E} \text {. }}$	

By observation the lat. and long. of the ship was $49^{\circ} 30^{\prime} \mathrm{N} ., 0^{\circ} 45^{\prime} \mathrm{W}$.
Find set and drift of the current.
4. August 3rd, in long. $68^{\circ} 45^{\prime}$ E., the observed mer. alt. of the Sun's L.L. bearing S . was $58^{\circ} 14^{\prime} 40^{\prime \prime}$; ind. err. $-3^{\prime} 25^{\prime \prime}$, height of eye, 27 ft . Required the latitude.
5. In lat. $51^{\circ} 30^{\prime}$ S., long. $37^{\circ} \mathrm{E}$., the departure made good eastward was 306.5 miles. Required the long. in by parallel sailing.
6. Required the compass course and distance by Mercator's sailing-

> From A, lat. $30^{\circ} 27^{\prime}$ N. Long. $18^{\circ} 18^{\prime} \mathrm{W}$.
> To B, , $1045 \mathrm{~S} . \quad, \quad 3254 \mathrm{~W}$.
> Variation, 1315 W . Deviation, 2430 W.
7. January 19th, find the M.T.G. times of high water at Rotterdam.
8. August 5th, at ship, in lat. $38^{\circ} 24^{\prime}$ S., long. $130^{\circ} 45^{\prime}$ E., when the time shown by chron. correct for G.M.T. was $10^{\mathrm{h}} 13^{\mathrm{m}}$; the Sun's bearing by compass at rising was N. $64^{\circ} 30^{\prime}$ E. Required the true amplitude, and error of the compass; and supposing the variation to be $6^{\circ} 15^{\prime}$ W., required the deviation of the compass for the position of the ship's head.
9. August 7th, about $9^{\text {b }} 15^{\text {m }}$ A.m. at ship, in lat. at noon $39^{\circ} 31^{\prime} 40^{\prime \prime} \mathrm{N}$.; long. by account $31^{\circ} \mathrm{W}$.; the obs. alt. of Sun's L.L. was $53^{\circ} 53^{\prime} 10^{\prime \prime}$; ind. err. $+3^{\prime}$, height of eye, 29 ft . ; time by chron. $12^{\text {h }} 0^{\text {m }} 9^{\circ}$ which was slow 10° for G.M. noon, on January 9th, and on April 29th was correct ; run since obs. W. 25 miles. Required the long. at sight, also brought up to noon. The sun's compass bearing was $\mathrm{S} .30^{\circ} \mathrm{E}$., var. $28^{\circ} 15^{\prime}$ W., find the true azimuth, comp. error, and deviation.
10. September 2nd, about $3^{\text {b }} 30^{m}$ P.m. at ship, in lat. $51^{\circ} 25^{\prime}$ S., long. $174^{\circ} 25^{\prime}$ E. ; When the time shown by chron. was $3^{\mathrm{h}} 54^{\mathrm{m}} 42^{\prime}$, the Sun's bearing by compsss N. $81^{\circ} 30^{\prime}$ W., the error of the chron. on G.M.T. was $15^{-} 12^{\circ}$ slow. Required the true azimuth and error of the compass by the Tables; and supposing the variation to be $30^{\circ} 16^{\prime}$ E., required the deviation for the position of the ship's head.
11. August 25 th , about $3^{\mathrm{h}} 5^{\mathrm{m}}$ A.m. at ship, lat. by account $26^{\circ} 16^{\prime} \mathrm{S}$., long. $35^{\circ} 15^{\prime}$ W.; the alt. of Achernar bearing south was $57^{\circ} 27^{\prime} 50^{\prime \prime}$; ind. err. $+2^{\prime} 11^{\prime \prime}$; height of eye, $26 \mathrm{ft}$. ; time by chron. $5^{\text {b }} 17^{\mathrm{m}} 32^{\mathrm{A}}$, which had been found to be $21^{w} 7^{*}$ fast of G.M.T. Required the lat. by reduction to the meridian.
12. September 23rd, A.m. at ship. If at sea and uncertsin of my position when the chron. showed $23^{\mathrm{d}} 9^{\mathrm{h}} 51^{\mathrm{m}} 13^{\mathrm{A}}$ G.M.T. ; the alt. of the Sun's L.L. $32^{\circ} 50^{\prime} 30^{\prime \prime}$; again P.M. on the same day, when the chron. showed $23^{\text {d }} 13^{\mathrm{h}} 51^{\mathrm{m}} 9^{\prime}$ G.M.T.; the alt. of the Sun's L.L. $32^{\circ} 54^{\prime} 10^{\prime \prime}$; ind. err. $-1^{\prime} 20^{\prime \prime}$; height of eye, 17 ft. ; the ship becalmed heading east in the interval between the observations. Required the line of position when the first alt, was taken, the Sun's true arimuth when the second alt. was taken, and the position of the ship when the second alt. was observed by "Sumner's method " by projection on the chart, assuming the lats. $51^{\circ} 15^{\prime}$ and $51^{\circ} 45^{\prime} \mathrm{S}$.
13. August 14th, in long. $159^{\circ} 15^{\prime} \mathrm{W}$., find the mean time of transit of a Arietis across the meridian.
14. On August 14th at $4^{\mathrm{h}} 15^{\mathrm{m}}$ A.m. M.T.S., find what stars not less bright than the second magnitude are within two hours east of the meridian in lat. $32^{\circ} 14^{\prime}$ N., long. $159^{\circ} 15^{\prime} \mathrm{W}$., above the horizon and pole. Give their meridian distances, and state bearing N. or S.; slao find the approx. mer. alt. for setting the sextant of a Persei; ind. cor. - $4^{\prime} 29^{\prime \prime}$; eye, 40 ft .
15. August 31st, about 6^{h} P.m. at ship, in lat. $24^{\circ} 19^{\prime}$ S., long. by account 180° E., when s chron. showed $6^{\text {b }} 4^{\mathrm{m}} 3^{4}$, which was alow on June 16 th, $1^{\text {m }} 53^{\circ} \cdot 5$; and was fast $1^{\text {m }} 29^{\circ} \cdot 5$ on Aug. 5th, for G.M.T.; the obs. alt. of Vega was $21^{\circ} 29^{\prime} 10^{\prime \prime}$; ind. cor. $-2^{\prime} 15^{\prime \prime}$; eye, 28 ft . Find the long.
16. August 24th, when the M.T.S. was $2^{\mathrm{h}} 15^{\mathrm{m}}$ A.M. in lat. equator, long. Greenwich, Rigel bore by compass S. $85^{\circ} 30^{\prime}$ E. Find the true azimuth, and deviation, the variation being $20^{\circ} 15^{\prime} \mathrm{W}$.
17. September 12 th, when the M.T.S. was $4^{\mathrm{h}} 40^{\mathrm{m}} 15^{3}$ A.M., in long. $136^{\circ} 24^{\prime} \mathrm{E}$., the obs. alt. of Polaris out of the meridian was $39^{\circ} 15^{\prime} 40^{\prime \prime}$; ind. cor. $-3^{\prime} 48^{\prime \prime}$; eye, 27 ft . Find the lat.
18. August 7th, in long. $90^{\circ} 45^{\prime}$ E., the obs. mer. alt. of the Moon's L.L. was $49^{\circ} 56^{\prime} 20^{\prime \prime}$ bearing south, ind. cor. $+2^{\prime} 45^{\prime \prime}$; eye, 36 ft . Find the lat.

State where tables giving the approx. time of most of the principal stars passing the meridian are to be found, the numbers of the tables, and whether given in mesn or apparent time.

Can the approx. mer. pass. of a planet and its approx. alt. be found in the same way as in the case of a star?

Stste where the times of the mer. pass. of the principal planets may be found. Is the time given mean or apparent?
19. August 12th, the obs. mer. alt. of the star a Arietis was $38^{\circ} 47^{\prime} 40^{\prime \prime}$ bearing north ; ind. err. $-5^{\prime} 25^{\prime \prime}$; height of eye, 32 ft . Required the lat. 20.

Ship's head by standard compase.	Bearings of diatant object by standard compaв.	Deviation required.	Sbip'a head by standard compass.	Bearinge of distant object by atandard compass.	Devlation required.
$\begin{gathered} \text { N. } \\ \text { N.E. } \\ \text { E.E. } \end{gathered}$	$\begin{aligned} & \text { N. } 7^{\circ} \mathrm{W} . \\ & \mathrm{N} .27^{\circ} \mathrm{W} . \\ & \text { N. } 21^{\circ} \mathrm{W} . \\ & \mathrm{N} . \end{aligned}$		$\begin{gathered} \text { S. } \\ \text { s.W. } \\ \text { W.W. } \end{gathered}$	$\begin{aligned} & \text { N. } 10^{\circ} \mathrm{E} . \\ & \text { N. } 25^{\circ} \mathbf{E} \\ & \text { N. } 30^{\circ} \mathbf{~} . \\ & \text { N. } 20^{\circ} \mathbf{E} . \end{aligned}$	

Find correct magnetic bearing ; construct a Napier curve.
With magnetic courses : E. W.S.W. S.E. by S. N.N.W.
Required compass courses.
With compass courses : N.W. N.E. by N. $\frac{1}{2}$ N. S.S.W. E.S.E.
Required magnetic courses.
With ship's head at W.S.W. by compass, the compass bearings of distant objects were W. by S. and N. Find magnetic bearings.
21. On October 11th, at $7^{\text {h }} 40^{\text {m }}$ A.M. M.T.S., being off Fowey by reckoning, took a cast of the lead. Required the correction to be applied to the depth obtained by the lead-line, before comparing it with the depth marked on the chart.
22. August 1st, P.m. at ship in lat. $34^{\circ} 28^{\prime}$ S., when a chron. showed $7^{\mathrm{h}} 20^{\mathrm{m}} 35^{\text { }}$, estimated error, $6^{\mathrm{m}} 15^{\circ}$ fast of G.M.T., approx. long. $66^{\circ} \mathrm{E}$. ; the following observations were taken for finding long. and error of chron., Observed alt. of a Pegasi $27^{\circ} 16^{\prime} 20^{\prime \prime}$, ind. cor. $+4^{\prime} 13^{\prime \prime}$, eye, 44 ft . ; observed distance between the star and Moon's remote limb, was $80^{\circ} 14^{\prime} 40^{\prime \prime}$, ind. cor. $-2^{\prime} 27^{\prime \prime}$.
23. September 23rd, lat. N., long. $82^{\circ} 30^{\prime}$ E. With the following observations of the Sun's L.L. find the lat. by double alts. at second obs.

$$
\begin{array}{ccccc}
\text { A.T.S. } 9^{\mathrm{h}} & 30^{\mathrm{m}} 10^{\mathrm{s}} \text { A.M. } & \text { Obs. alt. } 32^{\circ} 13^{\prime} 10^{\prime \prime} \text {. } & \text { Ind. cor. }-2^{\prime} 8^{\prime \prime} . \\
", & 2 & 30 & 20 & \text { P.M. }
\end{array}
$$

Sun's bearing at first obs. S. 46° E.; course and distance during interval, N. $60^{\circ} \mathrm{E}$.; rate 58 knots per hour.
24. August 30th, about $9^{\text {b }}$ A.M. M.T.S., a point in lat. $40^{\circ} 28^{\prime}$ N., long. $25^{\circ} 24^{\prime} \cdot 5 \mathrm{~W}$., bore N. $27^{\circ} \mathrm{E}$. from a ship, distant 9 miles; the obs. alt. of Sun's L.L. in an artificial horizon was $79^{\circ} 10^{\prime} 20^{\prime \prime}$; ind. cor. $-3^{\prime} 18^{\prime \prime}$. Time by chron. $10^{\mathrm{L}} 30^{\mathrm{m}}$, estimated slow $15^{\mathrm{m}} 15^{\circ}$ of M.T.G. Find error on M.T.G.
25. Find the first course and distance on a G.C. from Wolf Rock, lat. $49^{\circ} 57^{\prime}$ N., long. $5^{\circ} 48^{\prime} \mathrm{W}$., to Charleston lat. $32^{\circ} 45^{\prime}$ N., long. $79^{\circ} 52^{\prime} \mathrm{W}$.; also position of Vertex, lat. of points $5^{\circ}, 10^{\circ}, 15^{\circ}, 20^{\circ}$ from Wolf ; and lat. at which the 61st W. mer. cuts the G.C. arc.
26. In a triangle $\mathrm{PQR}, \mathrm{Q}=90^{\circ}, \mathrm{PR}=364, \mathrm{P}=28^{\circ} 45^{\prime}$. Find PQ .
27. In triangle $\mathrm{PQR}, \mathrm{PQ}=417, \mathrm{PR}=243, \mathrm{P}=58^{\circ} 26^{\prime}$. Find R .
28. In spherical triangle $\mathrm{ABC}, \mathrm{A}=36^{\circ} 38^{\prime}, \mathrm{B}=101^{\circ} 42^{\prime}, \mathrm{C}=90^{\circ}$. Find AB.
29. In spherical triangle, $\mathrm{A}=90^{\circ}, \mathrm{B}=104^{\circ} 25^{\prime}, \mathrm{AC}=107^{\circ} 39^{\prime}$. Find BC .
30. Coefficient $\mathrm{B}=-15^{\circ} 36^{\prime}, \mathrm{C}=+9^{\circ} 24^{\prime}$. Find direction of ship's head whilst building.

Direction of ship's head whilst building $\mathrm{S} .49^{\circ} \mathrm{W}$., coefficient $\mathrm{B}=$ $+20^{\circ} 15^{\prime}$. Find C.
31. September 20th, $11^{\mathrm{h}} 48^{\mathrm{m}}$ P.m. M.T.S. ; in lat. 49° S., long. $168^{\circ} 15^{\prime}$ W. Name some stars which would be suitable for finding the correction of the compass.
32. Given deviations with ship's head by compass at
N. N.E. E. S.E. S. S.W. W. N.W. to be $17^{\circ} \mathrm{W} .28^{\circ} \mathrm{W} .24^{\circ} \mathrm{W} .9^{\circ} \mathrm{W} . \quad 16^{\circ} \mathrm{E} . \quad 32^{\circ} \mathrm{E} . \quad 26^{\circ} \mathrm{E} .5^{\circ} \mathrm{E}$. find coefficients A, B, C, D, and E, and construct a table of deviations for all points from N to S , through W .
33. With a ship steering N.E. by N. on the port tack, heeling 12°; the heeling error was -15°. Required the error when steering E.S.E. on the port tack, and heeling 10°.
34. Construct a Mercator's chart, scale $1^{\prime \prime} \cdot 5=1^{\circ}$ long., extending from lat. 58° to $61^{\circ} \mathrm{N}$., and 6° to $10^{\circ} \mathrm{E}$. long. Graduate a degree of lat. and long. and place on it a magnetic compass showing points, variation $20^{\circ} \mathrm{W}$.

Paper IL

1. Multiply 47290 by 0.0045 , by logs.
2. Divide $4765 \cdot 07$ by $32406 \cdot 5$, by logs.
3.

Hrs.	Courses.	Knts.	10ths.	Winds.	$\left\lvert\, \begin{aligned} & \text { Lee- } \\ & \text { way. } \end{aligned}\right.$	$\begin{aligned} & \text { Devia- } \\ & \text { tion. } \end{aligned}$	Remarks.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	S.E. by E. 1 E.	10 11 9 11 11	$\begin{array}{\|r} 7 \\ 3 \\ 9 \\ 1 \\ \hline \end{array}$	6.S.W.	$\left\lvert\, \begin{gathered} \text { Ptg. } \\ \underset{y}{2} \end{gathered}\right.$	$25^{\circ} \mathrm{W}$	A point in lat. $25^{\circ} 15^{\prime}$ S., long. $47^{\circ} 20^{\prime}$ W.; bearing by compass N.N.E.
$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	E. by S. $\frac{8}{4} \mathrm{~S}$.	10 9 10 9 9	$\begin{aligned} & 4 \\ & 7 \\ & 5 \\ & 8 \\ & 6 \end{aligned}$	8.	$1 \frac{1}{4}$	$24^{\circ} \mathrm{W}$.	by E. $\frac{1}{4}$ E.; deviation as per log, distant 15 miles. Variation, $20^{\circ} \mathrm{W}$.
$\begin{array}{r} 11 \\ 12 \\ 1 \\ 2 \end{array}$	S.E. by B.	9 10 10 11	$\begin{aligned} & 7 \\ & 2 \\ & 4 \\ & 7 \end{aligned}$	S.W.	1	$18^{\circ} \mathrm{W}$.	
$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$	S.W. by S.	$\begin{array}{\|r} 9 \\ 10 \\ 11 \end{array}$	$\begin{aligned} & 6 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	S.S.E.	1 ${ }^{3}$	$25^{\circ} \mathrm{E}$.	
$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$	S.	$\begin{array}{r} 9 \\ 10 \\ 9 \end{array}$	$\begin{aligned} & \hline 5 \\ & 7 \\ & 8 \end{aligned}$	E.S.E.	11	$5^{\circ} \mathrm{E}$.	A current set N . 14° W. true, 54
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	S. by E. ${ }^{\text {3 }}$ E.	10 11 10 9	4 3 9 4 4	E.	1	$9^{\circ} \mathrm{W}$.	

Find the course and distance made good ; lat. and long. of the ship.
4. September 23rd, in long. $28^{\circ} 45^{\prime}$ W., the obs. mer. alt. of the Sun's L.L. bearing north, was $64^{\circ} 53^{\prime} 10^{\prime \prime}$; ind. err. - $4^{\prime} 26^{\prime \prime}$; height of eye, 37 ft . Required the latitude.
5. From lat. $40^{\circ} 30^{\prime}$ N., long. $39^{\circ} 43^{\prime}$ W., the departure made good was 89 miles to the west. Required long. in by parallel sailing.
6. Required the compass course and distance by Mercator's sailing

$$
\begin{array}{rrrrrr}
\text { From A, lat. } 52^{\circ} & 50^{\prime} & \mathrm{S} . & \text { Long. } 81^{\circ} & 10^{\prime} \mathrm{W} . \\
\text { To B, }, \prime 4 & 12 & \mathrm{~N} . & & 127 & 55 \mathrm{~W} . \\
\text { Variation, } 18 & 25 & \mathrm{E} . & \text { Deviation, } 22 & 15 & \mathrm{E} .
\end{array}
$$

7. January 30th. Find the M.T.G. of high water at Dungeness.
8. September 29th, about $6^{\text {b }} 5^{\text {T}}$ P.M. at ship, in lat. $42^{\circ} 10^{\prime}$ N., long. $146^{\circ} 58^{\prime}$ E., when a chron. correct for M.T.G. showed $8^{\text {b }} 2^{\mathrm{m}} 33^{\prime}$, the Sun's bearing by compass was N. $84^{\circ} 30^{\prime} \mathrm{W}$. Required the true amplitude, and error of the compass; and supposing the variation to be 0 , required the deviation of the compass for the position of the ship's head.
9. August 4th, about $7^{\text {h }} 15^{\text {m }}$ A.M. at ship, in lat. at noon $15^{\circ} 22^{\prime}$ N., long. by account $37^{\circ} 30^{\prime} \mathrm{E}$. ; the obs. alt. of sun's L.L. was $22^{\circ} 31^{\prime} 10^{\prime \prime}$; ind. err. $-1^{\prime} 30^{\prime \prime}$; height of eye, 25 ft . ; time shown by chron. $4^{\mathrm{b}} 42^{\mathrm{m}} 11^{\text { }}$, which was $9^{m} 44^{6.2}$ slow for G.M. noon on April 20th, and on June 3rd was $10^{m} 15^{\circ}$ slow; run since sights, S. 67° E. 46 miles. Required the long. at sight, also brought up to noon; and if the compass bearing be N. $87^{\circ} 30^{\prime}$ E., find true azimuth and deviation, the variation being $5^{\circ} \mathrm{W}$.
10. September 1st, about $4^{\text {h }}$ P.M. at ship, in lat. $44^{\circ} 23^{\prime}$ S., long. $145^{\circ} 17^{\prime}$ E. ; when a chron. correct for G.M.T. showed $6^{\mathrm{h}} 24^{\mathrm{m}} 35^{\mathrm{s}}$, the Sun's bearing by compass W. $\frac{1}{2}$ N. Required the true azimuth and error of the compass by the tables; and supposing the variation to be $10^{\circ} 15^{\prime} \mathrm{E}$., required the deviation for the position of the ship's head.
11. August 7 th, A.m. at ship, lat. by account $33^{\circ} 15^{\prime} \mathrm{N}$. , long. $10^{\circ} 57^{\prime} \mathrm{W}$. ; the alt. of the Sun's U.L. $72^{3} 53^{\prime}$; ind. err. $+3^{\prime}$; height of eye, 16 ft ; time by watch $10^{\mathrm{n}} 57^{\mathrm{m}} 58^{\circ}$, which had been found to be $44^{\mathrm{m}} 10^{\prime}$ slow of A.T.S.; the dift. long. made westward $17 \frac{3}{4}$ miles after the error was determined. Required the lat. by reduction to the meridian, and if the run since observation was S. $11^{\circ} \mathrm{W} ., 4$ miles, find the lat. at noon.
12. September 29th about $1^{\text {l }} 20^{\mathrm{m}}$ P.M. at ship. If in long. by account $125^{\circ} 30^{\prime}$ W., when the chron. showed $9^{\text {b }} 26^{\text {m }} 12^{\prime \prime}$ G.M.T.; the alt. of the Sun's L.L. $36^{\circ} 33^{\prime} 40^{\prime \prime}$; again p.M. on the same day, when the chron. showed $12^{\mathrm{L}} 2^{\mathrm{m}} 10^{\prime}$ G.M.T.; the alt. of the Sun's L.L. $18^{\circ} 39^{\prime} 20^{\prime \prime}$; ind. err. $-2^{\prime} 5^{\prime \prime}$; height of eye, 34 ft . ; the ship having made 43 miles on a true $\mathrm{E} . \frac{1}{4} \mathrm{~N}$. course in the interval between the observations. Required the line of position when the first alt. was taken, the Sun's true azimuth and the position of the ship when the second alt. was observed by "Sumner's method" by projection on the chart, assuming the lats. 48° and $48^{\circ} 30^{\prime} \mathrm{N}$.
13. On Sept. 28th. At what apparent ship time will Capella cross the meridian of a place in long. $73^{\circ} 48^{\prime} \mathrm{E}$.? Also by inspection?
14. What stars of brightness not less than 1.5 will be within 2 hours of the meridian of a place above the horizon and pole in lat. $30^{\circ} 55^{\prime}$ S., long. $73^{\circ} 48^{\prime}$ E., on September 28 th at $5^{\text {L }} 27^{\text {T}}$ A.M. M.T.S.? Give meridian distances, and if ind. cor. be $3^{\prime} 47^{\prime \prime}$ to add, eye 35 ft ., find approx. mer. alt. of Rigel for placing on sextant.
15. September 7th, about $7^{\text {h }}$ P.m. at ship, in lat. $35^{\circ} 20^{\prime}$ N., long. by account $165^{\circ} \mathrm{W}$., when a chron. showed $7^{\mathrm{n}} 54^{\mathrm{m}} 50^{\text {s }}$, which was fast $1^{\mathrm{n}} 58^{\mathrm{m}} 5^{\bullet \cdot} 4$ on June 29th, and was fast $2^{\mathrm{L}} 3^{\mathrm{ma}} 13^{\varepsilon \cdot} \cdot 4$ on August 3rd for G.M. noon, the obs. alt. of Altair was $53^{\circ} 1^{\prime} 40^{\prime \prime}$; ind. cor. +1' $11^{\prime \prime}$; eye, 29 ft . Find the longitude.

Are you acquainted with any maps, diagrams, or any other means for facilitating the recognition of the fixed stars and planets? If so, give a short description of the one you prefer, and how you use it.
16. August 27 th at $1^{\text {b }} 15^{\text {m }}$ A.M. A.T.S. in lat. $47^{\circ} 24^{\prime}$ N., long. $68^{\circ} 19^{\prime}$ W., the compass bearing of Altair was S. $81^{\circ} \mathrm{W}$. Find the true azimuth from the "tables," compass error, and deviation, supposing the variation to be $14^{\circ} 30^{\prime} \mathrm{W}$.
17. September 7 th, when the G.M.T. was noon in long. $125^{\circ} 40^{\prime}$ E., the
obs. alt. of Polaris out of the meridian in an artificial horizon was $58^{\circ} 37^{\prime} 20^{\prime \prime}$, ind. cor. $-5^{\prime} 40^{\prime \prime}$. Required the latitude.
18. August 30th, in long. $49^{\circ} 36^{\prime}$ W., the obs. mer. alt. of the Moon's L.L. was $58^{\circ} 57^{\prime} 50^{\prime \prime}$; zenith south of moon; ind. cor. $+6^{\prime} 24^{\prime \prime}$; eye, 29 ft . Required the latitude.
19. September 19th, the obs. mer. alt. of the star β Argûs was $50^{\circ} 26^{\prime} 40^{\prime \prime}$ bearing south; ind. err. $-\boldsymbol{7}^{\prime} 46^{\prime \prime}$; height of eye, 56 ft . Required the latitude.
20.

Ship's head by standard сотравя.	Besrings of distant object hy atandard compass.	Deviation required.	Ship's head by standard compass.	Rearinge of dietant object by standard compasa.	Deviation reqnired.
$\begin{gathered} \text { N. } \\ \text { N.E. } \\ \text { E. } \\ \text { S.E. } \end{gathered}$	S. $43^{\circ} \mathrm{W}$. S. $50^{\circ} \mathrm{W}$. S. $65^{\circ} \mathrm{W}$. S. $80^{\circ} \mathrm{W}$.		$\begin{gathered} \text { S. } \\ \text { s.W. } \\ \text { W.W. } \end{gathered}$	W. S. $83^{\circ} \mathrm{W}$. S. $65^{\circ} \mathrm{W}$ S. $45^{\circ} \mathrm{W}$.	

Find correct magnetic bearing, and construct a curve.
Given magnetic courses: S.E. by E. N.N.E. N.W. $\frac{1}{2}$ W. S. 10° W. Find compass courses.
Given compass courses: N.W. by W. N. by W. N.E. $\frac{1}{2}$ E. S. 50° E. Find magnetic courses.
With ship's head at E. $\frac{1}{2}$ N. by compass, the comp. bearings of distant objects were S.E. $\frac{3}{4}$ E. and N.E. by N. Find magnetic bearings.
21. On December 15th, at $11^{\mathrm{h}} 36^{\mathrm{m}}$ P.m. M.T.G., being off Ardrossan by reckoning, took a cast of the lead. Required the correction to be applied to the depth obtained by the lead-line, before comparing it with the depth marked on the chart.
22. August 2nd, at $9^{\mathrm{h}} 20^{\mathrm{m}}$ P.M. M.T.S., in lat. $25^{\circ} 14^{\prime}$ N., long. by account, $100^{\circ} 37^{\prime} 30^{\prime \prime} \mathrm{W}$. ; the following observations were taken for determining the error of a chron. which had run down, and set going on G.M.T. and showed 4^{h}; obs. alt. of the Moon's L.L., $39^{\circ} 8^{\prime} 30^{\prime \prime}$; ind. cor. $-4^{\prime} 12^{\prime \prime}$; height of eye, 17 feet; obs. distance between Spica and the Moon's near limb, $88^{\circ} 59^{\prime} 40^{\prime \prime}$; ind. cor. $+7^{\prime} 43^{\prime \prime}$.
23. September 29th, in long. $125^{\circ} 35^{\prime}$ W., lat. N. With following observations, find lat. at time of taking second obs. :-

$$
\text { A.T.S. } 1^{\mathrm{h}} 13^{\mathrm{m}} 40^{\circ} \text { P.M. } \quad \text { Alt. Sun's L.L. } 36^{\circ} 33^{\prime 3} 40^{\prime \prime} \text {, bearing S. } 23^{\circ} \mathrm{W} \text {. }
$$

The ship's true course, N. 87° E., $16 \cdot 5$ knots per hour during the interval ; ind. cor. $-2^{\prime} 3^{\prime \prime}$; height of eye, 34 feet.
24. September 23rd, $2^{\mathrm{h}} 49^{\mathrm{m}}$ P.M. M.T.S., at a place in lat. $23^{\circ} 28^{\prime}$ S., long. $158^{\circ} 35^{\prime}$ E. ; the obs. alt. of Sun's U.L., $41^{\circ} 32^{\prime} 10^{\prime \prime}$; ind. cor. $-2^{\prime} 25^{\prime \prime}$; eye, 34 feet ; the chron. shows $4^{\text {b }} 17^{\text {¹ }} 7^{\prime}$. Find its error on M.T.G.
25. Find initial and final courses and distance, easting to be run down on parallel of $55^{\circ} \mathrm{S}$., from lat. $42^{\circ} 53^{\prime} \mathrm{S}$., long. $147^{\circ} 21^{\prime} \mathrm{E}$., to $33^{\circ} 2^{\prime} \mathrm{S}$., 'iong. $71^{\circ} 38^{\prime} \mathrm{W}$. Find latitudes of points where the meridians $160^{\circ} \mathrm{E}$., $170^{\circ} \mathrm{E}$., $90^{\circ} \mathrm{W}$., and $80^{\circ} \mathrm{W}$. cut the track.
26. In triangle $\mathrm{ABC}, \mathrm{A}=90^{\circ}, \mathrm{C}=68^{\circ} 40^{\prime}, \mathrm{AC}=37.2$. Find AB .
27. In triangle $\mathrm{OST}, \mathrm{OS}=379, \mathrm{OT}=325, \mathrm{ST}=85$. Find T .
28. In spherical triangle $\mathrm{ABC}, \mathrm{C}=90^{\circ}, \mathrm{B}=103^{\circ} 20^{\prime}, \mathrm{BC}=75^{\circ}$. Find AB .
29. ", $\quad, \quad \mathrm{PQR}, \mathrm{P}=90^{\circ}, \mathrm{RQ}=98^{\circ} 56^{\prime}, \mathrm{R}=72^{\circ} 45^{\prime}$. Find Q .
30. If coefficient $\not{\mathrm{B}}=+16^{\circ} 54^{\prime}$, coefficient $\mathrm{C}=-18^{\circ} 36^{\prime}$, find direction of ship's head whilst building.

Coefficient $\mathrm{C}=-20^{\circ} 30^{\prime}$; direction ship's head building, S. $39^{\circ} \mathrm{W}$. Find B.
31. In lat. 45° N., long. $58^{\circ} \mathrm{W}$., find what stars are suitable for finding compass error by azimuth on September 7th at $2^{\mathrm{L}} 30^{\mathrm{m}}$ A.M.
32. The deviations with ship's head by compass at N., N.E., E., S.E., S., S.W., W., and N.W. being 5° E., 5° E., 2° W., $13^{\circ} \mathrm{W}^{\circ}$., 15° W., 3° W., 13° E., 8° E., find the coefficients A, B, C, D, E, and construct a table of deviations for every alternate point of the compass, starting from North.
33. With the wind at S.E., the ship heads N.E. by E. $\frac{1}{2}$ E., having a heel of 14°, and heeling error -21°. Find what the error will be when heeling 15° with her head S.S.W., wind in same direction.

Paper III.

1. Multiply 0.0765 by 0.000006201 , by logs.
2. Divide 0.00652 by 0.9876 , by logs.
3.

Hour.	Courses.	Knts.	10th.	Winds.	$\left\lvert\, \begin{array}{\|c\|c\|} \hline \text { Lee- } \\ \text { way. } \end{array}\right.$	$\begin{aligned} & \text { Devia- } \\ & \text { tion. } \end{aligned}$	Remerke.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	W.	7 7 7 7		N.N.W.	Pts.	$10^{\circ} \mathrm{W}$.	Departure taken from 2 point in lat. $60^{\circ} 45^{\prime} \mathrm{N}$., long. $4^{\circ} 43^{\prime} \mathrm{E}$.
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	N.W.	7 7 7 7	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	N.N.E.	$\frac{1}{7}$	$20^{\circ} \mathrm{W}$.	pass,S.W.; ship's bead, W.; deviation as per log, distant 15 miles.
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	W. by N. ${ }^{\frac{3}{4}} \mathrm{~N}$.	9 9 9 9		S.W. by S.	$\frac{3}{4}$	$13^{\circ} \mathrm{W}$.	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	W.S.W.	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$		S.	$\frac{1}{2}$	$7^{\circ} \mathrm{W}$.	
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	S.W.	10 10 10 10	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	W.N.W.	$\frac{1}{4}$	-	A current set N.N.E. correct magnetic all day at 4 mile per
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	W. by s.	8 8 8 8		S. by W.	$1{ }_{4}^{11}$	$8^{\circ} \mathrm{W}$.	

Find the course and distance made good ; lat. and long. of the ship.
4. August 1st, in long. $124^{\circ} 27^{\prime}$ E., the obs. mer. alt. of the Sun's U.L. bearing north was $81^{\circ} 27^{\prime} 10^{\prime \prime}$; ind. err. $-1^{\prime} 25^{\prime \prime}$; height of eye, 33 ft . Required the latitude.

5 . In lat. $54^{\circ} 37^{\prime}$ N., the diff. long. made good was $5^{\circ} 47^{\prime}$. Required the distance sailed by parallel sailing.
6. Required the compass course and distance by Mercator's sailing.

From A, lat. $50^{\circ} 10^{\prime}$ N. Long. $13^{\circ} 25^{\prime}$ W. To B, , $4750 \mathrm{~N} . \quad, \quad 6230 \mathrm{~W}$. Deviation, 2030 E. Variation, 250 W.
7. November 5th. Find the M.T.G. of high water at Bridlington.
8. August 5th, about $5^{\mathrm{b}} 40^{\mathrm{ma}}$ A.m., in lat. $31^{\circ} 14^{\prime}$ S., long. $157^{\circ} 20^{\prime}$ E., when the chron. showed correct G.M.T., $7^{\text {b }} 11^{\mathrm{m}} 40^{\mathrm{s}}$, the Sun's bearing by compass was N. $75^{\circ} 30^{\prime}$ E. Required the true amplitude and error of the compass; and supposing the variation to be $6^{\circ} 20^{\prime}$ E., required the deviation of the compass for the position of the ship's head.
9. August 17 th, about $8^{\text {b }}$ A.M. at ship, in lat. at noon $35^{\circ} 48^{\prime}$ N., long. by account 36° W., the obs. alt. of Sun's L.L. was $30^{\circ} 25^{\prime} 50^{\prime \prime}$; ind. err. $+2^{\prime} 14^{\prime \prime}$; height of eye, 30 ft . ; time by chron. $10^{\mathrm{h}} 39^{\mathrm{m}} 14^{\prime}$, which was fast $20^{\mathrm{m}} 12^{\prime \prime}$ for G.M. noon, on June 9 th and on July 19 th was fast $19^{\mathrm{m}} 40^{4}$; run since sights, S. 25° E. 43 miles. Required the long. at sight, also brought up to noon ; and if the compass bearing was $\mathrm{S} .80^{\circ} 30^{\prime} \mathrm{E}$. , and variation $23^{\circ} 30^{\prime} \mathrm{W}$., find the true azimuth and deviation.
10. August 4th, about $10^{\mathrm{h}} 14^{\mathrm{m}}$ A.m., in lat. $38^{\circ} 27^{\prime} \mathrm{N}$., long. $84^{\circ} 20^{\prime}$ W., when a chron. supposed $15^{\mathrm{m}} 12^{\prime \prime}$ fast of M.T.G. showed $4^{\mathrm{n}} 7^{\mathrm{m}} 47^{\mathrm{A}}$, the Sun's bearing by compass $\mathrm{S} .52^{\circ} 30^{\prime} \mathrm{E}$. Required the true azimuth and error of the compass by the tables; and supposing the variation to be $7^{\circ} 30^{\prime} \mathrm{E}$., required the deviation for the position of the ship's head.
11. August 19 th, P.m. at ship, lat. by account, $17^{\circ} 10^{\prime}$ S., long. $177^{\circ} 30^{\prime}$ E., the alt. of the Sun's L.L. $57^{\circ} 15^{\prime} 20^{\prime \prime}$; ind. err. $+1^{\prime} 18^{\prime \prime}$; height of eye, 18 ft .; time by chron. $12^{\mathrm{b}} 51^{\mathrm{m}} 39^{\text {a }}$, which had been found to be slow $11^{\mathrm{h}} \mathbf{5 5 ^ { \mathrm { m } }}$ of A.T.S. ; the course and dist. were S. 54° E., 23^{\prime} since the error was determined. Required the lat. by reduction to the meridian; and if the ran from noon to obs. on the same course was 3 miles, find the lat. at noon.
12. September 7 th, about $9^{\text {b }}$ A.m. at ship. If in lat. by account $48^{\circ} 5^{\prime} \mathrm{N}$., long. $149^{\circ} 30^{\prime} \mathrm{W}$., chron. showed $6^{\text {h }} 47^{\mathrm{m}} 8^{*}$ G.M.T. ; the alt. of the Sun's U.L. $32^{\circ} 26^{\prime} 50^{\prime \prime}$; again a.M. on the same day, when the chron. showed $9^{\mathrm{h}} 10^{\mathrm{m}} 9^{\prime}$ G.M.T.; the alt. of the Sun's U.L. $47^{\circ} 20^{\prime} 30^{\prime \prime}$; ind. err. $-3^{\prime} 13^{\prime \prime}$; height of eye, 35 ft .; the ship having made 23 miles on a true N. $49^{\circ} \mathrm{E}$. course in the interval between the observations; required the line of position, the Sun's true azimuth, and the position of the ship when the second alt. was observed by "Sumner's method" by projection on the chart, assuming the lats. $47^{\circ} 30^{\prime} \mathrm{N}$. and $48^{\circ} \mathrm{N}$.
13. Find the A.T.S. of the meridian passage of a Cygni in long. $96^{\circ} 45^{\prime} \mathrm{E}$. on September 7th; also by inspection.
14. What stars not less than magnitude 2 are within 1 hour east of the meridian of a place in lat. $20^{\circ} 30^{\prime}$ S., long. $80^{\circ} 40^{\prime}$ E., above the horizon and pole at 7^{h} P.м. M.T.S. on August 7th ?
15. Calculate the mer, alt. of a Pavonis for placing on the sextant ind. cor. $-2^{\prime} 13^{\prime \prime}$; eye, 27 ft . in lat. $12^{\circ} 40^{\prime} \mathrm{N}$.
16. September 26 th, in lat. $36^{\circ} 32^{\prime}$ S., long. $125^{\circ} 40^{\prime}$ W., at $1^{\text {h }} 35^{\mathrm{m}}$ 4. m. M.T.S. ; the compass bearing of Aldebaran was N. 40° E. Find from the tables the true azimuth ; and if the variation be 9° E., find the deviation.
17. September 28 th, about $4^{\text {b }}$ A.m. at ship, in lat. $47^{\circ} 42^{\prime}$ S., long. by account, $84^{\circ} 15^{\prime}$ E., the obs. alt. of a Hydræ was $17^{\circ} 15^{\prime} 20^{\prime \prime}$; no ind. cor.; eye, 29 ft . ; time by chron., $9^{\text {b }} 13^{\text {m }} 25^{\text {d }}$, which was slow $1^{\text {b }} 16^{\mathrm{m}} 12^{3}$ of G.M. noon on September 2nd, and gaining $4^{\prime} 6$ daily. Find the longitude.
18. August 12th, when the G.M.'T. was $12^{\mathrm{d}} 11^{\mathrm{h}} 36^{\mathrm{m}} 31^{\mathrm{s}}$, in long. $23^{\circ} 49^{\prime}$ W.; the obs. alt. of Polaris out of the meridian was $42^{\circ} 17^{\prime} 50^{\prime \prime}$; ind. cor. $-3^{\prime} 11^{\prime \prime}$; eye, 28 ft . Find the latitude.
19. August 17 th, in long. $33^{\circ} 45^{\prime}$ E. ; the obs. meridian alt. of the Moon's L.L. bearing north was $80^{\circ} 37^{\prime} 40^{\prime \prime}$; ind. cor. - $1^{\prime} 20^{\prime \prime}$; eye, 35 ft . Find the latitude.
20. September 19 th , the obs. meridian alt. of the star β Tauri was $53^{\circ} 25^{\prime} 10^{\prime \prime}$ bearing north ; ind. èrr. $-3^{\prime} 17^{\prime \prime}$; height of eye, 24 ft . Required the latitude.
21.

Ship's hesd by standard compass.	Bearings of distant object by standard compass.	Deviation required.	Sbip's bead by standard compass.	Bearings of distant object by standard compass.	Deviation required.
$\begin{gathered} \text { N. } \\ \text { N.E. } \\ \text { E.E. } \end{gathered}$	$\begin{aligned} & \text { N. } 41^{\circ} \mathbf{E} . \\ & \text { N. } 30^{\circ} \mathbf{E} . \\ & \text { N. } 11^{\circ} \mathrm{E} . \\ & \text { N. } 12^{\circ} \mathrm{W} . \end{aligned}$		$\begin{gathered} \text { S. } \\ \text { S.W. } \\ \text { W.W. } \end{gathered}$	N. $33^{\circ} \mathrm{W}$. N. $27^{\circ} \mathrm{W}$. N. N. $28^{\circ} \mathbf{E}$.	

Find correct magnetic bearing ; construct a Napier's curve.
With mag. courses: N. by E. $\frac{1}{2}$ E. E. $\frac{3}{4}$ S. S.S.W. N.W. by N. $\frac{1}{4}$ N. Find comp. courses.
Given comp. courses : N. $\frac{1}{2}$ E. E.N.E. S.E. by E. $\frac{1}{4}$ E. S.W. $\frac{3}{4}$ W.
Find mag. courses.
With ship's head at E. $\frac{3}{4}$ S. by compass, the comp. bearings of distant objects were E.S.E. and W. by N. $\frac{3}{4}$ N. Find magnetic bearings.
22. On October 13th, at $2^{\mathrm{b}} 47^{\mathrm{ma}}$ A.m. M.T.S., being off Fleetwood by reckoning, took a cast of the lead. Required the correction to be applied to the depth obtained by the lead-line, before comparing it with the depth marked on the chart.
23. August 10th, about $8^{\text {h }} 15^{\mathrm{m}}$ A.m, in lat. $37^{\circ} 14^{\prime}$ N., long. by account 14° W., when a chron. estimated $5^{\text {m }} 25^{\text { }}$ slow of G.M.T. showed $9^{\mathrm{h}} 13^{\mathrm{m}}$; the following observations were taken for determining long. and chron. error: obs. alt. of Moon's L.L. $29^{\circ} 38^{\prime} 20^{\prime \prime}$; ind. cor. $+3^{\prime} 14^{\prime \prime}$; height of eye, 30 ft . ; obs. distance between enlightened limbs of Sun and Moon, $109^{\circ} 17^{\prime} 50^{\prime \prime}$; ind. cor. $-2^{\prime} 35^{\prime \prime}$.
24. August 2nd, about $9^{\text {h }}$ P.M. in lat. $23^{\circ} 15^{\prime}$ N., approx. long. $62^{\circ} 20^{\prime}$ W., when a chron. showed $1^{\mathrm{L}} 25^{\mathrm{m}} 40^{3}$ correct M.T.G.; the obs. alt. of Antares was $35^{\circ} 42^{\prime} 40^{\prime \prime}$; and at the same time the obs. alt. of Spica was $14^{\circ} 18^{\prime} 20^{\prime \prime}$; ind. cor. $-3^{\prime} 18^{\prime \prime}$; eye, 35 ft . Find the true bearings of the stars and ship's position, either by "Sumner's method," assuming lats. 15 ' on each side of lat. by account, or by direct spherics.
25. August 5th, at $2^{\text {h }} 30^{\text {m }}$ P.M. M.T.S. in lat. $30^{\circ} 27^{\prime} 45^{\prime \prime}$ S., long. $93^{\circ} 55^{\prime} \mathrm{E}$. ; the obs. alt. of Sun's U.L. in artificial horizon was $62^{\circ} 50^{\prime} 50^{\prime \prime}$; ind. cor. $-4^{\prime} 44^{\prime \prime}$; eye, 19 ft . If the chron. showed $8^{\mathrm{h}} 19^{\mathrm{m}} 41^{8}$, required its error on M.T.G.
26. Find the first and last courses and distance on a G.C. arc from lat. $11^{\circ} 51^{\prime}$ N., long. $51^{\circ} 16^{\prime}$ E., to lat. $52^{\circ} 33^{\prime}$ S., long. $169^{\circ} 9^{\prime}$ E., position of vertex, and latitudes of intersection of meridians of $60^{\circ} \mathrm{E} ., 70^{\circ} \mathrm{E} ., 80^{\circ} \mathrm{E}$., 90° E., and 160° E. with the track.
27. In triangle $\mathrm{ABC}, \mathrm{A}=90^{\circ}, \mathrm{AC}=1950, \mathrm{C}=1^{\circ} 3^{\prime}$. Find BC.
28. In triangle $\mathrm{XYZ}, \mathrm{XY}=210, \mathrm{X}=47^{\circ} 48^{\prime}, \mathrm{Y}=67^{\circ} 26^{\prime}$. Find XZ .
29. In spherical triangle, $\mathrm{R}=90^{\circ}, \mathrm{QR}=119^{\circ} 8^{\prime}, \mathrm{PR}=168^{\circ} 20^{\prime}$. Find P and $P Q$.
30. The deviations with ship's head by compass, on N., N.E., E., S.E., S., S.W., W., and N.W. are 20° W., 16° W., 5° E., 12° E., 12° E., 9° E., 2° E., $4^{\circ} \mathrm{W}$. Find coefficients A, B, C, D, and E, and compute deviations for points from E. to W. through north.
31. With ship steering $\mathrm{N} .35^{\circ} \mathrm{E}$., and heeling 14° to port, the heeling error is -15°. Find the amount when steering N. $70^{\circ} \mathrm{W}$., and heeling 18° to starboard.

Paper IV.

1. Multiply 300.07 by 0.0246 , by logs.
2. Divide 5623.87 by $48960^{\circ} 02$, by logs.
3.

Hour.	Cuurses.	Kats.	10ths.	Winds.	$\begin{array}{\|l\|l\|l\|l\|l} \text { Lee- } \\ \text { way } \end{array}$	Jeviation.	Remarks.
1 2 3 4 4	W.s. ${ }^{\text {T}}$.	$\begin{aligned} & 12 \\ & 13 \\ & 12 \\ & 11 \\ & 11 \end{aligned}$	$\begin{array}{r} 8 \\ 1 \\ 5 \\ 6 \\ - \end{array}$	N.W.	$\begin{array}{\|c} \mathrm{Pts} \\ 1 \frac{1}{3} \end{array}$	$26^{\circ} \mathrm{E}$	Departure taken from a point in lat. $37^{\circ} 3^{\prime} \mathrm{N}$, long. $4^{\circ} 25^{\prime} \mathrm{E}$.; bearing by com-
$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \\ & \hline \end{aligned}$	W.	12 13 12 12	$\begin{gathered} 9 \\ \hline 8 \\ \hdashline 3 \end{gathered}$	N.N.W.	\pm	1910	ship'sheadS.W.; deviation 29° E., distant 20 miles. Variation $21^{\circ} \mathrm{W}$.
$\begin{aligned} & \overline{10} \\ & 11 \\ & 12 \end{aligned}$	W. $\frac{1}{9} \mathrm{~N}$.	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 2 \\ & 7 \\ & 1 \end{aligned}$	N.	$1{ }_{1}^{11}$	$17^{\circ} \mathrm{E}$.	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	W. by S.	11 11 11 11 11	$\begin{aligned} & 9 \\ & 8 \\ & 9 \\ & 9 \\ & 8 \\ & 6 \end{aligned}$	N.N.W.	${ }^{\frac{3}{4}}$	$\because 3^{\circ} \mathrm{E}$.	
$\begin{aligned} & \mathrm{G} \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	W. $\frac{1}{1} \mathrm{~S}$.	11 12 12 12	$\begin{aligned} & 5 \\ & 9 \\ & 8 \\ & 8 \end{aligned}$	N.N.W.	$1{ }^{1}$	$20^{\circ} \mathrm{E}$	A current set S. 21° E. true, 42 miles during the day.
$\begin{aligned} & \overline{10} \\ & 11 \\ & 12 \end{aligned}$	W.N.W.	$\begin{aligned} & 13 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 1 \\ & 6 \\ & 3 \end{aligned}$	N.	1	$11^{\circ} \mathrm{L}$.	

Find the course and distance made good; lat. and long. of the ship.
4. August 4th, in long. $82^{\circ} 35^{\prime}$ E., the observed meridian altitude of the Sun's L.L. zenith south of Sun was $15^{\circ} 32^{\prime} 30^{\prime \prime}$; ind. err. - $3^{\prime} 4^{\prime \prime}$; height of eye, 35 feet. Required the latitude.
5. How far due east must a vessel sail on the parallel of $39^{\circ} 27^{\prime} \mathrm{S}$. to change her longitude $1^{\circ} 29^{\prime}$?
6. Required the compass course and distance by Mercator's sailing-

> From A, lat. $42^{\circ} 35^{\prime} \mathrm{N} . \quad$ Long. $71^{\circ} 18^{\prime} \mathrm{W}$. To B, ,, $5322 \mathrm{~N} . \quad, \quad 1230 \mathrm{~W}$. Variation, 430 W . Deviation, 1920 E .

7. July 24th. Find the M.T.S. of high water at Limeriek.

8. September 8 th p.м. at ship, in lat. $23^{\circ} 40^{\prime}$ S., long. $65^{\circ} 50^{\prime}$ E., when the A.T.S. was $5^{\mathrm{h}} 50^{\mathrm{m}} 20^{\circ}$, the Sun's bearing by compass was W . $\frac{1}{4}$ S. Required the true amplitude, and error of the compass; and supposing the variation to be $10^{\circ} 30^{\prime} \mathrm{W}$., required the deviation of the compass for the position of the ship's head.
9. August 10 th, about $8^{\mathrm{h}} 15^{\mathrm{m}}$ A.M. at ship, in lat. at noon $37^{\circ} 29^{\prime} \mathrm{N}$., long. by account $14^{\circ} 30^{\prime}$ W., the obs. alt. of the Sun's L.L. was $36^{\circ} 6^{\prime} 40^{\prime \prime}$; ind.
err. 0 ; height of eye, 30 feet; time by chron. $9^{\text {h }} 20^{\mathrm{m}} 53$, which was slow $1^{\text {In }} 12^{\text { }}$ for G.M. noon on June 25th, and on July 10th was correct; run between obs. and noon, N.E. by E. 27 miles. Required the long. at sight, also brought up to noon ; also, if the compass bearing was East and variation $21^{\circ} 15^{\prime} \mathrm{W}$., find true azimuth and deviation.
10. September 2nd, about $4^{\text {b }} 20^{\mathrm{m}}$ P.M. at ship, in lat. $43^{\circ} 16^{\prime}$ S., long. $14^{\circ} 5^{\prime}$ W.; when the correct G.M.T. by chron. was $5^{\text {b }} 25^{m} 10^{8}$, the Sun's bearing by compass $\mathrm{N} .65^{\circ} 15^{\prime} \mathrm{W}$. Required the true azimuth and error of the compass by the tables; and supposing the variation to be $14^{\circ} \mathrm{W}$., required the deviation for the position of the ship's head.
11. September 25 th P.m. at ship, lat. by account $29^{\circ} 10^{\prime}$ S., long. $7^{\circ} 29^{\prime}$ E. ; the alt. of Algenib bearing N. was $46^{\circ} 5^{\prime} 50^{\prime \prime}$; ind. err. $-2^{\prime} 8^{\prime \prime}$; height of eye, $19 \mathrm{ft}$. ; time by watch $11^{\mathrm{h}} 25^{\mathrm{m}} 4^{4}$, which had been found to be fast of M.T.S. $2^{\text {m }} 22^{4}$; the diff. long. made eastward was 127^{\prime} after the error was determined. Required the lat. by reduction to the meridian.
12. September 1 st, about $0^{\mathrm{h}} 33^{\mathrm{m}}$ P.m. at ship. In lat. by account $49^{\circ} \mathrm{N}$., long. 180° E., when the chron. showed $12^{\mathrm{h}} 42^{\mathrm{m}} 57^{\circ}$, and was fast $8^{\mathrm{m}} 55^{\circ}$ of G.M.I. ; the alt. of the Sun's L.L. $48^{\circ} 51^{\prime}$; again P.M. on the same day, when the chron. showed $4^{\text {b }} 50^{\text {m }} 20^{\prime}$; the alt. of the Sun's U.L. $19^{\circ} 30^{\prime} 20^{\prime \prime}$; ind. err. $+1^{\prime} 10^{\prime \prime}$; height of eye, 17 ft ; the ship having made $6 \frac{1}{2}$ knots per hour on a true E.N.E. course in the interval between the observations. Required the line of position, the Sun's true azimuth, and the position of the ship when the second alt. was observed by "Sumner's method" by projection on the chart, assuming the lats. 20^{\prime} on each side of lat. by account.
13. In long. $127^{\circ} 45^{t} \mathrm{E}$., find the mean time of transit of Fomalhaut on Sept. 14th.
14. What stars not less bright than mag. $2 \cdot 5$ are within 1 hour \mathbf{E}. and W. of the meridian, above the horizon of a place in lat. $45^{\circ} \mathrm{N}$., long. $95^{\circ} \mathrm{W}$. on Sept. 8th at 9^{h} P.m. M.T.S. Give their meridian distances and bearings.
15. Calculate for placing on the sextant the mer. alt. of a Gruis in lat. $30^{\circ} 24^{\prime}$ S., ind. cor. $+1^{\prime} 17^{\prime \prime}$; eye, 30 ft .
16. August 16 th, midnight mean time at ship in lat. $30^{\circ} 20^{\prime} \mathrm{N}$., long. $64^{\circ} 20^{\prime} \mathrm{W}$., the compass bearing of a Arietis was E. $\frac{1}{2}$ S. Find true bearing from the "tables;" and if the variation was 6° W., required the deviation.
 the obs. alt. of Spica was $12^{\circ} 19^{\prime} 20^{\prime \prime}$; ind. cor. $-4^{\prime} 12^{\prime \prime}$; eye, 17 ft . ; when a chron, showed $3^{n} 55^{m} 58^{\circ} \cdot 5$, and had been found slow $3^{m} 31^{\bullet} \cdot 5$ on April 29th of G.M. noon, and fast $2^{m} 15^{\prime}$ on June 23 rd . Find the longitude.
17. September 8th, A.M. at ship, about $3^{\text {b }}$ in long. 157° E., when the A.T.G. was $4^{\mathrm{b}} 36^{\mathrm{m}} 26$, the obs. alt. of Polaris out of the meridian was $29^{\circ} 26^{\prime} 40^{\prime \prime}$; ind. cor. $+6^{\prime} 4^{\prime \prime}$; height of eye, 41 ft . Find the latitude.
18. August 15 th, in long. $136^{\circ} 15^{\prime}$ E., the obs. alt. of the Moon's L.L. bearing north was $46^{\circ} 19^{\prime} 10^{\prime \prime}$; ind. cor. $+2^{\prime} 28^{\prime \prime}$; height of eye, 34 ft . Required the latitude.
19. August 22nd, the observed meridian alt. of the star β Canis Majoris was $51^{\circ} 19^{\prime} 20^{\prime \prime}$ bearing north; ind. err. $-4^{\prime} 37^{\prime \prime}$; height of eye, 35 ft . Required the latitude.
20.

Ship"s head by staniard compass.	Bearings of distant object by standard compass.	Deviation required.	Ship's head by standard сомраге.	Bearings of distant object by standard compsss.	Deviation required.
N.	N. $32^{\circ} \mathrm{W}$.		S.	N. $20^{\circ} \mathrm{E}$.	
N.E.	N. $20^{\circ} \mathrm{W}$.		S.IW.	N. $9^{\circ} \mathrm{E}$.	
E.	N. $5^{\circ} \mathrm{E}$.		W.	N. $15^{\circ} \mathrm{W}$.	
S.E.	N. $17^{\circ} \mathrm{E}$.		N.W.	N. $31^{\circ} \mathrm{W}$.	

Find correct magnetic bearing ; construct a curve.
Given mag. courses : S.E. $\frac{1}{2}$ E. N.E. by N. W. by N. 슬 N. S. $72^{\circ} \mathrm{W}$. Find comp. courses.
Given comp. courses: E. by N. $\frac{1}{4}$ N. S.E. $\frac{3}{4}$ S. S.S.W. W. 15° N.
Find mag. courses.
With ship's head at E.S.E. by compass, comp. bearings of distant objects were $\mathrm{S} .50^{\circ} \mathrm{W}$. and $\mathrm{S} .35^{\circ}$ E. Find magnetic bearings.
22. On September 7th, at $5^{\text {h }}$ A.m. M.T.S., being off Wicklow by reckoning, took a cast of the lead. Required the correction to be applied to the depth obtained by the lead-line before comparing it with the depth marked on the chart.
23. Angust 11 th, at $4^{\text {h }} 6^{\text {m }}$ A.M. M.T.S., in lat. $40^{\circ} 17^{\prime}$ N., long. by account $21^{\circ} 39^{\prime} 45^{\prime \prime} \mathrm{W}$., when a chron. which had run down and been set going showed $5^{\mathrm{h}} 30^{\mathrm{m}}$, the following observations were taken for finding the long. and error of chron. for G.M.T.: obs. alt. of Moon's L.L., $54^{\circ} 33^{\prime} 50^{\prime \prime}$; ind. cor. $-2^{\prime} 2^{\prime \prime}$; height of eye, 27 ft . ; obs. dist. between Jupiter's centre and the Moon's near limb, $54^{\circ} 16^{\prime} 10^{\prime \prime}$; ind. cor. $-3^{\prime} 3^{\prime \prime}$.
24. September 28 th, about $4^{\text {h }}$ a.m. at ship, in lat. $47^{\circ} 40^{\prime}$ S., long. $84 \frac{1}{2}^{\circ} \mathrm{E}$. by account; when a chron. correct for M.T.G. showed $10^{\mathrm{h}} 27^{\mathrm{m}} 40^{\circ}$; the obs. alt. of ϵ Orionis was $41^{\circ} 42^{\prime} 20^{\prime \prime}$; and at the same time the obs. alt. of Alphard was $17^{\circ} 15^{\prime} 20^{\prime \prime}$; eye, 29 ft . Find the true bearings of the stars, and position of ship, either by "Sumner's method "assuming lats. 47° and $47^{\circ} 40^{\prime} \mathrm{S}$., or by direct spherics.
25. September 22 nd, at $2^{\text {h }} 17^{\text {m }} 27^{\text {a }}$ P.m. at ship, from which a place in lat. $9^{\circ} 12^{\prime} \mathrm{N}$., long. $173^{\circ} 44^{\prime} \mathrm{W}$., bore N. $33^{\circ} \mathrm{W}$., distant 6 miles; the obs. alt. of Sun's L.L. was $53^{\circ} 29^{\prime} 20^{\prime \prime}$; ind. cor. $-3^{\prime} 19^{\prime \prime}$; height of eye, 21 ft . If a chron. showed $1^{1 \mathrm{~b}} 47^{\mathrm{m}} 27^{\mathrm{c}}$, find its error on G.M.T.
26. Find the initial course and distance on a Great Circle, and position of vertex in sailing from lat. $34^{\circ} 36^{\prime}$ S., long. $58^{\circ} 22^{\prime}$, W., to lat. $33^{\circ} 56^{\prime}$ S., long. $18^{\circ} 29^{\prime}$ E. ; and lat. of place where meridian of Greenwich cuts the traok.
27. AB is a horizontal line 1300 ft . long. ; a vertical line is drawn from B upwards, and in it two points P and Q are taken such that $B Q=3 B P$, $\mathrm{BAP}=10^{\circ} 30^{\prime} 20^{\prime \prime}$. Find BP and BAQ.
28. $X Y$ is 2000 ft . long; Y is due east of X; at Y a point Z bears N. $46^{\circ} 20^{\prime}$ W., at X it bears N. $8^{\circ} 45^{\prime}$ E. Find XZ.
29. Two places, A and B, are on the same parallel $35^{\circ} \mathrm{N}$., and their difference of longitude is 85°. Find the distance between them on the G.C., also lat. of vertex.
30. From a rock 7 ft . above high water, the angle of elevation to the summit of a cliff distant 5320 ft . in a horizontal direction is $1^{\circ} 30^{\prime}$; height of eye, 5 ft . Find height of cliff above high water.
31. September 12 th, in lat. $25^{\circ} 17^{\prime}$ S., long. $100^{\circ} 14^{\prime}$ E. at $8^{\text {b }} 30^{\mathrm{m}}$ P.M. M.T.S., the compass bearing of γ Crucis was S. $28^{\circ} 30^{\prime}$ W. Find the deviation, the variation being $8^{\circ} 15^{\prime} \mathrm{W}$.
32. Coefficient $\mathrm{B}=-18^{\circ} 30^{\prime}$, coefficient $\mathrm{C}=+27^{\circ} 48^{\prime}$. Find direction ship's head.

Ship's head S. $74^{\circ} \mathrm{W}$., coefficient $\mathrm{B}=+5^{\circ} 7$. Find coefficient C.
33. Ship's head by compass N., N.E., E., S.E., S., S.W., W., N.W.

Deviations $10^{\circ} \mathrm{W} ., 15^{\circ} \mathrm{W} ., 14^{\circ} \mathrm{W} ., 8^{\circ} \mathrm{E} ., 20^{\circ} \mathrm{E} ., 18^{\circ} \mathrm{E} ., 3^{\circ} \mathrm{W} ., 5^{\circ} \mathrm{W}$.
Find coefficients A, B, C, D and E, and thence compute a table of deviations from E. to W. through S.
34. When steering S. 28° E., and heeling to port 15°, the error was -10°. Find its amount when steering west and heeling 12° to starboard.

$P_{\text {aper }} \mathrm{V}$.

1. Muitiply $1 \cdot 0009$ by $62 \cdot 7014$, by logs.
2. Divide 7.5 by 1000 , by logs.
3.

Find the course and distance made good; lat. and long. of the ship.
4. August 6th, in long. $19^{\circ} 17^{\prime}$ W. ; the obs. mer. alt. of the Sun's U.L., $78^{\circ} 16^{\prime} 50^{\prime \prime}$, zenith south of object ; ind. err., $-5^{\prime} 11^{\prime \prime}$; height of eye, 37 ft . Required the latitude.
5. In lat. $45^{\circ} 50^{\prime} \mathrm{N}$. What is the departure made good to cause a change of 800^{\prime} of long. by sailing due east?
6. Required the compass course and distance by Mercator's sailing ; var. $30^{\circ} \mathrm{W} . ;$ dev. $10^{1}{ }^{\circ}$ E.-

$$
\begin{aligned}
& \text { From A, lat. } 33^{\circ} 24^{\prime} \text { S. long. } 20^{\circ} 15^{\prime} \mathrm{E} \text {. } \\
& \text { To B, , } 5340 \mathrm{~S} . \quad \text { " } 6337 \mathrm{~W}
\end{aligned}
$$

7. August 15th. Find the M.T.S. of high water at Seal Cove. N.B.
8. August 15 th, about $5^{\text {h }}$ P.m. at ship, in lat. $44^{\circ} 29^{\prime}$ S., long. $129^{\circ} 35^{\prime}$ E., when a chron. known to be $15^{\mathrm{m}} 50^{\circ}$ slow of M.T.G. showed $7^{5} 56^{\mathrm{m}} 50^{8}$, the Sun's bearing by compass was S. $88^{\circ} 30^{\prime}$ W. Required the true amplitude, and error of the compass; and supposing the variation to be $2^{\circ} 20^{\prime} \mathrm{W}$., required the deviation of the compass for the position of the ship's lead.
9. September 29th, about $4^{\text {h }} 45^{\text {m }}$ P.m. at ship, in lat. at noon $46^{\circ} 23^{\prime} \mathrm{N}$., long. by account $179^{\circ} 50^{\prime}$ W., the obs. alt. of Sun's L.L. was $11^{\circ} 12^{\prime}$; ind. err., nil; height of eye, 25 ft . ; time by chron., $4^{\mathrm{b}} 43^{\mathrm{m}} 46^{3}$, which was fast $13^{m} 47^{\prime \prime}$ for G.M. noon on Angust 10th, and losing $3^{\prime \cdot} 3$ per day. The run since noon, N. $50^{\circ} \mathrm{W} .42$ miles. Required the long. at sight, also brought up to noon; and if the compass bearing was W. $\frac{1}{4}$ N., variation $13^{\circ} 15^{\prime}$ E., find the deviation.
10. August 14 th, about $9^{\text {b }}$ A.m. in lat. $58^{\circ} 49^{\prime}$ N., long. $32^{\circ} 56^{\prime}$ W., when a chron. correct for G.M.T. showed $11^{\mathrm{b}} 22^{\mathrm{m}} 38^{\circ}$; the sun's bearing by compass, S. $5^{\circ} 30^{\prime}$ E. Required the true azimuth and error of the compass by the "Tables;" and supposing the variation to be $50^{\circ} \mathrm{W}$., required the deviation for the position of the ship's head.
11. August 19th P.M. at ship, lat. by account $30^{\circ} 22^{\prime}$ S., long. $170^{\circ} 48^{\prime}$ E.; the alt. of the Sun's L.L., $45^{\circ} 47^{\prime} 50^{\prime \prime}$; ind. err., $+3^{\prime} 55^{\prime \prime}$; height of eye, 19 ft . ; time by chron., $1^{\mathrm{b}} 16^{\mathrm{m}} 58^{\mathrm{s}}$, which had been found to be fast $10^{\mathrm{m}} 6^{\mathrm{a}}$ of M.T.G. ; the run was $\mathbb{S} .48^{\circ} \mathrm{W} .35$ miles after the error was determined. Require the lat. by reduction to the meridian; and if the run since noon was 4 miles on the same course, find the lat. at noon.
12. September 29th, about $0^{\text {h }} 30^{\text {T}}$ P.m. at ship, lat. by account $46^{\circ} 55^{\prime}$ N., long. $179^{\circ} 50^{\prime} \mathrm{W}$., when the chron. showed $12^{\mathrm{b}} 20^{\text {m }} 39^{\circ}$ G.M.T. ; the alt. of the Sun's L.L., $40^{\circ} 30^{\prime} 40^{\prime \prime}$; again P.M. on the same day, when the chron. showed $4^{4} 32^{\mathrm{m}} 46^{\text {a }}$ G.M.T. ; the alt. of the Sun's L L., $11^{\circ} 7^{\prime}$; ind. err., $+5^{\prime}$; height of eye, 25 ft .; the ship having made 42 miles on a true $\mathrm{N} .45^{\circ} \mathrm{W}$. course in the interval between the observations. Required the line of position when the first alt. was taken, the sun's true azimuth and position of the ship when the second alt. was observed by "Sumner's method" by projection on the chart, assuming the lats. 46° and $46^{\circ} 40^{\prime} \mathrm{N}$.
13. Find the apparent time of transit of Markab across the meridian of a place long. $121^{\circ} 45^{\prime}$ E. on September 21st; also by inspection.
14. Find what bright stars of at least 2nd mag. are within 1 hour E . and W. of mer., above horizon and pole, on August 14th at $1^{16} 30^{\text {m }}$ A.M. A.T.S. in lat. 29° N., long. 130° E., and state their hour angles.
15. Calculate mer. alt. of a Cephei for placing on sextant in lat. $12^{\circ} 15^{\prime} \mathrm{N}$.; ind. cor., $-4^{\prime} 26^{\prime \prime}$; height of eye, 35 ft .
16. August 2nd, about $9^{\text {i }}$ P.m. at ship, in lat. $23^{\circ} 12^{\prime}$ N., long. $62^{\circ} 30^{\prime}$ W.; the obs. alt. of Antares was $35^{\circ} 37^{\prime} 10^{\prime \prime}$; ind. cor., $+2^{\prime} 14^{\prime \prime}$; eye, 35 ft ; when a chron. showed $1^{\text {b }} 13^{\mathrm{ma}} 21^{\circ}$, which was slow $10^{\mathrm{m}} 47^{\circ}$ on May 2nd, and slow $14^{\mathrm{m}} 17^{\mathrm{a}}$ on June 11th for G.M. noon. Required the longitude.
17. August 26 th, at $3^{\mathrm{b}} 42^{\mathrm{m}}$ A. M. A.T.S., in lat. $42^{\circ} 18^{\prime}$ S., long. $91^{\circ} 14^{\prime}$ W.; the compass bearing of Markab was N.W. $\frac{1}{4}$ N., the variation being $18^{\circ} 45^{\prime} \mathrm{E}$. Find true azimuth from "Tables," and deviation.
18. September 18th, about $5^{\mathrm{h}} 15^{\mathrm{m}}$ A.m. at ship, in long. $148^{\circ} 15^{\prime} \mathrm{W}$., when a chron. which showed G.M.T. indicated $3^{\text {b }} 14^{\text {m }} 12^{\text {s }}$, the obs. alt. of Polaris out of the meridian was $51^{\circ} 7^{\prime} 20^{\prime \prime}$; ind. cor., $-5^{\prime} 37^{\prime \prime}$; eye, 19 ft . Required the latitude.
19. August 10 th, in long. $29^{\circ} 30^{\prime}$ W.; the obs. mer. alt. of the Moon's U.L. was $48^{\circ} 13^{\prime} 20^{\prime \prime}$; zenith north of Moon; ind. cor., $-3^{\prime} 16^{\prime \prime}$; height of eye, 32 ft . Find latitude.
20. The obs. mer. alt. of the star β Argûs under the South Pole was $30^{\circ} 47^{\prime} 50^{\prime \prime}$; ind. err., $+5^{\prime} 26^{\prime \prime}$; height of eye, 12 ft . Required the latitude. 21.

Sbip's bead by standard compass.	Bearings of distant object by standard compass.	Deviation required.	Ship's bead by standard compass.	Bearings of distant object by standard compass.	Deviation required.
N.	N. $56^{\circ} \mathrm{E}$.		S.	N. $56^{\circ} \mathrm{E}$.	
N.E.	N. $48^{\circ} \mathrm{E}$.		S.W.	N. $63^{\circ} \mathrm{E}$.	
E.	N. $45^{\circ} \mathrm{E}$.		W.	N. $68^{\circ} \mathrm{E}$.	
S.E.	N. $49^{\circ} \mathrm{E}$.		N.W.	N. $64^{\circ} \mathrm{E}$.	

Find correct magnetic bearing ; construct a curve.
Given magnetic courses : E. by N. S.E. by E. W.S.W. N.N.W. Find compass courses.

Given compass courses: S. $79^{\circ} \mathrm{W}$. S. 23° E. N. 34° E. N.W. Find magnetic courses.
With ship's head at E.N.E. by compass, the compass bearings of distant objects were S . by W. $\frac{1}{2} \mathrm{~W}$., and $\mathrm{S} .59^{\circ}$ E. Find magnetic bearings.
22. On August 6 th, at $6^{\text {h }}$ P.M. M.T.S., being off Tenby by reckoning, took a cast of the lead. Required the correction to be applied to the deptri obtained by the lead-line, before comparing it with the depth marked on the chart.
23. August 17 th, about $8^{\text {4 }}$ A.m. at ship, in lat. $36^{\circ} 27^{\prime}$ N., long. by account, $36^{\circ} \mathrm{W}$., when a chron. estimated $12^{\mathrm{m}} 10^{\mathrm{s}}$ fast on G.M.T. showed $10^{\mathrm{H}} 31^{\mathrm{m}} 40^{\circ}$; the obs. alt. of the Sun's L.L. was $30^{\circ} 25^{\prime} 50^{\prime \prime}$; ind. cor., $+2^{\prime} 14^{\prime \prime}$; height of eye, 30 ft . ; obs. distance between the enlightened limbs of Sun and Moon, $30^{\circ} 12^{\prime} 40^{\prime \prime}$; ind. cor., $+3^{\prime} 16^{\prime \prime}$. Find the true and apparent altitudes of the Moon, long. of ship, and error of chron. on G.M.T.
24. September 7 th, in lat. N., long. $149^{\circ} 30^{\prime} \mathrm{W}$., the following observations were made for finding latitude by "Ivory" or "Direct," at second obs. :-

App. times ship nearly.	G.M.T. hy chron.	Obs. alts. Sun's L.L.
$8^{\mathrm{h}} 50^{\mathrm{m}}$ A.M.	$6^{\mathrm{b}} 47^{\mathrm{m}} 7^{\mathrm{s}}$	$\delta 32^{\circ} 26^{\prime} 50^{\prime \prime}$
1115 A.M.	9108	472030

Bearing at first obs., S. $60^{\circ} \frac{1}{2}$ E. ; run between obs., N. $48 \frac{1}{2}^{\circ}$ E., 9.5 knots per hour ; ind. cor., $-3^{\prime} 13^{\prime \prime}$; eye, 35 ft .
25. September 4th, at $4^{\mathrm{h}} 30^{\mathrm{m}}$ P.M., when Cape Farewell in lat. $40^{\circ} 29^{\prime} 50^{\prime \prime}$ S., long. $172^{\circ} 40^{\prime} 6^{\prime \prime}$ E., bore from ship west 13 miles distant, the obs. alt. of Sun's U.L. in artificial horizon was $24^{\circ} 0^{\prime} 30^{\prime \prime}$; ind. cor., $-2^{\prime} 8^{\prime \prime}$; time shown by chron., $4^{\mathrm{b}} 37^{\mathrm{m}}$. Find its error on M.T.G.
26. Find the initial and final courses from lat. $34^{\circ} 21^{\prime}$ S., long. $18^{\circ} 30^{\prime}$ E., to lat. $38^{\circ} 18^{\prime} \mathrm{S}$., long. $144^{\circ} 39^{\prime}$ E., by composite sailing; easting to be run on the parallel of $46^{\circ} \mathrm{S}$. Also find total distance, and lats. where meridians of $50^{\circ} \mathrm{E}$. and $140^{\circ} \mathrm{E}$. cut the track.
27. From a boat the angle of elevation of the truck, known to be 165 ft . above the water-level, was found to be $9^{\circ} 17^{\prime}$. Find distance of observer from ship.
28. A vessel sails S.S.E. $\frac{1}{4}$ E., 137 miles by log, but by observation she is known to be 101 miles $\mathrm{S} . \frac{1}{4} \mathrm{~W}$. of her former position. Find the set and drift of the current.
29. In a right-angled spherical triangle, hyp. $=105^{\circ} 20^{\prime}$; one angle is $35^{\circ} 4^{\prime}$. Find side opposite given angle, and remaining angle.
30. Coefficient $\mathrm{B}=-3^{\circ} 12$; coefficient $\mathrm{C}=+8^{\circ} 48^{\prime}$. Find direction of ship's head on stocks. With ship's head at building S. $14^{\circ} \mathrm{W}$., and coefficient $\mathbf{C}=-1^{\circ} \cdot 47$, find \mathbf{B}.
31. Using deviations found in question 21 , find coefficients $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E ; and construct a table of deviations for quadrants N . to E and S . to W.
32. Steering S.W. by W., heeling 14°, wind N.N.W., obs. heeling error, -15°. Required the error when course is changed to E. by N., heeling 10°.

Paper T「I.

1. Multiply 00483506 by 100.0706 by logs.
2. Divide 6789 by 78900 by logs.
3.

IIrs.	Courses.	Lints.	10ths.	Winds.	$\left\lvert\, \begin{array}{\|l\|l\|} \text { Lee- } \\ \text { way. } \end{array}\right.$	Deviation.	Remarks.
1	N.E. $\frac{1}{2}$ E.	14	6	N.W. $\frac{1}{2}$ W.	1'ts.	$20^{\circ} \mathrm{E}$.	Departure taken from a point in lat. $37^{\circ} 45^{\prime} \mathrm{S}$., long. $178^{\circ} 32^{\prime} \mathrm{E}$.;
2		14	8				
3		13	9				
4		14	3				
5		14	4				
6	E.N.E.	14	9	W.N.W.	$\frac{1}{4}$	$21^{\circ} \mathrm{E}$.	pass, E. $\frac{1}{2}$ N.; ship's head, N.E. $\frac{1}{2}$ E. ; deviation as per log, distant 17 miles.
7		14	5				
8		13	6				
9	E. by N. $\frac{1}{4} \mathrm{~N}$.		9	W.	-	$22^{\circ} \mathrm{E}$	
10		13	8				
11		14	3				
12		14	-				
	E. by S. $\frac{1}{2} \mathrm{~S}$.			S.W.	14	$19^{\circ} \mathrm{E}$.	
2		13	6				
3		14	3				
4		14	4				
5	E.S.E.	14		S.S.W.	1	$18^{\circ} \mathrm{E}$.	A current set N. $\frac{3}{4}$ F., correct magnetic, $\quad 2 \frac{1}{2}$ knots per hour for 24 hours.
G		13	8				
7		14	1				
8		13	9				
9	E.N.E.	14		S.S.W.	${ }^{\frac{1}{2}}$	$14^{\circ} \mathrm{E}$	
10		14	1				
11		13	9				
12		13	8				
-							

Find the course and distance made good; lat. and long. of the ship.
4. September 23 rd, in long. $8^{\circ} 45^{\prime}$ W., the obs. mer. alt. of the Sun's L.L. bearing nortll was $47^{\circ} 4^{\prime} 20^{\prime \prime}$; ind. err., $+4^{\prime} 32^{\prime \prime}$; height of eye, 39 ft . Required the latitude.
5. Along what parallel is a vessel sailing when for a distance sailed due west of 76 miles she alters her long, $1^{\circ} 30^{\prime}$?
6. Required the compass course and distance by Mercator's sailing-

From A, lat. $55^{\circ} 13^{\prime} \mathrm{S}$.	Long. $43^{\circ} 30^{\prime} \mathrm{E}$.
To B, , 1019 S.	12012 E .
Variation, 3640 W.	Deviation, 1410

7. July 13th. Find the M.T.G. of high water at Quaco.
8. September 18th, in lat. $35^{\circ} 18^{\prime}$ N., long. $156^{\circ} 17^{\prime}$ W., when the A.T.S. (civil time) was $5^{\text {b }} 54^{\text {m }}$ A.m., the Sun's bearing by compass was E.N.E. Required the true amplitude, and error of the compass; and supposing the variation to be $14^{\circ} 20^{\prime} \mathrm{E}$., required the deviation of the compass for the position of the ship's head.
9. September 7 th, about $8^{\text {h }} 50^{\mathrm{m}}$ A.m. at ship, in lat. at noon $48^{\circ} 37^{\prime} \mathrm{N}$., approx. long. $149^{\circ} 30^{\prime}$ W., the obs. alt. of Sun's U.L. was $32^{\circ} 35^{\prime} 20^{\prime \prime}$; ind. err., $-4^{\prime} 19^{\prime \prime}$; height of eye, 35 ft ; time by chron., $6^{\text {b }} 41^{m} 30^{\text {a }}$, which was fast $3^{\text {m }} 10^{\circ} \cdot 6$ for G.M. noon on July 19th, and on August 8 th was slow $19^{\prime} \cdot 4$; run since obs. N. 50° E. 42 miles. Required the long. at sight, also brought up to noon; and if the compass bearing was N. $84^{\circ} 30^{\prime} \mathrm{E}$., and variation $22^{\circ} 15^{\prime} \mathrm{E}$., find true azimuth and deviation.
10. September 12 th, about $2^{\text {b }} 15^{\mathrm{m}}$ P.m., in lat. $35^{\circ} 33^{\prime}$ S., long. $43^{\circ} 27^{\prime}$ E., when a chron. correct for G.M.T. showed $11^{\text {b }} 21^{\text {I }} 21^{\circ}$, the Sun's bearing by compass, N. $8^{\circ} 30^{\prime}$ W. Required the true azimuth and error of the compass by the "Tables; " and supposing the variation to be $23^{\circ} 30^{\prime}$. W., required the deviation for the position of the ship's head.
11. September 17 th, about $5^{\text {b }} 15^{\text {m }}$ A.m. at ship, lat. by account $40^{\circ} 35^{\prime}$ S., long. $88^{\circ} 16^{\prime}$ W., the alt. of Aldebaran bearing north was $32^{\circ} 58^{\prime} 40^{\prime \prime}$; ind. err., $-4^{\prime} 18^{\prime \prime}$; height of eye, 37 ft .; time by watch, $10^{\mathrm{h}} 42^{\mathrm{m}} 24^{8}$, which had been found to be $24^{m} 7^{3}$ slow of M.T.G.; the diff. long. to the westward 17 miles after the error was determined. Required the lat. by reduction to the meridian.
12. September 23 rd , about $9^{\text {b }} 30^{\text {m }}$ A.m. at ship, in lat. $47^{\circ} 30^{\prime}$ N., long. $82^{\circ} 20^{\prime}$ E. by D.R., when the chron. showed $3^{4} 52^{\mathrm{m}} 39^{\circ}$ G.M.T. ; the alt. of the Sun's L.L., $32^{\circ} 13^{\prime} 10^{\prime \prime}$; again P.m. on the same day, when the chron. showed $8^{\mathrm{h}} 52^{\mathrm{m}} 46^{3}$ G.M.T. ; the alt. of the Sun's L.L., $32^{\circ} 13^{\prime} 10^{\prime \prime}$; ind. err., $-2^{\prime} 8^{\prime \prime}$; height of eye, 28 ft .; the ship having made 21 miles on a true N. 60° E. course in the interval between the observations. Required the line of position when the first alt. was taken, and the Sun's true azimuth; also the position of the ship when the second alt. was observed by "Sumner's method" by projection on the chart, assuming the lats. 20 miles on each side of D.R. lat.
13. Find the mean time of passage of Arcturus across the meridian of $38^{\circ} 15^{\prime}$ W. on September 28th.
14. September 28th. What bright stars not less than 2nd mag. are within 2 hours of the meridian, above the horizon and pole in lat. $30^{\circ} \mathbf{S}$., long. 140° W., at $2^{\text {a }} 15^{\mathrm{m}}$ A.M. M.T.S. ? State their mer. distances and bearings.
15. Calculate for placing on the sextant the mer. alt. of γ Cygni in lat. $24^{\circ} 12^{\prime}$ S. ; ind. cor., $+3^{\prime} 27^{\prime \prime}$; eye, 32 ft .
16. September 16th, at $0^{\text {b }} 15^{\mathrm{m}}$ A.m. A.T.S., in lat. $38^{\circ} 47^{\prime}$ N., long. $14^{\circ} 29^{\prime}$ W., the compass bearing of Altair was West. Find from the "Tables" the true azimuth; and if the variation be $23^{\circ} 30^{\prime} \mathrm{W}$., find the deviation.
17. August 5th, about $9^{\text {h }} 30^{m}$ P.m. at ship, in lat. $48^{\circ} 30^{\prime}$ N., long. by account $50^{\circ} \mathrm{W}$., the obs. alt. of a Cygni, $67^{\circ} 14^{\prime} 30^{\prime \prime}$; ind. cor., $-3^{\prime} 13^{\prime \prime}$; eye, 39 ft .; when a chron. showed $11^{\mathrm{b}} 57^{\mathrm{m}} 25^{\text {s }}$, which had been found to be $45^{\mathrm{m}} 32^{4}$ slow of G.M. noon on June 6th, and $48^{\mathrm{m}} 13^{\text {s }}$ slow on June 26 th. Find the longitude.
18. August 26 th, at $9^{\text {a }} 14^{\mathrm{m}} 23^{\circ}$ P.M. M.T.S., in long. $64^{\circ} 45^{\prime}$ W., the obs. alt. of the Pole star out of the meridian was $38^{\circ} 29^{\prime} 20^{\prime \prime}$; ind. cor., $+2^{\prime} 25^{\prime \prime}$; eye, 37 ft . Find the latitude.
19. August 7 th, in long. $48^{\circ} 45^{\prime}$ W., the obs. mer. alt. of the Moon's L.L. was $32^{\circ} 17^{\prime} 50^{\prime \prime}$ bearing north ; ind. cor., $-5^{\prime} 5^{\prime \prime}$, height of eye, 48 ft . Required the latitude.
20. August 13th, the obs. mer. alt. of the star a Urse Majoris was $62^{\circ} 15^{\prime} 30^{\prime \prime}$ zenith south of star; ind. err., $-4^{\prime} 45^{\prime \prime}$; height of eye, 36 ft . Required the latitude.
21.

Sbip's bead by stadard compass.	Bearings of distant object by standard compass.	Deviation required.	Ship's bead by standard compass.	Besriags of distant object by stsadsrd compass.	Deviation required.
N.	S. $5^{\circ} \mathrm{W}$.		S.	S. $10^{\circ} \mathrm{E}$.	
N.E.	S. $6^{\circ} \mathrm{E}$.		S.W.	S. $7^{\circ} \mathrm{W}$.	
E.	S. $18^{\circ} \mathrm{E}$.		W.	S. $18^{\circ} \mathrm{W}$.	
S.E.	S. $17^{\circ} \mathrm{E}$.		N.W.	S. $21^{\circ} \mathrm{W}$.	

Find correct magnetic bearing, and construct a curve.
Given magnetic courses : N. by W. W. $\frac{3}{4}$ S. S.E. $\frac{1}{4}$ E. N. 32° E. Find compass courses.
Given compass courses : E. by S. $\frac{1}{2}$ S. S.W. $\frac{3}{4}$ S. W. $\frac{1}{2}$ N. N. 8° W. Find magnetic courses.
With ship's head at E. by S. by compass, the compass bearings of distant objects were N.W. $\frac{1}{4}$ W. and S.W. $\frac{3}{4}$ W. Find magnetic bearings.
22. On January 10th, at $8^{\mathrm{h}} 15^{\mathrm{m}}$ A.m. M.T.G., being off Beachy Head by reckoning, took a cast of the lead. Required the correction to be applied to the depth obtained by the lead-line, before comparing it with the depth marked on the chart.
23. August 30 th, at $8^{\mathrm{b}} 29^{\mathrm{m}} 30^{\circ}$ P.M. at ship, in lat. $10^{\circ} 15^{\prime}$ S., long by D.R. $98^{\circ} 14^{\prime}$ E., when a chron. which had stopped and been set going showed $1^{\text {b }} 40^{\prime m}$, the obs. alt. of the Moon's L.L. was $76^{\circ} 38^{\prime} 40^{\prime \prime}$; obs. alt. of Antares was $49^{\circ} 33^{\prime} 50^{\prime \prime}$; ind. cor. to alts., $-2^{\prime} 15^{\prime \prime}$; height of eye, 40 ft ; obs. distance between the Star and Moon's near limb, $44^{\circ} 44^{\prime} 30^{\prime \prime}$; ind. cor., $+2^{\prime} 47^{\prime \prime}$. Find longitude and error of chron. on M.T.G.
24. August 19th, in lat. $48^{\circ} 30^{\prime}$ S., long. 157° E. by D.R., the following obs. were made for finding lat. at second obs. by "Ivory" or "Direct" method:-

Mesn ship times. $8^{\mathrm{b}} 13^{\mathrm{m}} \text { P.M. }$	G.M.T. by chron. $9^{\mathrm{h}} 42^{\mathrm{m}} 40^{\mathrm{s}}$	Obs. alt. al Crucis. $44^{\circ} 19^{\prime} 30^{\prime \prime}$ bearing S. $40 \frac{1}{2} \mathrm{~W}$.
1233	2240	233850

Run between obs. N. $20^{\frac{1}{2}}{ }^{\circ} \mathrm{W}$., 12 knots per hour ; ind. cor., $-2^{\prime} 12^{\prime \prime}$; eye, 36 ft .
25. September 4th, at $2^{\text {h }}$ A.m. A.T.S., Cape Lobos in lat. $18^{\circ} 45^{\prime}$ S., long. $70^{\circ} 24^{\prime} \mathrm{W}$. , bore S. $40^{\circ} \mathrm{E}$. , distant 17 miles ; the obs. alt. of u Gruis in artificial horizon was $79^{\circ} 34^{\prime} 40^{\prime \prime}$; ind. cor., $+4^{\prime} 16^{\prime \prime}$. If a chron. showed $6^{\mathrm{h}} 40^{\text {m }}$, find its error on M.T.G.
26. Find initial course and distance on a composite track, highest lat. $50^{\circ} \mathrm{S}$., and lats. of points where meridians of $120^{\circ} \mathrm{W}$. and $180^{\circ} \mathrm{W}$. cut the track-

> From lat. $33^{\circ} 3^{\prime} \mathrm{S} .$, long. $71^{\circ} 38^{\prime} \mathrm{W}$.
> To , $4116 \mathrm{~S} ., \quad, \quad 17453 \mathrm{E}$.
27. In the triangle $\mathrm{ABC}, \mathrm{C}=90^{\circ}, \mathrm{AC}=15,866 \mathrm{ft}$., $\mathrm{BC}=13,000 \mathrm{ft}$. Find the angles, and length of line drawn from B to $A C$, bisecting angle ABC .
28. The elevation of a tower at A is $28^{\circ} 17^{\prime}$; at B , in the same horizontal plane and 155 ft . nearer the tower, the elevation is $62^{\circ} 37^{\prime}$. Find height of tower.
29. A vessel sails for 18 hours S.E. by S. 95 miles by the log, in a current setting S. by W. $\frac{1}{2}$ W. 2 knots per hour. What is the course and distance made good?
30. Using deviations from question 21 , find coefficients A, B, C, D, and E,
and construct a table showing deviations for each point from N.N.E. to S.E. through east.
31. The Sun's declination being $18^{\circ} 30^{\prime} \mathrm{N}$., and his true bearing at rising N.E. by E. $\frac{3}{4}$ E., find the lat. and hour angle at rising.
32. Construct a Mercator's chart, scale 1.8 in . to 1° long, extending from 59° to $61^{\circ} \mathrm{S} .$, and $28^{\circ} 30^{\prime} \mathrm{W}$. to $31^{\circ} 30^{\prime} \mathrm{W}$. A ship sails by compass from lat. $59^{\circ} 40^{\prime} \mathrm{S}$., long. $30^{\circ} 30^{\prime} \mathrm{W}$., as follows: S.E. by S., 57 miles (deviation $3^{\circ} \mathrm{W}$.) ; W., 25 miles (dev. $8^{\circ} 30^{\prime} \mathrm{E}$.) ; variation, $10^{\circ} \mathrm{E}$. Find position of ship, course, and dist. made good.
33. Steering W. $\frac{1}{4}$ N., on the port tack, heeling 12°; the error obs. was -1°. Find the amount when steering south on the starboard tack, and heeling 15°.

Paper VII.

1. Multiply 13.5426 by 51400 , by logs.
2. Divide 7560009 by $387 \cdot 003$, by logs.
3.

Hrs.	Courses.	Knts.	10ths.	Winds.	Lee- way.	$\begin{aligned} & \text { Devia- } \\ & \text { tion. } \end{aligned}$	Remarks.
1	N.W.	10		W.S.W.	1	$10^{\circ} \mathrm{E}$.	Departure taken
2		10					from a point in
3	N.N.W.	11		W.	$\frac{1}{4}$	$15^{\circ} \mathrm{E}$.	lat. $50^{\circ} 10^{\prime} \mathrm{S}$.,
4		11			,		long. $110^{\circ} 15^{\prime} \mathrm{W}$.
5	W.S.W.	12		N.W.	$\frac{3}{4}$	$8^{\circ} \mathrm{W}$.	Variation, $20^{\circ} \mathrm{E}$.
6 7	N.N.W. $\frac{1}{2}$ W.	11		W.		$15^{\circ} \mathrm{E}$.	
8		11	5				
9		11	5				
10		11	5				
11		12					
12		12					
1		12					Position by observation at end of
$\stackrel{2}{3}$		12					run, lat.46 ${ }^{\circ} 10^{\prime} \mathrm{S}$,
3 4 4		12					long. $110^{\circ} 30^{\prime} \mathrm{W}$.
5		12					
6		12					
7		12					
8		12					
9		12					
10		12					
11		12					
12		12					

Find the set and drift of the current.
4. September 30th, in long. $124^{\circ} 26^{\prime}$ E., the obs. mer. alt. of the Sun's U.L. bearing sonth was $88^{\circ} 56^{\prime} 40^{\prime \prime}$; ind. err., $+1^{\prime} 44^{\prime \prime}$; height of eye, 41 ft . Required the latitude.
5. From lat. $51^{\circ} 23^{\prime}$ N., long. $9^{\circ} 36^{\prime}$ W., the distance sailed due west was 250 miles. Required present position.
6. Required the compass course and distance by Mercator's sailing-

From A, lat. $38^{\circ} 13^{\prime}$ S.
To B, " 5210 N .
Long. $178^{\circ} 43^{\prime} \mathrm{W}$.
Variation, $130 \mathrm{E} . \quad$ Deviation, $\quad 5 \quad 30 \mathrm{~W}$.
7. September 28th. Find the M.T.S. of H.W. at Port Carlisle.
8. August 25 , in lat. $48^{\circ} 30^{\prime}$ S., long. $49^{\circ} 35^{\prime}$ E., when the M.T.S. was $6^{\mathrm{h}} 50^{\mathrm{m}}$ A.M., the Sun's bearing by compass was E. by S. $\frac{1}{4}$ S. Required the true amplitude and error of the compass ; and supposing the variation to be $33^{\circ} 20^{\prime} \mathrm{W}$., required the deviation of the compass for the position of the ship's head.
9. September 24th, about $2^{\text {h }} 45^{m}$ P.m. at ship, in lat. $23^{\circ} 28^{\prime}$ S., long. $158^{\circ} 30^{\prime}$ E., the obs. alt. of Sun's U.L. was $41^{\circ} 32^{\prime} 20^{\prime \prime}$; ind. err., $-2^{\prime} 35^{\prime \prime}$; height of eye, $34 \mathrm{ft}$. ; time shown by chron., $3^{\text {b }} 58^{(\mathrm{m}} 53^{\prime}$, which was slow $21^{10} 41^{4}$ for G.M. noon on April 11th, and on July 20th was slow $18^{\mathrm{m}} 14^{4}$; the compass bearing was W.N.W. Required the long., compass error, and deviation, the variation being $6^{\circ} 30^{\prime} \mathbf{E}$.
10. August 24 th, about $8^{\text {b }} 30^{\text {m }}$ A.m. in lat. $44^{\circ} 17^{\prime}$ S., long. $15^{\circ} 45^{\prime}$ W., when a chron. which was $8^{\mathrm{m}} 43^{\text {s }}$ slow of G.M.T. showed $9^{\mathrm{m}} 29^{\mathrm{m}} 32^{\circ}$; the Sun's bearing by compass N.E. $\frac{3}{4}$ E. Required the true azimuth and error of the compass by the "Tables;" and supposing the variation to be $12^{\circ} 40^{\prime} \mathrm{W} .$, required the deviation for the position of the ship's head.
11. September 29th, A.M. at ship, lat. by account $44^{\circ} 15^{\prime}$ N., long. $47^{\circ} 42^{\prime}$ W. ; the alt. of the Sun's L.L., $43^{\circ} 0^{\prime} 30^{\prime \prime}$; ind. err., $-3^{\prime} 3^{\prime \prime}$; height of eye, 32 ft .; time by chron., $2^{\mathrm{h}} 33^{\mathrm{m}} 56$, which had been found to be $3^{\mathrm{h}} 2^{\text {mi }} 38^{\text {a }}$ fast of A.T.S. ; the run was N. 34° E. 25 miles, after the error was determined. Required the lat. by reduction to the meridian; and if the run on the same course was 4 miles, find the lat. at noon.
12. August 4 th, about $8^{\text {h }} 15^{\text {m }}$ A.m. at ship, in lat. $47^{\circ} 20^{\prime}$ S., long. Greenwich when the chron. showed $8^{\mathrm{L}} 20^{\mathrm{m}} 51^{4}$ G.M.T.; the alt. of the Sun's U.L., $9^{\circ} 9^{\prime} 20^{\prime \prime}$; again P.m. on the same day, when the chrou. showed $2^{\mathrm{L}} 22^{\mathrm{m}} 42^{3}$ G.M.T. : the alt. of the Sun's U.L., $18^{\circ} \mathbf{4 5}^{\prime}$; ind. err., $-2^{\prime} 23^{\prime \prime}$; height of eye, 23 ft .; the ship having made 48 miles on a true $\mathrm{S} . \mathrm{W} . \frac{3}{4} \mathrm{~W}$. course in the interval between the observations. Required the line of position, the Sun's true azimuth, and the position of the ship when the second alt. was observed by "Sumner's method" by projection on the chart, assuming the lats. $46^{\circ} 50^{\prime}$ and $47^{\circ} 20^{\prime} \mathrm{S}$.
13. Find the apparent time of the meridian passage of Castor on August 23 rd in long. $49^{\circ} 30^{\prime} \mathrm{E}$.; also by inspection.
14. Calculate the meridian alt. of \in Sagittarii for placing on the sextant in lat. $24^{\circ} 30^{\prime}$ N.; ind. cor., $-5^{\prime} 14^{\prime \prime}$; eye, 40 ft .
15. Find what stars of not less than second mag. are within 2 hours east of the meridian of a place lat. $40^{\circ} \mathrm{N}$., long. $150^{\circ} \mathrm{E}$., above the horizon and pole on August 21st at $5^{\mathrm{h}} 50^{\mathrm{m}}$ A.m. M.T.S., and state their meridian distances.
16. August 12th, about 11^{h} P.M. at ship, lat. $54^{\circ} 26^{\prime}$ S., long. $160^{\circ} 25^{\prime}$ E., when a chron. correct for M.T.G. showed $12^{\text {h }} 48^{\mathrm{m}} 20^{\prime}$, the compass bearing of a Ophiuchi was N.W. $\frac{1}{4} \mathrm{~W}$. The variation being $17^{\circ} \mathrm{E}$., find from the "Tables" the true bearing, and thence the deviation.
17. August 30th, about $8^{\mathrm{b}} 30^{\mathrm{m}}$ P.m. at ship, in lat. $10^{\circ} 15^{\prime}$ S., long. $98 \frac{1}{2}^{\circ}$ E. by D.R., the obs. alt. of Antares was $49^{\circ} 33^{\prime} 50^{\prime \prime}$; ind. cor., - $2^{\prime} 15^{\prime \prime}$; eye, 40 ft . ; when a chron. showed $11^{\text {b }} 34^{\mathrm{m}} 24^{\circ}$, which was $2^{\mathrm{h}} 17^{\mathrm{m}} 38^{\circ}$ slow on June 21st, and slow $2^{\text {b }} 19^{\mathrm{m}} 44^{\text {s }}$ on July 21 st for G.M.T. Find the longitude.
18. September 25th, at $11^{\text {b }} 30^{\text {m }} 50^{\prime \prime}$ P.M. A.T.S., in long. $129^{\circ} 19^{\prime}$ E., the obs. alt. of Polaris out of the meridian was $21^{\circ} 24^{\prime} 50^{\prime \prime}$; ind. cor., $+1^{\prime} 14^{\prime \prime}$; eye, 38 ft . Find the latitude.
19. August 30 th, in long. $14^{\circ} 55^{\prime}$ E., the obs. mer. alt. of the Moon's upper limb zenith north of Moon was $29^{\circ} 46^{\prime} 40^{\prime \prime}$; ind. cor., $+2^{\prime} 29^{\prime \prime}$; eye, 51 ft . Find the latitude.
20. August 10th, the obs. mer. alt. of the star Arcturus was $37^{\circ} 50^{\prime} 20^{\prime \prime}$ bearing south; ind. err., - $4^{\prime} 37^{\prime \prime}$; height of eye, 39 ft . Required the latitude.

Sbip's head by standard compasa.	Bearinga of distant object by atandard compaaa.	Deviation required.	Ship'a bead by standard сотраяs.	Bearings of distant object by atandard compass.	Deviation required.
$\begin{gathered} \text { N. } \\ \text { N.E. } \\ \text { E. } \\ \text { S.E. } \end{gathered}$	$\begin{aligned} & \mathrm{N} .44^{\circ} \mathrm{W} . \\ & \text { N. } 47^{\circ} \mathrm{W} . \\ & \text { N. } 80^{\circ} \mathrm{W} . \\ & \text { S. } 76^{\circ} \mathrm{W} . \end{aligned}$		$\begin{gathered} \mathrm{S} . \\ \mathrm{S} . \mathrm{W} . \\ \mathrm{W} . \\ \mathrm{N} . \mathrm{W} . \end{gathered}$	S. $79^{\circ} \mathrm{W}$. S. $89^{\circ} \mathrm{W}$. N. $69^{\circ} \mathrm{W}$. N. $52^{\circ} \mathrm{W}$.	

Find correct magnetic bearing, and construct a curve.
Given magnetic courses : N. 30° W. S. 55° E. S. 66° W. N. 35° E.
Find compass courses.
Given compass courses: E. $\frac{3}{4}$ S. S.S.W. $\frac{1}{4}$ W. W. $\frac{1}{4}$ N. N.W. by W.
Find magnetic courses.
With ship's head at N. $\frac{1}{2}$ E. by compass, the compass bearings of distant objects were S. $55^{\circ} \mathrm{W}$. and N. $32^{\circ} \mathrm{W}$. Find magnetic bearings.
22. On September 21st, at $1^{\text {b }}$ P.M. M.T.S., being off Torbay by reckoning, took a cast of the lead. Required the correction to be applied to the depth obtained by the lead-line, before comparing it with the depth marked on the chart.
23. August 12th, A.m. at ship, in lat. $25^{\circ} 19^{\prime}$ S., when the time by a chron. estimated $10^{\text {m }} 30^{\text {r }}$ fast of M.T.G. was $11^{\text {d }} 5^{\mathrm{L}} 50^{\text {T }} 50^{\text { }}$; the obs. alt. of Saturn was $41^{\circ} 1^{\prime}$; ind. cor., $+2^{\prime} 14^{\prime \prime}$; height of eye, 29 ft .; observed distance between Saturn's centre and the Moon's remote limb was $61^{\circ} 2^{\prime} 10^{\prime \prime}$; ind. cor., $-3^{\prime} 15^{\prime \prime}$. Find the true and apparent alts. of the moon, longitude, and error of chron. for G.M.T.
24. September 29th, P.M. at ship, in lat. N., long. $180^{\circ} \mathrm{W}$., with the following observations, find the lat. at second obs. by "Ivory" or "Direct" method :-
Approx. A.T.S.
M.T G. by chron.
$0^{\mathrm{H}} 30^{\mathrm{m}}$ P.M.
442 р.м.
$0^{\mathrm{h}} 20^{\mathrm{m}} 39^{\mathrm{a}}$
Obs. alt. Sun'a L.L.
$40^{\circ} 35^{\prime} 40^{\prime \prime} \quad$ No ind. cor.
11120 Height of eye, 25 ft .

Sun's bearing at first obs., S. $10^{\circ} \mathrm{W}$. ; run between obs., N. $45^{\circ} \mathrm{W} .42$ miles.
25. September 28th, at $1^{1 \mathrm{~h}} 30^{\mathrm{mi}}$ A.m., M.T.S. when Cape San Roque, lat. $5^{\circ} 29^{\prime} \mathrm{S} .$, long. $35^{\circ} 15^{\prime} \mathrm{W}$., bore N. $64^{\circ} \mathrm{W}$. distant 16 miles ; the obs. alt. of Capella in artificial horizon was $45^{\circ} 20^{\prime} 30^{\prime \prime}$; ind. cor., $+1^{\prime} 16^{\prime \prime}$. If a chron. showed $4^{\mathrm{t}} 10^{\mathrm{ma}} 5^{\mathrm{s}}$, find its error on M.T.G.
26. Find the first and last courses on a great circle, from Tarifa, lat. $36^{\circ} 0^{\prime}$ N., long. $5^{\circ} 37^{\prime}$ W., to Monte Video, lat. $34^{\circ} 57^{\prime}$ S., long. $55^{\circ} 55^{\prime}$ W., position of vertex, distance, the course to steer crossing the equator, and the long. to cross the equator.
27. The summit of a spire is vertically over the middle point of a horizontal square enclosure whose side is 1000 ft . long ; the shadow of the spire reaches a corncr of the square when the sun has an altitude of $27^{\circ} 29^{\prime} 48^{\prime \prime}$. Required the height of the summit of the spire above the level of the square.
28. An island bears from a cape S.E. $\frac{1}{2}$ E. 35 miles; a ship bound to the island meets a tide running to the eastward, and finds herself after some time 28 miles from the island, and 40 miles from the cape. Required the bearing of the island and set of the tide.
29. Calculate angle A and side AC of a spherical triangle, having given $\mathrm{C}=90^{\circ}, \mathrm{AB}=74^{\circ} 49^{\prime}$, and $\mathrm{BC}=30^{\circ}$.
30. Taking the deviations as found in question 21, find coefficients A, B, C, D, and E; and thence calculate a table of dcviations for each point from W. to E. through south.
31. Steering N.W. $\frac{1}{2} \mathrm{~W}$. , heeling 10° to port, the heeling error was found to be -15°. What will be the amount when steering E. $\frac{1}{2}$ N., and heeling 20° to starboard?
32. August 26th, about $5^{\text {b }}$ A.m., in lat. $5^{\circ} 30^{\prime}$ S., long. $40^{\circ} 30^{\prime}$ W., the obs. compass bearing of a Persei was North, the variation being $6^{\circ} 15^{\prime} \mathrm{W}$. Find the deviation, when a chron, correct for G.M.T. showed $7^{\mathrm{s}} 45^{\mathrm{m}}$.

Paper VIII.

1. Multiply $\cdot 0043$ by $\cdot 00025$, by logs.
2. Divide $9999 \cdot 99$ by 100,000 , by logs.
3.

Find the course and distance made good; lat. and long. of the ship.
4. September 24th, in long. $172^{\circ} 15^{\prime}$ E., the obs. mer. alt. of the Sun's L.L. zenith south of Sun was $56^{\circ} 42^{\prime} 10^{\prime \prime}$; ind. err., $-2^{\prime} 23^{\prime \prime}$; height of eye, 43 ft . Required the latitude.
5. At noon the lat. is $51^{\circ} 20^{\prime} \mathbf{S}$. ; by morning sights the long. was found to be $85^{\circ} 40^{\prime}$ W. ; run since sights, East 76 miles. Find noon longitude.
6. Required the compass course and distance by Mercator's sailing-

From A, lat. $35^{\circ} 7^{\prime} \mathrm{N}$. Long. $141^{\circ} 6^{\prime} \mathrm{E}$.
To B, , $5453 \mathrm{~S} . \quad, \quad 7535 \mathrm{~W}$.
Variation, 120 E. Deviation, 1840 W.
7. September 13th. Find the M.T.S. of high water at Dartmouth.
8. September 28th, about $6^{\text {h }}$ P.m., in lat. $50^{\circ} 5^{\prime}$ N., long. $175^{\circ} 30^{\prime}$ W., when a chron. correct for M.T.G. showed $5^{\text {b }} 43^{\mathrm{m}} 24^{\text { }}$, the Sun's bearing by compass was N. $84^{\circ} 30^{\prime}$ W. Required the true amplitude, and error of the compass; and supposing the variation to be $18^{\circ} 20^{\circ}$ E., required the deviation of the compass for the position of the ship's head.
9. August 4th, about $8^{\mathrm{h}} 20^{\mathrm{m}}$ A.m. at ship, in lat. $47^{\circ} 24^{\prime} \mathrm{S} .$, long. Greenwich, the obs. alt. of Sun's U.L. was $8^{\circ} 16^{\prime} 30^{\prime}$; ind. err., $+3^{\prime} 12^{\prime \prime}$; height of eye, 28 ft .; time by chron., $8^{\mathrm{L}} 18^{\mathrm{m}} 59^{\text {², }}$, which was 3^{m} fast for G.M. noon on May 31st, and on July 10th was correct. Find the long.; also, if the compass bearing was $\mathrm{N} .50^{\circ} 30^{\prime} \mathrm{E}$. and variation $10^{\circ} 30^{\prime} \mathrm{W}$., find the deviation.
10. September 22nd, about $5^{\text {b }}$ P.m., in lat. $57^{\circ} 11^{\prime}$ N., long. $169^{\circ} 28^{\prime}$ E., when a chron. correct for M.T.G. showed $5^{\text {b }} 42^{\text {m }} 23^{\prime \prime}$, the Sun's bearing by compass, S. $60^{\circ} \mathrm{W}$. Required the true azimuth and error of the compass by the "Tables;" and supposing the variation to be $10^{\circ} 40^{\prime}$ E., required the deviation for the position of the ship's head.
11. September 21st, about $10^{\text {b }} 20^{\mathrm{m}}$ P.x. at ship; lat. by account $43^{\circ} 30^{\prime}$ N., long. $146^{\circ} 27^{\prime} \mathrm{E}$. ; the alt. of Fomalhaut, $16^{\circ} 5^{\prime} 40^{\prime \prime}$; ind. err., $-4^{\prime} 11^{\prime \prime}$; height of eye, 27 ft . ; time shown by chron., $12^{\mathrm{h}} 12^{\mathrm{m}} 54^{4}$, which had been found to be $16^{\mathrm{m}} 44^{\prime}$ slow of M.T.G. Required the latitude by reduction to the meridian.
12. October 1st, about $11^{\text {b }} 30^{\mathrm{m}}$ a.m. at ship, in lat. $49^{\circ} 20^{\prime}$ N., long. $179^{\circ} 50^{\prime}$ E. by D.R., when the chron. showed $11^{\text {b }} 21^{\mathrm{m}} 24^{\prime}$ G.M.T., the alt. of the Sun's L.L., $37^{\circ} 30^{\prime} 50^{\prime \prime}$; again P.M. on the same day, when the chron. showed $3^{\text {h }} 4^{\mathrm{m}} 26^{\circ}$ G.M.T.; the alt. of the Sun's L.L. $23^{\circ} 6^{\prime} 30^{\prime \prime}$; ind. err., $-2^{\prime} 9^{\prime \prime}$; height of eye, 32 ft .; the ship having made 50 miles on a true S. $81^{\circ} \mathrm{W}$. course in the interval between the observations. Required the line of position when the first alt. was taken, the Sun's true azimuth, and the position of the ship when the second alt. was observed by "Sumner's method" by projection on the chart, assuming the lats. $48^{\circ} 40^{\prime} \mathrm{N}$. and $49^{\circ} 20^{\prime} \mathrm{N}$.
13. Find the mean time of transit of Sirius across the meridian of $62^{\circ} 15^{\prime} \mathrm{W}$. on A ugust 30th.
14. Find what bright stars up to mag. 2.5 are within 1 hour E. and W. of the meridian, above the horizon and pole, in lat. $35^{\circ} \mathrm{S}$., long. 160 W ., at $4^{\mathrm{h}} 30^{\mathrm{m}}$ A.m. A.T.S. on September 23rd. State their hour angles, and bearings when on meridian.
15. Calculate the mer. alt. for placing on sextant of u Ophiuchi in lat. $55^{\circ} 30^{\prime} \mathrm{N}$. ; ind. cor., $5^{\prime} 14^{\prime \prime}$ on the arc ; eye, 40 ft .
16. September 14th, about $9^{\text {b }}$ P.m., in lat. $35^{\circ} 37^{\prime}$ N., long. $74^{\circ} 20^{\prime} \mathrm{W}$., when a chron. showed $2^{\mathrm{h}} 12^{\mathrm{m}} 10^{\text {a }}$ G.M.T., the compass bearing of γ Pegasi was E . by N. Find from the "Tables" the true azimuth; and if the variation was $5^{\circ} 15^{\prime} \mathrm{W}$., find the deviation.
17. August 20 th, about $0^{\mathrm{h}} 30^{\mathrm{m}}$ A.m., in lat. $48^{\circ} 20^{\prime}$ S., long. 157° E. by D.R., the obs. alt. of a^{1} Crucis W. of mer. was $23^{\circ} 38^{\prime} 50^{\prime \prime}$; ind. cor., $-2^{\prime} 8^{\prime \prime}$; eye, 36 ft .; time shown by chron., $2^{\mathrm{b}} 11^{\text {II }} 9^{8}$, which had been found fast $7^{\text {m }} 29^{\text { }}$ of G.M. noon on June 5th, and fast $8^{\text {m }} 13^{\text {n }}$ on July 30th. Find the longitude.
18. August 30th at $2^{\text {b }} 47^{\mathrm{m}} 23^{\circ}$ A.m. M.T.S., in long. $165^{\circ} 15^{\prime}$ W., the obs. alt. of Polaris out of the meridian was $30^{\circ} 2^{\prime} 10^{\prime \prime}$; ind. cor., $-2^{\prime} 16^{\prime \prime}$; eye, 25 ft . Required the latitude.
19. September 1st, in long. $174^{\circ} 30^{\prime}$ E., the obs. mer. alt. of the Moon's L.L. was $81^{\circ} 11^{\prime} 24^{\prime \prime}$, zenith north of Moon; ind. cor., $-4^{\prime} 15^{\prime \prime}$; eye, 27 ft . Required the latitude.
20. September 20th. The obs. mer. alt. of the star λ Scorpii was $41^{\circ} 13^{\prime} 10^{\prime \prime}$ bearing south; ind. err., $-1^{\prime} 49^{\prime \prime}$; height of eye, 25 ft . Required the latitude.
21.

Sblp's hesd by standard compass.	Bearinge of distant object hy stsudard compass.	Deviation required.	Ship's head by standard compuвs.	Bealings of distant object by standard cumpaes.	Deviation required.
$\begin{gathered} \text { N. } \\ \text { N.E. } \\ \text { E. } \\ \text { S.E. } \end{gathered}$	$\begin{gathered} \text { N. } \\ \text { N. } 7^{\circ} \text { E. } \\ \text { N. } 10^{\circ} \mathrm{W} . \\ \text { N. } 13^{\circ} \mathrm{W} . \end{gathered}$		$\begin{gathered} \text { S. } \\ \text { S.W. } \\ \text { W. } \\ \text { N.W. } \end{gathered}$	$\begin{aligned} & \text { N. } 21^{\circ} \mathrm{W} . \\ & \text { N. } 17^{\circ} \mathrm{W} . \\ & \text { N. } 18^{\circ} \mathrm{E} . \\ & \text { N. } 16^{\circ} \mathrm{E} . \end{aligned}$	

Find correct magnetic bearing ; construct a curve.
Given magnetic courses: N. $\frac{1}{4}$ E. S.E. by E. $\frac{1}{2}$ E. W.S.W. W. 12° N.
Find compass courses.
Given compass courses: E. $\frac{3}{4}$ N. N.W. $\frac{1}{2}$ W. S. 65° W. S. 32° E. Find maguetic courses.
With ship's head at E. $\frac{1}{2}$ S. by compass, the compass bearings of distant objects were S. by W. $\frac{1}{4}$ W., and S.E. by E. Find magnetic bearings.
22. On September 5 th, at $0^{\text {a }} 30^{\mathrm{m}}$ a.m. M.T.G., being off Fowey by reckoning, took a cast of the lead. Required the correction to be applied to the depth obtained by the lead-line before comparing it with the depth marked on the chart.
23. August 15th, about $1^{\text {b }} 25^{m}$ P.m. at ship, in lat. $23^{\circ} 27^{\prime}$ N., long. by account, $170^{\circ} 30^{\prime} \mathrm{W}$., when a chron. estimated 7^{m} slow of G.M.T. showed $12^{\text {b }} 40^{\text {m }}$, the alt. of the Sun's L.L. was $68^{\circ} 37^{\prime} 10^{\prime \prime}$; ind. cor., $+4^{\prime} 9^{\prime \prime}$; height of eye, 28 ft .; obs. distance between the enlightened limbs of the Sum and Moon, $47^{\circ} 22^{\prime} 40^{\prime \prime}$; ind. cor., $-3^{\prime} 17^{\prime \prime}$. Find the true and apparent alts. of the Moon, longitude, and error of chron. on G.M.T.
24. August 5th, in lat. $48^{\circ} \mathrm{N}$., long. $50^{\circ} \mathrm{W}$., with following observations, find lat. at second obs. by "Ivory" or "Direct" method :-

M.T.S. nearly.	e shown by chr	Obs. slts. of a Cygni.	
5th $9^{\mathrm{h}} 30^{\mathrm{m}}$ P.M.	$12^{\mathrm{h}} 46^{\text {5 }} 4^{\text {a }}$	$67^{\circ} 21^{\prime} 40^{\prime \prime}$	Ind. cor., $+2^{\prime} 12^{\prime \prime}$
6th 148 A.m.	$\begin{array}{llll}5 & 3 & 59\end{array}$	682640	Eye, 39 ft .

The chron. was 5^{m} slow of M.T.G.; bearing at first obs., N. 86° E.; run between obs., S. $13^{\circ} \mathrm{W}$., 10 knots per hour.
25. September 9th, at $9^{\mathrm{h}} 15^{\mathrm{m}}$ A.m. A.T.S., when Cape Comino, lat. $40^{\circ} 31^{\prime} 30^{\prime \prime}$ N., long. $9^{\circ} 50^{\prime} 30^{\prime \prime}$ E., bore N. 35° E. dist. 14 miles, the obs. alt. of Sun's L.L. in artificial horizon was $77^{\circ} 51^{\prime} 10^{\prime \prime}$; ind. cor., $+3^{\prime} 18^{\prime \prime}$; time shown by chron., $8^{\mathrm{h}} 43^{\mathrm{m}}$. Find its error on M.T.G.
26. Find the initial course and distance on a composite track, easting run on parallel of $42^{\circ} \mathrm{S}$., from lat. $33^{\circ} 56^{\prime} \mathrm{S}$., long. $18^{\circ} 29^{\prime} \mathrm{E}$., to lat. $35^{\circ} 2^{\prime} \mathrm{S}$., long. $117^{\circ} 54^{\prime}$ E. ; and lats. of points in which meridians of $50^{\circ} \mathrm{E} ., 90^{\circ} \mathrm{E}$., and $100^{\circ} \mathrm{E}$. cut the track.
27. If the diff. lat. is 224.6 N ., and dep. 157.9 miles E., find course and distance by calculation.
28. In triangle $\mathrm{PQR}, \mathrm{PQ}=137, \mathrm{PR}=257, \mathrm{R}=30^{\circ} 40^{\prime}$. Find QR .
29. The angular elevation of a tower at \mathbf{A} is 30°, at \mathbf{B} in the same horizontal plane, and 100 ft . nearer the tower, the elevation is 60°. Find height of the tower.
30. In spherical triangle $\mathrm{PQR}, \mathrm{P}=90^{\circ}, \mathrm{Q}=68^{\circ} 30^{\prime}, \mathrm{PQ}=101^{\circ} 20^{\prime}$. Find R and $R Q$.
31. In spherical triangle $\mathrm{ABC}, \mathrm{C}=90^{\circ}, \mathrm{AC}=43^{\circ} 45^{\prime}, \mathrm{BC}=81^{\circ} 27^{\prime}$. Find A and $A B$.
32. Construct a Mercator chart, scale $1^{\prime \prime} \cdot 2=1^{\circ}$ long., extending from 67° to $70^{\circ} \mathrm{N}$., and $2^{\circ} \mathrm{W}$. to $2^{\circ} \mathrm{E}$. A ship sails from $69^{\circ} 30^{\prime} \mathrm{N} ., 0^{\circ} 30^{\prime} \mathrm{E}$., the following true courses: S.W. by S. 30^{\prime}; E. by S. 40^{\prime}; S.S.W. 56^{\prime}; W. by N. 25^{\prime}. Find her latitude and longitude in.
33. Given coefficient $\mathrm{B}=-15^{\circ} \cdot 7$, coefficient $\mathrm{C}=-14^{\circ} \cdot 5$. Find direction of ship's head at building.
34. Using deviations found in question 21, find coefficients $\mathbf{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E; and construct a table of deviations for every alternate point of the compass, starting at N .
35. Steering N.W. $\frac{1}{2}$ N., heeling 16° on the port tack, the error was observed to be $-14^{\circ} 5$. Find its amount when steering east on the starboard tack and heeling 20°.
36. August 17 th, at $11^{\mathrm{h}} 35^{\mathrm{m}} 20^{6}$ P.M. M.I.S., in lat. $5^{\circ} 24^{\prime}$ N., long. $68^{\circ} 30^{\prime}$ E., the compass bearing of β Gruis was S.S.E. Find the true bearing; and if the variation is $1^{\circ} 15^{\prime} \mathrm{W}$., find the deviation.

ANSWERS.

CHAPTER III.

Logarithms.

1. 0.477121
$1 \cdot 672098$
$1 \cdot 698970$
$2 \cdot 000000$
$2 \cdot 439333$
3.922206

1•758079
$2 \cdot 563173$
$0 \cdot 000389$
4.876391
1.797278

2-243058
$4 \cdot 361779$
2•215643
$4 \cdot 333447$
$4 \cdot 370328$
Numbers.
2. 1598
$139 \cdot 9$
$50 \cdot 15$
5.199
1.010
$48026 \cdot 9$
490000
1408961
10969874
63980
0.532627
0.875061 2.213385 $2 \cdot 847579$ 4.513697 $9 \cdot 698970$ $8 \cdot 690196$ $7 \cdot 556302$ $7 \cdot 080626$ $7 \cdot 827886$ $6 \cdot 447794$ $5 \cdot 876795$
8.539087
8.878545
$9 \cdot 564667$
$149899 \cdot 7$ $3400015 \cdot 6$ $10010023 \cdot 1$ 230100 11000 1121000 1.001 $4679 \cdot 01$ $18880043 \cdot 5$ 239901•1

Multiplication by Logs.

1. 19639
2. 23360
3. 279088
4. 358900
5. $709 \cdot 3934$
6. $47 \cdot 808$
7. $2110 \cdot 41$
8. $288 \cdot 651$
9. $3540707 \cdot 3$
10. $5 \cdot 9585$
11. $\cdot 0000081005$
12. $6 \cdot 4831$
13. $\cdot 0000129$
14. •000259
15. 5
16. $24951 \cdot 6$
17. 100000
18. $20 \cdot 42$
19. `2303
20. $\cdot 001795$
21. $1267 \cdot 618$
22. 229500
23. $18 \cdot 16$
24. $143 \cdot 21$

Division by Logs.

1. 46.3572	13. 1490996.5
2. 293.6	14. 44826082.5
3. 9040	15. 000001
4. $176020 \cdot 7$	16. 20
5. $4 \cdot 613$	17. $1 \cdot 2187$
6. $24 \cdot 7069$	18. $5 \cdot 8916$
7. 1328856.7	19. $57 \cdot 454$
8. 1026.903	20. $20967 \cdot 1$
9. 1-424	21. $20 \cdot 399$
10. 142199.67	22. 032725
11. 1-02217	23. $7 \cdot 9876$
12. $\cdot 00001029$	24. $95 \% \cdot 94$

Involution by Logs.

1. $547 \cdot 56$
2. $6 \cdot 602$
3. $\cdot 000005797$
4. $\cdot 000000001411$
5. $\cdot 000002191$

Evolution by Logs.

1. $17 \cdot 5$
2. $3 \cdot 6$
3. 30012
4. 230
5. 08

Additional Exerdises.

1. $143 \cdot 8,27 \cdot 74,360 \cdot 8$
2. $891 \cdot 9$ and $9754 \cdot 5$
3. $172974 \cdot 6, \cdot 03528$
4. $1 \cdot 439$

CHAPTER IV.

Right-angled Plane Triangles.

1. $\mathrm{A}=44^{\circ} 47^{\prime} 10^{\prime \prime} ; \mathrm{B}=45^{\circ} 12^{\prime} 50^{\prime \prime} ; \mathrm{BC}=354 \cdot 3$.
2. $\mathrm{P}=28^{\circ} 48^{\prime} 30^{\prime \prime} ; \mathrm{R}=61^{\circ} 11^{\prime} 30^{\prime \prime} ; \mathrm{PR}=423 \cdot 4$.
3. $\mathrm{B}=10^{\circ} 25^{\prime} 30^{\prime \prime} ; \mathrm{P}=79^{\circ} 34^{\prime} 30^{\prime \prime} ; \mathrm{OB}=683.5$.
4. $\mathrm{AC}=443 \cdot 4 ; \mathrm{BC}=937 \cdot 4$.
5. $\mathrm{AB}=1095 ; \mathrm{AO}=617$.
(6. $\mathrm{A}=52^{\circ} 6^{\prime} 11^{\prime \prime} ; \mathrm{B}=37^{\circ} 53^{\prime} 49^{\prime \prime} ; \mathrm{AC}=90 \cdot 3$.
6. $\mathrm{PR}=5227 ; \mathrm{QR}=2864$.
7. $\mathrm{A}=54^{\circ} 15^{\prime} 30^{\prime \prime} ; \mathrm{B}=35^{\circ} 44^{\prime} 30^{\prime \prime} ; \mathrm{AB}=1208^{\circ} 5$.
8. Height, 91.55 ft .
9. Course, S. $42^{\circ} 22^{\prime} \mathrm{W}$. ; dist. 320.1 miles.
10. Height, $10 \overline{\mathrm{ft}} 7 \mathrm{in}$.
11. First clist. $9 \cdot 08$ miles ; 'second dist. $5 \cdot 75$ miles.
12. $6^{\circ} 151^{\prime}$.

1t. 113.8 ft .

Ollique-angled Plane Triangles.

1. $\mathrm{A}=47^{\circ} 7^{\prime} 8^{\prime \prime} ; \mathrm{B}=14^{\circ} 25^{\prime} 32^{\prime \prime} ; \mathrm{C}=118^{\circ} 27^{\prime} 20^{\prime \prime}$.
2. $\mathrm{A}=42^{\circ} 16^{\prime} 41^{\prime \prime} ; \mathrm{B}=23^{\circ} 38^{\prime} 38^{\prime \prime} ; \mathrm{C}=114^{\circ} 4^{\prime} 41^{\prime \prime}$.
3. $\mathrm{A}=83^{\circ} 25^{\prime} 54^{\prime \prime} ; \mathrm{B}=55^{\circ} 52^{\prime} 48^{\prime \prime} ; \mathrm{C}=40^{\circ} 41^{\prime} 18^{\prime \prime}$ 。
4. $\mathrm{C}=67^{\circ} 41^{\prime} 0^{\prime \prime} ; b=164 ; c=1.57^{\circ} \cdot 5$.
5. $\mathrm{A}=64^{\circ} 27^{\prime} 0^{\prime \prime} ; a=1078 \cdot 7 ; c=1172 \cdot 8$.
6. $\mathrm{B}=32^{\circ} 10^{\prime} 0^{\prime \prime} ; a=20 \cdot 62 ; b=11 \cdot 08$.
7. $\mathrm{A}=96^{\circ} 16^{\prime} 25^{\prime \prime} ; \mathrm{B}=44^{\circ} 3^{\prime} 35^{\prime \prime} ; c=4466$.
8. $\mathrm{A}=45^{\circ} 31^{\prime} 53^{\prime \prime} ; \mathrm{C}=65^{\circ} 42^{\prime} 7^{\prime \prime} ; b=348 \cdot 7$.
9. $\mathrm{B}=46^{\circ} 50^{\prime} 2^{\prime \prime} ; \mathrm{C}=35^{\circ} 51^{\prime} 58^{\prime \prime} ; a=82 \cdot 95$.
10. $\mathrm{B}=42^{\circ} 50^{\prime} 18^{\prime \prime} ; C=84^{\circ} 43^{\prime} 42^{\prime \prime} ; ~ c=1086$.
11. $\mathrm{A}=19^{\circ} 4^{\prime} 29^{\prime \prime} ; \mathrm{B}=121^{\circ} 51^{\prime} 31^{\prime \prime} ; a=180.5$;
or $82^{\circ} 47^{\prime} 31^{\prime \prime}$; or $58^{\circ} 8^{\prime} 29^{\prime \prime}$; or $547{ }^{\circ} 8$.
12. $\mathrm{B}=90^{\circ} 30^{\prime} 11^{\prime \prime} ; \mathrm{C}=39^{\circ} 53^{\prime} 49^{\prime \prime} ; \quad b=1398{ }^{\prime} 4$.
13. $\mathrm{B}=35^{\circ} 4^{\prime} 5^{\prime \prime} ; \mathrm{C}=123^{\circ} 32^{\prime} 55^{\prime \prime} ; ~ c=1342$;
or $144^{\circ} 55^{\prime} 55^{\prime \prime}$; or $13^{\circ} 41^{\prime} 5^{\prime \prime}$; or $380 \cdot 9$.
14. $\mathrm{A}=48^{\circ} 11^{\prime} 22^{\prime \prime} ; \mathrm{B}=58^{\circ} 24^{\prime} 42^{\prime \prime} ; \mathrm{C}=73^{\circ} 23^{\prime} 56^{\prime \prime}$.
15. $\mathrm{A}=27^{\circ} 7^{\prime} 36^{\prime \prime} ; \mathrm{B}=22^{\circ} 19^{\prime} 54^{\prime \prime} ; \mathrm{C}=130^{\circ} 32^{\prime} 30^{\prime \prime}$.
16. $\mathrm{A}=44^{\circ} 24^{\prime} 54^{\prime \prime} ; \mathrm{B}=57^{\circ} 7^{\prime} 20^{\prime \prime} ; \mathrm{C}=78^{\circ} 27^{\prime} 46^{\prime \prime}$.
17. $\mathrm{C}=11^{\circ} 40^{\prime} 0^{\prime \prime} ; \quad a=6291 ; ~ c=4044$.
18. $\mathrm{B}=61^{\circ} 25^{\prime} 0^{\prime \prime} ; a=206^{\circ} 3 ; b=184.7$.
19. $\mathrm{B}=88^{\circ} 30^{\prime} 1^{\prime \prime} ; \mathrm{C}=33^{\circ} 30^{\prime} 59^{\prime \prime} ; a=201 \cdot 2$.
20. $\mathrm{A}=48^{\circ} 41^{\prime} 9^{\prime \prime} ; \mathrm{C}=73^{\circ} 1^{\prime} 51^{\prime \prime} ; b=2015$.
21. $\mathrm{A}=46^{\circ} 35^{\prime} 31^{\prime \prime} ; \mathrm{B}=16^{\circ} 13^{\prime} 31^{\prime \prime} ; c=1591 \cdot 8$.
22. $\mathrm{B}=62^{\circ} 31^{\prime} 25^{\prime \prime} ; \mathrm{C}=102^{\circ} 17^{\prime} 35^{\prime \prime} ; c=5919$;
or $117^{\circ} 28^{\prime} 35^{\prime \prime}$; or $47^{\circ} 20^{\prime} 25^{\prime \prime}$; or 4455 .
23. $\mathrm{B}=59^{\circ} 57^{\prime} 53^{\prime \prime} ; \mathrm{C}=84^{\circ} 47^{\prime} 7^{\prime \prime \prime} ; c=345 \cdot 1$;
or $120^{\circ} 2^{\prime} 7^{\prime \prime}$; or $24^{\circ} 42^{\prime} 53^{\prime \prime}$; or $144 \cdot 9$.
24. 212 ft .
25. $134 \cdot 7 \mathrm{ft}$.

Miscellaneous Problems.

1. $56^{\circ} 18^{\prime} 36^{\prime \prime}$ and $33^{\circ} 41^{\prime} 24^{\prime \prime}$.
2. 610.5 yards.
3. N. $36^{\circ} 12^{\prime} 15^{\prime \prime} \mathrm{W}$.
4. $71 \cdot 36 \mathrm{ft}$.
5. Height 74 ft . Width 47.7 ft .
6. 367.9 ft .
7. $4^{\circ} 57 \frac{1}{2}^{\prime}$.
8. $1628 \cdot 7 \mathrm{ft}$.
9. S. $53^{\circ} 11^{\prime} 24^{\prime \prime}$ W.
10. S. $80^{\circ} \mathrm{W}$.
11. 115 ft .
12. S. $52^{\prime \prime}, 1^{\prime} 36^{\prime \prime} \mathrm{E}$.
13. $578^{\circ} 5 \mathrm{ft}$., $818^{\circ} 5 \mathrm{ft} ., 54^{\circ} 39^{\prime} 28^{\prime \prime}$.
14. $64^{\circ} 26^{\prime} 30^{\prime \prime} . \quad 29.66$ yards.

CHAPTER ∇.

Riget-angled Spherical Triangles.

1. $\mathrm{A}=54^{\circ} 15^{\prime} 52^{\prime \prime} ; \mathrm{B}=70^{\circ} 5^{\prime} 36^{\prime \prime} ; \mathrm{AB}=74^{\circ} 53^{\prime} 52^{\prime \prime}$.
2. $\mathrm{BC}=71^{\circ} 20^{\prime} 56^{\prime \prime} ; \mathrm{AC}=38^{\circ} 18^{\prime} 16^{\prime \prime} ; \mathrm{AB}=75^{\circ} 27^{\prime} 57^{\prime \prime}$.
3. $\mathrm{A}=62^{\circ} 17^{\prime} ; \mathrm{B}=79^{\circ} 8^{\prime} 34^{\prime \prime} ; \mathrm{AC}=77^{\circ} 42^{\prime} 53^{\prime \prime}$.
4. $\mathrm{B}=77^{\circ} 2^{\prime} 15^{\prime \prime} ; \mathrm{BC}=50^{\circ} 17^{\prime} 53^{\prime \prime} ; \mathrm{AC}=73^{\circ} 20^{\prime} 39^{\prime \prime}$.
5. $\mathrm{A}=45^{\circ} 40^{\prime} 14^{\prime \prime} ; \mathrm{AC}=39^{\circ} 6^{\prime} 20^{\prime \prime} ; \mathrm{AB}=49^{\circ} 18^{\prime} 54^{\prime \prime}$.
6. $\mathrm{B}=139^{\circ} 26^{\prime} 36^{\prime \prime}$, or $40^{\circ} 33^{\prime} 24^{\prime \prime}$; $\mathrm{AC}=145^{\circ} 5^{\prime} 45^{\prime \prime}$, or $34^{\circ} 54^{\prime} 15^{\prime \prime}$; $\mathrm{AB}=118^{\circ} 21^{\prime} 6^{\prime \prime}$, or $61^{\circ} 38^{\prime} 54^{\prime \prime}$.
7. $\mathrm{C}=70^{\circ} 55^{\prime} 17^{\prime \prime} ; \mathrm{A}=101^{\circ} 55^{\prime} 44^{\prime \prime} ; \mathrm{AC}=94^{\circ} 11^{\prime} 25^{\prime \prime}$.
8. $\mathrm{C}=110^{\circ} 3^{\prime} 55^{\prime \prime} ; \mathrm{A}=98^{\circ} 13^{\prime} 51^{\prime \prime} ; \mathrm{AC}=86^{\circ} 58^{\prime} 17^{\prime \prime}$.
9. $\mathrm{AB}=117^{\circ} 2^{\prime} 58^{\prime \prime} ; \mathrm{BC}=65^{\circ} 5^{\prime} 37^{\prime \prime} ; \mathrm{AC}=101^{\circ} 2^{\prime} 29^{\prime \prime}$.
10. $\mathrm{AB}=92^{\circ} 52^{\prime} 13^{\prime \prime} ; \mathrm{BC}=118^{\circ} 45^{\prime} 49^{\prime \prime} ; \mathrm{AC}=88^{\circ} 37^{\prime} 9^{\prime \prime}$
11. $\mathrm{C}=78^{\circ} 10^{\prime} 28^{\prime \prime} ; \mathrm{A}=144^{\circ} 52^{\prime} 34^{\prime \prime}: \mathrm{BC}=146^{\circ} 41^{\prime}$.
12. $\mathrm{C}=96^{\circ} 57^{\prime} 4^{\prime \prime} ; \mathrm{A}=101^{\circ} 19^{\prime} 54^{\prime \prime} ; \mathrm{AB}=97^{\circ} 5^{\prime} 24^{\prime \prime}$.
13. $\mathrm{B}=5 \tilde{5}^{\circ} 2^{\prime} 52^{\prime \prime} ; \mathrm{C}=96^{\circ} 0^{\prime} 20^{\prime \prime} ; \mathrm{AC}=54^{\circ} 49^{\prime} 36^{\prime \prime}$.
14. $\mathrm{B}=144^{\circ} 52^{\prime} 47^{\prime \prime} ; \mathrm{AC}=148^{\circ} 4^{\prime} 7^{\prime \prime} ; \mathrm{AB}=62^{\circ} 23^{\prime} 2^{\prime \prime}$.
15. $\mathrm{B}=129^{\circ} 14^{\prime} 9^{\prime \prime} ; \mathrm{AC}=129^{\circ} 43^{\prime} 36^{\prime \prime} ; \mathrm{AB}=100^{\circ} 40^{\prime} 35^{\prime \prime}$.
16. $\mathrm{C}=95^{\circ} 41^{\prime} 50^{\prime \prime} ; \mathrm{AC}=76^{\circ} 8^{\prime} 49^{\prime \prime} ; \mathrm{BC}=91^{\circ} 24^{\prime} 9^{\prime \prime}$.
17. $\mathrm{B}=106^{\circ} 24^{\prime} 22^{\prime \prime} ; \mathrm{AB}=94^{\circ} 18^{\prime} 33^{\prime \prime} ; \mathrm{BC}=88^{\circ} 47^{\prime}$.
18. $\mathrm{B}=49^{\circ} 37^{\prime}$, or $130^{\circ} 23^{\prime} ; \mathrm{AC}=46^{\circ} 57^{\prime} 45^{\prime \prime}$, or $123^{\circ} 2^{\prime} 15^{\prime \prime}$;
$\mathrm{BC}=106^{\circ} 21^{\prime} 15^{\prime \prime}$, or $73^{\circ} 38^{\prime} 45^{\prime \prime}$.

Oblique-angled Sphericat Trtangles.

1. $\mathrm{A}=82^{\circ} 42^{\prime} 30^{\prime \prime} ; \mathrm{B}=90^{\circ} 9^{\prime} 16^{\prime \prime} ; \mathrm{C}=104^{\circ} 19^{\prime} 36^{\prime \prime}$;
2. $\mathrm{A}=153^{\circ} 7^{\prime} 14^{\prime \prime} ; \mathrm{B}=41^{\circ} 22^{\prime} 24^{\prime \prime} ; \mathrm{C}=43^{\circ} 50^{\prime} 32^{\prime \prime}$.
3. $\mathrm{A}=116^{\circ} 19^{\prime} 7^{\prime \prime} ; \mathrm{B}=104^{\circ} 58^{\prime} 43^{\prime \prime} ; \mathrm{AB}=137^{\circ} 29^{\prime} 6^{\prime \prime}$.
4. $\mathrm{BC}=91^{\circ} 29^{\prime} 30^{\prime \prime}$.
5. $\mathrm{A}=119^{\circ} 15^{\prime} ; \mathrm{C}=73^{\circ} 59^{\prime}$.
6. $A=91^{\circ} 30^{\prime} 10^{\prime \prime}$.
7. $24^{\circ} 20^{\prime} 38^{\prime \prime}$.
8. $249^{\circ} 51^{\prime} 15^{\prime \prime} .29^{\circ} 37^{\prime} 12^{\prime \prime} \mathrm{N}$.
9. $41^{\circ} 0^{\prime} 20^{\prime \prime}$ N. $42^{\circ} 36^{\prime} 50^{\prime \prime} \mathrm{W}$.

CHAPTER VI.

Parallel Sailing.

1. $174^{\prime} 8$.
2. $116^{\prime} \cdot 7$.
3. $373^{\prime} \cdot 1$.
4. $70^{\circ} 31^{\prime} 44^{\prime \prime}$.
5. $12^{\prime} \cdot 01$.
6. $57^{\circ} 52^{\prime}$ N. $41^{\circ} 52^{\prime}$ S. Diff. lat. 5984 miles.
7. $34^{\circ} 44^{\prime} \mathrm{W}$.
8. $45^{\circ} 20^{\prime}$ N. Dep. $210 \cdot 9$.
9. 13.09 .
10. $38^{\circ} 8^{\prime} \mathrm{S}$.
11. 1266.
1. 60°.
2. $136^{\circ} 49^{\prime} 24^{\prime \prime}$ E.
3. $44^{\circ} 21^{\prime} 18^{\prime \prime}$ E.
4. 96.24 .
5. $50^{\circ} 44^{\prime}$.
6. 92.99.
7. $41^{\circ} 24^{1}$.

Days' Works.

1. N. 31° W., $49^{\prime} ;$ N. 34° W., $61^{\prime} ;$ N. 17° E., $63^{\prime} ;$ N. 60° W., $55^{\prime} ;$ N. 15° W., 57^{\prime}; S. $27^{\circ} \mathrm{W} ., 62^{\prime}$; S. 25° E. 57^{\prime}; S. 30° E., 4^{\prime}; D. lat. $125^{\prime} 0$, dep. $105^{\prime} 3$; lat. in $1^{\circ} 31^{\prime} \mathrm{N}$. ; long. in $2^{\circ} 2^{\prime} \mathrm{W}$. Course, N. 40° W., dist. 163^{\prime}.
2. N. 37° W., 7^{\prime}; S. $81^{\circ} \mathrm{W} ., 99^{\prime} \cdot 6$; S. $79^{\circ} \mathrm{W} ., 49^{\prime} \cdot 4$; S. $80^{\circ} \mathrm{W} ., 47^{\prime} \cdot 2$; S. 78° W., $96^{\prime} \cdot 8 ;$ S. 56° E., 18^{\prime}; S. 58° E., 18^{\prime}; S. 60° E., 18^{\prime}; D. lat. $76^{\prime} \cdot 4$, dep. $246^{\prime} \cdot 5$. Course, $\mathrm{S} .73^{\circ} \mathrm{W}$.; dist. 258; lat. in $53^{\circ} 57^{\prime} 6$ N. ; long. in $15^{\circ} 25^{\prime} \cdot 5 \mathrm{~W}$.
3. N. 41° W., 19^{\prime}; N. 38° E., 37^{\prime}; S. 87° E., 25^{\prime}; S. 78° E., 23^{\prime}; S. $88^{\circ} \mathrm{W} ., 21^{\prime}$; S. $9^{\circ} \mathrm{W} ., 34^{\prime}$; N. 62° E., 40^{\prime}; S. 22° E., 15^{\prime}; D. lat. $8^{\prime} \cdot 0$, dep. $72^{\prime} \cdot 4$. Course, N. 831° E., 73^{\prime}; lat. in $18^{\circ} 51^{\prime} \mathrm{S}$. ; long. in $178^{\circ} 36^{\prime} \mathrm{W}$.
4. S. 14° E., 60^{\prime}; S. 31° W., 53^{\prime}; N. 82° W., 51^{\prime}; S. 64° W., 58^{\prime}; N. 44° E., 49^{\prime}; N. 26° E. 65^{\prime}; S. 84° W., 21^{\prime}; N. 75° W., $39^{\prime} ;$ D. lat. $20^{\circ} \cdot 4$, dep. $111^{\prime} \cdot 5$. Course, S. $80^{\circ} \mathrm{W} ., 113^{\prime}$; lat. in $58^{\circ} 50^{\prime} \mathrm{S}$. ; long. in $68^{\circ} 28^{\prime} \mathrm{W}$.
5. S. 23° W., 15^{\prime}; N. 49° W., 12^{\prime}; S. 37° E., 13^{\prime}; S. 16° W., 25^{\prime}; N. 34° E., 20^{\prime}; N. 78° W., 15^{\prime}; N. 15° E., 27^{\prime}; D.R. lat. $30^{\circ} 4^{\prime} 5$ N.; long. $132^{\circ} 41 \frac{3}{4}$ E. Set N. 46° E. ; drift 30^{\prime}.
6. S. 33° E., 8^{\prime}; S. 6° W., 49^{\prime}; N. 24° E., 53^{\prime}; S. 65° E., 49^{\prime}; S. 30° E., 44^{\prime}; S. $25^{\circ} \mathrm{W} ., 54^{\prime}$; S. 66° E., 52^{\prime}; D.R. lat. $52^{\circ} 6^{\prime} \cdot 1 \mathrm{~N}$. ; long. $178^{\circ} 26^{\prime} \cdot 9 \mathrm{~W}$. Set S. 621_{2}° E. ; drift $\mathbf{1 5}^{\prime}$.

Mercator Sailing.

No.	True courss.	Compass course.	Distance.
	- ' "	, "	
1	S. 855541 W	N. 541919 W.	2141 miles.
2	N. 3815 E.	N. 162115 EF .	672 "
3	S. 12534 W .	S. 2534 W.	5673
4	N. 19270 W .	N. 33570 W.	$900 \cdot 4$
5	S. 71533 E .	S. $48 \quad 533 \mathrm{E}$.	3009
6	S. 602726 E . or W.	$\left\{\begin{array}{l}\text { S. } 492736 \mathrm{E.} \text { or } \\ \text { S. } 712726 \mathrm{~W} .\end{array}\right\}$	10951.7
7	S. 54630 W .	S. 31630 W .	6261
8	N. 53430 W .	N. 50230 W.	5428
9	N. 89419 W.	N. 44019 W.	1292
10	N. 250 E .	N. 1500 W.	3810
11	N. 71560 W .	N. 53520 W.	9093
12	N. 891643 E . or W.	$\left\{\begin{array}{lll} \text { S. } 83 & 33 & 17 \mathrm{E} . \text { or } \\ \mathrm{N} .82 & 643 \mathrm{~W} . \end{array}\right\}$	10801

Miscellaneous Exercises.

1. $244 \cdot 7$ miles.
2. $39^{\circ} 16^{\prime \prime}$.
3. Lat. $35^{\circ} 20^{\prime}$ N., long. $30^{\circ} 17^{\prime}$ ă W.
4. 36.2 hours.
5. N. $7^{\circ} 54^{\prime}$ W., $44 \cdot 8$ miles.
6. $6^{\mathrm{h}} 33^{\mathrm{m}}$.
7. Cliff, $131 \cdot 6 \mathrm{ft}$. ; lighthouse, $107 \cdot 2 \mathrm{ft}$.
8. 310.3 ft .
9. S. $60^{\circ} 9^{\prime}$ W., $13 \cdot 36$ miles.
10. 116.82 miles.
11. N. $56^{\circ} 13^{\prime}$ E., 116.9 miles.
12. S. $7^{\circ} 50^{\prime} \mathrm{W} ., 56$ miles.
13. $6^{\mathrm{h}} 45^{\mathrm{m}}$.
14. 12.34 miles.
15. S. $63^{\circ} 20^{\prime}$ E. ; 7.38 miles.
16. N. $71^{\circ} 15 \frac{1}{2}$ E. ; $7 \cdot 27$ miles.

CHAPTER VII.
Thess.

No.	Angle.	H.D.R.	Red, to M.L.W.S.
	-	ft. ins.	ft. ins.
1	61	104	-156
2	154	33	- 53
3	144	$9 \quad 10$	-16
4	168	104	+ 12
5	166	311	- 82
6	29	$5 \quad 7$	-143
7	47	93	-174
8	105	011	- 110
9	31	76	-1310
10	176	15	- 41
11	158	58	- 28
12	145	59	-74
13	180	143	$+111$
14	170	77	+ 05
15	151	138	- 211
16	11	29	-710
17	176	125	-23
18	45	46	- 78
19	120	23	- 47

20. 26 ft .10 ins.
21. $5^{\mathrm{h}} 8^{\mathrm{m}}$ p.m.
22. 22 ft .8 ins.
23. depth 34 ft. 9 ins. ; under 9 ft. 9 ins.
24. $7^{\mathrm{h}} 33^{\mathrm{m}}$ a.m.

CHAPTER IX.

Time Equivalents.
 $10^{\mathrm{h}} 20^{\mathrm{m}} 46^{\mathrm{n}} 4 ; 6^{\mathrm{b}} 12^{\mathrm{m}} 3^{\mathrm{n}} ; 7^{\mathrm{h}} 50^{\mathrm{m}} 34^{\mathrm{s}} ; 9^{\mathrm{h}} 39^{\mathrm{m}} 36^{\mathrm{s}} ; 11^{\mathrm{h}} 46^{\mathrm{m}} 38^{\circ} 3 ; 13^{\mathrm{r}} 53$; $3^{\mathrm{m}} 59^{\mathrm{n}} ; 1^{\mathrm{s}} ; 1^{\mathrm{m}} ; 3^{\mathrm{m}} 12^{\mathrm{A}} ; 11^{\mathrm{h}} 12^{\mathrm{m}} 36^{\mathrm{s}} ; 4^{\mathrm{h}} 17^{\mathrm{m}} \mathbf{1 5}^{\mathrm{s}}$.

Arc Equivalents.
$18^{\circ} 7^{\prime} 30^{\prime \prime}$; $154^{\circ} 58^{\prime} 45^{\prime \prime} ; 120^{\circ} 2^{\prime} 30^{\prime \prime} ; 104^{\circ} 49^{\prime} 30^{\prime \prime} ; 179^{\circ} 59^{\prime} 30^{\prime \prime}$; $45^{\circ} 4^{\prime} 45^{\prime \prime} ; 89^{\circ} 50^{\prime} 30^{\prime \prime} ; 135^{\circ} 24^{\prime} 15^{\prime \prime} ; 3^{\circ} 48^{\prime} 45^{\prime \prime} ; 36^{\circ} 15^{\prime} ; 2^{\circ} 38^{\prime} 45^{\prime \prime}$; $11^{\prime} 15^{\prime \prime} ; 36^{\circ} 11^{\prime} ; 165^{\circ} 4^{\prime} 45^{\prime \prime}$; $168^{\circ} 22^{\prime} 30^{\prime \prime} ; 75^{\circ} 1^{\prime} 15^{\prime \prime} ; 127^{\circ} 13^{\prime} ; 150^{\circ} 3^{\prime}$; 3^{\prime}; 25^{\prime}.

Difference of Times.

$41^{\mathrm{m}} 20^{\mathrm{s}}$ less; $1^{\mathrm{h}} 11^{\mathrm{m}}$ more; $7^{\mathrm{h}} 21^{\mathrm{m}} 8^{\mathrm{n}}$ more; $11^{\mathrm{h}} 30^{\mathrm{m}} 24^{\mathrm{s}}$ less ; $6^{\mathrm{h}} 41^{\mathrm{m}} 6^{\mathrm{n}}$ more ; $6^{\mathrm{h}} 0^{\mathrm{m}} 19^{\mathrm{n}}$ less; 29^{n} nore; $11^{\mathrm{h}} 59^{\mathrm{m}} 47^{\mathrm{s}}$ less; $4^{\mathrm{m}} 9^{\mathrm{n}}$ less ; $7^{\mathrm{n}} 40^{\mathrm{m}} 2^{\mathrm{n}}$ nore; 11 'more ; $11^{\mathrm{h}} 0^{\mathrm{m}} 1^{\text {' }}$ less.

Longitudes.

1. $96^{\circ} 25^{\prime} 45^{\prime \prime} \mathrm{E}$.
2. 1065015 W .
3. $110 \quad 5 \quad 0 \quad \mathrm{~W}$.
4. 1222730 E.
5. $78 \quad 48 \quad 45 \mathrm{~W}$.
6. $117 \quad 5830$ E.
7. 03445 E.

8.	9°	7^{\prime}	$30^{\prime \prime}$	E.
9.	0	35	0	W.
10.	174	1	45	W.
11.	22	9	45	W.
12.	167	0	0	E.
13.	80	17	30	W.
14.	179	2	0	W.

Greenwich Times.

1. $16^{\mathrm{d}} \quad 7^{\mathrm{h}} \quad 9^{\mathrm{m}} 36^{\mathrm{a}}$.
2. $1 \quad 2 \quad 13 \quad 41 \cdot 3$.
3. 12205036.
1. $30 \quad 6 \quad 4 \quad 56$.
2. $31 \quad 21 \quad 36 \quad 41$.
3. $17 \quad 12 \quad 42 \quad 26$.
4. $28^{\mathrm{d}} \quad 5^{\mathrm{b}} 48^{\mathrm{m}} 17^{\mathrm{a}}$.
5. 2021934.
1. $31 \quad 15 \quad 50 \quad 34$.
2. $10 \quad 0 \quad 1634$.
3. $22 \quad 7 \quad 5815$.
4. 29162520.

Ship Times.

1. October 15th,	$5^{\mathrm{L}} 29^{\mathrm{m}} 14^{\circ}$ A.M.		5
	114346	5. October 19th,	1137
3. Augu	33	6. May 1st,	49

Chronometer Rates and G.M.T.

	Rate	$2^{4.7}$	10
2.	"	$5 \cdot 3$	gaining.
3.	,"	10.05	gaining.
4.	",	-5	gaining.
5.	"	5	losing.
6.	,"	$5 \cdot 4$	gaining.
7.	,	$\cdot 9$	gaining.
8.		10.05	losing.

G.M.T. Nov. $26^{\text {d }} 13^{\mathrm{h}} 45^{\mathrm{m}} 45$					
10.	,	Oct. 31	10	17	47
11.		Mar. 20	8	18	49
12.	,"	Dec. 10	12	57	36
13.	',	July 3	23	58	22
14.	,"	Nov. 26	19	23	5
15.	"	Dec. 14	5	23	24
16.	",	May 1	0	24	10
17.		April 15	19	17	

CHAPTER X.

Sun's Elements.

	Dec. 17°	37^{\prime}	$36^{\prime \prime} \cdot 2 \mathrm{~N}$	Eq. of	f Time		$1^{4.73}$	R.A.		51	$37^{4} \cdot 01$.
2.	,, 16	30	16.8 N	,		5	$37 \cdot 39$,"	9	7	39.28.
3.	,, 14	23	25.7 N			4	32:33	,"	9	34	56.38.
4.	,, 3	30	$9 \cdot 9 \mathrm{~N}$			4	22	"	11	27	33.02 .
5.	", 0	4	55.7 N.	,		7	28.01	"	11	59	$14 \cdot 6$.
6.	,, 0	0	$14 \cdot 1 \mathrm{~S}$.			7	$32 \cdot 62$	",	12	0	2:
7.	$\because 0$	3	47.9 S			7	35.80	",	12	0	$35 \cdot 1$.
8.	0	11	$12 \cdot 3 \mathrm{~S}$			7	$42 \cdot 39$		12	1	$43 \cdot 4$.
	2	27	10 S .			9	$40 \cdot 69$		12	22	40.04.
10. A.T.S. Aug. $20^{\text {d }} 20^{\mathrm{h}} 18^{\mathrm{m}} 13^{8} 6$.											
11. M.T.S. Sept. 292134 7.4.											
12. M.T.G. Sept. 2493413.											

Sidereal Time or R.a M.S.

1. $9^{\mathrm{b}} 50^{\mathrm{m}} 41^{\prime} \cdot 32$.
2. $102341 \cdot 51$.
3. $10^{\mathrm{h}} 57^{\mathrm{m}} 10^{\circ} \cdot 48$.
4. $122948 \cdot 66$.

Moon's S.D. and H.P.

| 1. | S.D. | 15^{\prime} | $33^{\prime \prime}$ |
| :--- | :--- | :--- | :--- | :--- |
| 2. | , | 15 | 24.9 |
| 3. | $"$ | 16 | 20.5 |
| 4. | ", | 16 | 10.5 |

H.P.	$566^{\prime} 28^{\prime \prime} \cdot 6$.	
$"$	55	$49 \cdot 4$.
$"$,	59	$4 \cdot 7$.
$"$	58	$24 \cdot 4$.

Moon's Meridian Pagsage.

	M.T			21	$34^{\mathrm{m}} 3$.		M.T	Aug				,
2.	"	,	28	14	8-92.	6.		,				25.5.
3.	"	$"$	2	1	$53 \cdot 7$.	7.	,"	$:$	8	1		$5 \cdot 0$
4.	"	"	27	0	16.9.	8.				10		$24 \cdot 3$

Moon's R.A. and Dec.

1.	R.A.	22^{4}	30^{m}	$9^{8} \cdot 7$
2.	,	0	45	20
3.	\prime,	6	9	$4 \cdot 27$
4.	,$"$	12	45	$42 \cdot 13$

Dec. $11^{\circ} 39^{\prime} 9^{\prime \prime} \cdot 8 \mathrm{~S}$.
, $0 \quad 2 \quad 2 \cdot 1 \mathrm{~S}$.
$1,20 \quad 3 \quad 45 \cdot 9 \mathrm{~N}$.
" $0 \quad 1 \quad 34.8 \mathrm{~S}$.

Planet's Elements.

1. R.A. Jupiter $6^{\mathrm{b}} 9^{\mathrm{m}} 38^{6} \cdot 94$ Dec. $23^{\circ} \quad 7^{\prime} 26^{\prime \prime} \cdot 6$ N. Mer. Pass. $10^{\mathrm{d}} 4^{\mathrm{t}} 56^{\mathrm{m} \cdot 27}$.
2. ", Saturn $23159 \cdot 32$, $82459 \cdot 6 \mathrm{~S} . \quad$, $11345 \cdot 3$.

CHAPTER XI.

Sidereal Time or R.A.M.

1. $0^{\mathrm{h}} \quad 2^{\mathrm{m}} \quad 8^{\mathrm{a}} \cdot 66$.
2. $15 \quad 58 \quad 34 \cdot 45$.
3. $10 \quad 48 \quad \tilde{5} 1 \cdot 2$.
4. $\quad 7^{\mathrm{h}} 36^{\mathrm{m}} 46^{\mathrm{s}} 18$.
5. $8 \quad 0 \quad 5.93$.
6. $17 \quad 41 \quad 11 \cdot 29$.

Hour Angles.

1. E.H.A. $2^{\text {h }} 6^{\mathrm{m}} 6^{\mathrm{s}} \cdot 41$.
2. W.H.A. 159 16.02.
3. W.H.A. $3 \quad 7 \quad 29 \cdot 19$.
4. E.H.A. $0^{\mathrm{b}} 0^{\mathrm{m}} 12^{\mathrm{a}} .84$.
5. M.T.S. Aug. $17^{\mathrm{d}} 20^{\mathrm{h}} 32^{\mathrm{m}} 1^{*} 49$.
6. M.T.S. Sept. 14635 15•75.

Star's Meridian Passage.

1. A.T.S. $3^{\mathrm{h}} 3^{\mathrm{m}} 25^{\mathrm{s}}$ А.м.
2. M.T.S. 33523 А.м.
3. M.T.S. 45220 А.м.
4. A.T.S. 4833 A.m.
5. M.T.S. 7346 А.м.
6. A.T.S. 7309 А.м.
7. M.T.S. 72717 A.M.
8. A.T.S. 82822 А. м.
9. M.T.S. $7^{\mathrm{h}} 49^{\mathrm{m}} 35^{\mathrm{a}}$ ^.м.
10. A.T.S. 115349 A.M.
11. M.T.S. 85856 А.м.
12. A.T.S. 23353 р.м.
13. M.T.S. 58 5.M.
14. A.T.S. 656 P.M. 15. M.T.S. 73323 P.M.

Bright Stars near Meridian.

1. Altair $43^{\mathrm{ma}} 1^{6} \mathrm{~W}$. and S . γ Cygni $1011 \mathrm{~W} .$, N. Deneb 91 E. ,, N. a Cephei $47 \quad 7$ E., N.
2. Fomalhaut $56^{\mathrm{m}} 8^{\circ} \mathrm{W}$. and S.
3. Vega $20^{\text {ra }} 2^{s}$ W. and N. Altair $5225 \mathrm{E} ., \mathrm{N}$.
4. a Cephei $\quad 1^{\mathrm{h}} 24^{\mathrm{m}} 17^{s} \mathrm{~W}$. and N.
= Pegasi $1 \begin{array}{llll} & 1 & \text { W. , N. }\end{array}$
$\begin{array}{lllll}a & \text { Gruis } & 0 & 38 & 18 \\ \mathrm{~W} . & , \mathrm{S} .\end{array}$ β Gruis $\quad 0 \quad 3 \quad 34 \mathrm{~W} .$, , \mathbf{S}.
Fomalhaut 01150 E. ", S.
Markab 01928 E. ", N. Alpheratz 12255 E. "N. β Cassiopeiæ 12332 E. "N. a Phœnicis $141 \quad 1$ E. ", S. $\begin{array}{lllll}\beta \text { Ceti } & 1 & 58 & 15 & \text { E. }\end{array}$, , S .
5. Capella $0^{\mathrm{h}} 38^{\mathrm{m}} \quad 7^{\circ} \mathrm{W}$. and N. Rigel 03751 W. ,, S. Bellatrix 02748 W. ", S. в Tauri 02731 W., , S. є Orionis 01626 W. ,, S .
6. Sirius $0^{\mathrm{h}} 11^{\mathrm{m}} 21^{\prime}$ E. and N.
7. $11^{\mathrm{L}} 22^{\mathrm{n}} 11^{\mathrm{s}}$.
8. $+13^{\mathrm{m}} 146^{6}$.
9. $+16^{\mathrm{ma}} 25 \cdot 9^{\mathrm{n}}$.

CHAPTER XII,

Altitudes.

1. $50^{\circ} 9^{\prime} 35^{\prime \prime}$
2. 205744
3. 195646
4. $32 \quad 35 \quad 36$
5. $47 \quad 2 \quad 57$
6. 122015
7. 562043
8. $15 \quad 38 \quad 28$
9. 291331
10. 471924
11. $23 \quad 822$
12. 531351
13. 392011
14. 474927
15. $52 \quad 147$

S.D. $15^{\prime} 0^{\prime \prime}$	H.P. $54^{\prime} 13^{\prime \prime}$	Cor. $29^{\prime} 47^{\prime \prime}$
1457	5426	, 494
S.D. $15^{\prime} 56^{\prime \prime}$	H.P. $57^{\prime} 33^{\prime \prime}$	Cor. $35^{\prime} 6^{\prime \prime}$

CHAPTER XIII.

Latitude by Sun's Meridian Altitude.

No. ${ }^{1}$	Declliation.	Trne altitude.	Latitude.
	, "	- , "	, "
1	173910 N.	342244	37586 S .
2	17820 N .	501630	565150 N .
3	163955 N .	194340	533625 S .
4	1683 N.	692841	42316 S .
5	152739 N .	634238	104943 S .
6	145316 N .	494313	252331 S .
7	14641 N.	78504	3645 N.
8	133754 N.	794714	3258 N .
9	125019 N .	523840	501139 N.
10	22854 S .	884835	11729 S .
11	0755 N.	491053	40572 N.
12	0445 N.	432724	462751 S .
13	12136 S .	58212	301722 N.
14	2950 S .	36105	555945 s .
15	0135 S .	671957	223828 N .
16	01737 N .	515925	381812 N.
17	01355 S .	223439	671126 N.
18	0948 S .	301010	595938 S .

Latitude by Star's Meridian Autitude.

1. $10^{\circ} 15^{\prime} 12^{\prime \prime} \mathrm{N}$.
2. 132739 S .
3. 275826 N .
4. $43 \quad 3 \quad 40 \mathrm{~N}$.
5. 494318 N.
6. $50 \quad 0 \quad 45 \mathrm{~N}$.
7. $35^{\circ} 58^{\prime} 14^{\prime \prime} \mathrm{N}$.
8. 44223 S.
9. $37 \quad 51 \quad 6 \mathrm{~N}$.
10. 191820 S .
11. $45 \quad 18 \quad 37 \mathrm{~N}$.

Latitdde by Moon's Meridian Altitude.

No.	м.t.g.	s.d.	н.Р.	Declination.	True alt.	Latitude.
	d. h. m.			- , "	- ' 1	- , "
1	$21 \quad 438 \cdot 4$	1558	5749	7371 N.	344616	473643 S .
2	$22 \quad 850 \cdot 6$	1610	5822	21058 N .	54855	$38 \quad 2 \quad 3 \mathrm{~N}$.
3	$\begin{array}{llll}30 & 5 & 5 \cdot 0\end{array}$	1617	5842	194028 S .	614740	475248 S .
4	$31 \quad 620 \cdot 2$	164	5819	1742 l S.	254455	46334 N.
5	311838.0	168	5811	161918 S .	693247	4755 N.
6	32357×2	1616	5846	172913 S	391631	681242 S .
7	$9151 \cdot 3$	1511	5456	44713 N .	432536	512137 N.
8	1010449	153	5434	8424 N.	$47 \quad 535$	505850 N .
9	$11 \quad 911.5$	154	5421	112947 N .	54372	235311 S .
10	$\begin{array}{llll}14 & 5 & 5 \cdot 5\end{array}$	$15 \quad 5$	5424	185058 N.	753328	42426 N .
11	$1610 \quad 59 \cdot 1$	1519	5516	201119 N.	742144	$433 \mathrm{3N}$.
12	2 ± 2232.7	1625	598	95437 S .	844030	4357 S .

Latitude by Meridian Altitude below Pole.

1. M.T.G. $10^{\mathrm{d}} 17^{\mathrm{h}} 1^{\text {m. }} 1$. Dec. $8^{\circ} 23^{\prime} 56^{\prime \prime}$ S. Lat. $43^{\circ} 16^{\prime} 44^{\prime \prime}$ S.
2. $48^{\circ} 23^{\prime} 59^{\prime \prime} \mathrm{S}$.
3. $54^{\circ} 6^{\prime} 9^{\prime \prime} \mathrm{N}$.
4. M.T.G. $28^{\text {d }} 10^{\text {h }} 31^{\mathrm{m}} 9.9$ S.D. $16^{\prime} 12^{\prime \prime}$. H.P. $59^{\prime} 1^{\prime \prime}$. Dec. $19^{\circ} 57^{\prime} 26^{\prime \prime} \mathrm{S}$. True Alt. $7^{\circ} 53^{\prime} 4^{\prime \prime}$. Lat. $77^{\circ} 55^{\prime} 38^{\prime \prime} \mathrm{S}$.
5. Dec. $18^{\circ} 0^{\prime} 19^{\prime \prime}$ N. True Alt. $5^{\circ} 53^{\prime} 11^{\prime \prime}$. Lat. $77^{\circ} 52^{\prime} 52^{\prime \prime}$ N.
6. $50^{\circ} 44^{\prime} 17^{\prime \prime} \mathrm{S}$.

Star's calculated Altitudes.

1. $39^{\circ} 48^{\prime}$	6. $32^{\circ} 15^{\prime}$
2. 426	7. 6144
3. 1938	8. 3757
4. 570	9. 514
5. 6750	10. 25

CHAPTER XIV.

Latitude by Ex-Meridian Altitude of the Sun.

No.	Hour angle.	Nat. No.	Arc I.	Arc II.	Latitude aighte.	Latitude at noon.
			- ' "	- ' "	- ,	-
1	2413 W.	4213	182246	554142	3719 S .	371636 S .
2	3331 E .	9161	17056	91621	2617 N.	-
3	2736 W.	6927	$16 \quad 94$	21467	537 S .	-
4	1742 E .	1725	$15 \quad 46$	$38 \quad 750$	5312 N.	-
5	713 W.	342	-	-	4453 S .	
6	414 E .	15638	121742	14514	$233 \frac{1}{2}$ S.	2394 S
7	1836 W.	2503	104049	$\begin{array}{llll}28 & 39 & 8\end{array}$	3920 N .	392230 N .
8	2043 E .	2932	82825	515320	4325 S .	43276 S .
9	3042 W.	6173	21334	483735	4624 N.	462912 N .
10	2342 E .	5134	0553	154142	1536 N.	
11	108 W.	611	0241	51116	5114 N.	511754 N.
12	1912 W.	2675	-	-	4020 S .	40250 S .

Latitude by Ex-Meridian Altitude of a Star.

No.	Hour angle.	Nat. No.	Arc I.	Arc II.	Latitude.
			- , "	- ,	- ' "
1	756.5	365	384245	773445	38520 S .
2	2935.0	5126	84127	424550	512717 N.
3	2197	2318	57854	57855	0 0 1 N .
4	$2142 \cdot 6$	2861	301356	724057	42271 N .
5	1913.7	2950	283923	112519	1714 N.
6	4743.0	11403	581635	493431	8424 S .
7	$2318 \cdot 4$	4037	23731	545932	31521 S .
8	$1432 \cdot 4$	1152	16217	$37 \quad 344$	532451 N .
9	2843.0	5000	46742	694343	23361 S
10	$25 \quad 8.7$	3365	82134	471224	553358 S .
11	615.0	264	445715	41530	$3 \quad 4 \mathrm{lCN}$.
12	3253.7	6532	474246	675130	20844 N .

Latitude by Pole Star.

No.	R.A.M.	First cor.	Second cor.	Third cor.	Latitude.
	h m . s .	- "	' "	, "	- ' 1
1	41055.9	-05356	015	053	354459
2	22362	-0 5317	022	116	451710
3	125519	+11123	00	054	$30 \quad 431$
4	165912	+04249	040	110	541516
5	7251	000	019	031	$23 \quad 459$
6	192829	-016	028	127	322241
7	$\begin{array}{lll}0 & 1 & 21\end{array}$	$\begin{array}{llll}-1 & 7 & 15\end{array}$	$\begin{array}{ll}0 & 7\end{array}$	120	494919
8	7449	+0 559	051	028	482255
9	$18 \quad 940$	+02313	024	115	31112

CHAPTER XV.
Compass Error by Amplitude.

No.	Declination.	True amplitude.	Compass error.	Deviation.
	- 1 1	- "	- ' 1	- 1
1	17550 N.	W. 243530 N.	342830 W.	55830 W .
2	14517 S .	E. 24516 S .	281516 E .	$4 \quad 0 \quad 16 \mathrm{E}$.
3	16220 N.	E. 192553 N .	5228 W.	16428 W .
4	23352 S.	W. 35128 S .	1462 E .	31312 E .
5	173114 N .	E. 221315 N .	52045 W .	6915 E .
6	11323 S .	W. 15446 S .	183514 E.	4446 W .
7	163456 N .	E. 174339 N.	174339 W.	245839 W.
8	6221 N.	W. $1214 \quad 4 \mathrm{~N}$.	12144 E .	0556 W .
9	173944 N.	E. 464245 N .	$46 \quad 6 \quad 0 \mathrm{E}$.	23260 E.
10	01343 N .	E. 01343 N .	101343 W.	101343 W.
11	03535 S .	W. 03633 S .	14633 W.	12633 W.
12	000	West	200 E .	4300 W .
13	$9 \quad 923 \mathrm{~N}$.	E. 9923 N .	18587 E .	9287 E .
14	$\begin{array}{llll}0 & 0 & 0\end{array}$	East	$\begin{array}{ll}0 & 0\end{array}$	1150 W .

15. $4^{\mathrm{h}} 41^{\mathrm{m}} 30^{\mathrm{s}}$ А.м.
16. $1^{\mathrm{h}} 11^{\mathrm{m}} 17^{\mathrm{g}}$.
17. $2^{\circ} \mathrm{E}$.
18. 45°.
19. $41^{\circ} 49^{\prime}$.
$20.24^{\circ} 42^{\prime} . \quad \quad 2^{\mathrm{h}} 40^{\mathrm{m}} 50^{\mathrm{E}}$.

CHAPTER XVI.

Compass Error by Alt. Azimuth.

No.	Polar distance.	True altitude.	True azimuth.	Compass error.	Deviatiou.
	- , "	- ' "	- 1	- '	,
1	1073158	165158	N. 49396 E.	$\begin{array}{llll}0 & 9 & 6 \mathrm{E} .\end{array}$	$18 \quad 9 \quad 6 \mathrm{E}$
2	77720	26713	S. 841050 W .	$54910{ }^{5}$	34050 E .
3	81435	$\begin{array}{ll}36 & 2 \\ 26\end{array}$	S. 50538 E .	22238 T .	6438 W .
4	81260	$34 \quad 354$	S. 65530 LT .	151530 W.	94430 E .
5	901620	215618	N. 61954 W.	040 6 E.	0406 E
6	873542	251442	N. 61810 W.	62150 E.	10810 W.

Compass Error by Time Azimuth of Sun.

No.	A.T.S.	Corrections.	True azimuth.	Deviation.
	$\mathrm{h} . \mathrm{m}$. $\mathrm{s}^{\text {. }}$	'	\bigcirc	0 -
1	248 ¢ 2 .м.	+16	N. 13245 W.	
2	319 0 P.M.	+14-25	N. 11235 W.	
3	914 ¢ A.m.	+25+7+2	S. 14125 E .	
4	3320 Р.м.	$+21+5$	N. 5443 W .	39 W.
5	720 A A.m.	-14	N. 7351 E.	1247 E .
6	75722 A.m.	$+4+5+17$	N. 8836 E.	1927 E.
7	33831 Р.м.	$-33+10+14$	N. 6124 W .	026 E .
8	84126 A.M.	$+19-27+11$	S. 6547 E .	$951 \mathrm{E}$.
9	43818 P.M.	$-17+6$	S. 8949 W .	911 W .
10	$350 \quad 0$ P.M.	$-18+37+5$	S. 12134 W.	1019 E .
11	8346 А.M.	+17-18+18	N. 9324 E .	1955 W.
12	41935 P.M.	+4-1+15	N. 9154 W.	1618 E .
13	94121 А.m.	$+19+16+11$	S. 14355 E .	3540 W.
14	1039 9 А.М.	$82^{\circ} 59^{\prime}+72^{\circ} 45^{\prime}$	N. 15544 EL .	5643 W .

Compass Error by Ttine Azimuth of Stars.

No.	Hour angle.	Corrections.	True azimuth.	Deviation.
	b. m, m .		-	-
1	3139 E .	$-17^{\prime}-2^{\prime}+59^{\prime}$	N. 9737 E .	2222 E .
2	4539 E .	$-12-25+20$	S. 9251 E .	1442 W.
3	3264 W.	$-28-27+24$	N. 11436 W.	3526 W .
4	14814 W.	$89^{\circ} 59^{\prime}+68^{\circ} 58^{\prime}$	S. 15857 W .	1543 W.
5	5377 E.	-11-19+8	N. 885 E .	2343 E .
6	32341 W.	$+5-27+13$	N. 11330 W .	260 E.
7	32946 E .	$-21+12+8$	S. 12824 E .	2136 E .
8	32347 W .	$94^{\circ} \quad 5^{\prime}+38^{\circ} 37$	N. 13242 W .	05 W.
9	$33529 \mathbf{E .}$	$\begin{array}{llll}91 & 57 & +39 & 34\end{array}$	S. 18131 E .	1025 E .
10	91622 W.	$24 \quad 30-347$	S. 2043 W .	71 E .
11	43020 W.	111 1 +43 22	S. 15423 W .	2310 W.
12	84120 W .	$48 \quad 49$ - 112	S. 4737 W .	226 W.

14. N. $48^{\circ} 20^{\prime}$ E.
15. Dee. $19^{\circ} 19^{\prime}$ N.; Lat. $51^{\circ} 30^{\prime} \mathrm{N}$.

CHAPTER XVII.
Longitude by Sun Chronometer.

安	M.t.g.	Pol. dist.	Eq. Time.	True al titude.	Hour angle.	Longitude at sights.	Longitude at noon.
	d. h. m. s.	- '"	m. s.	- ,	h. m. $\mathrm{s}^{\text {. }}$	- '	\bigcirc -
1	3143735	1073158	+6 0	165158	31935	921230 E.	923040 E.
2	$19 \quad 91031$	$77 \quad 722$	+3 34	$26 \quad 713$	42534	702045 W .	705326 W .
3	30213558	81435	+029	$36 \quad 226$	23742	31730 W .	35428 W .
4	31212237	81260	+011	$34 \quad 354$	31930	10290 W.	105637 W.
5	22182938	901620	-7 18	215618	33724	$135 \quad 7 \quad 0 \mathrm{E}$.	
6	29152096	873542	-9 28	251442	32948	17956 OE.	1792830 W.

Longitude by Star Chronometer.

No.	M.T.G.	R.A.M.S.	True altitude.	Honr angle.	Longitude.
	d. h. m. 日.	b. m. $\quad 8$.	- ' 1	h. m. ${ }^{\text {e }}$	- ' 1
1	$\begin{array}{lllll}9 & 9 & 8 & 13\end{array}$	11120	592430	292 W .	1104530 E .
2	$\begin{array}{llll}23 & 21 & 37 & 52\end{array}$	$\begin{array}{lll}10 & 7 & 2\end{array}$	12118	33640 E.	745515 W.
3	174731	8381	$42 \quad 20$	22259 Er .	142515 E .
4	1110565	112011	26842	34230 W .	000
5	$2015 \quad 2742$	115624	371248	34843 E .	304615 W.
6	$\begin{array}{llll}23 & 911 & 11\end{array}$	$10 \quad 459$	271427	35037 E .	$9046 \quad 0 \mathrm{E}$.
7	$7 \quad 94218$	$\begin{array}{ll}11 & 412\end{array}$	22426	32533 EL	$11035 \quad 0 \mathrm{E}$.
8	3021621	103432	154430	22943 EF	1693215 W.
9	$2 \quad 65454$	10442	251355	4360 W.	501045 E .
10	$\begin{array}{lllll}14 & 2 & 2 & 6\end{array}$	92819	215916	4590 E .	1794330 W.
11	28 6 58 18	102420	345051	25128 W.	45645 W.
12	27192411	122439	68251	$259 \mathbf{F}$.	161345 E .

Chronometer Aztiuth.

No.	м.t.g.	Pol. dist.	Eq. time.	True altitude.	Hour angle.	Obs. longitude.	Noon Iongitude.	True azimuth.	Comp. error.	Deviation.
	d. h. m. s.	$\bigcirc{ }^{\circ}$ ' ${ }^{\prime}$	m.s.		h. m. s.	응	${ }^{\circ}{ }^{\prime \prime}{ }^{\prime \prime}$	$\stackrel{\circ}{\circ}^{\prime \prime}{ }^{\prime \prime}$	$\bigcirc{ }^{\circ}$ ' "	- ' "
1	3114720	811924	$+017$	13293	$\begin{array}{llll}5 & 5 & 39\end{array}$	135210 W.	13620 W.	S. 985038 W .	$6 \quad 138 \mathrm{E}$.	02138 E .
2	30201849	$87 \quad 730$	$-10 \quad 2$	165519	44124	173345 W.	-	N. 792750 E .	412825 W.	291325 W.
3	31155442	983858	$+015$	145346	33020	1735815 E .	1751247 E .	N. 542030 W.	35030 W .	20030 W .
4	221540	901938	-715	104040	$5 \quad 8 \quad 23$	55530 E .	54642 E .	N. 824212 E .	1748 W.	82212 E .
5	31152520	983925	$+016$	$\begin{array}{llll}65 & 5 & 7\end{array}$	05830	1432130 E .	-	N. 36210 W.	3390 E .	260 W.
6	$\begin{array}{llll}22 & 1 & 28\end{array}$	89275	-73	303848	3835	71	-	S. 582556 E .	103711 W .	05249 E .
7	22154553	90190	-715	4388	14341	1473815 E .	148340 E .	N. 36480 W .	8120 E .	2330 E .
8	4201454	1071225	$+553$	$\begin{array}{ll}31 & 547\end{array}$	22351	934230 E	$9320 \quad 0 \mathrm{E}$.	N. 405536 W.	1336 W.	124654 E .
9	$1 \begin{array}{lll}1 & 0 & 2040\end{array}$	812839	$+09$	284847	$4 \quad 444$	56315 E	-	S. 983216 W .	7216 E .	111716 E .
10	1118849	813824	0 0	1878	44643	953130 W .	$95 \quad 618 \mathrm{~W}$.	S. 98480 W.	11330 E .	930 E .
11	$\begin{array}{lllll}20 & 7 & 36\end{array}$	1023418	$+322$	295134	34053	1683045 W.	$169 \quad 130 \mathrm{~W}$.	N. 673430 E .	05530 W .	101030 W .
12	2313505	$90 \quad 231$	-735	$\begin{array}{llll}53 & 3 & 9\end{array}$	22348	173280 W.	1734018 W.	S. 773630 W .	71745 E.	12215 W.

CHAPTER XVIII.

Sumner's Method.

1. First observation: T.A. $36^{\circ} 26^{\prime} 20^{\prime \prime}$; P.D. $72^{\circ} 29^{\prime} 5^{\prime \prime}$; eq. time, $+6^{\mathrm{m}} 0^{\prime \prime}$; H. А.'s, $3^{\mathrm{n}} 37^{\mathrm{m}} 17^{\mathrm{s}}$ and $3^{\mathrm{b}} 36^{\mathrm{m}} 25^{\mathrm{n}}$; longs., (a), $64^{\circ} 14^{\prime} 30^{\prime \prime}$ E. ; (b), $64^{\circ} 27^{\prime} 30^{\prime \prime}$ E.

Second observation: T.A. $43^{\circ} 47^{\prime} 38^{\prime \prime}$; P.D. $72^{\circ} 33^{\prime} 18^{\prime \prime}$; eq. time, $+5^{\mathrm{m}} 58^{\circ}$;

First line: $\left\{\begin{array}{l}\mathrm{N} .15 \frac{1}{2}^{\circ} \\ \mathrm{S} .15 . \frac{1}{2}^{\circ}\end{array} \mathbf{W}.\right\}$; second azimuth, S. $63^{\circ} \mathrm{W}$. ; lat. $49^{\circ} 27^{\prime} \mathrm{N}$. ; long. $63^{\circ} 52^{\prime}$ E.
2. First observation: T.A. $38^{\circ} 26^{\prime} 23^{\prime \prime}$; P.D. $73^{\circ} 54^{\prime} 28^{\prime \prime}$; eq. time, $+5^{\mathrm{m}} 26^{\circ}$; H.A.'s, $3^{\mathrm{b}} 15^{\mathrm{m}} 40^{\circ}$ and $3^{\mathrm{b}} 13^{\mathrm{m}} 56^{\mathrm{a}}$; longs., (a), $4^{\circ} 43^{\prime} 15^{\prime \prime} \mathrm{W}$.; (b) $4^{\circ} 17^{\prime} 15^{\prime \prime}$ W.

Second observation: T.A. $40^{\circ} 19^{\prime} 48^{\prime \prime}$; P.D. $73^{\circ} 58^{\prime} 52^{\prime \prime}$; eq. time, $+5^{\mathrm{m}} 24^{\prime}$; H.A.'s, $3^{\mathrm{b}} 2^{\mathrm{m}} 35^{\mathrm{a}}$ and $3^{\mathrm{h}} 0^{\mathrm{m}} 34^{\mathrm{A}}$; longs., (c), $2^{\circ} 0^{\prime} 15^{\prime \prime}$, W.; (d), $2^{\circ} 30^{\prime} 30^{\prime \prime} \mathrm{W}$.

First line: $\left\{\begin{array}{l}\mathrm{N} .23^{\circ} \mathrm{E} . \\ \mathrm{S} .23^{\circ} \mathrm{W} .\end{array}\right\}$; azimuth, S. $67^{\circ} \mathrm{E} . ;$ second line: $\left\{\begin{array}{l}\mathrm{N} .25^{\circ} \mathrm{W} . \\ \mathrm{S} .25^{\circ} \mathrm{E} .\end{array}\right\}$; lat. $50^{\circ} 0^{\prime} \mathrm{N}$. ; long. $2^{\circ} 30^{\prime} 30^{\prime \prime} \mathrm{W}$.
3. First observation: T.A. $24^{\circ} 9^{\prime} 42^{\prime \prime}$; P.D. $78^{\circ} 35^{\prime} 56^{\prime \prime}$; eq. time, $+2^{\mathrm{m}} 30^{\circ}$; H.A.'s, $4^{\mathrm{b}} 23^{\mathrm{m}} 33^{s}$ and $4^{\mathrm{b}} 22^{\mathrm{m}} 57^{\prime}$; longs., (a), $0^{\circ} 18^{\prime} 15^{\prime \prime}$ E.; (b) $0^{\circ} 27^{\prime} 15^{\prime \prime}$ E.

Second observation: T.A. $48^{\circ} 46^{\prime} 26^{\prime \prime}$; P.D. $78^{\circ} 38^{\prime} 51^{\prime \prime}$; eq. time, $+2^{\mathrm{m}} 28^{\prime} ;$ H.A.'s, $1^{\mathrm{h}} 11^{\mathrm{m}} 42^{\mathrm{o}}$ and $1^{\mathrm{b}} 5^{\mathrm{m}} 19^{\mathrm{P}}$; longs., (c), $2^{\circ} 43^{\prime} 45^{\prime \prime} \mathrm{W}$.; (d), $1^{\circ} 8^{\prime} 0^{\prime \prime} \mathrm{W}$.

First line: $\left\{\begin{array}{l}\mathrm{N} .11^{\circ} \mathrm{E} . \\ \mathrm{S} .11^{\circ} \mathrm{W} .\end{array}\right\} ;$ azimuth, S. $79^{\circ} \mathrm{E}$. ; lat. $50^{\circ} 28^{\prime} \mathrm{N}$. ; long. $0^{\circ} 41^{\prime} 30^{\prime \prime} \mathrm{W}$.
4. First observation: T.A. $48^{\circ} 31^{\prime} 31^{\prime \prime}$; P.D. $81^{\circ} 18^{\prime} 3^{\prime \prime}$; eq. time, $+0^{\mathrm{m}} 18^{\mathrm{a}}$; H. A.'s, $0^{\mathrm{h}} 52^{\mathrm{m}} 40^{4}$ and $0^{\mathrm{h}} 39^{\mathrm{m}} 41^{\mathrm{l}}$; longs., (a), $175^{\circ} 15^{\prime} 45^{\prime \prime} \mathrm{W}$.; (b), $178^{\circ} 30^{\prime} 30^{\prime \prime} \mathrm{W}$.

Second observation: T.A. $19^{\circ} 9^{\prime} 3^{\prime \prime} ;$ P.D. $81^{\circ} 21^{\prime} 45^{\prime \prime}$; eq. time, $+0^{\mathrm{m}} 15^{\prime \prime}$; H. A.'s, $4^{\mathrm{b}} 43^{\mathrm{m}} 0^{\mathrm{a}}$ and $4^{\mathrm{h}} 42^{\mathrm{m}} 21^{\mathrm{n}}$; longs., (c), $179^{\circ} 32^{\prime} 15^{\prime \prime} \mathrm{W}$. ; (d), $179^{\circ} 42^{\prime} 0^{\prime \prime} \mathrm{W}$.

First line: $\left\{\begin{array}{l}\mathrm{N} .72^{\circ} \mathrm{W} . \\ \mathrm{S} .72^{\circ} \mathrm{E} .\end{array}\right\}$; second azimuth, S. $81^{\circ} \mathrm{W}$. ; lat. $49^{\circ} 17^{\prime}$ N. ; long. $179^{\circ} 40^{\prime} \mathrm{W}$.
5. First observation: T.A. $27^{\circ} 6^{\prime} 30^{\prime \prime}$; P.D. $90^{\circ} 10^{\prime} 21^{\prime \prime}$; eq. time, $-7^{\mathrm{m}} 23^{\circ}$; H.A.'s, $3^{\mathrm{h}} 14^{\mathrm{m}} 28^{\circ}$ and $3^{\mathrm{h}} 11^{\mathrm{m}} 57^{\mathrm{a}}$; longs., (a), $59^{\circ} 56^{\prime} 30^{\prime \prime}$ W.; (b), $59^{\circ} 18^{\prime} 45^{\prime \prime}$ W.

Second observation : T.A. $32^{\circ} 27^{\prime} 30^{\prime \prime}$; P.D. $90^{\circ} 4^{\prime} 38^{\prime \prime}$; eq. time, $-7^{\mathrm{m}} 28^{\circ}$; H. A.'s, $2^{\text {a }} 36^{\mathrm{m}} 18^{\circ}$ and $2^{\mathrm{b}} 32^{\mathrm{m}} 46^{\mathrm{n}}$; longs., (c), $60^{\circ} 17^{\prime} 15^{\prime \prime}$ W. ; (d), $61^{\circ} 10^{\prime} 15^{\prime \prime}$ W.

First line : $\left\{\begin{array}{l}\mathrm{N} .33^{\circ} \mathrm{W} . \\ \mathrm{S} .33^{\circ} \mathrm{E} .\end{array}\right\}$; azimuth, N. $57^{\circ} \mathrm{E} . ;$ lat. $46^{\circ} 18^{\prime} \mathrm{S} . ;$ long. $60^{\circ} 27^{\prime} \mathrm{W}$.
6. First observation: T.A. $18^{\circ} 27^{\prime} 6^{\prime \prime}$; P.D. $98^{\circ} 27^{\prime} 58^{\prime \prime}$; eq. time, $+0^{m} 6^{\prime \prime}$; H.A.'s, $3^{\mathrm{b}} 13^{\mathrm{m}} 54^{\prime}$ and $3^{\mathrm{b}} 11^{\mathrm{m}} 24^{\mathrm{s}}$; longs., (a), $109^{\circ} 34^{\prime} 15^{\prime \prime} \mathrm{W}$.; (b), $108^{\circ} 56^{\prime} 45^{\prime \prime} \mathrm{W}$.

Second observation: T.A. $26^{\circ} 4^{\prime} 10^{\prime \prime}$; P.D. $98^{\circ} 23^{\prime} 10^{\prime \prime}$; eq. time, $+0^{\prime \prime} 2^{\prime \prime}$; H.A.'s, $2^{\mathrm{h}} 6^{\mathrm{m}} 27^{\circ}$ and $2^{\mathrm{b}} 2^{\mathrm{m}} 0^{\prime}$; longs., (a), $109^{\circ} 33^{\prime} 30^{\prime \prime} \mathrm{W} . ;(d), 110^{\circ} 40^{\prime} 15^{\prime \prime} \mathrm{W}$.

First line : $\left\{\begin{array}{c}\mathrm{N} .41^{\circ} \mathrm{W} . \\ \mathrm{S} .41^{\circ} \mathrm{E} .\end{array}\right\}$; azimuth, N. $49^{\circ} \mathrm{E} . ;$ lat. $49^{\circ} 21^{\prime}$ S.; long. $109^{\circ} 45^{\prime} \mathrm{W}$.
7. First observation: T.A. $21^{\circ} 4^{\prime} 7^{\prime \prime}$; P.D. $71^{\circ} 38^{\prime} 7^{\prime \prime}$; eq. time $+6^{\mathrm{m}} 12^{\prime \prime}$; H.A.'s, $5^{\mathrm{b}} 15^{\mathrm{m}} 16^{\prime}$ and $5^{\mathrm{h}} 15^{\mathrm{m}} 29^{\mathrm{n}}$; longs., (a), $167^{\circ} 54^{\prime} 45^{\prime \prime}$ E. ; (b), $167^{\circ} 51^{\prime} 30^{\prime \prime}$ E.

Second observation: T.A. $57^{\circ} 12^{\prime} 25^{\prime \prime} ;$ P.D. $71^{\circ} 40^{\prime} 18^{\prime \prime}$; eq. time, $+6^{\mathrm{m}} 12^{\prime \prime}$; H.A.'s, $0^{\mathrm{L}} 45^{\mathrm{m}} 14^{\prime}$ and $0^{\mathrm{L}} 35^{\mathrm{m}} 36^{\prime}$; longs., (c), $168^{\circ} 15^{\prime} 15^{\prime \prime} \mathrm{E}$. ; (d), $170^{\circ} 39^{\prime} 45^{\prime \prime} \mathrm{E}$.

First line: $\left\{\begin{array}{c}\text { N. } 6^{\circ} \mathrm{W} . \\ \mathrm{S} .6^{\circ} \mathrm{E} .\end{array}\right\}$; second azimuth, S. 73° E. ; lat. $49^{\circ} 44^{\prime}$ N. long. $166^{\circ} 13^{\prime} \mathrm{E}$.
8. First observation: T.A. $11^{\circ} 1^{\prime} 58^{\prime \prime}$; P.D. $91^{\circ} 52^{\prime} 56^{\prime \prime}$; eq. time, $-9^{m} 12^{\prime}$; H.A.'s, $4^{\mathrm{n}} 46^{\mathrm{m}} 19^{\prime}$ and $4^{\mathrm{n}} 45^{\mathrm{m}} 0^{\mathrm{s}}$; longs., (a), $179^{\circ} 27^{\prime} 30^{\prime \prime}$ E. ; (b), $179^{\circ} 47^{\prime} 15^{\prime \prime}$ E.

Second observation: T.A. $26^{\circ} 59^{\prime} 56^{\prime \prime}$; P.D. $92^{\circ} 0^{\prime} 41^{\prime \prime}$; eq. time, $-9^{\text {m }} 18^{\prime \prime}$; H.A.'s, $3^{\mathrm{h}} 1^{\mathrm{m}} 6^{\text {a }}$ and $2^{\mathrm{h}} 57^{\mathrm{m}} 16^{\circ}$; longs., (a), $177^{\circ} 7^{\prime} 30^{\prime \prime}$ E. ; (d), $176^{\circ} 10^{\prime} 0^{\prime \prime}$ E. First line : $\left\{\begin{array}{l}\mathrm{N} .15^{\circ} \mathrm{E} . \\ \mathrm{S} .15^{\circ} \mathrm{W} .\end{array}\right\}$; azimuth, S. $75^{\circ} \mathrm{W} . ;$ lat. $48^{\circ} 40^{\prime} \mathrm{N} . ;$ long. $17731^{\prime} \mathrm{E}$.

CHAPTER XIX.

Chart.

1. (a) S. 17° E., 30° E., $18^{\circ} \mathrm{W}$.; $35 \frac{1}{4}$ miles.
(b) Lat. $52^{\circ} 35 \frac{1}{2}^{\prime}$ N. ; long. $4^{\circ} 17^{\prime} \mathrm{W}$. ; set N. $70^{\circ} \mathrm{E}$. ; dist. $5 \frac{1}{2}$ miles.
(c) Lat. $52^{\circ} 20 \frac{1}{2}^{\prime}$ N. ; long. $4^{\circ} 17 \frac{1}{2}^{\prime}$ W. ; dist. $7 \frac{3}{4}$ miles.
(d) $\mathrm{S} .5^{\circ} \mathrm{E}$. ; dist. 20 miles ; she steams 40 miles.
(e) Lat. $52^{\circ} 24 \frac{1^{\prime}}{} \mathrm{N}^{\prime}$. long. $4^{\circ} 31^{\prime} \mathrm{W}$.
2. (a) Comp. Co. S. $49^{\circ} \mathrm{E}$. ; dev. $15^{\circ} \mathrm{E}$. ; var. $18^{\circ} \mathrm{W}$. ; dist. $15^{\frac{1}{2}}$ miles.
$" \quad$ N. 85° E. ; dev. $7^{\circ} \mathrm{W}$. ; var. $18^{\circ} \mathrm{W}$. ; dist. 23 miles.
, N. 58° E. ; dev. $21^{\circ} \mathrm{W}$. ; var. $18^{\circ} \mathrm{W}$. ; dist. $31 \frac{1}{2}$ miles.
(b) Lat. $52^{\circ} 6 \frac{1^{\prime}}{}{ }^{\prime}$ N. ; long. $6^{\circ} 24 \frac{1}{2}^{\prime} \mathrm{W}$. ; set S. $80^{\circ} \mathrm{W}$. ; dist. $3 \frac{1}{2}$ miles.
(c) Lat. $52^{\circ} 23 \frac{1}{3}$ N. ; long. $5^{\circ} 51^{\frac{1}{4}}$ ' W. ; dist. $10 \frac{1}{2}$ miles.
(d) Comp. Co. S. 42° E.; N. 87° E. ; N. 49° E.; dist. 52 miles.
(e) Lat. $51^{\circ} 564^{\prime}$ N. ; long. $6^{\circ} 44^{\prime}{ }^{\prime} \mathrm{W}$.
3. (a) Comp. Co. N. 23° E. ; dev. $30^{\circ} \mathrm{W}$. ; var. $18^{\circ} \mathrm{W}$. ; dist. 173^{3} miles.
N. $63^{\circ} \mathrm{E}$. ; dev. $18^{\circ} \mathrm{W}$. ; dist. $37 \frac{1}{2}$ miles.
(b) Lat. $\overline{5} 1^{\circ} 45 \frac{3^{\prime}}{4}$ N.; long. $5^{\circ} 26{ }^{1} \mathrm{~W}$ W.; set N. $14^{\circ} \mathrm{W}$. ; dist. 3 miles.
(c) Lat. $52^{\circ} 17^{\prime} \mathrm{N}$. ; long. $5^{\circ} 6^{\prime} \mathrm{W}$. ; dist $8 \frac{1}{2}$ miles.
(d) Comp. Co. N. 71° E. ; dist. made good 22 miles. Total dist. steamed $32 \frac{1}{2}$ miles.

OHAPTER XX.

Napier's Curve.

1. Correct magnetic bearing: N. $66^{\circ} \mathbf{E}$.

Deviations : $17^{\circ} \mathrm{W} .28^{\circ} \mathrm{W} .24^{\circ} \mathrm{W} .9^{\circ} \mathrm{W} .16^{\circ} \mathrm{E} .32^{\circ} \mathrm{E} .26^{\circ} \mathrm{E}$. $5^{\circ} \mathbf{E}$.
Compass courses : N. 76° E. S. 80° E. S. 28° E. N. 16° E.
Magnetic courses: N. 44° W. S. 16° W. N. $79 \frac{1}{2}^{\circ}$ E. N. 9° W.
Deviation: 31° E.
Bearings: S. 53° W. N. 76° E.
2. Correct magnetic bearing: N. $82 \frac{1}{2}^{\circ} \mathrm{W}$.

Deviations: $12 \frac{1}{2}^{\circ} \mathrm{E} . \quad 18 \frac{1}{2}^{\circ} \mathrm{E} . \quad 9 \frac{1}{2}^{\circ} \mathrm{E} . \quad 6 \frac{1}{2}^{\circ} \mathrm{W} .9_{2}^{\circ} \mathrm{W} .14 \frac{1}{2}^{\circ} \mathrm{W}$. $8 \frac{1}{2}^{\circ} \mathrm{W} .3 \frac{1}{2}^{\circ} \mathrm{W}$.
Compass courses: N. 71° E. S. 69° E. S. 20° W. N. $42^{\circ} \mathrm{W}$.
Correct magnetic bearings : N. $12 \frac{1}{2}^{\circ}$ E. S. 44° E. S. $37^{\circ} \mathrm{W}$. N. $35^{\circ} \mathrm{W}$. Deviation: 0 .
Correct bearings : S. $80^{\circ} \mathrm{W}$. N. $40^{\circ} \mathrm{E}$.
3. Correct magnetic bearing : S. $14^{\circ} \mathrm{W}$.

Deviations : $10^{\circ} \mathrm{E} .15^{\circ} \mathrm{E} .14^{\circ} \mathrm{E} .8^{\circ} \mathrm{W} .20^{\circ} \mathrm{W} .18^{\circ} \mathrm{W} .3^{\circ} \mathrm{E}$. $5^{\circ} \mathrm{E}$.
Compass courses : N. 16° W. S. 75° W. S. $75 \frac{1}{2}^{\circ}$ E. N. 51° E.
Correct magnetic courses : N. 56° W. N. 56° E. S. 27° E. N. 33° W. Deviation: $4^{\circ} \mathrm{E}$.
Correct bearings: $\mathrm{S} .57^{\circ} \mathrm{W}$. N. $58^{\circ} \mathrm{W}$.
4. Correct magnetic bearing: N. $8 \frac{1}{2}^{\circ} \mathrm{W}$.

Deviations: $23 \frac{1}{2}^{\circ} \mathrm{E} .18 \frac{1}{2}^{\circ} \mathrm{E} .14 \frac{1}{2}^{\circ} \mathrm{W} .10 \frac{1}{2}^{\circ} \mathrm{W} .12 \frac{1}{2}^{\circ} \mathrm{W} .12 \frac{1}{2}^{\circ} \mathrm{W}$. $1 \frac{1}{2}^{\circ} \mathrm{E} . \quad 6 \frac{1}{2}^{\circ} \mathrm{E}$.
Compass courses : S. 57° W. N. $181^{\circ} \mathrm{W} . \quad$ S. 73° E. S. 88° E.
Correct magnetic coursés: S. 80° W. N. 40° E. S. 45° E. S. 1° E.
Deviation: $16^{\circ} \mathrm{E}$.
Bearings: N. 52° W. S. $39^{\circ} \mathrm{W}$.
5. Correct magnetic bearing : N. $833^{\circ} \mathrm{E}$.

Deviations: $21^{\circ} 45^{\prime} \mathrm{E} . \quad 17^{\circ} 45^{\prime} \mathrm{E} .0^{\circ} 45^{\prime} \mathrm{E} . \quad 19^{\circ} 15^{\prime} \mathrm{W} . \quad 21^{\circ} 15^{\prime} \mathrm{W}$. $15^{\circ} 15^{\prime}$ W. $1^{\circ} 15^{\prime}$ W. $16^{\circ} 45^{\prime}$ E.
Compass courses : N. 29° E. S. 86° E. S. 25° W. N. 26° W.
Correct magnetic courses : N. $58 \frac{1}{2}^{\circ}$ E. S. 61° E. N. $87 \frac{1}{4}^{\circ}$ W. N. 21° W.
Deviation : 22° E. Bearings : S. $3 \frac{1}{4}^{\circ} \mathrm{E} . \quad$ S. $73 \frac{1}{2}^{\circ} \mathrm{E}$.
6. Correct magnetic bearing : S. $134^{\circ} \mathrm{E}$.

Deviations: $184^{\circ} \mathrm{E} .8^{1^{\circ}} \mathrm{W} .29^{14^{\circ}} \mathrm{W}$. $34 \frac{3}{4}^{\circ} \mathrm{W} .20^{\circ} 5^{\prime} \mathrm{W} .123^{\circ} \mathrm{E}$. $293^{\circ} \mathrm{E} . \quad 31^{\circ} 20^{\prime} \mathrm{E}$.
Compass courses: N. $2 \frac{1}{2}^{\circ}$ E. S. $60 \frac{1}{2}^{\circ}$ E. S. 26° W. N. $81_{\frac{1}{2}}{ }^{\circ}$ W.
Correct magnetic courses : N. 32° E. N. 50° E. S. $46 \frac{1}{2}^{\circ}$ E. N. 11° W.
Deviation : $35^{\circ} \mathrm{W}$.
Correct bearings: N. $15^{\circ} 38^{\prime}$ E. N. $49^{\circ} 4^{\prime}$ W.
7. (a) Magnetic bearing, N. $56^{\circ} \mathrm{E}$.
(b) N. $\frac{1}{4}$ E., S. 80° E., S. 66° W., N. 7° W.
(c) S. 19° W., N. 59° W., N., S. 71° E.
(d) E. 11° N., N. 3° E.
8. (a) N. $73 \frac{1}{2}^{\circ} \mathrm{W}$
(b) S. 37° E., S. 18° W., N. 65° W., N. 78° E.
(c) N.W. by W., W. by S., S. 28° W., N. 80° E.
(d) N. $74 \frac{1}{2}^{\circ}$ E., N. $10 \frac{1}{2}^{\circ} \mathrm{W}$.
9. (a) N. $6^{\circ} \mathrm{W}$.
(b) W.S.W., N. 65° W., N. 7° E., S. 75° E.
(c) N. 26° E., N. 51° E., N. 87° E., S. 21° W.
(d) S. 78° W., S. 5° W.
10. (a) S. $65^{\circ} \mathrm{W}$.
(b) S. 40° E., N., N. 63° W., S. 21° W.
(c) N. 40° W., N. 10° E., N. 64° E., S. 63° E.
(d) S. 51° E., N. 36° E.
11. (a) S. 11° E.
(b) S. 84° W., N. 48° E., S. 58° E., S. 11° E.
(c) N. 85° E., N. 13° E., N. 61° W., S. 14° W.
(d) N. 5° E., N. 75° E.
12. (a) N. $2 \frac{1}{2}^{\circ} \mathrm{W}$.
(b) S. 76° E., S. 35° E., N. 58° W., N. 50° E.
(c) N. by W., S. 76° W., N. 27° E., S. $82 \frac{1}{2}^{\circ}$ E.
(d) S. $32 \frac{1}{2}^{\circ}$ W., S. 46° E.

CHAPTER XXI.

Great Circle Sailing.

1. First course, S. $84^{\circ} 44^{\prime} 50^{\prime \prime} \mathrm{W}$. ; last course, N. $63^{\circ} 10^{\prime} 40^{\prime \prime} \mathrm{W}$. ; lat. of vertex, $34^{\circ} 43^{\prime}$ S., long. $9^{\circ} 15^{\prime} \mathrm{E}$. ; distance, 3269 miles.

Polnts.	Longitude.	Latitude.
$\text { Long. from } V \text {. }$	- 1	- ,
915	$1830 \mathrm{E}$.	3422 S.
5	1415 E .	3437 S .
0	915 E.	3443 S .
5	415 E .	3437 S .
10	045 W .	3419 S .
15	545 W .	$3347 \frac{1}{2}$ S.
20	1045 W.	334 S .
25	1545 W.	32 71 S.
30	2045 W.	$3057 \frac{1}{2} \mathrm{~S}$.
35	2545 W .	$2934 \frac{1}{2} \mathrm{~S}$.
40	3045 W.	$2757 \frac{1}{2}$ S.
45	3545 W.	26 6i S .
50	4045 W.	$240 \frac{1}{2} \mathrm{~S}$.
5244	439 W.	2255 S .

2. Initial course, N. $56^{\circ} 54^{\prime} \mathrm{W}$. ; final course, S. $54^{\circ} 18^{\prime} \mathrm{W}$. ; distance, 4469 miles ; lat. and long. of vertex, $48^{\circ} 34^{\prime} \mathrm{N} ., 169^{\circ} 14^{\prime} \mathrm{W}$.

Points 1. $40^{\circ} 57 \frac{1^{\prime}}{}$ N., $129^{\circ} 14^{\prime} \mathrm{W}$.
,, 2. 46 47
,, 3. 4834 N., 16914 W.
,, 4. $4647 \frac{1}{2}$ N., 17046 E.
5. $4057 \frac{1}{2}$ N., 15046 E.
3. Courses, N. $55^{\circ} 43^{\prime}$ E., and N. $60^{\circ} 15^{\prime}$ E.; dist. C441 miles; vertex, lat. $46^{\circ} 40^{\prime} \mathrm{N}$., long. $79^{\circ} 29^{\prime} \mathrm{W}$.

Points	1.	27°	551^{\prime}	$\mathrm{S} .$,	160°	$31^{\prime} \mathrm{E}$.	
$"$	2.	19	56	$\mathrm{~S} .$,	170	31	E.
$"$	3.	10	26	$\mathrm{~S} .$,	179	29	W.
$"$	4.	0	0		169	29	W.
$"$	5.	10	26	$\mathrm{~N} ., 159$	29	W.	
$"$,	6.	19	56	$\mathrm{~N} ., 149$	29	W.	
$"$	7.	27	55	$\mathrm{~N} ., 139$	29	W.	
$"$	8.	34	$16 \frac{1}{2}$	$\mathrm{~N} ., 129$	29	W.	

4. Courses, N. $48^{\circ} 471^{\prime}$ E., and S. $45^{\circ} 23 \frac{1}{2}^{\prime}$ E. ; dist. 9904 miles; vertex, lat. $45^{\circ} 52 \frac{1}{2}^{\prime}$ N., long. $179^{\circ} 14^{\prime} \mathrm{W}$.

Points 1. $27^{\circ} 16^{\prime}$ N., $120^{\circ} 46^{\prime} \mathrm{E}$.
2. 3818 N., 14046 E.
3. 4451 N., 16046 E.
4. 45 521 N., 17914 W.
5. $445_{2}^{1} \mathrm{~N} ., 15914 \mathrm{~T}$.
6. $38 \quad 18$ N., 13914 W.
7. 2716 N., 11914 W.
8. $10 \quad 9 \quad \mathrm{~N} ., 9914 \mathrm{~W}$.
9. $10 \quad 9 \quad$ S., 7914 W.
5. Courses, S. $67^{\circ} 35 \frac{1^{\prime}}{}$ W., and S. $35^{\circ} 34 \frac{1}{2} \mathrm{~W}$. ; dist. 3452 miles; vertex, lat. $55^{\circ} 29^{\prime}$ N., long. $21^{\circ} 21 \frac{1^{\prime}}{}$ E.

6. Courses, N. $68^{\circ} 45^{\prime}$ E., and S. $68^{\circ} 45^{\prime}$ E. ; dist. 2494.6 miles; vertex, lat. $47^{\circ} 36 \frac{1}{2}^{\prime} \mathrm{N}$., long. $180^{\circ} \mathrm{E}$.

Points 1. $44^{\circ} 47 \frac{1^{\prime}}{}$ N., 155° E.
2. 4549 N., 160 E.
3. 4637 N., 165 E.
4. 4710 N., 170 E.
5. 4730 N., 175 E.
6. Vertex.
7. 4730 N., 175 W., etc.
7. Courses, S. 66° W., and S. $66^{\circ} \mathrm{W}$. ; dist. 7544.6 miles; vertex, lat. $44^{\circ} 19 \frac{1}{2}^{\prime} \mathrm{N}$. , long. $64^{\circ} 49 \frac{1}{2}^{\prime} \mathrm{W}$.

Points 1. $29^{\circ} 9^{\prime} \quad \mathrm{N} ., 120^{\circ} \mathrm{W}$.
2. $2554 \frac{1}{2}$ N., 125 W.
3. 2218 N., 130 W.
4. $1819 \frac{1}{2}$ N., 135 W .
5. $14 \quad 2 \quad$ N., 140 W.
6. 928 N., 145 W .
7. 442 N., 150 W.
8. $0 \quad 0 \quad 154491_{2}^{\prime} \mathrm{W}$.
8. Long. $32^{\circ} 391^{\prime}$ W.
9. Lat. $45^{\circ} 52 \frac{1}{2}^{\prime} \mathrm{N}$.
10. 50° S., $110^{\circ} \mathrm{E}$.
11. 119 miles north.
12. A. Lat. $46^{\circ} 40^{\prime} \mathrm{N}$. ; long. $53^{\circ} 3^{\prime} \mathrm{W}$.
B. Lat. $51^{\circ} 25^{\prime} \mathrm{N}$. ; long. $9^{\circ} 29^{\prime} \mathrm{W}$.

Composite Tracks.

No.	First course.	Last course.	Distance.	Langitude arrival.	Lengitude departure.
		- 1		0	- ,
1	S. 65 271 ${ }^{\text {E }}$ E.	N. $59 \quad 6 \frac{1}{2}$ E.	$7832 \cdot 4$	$2540 \frac{1}{2} \mathrm{~W}$.	68 321
2	S. $535 \frac{1}{2} \mathrm{~W}$.	N. $6844 \frac{1}{2}$ W.	$5600 \cdot 6$	19 1雰 W.	$2155 \frac{1}{2}$ W.
3	N. $52 \quad 5 \mathrm{~F}$.	S. 7526 E.	4096•1	167 1 W.	14354 W.

4. Courses, S. $59^{\circ} 45^{\prime}$ W., and West ; longs. $118^{\circ} 24^{\prime} \mathrm{W}$. , and $172^{\circ} 50^{\prime}$ E. ; dist. $2988+2266 \cdot 2=5254 \cdot 2$ miles.

Points	1.	33°	46^{\prime}	$\mathbf{S} .$,	$73^{\circ} \mathrm{W}$.	
,	2.	35	57	$\mathrm{~S} .$,	78	W.
",	3.	37	49	S.,	83	W.
",	4.	39	24	$\mathrm{~S} .$,	88	W.

Points	5.	40	42	S., 93	W.	
",	6.	41	45	S.,	98	W.
",	7.	42	33	S., 103	W.	
",	8.	43	$7 \frac{1}{2}$	S.,	108	W.
",	9.	43	$28 \frac{1}{2}$	S.,	113	W.
",	10.	43	36	S., 118	W., etc.	

CHAPTER XXII.

Latitude by Double Altitudes.

1. H.E.T. $2^{\text {h }} 52^{\mathrm{n}} 57^{\mathrm{a}}$; mid. dec. $14^{\circ} 38^{\prime} 13^{\prime \prime}$ N. ; cor. for run, $+11^{\prime \prime} 6^{\prime \prime}$; first alt. $30^{\circ} 38^{\prime} 37^{\prime \prime}$; second alt. $26^{\circ} 43^{\prime} 34^{\prime \prime} ; X Y=83^{\circ} 1^{\prime} 34^{\prime \prime} ; X_{1}$ $=103^{\circ} 19^{\prime} 32^{\prime \prime} ; \mathrm{X}_{2}=63^{\circ} 0^{\prime} 32^{\prime \prime}$. Cor. for lat. $+12^{\prime \prime}$. Lat. $30^{\circ} 21^{\prime} 30^{\prime \prime} \mathrm{S}$.
2. H.E.T. $2^{\mathrm{h}} 23^{\mathrm{m}} 55^{\circ} \cdot 5$; mid. dec. $13^{\circ} 12^{\prime} 25^{\prime \prime} \mathrm{N}$. ; cor. for run, $-21^{\prime} 48^{\prime \prime}$; first alt. $50^{\circ} 22^{\prime} 0^{\prime \prime}$; second alt. $42^{\circ} 57^{\prime} 0^{\prime \prime} ; \mathrm{XY}=69^{\circ} 46^{\prime} 30^{\prime \prime} ; \mathrm{X}_{1}$ $=80^{\circ} 37^{\prime} 38^{\prime \prime} ; \mathrm{X}_{2}=46^{\circ} 5^{\prime} 30^{\prime \prime}$. Cor. for lat. $=21^{\prime \prime} . \quad$ Lat. $43^{\circ} 27^{\prime} 45^{\prime \prime} \mathrm{N}$.
3. H.E.T. $2^{\text {h }} 15^{\text {m }} 56^{n} 7$; dec. $38^{\circ} 41^{\prime} 45^{\prime \prime}$ N.; cor. for run, 0 ; first alt. $75^{\circ} 44^{\prime} 55^{\prime \prime}$; second alt. $34^{\circ} 50^{\prime} 11^{\prime \prime} ; \mathrm{XY}=51^{\circ} 43^{\prime} 52^{\prime \prime} ; \mathrm{Y}_{1}=67^{\circ} 8^{\prime} 50^{\prime \prime}$; $Y_{2}=17^{\circ} 14^{\prime} 56^{\prime \prime} . \quad$ Lat. $50^{\circ} 20^{\prime} \mathrm{N}$.
4. H.E.T. $1^{\text {h }} 30^{\text {m }} 20^{\prime} 3$; dec. $16^{\circ} 19^{\prime} 15^{\prime \prime}$ N. ; cor. for run, $-12^{\prime} 54^{\prime \prime}$; first alt. $17^{\circ} 53^{\prime} 0^{\prime \prime}$; second alt. $45^{\circ} 37^{\prime} 12^{\prime \prime} ; \mathrm{XY}=43^{\circ} 15^{\prime} 18^{\prime \prime} ; Y_{1}=96^{\circ} 40^{\prime} 1^{\prime \prime}$; $Y_{2}=41^{\circ} 9^{\prime}$. Lat. $25^{\circ} 31^{\prime} 8^{\prime \prime} \mathrm{S}$.
5. R.A.M.S. $9^{\text {h }} 43^{\text {m }} 39^{\prime}$; T.A. a Arietis, $27^{\circ} 6^{\prime} 20^{\prime \prime}$; longs., (a) $179^{\circ} 57^{\prime}$ W. ; (b) $179^{\circ} 59^{\prime}$ E. Bearing, N. $85^{\circ} 6^{\prime}$ E. T.A. Altair, $47^{\circ} 1^{\prime} 41^{\prime \prime}$; longs., (c) $179^{\circ} 4^{\prime} 30^{\prime \prime} \mathrm{W}$.; (d) $179^{\circ} 35^{\prime} 15^{\prime \prime}$ E. Bearing, S. $28^{\circ} 50^{\prime} \mathrm{W}$. XY $=90^{\circ} 12^{\prime} 41^{\prime \prime} ; \mathbf{X}_{1}=80^{\circ} 32^{\prime} 23^{\prime \prime} ; \mathbf{X}_{2}=34^{\circ} 32^{\prime} 3^{\prime \prime}$. Lat. $48^{\circ} 21^{\prime} 0^{\prime \prime} \mathrm{N}$; long. $180^{\circ} \mathrm{W}$.
6. H.E.T. $1^{\mathrm{h}} 53^{\mathrm{m}} 2^{\prime \cdot} 5$; mid. dec. $7^{\circ} 47^{\prime} 35^{\prime \prime}$ N. ; run, 0 ; first alt. $18^{\circ} 4^{\prime} 22^{\prime \prime}$; second alt. $47^{\circ} 2^{\prime} 15^{\prime \prime} ; \mathrm{XY}=55^{\circ} 57^{\prime} 8^{\prime \prime} ; \mathrm{X}_{1}=85^{\circ} 53^{\prime} 6^{\prime \prime} ; \mathrm{X}_{2}=44^{\circ} 53^{\prime}$. Cor. for lat. $-2^{\prime} 30^{\prime \prime}$. Lat. $48^{\circ} 51^{\prime} \mathrm{N}$.
7. H.E.T. $2^{\text {h }} 45^{\text {T }} 28^{\prime} \cdot 6$; run, $+49^{\prime} 24^{\prime \prime}$; first alt. $15^{\circ} 50^{\prime} 58^{\prime \prime}$; second alt. $28^{\circ} 8^{\prime} 24^{\prime \prime} ; \mathbf{X Y}=69^{\circ} 44^{\prime \prime} ; \mathrm{X}_{1}=113^{\circ} 50^{\prime} 32^{\prime \prime} ; \mathrm{X}_{2}=65^{\circ} 18^{\prime} 15^{\prime \prime}$. Lat. $24^{\circ} 27^{\prime} \mathrm{N}$.
8. H.E.T. $1^{\text {h }} 52^{\mathrm{m}} 34^{\mathrm{s}}$; mid. dec. $3^{\circ} 22^{\prime} 34^{\prime \prime}$ N. ; run, $+45^{\prime}$; first alt. $39^{\circ} 34^{\prime} 56^{\prime \prime}$; second alt. $14^{\circ} 18^{\prime} 3^{\prime \prime} ; X Y=56^{\circ} 10^{\prime} 39^{\prime \prime} ; Y_{1}=91^{\circ} 51^{\prime} 40^{\prime \prime}$; $\mathrm{Y}_{2}=51^{\circ} 37^{\prime} 54^{\prime \prime}$. Lat. $46^{\circ} 23^{\prime} 48^{\prime \prime} \mathrm{S}$.
9. H.E.T. $3^{\mathrm{b}} 50^{\mathrm{m}} 47^{\circ} \cdot 8$; run, $-1^{\circ} 3^{\prime} 0^{\prime \prime}$; first alt. $54^{\circ} 47^{\prime} 7^{\prime \prime}$; second alt. $49^{\circ} 9^{\prime} 37^{\prime \prime} ; \mathrm{XY}=53^{\circ} 40^{\prime} 42^{\prime \prime} ; \mathrm{Y}_{1}=36^{\circ} 47^{\prime} 22^{\prime \prime} ; \mathrm{Y}_{2}=45^{\circ} 33^{\prime} 48^{\prime \prime}$. Lat. $43^{\circ} 19^{\prime} 6^{\prime \prime} \mathrm{S}$.
10. R.A.M.S. $10^{\mathrm{b}} 15^{\mathrm{m}} 59^{\prime}$; T.A. Aldebaran, $35^{\circ} 3^{\prime} 22^{\prime \prime}$; longs., (a) $156^{\circ} 7^{\prime} 30^{\prime \prime}$ E.; (b) $156^{\circ} 22^{\prime}$ E. Bearing, S. $72^{\circ} 9^{\prime}$ E. T.A. Markab, $47^{\circ} 42^{\prime} 15$; longs., (c) $157^{\circ} 39^{\prime} 45^{\prime \prime}$ E. ; (d) $156^{\circ} 52^{\prime}$ E. Bearing, S. $43^{\circ} \mathrm{W}$. $X Y=79^{\circ} 0^{\prime} 30^{\prime \prime} ; \mathbf{X}_{1}=77^{\circ} 43^{\prime} 59^{\prime \prime} ; \mathbf{X}_{2}=38^{\circ} 21^{\prime} 14^{\prime \prime}$. Lat. $50^{\circ} 14^{\prime} \mathrm{N}$.; long. $156^{\circ} 29^{\prime} \mathrm{E}$.
11. H.E.T. $2^{\mathrm{L}} 35^{\mathrm{m}} 4^{\prime \prime} 5$; mid. dec. $5^{\circ} 16^{\prime} 18^{\prime \prime}$ N. ; run, $-26^{\prime} 12^{\prime \prime}$; first alt. $51^{\circ} 36^{\prime} 17^{\prime \prime}$; second alt. $26^{\circ} 34^{\prime} 54^{\prime \prime}$. $X Y=77^{\circ} 8^{\prime} 54^{\prime \prime} ; Y_{1}=94^{\circ} 16^{\prime} 13^{\prime \prime}$; $Y_{2}=38^{\circ} 18^{\prime} 8^{\prime \prime}$. Cor. for lat. $-1^{\prime} 7^{\prime \prime}$. Lat. $27^{\circ} 14^{\prime} \mathrm{S}$.
12. H.E.T. $1^{\mathrm{h}} 45^{\mathrm{m}} 23^{\prime} 8$; run, $+49^{\prime} 0^{\prime \prime}$; first alt. $63^{\circ} 0^{\prime} 37^{\prime \prime}$; second alt. $18^{\circ} 37^{\prime} 27^{\prime \prime}$. $\mathrm{XY}=52^{\circ} 3^{\prime} 28^{\prime \prime} ; \mathrm{Y}_{1}=94^{\circ} 14^{\prime} 43^{\prime \prime} ; \mathrm{Y}_{2}=21^{\circ} 37^{\prime} 35^{\prime \prime}$. Lat, $13^{\circ} 25^{\prime} \mathrm{S}$.
13. R.A.M.S. $11^{\mathrm{h}} 35^{\mathrm{m}} 30^{\mathrm{s}}$; T. A. Rigel, $49^{\circ} 19^{\prime} 1^{\prime \prime}$; longs., (a) $125^{\circ} 4^{\prime} 30^{\prime \prime}$ E. ; (b) $127^{\circ} 25^{\prime} 15^{\prime \prime}$ E. Bearing, N. 23° E. T.A. Fomalhaut, $27^{\circ} 21^{\prime} 6^{\prime \prime}$; longs., (c) $127^{\circ} 23^{\prime} 15^{\prime \prime}$ E.; (d) $127^{\circ} 39^{\prime} 45^{\prime \prime}$ E. Bearing, S. $74^{\circ} 30^{\prime} \mathbf{W}$. XY $=89^{\circ} 35^{\prime} 57^{\prime \prime} ; Y_{1} ; 80^{\circ} 36^{\prime} 55^{\prime \prime} ; Y_{2}=31^{\circ} 45^{\prime} 47^{\prime \prime}$. Lat. $47^{\circ} 24^{\prime} 30^{\prime \prime} \mathrm{S}$.; long. $127^{\circ} 41^{\prime} 30^{\prime \prime} \mathrm{E}$.
14. H.E.T. $2^{\mathrm{h}} 24^{\mathrm{m}} 44^{\prime}$; mid. dec. $1^{\circ} 47^{\prime} 48^{\prime \prime}$ S. ; first alt. $34^{\circ} 36^{\prime} 15^{\prime \prime}$; run, $-16^{\prime} 24^{\prime \prime}$; second alt. $16^{\circ} 22^{\prime} 59^{\prime \prime} ; X Y=72^{\circ} 19^{\prime} 30^{\prime \prime} ; Y_{1}=91^{\circ} 15^{\prime} 47^{\prime \prime}$; $Y_{2}=58^{\circ} 9^{\prime} 30^{\prime \prime}$. Cor. for lat. $-1^{\prime} 25^{\prime \prime}$. Lat. $62^{\circ} 35^{\prime} \mathrm{N}$.
15. H.E.T. $4^{\mathrm{n}} 5^{\mathrm{m}} 45^{\circ} \cdot 2$; first alt. $66^{\circ} 3^{\prime} 3^{\prime \prime}$; run, $-57^{\prime} 36^{\prime \prime}$; second alt. $20^{\circ} 19^{\prime} 39^{\prime \prime} . \quad \mathrm{XY}=76^{\circ} 53^{\prime} 45^{\prime \prime} ; \mathrm{Y}_{1}=37^{\prime} 37^{\prime \prime} ; \mathrm{Y}_{2}=23^{\circ} 52^{\prime} 18^{\prime \prime}$. Lat. $34^{\circ} 12^{\prime} 32^{\prime \prime} \mathrm{N}$.

CHAPTER XXIII.

Error of Chronometer by Single Altitude.

1. Fast M.T.G. $7^{\mathrm{m}} 35^{\mathrm{a}}$; slow A.T.S. $5^{\text {b }}$ b $^{\mathrm{m}} 13^{\mathrm{I}}$.
2. Slow $15^{\text {m }} 39^{\text {a }}$.
3. Slow $31^{\text {B }}$.
4. Slow $5^{\text {mid }} 6^{\text {s }}$.
5. Fast $17^{\mathrm{m}} 38^{\text {² }}$.
6. Slow $8^{\mathrm{m}} 23^{\text {a }}$.
7. Fast 46°.
8. Slow A.T.S. $3^{\text {b }} 43^{\mathrm{m}} 43^{\prime}$; fast M.G.T. 18^{3}.

CHAPTER XXIV.

Calculation of Altitudes.

1. E.H.A. $0^{\text {b }} 45^{m} 25^{\text {a }}$; dec. $6^{\circ} 10^{\prime} 42^{\prime \prime}$ N. ; T.A. $46^{\circ} 54^{\prime} 43^{\prime \prime}$; A.A. $46^{\circ} 55^{\prime} 30^{\prime \prime}$.
2. W.H.A. $4^{\text {b }} 42^{\text {m }} 25^{\text {s }}$; dec. $2^{\circ} 25^{\prime} 30^{\prime \prime}$ S.; T.A. $11^{\circ} 18^{\prime} 30^{\prime \prime}$; A.A. $11^{\circ} 23^{\prime} 6^{\prime \prime}$.
3. W.H.A. $1^{\mathrm{h}} 34^{\mathrm{m}} 34^{\mathrm{s}} 6$; T.A. $35^{\circ} 32^{\prime} 16^{\prime \prime}$; A.A. $35^{\circ} 33^{\prime} 36^{\prime \prime}$.
4. E.H.A. $4^{\mathrm{b}} 54^{\mathrm{m}} 27^{\mathrm{s}} 3$; T.A. $17^{\circ} 6^{\prime} 1^{\prime \prime}$; A.A. $17^{\circ} 9^{\prime} 4^{\prime \prime}$.
5. W.H.A. $3^{\text {n }} 42^{\mathrm{m}} 21^{\mathrm{s}} \cdot 3$; Н.P. $54^{\prime} 51^{\prime \prime}$; dec. $5^{\circ} 51^{\prime} 28^{\prime \prime}$ N.; T.A. $30^{\circ} 37^{\prime} 13^{\prime \prime}$; A.A. $29^{\circ} 51^{\prime} 19^{\prime \prime}$.
6. W.H.A. $3^{\text {h }} 13^{\text {m }} 52^{\prime} 6$; dec. $8^{\circ} 24^{\prime} 48^{\prime \prime}$; T.A. $40^{\circ} 56^{\prime} 54^{\prime \prime}$; A.A. $40^{\circ} 57^{\prime} 58^{\prime \prime}$.
7. Е.H.A. $0^{\text {n }} 36^{\mathrm{m}} 28^{\circ}$; H.P. $58^{\prime} 50^{\prime \prime}$; dec. $19^{\circ} 49^{\prime} 51^{\prime \prime}$ S, ; T.A. $76^{\circ} 59^{\prime} 48^{\prime \prime}$; A.A. $76^{\circ} 46^{\prime} 33^{\prime \prime}$.
8. Е.H.A. $3^{\text {h }} 56^{m} 40^{\prime} 9$; dec. $23^{\circ} 7^{\prime} 40^{\prime \prime}$ N.; T.A. $30^{\circ} 20^{\prime} 56^{\prime \prime}$; A.A. $30^{\circ} 22^{\prime} 32^{\prime \prime}$ 。

CHAPTER XXV.

Longitude by Lunar Distance.

G. М.т.

1. $6^{\mathrm{d}} 17^{\mathrm{b}} 27^{\mathrm{m}} 36^{\mathrm{a}} \cdot$.
2. $7^{\mathrm{d}} 20^{\mathrm{b}} 27^{\mathrm{m}} 13^{\mathrm{s}}$.
3. $12^{\mathrm{d}} 11^{\mathrm{b}} 7^{\mathrm{m}} 1^{\mathrm{n}} .5$.
4. $22^{\mathrm{d}} 21^{\mathrm{h}} 58^{\mathrm{m}} 2^{\mathrm{B}}$.
5. $28^{\mathrm{d}} 7^{\mathrm{h}} 0^{\mathrm{m}} 25^{\mathrm{I}}$ 。

True Distance.

1. $Z=119^{\circ} 37^{\prime} 16^{\prime \prime} ; B=25^{\circ} 26^{\prime} 45^{\prime \prime}$; true dist. $=96^{\circ} 18^{\prime} 32^{\prime \prime}$.
2. $Z=122^{\circ} 9^{\prime} 50^{\prime \prime} ; \mathrm{B}=24^{\circ} 56^{\prime} 56^{\prime \prime}$; true dist. $107^{\circ} 17^{\prime} 39^{\prime \prime}$.
3. $Z=125^{\circ} 55^{\prime} 28^{\prime \prime} ; \mathrm{B}=21^{\circ} 16^{\prime} 40^{\prime \prime}$; true dist. $100^{\circ} 39^{\prime} 17^{\prime \prime}$.
4. $Z=96^{\circ} 14^{\prime} 22^{\prime \prime} ; \mathrm{B}=21^{\circ} 59^{\prime} 24^{\prime \prime}$; true dist. $55^{\circ} 37^{\prime} 4^{\prime \prime}$.

Longitudes and Errors.

1. Sun's elements: Dec. $14^{\circ} 58^{\prime} 51^{\prime \prime}$ N. ; R.A. $9^{\text {b }} 27^{\mathrm{m}} 39^{\circ}$; R.A.M.S. $9^{\mathrm{b}} 22^{\mathrm{m}} 46^{\mathrm{n}} \cdot 3$; А.А. $34^{\circ} 22^{\prime} 13^{\prime \prime}$; T.A. $34^{\circ} 20^{\prime} 57^{\prime \prime}$; E.H.A. $1^{\text {b }} 36^{\text {m }} 32^{\text {² }}$.

Moon's elements: R.A. $4^{\mathrm{b}} 0^{\mathrm{m}} 1^{\mathrm{s}} \cdot 3$; dec. $15^{\circ} 30^{\prime} 16^{\prime \prime}$ N.; H.P. $54^{\prime} 9^{\prime \prime} \cdot 1$; S.D. $14^{\prime} 51^{\prime \prime} \cdot 6$; W.H.A. $3^{\text {h }} 51^{\text {m }} 6^{\prime \prime}$; T.A. $15^{\circ} 6^{\prime} 45^{\prime \prime}$; A.A. $14^{\circ} 17^{\prime} 56^{\prime \prime}$; app. dist. $78^{\circ} 53^{\prime} 30^{\prime \prime} ; B=40^{\circ} 41^{\prime} 23^{\prime \prime} ; Z=86^{\circ} 11^{\prime} 1^{\prime \prime}$; true dist. $78^{\circ} 27^{\prime} 16^{\prime \prime}$; error, $6^{\text {mi }}$ fast; long. $93^{\circ} 31^{\prime} 45^{\prime \prime}$ E.
2. Sun's elements: R.A. $10^{\text {b }} 26^{\text {m }} 44^{\text {s. }} 8$; dec. $9^{\circ} 44^{\prime} 29^{\prime \prime}$ N. ; R.A.M.S. $10^{\mathrm{h}} 25^{\mathrm{m}} 34^{\mathrm{s}}$; W.H.A. $3^{\mathrm{b}} 34^{\mathrm{m}} 17^{\mathrm{e}} .2$; T.A. $37^{\circ} 5^{\prime} 42^{\prime \prime}$; A.A. $37^{\circ} 6^{\prime} 51^{\prime \prime}$.

Moon's elements: R.A. $18^{\mathrm{h}} 9^{\mathrm{m}} 38^{\wedge} \cdot 7$; dec. $20^{\circ} 6^{\prime} 2^{\prime \prime}$ S. ; S.D. $16^{\prime} 13^{\prime \prime}$; H.P. $59^{\prime} 8^{\prime \prime} \cdot 3$; E.H.A. $4^{\text {h }} 8^{\mathrm{m}} 36^{8.7}$; A.A. $14^{\circ} 6^{\prime} 50^{\prime \prime}$; T.A. $15^{\circ} 0^{\prime} 27^{\prime \prime}$; app. dist. $118^{\circ} 6^{\prime} 57^{\prime \prime} ; \mathrm{B}=16^{\circ} 7^{\prime} 49^{\prime \prime} ; \mathrm{Z}=143^{\circ} 5^{\prime} 37^{\prime \prime}$; true dist. $117^{\circ} 22^{\prime} 44^{\circ}$; error, $9^{\circ \prime} 18^{\circ}$ slow ; long. $163^{\circ} 32^{\prime} 0^{\prime \prime} \mathrm{W}$.
3. Star's elements: R.A. $4^{\text {b }} 30^{m} 31^{\circ} 5$; dec. $16^{\circ} 19^{\prime} 15^{\prime \prime}$ N.; R.A.M.S. $9^{\mathrm{h}} 8^{\mathrm{m}} 54^{\mathrm{s}} \cdot 3$; Е.H.A. $3^{\mathrm{h}} 53^{\mathrm{m}} 49^{\circ}$; Т.A. $34^{\circ} 40^{\prime} 39^{\prime \prime}$; A.A. $34^{\circ} 42^{\prime} 0^{\prime \prime}$.

Moon's elements: R.A. $1^{\text {h }} 16^{\text {mi }} 27^{s} 6$; dec. $2^{\circ} 50^{\prime} 3^{\prime \prime}$ N.; S.D. $15^{\prime} 17^{\prime \prime} 7$; H.P. $65^{\prime} 14^{\prime \prime} \cdot 5$; А.А. $53^{\circ} 17^{\prime} 50^{\prime \prime}$; Т.А. $53^{\circ} 50^{\prime} 9^{\prime \prime}$; Е.Н.А. $0^{\text {h }} 39^{\mathrm{m}} 45^{\circ}$; арр. dist. $49^{\circ} 35^{\prime} 21^{\prime \prime} ; \mathrm{B}=35^{\circ} 30^{\prime} 39^{\prime \prime} ; Z=67^{\circ} 1^{\prime} 7^{\prime \prime}$; true dist. $49^{\circ} 32^{\prime} 54^{\prime \prime}$; error, 3^{5} slow ; long. $174^{\circ} 36^{\prime} 53^{\prime \prime}$ E.
4. Star's elements: R.A. $19^{\text {h }} 46^{\text {ma }} 11^{\circ} 8$; dec. $8^{\circ} 37^{\prime} 11^{\prime \prime}$ N.; R.A.M.S. $10^{\mathrm{b}} 0^{\mathrm{m}} 12^{\prime} \cdot 9$; А.А. $28^{\circ} 17^{\prime} 54^{\prime \prime}$; Т.А. $28^{\circ} 16^{\prime} 8^{\prime \prime}$; Е.Н.А. $3^{\mathrm{h}} 21^{\mathrm{m}} 18^{s} \cdot 9$.

Moon's elements: R.A. $12^{\mathrm{h}} 11^{\mathrm{m}} 39^{\mathrm{B}} \cdot 9$; dec. $3^{\circ} 6^{\prime} 37^{\prime \prime}$ N. ; S.D. $16^{\prime} 1^{\prime \prime} \cdot 7$; H.P. $58^{\prime} 19^{\prime \prime}$; W.H.A. $4^{\mathrm{h}} 13^{\mathrm{m}} 13^{3}$; T.A. $21^{\circ} 15^{\prime} 24^{\prime \prime}$; A.A. $20^{\circ} 23^{\prime} 17^{\prime \prime}$; арp. dist. $113^{\circ} 24^{\prime} 57^{\prime \prime} ; \mathrm{B}=21^{\circ} 11^{\prime} 29^{\prime \prime} ; \mathrm{Z}=132^{\circ} 58^{\prime} 10^{\prime \prime}$; true dist. $112^{\circ} 48^{\prime} 56^{\prime \prime}$; error, $10^{\mathrm{m}} 14^{-} \cdot 6$ fast ; long. $33^{\circ} 36^{\prime} 7^{\prime \prime} \mathrm{E}$.
5. Planet's elements: R.A. $23^{\text {b }} 1^{\mathrm{m}} 40^{\text {s }}$; dec. $8^{\circ} 27^{\prime} 13^{\prime \prime}$ S.; R.A.M.S. $9^{\mathrm{h}} 22^{\mathrm{m}} 50^{\mathrm{s}} \cdot 3$; W.H.A. $0^{\mathrm{h}} 15^{\mathrm{m}} 59^{\circ} \cdot 3$; 'Т.А. $50^{\circ} 54^{\prime} 27^{\prime \prime}$; А.А. $50^{\circ} 55^{\prime} 12^{\prime \prime}$.

Moon's elements : R.A. $4^{\text {b }} 0^{\mathrm{m}} 49^{\mathrm{s}}$; dec. $15^{\circ} 32^{\prime} 59^{\prime \prime}$ N. ; S.D. $14^{\prime} 54^{\prime \prime}$; H.P. $54^{\prime} 11^{\prime \prime}$; А.А. $23^{\circ} 21^{\prime} 26^{\prime \prime}$; Т.А. $24^{\circ} 8^{\prime} 58^{\prime \prime}$; Е.Н.А. $4^{\text {h }} 43^{\text {m }} 10^{\prime \prime}$; арр. dist. $78^{\circ} 26^{\prime} 58^{\prime \prime} ; \mathrm{B}=28^{\circ} 56^{\prime} 47^{\prime \prime} ; \mathrm{Z}=100^{\circ} 42^{\prime} 28^{\prime \prime}$; true dist. $77^{\circ} 50^{\prime} 26^{\prime \prime}$; error, 3° fast; long. $40^{\circ} 50^{\prime} \mathrm{W}$.
6. Sun's elements: R.A. $10^{\text {h }} 9^{m} 42^{s} \cdot 7$; dec. $11^{\circ} 21^{\prime} 4^{\prime \prime}$ N. ; R.A.M.S. $10^{\mathrm{b}} 7^{\mathrm{m}} 16^{\mathrm{s}}$; А.А. $47^{\circ} 5^{\prime} 38^{\prime \prime}$; Т.А. $47^{\circ} 4^{\prime} 51^{\prime \prime}$; Е.Н.А. $38^{\mathrm{m}} 45^{\mathrm{s} \cdot 7}$.

Moon's elements: R.A. $13^{\text {h }} 45^{\mathrm{m}} 23^{\prime \prime} 2$; dec. $5^{\circ} 28^{\prime} 21^{\prime \prime}$ S. ; S.D. $16^{\prime} 8^{\prime \prime} \cdot 3$; H.P. $58^{\prime} 49^{\prime \prime}$; A.A. $9^{\circ} 52^{\prime} 3^{\prime \prime}$; Т.A. $10^{\circ} 44^{\prime} 41^{\prime \prime}$; E.H.A. $4^{\text {b }} 14^{\text {m }} 26^{\circ} \cdot 2$; арр. dist. $56^{\circ} 54^{\prime} 0^{\prime \prime} ; \mathrm{B}=47^{\circ} 32^{\prime} 25^{\prime \prime} ; \mathrm{Z}=51^{\circ} 10^{\prime} 2^{\prime \prime}$; true dist. $56^{\circ} 13^{\prime} 1^{\prime \prime}$; error, $14^{\mathrm{m}} 35^{\mathrm{s}}$ fast ; long. $4^{\circ} 34^{\prime}$ E.
7. Star's elements: R.A. $16^{\text {L }} 23^{\mathrm{m}} 38^{\circ} 5$; dec. $26^{\circ} 13^{\prime} 26^{\prime \prime}$ S.; R.A.M.S.

Moon's elements: R.A. $18^{h} 58^{m} 41^{n} 5$; dec. $20^{\circ} 17^{\prime} 45^{\prime \prime}$ S. ; S.D. $16^{\prime} 21^{\prime \prime} 5$; H.P. $58^{\prime} 54^{\prime \prime}$; E.H.A. $0^{\text {b }} 27^{\mathrm{m}} 39^{\circ} 7$; T.A. $61^{\circ} 2^{\prime} 31^{\prime \prime}$; A.A. $60^{\circ} 34^{\prime} 6^{\prime \prime}$: app. dist. $36^{\circ} 10^{\prime} 9^{\prime \prime} ; B=24^{\circ} 33^{\prime} 36^{\prime \prime} ; Z=72^{\circ} 46^{\prime} 12^{\prime \prime}$; true dist. $35^{\circ} 57^{\prime} 44^{\prime \prime}$; error, $11^{\mathrm{m}} 41^{\prime}$ fast ; long. $30^{\circ} 16^{\prime} \mathrm{W}$.
8. Planet's elements: R.A. $6^{\mathrm{h}} 8^{\mathrm{m}} 5^{\circ} \cdot 6$; dec. $23^{\circ} 7^{\prime} 40^{\prime \prime}$ N.; R.A.M.S. $9^{\text {L }} 7^{\text {m }} 21^{\text {® }} 7$; А.А. $30^{\circ} 22^{\prime} 32^{\prime \prime}$; Т.A. $30^{\circ} 20^{\prime} 56^{\prime \prime}$; E.H.A. $3^{\text {h }} 56^{\mathrm{m}} 39^{\prime}$.

Moon's elements: R.A. $0^{4} 58^{m} 15^{n} 5$; dec. $1^{\circ} 9^{\prime} 37^{\prime \prime}$ N.; S.D. $15^{\prime} 23^{\prime \prime}$; H.P. $55^{\prime} 33^{\prime \prime}$; W.H.A. $1^{\mathrm{b}} 13^{\mathrm{ma}} 9^{\mathrm{s}}$; T.A. $71^{\circ} 17^{\prime} 45^{\prime \prime}$; A.A. $71^{\circ} 0^{\prime} 0^{\prime \prime}$; арр. dist. $78^{\circ} 16^{\prime} 58^{\prime \prime} ; \mathrm{B}=3^{\circ} 4^{\prime} 32^{\prime \prime} ; \mathrm{Z}=168^{\circ} 17^{\prime} 36^{\prime \prime}$; true dis² $78^{\circ} 1^{\prime} 6^{\prime \prime}$; error, $4^{\prime \prime}$ slow ; long. $20^{\circ} 26^{\prime} 52^{\prime \prime} \mathrm{W}$.
9. Star's elements: R.A. $23^{\text {h }} 0^{\text {m }} 4^{1 / 7}$; dcc. $14^{\circ} 41^{\prime} 58^{\prime \prime}$ N. ; R.A.M.S. $10^{\mathrm{h}} 36^{\mathrm{m}} 45^{8} \cdot 6$; A.A. $67^{\circ} 48^{\prime} 54^{\prime \prime}$; Т.A. $67^{\circ} 48^{\prime} 31^{\prime \prime}$; W.H.A. $1^{\mathrm{k}} 7^{\mathrm{m}} 15^{\circ}$.

Moon's elements: R.A. $20^{\mathrm{n}} 57^{\mathrm{m}} 35^{\mathrm{s}}$; dec. $17^{\circ} 14^{\prime} 51^{\prime \prime}$ S.; S.D. $16^{\prime} 6^{\prime \prime}$; H.P. $58^{\prime} 21^{\prime \prime}$; W.甘.A. $3^{\text {b }} 9^{\text {m }} 44^{\prime \prime} 5$; T.A. $40^{\circ} 14^{\prime} 27^{\prime \prime}$; A.A. $39^{\circ} 30^{\prime} 36^{\prime \prime}$; app. dist. $44^{\circ} 36^{\prime} 57^{\prime \prime} ; \mathrm{B}=26^{\circ} 54^{\prime} 48^{\prime \prime} ; \mathrm{Z}=65^{\circ} 5^{\prime} 14^{\prime \prime}$; true dist. $43^{\circ} 58^{\prime} 42^{\prime \prime}$; error, $12^{\mathrm{m}} 24^{\prime}$ slow ; long. $43^{\circ} 9^{\prime} 30^{\prime \prime} \mathrm{E}$.

CHAPTER XXVI.

Mercator's Charts.

1. Lat. $57^{\circ} 31 \frac{1}{2}^{\prime} \mathrm{N} .$, long. $27^{\circ} 5 \frac{1}{2}^{\prime} \mathrm{W}$.
2. Lat. $64^{\circ} 10 \frac{1^{\prime}}{}$ S., long. $121^{\circ} 22^{\prime}$ E., magnetic bearing S. $22^{\circ} \mathrm{W}$.
3. Lat. $55^{\circ} 51_{1}^{\prime}$ N. Nong. $30^{\circ} 24^{\prime} \mathrm{W}$.

True course, N. $47^{\circ} \mathrm{E}$. ; distance, 110 miles.
4. Obs. lat. $54^{\circ} 29^{\prime} \mathrm{N} .$, long. $5^{\circ} 21 \frac{1^{\prime}}{}$ W.
D.R. lat. $54^{\circ} 22 \frac{1}{2}^{\prime} \mathrm{N}$., long. $5^{\circ} 15^{\prime} \mathrm{W}$.

Current, N. 28° W. $7 \frac{3}{4}$ miles.
5. Lat. $69^{\circ} 19^{\prime}$ N., long. $10^{\circ} 13^{3}$ E. ; course, S. 61° E.; distance, 39.5 miles.
6. Lat. $50^{\circ} 50^{\prime} \mathrm{S}$., long. $24^{\circ} 45^{\prime}$ E.

1st sounding, lat. $51^{\circ} 40^{\prime} \mathrm{S}$., long. $21^{\circ} 55^{\prime} \mathrm{E}$.
2nd sounding, lat. $49^{\circ} 3^{\prime}$ S., long. $24^{\circ} 53^{\prime}$ E.
7. Bearing and distance from A of 1 st $\mathrm{S} .26^{\circ} \mathrm{E} ., 6 \cdot 85$ miles. 2nd S. $57 \frac{1}{2}$ E., 5.8 miles. 3rd S. 49° E., $2 \cdot 1$ miles.
8. N. 84° E. (mag.), 75 miles.
9. Lat. $55^{\circ} 33^{\prime} \mathrm{N}$., long. $6^{\circ} 3 \frac{1}{\prime}^{\prime} \mathrm{W}$., dist. 30 miles. 34 knots. Mag. ce. N. 86° E., dist. $35 \frac{1}{2}$ miles.

CHAPTER XXIX.

SYLLABUS.

Coefficients.

31. 32. N. 37° W. 2. N. 61° E. 3. S. 31° E. 4. $-11^{\circ} 6$. 5. $+14^{\circ} 1$. 6. $+5^{\circ} 5$.

Deviations from Tables.

62. 63. $\mathrm{A}, 0 ; \mathrm{B},+5 \frac{1}{2} ; \mathrm{C},-28 \frac{1}{2} ; \mathrm{D},-4 \frac{1}{2} ; \mathrm{E},-1$.

$$
-820,-127,-1550,-1932,-23,-2558,-2812,-2930,
$$

$$
-2920,-286,-2512,-2046,-152
$$

2. $\mathrm{A},-045 ; \mathrm{B}, 0 ; \mathrm{C},+2330 ; \mathrm{D},-2 ; \mathrm{E},-045$.
$0,-351,-749,-1138,-1522,-1840,-21 \frac{1}{2},-2330,-25$, $-2518,-2424,-2228,-1922,-1526,-1037$, $-527,0$.
3. $\mathrm{A},=-1 \frac{3}{4} ; \mathrm{B},=-12 \frac{1}{2} ; \mathrm{C},=+26 ; \mathrm{D},=-\frac{3}{4} ; \mathrm{E},=+1 \frac{3}{4}$.
$-57,-1051,-16,-2025,-2358,-2634,-2813,-2857$, $-2817,-2747,-26$.
4. $\mathrm{A},+1 ; \mathrm{B},-4 \frac{1}{2} ; \mathrm{C},-15 \frac{1}{2} ; \mathrm{D}, 0 ; \mathrm{E},+1 \frac{1}{2}$.
$-13,-1156,-1032,-849,-637,-427,-150,+11,+4$, $+72,+102,+1247,+159,+1657,+186,+1828,+18$.
b. $\mathrm{B},+21 ; \mathrm{C},+3 ; \mathrm{D},+3$.
$-8,-14,-18,-20,-21,-21 \frac{1}{2},-21,-20,-18,-16,-14$. -11 .

Stars in Good Position.

70. 71. E β Argûs, a Argûs, Rigel. W, a Centauri, Altair.
1. E. Aldebaran, Capella. W. Vega, Altair.
2. E. W. Altair.
3. E. Rigel. W. a Crucis, a Centauri, Marcab.
4. E. Aldebaran, a Orionis. W. Vega, Altair.
5. None.

Heeling Error.
92. 1. -3°. 2. $7^{\circ} 15^{\prime} .3 .+11^{\circ} 48^{\prime}$. 4. $+10^{\circ} 18^{\prime}$. 5. $-25^{\circ} 30^{\prime}$. 6. $+5^{\circ} 54^{\prime} . \quad 7 .-11^{\circ} 15^{\prime} . \quad$ 8. $0 . \quad$ 9. $-14^{\circ} 18^{\prime}$. 10. $-3^{\circ} 30^{\prime}$. 11. $+9^{\circ} 12^{\prime}$. 12. $-5^{\circ} 56^{\prime}$.

CHAPTER XXX.

Miscellaneous Problems.

1. £2142.
2. £7066-b.
3. $£ 31749$ s.
4. $\$ 33,157 \cdot 025$. £19,994.
5. 13s. per gall.; 173 d. per lb.
6. 15,624 tons.
7. 13.6 .
8. 2 feet.
9. 8.
1. 49.
1. 29 feet.
2. 967.5 francs.
3. £42 10s. 6 d .
4. 4 feet.
5. 78.35 shillings.
6. 92 tons.
7. $30 \cdot 6$.
8. 977 feet.
9. 91.
1. $12,600 \mathrm{sq}$. ft.
2. $2406 \cdot 25 \mathrm{lbs}$.
3. 62 tons.
4. $80 \cdot 3$ tons.
5. 3.6 tons, 14.4 tons, 4.9 tons.
6. $1 \frac{3}{4}$ tons, $3 \frac{4}{7}$ tons, 6 tons.
7. 8 cwt ., $2 \frac{1}{2}$ tons, 10 tons.
8. 4.
1. 8 tons nearly.
2. $7 \frac{1}{2}$ tons.
3. $4 \frac{1}{2}$ " rope ; $23^{\prime \prime}$ wire.
4. $5^{\prime \prime}$ rope; $3^{\prime \prime}$ wire.
5. 162 tons.
6. 562 grains.
7. 525 grains.
8. 566 grains.
9. $1 \cdot 76$ nautical miles.
10. 186,324 miles.
11. 8.44 knots.
12. 8%.
13. 10%.
14. 43.2 tons ; 12.8 tons.
15. $202 \cdot 6$ tons ; 73.9 tons.
16. 10.62 kts ; 14.73 kts .
17. 13.4 kts . ; 16.9 kts .
18. $2034 \cdot 5$ tons.
19. 540 tons.
20. $484 \cdot 8$ tons.
21. 6836 ; 56.4 tons ; 101.4 tons.
22. 1000 tons.
23. 8.3 tons.
24. 9 knots.
25. 6.84 knots.
26. $19 \cdot 03$ tons ; ' $30 \cdot 28$ tons.
27. Increase 12 tons.
28. 69 tons.

Paper I.

1. $\cdot 49298 \log =9 \cdot 692831$.
2. $85.406 \log =1.931488$.
3. S. 27° W., 12^{\prime}; S. $29^{\circ} \mathrm{E} .,{28^{\prime}}^{\prime}$; S. 50° W., 29^{\prime}; S. 34° W., 30^{\prime}; N. 41° E., 20^{\prime}; S. 79° W., 35^{\prime}; N. 49° E., 27^{\prime}; D.R. lat. $49^{\circ} 51^{\prime} 4$ N. ; long. $0^{\circ} 36^{\prime} \cdot 6 \mathrm{~W}$. Set S. $14^{\circ} \mathrm{W}$. ; drift, 22 miles.
4. Dec. $17^{\circ} 44^{\prime} 18^{\prime \prime}$ N.; T.A. $58^{\circ} 21^{\prime} 26^{\prime \prime}$; lat. $49^{\circ} 22^{\prime} 52^{\prime \prime}$ N.
5. Long. $45^{\circ} 12^{\prime} \cdot 4 \mathrm{E}$.
6. D. lat. 2472 , M.D.L. 2569, D. long. 876 ; true comp. S. $18^{\circ} 49 \frac{1}{2}^{\prime}$ W.; comp. course, S. $56^{\circ} 34 \frac{1}{2}^{\prime} \mathrm{W}$. ; dist. 2612 miles.
7. $4^{\mathrm{h}} 24^{\mathrm{m}}$ A.м. $; 4^{\mathrm{h}} 42^{\mathrm{m}}$ Р.м.
8. Dec. $17^{\circ} 19^{\prime} 5^{\prime \prime} N$. ; true amp. E. $22^{\circ} 191^{\prime}$ N. ; dev. $9^{\circ} 25 \frac{1^{\prime}}{}{ }^{\prime}$ E.
9. M.T.G. Aug. $7^{\mathrm{d}} 0^{\mathrm{h}} 0^{\mathrm{m}} 0^{\prime}$; Dec. $16^{\circ} 37^{\prime} 13^{\prime \prime}$ N. ; eq. time, $+5^{\mathrm{m}} 40^{\circ}$; T.A. $54^{\circ} 6^{\prime} 6^{\prime \prime}$; H.A. $2^{\mathrm{h}} 7^{\mathrm{m}} 17^{\mathrm{s}}$; st. long. $30^{\circ} 24^{\prime} 15^{\prime \prime} \mathrm{W}$. ; noon long. $30^{\circ} 56^{\prime} 40^{\prime \prime}$ W. ; true azi. S. $59^{\circ} 30^{\prime}$ E. ; dev. $1^{\circ} 15^{\prime}$ W.
10. A.T.S. $3^{\mathrm{E}} 47^{\mathrm{m}} 38^{\circ}$ г.M.; dec. $8^{\circ} 17^{\prime} 0^{\prime \prime}$ N.; cor., $-46+10+5$; true azi. S. $121^{\circ} 43^{\prime} \mathrm{W}$. ; dev. $7^{\circ} 2^{\prime} \mathrm{W}$.
11. H.A. $48^{\mathrm{na}} 35^{\mathrm{s}}$; R.A.M.S. $10^{\mathrm{n}} 10^{\mathrm{m}} 12^{\mathrm{n}}$; T.A. $57^{\circ} 24^{\prime} 25^{\prime \prime}$; nat. no. 10729. Arc. I. $58^{\circ} 17^{\prime} 50^{\prime \prime}$; Arc II. $32^{\circ} 0^{\prime} 58^{\prime \prime}$; lat. $26^{\circ} 16^{\prime} 52^{\prime \prime}$ S.
12. First dec. $0^{\circ} 1^{\prime} 22^{\prime \prime}$ N.; T.A. $32^{\circ} 59^{\prime} 45^{\prime \prime}$; eq. time, $-7^{\mathrm{m}} 131^{\prime \prime}$; long. (a), $179^{\circ} 9^{\prime} 45^{\prime \prime} \mathrm{W} . ;(b), 178^{\circ} 1^{\prime} 30^{\prime \prime} \mathrm{W}$. ; second dec. $0^{\circ} 2^{\circ} 32^{\prime \prime} \mathrm{S}$.; T.A. $33^{\circ} 3^{\circ} 25^{\prime \prime}$; eq. time, $-7^{\mathrm{m}} 35$; long. (c), $179^{\circ} 47^{\prime} 45^{\prime \prime}$ E.; (d), $178^{\circ} 39^{\prime} 15^{\prime \prime}$ E.

First line: $\left\{\begin{array}{l}\text { N. } 57^{\circ} \mathrm{W} . \\ \mathrm{S} .57^{\circ} \mathrm{E} .\end{array}\right\}$; second azi. N. $33 \frac{1}{2}^{\circ} \mathrm{W}$. ; lat. $51^{\circ} 2^{\prime}$ S. ; long. $179^{\circ} 40^{\prime} \mathrm{W}$.
13. $4^{\mathrm{L}} 33^{\mathrm{m}} 22^{\mathrm{a}}$ A.м.
14. a Persei, N. $1^{\mathrm{n}} 34^{\mathrm{m}} 9^{\mathrm{s}}$ E. Alt. $72^{\circ} 53^{\prime} 20^{\prime \prime}$.
15. M.T.G. Aug. $30^{\mathrm{d}} 18^{\mathrm{b}} 0^{\mathrm{m}} 49^{\circ} ;$ R.A.M.S. $10^{\mathrm{h}} 34^{\mathrm{m}} 2^{\mathrm{n}} ;$ T.A. $21^{\circ} 19^{\prime} 19^{\prime \prime}$; E.H.A. $1^{\mathrm{b}} 56^{\mathrm{m}} 40^{\circ}$; long. $179^{\circ} 26^{\prime} 30^{\prime \prime}$ W.
16. E.H.A. $4^{\text {b }} 49^{\mathrm{m}} 12^{\text {s }}$; cor. $+1-20+0$; true azi. S. $81^{\circ} 17^{\prime}$ E.; dev. $24^{\circ} 28^{\prime}$ E.
17. R.A.M. $3^{\text {b }} 59^{m} 53^{\circ}$; first cor., $-56^{\prime} 10^{\prime \prime}$; lat. $38^{\circ} 9^{\prime} 37^{\prime \prime}$ N.
18. M.T.G. $6^{\text {d }} 7^{\text {h }} 58^{\mathrm{m} .8}$; S.D. $15^{\prime} 50^{\prime \prime}$; H.P. $57^{\prime} 15^{\prime \prime}$; dec. $9^{\circ} 21^{\prime} 57^{\prime \prime}$ S.; A.A. $50^{\circ} 9^{\prime} 2^{\prime \prime}$; T.A. $50^{\circ} 44^{\prime} 55^{\prime \prime}$; lat. $29^{\circ} 53^{\prime} 8^{\prime \prime} \mathrm{N}$.
19. Lat. $28^{\circ} 23^{\prime} 22^{\prime \prime} \mathrm{S}$.
20. Mag. bearing, N. $33^{3 \circ}$ E. ; comp. course, N. 59° E., N. 86° W.,
S. 37° E., N. 21° W. ; mag. course, N. 61° W., N. 52° E., S. 9° W., S. 53° E.; mag. bearings, S. $54^{\circ} \mathrm{W} ., \mathrm{N} .25^{\circ} \mathrm{W}$.
21. Red, -7 ft .10 ins.
22. Star's elements: R.A. $23^{\text {h }} 0^{\mathrm{m}} 4^{-7} 7$; dec. $14^{\circ} 41^{\prime} 58^{\prime \prime}$ N.; R.A.M.S. $8^{\mathrm{t}} 37^{\mathrm{m}} 55^{\mathrm{s}} 5$; A.A. $27^{\circ} 14^{\prime} 3^{\prime \prime}$; T.A. $27^{\circ} 12^{\prime} 12^{\prime \prime}$; E.H.A. $2^{\mathrm{b}} 44^{\mathrm{m}} 29^{\circ}$.

Moon's elements: R.A. $18^{\text {h }} 8^{\mathrm{m}} 23^{3} .8$; dec. $20^{\circ} 3^{\prime} 9^{\prime \prime}$ S. ; S.D. $16^{\prime} 35^{\prime \prime}$; H.P. $59^{\prime} 48^{\prime \prime}$; W.H.A. $2^{\mathrm{L}} 7^{\mathrm{m}} 12^{\mathrm{s}}$; T.A. $58^{\circ} 27^{\prime} 37^{\prime \prime}$; A.A. $57^{\circ} 56^{\prime} 27^{\prime \prime}$; арр. dist. $79^{\circ} 55^{\prime} 38^{\prime \prime} ; B=20^{\circ} 56^{\prime} 4^{\prime \prime} ; Z=116^{\circ} 49^{\prime} 30^{\prime \prime}$; true dist. $79^{\circ} 38^{\prime} 49^{\prime \prime}$; error $6^{m} 15^{\prime}$ fast; long. $65^{\circ} 50^{\prime} \mathrm{E}$.
23. First dec. $0^{\circ} 18^{\prime} 53^{\prime \prime}$ N.; run, $+8^{\prime}$; alt. $32^{\circ} 28^{\prime} 27^{\prime \prime}$; second dec. $0^{\circ} 14^{\prime} 1^{\prime \prime} \mathrm{N}$. ; alt. $32^{\circ} 20^{\prime} 27^{\prime \prime} ;$ H.E.T. $2^{\mathrm{h}} 30^{\mathrm{m}} 5^{\mathrm{s}} ; \mathrm{XY}=75^{\circ} 2^{\prime} 26^{\prime \prime}$; $\mathrm{X}_{1}=89^{\circ} 50^{\prime} 32^{\prime \prime} ; \mathrm{X}_{2}=60^{\circ} 54^{\prime} 2^{\prime \prime}$; lat. $47^{\circ} 50^{\prime} 38^{\prime \prime} \mathrm{N}$.
24. Dec. $9^{\circ} 15^{\prime} 51^{\prime \prime}$ N.; T.A. $39^{\circ} 48^{\prime} 21^{\prime \prime}$; H.A. $2^{\text {b }} 58^{\text {m }} 16^{\text {a }}$; error $14^{\mathrm{m}} 31^{4}$ slow.
25. First course, N. $78^{\circ} 3^{\prime}$ W. ; dist. 3346 miles ; vertex lat., $\check{0} 0^{\circ} 59^{\prime}$ N. ; long. $21^{\circ} 16^{\prime} \mathrm{W} . ; 5^{\circ} \mathrm{W}$. of Wolf, lat. $50^{\circ} 31^{\prime} \mathrm{N} . ; 10^{\circ} \mathrm{W}$. of Wolf, $50^{\circ} 51_{2}^{\prime \prime} \mathrm{N}$.; $15^{\circ} \mathrm{W}, 50^{\circ} 59 \frac{1}{2}^{\prime} \mathrm{N} . ; 20^{\circ}, 50^{\circ} 53 \frac{1}{2} \mathrm{~N} . ; 61^{\circ} \mathrm{W} ., 43^{\circ} 30 \frac{1^{\prime}}{} \mathrm{N}$.
26. 319 -1.
27. $86^{\circ} 1^{\prime} 21^{\prime \prime}$.
28. $106^{\circ} 10^{\prime} 16$.
29. $100^{\circ} 17^{\prime} 28^{\prime \prime}$, or $79^{\circ} 42^{\prime} 32^{\prime \prime}$.
30. N. $31^{\circ} 4 \frac{1}{2}^{\prime}$ E. ; C,$-23^{\circ} 18^{\prime}$.
31. R.A.M. $23^{\mathrm{L}} 45^{\mathrm{m}} 39^{\mathrm{s}}$; E., Rigel ; W. a^{1} Crucis, a^{2} Centauri, Markab.
32. $\mathrm{A}+25 ; \mathrm{B}-25^{\circ} ; \mathrm{C}-16^{\circ} 5 ; \mathrm{D}+2^{\circ} ; \mathbf{E}-75$. Deviations, North, 17° W. ; $12^{\circ} 29^{\prime}$ W.; $7^{\circ} 22^{\prime}$ W.; $1^{\circ} 43^{\prime}$ W. ; $4^{\circ} 15^{\prime}$ E.; $10^{\circ} 19^{\prime}$ E.; $16^{\circ} 10^{\prime}$ E.; $21^{\circ} 28^{\prime}$ E.; West, 26° E.; $29^{\circ} 26^{\prime}$ E.; $31^{\circ} 36^{\prime}$ E.; $32^{\circ} 21^{\prime}$ E.; $31^{\circ} 36^{\prime}$ E.; $29^{\circ} 25^{\prime}$ E. ; $25^{\circ} 58^{\prime}$ E. ; $21^{\circ} 24^{\prime}$ E. ; South, 16° E.
33. $5^{\circ} 45^{\prime} \mathrm{E}$.

Paper II.

1. $212.8 \log =2.327982$.
2. $\cdot 147 \log =9 \cdot 167437$.
3. S. 17° E., 15^{\prime}; N. $67 \frac{1}{2}^{\circ}$ E., 54^{\prime}; N. 52° E., 50^{\prime}; S. 83° E., 42^{\prime}; S. 56° W., 31^{\prime}; S. 1° E., 30^{\prime}; S. 37° E., $42^{\prime} ;$ N. 14° W.. $54^{\prime} ;$ D. lat. $3^{\prime} 2$ N., dep. $122^{\prime} 6 \mathrm{E}$. ; course, N. 88° E. ; dist. 123^{\prime}; lat. in $25^{\circ} 12^{\prime} \mathrm{S}$. ; long. $45^{\circ} 4 \frac{1_{2}^{\prime}}{}{ }^{\prime} \mathrm{W}$.
4. Dec. $0^{\circ} 9^{\prime} 13^{\prime \prime}$ N. ; T.A. $64^{\circ} 58^{\prime} 19^{\prime \prime}$; lat. $24^{\circ} 52^{\prime} 28^{\prime \prime}$ S.
5. $41^{\circ} 40^{\prime} \mathrm{W}$.
6. D. lat. 5642 ; M.D.L. 6465 ; D. long. 2805 ; true course, N. $23^{\circ} 27$ ¹' $^{\prime}$ W.; comp. course, N. $64^{\circ} 7 \frac{1}{2}^{\prime}$ W. ; dist. 6150 miles.
7. $5^{\mathrm{b}} 40^{\text {m }}$ А.м., $6^{\text {b }} 23^{\mathrm{m}}$ Р.м.
8. Dec. $2^{\circ} 5^{\prime} 33^{\prime \prime}$ S. ; true amp. W. $2^{\circ} 49^{\prime} 25^{\prime \prime} \mathrm{S}$. ; dev. $8^{\circ} 19^{\prime} 30^{\prime \prime} \mathrm{W}$.
9. M.T.G. $3^{\text {d }} 16^{\text {b }} 53^{\mathrm{m}} 9^{\text { }}$; dec. $17^{\circ} 30^{\prime} 27^{\prime \prime}$ N. ; eq. time, $+5^{\text {m }} 59^{*}$; T.A. $22^{\circ} 38^{\prime} 24^{\prime \prime}$; E.H.A. $4^{\mathrm{b}} 42^{\mathrm{m}} 44^{\mathrm{s}}$; st. long. $37^{\circ} 31^{\prime} 30^{\prime \prime}$ E.; noon long. $38^{\circ} 15^{\prime} 30^{\prime \prime}$ E. ; true azi. S. $102^{\circ} 48^{\prime}$ E. ; error $10^{\circ} 18^{\prime}$ W. ; dev. $5^{\circ} 18^{\prime}$ W.
10. W.H.A. $4^{\mathrm{b}} 5^{\text {ma }} 30^{\mathrm{s}} ;$ dec. $8^{\circ} 36^{\prime} 43^{\prime \prime}$ N. ; cor. $-17+26+6$; true azi. S. $116^{\circ} 50^{\prime}$ W. ; dev. $10^{\circ} 57^{\prime}$ E.
11. E.H.A. $1^{\left(9^{\prime}\right.} 3^{\prime \prime}$; สec. $16^{\circ} 36^{\prime} 52^{\prime \prime}$ N. ; T.A. $72^{\circ} 36^{\prime} 2^{\prime \prime}$; nat. no., 2767 . Arc. I. $16^{\circ} 40^{\prime} 9^{\prime \prime}$; Arc. II. $16^{\circ} 48^{\prime} 17^{\prime \prime}$; st. lat. $33^{\circ} 28^{\prime} 26^{\prime \prime}$ N.; noon, $33^{\circ} 24^{\prime} 40^{\prime \prime} \mathrm{N}$.
12. First dec. $2^{\circ} 18^{\prime} 36^{\prime \prime}$ S. ; T.A. $36^{\circ} 40^{\prime} 42^{\prime \prime}$; eq. time, $-9^{\text {m }} 33^{\prime \prime}$; long. (a), $123^{\circ} 41^{\prime} 30^{\prime \prime} \mathrm{W}$: ; (b), $125^{\circ} 20^{\prime} 30^{\prime \prime} \mathrm{W}$. ; second dec. $2^{\circ} 21^{\prime} 7^{\prime \prime} \mathrm{S}$.; T.A. $18^{\circ} 44^{\prime} 50^{\prime \prime}$; eq. time, $-9^{\text {mi }} 35^{\prime}$; long. (c), $124^{\circ} 41^{\prime} 45^{\prime \prime}$ W.; (d), $125^{\circ} 4^{\prime} 15^{\prime \prime}$ W.

First line : $\left\{\begin{array}{c}\mathrm{N} . ~ \\ \mathrm{~S} . \\ \mathrm{S} . \\ 65^{\circ} \mathrm{W} .\end{array}\right\}$; second azi. S. $63^{\circ} \mathrm{W}$. ; lat. $48^{\circ} 52^{\prime}$ N.; long. $125^{\circ} 20^{\prime} \mathrm{W}$.
13. Inspection $4^{\mathrm{h}} 46^{\mathrm{m}}$ A.m. ; 28 th, $4^{\mathrm{h}} 55^{\mathrm{m}} 15^{\mathrm{s}}$ A.m.
14. R.A.M. $5^{\mathrm{h}} 50^{\mathrm{m}} 30^{\mathrm{s}}$; Aldebaran, N. $1^{\mathrm{h}} 19^{\mathrm{m}} 59^{\mathrm{H}}$ W. ; Capella, N. $40^{\mathrm{m}} 45^{2}$ W. ; Rigel, N. $40^{\mathrm{m}} 29^{\mathrm{l}}$ W. ; Canopus, S. $31^{\mathrm{m}} 22^{\mathrm{s}}$ E. ; Sirius, N. $50^{\mathrm{m}} 30^{\circ}$ E. ; Procyou, N. $1^{\text {b }} 43^{\mathrm{m}} 53^{\mathrm{n}}$ E. ; Pollux, N. $1^{\mathrm{n}} 49^{\mathrm{m}} 4^{4}$ E. Approx. alt. $67^{\circ} 26^{\prime}$.
15. M.T.G. $7^{\mathrm{d}} 17^{\mathrm{h}} 46^{\mathrm{m}} 22^{\mathrm{\prime}}$; R.A.M.S. $11^{\mathrm{h}} 5^{\mathrm{m}} 32^{\mathrm{n}}$; E.H.A. $1^{\mathrm{h}} 52^{\mathrm{m}} 28^{\mathrm{l}}$; long. $164^{\circ} 32^{\prime} 30^{\prime \prime} \mathrm{W}$.
16. W.H.A. $3^{\text {h }} 48^{\text {m }} 44^{\prime}$; cor. $-9-27+12$; true azi. N. $109^{\circ} 26^{\prime}$ W. ; $\operatorname{dev} .4^{\circ} 4^{\prime} \mathrm{E}$.
17. R.A.M. $19^{म} 25^{\text {m }} 17^{\prime \prime}$; first cor. $-5^{\prime \prime}$; second, $+26^{\prime \prime}$; third, $+1^{\prime} 23^{\prime \prime}$; lat. $29^{\circ} 14^{\prime} 50^{\prime \prime} \mathrm{N}$.
18. M.T.G. $30^{\text {d }} 12^{\text {h }} 50^{\mathrm{m}} \cdot 1$; S.D. $16^{\prime} 15^{\prime \prime}$; H.P. $58^{\prime} 36^{\prime \prime}$; dec. $19^{\circ} 12^{\prime} 4^{\prime \prime}$ S. ; cor. $29^{\prime} 29^{\prime \prime}$; T.A. $59^{\circ} 44^{\prime} 36^{\prime \prime}$; lat. $49^{\circ} 27^{\prime} 28^{\prime \prime} \mathrm{S}$.
19. Lat. $29^{\circ} 30^{\prime} 38^{\prime \prime} \mathrm{S}$.
20. S. 65° W. ; comp. course, S. 40° E. ; N., N. $65^{\circ} \mathrm{W} . ;$ S. 32° W. ; mag. course, N. $40^{\circ} \mathrm{W} . ;$ N. 12° E. ; N. 64° E. ; S. 64° E. ; mag. bearings, S. $51^{\circ} \mathrm{E}$., and N. 36° E.
21. Red, -3 ft .9 ins.
22. Star's elements: R.A. $13^{\text {b }} 20^{\text {m }} 14^{s}$; dec. $10^{\circ} 40^{\prime} 15^{\prime \prime}$ S. ; R.A.M.S. $8^{\mathrm{n}} 43^{\mathrm{m}} 19^{\circ}$; A.A. $12^{\circ} 10^{\prime} 46^{\prime \prime}$; T.A. $12^{\circ} 6^{\prime} 26^{\prime \prime}$; W.H.A. $4^{\text {b }} 44^{\mathrm{m}} 12^{\text {® }}$.

Moon's elements: R.A. $19^{\text {n. }} 32^{\text {m }} 38^{\prime \prime}$; dec. $19^{\circ} 54^{\prime} 30^{\prime \prime}$ S.; S.D. $16^{\prime} 26^{\prime \prime}$; H.P. $59^{\prime} 31^{\prime \prime}$; E.H.A. $1^{\mathrm{L}} 28^{\text {º }} 12^{\mathrm{s}}$; T.A. $40^{\circ} 1^{\prime} 36^{\prime \prime}$; A.A. $39^{\circ} 16^{\prime} 42^{\prime \prime}$; app. dist. $89^{\circ} 23^{\prime} 49^{\prime \prime} ; B=34^{\circ} 2^{\prime} 53^{\prime \prime} ; Z=99^{\circ} 21^{\prime} 32^{\prime \prime}$; true dist. $89^{\circ} 14^{\prime} 47^{\prime \prime}$; error, $2^{\mathrm{m}} 29^{\circ}$ slow ; long. $100^{\circ} 20^{\prime} 45^{\prime \prime} \mathrm{W}$.
23. H.E.T. $1^{\text {t }} 18^{\text {m }} 0^{\prime \prime}$; mid. dec. $2^{\circ} 19^{\prime} 52^{\prime \prime}$ S. ; run $-18^{\prime} 48^{\prime \prime}$; first alt. $36^{\circ} 21^{\prime} 56^{\prime \prime}$; second alt. $18^{\circ} 44^{\prime} 52^{\prime \prime}$; XY $=38^{\circ} 58^{\prime} 0^{\prime \prime} ; \mathrm{X}_{1}=90^{\circ} 45^{\prime} 52^{\prime \prime}$; $\mathrm{X}_{2}=\widetilde{5} 4^{\circ} 49^{\prime} 40^{\prime \prime}$; lat. $48^{\circ} 50^{\prime} 20^{\prime \prime} \mathrm{N}$.
24. W.H.A. $2^{\mathrm{L}} 56^{\mathrm{m}} 1^{\prime} \cdot 5$; eq. time, $-7^{\mathrm{m}} 16^{\mathrm{n}}$; error, $2^{\mathrm{m}} 41^{\mathrm{s}} \cdot 8$ fast.
25. First course, S. $51^{\circ} 31^{\prime}$ E. ; final N. $43^{\circ} 10^{\prime}$ E. ; dist. $\overline{6} 913$ miles ; vertex long. $163^{\circ} 13^{\prime} \mathrm{W}$., and $134^{\circ} 33^{\prime} \mathrm{W}$.; points $48^{\circ} 50^{\prime} \mathrm{S} ., 160^{\circ} \mathrm{E}$.; $51^{\circ} 53 \frac{1}{2}^{\prime}$ S., 170° E. ; $45^{\circ} 30^{\prime}$ S., $90^{\circ} \mathrm{W}$. ; $39^{\circ} 38^{\prime} \mathrm{S} ., 80^{\circ} \mathrm{W}$.
26. $95 \cdot 25$.
27. $123^{\circ} 52^{\prime} 10^{\prime \prime}$.
28. $93^{\circ} 32^{\prime} 10^{\prime \prime}$.
29. $116^{\circ} 34^{\prime} 11^{\prime \prime}$.
30. S. $47^{\circ} 44^{\prime} \mathrm{W} . ; \mathrm{B}=+25^{\circ} 18^{\prime}$.
31. E., Castor, Betelgueuse ; W., Vega, Altair.
32. $\mathrm{A}=+{ }^{-25^{\circ}} ; \mathrm{B}=-7^{\circ} \cdot 5 ; \mathrm{C}=+10^{\circ} ; \mathrm{D}=+1^{\circ} .75 ; \mathrm{E}=-5^{\circ} .25$. Deviations, North, $+5^{\circ} ;+4^{\circ} 9^{\prime} ;+3^{\circ} 46^{\prime} ;+2^{\circ} 3^{\prime} ;$ East, $-2^{\circ} ;-8^{\circ} 2^{\prime}$; $-13^{\circ} 52^{\prime} ;-16^{\circ} 45^{\prime}$; South, $-15^{\circ} ;-8^{\circ} 35^{\prime} ;+0^{\circ} 14^{\prime} ;+8^{\circ} 18^{\prime} ;$ West, $+13^{\circ} ;+13^{\circ} 30^{\prime} ;+10^{\circ} 52^{\prime} ;+7^{\circ} 25^{\prime}$.
33. $-44^{\circ} 6^{\prime}$.

Paper III.

1. ${ }^{\circ} 00000047438 \log =3 \cdot 676123$.
2. $\cdot 0066019 \log =7 \cdot 819667$.
3. N. 18° E., $15^{\prime} ;$ S. 63° W., $28^{\prime} ;$ N. 85° W., 30^{\prime}; S. 88° W., 36^{\prime}; S. 49° W., 40^{\prime}; S. 25° W., 42^{\prime}; S. 68° W., 32^{\prime}; N. 6° E., $18^{\prime} ;$ D. lat. 55.5 S. ; dep. 161.9 W . ; course, S. $71^{\circ} \mathrm{W}$. ; dist. 171 miles ; lat. $59^{\circ} 49^{\prime} \cdot 5 \mathrm{~N}$.; long. $0^{\circ} 43^{\prime} \cdot 6 \mathrm{~W}$.
4. Dec. $18^{\circ} 16^{\prime} 54^{\prime \prime}$ N. ; T.A. $81^{\circ} 4^{\prime} 12^{\prime \prime}$; lat. $9^{\circ} 21^{\prime} 6^{\prime \prime}$ N.
5. 201 miles.
6. True course, S. $85^{\circ} 51^{\prime} 48^{\prime \prime} \mathrm{W}$. ; compass course, N. $89^{\circ} 38^{\prime} 12^{\prime \prime}$ W. ; dist. 1941 miles.
7. No. А.м.; $0^{\text {b }} 41^{\text {mi }}$ P.M.
8. True amp. E. $20^{\circ} 24 \frac{1}{2}^{\prime}$ N. ; error, $5^{\circ} 54 \frac{1}{2}^{\prime}$ W. ; dev. $12^{\circ} 14 \frac{1}{3}^{\prime}$ W.
9. M.T.G. $16^{\mathrm{d}} 22^{\mathrm{h}} 19^{\mathrm{m}} 57^{3}$; st. lat. $36^{\circ} 27^{\prime}$ N.; P.D. $76^{\circ} 20^{\prime} 3^{\prime \prime}$; E.H.A.
$4^{\mathrm{h}} 7^{\mathrm{m}} 20^{\circ}$; st. long. $35^{\circ} 48^{\prime} \mathrm{W}$.; noon long. $35^{\circ} 25^{\prime} 28^{\prime \prime} \mathrm{W}$.; true azi. S. $84^{\circ} 30^{\prime}$ E. ; dev. $19^{\circ} 30^{\prime}$ E.
10. Corr. $+20-30+35$; true azi. N. $123^{\circ} 13^{\prime}$ E. ; dev. $11^{\circ} 47^{\prime}$ W.
11. W.H.A. $47^{\prime \prime} 57^{\circ}$; nat. no. 20290. Arc I. $13^{\circ} 25^{\prime} 58^{\prime \prime}$; Arc II. $30^{\circ} 35^{\prime} 19^{\prime \prime}$. Lat. sights $17^{\circ} 9^{\prime} 19^{\prime \prime}$ S. ; noon, $17^{\circ} 7^{\prime} 31^{\prime \prime}$ S.
12. First T.A. $32^{\circ} 0^{\prime} 31^{\prime \prime}$; P.D. $83^{\circ} 47^{\prime} 4^{\prime \prime}$; long. (a), $150^{\circ} 10^{\prime} \mathrm{W}$. ; (b), $149^{\circ} 44^{\prime} 15^{\prime \prime}$ W. ; second T.A. $46^{\circ} 54^{\prime} 48^{\prime \prime}$; P.D. $83^{\circ} 49^{\prime} 18^{\prime \prime}$; long. (c), $152^{\circ} 16^{\prime} 45^{\prime \prime} \mathrm{W} . ;(d), 150^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{W}$.

Second line: $\left\{\begin{array}{l}\mathrm{N} .70^{\circ} \mathrm{E} . \\ \mathrm{S} . \\ 70^{\circ}\end{array} \mathrm{W}.\right\}$; second azi. S. 20° E. ; lat. $48^{\circ} 12^{\prime}$ N. ; long. $149^{\circ} 21^{\prime} \mathrm{W}$.
13. $9^{\mathrm{L}} 36^{\mathrm{m}} 57^{\mathrm{c}}$ р.м. ; by inspection, $9^{\text {h }} 31^{\mathrm{m}}$ р.м.
14. R.A.M. $16^{\mathrm{h}} 0^{\mathrm{m}} 39^{\mathrm{s}}$; Antares, S. $0^{\mathrm{h}} 23^{\mathrm{m}}$ E. ; a Triang. Aust. S. $0^{\mathrm{h}} 38^{\mathrm{m}}$ E.
15. Alt. $20^{\circ} 27^{\prime} 40^{\prime \prime}$.
16. E.H.A. $2^{\text {h }} 38^{\text {m }} 20^{\prime}$; cor. $-26+12+10$; true azi. S. $137^{\circ} 32^{\prime}$ E.; dev. $6^{\circ} 32^{\prime} \mathrm{W}$.
17. M.T.G. $27^{\mathrm{d}} 10^{\mathrm{h}} 27^{\mathrm{m}} 40^{\mathrm{n}}$; R.A.M.S. $12^{\mathrm{h}} 23^{\mathrm{m}} 11^{\mathrm{s}}$; E.H.A. $4^{\mathrm{h}} 54^{\mathrm{m}} 21^{\mathrm{n}}$; long. $84^{\circ} 26^{\prime} \frac{1}{\prime}^{\prime} \mathrm{E}$.
18. Cor. $+33^{\prime \prime},+41^{\prime \prime},+1^{\prime} 17^{\prime \prime}$; lat. $42^{\circ} 9^{\prime} 56^{\prime \prime} \mathrm{N}$.
19. M.T.G. $16^{\text {d }} 19^{\text {b }} 35^{\text {m. }} 6$; S.D. $15^{\prime} 22^{\prime \prime}$; H.P. $55^{\prime} 27^{\prime \prime}$; dec. $19^{\circ} 57^{\prime} 25^{\prime \prime}$ N. ; T.A. $80^{\circ} 54^{\prime} 39^{\prime \prime}$; lat. $10^{\circ} 52^{\prime} 4^{\prime \prime}$ N.
20. Lat. $8^{\circ} 11^{\prime} 54^{\prime \prime} \mathrm{S}$.
21. Mag. bearing, N. $4^{\circ} 45^{\prime}$ E. ; comp. course, N. 43° E., S. 81° E., S. 11° E., N. 7° E. ; mag. course, N. 30° W., N. 50° E., S. 49° E., S. $81^{\circ} \mathrm{W}$. ; mag. bearings, S. $68 \frac{1}{2}^{\circ} \mathrm{K}$., and $\mathrm{N} .71^{\circ} \mathrm{W}$.
22. Red, -14 ft .8 ins.
23. Sun's elements: R.A. $9^{\text {b }} 17^{\mathrm{m}} 4^{\prime \cdot} \cdot 9$; dec. $15^{\circ} 48^{\prime} 11^{\prime \prime}$ N.; R.A.M.S. $9^{\mathrm{h}} 11^{\mathrm{m}} 46^{\mathrm{n}} 7$; E.H.A. $3^{\mathrm{h}} 44^{\mathrm{m}} 37^{\mathrm{s}}$; T.A. $36^{\circ} 15^{\prime} 56^{\prime \prime}$; A.A. $36^{\circ} 17^{\prime} 6^{\prime \prime}$.

Moon's elements: R.A. $1^{\mathrm{h}} 50^{\mathrm{m}} 6^{\mathrm{s}} 4$; dec. $5^{\circ} 51^{\prime} 28^{\prime \prime}$ N.; S.D. $15^{\prime} 7^{\prime \prime}$; H.P. $54^{\prime} 51^{\prime \prime}$; A.A. $29^{\circ} 51^{\prime} 19^{\prime \prime}$; T.A. $30^{\circ} 37^{\prime} 13^{\prime \prime}$; W.H.A. $3^{\mathrm{h}} 42^{\mathrm{m}} 21^{\prime}$; app. dist., $109^{\circ} 46^{\prime} 10^{\prime \prime} ; B=10^{\circ} 25^{\prime} 56^{\prime \prime} ; Z=154^{\circ} 49^{\prime} 24^{\prime \prime}$; true dist. $109^{\circ} 4^{\prime} 27^{\prime \prime}$; error, $5^{\mathrm{m}} 29^{s}$ slow ; long. $14^{\circ} 27^{\prime} \mathrm{W}$.
24. Antares H.A.'s $1^{\text {h }} 36^{\mathrm{m}} 20^{\text {s }}$, and $1^{\mathrm{h}} 31^{\mathrm{m}} 53^{\text {s }}$; long. (a), $62^{\circ} 8^{\prime} 45^{\prime \prime} \mathrm{W}$., (b), $63^{\circ} 15^{\prime} 30^{\prime \prime}$ W. ; Spica H.A.'s $4^{\mathrm{h}} 38^{\mathrm{m}} 15^{\mathrm{l}}$, and $4^{\mathrm{b}} 37^{\mathrm{m}} 32^{\mathrm{s}}$; long. (c), $62^{\circ} 31^{\prime} \mathrm{W} .,(d), 62^{\circ} 41^{\prime} 45^{\prime \prime} \mathrm{W}$. ; bearings S. $26^{\circ} \mathrm{W}$., and S. $72^{\circ} \mathrm{W}$. ; lat. $23^{\circ} 12^{\prime} \mathrm{N}$. ; long. $62^{\circ} 35^{\prime} 15^{\prime \prime} \mathrm{W} . ; \mathrm{Y}_{1}=116^{\circ} 19^{\prime} 47^{\prime \prime} ; \mathrm{Y}_{2}=53^{\circ} 45^{\prime} 30^{\prime \prime}$; $\mathrm{XY}=45^{\circ} 54^{\prime} 16^{\prime \prime}$; bearings S. $26^{\circ} 14^{\prime} \mathrm{W}$., and $\mathrm{S} .71^{\circ} 37^{\prime} \mathrm{W}$. ; lat. $23^{\circ} 12^{\prime} 6^{\prime \prime} \mathrm{N}$.; long. $62^{\circ} 35^{\prime} 7^{\prime \prime} \mathrm{W}$.
25. W.H.A. $2^{\mathrm{h}} 23^{\mathrm{m}} 50^{\mathrm{s}} \cdot 5$; error, $5^{\mathrm{m}} 37^{\mathrm{a}}$ fast.
26. First course, S. $36^{\circ} 48^{\prime}$ E. ; final, N. $74^{\circ} 35^{\prime}$ E. ; dist. 6971 miles ; vertex lat. $54^{\circ} 61^{\circ} \mathrm{S}$. ; long. $150^{\circ} \mathrm{E}$. ; points: lats. $0^{\circ}, 13^{\circ} 30^{\prime} \mathrm{S} ., 25^{\circ} 18^{\prime} \mathrm{S}$., $34^{\circ} 38^{\prime} \mathrm{S} ., 53^{\circ} 42^{\prime} \mathrm{S}$.
27. 1950.33.
28. $214 \cdot 37$.
29. $\mathrm{P}=96^{\circ} 25^{\prime} 50^{\prime \prime} ;$ P.Q. $=61^{\circ} 31^{\prime} 28^{\prime \prime}$.
30. $\mathrm{A}=-25^{\circ} ; \mathrm{B}=+1^{\circ} \cdot 5 ; \mathrm{C}=-16^{\circ} ; \mathrm{D}=-3^{\circ} .75 ; \mathrm{E}=-3^{\circ} .75$.

Deviations, East, $+5^{\circ} ;+0^{\circ} 8^{\prime}$ E. ; - $4^{\circ} 58^{\prime} ;-9^{\circ} 55^{\prime} ;-14^{\circ} 14 ;-17^{\circ} 37^{\prime}$; $-19^{\circ} 47^{\prime} ;-20^{\circ} 34^{\prime} ;$ North, -20°; $-18^{\circ} 16^{\prime}$; $-15^{\circ} 37^{\prime} ;-12^{\circ} 22^{\prime}$; $-8^{\circ} 52^{\prime} ;-5^{\circ} 30^{\prime} ;-2^{\circ} 26^{\prime} ;+0^{\circ} 5^{\prime} ;$ West, $+2^{\circ}$.
31. $+8^{\circ} 3^{\prime}$.

Paper IV.

1. $7 \cdot 382 \log =0.868158$.
2. $\cdot 1149 \log =9 \cdot 060194$.
3. S. 87° W., 20^{\prime}; S. $53^{\circ} \mathrm{W} ., 61^{\prime}$; S. $66^{\circ} \mathrm{W} ., 51^{\prime}$; S. $75^{\circ} \mathrm{W} ., 37^{\prime}$, S. 72° W., 59^{\prime}; S. 69° W., 50^{\prime}; N. $89^{\circ} \mathrm{W} ., 40^{\prime}$; S. 21° E., 42^{\prime}; D. lat,
142.6 S. ; dep. 278.7 W. ; course, S. $63^{\circ} \mathrm{W}$. ; dist. 313 miles; lat. $34^{\circ} 40^{\prime} \mathrm{N}$. ; long. $1^{\circ} 19^{\prime} \mathrm{W}$.
4. Dec. $17^{\circ} 29^{\prime} 20^{\prime \prime}$ N. ; lat. $56^{\circ} 54^{\prime} 31^{\prime \prime} \mathrm{S}$.
5. $68 \cdot 73$ miles.
6. True course, N. $74^{\circ} 36 \frac{1}{2}^{\prime}$ E. ; compass course, N. $59^{\circ} 46 \frac{1^{\prime}}{}$ E. ; dist. 2433 miles.
7. $10^{\mathrm{b}} 49^{\mathrm{m}}$ А.M. ; $11^{\mathrm{b}} 26^{\mathrm{m}}$ Р.M.
8. True amp. W. $6^{\circ} 28^{\prime} \mathrm{N}$. ; error, $9^{\circ} 17^{\prime} \mathrm{E}$. ; dev. $19^{\circ} 47^{\prime} \mathrm{E}$.
9. M.T.G. $9^{\mathrm{d}} 21^{\mathrm{b}} 18^{\mathrm{m}} 25^{\mathrm{d}}$; st. lat. $37^{\circ} 14^{\prime}$ S. ; E.H.A. $3^{\mathrm{h}} 44^{\mathrm{m}} 36^{\mathrm{t}}$; st. long. $14^{\circ} 25^{\prime} 45^{\prime \prime}$ W. ; noon long. $13^{\circ} 57^{\prime} 34^{\prime \prime}$ W. ; true azi. S. $82^{\circ} 20^{\prime} 20^{\prime \prime}$ E. ; dev. $28^{\circ} 54^{\prime} 40^{\prime \prime} \mathrm{E}$.
10. Cor. $-11+4+2$; true azi. S. $111^{\circ} 47^{\prime}$ W. ; dev. $11^{\circ} 2^{\prime}$ E.
11. E.H.A. $29^{\text {m }} 29^{\prime}$; nat. no. 6980. Arc. I. $14^{\circ} 46^{\prime} 41^{\prime \prime}$; Arc. II. $43^{\circ} 33^{\prime} 38^{\prime \prime}$; lat. $28^{\circ} 46^{\prime} 57^{\prime \prime} \mathrm{S}$.
12. First T.A. $49^{\circ} 3^{\prime} 18^{\prime \prime}$; P.D. $81^{\circ} 18^{\prime} 3^{\prime \prime}$; H.A.'s $0^{\text {h }} 42^{\text {m }} 16^{\text {a }}$, and $0^{\mathrm{b}} 24^{\mathrm{m}} 3^{\mathrm{a}}$; long. (a), $177^{\circ} 52^{\prime} \mathrm{W}$. ; (b), $177^{\circ} 34^{\prime} 45^{\prime \prime}$ E. ; second T.A. $19^{\circ} 9^{\prime} 3^{\prime \prime}$; P.D. $81^{\circ} 21^{\prime} 45^{\prime \prime}$; H.A.'s $4^{\mathrm{b}} 43^{\mathrm{m}} 0^{\prime}$, and $4^{\mathrm{h}} 42^{\mathrm{m}} 21^{\mathrm{s}}$; long. (c), $179^{\circ} 32^{\prime} 30^{\prime \prime}$ W.; (d), $179^{\circ} 42^{\prime} 15^{\prime \prime} \mathrm{W}$.

Second line: $\left\{\begin{array}{cc}\mathrm{N} . & 9^{\circ} \mathrm{W} \\ \mathrm{S} .9^{\circ} \mathrm{E} .\end{array}\right\}$; azi. S. $81^{\circ} \mathrm{W}$; lat. $49^{\circ} 11^{\prime} \mathrm{N}$. ; long. $179^{\circ} 40^{\prime} \mathrm{W}$.
13. $11^{\mathrm{h}} 21^{\mathrm{m}} 47^{\mathrm{e}}$ р.м.
14. Altair, S. $0^{\mathrm{h}} 22^{\mathrm{m}} 52^{\mathrm{n}}$ W. ; γ Cygni, S. $0^{\mathrm{b}} 9^{\mathrm{m}} 47^{\prime \prime}$ E.; Deneb, S. $0^{\mathrm{h}} 29^{\prime} 10^{\prime \prime}$ E.
15. Alt. $73^{\circ} 3^{\prime} 20^{\prime \prime}$.
16. E.H.A. $4^{\text {b }} 23^{\text {m }} 19^{\prime}$; cor. $-19-1+13$; true azi. N. $80^{\circ} 5^{\prime}$ E. ; dev. $9^{\circ} 33^{\prime} \mathrm{W}$.
17. M.T.G. $2^{\mathrm{d}} 15^{\mathrm{h}} 49^{\mathrm{m}} 27^{\mathrm{a}}$; W.H.A. $4^{\mathrm{b}} 44^{\mathrm{m}} 10^{\mathrm{h}} 5$; R.A.M.S. $8^{\mathrm{b}} 43^{\mathrm{m}} 17^{\mathrm{a}}$; long. $97^{\circ} 5^{\prime} 15^{\prime \prime} \mathrm{W}$.
18. R.A.M. $2^{\text {b }} 5^{\mathrm{m}} 56^{\circ}$; cor. $-1^{\circ} 10^{\prime} 51^{\prime \prime}+1^{\prime}+1^{\prime} 10^{\prime \prime}$; lat. $28^{\circ} 14^{\prime} 10^{\prime \prime}$ N.
19. M.T.G. $14^{\mathrm{d}} 10^{\mathrm{h}} 52^{\mathrm{m}} .6$; S.D. $15^{\prime} 2^{\prime}$; H.P. $54^{\prime} 26^{\prime \prime}$; dec. $19^{\circ} 12^{\prime} 35^{\prime \prime}$ N. ; T.A. $47^{\circ} 7^{\prime} 32^{\prime \prime}$; lat. $23^{\circ} 39^{\prime} 55^{\prime \prime}$ S.
20. Lat. $56^{\circ} 46^{\prime} 23^{\prime \prime} \mathrm{S}$.
21. Mag. bearing, N. 6° W. ; comp. course, S. $27 \frac{10}{2}^{\circ}$ E., N. 10° E., N. 84° W., S. 75° W. ; mag. course, N. 74° E., S. 61° E., S., N. $60^{\circ} \mathrm{W}$. ; mag. bearings, $\mathrm{S} .30^{\circ} \mathrm{W} .$, and S. $54^{\circ} \mathrm{E}$.
22. Red, -5 ft .1 in .
23. Jupiter's elements: R.A. $6^{\mathrm{h}} 9^{\mathrm{m}} 44^{\prime \cdot} 5$; dec. $23^{\circ} 7^{\prime} 26^{\prime \prime}$ N.; R.A.M.S. $9^{\mathrm{h}} 15^{\mathrm{m}} 6^{\prime \prime} 2$; E.H.A. $4^{\mathrm{h}} 50^{\mathrm{m}} 39^{\circ} \cdot 5$; T.A. $27^{\circ} 34^{\prime} 42^{\prime \prime}$; A.A. $27^{\circ} 36^{\prime} 29^{\prime \prime}$.

Moon's elements : R.A. $2^{\text {L }} 28^{m} 56^{*} \cdot 1$; dec. $9^{\circ} 8^{\prime} 57^{\prime \prime}$ N. ; S.D. $15^{\prime} 6^{\prime \prime}$; H.P. $54^{\prime} 30^{\prime \prime}$; A.A. $54^{\circ} 41^{\prime} 48^{\prime \prime}$; T.A. $55^{\circ} 12^{\prime} 37^{\prime \prime}$; E.H.A. $1^{\text {b }} 9^{\mathrm{m}} 51^{\prime}$; арp. dist. $54^{\circ} 28^{\prime} 13^{\prime \prime} ; \mathrm{B}=36^{\circ} 27^{\prime} 21^{\prime \prime} ; Z=66^{\circ} 39^{\prime} 32^{\prime \prime}$; true dist. $54^{\circ} 30^{\prime} 24^{\prime \prime}$; error, $2^{\mathrm{m}} 36^{\prime} \cdot 5$ slow ; long. $22^{\circ} 9^{\prime} 15^{\prime \prime} \mathrm{W}$.
24. ϵ Orionis: E.H.A.'s $1^{\mathrm{h}} 12^{\mathrm{m}} 41^{\mathrm{z}}$, and $1^{\mathrm{h}} 3^{\mathrm{m}} 26^{\prime}$; long. (a), $81^{\circ} 58^{\prime} 30^{\prime \prime}$ E., (b), $84^{\circ} 17^{\prime} 30^{\prime \prime}$ E.

Alphard: E.H.A.'s $4^{\mathrm{b}} 54^{\mathrm{m}} 50^{\mathrm{s}}$, and $4^{\mathrm{b}} 54^{\mathrm{m}} 23^{\prime}$; long. (c), $84^{\circ} 19^{\prime} 30^{\prime \prime}$ E., (d), $84^{\circ} 26^{\prime} 15^{\prime \prime}$ E. ; bearings, N. 23° E., and N. 84° E.; lat. $47^{\circ} 43^{\prime}$ S.; long. $84^{\circ} 27^{\prime} \mathrm{E} . ; \mathbf{X Y}=58^{\circ} 2^{\prime} 52^{\prime \prime} ; \mathrm{X}_{1}=93^{\circ} 40^{\prime} 57^{\prime \prime} ; X_{2}=51^{\circ} 12^{\prime} 10^{\prime \prime \prime}$; bearings N. $21^{\circ} 13^{\prime}$ E., and N. $83^{\circ} 22^{\prime}$ E. ; lat. $47^{\circ} 42^{\prime} 48^{\prime \prime}$ S. ; long. $84^{\circ} 26^{\prime} 30^{\prime \prime} \mathrm{E}$.
25. Eq. time $-7^{\mathrm{m}} 13^{\mathrm{B}} \cdot 8$; P.D. $89^{\circ} 39^{\prime} 10^{\prime \prime}$; H.A. $2^{\text {b }} 21^{\mathrm{m}} 54^{\mathrm{s}}$; error, $1^{\mathrm{m}} 55^{\circ} 8$ slow.
26. First course, S. $66^{\circ} 26 \frac{1^{\prime}}{}$ E. ; dist. 3708 miles; vertex, $41^{\circ} 1^{\prime}$ S. ; long. $20^{\circ} 51^{\prime} \mathrm{W}$. Point, lat. $39^{\circ} 6 \frac{1}{2}^{\prime} \mathrm{N}$. ; long. 0°.
27. $\mathrm{BP}=241 \cdot 1 \mathrm{ft}$. $\mathrm{BAQ}=29^{\circ} 5^{\prime} 30^{\prime \prime}$.
28. $\mathrm{XZ}=1684 \mathrm{ft}$.
29. Dist. 4032 miles ; lat. $43^{\circ} 31^{\prime} 30^{\prime \prime} \mathrm{N}$.
30. $151 \cdot 3 \mathrm{ft}$.
31. W.H.A. $7^{\text {h }} 26^{\mathrm{m}} 40^{\mathrm{s}} 5$; true azi. $44^{\circ} 56^{\prime}-13^{\circ} 38^{\prime}=$ S. $31^{\circ} 18^{\prime}$ W. ; dev. $11^{\circ} 3^{\prime} \mathrm{E}$.
32. N. $56^{\circ} 22^{\prime}$ E. ; $\mathrm{C}=-19^{\circ} 53^{\prime}$.
33. $\mathrm{A}=-1^{0.75 ; ~} \mathrm{~B}=-5^{\circ} 5 ; \quad \mathrm{C}=-15^{\circ} ; \mathrm{D}=0 ; \quad \mathrm{E}=+6^{\circ} .75$; Deviations, East, $-14^{\circ} ;-10^{\circ} 29^{\prime} ;-5^{\circ} 54^{\prime} ;-0^{\circ} 36^{\prime} ;+4^{\circ} 56^{\prime} ;+10^{\circ} 16^{\prime}$; $+14^{\circ} 49^{\prime} ;+18^{\circ} 10^{\prime} ;$ South,$+20^{\circ} ;+20^{\circ} 16^{\prime} ;+19^{\circ} 2^{\prime} ;+16^{\circ} \underline{2} 3^{\prime}$; $+12^{\circ} 44^{\prime} ;+8^{\circ} 35^{\prime} ;+4^{\circ} 16^{\prime} ;+0^{\circ} 18^{\prime} ;$ West, -3°.
34. 0 .

Paper V.

1. $62 \cdot 7577 \log =1 \cdot 797667$.
2. $0.0075 \log =7.870091$.
3. S. 48° E., 20^{\prime}; E. 40^{\prime}; S. 82° E., 42^{\prime}; N. 64° E., 44^{\prime}; N. 88° E., 46^{\prime}; S. 80° E., 48^{\prime}; E. 46^{\prime}; N. 83° E., 54^{\prime}; D. lat. 0, dep. 328.9 E. ; course E., dist. 329 miles ; lat. $62^{\circ} 30^{\prime} \mathrm{N}$. ; long. $169^{\circ} 13^{\prime} \cdot 7 \mathrm{~W}$.
4. Dec. $16^{\circ} 52^{\prime} 44^{\prime \prime}$ N. ; T.A. $77^{\circ} 49^{\prime} 43^{\prime \prime}$; lat. $4^{\circ} 42^{\prime} 27^{\prime \prime}$ N.
5. 557.4 miles.
6. True course, S. $71^{\circ} 18^{\prime} \mathrm{W}$. ; compass course, N. $89^{\circ} 12^{\prime} \mathrm{W}$. ; dist. 3793 miles.
7. No. a.m. ; $0^{\mathrm{h}} 4^{\mathrm{m}}$ р.м.
8. Dec. $14^{\circ} 19^{\prime} 10^{\prime \prime} \mathrm{N}$.; true amp. W. $20^{\circ} 17^{\prime} \mathrm{N}$.; error, $21^{\circ} 47^{\prime}$ E.; dev. $24^{\circ} 7^{\prime}$ E.
9. M.T.G. $29^{\text {d }} 16^{\text {b }} 32^{\text {m }} 46^{\text {a }} ;$ P.D. $92^{\circ} 25^{\prime} 31^{\prime \prime}$; eq. time, $-9^{\text {m }} 39^{\text {s }}$; st. lat. $46^{\circ} 50^{\prime}$; W.H.A. $4^{\mathrm{b}} 42^{\mathrm{m}} 25^{3}$; sight long. $180^{\circ} \mathrm{W}$. ; noon $179^{\circ} 13^{\prime} 40^{\prime \prime} \mathrm{W}$.; true azi. S. $73^{\circ} 57^{\prime} 42^{\prime \prime} \mathrm{W}$. ; dev. $32^{\circ} 6^{\prime} \mathrm{W}$.
10. Cor. $+36-19+28$; true azi. N. $125^{\circ} 17^{\prime}$ E. ; dev. $0^{\circ} 47^{\prime}$ E.
11. W.H.A. $24^{\mathrm{m}} 19^{\mathrm{a}}$; nat. no. 4724. Arc I. $13^{\circ} 13^{\prime} 14^{\prime \prime}$; Arc. II. $43^{\circ} 38^{\prime} 22^{\prime \prime}$; sight lat. $30^{\circ} 25^{\prime} 5^{\prime \prime} \mathrm{S}$. ; noon $30^{\circ} 22^{\prime} 23^{\prime \prime} \mathrm{S}$.
12. First P.D. $92^{\circ} 21^{\prime} 23^{\prime \prime}$; eq. time, $-9^{m} 36^{\circ}$; H.A.'s $0^{\text {b }} 20^{\mathrm{m}} 48^{\circ}$ and $0^{\mathrm{b}} 41^{\mathrm{I}} 53^{\mathrm{s}}$; long. (a), $177^{\circ} 38^{\prime} 15^{\prime \prime}$ E. ; (b), $177^{\circ} 5^{\prime} 30^{\prime \prime} \mathrm{W}$. ; second P.D. $92^{\circ} 25^{\prime} 28^{\prime \prime}$; eq. time, $-9^{\mathrm{m}} 39^{\mathrm{s}} ;$ W.H.A.'s $4^{\mathrm{n}} 42^{\mathrm{m}} 43^{\circ}$ and $4^{\mathrm{h}} 43^{\mathrm{m}} 48^{\mathrm{c}}$; long. (c), $179^{\circ} 55^{\prime} 30^{\prime \prime} \mathrm{W} . ;(d), 179^{\circ} 39^{\prime} 15^{\prime \prime} \mathrm{W}$.

First line : $\left\{\begin{array}{c}\text { N. } 80^{\circ} \mathrm{W} . \\ \mathrm{S} .80^{\circ} \mathrm{E} .\end{array}\right\}$; second azi. S. $74^{\circ} \mathrm{W}$; lat. $46^{\circ} 45 \frac{1}{2}^{\prime}$ N. ; long. $179^{\circ} 58^{\prime} \mathrm{W}$.
13. A.T.S. $11^{\text {h }} 8^{\mathrm{m}} 31^{\mathrm{s}}$ Р.M. ; inspection, $11^{\text {b }} 1^{\mathrm{m}}$ P.m.
14. a Gruis S. $57^{\mathrm{m}} 20^{\circ} \mathrm{W}$. ; Fomalhaut, S. $7^{\mathrm{m}} 10^{9} \mathrm{~W}$.
15. Alt. $40^{\circ} 15^{\prime} 10^{\prime \prime}$.
16. M.T.G. $2^{\text {d }} 13^{\text {b }} 25^{\mathrm{m}} 40^{\text { }}$; W.H.A. $1^{\text {b }} 34^{\mathrm{m}} 35^{\mathrm{s}}$; R.A.M.S. $8^{\text {h }} 42^{\mathrm{m}} 53^{\mathrm{s}}$; long. $62^{\circ} 35^{\prime} \mathrm{W}$.
17. W.H.A. $2^{\text {h }} 58^{\mathrm{m}} 48^{\mathrm{s}}$; cor. $-35+24+5$; true azi. S. $133^{\circ} 43^{\prime}$ W.; dev. $22^{\circ} 51^{\prime} \mathrm{W}$.
18. Cor. $-40^{\prime} 35^{\prime \prime},+37^{\prime \prime},+50^{\prime \prime}$; lat. $50^{\circ} 16^{\prime} 33^{\prime \prime} \mathrm{N}$.
19. M.T.G. $9^{d} 18^{\text {b }} 31^{\text {. }} 5$; dec. $5^{\circ} 23^{\prime} 11^{\prime \prime}$ N. ; S.D. $15^{\prime} 11^{\prime \prime}$; H.P. $54^{\prime} 51^{\prime \prime}$; T.A. $48^{\circ} 25^{\prime} 19^{\prime \prime}$; lat. $46^{\circ} 57^{\prime} 52^{\prime \prime}$.
20. Lat. $51^{\circ} 28^{\prime} 29^{\prime \prime} \mathrm{S}$.
21. Mag. bearing, N. 56° E. ; compass course, N. 68° E., S. 67° E., S. 79° W., N. 19° W. ; mag. course, S. 68° W., S. 18° E., N. 40° E., N. 53° W.; mag. bearings, S. $21^{\circ} \mathrm{W}$., and S. $49^{\circ} \mathrm{E}$.
22. -8 ft .5 ins .
23. Sun's elements : R.A. $9^{\text {h }} 43^{\text {m }} 37^{3} .8$; dec. $13^{\circ} 39^{\prime} 57^{\prime \prime}$ N. ; R.A.M.S. $9^{\text {a }} 39^{\text {m }} 32^{\bullet} \cdot 5$; A.A. $30^{\circ} 38^{\prime} 31^{\prime \prime}$; T.A. $30^{\circ} 37^{\prime} 1^{\prime \prime}$; E.H.A. $4^{\text {b }} 7^{\mathrm{m}} 20^{\circ}$.

Moon's elements: R.A. $7^{\text {b }} 35^{\text {m }} 38^{\circ} \cdot 5$; dec. $19^{\circ} 51^{\prime} 24^{\prime \prime}$ N. ; S.D. $15^{\prime} 22^{\prime \prime}$; H.P. $55^{\prime} 27^{\prime \prime}$; E.H.A. $1^{\mathrm{n}} 59^{\mathrm{m}} 21^{\mathrm{s}} ;$ T.A. $59^{\circ} 6^{\prime} 1^{\prime \prime}$; A.A. $58^{\circ} 37^{\prime} 44^{\prime \prime}$; app. dist. $30^{\circ} 47^{\prime} 7^{\prime \prime} ; B=40^{\circ} 59^{\prime} 0^{\prime \prime} ; Z=18^{\circ} 49^{\prime} 30^{\prime \prime} ;$ true dist. $31^{\circ} 12^{\prime} 20^{\prime \prime}$; error, $12^{\mathrm{m}} 15^{\mathrm{n}}$ fast ; long. $35^{\circ} 40^{\prime} \mathrm{W}$.
24. H.E.T. $1^{\text {h }} 11^{\text {m }} 31^{8} 5$; mid. dec. $6^{\circ} 11^{\prime} 49^{\prime \prime}$; cor. run $+7^{\prime} 25^{\prime \prime}$; first
alt. $32^{\circ} 39^{\prime} 46^{\prime \prime}$; second alt. $47^{\circ} 26^{\prime} 36^{\prime \prime}$; $\mathrm{XY}=35^{\circ} 32^{\prime} 54^{\prime \prime} ; \mathrm{X}_{1}=88^{\circ} 3^{\prime}$ $46^{\prime \prime} ; \mathrm{X}_{2}=52^{\circ} 34^{\prime} 2^{\prime \prime}$; lat. correction, $-1^{\prime} 47^{\prime \prime}$; lat. $44^{\circ} 42^{\prime} 53^{\prime \prime} \mathrm{N}$.
25. P.D. $97^{\circ} 32^{\prime} 29^{\prime \prime}$; eq. time, $-0^{m} 42^{\circ} 7$; W.H.A. $4^{\text {b }} 30^{m} 26^{8}$; error, $20^{\text {mi }} 54^{8} \cdot 4$ slow.
26. First course, S. $57^{\circ} 17^{\prime} 30^{\prime \prime}$ E. ; final, N. $62^{\circ} 17^{\prime} 30^{\prime \prime}$ E. ; first long. $67^{\circ} 12^{\prime}$ E. ; second long. $104^{\circ} 21^{\prime}$ E.; dist. $=2300+1549+1830=5679$ miles ; points: lat. $44^{\circ} 41^{\frac{1}{2}}$ ' S., long. 50° E., lat. $40^{\circ} 43^{\prime} \mathrm{S}$., $140^{\circ} \mathrm{E}$.
27. 1009.
28. N. $70^{\circ} 7^{\prime} 25^{\prime \prime} \mathrm{W}$. ; drift $67 \cdot 55$ miles.
29. Side $33^{\circ} 38^{\prime} 50^{\prime \prime}$; angle $100^{\circ} 30^{\prime} 56^{\prime \prime}$.
30. N. 70° E. ; $B=+5^{\circ} \cdot 86$.
31. $\mathrm{A}=-{ }^{\circ} 25^{\circ} ; \mathrm{B}=+11^{\circ} 5 ; \mathrm{C}=0 ; \mathrm{D}=+5^{\circ} ; \mathrm{E}=+25^{\circ} ;$ Deviations, North, $0+2^{\circ} 25^{\prime} ;+4^{\circ} 41^{\prime} ;+6^{\circ} 42^{\prime} ;+8^{\circ} 23^{\prime} ;+9^{\circ} 40^{\prime} ;+10^{\circ} 33^{\prime}$; $+10^{\circ} 59^{\prime} ;$ East, $+11^{\circ}$; South, $0 ;-2^{\circ} 4^{\prime} ;-4^{\circ} 7^{\prime} ;-6^{\circ} 5^{\prime} ;-7^{\circ} 53^{\prime}$; $-9^{\circ} 27^{\prime} ;-10^{\circ} 43^{\prime} ;-11^{\circ} 34^{\prime} ; W^{\prime}$ est, -12°.
32. $-3^{\circ} 45^{\prime}$.

Paper VI.

1. $\cdot 4839 \log =9 \cdot 684706$.
2. $\cdot 08604 \log =8 \cdot 934729$.
3. N. 62° W., 17^{\prime}; S. 84° E., 72^{\prime}; S. 75° E., 43^{\prime}; S. 68° E., 56^{\prime}; S. $54^{\circ} \mathrm{E} ., 57^{\prime}$; S. 47° E., 56^{\prime}; E. 56^{\prime}; N. 22° E., 60^{\prime}; D. lat. 477^{7}; dep. 315.6 ; course, S. $81^{\frac{1}{2}}{ }^{\circ} \mathrm{E}$. ; dist. 318 miles; lat. $38^{\circ} 33^{\prime} \mathrm{S}$. ; long. $174^{\circ} 47^{\prime} \mathrm{W}$.
4. Dec. $0^{\circ} 10^{\prime} 30^{\prime \prime}$ N. ; T.A. $47^{\circ} 17^{\prime} 56^{\prime \prime}$; lat. $42^{\circ} 31^{\prime} 34^{\prime \prime}$ S.
5. $32^{\circ} 23^{\prime}$.
6. True course, N. $53^{\circ} 48^{\prime}$ E. ; compass course, S. $75^{\circ} 22^{\prime}$ E. ; dist. 4561 miles.
7. $1^{\mathrm{b}} 8^{\mathrm{m}}$ A.M. ; $1^{\mathrm{h}} 54^{\mathrm{m}}$ P.M.
8. Dec. $2^{\circ} 3^{\prime} 32^{\prime \prime}$ N. ; true amp. E. $2^{\circ} 31 \frac{1}{2}$ N. ; dev. $5^{\circ} 38^{\prime} 37^{\prime \prime}$ E.
9. M.T.G. $7^{\mathrm{d}} 6^{\mathrm{b}} 47^{\mathrm{m}} 7^{\mathrm{s}}$; P.D. $83^{\circ} 47^{\prime} 4^{\prime \prime}$; st. lat. $48^{\circ} 10^{\prime}$; eq. time, $-1^{\mathrm{m}} 54^{\prime}$; T.A. $32^{\circ} 7^{\prime} 56^{\prime \prime}$; E.H.A. $3^{\mathrm{b}} 8^{\mathrm{m}} 28^{\circ}$; st. long, $149^{\circ} 22^{\prime} 15^{\prime \prime}$ W.; noon, $148^{\circ} 33^{\prime} 45^{\prime \prime}$ W. ; true azi. S. $59^{\circ} 20^{\prime} 20^{\prime \prime}$ E. ; dev. $13^{\circ} 54^{\prime} 40^{\prime \prime}$ E.
10. W.H.A. $2^{\text {b }} 18^{\text {m }} 39^{\text {a }}$; cor. $-41+21+20$; true azi. S. $133^{\circ} 36^{6}$ W. ; dev. $14^{\circ} 24^{\prime} \mathrm{W}$.
11. W.H.A. $23^{\mathrm{m}} 41^{\mathrm{s}}$; nat. no. 3884. Arc I. $16^{\circ} 24^{\prime} 13^{\prime \prime}$; Arc II. $57^{\circ} 2^{\prime} 9^{\prime \prime}$; lat. $40^{\circ} 37^{\prime} 56^{\prime \prime} \mathrm{S}$.
12. First P.D. $89^{\circ} 41^{\prime} 9^{\prime \prime}$; eq. time, $-7^{m} 16^{\circ}$; T.A. $32^{\circ} 20^{\prime} 25^{\prime \prime}$; H.A.'s $2^{\mathrm{b}} 34^{\mathrm{m}} 37^{\circ}$ and $2^{\mathrm{b}} 30^{\mathrm{m}} 56^{\mathrm{A}}$; long. (a), $81^{\circ} 22^{\prime}$ E. ; (b), $82^{\circ} 17^{\prime} 15^{\prime \prime}$ E.; second P.D. $89^{\circ} 46^{\prime} 1^{\prime \prime}$; eq. tine, $-7^{\mathrm{m}} 20^{\circ}$; T.A. $32^{\circ} 20^{\prime} 25^{\prime \prime}$; H.A.'s $2^{\mathrm{b}} 34^{\mathrm{m}} 3^{4}$ and $2^{\mathrm{b}} 30^{\mathrm{m}} 21^{\mathrm{s}}$; long. (e), $83^{\circ} 29^{\prime} 15^{\prime \prime} \mathrm{E}$. ; (d), $82^{\circ} 33^{\prime} 45^{\prime \prime}$ E.

First line: $\left\{\begin{array}{l}\mathrm{N} .43^{\circ} \mathrm{E} . \\ \mathrm{S} .43^{\circ} \mathrm{W} .\end{array}\right\}$; first azi. S. $47^{\circ} \mathrm{E} ;$ lat. $47^{\circ} 51^{\prime} \mathrm{N}$. ; long. $82^{\circ} 32^{\prime}$ E.
13. M.T.S. $1^{\mathrm{b}} 45^{\mathrm{m}} 15^{\mathrm{s}}$ P.M.
14. Achernar, S. $1^{n} 6^{\text {m }} 7^{s}$ W.; u Persei, N. $37^{m} 16^{4}$ E. ; Aldebaran, N. $1^{\mathrm{n}} 50^{\mathrm{m}} 12^{\mathrm{s}}$ E.
15. Alt. $25^{\circ} 54^{\prime} 40^{\prime \prime}$.
16. W.H.A. $4^{\text {n }} 0^{\mathrm{m}} 20^{\mathrm{s}}$; cor. $-5-33+25$; true azi. N. $102^{\circ} 36^{\prime}$ W. ; dev. $10^{\circ} 54^{\prime} \mathrm{E}$.
17. M.T.G. $5^{\mathrm{a}} 12^{\mathrm{b}} 51^{\mathrm{m}} 4^{\mathrm{s}}$; E.H.A. $2^{\mathrm{h}} 13^{\mathrm{m}} 13^{\mathrm{s}}$; R.A.M.S. $8^{\mathrm{b}} 54^{\mathrm{m}} 37^{\mathrm{a}}$; long. $50^{\circ} 10^{\prime} \mathrm{W}$.
18. Cor. $-2^{\prime} 12^{\prime \prime},+35^{\prime \prime},+1^{\prime} 25^{\prime \prime}$; lat. $38^{\circ} 23^{\prime} 24^{\prime \prime} \mathrm{N}$.
19. M.T.G. $6^{\text {a }} 17^{\text {b }} 35^{\mathrm{m}} \cdot 6$; S.D. $15^{\prime} 42^{\prime \prime}$; H.P. $56^{\prime \prime} 50^{\prime \prime}$; dec. $7^{\circ} 41^{\prime} 9^{\prime \prime}$ S.; cor. $+46^{\prime} 30^{\prime \prime}$; T.A. $33^{\circ} 8^{\prime} 9^{\prime \prime}$; lat. $64^{\circ} 33^{\prime} 0^{\prime \prime}$ S.
20. Lat. $34^{\circ} 19^{\prime} 53^{\prime \prime} \mathrm{N}$.
21. Mag. bearings, South ; comp. course, N. 3° W., N. 80° W., S. 66° E.,
N. 31° E. ; mag. course, S. 55° E., S. 30° W., S. 77° W., N. 19° W.; mag. bearings, N. $30^{\circ} \mathrm{W}$., S. $72^{\circ} \mathrm{W}$.
22. Red, -2 ft. 9 ins.
23. Star's elements: R.A. $16^{\mathrm{h}} 23^{\mathrm{m}} 38^{\circ} \cdot 5$; dec. $26^{\circ} 13^{\prime} 26^{\prime \prime}$ S. ; R.A.M.S. $10^{\mathrm{h}} 31^{\mathrm{m}} 23^{\mathrm{s}} 5$; A.A. $49^{\circ} 25^{\prime} 23^{\prime \prime}$; T.A. $49^{\circ} 24^{\prime} 34^{\prime \prime}$; W.H.A. $2^{\mathrm{b}} 38^{\mathrm{m}} 10^{\circ}$.

Moon's elements : R.A. $19^{\mathrm{h}} 38^{\mathrm{m}} 16^{\circ} \cdot 3$; dec. $19^{\circ} 49^{\prime} 51^{\prime \prime}$ S. ; S.D. $16^{\prime} 20^{\prime \prime}$; H.P. $\check{8^{\prime}} 50^{\prime \prime}$; А.A. $76^{\circ} 46^{\prime} 33^{\prime \prime}$; T.A. $76^{\circ} 59^{\prime} 48^{\prime \prime}$; E.H.A. $36^{\mathrm{m}} 28^{\circ}$; app. dist. $45^{\circ} 3^{\prime} 37^{\prime \prime} ; \mathrm{B}=13^{\circ} 48^{\prime} 1^{\prime \prime} ; \mathrm{Z}=102^{\circ} 49^{\prime} 30^{\prime \prime}$; true dist. $44^{\circ} 58^{\prime} 32^{\prime \prime}$; error, $11^{\mathrm{m}} 38^{\circ}$ slow ; long. $98^{\circ} 26^{\prime} 45^{\prime \prime}$ E.
24. H.E.T. $2^{\text {n }} 10^{\text {m }} 21^{\circ} 5$; run cor. $-25^{\prime} 12^{\prime \prime}$; first T.A. $43^{\circ} 45^{\prime} 14^{\prime \prime}$; second $23^{\circ} 28^{\prime} 34^{\prime \prime} ; \mathrm{XY}=28^{\circ} 43^{\prime} 33^{\prime \prime} ; \mathrm{X}_{1}=60^{\circ} 25^{\prime} 42^{\prime \prime} ; \mathrm{X}_{2}=126^{\circ} 49^{\prime} 36^{\prime \prime}$; lat. $48^{\circ} 20^{\prime} \mathrm{S}$.
25. Ship $18^{\circ} 32^{\prime}$ S. ; $70^{\circ} 35^{\prime} \cdot 5$ W. ; W.H.A. $3^{\mathrm{b}} 22^{\mathrm{m}} 54^{\circ}$; error, $37^{\mathrm{m}} 40^{\circ}$ slow.
26. First course, S. $50^{\circ} 4 \frac{1}{2}^{\prime}$ W. ; final, N. $58^{\circ} 46_{\frac{1}{2}}{ }^{\prime}$ W. ; longs. $128^{\circ} 32 \frac{1}{\frac{1}{2}}$ W., $142^{\circ} 32^{\prime} \mathrm{W}$. ; dist. $5050 \cdot 1$ miles ; lat. $49^{\circ} 41^{\prime} \mathrm{S}$. ; long. $120^{\circ} \mathrm{W}$. ; lat. $43^{\circ} 24 \frac{1}{2} \mathrm{~S}$.; long. $180^{\circ} \mathrm{W}$.
27. $\mathrm{B}=50^{\circ} \mathrm{i4} 0^{\prime} 12^{\prime \prime} ; \mathrm{A}=39^{\circ} 19^{\prime} 48^{\prime \prime} ; \mathrm{BD}=14383 \mathrm{ft}$.
28. $115 \cdot 6 \mathrm{ft}$.
29. Course, S. $78^{\circ} 30^{\prime}$ E. ; dist. 92 miles.
30. $\mathrm{A}=+1^{\circ} 25 ; \mathrm{B}=+18^{\circ} ; \mathrm{C}=-7^{\circ} 5 ; \mathrm{D}=+75^{\circ} ; \mathrm{E}=+1^{\circ} .25$; Deviations, $+2^{\circ} 37^{\prime} ;+6^{\circ} 11^{\prime} ;+9^{\circ} 26^{\prime} ;+12^{\circ} 16^{\prime} ;+14^{\circ} 40^{\prime} ;+16^{\circ} 34^{\prime} ;$ East, $+18^{\circ} ;+18^{\circ} 55^{\prime} ;+19^{\circ} 20^{\prime} ;+19^{\circ} 13^{\prime} ;+18^{\circ} 32^{\prime}$.
31. Lat. $42^{\circ} 5^{\prime}$; Н.A. $7^{\text {h }} 10^{\mathrm{m}} 21^{8 .} 5$.
32. Lat. $60^{\circ} 22^{\prime} \mathrm{S}_{.}$; long. $30^{\circ} 26^{\prime} \mathrm{W}$. ; course S. $3^{\circ} \mathrm{E}$. ; dist. 43 miles.
33. $-25^{\circ} 30^{\prime}$.

Paper VII.

1. $696090 \cdot 3 \log =5 \cdot 842665$.
2. $19534 \cdot 82 \log =4 \cdot 290809$.
3. N. 12° W., $20^{\prime} ;$ N. 15° E., 22^{\prime}; S. 71° W., $24^{\prime} ;$ N. 7° E., 214^{\prime}; D. lat. $245^{\prime} \cdot 5$; dep. $4 \cdot 9$; D.R. lat. $46^{\circ} 4^{\prime} 5 \mathrm{~S}$. ; long. $110^{\circ} 7^{\prime} 40^{\prime \prime} \mathrm{W}$.; set S. $70^{\circ} \mathrm{W}$.; drift $16 \frac{1}{2}$ miles.
4. Dec. $2^{\circ} 24^{\prime} 32^{\prime \prime}$ S. ; T.A. $88^{\circ} 36^{\prime} 7^{\prime \prime}$. Lat. $1^{\circ} 0^{\prime} 39^{\prime \prime} \mathrm{S}$,
5. $51^{\circ} 23^{\prime} \mathrm{N} . ; 16^{\circ} 16^{\prime} 30^{\prime \prime} \mathrm{W}$.
6. Compass course, N. $16^{\circ} 22^{\prime}$ W.; dist. 5489 miles.
7. Midnt. ; $0^{\text {L }} 23$ f.m.
8. True amp., E. $16^{\circ} 55^{\prime}$ N. ; dev. $2^{\circ} 21^{\prime}$ E.
9. M.T.G. $23^{\mathrm{a}} 16^{\mathrm{b}} 14^{\mathrm{m}} 51^{\mathrm{a}} ;$ P.D. $89^{\circ} 55^{\prime} 8^{\prime \prime}$; H. A. $2^{\mathrm{b}} 57^{\mathrm{m}} 0^{\circ}$; long. $158^{\circ} 38^{\prime}$ E. ; true azi. N. $67^{\circ} 51^{\prime} 28^{\prime \prime}$ W. ; dev. $6^{\circ} 51^{\prime} 28^{\prime \prime}$ W.
10. ATS. $8^{\text {b }} 33^{\mathrm{m}} 13^{\circ}$ A.m. ; cor. $+21+14+5$; true azi. S. $126^{\circ} 15^{\prime}$ E.; dev. $12^{\circ} 59^{\prime} \mathrm{E}$.
11. E.H.A. $27^{\mathrm{m}} 24^{3}$; nat. no. 5109. Arc. I. $2^{\circ} 12^{\prime} 50^{\prime \prime}$; Arc. II. $46^{\circ} 29^{\prime} 45^{\prime \prime}$. Lat. st. $44^{\circ} 16^{\prime} 55^{\prime \prime} \mathrm{N}$. ; noon, $44^{\circ} 20^{\prime} 13^{\prime \prime} \mathrm{N}$.
12. First P.D. $107^{\circ} 28^{\prime} 11^{\prime \prime}$; T.A. $8^{\circ} 40^{\prime} 49^{\prime \prime}$; eq. time, $+5^{\text {m }} 59^{\prime \prime}$; H.A.'s $3^{\mathrm{b}} 41^{\mathrm{m}} 54^{\mathrm{s}}$ and $3^{\mathrm{b}} 39^{\mathrm{m}} 39^{\mathrm{s}}$; long. (a), $0^{\circ} 49^{\prime}$ E. ; (b), $1^{\circ} 22^{\prime} 15^{\prime \prime}$ E.; second P.D. $107^{\circ} 24^{\prime} 12^{\prime \prime}$; T.A. $18^{\circ} 19^{\prime} 28^{\prime \prime}$; eq. time, $+5^{\mathrm{m}} 57^{\circ}$; H.A.'s $2^{n} 21^{\text {m }} 22^{\prime \prime}$ and $2^{\mathrm{k}} 17^{\mathrm{m}} 9^{\mathrm{c}}$; long. (c), $1^{\circ} 9^{\prime} 30^{\prime \prime}$ E. ; ($(\overline{)}), 0^{\circ} 6^{\prime}$ E.

Second line: $\left\{\begin{array}{l}\mathrm{S} . \\ \mathrm{N} . \\ 55^{\circ} \\ 55^{\circ} \\ \mathrm{W} .\end{array}\right\}$; second azi. N. $35^{\circ} \mathrm{W} . ;$ lat. $47^{\circ} 25^{\prime} \mathrm{S}$. ; long. $0^{\circ} 3^{\prime} \mathrm{W}$.
13. A.T.S. $9^{\mathrm{h}} 23^{\mathrm{m}} 19^{\mathrm{o}}$ A.M.
14. Alt. $31^{\circ} 17^{\prime} 20^{\prime \prime}$.
15. Aldebaran, S. $47^{\mathrm{m}} 36^{\circ}$ E.; Capella, N. $1^{\mathrm{b}} 26^{\mathrm{m}} 49^{\circ}$ E. ; Rigel, S. $1^{\mathrm{h}} 27^{\mathrm{m}} 5^{\mathrm{c}}$ E. ; Bellatrix, S. $1^{\mathrm{h}} 37^{\mathrm{m}} 9^{\mathrm{n}}$ E. ; β Tauri, S. $1^{\mathrm{h}} 37^{\mathrm{m}} 25^{\circ}$ E.; \in Orionis, S. $1^{\mathrm{t}} 48^{\mathrm{m}} 31^{\mathrm{s}} \mathrm{E}$.
16. W.H.A. $3^{\text {b }} 19^{\text {m }} 40^{\text {a }}$; cor. $-49+18+4$; true azi. S. $130^{\circ} 32^{\prime}$ W.; dev. $18^{\circ} 39^{\prime} \mathrm{W}$.
17. M.T.G. $30^{d^{d}} 1^{\mathrm{b}} 56^{\mathrm{m}} 56^{\mathrm{c}}$; W.H.A. $2^{\mathrm{h}} 38^{\mathrm{m}} 10^{\mathrm{B}}$; R.A.M.S. $10^{\mathrm{h}} 31^{\mathrm{m}} 24^{\mathrm{g}}$; long. $98^{\circ} 22^{\prime} 15^{\prime \prime} \mathrm{E}$.
18. Cor. $-1^{\circ} 4^{\prime} 5^{\prime \prime},+2^{\prime \prime},+1^{\prime} 25^{\prime \prime}$. ; lat. $20^{\circ} 14^{\prime} 2^{\prime \prime} \mathrm{N}$.
19. M.T.G. $30^{\text {d }} 8^{\mathrm{b}} 21^{\text {T. }} 9$; S.D. $16^{\prime} 11^{\prime \prime}$; H.P. $58^{\prime} 41^{\prime \prime}$; dec. $19^{\circ} 29^{\prime} 21^{\prime \prime}$ S. ; T.A. $30^{\circ} 15^{\prime} 24^{\prime \prime}$; lat. $40^{\circ} 15^{\prime} 15^{\prime \prime} \mathrm{N}$.
20. Lat. $72^{\circ} 1^{\prime} 56^{\prime \prime} \mathrm{N}$.
21. Mag. bearing, N. $73^{\circ} 30^{\prime} \mathrm{W} . ;$ comp. course, N. 2° W., S. 74° E., S. 82° W., N. 55° E. ; mag. course, S. 67° E., S. 20° W., S. $86 \frac{1}{2}^{\circ}$ W., N. $74^{\circ} \mathrm{W} . ;$ mag. bearings, S. $25 \frac{1}{2}^{\circ} \mathrm{W} .$, and N. $61^{\circ} 30^{\prime} \mathrm{W}$.
22. -9 ft .5 ins.
23. Planet's elements: R.A. $23^{\text {b }} 2^{\text {m }} 1^{\text {b }}$; dec. $8^{\circ} 24^{\prime} 48^{\prime \prime}$ S.; R.A.M.S. $9^{\mathrm{b}} 17^{\mathrm{m}} 5^{\mathrm{b}} 6$; A.A. $40^{\circ} 57^{\prime} 58^{\prime \prime}$; T.A. $40^{\circ} 56^{\prime} 54^{\prime \prime}$; W.H.A. $3^{\mathrm{b}} 13^{\mathrm{m}} 54^{\mathrm{a}}$.

Moon's elements: R.A. $2^{\text {b }} 52^{\text {m }} 18^{\circ} 1$; dec. $10^{\circ} 59^{\prime} 8^{\prime \prime}$ N. ; S.D. $15^{\prime} 3^{\prime \prime}$; H.P. $54^{\prime} 23^{\prime \prime}$; E.H.A. $36^{\mathrm{m}} 23^{\prime \prime} ;$ T.A. $52^{\circ} 37^{\prime} 46^{\prime \prime}$; A.A. $52^{\circ} 5^{\prime} 6^{\prime \prime}$; арp. dist. $60^{\circ} 43^{\prime} 53^{\prime \prime} ; \mathrm{B}=27^{\circ} 38^{\prime} 28^{\prime \prime} ; \mathrm{Z}=93^{\circ} 30^{\prime} 2^{\prime \prime}$; true dist. $60^{\circ} 28^{\prime} 13^{\prime \prime}$; error, $10^{\text {m }} 34^{2} \mathrm{E}$; long. $169^{\circ} 38^{\prime} 30^{\prime \prime} \mathrm{E}$.
24. H.E.T. $2^{\text {b }} 6^{\text {m }} 5^{\text {s }}$; mid. dec. $2^{\circ} 23^{\prime} 28^{\prime \prime}$ S. ; run cor., $-24^{\prime} 6^{\prime \prime}$; first alt. $40^{\circ} 21^{\prime} 10^{\prime \prime}$; second alt. $11^{\circ} 18^{\prime} 30^{\prime \prime}$; $\mathrm{XY}=62^{\circ} 58^{\prime} 56^{\prime \prime} ; \mathrm{X}_{1}=91^{\circ} 31^{\prime} 18^{\prime \prime}$; $\mathrm{X}_{2}=98^{\circ} 18^{\prime} 12^{\prime \prime}$; lat. cor., $+2^{\prime} 28^{\prime \prime}$; lat. $46^{\circ} 50^{\prime} 30^{\prime \prime} \mathrm{N}$.
25. Ship lat. $5^{\circ} 36^{\prime}$ S. ; long. $35^{\circ} 0^{\prime} 32^{\prime \prime}$ W. ; E.H.A. $3^{\text {b }} 15^{\mathrm{m}} 41^{\mathrm{s}}$; error, $20^{\mathrm{m}} 3^{\text {a }}$ fast.
26. First course, S. $39^{\circ} 16 \frac{1}{2}^{\prime}$ W. ; final S. $38^{\circ} 40 \frac{1}{2}^{\prime}$ W. ; vertex lat. $59^{\circ} 11 \frac{1_{2}^{\prime}}{2}$, N. ; long. $58^{\circ} 43 \frac{1}{2}^{\prime}$ E. ; dist. 5101 miles ; course at equator, S. 31° W. ; in long. $31^{\circ} 16 \frac{1}{2}^{\prime} \mathrm{W}$.
27. 368 ft .
28. Bearing S. $27^{\circ} 19^{\prime} 49^{\prime \prime}$ W. ; set E. $3^{\circ} 49^{\prime} 42^{\prime \prime}$ N.
29. $\mathrm{A}=31^{\circ} 12^{\prime} 14^{\prime \prime} ; \mathrm{AC}=72^{\circ} 23^{\prime} 48^{\prime \prime}$.
30. $\mathrm{A}=0 ; \mathrm{B}=+5^{\circ} 5 ; \mathrm{C}=-28^{\circ}{ }^{\circ}$; $\quad \mathrm{D}=-4^{\circ} .5 ; \quad \mathrm{E}=-1^{\circ} . \quad D e-$ viations, West, $-4^{\circ} 30^{\prime} ;-0^{\circ} 38^{\prime} ;+3^{\circ} 22^{\prime} ;+7^{\circ} 29^{\prime} ;+11^{\circ} 46^{\prime} ;+16^{\circ} 6^{\prime}$; $+20^{\circ} 20^{\prime} ;+24^{\circ} 14^{\prime} ;$ South, $+27^{\circ} 30^{\prime} ;+29^{\circ} 49^{\prime} ;+30^{\circ} 55^{\prime} ;+30^{\circ} 32^{\prime} ;$ $+28^{\circ} 32^{\prime} ;+24^{\circ} 56^{\prime} ;+19^{\circ} 53^{\prime} ;+13^{\circ} 35^{\prime} ;$ East, $+6^{\circ} 30^{\prime}$.
$31 .+4^{\circ} 38^{\prime}$.
32. Н.А. 0 ; dev. $6^{\circ} 15^{\prime}$ E.

Paper VIII.

1. $\cdot 000001075 \log =4 \cdot 031408$.
2. ${ }^{1} 1 \log =9 \cdot 000000$.
3. S. 3° W., 30^{\prime}; S. 34° W., 74^{\prime}; S. 1° W., 26^{\prime}; S. 3° W., 56^{\prime}; S. 54° W., 52^{\prime}; S. 56° W., 75^{\prime}; S. 71° W., 45^{\prime}; S. 65° W., 10^{\prime}; D. lat. $264 \cdot 3$, dep. $204 \cdot 9$; course, S. $37^{\circ} 47^{\prime} \mathrm{W}$. ; dist. $334 \cdot 5$ miles; lat. $65^{\circ} 24^{\prime} 42^{\prime \prime} \mathrm{N}$.; long. $50^{\circ} 16^{\prime} 30^{\prime \prime} \mathrm{W}$.
4. Dec. $0^{\circ} 1^{\prime} 5^{\prime \prime}$ S. ; T.A. $56^{\circ} 48^{\prime} 49^{\prime \prime}$; lat. $33^{\circ} 12^{\prime} 16^{\prime \prime}$ S.
5. Noon long, $83^{\circ} 38^{\prime} \cdot 4 \mathrm{~W}$.
6. True course, S. $54^{\circ} 10^{\prime}$ E. ; compass course, S. $36^{\circ} 50^{\prime}$ E. ; dist. 9224 miles.
7. $6^{\text {h }} 54^{\text {min }}$ A.M. $;^{\mathrm{h}} 15^{\mathrm{m}}$ А.м.
8. Dec. $2^{\circ} 3^{\prime} 16^{\prime \prime}$ S. ; true amp. W. $3^{\circ} 12^{\prime} 10^{\prime \prime}$ S. ; dev. $27^{\circ} 2^{\prime} 10^{\prime \prime} \mathrm{W}$.
9. M.T.G. $3^{\mathrm{d}} 20^{\mathrm{s}} 20^{\mathrm{m}} 51^{\mathrm{s}}$; P.D. $107^{\circ} 28^{\prime} 12^{\prime \prime}$; eq. time, $+5^{\mathrm{m}} 59^{\circ}$; T.A. $7^{\circ} 52^{\prime} 33^{\prime \prime}$; E.H.A. $3^{\text {b }} 45^{\mathrm{m}} 18^{\mathrm{a}}$; long. $0^{\circ} 2^{\prime} 30^{\prime \prime}$ W. ; true azi. N. $53^{\circ} 16^{\prime}$ E.; dev. $13^{\circ} 16^{\prime}$ E.
10. A.T.S. $5^{\text {m }} 7^{\mathrm{m}} 10^{\text {s }}$ P.M. ; cor. $-41-22+1$; true azi. N. $100^{\circ} 47^{\prime}$ W.; dev. $8^{\circ} 33^{\prime}$ E.
11. E.H.A. $39^{\mathrm{m}} 8^{s}$; nat. no. $9125 . \operatorname{Arc}$ I. $30^{\circ} 29^{\prime} 10^{\prime \prime}$; Arc. II. $73^{\circ} 56^{\prime} 9^{\prime \prime}$. Lat. $43^{\circ} 26^{\prime} 59^{\prime \prime} \mathrm{N}$.
12. First T.A. $37^{\circ} 38^{\prime} 2^{\prime \prime}$; P.D. $92^{\circ} 43^{\prime} 47^{\prime \prime}$; eq. time, $-9^{\prime \prime} 55^{\circ}$; H.A.'s $0^{\mathrm{b}} 46^{\mathrm{m}} 6^{\mathrm{s}}$ and $0^{\mathrm{h}} 25^{\mathrm{m}} 57^{s}$; long. (a), $175^{\circ} 38^{\prime} 45^{\prime \prime}$ E. ; (b), $179^{\circ} 19^{\prime}$ W. ; second
T.A. $23^{\circ} 12^{\prime} 42^{\prime \prime}$; P.D. $92^{\circ} 47^{\prime} 27^{\prime \prime}$; eq. time, $-9^{\mathrm{m}} 58^{\circ} ;$ H.A.'s $3^{\mathrm{b}} 16^{\mathrm{m}} 57^{\prime \prime}$ and $3^{\mathrm{h}} 14^{\mathrm{m}} 6^{\mathrm{s}}$; long. (e), $179^{\circ} 21^{\prime} 45^{\prime \prime}$ W. ; (d), $179^{\circ} 55^{\prime} 30^{\prime \prime} \mathrm{E}$.

First line : $\left\{\begin{array}{l}\mathrm{N} .79^{\circ} \mathrm{E} . \\ \mathrm{S} .79^{\circ} \mathrm{W} .\end{array}\right\}$; second azi. S. $55^{\circ} \mathrm{W}$; lat. $49^{\circ} 16^{\frac{1}{2}} \mathrm{~N}$. ; long. $179^{\circ} 59 \frac{1}{2}^{\prime} \mathrm{E}$.
13. M.T.S. $8^{\mathrm{b}} 9^{\mathrm{m}} 53^{\mathrm{z}}$ A.m.
14. Aldebaran, N. $1^{\mathrm{m}} 44^{\mathrm{a}}$ E. ; Capella, N. $40^{\mathrm{m}} 58^{8}$ E. ; Rigel, N. $41^{\mathrm{m}} 14^{4}$ E. ; Bellatrix, N. $51^{\text {m }} 18^{8}$ E. ; β Tauri, N. $51^{\text {m }} 34^{8}$ E.
15. Alt. $47^{\circ} 20^{\prime}$.
16. E.H.A. $3^{\text {b }} 21^{m} 1^{\prime}$; cor., $-11-43+31$; true azi. N. $101^{\circ} 43^{\prime}$ E. ; dev. $28^{\circ} 13^{\prime}$ E.
17. M.T.G. $19^{\text {d }} 2^{\mathrm{h}} 2^{\mathrm{m}} 40^{\mathrm{h}}$; W.H.A. $9^{\mathrm{h}} 59^{\mathrm{m}} 20^{\mathrm{a}}$; R.A.M.S. $9^{\mathrm{h}} 48^{\mathrm{m}} 2^{\mathrm{a}}$; long. $157^{\circ} 30^{\prime} \mathrm{E}$.
18. Cor., $-1^{\circ} 11^{\prime} 58^{\prime \prime},+0,+1^{\prime} 12^{\prime \prime}$; lat. $28^{\circ} 41^{\prime} 36^{\prime \prime} \mathrm{N}$.
19. M.T.G. $31^{\text {d }} 23^{\text {b }} 9^{\text {m. }} 9$; S.D. $16^{\prime} 8^{\prime \prime}$; H.P. $58^{\prime} 6^{\prime \prime}$; dec. $15^{\circ} 45^{\prime} 11^{\prime \prime}$ S. ; cor. $+8^{\prime} 37^{\prime \prime}$; T.A. $81^{\circ} 26^{\prime} 50^{\prime \prime}$; lat. $7^{\circ} 12^{\prime} 2^{\prime \prime} \mathrm{S}$.
20. Lat. $11^{\circ} 52^{\prime} 30^{\prime \prime} \mathrm{N}$.
21. Mag. bearing, N. $2 \frac{1}{2}^{\circ}$ W.; comp. course, N. 8° E., S. 71° E., S. 79° W., N. $57^{\circ} \mathrm{W}$. ; rnag. course, N. 85° E., N. $72^{\circ} \mathrm{W}$., S. $65^{\circ} \mathrm{W}$., S. $20^{\circ} \mathrm{E}$. ; mag. bearings, S. $20^{\circ} \mathrm{W}$., and S. $50^{\circ} \mathrm{E}$.
22. -2 ft .9 ins.
23. Sun's elements: R.A. $9^{\text {b }} 38^{\mathrm{m}} 24^{s} 2$; dec. $14^{\circ} 6^{\prime} 19^{\prime \prime}$ N. ; R.A.M.S. $9^{\text {a }} 34^{\mathrm{m}} 2^{\text {s }}$; A.A. $68^{\circ} 51^{\prime} 57^{\prime \prime}$; T.A. $68^{\circ} 51^{\prime} 38^{\prime \prime}$; W.H.A. $1^{\text {b }} 20^{\mathrm{m}} 17^{\text {. }}$.

Moon's elements: R.A. $6^{\text {b }} 22^{\text {m }} 19^{\circ} 5$; dec. $20^{\circ} 12^{\prime} 13^{\prime \prime}$ N. ; S.D. $15^{\prime} 4^{\prime \prime}$; H.P. $54^{\prime} 48^{\prime \prime}$; W.H.A. $4^{\text { }} 36^{\text {m }} 21^{\prime}$; T.A. $26^{\circ} 24^{\prime} 26^{\prime \prime}$; A.A. $25^{\circ} 36^{\prime} 59^{\prime \prime}$; app. dist. $47^{\circ} 50^{\prime} 16^{\prime \prime}$; В $32^{\circ} 52^{\prime} 29^{\prime \prime} ; Z=34^{\circ} 29^{\prime} 14^{\prime \prime}$; true dist. $47^{\circ} 4^{\prime} 21^{\prime \prime}$; error, $7^{\mathrm{m}} 3^{\mathrm{s}}$ slow ; long. $170^{\circ} 36^{\prime} \mathrm{W}$.
24. Н.Е.T. $2^{\mathrm{n}} 9^{\mathrm{m}} 18^{\mathrm{n}} \cdot 7$; run cor., $-12^{\prime} 36^{\prime \prime}$; first alt. $67^{\circ} 4^{\prime} 46^{\prime \prime}$; second alt. $68^{\circ} 22^{\prime} 20^{\prime \prime} ; \mathrm{XY}=44^{\circ} 28^{\prime} 55^{\prime \prime} ; \mathrm{X}_{1}=65^{\circ} 54^{\prime} 45^{\prime \prime} ; \mathrm{X}_{2}=3^{\circ} 12^{\prime} 0^{\prime \prime}$; lat. $48^{\circ} 29^{\prime} 42^{\prime \prime} \mathrm{N}$.
25. P.D. $84^{\circ} 22^{\prime} 30^{\prime \prime}$; eq. time, $-2^{\mathrm{m}} 25^{\mathrm{s}} 8$; E.H.A. $2^{\mathrm{h}} 45^{\mathrm{m}} 48^{\text {a }}$; error, $9^{\mathrm{m}} 53^{\mathrm{s}} \cdot 7$ fast.
26. First course, S. $63^{\circ} 36^{\prime}$ E. ; longs. $60^{\circ} 8^{\prime}$ E., and $79^{\circ} 2^{\prime}$ E. ; dist. 4705.6 miles ; lat. $41^{\circ} 33^{\prime}$; long. $50^{\circ} \mathrm{E}$. ; lat. $41^{\circ} 28^{\prime} 30^{\prime \prime} \mathrm{S}$. ; long. $90^{\circ} \mathrm{E}$.; lat. $40^{\circ} 3^{\prime} 30^{\prime \prime}$ S. ; long. $100^{\circ} \mathrm{E}$.
27. N. $35^{\circ} 6_{2}^{\prime \prime}$ E. ; dist. 274.5 miles.
28. $\mathrm{QR}=260.9$ or $181 \cdot 2$.
29. $86 \cdot 6 \mathrm{ft}$.
30. $\mathrm{R}=100^{\circ} 32^{\prime} \mathbf{7}^{\prime \prime} ; \mathrm{RQ}=94^{\circ} 12^{\prime} 4^{\prime \prime}$.
31. $\mathrm{A}=84^{\circ} 4^{\prime} 12^{\prime \prime} ; \mathrm{AB}=83^{\circ} 50^{\prime} 5^{\prime \prime}$.
32. Lat. $68^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{N}$. ; long. $0^{\circ} 34^{\prime} \mathrm{W}$.
33. N. $42^{\circ} 43^{\prime} 30^{\prime \prime} \mathrm{W}$.
34. $\mathrm{A}=+{ }^{-7} 5^{\circ} ; \mathrm{B}=+14^{\circ} ; \mathrm{C}=-10^{\circ} \cdot 5 ; \mathrm{D}=+3^{\circ} .25 ; \mathrm{E}=+7^{0.25}$. Deviations, North: $-2^{\circ} 30^{\prime} ;+3^{\circ} 50^{\prime} ;+6^{\circ} 29^{\prime} ;+6^{\circ} 50^{\prime} ;$ East, $+7^{\circ} 30^{\prime}$; $+10^{\circ} 16^{\prime} ;+14^{\circ} 49^{\prime} ;+18^{\circ} 38^{\prime} ;$ South, $+18^{\circ} 30^{\prime} ;+12^{\circ} 31^{\prime} ;+1^{\circ} 31^{\prime} ;$ $-10^{\circ} 59^{\prime} ;$ West, $-20^{\circ} 30^{\prime}$; $-23^{\circ} 38^{\prime} ;-19^{\circ} 49^{\prime}$; $-11^{\circ} 29^{\prime}$.
35. 0.
36. E.H.A. $1^{\text {h }} 20^{\text {m }} 45^{\circ}$; true azi. $94^{\circ} 4^{\prime}+69^{\circ} 30^{\prime}=$ N. $163^{\circ} 34^{\prime}$ E. ; dev. $7^{\circ} 19^{\prime}$ E.

PRINTED IN GREAT BRITAIN BY WILLIAM CLOWES AND SONS, LIMITED, BECCLES.

INDEX FOR TIDAL EXERCISES.

INDEX FOR TIDAL EXERCISES.

Showing Standard Ports in Small Capitals.

Name. Abu Shahr	$\begin{aligned} & \text { Standard Port. } \\ & \text { page (12) } \end{aligned}$	Name. Kingstown	$\begin{aligned} & \text { Standard Port. } \\ & \text { page (9) } \end{aligned}$
Al Basra	Abu Shatr	Kuweit	Abu Shahr
Annan Foot	Liverpool		
Ardrishaig		Lamlash	Greenock
Ardrossan	Greenock	Limerick	Galway
Ayr	Greenock	Liverpool Llanelly	$\begin{aligned} & \text { page (7) } \\ & \text { Pembroke Dock } \end{aligned}$
Beachy Head	Dover		
Beaumaris	Liverpool	Mellon	Galway
Bridlington	Hull	Pembroke Dock	page (8)
Carlisle Port	Liverpool		
Clydebank	Greenock	Quaco	St. John
Crinan	Greenock	Ramsgate	Dover
Dartmouth	Devonport	Rotterdam	Dover
Deal	page (4)	Rye Bay	Daver
Devonport	page (3)		
Dingle	Galway	St. Andrews	St. John
Donaghadee	Kingstown	St. John, N.B.	page (11)
Dover	page (4)	St. Mary's	Devonport
Daugeness	Dover	Neal Cove	St. John
Exmouth	Devonport	South Rock Spurn Point Strangford Quay.	$\begin{aligned} & \text { page (9) } \\ & \text { Hull } \\ & \text { Kingstown } \end{aligned}$
Fleetwood	page (7)		
Fowey	Devonport	Tenby	Pembroke Dock
Foynes Island	Galway	Tor Bay	Devonport
Galpiay Greenook	page (10)	Valentia	Galway
Greenook Grimsby	page (6)	Valentia	Galway
		Warren Point	Kingstown
Hastings	Dover	Welohpool	St. John
Henjam Island	Abu Shahr	Whitehaven	Liverpool
Hilbre Island	Liver pool	Wicklow	Kingstown
Huld	page (5)	Workington	Liverpool

H. W. F. \& C. $\left\{\begin{array}{l}\mathrm{V}^{\mathrm{H}} .43^{\mathrm{M}} . \\ \text { VI. (Local mean time). } 0\end{array}\right.$ \{VI. 0 (Standard time).

Lat. $50^{\circ} 22^{\prime} \mathrm{N} . L$ Long. $4^{\circ} 10^{\prime} \mathrm{W}$.

$\begin{aligned} & \text { B } \\ & \text { A } \end{aligned}$	$\left\|\begin{array}{c} \text { 时 } \\ \hat{A} \\ \text { 畧 } \\ 0 \end{array}\right\|$	SEPTEMBER.										OCTOBER.							
		Time.	$\begin{gathered} \text { Ht. } \\ \text { F. } \\ \hline \end{gathered}$	Time. H. M.	H. F. 16 1 14 0 14 8	$\begin{aligned} & \text { Time. } \\ & \begin{array}{c} \text { H. } \\ 2 \\ 2 \end{array} \\ & 2 \\ & 2 \end{aligned}$	Ht. Time. Ht. F. I. H. M. F. 0 8 8 0 1. 1 1 8 34 14 14 0					Time. E. M. 152	$\begin{array}{c\|c\|c\|} \hline \text { Ht. } & \text { Time. } \\ \text { F. } & \text { I. } & \text { H. } \\ 0 & 6 & 7 . \\ \hline \end{array}$		Ht. \|Time.		Hit. \|Time.		
	-														F. 1.			H.	
s.	2	216	0	816						M.	2	226	1.	830	14	244	13	84	311
												33	22	98	14	322	,	93	13
S.	3	248		49		3	18	9	1311	W	4	342	3	958		4.7	3 3 01	1032	
M.	4	321	2	925	139	339	2	947	132	Th.	5	443	45	1110	11	527		1155	
Tu.	5	357	$3 \quad 2$	108	132	417	3	1036	125	T.	-			613	5	0461	1211	7 11	3
W.		447	43	1111	12	528	42	1152	119	S.	7	132	12	746		215	13 g	830	2
Th.	8	- 35	12	$\begin{array}{ll}6 & 10\end{array}$	5	043	12	658	4										
F.	8	1351		748	4	219	13	834	30	S.	8	254	$13 \quad 4$	$9 \quad 12$	211	3291	148	946	1
S.	9	35	13	923	$3 \quad 3$		14	101	15	M.	8	354	144	1011	18	4.201	$15 \quad 51$	1035	0
											10	4		$10 \quad 59$	0	58		122	
	10	4161	15	1032	110	442		1057	2	W.	11	528		1143	* 0	547	162		
	11	581	150	1122	07	533		1148	* 7	Th.	12	03	*0 8	68	1511	023	-	627	5
Tu.	12			555	15	011	*0 3	6181	167	F.	13	041	*0	646	15			74	5
W.	13	033	1	638	16	053	* 0	659	166	S.	14	119		718	15	134	0	735	14
Th	14	112	* 10	716	16	131	* 0	731	160										
F	15	147	0	749	157	25	01	86	154	S.	15		010	751	14		15		131
S.	16	222		822			011	838	145	M.	16	223	2	824	14	238	11	838	3
										Tu.	17	252	$3 \quad 2$	852		36	211	91	12
S.	17	253	16	851	4	3	5.21	9		W.	18	322	4	933	12	342	41	959	
M.	18	321	30	924	13	336	3	945	122	Th	19	4	56	1031	1110	4.45	411	116	10
Tu.	19	367	43	102	2	412	44	1031	111	F.	20	524	46	1147	117	64	52		
.	20	444	56	113	116	521	15	1144	10	S.	21	031	1010	646	510		122	723	4
Th.	21			$6 \quad 2$		030	116	645	5										
F.	22	113	108	727	510	158	12	810	43	S.	22	148				224		840	3
S.		235	116	851	,	3	913	927	31	M.	23	253	126	911	3	320	13	937	2
											. 2	342		959	2	4.51	14.4	1021	1
S.	24	340	127	957			1311	1021	21	W.	25	426	614	1042	1	4461	150	11.1	0
M.	25	426	13 5	1042	26	6447	14.7	11.	13	Th.	26		6151	1120	0	524	154	1139	0
Tu.	26	561	143	1120	1	5524	415	1138	0	F.				1159	0	611			
W.	27	5401	150	1155	07	7557	15					017		620	15	035	$\text { * } 0$	641	15
Th	28	013	*	615	15	029	10	630											
F.	29	045	* 0	648	15	1	10	75		S.	9		400			114		718	
S.	30	119		719		135	0	736					30	737		153	0	759	
										Tu.	. 31	215	1	821	15	236	010	843	

* Signifies below Datum.

The tides are placed in order of occurrence, p.m. times and heights being printed in large block type. A comparison of consecutive heights will indicate whether it is high or low water.

The times given are STANDARD, or mean time of the meridian of Greenwich. To obtain local mean time subtract 17 minutes.

TIDAL DATUM, Етс.

The zero of the predictions, which is also the datum of the Admiralty charts of Devonport, is $8 \cdot 42$ feet below Ordnance datum, and is the level of mean low water spring tides.

TIDAL DIFFERENCES ON DEVONPORT.

Place.	$\begin{gathered} \text { Lat. } \\ \text { N. } \end{gathered}$	$\begin{gathered} \text { Long. } \\ \text { W. } \end{gathered}$	Time of		Height of H. W.		Height of L. W,	
			H. W.	L. W.	Springe.	Neaps.	Spring.	Neaps.
St. Mary's	495	${ }^{\circ} 619$	H. -117 -181	H. M. ...	$\begin{array}{r}\mathrm{F} \\ +0 \\ \hline\end{array}$	$\begin{array}{r}\text { F. } \\ -0 \\ \hline\end{array}$	$\begin{array}{cc}\text { F. } & \text { r. } \\ 0 & 0\end{array}$	$\begin{array}{rr}\mathbf{F} . & \mathbf{1} \\ -0 & 5\end{array}$
Fowey . .	5020	438	-027		-0 5	-06	00	-05
Dartmouth	5021	334	+030	...	-13	-15	00	-04
Tor Bay	5025	332	+014		-21	-20	00	-10
Exmouth .	5037	325	+041	...	-45	-38

H. W. F. \& C. $\left\{\begin{array}{lll}\text { XI'H. } & 12^{\text {m. }} & \text { (Local mean time). } \\ \text { XI. } & 7 . & \text { (Standard time). }\end{array} \quad\right.$ Lat. $51^{\circ} 7^{\prime}$ N. \quad Long. $1^{\circ} 19^{\prime} \mathrm{E}$.

Å	JANUARY.					FEBRUARY.				
	2313	75816		830162						
M. 3	$3{ }^{3}$	85717	131	80		28	2918	$652 * 0$		
Tu. 4	4421	9511711	5120	10171711	S. ${ }^{\text {5 }}$		$717 * 0$	19		
	5400	104418 5	680	11918			${ }^{1}$			
6	$636 * 0$	113818	1			02919	$1{ }^{*}$			
	0 0 1119 0	$730 * 0$	0311811		M.		8 40*1	14018	857	
S. 8	05119	$819 * 0$	120189	$640 * 0$	Tu.	15119	9 17**	21818	932	
		5 *0				23018	${ }^{9} 5330$	25516	0	
						3101611	10271	$\begin{array}{lll} 3 & 33 \\ \hline \end{array}$	10	
	$10{ }_{1} \mathbf{2}_{3} 2318$		253174	$10{ }^{3} 1$		$\begin{array}{llll} 3 & 62 & 15 & 8 \end{array}$		42014	1123	38
	$\begin{array}{l\|l\|l\|} 11 \\ 19 & 3 & 8 \\ 10 & 54 \\ \hline \end{array}$	$\begin{array}{llllll}10 & 28 & 0 & 11\end{array}$				45014	1115542	52813		
	$\begin{array}{l\|ll\|l} 12 & 3 & 54 & 16 \\ 13 & 4 & 48 & 15 \end{array}$		4 5 29015 1	$\begin{array}{lll} 1 & 27 & \overline{3} \\ \hline \end{array}$						
	$\begin{array}{l\|l\|l\|l\|} 13 & 4 & 48 & 15 \\ 14 & 0 & 24 & 4 \end{array}$			6361311	S.		$\begin{array}{lll} 6 & 5 & 13 \\ 7 & 33 & 13 \end{array}$	$\begin{array}{llll}1 & 10 & 4 & 11 \\ 2 & 39 & 4 & 9\end{array}$	$\begin{array}{ll} 6 & 50 \\ 8 & 1 B \end{array}$	
S. 15	1334	$7 \quad 514$	21640	749141	Tu. ${ }^{15}$	3 23	85414	454	${ }_{9} 19$	
	-	1	-	55	W. 16	4353	94815	53	0	
	16	8171411			Th. 17	5262	102816	5	10	
17	$174 \begin{array}{llll} & 4 & 2 & 3\end{array}$	91615	5		F. 18	65	1111610			
	459211	$10 \quad 316$	5242	6102416	S. 19	640	113317	654	1401	18 0
19	19545	${ }^{10} 42186$		211016						
20	20625110	111816	6441	13417						
21	21.7821	4115317				01218	$743 * 0$			
$[22$	22.0717	7361	02717	75013	W. ${ }_{\text {W }}{ }_{23}^{22}$	0 0 1 1 1518		18 1 14218	828 98	$\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}$
S. 23	230401710	$8 \quad 90$		682311	Th.	15718	9210	21717	934	
2	24.1318	8410	13717	8853011	T	23617	9560	25716	, 10	
25	$25.14618{ }^{1}$	$\begin{array}{llll}9 & 13 & 0\end{array}$	$\begin{aligned} & 213 \\ & 0 \end{aligned}$			3191	10341	4615	1054	24
26	$\begin{array}{c\|cc\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline 27 \\ 27 & 2 & 17 \\ \hline \end{array}$		$\begin{aligned} & 25016 \\ & 32916 \end{aligned}$	$\begin{array}{l\|c\|c\|c\|} 9 & 595 \\ 1 & 10 & 33 \end{array}$						
	$28{ }_{28}{ }^{2} 4816$	$\mathrm{ll}_{11}^{11} 1{ }^{1}$				${ }_{\text {Midt. }}{ }^{20}$	5 45 14			
S. 29	44915	1157	2614			3	72614	293		
30	30.0263									
M. 31	${ }^{1} 51$	3315	2413	$81415 \quad 5$						

* Signifies below Datum.

The tides are placed in order of occurrence, p.m. times and heights being printed in large block type. A comparison of consecutive heights will indicate whether it is high or low water.

The times given are STANDARD, or mean time of the meridian of Greenwich. To obtain local mean time add 5 minutes.

TIDAL DATUM, Etc.
The zero of the predictions, which is also the datum of the Admiralty chart of Dover, is 8.42 feet below Ordnance datum, and is 0.15 foot above the level of mean low water spring tides.

TIDAL DIFFERENCES ON DOVER.

Place.		$\begin{aligned} & \text { Lat. } \\ & \text { N. } \end{aligned}$	$\begin{gathered} \text { Long. } \\ \text { E. } \end{gathered}$	Time of		Helght of H. W.		Height of L. W.	
				H. W.	L. W.	Springe.	Neaps.	Springs.	Neaps.
Dungeness		5054	O 58	$\begin{array}{r}\text { I. } \\ -0 . \\ \hline\end{array}$	H. M.	$\begin{array}{r}\mathrm{F} . \mathrm{I} \\ +9 \\ \hline\end{array}$	$\begin{array}{r}\text { F. } \\ +48 \\ \hline\end{array}$. 1.	.
Deal		5113	125	+0 2	...	-22	-110		
Ramsgate		5120	125	$+031$.	-31	-16	+02	-14
Rotterdam		5156	430	+60
Beachy head		5044	014	+012	...	$+110$	$+08$		
Hastings.		5051	095	-016		+59	+32	$+02$	$+07$
Rye bay		5056	045	$+010$. -	+ 310	+211		...

H．W．F．\＆C．$\left\{\begin{array}{lll}\text { VIH．} & 29^{\mathrm{MM}} & \text {（Local mean time）．} \\ \text { VI．} & 30 & \text {（Standard time）．}\end{array} \quad\right.$ Lat． $53^{\circ} 44^{\prime}$ N．\quad Long． $0^{\circ} 19^{\prime} \mathrm{W}$.

	界	OCTOBER．						NOVEMBER．				$\begin{aligned} & \text { 昌 } \\ & \text { 足 } \\ & \text { 思 } \end{aligned}$	$\begin{aligned} & \text { 首 } \\ & \text { 男 } \\ & \text { 足 } \end{aligned}$	DECEMBER．								
		HIGH WATER．						HIGH WATER．						HIGH WATER．								
s.	1		F．${ }_{2} 1{ }^{\text {I }}$	$\begin{array}{rr} \mathbf{H} .4 \\ 832 \end{array}$	${ }_{20}{ }^{2}{ }^{1}$			932	P．${ }_{\text {P．}}^{18}$	959				$\begin{aligned} & \text { Hime. } \\ & \text { Mi } \\ & \hline 27 \end{aligned}$	${ }_{\text {F．}}^{\text {F }}$ H．	$\begin{array}{\|l\|} \hline \frac{\mathrm{H}}{\circ} \\ 10 \\ \hline \end{array}$						
	2	852	1911	912	192	Th．	2	1030	179	110	174	S．	2	1123								
Tu．	3	936	18	10	180	F．	3	1136	171													
W	4	1031	17	110	1610	S．	4	012	17	058	17					022						
Th	5	1136	16									M．		10		144	7					
F．	6	020	16	118		S.	5	148		2	1710	Tu．		225	179	1	180					
S．	7	215	170	258	17	M．	6	34	184	3	1810			333	183		18					
	8	3	185			Tu	7	$4{ }_{4}^{4}$	19	4	198	Th．		425	1810	447	19					
M．	9	427	1910	446	12	Th．	8	445						510	19							
Tu．	10	5	209	528	21		10	${ }^{5} 82$	20	5 627	${ }_{20}^{20} 8$		8				19					
W．	11	548	214	69			11	647	20 5	78	204	S	10	631	196	653						
Th	12	630	218	649	217							M．	11	714	196	7	仡					
F．	13	78	216	725	21		12	725	20	741	1911	Tu．	12	747	19	8	195					
S．	14	742	210	758	20			758	199	813	198		13	818	19	838	191					
								831	1810	851		Th	14	853		911						
	15		20	8		W．	15	910	1710	930	17	F．	10	929	18	950	179					
M．	16	852	1810	910	182	Th．	16	952	170	1018	168	S．	16	109	17	1032	173					
Tu．	17	930 1015	176	${ }_{9}^{951}$	1611	F．		1037	16	110	161											
Th．	19	119	15	1144		S．		31				M．		1051								
${ }_{\text {c }}$	20	－		019	153						18	Tu．	9	－ 2		033	16					
S．	21	111		20	159	M．		118	163			W．	20	17	16	149						
								238	$17 \quad 0$		17	Th．	21	231	17							
	22	240	16					337	1711			F．	22	340	1710	410						
M.	${ }_{24}^{23}$	3		4	1711	Th．	23	419	1811	437	19	S．	23	433	1811	459	19					
w．	25	457	196	512	1910	$\stackrel{\text { F．}}{\text { S．}}$		457 541	19 20		20	S．		519								
Th	26	529	203	547	206							M．	25	612	19	8 88						
．	27	${ }^{6} 6$	20	624	210	S．		623			2011	Tu．	26	72	21	728						
S．	28		21	76	211	M．		712		733	211	W．	，	750		813						
						Tu．		855	210	818	210	Th．	28	834	218	857	213					
	29			742		W．		838	20		20	F．	20	921		946						
M．	30	8	2011	821	20	Th．	30	930	19	958	19		30	1011	198	1033	193					
	31												31	10	18		18					
Mean tide level $10{ }^{\text {fr }}$ ． $5^{1 .}$								$\text { Approximate }\left\{\begin{array}{l} \text { Rise } 6^{\mathrm{H.} .} 0^{\mathrm{m} .} \\ \text { Fall } 6 \\ 25 . \end{array}\right.$														

P．M．times and heights are printed in large block type．
The times given are STANDARD，or mean time of the meridian of Greenwich．To obtain local mean time subtract 1 minute．

The zero of the predictions，which is also the datum of the Admiralty chart of Hull，is $10^{\circ} 07$ feet below Ordnance datum，and is the level of mean low water spring tides．

TIDAL DIFFERENCES ON HULL．

Place．	$\begin{gathered} \text { Lat. } \\ \mathrm{N} . \end{gathered}$	$\begin{aligned} & \text { Long. } \\ & \text { W. } \end{aligned}$	Time of H．W．	Height of H ．W．	
				Springs．	Neaps．
Grimsby	$5{ }^{5} 38$	$\bigcirc{ }^{\circ} \mathrm{f}$	B． M． -0 54	$\begin{array}{r}\text { F．} \\ -1 \\ \hline 1\end{array}$	P． -1. 1
Spurn point	$53 \quad 35$	${ }_{0}^{\text {E．}} 7$	－1 4	－2 2	－17
Bridlington		${ }_{0} \mathrm{~W}$.	－1 50		
Bridlington	54， 5	0 I1	－1 0	－4 11	-47

H. W. F. \& C. $\left\{\begin{array}{ll}\text { XIIH. } & 5 \mathrm{M} . \\ \text { XII. } & 24 .\end{array}\right.$ (Local mean time).

A습 NOVEMBER.

S.
 M.

WEEE ? •

\bar{w}

DECEMBER.

$\left\|\begin{array}{cc} \mathrm{H}_{-} & \mathrm{M}_{4} \end{array}\right\|$					
	9			$9 \quad 2$	
12	11	88		111812	
	11085	10	2		
	952			1017	
	51041	9	420	11	
442	01126			1111	
	- 519		0		
	85				
	$\begin{array}{lllllllll}9 & 10 & 6 & 35\end{array}$		1	10651	
144	9 10 710		2	910729	
, 20	8745	011	238	9785	
257	825		31		
332	9	16	350		
	5947	10	4279	94101	
	9110				
,	8101141	22			
	2631	8			
119	4739	8		818	
19	${ }^{8}$	8			
19	810	9	34	61025	
	$1 \begin{array}{llll}1 & 4 & 52\end{array}$			11114	
	0101142				
	10 0 5	0	03210		
$\begin{array}{ll}0 & 56 \\ 1 \\ 1\end{array}$	10 4 6 24 10 6	0	12310	-	
147	1067	0	21210		
2 37 3 25	106		3010	-	
	10				
			517	$7 \mid 1115$	

* Signifies betow Datum. Lat. $55^{\circ} 27^{\prime}$ N. Long. $4^{\circ} 46^{\prime} \mathrm{W}$.

The tides are placed in order of occurrence, p.m, times and heights heing printed in large block type. A comparison of consecutive heights will indicate whether it is high or low water.

The times given are STANDARD, or mean time of the meridian of Greenwich. To obtain looal mean time subtract 19 minutes.

TIDAL DIFFERENCES ON GREENOCK.

Place.	Lat.	Long.	Time of		Height of H. W.		Height of L. W.	
			H. W.	L. W.	Spriugs.	Neaps.	Springe.	Neaps.
Crinan.	56	$5{ }^{\circ} 3$	H. +512 +512	н. м.	$\begin{array}{r}\text { F. } \\ -4 . \\ \hline\end{array}$	F. -4 -4	F.	F. 1.
Lamlash .	5548	452	-015	\cdots	-0 3	-4 -1	\ldots	
Ardrossan.	5538	450	-016	\ldots	-0 0	-0 9	\ldots	
Ayr . ${ }^{\text {a }}$	5528	439	-016	\ldots	-16	-10	\ldots	
Clydebank	+ 044	+020	\ldots	

The zero of the prodictions, which is also the datum of the Admiralty ohart of the River Clyde antrance at Greenock, is 6.08 feet below Ordnance datum, and is 0.24 foot below the level of mean low
water spring tides.

ENGLAND, WEST COAST-LIVERPOOL.
H. W. F. \& C. $\left\{\begin{array}{l}\text { XI }^{\text {H. }} \\ \text { XI } \\ 35\end{array} \quad\right.$ (Lacal mean time).

* Signifies below Datum.

The tides are placed in order of occurrence, p.m. times and heights being printed in large block type. A comparison of consecutive heights will indicate whether it is high or low water.

The times given are STANDARD or mean time of the meridian of Greenwich. To obtain local mean bime subtract 12 minutes.

TIDAL DIFFERENOES ON LIVERPOOL.

Place.	$\begin{gathered} \text { Lat. } \\ \text { N. } \end{gathered}$	$\begin{aligned} & \text { Long. } \\ & \text { W. } \end{aligned}$	Time of		Height of H. W.		Height of L. W.	
			H. W.	L. W.	Springs.	Neaps.	Springs.	Neaps.
Port Carlisle	54 5'7	310	$\begin{array}{r}\text { H. } \\ +0 . \\ \hline\end{array}$	H. м.	F. 1.	F. 1.		F. 1.
Annan foot	5458	316	+043	...	$-0^{3} 5$	-32
Workington	5439	334	-01	...	$\begin{array}{lll}-3 & 2\end{array}$	$\begin{array}{lll}-3 & 2\end{array}$.	
Whitehaven	5433	336	-07		$\begin{array}{ll}-3 & 2\end{array}$	-411	$+11$	+010
Fleetwood,	$53 \quad 57$	32	-0 12	\ldots	-15	-18	+03	-0
Hilbre itland. .	5323	313	-022		-1 2	0 0	-0 2	-0
Beaumaris.	5316	45	-049	...	-58	-68

The zero of the pradiotions, whioh is also the datum of the Admiralty chart of Liverpool, is 14.66 eet below Ordnanoe datum, and is $1 \cdot 40$ feet below the level of mean low water spring tides.

H．W．F．\＆C．$\left\{\begin{array}{lll}\text { VI } \\ \text { VI．} & \text { 12M．} & \text { 32．}\end{array}\right.$（Local mean time）．（Standard time）．\quad Lat． $51^{\circ} 42^{\prime}$ N．Long． $4^{\circ} 57^{\prime} \mathrm{W}$.

	情	JULY．					$\begin{aligned} & \text { M } \\ & \text { A } \\ & \text { 䍚 } \\ & \text { a } \end{aligned}$	AUGUST．					曷A男Cand	SEPTEMBER．			
		HIGH WATER．						HIGH WATER．						HIGH WATER．			
		Time．						䢒，									
S．	1		$\stackrel{\mathrm{F}_{2} .}{\mathbf{I}_{2}}$				－	$\begin{array}{r} \text { B. } \\ \mathbf{7} \frac{4}{45} \end{array}$						$\begin{gathered} \mathbf{H}_{8} \\ 8 \\ \hline \end{gathered}$			
							2	815	215	831	215		2	852	216		
S.	2	7		751	204		3	848	214		213						
M．	3	8			204		4	923	2010	940	208	S ．	3	927		946	
${ }_{\text {Tu }}$	4	8 418	20	859			5	957	201	1015	188	M．		$10{ }^{10}$	194	1028	188
$\frac{\mathrm{W}}{\mathrm{Th}}$	5 6	918 9 9	$\begin{array}{ll}20 & 2 \\ 19 & 9\end{array}$	35	1911			1034			188	Tu．	6	1056 1159	18 18 11	1124	
F．	7	－ $\begin{array}{r}953 \\ 1029\end{array}$	19	1011	1811	M．	7	10 11 19	181	1144	17	Th．	6	0 44	1610	136	
S．	8		18	1128	182		8		－	018	17	F．		220	178	311	
							9	053	171		17	S．		346	19	421	207
	9	11	1710				10	231	179	314	18						
M	10	01	178	047		F．	11	355	196	432	20	S ．	10	449	21.	15	
Tu	11	12	178		1711	S．	12		21	534.	221	M．	11	542	231		236
W	12	249	18	327								Tu．	12	626	2311	844	241
	13		199	441	208	S.	13		2210	828		W．	13	75	$24{ }^{2}$	725	24
．	14	514	212	545	2111	M．	14	649	2310	713	24	Th．	14	743			23
S．	15	615	22 6	642		Tu．	15	733 814	$\begin{array}{ll}24 & 2 \\ 23 & 9\end{array}$	753 834	24		${ }_{16}^{15}$	819	$\begin{array}{ll}22 & 8 \\ 21 & 5\end{array}$	838	22
	16			7			17	814 852	$\begin{array}{lll}23 & 9 \\ 22 & 11\end{array}$	8 811			16				
M．	17	752	${ }^{23} 8$	818		F．	18	930	217	947	20	S.	17	933		950	1810
Tu．	18	840			2211	S ．	19	10	1911	1025	190	M．	18	1010	180	1032	
W．	19	924	226	945	2111							Tu．	19	1054	164	1124	158
T	20	10	213	1024		－	20	1042	183	113	174	W．	20				154
S．	21	1043	1911			M．	21	1128	16.6			Th．	21	041		130	
S．	22	1124	18	1144	17	Tu．	${ }^{22}$	$\begin{array}{ll}0 \\ 1 & 1 \\ 20\end{array}$	1510	036 28		IF．	22	213 330	15 17	25	
	23					Th．	24	253	16	331	18						
I．	24	041		118	183	F．	25	43	173	431	18	，	24	422		442	195
Tu．	25	159	16	244	18		26	457	18	517	19	M．	25	$5{ }_{5}^{5}$	20	521	
$\begin{aligned} & \text { W. } \\ & \text { Th. } \end{aligned}$	26	32	1610	357								Tu．	26	$\begin{array}{ll}5 & 39 \\ 6 & 13\end{array}$	21	556 829	21
F．	28	521	1810	443	18	M．	28	614	210	829	21	T	28	644	229		
S．	29	B	198	625	20	Tu．	旺	646	2110	72	22	F．	29	717	2210		
							30	718	22	731		S．	30	752	22		
．	30	643	20	658			31	746	22	8	22						
M．	31	7	210	30													

Mean tide level 12F． $\mathbf{0}^{\text {r }}$ ．
Approximate $\left\{\begin{array}{l}\text { Rise } 6^{\mathrm{H}} .10^{\mathrm{M}} \text { ．} \\ \text { Fall } 6{ }^{-15 .} .\end{array}\right.$
P．m．times and heights are printed in large block type．
The times given are STANDARD，or mean time of the meridian of Greenwich．To obtain local mean time subtract 20 minutes．

TIDAL DIFFERENOES ON PEMBROKE DOCK．

The Tidal observation station was at H．M．dockyard．
The zero of the predictions，which is also the datum of the Admiralty charts of Milford Haven，is 11.82 feet below Ordnance datum，and is 1.50 feet below the level of mean low water spring tides．

H. W. F. \& C. \{ XIE. 12M. (Local mean time).
\{XI. 11. (Standard time).

Lat. $53^{\circ} 18^{\prime} \mathrm{N} . \quad$ Long. $6^{\circ} 7^{\prime} \mathrm{W}$.

* Signifies below Datum.

The tides are placed in order of occurrence, p.m. times and heights being printed in large block type. A comparison of consecutive heights will indioate whether it is high or low water.

The times given are STANDARD, or mean time of the meridian of Dublin, or $6^{\circ} 20^{\prime} \mathrm{W}$. from Greenwioh. To obtain local mean time add 1 minute.

The zero of the predictions, which is also the datum of the Admiralty chart of Kingstown, is 1.75 feet above Ordnance datum, and is 0.84 foot below the level of mean low water spring tides.

TIDAL DIFFERENCES ON KINGSTOWN.

Place.	Lat.	Long.	Time of		Helght of H. W.		Height of L. W.	
			H. W.	L. W.	Springs.	Neaps.	Springs.	Neaps.
Wicklow	5259	\bigcirc	$\begin{array}{r}\text { F. } \\ -048 \\ \hline\end{array}$	н. м.		Fr. ${ }^{\mathbf{F}} \mathbf{3}$	I.	x. 1.
Warren point.	546	615	-0 2	...	+40	+17	+02	$+2$
Strangford quay .	5422	533	+116		$\begin{array}{ll}-1 & 5\end{array}$	$\rightarrow 13$	-0 10	-1
South rock .	5424	525	-017	..	+13	+10	-0 10	-1
Donaghadee .	5438	532	-02	...	+06	$+05$	-0 10	-011

p.m. times and heights are printed in large block type.

The times given are STANDARD, or mean time of the meridian of Dublin, or $6^{\circ} 20^{\circ} \mathrm{W}$. from Greenwich. To obtain local mean time subtract 11 minutes.

The zero of the predictions, which is also the datum of the Admiralty chart of Galway, is 1.30 feet above Ordnance datum, and is 0.75 foot below the level of mean low-water spring tides.

TIDAL DIFFERENCES ON GALWAY.

H. W. F. \& C. $\left\{\begin{array}{l}\mathrm{XI} \\ \mathrm{XI} . \\ \mathbf{2 1}^{\mathrm{M}},\end{array} \quad\right.$ (Looal mean time).
XI. 45. (Standard time).

Lat. $45^{\circ} 16^{\prime} \mathrm{N}$. Long. $66^{\circ} 3^{\prime} \mathrm{W}$.

* Signifies below Datum.

The tides are placed in order of occurrence, p.m. times and heights being printed in large block type. A comparison of consecutive heights will indicate whether it is high or low water.

The times given are STANDARD, or mean time of the meridian of $60^{\circ} \mathrm{W}$. from Greenwich. To obtain local mean time subtract 24 minutes.

TIDAL DIFFERENCES ON ST. JOHN.
The zero of the predictions, which is also the datum of the Admiralty chart of St. John, is 55.60 feet below a bench mark near the south-east corner of the Custom House, and is approximately $2 \frac{1}{4}$ feet below the level of mean low water spring tides.

Place.	Lat.	Lrong. W.	Time of		Height of H. W.		Height of L.W.	
			H. W.	L. W.	Springs.	Neaps.	Springe.	Neaps.
	$\stackrel{\circ}{4} 37$	$6^{\circ} 51$	H. M	H. 21.	F. r. 5 6	$\begin{array}{cc}\text { F. } & 1 \\ 6 & 6\end{array}$	P. L.	F. 1.
Seal Cove	4437		-0 22		-5 0	16
Welchpool	4453	6658	+02	+010	-2 0	-1 6
St. Andrews.	$45 \quad 4$	$67 \quad 3$	+08	+018	-06	00 +36	...	\ldots
Quaco . .	4520	6532	+012	...	$+46$	$+36$. \cdot	...

H. W. F. \& O. VIIH. $43^{\text {M. }}$

Lat. $38^{\circ} 54^{\prime}$ N. Long. $50^{\circ} 43^{\prime} \mathrm{E}$.

DECEMBER.

Time		Tim	Ht.	Time.	Ht.
H. M.				H.	
116	211	59	25	111	5
7	010		3	644	2
747		256		826	2
834	15	338	4	010	2
921	8	417	481	134	
$10 \quad 7$	10	454	5		
638	2	1048		530	
738	2	1126	2	65	
831	2	Noon	2	640	5
917		033	2	715	
959	2		2	750	510
1036	2	142	2	825	58
117	2	219	2	9	5
1136	29	259	2	938	5
07	211	347	26	16	
042		445	271	055	
122		555	2	137	
643	12	24	38	724	
716	1	247	4	920	2
754	1	330	4	1125	2
838		412	50		
545	2	928	19		56
659	2	1022		535	
	23	1118		618	6
852	2	015	111	$7 \quad 3$	6
936	2	113	11	750	6
1015	28	212	11	837	6
053	211	313	11	925	5
131	3	416	11	014	53
010	3	523	2	114	4
051	311	639	2		3

[^12]* Signifies below Datum.

The tides are placed in order of occurrence, p.m. times and heights being printed in large block type. A comparison of consecutive heights will indicate whether it is high or low water.

The times given are LOCAL MEAN TIME.
PERSIAN GULF.

Place.	Position.			H. W. F. \& C.		Rise.	
	Latitude.	Longitude.	$\begin{gathered} \text { Long. } \\ \text { in Time. } \end{gathered}$	M. T. Place.	G. M. T.	Springe.	Neape.
	N.	E.	H. M.	H. м.	H. M.	Feet.	Feet.
Kuweit - . . .	2922	480	312	013	91	111 $\frac{1}{3}$	8
Shatt al Arab: Al Basra	3030	4753	312	60	248	9	
Abu Shamr or Bushire	290	5043	328	743	420	6	5
Henjam island anchorage	2641	5554	344	1130	746	$10 \frac{1}{4}$	71
(12)							

arW3802 Cornell University Library

[^0]: Tbe Equation of Time is least about April 15th, June 15th, August 31st, and December 24th; and greatest about February 10th, May 14th, July 20th, and November 2nd in each year.

[^1]: ${ }^{1}$ So called because Fahrenhcit, a German, in 1\%21, first suggested this method of graduation.

[^2]: ${ }^{1}$ Named after Celsius, a Swede, who, about 1743, suggested this method of graduation.
 ${ }_{2}$ Called after its proposer, Réaumur, a Frenchman, about 1743.

[^3]: ${ }^{1}$ For a similar reason, the part of coofficiont B due to vertical iron before or whaft the compase might be distinguished as B_{1}.

[^4]: ${ }^{1}$ The term aub-permanent magnetism in these questions is used in the original sense as proposed by the late Sir G. B. Airy, to denote the oharaoter of the permanent magnetism of an iron ship as distinguishod from tho permanent magnetism of a magnetized sterl bar. The terms "sub-permanent" and "permanent" throughout chose questions may, therefore, be considered as synonymous.

[^5]: ${ }^{1}$ See footnote, p. 300.

[^6]: ${ }^{1}$ The process of finding time azimuths hy the ordinary formulæ of spherical trigenometry is tedious, and since on board an iron ship these observations should he often repeated, the candidate will be allowed to use any table or graphio or linear method that will solve the problem within a half of a degree, the altitude of the heavenly body not being given.

[^7]: ${ }^{1}$ The dipping needle is weighted to counterbalance the natural dip, so that it is horizontal when not on the model.

[^8]: * Mean Time of the Semidiameter passing may be found by subtracting $0^{*} \cdot 18$ from the Sidereal Time.

[^9]: * The Semidiameter for Apparent Noon may be assumed the same as that for Mean Noon.

[^10]: * Mean Time of the Semidiameter passing may be found by subtraoting 0 . 18 from the Sidereal Time.

[^11]: * The Semidiameter for Apparent Noon may be assumed the same as that for Mean Noon.

[^12]: 1.

 0
 6

