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Our users are creative

Give them tools!

Thursday, July 12, 12

Our users are creative: give them tools and they will make awesome things! Many great 
features on Wikipedia, Commons, etc have started out as customized site JavaScript, template 
hacks, or other fun things. Some stay that way, others get transitioned to core or extension 
features.
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Site JS & Gadgets NO YES YES
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Wikitext templates are the “native wiki” extension method, but interactivity and HTML support 
is limited to what MediaWiki and its extensions can provide. Beyond that you have to move to 
user scripts or site JS -- giving you full access to the HTML/JavaScript stack, but limiting 
either who can create them or who can use them. Only you see your user scripts, and others 
have to opt in to share them. Site JS can be used by anyone, but can only be edited by 
administrators -- both of these limitations are for safety.
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So what can we do to let people use the full power of HTML and JavaScript, without putting 
artificial limitations on who can create or use them? How could we embed arbitrary HTML and 
JavaScrript into content safely?



oEmbed
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I first became interested in embedding when doing work on StatusNet. It uses the oEmbed 
discovery & query protocol to fetch thumbnail images for Flickr, YouTube, etc links 
embedded in posts. oEmbed also allows for sending arbitrary HTML to embed videos and 
such directly, but taking foreign HTML is a security risk.



oEmbed

Y U NO VIDEO CLIP??
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Thinking embedding would be useful for wikis too, I did some research on how to use things 
like oEmbed more safely. The spec recommends using an iframe and a separate domain, 
though this can be tricky to implement for smaller sites.



Same-origin JS

Window A
example.org

Window B
example.org

myvar myvar
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Browsers allow different windows, tabs, or frames that live in the same domain (same-origin 
rule) to access each others’ variables and functions directly. This is convenient, but means 
that simply opening another page and putting arbitrary JavaScript into it is a big security 
hole.



Cross-origin JS

Window A
example.org

Window B
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Browsers enforce JavaScript & DOM security by forbidding direct access between windows 
running on separate domains. This effectively prevents different sites’ JavaScript from 
interfering with each other, unless you have XSS security holes of course!



window.postMessage

Window A
example.org

Window B
example.org

postMessage()
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onmessage

postMessage()onmessage
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The window.postMessage() interface is supported by all major browsers, and allows sending 
strings or JSON objects across domains. Because any cross-domain action is potentially 
dangerous, you have to opt in to receiving the messages with an event handler, and you have 
some responsibility for making sure your communications are safe.



iframe!
Window A

example.org

iframe B
example.org

postMessage() onmessage

postMessage()onmessage
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An iframe embedded in another window acts just like two separate windows or tabs. Plus, we 
get to verify that the parent window won’t change, so it makes our messaging more secure. 
Any message from the parent can be assumed to be trusted for our purposes.



iframes for sale
old iframes for new
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So how do you go about making an iframe on a foreign domain without having to control 
your own extra servers and extra domains and worry about sticking content onto those extra 
domains?
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Answer: make ONE domain that lets you inject arbitrary code, but only when used as an 
iframe. Currently I have an experimental version up at embed-sandbox.wmflabs.org
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I’ve got a simple MediaWiki extension which embeds the iframe, then lets you inject 
JavaScript code into it to execute.
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This example graphs the Mandelbrot set on a <canvas> element.
Note that the scripts don’t *have* to be in MediaWiki: namespace, I’ve just done that for the 
convenience of triggering the CodeEditor extension.



how it woooorks
Window A

example.org

iframe B
example.org

frame is ready

Run this JS pls kthxbai

ok
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The embedding iframe sends a message to the parent window informing it when it’s ready: 
with jQuery loaded etc. The parent frame knows the message is secure because it owns the 
iframe, it’s not an arbitrary window. The parent then sends back the JavaScript to execute -- 
which the child frame knows is safe because it trusts its parent explicitly.



Let’s make a game
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-> go to demonstration
-> demonstrate mandelbrot & pythag examples 
-> show building US state name guessing game from an SVG file and a little code.



Needs some polish

• Sizing other than 640x480!

• Auto-play vs click-to-play

• Wildcard subdomains for more security

• Debugging tools
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