
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2014-09

Handheld assistant for military and police patrols

Seipel, Patrick J.

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/43999

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

HANDHELD ASSISTANT FOR MILITARY AND POLICE
PATROLS

by

Patrick J. Seipel

September 2014

Thesis Co-Advisors: Gurminder Singh
 Arijit Das
 John Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

September 2014

3. REPORT TYPE AND DATES COVERED

Master’s Thesis

4. TITLE AND SUBTITLE

HANDHELD ASSISTANT FOR MILITARY AND POLICE PATROLS

5. FUNDING NUMBERS

 W4C12

6. AUTHOR(S) Patrick J. Seipel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Naval Postgraduate School Foundation
PO Box 8626
Monterey, CA 93943

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government. IRB protocol number ___N/A_____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (maximum 200 words)

Military and police patrols are an important component of combat operations, counter insurgency, peacekeeping,
disaster relief, and humanitarian assistance missions. These patrols need to access timely, relevant information about
events and conditions along their patrol route, both historical and ongoing. In the current practice, this information is
gathered manually prior to the commencement of the patrol through the use of historical databases, current event
repositories, and by reviewing records that may be relevant to the area to be patrolled. Because it is manual, this
process is fraught with numerous problems including high-cost, slow-speed, and low-reliability.

We present an architecture and a prototype system to enhance the effectiveness and security of patrol units,
expedite the planning of patrol missions, and reduce the cost of planning. Our system uses commercial off-the-shelf
handheld devices and a web-enabled, device-independent software system that enables planning the patrol route and
linking related information to that route. Once the patrol starts, the application tracks the unit’s current location and
provides real-time information and alerts about areas of interest along the route. The command post can track the
location of all units and deviations from their planned routes are flagged and the command post is alerted.

14. SUBJECT TERMS Mobile, handheld, geolocation, alerts, device-independent, patrol 15. NUMBER OF

PAGES

119

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

HANDHELD ASSISTANT FOR MILITARY AND POLICE PATROLS

Patrick J. Seipel
Major, United States Marine Corps

B.S., United States Air Force Academy, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2014

Author: Patrick J. Seipel

Approved by: Gurminder Singh
Thesis Co-Advisor

Arijit Das
Thesis Co-Advisor

John Gibson
Thesis Co-Advisor

Peter Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Military and police patrols are an important component of combat operations,

counter insurgency, peacekeeping, disaster relief, and humanitarian assistance

missions. These patrols need to access timely, relevant information about events

and conditions along their patrol route, both historical and ongoing. In the current

practice, this information is gathered manually prior to the commencement of the

patrol through the use of historical databases, current event repositories, and by

reviewing records that may be relevant to the area to be patrolled. Because it is

manual, this process is fraught with numerous problems including high-cost,

slow-speed, and low-reliability.

We present an architecture and a prototype system to enhance the

effectiveness and security of patrol units, expedite the planning of patrol

missions, and reduce the cost of planning. Our system uses commercial off-the-

shelf handheld devices and a web-enabled, device-independent software system

that enables planning the patrol route and linking related information to that

route. Once the patrol starts, the application tracks the unit’s current location and

provides real-time information and alerts about areas of interest along the route.

The command post can track the location of all units and deviations from their

planned routes are flagged and the command post is alerted.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. PLANNING FOR PATROLS .. 2
B. OBJECTIVES ... 3
C. RELEVANCE TO THE DEPARTMENT OF DEFENSE 4

D. ORGANIZATION .. 4

II. BACKGROUND .. 7
A. INTRODUCTION .. 7
B. CURRENT METHODS OF SUPPORTING PATROLS 7
C. EXISTING SYSTEMS ... 8

D. BRING YOUR OWN DEVICE .. 10

E. MOBILE OPERATING SYSTEMS ... 10

1. Android ... 11
2. iOS .. 12

3. Others ... 12
F. PHONEGAP AND CORDOVA ... 13

1. History .. 13
2. Cordova Theory of Operation ... 13
3. HTML5, JavaScript and CSS3 ... 15

a. Single Page Authoring .. 16
b. JavaScript Integration with Native Code 17

c. Touch Versus Mouse Events 18
d. Security .. 19

4. Development Considerations ... 19
a. Plugin Availability ... 20

b. User Interface Design ... 20
G. MAPPING ... 21

1. Formats .. 21

a. Proprietary ... 22
b. Vector Image ... 22

c. Raster Image ... 23
d. Global Map Tile Scheme ... 23
e. Server Generated Tiles ... 25
f. Locally Generated Tiles .. 26

2. Mapping Providers .. 27

3. Map Display Application Programming Interface 28

a. Google Maps API... 28

b. Leaflet .. 29
c. MapBox .. 30
d. OpenLayers ... 30

H. ROUTING ... 30
1. Routing Algorithm ... 30
2. Routing Service Providers .. 32

 viii

I. CONNECTIVITY CONSIDERATIONS ... 32

1. Map Cache .. 33
2. Routing ... 35

3. Database Replication .. 35
J. SUMMARY ... 36

III. ARCHITECTURE .. 37
A. INTRODUCTION .. 37
B. SYSTEM ARCHITECTURE OVERVIEW ... 37

C. EXTERNAL DATABASES ... 38
D. SUPPORTING COMPONENTS ... 39

1. Map Server ... 39
2. Database Server ... 41
3. Route Server .. 43

4. Web Server ... 44

5. Proxy Server ... 44
E. MOBILE APPLICATION .. 44

1. User Interface ... 46
2. Mapping .. 46
3. Database ... 46

4. Routing ... 47
5. Cache .. 47

F. SUMMARY ... 47

IV. IMPLEMENTATION .. 49
A. INTRODUCTION .. 49

B. APPLICATION DESIGN .. 49

1. User Interface ... 49

2. Mapping .. 50
3. Database ... 51

4. Routing ... 51
a. Automated Route Generation 51
b. Manual Route Generation ... 52

c. Route Checking ... 52
5. Cache .. 55

C. APPLICATION FUNCTIONALITY ... 58
1. Main Interface ... 58
2. Layers Menu ... 62

a. Base Maps Tab .. 62
b. Alert Layers Tab .. 63

3. Options Menu ... 64
a. Options Tab ... 64

b. Create Alerts Tab .. 65
c. Create / Assign Routes Tab 67

4. Alerts .. 74
5. Routes .. 76

D. TESTING .. 78

 ix

1. Devices ... 79

2. Scenarios.. 80
a. Usability Testing ... 81

b. Cache ... 81
E. SUMMARY ... 83

V. CONCLUSIONS AND FUTURE WORK ... 85
A. CONCLUSIONS ... 85
B. FUTURE WORK... 87

1. User Login, Identification, and Authentication 87
2. External Database Integration .. 88
3. Offline Functionality .. 88
4. Map Cache .. 89
5. Dynamic HTML Generation for Alerts 89

SUPPLEMENTARY MATERIAL ... 91

LIST OF REFERENCES .. 93

INITIAL DISTRIBUTION LIST ... 99

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Cordova directory structure (from Plotz, 2013) 14
Figure 2. Cordova exec interface (from Apache Software Foundation, 2014) ... 18
Figure 3. Vector graphic (after Yug & Cfaerber, 2006) 22
Figure 4. Raster graphic (after Yug & Cfaerber, 2006) 23

Figure 5. Mapping from physical earth to WGS84 projection, (after National
Oceanic and Atmospheric Administration & National Aeronautics
and Space Administration, 2007; after Stöckli, Vermote, Saleous,
Simmon & Herring, 2005) ... 24

Figure 6. a (Left): Tiling of image at increasing resolution (after Stöckli et al.,
2005); b (Right): Tile pyramid (from García et al., 2012) 25

Figure 7. Tile type examples.. 27

Figure 8. OpenStreetMap node, way, and relation example 31
Figure 9. Overall system architecture .. 37

Figure 10. URL addressing scheme .. 40
Figure 11. Example alert documents ... 42

Figure 12. Mobile application architecture ... 45
Figure 13. Subsystems block diagram ... 46
Figure 14. Position is within r distance of Px .. 53

Figure 15. Position is within r distance of the route, but not Px 54
Figure 16. PT is on the route segment ... 54

Figure 17. PT lies outside the route segment, P2 is the closest point on the
segment .. 54

Figure 18. Main interface: browser (left), Android phone (right)........................... 59
Figure 19. Waiting for the GPS to become available. .. 60

Figure 20. Icons for offline, online type unknown, Wi-Fi, 3g, 4g (after Bu, 2011) 60
Figure 21. Recent and non-recent position reports for other units 62
Figure 22. Layers Menu icon (Icons-Land, 2014) .. 62

Figure 23. Base Maps tab, Android phone (left, middle) and iPhone (right) 63
Figure 24. Alert Layers tab .. 64

Figure 25. Options and Actions Menu icon (from Coelho, 2007) 64
Figure 26. Options tab, browser (left) and Android phone (right) 65
Figure 27. Create Alerts tab, browser (left) and iPad 2 (right) 66
Figure 28. Creating a new alert ... 67
Figure 29. Create / Assign Routes tab ... 68

Figure 30. Four waypoints selected ... 68

Figure 31. Proposed route between waypoints.. 69

Figure 32. Moving a waypoint (circled) .. 70
Figure 33. Adding a waypoint by clicking on route and dragging (click/drag

point circled) ... 70
Figure 34. Final route after adjustments .. 71
Figure 35. Adding a manual route ... 72
Figure 36. Waypoints adjusted and deleted (circled) ... 72

 xii

Figure 37. Finalizing a manual route ... 73

Figure 38. Assigning a route to a unit .. 74
Figure 39. Example alert information display, browser (left) and Android phone

(right) .. 75
Figure 40. Example alert information display, Android phone (left), iPad 2

(right) .. 75
Figure 41. Route assignment process ... 77
Figure 42. A unit that is on the assigned route .. 78

Figure 43. A unit that is off the assigned route .. 78
Figure 44. Example of user interface differences: the same button as rendered

in four different browsers .. 79
Figure 45. Dropdown input differences, Android phone (left) and Android tablet

(right) .. 80

Figure 46. Dropdown input differences, iPhone (left), iPad 2 (right) 80
Figure 47. Waterfall chart of download times .. 82

 xiii

LIST OF TABLES

Table 1. Smartphone market share, (after Rivera & van der Meulen, 2013) 11
Table 2. Tile count, estimated size, and anticipated download time by zoom

level .. 58
Table 3. Actual download sizes and times for different connection types 83

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

API Application Programming Interface

ASF Apache Software Foundation

BYOD bring your own device

C2PC Command and Control Personal Computer

COP common operational picture

COTS commercial off the shelf

CPOF Command Post of the Future

CPU central processing unit

CSS3 Cascading Style Sheet version 3

DOM document object module

FAT file allocation table

GCCS-J Global Command and Control System Joint

GIS Geographic Information System

GPS Global Positioning System

HA/DR humanitarian assistance and disaster relief

HTML5 HyperText Markup Language version 5

HTTP Hypertext Transport Protocol

IDE integrated development environment

IED improvised explosive device

JBV Joint Battlespace Viewer

JS JavaScript

JSON Javascript Object Notation

OS operating system

OSM OpenStreetMap

OSRM Open Source Routing Machine

REST representational state transfer

SDK software development kit

SVG scalable vector graphics

TIGR Tactical Ground Reporting System

URL uniform resource locator

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

Many thanks to my advisors, Dr. Gurminder Singh, Mr. Arijit Das, and Mr.

John Gibson, for the advice and guidance they have given me. Your efforts to

enhance my knowledge made the time fly by.

I would also like to acknowledge the support of the Naval Postgraduate

School Foundation for sponsoring this research, which was done in collaboration

with the Common Operational Research Environment Lab at the Naval

Postgraduate School. Without the support of these two organizations, this

research would not have been possible.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Military and police patrols are a critical enabler across the entire spectrum

of domestic and military operations from community relations to humanitarian

assistance and disaster relief (HA/DR) to gang and drug interdiction to counter

terrorism and counter insurgency to peace-keeping to full-scale combat

operations. Whether during peacetime law enforcement or disaster relief or

combat, patrols form the basis of many other types of operations including

search, interdiction, security, traffic control checkpoints, and intelligence

gathering.

During HA/DR operations patrols serve the important purpose of

protecting property, maintaining security, performing search and rescue, and

aiding the injured. As discussed by Fuentes and Hunt (2006), after Hurricane

Katrina, over 600 state troopers and police officers from New Jersey formed an

emergency response team that conducted patrols through the Second, Third,

and Sixth Districts in New Orleans. These patrols were primarily focused on

search and rescue, but they also assisted with force protection for emergency

responders, general police patrols to prevent looting and vandalism, and to assist

the Louisiana State Police and the Federal Bureau of Investigation with the

collection of intelligence about criminal gangs or groups that might hinder rescue

operations. During the response to the 2010 earthquake in Haiti, the United

Nations sent troops to patrol the streets to maintain public order and to guard

food and other aid deliveries during the relief effort (Lacey, 2010).

The recent conflicts in Iraq and Afghanistan have shown that the future

strategic landscape will be one of persistent conflict and that the focus will be

less on kinetic operations (i.e., actions involving direct and indirect fires intended

to kill the enemy or destroy his resources) and more on counter terrorism,

counter insurgency, peacekeeping, and nation building. Success or failure in

these types of operational environment is contingent upon maintaining stability

and winning the support of the local population (United States Army, 2008). This

 2

necessarily requires close interaction between the forces conducting the

operation and the indigenous population. Patrols are invaluable in facilitating this

interaction because they enable the unit to gain human intelligence, influence

popular opinion, and positively impact the security situation. In July 2010, when

Marines fanned out across the Nawa district in Afghanistan’s Helmand Province,

they used foot patrols to observe and interact with key personalities, observe and

document key terrain, and build a positive reputation with the local inhabitants

(Flynn, Pottinger, & Batchelor, 2010). These patrols enabled the Marines to

understand the social relationships and successfully engage the elders and other

powerbrokers in the district, which significantly reduced Taliban influence in the

area and led to a 90 percent reduction in Marine and Afghan soldier fatalities in

the area of operations (Flynn et al., 2010).

A. PLANNING FOR PATROLS

Military and police patrols have a need for access to timely, relevant

information about events and conditions along their patrol route, both historical

and ongoing. In many cases, this information is gathered manually prior to the

commencement of the patrol from historical databases, current event

repositories, and by conducting a review of organizational records that may be

relevant to the area to be patrolled. The Counterinsurgency Patrolling Handbook

(Pennington, 2008) indicates that in order to develop a common operating

picture, the patrol leader needs information about the people he will interact with,

the history of the area, significant events that have occurred recently, social or

religious culture or peculiarities. He needs a current and accurate map that

defines the location of roads, bridges, buildings, villages, and key infrastructure.

This collection of information becomes a mental framework to enable the patrol

leader to evaluate new information and events encountered while on patrol. It

should be clear that there is a tremendous amount of information to be collected

and reviewed and there could be negative repercussions if the officer misses a

critical data point or if that data has not yet been recorded in the sources the

officer is reviewing. It is easy to envision a situation where information might be

 3

available from a previous shift, or become available during a shift that, if

reviewed by an officer while on patrol, could provide him with the means to

disrupt criminal activity, make an arrest, or collect additional information relevant

to an open investigation (Bureau of Justice Assistance, 2012).

A commercial-off-the-shelf (COTS) mobile device such as a smartphone

or tablet is an ideal candidate to run a software application that would help satisfy

these requirements. This handheld assistant could collect and present

information from various databases to help the patrol leader develop his mental

framework, provide situational awareness alerts during the patrol, and enable the

patrol leader to collect and share additional information during the patrol.

B. OBJECTIVES

The goal of this thesis is to develop an architecture and a prototype

system to enhance the effectiveness and security of patrol units while at the

same time expedite the planning of patrol missions and reduce the cost of

planning.

The system will consist of a mobile application that can improve situational

awareness for patrols and a web application that can assist the command center

with tracking and monitoring the various units under their cognizance. The mobile

application will communicate with the command center’s web application to share

data collected by the patrols and track patrols’ progress along their routes. The

system will incorporate the necessary functions to assist with gathering

information from multiple databases about events, people, and activities along a

patrol route, track the progress of the patrol on a map using geolocation, and

alert the patrol when they are in the vicinity of those events, people, or activities

during the patrol. In addition, as a patrol progresses, the application will allow the

patrol to capture new information about persons or items of interest they

encounter and share it in real-time with the command center and other patrols via

a wireless connection.

 4

C. RELEVANCE TO THE DEPARTMENT OF DEFENSE

While there are numerous databases to track information and several

systems that attempt to improve a battlespace commander’s situational

awareness, there is no application that runs on COTS hardware and provides

geolocated situational awareness alerts using data from multiple data sources. A

simple COTS-device based tool can improve the planning and execution of

patrols. The improved awareness that would result from this application would

improve the effectiveness of patrol operations and reduce the risk for the

personnel executing the patrol.

D. ORGANIZATION

Chapter I provides a discussion of the need for an application that assists

a patrol leader with the gathering of information to prepare for a patrol and

providing tracking and alerts to the officer while on patrol. The chapter is made

up of two sections: One discusses the idea of a handheld assistant that runs on a

mobile device to aid the patrol leader’ situational awareness; the other explains

the overall objectives of this thesis.

Chapter II provides a description of existing programs and applications

related to our research. The discussion includes their strengths and weaknesses

and explains how the prototype application fills the gaps that these applications

do not. It includes a discussion of the different mobile device operating systems,

the Cordova development environment, mapping and routing services, and

network connectivity considerations.

Chapter III outlines the architectural design used in developing the

prototype system. It explains the overall system design as well as the design of

the user application and supporting components.

Chapter IV explains the implementation of the architectural design

described in Chapter III. The use of the Cordova development tools and the

development and testing of the mobile application are discussed. A walk-through

of the prototype application’s functionality is provided.

 5

Chapter V provides our conclusions and explores the possible

enhancements that could be included in future work. It concludes that developing

a device independent mobile application using HTML5, JavaScript, and CSS3

that facilitates improved situational awareness for the leader of a patrol is

achievable. The chapter concludes with a discussion of future research that

would significantly enhance the capability of the prototype system.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. BACKGROUND

A. INTRODUCTION

This chapter provides an overview of the concepts that form the

background for our research. It discusses current methods for solving the

problem, similar existing systems, the dominant mobile device operating

systems, and a method for cross-device application development. In addition, it

provides background on the creation and display of maps on mobile devices and

methods for determining routes.

B. CURRENT METHODS OF SUPPORTING PATROLS

The military has a number of tools and databases that are designed to

help commanders develop a common operational picture (COP). These

databases are constantly updated by the intelligence portion of the organization,

usually the S-2, as additional data is gathered by units in the field. The

intelligence analyst will interpret the data to synthesize it into intelligence that will

help develop a more accurate picture of the situation on the battlefield (United

States Marine Corps, 2003). Battalion-level S-2 shops are adept at collecting

human intelligence, signals intelligence, and significant event reports that

describe events in the area of operations, like improvised explosive device

strikes, ambushes, and insurgent activities (Flynn et al., 2010). The products,

developed by the analysts, help commanders determine the impact their units

actions will have on the situation.

The current method of preparing for a military patrol requires the patrol

leader to be familiar with the current COP. In addition, the S-2 will prepare an

intelligence report for the area to be patrolled that outlines key pieces of

information, such as known enemy and friendly units, geographic features,

priority intelligence requirements, imagery, and map overlays. While much of this

information is stored in various automated systems; written reports or oral

briefings are still the primary methods of disseminating this information to the

 8

patrol leader prior to the commencement of the patrol (United States Marine

Corps, 2003). The patrol leader will review a map of the area and note the

location of roads, bridges, buildings, villages, and other key infrastructure as part

of his reconnaissance. Marine Corps Warfighting Publication 3-11.3 states:

For a patrol to succeed, all members must be well trained, briefed,
and rehearsed. The patrol leader must have a complete
understanding of the mission and a thorough understanding of the
enemy and friendly situations. The patrol leader should make a
complete reconnaissance of the terrain to be covered (either visual
or map), and must issue an order to the patrol, supervise
preparations, and conduct rehearsals. (United States Marine Corps,
2000)

The success of the patrol depends on the familiarity the patrol leader has

with all of the information he has been provided and his ability to remember and

act on it in a potentially stressful situation.

C. EXISTING SYSTEMS

The U.S. military has a myriad of databases and systems designed to

store and catalog information that would be relevant to a patrol. Global

Command and Control System Joint (GCCS-J) is a set of hardware, software,

procedures, and standardized interfaces designed to consolidate intelligence

from multiple sources and produce a near real-time picture of the battle-space

environment to support joint and multi-national operations (Defense Information

Systems Agency, 2014). While some of the data stored by GCCS-J would be

useful in the conduct of a patrol, it is focused on providing awareness to

commanders directing strategic level operations.

Joint Battlespace Viewer (JBV) is a “software program that maps satellite

imagery, maps, and battlefield graphics to the Earth’s surface” (Naval Surface

Warfare Center, 2013). It allows the user to display tracks, overlays, icons,

routes, and video from other programs, like the Command and Control Personal

Computer (C2PC) developed by Northrop Grumman. JBV has the ability to

display alerts when a track crosses a boundary. C2PC is a Microsoft Windows

 9

based desktop application that shows COP information, overlays, and unit tracks

on a graphical map to enhance situational awareness.

General Dynamics developed the Tactical Ground Reporting System

(TIGR), a web-based system used by the U.S. Army that allows soldiers to

collect and share tactical-level information between small, mobile, and

dismounted units on the battlefield (General Dynamics Inc., 2012). TIGR displays

geolocated information on a Google-style map interface and combines data

feeds from programs like GCCS-J and Command Post of the Future (CPOF)

along with peer-to-peer sharing of collected information from other units using

TIGR. It is a situational awareness tool to assist with planning and executing

tactical missions.

CPOF is another General Dynamics developed system that incorporates

intelligence products, maps, charts, tables, and other planning tools into a single

software system to provide battlefield situational awareness to commanders

(Paterson, Greenberg, & Green, 2010). CPOF is designed to enable

collaboration between multiple units at different levels of command. Like TIGR,

CPOF integrates and displays data from other databases in order to support its

stated goal of collaborative information sharing.

Each of these systems integrates data from multiple sources in order to

aid with planning, increase situational awareness, and provides a context for

spatial location of data by displaying routes, tracks, and unit locations using a

map. As the most mobile of these systems, TIGR is most similar to our proposed

solution to providing situational awareness and mobile alerts to a patrol.

Research indicates that TIGR is not designed to run on a mobile platform and

does not provide alerts to the user when they are in the vicinity of critical

locations, nor does it track the user’s location along a pre-defined route (General

Dynamics Inc., 2012).

 10

D. BRING YOUR OWN DEVICE

David Willis stated that “Bring-your-own-device strategies are the most

radical change to the economics and the culture of client computing in business

in decades” (2013, p. 1). Bring-your-own-device (BYOD) policies have become

common in the business community and are starting to be recognized by

government IT departments as a way to increase employees’ satisfaction by

allowing them their choice of device. Gartner, as quoted by Willis, estimates that

by 2020 over 45 percent of the business community will fully embrace BYOD and

another 40 percent will have policies that support BYOD for some portion of its

operations (2013). As mobile devices become more prevalent in society,

organizations are beginning to realize that there are cost savings to be had by

allowing employees to use their personal mobile devices for business purposes

instead of providing a company issued device.

Although Willis discusses many challenges to implementing BYOD,

including security, privacy, and limiting migration of data between personal and

business domains, one big challenge he spends little time on is fragmentation of

the mobile OS environment (2013). As of 2014, there are 10 mobile operating

systems available for different devices. When organizations provided mobile

devices to their employees, configuration management of devices and

applications was inherent in their policy. With BYOD, configuration management

becomes much more challenging and expensive. An organization has to

determine which operating systems to support. Particularly when the organization

has business-specific applications, supporting multiple operating systems can be

a code development and configuration management nightmare, as each OS has

specific development environments.

E. MOBILE OPERATING SYSTEMS

As of June 2014, there are four major mobile operating systems with

significant market penetration: Android, iOS, Blackberry, and Windows Phone

 11

(see Table 1). There is a host of other mobile operating systems including Firefox

OS, Sailfish OS, Symbian, Tizen, Bada, and Ubuntu Touch.

Worldwide Smartphone Sales to End Users by Operating System in 3Q13

Operating System 3Q13 Units(Thousands) 3Q13 Market Share (%)

Android 205,022.70 81.9

iOS 30,330.00 12.1

Microsoft 8,912.30 3.6

BlackBerry 4,400.70 1.8

Bada 633.3 0.3

Symbian 457.5 0.2

Others 475.2 0.2

Total 250,231.70 100

Table 1. Smartphone market share, (after Rivera & van der Meulen,
2013)

1. Android

The Android operating system holds the overwhelming share of the mobile

device market, with 81.9 percent of the market share as of third quarter 2013

(Rivera & van der Meulen, 2013). Android was developed by Google based on

the Linux kernel and is “an open-source software stack created for a wide array

of devices with different form factors” (Android Open Source Project, 2014b). The

Android Software Development Kit (SDK) includes all of the Android APIs

packaged with an Eclipse Java based Integrated Development Environment

(IDE). Android applications are normally written in Java and compiled to Java

byte-code before being packaged and loaded onto a device. The Android Native

Development Kit does allow libraries and applications written in other languages

to be compiled to code native to processor chipsets, such as x86, ARM, or MIPS,

but this is discouraged since the Android Java Virtual Machine is highly

optimized, writing native code applications is highly complex, and only CPU-

bound applications gain any significant speed advantage (Android Open Source

Project, 2014a). The Android SDK includes an emulator to enable application

developers to test their applications on a variety of mobile device configurations

without having to acquire actual devices.

 12

2. iOS

Apple’s iOS is the second most prevalent mobile operating system with

12.1 percent of the market share as of third quarter 2013 (Rivera & van der

Meulen, 2013). iOS is a closed-source operating system and is proprietary to

Apple Inc. Application development for iOS requires the developer to have a

Macintosh computer running OS X, to use the current Xcode IDE, and have the

iOS SDK installed on the computer (Apple Inc., 2013).

iOS applications must be written in Objective-C and use the Cocoa Touch

user interface library. The Xcode IDE includes an emulator and a developer can

deploy its application to an emulated iPhone or iPad emulator for testing.

Apple devices require all applications to be digitally signed by an approved

developer certificate, so to deploy an application to a real device the developer

must purchase an Apple Developer License in order to obtain a code-signing

certificate (Apple Inc., 2014b).

3. Others

Windows Phone and Blackberry OS each have less than five percent of

the smartphone market, followed by several even less popular mobile operating

systems, including Tizen, Bada, Symbian, Firefox OS, and Ubuntu Touch.

Windows Phone, Blackberry OS, Bada, and Symbian are all closed-source,

proprietary operating systems. Tizen, Firefox OS, and Ubuntu Touch are Linux-

based, open-source platforms for mobile devices. All of these mobile operating

systems come with their own SDK for developing applications. Blackberry OS,

Bada, Tizen, Sailfish OS, Windows Phone, and Ubuntu Touch use C, C++, or C#

as a development language. Notably, Firefox OS applications are written entirely

in HTML5, CSS, and JavaScript with enhanced access to the device’s hardware

and services provided by the Firefox OS API (Mozilla Foundation, 2014).

 13

F. PHONEGAP AND CORDOVA

PhoneGap and Cordova are mobile application development frameworks

that enable a developer to write the code for an application in HTML5, CSS3, and

JavaScript and then deploy it to a variety of mobile devices without having to re-

code the application into the native programming language for that platform.

1. History

PhoneGap was originally developed by Nitobi Software, which was

acquired by Adobe Systems in 2011 (Adobe Systems Inc., 2011). Concurrent

with the acquisition, Adobe contributed the PhoneGap source code to the

Apache Software Foundation (ASF) in order to facilitate continuing improvement

by the open source community (Adobe Systems Inc., 2011). In order for Adobe to

maintain a clear trademark and meet ASF’s license for open source software, the

open source version was renamed Apache Cordova. PhoneGap is currently a

downstream distribution of the Apache Cordova project, with Adobe having

license under the PhoneGap trademark to add additional and proprietary value-

added services, such as the Adobe PhoneGap Build online compilation platform

and integration with its other web-authoring tools (Leroux, 2012). PhoneGap and

Cordova both provide the same essential functionality. Therefore, for

consistency, the development framework for this thesis will be referred to as

Cordova.

2. Cordova Theory of Operation

The Cordova framework consists of a set of command line tools and

software libraries. When a new Cordova project is created, Cordova creates a

specific set of directories, as depicted in Figure 1, each with a specific function.

The developer places his or her application’s code in the “www” directory.

Cordova manages the other directories during the build process, moving and

replacing files as necessary.

 14

Figure 1. Cordova directory structure (from Plotz, 2013)

In order for Cordova to compile an application for a specific mobile device

operating system, the development system must have the Software Development

Kit (SDK) loaded for that particular mobile operating system (Apache Software

Foundation, 2014). During the build process, Cordova scripts the running of the

SDK tools to compile a native code application that consists of a WebView and a

foreign function interface that enables the developer’s JavaScript code to access

native functions, referred to by Cordova as plugins (Apache Software

Foundation, 2014). These plugins are native code functions that enable access

to mobile device hardware or functionality that is not otherwise exposed by the

WebView to the JavaScript code. The Cordova build process packages the

contents of the “www” directory into application resources, compiles the

appropriate native code for the target mobile operating system, and then

assembles it all together into the appropriate type of package to be loaded onto

the mobile device.

As described in the Cordova user documentation (Apache Software

Foundation, 2014), when a Cordova application is run on a mobile device, the

 15

Cordova native code instantiates and configures a full-screen WebView and then

directs it to load the developer’s index.html file located in the application’s

resources. While the WebView is loading and rendering the HTML, Cordova’s

native code continues in a separate thread to load any required plugins and

establish the foreign function interface. This asynchronous loading process

makes the application appear to run more quickly, but raises the possibility that

the WebView may finish loading and begin running the developer’s JavaScript

code before Cordova has finished its loading and setup process. To prevent the

JavaScript code from attempting to access a native function that has not been

loaded yet, the developer is required to wait for an OnDeviceReady event to be

fired by Cordova before accessing any of Cordova’s native functions. When

Cordova has finished its setup, it passes the OnDeviceReady event to the

WebView.

3. HTML5, JavaScript and CSS3

Cordova’s use of HTML, JavaScript and CSS enables a developer to use

the same skillsets for developing a mobile application as he would to develop

webpage. Most of the same concepts discussed by Frain (2012) that are

applicable to responsive web page design are applicable to the design of a

Cordova mobile application. All of the modern mobile WebView-enabled

browsers support HTML5 and CSS3. HTML5 and CSS3 bring additional

capabilities that enable a Cordova application to have fluid layouts that adapt to

different viewport sizes; support CSS3 typography, transformations, transitions,

animations, and other visual effects; and access a number of non-traditional APIs

without writing native code, including local file access, geolocation, media, web

storage, and others. WebView supports any HTML, CSS, and JavaScript that will

run on that device’s mobile browser version. There are a number of additional

considerations that must be addressed for a Cordova-based application,

however, including single page authoring, integration with the mobile device

hardware, user interface design, and managing the differences between touch

and click events.

 16

a. Single Page Authoring

While the Cordova framework does provide the ability to load a different

page, this will disrupt the user experience when the WebView loads and renders

the page (Apache Software Foundation, 2014). In addition, loading a new HTML

page clears the JavaScript stack; if the application needs to persist data across

the reload, the application will have to use cookies, store the data in the window

object, or use local storage to store and then re-load the data. All of these

approaches will impact the responsiveness of the application. It is for these

reasons that most Cordova applications use a method known as single page

authoring.

Single page authoring is a method of web page authoring where the

browser retrieves only a single HTML web page at the beginning of the session.

All changes to the page after that point are done dynamically, using JavaScript to

add and remove elements from the document object model (DOM). By adding

and removing elements from the DOM, the user interface can be manipulated

using all of the elements familiar to the user including menus, buttons, popup

dialog boxes, etc. without requiring the browser to perform another full-render on

the page. This causes the page to appear much more responsive and does not

require workarounds to get JavaScript variables to persist across user interface

changes.

Single page authoring for mobile devices does require additional

consideration for DOM complexity. Due to resource limitations on mobile devices,

the child-depth limit for DOM objects imposed by either the HTML parse engine

or device memory might become an issue if the developer chooses to hide

objects as opposed to completely removing them from the DOM. One method for

speeding up the initial page load and render is to use a framework that only loads

the initial page view. Additional content can be dynamically loaded from

additional HTML files just prior to when it is needed.

 17

b. JavaScript Integration with Native Code

HTML5 and CSS3 provide the ability to develop spectacular and

responsive user interfaces. For an application that needs to do nothing more than

display a nice user interface and handle some user inputs, HTML5 and its related

API’s provide more than enough capability. For an application that needs more

direct control over the hardware the WebView sandbox can be limiting. HTML5

provides some limited access to the mobile device’s camera, GPS, database

storage, and file system. These API’s are limited both in the application’s ability

to control them, and by whether a particular mobile browser supports them.

Mobile devices today have additional sensors and capabilities including

Bluetooth, Near Field Communication, Wi-Fi Direct, accelerometers, light

sensors, proximity sensors, etc. that have no HTML5 or JavaScript API to enable

access to them via the WebView.

The WebView component provides the ability to access native code

functions from the JavaScript code running in the WebView. Cordova exposes

this functionality using a standardized plugin framework. Plugins must be

developed in the native language for the device to be targeted and include a

native component that accesses the device hardware and a JavaScript interface

that invokes the Cordova exec function to access the native interface (Apache

Software Foundation, 2014). The Cordova exec function takes five arguments: a

success callback, an error callback, a service name, an action name, and an

array of arguments (see Figure 2). The service name is the name of the native

class, and the action name is the method of the native class that should be

called. The arguments are passed to the action method. This interface enables a

Cordova application to use plugins to access device hardware or provide

capability that is not exposed through HTML5 or its related APIs.

 18

Figure 2. Cordova exec interface (from Apache Software Foundation, 2014)

c. Touch Versus Mouse Events

There is a significant difference in the design requirements for an

application where user interaction is accomplished via touch versus an

application where the user has a mouse and keyboard. Most applications

designed for display on a desktop browser anticipate that the user is interacting

with the page using a keyboard and mouse, although touch is rapidly moving into

the desktop space, and touch events should be considered. On a mobile phone

or tablet, the user is most likely to be using touch, multi-touch, or a stylus to

interact with the application.

While Fitts’s law (1992) applies to both mouse and touch interaction, a

mouse cursor is relatively more accurate than a finger, so application interfaces

designed for touch interaction must have larger controls and more control

spacing (Forlines, Wiggdor, Shen & Balakrishnan, 2007). Newer desktop

browsers support both mouse and touch events and mobile browsers will

simulate mouse events based on touch events if the touch events are not

handled. Unfortunately, each browser handles the translation a little differently

(Koch, 2014), so the user experience may not be uniform on each platform. In

particular, many browsers have a built-in 300 millisecond delay before turning a

touch event into a mouse event to determine if the user is performing a double-

tap; this delay can cause the interface to feel sluggish if it is not overridden

(Wilson & Kinlan, 2013).

cordova.exec(function(success) {},
 function(error) {},
 "service,”
 "action,”
 ["firstArgument,” "secondArgument,” …, lastArgument]);

 19

d. Security

The use of Cordova to develop mobile applications introduces a number of

security challenges including cross-origin policy restrictions and breaching of the

sandbox model. By design, web browsers do not allow a script from one domain

to make a request for content or data from another domain. This presents a

problem for a WebView application that wants to retrieve and manipulate or

display data from a server since its domain is defined as either “file://” or

“http://localhost.” Mobile operating systems that support the WebView concept

allow the application to provide a whitelist of acceptable domains from which to

retrieve data. The application may still be limited in what it can do with data

retrieved from a server that does not support Cross-Origin Resource Sharing

headers, however. For example, an application using the JavaScript

XMLHttpRequest function to retrieve an image from a server that does not set

the Access-Control-Allow-Origin response header will be limited by the WebView

in what it can do with that image to prevent malicious cross-site scripting or code

injection.

The WebView functionality that enables JavaScript code running in the

WebView to interface with native code breaches the browser sandbox model by

design. Unfortunately, as discussed by Luo, Hao, Du, Wang, and Yin (2011) this

interface could enable a malicious application on the device to manipulate the

JavaScript being run in the WebView or allow a malicious script that is loaded by

the WebView, perhaps due to the user clicking a link, to access the native code

interfaces exposed to the WebView.

4. Development Considerations

There are some development considerations that must be evaluated

before deciding whether to use Cordova to develop a mobile application. These

considerations are the availability of plugins and the design of the user interface.

 20

a. Plugin Availability

The Cordova API provides plugins to access many of the most popular

hardware interfaces, operating system components, and system events (Apache

Software Foundation, 2014). Hardware interfaces include the device’s battery

status, the accelerometers, the compass, the camera, vibration, network status,

and the GPS. Operating system functions that can be accessed include the file

system, the user’s contacts list, globalization functions, the operating system’s

email client, and an in-application browser. System event plugins include

application pause and resume; changes in online status; and volume, home, and

back button presses. Any functionality that a developer wants to add to an

application that is not covered by the Cordova provided plugins requires the

developer to create a plugin to access that capability. In particular, Cordova

plugin support is lacking for several common communication interfaces on mobile

devices, including Bluetooth, Wi-Fi Direct, Near Field Communication, and socket

IO.

b. User Interface Design

The Cordova API provides the ability to use native dialog boxes on each

of its platforms to assist with making the user interface feel more like a native

application for that platform than a web-based application (Apache Software

Foundation, 2014). This might be important if the application is to be submitted to

a commercial app store. For example, Apple requires all applications to conform

to its user interface guidelines, and applications that fail to do so are rejected

(Apple Inc., 2014a). Another option for developers is to completely manage the

entire user interface, developing all dialog boxes, popups, etc. using HTML and

CSS. While this approach will not mimic the platform’s native user interface, it will

enable the developer to create a consistent user interface across all of the

devices. The advantage to this approach is that once a user is familiar with the

interface, transitioning to a new device will be seamless, as the user interface will

be exactly the same.

 21

G. MAPPING

A map that is displayed to the user in an application that allows them to

zoom and pan is generally referred to as a slippy map. The OpenStreetMap

Project defines a slippy map as a web-browser-based map interface that enables

a user to zoom and pan a map by grabbing the map with the mouse and sliding

the map image in any direction. The web browser dynamically loads the new

portion of the map display without reloading the page, making for a seamless

user experience (“Slippy map,” 2014). The map image is built out of many

smaller images referred to as tiles. These map tiles may be in a number of

different formats and may be stored locally, produced on a server, or generated

locally as needed. Each tile is referenced by its location in relationship to a grid

and its zoom level. This makes it possible to take given latitude, longitude, and

zoom level, and determine which map tile needs to be displayed to show that

location.

1. Formats

The actual map data that describes the geographic features can be stored

in many formats including Keyhole Markup Language, GeoJSON, ArcGIS,

PostGIS, and many others. These formats are all standards for encoding

geographic information into a standardized file format. All contain information

about features on the surface of the earth along with their spatial location. These

Geographic Information System (GIS) files are used to generate the actual map

tiles that are displayed for the user.

Map tiles can be generated in three basic formats: proprietary, vector-

based images, and raster-based images. They can be generated locally on the

device that will display them or generated on a server and delivered to the device

over the network.

 22

a. Proprietary

Proprietary formats are used by commercial GPS providers, such as

Garmin, Lowrance, and Navikey. Based on reverse engineering and open source

information, these formats combine vector display information for the map

features, elevation data, and routing information to support GPS navigation

(“OSM map,” 2013).

b. Vector Image

The most efficient way to store map tile information is using vector-based

images. A vector image format describes the image using points, lines, angles,

curves, and polygons, along with color information. This format is advantageous

because it has a small file size and, as depicted in Figure 3, vector images do not

lose information as they are scaled up or down. The disadvantage to vector

images is that they can only store images based on shapes, and are not useful

for displaying photograph style images. In addition, they must be rendered each

time they are displayed, moved or scaled, so a large or complex image may

require significant processing power or incur a delay in the display to the user.

Figure 3. Vector graphic (after Yug & Cfaerber, 2006)

Vector images are ideal for representing man-made geospatial features

such as roads, buildings, etc. because all of the points in the file can be

geographically referenced. Zooming the image then becomes just a matter of

 23

adjusting the scale of the image and redrawing it; all of the associated shapes

will scale appropriately.

c. Raster Image

Raster images, also known as bitmaps, have a grid data structure that

stores the color information required to display each pixel of the image. Raster

images are most advantageous when there is a need to display photo-realistic

images with significant color gradients. The file size of raster images is generally

larger than a similar vector image, and while raster images can be compressed,

this introduces another processing step. Raster images also do not scale well to

higher resolutions. As seen in Figure 4, raster images suffer from pixilation when

scaled, or zoomed-in beyond the number of pixels defined by the raster image.

Figure 4. Raster graphic (after Yug & Cfaerber, 2006)

Raster images for satellite or aerial imagery can be geolocated by

providing a bounding rectangle for the image that describes the area of the

earth’s surface covered by the image, or by providing the geographic coordinate

of one of the image’s corners and specifying the distance covered by a pixel in

each direction (Sample & Ioup, 2010).

d. Global Map Tile Scheme

Tile-based mapping systems require that a depiction of the earth’s surface

be decomposed into a logical set of discrete tiles that can be addressed via a

 24

coordinate system. This requires taking the roughly ellipsoid earth and mapping it

to a flat surface using a map projection, as seen in Figure 5. The most popular

projection used in online maps is the World Geodetic System 84 Pseudo-

Mercator projection, which was adopted and popularized by Google (Google Inc.,

2014).

Figure 5. Mapping from physical earth to WGS84 projection, (after National
Oceanic and Atmospheric Administration & National Aeronautics
and Space Administration, 2007; after Stöckli, Vermote, Saleous,

Simmon & Herring, 2005)

The projected image of the map can then be sliced into tiles with a

standard size depending on the required zoom level of the map. This is referred

to as a tile pyramid because, as the zoom level increases, the number of tiles

required to represent the same physical area at the previous zoom level

increases exponentially, as does the level of detail for each tile. Figure 6a shows

how the number of tiles for a particular area increases at each zoom level; note

that each tile would represent a constant number of pixels. Figure 6b shows

another visualization of the tile pyramid as explained by García, de Castro,

Verdú, Verdú, and Regueras (2012), where the entire earth can be represented

as one 256 x 256 pixel tile at Level 0, and representing that same area requires

16 256 x 256 pixel tiles at Level 1, with a corresponding increase in feature

resolution.

 25

Figure 6. a (Left): Tiling of image at increasing resolution (after Stöckli et
al., 2005); b (Right): Tile pyramid (from García et al., 2012)

e. Server Generated Tiles

Rendering a map tile from the raw geospatial map data requires a number

of steps. The compressed geospatial map data for the entire globe is

approximately 27 gigabytes. Rendering the entire globe and storing all of the

resulting map tiles would require approximately 52 terabytes of storage space,

most of which would be wasted, as two thirds of that space would be tiles at

zoom level 18, the vast majority of which show nothing of interest (for example,

open ocean where no geographically-significant features exist) (“Tile disk usage,”

2011). The optimal method of serving map tiles is to render a tile on the server

the first time it is requested and then to cache it for some period of time in the

event that it is needed again. This prevents rendering and storing tiles that would

never be requested.

 26

In order to enable the server to request the geospatial map data for only

the area to be rendered, the first step is to process the XML-based geospatial

data into a spatially aware database like PostGIS (Dees & Weait, 2013). This

step is processing intensive and can take hours or days but is critical to enabling

the rendering engine to render only those areas of the map that are actually

needed. The PostGIS database enables the rendering engine to request all of

the map features that fall within a particular bounding box.

The second step is for the rendering engine to produce vector-based

graphic layers for each feature using a style sheet that determines how the

individual features like streets, highways, points of interest, labels, buildings, etc.

should be drawn. The rendering engine then uses the painting algorithm to

combine the layers into a single vector based image (Dees & Weait, 2013).

While it is theoretically possible at this point to chop the vector image into

tiles and serve it to the client, this has not been widely adopted to date because

browser support for SVG images has not been consistent and clipping the SVG

geometry to make the tiles is challenging. There are a number of ongoing

projects that are pursuing vector-based tile servers.

The next step for most rendering engines is to convert the vector image

into a raster image covering the requested area plus a gutter, and then chop the

raster image into standard size tiles, usually 128 x 128, 256 x 256, or 512 x 512

pixels in size, and forward them to the web server to fulfil the request.

f. Locally Generated Tiles

With the exception of proprietary formats, such as the Garmin GPS, there

are very few clients that generate the map tiles on the device, for the reasons

previously discussed. Most mobile devices cache the necessary tiles to show the

low zoom levels, at the continent level and above, and then download the higher

zoom tiles from a server as necessary. In order to locally generate the tiles, the

raw geospatial data would have to be stored on the device in a spatial database

and rendered into a vector image on the fly. There are a few open source

 27

projects attempting to support this model, including Kothik JS and TileStache, but

Kothik JS is still in development and TileStache is not currently designed to run

on a mobile device (“Rendering,” 2014).

2. Mapping Providers

There are numerous commercial providers who serve map tiles over the

Internet to support map applications, including ESRI, Google, Bing, MapQuest,

Thunderforest, Stamen, CloudMade, and OpenStreetMap. These providers host

map tile servers that include various styles, including aerial and satellite imagery,

shaded terrain, street maps, and artistic renditions. Examples of the various

styles of tiles available are shown in Figure 7.

Figure 7. Tile type examples

Each of the various tile providers have different terms of service that are

required to be met in order to use their tile server. All of the tile providers require

applications to provide attribution of the tile source. Google and ESRI require

developers to apply for an API key for usage tracking before being allowed to use

 28

the service. Google requires developers to use the Google Maps API to access

its tiles. MapQuest requires notification if anticipated usage is greater than 4,000

tiles per second. Google, ESRI, and Thunderforest track and limit the number of

tiles that may be downloaded by an application before requiring a paid support

plan. CloudMade is strictly a commercial provider and requires a paid support

plan.

OpenStreetMap provides the base data used by several of the mapping

providers. While OpenStreetMap does host a tile server for testing purposes, it

prefers that application providers download the raw geospatial data and host

their own tile server. OpenStreetMap provides links to software and tutorials for

setting up and hosting a tile server. Hosting a dedicated tile server is an ideal

solution for a military application because the tile server can be deployed close to

the battlefield to alleviate the requirement for reach-back connectivity to a U.S.

based datacenter.

3. Map Display Application Programming Interface

To display a map, the application must determine its location, determine

which map tiles are needed, download and insert the tile images into the DOM,

and handle user events such as zooming and panning. There are four popular

JavaScript APIs that automate this process: the Google Maps API, Leaflet,

MapBox, and OpenLayers.

a. Google Maps API

The Google Maps JavaScript API is a complete API for displaying and

interacting with maps provided by Google. It includes the capability to display

additional data visualization layers over the Google provided base maps. The

API includes functions for adding overlays, including markers, rectangles, circles,

polylines, and polygons. The Google API provides many additional services,

including routing, geocoding of addresses, direction and distance calculations,

weather data, information popups, and Street View pictures.

 29

The Google API’s major advantages include that it is heavily tested and is

unlikely to contain many errors that would impact the use of an application.

Google provides one of the best routing engines available; it is both accurate and

quick to return results. As a major mapping provider, Google hosts multiple tile

servers and a large user volume, so popular tiles are likely to be cached and

served quickly.

There are three major limitations imposed by use of the Google API

(2014). The first limitation is that it requires the developer to register an API key

with Google for usage tracking. The usage tracking provides a means for Google

to enforce payment for applications that exceed 25,000 map loads per day. The

second limitation is that the Google API’s terms of service prohibit storing the

script or map tiles for use offline. This limitation means that an application using

the Google API must always be used online. Such a requirement could severely

impact its usage for tactical environments where continuous Internet connectivity

may be lacking. The third limitation is that Google’s terms of service prohibit the

use of Google’s API in an application that is not publicly available unless a

business license has been purchased.

b. Leaflet

Leaflet is a lightweight JavaScript library, originally developed by

CloudMade, Inc., that provides the capability to display and interact with maps. It

is provider agnostic and is capable of interacting with many different map tile

providers. It supports both vector and raster layers and includes the capability for

creating overlays, including markers, circles, polygons, polylines. Leaflet is open

source and extensible. There are currently over 100 plugins for Leaflet that

provide additional functionality such as routing, popups, labels, heatmaps,

GeoJSON layers, local file layers (KML, GPX, etc.), 3d building visualization, and

various user controls.

 30

c. MapBox

MapBox is a JavaScript library developed by MapBox, Inc., on top of

Leaflet. MapBox is focused on the development of mapping technologies and

software for the creation of maps. In particular they are known for developing

TileMill, a map design studio, and MBTiles, an efficient database for storing map

tiles locally. The MapBox Javascript library adds geocoding, interactive UTF

grids, data visualization, and user interface controls to the basic functionality

provided by Leaflet.

d. OpenLayers

OpenLayers is a mature, heavy JavaScript API that provides similar

functionality to the other libraries discussed but is much more configurable. It

supports overlays, including polylines, circles, curves, points, vector layers, and

custom markers. The advantage to OpenLayers is that it is extremely

configurable and supports customizing almost any part of the interface. The

disadvantage is that its code size is over 700 kilobytes, which means it is not as

well suited for a light-weight browser-based mobile application.

H. ROUTING

A route on a map consists of a start point, an end point, and all of the

points in between that describe the path taken from the start-to-end. A route can

be created in two ways: manually, with the user defining all of the intermediate

points on the path; or automated, by the user defining a series of waypoints and

then software determining the most efficient route that includes those waypoints.

1. Routing Algorithm

Automated routing is a shortest path problem implemented using the

waypoints provided by the user along with the spatial geometry data provided as

part of the map and a set of conditions. OpenStreetMap stores the geospatial

data as sets of nodes, ways, and relations. The nodes are geolocated points,

ways are collections of nodes that define a path or shape, and relations describe

 31

the roles associated with their nodes or ways. Nodes, ways, and relations can all

have tags that describe conditions or constraints related to them, such as

speeds, turn restrictions, building type, land type, etc. Figure 8 provides an

example of the way a node, a way, and a relation are described using XML. All

have a unique identification number, a version, and information about the user

who created the entry. A node has a latitude and longitude associated, along

with tags that describe what the node is. In Figure 8, the node is the location of

an exit from a highway. The way in Figure 8 is a collection of nodes, listed using

the “<nd” tags, that describes a fitness center building. The relation in Figure 8

describes a right-turn-only restriction that applies to the node it references.

Figure 8. OpenStreetMap node, way, and relation example

Most automated routing services use an implementation of Dijkstra’s

algorithm, with some including performance enhancements such as bi-directional

search or Contraction Hierarchies as seen in Vetter’s experiments (Vetter, 2010).

<node id="10565353" lat="33.9347502" lon="-118.1767504" version="11"

 timestamp="2011-06-11T13:57:10Z" changeset="8406172" uid="207745"

 user="NE2">

 <tag k="exit_to" v="Imperial Hwy West"/>

 <tag k="highway" v="motorway_junction"/>

 <tag k="is_in:state_code" v="CA"/>

 <tag k="ref" v="12B"/>

 <tag k="source" v="survey;image;usgs_imagery;CDOT"/>

 <tag k="source_ref" v="AM909_DSCS8452"/>

</node>

<way id="117425695" version="2" timestamp="2013-08-22T07:35:47Z"

 changeset="17450998" uid="416346" user="Brian@Brea">

 <nd ref="1322972985"/>

 <nd ref="1322972891"/>

 <nd ref="1322972954"/>

 <nd ref="1322972855"/>

 <nd ref="1322972985"/>

 <tag k="building" v="yes"/>

 <tag k="name" v="Fitness Center"/>

</way>

<relation id="1861654" version="1" timestamp="2011-11-24T19:11:01Z"

 changeset="9936279" uid="229805" user="Jim3535">

 <member type="node" ref="1515779993" role="via"/>

 <tag k="restriction" v="only_right_turn"/>

 <tag k="type" v="restriction"/>

</relation>

 32

The routing algorithm finds the closest point on a navigable road to each of the

waypoints and then applies a shortest path algorithm to find a route between

each of the waypoints subject to the restrictions described in the map geometry.

Routing services that are configurable for different types of traffic (i.e.,

pedestrian, bicycle, vehicle) will adjust their algorithm to account for or ignore

certain restrictions applicable to that mode of travel. For example, a pedestrian

can travel either direction on a one-way street, while a vehicle cannot. A vehicle

can travel on an interstate highway, while bicycles and pedestrians cannot.

2. Routing Service Providers

There are several commercial vendors that provide online routing

services, including Google, ESRI, and HERE. All of these APIs are similar in that

they take starting and destination latitude and longitude, an array of waypoints, a

travel mode, and some options and return one or more routes along with turn-by-

turn directions.

The Open Source Routing Machine (OSRM) is a software application that

provides routing services using OpenStreetMap data. It requires pre-processing

the geospatial data using a mobility profile to produce an optimized node graph

(Luxen, 2014). When the server application is queried it returns the shortest path

between the start and end coordinates along the OpenStreetMap road network

that includes all of the waypoints by performing a bi-directional search using

Dijkstra’s algorithm (Luxen, 2014). It returns one or more encoded route

geometries and a set of turn-by-turn directions for each route. The client must

decode the route geometry into a set of coordinates that define the route. One

disadvantage to OSRM is that the mobility profile is set during the pre-processing

step. This means that in order to support both pedestrian and vehicle routing,

there must be two servers; one for each mobility profile.

I. CONNECTIVITY CONSIDERATIONS

A mobile application can experience differing levels of connectivity

depending on the infrastructure available and a given infrastructure’s connectivity

 33

to the wider Internet. The application may have high connectivity and high

available bandwidth if Wi-Fi on a broadband backbone network is available. If the

mobile device has been provisioned and there is cellular infrastructure, the

device may have high connectivity, but bandwidth may be limited depending on

the type of cellular connection (e.g., 3G vice 4G). There may also be times when

there is no connectivity available at all, either due to lack of infrastructure,

interference, or security restrictions. In order to be useful, a mobile application

should adapt to the changing connectivity environment and continue to provide

as much functionality as possible to the user.

1. Map Cache

Changing levels of connectivity present a challenge for mapping

applications. The slippy map standard technique for displaying tiles uses a just-

in-time methodology: each tile is downloaded only when it is visible on the user

interface.

In a connected, high-bandwidth environment this works well. The

download of the initial batch of tiles may take a second or two, but after the initial

download delays are minimized. The number of tiles required to support a pan

operation is small and zooming uses image manipulation to stretch the existing

tiles to the new zoom level and then replaces them with the new tiles as they

become available. In addition, the web browser will typically cache the tile

images, so panning or zooming back to an area with has already been displayed

is extremely responsive because there is no delay waiting on the tiles to

download. These techniques make the map feel very responsive to the user.

In an environment with limited or no connectivity, the application has to

maintain the map images in local (device-resident) offline storage. The

advantage to storing the map data offline is that no connectivity is required and

the user does not have to wait while tiles are downloaded. The disadvantage is

that limitations in device storage limit the amount of map data that can be stored

offline. Offline tile storage requires some method of optimizing the usage of

 34

space and an organized method for retrieving tiles as they are needed. There are

three basic methods: storing the tiles as files, using a database, or using a

custom file format.

As discussed by Sample (Sample & Ioup, 2010), storing individual tiles as

files is the easiest method for offline storage. Tiles are referenced by their X and

Y coordinates and their zoom level. This data can be used to form a directory

structure or a file name. For example, storing a tile with coordinates (X,Y) at

zoom level Z using PNG format using a directory-based structure would look like

%tile_cache%/X/Y/ with the different zoom-leveled files for that X and Y

coordinate residing in the directory. Using a file name format would name the

files based on their X, Y, and Z coordinates and store them in the cache directory

using a format like %tile_cache%/X-Y-Z.png. The advantage to this scheme is

that it is extremely simple to find a particular tile given its X, Y, and Z coordinates,

and displaying a cached tile is as simple as substituting the tile server’s URL with

a local file URL. There are two disadvantages to this method of local storage.

Some operating systems have a limit on the number of objects that can be stored

in a directory, for example, FAT32 disks popular on android only support 65,534

files in a directory and 4 million files on the device (Microsoft Corporation, 1999).

Since the number of tiles increases exponentially at each zoom level, attempting

to store more than a few zoom levels for any given area will easily exceed this

limit; for each tile at zoom level 1, level 8 will require 65,536 tiles, given that each

level doubles the tiles in each of the X and Y axes.

Custom file formats are specific to the developer or project. They may

include features such as compression, storage by zoom level, clustering by

location, etc. These custom formats can be optimized to the anticipated usage of

the application. Clustering by zoom level or location can enable the application to

uncompress an area or zoom level and pre-load it into memory in anticipation of

it being used (Sample & Ioup, 2010).

Sample and Ioup (2010) also discuss the use of databases for storing map

tiles because of the ease of lookup and because specially crafted databases can

 35

use views to map multiple coordinates to the same image to improve storage.

Maps that are not satellite or aerial imagery based will have large areas where

tiles at multiple zoom levels are the same color (e.g., oceans, deserts, lakes,

forests). In a file-based storage system, each tile would be stored, resulting in

identical tiles being stored multiple times and wasting significant space. An

intelligent database storage system will not store additional copies of identical

tiles, but will map multiple views to a single copy of the tile. MapBox, for example,

has implemented a database specification called MBTiles that stores map tiles in

an SQLite database using this method (Mapbox Inc., 2014).

2. Routing

Determining a route using road networks is a shortest path problem that

requires a tradeoff of either significant processing power or pre-computed graphs

that require a substantial amount of space (Vetter, 2010). Performing road-

network rendering on the mobile device without connectivity requires the routing

graphs to be pre-computed and stored on the device. This may be a reasonable

time-space tradeoff for smaller areas; Vetter noted they were able to store

routing graphs for Germany, approximately 357,000 km2 in 6.8 gigabytes (2010).

A more reasonable approach may be to conduct road-network routing only when

online, using a server to provide the routing such as the Open Source Routing

Machine, and then to store the generated routes locally on the device. Offline

routing can be performed manually by selecting coordinates for each point along

the route. Manual routing, combined with a reasonably large tolerance for

accuracy should produce similar results while tracking the route, with the

advantage that manual routes will be smaller and more efficient to store due to

fewer nodes.

3. Database Replication

Intermittent or no connectivity negatively impacts database replication,

particularly in a NoSQL database that uses optimistic replication and only

guarantees eventual consistency, in several ways. The longer a client is offline,

 36

the more record differences will accumulate between that client and the other

clients. Once the client does go online, the amount of data that needs to be

replicated in both directions may exceed the capability of the system given the

bandwidth available, in which case the client’s database may never become up

to date. Additionally, intermittent connectivity increases the potential for

conflicting updates to the database. Resolving data conflicts quickly ensures that

all copies of the database will converge to a consistent view of the data in a

reasonable amount of time (Anderson, Lehnardt, & Slater, 2010). If conflicts are

allowed to persist, convergence may never occur and conflicts may build to the

point that they require manual reconciliation. These problems can be minimized

by designing the database tables and the interaction of the clients to minimize

opportunities for clients to make conflicting updates to the same record.

J. SUMMARY

This chapter provided an explanation of the problem we are attempting to

solve and some of the considerations that led us to a cross-device development

solution that allows our solution to target any mobile device. It explained some of

the considerations for developing a mobile application that depends on mapping

and discussed the advantages and disadvantages of various approaches. This

discussion is intended to provide an understanding of the basic concepts used in

the design and prototype implementation of our solution described in the

following chapters.

 37

III. ARCHITECTURE

A. INTRODUCTION

This chapter explains the system architecture that was developed to

implement the prototype handheld assistant. It provides an overview of the entire

system, a detailed explanation of the COTS components that support the mobile

application, and a general breakdown of the major components of the mobile

application.

B. SYSTEM ARCHITECTURE OVERVIEW

The system can be broken into three major components, as described by

Figure 9: the mobile application, the supporting components, and external

databases. Network and connectivity support as indicated by the lightning bolts in

the diagram is handled by the mobile device operating system.

Figure 9. Overall system architecture

 38

The mobile application is a hardware independent, single-codebase

application that includes all of the functionality to support providing alerts to the

user based on the supported mission. The supporting components include a map

server, a database server, a web server, a route server, and a proxy server. The

external databases are any existing database that contains data relevant to the

users’ mission that can be geospatially located and imported into the system to

provide alerts.

C. EXTERNAL DATABASES

The external databases that are used are dependent on the mission to be

performed and the activity using the application. A police organization might have

a database that tracks gang information, such as gang territory, key personnel

and their addresses, and gang-related incidents. It might also be expected to

have databases that track recent criminal activity, traffic incidents, domestic

incidents, and repeated calls for service. A military organization in a combat zone

might have databases that track improvised explosive device (IED) events,

persons of interest, key civilian contacts, and recent enemy activity. A unit

conducting humanitarian relief in a disaster zone would likely have databases

that have information about key infrastructure, medical support, logistics depots,

and locations that have or have not been searched.

In order to use these databases with the prototype handheld assistant,

queries must be created that take the relevant information from each database

and translate it into a form that can be used by the mobile application. The

complexity of the required queries will depend on the type of database and

schema, and will be different for each external database. While we did determine

the types of data that should be available in the prototype application, we did not

perform a comprehensive review of all of the different possibilities for external

databases; such would be necessary to move toward a production system.

 39

D. SUPPORTING COMPONENTS

The supporting components form the glue that ties different instances of

the mobile application together. When the mobile application is online, it uses the

servers that are part of the supporting components to exchange data and acquire

map tiles. Separate boxes in the architecture diagram represent the individual

servers in the supporting components because they are modular. For the

prototype, each of the server components is implemented with COTS software

that provides a basic set of defined functions. This provides the ability to swap

any of these components with one from a different vendor with few, if any,

changes to the mobile application.

1. Map Server

The map server provides the map tiles that the mobile application displays

to inform the user about relevant locations. In the architecture diagram, Figure 1,

the map server has multiple boxes because the mobile application is designed to

support a multitude of different map providers. The map server component must

only fulfil two requirements to work with no changes to the mobile application: it

must serve tiles using the EPSG3857 coordinate reference system and a

spherical Mercator projection, and it must properly set the HTML cross-origin

request headers when it responds to tile requests.

We tested the prototype application with several commercial map servers,

as well as a locally built OpenStreetMap tile server. The application, as built,

supports three different base maps sources: MapQuest aerial view, ESRI world

imagery, and our OpenStreetMap server. As discussed in Chapter V, the mobile

application could be extended to support any number of servers as part of future

work. To address a map server, the application must be provided with a URL, as

in Figure 10, that contains the logical addressing scheme for the tiles, where {s}

is a server number, and {x}, {y}, and {z} are the x, and y coordinates and zoom-

level of the requested tile.

 40

Figure 10. URL addressing scheme

Most of the commercial map tile providers that serve tiles over the internet

like ESRI, OpenStreetMap, CloudMade, Google, etc. limit the number of free tiles

that may be accessed in a given time frame, either by IP address, or by requiring

the use of an API key that must be sent to the server upon initiating a connection.

Applications that access tiles in excess of the provider’s limit for free tiles are

either blocked or assessed a usage fee. For the prototype, we setup a local

OpenStreetMap server to support testing to prevent having to worry about

commercial provider limits. However, consideration must be given to usage-

based service as part of a support plan cost for a production system.

Our OpenStreetMap server has five main components as described on the

Switch2OSM webpage:

Mod_tile, renderd, mapnik, osm2pgsql and a postgresql/postgis
database. Mod_tile is an [A]pache module, that serves cached tiles
and decides which tiles need re-rendering—either because they are
not yet cached or because they are outdated. Renderd provides a
priority queueing system for rendering requests to manage and
smooth out the load from rendering requests. Mapnik is the
software library that does the actual rendering and is used by
renderd. (Dees & Weait, 2013)

The software used by the OpenStreetMap server is designed to run on

Linux, so to enable all of the supporting component servers to run on one

Windows computer, the server was setup in a virtual machine loaded with

Ubuntu 14.04. The server was configured as described on the Switch2OSM

webpage and loaded with the current OpenStreetMap data for the northern

California area and serves tiles to the mobile application upon request.

MapQuest Open Aerial Imagery
http://oatile{s}.mqcdn.com/tiles/1.0.0/sat/{z}/{x}/{y}.jpg

Esri
http://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}

OpenStreetMap Server
http://%server%/osm_tiles/{z}/{x}/{y}.png

 41

2. Database Server

The database server maintains the databases that are used to hold alert

data, manage routes, communicate between units, and track the location of the

different units using the mobile application. We chose a NoSQL, document-

based database because of the unique challenge of integrating date from

multiple external databases where data for different types of alerts may not be

relational. A document-based database treats each individual ‘record’ as a stand-

alone document. Unlike in a relational database, while multiple documents may

share some of the same fields, there is no requirement that they do so. For

example, Figure 11 shows the records for two different alerts in the database.

Some fields are required for the document to be useful: the title, location, type of

alert, etc., but other fields may vary depending on the subject of that document.

Document 2 has a field called “warn_radius” that describes the size of the

circular alert area in meters. Document 1 has no need for a “warn_radius”

because it describes an irregularly shaped area defined by the points in its

location field. Document 2 also has multiple attachments, while document 1 only

has one.

Document 1
{

 "_id" : "d155b07ef4cc9ba33f3158f29d001e47,”

 "_rev" : "3-2da8c9a02ca573d9d24f526a3a1cd94e,”

 "characteristics" : [{"Start date": "1 May 2014"},

 {"End date": "5 August 2015"}],

 "description" : "This area is under construction and

 should be avoided during this

 period.,”

 "location" : [[38.871839, -77.055411],

 [38.872298, -77.054225],

 [38.872946, -77.054655],

 [38.872829, -77.055588]],

 "location_type" : "irregular,”

 "title" : "Area Construction,”

 "_attachments" : {

 "under-construction.png": {

 "content_type" : "image/png,”

 "digest" : "md5-hhyKSWUP4Q88+iCzq04QdQ==,”

 "length" : 50440

 }

 }

}

 42

Figure 11. Example alert documents

This format is useful because unlike a relational database, additional data

fields can be added to a document without having to adjust the schema for every

other document in the database. Each field is setup as a key – value pair, where

the key is an alphanumeric string, and the value can have any type representable

in JavaScript Object Notation (JSON), which makes it easy to parse directly into

a JavaScript data structure in the mobile application.

Apache’s CouchDB was chosen as the database system for the prototype

application. CouchDB is an open source, document-oriented, NoSQL database

with an HTTP REST interface. It stores documents using a JSON compatible

format and supports bi-directional replication via HTTP. As a NoSQL database,

there are three ways to query documents: by their unique document identifier, by

retrieving all documents, or by using a map/reduce function. A map/reduce

function is a NoSQL database programming model that uses a map function to

filter and sort documents, and a reduce function to perform calculations such as

counting the number of records with a particular value.

Document 2
{

 "_id": "d155b07ef4cc9ba33f3158f29d0009b3,”

 "_rev": "8-ae24034fcf58a096fa8917937b676069,”

 "characteristics": [{ "Length": "0.25 miles" },

 { "Load Capacity": "25 tons" },

 { "Road Condition": "Moderate" }],

 "description": "The Cambridge Street Bridge is critical

 to maintaining logistics support for

 operations on the East side of the

 river.,”

 "location": [38.869614, -77.061058],

 "location_type": "circle,”

 "title": "Cambridge Street Bridge,”

 "warn_radius": 80,

 "_attachments": [{

 "Photo1.jpg": {

 "content_type": "image/jpeg,”

 "digest": "md5-jV2roqr/pD57GCA+JrhxmQ==,”

 "length": 8249

 },

 "Photo2.jpg": {

 "content_type": "image/jpeg,”

 "digest": "md5-jV2roqr/pD57GCA+JrhxmQ==,”

 "length": 4685

 }]

 }

}

 43

A unique advantage of CouchDB is that there is a JavaScript library,

PouchDB, that provides a local database on any web-enabled client that can be

synchronized with an online CouchDB instance. This enables an application to

work with a local copy of the database when offline, and then synchronize

everything when connectivity becomes available. PouchDB is discussed in more

detail in Chapter IV.

3. Route Server

The route server provides an automated method for creating a route. The

application queries the route server, providing start and end coordinates, along

with any intermediate waypoints, and the route server calculates the shortest

route or routes from the start point to the destination, including the waypoints,

using the road network. The route server responds to the query with a JSON

object that contains a route (if one was found), and depending on the provider,

may include route geometry, road or traffic information, turn-by-turn directions, or

alternate routes. There are several commercial providers of routing services that

follow this model including Google, MapQuest, Microsoft, ESRI, and HERE.

Our prototype system uses the Open Source Routing Machine (OSRM)

software module, which is:

a C++ implementation of a high-performance routing engine for
shortest paths in road networks. It combines sophisticated routing
algorithms with the open and free road network data of the
OpenStreetMap (OSM) project. OSRM is able to compute and
output a shortest path between any origin and destination within a
few milliseconds. (Luxen, 2014)

We installed OSRM on the same virtual server as the map server and

configured as described on the OSRM Wiki. The routing preferences were

configured for automobile traffic; in the event pedestrian traffic is anticipated, the

routing preferences would need to be updated and the OSRM node graph would

need to be recomputed. When the mobile application is online, it can query the

route server as described above and receive a response that includes encoded

 44

route geometry, turn-by-turn directions, and alternate routes. If the application is

not online, the automated routing functions are not available.

4. Web Server

Our mobile application is written in HTML5, CSS3, and JavaScript. It can

be compiled and run as a Cordova application on a phone, tablet, or other mobile

device, or it can be run as a web application in a browser on a laptop or desktop

computer. While it is possible to run the application by loading the index.html file

directly in a browser, some browsers impose additional cross-origin security

restrictions on pages loaded via “file:” URIs which can break the application. Our

prototype system uses a simple Python web server to enable access from laptop

or desktop computers. The application requires that these computers have

network access to the web server.

5. Proxy Server

The proxy server aids with testing and demonstrating the prototype

system. It is a simple nodeJS script that enables the database server, map

server, route server, and web server to be located at the same host address. The

proxy server listens on the standard HTTP port 80, determines for which server

process the request is destined based on the format of the URL, and forwards it

to the correct process. In addition, the proxy server sets the cross-origin access

headers on all responses, if the server process had not already set them

correctly. The proxy server could be eliminated in a production system, as each

of the server hostnames/IP addresses are independently specified in the

application’s code.

E. MOBILE APPLICATION

The application is a web-based application that runs on top of Cordova-

compiled native code that interfaces with the mobile operating system, as

depicted in Figure 12. Cordova also provides plugins that are compiled as part of

the application to provide JavaScript access to the device’s hardware. The focus

 45

of our effort is on developing the web-based portion of the application that is

designated as “Mobile Application” in Figure 12.

Figure 12. Mobile application architecture

The code for the web application can be broken down into five major sub-

systems, each of which supports specific functionality within the application. The

sub-systems are user interface, mapping, database, routing, and cache. A block

diagram of the sub-systems and their interaction is shown in Figure 13. An

overview of the sub-systems is provided here and a detailed explanation of their

implementation is included in Chapter IV.

 46

Figure 13. Subsystems block diagram

1. User Interface

The user interface sub-system manages all of the application’s interaction

with the user. It handles displaying and hiding various dialog boxes, re-sizing of

the display in the event of device rotation or window resizing, and managing user

events like touch and mouse interaction.

2. Mapping

The mapping sub-system manages displaying, zooming, and panning of

the map, geolocation, and displaying other unit locations. It manages the display

of alert areas, tracks the user’s location, and notifies the user in the event he

enters an area that requires an alert be generated.

3. Database

The database sub-system creates the local database if it does not exist or

opens it if it exists when the application is started. It connects to and

synchronizes with the master database if the application is online and then

establishes a replication schedule for each of the pertinent databases. It

 47

interfaces with each of the other systems, providing other unit locations to the

mapping sub-system and route assignment information to the routing sub-

system.

4. Routing

The routing sub-system provides the application the capability to create

both automated and manual routes. It also provides the ability for a user to

choose to follow a route and be tracked along that route. It enables a unit to

assign a route to another unit, uses the database subsystem to coordinate the

assignment, and then notifies both the assigned and assigning unit if the

assigned unit deviates from the route.

5. Cache

The cache sub-system handles the caching of map tiles for use when the

application is offline. When directed by the user, the cache system downloads

and stores all of the map tiles for a given area around the user’s current location,

within the limits of the mobile device’s storage. The cache sub-system then

monitors the application’s network connectivity; in the event connectivity drops,

the cache sub-system seamlessly switches the mapping sub-system onto the

local cache of map tiles.

F. SUMMARY

This chapter has explained the system architecture, the purpose of each

of the COTS supporting components and how they were configured, and the

different sub-systems of the web application’s code and how they fit into the

Cordova mobile application. The next chapter explains how the different sub-

systems in the mobile application were developed, the functions that the

application can perform, and the testing that was accomplished.

 48

THIS PAGE INTENTIONALLY LEFT BLANK

 49

IV. IMPLEMENTATION

A. INTRODUCTION

This chapter discusses the overall design of the application, the

breakdown of the different functions in the application and the reasoning behind

how and why each one was implemented, and the algorithms used for tracking

along a route and caching map tiles. In addition, the user interface and each of

the application’s user functions is described. The chapter concludes with an

explanation of the testing performed.

B. APPLICATION DESIGN

Our mobile application is written in HTML5, CSS3, and JavaScript. It has

approximately 4,000 lines of code, with an additional 20,000 lines of code in

supporting open source libraries. The overall size of the application is eight

megabytes. It consists of a main HTML file that is loaded by either the web

browser or by Cordova. That HTML file contains the majority of the user interface

structure and loads six CSS files that define the user interface styling, a main

JavaScript file that supports the overall program flow, and 16 additional

JavaScript files that support specific functions. As discussed in Chapter III, the

mobile application’s code can be broken down into five modular and loosely

coupled sub-systems: user interface, mapping, database, routing, and cache.

1. User Interface

The user interface is created with the main HTML file, which generates all

of the DOM objects for the main map window, the status bar at the top of the

screen, the icons, and most of the dialog box windows. The dialog boxes are

shell objects that are created, but not displayed when the program is run. When a

dialog box needs to be displayed, the application fills the appropriate HTML into

the dialog box shell and then changes the display style from “none” to “inline.”

This allows a dialog box element in the DOM to serve multiple functions just by

 50

changing its inner HTML content. The user interface sub-system includes all of

the code to set the control states in the options and layers menus, to display and

hide status messages, to re-size the user interface on screen rotation, and to

change the GPS and network icons depending on the reported hardware state.

The user interface is structured with CSS3, which supports all of the

animations, buttons, and dialog box sizes and styles. All of the elements are

styled using “em” units instead of pixels. These units, derived from typesetting

traditions, are based on the horizontal size of the font assigned to the body

element of the page (Lie & Bos, 2005). By basing the size of all elements on the

page proportionally to the base font size, it becomes trivial to scale the dialog

boxes and other parts of the user interface to fit any screen size by manipulating

the base font size. This makes sure that all elements resize properly and retain

their proportions on devices with varying screen resolutions. The application

attaches a handler to the window resize event that gets called any time the

browser window changes size or shape. The handler checks the screen width

and height and then adjusts the base font size proportionally and forces a

browser reflow/repaint. This ensures that all dialog boxes are redrawn at the

correct size and location anytime the mobile device screen is rotated or the

browser window is resized. If we did not do this, a screen rotation or window

resize might cause a dialog box to extend off-screen, which would cause the

browser to add scroll bars and disrupt the “application” experience.

2. Mapping

The open source Leaflet library, authored by Vladimir Agafonkin (2014),

provides the map interface. The Leaflet API enables the application to display the

map, switch base layers, add markers and other shapes, change the zoom level,

and manipulate the map in various ways. The application makes use of several

Leaflet plugins to add additional features, including displaying labels for the unit

markers and routes, and for creating the adjustable polyline used when creating

a manual route.

 51

3. Database

The application uses the open source PouchDB library to support all of its

database functions. PouchDB is a JavaScript library designed to “provide a

unified abstraction layer over other databases” using a CouchDB compatible API

and to seamlessly replicate between an online CouchDB database and a local

PouchDB database (Harvey & Lawson, 2014). PouchDB is browser agnostic,

supports SQLite, WebSQL, IndexedDB, LocalStorage, and LevelDB as backend

databases, and will select the appropriate backend database depending on what

is available on the device. Documents can be queried by their document id, by

requesting all documents in the database, or by using map/reduce functions. All

documents are required to have a unique document id that can either be

assigned by the database upon document creation or can be included as part of

the document when creating it. All database operations are asynchronous and

require the use of a callback function in order for the application to be notified

once the operation is complete.

4. Routing

The routing sub-system consists of three major sections: automated route

generation, manual route generation, and checking whether or not a unit that has

been assigned a route is on it.

a. Automated Route Generation

The OSRM server discussed in Chapter III generates automated routes.

The class that provides the application’s interface to the OSRM server is the

Leaflet Routing Machine developed by Per Liedman (2014). Once the user

generates a set of waypoints by clicking on the map, the set is passed to the

Leaflet Routing Machine class, which formats a request to the OSRM server. The

class then interprets the response from the server, draws the route on the map,

and provides a control that shows the turn-by-turn directions and any alternate

routes. The user can manipulate the auto-generated route by adding waypoints

or dragging generated waypoints to different locations, thereby causing the class

 52

to re-query the server and adjust the displayed route. Once the user is complete,

the class returns a set of points that define the route geometry that the

application stores in its routes database.

b. Manual Route Generation

Manual route generation uses a Leaflet Plotter class developed by Nathan

Mahdavi (2014). The class enables the user to add waypoints to the route by

clicking on the map. Existing waypoints can be removed by clicking on them and

the Plotter class removes that point and re-draws the route. This class also

enables waypoints to be dragged around the map to adjust their position. Once

the user is finished, the class returns an array of coordinates that defines the

route geometry.

c. Route Checking

Once the user is assigned or elects to follow a route, the application has to

determine whether the user is on the route or not. It accomplishes this by adding

a callback function that is executed each time the user’s geolocated position is

detected as having changed. The callback function determines the closest point

on the route to the geolocated position and whether that point is inside a

specified accuracy distance using the following algorithm:

A route is defined by a set of coordinates that specify the endpoints of

each segment of the route. Search through all of the coordinates that define the

route and find the coordinate or set of coordinates with the shortest distance

between that coordinate and the user’s geolocated position. This calculation is

accomplished using the haversine formula, Equation (1), which computes the

great-circle distance between two points on the Earth’s surface. Since the Earth

is not spherical it uses an approximation of the Earth’s radius and can be

expected to provide a result with an error smaller than 0.5 percent (Chamberlain,

1996).

 53

   

1 2

1 1

2 22 1 2 1
1 2

d: great circle distance

R: Earth's radius

, : latitude of points 1 and 2

, : longitude of points 1 and 2

d 2Rarcsin sin cos cos sin
2 2

 

 

       
            

 (1)

If the shortest distance between the user’s position and the coordinate or

coordinates in the set is less than the specified accuracy distance, then the user

is in a position similar to Figure 14, where L is the user’s location, r is the

specified accuracy distance, and Px is a coordinate along the route. The callback

function returns Px and the haversine distance between L and Px, and the user is

considered to be on-route. In the event there are multiple coordinates in the set,

only the first is used.

PX

Lr

Figure 14. Position is within r distance of Px

If the shortest distance between the user’s position and the coordinates in

the set is greater than the specified accuracy, the algorithm must check for an

additional condition: whether the user’s location is between two coordinates, but

close enough to the route segment that joins them to be considered on-route as

in Figure 15.

 54

PX

Lr

Figure 15. Position is within r distance of the route, but not Px

To find the distance in this condition, the tangent distance t between the

user’s location L and the tangent point PT on the route segment must be found.

The algorithm checks the route segment on both sides of each coordinate in the

set. Since the spherical geometry solution for determining tangent points is

computationally intensive, for this part of the algorithm, the coordinates are

transformed into Cartesian screen coordinates at the map’s maximum zoom

level, which allows us to use simple vector math. Consider a route segment with

two end points, P1 and P2, and the user’s location, L. Two cases must be

examined: Figure 16, where the tangent point, PT, is on the line segment, and

Figure 17, where the closest point on the segment is one of the segment’s

endpoints.

P1 P2

L

PT

Figure 16. PT is on the route segment

L

P1 P2

PT

Figure 17. PT lies outside the route segment, P2 is the closest point on the
segment

 55

Equation (2) is used to find the projection distance along the segment from

P1. If k is less than zero or greater than one, Figure 17 applies and one of the

endpoints is the closest to P3. If k is between zero and one, Figure 16 applies

and PT is found using Equation (3). The distance is then calculated by

transforming the coordinates back into geographic coordinates and finding the

haversine distance as discussed previously. If the distance is within the specified

accuracy distance, the user is considered on-route.

   

2

P3 P1 P2 P1
k

P2 P1

    


 (2)

  TP P1 k P2 P1   (3)

5. Cache

The code that caches the map tiles is modified from an OfflineTileCacher

class developed by Greg Allensworth as part of his Mobile Map Starter project

(2014). Allensworth’s class is designed specifically to interface with the Leaflet

TileLayer class and uses the method discussed by Sample and Ioup (2010) of

storing each map tile as an individual file using the HTML5 FileSystem API.

While the HTML5 FileSystem API is well-supported by Cordova via a standard

plugin, support in several desktop browsers is lacking, and Mozilla has publicly

stated that they may never support the full FileSystem API (Sicking, 2012). For

this reason, we modified the OfflineTileCacher class to check for Cordova upon

instantiation and then use the FileSystem API if Cordova is present, otherwise

store the tiles as blobs in a PouchDB database.

The class requires each map layer be registered with the cache class so

that it can determine the online and offline URL that Leaflet will use to access the

tiles. It develops the offline URL using the format

{Layer Name}-{z}-{x}-{y}.{extension}, for example: MySampleLayer-5-120-

400.png, which makes reference and storage straightforward, whether using a

file or a blob. Once a tile layer has been registered with the OfflineTileCacher

class, the seed method can be called, which creates a list of tiles needed to form

 56

a tile pyramid around a given location, to download and store the tiles. The

original download functionality in the class downloaded each tile sequentially,

waiting until each download was complete before starting the download for the

next tile. This function was modified to queue all of the required downloads

immediately and allow the browser to parallelize the downloads. This maximizes

the amount of bandwidth used while minimizing the time spent waiting for the

cache to fill. The OfflineTileCacher class provides a function that switches Leaflet

between the online and offline URLs that were determined when the layer was

registered.

The cache class’s interface with Leaflet occurs via Ishmael Smyrnow’s

FunctionalTileLayer class (2014). The FunctionalTileLayer allows the URL being

passed to Leaflet to be defined and returned by a given function. The given

function is executed each time Leaflet requests a tile, and since

FunctionalTileLayer supports JavaScript’s notion of a ‘promise,’ this means that

the URL can be provided by a process that requires an asynchronous callback.

For example, when using the offline cache in a web browser, Leaflet calls for a

particular tile, the function provided to FunctionalTileLayer queries the PouchDB

Tiles database, and returns to Leaflet a promise that will be fulfilled by the

callback function from the PouchDB “get” method. The callback function creates

a data URI from the blob returned by the database, fulfils the promise, and

Leaflet is handed that data URI so it can display the map tile.

Since the map tiles are stored as individual files on the device, the number

of tiles that are required to represent a given area becomes relevant given there

is a limit to the amount of space available on the mobile device’s file system. The

formula for determining the radius of tiles at a particular zoom level that should

be cached is given by Equation (4) and assumes that the number of tiles

displayed at zoommin covers the entire area that should be cached; that is,

zoommin is the maximum level the user can zoom “out” from the center point. This

is a critical point, because if the user is mobile and zoommin is too large, then it

will be easy for the user to travel outside of the cached area. The formula

 57

provides an edge of two tiles around the center tile, which gives (1 + 2 + 2)2 = 52

= 25 tiles at zoommin. To cache a larger area, the two in the equation can be

changed, having a predictable impact on the number of tiles that will be

downloaded.

  minedge 2 1 zoom zoom     (4)

The amount of disk space required is given by Equation (5), where sizet
 is

the average tile size.

 disk tiles sizesize n t
 (5)

The estimated download time is given by Equation (6), where sizedisk and

rateDL are in bytes.

 disk
DL

DL

size
t

rate
 (6)

Table 2 shows the number of tiles, estimated download size, and

anticipated download time required to cache each zoom level starting with an

arbitrary zoommin of level X. The average tile size used for the Table 2 was

determined experimentally as 8,072 bytes. The download rates used in Table 2

assume the theoretical maximum bandwidth at the physical layer for each media

type and does not consider protocol or data link layer overhead. While real-world

results will necessarily be worse, this gives us a best case figure for the expected

download times. This data shows that the number of layers being cached will

have a significant impact on storage space and bandwidth use during the cache

download process. For this reason, the number of layers to be cached is limited

programmatically. When the application switches to use the offline cache, the

ability to zoom the map is programmatically limited to the layers that were cached

to prevent the user from zooming to a layer that is not in the cache.

 58

Zoom Level X X+1 X+2 X+3 X+4 X+5 X+6 X+7 X+8 Total

Radius 2 4 8 16 32 64 128 256 512 N/A

Tiles Required 25 81 289 1,089 4,225 16,641 66,049 263,169 1,050,625 1,402,193

Download Size
(including
headers)

201.80 Kb 653.83 Kb 2.33 Mb 8.79 Mb 34.10 Mb
134.33

Mb
533.15

Mb
2.12 Gb 8.48 Gb 11.32 Gb

Time to Download Each Layer(Calculated) in Seconds

802.11n
(600 Mbps)

0.0026907 0.0087178 0.031104 0.117205 0.454723 1.7910154 7.1086337 28.324 113.0753 150.913

3G (384 Kbps) 4.2041667 13.6215 48.60017 183.1335 710.5042 2798.4615 11107.24 44256.25 176680.1 235802.12

Edge (1894 Kbps) 0.8523759 2.761698 9.853466 37.1295 144.0515 567.37551 2251.9431 8972.757 35821.1 47807.8

4G (326 Mbps) 0.0049521 0.016045 0.057247 0.215716 0.836913 3.2963473 13.083375 52.13007 208.114 277.75

802.3 Gigabit
Ethernet (1Gbps)

0.0016144 0.0052307 0.018662 0.070323 0.272834 1.0746092 4.2651802 16.9944 67.84516 90.54

Table 2. Tile count, estimated size, and anticipated download time by
zoom level

C. APPLICATION FUNCTIONALITY

The user interface and application functionality is very similar on all

devices, so that a user who understands the interface on one device can move

seamlessly to another without additional training. This section provides an

overview of the capabilities of the application. Some of the application’s

capabilities are purposefully limited on mobile devices due to their smaller screen

size compared with tablets or laptops; where this is the case, it is identified. In

cases where the interface and functionality are the same, figures in the text are

from representative devices on which the application was tested.

1. Main Interface

The main interface for the application is extremely simple, as depicted in

Figure 18. Along the top of the screen is a transparent status bar that provides

the user’s current location in latitude and longitude, the accuracy reported by the

GPS, and any status messages. On the right side of the status bar are four large

icons. The first icon brings up the layers menu, the second icon brings up the

options and actions menu, the third icon indicates the GPS status, and the fourth

icon indicates the network status.

 59

Figure 18. Main interface: browser (left), Android phone (right)

If the operating system indicates no GPS device, the user will be notified

and the application will terminate. If a GPS is present but cannot get a location,

such as if the user is indoors, the application will display a “Waiting for GPS”

message indefinitely until a location is determined, as shown in Figure 19. The

application must obtain at least one position response from the GPS or other

location provider before it can display the map. The center of the GPS icon will

be a filled circle if the last GPS query returned a valid result, and will be an empty

circle if the last GPS query resulted in failure to get a location.

 60

Figure 19. Waiting for the GPS to become available.

The Network icon is a globe that indicates whether the application is

online, Figure 20. If the application is on a mobile device and is able to determine

the type of connection (e.g., Wi-Fi, 3g, 4g) then the application displays the

connection type on top of the globe. If the application does not have any network

connectivity then the globe is greyed out. In most desktop browsers the icon

appears in color even if the workstation has no Internet connectivity because the

application relies on whether the browser reports its online status accurately, and

most do not.

Figure 20. Icons for offline, online type unknown, Wi-Fi, 3g, 4g (after Bu,
2011)

Beneath the status bar is the map display. When the application runs in a

browser the map includes buttons to zoom in and out, while on a mobile device

zooming in and out can be accomplished by using the standard pinch gesture.

 61

The map can be panned in any direction using the mouse or touch gestures. If

the option to keep the map centered on the user has been enabled, the map re-

centers each time a GPS position report is received.

The application shows the user’s location in color at the center of the map

screen with a blue pulsing accuracy ring around it. The accuracy ring is to remind

the users that although the icon is drawn at the GPS provided latitude and

longitude, their actual position could be anywhere within that ring. Other units

whose location information is in the database will also be plotted on the map

screen. Each unit is assigned a random unique color by the application when that

unit is created and added to the database. Each time a unit changes position, its

database entry is updated with its current location and a time stamp. When the

application draws other units on the map, if their location is current within the

past two minutes, the unit is drawn using its unique color. If the database

timestamp for a unit has not been updated within the past two minutes, the unit’s

icon is drawn in grey to indicate that the location presented is the last known

location, but that it may not be accurate any longer. This behavior is shown in

Figure 21, where 1st Platoon is the unit whose display is being shown, 2nd

Platoon has not had a position update in the past two minutes, and 3rd Platoon

has provided an up-to-date position report.

 62

Figure 21. Recent and non-recent position reports for other units

2. Layers Menu

The layers menu is accessed via the layers icon, as depicted in Figure 22,

and has two tabs, each of which is dynamically generated at application run-time.

Figure 22. Layers Menu icon (Icons-Land, 2014)

a. Base Maps Tab

The Base Maps tab, Figure 23, is built from the different base map options

that have been configured. These base maps are currently configured in the

application’s code, but could be moved to a configuration file in the future. Since

only one base map can be selected at a time, the base maps tab uses radio

buttons that allow the users to select which base map they want to use on the

map display. The application is currently configured to support a local

OpenStreetMap server and MapQuest Open Aerial satellite imagery for base

 63

maps. Selecting one of the base map options sets the background base map

used by the map window, accordingly.

Figure 23. Base Maps tab, Android phone (left, middle) and iPhone (right)

b. Alert Layers Tab

The Alert Layers tab, Figure 24, is built based on the different categories

of alerts in the database. As new categories are added to the database, they are

populated to the Alert Layers tab. The database is checked each time the dialog

box is shown, so if an alert type is added by another unit, it will appear on this

menu once the databases replicate. The display of each layer can be turned on

and off, depending on which types of alerts the user wants to see. Hiding a

category of alerts has no impact on whether the user will be notified when they

come in range of an alert: if the user enters the warning radius, she is warned

regardless of whether that category is set to be displayed or not.

 64

Figure 24. Alert Layers tab

3. Options Menu

The Options and Actions menu is accessed from the icon, as shown in

Figure 25, and has two tabs when the application is run on a mobile device:

Options, and Create Alerts. When the application is run in a browser a third tab is

present, the Create / Assign Routes tab.

Figure 25. Options and Actions Menu icon (from Coelho, 2007)

a. Options Tab

The Options tab gives the user controls to change some of the options

affecting how the application functions. The users can disable location tracking,

for example, if they are using the application in a static location such as a

command post, to monitor other unit locations. A unit that anticipates stopping in

a static location for a period of time might also disable location tracking to reduce

battery usage. The users can select whether or not to have the map remain

 65

centered on their location. This is enabled by default, but can be disabled if the

user wants to pan the map to view an alternate location and does not want it to

re-center each time his location updates. Additional options include showing all of

the routes on the map (if running in a browser), clearing the unit’s current track,

filling and clearing the map tile cache, and selecting a route to follow.

Figure 26. Options tab, browser (left) and Android phone (right)

b. Create Alerts Tab

The Create Alerts tab, Figure 27, lets a user create an alert and add it to

the appropriate database. The user can choose from three different alert types:

irregularly shaped, circle, and point. To create an irregularly shaped alert the

user clicks on the map to define the outline of the area; for circle and point alerts

the user selects the location for the center of the alert. Once the area is defined,

the application will present a dialog box where the user can input information

about the alert, take or attach a picture, and select or create a category to which

to assign the alert.

 66

Figure 27. Create Alerts tab, browser (left) and iPad 2 (right)

Once the user selects the type of alert to create, the cursor changes to a

crosshair and she can click or touch the map to locate the center of the alert area

for a point or circle alert, or create boundary points to define an irregular alert

area. Once this has been done, the user is presented with a dialog, as shown in

Figure 28, where she can enter information about the alert. If the application is

running in a browser the user can upload a picture; on an appropriately equipped

mobile device, the user can take a picture. Once the user selects or creates a

category to which to add the alert, it is stored in the database and will replicate to

all of the other units depending on connectivity.

 67

Figure 28. Creating a new alert

c. Create / Assign Routes Tab

The Create / Assign Routes tab, shown in Figure 29, is only available

when the application is running in a browser because testing showed that

creating accurate routes with touch events on devices with small screens, such

as tablets and phones, was extremely difficult. The user has two options for

creating a route, automated and manual, as described in Chapter III.

 68

Figure 29. Create / Assign Routes tab

The automated routing option requires network connectivity to the route

server but is useful if the user wants the shortest route between two locations,

particularly if the locations are far apart. The user is prompted to select two or

more waypoints (Figure 30).

Figure 30. Four waypoints selected

 69

Once the user is done adding the initial waypoints, the application queries

the route server and displays one or more proposed routes that includes all of the

waypoints, in the order the user selected them, as depicted Figure 31.

Figure 31. Proposed route between waypoints

The user can continue to adjust the route by dragging the existing

waypoints (see Figure 32) or adding additional waypoints (see Figure 33) and the

route server will adjust the proposed route as necessary, as shown in Figure 34.

 70

Figure 32. Moving a waypoint (circled)

Figure 33. Adding a waypoint by clicking on route and dragging (click/drag
point circled)

 71

Figure 34. Final route after adjustments

Once the user is satisfied, he enters a unique route name and clicks on

the save button and the route is stored to the database and made available to all

users.

The Manual Routing option can be used offline, but requires a larger set of

waypoints as input for longer routes. The user clicks on the map to generate

waypoint icons at each point where the route should turn, and the application

draws a route line between them, as shown in Figure 35. Waypoints can be

dragged to adjust the route or can be removed by clicking on the respective icon,

as depicted in Figure 36. Once the user is satisfied with the route, he can name

and store the route as with the Automated option, as shown in Figure 37.

 72

Figure 35. Adding a manual route

Figure 36. Waypoints adjusted and deleted (circled)

 73

Figure 37. Finalizing a manual route

The Assign route option lets the user assign a route to another unit to

follow. This would be used by a command post staff to assign routes to its units

and then monitor them as each unit attempts to follow its assigned route. The

user selects a route and a unit to which to assign the route using the dropdown

menus shown in Figure 38. When the user selects an entry in either the route or

unit dropdown, the map zooms to show the route or pans to the unit’s location so

the user is aware of which route or unit he is selecting.

 74

Figure 38. Assigning a route to a unit

4. Alerts

As the user moves around his area of operations, the application

continuously tracks his movement and notifies him if he enters an alert area. The

application uses audio, visual, and tactile feedback to alert the user. The

application vibrates if the device is capable of vibration, plays an audio alert

message, and displays a pop-up on the screen in the vicinity of the alert area.

The audio alert can be muted by setting the device to silent mode. Examples of

the pop-up display are shown in Figures 39 and 40. The user can also display

the information pop-up for any alert area by clicking on it. The visual display is

dynamically created based on the information provided in the database about

that alert. While the information displayed by the prototype system is relatively

basic, because the alert pop-up is essentially a web-page contained inside an

HTML <div> element, the amount and type of information displayed can easily be

changed. In the production application, the pop-up might contain links to more

detailed information, a scrollable picture gallery, buttons to bring up a full-screen

window of information, etc.

 75

Figure 39. Example alert information display, browser (left) and Android
phone (right)

Figure 40. Example alert information display, Android phone (left), iPad 2
(right)

 76

5. Routes

Since connectivity with each unit is not guaranteed, the application

initiates a three-way handshake between the assigning unit (Headquarters) and

the assigned unit (Unit 1) using the database for communication, as depicted in

Figure 41. The three-way handshake ensures that both units are aware of the

assignment. While the unit is following the assigned route, both units track the

location of the assigned unit. If the assigned unit gets off route by more than 100

meters, plus or minus the GPS accuracy, the application causes the device to

vibrate if it is a mobile device and plays an audio alert, displays a message, and

turns the route line on the map red to alert the user. The assigning unit’s

application tracks all units that it has assigned and if one gets off-route, it

displays a message and plays an audio message to alert the user of the

condition. Once the assigned unit is complete with following the route, that unit’s

user selects a button on the options menu to notify the assigning unit that he has

completed the route. The assigning unit’s application then deletes the record

from the database.

 77

Figure 41. Route assignment process

The application ensures a unit can only be assigned one route by using

the assigned_to field as the unique document id for the record. Attempting to

assign two routes to the same unit will fail with a database error and the user

attempting to assign the duplicate route will be notified that the unit is already

assigned a route. Once a unit has confirmed receipt of a route assignment, the

unit cannot choose to follow another route or be assigned a new route until it has

notified the assigning unit that the route is complete.

Once a unit has been assigned a route and its device has acknowledged

that they are following the assigned route, the route is shown on the display

using either a green or red line. If the unit is within the accuracy limit, the route

line is displayed in green, as shown in Figure 42. If the unit departs from the

route, the route line is shown in red showing where the unit is expected to be, as

depicted in Figure 43, a visual warning is displayed, the device vibrates (if

capable), and an audio alert is played.

 78

Figure 42. A unit that is on the assigned route

Figure 43. A unit that is off the assigned route

D. TESTING

We tested the application on six different mobile devices and four desktop

browsers using several different scenarios to determine whether the application

would perform as expected.

 79

1. Devices

The application was tested in four web browsers: Firefox 30.0, Chrome

36.0, Opera 22.0, and Safari 6.1. Since each browser uses a different rendering

engine, there are slight differences in the user interface as seen in Figure 44,

particularly with implementation of fonts, buttons, and input boxes. The display

and layout is similar enough, however, that a user who is familiar with the

application on one platform can easily move to another with no additional

training.

Figure 44. Example of user interface differences: the same button as
rendered in four different browsers

In addition to the four web browsers, the application was tested on six

mobile devices: an LG Optimus f3 running Android 4.1.2, a Samsung Nexus S

running Android 4.1.2, a Samsung Galaxy Tab 10.1 running Android 4.0.4, an

iPad Generation 1 running iOS 5.0, an iPad 2 running iOS 7.1.1, and an iPhone 4

running iOS 7.1.1. The user interface on all of the devices showed similar

differences to those experienced with the browsers. In addition, due to the

differences in keyboard and user input processes for the different mobile

browsers and operating systems, the user input for dropdowns and keyboard

entry on the mobile application does appear different on each platform, even

within the same operating system, as shown in Figures 45 and 46.

 80

Figure 45. Dropdown input differences, Android phone (left) and Android
tablet (right)

Figure 46. Dropdown input differences, iPhone (left), iPad 2 (right)

2. Scenarios

We tested two scenarios for using the mobile application. Usability testing

was focused on determining how well the user interface worked when the

 81

application had full Internet connectivity. Cache testing focused on how well the

map tile cache functioned.

a. Usability Testing

The application was tested using a 3G mobile data connection on the LG

Optimus f3 using both walking and driving scenarios to determine whether it

would accurately track an assigned route and provide situational awareness

alerts to a user when entering alert areas along the route. The phone was

assigned a route from another unit using the application in a desktop browser.

The browser session was then recorded while the phone was transported along

the assigned route. The application successfully tracked the location of the

phone both while driving and walking. Experimentation determined that five

seconds worked as an appropriate GPS update interval, and when connectivity

was available, database updates every 10 seconds provided a reasonable

tradeoff between timeliness and bandwidth usage. The session recorded from

the desktop browser accurately recorded the position of the phone along the

route with minimal delay. The phones successfully notified the user when a GPS

update was received while inside the test alert areas and when he deviated from

the route. When the mobile device loses connectivity, the application still

continues to track correctly and when connectivity is re-established, the unit icon

being shown on other devices for that phone does move to the correct current

position.

b. Cache

The offline cache function was tested for usability with several desktop

browsers and on mobile devices including two Android phones, an Android

tablet, and an iPad II. Detailed test data to determine actual download sizes and

speeds were compiled using the Firefox and Chrome browsers with Gigabit

Ethernet, and on an LG Optimus f3 with 3G service and Wi-Fi. Each download

 82

test produced a waterfall chart as seen in Figure 47 that was saved from the

browser in HTTP Archive format and then exported to Microsoft Excel for

analysis.

Figure 47. Waterfall chart of download times

Actual testing was completed for zoom levels 10 through 14, as shown in

Table 3, and the times shown reflect the results averaged over three tests.

Testing with more than five zoom levels caused Chrome and Firefox to crash,

and more than four levels caused the mobile browser on the LG Optimus to

crash. Our hypothesis is that this is due to the number of queued download

requests exceeding the size of the browser’s pending download queue since the

application asynchronously feeds the download requests to the browser as

quickly as it can create them. For the sixth level this would result in 16,641

pending requests being added to the queue, likely while the browser is still

processing the first several hundred downloads. This problem could be mitigated

by buffering the requests and limiting the maximum number of requests sent to

the browser at any given time.

 83

Zoom Level 10 10 - 11 10 - 12 10 - 13 10 – 14

Tiles Required 25 106 395 1484 5709

Predicted
Download Size

(including
headers)

275.00 Kb 1.17 Mb 4.35 Mb 16.32 Mb 62.80 Mb

Actual Download
Size

(including
headers)

344.26 Kb 1.09 Mb 4.09 Mb 16.43 Mb 52.62 Mb

Download Times in Seconds

3G (384 Kbps)
LG Optimus f3

Calculated 5.7291667 24.29167 90.52083 340.0833 1308.3125

Actual 9.42 25.824 104.371 355.002

802.11n
(600 Mbps)

LG Optimus f3

Calculated 0.0036667 0.015547 0.057933 0.217653 0.83732

Actual 3.364 12.943 59.09 368.249

802.3 Gigabit
Ethernet

Calculated 0.0022 0.009328 0.03476 0.130592 0.502392

Actual 3.269 15.033 52.863 364.566 2784.359

Table 3. Actual download sizes and times for different connection types

E. SUMMARY

This chapter has provided a detailed breakdown of the functions the

application performs and how they were implemented. It also explained the

testing that was performed to determine how well the application would track a

user along a route and provide situational awareness alerts. The next chapter

outlines the conclusions we reached after developing and testing the application

and discusses additional enhancements that could be made in the future.

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 85

V. CONCLUSIONS AND FUTURE WORK

Our research led us to develop several conclusions about the feasibility of

using a single-baseline mobile application to improve situational awareness. Our

research also identified a number of areas for future work that would improve the

prototype.

A. CONCLUSIONS

We developed a single-baseline mobile application that runs on multiple

types of devices, tracks a user’s location, and improves situational awareness by

alerting the user to conditions along a patrol route. Our prototype application

demonstrates that it is possible to use Apache Cordova and HTML5, CSS3, and

JavaScript to produce an application that runs on a variety of devices and

operating systems without maintaining operating system specific code. In

addition, our prototype application demonstrates a method for taking multiple

types of geolocated data from different notional database systems, generate

appropriate alerts and present to the users information based on their proximity

to relevant data elements. While the test information shown in the prototype

application was relatively simple, it does show that it is possible to improve a

patrol’s situational awareness by providing visual, auditory, and tactile alerts

when the patrol enters an area where the database contains information that

might be relevant to the patrol.

Our prototype application demonstrates some of the advantages of a web-

based, single source code application, namely that the application can be made

to look and function identically on different devices. Any user familiar with the

application will be able to use it on any compatible device without a need for

additional training. Since the application is not constrained to a single type of

device or operating system, it should work well in a situation where different

government agencies are cooperating on an operation but where each uses a

 86

different type of mobile device. Code maintenance and baseline tracking is

simplified and adding or modifying a feature makes the necessary changes

suitable for all supported devices.

Our prototype application highlights some of the challenges associated

with developing a web-based mobile application including operating system

differences and browser limitations. While Cordova does minimize the

differences in code required for different devices and operating systems,

considerations still have to be made for some of the device dependencies. One

example is that some of the mobile operating systems consider file names to be

case sensitive while others don not; this resulted in errors when testing with

several of the devices. Another example is the differences in user input

functionality, as highlighted in Chapter IV, particularly the soft keyboard,

dropdown menus, and text entry. These user interface differences might be

mitigated by developing pure HTML/CSS3/JavaScript replacements (Satterfield &

Garrison, 2014) at the expense of additional code complexity, application load

time, and memory usage. Additionally, HTML5 implementation is not complete or

standard across the different mobile browsers. Many of the newer HTML5

features like WebRTC, the Audio element and associated codecs, and the

FileSystem API are not available on all devices without using a Cordova plugin

that implements the functionality in native code.

The Cordova plugins rely on native code that is specific to each operating

system, so while a specific function is accessed the same way on every device,

the results may vary on some of the devices. For example, the vibrate function

allows the application to specify a duration for the vibration. Android, Blackberry,

and Windows Phone use the specified duration; iOS ignores the requested

duration and vibrates for two seconds (Apache Software Foundation, 2014). In

addition to the minor differences in operation, standard Cordova plugins are not

available for some of the more advanced features available on mobile devices

such as Bluetooth or Near Field Communication.

 87

While our goal was minimizing the reliance of the application on external

services in order to maximize the application’s capability to operate offline, we

determined that including full-featured map display, route tracking, and data

sharing all required external services. Our review of current mobile device

applications and code libraries revealed that while there is interest in providing

some of these functions in an offline setting, much of the commercial

development in the map display, routing, and data sharing assumes that the

mobile device has a persistent Internet connection.

B. FUTURE WORK

Our prototype application was designed to show how a single baseline

web-based application could improve the situational awareness of a patrol by

providing alerts to relevant information along a patrol route. There are a number

of areas where additional research could be performed to improve the

capabilities of our application. These areas include user login, identification, and

authentication; external database integration; improved offline functionality;

improved map caching; and dynamic HTML generation from database objects.

1. User Login, Identification, and Authentication

Our prototype application identifies its user account based on the unit

selected by the user when the application loads. This unit is required to be

uniquely identified by name; the database will reject the creation of two units with

the same name. The application does not currently have a method to validate the

user’s selection of his unit or to tie that unit to a unique device. If multiple users

select the same existing unit name upon application load, this will cause

confusion because both devices will report their position as that unit. Other

instances of the application would see that unit’s icon bounce rapidly back and

forth between the two reported positions. We investigated methods for uniquely

tying an application instance and unit to a device using the IMEI or MAC address

of the device, or storing a unique id on the device’s file system on the

application’s first run, however neither method proved feasible. A method needs

 88

to be determined to authenticate users and associate a unique user to a specific

device. Such authentication is essential when distributing sensitive command

and control (C2) or control and incident response (CIR) data to ensure only

authorized personnel are granted access. Further, confidentiality of data should

also be addressed, perhaps by incorporating suitable encryption of data at rest

and in transit methodologies according to pertinent organizational standard

operating procedures.

2. External Database Integration

One of the goals of this thesis was to determine how to alert a patrol

based on information from a variety of different databases. One of the reasons

we selected a NoSQL database is that each record can have a unique set of

fields that enables the application’s database to store and display information

taken from a variety of sources. The U.S. military and other law enforcement

agencies have a vast number of databases, of varying classifications or

confidentiality levels that contain data that would be relevant to a patrol. Having

each mobile instance of the application attempt to access each of these

databases to query for relevant information would require significant bandwidth,

so our system architecture was designed with a central database that would

aggregate the information from external databases, put it into a standard format,

and then replicate it to the mobile instances when connectivity is available. This

aspect of the system architecture should be evaluated more extensively to

determine if it is the best way to accomplish this goal, particularly in light of the

possible security implications of aggregating the information from multiple

databases in one place. In addition, we did not develop the process that would

be required to query the external databases for relevant information; this process

should be explored in detail and tested.

3. Offline Functionality

Our prototype application has significant limitations when there is no

network connection. We assume that the application will have network

 89

connectivity when it is initialized so that it can synchronize its databases and

cache the map tiles. Once the application loses its connection it will continue to

operate based on the data it has stored internally, but as a situational awareness

tool, the longer it has no network connection the less relevant its data becomes.

One of our goals that was not realized is the ability to share new data directly

between two instances of the mobile application. There is no Cordova plugin that

supports Bluetooth or WiFi Direct transfers between two mobile devices. The

development of a Bluetooth or WiFi Direct plugin for Cordova would enable two

units within wireless range to synchronize their databases directly without the

requirement for cellular or wireless infrastructure.

4. Map Cache

The algorithm used to cache the map tiles is simple and effective, but it is

not efficient or user friendly. The prototype application caches all of the map tiles

within approximately 20 kilometers of the user’s current location. If the user

moves outside of that area, they have to tell the application to re-fill the cache

based on the new current location, which requires the device to be online. The

old map tiles are not discarded in this process. If the device storage fills up, the

user can select to clear the entire cache and start over. In addition, the map tiles

are stored as uncompressed PNG files on the mobile device or as blobs in a

local database in the browser. If two identical tiles appear in separate locations

on the map, ocean tiles for example, both copies will be stored. Additional

research into automating the caching of tiles, storing them more efficiently, using

virtual links to common tiles, or dynamically rendering the tiles on the device

should be explored. Consideration should also be given to digitally signing tiles to

ensure tile content integrity.

5. Dynamic HTML Generation for Alerts

The information provided in the alerts is intended to provide details based

on what information is available about that alert and to provide a capability for

more detailed drill-down. The prototype application dynamically creates alert

 90

window based on the data available in the database object that generated the

specific alert, but it is currently limited to only a few fields. For example, the

function that creates the alert window checks for an associated photo attachment

and displays it if one is available; it will also format and display a list of

characteristics if such a list is present. A more full-featured version of the

application should be able to analyze the JSON object returned by the database

and dynamically create an alert window that is appropriately sized for the device

with opportunities for drill-down by the user. For example, if the database object

contains multiple photo attachments, the alert popup might provide a link by

which the user can access a photo gallery to scroll through all of the photos. It

could also provide a way for the user to open the alert information in a full-screen

window, include additional text fields, and allow the user to scroll through the

information.

The goal for this research was to develop an architecture and prototype

system to demonstrate that a handheld assistant could enhance the

effectiveness and security of patrol units while expediting the planning process.

Our prototype successfully demonstrated that a hardware-independent mobile

application could be developed that will track the user’s location and provide

alerts when the user is in the vicinity of geospatially tagged information. The

future of this research lies in improving the functionality that was implemented in

the prototype, expanding the network communication abilities to include

Bluetooth and WiFi Direct, addressing the security requirements, and developing

the ability to pull relevant data from the multitude of existing DOD databases.

 91

SUPPLEMENTARY MATERIAL

The application code for the mobile application has been included as

supplementary material for this thesis. This material includes the contents of the

“www” folder structure as well as all HTML, JavaScript, CSS, sound, and icon

files necessary to compile the mobile application using Cordova. Also included is

the JavaScript file for the NodeJS proxy server that was used to enable the

mobile application to connect with the various servers described in Chapters III

and IV.

 92

THIS PAGE INTENTIONALLY LEFT BLANK

 93

LIST OF REFERENCES

Adobe Systems Inc. (2011). October 3. Adobe announces agreement to acquire
Nitobi, creator of PhoneGap. Adobe Systems Inc. Press release.
Retrieved from
http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/Ado
beAcquiresNitobi.html

Agafonkin, V. (2014). Leaflet (version 0.7.3) [software]. Available from
http://leafletjs.com/download.html

Allensworth, G. (2014). MobileMapStarter [software]. Available from
https://github.com/gregallensworth/MobileMapStarter

Anderson, J. C., Lehnardt, J. & Slater, N. (2009). CouchDB: The definitive guide
(1st ed.). Sebastopol, CA: O'Reilly Media, Inc.

Android Open Source Project. (2014a). Android NDK.
https://developer.android.com/tools/sdk/ndk/index.html

Android Open Source Project. (2014b). The Android source code. Retrieved from
http://source.android.com/source/index.html

Apache Software Foundation. (2014). Apache Cordova documentation.
Retrieved from http://cordova.apache.org/docs/en/3.3.0/index.html

Apple Inc. (2014a). App Store review guidelines. Retrieved from
https://developer.apple.com/appstore/resources/approval/guidelines.html

Apple Inc. (2013). Start developing iOS Apps today. Cupertino, CA: Apple Inc.

Apple Inc. (2014b). Which developer program is for you? Retrieved from
https://developer.apple.com/programs/which-program/

Bu, G. (2011). Entire network icon [image]. Retrieved from
http://kidaubis.deviantart.com/art/Reality-104372241.

Bureau of Justice Assistance. (2012). Reducing crime through intelligence-led
policing. Retrieved from
https://www.ncirc.gov/documents/public/reducing_crime_through_ilp.pdf

Chamberlain, R. (1996). Calculating distances on the surface of the earth.
Retrieved from http://www.faqs.org/faqs/geography/infosystems-faq/

 94

Coelho, E. (2007). Apps service manager icon [image]. Retrieved from
http://www.softicons.com/system-icons/crystal-project-icons-by-everaldo-
coelho

Dees, I. & Weait, R. (2013). Manually building a tile server. Retrieved from
http://switch2osm.org/serving-tiles/manually-building-a-tile-server-12-04/

Defense Information Systems Agency. (2014). GCCS-joint. Retrieved from
http://www.disa.mil/Services/Command-and-Control/GCCS-J.

Fitts, P. (1992). The information capacity of the human motor system in
controlling the amplitude of movement. Journal of Experimental
Psychology: General, 121(3): 262.

Flynn, M., Pottinger, M., Batchelor, P. (2010). Fixing intel: A blueprint for making
intelligence Relevant in Afghanistan. Washington, DC: Center for a New
American Security.

Forlines, C., Wigdor, D. Shen, C. & Balakrishnan, R. (2007). Direct-touch vs.
mouse input for tabletop displays. CHI Conference Proceedings, 1: 647–
656.

Frain, B. (2012). Responsive Web Design with HTML5 and CSS3. Birmingham,
UK: Packt Publishing.

Fuentes, R. & Hunt, J. (2006). Operation LEAD: New Jersey's statewide
response to Louisiana in the aftermath of Hurricane Katrina. Police Chief,
73(2): 36–53.

García, R., de Castro, J.P., Verdú, E., Verdú, M.J. & Regueras, L.M. (2012). Web
map tile services for spatial data infrastructures: Management and
optimization. In C. Bateira (Ed.), Cartography: A tool for spatial analysis.
Available from http://www.intechopen.com/books/cartography-a-tool-for-
spatial-analysis/web-map-tile-services-for-spatial-data-infrastructures-
management-and-optimization

General Dynamics Inc. (2012). Tactical Ground Reporting (TIGR) System
[datasheet]. Arlington, VA: General Dynamics. Retrieved from
http://www.gdc4s.com/Documents/Programs/TIGR Handout-Final.pdf

Google Inc. (2014). Google Maps API: Map types. Retrieved from
https://developers.google.com/maps/documentation/javascript/maptypes

Harvey, D. & Lawson, N. (2014). PouchDB. Retrieved from http://pouchdb.com/

Icons-Land. (2014). Layers Icon [image]. Retrieved from http://www.icons-
land.com

 95

Koch, P. (2014). Touch Table. Retrieved from
http://www.quirksmode.org/mobile/tableTouch.html

Lacey, M. (2010, January 20). US troops patrol Haiti, filling a void. The New York
Times. A1.

Leroux, B. (2012). PhoneGap, Cordova, and what’s in a name? Retrieved from
http://phonegap.com/2012/03/19/phonegap-cordova-and-
what%E2%80%99s-in-a-name/

Lie, H. W. & Bos, B. (2005). Cascading style sheets: Designing for the web.
Upper Saddle River, NJ: Addison Wesley.

Liedman, P. (2014). Leaflet Routing Machine [software]. Retrieved from
https://github.com/perliedman/leaflet-routing-machine

Luo, T., Hao, H., Du, W., Wang, Y., & Yin, H. (2011, December). Attacks on
WebView in the Android system. Proceedings of the 27th Annual
Computer Security Applications Conference: 343–352. ACM.

Luxen, D. (2014). Open source routing machine wiki. Retrieved from
https://github.com/DennisOSRM/Project-OSRM/wiki

Mahdavi, N. (2014). Leaflet plotter [software]. Available from
https://github.com/scripter-co/leaflet-plotter

Mapbox Inc. (2014). Mapbox: an open platform. Retrieved from
https://www.mapbox.com/foundations/an-open-platform/

Microsoft Corporation. (1999). FAT: General overview of on-disk format [white
paper]. Redmond, WA: author.

Mozilla Foundation. (2014). Firefox OS. Retrieved from
https://developer.mozilla.org/en-US/Firefox_OS

National Oceanic and Atmospheric Administration & National Aeronautics and
Space Administration. 2007. Seasonal blue marble [image]. Retrieved
from ftp://public.sos.noaa.gov/land/blue_marble/seasonal_blue_marble/

Naval Surface Warfare Center. 2013. Software version description (SVD) for
Joint Battlespace Viewer (JBV). Panama City, FL: United States Navy.

OSM map on Garmin/IMG file format. (2013). Retrieved July 6, 2014 from
OpenStreetMap Wiki:
http://wiki.openstreetmap.org/w/index.php?title=OSM_Map_On_Garmin/I
MG_File_Format&oldid=952578

 96

Paterson, R., Greenberg, J. & Green, H. (2010). Command post of the future:
Successful transition of a science and technology initiative to a program of
record. Defense AR Journal 17, 1(53): 3–26.

Pennington, J.V. (2008). COIN patrolling: Tactics, techniques, and procedures.
Fort Leavenworth, KS: Center for Army Lessons Learned, Combined Arms
Center.

Plotz, M. (2013). Getting jQuery Mobile 1.4 and PhoneGap 3.1 to work together.
Retrieved from http://www.devx.com/wireless/getting-jquery-mobile-1.4-
and-phonegap-3.1-to-work-together.html

Rendering. (2014). OpenStreetMap wiki. Retrieved July 8, 2014 from
http://wiki.openstreetmap.org/wiki/Rendering

Rivera, J. & van der Meulen, R. (2013, November 14). Gartner says smartphone
sales accounted for 55 percent of overall mobile phone sales in third
quarter of 2013. Press release [Gartner]. Retrieved from
http://www.gartner.com/newsroom/id/2623415

Sample, J. & Ioup, E. (2010). Tile-based geospatial information systems:
Principles and practices. New York: Springer.

Satterfield, J. & Garrison, R. (2013). Virtual keyboard. Retrieved from
http://mottie.github.io/Keyboard/index.html

Sicking, J. (2012, July 5).Why no FileSystem API in Firefox? Retrieved from
https://hacks.mozilla.org/2012/07/why-no-filesystem-api-in-firefox/

Slippy map. (2014). OpenStreetMap wiki. Retrieved July 8, 2014 from
http://wiki.openstreetmap.org/wiki/Slippy_Map

Smyrnow, I. (2014). Leaflet FunctionalTileLayer [software]. Available from
https://github.com/ismyrnow/Leaflet.functionaltilelayer

Stöckli, R., Vermote, E., Saleous, N., Simmon, R. & Herring, D. (2005). The blue
marble next generation: A true color earth dataset including seasonal
dynamics from MODIS. Greenbelt, MD: NASA Earth Observatory.

Tile disk usage. (2013). Retrieved July 14, 2014 from OpenStreetMap Wiki:
http://wiki.openstreetmap.org/wiki/Tile_disk_usage

United States Army. (2008). Training for full spectrum operations. Washington,
DC: author.

United States Marine Corps. (2000). Scouting and patrolling. Washington, DC:
author.

 97

United States Marine Corps. (2003). Intelligence operations. Washington, DC:
author.

Vetter, C. (2010). Fast and exact mobile navigation with Openstreetmap data.
Master’s thesis, Karlsruhe Institute of Technology.

Willis, D. (2013). Bring your own device: the facts and the future. Stanford, CT:
Gartner Inc.

Wilson, C. & Kinlan, P. (2013, March 13). Touch and mouse: together again for
the first time. Retrieved from
http://www.html5rocks.com/en/mobile/touchandmouse/

Yug & Cfaerber. (2006). Bitmap VS SVG [Digital image]. Wikimedia Commons.
Retrieved from http://commons.wikimedia.org/wiki/File:Bitmap_VS_SVG

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

