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ABSTRACT 

Military and police patrols are an important component of combat operations, 

counter insurgency, peacekeeping, disaster relief, and humanitarian assistance 

missions. These patrols need to access timely, relevant information about events 

and conditions along their patrol route, both historical and ongoing. In the current 

practice, this information is gathered manually prior to the commencement of the 

patrol through the use of historical databases, current event repositories, and by 

reviewing records that may be relevant to the area to be patrolled. Because it is 

manual, this process is fraught with numerous problems including high-cost, 

slow-speed, and low-reliability. 

We present an architecture and a prototype system to enhance the 

effectiveness and security of patrol units, expedite the planning of patrol 

missions, and reduce the cost of planning. Our system uses commercial off-the-

shelf handheld devices and a web-enabled, device-independent software system 

that enables planning the patrol route and linking related information to that 

route. Once the patrol starts, the application tracks the unit’s current location and 

provides real-time information and alerts about areas of interest along the route. 

The command post can track the location of all units and deviations from their 

planned routes are flagged and the command post is alerted. 
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I. INTRODUCTION 

Military and police patrols are a critical enabler across the entire spectrum 

of domestic and military operations from community relations to humanitarian 

assistance and disaster relief (HA/DR) to gang and drug interdiction to counter 

terrorism and counter insurgency to peace-keeping to full-scale combat 

operations. Whether during peacetime law enforcement or disaster relief or 

combat, patrols form the basis of many other types of operations including 

search, interdiction, security, traffic control checkpoints, and intelligence 

gathering. 

During HA/DR operations patrols serve the important purpose of 

protecting property, maintaining security, performing search and rescue, and 

aiding the injured. As discussed by Fuentes and Hunt (2006), after Hurricane 

Katrina, over 600 state troopers and police officers from New Jersey formed an 

emergency response team that conducted patrols through the Second, Third, 

and Sixth Districts in New Orleans. These patrols were primarily focused on 

search and rescue, but they also assisted with force protection for emergency 

responders, general police patrols to prevent looting and vandalism, and to assist 

the Louisiana State Police and the Federal Bureau of Investigation with the 

collection of intelligence about criminal gangs or groups that might hinder rescue 

operations. During the response to the 2010 earthquake in Haiti, the United 

Nations sent troops to patrol the streets to maintain public order and to guard 

food and other aid deliveries during the relief effort (Lacey, 2010). 

The recent conflicts in Iraq and Afghanistan have shown that the future 

strategic landscape will be one of persistent conflict and that the focus will be 

less on kinetic operations (i.e., actions involving direct and indirect fires intended 

to kill the enemy or destroy his resources) and more on counter terrorism, 

counter insurgency, peacekeeping, and nation building. Success or failure in 

these types of operational environment is contingent upon maintaining stability 

and winning the support of the local population (United States Army, 2008). This 
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necessarily requires close interaction between the forces conducting the 

operation and the indigenous population. Patrols are invaluable in facilitating this 

interaction because they enable the unit to gain human intelligence, influence 

popular opinion, and positively impact the security situation. In July 2010, when 

Marines fanned out across the Nawa district in Afghanistan’s Helmand Province, 

they used foot patrols to observe and interact with key personalities, observe and 

document key terrain, and build a positive reputation with the local inhabitants 

(Flynn, Pottinger, & Batchelor, 2010). These patrols enabled the Marines to 

understand the social relationships and successfully engage the elders and other 

powerbrokers in the district, which significantly reduced Taliban influence in the 

area and led to a 90 percent reduction in Marine and Afghan soldier fatalities in 

the area of operations (Flynn et al., 2010). 

A. PLANNING FOR PATROLS 

Military and police patrols have a need for access to timely, relevant 

information about events and conditions along their patrol route, both historical 

and ongoing. In many cases, this information is gathered manually prior to the 

commencement of the patrol from historical databases, current event 

repositories, and by conducting a review of organizational records that may be 

relevant to the area to be patrolled. The Counterinsurgency Patrolling Handbook 

(Pennington, 2008) indicates that in order to develop a common operating 

picture, the patrol leader needs information about the people he will interact with, 

the history of the area, significant events that have occurred recently, social or 

religious culture or peculiarities. He needs a current and accurate map that 

defines the location of roads, bridges, buildings, villages, and key infrastructure. 

This collection of information becomes a mental framework to enable the patrol 

leader to evaluate new information and events encountered while on patrol. It 

should be clear that there is a tremendous amount of information to be collected 

and reviewed and there could be negative repercussions if the officer misses a 

critical data point or if that data has not yet been recorded in the sources the 

officer is reviewing. It is easy to envision a situation where information might be 
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available from a previous shift, or become available during a shift that, if 

reviewed by an officer while on patrol, could provide him with the means to 

disrupt criminal activity, make an arrest, or collect additional information relevant 

to an open investigation (Bureau of Justice Assistance, 2012). 

A commercial-off-the-shelf (COTS) mobile device such as a smartphone 

or tablet is an ideal candidate to run a software application that would help satisfy 

these requirements. This handheld assistant could collect and present 

information from various databases to help the patrol leader develop his mental 

framework, provide situational awareness alerts during the patrol, and enable the 

patrol leader to collect and share additional information during the patrol. 

B. OBJECTIVES 

The goal of this thesis is to develop an architecture and a prototype 

system to enhance the effectiveness and security of patrol units while at the 

same time expedite the planning of patrol missions and reduce the cost of 

planning. 

The system will consist of a mobile application that can improve situational 

awareness for patrols and a web application that can assist the command center 

with tracking and monitoring the various units under their cognizance. The mobile 

application will communicate with the command center’s web application to share 

data collected by the patrols and track patrols’ progress along their routes. The 

system will incorporate the necessary functions to assist with gathering 

information from multiple databases about events, people, and activities along a 

patrol route, track the progress of the patrol on a map using geolocation, and 

alert the patrol when they are in the vicinity of those events, people, or activities 

during the patrol. In addition, as a patrol progresses, the application will allow the 

patrol to capture new information about persons or items of interest they 

encounter and share it in real-time with the command center and other patrols via 

a wireless connection. 
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C. RELEVANCE TO THE DEPARTMENT OF DEFENSE 

While there are numerous databases to track information and several 

systems that attempt to improve a battlespace commander’s situational 

awareness, there is no application that runs on COTS hardware and provides 

geolocated situational awareness alerts using data from multiple data sources. A 

simple COTS-device based tool can improve the planning and execution of 

patrols. The improved awareness that would result from this application would 

improve the effectiveness of patrol operations and reduce the risk for the 

personnel executing the patrol.  

D. ORGANIZATION 

Chapter I provides a discussion of the need for an application that assists 

a patrol leader with the gathering of information to prepare for a patrol and 

providing tracking and alerts to the officer while on patrol. The chapter is made 

up of two sections: One discusses the idea of a handheld assistant that runs on a 

mobile device to aid the patrol leader’ situational awareness; the other explains 

the overall objectives of this thesis. 

Chapter II provides a description of existing programs and applications 

related to our research. The discussion includes their strengths and weaknesses 

and explains how the prototype application fills the gaps that these applications 

do not. It includes a discussion of the different mobile device operating systems, 

the Cordova development environment, mapping and routing services, and 

network connectivity considerations. 

Chapter III outlines the architectural design used in developing the 

prototype system. It explains the overall system design as well as the design of 

the user application and supporting components. 

Chapter IV explains the implementation of the architectural design 

described in Chapter III. The use of the Cordova development tools and the 

development and testing of the mobile application are discussed. A walk-through 

of the prototype application’s functionality is provided. 



 5 

Chapter V provides our conclusions and explores the possible 

enhancements that could be included in future work. It concludes that developing 

a device independent mobile application using HTML5, JavaScript, and CSS3 

that facilitates improved situational awareness for the leader of a patrol is 

achievable. The chapter concludes with a discussion of future research that 

would significantly enhance the capability of the prototype system. 
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II. BACKGROUND 

A. INTRODUCTION 

This chapter provides an overview of the concepts that form the 

background for our research. It discusses current methods for solving the 

problem, similar existing systems, the dominant mobile device operating 

systems, and a method for cross-device application development. In addition, it 

provides background on the creation and display of maps on mobile devices and 

methods for determining routes. 

B. CURRENT METHODS OF SUPPORTING PATROLS 

The military has a number of tools and databases that are designed to 

help commanders develop a common operational picture (COP). These 

databases are constantly updated by the intelligence portion of the organization, 

usually the S-2, as additional data is gathered by units in the field. The 

intelligence analyst will interpret the data to synthesize it into intelligence that will 

help develop a more accurate picture of the situation on the battlefield (United 

States Marine Corps, 2003). Battalion-level S-2 shops are adept at collecting 

human intelligence, signals intelligence, and significant event reports that 

describe events in the area of operations, like improvised explosive device 

strikes, ambushes, and insurgent activities (Flynn et al., 2010). The products, 

developed by the analysts, help commanders determine the impact their units 

actions will have on the situation. 

The current method of preparing for a military patrol requires the patrol 

leader to be familiar with the current COP. In addition, the S-2 will prepare an 

intelligence report for the area to be patrolled that outlines key pieces of 

information, such as known enemy and friendly units, geographic features, 

priority intelligence requirements, imagery, and map overlays. While much of this 

information is stored in various automated systems; written reports or oral 

briefings are still the primary methods of disseminating this information to the 
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patrol leader prior to the commencement of the patrol (United States Marine 

Corps, 2003). The patrol leader will review a map of the area and note the 

location of roads, bridges, buildings, villages, and other key infrastructure as part 

of his reconnaissance. Marine Corps Warfighting Publication 3-11.3 states: 

For a patrol to succeed, all members must be well trained, briefed, 
and rehearsed. The patrol leader must have a complete 
understanding of the mission and a thorough understanding of the 
enemy and friendly situations. The patrol leader should make a 
complete reconnaissance of the terrain to be covered (either visual 
or map), and must issue an order to the patrol, supervise 
preparations, and conduct rehearsals. (United States Marine Corps, 
2000) 

The success of the patrol depends on the familiarity the patrol leader has 

with all of the information he has been provided and his ability to remember and 

act on it in a potentially stressful situation. 

C. EXISTING SYSTEMS 

The U.S. military has a myriad of databases and systems designed to 

store and catalog information that would be relevant to a patrol. Global 

Command and Control System Joint (GCCS-J) is a set of hardware, software, 

procedures, and standardized interfaces designed to consolidate intelligence 

from multiple sources and produce a near real-time picture of the battle-space 

environment to support joint and multi-national operations (Defense Information 

Systems Agency, 2014). While some of the data stored by GCCS-J would be 

useful in the conduct of a patrol, it is focused on providing awareness to 

commanders directing strategic level operations. 

Joint Battlespace Viewer (JBV) is a “software program that maps satellite 

imagery, maps, and battlefield graphics to the Earth’s surface” (Naval Surface 

Warfare Center, 2013). It allows the user to display tracks, overlays, icons, 

routes, and video from other programs, like the Command and Control Personal 

Computer (C2PC) developed by Northrop Grumman. JBV has the ability to 

display alerts when a track crosses a boundary. C2PC is a Microsoft Windows 
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based desktop application that shows COP information, overlays, and unit tracks 

on a graphical map to enhance situational awareness. 

General Dynamics developed the Tactical Ground Reporting System 

(TIGR), a web-based system used by the U.S. Army that allows soldiers to 

collect and share tactical-level information between small, mobile, and 

dismounted units on the battlefield (General Dynamics Inc., 2012). TIGR displays 

geolocated information on a Google-style map interface and combines data 

feeds from programs like GCCS-J and Command Post of the Future (CPOF) 

along with peer-to-peer sharing of collected information from other units using 

TIGR. It is a situational awareness tool to assist with planning and executing 

tactical missions. 

CPOF is another General Dynamics developed system that incorporates 

intelligence products, maps, charts, tables, and other planning tools into a single 

software system to provide battlefield situational awareness to commanders 

(Paterson, Greenberg, & Green, 2010). CPOF is designed to enable 

collaboration between multiple units at different levels of command. Like TIGR, 

CPOF integrates and displays data from other databases in order to support its 

stated goal of collaborative information sharing. 

Each of these systems integrates data from multiple sources in order to 

aid with planning, increase situational awareness, and provides a context for 

spatial location of data by displaying routes, tracks, and unit locations using a 

map. As the most mobile of these systems, TIGR is most similar to our proposed 

solution to providing situational awareness and mobile alerts to a patrol. 

Research indicates that TIGR is not designed to run on a mobile platform and 

does not provide alerts to the user when they are in the vicinity of critical 

locations, nor does it track the user’s location along a pre-defined route (General 

Dynamics Inc., 2012). 
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D. BRING YOUR OWN DEVICE 

David Willis stated that “Bring-your-own-device strategies are the most 

radical change to the economics and the culture of client computing in business 

in decades” (2013, p. 1). Bring-your-own-device (BYOD) policies have become 

common in the business community and are starting to be recognized by 

government IT departments as a way to increase employees’ satisfaction by 

allowing them their choice of device. Gartner, as quoted by Willis, estimates that 

by 2020 over 45 percent of the business community will fully embrace BYOD and 

another 40 percent will have policies that support BYOD for some portion of its 

operations (2013). As mobile devices become more prevalent in society, 

organizations are beginning to realize that there are cost savings to be had by 

allowing employees to use their personal mobile devices for business purposes 

instead of providing a company issued device. 

Although Willis discusses many challenges to implementing BYOD, 

including security, privacy, and limiting migration of data between personal and 

business domains, one big challenge he spends little time on is fragmentation of 

the mobile OS environment (2013). As of 2014, there are 10 mobile operating 

systems available for different devices. When organizations provided mobile 

devices to their employees, configuration management of devices and 

applications was inherent in their policy. With BYOD, configuration management 

becomes much more challenging and expensive. An organization has to 

determine which operating systems to support. Particularly when the organization 

has business-specific applications, supporting multiple operating systems can be 

a code development and configuration management nightmare, as each OS has 

specific development environments. 

E. MOBILE OPERATING SYSTEMS 

As of June 2014, there are four major mobile operating systems with 

significant market penetration: Android, iOS, Blackberry, and Windows Phone 
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(see Table 1). There is a host of other mobile operating systems including Firefox 

OS, Sailfish OS, Symbian, Tizen, Bada, and Ubuntu Touch. 

Worldwide Smartphone Sales to End Users by Operating System in 3Q13  

Operating System 3Q13 Units(Thousands) 3Q13 Market Share (%) 

Android 205,022.70 81.9 

iOS 30,330.00 12.1 

Microsoft 8,912.30 3.6 

BlackBerry 4,400.70 1.8 

Bada 633.3 0.3 

Symbian 457.5 0.2 

Others 475.2 0.2 

Total 250,231.70 100 

Table 1.   Smartphone market share, (after Rivera & van der Meulen, 
2013) 

1. Android 

The Android operating system holds the overwhelming share of the mobile 

device market, with 81.9 percent of the market share as of third quarter 2013 

(Rivera & van der Meulen, 2013). Android was developed by Google based on 

the Linux kernel and is “an open-source software stack created for a wide array 

of devices with different form factors” (Android Open Source Project, 2014b). The 

Android Software Development Kit (SDK) includes all of the Android APIs 

packaged with an Eclipse Java based Integrated Development Environment 

(IDE). Android applications are normally written in Java and compiled to Java 

byte-code before being packaged and loaded onto a device. The Android Native 

Development Kit does allow libraries and applications written in other languages 

to be compiled to code native to processor chipsets, such as x86, ARM, or MIPS, 

but this is discouraged since the Android Java Virtual Machine is highly 

optimized, writing native code applications is highly complex, and only CPU-

bound applications gain any significant speed advantage (Android Open Source 

Project, 2014a). The Android SDK includes an emulator to enable application 

developers to test their applications on a variety of mobile device configurations 

without having to acquire actual devices. 
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2. iOS 

Apple’s iOS is the second most prevalent mobile operating system with 

12.1 percent of the market share as of third quarter 2013 (Rivera & van der 

Meulen, 2013). iOS is a closed-source operating system and is proprietary to 

Apple Inc. Application development for iOS requires the developer to have a 

Macintosh computer running OS X, to use the current Xcode IDE, and have the 

iOS SDK installed on the computer (Apple Inc., 2013). 

iOS applications must be written in Objective-C and use the Cocoa Touch 

user interface library. The Xcode IDE includes an emulator and a developer can 

deploy its application to an emulated iPhone or iPad emulator for testing. 

Apple devices require all applications to be digitally signed by an approved 

developer certificate, so to deploy an application to a real device the developer 

must purchase an Apple Developer License in order to obtain a code-signing 

certificate (Apple Inc., 2014b). 

3. Others 

Windows Phone and Blackberry OS each have less than five percent of 

the smartphone market, followed by several even less popular mobile operating 

systems, including Tizen, Bada, Symbian, Firefox OS, and Ubuntu Touch. 

Windows Phone, Blackberry OS, Bada, and Symbian are all closed-source, 

proprietary operating systems. Tizen, Firefox OS, and Ubuntu Touch are Linux-

based, open-source platforms for mobile devices. All of these mobile operating 

systems come with their own SDK for developing applications. Blackberry OS, 

Bada, Tizen, Sailfish OS, Windows Phone, and Ubuntu Touch use C, C++, or C# 

as a development language. Notably, Firefox OS applications are written entirely 

in HTML5, CSS, and JavaScript with enhanced access to the device’s hardware 

and services provided by the Firefox OS API (Mozilla Foundation, 2014). 
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F. PHONEGAP AND CORDOVA 

PhoneGap and Cordova are mobile application development frameworks 

that enable a developer to write the code for an application in HTML5, CSS3, and 

JavaScript and then deploy it to a variety of mobile devices without having to re-

code the application into the native programming language for that platform. 

1. History 

PhoneGap was originally developed by Nitobi Software, which was 

acquired by Adobe Systems in 2011 (Adobe Systems Inc., 2011). Concurrent 

with the acquisition, Adobe contributed the PhoneGap source code to the 

Apache Software Foundation (ASF) in order to facilitate continuing improvement 

by the open source community (Adobe Systems Inc., 2011). In order for Adobe to 

maintain a clear trademark and meet ASF’s license for open source software, the 

open source version was renamed Apache Cordova. PhoneGap is currently a 

downstream distribution of the Apache Cordova project, with Adobe having 

license under the PhoneGap trademark to add additional and proprietary value-

added services, such as the Adobe PhoneGap Build online compilation platform 

and integration with its other web-authoring tools (Leroux, 2012). PhoneGap and 

Cordova both provide the same essential functionality. Therefore, for 

consistency, the development framework for this thesis will be referred to as 

Cordova. 

2. Cordova Theory of Operation 

The Cordova framework consists of a set of command line tools and 

software libraries. When a new Cordova project is created, Cordova creates a 

specific set of directories, as depicted in Figure 1, each with a specific function. 

The developer places his or her application’s code in the “www” directory. 

Cordova manages the other directories during the build process, moving and 

replacing files as necessary. 
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Figure 1.  Cordova directory structure (from Plotz, 2013) 

In order for Cordova to compile an application for a specific mobile device 

operating system, the development system must have the Software Development 

Kit (SDK) loaded for that particular mobile operating system (Apache Software 

Foundation, 2014). During the build process, Cordova scripts the running of the 

SDK tools to compile a native code application that consists of a WebView and a 

foreign function interface that enables the developer’s JavaScript code to access 

native functions, referred to by Cordova as plugins (Apache Software 

Foundation, 2014). These plugins are native code functions that enable access 

to mobile device hardware or functionality that is not otherwise exposed by the 

WebView to the JavaScript code. The Cordova build process packages the 

contents of the “www” directory into application resources, compiles the 

appropriate native code for the target mobile operating system, and then 

assembles it all together into the appropriate type of package to be loaded onto 

the mobile device. 

As described in the Cordova user documentation (Apache Software 

Foundation, 2014), when a Cordova application is run on a mobile device, the 
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Cordova native code instantiates and configures a full-screen WebView and then 

directs it to load the developer’s index.html file located in the application’s 

resources. While the WebView is loading and rendering the HTML, Cordova’s 

native code continues in a separate thread to load any required plugins and 

establish the foreign function interface. This asynchronous loading process 

makes the application appear to run more quickly, but raises the possibility that 

the WebView may finish loading and begin running the developer’s JavaScript 

code before Cordova has finished its loading and setup process. To prevent the 

JavaScript code from attempting to access a native function that has not been 

loaded yet, the developer is required to wait for an OnDeviceReady event to be 

fired by Cordova before accessing any of Cordova’s native functions. When 

Cordova has finished its setup, it passes the OnDeviceReady event to the 

WebView. 

3. HTML5, JavaScript and CSS3 

Cordova’s use of HTML, JavaScript and CSS enables a developer to use 

the same skillsets for developing a mobile application as he would to develop 

webpage. Most of the same concepts discussed by Frain (2012) that are 

applicable to responsive web page design are applicable to the design of a 

Cordova mobile application. All of the modern mobile WebView-enabled 

browsers support HTML5 and CSS3. HTML5 and CSS3 bring additional 

capabilities that enable a Cordova application to have fluid layouts that adapt to 

different viewport sizes; support CSS3 typography, transformations, transitions, 

animations, and other visual effects; and access a number of non-traditional APIs 

without writing native code, including local file access, geolocation, media, web 

storage, and others. WebView supports any HTML, CSS, and JavaScript that will 

run on that device’s mobile browser version. There are a number of additional 

considerations that must be addressed for a Cordova-based application, 

however, including single page authoring, integration with the mobile device 

hardware, user interface design, and managing the differences between touch 

and click events. 
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a. Single Page Authoring 

While the Cordova framework does provide the ability to load a different 

page, this will disrupt the user experience when the WebView loads and renders 

the page (Apache Software Foundation, 2014). In addition, loading a new HTML 

page clears the JavaScript stack; if the application needs to persist data across 

the reload, the application will have to use cookies, store the data in the window 

object, or use local storage to store and then re-load the data. All of these 

approaches will impact the responsiveness of the application. It is for these 

reasons that most Cordova applications use a method known as single page 

authoring. 

Single page authoring is a method of web page authoring where the 

browser retrieves only a single HTML web page at the beginning of the session. 

All changes to the page after that point are done dynamically, using JavaScript to 

add and remove elements from the document object model (DOM). By adding 

and removing elements from the DOM, the user interface can be manipulated 

using all of the elements familiar to the user including menus, buttons, popup 

dialog boxes, etc. without requiring the browser to perform another full-render on 

the page. This causes the page to appear much more responsive and does not 

require workarounds to get JavaScript variables to persist across user interface 

changes. 

Single page authoring for mobile devices does require additional 

consideration for DOM complexity. Due to resource limitations on mobile devices, 

the child-depth limit for DOM objects imposed by either the HTML parse engine 

or device memory might become an issue if the developer chooses to hide 

objects as opposed to completely removing them from the DOM. One method for 

speeding up the initial page load and render is to use a framework that only loads 

the initial page view. Additional content can be dynamically loaded from 

additional HTML files just prior to when it is needed. 
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b. JavaScript Integration with Native Code 

HTML5 and CSS3 provide the ability to develop spectacular and 

responsive user interfaces. For an application that needs to do nothing more than 

display a nice user interface and handle some user inputs, HTML5 and its related 

API’s provide more than enough capability. For an application that needs more 

direct control over the hardware the WebView sandbox can be limiting. HTML5 

provides some limited access to the mobile device’s camera, GPS, database 

storage, and file system. These API’s are limited both in the application’s ability 

to control them, and by whether a particular mobile browser supports them. 

Mobile devices today have additional sensors and capabilities including 

Bluetooth, Near Field Communication, Wi-Fi Direct, accelerometers, light 

sensors, proximity sensors, etc. that have no HTML5 or JavaScript API to enable 

access to them via the WebView. 

The WebView component provides the ability to access native code 

functions from the JavaScript code running in the WebView. Cordova exposes 

this functionality using a standardized plugin framework. Plugins must be 

developed in the native language for the device to be targeted and include a 

native component that accesses the device hardware and a JavaScript interface 

that invokes the Cordova exec function to access the native interface (Apache 

Software Foundation, 2014). The Cordova exec function takes five arguments: a 

success callback, an error callback, a service name, an action name, and an 

array of arguments (see Figure 2). The service name is the name of the native 

class, and the action name is the method of the native class that should be 

called. The arguments are passed to the action method. This interface enables a 

Cordova application to use plugins to access device hardware or provide 

capability that is not exposed through HTML5 or its related APIs. 
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Figure 2.  Cordova exec interface (from Apache Software Foundation, 2014) 

c. Touch Versus Mouse Events 

There is a significant difference in the design requirements for an 

application where user interaction is accomplished via touch versus an 

application where the user has a mouse and keyboard. Most applications 

designed for display on a desktop browser anticipate that the user is interacting 

with the page using a keyboard and mouse, although touch is rapidly moving into 

the desktop space, and touch events should be considered. On a mobile phone 

or tablet, the user is most likely to be using touch, multi-touch, or a stylus to 

interact with the application. 

While Fitts’s law (1992) applies to both mouse and touch interaction, a 

mouse cursor is relatively more accurate than a finger, so application interfaces 

designed for touch interaction must have larger controls and more control 

spacing (Forlines, Wiggdor, Shen & Balakrishnan, 2007). Newer desktop 

browsers support both mouse and touch events and mobile browsers will 

simulate mouse events based on touch events if the touch events are not 

handled. Unfortunately, each browser handles the translation a little differently 

(Koch, 2014), so the user experience may not be uniform on each platform. In 

particular, many browsers have a built-in 300 millisecond delay before turning a 

touch event into a mouse event to determine if the user is performing a double-

tap; this delay can cause the interface to feel sluggish if it is not overridden 

(Wilson & Kinlan, 2013). 

cordova.exec(function(success) {}, 
             function(error) {}, 
             "service,” 
             "action,” 
             ["firstArgument,” "secondArgument,” …, lastArgument]); 
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d. Security 

The use of Cordova to develop mobile applications introduces a number of 

security challenges including cross-origin policy restrictions and breaching of the 

sandbox model. By design, web browsers do not allow a script from one domain 

to make a request for content or data from another domain. This presents a 

problem for a WebView application that wants to retrieve and manipulate or 

display data from a server since its domain is defined as either “file://” or 

“http://localhost.” Mobile operating systems that support the WebView concept 

allow the application to provide a whitelist of acceptable domains from which to 

retrieve data. The application may still be limited in what it can do with data 

retrieved from a server that does not support Cross-Origin Resource Sharing 

headers, however. For example, an application using the JavaScript 

XMLHttpRequest function to retrieve an image from a server that does not set 

the Access-Control-Allow-Origin response header will be limited by the WebView 

in what it can do with that image to prevent malicious cross-site scripting or code 

injection. 

The WebView functionality that enables JavaScript code running in the 

WebView to interface with native code breaches the browser sandbox model by 

design. Unfortunately, as discussed by Luo, Hao, Du, Wang, and Yin (2011) this 

interface could enable a malicious application on the device to manipulate the 

JavaScript being run in the WebView or allow a malicious script that is loaded by 

the WebView, perhaps due to the user clicking a link, to access the native code 

interfaces exposed to the WebView. 

4. Development Considerations 

There are some development considerations that must be evaluated 

before deciding whether to use Cordova to develop a mobile application.  These 

considerations are the availability of plugins and the design of the user interface. 
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a. Plugin Availability 

The Cordova API provides plugins to access many of the most popular 

hardware interfaces, operating system components, and system events (Apache 

Software Foundation, 2014). Hardware interfaces include the device’s battery 

status, the accelerometers, the compass, the camera, vibration, network status, 

and the GPS. Operating system functions that can be accessed include the file 

system, the user’s contacts list, globalization functions, the operating system’s 

email client, and an in-application browser. System event plugins include 

application pause and resume; changes in online status; and volume, home, and 

back button presses. Any functionality that a developer wants to add to an 

application that is not covered by the Cordova provided plugins requires the 

developer to create a plugin to access that capability. In particular, Cordova 

plugin support is lacking for several common communication interfaces on mobile 

devices, including Bluetooth, Wi-Fi Direct, Near Field Communication, and socket 

IO. 

b. User Interface Design 

The Cordova API provides the ability to use native dialog boxes on each 

of its platforms to assist with making the user interface feel more like a native 

application for that platform than a web-based application (Apache Software 

Foundation, 2014). This might be important if the application is to be submitted to 

a commercial app store. For example, Apple requires all applications to conform 

to its user interface guidelines, and applications that fail to do so are rejected 

(Apple Inc., 2014a). Another option for developers is to completely manage the 

entire user interface, developing all dialog boxes, popups, etc. using HTML and 

CSS. While this approach will not mimic the platform’s native user interface, it will 

enable the developer to create a consistent user interface across all of the 

devices. The advantage to this approach is that once a user is familiar with the 

interface, transitioning to a new device will be seamless, as the user interface will 

be exactly the same. 
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G. MAPPING 

A map that is displayed to the user in an application that allows them to 

zoom and pan is generally referred to as a slippy map. The OpenStreetMap 

Project defines a slippy map as a web-browser-based map interface that enables 

a user to zoom and pan a map by grabbing the map with the mouse and sliding 

the map image in any direction. The web browser dynamically loads the new 

portion of the map display without reloading the page, making for a seamless 

user experience (“Slippy map,” 2014). The map image is built out of many 

smaller images referred to as tiles. These map tiles may be in a number of 

different formats and may be stored locally, produced on a server, or generated 

locally as needed. Each tile is referenced by its location in relationship to a grid 

and its zoom level. This makes it possible to take given latitude, longitude, and 

zoom level, and determine which map tile needs to be displayed to show that 

location. 

1. Formats 

The actual map data that describes the geographic features can be stored 

in many formats including Keyhole Markup Language, GeoJSON, ArcGIS, 

PostGIS, and many others. These formats are all standards for encoding 

geographic information into a standardized file format. All contain information 

about features on the surface of the earth along with their spatial location. These 

Geographic Information System (GIS) files are used to generate the actual map 

tiles that are displayed for the user. 

Map tiles can be generated in three basic formats: proprietary, vector-

based images, and raster-based images. They can be generated locally on the 

device that will display them or generated on a server and delivered to the device 

over the network. 
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a. Proprietary 

Proprietary formats are used by commercial GPS providers, such as 

Garmin, Lowrance, and Navikey. Based on reverse engineering and open source 

information, these formats combine vector display information for the map 

features, elevation data, and routing information to support GPS navigation 

(“OSM map,” 2013). 

b. Vector Image 

The most efficient way to store map tile information is using vector-based 

images. A vector image format describes the image using points, lines, angles, 

curves, and polygons, along with color information. This format is advantageous 

because it has a small file size and, as depicted in Figure 3, vector images do not 

lose information as they are scaled up or down. The disadvantage to vector 

images is that they can only store images based on shapes, and are not useful 

for displaying photograph style images. In addition, they must be rendered each 

time they are displayed, moved or scaled, so a large or complex image may 

require significant processing power or incur a delay in the display to the user. 

 

Figure 3.  Vector graphic (after Yug & Cfaerber, 2006) 

Vector images are ideal for representing man-made geospatial features 

such as roads, buildings, etc. because all of the points in the file can be 

geographically referenced. Zooming the image then becomes just a matter of 
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adjusting the scale of the image and redrawing it; all of the associated shapes 

will scale appropriately. 

c. Raster Image 

Raster images, also known as bitmaps, have a grid data structure that 

stores the color information required to display each pixel of the image. Raster 

images are most advantageous when there is a need to display photo-realistic 

images with significant color gradients. The file size of raster images is generally 

larger than a similar vector image, and while raster images can be compressed, 

this introduces another processing step. Raster images also do not scale well to 

higher resolutions. As seen in Figure 4, raster images suffer from pixilation when 

scaled, or zoomed-in beyond the number of pixels defined by the raster image. 

 

Figure 4.  Raster graphic (after Yug & Cfaerber, 2006) 

Raster images for satellite or aerial imagery can be geolocated by 

providing a bounding rectangle for the image that describes the area of the 

earth’s surface covered by the image, or by providing the geographic coordinate 

of one of the image’s corners and specifying the distance covered by a pixel in 

each direction (Sample & Ioup, 2010). 

d. Global Map Tile Scheme 

Tile-based mapping systems require that a depiction of the earth’s surface 

be decomposed into a logical set of discrete tiles that can be addressed via a 



 24 

coordinate system. This requires taking the roughly ellipsoid earth and mapping it 

to a flat surface using a map projection, as seen in Figure 5. The most popular 

projection used in online maps is the World Geodetic System 84 Pseudo-

Mercator projection, which was adopted and popularized by Google (Google Inc., 

2014). 

 

Figure 5.  Mapping from physical earth to WGS84 projection, (after National 
Oceanic and Atmospheric Administration & National Aeronautics 
and Space Administration, 2007; after Stöckli, Vermote, Saleous, 

Simmon & Herring, 2005) 

The projected image of the map can then be sliced into tiles with a 

standard size depending on the required zoom level of the map. This is referred 

to as a tile pyramid because, as the zoom level increases, the number of tiles 

required to represent the same physical area at the previous zoom level 

increases exponentially, as does the level of detail for each tile. Figure 6a shows 

how the number of tiles for a particular area increases at each zoom level; note 

that each tile would represent a constant number of pixels. Figure 6b shows 

another visualization of the tile pyramid as explained by García, de Castro, 

Verdú, Verdú, and Regueras (2012), where the entire earth can be represented 

as one 256 x 256 pixel tile at Level 0, and representing that same area requires 

16 256 x 256 pixel tiles at Level 1, with a corresponding increase in feature 

resolution. 



 25 

 

Figure 6.  a (Left): Tiling of image at increasing resolution (after Stöckli et 
al., 2005); b (Right): Tile pyramid (from García et al., 2012) 

e. Server Generated Tiles 

Rendering a map tile from the raw geospatial map data requires a number 

of steps. The compressed geospatial map data for the entire globe is 

approximately 27 gigabytes. Rendering the entire globe and storing all of the 

resulting map tiles would require approximately 52 terabytes of storage space, 

most of which would be wasted, as two thirds of that space would be tiles at 

zoom level 18, the vast majority of which show nothing of interest (for example, 

open ocean where no geographically-significant features exist) (“Tile disk usage,” 

2011). The optimal method of serving map tiles is to render a tile on the server 

the first time it is requested and then to cache it for some period of time in the 

event that it is needed again. This prevents rendering and storing tiles that would 

never be requested. 



 26 

In order to enable the server to request the geospatial map data for only 

the area to be rendered, the first step is to process the XML-based geospatial 

data into a spatially aware database like PostGIS (Dees & Weait, 2013). This 

step is processing intensive and can take hours or days but is critical to enabling 

the rendering engine to render only those areas of the map that are actually 

needed. The PostGIS database enables the rendering engine to request all of 

the map features that fall within a particular bounding box. 

The second step is for the rendering engine to produce vector-based 

graphic layers for each feature using a style sheet that determines how the 

individual features like streets, highways, points of interest, labels, buildings, etc. 

should be drawn. The rendering engine then uses the painting algorithm to 

combine the layers into a single vector based image (Dees & Weait, 2013). 

While it is theoretically possible at this point to chop the vector image into 

tiles and serve it to the client, this has not been widely adopted to date because 

browser support for SVG images has not been consistent and clipping the SVG 

geometry to make the tiles is challenging. There are a number of ongoing 

projects that are pursuing vector-based tile servers.  

The next step for most rendering engines is to convert the vector image 

into a raster image covering the requested area plus a gutter, and then chop the 

raster image into standard size tiles, usually 128 x 128, 256 x 256, or 512 x 512 

pixels in size, and forward them to the web server to fulfil the request. 

f. Locally Generated Tiles 

With the exception of proprietary formats, such as the Garmin GPS, there 

are very few clients that generate the map tiles on the device, for the reasons 

previously discussed. Most mobile devices cache the necessary tiles to show the 

low zoom levels, at the continent level and above, and then download the higher 

zoom tiles from a server as necessary. In order to locally generate the tiles, the 

raw geospatial data would have to be stored on the device in a spatial database 

and rendered into a vector image on the fly. There are a few open source 
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projects attempting to support this model, including Kothik JS and TileStache, but 

Kothik JS is still in development and TileStache is not currently designed to run 

on a mobile device (“Rendering,” 2014). 

2. Mapping Providers 

There are numerous commercial providers who serve map tiles over the 

Internet to support map applications, including ESRI, Google, Bing, MapQuest, 

Thunderforest, Stamen, CloudMade, and OpenStreetMap. These providers host 

map tile servers that include various styles, including aerial and satellite imagery, 

shaded terrain, street maps, and artistic renditions. Examples of the various 

styles of tiles available are shown in Figure 7. 

 

Figure 7.  Tile type examples 

Each of the various tile providers have different terms of service that are 

required to be met in order to use their tile server. All of the tile providers require 

applications to provide attribution of the tile source. Google and ESRI require 

developers to apply for an API key for usage tracking before being allowed to use 
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the service. Google requires developers to use the Google Maps API to access 

its tiles. MapQuest requires notification if anticipated usage is greater than 4,000 

tiles per second. Google, ESRI, and Thunderforest track and limit the number of 

tiles that may be downloaded by an application before requiring a paid support 

plan. CloudMade is strictly a commercial provider and requires a paid support 

plan. 

OpenStreetMap provides the base data used by several of the mapping 

providers. While OpenStreetMap does host a tile server for testing purposes, it 

prefers that application providers download the raw geospatial data and host 

their own tile server. OpenStreetMap provides links to software and tutorials for 

setting up and hosting a tile server. Hosting a dedicated tile server is an ideal 

solution for a military application because the tile server can be deployed close to 

the battlefield to alleviate the requirement for reach-back connectivity to a U.S. 

based datacenter.  

3. Map Display Application Programming Interface 

To display a map, the application must determine its location, determine 

which map tiles are needed, download and insert the tile images into the DOM, 

and handle user events such as zooming and panning. There are four popular 

JavaScript APIs that automate this process: the Google Maps API, Leaflet, 

MapBox, and OpenLayers. 

a. Google Maps API 

The Google Maps JavaScript API is a complete API for displaying and 

interacting with maps provided by Google. It includes the capability to display 

additional data visualization layers over the Google provided base maps. The 

API includes functions for adding overlays, including markers, rectangles, circles, 

polylines, and polygons. The Google API provides many additional services, 

including routing, geocoding of addresses, direction and distance calculations, 

weather data, information popups, and Street View pictures. 
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The Google API’s major advantages include that it is heavily tested and is 

unlikely to contain many errors that would impact the use of an application. 

Google provides one of the best routing engines available; it is both accurate and 

quick to return results. As a major mapping provider, Google hosts multiple tile 

servers and a large user volume, so popular tiles are likely to be cached and 

served quickly. 

There are three major limitations imposed by use of the Google API 

(2014). The first limitation is that it requires the developer to register an API key 

with Google for usage tracking. The usage tracking provides a means for Google 

to enforce payment for applications that exceed 25,000 map loads per day. The 

second limitation is that the Google API’s terms of service prohibit storing the 

script or map tiles for use offline. This limitation means that an application using 

the Google API must always be used online. Such a requirement could severely 

impact its usage for tactical environments where continuous Internet connectivity 

may be lacking. The third limitation is that Google’s terms of service prohibit the 

use of Google’s API in an application that is not publicly available unless a 

business license has been purchased. 

b. Leaflet 

Leaflet is a lightweight JavaScript library, originally developed by 

CloudMade, Inc., that provides the capability to display and interact with maps. It 

is provider agnostic and is capable of interacting with many different map tile 

providers. It supports both vector and raster layers and includes the capability for 

creating overlays, including markers, circles, polygons, polylines. Leaflet is open 

source and extensible. There are currently over 100 plugins for Leaflet that 

provide additional functionality such as routing, popups, labels, heatmaps, 

GeoJSON layers, local file layers (KML, GPX, etc.), 3d building visualization, and 

various user controls. 
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c. MapBox 

MapBox is a JavaScript library developed by MapBox, Inc., on top of 

Leaflet. MapBox is focused on the development of mapping technologies and 

software for the creation of maps. In particular they are known for developing 

TileMill, a map design studio, and MBTiles, an efficient database for storing map 

tiles locally. The MapBox Javascript library adds geocoding, interactive UTF 

grids, data visualization, and user interface controls to the basic functionality 

provided by Leaflet. 

d. OpenLayers 

OpenLayers is a mature, heavy JavaScript API that provides similar 

functionality to the other libraries discussed but is much more configurable. It 

supports overlays, including polylines, circles, curves, points, vector layers, and 

custom markers. The advantage to OpenLayers is that it is extremely 

configurable and supports customizing almost any part of the interface. The 

disadvantage is that its code size is over 700 kilobytes, which means it is not as 

well suited for a light-weight browser-based mobile application. 

H. ROUTING 

A route on a map consists of a start point, an end point, and all of the 

points in between that describe the path taken from the start-to-end. A route can 

be created in two ways: manually, with the user defining all of the intermediate 

points on the path; or automated, by the user defining a series of waypoints and 

then software determining the most efficient route that includes those waypoints. 

1. Routing Algorithm 

Automated routing is a shortest path problem implemented using the 

waypoints provided by the user along with the spatial geometry data provided as 

part of the map and a set of conditions. OpenStreetMap stores the geospatial 

data as sets of nodes, ways, and relations. The nodes are geolocated points, 

ways are collections of nodes that define a path or shape, and relations describe 
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the roles associated with their nodes or ways. Nodes, ways, and relations can all 

have tags that describe conditions or constraints related to them, such as 

speeds, turn restrictions, building type, land type, etc. Figure 8 provides an 

example of the way a node, a way, and a relation are described using XML.  All 

have a unique identification number, a version, and information about the user 

who created the entry.  A node has a latitude and longitude associated, along 

with tags that describe what the node is.  In Figure 8, the node is the location of 

an exit from a highway.  The way in Figure 8 is a collection of nodes, listed using 

the “<nd” tags, that describes a fitness center building.  The relation in Figure 8 

describes a right-turn-only restriction that applies to the node it references. 

 

Figure 8.  OpenStreetMap node, way, and relation example 

Most automated routing services use an implementation of Dijkstra’s 

algorithm, with some including performance enhancements such as bi-directional 

search or Contraction Hierarchies as seen in Vetter’s experiments (Vetter, 2010). 

<node id="10565353" lat="33.9347502" lon="-118.1767504" version="11"  

   timestamp="2011-06-11T13:57:10Z" changeset="8406172" uid="207745"  

   user="NE2"> 

  <tag k="exit_to" v="Imperial Hwy West"/> 

  <tag k="highway" v="motorway_junction"/> 

  <tag k="is_in:state_code" v="CA"/> 

  <tag k="ref" v="12B"/> 

  <tag k="source" v="survey;image;usgs_imagery;CDOT"/> 

  <tag k="source_ref" v="AM909_DSCS8452"/> 

</node> 

 

<way id="117425695" version="2" timestamp="2013-08-22T07:35:47Z"  

   changeset="17450998" uid="416346" user="Brian@Brea"> 

  <nd ref="1322972985"/> 

  <nd ref="1322972891"/> 

  <nd ref="1322972954"/> 

  <nd ref="1322972855"/> 

  <nd ref="1322972985"/> 

  <tag k="building" v="yes"/> 

  <tag k="name" v="Fitness Center"/> 

</way> 

 

<relation id="1861654" version="1" timestamp="2011-11-24T19:11:01Z"  

     changeset="9936279" uid="229805" user="Jim3535"> 

  <member type="node" ref="1515779993" role="via"/> 

  <tag k="restriction" v="only_right_turn"/> 

  <tag k="type" v="restriction"/> 

</relation> 
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The routing algorithm finds the closest point on a navigable road to each of the 

waypoints and then applies a shortest path algorithm to find a route between 

each of the waypoints subject to the restrictions described in the map geometry. 

Routing services that are configurable for different types of traffic (i.e., 

pedestrian, bicycle, vehicle) will adjust their algorithm to account for or ignore 

certain restrictions applicable to that mode of travel. For example, a pedestrian 

can travel either direction on a one-way street, while a vehicle cannot. A vehicle 

can travel on an interstate highway, while bicycles and pedestrians cannot. 

2. Routing Service Providers 

There are several commercial vendors that provide online routing 

services, including Google, ESRI, and HERE. All of these APIs are similar in that 

they take starting and destination latitude and longitude, an array of waypoints, a 

travel mode, and some options and return one or more routes along with turn-by-

turn directions. 

The Open Source Routing Machine (OSRM) is a software application that 

provides routing services using OpenStreetMap data. It requires pre-processing 

the geospatial data using a mobility profile to produce an optimized node graph 

(Luxen, 2014). When the server application is queried it returns the shortest path 

between the start and end coordinates along the OpenStreetMap road network 

that includes all of the waypoints by performing a bi-directional search using 

Dijkstra’s algorithm (Luxen, 2014). It returns one or more encoded route 

geometries and a set of turn-by-turn directions for each route. The client must 

decode the route geometry into a set of coordinates that define the route. One 

disadvantage to OSRM is that the mobility profile is set during the pre-processing 

step. This means that in order to support both pedestrian and vehicle routing, 

there must be two servers; one for each mobility profile. 

I. CONNECTIVITY CONSIDERATIONS 

A mobile application can experience differing levels of connectivity 

depending on the infrastructure available and a given infrastructure’s connectivity 
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to the wider Internet. The application may have high connectivity and high 

available bandwidth if Wi-Fi on a broadband backbone network is available. If the 

mobile device has been provisioned and there is cellular infrastructure, the 

device may have high connectivity, but bandwidth may be limited depending on 

the type of cellular connection (e.g., 3G vice 4G). There may also be times when 

there is no connectivity available at all, either due to lack of infrastructure, 

interference, or security restrictions. In order to be useful, a mobile application 

should adapt to the changing connectivity environment and continue to provide 

as much functionality as possible to the user. 

1. Map Cache 

Changing levels of connectivity present a challenge for mapping 

applications. The slippy map standard technique for displaying tiles uses a just-

in-time methodology: each tile is downloaded only when it is visible on the user 

interface. 

In a connected, high-bandwidth environment this works well. The 

download of the initial batch of tiles may take a second or two, but after the initial 

download delays are minimized. The number of tiles required to support a pan 

operation is small and zooming uses image manipulation to stretch the existing 

tiles to the new zoom level and then replaces them with the new tiles as they 

become available. In addition, the web browser will typically cache the tile 

images, so panning or zooming back to an area with has already been displayed 

is extremely responsive because there is no delay waiting on the tiles to 

download. These techniques make the map feel very responsive to the user. 

In an environment with limited or no connectivity, the application has to 

maintain the map images in local (device-resident) offline storage. The 

advantage to storing the map data offline is that no connectivity is required and 

the user does not have to wait while tiles are downloaded. The disadvantage is 

that limitations in device storage limit the amount of map data that can be stored 

offline. Offline tile storage requires some method of optimizing the usage of 
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space and an organized method for retrieving tiles as they are needed. There are 

three basic methods: storing the tiles as files, using a database, or using a 

custom file format. 

As discussed by Sample (Sample & Ioup, 2010), storing individual tiles as 

files is the easiest method for offline storage. Tiles are referenced by their X and 

Y coordinates and their zoom level. This data can be used to form a directory 

structure or a file name. For example, storing a tile with coordinates (X,Y) at 

zoom level Z using PNG format using a directory-based structure would look like 

%tile_cache%/X/Y/ with the different zoom-leveled files for that X and Y 

coordinate residing in the directory. Using a file name format would name the 

files based on their X, Y, and Z coordinates and store them in the cache directory 

using a format like %tile_cache%/X-Y-Z.png. The advantage to this scheme is 

that it is extremely simple to find a particular tile given its X, Y, and Z coordinates, 

and displaying a cached tile is as simple as substituting the tile server’s URL with 

a local file URL. There are two disadvantages to this method of local storage. 

Some operating systems have a limit on the number of objects that can be stored 

in a directory, for example, FAT32 disks popular on android only support 65,534 

files in a directory and 4 million files on the device (Microsoft Corporation, 1999). 

Since the number of tiles increases exponentially at each zoom level, attempting 

to store more than a few zoom levels for any given area will easily exceed this 

limit; for each tile at zoom level 1, level 8 will require 65,536 tiles, given that each 

level doubles the tiles in each of the X and Y axes. 

Custom file formats are specific to the developer or project. They may 

include features such as compression, storage by zoom level, clustering by 

location, etc. These custom formats can be optimized to the anticipated usage of 

the application. Clustering by zoom level or location can enable the application to 

uncompress an area or zoom level and pre-load it into memory in anticipation of 

it being used (Sample & Ioup, 2010). 

Sample and Ioup (2010) also discuss the use of databases for storing map 

tiles because of the ease of lookup and because specially crafted databases can 
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use views to map multiple coordinates to the same image to improve storage. 

Maps that are not satellite or aerial imagery based will have large areas where 

tiles at multiple zoom levels are the same color (e.g., oceans, deserts, lakes, 

forests). In a file-based storage system, each tile would be stored, resulting in 

identical tiles being stored multiple times and wasting significant space. An 

intelligent database storage system will not store additional copies of identical 

tiles, but will map multiple views to a single copy of the tile. MapBox, for example, 

has implemented a database specification called MBTiles that stores map tiles in 

an SQLite database using this method (Mapbox Inc., 2014). 

2. Routing 

Determining a route using road networks is a shortest path problem that 

requires a tradeoff of either significant processing power or pre-computed graphs 

that require a substantial amount of space (Vetter, 2010). Performing road-

network rendering on the mobile device without connectivity requires the routing 

graphs to be pre-computed and stored on the device. This may be a reasonable 

time-space tradeoff for smaller areas; Vetter noted they were able to store 

routing graphs for Germany, approximately 357,000 km2 in 6.8 gigabytes (2010). 

A more reasonable approach may be to conduct road-network routing only when 

online, using a server to provide the routing such as the Open Source Routing 

Machine, and then to store the generated routes locally on the device. Offline 

routing can be performed manually by selecting coordinates for each point along 

the route. Manual routing, combined with a reasonably large tolerance for 

accuracy should produce similar results while tracking the route, with the 

advantage that manual routes will be smaller and more efficient to store due to 

fewer nodes. 

3. Database Replication 

Intermittent or no connectivity negatively impacts database replication, 

particularly in a NoSQL database that uses optimistic replication and only 

guarantees eventual consistency, in several ways. The longer a client is offline, 
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the more record differences will accumulate between that client and the other 

clients. Once the client does go online, the amount of data that needs to be 

replicated in both directions may exceed the capability of the system given the 

bandwidth available, in which case the client’s database may never become up 

to date. Additionally, intermittent connectivity increases the potential for 

conflicting updates to the database. Resolving data conflicts quickly ensures that 

all copies of the database will converge to a consistent view of the data in a 

reasonable amount of time  (Anderson, Lehnardt, & Slater, 2010). If conflicts are 

allowed to persist, convergence may never occur and conflicts may build to the 

point that they require manual reconciliation. These problems can be minimized 

by designing the database tables and the interaction of the clients to minimize 

opportunities for clients to make conflicting updates to the same record. 

J. SUMMARY 

This chapter provided an explanation of the problem we are attempting to 

solve and some of the considerations that led us to a cross-device development 

solution that allows our solution to target any mobile device. It explained some of 

the considerations for developing a mobile application that depends on mapping 

and discussed the advantages and disadvantages of various approaches. This 

discussion is intended to provide an understanding of the basic concepts used in 

the design and prototype implementation of our solution described in the 

following chapters. 
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III. ARCHITECTURE 

A. INTRODUCTION 

This chapter explains the system architecture that was developed to 

implement the prototype handheld assistant. It provides an overview of the entire 

system, a detailed explanation of the COTS components that support the mobile 

application, and a general breakdown of the major components of the mobile 

application. 

B. SYSTEM ARCHITECTURE OVERVIEW 

The system can be broken into three major components, as described by 

Figure 9: the mobile application, the supporting components, and external 

databases. Network and connectivity support as indicated by the lightning bolts in 

the diagram is handled by the mobile device operating system. 

 

Figure 9.  Overall system architecture 
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The mobile application is a hardware independent, single-codebase 

application that includes all of the functionality to support providing alerts to the 

user based on the supported mission. The supporting components include a map 

server, a database server, a web server, a route server, and a proxy server. The 

external databases are any existing database that contains data relevant to the 

users’ mission that can be geospatially located and imported into the system to 

provide alerts. 

C. EXTERNAL DATABASES 

The external databases that are used are dependent on the mission to be 

performed and the activity using the application. A police organization might have 

a database that tracks gang information, such as gang territory, key personnel 

and their addresses, and gang-related incidents. It might also be expected to 

have databases that track recent criminal activity, traffic incidents, domestic 

incidents, and repeated calls for service. A military organization in a combat zone 

might have databases that track improvised explosive device (IED) events, 

persons of interest, key civilian contacts, and recent enemy activity. A unit 

conducting humanitarian relief in a disaster zone would likely have databases 

that have information about key infrastructure, medical support, logistics depots, 

and locations that have or have not been searched. 

In order to use these databases with the prototype handheld assistant, 

queries must be created that take the relevant information from each database 

and translate it into a form that can be used by the mobile application. The 

complexity of the required queries will depend on the type of database and 

schema, and will be different for each external database. While we did determine 

the types of data that should be available in the prototype application, we did not 

perform a comprehensive review of all of the different possibilities for external 

databases; such would be necessary to move toward a production system. 
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D. SUPPORTING COMPONENTS 

The supporting components form the glue that ties different instances of 

the mobile application together. When the mobile application is online, it uses the 

servers that are part of the supporting components to exchange data and acquire 

map tiles. Separate boxes in the architecture diagram represent the individual 

servers in the supporting components because they are modular. For the 

prototype, each of the server components is implemented with COTS software 

that provides a basic set of defined functions. This provides the ability to swap 

any of these components with one from a different vendor with few, if any, 

changes to the mobile application. 

1. Map Server 

The map server provides the map tiles that the mobile application displays 

to inform the user about relevant locations. In the architecture diagram, Figure 1, 

the map server has multiple boxes because the mobile application is designed to 

support a multitude of different map providers. The map server component must 

only fulfil two requirements to work with no changes to the mobile application: it 

must serve tiles using the EPSG3857 coordinate reference system and a 

spherical Mercator projection, and it must properly set the HTML cross-origin 

request headers when it responds to tile requests. 

We tested the prototype application with several commercial map servers, 

as well as a locally built OpenStreetMap tile server. The application, as built, 

supports three different base maps sources: MapQuest aerial view, ESRI world 

imagery, and our OpenStreetMap server. As discussed in Chapter V, the mobile 

application could be extended to support any number of servers as part of future 

work. To address a map server, the application must be provided with a URL, as 

in Figure 10, that contains the logical addressing scheme for the tiles, where {s} 

is a server number, and {x}, {y}, and {z}  are the x, and y coordinates and zoom-

level of the requested tile. 
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Figure 10.  URL addressing scheme 

Most of the commercial map tile providers that serve tiles over the internet 

like ESRI, OpenStreetMap, CloudMade, Google, etc. limit the number of free tiles 

that may be accessed in a given time frame, either by IP address, or by requiring 

the use of an API key that must be sent to the server upon initiating a connection. 

Applications that access tiles in excess of the provider’s limit for free tiles are 

either blocked or assessed a usage fee. For the prototype, we setup a local 

OpenStreetMap server to support testing to prevent having to worry about 

commercial provider limits. However, consideration must be given to usage-

based service as part of a support plan cost for a production system. 

Our OpenStreetMap server has five main components as described on the 

Switch2OSM webpage: 

Mod_tile, renderd, mapnik, osm2pgsql and a postgresql/postgis 
database. Mod_tile is an [A]pache module, that serves cached tiles 
and decides which tiles need re-rendering—either because they are 
not yet cached or because they are outdated. Renderd provides a 
priority queueing system for rendering requests to manage and 
smooth out the load from rendering requests. Mapnik is the 
software library that does the actual rendering and is used by 
renderd. (Dees & Weait, 2013) 

The software used by the OpenStreetMap server is designed to run on 

Linux, so to enable all of the supporting component servers to run on one 

Windows computer, the server was setup in a virtual machine loaded with 

Ubuntu 14.04. The server was configured as described on the Switch2OSM 

webpage and loaded with the current OpenStreetMap data for the northern 

California area and serves tiles to the mobile application upon request. 

MapQuest Open Aerial Imagery 
http://oatile{s}.mqcdn.com/tiles/1.0.0/sat/{z}/{x}/{y}.jpg 
 
Esri 
http://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x} 

 
OpenStreetMap Server 
http://%server%/osm_tiles/{z}/{x}/{y}.png 
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2. Database Server 

The database server maintains the databases that are used to hold alert 

data, manage routes, communicate between units, and track the location of the 

different units using the mobile application. We chose a NoSQL, document-

based database because of the unique challenge of integrating date from 

multiple external databases where data for different types of alerts may not be 

relational. A document-based database treats each individual ‘record’ as a stand-

alone document. Unlike in a relational database, while multiple documents may 

share some of the same fields, there is no requirement that they do so. For 

example, Figure 11 shows the records for two different alerts in the database. 

Some fields are required for the document to be useful: the title, location, type of 

alert, etc., but other fields may vary depending on the subject of that document. 

Document 2 has a field called “warn_radius” that describes the size of the 

circular alert area in meters. Document 1 has no need for a “warn_radius” 

because it describes an irregularly shaped area defined by the points in its 

location field. Document 2 also has multiple attachments, while document 1 only 

has one. 

 

Document 1 
{ 

        "_id" : "d155b07ef4cc9ba33f3158f29d001e47,” 

       "_rev" : "3-2da8c9a02ca573d9d24f526a3a1cd94e,” 

  "characteristics" : [{"Start date": "1 May 2014"},  

            {"End date": "5 August 2015"}], 

    "description" : "This area is under construction and  

            should be avoided during this  

            period.,” 

     "location" : [ [ 38.871839, -77.055411 ],  

             [ 38.872298, -77.054225 ],  

             [ 38.872946, -77.054655 ],  

             [ 38.872829, -77.055588 ] ],  

   "location_type" : "irregular,” 

       "title" : "Area Construction,” 

   "_attachments" : { 

 "under-construction.png": { 

     "content_type" : "image/png,” 

        "digest" : "md5-hhyKSWUP4Q88+iCzq04QdQ==,” 

        "length" : 50440 

        } 

    } 

} 
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Figure 11.  Example alert documents 

This format is useful because unlike a relational database, additional data 

fields can be added to a document without having to adjust the schema for every 

other document in the database. Each field is setup as a key – value pair, where 

the key is an alphanumeric string, and the value can have any type representable 

in JavaScript Object Notation (JSON), which makes it easy to parse directly into 

a JavaScript data structure in the mobile application. 

Apache’s CouchDB was chosen as the database system for the prototype 

application. CouchDB is an open source, document-oriented, NoSQL database 

with an HTTP REST interface. It stores documents using a JSON compatible 

format and supports bi-directional replication via HTTP. As a NoSQL database, 

there are three ways to query documents: by their unique document identifier, by 

retrieving all documents, or by using a map/reduce function. A map/reduce 

function is a NoSQL database programming model that uses a map function to 

filter and sort documents, and a reduce function to perform calculations such as 

counting the number of records with a particular value.  

Document 2 
{ 

       "_id": "d155b07ef4cc9ba33f3158f29d0009b3,” 

      "_rev": "8-ae24034fcf58a096fa8917937b676069,” 

 "characteristics": [ { "Length": "0.25 miles" },  

           { "Load Capacity": "25 tons" },  

           { "Road Condition": "Moderate" } ],  

   "description": "The Cambridge Street Bridge is critical 

           to maintaining logistics support for  

           operations on the East side of the 

           river.,” 

    "location": [ 38.869614, -77.061058 ],  

  "location_type": "circle,” 

      "title": "Cambridge Street Bridge,” 

   "warn_radius": 80, 

  "_attachments": [{ 

       "Photo1.jpg": { 

      "content_type": "image/jpeg,” 

         "digest": "md5-jV2roqr/pD57GCA+JrhxmQ==,” 

         "length": 8249 

         }, 

       "Photo2.jpg": { 

      "content_type": "image/jpeg,” 

         "digest": "md5-jV2roqr/pD57GCA+JrhxmQ==,” 

         "length": 4685 

  }] 

  } 

} 
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A unique advantage of CouchDB is that there is a JavaScript library, 

PouchDB, that provides a local database on any web-enabled client that can be 

synchronized with an online CouchDB instance. This enables an application to 

work with a local copy of the database when offline, and then synchronize 

everything when connectivity becomes available. PouchDB is discussed in more 

detail in Chapter IV. 

3. Route Server 

The route server provides an automated method for creating a route. The 

application queries the route server, providing start and end coordinates, along 

with any intermediate waypoints, and the route server calculates the shortest 

route or routes from the start point to the destination, including the waypoints, 

using the road network. The route server responds to the query with a JSON 

object that contains a route (if one was found), and depending on the provider, 

may include route geometry, road or traffic information, turn-by-turn directions, or 

alternate routes. There are several commercial providers of routing services that 

follow this model including Google, MapQuest, Microsoft, ESRI, and HERE. 

Our prototype system uses the Open Source Routing Machine (OSRM) 

software module, which is:  

a C++ implementation of a high-performance routing engine for 
shortest paths in road networks. It combines sophisticated routing 
algorithms with the open and free road network data of the 
OpenStreetMap (OSM) project. OSRM is able to compute and 
output a shortest path between any origin and destination within a 
few milliseconds. (Luxen, 2014) 

We installed OSRM on the same virtual server as the map server and 

configured as described on the OSRM Wiki. The routing preferences were 

configured for automobile traffic; in the event pedestrian traffic is anticipated, the 

routing preferences would need to be updated and the OSRM node graph would 

need to be recomputed. When the mobile application is online, it can query the 

route server as described above and receive a response that includes encoded 
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route geometry, turn-by-turn directions, and alternate routes.  If the application is 

not online, the automated routing functions are not available. 

4. Web Server 

Our mobile application is written in HTML5, CSS3, and JavaScript. It can 

be compiled and run as a Cordova application on a phone, tablet, or other mobile 

device, or it can be run as a web application in a browser on a laptop or desktop 

computer. While it is possible to run the application by loading the index.html file 

directly in a browser, some browsers impose additional cross-origin security 

restrictions on pages loaded via “file:” URIs which can break the application. Our 

prototype system uses a simple Python web server to enable access from laptop 

or desktop computers. The application requires that these computers have 

network access to the web server. 

5. Proxy Server 

The proxy server aids with testing and demonstrating the prototype 

system. It is a simple nodeJS script that enables the database server, map 

server, route server, and web server to be located at the same host address. The 

proxy server listens on the standard HTTP port 80, determines for which server 

process the request is destined based on the format of the URL, and forwards it 

to the correct process. In addition, the proxy server sets the cross-origin access 

headers on all responses, if the server process had not already set them 

correctly. The proxy server could be eliminated in a production system, as each 

of the server hostnames/IP addresses are independently specified in the 

application’s code. 

E. MOBILE APPLICATION 

The application is a web-based application that runs on top of Cordova-

compiled native code that interfaces with the mobile operating system, as 

depicted in Figure 12. Cordova also provides plugins that are compiled as part of 

the application to provide JavaScript access to the device’s hardware. The focus 
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of our effort is on developing the web-based portion of the application that is 

designated as “Mobile Application” in Figure 12. 

 

Figure 12.  Mobile application architecture 

The code for the web application can be broken down into five major sub-

systems, each of which supports specific functionality within the application. The 

sub-systems are user interface, mapping, database, routing, and cache. A block 

diagram of the sub-systems and their interaction is shown in Figure 13. An 

overview of the sub-systems is provided here and a detailed explanation of their 

implementation is included in Chapter IV. 
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Figure 13.  Subsystems block diagram 

1. User Interface 

The user interface sub-system manages all of the application’s interaction 

with the user. It handles displaying and hiding various dialog boxes, re-sizing of 

the display in the event of device rotation or window resizing, and managing user 

events like touch and mouse interaction. 

2. Mapping 

The mapping sub-system manages displaying, zooming, and panning of 

the map, geolocation, and displaying other unit locations. It manages the display 

of alert areas, tracks the user’s location, and notifies the user in the event he 

enters an area that requires an alert be generated. 

3. Database 

The database sub-system creates the local database if it does not exist or 

opens it if it exists when the application is started. It connects to and 

synchronizes with the master database if the application is online and then 

establishes a replication schedule for each of the pertinent databases. It 



 47 

interfaces with each of the other systems, providing other unit locations to the 

mapping sub-system and route assignment information to the routing sub-

system. 

4. Routing 

The routing sub-system provides the application the capability to create 

both automated and manual routes. It also provides the ability for a user to 

choose to follow a route and be tracked along that route. It enables a unit to 

assign a route to another unit, uses the database subsystem to coordinate the 

assignment, and then notifies both the assigned and assigning unit if the 

assigned unit deviates from the route. 

5. Cache 

The cache sub-system handles the caching of map tiles for use when the 

application is offline. When directed by the user, the cache system downloads 

and stores all of the map tiles for a given area around the user’s current location, 

within the limits of the mobile device’s storage. The cache sub-system then 

monitors the application’s network connectivity; in the event connectivity drops, 

the cache sub-system seamlessly switches the mapping sub-system onto the 

local cache of map tiles. 

F. SUMMARY 

This chapter has explained the system architecture, the purpose of each 

of the COTS supporting components and how they were configured, and the 

different sub-systems of the web application’s code and how they fit into the 

Cordova mobile application. The next chapter explains how the different sub-

systems in the mobile application were developed, the functions that the 

application can perform, and the testing that was accomplished. 
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IV. IMPLEMENTATION 

A. INTRODUCTION 

This chapter discusses the overall design of the application, the 

breakdown of the different functions in the application and the reasoning behind 

how and why each one was implemented, and the algorithms used for tracking 

along a route and caching map tiles. In addition, the user interface and each of 

the application’s user functions is described. The chapter concludes with an 

explanation of the testing performed. 

B. APPLICATION DESIGN 

Our mobile application is written in HTML5, CSS3, and JavaScript. It has 

approximately 4,000 lines of code, with an additional 20,000 lines of code in 

supporting open source libraries. The overall size of the application is eight 

megabytes. It consists of a main HTML file that is loaded by either the web 

browser or by Cordova. That HTML file contains the majority of the user interface 

structure and loads six CSS files that define the user interface styling, a main 

JavaScript file that supports the overall program flow, and 16 additional 

JavaScript files that support specific functions. As discussed in Chapter III, the 

mobile application’s code can be broken down into five modular and loosely 

coupled sub-systems: user interface, mapping, database, routing, and cache. 

1. User Interface 

The user interface is created with the main HTML file, which generates all 

of the DOM objects for the main map window, the status bar at the top of the 

screen, the icons, and most of the dialog box windows. The dialog boxes are 

shell objects that are created, but not displayed when the program is run. When a 

dialog box needs to be displayed, the application fills the appropriate HTML into 

the dialog box shell and then changes the display style from “none” to “inline.” 

This allows a dialog box element in the DOM to serve multiple functions just by 
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changing its inner HTML content. The user interface sub-system includes all of 

the code to set the control states in the options and layers menus, to display and 

hide status messages, to re-size the user interface on screen rotation, and to 

change the GPS and network icons depending on the reported hardware state. 

The user interface is structured with CSS3, which supports all of the 

animations, buttons, and dialog box sizes and styles. All of the elements are 

styled using “em” units instead of pixels. These units, derived from typesetting 

traditions, are based on the horizontal size of the font assigned to the body 

element of the page (Lie & Bos, 2005). By basing the size of all elements on the 

page proportionally to the base font size, it becomes trivial to scale the dialog 

boxes and other parts of the user interface to fit any screen size by manipulating 

the base font size. This makes sure that all elements resize properly and retain 

their proportions on devices with varying screen resolutions. The application 

attaches a handler to the window resize event that gets called any time the 

browser window changes size or shape. The handler checks the screen width 

and height and then adjusts the base font size proportionally and forces a 

browser reflow/repaint. This ensures that all dialog boxes are redrawn at the 

correct size and location anytime the mobile device screen is rotated or the 

browser window is resized. If we did not do this, a screen rotation or window 

resize might cause a dialog box to extend off-screen, which would cause the 

browser to add scroll bars and disrupt the “application” experience. 

2. Mapping 

The open source Leaflet library, authored by Vladimir Agafonkin (2014), 

provides the map interface. The Leaflet API enables the application to display the 

map, switch base layers, add markers and other shapes, change the zoom level, 

and manipulate the map in various ways. The application makes use of several 

Leaflet plugins to add additional features, including displaying labels for the unit 

markers and routes, and for creating the adjustable polyline used when creating 

a manual route. 
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3. Database 

The application uses the open source PouchDB library to support all of its 

database functions. PouchDB is a JavaScript library designed to “provide a 

unified abstraction layer over other databases” using a CouchDB compatible API 

and to seamlessly replicate between an online CouchDB database and a local 

PouchDB database (Harvey & Lawson, 2014). PouchDB is browser agnostic, 

supports SQLite, WebSQL, IndexedDB, LocalStorage, and LevelDB as backend 

databases, and will select the appropriate backend database depending on what 

is available on the device. Documents can be queried by their document id, by 

requesting all documents in the database, or by using map/reduce functions. All 

documents are required to have a unique document id that can either be 

assigned by the database upon document creation or can be included as part of 

the document when creating it. All database operations are asynchronous and 

require the use of a callback function in order for the application to be notified 

once the operation is complete. 

4. Routing 

The routing sub-system consists of three major sections: automated route 

generation, manual route generation, and checking whether or not a unit that has 

been assigned a route is on it. 

a. Automated Route Generation 

The OSRM server discussed in Chapter III generates automated routes. 

The class that provides the application’s interface to the OSRM server is the 

Leaflet Routing Machine developed by Per Liedman (2014). Once the user 

generates a set of waypoints by clicking on the map, the set is passed to the 

Leaflet Routing Machine class, which formats a request to the OSRM server. The 

class then interprets the response from the server, draws the route on the map, 

and provides a control that shows the turn-by-turn directions and any alternate 

routes. The user can manipulate the auto-generated route by adding waypoints 

or dragging generated waypoints to different locations, thereby causing the class 
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to re-query the server and adjust the displayed route. Once the user is complete, 

the class returns a set of points that define the route geometry that the 

application stores in its routes database. 

b. Manual Route Generation 

Manual route generation uses a Leaflet Plotter class developed by Nathan 

Mahdavi (2014). The class enables the user to add waypoints to the route by 

clicking on the map. Existing waypoints can be removed by clicking on them and 

the Plotter class removes that point and re-draws the route. This class also 

enables waypoints to be dragged around the map to adjust their position. Once 

the user is finished, the class returns an array of coordinates that defines the 

route geometry. 

c. Route Checking 

Once the user is assigned or elects to follow a route, the application has to 

determine whether the user is on the route or not. It accomplishes this by adding 

a callback function that is executed each time the user’s geolocated position is 

detected as having changed. The callback function determines the closest point 

on the route to the geolocated position and whether that point is inside a 

specified accuracy distance using the following algorithm: 

A route is defined by a set of coordinates that specify the endpoints of 

each segment of the route. Search through all of the coordinates that define the 

route and find the coordinate or set of coordinates with the shortest distance 

between that coordinate and the user’s geolocated position. This calculation is 

accomplished using the haversine formula, Equation (1), which computes the 

great-circle distance between two points on the Earth’s surface. Since the Earth 

is not spherical it uses an approximation of the Earth’s radius and can be 

expected to provide a result with an error smaller than 0.5 percent (Chamberlain, 

1996). 
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If the shortest distance between the user’s position and the coordinate or 

coordinates in the set is less than the specified accuracy distance, then the user 

is in a position similar to Figure 14, where L is the user’s location, r is the 

specified accuracy distance, and Px is a coordinate along the route. The callback 

function returns Px and the haversine distance between L and Px, and the user is 

considered to be on-route. In the event there are multiple coordinates in the set, 

only the first is used. 

PX

Lr

 

Figure 14.  Position is within r distance of Px 

If the shortest distance between the user’s position and the coordinates in 

the set is greater than the specified accuracy, the algorithm must check for an 

additional condition: whether the user’s location is between two coordinates, but 

close enough to the route segment that joins them to be considered on-route as 

in Figure 15. 
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PX

Lr

 

Figure 15.  Position is within r distance of the route, but not Px 

To find the distance in this condition, the tangent distance t between the 

user’s location L and the tangent point PT on the route segment must be found. 

The algorithm checks the route segment on both sides of each coordinate in the 

set. Since the spherical geometry solution for determining tangent points is 

computationally intensive, for this part of the algorithm, the coordinates are 

transformed into Cartesian screen coordinates at the map’s maximum zoom 

level, which allows us to use simple vector math. Consider a route segment with 

two end points, P1 and P2, and the user’s location, L. Two cases must be 

examined: Figure 16, where the tangent point, PT, is on the line segment, and 

Figure 17, where the closest point on the segment is one of the segment’s 

endpoints. 

P1 P2

L

PT

 

Figure 16.  PT is on the route segment 

L

P1 P2

PT

 

Figure 17.  PT lies outside the route segment, P2 is the closest point on the 
segment 
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Equation (2) is used to find the projection distance along the segment from 

P1. If k is less than zero or greater than one, Figure 17 applies and one of the 

endpoints is the closest to P3. If k is between zero and one, Figure 16 applies 

and PT is found using Equation (3). The distance is then calculated by 

transforming the coordinates back into geographic coordinates and finding the 

haversine distance as discussed previously. If the distance is within the specified 

accuracy distance, the user is considered on-route. 

 
   

2

P3 P1 P2 P1
k

P2 P1

    

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  TP P1 k P2 P1    (3) 

5. Cache 

The code that caches the map tiles is modified from an OfflineTileCacher 

class developed by Greg Allensworth as part of his Mobile Map Starter project 

(2014). Allensworth’s class is designed specifically to interface with the Leaflet 

TileLayer class and uses the method discussed by Sample and Ioup (2010) of 

storing each map tile as an individual file using the HTML5 FileSystem API. 

While the HTML5 FileSystem API is well-supported by Cordova via a standard 

plugin, support in several desktop browsers is lacking, and Mozilla has publicly 

stated that they may never support the full FileSystem API (Sicking, 2012). For 

this reason, we modified the OfflineTileCacher class to check for Cordova upon 

instantiation and then use the FileSystem API if Cordova is present, otherwise 

store the tiles as blobs in a PouchDB database. 

The class requires each map layer be registered with the cache class so 

that it can determine the online and offline URL that Leaflet will use to access the 

tiles. It develops the offline URL using the format 

{Layer Name}-{z}-{x}-{y}.{extension}, for example: MySampleLayer-5-120-

400.png, which makes reference and storage straightforward, whether using a 

file or a blob. Once a tile layer has been registered with the OfflineTileCacher 

class, the seed method can be called, which creates a list of tiles needed to form 
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a tile pyramid around a given location, to download and store the tiles. The 

original download functionality in the class downloaded each tile sequentially, 

waiting until each download was complete before starting the download for the 

next tile. This function was modified to queue all of the required downloads 

immediately and allow the browser to parallelize the downloads. This maximizes 

the amount of bandwidth used while minimizing the time spent waiting for the 

cache to fill. The OfflineTileCacher class provides a function that switches Leaflet 

between the online and offline URLs that were determined when the layer was 

registered. 

The cache class’s interface with Leaflet occurs via Ishmael Smyrnow’s 

FunctionalTileLayer class (2014). The FunctionalTileLayer allows the URL being 

passed to Leaflet to be defined and returned by a given function. The given 

function is executed each time Leaflet requests a tile, and since 

FunctionalTileLayer supports JavaScript’s notion of a ‘promise,’ this means that 

the URL can be provided by a process that requires an asynchronous callback. 

For example, when using the offline cache in a web browser, Leaflet calls for a 

particular tile, the function provided to FunctionalTileLayer queries the PouchDB 

Tiles database, and returns to Leaflet a promise that will be fulfilled by the 

callback function from the PouchDB “get” method. The callback function creates 

a data URI from the blob returned by the database, fulfils the promise, and 

Leaflet is handed that data URI so it can display the map tile. 

Since the map tiles are stored as individual files on the device, the number 

of tiles that are required to represent a given area becomes relevant given there 

is a limit to the amount of space available on the mobile device’s file system. The 

formula for determining the radius of tiles at a particular zoom level that should 

be cached is given by Equation (4) and assumes that the number of tiles 

displayed at zoommin covers the entire area that should be cached; that is, 

zoommin is the maximum level the user can zoom “out” from the center point. This 

is a critical point, because if the user is mobile and zoommin is too large, then it 

will be easy for the user to travel outside of the cached area. The formula 
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provides an edge of two tiles around the center tile, which gives (1 + 2 + 2)2 = 52 

= 25 tiles at zoommin. To cache a larger area, the two in the equation can be 

changed, having a predictable impact on the number of tiles that will be 

downloaded. 

  minedge 2 1 zoom zoom      (4) 

The amount of disk space required is given by Equation (5), where sizet
 is 

the average tile size.  

 disk tiles sizesize n t
 (5)  

The estimated download time is given by Equation (6), where sizedisk and 

rateDL are in bytes. 

 disk
DL

DL

size
t

rate
  (6) 

Table 2 shows the number of tiles, estimated download size, and 

anticipated download time required to cache each zoom level starting with an 

arbitrary zoommin of level X. The average tile size used for the Table 2 was 

determined experimentally as 8,072 bytes. The download rates used in Table 2 

assume the theoretical maximum bandwidth at the physical layer for each media 

type and does not consider protocol or data link layer overhead. While real-world 

results will necessarily be worse, this gives us a best case figure for the expected 

download times. This data shows that the number of layers being cached will 

have a significant impact on storage space and bandwidth use during the cache 

download process. For this reason, the number of layers to be cached is limited 

programmatically. When the application switches to use the offline cache, the 

ability to zoom the map is programmatically limited to the layers that were cached 

to prevent the user from zooming to a layer that is not in the cache. 
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Zoom Level X X+1 X+2 X+3 X+4 X+5 X+6 X+7 X+8 Total 

Radius 2 4 8 16 32 64 128 256 512 N/A 

Tiles Required 25 81 289 1,089 4,225 16,641 66,049 263,169 1,050,625 1,402,193 

Download Size 
(including 
headers) 

201.80 Kb 653.83 Kb 2.33 Mb 8.79 Mb 34.10 Mb 
134.33 

Mb 
533.15 

Mb 
2.12 Gb 8.48 Gb 11.32 Gb 

 
Time to Download Each Layer(Calculated) in Seconds 

802.11n 
(600 Mbps) 

0.0026907 0.0087178 0.031104 0.117205 0.454723 1.7910154 7.1086337 28.324 113.0753 150.913 

3G (384 Kbps) 4.2041667 13.6215 48.60017 183.1335 710.5042 2798.4615 11107.24 44256.25 176680.1 235802.12 

Edge (1894 Kbps) 0.8523759 2.761698 9.853466 37.1295 144.0515 567.37551 2251.9431 8972.757 35821.1 47807.8 

4G (326 Mbps) 0.0049521 0.016045 0.057247 0.215716 0.836913 3.2963473 13.083375 52.13007 208.114 277.75 

802.3 Gigabit 
Ethernet (1Gbps) 

0.0016144 0.0052307 0.018662 0.070323 0.272834 1.0746092 4.2651802 16.9944 67.84516 90.54 

Table 2.   Tile count, estimated size, and anticipated download time by 
zoom level 

C. APPLICATION FUNCTIONALITY 

The user interface and application functionality is very similar on all 

devices, so that a user who understands the interface on one device can move 

seamlessly to another without additional training. This section provides an 

overview of the capabilities of the application. Some of the application’s 

capabilities are purposefully limited on mobile devices due to their smaller screen 

size compared with tablets or laptops; where this is the case, it is identified. In 

cases where the interface and functionality are the same, figures in the text are 

from representative devices on which the application was tested. 

1. Main Interface 

The main interface for the application is extremely simple, as depicted in 

Figure 18. Along the top of the screen is a transparent status bar that provides 

the user’s current location in latitude and longitude, the accuracy reported by the 

GPS, and any status messages. On the right side of the status bar are four large 

icons. The first icon brings up the layers menu, the second icon brings up the 

options and actions menu, the third icon indicates the GPS status, and the fourth 

icon indicates the network status. 
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Figure 18.  Main interface: browser (left), Android phone (right) 

If the operating system indicates no GPS device, the user will be notified 

and the application will terminate. If a GPS is present but cannot get a location, 

such as if the user is indoors, the application will display a “Waiting for GPS” 

message indefinitely until a location is determined, as shown in Figure 19. The 

application must obtain at least one position response from the GPS or other 

location provider before it can display the map. The center of the GPS icon will 

be a filled circle if the last GPS query returned a valid result, and will be an empty 

circle if the last GPS query resulted in failure to get a location. 
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Figure 19.  Waiting for the GPS to become available. 

The Network icon is a globe that indicates whether the application is 

online, Figure 20. If the application is on a mobile device and is able to determine 

the type of connection (e.g., Wi-Fi, 3g, 4g) then the application displays the 

connection type on top of the globe. If the application does not have any network 

connectivity then the globe is greyed out. In most desktop browsers the icon 

appears in color even if the workstation has no Internet connectivity because the 

application relies on whether the browser reports its online status accurately, and 

most do not. 

 

Figure 20.  Icons for offline, online type unknown, Wi-Fi, 3g, 4g (after Bu, 
2011) 

Beneath the status bar is the map display. When the application runs in a 

browser the map includes buttons to zoom in and out, while on a mobile device 

zooming in and out can be accomplished by using the standard pinch gesture. 
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The map can be panned in any direction using the mouse or touch gestures. If 

the option to keep the map centered on the user has been enabled, the map re-

centers each time a GPS position report is received. 

The application shows the user’s location in color at the center of the map 

screen with a blue pulsing accuracy ring around it. The accuracy ring is to remind 

the users that although the icon is drawn at the GPS provided latitude and 

longitude, their actual position could be anywhere within that ring. Other units 

whose location information is in the database will also be plotted on the map 

screen. Each unit is assigned a random unique color by the application when that 

unit is created and added to the database. Each time a unit changes position, its 

database entry is updated with its current location and a time stamp. When the 

application draws other units on the map, if their location is current within the 

past two minutes, the unit is drawn using its unique color. If the database 

timestamp for a unit has not been updated within the past two minutes, the unit’s 

icon is drawn in grey to indicate that the location presented is the last known 

location, but that it may not be accurate any longer. This behavior is shown in 

Figure 21, where 1st Platoon is the unit whose display is being shown, 2nd 

Platoon has not had a position update in the past two minutes, and 3rd Platoon 

has provided an up-to-date position report. 
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Figure 21.  Recent and non-recent position reports for other units 

2. Layers Menu 

The layers menu is accessed via the layers icon, as depicted in Figure 22, 

and has two tabs, each of which is dynamically generated at application run-time. 

 

Figure 22.  Layers Menu icon (Icons-Land, 2014) 

a. Base Maps Tab 

The Base Maps tab, Figure 23, is built from the different base map options 

that have been configured. These base maps are currently configured in the 

application’s code, but could be moved to a configuration file in the future. Since 

only one base map can be selected at a time, the base maps tab uses radio 

buttons that allow the users to select which base map they want to use on the 

map display. The application is currently configured to support a local 

OpenStreetMap server and MapQuest Open Aerial satellite imagery for base 
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maps. Selecting one of the base map options sets the background base map 

used by the map window, accordingly. 

 

 

 

 

 

Figure 23.  Base Maps tab, Android phone (left, middle) and iPhone (right) 

b. Alert Layers Tab 

The Alert Layers tab, Figure 24, is built based on the different categories 

of alerts in the database. As new categories are added to the database, they are 

populated to the Alert Layers tab. The database is checked each time the dialog 

box is shown, so if an alert type is added by another unit, it will appear on this 

menu once the databases replicate. The display of each layer can be turned on 

and off, depending on which types of alerts the user wants to see. Hiding a 

category of alerts has no impact on whether the user will be notified when they 

come in range of an alert: if the user enters the warning radius, she is warned 

regardless of whether that category is set to be displayed or not. 
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Figure 24.  Alert Layers tab 

3. Options Menu 

The Options and Actions menu is accessed from the icon, as shown in 

Figure 25, and has two tabs when the application is run on a mobile device: 

Options, and Create Alerts. When the application is run in a browser a third tab is 

present, the Create / Assign Routes tab. 

 

Figure 25.  Options and Actions Menu icon (from Coelho, 2007) 

a. Options Tab 

The Options tab gives the user controls to change some of the options 

affecting how the application functions. The users can disable location tracking, 

for example, if they are using the application in a static location such as a 

command post, to monitor other unit locations. A unit that anticipates stopping in 

a static location for a period of time might also disable location tracking to reduce 

battery usage. The users can select whether or not to have the map remain 
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centered on their location. This is enabled by default, but can be disabled if the 

user wants to pan the map to view an alternate location and does not want it to 

re-center each time his location updates. Additional options include showing all of 

the routes on the map (if running in a browser), clearing the unit’s current track, 

filling and clearing the map tile cache, and selecting a route to follow. 

 

 

 

Figure 26.  Options tab, browser (left) and Android phone (right) 

b. Create Alerts Tab 

The Create Alerts tab, Figure 27, lets a user create an alert and add it to 

the appropriate database. The user can choose from three different alert types: 

irregularly shaped, circle, and point. To create an irregularly shaped alert the 

user clicks on the map to define the outline of the area; for circle and point alerts 

the user selects the location for the center of the alert. Once the area is defined, 

the application will present a dialog box where the user can input information 

about the alert, take or attach a picture, and select or create a category to which 

to assign the alert. 
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Figure 27.  Create Alerts tab, browser (left) and iPad 2 (right) 

Once the user selects the type of alert to create, the cursor changes to a 

crosshair and she can click or touch the map to locate the center of the alert area 

for a point or circle alert, or create boundary points to define an irregular alert 

area. Once this has been done, the user is presented with a dialog, as shown in 

Figure 28, where she can enter information about the alert. If the application is 

running in a browser the user can upload a picture; on an appropriately equipped 

mobile device, the user can take a picture. Once the user selects or creates a 

category to which to add the alert, it is stored in the database and will replicate to 

all of the other units depending on connectivity. 
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Figure 28.  Creating a new alert 

c. Create / Assign Routes Tab 

The Create / Assign Routes tab, shown in Figure 29, is only available 

when the application is running in a browser because testing showed that 

creating accurate routes with touch events on devices with small screens, such 

as tablets and phones, was extremely difficult. The user has two options for 

creating a route, automated and manual, as described in Chapter III. 
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Figure 29.  Create / Assign Routes tab 

The automated routing option requires network connectivity to the route 

server but is useful if the user wants the shortest route between two locations, 

particularly if the locations are far apart. The user is prompted to select two or 

more waypoints (Figure 30). 

 

Figure 30.  Four waypoints selected 
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Once the user is done adding the initial waypoints, the application queries 

the route server and displays one or more proposed routes that includes all of the 

waypoints, in the order the user selected them, as depicted Figure 31.  

 

Figure 31.  Proposed route between waypoints 

The user can continue to adjust the route by dragging the existing 

waypoints (see Figure 32) or adding additional waypoints (see Figure 33) and the 

route server will adjust the proposed route as necessary, as shown in Figure 34. 
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Figure 32.  Moving a waypoint (circled) 

 

Figure 33.  Adding a waypoint by clicking on route and dragging (click/drag 
point circled) 
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Figure 34.  Final route after adjustments 

Once the user is satisfied, he enters a unique route name and clicks on 

the save button and the route is stored to the database and made available to all 

users. 

The Manual Routing option can be used offline, but requires a larger set of 

waypoints as input for longer routes. The user clicks on the map to generate 

waypoint icons at each point where the route should turn, and the application 

draws a route line between them, as shown in Figure 35. Waypoints can be 

dragged to adjust the route or can be removed by clicking on the respective icon, 

as depicted in Figure 36. Once the user is satisfied with the route, he can name 

and store the route as with the Automated option, as shown in Figure 37. 
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Figure 35.  Adding a manual route 

 

Figure 36.  Waypoints adjusted and deleted (circled) 
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Figure 37.  Finalizing a manual route 

The Assign route option lets the user assign a route to another unit to 

follow. This would be used by a command post staff to assign routes to its units 

and then monitor them as each unit attempts to follow its assigned route. The 

user selects a route and a unit to which to assign the route using the dropdown 

menus shown in Figure 38. When the user selects an entry in either the route or 

unit dropdown, the map zooms to show the route or pans to the unit’s location so 

the user is aware of which route or unit he is selecting. 
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Figure 38.  Assigning a route to a unit 

4. Alerts 

As the user moves around his area of operations, the application 

continuously tracks his movement and notifies him if he enters an alert area. The 

application uses audio, visual, and tactile feedback to alert the user. The 

application vibrates if the device is capable of vibration, plays an audio alert 

message, and displays a pop-up on the screen in the vicinity of the alert area.  

The audio alert can be muted by setting the device to silent mode. Examples of 

the pop-up display are shown in Figures 39 and 40. The user can also display 

the information pop-up for any alert area by clicking on it. The visual display is 

dynamically created based on the information provided in the database about 

that alert. While the information displayed by the prototype system is relatively 

basic, because the alert pop-up is essentially a web-page contained inside an 

HTML <div> element, the amount and type of information displayed can easily be 

changed. In the production application, the pop-up might contain links to more 

detailed information, a scrollable picture gallery, buttons to bring up a full-screen 

window of information, etc. 
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Figure 39.  Example alert information display, browser (left) and Android 
phone (right) 

 

 

 

Figure 40.  Example alert information display, Android phone (left), iPad 2 
(right) 
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5. Routes 

Since connectivity with each unit is not guaranteed, the application 

initiates a three-way handshake between the assigning unit (Headquarters) and 

the assigned unit (Unit 1) using the database for communication, as depicted in 

Figure 41. The three-way handshake ensures that both units are aware of the 

assignment. While the unit is following the assigned route, both units track the 

location of the assigned unit. If the assigned unit gets off route by more than 100 

meters, plus or minus the GPS accuracy, the application causes the device to 

vibrate if it is a mobile device and plays an audio alert, displays a message, and 

turns the route line on the map red to alert the user. The assigning unit’s 

application tracks all units that it has assigned and if one gets off-route, it 

displays a message and plays an audio message to alert the user of the 

condition. Once the assigned unit is complete with following the route, that unit’s 

user selects a button on the options menu to notify the assigning unit that he has 

completed the route. The assigning unit’s application then deletes the record 

from the database. 



 77 

 

Figure 41.  Route assignment process 

The application ensures a unit can only be assigned one route by using 

the assigned_to field as the unique document id for the record. Attempting to 

assign two routes to the same unit will fail with a database error and the user 

attempting to assign the duplicate route will be notified that the unit is already 

assigned a route. Once a unit has confirmed receipt of a route assignment, the 

unit cannot choose to follow another route or be assigned a new route until it has 

notified the assigning unit that the route is complete. 

Once a unit has been assigned a route and its device has acknowledged 

that they are following the assigned route, the route is shown on the display 

using either a green or red line. If the unit is within the accuracy limit, the route 

line is displayed in green, as shown in Figure 42. If the unit departs from the 

route, the route line is shown in red showing where the unit is expected to be, as 

depicted in Figure 43, a visual warning is displayed, the device vibrates (if 

capable), and an audio alert is played. 
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Figure 42.  A unit that is on the assigned route 

 

Figure 43.  A unit that is off the assigned route 

D. TESTING 

We tested the application on six different mobile devices and four desktop 

browsers using several different scenarios to determine whether the application 

would perform as expected. 
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1. Devices 

The application was tested in four web browsers: Firefox 30.0, Chrome 

36.0, Opera 22.0, and Safari 6.1. Since each browser uses a different rendering 

engine, there are slight differences in the user interface as seen in Figure 44, 

particularly with implementation of fonts, buttons, and input boxes. The display 

and layout is similar enough, however, that a user who is familiar with the 

application on one platform can easily move to another with no additional 

training. 

 

Figure 44.  Example of user interface differences: the same button as 
rendered in four different browsers 

In addition to the four web browsers, the application was tested on six 

mobile devices: an LG Optimus f3 running Android 4.1.2, a Samsung Nexus S 

running Android 4.1.2, a Samsung Galaxy Tab 10.1 running Android 4.0.4, an 

iPad Generation 1 running iOS 5.0, an iPad 2 running iOS 7.1.1, and an iPhone 4 

running iOS 7.1.1. The user interface on all of the devices showed similar 

differences to those experienced with the browsers. In addition, due to the 

differences in keyboard and user input processes for the different mobile 

browsers and operating systems, the user input for dropdowns and keyboard 

entry on the mobile application does appear different on each platform, even 

within the same operating system, as shown in Figures 45 and 46. 
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Figure 45.  Dropdown input differences, Android phone (left) and Android 
tablet (right) 

 

 

 

 

Figure 46.  Dropdown input differences, iPhone (left), iPad 2 (right) 

2. Scenarios 

We tested two scenarios for using the mobile application.  Usability testing 

was focused on determining how well the user interface worked when the 
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application had full Internet connectivity.  Cache testing focused on how well the 

map tile cache functioned. 

a. Usability Testing 

The application was tested using a 3G mobile data connection on the LG 

Optimus f3 using both walking and driving scenarios to determine whether it 

would accurately track an assigned route and provide situational awareness 

alerts to a user when entering alert areas along the route. The phone was 

assigned a route from another unit using the application in a desktop browser. 

The browser session was then recorded while the phone was transported along 

the assigned route. The application successfully tracked the location of the 

phone both while driving and walking. Experimentation determined that five 

seconds worked as an appropriate GPS update interval, and when connectivity 

was available, database updates every 10 seconds provided a reasonable 

tradeoff between timeliness and bandwidth usage. The session recorded from 

the desktop browser accurately recorded the position of the phone along the 

route with minimal delay. The phones successfully notified the user when a GPS 

update was received while inside the test alert areas and when he deviated from 

the route. When the mobile device loses connectivity, the application still 

continues to track correctly and when connectivity is re-established, the unit icon 

being shown on other devices for that phone does move to the correct current 

position. 

b. Cache 

The offline cache function was tested for usability with several desktop 

browsers and on mobile devices including two Android phones, an Android 

tablet, and an iPad II. Detailed test data to determine actual download sizes and 

speeds were compiled using the Firefox and Chrome browsers with Gigabit 

Ethernet, and on an LG Optimus f3 with 3G service and Wi-Fi. Each download  
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test produced a waterfall chart as seen in Figure 47 that was saved from the 

browser in HTTP Archive format and then exported to Microsoft Excel for 

analysis. 

 

Figure 47.  Waterfall chart of download times 

Actual testing was completed for zoom levels 10 through 14, as shown in 

Table 3, and the times shown reflect the results averaged over three tests. 

Testing with more than five zoom levels caused Chrome and Firefox to crash, 

and more than four levels caused the mobile browser on the LG Optimus to 

crash. Our hypothesis is that this is due to the number of queued download 

requests exceeding the size of the browser’s pending download queue since the 

application asynchronously feeds the download requests to the browser as 

quickly as it can create them. For the sixth level this would result in 16,641 

pending requests being added to the queue, likely while the browser is still 

processing the first several hundred downloads.  This problem could be mitigated 

by buffering the requests and limiting the maximum number of requests sent to 

the browser at any given time. 
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Zoom Level 10 10 - 11 10 - 12 10 - 13 10 – 14 

 
Tiles Required 25 106 395 1484 5709 

 

Predicted 
Download Size 

(including 
headers) 

275.00 Kb 1.17 Mb 4.35 Mb 16.32 Mb 62.80 Mb 

 

Actual Download 
Size 

(including 
headers) 

344.26 Kb 1.09 Mb 4.09 Mb 16.43 Mb 52.62 Mb 

 
Download Times in Seconds 

3G (384 Kbps) 
LG Optimus f3 

Calculated 5.7291667 24.29167 90.52083 340.0833 1308.3125 

Actual 9.42 25.824 104.371 355.002 
 

802.11n 
(600 Mbps) 

LG Optimus f3 

Calculated 0.0036667 0.015547 0.057933 0.217653 0.83732 

Actual 3.364 12.943 59.09 368.249 
 

802.3 Gigabit 
Ethernet 

Calculated 0.0022 0.009328 0.03476 0.130592 0.502392 

Actual 3.269 15.033 52.863 364.566 2784.359 

Table 3.   Actual download sizes and times for different connection types 

E. SUMMARY 

This chapter has provided a detailed breakdown of the functions the 

application performs and how they were implemented. It also explained the 

testing that was performed to determine how well the application would track a 

user along a route and provide situational awareness alerts. The next chapter 

outlines the conclusions we reached after developing and testing the application 

and discusses additional enhancements that could be made in the future. 
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V. CONCLUSIONS AND FUTURE WORK 

Our research led us to develop several conclusions about the feasibility of 

using a single-baseline mobile application to improve situational awareness.  Our 

research also identified a number of areas for future work that would improve the 

prototype. 

A. CONCLUSIONS 

We developed a single-baseline mobile application that runs on multiple 

types of devices, tracks a user’s location, and improves situational awareness by 

alerting the user to conditions along a patrol route. Our prototype application 

demonstrates that it is possible to use Apache Cordova and HTML5, CSS3, and 

JavaScript to produce an application that runs on a variety of devices and 

operating systems without maintaining operating system specific code. In 

addition, our prototype application demonstrates a method for taking multiple 

types of geolocated data from different notional database systems, generate 

appropriate alerts and present to the users information based on their proximity 

to relevant data elements. While the test information shown in the prototype 

application was relatively simple, it does show that it is possible to improve a 

patrol’s situational awareness by providing visual, auditory, and tactile alerts 

when the patrol enters an area where the database contains information that 

might be relevant to the patrol. 

Our prototype application demonstrates some of the advantages of a web-

based, single source code application, namely that the application can be made 

to look and function identically on different devices. Any user familiar with the 

application will be able to use it on any compatible device without a need for 

additional training. Since the application is not constrained to a single type of 

device or operating system, it should work well in a situation where different 

government agencies are cooperating on an operation but where each uses a  
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different type of mobile device. Code maintenance and baseline tracking is 

simplified and adding or modifying a feature makes the necessary changes 

suitable for all supported devices. 

Our prototype application highlights some of the challenges associated 

with developing a web-based mobile application including operating system 

differences and browser limitations. While Cordova does minimize the 

differences in code required for different devices and operating systems, 

considerations still have to be made for some of the device dependencies. One 

example is that some of the mobile operating systems consider file names to be 

case sensitive while others don not; this resulted in errors when testing with 

several of the devices. Another example is the differences in user input 

functionality, as highlighted in Chapter IV, particularly the soft keyboard, 

dropdown menus, and text entry. These user interface differences might be 

mitigated by developing pure HTML/CSS3/JavaScript replacements (Satterfield & 

Garrison, 2014) at the expense of additional code complexity, application load 

time, and memory usage. Additionally, HTML5 implementation is not complete or 

standard across the different mobile browsers. Many of the newer HTML5 

features like WebRTC, the Audio element and associated codecs, and the 

FileSystem API are not available on all devices without using a Cordova plugin 

that implements the functionality in native code. 

The Cordova plugins rely on native code that is specific to each operating 

system, so while a specific function is accessed the same way on every device, 

the results may vary on some of the devices. For example, the vibrate function 

allows the application to specify a duration for the vibration. Android, Blackberry, 

and Windows Phone use the specified duration; iOS ignores the requested 

duration and vibrates for two seconds (Apache Software Foundation, 2014). In 

addition to the minor differences in operation, standard Cordova plugins are not 

available for some of the more advanced features available on mobile devices 

such as Bluetooth or Near Field Communication. 
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While our goal was minimizing the reliance of the application on external 

services in order to maximize the application’s capability to operate offline, we 

determined that including full-featured map display, route tracking, and data 

sharing all required external services. Our review of current mobile device 

applications and code libraries revealed that while there is interest in providing 

some of these functions in an offline setting, much of the commercial 

development in the map display, routing, and data sharing assumes that the 

mobile device has a persistent Internet connection. 

B. FUTURE WORK 

Our prototype application was designed to show how a single baseline 

web-based application could improve the situational awareness of a patrol by 

providing alerts to relevant information along a patrol route. There are a number 

of areas where additional research could be performed to improve the 

capabilities of our application. These areas include user login, identification, and 

authentication; external database integration; improved offline functionality; 

improved map caching; and dynamic HTML generation from database objects. 

1. User Login, Identification, and Authentication 

Our prototype application identifies its user account based on the unit 

selected by the user when the application loads. This unit is required to be 

uniquely identified by name; the database will reject the creation of two units with 

the same name. The application does not currently have a method to validate the 

user’s selection of his unit or to tie that unit to a unique device. If multiple users 

select the same existing unit name upon application load, this will cause 

confusion because both devices will report their position as that unit. Other 

instances of the application would see that unit’s icon bounce rapidly back and 

forth between the two reported positions. We investigated methods for uniquely 

tying an application instance and unit to a device using the IMEI or MAC address 

of the device, or storing a unique id on the device’s file system on the 

application’s first run, however neither method proved feasible. A method needs 
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to be determined to authenticate users and associate a unique user to a specific 

device. Such authentication is essential when distributing sensitive command 

and control (C2) or control and incident response (CIR) data to ensure only 

authorized personnel are granted access. Further, confidentiality of data should 

also be addressed, perhaps by incorporating suitable encryption of data at rest 

and in transit methodologies according to pertinent organizational standard 

operating procedures. 

2. External Database Integration 

One of the goals of this thesis was to determine how to alert a patrol 

based on information from a variety of different databases. One of the reasons 

we selected a NoSQL database is that each record can have a unique set of 

fields that enables the application’s database to store and display information 

taken from a variety of sources. The U.S. military and other law enforcement 

agencies have a vast number of databases, of varying classifications or 

confidentiality levels that contain data that would be relevant to a patrol. Having 

each mobile instance of the application attempt to access each of these 

databases to query for relevant information would require significant bandwidth, 

so our system architecture was designed with a central database that would 

aggregate the information from external databases, put it into a standard format, 

and then replicate it to the mobile instances when connectivity is available. This 

aspect of the system architecture should be evaluated more extensively to 

determine if it is the best way to accomplish this goal, particularly in light of the 

possible security implications of aggregating the information from multiple 

databases in one place. In addition, we did not develop the process that would 

be required to query the external databases for relevant information; this process 

should be explored in detail and tested. 

3. Offline Functionality 

Our prototype application has significant limitations when there is no 

network connection. We assume that the application will have network 
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connectivity when it is initialized so that it can synchronize its databases and 

cache the map tiles. Once the application loses its connection it will continue to 

operate based on the data it has stored internally, but as a situational awareness 

tool, the longer it has no network connection the less relevant its data becomes. 

One of our goals that was not realized is the ability to share new data directly 

between two instances of the mobile application. There is no Cordova plugin that 

supports Bluetooth or WiFi Direct transfers between two mobile devices. The 

development of a Bluetooth or WiFi Direct plugin for Cordova would enable two 

units within wireless range to synchronize their databases directly without the 

requirement for cellular or wireless infrastructure. 

4. Map Cache 

The algorithm used to cache the map tiles is simple and effective, but it is 

not efficient or user friendly.  The prototype application caches all of the map tiles 

within approximately 20 kilometers of the user’s current location. If the user 

moves outside of that area, they have to tell the application to re-fill the cache 

based on the new current location, which requires the device to be online. The 

old map tiles are not discarded in this process. If the device storage fills up, the 

user can select to clear the entire cache and start over. In addition, the map tiles 

are stored as uncompressed PNG files on the mobile device or as blobs in a 

local database in the browser. If two identical tiles appear in separate locations 

on the map, ocean tiles for example, both copies will be stored. Additional 

research into automating the caching of tiles, storing them more efficiently, using 

virtual links to common tiles, or dynamically rendering the tiles on the device 

should be explored. Consideration should also be given to digitally signing tiles to 

ensure tile content integrity. 

5. Dynamic HTML Generation for Alerts 

The information provided in the alerts is intended to provide details based 

on what information is available about that alert and to provide a capability for 

more detailed drill-down. The prototype application dynamically creates alert 
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window based on the data available in the database object that generated the 

specific alert, but it is currently limited to only a few fields. For example, the 

function that creates the alert window checks for an associated photo attachment 

and displays it if one is available; it will also format and display a list of 

characteristics if such a list is present. A more full-featured version of the 

application should be able to analyze the JSON object returned by the database 

and dynamically create an alert window that is appropriately sized for the device 

with opportunities for drill-down by the user. For example, if the database object 

contains multiple photo attachments, the alert popup might provide a link by 

which the user can access a photo gallery to scroll through all of the photos. It 

could also provide a way for the user to open the alert information in a full-screen 

window, include additional text fields, and allow the user to scroll through the 

information. 

The goal for this research was to develop an architecture and prototype 

system to demonstrate that a handheld assistant could enhance the 

effectiveness and security of patrol units while expediting the planning process. 

Our prototype successfully demonstrated that a hardware-independent mobile 

application could be developed that will track the user’s location and provide 

alerts when the user is in the vicinity of geospatially tagged information. The 

future of this research lies in improving the functionality that was implemented in 

the prototype, expanding the network communication abilities to include 

Bluetooth and WiFi Direct, addressing the security requirements, and developing 

the ability to pull relevant data from the multitude of existing DOD databases. 
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SUPPLEMENTARY MATERIAL 

The application code for the mobile application has been included as 

supplementary material for this thesis.  This material includes the contents of the 

“www” folder structure as well as all HTML, JavaScript, CSS, sound, and icon 

files necessary to compile the mobile application using Cordova. Also included is 

the JavaScript file for the NodeJS proxy server that was used to enable the 

mobile application to connect with the various servers described in Chapters III 

and IV. 
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