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Many researchers presume greater variability between
female participants than between males due to the
menstrual cycle. This view has encouraged a sex bias in
health and medical research, resulting in considerable
knowledge gaps with important clinical implications. Yet in
another field—evolutionary biology—the received wisdom
is the reverse: that men are more variable, possibly due to
male heterogamety. To test these competing hypotheses, we
compared variance between the sexes for 50 morphological
and physiological traits, analysing data from the NHANES
database. Nearly half the traits did not exhibit sexual
dimorphism in variation, while 18 exhibited greater female
variation (GFV), indicating GFV does not dominate human
characteristics. Only eight traits exhibited greater male
variation (GMV), indicating GMV also does not dominate,
and in turn offering scant support for the heterogamety
hypothesis. When our analysis was filtered to include only
women with regular menstrual cycles (and men of
equivalent age), the number of traits with GFV and GMV
were low and not statistically different, suggesting that the
menstrual cycle does not typically explain GFV when it
occurs. In practical terms, health and medical researchers
should no longer simply assume that female participants
will induce additional variation in the traits of interest.
1. Introduction
Human beings vary from one another in every characteristic
imaginable—an obvious yet intriguing aspect of the human
condition. The earliest statistical analyses of human variation
were conducted by Karl Pearson on measurements of various
body parts, where for the first time he deployed his now
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famous Pearson coefficient of variation [1]. In his report, he tentatively concluded ‘a slightly greater

female variability’, i.e. that if anything body shape varies slightly more between women than between
men. Shortly afterwards, Leta Hollingworth garnered morphological measurements for 1000 male and
1000 female new-borns in New York; taking advantage of Pearson’s statistical approach, she observed
some traits varying more in little boys, some traits varying more in little girls, and other traits
showing no sexual dimorphism in variability [2; their table N].

Within many fields today, including medical and physiological, it is typically assumed that inter-
individual variation between females is greater than between males due to the hormonal fluctuations
that occur across the menstrual cycle [3–5]. This supposed additional variation is believed to
complicate research designs and decrease statistical power [6], and is commonly deployed as
justification for excluding women from health and medical studies. By contrast, men are asserted to
be more physiologically consistent over time—a simpler model that induces less irksome variability
into a study. Consequently, the literature is based predominantly on measurements taken from men
[7–9]. This disparity has created crucial knowledge gaps even within extensively researched clinical
areas [10]. For example, there are well-documented misdiagnoses and inadequate treatment
prescriptions for women [11–13], and many approved drugs have subsequently been found to have
more adverse effects on women [10,14–16].

Many researchers within the health and medical fields will be unaware that an opposing hypothesis
related to sex differences in variability exists within the field of evolutionary biology—a hypothesis
that has been around since the time of Darwin and Wallace, and purports that in fact it is males who
display greater variability. And, greater male variability (GMV) in humans has been reported a
number of times using modern analyses of relatively large sample sizes, including for birth weight,
adult weight and height, body mass index and brain structure [17–20]. Many cognitive traits also
demonstrate GMV, including creativity [21,22], general knowledge [23], time, risk and social
preferences [24] and various intellectual faculties [25–33] (cf. [23]). Several explanations for GMV have
been proposed and explored. One is that the stronger sexual selection experienced by males results in
sexual traits exhibiting greater inter-individual variance among males than among females [34,35];
see [36] for a detailed explanation. Another is heterogamety—the occurrence of homogametic sex
chromosomes in females and heterogametic sex chromosomes in males [37], resulting in the
expectation that recessive X-chromosome genes will be expressed in males more frequently or strongly
than in females [38].

However, there is evidence that conflicts with the claim in some fields of the predominance of GMV.
Of 31 blood parameters, Lehre et al. [17] observed that 13 exhibit GMV while seven exhibit greater
female variation (GFV), and 11 exhibit neither GMV nor GFV. In mice, Zajitschek et al. [39] tested
the variation of a gamut of diverse traits and in summary found that while morphological traits
typically exhibit GMV, no other trait categories do, while immunological traits and eye function traits
generally exhibit GFV. They suggest the aforementioned mechanisms as possible explanations for this
GMV and GFV.

There is, then, far from a consensus on whether it is men or women who display more inter-
individual variability, and under what circumstances. And this is not just a question of biological
interest but also has practical relevance. There are clinical implications of the putative presence of
GMV or GFV because appropriate diagnosis and treatment not only depend on understanding the
magnitude of relevant trait differences between the sexes but also the extent of variation in those
traits between individuals. Understanding inter-individual variability in men compared to women
requires large, robust sample sizes for a diversity of trait types. The National Health and Nutrition
Examination Survey (NHANES) is an ideal resource for this objective. This survey is described as ‘a
program of studies designed to assess the health and nutritional status of adults and children in the
United States’ (https://www.cdc.gov/nchs/nhanes/about_nhanes.htm). Each year, through this
survey, NHANES records a plethora of health and nutrition data for citizens around the USA, with all
measurements being archived and made freely available online. We took advantage of this extensive
database to study and compare the degree of variation between men and women in characteristics
including body morphometrics, blood counts, basic cardiovascular function and biochemistry profiles.
This enabled us to assess the degree of evidence, based on the NHANES data, for the competing
hypotheses that GMV predominates (due to heterogamety or stronger sexual selection in males)
versus that GFV predominates (due to hormonal and physiological effects of the menstrual cycle) in
human non-cognitive traits. This study is the most extensive investigation to date into the nature and
prevalence of human sexual dimorphism in variation of non-cognitive traits, in terms of the number
of traits considered and the sample sizes assessed.

https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
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2. Methods

TheNHANES survey recruits participants through invitation only, based on random selection by applying
a statistical process that uses USA census information. We downloaded and combined NHANES data for
2009–2020, for variables hereby categorized into functional groups following the NHANES nomenclature
as: body morphometrics, cardiovascular function, blood counts, biochemistry profiles and daily energy
intake. These variables can be accessed through their corresponding NHANES data subsections, i.e.
‘Examination Data’ for body morphometrics and cardiovascular function; ‘Laboratory Data’ for blood
counts and biochemistry profiles; and ‘Dietary Data’ for daily energy intake. Our aim was to explore a
range of traits, to identify whether GMV or GFV broadly dominate. To achieve this, we randomly
selected from those traits available that were (a) quantitative rather than qualitative and (b) had been
collected for many years with a consistent method according to the NHANES accompanying
information. Fifty variables were selected to ensure that this initial analysis of the NHANES dataset for
sexual dimorphism in inter-individual trait variability was both robust and manageable. We derived
two variables from downloaded variables: mean total leg mass was calculated as the average of left and
right total leg masses, while daily energy intake was calculated as the average of the two one-day intake
values that were available. We also downloaded demographic data on age and sex. Once the data for
children (less than 18 years old) were removed, the dataset comprised 33 338 individuals (16 163 men
and 17 175 women). The distribution of ages for the two sexes was very similar (men: mean 49.2 ± s.d.
18.3; women: 49.0 ± 18.1). A small percentage of data points (always less than 2%) were missing for each
of the variables within the years that those data were reported. Sample sizes per variable are provided
in the results. We undertook all analyses of these data in R v. 3.5.3.

Weighting must be applied to account for the complex survey design used by NHANES along with
survey non-response, differential probabilities of selection for the sampling domains, post-stratification
adjustment and any differences between the final sample distribution from the target population
distribution. In our analysis, we used the sample weights calculated and provided by NHANES,
adjusted to accommodate our multi-cycle analysis. These sample weights were then applied using the
survey() package [40]. This weighting is a measure of the number of people in the population
represented by that sample person, having accounted for the oversampling of some demographics and
non-responses, so that the produced estimates and analysis from the data are representative of the
civilian, non-institutionalized US population. We then disaggregated the data into men and women.
Coefficients of variance were calculated for each variable, per sex. The natural log of the ratio of the male
to female coefficients of variance was computed to provide an unbiased ratio of GMV or GFV in the
sample—natural log ratios greater than 0 indicated GMV within the sample and values less than 0
indicated GFV. To determine whether the degree of GMV or GFV observed in the sample is statistically
significant, the difference in the coefficient of variance for males and for females was calculated and the
boot() package [41] was then used to generate associated 95% confidence intervals around that
difference. The bootstrap method generates confidence intervals around estimates by using a resampling
with replacement technique, in which n observations are drawn i times (i = 1000 in this case) and the
statistic of interest (coefficient of variance) is calculated every iteration. These multiple calculated
statistics form a new distribution, from which the 95% confidence interval is derived by selecting the
2.5th and 97.5th percentiles [42]. When those confidence intervals do not encompass 0, the associated p-
value < 0.05.

We then reran the analyses to investigate if and how the results differed when women were
represented by only those self-identifying as having regular periods (and thus not perimenopausal,
menopausal or post-menopausal). This was achieved by sub-setting the dataset by answers to the
NHANES reproductive health question entitled ‘had regular periods in past 12 months’. After this
disaggregation, all men and remaining women more than 50 years of age were removed from the
dataset to minimize a potentially confounding influence of age. We then equalized the sample sizes of
the men and women by randomly sub-sampling the men to a number equal to that of the (smaller)
number of women (n = 4118 in each group). The distribution of ages for the two sexes was very
similar (men: mean 33.6 ± s.d. 9.1; women: 33.1 ± 8.8). Although the sample size was still large, it was
considerably reduced from the sample size for the entire dataset. To account for this, specifically for
comparison against the subset of data including only women who were having regular periods, a
dataset of equivalent sample size was generated by randomly sub-sampling the full dataset.

Significant differences in the number of traits presenting with GMV versus GFV were tested for with
χ2 goodness-of-fit tests, where expected values were set as 50% of the total number of traits exhibiting
GMV or GFV.
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Figure 1. The magnitudes of variation within all men (open green-blue circles) and within all women (open red circles) in the
dataset for morphometric and physiological traits, and also daily energy intake, are scaled against the left-hand y-axis. The natural
log values of the ratio of those variations for males and females are scaled against the right-hand y-axis ( filled circles: green-blue,
greater male variation; red, greater female variation; black, neither). The left y-axis is truncated at 30 so that differences in the
coefficient of variance between males and females can be clearly viewed for most traits; however, one or both values for total
fat, lean mass, mean leg lean mass, RBC width, GGT, triglycerides and daily energy intake is not plotted in the figure. Note
that visually indiscernible differences in the variation of a trait between men and women nonetheless can sometimes be
accompanied by a statistically significant greater male or female variation due to real differences in the degree of variation
between the sexes coupled with relatively small 95% confidence intervals, an example of this being mean cell volume. The pie
chart summarizes the proportions of traits presenting with GMV, GFV and neither. See table 1 for acronym definitions.
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3. Results
Of the 50 traits we analysed, for the full dataset of 33 338 people (i.e. including men and women of all
observed ages), eight statistically significantly presented with GMV, 18 with GFV and 24 with neither
(table 1 and figure 1). Thus neither GMV nor GFV predominate in these traits; however, there is a
statistically significantly higher frequency of GFV than GMV (χ2 = 3.85, p = 0.050). GFV was also
present at a higher frequency than GMV in the body morphometrics trait group—there was GFV in
seven traits while GMV was not present in any of them (χ2 = 7.00, p = 0.008). There were no
differences in the frequencies of GFV and GMV for either of the trait groups blood count (2 versus 2;
χ2 = 0, p = 1) and biochemistry profile (7 versus 4; χ2 = 0.818, p = 0.366); only three traits represent the
group cardiovascular function so this group was not statistically analysed.

The randomly selected subset presented five traits with GMV, 14 with GFV and 31 with neither, again
representing a statistically significantly higher frequency of GFV than GMV (χ2 = 4.26, p = 0.039), whereas
the reduced dataset restricted to under 50-year-olds and women with a regular menstrual cycle presented
10 traits with GMV, 14 with GFV and 26 with neither, representing a statistically non-significant
difference in frequencies of GFV and GMV (χ2 = 0.67, p = 0.414) (electronic supplementary material,
figure S1).
4. Discussion
Evolutionary biologists have debated the prevalence of GMV for well over a century [36,43–45],
arguing it is caused by heterogamety or high genetic variance in male sexually selected traits. In stark
contrast, the medical and physiological literature leans towards a received wisdom of GFV, typically
based on the suggestion that the menstrual cycle induces additional variability in labile traits. Which
is true? Is it the case that human characteristics predominantly exhibit with GMV, or with GFV, or
neither?

GFV is present in 18 of the traits we analysed—a minority of them. GMV is present in fewer—only
eight of the traits (figure 1 and table 1). Moreover, GMV is not present in any morphological
characteristics, which researchers often report as showing greater variation in males [17,37,39]. So both
GMV and GFV are exhibited in only a minority of all the traits measured. Indeed, nearly half of
characteristics do not differ in degree of inter-individual variability between the sexes. Therefore, our
analysis of over 30 000 adult individuals has put to rest the idea that either GMV or GFV is anywhere
near ubiquitous, at least within the functional groups of traits that we investigated.
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However, the greater presence of GFV than GMV is statistically significant. Could this be explained

by the hypothesis that hormonal fluctuations throughout the menstrual cycle increase female variability
and thus inter-individual variability? We re-ran the dataset with women represented only by those who
were experiencing regular menstrual cycles and thus subject to the hormonal fluctuations that
characterize a eumenorrheic cycle (electronic supplementary material, figure S1) and men of the same
age, and compared this to a randomly selected subset of data of the same size from the full dataset.
The randomly selected subset shows 14 traits presenting with GFV and five with GMV—both slightly
lower absolute counts than present in the full dataset (explainable by the reduction in sample size).
The subset represented by women with regular menstrual cycles again shows 14 traits presenting
with GFV. Moreover, a number of the traits exhibiting GFV are morphometric (e.g. weight and arm
circumference), considered not to be labile at least in the short term and thus not to have the potential
to be affected by the menstrual cycle. Thus, there is no evidence from our analyses that GFV is driven
by effects of the menstrual cycle.

With regards the albeit rather limited presence of GMV, we can test the hypothesis that it is
exhibited in male sexually selected traits (due to high genetic variance), by investigating whether the
traits considered most obviously to contribute to male reproductive success in the available dataset
tend to be those (relatively few) that exhibit GMV. Lean muscle mass is a particularly interesting
trait to consider in this regard, as greater muscle mass is purported to promote mating opportunities
[46]. The traits associated with muscle (total lean mass, leg lean mass, and serum creatinine which
positively associates with muscle mass) do not indicate GMV. Instead, the first two traits exhibit GFV,
while serum creatinine does not exhibit sexual dimorphism in variation in either direction. Moreover,
traits directly associated with body fat, which might be considered to underpin some female sexual
characteristics—weight, waist circumference, BMI and total fat—all also exhibited GFV. In fact, over
half of the morphological characteristics analysed presented with GFV—a surprising result that, as far
as we are aware, has not previously been reported and is worthy of further investigation. Thus not
only have we found the prevalence of GMV to be low but we find no suggestion that when it occurs
it is driven by the riskier development of male sexual characteristics.

We note, though, that GMV is clearly present in daily energy intake, which reaffirms the strong
GMV in daily energy expenditure reported in [47] given that energy intake usually matches energy
expenditure over time [48,49]. As discussed in Halsey et al. [47], this GMV in energetics could be the
result of GMV in a number of traits that drive metabolic rate, from organ size to activity levels.
5. Summary and conclusion
GFV driven by the menstrual cycle and GMV driven by heterogamety or sexual selection of male traits
are diametrically opposed competing hypotheses about trait variability. Our data indicate that neither
GFV nor GMV are anywhere close to dominating human characteristics, contra to some expectations
in the fields of medicine and evolutionary biology, respectively. Indeed, nearly half of the traits we
analysed exhibit no statistically significant difference in variability between men and women despite
our very large sample sizes. And, while GFV was present in a number of traits, we found no
evidence that this is in general due to the menstrual cycle. Research designs should no longer assume
that women, or men, are likely to vary more in the characteristics to be measured, without direct prior
evidence (the present study clearly provides this for some traits). This approach should further
progress greater female participation in medical and clinical research. We hope that the exploratory
study we report here catalyses further work into human variation and how it associates with sex and
other factors in the pursuit of better understanding human diversity.
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