
Embedded scripting:
Graphs, maps, games, and other exciting goodies to 

stick in your MediaWiki site

Brion Vibber
Wikimedia Foundation

Wikimania 2012
July 13, Washington DC

Thursday, July 12, 12



Our users are creative

Give them tools!

Thursday, July 12, 12

Our users are creative: give them tools and they will make awesome things! Many great 
features on Wikipedia, Commons, etc have started out as customized site JavaScript, template 
hacks, or other fun things. Some stay that way, others get transitioned to core or extension 
features.



Anyone 
can 

create

Anyone 
can use

Full 
HTML/JS 

stack

Wikitext templates YES YES NO

User scripts YES NO YES

Site JS & Gadgets NO YES YES

Thursday, July 12, 12

Wikitext templates are the “native wiki” extension method, but interactivity and HTML support 
is limited to what MediaWiki and its extensions can provide. Beyond that you have to move to 
user scripts or site JS -- giving you full access to the HTML/JavaScript stack, but limiting 
either who can create them or who can use them. Only you see your user scripts, and others 
have to opt in to share them. Site JS can be used by anyone, but can only be edited by 
administrators -- both of these limitations are for safety.



Anyone can 
create

Anyone can 
use

Full HTML/JS 
stack

Wikitext templates YES YES NO

User scripts YES NO YES

Site JS & Gadgets NO YES YES

????? YES YES YES

Thursday, July 12, 12

So what can we do to let people use the full power of HTML and JavaScript, without putting 
artificial limitations on who can create or use them? How could we embed arbitrary HTML and 
JavaScrript into content safely?



oEmbed

Thursday, July 12, 12

I first became interested in embedding when doing work on StatusNet. It uses the oEmbed 
discovery & query protocol to fetch thumbnail images for Flickr, YouTube, etc links 
embedded in posts. oEmbed also allows for sending arbitrary HTML to embed videos and 
such directly, but taking foreign HTML is a security risk.



oEmbed

Y U NO VIDEO CLIP??

Thursday, July 12, 12

Thinking embedding would be useful for wikis too, I did some research on how to use things 
like oEmbed more safely. The spec recommends using an iframe and a separate domain, 
though this can be tricky to implement for smaller sites.



Same-origin JS

Window A
example.org

Window B
example.org

myvar myvar

Thursday, July 12, 12

Browsers allow different windows, tabs, or frames that live in the same domain (same-origin 
rule) to access each others’ variables and functions directly. This is convenient, but means 
that simply opening another page and putting arbitrary JavaScript into it is a big security 
hole.



Cross-origin JS

Window A
example.org

Window B
example.org

myvar myvar

W
A
L
L

O
F

D
O
O
M

Thursday, July 12, 12

Browsers enforce JavaScript & DOM security by forbidding direct access between windows 
running on separate domains. This effectively prevents different sites’ JavaScript from 
interfering with each other, unless you have XSS security holes of course!



window.postMessage

Window A
example.org

Window B
example.org

postMessage()

W
A
L
L

O
F

D
O
O
M

onmessage

postMessage()onmessage

Thursday, July 12, 12

The window.postMessage() interface is supported by all major browsers, and allows sending 
strings or JSON objects across domains. Because any cross-domain action is potentially 
dangerous, you have to opt in to receiving the messages with an event handler, and you have 
some responsibility for making sure your communications are safe.



iframe!
Window A

example.org

iframe B
example.org

postMessage() onmessage

postMessage()onmessage

Thursday, July 12, 12

An iframe embedded in another window acts just like two separate windows or tabs. Plus, we 
get to verify that the parent window won’t change, so it makes our messaging more secure. 
Any message from the parent can be assumed to be trusted for our purposes.



iframes for sale
old iframes for new

Thursday, July 12, 12

So how do you go about making an iframe on a foreign domain without having to control 
your own extra servers and extra domains and worry about sticking content onto those extra 
domains?



Thursday, July 12, 12

Answer: make ONE domain that lets you inject arbitrary code, but only when used as an 
iframe. Currently I have an experimental version up at embed-sandbox.wmflabs.org



Thursday, July 12, 12

I’ve got a simple MediaWiki extension which embeds the iframe, then lets you inject 
JavaScript code into it to execute.



Thursday, July 12, 12

This example graphs the Mandelbrot set on a <canvas> element.
Note that the scripts don’t *have* to be in MediaWiki: namespace, I’ve just done that for the 
convenience of triggering the CodeEditor extension.



how it woooorks
Window A

example.org

iframe B
example.org

frame is ready

Run this JS pls kthxbai

ok

Thursday, July 12, 12

The embedding iframe sends a message to the parent window informing it when it’s ready: 
with jQuery loaded etc. The parent frame knows the message is secure because it owns the 
iframe, it’s not an arbitrary window. The parent then sends back the JavaScript to execute -- 
which the child frame knows is safe because it trusts its parent explicitly.



Let’s make a game

Thursday, July 12, 12

-> go to demonstration
-> demonstrate mandelbrot & pythag examples 
-> show building US state name guessing game from an SVG file and a little code.



Needs some polish

• Sizing other than 640x480!

• Auto-play vs click-to-play

• Wildcard subdomains for more security

• Debugging tools

Thursday, July 12, 12



Brion Vibber
bvibber@wikimedia.org
brion on freenode.net
@brionv
http://brionv.com

Thursday, July 12, 12

mailto:bvibber@wikimedia.org
mailto:bvibber@wikimedia.org
http://brionv.com
http://brionv.com

