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Abstract

The safety of software is influenced by the choice of implementation language and

the choice of programming idioms. C++ is gaining popularity as the implementation

language of choice for large software projects because of its promise to reduce the

complexity and cost of their construction. But is C++ an appropriate choice for such

projects? An assessment of how well C++ fits into recent software guidelines for

safety critical systems is presented along with a collection of techniques and idioms for

constructing safer C++ code.
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1 INTRODUCTION
The last few years have seen a dramatic increase in the use of software, in particular, the use

of embedded software. As this software is given greater responsibility for flying airplanes,

driving cars, and operating power plants, safety concerns increase. The growing need for

high-integrity software and the concern over the use of C, the most common implementation

language [Hat94], has lead to research projects such as the safe C compiler [ABG94] and Les

Hatton’s recent book Safer C [Hat94],

The growing popularity of object-oriented programming and the explosive growth of the

use of C++, has created a need to consider the implication of using C++ in high-integrity

and safety-critical systems. This paper addresses creating such software in two parts. First,

it applies the guidelines from a recent assessment of software languages for use in safety-

critical systems [SoH95] to the C++ programming language. Second, it considers a series of

techniques and examples for creating safer C++ programs.

2 GUIDELINES

This section considers the guidelines for creating safe software discussed by SoHaR [SoH95],

in the context of the C++ programming language. The SoHaR report provides general pro-

gramming guidelines for the assessment of software used in safety systems. It then considers

these guidelines in the context of several programming languages (including C++); however,

SoHaR’s discussion treats C and C++ together, and was written with a strong C bias. There

is a need for a true C++ assessment.

This paper partitions the SoHaR guidelines into three groups:

1. Outside. Those guidelines outside the scope of C++. For example, control of

memory paging is outside the control of a C++ programmer or the C++ compiler.

2. General. Those guidelines that represent general advice not directly applicable to

particular C++ language features. For example, minimizing the nesting level of

statements.

3. Specific. Those guidelines directly applicable to specific C++ language features.

For example, minimizing dynamic memory allocation applies directly to C++’s

built-in functions new and delete.
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The first column of the following table indicates the group for each guideline. A further

discussion of those guidelines in the general and specific categories appears after the table.

Discussion of outside guidelines can be found in [SoH95].

Group Number Guideline
1 Reliability

1.1 Predictability of Memory Utilization

Specific l.i.i Minimizing Dynamic Memory Allocation

Outside 1.1.2 Minimizing Memory Paging and Swapping

1.2 Predictability of Control Flow

Specific 1.2.1 Maximizing Structure

Specific 1.2.2 Minimizing Control Flow Complexity

Specific 1.2.3 Initialization of Variables before Use

Specific 1.2.4 Single Entry and Exit Points in Subprograms

Specific 1.2.5 Minimizing Interface Ambiguities

Specific 1.2.6 Use of Data Typing

General 1.2.7 Precision and Accuracy

Specific 1.2.8 Use of Parentheses rather than Default

Order of Precedence

Specific 1.2.9 Separating Assignment from Evaluation

Outside 1.2.10 Proper Handling of Program Instrumentation

General 1.2.11 Control of Class Library Size

General 1.2.12 Minimizing Dynamic Binding

General 1.2.13 Control of Operator Overloading

1.3 Predictability of Timing

Outside 1.3.1 Minimizing the Use of Tasking

Outside 1.3.2 Minimizing the Use of Interrupt Driven Processing

2 Robustness

2.1 Controlled Use of Software Diversity

General 2.1.1 Control of Internal Diversity

Outside 2.1.2 Control of External Diversity

2.2 Controlled Use of Exception Handling

Outside 2.2.1 Local Handling of Exceptions

Outside 2.2.2 Preservation of External Control Flow

Outside 2.2.3 Uniformity of Exception Handling

2.3 Input and Output Checking

General 2.3.1 Input Data Checking

General 2.3.2 Output Data Checking
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3 Traceability

3.1 Use of Built-In Functions

General 3.1.1 Controlled Use of Built-in Functions

3.2 Use of Compiled Libraries

General 3.2.1 Controlled Use of Compiled Libraries

4 Maintainability

4.1 Readability

General 4.1.1 Conformance to Indentation Guidelines

General 4.1.2 Descriptive Identifier Names
General 4.1.3 Comments and Internal Documentation

General 4.1.4 Limitations on Subprogram Size

Outside 4.1.5 Minimizing Mixed Language Programming

Specific 4.1.6 Minimizing Obscure or Subtle Programming

Constructs

Specific 4.1.7 Minimizing Dispersion of Related Elements

Specific 4.1.8 Minimizing Use of Literals

4.2 Data Abstraction

Specific 4.2.1 Minimizing the Use of Global Variables

Specific 4.2.2 Minimizing the Complexity of Class and

Function Interfaces

4.3 Functional Cohesiveness

General 4.3.1 Single Purpose Function and Procedure

4.4 Malleability

General 4.4.1 Isolation of Alterable Functions

4.5 Portability

General 4.5.1 Isolation of Non-Standard Constructs

2.1 Discussion of General Guidelines Relation to C++
The following terms are used in the discussion below.

Attribute. Attributes hold the state information of an object from a class.

Declaration. A declaration declares the type of an identifier, but does not allocate storage

for it (e.g.j void update(stack s)
;
or class Stack {...};)•

The declaration of a function is often called its prototype.

Definition. A definition declares the type of an identifier and allocates storage
(
e.g ., Stack

si, s2; or int increment (int x) { return x+1; }). The definition of a function,

which contains the body of the function, allocates storage for the body of the function.
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Method. Methods are the functions (services) provided by the objects of a class.

These definitions are used in the following discussion of the general guidelines. Section

2.2 discusses the specific guidelines. Note that the number for each guideline is prefixed by

a “G” to distinguish references to guidelines from references to sections of the text. For

example G3.1, refers to Guideline 3.1, while 2.2 refers to Section 2.2.

Gl.2.7 Precision and Accuracy. Regression test the floating point data type to as-

sure compliance with standards
(
e.g ., the floating point standard ANSI/IEEE Std

754-1985). For integer types, C++ guarantees only that sizeof (short) <=

sizeof(int) <= sizeof (long)
;
no guarantee that a particular size has a partic-

ular number of bits is made. Use regression testing to ensure the size of “short”, “int,”

and “long” are sufficient. Such testing should be made part of program startup, to

protect against improper porting of the software. (For additional safety and control,

use classes such as Saf elnt, described in example 3.1 in Section 3).

Gl.2.11 Control of Class Library Size. Failure to break the problem down into the cor-

rect classes can lead to too few or too many classes. Both tend to obscure the rela-

tionship between the code and the problem domain and thus increase the possibility

of errors. In other words, the problem and not some outside guideline should dictate

the number of classes.

Gl.2.12 Minimizing Dynamic Binding. In the SoHaR report [SoH95] this guideline

confuses two unrelated topics: dynamic function binding and dynamic link libraries.

Dynamic binding occurs when a virtual function is called. The actual function that

gets called is determined dynamically at run time. Dynamic binding poses no more

risk than static binding in well constructed classes. Dynamic link libraries are linked in

with an executable at load time rather than link time. This produces smaller executa-

bles, but uses the library code on the target system and not that of the development

system. Thus the developer and tester may not uncover problems that arise when a

dynamic link library on a different machine is used. At a minimum, regression testing

of the libraries on both systems should be performed (see G3.1.1 below). The use of

dynamic link libraries is not recommended in safety critical code.

Gl.2.13 Control of Operator Overloading. Overloading an operator to other than

its obvious meaning may lead to errors in the code. For example, the operator
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Complex: :operator+ that adds two complex numbers has the obvious meaning, while

the operator List: :operator+ that adds an element to a list does not (this operator

is reasonable, but not obvious).

G2.1.1 Control of Internal Diversity. To support internal diversity, create multiple

classes that respond to the same messages, but implement the corresponding methods

differently. This allows the classes to be used interchangeably. These classes should

also have different internal data representation i.e., different attributes.

G2.3.1 Input Data Checking. Besides checking program input for validity, input data

checking includes input parameter checking. For a class, this must include the cur-

rent state of the object receiving the message. In this case, each class can include a

(private) method responsible for normalizing its internal state. This method is called

at the beginning of other methods of the class (see G2.3.2).

G2.3.2 Output Data Checking. In addition to checking program input for validity, each

method could check its output. For methods that modify the internal state of an object

(especially class constructors) this includes normalizing the current state of the object.

For example, class polar.point would contain a function normalize()
,
which ensures

a positive radius and an angle between 0 and 360 degrees. Checking validity of both

input (G2.3.1) and output (G2.3.2) may be redundant.

G3.1.1 Controlled Use of Built-in Functions. Use regression testing to verify compli-

ance of built-in functions with standard and expected behavior. For example, one

built-in operator with different behavior on different systems when applied to negative

numbers is integer remainder (°/0 in C-(--f ).

Regression testing could be performed as part of program initialization to protect

against the program being ported to a different machine. If a separate compliance test

program is used, it must be run on both the development system and the target system

if dynamic libraries are used (see Gl.2.12). A better solution is to code for portability

as in the example in Section 3.1.

G3.2.1 Controlled Use of Compiled Libraries. Use regression testing to verify com-

pliance of library functions with standard and expected behavior (see G3.1.1). Class

libraries that provide smart (safe) pointers and array bounds checking should be used.
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G4.1.1 Conformance to Indentation Guidelines. Consistent code appearance helps

reduce oversights made by human code inspectors.

G4.1.2 Descriptive Identifier Names. Appropriate names help the code be “self docu-

menting” which reduces the need for comments. Self documenting code also avoids

out-of-date comments that fail to reflect the current code. The style encouraged in

object-oriented programs is to have lots of small functions [CGZ94]; this provides op-

portunities for including good internal documentation (see G4.1.3) through the use of

good function names.

G4.1.3 Comments and Internal Documentation. Minimize the use of comments: If

something can be stated in the language itself, it should be, and not just mentioned

in a comment. Comments should identify the major data structures and the purpose,

inputs, and output of each function. Well written code should be self documenting.

Considering that object-oriented programs typically have short single purpose functions

and each function should have a descriptive header comment, individual line comments

may impede rather than help program understanding.

G4.1.4 Limitations on Subprogram Size. This is encouraged by the object-oriented

programming style. A well written object-oriented program will naturally have many

short functions.

G4.3.1 Single Purpose Function. Each function should implement a single thought. As

mentioned in Gl.2.9, functions should be divided into evaluation functions and update

functions. No function should do both.

G4.4.1 Isolation of Alterable Functions. Isolation of alterable functions can be ob-

tained in two ways. First, placing such functions in subclasses reduces the need

to change the superclass when an alterable function in the subclass must be al-

tered. For example, consider the class displayable_playing_card, a subclass of class

playing_card. While playing cards seldom change, display technology does. How-

ever, all the changes for a new display technology should be localized to attributes and

methods in displayable_playing_card. Those methods and attributes inherited from

playing_card should remain unchanged. The second alternative is to group alterable

functions together in their own class. This should be done with alterable functions not

directly related to any other class.
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G4.5.1 Isolation of Non-Standard Constructs. As in G4.4.1, isolate these in separate

subclasses or their own class.

2.2 Discussion of Specific Guidelines Relation to C++
This section discusses those guidelines applicable to specific C++ language features. It

is worth noting that the length of “G4.1.6: Minimizing Obscure and Subtle Programming

Constructs” is an indication of the dangers of using C++.

Gl.1.1 Minimizing Dynamic Memory Allocation. Avoid the use of C’s malloc and

free. Instead use (sparingly) C++ ’s new and delete operators. Overloading these

operators changed dramatically with the new C++ standard [ANS95]; overloading

them is dangerous until the definitions and compiler implementations stabilize.

To avoid memory leaks, a clear understanding of resource acquisition (allocation and

release) is important. To avoid leaks, all classes should include a destructor that

releases any memory allocated by the class’ constructor. To ensure that destructors

are called, class constructors should be declared

foo::foo(a, b) : a(...), b(...) {. .
. }

and not

foo::foo(a, b) {a = . .

.

;
b = ...; ...}

because failure in the constructor after the initialization of b will call the destructors

for a and b in the first definition, but not in the second; thus, in the second there is a

potential memory leak. A related example, which ensures that once a separate file is

successfully opened it is closed, is presented in the example in Section 3.5.

Finally, always set a “newJiandler” using the built-in function set_new_handler.

The default new_handler terminates the program when it cannot satisfy a memory

request. Program termination at a critical time may be disastrous.

Gl.2.1 Maximizing Structure. Beyond obvious control-flow structure, this guideline in-

cludes structuring the data (primarily through classes and subclasses). Many of the

precautions and guidelines herein deal with controlling problems using classes and class

hierarchies; for example see Gl.2.6.

Gl.2.2 Minimizing Control Flow Complexity. The use of break and continue in

loops should be avoided while break should always be used in switch statements. In
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general, the use of many small functions in object-oriented programs helps minimize

control flow complexity.

Gl.2.3 Initialization of Variables before Use. Initialize all variables at their point of

definition. An array class makes this possible for arrays. In the absence of such a class,

initialize an array in a loop immediately after its definition. Finally, class constructors

and operator= should initialize all class attributes. For constructors, “call” attribute’s

constructors before the body of the constructor (as in Gl.1.1). It is important to note

that C++ defines the order of these calls as the order in which the attributes are

declared in the class and not the order they appear in the constructor definition.

Gl.2.4 Single Entry and Exit Points in Subprograms. Avoid the use of the catch

and throw exception handling mechanism. They provide (restricted) interprocedural

control transfers, which violate single exit. (Implementation of these features is patchy

from compiler to compiler, which opens concerns about the correctness of their se-

mantics and implementation). The use of multiple returns should be avoided in long

functions (functions with 100 or more lines of code); in small functions the opposite is

often true.

Gl.2.5 Minimizing Interface Ambiguities. Avoid the use of varargs and extern “C”

as neither the type nor number of parameters can be verified by the compiler. Have all

functions check their parameters for range correctness. Alternatively make parameters

with range restrictions a separate class that includes the range check. This requires

a single copy of the range check (in the class constructor) and helps avoid forgotten

checks. Finally, the use of multiple inheritance should be tightly controlled if not

eliminated. Confusion over which member functions are included in the deriving class

and the use of virtual base classes should be considered before multiple inheritance is

used in safety critical systems.

Gl.2.6 Use of Data Typing. Use class in place of struct as it provides better access

control. Also use a class hierarchy with virtual functions in place of a union as it pro-

vides type checking of the data stored in the “union” (see the example in Section 3.7).

(This technique applies to any code that contains a discrete type or kind field.)

Since the fundamental types int ,
float , and char are not true classes, their use

is restricted in certain contexts (function overloading for example). Creating classes

for the fundamental types provides access control and also increases uniformity. For
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example, use the classes Safelnt (see the example in Section 3.1) in place of int

and SafeFloat (see the example in Section 3.2) in place of float. If necessary for

execution speed, these classes can be removed, but only if profile data indicates such

a substitution is warranted. For example, Safelnt can be replaced with int using

“typedef int Safelnt;.” Finally, C++ has a much stronger type system than C;

however, it still includes the ability to type-cast pointers. This usage should be avoided.

Gl.2.8 Use of Parentheses rather than Default Precedence. In C++, this becomes

a particular problem when operators are overloaded with definitions that do not cor-

respond to the normal definition (see Gl.2.13). Thus, it is not a problem when the

complex number class defines operator+ and operator* as add and multiply because

they have the expected precedence in C++ . However, overloading becomes a problem

when a real number class defines operator^ (bitwise exclusive or) as exponentiation be-

cause it has an unexpected precedence: the expression 6.23
A
2.0 + 3.0 is 6.23A (2.0 + 3.0)

and not the desired (6.23
A
2.0)+ 3.0. Always use parentheses; do not rely on precedence,

especially in the presence of operator overloading.

Gl.2.9 Separating Assignment from Evaluation. Functions should be divided into

evaluation functions
,
which compute results based on their parameters without mod-

ifying them, and update functions, which may modify their parameters. Evaluation

functions should have all constant (const) parameters; thus, preventing parameter

modification. Update functions should either update the receiving object or produce a

new object. Those updating the receiving object should return void; those producing

a new object should return a new value of the same class (or type) and leave their

parameters unchanged.

G4.1.6 Minimizing Obscure or Subtle Programming Constructs. The following

“laundry list” addresses common C++ error prone idioms.

• C++ reference type should be avoided because it allows implicit modification of

referenced variables. Explicit modification through pointers is preferred since it

avoids hidden implicit changes. This is especially true when a called function mod-

ifies an actual parameter through a reference formal parameter. The exception to

this is parameters passed by reference to avoid the cost of copying a large data

objects. Such parameters should be passed as constant references
(
e.g ., f (const
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large_type &x)). Declaring a parameter (const &) preserves the semantics of

values parameter passing, without the cost of copying large data structures.

• Avoid using default parameters to combine functions. For example, do not use

the single function lookup (char *name, code = -l), where the value of code

determines whether lookup should fail or add name if it is not found. Such

combinations violate Gl.2.9.

• Avoid complex expressions in a condition. For example, the expression

“if (i & mask == 0)” is evaluated as “if (i & (mask == 0))” and not as

“if ((i & mask) == 0).” Replace it with “long masked_i = i & mask;

if (masked_i == 0).”

• Avoid using operator++ except for v++ where v is a simple variable or *p where

p is an identifier. In particular, expressions such “v[i] = i++” are undefined.

• Since the default constructor, copy constructor, destructor, and the operators

operator=, operator#, and operator, (he., operator<comma>) all have default

meanings; they should be explicitly defined in every class (see the example in

Section 3.3). To avoid unwanted implicit calls to these constructors and opera-

tors, declare them private. A technique for providing a replacement “default”

constructor is given in the example in Section 3.10.

• The scope resolution operator : : should be used to explicitly indicate which of

a collection of functions or variables with the same name is being used. This

includes globals accessed as :
:
global_variable.

• Avoid pointers to members. They unnecessarily complicate the code. Use virtual

functions or redesign.

• For a C++ member function declared virtual in a base class the keyword

virtual should be used in the definition of the function and all declarations

and definitions of the function in each derived class even though it is optional.

• For a class that defines the operators operator->, operator*, and operator [],

ensure the equivalences between “p->m”, “(*p) .m”, and “p[0].m”. This will

avoid unexpected errors when programmers assume the equivalence for classes

that do not provide it. Also for a class that defines the operators operator+,

operator+=, operator++ () ,
and operator++(int)

,
ensure the equivalence of “x

= x + 1”, “x += 1”, and “++x” and their relationship to “x++.”
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G4. 1.7 Minimizing Dispersion of Related Elements. Classes provide excellent con-

tainers for related elements. Their use should avoid dispersion. However, avoid the

use of friends. Their use often indicates an oversight in the analysis or design. Partic-

ularly bad are declarations such as “class x {friend class y; ...},” which gives

all methods of class y assess to the internal private attributes of class x. The ex-

ample in Section 3.4 illustrates how most friend declarations can be removed without

loss of efficiency.

G4.1.8 Minimizing Use of Literals. Literals (and #def ined constants) should be re-

placed by identifiers declared const (or enumerated types for a group of related con-

stants). Also replace #def ined functions with inline functions. This allows the com-

piler to type check expressions and parameters and helps self document the code.

For literal strings, avoid “char *p=" string"” as the literal "string" can be changed

through the pointer (on some system this causes abnormal program termination). In-

stead use “const char *p=" string"” or if necessary

“p = new char [sizeof ("string")]
;
strcpy(p, "string").”

G4.2.1 Minimizing the Use of Global Variables. Limit the visibility of variables and

functions. One way of doing this is to declare local variables only where needed. The

ability in C++ to declare variables anywhere within a block (rather than just the

beginning) allows declarations to be made at their point of use. Variables local to a

loop or branch of a conditional should be declared within the loop or branch and not

be visible to the entire function.

If two functions absolutely must share a variable they should be placed in a separate

file and the variables declared static in the file. This limits the visibility to the two

functions only. The two could also occupy a common Namespace (part of the new

C++ standard [ANS95]). If sensible, the two functions can be placed in a class and the

“global” variable made an attribute of the class. Alternatively, static class attributes

are shared by all instances of the class. These can be used in place of some global

variables.

In class declarations, declare all attributes private where possible and protected

where not. This limits the functions-that-can-change-an-attribute to class members for

private attributes and class or sub-class members for protected attributes. Never
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have public attributes as erroneous values to be assigned to the attribute from any-

where in the code. See G2.3.2 and the example in Section 3.8.

G4.2.2 Minimizing the Complexity Class and Function Interfaces. In function

calls, avoid complicated actual parameter expressions. In classes, include only neces-

sary functionality. All attributes and functions should be declared private if possible.

If not, then they should be declared protected if possible and, if not, then they should

be declared public. Private base classes can be used to hide implementation details of

a derived class. Finally, use const for member functions that do not modify attributes.

One common error in calling functions is to interchange parameters. The example in

Section 3.6 provides an examples of how to simulate named parameter passing (not

call-by-name) in C++ which avoids this problem.

In addition to the guidelines from [SoH95], the following guidelines are applicable to C++
programming.

• Don’t return “&local” from the function “int *f (),” or “local” from the functions

“int &f().”

9 Avoid nested classes.

• Don’t use exit() in a destructor; it may cause an infinite recursion.

• Avoid templates. They may lead to unexpected code. For example, the template for

the function sort

template Cclass T> void sort(T a[]

,

int size)

{

if (a [i] < a [j ] )

}

works correctly for ints, floats, chars, and all classes that correctly define the op-

erator operator<, but fails to work for char* because it compares the pointer values

and not the strings.

• The use of class conversion operators in place of constructors and friends can help

reduce the need and use of friends. This is illustrated in the example in Section 3.9.

• Minimize the use of the C preprocessor. In particular, the use of #def ine.
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3 TECHNIQUES AND EXAMPLES
This section illustrates techniques that can be used to improve the safety of C++ programs

through a series of examples.

3.1 Safelnt

The following simple code illustrates many of C++ ’s features for controlling access to data.

Following the class definition, the general use of some C++ features in safety critical code

and some comments specific to class Safelnt are discussed. Note that in practice this class

would occupy two files: Safelnt .h would include the declaration of the class, its attributes

and functions, while Safelnt. C++ would include the definitions (bodies) of the functions.

The two are combined below for exposition purposes.

[ 1 ]

[ 2]

[ 3]

[ 4]

[ 5]

[ 6]

[ 7]

[ 8]

[ 9]

[ 10 ]

[ 11 ]

[ 12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21 ]

[22]

[23]

class Safelnt
{
private

:

long int i; // the actual value of the safe integer
operator int() const { return i;}

public

:

Safelnt (const Safelnt other) { i = other. i;}
Safelnt () { i = 0;>
Safelnt (const int value) { i = value;}
"Safelnt () {}

Safelnt operator= (const Safelnt value) { i = value. i; return(*this) ;

}

Safelnt operator= (const int value) { i = value; return(*this) ;}

Safelnt operator+ (const int b) const { return(Saf elnt(i+b)) ;}

Safelnt operator+ (const Safelnt b) const { return(Saf elnt(i+b.i)) ;}

Safelnt operator/ (const Safelnt b) const { if (b.i == 0) ... else . . .}

Safelnt operator'/, (const Safelnt b) const { . . . }
int operator != (const Safelnt b) const { return(i != b.i);}
Safelnt operator++ () { i++; return (*this) ;

}

Safelnt operator++ (int _) { Safelnt t = *this; i++; return(t);}
int value () {return i;}

Notes

• Line [4] declares i the attribute that holds the actual value of the Safelnt.

• Because there is only one attribute, objects of class Safelnt are small and thus ef-

ficiently passed as call-by-value parameters. To pass larger objects, use constant ref-

erence parameters (see R4.1.6). For example, if Safelnt ’s were larger, the addition

operator would have been declared

Safelnt operator+ (const Safelnt &b)

;
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Declaring a parameter (const &) preserve the semantics of values parameter passing,

without the cost of copying large data structures.

• Every class should include a copy constructor (Line [8]), a default constructor (Line [9]),

and an assignment operator (Line [13]). Failure to do so causes C++ to include default

definitions that may have undesirable effects. If any of these operations is not desired

its definition should be declared in the private part of the class. In particular, control

of the copy constructor and assignment operator can be used to limit the number of

objects of a class that are created.

— If the copy constructor (Line [8]) is moved to the private section of the class,

then definitions of the form

Safelnt ss = si;

are flagged as errors by the compiler.

— If the default constructor (Line [9]) is moved to the private section of the class,

then declarations of the form

Safelnt si;

are flagged as errors by the compiler. In this situation, no uninitialized Safelnt ’s

can be constructed. Only Safelnts constructed from other Safelnts (Line [8])

or ints (Line [10]) are allowed.

- Finally, if the assignment operator (Line [13]) is moved to the private section of

the class, then assignment to Safelnts is not permitted; thus, statements such as

sil = si2;

are flagged as errors by the compiler.

• Line [5] provides a “use as an integer” operator, which is implicitly called in any context

where an int is required, but a Safelnt is given. If public, it would allow unwanted

implicit (unwanted) use of Safelnts. By making it private, the compiler issues an

error message when a Safelnt is used in such a context. Many compilers will issue

such messages if the definition is simply omitted, but providing such a definition in

the private section makes explicit that a Safelnt should not be implicitly converted

to an int. Explicit access can be provided via another access function, such as the

function value () (Line [22]). This function should return a copy of the object; thus,

preventing the caller from modifying the object. (Returning an int returns a copy of
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the int so no explicit copying is shown in the code.) Thus, Safelnt explicitly allows

the programmer to control or avoid unwanted type conversions.

• The assignment operator on Line [14] assigns an int to a Safelnt. Code checking

the validity of the int could be placed in this function. For example, if Safelnts

had to be less than 1000, that check could be made here. If this operator is omitted,

then the int would be converted to a Safelnt using the constructor on Line [10] and

then assigned using the assignment operator on Line [13]. (If both are present the

assignment operator on Line [14] is used.)

• Similarly the operator on Line [15] performs the addition of a Safelnt and an int.

Without this operator the int would first be converted into a Safelnt using the

constructor on Line [10] then added using the addition operator on Line [16].

• There are two reasons having Safelnt as a class is an advantage: first, the built-in

types char, int, and float (including modified versions unsigned char, long int,

etc.) are not classes. This makes the build-in types unusable in certain contexts
(
e.g .,

at least one of the parameters of an overloaded operator must be of class type). It also

prohibits their being used as base classes (e.g., to declare a subrange class).

• The second reason for having a class such as Safelnt is that it allows operators like

division and remainder to have consistent predictable behavior: C++ leaves the defi-

nition of integer remainder up to the compiler writer. Most compiler writers use the

hardware divide instruction for computing integer remainders. Unfortunately, some

hardware divide instructions ensure that the remainder is positive while others do not.

In class Safelnt, operator'/ can provide consistent results (unlike C++’s default %

operator). As an added bonus, operator/ can also check for division by zero.

• Use of the classes Safelnt and SafeUnsignedlnt (not shown) prevents the mixing of

signed and unsigned numbers. For example, many C++ compilers accept the following

code.

{

unsigned a = 1

;

int i = -5

;

a = i;

}
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3.2 SafeFloat

Class SafeFloat, which is similar to Safelnt, allows control over floating point numbers.

Beyond the concerns with integers, floating point numbers are subject to rounding errors. For

example, tests such as “0.4 == 0.004 * 100” incorrectly return false on many systems.

The definitions of operator==, operator<, and operator> in class SafeFloat account for

this by including a tolerance for equality testing; they also preserve the relation that at most

one of a==b, a<b, and a>b is true. (Missing definitions parallel those of Safelnt except

for the inclusion of TOLERANCE). In this example, absolute tolerance is used because it is

easier to understand. A production version would use relative tolerance, where TOLERANCE

is expressed as a fraction of the numbers involved and thus depends on the magnitude of

those numbers. For example comparing SafeFloat s a and b as in

if (a == b)

is equivalent to

if ( ( (b - TOLERANCE) <= a) && (a <= (b + TOLERANCE)))

[ 1 ]

[ 2 ]

[ 3]

[ 4]

[ 5]

[ 6 ]

[ 7]

[ 8 ]

[ 9 ]

[ 10 ]

[ 11 ]

[ 12 ]

[13]

[14]

[15]

[16]

[17]

[18]

class SafeFloat

{

private

:

double d;

const float TOLERANCE = 0.00001;

public

:

SafeFloat (double init ial_value)

;

SafeFloat (SafeFloat &init ial_value)

;

SafeFloat () { d = 0;}

int operator== (const SafeFloat value)

{ return ((d <= value . d+TOLERANCE) &&
(d >= value. d - TOLERANCE));}

int operator< (const SafeFloat other)

{ return (d < other. d - TOLERANCE);}
int operator> (const SafeFloat other)

{ return (d > other. d + TOLERANCE);}

};

3.3 NoPredefines

The operators operator=, operator# (address-of), operator, (sequencing) and the default

and copy constructor all have default meaning. The operator= and the two constructors

are discussed in the example of Section 3.1. This example shows making all the predefined

operators “private”. In particular, it discusses the operators operator# and operator,
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(the comma operator). Making operator* private prevents taking the address of an object

(but allows objects to be passed to a function as a reference parameter). Making operator,

private prevents an element of the class from appearing as the left operand of the comma

operator.

class NoPredefines
{

private

:

NoPredef ines(const NoPredefines &other)

;

NoPredef ines()

;

NoPredefines* operator* ()

;

void operator, (void *)

;

NoPredefines operator= (const NoPredefines &value)

;

public

:

};

Each line of the following function generates a compiler error because the above con-

structors and operators are private.

f (NoPredefines np, OtherClass oc)

{

NoPredefines *p = &np;
np, np;
np, 1;

np , ’
c

'

;

np, oc;

}

An excellent example where the predefined default operator operator= has the wrong

semantics is in the class String. The expected output of the following program is “bye

bye bYe bye” (the assignment on Line [24] should affect si but not s2); however, using the

default definition of operator= the output is “bye bye bYe bYe” because Line [24] affects

both si and s2. The reason for this is that the default assignment operator operator=,

which does a field by field assignment, causes s2.s to point to the same memory location

as sl.s when the assignment on Line [21] is executed. This means that the update to si

on Line [24] affects the value of s2. In contrast, using the assignment operator on Line [12],

which copies the characters of the string not just the pointer to the string, the update to si

on Line [24] does not affect the values of s2. (To simplify the example, operator= assumes

there is enough space in the target string and the constructor assumes new does not return

0 -)

18



I

[ 1 ]

[ 2 ]

C 3]

[ 4]

[ 5]

[ 6 ]

[ 7]

[ 8 ]

[ 9]

[ 10 ]

[ 11 ]

[ 12 ]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20 ]

[21 ]

[22 ]

[23]

[24]

[25]

[26]

[27]

class String
{

private

:

char *s;

public

:

String(char ^initial value)
{

s = new char [sizeof (initial_value) ]

;

strcpy(s, initial.value)

;

>;

String &operator= (String & rhs) {strcpy(s, rhs . s) ; return *this;};
void print () {printfC (

/s ", s);};
char &operator [] (int i) {return s[i];};

>;

main()
{

String si ("bye")

;

String s2 ("hello")

;

s2 = si;

si
.
print ()

;

s2
.
print ()

;

sl[l] = >Y 3

;

si .print ()

;

s2
.
print ()

;

}

3.4 Avoiding Friends

Friends are commonly used in C++ to allow global operators access to attributes of a class.

Consider the following example.

[ 1] class ComplexNumber
[ 2 ] {

[ 3] private:
[ 4] float real, img;

[ 5] public:
[ 6] ComplexNumber (float r) {real = r; img = 0.0}

[ 7] ComplexNumber operator+ (ComplexNumber b) { ... }

[ 8 ] };

[ 9]

[10] ComplexNumber operator+ (ComplexNumber a, ComplexNumber b)

[ 11 ] {

[12] return (a . operator+ (b) )

;

[13] }

[14]
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[15] main()
[16] {

[17] ComplexNumber a(5)
;

[18] a = a + 3 . 0

;

[19] a = 4. 0 + a;

[20] }

Without the operator on Line [10], the addition on Line [18] is allowed, but the addition

on Line [19] cannot be resolved by the compiler and therefore produces an error: On Line [18],

the 3.0 is passed to the constructor on Line [6] resulting in the ComplexNumber, 3.0 + O.Oi,

which is then passed to Complex: :operator+. On the other hand, for Line [19] there is

no function in class float that takes a ComplexNumber 1
. The lack of symmetry is both

annoying and problematic.

In contrast, the global operator ::operator+ (Line [10]) works with both additions:

the float parameter is first converted to a ComplexNumber using the constructor on Line

[6] before the addition. Normally, the function on Line [10] is declared as a friend of

class ComplexNumber to allow it access to the private attributes of class ComplexNumber.

Friend declarations violate the data abstraction and hiding and should be avoided as illus-

trated by this example (function inlining removes any run-time overhead).

3.5 Safe File Pointer

The class constructor and destructor semantics can be used to provide safe files. C++
semantics guarantee that once the constructor for a variable completes (such as for local

file on Line [15] below) any control transfer out of the variable’s scope will cause a call to

its destructor. This is used in the following code to close the file; thus, the file use is safe as

the function properly releases acquired resources.

1In fact, float is not even a class in C++, which further complicates the problem (See the examples in

Sections 3.1 and 3.2).
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[ 1] #include "stdio.h"
[ 2] class SafeFile
[ 3] {

[ 4] private

:

[ 5] FILE *f

;

[ 6]

[ 7] public

:

[ 8] SafeFile(const char *name, const char *mode)

[ 9]

{f = fopen(name, mode);}
~SafeFile() {fclose (f);}

[10] operator FILE*() {return f ;}

>;[11]

[12]

[13] f(char *buf, int size)
[14] {

[15] SafeFile file("data", "r")

;

[16]

[17] if (fread(buf, 1, size, file) != size)
[18] return(-l)

;

[19] • • .

[20] fclose(f ile)

;

[21] }

• The return on Line [18] forces a call to SafeFile’s destructor (Line [9]), which closes

the file. If FILE* replaces SafeFile, then the file would remain open and function f

would fail to release the file descriptor, whenever Line [18] is executed.

• The operator operator FILE defined on Line [10] is used to convert an instance of

class SafeFile to type FILE*. This allows a variable of class SafeFile, such as file,

to be used in any context requiring a FILE*.

3.6 Named Formal Parameters

Many errors occur because of changed or misunderstood function interfaces. Beyond good

documentation, parameter validity checking, and parameter type alternating,
2 not much can

be done to ensure actuals are passed to the correct formals. This example considers an

alternative that emulates passing parameters by name (not Algol 60’s call-by-name)

.

For

example, the FORTRAN open statement

open(UNIT=in, file^ data, text ’

,

status= ; old J

)

2 Parameter type alternating attempts to avoid having adjacent parameters with the same type. This,

unfortunately, makes the code harder to read as it forces unnatural parameter ordering and also requires

sufficient parameters of differing types.
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passes the actual ‘in’ to the formal ‘unit’, the actual ‘data. text ’ to the formal ‘file’ and

the actual
f old J to the formal ‘status’. Although file and status both have type string,

they are harder to confuse when passed using names.

The following examples emulate matching actuals with formals by name. Two versions

are shown: the first simply uses a C struct, the second uses a C++ class. With the first,

parameter validity checking must be done in the called function, while the second allows

checking to be done by the class constructor; thus, separating it from the actual computation

of the called function.

typedef struct
{

int height

;

int length;
int width;

} volume_parameters

;

int compute volume(const volume_parameters & parameters)
{

int volume;
volume = parameters .height * parameters . length * parameters . width

;

return (volume)

;

}

example_call()
{

volume_parameters v;

// replace the call "int answer = compute_volume(4,3,5)" with
v. height = 4;
v. width = 3;

v. length = 5;

int answer = compute_volume (v)

;

>

In this example, using struct field names
(
e.g

,
height) makes it harder to confuse the

parameters even though they all have the same type.

The second example uses a C++ class in place of the struct in the parameters to the

fread library call. (In this example, underscores are used in the attribute names because

C++ uses the same name space for attributes and methods.)

22



C 1]

[ 2 ]

[ 3]

[ 4]

[ 5]

[ 6 ]

[ 7]

[ 8 ]

[ 9]

[ 10 ]

[ 11 ]

[ 12 ]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20 ]

[21 ]

[22 ]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

class FreadParameters
{

private

:

void *_buffer;
int _item_size;
int .number.of.items

;

FILE *_stream;
public

:

FreadParameters () {.buffer = 0, _item_size = 0,

_number_of.items = 1, .stream = 0;}
set.buffer(void *b)

{

if (b == 0) error()
else .buffer = b;

>

set_item_size(int is) {.item.size = is;}
set number.of.items (int ni)

{

if (ni < 1) error()
else .number of.items = ni;

}

set_stream(FILE ^stream)

;

};

void *buffer()
int item.sizeO
int number.of.items ()

FILE *stream()

{return(_buff er) ;

}

{return(.item.size) ;

}

{return (.number.of.items)
{return (.stream) ;}

}

example call()

{

FreadParameters f

;

// replace the call "fread(buf, 1, 60, file)" with
f . set.buffer (buf )

;

f . set.item.size(l)

;

f . set .number.of.items (60)

;

f . set_stream(f ile)

;

my.fread(f)

;

my.fread (FreadParameters &p)
{

... //no parameter validity checking necessary here

>
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Notes

• Matching actuals and formals by name avoids confusion between number_of.items and

item.size, which are adjacent parameters of the same type.

• The functions for setting the buffer and number.of.items illustrate parameter va-

lidity checking: Line [13] ensures buffer is non-zero while Line [19] ensures that

number.of.items is at least one.

• Placing parameter validity checking in the class constructor, separates it from the

implementation of the called function and consequently, improves code clarity.

3.7 Union Removal

C++’s union type is untagged and therefore unsafe. Unions require the programmer to

include a separate tag field indicating which field of the union is “current.” Unfortunately,

in large projects it is increasingly likely that this tag is incorrect or is left out in a particular

function either unintentionally or because “that case can’t possibly happen here.”

The following example shows a simple union and then the class hierarchy that replaces

it. One advantage of the class hierarchy is that is provides automated tag checking. The

particular union represents a literal pool entry for a compiler symbol table. A literal is

assumed to be either an int, a char, or a float. Adding new literal kinds is discussed

below. First the original union and an example function that operates on it.

enum literal_kind{INT, CHAR, FLOAT};
typedef struct
{

literal_kind kind;
union
{

int int_value;
char char_value;
float float_value;

>;

} literal_union;

print_literal_union(literal_union *1)

{

switch (l->kind)
{

case INT: printf("°/,s = °/
0d\n" ,

l->name, l->int .value) ;
break;

case CHAR: printf("°/0 s = e

/0c\n" ,
l->name, l->char_value)

;
break;

case FLOAT: printf("°/0 s = 8

/0f \n" ,
l->name, l->float_value)

;
break:;

}
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The class hierarchy replacing this union includes the pure virtual class “literal.” Such

a class can have no instances; rather, it provides an interface. In this case, all classes derived

from literal must override all pure virtual functions (those whose declarations end with =

0). This gives different types of literals the same interface. (Constructors are not shown in

the code.)

class literal
{

public

:

virtual void print () = 0;

>;

class int_literal : public literal
{

private

:

int value;
public

:

void printO {printf ("°/oS = °/
0d\n" ,

name, value);};

>;

class char_literal : public literal

{

private

:

char value;
public

:

void printO {printf ("'/
0 s = °/

0c\n", name, value);};

};

class float_literal : public literal

{

private

:

float value;
public

:

void printO {printf ("%s = °/
0f\n" ,

name, value);};

};

The following code illustrate the violation possible with the union and how the C++

class hierarchy avoids it.
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// should be lu.kind = FLOAT;

[ 1] main()
[ 2] {

[ 3] literal_union lu;

[ 4]

[ 5] lu.kind = INT;

C 6] lu.float_value = 5.6;

[ 7] print_literal_union(&lu)

;

[ 8]

[ 9] int_literal il (5) ;

[10] il .print ()

;

[11]

[12] int_literal fl(5.6);
[13] fl .print ()

;

[14] >

Notes
•

// compile time error

• In Line [5] the wrong type is assigned to lu.kind, but this is not (and cannot be)

trapped by the compiler. In contrast, Line [12] generates a compiler error message

because there is no constructor in class int_literal that takes a float as its argument.

• There is no possibility of trying to print an int or a float as a character. Such a

statement simply cannot be stated (without abusive casting).

• Adding new kinds of literals requires deriving a new class from class literal. This

new class must override all the virtual functions and thus is guaranteed to provide the

necessary functionality required in other parts of the program.

3.8 Polar Point

The polar point class illustrates the use of a private method to maintain an invariant

on the internal state of an object. The class enforces the assertion that the radius rho is

positive and that the angle theta is between 0 and 360. This simplifies writing methods that

manipulate points, for example consider writing the method quadrant () with and without

this assertion. All methods that manipulate a point call normalize () before returning; this

maintains the invariant. Unlike structs, the visibility rules for C++ guarantee no outside

code can violate the assertion by modifying rho or theta.
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class point
{
private

:

SafeFloat rho , theta;
void normalizeO
{

if (rho < 0.0)

{

theta += 180.0;
rho = -rho;

>

while (theta > 360.0)
theta -= 360.0;

while (theta < 0.0)
theta += 360 . 0

;

>

public

:

point (SafeFloat r, SafeFloat t) : rho(r), theta(t) {normalizeO;}

>;

3.9 Class Conversions

Two incomplete classes are shown below to illustrate the construction of an object of one

class from an object of another.

[ 1] class bar
[ 2 ] {

[ 3] public:

[ 4] operator foo();

[ 5] };

[ 6 ]

[ 7] class foo

[ 8 ] {

[ 9] public:
[10] foo (bar b)

;

[11] };

[ 12 ]

[13] void f of_foo(foo f )

;

[14]

[15] main()
[16] {

[17] bar b;

[18] f_of _foo (b)

;

[19] }
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The function call on Line [18] requires converting the bar b to an object of class foo.

There are two ways of doing this: using the constructor on Line [10], which provides a

method for constructing a foo from a bar, or using the operator on Line [4] to produce an

object foo from a bar object. However, the operator on Line [4] and the constructor on Line

[10] cannot coexist because it is ambiguous which to use on Line [18].

In choosing between them, the following guidelines are suggested: favor the operator

(Line [4]) because it has access to the internal attributes of class bar. This reduces the

temptation to use friends and the need for access functions, which the constructor in class

foo would need.

The constructor version is only necessary when an object is constructed from two or more

parts. For example, water (H20) is constructed from two instances of class hydrogen
(
H

)

and one instance of class oxygen (0). It is not possible for class hydrogen or class oxygen

to provide an operator water() because an instance of class water is composed of both

hydrogen and oxygen. Thus, class water should include the constructor

water: : water (hydrogen hi, hydrogen h2
,
oxygen o)

;

3.10 Explicit Default

This section demonstrates how to provide a default constructor that is not implicitly called.

This provides explicit control over when an object is constructed (see also the examples in

Sections 3.1 and 3.3). Similar to exceptions, the technique uses a new class, Default, to

indicate the desire to use the default constructor.

class Default
{

public

:

Default () {};

>;

class person
{

private:
char *name;
int age;
personO {error ("private implicit default person created");}

public

:

const int default_age = 5;

person(Default) {name = "default_name"
,
age = default_age ;

}

person(char *n, int a) {name = n, age = a;}

>;
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examples ()

{

/ / person pi

;

// compiler error: constructor f person : :person() J is private
person p2 (Default ())

;

person p3("Judy", 29);

>

This technique is useful in preventing misinterpretations such as that in the following

code:

mainQ
{

person chris ();

>

Even if the default constructor person: : person () is public, this code does not call it

to create person object chris. Instead it declares chris to be a function of zero arguments

that returns an object of class person. This confusion can be avoided by using the explicit

default technique.

3.11 Replace Structure Initialization with Class Constructor

Universally, struct should be replaced by class. One reason for this is that structure

initialization provides no error checking as illustrated in the following code.

struct worker
{

char *name;
int age; // must be 18 years old to work

>;

wrong ()

{

struct worker child = {"Erin", 7};

>

Replacing struct worker with a class and the initialization with the appropriate con-

structor allows for such error checking.
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class Worker
{

char *name;
int age;

public

:

WorkerCchar *initial_name, int initial age)

{

if (initial_age < 18)

labor_law_violation()

;

else
{

age = initial_age;
name = initial name;

>

}

>;

rightO
{

Worker child("Erin" , 7); // flagged as a labor law violation
>

4 SUMMARY
The dramatic increase in the use of software in safety critical applications such as flying air-

planes, driving cars, and operating nuclear power plants, has increased the need for creating

high-integrity software. This paper discusses the use of the C++ language in creating such

software. It first considers C++ language features from the perspective of guidelines for use

in constructing safety-critical systems. Adhering to these guidelines can lead to safer, more

maintainable, C++ programs. This is true even for non-safety critical software.

The paper also considers a collection of techniques that can be incorporated into the

development of C++ programs. These classes are meant as examples to illustrate some of

the pitfalls of using C++ for high-integrity software. They are also intended to illustrate

how some of the features of C++ can be used to produce high-integrity software. Even if a

class such as Safelnt is not used in the production version of software (e.^r., for performance

reasons), its use during development restricts the use of integers. This has the effect of

making the resulting code more predictable and safer.
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