UNCLASSIFIED
security clássification of tinis page

Approved for public release; distribution is unlimited.
AEW Aircraft Design
by
Michael J. Wagner
Lieutenant Commander, United States Navy B.S., La Salle College

Submitted in partial fullfillment
of the requirements for the degree of
MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING
from the
NAVAL POSTGRADUATE SCHOOL
December, 1992

ABSTRACT

The aging E-2C fleet is expected to be retired by the year 2015. In order to provide Airborne Early Warning (AEW) for the battle group during the transitional years and beyond, the design of a replacement aircraft must begin soon. In order to conform with present day economic realities, one possible configuration is a new airframe using the radar system and rotodome which currently operates on the E-2C. Other likely requirements for a new AEW aırcraft includes a high-speed dash ($M=0.7-0.85$) capability, an extended mission time (up to 7.5 hours), turbofan engines, and an aircrew ejection system.

The results of this design effort includes an investigation of a possible configuration and the aerodynamics involved. Performance and Stability \& Control characteristics are also discussed briefly. Finally, a qualitative analysis of the use of the E-2C's radar system on a new airframe will be presented.

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BACKGROUND 1

1. Proposed Request For Proposal 1
2. AEW Mission Profile 2
B. DESIGN STRATEGY 5
II. PRE-DESIGN ANALYSIS 7
A. QUALITY FUNCTION DEPLOYMENT (QFD) 7
B. CONSTRAINT ANALYSIS 13
III. AEW CONFIGURATION 17
A. AIRCRAFT DESCRIPTION 17
3. Introduction 17
4. General 17
5. Specific Component Description 19
a. Engines 19
b. Vertical Tail 21
c. Aircraft Entry 21
d. Wing Fold System 22
e. Armament 22
f. Landing Gear 23
g. Escape System 23
B. WEIGHTS, CENTER OF GRAVITY, AND MOMENTS OF INERTIA 26
6. Weights 26
7. Center of Gravity and Moment of Inertia 27
C. CARRIER SUITABILITY REQUIREMENTS 27
IV. AERODYNAMICS 29
A. AIRFOIL SELECTION 29
B. PLANFORM DESIGN 33
C. LIFT CURVE SLOPE 35
D. HIGH LIFT DEVICES 35
E. PARASITIC DRAG CALCULATION 36
F. DRAG POLAR 37
v. PERFORMANCE 38
A. Takeoff and Landing 38
B. Thrust Required 40
C. Power Required and Power Available 41
D. Climb Performance 44
E. Range and Endurance 45
F. ACCURACY OF PERFORMANCE ANALYSIS 47
VI. STABILITY AND CONTROL 49
A. STABILITY AND CONTROL DERIVATIVES 49
B. DYNAMIC ANALYSIS 50
C. ACCURACY OF STABILITY AND CONTROL ANALYSIS 53
VII. CONCLUSIONS 55
A. ACCURACY 55
B. EXISTING ROTODOME/AVIONICS 55
C. SUPERCRITICAL AIRFOIL 56
D. POSSIBLE PROBLEM AREAS 56
8. Escape System 56
9. Divergent Drag Mach Number (Mdd) 57
10. Horizontal Tail Effectiveness 57
11. Wingfold System 57
E. RECOMMENDATIONS 58
APPENDIX A 61
APPENDIX B 65
APPENDIX C 69
APPENDIX D 70
APPENDIX E 74
APPENDIX F 86
APPENDIX G 87
APPENDIX H 90
APPENDIX I 94
APPENDIX J 100
REFERENCES 103
INITIAL DISTRIBUTION LIST 106

I. INTRODUCTION

The purpose of this thesis is to provide an initial conceptual design for a carrier-based Airborne Early Warning (AEW) aircraft that would replace the E-2C. The AEW aircraft design is in response to a Proposed Request For Proposal (Proposed RFP), which is based on the perceived need to replace the E-2C. The Proposed RFP was prepared by C.F. Newberry after informal discussions with several individuals including students, Naval Air Systems Command (NAVAIRSYSCOM) staff, and other members of the E-2C community. It is not an official document, but rather a general guideline for an AEW design. The Proposed RFP is included as Appendix A. This chapter will provide some introductory material necessary to understanding the issues involved in designing any generic AEW aircraft. A description of a generic AEW mission profile will be discussed. Additionally, a brief description of the method of design will be presented.

A. BACKGROUND

1. Proposed Request For Proposal

With an increasingly aging E-2C fleet, the Navy has recently recognized the need for a replacement AEW aircraft. In accordance with present economic realities, the first objective is to provide a capable platform that is cost effective. A "low risk airframe configuration" is most desired. A low
risk detection system is also desired. In order to satisfy the above objectives, a Proposed RFP requirement is to include the existing 24 -foot rotodome currently being used on the E-2C in the new design.

In order to detect high-speed adversary aircraft as far from the battle group as possible, and to quickly replace an aircraft with an inoperative detection system, there is a requirement that a new AEW platform possess a high speed dash ($\mathrm{M}=0.70-0.85$) capability. The aircraft must also possess excellent loiter characteristics in order to provide long periods of detection for the battle group. A total unrefueled mission cycle time of 5.75 hours is required. Additionally, an in-flight refueling capability is required to extend mission cycle time.

The new AEW aircraft is required to provide direct self defense. It is expected that two AIM-7 Sparrow-sized missiles would be mounted on wing stations. Additionally, it is required that the aircraft possess chaff and flare launchers. Also, there is a requirement for a crew ejection escape system.

Carrier Suitability requirements include total compatibility with all CVN-68 (Nimitz class) carriers and subsequent, and a maximum takeoff weight of $60,000 \mathrm{lbs}$. Also, in an effort to remove the hazards of spinning propellers on the flight deck, a turbofan propulsion system is required. Table 1 outlines the significant Proposed RFP requirements for the AEW aircraft.

2. AEW Mission Profile

The Proposed RFP specified some general mission requirements the AEW aircraft must be able to accomplish. Also included is standard information
on essential mission parameters such as start, taxi, fuel reserves, etc. These requirements were used along with a baseline knowledge of the AEW mission to generate the mission profile shown in Figure 1. Mission parameters are summarized in Table 2.

TABLE 1. PROPOSED RFP REQUIREMENTS

PROPOSED RFP TOPIC	REQUIREMENT
High Speed Dash	Mach $=0.70-0.85$
Loiter	4.5 hrs at 250 NM from Carrier
Mission Cycle Time (no refuel)	5.75 hours
Mission Cycle Time (refuel)	7.50 hours
Detection Antenna	Existing 24-Foot Rotodome
Propulsion	Turbofan
Escape System	Ejection
Maximum T/O Weight	$60,000 \mathrm{lbs}$.
Carrier Suitability	Total Compatibility w/ CVN-68 and
	Subsequent
Carrier Launch	0 Knots Wind Over Deck (WOD)
Carrier Arrestment	0 Knots WOD
Single Engine Waveoff	500 ft./min. minimum
Weight Growth	4000 lbs. minimum
Limit Load Factor	3.0 g's
Self Defense	2 Missiles, Chaff, Flares
Cockpit	High Visibility for Ship OPS

$$
\begin{aligned}
& \text { Total Cycle TIme: } \\
& 5+45 \text { (unrefuel) } \\
& 7+30 \text { (refueled) }
\end{aligned}
$$

High Speed Dash
($M=0.70-0.85$)
Accel. \&
Climb
approx. 250NM

Figure 1. AEW Mission Profile

It should be noted that some of the performance parameters presented in the Mach number, Distance, and Time columns in Table 2, are approximated based on historical trends and past experience. A more detail estimation of performance is provided in Chapter V.

TABLE 2. MISSION PARAMETERS

PHASE	M NO.	ALTITUDE (FT)	DIS- TANCE (NM)	TIME	TOTAL TIME	POWER
Start Taxı	0	0	-	$0+20$	$0+20$	Idle
Takeoff	0.3	0	-	-	-	Mil
Accel/Climb	0.5	$0-35,000$	35	$0+20$	$0+40$	$\mathrm{Mil} / \mathrm{Max}$
High Speed Dash	0.78	35,000	250	$0+30$	$1+10$	$\mathrm{Max} / \mathrm{Mil}$
Loiter	0.45	35,000	-	$4+30$	$5+40$	AR
Descent	0.7	$35,000-$ 5,000	35	$0+10$	$5+50$	Idle
Recovery	$0.7-$ 0.2	$5,000-0$	-	$0+15$	$6+05$	AR

Also note that by choosing a specific Mach number for the high speed dash phase, the first design decision was made. The Mach number range given in the Proposed RFP was too broad. The upper end of the Mach number range seemed a little too high ($M=0.85$), particularly from the standpoint of drag divergence. On the other hand, the lower end of the range ($M=0.70$) seemed a little too low from the standpoint of design technology. It was decided that a mid-range Mach number ($M=0.78$) was the maximum realistic speed to which this AEW aircraft could be designed.

B. DESIGN STRATEGY

As previously mentioned, the primary purpose of this research was to provide a first iteration on a conceptual design only. As such, the areas of research are directly proportional to the areas of emphasis given in the Proposed RFP. The focus of this research will be on the aircraft configuration
and the resulting aerodynamics. Performance and Stability \& Control will also be discussed briefly. Some of the topics addressed in preliminary design books such as References (1) and (2) are outside the scope of this research. Such topics include propulsion, structures, and cost analysis. A more complete design effort is possible only after an entire design team is assembled.

The primary objective during the design process was to remain focused on what the customer (NAVAIRSYSCOM) might desire in a AEW aircraft. This design approach, known as Quality Function Deployment (QFD), seems obvious but is a new concept to most design teams. QFD will be discussed in detail in Chapter II.

In order to avoid "reinventing the wheel" and to keep costs down, characteristics of proven aircraft with similar missions (i.e., E-2C, S-3A, EA-6B) were evaluated, and integrated into this AEW aircraft design. The overall philosophy was to keep the AEW aircraft design as simple, and as conventional as possible. Design techniques and equations were used in accordance with conventional design books such as References (1) and (2). Also, computer programs such as MATLAB and EXCEL were used as much as possible to rapidly complete future iterations. The programs are included as appendices. The equations in each computer program are referenced with the appropriate book and equation number, in order to assist any follow-on work to this thesis.

II. PRE-DESIGN ANALYSIS

It is widely understood that the further along a product is in its design process, the less design freedom the engineer enjoys. Therefore before any design process begins, it is imperative that the customer's desires and parameter constraints be thoroughly analyzed. This chapter will examine the specifics of QFD, and the constraints placed on the AEW aircraft.

A. QUALITY FUNCTION DEPLOYMENT (QFD)

Because of the present realities of fierce global competition, major companies throughout the world are searching for creative ways to produce high quality products at competitive prices. For governments on tight budgets, the commitment to high quality and low cost has also become increasingly important. The results of these realities have been numerous quality-based management, engineering, and design philosophies. Some of these philosophies include Deming's Total Quality Management (TQM), Taguchi's Parameter Design Method, and Mitsubishi's Quality Function Deployment (QFD). It has been these kinds of quality-oriented philosophies that have made Japanese industries so successful. Because these strategies are complementary, the more general term of QFD will be used for the purpose of this discussion.

As noted in Reference (3), it is extremely difficult (and costly) to implement quality into a product that has already been designed. Therefore in order to design a quality product, it is imperative that before a preliminary design process begins, sufficient time must be spent on the issue of product quality. From the standpoint of QFD, the answer to the question "What is Quality?" is simple--quality is providing what the customer wants! Reference (4) provides a more formal definition--"Quality is the loss a product causes to society after being shipped, other than any losses caused by its intrinsic functions". The purpose of QFD is to investigate what the customer wants in detail, and then translate those desires into engineering and design decisions.

The result of implementing QFD speaks for itself. As Reference (5) points out, Toyota Auto Body reduced costs by 61% after implementing QFD. Reference (6) notes that an unspecified Japanese automaker with QFD takes 32 months from first design to finish a car, while it takes 60 months for a U.S. automaker without QFD! These results were accomplished because of a commitment to begin the design process only after extensive customer research was completed. Once the design process was underway, the need for design changes became almost non-existent, because the customer's desires were already known. Figure 2 is reproduced from Reference (5) and graphically illustrates the difference in the design philosophies between two automobile companies. The lesson to be learned is clear--if more time and money are spent investigating customer desires before the design process begins, more time and money will be saved in the long run, and product quality will be higher.

Figure 2. Results of QFD [Rel. 5]
In terms of an AEW aircraft design, a preliminary QFD analysis was performed based on the customer's (NAVAIRSYSCOM's) perceived desires expressed in the Proposed RFP. These desires, commonly referred to as Customer Attributes (CAs), were then numerically prioritized in accordance with the relative importance given them in the Proposed RFP. Based on the customer attributes and their relative importance, a House Of Quality (HOQ) was constructed. The HOQ is a matrix-type figure that puts customer attributes into a format that is usable by both engineering and management. The HOQ is shown in Figure 3.

Several items should be mentioned in the construction and use of the HOQ. As was previously mentioned, CAs were ranked according to the relative
importance given them in the Proposed RFP. The Relative Importance (RI) is an integral part of the HOQ because it is a constant reminder to both management and engineering of their priorities. The RI is a major tool for making design decisions.

Figure 3. House of Quality

Note that Figure 3 shows CAs vs. Engineering Characteristics (ECs). The CAs can be considered the "what" portion of the HOQ while the ECs can be thought of as the "how" portion. This is because the CAs communicate what needs to be accomplished while the ECs tell us how they can be accomplished. Reference (5) points out that, "Engineering Characteristics should describe the product in measurable terms and should directly affect customer perceptions". Thrust-to-Weight ratio (T/W) for example, is clearly measurable and it will directly affect how the customer perceives the product in terms of its performance characteristics. Also note that shown with each EC is a plus or minus sign. This communicates to the engineer what should ideally be accomplished with a particular EC. For example, the Weight EC is followed by a minus sign because the objective is to keep weight as low as practical.

The central matrix portion of Figure 3 is the primary vehicle in which CAs and ECs communicate. As Reference (5) notes, it is in this central matrix that ECs that affect particular CAs are identified, and relationships between them are established. For example, there is a positive relationship between low Weight (EC) and maximum Endurance loiter (CA). In other words, all other things being constant, the lower the weight the longer the loiter time. Once this matrix is completed, the engineer will have a better idea of how to proceed in terms of the design process.

Another significant part of the HOQ is the characteristic roof. The roof is used to establish relationships between various ECs. For example, there is a negative relationship between low weight and higher Fuel Volume. Like the
central matrix, the completed roof helps the engineer make the necessary decisions in the design process, by balancing these relationships.

The HOQ shown in Figure 3 is only the first in a series of four or more HOQs that can be used to communicate the customer's desires through to the actual manufacturing process. Figure 4 is reproduced from Reference (5) and shows an example of how these HOQs might be related and how CAs trigger a series of decisions made through to manufacturing. Note that the "how" portion of each HOQ becomes the "what" portion of the next HOQ. The subsequent HOQs in the series would necessarily be generated after future iterations in the design process. It is difficult for example, to examine the characteristics of specific parts while still in the conceptual phase.

Figure 4. Linked HOQs [Ref. 5]

It should be emphasized that the HOQ shown in Figure 3 is preliminary. It is based on the preliminary requirements given in the Proposed RFP, and is primarily used for setting design priorities. Before the AEW aircraft design goes beyond the conceptual phase, detailed marketing research should be conducted to investigate what the customer wants. The research should include a survey of all the customers including NAVAIRSYSCOM, aircrew, and maintenance personnel. The research should be a study of likes and dislikes of even the smallest details of an AEW aircraft. For example, questions on the operation of the external door, or the location of a parking brake, etc., should be included when questioning customers. This research would then generate many series of HOQs.

The QFD strategy cannot be overemphasized in the aircraft design process. Although the process may seem time consuming and wasteful at first, a properly implemented QFD program will result in enormous long run benefits to both the aircraft company and the customer. Within the scope of this research, only aircraft companies with fully implemented QFD programs should be considered for development of the AEW aircraft.

B. CONSTRAINT ANALYSIS

Before the actual design process can begin, it is necessary to evaluate two of the aircraft's characteristics. These characteristics are T/W and Wing Loading (W/S). A series of performance equations may be derived in which T / W is expressed as a function of W / S. These equations are derived in

Reference (7). Equation constants are obtained from performance characteristics provided in the Proposed RFP. For a range of W / S, a range of T/W may be generated for each equation. The equations are then graphed on a single constraint plot. The plot graphically depicts a solution space. Any T/WW/S combination may be selected within that space. Obviously, some T/W-W/S combinations will be better than others. For example, suppose a constraint analysis on an aircraft reveals that lowest TM in the solution space is 0.25 . This means the aircraft can perform the required mission at a $T / W=0.25$. It would be illogical to choose a $T / W=0.50$ even though it is also within the solution space. It should be noted that although the constraint plot is primarily a pre-design tool, it may be used throughout the design process. As more knowledge of the design is known, more exact iterations of the constraint plot may be generated. It should also be pointed out that the constraint analysis need not be limited to performance equations only. For example, if a valid expression for maintainability in terms of T/W and W/S is found, it should also be included as part of the constraint analysis.

In order to keep future iterations simple, a computer program was written in MATLAB, based on the performance equations derived in Reference (7). The complete program is included as Appendix B. All equations in Reference (7) applicable to the AEW mission were used with the exception of takeoff and landing performance. Expressions presented in Reference (1) were used for takeoff and landing performance because of their simplicity and their more conservative results. Performance equation constants were obtained from
performance characteristics provided in the Proposed RFP and from a baseline knowledge of the AEW mission. The results of the AEW constraint analysis is shown in Figure 5.

KEY: 1) HIgh Speed Dash at $M=0.78$ \& $35 \mathrm{~K} \mathrm{ft}=.\Rightarrow$ \qquad
2) Max Endurance at $M=0.45 \& 35 \mathrm{Kft}==>\quad---'$
3) Constant Speed ClImb at $M=0.41$ \& $15 \mathrm{Kft} . \Rightarrow{ }^{\prime} \times x$ '
4) Sustalned ' g ' Turn at 2 g 's \& $20 \mathrm{Kft} . \Rightarrow+\mathrm{f}^{\prime}+{ }^{\prime}$
5) Level Accel Run at $35 \mathrm{~K} \mathrm{ft} . \Rightarrow{ }^{\prime} 00^{\prime}$
6) Takeoff Performance (Nicolal) $=\Rightarrow$ ***
7) LandIng Performance (Nicolal) $=={ }^{\prime}$ 'I'
8) Maintalnabllity ($/$ MH/FH=30) $\Rightarrow{ }^{-}$.

Figure 5. AEW Constraint Analysis

The solution space is the outlined upper center portion of the graph. Note the relatively flat bottom of the solution space. This flat bottom is most fortuitous because it allows a certain degree of design freedom. For a relatively low

T/W of 0.46, a W/S anywhere between 55 and $116 \mathrm{lbs} / \mathrm{t}^{2}$ can be chosen. Because of wing area limitations for carrier operations however, the W/S for an aircraft of this size is typically between 70 and $116 \mathrm{lbs} / \mathrm{ft}^{2}$.

Also note that the constraint plot includes a maintainability line. The line is the result of a equation derived in an unpublished paper by C.F. Newberry. The equation is the result of a linear curve fit of data from 25 different aircraft. It should be noted that there are limitations in the application of this equation. First, none of the aircraft for which data was supplied are Navy aircraft. Navy aircraft traditionally have different Mean Man Hours/Flight Hour (MMH/FH) rates than other aircraft. Second, a general trend should not be assumed using 25 very different aircraft. These aircraft ranged from T-38's to 747's. Although the validity of the maintainability line may be suspect, it should be investigated in greater detail, using a larger database of aircraft similar to the aircraft being designed. The current maintainability equation may be used in the constraint analysis, but only as long as its impact is integrated in a reasonable fashion.

III. AEW CONFIGURATION

This chapter will discuss the initial conceptual design for the AEW aircraft. A description of the aircraft will be provided along with the rationale behind various design decisions. An initial weight \& balance evaluation will also be discussed. Finally, an analysis of the AEW aircraft with various carrier suitability requirements will be performed.

A. AIRCRAFT DESCRIPTION

1. Introduction

The purpose of this section is to provide a brief description of the external aircraft configuration, and to provide justification for some design choices. Not all configuration characteristics of the aircraft will be discussed in this section however. Aircraft characteristics directly related to aerodynamics will be discussed in Chapter IV. These characteristics include planform selection, airfoil selection, and high lift devices.

2. General

The AEW aircraft design is shown in Figure 6. The aircraft is designed to hold a crew of four and will be powered by twin turbofan engines. Crew seating will be arranged in a dual-tandem configuration. Large cockpit windows will allow better visibility for carrier (CV) launch and recovery operations. The rotodome antenna will be supported by the existing rotodome

Figure 6. AEW Aircraft Design
pylon. Also, in order to satisfy CV requirements, the rotodome retraction system that was operational on early E-2's must be used. Twin vertical stabilizers will be mid-mounted at either end of the horizontal stabilizer. A total fuel weight estimate of 14000 pounds was based on fuel volume calculation procedures set forth in Reference (8). It should be noted that this iteration of the aircraft design includes no composite materials. Significant aircraft dimensions are presented in Table 3.

3. Specific Component Description

a. Engines

Although a detailed study of the propulsion system was outside the scope of this design effort, an initial analysis of the required engine performance was made. In order to meet the mission requirements of highspeed dash and long time loiter, it is clear that a high-bypass turbofan engine with a low Thrust Specific Fuel Consumption (TSFC) is required. Assuming an initial takeoff weight of approximately $55,000 \mathrm{lbs}$. and a $\mathrm{T} / \mathrm{W}=0.46$, the thrust per engine requirement is approximately $12,700 \mathrm{lbs}$. As shown in Reference (9), the technology for such an engine already exists. Two operational engines with characteristics similar to those required for the AEW aircraft, are presented in Table 4. Further design iterations should include an investigation into the feasibility of using an upgraded version of the General Electric (GE) TF34-GE400A engine in the AEW aircraft.

TABLE 3. AEW AIRCRAFT DIMENSIONS

CHARACTERISTIC	DIMENSION
Body Length	55 ft.
Body Diameter	8 ft.
Body Fineness Ratio (L/D)	6.875
Wing Span	72 ft
Wing Area	639 ft 2
Wing Loading (W/S)	Approx. $85 \mathrm{lb} / \mathrm{ft}^{2}$
Wing Sweep (leading edge)	21 degrees
Wing Thickness Ratio (t/c)	0.12
Wing C mac	9.77 ft.
Wing Aspect Ratio	8.11
Wing Taper Ratio	0.29
Horizonal Tail Area	180 ft 2
Horizonal Tail Sweep	14 degrees
Elevator Area	47 ft 2
Vertical Tail Area	90 ft 2
Vertical Tail Sweep	26.6 degrees upper, 36.9 degrees
	lower
Rudder Area	60 ft 2
Empennage t/c	0.10

TABLE 4. SIMILAR ENGINE CHARACTERISTICS

Engine	Maker	Type	$\begin{aligned} & \hline \text { Thrust } \\ & \text { (lbs.) } \end{aligned}$	$\begin{gathered} \text { TSFC } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Pressure } \\ \text { Ratio } 1 \end{gathered}$	$\begin{aligned} & \text { Dimen- } \\ & \text { sions } \\ & \text { (Dia.xL) } \end{aligned}$	Weight (lbs.)
$\begin{gathered} \hline \text { TF34-GE } \\ 400 \mathrm{~A}_{2} \end{gathered}$	General Electric	AFF_{3}	9,275	0.363	21	$\begin{aligned} & \text { 52in. } x \\ & 100 \mathrm{in} . \end{aligned}$	1,478
$\begin{aligned} & \text { FJR-710- } \\ & / 600 S_{4} \end{aligned}$	$\begin{gathered} \text { Nat. Aero. } \\ \text { Lab } \\ \text { Tokyo } \end{gathered}$	AFF_{3}	14,330	0.340	22	$\begin{array}{\|c\|} \hline 57.1 \mathrm{in} . x \\ 92.5 \mathrm{in} . \end{array}$	2,160

Notes: 1-At Maximum Power
2- S-3A Aircraft
3- Axial Flow Fan
4- NAL/Kawasaki Aircraft

The engines should be mounted closely to the wing for two reasons. First, exhaust flow through the slotted trailing edge flaps will help reattach the airflow over the wing, thereby increasing $C L_{\text {max }}$. Second, an engine mounted closely underneath the wing is further from the ground, and therefore less likely to ingest foreign objects. This would result in fewer engine replacements and lower life cycle costs.

b. Vertical Tail

As previously mentioned, the empennage will include two vertical stabilizers. The maximum height of the vertical stabilizers were modeled after the E-2C in an effort to keep the tails from interfering with the look-down capability of the rotodome antenna. Each vertical stabilizer will include a rudder control surface. It should be noted that if future iterations mandate higher vertical tails, maximum use of composites will be necessary to avoid antenna interference.

c. Aircraft Entry

Aircraft ingress will be accomplished through a single door in the fuselage. A walkway will allow movement between the door and the cockpits. The major advantage of this configuration is flexibility. The walkway will allow the crew to move freely throughout the aircraft to troubleshoot avionics systems, switch seats, etc. Consideration may be given to a canopy system similar to that currently operating in the EA-6B. The canopy arrangement was initially ruled out in this study due to potential engineering difficulty, increased life cycle costs, and lack of flexibility.

d. Wing Fold System

The first wing fold will be at 15 feet from the aircraft centerline. This will result in a maximum wing fold span of 30 feet. This wing fold span is within the maximum requirement of 35 feet and will allow easy storage of aircraft on the flight deck. The wings are intended to fold vertically up. At the completion of this vertical fold, the wing tip will physically interfere with the rotodome antenna. Therefore a second wing fold at 30 feet from the centerline is required. Dashed lines denote the wing fold breaks in Figure 6. The horizontal wing fold system which currently operates on the E-2C was ruled out for two reasons. First, horizontally folded wings create a large sail area. When the aircraft taxis perpendicular to the wind on the carrier deck, it tends to get blown, resulting in lose of control. Second, it is clear from the geometry of this AEW design that the wingtip of a horizontally-folded wing would not reach a wing support on the horizonal tail tip.

e. Armament

The aircraft is designed to accommodate one wing station on each wing at approximately 14 feet from the centerline. Each wing station should be capable of carrying an air-to-air missile of 500 pounds. Although use of the AIM-7 Sparrow missile was alluded to in the Proposed RFP, this is not recommended. Use of the AIM-7 would require the aircratt to possess a highenergy, target illumination capability. The new generation of "fire-and-forget" air-to-air missiles such as AMRAAM and Have-Dash are much more suitable for
the AEW aircraft. No target illumination is required for these missiles. Updated target information is provided via data link.

f. Landing Gear

A landing gear analysis was performed based on procedures set forth in Reference (2). The aircraft will use a standard tricycle system. Longitudinal placement of the main gear was determined by an estimated center of gravity location. Lateral placement of the main gear was determined by a maximum overturn angle requirement of 54 degrees. The wheelbase will be 26 feet long and the main wheel width will be 20 feet. The nose gear will have a dual-wheel configuration. The nose gear will retract aft into the fuselage. Each of the main landing gear will be a single-wheel configuration and will also retract aft into the fuselage. Approximate tire dimensions are 25 in. $x 7$ in. (diameter x width) for the nose and 45 in. $\times 17$ in. for the main. These dimensions are approximately 25% greater than the statistical equation proposed by Reference (2). This dimensional increase is to account for the harsh landing environment of the aircraft carrier. The 25% dimension increase corresponds well with the tire sizes of current carrier aircraft.

g. Escape System

The Proposed RFP requires the installation of an all-crew ejection system in the AEW aircraft. This requirement has resulted in many difficulties in the design of the escape system. These difficulties are obviously the result of the rotodome. An approximate trajectory of the aircrew on ejection is shown in Figure 7 for three flight conditions. An ejection trajectory computer program was
written in MATLAB and is included as Appendix C. The parabolic approximation is based on an ejection analysis presented in Reference (10). The identical pair of trajectories represent the front seat and back seat ejections. The diamond figure represents the location of the rotodome antenna.

It is obvious from the Figure 7 that the ejection system will result in aircrew impact with the rotodome. A bottom or sideways ejection would require development of a new ejection system, and obviously could not provide a 0/0 ejection capability. After an examination of various aircrew and rotodome placements, it became apparent that with today's technology, there are no safe ejection alternatives with the rotodome installed.

Ejection of the rotodome prior to crew ejection also has significant problems. The rotodome antenna alone (not including the supporting pylon and shaft) weighs 2350 pounds. In order to get the crew out of the aircraft quickly, the rotodome would have to be ejected with a typical acceleration of approximately 12 g 's. This would require a series of rockets that would have to generate a combined force of over 28000 pounds. These rockets would most likely have to be very large in order to provide such a force. It is unlikely that the rockets would fit into a supporting pylon that is only approximately one foot wide.

Additionally, it is obvious that the rockets would have to be directly attached to the rotodome. This means they would rotate with the rotodome. This means there would be no way to direct the trajectory of the rotodome, because it must be ejectable at any time during the rotation. Therefore, the
rockets would have to be of equal propulsive force. During certain flight conditions, including a $0 / 0$ ejection, the crew would still be in danger of ejecting into the rotodome.

KEY.

1) $M=0.76$ at $5000 \mathrm{ft} . \Rightarrow>^{\prime} * * '$
2) $M=0.48$ at $5000 \mathrm{ft} .==$ ' $^{\prime}-{ }^{\prime}$
3) $M=0.20$ at sea level $=>^{\prime+}+{ }^{\prime}$

Figure 7. Aircrew Ejection Trajectory

Ejecting the entire rotodome structure would eliminate the controlled trajectory problem, but would generate other problems. Now the rockets would have to generate a combined force of over 38000 pounds. The rockets under the forward supports would most likely ignite the fuel in the fuel
cells directly below. The resulting explosion would jeopardize the lives of the aircrew during ejection.

Two final points are worth mentioning. First, the new technology and the resulting developmental costs of ejecting a rotodome will likely be enormous. Second, any further investigation into rotodome ejection should necessarily include an examination of how the pitching moments about the center of gravity are affected.

B. WEIGHTS, CENTER OF GRAVITY, AND MOMENTS OF INERTIA

1. Weights

An evaluation of the AEW aircraft weight was performed using the individual component equations given in References (1) and (8). A computer program was written on MATLAB using the applicable equations. Many of the equations represented individual weight components as a function of takeoff weight. Since the determination of the takeoff weight was the ultimate objective, the program uses a secant method iteration procedure to find the takeoff weight. The weight program is included as Appendix D. In order to assure the accuracy of the program, a weight analysis on the $\mathrm{E}-2 \mathrm{C}$ was performed. It was found that the program prediction came within 300 pounds of the actual $\mathrm{E}-2 \mathrm{C}$ weight. The program was then used to analyze the weight of the AEW aircraft. The predicted weight was found to be approximately 53000 pounds which is comparable to the E-2C weight and well within the maximum requirement of

60000 pounds. The aircraft possesses a 7000 pound weight growth potential for future avionics upgrades.
2. Center of Gravity and Moment of Inertia

Component weights calculated from the weight program were used to approximate the aircraft's Center of Gravity (CG) and Moment of Inertia. Component CG locations were approximated based on procedures set forth in References (1), (2), and (8). Component Moment of Inertia values were calculated in accordance with procedures set forth in References (2). The component characteristics were used to calculate aircraft CG and Moment of Inertia values. All calculations were performed on a computer program written on EXCEL. The computer program was acquired from Reference (11). The computer program and the results of this program are included as Appendix E. An initial approximate CG location is 32.4 feet aft from 5 forward of the nose (approximately $48.6 \% \mathrm{MAC}$), and 10.9 feet up from 5 feet below the fuselage. More detailed CG and Moment of Inertia calculations will obviously be necessary with future iterations of the design.

C. CARRIER SUITABILITY REQUIREMENTS

Carrier suitability dimensional requirements and the significant AEW aircraft dimensions are shown in Table 5.

TABLE 5. CARRIER SUITABILITY DIMENSIONAL COMPARISON

DIMENSION	REQUIREMENT	AEW AIRCRAFT
Max. Gross Weight	60000 lbs.	53000 lbs.
Max. Wing Span	82 ft.	72 ft.
Max. Height	18.5 ft.	18.5 ft. (rotodome retracted)
Max. Main Gear Width	22 ft.	20 f.
Min. Tipback Angle	15 deg.	20 deg.
Max. Tipover Angle	54 deg.	52.5 deg.
Elevator Size Restriction	$52 \times 85 \mathrm{ft}$.	$55 \times 30 \mathrm{ft}$.

IV. AERODYNAMICS

In order to get maximum effectiveness from an airframe and its propulsion system, a thorough examination of the aircraft's aerodynamic characteristics during the design process is mandatory. This chapter will examine the design decisions involved in selecting the AEW aircraft's airfoil and wing planform. Additionally, the aircraft's lift curve slope and high lift devices will be discussed. Finally, an analysis of the aircraft's drag characteristics will be presented.

A. AIRFOIL SELECTION

Because of the Proposed RFP requirements, the AEW aircraft will be expected to operate under a variety of flight conditions. It must be able to cruise at high subsonic speeds, loiter for long periods of time, and possess carriersuitable, slow flight characteristics. In order to meet these requirements, the wing's airfoil must possess several seemingly contradictory characteristics. The airfoil should have a relatively high thickness ratio in order to increase $\mathrm{Cl}_{\text {max }}$, increase benefit from high lift devices, decrease weight, and increase wing fuel storage capacity. If the wing is too thick however, the drag divergent Mach number (M_{dd}) will be too low to satisfy the high speed dash requirement. An increase in $M_{d d}$ could be accomplished through an increase in wing sweep, but this generates additional problems which will be discussed in the next section. The airfoil must also have a high $\mathrm{Cl}_{\max }$ for the loiter and landing
phases of flight. Most high speed airfoils however, are not known for their high $\mathrm{Cl}_{\text {max }}$ values. Finally, the airfoil's thickness distribution should be investigated in terms of its skin friction drag characteristics. As Reference (12) notes, a maximum thickness that is close to the trailing edge results in a more favorable pressure gradient on the forward portion of the airfoil. This helps create more laminar flow which results in reduced skin friction drag. It should be noted however, that an aft maximum thickness can cause poor pressure recovery characteristics at high angles-of-attack.

Based on the above requirements, it became clear that a supercritical airfoil was necessary. A supercritical airfoil is characterized by a relatively flat upper surface, and a maximum thickness located near the trailing edge. It also has a relatively blunt leading edge, and it is cambered at the aft portion of the airfoil. Reference (13) notes that for a given thickness ratio, the supercritical airfoil has a higher $M_{d d}$ than conventional airfoils. This allows a thicker wing and less wing sweep. Additionally, the supercritical airfoil has a much higher $\mathrm{Cl}_{\text {max }}$ than a comparable conventional airfoil. Finally, the thickness distribution and the trailing edge upper and lower surface tangency results in a more favorable pressure gradient. The aft maximum thickness of the supercritical airfoil does not result in pressure recovery problems, because the camber is accomplished primarily by the lower surface. This allows the upper surface to remain relatively flat.

It should be pointed out that use of a supercritical airfoil will not be without its difficulties. First, the very thin trailing edge could prove to be a structural and
manufacturing problem. Second, although the original supercritical airfoil was designed in 1965, development and testing of an entire family of supercritical airfoils has been relatively recent. Because supercritical airfoils are relatively new technology, development costs may be high. Finally, the aft camber of the airfoil will result in large negative pitching moments. Despite the potential difficulties however, the supercritical airfoil shows the most promise in terms of satisfying the requirements of the Proposed RFP.

Initially it was hoped that an airfoil with a thickness ratio of 0.14 could be used for on the aircraft. Even with some compromise in the wing sweep, it soon became evident that a lower thickness ratio would be necessary in order to reach an acceptable $M_{d d}$. Experimental data presented in Reference (14) shows that at a thickness ratio of 0.12 and a design Cl of 0.7 , the airfoil $M_{d d}$ is approximately 0.76 . A moderate wing sweep should permit reasonably low drag characteristics at the design cruise Mach number of 0.78 .

After an evaluation of the family of NASA supercritical airfoils, it became clear that the best airfoil for the required mission was the NASA SC(2)-0712. This airfoil is shown in Figure 8. The airfoil's coordinates are reproduced from Reference (14), and is included as Appendix F. An explanation of the NASA supercritical airfoil designation system is presented below.

One of the biggest difficulties in selecting an airfoil was in obtaining the specific airfoil characteristics. Because of the relatively new technology, there is no compiled source of information for supercritical airfoils (such as Reference (15) for conventional airfoils). The three sources that provided most of the information on the airfoil were References (14), (16) and (17). Airfoil characteristics are presented in Table 6.

Figure 8. NASA SC(2)-0712 Airfoil

TABLE 6. NASA SC(2)-0712 CHARACTERISTICS

α_{0}	Cl_{α}	$\mathrm{Cl}_{\text {max }}$	$\alpha_{\max }$	Cm_{0}
-4.37 deg.	$0.08557 / \mathrm{deg}$.	2.0	19 deg.	-0.14

B. PLANFORM DESIGN

Given the target cruise Mach number of 0.78 and the relatively thick airfoil, it was clear a planform with significant wing sweep would be required. Too much wing sweep however, generated numerous problems including a decrease in $\mathrm{CL}_{\text {max }}$ and CL_{α}, increased wing weight and decreased wing fuel volume. Selection of the previously mentioned airfoil was made only after it was determined that a relatively high $M_{d d}$ could be attained with a modest wing sweep.

Figures 9 and 10 show the results of trade studies conducted to graphically illustrate the parameters involved in planform design and airfoil selection. Figure 9 shows M_{dd} as a function of thickness ratio with varying sweep. Figure 10 shows how thickness ratio and wing sweep affect wing weight. The results of these parametric studies were used to select the optimum planform design and airfoil thickness. With an airfoil thickness ratio of 0.12 , a leading edge wing sweep of 21 degrees is the optimum choice considering all the parameters involved. This results in a wing $M_{d d}$ of 0.81 .

With the leading edge wing sweep selected, the focus of attention was then directed to the trailing edge sweep. A trailing edge sweep of 6.5 degrees was selected for a first iteration. The relatively small sweep will insure efficient use of flaps and aileron control surfaces. The flatter trailing edge sweep also allows an increase in wing area and wing fuel volume. With a wingtip chord length of four feet selected as a first iteration, and the above planform characteristics, a wing area of $639 \mathrm{ft}^{2}$ was calculated.

Figure 9. Wing $M_{d d}$ With Varying Wing Geometry

Figure 10. Wing Weight With Varying Geometry

Another consideration in the planform design was aspect ratio. It was clear that in order to satisfy aggressive loiter requirements, a high aspect ratio would be necessary. For a given wing area, this would mean a larger wing span. Too large a wing span causes two problems however. First, it would result in line-up difficulties during carrier landings. Second, the large wing span would result in signal interference with the rotodome antenna, degrading radar performance. The selected wing span of 72 feet results in a aspect ratio of 8.11. The resulting maximum L/D ratio is 16 .

C. LIFT CURVE SLOPE

With the selection of the wing planform design, a calculation of the wing's lift curve slope was then possible. Calculations were done in accordance with the procedures set forth in References (1), (2) and (18). The lift curve slopes for three flap settings are shown in Figure 11.

D. HIGH LIFT DEVICES

In order to make landing speeds slow enough to meet the Proposed RFP carrier suitability requirements, a $C L_{\text {max }}$ of approximately 3.0 is required. To accomplish this, double slotted flaps are necessary. In accordance with the procedures set forth in Reference (2), $\Delta \mathrm{CL}_{\max }$ and $\Delta \alpha_{0}$ values were calculated. A maximum $\Delta C L_{\text {max }}$ was calculated to be 0.98 .

Two design characteristics that will help increase $C L_{\text {max }}$ with the flaps down should be mentioned. First, engines should be situated on the wing so
that engine exhaust will flow through the slotted flaps. Second, use of a aileron droop system with the flaps will help increase the $\mathrm{CL}_{\max }$ of the entire wing.

Figure 11. AEW Lift Curve Slope

E. PARASITIC DRAG CALCULATION

Parasitic drag (CDo) calculations were performed in accordance with procedures set forth in Reference (18). A CD。computer program was written in MATLAB and is presented in Appendix G. A CD。 of approximately 0.0205 was
computed by the program. This $C D_{0}$ value will be used to calculate a drag polar for the AEW Aircraft.

F. DRAG POLAR

The AEW drag polar was computed assuming CD as a parabolic function of CL. A first iteration efficiency factor of 0.8 was assumed. Also, the previously determined aspect ratio of 8.11 and $C D_{0}$ of 0.0205 were used in the equation A drag polar for the AEW aircraft in the clean configuration is shown in Figure 12.

Cd

Figure 12. AEW Drag Polar

V. PERFORMANCE

This chapter will present the results of a preliminary performance analysis conducted for the AEW aircraft. This analysis was primarily performed using a computer program written in MATLAB. The program is presented in Appendix H, and also includes some aerodynamic calculations such as Coefficient of Drag (C_{D}) and Lift-to-Drag ratio (L/D). A Takeoff and Landing computer program is also included in Appendix H. Performance calculations were done in accordance with References (1) and (19). The equations in the programs are denoted with the equation number from the appropriate Reference. For all performance characteristics, it has been assumed standard day unless otherwise noted. Additionally, all results were generated for the clean configuration, with the obvious exceptions being the takeoff and landing phases of flight.

A. Takeoff and Landing

Because of the angle between the aft landing gear, the vertical stabilizers and the ground (see Figure 6), it is necessary to limit aircraft rotation to no more than 18 degrees. This angle of rotation is sufficient however, because the typical rotation on takeoff is approximately 10 degrees. References (1), (2) and (19) provided schematics and distance equations necessary for takeoff and landing. Takeoff and landing schematics are shown in Figures 13 and 14, and
are reproduced from Reference (1). Takeoff and landing distances are shown in Tables 7 and 8.

Figure 13. Takeoff Schematic [Ref. 1]

TABLE 7. TAKEOFF DISTANCES

Takeoff Distances	Standard Day	Hot Day $\left(90^{\circ} \mathrm{F}\right)$
$\mathrm{S}_{\mathrm{G}}(\mathrm{ft})$	1390	1378
$\mathrm{~S}_{\mathrm{R}}(\mathrm{ft})$	555	555
$\mathrm{~S}_{\text {TR }}$ to $50^{\prime}(\mathrm{ft})$	888	888
$\mathrm{~S}_{\text {TO total }}(\mathrm{ft})$	2833	2821

Figure 14. Landing Schematic [Ref. 1]

TABLE 8. LANDING DISTANCES

Landing Distances	Standard Day	Hot Day $\left(90^{\circ} \mathrm{F}\right)$
S_{A} to $50^{\prime}(\mathrm{ft})$	1354	1350
$\mathrm{~S}_{\mathrm{FR}}(\mathrm{ft})$	155	165
$\mathrm{~S}_{\mathrm{B}}(\mathrm{ft})$	1982	2317
$\mathrm{~S}_{\mathrm{L} \text { total }}(\mathrm{ft})$	3491	3832

B. Thrust Required

The thrust required for the AEW aircraft at three altitudes between sea level and 35,000 feet are shown in Figure 15. The calculated thrust required curves were used to generate other performance characteristics such as power required and rate of climb.

Figure 15. AEW Thrust Required

C. Power Required and Power Available

AEW Power Required and Power Available Curves at sea level, 15000 ft , and 35000 ft are shown in Figures 16, 17 and 18. Note that two power available lines are shown on each graph. The solid line represents the power available predicted by simple theory. The dashed line is a result of the ONX/OFFX computer program obtained from Reference (7), and is thought to represent a more realistic power available curve. It is clear that the two theoretical predictions agree only until approximately $M=0.4$. With increase in speed, the difference between simple theory and ONX/OFFX becomes quite
significant. This is important because power available directly relates to excess power which in turn is instrumental in defining other performance characteristics such as rate of climb and maximum Mach number in level flight. Note also that the power required due to drag divergence is not included in this analysis.

Figure 16. Power Available and Power Required at Sea Level

Figure 17. Power Available and Power Required at 15000 Feet

Figure 18. Power Available and Power Required at 35000 Feet

D. Climb Performance

AEW Rate of Climb at sea level and 15000 feet is shown in Figure 19. Rate of Climb plots were generated at various altitudes until a service ceiling (rate of climb $<100 \mathrm{fpm}$) was found. A plot of the climb rates vs. altitude is presented in Figure 20. It was determined the AEW aircraft will have a service ceiling of approximately 38260 ft . Although a service ceiling was not specified in the Proposed RFP, this ceiling is sufficient to perform the AEW mission. It is approximately 1660 feet higher than the service ceiling of the E-2C. Also note that the AEW aircraft has an absolute ceiling of 38600 feet.

Figure 19. AEW Climb Performance at Sea Level and 15000 Feet

Figure 20. Absolute and Service Ceiling Determination

E. Range and Endurance

Range and Endurance predictions are shown in Figures 21 and 22 respectively. Both predictions are made using the Breguet equations obtained from Reference (19). The Range and Endurance plots are shown with variation in velocity at 35000 ft .

Figure 21. AEW Range at 35000 Feet

Figure 22. AEW Endurance at 35000 Feet

F. ACCURACY OF PERFORMANCE ANALYSIS

As with any analysis, it is important to examine the results of the performance analysis based on past experience and on historical trends of similar aircraft. In other words, "Are the results of this analysis reasonable?"

Based on historical trends of aircraft performance, it is clear that the climb performance (Figure 19) is far too optimistic. Based on the described design of the AEW aircraft, it is very unlikely that it would be capable of climbing at nearly 12000 fpm at sea level. One possible explanation for this performance is too large a T/W ratio. It is unlikely however, that this is a significant part of the problem. According to this analysis, even if the AEW aircraft's T/W ratio was half the current ratio of 0.46 , the aircraft would still climb at sea level at 6000 fpm . This is clearly unreasonable. Two other possible explanations of the optimistic climb performance are immediately apparent. First, the predicted CDo of may be far too optimistic. The CDo analysis does not account for interference drag. As a result, the actual CDo is usually higher than the predicted value. This difference might be significant on the AEW aircraft which probably has substantial interference drag. It should be noted that the CDo of the $\mathrm{E}-2 \mathrm{C}$ is 0.0375 which is far higher than the predicted AEW CDo of 0.0205 . Second, the actual lifting efficiency may be lower than the preliminary estimation. A more accurate analysis of the aircraft's aerodynamic characteristics will be possible only after Computational Fluid Dynamics (CFD) analyses, or wind tunnel tests are performed.

The results of the Range and Endurance analyses (Figure 21 and 22) are also unreasonably optimistic. Because both the fuel capacity (14000 lbs .) and the TSFC (0.33) are reasonable, it is likely that the aforementioned explanations would account for the unrealistic range and endurance results.

VI. STABILITY AND CONTROL

In order to understand what the handling qualities of the AEW aircraft might be, a stability and control analysis of the aircraft is necessary. The purpose of this chapter is to provide a conceptual analysis of the stability and control characteristics of the aircraft. It is important to note that this analysis is a very rough approximation. Some of the parameters are the result of design approximations presented in previous chapters. Other parameters are impossible to predict accurately without the use of wind tunnel testing. In these cases, the value of the parameter was selected based on similar existing aircraft and past experience.

The analysis was performed at three mission-relatable flight conditions. The flight conditions are: 1) $M=0.2$ at sea level, 2) $M=0.48$ at 35000 feet and 3) $M=0.76$ at 35000 feet.

A. STABILITY AND CONTROL DERIVATIVES

The stability and control derivative analysis was performed in accordance with References (8), (18) and (20). A stability and control computer program was written in MATLAB and is included as Appendix I. The analysis assumes no aeroelastic effects of the aircraft. All derivatives have the units of rad ${ }^{-1}$. Finally, any effects of thrust have been neglected in this analysis. The stability
and control derivatives for the AEW aircraft are shown in Table 9, along with an E-2C comparison at $M=0.4$ and 30000 feet.

B. DYNAMIC ANALYSIS

The dynamic analysis was performed in accordance with Reference (20). A dynamic modes computer program was written in MATLAB and is included as Appendix J. The analysis assumes small perturbation, linear theory. Results for the Short Period and Phugoid (or Long Period) modes are approximated to second-order systems. Any effects of thrust have been neglected in this analysis. The dynamic modes for the AEW aircraft are shown in Table 10.

The short period natural frequency (Wn) and damping ratio (Z) are approximated in Reference (20) as:

$$
\begin{align*}
& W n=\sqrt{\left.\left(\left(Z_{\alpha}{ }^{*} M q\right) / u_{0}\right)-M_{\alpha}\right)} \tag{1}\\
& Z=-\left(M q+M(\alpha \text { dot })+Z_{\alpha} / u_{0}\right) /(2 * W n) \tag{2}
\end{align*}
$$

A representative example of the dynamic modes is graphically presented in Figure 23. The figure shows the short period mode at the three flight conditions. All three primary modes have similar characteristics. They are all relatively lightly damped with very long periods and small amplitudes.

TABLE 9. AEW STABILITY AND CONTROL DERIVATIVES

DERIVATIVE	$\begin{gathered} \hline \mathrm{M}=0.2 \mathrm{at} \\ \mathrm{~S} . \mathrm{L} . \end{gathered}$	$\begin{gathered} M=0.48 \mathrm{at} \\ 35 \mathrm{~K} \end{gathered}$	$\begin{gathered} \hline \mathrm{M}=0.76 \mathrm{at} \\ 35 \mathrm{~K} \end{gathered}$	E-2C Comparison
CL ${ }_{\alpha}$	4.8220	5.1700	6.2500	6.970
Cm_{α}	-1.1814	-1.2666	-1.5312	-0.450
$\mathrm{CL}(\ldots \mathrm{dot})$	1.1172	1.2475	1.6497	6.160
Cm(\times dot)	-2.3556	-2.6304	-3.4785	-8.300
Cla	5.8328	6.6205	9.1761	11.43
Cmq	-7.8521	-8.7682	- 11.5949	-21.27
ClB	-0.1279	-0.1307	-0.1273	-0.0915
CnB	0.0576	0.0571	0.0560	0.0763
Cyß	-0.5877	-0.5877	-0.5877	-0.9680
$\begin{aligned} & \mathrm{Cl}(\mathrm{Bdot}) \\ & \left(1.0 \mathrm{e}-03^{*}\right) \end{aligned}$	-0.4781	0.0553	0.7729	Not Avail.
$\mathrm{Cn}(\mathrm{Bdot})$	-0.0025	0.0002	0.0020	0.0220
Cy($\mathrm{B}_{\text {dot }}$)	-0.0065	0.0005	0.0056	-. 0601
Clp	-2.4765	-2.5993	-2.8140	-0.4200
Cnp	0.1319	0.0764	0.0291	-0.0732
Cyp	0.0023	-0.0235	-0.0406	0.1119
Clr	0.4717	0.3620	0.2667	0.2580
Cnr	-0.0855	-0.0848	-0.0833	-0.1236
Cyr	0.2470	0.2459	0.2437	0.3180
Cl да	0.5429	0.5361	0.5226	0.0697
Cnda	-0.0775	-0.0447	-0.0174	-0.00593
Cyda	0	0	0	Not Avail.
Cl ¢	0.2968	0.3314	0.4383	0.644
Cmठe	-0.6258	-0.6988	-0.9241	-1.670
Cl ¢r	-0.0024	0.0267	0.0609	-0.0381
Cndr	-0.2509	-0.2789	-0.3655	-0.2202
Cydr	0.7426	0.8292	1.0965	0.5760

TABLE 10. AEW DYNAMIC CHARACTERISTICS

DYNAMIC MODE	$M=0.2$ at S.L.	$M=0.48$ at 35 K	$M=0.76$ at 35K
Short Period			
- Roots	$-0.0177 \pm$	$-0.0061 \pm$	$-0.0078 \pm$
	0.0521 i	0.0304 i	0.0334 i
- Wn $_{1}$	0.0550	0.0310	0.0342
$-\mathrm{Z}_{2}$	0.3221	0.1950	0.2273
- Wd $_{3}$	0.521	0.0304	0.0334
- Period (sec)	121	206	188
Long Period			
- Roots	$-0.0004 \pm$	$1.0 e-03^{*}$	$1.0 \mathrm{e}-03^{*}$
	0.0039 i	$-0.0314 \pm$	$-0.0111 \pm$
- Wn $_{1}$	0.0040	0.7165 i	0.2859 i
$-\mathrm{Z}_{2}$	0.0930	0.0438	0.0003
$-\mathrm{Wd}_{3}$	0.0039	0.0007	0.0389
- Period (sec)	1595	8770	0.0003
Dutch Roll			2198
- Roots	$-0.0162 \pm$	$-0.0062 \pm$	
- Wn $_{1}$	0.1554 i	0.0890 i	$-0.0064 \pm$
$-\mathrm{Z}_{2}$	0.1562	0.0892	0.0901 i
- Wd $_{3}$	0.1554	0.0698	0.0903
- Period (sec)	40	0.0890	0.0901
Roll Response		71	70
- Root	-1.7652		
Spiral Mode		-0.5727	-0.6194
- Root	0.0004	0	0

Notes: 1-Natural Frequency
2-Damping Ratio 3-Damped Frequency

Figure 23. Short Period Response

C. ACCURACY OF STABILITY AND CONTROL ANALYSIS

One of the advantages of the dynamic analysis is that the final results (i.e., damping frequency and period) are directly relatable, and easily understandable, handling characteristics. The accuracy of these characteristics can be qualitatively evaluated based on historical trends and past experience. The accuracy of the dynamic characteristics are directly related to the accuracy of the stability and control derivatives, because the derivatives are used in the dynamic analysis.

The results of the dynamic analysis are clearly unreasonable. The most obvious discrepancy is in the periods of the three primary dynamic modes (short period, long period, and dutch roll). Short period and dutch roll periods for an aircraft of this kind typically range from 2 to 8 seconds. Obviously, values
ranging between 40 and 206 seconds are unreasonably large. The long period values between 1595 and 8770 seconds are also unreasonably large. Long period values for an aircraft of this kind are typically about 120 seconds. Also note the very lightly damped frequencies of all three primary dynamic modes. It is unreasonable that these modes would be so lightly damped, and is inconsistent with historical trends.

Many of the stability and control derivatives appear unreasonable as compared with the E-2C. The most unrealistic AEW derivatives include Cm_{α}, $\mathrm{CL}(\propto \mathrm{dot}), \mathrm{Cm}(\propto \mathrm{dot}), \mathrm{Cmq}$, and Clp . This would naturally cause unreasonable dynamic results. The short period approximation equations are shown on page 50. Since $\mathrm{Cm} \alpha_{\alpha}$ and Cmq are inaccurate, this will result in an unrealistic natural frequency. Also, since $\mathrm{Cm}(\propto$ dot) and natural frequency are inaccurate, this causes an unrealistic damping ratio. Poor initial assumptions are the most likely cause of the unrealistic derivatives. Some inputs were impossible to accurately predict within the scope of this research. Such inputs include the downwash gradient at the horizontal tail, Cmo, and the moments of inertia. One primary conclusion can be drawn from this analysis. Although the method for attaining stability and control derivatives in Reference (18) is extremely detailed, truly accurate stability and control derivatives can only be acquired from wind tunnel tests on a scaled model. Because most of the unrealistic derivatives are longitudinally related, any follow-on research should include a thorough re-examination of the longitudinal analysis.

VII. CONCLUSIONS

A. ACCURACY

Because this thesis presents the results of a conceptual design, the aircraft's characteristics are by their very nature, a first iteration only. Future studies of the AEW aircraft must necessarily include wind tunnel tests of a scaled model. Reasonably accurate values of many of the aircraft's parameters can only be obtained through wind tunnel tests.

One of the genuine benefits of this research was the many computer programs that were generated. As the design process for this (or any other) aircraft continues, these programs can be used to obtain more accurate results through the input of more accurate parameters.

B. EXISTING ROTODOME/AVIONICS

Before the design of this aircraft proceeds beyond the preliminary design stage, consideration must be given to the use of new airborne detection technologies. Based on historical trends, it is likely that the integration of the E-2C's detection system into a new airframe will be difficult. The result would be an increase in both developmental and life cycle costs. Although new detection technologies such as a phased-array radar may be costly to develop, the benefits and the life cycle costs must be investigated.

C. SUPERCRITICAL AIRFOIL

Use of supercritical airfoils on aircraft is a relatively new technology that should be explored further. The airfoil appears to be ideally suited for aircraft that must operate in the transonic regime, and display aggressive endurance characteristics.

D. POSSIBLE PROBLEM AREAS

1. Escape System

Within the scope of this design effort, no satisfactory ejection system could be determined. The obvious hinderance to a viable ejection system is use of the existing rotodome antenna. Difficulties in developing a viable ejection system will most likely occur, regardless of the system, as long as a conventional rotodome antenna is used. A conventional early warning phasedarray radar system for example, would be approximately the same size as the current antenna. The difficulties in ejection therefore, would be similar. Ejection of the aircrew would be much more successful with an antenna that is not in the form of a rotodome but within the wings and body of the aircraft. This would necessitate the use of a phased-array radar system, and therefore, would be costlier to develop. Before a formal AEW RFP is developed, a clear decision will have to be made on the aircrew escape system issue, and the resulting impact on the radar system.

2. Divergent Drag Mach Number (M_{dd})

Although the wing $M_{d d}$ of 0.81 is high enough to operate in the required regime, future studies should include an analysis of the drag penalties of other aircraft parts in this transonic range. Emphasis should be placed on the fuselage and the rotodome antenna. The relatively wide fuselage and blunt nose may cause significant drag penalties at the target high-speed dash Mach number of 0.78 . With a thickness ratio of 0.3 , the rotodome antenna is also likely to have a $M_{d d}$ far below the required operating range. It may, of course, require transonic wind tunnel tests to verify how significant these drag penalties are.

3. Horizontal Tail Effectiveness

It can be seen from Figure 6, that the horizontal tail is directly behind the wing and rotodome support pylon. The aerodynamic disturbance created by the wing and pylon could result in the loss of horizontal tail effectiveness under some flight conditions. This can only be verified however with wind tunnel tests of a scaled model, or by a CFD analysis.

4. Wingfold System

Another area of difficulty could be in the wingfold system. Because a double-wingfold system is new technology, developmental costs may be high. The double-wingfold will be an engineering challenge to both the structures and the flight control design teams. It should be pointed out that if an aircraft design employs a phased-array radar system with a non-conventional antenna
such as the one previously mentioned, the need for a double-wingfold system might be eliminated.

E. RECOMMENDATIONS

Within the scope of this research, the design of an AEW aircraft using the existing rotodome and avionics should be abandoned. Use of the rotodome will negatively affect the aircraft's normal and emergency operations. Considering all factors involved, it is unlikely there will be substantial savings using the existing rotodome and avionics.

Future aircraft designs should include integration of a phased-array radar system. This system offers the flexibility needed for an aircraft required to possess ejection and wingfold systems. Reference (21) provides an example of such a design. The aircraft, called the Boeing $E X$, is shown in Figure 24. A comparative analysis of the Boeing EX and the AEW aircraft is provided in Table 11. It is clear from the Figure 24, that the phased-array radar system allows for more flexibility in the design process, and eliminates the aforementioned ejection and wingfold problems.

Figure 24. Boeing EX [Ref. 21]

TABLE 11. AIRCRAFT COMPARISON

CHARACTERISTIC	BOEING EX	AEW AIRCRAFT
Overall Length	51.2 ft.	55.0 ft.
Wing Span	63.3 ft.	72.0 ft.
Wing Area	$845 \mathrm{sq} . \mathrm{ft}$.	$639 \mathrm{sq} . \mathrm{ft}$.
Design Mach	0.76	0.78
Takeoff Weight	55200 lbs.	53000 lbs
TW	0.34	0.46
Antenna	Mounted in Wings	Existing Rotodome
Ejection Capability	Yes	No

In conclusion, it must again be emphasized that this analysis was the first iteration on a conceptual design only. Therefore, the scope of the research was limited. A more complete analysis is only possible after an entire design team is assembled.

APPENDIX A

AEW AIRCRAFT DESIGII WスVAL POSTGRADUATE SCIOOI,

PROJECT OBJECTIVES

The object of this design study is to perform the necessary trade studies required to define the most cost effective, low risls alrframe conflguration capable of meeting future airborne narly warning (AEW) requirements in the $21 s t$ century. The mission is a deck-launched high speed dash, low speed lotter at 20,000 to 35,000 feet altitude and return. The goal is to select the greatest high speed dash Mach number consistent with the maximum range and loitei requirements that will provide a carrier suitable aircraft. Thn alrcraft will have ejection capability provisions for all members. of the four to six member aircrew. Λ fanjet (no turboprons) pownrplant will provide aircraft propulsion. The EX configuration must exhibit low initial purchase cost and low life-cycle cost.

DECK LAUHCHED SURVEILIAHCE: The total mission cycle time (quadrunle cycle) is desired to be at least 7 hours 30 minutes (with one refueling) plus reserves with a minimum acceptable cycle time (triple cycle) of 5 hours 45 minutes (no refueling) plus reserves.

1. For taxi, warmup, takeoff and acceleration to $M=0.3$; fuel allowance at sea level static thrust is equal to 5 minutes at intermediate thrust (no afterburner).
2. Acceleration: Maximum power acceleration from $11-0.3$ to best rate of climb speed at sea level.
3. Climb: Best rate of climb to optimum crulse altitude for design cruise Mach number.
4. Cruise: Cruise-out (IIgh speed dash at $\mathrm{M}=0.7-0.85$) at: design Mach number at optimum cruise altitude.
5. Turn: 3 g sustained desired; 2 g sustained minimum at the weight corresponding to the end of crujse-out.
6. Loiter: Conduct surveillance at maximum endurance fijght condition for minimum of 4 hours 30 minutes (2.00 nm station, no refueling).
7. Descent: Descend to best return cruise altitude (no time, distance or fuel used allowances).
8. Cruise-back at optimum altitude and best cruise mach number.
9. Descent: Descend to sea level (no time, distance or fuel used allowances).
10. Land.
11. Reserves: Fuel allowance equal to 20 minutes loiter at sea level at speed for maximum endurance plus 5\% of initial total fuel.

WEI GIIT :
CREN:

AVIOHICS:

SEISF DEFFISE: Presume that a future missile would be the size of a compressed carriage $\Lambda I M-7$ Sparrow and would weigh 500 lb. Two missiles are required. Λ chaff and flare launcher is required. Provide two wet wing stations.

IONO F Λ CTOR: $\quad 3 \mathrm{~g}$ sustained $1 s$ desired; 2 g sustained minimum at the weight corresponding to the end of cruise-out.

CARIRIER
SUI'ABIIITY: Compatibility with CVII-68 carriers and subsequent implies the following criteria:

1. MK-7 mod 3 arresting gear.
2. C13-1 catapults.
3. 130,000 1 b , maximum elevator capacity (aircraft plus loading plus GFE).
4. 85×52 foot elevator dimensions.
5. 57 feet 8 inches minimum station "o" to JBl) linge for MK-7 JBD locations.
6. 18 feet 9 inches minimum from tallpipe to , JII) hinge.

	7. Maximum, unfolded span of 82 feet. 8. 22 foot maximum landing gear width. 9. 25 foot maximum hanger deck height except under VAST stations in the forward part of the hanger where the clearance is 17 feet 6 inches. The maximum folded height of the aircraft should not exceed 18.5 feet.
1.AUHCII:	Launch wind-over-deck (wol)) should not exceed zero knots operational. Operational is minimim plus 15 knots. Assume a 5 knot improvement on the c13-1 catapult.
ARREST:	Arresting WOD should not exceed zero knots. Nssume a 5 knot improvement on the $M K-7$ mod 3 arresting gear. Approach speed for WOD calculations is 1.05 times V approved.
WAVE-OFF:	For multi-engine aircraft, a minimum wave-off rate of climb of 500 feet per minute, with one engine inoperative, shall be avallable.
POWER PIANT:	Fan jets (perhaps, upgraded TF-34 engines). 110 TURBOPROPS.
COCKPIT:	lligh visibility cockpit is required for pattern work at ship.
IN-FISIGIT	
REFUELING:	The aircraft must have an in-flight refueling capability.
STRUC'TURE:	The airframe structure must accommodate BIRST.
SElf-dEFEMSE	
CAPABILITY:	The EX aircraft must have a self-defense capability [derived from complete (survivability, vilnerability and susceptibility) studiesj.
GROWTII:	The structure must be capable of considerable weight growth beyond the initial production configuration (at least $1,000 \mathrm{lb}$).
$\cos \mathrm{T}:$	Low purchase cost and low life-cycle cost is highly desirable. Assume a total buy of 50 aircraft.
GEHERAL:	Attention shall be given to quality, maintainability, manufacturability and concurrent engineering issues.

APPENDIX B

Xhls is a constralnt analysls program which ls deslgned to plot varlous fllght xconditions as a runction of thrust-to-elght ratlo (Tsl/Hto) and elng loading (Hto/S). This program incorporates dlferent casse wich corresponds to Idifferent fllght conldilons. Each case illl be seperated with a dashed Ilne. Xthis program is based on the materlal covered In chapter 2 of Mattingly's (et Xal) alreraft singlns dssign book. All squatlons are from Mattingly unlsse Xepscifically otated otherwise.
X-
XTsi/Wto wll henceforth be known as TW. Hto/S will bs known as WS.
xOperatlue squatlon.
 /dtx(h+U^2/(2*go))) (eqn. 2-11)
X parabollc drag polar ls assumed. Thersioro k2=0 throughout.
XCase I:Constant Alt./Speed Crulse. High Speed Dash M=0.78 \& h=30K ft.
$X d h / d t=d U / d t=0$. Constant altltude \& no acceleration.
nl=1; Inormal g loading
RI=0, ARdditlonal drag. Fsoumed zero throughout
K2=0; XDrag Curus constant
BI=0.905; XHelght Fraction
KII-0. D6; Xrag Curue constant. Obtalned from Hlcolal page E-7.
Pl=2116*.2360; xPressure at 35K ft.
MI=0.78; XHach Mumber
CDol=.0345; EDrag cosfflcient at zero IIft (approximate)
$q 1=(1.4 / 2) * P 1 * M 1 \wedge 2 ;$ Nynamlc Prsssurs
AR1 $=0.3106 ;$ iDensity ratlo at 30K ft.
$a \mid=\left(0.560+0.25 *(1.2-M 1)^{\wedge} 3\right) * R R I^{\wedge} 0.6 ;$ XInstalled full throttlo thrust lapse for a hlgh bypass turbofan (san. 2-42)
II=1; Acount er
for USI-20:5:140; xthe rangs of ling loading
USIH(TI)=LSI;

Xean 2.12
11-11+1; Xcount er
end
WSIo-q1/B1*sart (CDol/K1I); XThe minlmun W/S for case 1.

x -
*Case le: Maximum Endurancs 35K ft.
nlo=l; Inormal g loadling
B18=0.0; xHelght Fraction
Klle=0.045; X Orag Curve constant. Dbtalned from HIcolal page E-7.
MI $0=0.45$; Illach Number
qle=(1.1/2)*P1*M1s^2; XDynainlc Pressure
ale $=\left(0.568+0.25 *(1.2-M 1 e){ }^{\wedge} 3\right) * R A I^{\wedge} 0.6 ;$ Installed full throttle thrust lapse for a high bypass turbofan (sqn. 2-42)
II-I: Xcount or
for USIe=20:5:140; the range of wing loading
HSTeM(TI)=USIe:
 ratlo. eqn 2.12
$T I=11+1$; count er
end
USioe=qie/日le*sart (CDol/Kile); The minlmun W/S for case le
 case le

XCase 2:Constant Speed CIImb. Thls Is a "snapshot" of the cllmb onty. Taken at Xan assumed TAS $=330 \mathrm{fps}, \mathrm{M}=0.41,815 \mathrm{~K} \mathrm{ft}$. \quad / an assumed $\mathrm{dh} / \mathrm{dt}$ of 4000 fpm .
$x d U / d t=0$;
n2-1; Inormal g loading
A2-0; Xhdditlonal drag. Rssumed zero throughout
P2=0.5646*2116.2; MPressure at 15K it.
$U=433$; Neloclty
dhdt $=67$; Xhate of $\mathrm{CIImb}(f t / s)$
112=0.41; Mach Number
02 $=0.975$; Nelght Fract ion
K12=0.05; XDrag Curve constant. Obtalned irom Hlcolal page E-7.
q2=(1.4/2)*P2* 112 2; \& Dynailc Pressure
CDo2-0.0345; XDrag coefflclent at zero IIft
An2-0.6295; XDensity ratlo at 15K ft.
$a 2=\left(0.568+0.25^{*}(1.2-\mathrm{H} 2)^{\wedge} 3\right){ }^{*}$ RR $2^{\wedge} 0.6 ;$ Installed full throttle thrust lapse for a
hlgh bypass turbofan (ean. 2-42)
12-1; Xcounter
for HS2-20:5:140; ithe range of olng loading
US2II(T2)-HS2;

ratlo. eqn 2.14
12-12+1; Xcounter
end
HS20=q2/82*squt (CDo2/K12); XThe minimum H / S for case 2
TH2o= (B2/a2)*(K12*B2*US2o/q2+K2+CDo2/(B2*US2o/q2) +1/U*dhdt); IThe minlmum T/L for
case 2
X-
XCase 3:Constant Rlt./Speed Turn. Sustalned g turn.
\% $d h / d t=d U / d t=0$
n3-2; Inormal g loading
R3-0; XAddltional drag. Assumed zero throughout
P3-0.4599*2116.2; XPressure at 20K ft .
B3-0.05; XHelght Fractlon
K13=0.045; DDag Curve constant. Obtalned from Hlcolal page E-7.
$K 2=0 ;$ Drag Curve constant
H3-0.46; MHach Number
CDo3-.0345ixDraa coefflctent at zero IIft

```
q3-(1.4/2)*P3*M3^2;xDynamlc Pressure
กnj=0.5952;xDenslty ratlo at zok it.
a3=(0.560+0.25*(1.2-M3)^3)*RA3^0.6;\lnstalled full throttle thrust lapse for a
high bypass turbofan (eqn. 2-42)
T3-1;xcounter
for US3-20:5:140;xthe range of wing loading
US3II(T3)-HS3:
TL3(T3)=(83/a3)*(K13*n3^2*B3*LS3/q3+K2*n3+CDo3/(B3*ISS3/q3)); xthe resultIng T/II
ratlo. eqn 2.15
13-T3+1; xcount or
ond
WS3oma/B3*sqrt(CDo3/K13); XThe nlnlmum W/S for case 3
TH30=(B3/a3)*(K13*n3^2*B3*US3o/q3+K2*n3+CDo3/(B3*LS3o/q3)); \The mlnlmum T/L for
case 3
\--------------------------------------------------------------------------------
xCase 4:Horlzontal Accelerat lon
dh/dt=0;constant altltude
n4-1;Xnormal g loading
A1=0; XAddltlonal drag. fissuned zero throughout
Ul=400;xln|tlal veloclty.
Uf=776;xFInal veloclty.
dt=300;xTIme for acceleratlon (In seconds)
P4-2116.4*0.2360;xPressure at 35K ft.
dUdt=(Uf-UI)/dt;xAcceleratlon
84=0.85; XHelght Fractlon
K14=.055;XDrag Curve constant. Obtalned from Hlcolal page E-?.
K2=0; Drag Curve constant
M4=.58;xllach Humber.f "snapshot" In the mlddle of the run
CDo4=.0345;NDrag coefflclent at zero llft
g=32.17; Xeceleratlon due to graully (ft/sec)
q4=(1.4/2)*P4*H4^2;xDynamlc Pressuro
AR4=.3106;xDenslty ratlo at 35K fl.
a4=(0.568+0.25*(1.2-M4)^3)*RR4^0.6;\Installed full throttlo thrust lapse for a
hlgh bypass turbofan (eqn. 2-42)
2=1/g*dUdt;
14=1;Xcounter
for US4-20:5:140;xthe range of ulng loading
US1II(T4)=|S4:
TH4(T4)=(84/a4)*(K14*84*LS4/q4+K2+CDO4/(84*LS4/a4)+Z);xthe resultlng T/L ratlo.
eqn. 2.18
14=T4+1; Xcount or
end
X-
XCase 5: Takeoff Ground Roll
xdh/dt=0;
Sg=3000;XGround roll takeoff dlstance
Ah5-.0023769;Mea lovel densltu
```

```
Kto=1.2; xstall-to-takeoff velocley ratlo
Clm-2.5;xMax llft coefflclent for takeoff
85-1; WHelght Fractlon
M5-0; Mlach Number
AR5=1;XDenslty ratlo at sea level
a5=(0.568*0.25*(1.2-115)^3)*RR5^0.6;8lnstalled full throttle thrust lapse for a
hlgh bypass turbofan (eqn. 2-42)
g=32.17; XAcceleratlon due to graulty (ft/sec)
15-1; \count er
for LS5-20:5:140, Xthe range of wlng loading
US511(T5)=|S5;
TH5A(T5)=((20.9*HS5)/(RR5*CIm))/(Sg-87*sqrt(HS5/(PR5*CIm)));xthe resultIng T/L
ratlo. Thls ls from Hlcolal (ean.6-3)।
15=T5+1; xcounter
end
X-
XCase 7:Landlng Moll
xdhdt =0;
CIm-3.0;xMax lift coefflclent for landing
Sl=5000;xLandlng dlstance
RR=1; XDenslty ratlo at sea level
TH0=0.2:.1:1.2;
HSB=(SI-400)*RA*CIm/118;xFrom Hlcolal (ean, 6-5).Note It ls Independent of T/W.
for S-1:11,
LSOM(S)=HS8;
end
X-------------------------------------------------------------------------------
XCase 9: Malntalnablllty
MMFH-30; &Malntenance man hours per ilight hour
19-1;Xcount er
for LS9-20:5:140, Xthe range of wing loading
US9M(19)-WS9;
TH9(T9)=(MMFH/7.25716)-(0.196568/7.25716)*US9;Xthe resultlng T/H ratlo.Thls is
xHewberry's equatlon for the flghter alreraft only.
TL9T(19)=(MMFH/13.6383)-(0.1555/13.6383)*LSS;xthe resultlng T/W ratlo. Thls is
XHemberry's equatlon uslng all25 alreraft. It was used because lt ls probably
Xmost reallstlc.
19-19+1;Xcount er
end
x
plot(HSIH,THI,WS1eH,TH1e,WS2II,TH2, 'x',HS3M,TH3,' ' ' ,HS4M,TH4, 'o',HS5II,TH5A,'*',HS8
M,Tん8,'-',459M,Tん9T,'-.' ')
```


APPENDIX C

```
Xihls Is an ejection program with expreggions from Hoerner'g Fluld Dynamlc Drag
book, Chaptor 13.
\-
U=300; Xeelght of the seat and crem nember
g=32.2; Macceleratlon due ta graulty
II=.2; XMach number
GAM=1.4; Igama
P=2116;\*.8321;Xpressure
q=(GAM/2)*P*M^2;Xdynamle pressure.assumed constant
DQ=9;Idrag area (uarles between 4 and 9ft^2)
*-60; Iappraxlmate average vertlcal veloclty
Q=1;\caunter
far Y=0:14,
YM(0)-Y;
T(Q)=Y/m;\tlme ls equal ta velocliy dlulded by dlstance
T2(0)=T(Q)~2;昂lmo squared
XI(O)=0+(g*q*T2(Q)*(Dq/H)); Xthe front seat trajectary. eqn. 26, chap 13
X2(0)=16+(g*q* T2(0)*(Dq/N)); the back seat trajectary. eqn. 26, chap 13
0=0+1; 音count or
end
Molat(X1', YM,'+',X2',YM,'+'),
M-
Xthle drase the ratadame antenna
Ru=[9.7413 10.929 9.7413];
AI=[9.7413 9.7413 9.7413];
Ac=[9.7413 0.553 9.7413];
XD=[lllll
plot(XO,Ru, XO,RI, ' -', XO,Ac, ' - ''),
```


APPENDIX D

1-
Xhls welght program has two parts. The flrst is a subroutlne which computes the Xealght of the propulalon and fuel systens. These ilgures are needed for the Xealn prograil whlch lterates a takeoff eelght.
x -
xpropulalon Subrout Ine
X
Whe belon values are inputs that are required for the equat lons that have been Xobtalned froe "The Fundamentals of Riraraft Design" by Leland M. Hicolla (Chaptor 20)
Rlopl*2.375^2; XInlot Area
HI-2; XHuaber of Inlots
Kgeo-1; XDuct Shape Factor
P2-24; XHax Statlc Pressure at EngIne Compressor Face-psla
Kte-1; XTeaperature Correctlon Factor
Ka-1: XOuct Materlal Factor
Ld-3; XSubsonlc Ouct Length
Fgu-2151; XTotal Hing Fuol In Gallons
Fgi-0; Xlotal Fuselage Fuel in Gallons
Lf-55; XFuselage Length
Me-2; XHuber of Engines
B-72; xuling Span
Heng-2000; XHelght of EngIne

```
\chi----------------------------------------------------------------------------
```

XThe equation numbers iron Hlcolal are Included ith the approprlate equations.

Hesc $^{\text {- }} 11.6 *\left((F g w+F g 1) * 10^{\wedge}(-2)\right) \wedge .818 ; 20-16$
山bsc=7.91*((FgotFg)*10^(-2))^.854;200-18
HIfr=13.64*((Fgw+Fgf)*10^(-2))^.392; 20-19
Hdd-7.38*((Fgw+Fgf)*10^(-2))^.458; 20-20
Htp=28.38*((Fg*Fgi)*10^(-2))^. $142 ; \times 20-21$
Hec $=68.46 *\left((L f+B) * \mathrm{He}^{*} 10^{\wedge}(-2)\right) \wedge .294 ; 20-23$
Hss-9.33*(He*Heng*10^(-3))^1.078; 20-26
Wes-Hsac+Ubsc+Udd+Utp+Hifr,
Hpp-Ht (d+Hfe+HectHes+(Heng*2),
X
XMaln lieration Progran

x

Xhis prograi ls deelgned to flnd the approprlate takeoff wolght (Hto) where the Xequation le a polynoalal with fractlon exponents. The secant method ls used to xfind the deslred root. The operatlue equation (uhlch is so designated beloe) is Xeet up so that the prograe wll flnd Hto (a.k.a. X) when Y ls equal to Xzero. The many equallons that preceed the operatlve equatlon ars partlons of the Xflnal equation. They are eeperate to make the operatlue equatlon more Xnanageable.
x -
Whe belos valuee are Inoute that are reaulred for the equatlone that have been

```
Xobtalned from "The Fundamentals of Alreraft Design" by Leland M. HIcolla
(Chapter 20)
H=4.5; XUl\lmat* Load Factor
toc=0.12; XHaxlmum Thlckness Ratlo
Lle-(21*pl/180); XLeadIng Edge Seeep
Cl=4; XChord Length at Ilp
Cr-13.75; XChord Length at Root
l=Ct/Cr; XTaper Ratlo
A-8.11; XRepect Ratlo
Sw-639; xHIng frea
Sht=180; XHorizontal Tall Planfor Area
Bht-24; XSpan of Horlzontal Tall
tRht=0.86; XThleknese of Horlzontal Tall at Root
Caac=9.77; XHRC of the Uling
Lt-25; \Tall Moment Arm
Htllu=0; XHorlzontal Tall Helght to Uertical Tall llelght Nat lo
Sut-45; XUertical Tall Area
M-.78; XHaxlmum Mach Number at Sea Level
Sr-22; XRudder Area
Aut-1.111; &Repect Ratlo of Vertlcal Tall
It-0.5; XTaper Ratlo of Vertlcal Tall
Lut=(30*pl/180); XSeep of the Vertlcal Tall
q-600; XMaximun Dynamle Pressure
Lngth=55; XFuselage Length
H-8; XMaxlmu Fusolage Holgth
Klnl-I; XInlot Constant
Hpll-2; xNumber of Pllote
He-2; XHumber of Englnee
Htron-10000; xHelght of Rulonlce
Her-4; XHumber of Crom
Ksea=149.12; XEJoctlon Seat Constant
Urad-3086; XRadome Helght
Hfuel-14000; LTotal Fuel Helght
x----------------------------------------------------------------------------------------
XThe equatlon numbere from Hlcolal are Included elth the approprlate equatlons.
XThe flrst loop le used to compute the flrst two valuee of Y after the two
XInltlal guesses for Hto (K) have been made. Tso Inltlal guesses are required
Xfor the secant method.
P-1;
for Htom40000:10000:50000,:40K B 50K are the two Inltlal guesses.
X(P)=Hto;
H**19.29*(1*H*Hto/toc*((tanil.lo)-(2*(1-1))/(R*(1+1)))^2+1)*10^(-6))^.464*((1+1)*A
)^.7*S*^.50;*20-2
Yh=(Lto*N)^.813*Sht^.504*(Bht/tRht)^.033*(Cac/Lt)^.28; 20-3a
Wht=.0034*Yh^.915; \20-3a
Yu=(1+HtHu)^.5*(Uto*H)^.363*Sut^1.089*M^.601*Lt^(-.726)*(1+Sr/Sut)^.217*Aut^. 337*
(1+1t)^.363*(cos(Lut))^(-.484):20-3b
```

```
Hut=2*0.19*Yu^1.014;20-3b
Wf=11.03*(Klnl^1.23)*(a*10^(-2))^.245*(Lto*10^(-3))^.90*(Lngth/H)^.61; x20-5
HIg=129.1*(Hto*10^(-3))^.66; <20-7
Uhyd=23.77*(Lto*10^(-3))^1.10;120-35
Hfl-Hpll*(15+.032*INt O*10^(-3));220-39
Hel-He*(4.00+.006*W{0*10^(-3)); 20-40
Hal=.15*(Hto#10^(-3)): \20-42
Hee-346.98*((Wfa+H(ron)*10^(-3))^.509; 20-44
Het =Keaa*Mer^1.2;820-50
Hox=16.89*Her^1.494;20-51
Hac=201.66*((Wtron+200*Her)*10^(-3))^.735; 20-65
Hfc=1.00*(Hto)^.7; Xthle equatlon Is from Roskan PartU
XThe below equation ls the operatlve equatlon.
```



```
pp+Hfc;
P-P+1;
end
Whls concludes the loop that computes the values of }Y\mathrm{ for the two Inltlal
lguegses.
\--------------------------------------------------------------------------------
WThe eecond loop le deelgned to actually flnd the root.The loop allove for up to
xl0 lteratlons.
for J=3:12,
X(J)=X(J-1)-Y(J-1)*((X(J-1)-X(J-2))/(Y(J-1)-Y(J-2)));XThls is the secant method
Xformulal It computes a value of }X\mathrm{ (Hto) from the preulous two K's and thelr
xrespectlve Y valuee. The reet of thle loop juet computee the new value of Y
xirom the newly compulted K. More Informatlon on the eecant method can be found
*In any numerlcal methods book.
Hto-X(J):
Hm=19.29*(1*H*Hto/toc*((tan(Lle)-(2*(1-1))/(A*(1+1)))^2+1)*10^(-6))^.464*((1+1)*R
)^.7*5^^.58;*20-2
Yh=(LIto*N)^.813*Sht^.584*(Bht/&Rht)^.033*(Cmac/Lt)^.28; 20-3a
Wht=.0034*Yh^.915; %20-3a
Yu=(1+HtHu)^.5*(Hto*H)^.363*Sut^1.009*M^.601*Lt^(-.726)*(1+Sr/Sut)^.217*Rut^.337*
(1+1t)^.363*(coe(Lut))^(-.484);20-3b
Hut =2*0.19*Yu^1.014; \20-3b
H/-11.03*(KIn|^1.23)*(q*10^(-2))^.245*(Hto*10^(-3))^.90*(Lngth/H)^.61; 20-5
HIg=129.1*(He o*10^(-3))^.66;20-7
Whyd=23.77*(Ht0*10^(-3))^1.10; 20-35
Hfl=Hpll*(15+.032*Ht O*10^(-3)); <20-39
Hel-He*(4.00+.006*Wto*10^(-3)): 20-40
Hml=.15*(Hto*10^(-3)); 220-42
Heg-346.90*((Hf9+H(ron)*10^(-3))^.509; 20-44
Hat=Kgea*Mcr^1.2; 20-50
Hox=16.89*Her^1.494; \20-51
Hac-201.66*((Wtron+200*Her)*10^(-3))^.735;20-65
Hfc=1.00*(Hlo)^.7!Lthle equatlon ls from Roekam PartU
```

Whe belo equation 1 s the operative equat lon shos root we are seklng. $Y(J)=\left(-H(0)+H E+H h t+H u t+H f+H I g+H h y d+H f I+H_{e} I+H 1+H e s+H s t+H o x+H a c+H r a d+H f u e l+H t r o n+H\right.$ pp+1fc;
end
dlsp(Hto),
xuto $5.14900+04$ lbs

APPENDIX E

AEW1 XLS

AEW1.XLS

SEATS	787	19
	=SUM(B5:B58)	
XCG FROM "5" FEET FORWARD OF NOSE		
	=D59/B59	
ZCG FROM "5 FT BELOW FUSELAGE		
	=F59/B59	
\|xx $=$	= 559	slugs/ft^2
lyy=	-M59	slugs/ft^2
Izz=	- N59	slugs/ft^2
1xy=	0	slugs/ft^2
1xz=	=Q59	slugs/ $/ \mathrm{ft}^{\wedge} 2$
lzy=	0	slugs/ft^2

AEW1.XLS

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $=853^{*} \mathrm{C} 53$ | | $=\mathrm{B} 3^{*} \mathrm{E} 53$ | 0 | |
| | | | | |
| | | | | |
| | | $=$ SUM(F5:F58) | | |
| =SUM(D5:D58) | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

AEW1.XLS

$=(\mathrm{C} 53-\mathrm{Xcg})^{\wedge} 2$	$=(\mathrm{G} 53)^{\wedge} 2$	$=(E 53-Z \mathrm{cg})^{\wedge} 2$	$=\mathrm{B} 53 *(\mathrm{~J} 53+\mathrm{K} 53)$	$=\mathrm{B} 53 *(153+\mathrm{K} 53)$
			= SUM (L5:L57)	=SUM(M5:M57)
			= L58/32.174	=M58/32.174

AEW1.XLS

$=\mathrm{B} 53^{*}(153+\mathrm{J} 53)$	$=0$	$=0$	$=\mathrm{B} 53^{*}(\mathrm{C} 53-\mathrm{Xcg})^{*}(\mathrm{E} 53-\mathrm{Zcg})$
$=$ SUM $(\mathrm{N} 5: \mathrm{N} 57)$	$=0$	$=0$	$=$ SUM(Q5:Q57)
$=\mathrm{N} 58 / 32.174$	$=\mathrm{O} 58 / 32$	$=\mathrm{P} 58 / 32$	$=$ Q58/32.174

AEW1.XLS

SEATS	787	19	14953	9.5	7476.5	0	\|	179.9021
	51393		1665789		560703			
XCG FROM "5" FEET FORW	ARD OF	NOSE						
	32.41276							
ZCG FROM "5 FT BELOW	USELAGE							
	10.91011							
$1 x x=$	100006.3	slugs/ft^2						
$1 \mathrm{ly}=$	74175.85	slugs $/ \mathrm{ft}^{\wedge} 2$						
$1 z z=$	147693.2	slugs/ft^2						
$1 \mathrm{xy}=$	0	slugs $/ \mathrm{ft}^{\wedge} 2$						
$1 \times z=$	-14.9335	slugs/ft^2						
$1 z y=1$	0	slugs/ft^2						

AEW1.XLS

0	1.988411	1564.88	143147.9	141583	0.00	0.00	14,884.90
		3217604	2386534	4751882	0.00	0.00	-480.4688632
		100006.3	74175.85	147693.2	0	0	-14.93345133

 presigumet for 07 liff (ondlacient

\times / c	(v/C) ${ }^{\prime \prime}$	$(\mathrm{Y} / \mathrm{c})_{1}$	$x / 6$	(Y/r) ${ }_{\text {\% }}$	(\%/C)
0.000	0.0000	0.0000	500	. 0584	-. 0554
. 002	. 0092	-. 0092	510	. 0581	-. .0546
. 005	. 0141	-. 0141	. 520	. 0577	-. 0537
. 010	. 0190	-. 0190	530	. 0573	-. 0528
. 020	. 0252	-. 0252	. 540	. 0569	-. 0518
. 030	. 0294	-. 0294	. 550	. 0564	-. 0508
. 040	. 0327	-. 0327	560	. 0559	-. 0496
. 050	. 0354	-. 0353	. 570	. 0554	-. 0484
. 060	. 0377	-. 0376	. 580	. 0549	-. 0471
. 070	. 0397	-. 0396	. 590	. 0543	-. 0457
. 080	. 0415	-. 0414	. 600	. 0537	-. 0443
. 090	. 0431	-. 0430	. 610	. 0530	-. 0429
. 100	. 0446	-. 0445	. 620	. 0523	-. 0414
. 110	. 0459	-. 0459	. 630	. 0516	-. 0398
. 120	. 0471	-. 0472	. 640	. 0508	-. 0382
. 130	. 0483	-. 0484	. 650	. 0500	-. 0366
. 140	. 0494	-. 0495	. 660	. 0491	-. 0349
. 150	. 0504	-. 0505	. 670	. 0482	-. 0332
. 160	. 0513	-. 0514	. 680	. 0472	-. 0315
. 170	. 0522	-. 0523	. 690	. 0462	-. 0298
. 180	. 0530	-. 0531	. 700	. 0451	-. 0280
. 190	. 0537	-. 0539	. 710	. 0440	-. 0262
. 200	. 0544	-. 0546	. 720	. 0428	-. 0244
. 210	. 0551	-. 0553	. 730	. 0416	-. 0226
. 220	. 0557	-. 0559	. 740	. 0403	-. 0208
. 230	. 0562	-. 0564	. 750	. 0390	-. 0191
. 240	. 0567	-. 0569	. 760	. 0376	-. 0174
. 250	. 0572	-. 0574	. 770	. 0362	-. 0157
. 260	. 0576	-. 0578	. 780	. 0347	-. 0141
. 270	. 0580	-. 0582	. 790	. 0332	-. 0125
. 280	. 0584	-. 0585	. 800	. 0316	-. 0110
. 290	. 0587	-. 0588	. 810	. 0300	-. 0095
. 300	. 0590	-. 0591	. 820	. 0283	-. 0082
. 310	. 0592	-. 0593	. 830	. 0266	-. 0070
. 320	. 0594	-. 0595	. 840	. 0248	-. 0059
. 330	. 0596	-. 0596	. 850	. 0230	-. 0050
. 340	. 0598	-. 0597	. 860	. 0211	-. 0043
. 350	. 0599	-. 0598	. 870	. 0192	-. 0038
. 360	. 0600	-. 0598	. 880	. 0172	-. 0035
. 370	. 0601	-. 0598	. 890	. 0152	-. 0033
. 380	. 0601	-. 0598	. 900	. 0131	-. 0034
. 390	. 0601	-. 0597	. 910	. 0110	-. 0036
. 400	. 0601	-. 0596	. 920	. 0088	-. 0041
. 410	. 0601	-. 0594	. 930	. 0065	-. 0049
. 420	. 0600	-. 0592	. 940	. 0042	-. 0059
.430	. 0599	-. 0589	. 950	. 0018	-. 0072
. 440	. 0598	-. 0586	. 960	-. 0007	-. 0087
. 450	. 0596	-. 0582	. 970	-. 0033	-. 0105
. 460	. 0594	-. 0578	. 980	-. 0060	-. 0126
. 470	. 0592	-. 0573	. 990	-. 0088	-. 0150
. 480	. 0590	-. 0567	1.000	-. 0117	-. 0177
. 490	. 0587	-. 0561			

APPENDIX G

Xero lift drog coefflcent of ent lre alreraft. Thls progrom will compute Xlsoloted ports of the olrcroft \& then sum them. This is from ORTCOM.
*
*Part 1: Isoloted Uling
Cr=13.75; Moot Chord (ft)
Ct=4; XIIp Chord (ft)
toc=.12; XThlcknese Ratlo
Lle=21*pl/I80; XLeodIng Edge Sweep (rads)
B=72:thling Span (ft)
$\mathrm{HU}=1.573^{*} 10^{\wedge}(-1)$; xUlscoslty (1 ($\sim 2 / \mathrm{s}$)
Ulnf=820; iFreestream Veloclty (ft/s)
I=Ct/Cr; sTaper Rotlo
82-B/2; Half HIng Span (ft)
TLle=tan(Lle); XTangent of Leodling Edge Sweep (rods)
Clp=1LIe*B2;
Crp=Cl+Ctp-Cr;
Sfp=2*((82*(Cr+Crp))-(.5*82*Ctp)-(.5*82*Crp)); xhling Area (ft*2)
Cb=(2/3)*Cr*((1+1+1~2)/(1+1)); XC bor - Meon Aerodynamlc Chord
Re=UInf*Cb/HU; RReynolds Number

Cdom=2*Cbf* $\left(1+\left(2^{*} \operatorname{toc}\right)+\left(100^{*}\left(0 c^{\wedge} 4\right)\right)\right.$, XCdo of the Uling. eqn. 4.1.5.10
XPort 2: Isolated Rotodome (not Including Pylon)
Crr=24; XRotodone Root Chord (ft)
Ctr=0; MRotodome Ilp Chord (fi)
tocr=.135; ARotodome Thlckness Rotlo
Ir=Ctr/Crr; XRotodome Toper Rotlo
Cbr* $(2 / 3)$ * $C r r^{*}\left(\left(1+|r+| r^{\wedge} 2\right) /(1+\mid r)\right)$; $X C$ bar - Rotodome Meon Rerodynamic Chord
Rer-Ulnf*Cbr/HU; XReynolds Humber
Cbfr=0.455* (log10(Rer)) (-2.58); Rotodome nuerage Turbulent SkIn Frlction
MCoofflctent
 Yof Rotodome-Uling Preo Rotlo. eqn. 4.1.5.1o
Sr=pl*12^2; XRotodowe Area (ft~2)
Cdorp=Cdor*Sr/Sfo, XCdo prlme of Aotodome
X
XPort 3: Rolodome Pylon (Support)
The Pylon has been approximoted oe a wing ith the folloulng dimenslons.
Crs=13; XRotodome Pylon Root Chord (ft)
Ctse日; XRotodone Pylon Ilp Chord (ft)
tocs=.3; XRotodome Pylon Thlckness Rotlo
le=Cls/Crs; XRotodone Pylon Taper Ratlo
Cbs $=(2 / 3) * \operatorname{Cr} *\left(\left(1+1 s+1 s^{\wedge} 2\right) /(1+\mid e)\right) ;$ Z bor-Rotodome Pylon Heon Aerodynamlc Chord Hes-UInf*Cbs/HU; XAéynolds Humber
Cbfs=0.455* $(\log 10(\text { Res }))^{\wedge}(-2.58)$; XRot odome Pylon Ruerage Turbulent SkIn Friction Coefflctent


```
    Xmultipllcation of Pylon-Wlng Area Ratlo. eqn. 4.1.5.1a
    9s=((13+0)/2)*0.4;*Rotodone Pylon frea (ft"2)
    Cdosp=Cdos*Ss/SIp,XCdo prlme of Rotodone Pylon
\
XNOTE:The actual Cdo from Parts 2 & 3 mas obtalned fromGruman and 1s 0.000.
*
xPart 4: lsolated Fusolage (Body)
XThls program assumes a oglve shaped body.
Omax=6; MMax Dlameter of Fuseiage
Lb=55; XFuselage Length
FR-Lb/Dmax;XFIneness Ratlo
Db=1.0;XBase Dlameter
Reb=Ulnf*Lb/NU; XReynolds Number
Cbib=0.455*(loglD(Reb))^(-2.58); NFuselage Average Turbulent SkIn Frlctlon
XCoofflclent
SmoSb=18.85; mFrom USAF S&C DatCom Flgure 2.3.3
Sb-pl*4^2;XFrontal Area of Fuselage
Cdof=1.02*Cb/*(1+(1.5/(Lb/0max)^1.5)+(7/(Lb/Dmax)^3))*SwoSb;XCdo-Fuselage SkIn
XFrletlon. Flrst part of eqn, 4.2.3.1a
Cdobb=(0.029*(Db/Dmax)^3)/(sqrt(Cdof));XAase Pressure Cdo. eqn, 4.2.3.1b
Cdob=Cdof+Cdobb;XCdo of Fuselage prlor to multipllcatlon of Fuselage-Wling frea
&Ratlo. eqn. 4.2.3.1a
Cdobp=Cdob*Sb/Sfp,XCdo prlme of Fuselage
x
XPart 5: lsolated Horlzontal Tall
Crh=9;xHorlzontal Tall Root Chord (ft)
Cth=6;xHorlzontal Tall Tlp Chord (ft)
Clhp=3;
toch=.12;Horlzontal Tall Thlckness Aatlo
Bh2-12;XHorlzontal Tall Half Span
Ih=Cth/Crh;xHorlzontal Tall Taper Ratlo
Cbh=(2/3)*Crh*((1+1h+lh^2)/(l+1h)); XC bar-Horlzontal Tall Mean Rerodynamle Chord
foh=UInf*Cbh/HU;XReynolds Humber
Cbih=0.455*(loglO(Reh))^(-2.58);xHorlzontal Tall Average Turbulent Skln Frletlon
XCoofflclent
Cdoh-2*Cbih*(1+(2*toch)+(100*toch^4));XCdo of Horlzontal Tall prlor to
Xmultlpllcatlon of Horlzontal Tall-HIng Area Aatlo. eqn. 4.3.3.1a
Saph=2*(Crh*Bh2-.5*Bh2*Cthp);XHorlzontal Tall Aroa (ft^2)
Cdohp=Cdoh*Saph/Sfp,&Cdo prlmo of Horlzontal Tall
*-----------------------------
Cru=6;XUertlcal Tall Root Chord (ft)
Ctu=3;XUertlcal Tall Tlp Chord (ft)
Cthp=3;
tocu=.12;XUertlcal Tall Thlckness Ratlo
lu=Ctu/Cru;NOrtlcal Tall Taper Ratlo
Cbu*(2/3)*Cru*((1+|u+|u^2)/(1+|u)):XC bar-Uertlcal Tall Mean Aerodunamlc Chord
```

Reu=UInf*Cbu/NU; XReynolds Humber
Cbfu=0.155* (logio(Reu))^(-2.58); XUertlcal rall Average furbulent SkIn frlctlon XCoefflelent
Cdou=2*Cbfu*(1+(2* (ocu) +(100*tocu^4)); XCdo of Uertlcal Tall prlor to Xmultiplication of Vertical tall-uling frea Ratlo. eqn. 4.4.3.1a Sapu=90; XUertlcal Tall Rrea (ft^2)
Cdoup=Cdou*Sapu/Sfo, XCdo prlme of Uertical Tall
x
Motal
Cdo $=$ Cdon + Cdorp + Cdosp + Cdobp + Cdohp + Cdoup, XTotal Alreraft Cdo. ean.4.5.3. Ib Cdoa=Cdou+. $008+$ Cdobp+Cdohp+Cdoup, XTotal Alreraft $C d o$ using actual rotodome drag Inforation.
-
x (do $=0.0177$
x Cdoa=0.0205

APPENDIX H

WThls progran is designed to calculate the Coefflcient of Drag, LIft-to-Drag xhatlo, Thrust Requlred, Poeer Requlred, Power fuallable, Excess Pomer, Rate Xof Cllab, Endurance and Aange. The equations are found In any Intrductory Xalreraft book. Thls analxysls was performed using Anderson's "Introduction to XFIIght, Chapter 6.
Cdo=0.0205; MAlrcraft Coefflctent of Orag
AR=0.11; XRspect Ratlo

- $=0.0$; XEfflelency
L-53000; XRircraft Helght
मfuel=14000; XFuel Height
He=53000-14000; XEmpty Helght
no=. 0023 769*1; XOenslty (sl/ft^3)
SIG=RO/.0023769; XDenslty Ratlo
Thr=25400*(SIG); XThrust
SFC=0.33/3600; XSpeciflc Fuel Consumption
$\mathrm{S}=639$; IWing Area (ft^2)
$K=1 /\left(p l * R^{*}{ }^{*}\right)$)
T-1; icounter
for $\mathrm{A}=.05: .05: 3$, Xthls is the range of Cl chosen.
$C f(I)=R ;$ Coefflcient of Lift fiatrlx
Clsq(T)=A^2; XCI squared
$C d(T)=C d o+K * A^{\wedge} 2 ;$ XComputed $C d$ Matrix. an. 6.1c
LoD(T)=CI(T)/Cd(T); XLIft-to-Drag Fatlo (max L/D=16)
TA(T)=H/LoD(T); XThrust Requlred for Level, Unaccelerated FIlght. eqn. 6.I5
$U(T)=\operatorname{sart}(2 * W /(R O * S * I(I))) ;$ XUeloclty calculated from $C l$. eqn. 6.16
PTA(T)=. 5*RO*U(T)^2*S*Cdo; XParasltic Thrust Required for Lovel, Unaccelerated
2Filght. eqn. 6.17 (1st part)

XFIlght. eqn. 6.17 (2nd part)
PR(T)=TR(T)*U(T); MPower Hequlred for Level, Unaccelerated Fllght, eqn. 6. 23

UUnaccelerated Filght (double check). eqn. 6.26
PPA (T)=PTR(T)*U(T); \&Parasitlc Power Required for Level, Unaccelerated FIIght
IPR(T)=|TA(T)*U(T);induced Pover Required for Level, Unaccelerated Filght
PAp(T)=Thr*U(T); IPower Ruallable (the slope of thls Ilne Is the thrust)
$\operatorname{EDR}(T)=(1 / S F C) * \operatorname{LoD}(T) * \log (W /$ He $)$; Endurance. eqn. (6.63)
$\operatorname{AHG}(T)=2^{*} \operatorname{sqrt}\left(2 /\left(A O^{*} S\right)\right) *(1 / S F C) *(\operatorname{sart}(C I(I)) / C d(T)) *(\operatorname{sart}(H)-\operatorname{sart}$ (We)); XRange-
Meqn. (6.68)
Gang (T)=atan(1/LoD(T))*(|80/p|);xG|ide angle (In degrees). eqn. 6.47
XGrng(T)=H*LoD(T);XGIIde Range. Ilgure 6.30
$T-T+1 ;$ xcount er
end
X=1; lcounter
for UA=0:35.7:999.6, 80 to 1000 foe
UAH(X) =UR; XUolocity Matrix
$P A(X)$-Thr \ddagger UA: PPover Auallable Matrlx (Thr Is the slope of thls IIne)

```
    xax+1; xcounter
end
PS=PAp-PA;XExcess Power Matrix. eqn. 6.42
HoC-PS/H; XAate of Cllmb. eqn. 6.43
Thet=asln(RoC./U).*(|80/pi);\cllmb angle. eqn. 6.41
\disp(LoD),
\disp(PS),
\dlsp(RoC.*60),
Xolot(Cd,Cl),
Molot(Cd,Clsq),
lolot(U,TA),
xplot(U,TA,U,PTA,'--',U,1IA,'--'),
xplot(U,PR,U,PPR,'--',U,IPR,'--',U,PRp,'x',UAM,PR,'-'),
$plot(U,EOR./3600),
xplot(U, RNG./6000),
xplot(U,HoC*60),
x-------------------------------------------------------------------------------
Xthis is a result of actual thrust/power obtained from OHX/OFFK
PAsl=[8347933 11130570 13378120 13693171 14048422 13970359 13852273];xacqual PA
Matrix at sea level
PA15 - 1.0e+07*[0.5347 0.70064 0.0346 1.13623 1.2283];XPower Auallablo at 15K
PA35-1.0e+06*[2.2604 3.0139 3.6222 5.5050 6.2335];xPower Auallable at 35K
Mgl=[.3 .4 .5 .6 .7 .0 .9];
H=U./(1116);
Mam-UaM./(1116);
M15-[.3 .4 .5 . 0 .99];
M35-[.3 .4 .5 . 0 .9];
Xplot(H,PR,'o',M,PAp,'-',Mam,PA,'-',M,PR,'-' ,M35,PA35,' --'),
PSAI=1.0e+07*[0 .2195122 .6585366 .8700480 1.0341463 1.03 .9993 .9405 . 8893
.0443 . 8046 . 7692 .7374 .7087 .6825 .6586 .6365 .6161 .5972 .5796 .5631 .5477
.5332 .5194 . 5065 . 4942 .4825 .4714 .4609 .4508 .4411 .4318 .4230 .4144 .4062
.3983 zerog(1,25)];
PSA2-1.0e+07*[zerog(1,36) . 3907 .3034 . 3763 . 3694 .3620 . 3563 . 3501 . 3441 . 3382
.3325 . 3269 . 3215 . 3163 . 311 . 3062 . 3013 .2966 .2920 .2874 . 2830 .2787 . 2745
.2703 .2663 .2623];
PSR-PSRI+PSR2;Xactual PS (excese power) natrix at Sea Level
MAI=[.04 . 8 . % . 6 . 5 . 45 . 4198 . 3886 . 3635 . 3427 . 3252 . 3100 . 2960 . 2852 . 2748
.2655 . 2571 . 2494 . 2424 . 2359 . 2299 . 2244 . 2192 . 2144 . 2099 . 2056 . 2017 . 1979
1943 .1909 .1877 .1847 .1810 .1790 .1763 .1730 .1714 .1690 .1668 .1647 .1626
zeros(1,20)];
#H2-[zeros(1,41) .1606 . 1507 .1560 .1550 . 1533 . 1516 .1500 .1484 .1469 .1454
1440 .1426 . 1412 .1399 . 1386 .1374 .1362 .1350 .1339 .1327];
|R-||R1+|R2;
HoCR=(PSA./W)*60; %actual RoC Matrix
Xolot(HR,HoCA),
PSAI51=1.00+06*[0 1.852 4.259 5.556 6.204 6.296 5.926 5.6713 5.4431 5.2319
5.0362 4.8543 4.6846 4.5260 4.3771 4.2371 4.1051 3.9804 3.8621 3.7499 3.6431
```

```
3.5413 3.4441 3.3511 3.2620 3.1766 3.0944 3.0154 2.9394 2.8660 2.7951
zeros(1,20)];
PSA152-1.08+06*[zeros(1,31) 2.7267 2.6605 2.5963 2.5342 2.4739 2.4154 2.3585
2.3032 2.2494 2.1970 2.1460 2.0962 2.0477 2.0003 1.9541 1.g089 1.8647 1.8215
1.7792 1.7370 1.6973 1.6575 1.6186 1.5804 1.5430 1.5062];
PSR15-PSA151+PSA152; &actual PS (excess power) matrlx at I5K
MR151={.957 .9 . 0 . 7 . 6 . 5 . 45 0.4023 0.3852 0.3701 0.3566 0.3445 0.3336 0.3236
0.3145 0.3061 0.2984 0.2912 0.2845 0.2782 0.2724 0.2669 0.2617 0.2560 0. 2522
0.2470 0.2436 0.2396 0.2359 0.2323 0.2280 0.2255 0.2224 0.2194 0.2165
zeros(1,22)];
HR152-[zeros(1,35) 0.2137 0.2110 0.2084 0.2059 0.2035 0.2012 0.1989 0.1967
0.1946 0.1926 0.1906 0.1887 0.1868 0.1850 0.1833 0.1816 0.1799 0.1783 0.1767
0.1752 0.1737 0.17231:
IIR15=|IR151 +MR152;
HoCR15=(PSR15./W)*60; Xactual MoC llatrlx
Iolot (MA15, RoCR15,'--'),
```

```
Xthls program computeg the tokeoff and landing dlstances for the nelf atroraft
It Is bosed on the anolygls presented In chopter iO of Nlcolol
x
Ulo-185; Xueloclly ot llit off
Y-25400; Xthrugt
g-32.17;Xoccelerotlon due to groulty
H=53000;xeelght
Cdo=.02;Xporasltlc drog
S-639;xtotal Ilng oreo
nO=.0023769;\denslly (90 deg. doy==).002241)
Cl-2.04;Xcoefflclent of IIfl
b=72;X0Ing spon
h=11.4;Xhelght of mlng obove ground
Fh=((16*h/b)^2)/(1+((16*h/b)^2));
AR=8.11; Xospect rotlo
e=.B;Xefflclency
K=1/(pl*e*RR);
L=.5*NO*Ulo^2*S*Cl;\llft
Cd=Cdo+(Ph*Cl^2*K); lcoofllclent of drog
0-.5*RO*Ulo^2*S*Cd;Xdrog
(r=.04;xfrlctlon
Slo=(Ulo^2*(H/g))/(2*(T-(D*ir*(H-L)))),xdlatonce lo lokeoff
Sro*3*Ulo,Xdletonce lo rolole
Af=U10^2/(g*(1.152-1)); Rrodlus of rotatlon
Scl=Rf*gln(.16978),
Htof-Rf(1-cos(.16978)),
Sobs=(50-Iltof)/tan(.16978),
Stot=Slo+Sro+Scl+Sobe,
Sloo-1.44*H^2/(g*RO*S*3*(T-(0+fr*(H-L)))),
\-------
C1m=3;
Us=sqrt(2*以I/(CI**RO*S));
U1-1.2*Us;
UIf=1.235*U9;
CIf=2*|I/(AO*U|f^2*S);
Cd=Cdo+(Ph*CIm^2*K); Xcoofllclent of drog
0=.5*RO*U1^2*S*Cd;xdrog
frl=.5;
A1f=U1f^2/(g*(1.22-1)),
Sgl=(50-(Alf*(1-cos(2*pl/l80))))/tan(2*pl/180),
SIf=Alf*gln(2*口l/l80),
SI= = 69**^2/(g* nO*S*Clm*(I-(D+{rl*(H-L)))), 又londling rollout
S|ft=Sgl+S|f+S|,
```


APPENDIX 1

Xhis progran ill computs the stabllity derluatlues for thres flight conditions．The conditions will be at $M=0.2,0.40,0.70$ ．Corresponding altitudes －IIl be hesl，30K，and 30K respectlvely．These condltions illl be denoted by a 1,2 ，and 3 respectluely．Xhen parameters have defined ilth little more than an educated guess，it all be denoted elth a symbol．Calculatlons are done InW Roskam Part UI．

```
8-----------------------------------------------------------------------------------------
```



```
S=639; Iming reference area
Lc4-17.5*pl/180; \sweep at quarter chord
K=1/(D|*.0*日.11);
Cdo=0.02; Xparasltic drag coefflclent
Cmowf=-.1542; XRoskam Part Ul,Chap 8
dCmdCl=-. 245; &(\partialCm/\partialCI)average of DatCom & Roskam results
0-1; Xcount er
for 11=.2:. 28:.77,
    If M<0.3,
    P=2116.2;Xpressure sea level
    elge
    F=2116.2*.2975;\prossure - 30K
    end
    MM(Q)=M;
    CL(Q)=|*2/(1.4*P*#^2*S);Xcoefflclent of IIft
    Cm(Q)=Cmonf+CL(Q)* dCmdCI; Illnear moment coefficient
    CD(Q)-Cdo+K*CL(O)^2; \drag coefflclent
    CDu(0)=(-4)*K*CL(0)^2; &eqn(10.10)
    CLu(0)=(H^2*\operatorname{cos(Lc4)^2*CL(0))/(1-M^2*}\operatorname{cos(Lc4)^2); (eqn(10.11)}
    O=0+1; Icount or
end
\
CLa=[4.022 5.17 6.25];\computed In the LIft Curue Slope program.
Cma=dCodC1.*CLa;Xeqn(10.19)
x
Sh=100; Xhorlzontal tall surface area
Xbach=(25.7/9.77);Xdsilned In chapter 10, Page 380
Kbeg-(5.1/9.77);\deflned In chapter 10, Page 380
ada=.95; 亚horlzontal-to-freestream dynamle pressure (qh/q)
deda=0.33; Xedounsash gradient at horlzontal tall (page 272)
CLah=[3.00 3.35 4.43];㐌llft curve slopse of the horlzontal suertlcal talls
Ubh=(Xbach-Kbcg)*(Sh/S); $horlzontal tall volume coefflclent
CLad-2*ada*deda*Ubh.*CLah; XCI alpha dot
Cmad=(-2)*ada*deda*Ubh*(Xbach-Xbcg).*CLah; \Cm alpha dot
\
XThle concludes the longltudinal calculatlons FOR HOU and beg!ns Lat-DIr
Xcalculat lone.
X-
*1) Cuß-oldsforce-due-to-sldsallo (10.2.4.1.1)
```

```
    Dlh=2;\dlhedral (In degrees)
    Kl=1.75; (fron (lguro 10.0 (2x=-9.5 & di/2=4)
    Row3.5;Xradlus of fuselage ehere the flom ceases to be a potenllal (flgl0.10,11)
    So-pl*Ro^2;Xarea at that point
    Bu=lo;Xtotal span of the vertlcal lall
    Su=45;larea of one of the vertical tall,
    Au=Bu^2/Su;\uertlcal lall aspect rallo
    nural lo=1.028;xiron llgure 10.19
    Aueff=Au*Ruratlo;xeffectlue Au
    Cyßueff=3;xfrom flgure 10.18
    Cyratlo-0.865;& from flgure 10.17
    Cyß-=-.00573*D1h; XCyß of the rlng
    Cyßf=(-2)*KI*(So/S); XCyß of the fugelage
    Cyßu=(-2)*Cyrat lo*Cyßueff*(Su/S); CCyB of the vertlcal tall
    Cyß=Cyß-+Cyßf+Cyßu;xthe grand total
\
    82) ClB-rollling moment-due-to-gldegllp (10.2.1.1.2)
    CIBCI=-.001; from flgure 10.20. Iteratlng betveen taper ratlo of 0 & . 5
    KmL=[1.01 1.125 1.3];又flgure 10.21 uslng M=.2,.48,.76 & c/2=15 degreeg
    Kf=0.97;Xflgure 10.22
    CIBCIA=.0002;Xflgure 10.23
    CIBOIh=-.00022;Xflgure 10.24. Iteratling belmeen laper ratlo of 0& . 5
    8-72;Xulng span
    AR-B.1I;Xaspect ratlo
    Ofque=((01*3.75^2)/.7854)^.5;
    \triangleCIBOIh=(-.0005)*RR*(DPave/B)^2;
    KmOlh=[1.01 1.07 1.2];\Ilgure 10.25 uglng |=.2,.48,.76 & c/2-15 degreeg
    Z0--3.5;xgee flgure 10.9
    \triangleClBr=*.042*RR^.5*(Z-/B)*(Dfave/B);
    etan=0.94;\mp@subsup{x}{}{2}tan(17.5)tlmes wing telst of (-3) degrees. se0 page 397
    \DeltaClBet=-.000031;xflgure 10.26
    for 0-1:3,
    CIB*f(0)-57.3*(CL(0)*(CIBCI*KmL(0)*Kf+CIBCIA)+DIh*(CIBOIh*KmDIh(0)+\triangleCIBDIh)+ACIBZ
*etan*}\triangleCIBel):XCIB of the elng-fuselage combinatlo
end
```



```
ClBhf=.65.*CIB|f;x'CIB of the tall-fuselage comblnation
ClBh=(Sh*Bh/(S*B)).*CIBhf;XCIB of the horlzontal tall
Zu=1;\gee flgure 10.27
Lu-24;xgee flgure 10.27
alf=pl/180*[10 4 0]; les!1mated A.O.A from the respectlue Cl's
ClBu=Cyß*((Zu.*}\operatorname{cos(alf)-LU.*sln(alf))/B);XC|B of the vertlcal lall
CIB=CIBef+CIBh+CIBu;xthe grand total
*--
\3) Cnß-yavlng moment-due-to-gldegllp (10.2.4.1.3)
Cnßu=0; Xapproxlmate
Kn*.00165:Mflaure 10.28
```

```
Krl-1.55; X* flgure 10.29
Sfs-376; Xapproxlmate luselage slde area
Lf=55;\luselage length
Cnßf=(-57.3)*Kn*Krl*(Sfs*Lf/(S*B)); XCnB of the fuselage
CnBu=(-Cyßu)*((Lu.*cos(a|f)+Zu.*sln(alf))/B); XCnB of the vertical tall
Cn\beta=Cn\betaw+Cn\betaf+CnBu;xthe grand total
X-
*4) Cyßd-sldeforce-due-to-rate of-sldesllp (10.2.5.1)
SIgba=[-.023-.025-.028];xllgure 10.30
SIgbd=[.84.87.90];(flgure 10.31
SIgbel-{-.02-.022 -.024];xflgure 10.32
SIgbwf={.14 .145 .15]; &flgure 10.33
ot=(-3);**|Ing trlat In degrees
Lp=26;Xquarter chord of wing to quarter chord of vertlcal tall
Zp=10;Xfrom botton of fuselage to quarter chord of the vertloal tall
for 0-1:3,
dSlgdB(0)=Slgba(0)*alf(0)*100/pl+Slgbd(0)*(DIh/5?.3)-Slgbet(0)*el+Slgb*f(0); xeqn.
    10.47
Cyßd(0)=2*dSIgdB(0)*(Su/S)*((Lp*cos(alf(0))+2p*gln(alf(0)))/B); Xeqn. 10.16
X-
X5) CIBd-rollling moment-due-to-rate of-sldesllp (10.2.5.2)
CIBd(0)=Cyßd(0)*((Zp*cos(alf(0))-Lp*sln(alf(0)))/B);Xeqn. 10.40
\
46) Cnßd-yawling moment-due-to-rate of-sidesllp (10.2.5.3)
Cnßd(0)=Cyßd(0)*((Lp*cos(alf(0))+2D*gln(alf(0)))/B);Xeqn. 10.49
X
17) Cyp- gideforce-due-to-roll rate (10.2.6.1)
Cyp(0)=2*Cyßu*((Zu*\operatorname{cos(alf(0))-Lu*sln(alf(0)))/B);Xean. 10.50}
end
x
x8) Clp- rolling moment-due-to-roll rate (10.2.6.2)
for 0-1:3,
8Ha(0)=(1-HH(0)^2)^.5; Xeqn. 10.53
KMa(0)=(CLa(0)*BMa(0))/(2*p1); Xeqn.10.54
end
CLaratlo=1; Xllit coefflclent ratlo
8Clpk=[-.49 -.48-.43];(llgure 10.35
Clpdr=1-4*2*/(8*sln(2*pl/180))+12*(2*/B)^2*(sln(2*pl/|80))^2;Xeqn. 10.55
ClpDCLr=-.0015;xflgure 10.36
CDom=.0059;(from the CDo program
Clph=0;Xapproxlmate from eqn. 10.59
Clpu=CyBu*2*(Zu/B)^2; %eqn 10.60
for 0-1:3,
Clpdrag(0)=ClpDCLr*CL(0)^2-.125*CDom;Neqn. 10.56
Clpw(0)=BCIpk(0)*(KMa(0)/BHIa(0))*CLarat Io*CIpdr+Clpdrag(0);Xeqn. 10.52
end
ClomCloh+CloutClowinthe arand total (IInelO0)
```

```
x9) Cnd-yawling moment-due-to-roll rate (10.2.0.3)
Cbar=9.77;MH.A.C.
Xbar=0;\dletance from the c.g. to the a.c. (posltue for a.c. aft of c.g.)
Cnpet=.0004;xflgure 10.37
CO=cos(Lc4);CO2=(cos(Lc4))^2;1n=tan(Lc4);1n2=tan(Lc4)^2;
CnpCl00-(-1/6)*(RA+6*(RA+CO)*((Xbar/Cbar)*TA/AR+TA2//2))/(AR+4*CO):Xeqn. 10.65
for 0-1:3,
Bno(0)=(1-1MM(0)^2*CO2)^.5; Xeqn. 10.64
CnDCIOH(Q)=((AR+4*CO)/(AR*Bnp(0)+4*CO))* ((AR*Bnp(0)*.5*(AR*Bnp(0)+CO)*TR2)/(AR* . 5
*(RR+CO)*TR2))*CnpC 100; Xeqn. 10.63
Cnpm(Q)=(-CnpClOM(0))*CL(0)+Cnpet*et; Xeqn, 10.62
Cnpu(0)=(-(2/(B^2)))*CyBu*(Lu*\operatorname{cos(alf(0))+2U*sln(alf(0)))*(Zu*cos(alf(0))-L\mp@subsup{v}{}{*}|\operatorname{ln}(})=(0)
alf(0))-2v);Xeqn. 10.67
end
Cnp=Cnpe+Cnpu, Xthe grand total
\
$back to the longltudinal derluatlues brlefly
\--
x9) Clq- Ilft-due-to-pltch rate (10.2.7.2)
Xo=0;xflgure 10.39
for 0=1:3,
Cla*10(0)-(.5+2*Y*/Cbar)*CLa(0);Xeqn. 10.71
Clq*(0)-((AR+2*CO)/(AR*Bnp(0)+2*CO))*Clq*10(0); <eqn. 10.70
Clah(0)=2*CLah(0)*Ubh*ada; Xeqn. 10.72
end
Cla=Claw+Clah,xthe grand total
\-----------------------------------------------------
for 0-1:3,
Cmq(0)=1.1*(-2)*CLah(0)*ada*Ubh*(Xbach-Xbcg); Xeqn. 10.78 t1meg 1.1 to account
Xfor the mlng-body component.Thls Is from Roskam's "Mlrolane Fllght Dynamlce and
XRutomatlc Fllght Controlg" book Part I, page 188.
end
\
Xback to the lat-der derluatlues brlefly
*-
\11) Cyr- oldeforce-due-to-yaw rate (10.2.8.1)
for Q=1:3,
Cyr(0)=(-2)*Cyßu*(Lu*\operatorname{cos(alf(0))+2u*gln(alf(0)))/8;*eqn. 10.80}00
end
\
x12) Cir- rollling moment-due-to-yaw rate (10.2.0.2)
CIrCLO0-.257;Xflgure 10.41
AClrdlh=.083*pl*RR*gln(Lc4)/(nR+4*CO);xeqn. 10.84
ACIret=(-.014);XIIgure 10.42
for 0-1:3.
```



```
) +4*(0))*TA2/8; Xnumerator of eqn. 10.83
\(0 E 1=1+((\) AR \(+2 * C O) /(R A+4 * C O)) * T A 2 / 8 ; x d e n o m\) Inat or of eqn. 10.83
CIrCLOM(0)=(HUI/DE1)*CIrCLOO; Xean. 10.83
CIr* \((0)=C L(0) * C \operatorname{IrCLOM}(0)+\Delta C \operatorname{Ird} / h * D / h+\Delta C\) Iret*et; Xeqn. 10.82
```



```
alf(0))); Xeqn. 10.8?
end
CIr=CIrw+CIrvixthe grand total
x
又13) Cnr-yasling monent-due-to-yas rate (10.2.8.3)
CnrCLr=0; lilgure 10.44
CnrCDo=(-.35); \&llgure 10.45
for 0=1:3,
Cnr*(0)=CnrCLr*CL(0)^2+CnrCDo*CDow; Xeqn. 10.8?
```



```
end
Cnr=CnratCnru; Xthe grand total
\(x\)
XElevator control derluatlues (10.3.2)
X-
\(\mathrm{Kb}=.47\); Xflgure 8.52
CIdCIdt=. 82 ; \(x^{2}\) llgure 0.15. Hote:the elevator-to-hor. tall chord ratlo \& the
Xalleron-to-chord ratlo ars about the same. Thls ls Important for sectlon 17).
Cldt-5.2; Xflgure 0.14
Kprlme-1; Xapproximate (flgure 8.13)
AdCLAdel-1.02;xflgure 0.53
Alfde=Kb*CIdCIdt*CIdt*AdCLAdcl*(Kprlmo/(2*pl*.88)); X*eqn. 10.94
x
(14) Clse- Ilft-due-to-elevat or (10.3.2.2)
for 0-1:3,
CLIh(0)=ada*(Sh/S)*CLah(0); Xean. 10.91
Clas(0)=Alfde*CLIh(0); Xean. 10.95
end
x-
(15) Cnse-pltching monent-due-to-elevat or (10.3.2.3)
for 0-1:3,
Cnlh(0)=ada*Ub * (-CLah(0)); Xean. 10.91
Cmas(0)=Alfde*Culh(0); Xean. 10.95
end
\(x\) -
X \({ }^{2} l l e r o n\) control derluatlues (10.3.5)
\&
216) Cyaa- sldeforce-due-to-alleron (10.3.5.1)
Cysa=0;Xean. 10.105
\(x\) -
817) Claa-rolllna moment-due-to-alléron (10.3.5.1)
```

```
bCpl\Deltak=[.4 .395 .385]:xflgure 10.46b
for Q=1:S,
Cpla(0)=(KMa(0)/Blia(0))*bCplsk(0); Xeqn. 10.107
Alfdela(0)=(CIdCldt*CIdt)/CLa(0); Xean. 10.109.
Cla(0)=Alfdela(0)*Cpla(0); leqn. 10.108
end
Claa=2*Claixean. 10.113
\
*10) Cnsa- yaming moment-due-to-alleron (lo.3.5.1)
Ka=-.115; xllgure 10.48
for 0-1:3,
Cnaa(0)=Ka*CL(0)*Claa(0);xean. 10.114
end
x
(19) Cyar- oldeforce-due-to-alleron (10.3.0.1)
Su2-90; Xlotal vertlcal tall area
kp2-.8;\flgure 8.13
CldCldt2-.82;部lgure 8.15
Clde2-5.7;xllgure 0.14
for 0-1:3,
Cyar(0)-CLah(0)*Kp2*Kb*CldCldt2*Cldt2*(Su2/S);xean. 10.123
end
x
x20) Clar- rolllng moment-due-to-alleron (10.3.8.2)
for 0=1:3,
Clar(0)=Cyar(0)*((2u*cos(alr(0))-Lu*gln(alf(0)))/B);xeqn. 10,124
end
l-
\21) Cnar- yamlng moment-due-to-alleron (10.3.8.3)
for Q=1:3,
Cnar(0)=(-Cyar(0))*((Lu*\operatorname{cos(alf(0))+2u*gln(alf(0)))/0); xeqn. 10.125}
end
x
```


APPENDIX

Thls progran Elll calculate the dynolc characterlstics of the AEW alrcraft. The programalng is based on the dynailc approximations presented in EikIn's baak, Flrst edltion, 1959 , Chapters 68 . Stabllily Derluatlues are acaulred fram the Stablllty Der\$luatlue progran.
x -
Xlangltudlnal modes
X-
llass=53000/32.2; xmass In slugs
Cbar=9.77; Imean aeradynamlc chord
S-639; xwling reference area
LI=Cbar/2; Xpage 192 (langltudinal only)
AD1 =. D023769; Xdenslty at sea level
RO2 = . OD23769*.3106; Xdenslty at 35000 ft.
MUI-Mass/(AO1*S*LI); Xpage 192
IUU2-Mass/(AO2*S*LI); Xpage 192
$C L=[1.21130 .7244 \quad 0.2890]$; Ireference $C L$. From Stab. Der. program
$C D=[0.0956 \quad 0.0457 \quad 0.0241]$ Ireference $C D$. Fram Stab. Der. program
$C L a=[4.8220 \quad 5.17006 .2500]$ ifreference CLa. Fram Stab. Der. pragram
$C D u=[-D .3024-0.1030-0.0164]$; Xreference CDu. Fram Stab. Der. program alf=pl//80*[10 40]; feetlmated A.D.A from the reepectlue Cl^{\prime} 's
X

Xphugold modes

Unp(1)=CL(1)/(sart(2)*lUI); Xean. (6.7,4) assumlng negliglble Czu and Cza
Unp(2)=CL(2)/(sart(2)*lU2); Xean. (6.7,4) assuming negliglble Czu and Cza
Unp(3)=CL(3)/(sqrt(2)*lU2); Xeqn. (6.7.4) assuning negliglble Czu and Cza
far $0=1: 3$,
$\operatorname{Cxu}(0)=(-2) *(C D(0)+C L(0) * \tan (a l f(0)))-\operatorname{COU}(0) ;$ page 150 (11)
$\operatorname{Zep}(Q)=(-C x u(0)) /(2 * \operatorname{sqr}(2) * C L(0)) ;$ \&eqn. ($6.7,4)$ assuming negllglble Czu and Czq
$H d p(Q)=\operatorname{sart}\left(1-2 e p(Q)^{\wedge} 2\right) * \operatorname{Inp}(Q) ;$ ddamplng frequency
$\operatorname{Tp}(0)=\left(2^{*} p 1\right) / H d p(0) ;$ Pperlod
end
Charl=[1 (2*2ep(1)*Unp(1))Unp(1)^2]; Icharacterlstlc equatlon
Char2=[1 (2*Zep(2)*Unp(2))Unp(2)^2]; Xcharacterlstlc equation
Char $3=[1(2 * \operatorname{ep}(3) * \operatorname{lnp}(3))$ Unp(3)~2]; Xcharacterlstlc equat 1 on
Al-roats (Charl); the raots
A2-raote (Char2); Xthe raats
A3-raats(Char3); \boldsymbol{x} the roats
\&
Xshort perlad mades
Iyy=74176; Imament af Inertla fram the CG pragran
$|b|=\mid y y /(R O|* S * L|$ 3); Xnon-dlmenslonal mament of Inertla. Fage 192.
|b2=|yy/(AO2*S*L^3); Inon-dlmenslonal mament af Inertla. Page 192.
Cza=(-1)* (CLa+CD); Xeqn. (5.2.3)
$C_{m a}=[-1.1814-1.2666 \quad-1.5312]$; fram stablllty derluatlue pragram
Caq=[-7.8521 $-8.7682-11.5949]$; from etablllty derluatlue program
Cmad=[-2.3556 -2.6304 -3.4785]; Ifrom stabllity derluatlue program


```
negllglble Czadot and Cza
    for 0-2:3;
    Ins(Q)=sqrt((Cza(0)*Cma(Q)-2*HU2*Cma(0))/(2*HU2*ib2)); Xean.(6.7,7) assuming
    negllglble Czadot and Cza
    end
Zeo(1)=(-1)*((2*|lU|*Cma(1)+|bl*Cza(1)+2*nU1*Cmad(1))/(2*(2*nul*|bl*(Cza(1)*Cmn(1)
-2*MU1*Cma(1)))^.5));xean.(6.7,7) assumlng negllglble Czadot and Cza
for Q-2:3,
Zes(0)=(-1)*((2*HU2*Cmq(0)+Ib2*Cza(0)+2*HU2*Cmad(0))/(2*(2*IU2*|b2*(Cza(0)*Cma(0)
-2*HU2*Cma(0)))^.5));Xeqn.(6.7,7) assumIng negllglble Czadot bnd Cza
end
for 0=1:3,
Hds(0)*sqrt(1-Zes(0)^2)*Uns(0);Xdamplng írequency
Ts(0)=(2*pl)/Wds(Q);Xperlod
end
Charls=[1 (2*Zes(1)*Mns(1)) Uns(1)^2]:Xcharacterlstlc equatlon
Char2s-[l (2*Zes(2)*Ins(2)) Uns(2)^2]:Xcharacterlstlc equatlon
Char3s={1 (2*Zes(3)*Hns(3)) Uns(3)^2];Xcharacterlstlc equatlon
Als=roots(Charls):Xthe roots
A2s-roots(Char2s); Xthe roots
n3s-roots(Char3s);Xthe roots
x
XLateral-Olrectlonal modes
x
B=72:Xelng span
L2=B/2;\page 226
Ixx=100006;Xmoment of Inertla from the CG program
lzz=147693;Xmoment of Inertla from the CG program
1xz=-14.9335;xmoment of Inertla from the CG program
la|=|xx/(RO1*S*L2^3); Xnon-dlmenslonal moment of Inertla. Page 192.
la2*|xx/(RO2*S*L2^3);Xnon-dlmenslonal moment of Inertla. Page 192.
lc|=|zz/(nO1*S*L2^3);Xnon-dlmenglonal moment of Inertla. Fage 192.
lc2=|zz/(R02*S*L2^3);Xnon-dlmenslonal moment of Inertla. Page 192.
lel=|xz/(RO1*S*L2^3);Xnon-dlmenslonal moment of Inertla. Page 102.
le2=|xz/(nO2*S*L2^3);Xnon-dlmenslonal moment of Inertla. Page 192.
Cyß=-0.587?;仿年 stablllty derluatlue program
Cyr=0.2437; Xfrom stablllty derluatlue program
Clp=[-2.4765 -2.5993 -2.8140];xfrom stablllty derluatlue program
Clr=[0.4717 0.3620 0.2667];xirom stablllty derluatlue program
CnD=[0.1319 0.0764 0.0291];xfrom stablllyy derluatlue program
Cnr=[-0.0855 -0.0818 -0.0833];xfrom stablllty derluatlue program
CIBm[-0.1279 -0.1307 -0.1273];xfrom stablllty derluatlue program
Cyp=[0.0023 -0.0235 -0.0406];xfrom stablllty derluatlue program
Cnß=[0.0576 0.0571 0.0560];xfrom otabllity derluatlue program
n(1)=2*||U|(|a|*|c|-lol^2);xpolynomlal coofflclent. eqn.(7.1,3)
A(2)=2*HU2*(Ia2*|c2-le2^2):xpolunomlal coefflclent. ean.(7.1.3)
```

```
A(3)=A(2);
```



```
omlal coefflclent. eqn.(i.l,3)
for 0=2:3,
```



```
omlal coefflclent. eqn.(7.1,3)
end
C(1)=2*|||*(Cnr(1)*CIp(1)-Cnp(1)*CIr(1)+|a|*CnB(1)+|e|*C|B(1))+|a|*(Cyß*Cnr(1)-\Gamman
B(1)*Cyr)+|cl*(Cyß*CIp(1)-CI\beta(1)*Cyp(1))+lel*(Cyß*Cnp(1)-Cn\beta(1)*Cyp(1)+CIr(1)*Cyß
-Cyr*C1B(1)); Xpolynomlal coefflclent. eqn.(7.1,3)
for 0=2:3,
C(Q)=2*MU2*(Cnr (Q)*CIp(Q)-Cnp(Q)*CIr (Q)+Ia2*CnB(Q)+1e2*C1B(Q))+1a2*(Cyß*Cnr(0)-Cn
B(0)*Cyr ) + Ic2*(Cyß*Clp(0)-C1B(0)*Cyp(0))+Ie2*(Cyß*Cnn(0)-CnB(0)*Cyp(0)+CIr (0)*Cuß
-Cyr*CIB(0)); Xpolynonlal coefflclent. eqn.(7,1,3)
end
D(1)=Cyß*(CIr(1)* Cnp(1)-Cnr(1)*CIp(1))*Cyp(1)*(CIB(1)*Cnr(1)-CnB(1)*CIr(1))*(2*1111
1-Cyr)*(C1B(1)*Cnp(1)-Cnß(1)*CIp(1))-CL(1)*(|c|*C1B(1)+|e|*CnB(1));Xpolynomlal
coefflclent. eqn.(7.1,3)
for 0-2:3,
D(0)*Cyß*(CIr (0)*Cnp(0)-Cnr(0)*CIp(0))+Cyp(0)*(CIB(0)*Cnr (0)-CnB(0)*CIr (0))*(2*1111
2-Cyr )*(CIB(0)*Cnp(0)-CnB(0)*CIp(0))-CL(0)*(Ic2*CIB(0)+Ie2*CnB(0));*polynomlal
coefflclent. eqn.(?.1,3)
end
E(1)=CL(1)*(C|\beta(1)*Cnr(1)-Cnß(1)*Clr(1));Xpolynomlal coefflclent. oqn.(7.1,3)
for 0=2:3,
E(0)=CL(0)*(CIB(0)*Cnr(0)-Cn\beta(0)*CIr(0)); Xpolynomlal coefflclent. eqn.(7.1,3)
end
x
CharLD1=[A(1) B(1) C(1) D(1) E(1)];Xcharacterlstlc equatlon
ChorLD2-[A(2) B(2) C(2) D(2) E(2)]; Xcharacterlstlc equatlon
CharLD3=[A(3) B(3) C(3) D(3) E(3)];)characterlstlc equatlon
ALDI=roots(CharLDI); the roots
```



```
fLD3-roots(CharLD3);榇he roots
[UnLl,ZeLI] - DAIPP(CharLDI);Xnatural frequency and damping ratlo
[IJnL2,ZeL2] = DMIP(CharLO2);Xnatural Irequency and damplng ratlo
[UnL3,ZeL3] = DRMP(CharLD3); Inatural frequency and damplng ratlo
IJLLI=sart(I-ZeLI.^2).*InLI;Xdamplng frequency
ILI=(2*pl)/HdLI ; Xper lod
IJdL2*sart(1-2eL2.^2).*UnL2;Xdamplng frequency
IL2*(2*pl)/HdL2;Xperlod
HdL3-sart(1-2eL3.^2).*InL3;Xdamplng frequency
IL3=(2*p1)/HdL3; Xperlod
```

x

REFERENCES

1. Nicolai, Leland M., Fundamentals of Aircraft Design, San Jose, CA, 1984
2. Raymer, Daniel P., Aircraft Design: A Conceptual Approach, American Institute of Aeronautics and Astronautics, Washington, D.C., 1989.
3. School of Aerospace Engineering, Georgia Institute of Technology, The Impact of Total Quality Management (TQM) and Concurrent Engineering On the Aircraft Design Process, by D.P Schrage, p. 1.
4. Taguchi, G., "The Evaluation of Quality", Special Information Package on Taguchi Methods, American Supplier Institute, Inc.
5. Hauser, John R., Clausing, D., "The House of Quality", Harvard Business Review, pp. 63-73, May-June 1988.
6. Akao, Yoji, QFD: Integrating Customer Requirements Into Production Design, Productivity Press, Cambridge, Mass.,1990
7. Mattingly, Jack D., Heiser, William H. and Dailey, Daniel H., Aircraft Engine Design, American Institute of Aeonautics and Astronautics, New York, 1987.
8. Roskam, Jan, Airplane Design, Parts I-VIII, Roskam Aviation and Engineering Corporation, Ottawa, Kansas, 1985.
9. U.S. and Gas Turbine Engine Specifications, Aviation Week and Space Technology, pp. 90 \& 109, March 16, 1992.
10. Hoerner, S.F., Fluid-Dynamic Drag, published by the author, Midland Park, New Jersey, 1965.
11. Interview between P.J. Reister, LCDR, USN, and the author, October 1992.
12. Bertin, John J., \& Smith, Michael L., Aerodynamics For Engineers, Second Edition, Prentice Hall, Englewood Cliffs, N.J. 1989.
13. Shevell, R.S., Fundamentals Of Flight, Second Edition, Prentice Hall, Englewood Cliffs, N.J. 1989.
14. NASA Technical Paper 2969, NASA Supercritical Airfoils, by C.D. Harris,March 1990.
15. Abbott, Ira H. and von Doenhoff, Albert E., Theory of Wing Sections, Including a Summary of Airfoil Data, Dover Publications, Inc., New York 1949.
16. Telephone conversation between Harris, C.D., NASA Langley, and the author, Oct 1992.
17. NASA Technical Memorandum 86370, Pressure Distribution From High Reynolds Number Tests of a NASA SC(3)-0712(B) Airfoil in the Langley 0.3- meter Transonic Cryogenic Tunnel, by W.G. Johnson, Jr., A.S. Hill and O. Eichmann
18. McDonnell Douglas Flight Control Division, USAF Stability and Control DATCOM, St. Louis, 1976.
19. Anderson, John D., Jr., Introduction to Flight, 3rd ed., McGrawHill Book Co., 1978.
20. Etkin, Bernard, Dynamics of Flight, Stability and Control, Second Edition, John Wiley and Sons, Inc., New York, 1959.
21. Henderson, Breck W., "Boeing Pursues Innovative Concept For Future Navy EX", Aviation Week and Space Technology, pp. 62-63, March 16, 1992.

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2Cameron Station
Alexandria, VA 22304-6145
2. Library, Code 52 2
Naval Postgraduate School Monterey, CA 93940-5002
3. Professor Conrad F. Newberry 1
Code AA/NE
Naval Postgraduate School Monterey, CA 93940-5002
4. Professor Richard M. Howard 1
Code AA/HO
Naval Postgraduate School
Monterey, CA 93940-5002
5. Mr. Russ Perkins 1
Naval Air Systems Command
AIR-05C
Washington, D.C. 20361-5000
6. Mr. Thomas Momiyama 1
Naval Air Systems Command
AIR-530T
Washington D.C. 20361-5300
7. Mr. Frank O'Brimski 1
Advanced Design Branch
Naval Air Systems Command AIR-5223
Washington D.C. 20361-5220
8. LCDR Michael J. Wagner

Coronado, CA 92118

$$
245-216
$$

Thesis
W2174 Wagner
c. 1 AEW aircraft design.

