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ABSTRACT 

Today, the responsibilities of the Bundeswehr (German Armed Forces) have 

become broader and increased in scope. The basic readiness and training requirements for 

each German service member to be employed domestically (for national defense or a 

state of emergency) or deployed internationally are focused on training and qualification 

with small arms. 

This thesis describes a two-stage scenario robust integer linear optimization 

model of logistic supply channels of the German Armed Forces for the transportation of 

small-arms ammunition. Based on different study cases, we explore how individual units 

should be optimally assigned to a primary and alternate supply depot. To accomplish this, 

we optimize the supply routes for each unit by calculating the shortest travel times 

meeting certain transportation requirements. We consider potential depots to open in the 

first stage of the model. We wish this decision to be robust to demand uncertainty and 

adaptability for future supply processes from the perspective of given supply 

perturbations. Our second-stage decisions reflect day-to-day vehicle routing decisions; 

these decisions are made after the daily demands are revealed. Finally, we analyze the 

results for three deterministic cases and a robust case including five demand scenarios. 
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EXECUTIVE SUMMARY 

The Bundeswehr (German Armed Forces) was originally constructed for the 

defense of the Federal Republic of Germany, but recently it has evolved to accomplish a 

wider range of tasks that it can be called upon to do. The responsibilities have become both 

broader and have increased in depth. Currently, the Bundeswehr is deployed across the 

globe to fulfill their obligations to North Atlantic Treaty Organization (NATO) and the 

European Union (EU), requiring at least basic levels of training with small arms for the 

qualification of each German service member. This training takes place on ranges at 

military bases throughout the nation. The ammunition that is required by the training units 

is currently supplied by and drawn from 13 separate supply depots. 

This thesis considers the optimization of the logistic supply channels for all units 

of the German Armed Forces for the transportation of small-arms ammunition. The goal is 

to increase the efficiency and save time and money for the German Armed Forces. 

To increase efficiency in the areas we consider, we formulate a two-stage integer 

linear program (ILP). The first stage of the model selects which depots to open. We wish 

this decision to be robust to demand uncertainty and adaptable to future supply 

perturbations. Our second-stage decisions reflect day-to-day vehicle routing decisions; 

these decisions are made after the daily demands are revealed. Based on different study 

cases we explore how individual units should be optimally assigned to a primary and 

alternate supply depot. We optimize the supply routes for each unit by calculating the 

shortest travel times given certain restrictions.  

Our analysis first considers three deterministic demand cases: the Base-Case, the 

Extended-Case and the Optimized-Case. These cases are based on historical demand data. 

The Base-Case represents the status quo, whereby the units draw the ammunition from one 

of the 13 existing supply depots, and no new depots are opened. The Extended-Case 

explores the actual future supply scheme of the German Armed Forces. The Ministry of 

Defense has recently decided to reopen three depots that had been closed. We show that 

the addition of these three depots decreases total travel time; however, the Optimized-Case 
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shows us the three depots which should be open from a mathematical perspective 

(independently of the Ministry of Defense decision). The total travel time for this case 

decreases significantly. For the deterministic demand cases, we conclude that the 

difference between the Base-Case and the Extended-Case is not very significant. Only the 

Optimized-Case results show a noteworthy improvement of the travel times of the 

customer and the utilization distribution of the depots. 

The second part of the analysis considers uncertain demand. To test the model from 

the perspective of robustness and future supply processes, we create two robust uncertainty 

cases including five different demand scenarios, labeled US-U1, US-U2, US-T1, US-T2, 

and US-T3. For the first two scenarios (US-U1 and US-U2) we use a uniform distribution 

to perturb the historical demand for 2017 and 2018. For the other scenarios (US-T1, US-

T2, and US-T3) we generate completely random demands for each unit, ammunition type 

and day using a triangle distribution. The results show that for all scenarios the customer 

depot assignments are identical and the same depots are opened. From this we conclude 

that these decisions are robust to future demand uncertainty. We proceed to do further 

analysis to underline this conclusion. Therefore, we simulate an outage of the most utilized 

depot and run the model again. All five scenarios results suggest the reopening of the same 

depots and only slight differences in the customer assignments. We conclude that this 

solution is robust to demand uncertainty.  
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I. INTRODUCTION 

A. BACKGROUND 

The Bundeswehr (German Armed Forces) is tasked through Article 87a of the 

German Constitution with the defense of the Federal Republic of Germany. For decades 

this was interpreted to apply to the defense against an imminent attack against the nation 

or one of its North Atlantic Treaty Organization (NATO) allies. Today, the Bundeswehr’s 

responsibilities have become broader and increased in scope. Currently, the Bundeswehr 

is deployed across the globe in direct support of operations in countries such as 

Afghanistan, Kosovo, Mali, Syria, and Iraq under either a United Nations mandate or to 

fulfill their obligations towards NATO and the European Union (EU).  

The basic readiness and training requirements for each German service member to 

be employed domestically (for national defense or a state of emergency) or deployed 

internationally are focused on the training and qualification with small arms (G36 assault 

rifle, P8 pistol, etc.). This requires regular training on live-fire ranges for all branches of 

the Bundeswehr. These trainings take place on military training areas and on ranges 

throughout the nation. The required ammunition is currently supplied by and drawn from 

13 separate supply depots.  

The Ministry of Defense has authorized the reactivation of depots in three different 

locations. This thesis investigates the problem of opening an optimal set of new depots to 

augment the existing set of depots, while simultaneously assigning training units to depots. 

Currently, ammunition is typically drawn by each training unit from the supply depot that 

is geographically closest. However, maximum storage capacities of the supply depots as 

well as available stock of required resources in storage must be considered and may 

necessitate longer routes. In allowing longer routes, we assume that the required 

ammunition for each unit should be picked up the morning of the small-arms training or 

the day before, while also considering the regulations regarding required rest periods for 

the driver.  



2 

This thesis formulates a scenario-robust integer linear program (ILP) and uses it to 

analyze several case studies incorporating deterministic and stochastic demand. The three 

deterministic cases (Base-Case, Extended-Case and Optimized-Case) are analyzed based 

on historical demand data, while the stochastic robust cases (Robust Extended-Case and 

Robust Optimized-Case) utilizes five different randomly-generated demand scenarios. 

B. LITERATURE REVIEW 

Optimization of logistic systems is a wide field, and many different tools and are 

used to address this class of problems. This literature review places emphasis on two-stage 

optimization models that include mixed integer linear programming. A two-stage 

optimization model contains two groups of decision variables: first-stage and second-stage. 

First-stage variables generally represent “strategic” decisions that are made subject to some 

uncertainty and that are generally long-term decisions. Second-stage variables represent 

“operational” decisions that may occur in the short term, after the values of uncertain 

parameters have been revealed.   

In [1], robust two-stage optimization problems are described as an “approach for 

solving network flow and design problems with uncertain demand.” The article goes on to 

explain: 

Unlike single-stage robust optimization under demand uncertainty, two-
stage robust optimization allows one to control conservatism of the 
solutions by means of an allowed “budget for demand uncertainty.” Using 
a budget of uncertainty, we provide an upper bound on the probability of 
infeasibility of a robust solution for a random demand vector. [1] 

A technical application for a two-stage stochastic optimization model is described 

in [2]. This research paper uses an approach to optimize a hybrid microgrid system by using 

ensemble weather forecast. It considers renewable energy sources, besides traditional 

power sources, to improve energy security and reduce costs for the U.S. military when 

operating in isolated scenarios. It uses a mixed integer linear program to prescribe an 

optimal operating power schedule (which will minimize the expected total cost) based on 

the ensemble weather data. The decision of which generators to use represents the first 

stage, and is constant across all weather forecast scenarios. Actual weather is revealed and 
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the additional generators are assigned. The other decision variables can vary depending on 

the different weather scenarios and represent therefore the second stage.  

The research in [3] and [4] describes the optimization of an inventory management 

problem for the German Armed Forces. This research considers how to optimally fill a 

“warehouse” with spare parts based on a two-stage stochastic programming model under 

two different scenarios (foreign mission and homeland) of deployment. The goal is to 

maximize the overall availability of the systems. The first stage decides which parts should 

be included in the warehouse stock and in the second stage determines which of the parts 

are assigned to failed systems in order to repair them.  

In contrast to the described references, in our model the first-stage decision 

variables represent the set of depots to be reopened. We wish this decision to be robust to 

demand uncertainty. Our second-stage decisions reflect day-to-day vehicle type routing 

decisions; these decisions are made after the daily demands are revealed. This framework 

allows modelers to find first-stage decisions that are robust to uncertainty in input data, 

while permitting second-stage decisions to utilize information as it becomes available.  

C. OBJECTIVES 

This thesis formulates an ILP to optimize the currently executed standard operating 

procedures and distribution scheme, based on the data received from the German Army 

Logistic Center. To engage this problem, we consider the following research questions:  

1. How should individual units be optimally assigned to a primary and 

alternate supply depot for the depots currently open (Base-Case) and the 

set of depots selected for opening by the Ministry of Defense (Extended-

Case)? 

• What is the most efficient route for each of the used vehicle types? 

This calculation considers background information such as weight 

limits of streets and bridges, height limits for tunnels, and usage 

restrictions for transporting hazardous material and explosives. 
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Additionally, the model considers the storage and turnover capacity 

of each of the supply depots. 

2. Which three locations would be the optimal locations to reactivate 

(Optimized-Case) and how would their reactivation provide the most 

benefit toward ammunition availability? 

• Based on the findings of Question 1 this thesis provides a 

recommendation as to which three locations should be reactivated. 

We compare the results with the decision which was already made 

by the German Armed Forces for the reopening of three supply 

depots.  

3. Is the new distribution scheme robust and adaptable for future supply 

processes from the perspective of given supply perturbations and demand 

uncertainties?  

• Based on the findings of Question 2 this thesis explores the effects 

of defined uncertainties on the model output.  

D. SCOPE, LIMITATIONS AND ASSUMPTIONS  

This research models the supply channels of small-arms ammunition and 

determines the optimal supply routes for all units of the German Armed Forces. To ensure 

that no conclusions can be made about the defense capability of the German Armed Forces, 

we use notional values for certain data such as the maximum total storage capacity and the 

handling capacity of the supply depots. Furthermore, we do not consider the supply of the 

units deployed on foreign missions. This research is not intended to optimize the inventory 

of the supply depots. Rather, we focus on the robustness of the small-arms ammunition 

supply network for the next decade. 
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E. CONTRIBUTION AND OUTLINE 

This thesis aims to improve the overall logistical effectiveness of the German 

Armed Forces supply network, for the transportation of small-arms ammunition. This 

benefits the German Armed Forces by saving time and money. 

In Chapter II we describe our mathematical model. The goal of the model is to 

optimize the total travel time of all units of the German Armed Forces.  

The model implementation is described in Chapter III. We use Pyomo to solve the 

developed model in a computational environment [5].  

Chapter IV describes our input data, which is required to run and solve the model. 

The raw data was provided by the German Armed Forces Logistic Center. We cleaned and 

processed the data. Missing data is identified and then manually determined or calculated 

by using scripts.  

Finally, we analyze the results for all cases and test it from the perspective of 

robustness and future supply processes. Thereby, the first part of Chapter V explores 

deterministic demand cases. We determine the optimal solution for the status quo case 

(Base-Case). In the next step we solve the model for the actual future supply scheme 

(Extended-Case). Finally, we explore which three locations would optimize the supply 

chains best, assuming the locations which were closed in the recent years are considered 

and allowed to reactivate (Optimized-Case). The second part of Chapter V extends the 

model for uncertainty regarding the annual demand for the customers and compares the 

results with the deterministic demand cases. 
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II. MODEL 

This chapter describes the model used to test the different cases.  

A. DESCRIPTION  

The 13 current supply depots are spread across Germany. In 2018 the German 

Ministry of Defense decided to reopen three additional supply depots that had previously 

been closed, making a total of 16 depots. Our model considers the question of which depots 

to open while optimizing the travel times of all units (henceforth called customers). For the 

stochastic demand cases we incorporate five different demand scenarios. The model 

incorporates time steps, with one step representing one day. These time steps are necessary 

to decide whether the ammunition should be picked up on the day of small-arms training, 

or the day before. The model uses binary decision variables to represent its two main  

decisions: which depots are reopened, and which depots each customer should be assigned 

to. The required input data for the model is described in Chapter IV. 

B. INDICES AND SETS 

Our model contains multiple sets representing relevant entities for the problem. 

Besides the sets of the depots  and the set of the customers , there is a set of different 

ammunition types , which are selected based on the different types of arms used in the 

live-fire training. The vehicle set  contains the two different vehicle types (regular or 

heavy). For each vehicle type, the customer can pick up the ammunition within a set of 

time steps . One time step is considered to be one day. To assess which depots should be 

reopened from a mathematical perspective independent from the Ministry of Defense 

decision, the model considers a set  which represents the potential supply depots to 

reopen. The set  contains the different demand scenarios which we are using for the 

second stage of our model. To ensure the resupply events of the supply depots we introduce 

a set of resupply events . The  set is used to indicate whether each customer k draws 

the ammunition for day t on day t or the day before (t′), based on the travel time to each 

depot d with each vehicle type v. Table 1 shows the indices and sets used for the model. 
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Table 1. Indices and sets  

 
 

C. PARAMETERS 

Table 2 shows the parameters used for the model. 

Table 2. Parameters  

 
 

The parameter bk,m,t,s represents the demand of a customer  for the different 

ammunition types  in a time step  for the different scenarios . The travel 

time ck,d,v is the parameter used in the objective function which determines the time the 

customer  needs to reach a certain supply depot  by using a regular or heavy 

transport vehicle . Each depot has a certain total storage capacity gd. The maximum 

capacity of a regular and heavy transport vehicle is assigned to the parameter hv. The supply 

depots  hold various capacities for small-arms ammunition types  which are 

represented by the parameter ld,m. With the parameter  we can flexibly adjust the resupply 

events of the depots within the set . The parameter  represents the number of depots 
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which we are going to reopen. Lastly, the supply depots have certain handling capacities 

wd per day.  

D. DECISION VARIABLES  

The model uses three families of binary decision variables. The binary decision 

variable od equals one if depot d is reopened and zero otherwise (2.1). The binary decision 

variable xk,d,v equals one if customer  is assigned to supply depot  when using 

vehicle type  and equals zero otherwise (2.2).These variables represent our first-stage 

decisions. Our second-stage decisions reflect day-to-day vehicle type routing decisions; 

these decisions are made after the daily demands are revealed. Therefore, we use the binary 

decision variable uk,d,v,t,s, to indicate that customer  sends vehicle type  to 

supply depot  to satisfy the demand for time  in a scenario  (2.3).  

 
 

E. OBJECTIVE FUNCTION 

The objective function (2.4) calculates the total travel time for all customers. 

 

F. CONSTRAINTS 

The following constraints limit the values of our decision variables. These 

constraints were developed based on guidance from the German Armed Forces Logistic 

Center. 
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1. System State 

 

Constraint (c.1) ensures that each customer is assigned to only one supply depot 

per vehicle type. Constraint (c.2) makes sure that each customer sends one vehicle to an 

assigned depot per time step per scenario, if there is a demand to satisfy for the customer 

within the time step and scenario. Constraint (c.3) ensures that the vehicles are deployed 

based on the supply depot assignment. This ensures that the customers can send the two 

different vehicle types to different depots to pick up the ammunition.  

2. Capacity and Demand 

 
Constraint (c.4) implements the total storage capacity of the supply depots. We 

have to make sure that the total ammunition supplied to customers during a resupply 

interval does not exceed the actual storage capacity of the depots. The same applies for the 

storage capacity for the individual small-arms ammunition types, which is ensured by 

constraint (c.5). The storage capacity for the vehicle types is defined by constraint (c.6). 

Thereby, the choice of which vehicle to use is based on the demand of the customer, which 

does not exceed the actual storage capacity of the chosen vehicle type. Constraint (c.7) 

implements the different handling capacities for all supply depots.  
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3. Depot Operation  

 

 

Constraint (c.8) ensures that customers are only assigned to an open depot. The 

number of depots to reopen equals three for our model (c.9). Finally, constraint (c.10) 

defines the domain of the decision variables. 

  



12 

THIS PAGE INTENTIONALLY LEFT BLANK 



13 

III. IMPLEMENTATION 

This chapter describes how the developed mathematical model is implemented in a 

computational environment. We implement the model using the Python software package 

Pyomo. Pyomo allows us to formulate optimization problems in a manner similar to the 

notation commonly used in mathematical optimization [5]. 

The optimization model is initialized with an external Excel file. The data described 

in Chapter IV is processed and thus made usable for the Pyomo model environment. The 

sets, indices, parameters, decision variables, constraints, and the objective function 

described in Chapter II are implemented in Pyomo syntax.  

We calculate customer travel times to represent a one-way drive from the customer 

to each depot. To decide whether a customer picks up the ammunition on the same day or 

the day before the small-arms training, a threshold variable is necessary. This variable is 

set to the value 240. If a customer needs more than 240 minutes for a one-way drive, the 

ammunition must be picked up a day before the small-arms training. If the travel time is 

less than or equal to 240 minutes the ammunition will be picked up at the same day. 

Therefore, the maximum driving time per day is 480 minutes (8 hours). If we assume a 

loading time of an hour, the driver has enough rest time and the daily workload for the 

transportation of the ammunition does not exceed 9 hours.  

The mathematical optimization of the model is done by a solver. The algorithms 

are based on the procedures described in Appendix A. We use the Gurobi solver to solve 

the minimization problem.  

Depending on the planning horizon (monthly or yearly) and the number of variables 

and constraints, the runtime results differ. The following table shows the runtime for the 

deterministic demand cases and a robust stochastic case based on the Optimized Case.  

A precise description of the cases is given in Chapter V. 
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Table 3. Model characteristics  

 
 

The models were solved using a 2.9 GHz Intel Core i9 CPU with 32 GB RAM. The 

Pyomo script for the model implementation is shown in Appendix E.  
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IV. DATA 

This chapter describes the data we use to run and solve the model. The raw data 

was provided by the Logistic Center of the German Armed Forces. To use the data in an 

appropriate way we cleaned and processed the data. This was mainly done with Microsoft 

Excel built-in functions (Vlookup, Pivot tables, filter, conditioning, etc.) and the integrated 

Visual Basic for Application (VBA) environment.  

We consider five different cases, where we incorporate demand data of three 

different deterministic cases (Base-Case, Extended-Case, Optimized-Case) and two robust 

stochastic cases (Robust Extended-Case, Robust Optimized-Case). The demand data for 

the deterministic cases is historical and described in Section F. The data for the robust 

stochastic cases is randomly created and described in Chapter V Section B. 

A. CUSTOMER LOCATIONS 

The customer data was extracted from an SAP database provided by the German 

Armed Forces. The addresses are given for some customers. After comparing the customer 

list with the provided demand lists, it turned out that many customers are mislabeled or are 

completely missing in the provided customer list. To identify the unknown customers, we 

use the organization structure chart of the German Armed Forces and other sources. 

Furthermore, we discard the customers who are not considered (e.g., oversea units) for our 

optimization model. After finishing the data processing, the customer list contains finally 

330 customers distributed all across Germany. 

B. SUPPLY DEPOT LOCATIONS  

The locations of the 13 existing supply depots for the current situation (Base-Case) 

and the three future supply depots (Extended-Case) are provided. We research the potential 

depots to reopen for the Optimized-Case by analyzing historical data and research on the 

internet. Twenty-seven potential supply depots are identified. The potential depots to 

reopen are added to a map by using Google Earth Pro. After comparing the distribution of 
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the current supply depots and the results from the Base-Case, six potential depots to reopen 

are determined. Appendix C shows the map for the depot locations for all cases.  

C. COORDINATES 

The coordinates for all customers and supply depots are necessary to compute the 

travel times, but the provided data has no GPS coordinates. We determine the GPS 

coordinates for all customers and depots manually by using Google Maps.  

D. TRAVEL TIME 

Based on these GPS coordinates we extend an existing Python script to automate 

the computation of the travel times. The script sends automated request for travel routes to 

an OpenStreetMap server located in Germany. This Open Route Service (ORS) allows us 

to compute the 14,652 travel times quickly. Furthermore, the routing settings can be 

adjusted easily, enabling the script to compute routes for regular and heavy vehicles. The 

heavy ground vehicle (HGV) driving profile considers average driving speed for trucks 

and federal speed limits. Moreover, the script considers infrastructure characteristics 

(bridges, tunnels, tolls, etc.), and even regulation of hazardous materials transports. The 

output (travel time and distance) for both vehicle types is saved to an Excel file. The code 

for the script is shown in Appendix D.  

E. SUPPLY DEPOT CAPACITY 

The total storage capacity for the 13 supply depots varies and is based on the 

provided data. As mentioned above, the total storage capacities we use for the model do 

not correspond with the actual capacities. However, the used values are realistic and lead 

therefore to a reasonable result. For the three future supply depots (Extended-Case) and the 

six additional potential depots (Optimized-Case), no data is available and therefore we use 

the mean of the total storage capacity of the current 13 depots. 

The total ammunition storage capacities for all small-arm ammunition types is 

estimated to be 35 percent of the total storage capacity of the depot. Based on the provided 

data there are 139 ammunition types for small-arm ammunitions. To allocate the 

ammunition types effectively, we define four categories for the most common calibers. 
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Because no data regarding the storage capacities of the different ammunition types of the 

depots is provided, we assign every category with the same ammunition storage capacity.  

The handling capacity for all customers is set to the same value. Our model reflects 

the fact that every supply depot is equipped with the same equipment and the same 

manpower to load and unload customer vehicles.  

F. DEMAND  

Historical customer demand was provided for the years 2017 and 2018. For the 

model input data we use the outbound delivery date of the supply depots. Filtering the data 

by order date shows blank entries and many orders exceed the maximum vehicle capacity. 

This leads to a data validation issue and causes a runtime error in the model. Therefore, we 

split such demands into multiple demands, each of which is below the maximum vehicle 

capacity.  

G. VEHICLE CAPACITY 

The capacities for regular and heavy vehicles are based on the individual maximum 

load capacity. The model considers two vehicle types. A regular vehicle is allowed to 

transport a maximum ammunition weight of 0.9 metric tons on public roads. The standard 

truck used by the most units of the German Armed Forces has a loading capacity of 5 metric 

tons.  
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V. ANALYSIS 

Part A of this chapter describes the analysis of the three different deterministic 

demand cases utilizing historical data from 2018, described in Chapter IV. Part B utilizes 

the Robust Extended-Case and the Robust Optimized-Case in order to show the results of 

the stochastic demand cases including five different scenarios. 

A. DETERMINISTIC DEMAND 

1. Base-Case  

The Base-Case is the actual status quo case. The customers draw the ammunition 

from one of the 13 existing supply depots, and no new depots are opened (µ=0). Our 

optimization model considers drawing the small-arms ammunition from different depots 

depending on the vehicle type and distances of the locations. Figure 1 depicts the optimal 

customer-depot assignment on a map of Germany. The model assigns most customers the 

same depot for both heavy and light ammunition loads. But for some customers, however, 

the model finds that optimal assignments would send them to different depot locations for 

heavy and light loads. The yellow dashed line shows the customers which are assigned to 

one depot for both vehicle types. Whereas the red dashed line shows assignments for heavy 

ammunition loads for customers which are assigned to a different depot. The R code we 

developed for the script is shown in Appendix F. The map is plotted by using the ggmap 

library in R. 
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Figure 1. Optimal customer-depot assignments: Base-Case 

The total travel time for Base-Case is 4,589.32 hours. Figure 2 shows the utilization 

of the 13 supply depots for this case. 
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Figure 2. Depot utilization: Base-Case 

The horizontal axis represents the depots. The vertical axis represents the number of customers 
each depot is assigned to and the total demand utilization of the customers as a percentage. 

The utilization for the depots “Walsrode” and “Setzingen” is the highest. 

“Walsrode” handles 23.18% of the total demand, and 47 customers. “Setzingen” handles 

18.19% of the total demand and has 46 customers. So, these two depots combined have a 

workload of 41.37% of the total demand. Figure 1 shows the high utilization of these two 

depots in the north (near Hanover) and in the south (between Stuttgart and Munich). The 

supply depot “Aurich” is not used by any customer. The depot “Rheinbach” has 33 

customers which is quite high but the total demand (5.18%) is low in comparison to the 

other depots. However, the depot “Wermuthshausen” has only 19 customers but the 

workload is quite high (9.32%). So the workload is not necessarily correlated with the 

number of customer. 

2. Extended-Case  

The decision of which three locations are reopened was recently made by the 

German Ministry of Defense. Based on this decision the necessary travel times and 

capacities were examined. The geographical results for Extended-Case with 16 depots are 

shown in Figure 3. We can see that adding the three depots does not significantly reduce 

the utilization of most of the other depots. 
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Figure 3. Optimal customer-depot assignments: Extended-Case 

The total travel time for the Extended-Case decreases to 4,450.10 hours. Figure 4 

shows the utilization of the supply depots for the Extended-Case. 
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Figure 4. Depot utilization: Extended-Case 

The horizontal axis represents the depots. The vertical axis represents the number of customers 
each depot is assigned to and the total demand utilization of the customers as a percentage. 

The utilization of seven depots does not change, including the most utilized depot 

“Walsrode.” The workload for the depot “Setzingen,” however, decreases from 18.19% for 

the Base-Case to 12.95% for the Extended-Case. However, the reopened depots (marked 

with red circles) are only used by 28 total customers. This corresponds to a total demand 

rate of 10.99%. The reopened depot “Lorup” is only used by four customers which 

correspond to a total demand of only 0.64%, which is the lowest value across all depots 

besides “Aurich.” This underlines the fact that the utilization by using 16 depots does not 

change very much compared to the Base-Case. 

3. Optimized-Case 

Independently from the Extended-Case, the Optimized-Case seeks to determine 

which three locations would be the optimal locations to reactivate. Figure 5 shows the 

geographical customer-depot assignments of the Optimized-Case. We can see that the 

utilization of the customer-depot assignments is more equally distributed. 
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Figure 5. Optimal customer-depot assignments: Optimized-Case 

The total travel time for the Optimized-Case decreases significantly and is 3,817.78 

hours. Figure 6 shows the utilization of the supply depots for the Optimized-Case. 
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Figure 6. Depot utilization: Optimized-Case 

The horizontal axis represents the depots. The vertical axis represents the number of customers 
each depot is assigned to and the total demand utilization of the customers as a percentage. 

The reopening of the optimal depots (marked with red circles) has a big impact on the 

utilization distribution. These three depots handle 61 customers which correspond to a total 

demand of 28.67%. This effects the depot “Schneeberg” the most. The number of 

customers of this depot decreases from 27 for the Base-Case to 5 customers for the 

Optimized-Case, this is 11.73%, 0.62% of the total demand respectively. The depot with 

the highest utilization is still “Walsrode” but the workload decreased by 5.68% of the total 

demand from Base-Case to Optimized-Case. Figure 6 shows the more homogeneous 

distribution of the utilization of the 16 depots.  

4. Summary of Results—Deterministic Demand 

First of all, we can see that the depot “Aurich” is not used in any of the three 

deterministic cases. This depot is located in the northwest part of Germany. Based on the 

model output for all three cases all customers in this area should draw the small-arms 

ammunition from the depot “Zetel.”  

Table 4 shows the travel times for all three cases. The travel times decrease by 

adding three depots for both the Extended-Case and the Optimized-Case. However, the 

difference between these cases is significant. For the Extended-Case the travel time 
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decreases by 139.22 hours, which corresponds to 3.03% less travel time. For the 

Optimized-Case the travel time decreases by 771.54 hours which means 16.81% less travel 

time.  

Table 4. Travel times for deterministic demand cases 

  
 

To get a deeper insight into the cases we examine the results in more detail using a 

boxplot analysis. Figure 7 shows a boxplot of the customers’ travel times for all three cases. 

 
The vertical axis represents the travel times in minutes of the customer to the assigned 
depots. 

Figure 7. Customer travel times 

We can see that the average travel times for the customers differ for all three cases. 

The Base-Case has an average travel time of 101 minutes and the Extended-Case has an 

average of 98 minutes. For the Optimized-Case the average travel time decreases 
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significantly to 85 minutes. However, the median differs by less. The Base-Case has a 

median travel time of 87 minutes, the Extended-Case has 82 minutes and the Optimized-

Case is slightly lower with a median of 79 minutes. The interquartile range (IQR) and the 

range (excluding outliers) decrease steadily from the Base-Case to the Optimized-Case. 

All cases have several outliers. The boxplot shows skewness for the Base-Case and the 

Extended-Case, the Optimized-Case is almost symmetric.  

In summary, we can conclude that the improvement between the Base-Case and the 

Extended-Case is not very significant. Only the Optimized-Case results show a noteworthy 

improvement of the travel times of the customer and the utilization distribution of the 

depots. 

B. STOCHASTIC DEMAND 

To test the solution for robustness we add uncertainty to the annual demand of the 

customers. We generate five different scenarios: US-U1, US-U2, US-T1, US-T2, and US-

T3. We then incorporate these five demand scenarios into two new cases: the Robust 

Extended-Case, which models the depot selection made by the Ministry of Defense, and 

the Robust Optimized-Case, which selects an optimal set of three depots to reopen. We use 

the Palisade @Risk software package to generate stochastic customer demands. The 

software allows us to apply different distributions. We first use a uniform distribution to 

perturb the historical demand for 2017 and 2018. For each customer, ammunition type and 

time period, we generate a stochastic demand uniformly: 

bk,m,t,s ~ U(bk,m,t,s=historical, 1.2* bk,m,t,s=historical) 

The first scenario (US-U1) incorporates the demand for 2017, while the second (US-U2) 

uses the data for 2018. For the other scenarios (US-T1, US-T2, US-T3) we use a Python 

random number generator (included in the Pyomo script, Appendix E) which generates 

demands using a triangle distribution. Therefore, we generate three demand scenarios 

according to a triangular distribution 

  bk,m,t,s ~ T(0, 0.5, 5) 
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The most likely value for the triangle distribution is set to 0.5 metric tons. The minimum 

value is set to zero and the maximum value is set to five metric tons (the maximum loading 

capacity of the heavy vehicle). The random number generator creates random demands for 

each customer, ammunition type and time period. 

We first consider the Robust Optimized-Case, in which the model selects three 

depots to open. For this case, the optimal objective function value (total travel time) is 

21,406.78 hours. The same three depots are opened in the Robust Optimized-Case as in the 

Optimized-Case, indicating that this decision is robust to the demand perturbations we 

consider. 

 
Figure 8. Stochastic demand scenario results 

The horizontal axis shows the depots for the Robust Optimized-Case. The vertical axis represents 
the number of customers accessing each depot at least once. 

Figure 8 shows the number of customers accessing each depot at least once in each of the 

five scenarios. We can see that the number of customers varies only slightly. This is 

reasonable, since the assignment of customers to depots is a first-stage decision, and thus 
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is constant across all scenarios. The fluctuations observed in Figure 8 are caused by the 

fact that some customers only visit one of the two depots to which they are assigned.  

We next consider the Robust Extended-Case, in which we examine the set of depots 

selected by the Ministry of Defense with respect to the five demand scenarios described 

above. The results are not significantly different. For this case, the optimal objective 

function value (total travel time) is 25,15205 hours. This is reasonable, since the total travel 

time for the Extended-Case is higher than the total travel time of the Optimized-Case.  

The customer-depot assignments are identical to the Extended-Case and the number of 

customers visiting each depot at least once varies only slightly among the five scenarios. 

Finally, we examine the robustness of the supply network to the loss of a depot. 

Specifically, we assume that the most utilized depot, “Walsrode”, is out of order. We 

simulate this by setting the total storage capacity gd for this depot to zero. Rerunning the 

model based on the Robust Optimized-Case yields a total travel time of 23,986.23 hours; 

an increase of 12.05% relative to the value when “Walsrode” is available. We note that the 

other depots adjust to compensate for the outage of “Walsrode”. The decision which depot 

to open is different for one depot: “Weichendorf-Friedland” is now opened rather than 

“Grosswoltersdorf”. Figure 9 shows the customer-depot utilization for this model. 
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The horizontal axis shows the depots for the Robust Optimized-Case. The vertical axis 
represents the number of customers accessing each depot at least once. 

Figure 9. Stochastic demand results: Outage of one depot 

Similar to Figure 8, we can see that the number of customers accessing each depot varies 

only slightly among the scenarios. We can see that several depots have a higher utilization 

than when “Walsrode” is available; nevertheless, all customers are supplied. 
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VI. CONCLUSION AND RECOMMENDATIONS 

An important aspect of the most effective logistic supply channels is optimizing the 

supply network. For military applications, this can be very challenging because there are 

factors to consider beyond profitability. We must consider road capabilities for special 

equipment, potential attacks on the network, increased demands on timeliness, and the fact 

that the equipment must get to the end user even if it is not economically feasible. This 

thesis aims to improve the overall logistical effectiveness of the German Armed Forces 

supply network, for the transportation of small-arms ammunition. 

We have developed a mathematical model and implemented it in a computational 

environment to derive the optimal total travel time of all units for the German Armed 

Forces. The raw data was provided by the German Armed Forces Logistic Center and 

missing required data was determined. 

First, we analyzed the deterministic demand cases. The results of these cases give 

us some insight that helps us to optimize the supply chains. The status quo case (Base-

Case) has a quite high utilization for certain depots. We showed that the future supply 

scheme (Extended-Case) is not optimal from a mathematical perspective. The Optimized-

Case shows us the three depots which actually should be open. Such a more homogeneous 

distribution like in the Optimized-Case would have a significant impact on the total travel 

time, making ammunition distribution more efficient. However, the optimization model we 

developed considers only small-arms ammunition. Therefore, the decision which was made 

by the German Ministry of Defense to reopen the Extended-Case depots is not necessarily 

wrong. All cases had in common the fact that one depot (“Aurich”) is not used. Hence, it 

should to be checked whether this depot could be closed.  

To test the model for future supply robustness we developed demand scenarios that 

contain uncertain demand data. Applying the stochastic demand to the Robust Optimized-

Case and the Robust Extended-Case, we see that both cases are robust for future uncertain 

demands. Based on the results of the deterministic demand cases we know that the depot 
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handling capacity and the storage capacities are not limiting factors and therefore the model 

seems very robust for demand uncertainty.  

Further analysis could be to explore the monthly utilization and try to optimize over 

the periods with a high demand.  

Furthermore, future work could be to extend the model for all ammunition types. 

Based on the results we could consider to close depots or reallocate customer depot 

assignments. This would increase the efficiency and save time and money for the German 

Armed Forces.  

As a next step it is reasonable to feed the model with the exact input data. The 

results of this research demonstrate a time and respectively money saving potential for the 

German Armed Forces. 
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APPENDIX 

A. BASICS OF LINEAR OPTIMIZATION  

Optimization is a wide field with diverse subcategories. In this appendix we discuss 

the basics of linear optimization, better known as linear programming (LP). Starting with 

the mathematical foundations and the explanation of linear programming in operations 

research, followed by the integer linear programming (ILP) and a practical example given 

by the transportation problem. 

1. Linear Programming in Operations Research 

Generally, the model which is created through the operations research process and 

is described through mathematical methods and solved through mathematical processes. 

The optimization calculation attempts to solve a mathematically formulated problem. In 

doing so, there exists mostly a maximization or minimization of a specific objective 

function, wherein into this function only specific values can be entered, which are in turn 

regulated by constraints [6]. 

In LP calculations, the objective function is a linear function of the decision 

variables and the constraints are linear equations or inequalities of the decision variables. 

In doing so, the decision variables can assume real numbers. Many economic and technical 

hypotheses are based on a linear relationship or on objective criteria. The following steps 

are necessary to achieve a linear optimization equation: 

• Specifications of the desired values or decision variables. 

• Formulation of all constraints of the problems as linear equations or linear 

inequalities for decision variables. 

• Specification of the objective function in form of a linear function of the 

decision variables, to minimize or maximize respectively [7]. 
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The following is an example of a minimization problem: 

 

2. Simplex Algorithm 

This section covers the basics of the simplex algorithm. It is not intended to cover 

how to apply and calculate the simplex algorithm in detail. 

The simplex algorithm (or simplex method) is a popular algorithm for linear 

programming. The simplex algorithm requires that the objective function and the 

constraints are linear and only continuous variables occur. Thereby a polyhedron is built 

from the objective function and the constraints. The simplex algorithm tries to find an 

optimal solution by walking along the edges to extreme points. The edge point with the 

maximum value is the optimal solution. By visiting an unbounded edge, the algorithm 

concludes that the problem has no optimal solution. Figure 10 illustrates the simplex 

algorithm.  

 
Figure 10. Polyhedron of simplex algorithm in 3D. Source: [8]. 

3. Integer Linear Programming 

For many linear optimization problems, the variables are restricted to take on 

integer values. Such a problem is known as an integer linear program (ILP). A special case 

is the binary ILP, in which the unknowns are either 1 or 0. An example is to make a 

decision, either to add a product to the production process or not. If the decision variable x 



35 

= 1, the product should go into production. If x = 0 the product should not be processed to 

production. If some of the decision variables are continuous the problem is known as a 

mixed-integer programming problem [9]. 

The ILP with binary decision variables is used to solve the optimization problem in 

this thesis. Based on a finite list of customers, binary decision variables are used to assign 

the customer to an optimal supply location, whereby x = 1 signifies that the customer uses 

a certain supply depot and x = 0 means that this location is not optimal for the certain 

customer.  

There are different algorithms to solve ILP. The most popular are the Branch-and-

Bound and the Cutting-Planes algorithm [10]. 

4. Transportation Problem 

The transportation problem and related problems can be found in practice in a wide 

variety of applications. The goal of the most transportation problems is to minimize the 

cost of transportation.  

The first algorithm to solve a classic form of transportation problem was formulated 

by F.L. Hitchcock in 1941 [11]. The LP formulation is also known as the Hitchcock-

Koopmans transportation problem and was published in 1949 [6]. We now provide an 

overview based on the description of S. Dempe and H. Schreier published in 2006 [12]. A 

homogeneous product is to be transported from m source nodes (supply locations) Ai = 1, 

…, m, to n destination nodes (demand locations) Bj = 1, …, n. The supply locations Ai have 

certain supply capacities (ai) and the demand locations Bj have certain demands (bj). We 

assume that the total supply and demand match. Furthermore, we assume that every supply 

location is connected to all demand locations and no transport capacities limits exist. The 

transport costs are proportional to the transporting quantity and proportional to the distance. 

The goal is to develop a minimum cost transport plan, based on the delivered quantity of 

goods from the supply locations Ai to the demand locations Bj. Figure 11 illustrates a 

transportation problem. 

https://en.wikipedia.org/wiki/Frank_Lauren_Hitchcock
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Figure 11. Transportation problem with transport cost vector cij. 

Source: [10]. 

The formulation for this transportation problem is: 

 

The multi-level transportation problem is based on the following tasks. A product 

is produced at different production facilities and following transported to several 

warehouses. Based on the demand, these warehouses deliver the product to the customer, 

whereby xij is the transported amount. Thereby the production facilities and the warehouses 

cause fixed costs. The transport from the facility to the warehouse and from the warehouse 

to the customer cause variable costs. The goal is to minimize the total costs z by identifying 

a solution that the production facility and the warehouses select so that customers’ demand 

are satisfied. 

The algorithm calculates the saturation for each potential facility location to 

represent the relative used capacity. The potential facility location with the highest 

saturation will be opened. In case that the demand of the customer is still higher than the 

total production capacity, the algorithm finds the next best facility location to open. The 

algorithm to find the best warehouse follows the same process. This method determines 

the binary variables.  
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B. ILP MODEL   
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C. SUPPLY DEPOT LOCATIONS 
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D. OPEN STREET MAP—ROUTING SCRIPT 
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E. PYOMO—SCRIPT 

################# Pyomo model - Optimization of supply chains ################# 

# GRAMANN, Alexander, MAJ German Army 

######################################################################## 

from pyomo.opt import SolverFactory 

import pyomo.environ as pyo 

import pandas as pd 

import time 

import math 

 

start = time.time() #start timer first block 

model = pyo.ConcreteModel() #create a local variable with instance of Concrete model 

 

############################# Load data ################################## 

infile = 'data_UC2.xlsx' #read in file 

df0_days = pd.read_excel(infile, '00-Days', header=0, index_col=0) 

df1_depots = pd.read_excel(infile, '01-Depots', header=0, index_col=0) 

df2_customers = pd.read_excel(infile, '02-Customers', header=0, index_col=0) 

df3_ammo = pd.read_excel(infile, '03-Ammo', header=0, index_col=0) 

#df4_demand = pd.read_excel(infile, '04-Demand', header=0, index_col=0) 

#df5_vehicles = pd.read_excel(infile, '05-Vehicles', header=0, index_col=0) 

df6_depots_reopen = pd.read_excel(infile, '06-DepotsReopen', header=0, index_col=0) 

 

df_b = pd.read_excel(infile, '04-Demand', header=0, index_col=[0,1,2,3])  

df_c = pd.read_excel(infile, '07-TravelTimes', header=0, index_col=[0,1]) 

df_l = pd.read_excel(infile, '10-DepotAmmoCap', header=0, index_col=0) 

df_h = pd.read_excel(infile, '05-Vehicles', header=0, index_col=0) 

df_g = pd.read_excel(infile, '08-TotStorageCap', header=0, index_col=0) 

df_w = pd.read_excel(infile, '09-HandlingCap', header=0, index_col=0) 

rho = 30 # resupply interval (days) 



42 

############################# Sets and indices #############################  

R = [i+1 for i in range(math.ceil(365/rho))] # set of resupply events 

model.R=pyo.Set(initialize=R) 

 

D = list(df1_depots['DepotName']) #set of depots 

model.D=pyo.Set(initialize=D) 

 

K = list(df2_customers['CustomerName']) #set of customers 

model.K=pyo.Set(initialize=K) 

 

M = list(df3_ammo['AmmoType']) #set of ammo types 

model.M=pyo.Set(initialize=M) 

 

N = list(df6_depots_reopen['DepotName']) #set of potential new depots 

model.N=pyo.Set(initialize=N, within=model.D) 

 

V = ['regular','heavy'] #vehicle types 

model.V=pyo.Set(initialize=V) 

 

T = list(df0_days['Days']) #set of days  

model.T=pyo.Set(initialize=T, ordered=True) 

 

#S = ['s1','s2','s3','s4','s5'] #scenario types 

S = ['s1'] 

model.S=pyo.Set(initialize=S) 

PickUp = set([]) #customer k gets ammunition from depot d using vehicle v; day t's  

   #demand is picked up on day t' 

DepotPickupDays = set([]) #we might possibly have a pickup from depot d on day  

    #tprime, based on demand 
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################################ Parameters ############################## 

#travel time for customer kK to reach depot dD when using vehicle type vV(minutes) 

regular_time = df_c['Regular[min]'].to_dict() 

heavy_time = df_c['Heavy[min]'].to_dict() 

 

X = list(df_c.index) 

model.c = {(x[0], x[1], 'regular'):regular_time[x] for x in X} 

for x in X: 

    model.c[x[0], x[1], 'heavy'] = heavy_time[x] 

 

###fill the PickUp set 

thresVar = 240 #threshold variable for travel time 

 

#demand of customer kK for ammunition type mM in time step tT in scenario sS(tons) 

b = df_b['Demand[tons]'].to_dict() 

#print('demand',demand) 

 

bset = set(b.keys()) 

for k in K: 

    for t in T: 

        for s in S: 

            if sum(b[k,m,t,s] for m in M if (k,m,t,s) in bset)>0: 

                for d in D: 

                    for v in V: 

                        if model.c[k,d,v] <= thresVar: 

                            PickUp.add((k,d,v,t,t)) #pick up same day 

                            DepotPickupDays.add((d,t)) 

                        else: 

                            PickUp.add((k,d,v,t,int(t)-1)) #pick up day before 

                            DepotPickupDays.add((d,t-1)) 
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################# START - generating random demand data ###################   

b = {} 

for k in K: 

    for t in T: 

        for s in S: 

            for m in M: 

                temp = random.random() #generate a random number between 0 and 1. 

                if temp <= 0.033: #If that number is less than 0.033, you have an order today. 

                    new_temp = random.triangular(0,5,0.5)  

                    b[k,m,t,s] = new_temp #add demand values to dict 

bset = set(b.keys()) 

for k in K: 

    for t in T: 

        for s in S: 

            if sum(b[k,m,t,s] for m in M if (k,m,t,s) in bset)>0: 

                for d in D: 

                    for v in V: 

                        if model.c[k,d,v] <= thresVar: 

                            PickUp.add((k,d,v,t,t)) #pick up same day 

                            DepotPickupDays.add((d,t)) 

                        else: 

                            PickUp.add((k,d,v,t,int(t)-1)) #pick up day before 

                            DepotPickupDays.add((d,t-1))                             

 

################## END - generating random demand data ##################### 

 

#storage capacity of depot dD(tons) for the ammunition mM(tons) 

X = list(df_l.index)  

Y = list(df_l.columns)  

l = {(x,y):df_l.at[x,y] for x in X for y in Y} 
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#total storage capacity of depot dD(tons) 

X = list(df_g.index)  

Y = list(df_g.columns)  

g = {x:df_g.at[x,y] for x in X for y in Y} 

 

#loading capacity of vehicle type vV(tons) 

X = list(df_h.index) 

Y = list(df_h.columns) 

h = {x:df_h.at[x,y] for x in X for y in Y} 

 

#total handling capacity of depot dD(tons) 

X = list(df_w.index) 

Y = list(df_w.columns) 

w = {x:df_w.at[x,y] for x in X for y in Y} 

 

######################### Binary decision variables ######################### 

#stage one decision variables 

model.o = pyo.Var(N, within=pyo.Binary) #is depot dD open? 

model.x = pyo.Var(K,D,V, within=pyo.Binary) #does customer kK access depot dD  

       # using vehicle type vV? 

 

#stage two decision variables 

model.u = pyo.Var(K,D,V,T,S, within=pyo.Binary) #does customer kK send vehicle type  

    #vV to depot dD to satisfy demand for time tT in scenario sS? 

 

############################# Objective function ########################### 

def obj_fct(model): 

    return sum(model.c[k,d,v]*model.u[k,d,v,t,s] for k in K for d in D for v in V for t in T 

for s in S) 
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model.obj = pyo.Objective(rule=obj_fct, sense=pyo.minimize) 

 

############################### Constraints ############################## 

#each customer is assigned to at most one depot per vehicle type 

def const1(model,k,v):  

    return sum(model.x[k,d,v] for d in D) <= 1  

model.const1 = pyo.Constraint(K,V, rule=const1) 

 

#each customer sends at most one vehicle to an assigned depot on a certain day 

def const2(model,t,k,s): 

    return sum(model.u[k,d,v,t,s] for d in D for v in V) <= 1  

model.const2 = pyo.Constraint([(t,k,s) for t in model.T for k in model.K for s in model.S 

if sum(b[k,m,t,s] for m in M if (k,m,t,s) in bset)>0], rule=const2) 

 

#total depot storage capacity EMC 

def const3(model,d,r,s): 

    kmvttp_list = [(k,m,v,t,tprime) for v in V for (k,m,t,s) in bset for tprime in T if 

(tprime>=(r-1)*rho+1 and tprime<=r*rho) if (d,tprime) in DepotPickupDays if 

(k,d,v,t,tprime) in PickUp] 

    if len(kmvttp_list)==0: 

        return pyo.Constraint.Skip  

    return sum(b[k,m,t,s]*model.u[k,d,v,t,s] for (k,m,v,t,tprime) in kmvttp_list) - g[d] <= 0  

model.const3 = pyo.Constraint([(d,r,s) for d in D for s in S for r in R], rule=const3) 

 

#depot storage capacity by ammo type EMC 

def const4(model,d,m,r,s): 

    ktvtprime_list = [(k,t,v,tprime) for k in K for t in T for tprime in T if (k,m,t,s) in bset 

for v in V if (k,d,v,t,tprime) in PickUp if (d,tprime) in DepotPickupDays] 

    if len(ktvtprime_list)==0: 

        return pyo.Constraint.Skip    
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    return sum(b[k,m,t,s]*model.u[k,d,v,t,s] for (k,t,v,tprime) in ktvtprime_list) <= l[d,m]  

model.const4 = pyo.Constraint([(d,m,r,s) for d in D for m in M for s in S for r in R if 

r>1], rule=const4) 

 

#storage capacity by vehicle type 

def const5(model,k,t,s): 

    return sum(b[k,m,t,s] for m in M if (k,m,t,s) in bset) - sum(h[v]*model.u[k,d,v,t,s] for 

d in D for v in V) <= 0  

model.const5 = pyo.Constraint(K,T,S, rule=const5) 

 

#depot's handling capacity 

def const6(model,d,tprime,s): 

    kmtv_list = [(k,m,t,v) for k in K for t in T for m in M if (k,m,t,s) in bset for v in V if 

(k,d,v,t,tprime) in PickUp] 

    if len(kmtv_list)==0: 

        return pyo.Constraint.Skip   

    return sum(b[k,m,t,s]*model.u[k,d,v,t,s] for (k,m,t,v) in kmtv_list) <= w[d]  

model.const6 = pyo.Constraint([(d,tprime,s) for (d,tprime) in DepotPickupDays for s in 

S], rule=const6) 

 

#deploy vehicles based on depot assignments 

def const7(model,k,d,v,t,s): 

    return model.u[k,d,v,t,s] <= model.x[k,d,v]   

model.const7 = pyo.Constraint(K,D,V,T,S, rule=const7) 

 

#only assign customers to open depots 

def const8(model,n,k,v): 

    return model.x[k,n,v] <= model.o[n]  

model.const8 = pyo.Constraint(N,K,V, rule=const8) 
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#choose new depots to open 

def const9(model): 

    return sum(model.o[n] for n in N) == 3  

model.const9 = pyo.Constraint(rule=const9) 

 

print("time of block 1:", time.time() - start) #print time first block 

start = time.time() #start timer second block 

 

########################## SOLVE & PRINT ############################## 

opt = pyo.SolverFactory('gurobi') 

#opt = pyo.SolverFactory("cbc",executable='cbc.exe') #solver 

results = opt.solve(model) 

#print(results) 

 

#model.pprint() #print everything 

print("Total travel time: ",model.obj(),"min") #print obj val 

#model.display() #print var, obj and constraint 

 

#results = opt.solve(model, tee=True) #print solver output 

#model.x.pprint() #print x-var 

#model.u.pprint() 

 

print("time of block 2:", time.time() - start) #print time second block 
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########################################################################

########################### CREATE OUTPUT ###########################
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F. R—SCRIPT FOR GRAPHICAL RESULTS  

#import libraries 

library(ggmap) 

library(ggplot2) 

 

register_google(key = “xxx”) #API key; valid until 20th of April 2020 

 

#read in csv 

#depots.old <- read.csv(“/tmp/depots.csv”) 

data1  <- read.csv(“/tmp/final_results_R_map1.csv”) 

data2  <- read.csv(“/tmp/final_results_R_map2.csv”) 

 

###regular vehicle 

#data1 

depots1 <- data1[which(data1$color.group==“ASP”),]  ### THESE ARE THE DEPOTS 

customers1 <- data1[which(data1$color.group==“Customer”),] 

customers1$id <- NA 

 

for (i in 1:nrow(customers1)) { 

 id = paste(customers1[i,]$pair, i, sep=““) 

 customers1[i,]$id <- id 

 customers1 <- rbind( 

   customers1, 

   cbind(depots1[which(depots1$pair==customers1[i,]$pair),], id=id) 

 ) 

} 

 

###heavy vehicle 

#data2 
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depots2 <- data2[which(data2$color.group==“ASP”),]  ### THESE ARE THE DEPOTS 

customers2 <- data2[which(data2$color.group==“Customer”),] 

customers2$id <- NA 

 

for (i in 1:nrow(customers2)) { 

 id = paste(customers2[i,]$pair, i, sep=““) 

 customers2[i,]$id <- id 

 customers2 <- rbind( 

   customers2, 

   cbind(depots2[which(depots2$pair==customers2[i,]$pair),], id=id) 

 ) 

} 

 

data_temp1 <- customers1 

data_temp2 <- customers2 

 

# getting the map 

mapgilbert <- get_map (location = c(lon = mean(depots1$lon), lat = mean(depots1$lat)), 

zoom = 6, maptype = “hybrid,” scale = 2, API_console_key = Sys.getenv(“xxx”)) 

 

# plotting the map with the depot/customer connections 

ggmap(mapgilbert) +  

 geom_point(data = data_temp1, aes(x = data_temp1$lon, y = data_temp1$lat, color = 

data_temp1$color.group)) +  

 geom_line(data = data_temp1, color=‘gold’, size=0.5, linetype=‘longdash’, aes(x = 

data_temp1$lon, y = data_temp1$lat, group = data_temp1$id))+ 

 geom_line(data = data_temp2, color=‘red’, size=0.5, linetype=‘longdash’, aes(x = 

data_temp2$lon, y = data_temp2$lat, group = data_temp2$id)) 
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