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ABSTRACT

Gradients of temperature, pressure and moisture affect the propagation of

electro-magnetic (EM) waves. Navy systems which are dependent on EM propagation

can be either enhanced or degraded due to atmospheric conditions which affect

atmospheric refractive index profiles. The Navy's model for predicting the refractive

indexes is the Integrated Refractive Effects Prediction System (I REPS) version 2.2,

developed by Naval Ocean Systems Center (NOSC). Atmospheric parameters of

temperature, vapor pressure and relative humidity - with relative humidity being the

most critical - are used by IREPS to predict the atmospheric refractivity.

Data collected in the Fram Strait during MIZEX-84 (18 June - 15 July) showed

that the refractive structure varied over the ice, the MIZ and the water adjacent to the

ice edge. Spatial studies showed that the average values of duct height, thickness and

strength were lower over the pack ice and the MIZ than over the water. A large

increase in these values were seen as one travels away from the ice in the adjacent

water. Little spatial homogeneity was seen in the refractive conditions. Ducting was

clearly dependent on the synoptic situation. A majority of the ducts were detected

when high pressure dominated. No ducts were recorded when a cyclone moved directly

over the ships. Stationarity was present to a limited degree.

A significant number of profiles showed an unusual feature of the dewpoint curve

in that, once it became saturated below the inversion, this curve continued to indicate

saturation above the inversion. It could not be determined whether this was solely due

to a sensor problem or a real meteorological phenomenon. Therefore, the data were

analyzed with and without correction for this behavior.
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I. INTRODUCTION

A. GENERAL

The environment in which modern naval weapon and communications systems

operate is a controlling factor in the effective deployment of these systems. The Navy

has begun to realize the importance of the environment to weapon and communication

systems. The immediate past Secretary of the Navy, John Lehman, recognized the

tactical importance of the environment in stating that in a military balance where the

navy of our principal adversary is superior in numbers and near in technology, it is

likely hat the Navy with the better knowledge of the environment will have the war

end oh its terms.

The environment is not homogeneous. Atmospheric properties such as moisture

and temperature vary considerably from one region to another. This regional

variability of the atmospheric properties can have unique and significant effects on

many electromagnetic and electro-optical systems, making it necessary to develop

localized rules governing the effects of the atmosphere on these systems.

The Navy has recently turned its attention to the Arctic. At a cold weather

operations symposium held in 1985, Rear Admiral Mooney, then Chief of Naval

Research, stated "The strategic importance of the Arctic is increasing. Soviet

capabilities, coupled with the extensive deployment of Soviet surface ships and

submarines in the Arctic/Subarctic Oceans near Europe make this region an area of

growing importance to both commercial and strategic defense interests of the United

States." Accordingly, we must continue to familiarize ourselves with the Arctic area.

Fig. 1.1 taken from OP-03, Vice Chief of Naval Operations for Surface Warfare, is the

Navy's arctic/cold weather surface ship plan. This shows the Navy's goals for being

able to continuously operate in the Arctic. Currently, very few military operations take

place north of 70°N. This figure clearly illustrates the Navy's goal to be able to

conduct routine surface operations in the Greenland Sea by the year 2010.

The recent interest in the Arctic spawned the Marginal Ice Zone Experiment

(MIZEX). The pilot program was conducted in 1983. The second MIZEX was

conducted in the Fram Strait area between Greenland and Svalbard during the period

18 May to 30 July 1984. The purpose of MIZEX-84 was to understand the mesoscale

12
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processes that dictate the advance and retreat of the ice margin. Data collected during

MIZEX were used to study the meso scale physical processes by which the ice, ocean

and atmosphere interact in the Marginal Ice Zone (MIZ) during the summer.

Atmospheric and oceanographic data were collected by seven ships, eight remote

sensing/meteorological aircraft and four helicopters. Atmospheric data collected during

this experiment included temperature, relative humidity measurements and upper-level

winds by rawinsondes, hourly weather observations by all ships, extensive passive-

active microwave remote sensing data by aircraft and cloud measurements by aircraft.

Ice conditions were determined by satellite information and by tracking ARGOS

drifting oceanographic-meteorological buoys and by transponders. Daily weather maps

were provided by the Weather Forecasting Center for northern Norway (Johannessen

and Horn, 1984)

Fig 1.2 shows the area of MIZEX-84. The area's northern boundary is along

82.0°N, its southern boundary 77.0°N, the eastern boundary along 11.0°E and its

western boundary along 11.2°W. This area was chosen because most of the heat and

water exchange between the Arctic ocean and the rest of the world is through this

strait and because it is crucial to study the energy interactions across the ice margin

(Johannessen, and Horn, 1984).

B. PURPOSE AND SCOPE OF THESIS

This thesis continues a study of how the spatial variability of the atmospheric

boundary layer (ABL) affects the refractive conditions in an area. This thesis follows

the work done by Dotson (1987) who compared and contrasted the refractive

conditions between data collected over water (sub-tropical) and over land (mid-

latitude). This thesis will evaluate the varying ABL and its effect on the refractive

conditions in the the Arctic utilizing data collected during MIZEX-84. Specifically the

differences in the ABL between the pack ice, the MIZ and the adjacent water and how

these differences affected the refractive conditions are presented. McNitt (1984)

completed a study on the refractive conditions during MIZEX-83. During MIZEX-83

data were collected from only one ship, so no comparison of the refractive conditions

between the pack ice, MIZ or the adjacent waters was possible. During MIZEX-84

however, data from four ships located in the ice, the MIZ and the adjacent waters were

available. The final goal is to provide guidance for effectively using or modifying the

available models such as the Navy's Integrated Refractive Effects Prediction System

(I REPS) to predict the refractive conditions in the Arctic.

14
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The vertical temperature and dewpoint profiles obtained from radiosondes

launched during MIZEX-84 were used to describe the mesoscale temporal and spatial

variability of the troposphere below 500 mb. These profiles were used to determine the

atmospheric refractive index gradients which significantly modify the electromagnetic

(EM) radiation as it propagates through the atmosphere.
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II. ARCTIC MARINE BOUNDARY LAYER

A. GENERAL

The atmospheric boundary layer (ABL) is defined by Stewart (1979) as the

portion of the lower atmosphere which has turbulent flow and is in direct contact with

the earth's surface. The ABL extends from the surface to a height of a few meters in

conditions of strongly stable stratification and to thousands of meters in highly

convective conditions. On the average, the ABL extends through the lowest kilometer

of the atmosphere and contains 10% of the mass of the atmosphere (Holton, 1979).

The boundary layer is very important to the dynamics and thermodynamics of the

atmosphere because it is in this layer that all momentum, water vapor and thermal

energy exchanges between the atmosphere and the earth's surface takes place.

The thermodynamic stability of the ABL is a function of its density structure.

The density structure in turn is a function of water vapor and temperature

distributions. The boundary layer is stable when the potential temperature increases

with height and becomes unstable when there is heating from below. Stable and

unstable ABLs have some energy for vertical mixing as a result of shear production of

turbulent kinetic energy (TKE). This turbulence extends through a shallower layer in

the stable case than in the convective case. When there is heating from the earth's

surface, the heating produces a density distribution which enhances vertical mixing.

When the ABL is unstable, the total level of the TKE is greater and hence the mixing

is greater. The majority of the unstable ABL comprises a relatively homogeneous

mixed layer (Wyngaard,1973).

Near the surface, the values of stress, heat and moisture fluxes are independent of

height. There are strong mean vertical gradients in wind, temperature and moisture in

this surface layer. Depending upon the magnitude and direction of the thermal flux,

and the overall depth of the boundary layer, the depth of the surface layer ranges from

a few meters to several ten's of meters. The surface layer generally extends to a lower

height in the stable ABL compared to the unstable ABL. In the unstable ABL the

surface layer is conveniently denned as the lowest tenth of the ABL (Wyngaard,1973).

The last 50-100 m of the unstable ABL is an inversion layer. An inversion is

defined as temperature increasing with height. The layer through which the

17



temperature increases with height is called the inversion layer and acts as a physical

cap to the boundary layer. Clouds are often present at the base of the inversion and

are used to trace the extent of the ABL.

In the marine atmospheric boundary layer (MABL), the oceans and atmosphere

exchange energy directly in the form of turbulent heat, moisture and momentum fluxes.

Businger (1985) states that over most of the oceans the marine boundary layer is nearly

neutral. The air in the marine boundary layer has generally traveled long distances

over water and has come close to equilibrium with the underlying surface. He further

states that since the fluxes at the interface are most sensitive to variations in stability in

near-neutral conditions variations in the sea surface, temperature may have a

noticeable effect on the marine boundary layer.

B. SYNOPTIC WEATHER
The changing synoptic conditions of the Arctic will affect the temperature and

moisture distributions in the boundary layer and, this in turn will affect the stability

and height of the boundary layer. Sater et al. (1971) discuss several features unique to

the Arctic which have a profound effect on the nature of the flow over the area. These

include: the presence of the massive Greenland ice cap; the presence of snow and ice;

the low elevation angle of the sun; and the low elevation of the Arctic region. The

Greenland land mass, extending upward to an elevation of 2000-3000 m, produces

strong katabatic flow over the area. The high surface albedo characteristics of the

snow and ice means a high proportion of the incoming solar radiation is reflected and

the low temperatures are maintained. Although the elevation of the sun is low, the

variation in the elevation is small. Therefore, the Arctic experiences 24 hours of

twilight during the summer. The inversion does not undergo the diurnal variations of

the lower latitudes, where the variation in the solar elevation can be as great as 79°.

The flat Arctic region facilitates the free atmospheric flow between the middle latitudes

and the Arctic. This allows the cyclones which are generated in the midlatitudes to

move over the Arctic region. Due to the constant low temperatures and lack of

available moisture in the snow regions, these cyclones often stagnate and fill over the

Arctic basin.

The synoptic conditions and boundary layer structure during MIZEX-84 have

been summarized in papers by Lindsay et al. (1986), Fairall and Markson (1987) and

Johannessen et al. (1986). The remainder of this chapter is a summary of the synoptic

conditions and boundary layer structure seen during MIZEX-84.

18



Sater et al. (1971) characterize the Arctic summer climatology by a weak, and

variable surface high in the central Arctic basin and an upper-level low nearly centered

on the pole. At the surface the Icelandic low is weak and centered to the west of

Iceland. The circumpolar vortex is much weaker and further north than in the winter.

Slow-moving midlatitude lows move through the Fram Strait causing brief periods of

extraordinarily high winds. The overall pattern during MIZEX was similar to the

climatology. Fig. 2.1 shows the 500 mb mean height. Superimposed on this figure is

the primary and secondary track of the midlatitude lows which move through this area.

Also superimposed on the figure is the average position of the ice edge during MIZEX

1984.

An anomalous ridge in the mean monthly 700 mb charts persisted west of Great

Britain in both June and July. The mean 700 mb heights were near normal in the

MIZEX area. At 500 mb a weak ridge extended northwest from Great Britain to

Eastern Greenland and kept the midlatitude storms out of the region most of time.

This ridge was stronger than the climatological ridge and east of its mean position. On

the surface in June a very weak low existed just to the east of Iceland and a well

formed high pressure cell was centered over western Greenland. The mean geostrophic

wind in the Fram Strait was out of the northwest. In June a series of storms passed

through the area. Four storms moved into the MIZEX area in June, which affected

the refractive conditions. The specific movement of these systems will be discussed in

Chapter V. In July the mean Icelandic low was not apparent. A very weak high was

centered near Jan Mayen, and a weak ridge pushed in from the east over Svalbard.

The mean geostrophic wind in the Fram Strait was from the south but very weak. In

July one persistent storm passed just north of the area and retrograded from east to

west. These storms brought moderately high winds, less than 15 m/s, as they passed.

The ice edge orientation is important for determining whether the flow is from

off-ice, along-ice or on-ice directions. The ice edge typically extended in an almost

east-west direction from Svalbard to approximately 80°N, 0.0°E, where it shifts to a

northeast to southwest orientation. Due to this orientation an off-ice flow was defined

when the wind direction was from the northeast through the southwest. This occurred

most of the time. The ice edges were near climatological locations throughout the

MIZEX period.

The air temperature measured by the ships during MIZEX-84 was within five

degrees centigrade of freezing throughout the experiment. The ships operating in the

19
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open water recorded temperatures slightly warmer than temperatures recorded by the

ships operating in the ice. The ships operating in open water recorded a diurnal

temperature cycle up to five degrees centigrade. This diurnal cycle was not recorded by

the ships operating in the ice (Lindsay et al., 1986).

C. MIZEX-84 BOUNDARY LAYER STRUCTURE
Fairall and Markson (1987) describe the ice/sea interface as forming the lower

boundary for an atmospheric turbulent mixed layer which extends upward to a height

of 50-500 meters. The mixed layer interacts with the free troposphere at the inversion

transition region by means of entrainment.

The presence of the ice is the controlling factor in the exchange of momentum,

heat, moisture and radiative energy between the atmosphere, ice, and ocean in the

Arctic. The atmosphere "feels" the boundary between the ice and open water as a

sharp interface across which discontinuities in physical properties occur. An example

of this is the exchange in heat between the atmosphere and the ice versus the

atmosphere and the ocean. The exchange of heat between the atmosphere and the

ocean may be as much as 100 times greater over the open ocean than over the ice. In

off-ice winds the air receives a tremendous increase in the input of heat as it flows from

the ice to open water. This results in rapid warming of the lower atmosphere, and

changes consequently occur in the wind speed and stress exerted on the water

(Muench,1983). Since there is warming of the atmosphere from below, a more

unstable and deeper boundary layer is expected over open ocean adjacent the ice edge

than over the MIZ or the pack. ice.

Overland's (1985) studies have shown a difference in the MIZ boundary layer

during the winter compared to the MIZ boundary layer in the summer. In the winter

the boundary layer is very shallow with inversion heights less than 100 m. In the

summer the inversions are somewhat deeper but inversions are not as sharp. The

boundary layer depth ranges from 100 to 1000 m, with a typical value of about 500 m
or less.

Analysis of the MIZEX-84 data by Lindsay et al. (1986), Fairall and Markson

(1987), Guest and Davidson (1987) and Kellner et al. (1987) show that there are

differences between the boundary layer over the ice and the boundary layer over the

ocean. In the absence of direct turbulence measurements, the inversion height is used

to describe the upper limit of the boundary layer. Over the ice the inversions were

often surface based (30%) or very low (71% less than 300 meters), while over the water
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there was only one surface-based inversion. Thirty-seven percent of the time the

inversions were greater than 600 meters. The temperature gradient within the inversion

was a little stronger over the ice than over the water. The inversions were of similar

thickness both over ice and over water. Fig. 2.2 graphically shows the differences in

the inversions between the Valdivia, a ship operating in the open water, and the

Polarstern, a ship operating in the ice. Profile (a) shows the differences in the height of

the inversion base, profile (b) shows the differences in the mean temperature and

profile (c) shows the differences in the thickness of the inversions.

Fairall and Markson (1987) showed that the surface heat flux varies considerably

from the ocean to the pack ice. The total heat flux was 30 w/m 2 over the ocean and

near zero at the ice edge. This larger heat flux over the ocean will cause the inversion

to be higher over the water. Due to the increased heat flux, more energy is available

for entrainment. This results in a higher inversion over the water adjacent to the ice.

The opposite situation, a positive air/ surface temperature difference, exists over the

pack ice. This results in less available turbulent energy. Mixing is thus damped,

accounting for the lower inversion heights observed.

The surface wind stress was also measured during MIZEX. The surface wind

stress is a function of the wind speed and the drag coefficient. With all factors being

equal Overland (1985), Guest and Davidson (1987) and Fairall and Markson (1987)

found the wind stress to be two times greater over the ice than over the water adjacent

to the ice. This was due to the higher drag coefficient over the relatively rough ice

compared with the drag coefficient over the water. A higher value of wind stress

should lead to a higher inversion due to the increased mixing. However, this was not

found in the Arctic. In fact the opposite was found. This is partially because the wind

over the ice was often less than the wind over the adjacent water, so the difference in

the wind stress was not actually as great as a two to one ratio. Also, strong subsidence

and colder denser air over the ice counteracted the influence of the wind stress variable

on the inversion.

Lindsay et al. (1986) showed that the inversion would rise and fall in response to

the warming and cooling of the atmosphere in response to the synoptic conditions

discussed above. Warming conditions resulted in stronger surface based inversions and

occurred when the area had high pressure gradients or very weak gradients over the

area.
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Fig. 2.2 Differences in the inversion between the Polarstern, operating in the ice,

and Valdivia, operating in the adjacent water.
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Guest and Davidson (1987), and Kellner et ai (1987) showed that the height of

the inversion depended upon the distance of the ship from the ice edge. Both showed

that the inversion height increased with respect to the distance from the ice edge if the

ship was operating in the water. The inversion was lower over the pack, ice than at the

MIZ. Fig. 2.3 taken from Guest's work shows this relationship with the inversion

lower over the pack ice than the MIZ followed by a rapid increase of the inversion

height as one moves away from the ice edge in the adjacent water. Fig. 2.3 shows that

the median inversion height at the ice edge was 250 meters and that the height

increased at a rate of 45.3 meters for each 10 km traveled perpendicularly away from

the solid ice edge. Kellner's et al. (1987) indicated the inversion increased with a slope

of 1/200.
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Fig. 2.3 Inversion height in response to distance from the ice (Guest and Davidson, 1987).

Guest and Davidson (1987) examined the height of the inversion in relation to

the height and layers of clouds present in the MIZEX area. Fig. 2.4 shows these

differences. With no clouds and wind speeds less than four m/s, the inversion was

surface based and increased with wind speed. With a single cloud layer the inversion
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was not surface based and showed a slight increase with response to an increase in

wind speed. The average inversion height with winds less than four m's was 275 m and

increased to 325 m as the wind increased to 12 m/s. With a thick layer of clouds the

inversion height was approximately 200 m higher than in the thin cloud case. The

inversion height, with a thick cloud layer, showed no response to an increase in wind

speed.

The difference between the inversion height without the clouds present and with

clouds present is due to the effect of radiational cooling by the cloud. The base of the

inversion corresponds to the height of the cloud. The difference in the inversion when

a thin cloud was present and versus a thick cloud was not due to a difference in the

cloud itself, but due to the mechanism by which these clouds were generated. Thick

clouds were present when there was less divergence, making entrainment more effective.

This resulted in a deeper boundary layer. The deeper boundary layer also tended to

produce a higher lifting condensation level in the thick cloud than in the thin cloud.

The response of the inversion to a change in the surface wind speed is directly a

function of the height of the inversion. The closer to the surface the inversion was

located, the greater the impact of the increase in the surface wind. This was due to the

fact that the shallower the ABL the less the wind is dissipated through mixing and thus

the greater the effect on the inversion.

A common feature of the summer MIZ boundary layer was fog. The occurrence

of fog is also expected to influence the height and features of the inversion. Lindsay et

al. (1986) defined fog to exist when the horizontal visibility was less than 1 km. Wind

direction was a good indicator of the existence of fog. Fog occurred 80% of the time

when the surface wind direction was directly from the water to the ice edge within 15

degrees and when the surface wind speed was greater than 5 m/s. Fog was observed

only 10% of the time when the surface wind direction was in an off-ice direction. Even

during this situation the fog only occurred when a tight pressure gradient brought air

from the water to the ice and then the air was quickly forced back to the ice edge. Fog

rarely occurred when the winds were either less than 2 m/s or greater then 8 m/s.

Lindsay et al. (1986) described two mechanisms for the generation of fog in the

Arctic: frontal fog and stratus lowering. Frontal fog is not associated with synoptic

fronts but is used to describe fog when it approached the ship rapidly with a distinct

edge. The winds were usually parallel to the ice edge when this type of fog was seen.
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The second type of fog experienced was due to stratus lowering. This occurred

when the surface wind direction was from the sea to the ice, causing a stratus layer to

be present. The stratus layer was caused by the warm moist air over the ocean being

advected over the ice. When this air came in contact with the cold air over the ice, the

water vapor in the warm air condensed and stratus cloud formed. The vertical extent

of the stratus layer varied in response to wind speed, wind direction and the tightness

of the pressure gradient. When the stratus layer lowered to the surface it was described

as fog. Whether the stratus layer would lower sufficiently to reach the surface could

not be predicted by specific wind speed, wind direction or pressure gradient values

(Lindsay et al., 1986)

Lindsay et al. (1986) found that frontal fog was more common than stratus fog

in a ratio of two to one. There was one period of exception to this during 10-20 July

when the winds were persistently on-ice and fog lifted to stratus and then quickly

lowered again several times. The dissipation of this fog was also categorized as two

types, frontal and stratus rising, and was related to wind directions opposite to those

which caused the fog. Frontal dissipation was the term used when the fog was rapidly
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advected out of the area resulting in complete clearing. With stratus rising the

horizontal visibility increased to greater than 1 km but a stratus layer of clouds was

still present over the area (Lindsay et ai, 1986).
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III. ATMOSPHERIC REFRACTIVITY

Electromagnetic (EM) radiation is energy which travels as waves. The EM
spectrum comprises radiation of all wavelengths, and in a vacuum these waves travel

with a constant speed (the speed of light). This discussion is limited to refraction of

EM radiation having wavelengths from one centimeter to 10 meters. This includes

microwave, ultra high frequency (UHF) and very high frequency (VHF). Wave

velocity is reduced when EM radiation interacts with air molecules. The atmosphere,

vertically nonhomogeneous in temperature, pressure and humidity will cause the

bending or refraction )f electromagnetic waves.

The interaction of EM waves with the medium is described by the dielectric

constant e, which is dependent upon the characteristic of the medium and upon the

frequency of radiation. The index of refraction n is defined by (3.1) where € is the

dielectric constant, c is the velocity of an EM wave in free space, and v is the velocity

of the same EM wave in the medium.

n = € 1/2 = c/v (3.1)

Thus the index of refraction, n, is the ratio of the velocity of propagation of

electromagnetic wave in a vacuum to its velocity in air. EM waves travel only slightly

slower in air than in a vacuum, so the value of n is near unity. Bean and Dutton

(1966) showed that the value of n is equal to 1.0003 for a Standard Atmosphere. For

convenience, the refractivity N is defined by Eqn. 3.2:

N = (n-1) * 10
6

(3.2)

The index of refraction for air does not significantly depend on frequency over

the entire EM range. When expressed in terms of the atmospheric variables pressure

P (mb), temperature T (K), and water vapor pressure e (mb), N is expressed by (3.3)

(Battan, 1973).

N = 77.6 P/T - 5.6 e/T + 3.75 * 10
5 e/T2 (3.3)
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More important than the value of N is the vertical gradient of refractivity

(dN/dZ) because the EM refraction is dependent upon the gradients of N. Since

gradients of pressure, temperature and humidity naturally occur throughout the

atmosphere, it follows that gradients of N must also exist. This relationship as a

function of temperature (T), pressure (P) and specific humidity (q) is given by Eqn. 3.4

dN/dZ = .3 dP/dZ + 7.2 dq/dZ - 1.3 dT/dZ (3.4)

Battan (1973) showed that when dN/dZ = -157 km ~ l
, a propagating EM wave

would bend with a curvature exactly equal to that of the earth's. This would cause a

horizontally propagating EM wave to remain parallel to the earth's surface. If N
decreases at a faster rate than -157 km _1

, this wave is refracted downward with a

curvature exceeding the Earth's curvature, and a duct is formed. IF N decreases at a

slower rate than this, the wave is bent down towards the earth but at a curvature less

than that of the earth. In this case no duct is possible. Thus dN/dZ = -157 km" 1
is the

threshold for whether the EM propagation will be trapped.

It is sometimes convenient to think of the earth's surface as flat and to represent

the EM wave refraction in this frame of reference. This can be done simply by

subtracting the earth's curvature from the EM wave and from the Earth. A modified

refractivity M has been developed to take into account the earth's curvature and to

allow for easy identification of ducting. Eqn 3.5 shows the relationship of M to N
(Battan,1973).

M = N + 157Z Zinkm (3.5)

I REPS, version 2.2, is the Navy's current software for predicting the atmospheric

refractive conditions. This system is a shipboard environmental data processing and

display system which is used to predict the effects of refraction on electromagnetic

signals for naval surveillance, communications, electronic warfare and weapons'

guidance systems. IREPS has been incorporated in the Tactical Environmental

Support System (TESS) presently being evaluated in the fleet (Naval Ocean Systems

Center, 1981).

29



I REPS uses the N and VI gradients to classify refractive conditions. Table 1

shows I REPS classifications of refraction conditions and the relationship of N units to

M units (Naval Ocean Systems Center, 1981).

TABLE 1

IREPS CLASSIFICATION OF REFRACTION CONDITIONS

IREPS dN/dZ km" 1 dM/dZ km"
•1 RANGE

CLASSIFICATION

SUBREFRACTION >0 >157 REDUCED

NORMAL to -79 79 to 157 NORMAL

SUPER-REFRACT I ON -79 to -157 to 79 INCREASED

TRAPPING <-157 <0 GREATLY

INCREASED

Ducting is of primary concern to Navy operations and is caused by trapping

layers. A trapping layer is defined as the area where M decreases with height. In this

region the ray is bent downward relative to the earth's surface. A duct is defined as the

region in which the energy is confined. A surface-based duct occurs when an EM wave

is refracted downward at a curvature greater than the earth's curvature and is then

subsequently reflected up from the earth's surface. It is the continuous refracting down

and the reflecting up that forms the duct and makes it a concern to the Navy by

allowing detection by surface radars far beyond the normal horizon. The type of duct

depends on the height, strength and extent of the trapping layer.

The top of the duct is defined as the height where M reaches a minimum value.

It also corresponds with the top of the trapping layer. In practice, thickness of the

duct may be found by dropping a vertical line from the top of the duct down towards

the surface until it intersects the M profile. Duct strength is defined as the maximum

range of M values within the limits of the duct. The optimum coupling height (OCH)

is the height where the dM/dZ profile changes from a positive to a negative value.
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Three types of ducts have been defined: (1) the surface-based duct (2) the

elevated duct and (3) the evaporative duct. Profile (a) of Fig. 3.1 depicts an elevated

duct which is the type often found when an inversion layer is present. Large

temperature and humidity gradients are usually present within the inversion. The

boundary layer is cool and moist relative to the overlying air, and over the ocean it is

often referred to as the marine layer. These jumps of the gradients in temperature and

humidity are associated with warming and drying due to subsidence (sinking air) above

the inversion and turbulent mixing in the boundary layer. In the Arctic this type of

ducting is most likely when the Greenland high is well established over the area,

causing strong subsidence. Profile (b) of Fig. 3.1 is' an example of a surface based duct.

These ducts are formed by a relatively warm, dry air being advected over a cool body

of water, or by strong subsidence modifying the elevated duct. Fig. 3.1 (c) shows an

evaporative duct. The evaporative duct can be created by two different mechanisms.

First, an evaporative duct may be created by the very rapid decrease of moisture

immediately above the ocean surface. The air adjacent to the ocean is saturated with

water vapor and the relative humidity is 100 %. This high relative humidity decreases

rapidly in the first few meters to an ambient value which depends on varying

meteorological conditions. This initial rapid decrease in humidity will cause M to

decrease with height to a minimum and then M will increase with height. The second

way in which an evaporative duct can be formed is independent of the decrease in

humidity. This "evaporative duct" is caused by strong cooling at the surface. This

cooling could cause a sufficient positive temperature gradient between the air near the

surface and the air just above this to create a duct. Radiational fog is often associated

with this condition because the overlying air is cooled sufficiently by radiational

transfer for the relative humidity to increase to the point of condensation. Evaporative

ducts almost always exist but it is the strength and upper boundary which are critical

in determining the importance of this duct to tactical operation. The evaporative duct,

although present, is generally shallow in the Arctic.

Two other important refractive effects are subrefraction and super-refraction.

Subrefraction is defined as N increasing with height as shown in Table 1. In this

situation the rays actually bend away from the earth's surface. The radar range in this

situation is reduced. Super-refraction is defined in Table 1 as N gradients having

values between -79 to -157 per km. The EM wave is bent towards the earth's surface,

but not strongly enough to form a trapping layer. In this situation the radar range is

increased somewhat.
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The IREPS revision 2.2 user's manual (Naval Ocean Systems Center, 1981) states

that the assumption of horizontal homogeneity of the atmosphere is valid 85% of the

time for the purpose of making refractive assessments. Dotson (1987) found this to be

a poor assumption and his results showed that 50% of the time horizontal

homogeneity could not be assumed. The refractive conditions varied from one location

to another. This variation was a function of the existing atmospheric conditions at the

specific location at the time of that launch. We will show that in the Arctic, as well,

this assumption made by IREPS is not valid.
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IV. DATA ACQUISITION AND PROCESSING

A. DATA ACQUISITION

Radiosondes launched from four ships, Polarstern, Polar Queen, Hakon Mosby

and Valdivia were used to evaluate the refractive conditions during MIZEX-84.

Radiosonde observations were made with the Vaisala Micro-Cora Upper Air Sounding

system using the RS-80 radiosondes. Surface weather observations were measured

hourly on three of the ships and every three hours on the fourth ship. The surface

weather observations were made aboard three of the ships. The exception was the

Polar Queen, whose observations were recorded a majority of the time from a profile

tower located on the ice floe next to the ship. Generally the Polar Queen and the

Polarstern operated in the ice while, the Valdivia and Hakon Mosby operated in the

open water within 140 km of the MIZ. A concerted effort was exerted by all the

scientists aboard each of the ships to launch the radiosondes within a half-hour of

designated launch time. An intense period of launching radiosondes every three hours

began midnight 8 July and continued until 15 July.

1. Polarstern

The ship was equipped with two anemometers, wind vanes and temperature

sensors. A set of sensors was located on each side of the ship at 25 meters above the

deck. The set of sensors used to record measurements was dictated by the direction of

the wind flow. Sensors on the windward side was used. Wind data were corrected for

the ship's motion to give true wind speed and direction. The winds were ten-minute

vector averages. The dewpoint was calculated by a Li-CL sensor and the sea surface

temperature was read from the port intake (Augstein, 1984).

The Polarstern operated in a box bounded by 78.2°N, 80.7°N, 6.0°W and

8.0°E. From 17-22 June, the Polarstern operated on the ice side of the zonally oriented

ice edge along 80.3°N. This operation included detailed oceanographic surveying as

well as recovering and redeployment of two meteorological-oceanographic buoy

stations. From 22-25 June, the Polarstern continued the oceanographic survey,

including tracking of transponders distributed on nearby ice floes. From 25 June to 8

July, the Polarstern was involved in a large oceanographic survey across the Fram

Strait. She operated along three transects, the first transect along 80.3°N, the second
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transect along 79.3°N, and the third transect along 78.3°N. For the large-scale

meteorological network, 9-15 July, the Polarstern operated near the position of 79.8°N

and 6.5°W. The Polarstern was located the furthest into the ice at approximately 140

km from the ice edge (Augstein,1984).

2. Polar Queen

Surface observations were recorded by a tower on an adjacent ice floe a

majority of the time. Wind velocities from the profile tower were measured at a height

of 6.7 meters. These values were corrected to a 10 meter height. When the tower was

not operational or the ship sheltered the tower from the true wind, wind speeds were

recorded by the ship's anemometer mounted on the ship's mast at a height of 15 m.

These winds were also corrected to a 10 meter height. The winds were ten-minute

vector averages. The dewpoint was measured on the ship with a cooled mirror

dewpoint hygometer. Sea-surface temperature was not recorded, and the sea-surface

temperature was assumed to be -1.7°C in any exposed areas (Guest and Davidson,

1984).

The Polar Queen was designated as the primary drift-station vessel and drifted

passively with the surrounding ice, while moored securely to a floe. Her mean position

was 80.5°i\
T and 3°E, and she never varied more than 100 km from this position. The

Polar Queen was located in the ice closest to the MIZ during the intensive meteorology

program (Lindsay et al., 1984).

3. Hakon Mosby

The Hakon Mosby's instruments were located on the forward mast at a height

of 14 m. The wind, temperature and humidity were measured. The winds were thirty-

minute vector averages. The sea-surface temperature was measured with a towed

thermistor (Davidson and Geernaert, 1984).

The Hakon Mosby operated in the open water along the MIZ. The ship

remain in an area bounded by 77.8°N, 80.6°N, 3.0°W, and 11.5°E. The ship

participated in the oceanographic survey of the Fram Strait from 22 June to 8 July.

During the meteorological intensive program, the Hakon Mosby stayed on the water

side of the MIZ but was located closer to the ice edge than the Valdivia, which also

operated in the open water (Johannessen and Horn, 1984).

4. Valdivia

The weather observations were recorded manually onboard the Valdivia. The

observations were recorded in accordance with the World Meteorological Organization
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format. Observations were recorded every three hours. Winds were either measured

with a standard ships's anemometer with no electronic averaging or estimated

according to the sea state. Sea-surface temperatures were recorded at the ship's intake

(Quadfasel er ai, 1984).

The Valdivia operated in the eastern portion of the Fram Strait during the

entire period. Her stations were between the ice edge and and the coast of Svalbard.

From 25 June to 8 July she was involved in an oceanographic survey across the Fram

Strait. The Valdivia also took hydrographic measurements during this period. From 9

July to 15 July the Valdivia was the furthest away from the ice edge in the open water.

The ship operated between 100-140 km from the ice edge (Johannessen and Horn,

1984).

5. Radiosondes

The Vaisala balloon-borne radiosondes provided pressure, temperature and

relative humidity measurements. This system uses the Omega navigational network to

track the balloons and determine the winds aloft. Ascent rates were 120-150 m/min

(WMO standard is 300 m/min) with pressure, temperature and relative humidity

reported every 10 seconds. The radiosondes were tracked to 200 mb (11-12 km). The

Polarstern launched radiosondes every three hours between 19 June and 16 July. A

total of 249 successful launches were recorded. The Hakon Mosby launched

radiosondes every six hours from 20 June to 8 July and every three hours from 9-15

July. A total of 136 successful launches were recorded. The Polar Queen and the

Valdivia launched radiosondes ever 12 hours until 8 July. Both ships launched

radiosondes every three hours between 9-15 July. The Polar Queen recorded 120

successful launches while the Valdivia recorded 105 successful launches. A total of 610

successful radiosonde launches were recorded by the four ships. The MIZEX data

were put on tape and stored at the MIZEX data bank at the National Snow and Ice

Data Center.

B. PROCESSING OF THE DATA
1 . Form of data

Of the 610 available radiosonde launches, 474 sondes launched between 18

June and 15 July were originally chosen to compose the data set for this thesis. This

data set was determined in two steps. The first step was to evaluate each launch time

to find at least two ships which had launched the radiosonde within one half hour of

the designated launch time. These profiles were grouped according the launch time and

36



were used in the spatial variability study. A total of 434 profiles were identified for this

study. The second screening was done to determine if additional profiles would be

needed to complete the temporal study. This was decided by plotting each ship's track

to see how long the ship remained in a 30 n mi square. The only ship track which met

this criterion was the Polarstern, and an additional 40 profiles were incorporated into

the data set. These brought the number of radiosonde profiles in the data set to 474.

Approximately 10% of the profiles were unusable due to missing data, so the data set

was reduced to a final count of 427 profiles. Although the radiosondes were tracked to

200 mb, this thesis is only concerned with the boundary layer and the radiosondes were

evaluated only to 500 mb.

Each profile had to be prepared for input into the I REPS portion of TESS.

The IREPS program will accept a maximum of 29 pressure, temperature and dewpoint

levels. The profiles were reduced to 29 pressure levels by using an interactive graphing

package, Grafstat, available on the IBM 3033 mainframe at the Naval Postgraduate

School. Profiles were individually plotted with pressure along the y-axis, and

temperature and dewpoint along the x-axis. A cursor was used to choose interactively

a maximum of 29 significant levels, and the profiles were edited to reflect these levels.

After the profiles had been plotted and edited, suspicious dewpoint curves

were noted in 157 of the profiles. In these profile the dewpoint curve continued along

the temperature curve above the inversion layer to a height where the curve rapidly

shifted to cooler dewpoint values. Figs. 4.1, 4.3, 4.5 and 4.7 are examples of these

peculiar dewpoint curves. This behavior is a substantial concern because proper

analysis of refractive conditions depends heavily on having good humidity

measurements.

2. Evaluation of the dewpoint effect

The suspicious dewpoint curves were evaluated as to whether there was a

problem with the humidity sensor or whether it was a real meteorological phenomenon

in the Arctic. A thorough study was conducted on the basis of other results from the

Arctic region and reports on basic on sensor performance (Gathman, 1986). The

evidence in this study and in the literature was not conclusive regarding either

argument. Suitable airplane data were not available for comparison with the data

obtained by the radiosonde.

Fairall and Markson's (1987) final report on MIZEX-83 data included

temperature and specific humidity profiles which indicated a saturation of the air above
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the temperature inversion similar to profiles from the radiosondes launched in 1984.

The report states that the airplane made both low-level horizonal passes as well as

ascents and descents through the clouds, but the specific flight paths could not be

correlated to the profiles provided. A study done by Ohtake et al. (1982) at Barrow

Alaska on the observations of ice crystal formation in the lower Arctic atmosphere

described a calculated relative humidity showing saturation above the inversion.

Ohtake et al. (1982) stated that the humidities are nearly at saturation levels with

respect to water below the inversion. The high humidity continues to an elevation of

approximately 100 m above the inversion base, and this is common in association with

the summer Arctic stratus clouds. The differences between Ohtake's et al. (1982)

studies and the dewpoint curves recorded in MIZEX-84 are: (1) theirs were nearly

saturated while the ones in MIZEX 84 were completely saturated and (2) theirs was

only a calculated profile, not an observed profile as in MIZEX-84. A second study was

done by Tsay and Jayaweera (1984) with data taken by an aircraft in the Beaufort Sea

in 1980. The airplane runs started from above the stratus deck and descended through

the cloud to either an altitude of 100 m if the cloud base extended to below this or to

30 m above the sea-ice surface. Temperature and dewpoint curves were provided for

five days and three of the profiles showed similar trends as the data obtained by the

radiosondes used in MIZEX 84. Again, none of the dewpoint curves showed complete

saturation as did the radiosondes collected in MIZEX 84.

Dynamical or synoptic cases could be conceived for this type of profile, but

they are rather unlikely. One way to explain this curve is through advection of warm

moist air which could have been brought into the Arctic from a source far away. The

direction of the flow would have to be from the south or southwest. A possibility

would be relatively warmer and moist air in the vicinity of the Gulf Stream near

Iceland which could have been lifted and advected unmodified to the Arctic region.

Ohtake et al. (1982) suggested another explanation. The unusually high humidities

above the inversion layer occur because the water vapor flux from an open lead in the

ice increases considerably as the air temperature decreases below freezing. For

example, when air at a temperature of -2°C with 70% relative humidity blows over the

-2°C sea surface, the vapor pressures over the water surface and in the air differ by a

factor of six, which is effectively nearly 500 % supersaturation over the water. The

peculiar dewpoint curves were due to the fact that the layer could be supersaturated

with respect to the ice even though the air was not saturated with respect to the water.

38



The above discussion gives some possible explanation to the data collected

during MIZEX-84 but is not convincing enough to discard the second possibility of a

humidity sensor problem. Basic cloud physics favors an inversion at the top of the

cloud. Because inversions are produced in part by subsidence, which is a warming and

drying process, one would expect to see a decrease in the moisture above the inversion

this layer. Studies done by Brost et al. (1982) on marine stratiform clouds off the

coast of California showed a distinct dry layer above the inversion. This phenomenon

was actually seen as a clear layer by personnel in the aircraft. This behavior is

opposite to that suggested by the rawinsonde data of this study. The fact that the

values for the temperature and the dewpoint are identical has also led to the suspicion

that the dewpoint curves are in error. On the Vaisala radiosonde, a cap is placed over

the humidity sensor when being launched through the clouds. Several factors could

cause a lag in the reading by the humidity sensor. The faulty reading could have been

caused by either moisture as a result of condensation inside the cap or a thin layer of

frost or ice which accrued on the sensor as the balloon ascended through the cloud.

This problem seemed to occur when the temperature at the inversion was less than 0°C

and seemed to correct itself after the temperature was above 0°C for in indefinite

period of time. This might indicate that frost formed on the humidity sensor when the

temperature was below freezing and melted (evaporating) as the temperatures rose

above freezing. As soon as the ice melted and the water evaporated, the sensor would

have been able to measure the correct relative humidity. This might account for the

sudden large change in the dewpoint curve. The length of saturation was not

consistent, sometimes as little as a few meters and sometimes as much as 700 meters.

Two papers have been published documenting problems with the humidity

sensors on radiosondes. Helvey (1982) first reported a suspicion regarding the

radiosonde data when examining a strong bias toward false analysis of surface based

ducts. The error is blamed on sensor characteristics, sonde design and materials,

handling prior to release and reduction procedures. Andreas and Richter (1982)

evaluated the Vaisala Micro-Cora Upper Air Automatic Sounding system and found

similar problems with the accuracy of the relative humidity measurement. To test the

radiosondes, 60 launches were made. An airsonde was attached to the balloon and

recorded measurements separately. Data received from the two different sensors were

received at independent ground stations. The results of this experiment showed

excellent comparisons in wind, temperature and pressure readings. However, there
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were a large number of failures of the humidity sensor, and there was a tendency for

this sensor to drift.

The importance of humidity to the analysis of Arctic ducts was tested by

setting dq/dZ = and processing the modified data through IREPS. When the profiles

were processed through the IREPS program, 100% of the ducts were eliminated. The

conclusion drawn from this was that the changes in the humidity gradient are

fundamentally important in determining the refractive conditions in the Arctic. The

cold temperatures in this area accentuate the problem since they may be responsible

for frost and may inhibit melting (evaporating) of the frost which may have

accumulated on the sensor.

3. Correction of the dewpoint curves

Despite the fact that sensor wetting (or frosting) is a plausible explanation for

the suspicious dewpoint behavior, there were no data to confirm this hypothesis. Thus,

the data will be presented in an uncorrected and a corrected format. There is no

precedent for how to correct the dewpoint curves to compensate for a humidity sensor

error due sensor wetting. An attempt was made to establish an objective correction

scheme for these radiosondes. The remainder of this chapter discusses this correction

method and the effect the correction had on the refractive conditions.

The dewpoint curves were corrected one of two ways. The factor which

determined how the dewpoint curve was corrected was whether the dewpoint curve

above the suspicious area was colder, equal to, or warmer than the dewpoint at the

inversion. Fig. 4. 1 is an example of a dewpoint curve above the saturated area which

is warmer than the dewpoint at the inversion. The correction in this case was to

connect the dewpoint at the inversion with the first good value above the saturated

area as indicated by the solid line from point A to point B on Fig. 4.1 The points

outlined on Fig. 4.1 are deleted from the data of this radiosonde. Fig. 4.2 shows the

temperature and dewpoint curve after the correction has been applied. Fig. 4.3 shows

a case in which the dewpoint curve above the suspicious area is nearly equal to the

dewpoint at the inversion. The profile was again corrected by connecting the dewpoint

value at the inversion with the first good value of the dewpoint above the saturated

area. This is indicated by the solid line from point A to point B on Fig. 4.3. The

points outlined on Fig. 4.3 are deleted from the data of this radiosonde. Fig. 4.4 shows

the temperature, and dewpoint profiles after the radiosonde data have been corrected.

Fig. 4.5 shows a case in which the dewpoint curve above the suspicious area is cooler

40



than the dewpoint at the inversion. A line is drawn through the points above the

saturated area to estimate the true dewpoint curve. This curve is extrapolated down to

the inversion height at point A on Fig. 4.5. The dewpoint of the datum point just

above the inversion is changed to intersect the extrapolated dewpoint curve at point A.

Again the points outlined on Fig. 4.5 are deleted from the data obtained by this

radiosonde. Fig. 4.6 shows the dewpoint and temperature curve after the correction

was made. Fig. 4.7 is a second case in which the dewpoint curve above the saturated

area is cooler than the dewpoint at the inversion. This case is included to illustrate the

variablity encountered when deciding how to correct the dewpoint curves. Again a line

is drawn through the points above the saturated area to estimate the true dewpoint

curve. This curve is extrapolated down to the inversion at point A of Fig. 4.7. The

datum point just above is the inversion is changed so the new dewpoint value intersects

the extrapolated curve at point A. The The points outlined in Fig. 4.7 are deleted from

the data set. Fig. 4.8 shows the temperature and dewpoint profiles after the correction

was made.

Two problems were identified with the correction scheme discussed above.

First, it was not always easy to determine how to extrapolate the dewpoint curve to the

inversion as illustrated by the variablity seen in cases three and four. The second and

most important problem was the inability to re-create the dry layer seen by the studies

done by Brost et al. (1982) and seen in many of the other rawinsondes both in which

there was saturation below the inversion and in cases where there was not saturation

below the inversion.

After processing both the uncorrected and corrected data sets through I REPS,

it was found that 50% of the anyalized ducts in the uncorrected data were not present

after the corrections were applied to the profiles. In one percent of the cases, when the

the duct still existed after the correction was made, the height of this duct was

significantly lower in the corrected profiles versus the uncorrected profiles. Fig. 4.9

shows the effect of correcting the profile as discussed in the first case above. The

uncorrected profile is on the left and the corrected profile is on the right. In the

corrected profile the duct is located at 681 m and in the corrected profile the duct is

not present. Fig. 4.10 shows the effect of correcting the profile in case four discussed

above. The duct in the uncorrected profile is located at 567 m and lowered to 275 m in

the corrected profile. For better representation only the area affected by the correction

was plotted.
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V. RESULTS

A. SPATIAL STUDY

There were 126 cases when at least two of the ships launched radiosondes within

a half-hour of the designated launch time. Table 2 summarizes the data from this

study. Overall, ducting episodes decreased by 36% and the number of individual ducts

decreased 50% when the data were corrected. An episode is defined as the occurrence

of one or more ducts during a launch period. There seemed to be considerable spatial

inhomogeneity, as indicated by the relatively low percentage of episodes in which more

than one ship detected a duct on the same launch. The percentages calculated after the

data have been corrected probably underestimate the ducting occurrences in the Arctic,

since the probable sharp humidity decreases at the inversion could not be accurately

recreated by the correction scheme.

1 . Vertical refractive structure

Multiple ducts in the vertical were recorded on only six launches. In all six

cases, the ships were located within 10 km of the ice edge on the water side, and the

flow was parallel to the ice edge or off-ice. In four of the six cases the optimum

coupling heights (OCH) of the ducts were within 200 m of each other. In the other

two cases there was a large difference between the heights of the ducts, which may be

an indication of the presence of more than one air mass in the vertical. The strength

and thickness of the duct did not appear to be functions of height, i.e. the lowest duct

was not necessarily the stronger or thicker of the two ducts.

Geernaert et al. (1987), studying the acoustic sounding (sodar) data collected

during MIZEX-84, found that multiple (vertical) inversions periodically existed at the

ice edge. They concluded that these inversions were interleaving and were due to mass

convergence of different air masses at the ice edge. Their studies focused on two time

periods, 1-6 July and 10-15 July. Three of the six cases in which multiple (vertical)

ducts were recorded occurred during the first period. On 1 July, sodar traces showed

strong returns, which are characteristic of stably stratified layers, at the ice edge at 1 20

m, 190 m and 220 m. On 1 July the rawinsonde launched by the Polarstern showed

two ducts, one at 108 m and the second at 313 m. On the 2nd of July the winds

increased and the ABL was observed to increase in depth. Profiles collected at the
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TABLE 2

SPATIAL STUDY DATA
(18 JUNE- 15 JULY)

Of launch periods producing ducts, percentage of
distribution of duct multiplicity

Uncorrected / Corrected

1 ship 61% / 87% 3 ships 6% / 3%

2 ships 33% / 10% 4 ships 0% / 0%

AVERAGE VALUES

Uncorrected data
(based on a total of 88 ducts)

location
of ship

ICE

MIZ

WATER

In 61 out of 126 launches (48.4%) a duct was detected

Multiple (vertical) ducts 6/61 = 9.8% of launch periods

Corrected data *

(based on a total of 45 ducts)

percent
of ducts

OCH
( meters)

Thickness
( meters)

Strength
(A M)

45 502 95 3.

15 495 76 2.

40 848 163 3. 8

location
of ship

percent
of ducts

OCH
( meters)

Thickness
( meters)

Strength
(A M)

ICE 22 370 62 1. 7

MIZ 27 377 71 2. 1

Water 51 560 88 3. 1

In 39 out of 126 launches (30%) a duct was detected

Multiple (vertical) ducts 7/39 = 17.8% of launch periods

* In 86 of 126 cases at least 1 profile was corrected
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MIZ showed multiple ducts at 518 m and 1702 m. Early on the third the wind shifted

from an off-ice to an on-ice flow. A profile of a radiosonde launched at 0500UTC

showed three ducts at 227 m, 479 m and 576 m. As the winds continued to blow in an

on-ice direction, advecting warm air over the ice edge, the duct heights increased to 368

m and 958 m. Sodar traces showed no strong returns. Sodar traces were not available

on the 15th of July, but traces from the 13th of July indicated two inversions. The

flow remained the same through the 15th of July, which could explain the two ducts

recorded at the ice edge by Hakon Mosby.

When the data were corrected, one additional instance of multiple ducting was

recorded. A second launch on 2 July detected multiple ducts. The ship was at the ice

edge. The flow over the ship was parallel to the ice edge. The ducts were very similar

to the multiple ducts already recorded on the 2nd of July.

Dotson (1987) showed that high resolution of the data was critical for

determining multiple ducts, and that in an operational mode using lower resolution

data these multiple ducts would likely have been combined or not detected. Dotson

concluded that the high resolution data revealed almost five times as many ducts than

the low resolution data, since the top and bottom of the duct could be better defined.

In three of six cases the lowest duct was the strongest duct and in the other three the

converse was true. In all cases the strongest duct was the thickest duct. In four of six

cases the ducts were within 200 m of each other and we believe that detecting these

ducts would have been adversely affected with lower resolution of data. We believe

that in this situation the multiple ducts represents a real phenomenon and that higher

resolution was critical to detect these ducts.

2. Horizontal variablity relative to the ice edge

Guest and Davidson (1987) and Kellner et al. (1987) have shown that the

inversion was a function of the distance from the ice edge. We expected a similar trend

in the height of the duct. Table 2 indicates that the ducts did exhibit different

characteristic in height, thickness and strength over the ice, the MIZ and over the

water adjacent the ice edge. The percentages of ducts detected by ships operating in

the ice, using uncorrected data, nearly equaled that of the ducts detected by the ships

operating in the water adjacent the ice edge. When the data were corrected the

percentage of ducts recorded by the ships operating in the ice was drastically reduced.

This implies that over the ice profiles were affected more by the correction. The

average values of height, thickness and strength were much lower over the pack ice

than over the water in both the uncorrected and the corrected data.
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The data were plotted in scatter diagrams to investigate the specific

relationships between the distance from the ice edge and height, thickness and strength.

Fig. 5. 1 is a scatter diagram of the height of the ducts versus distance from the ice

edge. The ice edge is denoted by zero; positive numbers indicate distance from the ice

edge in the adjacent water, and negative numbers represent the distance fr6m the ice

edge into the pack ice. A linear least squares fit was applied to the data and is

indicated by the solid line on the figure. The fit was done in two segments. The first

segment was from -140 km to km, where (-) implies interior to the ice edge. The

second segment was from km to +210 km. This figure shows that the ducts were

lower over the pack ice than over the MIZ. A rapid increase was seen in the height of

the ducts as one moved away from the ice edge. This was due to the heating of the

lower atmosphere as the cold air flowed off-ice over the warmer water. Fig. 5.4, for the

corrected data, shows an almost linearly increasing relationship of the OCH from the

pack ice through the MIZ to the adjacent water. Figs. 5.2, 5.3 show that with respect

to thickness and strength, the value over the pack ice was slightly higher than the value

at MIZ. Figs. 5.5, 5.6 show the relationship of the thickness and strength with respect

to the ice edge for the corrected data exhibited the same trends as seen in the

uncorrected data. Again the values rapidly increased over the water as one moved

away from the ice edge. Comparing Figs. 5.1 and 5.4 with Figs. 5.2, 5.3, 5.5 and 5.6

shows that the relationship of the thickness and the strength with respect to distance

from the ice edge is not as strong as it is with the height. Comparing the values at -90

km to values at 90 km, the percent of change of the height was greater (77%) than the

change in the thickness (16%) and the change in the strength (10%). Also, when

comparing individual cases, it was found that the height versus distance relationship

always held, whereas for the thickness and and strength data these relationships were

valid approximately 60% of the time.

When comparing the uncorrected and corrected data, several differences were

noted. Although there were fewer points in the corrected data, the trends were similar.

The overall average values of height, thickness and strength were lower. This may

have been due simply to fewer data points. More likely it was related to the correction

applied to the data. In the uncorrected data the height, thickness and strength

reflected the values above the saturated portion of the profiles. The ducts reflected

sharper humidity changes at greater heights, which could give erroneously high heights

and thickness values. The decrease in the strength may be explained by the fact that
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the strength in the uncorrected data reflected the abrupt jump of the dewpoint curve.

This gradient may be greater due to this jump than actually existed at the inversion.

More of the profiles collected over the ice were affected than those collected over the

water. This may have been due to the fact that the clouds were colder over the ice.

With the colder temperatures (sub freezing), saturation below the inversion could form

ice or frost on the launch sensor. The air temperature over the water was not below

freezing at the inversion as much as it was over the ice.

3. Variability in the refractive structure from ship to ship

Table 3 is a summary of the numbers of cases when two ships recorded a duct

at the same launch time. From Table 3 one can see that the refractive structure varied

from launch time to launch time and from the ice to the MIZ, and to the water. When

the data were corrected the number of cases when two ships detected ducts at the same

launch time dropped to four. These cases were the same as those recorded in the

uncorrected data. These cases included: (1) one case when the two ships in the

adjacent water recorded ducts, but the two ships in the ice did not detect a duct; (2)

two cases when one ship in the adjacent water and one ship in the ice recorded a duct

while the other two ships between them did not detect a duct and; (3) one case when

two ships at the MIZ recorded ducts while the other two ships, one in the adjacent

water and one in the ice, did not record ducts.

Table 3 includes two cases when the ducts were recorded by the two ships

operating in the water adjacent the MIZ, while the other ship, operating in the ice, did

not record a duct. In the first case the two ships recording ducts were within 40 km of

each other. The height of the ducts recorded at each ship was similar; however, the

duct recorded by the ship to the south was weaker and not as thick. A low pressure

system was approaching from the southwest and may explain these differences. The

flow at the ship to the south may have been influenced by the approaching low and the

smaller subsidence value associated with proximity to this system could explain the

weaker and thinner duct seen at that ship. In the second case, one ship was located at

10 km and the other is 170 km from the ice edge. The duct of the ship which was

closer to the MIZ was lower, thinner and substantially weaker.

Table 3 indicates that there were 13 cases in which a duct was detected by one

ship operating in the ice and by a second ship operating in water adjacent to the ice

edge. In five of these cases the other two ships did not have successful launches. The

height of the ducts followed the same trend seen in Fig. 5.1. The thickness of the duct
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followed the trend seen in Fig. 5.2, and the strength of the duct followed the trend seen

in Fig. 5.3, a majority of the time. Although it could not be determined it there had

been a continuous duct from the ice to the water, if the duct had been continuous, the

data indicates that the height, thickness and strength would increase from the ice to the

water.

The table also indicates that in two cases a third ship was located in the water

near the ship recording the duct but did not record a duct. The flow was parallel to

the ice and both ships were near the ice edge. The difference in the refractive

conditions may be explained by the difference in the interaction of the air masses along

the ice edge. The duct recorded at the ship operating in the ice was lower, thicker and

stronger in both cases.

In all cases the duct detected by the ship operating furthest into the ice was

closest to the surface. Statistics on the the strength and thickness were not as

consistent. Also there was no apparent relation between strength and thickness, i.e.

the thickest duct was not always the strongest duct.

The difference in the refractive structure when ships operating in the ice

detected ducts while those operating in the water did not could be explained by the

location of the high pressure. The high was centered over Greenland causing more

subsidence over the ice than over the water.

There were four cases when ducts were detected by three ships on the same

launch. In one of the cases only three ships had a successful launch. The Polarstern

was located 100 km into the ice, the Hakon Mosby was at the MIZ and the Valdivia

was located 100 km into the adjacent water. The duct recorded at the ship in the ice

was significantly lower than the duct at the MIZ or over the water. This duct was also

the thinnest. The strength of the ducts decreased from the ice to the water. In the

fourth case, the Polar Queen was located 50 km into the ice, the Hakon Mosby at the

MIZ and, the Valdivia was 20 km into the ice. The Polarstern located 140 km into the

ice did not record a duct. The duct recorded by the ship in the ice was the lowest,

increasing in height to the MIZ and then decreasing again over the water. The

thickness and strength of the ducts did not follow any pattern. This case was the only

one which remained after the data was corrected, and remained unchanged.

4. Case Studies

Four cases were selected and developed into individual case studies to try to

explain the lack of homogeneity in the refractive structure. Two cases were chosen
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when two ships detected ducts and the two ships did not detect ducts on the same

launch. The first of these case studies was chosen because two ships, operating

between the two ships who recorded ducts, did not detect ducts. The flow was off-ice.

The second case was chosen because two ships operating at the MIZ recorded ducts

but the other two ships one in the water and one in the ice did not record ducts. Off-

ice flow dominated all four ships. The last two cases studies were chosen when three

ships recorded ducts at the same launch. These two were chosen because there was on-

ice flow and the two launch times were consecutive.

a. Case One

In this case the sondes were launched at 2000UTC on 10 July by all four

ships. The Polarstern was located 140 km into the ice, the Polar Queen was located at

the ice edge, the Hakon Mosby was located 40 km into the water. The Valdivia was

located 90 km into the water. Fig. 5.7 shows the ships' positions relative to the ice

edge. The surface analysis is also given in Fig. 5.7. A 992 mb low was located north

of Greenland and the trough associated with this low extended southwest over the

Greenland sea. A weak high was centered centered over northern Norway.

Fig. 5.8 shows the temperature and dewpoint curves of each ship. The

temperature profile increased from the ice to the water. The inversion monotonically

increased from a height of 990 mb at the Polarstern to 940 mb at the Valdivia. The

dewpoint curves above the inversion from the Polarstern, Polar Queen and the Hakon

Mosby radiosondes were nearly the same. The Valdivia showed a significantly higher

dewpoint than the other three. This may be explained by the difference of the flow

over this ship. The flow over the Valdivia was from the back side of the high located

over Norway. This flow had not interacted with the ice edge and was considerably-

more moist.

Fig. 5.9 show the M profiles for each of the ships. We expected to see a

duct which would increase in height from the Polarstern to the Valdivia. Fig. 5.9

shows that the Polarstern recorded a duct at 376 m and, the Hakon Mosby recorded a

duct at 339 m, while the Valdivia and Polar Queen did not detect ducts. The Hakon

Mosby 's profile was a plausible representation of the atmosphere, with the dry layer

just above the inversion. The Polarstern showed saturation below the inversion and,

with the temperature below zero at the inversion, the dewpoint curve remained

saturated above the inversion. The height of the duct reflected the saturation of the

profile. The true height of the duct at the the Polarstern should probably have been
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near the inversion at approximately 200 m. The corrected profile indicated no duct so

we were not able to confirm that the duct was actually near the inversion. We suspect

this was due to being unable to re-create the sharp decrease in the dewpoint indicated

on the sonde launched by Hakon Mosby. The lack, of ducting at the MIZ could be

explained by the interleaving of the air from the high over Norway and the tow to the

north of the Polar Queen. The difference in the refractive conditions at the Valdivia

may have resulted from the unmodified moist flow from the backside of the High.

b. Case 2

In this case radiosondes were launched at 2300UTC on 2 July by all four

ships. The Polarstern and the Valdivia were located at the ice edge. The Polar Queen

was located 50 km into the ice and the Hakon Mosby was located at 20 km into the

water. The location of the four ships relative to the ice edge is shown in Fig. 5.10.

The surface analysis is also shown in Fig. 5.10. A 1026 mb high was centered over

Greenland causing parallel to off-ice flow over all four ships.

Fig. 5.11 shows the radiosonde profiles of each of the ships. The

temperature curves were nearly identical on the Polarstern and the Valdivia. The

dewpoint curves were identical except in the area near the inversion. The profile from

the Valdivia showed a sharp decrease in the dewpoint just above the inversion, while

the profile from the Polarstern showed saturation above the inversion. The Polar

Queen's profile showed a colder temperature structure, and although the inversion was

higher, it was weaker. The dewpoint curve from the Polar Queen showed the same

saturation as the dewpoint curve taken from the Polarstern. Above the saturated

portion of the profile the dewpoint curve was nearly the same as the dewpoint curves

from the Polarstern and the Valdivia. The Hakon Mosby's profile shows slightly

higher temperatures. The inversion was at nearly the same height as on the profiles

from the Polarstern and the Valdivia but was not as well defined. The Hakon Mosby's

profile was not saturated below the inversion. However, the dewpoint curve did not

indicated as strong a jump as was seen at the inversion from the profiles of Valdivia

and Polarstern. All four ships showed a decrease in the dewpoint at 750 mb.

Fig. 5.12 shows the M profiles from each of the ships. Fig. 5.12 shows

that ducting occurred at the Polarstern (1987 m) and at the Valdivia (232 m), but not

at the other two ships. The Polarstern's was the only profile which the sharp decrease

in the dewpoint at 750 mb was sufficient to cause a duct. This could not be explained.

When the data were corrected, the Polarstern's profile produced a duct at the inversion
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(285 m) which matched the duct at the Valdivia. Since all four of the ships were within

70 km of one another, and under the influence of strong subsidence from the

Greenland high, it was expected that the refractive conditions would be the same.

Apparently, this was not true.

c. Case 3

In this case the radiosondes were launched at 1100LTC on 26 June. All

four ships launched radiosondes. The Polarstern was located 50 km into the ice, the

Polar Queen was located 40 km into the ice, Valdivia was located at the ice edge and

the Hakon Mosby was located 40 km into the adjacent water. Fig. 5.13 shows the

position of each ship relative to the ice edge. Fig. 5.13 also shows the surface analysis.

A weak low was centered north of Greenland with its associated trough extending

southeast over Greenland and the Greenland sea. A 1026 mb high was located in the

Barents Sea and ridged southwest over Svalbard. On-ice flow persisted over all four of

the ships.

Fig. 5.14 shows the radiosondes profiles from each of the ships. The

temperature curves on the Polarstern and the Polar Queen were nearly identical. The

dewpoint curves were similar above the inversion. The profile from the Polarstern was

never saturated and shows a decrease in the dewpoint just above the inversion. The

dewpoint curve from the Polar Queen, within 10 km of the Polarstern, was saturated

below the inversion and continued to be saturated above the inversion. The

temperature curve of the Valdivia was nearly the same as the Polarstern's and the Polar

Queen's except the inversion was higher at the Valdivia. The dewpoint curve was

saturated below the inversion and continued to be saturated above the inversion. The

dewpoint curve above this showed a slightly moister profile than the Polarstern and

Polar Queen. The temperature curve from the Hakon Mosby was identical to the

Valdivia except the inversion was lower. The inversion was at the same height as at

the Polarstern and the Polar Queen. The dewpoint curve did not show saturation

below the inversion and showed a slight decrease just above the inversion.

Fig. 5.15 shows the M profiles of the ships. The Polarstern detected a duct

at 358 m, the Polar Queen a duct at 441 m and the Valdivia a duct at 704 m. The

difference in the ducts between the Polarstern and Polar Queen was due to the

saturation seen in the dewpoint curves for the Polar Queen and not for the Polarstern.

The duct detected at the Polar Queen more possibly should have been near the

inversion at 358 m. This was not confirmed by the corrected profile since the duct did
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Fig. 5.13 Case 3, Sfc isobars, 26 Jun,1200z,and ship's locations at launch, 1100UTC,

(1) PS, 50 km in ice (2) PQ, 40 km in ice (3) HM, 40 km in water (4) VL, MIZ.
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not exist after the corrected profile was processed. We believe that this is a result of

the correction technique. The Valdivia showed a duct at 703 m, when corrected the

duct did not exist. Again the height of the duct reflected the gradient at the height

above the saturation. The duct, if existed, probably should have been at the inversion

level, approximately 500 m. Once again the dry layer could not be re-created. The

dewpoint curve from the Hakon Mosby did not show as large a jump at the inversion

as in the other profiles. This was the reason why there was no duct at the Hakon

Mosby. Overall ducting conditions indicated that, with on-ice flow, ducts did not exist

over the ships operating in the water due to a warmer and moister air mass which had

not been modified by the ice edge. As the warm, moist air flowed over the ice it cools

at the lower layers and the inversion became well defined. The inversion was higher

over the MIZ than over the ice. The duct sloped downward from the MIZ to the pack

ice.

d. Case 4

In this case the radiosondes were launched six hours after Case three, at

1700UTC on 26 June. Only three of the four ships launched radiosondes. The

Polarstern was still located 50 km into the ice, the Hakon Mosby and Valdivia were

located at the ice edge. Fig. 5.16 shows the position of the ships relative to the ice

edge. Fig. 5.16 shows the surface analysis at 1200UTC. During the next twelve hours

the 994 mb low over Norway began to move northwest, and was located off the coast

of Norway by 27 June at OOOOUTC. A 1026 mb high over the Barents sea remained

stationary. Weak on-ice flow persisted.

Fig. 5.17 shows the radiosonde profiles for the three ships. The

temperature curve of the two ships at the ice edge were identical. The Hakon Mosby's

dewpoint curve showed no saturation below the inversion with a dry layer at the

inversion. The dewpoint curve recorded at the Valdivia showed saturation below the

inversion which continued above the inversion. The dewpoint curve above the

inversion indicated a drier profile at the Hakon Mosby than at the Valdivia. When

comparing these profiles to the Polarstern the temperature and dewpoint wrere very

similar. The inversion at the Polarstern was higher than at the MIZ. The dewpoint

curve was saturated below the inversion and continued to be saturated above the

inversion. In comparing these profiles to those in Case 3 some differences were seen at

the Polarstern and the Valdivia. The inversion at the Polarstern increased slightly,

responding to the continued advection of the relatively warmer, moister air over the
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pack ice. The dewpoint curve supported this by showing a more moist profile at

1700LTC. The only difference in the profiles launched at the Valdivia was a slightly

lower inversion at 1700UTC The profile from the Hakon Mosby remained unchanged.

Fig. 5.18 shows the M profiles of the ships. All three ships detected ducts

at 1700UTC. The Polarstern recorded a duct at 861 m, the Hakon Mosby recorded at

duct at 288 m and the Valdivia recorded a duct at 626 m. The increase in the duct on

the profile from the Polarstern from 357 m at 1100UTC to 861 m at 1700UTC could be

explained by the fact that at 1700UTC the sonde was saturated above the inversion.

The duct reflected the height at which the profile became unsaturated. We believe that

the duct height should have increased in response to the increase in the inversion but

should have been located closer to the inversion at approximately 450 m. The decrease

in the duct at the Valdivia was reasonable as the inversion decreased over the six

hours. In both the 1100UTC and 1700UTC the profile showed saturation above the

inversion, so the actual height of the duct would have been lower. We believe that the

duct, recorded by the Valdivia, at 1700UTC should have been the same as the duct

recorded at the Hakon Mosby at that time, since the profiles were nearly identical.

The only exception was the problem of saturation. The true height of the duct of the

Valdivia should have been approximately 300 m. The Hakon Mosby picked up a duct

at 1700UTC and the only explanation for this would be that as the ship travel closer to

the MIZ the temperature inversion became more defined. With the continued on-ice

flow the height of the duct at the MIZ and over the ice increased in response to the

moist warm air being advected over the area.

B. REGIME STUDY

Six regimes were selected for this study over the period of 19 June to 15 July.

Fig. 5.19 shows the breakdown of this period into each of the regimes. The

designation of the regions was determined by the synoptic situation as well as by the

consistency of the wind direction over all four of the ships.

1. Description of the Regimes

Regime One commenced 19 June at 0000UTC and concluded 22 June at

0000UTC. Flow was generally off- ice. The synoptic situation on the 19th of June

showed a weak high centered over northern Greenland. Two cyclones were in the area.

A 990 mb low was centered northeast of Svalbard and the second cyclone with a

central pressure of 994 mb was located to the southwest of Svalbard. The low

southwest of Svalbard moved northeast and deepened to 984 mb by 1200UTC. By 20
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Fig. 5.19 Regimes.
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June at OOOOLTC, the low began to fill and drift south. The low continued to move

southeast toward the coast of Norway and moved out of the area into the Barents Sea

by the end of the period. The 990 mb low north of Svalbard remained quasi-stationary

weakening through the period. A weak high began to develop over the area on the

21st but the pressure gradient remained weak over the area.

Regime Two commenced on 23 June at 0000UTC and concluded 26 June at

2300UTC. The winds were initially off-ice and became on-ice by the end of the period.

A 992 mb low located 60 n mi off the coast of Norway moved northnorthwest into the

Fram strait on the 24th. The low slowed down as it crossed the MIZ and filled over

the ice pack on the 25th. This low produced the highest winds seen during MIZEX-84.

A high pressure centered over the Barents sea began ridging southward over the area at

2300UTC, 25 July and moved southward through the 26th.

Regime Three commenced on 27 June at 0000UTC and concluded on 28 June

at 2300UTC. The flow remained off-ice these two days. A low located over Norway

moved northwest over Svalbard by 27 June at 1200UTC, maintaining the same

intensity. By 28 June at 0000UTC, this low began to weaken and filled by June 28 at

1200UTC. A high pressure ridge from the North Atlantic began to build in over the

area from the south during the day on the 28th.

Region Four commenced 29 June at 0000UTC and concluded 4 July at

2300UTC. High pressure and off-ice winds characterized this period. Strong ridging

from the North Atlantic was set up by 29 June at 1200UTC. A second weak high

developed over central Greenland on the 29th. Ridging from both high pressure

centers persisted until the 1st of July. The high over Greenland began to dominate the

flow on 1 July and continued through the end of the period.

Region Five commenced 6 July at 0000UTC and concluded 9 July at

2300UTC. A weak low pressure over the Barents sea moved west toward Svalbard,

deepening to 990 mbs by 7 July at OOOOUTC. The low continued to deepen to its

lowest central pressure of 982 mbs at 1200UTC. The low remained stationary until 7

July at 1800UTC when it began to move slowly northeast and fill. The ships were

located on the backside of the low and experienced northwest winds throughout this

period.

Regime Six commenced 10 July at OOOOUTC, and concluded 15 July at

OOOOUTC. A weak high pressure dominated the area. High pressure centered off the

coast of Norway moved over Norway ridging northwest over the area. This system
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dominated through 1 1 July at OOOOUTC. A weak, high developed over Greenland by 1

1

July at OOOOUTC. By 1200UTC the high over Norway had moved into the Barents

seas resulting in a relatively weak, gradient over the area. This high continued to move

northeast. The weak, high over Greenland remained stationary.

Ducting in the Arctic responded to the changing synoptic conditions. High

pressure, which produced strong subsidence, caused strong inversions and was most

likely to produce necessary conditions for ducting. As the cyclones moved through the

area, there was strong vertical mixing associated with these lows. Conditions were not

favorable for ducting. Fig. 5.20 shows the percentages of ducts occurring in response

to the different synoptic flows. The most ducts were associated with Regimes Four

and Six when high pressure dominated the area. Regime Three showed a high

percentage of ducts because two of the ships were influenced by a high pressure during

the period. The average height, thickness and strength of the duct within each regimes

were not significantly different from each other.

2. Refractive structure during each regime

Fig. 5.21 shows the OCH of the ducts during ducts Regime One. On three out

of nine launch periods ducts were detected. The ducts recorded on 19 June (launch

periods one to three) reflected a weak high pressure over Greenland. As the low

moved over the area 19 June at 2300UTC to 21 June at 2300UTC, (launch periods four

through nine) no ducts were seen. This was due to the increase in the vertical vertical

motion which destroyed the inversion. Inspection of of the data from the Polar Queen,

operating in the ice, revealed that the Polar Queen detected stronger ducts than the

duct recorded by the Hakon Mosby located at the MIZ. This was probably due to the

Polar Queen being located closer to the center of the high and experiencing more

subsidence. Fig. 5.21 (b) shows that there was no change when the data were

corrected.

Fig. 5.22 shows the OCH of the ducts during Regime Two. On five out of 15

launch periods ducts were detected. The Polarstern (at the MIZ), 23 June at

0500UTC, detected a duct (launch period one). The Hakon Mosby, 80 km into the

water, did not record a duct on this launch. The Hakon Mosby detected a duct at

1100UTC (launch period two), however, the Polarstern, did not have a successful

launch. Fig. 5.22 (b) shows that no changes occurred when the profiles were corrected.

No ducts were recorded 23 June at 0500UTC, to 26 June at 0500UTC as the low

pressure system was directly over the four ships (launch periods 3-12). Ducts were
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detected on 26 June, launch periods 13-15, in response to ridging southward from the

high over the Barents Sea. On launch period 13, three out of four ships detected ducts.

This case was discussed in detail in Case Three above. The ducts persisted through

1700UTC (launch period 14) over the Polarstern and the Valdivia. The Polar Queen

did not have a successful launch at 1700UTC. This launch time was discussed in Case

Four above. The Polar Queen recorded a duct at 26 June at 2300UTC, launch period

15. We believe that the duct may have persisted through the day at the Polar Queen

and the Polarstern, which were under the influence of the high ridging southwest from

the Barents Sea. The Polarstern did not have a successful launch at 2300UTC (launch

period 15) to confirm whether the duct persisted or not. The Hakon Mosby and

Valdivia, operating in the water, did not detect ducts. They were influenced by the low

pressure intensifying over Norway which resulted in less subsidence over these two

ships. Fig. 5.22 (b) shows that when the profiles from 26 June were corrected only the

Polarstern recorded a duct on launch period 13, and only the Hakon Mosby detected a

duct on launch period 14. None of the ships recorded ducts on launch period 15.

Fig. 5.23 shows the OCH of the ducts during Regime Three. In five out of

eight launch periods ducts were detected. On 27 June a weak ridge dominated the

area. The Polarstern, located the furthest into the ice, recorded a duct on launch

period one and two. The height of the duct decreased, which was probably due to the

low which moved into the area causing a decrease in the subsidence over the ice. Fig.

5.23 (b) shows that when the data were corrected the Polarstern did not record a duct

on launch period two. The Polar Queen also detected a duct on 26 June, launch period

two. The Polar Queen did not launch a radiosonde at 1700UTC (launch period three).

The Hakon Mosby and Valdivia operating in the water adjacent the ice edge showed

no ducts. This could be explained by the fact that the low pressure approached from

the southeast. By 1700UTC the low was nearly over the position of the Hakon Mosby

and the Valdivia while the Polar Queen and the Polarstern were still under the

influence of the North Atlantic ridging over Greenland. The low moved over all the

ships by 2300UTC on the 27th and no ducts were recorded by any of the ships. As the

low stagnated and filled through 0500UTC on the 28th, no ducts were recorded (launch

periods four to five). On the 28th (launch periods six to seven) ducts were recorded by

the Polar Queen, operating in the ice near the ice edge, and by the Hakon Mosby,

operating at the MIZ. These ducts were in response to the ridging from the North

Atlantic which was building over these two ships. The Valdivia, operating 80 km in
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the adjacent water, was still under the influence of the weak low over Svalbard and

continued to show no ducting. Fig. 5.23 (b) shows that after the data were corrected

the duct recorded at the Polar Queen on launch eight was eliminated. The remainder

of the ducts remained the same.

Fig. 5.24 shows OCH of the ducts during Regime Four. In 16 out of 19 cases

ducts were detected. This was the first time that any persistence was seen in ducting

conditions at one ship. The Valdivia, located within 20 km of the ice edge (water side),

detected a duct continuously from 30 June at 2300UTC to 1 July at 2300UTC (launch

periods seven, nine and eleven). The Valdivia did not launch radiosondes on launch

periods eight and ten. The average height of the ducts, which was calculated from the

profiles taken from the Valdivia, was 250 m, the average thickness was 103 m, and the

average strength was 3.2 M units. The Hakon Mosby, operating at 50 km from the ice

edge (water side), recorded a duct continuously from 29 June at 1100UTC to 1 July at

0500UTC (launch periods three through on eight). On all the launches except one, the

duct was located near the inversion. On launch period four the duct was detected at

3190 m and no duct was detected at the inversion. No other ship recorded a similar

duct at this elevation height. The Hakon Mosby moved to the ice edge on 30 June.

The average height of the ducts, calculated from the profiles of the Hakon Mosby, was

225 m, the average thickness was 65 m and the average strength was 2.87 M units.

The two ships operating in the ice did not record ducts during this period and we

believe that was due to the fact that these ships were located between the weak high

pressure cell over Greenland and the ridging from the North Atlantic. Fig. 5.24 (b)

shows that the ducting episodes remained unchanged after the data were corrected.

The Polarstern, at the ice edge, on 2 July at 0500UTC detected ducts at the

inversion and near 750 mb (launch period 12). The duct at 750 mb persisted through

launch period 15. The height of the duct remained the same for two launches and then

increased. This duct was associated with the sharp decrease in the humidity recorded

by all ships at 750 mb. The Polarstern was the only ship which recorded this elevated

duct through the whole period. The Hakon Mosby, at the ice edge, recorded multiple

(vertical) ducts on 2 July at 1100UTC (launch period 13). The second duct was

associated with the decrease in the dewpoint at 750 mb. The remainder of the ducts

recorded, launch periods 16-19, exhibited no pattern. Fig. 5.24 (b) shows that the only

change which occurred when the data were corrected was that the Polarstern picked up

a duct at the inversion on 2 July at 2300UTC (launch period 15). This duct was at

nearly the same height as the duct detected by the Valdivia on this launch.
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Fig. 5.25 shows the OCH of the ducts during Regime Five. On two out of 23

launches ducts were recorded. A low became stationary over the area, accounting for

this low number of ducts. The Valdivia detected a duct on 7 July at 1100UTC (launch

period 6). The second time a duct was recorded was also by the Valdivia on 9 July.

The Valdivia was operating 100 km away from the ice edge and may have been

influenced by the high pressure beginning to develop over Norway. Fig. 5.25 (b) shows

that when the data were corrected the duct on launch period six was eliminated, and

the height of the duct on launch period 18 decreased 500 m and was located near the

inversion.

Fig. 5.26 shows the OCH of the ducts during Regime Six. Ducts were

recorded on 29 out of 42 launches. The radiosondes were launched every three hours

during this period. Fig. 5.26 (b) shows that when the data were corrected the number

of ducting episodes was drastically reduced. Again as in Regime Four there was some

persistence to the data. The Polar Queen and the Polarstern recorded ducts on launch

periods 16-17. At 12 July at 1100UTC (launch period 18) the Polarstern did not record

a duct and the Polar Queen did not have a successful launch. At 1400UTC (launch

period 19) the Polar Queen again reported a duct but at a significantly lower height.

The Polarstern did not record a duct on this launch. The Polarstern, located 140 km

into the ice, recorded a duct continuously begining 13 July at 1700UTC on launches

28-41. The duct was near the inversion during the entire period. The average height,

calculated from the profiles of the Polarstern, was 358 m, the average thickness was

115 m and, the average strength was 6.2 M. These averages may have been too large

since each of these profiles showed saturation above the inversion. The averages

should probably have been closer to 270 m because these values reflected the gradients

above the saturated portion of the profile and not at the inversion. Fig. 5.26 (b) shows

that all of these ducts were eliminated upon correction of the humidity profiles which

accounts for the significant difference in the percentage of duct on Fig. 5.19 between

the uncorrected and the corrected data. The only other ships which recorded duct with

any persistence was the Valdivia, operating 100 km in the adjacent water. The Valdivia

recorded a duct on 12 July at 1700UTC (launch period 20). The Valdivia then

recorded a duct again 3 launch periods later which persisted to the next launch. A
duct was not recorded again until 14 July at 0200UTC (launch period 31) and then not

again until launch period 34. After this a duct was continuously recorded until 15 July

at 2300UTC (launch periods 34-42). The average height of this duct, calculated from
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the profiles of the Valdivia, was 1286 m, the average thickness was 145 m, the average

strength 7.16 M units. Looking at Fu. 5.26 (a) and comparing the ducts recorded by

the Polarstern and Valdivia show that the duct was considerably low over the pack ice.

Looking at the averages which were calculated the ducts detected by the Valdivia were

thicker and stronger. There was no persistence from the other two ships both located

between the Polarstern and the Valdivia. This could not be explained since the flow

over all four ships was due to the southward ridging from high pressure centered in the

Barents sea.

C. PURE TIME VARIATION

Data used in the Regime study did exhibit temporal variation in the refractive

structure even though it addressed spatial variation. In order to isolate the pure

temporal vaiiauon all four of the ships' tracks were plotted to determine whether they

operated within a 30 n mi square for a period of time. The only ship which met this

criterion was the Polarstern. Fig. 5.27 shows the two areas which were used in this

study of time variation.

The first area was a box with boundaries 80.06°N to 80.5°N, and 1.10°E to

7.74°E. The Polarstern was in this box from the 18 to 26 June. Through this period

44 radiosondes were launched, and ducts were detected on three launch periods. The

ducts never persisted for more than one launch time. When the data were corrected,

no change was seen. During this period a series of lows moved through the area bring

unfavorable conditions for ducting. This ship was back in this box from 2300UTC on

the 3rd of July through the 5th of July. Ducts occurred on the 2nd, 3rd and 4th when

the ship was under the influence of a Greenland high. There was only one time when a

duct persisted from one launch period to a second launch period. The height of this

duct decreased from 1987 m to 93 m, and we do not believe that this was the same

duct persisting over two launch periods. The ship was operating near enough to the

ice edge that different air masses could have been the mechanism for the differences in

the ducts. No changes were seen after the data were corrected.

The second area's boundaries were 79.4°N to 79.82°N, and 0.5°W to 6.6°W. The

Polarstern operated 140 km into the ice and was in this area from 9-15 July. The only

persistence of ducts was from the 13-15 July. Seventeen consecutive launch periods

product a duct. The heights of ducts were between 250 m and 550 m. The thickness

varied from 77-115 m and the strength from 1.2-11.5 M units. When the data were

corrected, all these ducts were eliminated. If this was an accurate assessment of the
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Fig. 5.27 Two areas chosen for the Pure Temporal Study.

refractive conditions, we would have expected the ducts to be somewhat lower to

reflect the height of the inversion and not the height to which the profile remained

saturated. We looked to see if the ducts which were eliminated as a result of being

corrected would appear instead as super-refractive layers. We found that the

occurrence and height of the super-refractive layers were generally not affected. In

three cases there was a super-refractive layer lower and closer to the inversion than in

the uncorrected data.

D. EVAPORATIVE DUCT
Evaporative duct heights were calculated by using the surface relative humidity,

air temperature, sea-surface temperature and wind values as well the height of

observation. I REPS first uses the air/ sea temperature differences and the surface wind

speed to compute the Richardson number. The Richardson number is defined as a
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stability index. The vapor pressure at observation height and at the air-sea interface is

then calculated using air temperature, sea-surface temperature and relative humidity.

With these values the refractivity of the air at observation height and the refractivity of

the air-sea surface is computed. The lapse rate, dependent upon the Richardson

number, is then computed. The evaporative duct is then calculated based on' the value

of the Richardson number, the lapse rate, the difference in the refractivity of the air at

observation height and the refractivity of the air-sea surface and the height of the

observation. In the 427 radiosondes processed, an evaporative duct was seen in almost

all the profiles. With the exception of seven cases the evaporative duct was less than

five meters and was of little tactical importance. The shallowness of the evaporative

duct was due to the low saturation specific humidity at the cold sea surface, which

prevented a large specific humidity gradient from forming.
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VI. CONCLUSIONS

This thesis examined the spatial and temporal variability of the refractive

structure of the lower atmosphere in the vicinity of the Marginal Ice Zone. The data

used in this thesis were collected by four ships during MIZEX-84. The ships operated

in the pack ice, at the MIZ and in the water adjacent the ice edge. The upper-air data

were collected by the Vaisala RS-80 radiosonde. The data set comprised 427

radiosonde profiles collected from 19 June to 15 July.

The results of a spatial study showed that the refractive structure leading to

ducting was different over the pack ice and the MIZ from over the open water adjacent

the ice edge. The ducts were generally lower, weaker and thinner over the pack ice

with the averages of height, strength and thickness dramatically increasing over the

water as one travel away from the ice edge. Scatter diagrams showed that the duct

height, strength and thickness exhibited a linearly increasing relationship with respect

to distance from the ice. The average height, strength and thickness values increased

slightly from the pack ice to the MIZ and then dramatically increased from the MIZ to

210 km from the ice edge. This linearly increasing relationship from the pack ice to the

open water was strongest with the height data. These differences in the refractive

structure over this relatively narrow region are tactically important. An EM wave

transmitted from a source located over the ice would be affected differently from a EM
wave transmitted from a source over the water. Multiple (vertical) ducts were seen

only at the ice edge and may have reflected the multiple inversions which were seen on

sodar traces. Geemaert et al. (1987) have explained these multiple (vertical) ducts by

a theory of convergence of different air masses along the ice edge.

Although the IREPS version 2.2 user's manual implies horizontal inhomogeneity

of the atmosphere should not be a serious refractivity consideration 85% of the time,

the results from this study showed that only 40% of the time a duct recorded by more

than one ship. This dropped to 13% when the data had been corrected. There was

never a case when all four ships detected ducts on the same launch, even when

operating within 20 km of each other.

A temporal study was done by selecting six regimes to assess the effect of the

difference in synoptic flow on the refractive structure. In four of six regimes a cyclone

98



passed over the area. When the low passed directly over all four of the ships no ducts

were recorded. The greatest number of ducts was associated with the two regimes in

which high pressure dominated the period. This was the only situation in which

persistence of the ducts was seen. On two separate occasions two ships reported ducts

which persisted for 24 hours. However, at both these times only two out of the four

ships reported ducts, so once again it was seen that considerably spatial inhomogeneity

existed. The longest case in which a duct persisted was for 36 hours.

Super-refractive layers were not significantly changed when the data were

corrected. In a few cases the super-refractive layer were lowered to near the inversion.

The evaporative duct, although always present, was less than 5 meters 97% of the

time.

A disturbing feature of the dewpoint curve lead to a dilemma on how to treat the

data. In 37% of the radiosondes the dewpoint curve followed the temperature curve

above the inversion. Since this was not expected, and ducting was found to be

controlled by the humidity gradient, this feature could not be ignored. In view of this

a review of the literature was done to determine whether this problem was a sensor

problem or a real meteorological phenomenon. Conclusive evidence was not found to

support either theory', so the data were presented in an uncorrected and corrected

format. Although most of the trends in the spatial and temporal studies were nearly

the same, the number of ducting episodes was drastically reduced after correction. The

corrected data probably represent the minimum ducting conditions in the MIZ, since

the correction applied to these profiles could not re-create the expected decrease in

dewpoint just above the inversion. Because of this problem with the data, one must

carefully evaluate the data collected before implementing this into a predictive model

such as I REPS

The method in which the data were collected for this thesis was exceptional. The

distribution of the ships between the pack ice, the MIZ, and the adjacent waters, as

well as the high percentage of radiosondes launched within 15 minutes of each launch

period, provided ample data to evaluate the differences of the refractive structure over

the area. However, due to the discrepancy in the profiles, further investigation needs

to be done to determine the cause. If airplane data are used to compare with the

profiles of the lower atmosphere, care must be taken to use data collected by the

aircraft on a descent through the clouds. If this is a sensor problem then the aircraft's

sensors could also be affected by moisture, frost or icing when ascending through the
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clouds. Until the cause is determined complete guidelines for determining the ducting

in this region is not possible.
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