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PREFACE.

Onx first commeneing 0 read the Differential Caleulus, a subject which opens
& wide Seld of analytical research, the student emters upon an entirely nsw
system of thought. In his previous investigations he has always been
ocustomed to comsider quantities, whether known or unknown, as having
ome fixed or determinste value; he Bas now to comceive the values of
artain quantitien to undergo ooutinuous changes, and to operate upon .
thess chaages with new symbols and new p which in themselves
mve but & remote analogy to ordinary Algebra.

‘Whea two quantities, thus continuously varisble, sre connectsd by an
aalytical equation, and their values sre therefore mutuslly dependeut on
-ach other, udmymwwumwmmmw.
§ is evident that the increments will also be connected by some corresponding’
mm mmmwmw«m»m&hw

of investigating the nature and properties of snch relati

‘v changes or increments are supposed to be small. Tomehh,nh
st vequisite to trace the successive values of the ratio subsisting between
twe inerements, when the § ts th lves are d to continuously
mhmu»mmmmumwm
they uliimately become infinitesimals. muu-m.xummmu,
hmwmwmm;wmmwumw
sbaciutely to vanish, aad it is complotely defined and accurstely determimed
by referring the sucoeesive values to the rocognized law of continuity, The

operation heve described ia the trus foundation of the Calculus, sad the
sondition of coatimuity, Mwmummm
mtively romoves from the limiting valwe thet ok and §

sharacter which otherwise forms an inssperabls obstacle to s proper
somprehonsion of the Srst principles.

‘We rscommend the studest 40 meks himself familiar with the methods
o *Hmiting ratics™ sad “indaitesinsls. The theory of Infinitesimels
s Bberally that of the Differential Calculws, sad the princips! law which
noguistes this theory is direstly inferved from the method of Hmiting ratiss.
Fhe twe mothods are indeod virtually but modifications of the smme des.



rosding, are inserted at the end of the last Chapter.

The subjects contained in the several Chapters are treated acoording to
most clegant and approved methods of investigation, some of which are.
presumed to be new; mumerous interesting examplos, exhibitiag their re-/
spective results, are inserted for the exercise of the student, and coplons
sxplanations are given of the precise nature of the priaciples involved in

Should this expectation be in any degres realised, we shall experience & oo~
vesponding gratifioation.
London, Mareh, 1852,
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THE DIFFERENTIAL CALCULUS.

CHAPTER L

DEFINITIONS AND FIRST PRINCIPLFS.

(1.) By means of Algebra we investigate the various numerical
and symbolical relations subsisting amongst fixed quantities,
some of which are known and others unknown, the ultimate
object in general being to evolve the unknown values, or to
express them in terms of those which are known.

In the Differential Calculus certain values or quantities
related to cach other are supposed to continuously increase or
decrease in value, and our object is to investigate the relations
subsisting amongst the corresponding changes that take place
in their values when those changes are indefinitely diminished.
Although the changes themselves are supposed to be infinitely
small, it will be found that the ratios which these changes
bear to one another are usually finite and appreciable, and
therefore suitable subjects of investigation.

(2.) The symbols which enter into the operations of the
Differential Calculus are of two kinds, representing conatunt
quantitics and variable quantities.

A constant quantity is one which retains the same deter-
minate value, this value being unaffected by the snpposed
changes in other quantities.

A variable quantity is one which admits of a succession of
different values.

(3.) A variable quantity varies continuously when in changing



2 THE DIFFERENTIAL CALCULUS.

from one value to another it passes through every intermediate
value. For example, if a point be supposed to move along a
curve line it will do so continuously, since in moving from one
position to another it must have passed through every inter-
mediate point. It follows therefore that quantities which vary
continuously may be supposed to increase or decrease by very
small variations, capable of being diminished to any extent.

(4.) A function is any analytical expression involving one
or more variable quantities, and is usually called a function of
the variable quantity or quantities which it contains, Thus 22,
2?2 4+ ax, o a*— z* arc functions of z, and az + by,
2? + y* 4 z y arc functions of x and y.

Functious are frequently denoted by prefixing one of the
characters F, f, ¢, ¥, &c. to the variable or variables, and for
brevity they are sometimes indicated by a single letter.

Fuuctions are the same in form when the quantities are
involved in the same mauner. Thus z? + az is the same
function of « that y? + ay is of y; and supposing F to be the
characteristic of x* + aa, that is, supposing 2% + az to by .
indicated by Fz, the expression ¥ + ay will be similarly
indicated by Fy. In like manner if 2% + y? + zy be re-
presented by f (z,y), the expression «? + ¢% + uv would be
denoted by f (u, v).

Functions which, in a finite number of terms, involve the
ordinary algebraical operations of addition, subtraction, multi-
plication, division, involution and evolution, are called dige-
braical Functions. According to this definition, az + 8,
20 e vk ""
and all expressions belonging to pure Algebm, are algebraical
functions.

Functions which do not exhibit the ordinary algebraical
operations and which do not admit of being so expressed in
finite terms, are called Transcendental Functions. Thus a®,
log #, sinr, are transcendental functions; the first being
exponential, the second logarithmic, and the third trigono-

a’— (n —br+ .r“)%
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metrical. There are other transcendental functions besides
these, arising out of certain special researches, but it will not
be necessary to particularize any of them here.

(5.) When a variable quantity x is assumed to pass to another
value, the amount of change or the difference between the two
values is called an Increment or Difference. Similarly the
difference between the two corresponding values or the cor-
responding change that takes place in the value of any
function of z is the increment or difference of the function.
These increments are usually denoted by prefixing the symbol
A. Thus Az, A(fr) are simultancous increments of r and
Sz, the corresponding new values being 2 + Ar and f(z + A1)
or fr+ a(fr). When a value becomes deereased by the
supposed change, the increment is to be understood as having
a negative value.

(6.) Let u = fx denote a function of a variable quantity z.
Suppose z to receive a small increment Az so as to hecome
of the value r + Az, and let the corresponding value of u be

pposed to be u +Au=f(zr+ar). Let the binomial
function f (x + az), when expanded in terms involving the
integral powers of 4 z, be also supposed to give

utAu=f(r+ar)=fr+DPar+ Qax?

+ Razd3 4 &e. . . .. )
in which P, Q, R, &c. are new functions of r, independent of
ax, and owing their forms entirely to that of fiz; also ax is
to be regarded as a single symbol, so that az? a2%, &e.
indicate (ar)%-(az)%, &c. From this and the initial equation
u = fr, we deduce

au=Par+Qar?+ Rard+ & .. .. )]
and this value would represent the difference or increment of
the function u according to the theory of Finite Differences.
‘We have also, dividing by ax,

Az "~ o~ - & Lo (3)
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Each step in this deduction, including the division by az,
is free from ambignity when Ar is of any value, great. 4
or small, positive or negative; but the result has no
intelligible signification when Az is zero, for as soon as Az
absolutely vanishes, we immediately lose all idea of quantity
on the left-hand side of the equation, and the fraction
takes the singular and indeterminate form g As, however,
the equation must obviously hold for every other value ex-
cepting ar = (), we may take Az extremely small, and it still
will be strictly true for every value between that and zero ; and
as there is no symbol of discontinuity on the right-hand side
of the equation, we may, by applying the principle of continuity
to the fraction, include the existence of the equation, when a s
actually vanishes. Thus we should have

Au 0
v (whan.r_.(D)._O_.P N €]
and the coefficient P will therefore represent the limiting
value of the fraction _i..'f, when Ax and Ar simulnmeously"
T

vanish; and here we must not overlook the implicd condition
that the particular value thus assigned to the vanishing fraction

. PO . ). .
when it reaches its indeterminate state :-‘, is determined by a

consideration of its successive values and is that which obeys
the continuity existing amongst all the other values as Ar
continuously diminishes from a small position to a small
negative value. This condition of continuity forms the basis
of what is usually called the *“theory of limits” or of ““limiting
ratios,” and should be well understood by the student, who
will afterwards not experience any difficulty in acquiring a
true coneeption of the first principles and objects of the Calculus.

The equation (3) has been made to merge into the equation
(1) by supposing the increments Ax and As to absolutely
vanish. It is evident that the former equation will assimilate®
to the latter to any degree of nearness by conceiving the values
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of as, Ax to diminish, and that they will be indefinitely ncar
when Az is indefinitely small. In order therefore to impart
some tangible signification to the symbols on the left-hand
side of the equation (4), the values of A%, Az, instead of being
absolute zeros, are supposed to be extremely small quantities
having the same ratio to each other as the limiting ratio ex-
pressed by the equation, and they are then designated by dx,
dx. The equation is therefore stated as follows :

du
z=" cee (9
or du = Pdr

The indefinitely small quantities dwu, dx, thus related, are
called the differentials of v and 1, so that Pdir represents the
value of the differential of the function u; and from what has
preceded it is evident that the smaller dr is conceived to be as
a change in the value of x, the more nearly will du assimilate
to the actual corresponding change in the value of u,

4 The quantity x which is first supposed to vary and on the
differential of which other differentials are thus made to depend
is called the independent varialle.

The coefficient P is called the differential coefficient of the
function u, with respect to r, beeanse it is the coefficient or
multiplier of the differential dr which determines the dif-
ferential of the function.

The student will observe that in the Calenlus the letter o is
not in any case employed as it may be in Algebra, to represent
quantity or value, In this sense it has no isolated signification,
and it is never used excepting as the symbol of operation which
characterizes the differential of the variable to which it is
immediately prefixed.

(7.) The peculiar difficulty in the preceding deductions is pre-
cisely analogous to that which occurs in conveying an adequate
idea of the measurement of the velocity of a body when that

@ velocity is continuously variable. When the velocity is uni-

" form, the space aud time will vary proportionally, and the
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velocity will be correctly represented by the ratio, or fraction,

__space described _

time of describing it
which ratio, or fraction, will preserve the same value whether
the space and corresponding time be taken great or small.
But when the velocity is variable it is obvious that the above
fraction cannot accurately define its value at the point from
which the space is supposed to be measured, because the
space, however small, will then be described by a continuous
succession of different velocities. It is however evident that
the smaller and smaller the space and time are taken, the
closer will their ratio approximate to the true velocity, and
that the diminishing error of such approximation will become
completely exhausted when we take the limiting ratio as the
quantities arc supposed to vanish. The velocity of the body
at any point is therefore represented with rigorous exactness
by the limiting value of the above fraction when it takes the

form g And thus by analogy the differential coefficient of

any function might be defined to be the velocity with which it
increases when the independent variable varies uniformly at a
rate, to be taken as the unit of measurement. In the geo-
metrical application of this idea, which was the origin of Sir
Isaac Newton’s method of fluxions, a line is supposed to be
generated by the motion, or flowing, of a point, a surface is
supposed to be generated by the motion of a line, and a solid
by the motion of a surface. It should be observed however
that our preconceived notions as to the estimation of velocities
of movement, though serving the purpose of illustration, are
not sufficiently elementary to be made the basis of a branch of
pure science.

The particular considerations under which the equation (2)
has been converted into the differential equation (5) conduct
us to the ingenious theory propounded by Leibnitz, called the
theory of infinitesimals, the principles of which may now be
briefly explained.
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(8.) Before entering upon this part of the subject it should
first be premised that the phrases “infinite number”” and “iunfi-
nitely sinall quantity,” which embody the principal objects of
our reasonings, are to be understood as having only a relative
signification, since all operations connected with them in the
literal or absolute sense of the terms are inconceivable. Thus
an ““infinite number”’ is to be considered in a qualified sense
as infinitely great in comparison with any finite number ; and
an “infinitely small quantity ” is also to be relatively con-
sidered as infinitely small in comparison with any finite
quantity.

If any finite quantity be supposed to be divided into an
infinite number of parts, each part will be infinitely small and
is called an infinitesimal, because an infinite number of these
is required to make up the finite quantity; it is also when
compared with other infinitesimals said to be of the first order.
By supposing one of these infinitesimals to be similarly divided
into an infinite number of smaller parts, each of these is ealled
an infinitesimal of the second order, and an infinite number of
them will be required to make up an infinitesimal of the first
order. In like manner by supposing cach successive infini-
tesimal to be divided into an infinite number of parts, infini-
tesimals of still higher orders are obtained.

The same process also leads us to the conception of different
orders of infinities, the word infinity, as before, having only a
relative and qualified signification. Thus the number of
infinitesimals of the first order contained in the finite quantity,
viz. the infinite number of parts into which it is divided, is an
infinity of the first order; the number of infinitesimals of the
second order contained in the finite quantity is an infinity of
the second order, &c., &c. It is evident therefore that infini-
tesimals and infinities, of the same order, are reciprocally
related, since the one multiplied by the other produces the
finite quantity. Sometimes an infinitesimal is called an
“element”’ of the integral or finite quantity of which it forms
a part,
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Referring to the equation (2) in which &, as usual, is sup-
posed to represent an arithmetical value, we may assume’

Az = %, N denoting any number or numerical valne. When

N is alarge number, Az becomes a small quantity, and a term
P Az which involves its first power is in such case usually
called a small quantity of the first order with respect to Az;
Q Az? which involves the second power is of a still smaller
scale of value, and is said to be of the second order with respect
to Az; Raz® is called 2 small quantity of the third order with
respect to Az, &. If N be supposed to be an infinite
number, Az will become an infinitesimal, and denoting it by
dz, we have

Pdx =—§
Q _ Qdz
Qi =5="N"
R Rdzr?
Rd:3=m= N
&e. &e.

Hence as P, Q, R, &ec. are supposed to be finite coefficients,
it follows, according to the preceding definitions, that the
terms Pdr, Qdr?, Rdz® &ec. are infinitesimals severally of
the first, second, third, &c. orders.

By supposing the number of parts into which the finite
quantity is divided to be progressively augmented, the cor-
responding infinitesimal will become diminished, and in the
extreme case the quantity may be assumed to be divided into
an infinite number of parts, in the absolute sense of the term,
in which case it is easy to conclude that each of the parts
must become ultimately zero. In thus proceeding to the
extreme case, the nature of the reasoning is in effect the same
as that employed in deducing the limiting ratio or ultimate
value of a vanishing fraction. The laws of infinitesimals are
also founded upon this extreme case, and their operation is



YIRST PRINCIPLES. 9

always exact, for this simple reason, tha.t the extreme limit

dz=0is, in all mathematical investigations, ufzderstood to

be applied to the final result of infinitesimal deductions. t.l‘hese
follows :

h‘: RIT: ::y equation containing terms of finite value, .other

terms which represent infinitesimal quantitics may be omitted;

because in the extreme case these infinitesimals become absolute

zeT08. ‘. o
Thus in equation (3) when Az, Au become infinitesimals
denoted by dz, du, the fraction ‘;—Zbeing not necessarily an

infinitesimal, the equation, according to this rule, becomes

o= P,
being in fact the same as the extreme limit of the equation
before expressed in (4) or (5).

II. In an equation containing infinitesimal quantities of any
order, all infinitesimals of higher orders may be omitted.

For example, in the equation (2) if Az become an infinitesi-
mal dz, the terms du, P dz will be infinitesimals of the first
order, and the other terms will be infinitesimals of higher
orders. Therefore, omitting these, the equation will become

du = Pdwr.

This evidently follows by first deducing the equation (3) and
then taking the extreme limit as before.

I11. In comparing two infinitesimal quantities, if they are of
the same order they will have a finite ratio to each other, but
if of different orders the ratio will be either zero or infinity.

For example, let A dz™, Bdz™ be two infinitesimals, both
of the mth order with respect to dz, then

Adz™

BLm , a finite ratio.

A
B
Again, let Ads™+», Bdx™ be two infinitesimals of the
Ab
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(m+n)th and mth orders respectively, then

Adrmn n
"I;i};;r = Aﬁ' » an infinitesimal of the ath order,

Bd:m _ _B , an infinity of the ath order;

Adrm+n = Adzn
and, at the extreme limit, these become
Adrm+n B dz™
“Bam =0 Ademin =
(9.) The method of determining the position of a tangent
to & plane curve supplics au elegant geometrical elucidation of

w .

the siguification of the differential co- 3
c¢fficient of a function. Let APB be ? 2 —*
a curve line; P a point in the curve e e B

r

the coordinates of which are AD =z,

D P =y; Qanother point in the curve £ ‘\ v >

the coordinates of which are AD' ==

+an1YQ=y + ay; and suppose the curve to be deter-

mined by an equation of the form y = frz, any function of z.
Then from what precedes,

ay=Pasr+ Qasr?+ Raz® + &c.

%£=P+QA:+RA.:”+&c.

In the diagram, az=PG, ay =GQ, and therefore
% 3; =tan L ¢PG. Consequently

tan L sPG=P+Qar+Rar¥+ &c. .. ... (a)

From this equation we infer that if Az be taken less and
less towards zero, the value of tan s PG will approximate to
the differential coefticient (P) as its utmost limit. For the
geometrical limit of the angle s P G, as Ax decreases, we may
suppose the point Q to approach nearer”and nearer to the
point P, and watch the progress of the line rs which passes
through them, or we may suppose the line re to turn
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gradually about the fixed point P, so that the intersection Q
shall proceed towards P. The former of these suppositions
will lead ultimately to an indeterminate result, whilst the
latter will proceed at once to the extreme limit. Thus on
the former supposition, when the point Q finally arrives at the
point P, and the two points become one, it is evident that an
indefinite number of lines can be drawn through them, and
therefore that the position of the line rs is so far indetermi-
nate. But on the other supposition, if the motion of re be
conceived to cease the instant the point Q arrives at the point
P, it will then assume the position of the tangent R 8, which
touches the curve at the point P; and this is obviously the
only position which can obey the law of continuity amongst
the positions that precede it. If we now suppose the motion
of r& to continue onward, it is evident that it will begin to
intersect the curve on the other side of the point P, or between
P and A, and that the positions will then have reference to
negative values of az. The line r & will thus pass through a
continuous series of positions as A z gradually diminishes from
positive to negative values; and when Az = 0, though the
position, as depending on the two points through which it has
to pass, is then indeterminate, yet the position R § is the only
one that can partake of the continuity existing amongst all the
others, and the angle SPG is the only one that can partake of
the continuity existing amongst the preceding and following
values of that angle. Now, according to the equation (2), the
serics

P+ Qar + Rar? 4+ &c.

strictly corresponds with the value of tans P G for every value
of Az except zero; and hence as the values of this series as ax
passes from positive to negative values are wholly continuous,
and consequently, when 4 z = 0, the first term P partakes of
that continuity, it is conclusive that

dy
tan SPG=P=27 .....(8)
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which may be either considered as a fraction whose numerator
and denominator are the differentials of the ordinates, or the
differential coefficient of y considered as a function of z.

By this result it is evident that the differentials of the ordi-
_nates z, y may be relatively conceived as represented by two
small coordinate lines Pm, mp terminating in the tangent at
a contignous point p.

(10.) After what has now been explained the student will
not fail to observe that the leading principle of the Calculus
arises out of the following considerations :

‘When a fraction, which in a particular case takes the inde-

terminate form g, expresses the value of a quantity which we

have reason to know from the nature of the subject does not
become discontinuous in that case, or generally when such a
fraction enters in any equation, the other terms of which are
not discontinuous, the fraction is, under such circumstances,
necessarily limited to continuous values, and consequently,
when the numerator and denominator vanish, it must take the
particular limiting value assigned by the law of continuity. It
is on the ground of continuity alone that the mathematical
accuracy and logical rigour of the principles and applications of
the Calculus may be considercd to rest. The fundamental
principle of our operations, according to the theory of limits,
consists in this, that if the increment of a function be divided
by the corresponding increment of the independent variable,
then as the increments are taken less and less towards zero, so
will the quotient approximate in value to the differential co-
efficient as its utmost limit.  Thus the differential coetlicient
is that particular value of the vanishing fraction which con-
forms to the law of continuity amongst the other values: and
since this is the identical value of the fraction, which always
enters as the subject of investigation, the truth of the principle
on which the Calculus is applied, in the casc of limits, may be
regarded in the strictest sense, and at the same time rendered
clear and satisfactory to the understanding.
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(11.) Thereis yet another mode of laying down the first prin-
ciples of the Calculus, which, at the onset, has the advantage of
obviating all considerations of infinitesimals and limiting ratios,
#0 a8 to bring the subject within the scope of ordinary Algebra.
This method, commonly called * the method of derived func-
tions,” is presented by Lagrange in his ‘ Théorie des Fonctions
Analytiques,” and the investigations, which in their nature are
purely algebraical, are at the same time elegant, systematic and
logical. In substance this method is equivalent to the following :

Let & denote a small accession to the value of a variable
quantity x which thereby becomes of the value x + A; and
suppose the binomial function f (r + k), when developed
according to the powers of 4, to be as in equation (1), viz. :

f@+h)=fr+Ph+QA*+ RA?* 4+ &e.
in which P, Q, R, &c., as before, denote new functions of &
whose forms depend wholly upon that of fr.

Then the coefficient P, which is identical with the differen-
tial cocfficient, Lagrange defines to be the first derived func-
tion; he designates it by f'r, and observes that it is quite
independent of the value of A By treating the derived
function f'r in the same manner, that is, by expanding
S'(z + %) and again taking the coefficient of 4, a second derived
function, designated by f"'z, is obtained; and this process is
further supposed to be successively repeated to third, fourth,
&c. derived functions.

(12.) These definitions being premised, the more immediate
objects of the calculus of derived functious are:

1. The form of any function fz being given, to determine
the forms of the derived functions, and to effect generally the
form of the development of the binomial function f(s + #),
with other problems relating to the cxpansion of functions.

2. The form of a derived function being given, to find
that of the original or primitive function, &c., &c.

The problems comprised in the first of these are equivalent
to those of the Differential Calculus; and those of the second,
which refer to the inverse operations of the Calculus, are in
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effect the same as the inverse processes of integrating differen-
tials and differential equations in the Integral Calculus. And
these abstract analytical problems, which embody the essential
principles of the Calculus as an instrument of investigation, are
thus established without introducing any ideas relating to
infinitely small quantities or limiting ratios, all considerations
of small quantities being in fact deferred to their legitimate and
inevitable occurrence when we come to the actual applications
of the Calculus to the various geometrical and physical subjects -
which arise in the different branches of mathematical science.

‘We have here given 2 brief exposition of the fundamental
principles according to different methods of treatment, because
a knowledge of each of these will be necessary to enable the
student eventually to acquire a thorough command of the
powerful resources of the Calculus. After a little experience
he will not fail to discover that the collective reasonings em-
ployed in these methods are substantially alike, and that they
in reality constitute the same grand unique system of deduction,
only exhibited under different points of view or modified for
the purpose of more immediate adaptation to particular objects
of investigation.

(13.) Before entering upon the manual operations of the
Caleulus or discussing the practical methods of differentiating
functions, we shall here concisely repeat those preliminary
ideas respecting the operation of differentiation, which should
in the first place be distinctly impressed upon the mind :

If, when the variable quantity r increases by an increment
Az, a function u or fr increases by Au or A (fr); then the
“differential coefficient” of the function is determined by
ascertaining the ultimate ratio of the increments, or the limiting

increment function _ Au

continuous value of the fraction ~——— """ = 27 or
increment variable Ar
A( f )

when the increments are supposed to vanish, and this

differential coefficient is symbolized by d or d(f ‘r)

sometinies more briefly by « or f'r.
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If we further suppose the expansion of the binomial function
J(z + a2), according to the ascending powers of Az, to be
fle+ar)=fr+Par+ Qas? 4 &c.;
then the coefficient P of Az, exhibited by the second term,
will also be the differential coefficient of the function f(s);
that is,
du d(fzr) _
a; or TJ_'— =P
In these relations du and dx may be regarded as simulta-
neous infinitesimal increments of u and r; but this idea is not
always necessary, because % may be either considered as a
fraction determining the ultimate ratio of two infinitesimals or
as an abstract symbolical representation of the coeflicient P,
according to the nature of the investigation.
The following examples, in which the differentials are deter-
mined from first principles, will practically explain their
operation,

Ezample 1.—Let u = 27 ; then, as the equation is gencral
for al] values of z, when x becomes # + ar it will give
(v+ auw) = (¢ + Ax)? =123 + 2247 + A2
From this take away the first value u = 7 and we get
Au=2sAr + Aax? .. au _ 224 Az,
ar
This last equation is accurately true for all values of Az,
however small, and the value of 22 + Az on the right-
hand side, will evidently change continuously as we suppose

Ar to continuously diminish and ultimately to vanish. Hence
making Ar = 0 and taking the limiting value of the fraction

‘l‘—‘, denoted by 4—'}, we obtain
aAzr dr
du

d—'=2: ordu =2zdxz,

which is the differential of the proposed function ¥ = :
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Ezample 2.—Let v = z* + 3a%z; then, when z becomes
r+ Az,
u+ au=(r +22)%+ 3a? (z + az)
=23+ 3a’r + 3(2* +a?)ax + 3rax? + azs.
Reject u = 23 + 3a°z, and
au=3(z2+a®) Az + 3zraz? + asd
Au

2Y . 3(129 + q? 2
a7 3(z? + a%) + 3rar + Azt

Hence, as before, making Az = 0 and taking the limit, we
get
du .
— =3 (st +a?) or du = 3 (2? + a?) da.
dr
a’ 4+ bz
b—z’

a? +b(z + Aag) and

Tb—1r1~Ax

Erample 3.—Let u=

then v + au=

_@+brtbar _a*+br (@ 4bN)ar

A= T A b—z T (=)@ —zr—an)
NP k. L ‘
arT - —r—ax)

Therefore, at the limit,

du o248 At
A EE TR

The process of finding the differential coefficient or the
differential of any proposed function is called *“differentiation,”
and we proceed in the following Chapters to establish the
principal rules by which we are guided for the purpose of
facilitating the actual performance of this operation on the
different forms and varicties of functions.
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CHAPTER II.

DIFFERENTIATION OF FUNCTIONS.
1. Algebraical Functions.

(14.) A constant quantity connected with a function by the
sign of addition or subtraction will disappear after differen-
tiation,

Let u =P + ¢, P denoting any function of a variable r.
When z becomes r + ax, suppose P and u to respectively
become P 4 aP, u + Au; then

u+ au= (P + aP) +oc.

From this subtract u=P + ¢ and there remains the in-

Au AP du dP
crement Au = AP. Thercfore = A and hence Pl

or du = d P, in which result the constant quantity ¢ does not
appear.

(15.) A constant quantity connected with a function as a
multiplier or divisor will rewnain as a multiplier or divisor afler
differentiation.

Let u = ¢ P, P as before denoting any function of a variable
z; then when u, P take the new values u + au, P + AP,
we have

u+ au=c (P + AP).

From this subtract u = cP, and we get au = cAP

Au aP
[ oJp——

ar A.r'
du dP
Hence Z=CgRor du=cdP.

Similarly,ifu:l’.weﬁnd fj‘=l apP orduzﬂ)-.
c des ¢ dr ¢
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(16.) The differential of a function consisting of two or more
terms, connected by the signs of addition or subtraction, is
found by differentiating each term separately and collecting
the results with their proper signs.

Let u=P + Q + R + &c., where P, Q, R, &c. are func-
tions of z; then when z takes the value r + Az, the function
% will become

u+au=(P+aP)+ (Q+ 4Q) + (R + AR) + &e.

From this subtracting the former value u =P+ Q + R + &e.,
we get
au=AP + AQ + AR + &c.

Au aQ

"37=r,iui:;i&
du dQ
Henced d.r * 4_' s + &e.

ordu =dP + dQ + dﬁi&c.

(17.) The differential cocfficient of any constant power of
the independent variable r is found by multiplying by the
exponent aud diminishing the exponent by unity.

Let v = =" ; then when x takes the value r + ar, ¥ + Au
= (z + ax)".

SoAu=(r+ an"—a"
To find the value of au in powers of Az it will be necessary
to expand this binomial ; but the second term of this expansion
will suffice for our present object, and this may be readily
found by means of induction, independently of the binomial
theorem.

First, suppose the exponent n to be a positive integer. By
multiplying successively by = + Az, disregarding the terms
which involve the second and higher powers of az, and in-
dicating those terms by + &c., we obtain

(x4 4ar) =2 +ar
(+ant==z'+2x02 + &c.
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(x + a2)’ =23 + 322 ar + &c.
(x+ar)¢=st+42%ar + &c.
&e. &c.

And generally, (z + Ar)* =1 + ns*—~1az + &e.
The value of Au is therefore of the form

Au=nz""'Ar +Qaz* + Raz® + &c.
where Q, R, &c. denote certain functions of z and ». Hence

%:n:""‘ +Qar+ Ras? + &c.;
and this equation is true for all values of As. By proceeding
continuously to Az = 0 and taking the limiting value of the
fraction, it ultimately gives
du

—=nz*~lordu=nas""ldzs.
dx

The same reasoning and the same result also obtain when =
instead of being considered the independent variable is sup-
posed to represent any function of another variable.

Secondly, suppose the exponent to be a negative integer,

1 1
oru=uc ',thcnu—z—u.u+Au_m and
i L1 __Gtanr—a

(@+ant " " (z + an)”

:"’A:+QA1’ + Rar® + &c.
™ (2 + ax)*

av _ aa"-1'4+ Qar+ Ras? + &c.

‘ar (4 ae)”

By proceeding as before to the limiting value, this gives

-1
g-:: - “—':—:;——= —nr~"=lordu= —nr-"-1dzs.

Thirdly, suppose the exponent to be fractional, or u =
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m
gn; thenu*=smand nur-'du=mz™—'dz

. du mym-1 maym=—1 ;—l'
der ™ pur-t! 0m
RZn

m
=_z
(m=1) n
.
If the fractional exponent be negative, or u =z ™ ; then u®
=z mand nu"-'du = — max—"-dg, which in the same
_m
du m. il

way gives —- = — —

The rule is therefore true for all powers, whether the expo-
nent be positive or negative, integral or fractional.

(18.) The differential of any constant power of a function
is found by multiplying by the exponent, diminishing the
exponent by unity, and finally multiplying by the differential
of the function.

Let u = P~, P being a function of r; then proceeding as in
article (17), only substituting P in place of z, we obtain

du
dp

As in the former case, this rule is also true for all powers,
whether the exponent be positive or negative, integral or frac-
tional.

=naP»-' anddu =nPr»-1dP.

Cor. Hence also d—'f =npPn-1 ‘!B
dr dr

and du = n P! ar dr.
dr

(19.) The differential of a function consisting of two variable
factors is found by multiplying each factor by the differential
of the other, and adding together the two products.

Let v = PQ, the factors P and Q being functions of z.
When = becomes = + Ar the corresponding values of v, P, Q
will be  + aw, P + AP, Q + aQ respectively, and then

s+ax=P+aP)(Q+2aQ =PQ +QaP
+ (P + aP)aQ
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o au=QAaP+ (P + aP)aQ
au _ AP AQ
2= Q% T AR

Hence, making the increments vanish and taking the limit-
ing values, we get

du Q

Q +Pd or du = QdP + PdQ.

('20.) Thc dlﬁ'erentml of a function consisting of any number
of variable factors is found by adding together the products
formed by multiplying the differential of cach of the factors by
all the others.

Let v = P QR, a function consisting of three variable factors
P, Q. R. By considering the function u to consist of two
factors P Q and R, we have by (19)

du=Rd(PQ) + PQdR
= R(QdP + PdQ) + PQdR
= QRdP + RPdQ + PQdR.

Similarly if u = PQRS, the product of four factors, we
obtain

du=Sd(PQR) + PQRdS
=S(QRdP 4+ RPdQ + PQdR) + PQRJS
=QRSdP + RSPdQ + SPQdR + PQRAS;
and the same process of derivation may evidently be extended
to any number of factors.

(21.) The differential of a function in the form of a fraction
is found by multiplying the differential of the numerator by
the denominator, from this product subtracting the differential
of the denominator multiplied by the numerator, and dividing
the remainder by the square of the denominator.

Let u = —3, P and Q being functions of z;

thcnu+Au_£+AP and

Q+aQ’
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=T 74T QT
aP aQ
Au Q A—;_PX;

T aT QYA
Hence taking the limiting values when az = 0, we obtain

Q4P _pdQ
du _ “dr " dr .. QdP—PdQ
dz = Q? QR :

The different forms of functions, considered in the foregoing
“articles (14) to (21), comprise all the combinations of quantity
that can be effected by the ordinary operations of Algebra,
and they will therefore enable us to differentiate all algebraical
functions, however complicated. We shall now apply them
to a few examples.

1. Let it be required to differentiate y = 32 + 2a.

Here, by (14) we must disregard the constant term 24, and

by (15) we have % =3 ordu=3dr.

. . 1
2. Differentiate u = T

This being written u = £ ~, we have by (17),

L“:—l xz-l-'=-—r-*:-—i;.ordu:—-d—t:.
dz z? z?

3. Differentiate v = 2z 3 — 3a%z?
3. Diffc tiat 2r4 + aad — 3a?s?

By (15) and (17),
e _gBeY L dle) g dt)
r dr

Q—z

dr dr d
=2(42% +a(32%) —3a%(22)

=823+ 8ax?— 6a’s.

4. Differentiate u = 4 :;.
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Here ?:4“1 )

5. Differentiate v = (@ + 1) (b + 1).
By (14) and (19),
du=(b+2)dr+ (a+r)dr=(a+ b+ 2r)dr

—4(%1*-‘)=6:*=6~/;.

or i'f=a-+-b+2¢'.
dr

6. Differentiate v = (z — 2)2 («2 + 3).
By (18) and (19),
du= (2 4+ 3) X 2(z —2)dr + (= 2)% x 22rdr
=2(r—2)(27r* — 22 + 3)dr.
. ;;: 2(z - 2) (2r% — 2z + 3).
7. Differentiate u = a™z™ + 4" z™
By (15) and (37),
:—: =am(nzr- ")+ br(mam-Y)=namr*~ 4+ mbram-l.
8. Differentiatc v = (a + ) (b + 21) (c + 3u).
By (20) we have
du=(b+21)(c+ 31).dr + (c + 3r)(a + 1) . 2dr
+ (6 + ) (b + 2r).3dx
. E: b+ 2x)(c+32) +2(c+3r)(a + 2)
+ 3@+ x)(0+ 212)
= (3ab+bc+2ca)+ (12a+6b +4c)z + 1822

9. Differentiate u = — tz
a—2z
By (21),
du = (@a—1) xdor—(a+ 1) x —ds
= (@= 97
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_(a—z)dr+ (a4 2)dr _ 2adr
- (a—a1)? T (@a=1)?

e F.;‘ = (T— .1')2

4
10. Differentiate u= \/ a + T oru Ea i 3‘

Here du =
(@—d x$(@+a)-tdr—(a+ 1)t X —}(a—2a)-tdr
@2
_{a—nta+-t+ @+ nt@—2)-1
d.r 2(a—1)

— (a—1)+ (a+ 1) a
_2(a~—.r)(a—.r)*(a+.r)ﬂ (a—a2)i@+a)¢
=%

(a—2)va® =22

a+z

Otherwise, by squaring, we have u? = e and, by the
last example, 2ndu = (_a2;"_ 'f:) g3
de _ 8 a—x
Tdr  w@-n)? (a--.r)1 a+ r
a

T Va=—at

11. Differentiate v = +/ a® — %,
Write v = (a* - )4 and by (17), (I1R),
— rdr
=}@ =)t x — =,
| du=§ (a -4 X — 2rdsr Nt
12. Differentiatc u = v @® + 24z + 2%
Here u = (a® 4+ 26 ¢ + 2%)4;
du=4(a®+ 2bx + 2%~ x (2bds + 2rda)
__(+1)de
SVEF 26z + 5



DIFFERENTIATION OF FUNCTIONS. 25

~ice

A\/m (a® + £?)

13. Differentiate v =
By (18) and (21)

rs x3

ol . ; .
¥ x 3 (a4 2a%Y rder — (a* + 2?)? X 322ds
- ¢

x

du =

o o )" bl o o
du 31 (aP 4 2% {2? — (a® + 27}

Cde T FLE T

R —
= A a7+ as,

Otherwise, writing the function in the form
3 .
u = (a® + 2%)? r=3, we obtain by (19)

1
du=ur~3% X 3rdr (¢* + 29? + (a* + m"); X —3r-4

= 3dz (¢* + .r"‘)"} {e-2—a-4(a®*+ 29}

1 3a?
= —3a%r=%dr (a® + 2?)¥T = — —.-ri:— a® + r*,
14. Differentiate v = 7*',"—-—7 =7 .
a?—r e .r'l)*
_ (ag—zi’)} Xdr —2 X —(a% —s%)=drdr
du = @ =¥
=(@=ahdrtaldr __aldr
(a? — 2% (@? — %)

4/4_1+.r—'\/a-—1'
15. Differentiate ¥ = —=e———ie ™«
Vat+r+vVa—=

Differential of the numerator
=4(@+a)~tdr+j(a—a)-tds
_Vatzr+ VT:}&
- 2vai—z2
B
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Differential of the denominator
=i(a+a)-Yde—3(a—a)~¥ds

'\/a+r—-\/a—-t
= — = —-dr.

‘) et =2

Therefore by (21) we have

(»\/u+m+ Vad = 1)t +(\/a~: 1—-“(1:—1)

dy = - N a'_r
2(Va+at s T — 1) gt
_ adr a(rx—«’(1~‘z)d
T i =y o e
(a + '\/u'—.t-) Vs — ot £V gt — g2

S (/4 —a* m-
. Differentiate v = — ~ - —

Vot — ot

] - g —y .
Writing (¢ — 2%)? for «/@® — ¢, we similarly have, by
2

i =
4/:’—.1:}&v(—Su"\r—l,r‘ dr—(Rubt=ta’ 1 =1« —(a"=a2Y=4a2dr
B : T T )
—ta? = a?) (Ra*w +4 v+ Rat =0t a? =Y 3atds
= - , ST de e
OS] (@' —a%)¥

I
17, fu= (¢ =) (0 -+ .); then 5;—;—(1—1)
3 3 3
8. l(‘u=-l— iy then Q =_(.r+_ )
r ot dr

dn n + 5b.r+oz-
19. Hu=@+brta9\'r; thm i

N TR du
20. Ifu=(2+ 29V 1—s*; then - = —

2re :

21, Ifu= /a¥ + 27; then o=
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[&]
-~

h Y
a? + 17?2 du 3at .
22, fu= '("'"—*;5'"“ ; then r = — —wj‘ \/ll‘. + 23,

b
23, Ifu = 32— 2a) (a® + 27)¥;

u I
then — = 1505 42,
dr

(22.) Expressions under the form of square roots are of
very frequent occurrence in analytical investigations, and their
differentiation, according to art. (18), using } for the exponent,
suggests the following simple and expeditiouns rule :

The differential of the square root of a function is found hy
taking half the differential of the function and dividing the
same hy the square root of the function.

This uscful rule’'may be practieally applicd by the student
to Nee 11,12, 14, 16, 20, 21, of the preceding examples, and
it will enable him ot onee to put down the final result in all
ordinary cases of this hind.

11. Logarithmic and Erponentiul Funetions.

(23.) The logarithmic function v = log r depends upon the
expouential relation a* = al+ = . Thus if « ¢+ = r, and
a'*cy = y, we have, by multiplication, av&+* ey = 4 y; but
alR @y =ry,

s log a4+ logy = log (ry),

which is the fundamental property of logarithms,

The constant quantity a is indeterminate and may have any
proposed value. It is called the baxe of the logarithmic
system belonging to it, and, since a' = a, it is cvidently the
number whose logarithm in the same system is equal to unity,

Since r = a%, we have r 4 Ar = a%* 3, and therefore

Ar __a™tav_ g ast — |
—_— = .

Au Au au

In taking the limits of this cquation we obscrve that the
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L . . ghw__
limiting continuous value of the fraction 2 !

, which in

Az 0
common with o takes the form 9 when Au = 0, must be a

function of @ and independent of Au. Denoting this function

by A a, we have

ab — 1

A a = limiting value of when 6 =0

dz
—_—— Y = .
7 e*Aa=uxla

Again, the equation z = a* gives 2¢ = a%?, ¢ denoting any
value whatever. Therefore

2 —1 _aub—1 __ avé — 1

e Y I
This equation is necessarily true for all values of 4. By
proceeding to the limit 6 = 0, u § = 0, the continuous values,
from what precedes, obviously give

Ar=ula; a
o u = lo .z'—'lx
cou=lgr= L

The value of the function A z may readily be obtained in a
9 -1} -
it in the form f_] + @D} 1.
L 6
Thus, by expanding according to the binomial theorem and
putting 8 = 0 in the final result, we obtain

Ae=(z—-1)=}(r—1)2+ } (c—1)*— 3 (z— D* + &e.,
so that the last expression for log r may be written
@E=N—=3 =1+ (=1 =1 (@=—1)+ &c.
@—1D—-3@—-12+3@—1)P=3@—1*+ &e.

These equations apply generally to a system of logarithms
having any value a for the base. According to Brigge's

system, on which the logarithmic tables in common use have
been calculated, the base a = 10, which greatly facilitates the

series by putting

logr =
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use of the tables in arithmetical calculations which involve
decimal numbers.

(24.) If the value of a be so assigned that Aa = 1, we shall
have logr = Az, and loga=2xa=1. This value of a will
simplify the analytical relations and give the Napierian system
of logarithms, of which the value of a so determined is the
base. Ience it follows that the function we have indicated
by A characterizes the Napierian logarithm.  To determine the
particular value of a which will fulfil the proposed condition
Aa =}, instead of using the serics for A a take the initial form
of this function, and we have

6 _
limit of li-—-0~-l =1, when 6 =0;
1
. a = limit of (1 + 6)°, when 6= 0.

By expanding according to the binonial theorem, we find

G-,

9
-

1
L

+ 7‘9(2 - 12 '{(;) - A‘1) L;“, t (‘l\-(.‘

1—4a I —a8) (1 —2

=l+l+"‘, o

Now, when @ passes from a small positive to a small negative
value, the value of every term of this series will evidentlv vary
continuously, and when 6 = 0 it gives the limiting value of

1
a+er

1 1

ot oo+ &el = 2:7182818, &c.

2.3.

This arithmeticalvalue, which forms the base of the Napicrian
logarithins, is usually denoted by the letter e, and sometimes
by the Greck letter ¢, and these symbols always represent this
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arithmetical value whenever they appear as roots of exponential
functions.

. The Napierian system, from its greater algebraical simplicity
and convenience, is also that which is generally employed in
analytical investigations and formulee ; and therefore whenever
alogarithmic expression occurs, the Napierian logarithm should
always be understood unless the contrary is distinctly stated.
‘We have thus, according to this system, the following rela-
tions :

a? —1

log x = limit of , when 6 = 0.

1
e = limit of (1 + 6)? = 2:7182818, &ec.

elogr — p.

When u=logx, the cxpression for %f (art. 23) also
cu

dr .. dz .
becomes 7 = % giving duz—x-; but we shall otherwise

determine this diffcrentiation in the next article.
25.) Differentiation of u = log a.
When z Lecomes x + Ar, u becomnes # + Az, and we have
u + av'=log (z + Aar);

4

T A
o se=log (r + Azr) —logr=log J—‘—%A-' = Ing(l + ;{)

. aAx -
and, putting o= 6, we find

In proceeding to the limit au =0, ar=20, 6 =0, we
1
observe that the continuous limiting value of (1 + 6)° = e and
that log e = 1. Ience
du 1 dr
—= -, and du = —.
z z

dr
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Therefore the differential of the logarithm of a variabie
quantity is found by takiug the differential of the quantity and
dividing by the quantity itself.

The differential of & power, or of the product of several
functions, may be readily deduced from this, Thus if « = a*

then log u = a log «, the differential of which gives i =n -‘i—l
X % =n g =nar"~!, the same as in art. (17). Again, if

=P x Q x R, &, thenlog v =1log P + log Q + log R +

de _dP | dQ  dR . .
&e, and .. “=“prpto qQ +w * &e., which gives

du‘—u(dp+d(? --+ &e

1Q  dR
=DPC ! \C.
PQR, & 1 +Q+lt qc)
which is.equivalent to the formula of art. (20).

(26.) Differentiation of u = a-.

When  becomes ¢ + Ar we have u + au = a7+ 8r;

Al “x+A.r__(,t adr — 1
T

TarT T Tar

But (art. 21) the limiting value of the vanishing fraction

-— . . 8 — .
l, which is of the form a—_é-l, is log a; therefore

du
o= boga.a®, orde=loga.a*dr.

Thus the differential of an cxponential quantity having an
invariable root is found by multiplying together the logarithin
of the root, the exponential itself, and the differential of its
exponent.

Hence, when a = e, or u = e*, we have, since log e =1,

du

¢!
o = ef, or du = e*dz;
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that is, the differential of an exponential quantity having for its
root the Napierian base e is found by multiplying it by the
differential of the exponent.

(27.) Differentiation of u = PQ, P and Q being functions
of z.

Since u = PQ, we have log z = Q log P, the differential of
which gives d (log «) = (log P) dQ + Qd (log P); that is, by
(25),

d dP
Z=(ogP)dQ + Q%
. du= (log P) udQ + QudT_,F—’

= (log P) P2dQ + QPQ-14P,

Hence the differential of an exponential quantity when the
root and exponent are both variable is found by adding together
the differentials obtained by considering cach separately as
constant and the other variable.

For example, let u = z*?. By considering the root » to be
constant and the exponent z? to be variable, we obtain by
(26) the differential (log 2) 2%? X 2rder = 22+ dz (log z).
Again, by considering the exponent z* to be constant and the
root z to be variable, we obtain by (17) the differcntial
22 .2 ~1dr = z**+1de. Hence, adding these, we find

du

du=a**tdr 2logz+1) or - = 27+ (21og 2 + 1).
The following examples are added as exercises :
1. Ifu=ame*; then du =zm-1(m + x) e*.
dr
2. Hu= (23— 22 + 2) e; then M p2er,
dz
3. Ifu=(23—32% + Gz — 6)e*; then %: z3e’,

e* du re”
Hu= m; then E-—m-

N
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5. fu=e*logr; then % =T (; + ]og.r).
6. If u=e™* log.r; then du _ eme (2 + m]og:).
dr x

dt 14 x4 22
— = . -— l‘
7. fu=e* V1 +r ; then G- = = Ve e

w1, Trigonometrical Functions.

(28.) The trigonometrical functions sin «, cos r, tan &, &c.
are usually considered as abstract arithmetical quantities
having reference to a circle whose radius is unity ; or, which
is in effect the same, they arc supposed to be expressed in
parts of the radius, the arithmetical value of the variable «
being supposed to represent the length of the arc measured on
a circle whose radius is unity or otherwise expressed in parts
of the radins of the circle. Other forms result from the
various combinations of these clementary functions, and as
they all involve relations between ares of circles and their
coordinates they are sometimes called ““ circular functions.”

1. Differentiation of u = sin .

When r becomes  + ar, then u + Av = sin (r + Ar), and

Au =sin (¢ + Ar) —sinr
=sin {(r + 3§ ar) + Jar}
—sin {(r+ jar) — } ar}
=2 cos (r + }Ar) sin § ar
=cos (¢ + }ar) ch ar;

. i-—‘;—cos(.r-}--}A.z‘) C—EM

Now, when Az and Ar become infinitesimals, or when we
suppose Az = 0 with the view of seeking the limit of this

. . ch sy .
equation, the fraction ¢ &A‘f becomes a vanishing fraction, and

BS
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therefore it will first be requisite to ascertain its limiting
value. Let ch Az be considered to Le the side of a regular
polygon of n sides inscribed within the circle, and we shall
obviously have
ch Az _ nch 4z _ perimeter of polygon
Az nar  periphery of circle |
If the number of sides of the polygon be supposed to be
indefinitely increased, so will Ar become indefinitely diminished,
and the perimeter of the polygon will evidently approximate
more and more nearly to the circumference of the circle as
its extreme limit, so that the numerator of the fraction
perimeter of polygon Loy ultimately become equal to the de-
periphery of circle

ch Az is chdz
Az dr

. nominator; and thus the limiting value of
= unity. Therefore by supposing Az =0 and taking the
limit of the preceding value of i—: we obtain the ultimate
differential relation

du
— =cos &, ordu=drcosuz.
dr

Cor. The limiting value of -sil;—‘f =1, when 4 vanishes.
i 2
For ﬂ;—‘-’ = %,ﬁ};'_f = cl:)j 0, which is of the same form as
char

‘127 and therefore expresses the same ratio in the limit.
Ar

2. Differentiation of u = cos .

Ilere Ax = cos (¢ + Ar) — cos
=cos {(x + }Ar) + }ar}
—cos {(r+ }ar) — }ar}
= — 2sin (¢ + } Az) sin } Ar
= —sin (¢ + } Ar) ch Ar;

Au ch Arx
— = —sin (¢ 4+ } Ar) ———.
tAr & ( 4 ) Ar
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Hence, taking the limit as before,
du

_d;:—sin‘r, or du = — dr sin x.

Otherwise, since # = cos r = sin (§ = — 1), we have
du=d(}n—az)cos bn— x)
= —drcos (} # — 1) = — drsin s,
3. Differentiation of u = tan .

Since y =tan v = w. we have, by (21),
cos r

du__cos.tdsin r—sinrdecos

cosdz
__cos x (dr cos ) — sin x (— dr sin r)
- cos?r
dr (cos® z + sin® 1) dr
= ( 5 ‘= ——y— =drsecis.
cos?x cos®s

4. Differentiation of u = cot z.
cos z

Here u = cot # = ——, and
sin xr

d sin rdcosx — cos rdsinz
y = .
sin®s

_sinz (—adr sin r) — cos 2 (dzr cos 1)
- sin® .

dr (sin®z icosaz)

sin’z
= — — = — dr cosec?z.

. . 1 .
Otherwise, since ¥ = cote = o e have, according to

example 2, page 22, and the preceding,

dtan z dr sec’s dr '
dn_————_——m——“—n,;—-hoom x.



34 THE DIFFERENTIAL CALCULUS.

Or this differentiation may be obtained from that of tan.e
by putting ¥ = cot z = tan (} » — z) ; thus we have
du=d(}m —a)sec? (3n —a) = — drsec® (}n — 1)
= — drcosec?r.
5. Differentiation of © = sec r.
Bince u = sccx = ——, we have
cos T
decosr drsinr

e = ——— = (r tan r scC 7.
cos~ o cos o

du = —

6. Differentintion of » = cosce r.

1
Iere u = coseer = ——, and
Stz
d sin.r dr cosx
dt = — - = — ——— = — dr cot.r cosccur.
sin*a sin®.r

Otherwise, since u = coscer = see () — ), we have, by
the preceding,
du=d (} m— r)tan (} 7 —ur) sec () 7 — &) = — dar cot r cosec o,

(29.) The differentiation of other more complicated trigono-
metrieal functions may be easily deduced from the elementary
differentinls here obtained, because all such functions st
evidently result from certain combinations of these with
algebraic functions.  As it may therefore be useful to re.
member the results of the preceding trigonometrienl differenti-
ations, it will be convenient to collect them together as follows :

dsine = dr cosx dcosr = —dr sinr

1
i
]

dtanr = dr sec’s dcot r = — dr cosce®r

dsccr =drtane secx | dcosecr = — dr cotr cosec.r.

They are thus arranged in two columns because the differentials
in the second column arc respectively analogous to those in
the first column, only using the complementary angle or
substituting 4 = — x in place of r; and, this analogy,being
once recognized, a rememnbrance of the three differcntials in
the first column will be sufficient to suggest the others.
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Examples for exercisc :
. du
1. Ifu =cosz + « sinr; then — = 2 cos 2.
dr
2, Ifu=cos™rsinr;

du . .
then e cos™ 1z sin"~lr (n cos®o — m sin®r).
z

. 11
3. Ifu= (2 + cos?x)sinx; then %’f = 3cosdz.
dr

. a du .
4. fu=2zsine + (2 — 2% cosr; then = s
dr
i o L du e
5. Hu=1(2 4+ 3cos®x)sin®r; then o= 15 cos¥rsiut o,
dr

. p {
6. Ifu=3r—3tanz + tandr; then ’Iﬁ = 3 tan‘.r.
ar

. N ou .
. Mu="2cosz + 2xsins — r*cosr; then " - sine
asr

.

~1

. . . — . dn .
S, Ifu=3r—cosar(3sine+2sinr); then o= Sainta.
dr

. du
9. If u = e*(cosr + sinz); then = et cosa.
axr

1v. Inverse Functions.

(30.) If r = fu, a function of u, the reverse relation which
indicates the corresponding value of # as depending upon that
of r is called an inverse function, and is usually written
u= -1z, Thus if r =sin », then » =sin-'s, and this
inverse trigonometrical function therefore symbolically ex-
presses the circular arc whose sine is r.  Similarly u =log='r
expresses the number whose Napierian logarithm is equal to 7.
The differentiation of an inverse function follows immediately
from that of the direct function. For, taking v = f='z, we
have z = fu, the differential of which gives dr = du f'u,

du 1 1

TRV AVEE)
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‘We shall here in this way determine the differentials of the
ordinary inverse functions in their simplest form.
1. Differentiation of u == log—'r.

Since 2 = log u, we have hy (25) dr = %‘f;

du
s —=u=Ilog=1lr, ordu=drlog-lz.
ar g 8
2. Differentiation of ¥ = sin—1ur.
Since r = sinwu, we have by (29) de = du cosu;

du 1 dr
eI PRt or du =—;- STEIRe
dr cosu A ¢ A= g2
3. Differentiation of u = cos—'xz.
Since » = cos v, we have dr = — du sinu;
du 1 1 dx
e - = or du = — ‘/—7:—_=A-
V11— 22
. Differentintion of # = tan—'r.
Since ¢ = tan», we have dr = du sec?u;
du 1 1 rd dr
G = e e e Or U=
de ~ scetu T 1+ 2?2’ 1+ o2
5. Differentintion of v = cot —'r.
Since » = cot u, we have dr = — du cosec” u;
.odu 1 _ 1 or du= dr
“tde T cosectu 14z T 1427

6. Differentiation of u = sec—1xr.
Since r = sec v, we have dr = du tanu secu;

. odu 1 _ 1 or du = dr
drT tanwsecu A gF 1 7

7. Differentiation of ¥ = cosec —!x.
Since r = coscc u, we have dr = — du cotu cosecu ;

. du 1 -~ 1
*tdrT T cotucosecw  ragl—]
dr

ordu:—m.
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Here the diffeventials of cos—!z, cot—'r, cosec='z are
respectively the same as the differentials of sin—1r, tan-1r,
sec—'r only with the negative sign ; and this should evidently
be the case, because }m =cos—!r+ sin='a =cot-lxr +
tan—lr = cosec ~'r + sec "' x.

Examples for exercise :

L Ifu=(*—=22r+ 2 log~'r; then :Ii'f =2 log-la.
R <

log—'r du  rlog—lr
0 gt . —_— .
2. Ifu= T then il rass

3. Ifu=logzlog~'r; then g.; = (log.r + ;) log - 'a.

7
4. fu= an-'r+ 1 ;3 then Do -
T dr s

—
—

du l_

= ~ — -1 / 2. —
5. Ifu=tan—'r \/1 4+ «*; then i

, T 1 du
6. fu=a— /1 —a*sin~'z; then - =

7o u= (22— Dsin o + 2 /1 = 15,
then du =4 asin-'a,
dr

RfoIfu=a4 Gin='0)? — 2sin 'z . 1 /T — 2%,

then

v. Compound Functions.

(31.) If in a function u = fir the variable r is replaced by
anather function ¢z, the expression v = f(¢.r), which then
becomes a function of a function, is called a compound function
of z.

Let y = ¢4, so that u=fy, and let Au, Az, Ay denote
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corresponding increments of u, z, % ; then, as the equation
v Au Ay
Ar~ Ay Ar
essentially represents an identity, and is therefore true for all
values of the increments, however small, it must evidently be
true when we proceed to the limit or suppose the increments

to vanish and take the continuous values of the respective
fractions. llence

du d . . . .
where @ 7/% are the differential cocfficients of the functions

u = fy, and y = ¢z. Thatis, according to the usual notation
of derived functions,

du

C=ry. da=r )b

dx
or du=jf"(¢px)¢'r.dr.
Similarly, if y = ¢, 2 = Yy, u = [z, so that the function u is
of the more complicated form u =/ {{ ()}, or the function

of a function of a function, it may be shown that

du _du dz dy or dn = du dzdy
dr T dz T dy T dx Td: Tdy e
and these, according to the notation of derived functions, would
be written

du _ ) , ‘ .

==L ¥y dr=L YV

dr
=L {YEoOW (@De's
ordu=f {Y(px)}¥ (p2)¢rdr.

In the same way the formule may be extended to any
number of superposed functions, and it is obvious that they
all depend upon the following simple principle:
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The differential of a function of any variable quantity what-
ever is equal to the differential coeflicient of the function, with
respect to that variable quantity, multiplied by the ditferential
of the variable quantity.

Thus if, as before, u = £ {  (pa) }, by successively apply-
ing this principle, we have

du =f"{¢(¢m‘)} X d {\], (qu)}
=1y (@D} x ¥ (Pr) X d(Ppr)
=7 {¢ (p2)} X ¥ ($z) X ¢/ X dr.

The following examples will practically show the mode of
procecding here indicated :
. Differentiate v = log sin .
Bv (23) and (29) we hmc

_dsinr _dreos T

dy =~ -— = —— =drcota.
El".l s
«}» o
. Differentiate v = lug
b {- 1
5 a+r (b + rdr — (a j‘rlrll
By (21), "’(b+ ! Ry
- ez b
0+ )
Therefore by (25) we have
a+a a+.r
du—d(3_+z)+b+4
_ (a—b)drxb+.r (a—=b)dr_
- b+ a)° a+r (a+.z')(b+.r)

Otherwise, since x = log (¢ + x) — log (b + 1), we have
by (25),

dr dr (a —b)dr
et bte  @ro+a)

3. Differentiate u = e*n #scc r.

du =
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Here du = secz d (e*in %) + e¥in=dseca, by (19),
=secze*m*dsinz + eMnsdsccr, by (20),
= sccredns . drcosr + eMordrtunrsecz, by (29),
= e (1 4 tanrsecr)dr.

4. Diflerentiate u = log (\/ a* ¥ 27 + 2).

By (22), d (v ¢ TRt ) =

(«/u + 22 +.1)d.t
Nl g g

Therefore by (25) we have

5. Differentiate v = log tane—+,
Here du = d (log tan =)

d(tane—T)
= , b
tane ¥ ¥ @5
_d{(e=n) see? e=r

, by (29),
tane~*

-~ (l.r(-"(l + tanfe=¥) by (26),

tan ¢~ T

= —dre-r(tane~* 4+ cote~").

. . du .
6. Ifu=uamerine; then = = (4 T cosa) eins,
r

. N du
. Hu=2logsinz + cosec®u; then e 2cotdr,

~1

o
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10. Ifu=(2?—4a?) log:

+
-r+‘.’a.r;

du a +
then -—— = 2o log
ar a—

1L Tfu=log(1 + 2r+ 2 V1 + a0+ x7);
dn 1

then — —
v = A 1 + I ort

. 2r u 2
12, e = tan—'—~-—; then - = —"—
I —u- de 1+ x*

T
15, Ifu=sin=' 5= — - then - du - 1

A da
7
1, If u = cos _Lb_fﬂn LT hen X = 2
« + beosr’ dr

. . di
15. Ifw = sin =} (30 — 4% ; then W —
dr

- 1 ¢ -
16. Mu= et sy then M Izt etn s,
dr 1+

17. fu=tan-'sin~lzr;

" dv _ 1
K"(/J {l+(\m ‘1)}«/1._.,-

vi. DLnplicit Functions.

(32.) The functions hitherto considered are supposed to b
explicitly expressed in terme of the variable quantity involved
and upon which its value is made to depend.  But a function
2 may have its value depending upon that of the variable r
though not expressed in any definite form, algebraical or other
wise, and perhaps not capable of being so expressed in finite
terms. In fact, the relation which conneets together the cor
responding values of u and r may be presented in the form o
an equation, f'(#, 1) = 0, f characterizing any function what.
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ever of v and r. The function u is in such cases called an
implicit function of the variable quantity r. If the equation
S (u,£) = 0 could be solved for u in finite terms involving z,
the function « would then be exhibited as an explicit function
of z; but, as before observed, this may or may not be possible.
A little consideration, however, will show that the differential of
u with respeet to » may be more directly obtained by taking
the differential of the proposed equation in its original form.

When 2 becomes’r + Az, u becomes # + A, and ns the
equation f* (v, r) = 0 must be true for all coexistent values of
u and z, we have f(x + awv, ¢ + ar) = 0, and

S+ au, o+ Ar) —f(u,2) =0, oraf(n,2) =0;
L _
Ar

This relation will be accurately true for all values of A,

and at the limit ar = 0 it gives
i,;(‘;::t_) =0, ordf(u,r) =0,

which is the differential of the proposed functional equation,
observing that » and r vary simultancously, v being a funetion
of . This differential cquation will be of the form Pdu
+ Qdr = 0, and it will therefore give the value of the limiting
ratio ill_.:’ or of the differential cocflicient of « with respect to u,
the same being expressed in terms of v and .

Lrample 1.—Differentiate the function u when

w—2u Va4 ort=0,

By differcentiating the equation, we have

—_— Quad
Qudy — 24 u- +I,[”"_."1‘J‘ + 2rdr=0,
* 4+ st
—
r 2w — \aT+ 27) du — "(“—i"A ).zrl.t-'()
Aat 4 gt

. du xr
de T Ve £ ot
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In this example the equation 12 — 2u W7 £ a? 4+ £ =0
involves % in a quadratic, and may therefore be algebraically
solved for u, giving u = va* + r? + a, which is the explicit
form of the function w, and its differentiation will also lead to
the result we have just obtained.

Ezample 2. —Differentiate v when u¥ — 3ur® + 208 = 0.

The differential of the equation gives

Sutdu — 32%du— Gurde + 6r%dr =0,
or 3 (u? — 2% du— 6 (ur — %) dr =0;
X du 6 (ur — 1° ) 2r
Fiw=r) e+
Ezrample 3.—Differentiate » when zsine — wsinr = 1.
By differentiating the equation, we have

drsinu + rducosu — dusing — udrcos r =0,
or (rcosu — sinr)de — (veose — sinu)de = 0;

. du _ucosr — sinu

d.r rceosu — singy

, du 7*—au
Ifud— 3aur +23=0; then — = — ° —— .
dr u—aux

e

du  sinu— ucosr

5 Ifusing —zsinu +1=20; then ~ = ueossy
dr  sinr — rcosu

6. Ife?+u?—2a+z" —u=0;
then @ _ 3. 0= Y
dr " u a+ vz

du a
« Ifunlogu — axr = 0; then dr — un=1(i + ulug;).

~1

“
5. Ifze —u+1=20; thentﬁf.—:—i—‘
dr = 2—u

9. Ifl:—(a+u)~/b!—u)‘ =0;

du 4 (a4 u)(b?—uf)
thend—; Ry e
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ey Vo s
10. If]oga+~/“z—" Tt Va—u =0;
u

a

then ﬁ— -
de va

9

vir. Functions of Tiwo or more Fariables.

(33.) Let u = f(x,5) denote a daguction of two variables
xand y.

1f instead of 7 and y varying simultaneously, x be supposed
to vary alone without any change in the value of y, then y will
be treated as the symbol of a constant quantity, and » being
then considered as a function of r only, its differential or
differential coctlicient will be determined by the foregoing
methods for functions of one variable.  The value so deter-
mined, however, as it is made to depend upon a change in the
value of x without any supposed change in the value of y, will
he only partial, and will not refer to n consideration of the
total change of w. In order to distinguish this, the differential

- . - . du
voctlicient i3 usually placed within a parenthesis; thus ((7.})

. . . .. du
denotes the partial differential cocflicient, and (1-/%.) dr the

partial differential of w with respect to z, that is, supposing ¢
alone to change.  Similarly, if ¥ aloue be supposed to vary

. . du . . .
and .+ to Le mvaniable, (1’}) will denote the purtial differen-
[t

. - ‘du S .
tial coeflicient, and (,/7,) dy the partial differential of u with

respect o y. 'These partial differentiations, as before observed,
may be effected by the preceding methods for functions of a
single variable ; first regarding w as a function of only one
variable r, and again as a function of only one variable y.

The supposition of & or y varying separately, so as to
partially differentiate the function v, is here to be received as



DIFFERENTIATION OF FUNCTIONS, 17

a mere conventional hypothesis assumed for the purpose of
more distinctly defining certain abstract analytical operations,
to be applied hereafter.

Returning now to the proposed function w = f(r, »), when
z and y respeetively become & + ar, vy + 3y, it becomes

u+ Au=f(r+ ar,y + ay);

that Au = f(r + Ar, y + Ay) — f(a, y), which denotes the

otal increment of v, or the combined effect produced on the
alue of the function by the two inerements ax, ay.  Instead

of conceiving the values of @ and y to change simultancously,
we may suppose them to change successively, as the result will
be the same in both cases.

Thus, supposing r to become x 4 Ar and the value of y to
remain unchanged, the function f(z, y) will become

S+ any);

aud again, supposing, in this last function, y to become y -+ 2y
and .« to remain unchanged, it will become f(r + Ar, y + ay),
which is the complete value of # consequent on the changes in
the values of r and y.  The function u instead of passing at
once to this last value is made to assume the three values
Sleow), fla+ ary), fle + a0,y + Ay), and the partial in-
crements of u in suceessively passing to these values are,

f{r+ ar,y)—f(r, )

= Af (r, y) with respeet to 7
flo+ary -+ ay) —f(r+ ar,y)

= Af (¢ + Az, y) with respect to y

the sum of which gives f(r + ar, y + ay) — f(r, y) = an,
the total increment of u.

su _ a8f(z,y) with respect to x

ar Ar

Af(x + Ar,y) with respect toy Ay
S sl 8 S Sl at bk S 8

ay ar
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Hence, taking the limiting valucs when ar =0, Ay = 0, we
obtain
du du du, dy
=) +G)ar
di
oo du= (ia—l) dr + ( u) dy.

dr dy
The differential of a function of two variables is therefore
found by taking the sum of the partial differentials.
(34.) Again, let « = f (1, ¥, =) be a function involving three
variables a, y, aud z; then
su=f(r+ ar,y+ 8y, 2+ &2) —f(x, ¥ 2).
RBut, instead of considering the values of z, y, = to change
simultancously, we may, as before, suppose them to change
successively.  In this way the function », instead of passing at
once to the new value f(x + Ar, vy + Ay, = + Az), will be made
to assume the four values f (1, y, 2), f(r + Ar, y, 2),
S+ ary+ 8y, 2,/ (c+ a8y + 48y, 2+ Az),
and the partial increments of u in successively passing to these
values will be
S+ a5y, 2) —f(ay, )
= Af (r, y, z) with respect to r;
S+ any+ 8y, 5) — f(r + an,y, 2)
= af (r + Ax, y, =) with respect to y ;
Sf@+oan,y+ay, 2+ a)—f(er+ar, v+ 4y, )
= &f (r + Ar, y + Ay, =) with respect to z:
the sum of which gives
Jetany+ay, s+ a5)— S5y 2) = ay
the total increment of u.

. au _ af(s,y, 2) with respect to x
ttar ax
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4 M@t any with respect toy 2y

Ay Cax
Af(r + Ar, y + Ay, 2) with respect to = Az

+ .
az ar

Hence, proceeding to the limiting values when ar=0, ay =0,
z = 0, we have

du du du du
((Lr) ( ) + (d..)dc
du du du
du= (J}) dr + (,7_,/) dy + ((L_)ll:.

The differential of a function of three variables is therefore
obtained by taking the sum of the partial differentials; and
this principle evidently extends to functions of any number of
variables.

Lrample 1. —If u = rlogy; then supposing 2 only to vary
we have

:;u) logy ; and supposing y only to vary, ( ) ="
o du= (logy)dr + (:,) dy
Erample 2.—If u =2 + 3azy + y.:’;
e ()= 305 5 91, () =507 5 0,

du=3(+ay)dr + 3y + ax)dy.

Example 3.—1f u = i{%
o (i") (Iu) _
o < + y) )= /)-"
e 20 =)

(r +y)?
[+
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4. Mu==z+y+V2+y2;

z y
then du = (1 4 ._,u)a + (1 + w%.,)d .
e & Nt +y? Vit 4yt i
5. Ifu=a¥; then du = (y a¥=") dr + (2¥log z) dy.
6. fu==zy 4/.rz+y2;

2 2 d. Q 9 o i
then du = @2 +y7) y;,i++(; +2y%) zdy
7. Ifu:';—’:; then du =T }/”H (myds — nzdy).

S Ifu=coszsiny + sinzcosy;

then du = (dr + dy) (cosrcosy — sinrsiny).

9. Ifu:.zx/a*+y§+y~/b‘3——.r”; then

e = - —_
du = (\/a +y ‘\/—57 )d_p
Ty -
Y b7 — 22 ) dy.
Vai g 7 N z)ry
10, Ifu=2zyz; then du:y:d;-{»:.rdy + ryd:.

. Ifu=ay+yz+:zx;

then du= (y + 2)da + (s + &) dy + (¢ + y) d=.

i et
o, e Y+
ﬂ«'y:

2 A Y d . o d

G +HT + Y -5-’ + @4y

thendy = = ———— 2 = s z
ryz N +y + 3

13. Ifu=Y"23;
i—x

then du = (y—2)dr + (.(—_:2;34 + (« —y)d.
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CHAPTER IIIL

SUCCESSIVE DIFFERENTIATION,
1. Functions of One I'arable.

(35.) By differentiating a function v = fx, of a variable
quantity z, it has been shown that the differential coeflicient
iﬁf will be another function f'z, and the methods of deter-
ax

mining it have been established in the last Chapter. By
similarly differentiating this new function f'2 so as to obtain
its differential coetlicient denoted by f'r, this is called the
second differential cocfficient of the original function fr.  In
like mauner if we differentiate /", its differential coeflicient
Sz is called the third ditferential coefficient of the function
fz; and, provided the variable quantity x does not disappenr
from these functions, this operation may evidently be repeated
to any order of differentiation.  This continued process is
called successive differcntiation, and it is indicated by the

following relations :
()
f"f) d \dr)

du dr . dr .
f’J‘:Z) f”.t: ——»-JI——-, f".t‘-: -‘.*—d;—-’-’ &e.
which may also be thus expressed,
du _ddu _dddu

[ el " —_— ULp— _7_____,&.
fe=g Si=gzw M= awe ™
According to Lagrange, fr is the primitive function, and
J'=, f"s, f"&, &c., thus determined, are respectively called
the first, second, third, &c. derived functious.—See art. (11).
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Although in the original idea of differentiation as founded
on the theory of limits, a differential can have only a relative
signification, yet, when separately considered as an infini-
tesimal change of the variable, it may in analytical calculations
be regarded and operated upon as an indeterminate quantity,
the value of which is only appreciable when it is compared
with other quantities of the same order or kind.

d
Thus the differentiation f'r = d—: merely defines the value

of the ultimate ratio of two infinitesimal clements du and dz,
and, in other respects, we are at liberty to assign any law
whatever to the separate values of these clements as depending
upon z. We might suppose the values of du and dr to be
cach of them different for different values of 2, so as to change
when z changes. 1t will, however, conveniently simplify our
notation if z be taken as an independent variable; that is, if
we suppose the infinitesimal increment dr to have the same
fixed value for all values of «, so as to admit of being treated
as o constant.  In this cace 7 is tacitly supposed to increase
by equal infinitesimal increments dr, and dr is thus independent
of the value of r; but the value of du = dx f'r will evidently
depend upon that of 2 and be different for different values of
r. Heuce the reason why r s in such ense specially ealled
the independent variable ; also ns the invariable clement dx is
to be regarded as a constant in cach differentiation, the fore-
going relations obviously become

_ du _ (1{1141)

, ) d {d(du)}
Sr=g = w0 b

» .f'”.r =

Or, in accordance with the general index law, these are more
counveniently written

2 3
fe= g Sla= gmff. rre= T e

r= drd

2y d3
And thus the symbols %’ g;‘:t" Z—,%" &c. represent the first,
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econd, third, &ec. differential coefficients of u with respect to
+; or separately considering the numerators and denominators,
fu, d*u, d3u, &c. denote the first, second, third, &ec. dif-
erentials of u supposing dr to be constant, and dr, dr?, dx?,
te. as before, indicate dr, (dr)?, (dr)?, &c. or powers of de.

Erample 1. Let u = z*; then .'?f =nr"-),
dz

12 Pl
:7;5 =n (n -— 1)];"—2} :i_x:; =n (n —_— ])(n — 2) :l.‘"":‘, &'C.,
1"
Z[ :f="(""l)<”"“-’)(”"3)~...‘l:l.‘l.3....n.
'
Er. 2. Let w = e*; then by (20),
du d*n d"u
—=ef, —m =ef .. ... N AN
il dan
4
Er. 3. Let w=cosx; then "/” = — sinr = cos (-" + :),
o 2
b o
:;—'—f = — COST = C0s (.r + :;,’i)'
T -
3 . 3 X
o -
n
:{;’: = cos (.r + l{')

Er. 4. Let u = e*cosa; then

du . .
7 = efeosr — e¥sing = €T (¢08T — SINT)
£

— mw
= \Zercons (1‘ + i)

e _ =y y m B .+ bl
«7;5_ 2e cus ¢+.1 — sin i
2
= (\/22)2 o7 cos (I + —I‘E)
&e.  &e.
dru

don = (V2)mercos (r + 3‘5 .
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3
Er. 5. Ifu=z3+az®+ 0z + c; then %: 1.2.3.

Er. 6. If u = sinz; then .g;; = sin (1 + 5 >
Er. 7. If u=em; then %—. = m"e™*,
Er. 8 Ifu=ure*; then Zln = (z + n) e,
Fr. 9. Ifw=e*sinr;

then _,"'f = (\/—')ne sin (.r + "T">
Ex. 10. Ifu= i i- i; then Z}Z = l(-lﬂj-‘r),";?

1. Changing of the Independent Iariable.
(36.) When an expression imolving two variables x, y and
the successive differential coceflicients has been arrived at on
the supposition that one of the variables is independent, it is
sometimes required to transform it into its equivalent when
the other variable is independent.  This process is called
changing the independent variable, and it is accomplished by
replacing the second and higher differential coefficients by
their complete values supposing no independent variable to be
assumed, and afterwards introducing whateser new condition
may be necessary.

Thus if 1:'!, '.[...'/ &e. have been caleulated with respect to
(

X As an mdop(\ndvnt variable, to replace these coefficients by
the general values when 2 is not independent, and therefore dr
not constant, we shall have, art. (21),

a(y
d%y dr d’y(lr—(l .rdy
drd _'22,: dr’
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a2y
dy _ \ds*
dr® = dr
_ (d%yde — dPzdy)dr — 3(d°y de — d°rdy)d®s
- dr® ’
&e. &e. &e.

o . . d’y %y )
By substituting these values in place of —.7, —=, &e. we shall
de? drd

obtain the corresponding expression when neither « nor » is
supposed to be an independent variable.  If ¥ is required to
be an independent variable in the new expression, we must
make d?y =0, d¥y = 0, &c., in which ease the equivalents
will be

d?y d*rdy

dr? drd’

Ay 3(d%) dy — drdydx
- dr® ’

&e. &e.
by the substitution of which the independent variable will be
at once changed from « to y.

1. Functions of Two or more Variables.

(37.) In art. (33) it has been shown that the total dif-
ferential of a function of two varinbles ix obtained by taking
the sum of the partial differentials, supposing each of them to
vary alone. That is, if ¥ = f(r, »), we have

du= (d‘f> dr + (‘l'f) dy.
dr dy

As the partinl differential cocfficients (flff , (']_" are also fane-
dr dy

tions of the two variables z, y, it is evident that the value of du
will admit of being differentiated agnin in a similar manner so
as to obtain d?u, and that this operation may be repeated up to
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any required order of differentiation. To exhibit the results
of these processes it will be requisite to extend our notation.
‘When a function u is successively differentiated with respect
to x, considered as an independent variable, the results,
according to the notation of art. (35), are thus indicated,

("‘1), (""‘) (f‘_‘...) &e. &
dr dz-

The same with respect to y are

(1!1{), <rl u) (lf u) &e. &,
dy dy* dy*

the brackets indicating, as in art, (33), that the derived fune-
tions are only partial.

But we may differentiate, in succession, sometimes with
respeet to one variable and sometimes another, in which cases
the notation usually adopted is as follows :

il'- (d") is indicated by d ol )
de \dy dr dy

.'I_ f’ du is indicated by L
dr du r/_/ de?dy ly
&e.

where the numerator shows how many differentintions have
been taken, and the denominator shows the variables employed
in the reverse order of the operations. We proceed to show
that the resulting values of these suceessive partial derived
funetions are independent of the order in which the variables
are supposed to change.
The operation of differentiating a function ¢ (£) is defined
by the relation
de(a) $r + dr) — ¢ (1)
i 9‘)( )=
By applying this to the function u = f(x,y), first with
respecet to & and then with respeet to y, we have
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(riu) Sz +dr,y) —f(ry)
dr ’

du) J@y +dy) —fny,
dy ’

and by again applying the same principle to these functions,
we get

d(lﬁl
r_lg—/ dr

[z +dry+dy) —f(ny+dy) —fz+dey) +fley

dr dy
()=

fletdry +d) —f(r+deoy) — fley +dy) + 1 (09
dr dy

ITence, as these expressions are alike, we have

d (dv _ d djl .
IE dr) ~ dr dy ’
((I u)_(d‘u)
dydr) " \drdy

This property is true when « ig a function of any number of
variables, because when & and y alone vary, the other varinbles
only enter in the same manncr as constants, and as regards the
operations performed, u may therefore be considered as a
function of only two variables. Ience it follows that in
caleulating partial differential coeflicients we may always
interchange at pleasure the order in which the several dif-
ferentiations are performed, without altering the results.
Thus when # = f(z, y), we have also

)= (5 ()=
dydz?) ~ \dridy)’ dyfa drdy?

and generally, when u is a function of two variables,
cd

that is,
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drtey drtsy
(i) = (i)
dr+ey drtstiy drisy dr+stiy
(i) = o) 3 (i) = et )
Ezxample 1. Let w = xsiny + ysinz; then
(rl_u —siny + (Iu) _ L
£) =0y +ycosa, A =uzcosy + sinr;

. d*u d "
. de; = cosy + cosu, ~ow } == co8Y + cosJ,

which two results are identical.
Er. 2. Let w=2r% 4+ 2y; then

du du
LS, T Y =19 (22 4 y?).
(dy ds de (.Lz dy d;) (d.r dr d,,) 1262 +y9

(38.) The general property established in the last article
will assist us in the successive differentiation of a function of
two or more variables. Let u = f(z, y), a function of two
variables ; then, art. (33), its first complete differential is

du = (’—’-") dr + (d")
dr dy
In proceeding to the next differentiation it must be observed

d d
that the cocﬁ‘ncwnfs( u) ( ") are generally to be considered

as functions of both variables, and to separately admit of being
differentinted in the same manner as the original function u,
by adding together the partinl differentials.  Thus we have

du d fdu d fdu
4(e)=axer) e+ 2, (25) o
d%u d?u
—_— d,
e ()0
u
i(5)=a() e+ 4(5)»
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d%u d?u
= (edy) =+ (3

Again, if we adopt the principle of gencral differentiation,
and suppose dz and dy to be variable, we shall have, art. (19),

{(d")d.r} e (du) (d">d -
() =0 o)+ (o

The sum of the left-hand members of these is the differen-
tial of the value of du, and is therefore equal to d*uv. Hence,
adding together these two equations and substituting the

. d { .
preceding values of a'((——u>, d({-lf , we obtain
dr dy

Y. d2u N o u du "
dlu= (J.r'-’) dr® + 2( - —)11.:‘ dy +(-~—-.2) dy*
(l]")d +(du) &y

The process of differentiation may he successively carried on
to higher orders in precisely the saine manner, so as to deter-
mine general expressions for d3u, diu, &c.; but as the
formulae for the higher orders become rather cumbrons and
are seldom required, it will not be necessary to give any of
them here.

If the variables » and y are independent of each other, and
their values admit of being conmected by a relation of the
form y = ax + 3, so that we may consider both of them to
increase by constant increments ; then dr and dy = a dr may be
both supposed to be invariable.  On this hypothesis, d*r = 0,
&c. and d?y = 0, &c. and the expressions become

u=f(z,y),

du:( )dr+( )dy,
d?u=( )d.r’+2( )d.rdy+(1‘)dy,

&c. &e. &c.
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Here the numerical coefficients will be found to observe the
same law as those of the binomial theorem; and the nth
differential may be put down as follows :

d™u d™u
[ yrp— n -1
druy = (d—_.c") dz™ +n (d_.z"‘-'d )d.r" dy

n(n—=1)/ d"u ;. dnu
+ 1.2 d.z"—ﬁdy)d‘z" dy .....+( )d n,

The successive differentiations of a function of any number
of variables may be determined in the same way as the pre-
ceding. Let w = £(a,y, <) be a function of three independent
variables, and suppose y =az + B, 2 =d' 2 + £, so that z, y
and z may severally increase by constant increments ; then we
find

u=f(r,y2z),

= (2o @)+ ()
bam (o + () + ()

d*u
D - D - D)
+ 2 dy d: )a'yd.+2(d:dl)d.d:+-(d‘l_dy)d.rdy,

&e. &ec. &c.

CHAPTER IV.

EXPANSION OF FUNCTIONS,

1. Functions of One Fariable.
(39.) Let u = f£(«) denote a function of x, and, 4 denoting
a finite quantity, let the binomial function f(r + A) when
cxpanded in terms involving the integral powers of & be

supposed to be
f@+ 8 =) +PAh+ QA + RA® + &c,,
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in which P, Q, R, &c. are new functions of  to be determined
from f(r). It has been shown, art. (6), that the coefficient
P of the second term of this development is the differential
coefficient of the function /'(r), and is therefore to be obtained
at once by differentiation. The other coeflicients Q, R, &c.
may be similarly determined by means of successive differen-
tiation. Thus, by differentiating successively the above form
of expansion, we get the following equations :

fl@+h)=P+2Qh + 3RA?+ &ec.
»
Sflz+h= 12Q + 23R4 + &e.
S+ h)= 1.23R  + &e.
&c. &e.

As these must be true for al! values of &, by supposing the
coefficients P, Q, R, &ec. to be finite in value, and making
%k = 0, wc obtain,
fi@@)="P, S =1.2Q, () =1.2.3R, &e. &e.;

[ f (r) _ S
P= 1° Q= . k= 1.2.3°

Ilence the expansion of f @+ %) is,

&e. &e.

S+ D =S+ S @]+ 5+ S0 o+ e

du b d*u R* 3y A3
=u+d—;.-i +;l3n+m 2J+&("
which is Taylor’s theorem, and is one of considerable import-
ance.

In deducing it we have in the first place assumed without
proof that the function is capable of heing developed in the
proposed form. The mere fact of obtaining an intelligible
result will, however, be sufficient to establish the truth of this
supposition.

We have also necessarily assumed that all the coefficients
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P, Q, R, &c. should be finite, as the reasoning evidently ceases
to be conclusive when any of these coefficients become infinite
in value. When one of these coefficients becomes infinite in
value, we shall find that all the coefficients which succeed it
will also be infinite in value. Whenever this happens, which
can only be in particular cases and for particular values of &z,
Taylor's theorem is commonly said to fail; but it may in
such cases be more properly said to be inapplicable, in conse-
quence of the impossibility of exhibiting the complete expan-
sion of the given funetion in the required fo‘m for that par-
ticular value of r. 'We shall hereafter give a more satisfactory
investigation of the development in a modified form, so as to
obviate any want of generality or of logical accuracy that
would otherwise be experienced in the many important appli-
cations of this celebrated theorem
(40.) By making z = 0, Taylor’s theorem becomes

k A2 13
S =JO) +7O) 7+ 1O) 75+ 0) 55 + &
Or, substituting « for 4,

2 3

F@=FO 7O T+ SO {5+ F10) g + &e
which is generally known as ““ Maclaurin’s theorem,” and is
useful for the expansion of functions in powers of the variable.
Professor De Morgan has observed, that Maclaurin was
anticipated in the use of this theorem, and it has in consequence
been latterly called « Stirling’s theorem ;* but of this it may
be remarked, that it is an obvious and very easily deduced
particular case of Taylor's theorem, of still carlier date ; being,
in fact, merely the development of f(x) considered as a
binomial function {0 + ).

11. Theorems whick Limit the Values of Functions.

(41.) Let f(r), fiz + k) be two values of a function which
varies continuously between s and s + &; then if any value of
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£ between z and # + A be substituted in the proposed function,
the result will be an intermediate function. TFor example, the

functions f(z + 3 4), f(z + %,/z),f<r + ;1—'{-—11 h) are all

intermediate functions with vespect to () and f(e + 4); but
it does not necessarily follow that their values are arithmeti-
cally intermediate between /(o) and f(r + 4) wunless the
function betwgen these limits cither continually increases or
continually deéereases. If, however, @ be supposed to vary
continuously and to take every possible value from rtox + 4,
and V, v denote respectively the greatest and least values of
the function between those limits, then the value of every
intermediate function will obviously be comprised between
V and ».

(42.) When a variable r takes m progressive values ), r,,
Ty eoee.dm let the corresponding values of a funetion v
=f(2) be denoted by w,,upu, oL w,,; then if the
function be continuous in value from u#, to w,, we shall have

u, +uy, fuy ... +ou,, = Mty

where 4 is some arithmetical value between zero and unity, so
that the value of @m is between 1 and m, and v, is o function
of z intermediate with respeet to w, and u,.

Let V, r denote the greatest and least values of the function
n when r is supposed to pass continuously throngh every value
from z, to zp, so that w, wy, uy ..., uy, are severally
comprised between them, that is, less than Voand greater than
r; also let the sum of these m functions be denoted by m (u),
then

V+V+Y & tomterms =mV .....(1)

U, +u,tuy o Fuy=m) L. (2)

v +v +v &c.tomterms =mv .....(3).
On inspecting these we observe that the terms of (2) are
severally less than the corresponding terms of (1) and greater
than the corresponding terms of (3), and thercfore the total
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value of (2) is less than that of (1) and greater than that of
(3). That is, the value of (¥) is comprised between V
and o, and is therefore a value of the function between these
values. Ilence, as V and v are each intermediate with respect
to u, and up, (x) must necessarily be the value of an inter-
mediate function with respect to », and %, and may therefore
be represented by ugm, 8 expressing a numerical value between
zero and unity.

It will be observed that the basis of this proo’is the evident
proposition that when, with respect to certain functional
limits, a value is arithmetically intermediate it must also be
funetionally intermediate, provided that the function is con-
tinuous between the stated limits.

(43.) Let f(2) be a function of x, continuous and finite
from 0 to z, and which vanishes when 2 = 0; then will

S (2) = zf'(6x),
where 8 is some arithmetical value between zero and unity.
Suppose z to be divided into a number (m) of parts, each
equal to dr, so that m dr = r, the number m being indefinitely
great and dr indcfinitely small.  Then, according to the first
principle of differentiation,

f£Q0 + dr) — £(0)

dr =1

S(dr + dz) — f(dz) =f
e ALL =f'(dr)
f__(‘%!’;f_:‘z_i’.fi;_:ﬂi‘i’_) =f'(2dr)
S(3dr + dr) — f(3dr =f'(3dr)

(L; .

&e. &e.
f(mds) f;‘(m—”"’} =f'{(m—1)ds}-

Hence, observing that m dr = 1, the sum of these equations,
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according to (42), gives

or, since £ (0) = 0,
f(&) = mdz f(62) = xf'(62).
Cor. If a function £(r) be continuous in value from 0 to .,

and also vanishes at each of these limits, so that f(0) = 0,
f(&) = 0; then, by the preceding theorem,
af' (br) =f(2) =0;
o fl(6r) = 0.

That is, if £(z) vanishes at both of the values 0 and ., the
derived function or differential coefticient /() will vanish at
6r, some value between 0 and .

(41.) If £(A) a function of & together with its first n derived
functions be finite and continuous from 0 to 4 ; and it more-
over the funetion and the first 2 — 1 of these derived funetions
severally vanish when 4 = 0; then

F) = g D,

1.2.3....n

where 6 is some positive arithmetical value less than unity.
Let & be supposed to be constant and & variable, and
assume

Foy=hrfa) —amf(h).

Then, since F(r) vanishes when 2 = 0 and z = 4, it follows

from the corollary to (43), that the derived function
Fr) =hf'(r) —nan=-1f(h)

will vanish when « =0,k =%, where 4, is some valne
between 0 and 2. But since, by hypothesis, f7(0) = 0, this
derived function ¥ (r) also vanishes when z2=10. Henee
again, as the function F'(z) vanishes when s = 0 and 2 = 4,
it follows from the same corollary, that its derived function

Fio)y =Aanf"(2) = n(n —1)xn-2f (k)
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will vanish when # = &,, some value between 0 and 2,. But
since, by hypothesis, f7(0) =0, this function F"(z)" also
vanishes when z = 0. Ience, as before,

F'@@) =k f" (@) — n(n—1)(n—2) 2731 (k)
will vanish when & = A5, some value between 0 and Z,.

By pursuing this process we shall cvidently find that
Fn(r) = hnf ) (2)— a(n—1)(r—2) .... 1 £ (k)
vanishes when = 4, some value between 0 and 4,_;. That

is, substituting for 2 this last value,
hnfin(h,) —1.23....0f(h) =0;
hn

S S = 1.23... .nf(”‘(h")’

where A, is some value between 0 and A, which may therefore
be designated by 6h, 0 being an arithmetical value between
zero and unity. Hence we have

. ," )
AT Sowr A0

which is a further extension of the theorem of art. (13).
Since A>h, >h,>h, ... .. An—y > h, it follows that as the

order n advauces, the value of 4, or of 6, diminishes.
-

1. Limitations to Taylor's Theorem.

(15 Let R(A) be a function of & which represents the
sum of all the terms after the first in the expansion of the
binomial function f/(r + A); that is, let

S+ ) =f) + R,

and suppose £ alone to be variable ; then the values of R(4)
and its differential coefficient or derived function R'(k) will be

R =1 (e + 1) —f (2)
R(W) = f(x + B).

Therefore as the value of R(4) vanishes when 4 = 0, if the
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function £(z) be continuous and finite from = to = + A, we
have by the theorem of art. (43), or the more general theorem
of art. (41),

R(K) = A R'(6h) = hf'(e + 6K),
the value of R'(6%) being expressed by substituting 6k for b
in the value of R'(%) ;

S fEED=f@ A o) (D),
which is the development made complete in two terms.

Let now R(4) be a function of 7 which represents the sum
of all the terms after the fwo first in the development of the
binomial function £ (x + £); that is, ax suggested by equation
(1), let

S+ ) =fr+hf'()+ R,
and, as before, suppose £ alone to be variable; then the values
of R(%) and its derived functions will be

R@) =f(x+ k) —f(:) —bf'(2)
R(E)y =/« +2) = /")
R'() = £ (e + B
Therefore as the values of R(A), R'(4) both vanish when

h=0,if £(2), f'(2) be continuous and finite from z to 2 + 4,
we have by the theorem of art. (11)

R(h) = 1}l> R(0h) == T”;,f”(.l- + 0n);

S+ =)+ hf(0) + Th%f"(.v 40y .. ... ),

which is the development when made complete in three terms.
Again, let R(2) represent the sum of all the terms succeed-
ing the three firat in the development of £ + A); that is, as
suggested by equation (2), let
[ X
AN =)+ A0+ S0+ R

then the values of R(4) aund its derived fuuctions will be
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RO) =7 +0) = /@) = hfs) — s 7a)
ROY =/ + B =) = b

R'(h) =f"(z + k) — f"(z)

R"(K) = " (z + b).

Hence, as the values of R(&), R'(k), R"(%) severally vanish
when 2 = 0, if f(x), f'(z), f"(z) be continuous and finite in
value from z to r + A, we have by the same theorem, art.

(‘14)'

]If‘ " — "3 .
R() = 55 R7(6) = )s
w fEA D =L@ @O+ W
1 xi
R VAN Gl 0 3),

which is the development completed in four terms.

In like manner, so long as the functions are continuous and
finite in value, may the binomial function f(x + 2) be com-
pletely exhibited in any number of terms. Thus, let R(4) be
a function of A which expresses the exact residue of the
development after thc'ﬁrat n terms, so that

SE+h=f)+ < j (o) + ___fw(l) + o f,,.(f)

]‘n—l
/™0 @ + RO,

Then the values of R(4) and its derived functions will be
R =f(x +h) —f () — lf(;)__T)jw( 0=

h-—
........ “ 1235 f(n-l)(,,)
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ROY=/"c + ) = () = 2 £ = 15570 o

hn—2
“EE T/ TTW
! " " h "
R =f"(x + B) = f"@) = /") e
’l""3 =1 p
BRI YA
&ec. &e. &e.

R (n—ﬂ}(h) =_/‘(n—2‘=(x + ]‘) —f:"_""(.l‘) —_— ,]i/'_n-l‘(d»)

Rn=1(h)y = fn=D(z + h) — f5=D(a)
RO(G) = + h).
Therefore, when & vanishes,

RWO)=0, R(O0) =0, R/(0)=0,........ Ru-U(0) = 0;
and hence if £ (), f'(x), /@) ... .. S (@2) are severally
continuous and finite in value from « to o + A, the function
R(4) fulfils the conditions of the theorem of art. (11), which
gives

R() =

Rin(6k) = S et OR).

l
1.2.3....n 1.2.8.
The development in Taylor's series, wln'n mndc complete in

n -+ 1 terms is Llwr(furc

S+ y=[)+ - f(r)+~—f"(r)+l )Jf"(r) ......

II”‘ (,_)-(‘ ’_“’lA . (n (J 1/ ( )
1.2...:;——:‘1/' J)+].~_:'“'"f +adh)y. ... n),

where 6 is some positive numerical quantity, the value of which
is uudetermined further than that it is contained between the
limits of zero and wnity. We are hereby enabled to aflix
corresponding Yemits to the completion of Taylor's scries after
any number o7 terms; but it must be remembered, art. (11),
that the vadie of fn(x + 6h), though functionally inter-
mediate, is not necessarily contained arithmetically between
S(a) and £ (s + &), LetV and v denote the greatest and

+
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least values of f®)(x) which occur from z to « + %, then we
conclude that, by stopping at the nth term, the final correction,
to make the value of the development ezact, will always be

h
comprised between 75— V and

This formula is Lagmngc s hmltntxon to Taylor’s theorem,
and it should be remembered that the conditions on which it
depends arc, that the »n + 1 functions f(z), f'(r), f(x),
A€ IR /M (x) must be severally continuous and finite
in value between the limits z and z + & It is not affected
by any of the subsequent functions fla+i(r), fint2(x),
&c. becoming discontinuous or infinite, and it is true when
stopped at any number of terms, provided only that the
functions are so far continuous and finite.
have

nv.

Thus we may
Fet N =r@) 42w+ on
'f’f)+ f()+ f(r+0h)

=f@+7 f’u)+—,f(>+ BF  0,0),

&c. &ec. &e.

which ecquations admit of being made exact by values of 8,
8,, 6,, &c., cach less than unity, so that x + 64 is in every
case comprised between the limits r and & + & By equating
cach of these values of f(2 + 4) with the next, we deduce the

following relations,
S+ 6,k =)+ -gf"(l + 6,h),
S+ 0,8 =S() + g e+ 8,h),
&c. &ec. &e.
SO0 (& + 64y B) = fi0-D (1) +§f(-) (= + 6xh);

and from these we infer that, whea 4 is small,
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6,=4% 0,=1% 6,=1%,....6. :;3-‘:
ind they will seldom in any case differ much from these values.
(46.) By making r = 0 in the formula (), Taylor's theorem
with limits becomes

A3

S&) =f0) + f'(0)+ T1O) + 75 SO .
P T,
or, substituting x for A&,
&) =10) + SO + 5 7 to) + SO

Ead .
Fya e

and this equation, which is necessarily exact for some value of

8 less than unity, is the corresponding limitation of the theorem

of Maclaurin or Stirling. The conditions essential to this

theorem are, that the functions f(r), f'(2), f'(2) ... ..

fm(r) should be continuous and finite in value from 0 to x.
This theorem may also be put under the form

. ) z° (ll u) 23 d‘,,
Y=o (‘{f o 12\ dr u+ 1.2.3 \da?

rm ‘d"u
)

1.2, n\dem

1v. Functions of Two or more Fariables.

(47.) Let u = F (z,y) be a function of two variables, and
let it be required to expand F(z + 4, y + &) in powers of
Aand k. Take & = ak and put

U=F(r+hy+k=F(+rhy+ak).

Then, by supposing 4 alone to vary, U may be considered as
a function of one variable &, and expanded in powers of & by
Stirling’s theorem, art.(46). When A becomes 4 + di, the
function U becomes F (r + 4 + dh, y + ah + adh), and this
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form is identically the same as if we had supposed z to become
z + dh and y to become y + adh. Therefore, substituting
dh for dr and a d# for dy, in the formula

dU dU
dU = (—E)dz + (W)dy,

we find the differential of U = F(z + &, ¥ + ah), with respect

to &, to be
du = ("”)d; b+ a d‘y)zlb

dUu dU dU
. (7[ - (E) + (l(—d?) ........ (1).

7
As this value of ;,;- must be a function of r + &, y + a, it

may cvidently he again differentiated by applying to it the
same formula (1), Thus

d dU_ d dU + {I_(lbr)
dk dh "(4771,) “(dy )’

. . dU . .
that is, operating on the preceding value of ™ indicated on
= it

the right hand of this equation,

rl"U d*U d*U s (rl'*’U :
' ((u ) +2 (m;) te ;;/'ye) R

In the same way, treating this as another function of z + 4,
¥ 4 ak, and again cmploying the formula (1), the process may
be carried to any order of differentiation ; and we shall obtain
generally

(1"U_ dr U +u(n-—]) of d"U
P/i (d.r tre\Gmal T d.r"“*dy)

e +a'(‘~i—:}-»{ cee . (),
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in which the numerical cocflicients are those of the expansion
of (1 + x)*.
Now, by Stirling's theorem with limits, art. (46), we have

dU A sd? U
U=U+ 2 ( )*1.2((1;.) ........
d*U
...... (d/c )a).

in which expansion the funcuon U and its differential co-
cfficients are the values when £ =0, excepting the last, in
which % takes the value 4.  But when 2 = 0, functions of
x + k, y + ak become corresponding functions of z, y, and
U, and its differential cocfficients with respeet to r and y
become the same as if the function ¥ had been employed ; also
when % becomes 64, functions of r+ 4, y + ak become
corresponding functions of x + 64, y + 6ah. Ilence substi-
tuting the values according to the preceding expressions (1),
(2, ..... (n), and observing thesc transformations, we have
‘for U the following development :

U:F(I+’l,y+u}l)=

(@)}
B () = (59)

n(n—1) d*u
g d}n-z'dyz)

“(d"u)
et e e ta dy» };:zh

the value of the term exhibited in the last three lines being
taken when r and y become r + 64, y + 8ah, where 9 < 1.
D
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By substituting & in place of its value ak, the formula
becomes

U=F(.t+’l,y+k)=

“+"(d,)+"( )
— a2 A 2 (4% }
t1z {" EP) + Qhk(d.tdy) +k dy?

.......................

d»
...... + k» ( b “) }nu
Iy y+6k
(48.) In the formula just determined make £ =0, y =0,
and afterwards change & into = and 4 into y; then

du du
v=Flny) =w+ I(E)o + y(iy)o
1 d%u d*u d%u
— 2 ——. —_ ] ety
+13 {.r (d;")o+2’y(dxdy)o+y dy“)o}

..............

o (d: ) +rem ”(d:~—'ay)
..... +y 4;_:-‘)}‘.;

where we have to make z, y each = 0 in the several functions,
except in the term which occupies the last two lines, where they
are to be replaced by 6z, 8y, 6 being < 1.

Note.—It may here be remarked with respect to expansions
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generally, that if the nth or limiting term decreases without
limit as » increases without limit, the development may be
then continued without introducing any limiting term.

(49.) If in Taylor's theorem we make A = d, it becomes

Sl +dn)=f() += ay(,) de—féﬂ + d;f © 4 a.

that is, if u = f(2),
d*u d3u

_f(:+d:)-u+-—+ 12+ ‘)J+&c

This formula represents in a simple form the most general
theory of expansion, and may be extended to the expansion of
8 function of any number of variables, under the following
general enunciation :

*Let u=f(x, y, &, &c.) be a function of any number of
variables, and let 3r, 8y, 8z, &c. denote arbitrary increments of
the respective variables.

Suppose the function
’ U=f(x+ 8,y + 3y, z + 8, &c.)
to be partly expanded, and denote by 8z the terms which
involve the first order of the increments 8z, 8y, 8z, &c.

Then 2 + 31, y + 8y, ¢ + 8z, &c. being substituted for
£, ¥, & &c. in the value of 8« and the result again partly
expanded, denote by 8%u the terms which involve the second
order of the increments.

And again, the same substitutions being made in 8%u, and
the result expanded, denote by 8% the terms which involve

the third order of the increments, &c., &c.
Then will
8%u 33%u

U-u+—-+—+ 23+&c.

and the values of 3u, 3%x, 3%u, &c. may be determined by
successively differentiating the function v = f(r, y, 2, &c.) on

* This theorem was first announced by the author in the Appendix to
the ¢ Geatleman's Diary ' for the ycar 1835.
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the supposition that dr, dy, dz, &c. do not change, only
writing 3z, 3y, 3z, &c. in place of dz, dy, dz, &c. ; also the
series may be stopped at pleasure by substituting z + 623z,
y+ 03, z+ 082, &c. for z, y, z, &c. in the last term,
8 being < 1.

By making z, y, 2, &c. severally = 0, and writing z, y, z, &c.
in pluce of 3z, 3y, 8z, &c., the result will be the expansion of
the funetion u = f(z, y, z, &c.) in powers of the variables.

The preceding developments may all be deduced from this
gencral theorem.

Ezamples.
ixpand f(x + &) = (¢ + k)" by Taylor’s theorem.
Since f (1) = z*, we have by successive differentiation
S'@y=nan-l, @) =n(n—1)sm,
S"@)y=n(n—=1)(n—2)r"-3, &c.

Ilence, by the theorem, art. (39),
(c+mr=a%4- .r"“h +2z ("~~ b an-3 43

—1
+ ’L(L_l 2)(3" an-3 43 + &e. »

which is the formula of the binomial theorem.
2. Expand log (¢ + 2).
Here £(r) = log #, and by differentiation
S (@)= fla)y=-1lz% @) =123 &e.
Therefore, by the theorem,
A3 A3

A
S +h)=log(.r+h)—log(r)-&-;—;z—;-sﬁ-:—;?—&c.

which is divergent aud inapplicable when = < 4.
If we employ the theorem with the limitations, art. (45),
we shall obtain

h
lox (r 4 ) =log (x) +:+“
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Al

T 2@ +en

which expressions will be strictly accurate with values of 4

between the limits of zero and unity. Let x =1, then

—=h __»

T+6k " 2(1+6p*

By the first of these expressions it follows that the value of

3
=log (¢) + p

log (1 + &) =

log (1 + 4) is comprised between {'and ; and by the

A
1+ 4
second the same value is comprised between the narrower

)

2+ m*

3. Expand the function x = sin z in powers of z by
Maclaurin’s theorem.

By differentiation,

A
limits A — 7 and A —

du d?u . d3u

o = o8 3= g L3 = —cosa,
du b
prre] = sinx, ] = cos I, &ec.

which, when r = 0, respectively become 1, 0, — 1, 0, 1, &ec.
Therefore by the theorem, art. (40),
8 s
1.2.3 7 1.2.3.4.5
Or, by the theorem with limitations, art. (46),

5

sinr =gz — &c.

+

2
sin:-—-—:coso:::—l’—qaine,z; where 8, <6<,

and which may be similarly expressed in any required number
of terms.
4. Expand u = cos r, in powers of r.

du . d%u
Here = — sinys, o7 = —coss,
d3u . d4u
o =sing, —— =cosz, &,
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which, when £ = 0, become 0, — 1, 0, 1, &c.;
3 24

- cosz=1—Z
Socodr =l 054

- &e.
Or, with the limitations,

cos.z-:l-—.ramo.r._l-———cosb,r &e.

1.2
5. Expand u = e* = log='z in powers of z.
du d3u
By art. (26) we have o= e’, - e*, &c., which, when

z = 0, severally become equal to unity.
z a3
=14 gt e
Also, with the limitations,
e'-—1+—e"=l+ T+ l»—e"" &e.

6. Let u==zyz and expmd
= (z+ 85)(y + 8y) (= + 82)
by the general theorem of art. (49).

By operating upon u = ry z with the symbol 3 in a manner
analogous to successive differentiation, and supposing 8r, 3y, 8z
to be invariable, we have

u=uryz
qu=yz8r+ zr8y + rydz
3u=2rdydz + 2yd:8z + 228r8y
33u = 6drdydz,
which substituted in the formula
3u 3% My

"
U=u+ — +1—§+123+&c

we obtain

(r+3r)(y+dy) (s +8)=xys+ (yzdr+:3dy+ryds)
+ (r8y 82+ yd:z8r + z3rdy)
+ drdy s,

which may be verified by multiplication.
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(50.) In the series for e*, example 5, replace r by « V' —1;
hen

] 3
e I oy P AL AP vy
rl=ltaV-l-15 -5 +1234 +&e.
28 ry
=l-T3+1333 %

+( 23+&c)\/-_'

hat is, examples 3 and 4,

et/ T=cosc+V —18ing....uun.. m.
In this equation replace £ by — z, and we have also
e-*Vi=cose—V—lsinzr....... (2);
e.'/'_-—l + e—lJ:
W COBE I —————

2
PR e e
2v-1 .

which are Euler’s formulee. :

Again, replacing z by ma in (1) and (2),

etmeY=1 = cosmaz + 4~ lsinma.

Hence, as etms¥=1 = (¢ ¥~ 1)m we have
cos mr + VZlsinmr = (coss + vV —1sinz)™...... (4),
which is De Moivre's formula and is true for all integral
values of m. When expanded by the binomial theorem, by
equating separately the real and the unreal portions, we may
obtain from it the trigonometrical values of cos mz and sinmz
in powers of cosr, sin x.

In (4) replace £ by =+ 2rm, r denoting any integral
number ; then

sins =

(cosr + v ~— lsing)™ =
cos (mz + 2rmm) + ¥V —lsin(me + 2rmn) . ... (3),
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which is the complete form of equation (4) and is now true for
all values of m, whether integral, fractional, real or unreal;
and both sides will now always contain the same number of
identical values.*

From the preceding values of cos 2, sin, equations (3), it
is evident that all the trigonometrical functions of r may be
expressed in algebraical functions of the exponentials e#¥=1
and e—*V-1

CHAPTER V.
INDETERMINATE FORMS.

(51.) When a function for a particular value of the variable
assumes any one of the forms

2,4_’_’.,0 X, w—x; 0 x%0r 12>,

U o

the function, absolutely considered under this singular ‘form,
becomes then essentially indeterminate aud admits of having
any value whatever assigned to it.  But if the proposed
function represent a quantity which varies continuously so
that the function up to the particular value of the variable
is subject to a condition of continuity, its value will evidently
be determinable in a manner analogous to that by which we
obtained the differential coefticient of & function in art. (6).

1. Functions in the Form of Fractions.
RACY
F()
when r =a. It is evident that this will arise from the in-
corporation of certain vanishing factors in both numerator and

(52.) Letu = be a function of r which becomes g

* An investigation of the general theory of exponential and imaginary
quantities arising out of this last equation is given by the author in the
Appendix to the * Gentleman's Diary * for 1837.
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denominator. Suppose the resolution of these factors to give

f@ _ «—a)"P

F@)  (@—arQ’
where P and Q are of finite value when 2 =a. Then by
division we should have

f() p

= (r—a)m =,

Fo =797

and when r = a, this would obviously give for the required

value,

s

Q
The elimination of the vanishing factors will in most cases

be facilitated by substituting @ + 4 for r, so that r — a = A.

The form of » will then be a function of A which becomes

Oifm>Da; —ifm=norowifmn.

g when 2 = 0. By expanding, if necessary, the numerator

and denominator of this function in ascending powers of &,
and dividing by the power of & which is common to them both,
and afterwards making & = 0, the result will be the required
continuous value of the proposed vanishing fraction when
= a.

(53.) The continuous value of the vanishing fraction may
be otherwise determined by ascertaining in a different manner
an expression of its value in a continuous form for values of =
contiguous to r = a. Thus when r takes the value « + 4, we
have by Taylor's theorem, art. (43), observing that f(«¢) = 0,
F(a) =0,

S@+h  f@+] S @0k f(a+ ok

Fa+h F@+1F@+6k)  Fla+oh

This equation is necessarily strictly true when % is of any
value, however small, positive or negative, and if f*(a),
D5
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¥'(a) do not both vanish or become infinite, the fraction on
the right hand will be continuous in form when A vanishes;
therefore, making A = 0, we obtain, for the continuous value,

S@) _ ) .
Fo=F@
But if f'(a), F'(a) both vanish, by extending Taylor’s

series to another term, we shall have
S+ 7!) _ S+ f (a) + f"(a + 64)
F(a+h) F(a)+if'(a)+ﬁ1"‘"(a+0h)

_ Sf(a+ 6k)
T Fiaten”
Hence, if f"(a), F"(a) do not both vanish or become infinite,
we obtain, by making A =0,
S@ _ /@ @
o)~ Fi@y 2).

By proceeding in this way, we similarly find that if the .
numerator and denominator with their first n —1 differential
coefficients, viz. f'(«), f'(5), f'(z) .. ... SV (2), and F(s),
¥F(), F'(a) . ..... F =1 (z) severally vanish when z = 4,
and the nth differential coeflicients £ (r), Fi® (r) do not both

vanish or become infinite, then the continuous value of the
fraction will be

S@ _. ™)
F(a) Ft")(a) ..... (n).

(54.) Suppose the numerator and denominator of the func-
tion {,(( )) to be both of them infinite in value when = q, so0
that it becomes of the form ; . Then by expressing the
function by the reciprocals, thus,

1
f (a) -—F (a)

1"()

7(—)
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it will become of the form g . Therefore by equation (1)

we get, by differentiating the numerator aud denominator,
_ _F
S@ _ F@P_ rf@1'F@

Fl@ _ f(@ F(a)f F(a)’
{f@)}®
which gives
S@ _ f@
F@) Fa)

This being the same as the equation (1) before obtained,
we conclude that the mode of operating in this case is identical
with that already indicated when the function is of the

0
forma-
Thus, if after n—1 differentiations the fract:ons'/ ")

Fa)'
{;::E:; g :’,:EZ; {_: (::: )\EE; severally become of the form
S™(a)
F(n)( )
then, accordmg to equation (n),

f(@) _ [ (@)
F(a) Fi*(a)

< or 5y and if does not become of either of those forms;

(55.) We have therefore the following rule for determining
the continuous value of a fraction which for a particular value

of the variable becomes of the formg or Z :— Divide the dif-
»n

ferential coefficient of the numerator by the differential coeffi-
cient of the denominator for a new fraction, in which substitute
the given value of the variable. Should this latter fraction

. 0 o
still assume the form 0 the same process may be suc-
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cessively repeated until one or both of the numerator and
denominator ceases to vanish or become infinite in value.
Example1.—When 2 = 0, find the continuous value of
l—cosz 0
Tsintz T 0
Here fr =1 - cosz, F(z) = sin?z; and by differentiation,

S _  sinz 1
F'(z) ~ 2sinzcosr 2cosx
which, when z = 0, gives } for the required value.
E . . log sin z
izample 2.—When & = 0, required the value of , ————
logsin 2z

_—®
=—"
Since f(z) = log sinz, F(z) = log sin 2z, we have
_ , 2cos 21

fa= sm.t'F( )= nes
Sf'(@) _ cosz sin 21

TUF @) T f2cos2r Ninr
When & = 0, the first factor of this expression is determi-

cos r

sin 2z .
nate and is :,—&—“—2*;= ;; but the other factor —;i—l-;;— still

. . . 0 .
maintains the indeterminate form h and its numerator and

denominator must therefore be again differentiated, giving
2cos2r Lo
~———-— = 2, The value of the proposed expression is
cosx

therefore § x 2 =1.

Example 3.—When 1 = «, determine the continuous value

er . .
of;; = ;, the exponent m being a finite integer.

Here we have ‘l{% = f‘:— = %, whenr=wo,
S er

€x©
—— = ———— = —,when r = »,
¥ (.r) mam™=1 x

&e. &e. &ec.
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.f("')(.l‘) _ e*

Lo = = vh =
Fome) " T23. . . m o riasr=e.

The sought value is therefore infinite.

5 1—azm 0 m
4. thuz:l,tbenl_ A== )
£ . o8
5. Whenr =g, then & <= 0 =",
r—a 0
0

r__hx
6. Whenz =0, then 2 :b = ~=logg—

0 )
¥ p—
7. When r =0, then —— 0~ = 0 =2,
sinx 0
—sinz 0 1
8. When z = 0, then = . =0733
- )
9. When z = 0, then _“'_”__f,'ﬂj L
— sl a 0
, rf—r 0 .
10. Whenrs =1, thcn] N logi—:l— =5=" 2.
11. Whenr= 0, then P82 _ % __
logr ke

cosar—cos8r _ 0 at— B2

12. W =0 = .
henx= 0, then cosar —cosbr 0 ai—0?

. Functions in the Form of Products.
(56.) Agmn, if F(z) Ar) be a function of r which, when
r=a, becomes 0 x 0, it may be differently expressed, as
follows :

Fo s =280 = A0,
7(7) F@@)

Since, when z=a, F(z) =0, f(r) = x, the former of

i 0
these will assume the form o and the latter will assume
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the form 2—, and either of them may be evaluated by art.
(55).

Also, if F(z)—f(z) be a function of r which, when
z = a, becomes of the form @ —, it may be expressed
thus :

1

1
F(2)—f(2) =f@ . F@)
F(z) £ (x)

which, when z = a, will now become (9)’ and may therefore be

evaluated as before.

Erample 1. —Whenr = 5, required the value of

jd

2

(1-.2;t)tanx=0x @ .
”

In this example we have

2 1—2_."'
(l—-:‘—o tan x = L
L4 cotxr

. . 0
When & = 1'-:, this expression assumes the form o’ and

its value is hence found to be

cotr  — cosecdr

3
3
A

Ezample 2.—When « =1, find the value of —~— — —L_
logz log«
= -,
r 1 r—1
He logz  logz ~ Togz’
which, when r =1, takes the form g , and its value is there-

fore found to be
s -1
logx

=zr=1.

R
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2 1
= 1—x

4. When £ =, then e=*logr =0 X © = 0.

3. When s =1, then =wo—-o=4

5. When £ = 0, then rlogr =0 X — o =0.
6. When r =1, then —2_—- !

) l—log:=°°~c°=*'

7. When.r:O,then—.lT——lg=ao —-o =4
sin’s 2

1

—_— = —-w=4{.
rtanx *

1
8. When z =0, then;; -

111. Functions in the Form of Exponentials.
(57.) The general exponential function u = F(2)** may
for a particular value of & become onc or other of the forms
0% x® 12®, 0@, o t=,
Ouly the first three of these are indeterminate in their
character : the other two are determinate, and their values
are evidently

0 T
E ®  —
0 _.{ ot _.{0.

Since u = F(2)1*), we have

logu = f(x)log F(r) = log IFA(-I)'.
J)
Therefore, referring to this expression for log u,
0° [==
when u is of the form ® log u is of the form %
2o
0

Hence the value of log « may be determined by art. (55),
and thence the corresponding value of u.
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Ezomple 1.—When z = 0, find the value of +* = 0°,
Here x = 27, and logu = zlogz = lﬁf_'f.

—

&

‘When & = 0, this expression for log u takes the form :5;.
and hence, by differentiation, its value is found to be

1

) b
bgu:%g—l= -{-:—z:O; cou=l.

T T

2. When z = 0, then z¥r*=0°=1,
3. When z = 0, then (cot r)"n*= %=1,

1
4. When z = w, then z1g6m+ = ¥ =e.

1
5. When 2 = 0, then (1 + mz)* = 1®=¢m,
L 1
6. When z = 1, thenz!~* = 1= °
1v. Ezceptions to Taylor's Theorem.

(58.) In art. (39) allusion has been made to the existence
of certain functions, to the development of which Taylor’s
theorem ceases to be applicable for particular values of the
variable, in consequence of the differential coefficients or
derived functions becoming infinite in value.

Let 4 () be a function of z, and suppose a given finite value
a to be a root of either of the equations

1

v() =0, o= 0;
then it may be shown that y(z) will be of the form
Vv@)=@—are@)..... 1),

the function ¢ (z) not vanishing or becoming infinite when
x = a, and therefore not involving as a factor any other power
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of £ —a. Also, the exponent u will be positive or negative
according 88 = = a causes y («) to become zero or infinity, or

wcordinguaisarootofw[r(w):Oorof—!— =0; and it

¥ (@)
o e . 1o 2
will evidently be the limiting value of the fraction 108—3(—:"-(-7:‘)’

which assumes the form g, whenz = a.

(59.) Suppose a given function f(z) to oofxtain a t'e.rm of
the form y+(z) ; then, if we proceed to the derived functions,

Jf'(x) will contain the term (2 —a)f~1¢(x) . p

f"(d‘) ” » (z— a)*=3¢(z) pp -1)

f() » » (z ~ a)p=3¢(2) . p(p—1) (p— 2)
&ec. &e. &e.

Consider now the following cases :

1. If 4 be & positive whole number, these terms will wholly
disappear after f*(z), and since the exponents p —1, p — 2,
p — 3, &c. are all positive, it is evident that when & = o and
z—a=0, the original introduction of the factor (x — a)*
cannot thus affect the finite character of the values of the
derived functions. This case therefore does not form an
exception to Taylor's theorem.

2. If p be of the form m + %. a positive whole number with

the addition of a finite fraction, then the exponents p— 1,
p—2, p—3, &c. of the factor (x — @) in the above terms
will be positive for the first m derived functions, but will
afterwards become negative. Therefore, when x = a, the
terms will vanish from the first m derived functions and will
become infinite in value in all the subsequent functions.

Hence, as regards the factor (r — a)"”_E' the derived functions
will, when 2 = a, be finite up to f£™)(z), but £m+1(z) and all
the subsequent functions will be infinite. The expansi‘on of
the proposed function by Taylor's theorem, for the particular
value 7 =g, will therefore not in this case admit of being
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»
carried to any terms beyond i—}—; S™(z+ 6k), and it
"
may be stopped at any previous term R .h. —/ ™(x + 04),
where # < m. Within these limits the accuracy of the
development will not be affected by the infinite values of the
higher derived functions.

3. If u have a negative value, or a positive value less than
unity, then the exponents p — 1, p — 2, p — 3, &c. will be all
nogative, and when « = q all the derived functions will become
infinite in value, so that the conditions of Taylor’s theorem
not being fulfilled, it will be wholly inapplicable to the develop-
ment of the proposed function for the particular value r =a;
but the application will nevertheless be true in all cases for
values of z which differ from a by a finite quantity.

The cause of these singular results may be ascertained by
examining the effect produced upon the form of the function
proposed for development. Thus when f(s) contains the term
(2 — a)*¢(2), f(z + k) will contain the corresponding term
(x + h — a)*¢(z + A), and, when r=a, this will become
ht¢p(a + k). As ¢(a) cannot =0 or », the expansion of
this term will give a scries involving powers of & beginning
with A#: when p is a positive integral number, no peculiarity
is induced; but when u is positive and fractional, all the
powers of & will likewise be fractional, and when u is negative,
the development will contain negative powers of 4 to the same
extent.

In these remarks, which apply equally to Stirling’s theorem,
the symbol g, to observe the utmost generality, might have been
considered as a function of r, and it is evident that all the
peculiarities of form and result would then be determined in
exactly the same way and would similarly depend upon the
particular value of x when r = a.

(60.) From what precedes we are led to the following
general conclusions :

If when the variable r takes the finite value a, the function
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f(z) and its first m derived functions be finite and the
m + 1th derived function be infinite ; then all the succeeding
derived functions will likewise be infinite, and Taylor's
theorem with the limitations, art. (45), will be correct if not
carried further than the term involving A®. Beyond this term
the theorem will be inapplicable, as indicated by the infinite
values of the differential coefficients, because the further ex-
pansion of the proposed function /(i + A) will consist of
fractional powers of A, the first fractional exponent being
contained between m and m + 1. ]

If when r = a the value of the function itself be infinite,
then the values of all the derived functions will likewise be
infinite, and the true expansion will contain negative powers
of A.

In either of these exceptional cases the definite expansion of
the proposed function f'(x + %) for » = a may be generally
obtained by first substituting @ in place of r and afterwards
expanding the reduced result, supposing a to be variable, for
which Taylor's theorem may be employed if necessary.

Ezample—Let f(z) =23 + (% — a”)* ; then f'(x) will

involve (2% — ag)*, and f"(z) will involve (22 — a®)-1 and
become infinite when 2 = a.

Therefore the true expausion of £(x + %) when 2 = a will
contain fractional powers of A commencing from an exponent
between 1 and 2. To determine this expansion, we have

S fle+ R =(c+ A5+ {(.r-f-h)“—a’}*
o f@thy=(a+m + {@+r—ar)F
=(@+4+ (2ah +a0F

=@+ m+ 4 @a+nt
which may be readily expanded by the binomial theorem.
Again, suppose ¥ (&) to be of the form e~ .l—. ¢(r), where m
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is positive and finite and ¢ (z) not =0 or » when z=0.
1

Since '8 # =z, or e=gzliogs, this function may be transformed

into the equivalent expression ¥ (r) =z~ ;%.;; ¢(2);

1
- a_.O,andp__—-Im—]og;.
‘When & =a=0, the particular value of the function

1

p= l_’".l, which takes the form %3— , must be determined by
: og *

differentiating the numerator and denominator according to

m
e B
art. (55); thus we find p= = o Hence, making
Z
X

= 0, the particular value of u is infinite, so that if z were
considered as an infinitesimal, the value of the function ¥ ()
would become an infinitesimal of an infinite order. Therefore
the values of ¥ (r) and all its differential cocflicients or derived
functions will vanish when r =0, and the expansion by
Taylor's theorem will in this case not fail.

v. Differential Coefficients of the form g

(61.) When two variables r and y are implicitly related by

an cquation
u=[f(r,y) =0,
let the partial differential coefficients with respect to r and

@ @)

then, the value of the differential coefficient or differential

. dy . .
tio -=, art. (32), will be
ratio = art. (32)
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If values of z and y can be found which will fulfil the three
equations ¥ =0, P=0, Q=0, we shall have, for these
particular values,

dy 0

2=,

dz 0

and the determination of the continuous value in this case may
be found by successively differentiating the numerator and
denominator of the fraction, as in art. (553), with this difference

that the result will lead to an equation involving '—111, the roots
dr

of which will give multiple values to this symbol. But these
values may be more readily found by means of the expansion
of f(x + A, y + ak); since by making f(z + b, y + ah) =0,
it is evident that 4 and a4 will be corresponding increments of
r and y in the equation f'(z, y) = 0, and when these inerements
become infinitesimals, the symbol a will therefore represent
the required values of ’l'/

The expansion off(r + A,y + ak), given in art. (47), being
equated with zero, omitting the first term f(2, y), which = 0
by hypothesis, we obtain

o=1{(@)+ (%)}
s {(G) +2(ge)e + (55) )
123{( ) (.::Z,) dxdy) (’”)}

which may be made complcto in any number of terms by
replacing r and y by z + 6k and y + 8ah in the last term,
where 8 < 1.

Now if particular values of r and y give (d.r) =0, ( ) =0,
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the first term of this equation will disappear; and h by
stopplng the series at the second term and dividing by the

i 2, we get an equation determining the value of a = Z; for

all values of %, and finally, making =0, the z 4 64,
y + adh become simply z, y, and we obtain, for determining
the continuous value of a, the equation

@) +2 ()= (5

a quadratic, which will therefore give two values for a = Zrz

If, however, for the same values of r and y, also

d?u d%u d?u
)= (@@= (@)=

then the first and second terms of the preceding equation will
disappear, and hence stopping the series with the third term

and, as before, dividing by the _1%37‘ and afterwards making

h =0, we get

0= (&) +2 (@) + 2 () + ()

a cubic equation, which will therefore determine three values
dy
for a = ;il
Should the partial differential coefficients simultaneously
vanish for still higher orders, the same process may be
extended by including additional terms of the preceding form
of development ; but it will be unnecessary to do so here, as
the genersl law of the successive terms is obvious, and these
higher orders of multiple values do not often occur. It will
be obgerved that the numerical coefficients of any order are
those of the binomial theorem.

Erample.— Given y3 — 71°y — 623 + 14 =0, to find the

value$ of :_;'.;, corresponding to s =V and y = 0.
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When £ = 0, y = 0, we have, by partial differentiation,

(:-:): —l4ry —18s2 4+ 423=0,

du
(G) =3y -=0;

2
‘—{-—g)=—l4y—36:+12:’=0,

ady)_"“-“ (—>_6y_o-
)_—-36+24.t_—36 (wd)"‘“

dSu Su
mz) =0 @)— 6

Y 0=—=36—~42a+4+ 6a%, ora®—7a—6=0,
the threc roots of which are a = 3, — 1 and — 2; and these
are therefore the required multiple values of :-Z when 2 =0,
y=0.
(62.) The multiple values of a differential coefficient, which
takes the form g, may be more simply and expeditiously deter-

mined algebraically in the following manner:

If the particular values of the variables be 1 =a, y =4,
first transform the given function f(r, y) by substituting
&' + a, y' + & respectively for 2 and y, so as to get the equi-

!
valent function in which the value of %— is to be obtained
[¢

ford/ =0,y =0.

This last function being arranged in the ascending order of
degree, with respect to the variables £, y/, let it be denoted
by

[y i+ 5 ¥ )iem + (2 ¥ )it men + &e. =
where [+, y']; is supposed to comprise all the homogeneous

L]
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terms of the least degree [ with respect to ' and ¥/, (', ¥ )i+m
the homogeneous terms of the next higher degree I + m, &c.
As these functions are homogeneous, it is evident that

[.r y]1 [1 ]. [, g+]':+m [1 _’]Hm, &ec.,

which will now represent algebraical functions of -14 . Hence,
x

dividing the preceding equation by #/, the result may be thus
expressed :

[lx!',“:] +a'm [].-'_/_(] 4 z'mn [1,117] 4+ &c. = 0.
] T di4m T Jim+n

This equation, which must necessarily be true generally,

r
. L/ .
determines J—, as a function of 2. Now, when /=0, y'=0,
£
y' d
the coutinuous value of ¥ is obuoush , or -Ig; and there-
1‘ 3

fore, making ' = 0 and replacing y_: by gz, the equation for
z

2]
dr];

Hence the equation for determining the required values of

Z.';’ is to be found by simply retaining only the homogeneous

determining this is

terms of least dimensions with respect to the variables, then
dividing the same by a power of 1’ of equal dimensions, and

finally replacing Y hy 3{ The accuracy of the result will
T

evideutly not be affected, should the function, which comprises
the terms of least dimensions, at the same time involve terms
of higher dimensions that do not admit of convenient scpara-
tion, as these will finally vanish on making & =0,y = 0.
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This general rule will be found to apply with remarkable
brevity and facility.
Erample. — Take that given in the last nrticle viz.

y3— 71y — 63+ 24 =0 to find the values of ;{. ’ when

r=0, y = 0. Since the particular-values of the variables

are alrendy r = 0, y = 0, the equation does not require any
preliminary change. The first three terms are homogeneous
and of the third degree, with respect to the variables; but the
last term being of the fourth and therefore of a higher degree
must be rejected. ]I('m‘c, dividing y3 — 7%y — 62% by £

and replacing '—/ b\ ‘—,ﬁ, we obtain

()7 (2) o0

the three roots of which are the values of (lj-”) as before
dr

found.

CHAPTER VL
MAXIMA AND MINIMA.

(63.) The value of a function is a marimum if less values
obtain when the variable is supposed to increase or decrease
by small quantities.

The value is a minimum if greafer values obtain when the
variable is supposed to increase or decrease by small quantities,

A marimum value of a function is therefore greater and
a minimum value is less than the values which immediately
precede and follow it ; and thus the relative analytical applica-
tion of the terms maxima and minima has reference only to
the values of the function which are immediately adjacent to
the values so designated.
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The same circumstauces or conditions may recur for dif-
ferent values of the variable, and thus a function may adwit of .
several maxima and minima, and the extreme values of these
will obviously be the maximum and minimum values of the
funetion in the absolute sense of the terms,

In some cases, however, the value of a function either
always increases or always decreases when the variable is
supposed 1o inerease, and it therefore does not adinit of an
ordinary maximwm or minimun according to the preceding
definition.

1. Functions of One Furialle.

(61) Let w = /(&) be a function of a variable &, and let it
be required to find the particular values of the variable when
the function is a maximun or a minimum,

Supposing the value of > to change by a small quantity 4,
if f(o) be nmaximum we must have £ > fle + 4), and if
SO be aminimum we mist have fon < fee -+ h), and these
relations must be maintained whether £ be positive or negative,
Therefore, as & passes from — to 4+, the value ot the funetion
) will be
amaximun fmnrin:u-stnlw negative,

a micimum > when foe + 7)) —f(2) < continnes to he positive,
ueither lclmngcs its sign,

But, art. (1),

S+ D=0y =hf (e + oh.

If the first derived function £7(r) have a finite value, it is
evident that 4 may be cahen so small that s + 64) shall not
change its algebraie sign when that of 4 clumges.  As this
value of f(e + &) — f1) will then have ditferent signs, accord-
ing to the sign of 4, the function f(«) will in such case be
neither a maximwm nor & minimum.

The preceding conditions of maxima and minima will require
that A and f*(+ + 64) shall change sign simultancously when &
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passes through zcro. But, art. (38), when a variable quantity
changes its alzebraic sign it must either pass through 0 or
_l_, Theretore we must have dn _ =f{)=00r 4 x; andthen
0 dr

supposing &, by increasing, to pass through its value, the
function f{x) will be

a maimnm du . to —
o 1 when = = /(1) passes from [+
a wintnun dr T 1 —to 4,
In the ease Ay =0, by extending Taylor's series to
another term, we have

S o= D= = 1/{?,./"“&41‘ + 0k,

Here again, i /) e supposed not to vanish, the value of 4
may he raken o seeall that e+ 6/ shall not change sign
when the sien of Ads chanzed. A A7 s necessanly positive
the value of i+ Jo=w0 will have the same fixed alze-
braie sizn as £+ 84) or f7(@); and therefore the funetion
will be

a maximum . neeative

a mmnnnum } wl ——f (r) is {]H»Ill\‘t‘.’

Again, suppo-e that a value of & which makes f(r) = 0

also eanses several of the subsequent derved fanetions £7(r),
SO Necto viash e det g () e the tirst that does not
vanish.  Then, art. (1),

"
S+ - )y = —— f (x + 0h).
| ISL

As £ 7 () does not vanish, it is evident, as before, that a value
may be assizned to A so small that £7 (r + 64) shall not
change its sizn when that of £ changes.  The effeet upon the
sign of 4" will however depend upon whether the munber n be
odd or even,  Thus we find,

If n be an wdd nuwmber, f(2) is neither a maximum nor a

minimum, unless /™*'r passes through (l) .
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If n be an even number,

- maximum | ..d* _ .. [ negative
S isa {minimum ‘fd—ju =/ ®sis {positive.’
(65.) The nature of the preceding relations, which constitute
the theory of maxima and minima of functions of one variable,
may perhaps be made more familiar by the following simple
considerations :

As the derived function :_" = f"(z) represents the limiting
l.r

matio of the increment of the function to that of the variable,
and as a decrement is indicated by a negative increment, let
the variable r be supposed to increase continuously ; then the
value of the function f{r) will increase when f'(r) is positive
and decrease when f*(r) is negative.

But if f(r) increases up to a certain value of r and afterwards
decreases, it will cvidently pass through a maximum value,
and if it decreases and afterwards increases, it will pass through
a minimum value. The function will therefore pass through
a maximum or a minimum value whenever the value of the

first derived function gﬂf = f(x) passes from + to — or from
.

— to 4+ respectively.
After determining the values of r which make f/(1) = 0 and

LI 0, this last simple criterion, which is that first ob-

(x)

{nincd in art. (64), will gencrally be sufficient to distinguish
the maxima and minima values, if any exist; and then it will
be unnccessary to proceed to any derived functions beyond
J(@.

The process is also sometimes facilitated when the function
admits of being reduced or simplified by first multiplying or
dividing it by some constant, raising it to some power, taking
the logarithm, or performing some other operation according
to the particular form of the function under consideration, the
only restriction being that this preparation of the function
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should not disturb the general relations as to corresponding
maxima and minima.

(66.) The different cascs specified in art. (64) may also be
characterized geometrically by making the variable r the

1. If for a value of x which makes
even order and its value wegative, the D o

abscissa, and the function f(r) the ordinate of a curve line, of
S (r)=0, the value of f7'(x) is negative,

or if the first of the successive derived

corresponding value of the functional ordinate will be a mauri-
mum as represented in fig. 1.

which the equation is y = f(r). Fig. 1.
v
functions that does not vanish.be of an
0
2. If for a value of r which makes f'(x) = 0, the value of

S(x) is positive, or it the first of the Fig. 2.
successive derived functions that docs y

not vanish be of an eren order and its

value positive, the corresponding value of r
the functional ordinate will be a mininum °

. v i
as represented in fig. 2.

3. If for a value of z which makes f(2)= 0, also f'(s)
= 0, and the value of f'(2) is positive, or if the first of the
successive derived functions that does not Fig. 3.
vanish be of an odd order and its value v
positive, or if the first of the derived
functions that does not vanish be of an

even order and its value passes through Ili LI ”

from — x to + <, the corresponding value of the functional
ordinate will be neither a maximum nor & minimum, and will
be of the kind represented in fig. 3. Fig. 4.

4. If for a value of ¢ which makes f'(r)
=0, also f"(r)= 0, and the value of /"'(r) s
is negative, or if the first of the successive 'T
derived functions that does not vanish be of
an odd order and its value neyative, or if
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the first of the derived functions that does not vanish be of an
even order and its value passes through % from + @ to — @,

the corresponding value of the functional ordinate will be
neither & maximum nor & minimum, and will be of the kind
represented in fig. 4.

5. If for a value of z which makes - L 0, the value of
f(2)

S(&), as x increases, passes from + = to Fig. 5.
—x, or if for a value of z the first of the

. . . r
suceessive derived functions f(r), f"(1),
&e. that does not vanish is of an odd order
and its value passes from + o to —ax, the |
b x

corresponding value of the functional ordi-
nate will be a marinum as represented in fig. 5 or fig. 1.

6. If for a value of & which makes ;{-] = 0, the value ot
‘r,

S(5), as z increases, passes from — % to Fig. 6.
+ o, or if for a value of & the first of the

y
derived functions f(r), £7(r), Se. that does
not vanish i of an odd order and uts value r
passes from — = to + %, the correspond- 'L__.._.__
, » 3

ing value of the functional ordinate will
be a minimum as represented in fig. 6 or fig. 2,

Erample 1.—Divide a nuniber @ into two parts, such that
their product shall be the greatest possible.

Let & be one of the parts, and a — v the other; then
M) = x (a—r) = ar — r¥isrequired to be made a maximum;
oL@y =a—2rput =0, gives r=la. When ris less
than 3 a the value of £7(x) is +, and when 7 exceeds 3 a the
value of f°(2) is — ; hence, when r passes throngh its value,
f'(+) passes through + 0 —, which indicates that the value of
the funetion first increases and then decreases, and therefore
passes through a masimum, the number being then equally
divided.
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Erample 2.—Ifu =f(r) = 223 —9as® 4+ 12a% — 445,
then

% =/ (¢) =6r*—18ar +12a* = 6(r—a)(x—2a)= 0

gives r = g and £ == 2a.  When r passes through the first ot
these values, f'(x) passes through + 0 —, which indicates
a maximam, and when & passes through the second value,
J(2) passes through — 0 +, which indicates a minimum.
Therefore, when & = a, f(r) = a® a maximum, and when
z = 2a, flz) = 0 a minimum.

Fx S—Ifu—b-i-(.r—a)%'
lhon ...f'(.r) =4 (- a)} 0 gives r = a, and as r passes

dmmgh this value, £7(+) passes through — 0 +, which indi-
cates a minimum of the kind represented in fig. 2.

Er. 4. —lfu=10+ (.r—-n)“";
2
then g;_—: flo)y="5@—a) =0ghves r=a. As r passes

through this value, f7(r) passes through + 0 + and does not
change sign. The value of the function therefore first inereases,
then just ceases to increase, and again increases. It is henee
neither a maximum nor a minimum, but of the chiaracter
shown in fig. 3.

Er.b—lfu=1 +(,_,,)“s’;
ﬂm"g = f(r)=1(r— ”)w.' which = = when ¢ = @, and

as 7 passes through this value, £/(2) passes through — o +,
which indieates 8 minimum of the hind represented in fig. .

Er. 6.—Reqguired the height (o) at which a lizht should be
placed above a table so that a small portion of the surface of
the table at a given horizontal distance (a) shall receive the
greatest illumination from it.

1f ¢ denote the angle under which the rays of light meet the
given surface. the degree of illumination will vary as the sine
of this angle directly and the squarc of the distance (r) inversely.
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Butr® =a? 4 2% andsing = “ = s ;o=
P Tars @t
must be 8 maximum ; or, taking the logarithm, the value of
logs —§ log (a®+2°) must be a maximum. Denoting this
last function by u, we have
de 1 3r a%—2r8

- di
which = 0, whenz =4 V3> and as£ passes throngh + 0—,
the value of the function is then a maximum as required.

7. Ifu= -T,-f_{~-.;-; then when r=q, u=} a maximum,

a® + z*
and when o= — g, u = — } a minimum,
8. Of all rectangles of a given area, a square exhibits the
least perimeter.

9. fu=2%—~30z% + 143; thenz=0 gives u=4d% a
maximum, and z = 24 gives ¥ = 0 & minimum.
10. Ifyu = !-(-’E-f; then whenr =, u =l & maximum.
I [

1 ) 1

{1 Ifu =4 thenr =ce™makes u = ¢™q maximum,

L3
12. Ifu = Wé)(b—:.;)'

— 1 .
thenr = v/a% makes w = (Vas vy ® maximum.
13. Ifw = cos®zsin x; then cos®r =13, sin?z =1 give

3
= 4 Ti V/3 & maximum and a minimum.

11, Functions of Two Fariables.

(67.) Letw = f(z, y) be a function of two variables = andy.
When the value of w is a maximum we must have f{r,y)
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.

SAx+ h y + k), and when it is a minimum we must have
Nzy) <Az + Ay + k), and in either case this relation must
remain unchanged whatever may be the algebraic signs of
A and £ = ah. Therefore, for all combinations of values and
algebraic signs that can be given to the small quantities 4 and
k = ah, if for brevity we put
ﬂ: + ") Yy + ah) _ﬂ:’y)= all,
the value of the function u will be

a maximum continues to be negative,
> a minimum when 3u ¢ continues to be positive,

neither changes its sign.
But, art. (47), we have

du du
=t { (@) ++(3)}srm

When the value of this expression continues to be of the
same algebraic sign, the value of the factor contained between
the brackets, which corresponds to » + 84, y + 6ah, must
change sign with 4, and this change of sign must occur when
k=0, or when z + 6h, y + abh become r, y. Thercfore, as
the value of a is arbitrary, we must then have

du du
duy _ Y =,
(r{:) % dy)

unless one or both of these partial differential cocfficients should

pass through the value ‘l) with corresponding algebraic signs.

These two equations or conditions will determine the particular
values of the variables.
To ascertain {urther regarding the algebraic sign of the value

of du when ( d:) = 0 and (du) = 0, let the expansion of

Sf(z 4+ h y+ ahk), art. (47), be extended to another term;
then, as the term of the first order in A now vanishes, we

obtain
1’3
T2 )“(dxdy)* y’)}:t.‘:..
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If the sccond differential cocfficients do not severally vanish
and their relative magnitudes be such that the value of

rl”u d%u > d%u
+ a?
dr? dr dy dy
shall not vanish but continue of the same sign for all values of
a, it is evident that 2 may be taken <o small that the value of

du will always have a corresponding sign, which will not change
with that of . For brevity let this expression be denoted by
(A) + 2(c)a + (B)d®;
then when a = 0 its value will be .\, aud, when the arbitrary
gnantity e, which is wnrestricted inovalae, is made inde finitely
great, its aleebriie sign will be determined by that of B, The
diffierential coctlicients represented by A and B must therefore
have like sicns, and for all other values of a the expression
nst retain the same sign. - By putting the expression under
the equivalent form,
3—c? n}
—

A{(] +§{n)2+ Al

it becomes evident that it will necesaarily have the same sign
with the coeflicient A when the vabue of AB—c¢< is positive, or

AB > ¢?; thatis,
d u\/d e\
(4 s (hl “ l/) '

This is Lagrange's Condition of maxima and minima, and
when it is satisfied the value of the function u will be

a maximum f r)= (1/ u) s {ll(’g.:ll‘i\'(»’

A minimum 1 > prsitive.

| d*u 4 u . . .
If (A) and (B) nr(d‘-l o) and (;;bi) have different signs, or if

Lagrange's Cowdition be otherwise unsatistied, the function
is neither & mavimum nor a minimann, Also if the values of

« and y which nml\o( )— 0, (du) = 0 should happen to



MAXIMA AND MINIMA.

. . . d% d%u 2
cause_!he second differential cocfficients (L—;), ( e dy) (dy )

to vanish, it may be shown, as in art. (64), that a maximum or
minimum value of the function will require that the first sct of
differential cocflicients that do not vanish be of an even order.

1. Functions of Three Iuriables.

(68.) Let uw=f{r, y, ) be a function of three variables
x,y, and 2.

When » is a maximum f(z, v, 2) > fle + by + k2 + D),
and when it is a minimum f(#, . 2) <Ae + by + & = + 1),
where the symbols A, & = ak and ! = 34 denofe small changes
in the values of the varinbles.  As in the last article, the
values of 7, ¥, z which maintain either of these relations
must be found amongst the svstems determined by the
equations

u ) =0, nrt) =0, ((h_:) -0,
lh/ {:

t‘xccptiug, as before, the oecurrence of infinite values.
If the second differential coctlicicnts do not vanish, 4 may
e taken so small that the value of
Su=/fr+ by ak,z4 gh)y—fz,y,2)
shall have the same sign os the expression

d u %y o n)j o 349
('1-/) a) R (7/ d: ) w ( M_)
du
LY
+ ((l’.l (ly) ’

and not change its sizn when that of 4 changes. For a
maximum or a minimum therefore it will be essentinl that the
valve of this expression be cither always negative or always
positive, whatever values be given to the arbitrary quantitics
a and 3, which are wholly unrestricted. To facilitate the
determination of the requisite conditions amongst the cocfli-
cients, let the expression be more briefly denoted by
e=(A) + (B)a+ (C) g2+ 2(a)aB +2(6)B8 + 2(c)a
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and by patting it under the eqnivn.lent form
A{(l+—B+A )+AB" wrplizlog
2
AC U B‘}

it is obvious that it will always have the same sign w:th the
coefficient A, provided that the value of (AB — ¢?)a® +
2(Aa—bc) a3 + (AC—182) 8% be always positive, and this will
be the case when AB—c? and (AB—¢%)(AC—4%)—(Aa—bc)?
are both positive, or AB> ¢® and (AB —¢?)(AC —12) >
(Aa — bc)%.  There are therefore two conditions of maxima

and minima, viz. ( )( ) (dtdy)
{(@E)- G {ENE- ()
> { (i) -G ar)

* When both of these conditions are fulfilled, the function
will, as before, be

a maximum negative,

nx if (A) = jg ¢ neBALVE

& minimum positive.
(69.) The conditions may be othcrwnse obtained in a
symmetrical form, and the extreme value of ¢ determined as a

maximum or minimum value of a function of two variables
a, 8. Thus we have

(i):mn«+aa+c)=0---.(l)

(ﬂ)=2(03+aa+b)=o....(2)

(w) =B (da*) G

* The first of these conditions is as essential as the second, although it
is commonly neglected by writers on this subject.




MAXIMA AND MINIMA. 109
Hence (67) if BC> a? the value of ¢ will be

8 maximum | . negative,
& minimum } if A, B,and Care positivey

so that if this value have the same signas A, B, and C, all the

values of e will have the same sign. From equations (1) and
(2) the values of a aud 8 which determine this value of ¢ are

a=a6——Cv ﬁ_:ac—Bb
BC—a3’ BC—a?

For simplification, previous to the substitution of thesevalues,
multiply equation (1) by a, equation (2) by 8, and add the
results, and Ba? 4+ C8? + 2aa8 + 88 + ca = 0. These
terms being thercfore omitted in the expression for e, it
becomes ¢ = A + U8 + ca, in which, now substituting the
particular values of q, 8, we get

ABC a3 b2 c? 2 abe
= ____ (1= — e —— et
BC—U’( BC ~ CA  AB + ABC "¢ ®-

‘When this extreme value of ¢ is of the same sign as A, B, and

C, we have therefore the symmetrical condition
a? 2 e | 2albe
Bc~Ca _aBtapc>0- - @

Also, putting

cos?p = lTa(E , cosig'= C-\ cos?¢’ = . (5),
the value of ¢ becomes
«= (A’)'b (1 —cos?¢p—con?¢’ —cos’p” + 2cos ¢ cosgp’ cose”).

sin

But if ¢, ¢', ¢" denote the sides of a spherical triangle, and
@, o', o” the perpendiculars upon them from the opposite
angles, this last expression, by spherics, is equivalent to

e=(A)sin?e = (%u) sin%e ;

. _ A A? fd*u\ . 4
K "’“tﬁ‘=t§(ﬁ)"“"
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which, for a given small increment 4 and arbitrary small in-
crements k and /, represents the least possible value of 3« when
considered apart from its algebraic sign.

Similarly, for a given small increment % and arln(mrv small
increments ! and % the least possible value of 3u, or the value

. k% gduN .,
that approaches ncarest to zero, is du = Ry <@¢>slll‘w';
and for a given increment I and arbitrary incremeuts & and £,
. 12 (d*u 2 n
itis du = T(dw) sin®o".

We also here conclude that the conditions of maxima or
minima, with respeet to the value of the function v, will be
definitely indicated by the values of the angles ¢, ¢, ¢ given
by equations (3).  These conditions will be :

That the values of the angles be real,

2. That their relatise magnitudes be such as to admit of
being male the sides of a spherical trinngle, which will simply
require the value of cach of them to be less than half their
sum.

For functions of two variables there will be only one angle ¢,
andd the analogous condition will only require that the valee of
this angle be real. Also the values of & wearest to zero for a
given value of & with & arbitrary and for a, given value of

. . . h: fdu .
L with & arbitrary will then be du = L (}-:.) sin?d and
M ‘- o0r-

k2 fd?
Su = ]’.2 (j/;) sineh,

“The form of the condition (4), for three variables, is equiva-
lent to that first abtained, sinee (AB— ¢ ) {AC =47 — (Mo —be)?
= AABC = A" Bo2— Ce? + 2abe) >0, which divided by
the positise factor A'BC gives (). Also when the values fultil
the condition (1) aud any one of the three conditions AB> €7,
BC > a®, AC > b7 the other two will necessarily follow,

In conclusion, it may be as well to observe that the conditions
and criteria of maxima and minima here investigated, though
oceasionally indispensable, are not often required, as the general
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circumstances are in most cases sufficiently indicated in the
nature of the problem, and it is then only requisite to solve

d; d di
the equations (d_:) =0, d;) =0, ((—5 =0, for the determi-

nation of the variables.

CHAPTER VIIL
PROPERTIES OF PLANE CURVES,
1. Quadrature and Rectification.

(70.) The theory of plane curve lines forms a leading subject
in Analytical Geometry of Two Dimensions, and the investi-
gation of the various properties is generally found to be con-
venient and syimmetrical when the positions are referred to
rectangular coordinate axes.

In the annexed diagram let O, Oy represent the positive
directions of the aves; then, OD = o,
DP =y being the two conrdinates of the
point P, the curve which is the locus of P
is determined by au cquation

Y =q¢(r), orflr,y) =0,
Suppose x and y to reccive the inerements Ar and Ay, nud
let the new coordinates O =r + ar, D'Q =y + ay de-
termine a tecond point , so that DD = PG = ar and
GQ=ay. Then it \ denote the function which expresses
the value of the arca contained between the ordinate, the
curve, end the axis of », the curvilinear arca between the two
ordinates DP, D'Q will geometrically represent the value of
AA, and it 1s evident from the diagram that this value of aA
will be comprised between the two rectangles yar and
(v + Ay) Ar, being greater than one and less than the other;

‘:—3 is comprised between y and y + ay. Hence, proceed-
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ing to the continuous values at the limit when Ar =0, we
obtain
% =y, ordA=uvdz.

As this relation must correspond with the differentiation of
A as a function of , it is evident that the determination of A
from it will be the inverse process to that of differentiation.
This inverse process is called Integration, and is usually
indicated by prefixing the symbol /; thus

A = fydz.

The method of obtaining the value of this integral is the
province of the Integral Calculus; and, when taken between
given limits, it will express the area contained between the
corresponding ordinates.

(71.) Again, let it be required to express, by means of
infinitesimals, the area contained between the curve, two given
ordinates yo, ¥m, and the axis of r.

Suppose a number m — 1 of equidistant ordinates y,, v,,
Ys -+ -+ Ym—1 to be inserted between them, and let dr be the
common difference of the abscisses xp, r,, 7q..... r,,. For
brevity let (y, v,) denote the portion of area contained
between y,, y,, the axis of r and the curve, and the same
for the other ordinates.  Then it is evident that

(¥ ov,) will be comprised between y,dr and y,dr
) » e »o HidE o, yudr
W2 ¥s) » » » Yydr ,, y.dr
&e. &ec. &e.
Ym-1ym) . » » » Ym-1d7 5, ymds.
Hence, if
Sydr=ypde + y,dr+y,dr..... + Ym-1dx,

the sum of these relations proves that the total area (v, yw) will
be comprised between Iydr and Syds + (ym — yg)dz.
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If we now suppose the number m —1 of intermediate
ordinates to be increased without limit, dr and (ym — y,) ds
will decrease without limit, and therefore 3ydr will approxi-
mate to the proposed curvilinear area as its utmost limit;
that is,

A = 3yds.
But we have seen that this curvilinear area is expressed by

the integral fydr. Therefore
Syds = zydr.

Hence it appears that every integral fydr expresses that
value to which Tydr approximates as its ultimate limit, on
increasing indefinitely the number of subdivisions dr, both
being estimated between the same limiting values of #.  This
character of an integral presents to the mind a clear view as
to the result of a process of integration, and the area of a curve
offers the most simple geometrical representation of the pro-
cess. When dr is taken indefinitely small so as to be con-
sidered as an infinitesimal, called an element of r, each of the
terms ydr of Sydris a similar element of the area; and we
have shown that the nearer the values of these clements are
taken to zero, the more accurately will they represent the
relative changes of their respective primitive quantities, and
the more accurately will a succession of thein compose those
quantities so as to form a continuous result. The idea of
elements greatly facilitates our reasonings in the higher
applications of the Differential and Integral Calculus, and
gives to the mind the most ample scope in geometrical and
physical researches, whilst a strict adherence either to the
principle of derived functions or to what is nsually called the
theory of limits, which some authors rigidly contend for,
would render many investigations exceedingly cramped, and
others almost impossible.

(72.) If a right line r& which passes through the two points
P and Q be supposed to revolve about the point P so that the
intersection Q with the curve may proceed towards P, it has
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been shown, art. (9), that when the point Q arrives at the
point P or when the distance PQ becomes an infinitesimal,
the corresponding continuous position of the line rs will
ultimately coincide with the tangent TP which touches the
curve at the point P, and that the infinitesinal line PQ
becomes then an clement of the arc of the curve.  These
considerations are equivalent to that of conceiving the tangent
to be a line which passes through two points of the curve
that are infinitcly near to each other.  Let ¢ devote the Lingth
of the arc from a given point in the curve to the point P;
then will dr, dy, and ds symholize the relative infinitesimal
values of PG, GQ, and PQ. But PQ2=PG- + GQ2;

. ds? = dz? + dy*

nnds-—fx/dﬂ-{-dy —ﬁz /1-+

da’

When y is known as a function of x, explicit or implicit,
this expression serves to determine the length or rectification
of the curve; but the inverse operation of integration, indi-
cated by /; will require the aid of the integral ealeulus.

1. Tangent and Normal.
(73.) Let o denote the angle PTD or the inclination of the
tangent with the axis ef r; then, from what precedes, we
have, as before deduced in art. (9),

dy

t = -
e =

If a, 8 be the coordinates of any point in the tangent PT,
this gives

therefore the equation to the tangent is

B - =Z—z(a~—:).

The normal PN being perpendicular to the tangent, if o', 8
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be the coordinates of any of its points, its equation is hence
dr
B —y=—-—(ad—2a).
y PG

+ Hence if p denote the perpendicular OH from the origin
upon the tangent and p' = PII that upon the normal, we
shall have
_rdy —ydr ,_rdr+ydy
PETTy e

Also, if o”, 8" be the coordinates of any point in the line

OTI drawn through the origin perpendicular to the tangent,
the equation to this linc is

dr ,

= —— .

g e

Again, since tan o = %, and de® = ds? + dy®°, we have

coso=, andsine =
ds ds
d
. PT = tangent = o ve,
sl w dy
i
PN = normal = - 7— =¥/,
cos dr
DT = subtangent = Y _yd: .
tan w dy
ydy

)N = h = =,
I subnormal = ytan » o

(74.) When the equation of the curve is of the form
¥ =f(r,y) = 0, the differential elements dr, dy will be
connected by the corresponding differential equation

du du
— —~)dy=0.
(a)e+ (5)

Therefore the elements dr, dy, and ds will have the same
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mutual proportions as the respective quantities

Y, — (%) na ,\/(‘_’f (%Y
) (d.t ) t\&)’
and by replacing them by these quantities the preceding
relations, and any formulee involving the ratios of the elements,
will then become adapted to the case in which y is an implicit

function of z.
The equation to the zangent, under this form, is thus

(GF)a—o+(G)e-n=o

and it is therefore to be practically obtained by this simple rule :
Differentiate the given equation of the curve, u = f(r,y) =0,
and writc a — x, 8 — y in place of dr and dy.

Also the equation of the normal is

(j—';)< ~n-(3)E -n=o.

Erample.—The equation to an ellipse when referred to its

e ]
centre and principal semidiameters a, , is 371- + iﬁi =1,
By differentiating, this gives 5“ dr + ;{J dy=0;

b_ Ve VTS
*dr ay dr aly
b _ ey
dy =~ bir
Vaty? + 535t Vady? ¥ oirt
tangent ¥ 5;—;—-—-—-, rmal = ——-!—;2——-.

b a%y? A sab »?
subtangent = ~ Jigt and subnormal = — a_"'
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Also, the equation to the tangent is

=
;.;(a—.r)-l- bl.‘(s—y)=0, °r'¢£n“+5y‘:'p=‘3

and the equation to the normal is

) 1, 8
%(a —:)-%(p’-,,):O, or%::—;—ﬁ':aﬁ_lp,

nr. Asymptotes.

(75.) Two curves or a curve and straight line are mutually
asymptotic when they continually approach indefinitely nearer
and nearer to each other, but do not meet at any finite distance,
By an asymptote to a curve we generally understand a straight
line, such that if it and the curve be indefinitely continued
they will thus continually approach each other but never
meet. It may therefore be considered as a determinate
tangent to the curve when the point of contact is removed
to an infinite distance.

The position of the tangent to the curve is geometrically
determined when the intercepts OT, O¢ of the coordinate
axes are known.

In the equation of the tangent,
art. (73), make 8 = 0, and we shall
find the intercept of the axis of x,
between the origin and the tangent,
to be*

= OT = o — ¥ _ gy,
dy dy
Also, by making a = 0 we similarly find the corresponding
intercept of the axis of y to be

* In the dngnm, orT being in the contrary direction to O« must be
d & ney quantity, and equal to OD-DT.
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If, when r = » or y = «, either of these values of a, and
8, should be finite, the curve will have one or more asymptotes
which will thence be determined.

When a,, is infinite and 8, finite the asymptote is parallel to
the axis of z. .

When ay is finite and 8, infinite the asymptote is parallel to
the axis of y.

When a, and 8, are both finite the asymptote passes through
the two determined points T, £,

When the values of a, and 8, arc both = 0 the asymptote
passcs through the origin, and its direction will be determined

by the value of ¥ when r = = or y=x.
x

DBut when the values of a, and 3, arc both of them infinite,
the tangent is at an infinite distance from the origin, cannot
lie constructed, and is not an asymptote.

The asymptotic branches of the curve will, with few ex-
ceptions, be analogous to one or other of the forms exhibited
in the annexed dingrams, and will only differ with respect to
relative situation, '

c\/ _ Z"f AN

These diagrams, for example, may be considered to represent
the general features of the respective curves determined by
the equations

_ fa+z a? a’
y==z =3 y=-—;~,nndy=;§.

‘When the axes of coordinates or lines parallel to them are
asymptotes to a curve, the circumstance will at once be
indicated as follows :

If, when y = 0, s = o, the axis of & is an asymptote ; and




PROPERTIES OF PLANE CURVKS. 119

if, when r = 0, y = o, the axis of y is an asymptote. Such
is the case with the curve whose equation is xy = o2,

If, when y = 4, » = =, aliue parallel to the axis of r, at
the distance y =8, is an asymptote; and if when r=gq,
v = %, a line parallel to the axis of y, at the distance £ = q,
is an asvmptote.  Such is the case when the equation is
ry —ay — br = 0.

L other ca-es the position of the asymptotic tangent, if any
such exist, will be ascertained by determining as before the
values of the wntereepts a, and 3,

(76.) The practical caleulation of the values of a,, 3, and
of the equation to the asymptote may be considerably facilitated
by putung the expressions under the following form

;)

. . ¥—3 _ dy .
Now since Y= = . wherea, 8 are the coordinates of any
r—a dr

point whatever in the tangent, if when # = o, y = » this
tangent be an asymptote and pass at a finite distance from the
onigin, this point can be taken so that o and 8 shall be both

. . LY !
finite, and the relation then gives Y=Y Let therefore &
r  dr z

:i » and the equation to the tan-
L4

1
=tand - =r; then 8, =
x

. . d;
gent. when it becomes an asymptote is y = 8, + ‘Z"g.t =

By + tr. Hence the following casy rule :

In the given equation of the curve substitute r = :—, and

y= t, and, nfter reducing the equation so obtained in ¢ and r,
o

d¢

determine from this equation the values of ¢, and 8, = Zo
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when o is made to vanish; then, if the value of 8, be finite,
the equation to the required asymptote is
y=1=t,r + By
If by making ¢ = o we obtain a finite corresponding value
of v, this will determine an asymptote parallel to the axis of y

at the distance r = ];-
Ezample 1.—Let the equation to the curve be ry—ay—br
= 0; then substituting % and E for r and y, and reducing, we

obtain
dt _at+ b
t—aol—bv_o, ﬂ = E’— 7:;; .
Therefore, making v = 0, we get ¢, =0 and 8, = J, and
the equation of the asymptote is y = 4, indicating that it is
parallel to the axis of z at this distance.

By making ¢t = we get v= la; .. = a is another

asymptote and is parallel to the axis of y.
Erample 2.—Let y* 4+ r*—ary = 0; then substituting as
before we get

df at
3 -— = = e =
Etl-ate=0, 6=7 =7 5

Ilence making v =0 we obtain t,= — 1 and 8, = —g,
and the equation to the required asymptote is therefore
a
y=—ar-—3

3. The curve (£ + 1)y = (r—1) .« has an asymptote de-
termined by the equation y = s —2.

4. The curve y> — as? 4+ 2% = 0 has an asymptote deter-
mined by y = —;— s

5. The curve y>— 2xy® + £% = c3 has two asymptotes,
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viz. the axis of £ and the line y = r, which makes equal angles
with the coordinate axes.

6. The curve ry? —y = 1%+ 2ax% + b.t + ¢ has three
asymptotes, viz, the axis of y and the two lines y = = + a and
y=—zr—a.

1v. Circle of Curvature.

(77.) A tangent to a curve may be conceived to be a line
drawn through two of its points which are indefinitely near to
each other ; and these points being considered as the extremi-
ties of a differential clement of the curve, it is cvident that
the first differentials of the coordinates which appertain to
the tangent will correspond with those of the curve at the
point of contact.

Similarly, the eirele of currature or the osculating circle
may be conceived to be that cirgJe which passes through
three consecutive points of the curve which are indefinitely

" near to cach other, the position and magnitude of a circle
being determined when three of it« points are known.

These three points being considered as the extremities of
two successive differential elements of the curve, it is evident
that both the first aud second differentials of the coordinates
which belong to the circle and curve must correspond at the
point of contact.

Let £, y" be the coordinates of the centre of the circle,
and r—z", y—y” will be the two lines drawn from it respect-
ively parallel to r and y and terminating in the circumference
at the point of contact; hence, denoting its radius by p, its
eguation is

(=) + (y—y") = pt.

Now since this circle corresponds with the curve at two
other points contiguous to the point of coutact, we may dif-
ferentiate twice and consider the first and second differential
of the ordinates r, y a8 agreeing with those of the curve.

v
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Hence differentiating, observing that in proceeding to these
points &, ¥’ remain invariable, we get
dz (z—a") + dy (y—y") =0,

d’z(r-2") + d% (y—y") + ds3 =0;
where ds? = ds®+ dy°, art. (72), s denoting the length of the
curve, The first of these two equations requires the centre of
the circle to be situated in the normal, and the second com-
pletes the determination of its position. Thus, from the two
equations we deduce
— dy de? dr ds?

—_—y = , = fFas
= dy d’z—de dy y=y dy d*r—dzx d’y

Therefore, substituting these values in the equation p?

= (r—2")} + (y—y")% we find
_ ds®
P= dydia—dadly”

Having proceeded on thte principle of general differentiation
in obtaining this cxpression for the radius of curvature, we -
may hercafter assume an independent variable at pleasure. If
we consider the axis of r to be horizontal, the value of the
radius will be positive when the convex side of the curve is
presented vpiwcards, and it will be negative when the convex
side of the curve is presented downwards.

(78.) The value of the radius of curvature may be otherwise
determined by conceiving the ceutre of the circle to be the
intersection of two normals drawn from
two points which are indefinitely near
to each other. Let PR, PR be two
consecutive normals meeting in R, the
centre of curvature, the element PP
of the curve being ds. Let also two
tangents be supposed to be drawn at P and P, the former
making an angle » with the axis of r. Then, as » is decreas-
ing, the angle included by the tangents will be—dw, and this
must evidently be the same as that included by the normals.
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We have thus PR = P'R=p, PP = ds, and the angle
PRY = — du.
oo = pde = ds

ds
and p=—
Bat, art. (73), tan @ = :—% ; and hence, art. (29),
a¥ g

dtan o

1 +tande =
o+

do= s

gy ¥

Therefore, by substitution,
p=— ds? ds3
st d e o dy . dydiz—drd%’
By making r the indepcndent variable, or supposing dr to
be constant, this becomes
__(+3)

/d’
EE

which is the formula mostly employed in calculating the radius
of curvature. The measure of the currature of the curve at P

p=

will be the reciprocal of this radius, or ;' , being the same as
that of the circle.

Differentiating the equation dr? 4 dy? = ds*, we have

drd?r + dydiy = dsd’;
. 0= (drd’r + dy d*y)*—(ds d?;)?,
Adding (dy d®s— dr d%y)? to this, the result is
Gy Pe—ds ) = A2 (@) + (@) (07}
&’
T PE V(@ (@yp - @y
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and, making s the independent variable, this becomes
ds?
P V@ + @y
which is a symmetrical form of expression for the radius of

curvature.
Erample 1.—Find the radius of curvature at any point
. . I L 2
in an ellipse whose equation is st =l.
Making r the independent variable, we have
dy b2r dly b
dr a’y dz? ‘.Zys ’
_ (a%y® + b ,2)1
(ab)*
Erample 2.—In the cycloid, taking the vertex as the origin
of coordinates,

s z,
y= Viar— 23+ avers I

d, 2a— d? a
NS By e
dr z def T T i/ 240 — 12
T, p=2\/§a(‘2a-—.r_)‘.
Erample 3.—In the parabola y* = 4ma,
Iy I Yy

. (m + x)

Erample 4.—In the rectangular hyperbola, referred to its
3
asymptotes, 2ry = 4%, p = — =, r being the line drawn from
a
the origin to the point in the curve.

T
Ezample 5.—In the conjugate hy, perbolns — %5

—
-

_(atyt+ bis ot

(ab)t
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&, »,
Erample 6. —Inthe catenary y = ;(e" +e E), p=— ’c_'
Ezample 7.—In the hypocycloid A4 y* = a*,

p=— 3(a:y)*.

v. Evolute and Inrolute.

(79.) If we suppose the point P to pass continuously
through every point of the curve, the corresponding positions
of the centre R of curvature will trace out another curve.
This curve, which is the locus of the point R, is denominated
the erolute of the proposed curve, and conversely the proposed
curve is its involute. If the normal PR be supposed to move
along with the point P, it is evident that the locus of the
consecutive intersections R will be that curve to which the
normal is always a tangent. This is rendered still further
evident by considering it inversely: thus, by supposing a
tangent to roll over a curve line, its successive indefinite inter-
sections will obviously be the points of contact and therefore
trace out the same curve. Hence n tangent drawn to the
evolute at any point coincides with the radius of the osculating
circle drawn to the point of contact. The equation of this
tangent, art. (73), gives

dy’l(: — :'I) — dr‘l(y — y") =0-
Differentiate the equation
(r — :11)2 + (y - yll)2 = P’!
supposing 2", y”, and p to vary, and we have
(de — ds) (= — ') + (dy — dy") (y — y") = pdp;

but, #', y" appertaining to the normal of the curve at the point
2y, we have by its equation

ds(s—2) +dy(y—y) =0,
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which rejected and the signs changed, we get
de'(s —2") + dy" (y — y") = — pdp.
From this and the preceding equation to the tangent to the

evolute we find
n

dr”
.‘l‘—-.z":—pdpm. y—y":—-pdp%ﬁ,

where de'® = dz"3 + dy"'%, &’ being the arc of the evolute
from any given point.

These values of £ — &’ and y — y” being substituted in the
equation p? = (z — 2")? + (y — y"')°, we get .

dﬁ
pr=pl iy or dfi=dp;

. df' =dp
8 =p—pg,
where p, is the radius of curvature corresponding to the given
point from which &” is estimated.

Hence the length of the arc of the evolute between any two
points is equal to the difference between the radii of the
corresponding osculating circles.

From this elegant property it follows that the original curve
may be described by the unwinding of an inextensible thread
from off the evolute. Thus if the normal or radius of
curvature AQ be conceived to be a thread extending round
the evolute QR, it is obvious that 5
by unwinding this thread, keeping
AQ always stretched, the point A
will trace out the curve AB, and o\/ |p "
the unwound portion of the thread 4 .
having passed from AQ to PR, w
the intercepted arc QR of the
evolute will be equal to PR — AQ.

Considering the evolute as a primitive curve, its involute is
thus described.

(80.) For the determination of the equation of the evolute
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to any proposed curve we have, art. (77), the following ex-
preasions for the coordinates of the point R or of the centre

of carvature, viz. . g
:"=:+~—-—~f"!‘~ ~-=:+p£.

.._.r— o W
ds?
dy?
1+
ds? dr’
! o pnall L,
y Y+day y+ £§
drd

By means of these and the equation of the curve A B, if the
ordinates xy and their differentials admit of being eliminated
an cquation will thence be found expressing the relation
between £ and y”, and will be that of the evolute.

Let the equanon of the evolute be given to find that of its
involutes ; then since p = py + &" and dp = di’, the values of
=1 y— y", art. (79), gi\e

r=7 (po+"’) !/—‘.'/-(Po""')d‘,,.

dd"’
which being calculated in terms of 2" and y", if these variables
can be eliminated, the resulting equation in r and y will be
the required equation to the involutes, p, being an arbitrary

constant.
Exzample | .—Determine the evolute of the Ellipse whose

equation is

U
at :a =L
Taking r as the independent variable,
dy  br 4' b4

=" ay ~ oy
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c.or=a (.;.‘f’,a) y=— b( m) , and by substitu-
tion the required equation of the evolute is

@y} + by")} = (@2 — sy,
Erample 2.—The evolute to the parabola y® = 4ms is the
semicubical parabola 27 my"% = 4 (&’ — 2m)3.
Erample 3.—The evolute to the rectangular hyperbola
sy =ais (" + _1/”)§ — (@ - y")* = (-ia)i.
I B
Ezrample 4.—The evolute to the hyperbola :,;2_%? =1
is (a.t")g - (_lly”); = (a® + b’)i.
Erample 5.—The evolute to the cycloid y = 4/2az — 5?
+ avers=! T iy a cycloid equal to the original one, but in an
a

inverse position.

V1. Position of Conrerity.
(81.) As before, let o denote the angle which the tangent to
the curve at the point zy makes with the axis of x; then,
art. (73),

tmu:%'

For the purpose of conveniently expressing the relative
positions, let the axis of x be considered to be horizontal, and
that of y vertical, the positive direction of z being to the
right hand and the positive direction of y being upwards.
Then the tangent being supposed to be drawn in the pusitive
direction with respect to the axis of &z, its inclination (e)
with the horizontal will be

upwards a’y { positive,
downwards } when tan o = dr' 1 negative.
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Now, when the curve at the point P, as in the diagram, has
its convex side upwards, the angle »
thus estimated will evidently decrease

as r increases; .. d—t;:_.'-' will be ne-

gative.
Also, when the convex side of the
curve 18 downwards, the angle o will increase as r increases,

or '!—::" will be positive.

The position of conrexity is therefore thus determined :
. d®y . negative pwards,
‘When L { poritive } it is presented {down\wurds.
In a similar manner the position of conrerity with respect

to the vertical will be determined by the algebraic sign of

‘!_‘53" or of dy dtan w; and

When dy d ; {pmitive } . {m the right hand
dr dr? negative to the left hand.
vit. Doints of Inflexion.

(82.) When a curve is convex downwards, or in any other
direction, and becomes afterwards convex in the opposite
direction, it must have passed a point of contrary flexure in
the vicinity of which the curve will resemble the middle turn
of the letter 8. In passing through one of these points, the

2
second differential cocflicient ‘_‘;_1/‘ , which determines the posi-
dx

tion of convexity upwards or downwards, must change its
algebraic sign, aund its value must therefore pass through

Oor.‘..
0

The condition for determining a point of contrary flexure or
point of inflexion is therefore
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If the value of ;.Z at this point pass through — 0 +, the
£

inflexion will be of the character represented Disgram 1.
in dingram 1; and if it pass through +0—, »
it will be as exhibited in diagram 2. These
two forms will represent all cases of inflexion |
if they are only placed in different positions
with respect to the coordinate axes. Itis © b 7
also obvious that the value of the angle o,
which the tangent RS makes with the axis of z, will be a
minimum in diagram 1, and a maximum
in diagram 2.

The expression, art. (78), for determining

'

Diagram 2.

2

the radius of curvature p, contains g.;!‘l in

the denominator.  Therefore when gl'.;
r

passes through 0 and changes its sign, the value of the radius
p will also change sign by passing through il—) Hence the

reason why the formula referred to expresses the value of p
when the convex side of the curve is upwards, and gives to p
a negative value when the convexity is downwards. Also as
these radii are drawn in opposite directions, the centres of
curvature being on opposite sides of the curve, this is in
strict conformity with the usual geometrical interpretation of
the symbols + and —.

Erample.—The Witch ry = 2a(2ar — .r")i has two points
of inflexion determined by r = 2, y = + ;,, V3.

(83.) Note.—When the equation to the curve is given in
the implicit form u = f(x, y) = 0 the values of the differential
. dy d% . .
coefficients, 0 d’ of y with respect to s, used in the
preceding formule, arts. (75) to (82), will require some
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preliminary calculation. The consideration recuired for this
may be obviated by expressing the formuls in terms of the
partial differential coefficients of the function w =f(r, y).
To effect this, the successive differentiation of the equation
x =0, art. (38), making s the independent variable and
d?z = 0, gives

) +(8) 9=
)d’+2( ) dy+( )dy’+(:—;)d'y=o;
or (dx) (dy Fri

d’u) )dy ) w\diy =0
(d-rdy ( dy 7

which are the relations connecting the values of and d’y

with those of the partial differential coefficients of u. llenco

du)
(@)E) 2w ) GG + ()
(dy)

The substitution of these values will accomplish the requisite
transformation. For example, the expression for the radius
of curvature, art. (78), becomes

@@y
@)E) - @)@ E - EE
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which is necessarily symmetrical with respect to the co-
ordinates.
The corresponding transformation of other formule is

obvious and may be here left to the student.

v, Multiple Points.

(84.) A multiple point is & point in which two or more
branches of a curve meet or intersect. If it is common to
two branches of the curve it is called a double point; if it is
the concourse of three branches it is called a triple point, &e.

At a multiple point there will be a tangent to each branch
of the curve that passes through it, and therefore the dif-

ferential coefficient :%z, which determines the position of the

tangent, must admit of corresponding multiple values. In

this case the expression for ']_'.’, deduced from the equation

of the curve, will take the indeterminate form g. and its

multiple values may be obtained by either of the methods
given in arts. (61) and (62

Let u =f(x, y) = 0 be the cquation to the curve; then,
art. (61), the conditions for a multiple point will be

du du
(.Zr' =0, -‘-,;)_0,

and if, for the values of r and y which simultancously fulfil
these equations, the second partial differential coeflicients do
not all vanish, the point will be double and the values of

a= g will be determined by the quadratic equation

d%u u
p) d.l'dy) +¢ yg) = 0

For the convenience of abbreviation, let this be denoted by
(A) + 2(c)a +(B)a?=0;
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then the two values of a will be

_ect v e*— AB
a= —"—-———'——B .

We may hence, according to the nature of these roots of the
quadratic, distinguish three classes of double points:

1. If the two roots or values of a be real and unequal, the
two branches of the curve will take
different directions, and the point
will be a point of intersection or
real double point as represented in A r
diagrams 1 and 2. These and the . %
following diagrams may be placed
in any position with respect to the axes of coordinates.

1. If the values of a be equal, the two branches of the
curve will have a common tangent, and therefore also have
mutual contact at the point under consideration. In this
case if the convexities of the two branches

- be situated on opposite sidex, the contact

Disgram 1. Diagram 2,

Diagram 3.

will be external, as shown in diazram 3, Y s
and the point is called a point of contact r

of the first kind or point of embrassement ; A

and if the convexities lie in the same ° —

direction the contact will be internal, as in
diagram 4, and the point is then called a point of contact of
the second kind or point of esculation. Diagram 4.

If, however, the value of ¢ — A B under
the radical, which vanishes at the point P,
should change its sign and become nega-
tive on one side of the point, the cor-
responding value of a will be unreal, and
therefore the two branches of the curve will be restricted to
one side of the point, which is then denominated a cusp.
As before, if the convexities of the two branches lic in con-
trary directions, the cusp is of the fire¢ kind, as shown in
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disgram 5; and if the convexities are in the same direction
it is of the second kind, as shown in dia- Disgram 5.

gram 6. ’ &
111. If the values of a be unreal, then no
real branch of the curve can pass through

or meet the proposed point, which, being »
thus detached from its associated curve line, © '
is in such case called an dsolated or conjugate point.

(85.) The analytical criteria for discrimi-
nating the character of a double point are Disgram 6.
therefore as follows : y

du — du . R
Letu=0, (;,;)-0, 2—)_0.then %

e (i) = () (5) > o '

the point is an intersection of two branches of the curve and
is a real double point.

11. When dg”) )
. ( (dy ) 0; if > 0 for points

immediately preceding aud following, it is a confact of two
branches ; if of different signs at these points, it is a cusp.
The eontact nr cusp will be of the first or second kind

according w7 e Y for the two branches has ifferent signs or

the same sign. If < y = 0, this will indicate an inflexion.

24 \2 H

1m1. When didy) - :—;‘:) ;’y_"') <0, it is an tsolated
or conjugate point.

It is easy to extend the process to higher orders of multi-
plicity. If, for the values of = and y which fulfil the

du du
equations ¥ = 0, (3;) =0, (5) =0;

Iso( ) ch-dy) 0, :i' =0, and the third par
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tial differential coeflicients do not vanish, then the values of a
will be the roots of the cubic equation

3 3 3
‘“)+sa( )+3a(d" %—_'; =0.

If the three roots of this equation be real and unequal, the

point will be an intersection of three branches or a real triple

point, of which the point P in the annexed diagram, No. 7, is

an example. .

If two of the roots be equal, it will be a ¥
point of contact and intersection; if the three %‘?
roots be equal, it will be a point of duouble
contact; but if the equation contain a pair of
unreal roots, then only one real branch of the curve passes
through the point, and it is therefore in that case not a real
triple point.

Should the point P be a quadruple point, as in diagram 8,
the third partial differential coeflicients will

‘also vanish, and the values of a will be deter- Diagran: 8.
mined in like manner by an equation of the
fourth degree

8ince an algebraic equation of odd dimen- Q

sions must necessarily have at least one real
root, it is evident that a conjugate point can only occur when
the degree of multiplicity is even,

(86.) An examination of the character of multiplicity of
any proposed point of a curve may in general be more readily
effected by a method analogous to that given in art. (62), for

determining multiple values of ;‘Z when of the form g, and

which we shall here repeat with a slight modification.

Let the coordinates of the point P be s = a, y = &; then
if in the equation of the curve r and y be replaced by a + o,
b + y', we shall have an equation in which ~, y' are now the
coordinates of any other point P' in the curve estimated from
the proposed poiut P as a new origin.  In this equation make
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y' = 84’; then dividing throughout by the power of &' that
may be common to the several terms, we shall obtain an'
equation

¢, B =0,
in which 8 will denote %’ or the tangent of the angle which
the chord PP makes with &/, and when & is made = 0 the
corresponding values of B, given by this equation will evidently

be those of , and the number of such values will, as before,

determine the multipb'city of the point.

Also, by giving to ' a small positive or a small negative
value, we may ascertain the number and situation of the
corresponding points P’ in the immediate vicinity of P on
cither side.

Since y'= B’ we have, by differentiating with & as the
independent variable,

W gl AV _pde
wERr =g T
therefore at the point P, where &/ = 0,

ay 8 <, '/_’a)
dr' T dr'’* -(d.r' o’
The first of these shows that the values of 8 when & =0

are those of%, as before stated; the second will determine

the positions of convexity by art. (81) or the radii of curvature
by art. (78) if required, the formula for the latter being

i
—_+8H
Po=— ", ’Iﬁ
\éz/,
The nature of ecach separate branch of the curve may,

however, be easily made known by comparing with 8, the two
values of 8 which correspond to small positive and negative
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values of #. Thus, if (3 —8,) # continues to be positive, the
convexity is evidently downwards ; it it continue to be negative,
the convexity is upwards; and if it change sign with &, the
point is one of inflexion.

Example |.—Let x4 — ar’y + by* = 0, and determine the
nature of the point at the origin where s = 0, y= 0

Here

du du
T)=4s- - = —ar? $—0.
(d.r) 4r3- 2ary =0, dy) ar? 4 3by 0;

(5.:_)-12:’-2..,-0 (;;)--—2«:-0, (:—’)-so,-o.

u d d3u d*
(&) =3se=0. (55 )= =20 (i) =0 (757)=e>

Therefore the equation for determining the values of o
lly .
=iy

—6aa + 66a*=0, orbda*—aa=0;

the roots of which are a = 0, and a = + \/—a ,a herefore

the point is a roal triple point similar to that shown in
diagram 7.

Otherwise, the origin being already situated at the pro-
posed point P, substitute y = g, and r4—ar’8 + brdp?
=0, which divided by x* givess—ag + 8% = 0. Hence,

at the origin, — a8 + 883 =0; -'~ﬁ=0lﬂdﬁ=i‘\/g-

and the point is a real triple point.

Ezample 2. —The equation being ay® + bz’ —13=0,
required the nature of the point at the origin.

Substitute Ss for y and divide by £%; then, af% + &

- 2=0; 3'_—é——-—.md at the origin, # =0 and
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Bo=A — g, which being unreal, the point is detached frum

its curve, and is a conjugate point.

Erample 3.—The curve (ay—23)% (a® + £%) — mialzé=0
passes through the origin; it is required to find the nature of
this point.

Substitute, as before, y = Sx; then, dividing by =%, we
get,

(08 = (et 4 50— miatet =0, o p=Ex P

At the origin 8, = 0, and, as the double values of 8 here
merge into one, the two branches have mutual contact with
the axis of £ at this point. Differentiating the value of 8 we
have also

l{ﬁ_!+ ma? [y _14m
dr —a =+ @+ ”(Zro- a

Therefore, if m > 1, the convexities lie in opposite directions
and the contact is external; if m <1, the contact is internal,
or a point of osculation, and the two branches have their con-
vexities presented downwards ; and in cither case the two radii

a
of curvature are p, = — DT

Exrample 4.—The curve whose equation is asr?+ 2~ by3=0
has a double point at the origin, and the directions of the

branches are determined by 8, = + '\/ % .

Ezample 5.—The curve (a®—2?) y3— (a? + 2%)22 =0 has
a double point at the origin, and 8, = + 1, or the branches
make equal angles with the axes of coordinates.

Erample 6. —The Lemniscate («% + y%)® —a®(s2—y?) = 0
has a double point at the origin, and the branches make equal
angles with the axes.

Example 7.—If b (y — 2)® — 5* =0, the origin will be
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a cusp of the first kind, the common tangent making equal
angles with the axes.

Erample 8. —If x® + a?25— 3 y% = 0, the origin will be a
cusp of the first kind touching the axis of ».

Esample 9.—In the Cissoid y*(2a—r) —s® = 0, the origin
is 2 cusp of the first kind also touching the axis of «.

Eremple 10.—If (ay —ar—x%)? —x% = 0, the origin will be
a cusp of the second kind, with the two convexitiea down-
wards, and the common tangent making equal angles with the
coordinate axes; also the brauches at this point will have
the same centre of curvature, the common radius being p,
= —a+V/ 2, 50 that the coutact is of the second order.

Erample 11.—The evolute to the ellipse, example 1, art.
(80),

@) + oyt = @2-snt
has four cusps of the first kind at the points

al—b
-

2__p9
t=0,y=i£—5——,mdy=0,.r= +

1x. Tracing of Curves.

(87.) The equation of a curve being given, it is sometimes
required to develop its particular structure, peculiarities of
form, and gencral character.  8Such an investigation is usually
called discussing or tracing a curve from its equation, and
only requires the practical application of the preceding for-
mulee. It will be sufficient here to indicate the chief points
that should engage attention.

1. If the equation be in the implicit form, it will be advisable,
if practicable, to solve it with respect to one of the variables,
provided the result be in a convenient form for calculation.

By first making y = 0 and then r = 0, we shall ascertain if
the curve crosses the axes and the positions (55 0), (0, y,)
of the points of intersection. Also, by assigning to one of the
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variables a series of positive values from 0 to o, and of
negative values from 0 to — =, and calculating the correspond-
ing values of the other variable, we shall be enabled to follow
the course of the curve, and to discover if it has any infinite
branches. In all these calculations both positive and negative
results should be carefully included, so as to obtain the com-
plete branches of the curve.

11. Should the curve possess any infinite branches, ascertain
if they have asymptotes and determine their equations, and
thence their geometrical positions.

111. Determine the value of :%, and from it deducethe maxi-

mum and minimum values of £ and y, and the angles at which
the curve cuts the axes, &c.

1v. Determine the value of !Zund thence the relative posi-

tions of convexity of the different branches, and the points of
inflexion if there be any.

v. Should the expression for for particular values of the

variables, become of the form L—), determine the nature of the

corresponding multiple points.

Note.— In some cases the character of a curve can be
discussed with greater facility when its equation is transformed
into polar coordinates. See the following Chapter.

x. Enrelopes.

(88.) Let the equation to & system or family of curves be
denoted by

where a is & variable parameter which is only constant for
each curve. For each specific value of a the equation will be
that of a determinate curve ; and when o varies continucusly
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t will determine a continuous succession of curves, the position
ind character of cach of which will differ but little from
that which precedes it.
Let
Uy= A2, y,0) =0,
U,=fls,y,a+da) =0,
U,=Axy a+ 2da) =0,

be three consecutive curves in this serics, and suppose P to be
a point in which the curves Uy and U, mutually intersect,
and P the corresponding point in which U, and U, interseet.
Then, since the two points P, 1¥ are both situated in the curve
U,, it is evident that the curve which is the locus of the
points P will have the element of its are, PI" =ds, co-
inciding with an cqual element of the curve U, Therefore
the curve traced by the intersection P will have contact with
the entire family of curves U, and it is hence called the
enrelope of the system.

The envelope to the family of curves U is therefore to be
found by determining the locus of the point of intersection of
two cousecutive curves taken indefinitely near to each other.
Let x, y be the coordinates of the point of intersection I';
then these coordinates will fulfil both of the equations U = 0,
U, = 0. Hence, in passing from U to U, the point P will
remain fixed and ouly a will vary, so that we must have

dU
*{E) = 0.
We have thus the two equations
- dU
U=0, —_—) =
(=)="

from which the variable parameter a being eliminated we shall
obtain an equation involving r and y, the coordinates of the
point P, which will be the equation to the envelope of the
proposed curves U.

- (89.) If the equation U = f(«, y, a) be of the first degroe
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in 7 and y, it will represent a system of straight lines; and if,
as the parameter a varies continuously, the variable line be
supposed to be in motion, the point P will obviously be the
centre of instantaneous rotation; and its locus will be that
curve to which the line is always a tangent. This may be
made apparent by conceiving the envelope or the curve which
is the locus of P to be represented by a rectilinear polygon of
an indefinite number of sides, each of these sides at the same
time representing an infinitesimal element ds of the curve.
The sides produced will represent tangents to the curve,
and the angular points will evidently be the intersections of
consecutive tangents.

This property of a curve being generated by the ultimate
intersections of a series of lines determined by a given law
may he further instanced in the evolute to a curve. Since,
art. (79), the normal drawn to s curve at any point is always
a tangent to the evolute, it is evident that the evolute will be
the envelope to all the normals, in the same way that a curve
is the envelope to all its tangents.

Erample 1.—F¥ind the envelope to the system of lines

determined by the equation T 4 g =1, where a and 8 are
a

variable parameters subject to the condition a8 = 4m?.
By differentiating the equations with respect to the para-
meters, we have

s
Bda + ad8 =0,

from which eliminsting da, d3, we get T = 5 = £, ora=2r,
a

8=12y. These substituted in a8 = 4m?, we have for the
envelope the equation sy = m3, which is that of & hyperbola
referred to its asymptotes.

Esample 2.—The equation to an ellipse being £ + %5 = 1,
that of the normal drawn through the point sy’ is, example
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art. (74), '-:,‘- - é:-!_—_ a?— 3?; determine the envelope to
y

all these normals.

The two variable parameters &', y' may be reduced to one
by making +' = 4 cos a, y = b sina; then, putting ¢?=a?—¢3,
we shall have

U=s— - = —¢'=0;
cosa sina

and, differentiating with respect to the variable parameter a,

dUy sina “cosa_o
@) Tt YT

-
From the latter equation, tana = — (é!) ; and by sub-
F

stituting the corresponding values of cosa, sina in U = 0 and
reducing we finally obtain

(ant + (6y)* = (c')*.
which is the evolute to the ellipse, and agrees with the result
before obtained in art, (80).
Erample 3.—The envelope to the system of straight lines

determined by the equation y =ar+ ™ is the parabola
a

y!=d4mz.

Example 4.—The envelope to the system of circles
(# —m —a)" + y? = dma is alsv the parabola y? = 4me.

Example 5.—1f a straight line whose length is ¢ slide with
its extremities upon the axes of coordinates, its variable cqua.
tion will be represented by —Z_ 4 ¥ |, and the

ccosa = csina
envelope, or curve to which the line is always a tangent, will
be the hypotrochoid &y yi= .

Esample 6.—The parabolas described by projectiles dis-
charged, in vacuo, from a given point with a given velocity are
included in the equation 4my=4mar — (1 +a')s%; and
the envelope to these is the parabola &% = Am(m—y).
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CHAPTER VIIL

FORMULZ FOR POLAR EQUATIONS, &C.

(90.) The system of representing positions by means of
coordinates relative to fixed axes gives the greatest facility
and the widest range to the applications of the analysis. 1Itis
on that account much employed in geometry, and almost
exclusively in physics, to which in nearly every branch of
inquiry it seems to be particularly adapted. In the geometry
of curve lines, however, it is sometimes convenient to in-
vestigate the propertics of certain curves from what is called
the polar equation, and which is especially applicable to
curves of the spirul kind.

A fixed indefinite right line Our, origi-
nating at O, is called the polar axis or
prime radius; the fixed point O is the
pole ot origin ; any right line OP drawn
from the pole O to a variable point P is
called the radius reetor to that point,
and its angle POx with the axis the polur angle.

The radius vector OP is denoted by r, and the polar angle
PO by 8, these evidently define the position of the point P,
which may be symbolically designated the point ré.

The polar equation to a curve expresses a relation between
r and 6, and is of the form

F(r, 8) =¢;
and, in most cases, r may be separated so as to give the
explicit form
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?and / in most cases involving the polar angle 4 under the
orm of trigonometrical functious.

The quantities 7, 8 being thus made subject to an equation,
ve shall have particular values of r for each successive value
if 8; and hence the point P becomes restricted to a particular
urve determined by the cquation.

The perpendicular OH from the pole upon the tangent
seing, as before, deuoted by p, the equation to a curve is
n some cases advantageously expressed in r and p.

(91.) Polar Equiralents.— By taking the axis of r for the
solar axis, and the origin of the rectangular coordinates for
he pole, we shall obviously have

F=rcosd, y=rsiné;
wnd hence also, by differentiation, .
ds = drcosd — rdédsiné,
dy = drsin@ + rdfcosé;
d% = d®rcosf — 2drdésind — rdé? cond — rd?@siné,
dy = d%rsind + 2drdfcosd — rdd?sind + rd?0 cosé.

These values substituted in any given formula involving
rectangular coordinates, will give the equivalent polar formula
B terms of r, 8 and their differentials.

The following relatious arc sometimes useful in dynamical
nvestigations :

dr cosd + dy siné = dr,
dy cosé — dr sind = rdé,
d’zcosd + dlysinb = dir —rdé?,
)
dy cos8 — drsind = rd% + 2drde = 29,
r

When 0 is taken as the independent variable, 4@ will be
sonstant, and the terms containing %6 will disappear.

(92.) Rectification. — Substituting the foregoing values of
Iz, dy in the equation ds® = dr® + dy?, we get

de? = dr? + r!da!’
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o de = \J(drS + r2deY),
and s =fdo:/( rd 4 ;—::)-

(93.) The value of ds may be immediately deduced from the
diagram. Thus if OP and OP be the radii vectores, sub-
tending the arc P P'=ds and containing the angle POP'=ds,
let Pin be a small arc described with the radius O P and
meeting OP' in m; then, when the elements are infinitesimal,
this small arc may be regarded as a right line perpendicular
to OF; also, we shall obviously have mP’ =dr, and Pm
=rdf;

. dad =PP i =mP’? + Pm® = dr? + r3d63.

Several of the subsequent formule may also be obtained
geometrically from the diagram, and the determination of
them in this way would form usctul exercises for the student.

(94.) Perpendicular on the Tangent.—The perpendicular
OH from the origin upon the tangent being denoted by p,
we have, art. (73),

_ ¥dy—ydr
PE—
By substituting the preceding polar equivalents, this gives

_rids_  rlds
=Gy = J(drd + r3de?)’

Cor.— Ifu= ; ; then dw = — :—z, and we obtain the neat
formula
1 du?
5= u? 4+ —dzg.

(95.) Sectorial Area.—Conceive two consecutive radii vec-
tores QP = », OP' = r + dr to be drawn, subtending the
clement PP’ = ds of the curve and coutaining the angle
POP = ds. The sectorial element thus formed by these,
radii vectores and ds may be considered as a plane triangle,
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and the perpendicular from the origin on the opposite side
ds produced will obriously be that on the tangent to the
curve. Therefore, p denoting this perpendicular, the area

of the sectorial element =2%%.  That is, denoting by S the

2
sectorial area of the curve estimated from a given radius
" L 0, p = T —yds _ ridd
vector, d5 = £, But, art. (9),p = === = =,

(96.) Inelination of the tangent with the radius vector.—

Let the angle OPT included by the tangent angd radius vector
be denoted by P; then by the diagram, -

., _OH _p,
. sin P = GP = ".'
a__ 0
- coaP= Y2 PD) N S
r V(ri=p?)
Substituting the value of p, art. (94), these become

sinP = rdg __rdd __
de  \/(dr® + ridg)
coaP =¥ = dr
T ds T J(drT 7 TdeYy
L
tan P = o
Cor.—Hence we obtain,

_ b _rar
TcoaP T J(ri5pY)
dr dr
= = .....‘E._,
dé " tan P r\/(r’:—;’")'
e _ __prar
2~ 2J(rt—p3)’
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which are here expressed in terms of the radius vector
and the perpendicular on the tangent. :
(97.) Tangent and Normal.— Let a

straight line NOT be drawn through "Q& »
the origin at right angles to the radius r
vector OP, and intersecting the tangent ‘

and normal in the points T and N.
This line we shall here designate the
relative aris to the point P. It is
evident that the positions of the tangent and normal with
respect to this axis will enable us to construet them geometri-
cally. The line PT is the polar tangent, PN is the polar
normal, OT is the polar subtangent, and ON is the polar sub-
normal. From the angle P, determined in the last article,
the values of ghese lines are immediately deduced as follows :

T

r rd rd:
PT = polar tangent = eyl —(‘,,T:"“yg)
PN = pol L ..
= polar norm '-smP-p—“’ ¢

pr__ _ r'd
OT = polar subtangent = rtan P = 7H—ph) pral
ON = polar subnormal = __r__P —;J("’— = =3

r2

OH=p=rsinP= —‘7‘:—0. .
OK=p =rcosP =+ (r?—p? = :;f'

(98.) Asymptotes.—If for any finite value of 8 the value of r
becomes infinite, the radius vector does not meet the curve
at any finite distance, and therefore it must be parallel to the
tangent which belongs to the eomsponding point at the infinite

distance. The polar subtangent OT = - wdl then become

identical with the perpendicular from the polc on the tangent, ‘
and if its value be finite, the tangent admits of being con-
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structed and is then an asymptote to the carve. If the polar
.subtangent = 0, the asymptote passes through the pole and
coincides with the radius vector: but if the value of the polar
subtangent be infinite, the tangent, being at an infinite distance
from the pole, is not an asymptote.

If the diagram be conceived to be turned round into such a
position that the radius vector shall proceed from the paole
towards the right hand, the rule of signs to be observed in the
construction will be simply as follows: If the value of the

polar subtangent OT = %d__d be positive, it must be measured

downwards, and if it be negatire, it must be measured upwards;
then the right line drawn through the point T paralle] to the
radius vector, will be the required asymptote.

(99.) A polar curve may have a circular asymptote. If,
when the value of the polar angle 8 is supposed to proceed
positively or negatively to infinity, the point P recedes from
the pole until the radius vector ul(in’mu-ly attains, as a
superior limit, the finite value a; then a circle whose centre is
the pole O and radius a will evidently be an exterior asym-
ptotic circle. But if the point P approaches the pole, until the
radius vector reaches as an inferior limit the finite value a, the
circle will be &u ruterior asymptotic circle.

(100.) Cirele of Curcature.—The value of the radius of
curvature obtained by general differentiation, art. (77), is

ds’
t dydte _drdiy’
But, using the polar equisalents, art. (91), we have
dyd’s - drdy =
dr(d*s sin 8—dy coef) + rdé (d%s cosd + d% sind)
= —dr(2drdd + rd%) + rdé (&®r—rde?)
= —dB(r'do® + 2dr'—rd%) —rdrd’s;
X
T B (r'de® + 2T —rd%r) ¥ rdrdie’

=

e p
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By taking 4 as the independent variable,
de? (dr + ridony¥
P= BT T 2dr—rdr) — (R + 2d i —rdr)’

which will be positive when the convexity is downwards, and
negative when it is upwards.

x| 2dud
Ifyu = ;_- thenr—-, dr =— -g, dr = — )
and the expression for p r to the convenient form
dut\¥ 1 dut\§
(" + dog) - (] +Iﬁ'¢m)
- d -
(v H) “t

(101.) The value of the radius of curvature in terms of r
and p may be found as follows :

Referring to the diagram, we have the angle OPI =P,
POI=6,and PID=0w; .0 =P + 6, and do = dP + dé.
But from the values of sin P, cos P, art. (96), we deduce

_ dsinP _ rdp —pdr
cas P T or\/(ri-p?)
Also, art. (96),
pdr
= e Spy’
dp
do = :/(r’-— ;;g)'

rdr

T Ve -pY

; and d8 =

Hence, art. (78),
=
PEde™ 4"
This neat relation may be verified by substituting for dp
ridg
the differential of the expression p = T ey The
result will be found to correspond with the value before
obtained.
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Eramples.

\ N
™ 1. In the lemniscate r’=¢’00020,p=%..

1 4 0yt
2, In the spiral of Archimedes r = a6, p = i%;;%), .

3 t) *
3. Tn the reciprocal spinad =2, p= "2 £70]

2
4. Intheu!dioidr=u(l—cosd),p=§\/2",
5. In the logarithmic spiral p = mr, p = -'E

L
6. In the epicyeloid p? = (;::—:-521

2 __ a2 ] —
» =”€‘c‘*"“ = VE = =

(102)) Chord of Curvature.— The portion of the radius
yvector, produced if necessary, intercepted by the circle of
curvature, is called the ckord of curvature. As this chord
cvidently subtends an angle, at the centre of the circle, equal
to 2P, its value is

2
Chord of Curvature = 2psin P = 2re = :?1’-'
r dp

Example 1.—In the lemniscate r% = a* cos 24, the chord of
curvature = § r.

Ezample 2.—In the cardioid r = a(1 — cos 8), the chord of
curvature = 28 r.

(103.) Erolute and Involute.—The radius of curvature
coincides with the normal and tonches the evolute, art. (79).
Let r, = OR, p,= OK be the radius vector and perpendicular
on the tangent which belong to the evolufe at the point of

contact. By referring to the figure, page 148, it will be seen
that p and p, constitute a rectangle HOK P with the tangent
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and normal to the curve ; also that OK3=HP3=0P*~OH?
and OR? = RK? + OK?, that is
pi=r—ph
rP=Gp—p?+p}
=G-pr+ri—p?
= p’ —2pp + 3,
The value of p = %;1 being previously determined, we can

usually by means of these two equations and the equation of
the curve f(r, p) = 0, eliminate r and p, and so obtain the
equation of the evolute in r, and p,.

Lrample 1.—The evolute to the logarithmic spiral p = mr
is a similar logarithmic spiral p, = mr,.

3(y2 ¥
Erample 2.—The evolute to the epicycloid p? = %'2_.'_' 3_)
2 —a
4
er(re - (—':3)
is another epicycloid pf = "“cA"»:-“B’;M .

(104.) The value of the radius of curvature may be simply

deduced from the equation
riP=p—2pp +rt
" Since, when we proceed to a consecutive point in the curve,
OR = r, and PR = p, which have reference to the pole O and
the intersection R of consecutive normals, do not change, we
may differentiate with respect to r and p only, which gives
—2pdp 4 2rdr=0, .. p= ’7‘;;.

(103.) Let ¥, p' be the radius veetor and perpendicular on
the tangent which belong to an inrolute of the curve. As the
surve is its evolute, we have from the forcgoing equations,

substituting %‘}:} for ¢/,
pr=ri—p?
) [
e e
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The values of p and r given by these equations being
seubstituted in the equation of the curve, we shall find an
equation involving ¥, p' and their differentials. If it can be
integrated, the equation of the involutes of the curve will
thence be found.

(106.) With respect to the evolute, let p, be the radius
of curvature at the point R, ds, the clement of the arc, and o,
the inclination of the tangent RP with the polar axis. Then

-,=-+;‘ndd‘,=dl’i

ds
P=
_ds, _dp _d%
P o, = de T T

the differentiations being with respect to e as the independent
variable.

* These formulee are useful if s or p can be expressed as a
function of @, or when a curve can be reduced to an equation
of the form F(s, ») = 0, or f(p, ») = 0. Thus in the example
of the cycloid, page 124, we have

cos —d’—\/}—.
@ = = 2d'

Sep= g—;’: =d4acose = — dasine,;
and the two equations p =4asine, and p,= — 4asine,
which determine the respective curves, show that the evolute
to the cycloid is an equal cycloid placed in an inverted
position.
(107.) Positions of Conrexity and Points of Inflesion.—
When p is constant or dp = 0, the curve becomes a straight

® It may here be suggested that a curve may be determined by an
equation between any two, or more, of the quantities r, 6,p, w, p, 3, snd
Mlnpﬂkﬂumtbenmew;-tmndthcmmdnmmy
be greatly simplified by an appropriate
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line and therefore has no convexity. On examining the
disgram it is evident that if a curve is concave towards the
pole, r and p will either both increase or both decrease, and

therefore %’.’ will be positive; and if the curve is convex
r
towards the pole, r and p will one of them decrease when the

other increases, so that :’.l’_' will be negative.
r

Hence, we have this rule: If

dp . [ positive . [ concave
I 0 { negativc} the curve is { } towards the pole.

convex

When gB changes sign by passing through 0 or (-l) the
r

direction of curvature will become reversed, and this will
indicate a point of inflerion.

(108.) lLocus of the point where the perpendicular meets the
tangent.—Let it be required to find the equation to the curve
which is the locus of the point H, where the perpendicular
from the pole intersccts the tangent. Denote the radins
vector O of this curve by r,, and the corresponding polar
angle and perpendicular upon the tangent by 8 and p,. Then
we shall have p = r, and, since O H is perpendicular to P H,
the angle between two consecutive positions of OH will be
equal to that between corresponding positions of the tangent
PII; that is, d6, = dw. But, art. (101),
dp dr,

STEGY T vie-ny
= __.l.i’r U H
Ind, art. (96). d&u r"\/(r"—_lp"‘.s) H
. - P. =rd
CTE=ED S R i T
Hence, if the polar cquation to the given curve be /'(p, r)
= 0, that of the locus of H will bej(r“, '):o. being ob-

T
P“
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tained by simply substituting the values p =r,, r=;,4': in the
"
given equation.
Exomple 1.—In the case of the logarithmic spiral, the locus
of the point H is an equal and similar logarithmic spiral.
Erample 2.—In the case of the rectangular hyperbola, the
locus is a lemniscate.

The preceding articles present a complete digest of the
most useful formule which relate to curves referred to polar
coordinates, and by them we are enabled to trace and discuss
all the peculiarities and properties of curves from their polar
equations.

(109.) For convenience of reference, we shall here collect
together the equations of the principal known curves ; and we
shall then conclude with some general theorems, which have
been deferred for insertion at the end of the volume.

1. The Parabola; referred to its vertex and axis, y2 = 4ma; the focus

being the pole, the polar equation is r = Lor p?w mr.

1+ cosé
2. The Ellipse ; referred to its centre and principal axes, the equation

2

is :-'-4» -‘é 1; when the centre is the pole, the polar equation is
1-¢

r’--’(i:}f;&,-a); and, when the focus is the pole, it is

ra B0 a1 Al
Tvecone 7 b 2a—¢ where ¢ a
3. The Hyperbola. — Referred to its centre and principal axes, the
a a1
equation is —; — 5 = 1; when the centre is the pole, r* = c’l g P8

. alP~1) r
and when the focus is the pole, r = Toroy or pm b A/ rrerard
where ¢ = Ji‘—’;tﬂ - The hyperbola has two asymptotes.

4. The Equilateral Hyperbola, when referred to its asymptotes, bas for its

a® o
-al: -t -—
equation 2sy = a?; and the polar equation is * 75 P =
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The Cycloid.—Referred to its vertex and axis, the equation is
y = V(2axr—2a%) + avm-lg,
which may be otherwise stated x = a(l —cosg), y = a(¢ + sing).
6. The Catenary.— Referred to a point at the distance ¢ below the
lowest point of the curve, with the axis of & horizontal ; its equation is
r x

y-% (e" + e—E); and the radius o!curm.uup--—%’heqmltothe
normal, but drawn in the opposite direction.

xr
7. The Logarithmic Curve.—Its cquation is y = ce®; the subtangent
= a is constant, and the negative axis of x is an asymptote.

]
8. The Cissoid of Diocles.— Its equation is y* = —-f— ; the ong'm isa

cusp of the first kind, and the curve has evxdently an uymptote perpen-
dicular to the axis of z at the distance x = 2a.

9. The Conchoid of Nicomedes.—Its equation is 2%y? = (a*—y%)(b + y)?;
the axis of y contains a double point, and the axis of x is an asymptote.

10. The Lemniscate of Bernoulli. — Its form resembles the symbol w,
and, referred to its centre or double point, the equation is

3
(2% + ¥°)* = a®(a® —y*); or r¥ = a*co826, orp = :—;-
11. The Witch of Agnesi.— Referred to its vertex, the equation is
a'r . NP ) a a
P -;—_—_%; it has inflexions at the points x = ik Al + -:/-—_. and an
asymptote perpendicular to the axis at the distance » = a.
12. The Spiral of Archimedes.— The polar equation is
K}
r=aé, orp= m‘
13. The Reciprocal Spiral.—Its polar equation is
ar
@y

14. The Logarithmic Spiral—Its polar equation is r = af; or p = mr;
the curve intersects its radius vector at a constant angle P ; and its evolute
and involute are spirals equal to the original one.

15. The Cardioid.—1ts polar equation is r = a (1 — cos 8) or 12 = 2ap*;
the origin is & cusp of the first kind, and its evolute is another cardioid ;
also the lines drawn through the pole, and intercepted by the curve, are
all of the same length 2a.

16. Quadratrix of Di Its equation is y = wtan ——*

r a or
v Ty

r(c .r)
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and it has an iofinite ber of asywp perpendicular to the axis

2
of & m..,.,..o.,no xo--—:-«

17. Quadretrix of Tschimh —Its equati ily-uin%.mdit

has inflexions at the points where y = 0.
18. Companion (o the Cycloid: x = a(l—cos¢), y = a¢.
19. Trockoid; x = a(l—ncosd), y = a(¢p—nsing).

20. Epitrochoid ; & = (a + b) cosep — hco.(a+b)0.

v = (a + b)sing —Asin (" ;")q,.

21. When A =, this becomes the Epicyéloid ; and when also a = §, it
becomes the Cardioid.

22. Hypotrochoid; x = (a~b)cos¢ + Iocoa( ) *
g = (a—b)sin p— Asin (“—;—‘)w
23. When A = b, this becomes the Hypocyeloid ; when b = ; it gives
.r"+ y‘ -a'; and when & = g, it hecomes an Ellipse.

3
24. The Lituus.—Its polar equation is y2= %.

Euler's Theorems on Homogeneous Functiona.
(110.) If v = f(x, y, =, &c.) be a homogencous function of
» dimensions and of any number of variables ; then

du du du
:(—[)+y(@)+:(£>+&c. = ny,
d%u d%u d?u
2 2 — — :
z (‘7) +y dy2)+ ..... +2.ry( 7 dy) + &c.

s ds a3
,:(:T:) +y3(#)+.. .. .+3:’y(m};—~y) + &c.

=a(n—=1)(n—2)u,
&c. &ec. &c.
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Since the function u is homogeneous and » is the sum of
the exponents of the variables in each term, if for z, y, z, &c.
there be substituted (1 + o)z, (1 + a)y, (1 + a)z, &c. it is
evident that the value of v will become (1 + a)*u; that is

1+ a)*e = f(z + az, y + ay, 2 + az, &c.)

The first of these being expanded by the binomial theorem,
and the second by the formula of art. (47), by equating the
coefficients of the like powers of the arbitrary quantity a, we
obtain the elegant relations stated in the theorems.

Laplace’s Theorem.

(111.) If y = f(z + £¢y), in which y is an implicit fune-
tion of two variables r and z depending on the forms of the
functions characterized by f and ¢; then the development of
any other function Fy may be obtained from the following
general theorem :

d. Ffz d.Ffz

Fy=Ffs+" @] +

+ {2 Ff’w 2o

= fdFfs
+ i e W9 }1.2.... + &e.

3
@}

By considering u = Fy as a function of = its expansion in
powers of z, art. (46), is

& [(du 23 (diu 3
"’"°+i(zo+i.—z(d.r=)o+ 193 d43)+&c -@

where the values of u, and the differential coefficients, as
indicated, are to be taken when £ = 0. For the investigation
of the proposed theorem it will therefore only be requisite to
determine the values of these coefficients. Let

B8=12+2¢y;
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then y=/8=/f(s + s¢y). By differentiating first with
mpect to « and then with respect to z, we have

, dl d,
(s e

d.t
dy _ g l_!!;_l) g ﬂ!—._._L
a=(revg)rs o =

dy _dy
Tz

This equation being independent of the form of the function
y =3 must evidently be true if y be replaced by any function
of 8 or by any function of y. Substituting therefore ¥ = Fy,
we get

Again, since u is a function of y, which is a function of two
variables r and z, we have, art. (37) and this equation (1),

du_ddigy_ddiy _dfdg,0]

dz dz dz dr
dv _ d ddu(¢y)?® _ & du(¢y)® _ { (¢)}

ds’ ~ dids d:  dff dr

(3
&e. &e. &e.
dw _ d dt du(gpy)t _ dh du(gy)n?
d;l dr dzn-2 dz a:t—:‘ dr
dnl "
=22 {Z gy} o,

In deducing the values of the differentinl coefficients when
=0 we may obviously make r =0 before differentiating ;
that is, we may at once use v, = Fy, = Ffz, and $y,= ¢fs.
Thus we find,
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u, = Ffz,
( d F fz @/f2),

)]

(8-l 3.
&ec.

(dnu) P { d.Ffz (¢f-’)'}

and by substituting these values in

_ +:z_-(rlu) ._ri (_{E_u)_'_ 28 dsu &
v=nt+ti\&)tT 12\ T 1 &e

we obtain the theorem stated.

Lagrange's Theorem.
(112) If y = ¢ + r¢y, where ¢y denotes a given func-
tion; then the development of another function Fy in ascend-
ing powers of x will be

ry=Fr+ LF @1 LR gy} 2
d’ d Fz 3
t@la ¢ e
dvt fd.Fe,, | =
.............. +7:—":I{T(¢Z) }m+&c.

This is a case of Laplace’s more general theorem, from
which it immediately follows on making fs =¢; and when
¢ =1, it becomes Taylor’s theorem.

Hughes, Printer, King’s Head Court, Gough Bquare.






























